blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
818657e277840e11174c5f6d239c39a9b39f8b59
d445862efb3d2970184e9cf2c6ed5ffa3fbc5b16
/flaskblog/models.py
f1bf45e144db3bf9bced5f19d6a0d7bfc43763bc
[]
no_license
abhinavk001/Flaskblog
01297ccc810045461200f118881ed9599206936d
09fbc1f0429ea6c7e84a5a23c0cfd0025ffd4491
refs/heads/main
2023-01-12T15:38:04.594525
2020-11-21T05:09:50
2020-11-21T05:09:50
313,699,034
0
1
null
2020-11-21T05:09:51
2020-11-17T17:51:21
HTML
UTF-8
Python
false
false
1,778
py
from datetime import datetime import pytz from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from flask import current_app from flaskblog import db, login_manager from flask_login import UserMixin @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class User(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(20), unique=True, nullable=False) email = db.Column(db.String(120), unique=True, nullable=False) image_file = db.Column(db.String(20), nullable=False, default='default.jpg') password = db.Column(db.String(60), nullable=False) posts = db.relationship('Post', backref='author', lazy=True) def get_reset_token(self, expires_sec=1800): s = Serializer(current_app.config['SECRET_KEY'], expires_sec) return s.dumps({'user_id': self.id}).decode('utf-8') @staticmethod def verify_reset_token(token): s = Serializer(current_app.config['SECRET_KEY']) try: user_id = s.loads(token)['user_id'] except: return None return User.query.get(user_id) def __repr__(self): return f"User('{self.username}', '{self.email}','{self.image_file}')" class Post(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(100), nullable=False) tz = pytz.timezone('Asia/Calcutta') date_posted = db.Column(db.DateTime, nullable=False, default=pytz.utc.localize(datetime.utcnow(), is_dst=None).astimezone(tz)) content = db.Column(db.Text, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) def __repr__(self): return f"Post('{self.title}', '{self.date_posted}')"
[ "godofwars0017@gmail.com" ]
godofwars0017@gmail.com
e96a934f3c2c33f4107aa1d4e1c91107fa3083ee
10d17864a685c025bb77959545f74b797f1d6077
/capitulo 09/09.39.py
958b1c899df533fdaa5051df081ab12640d19d01
[]
no_license
jcicerof/IntroducaoPython
02178d2dfcaa014587edbd3090c517089ccef7c2
02e619c7c17e74acdc3268fbfae9ab624a3601dd
refs/heads/master
2020-04-24T18:12:21.422079
2019-02-23T05:14:43
2019-02-23T05:14:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
############################################################################## # Parte do livro Introdução à Programação com Python # Autor: Nilo Ney Coutinho Menezes # Editora Novatec (c) 2010-2019 # Primeira edição - Novembro/2010 - ISBN 978-85-7522-250-8 # Segunda edição - Junho/2014 - ISBN 978-85-7522-408-3 # Terceira edição - Janeiro/2019 - ISBN 978-85-7522-718-3 # Site: http://python.nilo.pro.br/ # # Arquivo: listagem3\capítulo 09\09.39.py # Descrição: ############################################################################## momento.weekday()
[ "jose.cicero@gmail.com" ]
jose.cicero@gmail.com
3d65d74d70ae98884bedfe6b4893adc504e45293
b0dec04a6d705d5f61a3ec0793c613745871db28
/PythonTestScripts/venv/Scripts/easy_install-script.py
651b092909ff9d3b56a69107df5fd232b30325fa
[]
no_license
VeyselKayaturk/DataBoss
abedf19d35e9bacabc06bec042b9b61ff8d6e8b3
948a915ddd85b46129d427bbf3854a20b788d6ee
refs/heads/master
2023-02-28T11:32:19.346033
2021-01-31T18:32:52
2021-01-31T18:32:52
334,718,825
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
#!C:\Users\veysel\DataBoss\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==28.8.0','console_scripts','easy_install' __requires__ = 'setuptools==28.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==28.8.0', 'console_scripts', 'easy_install')() )
[ "veysel_kayaturk@hotmail.com" ]
veysel_kayaturk@hotmail.com
0608037a4fd1450b915c965d8feff2eace74b368
89bc3d20aca14a04bcb40cf756df5291299ed901
/event_handler.py
dc7650d6a74c40257ef40b284fafec84c0d18399
[]
no_license
Igluminati/WeObserve
a986c054d9c069fddb78c40412c1cea4dba52577
4e6a0d56b00c4a8e95e140d33a13f3cfe88b282b
refs/heads/main
2023-06-14T13:23:43.486375
2021-07-08T10:40:16
2021-07-08T10:40:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,175
py
import watchdog.events, watchdog.observers, os.path, time, socket, datetime hostname = socket.gethostname() IPAddr = socket.gethostbyname(hostname) # Handles Events: class Events(watchdog.events.PatternMatchingEventHandler): fucky_endings = {"swp","swx", "swpx"} def __init__(self): # Search for a specific file extension (in this case it searches for all) watchdog.events.PatternMatchingEventHandler.__init__(self, patterns=['*'], ignore_directories=True, case_sensitive=False) # File creation event: def on_created(self, event): if event.src_path[-3:] in self.fucky_endings: return c_notification = "Received modification event - % s - % s - % s" % (event.src_path, time.ctime(os.path.getctime(event.src_path)), IPAddr) #print(c_notification) # Prints immediately print(c_notification, file=open("output.txt", "a")) # Prints into specified txt file # File modification event: def on_modified(self, event): if event.src_path[-3:] in self.fucky_endings: return m_notification = "Received modification event - % s - % s - % s" % (event.src_path, time.ctime(os.path.getmtime(event.src_path)), IPAddr) #print(m_notification) print(m_notification, file=open("output.txt", "a")) # File deletion event: def on_deleted(self, event): if event.src_path[-3:] in self.fucky_endings: return d_notification = "File/Directory was deleted - % s - % s - % s" % (event.src_path, datetime.datetime.now(), IPAddr) #print(d_notification) print(d_notification, file=open("output.txt", "a")) if __name__ == "__main__": src_path = "test_directory" # /path/to/directory event_handler = Events() observer = watchdog.observers.Observer() observer.schedule(event_handler, path=src_path, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
[ "noreply@github.com" ]
Igluminati.noreply@github.com
b2559814942217b99314c72521b236d547d3f899
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_symbolising.py
77549569cc24bdea8347e94d79e7aa93a485c531
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
236
py
#calss header class _SYMBOLISING(): def __init__(self,): self.name = "SYMBOLISING" self.definitions = symbolise self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['symbolise']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
efffd98635cae516be11bfc3ea1fd3069065a97f
c7787d7e2517cc909d0514e8f45ff96505b40eb0
/Deep Neural Network/nn/optimizer.py
4834ed2dbc58c6eb8390658526aa6ce2e039812d
[]
no_license
zhoubaohang/deep-learning-notes
5037b6a91e83dba2856b7aaee2e9162bac967dad
d912a0dff206f3ff689a8e9ce59aa20f50e87000
refs/heads/master
2020-03-28T05:31:55.630779
2018-11-09T14:33:35
2018-11-09T14:33:35
147,782,194
0
0
null
null
null
null
UTF-8
Python
false
false
1,850
py
# -*- coding: utf-8 -*- """ Created on Thu Sep 27 18:34:19 2018 @author: 周宝航 """ import numpy as np class Momentem(object): def __init__(self, shape_vw, shape_vb, beta=0.9): self.beta = beta self.vw = np.zeros(shape_vw) self.vb = np.zeros(shape_vb) def getWeight(self, dW, db, t=0): self.vw = self.beta * self.vw + (1. - self.beta) * dW self.vb = self.beta * self.vb + (1. - self.beta) * db return (self.vw, self.vb) class RMSProp(object): def __init__(self, shape_sw, shape_sb, beta=0.999): self.beta = beta self.sw = np.zeros(shape_sw) self.sb = np.zeros(shape_sb) def getWeight(self, dW, db, t=0): self.sw = self.beta * self.sw + (1. - self.beta) * dW**2 self.sb = self.beta * self.sb + (1. - self.beta) * db**2 return (dW/np.sqrt(self.sw + 1e-6), db/np.sqrt(self.sb + 1e-6)) class Adam(object): def __init__(self, shape_w, shape_b, beta1=0.9, beta2=0.999, epsilon=1e-8): self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.momentom = Momentem(shape_w, shape_b, beta1) self.rmsprop = RMSProp(shape_w, shape_b, beta2) def getWeight(self, dW, db, t): vw, vb = self.momentom.getWeight(dW, db) u_sw, u_sb = self.rmsprop.getWeight(dW, db) sw, sb = (dW/u_sw)**2, (db/u_sb)**2 vw_correct = vw / (1. - self.beta1**t) vb_correct = vb / (1. - self.beta1**t) sw_correct = sw / (1. - self.beta2**t) sb_correct = sb / (1. - self.beta2**t) update_w = vw_correct / np.sqrt(sw_correct + self.epsilon) update_b = vb_correct / np.sqrt(sb_correct + self.epsilon) return (update_w, update_b)
[ "zbh12306@163.com" ]
zbh12306@163.com
92babcab54a5514ed755293c6bbcce524d10149b
db3551a44acfcec1eaee6bbbc35efad594d1496c
/data/es_data_processing.py
2a2612d8ae1f942ec628d77e4d275049176f1b33
[]
no_license
chesiver/CS6400_Travel_Recommend
859febfb5cfd54e63ff34ea89f4d53654dbe7742
ce6d11c080dc1edc8db79c3abe45f289e894d47d
refs/heads/master
2021-05-15T19:00:17.248979
2017-12-07T18:51:40
2017-12-07T18:51:40
107,738,694
0
1
null
2017-12-07T18:51:41
2017-10-21T00:24:31
HTML
UTF-8
Python
false
false
1,962
py
import pandas as pd data = pd.read_csv('data/1.csv') data['id'] = data.index data = data[['id','name','city', 'country', 'intro']] filename = "destinations.data" with open(filename, mode="wb") as outfile: outfile.write(data.to_json(orient='records', lines = True)) cities = data['city'].drop_duplicates() cities.index = pd.RangeIndex(len(cities.index)) cities = cities.to_frame() cities['id'] = cities.index cities = cities[['id', 'city']] filename = "cities.data" with open(filename, mode="wb") as outfile: outfile.write(cities.to_json(orient='records', lines = True)) countries = data['country'].drop_duplicates() filename = "countries.data" with open(filename, mode="wb") as outfile: for country in countries: outfile.write("{\"country\":" + "\"" + country + "\"" + "}\n") countries = data['country'].drop_duplicates() countries.index = pd.RangeIndex(len(countries.index)) countries = countries.to_frame() countries['id'] = countries.index countries = countries[['id', 'country']] filename = "countries.data" with open(filename, mode="wb") as outfile: outfile.write(countries.to_json(orient='records', lines = True)) outfile = "travel.data" dest_index = "{\"index\": {\"_index\": \"travelsearch\", \"_type\": \"destination\"}}" + "\n" city_index = "{\"index\": {\"_index\": \"travelsearch\", \"_type\": \"cities\"}}" + "\n" country_index = "{\"index\": {\"_index\": \"travelsearch\", \"_type\": \"countries\"}}"+ "\n" with open(outfile, mode="wb") as outfile: with open('destinations.data', mode="r") as infile: for line in infile: outfile.write(dest_index) outfile.write(line) with open('cities.data', mode="r") as infile: for line in infile: outfile.write(city_index) outfile.write(line) with open('countries.data', mode="r") as infile: for line in infile: outfile.write(country_index) outfile.write(line)
[ "chli4250@uni.sydney.edu.au" ]
chli4250@uni.sydney.edu.au
90c5ddfa0aa0c5bc388b6a212b9985fad2221620
4f837af7475b627f354118d13fec8dbff834abd4
/wechat_spider/history_articles_spider.py
401f00ea71eeaf549a0f26c3ddef47094e0d93c1
[]
no_license
DevRoss/spider
7396149265faa164234d21ea25c89d088ac4544b
d4f52695ca838035ecd0cd002e27f9c81d7d4846
refs/heads/master
2020-04-05T11:22:44.407261
2017-08-10T03:53:04
2017-08-10T03:53:04
81,425,612
4
0
null
null
null
null
UTF-8
Python
false
false
4,016
py
import requests from bs4 import BeautifulSoup import re import json params = { 'SCAU': { 'biz': 'MzIyMjEwMjYxMA', 'uin': 'MjIxMDM2OTM2MQ%3D%3D', 'key': 'bfaceaac636432aaf7364292606c0d1679d45c845fee535185129bdd102d4e3fd3888d978c9d1469deab7d1afc7becd835ba69e50551595eefca33ea38e7851c341b3344d6cefbbb523ac3a5feb7f76b', 'scene': '124&devicetype', 'pass_ticket': 'HL%2BQHOEcvwQGdCCyp6oFf40BX8gcZdIENpHCDQX1w361iJ%2FBsnIH7meE%2BHiXJ4w7' } } ''' 实例化时传入account目标公众号 ''' class Article: def __init__(self, account=None): self.biz = None self.uin = None self.key = None if account is not None: self.biz = params[account]['biz'] self.uin = params[account]['uin'] self.key = params[account]['key'] self.scene = params[account]['scene'] self.pass_ticket = params[account]['pass_ticket'] self.headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Language': 'zh-CN,en-US;q=0.8', 'Upgrade-Insecure-Requests': '1', 'Connection': 'keep-alive', 'Cookie': 'pgv_pvi=9787430912; pgv_pvid=5941961831; sd_userid=99401491106713589; sd_cookie_crttime=1491106713589; pgv_info=ssid=s4976549360; wap_sid=CNGe/p0IEkB3dERaYm8xZU96MXhxaF9BeTRVb1czZjg5dHdPMUhpWEt2RFpxUWljSjJ2cUxTcHNsay1zeVBYRlk4Xy1ZS3UxGAQg/REo0sS1gAww/bXSxwU=; wap_sid2=CNGe/p0IElxVTVRsQ1RnVXpabjduUjFKdkY0TWUxaHpGNENaMWdYMFBHRmhpZXRyejFpMkhJNERDbGpmZzUwQVNCWVBKaXBjUjNTTjB2UjBTQmh4MnJMRTFudUNTSVFEQUFBfjD9tdLHBQ==', 'Host': 'mp.weixin.qq.com', 'X-Requested-With': 'com.tencent.mm', 'Accept-Encoding': 'gzip, deflate', 'User-Agent': 'Mozilla/5.0 (Linux; Android 7.1.1; Nexus 5 Build/NOF27B; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.132 Mobile Safari/537.36 MicroMessenger/6.5.7.1041 NetType/WIFI Language/zh_CN', # 'x-wechat-key': '926cd28a4aba000edb9f388d9df05262445a1683abb94e0b9f8589716d739d8ecb2aa758ee89e8268e2583fb6f8ec6e0c56e4620fc0e200adcf07c41e1f1fcfb5354e3b291a55a06cc0b09f4a335fe29', # 'x-wechat-uin': 'MjIxMDM2OTM2MQ%3D%3D' } self.raw_url = 'https://mp.weixin.qq.com/mp/getmasssendmsg?__biz={biz}==&from=1&uin={uin}&key={key}' self.raw_history_url = 'https://mp.weixin.qq.com/mp/profile_ext?action=home&__biz={biz}==&scene={scene}=android-25&version=26050741&lang=zh_CN&nettype=WIFI&a8scene=3&pass_ticket={pass_ticket}&wx_header=1' self.url = None self.session = requests.session() self.session.headers.update(self.headers) def entrance(self): # url合成 self.url = self.raw_history_url.format(biz=self.biz, uin=self.uin, key=self.key, scene=self.scene, pass_ticket=self.pass_ticket) print(self.url) res = self.session.get(url=self.url) # res.encoding = 'utf-8' error = re.compile('<title>验证</title>') print(res.text) if re.search(error, res.text) is not None: print('url失效') msg_list = re.search(r"msgList = '(?P<json>.+)';", res.text) print('------------------------------------------------------\n\n\n\n\n') print(msg_list.group('json')) # article_dict = json.loads(msg_list.group('json')) # article_collection = [] # for article in article_dict['list']: # article_detail = {} # article_detail['content_url'] = article['app_msg_ext_info']['content_url'] # article_detail['img'] = article['app_msg_ext_info']['cover'] # article_detail['title'] = article['app_msg_ext_info']['title'] # for key, value in article_detail.items(): # print(key) # print(value) if __name__ == '__main__': starter = Article(account='SCAU') starter.entrance()
[ "820584458@qq.com" ]
820584458@qq.com
3e14063ca00f455ff9db9ed329d5f1846980859c
fd87d932a9089a6a6855ae28a1d46d558349f40d
/pym/scripts/pym.py
300be0b5fa1d99c643ffc010a634371786349182
[]
no_license
dmdm/Parenchym
c66b83d330495891002c09e4c0dae78ebf3c0d1f
63864cdaff76b9aa1b8dbe795eb537b5be5add3a
refs/heads/master
2020-04-06T15:32:28.762265
2014-12-18T22:58:17
2014-12-18T22:58:17
22,520,527
0
2
null
null
null
null
UTF-8
Python
false
false
13,327
py
# -*- coding: utf-8 -*- """ ``pym`` has several sub-commands to manage your Pym setup: you can manage principals (users), roles and role memberships as well as install new sites and check the integrity of existing sites. The sub-commands are:: list-principals List principals create-principal Create principal update-principal Update principal with given ID delete-principal Delete principal with given ID list-roles List roles create-role Create role update-role Update role with given ID delete-role Delete role with given ID list-rolemembers List rolemembers create-rolemember Create rolemember delete-rolemember Delete rolemember with given ID Type ``pym -h`` for general help and a list of the sub-commands, ``pym sub-command -h`` to get help for that sub-command. ``pym`` allows you to use different formats for input and output. Choices are json, yaml (default) and tsv. Tsv is handy if you want to review the output in a spreadsheet:: pym -c production.ini --format tsv list-principals > a && gnumeric a Both, json and yaml allow inline-style. Here is an example of inline YAML:: pym -c production.ini --format yaml create-principal \\ '{principal: FOO5, email: foo5@here, pwd: FOO, roles: [foo, bar]}' TTY? True Locale? en_GB UTF-8 id: 106 display_name: FOO5 email: foo5@here first_name: null csrf_token: null identity_url: null is_blocked: false is_enabled: false last_name: null login_time: null notes: null prev_login_time: null principal: FOO5 pwd: FOO owner: 2 ctime: '2012-12-07 07:47:23' editor: null mtime: null role_names: - foo - bar - users Done. Here is an example of creating a new site:: pym -c production.ini --format yaml create-site '{sitename: www.new-site.com, principal: {principal: sally, email: sally@example.com, pwd: FOO, first_name: Sally, last_name: Müller-Lüdenscheidt, roles: [some_role, other_role]}, title: Neue Site, site_template: default}' TTY? True Locale? en_GB UTF-8 Proceed to create a site in /tmp/sites (yes/NO)? yes Copied template [...]/var/site-templates/default Created role 'www.new-site.com' (108) Created principal 'sally' (111) Set principal 'sally' as member of role 'www.new-site.com' Done. To get an overview, which user is in which role, and if there are orphans (should not), do:: pym -c production.ini --format tsv list-rolemembers > a && gnumeric a """ import logging import os import sys import transaction import argparse import yaml import time from collections import OrderedDict import datetime import pym.models import pym.lib import pym.cli import pym.auth.manager as authmgr import pym.auth.const # Init YAML to dump an OrderedDict like a regular dict, i.e. # without creating a specific object tag. def _represent_ordereddict(self, data): return self.represent_mapping('tag:yaml.org,2002:map', data.items()) yaml.add_representer(OrderedDict, _represent_ordereddict) class PymCli(pym.cli.Cli): def __init__(self): super().__init__() def list_users(self): from pym.auth.models import User qry = self._build_query(User) data = self._db_data_to_list(qry, fkmaps=dict(groups=lambda it: it.name)) self._print(data) def list_users_with_groups(self): from pym.auth.models import User #qry = self._build_query(User) sess = pym.models.DbSession() users = sess.query(User) data = {} for u in users: k = "u:{} ({})".format(u.principal, u.id) groups = [] for gr in u.groups: groups.append("g:{} ({})".format(gr.name, gr.id)) data[k] = groups self._print(data) def create_user(self): data = self._parse(self.args.data) data['owner'] = pym.auth.const.ROOT_UID rs = authmgr.create_user(data) self._print(self._db_data_to_list([rs], fkmaps=dict(group_names=lambda it: it))[0]) def update_user(self): data = self._parse(self.args.data) data['editor'] = pym.auth.const.ROOT_UID data['mtime'] = datetime.datetime.now() rs = authmgr.update_user(data) self._print(self._db_data_to_list([rs])[0]) def delete_user(self): authmgr.delete_user(self.args.id) def list_groups(self): from pym.auth.models import Group qry = self._build_query(Group) data = self._db_data_to_list(qry) self._print(data) def list_groups_with_members(self): from pym.auth.models import Group #groups = self._build_query(Group) sess = pym.models.DbSession() groups = sess.query(Group) data = {} for gr in groups: k = 'g:{} ({})'.format(gr.name, gr.id) member_users = [] for mu in gr.member_users: if not mu: continue member_users.append('{} ({})'.format(mu.principal, mu.id)) member_groups = [] for mg in gr.member_groups: if not mg: continue member_groups.append('{} ({})'.format(mg.name, mg.id)) data[k] = { 'u': member_users, 'g': member_groups } self._print(data) def create_group(self): data = self._parse(self.args.data) data['owner'] = pym.auth.const.ROOT_UID rs = authmgr.create_group(data) self._print(self._db_data_to_list([rs])[0]) def update_group(self): data = self._parse(self.args.data) data['editor'] = pym.auth.const.ROOT_UID data['mtime'] = datetime.datetime.now() rs = authmgr.update_group(data) self._print(self._db_data_to_list([rs])[0]) def delete_group(self): authmgr.delete_group(self.args.id) def list_group_members(self): pass # from pym.auth.models import User, Group, GroupMember # groups = self._build_query(Group) # fields = ['id', 'group_id', 'group', 'user_id', 'principal', # 'is_enabled', 'is_blocked', 'owner', 'ctime'] # data = {} # for gr in groups: # grdat = { # 'user' # } # self._print(data) def create_group_member(self): data = self._parse(self.args.data) data['owner'] = pym.auth.const.ROOT_UID rs = authmgr.create_group_member(data) self._print(self._db_data_to_list([rs])[0]) def delete_group_member(self): authmgr.delete_group_member(self.args.id) def _build_query(self, entity): sess = pym.models.DbSession() if isinstance(entity, list): entities = entity entity = entities[0] else: entities = [entity] qry = sess.query(entities) if self.args.idlist: qry = qry.filter(entity.id.in_(self.args.idlist)) else: if self.args.filter: qry = qry.filter(self.args.filter) if self.args.order: qry = qry.order_by(self.args.order) return qry def parse_args(app_class, runner): # Main parser parser = argparse.ArgumentParser(description="""Pym command-line interface.""", epilog=""" Samples: pym -c production.ini --format tsv list-group-members --order 'group_name, principal_principal' > /tmp/a.txt && gnumeric /tmp/a.txt """) app_class.add_parser_args(parser, ( ('config', True), ('locale', False), ('format', False), ('alembic-config', False) )) parser.add_argument('--dry-run', action="store_true", help="The database changes will be rolled back.") subparsers = parser.add_subparsers(title="Commands", dest="subparser_name", help="""Type 'pym COMMAND --help'""") # Parent parser for DB editing parser_db_edit = argparse.ArgumentParser(description="Database editing", add_help=False) parser_db_edit.add_argument('data', help="The data. For updates, field ID must be present.") # Parent parser for DB deleting parser_db_delete = argparse.ArgumentParser(description="Database deleting", add_help=False) parser_db_delete.add_argument('id', type=int, help="The ID") # Parent parser for DB listers parser_db_lister = argparse.ArgumentParser(description="Database lister", add_help=False) parser_db_lister.add_argument('idlist', nargs='*', type=int, metavar='ID', help="""Filter by these IDs""") parser_db_lister.add_argument('--filter', help="""Define filter with literal SQL (WHERE clause, e.g. 'id between 200 and 300')""") parser_db_lister.add_argument('--order', help="""Define sort order with literal SQL (ORDER BY clause, e.g. 'name DESC')""") # Parser cmd list-users parser_list_users = subparsers.add_parser('list-users', parents=[parser_db_lister], help="List users") parser_list_users.set_defaults(func=runner.list_users) parser_list_users_with_groups = subparsers.add_parser('list-users-with-groups', parents=[parser_db_lister], help="List users with their groups.") parser_list_users_with_groups.set_defaults(func=runner.list_users_with_groups) # Parser cmd create-user parser_create_user = subparsers.add_parser('create-user', parents=[parser_db_edit], help="Create user", epilog="""You might want to try command 'list-users' to see which fields are available.""" ) parser_create_user.set_defaults(func=runner.create_user) # Parser cmd update-user parser_update_user = subparsers.add_parser('update-user', parents=[parser_db_edit], help="Update user with given ID", epilog="""You might want to try command 'list-users' to see which fields are available.""" ) parser_update_user.set_defaults(func=runner.update_user) # Parser cmd delete-user parser_delete_user = subparsers.add_parser('delete-user', parents=[parser_db_delete], help="Delete user with given ID", ) parser_delete_user.set_defaults(func=runner.delete_user) # Parser cmd list-groups parser_list_groups = subparsers.add_parser('list-groups', parents=[parser_db_lister], help="List groups") parser_list_groups.set_defaults(func=runner.list_groups) parser_list_groups_with_members = subparsers.add_parser('list-groups-with-members', parents=[parser_db_lister], help="List groups with their members.") parser_list_groups_with_members.set_defaults(func=runner.list_groups_with_members) # Parser cmd create-group parser_create_group = subparsers.add_parser('create-group', parents=[parser_db_edit], help="Create group") parser_create_group.set_defaults(func=runner.create_group) # Parser cmd update-group parser_update_group = subparsers.add_parser('update-group', parents=[parser_db_edit], help="Update group with given ID") parser_update_group.set_defaults(func=runner.update_group) # Parser cmd delete-group parser_delete_group = subparsers.add_parser('delete-group', parents=[parser_db_delete], help="Delete group with given ID") parser_delete_group.set_defaults(func=runner.delete_group) # Parser cmd list-group-members parser_list_group_members = subparsers.add_parser('list-group-members', parents=[parser_db_lister], help="List group-members") parser_list_group_members.set_defaults(func=runner.list_group_members) # Parser cmd create-group-member parser_create_group_member = subparsers.add_parser('create-group-member', parents=[parser_db_edit], help="Create group-member") parser_create_group_member.set_defaults(func=runner.create_group_member) # Parser cmd delete-group-member parser_delete_group_member = subparsers.add_parser('delete-group-member', parents=[parser_db_delete], help="Delete group-member with given ID") parser_delete_group_member.set_defaults(func=runner.delete_group_member) return parser.parse_args() def main(argv=None): if not argv: argv = sys.argv start_time = time.time() app_name = os.path.basename(argv[0]) lgg = logging.getLogger('cli.' + app_name) runner = PymCli() args = parse_args(PymCli, runner) runner.init_app(args, lgg=lgg, setup_logging=True) transaction.begin() # noinspection PyBroadException try: args.func() except Exception as exc: transaction.abort() lgg.exception(exc) lgg.fatal('Changes rolled back.') lgg.fatal('Program aborted!') else: if args.dry_run: transaction.abort() lgg.info('Dry-run. Changes rolled back.') else: transaction.commit() lgg.info('Changes committed.') finally: lgg.info('{} secs.'.format(time.time() - start_time)) # Do some cleanup or saving etc.
[ "dmakowski@gmx.net" ]
dmakowski@gmx.net
4cca625f6ace6606c02435c3a6d04ccab7d31b8e
f29bae8e7440e99491f19cf2f28f92b816389628
/users/admin.py
a4dd70ed94f69a0d66cd9ef43502b1fab2d99640
[]
no_license
AmulMittal/GrocerizeR
70b731b13088e228220df43c9016886dccf02c48
dcd6c0cd7cfef6f07cd368cee2d6b6ca111a2214
refs/heads/master
2023-05-31T23:32:33.480593
2021-06-09T09:11:45
2021-06-09T09:11:45
374,734,121
0
0
null
null
null
null
UTF-8
Python
false
false
908
py
# users/admin.py from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from django.contrib.auth.models import Group from django.contrib import admin from users.forms import UserChangeForm, UserCreationForm from users.models import User class UserAdmin(BaseUserAdmin): form = UserChangeForm add_form = UserCreationForm list_display = ('email', 'is_admin') list_filter = ('is_admin',) fieldsets = ( (None, {'fields': ('email', 'password', 'first_name', 'last_name',)}), ('Permissions', {'fields': ('is_admin',)}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('email', 'password1', 'password2'), }), ) search_fields = ('email',) ordering = ('email',) filter_horizontal = () class Meta: model = User admin.site.register(User, UserAdmin) admin.site.unregister(Group)
[ "amul.smart@gmail.com" ]
amul.smart@gmail.com
552e505788d948bf31399ff002e7d8a56d6784b2
df5fd00119006a2ffb6d18a8464d8c48e20f4c8c
/uzdevumi/uzd_05_03.py
ebe49ed75cc7f1a5096aecfd8a76fe981e2d86d4
[]
no_license
Spector255/izdruka
0dccbf6d807336f7fe72f9b1f60a6b8ccdd89f2d
18371da7851c94ff93930f308841aba609cc3e4a
refs/heads/master
2023-04-26T10:15:59.838338
2021-05-27T08:56:43
2021-05-27T08:56:43
328,662,665
1
0
null
null
null
null
UTF-8
Python
false
false
2,338
py
#Klients pieejot pie kases norāda, vai ir pieejama klienta karte. #Klients pērk N preces. Klientu karte, katrai precei dod 11% atlaidi. #Ja pērk vismaz 3 gabalus vai 3 kg ir 5% atlaide, taču, ja ir arī klientu karte tad 15% atlaide. #Klients ievada preces nosaukumu, cenu (bez atlaides) un daudzumu. #Programma izvada pilnā teikumā preces nosaukumu, apjomu, cenu un cenu par konkrēto daudzumu. Ja ir pieejama klientu karte izvada cenu ar atlaidi. #Beigās norāda cik jāmaksā par visu pirkumu kopā, kā arī, kāds ir kopējais ietaupījums. karte = input( 'Labdien! Ja Jums ir klienta karte, tad ievadiet "+", ja nav, tad ievadiet "-" : ' ) produktusk = int(input('Lūdzu ievadiet produktu skaitu grozā: ')) summapp = 0.0 for i in range(produktusk): produkts_nos = input('Ievadiet preces nosaukumu: ') produkts_cen = float(input('Ievadiet preces cenu: ')) sver = input( 'Ievadiet "Jā", ja tas produksts ir svērams, vai ievadiet "Nē", ja tas nav svērama produkcija: ' ) while sver != "Jā" and sver != "Nē": print("Nekorēkti dati") sver = input( 'Ievadiet "Jā", ja tas produksts ir svērams, vai ievadiet "Nē", ja tas nav svērama produkcija: ' ) if sver == "Jā": produkts_dau = float(input('Ievadiet preces daudzumu: ')) else: produkts_dau = int(input('Ievadiet preces daudzumu: ')) if produkts_dau >= 3.0 and karte == "+": produkts_kopsumma = ((produkts_dau * produkts_cen) / 100) * 85 produkts_kopsumma = round(produkts_kopsumma, 2) elif produkts_dau >= 3.0 and karte == "-": produkts_kopsumma = ((produkts_dau * produkts_cen) / 100) * 95 produkts_kopsumma = round(produkts_kopsumma, 2) elif produkts_dau <= 3.0 and karte == "+": produkts_kopsumma = ((produkts_dau * produkts_cen) / 100) * 89 produkts_kopsumma = round(produkts_kopsumma, 2) else: produkts_kopsumma = produkts_dau * produkts_cen produkts_kopsumma = round(produkts_kopsumma, 2) summapp = summapp + produkts_kopsumma print( f"Jūs izvēlejaties {produkts_nos}, {produkts_dau},par {produkts_cen}€, kopā par šo produkstu Jūms jāsamaksā {produkts_kopsumma}€" ) summapp=round(summapp,2) print() print(f"Kopā Jums par pirkumu jāsamksa {summapp} €")
[ "daniks255@inbox.lv" ]
daniks255@inbox.lv
c4d4aada8fe620856ab682e25557de2e5034c076
d042706db30773bd677c6c8d1eb90018391b1ebf
/food/migrations/0011_remove_userprofile_userid.py
1e4271272a59f284183ecdeaa5d2a23b3ab486ad
[]
no_license
prolaysaha/Canteen-Management-System-Django
dee94b7858491351edae6f4b5325f6c3dbcec984
c4bdca299ffb062e76604d391a0bf088f332a6b8
refs/heads/main
2023-08-20T22:33:12.531929
2021-10-17T17:40:33
2021-10-17T17:40:33
418,207,608
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
# Generated by Django 3.0.5 on 2020-04-11 19:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('food', '0010_userprofile'), ] operations = [ migrations.RemoveField( model_name='userprofile', name='userid', ), ]
[ "prolaysaha68@gmail.com" ]
prolaysaha68@gmail.com
22818600f9f264fa75297d122dea89347b0822ea
d3e0794ab3654393c11d227357701762142b626e
/user001/scripts/dash/screens/scheduler/objects.py
2424c5093ffabee7b0ddf41202dd2a7f19bd6f54
[]
no_license
aleksProsk/projectHydroOpt
09604096847cc0726eda6a912f7a1f30a4f5bac6
aa6f6b7c98567c66f2d0ed60bc5621e5b9bbbb90
refs/heads/master
2020-03-26T11:12:16.966021
2018-09-11T15:37:30
2018-09-11T15:37:30
144,833,033
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
objects = [ { 'object': 'reservoirInputTypeDropdown', 'type': 'CDropdown', }, { 'object': 'performanceSettingsDropdown', 'type': 'CDropdown', }, { 'object': 'reservoirInputTypeDropdown', 'type': 'CDropdown', }, { 'object': 'datePicker', 'type': 'CDatePickerRange', } ]
[ "alexandriksasha@mail.ru" ]
alexandriksasha@mail.ru
a4a55a6035f40c5b04aa62febab0769feb9879e7
5483f140c3ae34304cd85fe61b70259b688ff455
/propiedades/migrations/0001_initial.py
a3173b9d4b7fe238042e50bd273b6cd74dd9602b
[]
no_license
inframazing/truehome-test-api
d2b72e4d22213430f6d9979c49f9d51e7ff8ed6a
29e5000f8cee76fe1ee9b96dae0ac18828a91fc3
refs/heads/master
2020-12-21T17:57:31.546592
2020-01-27T14:48:14
2020-01-27T14:48:14
236,512,336
0
0
null
null
null
null
UTF-8
Python
false
false
683
py
# Generated by Django 3.0.2 on 2020-01-25 23:05 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Propiedad', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('address', models.CharField(max_length=100)), ('square_meters', models.PositiveSmallIntegerField()), ('email', models.EmailField(max_length=50)), ], ), ]
[ "inframazing@gmail.com" ]
inframazing@gmail.com
393fb345917b7098f1abe268a275728ddb549849
92efbf5b96cb59c29bc0e20da5f9cf2ff67d5e13
/chapter4/4.6/HelloProj/com/pkg1/hello.py
7c5d28aabd3c70de9870cd293471bed102718581
[]
no_license
chawlau/python_expert
474cfcecf8093543cb593078a6b9c2b32de7fd98
3261a33661576a0da41119c967e074cd6e3abd69
refs/heads/master
2020-12-06T03:50:34.805500
2020-01-07T13:39:59
2020-01-07T13:39:59
232,332,225
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
# coding=utf-8 # 代码文件:chapter4/4.5/com/pkg1/hello.py import com.pkg2.hello as module1 from com.pkg2.hello import z y = 20 print(y) # 访问当前模块变量y print(module1.y) # 访问com.pkg2.hello模块变量y print(z) # 访问com.pkg2.hello模块变量z
[ "xiaonongyue@gmail.com" ]
xiaonongyue@gmail.com
2f2962ea25e9f936fbeeefc8d47ccaa3fd482996
007cd60ca84623c5ace8b50e846be659ae2e8c85
/collectors/icdpcs/record.py
7684e370c580ba310af74e8cd2de5a1b7fa0b18d
[ "MIT" ]
permissive
kenferrara/collectors
412a97f0475747a206cbe68890774c0c37e9fc1a
e6c1f45df3a1ffd5d60dada1816484812eb51417
refs/heads/master
2023-04-16T22:01:19.899692
2020-04-23T02:31:24
2020-04-23T02:31:24
258,073,992
0
0
MIT
2023-04-04T00:19:23
2020-04-23T02:30:59
Python
UTF-8
Python
false
false
516
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .. import base from ..base.fields import Text, Date, Boolean # Module API class Record(base.Record): # Config table = 'icdpcs' # General code = Text(primary_key=True) is_header = Boolean('0') short_description = Text() long_description = Text() version = Text() last_updated = Date('%Y-%m-%d')
[ "roll@post.agency" ]
roll@post.agency
89bdc85d37ffd1c71be7f5b5ef909ca3a1c4a9bf
7797913bc78cfa0cfdb30813d4268e02770722e0
/Section 1/Q34.py
a7f7c3ecae5ac98dcb54dcf7271b5078b9d8f0eb
[]
no_license
pkoi5088/CodeFestival
ecdf5dbdbc78793fd093a614f60d2639a68bffb3
cdc3065f6a2557936432f09344d5bfa09ff8b651
refs/heads/main
2023-03-19T14:49:02.488625
2021-03-14T03:20:15
2021-03-14T03:20:15
345,632,059
0
0
null
null
null
null
UTF-8
Python
false
false
71
py
n=list(map(int,input().split())) print('YES' if n==sorted(n) else 'NO')
[ "pkoi5088@gmail.com" ]
pkoi5088@gmail.com
3ce08fbb326978a3db114eee111616ede922b3a7
d86b94b9fa849c4421f60bfbc455bb3679e3dbf9
/CP/codificacao.py
c5869cada9a4eeac869edee4acea0556a434d5f2
[]
no_license
marciorgb/computacao-evolutiva
048749f82ccb052620a0f053b847520e33128a60
af72ea26db598b7bde431309cd6949ccc422c9ec
refs/heads/master
2020-06-04T08:56:15.511638
2019-06-14T14:31:03
2019-06-14T14:31:03
191,953,755
0
0
null
null
null
null
UTF-8
Python
false
false
1,105
py
from statistics import mean from codificacao import start_population from fitness import * from Seleção import * from cruzamento import * from substituição import * from graficos import * import matplotlib.pyplot as plt import random as r import copy import time def start_conjunct (conjunct_size): """inicializa solução""" conjunct = [] for i in range(conjunct_size): conjunct.append( r.randint(0, 1)) return conjunct def conjunct_is_invalid (population, last): """verifica validade do conjunto""" for i, val in enumerate(population): if population[i] == population[last] and i != last: return True return False def start_population (conjunct_size, solution_size): """inicializa população de soluções""" population = [] for i in range(solution_size): population.append( start_conjunct(conjunct_size) ) while conjunct_is_invalid(population, i): #verifica se o conjunto já existe population.pop() population.append( start_conjunct(conjunct_size) ) return population
[ "marcio@aptans.com" ]
marcio@aptans.com
8782fd2774cf2e8fc8888edfa047ffb1f2444c9d
9f99f103281817b7d8bbe0df0c0c68dd2c6b9b06
/tests/test_blog.py
31cf02a5197dd6180e75164375dc637a2f92cab3
[]
no_license
heyitsM/Flaskr-with-behave
a2a6ad59028990200ce65f09df75a7544542331a
4356755a392b152cac3abfcddeaf6b9b346b1b1a
refs/heads/master
2023-06-26T20:42:15.062659
2021-07-20T19:43:21
2021-07-20T19:43:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,611
py
import pytest from db import get_db def test_index(client, auth): response = client.get('/') assert b"Log In" in response.data assert b"Register" in response.data auth.login() response = client.get('/') assert b'Log Out' in response.data assert b'test title' in response.data assert b'by test on 2018-01-01' in response.data assert b'test\nbody' in response.data assert b'href="/1/update"' in response.data @pytest.mark.parametrize('path', ( '/create', '/1/update', '/1/delete', )) def test_login_required(client, path): response = client.post(path) assert response.headers['Location'] == 'http://localhost/auth/login' def test_author_required(app, client, auth): # change the post author to another user with app.app_context(): db = get_db() db.execute('UPDATE post SET author_id = 2 WHERE id = 1') db.commit() auth.login() # current user can't modify other user's post assert client.post('/1/update').status_code == 403 assert client.post('/1/delete').status_code == 403 # current user doesn't see edit link assert b'href="/1/update"' not in client.get('/').data @pytest.mark.parametrize('path', ( '/2/update', '/2/delete', )) def test_exists_required(client, auth, path): auth.login() assert client.post(path).status_code == 404 def test_create(client, auth, app): auth.login() assert client.get('/create').status_code == 200 client.post('/create', data={'title': 'created', 'body': ''}) with app.app_context(): db = get_db() count = db.execute('SELECT COUNT(id) FROM post').fetchone()[0] assert count == 2 def test_update(client, auth, app): auth.login() assert client.get('/1/update').status_code == 200 client.post('/1/update', data={'title': 'updated', 'body': ''}) with app.app_context(): db = get_db() post = db.execute('SELECT * FROM post WHERE id = 1').fetchone() assert post['title'] == 'updated' @pytest.mark.parametrize('path', ( '/create', '/1/update', )) def test_create_update_validate(client, auth, path): auth.login() response = client.post(path, data={'title': '', 'body': ''}) assert b'Title is required.' in response.data def test_delete(client, auth, app): auth.login() response = client.post('/1/delete') assert response.headers['Location'] == 'http://localhost/' with app.app_context(): db = get_db() post = db.execute('SELECT * FROM post WHERE id = 1').fetchone() assert post is None
[ "edeitrick@codio.com" ]
edeitrick@codio.com
df73d08c2176b58e1ab3447f7aebf4509f80e0dd
44fafa3e65a5af76297b889a3c7dad87270b1c81
/sentinelle/Order.py
5943314e411a83836b060de97aab8d2f5d140ce9
[]
no_license
luciannno/renaissance
501c045280393c5d61b549ee1f7f28eeb78709df
94c0f6b90f70451419249964885a14486bf30e82
refs/heads/master
2021-06-30T11:35:14.545272
2017-01-19T11:10:16
2017-01-19T11:10:16
56,840,455
0
0
null
null
null
null
UTF-8
Python
false
false
1,004
py
import abc class Order: """ """ __metaclass__ = abc.ABCMeta instrument = None side = None orderType = None stopPrice = None trailStopPrice = None suggested = False quantity = 0 def __init__(self, instrument, side, orderType, stopPrice=None, trailStopPrice=None): self.instrument = instrument self.side = side self.orderType = orderType self.stopPrice = stopPrice self.trailStopPrice = trailStopPrice def isSuggested(self): return self.suggested def __repr__(self): return "This is an order for %s" % (self.instrument) class SuggestedOrder(Order): """ """ def __init__(self, instrument, side, orderType, stopPrice=None, trailStopPrice=None): super(SuggestedOrder, self).__init__(instrument, side, orderType, stopPrice, trailStopPrice) #Only RiskManager Should be able to remove the suggested flag self.suggested = True
[ "lbrunette@servidor.(none)" ]
lbrunette@servidor.(none)
56c26d37646620c5a72bd601ee1e5fa9ab81a06d
e25d02365d14e91ffef84e9f8695c198c4ad6184
/setup.py
241aafd3aa37d81658c479a022d7f4c8bae7eac6
[]
no_license
MahmoudMTaha/ITI_PRO_Project
f9f8bbe12222376f7002569946f5906b6d0ec878
d01796f93b361f87c6966c74dd69ef212ccbfddb
refs/heads/main
2023-08-08T08:25:00.127169
2021-09-12T17:41:11
2021-09-12T17:41:11
405,710,902
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='project implemented in dr denna session', author='Mahmoud Taha', license='', )
[ "43166822+MahmoudMTaha@users.noreply.github.com" ]
43166822+MahmoudMTaha@users.noreply.github.com
2d6cc4da009245aa30319aa0653b7d5b9afef22e
f8090ce7564d0b6396adb0f940e8a83b2135d11f
/ipdpw/chrI/sort/dataframe.py
aa3c0be780fc3cb3b9c220e5a468607e0f3da3ee
[]
no_license
zengchan/ipd-pw-code
013986b8eb4a29d2ee67b117ef4863a9e8b1f564
143710ec6b66c1cf64ab72ac1a46bbe1cb09b756
refs/heads/master
2020-03-28T03:16:57.625279
2018-09-06T07:45:04
2018-09-06T07:45:04
147,627,878
0
0
null
null
null
null
UTF-8
Python
false
false
972
py
#coding:utf8 import sys from pandas import DataFrame #DataFrame通常来装二维的表格 import pandas as pd #pandas是流行的做数据分析的包 import numpy as np #建立字典,键和值都从文件里读出来。键是nam,age……,值是lili,jim…… data = pd.read_table('chrI_ipd_pw_HeChuan36c_ccssubsort.txt', sep='\t',names=["pos","read","SlnIndex","ipd","pw"],usecols=[0,1,3,5,6]) df = DataFrame(data,columns=["pos","read","SlnIndex","ipd","pw"]) #print(df) #把DataFrame输出到一个表,不要行名字和列名字 #df.to_csv('extract.xlsx',index=False,header=["pos","read","SlnIndex","ipd","pw"],sep='\t') #df.to_csv('extract.txt',index=False,header=["pos","read","SlnIndex","ipd","pw"],sep='\t') df1=df.sort_values(by=['pos','read']) #print(df1) df1.to_csv('sort.xlsx',index=False,header=["pos","read","SlnIndex","ipd","pw"],sep='\t') df1.to_csv('sort.txt',index=False,header=["pos","read","SlnIndex","ipd","pw"],sep='\t')
[ "chanzengupup@163.com" ]
chanzengupup@163.com
63e199ac8e6c06d09b648c691e651c8c76258e47
06c6056d1f7eea23a269b117f30bf8bdc0bd88a3
/train_lr.py
01be440c88e62ff433c2a24a2e19d64d132f4763
[]
no_license
gjy3035/PCC-Net
3e851e32717c52b6dbc2ceb86c650f3784d90b6d
5beecd25cc551e2ac3248622abc950d09b526953
refs/heads/ori_pt1_py3
2020-04-12T13:08:00.241032
2019-11-29T05:29:16
2019-11-29T05:29:16
162,512,887
77
18
null
2020-03-12T11:12:23
2018-12-20T02:00:13
Python
UTF-8
Python
false
false
8,454
py
from tensorboardX import SummaryWriter import os import random import torch from torch import optim from torch.autograd import Variable from torch.nn import NLLLoss2d from torch.optim.lr_scheduler import StepLR import torchvision.transforms as standard_transforms import torchvision.utils as vutils from models.CC import CrowdCounter from config import cfg from loading_data import loading_data from misc.utils import * from misc.timer import Timer import pdb exp_name = cfg.TRAIN.EXP_NAME writer = SummaryWriter(cfg.TRAIN.EXP_PATH+ '/' + exp_name) log_txt = cfg.TRAIN.EXP_PATH + '/' + exp_name + '/' + exp_name + '.txt' if not os.path.exists(cfg.TRAIN.EXP_PATH): os.mkdir(cfg.TRAIN.EXP_PATH) pil_to_tensor = standard_transforms.ToTensor() train_record = {'best_mae': 1e20, 'mse':1e20,'corr_loss': 0, 'corr_epoch': -1, 'best_model_name': ''} train_set, train_loader, val_set, val_loader, restore_transform = loading_data() _t = {'iter time' : Timer(),'train time' : Timer(),'val time' : Timer()} rand_seed = cfg.TRAIN.SEED if rand_seed is not None: np.random.seed(rand_seed) torch.manual_seed(rand_seed) torch.cuda.manual_seed(rand_seed) def main(): cfg_file = open('./config.py',"r") cfg_lines = cfg_file.readlines() with open(log_txt, 'a') as f: f.write(''.join(cfg_lines) + '\n\n\n\n') torch.cuda.set_device(cfg.TRAIN.GPU_ID[0]) torch.backends.cudnn.benchmark = True net = CrowdCounter(ce_weights=train_set.wts) net.train() optimizer = optim.Adam([ {'params': [param for name, param in net.named_parameters() if 'seg' in name], 'lr': cfg.TRAIN.SEG_LR}, {'params': [param for name, param in net.named_parameters() if 'seg' not in name], 'lr': cfg.TRAIN.LR} ]) i_tb = 0 for epoch in range(cfg.TRAIN.MAX_EPOCH): _t['train time'].tic() i_tb,model_path = train(train_loader, net, optimizer, epoch, i_tb) _t['train time'].toc(average=False) print( 'train time of one epoch: {:.2f}s'.format(_t['train time'].diff) ) if epoch%cfg.VAL.FREQ!=0: continue _t['val time'].tic() validate(val_loader, model_path, epoch, restore_transform) _t['val time'].toc(average=False) print( 'val time of one epoch: {:.2f}s'.format(_t['val time'].diff)) def train(train_loader, net, optimizer, epoch, i_tb): for i, data in enumerate(train_loader, 0): _t['iter time'].tic() img, gt_map, gt_cnt, roi, gt_roi, gt_seg = data for i_img in range(cfg.TRAIN.BATCH_SIZE): roi[i_img,:,0] = i_img roi = roi.view(cfg.TRAIN.BATCH_SIZE*cfg.TRAIN.NUM_BOX,5) gt_roi = gt_roi.view(cfg.TRAIN.BATCH_SIZE*cfg.TRAIN.NUM_BOX,10) img = Variable(img).cuda() gt_map = Variable(gt_map).cuda() roi = Variable(roi).cuda().float() gt_roi = Variable(gt_roi).cuda() gt_seg = Variable(gt_seg).cuda() optimizer.zero_grad() pred_map,pred_cls, pred_seg = net(img, gt_map, roi, gt_roi, gt_seg) loss = net.loss # pdb.set_trace() loss.backward() optimizer.step() if (i + 1) % cfg.TRAIN.PRINT_FREQ == 0: loss1,loss2,loss3 = net.f_loss() i_tb = i_tb + 1 writer.add_scalar('train_loss_mse', loss1.item(), i_tb) writer.add_scalar('train_loss_cls', loss2.item(), i_tb) writer.add_scalar('train_loss_seg', loss3.item(), i_tb) writer.add_scalar('train_loss', loss.item(), i_tb) _t['iter time'].toc(average=False) print( '[ep %d][it %d][loss %.8f %.8f %.4f %.4f][%.2fs]' % \ (epoch + 1, i + 1, loss.item(), loss1.item(), loss2.item(), loss3.item(), _t['iter time'].diff) ) # pdb.set_trace() print( ' [cnt: gt: %.1f pred: %.6f]' % (gt_cnt[0]/cfg.DATA.DEN_ENLARGE, pred_map[0,:,:,:].sum().item()/cfg.DATA.DEN_ENLARGE) ) snapshot_name = 'all_ep_%d' % (epoch + 1) # save model to_saved_weight = [] if len(cfg.TRAIN.GPU_ID)>1: to_saved_weight = net.module.state_dict() else: to_saved_weight = net.state_dict() model_path = os.path.join(cfg.TRAIN.EXP_PATH, exp_name, snapshot_name + '.pth') torch.save(to_saved_weight, model_path) return i_tb,model_path def validate(val_loader, model_path, epoch, restore): net = CrowdCounter(ce_weights=train_set.wts) net.load_state_dict(torch.load(model_path)) net.cuda() net.eval() print( '='*50 ) val_loss_mse = [] val_loss_cls = [] val_loss_seg = [] val_loss = [] mae = 0.0 mse = 0.0 for vi, data in enumerate(val_loader, 0): img, gt_map, gt_cnt, roi, gt_roi, gt_seg = data # pdb.set_trace() with torch.no_grad(): img = Variable(img).cuda() gt_map = Variable(gt_map).cuda() gt_seg = Variable(gt_seg).cuda() roi = Variable(roi[0]).cuda().float() gt_roi = Variable(gt_roi[0]).cuda() pred_map,pred_cls,pred_seg = net(img, gt_map, roi, gt_roi, gt_seg) loss1,loss2,loss3 = net.f_loss() val_loss_mse.append(loss1.item()) val_loss_cls.append(loss2.item()) val_loss_seg.append(loss3.item()) val_loss.append(net.loss.item()) pred_map = pred_map.data.cpu().numpy()/cfg.DATA.DEN_ENLARGE gt_map = gt_map.data.cpu().numpy()/cfg.DATA.DEN_ENLARGE pred_seg = pred_seg.cpu().max(1)[1].squeeze_(1).data.numpy() gt_seg = gt_seg.data.cpu().numpy() gt_count = np.sum(gt_map) pred_cnt = np.sum(pred_map) mae += abs(gt_count-pred_cnt) mse += ((gt_count-pred_cnt)*(gt_count-pred_cnt)) x = [] if vi==0: for idx, tensor in enumerate(zip(img.cpu().data, pred_map, gt_map, pred_seg, gt_seg)): if idx>cfg.VIS.VISIBLE_NUM_IMGS: break # pdb.set_trace() pil_input = restore(tensor[0]/255.) pil_label = torch.from_numpy(tensor[2]/(tensor[2].max()+1e-10)).repeat(3,1,1) pil_output = torch.from_numpy(tensor[1]/(tensor[1].max()+1e-10)).repeat(3,1,1) pil_gt_seg = torch.from_numpy(tensor[4]).repeat(3,1,1).float() pil_pred_seg = torch.from_numpy(tensor[3]).repeat(3,1,1).float() # pdb.set_trace() x.extend([pil_to_tensor(pil_input.convert('RGB')), pil_label, pil_output, pil_gt_seg, pil_pred_seg]) x = torch.stack(x, 0) x = vutils.make_grid(x, nrow=5, padding=5) writer.add_image(exp_name + '_epoch_' + str(epoch+1), (x.numpy()*255).astype(np.uint8)) mae = mae/val_set.get_num_samples() mse = np.sqrt(mse/val_set.get_num_samples()) ''' loss1 = float(np.mean(np.array(val_loss_mse))) loss2 = float(np.mean(np.array(val_loss_cls))) loss3 = float(np.mean(np.array(val_loss_seg))) loss = float(np.mean(np.array(val_loss)))''' loss1 = np.mean(val_loss_mse) loss2 = np.mean(val_loss_cls) loss3 = np.mean(val_loss_seg) loss = np.mean(val_loss) writer.add_scalar('val_loss_mse', loss1, epoch + 1) writer.add_scalar('val_loss_cls', loss2, epoch + 1) writer.add_scalar('val_loss_seg', loss3, epoch + 1) writer.add_scalar('val_loss', loss, epoch + 1) writer.add_scalar('mae', mae, epoch + 1) writer.add_scalar('mse', mse, epoch + 1) if mae < train_record['best_mae']: train_record['best_mae'] = mae train_record['mse'] = mse train_record['corr_epoch'] = epoch + 1 train_record['corr_loss'] = loss print( '='*50 ) print( exp_name ) print( ' '+ '-'*20 ) print( ' [mae %.1f mse %.1f], [val loss %.8f %.8f %.4f %.4f]' % (mae, mse, loss, loss1, loss2, loss3) ) print( ' '+ '-'*20 ) # pdb.set_trace() print( '[best] [mae %.1f mse %.1f], [loss %.8f], [epoch %d]' % (train_record['best_mae'], train_record['mse'], train_record['corr_loss'], train_record['corr_epoch']) ) print( '='*50 ) if __name__ == '__main__': main()
[ "gjy3035@gmail.com" ]
gjy3035@gmail.com
52a387e2fda6b62173da5b67d8660f46997da921
c0b6da793db606476bd601b5c1e5671a0fdeaa1c
/scripts/SpArcFiRe-pyvenv/lib/python2.7/site-packages/astropy/units/quantity_helper.py
d005898fdd3c303c5832535be87daba4dac81d7f
[]
no_license
waynebhayes/SpArcFiRe
201ba0a3724a4349568dfae6c7f7d7952caa2565
6d95873226badedbb14f9c355365d692c7b3ea03
refs/heads/master
2023-06-08T17:27:21.319312
2023-05-28T00:06:32
2023-05-28T00:06:32
120,016,157
8
23
null
2023-09-08T17:21:55
2018-02-02T18:26:09
Python
UTF-8
Python
false
false
25,204
py
# The idea for this module (but no code) was borrowed from the # quantities (http://pythonhosted.org/quantities/) package. from fractions import Fraction import numpy as np from .core import (UnitsError, UnitConversionError, UnitTypeError, dimensionless_unscaled, get_current_unit_registry) def _d(unit): if unit is None: return dimensionless_unscaled else: return unit def get_converter(from_unit, to_unit): """Like Unit._get_converter, except returns None if no scaling is needed, i.e., if the inferred scale is unity.""" try: scale = from_unit._to(to_unit) except UnitsError: return from_unit._apply_equivalencies( from_unit, to_unit, get_current_unit_registry().equivalencies) except AttributeError: raise UnitTypeError("Unit '{0}' cannot be converted to '{1}'" .format(from_unit, to_unit)) if scale == 1.: return None else: return lambda val: scale * val UFUNC_HELPERS = {} # In this file, we implement the logic that determines for a given ufunc and # input how the input should be scaled and what unit the output will have. # list of ufuncs: # http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs UNSUPPORTED_UFUNCS = set([np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.invert, np.left_shift, np.right_shift, np.logical_and, np.logical_or, np.logical_xor, np.logical_not]) if isinstance(getattr(np, 'isnat', None), np.ufunc): UNSUPPORTED_UFUNCS |= {np.isnat} # SINGLE ARGUMENT UFUNCS # The functions below take a single argument, which is the quantity upon which # the ufunc is being used. The output of the function should be two values: the # scale by which the input needs to be multiplied before being passed to the # ufunc, and the unit the output will be in. # ufuncs that return a boolean and do not care about the unit helper_onearg_test = lambda f, unit: ([None], None) UFUNC_HELPERS[np.isfinite] = helper_onearg_test UFUNC_HELPERS[np.isinf] = helper_onearg_test UFUNC_HELPERS[np.isnan] = helper_onearg_test UFUNC_HELPERS[np.sign] = helper_onearg_test UFUNC_HELPERS[np.signbit] = helper_onearg_test # ufuncs that return a value with the same unit as the input helper_invariant = lambda f, unit: ([None], _d(unit)) UFUNC_HELPERS[np.absolute] = helper_invariant UFUNC_HELPERS[np.fabs] = helper_invariant UFUNC_HELPERS[np.conj] = helper_invariant UFUNC_HELPERS[np.conjugate] = helper_invariant UFUNC_HELPERS[np.negative] = helper_invariant UFUNC_HELPERS[np.spacing] = helper_invariant UFUNC_HELPERS[np.rint] = helper_invariant UFUNC_HELPERS[np.floor] = helper_invariant UFUNC_HELPERS[np.ceil] = helper_invariant UFUNC_HELPERS[np.trunc] = helper_invariant # positive only was added in numpy 1.13 if isinstance(getattr(np, 'positive', None), np.ufunc): UFUNC_HELPERS[np.positive] = helper_invariant # ufuncs handled as special cases UFUNC_HELPERS[np.sqrt] = lambda f, unit: ( [None], unit ** 0.5 if unit is not None else dimensionless_unscaled) UFUNC_HELPERS[np.square] = lambda f, unit: ( [None], unit ** 2 if unit is not None else dimensionless_unscaled) UFUNC_HELPERS[np.reciprocal] = lambda f, unit: ( [None], unit ** -1 if unit is not None else dimensionless_unscaled) # cbrt only was added in numpy 1.10 if isinstance(getattr(np, 'cbrt', None), np.ufunc): UFUNC_HELPERS[np.cbrt] = lambda f, unit: ( [None], (unit ** Fraction(1, 3) if unit is not None else dimensionless_unscaled)) UFUNC_HELPERS[np.core.umath._ones_like] = (lambda f, unit: ([None], dimensionless_unscaled)) # ufuncs that require dimensionless input and and give dimensionless output def helper_dimensionless_to_dimensionless(f, unit): if unit is None: return [None], dimensionless_unscaled try: return ([get_converter(unit, dimensionless_unscaled)], dimensionless_unscaled) except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "dimensionless quantities" .format(f.__name__)) UFUNC_HELPERS[np.exp] = helper_dimensionless_to_dimensionless UFUNC_HELPERS[np.expm1] = helper_dimensionless_to_dimensionless UFUNC_HELPERS[np.exp2] = helper_dimensionless_to_dimensionless UFUNC_HELPERS[np.log] = helper_dimensionless_to_dimensionless UFUNC_HELPERS[np.log10] = helper_dimensionless_to_dimensionless UFUNC_HELPERS[np.log2] = helper_dimensionless_to_dimensionless UFUNC_HELPERS[np.log1p] = helper_dimensionless_to_dimensionless def helper_modf(f, unit): if unit is None: return [None], (dimensionless_unscaled, dimensionless_unscaled) try: return ([get_converter(unit, dimensionless_unscaled)], (dimensionless_unscaled, dimensionless_unscaled)) except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "dimensionless quantities" .format(f.__name__)) UFUNC_HELPERS[np.modf] = helper_modf # ufuncs that require dimensionless input and give output in radians def helper_dimensionless_to_radian(f, unit): from .si import radian if unit is None: return [None], radian try: return [get_converter(unit, dimensionless_unscaled)], radian except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "dimensionless quantities" .format(f.__name__)) UFUNC_HELPERS[np.arccos] = helper_dimensionless_to_radian UFUNC_HELPERS[np.arcsin] = helper_dimensionless_to_radian UFUNC_HELPERS[np.arctan] = helper_dimensionless_to_radian UFUNC_HELPERS[np.arccosh] = helper_dimensionless_to_radian UFUNC_HELPERS[np.arcsinh] = helper_dimensionless_to_radian UFUNC_HELPERS[np.arctanh] = helper_dimensionless_to_radian # ufuncs that require input in degrees and give output in radians def helper_degree_to_radian(f, unit): from .si import degree, radian try: return [get_converter(unit, degree)], radian except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "quantities with angle units" .format(f.__name__)) UFUNC_HELPERS[np.radians] = helper_degree_to_radian UFUNC_HELPERS[np.deg2rad] = helper_degree_to_radian # ufuncs that require input in radians and give output in degrees def helper_radian_to_degree(f, unit): from .si import degree, radian try: return [get_converter(unit, radian)], degree except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "quantities with angle units" .format(f.__name__)) UFUNC_HELPERS[np.degrees] = helper_radian_to_degree UFUNC_HELPERS[np.rad2deg] = helper_radian_to_degree # ufuncs that require input in radians and give dimensionless output def helper_radian_to_dimensionless(f, unit): from .si import radian try: return [get_converter(unit, radian)], dimensionless_unscaled except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "quantities with angle units" .format(f.__name__)) UFUNC_HELPERS[np.cos] = helper_radian_to_dimensionless UFUNC_HELPERS[np.sin] = helper_radian_to_dimensionless UFUNC_HELPERS[np.tan] = helper_radian_to_dimensionless UFUNC_HELPERS[np.cosh] = helper_radian_to_dimensionless UFUNC_HELPERS[np.sinh] = helper_radian_to_dimensionless UFUNC_HELPERS[np.tanh] = helper_radian_to_dimensionless # ufuncs that require dimensionless_unscaled input and return non-quantities def helper_frexp(f, unit): if not unit.is_unity(): raise UnitTypeError("Can only apply '{0}' function to " "unscaled dimensionless quantities" .format(f.__name__)) return [None], (None, None) UFUNC_HELPERS[np.frexp] = helper_frexp # TWO ARGUMENT UFUNCS def helper_multiplication(f, unit1, unit2): return [None, None], _d(unit1) * _d(unit2) UFUNC_HELPERS[np.multiply] = helper_multiplication def helper_division(f, unit1, unit2): return [None, None], _d(unit1) / _d(unit2) UFUNC_HELPERS[np.divide] = helper_division UFUNC_HELPERS[np.true_divide] = helper_division def helper_power(f, unit1, unit2): # TODO: find a better way to do this, currently need to signal that one # still needs to raise power of unit1 in main code if unit2 is None: return [None, None], False try: return [None, get_converter(unit2, dimensionless_unscaled)], False except UnitsError: raise UnitTypeError("Can only raise something to a " "dimensionless quantity") UFUNC_HELPERS[np.power] = helper_power # float_power was added in numpy 1.12 if isinstance(getattr(np, 'float_power', None), np.ufunc): UFUNC_HELPERS[np.float_power] = helper_power def helper_ldexp(f, unit1, unit2): if unit2 is not None: raise TypeError("Cannot use ldexp with a quantity " "as second argument.") else: return [None, None], _d(unit1) UFUNC_HELPERS[np.ldexp] = helper_ldexp def helper_copysign(f, unit1, unit2): # if first arg is not a quantity, just return plain array if unit1 is None: return [None, None], None else: return [None, None], unit1 UFUNC_HELPERS[np.copysign] = helper_copysign # heaviside only was added in numpy 1.13 if isinstance(getattr(np, 'heaviside', None), np.ufunc): def helper_heaviside(f, unit1, unit2): try: converter2 = (get_converter(unit2, dimensionless_unscaled) if unit2 is not None else None) except UnitsError: raise UnitTypeError("Can only apply 'heaviside' function with a " "dimensionless second argument.") return ([None, converter2], dimensionless_unscaled) UFUNC_HELPERS[np.heaviside] = helper_heaviside def helper_two_arg_dimensionless(f, unit1, unit2): try: converter1 = (get_converter(unit1, dimensionless_unscaled) if unit1 is not None else None) converter2 = (get_converter(unit2, dimensionless_unscaled) if unit2 is not None else None) except UnitsError: raise UnitTypeError("Can only apply '{0}' function to " "dimensionless quantities" .format(f.__name__)) return ([converter1, converter2], dimensionless_unscaled) UFUNC_HELPERS[np.logaddexp] = helper_two_arg_dimensionless UFUNC_HELPERS[np.logaddexp2] = helper_two_arg_dimensionless def get_converters_and_unit(f, *units): converters = [None, None] # no units for any input -- e.g., np.add(a1, a2, out=q) if all(unit is None for unit in units): return converters, dimensionless_unscaled fixed, changeable = (1, 0) if units[1] is None else (0, 1) if units[fixed] is None: try: converters[changeable] = get_converter(units[changeable], dimensionless_unscaled) except UnitsError: # special case: would be OK if unitless number is zero, inf, nan converters[fixed] = False return converters, units[changeable] else: return converters, dimensionless_unscaled else: try: converters[changeable] = get_converter(units[changeable], units[fixed]) except UnitsError: raise UnitConversionError( "Can only apply '{0}' function to quantities " "with compatible dimensions" .format(f.__name__)) return converters, units[fixed] def helper_twoarg_invariant(f, unit1, unit2): return get_converters_and_unit(f, unit1, unit2) UFUNC_HELPERS[np.add] = helper_twoarg_invariant UFUNC_HELPERS[np.subtract] = helper_twoarg_invariant UFUNC_HELPERS[np.hypot] = helper_twoarg_invariant UFUNC_HELPERS[np.maximum] = helper_twoarg_invariant UFUNC_HELPERS[np.minimum] = helper_twoarg_invariant UFUNC_HELPERS[np.fmin] = helper_twoarg_invariant UFUNC_HELPERS[np.fmax] = helper_twoarg_invariant UFUNC_HELPERS[np.nextafter] = helper_twoarg_invariant UFUNC_HELPERS[np.remainder] = helper_twoarg_invariant UFUNC_HELPERS[np.mod] = helper_twoarg_invariant UFUNC_HELPERS[np.fmod] = helper_twoarg_invariant def helper_twoarg_comparison(f, unit1, unit2): converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, None UFUNC_HELPERS[np.greater] = helper_twoarg_comparison UFUNC_HELPERS[np.greater_equal] = helper_twoarg_comparison UFUNC_HELPERS[np.less] = helper_twoarg_comparison UFUNC_HELPERS[np.less_equal] = helper_twoarg_comparison UFUNC_HELPERS[np.not_equal] = helper_twoarg_comparison UFUNC_HELPERS[np.equal] = helper_twoarg_comparison def helper_twoarg_invtrig(f, unit1, unit2): from .si import radian converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, radian UFUNC_HELPERS[np.arctan2] = helper_twoarg_invtrig # another private function in numpy; use getattr in case it disappears if isinstance(getattr(np.core.umath, '_arg', None), np.ufunc): UFUNC_HELPERS[np.core.umath._arg] = helper_twoarg_invtrig def helper_twoarg_floor_divide(f, unit1, unit2): converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, dimensionless_unscaled UFUNC_HELPERS[np.floor_divide] = helper_twoarg_floor_divide # divmod only was added in numpy 1.13 if isinstance(getattr(np, 'divmod', None), np.ufunc): def helper_divmod(f, unit1, unit2): converters, result_unit = get_converters_and_unit(f, unit1, unit2) return converters, (dimensionless_unscaled, result_unit) UFUNC_HELPERS[np.divmod] = helper_divmod def can_have_arbitrary_unit(value): """Test whether the items in value can have arbitrary units Numbers whose value does not change upon a unit change, i.e., zero, infinity, or not-a-number Parameters ---------- value : number or array Returns ------- `True` if each member is either zero or not finite, `False` otherwise """ return np.all(np.logical_or(np.equal(value, 0.), ~np.isfinite(value))) def converters_and_unit(function, method, *args): """Determine the required converters and the unit of the ufunc result. Converters are functions required to convert to a ufunc's expected unit, e.g., radian for np.sin; or to ensure units of two inputs are consistent, e.g., for np.add. In these examples, the unit of the result would be dimensionless_unscaled for np.sin, and the same consistent unit for np.add. Parameters ---------- function : `~numpy.ufunc` Numpy universal function method : str Method with which the function is evaluated, e.g., '__call__', 'reduce', etc. *args : Quantity or other ndarray subclass Input arguments to the function Raises ------ TypeError : when the specified function cannot be used with Quantities (e.g., np.logical_or), or when the routine does not know how to handle the specified function (in which case an issue should be raised on https://github.com/astropy/astropy). UnitTypeError : when the conversion to the required (or consistent) units is not possible. """ # Check whether we even support this ufunc if function in UNSUPPORTED_UFUNCS: raise TypeError("Cannot use function '{0}' with quantities" .format(function.__name__)) if method == '__call__' or (method == 'outer' and function.nin == 2): # Find out the units of the arguments passed to the ufunc; usually, # at least one is a quantity, but for two-argument ufuncs, the second # could also be a Numpy array, etc. These are given unit=None. units = [getattr(arg, 'unit', None) for arg in args] # If the ufunc is supported, then we call a helper function (defined # above) which returns a list of function(s) that converts the input(s) # to the unit required for the ufunc, as well as the unit the output # will have (this is a tuple of units if there are multiple outputs). if function in UFUNC_HELPERS: converters, result_unit = UFUNC_HELPERS[function](function, *units) else: raise TypeError("Unknown ufunc {0}. Please raise issue on " "https://github.com/astropy/astropy" .format(function.__name__)) if any(converter is False for converter in converters): # for two-argument ufuncs with a quantity and a non-quantity, # the quantity normally needs to be dimensionless, *except* # if the non-quantity can have arbitrary unit, i.e., when it # is all zero, infinity or NaN. In that case, the non-quantity # can just have the unit of the quantity # (this allows, e.g., `q > 0.` independent of unit) maybe_arbitrary_arg = args[converters.index(False)] try: if can_have_arbitrary_unit(maybe_arbitrary_arg): converters = [None, None] else: raise UnitsError("Can only apply '{0}' function to " "dimensionless quantities when other " "argument is not a quantity (unless the " "latter is all zero/infinity/nan)" .format(function.__name__)) except TypeError: # _can_have_arbitrary_unit failed: arg could not be compared # with zero or checked to be finite. Then, ufunc will fail too. raise TypeError("Unsupported operand type(s) for ufunc {0}: " "'{1}' and '{2}'" .format(function.__name__, args[0].__class__.__name__, args[1].__class__.__name__)) # In the case of np.power and np.float_power, the unit itself needs to # be modified by an amount that depends on one of the input values, # so we need to treat this as a special case. # TODO: find a better way to deal with this. if result_unit is False: if units[0] is None or units[0] == dimensionless_unscaled: result_unit = dimensionless_unscaled else: if units[1] is None: p = args[1] else: p = args[1].to(dimensionless_unscaled).value try: result_unit = units[0] ** p except ValueError as exc: # Changing the unit does not work for, e.g., array-shaped # power, but this is OK if we're (scaled) dimensionless. try: converters[0] = units[0]._get_converter( dimensionless_unscaled) except UnitConversionError: raise exc else: result_unit = dimensionless_unscaled else: # methods for which the unit should stay the same if method == 'at': unit = getattr(args[0], 'unit', None) units = [unit] if function.nin == 2: units.append(getattr(args[2], 'unit', None)) converters, result_unit = UFUNC_HELPERS[function](function, *units) # ensure there is no 'converter' for indices (2nd argument) converters.insert(1, None) elif (method in ('reduce', 'accumulate', 'reduceat') and function.nin == 2): unit = getattr(args[0], 'unit', None) converters, result_unit = UFUNC_HELPERS[function](function, unit, unit) converters = converters[:1] if method == 'reduceat': # add 'scale' for indices (2nd argument) converters += [None] else: if method in ('reduce', 'accumulate', 'reduceat', 'outer') and function.nin != 2: raise ValueError("{0} only supported for binary functions" .format(method)) raise TypeError("Unexpected ufunc method {0}. If this should " "work, please raise an issue on" "https://github.com/astropy/astropy" .format(method)) # for all but __call__ method, scaling is not allowed if unit is not None and result_unit is None: raise TypeError("Cannot use '{1}' method on ufunc {0} with a " "Quantity instance as the result is not a " "Quantity.".format(function.__name__, method)) if converters[0] is not None or (unit is not None and (not result_unit.is_equivalent(unit) or result_unit.to(unit) != 1.)): raise UnitsError("Cannot use '{1}' method on ufunc {0} with a " "Quantity instance as it would change the unit." .format(function.__name__, method)) return converters, result_unit def check_output(output, unit, inputs, function=None): """Check that function output can be stored in the output array given. Parameters ---------- output : array or `~astropy.units.Quantity` or tuple Array that should hold the function output (or tuple of such arrays). unit : `~astropy.units.Unit` or None, or tuple Unit that the output will have, or `None` for pure numbers (should be tuple of same if output is a tuple of outputs). inputs : tuple Any input arguments. These should be castable to the output. function : callable The function that will be producing the output. If given, used to give a more informative error message. Returns ------- arrays : `~numpy.ndarray` view of ``output`` (or tuple of such views). Raises ------ UnitTypeError : If ``unit`` is inconsistent with the class of ``output`` TypeError : If the ``inputs`` cannot be cast safely to ``output``. """ if isinstance(output, tuple): return tuple(check_output(output_, unit_, inputs, function) for output_, unit_ in zip(output, unit)) # ``None`` indicates no actual array is needed. This can happen, e.g., # with np.modf(a, out=(None, b)). if output is None: return None if hasattr(output, '__quantity_subclass__'): # Check that we're not trying to store a plain Numpy array or a # Quantity with an inconsistent unit (e.g., not angular for Angle). if unit is None: raise TypeError("Cannot store non-quantity output{0} in {1} " "instance".format( (" from {0} function".format(function.__name__) if function is not None else ""), type(output))) if output.__quantity_subclass__(unit)[0] is not type(output): raise UnitTypeError( "Cannot store output with unit '{0}'{1} " "in {2} instance. Use {3} instance instead." .format(unit, (" from {0} function".format(function.__name__) if function is not None else ""), type(output), output.__quantity_subclass__(unit)[0])) # Turn into ndarray, so we do not loop into array_wrap/array_ufunc # if the output is used to store results of a function. output = output.view(np.ndarray) else: # output is not a Quantity, so cannot attain a unit. if not (unit is None or unit is dimensionless_unscaled): raise UnitTypeError("Cannot store quantity with dimension " "{0}in a non-Quantity instance." .format("" if function is None else "resulting from {0} function " .format(function.__name__))) # check we can handle the dtype (e.g., that we are not int # when float is required). if not np.can_cast(np.result_type(*inputs), output.dtype, casting='same_kind'): raise TypeError("Arguments cannot be cast safely to inplace " "output with dtype={0}".format(output.dtype)) return output
[ "dlcheng@andromeda-32.ics.uci.edu" ]
dlcheng@andromeda-32.ics.uci.edu
f0f45357153653337e8856a9543794329435a92f
50dd2a43daa8316fc11e0c176b5872738fcc5dde
/Learning/130_Fluent_Python/fp2-utf8/freeinteractive/freeinteractive 124.py
42249e691553393de2f30d1ce5dfeb475bd97059
[]
no_license
FrenchBear/Python
58204d368e3e72071eef298ff00d06ff51bd7914
b41ab4b6a59ee9e145ef2cd887a5fe306973962b
refs/heads/master
2023-08-31T18:43:37.792427
2023-08-26T15:53:20
2023-08-26T15:53:20
124,466,047
0
0
null
null
null
null
UTF-8
Python
false
false
23
py
>>> my_object.foo += 1
[ "FrenchBear38@outlook.com" ]
FrenchBear38@outlook.com
09fd080454a36295d593ea713a30fc521a400773
6f05485bc941a3d51383cdec2c3f886021565f88
/test_app.py
8012684ac1294b1bd66aa48023cfd6496f066de3
[]
no_license
lfbatista/postcodes
bec1b8a2bfbcf0ed553957ec622e34934cc7287c
6793fbc4029f3770fb11a2057703acbb8cf0ca18
refs/heads/master
2022-11-12T15:18:15.084628
2020-06-25T20:18:13
2020-06-25T20:18:13
273,566,199
0
0
null
null
null
null
UTF-8
Python
false
false
654
py
import unittest from app import get_stores class TestApp(unittest.TestCase): def setUp(self): self.get_stores = get_stores def test_get_stores(self): """ :return a list of stores in a given radius of a given postcode sorted from north to south """ expected_output = [{'name': 'Hatfield Central 5JJ', 'postcode': 'AL9 5JJ'}, {'name': 'Hatfield Central 5JP', 'postcode': 'AL9 5JP'}, {'name': 'Hatfield Central 5JY', 'postcode': 'AL9 5JY'}] self.assertEqual(self.get_stores('AL9 5JP', '150'), expected_output) if __name__ == '__main__': unittest.main()
[ "amail@mail.com" ]
amail@mail.com
704328caaf953ac8d1422fd6635417ec38f29df1
d5552cda58e251e6a5983876681be8f641dea86f
/tests/models/layoutlmv2/test_processor_layoutlmv2.py
c1fdde7d7ccc98c5b3468f44993de239fafaa4ed
[ "Apache-2.0" ]
permissive
patrickvonplaten/transformers
feb121e1ee82c317ac7561836b8f95a7de25fc1f
f738502979f6787609dcf0180e6606f464692e27
refs/heads/master
2022-12-08T10:15:34.743198
2022-11-22T11:00:20
2022-11-22T11:00:20
226,201,271
6
1
Apache-2.0
2019-12-05T22:39:46
2019-12-05T22:39:45
null
UTF-8
Python
false
false
25,057
py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from typing import List import numpy as np from transformers import PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast from transformers.models.layoutlmv2 import LayoutLMv2Tokenizer, LayoutLMv2TokenizerFast from transformers.models.layoutlmv2.tokenization_layoutlmv2 import VOCAB_FILES_NAMES from transformers.testing_utils import require_pytesseract, require_tokenizers, require_torch, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, cached_property, is_pytesseract_available if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMv2FeatureExtractor, LayoutLMv2Processor @require_pytesseract @require_tokenizers class LayoutLMv2ProcessorTest(unittest.TestCase): tokenizer_class = LayoutLMv2Tokenizer rust_tokenizer_class = LayoutLMv2TokenizerFast def setUp(self): vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] feature_extractor_map = { "do_resize": True, "size": 224, "apply_ocr": True, } self.tmpdirname = tempfile.mkdtemp() self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(feature_extractor_map) + "\n") def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast: return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_tokenizers(self, **kwargs) -> List[PreTrainedTokenizerBase]: return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)] def get_feature_extractor(self, **kwargs): return LayoutLMv2FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): feature_extractor = self.get_feature_extractor() tokenizers = self.get_tokenizers() for tokenizer in tokenizers: processor = LayoutLMv2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) processor.save_pretrained(self.tmpdirname) processor = LayoutLMv2Processor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, (LayoutLMv2Tokenizer, LayoutLMv2TokenizerFast)) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, LayoutLMv2FeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = LayoutLMv2Processor(feature_extractor=self.get_feature_extractor(), tokenizer=self.get_tokenizer()) processor.save_pretrained(self.tmpdirname) # slow tokenizer tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_resize=False, size=30) processor = LayoutLMv2Processor.from_pretrained( self.tmpdirname, use_fast=False, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, LayoutLMv2Tokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, LayoutLMv2FeatureExtractor) # fast tokenizer tokenizer_add_kwargs = self.get_rust_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_resize=False, size=30) processor = LayoutLMv2Processor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, LayoutLMv2TokenizerFast) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, LayoutLMv2FeatureExtractor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = LayoutLMv2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "lower newer" image_input = self.prepare_image_inputs() # add extra args inputs = processor(text=input_str, images=image_input, return_codebook_pixels=False, return_image_mask=False) self.assertListEqual(list(inputs.keys()), processor.model_input_names) @slow def test_overflowing_tokens(self): # In the case of overflowing tokens, test that we still have 1-to-1 mapping between the images and input_ids (sequences that are too long are broken down into multiple sequences). from datasets import load_dataset # set up datasets = load_dataset("nielsr/funsd") processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr") def preprocess_data(examples): images = [Image.open(path).convert("RGB") for path in examples["image_path"]] words = examples["words"] boxes = examples["bboxes"] word_labels = examples["ner_tags"] encoded_inputs = processor( images, words, boxes=boxes, word_labels=word_labels, padding="max_length", truncation=True, return_overflowing_tokens=True, stride=50, return_offsets_mapping=True, return_tensors="pt", ) return encoded_inputs train_data = preprocess_data(datasets["train"]) self.assertEqual(len(train_data["image"]), len(train_data["input_ids"])) # different use cases tests @require_torch @require_pytesseract class LayoutLMv2ProcessorIntegrationTests(unittest.TestCase): @cached_property def get_images(self): # we verify our implementation on 2 document images from the DocVQA dataset from datasets import load_dataset ds = load_dataset("hf-internal-testing/fixtures_docvqa", split="test") image_1 = Image.open(ds[0]["file"]).convert("RGB") image_2 = Image.open(ds[1]["file"]).convert("RGB") return image_1, image_2 @cached_property def get_tokenizers(self): slow_tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased") fast_tokenizer = LayoutLMv2TokenizerFast.from_pretrained("microsoft/layoutlmv2-base-uncased") return [slow_tokenizer, fast_tokenizer] @slow def test_processor_case_1(self): # case 1: document image classification (training, inference) + token classification (inference), apply_ocr = True feature_extractor = LayoutLMv2FeatureExtractor() tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) # not batched input_feat_extract = feature_extractor(images[0], return_tensors="pt") input_processor = processor(images[0], return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify image self.assertAlmostEqual( input_feat_extract["pixel_values"].sum(), input_processor["image"].sum(), delta=1e-2 ) # verify input_ids # this was obtained with Tesseract 4.1.1 # fmt: off expected_decoding = "[CLS] 11 : 14 to 11 : 39 a. m 11 : 39 to 11 : 44 a. m. 11 : 44 a. m. to 12 : 25 p. m. 12 : 25 to 12 : 58 p. m. 12 : 58 to 4 : 00 p. m. 2 : 00 to 5 : 00 p. m. coffee break coffee will be served for men and women in the lobby adjacent to exhibit area. please move into exhibit area. ( exhibits open ) trrf general session ( part | ) presiding : lee a. waller trrf vice president “ introductory remarks ” lee a. waller, trrf vice presi - dent individual interviews with trrf public board members and sci - entific advisory council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public refrigerated warehousing industry is looking for. plus questions from the floor. dr. emil m. mrak, university of cal - ifornia, chairman, trrf board ; sam r. cecil, university of georgia college of agriculture ; dr. stanley charm, tufts university school of medicine ; dr. robert h. cotton, itt continental baking company ; dr. owen fennema, university of wis - consin ; dr. robert e. hardenburg, usda. questions and answers exhibits open capt. jack stoney room trrf scientific advisory council meeting ballroom foyer [SEP]" # noqa: E231 # fmt: on decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # batched input_feat_extract = feature_extractor(images, return_tensors="pt") input_processor = processor(images, padding=True, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify images self.assertAlmostEqual( input_feat_extract["pixel_values"].sum(), input_processor["image"].sum(), delta=1e-2 ) # verify input_ids # this was obtained with Tesseract 4.1.1 # fmt: off expected_decoding = "[CLS] 7 itc limited report and accounts 2013 itc ’ s brands : an asset for the nation the consumer needs and aspirations they fulfil, the benefit they generate for millions across itc ’ s value chains, the future - ready capabilities that support them, and the value that they create for the country, have made itc ’ s brands national assets, adding to india ’ s competitiveness. it is itc ’ s aspiration to be the no 1 fmcg player in the country, driven by its new fmcg businesses. a recent nielsen report has highlighted that itc's new fmcg businesses are the fastest growing among the top consumer goods companies operating in india. itc takes justifiable pride that, along with generating economic value, these celebrated indian brands also drive the creation of larger societal capital through the virtuous cycle of sustainable and inclusive growth. di wills * ; love delightfully soft skin? aia ans source : https : / / www. industrydocuments. ucsf. edu / docs / snbx0223 [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]" # noqa: E231 # fmt: on decoding = processor.decode(input_processor.input_ids[1].tolist()) self.assertSequenceEqual(decoding, expected_decoding) @slow def test_processor_case_2(self): # case 2: document image classification (training, inference) + token classification (inference), apply_ocr=False feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False) tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) # not batched words = ["hello", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] input_processor = processor(images[0], words, boxes=boxes, return_tensors="pt") # verify keys expected_keys = ["input_ids", "bbox", "token_type_ids", "attention_mask", "image"] actual_keys = list(input_processor.keys()) for key in expected_keys: self.assertIn(key, actual_keys) # verify input_ids expected_decoding = "[CLS] hello world [SEP]" decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # batched words = [["hello", "world"], ["my", "name", "is", "niels"]] boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]] input_processor = processor(images, words, boxes=boxes, padding=True, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "[CLS] hello world [SEP] [PAD] [PAD] [PAD]" decoding = processor.decode(input_processor.input_ids[0].tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify bbox expected_bbox = [ [0, 0, 0, 0], [3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3], [1, 1, 2, 3], [1000, 1000, 1000, 1000], ] self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox) @slow def test_processor_case_3(self): # case 3: token classification (training), apply_ocr=False feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False) tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) # not batched words = ["weirdly", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] word_labels = [1, 2] input_processor = processor(images[0], words, boxes=boxes, word_labels=word_labels, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "labels", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "[CLS] weirdly world [SEP]" decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify labels expected_labels = [-100, 1, -100, 2, -100] self.assertListEqual(input_processor.labels.squeeze().tolist(), expected_labels) # batched words = [["hello", "world"], ["my", "name", "is", "niels"]] boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]] word_labels = [[1, 2], [6, 3, 10, 2]] input_processor = processor( images, words, boxes=boxes, word_labels=word_labels, padding=True, return_tensors="pt" ) # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "labels", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "[CLS] my name is niels [SEP]" decoding = processor.decode(input_processor.input_ids[1].tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify bbox expected_bbox = [ [0, 0, 0, 0], [3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3], [1, 1, 2, 3], [1000, 1000, 1000, 1000], ] self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox) # verify labels expected_labels = [-100, 6, 3, 10, 2, -100, -100] self.assertListEqual(input_processor.labels[1].tolist(), expected_labels) @slow def test_processor_case_4(self): # case 4: visual question answering (inference), apply_ocr=True feature_extractor = LayoutLMv2FeatureExtractor() tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) # not batched question = "What's his name?" input_processor = processor(images[0], question, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify input_ids # this was obtained with Tesseract 4.1.1 # fmt: off expected_decoding = "[CLS] what's his name? [SEP] 11 : 14 to 11 : 39 a. m 11 : 39 to 11 : 44 a. m. 11 : 44 a. m. to 12 : 25 p. m. 12 : 25 to 12 : 58 p. m. 12 : 58 to 4 : 00 p. m. 2 : 00 to 5 : 00 p. m. coffee break coffee will be served for men and women in the lobby adjacent to exhibit area. please move into exhibit area. ( exhibits open ) trrf general session ( part | ) presiding : lee a. waller trrf vice president “ introductory remarks ” lee a. waller, trrf vice presi - dent individual interviews with trrf public board members and sci - entific advisory council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public refrigerated warehousing industry is looking for. plus questions from the floor. dr. emil m. mrak, university of cal - ifornia, chairman, trrf board ; sam r. cecil, university of georgia college of agriculture ; dr. stanley charm, tufts university school of medicine ; dr. robert h. cotton, itt continental baking company ; dr. owen fennema, university of wis - consin ; dr. robert e. hardenburg, usda. questions and answers exhibits open capt. jack stoney room trrf scientific advisory council meeting ballroom foyer [SEP]" # noqa: E231 # fmt: on decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # batched questions = ["How old is he?", "what's the time"] input_processor = processor( images, questions, padding="max_length", max_length=20, truncation=True, return_tensors="pt" ) # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify input_ids # this was obtained with Tesseract 4.1.1 expected_decoding = "[CLS] what's the time [SEP] 7 itc limited report and accounts 2013 itc ’ s [SEP]" decoding = processor.decode(input_processor.input_ids[1].tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify bbox # fmt: off expected_bbox = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1000, 1000, 1000, 1000], [0, 45, 67, 80], [72, 56, 109, 67], [72, 56, 109, 67], [116, 56, 189, 67], [198, 59, 253, 66], [257, 59, 285, 66], [289, 59, 365, 66], [372, 59, 407, 66], [74, 136, 161, 158], [74, 136, 161, 158], [74, 136, 161, 158], [74, 136, 161, 158], [1000, 1000, 1000, 1000]] # noqa: E231 # fmt: on self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox) @slow def test_processor_case_5(self): # case 5: visual question answering (inference), apply_ocr=False feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False) tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) # not batched question = "What's his name?" words = ["hello", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] input_processor = processor(images[0], question, words, boxes, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "[CLS] what's his name? [SEP] hello world [SEP]" decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # batched questions = ["How old is he?", "what's the time"] words = [["hello", "world"], ["my", "name", "is", "niels"]] boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]] input_processor = processor(images, questions, words, boxes, padding=True, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"] actual_keys = sorted(list(input_processor.keys())) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "[CLS] how old is he? [SEP] hello world [SEP] [PAD] [PAD] [PAD]" decoding = processor.decode(input_processor.input_ids[0].tolist()) self.assertSequenceEqual(decoding, expected_decoding) expected_decoding = "[CLS] what's the time [SEP] my name is niels [SEP]" decoding = processor.decode(input_processor.input_ids[1].tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify bbox expected_bbox = [[6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3], [1, 1, 2, 3], [1000, 1000, 1000, 1000]] self.assertListEqual(input_processor.bbox[1].tolist()[-5:], expected_bbox)
[ "noreply@github.com" ]
patrickvonplaten.noreply@github.com
5dc3ba5320c424f0a21bb4c6581942a0eecd817f
7d66a8382000bf84af00c6154d35b5fc37eeb20f
/torch_train/trainer.py
4f0d7cd576519e0e243b69d86182f46bd553123f
[]
no_license
thisissum/emo_identification
54c507d692c048b84623c03d7a0ff64d2168a84f
20fdf41351061b0771a8ada7f782461370414650
refs/heads/master
2022-11-09T01:29:22.526057
2020-07-01T01:40:12
2020-07-01T01:40:12
276,248,432
0
0
null
null
null
null
UTF-8
Python
false
false
3,649
py
import torch from torch import nn import numpy as np import random from tqdm import tqdm from collections import deque # TODO: distributed(): set to multi-gpu # TODO: add logger class Trainer(object): def __init__(self, device=None, verbose=True, name='trainer'): self.device = device if device else \ torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.name = name self.verbose = verbose self.setup = False def build(self, model, optimizer, criterion, callbacks=None, metric=None): self.model = model.to(self.device) self.optimizer = optimizer self.criterion = criterion self.callbacks = callbacks self.metric = metric self.setup = True def fit(self, train_loader, num_epoch, validate_loader=None): # check everything # TODO: add check module or function to replace this assert self.setup == True, 'You should build trainer before fit' if any([validate_loader, self.metric]): assert all([validate_loader, self.metric]) # set verbose using tqdm if verbose: train_loader = tqdm(train_loader) validate_loader = tqdm(validate_loader) if validate_loader else None # train loop for epoch in range(num_epoch): loss = [] for i, data in enumerate(train_loader): # TODO: use Summarizer to record info, not print train_info = self._train_step() loss.append(train_info['loss']) print('epoch {}, current train loss: {}'.format(i+1, np.mean(loss))) # validate loop if validate_loader: # TODO: find a more elegant way to pack this part early_stop = False with torch.no_grad(): self.metric.clear() for data in validate_loader: info = self._validate_step(data) self.metric.display() if self.callbacks: for callback in self.callbacks: try: callback.step(self.metric.cur_metric) except StopIteration: early_stop = True checkpoint_path = callback.path if early_stop: self.model.load_state_dict(torch.load(checkpoint_path)) print('early stop at epoch {}'.format(epoch)) break def _train_step(self, data): # forward batch data = move_to_device(data) y_pred, y_true = self.forward_batch(data) # compute loss loss = self.criterion(y_pred, y_true) # update parameters self.optimizer.zero_grad() loss.backward() self.optimizer.step() # summary info in train step info = {'loss': loss.item()} return info def predict(self, test_loader): output = [] with torch.no_grad(): for data in test_loader: data = move_to_device(data) y_out = self.predict_batch(data) output.append(y_out) return torch.stack(output) def _validate_step(self, data): data = move_to_device(data) y_pred, y_true = self.forward_batch(data) self.metric.update_state(y_pred, y_true) info = {'metric': self.metric.cur_metric} return info def forward_batch(self, data): pass def predict_batch(self, data): pass
[ "ThisIsSunMH@gmail.com" ]
ThisIsSunMH@gmail.com
f05a92dd67fd9668718e353680d935172e6db74e
c9a0ce3a60e5dba8edcb89e2d710ab5503e7e77a
/webtest/settings.py
12fa052f0631b36f20dd410d828b37b523386ad4
[]
no_license
Talgin/tgt_blog
cfa7f3345eb647d5f4ce44f2ef0e7434f8bc7599
42565d8e9735f05bb4279cbdab66d58eb1400537
refs/heads/master
2022-07-16T05:15:26.980964
2020-05-13T12:48:04
2020-05-13T12:48:04
263,610,302
0
0
null
null
null
null
UTF-8
Python
false
false
3,231
py
""" Django settings for webtest project. Generated by 'django-admin startproject' using Django 3.0.6. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '&m7plgf$9wx(*w98*gtp9^ahta*j+0g*mlzen&_z32to$3p!u^' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog.apps.BlogConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'webtest.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'webtest.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' # LANGUAGE_CODE = 'kk' TIME_ZONE = 'Asia/Almaty' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
[ "talgat90.07@gmail.com" ]
talgat90.07@gmail.com
9e00d81faae31bf4f5fdc1e3f30ff046128cfc9f
37c414d5f5eab3e5063f09e0bd2a0510dc554264
/regression/week5/week-5-lasso-assignment-1.py
6ac7417fd385719e460691c6c7cb6d0591d7f0f9
[]
no_license
obh/coursera
17981934bc9c6a47c6c57b7b772594c6c7225065
880a8aa960e034dad986617158ba4095ba6b2d98
refs/heads/master
2021-01-10T05:50:50.937061
2016-03-28T06:39:45
2016-03-28T06:39:45
51,063,554
0
0
null
null
null
null
UTF-8
Python
false
false
11,535
py
# coding: utf-8 # # Regression Week 5: Feature Selection and LASSO (Interpretation) # In this notebook, you will use LASSO to select features, building on a pre-implemented solver for LASSO (using GraphLab Create, though you can use other solvers). You will: # * Run LASSO with different L1 penalties. # * Choose best L1 penalty using a validation set. # * Choose best L1 penalty using a validation set, with additional constraint on the size of subset. # # In the second notebook, you will implement your own LASSO solver, using coordinate descent. # # Fire up graphlab create # In[1]: import graphlab # # Load in house sales data # # Dataset is from house sales in King County, the region where the city of Seattle, WA is located. # In[2]: sales = graphlab.SFrame('kc_house_data.gl/') # # Create new features # As in Week 2, we consider features that are some transformations of inputs. # In[3]: from math import log, sqrt sales['sqft_living_sqrt'] = sales['sqft_living'].apply(sqrt) sales['sqft_lot_sqrt'] = sales['sqft_lot'].apply(sqrt) sales['bedrooms_square'] = sales['bedrooms']*sales['bedrooms'] # In the dataset, 'floors' was defined with type string, # so we'll convert them to float, before creating a new feature. sales['floors'] = sales['floors'].astype(float) sales['floors_square'] = sales['floors']*sales['floors'] # * Squaring bedrooms will increase the separation between not many bedrooms (e.g. 1) and lots of bedrooms (e.g. 4) since 1^2 = 1 but 4^2 = 16. Consequently this variable will mostly affect houses with many bedrooms. # * On the other hand, taking square root of sqft_living will decrease the separation between big house and small house. The owner may not be exactly twice as happy for getting a house that is twice as big. # # Learn regression weights with L1 penalty # Let us fit a model with all the features available, plus the features we just created above. # In[5]: all_features = ['bedrooms', 'bedrooms_square', 'bathrooms', 'sqft_living', 'sqft_living_sqrt', 'sqft_lot', 'sqft_lot_sqrt', 'floors', 'floors_square', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated'] # Applying L1 penalty requires adding an extra parameter (`l1_penalty`) to the linear regression call in GraphLab Create. (Other tools may have separate implementations of LASSO.) Note that it's important to set `l2_penalty=0` to ensure we don't introduce an additional L2 penalty. # In[6]: model_all = graphlab.linear_regression.create(sales, target='price', features=all_features, validation_set=None, l2_penalty=0., l1_penalty=1e10) # Find what features had non-zero weight. # In[9]: model_all.coefficients.print_rows(num_rows=18) # Note that a majority of the weights have been set to zero. So by setting an L1 penalty that's large enough, we are performing a subset selection. # # ***QUIZ QUESTION***: # According to this list of weights, which of the features have been chosen? # # Selecting an L1 penalty # To find a good L1 penalty, we will explore multiple values using a validation set. Let us do three way split into train, validation, and test sets: # * Split our sales data into 2 sets: training and test # * Further split our training data into two sets: train, validation # # Be *very* careful that you use seed = 1 to ensure you get the same answer! # In[10]: (training_and_validation, testing) = sales.random_split(.9,seed=1) # initial train/test split (training, validation) = training_and_validation.random_split(0.5, seed=1) # split training into train and validate # Next, we write a loop that does the following: # * For `l1_penalty` in [10^1, 10^1.5, 10^2, 10^2.5, ..., 10^7] (to get this in Python, type `np.logspace(1, 7, num=13)`.) # * Fit a regression model with a given `l1_penalty` on TRAIN data. Specify `l1_penalty=l1_penalty` and `l2_penalty=0.` in the parameter list. # * Compute the RSS on VALIDATION data (here you will want to use `.predict()`) for that `l1_penalty` # * Report which `l1_penalty` produced the lowest RSS on validation data. # # When you call `linear_regression.create()` make sure you set `validation_set = None`. # # Note: you can turn off the print out of `linear_regression.create()` with `verbose = False` # In[15]: import numpy as np l1_penalty_arr = np.logspace(1, 7, num=13) def getRSS(prediction, actual): diff = prediction - actual diff_squared = diff.apply(lambda x : x*x) diff_squared_sum = diff_squared.sum() return diff_squared_sum MIN = 987654321987654321987654321 l1_penalty_min = -1 for l1_penalty in l1_penalty_arr: model = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0., l1_penalty=l1_penalty) RSS = getRSS(model.predict(validation), validation['price']) print str(l1_penalty) + " " + str(RSS) if RSS < MIN: MIN = RSS l1_penalty_min = l1_penalty print str(l1_penalty_min) + " " + str(MIN) # In[16]: model = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0., l1_penalty=10.0) print str(getRSS(model.predict(testing), testing['price'])) # *** QUIZ QUESTIONS *** # 1. What was the best value for the `l1_penalty`? # 2. What is the RSS on TEST data of the model with the best `l1_penalty`? # In[18]: model.coefficients.print_rows(num_rows=18) # ***QUIZ QUESTION*** # Also, using this value of L1 penalty, how many nonzero weights do you have? # In[ ]: # # Limit the number of nonzero weights # # What if we absolutely wanted to limit ourselves to, say, 7 features? This may be important if we want to derive "a rule of thumb" --- an interpretable model that has only a few features in them. # In this section, you are going to implement a simple, two phase procedure to achive this goal: # 1. Explore a large range of `l1_penalty` values to find a narrow region of `l1_penalty` values where models are likely to have the desired number of non-zero weights. # 2. Further explore the narrow region you found to find a good value for `l1_penalty` that achieves the desired sparsity. Here, we will again use a validation set to choose the best value for `l1_penalty`. # In[63]: max_nonzeros = 7 # ## Exploring the larger range of values to find a narrow range with the desired sparsity # # Let's define a wide range of possible `l1_penalty_values`: # In[62]: l1_penalty_values = np.logspace(8, 10, num=20) # Now, implement a loop that search through this space of possible `l1_penalty` values: # # * For `l1_penalty` in `np.logspace(8, 10, num=20)`: # * Fit a regression model with a given `l1_penalty` on TRAIN data. Specify `l1_penalty=l1_penalty` and `l2_penalty=0.` in the parameter list. When you call `linear_regression.create()` make sure you set `validation_set = None` # * Extract the weights of the model and count the number of nonzeros. Save the number of nonzeros to a list. # * *Hint: `model['coefficients']['value']` gives you an SArray with the parameters you learned. If you call the method `.nnz()` on it, you will find the number of non-zero parameters!* # In[64]: nnz_arr = {} for l1_penalty in l1_penalty_values: model = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0., l1_penalty=l1_penalty) nnz_arr[l1_penalty] = model['coefficients']['value'].nnz() l1_penalty_min = max( filter(lambda x: nnz_arr[x] > max_nonzeros, nnz_arr.keys()) ) l1_penalty_max = min( filter(lambda x: nnz_arr[x] < max_nonzeros, nnz_arr.keys()) ) print l1_penalty_min print l1_penalty_max # Out of this large range, we want to find the two ends of our desired narrow range of `l1_penalty`. At one end, we will have `l1_penalty` values that have too few non-zeros, and at the other end, we will have an `l1_penalty` that has too many non-zeros. # # More formally, find: # * The largest `l1_penalty` that has more non-zeros than `max_nonzero` (if we pick a penalty smaller than this value, we will definitely have too many non-zero weights) # * Store this value in the variable `l1_penalty_min` (we will use it later) # * The smallest `l1_penalty` that has fewer non-zeros than `max_nonzero` (if we pick a penalty larger than this value, we will definitely have too few non-zero weights) # * Store this value in the variable `l1_penalty_max` (we will use it later) # # # *Hint: there are many ways to do this, e.g.:* # * Programmatically within the loop above # * Creating a list with the number of non-zeros for each value of `l1_penalty` and inspecting it to find the appropriate boundaries. # l1_penalty_min = max( filter(lambda x: nnz_arr[x] > max_nonzeros, nnz_arr.keys()) ) # l1_penalty_max = min( filter(lambda x: nnz_arr[x] < max_nonzeros, nnz_arr.keys()) ) # # # print l1_penalty_min # print l1_penalty_max # ***QUIZ QUESTIONS*** # # What values did you find for `l1_penalty_min` and`l1_penalty_max`? # ## Exploring the narrow range of values to find the solution with the right number of non-zeros that has lowest RSS on the validation set # # We will now explore the narrow region of `l1_penalty` values we found: # In[54]: l1_penalty_values = np.linspace(l1_penalty_min,l1_penalty_max,20) # * For `l1_penalty` in `np.linspace(l1_penalty_min,l1_penalty_max,20)`: # * Fit a regression model with a given `l1_penalty` on TRAIN data. Specify `l1_penalty=l1_penalty` and `l2_penalty=0.` in the parameter list. When you call `linear_regression.create()` make sure you set `validation_set = None` # * Measure the RSS of the learned model on the VALIDATION set # # Find the model that the lowest RSS on the VALIDATION set and has sparsity *equal* to `max_nonzero`. # In[57]: MIN = 987654321987654321987654321 min_l1_penalty = -1 for l1_penalty in np.linspace(l1_penalty_min,l1_penalty_max,20): model = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0., l1_penalty=l1_penalty) RSS = getRSS(model.predict(validation), validation['price']) if RSS < MIN and model['coefficients']['value'].nnz() == max_nonzeros: MIN = RSS min_l1_penalty = l1_penalty print str(min_l1_penalty) # ***QUIZ QUESTIONS*** # 1. What value of `l1_penalty` in our narrow range has the lowest RSS on the VALIDATION set and has sparsity *equal* to `max_nonzeros`? # 2. What features in this model have non-zero coefficients? # In[60]: model = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0., l1_penalty=3448968612.16) model.coefficients.print_rows(num_rows=18) # In[ ]:
[ "rsedwardian@gmail.com" ]
rsedwardian@gmail.com
9e5945b82757e60f6524990a32b8dc5a0d66db01
ea318d69aa23ee4560a28abf34f057f3ae62ee3a
/pyroball/models/svi_dynamic.py
efc7d2a6e645b82ac91a5ce72e68e42ffdfc5f47
[]
no_license
anguswilliams91/pyroball
e52450fad2d4898ef3192bd433d74d1c3b7ab0f6
39c642e20ac3ee5dc5cc75dfc783beb973ca8850
refs/heads/master
2020-11-24T08:53:48.806541
2019-12-31T13:22:56
2019-12-31T13:22:56
228,063,067
0
0
null
null
null
null
UTF-8
Python
false
false
4,613
py
import pyro from pyro import distributions as dist from pyro.infer import Trace_ELBO, SVI, Predictive from pyro.optim import Adam from pyro.poutine import condition from pyro.contrib.autoguide import ( AutoMultivariateNormal, AutoDiagonalNormal, AutoIAFNormal, AutoLaplaceApproximation ) import torch from pyroball.util import early_stopping class SVIDynamicModel: def __init__(self): self.team_to_index = None self.index_to_team = None self.n_teams = None self.samples = None def model(self, home_team, away_team, gameweek): n_gameweeks = max(gameweek) + 1 gamma = pyro.sample("gamma", dist.LogNormal(0, 1)) mu_b = pyro.sample("mu_b", dist.Normal(0, 1)) with pyro.plate("teams", self.n_teams): log_a0 = pyro.sample("log_a0", dist.Normal(0, 1)) log_b0 = pyro.sample("log_b0", dist.Normal(mu_b, 1)) sigma_rw = pyro.sample("sigma_rw", dist.HalfNormal(0.1)) with pyro.plate("random_walk", n_gameweeks - 1): diffs_a = pyro.sample("diff_a", dist.Normal(0, sigma_rw)) diffs_b = pyro.sample("diff_b", dist.Normal(0, sigma_rw)) log_a0_t = log_a0 if log_a0.dim() == 2 else log_a0[None, :] diffs_a = torch.cat((log_a0_t, diffs_a), axis=0) log_a = torch.cumsum(diffs_a, axis=0) log_b0_t = log_b0 if log_b0.dim() == 2 else log_b0[None, :] diffs_b = torch.cat((log_b0_t, diffs_b), axis=0) log_b = torch.cumsum(diffs_b, axis=0) pyro.sample("log_a", dist.Delta(log_a), obs=log_a) pyro.sample("log_b", dist.Delta(log_b), obs=log_b) home_inds = torch.tensor([self.team_to_index[team] for team in home_team]) away_inds = torch.tensor([self.team_to_index[team] for team in away_team]) home_rate = torch.clamp( log_a[gameweek, home_inds] - log_b[gameweek, away_inds] + gamma, -7, 2 ) away_rate = torch.clamp( log_a[gameweek, away_inds] - log_b[gameweek, home_inds], -7, 2 ) pyro.sample("home_goals", dist.Poisson(torch.exp(home_rate))) pyro.sample("away_goals", dist.Poisson(torch.exp(away_rate))) def fit( self, df, max_iter=6000, patience=200, optimiser_settings={"lr": 1.0e-2}, elbo_kwargs={"num_particles": 5}, ): teams = sorted(list(set(df["home_team"]) | set(df["away_team"]))) home_team = df["home_team"].values away_team = df["away_team"].values home_goals = torch.tensor(df["home_goals"].values, dtype=torch.float32) away_goals = torch.tensor(df["away_goals"].values, dtype=torch.float32) gameweek = ((df["date"] - df["date"].min()).dt.days // 7).values self.team_to_index = {team: i for i, team in enumerate(teams)} self.index_to_team = {value: key for key, value in self.team_to_index.items()} self.n_teams = len(teams) self.min_date = df["date"].min() conditioned_model = condition( self.model, data={"home_goals": home_goals, "away_goals": away_goals} ) guide = AutoDiagonalNormal(conditioned_model) optimizer = Adam(optimiser_settings) elbo = Trace_ELBO(**elbo_kwargs) svi = SVI(conditioned_model, guide, optimizer, loss=elbo) pyro.clear_param_store() fitted_svi, losses = early_stopping( svi, home_team, away_team, gameweek, max_iter=max_iter, patience=patience ) self.guide = guide return losses def _predict(self, home_team, away_team, dates, num_samples=100, seed=42): predictive = Predictive( self.model, guide=self.guide, num_samples=num_samples, return_sites=("home_goals", "away_goals"), ) home_team = [home_team] if isinstance(home_team, str) else home_team away_team = [away_team] if isinstance(away_team, str) else away_team missing_teams = set(list(home_team) + list(away_team)) - set(self.team_to_index.keys()) for team in missing_teams: new_index = max(self.team_to_index.values()) + 1 self.team_to_index[team] = new_index self.index_to_team[new_index] = team self.n_teams += 1 gameweek = (dates - self.min_date).dt.days // 7 predictions = predictive.get_samples(home_team, away_team, gameweek) return ( predictions["home_goals"].detach().numpy(), predictions["away_goals"].detach().numpy(), )
[ "anguswilliams91@gmail.com" ]
anguswilliams91@gmail.com
a0eb71c3bb7ac2b1ce80fd98687dd4b357826921
63bbe2f37dc3f9dd11e31c5f0dbcaee362bf069f
/weixitest/basic.py
e4a1cccf9cdbae0dc547afab22bd737cf39de142
[]
no_license
yuxuefendou/weixin
a3809e86e066a5c14abf38c663834ccf2e4a43cb
73ebd84c0d8b68214d89cf1a53597544e926b8fc
refs/heads/master
2021-04-06T12:02:38.724598
2018-03-09T09:07:56
2018-03-09T09:07:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,195
py
#!/usr/bin/env python #-*- coding:utf-8 -*- ''' Created on 13:51 2017/11/4 @author: acer ''' import urllib import time import json class Basic: def __init__(self): self.__accessToken = '' self.__leftTime = 0 def __real_get_acces_token(self): # appId="wxf6e4bea81a14c7e4" # appSecret = "58cd237a1abf8f1e775e8301dfd78e3e" appId = "wxf4f421a98811617a" appSecret = "5e5f459dc1b1998d58dc7f40188adaa6" postUrl = ("https://api.weixin.qq.com/cgi-bin/token?grant_type=" "client_credential&appid=%s&secret=%s" % (appId, appSecret)) urlResp = urllib.urlopen(postUrl) urlResp = json.loads(urlResp.read()) #打印access_token print urlResp self.__accessToken = urlResp['access_token'] self.__leftTime = urlResp['expires_in'] def get_access_token(self): if self.__leftTime<10: self.__real_get_acces_token() return self.__accessToken def run(self): while(True): if self.__leftTime>10: time.sleep(2) self.__leftTime -=2 else: self.__real_get_acces_token()
[ "1131419557@qq.com" ]
1131419557@qq.com
9c0b88760d4b0038094db668b133cab22473a766
e3b34c15197f73f1e85dad715bf951be74b54721
/main/classes/ContentManager.py
99a79c74158f0ea82daaa012fe57256f00c341b0
[]
no_license
Kingdomdark/ProjectOP2
5531a051fe7f256b3789b4065c93cff373b7070d
2b390bb8e02d23b3ca3a73edf1b7ff7b1d2e46e8
refs/heads/master
2021-01-11T20:53:38.109054
2017-02-01T18:11:26
2017-02-01T18:11:26
79,206,773
1
0
null
null
null
null
UTF-8
Python
false
false
873
py
from .QuestionManager import questionmanager from .MenuManager import menumanager from .GameManager import gamemanager from .TileManager import tilemanager from .AudioVisualManager import spritemanager class contentmanager: def __init__(self,screen): self.qm = questionmanager() self.sm = spritemanager() self.tm = tilemanager(screen,self.sm) self.mm = menumanager(screen,self) self.gm = gamemanager(screen,self,self.qm,self.tm) self.stage = 0 def switchtogame(self): self.stage = 1 def switchtomenu(self): self.stage = 0 def update(self): if self.stage == 0: self.mm.update() elif self.stage == 1: self.gm.update() def draw(self): if self.stage == 0: self.mm.draw() elif self.stage == 1: self.gm.draw()
[ "jmolendijk93@gmail.com" ]
jmolendijk93@gmail.com
e20393aff022c9f8bb1cabe7899c8e008eba862b
394072f7fd3e2a226aeed78bf0a4f587f4c4e383
/Tree_gmb/get_name_dict.py
1f5dea360f5e10e3d7c5edcd4054f3d938068771
[]
no_license
LeonCrashCode/DRSparsing
ec5cca079a2c73eb512444e1ac86215722e6503a
c7e92beb8878ff2386bc6789e6c17f0d35bf1277
refs/heads/master
2020-03-16T09:52:11.217219
2019-01-17T14:20:16
2019-01-17T14:20:16
124,549,958
0
0
null
null
null
null
UTF-8
Python
false
false
5,991
py
import os import sys import re import argparse parser = argparse.ArgumentParser() parser.add_argument("--input", required=True) args = parser.parse_args() v_p = re.compile("^[XESTPKB][0-9]+$") d_p = re.compile("^DRS-[0-9]+\($") pb = re.compile("^P[0-9]+\($") kb = re.compile("^K[0-9]+\($") def correct(tree): # Here we correct some weired things #e.g. :( K1 K2 ) for i in range(len(tree)): if tree[i] == ":(" and tree[i+1][0] == "K": tree[i] = "THAT(" if tree[i] == "-(" and tree[i+1][0] == "K": tree[i] = "THAT(" if tree[i] == "((" and tree[i+1][0] == "K": tree[i] = "THAT(" def bracket2list(bracket): stack = [] for tok in bracket: if tok[-1] == "(": stack.append([tok]) elif tok == ")": if len(stack) != 1: back = stack.pop() stack[-1].append(back) else: stack[-1].append(tok) assert len(stack) == 1 return stack[0] def tree2ground(tree): v = ["X","E","S","T","B","P","K"] vl = [ [] for i in range(7)] for i in range(len(tree)): tok = tree[i] if pb.match(tok): assert tok[:-1] not in vl[-2] vl[-2].append(tok[:-1]) assert v_p.match(tree[i+1]) and tree[i+1][0] == "B" if tree[i+1] != "B0" and tree[i+1] not in vl[-3]: vl[-3].append(tree[i+1]) if kb.match(tok): assert tok[:-1] not in vl[-1] vl[-1].append(tok[:-1]) if tok in ["NOT(", "POS(", "NEC(", "IMP(", "OR(", "DUP("]: assert v_p.match(tree[i+1]) and tree[i+1][0] == "B" if tree[i+1] != "B0" and tree[i+1] not in vl[-3]: vl[-3].append(tree[i+1]) #print vl #exit(1) root = bracket2list(tree) def is_struct(tok): if tok in ["DRS(", "SDRS(", "NOT(", "POS(", "NEC(", "IMP(", "OR(", "DUP("]: return True if d_p.match(tok): return True if re.match("^[PK][0-9]+\($", tok): return True return False def travel(root): #global v #global vl parent = root[0] child = root[1:] if parent == "SDRS(": for c in child: if not is_struct(c[0]): for cc in c[1:]: if v_p.match(cc): idx = v.index(cc[0]) if cc not in vl[idx]: vl[idx].append(cc) for c in child: if is_struct(c[0]): travel(c) elif parent == "DRS(" or d_p.match(parent): for c in child: if not is_struct(c[0]): assert c[1][0] == "B" assert v_p.match(c[1]) and c[1][0] == "B" idx = v.index(c[1][0]) if c[1] not in vl[idx] and c[1] != "B0": vl[idx].append(c[1]) for cc in c[2:]: if v_p.match(cc): idx = v.index(cc[0]) if cc not in vl[idx]: vl[idx].append(cc) for c in child: if is_struct(c[0]): travel(c) elif pb.match(parent) or parent in ["NOT(", "POS(", "NEC(", "IMP(", "OR(", "DUP("]: for c in child[1:]: travel(c) elif kb.match(parent): for c in child: travel(c) travel(root) correct(tree) # normalize variables i = 0 cur = 0 while i < len(tree): tok = tree[i] if pb.match(tok): idx = vl[-2].index(tok[:-1]) tree[i] = "P"+str(idx+1)+"(" elif kb.match(tok): idx = vl[-1].index(tok[:-1]) tree[i] = "K"+str(idx+1)+"(" elif v_p.match(tok) and tok != "B0": vl_idx = v.index(tok[0]) idx = vl[vl_idx].index(tok) tree[i] = v[vl_idx] + str(idx+1) i += 1 # normalize scoped K and P p_n = 0 k_n = 0 for i in range(len(tree)): tok = tree[i] if pb.match(tok): assert int(tok[1:-1]) == p_n + 1 #tree[i] = "@P(" p_n += 1 if kb.match(tok): assert int(tok[1:-1]) == k_n + 1 #tree[i] = "@K(" k_n += 1 #print tree n_tree = [] stack = [] i = 0 while i < len(tree): t = tree[i] if v_p.match(t): #n_tree.append(t) i += 1 elif t in ["DRS(", "SDRS("]: #n_tree.append(t) stack.append(-1) i += 1 elif d_p.match(t): #n_tree.append(t) stack.append(int(t[4:-1])) #DRS-10( i += 1 elif pb.match(t) or kb.match(t): #n_tree.append(t) stack.append(-1) i += 1 elif t == ")": #n_tree.append(t) stack.pop() i += 1 elif t in ["NOT(", "POS(", "NEC(", "IMP(", "OR(", "DUP("]: #n_tree.append(t) stack.append(-1) i += 1 elif t == "Named(": #Named( B0 X1 $1[John] ) assert stack[-1] != -1 idx = tree[i:].index(")") n_tree.append(t) n_tree.append(tree[i+1]) n_tree.append(tree[i+2]) exps = [] cons = [] for item in tree[i+3:i+idx]: assert re.match("^\$[0-9]+\[.+\]$", item) j = item.index("[") exps.append(item[j+1:-1]) cons.append(words[stack[-1]][int(item[1:j])]) exp = "~".join(exps) cons = "~".join(cons) if cons not in name_dict: name_dict[cons] = [exp] elif exp not in name_dict[cons]: name_dict[cons].append(exp) i = i + idx + 1 elif t == "Card(": assert stack[-1] != -1 idx = tree[i:].index(")") i = i + idx + 1 elif re.match("^T[yx][mx][dx]\($", t): assert stack[-1] != -1 idx = tree[i:].index(")") i = i + idx + 1 elif t[-1] == "(": idx = tree[i:].index(")") i = i + idx + 1 else: assert False, "unrecognized format" def filter(illform, tree): #filter two long sentences, actually only one """ cnt = 0 for item in tree: if item == "DRS(": cnt += 1 if cnt >= 21: return True """ for item in illform: if item in tree: return True return False if __name__ == "__main__": illform = [] if os.path.exists("manual_correct2"): for line in open("manual_correct2"): line = line.strip() if line == "" or line[0] == "#": continue illform.append(line.split()[0]) global words global name_dict name_dict = {} lines = [] filename = "" for line in open(args.input): line = line.strip() if line == "": idx = lines.index("TREE") words = lines[:idx] for i in range(len(words)): words[i] = words[i].split() tree = lines[idx+1].split() if filter(illform, tree): lines = [] continue tree2ground(tree) lines = [] else: if line[0] == "#": filename = line.split()[-1] continue lines.append(line) keys = name_dict.keys() keys.sort() for key in keys: print key, name_dict[key], len(name_dict[key])
[ "jiangming_liu@JM-MacBook.local" ]
jiangming_liu@JM-MacBook.local
45ec02892820ec21cd41b25d8e7086dab47d0908
61eaefeba9eb3e1b8fbbc72e6ab76c2bdf8d1cd5
/基于规则模型/cos.py
11f305c82ccc30bd4b2e9fb71a77f8effc8590fb
[]
no_license
wutonghua/fenlei
f8b9ce00181623ba17bec799d5223f768a4c69ff
40bca4e360ee68db929386fc8522abe511d08b62
refs/heads/master
2021-04-15T12:33:41.114718
2018-03-23T01:49:16
2018-03-23T01:49:16
126,417,099
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
#!/usr/bin/python # -*- coding: utf-8 -*- import numpy def moreCos(vec1,vec2): num = float(numpy.sum(vec1 * vec2)) denom = numpy.linalg.norm(vec1) * numpy.linalg.norm(vec2) cos = num / denom return 1-cos def ComputerNearestNeighbor(line_xl,pipei_xl): distance=[] for i in range(len(pipei_xl)): dist = moreCos(numpy.array(line_xl), numpy.array(pipei_xl[i])) distance.append((dist,i)) distance.sort() return distance
[ "382291189@qq.com" ]
382291189@qq.com
59c40a0fbcaea3a03fba7f05f4950f4b98fdca8c
519c809b9c1384f95b04069d73857d42e83e5336
/t1.py
24dd66bd8e989fb4e3fc89562a88df8498d23fc4
[]
no_license
indranilpradhan/Recidivism
79eb536dba1569132f6d731e7d00076dcc12c88d
7fdf3f6e0e778dfcd8315935eef9925e9ffa9558
refs/heads/main
2023-02-02T05:04:13.861220
2020-12-21T11:50:16
2020-12-21T11:50:16
323,320,955
0
0
null
null
null
null
UTF-8
Python
false
false
1,133
py
import os import pandas as pd import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn import linear_model from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import StackingClassifier TRAIN_DATA_PATH = os.getenv("TRAIN_DATA_PATH") TEST_DATA_PATH = os.getenv("TEST_DATA_PATH") train_data = pd.read_csv(TRAIN_DATA_PATH) X_train, y_train = train_data.iloc[:,:-1], train_data.iloc[:,-1] level_0 = list() level_0.append(('RF', RandomForestClassifier(n_estimators=700))) level_0.append(('LR',LogisticRegression(max_iter=6000))) level_1 = SVC(C=1.2) model = StackingClassifier(estimators=level_0, final_estimator=level_1, cv=4) model.fit(X_train, y_train) test_data = pd.read_csv(TEST_DATA_PATH) submission = model.predict(test_data) submission = pd.DataFrame(submission) submission.to_csv('submission.csv', header=['class'], index=False)
[ "noreply@github.com" ]
indranilpradhan.noreply@github.com
69ce06a042be86047ac1e130738833f21f227950
e80094d85041869d8900c511d73236fd1100aa5c
/WebService/AuthenticationHandler.py
44c569363f5abf21afa0a174d2fc90ce559660ee
[]
no_license
aghilesDev/Auth-Server
35585973332775ac5caa3de7dc9c843181f89751
24de73b5a0e5a7467fa8f51feca392d6c9cb506d
refs/heads/master
2020-12-01T00:10:06.538050
2019-12-27T21:08:52
2019-12-27T21:08:52
230,516,477
1
0
null
null
null
null
UTF-8
Python
false
false
1,735
py
from .Validator import SignatureValidator#,SignatureProvider from .TokenGenerator import TokenGenerator import sys #sys.path.insert(0,'../DataLayer') from DataLayer.DBRepository import UserRepository from DataLayer.BCKRepository import AuthenticationRepository as AuthRepo #class that handles the different step of the authentication procedure class AuthenticationHandler: def __init__(self,userRepo=UserRepository,signatureValidator=SignatureValidator,tokenGenerator=TokenGenerator,authRepo=AuthRepo): self.userRepo=userRepo() self.signatureValidator=signatureValidator() self.tokenGen=tokenGenerator() self.authRepo=authRepo() pass def generateChallenge(self,username): user=self.userRepo.readUser(username) if(user is None): #error print('erreur') return None token=self.tokenGen.generateChallengeToken(user.id) return token def AuthentificateToken(self,token,signature): if(self.tokenGen.verifyChallengeToken(token) is False): return None #token non valide data=self.tokenGen.decryptToken(token) userid=data.get('id') user=self.userRepo.readUserById(userid) if(user is None): return None #user n'existe pas publicKey=self.authRepo.getPublicKeyUser(user.Contract) if self.signatureValidator.validate(publicKey=publicKey,token=token,signature=signature):#la chaine de caractere du token return self.tokenGen.generateAuthentificationToken(user.id) #l'utilisateur est authentifier on lui donne un token d'authentification return None #signature ne correspond pas authHandler=AuthenticationHandler()
[ "aghiles.goumeziane@gmail.com" ]
aghiles.goumeziane@gmail.com
d275d957a097e664c600ccebdc43269bc3a1b768
769d4ba08db6ad3707d8435b2d6ec3ca7fbf4a5d
/blender/arm/material/make_mesh.py
283a58445013255cf0ef9bfd94e64b3cdf787d93
[ "Zlib", "GPL-2.0-only" ]
permissive
Leonix/armory
9f2eee057f2fa66efc306e9e832806aa6ea124ba
3eaf2dc569d7caf4a7a7c928575d45cbb9aa3c14
refs/heads/master
2020-04-15T11:45:55.385644
2019-01-07T14:41:06
2019-01-07T14:41:06
164,643,287
0
0
Zlib
2019-01-08T12:22:26
2019-01-08T12:22:25
null
UTF-8
Python
false
false
27,501
py
import bpy import arm.assets as assets import arm.material.mat_state as mat_state import arm.material.mat_utils as mat_utils import arm.material.cycles as cycles import arm.material.make_tess as make_tess import arm.material.make_particle as make_particle import arm.material.make_cluster as make_cluster import arm.material.make_finalize as make_finalize import arm.material.make_attrib as make_attrib import arm.utils is_displacement = False write_material_attribs = None write_material_attribs_post = None write_vertex_attribs = None def make(context_id): rpdat = arm.utils.get_rp() rid = rpdat.rp_renderer con = { 'name': context_id, 'depth_write': True, 'compare_mode': 'less', 'cull_mode': 'clockwise' } # Blend context mat = mat_state.material blend = mat.arm_blending particle = mat_state.material.arm_particle_flag dprepass = rid == 'Forward' and rpdat.rp_depthprepass if blend: con['name'] = 'blend' con['blend_source'] = mat.arm_blending_source con['blend_destination'] = mat.arm_blending_destination con['blend_operation'] = mat.arm_blending_operation con['alpha_blend_source'] = mat.arm_blending_source_alpha con['alpha_blend_destination'] = mat.arm_blending_destination_alpha con['alpha_blend_operation'] = mat.arm_blending_operation_alpha con['depth_write'] = False con['compare_mode'] = 'less' elif particle: pass elif dprepass: # Depth prepass was performed con['depth_write'] = False con['compare_mode'] = 'equal' con_mesh = mat_state.data.add_context(con) mat_state.con_mesh = con_mesh if rid == 'Forward' or blend: if rpdat.arm_material_model == 'Mobile': make_forward_mobile(con_mesh) elif rpdat.arm_material_model == 'Solid': make_forward_solid(con_mesh) else: make_forward(con_mesh) elif rid == 'Deferred': make_deferred(con_mesh) elif rid == 'Raytracer': make_raytracer(con_mesh) make_finalize.make(con_mesh) assets.vs_equal(con_mesh, assets.shader_cons['mesh_vert']) return con_mesh def make_base(con_mesh, parse_opacity): global is_displacement global write_material_attribs global write_material_attribs_post global write_vertex_attribs vert = con_mesh.make_vert() frag = con_mesh.make_frag() geom = None tesc = None tese = None vert.add_uniform('mat3 N', '_normalMatrix') vert.write_attrib('vec4 spos = vec4(pos.xyz, 1.0);') vattr_written = False rpdat = arm.utils.get_rp() is_displacement = mat_utils.disp_linked(mat_state.output_node) if is_displacement: if rpdat.arm_rp_displacement == 'Vertex': frag.ins = vert.outs else: # Tessellation tesc = con_mesh.make_tesc() tese = con_mesh.make_tese() tesc.ins = vert.outs tese.ins = tesc.outs frag.ins = tese.outs make_tess.tesc_levels(tesc, rpdat.arm_tess_mesh_inner, rpdat.arm_tess_mesh_outer) make_tess.interpolate(tese, 'wposition', 3, declare_out=True) make_tess.interpolate(tese, 'wnormal', 3, declare_out=True, normalize=True) # No displacement else: frag.ins = vert.outs if write_vertex_attribs != None: vattr_written = write_vertex_attribs(vert) frag.add_include('compiled.inc') written = False if write_material_attribs != None: written = write_material_attribs(con_mesh, frag) if written == False: frag.write('vec3 basecol;') frag.write('float roughness;') frag.write('float metallic;') frag.write('float occlusion;') frag.write('float specular;') if parse_opacity: frag.write('float opacity;') cycles.parse(mat_state.nodes, con_mesh, vert, frag, geom, tesc, tese, parse_opacity=parse_opacity) if write_material_attribs_post != None: write_material_attribs_post(con_mesh, frag) if not is_displacement and not vattr_written: make_attrib.write_vertpos(vert) if con_mesh.is_elem('tex'): vert.add_out('vec2 texCoord') vert.add_uniform('float texUnpack', link='_texUnpack') if mat_state.material.arm_tilesheet_mat: if mat_state.material.arm_particle_flag and rpdat.arm_particles == 'GPU': make_particle.write_tilesheet(vert) else: vert.add_uniform('vec2 tilesheetOffset', '_tilesheetOffset') vert.write_attrib('texCoord = tex * texUnpack + tilesheetOffset;') else: vert.write_attrib('texCoord = tex * texUnpack;') if tese != None: tese.write_pre = True make_tess.interpolate(tese, 'texCoord', 2, declare_out=frag.contains('texCoord')) tese.write_pre = False if con_mesh.is_elem('tex1'): vert.add_out('vec2 texCoord1') vert.add_uniform('float texUnpack', link='_texUnpack') vert.write_attrib('texCoord1 = tex1 * texUnpack;') if tese != None: tese.write_pre = True make_tess.interpolate(tese, 'texCoord1', 2, declare_out=frag.contains('texCoord1')) tese.write_pre = False if con_mesh.is_elem('col'): vert.add_out('vec3 vcolor') vert.write_attrib('vcolor = col.rgb;') if tese != None: tese.write_pre = True make_tess.interpolate(tese, 'vcolor', 3, declare_out=frag.contains('vcolor')) tese.write_pre = False if con_mesh.is_elem('tang'): if tese != None: vert.add_out('vec3 wnormal') make_attrib.write_norpos(con_mesh, vert) tese.add_out('mat3 TBN') tese.write('vec3 wbitangent = normalize(cross(wnormal, wtangent));') tese.write('TBN = mat3(wtangent, wbitangent, wnormal);') else: vert.add_out('mat3 TBN') make_attrib.write_norpos(con_mesh, vert, declare=True) vert.write('vec3 tangent = normalize(N * tang.xyz);') vert.write('vec3 bitangent = normalize(cross(wnormal, tangent));') vert.write('TBN = mat3(tangent, bitangent, wnormal);') else: vert.add_out('vec3 wnormal') make_attrib.write_norpos(con_mesh, vert) frag.write_attrib('vec3 n = normalize(wnormal);') if is_displacement: if rpdat.arm_rp_displacement == 'Vertex': sh = vert else: sh = tese sh.add_uniform('mat4 VP', '_viewProjectionMatrix') sh.write('wposition += wnormal * disp * 0.1;') sh.write('gl_Position = VP * vec4(wposition, 1.0);') def make_deferred(con_mesh): wrd = bpy.data.worlds['Arm'] rpdat = arm.utils.get_rp() arm_discard = mat_state.material.arm_discard parse_opacity = arm_discard make_base(con_mesh, parse_opacity=parse_opacity) frag = con_mesh.frag vert = con_mesh.vert tese = con_mesh.tese if arm_discard: opac = mat_state.material.arm_discard_opacity frag.write('if (opacity < {0}) discard;'.format(opac)) gapi = arm.utils.get_gapi() if '_gbuffer2' in wrd.world_defs: frag.add_out('vec4[3] fragColor') if '_Veloc' in wrd.world_defs: if tese == None: vert.add_uniform('mat4 prevWVP', link='_prevWorldViewProjectionMatrix') vert.add_out('vec4 wvpposition') vert.add_out('vec4 prevwvpposition') vert.write('wvpposition = gl_Position;') if is_displacement: vert.add_uniform('mat4 invW', link='_inverseWorldMatrix') vert.write('prevwvpposition = prevWVP * (invW * vec4(wposition, 1.0));') else: vert.write('prevwvpposition = prevWVP * spos;') else: tese.add_out('vec4 wvpposition') tese.add_out('vec4 prevwvpposition') tese.write('wvpposition = gl_Position;') if is_displacement: tese.add_uniform('mat4 invW', link='_inverseWorldMatrix') tese.add_uniform('mat4 prevWVP', '_prevWorldViewProjectionMatrix') tese.write('prevwvpposition = prevWVP * (invW * vec4(wposition, 1.0));') else: vert.add_uniform('mat4 prevW', link='_prevWorldMatrix') vert.add_out('vec3 prevwposition') vert.write('prevwposition = vec4(prevW * spos).xyz;') tese.add_uniform('mat4 prevVP', '_prevViewProjectionMatrix') make_tess.interpolate(tese, 'prevwposition', 3) tese.write('prevwvpposition = prevVP * vec4(prevwposition, 1.0);') elif gapi.startswith('direct3d'): vert.add_out('vec4 wvpposition') vert.write('wvpposition = gl_Position;') frag.add_out('vec4[2] fragColor') else: frag.add_out('vec4[2] fragColor') # Pack gbuffer frag.add_include('std/gbuffer.glsl') if mat_state.material.arm_two_sided: frag.write('if (!gl_FrontFacing) n *= -1;') # Flip normal when drawing back-face frag.write('n /= (abs(n.x) + abs(n.y) + abs(n.z));') frag.write('n.xy = n.z >= 0.0 ? n.xy : octahedronWrap(n.xy);') frag.write('fragColor[0] = vec4(n.xy, packFloat(metallic, roughness), 1.0);') frag.write('fragColor[1] = vec4(basecol.rgb, packFloat2(occlusion, specular));') if '_gbuffer2' in wrd.world_defs: if '_Veloc' in wrd.world_defs: frag.write('vec2 posa = (wvpposition.xy / wvpposition.w) * 0.5 + 0.5;') frag.write('vec2 posb = (prevwvpposition.xy / prevwvpposition.w) * 0.5 + 0.5;') frag.write('fragColor[2].rg = vec2(posa - posb);') if '_SSS' in wrd.world_defs or '_Hair' in wrd.world_defs: frag.add_uniform('int materialID') frag.write('fragColor[2].a = materialID;') return con_mesh def make_raytracer(con_mesh): wrd = bpy.data.worlds['Arm'] vert = con_mesh.make_vert() frag = con_mesh.make_frag() vert.add_out('vec3 n') vert.write('n = nor;') vert.write('gl_Position = vec4(pos.xyz, 1.0);') def make_forward_mobile(con_mesh): wrd = bpy.data.worlds['Arm'] vert = con_mesh.make_vert() frag = con_mesh.make_frag() geom = None tesc = None tese = None vert.add_uniform('mat3 N', '_normalMatrix') vert.write_attrib('vec4 spos = vec4(pos.xyz, 1.0);') frag.ins = vert.outs make_attrib.write_vertpos(vert) frag.add_include('compiled.inc') frag.write('vec3 basecol;') frag.write('float roughness;') frag.write('float metallic;') frag.write('float occlusion;') frag.write('float specular;') arm_discard = mat_state.material.arm_discard blend = mat_state.material.arm_blending is_transluc = mat_utils.is_transluc(mat_state.material) parse_opacity = (blend and is_transluc) or arm_discard if parse_opacity: frag.write('float opacity;') cycles.parse(mat_state.nodes, con_mesh, vert, frag, geom, tesc, tese, parse_opacity=parse_opacity, parse_displacement=False) if arm_discard: opac = mat_state.material.arm_discard_opacity frag.write('if (opacity < {0}) discard;'.format(opac)) if con_mesh.is_elem('tex'): vert.add_out('vec2 texCoord') vert.add_uniform('float texUnpack', link='_texUnpack') if mat_state.material.arm_tilesheet_mat: vert.add_uniform('vec2 tilesheetOffset', '_tilesheetOffset') vert.write('texCoord = tex * texUnpack + tilesheetOffset;') else: vert.write('texCoord = tex * texUnpack;') if con_mesh.is_elem('col'): vert.add_out('vec3 vcolor') vert.write('vcolor = col.rgb;') if con_mesh.is_elem('tang'): vert.add_out('mat3 TBN') make_attrib.write_norpos(con_mesh, vert, declare=True) vert.write('vec3 tangent = normalize(N * tang);') vert.write('vec3 bitangent = normalize(cross(wnormal, tangent));') vert.write('TBN = mat3(tangent, bitangent, wnormal);') else: vert.add_out('vec3 wnormal') make_attrib.write_norpos(con_mesh, vert) frag.write_attrib('vec3 n = normalize(wnormal);') frag.add_include('std/math.glsl') frag.add_include('std/brdf.glsl') frag.add_out('vec4 fragColor') blend = mat_state.material.arm_blending if blend: if parse_opacity: frag.write('fragColor = vec4(basecol, opacity);') else: frag.write('fragColor = vec4(basecol, 1.0);') return is_shadows = '_ShadowMap' in wrd.world_defs frag.write('vec3 direct = vec3(0.0);') if '_Sun' in wrd.world_defs: frag.add_uniform('vec3 sunCol', '_sunColor') frag.add_uniform('vec3 sunDir', '_sunDirection') frag.write('float svisibility = 1.0;') frag.write('float sdotNL = max(dot(n, sunDir), 0.0);') if is_shadows: vert.add_out('vec4 lightPosition') vert.add_uniform('mat4 LWVP', '_biasLightWorldViewProjectionMatrix') vert.write('lightPosition = LWVP * spos;') frag.add_uniform('sampler2DShadow shadowMap') frag.add_uniform('float shadowsBias', '_sunShadowsBias') if '_CSM' in wrd.world_defs: frag.add_include('std/shadows.glsl') frag.add_uniform('vec4 casData[shadowmapCascades * 4 + 4]', '_cascadeData', included=True) frag.add_uniform('vec3 eye', '_cameraPosition') frag.write('svisibility = shadowTestCascade(shadowMap, eye, wposition + n * shadowsBias * 10, shadowsBias, shadowmapSize * vec2(shadowmapCascades, 1.0));') else: frag.write('if (lightPosition.w > 0.0) {') frag.write(' vec3 lPos = lightPosition.xyz / lightPosition.w;') frag.write(' svisibility = texture(shadowMap, vec3(lPos.xy, lPos.z - shadowsBias)).r;') frag.write('}') frag.write('direct += basecol * sdotNL * sunCol * svisibility;') if '_SinglePoint' in wrd.world_defs: frag.add_uniform('vec3 pointPos', '_pointPosition') frag.add_uniform('vec3 pointCol', '_pointColor') frag.write('float visibility = 1.0;') frag.write('vec3 ld = pointPos - wposition;') frag.write('vec3 l = normalize(ld);') frag.write('float dotNL = max(dot(n, l), 0.0);') if '_Spot' in wrd.world_defs: frag.add_uniform('vec3 spotDir', link='_spotDirection') frag.add_uniform('vec2 spotData', link='_spotData') if is_shadows: vert.add_out('vec4 spotPosition') vert.add_uniform('mat4 LWVPSpot0', '_biasLightWorldViewProjectionMatrixSpot0') vert.write('spotPosition = LWVPSpot0 * spos;') frag.add_uniform('float pointBias', link='_pointShadowsBias') frag.add_uniform('sampler2DShadow shadowMapSpot[1]') frag.write('if (spotPosition.w > 0.0) {') frag.write(' vec3 lPos = spotPosition.xyz / spotPosition.w;') frag.write(' visibility = texture(shadowMap, vec3(lPos.xy, lPos.z - pointBias).r;') frag.write('}') elif is_shadows: frag.add_include('std/shadows.glsl') frag.add_uniform('vec2 lightProj', link='_lightPlaneProj') frag.add_uniform('samplerCubeShadow shadowMapPoint[1]') frag.add_uniform('float pointBias', link='_pointShadowsBias') frag.write('const float s = shadowmapCubePcfSize;') # TODO: incorrect... frag.write('float compare = lpToDepth(ld - n * pointBias * 80, lightProj);') frag.write('visibility = texture(shadowMapPoint[0], vec4(-l + n * pointBias * 80, compare)).r;') frag.write('direct += basecol * dotNL * pointCol * attenuate(distance(wposition, pointPos)) * visibility;') if '_Clusters' in wrd.world_defs: frag.add_include('std/light_mobile.glsl') frag.write('vec3 albedo = basecol;') frag.write('vec3 f0 = surfaceF0(basecol, metallic);') make_cluster.write(vert, frag) if '_Irr' in wrd.world_defs: frag.add_include('std/shirr.glsl') frag.add_uniform('vec4 shirr[7]', link='_envmapIrradiance', included=True) env_str = 'shIrradiance(n)' else: env_str = '0.5' frag.add_uniform('float envmapStrength', link='_envmapStrength') frag.write('fragColor = vec4(direct + basecol * {0} * envmapStrength, 1.0);'.format(env_str)) if '_LDR' in wrd.world_defs: frag.write('fragColor.rgb = pow(fragColor.rgb, vec3(1.0 / 2.2));') def make_forward_solid(con_mesh): wrd = bpy.data.worlds['Arm'] vert = con_mesh.make_vert() frag = con_mesh.make_frag() geom = None tesc = None tese = None for e in con_mesh.data['vertex_elements']: if e['name'] == 'nor': con_mesh.data['vertex_elements'].remove(e) break vert.write_attrib('vec4 spos = vec4(pos.xyz, 1.0);') frag.ins = vert.outs make_attrib.write_vertpos(vert) frag.add_include('compiled.inc') frag.write('vec3 basecol;') frag.write('float roughness;') frag.write('float metallic;') frag.write('float occlusion;') frag.write('float specular;') arm_discard = mat_state.material.arm_discard blend = mat_state.material.arm_blending is_transluc = mat_utils.is_transluc(mat_state.material) parse_opacity = (blend and is_transluc) or arm_discard if parse_opacity: frag.write('float opacity;') cycles.parse(mat_state.nodes, con_mesh, vert, frag, geom, tesc, tese, parse_opacity=parse_opacity, parse_displacement=False, basecol_only=True) if arm_discard: opac = mat_state.material.arm_discard_opacity frag.write('if (opacity < {0}) discard;'.format(opac)) if con_mesh.is_elem('tex'): vert.add_out('vec2 texCoord') vert.add_uniform('float texUnpack', link='_texUnpack') if mat_state.material.arm_tilesheet_mat: vert.add_uniform('vec2 tilesheetOffset', '_tilesheetOffset') vert.write('texCoord = tex * texUnpack + tilesheetOffset;') else: vert.write('texCoord = tex * texUnpack;') if con_mesh.is_elem('col'): vert.add_out('vec3 vcolor') vert.write('vcolor = col.rgb;') make_attrib.write_norpos(con_mesh, vert, write_nor=False) frag.add_out('vec4 fragColor') if blend and parse_opacity: frag.write('fragColor = vec4(basecol, opacity);') else: frag.write('fragColor = vec4(basecol, 1.0);') if '_LDR' in wrd.world_defs: frag.write('fragColor.rgb = pow(fragColor.rgb, vec3(1.0 / 2.2));') def make_forward(con_mesh): wrd = bpy.data.worlds['Arm'] blend = mat_state.material.arm_blending parse_opacity = blend and mat_utils.is_transluc(mat_state.material) make_forward_base(con_mesh, parse_opacity=parse_opacity) frag = con_mesh.frag if not blend: frag.add_out('vec4 fragColor') frag.write('fragColor = vec4(direct + indirect, 1.0);') if '_LDR' in wrd.world_defs: frag.add_include('std/tonemap.glsl') frag.write('fragColor.rgb = tonemapFilmic(fragColor.rgb);') # frag.write('fragColor.rgb = pow(fragColor.rgb, vec3(1.0 / 2.2));') # Particle opacity if mat_state.material.arm_particle_flag and arm.utils.get_rp().arm_particles == 'GPU' and mat_state.material.arm_particle_fade: frag.write('fragColor.rgb *= p_fade;') def make_forward_base(con_mesh, parse_opacity=False): global is_displacement wrd = bpy.data.worlds['Arm'] arm_discard = mat_state.material.arm_discard make_base(con_mesh, parse_opacity=(parse_opacity or arm_discard)) vert = con_mesh.vert frag = con_mesh.frag tese = con_mesh.tese if arm_discard: opac = mat_state.material.arm_discard_opacity frag.write('if (opacity < {0}) discard;'.format(opac)) blend = mat_state.material.arm_blending if blend: frag.add_out('vec4 fragColor') if parse_opacity: frag.write('fragColor = vec4(basecol, opacity);') else: # frag.write('fragColor = vec4(basecol * lightCol * visibility, 1.0);') frag.write('fragColor = vec4(basecol, 1.0);') # TODO: Fade out fragments near depth buffer here return frag.write_init(""" vec3 vVec = normalize(eyeDir); float dotNV = max(dot(n, vVec), 0.0); """) sh = tese if tese != None else vert sh.add_out('vec3 eyeDir') sh.add_uniform('vec3 eye', '_cameraPosition') sh.write('eyeDir = eye - wposition;') frag.add_include('std/light.glsl') is_shadows = '_ShadowMap' in wrd.world_defs frag.write('vec3 albedo = surfaceAlbedo(basecol, metallic);') frag.write('vec3 f0 = surfaceF0(basecol, metallic);') frag.write('vec3 direct = vec3(0.0);') frag.add_uniform('bool receiveShadow') if '_Sun' in wrd.world_defs: frag.add_uniform('vec3 sunCol', '_sunColor') frag.add_uniform('vec3 sunDir', '_sunDirection') frag.write('float svisibility = 1.0;') frag.write('vec3 sh = normalize(vVec + sunDir);') frag.write('float sdotNL = dot(n, sunDir);') frag.write('float sdotNH = dot(n, sh);') frag.write('float sdotVH = dot(vVec, sh);') if is_shadows: frag.add_uniform('sampler2DShadow shadowMap') frag.add_uniform('float shadowsBias', '_sunShadowsBias') frag.write('if (receiveShadow) {') if '_CSM' in wrd.world_defs: frag.add_include('std/shadows.glsl') frag.add_uniform('vec4 casData[shadowmapCascades * 4 + 4]', '_cascadeData', included=True) frag.add_uniform('vec3 eye', '_cameraPosition') frag.write('svisibility = shadowTestCascade(shadowMap, eye, wposition + n * shadowsBias * 10, shadowsBias, shadowmapSize * vec2(shadowmapCascades, 1.0));') else: if tese != None: tese.add_out('vec4 lightPosition') tese.add_uniform('mat4 LVP', '_biasLightViewProjectionMatrix') tese.write('lightPosition = LVP * vec4(wposition, 1.0);') else: if is_displacement: vert.add_out('vec4 lightPosition') vert.add_uniform('mat4 LVP', '_biasLightViewProjectionMatrix') vert.write('lightPosition = LVP * vec4(wposition, 1.0);') else: vert.add_out('vec4 lightPosition') vert.add_uniform('mat4 LWVP', '_biasLightWorldViewProjectionMatrix') vert.write('lightPosition = LWVP * spos;') frag.write('vec3 lPos = lightPosition.xyz / lightPosition.w;') frag.write('const vec2 smSize = shadowmapSize;') frag.write('svisibility = PCF(shadowMap, lPos.xy, lPos.z - shadowsBias, smSize);') frag.write('}') # receiveShadow # is_shadows frag.write('direct += (lambertDiffuseBRDF(albedo, sdotNL) + specularBRDF(f0, roughness, sdotNL, sdotNH, dotNV, sdotVH) * specular) * sunCol * svisibility;') # sun if '_SinglePoint' in wrd.world_defs: frag.add_uniform('vec3 pointPos', link='_pointPosition') frag.add_uniform('vec3 pointCol', link='_pointColor') if is_shadows: frag.add_uniform('vec2 lightProj', link='_lightPlaneProj', included=True) frag.add_uniform('samplerCubeShadow shadowMapPoint[1]', included=True) frag.add_uniform('float pointBias', link='_pointShadowsBias') if '_Spot' in wrd.world_defs: frag.add_uniform('vec3 spotDir', link='_spotDirection') frag.add_uniform('vec2 spotData', link='_spotData') if is_shadows: frag.add_uniform('mat4 LWVPSpot0', '_biasLightWorldViewProjectionMatrixSpot0', included=True) frag.add_uniform('sampler2DShadow shadowMapSpot[1]', included=True) frag.write('direct += sampleLight(') frag.write(' wposition, n, vVec, dotNV, pointPos, pointCol, albedo, roughness, specular, f0') if is_shadows: frag.write(' , 0, pointBias') if '_Spot' in wrd.world_defs: frag.write(' , true, spotData.x, spotData.y, spotDir') frag.write(');') if '_Clusters' in wrd.world_defs: make_cluster.write(vert, frag) if '_Brdf' in wrd.world_defs: frag.add_uniform('sampler2D senvmapBrdf', link='_envmapBrdf') frag.write('vec2 envBRDF = texture(senvmapBrdf, vec2(roughness, 1.0 - dotNV)).xy;') if '_Irr' in wrd.world_defs: frag.add_include('std/shirr.glsl') frag.add_uniform('vec4 shirr[7]', link='_envmapIrradiance', included=True) frag.write('vec3 indirect = shIrradiance(n);') if '_EnvTex' in wrd.world_defs: frag.write('indirect /= PI;') frag.write('indirect *= albedo;') if '_Rad' in wrd.world_defs: frag.add_uniform('sampler2D senvmapRadiance', link='_envmapRadiance') frag.add_uniform('int envmapNumMipmaps', link='_envmapNumMipmaps') frag.write('vec3 reflectionWorld = reflect(-vVec, n);') frag.write('float lod = getMipFromRoughness(roughness, envmapNumMipmaps);') frag.write('vec3 prefilteredColor = textureLod(senvmapRadiance, envMapEquirect(reflectionWorld), lod).rgb;') if '_EnvLDR' in wrd.world_defs: frag.write('prefilteredColor = pow(prefilteredColor, vec3(2.2));') frag.write('indirect += prefilteredColor * (f0 * envBRDF.x + envBRDF.y) * 1.5;') elif '_EnvCol' in wrd.world_defs: frag.add_uniform('vec3 backgroundCol', link='_backgroundCol') frag.write('indirect += backgroundCol * f0;') else: frag.write('vec3 indirect = albedo;') frag.write('indirect *= occlusion;') frag.add_uniform('float envmapStrength', link='_envmapStrength') frag.write('indirect *= envmapStrength;') if '_VoxelGI' in wrd.world_defs or '_VoxelAO' in wrd.world_defs: frag.add_include('std/conetrace.glsl') frag.add_uniform('sampler3D voxels') if '_VoxelGICam' in wrd.world_defs: frag.add_uniform('vec3 eyeSnap', link='_cameraPositionSnap') frag.write('vec3 voxpos = (wposition - eyeSnap) / voxelgiHalfExtents;') else: frag.write('vec3 voxpos = wposition / voxelgiHalfExtents;') if '_VoxelAO' in wrd.world_defs: frag.write('indirect *= vec3(1.0 - traceAO(voxpos, n, voxels));') else: frag.write('vec4 indirectDiffuse = traceDiffuse(voxpos, n, voxels);') frag.write('indirect = indirect * voxelgiEnv + vec3(indirectDiffuse.rgb * voxelgiDiff * basecol);') frag.write('if (specular > 0.0) {') frag.write('vec3 indirectSpecular = traceSpecular(voxels, voxpos, n, vVec, roughness);') frag.write('indirectSpecular *= f0 * envBRDF.x + envBRDF.y;') frag.write('indirect += indirectSpecular * voxelgiSpec * specular;') frag.write('}')
[ "lubos.lenco@gmail.com" ]
lubos.lenco@gmail.com
18bc49a4a5fa8fcc62814b4b7994eab58a0a4286
17cadafa88ac5864a19b99e864953bbd9663cc02
/elementary/12.py
938030158ecfdc2604ba3fcf3c3d849d900743a0
[]
no_license
Ascarik/Checkio
4b4a23d2bb2d3a62f36958d0717942cd9b42f7f6
4bafc893b1c1db88cdba9afed209b10c5453fe6f
refs/heads/master
2023-06-24T02:53:04.240687
2023-06-10T13:36:36
2023-06-10T13:36:36
230,712,003
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
def first_word(text: str) -> str: return text.split(" ")[0] if __name__ == '__main__': print("Example:") print(first_word("Hello world")) # These "asserts" are used for self-checking and not for an auto-testing assert first_word("Hello world") == "Hello" assert first_word("a word") == "a" assert first_word("hi") == "hi" print("Coding complete? Click 'Check' to earn cool rewards!")
[ "ascar@list.ru" ]
ascar@list.ru
d2adb9a0f210f36cd6ff27fe3c481dcff845dab7
7c4a0a8f3b9a7e026647cfc48b067bb6cead0918
/labs/tests/tests_ec.py
a4e4fd953dac5784fde887b5e47bcb9f01a31b2e
[]
no_license
endlessgate/bitLabs
8651acb5cc978456f0765736386cf53b39f8492f
50788c705614f8084bb778d4e1e23fbf595389e3
refs/heads/master
2021-07-05T05:20:43.076291
2019-09-22T05:13:11
2019-09-22T05:13:11
196,538,922
0
0
null
2020-10-27T21:51:02
2019-07-12T08:19:20
Python
UTF-8
Python
false
false
458
py
import hashlib from labs.utils.keys import PrivateKey from labs.utils.keys.ecdsa import ( sign, recover, verifies ) def tests_ec(): keys = PrivateKey.make() hashes = hashlib.sha3_256('testMessages'.encode()).digest() sig_vrs = sign(hashes, keys.private_bytes) recovery = recover(hashes, sig_vrs) sig_rs = sig_vrs[:2] if verifies(hashes, sig_rs, recovery): print('verified') else: raise ValueError
[ "endlessgate1@gmail.com" ]
endlessgate1@gmail.com
11fec0b6e83c48f5561ee16a40d78f2b90ed7d74
ae0a75d1a4a879961dc1391f0d0e9451e54dc15c
/ui/AccDialog.py
c58d5d40d6ab9e2005e5b3060fbfccf19f8fce55
[]
no_license
QVllasa/PasswordManager
986313ceb05c8222efa47883bce2773baec495d3
aa775bae439156e7fb51602191f2d28168b2de29
refs/heads/master
2021-06-27T09:26:17.788159
2020-11-05T22:46:39
2020-11-05T22:46:39
180,325,358
0
1
null
null
null
null
UTF-8
Python
false
false
2,404
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ui/AccDialog.ui' # # Created by: PyQt5 UI code generator 5.12.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_AccDialog(object): def setupUi(self, AccDialog): AccDialog.setObjectName("AccDialog") AccDialog.resize(461, 300) self.buttonBox = QtWidgets.QDialogButtonBox(AccDialog) self.buttonBox.setGeometry(QtCore.QRect(360, 10, 81, 241)) self.buttonBox.setOrientation(QtCore.Qt.Vertical) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setObjectName("buttonBox") self.verticalLayoutWidget = QtWidgets.QWidget(AccDialog) self.verticalLayoutWidget.setGeometry(QtCore.QRect(10, 10, 331, 271)) self.verticalLayoutWidget.setObjectName("verticalLayoutWidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.comboBox = QtWidgets.QComboBox(self.verticalLayoutWidget) self.comboBox.setObjectName("comboBox") self.verticalLayout.addWidget(self.comboBox) self.tableWidget = QtWidgets.QTableWidget(self.verticalLayoutWidget) self.tableWidget.setObjectName("tableWidget") self.tableWidget.setColumnCount(1) self.tableWidget.setRowCount(0) item = QtWidgets.QTableWidgetItem() self.tableWidget.setHorizontalHeaderItem(0, item) self.tableWidget.horizontalHeader().setVisible(False) self.tableWidget.horizontalHeader().setCascadingSectionResizes(False) self.tableWidget.horizontalHeader().setStretchLastSection(True) self.verticalLayout.addWidget(self.tableWidget) self.retranslateUi(AccDialog) self.buttonBox.accepted.connect(AccDialog.accept) self.buttonBox.rejected.connect(AccDialog.reject) QtCore.QMetaObject.connectSlotsByName(AccDialog) def retranslateUi(self, AccDialog): _translate = QtCore.QCoreApplication.translate AccDialog.setWindowTitle(_translate("AccDialog", "Show Accounts")) item = self.tableWidget.horizontalHeaderItem(0) item.setText(_translate("AccDialog", "Neue Spalte"))
[ "qendrimvllasa@hotmail.de" ]
qendrimvllasa@hotmail.de
d48b252d8c920ec2d420cb460653394e4e7176f0
8379fed4da71a1277983dafea7b70d432c2a66a3
/draw.py
c4aa4ab1ee5bcf27eb7ea7b0ceb27c3d4d374d48
[]
no_license
alievilya/people_counter_detector
e3d1c1db113e9acaf6f6e4d222b2bd7c30427558
cd842e51675eb22081132163e20a03476da8d87f
refs/heads/main
2023-01-19T09:37:08.170937
2020-11-22T11:59:23
2020-11-22T11:59:23
314,923,867
0
0
null
null
null
null
UTF-8
Python
false
false
4,660
py
import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont # initialize the list of points for the rectangle bbox, # the temporaray endpoint of the drawing rectangle # the list of all bounding boxes of selected rois # and boolean indicating wether drawing of mouse # is performed or not rect_endpoint_tmp = [] rect_bbox = [] bbox_list_rois = [] drawing = False def select_object(img): """ Interactive select rectangle ROIs and store list of bboxes. Parameters ---------- img : image 3-dim. Returns ------- bbox_list_rois : list of list of int List of bboxes of rectangle rois. """ # mouse callback function def draw_rect_roi(event, x, y, flags, param): # grab references to the global variables global rect_bbox, rect_endpoint_tmp, drawing # if the left mouse button was clicked, record the starting # (x, y) coordinates and indicate that drawing is being # performed. set rect_endpoint_tmp empty list. if event == cv2.EVENT_LBUTTONDOWN: rect_endpoint_tmp = [] rect_bbox = [(x, y)] drawing = True # check to see if the left mouse button was released elif event == cv2.EVENT_LBUTTONUP: # record the ending (x, y) coordinates and indicate that # drawing operation is finished rect_bbox.append((x, y)) drawing = False # draw a rectangle around the region of interest p_1, p_2 = rect_bbox cv2.rectangle(img, p_1, p_2, color=(0, 255, 0),thickness=1) cv2.imshow('image', img) # for bbox find upper left and bottom right points p_1x, p_1y = p_1 p_2x, p_2y = p_2 lx = min(p_1x, p_2x) ty = min(p_1y, p_2y) rx = max(p_1x, p_2x) by = max(p_1y, p_2y) # add bbox to list if both points are different if (lx, ty) != (rx, by): bbox = [lx, ty, rx, by] bbox_list_rois.append(bbox) # if mouse is drawing set tmp rectangle endpoint to (x,y) elif event == cv2.EVENT_MOUSEMOVE and drawing: rect_endpoint_tmp = [(x, y)] # clone image img and setup the mouse callback function img_copy = img.copy() cv2.namedWindow('image') cv2.setMouseCallback('image', draw_rect_roi) # keep looping until the 'c' key is pressed while True: # display the image and wait for a keypress if not drawing: cv2.imshow('image', img) elif drawing and rect_endpoint_tmp: rect_cpy = img.copy() start_point = rect_bbox[0] end_point_tmp = rect_endpoint_tmp[0] cv2.rectangle(rect_cpy, start_point, end_point_tmp,(0,255,0),1) cv2.imshow('image', rect_cpy) key = cv2.waitKey(1) & 0xFF # if the 'c' key is pressed, break from the loop if key == ord('c'): break # close all open windows cv2.destroyAllWindows() return bbox_list_rois def put_text_pil(img: np.array, txt: str): im = Image.fromarray(img) font_size = 15 font = ImageFont.truetype('CharisSILR.ttf', size=font_size) draw = ImageDraw.Draw(im) # здесь узнаем размеры сгенерированного блока текста w, h = draw.textsize(txt, font=font) y_pos = 30 im = Image.fromarray(img) draw = ImageDraw.Draw(im) # теперь можно центрировать текст draw.text((int((img.shape[1] - 150)), 0), txt, fill='rgb(255, 255, 255)', font=font) img = np.asarray(im) return img def draw_image(img, counting_appearance, show_img=False): color = (0, 0, 0) scale = max(img.shape[0:2]) / 416 line_width = int(2 * scale) # text = f'{detection[5]:.2f} id: {person_id} ' text_counting = f'зашло: {counting_appearance["in"]}, вышло: {counting_appearance["out"]}' cv2.rectangle(img, (img.shape[1] - 150, 0), (img.shape[1], 20), color, cv2.FILLED) img = put_text_pil(img, text_counting) # font = cv2.FONT_HERSHEY_DUPLEX # font_scale = max(0.3 * scale, 0.3) # thickness = max(int(1 * scale), 1) # (text_width, text_height) = cv2.getTextSize(text_counting, font, fontScale=font_scale, thickness=thickness)[0] # cv2.putText(img, text, (x1, y1), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA) # cv2.putText(img, text_counting, (x2, y2), font, font_scale, (124, 255, 255), thickness, cv2.LINE_AA) if show_img: cv2.imshow('detected', img) cv2.waitKey(1) return img
[ "aliev.ilia@yandex.ru" ]
aliev.ilia@yandex.ru
3b12ed30d55a49b530994d01eebfb63d3b5c1753
2c896a677f0b4a06b1395f51e458ce1c0db23928
/List/Bootcamp/Pop Method.py
6fcdb77a78af1e085b3f24e41a8d9ce2884f5591
[]
no_license
alakd1985/Python-with-Selenium
4a308762d4b7c4fd7d5145c474db7a0e8d926101
fdd1d4fcdfbe57f3505f9f4d204ac5ee1e4c7dcd
refs/heads/master
2022-12-18T20:16:44.296221
2020-09-20T21:45:18
2020-09-20T21:45:18
297,119,701
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
# it removes the last element of the list l = [10, 20, 30, 40, 10, 20, 60, 50] print(l.pop()) print(l) # pop method can not be used in the empty list print(l.pop(2)) print(l) # clear method to remove all the elements in the list print(l.clear()) print(l)
[ "alakd1985@gmail.com" ]
alakd1985@gmail.com
bc6ea8c4c07ba0e42327bfce831ff72fd1ee03d2
a0f31a32590dde50ee78ddea8f74449b1f4f08c6
/truck_detect.py
ee69506d8a78d2b448a3096971863c4069612439
[]
no_license
fung7890/AWSPortPrep
2e79b1480c69d7b557bd1f47374eca40b3e23fef
45a49ebc68edefa9900c3644d56c0545e09537db
refs/heads/master
2023-02-12T23:43:04.817847
2021-01-15T20:12:53
2021-01-15T20:12:53
329,722,838
0
0
null
null
null
null
UTF-8
Python
false
false
6,049
py
import panoramasdk import cv2 import numpy as np import time import boto3 # Global Variables HEIGHT = 512 WIDTH = 512 class TruckDetection(panoramasdk.base): def interface(self): return { "parameters": ( ("float", "threshold", "Detection threshold", 0.50), ("model", "truck_test_model", "Model for testing truck detection, weights are currently for multiple COCO objects", "model"), ("int", "batch_size", "Model batch size", 1), ("float", "truck_index", "truck index based on pretrained model's dataset, COCO", 8), ), "inputs": ( ("media[]", "video_in", "Camera input stream"), ), "outputs": ( ("media[video_in]", "video_out", "Camera output stream"), ) } """init() function is called once by the Lambda runtime. It gives Lambda a chance to perform any necessary initialization before entering the main loop.""" def init(self, parameters, inputs, outputs): try: # Frame Number Initialization self.frame_num = 0 # # Index for truck from parameters self.index = parameters.truck_index # Set threshold for model from parameters self.threshold = parameters.threshold # set number of trucks self.number_trucks = 0 # Load model from the specified directory. print("loading the model...") self.model = panoramasdk.model() self.model.open(parameters.truck_test_model, 1) print("model loaded") # Create input and output arrays. class_info = self.model.get_output(0) prob_info = self.model.get_output(1) rect_info = self.model.get_output(2) self.class_array = np.empty( class_info.get_dims(), dtype=class_info.get_type()) self.prob_array = np.empty( prob_info.get_dims(), dtype=prob_info.get_type()) self.rect_array = np.empty( rect_info.get_dims(), dtype=rect_info.get_type()) return True except Exception as e: print("Exception: {}".format(e)) return False def preprocess(self, img): resized = cv2.resize(img, (HEIGHT, WIDTH)) mean = [0.485, 0.456, 0.406] # RGB std = [0.229, 0.224, 0.225] # RGB img = resized.astype(np.float32) / \ 255. # converting array of ints to floats img_a = img[:, :, 0] img_b = img[:, :, 1] img_c = img[:, :, 2] # Extracting single channels from 3 channel image # The above code could also be replaced with cv2.split(img) << which will return 3 numpy arrays (using opencv) # normalizing per channel data: img_a = (img_a - mean[0]) / std[0] img_b = (img_b - mean[1]) / std[1] img_c = (img_c - mean[2]) / std[2] # putting the 3 channels back together: x1 = [[[], [], []]] x1[0][0] = img_a x1[0][1] = img_b x1[0][2] = img_c # x1 = mx.nd.array(np.asarray(x1)) x1 = np.asarray(x1) return x1 def get_number_trucks(self, class_data, prob_data): # get indices of truck detections in class data truck_indices = [i for i in range( len(class_data)) if int(class_data[i]) == self.index] # use these indices to filter out anything that is less than 95% threshold from prob_data prob_truck_indices = [ i for i in truck_indices if prob_data[i] >= self.threshold] return prob_truck_indices def entry(self, inputs, outputs): self.frame_num += 1 for i in range(len(inputs.video_in)): stream = inputs.video_in[i] truck_image = stream.image stream.add_label('Number of Trucks : {}'.format( self.number_trucks), 0.6, 0.05) x1 = self.preprocess(truck_image) # Do inference on the new frame. self.model.batch(0, x1) self.model.flush() # Get the results. resultBatchSet = self.model.get_result() class_batch = resultBatchSet.get(0) prob_batch = resultBatchSet.get(1) rect_batch = resultBatchSet.get(2) class_batch.get(0, self.class_array) prob_batch.get(0, self.prob_array) rect_batch.get(0, self.rect_array) class_data = self.class_array[0] prob_data = self.prob_array[0] rect_data = self.rect_array[0] # Get Indices of classes that correspond to truck truck_indices = self.get_number_trucks(class_data, prob_data) print('Truck indices is {}'.format(truck_indices)) try: self.number_trucks = len(truck_indices) except: self.number_trucks = 0 # Draw Bounding Boxes on HDMI Output if self.number_trucks > 0: for index in truck_indices: left = np.clip(rect_data[index] [0] / np.float(HEIGHT), 0, 1) top = np.clip(rect_data[index][1] / np.float(HEIGHT), 0, 1) right = np.clip( rect_data[index][2] / np.float(HEIGHT), 0, 1) bottom = np.clip( rect_data[index][3] / np.float(HEIGHT), 0, 1) stream.add_rect(left, top, right, bottom) stream.add_label(str(prob_data[index][0]), right, bottom) stream.add_label('Number of Truck : {}'.format( self.number_truck), 0.6, 0.05) self.model.release_result(resultBatchSet) outputs.video_out[i] = stream return True def main(): TruckDetection().run() main()
[ "kennyf_81@hotmail.com" ]
kennyf_81@hotmail.com
8b82dc345349f14a1a0cf089c1e1be081d510428
d056d5d0cc6b16a577d0c0feda39995696907fbf
/heat/tests/openstack/blazar/test_host.py
ab3d750a96523200aa1393bb8ed1817e01751cbf
[ "Apache-2.0" ]
permissive
bbc/heat
e53063ec24e0fbc003104f38c609f18e60f1da5b
71ea5cbcc5e03710559c7a5635117f2bc350f0d6
refs/heads/add-public-auth-uri
2022-07-23T04:52:41.575224
2019-04-08T18:00:32
2019-04-12T14:52:33
183,053,092
0
1
Apache-2.0
2022-07-06T20:06:00
2019-04-23T16:18:31
Python
UTF-8
Python
false
false
6,648
py
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from blazarclient import exception as client_exception import mock from oslo_utils.fixture import uuidsentinel as uuids from heat.common import exception from heat.common import template_format from heat.engine.clients.os import blazar from heat.engine.resources.openstack.blazar import host from heat.engine import scheduler from heat.tests import common from heat.tests import utils blazar_host_template = ''' heat_template_version: rocky resources: test-host: type: OS::Blazar::Host properties: name: test-host extra_capability: gpu: true ''' blazar_host_template_extra_capability = ''' heat_template_version: rocky resources: test-host: type: OS::Blazar::Host properties: name: test-host extra_capability: gpu: true name: test-name ''' class BlazarHostTestCase(common.HeatTestCase): def setUp(self): super(BlazarHostTestCase, self).setUp() self.host = { "id": uuids.id, "name": "test-host", "gpu": True, "hypervisor_hostname": "compute-1", "hypervisor_type": "QEMU", "hypervisor_version": 2010001, "cpu_info": "{" "'arch': 'x86_64', 'model': 'cpu64-rhel6', " "'vendor': 'Intel', 'features': " "['pge', 'clflush', 'sep', 'syscall', 'msr', " "'vmx', 'cmov', 'nx', 'pat', 'lm', 'tsc', " "'fpu', 'fxsr', 'pae', 'mmx', 'cx8', 'mce', " "'de', 'mca', 'pse', 'pni', 'apic', 'sse', " "'lahf_lm', 'sse2', 'hypervisor', 'cx16', " "'pse36', 'mttr', 'x2apic'], " "'topology': {'cores': 1, 'cells': 1, 'threads': 1, " "'sockets': 4}}", "memory_mb": 8192, "local_gb": 100, "vcpus": 2, "service_name": "compute-1", "reservable": True, "trust_id": uuids.trust_id, "created_at": "2020-01-01 08:00", "updated_at": "2020-01-01 12:00", "extra_capability": "foo" } t = template_format.parse(blazar_host_template) self.stack = utils.parse_stack(t) resource_defns = self.stack.t.resource_definitions(self.stack) self.rsrc_defn = resource_defns['test-host'] self.client = mock.Mock() self.patchobject(blazar.BlazarClientPlugin, 'client', return_value=self.client) def _create_resource(self, name, snippet, stack): self.client.host.create.return_value = self.host return host.Host(name, snippet, stack) def test_host_create(self): host_resource = self._create_resource('host', self.rsrc_defn, self.stack) self.assertEqual(self.host['name'], host_resource.properties.get(host.Host.NAME)) scheduler.TaskRunner(host_resource.create)() self.assertEqual(uuids.id, host_resource.resource_id) self.assertEqual((host_resource.CREATE, host_resource.COMPLETE), host_resource.state) self.assertEqual('host', host_resource.entity) self.client.host.create.assert_called_once_with( name=self.host['name'], gpu=self.host['gpu']) def test_host_delete(self): host_resource = self._create_resource('host', self.rsrc_defn, self.stack) scheduler.TaskRunner(host_resource.create)() self.client.host.delete.return_value = None self.client.host.get.side_effect = [ 'host_obj', client_exception.BlazarClientException(code=404)] scheduler.TaskRunner(host_resource.delete)() self.assertEqual((host_resource.DELETE, host_resource.COMPLETE), host_resource.state) self.client.host.delete.assert_called_once_with(uuids.id) def test_host_delete_not_found(self): host_resource = self._create_resource('host', self.rsrc_defn, self.stack) scheduler.TaskRunner(host_resource.create)() self.client.host.delete.side_effect = client_exception.\ BlazarClientException(code=404) self.client.host.get.side_effect = client_exception.\ BlazarClientException(code=404) scheduler.TaskRunner(host_resource.delete)() self.assertEqual((host_resource.DELETE, host_resource.COMPLETE), host_resource.state) def test_parse_extra_capability(self): t = template_format.parse(blazar_host_template_extra_capability) stack = utils.parse_stack(t) resource_defns = self.stack.t.resource_definitions(stack) rsrc_defn = resource_defns['test-host'] host_resource = self._create_resource('host', rsrc_defn, stack) args = dict((k, v) for k, v in host_resource.properties.items() if v is not None) parsed_args = host_resource._parse_extra_capability(args) self.assertEqual({'gpu': True, 'name': 'test-host'}, parsed_args) def test_resolve_attributes(self): host_resource = self._create_resource('host', self.rsrc_defn, self.stack) scheduler.TaskRunner(host_resource.create)() self.client.host.get.return_value = self.host self.assertEqual(self.host['vcpus'], host_resource._resolve_attribute(host.Host.VCPUS)) def test_resolve_attributes_not_found(self): host_resource = self._create_resource('host', self.rsrc_defn, self.stack) scheduler.TaskRunner(host_resource.create)() self.client.host.get.return_value = self.host self.assertRaises(exception.InvalidTemplateAttribute, host_resource._resolve_attribute, 'invalid_attribute')
[ "asmita.singh@nttdata.com" ]
asmita.singh@nttdata.com
e04fac37b16be01109ed4330e8615540310fe539
96217d9919129b995ba2a66be0864143351b3d65
/Agent-Input/ssi/pipes/avemotione2e/scripts/avemotione2e.py
4be005adf7b2d3884d67a7b5736d813101b4614b
[]
no_license
nadiacandoit/AVP
a87a84eb1e29f6575d0021fdda536cd187b1a3d9
5648adb3cb0059ff5d6fe27764d9a225a94ff050
refs/heads/master
2022-04-24T06:19:28.263178
2020-04-14T09:21:55
2020-04-14T09:21:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,960
py
''' avemotione2e.py authors: Johannes Wagner <wagner@hcm-lab.de>, Eduardo Coutinho <e.coutinho@imperial.ac.uk> created: 2017/07/25 Copyright (C) University of Augsburg, Lab for Human Centered Multimedia ''' import numpy as np import math from pathlib import Path import time import os # Import tensorflow. See: https://github.com/ninia/jep/issues/81 import sys sys.argv = [''] #import tensorflow.python as tf #from tensorflow.python.platform import tf_logging as logging import tensorflow.contrib as tfc import tensorflow as tf import collections import models slim = tfc.slim # def tf_install_and_import(): # import importlib # try: # print('here1') # importlib.import_module('tensorflow') # except ImportError: # print('here2') # import pip # pip.main(['install', '--upgrade', 'https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-0.12.1-cp35-cp35m-win_amd64.whl']) # # finally: # print('here3') # globals()['tensorflow'] = importlib.import_module('tensorflow') def get_parameters(opts,vars): vars['seq_length'] = 25*opts['rec_length'] # Buffers to store audio and video raw signals vars['video_buf'] = collections.deque(maxlen=vars['seq_length']) #*40 vars['audio_buf'] = collections.deque(maxlen=vars['seq_length']) #*40 # Model parameters vars['batch_size'] = 1 # Batch size to use (always one as it will work in real-time) vars['model'] = 'both' # Model to be used: audio,video, or audiovideo vars['checkpoint_dir'] = './models/model.ckpt-4129' # Location of model vars['hidden_units'] = 256 # Model parameter: number of hidden units in each LSTM layer vars['hidden_layers'] = 2 # Model parameter: number of LSTM layers #vars['num_examples'] = 50 return 1 # FLAGS def load_model(vars): frames = tf.placeholder(tf.float32, shape=(vars['batch_size'],vars['seq_length'],96, 96, 3)) audio = tf.placeholder(tf.float32, shape=(vars['batch_size'],vars['seq_length'],640)) # LSTM initial sates placeholder initial_state_ph = tf.placeholder(tf.float32, [2, 2, vars['batch_size'], vars['hidden_units']]) l = tf.unstack(initial_state_ph, axis=0) initial_state_t = tuple( [ tf.nn.rnn_cell.LSTMStateTuple(l[idx][0],l[idx][1]) for idx in range(vars['hidden_layers'])] ) init_array = np.zeros((1, vars['hidden_units'])) state_out = tuple([tf.nn.rnn_cell.LSTMStateTuple(init_array, init_array) for idx in range(vars['hidden_layers'])]) # Create model with slim.arg_scope(slim.nets.resnet_utils.resnet_arg_scope()): prediction, st_o = models.get_model(vars['model'])( frames, audio, prev_hidden_states=initial_state_t, hidden_units=vars['hidden_units']) coord = tf.train.Coordinator() variables_to_restore = slim.get_variables_to_restore() #num_batches = int(math.ceil(vars['num_examples'] / (float(vars['batch_size'] * vars['seq_length']) ))) saver = tf.train.Saver(variables_to_restore) sess = tf.Session() saver.restore(sess, vars['checkpoint_dir']) tf.train.start_queue_runners(sess=sess) vars['tf_session'] = sess vars['tf_state'] = state_out vars['tf_coord'] = coord vars['tf_prediction'] = prediction vars['tf_st_o'] = st_o vars['tf_frames'] = frames vars['tf_audio'] = audio vars['tf_initial_state_t'] = initial_state_t return 0 #sess, coord, state_out, prediction, st_o, frames, audio, initial_state_t def getOptions(opts,vars): opts['rec_length'] = 5 # in case it was not set pass def consume_enter(sin, board, opts, vars): get_parameters(opts,vars) load_model(vars) pass def compute_av(vars,video_in,audio_in): # try: pred, tf_state = vars['tf_session'].run( [vars['tf_prediction'],vars['tf_st_o']], # [prediction], feed_dict={vars['tf_frames']: video_in, vars['tf_audio']: audio_in, vars['tf_initial_state_t']: vars['tf_state']} ) predictions = np.mean(np.reshape(pred, (-1, 2)),axis=0) vars['tf_state'] = tf_state except Exception as e: print('Exception : ', e) vars['tf_coord'].request_stop(e) predictions = [0.0,0.0] return predictions def consume(info, sin, board, opts, vars): vars['video_buf'].append(np.asarray(sin[0]) / 255) vars['audio_buf'].append(np.asmatrix(sin[1])) if len(vars['video_buf']) >= vars['seq_length']: # check lenght!!!! # print('length of video buffer: ',len(vars['video_buf'])) # print('\t. shape of video frame: ',vars['video_buf'][0].shape) # print('length of audio buffer: ',len(vars['audio_buf'])) # print('\t. shape of audio frame: ',vars['audio_buf'][0].shape) tf_video = np.array(vars['video_buf']).reshape(1,vars['seq_length'],96, 96, 3) tf_audio = np.array(vars['audio_buf']).reshape(1,vars['seq_length'],640) # print(tf_audio.shape) # print(tf_video.shape) predictions = compute_av(vars,tf_video,tf_audio) print('\t* Arousal: ' + str(predictions[0])) print('\t* Valence: ' + str(predictions[1])) # what to do if frames are received in the meantime? vars['video_buf'].clear() vars['audio_buf'].clear() def consume_flush(sin, board, opts, vars): # runs at the end pass
[ "peter.lavalle@gmail.com" ]
peter.lavalle@gmail.com
e5dad19d318e172e32cb54de2c4eb656a1cec17e
0196f8f21247672bbfca3232d0d7f6764a929ccf
/stack.py
44c201da80620d62e92c8ef64c2a95d9d64a653d
[]
no_license
h1dd3n01/DataStructures
2cf40ff4872d4432dd1996b21505b5a8499e5aec
e18567b409fda8933e78a557a6b5e805827e023c
refs/heads/master
2022-11-04T15:38:02.788370
2020-06-13T12:09:51
2020-06-13T12:09:51
268,105,027
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
class Node: def __init__(self, data=None): self.data = data self.next = None class Stack: def __init__(self): self.top = None self.size = 0 def push(self, data): node = Node(data) if self.top: node.next = self.top self.top = node else: self.top = node self.size += 1 def pop(self): data = None if self.top: data = self.top.data if self.top.next: self.top = self.top.next else: self.top = None self.size -= 1 return data def peek(self): if self.top: return self.top.data
[ "h1dd3n1@protonmail.com" ]
h1dd3n1@protonmail.com
48d667cf4151d200ef909033d9daf17f9fba6c22
d10819b0048e9365743d92526875fee84ec1396a
/environments/forest.py
93cea186fbabdd0e9e18ef8995bdf69d783f8af8
[]
no_license
nss-day-cohort-38/keahua-arboretum-the-bluebell-chateau
2c4b0f42e9c403ad13c3eac7c8b188263241f2bd
33597d153231de8ebab9a67f0fca5c96ce6edc1c
refs/heads/master
2022-04-25T14:01:32.454552
2020-04-28T16:01:22
2020-04-28T16:01:22
257,677,095
1
3
null
2020-04-28T16:01:24
2020-04-21T18:10:49
Python
UTF-8
Python
false
false
741
py
from interfaces import Identifiable from interfaces import IContainsAnimals from interfaces import IContainsPlants class Forest(IContainsAnimals, IContainsPlants, Identifiable): def __init__(self): IContainsAnimals.__init__(self) IContainsPlants.__init__(self) Identifiable.__init__(self) def add_animal(self, animal): try: self.animals.append(animal) except AttributeError: raise AttributeError("Error!") def add_plant(self, plant): try: self.plants.append(plant) except AttributeError: raise AttributeError("Error!") def __str__(self): return(f"Forest [{str(self.id)[:8]}]") # print(type(self.id))
[ "Jcsullins222@yahoo.com" ]
Jcsullins222@yahoo.com
7d11029c0010795c311bf829960b396620d45f52
235c4b3aa630737b379050a420923efadd432da8
/DS-400/Medium/11-Container With Most Water/TwoPointers.py
86b3c14f907e1ef831bd4c6893ed2b21009cd60d
[ "MIT" ]
permissive
ericchen12377/Leetcode-Algorithm-Python
4e5dc20062280ef46194da5480600b2459fd89f8
eb58cd4f01d9b8006b7d1a725fc48910aad7f192
refs/heads/master
2023-02-22T22:43:55.612650
2021-01-28T04:00:20
2021-01-28T04:00:20
258,058,468
2
0
null
null
null
null
UTF-8
Python
false
false
505
py
class Solution(object): def maxArea(self, height): """ :type height: List[int] :rtype: int """ left, right = 0, len(height) - 1 area = 0 while left < right: area = max(area, min(height[left], height[right]) * (right - left)) if(height[left] < height[right]): left += 1 else: right -= 1 return area height = [1, 2, 1] p = Solution() print(p.maxArea(height))
[ "suiyaochen@mail.usf.edu" ]
suiyaochen@mail.usf.edu
753981c7539428d4d187a2142f68f6200e4204a5
bedc747151dbc1e816e562b6753ba44e47a6f378
/sketch_generation_model/sketch_rnn/utils/misc.py
ff2c463b24f8189f4f8ac2182c9fb39aadf8a286
[]
no_license
auswls/CS470
58f7d2924cf8131e761b52f63a06198da7f4c3f2
c65a1c57eb2e9d1384b8aa1aeb09241aa0e14334
refs/heads/master
2023-01-28T10:43:37.326936
2020-12-12T21:52:32
2020-12-12T21:52:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
""" SketchRNN data loading and image manipulation utilities. """ import numpy as np import torch def get_max_len(strokes): """Return the maximum length of an array of strokes.""" max_len = 0 for stroke in strokes: ml = len(stroke) if ml > max_len: max_len = ml return max_len def to_tensor(x): if isinstance(x, torch.Tensor): pass elif isinstance(x, np.ndarray): x = torch.from_numpy(x) else: raise Exception('input must be a tensor or ndarray.') return x.float()
[ "vm3fk5dla2@kaist.ac.kr" ]
vm3fk5dla2@kaist.ac.kr
9e06b0e76c2a4928edfb33c89dd56402f2b0323f
8b35d2308c23dfe564bd5260766daa6cf293d0a9
/snippets.py
bc55da826164a7a0b5ec1e517a1dad82af2871cc
[]
no_license
darkrecher/leek
516264b762bcb374ca8467282854bd749902cfd6
0a1e4f4fb038c978a33a808e3984b4f81bc20f23
refs/heads/master
2021-04-05T23:53:54.112008
2018-03-09T16:12:39
2018-03-09T16:12:39
124,448,071
0
0
null
null
null
null
UTF-8
Python
false
false
6,953
py
def read_file(pathfile): with open(pathfile, 'r', encoding='utf-8') as file: return file.read() def read_file_by_lines(pathfile): with open(pathfile, 'r', encoding='utf-8') as file: for file_line in file: print(file_line) def write_file(pathfile, value): with open(pathfile, 'a', encoding='utf-8') as file: return file.write(value) ( pl_guess, pl_int, pl_hex, pl_hexu, pl_hexl, pl_hexu_space, pl_hexl_space, pl_asc, pl_ut8, pl_lint, pl_lasc, pl_lut8, pl_asc_lint, pl_asc_lhex, pl_all ) = range(15) def _asc_to_lint(data): return list(data.encode('ascii', 'replace')) def _ut8_to_lint(data): return list(data.encode('utf-8', 'replace')) def _lasc_to_lint(datas): data = ''.join(datas) return list(data.encode('ascii', 'replace')) def _lut8_to_lint(datas): data = ''.join(datas) return list(data.encode('utf-8', 'replace')) def _int_to_lint(data): lint = [] while data: lint.insert(0, data % 256) data = data // 256 return lint def _hex_to_lint(data): hex_digits_half_1 = data[::2] hex_digits_half_2 = data[1::2] hex_digits = zip(hex_digits_half_1, hex_digits_half_2) lint = [ int('%s%s' % (dig_1, dig_2), 16) for dig_1, dig_2 in hex_digits ] return list(lint) def _asc_lint_to_lint(asc_lint): asc_lint = asc_lint.translate(str.maketrans(",.-_;", " ")) asc_lint_splitted = asc_lint.split() return list([int(elem) for elem in asc_lint_splitted]) def _asc_lhex_to_lint(asc_lhex): asc_lhex = asc_lhex.translate(str.maketrans(",.-_;", " ")) asc_lhex_splitted = asc_lhex.split() return list([int(elem, 16) for elem in asc_lhex_splitted]) def _lint_to_int(lint): big_int = 0 for cur_int in lint: big_int *= 256 big_int += cur_int return str(big_int) def _lint_to_lhex(lint): lhex = [ hex(cur_int)[2:].rjust(2, '0') for cur_int in lint ] return lhex def _lint_to_hexu(lint): lhex = _lint_to_lhex(lint) return ''.join(lhex).upper() def _lint_to_hexl(lint): lhex = _lint_to_lhex(lint) return ''.join(lhex).lower() def _lint_to_hexu_space(lint): lhex = _lint_to_lhex(lint) return ' '.join(lhex).upper() def _lint_to_hexl_space(lint): lhex = _lint_to_lhex(lint) return ' '.join(lhex).lower() def _lint_to_asc(lint): return str((bytes(lint)).decode("ascii", "replace")) def _lint_to_ut8(lint): return str((bytes(lint)).decode("utf-8", "replace")) DICT_FUNCTION_IN_FROM_PL_TYPE = { pl_int: _int_to_lint, pl_hex: _hex_to_lint, pl_hexu: _hex_to_lint, pl_hexl: _hex_to_lint, pl_asc: _asc_to_lint, pl_ut8: _ut8_to_lint, pl_lint: lambda data: data, pl_lasc: _lasc_to_lint, pl_lut8: _lut8_to_lint, pl_asc_lint: _asc_lint_to_lint, pl_asc_lhex: _asc_lhex_to_lint, } DICT_FUNCTION_OUT_FROM_PL_TYPE = { pl_int: ('entier', _lint_to_int), pl_hexu: ('hexa upcase', _lint_to_hexu), pl_hexl: ('hexa lowcase', _lint_to_hexl), pl_hexu_space: ('hexa-space upcase', _lint_to_hexu_space), pl_hexl_space: ('hexa-space lowcase', _lint_to_hexl_space), pl_asc: ('str ascii', _lint_to_asc), pl_ut8: ('str utf-8', _lint_to_ut8), pl_lint: ('liste entier', lambda data: str(data)), } PL_TYPES_FOR_PL_ALL = (pl_int, pl_lint, pl_hexu, pl_hexl, pl_hexu_space, pl_hexl_space, pl_asc, pl_ut8) label_length_max = max([ len(value[0]) for key, value in DICT_FUNCTION_OUT_FROM_PL_TYPE.items() ]) def _only_allowed_chars(str_data, allowed_chars): unauthorized_chars = set(str_data) - set(allowed_chars) return not bool(unauthorized_chars) def _guess(data): if isinstance(data, (list, tuple)): if all([ isinstance(elem, int) for elem in data ]): return pl_lint if all([ isinstance(elem, str) for elem in data ]): data = ''.join(data) # Pas de détection d'encodage. C'est ascii ou utf-8. Tant pis si ça pète après. try: data.encode('ascii') return pl_lasc except: return pl_lut8 if isinstance(data, str): if _only_allowed_chars(data, '0123456789abcdefABCDEF'): return pl_hex if _only_allowed_chars(data, ',.-_;0123456789 '): return pl_asc_lint if _only_allowed_chars(data, ',.-_;0123456789 abcdefABCDEF'): return pl_asc_lhex # Toujours pas de détection d'encodage try: data.encode('ascii') return pl_asc except: return pl_ut8 if isinstance(data, int): return pl_int return None def plop(data, pl_type_out=pl_all, pl_type_in=pl_guess): if pl_type_in == pl_guess: pl_type_in = _guess(data) if pl_type_in is None: raise Exception("Fail guess") function_in = DICT_FUNCTION_IN_FROM_PL_TYPE.get(pl_type_in) if pl_type_in is None: raise Exception("Fail arguments pl_type_in") lint = function_in(data) if pl_type_out == pl_all: print('') for pl_type_out_current in PL_TYPES_FOR_PL_ALL: label, function_out = DICT_FUNCTION_OUT_FROM_PL_TYPE[pl_type_out_current] try: print('%s : %s' % (label.ljust(label_length_max), function_out(lint))) except: print('%s : %s' % (label.ljust(label_length_max), 'fail')) print('') else: out_infos = DICT_FUNCTION_OUT_FROM_PL_TYPE.get(pl_type_out) if out_infos is None: raise Exception("Fail arguments pl_type_out") function_out = out_infos[1] return function_out(lint) # snippets de code pour faire du ssh et du snmp à travers un rebond ssh. # def start_ssh(): # self.ssh_client = paramiko.SSHClient() # self.ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # # https://docs.python.org/2/library/getpass.html # password = getpass.getpass('Veuillez entrer le mot de passe pour la connexion SSH : ') # self.ssh_client.connect(ip, port=port, username=username, password=password) # # def config( # self, version='v2c', community='NAGIOS', walker_ip='194.199.57.51', walker_port=50161, # oid_prefix_in='1.3.6.1.4.1.42229.6.22.', line_prefix_out='SNMPv2-SMI::enterprises.42229.6.22.' # ): # """ # Le oid_prefix_in doit se terminer par un '.', sinon ça ne marche pas. # Le line_prefix_out doit correspondre à l'oid_prefix_in. # """ # self.version = version # self.community = community # self.walker_ip = walker_ip # self.walker_port = walker_port # self.oid_prefix_in = oid_prefix_in # self.line_prefix_out = line_prefix_out # param_commands = (self.version, self.community, self.walker_ip, str(self.walker_port)) # self._walk_commmand = 'snmpwalk -%s -c %s %s:%s ' % param_commands # self._get_commmand = 'snmpget -%s -c %s %s:%s ' % param_commands # self._set_commmand = 'snmpset -%s -c %s %s:%s ' % param_commands # # def test(self): # stdin, stdout, stderr = self.ssh_client.exec_command('ls -l') # logger.info(''.join(stdout)) if __name__ == '__main__': plop(123456) print('-' * 10) plop('deadBEEF') print('-' * 10) plop('tralala;$_pouet') print('-' * 10) plop('abcdéèê') print('-' * 10) plop('αβ') print('-' * 10) plop(list(range(41))) print('-' * 10) plop(('a', 'b', 'c')) print('-' * 10) plop(('é', 'è', 'ñ')) print('-' * 10) print(plop('deadbeef', pl_lint, pl_hex)) print('-' * 10) # Bof... Mais on n'a pas besoin de ça. plop('a1,b2,100')
[ "wlanglois@imsnetworks.com" ]
wlanglois@imsnetworks.com
6767929a79aa8aeed73feeab5279cf0591d10629
76aec59e63d34e8e4826dc33483c1a1a4c5264f8
/fpga_mnn.py
edbf905a67e79d2e415aa98bdc2a6f0c0bc2dfad
[]
no_license
fzp0412/mnist_dnn
80f011e6fdd490c77f731ce7e0ab213a32ecd409
a16d867bba8a97e4e0813f4e4483a9550a6b7608
refs/heads/master
2021-09-06T01:16:53.234205
2018-02-01T08:22:42
2018-02-01T08:22:42
113,994,006
0
1
null
null
null
null
UTF-8
Python
false
false
3,017
py
import numpy as np from scipy import misc import mnn_parameter ''' three lay NN two hide lay hide 1 num = 128 hide 2 num = 64 hide 1 activate function relu hide 2 activate function relu relu = 0 when input <0 relu = input when input >=0 output lay activate function softmax softmax = exp(zi)/sum(exp(zi)) loss funciton Cross Entropy L = -sum(label*ln(y)+(1-label)*ln(1-y) ''' ''' global value ''' class_num = 10 hide1_num = 128 hide2_num = 64 ''' use numpy load mnist data from mnist.npz ''' def load_data(path='mnist.npz'): f = np.load(path) x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] f.close() return (x_train, y_train), (x_test, y_test) ''' test funciton input data and label and w output Correct rate ''' def test_fun(data,label,z): sum_num = label.shape[0] right_num = 0 i=0 for i in range (sum_num) : last_num = np.argmax(z[i]) if last_num == label[i]: right_num +=1 return right_num/sum_num ''' relu funciton input X when Xij<0 output 0 else output X ''' def relu_fun(x): x[x<0]=0 return x ''' output layer function input x.shape(num,784) input w1.shape(784,hide1_num) input w2.shape(hide1_num,hide2_num) input w3.shape(hide2_num,class_num) output z.shape(num,class_num) ''' def output_layer(x,w1,w2,w3): z1 = np.dot(x,w1) x2 = relu_fun(z1) z2 = np.dot(x2,w2) x3 = relu_fun(z2) z3 = np.dot(x3,w3) return x2,x3,z1,z2,z3 ''' last recognition function input x.shape(num,784) input w1.shape(784,hide1_num) input w2.shape(hide1_num,hide2_num) input w3.shape(hide2_num,class_num) output z.shape(num,class_num) output sum_exp_z.shape(num,1) output y.shape(num,class_num) ''' def recognition_fun(x,w1,w2,w3): x2,x3,z1,z2,z3 = output_layer(x,w1,w2,w3) exp_z = np.exp(z3) exp_z =exp_z.T y = exp_z/(exp_z.sum(axis =0)) y=y.T return (x2,x3,z1,z2,z3,y) ''' loss function loss = -label*log(y)+(1-label)*log(1-y) ''' def loss_fun(y,label): one = np.ones((label.shape)) loss = -(label*np.log(y)+(one-label)*np.log(one-y)) loss = loss.sum()/label.shape[0] return loss ''' get paramater ''' def get_para(params): new_paras =[] for param in params: if param : new_paras.append(param) arrs = np.array(new_paras) w1 = arrs[0][0] w2 = arrs[1][0] w3 = arrs[2][0] return w1,w2,w3 ''' main function ''' def run(): (x_train, y_train), (x_test, y_test) = load_data() x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_test /= 255 w1 =np.random.randn(784,hide1_num) w2 =np.random.randn(hide1_num,hide2_num) w3 =np.random.randn(hide2_num,class_num) params = mnn_parameter.parameter w1,w2,w3 =get_para(params) tax2,tax3,taz1,taz2,taz3,tay = recognition_fun(x_test,w1,w2,w3) tacc = test_fun(x_test,y_test,taz3) print(tacc) if __name__ =='__main__': run()
[ "fzp0412@163.com" ]
fzp0412@163.com
f7b39c281141f03aad1cab338612855d22d4bc15
a5df37342f3554789c9ac67e821ba206e2539676
/postgresql/Backup_postgresql.py
8022da4f9e5a865503a3eb86eb2a7d9423c1204a
[]
no_license
vincent119/Python-Script
c92ac30088c17b78281402f5f71b1af287870004
e7191834dd3a59b0e97f28803b3ebf90bcf1ed14
refs/heads/master
2021-01-23T20:40:04.429504
2019-07-02T06:10:11
2019-07-02T06:10:11
44,096,268
0
1
null
2018-09-28T11:58:41
2015-10-12T09:06:28
Python
UTF-8
Python
false
false
3,300
py
#!/usr/bin/env python #coding=utf8 import smtplib import HTML from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import subprocess import sys import os import time import datetime from time import strftime from datetime import datetime, timedelta from pyhtml import * # 備份檔案路徑 bkDir='/Rmanbackup1/edb' # postgres 執行檔路徑 pgPath='/edb/9.5AS/bin' domainName='domain.com.tw' superUser='enterprisedb' ################## mailFROM = 'mailfrom@domain.com.tw' mailTO = ['user1@domain.com.tw','user2@domain.com.tw'] mailSUBJECT = u'EDB backup Report' SERVER = 'localhost' ################## DBlist = [['db-01','postgres'],['db-02','postgres'],['edb-03','postgres']] Status=[] def RunCmd(cmdarg): cmd=cmdarg retcode = subprocess.call(cmd, shell=True) if retcode != 0: sys.exit(retcode) else: return retcode def sizeof_fmt(num, suffix='B'): for unit in ['','K','M','G','T','P','E','Z']: if abs(num) < 1024.0: return "%3.1f %s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s %s" % (num, 'Yi', suffix) def genhtmlreport(today,enDdate,Status): starttime=today endtime=enDdate TEXT ='<!doctype html public '"-//w3c//dtd html 4.0 transitional//en"'><html><head><meta http-equiv='"Content-Type"' content='"text/html; charset=utf-8"'></head><body> <style>table {width:100%;}table, th, td {border: 1px solid black;border-collapse: collapse;}th, td {padding: 5px;text-align: left;}table#t01 tr:nth-child(even) {background-color: #eee;}table#t01 tr:nth-child(odd) {background-color:#fff;}table#t01 th {background-color: green;color: white;}</style></head><body>' TEXT=TEXT+'<table id="t01">'+'Start Time: '+today+'</p>' htmlcode = HTML.table(Status, header_row=['Server Name','DB Name','Run Time','DB Size']) TEXT=TEXT+htmlcode+'</p>'+'End Time: '+enDdate+'</table></body></html>' sendmail(TEXT) def sendmail(RepHtml): msg = MIMEMultipart('alternative') msg['Subject'] = mailSUBJECT msg['From'] = mailFROM msg['To'] = ', '.join(mailTO) part = MIMEText(RepHtml, 'html', 'utf-8') msg.attach(part) server = smtplib.SMTP(SERVER) server.sendmail(mailFROM, mailTO, msg.as_string().encode('ascii')) server.quit() def tr(serverdata,htmdata): fielddata=htmdata fieldserver=serverdata Table="<tr>" for field in serverdata: Table=Table+"<td>"+fielddata[fieldserver]+"</td>" Table=Table+"</tr>" return Table def backupStart(): today=(datetime.now() + timedelta(days=0)).strftime('%Y-%m-%dT%H:%M') for row in DBlist: dbserver=row[0] dbname=row[1] dirpath=bkDir+'/'+dbserver if os.path.exists(dirpath) == False: os.mkdir(dirpath) filepath=bkDir+'/'+dbserver+'/'+dbname+'.gz' cmd=pgPath+'/pg_dump -h '+dbserver+'.'+domainName+' -U '+superUser+' -d '+dbname+' | gzip > ' +filepath start = time.time() RunCmd(cmd) roundtrip = (time.time() - start) Status.append([dbserver,dbname,format(roundtrip,'.2f'),str(sizeof_fmt(os.path.getsize(filepath)))]) enDdate=(datetime.now() + timedelta(days=0)).strftime('%Y-%m-%dT%H:%M') genhtmlreport(today,enDdate,Status) if __name__ == "__main__": backupStart()
[ "vincent119@gmail.com" ]
vincent119@gmail.com
d259a66a39d35b391fa8abaf2bc38ebe5f467633
ed55ecbf4f90022dc067c8a79f57c299e74849ea
/IV Lecture/Task/Tarea3_andrey_arguedas_ej2.py
bd2ef237dc7905275e9727370766a7eb7d356ce3
[]
no_license
AndreyArguedas/Data-Science-Course
336d7e6ede090bac13f9dacadb4f5beed79d4396
8e4d02205fff3479ba7fcbf7e95c6270e297a133
refs/heads/master
2020-04-24T16:41:21.296047
2019-06-09T17:39:04
2019-06-09T17:39:04
172,117,673
2
0
null
null
null
null
UTF-8
Python
false
false
9,690
py
# -*- coding: utf-8 -*- """ Created on Sun Mar 24 20:04:59 2019 @author: Andrey """ from abc import ABCMeta, abstractmethod # Clase Abstracta, ABC Class class Base(metaclass = ABCMeta): @abstractmethod def __str__(self): pass @abstractmethod def Captura(self): pass class Vuelo(Base): def __init__(self, numero = 0, hora_salida = 0, hora_llegada = 0): self.__numero = numero self.__hora_salida = hora_salida self.__hora_llegada = hora_llegada @property def numero(self): return self.__numero @numero.setter def numero(self, numero): self.__numero = numero @property def hora_salida(self): return self.__hora_salida @hora_salida.setter def hora_salida(self, hora_salida): self.__hora_salida = hora_salida @property def hora_llegada(self): return self.__hora_llegada @hora_llegada.setter def hora_llegada(self, hora_llegada): self.__hora_llegada = hora_llegada def __str__(self): return "Numero de vuelo:%i\nHora de Salida:%i\nHora de Llegada:%i" % (self.numero,self.hora_salida, self.hora_llegada) def Captura(self): self.numero = int(input("Digite el numero del vuelo: ")) self.hora_salida = int(input("Digite la hora de salida:")) self.hora_llegada = int(input("Digite la hora de llegada:")) class VueloCarga(Vuelo): def __init__(self, numero = 0, hora_salida = 0, hora_llegada = 0, peso_maximo = 0): super().__init__( numero, hora_salida, hora_llegada) self.__peso_maximo = peso_maximo @property def peso_maximo(self): return self.__peso_maximo @peso_maximo.setter def peso_maximo(self, peso_maximo): self.__peso_maximo = peso_maximo def __str__(self): s = super().__str__() s += "\nPeso Máximo:%f\n" return s % (self.peso_maximo) def Captura(self): Vuelo.Captura(self) self.peso_maximo = int(input("Digite el peso máximo:")) class VueloComercial(Vuelo): def __init__(self, numero = 0, hora_salida = 0, hora_llegada = 0, pasajeros = []): super().__init__(numero, hora_salida, hora_llegada) self.__pasajeros = pasajeros @property def pasajeros(self): return self.__pasajeros @pasajeros.setter def peso_maximo(self, pasajeros): self.__pasajeros = pasajeros def monto_total_vendido(self): acum = 0 for pasajero in self.pasajeros: acum += pasajero.total_pagar() return acum def __str__(self): s = "***************** Vuelo Comercial ************\n" s += "=====Pasajeros=====" for pasajero in self.pasajeros: s = s +"\n\n"+ str(pasajero) s = s + "\n================" return s def Captura(self): numeroPasajeros = int(input("Numero de pasajeros a ingresar:")) for i in range(numeroPasajeros): pasajero = Pasajero() pasajero.Captura() self.pasajeros.append(pasajero) class VueloLocal(VueloComercial): def __init__(self, numero = 0, hora_salida = 0, hora_llegada = 0, minimo_pasajeros = 0, porcentajeImpuesto = 0): super().__init__(numero, hora_salida, hora_llegada) self.__minimo_pasajeros = minimo_pasajeros @property def minimo_pasajeros(self): return self.__minimo_pasajeros @minimo_pasajeros.setter def minimo_pasajeros(self, minimo_pasajeros): self.__minimo_pasajeros = minimo_pasajeros def __str__(self): s = super().__str__() s += "\nMinimo de pasajeros:%i\n" return s % (self.minimo_pasajeros) def Captura(self): Vuelo.Captura(self) self.minimo_pasajeros = int(input("Digite el mínimo de pasajeros:")) class VueloInternacional(VueloComercial): def __init__(self, numero = 0, hora_salida = 0, hora_llegada = 0, pais_destino = "no definido", porcentajeImpuesto = 0): super().__init__( numero, hora_salida, hora_llegada) self.__pais_destino = pais_destino @property def pais_destino(self): return self.__pais_destino @pais_destino.setter def pais_destino(self, pais_destino): self.__pais_destino = pais_destino def __str__(self): s = super().__str__() s += "\nPaís de destino:%s\n" return s % (self.pais_destino) def Captura(self): Vuelo.Captura(self) self.pais_destino = input("Digite el país de destino:") class Pasajero(Base): def __init__(self, codigo = "", nombre = "", precio_boleto = 0, porcentajeImpuesto= 0): self.__codigo = codigo self.__nombre = nombre self.__precio_boleto = precio_boleto self.__porcentajeImpuesto = porcentajeImpuesto @property def codigo(self): return self.__codigo @codigo.setter def codigo(self, codigo): self.__codigo = codigo @property def nombre(self): return self.__nombre @nombre.setter def nombre(self, nombre): self.__nombre = nombre @property def precio_boleto(self): return self.__precio_boleto @precio_boleto.setter def precio_boleto(self, precio_boleto): self.__precio_boleto = precio_boleto @property def porcentajeImpuesto(self): return self.__porcentajeImpuesto @porcentajeImpuesto.setter def porcentajeImpuesto(self, porcentajeImpuesto): self.__porcentajeImpuesto = porcentajeImpuesto def total_pagar(self): return self.precio_boleto + self.porcentajeImpuesto * self.precio_boleto def __str__(self): return "Codigo:%s\nNombre:%s\nPrecio Boleto:%f\nPorcentaje Impuesto:%f" % (self.codigo,self.nombre, self.precio_boleto, self.porcentajeImpuesto) def Captura(self): self.codigo = input("Digite el codigo del pasajero:") self.nombre = input("Digite el nombre del pasajero:") self.precio_boleto = float(input("Digite el precio del tiquete:")) self.porcentajeImpuesto = float(input("Digite el porcentaje del impuesto:")) class PasajeroFrecuente(Pasajero): def __init__(self, codigo = "", nombre = "", precio_boleto = 0, porcentajeImpuesto = 0, descuento = 0.2): super().__init__(codigo, nombre, precio_boleto, porcentajeImpuesto) self.__descuento = descuento @property def descuento(self): return self.__descuento @descuento.setter def descuento(self, descuento): self.__descuento = descuento def total_pagar(self): return self.precio_boleto + self.porcentajeImpuesto * self.precio_boleto - (self.precio_boleto * self.descuento) def __str__(self): s = super().__str__() s += "\nDescuento:%s\n" return s % (self.descuento) def Captura(self): Pasajero.Captura(self) self.descuento = input("Digite el descuento del pasajero:") import os class Lectura: def LeeDatosVuelo(self): vuelo = Vuelo() os.system('cls') #en windows print("***Bienvenido a ingresar un vuelo***") vuelo.Captura() return vuelo def LeeDatosVueloCarga(self): vuelo = VueloCarga() os.system('cls') #en windows print("***Bienvenido a ingresar un vuelo de carga***") vuelo.Captura() return vuelo def LeeDatosVueloInternacional(self): vuelo = VueloInternacional() os.system('cls') #en windows print("***Bienvenido a ingresar un vuelo internacional***") vuelo.Captura() return vuelo def LeeDatosVueloLocal(self): vuelo = VueloLocal() os.system('cls') #en windows print("***Bienvenido a ingresar un vuelo internacional***") vuelo.Captura() return vuelo class App: def __init__(self): self.__lista = list() self.__lec = Lectura() def __menu(self): print("\n"*50) os.system('cls') #en windows print(" ==================================================== ") print(" [1] Insertar Vuelo ") print(" [2] Insertar Vuelo de carga") print(" [3] Insertar Vuelo Internacional") print(" [4] Insertar Vuelo Local") print(" [5] Ver la Lista Polimorfica" ) print(" [6] Borrar la Lista Polimorfica") print(" [7] Salir") print(" ==================================================== ") return input("> ") def __mostrarLista(self): print("\n"*50) #os.system('Clear') #os.system('cls') #en windows for i in range(len(self.__lista)): print(self.__lista[i]) print(15 * "*" + "\n") def principal(self): respuesta = "" while respuesta != "7": respuesta = self.__menu() if respuesta == "1": self.__lista.append(self.__lec.LeeDatosVuelo()) elif respuesta == "2": self.__lista.append(self.__lec.LeeDatosVueloCarga()) elif respuesta == "3": self.__lista.append(self.__lec.LeeDatosVueloInternacional()) elif respuesta == "4": self.__lista.append(self.__lec.LeeDatosVueloLocal()) elif respuesta == "5": self.__mostrarLista() input("Digite cualquier tecla para continuar...") elif respuesta == "6": self.__lista.clear() prueba = App() prueba.principal()
[ "andrey.arguedas.espinoza@est.una.ac.cr" ]
andrey.arguedas.espinoza@est.una.ac.cr
c1873401ca4c74b9e6da57a7625939420c0ccad7
d6580417a7d161a34446cb565c406841f311e3a5
/pate_demo/params.py
8d32053f0aa63ffb7f7441047bb144f4f85fec0e
[]
no_license
Songpei-Lu/capc-demo
b95e5d36c1444ae0cd90a810931c0f3007daeda8
511053e4917fdbcf90ff063b7a5ea3726a9010f1
refs/heads/main
2023-09-06T04:45:04.802279
2021-11-10T15:41:14
2021-11-10T15:41:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
52,120
py
from getpass import getuser import argparse import os from argparse import ArgumentParser import utils from models.utils_models import model_size from models.utils_models import set_model_size import numpy as np # from datasets.xray.dataset_pathologies import \ # get_chexpert_intersect_padchest_idexes from datasets.xray.dataset_pathologies import \ get_padchest_intersect_chexpert_indexes from datasets.xray.dataset_pathologies import get_chexpert_indexes # import getpass # user = getpass.getuser() def get_parameters(): user = getuser() noise_multiplier_dpsgd=1 clip_dpsgd=1 batch_size_dpsgd=128 dpsgd_enable=False bool_params = [] bool_choices = ["True", "False"] timestamp = utils.get_timestamp() # commands = ['train_private_models'] # commands = ["query_ensemble_model", "retrain_private_models"] commands = ['query_ensemble_model'] # commands = ['evaluate_big_ensemble_model'] # commands = ['retrain_private_models'] # commands = ['evaluate_ensemble_model'] # commands = ['test_models'] # commands = ['set_taus'] # commands = ['train_model_adaptively'] # commands = ['basic_model_stealing_attack'] # commands = ['adaptive_queries_only'] # dataset = 'mnist' # dataset = 'fashion-mnist' # dataset = 'cifar10' # dataset = 'cifar100' # dataset = 'svhn' # dataset = 'chexpert' # dataset = 'retinopathy' # dataset = 'celeba' # dataset = 'coco' # dataset = "cxpert" dataset = 'mnist' # dataset = 'padchest' # dataset = 'mimic' # dataset = 'vin' # pick_labels = [0, 1, 2, 3, 4] pick_labels = None num_querying_parties = 3 taskweights = False xray_views = [""] xray_datasets = ["cxpert", "padchest", "mimic", "vin"] adam_amsgrad = False dataset_type = "balanced" # dataset_type = 'imbalanced' # balance_type = 'perfect' balance_type = "standard" vote_type = "probability" optimizer = "SGD" log_every_epoch = 0 # debug = True debug = False if debug: num_workers = 0 else: num_workers = 8 begin_id = 0 momentum = 0.9 scheduler_type = "ReduceLROnPlateau" scheduler_milestones = None loss_type = "CE" num_models = 10 default_model_size = None if num_workers > 0: device_ids = [0, 1, 2, 3] # device_ids = [0, 1, 2] else: device_ids = [0] # device_ids = [1] querying_party_ids = [0, 1, 2] if num_models == 1: threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 0.01] elif num_models == 5: threshold, sigma_threshold, sigma_gnmax = [5.0, 3.0, 1.0] elif num_models == 10: threshold, sigma_threshold, sigma_gnmax = [10.0, 6.0, 2.0] elif num_models == 50: threshold, sigma_threshold, sigma_gnmax = [50.0, 30.0, 7.0] elif num_models == 100: threshold, sigma_threshold, sigma_gnmax = [135.0, 65.0, 25.0] elif num_models == 150: threshold, sigma_threshold, sigma_gnmax = [190.0, 110.0, 30.0] elif num_models == 200: threshold, sigma_threshold, sigma_gnmax = [245.0, 155.0, 35.0] elif num_models == 250: threshold, sigma_threshold, sigma_gnmax = [300.0, 200.0, 40.0] elif num_models == 300: threshold, sigma_threshold, sigma_gnmax = [355.0, 245.0, 50.0] elif num_models == 400: threshold, sigma_threshold, sigma_gnmax = [450.0, 300.0, 60.0] else: raise Exception(f"Unsupported number of models: {num_models}.") multilabel_prob_threshold = 0.5 sigma_gnmax_private_knn = 28.0 selection_mode = "random" # selection_mode = "entropy" private_tau = 0 private_query_count = None private_tau_norm = "2" num_teachers_private_knn = 300 # For the release of the confidence values. # threshold_confidence = 200 # sigma_threshold_confidence = 150 # sigma_gnmax_confidence = 40.0 # bins_confidence = 10 sigma_gnmax_confidence = None bins_confidence = None if dataset == "mnist": momentum = 0.5 lr = 0.1 weight_decay = 1e-4 batch_size = 64 eval_batch_size = 1000 end_id = 1 num_epochs = 20 num_models = 250 # num_models = 250 # num_models = 1000 num_querying_parties = 1 selection_mode = "random" # selection_mode = 'gap' # selection_mode = 'entropy' # selection_mode = 'deepfool' # selection_mode = 'greedy' # threshold = 300 # sigma_threshold = 200 # Scalable PATE threshold = 200 sigma_threshold = 150 sigma_gnmax = 40.0 sigma_gnmax_private_knn = 28.0 # For releasing the confidence scores. bins_confidence = 10 sigma_gnmax_confidence = 40.0 # We release the confidence scores for all the answered queries. # threshold = 0 # sigma_threshold = 0 # sigma_gnmax = 40.0 # sigma_gnmax = 35.0 # sigma_gnmax = 28.0 # sigma_gnmax = 0.0 # sigma_gnmax = 28.0 # num_teachers_private_knn = 300 # Total privacy budget for releasing both the answers to the queries as # well as the confidence scores for each query. budget = 2.5 # budget = 10.0 # budget = float('inf') # budgets = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5] budgets = [budget] architecture = "MnistNetPate" # weak_classes = '1,2' weak_classes = "" class_type = "multiclass" # class_type = 'multiclass_confidence' dataset_type = "balanced" balance_type = "standard" vote_type = "probability" # force the model size for mnist default_model_size = model_size.big # default_model_size = model_size.small num_workers = 4 # num_workers = 0 device_ids = [0] elif dataset == "fashion-mnist": optimizer = "Adam" # optimizer = 'SGD' if optimizer == "Adam": lr = 0.001 elif optimizer == "SGD": lr = 0.01 momentum = 0.5 weight_decay = 1e-4 batch_size = 64 eval_batch_size = 1000 end_id = 1 num_epochs = 100 num_models = 250 threshold = 200.0 sigma_gnmax = 40.0 sigma_threshold = 150.0 budget = 2.5 num_teachers_private_knn = 300 # budget = 6.0 # budget = float('inf') # budgets = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5] budgets = [budget] architecture = "FashionMnistNet" weak_classes = "" class_type = "multiclass" # class_type = 'multiclass_confidence' dataset_type = "balanced" # balance_type = 'perfect' balance_type = "standard" log_every_epoch = 0 bins_confidence = 10 sigma_gnmax_confidence = 40.0 default_model_size = model_size.big # default_model_size = model_size.small num_workers = 6 # num_workers = 0 device_ids = [0, 1, 2] selection_mode = "random" elif dataset == "cifar10": lr = 0.01 weight_decay = 1e-5 batch_size = 128 eval_batch_size = batch_size end_id = 50 num_epochs = 500 num_models = 50 threshold = 50.0 sigma_gnmax = 7.0 sigma_gnmax_private_knn = 28.0 # num_teachers_private_knn = 800 # sigma_gnmax_private_knn = 100 sigma_threshold = 30.0 budget = 20.0 budgets = [budget] architecture = "ResNet12" # architecture = 'tresnet_m' # weak_classes = '7,8,9' weak_classes = "" class_type = "multiclass" # class_type = 'multiclass_confidence' selection_mode = "random" # selection_mode = 'gap' # selection_mode = 'entropy' # selection_mode = 'deepfool' # selection_mode = 'greedy' bins_confidence = 10 sigma_gnmax_confidence = 7.0 default_model_size = model_size.big # default_model_size = model_size.small num_workers = 6 # num_workers = 0 device_ids = [0, 1, 2] elif dataset == "cifar100": lr = 0.01 weight_decay = 1e-4 batch_size = 128 eval_batch_size = batch_size end_id = 1 num_epochs = 500 num_models = 50 threshold = 50.0 sigma_gnmax = 7.0 sigma_threshold = 30.0 budget = 20.0 budgets = [budget] num_teachers_private_knn = 300 # sigma_gnmax_private_knn = 85 architecture = "VGG5" weak_classes = "" class_type = "mutliclass" dataset_type = "balanced" balance_type = "perfect" elif dataset == "svhn": lr = 0.1 weight_decay = 1e-4 batch_size = 128 eval_batch_size = batch_size end_id = 1 num_epochs = 200 num_models = 250 # threshold = 300. # sigma_threshold = 200.0 # sigma_gnmax = 40. threshold = 0 sigma_threshold = 0 sigma_gnmax = 35.0 sigma_gnmax_private_knn = 100 # budget = 2.0 budget = 3.0 # budget = 10.0 # budget = 6.0 # budget = float('inf') # budgets = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5] budgets = [budget] num_teachers_private_knn = 300 # sigma_gnmax_private_knn = 85 architecture = "VGG7" # architecture = 'ResNet6' if architecture.startswith("ResNet"): lr = 0.01 weight_decay = 1e-5 num_epochs = 300 # weak_classes = '1,2' weak_classes = "" class_type = "multiclass" elif dataset == "chexpert": optimizer = "Adam" lr = 0.0001 weight_decay = 0.0001 batch_size = 32 eval_batch_size = 32 end_id = 1 num_models = 100 num_epochs = 300 budget = 20.0 # budget = 6.0 # budget = float('inf') # budgets = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5] budgets = [budget] # architecture = 'chexpert-vgg11' architecture = "densenet121" weak_classes = "" if debug: num_workers = 0 else: num_workers = 8 chexpert_dataset_type = "pos" if chexpert_dataset_type in ["multi"]: class_type = "multilabel" elif chexpert_dataset_type in ["pos", "single"]: class_type = "multiclass" else: raise Exception( f"Unknown chexpert_dataset_type: {chexpert_dataset_type}.") elif dataset == "retinopathy": optimizer = "SGD" # adam lr = 3e-3 # 0.001 end_id = 1 weight_decay = 5e-4 # 1e-5 momentum = 0.9 batch_size = 64 eval_batch_size = 64 num_epochs = 200 num_models = 50 # 63 (because divisible) threshold = 50.0 sigma_gnmax = 7.0 sigma_threshold = 30.0 budget = 20.0 budgets = [budget] architecture = ( "RetinoNet" # can also use resnet50 or vgg16 (both are used on kaggle) ) if architecture == "RetinoNet": loss_type = "MSE" if architecture.startswith("ResNet"): lr = 0.01 weight_decay = 1e-5 num_epochs = 300 weak_classes = "0" scheduler_type = "MultiStepLR" scheduler_milestones = [150, 220] class_type = "multiclass" elif dataset == "celeba": use_tau: bool = False querying_party_ids = [-1] num_querying_parties = -1 pick_labels = [x for x in range(20)] if use_tau: # class_type = 'multilabel_tau' # class_type = 'multilabel_tau_dep' class_type = "multilabel_tau_pate" if class_type in ["multilabel_tau", "multilabel_tau_pate"]: # private_tau_norm = '1' private_tau_norm = "2" if private_tau_norm == "1": private_tau = 10.0 threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 12.0] elif private_tau_norm == "2": private_tau = np.sqrt(10) threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 20.0] else: raise Exception( f"Unsupported private tau norm: {private_tau_norm}") # private_query_count = 133 private_query_count = None budget = 0.0 elif class_type == "multilabel_tau_dep": # private_tau = np.sqrt(40) # private_tau = np.sqrt(20) private_tau = np.sqrt(10) # private_tau = 3.0 # private_tau = np.sqrt(1) private_query_count = None # threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 10.0] threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 25.0] # threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 35.0] # threshold, sigma_threshold, sigma_gnmax = [50., 30., 22.] # threshold, sigma_threshold, sigma_gnmax = [40., 20., 30.] budget = 1000.0 else: raise Exception(f"Unknown class_type: {class_type}.") else: # class_type = "multilabel" class_type = 'multilabel_powerset' # class_type = 'multilabel_pate' private_tau = None private_query_count = None # threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 35.0] # threshold, sigma_threshold, sigma_gnmax = [50, 30, 13] # threshold, sigma_threshold, sigma_gnmax = [50., 30., 22.] # threshold, sigma_threshold, sigma_gnmax = [40., 20., 30.] threshold, sigma_threshold, sigma_gnmax = [0, 0, 1] budget = 20.0 # budget = 218.73 taskweights = False optimizer = "SGD" lr = 0.001 weight_decay = 0.00001 momentum = 0.9 batch_size = 64 eval_batch_size = 64 num_models = 50 # num_models = 1 begin_id = 0 # end_id = num_models end_id = 1 num_epochs = 100 # budget = 2.0 # budget = 6.0 # budget = 10.0 # budget = float('inf') # budgets = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5] budgets = [budget] architecture = "CelebaNet" loss_type = "BCEWithLogits" weak_classes = "" if debug: num_workers = 0 else: num_workers = 8 # class_type = 'multilabel_tau' # class_type = 'multilabel_counting' log_every_epoch = 1 # threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 0.] # threshold, sigma_threshold, sigma_gnmax = [50., 30., 22.] # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 0.0] # multilabel_prob_threshold = 0.5 multilabel_prob_threshold = [ 0.08080808080808081, 0.26262626262626265, 0.5555555555555556, 0.16161616161616163, 0.030303030303030304, 0.10101010101010102, 0.24242424242424243, 0.21212121212121213, 0.21212121212121213, 0.18181818181818182, 0.04040404040404041, 0.20202020202020204, 0.15151515151515152, 0.05050505050505051, 0.04040404040404041, 0.05050505050505051, 0.08080808080808081, 0.06060606060606061, 0.5151515151515152, 0.4747474747474748, 0.393939393939394, 0.5151515151515152, 0.030303030303030304, 0.12121212121212122, 0.8282828282828284, 0.30303030303030304, 0.05050505050505051, 0.23232323232323235, 0.05050505050505051, 0.11111111111111112, 0.04040404040404041, 0.5353535353535354, 0.20202020202020204, 0.2828282828282829, 0.18181818181818182, 0.10101010101010102, 0.3434343434343435, 0.08080808080808081, 0.07070707070707072, 0.8181818181818182, ] labels_order = [ 21, 37, 32, 19, 6, 20, 10, 25, 22, 36, 16, 18, 9, 3, 39, 17, 40, 31, 35, 30, 34, 13, 2, 1, 12, 8, 5, 14, 4, 23, 29, 15, 26, 28, 33, 7, 38, 24, 27, 11, ] elif dataset == "pascal": # querying_party_ids = [0, 1, 2] querying_party_ids = [-1] num_querying_parties = -1 optimizer = "SGD" lr = 0.001 weight_decay = 0.0001 momentum = 0.9 batch_size = 32 eval_batch_size = 64 num_models = 50 # num_models = 1 begin_id = 0 end_id = num_models # pick_labels = -1 # end_id = 1 num_epochs = 500 # budget = 2.0 # budget = 6.0 budget = 100.0 # budget = 20.0 # budget = float('inf') # budgets = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5] budgets = [budget] architecture = "resnet50" loss_type = "MultiLabelSoftMarginLoss" weak_classes = "" if debug: num_workers = 0 else: num_workers = 8 # commands = ['evaluate_big_ensemble_model'] # commands = ['query_ensemble_model'] class_type = 'multilabel' # class_type = 'multilabel_powerset' threshold, sigma_threshold, sigma_gnmax = [0, 0, 1] # threshold, sigma_threshold, sigma_gnmax = [0, 0, 7] pick_labels = [x for x in range(10)] # pick_labels = [x for x in range(16)] # pick_labels = [x for x in range(5)] # class_type = 'multilabel_counting' # class_type = 'multilabel_counting' # class_type = "multilabel_tau_pate" # class_type = 'multilabel_tau_data_independent' # private_tau_norm = '2' # private_tau_norm = '1' # private_tau_norm = "2" private_tau_norm = None if private_tau_norm == "2": private_tau = 1.8 elif private_tau_norm == "1": private_tau = 3.4 log_every_epoch = 1 # threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 22.] # threshold, sigma_threshold, sigma_gnmax = [50, 30, 9] # threshold, sigma_threshold, sigma_gnmax = [50, 30, 9] # threshold, sigma_threshold, sigma_gnmax = [50., 30., 22.] multilabel_prob_threshold = [0.5] elif dataset == "coco": setting = 1 if setting == 1: optimizer = "SGD" momentum = 0.9 scheduler_type = "ReduceLROnPlateau" lr = 0.01 # weight_decay = 0.00001 weight_decay = 0.0 loss_type = "BCEWithLogits" elif setting == 2: optimizer = "Adam" scheduler_type = "OneCycleLR" lr = 0.0002 weight_decay = 0.00001 loss_type = "AsymmetricLossOptimized" else: raise Exception(f"Unknown setting: {setting}.") architecture = "tresnet_m" batch_size = 128 eval_batch_size = 128 end_id = 1 num_models = 100 # num_models = 50 # num_models = 5 num_epochs = 100 # budget = 2.0 # budget = 6.0 budget = 20.0 # budget = float('inf') # budgets = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5] budgets = [budget] weak_classes = "" if debug: num_workers = 0 else: num_workers = 8 class_type = "multilabel" log_every_epoch = 1 # threshold, sigma_threshold, sigma_gnmax = [50., 30., 7.] threshold, sigma_threshold, sigma_gnmax = [1.0, 1.0, 7.0] multilabel_prob_threshold = 0.8 elif dataset in xray_datasets: architecture = f"densenet121_{dataset}" # architecture = f'densenet121_mimic' # architecture = f'densenet121_padchest' # architecture = f'densenet121_cxpert' num_querying_parties = -1 querying_party_ids = [-1] # num_querying_parties = 3 # querying_party_ids = [0, 1, 2] # we increment it later on to be from 1 taskweights = True adam_amsgrad = True xray_views = ["AP", "PA"] optimizer = "Adam" scheduler_type = "ReduceLROnPlateau" lr = 0.001 # weight_decay = 1e-6 weight_decay = 1e-5 # weight_decay = 1e-4 momentum = 0.9 # batch_size = 256 batch_size = 64 eval_batch_size = batch_size # num_models = 50 # num_models = 1 # num_models = 10 if dataset == "cxpert": # num_models = 1 num_models = 50 elif dataset == "padchest": num_models = 20 # num_models = 10 # num_models = 50 begin_id = 0 end_id = num_models # end_id = 50 # num_models = 1 # num_models = 5 num_epochs = 100 # budget = 2.0 # budget = 6.0 budget = 20.0 # budget = 8.0 # budget = float('inf') # budgets = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5] budgets = [budget] loss_type = "BCEWithLogits" weak_classes = "" if debug: num_workers = 0 else: num_workers = 8 log_every_epoch = 1 if dataset == "padchest": # tau probability threshold per label if num_models in [1, 10, 20, 50]: # multilabel_prob_threshold = 0.04 multilabel_prob_threshold = [ 0.05, 0.01, 0.15, 0.01, 0.01, 0.01, np.nan, 0.04, 0.09, 0.04, 0.06, np.nan, np.nan, 0.02, 0.01, 0.02, 0.01, 0.01, ] else: raise Exception(f"Unsupported number of models: {num_models}.") elif dataset == "cxpert": # tau probability threshold per label # multilabel_prob_threshold = [0.5] multilabel_prob_threshold = [ 0.53, 0.5, 0.18, 0.56, 0.56, np.nan, 0.21, np.nan, 0.23, np.nan, np.nan, 0.46, 0.7, np.nan, np.nan, np.nan, 0.2, 0.32, ] else: multilabel_prob_threshold = [0.5] # Pick labels from CheXpert test set for PadChest models # Test PadChest models on the CheXpert data. # pick_labels = [0, 1, 2, 3, 4, 8, 16, 17] # pick_labels = get_chexpert_intersect_padchest_idexes() # pick_labels = get_padchest_intersect_chexpert_indexes() # pick_labels = get_chexpert_indexes() # pick_labels = None # Original value # pick_labels = [0, 1, 2, 3, 4] # for cxpert # pick_labels = [0, 1, 2, 3, 4, 6, 8, 11, 12, 16, 17] pick_labels = [0, 1, 2, 3, 4, 6, 8, 11, 12, 16, 17] pick_labels = pick_labels[:6] # commands = ['evaluate_big_ensemble_model'] commands = ['query_ensemble_model'] class_type = 'multilabel' # class_type = "multilabel_powerset" threshold, sigma_threshold, sigma_gnmax = [0, 0, 7] # class_type = 'multilabel_counting' # class_type = 'multilabel_counting_gaussian' # class_type = 'multilabel_tau' # class_type = "multilabel_tau_pate" if ( (pick_labels == [0, 1, 2, 3, 4]) and (num_models == 50) and (dataset == "padchest") and (architecture == "densenet121_cxpert") ): threshold, sigma_threshold, sigma_gnmax = [50, 30, 9] if dataset == "padchest" and num_models == 10: if pick_labels is None: # threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 18.] threshold, sigma_threshold, sigma_gnmax = [50, 30, 7.0] elif pick_labels == [1, 4]: threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 7.0] elif pick_labels == [9]: threshold, sigma_threshold, sigma_gnmax = [0.01, 0.01, 5.0] elif pick_labels == [0, 1, 2, 3, 4]: threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 9.0] else: # threshold, sigma_threshold, sigma_gnmax = [0, 0, 0] # threshold, sigma_threshold, sigma_gnmax = [50, 30, 7] threshold, sigma_threshold, sigma_gnmax = [0, 0, 7] # threshold, sigma_threshold, sigma_gnmax = [0, 0, 3] if class_type in ["multilabel_tau", "multilabel_tau_pate"]: # private_tau_norm = '1' private_tau_norm = "2" if private_tau_norm == "1": private_tau = 8 threshold, sigma_threshold, sigma_gnmax = [0, 0, 12] else: private_tau = np.sqrt(8) threshold, sigma_threshold, sigma_gnmax = [0, 0, 16] else: pass # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 11] # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 20] # threshold, sigma_threshold, sigma_gnmax = [0, 0, 0] # threshold, sigma_threshold, sigma_gnmax = [50, 30, 7] # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 14.0] # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 7.0] # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 6.0] # powerset all labels cxpert # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 1.1] # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 21] # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 7.0] # threshold, sigma_threshold, sigma_gnmax = [0.0, 0.0, 20.0] else: raise Exception("Unknown dataset: {}".format(dataset)) if debug is True: debug = "True" else: debug = "False" parser = argparse.ArgumentParser( description="Confidential And Private Collaborative Learning" ) # Command parameters (what to run). parser.add_argument( "--commands", nargs="+", type=str, # default=['train_private_models'], # default=['query_ensemble_model', 'retrain_private_models'], default=commands, help="which commands to run", ) parser.add_argument("--timestamp", type=str, default=timestamp, help="timestamp") parser.add_argument( "--path", type=str, default=f"/home/nicolas/code/capc-learning-ahmad2", help="path to the project", ) parser.add_argument( "--data_dir", type=str, default=f"/home/nicolas/data", help="path to the data" ) # General parameters parser.add_argument( "--dataset", type=str, default=dataset, help="name of the dataset" ) parser.add_argument( "--architecture", type=str, default="MnistNetPate", help="model architecture" ) parser.add_argument( "--class_type", type=str, # the below naming convention is from scikit-learn # default='binary', # default='multiclass', # default='multilabel', default=class_type, help="The type of the classification: binary, multiclass with a " "single class per data item, and multilabel classification with " "zero or more possible classes assigned to a data item.", ) parser.add_argument( "--dataset_type", type=str, default=dataset_type, # default='balanced', # default='imbalanced', help="Type of the dataset.", ) parser.add_argument( "--balance_type", type=str, # default='perfect', # distribute the classes to subsets evenly. # default='standard', # divide a dataset into subset arbitrarily. default=balance_type, help="Type of the balance of classes in the dataset.", ) parser.add_argument( "--begin_id", type=int, default=begin_id, help="train private models with id number in [begin_id, end_id)", ) parser.add_argument( "--end_id", type=int, default=end_id, help="train private models with id number in [begin_id, end_id)", ) parser.add_argument( "--num_querying_parties", type=int, default=num_querying_parties, help="number of parties that pose queries", ) parser.add_argument( "--querying_party_ids", type=int, nargs="+", default=querying_party_ids, help="the id of the querying party", ) parser.add_argument( "--mode", type=str, # default='random', # default='entropy', # default='gap', # default='greedy', # default='deepfool', default=selection_mode, help="method for generating utility scores", ) parser.add_argument( "--weak_classes", type=str, default=weak_classes, help="indices of weak classes" ) parser.add_argument( "--weak_class_ratio", type=float, default=0.1, help="ratio of samples belonging to weak classes", ) parser.add_argument( "--verbose", default="True", # default=False, type=str, choices=bool_choices, help="Detail info", ) bool_params.append("verbose") parser.add_argument( "--debug", default=debug, # default=False, type=str, choices=bool_choices, help="Debug mode of execution", ) bool_params.append("debug") parser.add_argument( "--use_pretrained_models", default="False", # default="True", type=str, choices=bool_choices, help="Pretrained weights for the initial training of models on private " "data", ) bool_params.append("use_pretrained_models") parser.add_argument( "--retrain_fine_tune", default="False", # default=False, type=str, choices=bool_choices, help="Pretrained weights for retraining models", ) bool_params.append("retrain_fine_tune") parser.add_argument( "--sep", default=";", type=str, help="Separator for the output log." ) parser.add_argument( "--log_every_epoch", default=log_every_epoch, type=int, help="Log test accuracy every n epchos.", ) parser.add_argument( "--test_virtual", default=False, action="store_true", help="False for normal, True to train a larger qa model", ) # Training parameters parser.add_argument( "--optimizer", type=str, default=optimizer, # default='SGD', help="The type of the optimizer.", ) parser.add_argument( "--adam_amsgrad", type=bool, default=adam_amsgrad, help="amsgrad param for Adam optimizer", ) parser.add_argument( "--loss_type", type=str, default=loss_type, # default='CE', help="The type of the loss (e.g., MSE, CE, BCE, etc.).", ) parser.add_argument( "--batch_size", type=int, default=batch_size, help="batch size for training" ) parser.add_argument( "--eval_batch_size", type=int, default=eval_batch_size, help="batch size for evaluation", ) parser.add_argument( "--adaptive_batch_size", type=int, default=5, help="batch size for adaptive training", ) parser.add_argument( "--patience", type=int, default=None, help="patience for adaptive training" ) parser.add_argument( "--target_model", type=str, default="victim", help="steal 1 model (victim) or pate model (pate) or a " "different pate (another_pate)", ) parser.add_argument( "--shuffle_dataset", action="store_true", default=False, help="shuffle dataset before split to train private " "models. only implemented for mnist", ) parser.add_argument( "--num_optimization_loop", type=int, default=20, help="num_optimization_loop for adaptive training with bayesian " "optimization", ) parser.add_argument( "--num_classes", type=int, default=10, ) parser.add_argument("--momentum", type=float, default=momentum, help="SGD momentum") parser.add_argument( "--weight_decay", type=float, default=weight_decay, help="L2 weight decay factor", ) parser.add_argument("--seed", type=int, default=111, help="random seed") parser.add_argument("--lr", type=float, default=lr, help="initial learning rate") parser.add_argument( "--lr_factor", type=float, default=0.1, help="learning rate decay factor" ) parser.add_argument( "--lr_epochs", type=int, nargs="+", default=[2], help="Epoch when learning rate decay occurs.", ) parser.add_argument( "--num_epochs", type=int, default=num_epochs, help="number of epochs for training", ) parser.add_argument( "--attacker_dataset", default=None, # default='svhn', # default='fashion-mnist', # default='mnist', type=str, help="dataset used by model extraction attack, default to be the same " "as dataset", ) parser.add_argument( "--architectures", nargs="+", type=str, # default=['VGG16', 'VGG19', 'VGG5', 'VGG13', 'VGG11'], # default=['ResNet8', 'ResNet10'], # default=['VGG'], default=[architecture], help="The architectures of heterogeneous models.", ) parser.add_argument( "--model_size", type=model_size, choices=list(model_size), default=default_model_size, help="The size of the model.", ) parser.add_argument( "--device_ids", nargs="+", type=int, default=device_ids, # default=[0, 1, 2, 3], # default=[0], help="Cuda visible devices.", ) parser.add_argument( "--scheduler_type", type=str, default=scheduler_type, # default='ReduceLROnPlateau', # default='MultiStepLR', help="Type of the scheduler.", ) parser.add_argument( "--scheduler_milestones", nargs="+", type=int, default=scheduler_milestones, help="The milestones for the multi-step scheduler.", ) parser.add_argument( "--schedule_factor", type=float, default=0.1, help="The factor for scheduler." ) parser.add_argument( "--schedule_patience", type=int, default=10, help="The patience for scheduler." ) parser.add_argument( "--num_workers", type=int, default=num_workers, help="Number of workers to fetch data.", ) # Privacy parameters parser.add_argument( "--num_models", type=int, default=num_models, help="number of private models" ) # Standard PATE mechanism parser.add_argument( "--budget", type=float, default=budget, help="pre-defined epsilon value for (eps, delta)-DP", ) parser.add_argument( "--budgets", nargs="+", type=float, default=budgets, help="pre-defined epsilon value for (eps, delta)-DP", ) parser.add_argument( "--threshold", type=float, default=threshold, help="threshold value (a scalar) in the threshold mechanism", ) # Confident GNMAX. parser.add_argument( "--sigma_gnmax", type=float, default=sigma_gnmax, help="std of the Gaussian noise in the GNMax mechanism", ) parser.add_argument( "--sigma_gnmax_private_knn", type=float, default=sigma_gnmax_private_knn, help="std of the Gaussian noise in the GNMax mechanism used for the pknn cost", ) parser.add_argument( "--sigma_threshold", type=float, default=sigma_threshold, help="std of the Gaussian noise in the threshold mechanism", ) # For releasing the confidence scores. parser.add_argument( "--sigma_gnmax_confidence", type=float, default=sigma_gnmax_confidence, help="std of the Gaussian noise in the GNMax mechanism for releasing " "the confidence scores", ) parser.add_argument( "--delta", type=float, default=1e-5, ) parser.add_argument( "--bins_confidence", type=int, default=bins_confidence, help="Number of confidence bins. We discretize the softmax vector by " "creating a histogram and mapping each element to the midpoint of " "the bin it belongs to.", ) # For tau-approximation. parser.add_argument( "--private_taus", nargs="+", type=float, default=[private_tau], help="The value of tau for the tau-approximation where we limit the " "sensitivity of a given teacher by limiting the positive votes to" "tau (in an L-norm).", ) parser.add_argument( "--private_tau_norm", type=str, # default='1', # default='2', default=private_tau_norm, help="The norm for the tau-approximation.", ) parser.add_argument( "--private_query_count", type=int, default=private_query_count, help="The number of queries to be answered privately. This is for the " "data independent privacy analysis_test with tau approximation.", ) parser.add_argument( "--poisson_mechanism", default="False", type=str, choices=bool_choices, help="Apply or disable the poisson mechanism.", ) bool_params.append("poisson_mechanism") # Parameters for the coco dataset. parser.add_argument( "--multilabel_prob_threshold", default=multilabel_prob_threshold, type=float, nargs="+", help="threshold value", ) parser.add_argument( "--coco_version", default="2017", type=str, help="the year of the dataset" ) parser.add_argument( "--coco_image_size", default=448, type=int, help="input image size (default: 448)", ) parser.add_argument( "--coco_data_loader", type=str, help="standard or custom data loader, where custom uses" "the pre-generated labels", default="custom", ) parser.add_argument( "--coco_datasets", nargs="+", type=str, default=["train", "val"], # default=['train', 'val', 'test', 'unlabeled'], help="Which datasets for original coco to load into the total data pool.", ) parser.add_argument( "--coco_additional_datasets", nargs="+", type=str, # default=['test', 'unlabeled'], default=[], help="Which datasets for original coco to load into the total data pool.", ) # add args for chexpert parser = get_chexpert_paremeters(parser=parser, timestamp=timestamp) # cxpert dataset - chexpert version from https://arxiv.org/pdf/2002.02497.pdf parser.add_argument("--data_aug", type=bool, default=True, help="") parser.add_argument("--data_aug_rot", type=int, default=45, help="") parser.add_argument("--data_aug_trans", type=float, default=0.15, help="") parser.add_argument("--data_aug_scale", type=float, default=0.15, help="") parser.add_argument( "--taskweights", default=taskweights, type=bool, help="Assign weight to tasks/labels based on their " "number of nan (not a number) values.", ) parser.add_argument("--label_concat", type=bool, default=False, help="") parser.add_argument("--label_concat_reg", type=bool, default=False, help="") parser.add_argument("--labelunion", type=bool, default=False, help="") parser.add_argument("--featurereg", type=bool, default=False, help="") parser.add_argument("--weightreg", type=bool, default=False, help="") """ The abbreviations PA and AP stand for posteroanterior and anteroposterior, respectively. These describe the pathway of the x-rays through the patient to the detector (or, in the old days, film). In a PA projection, the front of the patient’s chest is against the detector and the x-rays pass through the back (posterior)of the patient, through the front (anterior) of the chest and then strike the detector. This is the usual projection obtained in an ambulatory patient. In a patient who cannot stand, a cassette containing the detector can be placed behind the patient’s back (while they’re lying or sitting up in a gurney or hospital bed, for example)and the exposure (often obtained with a portable x-ray unit) obtained. In this scenario, the x-rays pass from the front of the patient’s chest (anterior) through the back (posterior), then strike the detector, yielding an AP view. From the point of view of image quality, a PA projection is preferred for several reasons. For example, the portions of the chest closest to the detector are the sharpest and least magnified on the image. Since the heart sits in the anterior half of the chest in most individuals, a more accurate representation of cardiac size and shape is obtained on a PA view, compared to an AP view. Usually, radiologists see PA and lateral views. """ parser.add_argument( "--xray_views", type=str, default=xray_views, nargs="+", help="The type of the views for the chext x-ray: lateral, PA, or AP.", ) parser.add_argument( "--xray_datasets", type=str, default=xray_datasets, nargs="+", help="The names of the datasets with xray-s.", ) parser.add_argument( "--count_noise", type=str, default="bounded", # default='gaussian', help="The type of noise added in the multiple-counting query mechanism.", ) parser.add_argument( "--vote_type", type=str, # default = '', # default='probability', # default='discrete', default=vote_type, help="The type of votes. Discrete - each vote is a single number 0 or 1," "or probability - the probability of a label being one.", ) parser.add_argument( "--pick_labels", type=int, nargs="+", # default=None, # default=labels_order[:2], # default=pick_labels, # default=[-1], # default=None, default=pick_labels, help="Which labels to limit the dataset to. Set to None to select all " "labels.", ) parser.add_argument( "--query_set_type", type=str, default="raw", # default='numpy', help="The type of query set saved for the retraining when we query the" "ensemble of the teacher models.", ) parser.add_argument( "--test_models_type", type=str, # default='retrained', default="private", help="The type of models to be tested.", ) parser.add_argument( "--retrain_model_type", type=str, default="load", # default='raw', help="Should we load the private model for retraining (load) or start" "from scratch, i.e. from a raw model (raw).", ) parser.add_argument( "--transfer_type", type=str, # default='cross-domain', default="", help="The transfer of knowledge can be cross-domain, e.g., from the " "chexpert ensemble to the padchest models.", ) parser.add_argument( "--sigmoid_op", type=str, default="apply", # default='disable', help="Apply or disable the sigmoid operation outside of model " "arhictecture.", ) parser.add_argument( "--label_reweight", type=str, # default='apply', default="disable", help="Apply or disable the label reweighting based on the balanced " "accuracy found on the privately trained model.", ) parser.add_argument( "--load_taus", type=str, # default='apply', default="disable", help="Apply or disable loading the taus (probability thresholds for " "each label) from the model checkpoint.", ) parser.add_argument( "--show_dp_budget", type=str, default="apply", # default='disable', help="Apply or disable showing the current privacy budget.", ) parser.add_argument( "--apply_data_independent_bound", # default="False", default="True", type=str, choices=bool_choices, help="Disable it in case of the privacy estimate for " "model extraction.", ) bool_params.append("apply_data_independent_bound") parser.add_argument( "--retrain_extracted_model", default="True", type=str, choices=bool_choices, help="Do we re-train the extracted / stolen model on the newly labeled data?", ) bool_params.append("retrain_extracted_model") parser.add_argument( "--load_votes", default="True", # default="False", type=str, choices=bool_choices, help="Do we re-load votes saved on disk?", ) bool_params.append("load_votes") # DPSGD parser.add_argument('--DPSGD', type=str2bool, default='False') parser.add_argument('--DPSGD_EPOCHS', type=int, default=10) parser.add_argument('--DPSGD_BATCH_SIZE', type=int, default=2) parser.add_argument('--DPSGD_NOISE_MULTIPLIER', type=float, default=1.3) parser.add_argument('--DPSGD_CCLIP', type=float, default=0) parser.add_argument('--DPSGD_LR', type=float, default=0.001) parser.add_argument('--DPSGD_PASCAL_PATH', type=str, required=False, default='/VOC2012/') parser.add_argument('--cuda', type=str, required=False, default=True) parser.add_argument("-f", "--f", "--fff", "--ip", "--stdin", "--control", "--hb", "--Session.signature_scheme", "--Session.key", "--shell", "--transport", "--iopub", help="a dummy argument to fool ipython", default="1") args = parser.parse_args() #args, unknown = parser.parse_known_args() args.cwd = os.getcwd() for param in bool_params: transform_bool(args=args, param=param) # os.environ["CUDA_VISIBLE_DEVICES"] = f'{args.device_ids}' print_args(args=args) set_model_size(args=args) return args def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def transform_bool(args, param: str): """ Transform the string boolean params to python bool values. :param args: program args :param param: name of the boolean param """ attr_value = getattr(args, param, None) if attr_value is None: raise Exception(f"Unknown param in args: {param}") if attr_value == "True": setattr(args, param, True) elif attr_value == "False": setattr(args, param, False) else: raise Exception(f"Unknown value for the args.{param}: {attr_value}.") def get_chexpert_paremeters(parser: ArgumentParser, timestamp: str): """ CheXpert parameters. :param parser: args parser :param timestamp: the global timestamp :return: parser with parameters for the CheXpert dataset. """ parser.add_argument( "--save_path", default=f"./save-{timestamp}", metavar="SAVE_PATH", type=str, help="Path to the saved models", ) parser.add_argument( "--pre_train", default=None, type=str, help="If get parameters from pretrained model", ) parser.add_argument( "--resume", default=0, type=int, help="If resume from previous run" ) parser.add_argument( "--logtofile", default=True, type=bool, help="Save log in save_path/log.txt if set True", ) parser.add_argument( "--chexpert_dataset_type", # classify for each sample if there is a disease # (positive, pos) or there is no disease (negative, neg) default="pos", # default='single', # binary classification for a single disease # default = 'multilabel', # multilabel, classify which diseases are present type=str, help="If get parameters from pretrained model", ) parser.add_argument( "--nan", help="not a number or N/A values", # type=int, default=-1, type=float, default=np.nan, ) return parser def print_args(args, get_str=False): if "delimiter" in args: delimiter = args.delimiter elif "sep" in args: delimiter = args.sep else: delimiter = ";" print("###################################################################") print("args: ") keys = sorted( [ a for a in dir(args) if not ( a.startswith("__") or a.startswith("_") or a == "sep" or a == "delimiter" ) ] ) values = [getattr(args, key) for key in keys] if get_str: keys_str = delimiter.join([str(a) for a in keys]) values_str = delimiter.join([str(a) for a in values]) print(keys_str) print(values_str) return keys_str, values_str else: for key, value in zip(keys, values): print(key, ": ", value, flush=True) print("ARGS FINISHED", flush=True) print("######################################################")
[ "noreply@github.com" ]
Songpei-Lu.noreply@github.com
a3ab64812e3683fca07ee72374edefe3d68d5c7b
84aa6f90e5cf5f2e49a9488c1768f2794cbd50db
/student/101022137/hw2/mandelbrot.py
ee9196ef219d8f3d0e1293e3398c04bc88ad9b2c
[]
no_license
u101022119/NTHU10220PHYS290000
c927bf480df468d7d113e00d764089600b30e69f
9e0b5d86117666d04e14f29a253f0aeede4a4dbb
refs/heads/master
2021-01-16T22:07:41.396855
2014-06-22T11:43:36
2014-06-22T11:43:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
from cmath import * from pylab import * sys.setrecursionlimit(1500) def myz(c,n): z = {0:0.} for i in range(1,n+1): z[i] = z[i-1]**2 + c if abs(z[i]) > 2.0: return 2. return abs(z[i]) def Mandelbrot (x,y,n): c = complex(x,y) return myz(c,n) x = arange(-2,2,0.005) y = arange(-2,2,0.005) data =[[Mandelbrot(i,j,100) for i in x] for j in y] imshow(data) xlabel("real") ylabel("image") show()
[ "dick0914y@yahoo.com.tw" ]
dick0914y@yahoo.com.tw
cbda68666975a4ac724d50adfd235d7df2d54cc2
6d653426a05c5647eb40748a1ed849491ed9e710
/zjazd_1/kolekcje/zad.4.py
2e49523b8002a99f4eff1f3fa205d3a8c0beb1f4
[]
no_license
stanilevitch/python_06102018
fb908b513ad6a40a66cd02e638fddaf9d698120d
59a90e20c0c4037f7890e7e6a40e8fb17a3fd907
refs/heads/master
2020-03-31T02:51:48.259058
2018-12-02T15:44:49
2018-12-02T15:44:49
151,842,433
0
0
null
null
null
null
UTF-8
Python
false
false
561
py
# wypisuje liczby od 0 do 100 # for i in range(101): # print(i) podzielna = 0 # wypisuje liczby od 0 do 100 podzielne przez 3 lub podzielne przez 5 for i in range(101): if i % 3 == 0 or i % 5 == 0: # print(i) podzielna += 1 # napisz ile liczb wystąpiło w tym przedziale print(podzielna) print(f"W przedziale 0-100 liczb jest {podzielna} liczb podzielnych przez 3 i 5") # sposób rkorzen # wypisać lista = list(range(101)) wynik = [] for el in lista: for el%3 == 0 or el%5 == 0: wynik.append(el) print(len(wynik))
[ "stanilevitch@gmail.com" ]
stanilevitch@gmail.com
f06136992aafe7aff8e6bff8c86cbd4d74c7cbe1
5763d51d0b3ed804bd6a7003eb3b7d21ffb86f50
/python/zanki0.py
a536409e50c28811956d77056b1fd0409c773232
[]
no_license
rafael950110/programs
42ae008c638c5037b15d1610ff61b5904f638c99
9f2992d2a487974b62f60526fbfb239aee279845
refs/heads/master
2020-05-20T17:53:22.787229
2019-07-08T10:12:01
2019-07-08T10:12:01
185,696,180
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
#!/usr/bin/env python # -*- coding: utf-8 -*- l = [0b0101010, 0b0110011, 0b1010111, 0b0011000, 0b1001000, 0b0010011, 0b0100001, 0b0001010] n = [0 for i in range(len(l))]
[ "ichirosasaki@sf.cs.it-chiba.ac.jp" ]
ichirosasaki@sf.cs.it-chiba.ac.jp
25fdd9ed11034f1c2c0cdf74d3b2e38b4afd11de
871775171633543c9f9d37fbc7ab022fec2c434e
/appium_two.py
6d46a30794afc398634f714502255f747bbd8097
[]
no_license
ToddCombs/Phenomenon
886e9da9154c14a298887dd65fabe61db4c2f2ee
d5f656156e05eed7df19e51b22ee7567319eb59a
refs/heads/master
2020-07-04T14:50:40.482186
2020-01-09T02:36:31
2020-01-09T02:36:31
202,316,829
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
# author:ToddCombs # appium例子2打开大鹏教育 from appium import webdriver from selenium import webdriver import time desired_caps = {} desired_caps['platformName'] = 'Android' # desired_caps['platformVersion'] = '6.0' desired_caps['deviceName'] = '9HQ4C19909000574' desired_caps['platformVersion'] = '8.1.0' # desired_caps['deviceName'] = 'Y9CAAMGMD6S8PFAQ' desired_caps['appPackage'] = 'com.power.dapengeducation' desired_caps['appActivity'] = '.ui.login.TransitionActivity' # 大鹏教育的appPackage名和首页引导图的Activity # desired_caps['appPackage'] = 'com.power.dapengeducation' # desired_caps['appActivity'] = '.ui.login.TransitionActivity' driver = webdriver.Remote('http://127.0.0.1:4723/wd/hub', desired_caps) time.sleep(5) def getSize(): x = driver.get_window_size()['width'] y = driver.get_window_size()['height'] return (x, y) #屏幕向上滑动 def swipeUp(t): l = getSize() x1 = int(l[0] * 0.5) #x坐标 y1 = int(l[1] * 0.75) #起始y坐标 y2 = int(l[1] * 0.25) #终点y坐标 driver.swipeUp(x1, y1, x1, y2,t) driver.find_element_by_id("美术")[0].click() driver.quit()
[ "noreply@github.com" ]
ToddCombs.noreply@github.com
4d150077efcfe7e49462570169130a9d2b4b2ce1
22537dcb756a3bbf7d88879b5330a3dfb8dc613e
/function_example.py
047038aa357b87fdd357448e1aee67483b14a27e
[]
no_license
nnennandukwe/teaching_python
c50ce23bcbbb82652040192d37d792a974816842
9acd07b32c7a1fbebb7c334ee8bff819be1aae26
refs/heads/master
2021-01-25T10:01:00.124222
2018-02-28T19:57:51
2018-02-28T19:57:51
123,335,118
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
def hello(random_word,funny_word,mean_word): return random_word, funny_word, mean_word a = hello("school","hahaha","ugly") b = hello("happy","silly","whatever") print(a) print(b) def goodbye(name): return "goodbye " + name def add(first,second): total = first / second return "first number divided by second number: " + str(total) print(add(4,5)) print(goodbye("Ashley")) print(goodbye("Katie"))
[ "nnenna.s.ndukwe@gmail.com" ]
nnenna.s.ndukwe@gmail.com
be6b29b48327bd6c403353bcc6be9d141e456122
e5a653f690e5d0de3fb5b675ab3f9824b5592a0d
/gitbro/cli.py
dc43bf704e667cda289a3c92011aa2e6fe4514a8
[ "MIT" ]
permissive
destag/gitbro
c0114636c1c798817a58d24ff102e0ef64d471b1
9c2f56df9bda88fb657b371455b694046bd05c96
refs/heads/master
2020-04-08T17:24:57.936885
2018-11-28T22:02:04
2018-11-28T22:02:04
159,565,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,248
py
#!/usr/bin/env python3 """Module for aggregating git repos.""" import sys import logging import argparse import glob import pathlib import subprocess import re def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '-p', '--pathname', dest='pathname', default='.', help='Pathnema', ) parser.add_argument( '-f', '--fetch', dest='fetch', action='store_true', help='flag', ) args = parser.parse_args() for repo_path in pathlib.Path(args.pathname).glob('**/.git'): git_repo = repo_path.absolute() print(git_repo.parts[-2]) r = subprocess.run(['git', '--git-dir={repo}'.format(repo=git_repo), 'status', '-sb'], stdout=subprocess.PIPE).stdout.decode('utf-8') stat_line = r.split('\n')[0] match = re.match(r'## (?P<localbranch>[\w\/]*)...(?P<remotebranch>\w*)', stat_line) print(match.group('localbranch') + '---' + match.group('remotebranch')) if args.fetch: r = subprocess.run(['git', '--git-dir={repo}'.format(repo=git_repo), 'fetch'], stdout=subprocess.PIPE) # print(pathlib.Path(path).absolute().split()) if __name__ == '__main__': main()
[ "przemyslawp94@gmail.com" ]
przemyslawp94@gmail.com
b084f8cca901271134f986496362547203b961ef
e728a7b5447c4ca03ba799bec61459528f30fd88
/test/test_models/recipient.py
9841fad9857e0befdefa3468f52b10e92c1b3987
[]
no_license
reritom/Esvi
deb75c0ca4b17494ed80adc3b735be008e0b3352
1e3242c61ec86af7b7479cd71f12a8677fcbde1f
refs/heads/master
2020-03-20T02:08:01.695643
2018-11-04T18:35:52
2018-11-04T18:35:52
137,100,179
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
from esvi import model from esvi import fields from test.test_models.contact import Contact from test.test_models.message import Message class Recipient(model.Model): recipient_id = fields.StringField(primary=True) contact = fields.ForeignKey(Contact) message = fields.ForeignKey(Message)
[ "reikudjinn@gmail.com" ]
reikudjinn@gmail.com
4566bf037da7d5ffbdbec7a6ab230d3fb82b0c19
83684f905274bea5ec0aa81e57abe6d6af5f65c6
/email_attachment_ept/py/email_attachment_ept.py
f201d5a7bc27a2d7b4307b5ee55d093db0039115
[]
no_license
arpanv/pansuriya
f47064679aa2c98c1e9d3a6f0605c98a685e00cf
b8615b70c33b79d8b2454cef4151d3f83c3bc77f
refs/heads/master
2020-04-06T06:54:00.271098
2014-09-17T14:06:08
2014-09-17T14:06:08
24,102,473
0
1
null
null
null
null
UTF-8
Python
false
false
3,806
py
import base64 import logging from openerp import netsvc from openerp.osv import osv, fields from openerp.osv import fields from openerp import tools from openerp.tools.translate import _ from urllib import urlencode, quote as quote import time class email_attachment_eept(osv.osv): _inherit = "email.template" _columns = { "email_attachment_ids" : fields.many2many("ir.actions.report.xml","email_attachment","temp_id","rep_id","Attachment") } def generate_email(self, cr, uid, template_id, res_id, context=None): """Generates an email from the template for given (model, res_id) pair. :param template_id: id of the template to render. :param res_id: id of the record to use for rendering the template (model is taken from template definition) :returns: a dict containing all relevant fields for creating a new mail.mail entry, with one extra key ``attachments``, in the format expected by :py:meth:`mail_thread.message_post`. """ if context is None: context = {} report_xml_pool = self.pool.get('ir.actions.report.xml') template = self.get_email_template(cr, uid, template_id, res_id, context) values = {} for field in ['subject', 'body_html', 'email_from', 'email_to', 'email_recipients', 'email_cc', 'reply_to']: values[field] = self.render_template(cr, uid, getattr(template, field), template.model, res_id, context=context) \ or False if template.user_signature: signature = self.pool.get('res.users').browse(cr, uid, uid, context).signature values['body_html'] = tools.append_content_to_html(values['body_html'], signature) if values['body_html']: values['body'] = tools.html_sanitize(values['body_html']) values.update(mail_server_id=template.mail_server_id.id or False, auto_delete=template.auto_delete, model=template.model, res_id=res_id or False) attachments = [] # Add report in attachments if template.email_attachment_ids: for email_attachment in template.email_attachment_ids: report_name = email_attachment.name or '%s_report' %(template.model) if email_attachment.attachment: report_name = eval(email_attachment.attachment) report_service = 'report.' + report_xml_pool.browse(cr, uid, email_attachment.id, context).report_name # Ensure report is rendered using template's language ctx = context.copy() if template.lang: ctx['lang'] = self.render_template(cr, uid, template.lang, template.model, res_id, context) service = netsvc.LocalService(report_service) (result, format) = service.create(cr, uid, [res_id], {'model': template.model}, ctx) if result: result = base64.b64encode(result) if not report_name: report_name = report_service ext = "." + format if not report_name.endswith(ext): report_name += ext attachments.append((report_name, result)) attachment_ids = [] # Add template attachments for attach in template.attachment_ids: attachment_ids.append(attach.id) values['attachments'] = attachments values['attachment_ids'] = attachment_ids return values
[ "sohil@sohil.(none)" ]
sohil@sohil.(none)
a98a6466c39492721ebce5de522c77874a2cdee4
bad0c63b82e44293272ab1452d077475f79e69a7
/Django/mysite/polls/urls.py
ea3f6f26eb2b7ec988a65380df7952ce96c0fa2c
[]
no_license
NahianAlindo/dev_framework_practice
201102b65c0258941053428e51c42634c0c41cb5
9b956167ba0887530cb3492453d2d1f64f80ee11
refs/heads/main
2023-06-03T17:29:14.780197
2021-06-28T10:41:01
2021-06-28T10:41:01
332,162,170
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
from django.urls import path from . import views app_name = 'polls' urlpatterns = [ path('', views.IndexView.as_view(), name='index'), path('<int:pk>/', views.DetailView.as_view(), name='detail'), #pk means primary key path('<int:pk>/results/', views.ResultsView.as_view(), name='results'), path("<int:question_id>/vote/", views.vote, name='vote'), ]
[ "nrifaat26@gmail.com" ]
nrifaat26@gmail.com
647a162f8c8f6a8d43a163bbbba60c1fd13d27ce
3c50498feb6fb630bf9574653de7fcb04faf1bdb
/sd_card/Trinket_SDlogger/code.py
a357b497a19103ed800aebceaf5f2685ef238504
[ "MIT" ]
permissive
DLR-School-Lab-TU-Dresden/weather_station_feather_m0_express
1c31daafbaf28dafd1176523394ebf82083e52dd
735b8dda3bd38c8462d66d35ed573c328ad9f9fa
refs/heads/master
2020-07-03T02:47:22.996131
2019-08-14T19:57:30
2019-08-14T19:57:30
201,760,606
0
0
null
null
null
null
UTF-8
Python
false
false
997
py
import time import adafruit_sdcard import board import busio import digitalio import microcontroller import storage # Use any pin that is not taken by SPI SD_CS = board.D10 led = digitalio.DigitalInOut(board.D13) led.direction = digitalio.Direction.OUTPUT # Connect to the card and mount the filesystem. spi = busio.SPI(board.SCK, board.MOSI, board.MISO) cs = digitalio.DigitalInOut(SD_CS) sdcard = adafruit_sdcard.SDCard(spi, cs) vfs = storage.VfsFat(sdcard) storage.mount(vfs, "/sd") # Use the filesystem as normal! Our files are under /sd print("Logging temperature to filesystem") # append to the file! while True: # open file for append with open("/sd/temperature.txt", "a") as f: led.value = True # turn on LED to indicate we're writing to the file t = microcontroller.cpu.temperature print("Temperature = %0.1f" % t) f.write("%0.1f\n" % t) led.value = False # turn off LED to indicate we're done # file is saved time.sleep(1)
[ "jahndiego@mailbox.org" ]
jahndiego@mailbox.org
efa317d7041599841fb86a0487ec1c5b60012f8f
10cb11f83e1c8b51b9d72c28d6259a56ff1a97c8
/tests/integration/testdata/buildcmd/PythonPEP600/main.py
b636d9d592b30d57cbcf48601a1a0c30754d3393
[ "Apache-2.0", "BSD-3-Clause", "MIT", "BSD-2-Clause" ]
permissive
aws/aws-sam-cli
6d4411aacf7f861e75e5cf4882a32858797a276d
b297ff015f2b69d7c74059c2d42ece1c29ea73ee
refs/heads/develop
2023-08-30T23:28:36.179932
2023-08-30T21:58:26
2023-08-30T21:58:26
92,205,085
1,402
470
Apache-2.0
2023-09-14T21:14:23
2017-05-23T18:16:23
Python
UTF-8
Python
false
false
396
py
import numpy # from cryptography.fernet import Fernet def handler(event, context): # Try using some of the modules to make sure they work & don't crash the process # print(Fernet.generate_key()) return {"pi": "{0:.2f}".format(numpy.pi)} def first_function_handler(event, context): return "Hello World" def second_function_handler(event, context): return "Hello Mars"
[ "noreply@github.com" ]
aws.noreply@github.com
7375245c12052dfb9d73aec915ab424d5375a4ca
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_appals.py
cd6c5bfec1295894c742a3a67db3382d4957e618
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
from xai.brain.wordbase.verbs._appal import _APPAL #calss header class _APPALS(_APPAL, ): def __init__(self,): _APPAL.__init__(self) self.name = "APPALS" self.specie = 'verbs' self.basic = "appal" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
53029b8afdd28c2e40ccc0b7d4e99e6aa2ea3770
64dbf9cff4508d5173995e885c151156786329fc
/lulz4life.py
c028900d8725ea7d9dce1f276d7e7e907f083c39
[]
no_license
LulzSecToolkit/LulzPy-Mass-Mailer
f1c634a3bd03fbb0a99eb12174c367d092604274
7b3a313a336d81074b4cf53f921539b6661473c3
refs/heads/master
2022-12-02T19:40:43.306176
2020-08-25T00:31:16
2020-08-25T00:31:16
290,068,693
2
0
null
null
null
null
UTF-8
Python
false
false
717
py
import requests import sys if len(sys.argv) != 3: print(f'usage: {sys.argv[0]} <email.txt> <message.html>') sys.exit() email=sys.argv[1] htmlfile=sys.argv[2] with open(email,"r") as f: email=f.readlines() email=[n.rsplit()[0] for n in email] f.close() with open(htmlfile,"r") as f: msg=f.read() f.close() data={"sub":"Testing Emial","email":"","from":"no-reply@localhost","message":msg,"submit":"Submit"} url="https://localhost/Honk.php" proxies = { 'http': 'socks5://127.0.0.1:9050', 'https': 'socks5://127.0.0.1:9050' } for send in email: data["email"]=send r=requests.post(url,data=data,proxies=proxies) if r.status_code == 200: print(f'{send} Success')
[ "noreply@github.com" ]
LulzSecToolkit.noreply@github.com
a6030d9a1e2b395f3ddfb2121f3df47c7aa736b5
681cff013b2ad7c654d7744da13d1f3e1320e6ef
/payments/__init__.py
2b615aeca40e0397cfaa00d5000018dfa1ada61e
[]
no_license
MattTheRed/wigglebar
56a85961530d5835ffa393197ec08b4a4c58f922
ffd9eeeb510971321a0142f56964af05929baf78
refs/heads/master
2016-09-05T22:08:58.806948
2014-12-15T14:32:19
2014-12-15T14:32:19
28,040,131
1
1
null
null
null
null
UTF-8
Python
false
false
23
py
__version__ = "2.0b27"
[ "pindardev@gmail.com" ]
pindardev@gmail.com
4dbf7645879c6b1cfecabf6e1cb8a484ad15876a
5fa8d29f1988e39ca7d0313138dd1832b0966be2
/dvc/stage/exceptions.py
19d07aea674c4552246d60de3758055394c0440c
[ "Apache-2.0" ]
permissive
jackwellsxyz/dvc
11aa627af1ecce1a9079c6992e48ff300fa81cfc
6a64f861783f3c2eadfc0364725ab06aa3ebb387
refs/heads/master
2022-07-09T13:16:44.869416
2020-05-06T21:25:41
2020-05-06T21:25:41
261,893,679
0
0
Apache-2.0
2020-05-06T22:35:41
2020-05-06T22:35:41
null
UTF-8
Python
false
false
3,003
py
from dvc.exceptions import DvcException class StageCmdFailedError(DvcException): def __init__(self, stage, status=None): msg = "failed to run: {}".format(stage.cmd) if status is not None: msg += ", exited with {}".format(status) super().__init__(msg) class StageFileFormatError(DvcException): def __init__(self, fname, e): msg = "DVC-file '{}' format error: {}".format(fname, str(e)) super().__init__(msg) class StageFileDoesNotExistError(DvcException): def __init__(self, fname): from dvc.dvcfile import DVC_FILE_SUFFIX, is_dvc_file msg = "'{}' does not exist.".format(fname) sname = fname + DVC_FILE_SUFFIX if is_dvc_file(sname): msg += " Do you mean '{}'?".format(sname) super().__init__(msg) class StageFileAlreadyExistsError(DvcException): def __init__(self, relpath): msg = "not overwriting '{}'".format(relpath) super().__init__(msg) class StageFileIsNotDvcFileError(DvcException): def __init__(self, fname): from dvc.dvcfile import DVC_FILE_SUFFIX, is_dvc_file msg = "'{}' is not a DVC-file".format(fname) sname = fname + DVC_FILE_SUFFIX if is_dvc_file(sname): msg += " Do you mean '{}'?".format(sname) super().__init__(msg) class StageFileBadNameError(DvcException): pass class StagePathOutsideError(DvcException): pass class StagePathNotFoundError(DvcException): pass class StagePathNotDirectoryError(DvcException): pass class StageCommitError(DvcException): pass class StageUpdateError(DvcException): def __init__(self, path): super().__init__( "update is not supported for '{}' that is not an " "import.".format(path) ) class MissingDataSource(DvcException): def __init__(self, missing_files): assert len(missing_files) > 0 source = "source" if len(missing_files) > 1: source += "s" msg = "missing data '{}': {}".format(source, ", ".join(missing_files)) super().__init__(msg) class StageNotFound(KeyError, DvcException): def __init__(self, file, name): super().__init__( "Stage '{}' not found inside '{}' file".format(name, file.relpath) ) class StageNameUnspecified(DvcException): def __init__(self, file): super().__init__( "Stage name not provided." "Please specify the name as: `{0}:stage_name`".format(file.relpath) ) class DuplicateStageName(DvcException): def __init__(self, name, file): super().__init__( "Stage '{name}' already exists in '{relpath}'.".format( name=name, relpath=file.relpath ) ) class InvalidStageName(DvcException): def __init__(self,): super().__init__( "Stage name cannot contain invalid characters: " "'\\', '/', '@' and ':'." )
[ "noreply@github.com" ]
jackwellsxyz.noreply@github.com
2a24cb3857d77f7ce4f16edcec9b5c31a9d4e49c
6fd7413bea392d6d9cd89aa665c8b8fb4a1edea0
/Page/Login_Page.py
f13861f14ce711e7050d5a16ec7bd2c7e0996f37
[]
no_license
cocoL123/app_08test
e5fc24caafa44a0273f127d37120a00f79b4522d
fd242486d802b41f8d99250598ed10aab8a8d881
refs/heads/master
2020-03-22T11:09:57.793570
2018-07-10T07:31:43
2018-07-10T07:31:43
139,952,341
0
0
null
null
null
null
UTF-8
Python
false
false
1,451
py
# __author: Honorbaby # date: 2018/7/9 import allure from Base.Base import Base import Page class Login_Page(Base): def __init__(self,driver): Base.__init__(self,driver) @allure.step(title = "点击我的按钮") def click_my_btn(self): self.click_element(Page.my_btn) @allure.step(title = "点击登录注册") def click_sign_btn(self): self.click_element(Page.login_btn) @allure.step(title = "输入账号密码") def input_mess(self,username,userpwd): allure.attach("账号:","%s" % (username)) allure.attach("密码:","%s" % (userpwd)) self.input_element(Page.user_name_btn, username) self.input_element(Page.user_pwd_btn, userpwd) @allure.step(title = "点击登录按钮") def click_login_btn(self): self.click_element(Page.login_btn_id) @allure.step(title = "判断我的订单按钮是否存在") def if_my_order_status(self): allure.attch("存在:","True") allure.attch("不存在:","False") try: self.search_element(Page.my_order_btn) return True except Exception as e: assert False @allure.step(title = "点击设置按钮") def click_setting_btn(self): self.click_element(Page.setting_btn) @allure.step(title="点击关闭登录输入信息页面按钮") def click_close(self): self.click_element(Page.login_close_page_id)
[ "1715285528@qq.com" ]
1715285528@qq.com
5763b4238a4b84b082656990dc79969144711f47
b7c8760d69977dff3b4a3cb65eceae263d42b8b8
/server/scripts/monitor.py
a9f21009020a3a8bc4946903218dca1ebe81271d
[]
no_license
x100up/analystics
086f1578c01255baf7484031d232e87d59fbeeab
9f58e4c53653e1fe53abc10861008fe0afef5979
refs/heads/master
2021-01-15T11:18:49.118104
2013-02-14T12:25:36
2013-02-14T12:25:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,618
py
# -*- coding: utf-8 -*- from scripts.baseScript import BaseAnalyticsScript from components.listutils import listDiff from models.Config import Config import re from datetime import date from models.App import App from services.HiveMetaService import HiveMetaService CREATE_TABLE_QUERY = """CREATE EXTERNAL TABLE %(table_name)s (params MAP<STRING, STRING>, `userId` INT, `timestamp` TIMESTAMP, hour INT, minute INT, second INT) PARTITIONED BY (dt STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' COLLECTION ITEMS TERMINATED BY '\;' MAP KEYS TERMINATED BY '='""" CREATE_PARTITION_QUERY = """ ALTER TABLE %(table_name)s ADD PARTITION (dt='%(year)d-%(month)02d-%(day)02d') location '%(path)s' """ class MonitorScript(BaseAnalyticsScript): partNameR = re.compile('^dt=(\d+)-(\d+)-(\d+)$') def run(self): command = self.options['command'] self.hiveMetaService = None self.hiveclient = self.getHiveClient() if command == 'reload': day = int(self.options['day']) month = int(self.options['month']) year = int(self.options['year']) appname = self.options['appname'] self.reload(appname, day, month, year) else: for appCode in self.getAppCodes(): self.processApp(appCode) def reload(self, appCode, day, month, year): dbSession = self.getDBSession() app = dbSession.query(App).filter(App.code == appCode).first() if not app: print 'App {} not present in database. Process app terminated'.format(appCode) return print 'ProcessApp {}'.format(appCode) self.hiveclient.execute('USE stat_{}'.format(appCode)) appConfig = self.getAppConfig(appCode) hiveMetaService = self.getHiveMetaService() for eventCode in [appEvent.code for appEvent in appConfig.getEvents()]: hiveTable = hiveMetaService.getOrCreateHiveTable(app.appId, eventCode) if not hiveTable: print 'Cannot get or create HiveTable for {} {}'.format(appCode, eventCode) continue self.dropPartition(year, month, day, eventCode) if self.createPartition(year, month, day, appCode, eventCode): self.getHiveMetaService().getOrCreateHiveTablePartition(hiveTable.hiveTableId, date(year, month, day)) def processApp(self, appCode): print 'ProcessApp {}'.format(appCode) appConfig = self.getAppConfig(appCode) webHDFSClient = self.getWebHDFSClient() dbSession = self.getDBSession() app = dbSession.query(App).filter(App.code == appCode).first() if not app: print 'App {} not present in database. Process app terminated'.format(appCode) return hiveMetaService = self.getHiveMetaService() # получаем список директорий -ключей hdfsEvents = webHDFSClient.getEventCodes(appCode) realKeys = [appEvent.code for appEvent in appConfig.getEvents()] # ключи есть в настройках, но нет директорий non_existing_folders = listDiff(realKeys, hdfsEvents) # check table existing try: self.hiveclient.execute('CREATE DATABASE IF NOT EXISTS {}'.format(self.getDBName(appCode))) except BaseException: print 'Exception on create database {}'.format(appCode) return self.hiveclient.execute('USE {}'.format(self.getDBName(appCode))) tables = self.hiveclient.execute('SHOW TABLES') tables = [item[0] for item in tables] print 'tables for app {}: {} '.format(appCode, len(tables)) for eventCode in realKeys: print eventCode if eventCode in non_existing_folders: continue table_name = self.getTableName(eventCode) if not table_name in tables: print 'table {} not exist'.format(table_name) # create table q = CREATE_TABLE_QUERY % {'table_name':table_name} try: print q self.hiveclient.execute(q) except BaseException: print 'Exception on create Table {}'.format(table_name) return hiveTable = hiveMetaService.getOrCreateHiveTable(app.appId, eventCode) if not hiveTable: print 'Cannot get or create HiveTable for {} {}'.format(appCode, eventCode) continue # получаем партиции в Hive partitions = self.hiveclient.execute('SHOW PARTITIONS {}'.format(table_name)) partitions = [item[0] for item in partitions] print partitions existingPartitionsDates = [] for partName in partitions: r = self.partNameR.search(partName).group existingPartitionsDates.append(date(int(r(1)), int(r(2)), int(r(3)))) # полчаем партиции в HDFS hdfsPartitions = webHDFSClient.getPartitions(appCode, eventCode) for partitionDate in hdfsPartitions: # если дата партиции есть на диске но ее нет в Hive if not partitionDate in existingPartitionsDates: year, month, day = (partitionDate.year, partitionDate.month, partitionDate.day) if self.createPartition(year, month, day, appCode, eventCode): self.getHiveMetaService().getOrCreateHiveTablePartition(hiveTable.hiveTableId, partitionDate) def createPartition(self, year, month, day, appCode, eventCode): table_name = self.getTableName(eventCode) query = CREATE_PARTITION_QUERY % { 'table_name': table_name, 'year': year, 'month': month, 'day': day, 'path': '{}/{}/{}/{}/{}/'.format(self.getTablePath(appCode), eventCode, year, month, day) } print 'Create partition {}.{}.{} for {}'.format(year, month, day, table_name) try: print query self.hiveclient.execute(query) except Exception as ex: print '- Exception on create partition: {}'.format(ex.message) return False else: print '+ Partition created' return True def dropPartition(self, year, month, day, eventCode): table_name = self.getTableName(eventCode) query = 'ALTER TABLE %(table_name)s DROP PARTITION (dt=\'%(year)d-%(month)02d-%(day)02d\')' % { 'table_name': table_name, 'day': day, 'month': month, 'year': year} print 'Drop partition {}-{}-{} for {}'.format(year, month, day, table_name) try: print query self.hiveclient.execute(query) except Exception as ex: print '- Exception on drop partition: {}'.format(ex.message) return False else: print '+ Partition droped' return True def getHiveMetaService(self): if not self.hiveMetaService: dbSession = self.getDBSession() self.hiveMetaService = HiveMetaService(dbSession) return self.hiveMetaService def getTableName(self, eventCode): return self.config.get(Config.HIVE_PREFIX) + eventCode def getDBName(self, appCode): return 'stat_' + appCode def getTablePath(self, appCode): return self.config.get(Config.HDFS_STAT_ROOT) + appCode + '/'
[ "x100up@yandex.ru" ]
x100up@yandex.ru
87a747dc43589b6f9f052e38773a1b58bd9e85a3
a0fe8fe36a6133b0e98ff64c220b01485ae4dd49
/carts/paginations.py
b4c67881539cefd2d1999b74e9f5f4f2775ad967
[]
no_license
spolox/rest_week1
27e97864f5c7f44506238db74bd646600f5ccc2d
0ce93c0e74f2e43935796f12d8ccc8b997d64d6f
refs/heads/main
2023-03-02T17:51:19.128241
2021-02-07T14:50:38
2021-02-07T14:50:38
329,290,509
1
0
null
2021-02-15T19:14:06
2021-01-13T11:45:08
Python
UTF-8
Python
false
false
180
py
from rest_framework.pagination import LimitOffsetPagination class CartItemLimitOffsetPagination(LimitOffsetPagination): default_limit = 6 max_limit = 6 min_limit = 1
[ "draconvs@yandex.ru" ]
draconvs@yandex.ru
55ad69397a06078257e33d2bfcaec2cab7cfc7d5
a6a998561cd087774502a3aea68b1440946049f1
/SnakeGame.py
8621b972001d240673806e5e05a8f9994994b551
[]
no_license
TheDarkKnight1939/Snake
126e0a7b47cd986493842d23abe8aede6ec0fb25
0dece70864beddbb1cd7438a31003cadde6c8687
refs/heads/master
2021-06-01T15:50:11.820873
2016-03-05T10:10:34
2016-03-05T10:10:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,462
py
# -*- coding: utf-8 -*- """ Created on Wed Nov 16 16:43:27 2011 @author: Administrator """ from Tkinter import * import random words_list=open('words.txt','r') lines=words_list.readline() lst=lines.split() #lst=['clear','cat','move','dog','chemistry','flur','right','heal','python','jerk','land','mark','player','pear','glue','project'] y=0 username=[] usernumber=[] highscore=[0] highscore0=[0] class SnakeGameStudyEnglish: def __init__(self): self.memoryscore=[] self.step=15 # game score self.gamescore=-10 self.gamelevel=-1 # to initialize the snake in the range of (x1,y1,x2,y1) r=random.randrange(191,191+15*10,self.step) self.snakeX=[r,r+self.step,r+self.step*2] self.snakeY=[r,r,r] # to initialize the moving direction self.snakeDirection = 'left' self.snakeMove = [-1,0] # to draw the game frame window = Tk() window.geometry("600x400+10+10") window.maxsize(600,400) window.minsize(600,400) window.title("Snake game") self.frame1=Frame(window) self.frame2=Frame(window) self.canvas=Canvas(self.frame1,width=590,height=375,bg="yellow") self.score_label=Label(self.frame2,text="Score:") self.level_label=Label(self.frame2,text="Level:") self.username_label=Label(self.frame2,text="Please Eat Each Letter In Right Order") self.frame1.pack() self.frame2.pack(fill=BOTH) self.score_label.pack(side=LEFT) self.level_label.pack(side=RIGHT) self.username_label.pack() self.canvas.pack(fill=BOTH) self.draw_wall() self.draw_score() self.draw_food() self.draw_snake() self.draw_level() self.play() window.mainloop() "=== View Part ===" def draw_wall(self): self.canvas.create_line(10,10,582,10,fill='blue',width=5) self.canvas.create_line(10,359,582,359,fill='blue',width=5) self.canvas.create_line(10,10,10,359,fill="blue",width=5) self.canvas.create_line(582,10,582,359,fill="blue",width=5) def draw_level(self): self.level() self.level_label.config(self.level_label,text="Level: "+str(self.gamelevel)) def draw_score(self): self.score() self.score_label.config(self.score_label,text="Score: "+str(self.gamescore)) def draw_food(self): #lst=['clear','cat','move','dog','chemistry','flur','right','heal','python','jerk','land','mark','plyer','pear','glue','project'] #p=random.randrange(0,15,1) self.Ew=random.choice(lst) self.lst1=[] for x in range(len(self.Ew)): self.foodx,self.foody=self.random_food() self.canvas.create_rectangle(self.foodx,self.foody,self.foodx+self.step,self.foody+self.step ,tags="food"+str(x),fill='red') self.canvas.create_text(self.foodx+7,self.foody+7,text=self.Ew[x],tags='food'+str(x)) self.lst1.append([self.foodx,self.foody,'food'+str(x)]) print self.Ew def draw_snake(self): self.canvas.delete("snake") x,y=self.snake() for i in range(len(x)): self.canvas.create_rectangle(x[i],y[i],x[i]+self.step,y[i]+self.step\ , fill='orange',tags='snake') "=== Model Part ===" # food model def random_food(self): return(random.randrange(11,570,self.step),random.randrange(11,340,self.step)) # snake model def snake(self): for i in range(len(self.snakeX)-1,0,-1): self.snakeX[i] = self.snakeX[i-1] self.snakeY[i] = self.snakeY[i-1] self.snakeX[0] += self.snakeMove[0]*self.step self.snakeY[0] += self.snakeMove[1]*self.step return(self.snakeX,self.snakeY) #score model def score(self): self.gamescore+=10 def level(self): self.gamelevel+=1 "=== Control Part ===" def iseated(self): #global c #for c in range(len(self.Ew)): if self.snakeX[0]==self.lst1[0][0] and self.snakeY[0]==self.lst1[0][1]: return True else: return False def isdead(self): if self.snakeX[0]<8 or self.snakeX[0] >580 or\ self.snakeY[0]<8 or self.snakeY[0]>350 : return True for i in range(1,len(self.snakeX)): if self.snakeX[0]==self.snakeX[i] and self.snakeY[0]==self.snakeY[i] : return True else: return False def delete(self): self.canvas.delete(self.lst1[0][2]) self.lst1.remove(self.lst1[0]) if len(self.lst1)==0: self.draw_food() def move(self,event): # left:[-1,0],right:[1,0],up:[0,1],down:[0,-1] if (event.keycode == 39 or event.keycode == 68) and self.snakeDirection != 'left': self.snakeMove = [1,0] self.snakeDirection = "right" elif (event.keycode == 38 or event.keycode == 87) and self.snakeDirection != 'down': self.snakeMove = [0,-1] self.snakeDirection = "up" elif (event.keycode == 37 or event.keycode == 65) and self.snakeDirection != 'right': self.snakeMove = [-1,0] self.snakeDirection = "left" elif (event.keycode == 40 or event.keycode == 83) and self.snakeDirection != 'up': self.snakeMove = [0,1] self.snakeDirection = "down" else: pass # above codes can be insteaded by the following codes # if (event.keysym == 'Right' or event.keysym == 'd') and self.snakeDirection != 'left': # self.snakeMove = [1,0] # self.snakeDirection = "right" # elif (event.keysym == 'Up' or event.keysym == 'w') and self.snakeDirection != 'down': # self.snakeMove = [0,-1] # self.snakeDirection = "up" # elif (event.keysym == 'Left' or event.keysym == 'a') and self.snakeDirection != 'right': # self.snakeMove = [-1,0] # self.snakeDirection = "left" # elif (event.keysym == 'Down' or event.keysym == 's') and self.snakeDirection != 'up': # self.snakeMove = [0,1] # self.snakeDirection = "down" # else: # pass def play(self): self.canvas.bind("<Key>",self.move) self.canvas.focus_set() while True: if self.isdead(): self.gameover() break elif self.iseated(): self.snakeX[0] += self.snakeMove[0]*self.step self.snakeY[0] += self.snakeMove[1]*self.step self.snakeX.insert(1,self.lst1[0][0]) self.snakeY.insert(1,self.lst1[0][1]) self.draw_score() self.delete() self.draw_snake() if self.gamescore%30==0: self.draw_level() else: self.draw_snake() self.canvas.after(200-10*self.gamelevel) self.canvas.update() def gameover(self): highscoreE=0 self.memoryscore.append(self.gamescore) for element in self.memoryscore: if element>highscoreE: highscoreE=element if self.gamescore==highscoreE: highscore.remove(highscore[0]) highscore.append(highscoreE) file_name='highscoreE.txt' text=open(file_name,'a') text.write(str(highscoreE)+'、'+str(username[0])+ '、'+str(usernumber[0])+' \n') text.close() self.canvas.unbind('<Key>') self.canvas.bind("<Key>",self.restart) self.canvas.create_text(270,180,text=" Game Over!\n \ Press any key to continue",font='Helvetica -30 bold',tags='text') def restart(self,event): self.canvas.delete("snake","text") for u in range(len(self.lst1)): self.canvas.delete(self.lst1[u][2]) self.lst1=[] self.canvas.unbind('<Key>') # to initialize the snake in the range of (191,191,341,341) r=random.randrange(191,191+15*10,self.step) self.snakeX=[r,r+self.step,r+self.step*2] self.snakeY=[r,r,r] # to initialize the moving direction self.snakeDirection = 'left' self.snakeMove = [-1,0] # reset the score to zero self.gamelevel=-1 self.gamescore=-10 self.draw_score() self.draw_level() # to initialize the game (food and snake) self.draw_food() self.draw_snake() # to play the game self.play() class SnakeGameClassical: def __init__(self): self.memoryscore0=[] self.step=15 # game score self.gamescore0=-10 self.gamelevel=1 # to initialize the snake in the range of (x1,y1,x2,y1) r=random.randrange(191,191+15*10,self.step) self.snakeX=[r,r+self.step,r+self.step*2] self.snakeY=[r,r,r] # to initialize the moving direction self.snakeDirection = 'left' self.snakeMove = [-1,0] # to draw the game frame window = Tk() window.geometry("600x400+10+10") window.maxsize(600,400) window.minsize(600,400) window.title("Snake game") self.frame1=Frame(window) self.frame2=Frame(window) self.canvas=Canvas(self.frame1,width=590,height=375,bg="yellow") self.score_label=Label(self.frame2,text="Score:") self.level_label=Label(self.frame2,text="Level:") self.frame1.pack() self.frame2.pack(fill=BOTH) self.score_label.pack(side=LEFT) self.level_label.pack() self.canvas.pack(fill=BOTH) self.draw_wall() self.draw_score() self.draw_food() self.draw_snake() self.draw_level() self.play() window.mainloop() "=== View Part ===" def draw_wall(self): self.canvas.create_line(10,10,582,10,fill='blue',width=5) self.canvas.create_line(10,359,582,359,fill='blue',width=5) self.canvas.create_line(10,10,10,359,fill="blue",width=5) self.canvas.create_line(582,10,582,359,fill="blue",width=5) def draw_level(self): self.level() self.level_label.config(self.level_label,text="Level: "+str(self.gamelevel)) def draw_score(self): self.score() # score model self.score_label.config(self.score_label,text="Score: "+str(self.gamescore0)) def draw_food(self): self.position=[] for f in range(self.gamelevel): self.foodx,self.foody=self.random_food() #food model self.canvas.create_rectangle(self.foodx,self.foody,self.foodx+self.step,self.foody+self.step,fill='red' ,tags="food"+str(f)) #food view self.position.append([self.foodx,self.foody,'food'+str(f)]) #print self.position def draw_snake(self): self.canvas.delete("snake") x,y=self.snake() # snake model for i in range(len(x)): # snake view self.canvas.create_rectangle(x[i],y[i],x[i]+self.step,y[i]+self.step\ , fill='orange',tags='snake') "=== Model Part ===" # food model def random_food(self): return(random.randrange(11,570,self.step),random.randrange(11,340,self.step)) # snake model def snake(self): for i in range(len(self.snakeX)-1,0,-1): self.snakeX[i] = self.snakeX[i-1] self.snakeY[i] = self.snakeY[i-1] self.snakeX[0] += self.snakeMove[0]*self.step self.snakeY[0] += self.snakeMove[1]*self.step return(self.snakeX,self.snakeY) #score model def score(self): self.gamescore0+=10 def level(self): self.gamelevel+=1 "=== Control Part ===" def iseated(self): for self.d in range(len(self.position)): if self.snakeX[0]==self.position[self.d][0] and self.snakeY[0]==self.position[self.d][1]: return True else: return False def ruin(self): self.canvas.delete(self.position[self.d][2]) self.position.remove(self.position[self.d]) #print self.position if self.position==[]: self.draw_food() def isdead(self): if self.snakeX[0]<8 or self.snakeX[0] >580 or\ self.snakeY[0]<8 or self.snakeY[0]>350 : return True for i in range(1,len(self.snakeX)): if self.snakeX[0]==self.snakeX[i] and self.snakeY[0]==self.snakeY[i] : return True else: return False def move(self,event): # left:[-1,0],right:[1,0],up:[0,1],down:[0,-1] if (event.keycode == 39 or event.keycode == 68) and self.snakeDirection != 'left': self.snakeMove = [1,0] self.snakeDirection = "right" elif (event.keycode == 38 or event.keycode == 87) and self.snakeDirection != 'down': self.snakeMove = [0,-1] self.snakeDirection = "up" elif (event.keycode == 37 or event.keycode == 65) and self.snakeDirection != 'right': self.snakeMove = [-1,0] self.snakeDirection = "left" elif (event.keycode == 40 or event.keycode == 83) and self.snakeDirection != 'up': self.snakeMove = [0,1] self.snakeDirection = "down" else: pass # above codes can be insteaded by the following codes # if (event.keysym == 'Right' or event.keysym == 'd') and self.snakeDirection != 'left': # self.snakeMove = [1,0] # self.snakeDirection = "right" # elif (event.keysym == 'Up' or event.keysym == 'w') and self.snakeDirection != 'down': # self.snakeMove = [0,-1] # self.snakeDirection = "up" # elif (event.keysym == 'Left' or event.keysym == 'a') and self.snakeDirection != 'right': # self.snakeMove = [-1,0] # self.snakeDirection = "left" # elif (event.keysym == 'Down' or event.keysym == 's') and self.snakeDirection != 'up': # self.snakeMove = [0,1] # self.snakeDirection = "down" # else: # pass def play(self): self.canvas.bind("<Key>",self.move) self.canvas.focus_set() while True: if self.isdead(): self.gameover() break elif self.iseated(): self.snakeX[0] += self.snakeMove[0]*self.step self.snakeY[0] += self.snakeMove[1]*self.step self.snakeX.insert(1,self.position[self.d][0]) self.snakeY.insert(1,self.position[self.d][1]) self.draw_score() self.ruin() self.draw_snake() if self.gamescore0%50==0: self.draw_level() else: self.draw_snake() self.canvas.after(200-15*(self.gamelevel)) self.canvas.update() def gameover(self): highscoreC=0 self.memoryscore0.append(self.gamescore0) for el in self.memoryscore0: if el > highscoreC: highscoreC=el if self.gamescore0==highscoreC: highscore0.remove(highscore0[0]) highscore0.append(highscoreC) file_name0='highscoreC.txt' text0=open(file_name0,'a') text0.write(str(highscoreC)+'、'+str(username[0])+ '、'+str(usernumber[0])+' \n') text0.close() self.canvas.unbind('<Key>') self.canvas.bind("<Key>",self.restart) self.canvas.create_text(270,180,text=" Game Over!\n \ Press any key to continue",font='Helvetica -30 bold',tags='text') def restart(self,event): self.canvas.delete("snake",'text') for t in range(len(self.position)): self.canvas.delete(self.position[t][2]) self.canvas.unbind('<Key>') # to initialize the snake in the range of (191,191,341,341) r=random.randrange(191,191+15*10,self.step) self.snakeX=[r,r+self.step,r+self.step*2] self.snakeY=[r,r,r] # to initialize the moving direction self.snakeDirection = 'left' self.snakeMove = [-1,0] # reset the score to zero self.gamelevel=1 self.gamescore0=-10 self.draw_score() self.draw_level() # to initialize the game (food and snake) self.draw_food() self.draw_snake() # to play the game self.play() class HighScore: def __init__(self): window=Tk() window.title('HighScore') self.canvas = Canvas(window, width = 400, height = 300,bg='white') self.canvas.pack() self.canvas.create_text(120,30,text="EglishModdle Highest Score: "+str(highscore[0])) self.canvas.create_text(120,100,text="ClassicalModdle Highest Score: "+str(highscore0[0])) self.canvas.create_text(120,170,text="Your Name: "+str(username[0])) self.canvas.create_text(120,240,text="Your Number: "+str(usernumber[0])) window.mainloop() class WordsList: def __init__(self): window=Tk() window.title('WordsList') self.canvas = Canvas(window, width = 300, height = 300,bg='white') self.canvas.pack() for self.u in range(len(lst)): if self.u<=3: self.canvas.create_text(50,60+40*self.u,text=lst[self.u]) elif 3<self.u<=7: self.canvas.create_text(150,60+40*(self.u-4),text=lst[self.u]) elif 7<self.u<=11: self.canvas.create_text(200,60+40*(self.u-8),text=lst[self.u]) elif 11<self.u<=15: self.canvas.create_text(250,60+40*(self.u-12),text=lst[self.u]) # self.canvas.create_text(50,60,text='clear') # self.canvas.create_text(50,100,text='cat') # self.canvas.create_text(50,140,text='move') # self.canvas.create_text(50,180,text='dog') # self.canvas.create_text(150,60,text='chemistry') # self.canvas.create_text(150,100,text='flur') # self.canvas.create_text(150,140,text='right') # self.canvas.create_text(150,180,text='heal') # self.canvas.create_text(200,60,text='python') # self.canvas.create_text(200,100,text='jerk') # self.canvas.create_text(200,140,text='land') # self.canvas.create_text(200,180,text='mark') # self.canvas.create_text(250,60,text='player') # self.canvas.create_text(250,100,text='pear') # self.canvas.create_text(250,140,text='glue') # self.canvas.create_text(250,180,text='project') window.mainloop() class UserName: def __init__(self): self.window=Tk() self.window.title("UserInformation") self.canvas = Canvas(self.window, width = 300, height = 100,bg='yellow') frame=Frame(self.window) self.canvas.pack() frame.pack() self.canvas.create_text(150,50,text='Welcome To SnakeGame') Label(frame,text = "Your Name:").grid(row=1,column=1) Label(frame,text = 'Your Number:').grid(row=2,column=1) self.usernameVar=StringVar() entry1=Entry(frame,textvariable=self.usernameVar).grid(row=1,column=3) self.usernumberVar=StringVar() entry2=Entry(frame,textvariable=self.usernumberVar).grid(row=2,column=3) button=Button(frame,text="StudyEnglish Moddle",command=self.StudyEnglish).grid(row=4,column=3) button1=Button(frame,text="HighScore",command=self.highscore).grid(row=3,column=1) button2=Button(frame,text="WordsList",command=self.wordslist).grid(row=3,column=3) button3=Button(frame,text="Classical Moddle",command=self.Classical).grid(row=4,column=1) self.window.mainloop() def StudyEnglish(self): username.append(self.usernameVar.get()) usernumber.append(self.usernumberVar.get()) #self.window.destroy() SnakeGameStudyEnglish() def highscore(self): username.append(self.usernameVar.get()) usernumber.append(self.usernumberVar.get()) HighScore() def wordslist(self): username.append(self.usernameVar.get()) usernumber.append(self.usernumberVar.get()) WordsList() def Classical(self): username.append(self.usernameVar.get()) usernumber.append(self.usernumberVar.get()) SnakeGameClassical() UserName()
[ "735422760@qq.com" ]
735422760@qq.com
06027acd18d5ffdf8c7e46375d00f52b1c3c56d6
0461798face297be283bcd5c486add9851672ac8
/usu04a.py
fe44b51f7671c706f59f7a11c37f2876bdcde82c
[]
no_license
chasmack/postgis
a4503679a5008319bfb4b250f767bab78daae7d6
b3e62cbc00321c17143e9cf9a8e76f43cb351355
refs/heads/master
2016-08-11T17:39:45.271484
2016-01-12T22:07:53
2016-01-12T22:07:53
47,844,262
1
0
null
null
null
null
UTF-8
Python
false
false
4,719
py
# USU OS Python Assignment 4a # # Print the pixel values for all three bands of aster.img at # the points contained in sites.shp. import gdal, ogr from gdalconst import * import time import utils ogr.UseExceptions() aster_rasterfile = 'data/usu04/aster.img' sites_shapefile = 'data/usu04/sites.shp' sites_schema = 'usu' sites_layername = 'sites' sites_srid = 32612 DSN = 'PG: host=localhost dbname=postgis_scratch user=postgres password=pg' # Open a connection to PostgreSQL. pgDS = ogr.Open(DSN, 1) # Open the sites shapefile. shpDriver = ogr.GetDriverByName('ESRI Shapefile') sitesDS = shpDriver.Open(sites_shapefile, 0) if sitesDS is None: print('Can''t open shapefile ' + sites_shapefile) exit(1) # Create a PostGIS table to hold the sites data. qstr = """ DROP TABLE IF EXISTS {schema}.{layer}; CREATE TABLE {schema}.{layer} ( gid serial NOT NULL, site_id integer, cover character varying(48), geom geometry({geomtype}, {srid}), CONSTRAINT {layer}_pkey PRIMARY KEY (gid)) WITH (OIDS=FALSE); """.format(schema=sites_schema, layer=sites_layername, geomtype='Point', srid=sites_srid) pgDS.ExecuteSQL(qstr) # Copy features from the sites shapefile to the PostGIS table. pgLayer = pgDS.GetLayerByName(sites_schema + '.' + sites_layername) pgFeatureDefn = pgLayer.GetLayerDefn() for feat in sitesDS.GetLayer(): pgFeature = ogr.Feature(pgFeatureDefn) pgFeature.SetField('site_id', feat.GetField('id')) pgFeature.SetField('cover', feat.GetField('cover')) pgFeature.SetGeometry(feat.GetGeometryRef()) pgLayer.CreateFeature(pgFeature) # Done with the shapefile. shpDriver = sitesDS = None # Register the raster driver and open the data source. rastDriver = gdal.GetDriverByName('HFA') rastDriver.Register() ds = gdal.Open(aster_rasterfile, GA_ReadOnly) if ds is None: print('Can''t open raster data file ' + aster_rasterfile) exit(1) cols = ds.RasterXSize rows = ds.RasterYSize bands = ds.RasterCount print('\nRaster file: ' + aster_rasterfile) print('Rows x Columns x Bands: {0:d} x {1:d} x {2:d}'.format(rows, cols, bands)) geotransform = ds.GetGeoTransform() x0, dx, rx, y0, ry, dy = geotransform print('\nTop-Left corner (x,y): {0:12.4f}, {1:12.4f}'.format(x0, y0)) print('Pixel resolution (x,y): {0:12.4f}, {1:12.4f}'.format(dx, dy)) print('Axis rotation (x,y): {0:12.4f}, {1:12.4f}'.format(rx, ry)) # Read point coordinates (x,y) and cover from the sites geometry into a list. qstr = """ SELECT site_id, cover, geom, ST_AsBearing(ST_Azimuth(garden_city, geog)) AS bearing, ST_Distance(garden_city, geog) / 1000 AS dist_km FROM {schema}.{layer}, LATERAL ( -- using geography to give true bearings SELECT ST_PointFromText('POINT(-111.393384 41.946642)', 4326)::Geography AS garden_city, ST_Transform(geom, 4326)::Geography AS geog ) AS a ORDER BY dist_km; """.format(schema=sites_schema, layer=sites_layername) pgLayer = pgDS.ExecuteSQL(qstr) sites = [] for feat in pgLayer: coords = feat.GetGeometryRef().GetPoint_2D() sites.append({ 'site_id' : feat.GetField('site_id'), 'coords' : coords, 'cover' : feat.GetField('cover'), 'dist_km' : feat.GetField('dist_km'), 'bearing' : feat.GetField('bearing'), 'offset' : utils.get_raster_offset(coords, geotransform), 'data' : [], }) pgDS.ReleaseResultSet(pgLayer) startTime = time.time() READ_ENTIRE_BAND = False if READ_ENTIRE_BAND: print('\nReading entire band ...') else: print('\nReading one pixel at a time ...') for n in (1,2,3): band = ds.GetRasterBand(n) if (READ_ENTIRE_BAND): # Read entire band into an array. data = band.ReadAsArray(0, 0, cols, rows) for site in sites: col, row = site['offset'] site['data'].append(data[row, col]) else: # Read one pixel at a time. for site in sites: xoff, yoff = site['offset'] data = band.ReadAsArray(xoff, yoff, 1, 1) site['data'].append(data[0, 0]) band = data = None print('\n<id>: <northing>, <easting>, <bearing> <distance>: <cover> = (<b1>, <b2>, <b3>).') print('\nCoordinates are UTM 12N Northing, Easting (meters).') print('Bearing and Distance are straight line from Garden City, UT.') print() for site in sites: x, y= site['coords'] fmt = '{0:2d}: {1:.4f}, {2:.4f}, {3:s} {4:5.2f} km: {5:>6s} = ({6:2d}, {7:2d}, {8:2d})' print(fmt.format( site['site_id'], y, x, site['bearing'], site['dist_km'], site['cover'], *site['data'] )) endTime = time.time() print('\ntime: {0:.3f} sec'.format(endTime - startTime)) # Done. ds = None exit(0)
[ "chas.mack@asis.com" ]
chas.mack@asis.com
8a3169a1f97b905640130d9aea6dea851330c763
fc0e0379889bda5f3b7b7759983b1183ba73f7c9
/dnppy/download/download_filelist.py
f46b61e7e43aa23ee380a17d506a968e3275b8ea
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-us-govt-public-domain", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ritviksahajpal/dnppy
3a52d47f9926b1aff55da46cc45dde09a403ad02
2acf9c565ea2f5c79b5cd3d776a35aedd2d31e87
refs/heads/master
2021-01-15T21:45:00.924505
2015-09-30T14:59:29
2015-09-30T14:59:29
45,763,646
1
0
null
2015-11-08T02:21:51
2015-11-08T02:21:51
null
UTF-8
Python
false
false
2,465
py
__author__ = 'jwely' from dnppy import core from download_urls import download_urls import os, time __all__ = ["download_filelist"] def download_filelist(ftp_texts, file_type = None, outdir = None): """ Reads text file of download links, downloads them. This script reads a text file with urls such as those output from ECHO REVERB and outputs them to an output directory. It will retry failed links 20 times before giving up and outputting a warning to the user. :param ftp_texts: array of txt files ordered from reverb containing ftp links :param file_type: file extension of the desired files, leave blank or False to grab all types. :param outdir: folder where files are to be placed after download :return list failed: list of files which failed to download after the end of the script. """ failed = [] # force inputs to take list format ftp_texts = core.enf_list(ftp_texts) if file_type is not None: file_type = core.enf_list(file_type) for ftptext in ftp_texts: #verify that things exist. core.exists(ftptext) if not outdir: outdir,_ = os.path.split(ftptext) ftp = open(ftptext,'r') sites = ftp.readlines() print("Attempting to download {0} files!".format(len(sites))) print("Saving all files to {0}".format(outdir)) # perform the first attempt failed = download_urls(sites, outdir, file_type) # for 19 more times, if there are still items in the failed list, try again for i in range(1,19): if len(failed)>0: print("retry number {0} to grab {1} failed downloads!".format(i,len(failed))) time.sleep(60) failed = download_urls(failed, file_type, outdir) # once all tries are complete, print a list of files which repeatedly failed if len(failed)>0: print('Files at the following URLs have failed 20 download attempts') print('Manually verify that these files exist on the server:') for i in failed: print(i) else: print('Finished with no errors!') # close the open text files and finish up ftp.close() return failed # testing area if __name__ == "__main__": download_filelist("reverb_filelist.txt", outdir = r"C:\Users\jwely\Desktop\troubleshooting\rawMODIS")
[ "jeff.ely.08@gmail.com" ]
jeff.ely.08@gmail.com
a799df0fcaf22dcd868fec9bb264a4992a0d23cf
3bd6c53bff12f7450eafb9750aef8d9755c1643d
/Flask-blog/app/venv/Lib/site-packages/flask/cli.py
0c7adbbb1342fbb31b22612942783c9793172264
[]
no_license
harsht24/Blog-flask-web-app
10872475d166cc6c11a733b6c7eb49eefe7f68a0
9605ec67ab20005408786d3da5c5ff5ea6321560
refs/heads/master
2022-11-29T16:55:21.282679
2019-12-08T09:51:18
2019-12-08T09:51:18
214,374,818
0
1
null
2022-11-18T23:15:11
2019-10-11T07:43:28
Python
UTF-8
Python
false
false
30,939
py
# -*- coding: utf-8 -*- """ flask.cli ~~~~~~~~~ A simple command line application to run flask apps. :copyright: 2010 Pallets :license: BSD-3-Clause """ from __future__ import print_function import ast import inspect import os import platform import re import sys import traceback from functools import update_wrapper from operator import attrgetter from threading import Lock from threading import Thread import click from werkzeug.utils import import_string from ._compat import getargspec from ._compat import itervalues from ._compat import reraise from ._compat import text_type from .globals import current_app from .helpers import get_debug_flag from .helpers import get_env from .helpers import get_load_dotenv try: import dotenv except ImportError: dotenv = None try: import ssl except ImportError: ssl = None class NoAppException(click.UsageError): """Raised if an application cannot be found or loaded.""" def find_best_app(script_info, module): """Given a module instance this tries to find the best possible application in the module or raises an exception. """ from . import Flask # Search for the most common names first. for attr_name in ("app", "application"): app = getattr(module, attr_name, None) if isinstance(app, Flask): return app # Otherwise find the only object that is a Flask instance. matches = [v for v in itervalues(module.__dict__) if isinstance(v, Flask)] if len(matches) == 1: return matches[0] elif len(matches) > 1: raise NoAppException( 'Detected multiple Flask applications in module "{module}". Use ' '"FLASK_APP={module}:name" to specify the correct ' "one.".format(module=module.__name__) ) # Search for app factory functions. for attr_name in ("create_app", "make_app"): app_factory = getattr(module, attr_name, None) if inspect.isfunction(app_factory): try: app = call_factory(script_info, app_factory) if isinstance(app, Flask): return app except TypeError: if not _called_with_wrong_args(app_factory): raise raise NoAppException( 'Detected factory "{factory}" in module "{module}", but ' "could not call it without arguments. Use " "\"FLASK_APP='{module}:{factory}(args)'\" to specify " "arguments.".format(factory=attr_name, module=module.__name__) ) raise NoAppException( 'Failed to find Flask application or factory in module "{module}". ' 'Use "FLASK_APP={module}:name to specify one.'.format(module=module.__name__) ) def call_factory(script_info, app_factory, arguments=()): """Takes an app factory, a ``script_info` object and optionally a tuple of arguments. Checks for the existence of a script_info argument and calls the app_factory depending on that and the arguments provided. """ args_spec = getargspec(app_factory) arg_names = args_spec.args arg_defaults = args_spec.defaults if "script_info" in arg_names: return app_factory(*arguments, script_info=script_info) elif arguments: return app_factory(*arguments) elif not arguments and len(arg_names) == 1 and arg_defaults is None: return app_factory(script_info) return app_factory() def _called_with_wrong_args(factory): """Check whether calling a function raised a ``TypeError`` because the call failed or because something in the factory raised the error. :param factory: the factory function that was called :return: true if the call failed """ tb = sys.exc_info()[2] try: while tb is not None: if tb.tb_frame.f_code is factory.__code__: # in the factory, it was called successfully return False tb = tb.tb_next # didn't reach the factory return True finally: # explicitly delete tb as it is circular referenced # https://docs.python.org/2/library/sys.html#sys.exc_info del tb def find_app_by_string(script_info, module, app_name): """Checks if the given string is a variable name or a function. If it is a function, it checks for specified arguments and whether it takes a ``script_info`` argument and calls the function with the appropriate arguments. """ from . import Flask match = re.match(r"^ *([^ ()]+) *(?:\((.*?) *,? *\))? *$", app_name) if not match: raise NoAppException( '"{name}" is not a valid variable name or function ' "expression.".format(name=app_name) ) name, args = match.groups() try: attr = getattr(module, name) except AttributeError as e: raise NoAppException(e.args[0]) if inspect.isfunction(attr): if args: try: args = ast.literal_eval("({args},)".format(args=args)) except (ValueError, SyntaxError) as e: raise NoAppException( "Could not parse the arguments in " '"{app_name}".'.format(e=e, app_name=app_name) ) else: args = () try: app = call_factory(script_info, attr, args) except TypeError as e: if not _called_with_wrong_args(attr): raise raise NoAppException( '{e}\nThe factory "{app_name}" in module "{module}" could not ' "be called with the specified arguments.".format( e=e, app_name=app_name, module=module.__name__ ) ) else: app = attr if isinstance(app, Flask): return app raise NoAppException( "A valid Flask application was not obtained from " '"{module}:{app_name}".'.format(module=module.__name__, app_name=app_name) ) def prepare_import(path): """Given a filename this will try to calculate the python path, add it to the search path and return the actual module name that is expected. """ path = os.path.realpath(path) fname, ext = os.path.splitext(path) if ext == ".py": path = fname if os.path.basename(path) == "__init__": path = os.path.dirname(path) module_name = [] # move up until outside package structure (no __init__.py) while True: path, name = os.path.split(path) module_name.append(name) if not os.path.exists(os.path.join(path, "__init__.py")): break if sys.path[0] != path: sys.path.insert(0, path) return ".".join(module_name[::-1]) def locate_app(script_info, module_name, app_name, raise_if_not_found=True): __traceback_hide__ = True # noqa: F841 try: __import__(module_name) except ImportError: # Reraise the ImportError if it occurred within the imported module. # Determine this by checking whether the trace has a depth > 1. if sys.exc_info()[-1].tb_next: raise NoAppException( 'While importing "{name}", an ImportError was raised:' "\n\n{tb}".format(name=module_name, tb=traceback.format_exc()) ) elif raise_if_not_found: raise NoAppException('Could not import "{name}".'.format(name=module_name)) else: return module = sys.modules[module_name] if app_name is None: return find_best_app(script_info, module) else: return find_app_by_string(script_info, module, app_name) def get_version(ctx, param, value): if not value or ctx.resilient_parsing: return import werkzeug from . import __version__ message = "Python %(python)s\nFlask %(flask)s\nWerkzeug %(werkzeug)s" click.echo( message % { "python": platform.python_version(), "flask": __version__, "werkzeug": werkzeug.__version__, }, color=ctx.color, ) ctx.exit() version_option = click.Option( ["--version"], help="Show the flask version", expose_value=False, callback=get_version, is_flag=True, is_eager=True, ) class DispatchingApp(object): """Special application that dispatches to a Flask application which is imported by name in a background thread. If an error happens it is recorded and shown as part of the WSGI handling which in case of the Werkzeug debugger means that it shows up in the browser. """ def __init__(self, loader, use_eager_loading=False): self.loader = loader self._app = None self._lock = Lock() self._bg_loading_exc_info = None if use_eager_loading: self._load_unlocked() else: self._load_in_background() def _load_in_background(self): def _load_app(): __traceback_hide__ = True # noqa: F841 with self._lock: try: self._load_unlocked() except Exception: self._bg_loading_exc_info = sys.exc_info() t = Thread(target=_load_app, args=()) t.start() def _flush_bg_loading_exception(self): __traceback_hide__ = True # noqa: F841 exc_info = self._bg_loading_exc_info if exc_info is not None: self._bg_loading_exc_info = None reraise(*exc_info) def _load_unlocked(self): __traceback_hide__ = True # noqa: F841 self._app = rv = self.loader() self._bg_loading_exc_info = None return rv def __call__(self, environ, start_response): __traceback_hide__ = True # noqa: F841 if self._app is not None: return self._app(environ, start_response) self._flush_bg_loading_exception() with self._lock: if self._app is not None: rv = self._app else: rv = self._load_unlocked() return rv(environ, start_response) class ScriptInfo(object): """Helper object to deal with Flask applications. This is usually not necessary to interface with as it's used internally in the dispatching to click. In future versions of Flask this object will most likely play a bigger role. Typically it's created automatically by the :class:`FlaskGroup` but you can also manually create it and pass it onwards as click object. """ def __init__(self, app_import_path=None, create_app=None, set_debug_flag=True): #: Optionally the import path for the Flask application. self.app_import_path = app_import_path or os.environ.get("FLASK_APP") #: Optionally a function that is passed the script info to create #: the instance of the application. self.create_app = create_app #: A dictionary with arbitrary data that can be associated with #: this script info. self.data = {} self.set_debug_flag = set_debug_flag self._loaded_app = None def load_app(self): """Loads the Flask app (if not yet loaded) and returns it. Calling this multiple times will just result in the already loaded app to be returned. """ __traceback_hide__ = True # noqa: F841 if self._loaded_app is not None: return self._loaded_app app = None if self.create_app is not None: app = call_factory(self, self.create_app) else: if self.app_import_path: path, name = ( re.split(r":(?![\\/])", self.app_import_path, 1) + [None] )[:2] import_name = prepare_import(path) app = locate_app(self, import_name, name) else: for path in ("wsgi.py", "run.py"): import_name = prepare_import(path) app = locate_app(self, import_name, None, raise_if_not_found=False) if app: break if not app: raise NoAppException( "Could not locate a Flask application. You did not provide " 'the "FLASK_APP" environment variable, and a "wsgi.py" or ' '"run.py" module was not found in the current directory.' ) if self.set_debug_flag: # Update the app's debug flag through the descriptor so that # other values repopulate as well. app.debug = get_debug_flag() self._loaded_app = app return app pass_script_info = click.make_pass_decorator(ScriptInfo, ensure=True) def with_appcontext(f): """Wraps a callback so that it's guaranteed to be executed with the script's application context. If callbacks are registered directly to the ``app.cli`` object then they are wrapped with this function by default unless it's disabled. """ @click.pass_context def decorator(__ctx, *args, **kwargs): with __ctx.ensure_object(ScriptInfo).load_app().app_context(): return __ctx.invoke(f, *args, **kwargs) return update_wrapper(decorator, f) class AppGroup(click.Group): """This works similar to a regular click :class:`~click.Group` but it changes the behavior of the :meth:`command` decorator so that it automatically wraps the functions in :func:`with_appcontext`. Not to be confused with :class:`FlaskGroup`. """ def command(self, *args, **kwargs): """This works exactly like the method of the same name on a regular :class:`click.Group` but it wraps callbacks in :func:`with_appcontext` unless it's disabled by passing ``with_appcontext=False``. """ wrap_for_ctx = kwargs.pop("with_appcontext", True) def decorator(f): if wrap_for_ctx: f = with_appcontext(f) return click.Group.command(self, *args, **kwargs)(f) return decorator def group(self, *args, **kwargs): """This works exactly like the method of the same name on a regular :class:`click.Group` but it defaults the group class to :class:`AppGroup`. """ kwargs.setdefault("cls", AppGroup) return click.Group.group(self, *args, **kwargs) class FlaskGroup(AppGroup): """Special subclass of the :class:`AppGroup` group that supports loading more commands from the configured Flask app. Normally a developer does not have to interface with this class but there are some very advanced use cases for which it makes sense to create an instance of this. For information as of why this is useful see :ref:`custom-scripts`. :param add_default_commands: if this is True then the default run and shell commands will be added. :param add_version_option: adds the ``--version`` option. :param create_app: an optional callback that is passed the script info and returns the loaded app. :param load_dotenv: Load the nearest :file:`.venv` and :file:`.flaskenv` files to set environment variables. Will also change the working directory to the directory containing the first file found. :param set_debug_flag: Set the app's debug flag based on the active environment .. versionchanged:: 1.0 If installed, python-dotenv will be used to load environment variables from :file:`.venv` and :file:`.flaskenv` files. """ def __init__( self, add_default_commands=True, create_app=None, add_version_option=True, load_dotenv=True, set_debug_flag=True, **extra ): params = list(extra.pop("params", None) or ()) if add_version_option: params.append(version_option) AppGroup.__init__(self, params=params, **extra) self.create_app = create_app self.load_dotenv = load_dotenv self.set_debug_flag = set_debug_flag if add_default_commands: self.add_command(run_command) self.add_command(shell_command) self.add_command(routes_command) self._loaded_plugin_commands = False def _load_plugin_commands(self): if self._loaded_plugin_commands: return try: import pkg_resources except ImportError: self._loaded_plugin_commands = True return for ep in pkg_resources.iter_entry_points("flask.commands"): self.add_command(ep.load(), ep.name) self._loaded_plugin_commands = True def get_command(self, ctx, name): self._load_plugin_commands() # We load built-in commands first as these should always be the # same no matter what the app does. If the app does want to # override this it needs to make a custom instance of this group # and not attach the default commands. # # This also means that the script stays functional in case the # application completely fails. rv = AppGroup.get_command(self, ctx, name) if rv is not None: return rv info = ctx.ensure_object(ScriptInfo) try: rv = info.load_app().cli.get_command(ctx, name) if rv is not None: return rv except NoAppException: pass def list_commands(self, ctx): self._load_plugin_commands() # The commands available is the list of both the application (if # available) plus the builtin commands. rv = set(click.Group.list_commands(self, ctx)) info = ctx.ensure_object(ScriptInfo) try: rv.update(info.load_app().cli.list_commands(ctx)) except Exception: # Here we intentionally swallow all exceptions as we don't # want the help page to break if the app does not exist. # If someone attempts to use the command we try to create # the app again and this will give us the error. # However, we will not do so silently because that would confuse # users. traceback.print_exc() return sorted(rv) def main(self, *args, **kwargs): # Set a global flag that indicates that we were invoked from the # command line interface. This is detected by Flask.run to make the # call into a no-op. This is necessary to avoid ugly errors when the # script that is loaded here also attempts to start a server. os.environ["FLASK_RUN_FROM_CLI"] = "true" if get_load_dotenv(self.load_dotenv): load_dotenv() obj = kwargs.get("obj") if obj is None: obj = ScriptInfo( create_app=self.create_app, set_debug_flag=self.set_debug_flag ) kwargs["obj"] = obj kwargs.setdefault("auto_envvar_prefix", "FLASK") return super(FlaskGroup, self).main(*args, **kwargs) def _path_is_ancestor(path, other): """Take ``other`` and remove the length of ``path`` from it. Then join it to ``path``. If it is the original value, ``path`` is an ancestor of ``other``.""" return os.path.join(path, other[len(path) :].lstrip(os.sep)) == other def load_dotenv(path=None): """Load "dotenv" files in order of precedence to set environment variables. If an venv var is already set it is not overwritten, so earlier files in the list are preferred over later files. Changes the current working directory to the location of the first file found, with the assumption that it is in the top level project directory and will be where the Python path should import local packages from. This is a no-op if `python-dotenv`_ is not installed. .. _python-dotenv: https://github.com/theskumar/python-dotenv#readme :param path: Load the file at this location instead of searching. :return: ``True`` if a file was loaded. .. versionchanged:: 1.1.0 Returns ``False`` when python-dotenv is not installed, or when the given path isn't a file. .. versionadded:: 1.0 """ if dotenv is None: if path or os.path.isfile(".venv") or os.path.isfile(".flaskenv"): click.secho( " * Tip: There are .venv or .flaskenv files present." ' Do "pip install python-dotenv" to use them.', fg="yellow", err=True, ) return False # if the given path specifies the actual file then return True, # else False if path is not None: if os.path.isfile(path): return dotenv.load_dotenv(path) return False new_dir = None for name in (".venv", ".flaskenv"): path = dotenv.find_dotenv(name, usecwd=True) if not path: continue if new_dir is None: new_dir = os.path.dirname(path) dotenv.load_dotenv(path) if new_dir and os.getcwd() != new_dir: os.chdir(new_dir) return new_dir is not None # at least one file was located and loaded def show_server_banner(env, debug, app_import_path, eager_loading): """Show extra startup messages the first time the server is run, ignoring the reloader. """ if os.environ.get("WERKZEUG_RUN_MAIN") == "true": return if app_import_path is not None: message = ' * Serving Flask app "{0}"'.format(app_import_path) if not eager_loading: message += " (lazy loading)" click.echo(message) click.echo(" * Environment: {0}".format(env)) if env == "production": click.secho( " WARNING: This is a development server. " "Do not use it in a production deployment.", fg="red", ) click.secho(" Use a production WSGI server instead.", dim=True) if debug is not None: click.echo(" * Debug mode: {0}".format("on" if debug else "off")) class CertParamType(click.ParamType): """Click option type for the ``--cert`` option. Allows either an existing file, the string ``'adhoc'``, or an import for a :class:`~ssl.SSLContext` object. """ name = "path" def __init__(self): self.path_type = click.Path(exists=True, dir_okay=False, resolve_path=True) def convert(self, value, param, ctx): if ssl is None: raise click.BadParameter( 'Using "--cert" requires Python to be compiled with SSL support.', ctx, param, ) try: return self.path_type(value, param, ctx) except click.BadParameter: value = click.STRING(value, param, ctx).lower() if value == "adhoc": try: import OpenSSL # noqa: F401 except ImportError: raise click.BadParameter( "Using ad-hoc certificates requires pyOpenSSL.", ctx, param ) return value obj = import_string(value, silent=True) if sys.version_info < (2, 7, 9): if obj: return obj else: if isinstance(obj, ssl.SSLContext): return obj raise def _validate_key(ctx, param, value): """The ``--key`` option must be specified when ``--cert`` is a file. Modifies the ``cert`` param to be a ``(cert, key)`` pair if needed. """ cert = ctx.params.get("cert") is_adhoc = cert == "adhoc" if sys.version_info < (2, 7, 9): is_context = cert and not isinstance(cert, (text_type, bytes)) else: is_context = isinstance(cert, ssl.SSLContext) if value is not None: if is_adhoc: raise click.BadParameter( 'When "--cert" is "adhoc", "--key" is not used.', ctx, param ) if is_context: raise click.BadParameter( 'When "--cert" is an SSLContext object, "--key is not used.', ctx, param ) if not cert: raise click.BadParameter('"--cert" must also be specified.', ctx, param) ctx.params["cert"] = cert, value else: if cert and not (is_adhoc or is_context): raise click.BadParameter('Required when using "--cert".', ctx, param) return value class SeparatedPathType(click.Path): """Click option type that accepts a list of values separated by the OS's path separator (``:``, ``;`` on Windows). Each value is validated as a :class:`click.Path` type. """ def convert(self, value, param, ctx): items = self.split_envvar_value(value) super_convert = super(SeparatedPathType, self).convert return [super_convert(item, param, ctx) for item in items] @click.command("run", short_help="Run a development server.") @click.option("--host", "-h", default="127.0.0.1", help="The interface to bind to.") @click.option("--port", "-p", default=5000, help="The port to bind to.") @click.option( "--cert", type=CertParamType(), help="Specify a certificate file to use HTTPS." ) @click.option( "--key", type=click.Path(exists=True, dir_okay=False, resolve_path=True), callback=_validate_key, expose_value=False, help="The key file to use when specifying a certificate.", ) @click.option( "--reload/--no-reload", default=None, help="Enable or disable the reloader. By default the reloader " "is active if debug is enabled.", ) @click.option( "--debugger/--no-debugger", default=None, help="Enable or disable the debugger. By default the debugger " "is active if debug is enabled.", ) @click.option( "--eager-loading/--lazy-loader", default=None, help="Enable or disable eager loading. By default eager " "loading is enabled if the reloader is disabled.", ) @click.option( "--with-threads/--without-threads", default=True, help="Enable or disable multithreading.", ) @click.option( "--extra-files", default=None, type=SeparatedPathType(), help=( "Extra files that trigger a reload on change. Multiple paths" " are separated by '{}'.".format(os.path.pathsep) ), ) @pass_script_info def run_command( info, host, port, reload, debugger, eager_loading, with_threads, cert, extra_files ): """Run a local development server. This server is for development purposes only. It does not provide the stability, security, or performance of production WSGI servers. The reloader and debugger are enabled by default if FLASK_ENV=development or FLASK_DEBUG=1. """ debug = get_debug_flag() if reload is None: reload = debug if debugger is None: debugger = debug if eager_loading is None: eager_loading = not reload show_server_banner(get_env(), debug, info.app_import_path, eager_loading) app = DispatchingApp(info.load_app, use_eager_loading=eager_loading) from werkzeug.serving import run_simple run_simple( host, port, app, use_reloader=reload, use_debugger=debugger, threaded=with_threads, ssl_context=cert, extra_files=extra_files, ) @click.command("shell", short_help="Run a shell in the app context.") @with_appcontext def shell_command(): """Run an interactive Python shell in the context of a given Flask application. The application will populate the default namespace of this shell according to it's configuration. This is useful for executing small snippets of management code without having to manually configure the application. """ import code from .globals import _app_ctx_stack app = _app_ctx_stack.top.app banner = "Python %s on %s\nApp: %s [%s]\nInstance: %s" % ( sys.version, sys.platform, app.import_name, app.env, app.instance_path, ) ctx = {} # Support the regular Python interpreter startup script if someone # is using it. startup = os.environ.get("PYTHONSTARTUP") if startup and os.path.isfile(startup): with open(startup, "r") as f: eval(compile(f.read(), startup, "exec"), ctx) ctx.update(app.make_shell_context()) code.interact(banner=banner, local=ctx) @click.command("routes", short_help="Show the routes for the app.") @click.option( "--sort", "-s", type=click.Choice(("endpoint", "methods", "rule", "match")), default="endpoint", help=( 'Method to sort routes by. "match" is the order that Flask will match ' "routes when dispatching a request." ), ) @click.option("--all-methods", is_flag=True, help="Show HEAD and OPTIONS methods.") @with_appcontext def routes_command(sort, all_methods): """Show all registered routes with endpoints and methods.""" rules = list(current_app.url_map.iter_rules()) if not rules: click.echo("No routes were registered.") return ignored_methods = set(() if all_methods else ("HEAD", "OPTIONS")) if sort in ("endpoint", "rule"): rules = sorted(rules, key=attrgetter(sort)) elif sort == "methods": rules = sorted(rules, key=lambda rule: sorted(rule.methods)) rule_methods = [", ".join(sorted(rule.methods - ignored_methods)) for rule in rules] headers = ("Endpoint", "Methods", "Rule") widths = ( max(len(rule.endpoint) for rule in rules), max(len(methods) for methods in rule_methods), max(len(rule.rule) for rule in rules), ) widths = [max(len(h), w) for h, w in zip(headers, widths)] row = "{{0:<{0}}} {{1:<{1}}} {{2:<{2}}}".format(*widths) click.echo(row.format(*headers).strip()) click.echo(row.format(*("-" * width for width in widths))) for rule, methods in zip(rules, rule_methods): click.echo(row.format(rule.endpoint, methods, rule.rule).rstrip()) cli = FlaskGroup( help="""\ A general utility script for Flask applications. Provides commands from Flask, extensions, and the application. Loads the application defined in the FLASK_APP environment variable, or from a wsgi.py file. Setting the FLASK_ENV environment variable to 'development' will enable debug mode. \b {prefix}{cmd} FLASK_APP=hello.py {prefix}{cmd} FLASK_ENV=development {prefix}flask run """.format( cmd="export" if os.name == "posix" else "set", prefix="$ " if os.name == "posix" else "> ", ) ) def main(as_module=False): cli.main(prog_name="python -m flask" if as_module else None) if __name__ == "__main__": main(as_module=True)
[ "htamkiya24@gmail.com" ]
htamkiya24@gmail.com
ca0abc7ff8fd53a24c8109ee36bf48ce9d1726e7
543d43411cdb6623f8dc7a1c9578d68113497791
/fplo/fplo.py
f47340c06727d9c31759a28d4120978a851e0341
[]
no_license
DMFTSever/wannlib
4a46ce23df89b9d175b13b24155ebe2d40acdc07
459fdb7816ccffecfeb0a4371b981debaca97c29
refs/heads/master
2021-07-06T02:13:14.641259
2021-04-19T10:04:49
2021-04-19T10:04:49
232,587,557
0
0
null
null
null
null
UTF-8
Python
false
false
3,704
py
#########NEEDS TO BE TESTED########## #########NEEDS TO BE TESTED########## #########NEEDS TO BE TESTED########## #########NEEDS TO BE TESTED########## #########NEEDS TO BE TESTED########## #########NEEDS TO BE TESTED########## #########NEEDS TO BE TESTED########## #########NEEDS TO BE TESTED########## #########NOT WORKING########## import sys import os sys.path.insert(0,sys.argv[0].replace('/wannlib/fplo/fplo.py','')) import numpy as np #from . import fplo_core as fplo from wannlib.fplo import fplo_core as fplo import wannlib.core.wannlib_core as core def make_wannier90_hk(fnameHk, meshDims, fnameHr): ''' Routine to read fplo H(r) and Fourier transfrom it to a monhorst pack kmesh with user specifed dimensions ''' rbasis, hr = fplo.read_fplo(fname=fnameHr) mesh = core.generate_direct_coord_monkhorst_pack_kmesh(npoints=meshDims).reshape(meshDims.prod(),3) hk = fplo.fourier_transform_hr(hr=hr,kpoints=mesh) core.write_wannier90_hk(fname=fnameHk, hk=hk, kpoints=mesh) def generate_bandstructure_from_fplo(steps, points, fnameHr): #TODO GO ON HERE fix it!!! ''' Generating a Bandstructure form FPLO outpout. ''' rbasis, hr = fplo.read_fplo(fname=fnameHr) print(rbasis.shape, hr.shape) print(rbasis) kbasis = 2.*np.pi*np.linalg.inv(rbasis) kpath, cartkpath = core.generate_k_path(steps=steps, points=points, kbasis=kbasis) diffs = np.linalg.norm(cartkpath[1:]-cartkpath[0:-1],axis=1) dist = np.array([np.sum(diffs[:i]) for i in range(0,len(cartkpath))]) hk = fplo.fourier_transform_hr(hr=hr, kpoints=cartkpath) print(cartkpath.shape, hk.shape) ee, ev = np.linalg.eigh(hk) #IT ALREADY WRONG HERE! print(ee.shape) np.savetxt('test.dat', ee) return dist, ee, ev def make_bandstructure_from_fplo(fnameOut, steps, points, fnameHr): distance, eigenenergies, eigenvectors = generate_bandstructure_from_fplo(steps=steps, points=points, fnameHr=fnameHr) nintervals=len(points)-1 norb = eigenenergies.shape[-1] nenergyvec = np.repeat(np.arange(1,norb+1),steps*nintervals) eigenenergies = eigenenergies.flatten(order='F') eigenvectors = eigenvectors.transpose(1,0,2).reshape((eigenvectors.shape[0]*eigenvectors.shape[1],eigenvectors.shape[2])) projections = np.real(eigenvectors*eigenvectors.conjugate()) distance = np.repeat(distance[:,None], repeats=norb, axis=1).flatten(order='F') bands = np.concatenate((nenergyvec[:,None], distance[:,None], eigenenergies[:,None], projections), axis=1) formatspec = ['%6d','%12.8f','%12.8f'] for i in range(norb): formatspec += ['%12.8f'] with open(fnameOut,'w') as outstream: outstream.write("#PATH\n#") for point in points[:-1]: outstream.write(" {} -".format(point)) outstream.write(" {}".format(points[-1])) outstream.write("\n\n") outstream.write('{index:^6} {kdist:^12} {energy:^12}'.format(index='#index' ,kdist='kdist', energy='energy')) for i in range(norb): outstream.write(' {orb:^12}'.format(orb='orb'+str((i+1)))) outstream.write('\n') for i in range(0,norb): for j in range(0,nintervals): np.savetxt(fname=outstream, X=bands[(i*nintervals+j)*steps:(i*nintervals+j+1)*steps], fmt=formatspec) outstream.write('\n') outstream.write('\n') if __name__ == '__main__': import sys import os sys.path.insert(0,sys.argv[0].replace('/wannlib/fplo/fplo.py','')) from wannlib.core import wannlib from wannlib.core import wannlib_core as core make_bandstructure_from_fplo('bands.dat', 50, np.array([[0,0,0],[0.5,0.5,0]]),'hamdata')
[ "severino-adler@gmx.at" ]
severino-adler@gmx.at
71064b46b0fae8627c888907c272fc24bd26f089
49edfa75ca899a2ff8c77420b81f6991e325c264
/manage.py
fafb9cc1d8aecfdaf4e9bc9d798720150e79b8ac
[ "MIT" ]
permissive
renelhs/cellfixstore
5dd39321c443cd925cca5ffa9b1448d6e7aea4fb
040f66be7bdb506661ba9d4cf6125d5eaf56711c
refs/heads/master
2023-04-29T18:50:48.405418
2022-05-17T23:11:48
2022-05-17T23:11:48
195,576,978
7
1
MIT
2023-04-21T20:53:36
2019-07-06T19:41:43
JavaScript
UTF-8
Python
false
false
632
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'CellFixStore.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "reneluishs@gmail.com" ]
reneluishs@gmail.com
e56b7daab727de9003a359bfb002d938fe3de0a0
2ed86a79d0fcd299ad4a01310954c5eddcf01edf
/homeassistant/components/unifiprotect/models.py
40280c028679c32d62305d9bc8484ac72a4f0966
[ "Apache-2.0" ]
permissive
konnected-io/home-assistant
037f12c87bb79e19220192eb918e49db1b1a8b3e
2e65b77b2b5c17919939481f327963abdfdc53f0
refs/heads/dev
2023-05-11T08:57:41.891518
2023-05-07T20:03:37
2023-05-07T20:03:37
109,931,626
24
10
Apache-2.0
2023-02-22T06:24:01
2017-11-08T05:27:21
Python
UTF-8
Python
false
false
3,794
py
"""The unifiprotect integration models.""" from __future__ import annotations from collections.abc import Callable, Coroutine from dataclasses import dataclass from enum import Enum import logging from typing import Any, Generic, TypeVar, cast from pyunifiprotect.data import NVR, Event, ProtectAdoptableDeviceModel from homeassistant.helpers.entity import EntityDescription from .utils import get_nested_attr _LOGGER = logging.getLogger(__name__) T = TypeVar("T", bound=ProtectAdoptableDeviceModel | NVR) class PermRequired(int, Enum): """Type of permission level required for entity.""" NO_WRITE = 1 WRITE = 2 DELETE = 3 @dataclass class ProtectRequiredKeysMixin(EntityDescription, Generic[T]): """Mixin for required keys.""" ufp_required_field: str | None = None ufp_value: str | None = None ufp_value_fn: Callable[[T], Any] | None = None ufp_enabled: str | None = None ufp_perm: PermRequired | None = None def get_ufp_value(self, obj: T) -> Any: """Return value from UniFi Protect device.""" if self.ufp_value is not None: return get_nested_attr(obj, self.ufp_value) if self.ufp_value_fn is not None: return self.ufp_value_fn(obj) # reminder for future that one is required raise RuntimeError( # pragma: no cover "`ufp_value` or `ufp_value_fn` is required" ) def get_ufp_enabled(self, obj: T) -> bool: """Return value from UniFi Protect device.""" if self.ufp_enabled is not None: return bool(get_nested_attr(obj, self.ufp_enabled)) return True def has_required(self, obj: T) -> bool: """Return if has required field.""" if self.ufp_required_field is None: return True return bool(get_nested_attr(obj, self.ufp_required_field)) @dataclass class ProtectEventMixin(ProtectRequiredKeysMixin[T]): """Mixin for events.""" ufp_event_obj: str | None = None ufp_smart_type: str | None = None def get_event_obj(self, obj: T) -> Event | None: """Return value from UniFi Protect device.""" if self.ufp_event_obj is not None: return cast(Event, get_nested_attr(obj, self.ufp_event_obj)) return None def get_is_on(self, obj: T) -> bool: """Return value if event is active.""" value = bool(self.get_ufp_value(obj)) if value: event = self.get_event_obj(obj) value = event is not None if not value: _LOGGER.debug("%s (%s): missing event", self.name, obj.mac) if event is not None and self.ufp_smart_type is not None: value = self.ufp_smart_type in event.smart_detect_types if not value: _LOGGER.debug( "%s (%s): %s not in %s", self.name, obj.mac, self.ufp_smart_type, event.smart_detect_types, ) if value: _LOGGER.debug("%s (%s): value is on", self.name, obj.mac) return value @dataclass class ProtectSetableKeysMixin(ProtectRequiredKeysMixin[T]): """Mixin for settable values.""" ufp_set_method: str | None = None ufp_set_method_fn: Callable[[T, Any], Coroutine[Any, Any, None]] | None = None async def ufp_set(self, obj: T, value: Any) -> None: """Set value for UniFi Protect device.""" _LOGGER.debug("Setting %s to %s for %s", self.name, value, obj.display_name) if self.ufp_set_method is not None: await getattr(obj, self.ufp_set_method)(value) elif self.ufp_set_method_fn is not None: await self.ufp_set_method_fn(obj, value)
[ "noreply@github.com" ]
konnected-io.noreply@github.com
02363f4518e3339d42cf6906fe43a45d3a73b017
79b186222cc8ee6442522f4c5c3ebba4b835f4b4
/seqlib/gff/add_gene_id.py
6df07977943317c5adb67080ced856beabc0bd56
[]
no_license
sudmantlab/seqlib
2b669df20a862d84e348d6fea7a128ef64729d64
071a72f27cd0c160618404850f23b8666a8d74e2
refs/heads/master
2022-06-27T01:02:36.381101
2022-06-16T19:14:15
2022-06-16T19:14:15
148,357,509
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
import sys if __name__=="__main__": for l in sys.stdin: if l[0] == "#": continue l=l.rstrip() sl = l.split() if "geneID" in sl[-1]: d={e.split("=")[0]:e.split("=")[1] for e in sl[-1].split(";")} d["gene_id"] = d['geneID'] sl[-1] = ";".join(["%s=%s"%(k,v) for k,v in d.iteritems()]) print("\t".join(sl))
[ "psudmant@login001.cm.cluster" ]
psudmant@login001.cm.cluster
b55ff943b7348ac97fe1fa40cdb31aa99fe65765
878eb4b539d77051dd7330389b90d988d9aef8f3
/CAPITULO 8/Exercicio D.py
84d36064619169f2f794772564090700dfaff17a
[ "MIT" ]
permissive
LarmIg/Algoritmos-Python
a031badc9f607cbbc109ee4ca8bfe60d5636d867
f2c9889705cacac007833f6ab9a413b06213f882
refs/heads/master
2022-11-25T05:36:26.313469
2020-07-25T11:59:36
2020-07-25T11:59:36
282,436,201
0
0
MIT
2020-07-25T12:08:13
2020-07-25T12:08:12
null
UTF-8
Python
false
false
1,029
py
# Elaborar um programa que leia uma matriz A de uma dimensão com dez elementos inteiros. Construir uma matriz C de duas dimensões com três colunas, sendo a primeira coluna da matriz C formada pelos elementos da matriz A somados com 5, a segunda coluna seja formada pelo valor do cálculo da fatorial de cada elemento correspondente da matriz A, e a terceira e última coluna pelos quadrados dos elementos correspondentes da matriz A. Apresentar a matriz C A = [] C= [[], [], []] for i in range(10): A.append(int(input('Informe um valor para matriz A: '))) for i in range(1): for j in range(10): C[i].append(int(A[j] + 5)) for i in range(1, 2): for j in range(10): n = A[j] result = 1 for x in range(1, n + 1): result *= x C[i].append(result) for i in range(2, 3): for j in range(10): C[i].append(int(A[j] ** 2)) print('='*40) for i in range(len(C)): for j in range(7): print('C[{}][{}] = {}'.format(i, j, C[i][j]))
[ "noreply@github.com" ]
LarmIg.noreply@github.com
9077b9c2ed66691d447341572e390acefbb7102b
d0e083ce351b9680f1fe46a5216f605aefc47018
/Everything/Daily_Backup/multiply_fits.py
dd5b84f66ef69ef9b9d51722a972782bf9fbb9a4
[]
no_license
bhishanpdl/Backups
ebfad64cc4f0a0999064f5f4dccf2320c7db8329
e041a6c3f4a15c9e1f3eee88b6ea745fd0ea9add
refs/heads/master
2020-04-27T09:18:32.444634
2019-03-06T19:51:29
2019-03-06T19:51:29
174,209,387
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*-# # # Author : Bhishan Poudel; Physics PhD Student, Ohio University # Date : May 10, 2017 Wed # Last update : Jun 19, 2017 Mon # Est time : 0.001 sec # # Imports import numpy as np import sys,os,shutil import random from astropy.io import fits from astropy import wcs def multiply_fits(fitsfile,value): # Get data data = fits.getdata(fitsfile) * value # Write output file print('Overwriting: ', fitsfile) fits.writeto(fitsfile,data,clobber=True) def main(): fitsfile = 'trial1_HST.fits' value = 1000 multiply_fits(fitsfile,value) if __name__ == '__main__': main()
[ "bhishantryphysics@gmail.com" ]
bhishantryphysics@gmail.com
4a2953c41e514a7923931593ca37e3dd158a7b2a
5277d3db7b60898536f50ff431de3caeb8e58862
/src/sensor.py
a312f9070cba4aee46cb5bf023e34e711e913cba
[ "MIT" ]
permissive
alexaldr/python-unit-tests
7696fef5e2ad68a740914b1a215bb42e8295ee0a
94512762e96de570eec0f980cb1d94899e580df3
refs/heads/master
2023-04-13T20:02:54.230865
2020-05-01T02:36:07
2020-05-01T02:36:07
259,465,259
0
0
MIT
2021-04-20T19:56:10
2020-04-27T21:53:33
Python
UTF-8
Python
false
false
62
py
class Sensor: def sample_pressure(self): pass
[ "alex.aldr@gmail.com" ]
alex.aldr@gmail.com
fa825e94d5fc57e894508ca22017e6457327263a
55a273347cb103fe2b2704cb9653956956d0dd34
/code/tmp_rtrip/sqlite3/test/types.py
d816fa20af66bdd8e104eabc6a7b8851ebb72291
[ "MIT" ]
permissive
emilyemorehouse/ast-and-me
4af1bc74fc967ea69ac1aed92664f6428acabe6a
3f58117512e125e1ecbe3c72f2f0d26adb80b7b3
refs/heads/master
2022-11-18T03:50:36.505882
2018-05-12T17:53:44
2018-05-12T17:53:44
115,035,148
25
1
MIT
2022-11-04T11:36:43
2017-12-21T18:27:19
Python
UTF-8
Python
false
false
13,998
py
import datetime import unittest import sqlite3 as sqlite try: import zlib except ImportError: zlib = None class SqliteTypeTests(unittest.TestCase): def setUp(self): self.con = sqlite.connect(':memory:') self.cur = self.con.cursor() self.cur.execute( 'create table test(i integer, s varchar, f number, b blob)') def tearDown(self): self.cur.close() self.con.close() def CheckString(self): self.cur.execute('insert into test(s) values (?)', ('Österreich',)) self.cur.execute('select s from test') row = self.cur.fetchone() self.assertEqual(row[0], 'Österreich') def CheckSmallInt(self): self.cur.execute('insert into test(i) values (?)', (42,)) self.cur.execute('select i from test') row = self.cur.fetchone() self.assertEqual(row[0], 42) def CheckLargeInt(self): num = 2 ** 40 self.cur.execute('insert into test(i) values (?)', (num,)) self.cur.execute('select i from test') row = self.cur.fetchone() self.assertEqual(row[0], num) def CheckFloat(self): val = 3.14 self.cur.execute('insert into test(f) values (?)', (val,)) self.cur.execute('select f from test') row = self.cur.fetchone() self.assertEqual(row[0], val) def CheckBlob(self): sample = b'Guglhupf' val = memoryview(sample) self.cur.execute('insert into test(b) values (?)', (val,)) self.cur.execute('select b from test') row = self.cur.fetchone() self.assertEqual(row[0], sample) def CheckUnicodeExecute(self): self.cur.execute("select 'Österreich'") row = self.cur.fetchone() self.assertEqual(row[0], 'Österreich') class DeclTypesTests(unittest.TestCase): class Foo: def __init__(self, _val): if isinstance(_val, bytes): _val = _val.decode('utf-8') self.val = _val def __eq__(self, other): if not isinstance(other, DeclTypesTests.Foo): return NotImplemented return self.val == other.val def __conform__(self, protocol): if protocol is sqlite.PrepareProtocol: return self.val else: return None def __str__(self): return '<%s>' % self.val def setUp(self): self.con = sqlite.connect(':memory:', detect_types=sqlite. PARSE_DECLTYPES) self.cur = self.con.cursor() self.cur.execute( 'create table test(i int, s str, f float, b bool, u unicode, foo foo, bin blob, n1 number, n2 number(5))' ) sqlite.converters['FLOAT'] = lambda x: 47.2 sqlite.converters['BOOL'] = lambda x: bool(int(x)) sqlite.converters['FOO'] = DeclTypesTests.Foo sqlite.converters['WRONG'] = lambda x: 'WRONG' sqlite.converters['NUMBER'] = float def tearDown(self): del sqlite.converters['FLOAT'] del sqlite.converters['BOOL'] del sqlite.converters['FOO'] del sqlite.converters['NUMBER'] self.cur.close() self.con.close() def CheckString(self): self.cur.execute('insert into test(s) values (?)', ('foo',)) self.cur.execute('select s as "s [WRONG]" from test') row = self.cur.fetchone() self.assertEqual(row[0], 'foo') def CheckSmallInt(self): self.cur.execute('insert into test(i) values (?)', (42,)) self.cur.execute('select i from test') row = self.cur.fetchone() self.assertEqual(row[0], 42) def CheckLargeInt(self): num = 2 ** 40 self.cur.execute('insert into test(i) values (?)', (num,)) self.cur.execute('select i from test') row = self.cur.fetchone() self.assertEqual(row[0], num) def CheckFloat(self): val = 3.14 self.cur.execute('insert into test(f) values (?)', (val,)) self.cur.execute('select f from test') row = self.cur.fetchone() self.assertEqual(row[0], 47.2) def CheckBool(self): self.cur.execute('insert into test(b) values (?)', (False,)) self.cur.execute('select b from test') row = self.cur.fetchone() self.assertEqual(row[0], False) self.cur.execute('delete from test') self.cur.execute('insert into test(b) values (?)', (True,)) self.cur.execute('select b from test') row = self.cur.fetchone() self.assertEqual(row[0], True) def CheckUnicode(self): val = 'Österreich' self.cur.execute('insert into test(u) values (?)', (val,)) self.cur.execute('select u from test') row = self.cur.fetchone() self.assertEqual(row[0], val) def CheckFoo(self): val = DeclTypesTests.Foo('bla') self.cur.execute('insert into test(foo) values (?)', (val,)) self.cur.execute('select foo from test') row = self.cur.fetchone() self.assertEqual(row[0], val) def CheckUnsupportedSeq(self): class Bar: pass val = Bar() with self.assertRaises(sqlite.InterfaceError): self.cur.execute('insert into test(f) values (?)', (val,)) def CheckUnsupportedDict(self): class Bar: pass val = Bar() with self.assertRaises(sqlite.InterfaceError): self.cur.execute('insert into test(f) values (:val)', {'val': val}) def CheckBlob(self): sample = b'Guglhupf' val = memoryview(sample) self.cur.execute('insert into test(bin) values (?)', (val,)) self.cur.execute('select bin from test') row = self.cur.fetchone() self.assertEqual(row[0], sample) def CheckNumber1(self): self.cur.execute('insert into test(n1) values (5)') value = self.cur.execute('select n1 from test').fetchone()[0] self.assertEqual(type(value), float) def CheckNumber2(self): """Checks whether converter names are cut off at '(' characters""" self.cur.execute('insert into test(n2) values (5)') value = self.cur.execute('select n2 from test').fetchone()[0] self.assertEqual(type(value), float) class ColNamesTests(unittest.TestCase): def setUp(self): self.con = sqlite.connect(':memory:', detect_types=sqlite. PARSE_COLNAMES) self.cur = self.con.cursor() self.cur.execute('create table test(x foo)') sqlite.converters['FOO'] = lambda x: '[%s]' % x.decode('ascii') sqlite.converters['BAR'] = lambda x: '<%s>' % x.decode('ascii') sqlite.converters['EXC'] = lambda x: 5 / 0 sqlite.converters['B1B1'] = lambda x: 'MARKER' def tearDown(self): del sqlite.converters['FOO'] del sqlite.converters['BAR'] del sqlite.converters['EXC'] del sqlite.converters['B1B1'] self.cur.close() self.con.close() def CheckDeclTypeNotUsed(self): """ Assures that the declared type is not used when PARSE_DECLTYPES is not set. """ self.cur.execute('insert into test(x) values (?)', ('xxx',)) self.cur.execute('select x from test') val = self.cur.fetchone()[0] self.assertEqual(val, 'xxx') def CheckNone(self): self.cur.execute('insert into test(x) values (?)', (None,)) self.cur.execute('select x from test') val = self.cur.fetchone()[0] self.assertEqual(val, None) def CheckColName(self): self.cur.execute('insert into test(x) values (?)', ('xxx',)) self.cur.execute('select x as "x [bar]" from test') val = self.cur.fetchone()[0] self.assertEqual(val, '<xxx>') self.assertEqual(self.cur.description[0][0], 'x') def CheckCaseInConverterName(self): self.cur.execute('select \'other\' as "x [b1b1]"') val = self.cur.fetchone()[0] self.assertEqual(val, 'MARKER') def CheckCursorDescriptionNoRow(self): """ cursor.description should at least provide the column name(s), even if no row returned. """ self.cur.execute('select * from test where 0 = 1') self.assertEqual(self.cur.description[0][0], 'x') def CheckCursorDescriptionInsert(self): self.cur.execute('insert into test values (1)') self.assertIsNone(self.cur.description) @unittest.skipIf(sqlite.sqlite_version_info < (3, 8, 3), 'CTEs not supported') class CommonTableExpressionTests(unittest.TestCase): def setUp(self): self.con = sqlite.connect(':memory:') self.cur = self.con.cursor() self.cur.execute('create table test(x foo)') def tearDown(self): self.cur.close() self.con.close() def CheckCursorDescriptionCTESimple(self): self.cur.execute('with one as (select 1) select * from one') self.assertIsNotNone(self.cur.description) self.assertEqual(self.cur.description[0][0], '1') def CheckCursorDescriptionCTESMultipleColumns(self): self.cur.execute('insert into test values(1)') self.cur.execute('insert into test values(2)') self.cur.execute( 'with testCTE as (select * from test) select * from testCTE') self.assertIsNotNone(self.cur.description) self.assertEqual(self.cur.description[0][0], 'x') def CheckCursorDescriptionCTE(self): self.cur.execute('insert into test values (1)') self.cur.execute( 'with bar as (select * from test) select * from test where x = 1') self.assertIsNotNone(self.cur.description) self.assertEqual(self.cur.description[0][0], 'x') self.cur.execute( 'with bar as (select * from test) select * from test where x = 2') self.assertIsNotNone(self.cur.description) self.assertEqual(self.cur.description[0][0], 'x') class ObjectAdaptationTests(unittest.TestCase): def cast(obj): return float(obj) cast = staticmethod(cast) def setUp(self): self.con = sqlite.connect(':memory:') try: del sqlite.adapters[int] except: pass sqlite.register_adapter(int, ObjectAdaptationTests.cast) self.cur = self.con.cursor() def tearDown(self): del sqlite.adapters[int, sqlite.PrepareProtocol] self.cur.close() self.con.close() def CheckCasterIsUsed(self): self.cur.execute('select ?', (4,)) val = self.cur.fetchone()[0] self.assertEqual(type(val), float) @unittest.skipUnless(zlib, 'requires zlib') class BinaryConverterTests(unittest.TestCase): def convert(s): return zlib.decompress(s) convert = staticmethod(convert) def setUp(self): self.con = sqlite.connect(':memory:', detect_types=sqlite. PARSE_COLNAMES) sqlite.register_converter('bin', BinaryConverterTests.convert) def tearDown(self): self.con.close() def CheckBinaryInputForConverter(self): testdata = b'abcdefg' * 10 result = self.con.execute('select ? as "x [bin]"', (memoryview(zlib .compress(testdata)),)).fetchone()[0] self.assertEqual(testdata, result) class DateTimeTests(unittest.TestCase): def setUp(self): self.con = sqlite.connect(':memory:', detect_types=sqlite. PARSE_DECLTYPES) self.cur = self.con.cursor() self.cur.execute('create table test(d date, ts timestamp)') def tearDown(self): self.cur.close() self.con.close() def CheckSqliteDate(self): d = sqlite.Date(2004, 2, 14) self.cur.execute('insert into test(d) values (?)', (d,)) self.cur.execute('select d from test') d2 = self.cur.fetchone()[0] self.assertEqual(d, d2) def CheckSqliteTimestamp(self): ts = sqlite.Timestamp(2004, 2, 14, 7, 15, 0) self.cur.execute('insert into test(ts) values (?)', (ts,)) self.cur.execute('select ts from test') ts2 = self.cur.fetchone()[0] self.assertEqual(ts, ts2) @unittest.skipIf(sqlite.sqlite_version_info < (3, 1), 'the date functions are available on 3.1 or later') def CheckSqlTimestamp(self): now = datetime.datetime.utcnow() self.cur.execute('insert into test(ts) values (current_timestamp)') self.cur.execute('select ts from test') ts = self.cur.fetchone()[0] self.assertEqual(type(ts), datetime.datetime) self.assertEqual(ts.year, now.year) def CheckDateTimeSubSeconds(self): ts = sqlite.Timestamp(2004, 2, 14, 7, 15, 0, 500000) self.cur.execute('insert into test(ts) values (?)', (ts,)) self.cur.execute('select ts from test') ts2 = self.cur.fetchone()[0] self.assertEqual(ts, ts2) def CheckDateTimeSubSecondsFloatingPoint(self): ts = sqlite.Timestamp(2004, 2, 14, 7, 15, 0, 510241) self.cur.execute('insert into test(ts) values (?)', (ts,)) self.cur.execute('select ts from test') ts2 = self.cur.fetchone()[0] self.assertEqual(ts, ts2) def suite(): sqlite_type_suite = unittest.makeSuite(SqliteTypeTests, 'Check') decltypes_type_suite = unittest.makeSuite(DeclTypesTests, 'Check') colnames_type_suite = unittest.makeSuite(ColNamesTests, 'Check') adaptation_suite = unittest.makeSuite(ObjectAdaptationTests, 'Check') bin_suite = unittest.makeSuite(BinaryConverterTests, 'Check') date_suite = unittest.makeSuite(DateTimeTests, 'Check') cte_suite = unittest.makeSuite(CommonTableExpressionTests, 'Check') return unittest.TestSuite((sqlite_type_suite, decltypes_type_suite, colnames_type_suite, adaptation_suite, bin_suite, date_suite, cte_suite)) def test(): runner = unittest.TextTestRunner() runner.run(suite()) if __name__ == '__main__': test()
[ "emily@cuttlesoft.com" ]
emily@cuttlesoft.com
f0017a2619e7ddc6b04be80e56d4b0a95489a0a6
cc6147d1989a28a9a7f867156288a2cad89eb353
/models/student.py
4a6d21743dba6c196164d3a0e9be49cf11cdea48
[]
no_license
Wetschi/fastapi-mongodb-crudapp
68df90638cecd0f73a1b5cfb9670c5c78db22334
aca65167e69b2d159f9edfceee36083e5108f428
refs/heads/master
2023-08-17T00:21:34.194275
2021-09-15T08:39:57
2021-09-15T08:39:57
406,265,826
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
#import statement from pydantic import BaseModel class Student(BaseModel): student_name: str student_email: str student_phone: str
[ "kujatw@gmail.com" ]
kujatw@gmail.com
9ec352b1ae6bcb07940bd57c69fb4570274a0d4e
3b5e09b7ebba5ba915db9e70fdbf1e82e2bf101e
/aws/autoscale.py
dc9d0f5f4a667f841b8fad8da693bb1db7ccd4c0
[]
no_license
bennettrogers/utilities
bbc2f9d60bcd3c38b2cbc4fded185a54c76c2100
e08f2277bc12061b530ce2769c16991c1c6f74ed
refs/heads/master
2021-01-10T20:35:14.522707
2013-05-06T21:48:04
2013-05-06T21:48:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,298
py
import boto from boto.ec2.autoscale import LaunchConfiguration, AutoScalingGroup, Tag as_conn = boto.connect_autoscale() elb_conn = boto.connect_elb() AUTOSCALE_CONFIGS = [ #{ # 'tier':'', # 'lifecycle':'', # 'instance_size':'', # 'image_id':'', # 'capacity':0, # 'key_pair':'', # 'availability_zones':[], # 'security_groups':[], # 'tags': { # 'Name':'', # 'tier':'', # 'role':'', # }, #}, ] for config in AUTOSCALE_CONFIGS: resource_name = '{0}_{1}'.format(config['tier'], config['lifecycle'],) lc_args = { 'name':resource_name, 'image_id':config['image_id'], 'key_name':config['key_pair'], 'security_groups':config['security_groups'], 'instance_type':config['instance_size'], 'spot_price': config['price'] if config['lifecycle'] is 'spot' else None, } # delete the launch configuration if it already exists (TODO: figure out if we can update existing configs) if as_conn.get_all_launch_configurations(names=[resource_name]): as_conn.delete_launch_configuration(launch_config_name=resource_name) lc = LaunchConfiguration(**lc_args) as_conn.create_launch_configuration(lc) lc_obj = as_conn.get_all_launch_configurations(names=[resource_name])[0] tags = config['tags'] as_tags = [Tag(key=key, value=value, propagate_at_launch=True, resource_id=resource_name) for key, value in tags.items()] asg_args = { 'group_name':resource_name, 'availability_zones':config['availability_zones'], 'launch_config':lc_obj, 'min_size':config['capacity'], 'max_size':config['capacity'], 'tags':as_tags, } # delete the asg if it already exists (TODO: figure out if we can update existing asgs) if as_conn.get_all_groups(names=[resource_name]): as_conn.delete_auto_scaling_group(name=resource_name) asg = AutoScalingGroup(**asg_args) as_conn.create_auto_scaling_group(asg) #================================================== #as_conn.delete_launch_configuration(launch_config_name=resource_name)
[ "bennett@crocodoc.com" ]
bennett@crocodoc.com
d14446b745d548751ba83f0874137e9af92e0d48
751fe2de18f00596e4f1ed342b56bd6f38ee2053
/wisdem/orbit/phases/install/turbine_install/standard.py
0fdeed3eccec4f809faae851c7edf31404598ceb
[ "Apache-2.0" ]
permissive
WISDEM/WISDEM
42fa780915d62fd4e4203050e886093ecc806c8a
d7270ebe1c554293a9d36730d67ab555c071cb17
refs/heads/master
2023-08-04T01:22:43.215105
2023-06-22T23:36:07
2023-06-22T23:36:07
23,678,280
120
86
Apache-2.0
2023-06-22T19:26:34
2014-09-04T20:30:24
Python
UTF-8
Python
false
false
13,676
py
"""`TurbineInstallation` class and related processes.""" __author__ = "Jake Nunemaker" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "Jake Nunemaker" __email__ = "jake.nunemaker@nrel.gov" from copy import deepcopy from math import ceil import numpy as np import simpy from marmot import process from wisdem.orbit.core import Vessel from wisdem.orbit.core.logic import ( jackdown_if_required, shuttle_items_to_queue, prep_for_site_operations, get_list_of_items_from_port, ) from wisdem.orbit.phases.install import InstallPhase from wisdem.orbit.core.exceptions import ItemNotFound from .common import Blade, Nacelle, TowerSection, install_nacelle, install_tower_section, install_turbine_blade class TurbineInstallation(InstallPhase): """ Standard turbine installation module using a Wind Turbine Installation Vessel (WTIV). If input `feeder` and `num_feeders` are not supplied, the WTIV will perform all transport and installation tasks. If the above inputs are defined, feeder barges will transport turbine components from port to site. """ phase = "Turbine Installation" capex_category = "Turbine" #: expected_config = { "wtiv": "dict | str", "feeder": "dict | str (optional)", "num_feeders": "int (optional)", "site": {"depth": "m", "distance": "km"}, "plant": {"num_turbines": "int"}, "port": { "num_cranes": "int (optional, default: 1)", "monthly_rate": "USD/mo (optional)", "name": "str (optional)", }, "turbine": { "hub_height": "m", "tower": { "deck_space": "m2", "mass": "t", "length": "m", "sections": "int (optional)", }, "nacelle": {"deck_space": "m2", "mass": "t"}, "blade": {"deck_space": "m2", "mass": "t"}, }, } def __init__(self, config, weather=None, **kwargs): """ Creates an instance of TurbineInstallation. Parameters ---------- config : dict Simulation specific configuration. weather : np.ndarray Weather profile at site. """ super().__init__(weather, **kwargs) config = self.initialize_library(config, **kwargs) self.config = self.validate_config(config) self.initialize_port() self.initialize_wtiv() self.initialize_turbines() self.setup_simulation(**kwargs) @property def system_capex(self): """Returns 0 as turbine capex is handled at in ProjectManager.""" return 0 def setup_simulation(self, **kwargs): """ Sets up simulation infrastructure, routing to specific methods dependent on number of feeders. """ if self.config.get("num_feeders", None): self.initialize_feeders() self.initialize_queue() self.setup_simulation_with_feeders(**kwargs) else: self.feeders = None self.setup_simulation_without_feeders(**kwargs) def setup_simulation_without_feeders(self, **kwargs): """ Sets up infrastructure for turbine installation without feeder barges. """ site_distance = self.config["site"]["distance"] site_depth = self.config["site"]["depth"] hub_height = self.config["turbine"]["hub_height"] solo_install_turbines( self.wtiv, port=self.port, distance=site_distance, turbines=self.num_turbines, tower_sections=self.num_sections, num_blades=3, site_depth=site_depth, hub_height=hub_height, **kwargs, ) def setup_simulation_with_feeders(self, **kwargs): """ Sets up infrastructure for turbine installation using feeder barges. """ site_distance = self.config["site"]["distance"] site_depth = self.config["site"]["depth"] hub_height = self.config["turbine"]["hub_height"] install_turbine_components_from_queue( self.wtiv, queue=self.active_feeder, distance=site_distance, turbines=self.num_turbines, tower_sections=self.num_sections, num_blades=3, site_depth=site_depth, hub_height=hub_height, **kwargs, ) for feeder in self.feeders: shuttle_items_to_queue( feeder, port=self.port, queue=self.active_feeder, distance=site_distance, items=self.component_list, **kwargs, ) def initialize_wtiv(self): """ Initializes the WTIV simulation object and the onboard vessel storage. """ wtiv_specs = self.config.get("wtiv", None) name = wtiv_specs.get("name", "WTIV") wtiv = self.initialize_vessel(name, wtiv_specs) self.env.register(wtiv) wtiv.initialize() wtiv.at_port = True wtiv.at_site = False self.wtiv = wtiv def initialize_feeders(self): """ Initializes feeder barge objects. """ number = self.config.get("num_feeders", None) feeder_specs = self.config.get("feeder", None) self.feeders = [] for n in range(number): # TODO: Add in option for named feeders. name = "Feeder {}".format(n) feeder = self.initialize_vessel(name, feeder_specs) self.env.register(feeder) feeder.initialize() feeder.at_port = True feeder.at_site = False self.feeders.append(feeder) def initialize_turbines(self): """ Initializes turbine components at port. """ tower = deepcopy(self.config["turbine"]["tower"]) self.num_sections = tower.get("sections", 1) _section = {} for k in ["length", "deck_space", "mass"]: try: _section[k] = ceil(tower.get(k) / self.num_sections) except TypeError: pass section = TowerSection(**_section) nacelle = Nacelle(**self.config["turbine"]["nacelle"]) blade = Blade(**self.config["turbine"]["blade"]) component_list = [ *np.repeat(section, self.num_sections), nacelle, # TODO: Add in configuration for number of blades. *np.repeat(blade, 3), ] self.num_turbines = self.config["plant"]["num_turbines"] for _ in range(self.num_turbines): for item in component_list: self.port.put(item) self.component_list = [a.type for a in component_list] def initialize_queue(self): """ Initializes the queue, modeled as a ``SimPy.Resource`` that feeders join at site. This limits the simulation to one active feeder at a time. """ self.active_feeder = simpy.Resource(self.env, capacity=1) self.active_feeder.vessel = None self.active_feeder.activate = self.env.event() @property def detailed_output(self): """Returns detailed outputs of the turbine installation.""" if self.feeders: transport_vessels = [*self.feeders] else: transport_vessels = [self.wtiv] outputs = { self.phase: { **self.agent_efficiencies, **self.get_max_cargo_mass_utilzations(transport_vessels), **self.get_max_deck_space_utilzations(transport_vessels), } } return outputs @process def solo_install_turbines(vessel, port, distance, turbines, tower_sections, num_blades, **kwargs): """ Logic that a Wind Turbine Installation Vessel (WTIV) uses during a single turbine installation process. Parameters ---------- vessel : vessels.Vessel Vessel object that represents the WTIV. distance : int | float Distance between port and site (km). component_list : dict Turbine components to retrieve and install. number : int Total turbine component sets to install. """ reequip_time = vessel.crane.reequip(**kwargs) component_list = [ *np.repeat("TowerSection", tower_sections), "Nacelle", *np.repeat("Blade", num_blades), ] n = 0 while n < turbines: if vessel.at_port: try: # Get turbine components yield get_list_of_items_from_port(vessel, port, component_list, **kwargs) except ItemNotFound: # If no items are at port and vessel.storage.items is empty, # the job is done if not vessel.storage.items: vessel.submit_debug_log(message="Item not found. Shutting down.") break # Transit to site vessel.update_trip_data() vessel.at_port = False yield vessel.transit(distance) vessel.at_site = True if vessel.at_site: if vessel.storage.items: yield prep_for_site_operations(vessel, **kwargs) for i in range(tower_sections): # Get tower section section = yield vessel.get_item_from_storage("TowerSection", **kwargs) # Install tower section height = section.length * (i + 1) yield install_tower_section(vessel, section, height, **kwargs) # Get turbine nacelle nacelle = yield vessel.get_item_from_storage("Nacelle", **kwargs) # Install nacelle yield vessel.task_wrapper("Reequip", reequip_time, constraints=vessel.transit_limits) yield install_nacelle(vessel, nacelle, **kwargs) # Install turbine blades yield vessel.task_wrapper("Reequip", reequip_time, constraints=vessel.transit_limits) for _ in range(num_blades): blade = yield vessel.get_item_from_storage("Blade", **kwargs) yield install_turbine_blade(vessel, blade, **kwargs) yield jackdown_if_required(vessel, **kwargs) vessel.submit_debug_log(progress="Turbine") n += 1 else: # Transit to port vessel.at_site = False yield vessel.transit(distance) vessel.at_port = True vessel.submit_debug_log(message="Turbine installation complete!") @process def install_turbine_components_from_queue(wtiv, queue, distance, turbines, tower_sections, num_blades, **kwargs): """ Logic that a Wind Turbine Installation Vessel (WTIV) uses to install turbine componenets from a queue of feeder barges. Parameters ---------- env : simulation.Environment SimPy environment that the simulation runs in. wtiv : vessels.Vessel Vessel object that represents the WTIV. queue : simpy.Resource Queue object to interact with active feeder barge. component_list : dict Turbine components to retrieve and install. number : int Total turbine component sets to install. distance : int | float Distance from site to port (km). """ reequip_time = wtiv.crane.reequip(**kwargs) n = 0 while n < turbines: if wtiv.at_port: # Transit to site wtiv.at_port = False yield wtiv.transit(distance) wtiv.at_site = True if wtiv.at_site: if queue.vessel: # Prep for turbine install yield prep_for_site_operations(wtiv, **kwargs) for i in range(tower_sections): # Get tower section section = yield wtiv.get_item_from_storage("TowerSection", vessel=queue.vessel, **kwargs) # Install tower section height = section.length * (i + 1) yield install_tower_section(wtiv, section, height, **kwargs) # Get turbine nacelle nacelle = yield wtiv.get_item_from_storage("Nacelle", vessel=queue.vessel, **kwargs) # Install nacelle yield wtiv.task_wrapper("Reequip", reequip_time, constraints=wtiv.transit_limits) yield install_nacelle(wtiv, nacelle, **kwargs) # Install turbine blades yield wtiv.task_wrapper("Reequip", reequip_time, constraints=wtiv.transit_limits) for i in range(num_blades): release = True if i + 1 == num_blades else False blade = yield wtiv.get_item_from_storage("Blade", vessel=queue.vessel, release=release, **kwargs) yield install_turbine_blade(wtiv, blade, **kwargs) yield jackdown_if_required(wtiv, **kwargs) wtiv.submit_debug_log(progress="Turbine") n += 1 else: start = wtiv.env.now yield queue.activate delay_time = wtiv.env.now - start wtiv.submit_action_log("Delay", delay_time, location="Site") # Transit to port wtiv.at_site = False yield wtiv.transit(distance) wtiv.at_port = True wtiv.submit_debug_log(message="Turbine installation complete!")
[ "garrett.barter@nrel.gov" ]
garrett.barter@nrel.gov
9b97bf6648e2e2876b8dc321b2f93a5dfe46ff6d
8ae9bdbb56622e7eb2fe7cf700b8fe4b7bd6e7ae
/llvm-3.8.0-r267675/tools/lldb/packages/Python/lldbsuite/test/lang/objc/objc-static-method-stripped/TestObjCStaticMethodStripped.py
7d88292a051c3c607fa10a165ca504bdf7621cd3
[ "NCSA" ]
permissive
mapu/toolchains
f61aa8b64d1dce5e618f0ff919d91dd5b664e901
3a6fea03c6a7738091e980b9cdee0447eb08bb1d
refs/heads/master
2021-09-16T00:07:16.731713
2017-12-29T04:09:01
2017-12-29T04:09:01
104,563,481
3
0
null
null
null
null
UTF-8
Python
false
false
2,704
py
"""Test calling functions in static methods with a stripped binary.""" from __future__ import print_function import os, time import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestObjCStaticMethodStripped(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Find the line numbers to break inside main(). self.main_source = "static.m" self.break_line = line_number(self.main_source, '// Set breakpoint here.') @skipUnlessDarwin @add_test_categories(['pyapi']) @skipIf(debug_info=no_match("dsym"), bugnumber="This test requires a stripped binary and a dSYM") #<rdar://problem/12042992> def test_with_python_api(self): """Test calling functions in static methods with a stripped binary.""" if self.getArchitecture() == 'i386': self.skipTest("requires modern objc runtime") self.build() exe = os.path.join(os.getcwd(), "a.out") target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) bpt = target.BreakpointCreateByLocation(self.main_source, self.break_line) self.assertTrue(bpt, VALID_BREAKPOINT) # Now launch the process, and do not stop at entry point. process = target.LaunchSimple (None, None, self.get_process_working_directory()) self.assertTrue(process, PROCESS_IS_VALID) # The stop reason of the thread should be breakpoint. thread_list = lldbutil.get_threads_stopped_at_breakpoint (process, bpt) # Make sure we stopped at the first breakpoint. self.assertTrue (len(thread_list) != 0, "No thread stopped at our breakpoint.") self.assertTrue (len(thread_list) == 1, "More than one thread stopped at our breakpoint.") # Now make sure we can call a function in the static method we've stopped in. frame = thread_list[0].GetFrameAtIndex(0) self.assertTrue (frame, "Got a valid frame 0 frame.") cmd_value = frame.EvaluateExpression ("(char *) sel_getName (_cmd)") self.assertTrue (cmd_value.IsValid()) sel_name = cmd_value.GetSummary() self.assertTrue (sel_name == "\"doSomethingWithString:\"", "Got the right value for the selector as string.") cmd_value = frame.EvaluateExpression ("[Foo doSomethingElseWithString:string]") self.assertTrue (cmd_value.IsValid()) string_length = cmd_value.GetValueAsUnsigned() self.assertTrue (string_length == 27, "Got the right value from another class method on the same class.")
[ "wangl@cb94f8c2-beb9-42d2-aaaf-6dc30ea5c36a" ]
wangl@cb94f8c2-beb9-42d2-aaaf-6dc30ea5c36a
8924ae91a905f5467e3fff018de639b0e95d9a0d
9a7a6190a24b7a570ccdc1b598b1c64428c11c1b
/randomDictionary.py
d6f8cc0baf15657afc356133f8ebd756dca0f95e
[]
no_license
kadeemp/Tweet-Generator
0254ee07ee1f63684f23b47f9569d40210807613
d0db07e3f710d27fb29930c4093e762a5b3f36ef
refs/heads/master
2021-01-11T15:55:55.248665
2017-02-22T09:22:00
2017-02-22T09:22:00
82,723,228
0
0
null
2017-02-21T20:20:51
2017-02-21T20:20:51
null
UTF-8
Python
false
false
381
py
import sys import random x = int(sys.argv[1]) resultString = "" f = open("/usr/share/dict/words", "r") content = f.readlines() content = [i.rstrip("\n") for i in content] if sys.argv[1] is not None: while x != 0: resultString += random.choice(content) resultString += " " x-=1 if x == 0: resultString += "." print resultString g.close()
[ "kadeempalacios@gmail.com" ]
kadeempalacios@gmail.com
b2a2c92eb15a5e754235765bfab30e037954b066
abd80c57a2ce54fa7b14827d30b339956c4391ba
/lesson2/conftest.py
04862734029e24e11c59472e1ee11d9d174923b0
[]
no_license
ksanayarysh/otus-qa-course
8245c1369a6d9b26c81f24a9297ac6e600749480
245fd72fa82808b78d52f22e5edc48e5f1cc4bba
refs/heads/master
2020-05-01T05:21:25.147169
2019-07-15T10:10:55
2019-07-15T10:10:55
177,298,366
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
"""Conftest""" import pytest def pytest_addoption(parser): """Опция командной строки""" parser.addoption("--site", action="store", default="None") def pytest_collection_modifyitems(config, items): """Получаем и в зависимости от ее значения скипим тесты""" value = config.getoption("--site") skip = pytest.mark.skip(reason="no need to run") for item in items: if value not in item.keywords: item.add_marker(skip)
[ "ksana32@gmail.com" ]
ksana32@gmail.com
743c943cfb2adf558e8b63f6b4820d215d0b3eb1
4db2a13f9f0a85e9fd38cf245462ec91f2c6ce67
/proj_11/n2tGrader.py
40c62d524b350537a3aab34970ccda139d9b1696
[]
no_license
alexgh123/nand_2_tetris
c6f5bde84bf064152e2a3abcbf96d86a707b89da
1611b8e592082fc12d7d36e23ddb75c2c753b2df
refs/heads/master
2021-05-12T01:40:08.535774
2018-01-15T16:09:16
2018-01-15T16:09:16
117,565,253
0
0
null
null
null
null
UTF-8
Python
false
false
20,005
py
# # #N2T grading server # projectnum in executable portion at bottom is the directory to be graded # # # on *nix flavors launch from the command line as # python3 n2tGrader.py --XX # # where --XX is the project number being run # # # on Windows launch from the command line as # n2tGrader.py --XX --w # # where --XX is the project number being run # and the --w is telling the script to use the windows .bat launch style # # import os import shutil from pathlib import Path import subprocess NIX = 0 WIN = 1 PLATFORM = NIX def testResults_01_02_05(codeDirectory, whichProject): testList = tests[whichProject] for test in testList: print(codeDirectory + '/' + test + 'tst') #launch the HardwareSimulator with test as the arg testCommand = '../../nand2tetris/tools/HardwareSimulator.sh ' + codeDirectory + '/' + test + 'tst' try: subprocess.run(testCommand, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe) def testResults_03(codeDirectory): testDict = tests['tests03'] for sublist in ['a', 'b']: testList = testDict[sublist] for test in testList: #launch the HardwareSimulator with test as the arg print(test) testCommand = '../../nand2tetris/tools/HardwareSimulator.sh ' + codeDirectory + '/' + sublist[0] + '/' + test + 'tst' try: subprocess.run(testCommand, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe) def testResults_04(codeDirectory): #assemble the files to .hack machine language command = '../../nand2tetris/tools/Assembler.sh ' + codeDirectory + '/fill/Fill.asm' try: subprocess.run(command, stdin=None, stdout=None, timeout=0.5, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe, 'while trying to assemble') #fill must be run manually in CPU Emulator as it is a visual inspection command = '../../nand2tetris/tools/Assembler.sh ' + codeDirectory + '/mult/Mult.asm' try: subprocess.run(command, stdin=None, stdout=None, timeout=0.5, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe, 'while trying to assemble') #launch the CPUEmulator command = '../../nand2tetris/tools/CPUEmulator.sh ' + codeDirectory + '/mult/Mult.tst' try: subprocess.run(command, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe, 'while trying to test') def compareLines(expectedFilePath, resultFilePath): #print('\n comparelines\n ', str(expectedFilePath), '\n ', str(resultFilePath)) expected = open(str(expectedFilePath), 'r') result = open(str(resultFilePath), 'r') grade = True expectedLine = 'k' lineNumber = 0 while len(expectedLine) > 0: expectedLine = expected.readline().strip() resultLine = result.readline().strip() if expectedLine != resultLine: grade = False print('bad comparison', str(expectedFilePath.stem), 'line', lineNumber, expectedLine, resultLine) break else: lineNumber += 1 expected.close() result.close() if (grade): print(' good:' , str(expectedFilePath.stem)) def compare_06(codeDirectory, checkfilesDir): resultFilePath = codeDirectory / 'add/Add.hack' expectedFilePath = checkfilesDir / 'Add.hack' try: compareLines(expectedFilePath, resultFilePath) except Exception as error: print(codeDirectory, ':', error, 'while trying to compare student program') resultFilePath = codeDirectory / 'max/Max.hack' expectedFilePath = checkfilesDir / 'Max.hack' try: compareLines(expectedFilePath, resultFilePath) except Exception as error: print(codeDirectory, ':', error, 'while trying to compare student program') resultFilePath = codeDirectory / 'rect/Rect.hack' expectedFilePath = checkfilesDir / 'Rect.hack' try: compareLines(expectedFilePath, resultFilePath) except Exception as error: print(codeDirectory, ':', error, 'while trying to compare student program') resultFilePath = codeDirectory / 'pong/Pong.hack' expectedFilePath = checkfilesDir / 'Pong.hack' try: compareLines(expectedFilePath, resultFilePath) except Exception as error: print(codeDirectory, ':', error, 'while trying to compare student program') print('\n', codeDirectory.name, 'done\n\n\n') def assemble_06(codeDirectory, checkfilesDir): command = codeDirectory / 'Assembler.py' command = str(command) argDir = codeDirectory / 'add/Add.asm' arg = str(argDir) try: subprocess.call(['python3', command, arg]) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe, 'while trying to run student program') argDir = codeDirectory / 'max/Max.asm' arg = str(argDir) try: subprocess.call(['python3', command, arg]) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe, 'while trying to run student program') argDir = codeDirectory / 'rect/rect.asm' arg = str(argDir) try: subprocess.call(['python3', command, arg]) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe, 'while trying to run student program') argDir = codeDirectory / 'pong/Pong.asm' arg = str(argDir) try: subprocess.call(['python3', command, arg]) except subprocess.CalledProcessError as cpe: print(codeDirectory, ':', cpe, 'while trying to run student program') def testResults_07(studentPath): for eachtarget in targets07: if PLATFORM == NIX: command = 'python3 ' + studentPath.name + '/VMtoMnemonics.py ' + studentPath.name + '/' + eachtarget #*NIX platform else: command = 'python ' + studentPath.name + '\\VMtoMnemonics.py ' + studentPath.name + '\\' + eachtarget #WIN platform try: subprocess.run(command, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(studentPath.name, ':', cpe, 'while compiling', eachtarget ) for eachtest in tests07: if PLATFORM == NIX: command = 'tools/CPUEmulator.sh ' + studentPath.name + eachtest + '.tst' #*NIX platform else: command = 'tools\\CPUEmulator.bat ' + studentPath.name + eachtest + '.tst' #WIN platform try: subprocess.run(command, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(studentPath.name, ':', cpe, 'while running', eachtest ) print('\n', studentPath.name, 'done\n\n\n') def testResults_08(studentPath): for eachtarget in targets08: if PLATFORM == NIX: command = 'python3 ' + studentPath.name + '/VMtoMnemonics.py ' + studentPath.name + '/' + eachtarget #*NIX platform else: command = 'python ' + studentPath.name + '\\VMtoMnemonics.py ' + studentPath.name + '\\' + eachtarget #WIN platform try: subprocess.run(command, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(studentPath.name, ':', cpe, 'while compiling', eachtarget ) for eachtest in tests08: if PLATFORM == NIX: command = 'tools/CPUEmulator.sh ' + studentPath.name + eachtest + '.tst' #*NIX platform else: command = 'tools\\CPUEmulator.bat ' + studentPath.name + eachtest + '.tst' #WIN platform try: subprocess.run(command, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(studentPath.name, ':', cpe, 'while running', eachtest ) print('\n', studentPath.name, 'done\n\n\n') def testResults10(studentPath, checkFilesPath): #move existing .xml files for eachtarget in targets10: if PLATFORM == NIX: resultDirectory = studentPath.name + '/' + eachtarget newDir = resultDirectory + '/' + 'oldXML' else: resultDirectory = studentPath.name + '\\' + eachtarget #WIN platform newDir = resultDirectory + '\\' + 'oldXML' resultDirectory = Path(resultDirectory) newDirPath = Path(newDir) if not newDirPath.exists(): os.mkdir(newDir) for file in resultDirectory.iterdir(): if file.suffix == '.xml': if PLATFORM == NIX: newName = newDir + '/' + file.name else: newName = newDir + '\\' + file.name #WIN platform shutil.move( str(file) , str(newName) ) print('\n xml moves complete for ' + studentPath.name) #run the project code for eachtarget in targets10: if PLATFORM == NIX: command = 'python3 ' + studentPath.name + '/JackAnalyzer.py ' + studentPath.name + '/' + eachtarget #*NIX platform else: command = 'python ' + studentPath.name + '\\JackAnalyzer.py ' + studentPath.name + '\\' + eachtarget #WIN platform try: subprocess.run(command, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(str(studentPath), ':', cpe, 'while compiling', eachtarget ) print('\n Translations complete for ' + studentPath.name) for eachtarget in targets10: resultDirectory = studentPath.name + '/' + eachtarget resultDirectory = Path(resultDirectory) expectedDirectory = checkFilesPath print('\n Comparing', eachtarget) for file in resultDirectory.iterdir(): found = False if file.suffix == '.xml': found = True result = open(str(file), 'r') expectedFileName = str( expectedDirectory / eachtarget / file.name ) expected = open(expectedFileName, 'r') lineNumber = 0 expectedLine = expected.readline().strip() resultLine = result.readline().strip() while resultLine and expectedLine: lineNumber += 1 if expectedLine != resultLine: print('bad comparison', str(file.stem), 'your results file line', lineNumber) expected.close() result.close() return expectedLine = expected.readline().strip() resultLine = result.readline().strip() expected.close() result.close() print(' good:' , str(file.stem)) elif file.is_dir: found = True if not found: print(' No file to translate') print('\n', studentPath.name, 'done\n\n\n') def testMilestone11(studentPath, checkFilesPath): #move existing .xml files for eachtarget in targets11: if PLATFORM == NIX: resultDirectory = studentPath.name + '/' + eachtarget newDir = resultDirectory + '/' + 'oldFiles' else: resultDirectory = studentPath.name + '\\' + eachtarget #WIN platform newDir = resultDirectory + '\\' + 'oldFiles' resultDirectory = Path(resultDirectory) newDirPath = Path(newDir) if not newDirPath.exists(): os.mkdir(newDir) for file in resultDirectory.iterdir(): if file.suffix == '.xml': if PLATFORM == NIX: newName = newDir + '/' + file.name else: newName = newDir + '\\' + file.name #WIN platform shutil.move( str(file) , str(newName) ) print('\n xml moves complete for ' + studentPath.name) #run the project code for eachtarget in targets11: if PLATFORM == NIX: command = 'python3 ' + studentPath.name + '/JackAnalyzer.py ' + studentPath.name + '/' + eachtarget #*NIX platform else: command = 'python ' + studentPath.name + '\\JackAnalyzer.py ' + studentPath.name + '\\' + eachtarget #WIN platform try: subprocess.run(command, stdin=None, stdout=None, shell=True, check=True) except subprocess.CalledProcessError as cpe: print(str(studentPath), ':', cpe, 'while compiling', eachtarget ) print('\n Translations complete for ' + studentPath.name) for eachtarget in targets11: resultDirectory = studentPath.name + '/' + eachtarget resultDirectory = Path(resultDirectory) expectedDirectory = checkFilesPath print('\n Comparing', eachtarget) for file in resultDirectory.iterdir(): found = False if file.suffix == '.xml' or file.suffix == '.vm': found = True result = open(str(file), 'r') expectedFileName = str( expectedDirectory / eachtarget / file.name ) expected = open(expectedFileName, 'r') lineNumber = 0 expectedLine = expected.readline().strip() resultLine = result.readline().strip() while resultLine and expectedLine: lineNumber += 1 if expectedLine != resultLine: print('bad comparison', str(file.stem), 'your results file line', lineNumber) expected.close() result.close() return expectedLine = expected.readline().strip() resultLine = result.readline().strip() expected.close() result.close() print(' good:' , str(file.name)) elif file.is_dir: found = True if not found: print(' No file to translate') print('\n', studentPath.name, 'done\n\n\n') ############################################################# ############################################################# ############################################################# if __name__ == '__main__': projectNum = '01' tests01 = [ 'And.', 'And16.', 'DMux.', 'DMux4Way.', 'DMux8Way.', 'Mux.', 'Mux4Way16.', 'Mux8Way16.', 'Mux16.', 'Not.', 'Not16.', 'Or.', 'Or8Way.', 'Or16.', 'Xor.'] tests02 = [ 'Add16.', 'ALU-nostat.', 'ALU.', 'FullAdder.', 'HalfAdder.', 'inc16.'] tests03 = { 'a':['Bit.', 'PC.', 'RAM8.', 'RAM64.', 'Register.'], 'b':['RAM4K.', 'RAM16K.', 'RAM512.'] } tests05 = [ 'ComputerAdd-external.', 'ComputerAdd.', 'ComputerMax-external.', 'ComputerMax.', 'ComputerRect-external.', 'ComputerRect.', 'CPU-external.', 'CPU.'] # , 'Memory.' tests07 = [ '/StackArithmetic/SimpleAdd/SimpleAdd', '/StackArithmetic/StackTest/StackTest', '/MemoryAccess/BasicTest/BasicTest', '/MemoryAccess/PointerTest/PointerTest', '/MemoryAccess/StaticTest/StaticTest'] targets07 = [ 'StackArithmetic/SimpleAdd', 'StackArithmetic/StackTest', 'MemoryAccess/BasicTest', 'MemoryAccess/PointerTest', 'MemoryAccess/StaticTest'] tests08 = [ '/ProgramFlow/BasicLoop/BasicLoop', '/ProgramFlow/FibonacciSeries/FibonacciSeries', '/FunctionCalls/SimpleFunction/SimpleFunction', '/FunctionCalls/NestedCall/NestedCall', '/FunctionCalls/FibonacciElement/FibonacciElement', '/FunctionCalls/StaticsTest/StaticsTest'] targets08 = [ 'ProgramFlow/BasicLoop', 'ProgramFlow/FibonacciSeries', 'FunctionCalls/SimpleFunction', 'FunctionCalls/NestedCall', 'FunctionCalls/FibonacciElement', 'FunctionCalls/StaticsTest'] targets10 = ['ExpressionlessSquare', 'ArrayTest', 'Square'] targets11 = ['Seven', 'ConvertToBin', 'Square', 'Average', 'Pong', 'ComplexArrays'] tests = {'tests01': tests01, 'tests02': tests02, 'tests03':tests03, 'tests05': tests05} singleDepth = ['tests01', 'tests02', 'tests05'] #start with directory this file is in startingDirectory = Path.cwd() import argparse ap = argparse.ArgumentParser(prog='n2tGradingServer.py') ap.add_argument( '--01', action='store_const', const='tests01', dest="project", help='which project is being graded') ap.add_argument( '--02', action='store_const', const='tests02', dest="project", help='which project is being graded') ap.add_argument( '--03', action='store_const', const='tests03', dest="project", help='which project is being graded') ap.add_argument( '--04', action='store_const', const='tests04', dest="project", help='which project is being graded') ap.add_argument( '--05', action='store_const', const='tests05', dest="project", help='which project is being graded') ap.add_argument( '--06', action='store_const', const='tests06', dest="project", help='which project is being graded') ap.add_argument( '--07', action='store_const', const='tests07', dest="project", help='which project is being graded') ap.add_argument( '--08', action='store_const', const='tests08', dest="project", help='which project is being graded') ap.add_argument( '--10', action='store_const', const='tests10', dest="project", help='which project is being graded') ap.add_argument( '--11', action='store_const', const='milestone11', dest="project", help='which project is being graded') ap.add_argument( '--w', action='store_const', const='windows', dest="platform", help='which project is being graded') args = ap.parse_args() whichProject = args.project platformToggle = args.platform if platformToggle == 'windows': PLATFORM = WIN else: PLATFORM = NIX checkFilesPath = startingDirectory / 'zzzzCheckfiles' #for 06, 10 & 11 for studentPath in startingDirectory.iterdir(): if studentPath.is_dir(): print('\n\ndirectory:', studentPath.name) if ('zzzz' not in studentPath.name) and ('tools' not in studentPath.name): if whichProject in singleDepth: testResults_01_02_05(studentPath.name, whichProject) elif whichProject == 'tests03': testResults_03(studentPath.name) elif whichProject == 'tests04': testResults_04(studentPath.name) elif whichProject == 'tests06': assemble_06(studentPath, checkFilesPath) compare_06(studentPath, checkFilesPath) elif whichProject == 'tests07': testResults_07(studentPath) elif whichProject == 'tests08': testResults_08(studentPath) elif whichProject == 'tests10': testResults10(studentPath, checkFilesPath) elif whichProject == 'milestone11': testMilestone11(studentPath, checkFilesPath) else: print('projectName mismatch for', studentPath.name, whichProject) else: print(studentPath.name, 'skipped for zzzz')
[ "hardt.alex@gmail.com" ]
hardt.alex@gmail.com
8d3d2be82260947a4a95d2a84f66d50d504dd61c
4e01416394a229e2afeede99493d282f4259b1a1
/examples/optimal_transport/crowd/converging_corridor.py
cd4e833c29abd66373a46cc9a712f89ec1e8d84f
[]
no_license
sd-ot/pysdot
b2b2abb53e4e87d53e0bb3734c1624b1fc5e5f3b
8d16000c36deb9ab1aa98b819179741b7b65409d
refs/heads/master
2023-07-20T07:15:58.469620
2023-07-14T13:42:48
2023-07-14T13:42:48
176,300,757
4
2
null
2020-08-02T06:19:26
2019-03-18T14:13:33
Jupyter Notebook
UTF-8
Python
false
false
2,168
py
from pysdot.domain_types import ConvexPolyhedraAssembly from pysdot.radial_funcs import RadialFuncInBall from pysdot import OptimalTransport import numpy as np # constants for n in [ 160 ]: # 20, 40, 80, directory = "results/converging_corridor_{}".format( n ) t = np.linspace(-2,2,n) h = 2./n x,y = np.meshgrid(t,t) positions = np.hstack((np.reshape(x,(n*n,1)), np.reshape(y,(n*n,1)))) R2 = positions[ :, 0 ]**2 + positions[ :, 1 ]**2 positions = positions[ R2 <= 4 ] positions = positions[ positions[:,0] + positions[:,1] > 1.0 / n ] positions = positions[ - positions[:,0] + positions[:,1] > 1.0 / n ] N = positions.shape[ 0 ] rho0 = 1 / np.pi mass = 0.25 * rho0 * np.pi * 4 / N target_radius = ( mass / np.pi )**0.5 # iterations weights = np.ones( positions.shape[ 0 ] ) * target_radius**2 domain = ConvexPolyhedraAssembly() domain.add_convex_polyhedron([ [ 0, 0, +1, -1 ], [ 9, 9, 0, +1 ], [ -9, 9, -1, -1 ], ]) domain.display_boundaries_vtk( directory + "/bounds.vtk" ) color_values = 0.5 * np.linalg.norm( positions, axis=1, keepdims=True, ord=2 ) color_values = ( color_values - np.min( color_values ) ) / ( np.max( color_values ) - np.min( color_values ) ) ot = OptimalTransport(domain, RadialFuncInBall()) ot.set_weights( weights ) ot.set_masses( np.ones( positions.shape[ 0 ] ) * mass ) nb_timesteps = int( 3 / target_radius ) for i in range( nb_timesteps ): # change positions positions -= 0.4 * target_radius / np.linalg.norm( positions, axis=1, keepdims=True, ord=2 ) * positions ot.set_positions(positions) # optimal weights ot.adjust_weights() # display d = int( n / 5 ) if i % d == 0: # ot.display_asy( directory + "/pd_{:03}.asy".format( int( i / d ) ), "in_ball(weight**0.5)", positions, weights, domain, values = color_values, linewidth=0.002 ) ot.display_vtk( directory + "/pd_{:03}.vtk".format( int( i / d ) ) ) # update positions positions = ot.get_centroids()
[ "hugal.leclerc@gmail.com" ]
hugal.leclerc@gmail.com
634dcc3314cc9dc2e05696d565b2107bde5d47b9
758ac6a75ca021d8595975be0d41fa50c7bfdf88
/snownlp/recipes.py
f551ff43cf6bf604199eb3d92f46e6401ca365bd
[]
no_license
Henry2012/recipes
5a04197a41e94a638c20350b3e0ec6d23702808d
fe61d1bd57f922a41a816939e5ef2e9abd7eb6e9
refs/heads/master
2020-04-21T14:16:51.034571
2014-07-01T08:09:35
2014-07-01T08:09:35
18,829,830
5
2
null
null
null
null
UTF-8
Python
false
false
2,541
py
#! /usr/bin/python #-*- coding:utf-8 -*- """ Author: Qiqun Han File: snownlp.recipes.py Description: this program Creation: 2013-12-15 Revision: 2013-12-15 """ from snownlp import SnowNLP text = u""" 宁波华翔:海外资产拐点显现 并购协同助力国内增长 公司是国内优秀汽车内饰供应商,通过合资与并购实现高速增长。公司与世界知名汽车零部件公司合资,产品质量、市场地位处于国内领先水平;通过并购快速开拓新客户与新产品,营收规模高速提升;下游客户包括南北大众、宝马丰田等主流合资品牌,并通过海外并购进入德国宝马奔驰、美国通用等世界汽车商海外配套体系,成长空间拓展至全球配套市场。   核心资产盈利能力强,随下游客户共同成长。11-12 年由于参股公司调整等非经常因素影响,净利润出现大幅下滑。但公司核心资产盈利能力优异,随整车客户完成全国布局,通过合资并购开拓新客户与新产品,非经常性因素影响消除后,业绩增速将恢复到20%左右。   海外并购拓展公司产品种类和客户资源,为未来发展奠定基础。公司先后收购德国Sellner 和HIB 公司,借海外公司技术实力和客户资源提升内饰产品的品质,并进入德国奔驰宝马、美国通用配套体系。同时,公司参股德国Helbako 30%股权,进军汽车电子领域,并合资在国内设立生产基地,开拓国内汽车电子市场,为未来准备新的增长空间。   欧洲车市向好,海外资产有望迎来拐点。公司通过合资收购成长,整合经验丰富,海外资产整合成功是大概率事件。海外资产在木内饰领域竞争力强,12 年收入近20 亿,亏损4000 多万,恢复正常有望贡献1-2 亿盈利,弹性巨大。近期欧洲车市现向好迹象,海外资产改善将大幅提升业绩。 """ # s = SnowNLP(text) # for each in s.keywords(5): # print each # print "-" * 50 # for each in s.summary(5): # print each # print "-" * 50 # for each in s.sentences: # print each # # print s.tf # print s.idf #=============================================================================== # 相似度模块 #=============================================================================== s = SnowNLP([[u'创业', u'板', u'暴跌', u'4.37%', u'现', u'巨 阴', u'断头铡']] ) print s.sim([u'创业', u'板', u'暴跌', u'4.37%', u'现', u'巨 阴', u'断头铡'])
[ "qiqun.h@everstring.net" ]
qiqun.h@everstring.net
09651e680a7caf268633806dca07f6e0d52ed6e5
993d0b2a0f0e439be5aec2855f5da5f33fe78d44
/Universal_Integrated_API/jc/rsync_tools.py
03c2699407e4c73e5229593d6ef02a76723a076e
[]
no_license
cyril-wx/universal_integrated_api
e50fb72f573f30f337d5972e50a3750553a0bc26
e2a3f8cd5b3bbf6d043f1b75bdefced1a5b2f594
refs/heads/master
2022-11-07T07:56:52.813987
2020-01-05T10:39:37
2020-01-05T10:39:37
276,130,083
0
0
null
null
null
null
UTF-8
Python
false
false
8,488
py
#!/usr/bin/python # -*- coding:UTF-8 -*- #********************************************** # # Master and Slave rsync Tools # # AutoPanic主从服务器同步工具 # #---------------------------------------------- # # @Author: Cyril # # @Mail: 848873227@qq.com # # @Create: 2019-06-08 # # @Modify: 2019-06-10 # # @Tips: # #********************************************** # from jc import utils as jt from jc import csv_rw as jcsv import os import re import sys class SyncTool: #logger = logging.getLogger("TEST").setLevel(logging.DEBUG) # 使用默认的 Logger 配置 # logging.basicConfig(handlers=[logging.FileHandler("jc_utils.log", encoding="utf-8")], filemode="w", format="[%(asctime)s] %(levelname)s: [%(funcName)s]: %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.DEBUG) ip_pool = [] # 二维数组 conf_path = "/tmp/autopanic_ips_stats.csv" tmp_csv_file = "/tmp/1.csv" origin_data=[ ["Station", "IP", "Stats", "role"], ["s1", "172.21.156.46", "Online", "master"], ["s2", "172.21.204.237", "Online", "slave"], ["s3", "172.21.204.238", "Online", "slave"], ["s4", "172.21.204.239", "Online", "slave"], ] def __init__(self, conf_path=conf_path): """ # 初始化 :param conf_path: 配置文件,存放集群内所有机器IP,csv文件格式存储 """ # 初始化一个log处理器 self.mlog = jt.my_logger("jc_rsync_ptool") try: self.ip_pool = jcsv.readCSVFile(conf_path) self.ip_pool.remove(self.ip_pool[0]) conf_parent_path = os.path.split(conf_path)[0] except Exception as e: self.mlog.warning("%s initializing failed." %__name__) self.mlog.exception(e) else: self.mlog.info("%s initializing successd." %__name__) # def run_IP_Pool(self): # pass ''' def setIPStats(self, IP, Stats="Online"): """ # Add/Update IPStats to local IP_Pool # 请勿直接调用此方法 :param IP: :param Stats: Online/Offline (str) :return: True/False """ print (self.ip_pool) ''' def fullSync(self, remoteIP, syncFileOrDir, reverse=False, remoteUser="gdlocal", remotePWD="gdlocal"): """ # Full synchronization # 两个工站进行全量同步 (旧版本不会覆盖新版本文件) :param remoteIP: 远程工站IP需手动指定 :param syncFileOrDir: 要同步的文件或文件夹 :param reverse: 是否反向同步 True/False # False: 正向同步,直接覆盖远程文件 # True: 反向同步,即下载远程文件到本地临时文件/tmp/1.csv :param remoteUser: 被同步文件工站用户名 :param remoteUser: 被同步文件工站用户密码 :return: True/False """ if not re.match("\d+.\d+.\d+.\d+", remoteIP): self.mlog.exception("'IP' is invalid type.") exit(1) (dir, filename) = os.path.split(syncFileOrDir) ## -u 同步时旧版本不会覆盖新版本 if reverse: sync_cmd = "/usr/bin/rsync -avu %s@%s://%s %s" %( remoteUser, remoteIP, syncFileOrDir, self.tmp_csv_file) else: sync_cmd = "/usr/bin/rsync -avu %s %s@%s://%s" % (syncFileOrDir, remoteUser, remoteIP, dir) self.mlog.debug("sync_cmd=%s" % sync_cmd) cmd = """ expect << EOF set timeout 3 spawn %s expect { -re "Are you sure you want to continue connecting (yes/no)?" { send "yes\r"; exp_continue } -re "Password:" { send "%s\r"; exp_continue } -re "total size is" { exit 0} timeout { send_user "Timeout...exit.\r" ; exit 1 } eof { send_user "EOF finish.\r" ; exit 2 } } EOF """ %(sync_cmd, remotePWD) (res, rev) = jt.readCMD(cmd, True) if res == 0: self.mlog.info("Get remote file successul. [IP:%s]" % remoteIP) else: ## rsync 有可能失败,尝试重试 (res, rev) = jt.readCMD(cmd, True) if res != 0: self.mlog.warning("Get remote file failed. [IP:%s], exiting..." % remoteIP) return False else: self.mlog.info("Retry get remote file successul. [IP:%s]" % remoteIP) return True def increSync(self, remoteIP, syncFileOrDir, remoteUser="gdlocal", remotePWD="gdlocal"): """ # Incremental synchronization # 两个工站进行增量同步 (其中一个是本机) # Tips: 适用于单文件单增量同步,传入单syncFileOrDir若是文件夹则可能失败 :param remoteIP: 远程工站IP需手动指定 :param syncFileOrDir: 要同步的文件或文件夹 :param reverse: 是否反向同步 True/False, 默认正向同步False :param remoteUser: 被同步文件工站用户名 :param remoteUser: 被同步文件工站用户密码 :return: True/False """ if not os.path.isfile(syncFileOrDir): self.mlog.warning("'%s' should be a exist file path." %syncFileOrDir) # return False # 反向同步,即下载远程文件到本地. 如果失败则退出。 if not self.fullSync(remoteIP, syncFileOrDir, True, remoteUser, remotePWD): self.mlog.exception("Failed: Can't get remote file from [IP:%s]." %remoteIP ) return False remote_data = jcsv.readCSVFile(self.tmp_csv_file) local_data = jcsv.readCSVFile(syncFileOrDir) jt.readCMD(["rm -rf %s" %self.tmp_csv_file], True ) ## 将本地数据与远程数据对比合并重复项,并写入新数据 if remote_data and local_data and remote_data == local_data: ## 如果数据对比相同则不写入新数据和远程同步 return True else: new_data = self.mergeLists(remote_data, local_data) # 清空原数据表 with open(syncFileOrDir, "w") as f: f.write("") jcsv.writeCSVFile(syncFileOrDir, new_data) if self.fullSync(remoteIP, syncFileOrDir, False, remoteUser, remotePWD): return True return False def increSyncAll(self, syncFileOrDir="", remoteUser="gdlocal", remotePWD="gdlocal", remoteIP_list=[]): if not remoteIP_list and not isinstance( remoteIP_list, list): print("remoteIP_list should be type of list.") return None self.mlog.info("remote IP list:%s" %(str(remoteIP_list))) failIP = [] for remoteIP in remoteIP_list: if not self.increSync(remoteIP, syncFileOrDir, remoteUser, remotePWD): failIP.append(remoteIP) self.mlog.info("increSyncAll failed IPs:%s" %(str(failIP))) return failIP def fullSyncAll(self, syncFileOrDir="",remoteUser="gdlocal", remotePWD="gdlocal", remoteIP_list=[]): if not remoteIP_list and not isinstance(remoteIP_list, list): print("remoteIP_list should be type of list.") return None self.mlog.info("remote IP list:%s" % (str(remoteIP_list))) failIP = [] for remoteIP in remoteIP_list: if not self.fullSync(remoteIP, syncFileOrDir, False, remoteUser, remotePWD): failIP.append(remoteIP) self.mlog.warning("increSyncAll failed IPs:%s" % (str(failIP))) return failIP def mergeLists(self, *args): """ # 合并所有的list,自动去除相同项 :param data_1: :param data_2: :return: merged list (set) """ if not args: return [] merged_list = set() for item in args: if not item: continue for i_list in item: try: merged_list.add(tuple(i_list)) except Exception as e: self.mlog.warning("item-%s added failed." % str(i_list)) self.mlog.exception(e) continue return sorted(merged_list, key=lambda x: x[0], reverse=False) def main(): """ ## Python的入口开始 :return: """ from utils import my_logger mlog = my_logger("jc_rsync_tools") module = sys.modules[__name__] # getattr() 函数用于返回一个对象属性值。 # sys.argv 是获取运行python文件的时候命令行参数,且以list形式存储参数 # sys.argv[0] 代表当前module的名字 try: func = getattr(module, sys.argv[1]) except Exception as e: mlog.exception(e) else: args = None if len(sys.argv) > 1: args = sys.argv[2:] mlog.debug("args = %s" %args) func(*args) if __name__ == "__main__": ipp = SyncTool() ipp.mlog.info("This is only test para.") #print(ipp.increSync("172.21.204.238", "/tmp/autopanic_ips_stats.csv", remoteUser="gdlocal", remotePWD="gdlocal")) #print(ipp.increSyncAll( syncFileOrDir="/tmp/autopanic_ips_stats.csv", remoteUser="gdlocal", remotePWD="gdlocal", remoteIP_list=["172.21.204.237", "172.21.204.238","172.21.204.239"])) #logging.critical(ipp.fullSyncAll(syncFileOrDir="/tmp/autopanic_ips_stats.csv", remoteUser="gdlocal", remotePWD="gdlocal", remoteIP_list=["172.21.204.237", "172.21.204.238", "172.21.204.239"])) else: #main() pass
[ "848873227@qq.com" ]
848873227@qq.com
90760b20bcf6f696bcbc1a9d1ad50e5742fd806b
ef2bc6b1ba9be1af93e1b96f62b25f5b9866e187
/backend/posts/migrations/0003_post_category.py
fab13cced492be5b42468bd060f7fc69a6b1df28
[]
no_license
fraanaalonso/DRF-REACT
9c4ad9af2a0ddbbb31297aa401f9f4785eeb1001
36c33e1f2f05d1ccde3bef7c3771ecbc6a2462ef
refs/heads/main
2023-05-02T03:39:01.359618
2021-05-20T16:16:10
2021-05-20T16:16:10
361,467,387
2
0
null
null
null
null
UTF-8
Python
false
false
571
py
# Generated by Django 3.1.8 on 2021-04-22 17:27 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('posts', '0002_category'), ] operations = [ migrations.AddField( model_name='post', name='category', field=models.ForeignKey(default='ad0a16a3-9976-4c6e-8a91-759140d1fac1', on_delete=django.db.models.deletion.CASCADE, related_name='post_category', to='posts.category'), preserve_default=False, ), ]
[ "fraloal97@gmail.com" ]
fraloal97@gmail.com
78a37497426627418e658256b008de7c350e5025
f6f4e6df36e58207fd72276ebd2ee430bd301d03
/数据结构/字典.py
4e87bd464683bf04b94540d3f1d41969639626ec
[]
no_license
aria4013/pythongo
1734e16f046deeb79fa231702ff711c092dafbb3
9b3d4bc6ad4c64cb1a55264b12d54297262729a2
refs/heads/main
2023-04-07T05:25:01.534514
2021-04-19T09:59:06
2021-04-19T09:59:06
359,410,453
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
tel = {'jack': 4098, 'sape': 4139} tel['guido'] = 4127 print(tel) tel['jack'] del tel['sape'] tel['irv'] = 4127 print(tel) list(tel.keys()) sorted(tel.keys()) 'guido' in tel 'jack' not in tel dict([('sape', 4139), ('guido', 4127), ('jack', 4098)]) {x: x**2 for x in (2, 4, 6)} dict(sape=4139, guido=4127, jack=4098)
[ "aria4013@outlook.com" ]
aria4013@outlook.com
7926073ef3fe64f8c68f5bcc7891367d0b7c72fd
b7fbd979143a35d2dc61e4950aa23219febbeb37
/kibitzr_email/exceptions.py
16ee63d4db377446967bd3effa92b19462fec61e
[ "MIT" ]
permissive
kibitzr/kibitzr-email
f5caef7890564be73b2b0b0aad46652a2c5b75d1
36e0b2fdd3ff1547d55f4f1aa52f05d4b641e140
refs/heads/master
2020-03-11T21:51:21.269147
2018-07-07T00:41:45
2018-07-07T00:41:45
130,276,474
2
0
null
null
null
null
UTF-8
Python
false
false
95
py
class UnexpectedResponse(RuntimeError): pass class NetworkOutage(RuntimeError): pass
[ "peterdemin@gmail.com" ]
peterdemin@gmail.com
c4879c4d4fce18ab51478e8f15e2633a82985302
83b723b1e95187f758fccf0eb584686db53ee8c0
/employee_project/employee_register/views.py
97a5df702f6e09aba7558cd5884b8cc7e45d4d6b
[]
no_license
Anikcse18/officeManagementwebproject
c3b6cfb2ef201d8da859e0897e5e976b2621d642
1998965cf80a203007db5aa3c84867aac2d5f755
refs/heads/master
2022-12-08T14:35:24.914465
2020-09-08T15:01:39
2020-09-08T15:01:39
293,844,284
1
0
null
null
null
null
UTF-8
Python
false
false
1,055
py
from django.shortcuts import render,redirect from .forms import EmployeeForm from .models import Employee # Create your views here. def employee_list(request): context = {'employee_list': Employee.objects.all()} return render(request, "employee_register/employee_list.html", context) def employee_form(request, id=0): if request.method == "GET": if id == 0: form = EmployeeForm() else: employee = Employee.objects.get(pk=id) form = EmployeeForm(instance=employee) return render(request, "employee_register/employee_form.html", {'form': form}) else: if id == 0: form = EmployeeForm(request.POST) else: employee = Employee.objects.get(pk=id) form = EmployeeForm(request.POST,instance= employee) if form.is_valid(): form.save() return redirect('/employee/list') def employee_delete(request,id): employee = Employee.objects.get(pk=id) employee.delete() return redirect('/employee/list')
[ "istiakjavedanik@gmail.com" ]
istiakjavedanik@gmail.com
b319a08688d9b352d9ea48f350d2492e1485fe55
71acb7214efd91c0d327f6d8958e1798eadb4401
/locations/spiders/totally_workwear_au.py
e5341eb5c6c1a091ebfaf5469536b0c7d7571898
[ "CC0-1.0", "MIT" ]
permissive
alltheplaces/alltheplaces
21b9f8b4ace1352e52ae7b8f8825a930d2cb033e
1bcbb55cfcf06f2c714465570711f6e83f205c22
refs/heads/master
2023-08-30T19:45:35.098658
2023-08-30T17:51:54
2023-08-30T17:51:54
61,166,935
453
176
NOASSERTION
2023-09-14T17:16:40
2016-06-15T01:09:18
Python
UTF-8
Python
false
false
1,019
py
from scrapy import Spider from locations.dict_parser import DictParser from locations.hours import OpeningHours class TotallyWorkwearAU(Spider): name = "totally_workwear_au" item_attributes = {"brand": "Totally Workwear", "brand_wikidata": "Q119247989"} allowed_domains = ["www.totallyworkwear.com.au"] start_urls = ["https://www.totallyworkwear.com.au/api/places"] def parse(self, response): for location in response.json(): item = DictParser.parse(location) item["ref"] = location["path"] item["lat"] = location["geometry"]["location"]["lat"] item["lon"] = location["geometry"]["location"]["lng"] item["phone"] = location["formatted_phone_number"] item["website"] = "https://www.totallyworkwear.com.au/store/" + location["path"] item["opening_hours"] = OpeningHours() item["opening_hours"].add_ranges_from_string(" ".join(location["opening_hours"]["weekday_text"])) yield item
[ "noreply@github.com" ]
alltheplaces.noreply@github.com