blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
bdd19fb17c474f5eeaa628fb70529da272f562b7
e4bb81b29b21b29443a8138c7a64562b981275e8
/data/dataloader.py
5e8054ed2df8dbf103a4775ead7329b51eddd697
[]
no_license
DaKup/HandPoseShapeVAE
afc8a8fe400e5d030cc821cb371282237cf85530
6ca6a173810ad42a99ead355e719606e17d8c832
refs/heads/master
2022-12-03T22:47:55.400480
2020-08-09T16:54:14
2020-08-09T16:54:14
284,481,182
3
0
null
null
null
null
UTF-8
Python
false
false
3,545
py
import sys import os from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader from torch.utils.data import TensorDataset from data.importers import MSRA15Importer from data.dataset import MSRA15Dataset, MSRA15ImporterWrapper from util.handdetector import HandDetector def create_dataloader(data_dir: Path, batch_size: int, normalize_input=True, max_persons=-1, train_mode="mixed", pose_dict_path=None, shuffle=False): if os.path.isfile(data_dir): data = np.load(data_dir) if 'train_gt3DCrop_norm' in data: dataset = torch.utils.data.TensorDataset(torch.from_numpy(data['train_data']), torch.from_numpy(data['train_gt3DCrop_norm'])) else: dataset = torch.utils.data.TensorDataset(torch.from_numpy(data['train_data'])) dataloader = DataLoader( dataset=dataset, batch_size=batch_size, shuffle=shuffle, sampler=None, batch_sampler=None, num_workers=0, #collate_fn=default_collate, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None ) return dataloader importer = MSRA15ImporterWrapper(MSRA15Importer(data_dir), normalize_input=normalize_input, max_persons=max_persons) if pose_dict_path != None: dataset = MSRA15Dataset(importer, train_mode=train_mode, pose_dict_path=pose_dict_path, batch_size=batch_size) batch_size = 1 else: dataset = MSRA15Dataset(importer) dataloader = DataLoader( dataset=dataset, batch_size=batch_size, shuffle=shuffle, sampler=None, batch_sampler=None, num_workers=0, #collate_fn=default_collate, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None ) return dataloader def load_frame(filename: Path, com=None, size=(250, 250, 250), dsize=(128, 128), docom=False, cube=None): # No ImporterWrapper here, because we don't want to load all sequences, we just need a way to load frames from single files: importer = MSRA15Importer(basepath=None) dpt = importer.loadDepthMap(filename) hand_detector = HandDetector(dpt, importer.fx, importer.fy, refineNet=importer.refineNet, importer=importer) if not hand_detector.checkImage(1.): sys.exit("No hand detected") #try: cropped_hand_depth, joint_transf_mat, com = hand_detector.cropArea3D(com=None, size=size, dsize=dsize, docom=docom) # size=config['cube'] # except UserWarning: # #sys.exit("Skipping file {}, no hand detected".format(filename)) # print("Skipping file {], no hand detected".format(filename)) # return None if cube == None: cube = [] # Min/Max else: # normalize input [-1, 1] cropped_hand_depth[cropped_hand_depth == 0] = com[2] + (cube[2] / 2.) cropped_hand_depth = cropped_hand_depth - com[2] cropped_hand_depth = cropped_hand_depth / (cube[2] / 2.) return cropped_hand_depth, joint_transf_mat, com # input = torch.from_numpy(cropped_hand_depth) # batch_input = input.unsqueeze(0) # add 1 for the batch dimension # batch_input = batch_input.to(args.device) def save_wavefront(filename: Path, dpt): with open(filename, "w") as obj: for xyz in dpt: x = xyz[0] y = xyz[1] z = xyz[2] obj.write("v {} {} {}\n".format(x, y, z))
[ "daniel.kup@student.tugraz.at" ]
daniel.kup@student.tugraz.at
41b62148741f8eeacc4cd75923e3221f352c447a
a164516eedade96dfa6b7ddf9f58c07bc34f0d7d
/portfolio/settings.py
680bcc918481899585ad347cb93a3ca5c178fc5c
[]
no_license
Kumar-Roopak/portfolio-project
d728632fb926a7085569da91de0311cac4e5fd14
dee575fe007da49751cff5ec9f5088461323017f
refs/heads/master
2020-04-02T01:04:41.694807
2018-10-19T22:21:03
2018-10-19T22:21:03
152,787,092
0
0
null
null
null
null
UTF-8
Python
false
false
3,513
py
""" Django settings for portfolio project. Generated by 'django-admin startproject' using Django 2.0.2. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'uqw2u&q1+*ykw^7wrh11!mnjxs11#m!zm4+#8#*-uz_(z&d7b!' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'blog.apps.BlogConfig', 'jobs.apps.JobsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'portfolio.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'portfolio.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'portfoliodb', 'USER': 'postgres', 'PASSWORD': 'Brooke@9811463488', 'HOST': 'localhost', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'portfolio/static/') ] STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' try: from .local_settings import * except ImportError: pass
[ "kum17003@byui.edu" ]
kum17003@byui.edu
ae132d5fb1641981f5167a9e88f4f1b5237558fb
8682252f94375ab0300499ba1e1b412790369519
/cryptoblotter/trades/utils.py
9b7554ee31239a4b70934ddf2330d9701890b376
[ "MIT" ]
permissive
PAV-Laboratory/cryptoblotter
713e245f8343980b9de3c7290c9a29b4baa768de
f573592a3638fbc6cae24d76305de36b932949c6
refs/heads/main
2023-04-21T01:03:24.934536
2021-05-04T00:15:57
2021-05-04T03:23:43
391,418,996
1
0
MIT
2021-07-31T17:14:37
2021-07-31T17:14:37
null
UTF-8
Python
false
false
762
py
from decimal import Decimal def decimal_to_str(data: dict): for key, value in data.items(): if isinstance(value, dict): data[key] = decimal_to_str(value) elif isinstance(value, list): for index, v in enumerate(value): if isinstance(v, dict): data[key][index] = decimal_to_str(v) elif isinstance(v, Decimal): data[key][index] = str(v) elif isinstance(value, Decimal): data[key] = str(value) return data def normalize_symbol(feed: str, symbol: str): for char in ("-", "/", "_"): symbol = symbol.replace(char, "") if feed == "upbit": symbol = symbol[3:] + symbol[:3] # Reversed return symbol
[ "globophobe@gmail.com" ]
globophobe@gmail.com
c48dfebf64c01e9992f83ddc243026953d873e31
312fae7e287682d1eba7bf43e65bdfeff2e33e6a
/APIServer/commons/form_api.py
6ae70295e081e88832049c63d9db7968e25a43df
[ "MIT" ]
permissive
gcallah/socnet
3ae9582a7d8d3871806c2820efb1b13a2e4f747a
dd8f0894e8ed071df7f78f3b61dddc7d5cf7be61
refs/heads/master
2023-02-26T07:02:34.517851
2020-07-27T14:21:22
2020-07-27T14:21:22
208,861,159
1
1
MIT
2023-02-16T08:31:29
2019-09-16T17:44:56
Python
UTF-8
Python
false
false
627
py
from APIServer.commons.api_utils import read_json def get_alert_form(path): return read_json(path) def create_alert_json(alert_tuple): ''' Create alert_json from an alert tuple ''' alert_json = {} alert_json['datetime'] = alert_tuple[1] alert_json['zipcode'] = alert_tuple[2] alert_json['city'] = alert_tuple[3] alert_json['state'] = alert_tuple[4] alert_json['country'] = alert_tuple[5] alert_json['type'] = alert_tuple[6] alert_json['description'] = alert_tuple[7] alert_json['severity'] = alert_tuple[8] alert_json['sender'] = alert_tuple[9] return alert_json
[ "wm1065@nyu.edu" ]
wm1065@nyu.edu
cb5d8e1a4128394cd188b847c0d6f216a6f30120
d3ae46a2d5277574ce14539f7adbcb961d05e7ca
/version/bin/wheel
e1d092ecd632e75cdc68f8c00693ebb066f6b5c3
[]
no_license
muw2/CS1XA3
b8f65c4a6569fb5db42902812193b4be945964e4
934afe2361f868e331d666353d32a129f1056e64
refs/heads/master
2020-04-20T03:30:41.073572
2019-04-25T04:32:52
2019-04-25T04:32:52
168,251,805
0
0
null
null
null
null
UTF-8
Python
false
false
233
#!/home/muw2/CS1XA3/version/bin/python2 # -*- coding: utf-8 -*- import re import sys from wheel.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "muw2@mcmaster.ca" ]
muw2@mcmaster.ca
5a48ce3402299b837458ddeb22dfd7fda978291b
2102d034f9a53835b33434c5270302f3c047d7b3
/backend-scv/api/scripts/installtools.py
2da79645ccf30cb3c00f01fcb3de6d8a61847a38
[]
no_license
fdemian/scv-react-test
acd9614f52f142066034594a5b48386dbaba2831
66550fa75c88e1be5dd70678e13fb3a9acd3179e
refs/heads/master
2023-08-28T17:32:52.455364
2021-10-28T21:53:14
2021-10-28T21:53:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,015
py
import sys from subprocess import call script_path = "api/scripts" def install_packages(requirements_file): return_code = call([sys.executable, '-m', 'pip', 'install', '-r', requirements_file]) if return_code is not 0: raise Exception("unable to install one or more packages") def call_scripts(scripts, script_path): for script in scripts: return_code = call([sys.executable, script_path + "/" + script]) if return_code is not 0: raise Exception("script: " + script + " failed to execute") def setup(name, requirements_file, scripts): try: """ print(" ==============" + name + "============== ", end="\n\n\n") print("Installing packages", end="\n") install_packages(requirements_file) """ print("\n") print("========= Calling scripts ============== ", end="\n\n\n") call_scripts(scripts, script_path) except Exception as inst: print("The following error ocurred: " + str(inst))
[ "federicodamiancaminiti@gmail.com" ]
federicodamiancaminiti@gmail.com
49fd48e6fbab74f7981b53f6c31fe6d3c3620d30
0e822323071d972c4a2a8b3c4e778a9144b2b5b4
/databuilder/models/table_source.py
d0b7156e4977073bb77abd81647e5fcfdba70777
[ "Apache-2.0" ]
permissive
duyet/amundsendatabuilder
f3bed53c93d19bfda5ae7df1bd456214e442012f
21a763add3c00c34b4f4c2d9809f59e50fb264c8
refs/heads/master
2023-04-09T05:08:07.816951
2020-07-01T16:34:56
2020-07-01T16:34:56
277,763,943
0
0
Apache-2.0
2023-04-03T23:05:59
2020-07-07T08:43:44
null
UTF-8
Python
false
false
3,940
py
from typing import Any, Dict, List, Union # noqa: F401 from databuilder.models.neo4j_csv_serde import Neo4jCsvSerializable, NODE_KEY, \ NODE_LABEL, RELATION_START_KEY, RELATION_START_LABEL, RELATION_END_KEY, \ RELATION_END_LABEL, RELATION_TYPE, RELATION_REVERSE_TYPE from databuilder.models.table_metadata import TableMetadata class TableSource(Neo4jCsvSerializable): # type: (...) -> None """ Hive table source model. """ LABEL = 'Source' KEY_FORMAT = '{db}://{cluster}.{schema}/{tbl}/_source' SOURCE_TABLE_RELATION_TYPE = 'SOURCE_OF' TABLE_SOURCE_RELATION_TYPE = 'SOURCE' def __init__(self, db_name, # type: str schema, # type: str table_name, # type: str cluster, # type: str source, # type: str source_type='github', # type: str ): # type: (...) -> None self.db = db_name.lower() self.schema = schema.lower() self.table = table_name.lower() self.cluster = cluster.lower() if cluster else 'gold' # source is the source file location self.source = source self.source_type = source_type self._node_iter = iter(self.create_nodes()) self._relation_iter = iter(self.create_relation()) def create_next_node(self): # type: (...) -> Union[Dict[str, Any], None] # return the string representation of the data try: return next(self._node_iter) except StopIteration: return None def create_next_relation(self): # type: (...) -> Union[Dict[str, Any], None] try: return next(self._relation_iter) except StopIteration: return None def get_source_model_key(self): # type: (...) -> str return TableSource.KEY_FORMAT.format(db=self.db, cluster=self.cluster, schema=self.schema, tbl=self.table) def get_metadata_model_key(self): # type: (...) -> str return '{db}://{cluster}.{schema}/{table}'.format(db=self.db, cluster=self.cluster, schema=self.schema, table=self.table) def create_nodes(self): # type: () -> List[Dict[str, Any]] """ Create a list of Neo4j node records :return: """ results = [{ NODE_KEY: self.get_source_model_key(), NODE_LABEL: TableSource.LABEL, 'source': self.source, 'source_type': self.source_type }] return results def create_relation(self): # type: () -> List[Dict[str, Any]] """ Create a list of relation map between owner record with original hive table :return: """ results = [{ RELATION_START_KEY: self.get_source_model_key(), RELATION_START_LABEL: TableSource.LABEL, RELATION_END_KEY: self.get_metadata_model_key(), RELATION_END_LABEL: TableMetadata.TABLE_NODE_LABEL, RELATION_TYPE: TableSource.SOURCE_TABLE_RELATION_TYPE, RELATION_REVERSE_TYPE: TableSource.TABLE_SOURCE_RELATION_TYPE }] return results def __repr__(self): # type: () -> str return 'TableSource({!r}, {!r}, {!r}, {!r}, {!r})'.format(self.db, self.cluster, self.schema, self.table, self.source)
[ "noreply@github.com" ]
duyet.noreply@github.com
43f5d197c6188ed85aa8adfb2c0b9986d4d53085
d73d0268aa090cdd08497145fa48619ffb0ef01a
/APIdashboard/models.py
709e54101f394f2d223f5ca936d8b595712f3594
[]
no_license
kademanec/apimanager
de94e65b61b79ae53f39ed50823b20db8b484c13
84bc2b0e492f7fb0ae722aff1eef2ffa4998d13b
refs/heads/master
2020-08-07T00:22:48.938687
2019-10-07T08:09:20
2019-10-07T08:09:20
213,217,795
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models # Create your models here. class APIs(models.Model): name = models.CharField(max_length=200) link = models.CharField(max_length=200) requesting = models.TextField(null = True) def __str__(self): return self.name
[ "kademanec@gmail.com" ]
kademanec@gmail.com
4007333f9e30962bcb94d603eb1809a924de0442
e3d969e2c9e4b57f4f7d58af5e44a00aa8fb15d3
/0463 Island Perimeter.py
86247af9f1d30d1779eefb1f33573fa65d92750a
[ "MIT" ]
permissive
kevin-fang/leetcode
2744ff01e791db6f60edf946ef71451fae92ef6f
3958f888b30bb3e29916880ecec49b3870a0bea3
refs/heads/master
2022-12-15T07:50:01.056016
2020-09-10T03:47:53
2020-09-10T03:47:53
294,296,037
3
0
MIT
2020-09-10T03:47:39
2020-09-10T03:47:38
null
UTF-8
Python
false
false
510
py
class Solution: def islandPerimeter(self, grid: List[List[int]]) -> int: ans = 0 for y in range(len(grid)): for x in range(len(grid[0])): if grid[y][x] == 1: ans += 4 for dy, dx in [[1,0], [0,1], [-1,0], [0,-1]]: ny, nx = y+dy, x+dx if ny >= 0 and ny < len(grid) and nx >= 0 and nx < len(grid[0]) and grid[ny][nx] == 1: ans -= 1 return ans
[ "mdabedincs@gmail.com" ]
mdabedincs@gmail.com
21b207fd26fd58a3a0685aa18e3709c83c8aa764
598ab0b2211db7c808c14c2b83293c84fb9d546d
/comma_code.py
4116427975bd0499532d8f03a2c0b6cb2b5d089d
[]
no_license
mojeedkusimo/comma-code
2d39e6736432213d64ab6145f73a75203349da50
7869cb0c0be472bce8c389ded50ca6ce71b70fb5
refs/heads/master
2021-09-23T23:36:06.789418
2018-09-29T08:47:17
2018-09-29T08:47:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,656
py
print ("This program takes in any food item you input and displays it in an organised manner") print ("Hello there! Can you please enter your name?") user = input () print ("Welcome!",user) while True: def food (items): # a function is defined with "item" as the single parameter no_of_items = 0 # a counter for the number of items in the list is declared items_string = "" # a string for the list is also formed while no_of_items < len (items) - 1: # condition for compiling all the items except the last one items_string += items [no_of_items] + ", " # each item and ", " is added to the string via concatenation no_of_items += 1 # counter is increased accordingly return items_string + "and " + items [no_of_items] # the last item and "and" is brought in meal = [] # program creates an empty list print ("Enter any food of your choice and press enter when done") usermeal = input () # asks user to enter a food item while usermeal != "": # the program continues to run until nothing is entered and user press enter meal = meal + [usermeal] #each item entered by the user is added to the list usermeal = input () # asks for more entry print (food (meal)) close = input ("\nWould you like to exit?\n 1.Yes\t 2. No\n Choice:") if close == "2": # conditions for quitting the program continue elif close == "1": print ("Thank you for your time,",user,", do have a nice day!") break
[ "noreply@github.com" ]
mojeedkusimo.noreply@github.com
8358005976800dd1cebd8e9f73b7c7a21511b505
4e879e994720100a9354895af2bb9be33b38a42b
/xUdemy_xlwings/S4_MontecarloSimulation_Part_1/S4_32_Simple_MonteCarlo_Simulation_01.py
7e59f365bbe892740b7a699368b2e2c7ab95f061
[]
no_license
pepitogrilho/learning_python
80314ec97091238ed5cc3ed47422d2e6073a3280
bbdc78a9a0513c13d991701859bcfe7a8e614a49
refs/heads/master
2023-04-09T15:07:08.866721
2023-04-02T18:45:47
2023-04-02T18:45:47
230,527,165
0
0
null
null
null
null
UTF-8
Python
false
false
1,289
py
# -*- coding: utf-8 -*- """ """ import xlwings as xw import numpy as np import matplotlib.pyplot as plt app = xw.apps.active #Open workbook wb = xw.Book("real_estate.xlsx") inp = wb.sheets[0] #Define ranges inp["D20"].name = "cpi" inp["D25"].name = "ppf" inp["D40"].name = "cost" #inp["G24:G25"].name = "performance" inp["G24"].name = "performance_multiple" inp["G25"].name = "performance_IRR" #Number of simulations sims = 100 #CPI: Probability Distribution (normal) cpi_exp = 0.02 cpi_std = 0.01 cpi_pd = np.random.normal(cpi_exp, cpi_std, sims) plt.hist(cpi_pd, bins = 100) plt.show() #PPF: Probability Distribution (normal) ppf_exp = 23 ppf_std = 3 ppf_pd = np.random.normal(ppf_exp, ppf_std, sims) plt.hist(ppf_pd, bins = 100) plt.show() #COST: Probability Distribution (normal) cost_exp = 250000 cost_std = 50000 cost_pd = np.random.normal(cost_exp, cost_std, sims) plt.hist(cost_pd, bins = 100) plt.show() #PERFORMANCE results=[] for i in range(sims): inp["cpi"].value = np.random.normal(cpi_exp, cpi_std) inp["ppf"].value = np.random.normal(ppf_exp, ppf_std) inp["cost"].value = np.random.normal(cost_exp, cost_std) results.append(inp["performance_multiple"].value) plt.hist(results, bins = 100) plt.show() ############## 2:09/14:33 wb.close()
[ "pepitogrilho@gmail.com" ]
pepitogrilho@gmail.com
2033c29c81fe3f673e5a257fd45f89870796a944
1a87d286396a2c6f6b6ac7c53495f80690836c7b
/CTCI/CTCI_4_4_buildListOfNodeAtSameDepth_method2.py
4fe9d49e79cb791b7a53cb0e8efdca5d0ca95c4d
[]
no_license
kickbean/LeetCode
14d33eea9dd70821114ca6d7e1a32111d4d64bf0
92e4de152e2aae297ef0e93c9eea61d7ad718f4e
refs/heads/master
2016-09-10T14:38:33.692759
2014-04-08T00:26:51
2014-04-08T00:26:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,598
py
''' CTCI 4-4 Given a binary search tree, design an alghrithm to create a linked list of all the nodes at each depth Algorithm: breath first search and record the level of each node Created on Nov 28, 2013 @author: Songfan ''' from queue import Queue from buildListOfNodeAtSameDepth_4_4 import LinkedList, BST ''' BFS: using a queue ''' class BST2(BST): def buildNodeList(self): result = {} if self.root: q = Queue() visitedNode = [] q.enqueue(self.root) q.enqueue('EndLevelFlag') level = 0 while(not q.isEmpty()): tmp = q.dequeue() if tmp == 'EndLevelFlag': # finish building the current level level += 1 else: # add node to Linked List visitedNode.append(tmp) if level in result.keys(): result[level].append(tmp) else: aList = LinkedList() aList.append(tmp.value) result[level] = aList if tmp.left: q.enqueue(tmp.left) if tmp.right: q.enqueue(tmp.right) # add dummy item to represent the end of level q.enqueue('EndLevelFlag') return result t = BST() print t t.insert(5) t.insert(1) t.insert(7) t.insert(2) t.insert(9) t.insert(8) print t print t.root.getDepth() print t.root.left.getDepth() h = t.buildNodeList() for k in h.keys(): print h[k]
[ "songfan.yang@gmail.com" ]
songfan.yang@gmail.com
35d2a69ebef931e4686710e2468cd9fc63e8d523
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03485/s456539182.py
60831196a61282637ddaf30b97852a9b0b19c178
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
145
py
import sys def input(): return sys.stdin.readline().strip() def resolve(): a,b=map(int, input().split()) print(-(-(a+b) // 2)) resolve()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
9d27dc2a1cb0b24902ffe100874c06eea38b133f
408520088af1a66631bca4f7340256e28f3a4f7e
/pset6/credit/credit.py
ce030d32bb1eea9831e68f24795780949f6174fe
[]
no_license
pidus/cs50
a00d903ef6a33d710e2109fc61bfe566f65a396d
55e7e9053a7a4a339ae3d5cd2b2830e1a3e6630c
refs/heads/master
2023-02-08T19:54:56.569014
2020-12-31T17:09:03
2020-12-31T17:09:03
315,669,764
1
0
null
null
null
null
UTF-8
Python
false
false
975
py
from cs50 import get_int #get card number from user def get_valid_input(): uin = get_int("Number: ") while uin < 0 or uin > 9999999999999999: uin = get_int("Number: ") return uin card = str(get_valid_input()) length = len(card) #Luhn’s Algorithm luhn = 0 #every other digits starting w/ 2nd to last for a in range(length-2, -1, -2): tmp = int(card[a])*2 if tmp < 10: luhn += tmp else: luhn += tmp-9 # rest of the digits for b in range(length-1, -1, -2): luhn += int(card[b]) remainder = luhn%10 if remainder == 0: if length == 15 and int(card[0]) == 3 and (int(card[1]) == 4 or int(card[1])) == 7: print("AMEX") elif length == 16 and int(card[0]) == 5 and (int(card[1]) == 1 or int(card[1]) == 2 or int(card[1]) == 3 or int(card[1]) == 4 or int(card[1]) == 5): print("MASTERCARD") elif (length == 13 or length == 16) and int(card[0]) == 4: print("VISA") else: print("INVALID")
[ "8981437939@pm.me" ]
8981437939@pm.me
b5e976203b2ada9312a2989842387bba512a0df5
7bb4ad7008304ed53e41c405e23a7374e5183490
/svr.py
2994a37b0ffa43f046deb81752fbd8b1a16c580e
[]
no_license
naveen700/Support-Vector-Regression
a514148940c126549a2c67c1ca8e524e20017ffd
bdad0b7b6cae29fdf237c57db844b4860f70bd64
refs/heads/master
2020-05-18T05:26:38.793692
2019-05-02T07:15:08
2019-05-02T07:15:08
184,207,261
1
0
null
null
null
null
UTF-8
Python
false
false
1,837
py
# SVR # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2:3].values # Splitting the dataset into the Training set and Test set """from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)""" # Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() sc_y = StandardScaler() X = sc_X.fit_transform(X) y = sc_y.fit_transform(y) # Fitting SVR to the dataset from sklearn.svm import SVR # svr does not include feature scaling. # we need to define kernel ,for non-linear we use most commonly gaussian kernel which is rbf kernel ,this is already default choice for kernel. regressor = SVR(kernel='rbf') regressor.fit(X,y) data = [6.5] data = np.array(data) data = data.reshape(1,-1) # Predicting a new result y_pred = regressor.predict(sc_X.transform(data)) # y_pred is scaled prediction we need to move it back to orgincal scale. so we need to inverse the scale tranformation. y_pred = sc_y.inverse_transform(y_pred) # Visualising the SVR results plt.scatter(X, y, color = 'red') plt.plot(X, regressor.predict(X), color = 'blue') plt.title('Truth or Bluff (SVR)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() # Visualising the SVR results (for higher resolution and smoother curve) X_grid = np.arange(min(X), max(X), 0.01) # choice of 0.01 instead of 0.1 step because the data is feature scaled X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color = 'red') plt.plot(X_grid, regressor.predict(X_grid), color = 'blue') plt.title('Truth or Bluff (SVR)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
[ "naveen.rana@deeplogictech.com" ]
naveen.rana@deeplogictech.com
1fef2f313e198ebc6f4223b0473b33d66de7a432
4c839dfe650b992b4d4927d8b47c5a1745c6e904
/app_hello.py
6c84696806cd3421bab959a173152e0d4449664c
[]
no_license
JThanat/femto-mesos
98c205aa3d1dbd6f8bba6a2bd0299214da838b06
e7b989b0fb7ae4ff4a66ec92a4d97e29fcec4918
refs/heads/master
2021-05-23T05:29:50.842680
2017-11-29T01:06:16
2017-11-29T01:06:16
95,017,728
4
0
null
null
null
null
UTF-8
Python
false
false
1,708
py
#!/usr/bin/env python # This main is adapted from APACHE Mesos original test_framework.py import json import os import sys import mesos.native from mesos.interface import mesos_pb2 from framework.framework import HelloWorldScheduler from framework.job import Job if __name__ == "__main__": # Read JSON File json_file = sys.argv[2] jobs = [] with open(json_file) as json_data: json_object = json.load(json_data) jobs_array = json_object["jobs"] print jobs_array # Prepare job object Array for j in jobs_array: jobs.append(Job.fromJSON(j)) # Framework Info, Executor and Driver framework = mesos_pb2.FrameworkInfo() framework.user = "" framework.name = "hello-world" framework.checkpoint = True implicitAcknowledgements = 1 if len(sys.argv) != 3: print "Usage: %s master" % sys.argv[0] sys.exit(1) executor = mesos_pb2.ExecutorInfo() executor.executor_id.value = "default" executor.command.value = os.path.abspath("./test-executor") executor.name = "Test Executor (Python)" executor.source = "python_test" # STEP1: Get Framework Info framework = mesos_pb2.FrameworkInfo() framework.user = "" # Have Mesos fill in the current user. framework.name = "Test Framework (Python)" framework.checkpoint = True driver = mesos.native.MesosSchedulerDriver( HelloWorldScheduler(implicitAcknowledgements, executor, jobs), framework, sys.argv[1], implicitAcknowledgements) status = 0 if driver.run() == mesos_pb2.DRIVER_STOPPED else 1 # Ensure that the driver process terminates. driver.stop() sys.exit(status)
[ "thanat.jat@gmail.com" ]
thanat.jat@gmail.com
94e887a5648716db788c45167f576b57c0e028f2
d0f11aa36b8c594a09aa06ff15080d508e2f294c
/leecode/1-500/1-100/42-接雨水.py
691adfc3090fd9501f149077778714d19403a479
[]
no_license
saycmily/vtk-and-python
153c1fe9953fce685903f938e174d3719eada0f5
5045d7c44a5af5c16df5a3b72c157e9a2928a563
refs/heads/master
2023-01-28T14:02:59.970115
2021-04-28T09:03:32
2021-04-28T09:03:32
161,468,316
1
1
null
2023-01-12T05:59:39
2018-12-12T10:00:08
Python
UTF-8
Python
false
false
292
py
def trap(height): ans = 0 h1 = 0 h2 = 0 for i in range(len(height)): h1 = max(h1, height[i]) h2 = max(h2, height[-i-1]) ans = ans + h1 + h2 - height[i] return ans - len(height)*h1 height = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1] print(trap(height))
[ "1786386686@qq.com" ]
1786386686@qq.com
0904d4495354c4ddfd0df4dc2ce7126c46b98949
8ffc004ca05591278cb5f2dea150b74594a2f45d
/baseline/lib/callbacks.py
a8448a9c353b4fca5907ae5798381eb6dd28e0dd
[ "MIT" ]
permissive
Ravirajadrangi/predicting-paraphrases
5e59e18f7006d2f68a22540aef0318adc2be0e68
348c99c943d9169b8d5ced043c1ae6119e390b27
refs/heads/master
2021-01-15T19:14:15.592922
2017-03-18T05:49:11
2017-03-18T05:49:11
99,812,721
0
0
null
null
null
null
UTF-8
Python
false
false
1,179
py
import keras from models.paraphrase import SiameseParaphrase class ParaphraseCallback(keras.callbacks.Callback): """Run the paraphrase model to test accuracy""" def __init__(self,train_inputs,train_labels,test_inputs,test_labels): self.train_left = train_inputs[:,:,:,0] self.train_right = train_inputs[:,:,:,1] self.train_labels = train_labels self.test_left = test_inputs[:,:,:,0] self.test_right = test_inputs[:,:,:,1] self.test_labels = test_labels def on_batch_end(self, batch, logs={}): autoencoder = self.model print self.train_left print self.train_right input_shape = (51,50) # (n_training, max_sentence_length, embedding_size) siamese = SiameseParaphrase(autoencoder,input_shape) print "Fitting SiameseModel:" siamese.fit(self.train_left, self.train_right ,self.train_labels) print "Evaluating SiameseModel in training data:" siamese.evaluate(self.train_left, self.train_right, self.train_labels) print "Evaluating SiameseModel in testing data:" siamese.evaluate(self.test_left, self.test_right, self.test_labels)
[ "maxkferg@gmail.com" ]
maxkferg@gmail.com
e58374bf9aa04da228a0242c6429794fc458b7bd
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/galex_j03230-2945/sdB_GALEX_J03230-2945_coadd.py
2027385d6aa7d7738f0c0def398550be993ebdf8
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[50.76725,-29.758464], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_GALEX_J03230-2945/sdB_GALEX_J03230-2945_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_GALEX_J03230-2945/sdB_GALEX_J03230-2945_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
[ "thomas@boudreauxmail.com" ]
thomas@boudreauxmail.com
1a32bd9e6b7fb5c4f46187766b732e3db8f7d753
da302ba0c71722591fb19ceeb24bb1f9d60b128a
/text.py
4189183f68dd294cc99a022df066d84c903427dc
[ "MIT" ]
permissive
shagabutdinov/sublime-context
f4352b8126645f23a11465cc70ab6dd52588200b
2a088a4dd9d7d516ed49f4d1bd85696fa6ecc2d4
refs/heads/master
2020-04-05T23:29:09.439470
2016-10-25T10:47:27
2016-10-25T10:47:27
24,747,150
4
1
null
null
null
null
UTF-8
Python
false
false
3,690
py
import sublime import sublime_plugin from Context.base import Base class Selection(Base): def on_query_context(self, *args): callback = lambda view, sel: view.substr(sel) return self._check_sel('selection', callback, *args) class LineB(Base): def on_query_context(self, *args): callback = lambda view, sel: view.substr(view.line(sel.b)) return self._check_sel('line', callback, *args) class FollowingTextA(Base): def on_query_context(self, *args): return self._check_sel('following_text_a', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(sel.a, view.line(sel.a).b)) class FollowingTextB(Base): def on_query_context(self, *args): return self._check_sel('following_text_b', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(sel.b, view.line(sel.b).b)) class FollowingTextBegin(Base): def on_query_context(self, *args): return self._check_sel('following_text_begin', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(sel.begin(), view.line(sel.begin()).b)) class FollowingTextEnd(Base): def on_query_context(self, *args): return self._check_sel('following_text_end', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(sel.end(), view.line(sel.end()).b)) class PrecedingTextA(Base): def on_query_context(self, *args): return self._check_sel('preceding_text_a', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(view.line(sel.a).a, sel.a)) class PrecedingTextB(Base): def on_query_context(self, *args): return self._check_sel('preceding_text_b', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(view.line(sel.b).a, sel.b)) class PrecedingTextBegin(Base): def on_query_context(self, *args): return self._check_sel('preceding_text_begin', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(view.line(sel.begin()).a, sel.begin())) class PrecedingTextEnd(Base): def on_query_context(self, *args): return self._check_sel('preceding_text_end', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(view.line(sel.end()).a, sel.end())) class Preceding128CharsBegin(Base): def on_query_context(self, *args): return self._check_sel('preceding_128_chars_begin', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(max(0, sel.begin() - 128), sel.begin())) class Preceding512CharsBegin(Base): def on_query_context(self, *args): return self._check_sel('preceding_512_chars_begin', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(max(0, sel.begin() - 512), sel.begin())) class Following128CharsEnd(Base): def on_query_context(self, *args): return self._check_sel('following_128_chars_end', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(sel.begin(), min(view.size(), sel.end() + 128))) class Following512CharsEnd(Base): def on_query_context(self, *args): return self._check_sel('following_512_chars_end', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(sel.begin(), min(view.size(), sel.end() + 512))) class Begin512Chars(Base): def on_query_context(self, *args): return self._check_sel('begin_512_chars', self._callback, *args) def _callback(self, view, sel): return view.substr(sublime.Region(0, min(view.size(), 512)))
[ "leonid@shagabutidnov.com" ]
leonid@shagabutidnov.com
357c3e80a1db4ce379c01c1f50edcb5735a608aa
26eeab4b8c472a9b65897a30bc7c6779b4c418e8
/2_Data Wrangling/assignment2.py
b4e6f324ad9c30f1194fcc060c39605ede41309f
[ "MIT" ]
permissive
gaurprabhakar94/Dat210x
3c187e779c7e77cb51499e23c79fce5f1f5efd38
06fe3c2a4354c7eaba3215ecddf9ed9c47cca8e3
refs/heads/master
2021-01-01T20:31:52.740756
2017-07-31T13:48:02
2017-07-31T13:48:02
98,882,592
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
import pandas as pd import os os.chdir('Datasets') # Loading up the dataset # df = pd.read_csv("tutorial.csv", sep=',') print(df) print("\n") # Printing the results of the .describe() method # print(df.describe()) print("\n") # Indexing the dataframe with: [2:4,'col3'] # and then printing the value print(df.loc[2:4,'col3'])
[ "noreply@github.com" ]
gaurprabhakar94.noreply@github.com
f20e69a54e2028b1df280af140d788ce4bcb2e16
6284b810dc0d23b7735bf988bbeaa84f5d5f9f49
/src/models/train_model.py
ad436da4a89db35c3bb7136a72f815693a4037e4
[ "BSD-3-Clause" ]
permissive
Lewuathe/TensorFlow-StyleTransfer
5985fa3b606b6cb8b0d6ce29c6148eb93fcbd4bb
8ef95003c395c7130492a6af5a982f02aa199fa3
refs/heads/master
2020-12-25T18:52:41.651940
2017-06-11T13:34:57
2017-06-11T13:34:57
94,006,269
1
0
null
null
null
null
UTF-8
Python
false
false
7,885
py
#!/usr/bin/env python """ An implementation of the paper "A Neural Algorithm of Artistic Style" by Gatys et al. in TensorFlow. Author: Chip Huyen (huyenn@stanford.edu) Prepared for the class CS 20SI: "TensorFlow for Deep Learning Research" For more details, please read the assignment handout: http://web.stanford.edu/class/cs20si/assignments/a2.pdf """ from __future__ import print_function import os import time import numpy as np import tensorflow as tf import vgg_model import utils # parameters to manage experiments STYLE_IMAGE = 'data/styles/{}.jpg' CONTENT_IMAGE = 'data/content/{}.jpg' IMAGE_HEIGHT = 333 IMAGE_WIDTH = 333 IMAGE_FILENAME = '{}/{}.png' tf.flags.DEFINE_string( "style", 'hokusai', "Style image. Image must be put in data/styles.") tf.flags.DEFINE_string( "content", None, 'Content image. Image must be put in data/content.') tf.flags.DEFINE_float( "noise_ratio", 0.6, "Percentage of weight of the noise for intermixing with the content image") tf.flags.DEFINE_float( "style_loss_ratio", 0.05, "The weight of style loss with content loss. The total loss is content_loss + ratio * style_loss") tf.flags.DEFINE_string( "content_loss_layer", "conv4_2", "The layer used for calculating content loss. (conv1_2, conv2_2, conv3_2, conv4_2, conv5_2)") tf.flags.DEFINE_string( "output_dir", "data/outputs", "The output dir where generated image will be put.") tf.flags.DEFINE_integer( "iters", 300, "Iterations") tf.flags.DEFINE_float( "learning_rate", 2.0, "Learning rate") FLAGS = tf.flags.FLAGS # Layers used for style features. You can change this. STYLE_LAYERS = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1'] W = [0.5, 1.0, 1.5, 3.0, 4.0] # give more weights to deeper layers. MEAN_PIXELS = np.array([123.68, 116.779, 103.939]).reshape((1,1,1,3)) """ MEAN_PIXELS is defined according to description on their github: https://gist.github.com/ksimonyan/211839e770f7b538e2d8 'In the paper, the model is denoted as the configuration D trained with scale jittering. The input images should be zero-centered by mean pixel (rather than mean image) subtraction. Namely, the following BGR values should be subtracted: [103.939, 116.779, 123.68].' """ # VGG-19 parameters file VGG_DOWNLOAD_LINK = 'http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat' VGG_MODEL = 'models/imagenet-vgg-verydeep-19.mat' EXPECTED_BYTES = 534904783 def _create_content_loss(p, f): """ Calculate the loss between the feature representation of the content image and the generated image. Inputs: p, f are just P, F in the paper (read the assignment handout if you're confused) Note: we won't use the coefficient 0.5 as defined in the paper but the coefficient as defined in the assignment handout. Output: the content loss """ return tf.reduce_mean(tf.square(f - p)) / (4 * p.size) def _gram_matrix(F, N, M): """ Create and return the gram matrix for tensor F """ m = tf.reshape(F, shape=[M, N]) return tf.matmul(tf.transpose(m), m) def _single_style_loss(a, g): """ Calculate the style loss at a certain layer Inputs: a is the feature representation of the real image g is the feature representation of the generated image Output: the style loss at a certain layer (which is E_l in the paper) """ N = a.shape[3] M = a.shape[1] * a.shape[2] A = _gram_matrix(a, N, M) G = _gram_matrix(g, N, M) return tf.reduce_mean(tf.square(G - A)) / (4 * N * N * M * M) def _create_style_loss(A, model): """ Return the total style loss """ n_layers = len(STYLE_LAYERS) E = [W[i] * _single_style_loss(A[i], model[STYLE_LAYERS[i]]) for i in range(n_layers)] return tf.reduce_sum(E) def _create_losses(model, input_image, content_image, style_image): with tf.variable_scope('loss') as scope: with tf.Session() as sess: sess.run(input_image.assign(content_image)) # assign content image to the input variable p = sess.run(model[FLAGS.content_loss_layer]) content_loss = _create_content_loss(p, model[FLAGS.content_loss_layer]) with tf.Session() as sess: sess.run(input_image.assign(style_image)) A = sess.run([model[layer_name] for layer_name in STYLE_LAYERS]) style_loss = _create_style_loss(A, model) total_loss = content_loss + FLAGS.style_loss_ratio * style_loss return content_loss, style_loss, total_loss def _create_summary(model): """ Create summary ops necessary Hint: don't forget to merge them """ tf.summary.scalar('content_loss', model['content_loss']) tf.summary.scalar('style_loss', model['style_loss']) tf.summary.scalar('total_loss', model['total_loss']) return tf.summary.merge_all() def train(model, generated_image, initial_image): """ Train your model. """ skip_step = 1 with tf.Session() as sess: saver = tf.train.Saver() init = tf.global_variables_initializer() sess.run(init) writer = tf.summary.FileWriter('graphs/style_transfer', sess.graph) sess.run(generated_image.assign(initial_image)) ckpt = tf.train.get_checkpoint_state(os.path.dirname('graphs/checkpoint')) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) initial_step = model['global_step'].eval() start_time = time.time() for index in range(initial_step, FLAGS.iters): if index >= 5 and index < 20: skip_step = 10 elif index >= 20: skip_step = 20 sess.run(model['optimizer']) if (index + 1) % skip_step == 0: total_loss, gen_image = sess.run([model['total_loss'], generated_image]) gen_image = gen_image + MEAN_PIXELS summary = sess.run(model['summary_op']) writer.add_summary(summary, global_step=index) print('Step {}\n Sum: {:5.1f}'.format(index + 1, np.sum(gen_image))) print(' Loss: {:5.1f}'.format(total_loss)) print(' Time: {}'.format(time.time() - start_time)) start_time = time.time() filename = IMAGE_FILENAME.format(FLAGS.output_dir, index) utils.save_image(filename, gen_image) if (index + 1) % 20 == 0: saver.save(sess, 'graphs/checkpoints/style_transfer', index) def main(argv): with tf.variable_scope('input') as scope: # use variable instead of placeholder because we're training the intial image to make it # look like both the content image and the style image input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]), dtype=tf.float32) utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES) model = vgg_model.load_vgg(VGG_MODEL, input_image) model['global_step'] = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') content_image = utils.get_resized_image(CONTENT_IMAGE.format(FLAGS.content), IMAGE_HEIGHT, IMAGE_WIDTH) content_image = content_image - MEAN_PIXELS style_image = utils.get_resized_image(STYLE_IMAGE.format(FLAGS.style), IMAGE_HEIGHT, IMAGE_WIDTH) style_image = style_image - MEAN_PIXELS model['content_loss'], model['style_loss'], model['total_loss'] = _create_losses(model, input_image, content_image, style_image) model['optimizer'] = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate).minimize(model['total_loss']) model['summary_op'] = _create_summary(model) initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT, IMAGE_WIDTH, FLAGS.noise_ratio) train(model, input_image, initial_image) if __name__ == '__main__': tf.app.run()
[ "lewuathe@me.com" ]
lewuathe@me.com
04776e04755c2c4f4f926f7ed79f83f4d9408b92
ff5892487c262ce845a9996a282d3a2fdb1a3b15
/URI_1277.py
fac88b7da4e486a86591fdb123b779e70dc235a8
[]
no_license
dankoga/URIOnlineJudge--Python-3.9
d424a47671f106d665a4e255382fc0ec3059096a
f1c99521caeff59be0843af5f63a74013b63f7f0
refs/heads/master
2023-07-15T08:32:11.040426
2021-09-03T13:27:17
2021-09-03T13:27:17
393,991,461
0
0
null
null
null
null
UTF-8
Python
false
false
509
py
tests_qty = int(input()) for t in range(tests_qty): students_qty = input() students_names = list(input().split()) students_attendance = list(input().split()) students_failed = [] for s, attendance in enumerate(students_attendance): presences = attendance.count('P') medicals = attendance.count('M') if 4 * presences < 3 * (len(attendance) - medicals): students_failed += [students_names[s]] print(' '.join([student for student in students_failed]))
[ "dankoga2@gmail.com" ]
dankoga2@gmail.com
610e7c734f888cd0e10fa65dc899e1ba33ad5f76
84d97077cf9f297faeb94d88d460c6fd486cc648
/sub_py/maxwellian.py
1f8e47b118e0d8a6eb969a25ae5ec43f86b57880
[]
no_license
jacksontvd/optimization
0ac12819acb091e6322d36f8eec183df0281dca6
e33b42fb1ce5dcd456d4db625b52f3097ef3edc2
refs/heads/master
2021-05-14T18:10:41.640978
2019-08-13T17:46:20
2019-08-13T17:46:20
98,315,558
0
0
null
null
null
null
UTF-8
Python
false
false
366
py
import numpy as np from ranges import * def Maxwellian(e,T): return np.sqrt(e)*np.exp(-e/T)*(2/np.sqrt(np.pi)/np.sqrt(T)/T) vMaxwellian = np.vectorize(Maxwellian) egrid = np.array(mannhart_bins) degrid = egrid[1:]-egrid[:-1] def MaxwellianSpectrum(T): egrid = mannhart_bins # np.logspace(-3,2,bin_number['mannhart']) return vMaxwellian(egrid,T)
[ "jacksontvd@jacksons-MacBook-Pro.local" ]
jacksontvd@jacksons-MacBook-Pro.local
417eb43445bf9c1c7d3bf9e002da3c3710411639
639c0b542b581463eac228b82707452527a151af
/EmotionalAIchatbot/EmotionAIChatbot/urls.py
4de444d482ee6905da0c987734fa5b245dd3140f
[]
no_license
latifyahia/EmotionAIChatbotProject
7ccf5f7399aa3412965ef1883b47d9e39ff972cf
e2b5a1802cab4bf5b6f9cb62bad43d2ab4b56ed8
refs/heads/master
2023-04-29T07:21:13.488221
2021-05-15T03:34:48
2021-05-15T03:34:48
319,690,700
1
1
null
null
null
null
UTF-8
Python
false
false
1,350
py
"""EmotionAIChatbot URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from chatbot.views import * from register import views as v from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('', home), path('home/', home), path('lolly/', lolly), path('about/', about), path('profile/', profile), path('updateEmotions/', updateEmotions), path('register/', v.register, name='register'), # url for registration and assigning the url to an function inside view.py path('', include('django.contrib.auth.urls')), # url for /login , /logout ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ "latifyahia98@gmail.com" ]
latifyahia98@gmail.com
40c2d795c844c13a65815ddcff61807f4bf6f366
e70c7a33b037f021460a7ba39941119b997561e5
/delete.py
0328d1a0ec5355f99357d8bacd78e1835887d835
[]
no_license
ishikavyas18/Python_Basic
ad38e5fbeb6b952294e231d7319757b65212f754
c163a9a9b885d07aae5b665eb3807c02fb514a31
refs/heads/main
2023-04-03T10:15:45.993095
2021-04-08T06:56:31
2021-04-08T06:56:31
355,451,141
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
#create an array with 5 element and delete the value at index 2 without built in function from array import * arr=array('i',[]) n=int(input("enter length :")) for i in range(n): x=int(input("enter next element :")) arr.append(x) print("array is :",arr) arr1=array('i',[]) del_element=int(input("enter elemnet to be deleted : ")) for element in arr: if element==del_element: continue else: arr1.append(element) print(arr1)
[ "noreply@github.com" ]
ishikavyas18.noreply@github.com
67ec508d63e4b2973ed2137e74fa0e57033e6343
2c74bb301f1ed83b79254944183ac5a18a639fdf
/homeassistant/components/litterrobot/vacuum.py
55f0a182959c463662df3f53afc4fe8e177d87a6
[ "Apache-2.0" ]
permissive
Adminiuga/home-assistant
5bec93007ddac1a268cc359bf7e48530c5f73b38
dcf68d768e4f628d038f1fdd6e40bad713fbc222
refs/heads/dev
2023-02-22T22:03:31.013931
2022-11-09T00:27:20
2022-11-09T00:27:20
123,929,062
5
4
Apache-2.0
2023-02-22T06:14:31
2018-03-05T14:11:09
Python
UTF-8
Python
false
false
4,671
py
"""Support for Litter-Robot "Vacuum".""" from __future__ import annotations from datetime import time from typing import Any from pylitterbot import LitterRobot from pylitterbot.enums import LitterBoxStatus import voluptuous as vol from homeassistant.components.vacuum import ( DOMAIN as PLATFORM, STATE_CLEANING, STATE_DOCKED, STATE_ERROR, STATE_PAUSED, StateVacuumEntity, StateVacuumEntityDescription, VacuumEntityFeature, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import STATE_OFF from homeassistant.core import HomeAssistant from homeassistant.helpers import config_validation as cv, entity_platform from homeassistant.helpers.entity_platform import AddEntitiesCallback import homeassistant.util.dt as dt_util from .const import DOMAIN from .entity import LitterRobotEntity, async_update_unique_id from .hub import LitterRobotHub SERVICE_SET_SLEEP_MODE = "set_sleep_mode" LITTER_BOX_STATUS_STATE_MAP = { LitterBoxStatus.CLEAN_CYCLE: STATE_CLEANING, LitterBoxStatus.EMPTY_CYCLE: STATE_CLEANING, LitterBoxStatus.CLEAN_CYCLE_COMPLETE: STATE_DOCKED, LitterBoxStatus.CAT_SENSOR_TIMING: STATE_DOCKED, LitterBoxStatus.DRAWER_FULL_1: STATE_DOCKED, LitterBoxStatus.DRAWER_FULL_2: STATE_DOCKED, LitterBoxStatus.READY: STATE_DOCKED, LitterBoxStatus.CAT_SENSOR_INTERRUPTED: STATE_PAUSED, LitterBoxStatus.OFF: STATE_OFF, } LITTER_BOX_ENTITY = StateVacuumEntityDescription("litter_box", name="Litter Box") async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up Litter-Robot cleaner using config entry.""" hub: LitterRobotHub = hass.data[DOMAIN][entry.entry_id] entities = [ LitterRobotCleaner(robot=robot, hub=hub, description=LITTER_BOX_ENTITY) for robot in hub.litter_robots() ] async_update_unique_id(hass, PLATFORM, entities) async_add_entities(entities) platform = entity_platform.async_get_current_platform() platform.async_register_entity_service( SERVICE_SET_SLEEP_MODE, { vol.Required("enabled"): cv.boolean, vol.Optional("start_time"): cv.time, }, "async_set_sleep_mode", ) class LitterRobotCleaner(LitterRobotEntity[LitterRobot], StateVacuumEntity): """Litter-Robot "Vacuum" Cleaner.""" _attr_supported_features = ( VacuumEntityFeature.START | VacuumEntityFeature.STATE | VacuumEntityFeature.STATUS | VacuumEntityFeature.TURN_OFF | VacuumEntityFeature.TURN_ON ) @property def state(self) -> str: """Return the state of the cleaner.""" return LITTER_BOX_STATUS_STATE_MAP.get(self.robot.status, STATE_ERROR) @property def status(self) -> str: """Return the status of the cleaner.""" return ( f"{self.robot.status.text}{' (Sleeping)' if self.robot.is_sleeping else ''}" ) async def async_turn_on(self, **kwargs: Any) -> None: """Turn the cleaner on, starting a clean cycle.""" await self.robot.set_power_status(True) async def async_turn_off(self, **kwargs: Any) -> None: """Turn the unit off, stopping any cleaning in progress as is.""" await self.robot.set_power_status(False) async def async_start(self) -> None: """Start a clean cycle.""" await self.robot.start_cleaning() async def async_set_sleep_mode( self, enabled: bool, start_time: str | None = None ) -> None: """Set the sleep mode.""" await self.robot.set_sleep_mode( enabled, self.parse_time_at_default_timezone(start_time) ) @staticmethod def parse_time_at_default_timezone(time_str: str | None) -> time | None: """Parse a time string and add default timezone.""" if time_str is None: return None if (parsed_time := dt_util.parse_time(time_str)) is None: # pragma: no cover return None return ( dt_util.start_of_local_day() .replace( hour=parsed_time.hour, minute=parsed_time.minute, second=parsed_time.second, ) .timetz() ) @property def extra_state_attributes(self) -> dict[str, Any]: """Return device specific state attributes.""" return { "is_sleeping": self.robot.is_sleeping, "sleep_mode_enabled": self.robot.sleep_mode_enabled, "power_status": self.robot.power_status, "status": self.status, }
[ "noreply@github.com" ]
Adminiuga.noreply@github.com
52beb2eee386d8bea800f040b68e68ef55ac4084
c258135c1fd1e877d7ac76b7da7b287d79ac4ccf
/lists/migrations/0003_auto_20210217_0938.py
19a2c6ba61da21944607c0b24338d250c4571c9d
[]
no_license
soo4767/airbnb-clone
5cccbcb63da2b8ed7e755aa784e5b81a62e35e0a
beded0d68d00625153997766584032453dc330e0
refs/heads/main
2023-07-18T11:20:34.824337
2021-09-02T08:23:44
2021-09-02T08:23:44
342,242,760
2
0
null
null
null
null
UTF-8
Python
false
false
423
py
# Generated by Django 2.2.5 on 2021-02-17 00:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lists', '0002_auto_20210217_0933'), ] operations = [ migrations.AlterField( model_name='list', name='rooms', field=models.ManyToManyField(blank=True, related_name='lists', to='rooms.Room'), ), ]
[ "soo4767@naver.com" ]
soo4767@naver.com
4dceba75990c87e8d1ab82a0f615d6313bafbec9
5e4f9cf736b6b3cbc7c3bf300ebf15f19f5514a9
/openelections/settings_prod.py
5dbc0db30e500433e9e0866b4d425bd10ba0c5eb
[]
no_license
rawbeans/elections
1cb2df081ce3a24c68f073e1778051cc431038bf
1be01c82e77ad4c80420cd05b6c189ee0743ba30
refs/heads/master
2016-09-08T00:40:12.086208
2014-04-01T00:33:37
2014-04-01T00:33:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,292
py
from settings import * DEBUG = False TEMPLATE_DEBUG = DEBUG DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'elections_db', 'USER': 'mysql_user', 'PASSWORD': '398hudb4s{}DSg' } } MEDIA_ROOT = '/home/admin-elections/elections/media' BALLOT_ROOT = '/home/admin-elections/elections/ballots' LOG_ROOT = '/home/admin-elections/elections/logs' STUDENT_CSV = '/home/admin-elections/elections/students.csv' WEBAUTH_SHARED_SECRET = 'abcdchangeme' WEBAUTH_URL = 'https://www.stanford.edu/~rwoodby/cgi-bin/Django-WebAuth/webauth-host/wa-authenticate.php' BASE_URL = 'http://petitions.stanford.edu/' #173.230.149.189 #petitions.stanford.edu # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = BASE_URL + 'media/' STATIC_URL = BASE_URL + 'static/' STATIC_ROOT = '/home/admin-elections/elections/static' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = BASE_URL + 'media/admin/'
[ "root@debian" ]
root@debian
22d2f2c04e720558e3006f9a711d7f1ec1fdcd0d
815150729f61f5909f271d78cf4f484952a09667
/models.py
606ff69f02cfe0b6d8253d6e4185ca7904213756
[]
no_license
sanket0024/MapApp
7c2c092a784fbabd47c26694019402eba2a02f8c
1a34c004b823930d08754451bd0df5241b41c69d
refs/heads/master
2021-05-09T05:01:18.949613
2018-02-11T04:15:11
2018-02-11T04:15:11
119,296,379
0
0
null
null
null
null
UTF-8
Python
false
false
1,685
py
from flask_sqlalchemy import SQLAlchemy from werkzeug import generate_password_hash, check_password_hash import geocoder import urllib2 import json db = SQLAlchemy() class User(db.Model): __tablename__ = 'users' uid = db.Column(db.Integer, primary_key = True) firstname = db.Column(db.String(20)) lastname = db.Column(db.String(20)) email = db.Column(db.String(30), unique=True) pwdhash = db.Column(db.String(100)) def __init__(self, firstname, lastname, email, password): self.firstname = firstname.title() self.lastname = lastname.title() self.email = email.lower() self.set_password(password) def set_password(self, password): self.pwdhash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.pwdhash, password) class Place(object): def wikipath(self, slug): return urllib2.urlparse.urljoin("http://en.wikipedia.org/wiki/", slug.replace(' ', '_')) def latlng(self, address): g = geocoder.google(address) return (g.lat, g.lng) def query(self, address): lat, lng = self.latlng(address) query_url = 'https://en.wikipedia.org/w/api.php?action=query&list=geosearch&gsradius=5000&gscoord={0}%7C{1}&gslimit=20&format=json'.format(lat, lng) g = urllib2.urlopen(query_url) res = g.read() g.close() data = json.loads(res) places = [] for place in data['query']['geosearch']: name = place['title'] meters = place['dist'] lat = place['lat'] lng = place['lon'] wiki_url = self.wikipath(name) walking_time = int(meters/80) d = { 'name': name, 'url': wiki_url, 'time': walking_time, 'lat': lat, 'lng': lng } places.append(d) return places
[ "mathur.s@husky.neu.edu" ]
mathur.s@husky.neu.edu
05aabec82a097f5660414b1d9190028b0779cf8f
f3b66c071fb97ae17690ad0e8dc17efa8ae01637
/python-selenium-pytest-allure/test_example.py
900092c5b56a41554e2355ff5cf34d0636ff7aea
[]
no_license
unickq/test-automation-example
054d8e4e68ce23abb9ef31403195e390e452db5a
54071fae28d00176f9adf01f9514b6b7e7fc4587
refs/heads/master
2023-03-05T21:57:33.575595
2019-07-12T10:50:40
2019-07-12T10:50:40
193,077,100
2
1
null
2023-03-03T01:30:05
2019-06-21T10:10:43
JavaScript
UTF-8
Python
false
false
936
py
from selenium import webdriver from selenium.webdriver.common.keys import Keys import pytest import allure @pytest.fixture def chrome(request): global driver driver = webdriver.Chrome() driver.maximize_window() yield driver if request.node.rep_call.failed: allure.attach(driver.get_screenshot_as_png(), name=request.function.__name__, attachment_type=allure.attachment_type.PNG) driver.quit() @allure.step def search_for(query): driver.get("https://github.com") qEl = driver.find_element_by_name("q") qEl.send_keys(query) qEl.send_keys(Keys.RETURN) @allure.step def get_results(query): search_for(query) return [el.text for el in driver.find_elements_by_css_selector(".repo-list li h3")] def test_should_pass(chrome): assert "unickq/allure-nunit" in get_results("allure-nunit") def test_should_fail(chrome): assert "junit" in get_results("allure-nunit")
[ "nicktestqa@yahoo.com" ]
nicktestqa@yahoo.com
6946c2d1d8de914fdba20d32e69dd195cb172215
3891b3b89d6863c395608af5e5bbd0c8ba6eb02b
/server/src/repository/eventmongorep.py
51ebd28b3c5e66229a057c1fcace101f59f7d310
[ "MIT" ]
permissive
rickie95/MTG-coordinator
d031f19de891af37f6d8c95aa87df71b6e244cc3
fe3403a8a6b24d966b20ffb8261c60aadd0abde0
refs/heads/master
2022-02-26T11:17:35.576408
2022-02-15T07:29:53
2022-02-15T07:29:53
230,934,786
0
0
null
null
null
null
UTF-8
Python
false
false
292
py
class EventMongoRepository: database_address = "localhost" def __init__(self): self.client = "Opens a connection with mongo" def add_event(self, event): pass def remove_event(self, event): pass def update_event(self, event): pass
[ "Riccardo Malavolti" ]
Riccardo Malavolti
f829289503872b6c211b8e36cdaff49797ef8a2d
4a73aa4a14c207a39648e73f1f07c9f0b7348936
/pca.py
470c4338bb0e2c63581d8f462610120f6e583b3d
[]
no_license
nicktimko/penny-project
6058e9d7496fb916963698a188e92dde21947a4b
2e0941ef02691b92ea652c7206017fa974f38416
refs/heads/master
2021-08-22T17:12:41.442809
2017-11-30T19:09:04
2017-11-30T19:09:04
112,648,543
0
0
null
null
null
null
UTF-8
Python
false
false
6,418
py
#!/usr/bin/env python # from http://stackoverflow.com/a/2629704/194586 """ a small class for Principal Component Analysis Usage: p = PCA( A, fraction=0.90 ) In: A: an array of e.g. 1000 observations x 20 variables, 1000 rows x 20 columns fraction: use principal components that account for e.g. 90 % of the total variance Out: p.U, p.d, p.Vt: from numpy.linalg.svd, A = U . d . Vt p.dinv: 1/d or 0, see NR p.eigen: the eigenvalues of A*A, in decreasing order (p.d**2). eigen[j] / eigen.sum() is variable j's fraction of the total variance; look at the first few eigen[] to see how many PCs get to 90 %, 95 % ... p.npc: number of principal components, e.g. 2 if the top 2 eigenvalues are >= `fraction` of the total. It's ok to change this; methods use the current value. Methods: The methods of class PCA transform vectors or arrays of e.g. 20 variables, 2 principal components and 1000 observations, using partial matrices U' d' Vt', parts of the full U d Vt: A ~ U' . d' . Vt' where e.g. U' is 1000 x 2 d' is diag([ d0, d1 ]), the 2 largest singular values Vt' is 2 x 20. Dropping the primes, d . Vt 2 principal vars = p.vars_pc( 20 vars ) U 1000 obs = p.pc_obs( 2 principal vars ) U . d . Vt 1000 obs, p.obs( 20 vars ) = pc_obs( vars_pc( vars )) fast approximate A . vars, using the `npc` principal components Ut 2 pcs = p.obs_pc( 1000 obs ) V . dinv 20 vars = p.pc_vars( 2 principal vars ) V . dinv . Ut 20 vars, p.vars( 1000 obs ) = pc_vars( obs_pc( obs )), fast approximate Ainverse . obs: vars that give ~ those obs. Notes: PCA does not center or scale A; you usually want to first A -= A.mean(A, axis=0) A /= A.std(A, axis=0) with the little class Center or the like, below. See also: http://en.wikipedia.org/wiki/Principal_component_analysis http://en.wikipedia.org/wiki/Singular_value_decomposition Press et al., Numerical Recipes (2 or 3 ed), SVD PCA micro-tutorial iris-pca .py .png """ from __future__ import division import numpy as np dot = np.dot # import bz.numpyutil as nu # dot = nu.pdot __version__ = "2010-04-14 apr" __author_email__ = "denis-bz-py at t-online dot de" #............................................................................... class PCA: def __init__( self, A, fraction=0.90 ): assert 0 <= fraction <= 1 # A = U . diag(d) . Vt, O( m n^2 ), lapack_lite -- self.U, self.d, self.Vt = np.linalg.svd( A, full_matrices=False ) assert np.all( self.d[:-1] >= self.d[1:] ) # sorted self.eigen = self.d**2 self.sumvariance = np.cumsum(self.eigen) self.sumvariance /= self.sumvariance[-1] self.npc = np.searchsorted( self.sumvariance, fraction ) + 1 self.dinv = np.array([ 1/d if d > self.d[0] * 1e-6 else 0 for d in self.d ]) def pc( self ): """ e.g. 1000 x 2 U[:, :npc] * d[:npc], to plot etc. """ n = self.npc return self.U[:, :n] * self.d[:n] # These 1-line methods may not be worth the bother; # then use U d Vt directly -- def vars_pc( self, x ): n = self.npc return self.d[:n] * dot( self.Vt[:n], x.T ).T # 20 vars -> 2 principal def pc_vars( self, p ): n = self.npc return dot( self.Vt[:n].T, (self.dinv[:n] * p).T ) .T # 2 PC -> 20 vars def pc_obs( self, p ): n = self.npc return dot( self.U[:, :n], p.T ) # 2 principal -> 1000 obs def obs_pc( self, obs ): n = self.npc return dot( self.U[:, :n].T, obs ) .T # 1000 obs -> 2 principal def obs( self, x ): return self.pc_obs( self.vars_pc(x) ) # 20 vars -> 2 principal -> 1000 obs def vars( self, obs ): return self.pc_vars( self.obs_pc(obs) ) # 1000 obs -> 2 principal -> 20 vars class Center: """ A -= A.mean() /= A.std(), inplace -- use A.copy() if need be uncenter(x) == original A . x """ # mttiw def __init__( self, A, axis=0, scale=True, verbose=1 ): self.mean = A.mean(axis=axis) if verbose: print "Center -= A.mean:", self.mean A -= self.mean if scale: std = A.std(axis=axis) self.std = np.where( std, std, 1. ) if verbose: print "Center /= A.std:", self.std A /= self.std else: self.std = np.ones( A.shape[-1] ) self.A = A def uncenter( self, x ): return np.dot( self.A, x * self.std ) + np.dot( x, self.mean ) #............................................................................... if __name__ == "__main__": import sys csv = "iris4.csv" # wikipedia Iris_flower_data_set # 5.1,3.5,1.4,0.2 # ,Iris-setosa ... N = 1000 K = 20 fraction = .90 seed = 1 exec "\n".join( sys.argv[1:] ) # N= ... np.random.seed(seed) np.set_printoptions( 1, threshold=100, suppress=True ) # .1f try: A = np.genfromtxt( csv, delimiter="," ) N, K = A.shape except IOError: A = np.random.normal( size=(N, K) ) # gen correlated ? print "csv: %s N: %d K: %d fraction: %.2g" % (csv, N, K, fraction) Center(A) print "A:", A print "PCA ..." , p = PCA( A, fraction=fraction ) print "npc:", p.npc print "% variance:", p.sumvariance * 100 print "Vt[0], weights that give PC 0:", p.Vt[0] print "A . Vt[0]:", dot( A, p.Vt[0] ) print "pc:", p.pc() print "\nobs <-> pc <-> x: with fraction=1, diffs should be ~ 0" x = np.ones(K) # x = np.ones(( 3, K )) print "x:", x pc = p.vars_pc(x) # d' Vt' x print "vars_pc(x):", pc print "back to ~ x:", p.pc_vars(pc) Ax = dot( A, x.T ) pcx = p.obs(x) # U' d' Vt' x print "Ax:", Ax print "A'x:", pcx print "max |Ax - A'x|: %.2g" % np.linalg.norm( Ax - pcx, np.inf ) b = Ax # ~ back to original x, Ainv A x back = p.vars(b) print "~ back again:", back print "max |back - x|: %.2g" % np.linalg.norm( back - x, np.inf ) # end pca.py
[ "prometheus235@gmail.com" ]
prometheus235@gmail.com
a0e4c303efc08dfcd95ce2ebc3bdcb5f9c2dc0ff
31cfeca70ca2208a6a09deaaaf9198d612e826cf
/face lock on laptop/sms.py
05ff067aee7ef5a8e6c14c0045223d1732862909
[]
no_license
anchalmehta567/facelock-on-laptop-with-sms-alert
78255871f06eec85e444c2bbbdb4471e792cd2dd
00aa6eec1e4bb4448de7181c0afbb181bb6641c7
refs/heads/main
2023-02-09T21:33:21.825801
2021-01-12T11:05:24
2021-01-12T11:05:24
328,958,971
0
1
null
null
null
null
UTF-8
Python
false
false
648
py
import requests import json def sendsms(): url = 'https://www.fast2sms.com/dev/bulk' params = { 'authorization': 'noyaAWs9wUgpJtGvhK50PN8r1dY3CiEqTkbFMeS7OR2ZjxQ4ufW9FG8NcOCfX35yLS1d0ta4rewVsBIz', 'sender_id': 'FSTSMS', 'message': "Alert! Someone aunthenticated user try to access your personal computer.\n\nMessage sent by Admin.\n\nThanks", 'language': 'english', 'route': 'p', 'numbers': 8290532795 } response = requests.get(url, params=params) dic = response.json() print(dic) print(dic.get('return')) sendsms()
[ "noreply@github.com" ]
anchalmehta567.noreply@github.com
ce0ccdaa17279ed85c5b90ef3cec04693655c84c
1572a5ce5acf8e67de4653308200be98a4cd1ffa
/user/migrations/0002_auto_20210328_1256.py
b58829088b647d1c4b584497f7698b11c22df36c
[]
no_license
shourygupta28/hacko-40-team_titans
9481c7db1114bb355ab4699709c7153ad19442eb
b72294240cce6819463b4975a1fd167af65b08be
refs/heads/main
2023-03-29T07:53:47.333891
2021-04-01T12:05:21
2021-04-01T12:05:21
351,955,989
3
0
null
2021-04-01T12:05:21
2021-03-27T01:40:02
HTML
UTF-8
Python
false
false
779
py
# Generated by Django 3.1.7 on 2021-03-28 07:26 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='user', name='coins', ), migrations.AddField( model_name='user', name='account_no', field=models.CharField(default='0X00000000', max_length=80, validators=[django.core.validators.MinLengthValidator(10)]), ), migrations.AlterField( model_name='user', name='first_name', field=models.CharField(blank=True, max_length=150, verbose_name='first name'), ), ]
[ "ngupta_be19@thapar.edu" ]
ngupta_be19@thapar.edu
c97fff87f7c26440db1bdb2a815a2eaa3c4b974e
eb76de661f71ea8ac7fe32d3eec5c936b9ec6393
/day5.py
5924c7952a7cb3dff46222a7907f43bf994da74d
[]
no_license
zzwerling/Advent-Of-Code-Zach-2018
6f3c7ad5c851410c5302ce55de54c8176881f5b5
fc14ead4fa1a696b902ff0b5e2f750135e6553c7
refs/heads/master
2020-04-10T00:55:21.966785
2018-12-24T02:09:24
2018-12-24T02:09:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,084
py
from collections import defaultdict import time def day5part1(): with open("day5demoinput.txt","r") as day5input: s = list(day5input.read()) running = True while running: indices_to_remove = [] for i in range(0, len(s)-1): if reaction(s, i, i+1): if (i not in indices_to_remove) and (i+1 not in indices_to_remove): indices_to_remove.append(i) indices_to_remove.append(i+1) if indices_to_remove: indices_to_remove.reverse() for i in indices_to_remove: del s[i] else: return len(s) def day5part2(): alphabet = "abcdefghijklmnopqrstuvwxyz" length_string = defaultdict(lambda: 0) for i in range(len(alphabet)): with open("day5input.txt", "r") as day5input: input_string = list(day5input.read()) while alphabet[i] in input_string: input_string.remove(alphabet[i]) while alphabet[i].upper() in input_string: input_string.remove(alphabet[i].upper()) length_string[alphabet[i]] = react_string(input_string) return min(length_string.values()) def react_string(s): running = True while running: indices_to_remove = [] for i in range(0, len(s)-1): if reaction(s, i, i+1): if (i not in indices_to_remove) and (i+1 not in indices_to_remove): indices_to_remove.append(i) indices_to_remove.append(i+1) if indices_to_remove: indices_to_remove.reverse() for i in indices_to_remove: del s[i] else: return len(s) def reaction(s, index1, index2): if s[index1].lower() == s[index2].lower(): if s[index1].isupper() and s[index2].islower() or s[index1].islower() and s[index2].isupper(): return True else: return False #start_time = time.time() #print(day5part2()) print(day5part1())
[ "noreply@github.com" ]
zzwerling.noreply@github.com
94222f8915f338f516fd10108308b2f667e5785f
0b8c83d28294bbf708585b44065776ad13895abd
/leadmanger/djangogram/djangogram/users/urls.py
8e888f93481a372e530f39dcba7d2a3ee1e87923
[ "MIT" ]
permissive
chaSJ2112/web_Django
2a1613f531d7d3e8e34db7e486f63ebb3ae4c5e7
e9fa7ad7e5a952eaa601aa420f0d8a31d774c7b8
refs/heads/main
2023-06-25T04:13:06.032679
2021-07-27T14:17:36
2021-07-27T14:17:36
386,592,108
1
0
null
null
null
null
UTF-8
Python
false
false
209
py
from django.urls import path from . import views app_name = "users" # views에서 main함수 호출 urlpatterns = [ path('', views.main, name='main'), path('signup/', views.signup, name='signup'), ]
[ "71691834+chaSJ2112@users.noreply.github.com" ]
71691834+chaSJ2112@users.noreply.github.com
4d2f22cd2a93f8461925aed411d0c93d30f4f95b
ae6c4d72ba0b46fb525f749adb076b009b0842f1
/venv/Scripts/django-admin.py
e9fe348a13e2142eca5e7e5e4a3b1f7b8b945f5f
[]
no_license
daria-darina/education1
35fb8b1dccf8bf61d19df0923b1dd2343ccba44c
093f864e049e2490276dd47654fac1011d8333c8
refs/heads/master
2022-08-13T19:19:11.735704
2020-05-16T09:04:12
2020-05-16T09:04:12
263,017,980
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
#!c:\users\tom\education\venv\scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "dasha.luckina2015@yandex.ru" ]
dasha.luckina2015@yandex.ru
f9a56a6585ea5dd3a31979189766a5a2c642fccd
b6e0acd984d0b739ebf7b2f6a5b9fc39cd66b1ee
/escola/migrations/0012_auto_20210630_2028.py
8793774f81a59a078020756431253394f17ca11d
[]
no_license
isabellebussmann/test_ies2
215d14b7ba75c2a67d783f88de8cb56ef6060f4a
aeb61addd07f43eb82f88e87bd809aaa9cc0907f
refs/heads/master
2023-06-15T09:24:00.201655
2021-07-10T01:46:58
2021-07-10T01:46:58
383,865,980
1
0
null
null
null
null
UTF-8
Python
false
false
824
py
# Generated by Django 3.2.4 on 2021-06-30 23:28 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('escola', '0011_auto_20210630_1707'), ] operations = [ migrations.RemoveField( model_name='pergunta', name='prova', ), migrations.CreateModel( name='ModeloProva', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('prova', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='escola.prova')), ('questoes', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='escola.pergunta')), ], ), ]
[ "isabellebussmann@hotmail.com" ]
isabellebussmann@hotmail.com
b36c954f93245e8ae824e025a25379ee7b666823
9ca20119e9347576431fc587d0e4c742ea4d45af
/app/auth.py
5dbc836e1d6c6141b7b5362bc810e77e929be2c1
[]
no_license
YimingDou/ShopifyBackendChallenge
43fcad4fd2a6dfc954245dd8b0ba5f924ef4b303
86e9f154e0ec70a11b354ac5b409299eb2255281
refs/heads/master
2022-12-09T23:23:03.647974
2020-09-11T00:13:06
2020-09-11T00:13:06
294,547,787
0
0
null
null
null
null
UTF-8
Python
false
false
1,914
py
from flask import Blueprint, request from flask_jwt_extended import create_access_token from functools import wraps from sqlalchemy.exc import IntegrityError from responses import error_response, token_response, success_response from model.user import User from model.common import db MISSING_JSON = "Missing JSON" MISSING_PARAMETER = "Missing Username or Password" INVALID_LOGIN = "Invalid login" DUPLICATE_USER = "Username is already registered" USER_CREATED = "User created" auth = Blueprint('auth', __name__) def require_json(func): @wraps(func) def wrapper(): if not request.is_json: return error_response(MISSING_JSON) return func() return wrapper # Pass username and password in cleartext # Only for demonstration purpose # In them future change to more secure method @auth.route('/register', methods=['POST']) @require_json def register(): username = request.json.get('username', None) password = request.json.get('password', None) print(username, password) if not username or not password: return error_response(MISSING_PARAMETER) user = User(username=username, password=password) db.session.add(user) try: db.session.commit() except IntegrityError: return error_response(DUPLICATE_USER) return success_response(USER_CREATED) @auth.route('/login', methods=['POST']) @require_json def login(): username = request.json.get('username', None) password = request.json.get('password', None) if not username or not password: return error_response(MISSING_PARAMETER) # Auth here user = User.query.filter_by(username=username).first() if user.password != password: return error_response(INVALID_LOGIN, 401) # Identity can be any data that is json serializable access_token = create_access_token(identity=user.id) return token_response(access_token)
[ "y5dou@uwaterloo.ca" ]
y5dou@uwaterloo.ca
d8ae8d8746b20a062a25abfe7a48d4c53b3410fd
f6376348b154ca1d43eafb271f7cf463d8a83d86
/utils/gsn_argparse.py
ce5326094025b3bd2a391276170027767273074e
[ "MIT" ]
permissive
SongFGH/graph_star
62cc9d7580680c20ce96d7507ce02863987c46bb
4c16b8ab0048669bc1c15d45af393dde896e4334
refs/heads/master
2020-06-22T08:34:49.985748
2019-07-15T02:52:59
2019-07-15T02:52:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,696
py
import torch.nn.functional as F import argparse from texttable import Texttable def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Unsupported value encountered.') def str2actication(v): if v.lower() == "relu": return F.relu if v.lower() == "elu": return F.elu else: raise argparse.ArgumentTypeError('Unsupported value encountered.') def tab_printer(args): """ Function to print the logs in a nice tabular format. :param args: Parameters used for the model. """ args = vars(args) keys = sorted(args.keys()) t = Texttable() t.add_rows([["Parameter", "Value"]] + [[k.replace("_", " ").capitalize(), str(args[k])] for k in keys]) print(t.draw()) parser = argparse.ArgumentParser(description='GSN args.') parser.add_argument('--device', type=int, default="0") parser.add_argument('--num_star', type=int, default=1) parser.add_argument('--num_relations', type=int, default=1) parser.add_argument('--one_hot_node', type=str2bool, default=False) parser.add_argument('--one_hot_node_num', type=int, default=0) parser.add_argument('--cross_star', type=str2bool, default=True) parser.add_argument('--dropout', type=float, default=0) parser.add_argument('--coef_dropout', type=float, default=0) parser.add_argument('--residual', type=str2bool, default=True) parser.add_argument('--residual_star', type=str2bool, default=True) parser.add_argument('--layer_norm', type=str2bool, default=True) parser.add_argument('--layer_norm_star', type=str2bool, default=True) parser.add_argument('--lr', type=float, default=2e-4) parser.add_argument('--use_e', type=str2bool, default=False) parser.add_argument('--heads', type=int, default=4) parser.add_argument('--hidden', type=int, default=1024) parser.add_argument('--activation', type=str2actication, default="elu") parser.add_argument('--num_layers', type=int, default=6) parser.add_argument('--cross_layer', type=str2bool, default=True) parser.add_argument('--l2', type=float, default=0) parser.add_argument('--patience', type=int, default=100) parser.add_argument('--additional_self_loop_relation_type', type=str2bool, default=True) parser.add_argument('--additional_node_to_star_relation_type', type=str2bool, default=True) parser.add_argument('--star_init_method', type=str, default="attn") parser.add_argument('--relation_score_function', type=str, default="DistMult", help="DistMult") parser.add_argument('--dataset', type=str,default="") parser.add_argument('--epochs', type=int, default=2000)
[ "noone@noone.com" ]
noone@noone.com
6c55f2b2b69d2351eae808a8e6a9a30f83003379
8352d1f51d3dc3b248bf51894a92d2ebea28141c
/venv/Lib/site-packages/pylablib/core/dataproc/__init__.py
cdc5e96eaa2025754720e9884887fc06e603068c
[]
no_license
jakfarshodiq230/python-LSA_TF-IDF
04dd8f0982cca8c53dc7d6a06cff8bf511830f36
5fa4a748249dff60ac70d8b98eca92c786fc9d42
refs/heads/master
2022-12-25T19:10:35.636133
2020-09-29T17:24:43
2020-09-29T17:24:43
299,683,621
1
0
null
null
null
null
UTF-8
Python
false
false
1,399
py
from . import waveforms from .waveforms import is_ascending, is_descending, is_ordered, is_linear from .waveforms import get_x_column, get_y_column from .waveforms import find_closest_arg, find_closest_value, get_range_indices, cut_to_range, cut_out_regions from .waveforms import find_discrete_step, unwrap_mod_data from .waveforms import xy2c, c2xy from . import fourier from .fourier import fourier_transform, inverse_fourier_transform, power_spectral_density from . import filters from .filters import convolution_filter, gaussian_filter, gaussian_filter_nd, low_pass_filter, high_pass_filter, sliding_average, median_filter from .filters import decimate, binning_average, decimate_datasets, decimate_full, collect_into_bins, split_into_bins from . import fitting from .fitting import Fitter, get_best_fit from . import callable as callable_func from .callable import to_callable, MultiplexedCallable, JoinedCallable from . import interpolate from .interpolate import interpolate1D_func, interpolate1D, interpolate2D, interpolateND, regular_grid_from_scatter, interpolate_trace from . import specfunc from .specfunc import get_kernel_func, get_window_func from . import feature as feature_detect from .feature import get_baseline_simple, subtract_baseline, find_peaks_cutoff, multi_scale_peakdet, rescale_peak, peaks_sum_func, find_local_extrema, find_state_hysteretic, trigger_hysteretic
[ "jakfarshodiq230@gmail.com" ]
jakfarshodiq230@gmail.com
3c0299ef461117c90a7b387d733390990e96c5a2
c4ea117eff2469d622f3d7986d23dca79fdd9d2f
/setConfigSN.py
466123d905f427386da1cb1990ac7ee1a7f7d8fd
[]
no_license
SimengBian/Mobihoc18
2a850646d42e9731fbb7a69c42a19830cc444f7d
28c3d5234bb8baa411b266b56a9887c2b2224562
refs/heads/master
2021-08-31T06:24:49.447762
2017-12-20T14:42:01
2017-12-20T14:42:01
110,240,501
0
0
null
null
null
null
UTF-8
Python
false
false
553
py
import numpy as np filename = "config1/" ''' Substrate Network (SN) ''' numOfServer = 6 # number of servers serverCapacities = np.zeros(numOfServer) for c in range(numOfServer): serverCapacities[c] = 16 idleEnergies = np.zeros(numOfServer) for c in range(numOfServer): idleEnergies[c] = 0.805 maxEnergies = np.zeros(numOfServer) for c in range(numOfServer): maxEnergies[c] = 27.35 np.savez(filename + "SN Information.npz", numOfServer=numOfServer, serverCapacities=serverCapacities, idleEnergies=idleEnergies, maxEnergies=maxEnergies)
[ "biansimeng@biansimengdeMacBook-Air.local" ]
biansimeng@biansimengdeMacBook-Air.local
bcd67aa5afe669f6003298838868899baedc2815
6d17d2b811376f176a998c30009a6ed4c41c82c1
/common/pub/excelconfig.py
4250fd740aa3872d920a3dcf343ef88a79d8ccf4
[ "Apache-2.0" ]
permissive
no-wings/AutoUitest
39e9c89fa529362eb076482218910bb4ab298393
b3ff7db29f165bd40b89a1e33463efdaf801b334
refs/heads/master
2022-12-12T22:16:31.134368
2020-09-07T03:43:12
2020-09-07T03:59:32
293,417,053
0
0
null
null
null
null
UTF-8
Python
false
false
813
py
# coding=utf-8 import xlwt # 导出数据到excel def export(fields, results, table_name, outputpath): ''' :param fields:数据库取出的字段值 :param results: 列表元组或者元组元组 :param table_name: :param outputpath: :return: ''' # 搜取所有结果 # 获取MYSQL里面的数据字段名称 workbook = xlwt.Workbook() sheet = workbook.add_sheet('table_' + table_name, cell_overwrite_ok=True) # 写上字段信息 for field in range(0, len(fields)): sheet.write(0, field, fields[field][0]) # 获取并写入数据段信息 row = 1 col = 0 for row in range(1, len(results) + 1): for col in range(0, len(fields)): sheet.write(row, col, u'%s' % results[row - 1][col]) workbook.save(outputpath)
[ "45419770+xiongwr@users.noreply.github.com" ]
45419770+xiongwr@users.noreply.github.com
046f7722f8d047a95d007f78b54691d31345e08e
cc1f1ee71ddc572e33512a44af41108bf1e3173b
/semeval23/clickbait-spoiling-eval.py
e58a9b1693f0f343e56ce78d849437b6b5b61b0e
[ "MIT" ]
permissive
pan-webis-de/pan-code
774252979edf2e6b757ec04332e8c572d57e91d7
8dd0d44a098620ead0d1b07999f122f3f31c83a7
refs/heads/master
2023-05-29T09:12:43.081488
2023-05-28T08:03:17
2023-05-28T08:03:17
240,560,328
34
34
MIT
2023-03-30T08:45:06
2020-02-14T17:11:37
Jupyter Notebook
UTF-8
Python
false
false
12,636
py
#!/usr/bin/env python3 import argparse from os.path import exists from glob import glob from os.path import isdir from sklearn.metrics import balanced_accuracy_score, precision_score, recall_score, f1_score import json from nltk.translate.bleu_score import sentence_bleu from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import string from bert_score import score import subprocess import tempfile from copy import deepcopy def error(msg): print(' [\033[91mx\033[0m] ' + msg) exit(1) def success(msg): print(' [\033[92mo\033[0m] ' + msg) def load_json_lines(f): if not exists(f): error('The file "' + f + '" does not exist.') ret = [] num = 1 if isdir(f): f = glob(f + '/*.json*') if len(f) != 1: error('The input is an directory that contains multiple json files. Please create only a single json file. Got ' + str(f)) f = f[0] with open(f, 'r') as inp: for l in inp: try: ret += [json.loads(l)] except: error('Invalid line ' + str(num) + ' in "' + f + '" with content: ' + l.strip()) num += 1 success('The file ' + f + ' is in JSONL format.') return ret def spoiler_predictions_to_map(l, error=error, field='spoilerType'): if l is None or len(l) == 0: error('Spoiler predictions are empty.') uuids = [] for i in l: if 'uuid' not in i.keys() or field not in i.keys(): error(f'Spoiler predictions do not have all required fields. Expected fields "uuid" and "{field}". Got: ' + str(i)) return uuids += [i['uuid']] if len(l) != len(set(uuids)): error('Spoiler predictions have dupliates. I found ' + str(len(l)) + ' entries but only ' + str(len(set(uuids))) + ' unique uuids.') return success('Spoiler predictions have correct format. Found ' + str(len(l))) return {i['uuid']: i[field] if type(i[field]) is not list else i[field][0] for i in l} def normalize_spoiler_generation(i, error, expected_spoiler_type=None): if 'uuid' not in i or 'spoiler' not in i: error('Spoiler generation does not have all required fields. Expected fields are uuid and spoiler. Got: ' + str(i)) return if expected_spoiler_type and expected_spoiler_type not in i['tags']: return True return {i['uuid']: i['spoiler']} def spoiler_generations_to_map(l, error=error, expected_spoiler_type=None): if l is None or len(l) == 0: error('Spoiler predictions are empty.') uuids = [] for i in deepcopy(l): i = normalize_spoiler_generation(i, error, expected_spoiler_type) if not i: return elif i is True: continue uuids += list(i.keys()) if not expected_spoiler_type and len(l) != len(set(uuids)): error('Spoiler generations have dupliates. I found ' + str(len(l)) + ' entries but only ' + str(len(set(uuids))) + ' unique uuids.') l = [normalize_spoiler_generation(i, error, expected_spoiler_type) for i in l] l = [i for i in l if i and i is not True] success('Spoiler generations have correct format. Found ' + str(len(l))) ret = {} for i in l: for k, v in i.items(): assert k not in ret ret[k] = v return ret def parse_args(): parser = argparse.ArgumentParser(description='Evaluate submissions to the clickbait spoiling task.') parser.add_argument('--input_run', type=str, help='The input run (expected in jsonl format) produced by a system that should be evaluated.', required=True) parser.add_argument('--ground_truth_classes', type=str, help='The ground truth classes used to evaluate submissions to task 1 (spoiler type generation). For the evaluation of task 2 (spoiler generation), this can be different from "--ground_truth_spoilers" to evaluate the effectiveness using real spoiler predictions.', required=False) parser.add_argument('--ground_truth_spoilers', type=str, help='The ground truth spoilers used to evaluate submissions to task 2 (spoiler generation).', required=False) parser.add_argument('--task', type=str, help='The task to evaluate. Choose 1 (spoiler type classification) or 2 (spoiler generation).', choices=['1', '2'], required=True) parser.add_argument('--output_prototext', type=str, help='Write evalualuation results as prototext file to this location.', required=False) return parser.parse_args() def to_prototext(d): ret = '' for k, v in d.items(): ret += 'measure{\n key: "' + str(k) + '"\n value: "' + str(v) + '"\n}\n' return ret.strip() def filter_to(y_true, y_pred, filter_value): y_true_filtered, y_pred_filtered = [], [] for i in range(len(y_true)): if y_true[i] == filter_value or y_pred[i] == filter_value: y_true_filtered += [1 if y_true[i] == filter_value else 0] y_pred_filtered += [1 if y_pred[i] == filter_value else 0] return (y_true_filtered, y_pred_filtered) def precision_on(y_true, y_pred, filter_value): y_true_filtered, y_pred_filtered = filter_to(y_true, y_pred, filter_value) return precision_score(y_true_filtered, y_pred_filtered) def recall_on(y_true, y_pred, filter_value): y_true_filtered, y_pred_filtered = filter_to(y_true, y_pred, filter_value) return recall_score(y_true_filtered, y_pred_filtered) def f1_on(y_true, y_pred, filter_value): y_true_filtered, y_pred_filtered = filter_to(y_true, y_pred, filter_value) return f1_score(y_true_filtered, y_pred_filtered) def create_protobuf_for_task_1(actual, expected): keys = sorted(actual.keys()) missing_predictions = 0 y_true = [] y_pred = [] for k in keys: y_true += [expected[k]] if k in actual: y_pred += [actual[k]] else: missing_predictions += 1 y_pred += [''] return { "result-size": len(keys), 'balanced-accuracy': balanced_accuracy_score(y_true, y_pred), 'precision-for-phrase-spoilers': precision_on(y_true, y_pred, 'phrase'), 'recall-for-phrase-spoilers': recall_on(y_true, y_pred, 'phrase'), 'f1-for-phrase-spoilers': f1_on(y_true, y_pred, 'phrase'), 'precision-for-passage-spoilers': precision_on(y_true, y_pred, 'passage'), 'recall-for-passage-spoilers': recall_on(y_true, y_pred, 'passage'), 'f1-for-passage-spoilers': f1_on(y_true, y_pred, 'passage'), 'precision-for-multi-spoilers': precision_on(y_true, y_pred, 'multi'), 'recall-for-multi-spoilers': recall_on(y_true, y_pred, 'multi'), 'f1-for-multi-spoilers': f1_on(y_true, y_pred, 'multi'), 'missing-predictions': missing_predictions } def eval_task_1(input_run, ground_truth_classes, output_file): input_run = spoiler_predictions_to_map(input_run) ret = None if ground_truth_classes == None: success('No ground-truth is passed. I tested the input run and the input run is valid.') ret = to_prototext({"result-size": len(input_run.keys())}) else: ground_truth_classes = spoiler_predictions_to_map(ground_truth_classes, field='tags') ret = to_prototext(create_protobuf_for_task_1(input_run, ground_truth_classes)) if output_file: with open(output_file, 'w') as f: f.write(ret) def bleu_score(truth, prediction): """ From: https://github.com/webis-de/acl22-clickbait-spoiling/blob/470f488bd532da1e75812de6a94458ec80fdb2b9/evaluation/meteor-metric.py#L72 """ def stopfilter(tokens): tmp = [token for token in tokens if token not in stopwords.words('english')] res = [token.lower() for token in tmp if token not in string.punctuation] return res def make_score(trut, predi): if len(trut) > 3 and len(predi) > 3: weights = (1./4., 1./4., 1./4., 1./4.) elif len(trut) > 2 and len(predi) > 2: weights = (1./3., 1./3., 1./3.) elif len(trut) > 1 and len(predi) > 1: weights = (1./2., 1./2.) else: weights = (1., 0.) if (len(weights) == 4) and (len(trut) < 4 or len(predi) < 4): print(trut) print(predi) print(weights) print('\n') return sentence_bleu([trut], predi, weights=weights) score = 0. lem_score = 0. write_dict = {'single_scores': {}, 'scores': {}} for i in range(len(truth)): real_answer = truth[i] if type(real_answer) is list: real_answer = ' '.join(real_answer) pred_answer = prediction[i] if type(pred_answer) is list: pred_answer = ' '.join(pred_answer) lem_truth_tokens = stopfilter(word_tokenize(real_answer.replace('\n', ''))) lem_prediction_tokens = stopfilter(word_tokenize(pred_answer.replace('\n', ''))) i_lem_score = make_score(lem_truth_tokens, lem_prediction_tokens) lem_score += i_lem_score return lem_score / len(truth) def bert_score(truth, prediction): assert len(truth) == len(prediction) prec, rec, f1 = score(prediction, truth, lang="en") return float(f1.mean()) def meteor_score(truth, prediction): with tempfile.TemporaryDirectory() as tmpdirname: assert len(truth) == len(prediction) with open(tmpdirname + '/truths.txt', 'w') as truths, open(tmpdirname + '/preds.txt', 'w') as preds: for t in truth: truths.write(t + '\n') for p in prediction: preds.write(p + '\n') cmd = ['java', '-Xmx2G', '-jar', '/meteor-1.5.jar', tmpdirname + '/truths.txt', tmpdirname + '/preds.txt', '-l', 'en', '-norm', '-t', 'adq'] meteor_output = subprocess.check_output(cmd).decode('utf-8') try: return float(meteor_output.split('\n\nFinal score:')[1].strip()) except: raise ValueError('Could not extract the final score out of "' + meteor_output + '".') def create_protobuf_for_task_2(actual, expected): keys = sorted(expected.keys()) missing_predictions = 0 y_true = [] y_pred = [] for k in keys: exp = expected[k] if type(exp) is list: exp = ' '.join(exp) y_true += [exp.replace('\n', ' ').strip()] if k in actual: act = actual[k] if type(act) is list: act = ' '.join(act) y_pred += [act.replace('\n', ' ').strip()] else: missing_predictions += 1 y_pred += [''] return { "result-size": len(keys), 'bleu-score': bleu_score(y_true, y_pred), 'bert-score': bert_score(y_true, y_pred), 'meteor-score': meteor_score(y_true, y_pred), 'missing-predictions': missing_predictions } def eval_task_2(input_run, ground_truth_classes, ground_truth_spoilers, output_file): input_run = spoiler_generations_to_map(input_run) if ground_truth_spoilers == None: ret = to_prototext({"result-size": len(input_run.keys())}) success('No ground-truth is passed. I tested the input run and the input run is valid.') else: ret = {} for (display_name, tag_name) in [('all-spoilers', None), ('phrase-spoilers', 'phrase'), ('passage-spoilers', 'passage'), ('multi-spoilers', 'multi')]: print('Run evaluation for ' + display_name) filtered_ground_truth_spoilers = spoiler_generations_to_map(deepcopy(ground_truth_spoilers), expected_spoiler_type=tag_name) for k,v in create_protobuf_for_task_2(input_run, filtered_ground_truth_spoilers).items(): ret[k + '-' + display_name] = v ret = to_prototext(ret) if output_file: with open(output_file, 'w') as f: f.write(ret) if __name__ == '__main__': args = parse_args() input_run = load_json_lines(args.input_run) ground_truth_classes = None if not args.ground_truth_classes else load_json_lines(args.ground_truth_classes) ground_truth_spoilers = None if not args.ground_truth_spoilers else load_json_lines(args.ground_truth_spoilers) if args.task == '1': eval_task_1(input_run, ground_truth_classes, args.output_prototext) elif args.task == '2': eval_task_2(input_run, ground_truth_classes, ground_truth_spoilers, args.output_prototext) else: error('Unknown task. Expected 1 or 2. Got: ' + str(args.task))
[ "maik.froebe@informatik.uni-halle.de" ]
maik.froebe@informatik.uni-halle.de
4923d7378b7b003f9b938d0cb2b4221e31da211e
bbc6498bfe3bd62b7c99e2eadd79be4d154ddc11
/functional_tests.py
61199afae4185173410f8558e79a16457d33042e
[]
no_license
jawahar/tdd_superlists
993d0900782ea907911e95ffb383591d9e71c93f
99570339844430c33e9e5cf3d9e095ded0c9394e
refs/heads/master
2021-01-13T02:24:26.109972
2013-07-05T19:52:15
2013-07-05T19:52:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,400
py
import unittest from selenium import webdriver from selenium.webdriver.common.keys import Keys class NewVisitorTest(unittest.TestCase): def setUp(self): self.browser = webdriver.Firefox() def tearDown(self): self.browser.quit() def test_can_start_a_list_and_retrieve_it_later(self): # get the homepage of the app self.browser.get('http://localhost:8000') self.assertIn('To-Do', self.browser.title) # check header of page header_text = self.browser.find_element_by_tag_name('h1').text self.assertIn('To-Do', header_text) # enter some input into the page input_box = self.browser.find_element_by_id('id_new_item') self.assertEqual(input_box.get_attribute('placeholder'), 'Enter a to-do item') input_box.send_keys('Buy peacock feathers') input_box.send_keys(Keys.ENTER) # get the table from the response table = self.browser.find_element_by_id('id_list_table') rows = table.find_elements_by_tag_name('tr') self.assertTrue(any(row.text == '1: Buy peacock feathers' for row in rows), "New to-do item did not appear in table") self.fail('Finish the test!') if __name__ == '__main__': unittest.main() browser = webdriver.Firefox() browser.get('http://localhost:8000') assert 'Django' in browser.title browser.quit()
[ "jawahar.malhotra@gmail.com" ]
jawahar.malhotra@gmail.com
89d50378869ed6dde8fc8a1ec6f17758ef6117c1
33a7d059f6b3decfe762861c823bc4b5b0680633
/UAS1.py
fdf4c8bc6a9bb3142282c82cd04238bda41bab7b
[]
no_license
Diyah9/uass
01ef176ee70ff523dd39388866222567f997be25
1ac124325870cac22e5d4f98f32d5c1c5f94c6b5
refs/heads/master
2020-03-11T08:46:49.326714
2018-04-17T11:14:00
2018-04-17T11:14:00
129,892,405
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
def fb(): print("Modul Nilai Random") import random nilai = input("Masukan nilai n: ") for i in range (nilai) : while 1: a = random.random() if a < 0.5: break print (a)
[ "diyahnur0809@gmail.com" ]
diyahnur0809@gmail.com
a9beba1a67b641f22baf82bb07689f9350c7b49f
79d5395cf97828672680d985603106d60834b3f6
/HW3/RBTree.py
6f38869c5cf3835c4255a6a988d63b9d5ed70f96
[]
no_license
sunwmax/Data-Structures
86449175c86134658f62533cfbc067eeeaeeb4b4
1f23ce2b44b78ad8122275db38274d41bd35b6be
refs/heads/main
2023-01-31T01:31:19.020602
2020-12-15T03:12:19
2020-12-15T03:12:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,887
py
""" A classic (not left-leaning) Red-Black Tree implementation, supporting addition and deletion. """ # The possible Node colors BLACK = 'BLACK' RED = 'RED' NIL = 'NIL' class Node: def __init__(self, value, color, parent, left=None, right=None): self.value = value self.color = color self.parent = parent self.left = left self.right = right def __repr__(self): return '{color} {val} Node'.format(color=self.color, val=self.value) def __iter__(self): if self.left.color != NIL: yield from self.left.__iter__() yield self.value if self.right.color != NIL: yield from self.right.__iter__() def __eq__(self, other): if self.color == NIL and self.color == other.color: return True if self.parent is None or other.parent is None: parents_are_same = self.parent is None and other.parent is None else: parents_are_same = self.parent.value == other.parent.value and self.parent.color == other.parent.color return self.value == other.value and self.color == other.color and parents_are_same def has_children(self) -> bool: """ Returns a boolean indicating if the node has children """ return bool(self.get_children_count()) def get_children_count(self) -> int: """ Returns the number of NOT NIL children the node has """ if self.color == NIL: return 0 return sum([int(self.left.color != NIL), int(self.right.color != NIL)]) class RedBlackTree: # every node has null nodes as children initially, create one such object for easy management NIL_LEAF = Node(value=None, color=NIL, parent=None) def __init__(self): self.count = 0 self.root = None self.ROTATIONS = { # Used for deletion and uses the sibling's relationship with his parent as a guide to the rotation 'L': self._right_rotation, 'R': self._left_rotation } def __iter__(self): if not self.root: return list() yield from self.root.__iter__() def add(self, value): if not self.root: self.root = Node(value, color=BLACK, parent=None, left=self.NIL_LEAF, right=self.NIL_LEAF) self.count += 1 return parent, node_dir = self._find_parent(value) if node_dir is None: return # value is in the tree new_node = Node(value=value, color=RED, parent=parent, left=self.NIL_LEAF, right=self.NIL_LEAF) if node_dir == 'L': parent.left = new_node else: parent.right = new_node self._try_rebalance(new_node) self.count += 1 def remove(self, value): """ Try to get a node with 0 or 1 children. Either the node we're given has 0 or 1 children or we get its successor. """ node_to_remove = self.find_node(value) if node_to_remove is None: # node is not in the tree return if node_to_remove.get_children_count() == 2: # find the in-order successor and replace its value. # then, remove the successor successor = self._find_in_order_successor(node_to_remove) node_to_remove.value = successor.value # switch the value node_to_remove = successor # has 0 or 1 children! self._remove(node_to_remove) self.count -= 1 def contains(self, value) -> bool: """ Returns a boolean indicating if the given value is present in the tree """ return bool(self.find_node(value)) def ceil(self, value) -> int or None: """ Given a value, return the closest value that is equal or bigger than it, returning None when no such exists """ if self.root is None: return None last_found_val = None if self.root.value < value else self.root.value def find_ceil(node): nonlocal last_found_val if node == self.NIL_LEAF: return None if node.value == value: last_found_val = node.value return node.value elif node.value < value: # go right return find_ceil(node.right) else: # this node is bigger, save its value and go left last_found_val = node.value return find_ceil(node.left) find_ceil(self.root) return last_found_val def floor(self, value) -> int or None: """ Given a value, return the closest value that is equal or less than it, returning None when no such exists """ if self.root is None: return None last_found_val = None if self.root.value > value else self.root.value def find_floor(node): nonlocal last_found_val if node == self.NIL_LEAF: return None if node.value == value: last_found_val = node.value return node.value elif node.value < value: # this node is smaller, save its value and go right, trying to find a cloer one last_found_val = node.value return find_floor(node.right) else: return find_floor(node.left) find_floor(self.root) return last_found_val def _remove(self, node): """ Receives a node with 0 or 1 children (typically some sort of successor) and removes it according to its color/children :param node: Node with 0 or 1 children """ left_child = node.left right_child = node.right not_nil_child = left_child if left_child != self.NIL_LEAF else right_child if node == self.root: if not_nil_child != self.NIL_LEAF: # if we're removing the root and it has one valid child, simply make that child the root self.root = not_nil_child self.root.parent = None self.root.color = BLACK else: self.root = None elif node.color == RED: if not node.has_children(): # Red node with no children, the simplest remove self._remove_leaf(node) else: """ Since the node is red he cannot have a child. If he had a child, it'd need to be black, but that would mean that the black height would be bigger on the one side and that would make our tree invalid """ raise Exception('Unexpected behavior') else: # node is black! if right_child.has_children() or left_child.has_children(): # sanity check raise Exception('The red child of a black node with 0 or 1 children' ' cannot have children, otherwise the black height of the tree becomes invalid! ') if not_nil_child.color == RED: """ Swap the values with the red child and remove it (basically un-link it) Since we're a node with one child only, we can be sure that there are no nodes below the red child. """ node.value = not_nil_child.value node.left = not_nil_child.left node.right = not_nil_child.right else: # BLACK child # 6 cases :o self._remove_black_node(node) def _remove_leaf(self, leaf): """ Simply removes a leaf node by making it's parent point to a NIL LEAF""" if leaf.value >= leaf.parent.value: # in those weird cases where they're equal due to the successor swap leaf.parent.right = self.NIL_LEAF else: leaf.parent.left = self.NIL_LEAF def _remove_black_node(self, node): """ Loop through each case recursively until we reach a terminating case. What we're left with is a leaf node which is ready to be deleted without consequences """ self.__case_1(node) self._remove_leaf(node) def __case_1(self, node): r""" Case 1 is when there's a double black node on the root Because we're at the root, we can simply remove it and reduce the black height of the whole tree. __|10B|__ __10B__ / \ ==> / \ 9B 20B 9B 20B """ if self.root == node: node.color = BLACK return self.__case_2(node) def __case_2(self, node): r""" Case 2 applies when the parent is BLACK the sibling is RED the sibling's children are BLACK or NIL It takes the sibling and rotates it 40B 60B / \ --CASE 2 ROTATE--> / \ |20B| 60R LEFT ROTATE 40R 80B DBL BLACK IS 20----^ / \ SIBLING 60R / \ 50B 80B |20B| 50B (if the sibling's direction was left of it's parent, we would RIGHT ROTATE it) Now the original node's parent is RED and we can apply case 4 or case 6 """ parent = node.parent sibling, direction = self._get_sibling(node) if sibling.color == RED and parent.color == BLACK and sibling.left.color != RED and sibling.right.color != RED: self.ROTATIONS[direction](node=None, parent=sibling, grandfather=parent) parent.color = RED sibling.color = BLACK return self.__case_1(node) self.__case_3(node) def __case_3(self, node): r""" Case 3 deletion is when: the parent is BLACK the sibling is BLACK the sibling's children are BLACK Then, we make the sibling red and pass the double black node upwards Parent is black ___50B___ Sibling is black ___50B___ / \ Sibling's children are black / \ 30B 80B CASE 3 30B |80B| Continue with other cases / \ / \ ==> / \ / \ 20B 35R 70B |90B|<---REMOVE 20B 35R 70R X / \ / \ 34B 37B 34B 37B """ parent = node.parent sibling, _ = self._get_sibling(node) if (sibling.color == BLACK and parent.color == BLACK and sibling.left.color != RED and sibling.right.color != RED): # color the sibling red and forward the double black node upwards # (call the cases again for the parent) sibling.color = RED return self.__case_1(parent) # start again self.__case_4(node) def __case_4(self, node): r""" If the parent is red and the sibling is black with no red children, simply swap their colors DB-Double Black __10R__ __10B__ The black height of the left subtree has been incremented / \ / \ And the one below stays the same DB 15B ===> X 15R No consequences, we're done! / \ / \ 12B 17B 12B 17B """ parent = node.parent if parent.color == RED: sibling, direction = self._get_sibling(node) if sibling.color == BLACK and sibling.left.color != RED and sibling.right.color != RED: parent.color, sibling.color = sibling.color, parent.color # switch colors return # Terminating self.__case_5(node) def __case_5(self, node): r""" Case 5 is a rotation that changes the circumstances so that we can do a case 6 If the closer node is red and the outer BLACK or NIL, we do a left/right rotation, depending on the orientation This will showcase when the CLOSER NODE's direction is RIGHT ___50B___ __50B__ / \ / \ 30B |80B| <-- Double black 35B |80B| Case 6 is now / \ / \ Closer node is red (35R) / \ / applicable here, 20B 35R 70R X Outer is black (20B) 30R 37B 70R so we redirect the node / \ So we do a LEFT ROTATION / \ to it :) 34B 37B on 35R (closer node) 20B 34B """ sibling, direction = self._get_sibling(node) closer_node = sibling.right if direction == 'L' else sibling.left outer_node = sibling.left if direction == 'L' else sibling.right if closer_node.color == RED and outer_node.color != RED and sibling.color == BLACK: if direction == 'L': self._left_rotation(node=None, parent=closer_node, grandfather=sibling) else: self._right_rotation(node=None, parent=closer_node, grandfather=sibling) closer_node.color = BLACK sibling.color = RED self.__case_6(node) def __case_6(self, node): r""" Case 6 requires SIBLING to be BLACK OUTER NODE to be RED Then, does a right/left rotation on the sibling This will showcase when the SIBLING's direction is LEFT Double Black __50B__ | __35B__ / \ | / \ SIBLING--> 35B |80B| <- 30R 50R / \ / / \ / \ 30R 37B 70R Outer node is RED 20B 34B 37B 80B / \ Closer node doesn't / 20B 34B matter 70R Parent doesn't matter So we do a right rotation on 35B! """ sibling, direction = self._get_sibling(node) outer_node = sibling.left if direction == 'L' else sibling.right def __case_6_rotation(direction): parent_color = sibling.parent.color self.ROTATIONS[direction](node=None, parent=sibling, grandfather=sibling.parent) # new parent is sibling sibling.color = parent_color sibling.right.color = BLACK sibling.left.color = BLACK if sibling.color == BLACK and outer_node.color == RED: return __case_6_rotation(direction) # terminating raise Exception('We should have ended here, something is wrong') def _try_rebalance(self, node): """ Given a red child node, determine if there is a need to rebalance (if the parent is red) If there is, rebalance it """ parent = node.parent value = node.value if (parent is None # what the fuck? (should not happen) or parent.parent is None # parent is the root or (node.color != RED or parent.color != RED)): # no need to rebalance return grandfather = parent.parent node_dir = 'L' if parent.value > value else 'R' parent_dir = 'L' if grandfather.value > parent.value else 'R' uncle = grandfather.right if parent_dir == 'L' else grandfather.left general_direction = node_dir + parent_dir if uncle == self.NIL_LEAF or uncle.color == BLACK: # rotate if general_direction == 'LL': self._right_rotation(node, parent, grandfather, to_recolor=True) elif general_direction == 'RR': self._left_rotation(node, parent, grandfather, to_recolor=True) elif general_direction == 'LR': self._right_rotation(node=None, parent=node, grandfather=parent) # due to the prev rotation, our node is now the parent self._left_rotation(node=parent, parent=node, grandfather=grandfather, to_recolor=True) elif general_direction == 'RL': self._left_rotation(node=None, parent=node, grandfather=parent) # due to the prev rotation, our node is now the parent self._right_rotation(node=parent, parent=node, grandfather=grandfather, to_recolor=True) else: raise Exception("{} is not a valid direction!".format(general_direction)) else: # uncle is RED self._recolor(grandfather) def __update_parent(self, node, parent_old_child, new_parent): """ Our node 'switches' places with the old child Assigns a new parent to the node. If the new_parent is None, this means that our node becomes the root of the tree """ node.parent = new_parent if new_parent: # Determine the old child's position in order to put node there if new_parent.value > parent_old_child.value: new_parent.left = node else: new_parent.right = node else: self.root = node def _right_rotation(self, node, parent, grandfather, to_recolor=False): grand_grandfather = grandfather.parent self.__update_parent(node=parent, parent_old_child=grandfather, new_parent=grand_grandfather) old_right = parent.right parent.right = grandfather grandfather.parent = parent grandfather.left = old_right # save the old right values old_right.parent = grandfather if to_recolor: parent.color = BLACK node.color = RED grandfather.color = RED def _left_rotation(self, node, parent, grandfather, to_recolor=False): grand_grandfather = grandfather.parent self.__update_parent(node=parent, parent_old_child=grandfather, new_parent=grand_grandfather) old_left = parent.left parent.left = grandfather grandfather.parent = parent grandfather.right = old_left # save the old left values old_left.parent = grandfather if to_recolor: parent.color = BLACK node.color = RED grandfather.color = RED def _recolor(self, grandfather): grandfather.right.color = BLACK grandfather.left.color = BLACK if grandfather != self.root: grandfather.color = RED self._try_rebalance(grandfather) def _find_parent(self, value): """ Finds a place for the value in our binary tree""" def inner_find(parent): """ Return the appropriate parent node for our new node as well as the side it should be on """ if value == parent.value: return None, None elif parent.value < value: if parent.right.color == NIL: # no more to go return parent, 'R' return inner_find(parent.right) elif value < parent.value: if parent.left.color == NIL: # no more to go return parent, 'L' return inner_find(parent.left) return inner_find(self.root) def find_node(self, value): def inner_find(root): if root is None or root == self.NIL_LEAF: return None if value > root.value: return inner_find(root.right) elif value < root.value: return inner_find(root.left) else: return root found_node = inner_find(self.root) return found_node def _find_in_order_successor(self, node): right_node = node.right left_node = right_node.left if left_node == self.NIL_LEAF: return right_node while left_node.left != self.NIL_LEAF: left_node = left_node.left return left_node def _get_sibling(self, node): """ Returns the sibling of the node, as well as the side it is on e.g 20 (A) / \ 15(B) 25(C) _get_sibling(25(C)) => 15(B), 'R' """ parent = node.parent if node.value >= parent.value: sibling = parent.left direction = 'L' else: sibling = parent.right direction = 'R' return sibling, direction
[ "noreply@github.com" ]
sunwmax.noreply@github.com
aee8bf0ea8399d18b36b4f33a71ddacbb7b77f8a
4ebb5e56f3276504462c83274171ff1d9a5373d4
/tasks.py
7a2ff8fa3d9ff4681ca6186e190553d99938d3fb
[]
no_license
ig-novik/diploma_project
256de85938ffdd1bd541f3bd48c17eaa358f4f86
dd05e024a21df2d07eab942093930f629253f61a
refs/heads/master
2023-05-11T07:26:00.078473
2020-04-21T09:46:13
2020-04-21T09:46:13
247,621,035
0
0
null
2023-05-01T21:22:32
2020-03-16T05:47:34
Python
UTF-8
Python
false
false
784
py
from celery import Celery from celery.schedules import crontab from webapp import create_app from webapp.news.parsers import avito flask_app = create_app() celery_app = Celery('tasks', broker='redis://localhost:6379/0') celery_app.conf.update(flask_app.config) @celery_app.task def avito_snippets(): print("Вход в habr_snippets()") with flask_app.app_context(): avito.get_ads_snippets() @celery_app.task def habr_content(): print("Вход в habr_content()") with flask_app.app_context(): habr.get_news_content() @celery_app.on_after_configure.connect def setup_periodic_tasks(sender, **kwargs): sender.add_periodic_task(crontab(minute='*/1'), avito_snippets.s()) sender.add_periodic_task(crontab(minute='*/2'), habr_content.s())
[ "ig_novik@mail.ru" ]
ig_novik@mail.ru
1dd23f472b7de887c901515844d6b2999272e6bf
3fd00274d9e4e01dcefff0206feda739555392f5
/pygame/qgame/viz/unitary_grid.py
cd4711103706ac4ffed8765ef5ba8bffbc96f9bc
[]
no_license
quantumjim/Qiskit-for-GameDev
981500ff65237c00214a89b81fda091a8ec84146
495dabde2c2925333b859a14e99cb1fc0fe2c6a1
refs/heads/master
2021-04-16T17:06:47.084395
2020-03-23T08:17:02
2020-03-23T08:17:02
249,372,148
2
0
null
2020-03-23T08:15:27
2020-03-23T08:15:26
null
UTF-8
Python
false
false
2,509
py
#!/usr/bin/env python # # Copyright 2019 the original author or authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pygame from qiskit import BasicAer, execute from ..utils.colors import * from ..utils.fonts import ARIAL_16 from .. import comp_basis_states class UnitaryGrid(pygame.sprite.Sprite): """Displays a unitary matrix grid""" def __init__(self, circuit): pygame.sprite.Sprite.__init__(self) self.image = None self.rect = None self.basis_states = comp_basis_states(circuit.width()) self.set_circuit(circuit) # def update(self): # # Nothing yet # a = 1 def set_circuit(self, circuit): backend_unit_sim = BasicAer.get_backend('unitary_simulator') job_sim = execute(circuit, backend_unit_sim) result_sim = job_sim.result() unitary = result_sim.get_unitary(circuit, decimals=3) # print('unitary: ', unitary) self.image = pygame.Surface([100 + len(unitary) * 50, 100 + len(unitary) * 50]) self.image.convert() self.image.fill(WHITE) self.rect = self.image.get_rect() block_size = 30 x_offset = 50 y_offset = 50 for y in range(len(unitary)): text_surface = ARIAL_16.render(self.basis_states[y], False, (0, 0, 0)) self.image.blit(text_surface,(x_offset, (y + 1) * block_size + y_offset)) for x in range(len(unitary)): text_surface = ARIAL_16.render(self.basis_states[x], False, (0, 0, 0)) self.image.blit(text_surface, ((x + 1) * block_size + x_offset, y_offset)) rect = pygame.Rect((x + 1) * block_size + x_offset, (y + 1) * block_size + y_offset, abs(unitary[y][x]) * block_size, abs(unitary[y][x]) * block_size) if abs(unitary[y][x]) > 0: pygame.draw.rect(self.image, BLACK, rect, 1)
[ "h.jun.ye@gmail.com" ]
h.jun.ye@gmail.com
26719905a2d5c638006f568dfbcaef22e95094e7
f292e3dea8be9145b94f6d874ecca51c959fb0e7
/ATCrack/preprocess/label2voc.py
ed794ec8ec4a5bf4e5f919c5a4415806444a1dd8
[]
no_license
xukefei01/crack-detection
d0bdd9f35cc7cc93cadcc4a67c18e280d4f6fcc5
28fb5ae2e4b2aa5d210ddd25ef9c7d10251454f5
refs/heads/main
2023-03-31T05:45:01.315343
2021-03-31T02:43:16
2021-03-31T02:43:16
353,202,673
5
0
null
null
null
null
UTF-8
Python
false
false
6,606
py
#!/usr/bin/env python from __future__ import print_function import argparse import glob import json import os import os.path as osp import sys import matplotlib.pyplot as plt import numpy as np import PIL.Image import argparse import base64 import json import os import labelme from labelme import utils import cv2 as cv from PIL import Image, ImageOps, ImageEnhance from torchvision.transforms import RandomSizedCrop from torchvision.transforms.functional import resized_crop, crop, resize from tqdm import tqdm def random_crop(img, mask, size, scale=(0.2, 0.8), ratio=(3. / 4., 4. / 3.), n_tries = 10, crack_px_percent = 0.3, resize=False): n_total_crack = np.sum((mask > 0)[:]) img = Image.fromarray(img) mask = Image.fromarray(mask) results = [] img_w = img.size[0] img_h = img.size[1] for i in range(n_tries): i, j, h, w = RandomSizedCrop.get_params(img, scale, ratio) sub_img = resized_crop(img, i, j, h, w, size, Image.BILINEAR) sub_mask = resized_crop(mask,i, j, h, w, size, Image.NEAREST) sub_img = np.asarray(sub_img) sub_mask = np.asarray(sub_mask) tmp = np.asarray(img.crop((j, i, j + w, i + h))) n_crack_pixels = np.sum((tmp>0)[:]) crk_ratio = float(n_crack_pixels)/n_total_crack if crk_ratio < crack_px_percent: print('missing') continue results.append((sub_img, sub_mask, (i, j, h, w))) _img = np.asarray(resized_crop(img, 0, 0, img_h, img_w, size, Image.BILINEAR)) _mask = np.asarray(resized_crop(mask, 0, 0, img_h, img_w, size, Image.NEAREST)) _img = np.asarray(_img) _mask = np.asarray(_mask) results.append((_img, _mask, (0, 0, img_h, img_w))) return results def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('input_dir', help='input annotated directory') parser.add_argument('output_dir', help='output dataset directory') parser.add_argument('--labels', help='labels file', required=True) args = parser.parse_args() # if osp.exists(args.output_dir): # print('Output directory already exists:', args.output_dir) # sys.exit(1) os.makedirs(args.output_dir, exist_ok=True) os.makedirs(osp.join(args.output_dir, 'images'), exist_ok=True) os.makedirs(osp.join(args.output_dir, 'masks'), exist_ok=True) #os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'), exist_ok=True) os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'), exist_ok=True) print('Creating dataset:', args.output_dir) class_names = [] class_name_to_id = {} for i, line in enumerate(open(args.labels).readlines()): class_id = i - 1 # starts with -1 class_name = line.strip() class_name_to_id[class_name] = class_id if class_id == -1: assert class_name == '__ignore__' continue elif class_id == 0: assert class_name == '_background_' class_names.append(class_name) class_names = tuple(class_names) print('class_names:', class_names) out_class_names_file = osp.join(args.output_dir, 'class_names.txt') with open(out_class_names_file, 'w') as f: f.writelines('\n'.join(class_names)) print('Saved class_names:', out_class_names_file) colormap = labelme.utils.label_colormap(255) for label_file in tqdm(list([path for path in glob.glob(osp.join(args.input_dir, '*.json'))])): #if '9S6A2822' not in label_file: # continue #print('Generating dataset from:', label_file) with open(label_file) as f: base = osp.splitext(osp.basename(label_file))[0] out_img_file = osp.join( args.output_dir, 'images', base + '.jpg') out_lbl_file = osp.join( args.output_dir, 'SegmentationClass', base + '.npy') out_png_file = osp.join( args.output_dir, 'masks', base + '.jpg') out_viz_file = osp.join( args.output_dir, 'SegmentationClassVisualization', base + '.jpg', ) data = json.load(f) ## if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(label_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in sorted(data['shapes'], key=lambda x: x['label']): label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) #lb = cv.imread(join(*[args.label_dir, f'{path.stem}.png'])) #lb = cv.cvtColor(lb, cv.COLOR_BGR2GRAY) lbl = (lbl > 0).astype(np.uint8) * 255 lbl = cv.morphologyEx(src=lbl, op=cv.MORPH_DILATE, kernel=cv.getStructuringElement(cv.MORPH_RECT, (20, 20))) results = random_crop(img, lbl, size=(448, 448), n_tries=10) #tq.update(1) for sub_img, sub_mask, crop_info in results: info = f'{crop_info[0]}_{crop_info[1]}_{crop_info[2]}_{crop_info[3]}' cv.imwrite(filename=os.path.join(*[args.output_dir, 'images', f'{base}_{info}.jpg']), img=sub_img) cv.imwrite(filename=os.path.join(*[args.output_dir, 'masks', f'{base}_{info}.jpg']), img=sub_mask) #cnt += 1 plt.clf() plt.imshow(sub_img) plt.imshow(sub_mask, alpha=0.4) plt.savefig(osp.join(args.output_dir, 'SegmentationClassVisualization', f'{base}_{info}' + '.jpg',)) #labelme.utils.lblsave(out_png_file, lbl) #np.save(out_lbl_file, lbl) #PIL.Image.fromarray(img).save(out_img_file) #plt.show() # viz = labelme.utils.draw_label( # lbl, img, class_names, colormap=colormap) # PIL.Image.fromarray(viz).save(out_viz_file) if __name__ == '__main__': main()
[ "noreply@github.com" ]
xukefei01.noreply@github.com
7484bacf4f4a3645406680fa8f7058b99cc91c34
c9500ad778b8521aaa85cb7fe3239989efaa4799
/plugins/trendmicro_deepsecurity/icon_trendmicro_deepsecurity/actions/search_computers/action.py
9b7c4476a3b6b40428738fb69a0845ee0eff2240
[ "MIT" ]
permissive
rapid7/insightconnect-plugins
5a6465e720f114d71b1a82fe14e42e94db104a0b
718d15ca36c57231bb89df0aebc53d0210db400c
refs/heads/master
2023-09-01T09:21:27.143980
2023-08-31T10:25:36
2023-08-31T10:25:36
190,435,635
61
60
MIT
2023-09-14T08:47:37
2019-06-05T17:05:12
Python
UTF-8
Python
false
false
3,708
py
import komand from .schema import SearchComputersInput, SearchComputersOutput, Input, Output, Component # Custom imports below import json import requests from komand.exceptions import PluginException from icon_trendmicro_deepsecurity.util.shared import tryJSON from icon_trendmicro_deepsecurity.util.shared import checkResponse class SearchComputers(komand.Action): def __init__(self): super(self.__class__, self).__init__( name="search_computers", description=Component.DESCRIPTION, input=SearchComputersInput(), output=SearchComputersOutput(), ) def run(self, params={}): """ Searches for Computers in Deep Security """ # Get parameters self.information = params.get(Input.INFORMATION) self.max_items = params.get(Input.MAX_ITEMS) self.field_name = params.get(Input.FIELD_NAME) self.search_type = params.get(Input.SEARCH_TYPE) self.string_value = params.get(Input.STRING_VALUE) self.number_value = params.get(Input.NUMBER_VALUE) computer_ids = set() # Prepare request url = f"{self.connection.dsm_url}/api/computers/search?expand={self.information}" if self.field_name: if self.search_type == "string" and self.string_value: # Search for computers by string match data = { "maxItems": self.max_items, "searchCriteria": [ { "fieldName": self.field_name, "stringWildcards": True, "stringValue": self.string_value, } ], } elif self.search_type == "integer" and self.number_value: # Search for computers by number match data = { "maxItems": self.max_items, "searchCriteria": [ { "fieldName": self.field_name, "stringWildcards": True, "numericValue": self.number_value, } ], } else: raise PluginException( cause="Scan type and matching seach value expected but not found!", assistance="Please select a search type and pass the matching string/number value to search for.", ) else: # List all computers data = {"maxItems": self.max_items} # Send request response = requests.post( url, data=json.dumps(data), verify=self.connection.dsm_verify_ssl, headers=self.connection.headers ) self.logger.info(f"url: {response.url}") self.logger.info(f"status: {response.status_code}") self.logger.info(f"reason: {response.reason}") # Check response errors checkResponse(response) # Try to convert the response data to JSON response_data = tryJSON(response) # Extract computer IDs if response_data["computers"]: hits = len(response_data["computers"]) self.logger.info(f"Found {hits} computer(s)!") for computer in response_data["computers"]: self.logger.info(f"{computer['ID']} - {computer['hostName']}") computer_ids.add(computer["ID"]) else: self.logger.info("No computer found!") # Return matched rules return {Output.COMPUTER_IDS: list(computer_ids), Output.RESPONSE_JSON: response_data}
[ "noreply@github.com" ]
rapid7.noreply@github.com
10295dd3df62eb9decab66cd53c16ebcf00d962b
39ffb606a790b3f1c1afb0e9a82051bd4c6a5e87
/src/blog/migrations/0003_auto_20190907_0343.py
8509645a8b7bf05e84f41f802f1192706fbb5f06
[ "MIT" ]
permissive
km427/django_blog
2ec79b6d82566fe7cf4c496917d36bc83296268c
fca83dbc312747493cc660c6fc74553cc7a91c42
refs/heads/master
2020-08-28T00:01:24.974086
2019-09-07T01:47:32
2019-09-07T01:47:32
217,527,579
1
0
MIT
2019-10-25T12:21:13
2019-10-25T12:21:13
null
UTF-8
Python
false
false
442
py
# Generated by Django 2.2.5 on 2019-09-06 22:13 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0002_auto_20190907_0050'), ] operations = [ migrations.AlterField( model_name='blog', name='date', field=models.DateTimeField(default=datetime.datetime(2019, 9, 7, 3, 43, 32, 555196)), ), ]
[ "roony0782045336@gmail.com" ]
roony0782045336@gmail.com
e1bbe2aa9d7c65d5b20d4909fb5bf6b1365c4942
dde9ab902d560bb391bdfac0fb2e03b3d797910d
/assignment1/autodiff_test.py
63c6bd9789976efc740b7b847701a0d5112bb7fd
[]
no_license
OlivierShi/deeplearning-sys
fa92f6ecf166bbd1a78286d01987ddbbb41fa48c
737ae1da4bd15849dee17b6884cff51596324c80
refs/heads/master
2021-06-17T20:17:24.172506
2017-06-12T10:00:04
2017-06-12T10:00:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,128
py
import autodiff as ad import numpy as np def test_identity(): x2 = ad.Variable(name="x2") y = x2 grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = 2 * np.ones(3) y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val}) # print y_val # print grad_x2_val assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val) assert np.array_equal(grad_x2_val, np.ones_like(x2_val)) test_identity() def test_add_by_const(): x2 = ad.Variable(name="x2") y = 5 + x2 grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = 2 * np.ones(3) y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val}) # print y_val # print grad_x2_val assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val + 5) assert np.array_equal(grad_x2_val, np.ones_like(x2_val)) test_add_by_const() def test_mul_by_const(): x2 = ad.Variable(name="x2") y = 5 * x2 grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = 2 * np.ones(3) y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val * 5) assert np.array_equal(grad_x2_val, np.ones_like(x2_val) * 5) test_mul_by_const() def test_add_two_vars(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x2 + x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run( feed_dict={x2: x2_val, x3: x3_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val + x3_val) assert np.array_equal(grad_x2_val, np.ones_like(x2_val)) assert np.array_equal(grad_x3_val, np.ones_like(x3_val)) test_add_two_vars() def test_mul_two_vars(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x2 * x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run( feed_dict={x2: x2_val, x3: x3_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val * x3_val) assert np.array_equal(grad_x2_val, x3_val) assert np.array_equal(grad_x3_val, x2_val) test_mul_two_vars() def test_add_mul_mix_1(): x1 = ad.Variable(name="x1") x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x1 + x2 * x3 * x1 grad_x1, grad_x2, grad_x3 = ad.gradients(y, [x1, x2, x3]) executor = ad.Executor([y, grad_x1, grad_x2, grad_x3]) x1_val = 1 * np.ones(3) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x1_val, grad_x2_val, grad_x3_val = executor.run( feed_dict={x1: x1_val, x2: x2_val, x3: x3_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x1_val + x2_val * x3_val) assert np.array_equal(grad_x1_val, np.ones_like(x1_val) + x2_val * x3_val) assert np.array_equal(grad_x2_val, x3_val * x1_val) assert np.array_equal(grad_x3_val, x2_val * x1_val) test_add_mul_mix_1() def test_add_mul_mix_2(): x1 = ad.Variable(name="x1") x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") x4 = ad.Variable(name="x4") y = x1 + x2 * x3 * x4 grad_x1, grad_x2, grad_x3, grad_x4 = ad.gradients(y, [x1, x2, x3, x4]) executor = ad.Executor([y, grad_x1, grad_x2, grad_x3, grad_x4]) x1_val = 1 * np.ones(3) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) x4_val = 4 * np.ones(3) y_val, grad_x1_val, grad_x2_val, grad_x3_val, grad_x4_val = executor.run( feed_dict={x1: x1_val, x2: x2_val, x3: x3_val, x4: x4_val}) # print grad_x2_val # print x3_val * x4_val assert isinstance(y, ad.Node) assert np.array_equal(y_val, x1_val + x2_val * x3_val * x4_val) assert np.array_equal(grad_x1_val, np.ones_like(x1_val)) assert np.array_equal(grad_x2_val, x3_val * x4_val) assert np.array_equal(grad_x3_val, x2_val * x4_val) assert np.array_equal(grad_x4_val, x2_val * x3_val) test_add_mul_mix_2() def test_add_mul_mix_3(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") z = x2 * x2 + x2 + x3 + 3 y = z * z + x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run( feed_dict={x2: x2_val, x3: x3_val}) z_val = x2_val * x2_val + x2_val + x3_val + 3 expected_yval = z_val * z_val + x3_val expected_grad_x2_val = 2 * \ (x2_val * x2_val + x2_val + x3_val + 3) * (2 * x2_val + 1) expected_grad_x3_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) + 1 assert isinstance(y, ad.Node) assert np.array_equal(y_val, expected_yval) assert np.array_equal(grad_x2_val, expected_grad_x2_val) assert np.array_equal(grad_x3_val, expected_grad_x3_val) test_add_mul_mix_3() def test_grad_of_grad(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x2 * x2 + x2 * x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) grad_x2_x2, grad_x2_x3 = ad.gradients(grad_x2, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3, grad_x2_x2, grad_x2_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val, grad_x2_x2_val, grad_x2_x3_val = executor.run( feed_dict={x2: x2_val, x3: x3_val}) expected_yval = x2_val * x2_val + x2_val * x3_val expected_grad_x2_val = 2 * x2_val + x3_val expected_grad_x3_val = x2_val expected_grad_x2_x2_val = 2 * np.ones_like(x2_val) expected_grad_x2_x3_val = 1 * np.ones_like(x2_val) assert isinstance(y, ad.Node) assert np.array_equal(y_val, expected_yval) assert np.array_equal(grad_x2_val, expected_grad_x2_val) assert np.array_equal(grad_x3_val, expected_grad_x3_val) assert np.array_equal(grad_x2_x2_val, expected_grad_x2_x2_val) assert np.array_equal(grad_x2_x3_val, expected_grad_x2_x3_val) test_grad_of_grad() def test_matmul_two_vars(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = ad.matmul_op(x2, x3, False, True) grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = np.ones((3, 1)) x3_val = np.ones((3,1)) # x2_val = np.array([[1, 2], [3, 4], [5, 6]]) # 3x2 # x3_val = np.array([[7, 8, 9], [10, 11, 12]]) # 2x3 y_val, grad_x2_val, grad_x3_val = executor.run( feed_dict={x2: x2_val, x3: x3_val}) x3_val_ = np.ones((1,3)) expected_yval = np.matmul(x2_val, x3_val_) # print y_val expected_grad_x2_val = np.matmul( np.ones_like(expected_yval), np.transpose(x3_val_)) expected_grad_x3_val = np.matmul( np.transpose(x2_val), np.ones_like(expected_yval)).T assert isinstance(y, ad.Node) assert np.array_equal(y_val, expected_yval) assert np.array_equal(grad_x2_val, expected_grad_x2_val) assert np.array_equal(grad_x3_val, expected_grad_x3_val) # test_matmul_two_vars() def test_msr(): x = ad.Variable(name="x") y = ad.Variable(name="y") z = x * y l = ad.reduce_sum_op((x-z)*(x-z), axis=0) # c = 2*x c = ad.matmul_op(x-z, x-z, True, False) x_val = np.ones((10, 1)) y_val = np.ones((10, 1))*2 grad_x1, grad_y1 = ad.gradients(l, [x, y]) grad_x2, grad_y2 = ad.gradients(c, [x, y]) excutor = ad.Executor([l, c, grad_x1, grad_y1, grad_x2, grad_y2]) # excutor = ad.Executor([l, grad_x1, grad_y1, d]) loss, cost, grad_x1_val, grad_y1_val, grad_x2_val, grad_y2_val = excutor.run(feed_dict={x: x_val, y: y_val}) # loss, grad_x1_val, grad_y1_val, d_val = excutor.run(feed_dict={x: x_val, y: y_val, z: z_val}) print loss print cost print "gx1: %s, gy1: %s" % (str(grad_x1_val), str(grad_y1_val)) print "gx2: %s, gy2: %s" % (str(grad_x2_val), str(grad_y2_val)) # print d_val test_msr()
[ "jiangnan.hugo@gmail.com" ]
jiangnan.hugo@gmail.com
e92d7ccdd2592f2089e2986159273b7d690ed742
35f9def6e6d327d3a4a4f2959024eab96f199f09
/developer/lab/ipython/PyTorch/PyTorch/test/test_profiler.py
382d05d438515d89c3caa8661d4e771c15a66cd1
[ "CAL-1.0-Combined-Work-Exception", "CAL-1.0", "MIT", "CC-BY-SA-4.0", "LicenseRef-scancode-free-unknown", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
arXiv-research/DevLab-III-1
ec10aef27e1ca75f206fea11014da8784752e454
c50cd2b9154c83c3db5e4a11b9e8874f7fb8afa2
refs/heads/main
2023-04-16T19:24:58.758519
2021-04-28T20:21:23
2021-04-28T20:21:23
362,599,929
2
0
MIT
2021-04-28T20:36:11
2021-04-28T20:36:11
null
UTF-8
Python
false
false
18,771
py
import collections import gc import io import os import unittest import torch import torch.nn as nn import torch.optim import torch.utils.data from torch.testing._internal.common_cuda import TEST_MULTIGPU from torch.testing._internal.common_utils import ( TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_ROCM, IS_WINDOWS, TemporaryFileName, TemporaryDirectoryName) from torch.autograd.profiler import profile as _profile from torch.profiler import ( kineto_available, profile, record_function, DeviceType, ProfilerActivity ) try: import psutil HAS_PSUTIL = True except ImportError: HAS_PSUTIL = False import pickle @unittest.skipIf(not HAS_PSUTIL, "Requires psutil to run") @unittest.skipIf(TEST_WITH_ASAN, "Cannot test with ASAN") @unittest.skipIf(IS_WINDOWS, "Test is flaky on Windows") @unittest.skipIf(not torch.cuda.is_available(), "CUDA is required") class TestProfilerCUDA(TestCase): def test_mem_leak(self): """Checks that there's no memory leak when using profiler with CUDA """ t = torch.rand(1, 1).cuda() p = psutil.Process() last_rss = collections.deque(maxlen=5) for outer_idx in range(10): with _profile(use_cuda=True): for _ in range(1024): t = torch.mm(t, t) gc.collect() torch.cuda.empty_cache() last_rss.append(p.memory_info().rss) # with CUDA events leaking the increase in memory was ~7 MB between # profiler invocations above is_increasing = all( [last_rss[idx] > last_rss[idx - 1] for idx in range(1, len(last_rss))]) max_diff = -1 for idx in range(1, len(last_rss)): max_diff = max(max_diff, last_rss[idx] - last_rss[idx - 1]) self.assertTrue(not (is_increasing and max_diff > 100 * 1024), msg='memory usage is increasing, {}'.format(str(last_rss))) class TestProfiler(TestCase): def test_source(self): """Checks that source code attribution works for eager, TS and autograd mode """ # avoid automatic inlining prev_opt = torch._C._get_graph_executor_optimize() torch._C._set_graph_executor_optimize(False) @torch.jit.script def ts_method_2(x, y): return torch.matmul(x, y) @torch.jit.script def ts_method_1(x, y, z): a = x + z w = ts_method_2(x, y) + a return w.sum() class DummyModule(nn.Module): def __init__(self): super(DummyModule, self).__init__() self.conv = torch.nn.Conv2d(3, 2, kernel_size=1, stride=2, padding=3, bias=False) def forward(self, x): return self.conv(x) mod = DummyModule() with _profile(with_stack=True, use_kineto=kineto_available()) as p: x = torch.randn(10, 10, requires_grad=True) y = torch.randn(10, 10, requires_grad=True) z = x + y w = ts_method_1(x, y, z) v = 2 * w v.backward() a = torch.randn(2, 3, 2, 2, requires_grad=True) b = mod(a) c = b.sum() c.backward() for e in p.function_events: if "aten::add" in e.name or "AddBackward" in e.name: self.assertTrue(any(["test_profiler" in entry for entry in e.stack])) self.assertTrue(any([( "test_source" in entry or "ts_method_1" in entry or "ts_method_2" in entry) for entry in e.stack])) torch._C._set_graph_executor_optimize(prev_opt) def payload(self, use_cuda=False): x = torch.randn(10, 10) if use_cuda: x = x.cuda() y = torch.randn(10, 10) if use_cuda: y = y.cuda() z = torch.mm(x, y) z = z + y if use_cuda: z = z.cpu() @unittest.skipIf(not kineto_available(), "Kineto is required") def test_kineto(self): use_cuda = torch.cuda.is_available() and (not TEST_WITH_ROCM) with _profile(use_cuda=use_cuda, use_kineto=True): self.payload(use_cuda=use_cuda) # rerun to avoid initial start overhead with _profile(use_cuda=use_cuda, use_kineto=True) as p: self.payload(use_cuda=use_cuda) output = p.key_averages().table( sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1) # print(output) found_gemm = False found_memcpy = False found_mm = False for e in p.function_events: if "aten::mm" in e.name: found_mm = True if "gemm" in e.name: found_gemm = True if "Memcpy" in e.name or "memcpy" in e.name: found_memcpy = True if use_cuda: self.assertTrue(found_gemm) self.assertTrue(found_memcpy) else: self.assertTrue(found_mm) # p.export_chrome_trace("/tmp/test_trace.json") @unittest.skipIf(not kineto_available(), "Kineto is required") @unittest.skipIf(not TEST_MULTIGPU, "Multiple GPUs needed") @unittest.skipIf(TEST_WITH_ROCM, "Not supported on ROCm") def test_kineto_multigpu(self): with profile( activities=[ ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof: for gpu_id in [0, 1]: x = torch.randn(10, 10).cuda(gpu_id) y = torch.randn(10, 10).cuda(gpu_id) z = x.matmul(y) found_gemm_0 = False found_gemm_1 = False found_cuda = False for evt in prof.events(): if "gemm" in evt.name.lower() and evt.device_type == DeviceType.CUDA: if evt.device_index == 0: found_gemm_0 = True elif evt.device_index == 1: found_gemm_1 = True if "cuda" in evt.name.lower() and evt.device_type == DeviceType.CPU: found_cuda = True self.assertTrue(found_gemm_0) self.assertTrue(found_gemm_1) self.assertTrue(found_cuda) def test_memory_profiler(self): def run_profiler(tensor_creation_fn, metric): # collecting allocs / deallocs with _profile(profile_memory=True, record_shapes=True, use_kineto=kineto_available()) as prof: x = None with record_function("test_user_scope_alloc"): x = tensor_creation_fn() with record_function("test_user_scope_dealloc"): del x return prof.key_averages(group_by_input_shape=True) def check_metrics(stats, metric, allocs=None, deallocs=None): stat_metrics = {} for stat in stats: stat_metrics[stat.key] = getattr(stat, metric) if allocs is not None: for alloc_fn in allocs: self.assertTrue(alloc_fn in stat_metrics) self.assertTrue(stat_metrics[alloc_fn] > 0) if deallocs is not None: for dealloc_fn in deallocs: self.assertTrue(dealloc_fn in stat_metrics) self.assertTrue(stat_metrics[dealloc_fn] < 0) def create_cpu_tensor(): return torch.rand(10, 10) def create_cuda_tensor(): return torch.rand(10, 10).cuda() def create_mkldnn_tensor(): return torch.rand(10, 10, dtype=torch.float32).to_mkldnn() stats = run_profiler(create_cpu_tensor, "cpu_memory_usage") check_metrics( stats, "cpu_memory_usage", allocs=[ "aten::empty", "aten::rand", "test_user_scope_alloc", ], deallocs=[ "test_user_scope_dealloc", ] ) if torch.cuda.is_available(): create_cuda_tensor() stats = run_profiler(create_cuda_tensor, "cuda_memory_usage") check_metrics( stats, "cuda_memory_usage", allocs=[ "test_user_scope_alloc", "aten::to", "aten::empty_strided", ], deallocs=[ "test_user_scope_dealloc", ] ) check_metrics( stats, "cpu_memory_usage", allocs=[ "aten::rand", "aten::empty", ] ) if torch._C.has_mkldnn: create_mkldnn_tensor() stats = run_profiler(create_mkldnn_tensor, "cpu_memory_usage") check_metrics( stats, "cpu_memory_usage", allocs=[ "test_user_scope_alloc", "aten::rand", "aten::empty", "aten::to_mkldnn", ], deallocs=[ "test_user_scope_dealloc", ] ) # check top-level memory events with _profile(profile_memory=True, use_kineto=kineto_available()) as prof: x = torch.rand(10, 10) del x if torch.cuda.is_available(): y = torch.rand(10, 10).cuda() del y gc.collect() stats = prof.key_averages(group_by_input_shape=True) check_metrics( stats, "cpu_memory_usage", allocs=[ "aten::rand", "aten::empty" ], deallocs=[ "[memory]" ] ) if torch.cuda.is_available(): check_metrics( stats, "cuda_memory_usage", deallocs=[ "[memory]" ] ) def test_high_level_trace(self): """Checks that python side high level events are recorded. """ class RepeatedDataset(torch.utils.data.Dataset): def __init__(self, N, D_in, D_out): self.N = N self.x = torch.randn(N, D_in) self.y = torch.randn(N, D_out) def __len__(self): return self.N def __getitem__(self, idx): return self.x, self.y class TwoLayerNet(torch.nn.Module): def __init__(self, D_in, H, D_out): super(TwoLayerNet, self).__init__() self.linear1 = torch.nn.Linear(D_in, H) self.linear2 = torch.nn.Linear(H, D_out) def forward(self, x): h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear2(h_relu) return y_pred class CustomSGD(torch.optim.SGD): def __init__(self, *args, **kwargs): super(CustomSGD, self).__init__(*args, **kwargs) def train(): for _, data in enumerate(dataloader): x, y = data[0], data[1] y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() N, D_in, H, D_out = 8, 10, 5, 2 model = TwoLayerNet(D_in, H, D_out) criterion = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-4) ds = RepeatedDataset(N, D_in, D_out) dataloader = torch.utils.data.DataLoader(ds, batch_size=1) try: train() except Exception: self.assertTrue(False, "Expected no exception without profiling.") # Create multiple instances, expect each func is hooked only one time. # Nested wrappers(repeated patching) will make following test fail. optimizer_duplicate = torch.optim.SGD(model.parameters(), lr=1e-4) dataloader_duplicate = torch.utils.data.DataLoader(ds, batch_size=1) def judge(expected_event_count, prof): actual_event_count = {} for e in prof.function_events: if "#" in e.name: key = e.name if key in expected_event_count.keys(): actual_event_count[key] = actual_event_count.setdefault(key, 0) + 1 for key, count in expected_event_count.items(): self.assertTrue((key in actual_event_count.keys()) and (count == actual_event_count[key])) with _profile(use_kineto=kineto_available()) as prof: train() expected_event_count = { # "+1" because the final iteration will enter __next__ but skip the loop body. "enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__": (N + 1), "Optimizer.step#SGD.step": N, "Optimizer.zero_grad#SGD.zero_grad": N } judge(expected_event_count, prof) # Test on pickle/unpickle. Expect to work in multi-processing. optimizer = pickle.loads(pickle.dumps(optimizer)) with _profile(use_kineto=kineto_available()) as prof: train() judge(expected_event_count, prof) # Test on customized optimizer. optimizer = CustomSGD(model.parameters(), lr=1e-4) with _profile(use_kineto=kineto_available()) as prof: train() expected_event_count = { "enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__": (N + 1), "Optimizer.step#CustomSGD.step": N, "Optimizer.zero_grad#CustomSGD.zero_grad": N } judge(expected_event_count, prof) def test_flops(self): model = torch.nn.Sequential( nn.Conv2d(16, 33, 18), nn.ReLU(), nn.Linear(243, 243), nn.ReLU(), ) inputs = torch.randn(40, 16, 18, 260) with _profile(record_shapes=True, with_flops=True, use_kineto=kineto_available()) as prof: model(inputs) profiler_output = prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10) self.assertIn("FLOPS", profiler_output) if not (kineto_available() and torch.cuda.is_available()): return with profile(activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], record_shapes=True, with_flops=True, ) as kineto_profiler: model(inputs) profiler_output = kineto_profiler.key_averages().table( sort_by="self_cuda_time_total", row_limit=-1) self.assertIn("FLOPS", profiler_output) @unittest.skipIf(not kineto_available(), "Kineto is required") def test_kineto_profiler_api(self): called_num = [0] use_cuda = torch.cuda.is_available() with _profile(use_cuda=use_cuda, use_kineto=True): self.payload(use_cuda=use_cuda) def trace_handler(p): output = p.key_averages().table( sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1) # print(output) # p.export_chrome_trace("/tmp/test_trace_" + str(called_num[0]) + ".json") called_num[0] += 1 with profile( activities=[ torch.profiler.ProfilerActivity.CPU ] + ([ torch.profiler.ProfilerActivity.CUDA ] if use_cuda else []), schedule=torch.profiler.schedule( wait=1, warmup=1, active=2), on_trace_ready=trace_handler ) as p: for idx in range(8): self.payload(use_cuda=use_cuda) p.step() self.assertEqual(called_num[0], 2) # case without schedule with profile( activities=[ torch.profiler.ProfilerActivity.CPU ] + ([ torch.profiler.ProfilerActivity.CUDA ] if use_cuda else []), ) as p: self.payload(use_cuda=use_cuda) self.payload(use_cuda=use_cuda) output = p.key_averages().table( sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1) # print(output) def test_export_stacks(self): with _profile(with_stack=True, use_kineto=kineto_available()) as p: x = torch.randn(10, 10) y = torch.randn(10, 10) z = torch.mm(x, y) z = z + y with TemporaryFileName(mode="w+") as fname: p.export_stacks(fname) with io.open(fname, 'r') as f: lines = f.readlines() assert len(lines) > 0, "Empty stacks file" for line in lines: is_int = False try: assert int(line.split(" ")[-1]) > 0, "Invalid stacks record" is_int = True except ValueError: pass assert is_int, "Invalid stacks record" @unittest.skipIf(not kineto_available(), "Kineto is required") def test_tensorboard_trace_handler(self): use_cuda = torch.cuda.is_available() with _profile(use_cuda=use_cuda, use_kineto=True): self.payload(use_cuda=use_cuda) with TemporaryDirectoryName() as dname: with profile( activities=[ torch.profiler.ProfilerActivity.CPU ] + ([ torch.profiler.ProfilerActivity.CUDA ] if use_cuda else []), schedule=torch.profiler.schedule( wait=1, warmup=1, active=2, repeat=3), on_trace_ready=torch.profiler.tensorboard_trace_handler(dname) ) as p: for _ in range(18): self.payload(use_cuda=use_cuda) p.step() self.assertTrue(os.path.exists(dname)) file_num = 0 for file_name in os.listdir(dname): parts = file_name.split('.') self.assertTrue(len(parts) > 4) self.assertTrue(parts[-4].isdigit() and int(parts[-4]) > 0, "Wrong tracing file name pattern") self.assertEqual(parts[-3:], ['pt', 'trace', 'json']) file_num += 1 self.assertEqual(file_num, 3) if __name__ == '__main__': run_tests()
[ "noreply@github.com" ]
arXiv-research.noreply@github.com
e7fe8efe710d89ee0fcde959a292ad13e60da77c
2ab59f275433a19fe415d5dbb2ff58ca515deed5
/tianwei/week4/SearchBigThree.py
81fcb3c2baf507c05a71bf9daa23bf74fabf9c27
[]
no_license
Shen-xinliang/python-14
4b4555339b4942a350385f6190f79dbac1bb9917
1a3eed2b9996c7d1f7f8bb8dbd29698611966326
refs/heads/master
2020-03-27T08:21:59.993230
2018-08-27T04:22:00
2018-08-27T04:22:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
352
py
#随机生成20个数字,并且筛选出其中最大的三个数 import random lst=[random.randrange(0,101) for x in range(20)] print(lst) for i in range(3): max=i for j in range(i+1,20): if lst[max]<lst[j]: max=j print(lst[max]) if max!=i: temp=lst[i] lst[i]=lst[max] lst[max]=temp
[ "398310343@qq.com" ]
398310343@qq.com
65862d59d03041b9ba6eb8ed1295487976bcb946
45a2547fe8d29d6b9b7dd4a7bc3b1955ec855aa9
/msrvtt_ft_model.py
9e222677921f23b9853d1388585406a63fa7034a
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
bitwangdan/video_to_sequence
a7013e170363a7461bdc1eadc150a72c4ef3b789
111405570595671441478945521f86f1fd65585a
refs/heads/master
2021-03-24T13:50:06.370019
2016-09-30T06:15:28
2016-09-30T06:15:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,782
py
#-*- coding: utf-8 -*- import tensorflow as tf import pandas as pd from pandas import Series, DataFrame import numpy as np import os import ipdb import sys import cv2 from tensorflow.python.ops import rnn_cell from keras.preprocessing import sequence class Video_Caption_Generator(): def __init__(self, dim_image, n_words, dim_hidden, batch_size, n_lstm_steps, drop_out_rate, bias_init_vector=None): self.dim_image = dim_image self.n_words = n_words self.dim_hidden = dim_hidden self.batch_size = batch_size self.n_lstm_steps = n_lstm_steps self.drop_out_rate = drop_out_rate with tf.device("/gpu:2"): self.Wemb = tf.Variable(tf.random_uniform([n_words, dim_hidden], -0.1, 0.1), name='Wemb') # self.lstm1 = rnn_cell.BasicLSTMCell(dim_hidden) # self.lstm2 = rnn_cell.BasicLSTMCell(dim_hidden) self.lstm1 = rnn_cell.LSTMCell(self.dim_hidden,self.dim_hidden,use_peepholes = True) self.lstm1_dropout = rnn_cell.DropoutWrapper(self.lstm1,output_keep_prob=1 - self.drop_out_rate) self.lstm2 = rnn_cell.LSTMCell(self.dim_hidden,self.dim_hidden,use_peepholes = True) self.lstm2_dropout = rnn_cell.DropoutWrapper(self.lstm2,output_keep_prob=1 - self.drop_out_rate) # W is Weight, b is Bias self.encode_image_W = tf.Variable( tf.random_uniform([dim_image, dim_hidden], -0.1, 0.1), name='encode_image_W') self.encode_image_b = tf.Variable( tf.zeros([dim_hidden]), name='encode_image_b') self.embed_word_W = tf.Variable(tf.random_uniform([dim_hidden, n_words], -0.1,0.1), name='embed_word_W') if bias_init_vector is not None: self.embed_word_b = tf.Variable(bias_init_vector.astype(np.float32), name='embed_word_b') else: self.embed_word_b = tf.Variable(tf.zeros([n_words]), name='embed_word_b') def build_model(self): video = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps, self.dim_image]) video_mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps]) caption = tf.placeholder(tf.int32, [self.batch_size, self.n_lstm_steps]) caption_mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps]) video_flat = tf.reshape(video, [-1, self.dim_image]) image_emb = tf.nn.xw_plus_b( video_flat, self.encode_image_W, self.encode_image_b) # (batch_size*n_lstm_steps, dim_hidden) image_emb = tf.reshape(image_emb, [self.batch_size, self.n_lstm_steps, self.dim_hidden]) state1 = tf.zeros([self.batch_size, self.lstm1.state_size]) state2 = tf.zeros([self.batch_size, self.lstm2.state_size]) padding = tf.zeros([self.batch_size, self.dim_hidden]) probs = [] loss = 0.0 for i in range(self.n_lstm_steps): ## Phase 1 => only read frames if i > 0: tf.get_variable_scope().reuse_variables() with tf.variable_scope("LSTM1"): #output1, state1 = self.lstm1( image_emb[:,i,:], state1 ) output1, state1 = self.lstm1_dropout( image_emb[:,i,:], state1 ) with tf.variable_scope("LSTM2"): #output2, state2 = self.lstm2( tf.concat(1,[padding,output1]), state2 ) output2, state2 = self.lstm2_dropout( tf.concat(1,[padding,output1]), state2 ) # Each video might have different length. Need to mask those. # But how? Padding with 0 would be enough? # Therefore... TODO: for those short videos, keep the last LSTM hidden and output til the end. for i in range(self.n_lstm_steps): ## Phase 2 => only generate captions if i == 0: current_embed = tf.zeros([self.batch_size, self.dim_hidden]) else: with tf.device("/gpu:2"): current_embed = tf.nn.embedding_lookup(self.Wemb, caption[:,i-1]) tf.get_variable_scope().reuse_variables() with tf.variable_scope("LSTM1"): #output1, state1 = self.lstm1( padding, state1 ) output1, state1 = self.lstm1_dropout( padding, state1 ) with tf.variable_scope("LSTM2"): #output2, state2 = self.lstm2( tf.concat(1,[current_embed,output1]), state2 ) output2, state2 = self.lstm2_dropout( tf.concat(1,[current_embed,output1]), state2 ) labels = tf.expand_dims(caption[:,i], 1) indices = tf.expand_dims(tf.range(0, self.batch_size, 1), 1) concated = tf.concat(1, [indices, labels]) onehot_labels = tf.sparse_to_dense(concated, tf.pack([self.batch_size, self.n_words]), 1.0, 0.0) logit_words = tf.nn.xw_plus_b(output2, self.embed_word_W, self.embed_word_b) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logit_words, onehot_labels) cross_entropy = cross_entropy * caption_mask[:,i] probs.append(logit_words) current_loss = tf.reduce_sum(cross_entropy) loss += current_loss loss = loss / tf.reduce_sum(caption_mask) return loss, video, video_mask, caption, caption_mask, probs ############### Global Parameters ############### video_path = './youtube_videos' video_data_path='./video_corpus.csv' video_feat_path = './youtube_feats' train_val_video_feat_path = '/home2/dataset/MSR-VTT/train_val_feats' train_val_sents_gt_path = '/home2/dataset/MSR-VTT/train_val_sents_gt.txt' ft_train_video_feat_path = '/home2/dataset/MSVD/MSVD_train_feats' ft_train_sents_gt_path = '/home2/dataset/MSVD/train_sents_gt.txt' model_path = './MSRVTT_ft_models1/' ############## Train Parameters ################# dim_image = 4096 dim_hidden= 256 n_frame_step = 80 n_epochs = 1000 batch_size = 100 learning_rate = 0.001 ################################################## def get_video_data(video_data_path, video_feat_path, train_ratio=0.9): video_data = pd.read_csv(video_data_path, sep=',') video_data = video_data[video_data['Language'] == 'English'] video_data['video_path'] = video_data.apply(lambda row: row['VideoID']+'_'+str(row['Start'])+'_'+str(row['End'])+'.avi.npy', axis=1) video_data['video_path'] = video_data['video_path'].map(lambda x: os.path.join(video_feat_path, x)) video_data = video_data[video_data['video_path'].map(lambda x: os.path.exists( x ))] video_data = video_data[video_data['Description'].map(lambda x: isinstance(x, str))] unique_filenames = video_data['video_path'].unique() train_len = int(len(unique_filenames)*train_ratio) train_vids = unique_filenames[:train_len] test_vids = unique_filenames[train_len:] train_data = video_data[video_data['video_path'].map(lambda x: x in train_vids)] test_data = video_data[video_data['video_path'].map(lambda x: x in test_vids)] return train_data, test_data def MSRVTT_get_video_data( sents_gt_path, video_feat_path, only_train_data=False ): video_path = [] description = [] videoID = [] with open(sents_gt_path) as file : for line in file : id_sent = line.strip().split('\t') id_num = int(id_sent[0].split('vid')[1]) if only_train_data == False or id_num < 6513 : description.append( ''.join(id_sent[-1:]) ) #list to str videoID.append( id_sent[0] ) video_feat_name = id_sent[0].replace('vid','video') video_path.append( os.path.join( video_feat_path, video_feat_name+'.mp4.npy' ) ) video_data = DataFrame({'VideoID':videoID, 'Description':description, 'video_path':video_path}) return video_data def MSVD_get_video_data( sents_gt_path, video_feat_path ): video_path = [] description = [] videoID = [] with open(sents_gt_path) as file : for line in file : id_sent = line.strip().split('\t') description.append( ''.join(id_sent[-1:]) ) #list to str videoID.append( id_sent[0] ) video_path.append( os.path.join( video_feat_path, id_sent[0]+'.avi.npy' ) ) video_data = DataFrame({'VideoID':videoID, 'Description':description, 'video_path':video_path}) return video_data def preProBuildWordVocab(sentence_iterator, word_count_threshold=5): # borrowed this function from NeuralTalk print 'preprocessing word counts and creating vocab based on word count threshold %d' % (word_count_threshold, ) word_counts = {} nsents = 0 for sent in sentence_iterator: nsents += 1 for w in sent.lower().split(' '): word_counts[w] = word_counts.get(w, 0) + 1 vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold] print 'filtered words from %d to %d' % (len(word_counts), len(vocab)) ixtoword = {} ixtoword[0] = '.' # period at the end of the sentence. make first dimension be end token wordtoix = {} wordtoix['#START#'] = 0 # make first vector be the start token ix = 1 for w in vocab: wordtoix[w] = ix ixtoword[ix] = w ix += 1 word_counts['.'] = nsents bias_init_vector = np.array([1.0*word_counts[ixtoword[i]] for i in ixtoword]) bias_init_vector /= np.sum(bias_init_vector) # normalize to frequencies bias_init_vector = np.log(bias_init_vector) bias_init_vector -= np.max(bias_init_vector) # shift to nice numeric range return wordtoix, ixtoword, bias_init_vector def fine_tune( pre_trained_model, restore=False, restore_model='' ): # data w/o split #train_data, _ = get_video_data(video_data_path, video_feat_path, train_ratio=0.9) #print(train_data) #print(type(train_data)) loss_vector = [] pre_epochs = 0 train_data = MSVD_get_video_data( ft_train_sents_gt_path, ft_train_video_feat_path ) msrvtt_vocab_data = MSRVTT_get_video_data( train_val_sents_gt_path, train_val_video_feat_path, True ) captions = msrvtt_vocab_data['Description'].values captions = map(lambda x: x.replace('.', ''), captions) captions = map(lambda x: x.replace(',', ''), captions) wordtoix, ixtoword, bias_init_vector = preProBuildWordVocab(captions, word_count_threshold=10) model = Video_Caption_Generator( dim_image=dim_image, n_words=len(wordtoix), dim_hidden=dim_hidden, batch_size=batch_size, n_lstm_steps=n_frame_step, drop_out_rate = 0.5, bias_init_vector=bias_init_vector) tf_loss, tf_video, tf_video_mask, tf_caption, tf_caption_mask, tf_probs = model.build_model() sess = tf.InteractiveSession() if restore == True: pre_epochs = int(os.path.basename( restore_model ).split('-')[1]) loss_vector = np.load( os.path.join( os.path.dirname(restore_model), 'loss-'+str(pre_epochs)+'.npy' ) ).tolist() train_op = tf.train.AdamOptimizer(learning_rate).minimize(tf_loss) tf.initialize_all_variables().run() saver = tf.train.Saver() saver.restore(sess, restore_model) else: saver = tf.train.Saver() saver.restore(sess, pre_trained_model) temp = set(tf.all_variables()) train_op = tf.train.AdamOptimizer(learning_rate).minimize(tf_loss) sess.run(tf.initialize_variables(set(tf.all_variables()) - temp)) saver = tf.train.Saver() #save new optimizer variables for epoch in range(n_epochs+1): if restore == True: epoch = epoch + pre_epochs index = list(train_data.index) np.random.shuffle(index) train_data = train_data.ix[index] current_train_data = train_data.groupby('video_path').apply(lambda x: x.irow(np.random.choice(len(x)))) current_train_data = current_train_data.reset_index(drop=True) epoch_loss = 0 for start,end in zip( range(0, len(current_train_data), batch_size), range(batch_size, len(current_train_data), batch_size)): current_batch = current_train_data[start:end] current_videos = current_batch['video_path'].values current_feats = np.zeros((batch_size, n_frame_step, dim_image)) current_feats_vals = map(lambda vid: np.load(vid), current_videos) current_video_masks = np.zeros((batch_size, n_frame_step)) for ind,feat in enumerate(current_feats_vals): current_feats[ind][:len(current_feats_vals[ind])] = feat current_video_masks[ind][:len(current_feats_vals[ind])] = 1 current_captions = current_batch['Description'].values current_captions = map(lambda x: x.replace('.', ''), current_captions) current_captions = map(lambda x: x.replace(',', ''), current_captions) current_caption_ind = map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ') if word in wordtoix], current_captions) current_captions_ = map( lambda sent: [ixtoword[ix] for ix in sent], current_caption_ind ) current_caption_matrix = sequence.pad_sequences(current_caption_ind, padding='post', maxlen=n_frame_step-1) current_caption_matrix = np.hstack( [current_caption_matrix, np.zeros( [len(current_caption_matrix),1]) ] ).astype(int) current_caption_masks = np.zeros((current_caption_matrix.shape[0], current_caption_matrix.shape[1])) nonzeros = np.array( map(lambda x: (x != 0).sum()+1, current_caption_matrix )) for ind, row in enumerate(current_caption_masks): row[:nonzeros[ind]] = 1 probs_val = sess.run(tf_probs, feed_dict={ tf_video:current_feats, tf_caption: current_caption_matrix }) _, loss_val = sess.run( [train_op, tf_loss], feed_dict={ tf_video: current_feats, tf_video_mask : current_video_masks, tf_caption: current_caption_matrix, tf_caption_mask: current_caption_masks }) epoch_loss = loss_val print loss_val loss_vector.append( epoch_loss ) if np.mod(epoch, 100) == 0: if restore == False or epoch-pre_epochs != 0: print "Epoch ", epoch, " is done. Saving the model ..." saver.save(sess, os.path.join(model_path, 'model'), global_step=epoch) np.save( os.path.join(model_path, 'loss-'+str(epoch)),loss_vector ) fine_tune( 'MSRVTT_models3/model-800')
[ "meteora9479@gmail.com" ]
meteora9479@gmail.com
d856e9e655cf975ef84512950ea959cc73976f44
b3cd00de3608e5225758bb99b28d58320ce81a47
/Python_100/python file operations/open_a_file.py
c6e0d450b9d4bd1d1a30dc16be266e44bc42f357
[]
no_license
buyi823/learn_python
fc4ec7e35ec421842975956933cfb56371786d7a
b411d5277dba1764d421a267f0ba36da40d8c6e9
refs/heads/master
2022-05-13T01:05:35.961946
2022-05-09T15:20:52
2022-05-09T15:20:52
71,314,016
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
#!/usr/bin/python3 # -*- coding: UTF-8 -*- # open file and read it with open('data.txt', 'r') as f: data = f.read() print('context:{}'.format(data))
[ "blaine.xu@kaiostech.com" ]
blaine.xu@kaiostech.com
2e1f89e0981a30cfb888082fe619819cb0c7690e
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/392153_Pascals_triangle/recipe-392153.py
75071b1cd1a2c7de3ec6683b1428779c7f0d1362
[ "Python-2.0", "MIT" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
344
py
def pascal(n): """Prints n first lines of Pascal`s triangle author: DR#m <dnpsite.narod.ru> last rev 20.03.05""" l=[1] p=[] for i in xrange(n): l2=[1] for j in xrange(len(l)-1): l2.append(l[j]+l[j+1]) l2.append(1) print l l=l2 if __name__=="__main__": pascal(20)
[ "betty@qburst.com" ]
betty@qburst.com
8f4185f995147d4bd43fdf84d659e51af8edd22a
b213fbd2f4f628aa0f2387c846673ac68e18aa91
/BFS/761.py
af0547988d630e396f34dc4b8662f12d9bcc10d5
[ "MIT" ]
permissive
wilbertgeng/LintCode_exercise
94309b4451e34f1931fce6c2ae90d0c2e7c41d35
e7a343b746e98ca3b4bc7b36655af7291f3150db
refs/heads/main
2023-05-13T06:06:50.887791
2021-05-26T20:33:51
2021-05-26T20:33:51
347,850,106
0
0
null
null
null
null
UTF-8
Python
false
false
561
py
"""761. Smallest Subset """ class Solution: """ @param arr: an array of non-negative integers @return: minimum number of elements """ def minElements(self, arr): # write your code here total = sum(arr) arr.sort(reverse = True) queue = [0] for i in range(len(arr)): for j in range(len(queue)): subset = int(queue[j]) queue.append(subset + arr[j]) if (subset + arr[j]) * 2 > total: return i + 1 return len(arr)
[ "wilbertgeng@gmail.com" ]
wilbertgeng@gmail.com
318d856d6fb461f8ec7c6729cd4ffa4ce9c19d8e
78c222e75ed8f307a5fd68f9e97d2a558ccd079f
/hw1/HW1codes/src/hw1.4.py
2921c7959fa6b671d9b21d201d7eb87bd96538ab
[]
no_license
YangYue3417/CSE252A-2019
4ec4b99e072c04618f69c87c14d804e7d2b70ef9
bca3fc25ac0ab1e16ba21536b6922f15ab049d6c
refs/heads/master
2020-11-24T02:51:01.120821
2019-12-14T07:53:20
2019-12-14T07:53:20
227,932,987
0
2
null
null
null
null
UTF-8
Python
false
false
1,128
py
import matplotlib.pyplot as plt import copy import copy import matplotlib.pyplot as plt img = plt.imread('Lenna.png') # read a JPEG image print("Image shape", img.shape) # print image size and color depth plt.imshow(img) # displaying the original image plt.show() def iterative(img): image = copy.deepcopy(img) # create a copy of the image matrix for x in range(image.shape[0]): for y in range(image.shape[1]): if x < image.shape[0]/2 and y < image.shape[1]/2: image[x,y] = image[x,y] * [0,1,1] #removing the red channel elif x > image.shape[0]/2 and y < image.shape[1]/2: image[x,y] = image[x,y] * [1,0,1] #removing the green channel elif x < image.shape[0]/2 and y > image.shape[1]/2: image[x,y] = image[x,y] * [1,1,0] #removing the blue channel else: pass return image def vectorized(img): image = copy.deepcopy(img) a = int(image.shape[0]/2) b = int(image.shape[1]/2) image[:a,:b] = image[:a,:b]*[0,1,1] image[a:,:b] = image[a:,:b]*[1,0,1] image[:a,b:] = image[:a,b:]*[1,1,0] return image
[ "y5yue@ucsd.edu" ]
y5yue@ucsd.edu
f2b24d12d4bb5e949dd478f8a5861f7ce8f92813
218774ca6ba8aa78c314ea2bf94b8b05322bdb18
/src/shadow/services/proxy.py
71f7861eac348908c0b648a873f4c56068234b32
[ "MIT" ]
permissive
beaugunderson/shadow
7f48cfb420979d2793c1e9d1c79bfd00346833d2
41348c585c15bdbbe8c9fbe6cfa7da4efa9ae680
refs/heads/master
2023-03-26T11:55:05.162420
2012-12-10T00:28:07
2012-12-10T00:28:07
7,085,460
0
0
MIT
2020-07-30T03:34:24
2012-12-10T00:30:41
Python
UTF-8
Python
false
false
2,335
py
import logging from ginkgo import Service, settings from ginkgo.async.gevent import WSGIServer from ..common import logfile from ..proxy import web logger = logging.getLogger('shadow.proxy') class ProxyService(Service): address = settings.get('proxy', {}).get('address', 'localhost') port = settings.get('proxy', {}).get('port', 8081) old_servers = settings.get('proxy', {}).get('old_servers', ['http://localhost:8000/']) old_servers_timeout = settings.get('proxy', {}).get('old_servers_timeout', 5.0) old_servers_additional_headers = settings.get('proxy', {}).get('old_servers_additional_headers', []) old_servers_additional_post_params = settings.get('proxy', {}).get('old_servers_additional_post_params', []) old_servers_additional_get_params = settings.get('proxy', {}).get('old_servers_additional_get_params', []) new_servers = settings.get('proxy', {}).get('new_servers', ['http://localhost:8000/']) new_servers_timeout = settings.get('proxy', {}).get('new_servers_timeout', 5.0) new_servers_additional_headers = settings.get('proxy', {}).get('new_servers_additional_headers', []) new_servers_additional_post_params = settings.get('proxy', {}).get('new_servers_additional_post_params', []) new_servers_additional_get_params = settings.get('proxy', {}).get('new_servers_additional_get_params', []) def do_start(self): logger.info("Starting ProxyService on {address!r}:{port!r}".format(address=self.address, port=self.port)) def do_stop(self): logger.info("Stopping ProxyService") def __init__(self, result_loggers=[]): self.app = web.ProxyFlask(self, self.old_servers, self.new_servers, self.old_servers_timeout, self.new_servers_timeout, self.old_servers_additional_get_params, self.old_servers_additional_post_params, self.old_servers_additional_headers, self.new_servers_additional_get_params, self.new_servers_additional_post_params, self.new_servers_additional_headers, result_loggers) self.server = WSGIServer( (self.address, self.port), self.app, log=logfile.pywsgi_access_logger(logger)) self.add_service(self.server)
[ "kelvin@twilio.com" ]
kelvin@twilio.com
4905df3322bc10343141dbcf1f7607e32757cd43
0ef9397a368627cac46cfe6c3a74cfc60874e5d1
/venv/bin/pip3
ca3ae7fb21da0a5f1002ae35216d900329051e22
[]
no_license
tommcm1200/streamripper-scheduler
010b3a115bbb6b92884650b4d6a2c61768610edd
1de77c62576bd407ec4e667e26c0010f9bf7646d
refs/heads/master
2022-12-26T05:36:56.577178
2020-10-03T03:59:10
2020-10-03T03:59:10
279,266,347
0
0
null
null
null
null
UTF-8
Python
false
false
419
#!/Users/tommcm/PycharmProjects/Streamripper-Scheduler/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3')() )
[ "tommcm@amazon.com" ]
tommcm@amazon.com
4cf66e70d8fe2f811ca777847fc520a5ca1ab39b
57de679247d140304d0f29c05e561ee9086dccc1
/app.py
f1dab874362f0dd977a49b8e2f9fe6a863abd4ef
[]
no_license
jtang3yo/Mission-to-Mars
bc6d33de5afc46aa31c65b07e8c71da396804aee
543b957de0592be455c67427133bd87f8f2ce777
refs/heads/main
2023-06-03T16:27:34.092908
2021-06-23T23:08:15
2021-06-23T23:08:15
376,338,807
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
from flask import Flask, render_template, redirect, url_for from flask_pymongo import PyMongo import scraping app = Flask(__name__) # Use flask_pymongo to set up mongo connection app.config["MONGO_URI"] = "mongodb://localhost:27017/mars_app" mongo = PyMongo(app) @app.route("/") def index(): mars = mongo.db.mars.find_one() return render_template("index.html", mars=mars) @app.route("/scrape") def scrape(): mars = mongo.db.mars mars_data = scraping.scrape_all() mars.update({}, mars_data, upsert=True) return redirect('/', code=302) if __name__ == "__main__": app.run(debug=True)
[ "jtangesq@Jings-MacBook-Pro.local" ]
jtangesq@Jings-MacBook-Pro.local
cf85f36c5f23f7098a48990e1ac77800fd9e55e2
2b575de79f3351959402debff1ce755513ecdfd8
/reinforcement_learning/week_2_value_iteration/mdp.py
ba161aa55d3b8f448ac4fbdedc27a0ef469a8a34
[]
no_license
Pharce/DL
c7ecd3135e65123b4872439ae794f374d70484d9
96e2de280bb5f080483dbcb82332e3b89fcfb36a
refs/heads/master
2020-04-02T15:57:13.047045
2018-10-27T22:56:01
2018-10-27T22:56:01
154,591,114
1
0
null
null
null
null
UTF-8
Python
false
false
10,970
py
# most of this code was politely stolen from https://github.com/berkeleydeeprlcourse/homework/ # all creadit goes to https://github.com/abhishekunique (if i got the author right) import sys import random import numpy as np def weighted_choice(v, p): total = sum(p) r = random.uniform(0, total) upto = 0 for c, w in zip(v,p): if upto + w >= r: return c upto += w assert False, "Shouldn't get here" class MDP: def __init__(self, transition_probs, rewards, initial_state=None): """ Defines an MDP. Compatible with gym Env. :param transition_probs: transition_probs[s][a][s_next] = P(s_next | s, a) A dict[state -> dict] of dicts[action -> dict] of dicts[next_state -> prob] For each state and action, probabilities of next states should sum to 1 If a state has no actions available, it is considered terminal :param rewards: rewards[s][a][s_next] = r(s,a,s') A dict[state -> dict] of dicts[action -> dict] of dicts[next_state -> reward] The reward for anything not mentioned here is zero. :param get_initial_state: a state where agent starts or a callable() -> state By default, picks initial state at random. States and actions can be anything you can use as dict keys, but we recommend that you use strings or integers Here's an example from MDP depicted on http://bit.ly/2jrNHNr transition_probs = { 's0':{ 'a0': {'s0': 0.5, 's2': 0.5}, 'a1': {'s2': 1} }, 's1':{ 'a0': {'s0': 0.7, 's1': 0.1, 's2': 0.2}, 'a1': {'s1': 0.95, 's2': 0.05} }, 's2':{ 'a0': {'s0': 0.4, 's1': 0.6}, 'a1': {'s0': 0.3, 's1': 0.3, 's2':0.4} } } rewards = { 's1': {'a0': {'s0': +5}}, 's2': {'a1': {'s0': -1}} } """ self._check_param_consistency(transition_probs, rewards) self._transition_probs = transition_probs self._rewards = rewards self._initial_state = initial_state self.n_states = len(transition_probs) self.reset() def get_all_states(self): """ return a tuple of all possiblestates """ return tuple(self._transition_probs.keys()) def get_possible_actions(self, state): """ return a tuple of possible actions in a given state """ return tuple(self._transition_probs.get(state, {}).keys()) def is_terminal(self, state): """ return True if state is terminal or False if it isn't """ return len(self.get_possible_actions(state)) == 0 def get_next_states(self, state, action): """ return a dictionary of {next_state1 : P(next_state1 | state, action), next_state2: ...} """ assert action in self.get_possible_actions(state), "cannot do action %s from state %s" % (action, state) return self._transition_probs[state][action] def get_transition_prob(self, state, action, next_state): """ return P(next_state | state, action) """ return self.get_next_states(state, action).get(next_state, 0.0) def get_reward(self, state, action, next_state): """ return the reward you get for taking action in state and landing on next_state""" assert action in self.get_possible_actions(state), "cannot do action %s from state %s" % (action, state) return self._rewards.get(state, {}).get(action, {}).get(next_state, 0.0) def reset(self): """ reset the game, return the initial state""" if self._initial_state is None: self._current_state = random.choice(tuple(self._transition_probs.keys())) elif self._initial_state in self._transition_probs: self._current_state = self._initial_state elif callable(self._initial_state): self._current_state = self._initial_state() else: raise ValueError("initial state %s should be either a state or a function() -> state" % self._initial_state) return self._current_state def step(self, action): """ take action, return next_state, reward, is_done, empty_info """ possible_states, probs = zip(*self.get_next_states(self._current_state, action).items()) next_state = weighted_choice(possible_states, p=probs) reward = self.get_reward(self._current_state, action, next_state) is_done = self.is_terminal(next_state) self._current_state = next_state return next_state, reward, is_done, {} def render(self): print("Currently at %s" % self._current_state) def _check_param_consistency(self, transition_probs, rewards): for state in transition_probs: assert isinstance(transition_probs[state], dict), "transition_probs for %s should be a dictionary " \ "but is instead %s" % ( state, type(transition_probs[state])) for action in transition_probs[state]: assert isinstance(transition_probs[state][action], dict), "transition_probs for %s, %s should be a " \ "a dictionary but is instead %s" % ( state, action, type(transition_probs[state, action])) next_state_probs = transition_probs[state][action] assert len(next_state_probs) != 0, "from state %s action %s leads to no next states" % (state, action) sum_probs = sum(next_state_probs.values()) assert abs(sum_probs - 1) <= 1e-10, "next state probabilities for state %s action %s " \ "add up to %f (should be 1)" % (state, action, sum_probs) for state in rewards: assert isinstance(rewards[state], dict), "rewards for %s should be a dictionary " \ "but is instead %s" % (state, type(transition_probs[state])) for action in rewards[state]: assert isinstance(rewards[state][action], dict), "rewards for %s, %s should be a " \ "a dictionary but is instead %s" % ( state, action, type(transition_probs[state, action])) msg = "The Enrichment Center once again reminds you that Android Hell is a real place where" \ " you will be sent at the first sign of defiance. " assert None not in transition_probs, "please do not use None as a state identifier. " + msg assert None not in rewards, "please do not use None as an action identifier. " + msg class FrozenLakeEnv(MDP): """ Winter is here. You and your friends were tossing around a frisbee at the park when you made a wild throw that left the frisbee out in the middle of the lake. The water is mostly frozen, but there are a few holes where the ice has melted. If you step into one of those holes, you'll fall into the freezing water. At this time, there's an international frisbee shortage, so it's absolutely imperative that you navigate across the lake and retrieve the disc. However, the ice is slippery, so you won't always move in the direction you intend. The surface is described using a grid like the following SFFF FHFH FFFH HFFG S : starting point, safe F : frozen surface, safe H : hole, fall to your doom G : goal, where the frisbee is located The episode ends when you reach the goal or fall in a hole. You receive a reward of 1 if you reach the goal, and zero otherwise. """ MAPS = { "4x4": [ "SFFF", "FHFH", "FFFH", "HFFG" ], "8x8": [ "SFFFFFFF", "FFFFFFFF", "FFFHFFFF", "FFFFFHFF", "FFFHFFFF", "FHHFFFHF", "FHFFHFHF", "FFFHFFFG" ], } def __init__(self, desc=None, map_name="4x4", slip_chance=0.2): if desc is None and map_name is None: raise ValueError('Must provide either desc or map_name') elif desc is None: desc = self.MAPS[map_name] assert ''.join(desc).count('S') == 1, "this implementation supports having exactly one initial state" assert all(c in "SFHG" for c in ''.join(desc)), "all cells must be either of S, F, H or G" self.desc = desc = np.asarray(list(map(list,desc)),dtype='str') self.lastaction = None nrow, ncol = desc.shape states = [(i, j) for i in range(nrow) for j in range(ncol)] actions = ["left","down","right","up"] initial_state = states[np.array(desc == b'S').ravel().argmax()] def move(row, col, movement): if movement== 'left': col = max(col-1,0) elif movement== 'down': row = min(row+1,nrow-1) elif movement== 'right': col = min(col+1,ncol-1) elif movement== 'up': row = max(row-1,0) else: raise("invalid action") return (row, col) transition_probs = {s : {} for s in states} rewards = {s : {} for s in states} for (row,col) in states: if desc[row, col] in "GH": continue for action_i in range(len(actions)): action = actions[action_i] transition_probs[(row, col)][action] = {} rewards[(row, col)][action] = {} for movement_i in [(action_i - 1) % len(actions), action_i, (action_i + 1) % len(actions)]: movement = actions[movement_i] newrow, newcol = move(row, col, movement) prob = (1. - slip_chance) if movement == action else (slip_chance / 2.) if prob == 0: continue if (newrow, newcol) not in transition_probs[row,col][action]: transition_probs[row,col][action][newrow, newcol] = prob else: transition_probs[row, col][action][newrow, newcol] += prob if desc[newrow, newcol] == 'G': rewards[row,col][action][newrow, newcol] = 1.0 MDP.__init__(self, transition_probs, rewards, initial_state) def render(self): desc_copy = np.copy(self.desc) desc_copy[self._current_state] = '*' #print('\n'.join(map(''.join,desc_copy)), end='\n\n')
[ "noreply@github.com" ]
Pharce.noreply@github.com
769b8de587dac9524e70aa9ed4ee4aebce6a6eb1
f863d32353ea93bf371831dd0ce7dc53fb737cdc
/Cylinder_Driver.py
89981730fb6cc27e671a50cccca2e167a625a69a
[]
no_license
GeospatialDaryl/503_StochasticCylinders
5ccbc1c4e82e20b760248d8e4b37b95227b29d3d
38b7948ef6bbf214838dd8a9a93aed62b7474957
refs/heads/master
2016-08-12T22:30:53.395753
2016-01-27T00:51:00
2016-01-27T00:51:00
50,470,414
0
0
null
null
null
null
UTF-8
Python
false
false
10,543
py
import logging import os from functools import partial from multiprocessing.pool import Pool import multiprocessing from time import time import ogr import subprocess import shlex import numpy.random as rand def run_and_return(cmdSrc, cmdDest = ""): """Run a system command and return the output""" srcProcess = subprocess.Popen(shlex.split(cmdSrc), stdout=subprocess.PIPE) if cmdDest: destProcess = subprocess.Popen(shlex.split(cmdDest), stdin=srcProcess.stdout, stdout=subprocess.PIPE) stdout, stderr = destProcess.communicate() else: stdout, stderr = srcProcess.communicate() return stdout.decode('ascii') def run_and_grep(cmdSrc, grepTerm): """Run a system command and return the output""" srcProcess = subprocess.Popen(tuple(cmdSrc.split(" ")), stdout=subprocess.PIPE) stdout, stderr = srcProcess.communicate() asciiOut = stdout.decode('ascii').splitlines() for lines in asciiOut: if grepTerm in lines: return lines def ogrPrettyPrintField(feat,feat_defn,index): i = index field_defn = feat_defn.GetFieldDefn(i) # Tests below can be simplified with just : # print feat.GetField(i) if field_defn.GetType() == ogr.OFTInteger: #or field_defn.GetType() == ogr.OFTInteger64: print "%d" % feat.GetFieldAsInteger(i) elif field_defn.GetType() == ogr.OFTReal: print "%.3f" % feat.GetFieldAsDouble(i) elif field_defn.GetType() == ogr.OFTString: print "%s" % feat.GetFieldAsString(i) else: print "%s" % feat.GetFieldAsString(i) def ogrTypedFieldVal(feat,feat_defn,index): i = index field_defn = feat_defn.GetFieldDefn(i) # Tests below can be simplified with just : # print feat.GetField(i) if field_defn.GetType() == ogr.OFTInteger: #or field_defn.GetType() == ogr.OFTInteger64: return "%d" % feat.GetFieldAsInteger(i) elif field_defn.GetType() == ogr.OFTReal: return "%.3f" % feat.GetFieldAsDouble(i) elif field_defn.GetType() == ogr.OFTString: return "%s" % feat.GetFieldAsString(i) else: return "%s" % feat.GetFieldAsString(i) # from download import <func_A>, <func_B>, <func_C> def ptWKTtoSHP(inPtWKT,outSHPPath,inOID=-9999,inBuffDist=10): import os if os.path.exists(outSHPPath): driver.DeleteDataSource(outSHPPath) ds = driver.CreateDataSource(outSHPPath) layer = ds.CreateLayer("plot",geom_type=ogr.wkbPolygon) fieldDef = ogr.FieldDefn("PID",ogr.OFTInteger) layer.CreateField(fieldDef) featureDfn = layer.GetLayerDefn() feat = ogr.Feature(featureDfn) pt = ogr.CreateGeometryFromWkt(inPtWKT) bufferDist = 10 poly = pt.Buffer(inBuffDist) feat.SetGeometry(poly) feat.SetField("PID",inOID) layer.CreateFeature(feat) ds.Destroy() def unpackPtWKT(ptWKT): if len(ptWKT) == 2: return ptWKT afterP1 = ptWKT.split("(")[1] beforeP2 = afterP1.split(")" )[0] X,Y = beforeP2.split(" ") return (X,Y) def packPtWKT(tupleXY): x,y = tupleXY ptWKT = "POINT ("+str(x)+" "+str(y)+")" return ptWKT def extractDictFields(layerDefinition): dictFields = {} for i in range(layerDefinition.GetFieldCount()): lyrName = layerDefinition.GetFieldDefn(i).GetName() dictFields[lyrName] = i # print lyrName return dictFields def getListOIDs(inputLayer, dictFields, fieldName = "OBECTID"): layer = inputLayer layerDefinition = layer.GetLayerDefn() listOIDs = [] for feats in layer: geom = feats.GetGeometryRef() #print geom.Centroid().ExportToWkt() featdfn = feats.GetDefnRef OID = ogrTypedFieldVal(feats,layerDefinition, dictFields["OBJECTID"]) listOIDs.append(OID) return listOIDs def oidCloudMetric(inTuple, BufferDist = 10, sdX = 1., sdY = 1., nSamples = 100, dist = "Normal" ): import csv import matplotlib import scipy as sp import numpy as np dictCommands = { "clippoly" : r"C:\\Apps\\FUSION\\PolyClipData.exe", "cloudmetrics" : r"C:\\Apps\\FUSION\\cloudmetrics.exe", "clipdata" : r"C:\\Apps\\FUSION\\ClipData.exe" } #outdriver=ogr.GetDriverByName('MEMORY') #source=outdriver.CreateDataSource('memData') OID = inTuple[0] ptWKT = inTuple[1] outdriver = ogr.GetDriverByName("ESRI Shapefile") outSHPPath = r"Z:\\poly"+str(OID)+".shp" if os.path.exists(outSHPPath): outdriver.DeleteDataSource(outSHPPath) source = outdriver.CreateDataSource(outSHPPath) layer = source.CreateLayer("Buffers", geom_type = ogr.wkbPolygon) field_OID = ogr.FieldDefn("OID", ogr.OFTInteger) field_N = ogr.FieldDefn( "N" , ogr.OFTInteger) layer.CreateField(field_OID) layer.CreateField(field_N) (X,Y) = unpackPtWKT(ptWKT) Xs = rand.normal( X, sdX, nSamples ) Ys = rand.normal( Y, sdY, nSamples ) maxX = Xs.max() + 15 minX = Xs.min() - 15 maxY = Ys.max() + 15 minY = Ys.min() - 15 for i in range(nSamples): feature = ogr.Feature(layer.GetLayerDefn() ) thisPtWKT = packPtWKT( (Xs[i], Ys[i]) ) feature.SetField("OID" , OID ) feature.SetField( "N" , i ) point = ogr.CreateGeometryFromWkt(thisPtWKT) poly = point.Buffer( BufferDist ) feature.SetGeometry(poly) #CreateSingleton(feature, (OID,i) ) layer.CreateFeature(feature) feature.Destroy() source.Destroy() newFolder = r"Z:\\plot"+str(OID) try: os.mkdir( newFolder ) except: pass # Generate the SHP of each sampled cylinder for i in range(nSamples): listSHP = os.listdir(newFolder)#+r"\\plot"+str(OID)+"_"+str(i) ) match = r"plot"+str(OID)+"_"+str(i) for items in listSHP: if match in items: os.remove(newFolder+r"\\"+items) thisShp = newFolder+r"\\"+"plot"+str(OID)+"_"+str(i)+".shp" cmdSrc = '''ogr2ogr -f "ESRI Shapefile" -fid '''+str(i)+" "+thisShp+" "+outSHPPath print run_and_return(cmdSrc) #Subset the lidar data for the family of cylinder maxMin = str(minX)+" "+str(minY)+" "+str(maxX)+" "+str(maxY) clippedBlock = newFolder+r"\\clip.lda" cmdSrc = dictCommands["clipdata"]+r" /index B:\\LASNorm_out\\*.las "+clippedBlock+" "+maxMin print run_and_return(cmdSrc) #Call MP on tupleOidN = ( 1, 0) def mpMetricsCylinder(tupelOidN): ''' ''' OID, N = tupleOidN # factor this into function newFolder = r"Z:\\plot"+str(OID) clippedBlock = newFolder+r"\\clip.lda" thisShp = newFolder+r"\\"+"plot"+str(OID)+"_"+str(N)+".shp" thisLDA = newFolder+r"\\"+"plot"+str(OID)+"_"+str(N)+".lda" outputCSV = "output"+str(OID)+"_"+str(N)+".csv" # #### listToClean = [thisLDA,outputCSV] for items in listToClean: if os.path.isfile( items ): os.remove( items ) if os.path.isfile( outputCSV ): os.remove( outputCSV ) cmdSrc = dictCommands["clippoly"]+r" /index "+" "+thisShp+" "+thisLDA+" "+clippedBlock print run_and_return(cmdSrc) cmdSrc = dictCommands["cloudmetrics"]+r" "+ thisLDA +" " + outputCSV print run_and_return(cmdSrc) f = open(outputCSV, "r") k = 0 dictHeader = {} listLines = [] for lines in f: print lines if k == 0 : listLine = lines.replace(" ","_").rstrip().split(",") for i in range(len(listLine)): dictHeader[i] = listLine[i] print listLine[i] k= k+1 listLines.append(listLine) #print listLine elif k > 1: listLine = lines.split(",") listLines.append(listLine) goodLine= listLine return goodLine os.chdir(newFolder) print mpMetricsCylinder( tupleOidN ) listToClean = [thisShp,thisLDA,outputCSV,clippedBlock] for items in listToClean: if os.path.isfile( items ): os.remove( items ) os.chdir(r"..") def main(): # ## # 0 Logging Init # ## logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging.getLogger('requests').setLevel(logging.CRITICAL) logger = logging.getLogger(__name__) listCloudMetrics = [] sourceLAS = r"B:\\LASNorm_out" sourceSHP = r"A:\\AllPlotCenters_fromEditedSSF.shp" destDir = r"B:\\LASNorm_out" listGrid = [] listMetrics2 = [] inSHP = r"A:\AllPlotCenters_fromEditedSSF.shp" driver = ogr.GetDriverByName('ESRI Shapefile') dataSource = driver.Open(inSHP, 0) # 0 means read-only. 1 means writeable. if dataSource is None: print 'Could not open %s' % (inSHP) else: print 'Opened %s' % (inSHP) layer = dataSource.GetLayer() featureCount = layer.GetFeatureCount() lyrDefn = layer.GetLayerDefn() fieldCount = lyrDefn.GetFieldCount() dictFields = extractDictFields(lyrDefn) print "Number of features in %s: %d" % (os.path.basename(inSHP),featureCount) listOIDs = [] listOIDs = getListOIDs(layer, dictFields) print listOIDs layer.ResetReading() ptWKTs = [] feat = layer.GetNextFeature() while feat: geom = feat.GetGeometryRef() ptWKT = geom.ExportToWkt() OID = feat.GetFieldAsInteger(0) inTuple = (OID,ptWKT) ptWKTs.append(inTuple) del ptWKT feat = layer.GetNextFeature() print ptWKTs ts = time() #listOIDs = getListOIDs(layer,dictFields) #with Pool(10) as p: p = Pool(10) # ptCloudMetric(feature, dictFields, ogrTypedFieldVal, layerDefinition, ptWKTtoSHP, dictCommands): #partialCM = partial(oidCloudMetric, layerDefinition ) res = oidCloudMetric( ptWKTs[0] ) outputs = [result[0] for result in res] print outputs print res #p.map(oidCloudMetric, ptWKTs) logging.info('Took %s seconds', time() - ts) if __name__ == '__main__': main()
[ "daryl_van_dyke@fws.gov" ]
daryl_van_dyke@fws.gov
939593332352dd37c18a98c7d06f74bf700b8750
a2151340197e0fcc3685eacf087aa57b2c5ac6eb
/lang101/bin/f2py
44ab6f442938ca5c3efc6c65497369e4c5d3f378
[ "MIT" ]
permissive
haniamatera/cds-language
97d7feb5541bc179f88465e59dd71d24e1af3884
4014aa2af00947c61c8a27f6ce87c4b8b9d721cb
refs/heads/main
2023-03-07T11:42:39.637967
2021-03-01T17:27:57
2021-03-01T17:27:57
338,007,567
0
0
MIT
2021-02-11T11:19:08
2021-02-11T11:19:08
null
UTF-8
Python
false
false
267
#!/Users/hannamatera/Desktop/CDS_new/cds-language/lang101/bin/python3 # -*- coding: utf-8 -*- import re import sys from numpy.f2py.f2py2e import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "haniamatera@gmail.com" ]
haniamatera@gmail.com
c48f86a907b699de10b5ca7f7e98500310dd7653
d858bfab35856192d4ef79059385060930463b40
/program.py
72e3d20f3d8948a165c7cb994c85b76a42fb6426
[]
no_license
zlata24/First-Python-Game
3f16180a070c824fe187b7279e67cd94245a5184
a7da211fef89d5bb41d09074bc5fd7f8de2bd706
refs/heads/master
2022-11-05T16:26:41.071274
2020-06-15T03:29:38
2020-06-15T03:29:38
272,332,941
0
0
null
null
null
null
UTF-8
Python
false
false
4,203
py
# My first game # Welcome message print("Welcome to the game!") print("Let's play!") print() # def dictionary dictionary = {} # Ask user's info print("Please submit your age") prompt_age = input("> ") prompt_age = int(prompt_age) print("Please submit your name") prompt_name = input("> ") prompt_name = prompt_name.title() dictionary['employee'] = (prompt_name, prompt_age) print("What language would you like to start with?") prompt_lang = input("> ") prompt_lang = prompt_lang.title() dictionary["lang"] = prompt_lang if prompt_lang == 'Python': print(r'☆。★。☆。★') print(r' 。☆ 。☆。☆') print(r'★。\|/。★') print(r'- Yay Python! -') print(r'★。/|\。★') print(r' 。☆。。☆ ') print(r'☆。★。 ☆ ★') else: print("Yay!") # Questionnaire about user's future life choices while True: print("Are you ready to become an engineer?") ready = input("> ") ready = ready.upper() if (ready == "EXIT"): print("Goodbye!") break elif (ready.startswith("Y")): print("I knew you'd say that! Being engineer is so cool!") elif (ready.startswith("N")): print("Well, maybe you need some more time to think about it.") elif (ready == "I DONT KNOW"): print("Let me explain why being engineer is so cool!") print("You get to work with the most talented people and unique programs!") else: print("Sorry, wrong answer") # Red vs blue buttons print() print("You have a two choices: pressing a red button or a blue. Press r or b to see your future.") button = input("> ") button = button.lower() if (button.startswith("r")): print("Congratulations! You just became an engineer!") else: print("Unfortunately right now you are not eligible to become an engineer. Try to pick up on some more coding.") # Choosing a path print() print("Please make a selection: Would you like to go right or left? Enter r or l.") way = input("> ") way = way.lower() if (way == "r"): print("Fantastic! You just got an offer from Brightitech!") elif (way == "l"): print("Keep looking for your dream job!") # Joining a team print() team_info = [] print("Enter five teams you are looking to join:") team_name = input("> ") team_info.append(team_name) team_name = input("> ") team_info.append(team_name) team_name = input("> ") team_info.append(team_name) team_name = input("> ") team_info.append(team_name) team_name = input("> ") team_info.append(team_name) print("There is so many great teams at Brightitech:") for team in team_info: print(team) # The five functions def first_team(team_name): print(''' The {} team would like to you to solve a simple math problem. If your solution will pass, you may join this team. x = 100 y = 5 modulo = x % y'''.format(team_name)) print("Enter the value for modulo:") modulo = input("> ") modulo = int(modulo) if modulo == 0: return True else: print("Wrong answer") return False is_right_answer = first_team(team_info[0]) if is_right_answer: print("Congratulations on making it to {} team at Brightitech!".format(team_info[0])) # def second_team(): # second_team() def third_team(team_name): print(''' The {} team would like you to answer this technical question: How do you could the length of characters in a string in Python? A: len(str) B: count(str) C: sizeof(str) Enter choice A, B or C: '''.format(team_name)) choice = input("> ") if choice == "A": print("Welcome to our team.") return True else: print("Try joining another team.") return False is_correct_answer = third_team(team_info[2]) if is_correct_answer: print("Congratulations on making it to {} team at Brightitech".format(team_info[2])) # Printing information on new engineer print() print("For all new employees we will be storing their information in our file system.") for key, val in dictionary.items(): print('{}: {}'.format(key, val)) print("Please select Y or N if your information is correct:") selection = input("> ") selection = selection.upper() print("Thank you for playing this game! Goodbye!") # def fourth_team(): # forth_team() # def fifth_team(): # fifth_team()
[ "noreply@github.com" ]
zlata24.noreply@github.com
b96ebaae609294cdc8b57b616afb0e1dd7dc6029
e6e98dee9ef88fe8cb72a5de3027c0fc721d529c
/magicbroomsite/migrations/0017_auto_20170906_1226.py
7fdbee83c720f27ebc7dc95c23739b022335127f
[]
no_license
aboudaman/magicbroom
eb80704ed091b788b8e8d8d8f62e6ab8bb10bcd7
349cb23ccd44746cddc9708d08cd2558d840ec00
refs/heads/master
2021-05-05T17:48:07.826887
2018-01-06T15:34:43
2018-01-06T15:34:43
103,464,456
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-06 12:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('magicbroomsite', '0016_auto_20170906_1226'), ] operations = [ migrations.AlterField( model_name='quotationrequests', name='home_info_boost', field=models.CharField(blank=True, choices=[('1 bed', '1 bed'), ('2 bed', '2 bed'), ('3 bed', '3 bed')], default='1 bed', max_length=155, null=True), ), ]
[ "adaman2000@gmail.com" ]
adaman2000@gmail.com
255799a7a5d5345843cfb229475108352d8fed79
785ff1324640cf8de7d474c49673dd80aa509d77
/Day7/exercise_4.py
296bd241ff51610eb8a8c0e70499ed3e777af3ce
[]
no_license
jerry0734/learnPy100D
663a8321164ac57d196f6c5219d2858b57c65603
06d3940cd7ca32485168bf39930d07d6656263bc
refs/heads/master
2022-12-19T12:09:13.846034
2020-09-22T03:42:55
2020-09-22T03:42:55
293,426,636
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
""" 设计一个函数返回传入的列表中最大和第二大的元素的值 """ import random def get_max(numbers): max_1 = numbers[0] max_2 = 0 for i in range(1, len(numbers)): if numbers[i] > max_1: max_2, max_1 = max_1, numbers[i] elif numbers[i] > max_2: max_2 = numbers[i] print(i, max_1, max_2) return max_1, max_2 numbers = [] i = 0 while i < 10: i += 1 numbers.append(random.randint(0, 1000)) print(numbers) print(get_max(numbers))
[ "jerry34@foxmail.com" ]
jerry34@foxmail.com
fbaa5089d6e1da6ee4b4ae8fbbb0307f970b896d
07ec5a0b3ba5e70a9e0fb65172ea6b13ef4115b8
/lib/python3.6/site-packages/zmq/backend/cython/__init__.py
23d46766ea57349610e4f4bee39629dbae38036a
[]
no_license
cronos91/ML-exercise
39c5cd7f94bb90c57450f9a85d40c2f014900ea4
3b7afeeb6a7c87384049a9b87cac1fe4c294e415
refs/heads/master
2021-05-09T22:02:55.131977
2017-12-14T13:50:44
2017-12-14T13:50:44
118,736,043
0
0
null
2018-01-24T08:30:23
2018-01-24T08:30:22
null
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:a653e6cc07468a5fe090dadca6864bc60a827cd8d17835f62fbf13c676fb7f98 size 627
[ "seokinj@jangseog-in-ui-MacBook-Pro.local" ]
seokinj@jangseog-in-ui-MacBook-Pro.local
8e15beec0f102900873eca9f776a89110c832296
b9b9a66f853c76701d67ea408712f3aa84a0e018
/codewars/codewars_alphabet_anagram.py
63b0ed0fd55a564bc5481cbf4d51ce2ddaf68c83
[]
no_license
MiConnell/Katas
5dcaf73aad3b5f534d898c0ca260b1b8880e379d
f1765f3e9f3c0cc665e6bca2dc98d20781a773a1
refs/heads/master
2023-04-05T00:36:32.196579
2021-04-17T22:37:23
2021-04-17T22:37:23
286,301,507
0
0
null
null
null
null
UTF-8
Python
false
false
1,793
py
# https://www.codewars.com/kata/53e57dada0cb0400ba000688/train/python """ Consider a "word" as any sequence of capital letters A-Z (not limited to just "dictionary words"). For any word with at least two different letters, there are other words composed of the same letters but in a different order (for instance, STATIONARILY/ANTIROYALIST, which happen to both be dictionary words; for our purposes "AAIILNORSTTY" is also a "word" composed of the same letters as these two). We can then assign a number to every word, based on where it falls in an alphabetically sorted list of all words made up of the same group of letters. One way to do this would be to generate the entire list of words and find the desired one, but this would be slow if the word is long. Given a word, return its number. Your function should be able to accept any word 25 letters or less in length (possibly with some letters repeated), and take no more than 500 milliseconds to run. To compare, when the solution code runs the 27 test cases in JS, it takes 101ms. For very large words, you'll run into number precision issues in JS (if the word's position is greater than 2^53). For the JS tests with large positions, there's some leeway (.000000001%). If you feel like you're getting it right for the smaller ranks, and only failing by rounding on the larger, submit a couple more times and see if it takes. Sample words, with their rank: ABAB = 2 AAAB = 1 BAAA = 4 QUESTION = 24572 BOOKKEEPER = 10743 """ import itertools def list_position(word: str) -> int: combs = itertools.permutations(word, (len(word))) all_list = sorted(["".join(i) for i in combs]) res = {c: i for i, c in enumerate(all_list, start=1)} return res[word] if __name__ == "__main__": print(list_position("QUESTION"))
[ "connellmp@gmail.com" ]
connellmp@gmail.com
55723d6e280682d8c762ef2dfe520b0ded9f7962
a9e60d0e5b3b5062a81da96be2d9c748a96ffca7
/configurations/lab44-config/scripts/Demo/demoPeakFindingInFiles01.py
2d9fee5e77d66d72e91790e437c8f74cec9c8c77
[]
no_license
openGDA/gda-diamond
3736718596f47607335ada470d06148d7b57526e
bbb64dcfd581c30eddb210c647db5b5864b59166
refs/heads/master
2023-08-16T08:01:11.075927
2023-08-15T16:01:52
2023-08-15T16:01:52
121,757,699
4
1
null
null
null
null
UTF-8
Python
false
false
1,191
py
import math; import myFun; y1 = DeviceFunctionClass("y1", "testMotor1","testMotor2", "myFun.testFunY1"); y2 = DeviceFunctionClass("y2", "testMotor1","testMotor2", "myFun.testFunY2"); scan testMotor1 -2*math.pi 2*math.pi 0.1 y1 scan testMotor1 -2*math.pi 2*math.pi 0.1 y2 data=ScanFileHolder(); #load the SRS data set data.loadSRS() #load the data set from run 13479 #data.loadSRS(13479) #data.loadSRS("13479.dat") #print the axis information about the data set #data.info() data.ls() #plot #data.plot("y1") #get one axis from the data set #data.getAxis("testMotor1") #data.getDataSet("testMotor1") #data.getAxis(1) #To find all peaks which appear to be peaks at the given deltawidth # i.e. if there are 3 points deltawidth appart and the middle one is # highest then this is classed as a peak # @param XAxis, The X axis of the graph to fit # @param YAxis, The Y Axis ofdir the graph to fit # @param deltaWidth The width of the peak information # @return A dataset containing the positions of all the peaks found. x=data.getAxis("testMotor1"); y=data.getAxis("y2"); dm=data.getMax("y2"); dmp=data.getMaxPos("y2"); dmpx=data.getMaxPos("testMotor1", "y2"); print dmp, dmpx, dm
[ "fajin.yuan@diamond.ac.uk" ]
fajin.yuan@diamond.ac.uk
56f70869124c25dbc8211897f56c3679c2655df4
8dfee16e9c680d528439767316428b9e4f609dbd
/{{ cookiecutter.project_name }}/config/settings/production.py
6888ae345433d39e5719c28ccfe33a0937ae8f4d
[]
no_license
joakimekman/cookiecutter-django-ekman
c9ffb3d36b20abc2399495d8352a88d03fbcfd0f
727387947315f2c859d5683fe48e3c4f83465cb0
refs/heads/master
2022-12-14T14:23:24.412004
2019-12-18T12:06:43
2019-12-18T12:06:43
167,615,654
0
0
null
null
null
null
UTF-8
Python
false
false
1,567
py
from .base import * from decouple import config # GENERAL # -------------------------------------------------------------------- DEBUG = False ALLOWED_HOSTS = [ 'localhost', '0.0.0.0', '127.0.0.1', ] # DATABASES # -------------------------------------------------------------------- DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': config('DB_PORT'), } } # PASSWORDS # -------------------------------------------------------------------- AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # STATIC FILES (CSS, JS, IMAGES) # -------------------------------------------------------------------- STATIC_ROOT = BASE_DIR / "{{ cookiecutter.project_name }}" / "staticfiles" STATIC_URL = '/static/' STATICFILES_DIRS = [ BASE_DIR / "{{ cookiecutter.project_name }}" / "static", ] # MEDIA FILES (UPLOADED BY USERS) # -------------------------------------------------------------------- MEDIA_ROOT = BASE_DIR / "{{ cookiecutter.project_name }}" / "media" MEDIA_URL = '/media/'
[ "joakimekman91@gmail.com" ]
joakimekman91@gmail.com
c57af0edba753c73d1baa7c1d20d1e517b07d71f
6b29d66ba7927129b68bc00db769f0edf1babaea
/SoftLayer/CLI/cdn/load.py
5dc53ca2bf549af7d5d051fbf032636005fb948f
[ "MIT" ]
permissive
tdurden82/softlayer-python
65f42923c347a164995dfc267829721032de261d
0eed20fa4adedd3228d91d929bb8befb1e445e49
refs/heads/master
2021-01-17T10:01:48.087450
2015-10-19T18:38:53
2015-10-19T18:38:53
46,301,339
0
1
null
null
null
null
UTF-8
Python
false
false
468
py
"""Cache one or more files on all edge nodes.""" # :license: MIT, see LICENSE for more details. import SoftLayer from SoftLayer.CLI import environment import click @click.command() @click.argument('account_id') @click.argument('content_url', nargs=-1) @environment.pass_env def cli(env, account_id, content_url): """Cache one or more files on all edge nodes.""" manager = SoftLayer.CDNManager(env.client) manager.load_content(account_id, content_url)
[ "k3vinmcdonald@gmail.com" ]
k3vinmcdonald@gmail.com
80f2060d4bf99a23db28ef2a0835f1db2ae4d018
8080c75c96bfb4314b92b64e217523fbd418e10e
/users/urls.py
38e9dcbc93fc5ec8235a1eef4b2411ffbf96aa24
[]
no_license
aktober/Belezhnik
a0b6bc275aa81650371d3c0bcf5c782c290ac1fb
3585a84fb046737a2277ed614157750642602717
refs/heads/master
2021-05-04T03:03:02.725417
2018-02-06T21:31:33
2018-02-06T21:31:33
120,371,507
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
from django.urls import path from users import views app_name = 'users' urlpatterns = [ path(r'login/', views.LoginPage.as_view(), name='login'), path(r'logout/', views.LogoutPage.as_view(), name='logout'), path(r'profile/', views.ProfilePage.as_view(), name='profile'), path(r'register/', views.RegisterPage.as_view(), name='register'), path(r'activate/<int:pk>/<token>/', views.activate, name='activate'), # todo: add reset password ]
[ "a.popovychenko@gmail.com" ]
a.popovychenko@gmail.com
9cb09920c20113c946ce4e32464a041bb6bc7a0e
7f3f8bc74858fc80a50ebe44cfaa67a7c1f773f2
/sw.py
1efd9942d77e9b98687381cf2ef44d86496423d6
[]
no_license
lubingchen/mcs
78a1ac5f5ac00683a0f4b8f2ecbbeeb4c073795b
8881d1f75f93dcbe81cca7964b3c7ad606828029
refs/heads/master
2020-09-19T23:21:34.570327
2019-12-04T09:31:07
2019-12-04T09:31:07
224,321,960
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
#!/usr/bin/python3 import RPi.GPIO as GPIO import time # Use physical pin numbers GPIO.setmode(GPIO.BCM) # Set up header pin 22 (GPIO25) as an input buttonPin = 24 print ("Setup Pin 22") GPIO.setup(buttonPin, GPIO.IN) while True: #take a reading input = GPIO.input(24) #if the last reading was low and this one high, print if (input): print("Button pressed") else : print("release") #slight pause to debounce time.sleep(0.05)
[ "912target@gmail.com" ]
912target@gmail.com
0780b1837a14ec6809961f1886b5e5715638b300
f99a83f3d538a121184de88bff19ce396be6e3d5
/stayclean-2019-july/serve-signups-with-flask.py
713d2236ae476172de0ca6feeb7bc7eee49c7036
[ "MIT" ]
permissive
foobarbazblarg/stayclean
c38deddd971b795af58ae389b9e65914dea08d2d
384a8261b1164797d6726166a6e40f323e5bd6dd
refs/heads/master
2023-02-21T09:48:57.907540
2023-01-02T15:32:35
2023-01-02T15:32:35
45,186,602
1
0
MIT
2023-02-16T03:49:00
2015-10-29T13:59:33
Python
UTF-8
Python
false
false
8,591
py
#!/usr/bin/env python import subprocess import praw from hashlib import sha1 from flask import Flask from flask import Response from flask import request from cStringIO import StringIO from base64 import b64encode from base64 import b64decode from ConfigParser import ConfigParser import OAuth2Util import os import markdown import bleach # encoding=utf8 import sys from participantCollection import ParticipantCollection reload(sys) sys.setdefaultencoding('utf8') # Edit Me! # Each day after you post a signup post, copy its 6-character ID to this array. signupPageSubmissionIds = [ 'c508oc', 'c58550', 'c5v9jc', 'c64ev3', 'c6ilv3', 'c6yela', 'c7c6ju' ] flaskport = 8961 app = Flask(__name__) app.debug = True commentHashesAndComments = {} def loginAndReturnRedditSession(): config = ConfigParser() config.read("../reddit-password-credentials.cfg") user = config.get("Reddit", "user") password = config.get("Reddit", "password") # TODO: password auth is going away, and we will soon need to do oauth. redditSession = praw.Reddit(user_agent='Test Script by /u/foobarbazblarg') redditSession.login(user, password, disable_warning=True) # submissions = redditSession.get_subreddit('pornfree').get_hot(limit=5) # print [str(x) for x in submissions] return redditSession def loginOAuthAndReturnRedditSession(): redditSession = praw.Reddit(user_agent='Test Script by /u/foobarbazblarg') # New version of praw does not require explicit use of the OAuth2Util object. Presumably because reddit now REQUIRES oauth. # o = OAuth2Util.OAuth2Util(redditSession, print_log=True, configfile="../reddit-oauth-credentials.cfg") # TODO: Testing comment of refresh. We authenticate fresh every time, so presumably no need to do o.refresh(). # o.refresh(force=True) return redditSession def getSubmissionsForRedditSession(redditSession): # submissions = [redditSession.get_submission(submission_id=submissionId) for submissionId in signupPageSubmissionIds] submissions = [redditSession.submission(id=submissionId) for submissionId in signupPageSubmissionIds] for submission in submissions: submission.comments.replace_more(limit=None) # submission.replace_more_comments(limit=None, threshold=0) return submissions def getCommentsForSubmissions(submissions): comments = [] for submission in submissions: commentForest = submission.comments comments += [comment for comment in commentForest.list() if comment.__class__ == praw.models.Comment] return comments def retireCommentHash(commentHash): with open("retiredcommenthashes.txt", "a") as commentHashFile: commentHashFile.write(commentHash + '\n') def retiredCommentHashes(): with open("retiredcommenthashes.txt", "r") as commentHashFile: # return commentHashFile.readlines() return commentHashFile.read().splitlines() @app.route('/moderatesignups.html') def moderatesignups(): global commentHashesAndComments commentHashesAndComments = {} stringio = StringIO() stringio.write('<html>\n<head>\n</head>\n\n') # redditSession = loginAndReturnRedditSession() redditSession = loginOAuthAndReturnRedditSession() submissions = getSubmissionsForRedditSession(redditSession) flat_comments = getCommentsForSubmissions(submissions) retiredHashes = retiredCommentHashes() i = 1 stringio.write('<iframe name="invisibleiframe" style="display:none;"></iframe>\n') stringio.write("<h3>") stringio.write(os.getcwd()) stringio.write("<br>\n") for submission in submissions: stringio.write(submission.title) stringio.write("<br>\n") stringio.write("</h3>\n\n") stringio.write('<form action="copydisplayduringsignuptoclipboard.html" method="post" target="invisibleiframe">') stringio.write('<input type="submit" value="Copy display-during-signup.py stdout to clipboard">') stringio.write('</form>') for comment in flat_comments: # print comment.is_root # print comment.score i += 1 commentHash = sha1() commentHash.update(comment.fullname) commentHash.update(comment.body.encode('utf-8')) commentHash = commentHash.hexdigest() if commentHash not in retiredHashes: commentHashesAndComments[commentHash] = comment authorName = str(comment.author) # can be None if author was deleted. So check for that and skip if it's None. stringio.write("<hr>\n") stringio.write('<font color="blue"><b>') stringio.write(authorName) # can be None if author was deleted. So check for that and skip if it's None. stringio.write('</b></font><br>') if ParticipantCollection().hasParticipantNamed(authorName): stringio.write(' <small><font color="green">(member)</font></small>') # if ParticipantCollection().participantNamed(authorName).isStillIn: # stringio.write(' <small><font color="green">(in)</font></small>') # else: # stringio.write(' <small><font color="red">(out)</font></small>') else: stringio.write(' <small><font color="red">(not a member)</font></small>') stringio.write('<form action="takeaction.html" method="post" target="invisibleiframe">') stringio.write('<input type="submit" name="actiontotake" value="Signup" style="color:white;background-color:green">') # stringio.write('<input type="submit" name="actiontotake" value="Signup and checkin">') # stringio.write('<input type="submit" name="actiontotake" value="Relapse">') # stringio.write('<input type="submit" name="actiontotake" value="Reinstate">') stringio.write('<input type="submit" name="actiontotake" value="Skip comment">') stringio.write('<input type="submit" name="actiontotake" value="Skip comment and don\'t upvote">') stringio.write('<input type="hidden" name="username" value="' + b64encode(authorName) + '">') stringio.write('<input type="hidden" name="commenthash" value="' + commentHash + '">') # stringio.write('<input type="hidden" name="commentpermalink" value="' + comment.permalink + '">') stringio.write('</form>') stringio.write(bleach.clean(markdown.markdown(comment.body.encode('utf-8')), tags=['p'])) stringio.write("\n<br><br>\n\n") stringio.write('</html>') pageString = stringio.getvalue() stringio.close() return Response(pageString, mimetype='text/html') @app.route('/takeaction.html', methods=["POST"]) def takeaction(): username = b64decode(request.form["username"]) commentHash = str(request.form["commenthash"]) # commentPermalink = request.form["commentpermalink"] actionToTake = request.form["actiontotake"] # print commentHashesAndComments comment = commentHashesAndComments[commentHash] # print "comment: " + str(comment) if actionToTake == 'Signup': print "signup - " + username subprocess.call(['./signup.py', username]) comment.upvote() retireCommentHash(commentHash) # if actionToTake == 'Signup and checkin': # print "signup and checkin - " + username # subprocess.call(['./signup-and-checkin.sh', username]) # comment.upvote() # retireCommentHash(commentHash) # elif actionToTake == 'Relapse': # print "relapse - " + username # subprocess.call(['./relapse.py', username]) # comment.upvote() # retireCommentHash(commentHash) # elif actionToTake == 'Reinstate': # print "reinstate - " + username # subprocess.call(['./reinstate.py', username]) # comment.upvote() # retireCommentHash(commentHash) elif actionToTake == 'Skip comment': print "Skip comment - " + username comment.upvote() retireCommentHash(commentHash) elif actionToTake == "Skip comment and don't upvote": print "Skip comment and don't upvote - " + username retireCommentHash(commentHash) return Response("hello", mimetype='text/html') @app.route('/copydisplayduringsignuptoclipboard.html', methods=["POST"]) def copydisplayduringsignuptoclipboard(): print "TODO: Copy display to clipboard" subprocess.call(['./display-during-signup.py']) return Response("hello", mimetype='text/html') if __name__ == '__main__': app.run(host='127.0.0.1', port=flaskport)
[ "foobarbazblarg@gmail.com" ]
foobarbazblarg@gmail.com
213220daf45739a739835cfbc5c38812db7edeb7
44f452c7af9943583e343449d5d1db3e7581ca46
/venv/bin/pip
3867aa60e67d7da60c7099c31e7659c6468507b6
[]
no_license
Abhay-Bhaskar/aTunes
403ca1c2b1a96dcd5d8f35d161de51a1361fb7ad
e0236c78b84668acceb02e3973cb3818cf145ea0
refs/heads/master
2020-04-13T12:07:03.668081
2018-12-26T21:03:24
2018-12-26T21:03:24
163,193,174
0
0
null
null
null
null
UTF-8
Python
false
false
399
#!/home/abhay/PycharmProjects/aTunes/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
[ "abhayakshay@live.com" ]
abhayakshay@live.com
7d2ecfb80d138ad1ffefda05a379fa418bae027a
852f9c1ab2a15c8f5ee452141ade8925dc633907
/ps1b.py
d1dade638255c41bd2f6f40a984b5f9628027eaa
[ "Giftware" ]
permissive
avitide-ethan/MIT-OCW-6_0001F16
1808a58526dd395bd9b320295c290ef189f80674
afb3aee630755c3e7896708a44aa318831250a6a
refs/heads/master
2021-04-26T23:18:05.401169
2018-04-04T03:55:50
2018-04-04T03:55:50
123,967,075
0
0
null
null
null
null
UTF-8
Python
false
false
1,142
py
print("This program will calculate how many months it will take to save up enough money for a down payment.") annual_salary = float(input("Enter your annual salary: ")) portion_saved = float(input("Enter the percent of your salary to save, as a decimal: ")) total_cost = float(input("Enter the cost of your dream home: ")) semi_annual_raise = float(input("Enter the semi-annual raise, as a decimal: ")) monthly_salary = annual_salary / 12 portion_down_payment = 0.25 current_savings = 0 r = 0.04 months = 0 while current_savings < total_cost * portion_down_payment: # for months in range(5): # print(f"Month {months}") # print(f"Monthly salary {monthly_salary}") # print(f"Savings beginning of month: {current_savings}") current_savings = current_savings + current_savings * r/12 # annual return of r # print(f"Savings end of month: {current_savings}") current_savings = current_savings + monthly_salary * portion_saved months += 1 if (months - 1) % 6 ==0 and months != 1: monthly_salary = monthly_salary * (1 + semi_annual_raise) else: pass print("Number of months: {}".format(months))
[ "ethan.dow@avitide.com" ]
ethan.dow@avitide.com
fd6c4b075eb403bf8dc7c18c9b75ace27bc189e2
1a166165ab8287d01cbb377a13efdb5eff5dfef0
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_03_01/operations/_connection_monitors_operations.py
46689ddf45957cd45d6d3a96b4110fa0e9405644
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
manoj0806/azure-sdk-for-python
7a14b202ff80f528abd068bf50334e91001a9686
aab999792db1132232b2f297c76800590a901142
refs/heads/master
2023-04-19T16:11:31.984930
2021-04-29T23:19:49
2021-04-29T23:19:49
363,025,016
1
0
MIT
2021-04-30T04:23:35
2021-04-30T04:23:35
null
UTF-8
Python
false
false
45,729
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ConnectionMonitorsOperations(object): """ConnectionMonitorsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _create_or_update_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str parameters, # type: "_models.ConnectionMonitor" **kwargs # type: Any ): # type: (...) -> "_models.ConnectionMonitorResult" cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ConnectionMonitor') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str parameters, # type: "_models.ConnectionMonitor" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ConnectionMonitorResult"] """Create or update a connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param parameters: Parameters that define the operation to create a connection monitor. :type parameters: ~azure.mgmt.network.v2020_03_01.models.ConnectionMonitor :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ConnectionMonitorResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.ConnectionMonitorResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def get( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ConnectionMonitorResult" """Gets a connection monitor by name. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionMonitorResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.ConnectionMonitorResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def update_tags( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> "_models.ConnectionMonitorResult" """Update tags of the specified connection monitor. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param parameters: Parameters supplied to update connection monitor tags. :type parameters: ~azure.mgmt.network.v2020_03_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionMonitorResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.ConnectionMonitorResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def _stop_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._stop_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _stop_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/stop'} # type: ignore def begin_stop( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Stops the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._stop_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_stop.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/stop'} # type: ignore def _start_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._start_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _start_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/start'} # type: ignore def begin_start( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Starts the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._start_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_start.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/start'} # type: ignore def _query_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ConnectionMonitorQueryResult" cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorQueryResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._query_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorQueryResult', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('ConnectionMonitorQueryResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _query_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/query'} # type: ignore def begin_query( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ConnectionMonitorQueryResult"] """Query a snapshot of the most recent connection states. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name given to the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ConnectionMonitorQueryResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.ConnectionMonitorQueryResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorQueryResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._query_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ConnectionMonitorQueryResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_query.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/query'} # type: ignore def list( self, resource_group_name, # type: str network_watcher_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ConnectionMonitorListResult"] """Lists all connection monitors for the specified Network Watcher. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ConnectionMonitorListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2020_03_01.models.ConnectionMonitorListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ConnectionMonitorListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors'} # type: ignore
[ "noreply@github.com" ]
manoj0806.noreply@github.com
d7d3a2e41838be4f9888283ce8a5ea31e6985298
95f1359cf44ecdbf9c3d418f6ae3dbc0f0a9dcb0
/probFactors.py
92b4dfd6eab2c19ecca212cec94c3a10a07fd759
[]
no_license
vitcal78/MED
c0d79a77edcaea6fb9b1c7002310a78c7efe1534
1d2e5bcef1dbcfc8779b2ccd117972d7ca61e01f
refs/heads/main
2023-02-13T19:23:45.364238
2021-01-09T07:49:49
2021-01-09T07:49:49
328,093,005
0
0
null
null
null
null
UTF-8
Python
false
false
6,975
py
# probFactors.py - Factor manipulation for graphical models # AIFCA Python3 code Version 0.8.4 Documentation at http://aipython.org # Artificial Intelligence: Foundations of Computational Agents # http://artint.info # Copyright David L Poole and Alan K Mackworth 2017-2020. # This work is licensed under a Creative Commons # Attribution-NonCommercial-ShareAlike 4.0 International License. # See: http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en from functools import reduce #from probVariables import Variable class Factor(object): nextid=0 # each factor has a unique identifier; for printing def __init__(self,variables): """variables is the ordered list of variables """ self.variables = variables # ordered list of variables # Compute the size and the offsets for the variables self.var_offsets = {} self.size = 1 for i in range(len(variables)-1,-1,-1): self.var_offsets[variables[i]]=self.size self.size *= variables[i].size self.id = Factor.nextid self.name = "f"+str(self.id) Factor.nextid += 1 def get_value(self,assignment): raise NotImplementedError("get_value") # abstract method def __str__(self, variables=None): """returns a string representation of the factor. Allows for an arbitrary variable ordering. variables is a list of the variables in the factor (can contain other variables)""" if variables==None: variables = self.variables else: variables = [v for v in variables if v in self.variables] res = "" for v in variables: res += str(v) + "\t" res += self.name+"\n" for i in range(self.size): asst = self.index_to_assignment(i) for v in variables: res += str(asst[v])+"\t" res += str(self.get_value(asst)) res += "\n" return res def brief(self): """returns a string representing a summary of the factor""" res = self.name+"(" for i in range(0,len(self.variables)-1): res += str(self.variables[i])+"," if len(self.variables)>0: res += str(self.variables[len(self.variables)-1]) res += ")" return res __repr__ = brief def assignment_to_index(self,assignment): """returns the index where the variable:value assignment is stored""" index = 0 for var in self.variables: index += var.val_to_index[assignment[var]]*self.var_offsets[var] return index def index_to_assignment(self,index): """gives a dict representation of the variable assignment for index """ asst = {} for i in range(len(self.variables)-1,-1,-1): asst[self.variables[i]] = self.variables[i].domain[index % self.variables[i].size] index = index // self.variables[i].size return asst class Factor_stored(Factor): def __init__(self,variables,values): Factor.__init__(self, variables) self.values = values def get_value(self,assignment): return self.values[self.assignment_to_index(assignment)] class Factor_observed(Factor): def __init__(self,factor,obs): Factor.__init__(self, [v for v in factor.variables if v not in obs]) self.observed = obs self.orig_factor = factor def get_value(self,assignment): ass = assignment.copy() for ob in self.observed: ass[ob]=self.observed[ob] return self.orig_factor.get_value(ass) class Factor_sum(Factor_stored): def __init__(self,var,factors): self.var_summed_out = var self.factors = factors vars = [] for fac in factors: for v in fac.variables: if v is not var and v not in vars: vars.append(v) Factor_stored.__init__(self,vars,None) self.values = [None]*self.size def get_value(self,assignment): """lazy implementation: if not saved, compute it. Return saved value""" index = self.assignment_to_index(assignment) if self.values[index]: return self.values[index] else: total = 0 new_asst = assignment.copy() for val in self.var_summed_out.domain: new_asst[self.var_summed_out] = val prod = 1 for fac in self.factors: prod *= fac.get_value(new_asst) total += prod self.values[index] = total return total def factor_times(variable,factors): """when factors are factors just on variable (or on no variables)""" prods= [] facs = [f for f in factors if variable in f.variables] for val in variable.domain: prod = 1 ast = {variable:val} for f in facs: prod *= f.get_value(ast) prods.append(prod) return prods class Prob(Factor_stored): """A factor defined by a conditional probability table""" def __init__(self,var,pars,cpt): """Creates a factor from a conditional probability table, cptf. The cpt values are assumed to be for the ordering par+[var] """ Factor_stored.__init__(self,pars+[var],cpt) self.child = var self.parents = pars assert self.size==len(cpt),"Table size incorrect "+str(self) def cond_dist(self,par_assignment): """returns the distribution (a val:prob dictionary) over the child given assignment to the parents par_assignment is a variable:value dictionary that assigns values to parents """ index = 0 for var in self.parents: index += var.val_to_index[par_assignment[var]]*self.var_offsets[var] # index is the position where the disgribution starts return {self.child.domain[i]:self.values[index+i] for i in range(len(self.child.domain))} def cond_prob(self,par_assignment,child_value): """returns the probability child has child_value given assignment to the parents par_assignment is a variable:value dictionary that assigns values to parents child_value is a value to the child """ index = self.child.val_to_index[child_value] for var in self.parents: index += var.val_to_index[par_assignment[var]]*self.var_offsets[var] return self.values[index] class Factor_rename(Factor): def __init__(self,fac,renaming): Factor.__init__(self,list(renaming.keys())) self.orig_fac = fac self.renaming = renaming def get_value(self,assignment): return self.orig_fac.get_value({self.renaming[var]:val for (var,val) in assignment.items() if var in self.variables})
[ "vitcal78@gmail.com" ]
vitcal78@gmail.com
9371f82b30f28ec2ea8f912d2ebb28d543b00493
478fad0652b25cc228eb6c02c56b6a944d23b217
/Commands.py
54a4685ee79ff5063e4a41c07c8c8b9f541ebdc1
[]
no_license
vinayreddy115/ds_salary_proj
a2fba0bc474efe43ad0c2cf23badc3b52b05a585
e88edd1cd2fb0b2ba5d556be8a6ceaf879f95460
refs/heads/master
2022-12-22T21:37:57.398366
2020-10-08T18:41:47
2020-10-08T18:41:47
302,356,568
1
0
null
2020-10-08T18:41:48
2020-10-08T13:52:29
Python
UTF-8
Python
false
false
17
py
print(df.head(1))
[ "baradivinay115@gmail.com" ]
baradivinay115@gmail.com
17ae3745e60da3b1ea7472cb392d4faf0ecae016
e4ec350f85c7c7082056596cb35fbeac4f20b174
/app/SqueezeLayer.py
22ea82b8eb0dcd4c7fbc02781ac69a7dd47999eb
[]
no_license
benbogart/bird_vocalization_classification_dashboard
6945319e53d664274e21ae8f8f52f9679b23a694
386ea2952494bc1de154e9feb4ec20663da43a31
refs/heads/main
2023-04-22T23:41:02.314555
2021-04-23T14:51:49
2021-04-23T14:51:49
358,924,236
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
from tensorflow import keras as K from tensorflow.keras.layers import Layer class SqueezeLayer(Layer): ''' Keras squeeze layer Taken from milsed https://github.com/marl/milsed/ ''' def __init__(self, axis=-1, **kwargs): super(SqueezeLayer, self).__init__(**kwargs) self.axis = axis def get_output_shape_for(self, input_shape): # shape = np.array(input_shape) # shape = shape[shape != 1] # return tuple(shape) shape = list(input_shape) del shape[self.axis] return tuple(shape) def compute_output_shape(self, input_shape): return self.get_output_shape_for(input_shape) def call(self, x, mask=None): return K.backend.squeeze(x, axis=self.axis) def get_config(self): config = {'axis': self.axis} base_config = super(SqueezeLayer, self).get_config() return dict(list(base_config.items()) + list(config.items()))
[ "ben@benbogart.com" ]
ben@benbogart.com
2122bf334da1efff325d7418ef69af911529d88a
2300a140b3506c6e934794f0da40fc466e50b310
/senti/crawler/migrations/0002_auto_20160408_1058.py
ea25cfa0a917edc35a7e2aa348ede314d461d21b
[]
no_license
chiranjeevjain/sentientX
28baebfe1bbed32085db337c98d7b4f90775beff
b4aeb296be982d225f839c25cdedf354b00c02a6
refs/heads/master
2021-01-24T08:15:52.644798
2016-04-17T16:35:41
2016-04-17T16:35:41
68,904,940
1
0
null
2016-09-22T09:15:35
2016-09-22T09:15:34
null
UTF-8
Python
false
false
600
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-04-08 10:58 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('crawler', '0001_initial'), ] operations = [ migrations.AddField( model_name='category', name='total', field=models.SmallIntegerField(default=1500), ), migrations.AddField( model_name='product', name='total', field=models.SmallIntegerField(default=0), ), ]
[ "chanakya.malireddy@gmail.com" ]
chanakya.malireddy@gmail.com
ffc572e9dbd67af628b274ff6ba22caa5f2f11d6
2bcfa4f50aee2f20f1829522153d5b490eca9120
/scripts/download_comms.py
b7115a71469a4a8ff639ad95de41e79a53c43a1c
[]
no_license
ronaldmaj/InsightDataProject
0302ee8e100b8b45f6a80b044a567010493ac796
9b54bd6ff5a35b1d9a0b94a1b6327f71c8c7e24c
refs/heads/master
2020-12-11T20:02:15.094121
2020-02-14T03:56:51
2020-02-14T03:56:51
233,945,248
0
0
null
null
null
null
UTF-8
Python
false
false
6,116
py
# -*- coding: utf-8 -*- """ Created on Tue Jan 21 12:22:06 2020 Script to scrape comments from the top 50 results for the term 'vlog' @author: Ronald Maj """ #%% import os import time import googleapiclient.discovery import pandas as pd import yt_cm as cm import json #%% insight_dir = os.getcwd()[0:19]+'\\Documents\\GitHub\\InsightDataProject\\' # Set up the Youtube client, search for the top 50 results for 'vlog' and # extract the channel Ids into a dataframe: YT_client = cm.set_up_YT_client() #%% def channel_seach_call(YT_client, query): top_vlogs_search = cm.search_results(YT_client,'vlog') json_txt = json.dumps(top_vlogs_search) if not os.listdir(insight_dir+'data\\raw\\channels\\'): with open( insight_dir +'data\\raw\\channels\\' + 'channels_json_1' + '.json','w') as file: file.write(json_txt) else: with open( insight_dir +'data\\raw\\channels\\' + 'channels_json_' + str(len(os.listdir(insight_dir+'data\\raw\\channels\\'))+1) + '.json','w') as file: file.write(json_txt) return top_vlogs_search top_vlogs_search = channel_seach_call(YT_client,'vlog') top_vlogs = top_vlogs_search['items'] channel_info = { 'ChannelTitle':[vlog['snippet']['title'] for vlog in top_vlogs], 'ChannelID':[vlog['snippet']['channelId'] for vlog in top_vlogs], 'ChannelDescription':[vlog['snippet']['description'] for vlog in top_vlogs] } channels_df = pd.DataFrame.from_dict(channel_info) #channels_df.to_csv(insight_dir+'data\\processed\\channels_top50_df.csv') #%% # For each of the channels, get the most recent 30 videos from the channel and # save in dataframe vids_df = pd.DataFrame( columns=['VidID', 'ChannelID', 'VidTitle', 'VidDescription', 'VidPublished']) def videos_of_channel_call(YT_client, channel_id): vids_dict = cm.get_videos_of_channel(YT_client, channel_id) json_txt = json.dumps(vids_dict) if not os.listdir(insight_dir+'data\\raw\\videos\\'): with open( insight_dir +'data\\raw\\videos\\' + 'videos_json_1' + '.json','w') as file: file.write(json_txt) else: with open( insight_dir +'data\\raw\\videos\\' + 'videos_json_' + str(len(os.listdir(insight_dir+'data\\raw\\videos\\'))+1) + '.json','w') as file: file.write(json_txt) return vids_dict for c_id in channels_df['ChannelID'][49:]: vids_dict = videos_of_channel_call(YT_client, c_id) vids_list = vids_dict['items'] # Only keep channels that have more than 30 videos if len(vids_list) < 30: continue else: for vid in vids_list[0:30]: vid_dict = {'VidID':vid['snippet']['resourceId']['videoId'], 'ChannelID':vid['snippet']['channelId'], 'VidTitle':vid['snippet']['title'], 'VidDescription':vid['snippet']['description'], 'VidPublished':vid['snippet']['publishedAt'] } vids_df = vids_df.append(vid_dict, ignore_index=True) #vids_df.to_csv(insight_dir+'data\\processed\\videos_top30_df.csv') df_comms_list = [] #%% #if lastest_vid: # strt = vids_df[vids_df['VidID'] == lastest_vid].index[0] #else: strt = -1 # Now for each video, need to get the comments. for v_id in vids_df['VidID'][strt+1:]: lastest_vid = v_id vid_num_str = str(vids_df[vids_df['VidID'] == lastest_vid].index[0]) num_vids_str = str(len(vids_df['VidID'])) print('Fetching comments for video '+vid_num_str+' of '+num_vids_str) try: comm_pg1 = cm.get_comments_page(YT_client, v_id, 'relevance', pagetok=None) comm_pg2 = cm.get_comments_page(YT_client, v_id, 'relevance', pagetok=comm_pg1['nextPageToken']) except: continue json_txt = json.dumps(comm_pg1) if not os.listdir(insight_dir+'data\\raw\\comments\\'): with open( insight_dir +'data\\raw\\comments\\' + 'comments_json_1' + '.json','w') as file: file.write(json_txt) else: with open( insight_dir +'data\\raw\\comments\\' + 'comments_json_' + str(len(os.listdir(insight_dir+'data\\raw\\comments\\'))+1) + '.json','w') as file: file.write(json_txt) json_txt = json.dumps(comm_pg2) with open( insight_dir +'data\\raw\\comments\\' + 'comments_json_' + str(len(os.listdir(insight_dir+'data\\raw\\comments\\'))+1) + '.json','w') as file: file.write(json_txt) thread_list = comm_pg1["items"] + comm_pg2['items'] # Create Dataframe from the comment dictionary that results cols = ['CommID'] + list(thread_list[0]['snippet']["topLevelComment"]['snippet'].keys()) + ['parentId'] df_comms = pd.DataFrame(columns=cols) for item in thread_list: data = {"CommID": item['id'], 'parentId': 0} data.update(item['snippet']["topLevelComment"]['snippet']) df_comms = df_comms.append(data,ignore_index=True) if 'replies' in item.keys(): for reply in item['replies']['comments']: data = {"CommID": reply['id']} data.update(reply['snippet']) df_comms = df_comms.append(data,ignore_index=True) df_comms_list.append(df_comms) #if comms_df.empty: comms_df = pd.DataFrame(columns=df_comms_list[0].columns) #else: # pass for df in df_comms_list: comms_df = comms_df.append(df, ignore_index=True) comms_df.to_csv(insight_dir+'data\\processed\\comments_df3.csv')
[ "36747983+ronaldmaj@users.noreply.github.com" ]
36747983+ronaldmaj@users.noreply.github.com
e9007fc49d13f5d5c05e56540b2d43ef7c47a409
f647c6fb984b6e93977bb56a9a4533b8d47e6644
/lib/form_szone.py
cb1d487631fc14327e35774f177cfca5598b2b59
[]
no_license
vdsmirnov52/wt000
7a88fcf29e5f786b8f2b0956b4a10ae68c0e32a6
0dd8ead0a73ed0f3f7f2f8c5302dff0071392570
refs/heads/master
2021-04-26T05:50:59.554131
2020-08-06T10:14:02
2020-08-06T10:14:02
79,928,565
0
0
null
null
null
null
UTF-8
Python
false
false
11,269
py
#!/usr/bin/python # -*- coding: utf-8 -*- import os, sys, time import urllib import json LIBRARY_DIR = r"/home/smirnov/Wialon/lib/" sys.path.insert(0, LIBRARY_DIR) ''' [ /* массив, с данными о геозонах */ { "n":<text>, /* название геозоны*/ "d":<text>, /* описание */ "id":<long>, /* ID геозоны внутри ресурса/учётной записи */ "rid":<long>, /* ID ресурса/учётной записи*/ "t":<byte>, /* тип: 1 - линия, 2 - полигон, 3 - круг */ "w":<uint>, /* толщина линии или радиус круга */ "f":<uint>, /* флаги геозон (см. ниже) */ "c":<uint>, /* цвет (ARGB) */ "tc":<uint>, /* цвет надписи RGB */ "ts":<uint>, /* размер шрифта */ "min":<uint>, /* отображать на карте начиная с этого масштаба */ "max":<uint>, /* отображать на карте до этого масштаба */ "i":<ushort>, /* контрольная сумма изображения (CRC16) */ "path":<text>, /* укороченный путь до дефолтной иконки */ "ar":<double>, /* площадь */ "pr":<double>, /* периметр */ "libId":<uint>, /* id библиотеки иконок, 0 - id дефолтной библиотеки */ "b":{ /* границы */ "min_x":<double>, /* минимальная долгота */ "min_y":<double>, /* минимальная широта */ "max_x":<double>, /* максимальная долгота */ "max_y":<double>, /* максимальная широта */ "cen_x":<double>, /* долгота центра */ "cen_y":<double> /* широта центра */ }, "p":[ /* массив точек геозоны */ { "x":<double>, /* долгота */ "y":<double>, /* широта */ "r":<uint> /* радиус */ }, ... ], "ct":<uint>, /* время создания */ "mt":<uint> /* время последнего изменения */ }, ... ] ''' rem = '''~div_left|<pre> Параметры Название Описание + Комментарии itemId ID ресурса col массив идентификаторов геозон flags флаги, определяющие формат возвращаемого JSON необязательный, по умолчанию 0x1С Флаги «flags»: Значение Описание 0x01 площадь 0X02 периметр 0X04 границы и координаты центра 0X08 точки 0X10 базовые свойства </pre>''' widget = """~div_right| <div class="grey" style="background-color: #dde; width: 652px; padding: 4px; margin: 4px; top: 54px;"> <div class="box" style="background-color: #ccd;"> <table width="100%"><tr><td class='tit'>Геозоны - подробная информация</td> <td align="right"> <input class="butt" value="View Zones" onclick="set_shadow('view_szones');" type="button" title='Список геозон' /> <input class="butt" value="Search Zone" onclick="set_shadow('search_szone');" type="button" title='Искать геозону' /> <input class="butt" value="Reload" onclick="set_shadow('form_szone');" type="button" title='Обновить форму' /> <input class="butt" value="Close" onclick="$('#widget').html('Close');" type="button" title='' /> </td></tr></table> </div> <dt><span class='tit'> itemId </span> ID ресурса/учётной записи</dt> <dd><input type='text' name='itemId'> </dd> <dt><span class='tit'> col </span> массив идентификаторов геозон </dt> <dd><textarea name='col' maxlength=256 rows=1 cols=80>%s</textarea> </dd> <dt><span class='tit'> flags </span> флаги, определяющие формат возвращаемого JSON </dt> <dd> <input type='checkbox' name='flag_001' /> площадь </br> <input type='checkbox' name='flag_002' /> периметр </br> <input type='checkbox' name='only_poligon' /> полигон </br> <input type='checkbox' name='flag_004' checked /> границы и координаты центра </br> <input type='checkbox' name='flag_008' checked /> точки и полигон </br> <input type='checkbox' name='flag_016' checked /> базовые свойства </br> </dd> FORM <div id="set_vals" style="border: 1px solid #bbc; color: #668; min-height: 100px">set_vals</div> </div> </div> """ def dom (iddom, request): print "~widget|" print "~%s|" % iddom print "<table border=0><tr style='vertical-align: top;'><td id='td_left'></td><td id='td_right'></td></tr></table>" print "~td_left|<div id='div_left' style='border: 1px solid rgb(187, 187, 204); color: rgb(12, 12, 36); overflow: auto; min-width: 700px;'> ERROR </div>" print "~td_right|<div id='div_right' > ", request, " </div>" print "~eval|$('#div_left').css({'height': (-233 + document.documentElement.clientHeight) +'px', 'overflow': 'auto'});" print "~eval|$('#div_left').css({'width': (-700 + document.documentElement.clientWidth) +'px', 'overflow': 'auto'});" print rem print widget serr = lambda txt: "<span class='bferr'> %s </span>" % txt def search_szone(iddom, request): import twlp ztype = {1: 'линия', 2: 'полигон', 3: 'круг'} print "~set_vals|" if not (request.has_key('itemId') and request['itemId'].isdigit()): print serr ("Отсутствует или невернр задан 'itemId'.") return cols = [] if not (request.has_key('col') and request['col'].strip()[0].isdigit()): for j in xrange(255): cols.append(j) else: print request['col'].strip().split() for js in request['col'].strip().split(): js = js.replace(',', '').replace(';', '').strip() print js if js and js.isdigit(): cols.append(int(js)) flags = 0 for k in request.keys(): if 'flag_' in k[:5] and request[k] == 'on': flags += int (k[5:]) if flags == 0: flags = -1 print '<hr />' itemId = int(request['itemId']) data = {'sid': request['wsid'], 'svc': 'resource/get_zone_data', 'params': {'itemId': itemId, 'col': cols, 'flags': flags}} # print data fres, sres = twlp.requesr(data) if not fres: print serr(sres), str(data) return print "~%s|" % iddom # print sres print '<table>' for i in sres: print '<tr class="tit"><td>', i['rid'], i['id'], '</td><td>', i['n'].encode('UTF-8'), '</td><td>', i['d'].encode('UTF-8') print time.strftime("</td><td>mt: %Y.%m.%d %T", time.localtime (i['mt'])) # print float(i['c'])/0xff000000 op = float(i['c'])/0xff000000 print op print "<span style='background-color: #%x; opacity: %.2f;, color: #%x;'> nin: %s, max: %s </span>" % (0xffffff & int(i['c']), op, int(i['tc']), i['min'], i['max']) if i['t'] in ztype.keys(): print ztype[i['t']] else: print '###' out_filds (i, flags) if flags == -1: print '<tr><td> </td><td colspan=3>' if i.has_key('b') and i.has_key('p'): prn_svg (i['b'], i['p'], i['c'], i['n'].encode('UTF-8'), i['t']) print '</td></tr>' print '</table>' from math import sin, cos, tan, pi def prn_svg (b, points, c, name, ztype = 1, k = 20000): # {u'min_x': 43.5576794388, u'min_y': 56.821850924, u'max_x': 43.5630507866, u'max_y': 56.8249534109, u'cen_x': 43.5603651127, u'cen_y': 56.8234021675} Rz = (6378245.0+6356863.019)/2 # Радиус земли min_x = float(b['min_x']) min_y = float(b['min_y']) max_x = float(b['max_x']) max_y = float(b['max_y']) if k*(max_x - min_x) > 1100: # Нормализовать X к 1100 k = 1100/(max_x - min_x) print '#'*33, "Xk:", int(k), "<br />" if k*(max_y - min_y) > 500: # Нормализовать Y к 500 k = 500/(max_y - min_y) print '#'*33, "Yk:", int(k), "<br />" K = k*cos(pi * (min_x+max_x)/360) w = int(K*(max_x - min_x)) h = int(k*(max_y - min_y)) cl = 0xffffff & int(c) # print Rz, Rz*cos(pi * min_x/180), (max_x-min_x), (max_x-min_x)*cos(pi * min_x/180), K print "<svg width=%dpx height=%dpx fill='#%x' border=1px xmlns='http://www.w3.org/2000/svg'>" %(w, h, cl) print "<text x=10 y=30 font-size=13>%s</text>" % name pp = [] if ztype in [1,2]: for p in points: x = int(K * (float(p['x']) - min_x)) y = int(k * (max_y - float(p['y']))) # - min_y)) pp.append('%d %d' % (x, y)) if ztype == 1: # Линия print """<path id="Line" fill="none" stroke="#%x" stroke-width="5" opacity="0.4" d="M %s" />""" % (cl, 'L '.join(pp)) else: # Полигон print """<polygon stroke="#868686" stroke-width="1" fill="#%x" opacity="0.4" points="%s"></polygon>""" % (cl, ' '.join(pp)) else: # Круг r = int(h/2) #points[0]['r']) # print points print "<circle r='%d' cx='%d' cy='%d' fill='#%x' opacity='0.4'></circle>" % (r, r, r, cl) print "</svg>" def out_filds (js, flags): if flags == -1: return if not flags & 0x0f: return print '<tr><td> </td><td colspan=3>' if flags & 1: # площадь print "площадь:", js['ar'], '<br />' if flags & 2: # периметр print "периметр:", js['pr'], '<br />' if flags & 4: # границы и координаты центра print "границы:", js['b'], '<br />' if flags & 8: # точки for p in js['p']: print p, '<br />' # print '</td></tr>' def view_szones (iddom, request): import twlp print "~%s|" % iddom params = {'spec': {'propType': 'sys_name', 'sortType': 'sys_name', 'itemsType': 'avl_resource', 'propName': '*', 'propValueMask': '*'}, 'force': 1, 'to': 0, 'from': 0, 'flags': -1,} data = {'sid': request['wsid'], 'svc': 'core/search_items' , 'params': params} fres, sres = twlp.requesr(data) if not fres: print serr(sres), str(data) return # print sres['items'][0] #.keys() zlids = {} zgids = {} for i in sres['items']: if i.has_key('zg') and i['zg']: zgids[i['id']] = i elif i.has_key('zl') and i['zl']: zlids[i['id']] = i else: print i['id'] # print zgids[371]['zg'] print zlids.keys(), zgids.keys() print 'totalItemsCount:', sres['totalItemsCount'], len(zlids), len(zgids), '<hr />' print "<table cellpadding=2 cellspacing=0><tr><th>Id</th><th>Наименование</th><th>Описание</th><th></th></tr>" for i in zgids.keys(): item = zgids[i] pitem (item) for i in zlids.keys(): pitem (zlids[i]) print "</table>" def pitem (item): print "<tr class='mark tit'><td>", item['id'], "</td><td>", item['nm'].encode('UTF-8'), "</td><td> item </td><td></td></tr>" #, item['d'].encode('UTF-8'), "</td><td></td></tr>" for k in item['zg'].keys(): print "<tr><td>", k, "</td><td>", item['zg'][k]['n'].encode('UTF-8'), "</td><td>", item['zg'][k]['d'].encode('UTF-8'), "</td><td>" print item['zg'][k]['zns'] print "</td><td></td></tr>" ''' for j in item['zg'][k]['zns']: print "<tr><td>", j, "</td><td>" # print zlids.keys() ''' def pzone (zd): return str(zd) def ajax (request): shstat = request['shstat'] if shstat == 'search_szone': ### Геозоны - подробная информация search_szone('div_left', request) elif shstat == 'view_szones': view_szones('div_left', request) else: print "~eval|alert ('form_szone: Unknown shstat: [%s]!');" % request ['shstat']
[ "vdsmitnov52@gmail.com" ]
vdsmitnov52@gmail.com
d17e8ff8187c3921897883120db844b538a4b52e
a40950330ea44c2721f35aeeab8f3a0a11846b68
/OpenCV-python读取监控/图片视频车牌识别.py
dee934f727046acfa89a8815d3f66fb583122548
[]
no_license
huang443765159/kai
7726bcad4e204629edb453aeabcc97242af7132b
0d66ae4da5a6973e24e1e512fd0df32335e710c5
refs/heads/master
2023-03-06T23:13:59.600011
2023-03-04T06:14:12
2023-03-04T06:14:12
233,500,005
3
1
null
null
null
null
UTF-8
Python
false
false
1,094
py
from hyperlpr import * import cv2 class CarNumRecognition(object): def __init__(self, image_path, video_path): self._image_path = image_path self._video_path = video_path def video(self): print('[INFO] starting video stream') stream = cv2.VideoCapture(self._video_path) while 1: grabbed, frame = stream.read() if not grabbed: print('NO DATA') break res = HyperLPR_plate_recognition(frame) print(res) key = cv2.waitKey(5) & 0xFF if key == ord('q'): break stream.release() cv2.destroyAllWindows() def image(self): print('[INFO] starting image') image = cv2.imread(self._image_path) res = HyperLPR_plate_recognition(image) print(res) if __name__ == '__main__': _video = '/Users/huangkai/Desktop/test.mp4' _image = '/Users/huangkai/Desktop/1.png' _test = CarNumRecognition(video_path=_video, image_path=_image) _test.video() # _test.image()
[ "443765159@qq.com" ]
443765159@qq.com
1c4b88485adf158db1f4ac7a804da5e91357ddd8
b9c6f065e37fe7b8fb3a1f23b65b40f30833dfb3
/set_build_no.py
b7e4b0d86de0b7175fdbc99bedb274f22e562b8e
[ "Apache-2.0" ]
permissive
BRHN-11/Crypt-Server
be155f3cafc2a5626f805dac3ba5171a1fe9d90d
266185e5c3acd2af0ff2cf4e0ce22c849680dc64
refs/heads/master
2023-08-30T21:47:25.857954
2021-01-15T18:24:58
2021-01-15T18:24:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
691
py
#!/usr/bin/python import os import plistlib import subprocess current_version = "3.1.0" script_path = os.path.dirname(os.path.realpath(__file__)) # based on http://tgoode.com/2014/06/05/sensible-way-increment-bundle-version-cfbundleversion-xcode print("Setting Version to Git rev-list --count") cmd = ["git", "rev-list", "HEAD", "--count"] build_number = subprocess.check_output(cmd) # This will always be one commit behind, so this makes it current build_number = int(build_number) + 1 version_number = "{}.{}".format(current_version, build_number) data = {"version": version_number} plist_path = "{}/fvserver/version.plist".format(script_path) plistlib.writePlist(data, plist_path)
[ "noreply@github.com" ]
BRHN-11.noreply@github.com
b6afeb6ebadd6ad349db47589435aa408c0707ae
6e3532291c327a9be7ea15fa37a673eefbf76a11
/Chapter_6/pizza.py
9072adf6a3d6884b98ac507ee9793055fc1d71e6
[]
no_license
Denzaaaaal/python_crash_course
bc9aa8029d975bec8417d76e0bcdbd4480444cb0
d944893a575a4ca6ea1dec0786602d0c4a82e88d
refs/heads/master
2022-09-18T18:46:01.141317
2020-06-04T11:07:55
2020-06-04T11:07:55
266,353,585
0
0
null
null
null
null
UTF-8
Python
false
false
310
py
# Store information about a pizza being ordered pizza = { 'crust': 'thick', 'toppings': ['mushrooms','extra cheese'] } # Summerising the order print (f"You ordered a {pizza['crust']}-crust pizza" "with the following toppings:") for topping in pizza['toppings']: print (f"\t{topping}")
[ "denzeldouglas@protonmail.com" ]
denzeldouglas@protonmail.com
abd622ab70f46e69735ea3d7762b678762558332
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/evergreen.py
886488cecc8d2463d953d0554e5a5a96fb0d02c6
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
667
py
ii = [('MarrFDI.py', 1), ('CoolWHM2.py', 1), ('KembFFF.py', 1), ('ProuWCM.py', 2), ('ShawHDE.py', 1), ('MartHSI2.py', 2), ('LeakWTI2.py', 2), ('LeakWTI3.py', 1), ('PeckJNG.py', 1), ('RoscTTI3.py', 1), ('RoscTTI2.py', 1), ('CoolWHM.py', 1), ('LyelCPG.py', 2), ('GilmCRS.py', 3), ('CrocDNL.py', 1), ('MedwTAI.py', 1), ('LeakWTI4.py', 4), ('LeakWTI.py', 1), ('MedwTAI2.py', 2), ('HowiWRL2.py', 3), ('MartHRW.py', 1), ('FitzRNS4.py', 7), ('CoolWHM3.py', 2), ('FitzRNS.py', 16), ('RoscTTI.py', 4), ('ClarGE3.py', 1), ('MartHRW2.py', 2), ('FitzRNS2.py', 3), ('HogaGMM2.py', 3), ('MartHSI.py', 1), ('LyelCPG3.py', 1), ('BeckWRE.py', 1), ('DibdTBR.py', 2), ('ClarGE4.py', 1)]
[ "prabhjyotsingh95@gmail.com" ]
prabhjyotsingh95@gmail.com
86f71b6a21c37f5a888d31eb1350d8dc414a6eab
4429558655a0b96f3affb4501b560bffef77584f
/solution/dataset.py
20210edec9338f26065309c322cdb678b33ac0eb
[]
no_license
MarkerViktor/ImprovadoTestTask
70b882be0049161f0b7db26007b6fd22e4052a49
aa7e22ad700c94766a7bbb259191d1522a392d3d
refs/heads/master
2023-06-25T20:42:18.802734
2021-07-22T10:35:22
2021-07-22T10:35:22
387,648,506
0
0
null
null
null
null
UTF-8
Python
false
false
8,683
py
from itertools import chain from io import StringIO from collections import Collection from typing import IO, Union, Iterator, Callable, Iterable Schema = dict[str, type] IndicesDict = dict[str, int] RowValue = Union[str, int, float, bool] Row = tuple[RowValue, ...] RowDict = dict[str, RowValue] GrouperOperator = Callable[[RowValue, RowValue], RowValue] class Dataset(Collection): def __init__(self, name: str, schema: Schema, use_defaults_for_kwargs: bool = False): self._schema: Schema = schema self._indices: IndicesDict = {header: index for index, header in enumerate(self.schema.keys())} self._name: str = name self._data: list[Row] = [] self._use_defaults_for_kwargs = use_defaults_for_kwargs def add_row(self, *args: RowValue, **kwargs: RowValue): """ Add new row to the dataset converting values to suitable schema's types if possible. If any kwargs provided args will be ignored. Kwargs keys which aren't in the schema will be ignored. """ values: list[RowValue] = [] if kwargs: # Check kwargs completeness and add default values, if some missing and self._use_default_for_kwargs is set missing_keys = self.schema.keys() - kwargs.keys() if len(missing_keys) > 0: if self._use_defaults_for_kwargs: for key in missing_keys: kwargs[key] = self.schema[key]() # Call type constructor without arguments else: raise TypeError(f"Missing required keyword arguments: {missing_keys}", kwargs) # Try to fill values in schema order for header, type_ in self.schema.items(): try: values.append(type_(kwargs[header])) except ValueError: raise ValueError(f"Can't convert keyword argument «{header}» to type {type_.__name__}.", kwargs) except TypeError: raise TypeError(f"Missing required keyword argument «{header}».", kwargs) elif args: # Check given args completeness if len(args) < len(self.schema): raise TypeError(f"Missing required positional arguments: {list(self.schema.keys())[len(args) - 1:]}") # Try to fill values in provided order for index, type_ in enumerate(self.schema.values()): try: values.append(type_(args[index])) except ValueError: raise ValueError(f"Can't convert {index+1}th positional argument to type {type_.__name__}.", args) except TypeError: raise TypeError(f"Missing required {index+1}th positional argument.", args) if not values: raise ValueError("Positional or keyword arguments must be provided.") self._data.append(tuple(values)) def from_iterable(self, *row_iters: Iterable[Union[Row, RowDict]], dict_row: bool = False) -> list[Exception]: """ Extend dataset by elements from given row iterator. Iterator must yield only tuples or only dicts depending on dict_row arg. Returns exceptions caught during adding. """ errors = [] for row in chain(*row_iters): try: if dict_row: self.add_row(**row) else: self.add_row(*row) except (TypeError, ValueError) as e: errors.append(e) return errors def sort(self, *headers: str) -> None: """Sort dataset rows by given headers. If no headers provided sorts by all headers.""" if not headers: self._data.sort() else: self._data.sort(key=lambda row: tuple(self._by_headers(row, headers))) def group_by(self, *grouping_headers: str, operator: GrouperOperator) -> None: """ Group dataset rows by given headers. Like SQL «GROUP BY ...» all group members will subject to operator call in order. """ other_headers = sorted(self.headers - set(grouping_headers)) # Not grouping headers grouping_other_pairs: Iterator[tuple[tuple[RowValue, ...], list[RowValue]]] = \ ((tuple(self._by_headers(r, grouping_headers)), list(self._by_headers(r, other_headers))) for r in self) groups_dict: dict[tuple[RowValue, ...], list[RowValue]] = {} for grouping_tuple, other_list in grouping_other_pairs: if values_list := groups_dict.get(grouping_tuple): for index, value in enumerate(other_list): values_list[index] = operator(values_list[index], value) else: groups_dict[grouping_tuple] = other_list self._schema = {header: self.schema[header] for header in chain(grouping_headers, other_headers)} self._indices: IndicesDict = {header: index for index, header in enumerate(self.schema.keys())} self._data = [(*grouping, *other) for grouping, other in groups_dict.items()] def write_as_table(self, io_obj: IO, separator: str = '\t'): """Write rows to a file-like object. Row elements dividing by separator.""" io_obj.write(separator.join(self.headers) + '\n') for row in self: io_obj.write(separator.join(str(element) for element in row)) io_obj.write('\n') @property def headers(self): return self.schema.keys() @headers.setter def headers(self, headers: tuple[str]): if len(headers) == len(self.headers): self._schema = dict(zip(headers, self.schema.values())) else: raise IndexError(f"Incorrect number of headers is given (must be {len(self.headers)}).") @property def schema(self) -> Schema: return self._schema def dict_iter(self) -> Iterator[RowDict]: headers = self.headers for row in self: yield dict(zip(headers, row)) def __repr__(self): buffer = StringIO() buffer.write(f"Dataset «{self._name}»:\n") self.write_as_table(buffer) return buffer.getvalue() def __iter__(self): return iter(self._data) def __contains__(self, item): return item in self._data def __len__(self): return len(self._data) @staticmethod def merge_schemas(*datasets: 'Dataset', intersection: bool = True): """Merge given schema dicts to new one with checking types.""" schemas = [ds.schema for ds in datasets] new_schema = {} if intersection: new_schema = schemas[0] for schema in schemas: if intersection: # Get keys which are in new_schema and adding_schema common_headers = schema.keys() & new_schema.keys() # Check type difference for a single header for header in common_headers: if new_schema[header] != schema[header]: raise TypeError(f"There are dataset row schemas with different types " f"«{new_schema[header].__name__}» and «{schema[header].__name__}» for " f"single header «{header}».") new_schema = dict(schema.items() & new_schema.items()) else: for adding_schema in schemas: # Get header->type pairs which not in new_schema diff_pairs = adding_schema.items() - new_schema.items() # Check type difference for a single header for header, type_ in diff_pairs: if exist_type := new_schema.get(header): if type_ != exist_type: raise TypeError(f"There are dataset row schemas with different types " f"«{exist_type.__name__}» and «{type_.__name__}» for single header «{header}».") new_schema |= diff_pairs # Sort schema by headers new_schema = dict(sorted(new_schema.items())) return new_schema def _by_headers(self, row: Row, headers: Iterable[str]) -> Iterator[RowValue]: """ Make iterator over row according to provided headers. If the dataset hasn't required header None will be yielded. """ for header in headers: index = self._indices.get(header) if index is not None: yield row[index] else: yield None
[ "MarkerViktor@outlook.com" ]
MarkerViktor@outlook.com
c7420131506a4d2e390cb9d8df21223f481e8951
8a6ea916051ecdf3767e3d1f1e2b69d7d1db7315
/NLPwithML/DL4INdustry/protoBuf.py
b5e245f831feeb339769354dabccdfd8d654d7df
[]
no_license
LokeshKD/MachineLearning
5d7b751dbcb5d08e938af24748d402d1da121fc7
f16d1b4d3ee35703a504f73c242c0ec02b0ba360
refs/heads/master
2023-06-04T22:07:56.903269
2021-06-22T06:46:57
2021-06-22T06:46:57
359,021,896
0
0
null
null
null
null
UTF-8
Python
false
false
1,823
py
# Usage of ProtoBufs in TF. ## convert dict to tf.train.Example object. ## Features to Example. import tensorflow as tf features = tf.train.Features(feature=f_dict) # f_dict is a dict ex = tf.train.Example(features=features) print(repr(ex)) ## output ''' features { feature { key: "age" value { int64_list { value: 12 } } } feature { key: "weight" value { float_list { value: 88.19999694824219 } } } } ''' ####### ## Feature import tensorflow as tf int_f = tf.train.Feature( int64_list=tf.train.Int64List(value=[1, 2])) print(repr(int_f) + '\n') float_f = tf.train.Feature( float_list=tf.train.FloatList(value=[-8.2, 5])) print(repr(float_f) + '\n') bytes_f = tf.train.Feature( bytes_list=tf.train.BytesList(value=[b'\xff\xcc', b'\xac'])) print(repr(bytes_f) + '\n') str_f = tf.train.Feature( bytes_list=tf.train.BytesList(value=['joe'.encode()])) print(repr(str_f) + '\n') ### output ''' int64_list { value: 1 value: 2 } float_list { value: -8.199999809265137 value: 5.0 } bytes_list { value: "\377\314" value: "\254" } bytes_list { value: "joe" } ''' ### import tensorflow as tf f_dict = { 'int_vals': int_f, 'float_vals': float_f, 'bytes_vals': bytes_f, 'str_vals': str_f } features = tf.train.Features(feature=f_dict) print(repr(features)) ### output ''' feature { key: "bytes_vals" value { bytes_list { value: "\377\314" value: "\254" } } } feature { key: "float_vals" value { float_list { value: -8.199999809265137 value: 5.0 } } } feature { key: "int_vals" value { int64_list { value: 1 value: 2 } } } feature { key: "str_vals" value { bytes_list { value: "joe" } } } '''
[ "i.lokesh@gmail.com" ]
i.lokesh@gmail.com
30f869b3cf399036b70c382615c7c4de7189ea37
60d15185ec975d2beb6bf82b3c346c1083106c28
/pylibs/stress_tests/network_forming.py
858df10777880a3ab8250340e978484471c57304
[ "BSD-3-Clause" ]
permissive
bee-mcc/ot-ns
d9dedb70f8946994a474c6dc883e581300625ef9
86df24e98811193540947608e1de663859f0a49a
refs/heads/main
2023-07-23T20:59:27.248025
2021-09-10T03:46:36
2021-09-10T03:46:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,723
py
#!/usr/bin/env python3 # # Copyright (c) 2020, The OTNS Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Network Forming Stress Test: # Different number of nodes form networks (a single partition) and measure the network forming delay. # Topology: # 1x1 Routers ~ 7x7 Routers # Fault Injections: # None # Pass Criteria: # Network forming time is less than corresponding time limits # import os from typing import Sequence from BaseStressTest import BaseStressTest XGAP = 100 YGAP = 100 RADIO_RANGE = int(XGAP * 1.5) MIN_N = 1 MAX_N = 7 REPEAT = int(os.getenv('STRESS_LEVEL', '1')) * 3 EXPECTED_MERGE_TIME_MAX = [ None, 3, 6, 12, 20, 50, 100, 200 ] class StressTest(BaseStressTest): SUITE = 'network-forming' def __init__(self): headers = ['Network Size', 'Formation Time 1'] for i in range(2, REPEAT + 1): headers.append(f'FT {i}') super(StressTest, self).__init__("Network Formation Test", headers) def run(self): # self.ns.config_visualization(broadcast_message=False) for n in range(MIN_N, MAX_N + 1): durations = [] for i in range(REPEAT): secs = self.test_n(n) durations.append(secs) self.result.append_row(f'{n}x{n}', *['%ds' % d for d in durations]) avg_dura = self.avg_except_max(durations) self.result.fail_if(avg_dura > EXPECTED_MERGE_TIME_MAX[n], f"""{n}x{n} average formation time {avg_dura} > { EXPECTED_MERGE_TIME_MAX[n]}""") @staticmethod def stdvar(nums: Sequence[float]): ex = sum(nums) / len(nums) s = 0 for i in nums: s += (i - ex) ** 2 return float(s) / len(nums) def test_n(self, n): self.reset() for r in range(n): for c in range(n): self.ns.add("router", 50 + XGAP * c, 50 + YGAP * r, radio_range=RADIO_RANGE) secs = 0 while True: self.ns.go(1) secs += 1 pars = self.ns.partitions() if len(pars) == 1 and 0 not in pars: break return secs if __name__ == '__main__': StressTest().run()
[ "noreply@github.com" ]
bee-mcc.noreply@github.com
fd05e0da7a8d0805078cb0666536af63af4db1a5
5c1bfe1d55027789cb5a55b458a143bd4e32a142
/PlacementQuestions/EqualZeroOneSubSequence.py
bfce65dfc36bc8b05b29ac754f5b2eebde2a7626
[]
no_license
alfa-abhi/Algorithms
e9487293b92162a2cf068137370c82574ebe3086
746bbfacebee57bbfa4883873a5413ed6aa02df1
refs/heads/master
2020-12-30T14:19:53.299617
2017-09-27T14:55:05
2017-09-27T14:55:05
91,309,057
1
0
null
null
null
null
UTF-8
Python
false
false
503
py
# input: 11010011 # output: [1, 1, 0, 1, 0, 0] seq = map(int, list(raw_input())) length = len(seq) zero = seq.count(0) one = length - zero equator = min(zero, one) counter = 0 oneCount = 0 zeroCount = 0 subSequence = [] while counter < length: if seq[counter] == 1: if oneCount < equator: subSequence.append(1) oneCount += 1 else: if zeroCount < equator: subSequence.append(0) zeroCount += 1 counter += 1 print subSequence
[ "alfa.abhi1996@gmail.com" ]
alfa.abhi1996@gmail.com
78f4aace9123fe4006a521cee5e8250675624545
eec6ae08a76266e9535d40b9bb32dfca3d51d24f
/urllib_test2.py
372e7b9983c80d87a64b0527ea95368c6af23c60
[]
no_license
jacklee19860111/Python_Test
9d045eee4b04f2345824c9829cafcb82e3d99462
0734f238efaebb90b81d8aeef5f2acf0bcbf3723
refs/heads/master
2021-01-11T22:18:16.432421
2017-01-15T16:04:58
2017-01-15T16:04:58
78,944,853
0
0
null
null
null
null
UTF-8
Python
false
false
449
py
#-*-coding:utf-8-*- import urllib def callback(a,b,c): """ @a:是目前为止传递的数据块数量 @b:是每个数据块的大小,单位的byte @c:是远程文件的大小 """ download_progress = 100.0 * a * b / c if download_progress > 100: download_progress = 100 print "%.2f%%" % download_progress url = "http://www.163.com" urlpath="/home/git/home163.html" urllib.urlretrieve(url,urlpath,callback)
[ "lijihou_0@126.com" ]
lijihou_0@126.com
0402b3a4ef0c8bb5d3c578f2d1051cf79251b9ad
2187ad01c46764b5642054ab1345f76ef8fd7f88
/Module05/DE-101_Labs/AWS - Python Workshop/LearnPython/lab_1_hello_world.py
61915fc31029b1b442f6f3ac69ecd92ece89487e
[]
no_license
achudinova/DE-101
8132604a260a0e4ec2511cf4181617d8923b1971
26741acae39f10d318eb9e8a1f84879a6f9bf917
refs/heads/main
2023-06-23T23:18:55.915527
2021-07-27T14:23:24
2021-07-27T14:23:24
385,186,743
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
# A function that returns hello world def hello_world(): return 'hello world' # Assign the hello_world() function to a variable. greeting = hello_world() print(greeting)
[ "anastasiushka995@gmail.com" ]
anastasiushka995@gmail.com
01c119add1d00161240988b19ce3d83e9cb8db21
c93a0b82627679a904f792668880cefffe801353
/ml/m05_iris2_keras.py
09623045b0c1128bd04d0bf40141f5571a53ea9e
[]
no_license
Eunah-Kim/keras
b52f29b90c858263c606b61877678d7223821f59
40f58f5aeb6d38db1b6c81455d0911bb547239f5
refs/heads/master
2020-12-18T18:29:02.334063
2020-02-26T09:20:40
2020-02-26T09:20:40
235,483,966
0
0
null
null
null
null
UTF-8
Python
false
false
1,601
py
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder from keras.models import Sequential from keras.layers import Dense import numpy as np import tensorflow as tf # 1. 데이터 붓꽃 데이터 읽어 들이기 iris_data = pd.read_csv('./data/iris.csv', encoding='utf-8', names=['a','b','c','d','y']) #, header=None) # 붓꽃 데이터를 레이블과 입력 데이터로 분리하기 y = iris_data.loc[:, "y"] x = iris_data.loc[:,["a","b","c","d"]] encoder = LabelEncoder() encoder.fit(y) y = encoder.transform(y) # y = y.replace("Iris-setosa",0) # y = y.replace("Iris-virginica",1) # y = y.replace("Iris-versicolor",2) x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, train_size=0.8, shuffle=True ) from keras.utils import np_utils y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) print(y_train) # 모델 정의 model = Sequential() model.add(Dense(10, activation='relu', input_shape=(4,))) model.add(Dense(5)) model.add(Dense(3, activation='softmax')) # 모델 학습 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) model.fit(x_train, y_train, epochs=100, batch_size=10) # 평가하기 y_pred = model.predict(x_test) print(y_pred.shape) # y_pred.reshape(30,3,1) # y_pred = np.argmax(y_pred, axis=1) print(y_pred) loss, acc = model.evaluate(x_test, y_test) print("\n 정답률: ", acc)
[ "keunah1016@naver.com" ]
keunah1016@naver.com
faa557a97a5bf7715dcab61f03ac74715d01584c
a39e85f1e6fbf245d84737933f676791a6efbf86
/Scripts/twistd-script.py
3a389b3da2ec4fc28eb81e84fecc5bb557771444
[]
no_license
harshivvp/PythonWebDev-VEnv
4b025af37c4903119b70a61bc15d26eab6c9ac9a
8ce13f3bc2af7a61922336b79aaeb6d23eae3aa2
refs/heads/master
2021-05-02T10:50:06.822469
2018-02-12T13:23:38
2018-02-12T13:23:38
120,762,014
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
#!e:\harshiv\projects\myvenv\scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'Twisted==17.9.0','console_scripts','twistd' __requires__ = 'Twisted==17.9.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('Twisted==17.9.0', 'console_scripts', 'twistd')() )
[ "pandyaharshiv@gmail.com" ]
pandyaharshiv@gmail.com
373c9b5a52acc56a36e4c67a851a21594b807d20
f67b12ea1fdd4c98a50bee602038e6490ff659d0
/types.py
45842d0394022d197c72ee2684e1e5e4e83993ba
[]
no_license
puhachalex/lesson1
c58ffedf6f32a1eb6b41b047324654cbf0f865f5
cfdde2a475b45f37a00d3c2deeab82ed109afdfc
refs/heads/master
2020-09-19T20:07:11.233613
2019-12-08T17:53:23
2019-12-08T17:53:23
224,286,399
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
name = input('Введите ваше имя: ').upper() print(f'Привет, {name}! Как дела?') ########## a = float(1) # ??? b = int(2.5) # ??? c = bool(1) # ??? d = bool('') # ??? e = bool(0) # ??? print(type(a)) print(type(b)) print(type(c)) print(type(d)) print(type(e))
[ "puhach.alex@gmail.com" ]
puhach.alex@gmail.com