blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
794a7d84ec90f65b1511ebed775cf8e106c133ea
f81770e50efa6591b949e8124c26bd25cdcac8b8
/get_data_quandl.py
da25dc4e29cb1c1ecf0313fe255d63833d63bdf5
[]
no_license
afcarl/stock-analysis
62fe629c14a1230972611e728a5bf0f6edff57d7
5bde6093437fd2152e876d4d686045c52f5a5307
refs/heads/master
2020-09-03T23:33:50.542928
2018-03-20T15:12:12
2018-03-20T15:12:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
import pandas as pd import os import quandl import time # put your api key in the auth.txt, to run the script auth_tok = open('auth.txt','r').read().splitlines() auth_tok = str(auth_tok[0]) quandl.ApiConfig.api_key = auth_tok data = quandl.get("WIKI/KO", start_date = "2000-12-12", end_date = "2014-12-30") print(data['Adj. Close'])
[ "alex20041051@gmail.com" ]
alex20041051@gmail.com
7570f5e15fedff0e24028361292b3cc3a8d6cb57
50c668e9e0c10c1bcfd093b824e58ab66867cf30
/20-proyecto-python/main.py
c57bc118d609483598ce8ca1735fe924b4313728
[]
no_license
bthecs/Python
1d4e9f424fce633c2fe50455654b21a1e56b3a19
b587f67bc6f999de4e80ebb53982430e48a68242
refs/heads/master
2023-03-29T00:40:36.071294
2021-03-30T00:31:34
2021-03-30T00:31:34
352,788,286
1
0
null
null
null
null
UTF-8
Python
false
false
430
py
""" Proyecto Python y Mysql: -Abrir asistente -Login o registros -Si elegimo login, identifica al usuario y nos preguntara -Crear nota, mostrar notas, borrarlas """ from usuarios import acciones print(""" Acciones disponibles: -registro -login """) hazEl = acciones.Acciones() accion = input("Que deseas hacer?: ") if accion == 'registro': hazEl.registro() elif accion == 'login': hazEl.login()
[ "fl.gimenez@alumno.um.edu.ar" ]
fl.gimenez@alumno.um.edu.ar
35d0edee077868cf1d8eb1a21a31002342d71494
83e436d062adf45591b737b804de76d849446130
/strategies/preprocess/BasePreprocessStrategy.py
0dac414bf53b02b80833dc404c0a26239b2a4fbe
[]
no_license
MateuszChmielewski99/CollardRecommendation
423783a316a8fcea063038f096af3b3ad0e2d1d5
46ea6cb384976176bd34f625f9806c857ac64bf5
refs/heads/main
2023-02-17T18:32:15.959255
2021-01-18T23:21:00
2021-01-18T23:21:00
330,805,681
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
from pandas import DataFrame class BasePreprcoessStrategy: def execute(self, dataframe: DataFrame): pass
[ "chmielewski079@gmail.com" ]
chmielewski079@gmail.com
665b611c5b7f2ceaf32df3bad8123faf25217302
e4cc95ec952cfc183ae3c1122d145497a580f305
/test/functional/zerocoin_valid_public_spend.py
bcf9e9e73bf72cf3be0158a06b5dec84d726e1a3
[ "MIT" ]
permissive
jakilwq/TerraCredit
80866e19dde3e67efbec7ede705d5046b0973c1f
56c8833c79a2485ae9a4d101f9b7267b867a3cdf
refs/heads/master
2022-12-15T21:58:42.421232
2020-09-04T06:51:03
2020-09-04T06:51:03
292,806,732
0
0
null
2020-09-04T09:27:12
2020-09-04T09:27:12
null
UTF-8
Python
false
false
8,859
py
#!/usr/bin/env python3 # Copyright (c) 2019 The TERRACREDIT developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Tests a valid publicCoinSpend spend ''' from time import sleep from fake_stake.util import TestNode from test_framework.authproxy import JSONRPCException from test_framework.test_framework import BitcoinTestFramework from test_framework.util import p2p_port, assert_equal, assert_raises_rpc_error, assert_greater_than_or_equal class zCREDITValidCoinSpendTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [['-sporkkey=932HEevBSujW2ud7RfB1YF91AFygbBRQj3de3LyaCRqNzKKgWXi']] def setup_network(self): self.setup_nodes() def init_test(self): title = "*** Starting %s ***" % self.__class__.__name__ underline = "-" * len(title) self.log.info("\n\n%s\n%s\n%s\n", title, underline, self.description) # Setup the p2p connections and start up the network thread. self.test_nodes = [] for i in range(self.num_nodes): self.test_nodes.append(TestNode()) self.test_nodes[i].peer_connect('127.0.0.1', p2p_port(i)) def generateBlocks(self, n=1): fStaked = False while (not fStaked): try: self.nodes[0].generate(n) fStaked = True except JSONRPCException as e: if ("Couldn't create new block" in str(e)): # Sleep 2 seconds and retry self.log.info("waiting...") sleep(2) else: raise e def mintZerocoin(self, denom): self.nodes[0].mintzerocoin(denom) self.generateBlocks(5) def setV4SpendEnforcement(self, fEnable=True): new_val = 1563253447 if fEnable else 4070908800 # update spork 18 and mine 1 more block mess = "Enabling v4" if fEnable else "Enabling v3" mess += " PublicSpend version with SPORK 18..." self.log.info(mess) res = self.nodes[0].spork("SPORK_18_ZEROCOIN_PUBLICSPEND_V4", new_val) self.log.info(res) assert_equal(res, "success") sleep(1) def run_test(self): self.description = "Tests a valid publicCoinSpend spend." self.init_test() INITAL_MINED_BLOCKS = 301 # Blocks mined before minting MORE_MINED_BLOCKS = 26 # Blocks mined after minting (before spending) DENOM_TO_USE = 1 # zc denomination used for double spending attack # 1) Start mining blocks self.log.info("Mining/Staking %d first blocks..." % INITAL_MINED_BLOCKS) self.generateBlocks(INITAL_MINED_BLOCKS) # 2) Mint zerocoins self.log.info("Minting %d-denom zCREDITs..." % DENOM_TO_USE) for i in range(5): self.mintZerocoin(DENOM_TO_USE) # 3) Mine more blocks and collect the mint self.log.info("Mining %d more blocks..." % MORE_MINED_BLOCKS) self.generateBlocks(MORE_MINED_BLOCKS) list = self.nodes[0].listmintedzerocoins(True, True) serial_ids = [mint["serial hash"] for mint in list] assert_greater_than_or_equal(len(serial_ids), 3) # 4) Get the raw zerocoin data - save a v3 spend for later exported_zerocoins = self.nodes[0].exportzerocoins(False) zc = [x for x in exported_zerocoins if x["id"] in serial_ids] assert_greater_than_or_equal(len(zc), 3) saved_mint = zc[2]["id"] old_spend_v3 = self.nodes[0].createrawzerocoinpublicspend(saved_mint) # 5) Spend the minted coin (mine six more blocks) - spend v3 serial_0 = zc[0]["s"] randomness_0 = zc[0]["r"] privkey_0 = zc[0]["k"] self.log.info("Spending the minted coin with serial %s and mining six more blocks..." % serial_0) txid = self.nodes[0].spendzerocoinmints([zc[0]["id"]])['txid'] self.log.info("Spent on tx %s" % txid) self.generateBlocks(6) rawTx = self.nodes[0].getrawtransaction(txid, 1) if rawTx is None: self.log.warning("rawTx not found for: %s" % txid) raise AssertionError("TEST FAILED") else: assert_equal(rawTx["confirmations"], 6) self.log.info("%s: VALID PUBLIC COIN SPEND (v3) PASSED" % self.__class__.__name__) # 6) Check double spends - spend v3 self.log.info("%s: Trying to spend the serial twice now" % self.__class__.__name__) assert_raises_rpc_error(-4, "Trying to spend an already spent serial", self.nodes[0].spendrawzerocoin, serial_0, randomness_0, DENOM_TO_USE, privkey_0) self.log.info("GOOD: Double-spending transaction did not verify.") # 7) Check spend v2 disabled self.log.info("%s: Trying to spend using the old coin spend method.." % self.__class__.__name__) try: res = self.nodes[0].spendzerocoin(DENOM_TO_USE, False, False, "", False) except JSONRPCException as e: # JSONRPCException was thrown as expected. Check the code and message values are correct. if e.error["code"] != -4: raise AssertionError("Unexpected JSONRPC error code %i" % e.error["code"]) if ("Couldn't generate the accumulator witness" not in e.error['message'])\ and ("The transaction was rejected!" not in e.error['message']): raise AssertionError("Expected substring not found:" + e.error['message']) except Exception as e: raise AssertionError("Unexpected exception raised: " + type(e).__name__) self.log.info("GOOD: spendzerocoin old spend did not verify.") # 8) Activate v4 spends with SPORK_18 self.log.info("Activating V4 spends with SPORK_18...") self.setV4SpendEnforcement(True) self.generateBlocks(2) # 9) Spend the minted coin (mine six more blocks) - spend v4 serial_1 = zc[1]["s"] randomness_1 = zc[1]["r"] privkey_1 = zc[1]["k"] self.log.info("Spending the minted coin with serial %s and mining six more blocks..." % serial_1) txid = self.nodes[0].spendzerocoinmints([zc[1]["id"]])['txid'] self.log.info("Spent on tx %s" % txid) self.generateBlocks(6) rawTx = self.nodes[0].getrawtransaction(txid, 1) if rawTx is None: self.log.warning("rawTx not found for: %s" % txid) raise AssertionError("TEST FAILED") else: assert_equal(rawTx["confirmations"], 6) self.log.info("%s: VALID PUBLIC COIN SPEND (v4) PASSED" % self.__class__.__name__) # 10) Check double spends - spend v4 self.log.info("%s: Trying to spend the serial twice now" % self.__class__.__name__) assert_raises_rpc_error(-4, "Trying to spend an already spent serial", self.nodes[0].spendrawzerocoin, serial_1, randomness_1, DENOM_TO_USE, privkey_1) self.log.info("GOOD: Double-spending transaction did not verify.") # 11) Try to relay old v3 spend now self.log.info("%s: Trying to send old v3 spend now" % self.__class__.__name__) assert_raises_rpc_error(-26, "bad-txns-invalid-zcredit", self.nodes[0].sendrawtransaction, old_spend_v3) self.log.info("GOOD: Old transaction not sent.") # 12) Try to double spend with v4 a mint already spent with v3 self.log.info("%s: Trying to double spend v4 against v3" % self.__class__.__name__) assert_raises_rpc_error(-4, "Trying to spend an already spent serial", self.nodes[0].spendrawzerocoin, serial_0, randomness_0, DENOM_TO_USE, privkey_0) self.log.info("GOOD: Double-spending transaction did not verify.") # 13) Reactivate v3 spends and try to spend the old saved one self.log.info("Activating V3 spends with SPORK_18...") self.setV4SpendEnforcement(False) self.generateBlocks(2) self.log.info("%s: Trying to send old v3 spend now" % self.__class__.__name__) txid = self.nodes[0].sendrawtransaction(old_spend_v3) self.log.info("Spent on tx %s" % txid) self.generateBlocks(6) rawTx = self.nodes[0].getrawtransaction(txid, 1) if rawTx is None: self.log.warning("rawTx not found for: %s" % txid) raise AssertionError("TEST FAILED") else: assert_equal(rawTx["confirmations"], 6) self.log.info("%s: VALID PUBLIC COIN SPEND (v3) PASSED" % self.__class__.__name__) if __name__ == '__main__': zCREDITValidCoinSpendTest().main()
[ "alonewolf2ksk@gmail.com" ]
alonewolf2ksk@gmail.com
89d1c1b7edc57086880534bce223e185945de49f
1a2963e19984c6c4f542ef91113516d589cb964e
/on/z.py
8f6cebc3c8bbf858bf6c89fffe79bd61e7216956
[]
no_license
ohnari/py
a33fe98cd65e55d4da80442c3501b72610ba863b
7c96d7cbfc8de8fd398237c8dda10d6ac66f7b53
refs/heads/master
2020-04-19T16:09:36.387718
2019-02-13T09:02:38
2019-02-13T09:02:38
168,295,681
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
#from pack import NariPairs #from pack import ForexDataClient #from pack import GaitameDataClient #from pack import NariPairs import pack p = pack.NariPairs.getSymbolList(['eu']) a = pack.GaitameDataClient() b = pack.ForexDataClient() c = a.getQuotes(p) print(c) print(b.base_uri)
[ "unconfigured@null.spigotmc.org" ]
unconfigured@null.spigotmc.org
7525be1bcf6253a89b93a1686c8b64641ea89d39
a43763ea407ceab8588a661885e9744f3c8a8262
/HW_7/ChE445_HW7_Winter2020_Solution.py
7f381feb0973ad20f753d6893b0c32d6f4471a27
[]
no_license
maryam-azhin/ChE445-Winter2020
30cbecc7b568f6274253e118257099c5b0963a31
1e90e7854f1a07b62a962404f7c3fe1d19dde4d3
refs/heads/master
2021-07-21T20:17:12.840870
2021-01-06T08:50:28
2021-01-06T08:50:28
233,687,358
1
0
null
null
null
null
UTF-8
Python
false
false
8,774
py
#!/usr/bin/env python # coding: utf-8 # ##### T.A. Maryam Azhin, # # Department of Chemical and Materials Engineering, University of Alberta # **HW7. External mass transfer limitations.** # # due Monday, March 30, 2020. Weight: 2% # Reaction: $A + O_2 \rightarrow B$ (gas phase) # # Kinetics: Intrinsically $1^{st}$ order to $A$ and apparent $0^{th}$ order to $O_2$ (excess air and $O_2$)* # # Catalyst: Spherical, $3\; cm$ diameter, non-porous, $4\; kg$ # # Reactor: tubular PBR, i.d. $0.05\; m$, no pressure drop # # Bed density and porosity: $500 kg/m^3$, $0.4$ # # Other properties at reaction temperature: # -Concentration of $A$ in the entering feed $5E-4 mol/m^3$ # # -Diffusivity of $A$ in air $2E-5 m^2/s$ # # -Kinematic viscosity of the fluid $5E-5 m2/s$ # # -Intrinsic rate constant $8 m^3(fluid)/(m3(bed) s)$ # # External temperature gradients are negligible at all conditions in this assignment, but there is the possibility of external MTL and we have to find conditions to maximize the production of B. The system can be assumed to be constant density because of the excess oxygen (air). # # **Question 1.** For volumetric flow rates (reaction conditions) of $0.0005$, $0.05$ and $15 m^3/s$, express the surface concentration of $A$ as a function of its bulk concentration. (hint: use $k$ and $kc$). 35 pts # # **Question 2.** Among the three cases, select the flow rate where external MTL can be ignored and calculate $X_A$ and exit molar flow rate of product $B$ (use ideal PBR design equation, and use bed density to have the correct units for the rate constant to be used in the mole balance for the PBR). 10 pts # # **Question 3.** Among these three cases, select the flow rate where external MTL is severe and external diffusion is rate-limiting. Again, calculate $X_A$ and $F_B$ considering that the observed rate is equal to the mass transfer rate. (For bed length, use bed density, catalyst mass and the tube Ac). 15 pts # # **Question 4.** Calculate the conversion and $F_B$ for the third case. (Use PBR design equation with CAs but conversion is related to $C_{Ab}, not $C_{As}. Again, watch out for units of $k$ as in **Q2**). 25 pts # # **Question 5.** Can you explain why the conversion in the cases affected by external MTL is higher than in the case where kinetics are rate determining? If your target were to produce the highest exit $F_B$, which # case among the three would you prefer? 10 pts # # **Question 6.** Given that diffusivities in liquid phase are lower than those in gas phase, which reactions are more prone to mass-transfer limitations: those in gas phase or in liquid phase? 5 pts # # *Note: an “apparent” order means that the reaction rate at these particular concentrations (pressures) and temperature does not depend on the oxygen pressure. The reaction may still be, for example, an intrinsic # first order to oxygen: # # \begin{eqnarray} # -r_A = k·C_A·P_{O2} # \end{eqnarray} # # But because of the excess oxygen, its partial pressure does not change significantly during the reaction, so it can be lumped into the rate constant (e.g. if there are $100$ times more moles of $O_2$ than of $A$, the pressure of oxygen will drop negligibly even when all $A$ is consumed). So, the rate law (only at these particular conditions) can be simplified to $-r_A = k*·C_A$. # **Answer to Q1** # \begin{eqnarray} # C_{As}=\frac{k_ca_c}{k+k_ca_c}C_{Ab}, \;\;\;1^{st}\;order # \end{eqnarray} # # \begin{eqnarray} # k_{c}=\frac{D_{AB}*Sh}{D_p}\\ # Sh=2+0.6*Re_p^{0.5}*Sc^{1/3}\\ # Sc=\frac{\nu}{D_{AB}}=\frac{5*10^{-5}}{2*10^{-5}}=2.5 # \end{eqnarray} # # \begin{eqnarray} # Re_p=\frac{u*D_p}{\nu}=\frac{Q*D_p}{A_c*\nu}=Q*\frac{0.03}{\pi*0.025^2*5*10^{-5}}=305578*Q # \end{eqnarray} # # \begin{eqnarray} # a_c=\frac{6*(1-\phi)}{D_p}=120 \frac{m^2}{m^3_{bed}} # \end{eqnarray} # # Check units: # # $[k]=[\frac{m^3_{l}}{m^3_{bed}*s}]$ # # $[k_ca_c]=[\frac{m}{s}*\frac{m^2}{m^3_{bed}}]$, match, ok. # # | | | | | | | # |:---------:|-----:|-----:|-----:|----------:|---------------------------------------:| # |$Q,\;m^3/s$|$Sc$|$Re_p$|$Sh$|$k_c,\;m/s$|$C_{As}=\frac{k_c*a_c}{k+k_c*a_c}*C_{Ab}$| # |0.0005 |2.5|153 |12.068|$8.04*10^{-3}$ |$C_{As}=0.11*C_{Ab}\;\;\frac{mol}{m^3}$ | # |0.05 |2.5|15279 |102.68|$6.84*10^{-2}$|$C_{As}=0.51*C_{Ab}\;\;\frac{mol}{m^3}$| # |15|2.5|4583798|1745.87|1.16|$C_{As}=0.95*C_{Ab}\;\;\frac{mol}{m^3}$| # In[1]: import numpy as np nu=5*pow(10,-5) #m2/s DAB=2*pow(10,-5) #m2/s Sc=nu/DAB Dp=0.03 #m CA0=5*pow(10,-4) #mol/m3 rhob=500 #kg/m3 phi=0.4 k=8 #m3fl/(m3cat.s) W=4 Id=0.05 #m Ac=3.14*pow(Id,2)/4 ac=6*(1-phi)/Dp #1/m print ("Sc=",Sc) Q=[0.0005,0.05,15] Rep=np.zeros(len(Q)) Sh=np.zeros(len(Q)) kc=np.zeros(len(Q)) CAs_coef=np.zeros(len(Q)) for i in range(0,len(Q)): Rep[i]=Q[i]*Dp/(nu*Ac) Sh[i]=2+0.6*pow(Rep[i],1/2)*pow(Sc,1/3) kc[i]=Sh[i]*DAB/Dp CAs_coef[i]=kc[i]*ac/(k+kc[i]*ac) print ("ac=",ac) print ("Q=",Q) print ("Rep=",Rep) print ("Sh=",Sh) print ("kc=",kc) print ("CAs=",CAs_coef,'*CAb') # ---- # **Answer to Q2** # # When $C_{As}=~C_{Ab}$, there are no external MTL, so at $Q=15\;\frac{m^3}{s}$ # # **MB PBR:** # # \begin{eqnarray} # F_{A0}\frac{dX}{dW}=kC_A=k\frac{F_{A0}}{Q}(1-X) # \end{eqnarray} # constant $Q$: # # \begin{eqnarray} # \frac{dX}{1-X}=\frac{k}{Q}dW\\ # ln(\frac{1}{1-X})=\frac{k*W}{Q} # \end{eqnarray} # # units: from MB: $[\frac{mol}{s*kg_{cat}}]=[k*\frac{mol}{m^3_{fl}}]$ # # $[k]=[\frac{m^3_{fl}}{s*kg_{cat}}]$ # # $k$ is given as $8\;\;\frac{m^3_{fl}}{m^3_{bed}*s}$ so multiply by $\frac{1}{\rho_b[kg_{cat}/m^3_{bed}]}$ # # \begin{eqnarray} # X=1-exp(\frac{-k*W}{\rho_b*Q})=1-exp(\frac{-8*4}{500*15})=0.4\;% # \end{eqnarray} # # \begin{eqnarray} # F_B=F_{A0}*X_A=C_{A0}*Q*X=5*10^{-4}*15*\frac{0.4}{100}=3*10^{-5}\;\;\frac{mol}{s} # \end{eqnarray} # In[2]: import math X3=1-math.exp((-k*W)/(rhob*Q[2])) FB3=CA0*Q[2]*X3 print("X3={0:.4f}".format(X3),'%') print ("FB3={0:.6f}".format(FB3),'mol/s') # ----- # **Answer to Q3** # # When $C_{As}=0$ ($<<C_{Ab}$) then there are severe external MTL. This is the case with $0.0005\frac{m^3}{s}$. # # At constant $Q$ # # \begin{eqnarray} # ln(\frac{1}{1-X})=\frac{k_ca_cL}{u}\\ # \frac{L}{u}=\frac{V_{bed}/A_c}{Q/A_c}=\frac{W/\rho_{bed}}{Q}\\ # ln(\frac{1}{1-X})=-8.04*10^{-3}*120*\frac{4/500}{0.0005}\\ # x=100% # \end{eqnarray} # # \begin{eqnarray} # F_B=F_{A0}*X_A=C_{A0}*Q*X=5*10^{-4}*0.0005*1=2.5*10^{-7}\;\frac{mol}{s} # \end{eqnarray} # In[3]: X1=1-math.exp(-kc[0]*ac*W/(rhob*Q[0])) FB1=CA0*Q[0]*X1 print("X1={0:.2f}".format(X1),'%') print ("FB1={0:.8f}".format(FB1),'mol/s') # ---- # **Answer to Q4** # # \begin{eqnarray} # F_{A0}\frac{dX}{dW}=kC_{As} # \end{eqnarray} # for $Q=0.05\;m^3/s$: # # \begin{eqnarray} # C_{As}=C_{Ab}\frac{k_ca_c}{k+k_ca_c}=0.51 C_{Ab}\\ # C_{Ab}=\frac{F_{A0}}{Q}(1-X) # \end{eqnarray} # at $Q$ constant: # # \begin{eqnarray} # ln(\frac{1}{1-X})=\frac{k*W*0.51}{Q} # \end{eqnarray} # # Here, $k$ has units $\frac{m^3_{fl}}{s*kg_{cat}}$ # # given $k=8 \frac{m^3_{fl}}{m^3_{bed}*s}*\frac{1[m^3_{bed}]}{500[kg_{cat}]}$ # # \begin{eqnarray} # ln(\frac{1}{1-X})=\frac{8*4*0.51}{0.05*500}\\ # X=48 # \end{eqnarray} # # $F_{B}=F_{A0}X=C_{A0}QX=5*10^{-4}*0.05*0.48=1.2*10^{-5} \frac{mol}{s}$ # # In[4]: X2=1-math.exp(-k*W*CAs_coef[1]/(rhob*Q[1])) FB2=CA0*Q[1]*X2 print("X2={0:.3f}".format(X2),'%') print ("FB2={0:.7f}".format(FB2),'mol/s') # ---- # **Answer to Q5** # # **In the cases affected by MTL** # # External MTL is present when $Q$ and hence $F_{A0}$ are lower values, so the fluid spends more time in the reactor and higher conversion, $X$, is achieved. $k_ca_c<<k$, Slow diffusion and fast reaction. So observed reaction rate = rate of external diffusion. # # **At high $Q$,** when there are no MTL, even at low $X$, $F_B$ is the highest. # # $Q=15 m^3/s$ gives the highest $F_B$, $Q=0.05 m^3/s$ gives a slightly smaller value for $F_B$ while having a larger conversion $X=48%$ So case $Q=0.05 m^3/s$ is perfect to produce the highest exit $F_B$ yet higher conversion. # ---- # **Answer to Q6** # # Diffusivities in liquid phase are lower (because of higher density), so liquid phase reactions are more prone to MTL. Lower diffusivities give lower $Re$ and hence higher concentration, $C_A$, which means more MTL. # # $kc \propto D_{AB}$ Therefore smaller $D_{AB}$ results in smaller $k_c$ or smaller mass transfer coefficient. The smaller mass transfer coefficient, the more prone the reaction is to mass transfer limitations. Since liquids have low diffusion rate, so they have higher MTL .
[ "azhin@ualberta.ca" ]
azhin@ualberta.ca
a5c90c37e4a5591bf12c0421d468c67aff000f88
464208517e4691fd9e9dd56a46550e35ae34555f
/indexed.py
962de385c0f62ddcac53c2de0d212e96279e0f87
[ "MIT" ]
permissive
destrangis/indexed
260cea22afb94888cbb0282dbc6b007c2a0ed5da
38dbca8719dfdcbb5d9c4e64192077f4aafd87da
refs/heads/master
2020-08-10T06:35:52.809507
2019-10-10T21:03:53
2019-10-10T21:03:53
214,284,068
0
0
null
null
null
null
UTF-8
Python
false
false
10,519
py
import sys import struct import pathlib import pickle from numbers import Number VERSION = "1.0.0" INTSIZE = 4 INTBINFORMAT = "!L" HEADERFORMAT = "!LLLL" MAGIC_NUMBER = 0xd8fd2372 NO_MORE_RECORDS = 0xffffffff DEFAULT_RECORD_SIZE = 512 DEFAULT_NUM_RECORDS = 10 RECORDS_OFFSET = 4 * INTSIZE # start of records area class IndexedFileError(Exception): pass class IndexedFile: """ Simple indexed files. Format: Byte: 0<-- INTSIZE-> <-INTSIZE-> <-- INTSIZE -> <-- INTSIZE ----> Header +-------------+-----------+--------------+-----------------+ | Magic | Rec. Size | Index offset | 1st free record | Records +-------------+-----------+--------------+-----------------+ +--- | next record | Record (recsize - INTSIZE bytes) | | +-------------+ | | | | +--> +-------------+--------------------------------------------+ +--- | next record | Record | | +-------------+ +--> ...... INTSIZE INTSIZE +-------------+--------------------------+---------+-------+ Index | Key Length | Key (Key Lenght bytes) | Rec.Idx | Size | +-------------+--------------------------+---------+-------+ | Key Length | Key | Rec.Idx | Size | +-------------+--------------------------+---------+-------+ ...... +-------------+ End | 0x00000000 | +-------------+ """ def __init__(self, name, mode='r', recordsize=DEFAULT_RECORD_SIZE, num_recs_hint=DEFAULT_NUM_RECORDS): if mode not in "rc": raise IndexedFileError("'{}' Mode must be 'r' or 'c'") self.name = name self.path = pathlib.Path(name) self.index = {} if mode == "r": if self.path.is_file(): self.open() else: raise IndexedFileError("'{}' Not found.") elif mode == "c": self.recordsize = max(recordsize, 2 * INTSIZE) self.current_size = num_recs_hint*recordsize self.index_offset = self.current_size + RECORDS_OFFSET self.first_free = 0 self.create() def _read_header(self): self.fd.seek(0) buf = self.fd.read(4*INTSIZE) magic, rs, idxoffs, fstfree = struct.unpack(HEADERFORMAT, buf) if magic != MAGIC_NUMBER: raise IndexedFileError("'{}' Bad magic number." .format(self.name)) self.recordsize = rs self.index_offset = idxoffs self.first_free = fstfree self.current_size = self.index_offset - RECORDS_OFFSET def _write_header(self): buf = struct.pack(HEADERFORMAT, MAGIC_NUMBER, self.recordsize, self.index_offset, self.first_free) self.fd.seek(0) self.fd.write(buf) self.fd.flush() def open(self): self.fd = self.path.open("r+b") self._read_header() self._read_index() def create(self): self.fd = self.path.open("w+b") self.fd.truncate(self.index_offset) self._write_header() self.init_free_list() self.fd.seek(0, 2) # position to end of file self._writeint(0) def _readint(self): intblock = self.fd.read(INTSIZE) return struct.unpack(INTBINFORMAT, intblock)[0] def _writeint(self, value): self.fd.write(struct.pack(INTBINFORMAT, value)) def record_number(self, i): """Offset of record #i""" return i * self.recordsize + RECORDS_OFFSET def first_record(self): """Offset of first record (record 0)""" return self.record_number(0) def last_record(self): """Offset of last record""" num_records = self.current_size // self.recordsize return self.record_number(num_records-1) def init_free_list(self, start=0): num_records = self.current_size // self.recordsize for rn in range(start, num_records): self.fd.seek(self.record_number(rn)) self._writeint(rn + 1) self.fd.seek(self.last_record()) self._writeint(NO_MORE_RECORDS) def _read_index(self): self.fd.seek(self.index_offset) keysize = self._readint() while keysize: keybytes = self.fd.read(keysize) key = pickle.loads(keybytes) idx = self._readint() datasize = self._readint() self.index[key] = (idx, datasize) keysize = self._readint() def _write_index(self): self.fd.seek(self.index_offset) for key in self.index: idx, size = self.index[key] keybytes = pickle.dumps(key) self._writeint(len(keybytes)) self.fd.write(keybytes) self._writeint(idx) self._writeint(size) self._writeint(0) def close(self): self._write_index() self.fd.close() def _allocate_records(self, numrecords): n = 0 indices = [] recnum = self.first_free while n < numrecords and recnum != NO_MORE_RECORDS: indices.append(recnum) n += 1 self.fd.seek(self.record_number(recnum)) recnum = self._readint() if n < numrecords: raise IndexedFileError("Out of space") last = indices[-1] self.fd.seek(self.record_number(last)) new_first_free = self._readint() self.fd.seek(self.record_number(last)) self._writeint(NO_MORE_RECORDS) self.first_free = new_first_free self._write_header() return indices def allocate(self, numrecords): """ Return a list of free records, resizing the file if not enough free records are available. """ free_list = [] while not free_list: try: free_list = self._allocate_records(numrecords) except IndexedFileError as err: if str(err) == "Out of space": self.resize() else: raise return free_list def __setitem__(self, key, bytesval): if key in self: del self[key] datasize = len(bytesval) usable_rec_size = self.recordsize - INTSIZE records_needed = datasize // usable_rec_size + 1 start = 0 free_list = self.allocate(records_needed) for idx in free_list: self.fd.seek(self.record_number(idx)+INTSIZE) self.fd.write(bytesval[start:start+usable_rec_size]) start += usable_rec_size first_record = free_list[0] self.index[key] = (first_record, datasize) self._write_index() def retrieve(self, start): """ Retrieve the data of the records from start until a record marked with NO_MORE_RECORDS """ usable_rec_size = self.recordsize - INTSIZE idx = start while idx != NO_MORE_RECORDS: self.fd.seek(self.record_number(idx)) idx = self._readint() yield self.fd.read(usable_rec_size) def record_list(self, start): """ Return the record chain from start until NO_MORE_RECORDS """ idx = start while True: yield idx self.fd.seek(self.record_number(idx)) idx = self._readint() if idx == NO_MORE_RECORDS: break def last_in_chain(self, start): """ Return the last record in a chain starting by start. The next_record field in its index should be NO_MORE_RECORDS """ for idx in self.record_list(start): pass return idx def __getitem__(self, key): usable_rec_size = self.recordsize - INTSIZE first_record, datasize = self.index[key] buf = b"" for chunk in self.retrieve(first_record): buf += chunk return buf[:datasize] def resize(self): num_records = self.current_size // self.recordsize new_size = 2 * self.current_size new_index_offset = new_size + RECORDS_OFFSET self.index_offset = new_index_offset self.fd.truncate(self.index_offset) self.current_size = new_size first_new_record = num_records self.init_free_list(first_new_record) if self.first_free != NO_MORE_RECORDS: # not completely full, add new records to existing free space idx = self.last_in_chain(self.first_free) self.fd.seek(self.record_number(idx)) self._writeint(first_new_record) else: self.first_free = first_new_record self._write_index() self._write_header() def __delitem__(self, key): first_record, datasize = self.index[key] del self.index[key] self._write_index() idx = self.last_in_chain(first_record) self.fd.seek(self.record_number(idx)) self._writeint(self.first_free) self.first_free = first_record self._write_header() def __contains__(self, key): return key in self.index def gen_keys(self): for k in self.index.keys(): yield k def __iter__(self): class IDXFileIter: def __init__(self2): self2.gkeys = self.gen_keys() def __next__(self2): return next(self2.gkeys) return IDXFileIter() def keys(self): return self.index.keys() def values(self): class IDXFileVals: def __iter__(self2): self2.gkeys = self.gen_keys() return self2 def __next__(self2): k = next(self2.gkeys) return self[k] return IDXFileVals() def items(self): class IDXFileItems: def __iter__(self2): self2.gkeys = self.gen_keys() return self2 def __next__(self2): k = next(self2.gkeys) return k, self[k] return IDXFileItems() def __enter__(self): return self def __exit__(self, *args): self.close()
[ "javier@llopis.me" ]
javier@llopis.me
cf7ce4febb11b3a8679e9c6d7b02823b9dd3d85b
981422eab8715257cf50078ecff93d6e4153a9fb
/preprocess/analysis.py
ab53996f235ff1c5d88cc8429c22c00d1a1d2cc7
[]
no_license
FirmlyReality/guba_sentiment
d34227b99dc39ed28d41dc6b0b9f56dbf5564b24
b528d039ab8e80e8691e170ed2e7a9fd93bf8738
refs/heads/master
2020-04-19T16:25:06.892886
2019-05-04T07:26:51
2019-05-04T07:26:51
168,303,237
0
0
null
null
null
null
UTF-8
Python
false
false
2,949
py
import pandas as pd import os, sys import time import collections if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: python analysis.py <inputDir>") exit(1) starttime = time.time() inputDir = sys.argv[1] files = os.listdir(inputDir) tiezi_lencount = collections.Counter() reply_lencount = collections.Counter() tiezicnt = 0 replyscnt = 0 stocks_crawled = set() for dfile in files: print("Read from %s" % dfile) code = dfile.split('_')[0] stocks_crawled.add(code) ftype = dfile.split('_')[1].split('.')[0] data = pd.read_csv(inputDir+"/"+dfile,dtype=str) print("Groupby ...") if ftype == "reply": #lendata = data.groupby(lambda x:len(str(data.loc[x]['content']))).size() lendata = [len(str(c)) for c in data['content']] lencount = reply_lencount else: #lendata = data.groupby(lambda x:len(str(data.loc[x]['content'])+str(data.loc[x]['title']))+1).size() lendata = [len(str(data.loc[i]['content'])) + len(str(data.loc[i]['title'])) + 1 for i in data.index] lencount = tiezi_lencount lencount.update(lendata) '''for lenidx in lendata.index: if lenidx not in lencount: lencount[lenidx] = lendata[lenidx] else: lencount[lenidx] += lendata[lenidx]''' if ftype == 'tiezi': tiezicnt += len(data) else: replyscnt += len(data) #print(lencount) print(time.time()-starttime) tiezi_df = pd.DataFrame.from_dict(dict(tiezi_lencount), orient='index') tiezi_df.rename(columns={0:'tiezicnt'},inplace=True) reply_df = pd.DataFrame.from_dict(dict(reply_lencount), orient='index') reply_df.rename(columns={0:'replycnt'},inplace=True) lencntdf = tiezi_df.join(reply_df,how="outer",sort=True) print(lencntdf) lencntdf.to_csv('lencnt.csv',index=True) '''allcnt = tiezicnt + replyscnt now = 0 for lenidx in lencntdf.index: now += lencount[lenidx] if now > 0.95*allcnt: print("length %d is on 0.95" % (lenidx)) print("now=%d allcnt=%d"%(now,allcnt)) break''' print("Total tiezi count: "+str(tiezicnt)) print("Total reply count: "+str(replyscnt)) print("Read from need_stock.txt and build stocks_need set...") stockfile = open("need_stock.txt") stocks_need = set() lines = stockfile.read().splitlines() stockfile.close() for l in lines: lsplits = l.split() code = lsplits[0] if code in stocks_need: print("Error! code exists!") exit(1) stocks_need.add(code) print("Need but not crawled: ") print(str(stocks_need-stocks_crawled)) print("Crawled but not need: ") print(str(stocks_crawled-stocks_need))
[ "firmlyzhu@163.com" ]
firmlyzhu@163.com
54bebeb806ed2a6d1e646e23ff48c820f6015356
f3ed28ec7242d335df9cbb2d49f5163f288b2b04
/interpreText.py
5c463ac0b6f12a9a9b7dcd92a6c87ca2386ef975
[]
no_license
DanielXav/algoritmo-primeiro-periodo
97e60bf558fbf59535608982c983bef757757ab5
3743b8c221ddb05afa2ad9b9b78c3a5851636704
refs/heads/main
2023-05-15T17:24:51.994832
2021-06-15T17:31:55
2021-06-15T17:31:55
377,242,913
0
0
null
null
null
null
UTF-8
Python
false
false
20,458
py
from time import sleep titulos = list() #Listas e Dicionarios temas = list() cadastro = dict() historia = dict() historias = list() questoes = dict() listaQuestoes = list() listProfessores = list() listAlunos = list() prof = dict() aluno = dict() #FUNÇÕES DOS PROFESSORES def linha(tam=42): #Função para criar uma linha return '-' * tam def cadTemas(): #Cadastrar Temas try: tema = str(input('\033[1;30mDigite o tema: \033[m')).capitalize() if tema not in temas: temas.append(tema) print('\033[1;30mTema\033[m \033[1;32m{}\033[m armazenado!\033[m'.format(tema)) except (ValueError, TypeError): print('\033[1;30mErro na leitura dos temas!\033[m') return temas def cadHistorias(tema, titulo, historias): #Cadastrar histórias try: historia.clear() historia['tema'] = tema historia['titulo'] = titulo historia[titulo] = str(input('\033[1;30mEntre com a historia: \033[m')) #Cada historia vai ser um dicicionario dentro de uma lista historias.append(historia.copy()) print('\033[1;32mHistoria armazenada!\033[m') except (ValueError, TypeError): print("\033[1;31mErro na leitura das histórias!\033[m") return historias def mostrarTitulo(historias): #Mostra titulo das histórias disponiveis print('\033[1;30mAs historias cadastradas foram: \n\033[m') for historia in historias: print(f'\033[1;34m{historia["titulo"]} \033[m') def lerHistoria(historias): #Mostra a história mostrarTitulo(historias) titulo = input("\033[1;30mDigite o titulo da historia a ser lida: \033[m") print() print('\033[1;30mA historia escolhida foi: \n\033[m') print(f'\033[1;34m{titulo} \n\033[m') for historia in historias: if (historia['titulo'] == titulo): print() print(f'{historia[titulo]} \n\n') def apagarHistoria(historias): #Apagar uma história mostrarTitulo(historias) titulo = str(input("\033[1;30mQual a historia que voce deseja apagar? \033[m")) apagada = False for historia in historias: if (historia['titulo'] == titulo): historias.remove(historia) apagada = True break if apagada: print(f"\033[1;32mHistória {titulo} apagada! \033[m") else: print(f"\033[1;31mHistória {titulo} não encontrada! \033[m") def printTemas(temas): #Mostra os temas cadastrados print('\033[1;30mTemas cadastrados: \033[m') if (len(temas) == 0): print("\033[1;31mNao existem temas cadastrados\033[m") for tema in temas: print(tema) def criarQuestoes(titulo): #Cria questões questoes = dict() #Dicionario Principal, uma chave perguntas = dict() pergunta1 = dict() #Dicionario secundario respostas1 = dict() pergunta2 = dict() respostas2 = dict() pergunta3 = dict() respostas3 = dict() pergunta4 = dict() respostas4 = dict() pergunta5 = dict() respostas5 = dict() pergunta1['pergunta'] = str(input("\033[1;30mEntre com a primeira pergunta: \033[m")) sleep(0.3) print('Digite 5 respostas: ') respostas1['a'] = str(input("\033[1;30mEntre com a resposta a: \033[m")) respostas1['b'] = str(input("\033[1;30mEntre com a resposta b: \033[m")) respostas1['c'] = str(input("\033[1;30mEntre com a resposta c: \033[m")) respostas1['d'] = str(input("\033[1;30mEntre com a resposta d: \033[m")) respostas1['e'] = str(input("\033[1;30mEntre com a resposta e: \033[m")) sleep(0.3) pergunta1['respostas'] = respostas1 pergunta1['resposta_certa'] = str(input("\033[1;30mEntre com o item da resposta certa: \033[m")) perguntas['Pergunta 1'] = pergunta1 ############################ Pergunta 2 ####################################### pergunta2['pergunta'] = input('Entre com a pergunta 2: ') sleep(0.3) print('Digite 5 respostas: ') respostas2['a'] = str(input("Entre com a resposta a: ")) respostas2['b'] = str(input("Entre com a resposta b: ")) respostas2['c'] = str(input("Entre com a resposta c: ")) respostas2['d'] = str(input("Entre com a resposta d: ")) respostas2['e'] = str(input("Entre com a resposta e: ")) sleep(0.3) pergunta2['respostas'] = respostas2 pergunta2['resposta_certa'] = str(input("Entre com o item da resposta certa: ")) perguntas['Pergunta 2'] = pergunta2 ########################### Pergunta 3 ####################################### pergunta3['pergunta'] = input('Entre com a pergunta 3: ') sleep(0.3) print('Digite 5 respostas: ') respostas3['a'] = str(input("Entre com a resposta a: ")) respostas3['b'] = str(input("Entre com a resposta b: ")) respostas3['c'] = str(input("Entre com a resposta c: ")) respostas3['d'] = str(input("Entre com a resposta d: ")) respostas3['e'] = str(input("Entre com a resposta e: ")) sleep(0.3) pergunta3['respostas'] = respostas3 pergunta3['resposta_certa'] = str(input("Entre com o item da resposta certa: ")) perguntas['Pergunta 3'] = pergunta3 # # ############################ Pergunta 4 ####################################### # # pergunta3['pergunta'] = input('Entre com a pergunta 4: ') # # print('Digite 5 respostas: ') # # respostas4['a'] = str(input("Entre com a resposta a: ")) # respostas4['b'] = str(input("Entre com a resposta b: ")) # respostas4['c'] = str(input("Entre com a resposta c: ")) # respostas4['d'] = str(input("Entre com a resposta d: ")) # respostas4['e'] = str(input("Entre com a resposta e: ")) # # pergunta4['respostas'] = respostas4 # pergunta4['resposta_certa'] = str(input("Entre com o item da resposta certa: ")) # perguntas['Pergunta 4'] = pergunta4 # # ############################ Pergunta 4 ####################################### # # pergunta5['pergunta'] = input('Entre com a pergunta 5: ') # # print('Digite 5 respostas: ') # # respostas5['a'] = str(input("Entre com a resposta a: ")) # respostas5['b'] = str(input("Entre com a resposta b: ")) # respostas5['c'] = str(input("Entre com a resposta c: ")) # respostas5['d'] = str(input("Entre com a resposta d: ")) # respostas5['e'] = str(input("Entre com a resposta e: ")) # # pergunta5['respostas'] = respostas5 # pergunta5['resposta_certa'] = str(input("Entre com o item da resposta certa: ")) # perguntas['Pergunta 5'] = pergunta5 questoes[titulo] = perguntas listaQuestoes.append(questoes.copy()) return listaQuestoes def leiaInt(msg): #Validação de um inteiro while True: try: n = int(input(msg)) except (ValueError, TypeError): print('\033[31mERRO: por favor, digite um numero inteiro valido.\033[m') continue except (KeyboardInterrupt): print('\n\033[31mUsuario preferiu nao digitar esse numero.\033[m') return 0 else: return n def cabecalho(txt): #Cabecalho print(linha()) print(txt) print(linha()) def menu(lista): #Menu principal dos professores cabecalho('\033[1;35mMENU PRINCIPAL\033[m') for c, iten in enumerate(lista): sleep(0.3) print(f'\033[1;30m{c + 1} - \033[m\033[1;36m{iten}\033[m') print(linha()) opc = leiaInt('\033[1;30mSua Opcao: \033[m') return opc #FUNÇÕES ALUNOS # recebe as histórias como parâmetro def verificarTemas(historias): #Verifica se um tema é repetido e adiciona na lista temaAleatorio = set() #Cria o set for historia in historias: temaAleatorio.add(historia['tema']) # o set já verifica se o elemento é repetido temaAleatorio = list(temaAleatorio) # transforma o set em lista, pois set's não tem ordem definida for i, tema in enumerate(temaAleatorio, start=1): # MOSTRA TEMAS print(f' \033[1;30m{i} -\033[m \033[1;36m{tema}\033[m') sleep(0.3) return temaAleatorio # retorna a lista de temas def leiaOpcao(historias, listaQuestoes): dicionario = dict() while True: # enquanto a escolha não for válida, pede que digite novamente try: escolha = int( input(('\033[1;30mDigite o número que está relacionado com o tema a sua escolha: \033[m'))) print() if 1 <= escolha <= len(temaAleatorio): #Pede pro usuário escolher o tema break # escolha válida, sai do while else: print(f'\033[1;31mNúmero deve estar entre 1 e {len(temaAleatorio)}\033[m') except ValueError: # se não digitar número, dá erro print('\033[1;31mDigite um número válido\033[m') cont = 0 tema_escolhido = temaAleatorio[escolha - 1] for historia in historias: if historia['tema'] == tema_escolhido: # Se a história tem o tema escolhido cont += 1 if cont > 0: print('\033[1;30mTítulos das histórias do tema escolhido:\033[m') for historia in historias: if historia['tema'] == tema_escolhido: #Aparece os titulos do tema escolhido titulo = historia['titulo'] print(f'\033[1;34m{titulo}\033[m') sleep(0.5) print() sair = 0 while sair == 0: try: titulo = input('\033[1;30mDigite a história você deseja ler e responder as questões: \033[m') for historia in historias: if historia['titulo'] == titulo: #Pede pra escolher entre os titulos do tema print() print(f'{historia[titulo]} \n\n') sair = 1 except: print('\033[1;30mO título que digitou não existe!\033[m') #QUESTÕES for i in range(len(listaQuestoes)): #Quais questões são do titulo que ele escolheu if titulo in listaQuestoes[i]: #Vai relacionar as questões ao respectivo titulo dicionario = listaQuestoes[i] perguntas = dicionario[titulo] respostasCertas = 0 for pk, pv in perguntas.items(): # Pk vai ser o numero da pergunta, pv vai ser a pergunta print(f'{pk}: {pv["pergunta"]}') print('\033[1;30mEscolha uma das opções: \033[m') for rk, rv in pv['respostas'].items(): # Rk - Simbolo da alternativa, rv - texto da alternativa print(f'[{rk}]: {rv}') sleep(0.3) sleep(3) respostaUsuario = input('\033[1;30mSua resposta: \033[m') if respostaUsuario == pv['resposta_certa']: sleep(0.3) print('\033[1;32mMuito bem! Você acertou.\033[m') respostasCertas += 1 else: sleep(0.3) print('\033[1;31mErrou! Preste mais atenção!\033[m') print() quantPerguntas = len(perguntas) if quantPerguntas > 0: sleep(1) porcentagemAcerto = respostasCertas / quantPerguntas * 100 #Porcentagem do total de acertos print(f'\033[1;30mVocê acertou {respostasCertas} resposta(s).\033[m') print(f'\033[1;30mSua porcentagem foi {porcentagemAcerto}%\033[m') sleep(0.5) else: sleep(1) print('\033[1;31mInfelizmente você não acertou nenhuma resposta!\033[m') #FUNÇÕES CADASTRAMENTO def cadastrarProfessor(): # Cadastrar o professor prof['nomeProfessor'] = input('\033[1;30mDigite o nome do professor que você deseja cadastrar: \033[m') prof['matriculaProfessor'] = input('\033[1;30mDigite a matricula do professor: \033[m') prof['senhaProfessor'] = input('\033[1;30mDigite a senha do professor: \033[m') listProfessores.append(prof.copy()) return listProfessores def cadAdm(): #Cadastra os admin inicio = 0 if inicio == 0: nomeAdm = input('\033[1;30mDigite o seu primeiro nome: \033[m') senhaAdm = input('\033[1;30mCadastre uma senha: \033[m') inicio = 1 sleep(1) print('\033[1;32mCadastrado como administrador do programa!!\033[m') cont = 3 while cont > 0: sleep(0.5) senha = input('\033[1;30mDigite sua senha de administrador para acessar o programa: \033[m') if (senhaAdm == senha): erro = 1 while erro == 1: try: esc = input('\033[1;30mCadastrar matricula de um professor? [Sim/Nao] \033[m').strip().lower()[0] erro = 0 except: print('\033[1;31mDigite Sim ou Não!\033[m') while esc == 's': cadastrarProfessor() sleep(0.5) print('\033[1;32mCadastrado com sucesso!\033[m') sleep(0.5) erro = 1 while erro == 1: try: esc = input('\033[1;30mCadastrar nova matricula? [Sim/Nao] \033[m').strip().lower()[0] erro = 0 except: print('\033[1;31mDigite sim ou não!\033[m') break else: cont -= 1 print(f'\033[1;31mVocê tem {cont} chances.\033[m') def cadastrarUsuarios(): #Chama as funções de cadastro e também realiza cadastros op = -1 aluno = dict() while op != 0: linha(42) print('\033[1;30m1 - \033[m\033[1;36mLogin Admin\033[m') sleep(0.3) print('\033[1;30m2 - \033[m\033[1;36mLogin Professor\033[m') sleep(0.3) print('\033[1;30m3 - \033[m\033[1;36mLogin Aluno\033[m') sleep(0.3) print('\033[1;31m0 - SAIR\033[m') sleep(0.3) while op != 0: try: op = int(input(('\033[1;30mDigite a sua opção: \033[m'))) #Validação para ser um int como entrada break except ValueError: # se não digitar número, dá erro print('\033[1;31mDigite um número válido\033[m') if op == 1: #Se for 1, cadastra o admin cadAdm() elif op == 2: #Se for 2, loga o professor matricula = input('\033[1;30mDigite sua matricula: \033[m') for i in range(len(listProfessores)): if matricula in listProfessores[i]['matriculaProfessor']: cont = 3 while cont > 0: senha = input('\033[1;30mDigite sua senha: \033[m') if senha in listProfessores[i]['senhaProfessor']: print('\033[1;32mLogado com sucesso!\033[m') op = 2 return op else: cont -= 1 print(f'Você tem {cont} chances.') else: print('\033[1;31mMatricula não encontrada. Por favor procure a coordenação.\033[m') else: print('\033[1;31mMatricula não encontrada. Por favor procure a coordenação.\033[m') elif op == 3: #se for 3, cadastra ou loga o aluno erro = 1 while erro == 1: try: loginAluno = \ input('\033[1;30mDeseja se cadastrar ou logar? [Cadastrar/logar] \033[m').strip().lower()[ 0] # Strip tira os espaços antes e depois, lower minusculo e [0] pega a primeira letra erro = 0 except: print('\033[1;31mOpção inválida!\033[m') if loginAluno == 'c': aluno['nome'] = input('\033[1;30mDigite o seu nome: \033[m') aluno['matricula'] = input('\033[1;30mDigite sua matricula: \033[m') senha1 = input('\033[1;30mDigite sua senha: \033[m') senha2 = input('\033[1;30mConfirme sua senha: \033[m') while senha1 != senha2: print('\033[1;31mSenhas diferentes. Tente novamente!\033[m') senha1 = input('\033[1;30mDigite sua senha: \033[m') senha2 = input('\033[1;30mConfirme sua senha: \033[m') aluno['senha'] = senha2 listAlunos.append(aluno.copy()) print('\033[1;32mCadastrado com sucesso!\033[m') elif loginAluno == 'l': matricula = input('\033[1;30mDigite sua matricula: \033[m') if matricula.isnumeric(): for i in range(len(listAlunos)): if matricula in listAlunos[i]['matricula']: cont = 3 while cont > 0: senha = input('\033[1;30mDigite sua senha: \033[m') if senha in listAlunos[i]['senha']: print('\033[1;32mLogado com sucesso!\033[m') op = 3 return op else: cont -= 1 print(f'\033[1;30mVocê tem {cont} chances.\033[m') else: print('\033[1;30mMatricula não encontrada. Por favor cadastre-se!\033[m') else: print('\033[1;30mDigite número no campo.\033[m') else: print('\033[1;30mOpção Inválida! Tente Novamente!\033[m') elif op == 0: exit() else: print('\033[1;30mOpção invalida\033[m') ######################################## Programa Principal ######################################## #Chama as funções principais op = -1 while (op != 0): op = cadastrarUsuarios() listaMenu = ['Cadastrar tema', 'Cadastrar historia', 'Mostrar titulos', 'Ler historia', 'Apagar historia', 'Mostrar temas', 'Criar questoes', 'Sair do Sistema'] if op == 2: resposta = 1 while (resposta != len(listaMenu)): resposta = menu(listaMenu) if (resposta == 1): cadTemas() elif (resposta == 2): printTemas(temas) sair = 0 chances = 3 while (chances > 0): tema = str(input('\033[1;30mEntre com o tema: \033[m')).capitalize() if (tema in temas): break print("\033[1;31mTema inexistente, por favor tente outra vez!\033[m") chances -= 1 print(f'\033[1;31mVoce tem {chances} chances!\033[m') if (sair < 3): titulo = str(input('\033[1;30mEntre com o titulo da historia: \033[m')) cadHistorias(tema, titulo, historias) elif (resposta == 3): mostrarTitulo(historias) elif (resposta == 4): lerHistoria(historias) elif (resposta == 5): apagarHistoria(historias) elif (resposta == 6): printTemas(temas) elif (resposta == 7): mostrarTitulo(historias) titulo = str(input('\033[1;30mEntre com o titulo da historia: \033[m')) #validação aqui questoes = criarQuestoes(titulo) elif resposta == (len(listaMenu)): cabecalho('\033[1;30mSaindo do sistema... Ate logo!\033[m') else: print('\033[31mERRO! Digite uma opcao valida!\033[m') sleep(5) elif op == 3: temaAleatorio = verificarTemas(historias) leiaOpcao(historias, listaQuestoes)
[ "noreply@github.com" ]
DanielXav.noreply@github.com
cb8bbb18812b781c6011712f275d27da47b49467
4180adc91a4f90580597df0f2eb631f71706b416
/animation_queue.py
0c18144c83ea7cb47f634c1eca603854ba2a68b8
[]
no_license
allynbauer/nspygame
8935a7329109d29c535c652485329debf44d2295
8fb8d2dce7d4444636c358cf60f0e27da2584dee
refs/heads/master
2021-01-01T19:52:34.185553
2013-03-31T16:01:44
2013-03-31T16:01:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
from animation import * class AnimationQueue(object): def __init__(self): self.animations = [] def add_animation(self, animation): assert animation is not None animation.queue = self animation.began = pygame.time.get_ticks() # TODO: replace with clock self.animations.append(animation) def tick(self, clock): for animation in self.animations: animation.tick(clock) finished_animations = filter(lambda animation: animation.animation_finished, self.animations) for animation in finished_animations: if callable(animation.finished_block): animation.finished_block() self.animations.remove(animation)
[ "allyn.bauer@gmail.com" ]
allyn.bauer@gmail.com
8f58ceac773c503d7bcc188d51ad3750de9f0467
02d2657ca9d835996d0d9a883820f9f5d9e688bb
/02_yes_no.py
e14aa95c22450d33484e21d5718f74092dcaec70
[]
no_license
konelliusbriggs/01_Lucky_Unicorn
8c459b2dee4207fef3ca5bc49ed53f5c23a24fbf
673bf493f5ebb322df9d7b7248a628625a58bfc4
refs/heads/main
2023-03-26T08:59:52.569920
2021-03-25T23:45:49
2021-03-25T23:45:49
351,277,634
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
def yes_no(question): valid = False while not valid: response = input(question).lower() if response == "y" or response == "yes": return "yes" elif response == "n" or response == "no": return "no" else: print("Please enter yes / no") played_before = yes_no("Have you played this game before? ") if played_before != "yes": print("show instructions")
[ "briggsk9489@masseyhigh.school.nz" ]
briggsk9489@masseyhigh.school.nz
4989fa19a6d22301de71b13a5c533c0d567f84a2
ef714898ec6c6b7084770a488cd03f40586caa08
/modules/export.py
e55995848324804dcdcc0fed5aba64727b5b2a75
[ "MIT" ]
permissive
mindsphere/dataModelHandler
24e9633c921e219b4d35458b1773bee20a66e6a6
6d5f415976794802ca8ccea66b26b2a7bcbec751
refs/heads/master
2023-04-28T16:59:11.470104
2021-05-18T14:32:55
2021-05-18T14:32:55
368,198,045
1
1
null
2021-05-18T14:32:12
2021-05-17T13:35:29
Python
UTF-8
Python
false
false
12,157
py
import uuid import requests import json import datetime, traceback import os import sys import configparser import traceback import csv from pprint import pprint import collections from pathlib import Path import helpers #Custom Modules import modules.readConfig as config from modules.helpers import SimpleError, SingleAssetImporterInputDataset, SingleAgentInputDataset, SingleDatapointInputDataset from modules.mindsphereApiCollection import * from modules.datamodelClassDefinitions import Asset, AssetType, Aspect, ImportStatus from modules.rowProcessor import convertRowsToClasses, extractAssetDefinitions, extractAspectDefinitions, extractAssetTypeDefinitions from modules.mindsphereDataModelManager import MindsphereDataModelManager from modules.apiHandler import ScopeNotFound ####################################### ########### MODULE CONFIG ############# ####################################### # The following block loads parameters from the config an provides them in an easy to use way in this modul: # Instead of config.<parametername> you can just use <parametername> as standalone afterwards thisModule = sys.modules[__name__] requiredParamters= "logging, tenantname, parentIdsToBeExported, exportMode, exportedDataOutputFile, exportAgentAndMappingConfiguration, convertToNeutralIds" config.setSimpleConfigParametersToModule(thisModule, requiredParamters) #Create Directory for Output# agentDefinitionsFileName = "agentDefinition.csv" directory = os.path.dirname(exportedDataOutputFile) Path(directory).mkdir(parents=True, exist_ok=True) ####################################### ######### HELPER FUNCTIONS ############ ####################################### def convertMappingDictToOrderedColumnDict(mappingDict): outputColumnsList = [] for attribute in mappingDict: if isinstance(mappingDict[attribute], dict): columnheaders = mappingDict[attribute]["matchingInputHeaders"] if mappingDict[attribute].get("excludeFromExport"): continue else: columnheaders = mappingDict[attribute] if isinstance(columnheaders, tuple): value = columnheaders[0] #In case there are multiple allowed headers for an output file, take the first one else: value = columnheaders outputColumnsList.append(value) return collections.OrderedDict([ (k, None) for k in outputColumnsList]) ####################################### ####################################### ############ MAIN BLOCK ############### ####################################### def attachDataSourcesToAgentAsset(agentAsset, mindsphereDataModelManager): mindsphereDataModelManager.collectDataSourcesForAgent(agentAsset) ####################################### def attachDeviceConfigToAgentAsset(agentAsset, mindsphereDataModelManager): mindsphereDataModelManager.collectDeviceConfigForAgent(agentAsset) ####################################### def attachDatapointMappingsToAgentAsset(agentAsset,listOfAllAssetsToBeProcessed, mindsphereDataModelManager): omittedTargetAssets = [] mindsphereDataModelManager.collectValidDataPointMappingForAgent(agentAsset) for dataSource in agentAsset.agentData.dataSources: for dataPoint in dataSource.dataPoints: for mapping in dataPoint.dataPointMappings: if mapping.targetAsset: targetAssetInScope = next((asset for asset in listOfAllAssetsToBeProcessed if asset.assetId == mapping.targetAsset.assetId),None) if not targetAssetInScope: if not next((asset for asset in omittedTargetAssets if asset.assetId == mapping.targetAsset.assetId), None): omittedTargetAssets.append(mapping.targetAsset) print(f"Attention! A target Device-Asset '{mapping.targetAsset.name}' for a mapping is not included in export defintion. Datapoint Mappings pointing to this asset will be omitted from export!") #TODO Review: Das Ding trotzdem zu exportieren, mit einer Referenz auf ein Dummy Asset macht vermutlich keinen Sinn else: print(f"Attention! A target Device-Asset for a mapping is not existing in MindSphere.") print(f"The related agent is: '{agentAsset.name}'). This is probably due to an invalid mapping ...") dataPoint.dataPointMappings = list(filter(lambda x: mapping.targetAsset not in omittedTargetAssets, dataPoint.dataPointMappings)) ####################################### def addFullAgentInformation(assetsToBeProcessed, mindsphereDataModelManager): for asset in assetsToBeProcessed: if asset.agentData: try: # First, get a potential device config attachDeviceConfigToAgentAsset(asset, mindsphereDataModelManager) attachDataSourcesToAgentAsset(asset, mindsphereDataModelManager) if asset.agentData.dataSources: # Last step: add all the existing mappings, but only if the mapped asset is part of the export attachDatapointMappingsToAgentAsset(asset, assetsToBeProcessed, mindsphereDataModelManager) except ScopeNotFound as e: print(f"!!! Attention !!! Skipping collecting of agent information for the asset '{asset.name}'...") print(f" Reason: Unkown assetType '{e}' for agent-scope detection!") print("") return None ####################################### def start(): # 1. Extract all assets (and optionally asset-types and aspects) from Mindsphere print("="*80) print("Initialize MindSphere data model now...") mindsphereDataModelManager = MindsphereDataModelManager(fullMode = exportMode == "full") # 2. Find all children # Go through list of parents to be exported and add all childs-assets to an export batch exportBatches = {} #In case there is only one parent asset to be exported, convert it to a list first parentIdsToBeExportedAsList = [] if isinstance(parentIdsToBeExported, str): parentIdsToBeExportedAsList.append(parentIdsToBeExported) else: parentIdsToBeExportedAsList = parentIdsToBeExported print("") print("... identifing data to be exported based on the source definition for the export now") for parentID in parentIdsToBeExportedAsList: currentParentAssets = mindsphereDataModelManager.getAssetsIncludingUserDecision(parentID, allowMultipleSelections=True) if not currentParentAssets: continue for assetToBeExported in currentParentAssets: assetsWithChilds = mindsphereDataModelManager.getListWithAllChildren(assetToBeExported, parentsFirst=True) exportBatches[assetToBeExported.assetId] = assetsWithChilds # 3. Merge all export batches for all given parents # Now merge data for all given export batches (which might have been definied via various parent ids given in the configuration file) mergedAssetListForExport = [] for currentBatch in exportBatches: for currentAsset in exportBatches[currentBatch]: if not next((x for x in mergedAssetListForExport if currentAsset.assetId == x.assetId), None): mergedAssetListForExport.append(currentAsset) # 4. Add Agent Data # This only takes place in case datasources and mapping should also be exported (which is defined in the config): if exportAgentAndMappingConfiguration: # Go through list with all agents and mark the coressponding assets as agents: # If asset is an agent, add the agent data with device information, defined datasources and mappings # For the ID mapping use a tracking dict, that maps internal IDs to neutral IDs (agentIDs, DatasourceIDs, Mapping IDs) # If an agent AgentAsset has been identified, the mapping list has to be looked through, to identify mapped assets: # -> In case the mapped assets are part of the export, they also need a neutral flag. # -> In case the are not included in the export, a warning should be provided, but the asset will not be exported print("... collecting agent data for assets to be exported now") addFullAgentInformation(mergedAssetListForExport, mindsphereDataModelManager) # 5. Derive lists with columns that need to be populated during the export run and that will be existing in the output format # Those columns should be the "opposite" of the import attributes, so that the import and export formats are compatible # Preparation for assets # The mapping dictionary contains the relation between object-attributes and the columns in the output-file mappingDictAssets = SingleAssetImporterInputDataset.mappingDict orderedOutputColumnsDictForAssetExport = convertMappingDictToOrderedColumnDict(mappingDictAssets) # 6. Export asset information as csv outputListAssets = [] # Initialize an empty ordered dict that will be populated during the export preparation # The keys are the names of the output for currentAsset in mergedAssetListForExport: print("Processing asset '{}' with id '{}' now".format(currentAsset.name, currentAsset.assetId)) workingDictList = currentAsset.outputAsDictionaryList(orderedOutputColumnsDictForAssetExport, fullMode = exportMode == "full") outputListAssets.extend(workingDictList) # 7 Write asset Information to csv - this could be an issue since it overwrites everything with that tenantname (also descriptions and such) replaceList = [{"oldString": tenantname + ".", "newString" : "[$$$TENANTNAME$$$]."}] helpers.writeListOfSimilarDictToCsv(outputListAssets, exportedDataOutputFile, replaceList) # 7. Prepare and export relevant agent information as csv if exportAgentAndMappingConfiguration: # Preparation for agents mappingDictAgents = SingleAgentInputDataset.mappingDict mappingDictDatapoints = SingleDatapointInputDataset.mappingDict orderedOutputColumnDictForAgents = convertMappingDictToOrderedColumnDict(mappingDictAgents) orderedOutputColumnDictForDatapoints = convertMappingDictToOrderedColumnDict(mappingDictDatapoints) for currentAsset in mergedAssetListForExport: if currentAsset.agentData: #Create Subfolder for all Agent related data agentDirectory = os.path.join(directory,"agentDefinitions",currentAsset.name + "_" + currentAsset.assetId) Path(agentDirectory).mkdir(parents=True, exist_ok=True) #Export Agent-Data with Datasource-Definitions agentDataDictList = currentAsset.agentData.getDictListOutputForAgent(orderedOutputColumnDictForAgents) replaceList = [] agentDefinitionFileName = os.path.join(agentDirectory,agentDefinitionsFileName) helpers.writeListOfSimilarDictToCsv(agentDataDictList, agentDefinitionFileName, replaceList) #Export DataPoints with DataPointMappings for each Datasource, for dataSource in currentAsset.agentData.dataSources: agentDatapointsAndMappingsDictList = dataSource.getDictListOutputForDataPointsAndMappings(orderedOutputColumnDictForDatapoints) dataSourceFileName = os.path.join(agentDirectory,dataSource.dataPointsFileName) helpers.writeListOfSimilarDictToCsv(agentDatapointsAndMappingsDictList, dataSourceFileName, replaceList) #Print out list of all neutral IDs if logging in ("VERBOSE"): lookUpNeutralId()
[ "noreply@github.com" ]
mindsphere.noreply@github.com
7abe62c7ef0dcbe1c054939532683e3efd1c42ac
a3f683085685cb683aa38be2699ffae67089f863
/core/tests/sources/test_source.py
5968f46bdd6aee7e8ba5a0ae9923afdb8aae73a3
[ "BSD-3-Clause" ]
permissive
saroad2/toga
094d763b3b129ded3a96692eed27709629dc61fc
3af18a5658aa75b551ed11da9b49d5b90de7855b
refs/heads/main
2023-01-28T01:25:31.300635
2022-11-14T01:33:22
2022-11-14T01:33:22
246,352,111
0
0
BSD-3-Clause
2023-09-10T20:15:27
2020-03-10T16:28:14
Python
UTF-8
Python
false
false
1,515
py
from unittest import TestCase from unittest.mock import Mock from toga.sources import Source class SourceTests(TestCase): def test_listeners(self): listener1 = Mock() source = Source() source.add_listener(listener1) self.assertListEqual(source.listeners, [listener1]) # activate listener source._notify("message1") listener1.message1.assert_called_once_with() # activate listener with data source._notify("message2", arg1=11, arg2=22) listener1.message2.assert_called_once_with(arg1=11, arg2=22) # add more widgets to listeners listener2 = Mock() source.add_listener(listener2) self.assertListEqual(source.listeners, [listener1, listener2]) # activate listener source._notify("message3") listener1.message3.assert_called_once_with() listener2.message3.assert_called_once_with() # activate listener with data source._notify("message4", arg1=11, arg2=22) listener1.message4.assert_called_once_with(arg1=11, arg2=22) listener2.message4.assert_called_once_with(arg1=11, arg2=22) # remove from listeners source.remove_listener(listener2) self.assertListEqual(source.listeners, [listener1]) def test_missing_listener_method(self): listener1 = object() source = Source() source.add_listener(listener1) # This shouldn't raise an error source._notify("message1")
[ "russell@keith-magee.com" ]
russell@keith-magee.com
4a930183b499dfb6de14e5c00be6746627ad3141
a053f5be4356290f693704ffa5b8c4c9d45dd14c
/venv/bin/wheel
b29715d18c54d6d6c374c4d00b5e8b59fb6738fb
[]
no_license
troupn/hellowebdjango
713f5631c5d4a4c23ec00e01432c05903359e7f7
bc986a0053f759c8b3f3166879c13797b58929d6
refs/heads/master
2021-01-22T03:23:10.527308
2017-02-06T21:04:05
2017-02-06T21:04:05
81,119,973
0
0
null
null
null
null
UTF-8
Python
false
false
258
#!/home/ubuntu/workspace/projects/myhellowebapp/venv/bin/python # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "ngtroup@gmail.com" ]
ngtroup@gmail.com
dd4760af44ded3a8c110c95124a335213cb587af
d5c339150b74b7023177d4c039604a9018704e9d
/src/GameController.py
196deecc28f7e877c6d6c72f12c555c45b11595e
[]
no_license
haihoangtran/MineSweeper
d488137d13c1079485513c5f5d8ab37d90db884c
451e4c1dae606a9c8c26e69926e09ef9f0cd00da
refs/heads/master
2020-08-07T06:27:37.969458
2014-03-11T01:23:06
2014-03-11T01:23:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,148
py
class GameController(): def __init__(self): self.SIZE = 10 (self.SEALED, self.EXPOSED, self.UNEXPOSED) = range(0, 3) self.cellStatus = [[ 0 for i in range(self.SIZE) ] for j in range(self.SIZE)] self.cellMined = [[0 for i in range (self.SIZE)] for j in range (self.SIZE)] for x in range (self.SIZE): for y in range (self.SIZE): self.cellStatus[x][y] = self.UNEXPOSED self.cellMined[x][y] = False def getSize(self): return self.SIZE def isExposed(self, x, y): return self.cellStatus[x][y] == self.EXPOSED def isSealed(self, x, y): return self.cellStatus[x][y] == self.SEALED def isUnexposed(self, x, y): return self.cellStatus[x][y] == self.UNEXPOSED def setMine (self, x, y): self.cellMined[x][y] = True def exposeCell(self,x,y): if (self.cellStatus[x][y] == self.UNEXPOSED): self.cellStatus[x][y] = self.EXPOSED return True else: return False def toggleSeal(self, x, y): if self.cellStatus[x][y] != self.EXPOSED: if self.cellStatus[x][y] == self.SEALED: self.cellStatus[x][y] = self.UNEXPOSED elif self.cellStatus[x][y] == self.UNEXPOSED: self.cellStatus[x][y] = self.SEALED return True else: return False def countMines(self, x, y): counter = 0 for adjX in range (-1, 2): for adjY in range (-1, 2): if (x + adjX) in range (self.SIZE) and (y + adjY) in range (self.SIZE): if self.cellMined[x + adjX][y + adjY] == True: counter += 1 return counter def isGameOver(self, x, y): return self.cellStatus[x][y] == self.EXPOSED and self.cellMined[x][y] == True def recursiveExposeEmptyCells(self, x, y): if self.isSealed(x, y) == False: self.exposeCell(x,y) for adjX in range (-1, 2): for adjY in range (-1, 2): neighborX = x + adjX neighborY = y + adjY if (neighborX) in range (self.SIZE) and (neighborY) in range (self.SIZE): if self.cellStatus[neighborX][neighborY] == self.UNEXPOSED and self.cellMined[neighborX][neighborY] == False: if self.countMines(neighborX, neighborY) > 0: self.exposeCell(neighborX,neighborY) elif self.countMines(neighborX, neighborY) == 0: self.recursiveExposeEmptyCells(neighborX, neighborY) def winGame(self): won = True for x in range (self.SIZE): for y in range (self.SIZE): if(self.cellMined[x][y] == False and self.cellStatus[x][y] == self.UNEXPOSED) or (self.cellMined[x][y] == True and self.cellStatus[x][y] != self.SEALED): won = False break return won
[ "hai.hg.tran@gmail.com" ]
hai.hg.tran@gmail.com
bd01e38be226912fc3889a352c1d816e2857ecd7
2bbdd0c00080c4d27253df8722fb3e0b053bd63f
/Python/Machine Learning/Regression/Section 4 - Simple Linear Regression/simple_linear.py
e759684e3b308e25387fbeaeb9dd9e34b5d623d8
[ "MIT" ]
permissive
urbrob/programming
3c005802a5d286dfe1fc8c3e31e36677a5523ad2
b9374fa6dca08504d6bb67c5db9fdf41a4d0d9f7
refs/heads/master
2020-04-06T07:57:50.486444
2020-03-05T08:17:22
2020-03-05T08:17:22
157,290,643
2
0
null
null
null
null
UTF-8
Python
false
false
518
py
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt dataset = pd.read_csv('Salary_Data.csv') x = dataset.iloc[:, :-1] y = dataset.iloc[:, -1] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=1/3, random_state=0) regressor = LinearRegression() regressor.fit(x_train, y_train) predicted_values = regressor.predict(x_test) plt.plot(x_test, y_test, 'r+', x_test, predicted_values, 'b') plt.show()
[ "urb.rob@o2.pl" ]
urb.rob@o2.pl
d3d73a376e90dd88ea2bf700467fc93bb559085d
18d0d1e6e121928d9542def6c60d3089ac834d50
/.c9/metadata/environment/products/urls.py
90abd99bbe3407fb606f84eb0f638e28b7229f8d
[]
no_license
JackSnowdon/stripe-test
31990f7f73be490d282fa0f23ab1acf373415d02
b2729de4eb0c908d5b1c359d29dc347f16cf388d
refs/heads/master
2023-01-04T08:09:56.693969
2019-06-27T11:11:45
2019-06-27T11:11:45
192,900,409
0
0
null
2022-11-22T02:09:57
2019-06-20T10:31:53
Python
UTF-8
Python
false
false
418
py
{"filter":false,"title":"urls.py","tooltip":"/products/urls.py","undoManager":{"mark":-1,"position":-1,"stack":[]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":5,"column":1},"end":{"row":5,"column":1},"isBackwards":false},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1561046082475,"hash":"b604cecf7240f1919bff499f7d2e250c28ef329d"}
[ "jacksnowdondrums@gmail.com" ]
jacksnowdondrums@gmail.com
5d798c8e283b24e5f08402137f1a6bb81c96ba24
7546f5995ffab909ccd87da8576461bdc58951c1
/pachong/爬虫/Study/requeststest.py
fe99ef739ed62a403a2928acdb550772157814af
[]
no_license
wskai1/Python_Study
fa6f818df3de31a37272dc013004cc982d61a6c1
72e668e94e3bc6b769dfc103ac62fa387d733306
refs/heads/master
2020-03-25T01:42:26.553100
2018-08-06T09:48:51
2018-08-06T09:48:51
143,252,364
0
1
null
null
null
null
UTF-8
Python
false
false
2,451
py
import json import requests import urllib3 from requests import ReadTimeout, RequestException from requests.auth import HTTPBasicAuth response = requests.get("https://www.baidu.com") print("response类型:",end="") print(type(response)) print("response状态码:",end="") print(response.status_code) print(type(response.text)) print("网页源代码") print(response.text) print(response.cookies) print(response.content) print(response.content.decode("utf-8")) # 各种请求 requests.post("http://httpbin.org/post") requests.put("http://httpbin.org/put") requests.delete("http://httpbin.org/delete") requests.head("http://httpbin.org/get") requests.options("http://httpbin.org/get") # get请求 response = requests.get("http://httpbin.org/get?name=zhaofan&age=23") print(response.text) import requests data = { "name":"zhaofan", "age":22 } response = requests.get("http://httpbin.org/get",params=data) print(response.url) print(response.text) # 解析JSON response = requests.get("http://httpbin.org/get") print(type(response.text)) print(response.json()) print(json.loads(response.text)) print(type(response.json())) # 直接访问知乎 response =requests.get("https://www.zhihu.com") print(response.text) # 带headers访问知乎 import requests headers = { "User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36" } response =requests.get("https://www.zhihu.com",headers=headers) print(response.text) # POST请求 data = { "name":"zhaofan", "age":23 } response = requests.post("http://httpbin.org/post",data=data) print(response.text) # ssl验证 urllib3.disable_warnings() response = requests.get("https://www.12306.cn",verify=False) print(response.status_code) # 代理IP proxies= { "http":"http://127.0.0.1:9999", "https":"http://127.0.0.1:8888" } response = requests.get("https://www.baidu.com",proxies=proxies) print(response.text) # 异常处理 try: response = requests.get("http://httpbin.org/get",timout=0.1) print(response.status_code) except ReadTimeout: print("timeout") except ConnectionError: print("connection Error") except RequestException: print("error") # 认证 response = requests.get("http://120.27.34.24:9001/",auth=HTTPBasicAuth("user","123")) print(response.status_code) response = requests.get("http://120.27.34.24:9001/",auth=("user","123")) print(response.status_code)
[ "1729253813@qq.com" ]
1729253813@qq.com
23eddcdcd6ae4cd6ef40bafc0337d44138959fd7
b55cfd21e25a6bf4df4eb9cffff0e005ace9badf
/self_assessment.py
4234369e3566366505a08dd3ccba54fca81d101c
[]
no_license
margunwa123/peer_assessment_calculator
c2d57ca7e4c98ba064320cae342c8d7bb62b8c2c
40a382800772e2d307481ef09762ec6f37cb3a8e
refs/heads/master
2023-01-24T12:45:44.013360
2020-12-11T08:25:37
2020-12-11T08:25:37
317,132,157
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
# py self_assessment.py {nama_file csv} {list NIM orang} import csv import sys from constant import * def getSelfAssessment(nim): with open(sys.argv[1]) as csv_file: for row in csv.reader(csv_file): if(row[NIM] == nim): print(f"Self assessment nim {nim} adalah {row[NILAI_SENDIRI]}") break if __name__ == "__main__": listNIM = sys.argv[2].split(",") for nim in listNIM: getSelfAssessment(nim)
[ "13518114@std.stei.itb.ac.id" ]
13518114@std.stei.itb.ac.id
7c86499fe37f63ec047435d257414eea36444b04
0547d1826e99eedb959a3463520d73985a3b844e
/Data Analyst with Python Track/05-Introduction to Data Visualization with Matplotlib/02- Plotting time-series/04-Plotting two variables.py
a39c962585de865637f7454937f881c5fc655682
[]
no_license
abhaysinh/Data-Camp
18031f8fd4ee199c2eff54a408c52da7bdd7ec0f
782c712975e14e88da4f27505adf4e5f4b457cb1
refs/heads/master
2022-11-27T10:44:11.743038
2020-07-25T16:15:03
2020-07-25T16:15:03
282,444,344
4
1
null
null
null
null
UTF-8
Python
false
false
1,505
py
''' Plotting two variables If you want to plot two time-series variables that were recorded at the same times, you can add both of them to the same subplot. If the variables have very different scales, you'll want to make sure that you plot them in different twin Axes objects. These objects can share one axis (for example, the time, or x-axis) while not sharing the other (the y-axis). To create a twin Axes object that shares the x-axis, we use the twinx method. In this exercise, you'll have access to a DataFrame that has the climate_change data loaded into it. This DataFrame was loaded with the "date" column set as a DateTimeIndex, and it has a column called "co2" with carbon dioxide measurements and a column called "relative_temp" with temperature measurements. Instructions 100 XP Use plt.subplots to create a Figure and Axes objects called fig and ax, respectively. Plot the carbon dioxide variable in blue using the Axes plot method. Use the Axes twinx method to create a twin Axes that shares the x-axis. Plot the relative temperature variable in the twin Axes using its plot method. ''' import matplotlib.pyplot as plt # Initalize a Figure and Axes fig, ax = plt.subplots() # Plot the CO2 variable in blue ax.plot(climate_change.index, climate_change["co2"], color='blue') # Create a twin Axes that shares the x-axis ax2 = ax.twinx() # Plot the relative temperature in red ax2.plot(climate_change.index, climate_change["relative_temp"], color='red') plt.show()
[ "abhaysinh.surve@gmail.com" ]
abhaysinh.surve@gmail.com
df39214fb6f2973cd79d9e5a1575d63504485a39
b4d9ad08313a975e2a4c2a70140a548812d50850
/apps/deepstream-test1-usbcam/deepstream_test_1_usb.py
564deea6064f1157d12aca66cd1bbbfb67a03dac
[ "MIT" ]
permissive
culebracut/ds-vs
06a00274684df6f60f5e852d364b7fcd5b6deacd
d71493539d4934b86057b87bf15d80b033ddb2fe
refs/heads/master
2022-11-07T15:59:45.301898
2020-06-25T17:46:19
2020-06-25T17:46:19
272,830,988
0
0
null
null
null
null
UTF-8
Python
false
false
11,312
py
#!/usr/bin/env python3 ################################################################################ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ################################################################################ import sys sys.path.append('../') import gi gi.require_version('Gst', '1.0') from gi.repository import GObject, Gst from common.is_aarch_64 import is_aarch64 from common.bus_call import bus_call import pyds #from bindings.jetson import pyds PGIE_CLASS_ID_VEHICLE = 0 PGIE_CLASS_ID_BICYCLE = 1 PGIE_CLASS_ID_PERSON = 2 PGIE_CLASS_ID_ROADSIGN = 3 def osd_sink_pad_buffer_probe(pad,info,u_data): frame_number=0 #Intiallizing object counter with 0. obj_counter = { PGIE_CLASS_ID_VEHICLE:0, PGIE_CLASS_ID_PERSON:0, PGIE_CLASS_ID_BICYCLE:0, PGIE_CLASS_ID_ROADSIGN:0 } num_rects=0 gst_buffer = info.get_buffer() if not gst_buffer: print("Unable to get GstBuffer ") return # Retrieve batch metadata from the gst_buffer # Note that pyds.gst_buffer_get_nvds_batch_meta() expects the # C address of gst_buffer as input, which is obtained with hash(gst_buffer) batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer)) l_frame = batch_meta.frame_meta_list while l_frame is not None: try: # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta # The casting is done by pyds.NvDsFrameMeta.cast() # The casting also keeps ownership of the underlying memory # in the C code, so the Python garbage collector will leave # it alone. frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data) except StopIteration: break frame_number=frame_meta.frame_num num_rects = frame_meta.num_obj_meta l_obj=frame_meta.obj_meta_list while l_obj is not None: try: # Casting l_obj.data to pyds.NvDsObjectMeta obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data) except StopIteration: break obj_counter[obj_meta.class_id] += 1 try: l_obj=l_obj.next except StopIteration: break # Acquiring a display meta object. The memory ownership remains in # the C code so downstream plugins can still access it. Otherwise # the garbage collector will claim it when this probe function exits. display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta) display_meta.num_labels = 1 py_nvosd_text_params = display_meta.text_params[0] # Setting display text to be shown on screen # Note that the pyds module allocates a buffer for the string, and the # memory will not be claimed by the garbage collector. # Reading the display_text field here will return the C address of the # allocated string. Use pyds.get_string() to get the string content. py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Vehicle_count={} Person_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE], obj_counter[PGIE_CLASS_ID_PERSON]) # Now set the offsets where the string should appear py_nvosd_text_params.x_offset = 10 py_nvosd_text_params.y_offset = 12 # Font , font-color and font-size py_nvosd_text_params.font_params.font_name = "Serif" py_nvosd_text_params.font_params.font_size = 10 # set(red, green, blue, alpha); set to White py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0) # Text background color py_nvosd_text_params.set_bg_clr = 1 # set(red, green, blue, alpha); set to Black py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0) # Using pyds.get_string() to get display_text as string print(pyds.get_string(py_nvosd_text_params.display_text)) pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta) try: l_frame=l_frame.next except StopIteration: break return Gst.PadProbeReturn.OK def main(args): # Check input arguments if len(args) < 2: sys.stderr.write("usage: %s <v4l2-device-path>\n" % args[0]) sys.exit(1) # TODO: use parsing width = int(args[3]) height = int(args[5]) # Standard GStreamer initialization GObject.threads_init() Gst.init(None) # Create gstreamer elements # Create Pipeline element that will form a connection of other elements print("Creating Pipeline \n ") pipeline = Gst.Pipeline() if not pipeline: sys.stderr.write(" Unable to create Pipeline \n") # Source element for reading from the file print("Creating Source \n ") source = Gst.ElementFactory.make("v4l2src", "usb-cam-source") if not source: sys.stderr.write(" Unable to create Source \n") caps_v4l2src = Gst.ElementFactory.make("capsfilter", "v4l2src_caps") if not caps_v4l2src: sys.stderr.write(" Unable to create v4l2src capsfilter \n") print("Creating Video Converter \n") # Adding videoconvert -> nvvideoconvert as not all # raw formats are supported by nvvideoconvert; # Say YUYV is unsupported - which is the common # raw format for many logi usb cams # In case we have a camera with raw format supported in # nvvideoconvert, GStreamer plugins' capability negotiation # shall be intelligent enough to reduce compute by # videoconvert doing passthrough (TODO we need to confirm this) # videoconvert to make sure a superset of raw formats are supported vidconvsrc = Gst.ElementFactory.make("videoconvert", "convertor_src1") if not vidconvsrc: sys.stderr.write(" Unable to create videoconvert \n") # nvvideoconvert to convert incoming raw buffers to NVMM Mem (NvBufSurface API) nvvidconvsrc = Gst.ElementFactory.make("nvvideoconvert", "convertor_src2") if not nvvidconvsrc: sys.stderr.write(" Unable to create Nvvideoconvert \n") caps_vidconvsrc = Gst.ElementFactory.make("capsfilter", "nvmm_caps") if not caps_vidconvsrc: sys.stderr.write(" Unable to create capsfilter \n") # Create nvstreammux instance to form batches from one or more sources. streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer") if not streammux: sys.stderr.write(" Unable to create NvStreamMux \n") # Use nvinfer to run inferencing on camera's output, # behaviour of inferencing is set through config file pgie = Gst.ElementFactory.make("nvinfer", "primary-inference") if not pgie: sys.stderr.write(" Unable to create pgie \n") # Use convertor to convert from NV12 to RGBA as required by nvosd nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor") if not nvvidconv: sys.stderr.write(" Unable to create nvvidconv \n") # Create OSD to draw on the converted RGBA buffer nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay") if not nvosd: sys.stderr.write(" Unable to create nvosd \n") # Finally render the osd output if is_aarch64(): transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform") print("Creating EGLSink \n") sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer") if not sink: sys.stderr.write(" Unable to create egl sink \n") print("Playing cam %s " %args[1]) caps_v4l2src.set_property('caps', Gst.Caps.from_string("video/x-raw, framerate=30/1")) caps_vidconvsrc.set_property('caps', Gst.Caps.from_string("video/x-raw(memory:NVMM)")) source.set_property('device', args[1]) streammux.set_property('width', width) streammux.set_property('height', height) streammux.set_property('batch-size', 1) streammux.set_property('batched-push-timeout', 4000000) pgie.set_property('config-file-path', "dstest1_pgie_config.txt") # Set sync = false to avoid late frame drops at the display-sink sink.set_property('sync', False) print("Adding elements to Pipeline \n") pipeline.add(source) pipeline.add(caps_v4l2src) pipeline.add(vidconvsrc) pipeline.add(nvvidconvsrc) pipeline.add(caps_vidconvsrc) pipeline.add(streammux) pipeline.add(pgie) pipeline.add(nvvidconv) pipeline.add(nvosd) pipeline.add(sink) if is_aarch64(): pipeline.add(transform) # we link the elements together # v4l2src -> nvvideoconvert -> mux -> # nvinfer -> nvvideoconvert -> nvosd -> video-renderer print("Linking elements in the Pipeline \n") source.link(caps_v4l2src) caps_v4l2src.link(vidconvsrc) vidconvsrc.link(nvvidconvsrc) nvvidconvsrc.link(caps_vidconvsrc) sinkpad = streammux.get_request_pad("sink_0") if not sinkpad: sys.stderr.write(" Unable to get the sink pad of streammux \n") srcpad = caps_vidconvsrc.get_static_pad("src") if not srcpad: sys.stderr.write(" Unable to get source pad of caps_vidconvsrc \n") srcpad.link(sinkpad) streammux.link(pgie) pgie.link(nvvidconv) nvvidconv.link(nvosd) if is_aarch64(): nvosd.link(transform) transform.link(sink) else: nvosd.link(sink) # create an event loop and feed gstreamer bus mesages to it loop = GObject.MainLoop() bus = pipeline.get_bus() bus.add_signal_watch() bus.connect ("message", bus_call, loop) # Lets add probe to get informed of the meta data generated, we add probe to # the sink pad of the osd element, since by that time, the buffer would have # had got all the metadata. osdsinkpad = nvosd.get_static_pad("sink") if not osdsinkpad: sys.stderr.write(" Unable to get sink pad of nvosd \n") osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0) # start play back and listen to events print("Starting pipeline \n") pipeline.set_state(Gst.State.PLAYING) try: loop.run() except: pass # cleanup pipeline.set_state(Gst.State.NULL) if __name__ == '__main__': sys.exit(main(sys.argv))
[ "foobar.warren@gmail.com" ]
foobar.warren@gmail.com
d2bf098633aa22056182a33f65addd7a365598bb
97763df96bc21d91e46e3a98f9ee2b55f557035e
/share/qt/extract_strings_qt.py
f918851dc4a9feea1b425647bab2e4bb017feb84
[ "MIT" ]
permissive
jaagcoin/JAAGCoin-Core
2f0138c38e28b98878bbcd5f011ab84d1441bb57
87073dbff406e2d95a6e9d81521973c3c8cef350
refs/heads/master
2020-03-26T05:34:39.790028
2018-08-30T15:46:16
2018-08-30T15:46:16
144,563,529
0
0
null
null
null
null
UTF-8
Python
false
false
2,691
py
#!/usr/bin/env python # Copyright (c) 2012-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Extract _("...") strings for translation and convert to Qt stringdefs so that they can be picked up by Qt linguist. ''' from __future__ import division,print_function,unicode_literals from subprocess import Popen, PIPE import operator import os import sys OUT_CPP="qt/jaagstrings.cpp" EMPTY=['""'] def parse_po(text): """ Parse 'po' format produced by xgettext. Return a list of (msgid,msgstr) tuples. """ messages = [] msgid = [] msgstr = [] in_msgid = False in_msgstr = False for line in text.split('\n'): line = line.rstrip('\r') if line.startswith('msgid '): if in_msgstr: messages.append((msgid, msgstr)) in_msgstr = False # message start in_msgid = True msgid = [line[6:]] elif line.startswith('msgstr '): in_msgid = False in_msgstr = True msgstr = [line[7:]] elif line.startswith('"'): if in_msgid: msgid.append(line) if in_msgstr: msgstr.append(line) if in_msgstr: messages.append((msgid, msgstr)) return messages files = sys.argv[1:] # xgettext -n --keyword=_ $FILES XGETTEXT=os.getenv('XGETTEXT', 'xgettext') if not XGETTEXT: print('Cannot extract strings: xgettext utility is not installed or not configured.',file=sys.stderr) print('Please install package "gettext" and re-run \'./configure\'.',file=sys.stderr) exit(1) child = Popen([XGETTEXT,'--output=-','-n','--keyword=_'] + files, stdout=PIPE) (out, err) = child.communicate() messages = parse_po(out.decode('utf-8')) f = open(OUT_CPP, 'w') f.write(""" #include <QtGlobal> // Automatically generated by extract_strings_qt.py #ifdef __GNUC__ #define UNUSED __attribute__((unused)) #else #define UNUSED #endif """) f.write('static const char UNUSED *jaag_strings[] = {\n') f.write('QT_TRANSLATE_NOOP("jaag-core", "%s"),\n' % (os.getenv('PACKAGE_NAME'),)) f.write('QT_TRANSLATE_NOOP("jaag-core", "%s"),\n' % (os.getenv('COPYRIGHT_HOLDERS'),)) if os.getenv('COPYRIGHT_HOLDERS_SUBSTITUTION') != os.getenv('PACKAGE_NAME'): f.write('QT_TRANSLATE_NOOP("jaag-core", "%s"),\n' % (os.getenv('COPYRIGHT_HOLDERS_SUBSTITUTION'),)) messages.sort(key=operator.itemgetter(0)) for (msgid, msgstr) in messages: if msgid != EMPTY: f.write('QT_TRANSLATE_NOOP("jaag-core", %s),\n' % ('\n'.join(msgid))) f.write('};\n') f.close()
[ "dmitriy@Dmitriys-iMac.local" ]
dmitriy@Dmitriys-iMac.local
7825a87559141ba84ef6acaf295452b051a8cb7d
ff268c31f10cbd3e1c44261ca65a45c88ed3dae5
/Bayesian Networks/belief propagation/conf.py
2f40682278443925575581c90e1ac1cd016fc216
[ "MIT" ]
permissive
gyani91/Machine-Learning
6642c65359ed48b212a0f4296f5ce908ed6e95e3
2fabaa6386d3be24e56aaa9a19d58cd19d225198
refs/heads/master
2023-05-27T10:25:55.222053
2023-05-15T18:12:45
2023-05-15T18:12:45
114,811,646
2
2
null
null
null
null
UTF-8
Python
false
false
418
py
EDGE_COLOR = '#bbbbbb' EDGE_WIDTH = 2 NODE_SIZE = 3000 NODE_BORDER_COLOR = EDGE_COLOR NODE_BORDER_WIDTH = 3 NODE_COLOR_NORMAL = '#3492d9' NODE_COLOR_SOURCE = '#2cb64e' NODE_COLOR_OBSERVED = '#d96b34' NODE_COLOR_REACHABLE = NODE_COLOR_SOURCE NODE_SHAPE_SOURCE = 'd' LABEL_COLOR = '#111111' FACTOR_NODE_SIZE = 300 FACTOR_NODE_COLOR = '#fdae61' FACTOR_NODE_SHAPE = 's' AXIS_OBSERVED_BG_COLOR = '#d9c4ad'
[ "noreply@github.com" ]
gyani91.noreply@github.com
21c1131b3a3c7b8405b92c8d65312c7524c3c66d
66809511847afd8a1469ba6600f3344b9e1fe3e7
/nanoauto/__init__.py
c00f05dbfec46a6dd41177a8f395f8b8d6ca3f38
[ "MIT" ]
permissive
moshez/nanoauto
a621d2e3f8fde0feacd6a63ab8cf9a1471152a87
bad407ae4bfb465ba5d137f19e6291c7f8ffe36d
refs/heads/master
2016-09-05T22:09:23.810662
2015-03-23T03:27:12
2015-03-23T03:27:12
32,709,059
1
0
null
null
null
null
UTF-8
Python
false
false
300
py
__version__ = '0.0.1-dev' metadata = dict( name='nanoauto', version=__version__, description='Web-based editor', long_description="""\ nanoauto: write-only web editor """, author='Moshe Zadka', author_email='zadka.moshe@gmail.com', license='MIT', copyright='2015', )
[ "zadka.moshe@gmail.com" ]
zadka.moshe@gmail.com
8d4bbe5ecb6a28987891b8d10b5ff34b924e3995
422d46ecde4b29ee2c34f1a2a30ba0417a33220f
/catkin_ws/build/turtlebot3/turtlebot3_bringup/catkin_generated/pkg.develspace.context.pc.py
0a2c7bbb047d769edc2577143f9b99f030a5fb20
[]
no_license
biniamzerai/BusBot
68cf39f947a468b02b08ed1baad5afaf838a61e9
8522ba21d98f909ca29ddfd41b6047acc7f97691
refs/heads/master
2021-01-07T16:18:04.682683
2020-01-26T01:33:58
2020-01-26T01:33:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;std_msgs;sensor_msgs;diagnostic_msgs;turtlebot3_msgs".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "turtlebot3_bringup" PROJECT_SPACE_DIR = "/home/jacob/catkin_ws/devel" PROJECT_VERSION = "1.2.1"
[ "reed.jacobp@gmail.com" ]
reed.jacobp@gmail.com
297a8141da9cd0e52e6b2557323f122bd7cd3bfb
a9493cf8607b0f55bbde902d99dd844be5d23057
/network analytics/HW1_dijkstra.py
3d2533ad1e71d006fd5d56022ff5c65dff877939
[]
no_license
chanbaik/chanbaik
16fc52e19c97b0de6dbf140734b754296110d42a
84d8848ee0df16c8dfef0fffe9791629d7b7049b
refs/heads/master
2021-01-10T13:32:20.944586
2020-02-17T16:23:48
2020-02-17T16:23:48
51,171,594
0
0
null
null
null
null
UTF-8
Python
false
false
4,358
py
# -*- coding: utf-8 -*- # %% define the dijkstra function def dijkstra(graph_dict, start, end): """ This is a recursive function that implements Dijkstra's Shortest Path algorithm. It takes as its inputs: i. a graph represented by a "dictionary of dictionaries" structure, generated using networkx; ii. a starting node in that graph; and iii. an ending node for that graph It then performs the following steps: i. initialises a set of distances from the start node as infinity; ii. initialises a set of 'predecessors' to None (a predecessor is defined for each node in the network and it lists the prior node in the path from start to end); iii. initialises the set of of vertices for which the shortest path from start to end has been found to empty; and then iv. whilst there are still vertices left to assess: a. restricts the set of vertices to those where that still need analysisng; b. finds the vertex that is the minimum distance from the start; c. "relaxes" the neighbours of this closest vertex to see if the shortest path to that vertex can be improved; and d. updates the predecessor vertex for each node in the current path When all vertices have been assessed, the function defines the path and returns it with its associated cost """ distances = {} # empty dict for distances predecessors = {} # list of vertices in path to current vertex to_assess = graph_dict.keys() # get all the nodes in the graph that need to be assessed # set all initial distances to infinity and no predecessor for any node for node in graph_dict: distances[node] = float('inf') predecessors[node] = None # set the intial collection of permanently labelled nodes to be empty sp_set = [] # set the distance from the start node to be 0 distances[start] = 0 # as long as there are still nodes to assess: while len(sp_set) < len(to_assess): # chop out any nodes with a permament label still_in = { node: distances[node] for node in [node for node in to_assess if node not in sp_set] } # find the closest node to the current node closest = min(still_in, key = distances.get) # and add it to the set of permanently labelled nodes sp_set.append(closest) # then for all the neighbours of the closest node (that was just added) # to the permanent set for node in graph_dict[closest]: # if a shorter path to that node can be found if distances[node] > distances[closest] + graph[closest][node]['weight']: # update the distance with that shorter distance; and distances[node] = distances[closest] + graph[closest][node]['weight'] # set the predecessor for that node predecessors[node] = closest # once the loop is complete the final path needs to be calculated - this can # be done by backtracing through the predecessors set path = [end] while start not in path: path.append(predecessors[path[-1]]) # return the path in order start -> end, and it's cost return path[::-1], distances[end] # %% # function to get _all_ dijkstra shortest paths def dijkstra_all(graph_dict): ans = [] for start in graph_dict.keys(): for end in graph_dict.keys(): ans.append(dijkstra(graph_dict, start, end)) return ans #%% read in data - use a pandas dataframe just for convenience import pandas as pd data = pd.read_table("../data/HW1_4.txt", sep = " ", header = None, names = ['vx', 'vy', 'weight']) # %% use network x to prepare dictionary structure which can be fed in to the # dijkstra function import networkx as nx graph = nx.from_pandas_dataframe(data, 'vx', 'vy', 'weight') # graph_nodes = graph.nodes() graph_dict = nx.to_dict_of_dicts(graph) # %% run the functions path = dijkstra(graph_dict, 1, 6) all_paths = dijkstra_all(graph_dict)
[ "chanbaik91@gmail.com" ]
chanbaik91@gmail.com
0521e2806ded691379691042dc91f708f1d9dd77
fc9653df96016aeee35e1175e23b7765d0f1967a
/PYTHON COURSE/30 - chapter-3_exercise-1(WINNING_GAME).py
12500a372a53f8c4f276f6edb099396520b270cb
[]
no_license
tushsoni/PYTHON-BEGINNERS-TO-ADVANCED
d8ec2967f80000a1f464993367f7744a69bb72b4
3bd92d588145887d95e82aab03a6480cf46f50f1
refs/heads/master
2020-06-13T05:13:31.037671
2019-07-04T06:47:31
2019-07-04T06:47:31
194,547,503
0
0
null
null
null
null
UTF-8
Python
false
false
1,196
py
# *************************************** CHAPTER-3_EXERCISE-1 *************************************#\ # QUESTION : MAKE A VARIABLE LIKE winning_number and assign any number to it , ask user to guess a number , if user guessed correctly then print "YOU WIN !!!!" # if user did'nt guessed correctly then : # 1) if user guessed lower than actual number then print "too low" # 2) if user guessed higher than actual number then print "too high" # bonus : : : google "how to generate random number using python" to generate random number #winning number # ****************************************************** ANSWER ******************************************************* # winning_number = 13 guessed_number = int(input("Enter a number between 1 to 20 : ")) if winning_number == guessed_number: print("You win the game") else: # It is called as NESTED IF-ELSE (it contain if in else that's why) if guessed_number < winning_number: print("too low") if guessed_number > winning_number: print("too high")
[ "noreply@github.com" ]
tushsoni.noreply@github.com
90bc1ede2a61174bac6107a0fd68500f728a5cdf
e334315ab49ea26617377d023563d2555c7f74eb
/SourceCode/inputLayer/suite_inputLayer/tst_case2/test.py
065f3dbe39890f46b8f728052cdce6f42b12e757
[]
no_license
asthagaur1/danfoss-bdd-automation
d331072992949a3ce372803a284f408ce0315422
714d81e1545f05d16e7c26e832c8b9b9fe6448cf
refs/heads/main
2023-03-30T15:29:54.849082
2021-04-05T08:21:04
2021-04-05T08:21:04
353,651,291
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
# -*- coding: utf-8 -*- import names def main(): startApplication("KoolProg") mouseClick(waitForObject(names.koolProg_imgSetParams_Image)) mouseClick(waitForObjectItem(":SetParameters_List_3", "Danfoss.T4CClient.SetParameters+ListFileItems"))
[ "asthagaur@danfoss.com" ]
asthagaur@danfoss.com
3b43001e103907111a747181d9a47c7ede00f321
7c14313ddb570ee6c10b67132f66676845350a85
/단계별로 풀어보기/부르트 포스/1436_영화감독 숌.py
908be86f8df27acbb51428545664bbc12688afb5
[]
no_license
jongtix/Python_Baekjoon
864eebe6e959417d92c3b1ba3549afc33aa37045
89df7a46a6c6b09b01888f905d864d5b59af95b8
refs/heads/master
2023-01-02T18:39:07.871990
2020-10-19T08:34:38
2020-10-19T08:34:38
265,094,216
1
0
null
null
null
null
UTF-8
Python
false
false
1,837
py
# 문제 # 666은 종말을 나타내는 숫자라고 한다. 따라서, 많은 블록버스터 영화에서는 666이 들어간 제목을 많이 사용한다. 영화감독 숌은 세상의 종말 이라는 시리즈 영화의 감독이다. 조지 루카스는 스타워즈를 만들 때, 스타워즈 1, 스타워즈 2, 스타워즈 3, 스타워즈 4, 스타워즈 5, 스타워즈 6과 같이 이름을 지었고, 피터 잭슨은 반지의 제왕을 만들 때, 반지의 제왕 1, 반지의 제왕 2, 반지의 제왕 3과 같이 영화 제목을 지었다. # # 하지만 숌은 자신이 조지 루카스와 피터 잭슨을 뛰어넘는다는 것을 보여주기 위해서 영화 제목을 좀 다르게 만들기로 했다. # # 종말의 숫자란 어떤 수에 6이 적어도 3개이상 연속으로 들어가는 수를 말한다. 제일 작은 종말의 숫자는 666이고, 그 다음으로 큰 수는 1666, 2666, 3666, .... 과 같다. # # 따라서, 숌은 첫 번째 영화의 제목은 세상의 종말 666, 두 번째 영화의 제목은 세상의 종말 1666 이렇게 이름을 지을 것이다. 일반화해서 생각하면, N번째 영화의 제목은 세상의 종말 (N번째로 작은 종말의 숫자) 와 같다. # # 숌이 만든 N번째 영화의 제목에 들어간 숫자를 출력하는 프로그램을 작성하시오. 숌은 이 시리즈를 항상 차례대로 만들고, 다른 영화는 만들지 않는다. # # 입력 # 첫째 줄에 숫자 N이 주어진다. N은 10,000보다 작거나 같은 자연수이다. # # 출력 # 첫째 줄에 N번째 영화의 제목에 들어간 수를 출력한다. # # 예제 입력 1 # 2 # 예제 출력 1 # 1666 N = int(input()) result = list() i = 1 stand = '666' while len(result) < N: if str(i).find(stand) > -1: result.append(i) i += 1 print(result.pop())
[ "32856255+jongtix@users.noreply.github.com" ]
32856255+jongtix@users.noreply.github.com
21562dbab964edf95aa8c7f35daa1e346636f62a
eb003b949ccd90d350eea8fc895f8b1ba9a99e40
/IMBD_SPIDER/IMBD_spider.py
1908cfd85a10a4e1b6f3c67f3f8dbe8749616aa6
[]
no_license
AhmedFakhry47/ETL-Pipeline-For-IMDB_Movie_Reviews
59d952e3a7c5f8e815dcdd1152ad22dfd5ce4d59
5ca2327a8dc0f71f8a359860041d5b0e41bba421
refs/heads/master
2022-11-23T15:43:00.033629
2020-07-30T18:44:23
2020-07-30T18:44:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,881
py
from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from pymongo import MongoClient import pymongo import scrapy def connect_database(): cluster = MongoClient("mongodb+srv://enihcam:12345@cluster0.irbss.mongodb.net/<Movie_Review>?retryWrites=true&w=majority") db = cluster["Movie_Review"] collection = db["IMBD_Reviews"] return collection SEARCH_QUERY=( 'https://www.imdb.com/search/title?' 'title_type=feature&' 'user_rating=1.0,10.0&' 'countries=us&' 'languages=en&' 'count=250&' 'view=simple' ) class IMBD_spider(scrapy.spiders.Spider): name = 'IMBD_spider' allowed_domains = ['imdb.com'] start_urls = [SEARCH_QUERY] rules = (Rule( LinkExtractor(restrict_css=('div.desc a')), follow=True, callback='parse', ),) database = connect_database() def parse(self,response): links = response.css('span.lister-item-header a::attr(href)').extract() #print('here',links) for link in links: yield response.follow(link,callback=self.parse_movie) def parse_movie(self,response): data = {} data['title'] = response.css('h1::text').extract_first().strip() #data['rating'] = response.css('.subtext::text').extract_first().strip() or None data['year'] = response.css('#titleYear a::text').extract_first() data['users_rating'] = response.xpath('//span[contains(@itemprop, "ratingValue")]/text()').extract_first() data['votes'] = response.xpath('//span[contains(@itemprop, "ratingCount")]/text()').extract_first() data['datascore'] = response.xpath('//div[contains(@class, "datacriticScore")]/span/text()').extract_first() data['img_url'] = response.xpath('//div[contains(@class, "poster")]/a/img/@src').extract_first() countries = response.xpath('//div[contains(@class, "txt-block") and contains(.//h4, "Country")]/a/text()').extract() data['countries'] = [country.strip() for country in countries] languages = response.xpath('//div[contains(@class, "txt-block") and contains(.//h4, "Language")]/a/text()').extract() data['languages'] = [language.strip() for language in languages] actors = response.xpath('//td[not(@class)]/a/text()').extract() data['actors'] = [actor.strip() for actor in actors] genres = response.xpath("//div[contains(.//h4, 'Genres')]/a/text()").extract() data['genre'] = [genre.strip() for genre in genres] tagline = response.xpath('//div[contains(string(), "Tagline")]/text()').extract() data['tagline'] = ''.join(tagline).strip() or None data['description'] = response.xpath('//div[contains(@class, "summary_text")]/text()').extract_first().strip() or None directors = response.xpath("//div[contains(@class, 'credit_summary_item') and contains(.//h4, 'Director')]/a/text()").extract() or None if directors: data['directors'] = [director.strip() for director in directors] data['runtime'] = response.xpath("//div[contains(@class, 'txt-block') and contains(.//h4, 'Runtime')]/time/text()").extract_first() or None data['imdb_url'] = response.url.replace('?ref_=adv_li_tt', '') reviews_link = response.xpath("//div[contains(@class,'subnav')]/div[@id='quicklinksMainSection']/a[@class='quicklink'][3]/@href").extract() yield response.follow(reviews_link[0],meta={'movie_info':data},callback=self.parse_reviews) def parse_reviews(self,response): data = response.meta['movie_info'] reviews = response.xpath("//div[@class='text show-more__control']/text()").extract() stars = response.xpath("//span[@class='rating-other-user-rating']/span/text()").extract()[::2] #Storing data in database current_movie = {x:data[x] for x in data.keys()} current_movie['_id']= current_movie['title'] current_movie['Reviews'] = {str(j):[i,v] for j,i,v in zip(list(range(0,len(stars))),reviews,stars)} del(current_movie['title']) self.database.insert_one(current_movie) yield None
[ "ahmedfakhry805@gmail.com" ]
ahmedfakhry805@gmail.com
72ee003a9e5c5ffb3c760e5114f3bf624734ed45
2c1143026cb6ed4e2d9093368eb3163768be0bd0
/examples/UnderDev/ECG_Entropy/test.py
30d046ad59f14996bf62c4ad1d332715fa6f0963
[ "Python-2.0", "MIT" ]
permissive
rhenanbartels/NeuroKit.py
4679f39e874f852509d11287e0e3936dd8baf702
1c95fd3f67f4157d6f1e13b10b9d08662ffecf05
refs/heads/master
2021-01-20T18:10:22.134512
2017-05-10T20:55:31
2017-05-10T20:55:31
90,910,551
0
0
null
2017-05-10T21:37:44
2017-05-10T21:37:43
null
UTF-8
Python
false
false
543
py
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import neurokit as nk import nolds df = pd.read_csv('data.csv') df = nk.ecg_process(ecg=df["ECG"]) rri = df["ECG"]["RR_Intervals"] signal=rri tolerance = "default" emb_dim=2 chaos = nk.complexity(signal, lyap_r=False, lyap_e=False) #chaos = pd.Series(chaos) #chaos.index = ["ECG_Complexity_" + s for s in chaos.index] #processed_ecg["ECG"]["Complexity"] = chaos.to_dict() #nolds.sampen(rri, 2, 0.1*np.std(rri), dist="euler") #sample_entropy(rri,2, 0.1*np.std(rri))[1] # #
[ "dom.mak19@gmail.com" ]
dom.mak19@gmail.com
19b9ec027d7d7e6b2f95e1ea3516fb29e6acdfbb
7f4b7bd69bf406703bd669acee58e789e937dec0
/classifier_models/q-1-1.py
f26f48734307675bf7f28921774a9deaeffbd45a
[]
no_license
PrabhaPandey911/Machine-Learning
9c3767269fcb9c64f5cde8f4e629cf10f4caa7e2
fd7555fb90fb4f5e9b815a6d046ba0240f530841
refs/heads/main
2023-05-08T11:29:02.486864
2021-05-23T15:58:37
2021-05-23T15:58:37
370,025,489
0
0
null
null
null
null
UTF-8
Python
false
false
18,443
py
#!/usr/bin/env python # coding: utf-8 # # q-1-1 # # # Part (i): # In[137]: import numpy as np import pandas as pd import sys import math import matplotlib import matplotlib.pyplot as plt from pylab import * filename1="./RobotDataset/Robot1" filename2="./RobotDataset/Robot2" # In[138]: #As the given data does not have column names defined, hence giving them names accordingly, while reading the file colnames=['class', 'a1', 'a2', 'a3','a4','a5','a6','Id'] robot1 = pd.read_csv(filename, sep=' ', names=colnames,skipinitialspace=True) robot2 =pd.read_csv(filename2,sep=' ',names=colnames,skipinitialspace=True) # In[139]: #To calculate the distance we need to bring down all the values of all the columns within the range of 0 and 1 #and hence normalize the data #bringing down the values in the range(0,1) def normalise(data): result=data for col in data.columns: if col!='class'and col!='Id': minimum=data[col].min() maximum=data[col].max() result[col]=((data[col])-minimum)/(maximum-minimum) return result #normalizing for robot1 robot1=normalise(robot1) #normalizing for robot2 robot2=normalise(robot2) # In[140]: #for random spliting of data into training and validate #for robot1 robot1 = robot1.sample(frac=1) train1, validate1 = np.split(robot1, [int(.8*len(robot1))]) #for robot2 robot2=robot2.sample(frac=1) train2,validate2 = np.split(robot2, [int(.8*len(robot2))]) # In[141]: #for predicting in KNN, what we do is, for any given row, we try and calculate the distance with every row of the #training data and then select k def predict(row,k,t,dis_func): #t: train data set #dis_func: distance function used #k: k value provided #row: point under consideration #get the sorted list according to the function passed #structure of list, tuple of distance and corresponding class lable distance=dis_func(t,row) #knn is a list of size 2, zeroth index represents '0' of class lable, first index represents '1' of class lable knn=[0,0] #take the first k distances and calculate the total number of times '0' and '1' appearing in class lable for i in range(0,k): knn[distance[i][1]]+=1 #return the class label which occured most number of times if knn[1]>=knn[0]: return 1 else: return 0 # In[142]: #calculate distance using euclidean formula def euclidean(t,row): distance=[] columns=['a1','a2','a3','a4','a5','a6'] #t is the training data, to find the distance with all points, a row equals a point #row is the given point with which distance is to be calculated for index1,row1 in t.iterrows(): temp=0 #for one row, iterate over all the columns and sum up the square of difference (formula for euclidean) for col in columns: temp+=((row1[col]-row[col])**2) #take square root of the above aggregate, this is the euclidean distance between current considered points #save the distance and corresponding class of the training row under consideration, in a list "distance" distance.append((math.sqrt(temp),row1['class'])) #sorting all the distances in increasing order distance.sort() #return the distance list return distance # In[143]: #calculate distance using manhattan formula def manhattan(t,row): columns=['a1','a2','a3','a4','a5','a6'] distance=[] #t is the training data, to find the distance with all points, a row equals a point #row is the given point with which distance is to be calculated for index1,row1 in t.iterrows(): temp=0 #for one row traverse over all the columns and sum up the absolute of corresponding differences for col in columns: temp+=abs(row1[col]-row[col]) #store the distance and corresponding class lable value distance.append((temp,row1['class'])) #sort the distances in increasing order distance.sort() #return the distance list return distance # In[144]: #calculate distance using manhattan formula def chebyshev(t,row): columns=['a1','a2','a3','a4','a5','a6'] distance=[] #t is the training data, to find the distance with all points, a row equals a point #row is the given point with which distance is to be calculated for index1,row1 in t.iterrows(): max_value=-sys.maxint-1 #for a row traverse all the columns and find out the max value of absolute of corresponding differences for col in columns: diff=abs(row1[col]-row[col]) max_value=max(diff,max_value) #store the distance and corresponding class lable value distance.append((max_value,row1['class'])) #sort the distances in increasing order distance.sort() #return the distance list return distance # In[145]: #calculate accurancy for training data t and a given function func def calculate_accuracy(t,func,validate): l=len(t) l=int(math.sqrt(l)) l+=1 #for plotting graph k_level=[] accu_list=[] max_acc=-sys.maxint-1 max_prec=0 max_recall=0 max_f1sc=0 final_k=0 #range of k is from 1 to square root of the number of rows of training data set provided for i in range(1,l,2): #as k value should always be odd, therefore step size is equal to 2 (third arg) #for confusion matrix actual_value=[] predicted_value=[] tp=0 tn=0 fp=0 fn=0 #for each row in validate for index,row in validate.iterrows(): x=predict(row,i,t,func) if row['class']==1 and x==1: tp+=1 if row['class']==0 and x==0: tn+=1 if row['class']==1 and x==0: fn+=1 if row['class']==0 and x==1: fp+=1 #for confusion matrix actual_value.append(row['class']) predicted_value.append(x) #for confusion matrix actu = pd.Series(actual_value, name='Actual') pred = pd.Series(predicted_value, name='Predicted') df_confusion = pd.crosstab(actu, pred) if tp+tn+fp+fn!=0: acc_cm=float(tp+tn)/(tp+tn+fp+fn)#accuracy_cm(df_confusion) else: acc_cm=0 if tp+fn!=0: recal_cm=float(tp)/(tp+fn)#recall_cm(df_confusion) else: recal_cm=0 if tp+fp!=0: preci_cm=float(tp)/(tp+fp)#precision_cm(df_confusion) else: preci_cm=0 if recal_cm!=0 and preci_cm!=0: f1_sc=(2/((1/recal_cm)+(1/preci_cm)))#f1Score_cm(preci_cm,recal_cm) else: f1_sc=0 #to plot the graph between different k values and its corresponding accuracy k_level.append(i) accu_list.append(acc_cm) if max_acc<acc_cm: max_acc=acc_cm final_k=i max_prec=preci_cm max_recall=preci_cm max_f1sc=preci_cm return (k_level,accu_list,final_k,max_acc,max_prec,max_recall,max_f1sc) # In[146]: k1_list,accu1,k1,acc1,pre1,recal1,f1sc1=calculate_accuracy(train1,euclidean,validate1) k2_list,accu2,k2,acc2,pre2,recal2,f1sc2=calculate_accuracy(train1,chebyshev,validate1) k3_list,accu3,k3,acc3,pre3,recal3,f1sc3=calculate_accuracy(train1,manhattan,validate1) k11_list,accu11,k11,acc11,pre11,recal11,f1sc11=calculate_accuracy(train2,euclidean,validate2) k22_list,accu22,k22,acc22,pre22,recal22,f1sc22=calculate_accuracy(train2,chebyshev,validate2) k33_list,accu33,k33,acc33,pre33,recal33,f1sc33=calculate_accuracy(train2,manhattan,validate2) # # Part (ii): Iris # # In[147]: irisfile="./Iris/Iris.csv" colnames=['sepal_length', 'sepal_width', 'petal_length', 'petal_width','class'] data = pd.read_csv(irisfile, names=colnames,skipinitialspace=True) #bringing down the values in the range(0,1) def normalise_iris(data): result=data for col in data.columns: if col!='class': minimum=data[col].min() maximum=data[col].max() result[col]=((data[col])-minimum)/(maximum-minimum) return result data=normalise_iris(data) # In[148]: data = data.sample(frac=1) train, validate = np.split(data, [int(.8*len(data))]) # In[149]: def predict_iris(row,k,t,dis_func): distance=dis_func(t,row) knn={} for i in range(0,k): if distance[i][1] not in knn.keys(): knn[distance[i][1]]=1 else: knn[distance[i][1]]+=1 maxi=0 label='' for i in knn.keys(): if maxi<knn[i]: maxi=knn[i] label=i return label # In[150]: def euclidean_iris(t,row): distance=[] columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] for index1,row1 in t.iterrows(): temp=0 for col in columns: temp+=((row1[col]-row[col])**2) distance.append((math.sqrt(temp),row1['class']))#distance is list of distance and corresponding class label distance.sort()#sorting all the distances in increasing order return distance # In[151]: def manhattan_iris(t,row): columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] distance=[] for index1,row1 in t.iterrows(): temp=0 for col in columns: temp+=abs(row1[col]-row[col]) distance.append((temp,row1['class'])) distance.sort() return distance # In[152]: def chebyshev_iris(t,row): columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] distance=[] for index1,row1 in t.iterrows(): max_value=-sys.maxint-1 for col in columns: if max_value<abs(row1[col]-row[col]): max_value=abs(row1[col]-row[col]) distance.append((max_value,row1['class'])) distance.sort() return distance # In[153]: def accuracy_cm(df_confusion): tpptn=0 #tp +tn for i in df_confusion: tpptn+=df_confusion[i][i] total=0 for i in df_confusion: total+=df_confusion[i].sum() return float(tpptn)/total # In[154]: def precision_cm(df_confusion): return np.sum(np.diag(df_confusion)/ np.sum(df_confusion, axis = 0))/len(np.diag(df_confusion)/ np.sum(df_confusion, axis = 0)) # In[155]: def recall_cm(df_confusion): return np.sum(np.diag(df_confusion) / np.sum(df_confusion, axis = 1))/len(np.diag(df_confusion) / np.sum(df_confusion, axis = 1)) # In[156]: def f1Score_cm(precision,recall): return float(2)/((1/recall)+(1/precision)) # In[157]: #calculate accurancy for training data t and a given function func def calculate_accuracy_iris(t,func,validate): l=len(t) l=int(math.sqrt(l)) l+=1 #for plotting graph k_level=[] accu_list=[] max_acc=-sys.maxint-1 final_k=0 max_prec=0 max_recall=0 max_f1sc=0 #range of k is from 1 to square root of the number of rows of training data set provided for i in range(1,l): #here one skip is performed each time as class lable has 3 unique values #for confusion matrix actual_value=[] predicted_value=[] #for each row in validate for index,row in validate.iterrows(): x=predict_iris(row,i,t,func) #for confusion matrix actual_value.append(row['class']) predicted_value.append(x) actu = pd.Series(actual_value, name='Actual') pred = pd.Series(predicted_value, name='Predicted') df_confusion = pd.crosstab(actu, pred) acc_cm=accuracy_cm(df_confusion) preci_cm=precision_cm(df_confusion) recal_cm=recall_cm(df_confusion) f1_sc=f1Score_cm(preci_cm,recal_cm) #to plot the graph between different k values and its corresponding accuracy k_level.append(i) accu_list.append(acc_cm) if max_acc<acc_cm: max_acc=acc_cm final_k=i max_prec=preci_cm max_recall=preci_cm max_f1sc=preci_cm return (k_level,accu_list,final_k,max_acc,max_prec,max_recall,max_f1sc) # # q-1-1-1 # # Accuracy, Precision, Recall, k-value and F1 score # In[158]: print "*******ROBOT1*******" print print "Eucledian" print print "k_value: ",k1 print "max accuracy: ",acc1 print "precision: ",pre1 print "recall: ",recal1 print "f1 score: ",f1sc1 print print "chebyshev" print print "k_value: ",k2 print "max accuracy: ",acc2 print "precision: ",pre2 print "recall: ",recal2 print "f1 score: ",f1sc2 print print "manhattan" print print "k_value: ",k3 print "max accuracy: ",acc3 print "precision: ",pre3 print "recall: ",recal3 print "f1 score: ",f1sc3 print # In[159]: print "*******ROBOT2*******" print print "Eucledian" print print "k_value: ",k11 print "max accuracy: ",acc11 print "precision: ",pre11 print "recall: ",recal11 print "f1 score: ",f1sc11 print print "chebyshev" print print "k_value: ",k22 print "max accuracy: ",acc22 print "precision: ",pre22 print "recall: ",recal22 print "f1 score: ",f1sc1 print print "manhattan" print print "k_value: ",k33 print "max accuracy: ",acc33 print "precision: ",pre33 print "recall: ",recal33 print "f1 score: ",f1sc33 print # In[160]: #IRIS k1_listi,accu1i,k1i,acc1i,prec1i,recal1i,f1sc1i=calculate_accuracy_iris(train,euclidean_iris,validate) k2_listi,accu2i,k2i,acc2i,prec2i,recal2i,f1sc2i=calculate_accuracy_iris(train,chebyshev_iris,validate) k3_listi,accu3i,k3i,acc3i,prec3i,recal3i,f1sc3i=calculate_accuracy_iris(train,manhattan_iris,validate) # In[161]: print "*******IRIS*******" print print "Eucledian" print print "k: ",k1i print "max accuracy: ",acc1i print "precision: ",prec1i print "recall: ",recal1i print "f1 Score: ",f1sc1i print print "chebyshev" print print "k: ",k2i print "max accuracy: ",acc2i print "precision: ",prec2i print "recall: ",recal2i print "f1 Score: ",f1sc2i print print "manhattan" print print "k: ",k3i print "max accuracy: ",acc3i print "precision: ",prec3i print "recall: ",recal3i print "f1 Score: ",f1sc3i print # # q-1-1-2 # # Graphs for Euclidean, Chebyshev and Manhattan # In[162]: fig,axes=plt.subplots(figsize=(7,7)) axes.plot(k1_list,accu1,label=r"$Eucledian$") axes.plot(k2_list,accu2,label=r"$Chebyshev$") axes.plot(k3_list,accu3,label=r"$Manhattan$") legend=axes.legend(loc='best') axes.set_title('Robot 1') plt.xlabel('k values') plt.ylabel('accuracy') # In[163]: fig,axes=plt.subplots(figsize=(7,7)) axes.plot(k11_list,accu11,label=r"$Eucledian$") axes.plot(k22_list,accu22,label=r"$Chebyshev$") axes.plot(k33_list,accu33,label=r"$Manhattan$") legend=axes.legend(loc='best') axes.set_title('Robot 2') plt.xlabel('k values') plt.ylabel('accuracy') # In[164]: fig,axes=plt.subplots(figsize=(7,7)) axes.plot(k1_listi,accu1i,label=r"$Eucledian$") axes.plot(k2_listi,accu2i,label=r"$Chebyshev$") axes.plot(k3_listi,accu3i,label=r"$Manhattan$") legend=axes.legend(loc='best') axes.set_title('Iris') plt.xlabel('k values') plt.ylabel('accuracy') # # Test file # # For robot1 # In[165]: testfile=raw_input("Test File: ") colnames=[ 'a1', 'a2', 'a3','a4','a5','a6','Id'] test = pd.read_csv(testfile, sep=' ', names=colnames,skipinitialspace=True) test=normalise(test) for index,row in test.iterrows(): print predict(row,3,train1,euclidean) # # For iris # In[166]: testiris=raw_input("Test File: ") colnames_iris=['sepal_length', 'sepal_width', 'petal_length', 'petal_width','class'] testi = pd.read_csv(testiris, sep=',', names=colnames_iris,skipinitialspace=True) testi=normalise_iris(testi) for index,row in testi.iterrows(): print predict_iris(row,7,train,euclidean_iris) # # Comparision With Scikit-learn # In[167]: import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report, confusion_matrix import matplotlib.pyplot as plt # In[168]: from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report, confusion_matrix from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # In[169]: def compareScikit(df,target,identifier=None): le = preprocessing.LabelEncoder() # df[identifier] = le.fit_transform(df[identifier]) if identifier is not None: df[identifier] = le.fit_transform(df[identifier]) # dataset_R1=dataset_R1.drop('index',1) cols = [col for col in df.columns if col not in [target,identifier]] data=df[cols] target=df[target] data_train, data_test, target_train, target_test = train_test_split(data,target, test_size = 0.20, random_state = 10) scaler = StandardScaler() scaler.fit(data_train) data_train = scaler.transform(data_train) data_test = scaler.transform(data_test) classifier = KNeighborsClassifier(n_neighbors=5) classifier.fit(data_train, target_train) y_pred = classifier.predict(data_test) error = [] l=len(df) l=int(math.sqrt(l)) l+=1 for i in range(1, l): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(data_train, target_train) pred_i = knn.predict(data_test) error.append(np.mean(pred_i != target_test)) plt.figure(figsize=(7, 7)) plt.plot(range(1, l), error, color='red', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=10) plt.title('Error Rate K Value') plt.xlabel('K Value') plt.ylabel('Mean Error') score = accuracy_score(target_test, y_pred) print("score",score) # # Robot 1 # In[170]: compareScikit(robot1,'class','Id') # # Robot 2 # In[171]: compareScikit(robot2,'class','Id') # # Iris # In[172]: compareScikit(data,'class',None) # # Possible reasons for better performance # 1) There is no training phase or it is very minimal, hence no extra time is utilized to do the same. # # # 2) There is no data distribution.
[ "prabha.pandey.iiith@gmail.com" ]
prabha.pandey.iiith@gmail.com
02213e4a2e6da7ecce759935c4b8ca0ee895f692
1a2b7aa4db8f36fcabb7093d4a5120a8ce3fa57e
/nanalib/nanalib/nanalib/doctype/author/test_author.py
42da2bd908bf25cc1ffd9bca4be4c90df0ff0b8a
[ "MIT" ]
permissive
mohamedhafezqo/nana_library
3722dfe4b345da3064f22f3aa75951aaedd848ee
d429b2a1f2af4ba988e96c86e39985c19b8ffb51
refs/heads/master
2022-04-14T13:13:47.312671
2020-04-16T13:18:17
2020-04-16T13:18:17
256,219,958
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
# -*- coding: utf-8 -*- # Copyright (c) 2020, nana and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestAuthor(unittest.TestCase): pass
[ "mohamed.hafezqo@gmail.com" ]
mohamed.hafezqo@gmail.com
12965f0d92a6486ae33f800cf7b821d5ddd92a07
0d6820aa4958aff7ff083aaa78e899b70d201c73
/src_docker_version/imdb_clone/imdb_clone/urls.py
1edce63ea2d3db9ed13fd05f0ef1d908aa887a8b
[]
no_license
ramankumarrudr/ImdbClone_DeltaX
e15ccd363b14be74fd49ade873a8ce061e50bdf5
b789da271eaad6fb0866e55d60ad61e230f56db5
refs/heads/master
2023-04-30T13:09:54.225152
2019-08-12T12:42:04
2019-08-12T12:42:04
199,679,499
0
0
null
null
null
null
UTF-8
Python
false
false
1,160
py
from django.contrib import admin from django.urls import path,re_path from django.urls import include from django.conf.urls import url from app import views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', views.index,name='index'), re_path(r'^tvshow/$', views.tvshows,name='tvshow'), re_path(r'^actor/$', views.actor_images,name='actor'), re_path(r'^exit/$', views.formexit,name='exit'), re_path(r'^form/$',views.post,name='form'), re_path(r'^showform/$',views.post_tvshow,name='show_form'), re_path(r'^actor-form/$',views.actor,name='actor_form'), re_path(r'^form/(?P<id>\d+)/edit/$',views.movie_update,name="update"), re_path(r'^index/(?P<id>\d+)/delete/$',views.movie_delete,name="delete"), re_path(r'^showform/(?P<id>\d+)/edit/$',views.tvshow_update,name="update_tvshow"), re_path(r'^tvshow/(?P<id>\d+)/delete/$',views.tvshow_delete,name="delete_tvshow"), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ "ramankumar.rudr@gmail.com" ]
ramankumar.rudr@gmail.com
8366171b9a7ff4af419cd587e13a7454da48da19
8ad6662c4fa0755d33a0cf62ddc50b3815e870a0
/venv/bin/odf2xml
9e26999219b30a41cc49d95be21f3ce36a2d4bc6
[]
no_license
xarala221/gestion-parrainage
1dea1aabadb8049ea64e716c30c8ff4e3208a001
6efebaa7271a0c6644e0b868877ca71630b4e455
refs/heads/master
2020-04-05T02:11:29.592504
2018-11-07T19:31:26
2018-11-07T19:31:26
156,467,445
1
0
null
null
null
null
UTF-8
Python
false
false
2,493
#!/home/hackerpro/projects/2019/parrainage/venv/bin/python3 # -*- coding: utf-8 -*- # Copyright (C) 2008 Søren Roug, European Environment Agency # # This is free software. You may redistribute it under the terms # of the Apache license and the GNU General Public License Version # 2 or at your option any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Contributor(s): # # # OpenDocument can be a complete office document in a single # XML document. This script will create such a document. import sys, getopt, base64 from odf.opendocument import load from odf.draw import Image, ObjectOle from odf.style import BackgroundImage from odf.text import ListLevelStyleImage from odf.office import BinaryData if sys.version_info[0]==3: unicode=str def usage(): sys.stderr.write("Usage: %s [-e] [-o outputfile] [inputfile]\n" % sys.argv[0]) if __name__ == "__main__": embedimage = False try: opts, args = getopt.getopt(sys.argv[1:], "o:e", ["output="]) except getopt.GetoptError: usage() sys.exit(2) outputfile = '-' for o, a in opts: if o in ("-o", "--output"): outputfile = a if o == '-e': embedimage = True if len(args) > 1: usage() sys.exit(2) if len(args) == 0: d = load(sys.stdin) else: d = load(unicode(args[0])) if embedimage: images = d.getElementsByType(Image) + \ d.getElementsByType(BackgroundImage) + \ d.getElementsByType(ObjectOle) + \ d.getElementsByType(ListLevelStyleImage) for image in images: href = image.getAttribute('href') if href and href[:9] == "Pictures/": p = d.Pictures[href] bp = base64.encodestring(p[1]) image.addElement(BinaryData(text=bp)) image.removeAttribute('href') xml = d.xml() if outputfile == '-': print (xml) else: open(outputfile,"wb").write(xml) # Local Variables: *** # mode: python *** # End: ***
[ "xaralaxarala@gmail.com" ]
xaralaxarala@gmail.com
dce2a94fb0ea75fa40eb112d0bb3937eb37b2d3c
9e831c0defd126445772cfcee38b57bfd8c893ca
/code/questions/241~250_/246.py
f54c941a608497cd2b46602faf9664a20fa052a7
[]
no_license
m358807551/Leetcode
66a61abef5dde72250d032b7ea06feb3f2931d54
be3f037f6e2057a8f2acf9e820bbbbc21d7aa1d2
refs/heads/main
2023-04-22T15:13:43.771145
2021-05-07T06:47:13
2021-05-07T06:47:13
321,204,181
4
1
null
null
null
null
UTF-8
Python
false
false
477
py
""" https://leetcode-cn.com/problems/strobogrammatic-number/ """ class Solution(object): def isStrobogrammatic(self, num): """ :type num: str :rtype: bool """ left, right = 0, len(num)-1 while left < right: if num[left]+num[right] not in '00 11 88 69 96'.split(): return False left += 1 right -= 1 return num[left] in '018' if left == right else True print( )
[ "m358807551@163.com" ]
m358807551@163.com
cac2631608240c84ba8954024d8ea505c9f2951c
9845e9a4616f9bd2e55996507bf96d47d7553d8c
/Shirley/Notebooks and Resources/config.py
6eec9eff508eb0a25f4f932c8bbf659434834eff
[]
no_license
suealexa/Plane_project
28e26ca728077f97801a508f511a2643b4a75129
d55f0f3759804530d365cdb03f300871c6317490
refs/heads/master
2020-12-19T21:56:30.461197
2020-01-23T19:02:46
2020-01-23T19:02:46
235,864,572
0
0
null
null
null
null
UTF-8
Python
false
false
98
py
api_key = 'AIzaSyBoe3QXczQK_5R-ivDFVgVH0a_3GDxnXfI' username = 'postgres' password = 'Learn2019!'
[ "noreply@github.com" ]
suealexa.noreply@github.com
d9872a8513d7495f66afca7c52f6b105ad784190
955773323446846eff0fbd4e9d3e3a543226f6db
/SomeProject/FaceDetection/get_date.py
a546924631b028235eb51789a59528d3b7a1ddd8
[]
no_license
zhxing001/ML_DL
94d8aa64a459b4d257efefe160dac7fb5433e91e
6c6a0a42f52d7d392dc844aa94306221c52e319a
refs/heads/master
2021-07-15T20:14:16.976797
2018-10-31T02:42:55
2018-10-31T02:42:55
135,117,665
3
0
null
null
null
null
UTF-8
Python
false
false
1,970
py
def get_date_and_label(): import matplotlib.pyplot as plt #读入数据和标签,我存了一份JPG格式的,但是这样存储是有问题的,matlab三通道拉长的话是 #一个通道连续存储,而python是一个位置三个通道连续存储。所以最后还是改用mat型存储 #============================================================================== # train_img=cv2.imread('train_img.jpg',0) # train_label=cv2.imread('train_label.jpg',0) # test_img=cv2.imread('test_img.jpg',0) # test_label=cv2.imread('test_label.jpg',0) # # train_img_reshape=np.reshape(train_img,[-1,64,64,3]) # plt.imshow(train_img_reshape[1]) # #============================================================================== import scipy.io as sio #使用scipy.io来加载mat文件,还是挺好用的 train_img_mat=sio.loadmat('C:/Users/zhxing/Desktop/data/train_img1.mat') train_img=train_img_mat['train_img_rz'] train_label_mat=sio.loadmat('C:/Users/zhxing/Desktop/data/train_label1.mat') train_label=train_label_mat['train_labels'] test_img_mat=sio.loadmat('C:/Users/zhxing/Desktop/data/test_img1.mat') test_img=test_img_mat['test_img_rz'] test_label_mat=sio.loadmat('C:/Users/zhxing/Desktop/data/test_label1.mat') test_label=test_label_mat['test_labels'] return train_img,train_label,test_img,test_label #=====测试下数据对不对,看来是没有问题的========================================================================= # for i in range(0,15): # img=train_img[i,:,:,:] # plt.figure() # plt.imshow(img) # plt.title(train_label[i]) # #============================================================================== #============================================================================== # for i in range(0,15): # img=test_img[i,:,:,:] # plt.figure() # plt.imshow(img) # plt.title(test_label[i]) #==============================================================================
[ "zhxing_cas@163.com" ]
zhxing_cas@163.com
890dc7e724af48f6a0735079ff1f93c895ef6d0e
35d8b4775d24dd013fac07a8cfd2b672a4ec925e
/724. Find Pivot Index.py
5d55381dd6d72dcaa4aa76b0a401f22bf8530f4f
[]
no_license
melekoktay/Leetcode-Practice
a6aba796a1dd9bd239ff64db010c086079c2218f
d181f2075c6c3881772dfbf54df3ac3390936079
refs/heads/master
2022-12-21T07:00:37.086434
2020-10-12T22:40:34
2020-10-12T22:40:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,515
py
''' 724. Find Pivot Index My SubmissionsBack to Contest Given an array of integers nums, write a method that returns the "pivot" index of this array. We define the pivot index as the index where the sum of the numbers to the left of the index is equal to the sum of the numbers to the right of the index. If no such index exists, we should return -1. If there are multiple pivot indexes, you should return the left-most pivot index. Example 1: Input: nums = [1, 7, 3, 6, 5, 6] Output: 3 Explanation: The sum of the numbers to the left of index 3 (nums[3] = 6) is equal to the sum of numbers to the right of index 3. Also, 3 is the first index where this occurs. Example 2: Input: nums = [1, 2, 3] Output: -1 Explanation: There is no index that satisfies the conditions in the problem statement. Note: The length of nums will be in the range [0, 10000]. Each element nums[i] will be an integer in the range [-1000, 1000]. ''' from tools import timing class Solution: @timing def pivotIndex(self, nums): """ :type nums: List[int] :rtype: int """ if len(nums) < 3: return -1 left_sum = 0 right_sum = sum(nums) for i, num in enumerate(nums): right_sum -= num if left_sum == right_sum: return i left_sum += num return -1 nums = [1, 2, 3] nums2 = [1, 7, 3, 6, 5, 6] print nums print Solution().pivotIndex(nums) print nums2 sol = Solution() print sol.pivotIndex(nums2)
[ "buaaluqiang@hotmail.com" ]
buaaluqiang@hotmail.com
87caa856e0d6cc766fc6a3ffde69398715dc4ac3
dc66af3b1640f2748c13fbc3802a5855f9b6ae01
/Project Implementation/ML_DL/Count_no_of_coins/Iishi/object_detection_edge.py
bfa52532d1337ce2e3f6dea02a8e7eaa8e8af260
[]
no_license
jerelyn-premjit/Dawn
a9629e7eaafd7c43313e530bc6efa98eb46595a1
7cf9cc0509e5f965cede7e36066014f0d3e818df
refs/heads/master
2022-01-07T09:50:37.850846
2019-04-17T14:08:30
2019-04-17T14:08:30
184,249,330
2
0
null
null
null
null
UTF-8
Python
false
false
405
py
import cv2 img = cv2.imread('coins.png') bilateral_filtered_image = cv2.bilateralFilter(img, 5, 175, 175) edge_detected_image = cv2.Canny(bilateral_filtered_image, 75, 200) cv2.imshow('Edge', edge_detected_image) cv2.waitKey(0) contours,h = cv2.findContours(edge_detected_image,1,2) for cnt in contours: cv2.drawContours(img,[cnt],0,(0,255,0),1) cv2.imshow('Objects Detected',img) cv2.waitKey(0)
[ "iishipatel@gmail.com" ]
iishipatel@gmail.com
d83ead9269308088dace0d3a4793ea36908e4b40
52b5773617a1b972a905de4d692540d26ff74926
/.history/valid_20200616215224.py
a3e2a3055cb4ab737c0f457a39c3d13fdc34ef94
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,261
py
# Ipv4 --> 4 decimal numbers,between 0 to 255 # leading zero's is invalid # check whethere its a digit between 0 to 255 import string def valid(str): if str[len(str)-1] == ":" or str[len(str)-1] == ".": return "Neither" address = str.split(".") numbers = range(0,256) result = None for a in address: if len(address) == 4: print(a.isdigit()) if a.isdigit() == False: result = "Neither" else: if int(a) in numbers: if len(a) == 2 and a[0] == "0": result = "Neither" result = "IPv4" return result else: newAddress = str.split(":") i = 0 while i < len(newAddress)-1: print(newAddress[i]) well = all(c in string.hexdigits for c in newAddress[i]) if newAddress[i] == "": return "Neither" if well == True: return "IPV6" else: return "Neither" i +=1 return result print(valid("12..33.4"))
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
3fc6eb8ea204b5fd78b064ff2167321ea6e5d64d
7998938fd5d56c01f6053883b6b2faeeb9f77465
/test/test_result_code.py
105c6a1a911a2527518863042fb31179b797da0d
[]
no_license
jasonsemko/swagger
d87b7fe16aff701e1e6f4446f272a5fd8fc4bb01
23e1b837cf2f384731933ac5bf6bd90d5e1b290e
refs/heads/master
2020-06-24T15:20:57.586047
2017-07-11T22:49:48
2017-07-11T22:49:48
96,943,500
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
# coding: utf-8 """ AvaTax REST API The AvaTax REST API exposes the most commonly used available for interacting with the AvaTax service, allowing calculation of tax, modification of documents, and validation of addresses. If you're unsure of which API to use, a full comparison of the differences between the functionality provided by our REST and SOAP interfaces is documented [here](http://developer.avalara.com/avatax/soap-or-rest/). The [SOAP API reference](http://developer.avalara.com/avatax/api-reference/tax/soap) is also available. OpenAPI spec version: 1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.result_code import ResultCode class TestResultCode(unittest.TestCase): """ ResultCode unit test stubs """ def setUp(self): pass def tearDown(self): pass def testResultCode(self): """ Test ResultCode """ model = swagger_client.models.result_code.ResultCode() if __name__ == '__main__': unittest.main()
[ "jasonsemko@gmail.com" ]
jasonsemko@gmail.com
fe5d5716001ab8bdc4208658dae4a013ef944713
18b67c9db2ba65b68e3efbf7133b92cc3fb6cc2b
/setup.py
fb9a7e719bf40fcf631821217e0075e5515cf606
[]
no_license
Abbie-gz/cicd-demo-v5
153557af920849a8475b4a3b7f73012078d5e835
ce0634261e677135db3280be58ab9ccce022be5e
refs/heads/main
2023-06-03T05:34:23.098949
2021-07-01T14:33:51
2021-07-01T14:33:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
from setuptools import find_packages, setup from cicd_demo_2 import __version__ setup( name="cicd_demo_2", packages=find_packages(exclude=["tests", "tests.*"]), setup_requires=["wheel"], version=__version__, description="Databricks Labs CICD Templates Sample Project", author="", )
[ "ypyabby@163.com" ]
ypyabby@163.com
a346f70258b827ad3d297c165e834c474f52f801
08175e7b7f96316b183e1e86cca238bb5305ae8d
/words_len5_edited_dist.py
3554be5737960d60db6458f9af749fa19a9b8e92
[ "BSD-3-Clause" ]
permissive
GrahamAtkinson035/lab8_word-ladders
32215792f2022d7a554000fd0f6b8a3526d6a303
cab5c794be5a869c337e25adb73f3f89c4a3f63e
refs/heads/master
2021-01-16T22:39:28.438457
2016-02-08T15:39:15
2016-02-08T15:39:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,199
py
""" Words/Ladder Graph ------------------ Generate an undirected graph over the 5757 5-letter words in the datafile words_dat.txt.gz. Two words are connected by an edge if they differ in one letter, resulting in 14,135 edges. This example is described in Section 1.1 in Knuth's book [1]_,[2]_. References ---------- .. [1] Donald E. Knuth, "The Stanford GraphBase: A Platform for Combinatorial Computing", ACM Press, New York, 1993. .. [2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html """ __author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)', 'Brendt Wohlberg', 'hughdbrown@yahoo.com']) # Copyright (C) 2004-2015 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. import networkx as nx #------------------------------------------------------------------- # The Words/Ladder graph of Section 1.1 #------------------------------------------------------------------- def anagrams(word): if len(word) < 2: return word else: tmp = [] for i, letter in enumerate(word): for j in anagrams(word[:i]+word[i+1:]): tmp.append(j+letter) return tmp def generate_graph(words): from string import ascii_lowercase as lowercase G = nx.Graph(name="words") lookup = dict((c,lowercase.index(c)) for c in lowercase) def edit_distance_one(word): for i in range(len(word)): left, c, right = word[0:i], word[i], word[i+1:] j = lookup[c] # lowercase.index(c) for cc in lowercase[j+1:]: ana_word = left + cc + right ana_list = anagrams(ana_word) for i in ana_list: yield i candgen = ((word, cand) for word in sorted(words) for cand in edit_distance_one(word) if cand in words) G.add_nodes_from(words) for word, cand in candgen: G.add_edge(word, cand) return G def words_graph(): """Return the words example graph from the Stanford GraphBase""" import gzip fh=gzip.open('words_dat.txt.gz','r') words=set() for line in fh.readlines(): line = line.decode() if line.startswith('*'): continue w=str(line[0:5]) words.add(w) return generate_graph(words) if __name__ == '__main__': from networkx import * G=words_graph() print("Loaded words_dat.txt containing 5757 five-letter English words.") print("Two words are connected if they differ in one letter in any position.") print("Graph has %d nodes with %d edges" %(number_of_nodes(G),number_of_edges(G))) print("%d connected components" % number_connected_components(G)) for (source,target) in [('chaos','order'), ('nodes','graph'), ('pound','marks')]: print("Shortest path between %s and %s is"%(source,target)) try: sp=shortest_path(G, source, target) for n in sp: print(n) except nx.NetworkXNoPath: print("None")
[ "themesta@gmail.com" ]
themesta@gmail.com
de1f9e1c256a8eb9c3c61a0f88aea6549d4cadbe
e61e78c9f616bafe7a64d77e43fe46f0385f93f8
/listDemo.py
ea980835174a94a92fe80efb9af941e912a0c14c
[]
no_license
dafaWang/myPythonDemo
6fb3ad3c3cebcc0f5b2d5c3f2e445efa5fe2ee33
859160fb227a3bbde383ef1c01fc4b61d574e451
refs/heads/master
2021-01-20T16:22:01.096182
2017-05-11T09:53:41
2017-05-11T09:53:41
90,835,363
0
0
null
null
null
null
UTF-8
Python
false
false
734
py
p1 = input('请输入第1个数') p2 = input('请输入第2个数') p3 = input('请输入第3个数') p4 = input('请输入第4个数') p5 = input('请输入第5个数') mList = [p1,p2,p3,p4,p5] print('当前list为 %s' %mList) print('第3个数为 : %s'%mList[2]) print('最后一个数为 : %s'%mList[-1]) p6 = input('请添加一个数') mList.append(p6) print('当前最新的list为 : %s' %mList) p7 = input('请添加一个数') index1 = input('选择插入位置,大于等于0,小于等于%s'%len(mList)) mList.insert(int(index1),p7) print('当前最新list为 : %s'%mList) index2 = input("选择删除一个数的位置 大于等于0,小于等于 %s" %len(mList)) mList.pop(int(index2)) print('当前最新list为 : %s'%mList)
[ "mocen_dafa@163.com" ]
mocen_dafa@163.com
424419177c915e19bc48bf256f83929f73ac7213
3186e93270607285bbe8bde229ea454ffec58935
/venv/bin/f2py3.7
eda1f7254ba66bfc6d31f322c9ad2bf7819455bb
[]
no_license
suryanuj/stock-comparisons
e206135564137b588ccfb0b4552178b9fedd9288
f0c8692bb958b4f9d375e497f27e8b9f1f0a7f89
refs/heads/master
2022-11-05T08:29:22.749066
2020-06-21T05:20:37
2020-06-21T05:20:37
273,838,272
0
0
null
null
null
null
UTF-8
Python
false
false
261
7
#!/Users/suryanuj/PycharmProjects/btctracker/venv/bin/python # -*- coding: utf-8 -*- import re import sys from numpy.f2py.f2py2e import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "suryanuj@udel.edu" ]
suryanuj@udel.edu
a5ccc09d7d0c444b38aea3201e3f43bbd7d419df
b11e3ae9cb19091f9babd0addb38a9537fb79b21
/venv/Scripts/easy_install-3.7-script.py
fdd7d963c1265ceb076f2648798e521ff245db29
[]
no_license
scorchgid/OWM-Application
2d47d5b9f3da570f5f4b8366d842431593087f8e
268b6c54dd5df417b2e302adcd33fc10c426ac84
refs/heads/master
2020-07-22T14:22:00.958513
2019-09-17T18:53:37
2019-09-17T18:53:37
207,231,499
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
#!C:\Users\Gideon\PycharmProjects\OWM-Application\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
[ "scorchgid@gmail.com" ]
scorchgid@gmail.com
9750a57f98f60e192b3530c22876a6db24b56047
e67b0c01d7244f1c635d7c2e12157076bcd2efbc
/EX06/ex6.py
72ee32c78b12115672c3bead9de6607b7e6f755f
[]
no_license
SonjaGrusche/LPTHW
0a7de74101db1b0ae62ffc35d4fac990c894ae14
12483e97373c9e0aa9e8785b20bb34e1e5b4b36a
refs/heads/master
2021-01-12T15:52:06.404665
2017-03-21T10:27:53
2017-03-21T10:27:53
71,830,953
0
0
null
null
null
null
UTF-8
Python
false
false
1,301
py
# the variable for x gets set, it consists of a string with a format character and its variable at the end x = "There are %d types of people." % 10 # the variable for binary is binary binary = "binary" # the variable for do_not is don't do_not = "don't" # the variable for y is a string that includes two format characters and its variables at the and y = "Those who know %s and those who %s." % (binary, do_not) # two strings inside a string # line 11 and 12 print what'sinside the variables for x and y print x print y # lines 15 and 16 print what's inside the quotes usind the variables at the end to fill in the format characters print "I said %r." % x # string inside string print "I also said: '%s'." % y # one string that already includes two strings is put inside string # lines 19 and 20 define two more variables hilarious = False joke_evaluation = "Isn't that joke so funny?! %r" # line 23 prints the variable for joke_evaluation and fills in the variable for hilarious for the format character print joke_evaluation % hilarious # line 26 and 27 define two variables w = "This is the left side of..." e = "a string with a right side." # variables from line 26 and 27 get printed print w + e # Study Drill # 4. the + concatenates the two strings (not functioning as a math operater)
[ "sonja.grusche@stud.leuphana.de" ]
sonja.grusche@stud.leuphana.de
67a00c31c0fab3d6c19689900052c3bc7f8309ee
ab81f9cfebe641b3400901e77a7fc6ee4cba3180
/src/pre-commit
aafdce2b8b01da9bfc1cd65013f17d0d5bf32d35
[]
no_license
1garo/git_python_script
0ffbe272e8d3fb1056506e3f45e5d7ef271c4e2b
d68c05f3034c877530531ebe98503062e10278c0
refs/heads/master
2020-09-09T02:43:35.112667
2019-11-14T16:30:31
2019-11-14T16:30:31
221,321,441
0
0
null
null
null
null
UTF-8
Python
false
false
1,031
#!/usr/bin/env python3 import script_2 import os def create(): documents = os.popen( "git diff --cached --name-status").read().splitlines() # Pega todos os documentos dentro da cache prestes a serem comitados i = 0 alcance = len(documents) while i < alcance: full_line = documents[i].split() if full_line[0] == "R100": documents[i] = full_line[2] i += 1 elif full_line[0] == "D": documents.pop(i) alcance -= 1 else: documents[i] = full_line[1] i += 1 block = 0 resp = "Testes OK. Commit Realizado" i = 0 for i in range(len(documents)): r = script_2.main(documents[i]) # Faz a verificacao definida em scriptPat.Compare if r == 0: print(documents[i] + " : Teste realizado com sucesso") else: resp = "Nao commitado" block = 1 print(resp) os._exit(block) # Bloqueia o commit if __name__ == '__main__': create()
[ "alevardai@hotmail.com" ]
alevardai@hotmail.com
839af1b1bae6047079453f2f80a9265386152b24
24c84c5b93cd816976d370a99982f45e0d18a184
/SearchingSorting/BubbleSort.py
af60e6f3c4c2e2ff5a7dda335ee95c1b44f0a6c1
[]
no_license
purushottamkaushik/DataStructuresUsingPython
4ef1cf33f1af3fd25105a45be4f179069e327628
e016fe052c5600dcfbfcede986d173b401ed23fc
refs/heads/master
2023-03-12T13:25:18.186446
2021-02-28T18:21:37
2021-02-28T18:21:37
343,180,450
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
def bubblesort(arr): for i in range(len(arr)): for j in range(len(arr)-i-1): if arr[j] > arr[j+1]: arr[j] ,arr[j+1] = arr[j+1] , arr[j] arr = [1,10,2,12,5] print(arr) bubblesort(arr) print(arr)
[ "purushottamkaushik96@gmail.com" ]
purushottamkaushik96@gmail.com
fc6477a6967e95f2b3e5884278adfc5093b566e6
ba4706218366e65b35dc5892a77c3394c374ea6f
/settings.py
afa28b8bb01fed93b4af4fb6cb5e298c5578575e
[]
no_license
tngo0508/alien_invasion
e282f82a0658049d04313e4f283b57ddc296465c
5dbd4a113e136065a81eb5d906a0b6feb158b33b
refs/heads/master
2020-03-26T04:43:04.861008
2018-08-16T05:15:03
2018-08-16T05:15:03
144,518,830
1
0
null
null
null
null
UTF-8
Python
false
false
1,708
py
class Settings(): """A class to store all settings for Alien Invasion.""" def __init__(self): """Initialize the game's static setting.""" # Screen settings self.screen_width = 1200 self.screen_height = 800 self.bg_color = (230, 230, 230) # Ship settings self.ship_speed_factor = 1.5 self.ship_limit = 3 # Bullet Settings self.bullet_speed_factor = 3 self.bullet_width = 3 self.bullet_height = 15 self.bullet_color = 60, 60, 60 self.bullets_allowed = 3 # Alien settings self.alien_speed_factor = 1 self.fleet_drop_speed = 10 # fleet_direction of 1 represents right; -1 represents left. self.fleet_direction = 1 self.alien_points = 50 # How quickly the game speeds up self.speedup_scale = 1.1 # How quickly the alien point values increase self.score_scale = 1.5 self.initialize_dynamic_setting() def initialize_dynamic_setting(self): """Initialize settings that change throughout the game.""" self.ship_speed_factor = 1.5 self.bullet_speed_factor = 3 self.alien_speed_factor = 1 # fleet_direction of 1 represents right; -1 represents left. self.fleet_direction = 1 # Scoring self.alien_points = 50 def increase_speed(self): """Increase speed settings and alien point values.""" self.ship_speed_factor *= self.speedup_scale self.bullet_speed_factor *= self.speedup_scale self.alien_speed_factor *= self.speedup_scale self.alien_points = int(self.alien_points * self.score_scale)
[ "tngo0508@gmail.com" ]
tngo0508@gmail.com
27513eaeeed5a4e2b0c720da1465aca4782fe138
5df88ea861b19a7ffdd318ab64c0ca23f1baa30b
/ModelInputsAndRunScripts/PostprocessingScripts/calc_elev_and_slope.py
fbac57ec943376677705e3789afa14e46f46608b
[ "MIT" ]
permissive
gregtucker/tucker_mccoy_hobley_grain_hill_manuscript
2283c7aa33d57ba61404d319cfb41679549016ff
179c73dc4e2f8b971028f23619e12acaf6a0ea7f
refs/heads/master
2020-03-08T15:28:27.288806
2018-06-05T15:14:26
2018-06-05T15:14:26
128,212,892
0
0
null
null
null
null
UTF-8
Python
false
false
6,226
py
#!/usr/env/python """ calc_elev_and_slope.py Reads output from a series of GrainHill runs, and for each, calculates: 1 - the maximum elevation 2 - the mean elevation 3 - the mean slope. 4 - the mean soil thickness. 5 - the fractional soil cover. These are written to a csv file. """ import os import sys from landlab.io.native_landlab import load_grid import numpy as np DEFAULT_OUTPUT_NAME = 'grain_hill_results.csv' DEFAULT_INPUT_NAME = 'grain_hill_model0001.nc.grid' DEFAULT_INPUT_PATH = os.getcwd() def calc_fractional_soil_cover(grid, node_state): """Calculate and return fractional soil versus rock cover.""" num_soil_air_faces = 0.0 num_rock_air_faces = 0.0 for link in range(grid.number_of_links): tail = grid.node_at_link_tail[link] head = grid.node_at_link_head[link] if node_state[tail] == 0: # if tail is air, see if head is rock/sed if node_state[head] == 7: num_soil_air_faces += 1 elif node_state[head] == 8: num_rock_air_faces += 1 elif node_state[head] == 0: # if head is air, see if tail is rock/sed if node_state[tail] == 7: num_soil_air_faces += 1 elif node_state[tail] == 8: num_rock_air_faces += 1 total_surf_faces = num_soil_air_faces + num_rock_air_faces frac_rock = num_rock_air_faces / total_surf_faces frac_soil = num_soil_air_faces / total_surf_faces print('Total number of surface faces: ' + str(total_surf_faces)) print('Number of soil-air faces: ' + str(num_soil_air_faces)) print('Number of rock-air faces: ' + str(num_rock_air_faces)) print('Percent rock-air faces: ' + str(100.0 * frac_rock)) print('Percent soil-air faces: ' + str(100.0 * frac_soil)) return frac_soil, total_surf_faces, num_soil_air_faces, num_rock_air_faces def get_profile_and_soil_thickness(grid, data): """Calculate and return profiles of elevation and soil thickness. """ nc = grid.number_of_node_columns elev = np.zeros(nc) soil = np.zeros(nc) for col in range(nc): states = data[grid.nodes[:, col]] (rows_with_rock_or_sed, ) = np.where(states > 0) if len(rows_with_rock_or_sed) == 0: elev[col] = 0.0 else: elev[col] = np.amax(rows_with_rock_or_sed) + 0.5 * (col % 2) soil[col] = np.count_nonzero(np.logical_and(states > 0, states < 8)) return elev, soil def get_input_and_output_names(argv): """Parses names for input path, input file name, and output file. Assumes that within the input path folder location there is a series of folders that start with 'G', each containing an output grid.""" if len(argv) < 4: out_name = DEFAULT_OUTPUT_NAME else: out_name = argv[3] if len(argv) < 3: in_name = DEFAULT_INPUT_NAME else: in_name = argv[2] if len(argv) < 2: in_path = DEFAULT_INPUT_PATH else: in_path = argv[1] return in_path, in_name, out_name def two_node_diff(a): """Calculate and return diffs over two nodes instead of one.""" N = len(a) return a[2:] - a[:(N-2)] def calc_mean_gradient(elev_profile): """Given elevation profile, calculates and returns mean gradient.""" N = len(elev_profile) mean_grad_left = np.mean(two_node_diff(elev_profile[:((N+1)/2)])/1.73205) mean_grad_right = np.mean(-two_node_diff(elev_profile[((N+1)/2):])/1.73205) mean_grad = (mean_grad_left + mean_grad_right) / 2.0 return mean_grad def process_model_output_data(in_path, in_name): """Iterate through output files and process, returning list of results.""" results_list = [] for item in os.listdir(in_path): if item[0] == 'G': # Read the Landlab grid and pull out the node_state field g = load_grid(in_path + '/' + item + '/' + in_name) ns = g.at_node['node_state'] # Get the elevation profile (elev, soil) = get_profile_and_soil_thickness(g, ns) # Calculate mean and max elevation N = len(elev) hmax = np.amax(elev[2:N-2]) hmean = np.average(elev[2:N-2]) # Get mean gradient grad_mean = calc_mean_gradient(elev) # Get the mean soil thickness and fractional soil cover soil_mean = np.mean(soil) (fs, nsurf, nsoil, nrock) = calc_fractional_soil_cover(g, ns) run_number = item[17:] run_number = run_number[:run_number.find('-')] print(['run num ' + str(run_number) + ' ' + str(hmax) + ' ' + str(hmean) + ' ' + str(grad_mean) + ' ' + str(soil_mean) + ' ' + str(fs) + ' ' + str(nsurf) + ' ' + str(nsoil) + ' ' + str(nrock)]) results_list.append((int(run_number), hmax, hmean, grad_mean, soil_mean, fs, nsurf, nsoil, nrock)) results_list.sort() return results_list def write_output(results_list, out_name): """Write output to a file in csv format.""" outfile = open(out_name, 'w') outfile.write('Run number,Max height,Mean height,Mean gradient,' + 'Mean soil thickness,Fractional soil cover,' + 'Total number of surface faces,' + 'Number of soil-air faces,' + 'Number of rock-air faces\n') for item in results_list: outstr = (str(item[0]) + ',' + str(item[1]) + ',' + str(item[2]) + ',' + str(item[3]) + ',' + str(item[4]) + ',' + str(item[5]) + ',' + str(item[6]) + ',' + str(item[7]) + ',' + str(item[8]) + '\n') outfile.write(outstr) outfile.close() def main(): """Read, process, write, finish.""" (in_path, in_name, out_name) = get_input_and_output_names(sys.argv) results_list = process_model_output_data(in_path, in_name) write_output(results_list, out_name) print('Processed ' + str(len(results_list)) + ' output files') if __name__ == '__main__': main()
[ "gtucker@colorado.edu" ]
gtucker@colorado.edu
20a625ddaa72d4716cb4c286b72a4030d9773a0e
079731ed552f065c8f747ec068c2655d88ad3710
/run_classifier.py
d5ed740490f40eb60080e9e965c7ab004ee6c85a
[ "MIT" ]
permissive
alyzleafbell/UER-py
5d402c023b92df5e3b6e379e8f2715f853e959e2
d33d9b2ee6f9324aacfbf06591bc63a11b1511b4
refs/heads/master
2023-01-20T04:16:48.010266
2020-12-02T09:41:01
2020-12-02T09:41:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,950
py
""" This script provides an exmaple to wrap UER-py for classification. """ import torch import random import argparse import collections import torch.nn as nn from uer.utils.vocab import Vocab from uer.utils.constants import * from uer.utils.tokenizer import * from uer.layers.embeddings import * from uer.encoders.bert_encoder import * from uer.encoders.rnn_encoder import * from uer.encoders.birnn_encoder import * from uer.encoders.cnn_encoder import * from uer.encoders.attn_encoder import * from uer.encoders.gpt_encoder import * from uer.encoders.mixed_encoder import * from uer.utils.optimizers import * from uer.utils.config import load_hyperparam from uer.utils.seed import set_seed from uer.model_saver import save_model class Classifier(nn.Module): def __init__(self, args): super(Classifier, self).__init__() self.embedding = globals()[args.embedding.capitalize() + "Embedding"](args, len(args.tokenizer.vocab)) self.encoder = globals()[args.encoder.capitalize() + "Encoder"](args) self.labels_num = args.labels_num self.pooling = args.pooling self.soft_targets = args.soft_targets self.soft_alpha = args.soft_alpha self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size) self.output_layer_2 = nn.Linear(args.hidden_size, self.labels_num) def forward(self, src, tgt, seg, soft_tgt=None): """ Args: src: [batch_size x seq_length] tgt: [batch_size] seg: [batch_size x seq_length] """ # Embedding. emb = self.embedding(src, seg) # Encoder. output = self.encoder(emb, seg) # Target. if self.pooling == "mean": output = torch.mean(output, dim=1) elif self.pooling == "max": output = torch.max(output, dim=1)[0] elif self.pooling == "last": output = output[:, -1, :] else: output = output[:, 0, :] output = torch.tanh(self.output_layer_1(output)) logits = self.output_layer_2(output) if tgt is not None: if self.soft_targets and soft_tgt is not None: loss = self.soft_alpha * nn.MSELoss()(logits, soft_tgt) + \ (1 - self.soft_alpha) * nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1)) else: loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1)) return loss, logits else: return None, logits def count_labels_num(path): labels_set, columns = set(), {} with open(path, mode="r", encoding="utf-8") as f: for line_id, line in enumerate(f): if line_id == 0: for i, column_name in enumerate(line.strip().split("\t")): columns[column_name] = i continue line = line.strip().split("\t") label = int(line[columns["label"]]) labels_set.add(label) return len(labels_set) def load_or_initialize_parameters(args, model): if args.pretrained_model_path is not None: # Initialize with pretrained model. model.load_state_dict(torch.load(args.pretrained_model_path), strict=False) else: # Initialize with normal distribution. for n, p in list(model.named_parameters()): if 'gamma' not in n and 'beta' not in n: p.data.normal_(0, 0.02) def build_optimizer(args, model): param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'gamma', 'beta'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, correct_bias=False) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.train_steps*args.warmup, t_total=args.train_steps) return optimizer, scheduler def batch_loader(batch_size, src, tgt, seg, soft_tgt=None): instances_num = src.size()[0] for i in range(instances_num // batch_size): src_batch = src[i*batch_size: (i+1)*batch_size, :] tgt_batch = tgt[i*batch_size: (i+1)*batch_size] seg_batch = seg[i*batch_size: (i+1)*batch_size, :] if soft_tgt is not None: soft_tgt_batch = soft_tgt[i*batch_size: (i+1)*batch_size, :] yield src_batch, tgt_batch, seg_batch, soft_tgt_batch else: yield src_batch, tgt_batch, seg_batch, None if instances_num > instances_num // batch_size * batch_size: src_batch = src[instances_num//batch_size*batch_size:, :] tgt_batch = tgt[instances_num//batch_size*batch_size:] seg_batch = seg[instances_num//batch_size*batch_size:, :] if soft_tgt is not None: soft_tgt_batch = soft_tgt[instances_num//batch_size*batch_size:, :] yield src_batch, tgt_batch, seg_batch, soft_tgt_batch else: yield src_batch, tgt_batch, seg_batch, None def read_dataset(args, path): dataset, columns = [], {} with open(path, mode="r", encoding="utf-8") as f: for line_id, line in enumerate(f): if line_id == 0: for i, column_name in enumerate(line.strip().split("\t")): columns[column_name] = i continue line = line[:-1].split('\t') tgt = int(line[columns["label"]]) if args.soft_targets and "logits" in columns.keys(): soft_tgt = [float(value) for value in line[columns["logits"]].split(" ")] if "text_b" not in columns: # Sentence classification. text_a = line[columns["text_a"]] src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a)) seg = [1] * len(src) else: # Sentence-pair classification. text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN]) src = src_a + src_b seg = [1] * len(src_a) + [2] * len(src_b) if len(src) > args.seq_length: src = src[:args.seq_length] seg = seg[:args.seq_length] while len(src) < args.seq_length: src.append(0) seg.append(0) if args.soft_targets and "logits" in columns.keys(): dataset.append((src, tgt, seg, soft_tgt)) else: dataset.append((src, tgt, seg)) return dataset def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch=None): model.zero_grad() src_batch = src_batch.to(args.device) tgt_batch = tgt_batch.to(args.device) seg_batch = seg_batch.to(args.device) if soft_tgt_batch is not None: soft_tgt_batch = soft_tgt_batch.to(args.device) loss, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch) if torch.cuda.device_count() > 1: loss = torch.mean(loss) if args.fp16: with args.amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() scheduler.step() return loss def evaluate(args, dataset, print_confusion_matrix=False): src = torch.LongTensor([sample[0] for sample in dataset]) tgt = torch.LongTensor([sample[1] for sample in dataset]) seg = torch.LongTensor([sample[2] for sample in dataset]) batch_size = args.batch_size instances_num = src.size()[0] correct = 0 # Confusion matrix. confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long) args.model.eval() for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): src_batch = src_batch.to(args.device) tgt_batch = tgt_batch.to(args.device) seg_batch = seg_batch.to(args.device) with torch.no_grad(): loss, logits = args.model(src_batch, tgt_batch, seg_batch) pred = torch.argmax(nn.Softmax(dim=1)(logits), dim=1) gold = tgt_batch for j in range(pred.size()[0]): confusion[pred[j], gold[j]] += 1 correct += torch.sum(pred == gold).item() if print_confusion_matrix: print("Confusion matrix:") print(confusion) print("Report precision, recall, and f1:") for i in range(confusion.size()[0]): p = confusion[i,i].item()/confusion[i,:].sum().item() r = confusion[i,i].item()/confusion[:,i].sum().item() f1 = 2*p*r / (p+r) print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i,p,r,f1)) print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct/len(dataset), correct, len(dataset))) return correct/len(dataset), confusion def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Path options. parser.add_argument("--pretrained_model_path", default=None, type=str, help="Path of the pretrained model.") parser.add_argument("--output_model_path", default="./models/classifier_model.bin", type=str, help="Path of the output model.") parser.add_argument("--vocab_path", default=None, type=str, help="Path of the vocabulary file.") parser.add_argument("--spm_model_path", default=None, type=str, help="Path of the sentence piece model.") parser.add_argument("--train_path", type=str, required=True, help="Path of the trainset.") parser.add_argument("--dev_path", type=str, required=True, help="Path of the devset.") parser.add_argument("--test_path", type=str, help="Path of the testset.") parser.add_argument("--config_path", default="./models/bert_base_config.json", type=str, help="Path of the config file.") # Model options. parser.add_argument("--batch_size", type=int, default=64, help="Batch size.") parser.add_argument("--seq_length", type=int, default=128, help="Sequence length.") parser.add_argument("--embedding", choices=["bert", "word"], default="bert", help="Emebdding type.") parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \ "cnn", "gatedcnn", "attn", "synt", \ "rcnn", "crnn", "gpt", "bilstm"], \ default="bert", help="Encoder type.") parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.") parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first", help="Pooling type.") parser.add_argument("--factorized_embedding_parameterization", action="store_true", help="Factorized embedding parameterization.") parser.add_argument("--parameter_sharing", action="store_true", help="Parameter sharing.") # Tokenizer options. parser.add_argument("--tokenizer", choices=["bert", "char", "space"], default="bert", help="Specify the tokenizer." "Original Google BERT uses bert tokenizer on Chinese corpus." "Char tokenizer segments sentences into characters." "Space tokenizer segments sentences into words according to space." ) # Optimizer options. parser.add_argument("--soft_targets", action='store_true', help="Train model with logits.") parser.add_argument("--soft_alpha", type=float, default=0.5, help="Weight of the soft targets loss.") parser.add_argument("--learning_rate", type=float, default=2e-5, help="Learning rate.") parser.add_argument("--warmup", type=float, default=0.1, help="Warm up value.") parser.add_argument("--fp16", action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit.") parser.add_argument("--fp16_opt_level", choices=["O0", "O1", "O2", "O3" ], default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") # Training options. parser.add_argument("--dropout", type=float, default=0.5, help="Dropout.") parser.add_argument("--epochs_num", type=int, default=3, help="Number of epochs.") parser.add_argument("--report_steps", type=int, default=100, help="Specific steps to print prompt.") parser.add_argument("--seed", type=int, default=7, help="Random seed.") args = parser.parse_args() # Load the hyperparameters from the config file. args = load_hyperparam(args) set_seed(args.seed) # Count the number of labels. args.labels_num = count_labels_num(args.train_path) # Build tokenizer. args.tokenizer = globals()[args.tokenizer.capitalize() + "Tokenizer"](args) # Build classification model. model = Classifier(args) # Load or initialize parameters. load_or_initialize_parameters(args, model) args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(args.device) # Training phase. trainset = read_dataset(args, args.train_path) random.shuffle(trainset) instances_num = len(trainset) batch_size = args.batch_size src = torch.LongTensor([example[0] for example in trainset]) tgt = torch.LongTensor([example[1] for example in trainset]) seg = torch.LongTensor([example[2] for example in trainset]) if args.soft_targets: soft_tgt = torch.FloatTensor([example[3] for example in trainset]) else: soft_tgt = None args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 print("Batch size: ", batch_size) print("The number of training instances:", instances_num) optimizer, scheduler = build_optimizer(args, model) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level = args.fp16_opt_level) args.amp = amp if torch.cuda.device_count() > 1: print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) args.model = model total_loss, result, best_result = 0., 0., 0. print("Start training.") for epoch in range(1, args.epochs_num+1): model.train() for i, (src_batch, tgt_batch, seg_batch, soft_tgt_batch) in enumerate(batch_loader(batch_size, src, tgt, seg, soft_tgt)): loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch) total_loss += loss.item() if (i + 1) % args.report_steps == 0: print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps)) total_loss = 0. result = evaluate(args, read_dataset(args, args.dev_path)) if result[0] > best_result: best_result = result[0] save_model(model, args.output_model_path) # Evaluation phase. if args.test_path is not None: print("Test set evaluation.") if torch.cuda.device_count() > 1: model.module.load_state_dict(torch.load(args.output_model_path)) else: model.load_state_dict(torch.load(args.output_model_path)) evaluate(args, read_dataset(args, args.test_path), True) if __name__ == "__main__": main()
[ "1152543959@qq.com" ]
1152543959@qq.com
e318067d8d92753c1ff55de7175dfdf9541e70e6
a1a518ba04855820f531c705c36028e4d7435a86
/tests/python/driver/tvmc/test_registry_options.py
458d0a88d1f727c407015444d34fe709309c781b
[ "Apache-2.0", "BSD-3-Clause", "Zlib", "MIT", "LicenseRef-scancode-unknown-license-reference", "Unlicense", "BSD-2-Clause" ]
permissive
ZQPei/tvm
b47f7a3f16400774eefb5ca882a0053e46176a52
6c32f976522aa1d923fcfe364f05a7860cb346b4
refs/heads/main
2021-12-10T22:33:44.248391
2021-11-30T23:58:05
2021-11-30T23:58:05
203,511,290
0
1
Apache-2.0
2021-11-25T09:28:32
2019-08-21T05:17:34
Python
UTF-8
Python
false
false
2,911
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import pytest from tvm.driver.tvmc.common import TVMCException from tvm.driver.tvmc.registry import generate_registry_args, reconstruct_registry_entity from tvm.relay.backend import Executor def test_registry_to_argparse(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args(["--executor=aot", "--executor-aot-interface-api=c"]) assert parsed.executor == "aot" assert parsed.executor_aot_interface_api == "c" def test_registry_to_argparse_default(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor, "aot") parsed, _ = parser.parse_known_args([]) assert parsed.executor == "aot" def test_mapping_registered_args(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args(["--executor=aot", "--executor-aot-interface-api=c"]) entity = reconstruct_registry_entity(parsed, Executor) assert isinstance(entity, Executor) assert "interface-api" in entity assert entity["interface-api"] == "c" def test_mapping_registered_args_no_match_for_name(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args(["--executor=woof"]) with pytest.raises(TVMCException, match='Executor "woof" is not defined'): reconstruct_registry_entity(parsed, Executor) def test_mapping_registered_args_no_arg(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args([]) assert reconstruct_registry_entity(parsed, Executor) == None def test_mapping_registered_args_mismatch_for_arg(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args(["--executor=aot", "--executor-graph-link-params=1"]) with pytest.raises( TVMCException, match="Passed --executor-graph-link-params but did not specify graph executor", ): reconstruct_registry_entity(parsed, Executor)
[ "noreply@github.com" ]
ZQPei.noreply@github.com
153e2afd35e596d691f24b7f0b289bd2cfa4307c
449b2889900cf2ec285ae2309d07fac31f286234
/sms/urls.py
d90f7027541f609b2332719cb12c53b3b73508ed
[ "MIT" ]
permissive
xchoudhury/twilio_app
05b3ed8e58b14b5ea95997e8e0315738d5b07aac
c06ae7dc27f46d9a0af78b3f1fc9dc8a51cf81f7
refs/heads/master
2022-12-13T03:52:54.335870
2017-06-28T02:43:46
2017-06-28T02:43:46
95,335,969
0
0
null
2022-12-07T23:57:40
2017-06-25T03:21:14
Python
UTF-8
Python
false
false
280
py
from django.conf.urls import url from . import views urlpatterns = [ url( r'^sms/send/$', views.send_sms, name='send_sms' ), url( r'^sms/receive/$', views.receive_sms, name='receive_sms' ), ]
[ "xchoudhury@gmail.com" ]
xchoudhury@gmail.com
f148e707e28d61acb86229973a9fea7274e78d5c
b47e307ebb4b76d4cb15feab2d952df037abf6b5
/pyexercises/b_019.py
ba350e14ae5f28c9ca4cb73bd53fabd49762c27a
[]
no_license
wiccawill420/pybites
50964bb102600c02a2ccd5bf8aab2069a14db0c8
59c87c36d6daf016057b8890724267df1a7e41d6
refs/heads/master
2022-11-27T20:21:06.089961
2020-07-31T20:03:23
2020-07-31T20:03:23
283,005,585
0
0
null
null
null
null
UTF-8
Python
false
false
849
py
from datetime import datetime, timedelta import inspect NOW = datetime.now() class Promo: def __init__(self, name, expires): self.name = name self.expires = expires @property def expired(self): if self.expires < NOW: return True else: return False def test_promo_expired(): past_time = NOW - timedelta(seconds=3) twitter_promo = Promo('twitter', past_time) assert twitter_promo.expired def test_promo_not_expired(): future_date = NOW + timedelta(days=1) newsletter_promo = Promo('newsletter', future_date) # print(newsletter_promo.__dict__) # print(newsletter_promo.expired()) assert not newsletter_promo.expired def test_uses_property(): assert 'property' in inspect.getsource(Promo) # test_promo_not_expired() test_uses_property()
[ "william.lynn.1337@gmail.com" ]
william.lynn.1337@gmail.com
5824a5d8555db04a2932bb992498a6649742e9e3
2169c394afe2c00a3d593433925083daa15e504e
/lesson5/zd5_3.py
92ee543bbb4e84a24f07471c336dd53ddec733ed
[]
no_license
Lexa07/Lesson
89bc464ed6ee07661eec7c08e11dfdb80c56a1bc
0357002ea0a76eb46149de68d7c33b61b7a9d6d4
refs/heads/lesson1
2023-03-10T09:22:06.280934
2021-02-13T10:38:42
2021-02-13T10:38:42
330,971,623
0
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
""" 3. Создать текстовый файл (не программно), построчно записать фамилии сотрудников и величину их окладов. Определить, кто из сотрудников имеет оклад менее 20 тыс., вывести фамилии этих сотрудников. Выполнить подсчет средней величины дохода сотрудников. """ from functools import reduce def func_my(el_1, el_2): return float(el_1) + float(el_2) with open("text_3.txt", "r") as mytext: my_list = [] zp = 20000 # вывел чтобы легче было менять ориентир по зарплате for line in mytext: worker = line.split(' ') my_list.append(worker[1]) if float(worker[1]) < zp: print(worker[0]) i = len(my_list) mnog = reduce(func_my, my_list) print(f"Средняя заработная плата сотрудников: {mnog / i} рублей.")
[ "latyw07@mail.ru" ]
latyw07@mail.ru
7dd1c492f62f77a8e944c442208db313fcff19a4
3f5f52b37f7aca332c5cbca0a06ff33685f20c5b
/sf_record_spider/distribute_util/request_queue.py
5d85e435d1193babf6995725a6c3e80efdb81713
[]
no_license
lxs137/py_house_spider
197a9f3353bbf640dfae07c14e2ad914d6a4801f
9a39aa78628c7ffb39647d301e94f6a2d4bbbd17
refs/heads/master
2021-01-11T15:37:24.984631
2017-12-22T01:13:46
2017-12-22T01:13:46
79,902,824
4
2
null
2017-07-24T05:18:36
2017-01-24T10:50:30
Python
UTF-8
Python
false
false
1,411
py
from scrapy.utils.reqser import request_from_dict, request_to_dict import pickle from redis import Redis class RedisRequestQueue(object): def __init__(self, server, spider, queue_key): self.server = server self.spider = spider self.key = queue_key def _decode_request(self, request_data): return request_from_dict(pickle.loads(request_data), self.spider) def _encode_request(self, request): # protocol为负数代表使用HIGEST_PROTOCOL return pickle.dumps(request_to_dict(request, self.spider), protocol=-1) def __len__(self): return self.server.zcard(self.key) def close(self, reason): self.server.delete(self.key) def pop(self): pipe = self.server.pipeline() # 保证接下来的操作作为一个事务进行执行 pipe.multi() pipe.zrange(self.key, 0, 0) pipe.zremrangebyrank(self.key, 0, 0) value, count = pipe.execute() if value: return self._decode_request(value[0]) def push(self, request): request_data = self._encode_request(request) # 对request来说,priority越大优先级越高, # 但对于redis的有序集合来说,默认情况下:score分数越低优先级越高 # 因此将request.priority取负数作为member的score self.server.zadd(self.key, request_data, -request.priority)
[ "lxs137@hotmail.com" ]
lxs137@hotmail.com
f5534aa8a51ae46e08d79ac732c13842a87749aa
0653d222b1679fd3d3616c6f6f34804f465d2b56
/tests/test_ls_algo.py
fb6f4e3b3cd4d2839a809556b88162ceb38d5033
[]
no_license
DaddyTrap/SocketRouter
e310b6798184f75a24fbd9c59767b4ad9e7a4f69
d0b2ad314e2b485eba752f0809267c991f4c9432
refs/heads/master
2021-09-01T18:40:40.043678
2017-12-28T08:33:35
2017-12-28T08:33:35
112,981,718
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
import route_node.route_node as route_node forward_table = {} topo = { 1: { 1: 0, 3: 20, 4: 10 }, 3: { 1: 20, 4: 5, 5: 5 }, 4: { 1: 10, 3: 5, 5: 5 }, 5: { 3: 5, 4: 5 } } ret = route_node.LSRouteNode.ls_algo(1, topo, forward_table) print(forward_table)
[ "914670787@qq.com" ]
914670787@qq.com
2f9655fa112df5ca5906905afbc0c4fbf062d7d9
51d0377511a5da902033fb9d80184db0e096fe2c
/05-importing-data-in-python-1/2-importing-data-from-other-files-types/04-customizing-your-spreadsheet-import.py
d70b70184020466e1f5cc0e4109a2a15e2713f58
[]
no_license
sashakrasnov/datacamp
c28c6bda178163337baed646220b2f7dcc36047d
759f4cec297883907e21118f24a3449d84c80761
refs/heads/master
2021-12-07T02:54:51.190672
2021-09-17T21:05:29
2021-09-17T21:05:29
157,093,632
6
5
null
null
null
null
UTF-8
Python
false
false
1,619
py
''' Customizing your spreadsheet import Here, you'll parse your spreadsheets and use additional arguments to skip rows, rename columns and select only particular columns. The spreadsheet 'battledeath.xlsx' is already loaded as xl. As before, you'll use the method parse(). This time, however, you'll add the additional arguments skiprows, names and parse_cols. These skip rows, name the columns and designate which columns to parse, respectively. All these arguments can be assigned to lists containing the specific row numbers, strings and column numbers, as appropriate. Instructions * Parse the first sheet by index. In doing so, skip the first row of data and name the columns 'Country' and 'AAM due to War (2002)' using the argument names. The values passed to skiprows and names all need to be of type list. * Parse the second sheet by index. In doing so, parse only the first column with the parse_cols parameter, skip the first row and rename the column 'Country'. The argument passed to parse_cols also needs to be of type list. ''' # Import pandas import pandas as pd # Assign spreadsheet filename: file file = '../datasets/battledeath.xlsx' # Load spreadsheet: xl xl = pd.ExcelFile(file) # Parse the first sheet and rename the columns: df1 df1 = xl.parse(0, skiprows=[0], names=['Country', 'AAM due to War (2002)']) # Print the head of the DataFrame df1 print(df1.head()) # Parse the first column of the second sheet and rename the column: df2 df2 = xl.parse(0, parse_cols=[0], skiprows=[0], names=['Country', 'AAM due to War (2004)']) # Print the head of the DataFrame df2 print(df2.head())
[ "a@skrasnov.com" ]
a@skrasnov.com
2078df2066e4dc94d84e50fde4a6a7c9bae43fd2
82b728e805d887102c0b8c415731b353877690cd
/samples/generated_samples/aiplatform_generated_aiplatform_v1_metadata_service_purge_artifacts_async.py
be1cc40f02347804f3d7ccef30143cd4d9744042
[ "Apache-2.0" ]
permissive
geraint0923/python-aiplatform
90c7742c9bdbde05b9688b117e8e59c0406d6f85
7ab05d5e127636d96365b7ea408974ccd6c2f0fe
refs/heads/main
2023-08-24T05:30:38.519239
2021-10-27T20:38:25
2021-10-27T20:38:25
370,803,114
0
0
Apache-2.0
2021-05-25T19:15:47
2021-05-25T19:15:46
null
UTF-8
Python
false
false
1,725
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for PurgeArtifacts # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-aiplatform # [START aiplatform_generated_aiplatform_v1_MetadataService_PurgeArtifacts_async] from google.cloud import aiplatform_v1 async def sample_purge_artifacts(): """Snippet for purge_artifacts""" # Create a client client = aiplatform_v1.MetadataServiceAsyncClient() # Initialize request argument(s) request = aiplatform_v1.PurgeArtifactsRequest( parent="projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}", filter="filter_value", ) # Make the request operation = client.purge_artifacts(request=request) print("Waiting for operation to complete...") response = await operation.result() print(response) # [END aiplatform_generated_aiplatform_v1_MetadataService_PurgeArtifacts_async]
[ "noreply@github.com" ]
geraint0923.noreply@github.com
caa7b6c37ddc4abe6bd02420da52258d8a58eddd
1f1a1e9b595cbd1dfcba4435658eab3bbbcbda82
/core/settings.py
187d7ce051ffb03d1dc011156722ff499b82deea
[]
no_license
Juju-And/twitter
b910f222e965f342d173bb7c163f6ab469473edc
325530bf0dd35c799ff945930bdfb32f4e03429c
refs/heads/master
2020-09-15T23:03:16.400640
2019-11-23T17:01:28
2019-11-23T17:01:28
223,578,191
0
0
null
null
null
null
UTF-8
Python
false
false
3,174
py
""" Django settings for core project. Generated by 'django-admin startproject' using Django 2.2.7. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '-$ih564fx733-qjz!2l$gfxnl=c^b-0go-(%=f#-ey8_-azmn$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'records', 'whispers', 'users', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'core.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'core.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ "static" ]
[ "justyna.andrejczuk@gmail.com" ]
justyna.andrejczuk@gmail.com
ae6a7f58779bac67a6b31a8b4e812919d06641ee
2ec6862beae3dc2f788ca66cce15ef8a6d2c9c3c
/preproc.py
d0064f9cf4b99462ad5a55d8abd9a740e5bfa098
[]
no_license
jpmcd/vowpal-wabbit-works
8fa5eca43dab874d24b4f6384b39a7b1d6512763
e87122588b3ac34cd122092c252d3dee4327cecd
refs/heads/master
2021-01-24T20:41:50.650928
2016-02-03T17:35:35
2016-02-03T17:35:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
837
py
import re import sys import random p = float(sys.argv[1]) if p < 0 or p > 1: print "input valid p, 0<=p<=1" exit() w_bool = bool(sys.argv[2] and sys.argv[3]) if w_bool: w_pos = float(sys.argv[2]) w_neg = float(sys.argv[3]) else: w_pos = 1. w_neg = 1. train = open("train.dat","w") test = open("test.dat","w") for i in range(1): with open("/scratch/url_svmlight/Day"+str(i)+".svm","r") as f: for line in f: newline = re.sub(r"^-1", "0 %f |f"%w_neg, line) newline = re.sub(r"^\+1", "1 %f |f"%w_pos, newline) newline = re.sub(r"$\s", " const:.01\n", newline) rand = random.random() if rand < p: test.write(newline) else: train.write(newline) #exit() train.close() test.close()
[ "josephpmcdonald@gmail.com" ]
josephpmcdonald@gmail.com
af695ef76b65ad605049e07f2f5afdc8137d801f
93ba1198906bf36edfc5e62c28e11bb4db754186
/venv/bin/easy_install-3.7
bb3f99e47a67d63abbcd1e6a46b5b04a73747619
[]
no_license
ccc-team44/tweet-analysis
5e44d146fccd82c9d844ed1bc91e9ce3bbdb39e2
7724b27c3fdb7167978cf1257d68a605dd7ead1d
refs/heads/master
2022-10-04T03:18:32.311770
2020-06-11T08:56:11
2020-06-11T08:56:11
264,067,135
0
0
null
null
null
null
UTF-8
Python
false
false
444
7
#!/Users/xinweiding/tweet-analysis/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
[ "xind1cl@gmail.com" ]
xind1cl@gmail.com
b26ea98bc20a0e8e0521ec75161d78c8d31340d3
bbf02a2dfa11a8abb0ac8602a85b669a839c06cb
/caladonis/workouts/models.py
6380fb6f05bff21049651f358fa99aece348ea28
[]
no_license
perezal/api.caladonis.com
7e48af60607c45cae125e17e36ba7f560ad25e1e
dce3e67d2a197980a82044cda3bdb19c03075192
refs/heads/master
2020-03-15T02:00:18.505023
2018-05-17T01:18:46
2018-05-17T01:18:46
131,907,608
0
0
null
null
null
null
UTF-8
Python
false
false
648
py
from django.db import models from django.contrib.auth.models import User class Workout(models.Model): account = models.ForeignKey(User, on_delete=models.CASCADE) date = models.DateTimeField('workout date', auto_now_add=True) notes = models.TextField(default='') class Exercise(models.Model): workout = models.ForeignKey(Workout, related_name="exercises", on_delete=models.CASCADE) name = models.CharField(max_length=20) class Set(models.Model): exercise = models.ForeignKey(Exercise, related_name="sets", on_delete=models.CASCADE) reps = models.IntegerField(default=0) weight = models.IntegerField(default=0)
[ "redflare@gmail.com" ]
redflare@gmail.com
2e84d8d5c0b440ec8f046db0a63b3cb5a11f5f7c
77945f2e1e3cfd2920ef3b71fa626d23d643c4f2
/code3/hidden.py
8c2d0b37e8f10e3b0f264c3b744da12e774ba69b
[]
no_license
justingfoster/p4e
9226cf5a6972a0a2520c5696abef5cdc37a964a0
fdcb9db475498e24b7ef77b07c1a3c1688b87bb2
refs/heads/master
2021-01-01T15:32:53.733498
2017-09-19T16:02:18
2017-09-19T16:02:18
97,640,953
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
# Keep this file separate # https://apps.twitter.com/ # Create new App and get the four strings def oauth(): return {"consumer_key": "teFVNZ4kMr76wwb0q1D4AMTUZ", "consumer_secret": "73RazktJRaJjlAPyOerMLGA47J1c83ZVYMWiQ76BMA1HyVhdjU", "token_key": "892077162475421697-5rSinUKpLHPcmJkfgGtUcpcxyi51mmy", "token_secret": "XbegLZ3M3YYHAWfJBwgV1UvPY1dsP913iL2SK05CGC88G"}
[ "justingfoster@hotmail.com" ]
justingfoster@hotmail.com
6ca562dbf7053d70020705006ef520d4ed60caf0
1a75bf92c35eb51b0181862102afcf819a71ab23
/ig_review/tasks/__init__.py
ee1f7acabcbfb231dec485875da3f034142faabc
[]
no_license
Skinner927/ig-review
867202b3e039dc9529930f0844be37103bb29ddb
192b4f07e76682771dd9fbdac83d6b42ebaf9011
refs/heads/master
2021-04-03T01:37:53.714115
2018-03-13T00:11:18
2018-03-13T00:11:18
124,973,337
0
0
null
null
null
null
UTF-8
Python
false
false
4,574
py
""" Run as: celery worker -A ig_review.tasks -B And debugging: celery worker -A ig_review.tasks --loglevel=info -E -B """ # Ensure to use absolute module reference or celery worker may not work from celery.signals import beat_init from email.message import EmailMessage from ig_review import factory from ig_review.api.image_storage import RootImageStorage from instagram_scraper import InstagramScraper from pathlib import Path import functools import imghdr import os import os.path import smtplib app = factory.create_celery_app(__name__) def single_instance_task(func): """ Decorator to prevent tasks from running at the same time. Works independent of OS and process/thread. :param func: :return: """ @functools.wraps(func) def wrapper(*args, **kwargs): self = args[0] func_name = 'celerylock-' + func.__name__ lock_file = os.path.join(self.app.conf['LOCKFILE_DIR'], func_name) try: f = open(lock_file, 'x') f.write(str(os.getpid())) except OSError: # Someone holds the lock, get out! self.log.info('wanted to run but locked ' + func_name) return try: return func(*args, **kwargs) finally: f.close() os.remove(lock_file) return wrapper @app.on_after_configure.connect def schedule_tasks(sender, **kwargs): interval = 60.0 * float(sender.conf['SCRAPE_IG_INTERVAL']) sender.add_periodic_task(interval, do_scrape.s(), name='Scrape IG at interval') interval = 60.0 * float(sender.conf['SEND_IG_APPROVED']) sender.add_periodic_task(interval, do_mail_images.s(), name='Send reviewed images') @beat_init.connect def kick_first_task(sender, **kwargs): do_scrape.delay() do_mail_images.delay() @app.task(bind=True) @single_instance_task def do_scrape(self): self.log.info('Scraping IG as ' + self.app.conf['SCRAPE_IG_USER']) scraper = InstagramScraper( login_user=self.app.conf['SCRAPE_IG_USER'], login_pass=self.app.conf['SCRAPE_IG_PASS'], usernames=self.app.conf['SCRAPE_IG_FRIENDS'], destination=self.app.conf['IMAGES_REVIEW_DIR'], retain_username=True, media_types=['image', 'story-image'], maximum=self.app.conf['SCRAPE_IG_MAX_PER_FRIEND'], latest_stamps=os.path.join(self.app.conf['STORAGE_ROOT'], 'ig_user_stamps.ini'), ) scraper.scrape() self.log.info('Done scraping IG without errors as ' + self.app.conf['SCRAPE_IG_USER']) @app.task(bind=True) @single_instance_task def do_mail_images(self): if not self.app.conf['SEND_IG_SMTP_ENABLED']: self.log.info('Sending images is disabled') return self.log.info('Starting to send images') # Create a message msg = EmailMessage() msg['Subject'] = self.app.conf['SEND_IG_SMTP_SUBJECT'] msg['From'] = self.app.conf['SEND_IG_SMTP_FROM'] msg['To'] = ', '.join(self.app.conf['SEND_IG_SMTP_TO']) # Get all images img_dir = Path(self.app.conf['IMAGES_SEND_DIR']) max_files = self.app.conf['SEND_IG_SMTP_MAX_ATTACHMENTS'] files_sent = 0 for file in img_dir.iterdir(): if files_sent >= max_files: break # Ensure they're legit if not RootImageStorage.valid_image_file(file): self.log.warning('Invalid image file in send directory ' + str(file)) os.remove(file) continue with open(file, 'rb') as f: img_data = f.read() msg.add_attachment(img_data, maintype='image', subtype=imghdr.what(None, img_data), filename=os.path.basename(file)) files_sent += 1 if files_sent < 1: self.log.info('No images to send') return # Create SMTP sender with smtplib.SMTP(host=self.app.conf['SEND_IG_SMTP_HOST'], port=self.app.conf['SEND_IG_SMTP_PORT']) as s: secure = self.app.conf['SEND_IG_SMTP_SECURE'] if isinstance(secure, tuple) or secure: kwargs = {} if len(secure) > 0: kwargs['keyfile'] = secure[0] if len(secure) == 2: kwargs['certfile'] = secure[1] s.starttls(**kwargs) if self.app.conf['SEND_IG_SMTP_USER']: s.login(self.app.conf['SEND_IG_SMTP_USER'], self.app.conf['SEND_IG_SMTP_PASS']) s.send_message(msg) self.log.info('Done sending {} images without errors'.format(files_sent))
[ "skinner927@gmail.com" ]
skinner927@gmail.com
bf6070165ba4c074e3b6f0ade42f7ef065fcf59b
57c5ce8c1bfafee2ea53347052f26d018a77c795
/alien.py
8698021bef75eb6543ebe0ffb9598ecfd025f069
[]
no_license
core571/alien_invasion
24216c5a0ec19b32a4a266649ac4c9d59eab004e
6aeccbc4d472a48a3d8649d855e4a39fede5eb2e
refs/heads/master
2020-03-19T09:01:32.888150
2018-06-07T02:38:17
2018-06-07T02:38:17
136,254,108
0
0
null
null
null
null
UTF-8
Python
false
false
1,291
py
import pygame from pygame.sprite import Sprite class Alien(Sprite): """表示单个外星人的类""" def __init__(self, ai_settings, screen): """初始化外星人并设置其起始位置""" super(Alien, self).__init__() self.screen = screen self.ai_settings = ai_settings # 加载外星人图像,并设置其rect属性 self.image = pygame.image.load('images/alien.bmp') self.rect = self.image.get_rect() # 每个外星人最初都在屏幕左上角附近 self.rect.x = self.rect.width self.rect.y = self.rect.height # 存储外星人的准确位置 self.x = float(self.rect.x) def blitme(self): """在指定位置绘制外星人""" self.screen.blit(self.image, self.rect) def check_edges(self): """如果外星人位于屏幕边缘,就返回True""" screen_rect = self.screen.get_rect() if self.rect.right >= screen_rect.right: return True elif self.rect.left <= 0: return True def update(self): """向左或向右移动外星人""" self.x += (self.ai_settings.alien_speed_factor * self.ai_settings.fleet_direction) self.rect.x = self.x
[ "wqr571@outlook.com" ]
wqr571@outlook.com
3e3460ed023a46892882b4db2f912938a5a5f08b
16bf89ec6848c78f4aad3e87b5e386bb86f92815
/Mypython-code-master/badasechota.py
0991fe952c0eaea211b90fa276f746abd7462462
[]
no_license
95ankitmishra/Program-data_structure
bae865e72800ade5ed99feb516015820ac876805
fc2e9a09c5e382a718b44d9e1ee03cad3442f2f7
refs/heads/master
2020-06-17T22:18:02.785493
2019-07-09T21:00:53
2019-07-09T21:00:53
196,077,979
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
arr=[int(x) for x in input("enter elements").split(',')] arr.sort() arr.reverse() print("bada se chota",arr)
[ "noreply@github.com" ]
95ankitmishra.noreply@github.com
96a7799af3063690f59693c3545834464fa5aaaf
77178627b46d5b0440d64af70b88bdb91f5269ab
/blog/models.py
8872bbb7a55fa2a08875969e0b06b12647a011f3
[]
no_license
daredavil01/blog-fastapi
a9f40835fdc9b42151fa049c0aab3f1a62e810da
4153a150c4380537d00f747b2445f4e183c34cb4
refs/heads/main
2023-06-26T07:24:12.830961
2021-07-31T14:50:24
2021-07-31T14:50:24
391,384,672
0
0
null
null
null
null
UTF-8
Python
false
false
647
py
from sqlalchemy import Column, Integer, String, ForeignKey from blog.database import Base from sqlalchemy.orm import relationship class Blog(Base): __tablename__ = 'blogs' id = Column(Integer, primary_key=True, index=True) title = Column(String) body = Column(String) user_id = Column(Integer, ForeignKey("users.id")) creator = relationship("User", back_populates="blogs") class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True, index=True) name = Column(String) email = Column(String) password = Column(String) blogs = relationship("Blog", back_populates="creator")
[ "sanket.tambare01@gmail.com" ]
sanket.tambare01@gmail.com
3ea536a721bb17fa0229848067424923e14c558e
4e30d990963870478ed248567e432795f519e1cc
/tests/models/validators/v3_1_patch_1/jsd_c0984cde5e925c209ab87472ab905476.py
c86e4452c3079233469acbb06dd25ed2dec223d4
[ "MIT" ]
permissive
CiscoISE/ciscoisesdk
84074a57bf1042a735e3fc6eb7876555150d2b51
f468c54998ec1ad85435ea28988922f0573bfee8
refs/heads/main
2023-09-04T23:56:32.232035
2023-08-25T17:31:49
2023-08-25T17:31:49
365,359,531
48
9
MIT
2023-08-25T17:31:51
2021-05-07T21:43:52
Python
UTF-8
Python
false
false
8,186
py
# -*- coding: utf-8 -*- """Identity Services Engine getNetworkAccessConditionsForPolicySets data model. Copyright (c) 2021 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import absolute_import, division, print_function, unicode_literals import json from builtins import * import fastjsonschema from ciscoisesdk.exceptions import MalformedRequest class JSONSchemaValidatorC0984Cde5E925C209Ab87472Ab905476(object): """getNetworkAccessConditionsForPolicySets request schema definition.""" def __init__(self): super(JSONSchemaValidatorC0984Cde5E925C209Ab87472Ab905476, self).__init__() self._validator = fastjsonschema.compile(json.loads( '''{ "$schema": "http://json-schema.org/draft-04/schema#", "properties": { "response": { "items": { "properties": { "attributeName": { "type": "string" }, "attributeValue": { "type": "string" }, "children": { "items": { "properties": { "conditionType": { "enum": [ "ConditionAndBlock", "ConditionAttributes", "ConditionOrBlock", "ConditionReference", "LibraryConditionAndBlock", "LibraryConditionAttributes", "LibraryConditionOrBlock", "TimeAndDateCondition" ], "type": "string" }, "isNegate": { "type": "boolean" }, "link": { "properties": { "href": { "type": "string" }, "rel": { "enum": [ "next", "previous", "self", "status" ], "type": "string" }, "type": { "type": "string" } }, "type": "object" } }, "type": "object" }, "type": "array" }, "conditionType": { "enum": [ "ConditionAndBlock", "ConditionAttributes", "ConditionOrBlock", "ConditionReference", "LibraryConditionAndBlock", "LibraryConditionAttributes", "LibraryConditionOrBlock", "TimeAndDateCondition" ], "type": "string" }, "datesRange": { "properties": { "endDate": { "type": "string" }, "startDate": { "type": "string" } }, "type": "object" }, "datesRangeException": { "properties": { "endDate": { "type": "string" }, "startDate": { "type": "string" } }, "type": "object" }, "description": { "type": "string" }, "dictionaryName": { "type": "string" }, "dictionaryValue": { "type": "string" }, "hoursRange": { "properties": { "endTime": { "type": "string" }, "startTime": { "type": "string" } }, "type": "object" }, "hoursRangeException": { "properties": { "endTime": { "type": "string" }, "startTime": { "type": "string" } }, "type": "object" }, "id": { "type": "string" }, "isNegate": { "type": "boolean" }, "link": { "properties": { "href": { "type": "string" }, "rel": { "enum": [ "next", "previous", "self", "status" ], "type": "string" }, "type": { "type": "string" } }, "type": "object" }, "name": { "type": "string" }, "operator": { "enum": [ "contains", "endsWith", "equals", "greaterOrEquals", "greaterThan", "in", "ipEquals", "ipGreaterThan", "ipLessThan", "ipNotEquals", "lessOrEquals", "lessThan", "matches", "notContains", "notEndsWith", "notEquals", "notIn", "notStartsWith", "startsWith" ], "type": "string" }, "weekDays": { "items": { "enum": [ "Friday", "Monday", "Saturday", "Sunday", "Thursday", "Tuesday", "Wednesday" ], "type": "string" }, "type": "array" }, "weekDaysException": { "items": { "enum": [ "Friday", "Monday", "Saturday", "Sunday", "Thursday", "Tuesday", "Wednesday" ], "type": "string" }, "type": "array" } }, "type": "object" }, "type": "array" }, "version": { "type": "string" } }, "required": [ "response", "version" ], "type": "object" }'''.replace("\n" + ' ' * 16, '') )) def validate(self, request): try: self._validator(request) except fastjsonschema.exceptions.JsonSchemaException as e: raise MalformedRequest( '{} is invalid. Reason: {}'.format(request, e.message) )
[ "bvargas@altus.cr" ]
bvargas@altus.cr
e1b200a25da813398431400b47064af2a8e368d4
8e69eee9b474587925e22413717eb82e4b024360
/v2.5.7/toontown/parties/CalendarGuiMonth.py
1fb599e6de7003a2926a7423453b5db44280d3e1
[ "MIT" ]
permissive
TTOFFLINE-LEAK/ttoffline
afaef613c36dc3b70514ccee7030ba73c3b5045b
bb0e91704a755d34983e94288d50288e46b68380
refs/heads/master
2020-06-12T15:41:59.411795
2020-04-17T08:22:55
2020-04-17T08:22:55
194,348,185
5
4
null
null
null
null
UTF-8
Python
false
false
13,713
py
import calendar from datetime import timedelta, datetime from panda3d.core import Vec4, TextNode from direct.gui.DirectGui import DirectFrame, DirectLabel, DirectButton, DirectScrolledList, DGG from toontown.toonbase import TTLocalizer from toontown.toonbase import ToontownGlobals from toontown.parties.CalendarGuiDay import CalendarGuiDay class CalendarGuiMonth(DirectFrame): notify = directNotify.newCategory('CalendarGuiMonth') def __init__(self, parent, startingDateTime, scale=1.0, pos=(0, 0, -0.1), dayClickCallback=None, onlyFutureDaysClickable=False, onlyFutureMonthsClickable=False): self.startDate = startingDateTime self.curDate = startingDateTime self.dayClickCallback = dayClickCallback self.onlyFutureDaysClickable = onlyFutureDaysClickable self.onlyFutureMonthsClickable = onlyFutureMonthsClickable if self.onlyFutureDaysClickable: self.onlyFutureMonthsClickable = True DirectFrame.__init__(self, parent=parent, scale=scale, pos=pos) self.showMarkers = config.GetBool('show-calendar-markers', 0) self.load() self.createGuiObjects() self.lastSelectedDate = None self.accept('clickedOnDay', self.clickedOnDay) return def createDummyLocators(self): self.monthLocator = self.attachNewNode('monthLocator') self.monthLocator.setZ(0.6) self.weekDayLocators = [] for i in xrange(7): self.weekDayLocators.append(self.attachNewNode('weekDayLocator-%d' % i)) self.weekDayLocators[i].setZ(0.5) self.weekDayLocators[i].setX(i * 0.24 + -0.75) dayTopLeftX = -0.8 dayTopLeftZ = 0.4 self.dayLocators = [] for row in xrange(6): oneWeek = [] for col in xrange(7): newDayLoc = self.attachNewNode('dayLocator-row-%d-col-%d' % (row, col)) newDayLoc.setX(col * 0.24 + dayTopLeftX) newDayLoc.setZ(row * -0.18 + dayTopLeftZ) oneWeek.append(newDayLoc) self.dayLocators.append(oneWeek) self.monthLeftLocator = self.attachNewNode('monthLeft') self.monthLeftLocator.setPos(-0.3, 0, 0.65) self.monthRightLocator = self.attachNewNode('monthRight') self.monthRightLocator.setPos(0.3, 0, 0.65) def attachMarker(self, parent, scale=0.01, color=(1, 0, 0)): if self.showMarkers: marker = loader.loadModel('phase_3/models/misc/sphere') marker.reparentTo(parent) marker.setScale(scale) marker.setColor(*color) def load(self): if base.cr.newsManager.isHolidayRunning(ToontownGlobals.ORANGES): self.monthLabel = DirectLabel(parent=self, relief=None, text='IT IS MARCH 32', text_scale=0.075, text_font=ToontownGlobals.getSuitFont(), text_fg=(40 / 255.0, 140 / 255.0, 246 / 255.0, 1.0)) else: monthAsset = loader.loadModel('phase_4/models/parties/tt_m_gui_sbk_calendar') monthAsset.reparentTo(self) self.monthLocator = self.find('**/locator_month/locator_month') self.attachMarker(self.monthLocator) self.weekDayLocators = [] for weekday in ('sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat'): weekDayLoc = self.find('**/loc_%s' % weekday) self.weekDayLocators.append(weekDayLoc) self.attachMarker(weekDayLoc) self.dayLocators = [] for row in xrange(6): oneWeek = [] for col in xrange(7): newDayLoc = self.find('**/loc_box_%s_%s' % (row, col)) oneWeek.append(newDayLoc) self.dayLocators.append(oneWeek) self.monthLeftLocator = self.find('**/locator_month_arrowL') self.monthRightLocator = self.find('**/locator_month_arrowR') self.filterLocator = self.find('**/locator_filter') self.filterLocatorArrowUp = self.find('**/locator_filter_arrowTop') self.filterLocatorArrowDown = self.find('**/locator_filter_arrowBottom') self.yearLocator = self.attachNewNode('yearLocator') self.yearLocator.setPos(self.monthLocator, 0, 0, -0.03) return def createGuiObjects(self): if base.cr.newsManager.isHolidayRunning(ToontownGlobals.ORANGES): return self.monthLabel = DirectLabel(parent=self.monthLocator, relief=None, text=TTLocalizer.Months[self.startDate.month], text_scale=0.075, text_font=ToontownGlobals.getMinnieFont(), text_fg=(40 / 255.0, 140 / 255.0, 246 / 255.0, 1.0)) self.yearLabel = DirectLabel(parent=self.yearLocator, relief=None, text=str(self.startDate.year), text_scale=0.03, text_font=ToontownGlobals.getMinnieFont(), text_fg=(140 / 255.0, 140 / 255.0, 246 / 255.0, 1.0)) self.weekdayLabels = [] for posIndex in xrange(7): adjustedNameIndex = (posIndex - 1) % 7 self.weekdayLabels.append(DirectLabel(parent=self.weekDayLocators[posIndex], relief=None, text=TTLocalizer.DayNamesAbbrev[adjustedNameIndex], text_font=ToontownGlobals.getInterfaceFont(), text_fg=(255 / 255.0, 146 / 255.0, 113 / 255.0, 1.0), text_scale=0.05)) self.createGuiDays() arrowUp = self.find('**/month_arrowR_up') arrowDown = self.find('**/month_arrowR_down') arrowHover = self.find('**/month_arrowR_hover') self.monthLeftArrow = DirectButton(parent=self.monthLeftLocator, relief=None, image=(arrowUp, arrowDown, arrowHover, arrowUp), image3_color=Vec4(1, 1, 1, 0.5), scale=(-1.0, 1.0, 1.0), command=self.__doMonthLeft) if self.onlyFutureMonthsClickable: self.monthLeftArrow.hide() self.monthRightArrow = DirectButton(parent=self.monthRightLocator, relief=None, image=(arrowUp, arrowDown, arrowHover, arrowUp), image3_color=Vec4(1, 1, 1, 0.5), command=self.__doMonthRight) def makeLabel(itemName, itemNum, *extraArgs): return DirectLabel(text=itemName, frameColor=(0, 0, 0, 0), text_scale=0.04) gui = loader.loadModel('phase_4/models/parties/tt_m_gui_sbk_calendar_box') arrowUp = gui.find('**/downScroll_up') arrowDown = gui.find('**/downScroll_down') arrowHover = gui.find('**/downScroll_hover') filterLocatorUpPos = self.filterLocatorArrowUp.getPos(self.filterLocator) filterLocatorDownPos = self.filterLocatorArrowDown.getPos(self.filterLocator) self.filterList = DirectScrolledList(parent=self.filterLocator, relief=None, pos=(0, 0, 0), image=None, text_scale=0.025, incButton_image=(arrowUp, arrowDown, arrowHover, arrowUp), incButton_relief=None, incButton_pos=filterLocatorDownPos, incButton_image3_color=Vec4(1, 1, 1, 0.2), incButtonCallback=self.filterChanged, decButton_image=(arrowUp, arrowDown, arrowHover, arrowUp), decButton_relief=None, decButton_pos=filterLocatorUpPos, decButton_scale=(1, 1, -1), decButton_image3_color=Vec4(1, 1, 1, 0.2), decButtonCallback=self.filterChanged, numItemsVisible=1, itemMakeFunction=makeLabel, items=[TTLocalizer.CalendarShowAll, TTLocalizer.CalendarShowOnlyHolidays, TTLocalizer.CalendarShowOnlyParties], itemFrame_frameSize=(-0.2, 0.2, -0.02, 0.05), itemFrame_frameColor=(0, 0, 0, 0)) gui.removeNode() return def getTopLeftDate(self): firstOfTheMonth = self.curDate.replace(day=1) daysAwayFromSunday = (firstOfTheMonth.weekday() - 6) % 7 topLeftDate = firstOfTheMonth + timedelta(days=-daysAwayFromSunday) return topLeftDate def createGuiDays(self): topLeftDate = self.getTopLeftDate() curDate = topLeftDate self.guiDays = [] for row in self.dayLocators: for oneLocator in row: self.guiDays.append(CalendarGuiDay(oneLocator, curDate, self.curDate, self.dayClickCallback, self.onlyFutureDaysClickable)) curDate += timedelta(days=1) def changeDateForGuiDays(self): topLeftDate = self.getTopLeftDate() guiDayDate = topLeftDate for guiDay in self.guiDays: guiDay.changeDate(self.curDate, guiDayDate) guiDayDate += timedelta(days=1) def changeMonth(self, monthChange): if hasattr(base, 'cr') and base.cr.newsManager.isHolidayRunning(ToontownGlobals.ORANGES): return if monthChange != 0: newMonth = self.curDate.month + monthChange newYear = self.curDate.year while newMonth > 12: newYear += 1 newMonth -= 12 while newMonth < 1: if newYear - 1 > 1899: newMonth += 12 newYear -= 1 else: newMonth += 1 self.curDate = datetime(newYear, newMonth, 1, self.curDate.time().hour, self.curDate.time().minute, self.curDate.time().second, self.curDate.time().microsecond, self.curDate.tzinfo) self.monthLabel['text'] = ( TTLocalizer.Months[self.curDate.month],) self.yearLabel['text'] = (str(self.curDate.year),) startTime = globalClock.getRealTime() self.changeDateForGuiDays() endTime = globalClock.getRealTime() self.notify.debug('changeDate took %f seconds' % (endTime - startTime)) self.updateSelectedDate() if monthChange != 0: if self.onlyFutureMonthsClickable and newMonth == self.startDate.month and newYear == self.startDate.year: self.monthLeftArrow.hide() def __doMonthLeft(self): self.changeMonth(-1) def __doMonthRight(self): self.monthLeftArrow.show() self.changeMonth(1) def destroy(self): self.ignoreAll() try: self.dayClickCallback = None self.monthLeftArrow.destroy() self.monthRightArrow.destroy() for day in self.guiDays: if day is not None: day.destroy() day = None self.filterList.destroy() except: pass DirectFrame.destroy(self) return def clickedOnDay(self, dayDate): self.lastSelectedDate = dayDate self.updateSelectedDate() def updateSelectedDate(self): if self.lastSelectedDate: for oneGuiDay in self.guiDays: if oneGuiDay.myDate.date() == self.lastSelectedDate: oneGuiDay.updateSelected(True) else: oneGuiDay.updateSelected(False) def clearSelectedDay(self): for oneGuiDay in self.guiDays: oneGuiDay.updateSelected(False) def filterChanged(self): newFilter = self.filterList.getSelectedIndex() for guiDay in self.guiDays: guiDay.changeFilter(newFilter)
[ "s0mberdemise@protonmail.com" ]
s0mberdemise@protonmail.com
dd946e558805e70e2ba90c922d602e5869cd007a
7c0dd68e474c345d022b9d879a31cc82e0b438cf
/openssl_heartbleed.py
75e7fc2cafa0424e450d6970247f51e9629ac53e
[]
no_license
liyanghack/-
8de6e2be931faea680b9c1f8e35a2a0c8cd5bc3a
9abab66543e19a4b444a79f2ee790b1eafaacc01
refs/heads/master
2021-02-22T04:40:08.921551
2020-03-13T11:10:13
2020-03-13T11:10:13
245,369,458
0
0
null
null
null
null
UTF-8
Python
false
false
5,072
py
#!/usr/bin/env python # -*- coding:utf-8 -*- from pocsuite.api.poc import Output, POCBase from pocsuite.api.poc import register from pocsuite.thirdparty.guanxing import parse_ip_port import struct import socket import time import select socket.setdefaulttimeout(5) def request2bin(x): return x.replace(' ', '').replace('\n', '').decode('hex') client_key_exchange = request2bin(''' 16 03 02 00 dc 01 00 00 d8 03 02 53 43 5b 90 9d 9b 72 0b bc 0c bc 2b 92 a8 48 97 cf bd 39 04 cc 16 0a 85 03 90 9f 77 04 33 d4 de 00 00 66 c0 14 c0 0a c0 22 c0 21 00 39 00 38 00 88 00 87 c0 0f c0 05 00 35 00 84 c0 12 c0 08 c0 1c c0 1b 00 16 00 13 c0 0d c0 03 00 0a c0 13 c0 09 c0 1f c0 1e 00 33 00 32 00 9a 00 99 00 45 00 44 c0 0e c0 04 00 2f 00 96 00 41 c0 11 c0 07 c0 0c c0 02 00 05 00 04 00 15 00 12 00 09 00 14 00 11 00 08 00 06 00 03 00 ff 01 00 00 49 00 0b 00 04 03 00 01 02 00 0a 00 34 00 32 00 0e 00 0d 00 19 00 0b 00 0c 00 18 00 09 00 0a 00 16 00 17 00 08 00 06 00 07 00 14 00 15 00 04 00 05 00 12 00 13 00 01 00 02 00 03 00 0f 00 10 00 11 00 23 00 00 00 0f 00 01 01 ''') malformed_heartbeat = request2bin(''' 18 03 02 00 03 01 40 00 ''') def get_msg_from_socket(some_socket, msg_length, time_out=5): end_time = time.time() + time_out received_data = '' remaining_msg = msg_length while remaining_msg > 0: read_time = end_time - time.time() if read_time < 0: return None read_socket, write_socket, error_socket = select.select([some_socket], [], [], time_out) if some_socket in read_socket: data = some_socket.recv(remaining_msg) if not data: return None else: received_data += data remaining_msg -= len(data) else: pass return received_data def recv_msg(a_socket): header = get_msg_from_socket(a_socket, 5) if header is None: return None, None, None message_type, message_version, message_length = struct.unpack('>BHH', header) message_payload = get_msg_from_socket(a_socket, message_length, 10) if message_payload is None: return None, None, None return message_type, message_version, message_payload def send_n_catch_heartbeat(our_socket): our_socket.send(malformed_heartbeat) while True: content_type, content_version, content_payload = recv_msg(our_socket) if content_type is None: return False if content_type == 24: return True if content_type == 21: return False def main(rhost): global port ip,port = parse_ip_port(rhost) # 预定义默认端口 if not port : port = 443 local_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) local_socket.connect((ip, int(port))) local_socket.send(client_key_exchange) while True: type, version, payload = recv_msg(local_socket) if not type: return if type == 22 and ord(payload[0]) == 0x0E: break local_socket.send(malformed_heartbeat) return send_n_catch_heartbeat(local_socket) class TestPOC(POCBase): vulID = 'DSO-00046' version = '' author = 'ly' vulDate = '2014-04-08' createDate = '2020-03-09' updateDate = '2020-03-13' references = ['https://zh.wikipedia.org/wiki/%E5%BF%83%E8%84%8F%E5%87%BA%E8%A1%80%E6%BC%8F%E6%B4%9E'] name = 'Openssl 1.0.1 内存读取 信息泄露漏洞' appPowerLink = '' appName = 'OpenSSL' appVersion = '1.0.1~1.0.1f, 1.0.2-beta, 1.0.2-beta1' vulType = 'info-disclosure' # 漏洞描述 desc = ''' 即“心脏出血漏洞”,这项严重缺陷(CVE-2014-0160)的产生是由于未能在memcpy()调用受害用户输入内容作为长度参数之前正确进行边界检查。攻击者可以追踪OpenSSL所分配的64KB缓存、将超出必要范围的字节信息复制到缓存当中再返回缓存内容,从而获取用户信息。 ''' # the sample sites for examine samples = [''] install_requires = [''] cveID = 'CVE-2014-0160' severity = 'high' solution = ''' 为了解决此漏洞,除了需要安装修复后的软件(OpenSSL动态库及静态使用OpenSSL的二进制文件)之外,还可能要做其他的事。运行中的、依赖于OpenSSL的应用程序仍会使用在内存中的有缺陷OpenSSL代码,直至重新启动,才能堵住漏洞。 此外,即使漏洞本身已经修复,因漏洞受到攻击的系统在保密性、甚至完整性上仍存隐患。为了重新获得保密性和可信度,服务器必须重新生成所有受损的私钥-公钥对,并撤销及替换与之相关的所有证书。一般来说,必须更换所有受到影响的认证资料(例如密码),因为难以确认受漏洞影响的系统是否已被攻击。 ''' taskType = 'app-vul' def _verify(self): # print self.url response = main(self.url) # print response return self.parse_attack(response) def _attack(self): return self._verify() def parse_attack(self, response): output = Output(self) result = {} if response: result['VerifyInfo'] = {} result['VerifyInfo']['URL'] = '%s' % self.url result['VerifyInfo']['port'] = port output.success(result) else: output.fail('Failed') return output register(TestPOC)
[ "noreply@github.com" ]
liyanghack.noreply@github.com
2138e45b6ad500c213d7da873af0a2b31989b382
eb3395ce39347c6a19821ff9ab224b288f8e83fb
/ndm/model_cnn12_bn_att_a_w2targs.py
1d7eb52ddb18d34dd3b8b8a9f23e835fb5172ebc
[ "Apache-2.0" ]
permissive
oplatek/ndm
86e06ac9dc62ff45f5c3ad35b6892d23650f614d
d32bd9d685902d9da52b7e7abd286fb5d9c7274a
refs/heads/master
2021-07-11T02:22:16.570947
2016-02-18T11:21:03
2016-02-18T11:21:03
52,531,623
0
0
null
2016-02-25T14:35:47
2016-02-25T14:35:47
null
UTF-8
Python
false
false
14,624
py
#!/usr/bin/env python3 import sys import tensorflow as tf from model import ModelW2T, ModelW2TArgs from tfx.bricks import embedding, dense_to_one_hot, linear, conv2d, multicolumn_embedding, \ glorot_mul, reduce_max, dropout, conv2d_bn, batch_norm_lin, pow_1, softmax_2d class Model(ModelW2TArgs): def __init__(self, data, FLAGS): super(Model, self).__init__(data, FLAGS) database_column_embedding_size = 8 n_database_columns = len(data.database_columns) conv_mul = 2 histories_embedding_size = 16 histories_vocabulary_length = len(data.idx2word_history) history_length = data.train_set['histories'].shape[1] histories_arguments_embedding_size = 8 histories_arguments_vocabulary_length = len(data.idx2word_history_arguments) n_histories_arguments = data.train_set['histories_arguments'].shape[1] action_templates_vocabulary_length = len(data.idx2word_action_template) action_templates_embedding_size = 8 num_actions_arguments = data.batch_actions_arguments.shape[2] actions_arguments_vocabulary_length = len(data.idx2word_action_arguments) with tf.name_scope('data'): database = tf.Variable(data.database, name='database', trainable=False) batch_histories = tf.Variable(data.batch_histories, name='histories', trainable=False) batch_histories_arguments = tf.Variable(data.batch_histories_arguments, name='histories_arguments', trainable=False) batch_actions_template = tf.Variable(data.batch_actions_template, name='actions', trainable=False) batch_action_arguments = tf.Variable(data.batch_actions_arguments, name='actions_arguments', trainable=False) histories = tf.gather(batch_histories, self.batch_idx) histories_arguments = tf.gather(batch_histories_arguments, self.batch_idx) actions_template = tf.gather(batch_actions_template, self.batch_idx) actions_arguments = tf.gather(batch_action_arguments, self.batch_idx) with tf.name_scope('model'): database_embedding = multicolumn_embedding( columns=database, lengths=[len(i2w) for i2w in [data.database_idx2word[column] for column in data.database_columns]], sizes=[database_column_embedding_size for column in data.database_columns], # all columns have the same size name='database_embedding' ) histories_embedding = embedding( input=histories, length=histories_vocabulary_length, size=histories_embedding_size, name='histories_embedding' ) histories_arguments_embedding = embedding( input=histories_arguments, length=histories_arguments_vocabulary_length, size=histories_arguments_embedding_size, name='histories_arguments_embedding' ) with tf.name_scope("UtterancesEncoder"): conv3 = histories_embedding # conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[1, 3, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_utt_size_3_layer_1' ) encoded_utterances = reduce_max(conv3, [2], keep_dims=True, name='encoded_utterances') with tf.name_scope("HistoryEncoder"): conv3 = encoded_utterances conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_1' ) conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_2' ) encoded_history = reduce_max(conv3, [1, 2], name='encoded_history') # print(encoded_history) with tf.name_scope("DatabaseAttention"): histories_arguments_embedding = tf.reshape( histories_arguments_embedding, [-1, n_histories_arguments * histories_arguments_embedding_size], name='histories_arguments_embedding' ) # print(histories_arguments_embedding) history_predicate = tf.concat( 1, [encoded_history, histories_arguments_embedding], name='history_predicate' ) # print(history_predicate) att_W_nx = conv3.size + n_histories_arguments * histories_arguments_embedding_size att_W_ny = n_database_columns * database_column_embedding_size att_W = tf.get_variable( name='attention_W', shape=[att_W_nx, att_W_ny], initializer=tf.random_uniform_initializer( -glorot_mul(att_W_nx, att_W_ny), glorot_mul(att_W_nx, att_W_ny) ), ) hp_x_att_W = tf.matmul(history_predicate, att_W) attention_scores = tf.matmul(hp_x_att_W, database_embedding, transpose_b=True) attention = tf.nn.softmax(attention_scores, name="attention_softmax") print(attention) attention_max = tf.reduce_max(attention, reduction_indices=1, keep_dims=True) attention_min = tf.reduce_min(attention, reduction_indices=1, keep_dims=True) attention_mean = tf.reduce_mean(attention_scores, reduction_indices=1, keep_dims=True) attention_feat = tf.concat(1, [attention_max, attention_mean, attention_min], name='attention_feat') attention_feat_size = 3 # print(attention_feat) db_result = tf.matmul(attention, database_embedding, name='db_result') db_result_size = att_W_ny # print(db_result) with tf.name_scope("Decoder"): second_to_last_user_utterance = encoded_utterances[:, history_length - 3, 0, :] last_system_utterance = encoded_utterances[:, history_length - 2, 0, :] last_user_utterance = encoded_utterances[:, history_length - 1, 0, :] dialogue_state = tf.concat( 1, [ encoded_history, last_user_utterance, last_system_utterance, second_to_last_user_utterance, attention_feat, db_result ], name='dialogue_state' ) dialogue_state_size = ( conv3.size + 3 * histories_embedding_size * conv_mul + attention_feat_size + db_result_size + 0 ) dialogue_state = tf.nn.relu(dialogue_state) dialogue_state = dropout(dialogue_state, self.dropout_keep_prob) # action prediction projection = linear( input=dialogue_state, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_1' ) projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_1_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_2' ) projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_2_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=action_templates_vocabulary_length, name='linear_projection_3_predictions_action' ) self.predictions_action = tf.nn.softmax(projection, name="softmax_output_prediction_action") # argument prediction # first encode decoded action template and teh true action template choice = tf.floor(tf.random_uniform([1], self.use_inputs_prob, 1 + self.use_inputs_prob, tf.float32)) prediction_action_argmax = tf.stop_gradient(tf.argmax(self.predictions_action, 1)) predicted_action_templates_embedding = embedding( input=prediction_action_argmax, length=action_templates_vocabulary_length, size=action_templates_embedding_size, name='action_templates_embedding' ) true_action_template_embedding = tf.gather(predicted_action_templates_embedding.embedding_table, actions_template) predicted_action_templates_embedding = tf.stop_gradient(predicted_action_templates_embedding) action_templates_embedding = choice * true_action_template_embedding + (1.0 - choice) * predicted_action_templates_embedding dialogue_state_action_template = tf.concat( 1, [ dialogue_state, action_templates_embedding ], name='dialogue_state_action_template' ) dialogue_state_action_template_size = ( dialogue_state_size + action_templates_embedding_size ) # condition on the dialogue state and the decoded template projection = linear( input=dialogue_state_action_template, input_size=dialogue_state_action_template_size, output_size=dialogue_state_action_template_size, name='linear_projection_1_predictions_arguments' ) projection = batch_norm_lin(projection, dialogue_state_action_template_size, self.phase_train, name='linear_projection_1_predictions_arguments_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_action_template_size, output_size=dialogue_state_action_template_size, name='linear_projection_2_predictions_arguments' ) projection = batch_norm_lin(projection, dialogue_state_action_template_size, self.phase_train, name='linear_projection_2_predictions_arguments_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_action_template_size, output_size=num_actions_arguments * actions_arguments_vocabulary_length, name='linear_projection_3_predictions_arguments' ) self.predictions_arguments = softmax_2d( input=projection, n_classifiers=num_actions_arguments, n_classes=actions_arguments_vocabulary_length, name="softmax_2d_predictions_arguments") if FLAGS.print_variables: for v in tf.trainable_variables(): print(v.name) with tf.name_scope('loss'): one_hot_labels_action = dense_to_one_hot(actions_template, action_templates_vocabulary_length) one_hot_labels_arguments = dense_to_one_hot(actions_arguments, actions_arguments_vocabulary_length) loss_action = tf.reduce_mean( - one_hot_labels_action * tf.log(tf.clip_by_value(self.predictions_action, 1e-10, 1.0)), name='loss' ) loss_arguments = tf.reduce_mean( - one_hot_labels_arguments * tf.log(tf.clip_by_value(self.predictions_arguments, 1e-10, 1.0)), name='loss' ) self.loss = (loss_action + loss_arguments)/2 tf.scalar_summary('loss', self.loss) with tf.name_scope('accuracy'): correct_prediction_action = tf.equal( tf.argmax(one_hot_labels_action, 1), tf.argmax(self.predictions_action, 1) ) self.accuracy_action = tf.reduce_mean(tf.cast(correct_prediction_action, 'float')) tf.scalar_summary('accuracy_action', self.accuracy_action) correct_prediction_arguments = tf.equal(tf.argmax(one_hot_labels_arguments, 2), tf.argmax(self.predictions_arguments, 2)) self.accuracy_arguments = tf.reduce_mean(tf.cast(correct_prediction_arguments, 'float')) tf.scalar_summary('accuracy_arguments', self.accuracy_arguments) self.accuracy = (self.accuracy_action + self.accuracy_arguments)/2 tf.scalar_summary('accuracy', self.accuracy)
[ "filip.juricicek@gmail.com" ]
filip.juricicek@gmail.com
6b94ccf36b537b20b948dc0a0e5c41ed19240a20
b7a9307465e4107356a9bc518a5b6eea6491ffab
/Model_Training/Manual_model/vgg_labels.py
5268dfb8bf8c2ca81ff307a268a255abe5e28a9e
[]
no_license
Tunoc/pythonexam
b2378835b5bcbbf1f892b6838cfc0cc856bcb7b1
d7a28874edfaa23396ddfdbd77bce9c7fcfa240f
refs/heads/main
2023-02-04T05:12:52.697491
2020-12-27T19:27:06
2020-12-27T19:27:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
30,578
py
translate = { 0: 'tench, Tinca tinca', 1: 'goldfish, Carassius auratus', 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', 3: 'tiger shark, Galeocerdo cuvieri', 4: 'hammerhead, hammerhead shark', 5: 'electric ray, crampfish, numbfish, torpedo', 6: 'stingray', 7: 'cock', 8: 'hen', 9: 'ostrich, Struthio camelus', 10: 'brambling, Fringilla montifringilla', 11: 'goldfinch, Carduelis carduelis', 12: 'house finch, linnet, Carpodacus mexicanus', 13: 'junco, snowbird', 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea', 15: 'robin, American robin, Turdus migratorius', 16: 'bulbul', 17: 'jay', 18: 'magpie', 19: 'chickadee', 20: 'water ouzel, dipper', 21: 'kite', 22: 'bald eagle, American eagle, Haliaeetus leucocephalus', 23: 'vulture', 24: 'great grey owl, great gray owl, Strix nebulosa', 25: 'European fire salamander, Salamandra salamandra', 26: 'common newt, Triturus vulgaris', 27: 'eft', 28: 'spotted salamander, Ambystoma maculatum', 29: 'axolotl, mud puppy, Ambystoma mexicanum', 30: 'bullfrog, Rana catesbeiana', 31: 'tree frog, tree-frog', 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', 33: 'loggerhead, loggerhead turtle, Caretta caretta', 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', 35: 'mud turtle', 36: 'terrapin', 37: 'box turtle, box tortoise', 38: 'banded gecko', 39: 'common iguana, iguana, Iguana iguana', 40: 'American chameleon, anole, Anolis carolinensis', 41: 'whiptail, whiptail lizard', 42: 'agama', 43: 'frilled lizard, Chlamydosaurus kingi', 44: 'alligator lizard', 45: 'Gila monster, Heloderma suspectum', 46: 'green lizard, Lacerta viridis', 47: 'African chameleon, Chamaeleo chamaeleon', 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', 49: 'African crocodile, Nile crocodile, Crocodylus niloticus', 50: 'American alligator, Alligator mississipiensis', 51: 'triceratops', 52: 'thunder snake, worm snake, Carphophis amoenus', 53: 'ringneck snake, ring-necked snake, ring snake', 54: 'hognose snake, puff adder, sand viper', 55: 'green snake, grass snake', 56: 'king snake, kingsnake', 57: 'garter snake, grass snake', 58: 'water snake', 59: 'vine snake', 60: 'night snake, Hypsiglena torquata', 61: 'boa constrictor, Constrictor constrictor', 62: 'rock python, rock snake, Python sebae', 63: 'Indian cobra, Naja naja', 64: 'green mamba', 65: 'sea snake', 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus', 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus', 68: 'sidewinder, horned rattlesnake, Crotalus cerastes', 69: 'trilobite', 70: 'harvestman, daddy longlegs, Phalangium opilio', 71: 'scorpion', 72: 'black and gold garden spider, Argiope aurantia', 73: 'barn spider, Araneus cavaticus', 74: 'garden spider, Aranea diademata', 75: 'black widow, Latrodectus mactans', 76: 'tarantula', 77: 'wolf spider, hunting spider', 78: 'tick', 79: 'centipede', 80: 'black grouse', 81: 'ptarmigan', 82: 'ruffed grouse, partridge, Bonasa umbellus', 83: 'prairie chicken, prairie grouse, prairie fowl', 84: 'peacock', 85: 'quail', 86: 'partridge', 87: 'African grey, African gray, Psittacus erithacus', 88: 'macaw', 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', 90: 'lorikeet', 91: 'coucal', 92: 'bee eater', 93: 'hornbill', 94: 'hummingbird', 95: 'jacamar', 96: 'toucan', 97: 'drake', 98: 'red-breasted merganser, Mergus serrator', 99: 'goose', 100: 'black swan, Cygnus atratus', 101: 'tusker', 102: 'echidna, spiny anteater, anteater', 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', 104: 'wallaby, brush kangaroo', 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', 106: 'wombat', 107: 'jellyfish', 108: 'sea anemone, anemone', 109: 'brain coral', 110: 'flatworm, platyhelminth', 111: 'nematode, nematode worm, roundworm', 112: 'conch', 113: 'snail', 114: 'slug', 115: 'sea slug, nudibranch', 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore', 117: 'chambered nautilus, pearly nautilus, nautilus', 118: 'Dungeness crab, Cancer magister', 119: 'rock crab, Cancer irroratus', 120: 'fiddler crab', 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus', 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', 124: 'crayfish, crawfish, crawdad, crawdaddy', 125: 'hermit crab', 126: 'isopod', 127: 'white stork, Ciconia ciconia', 128: 'black stork, Ciconia nigra', 129: 'spoonbill', 130: 'flamingo', 131: 'little blue heron, Egretta caerulea', 132: 'American egret, great white heron, Egretta albus', 133: 'bittern', 134: 'crane', 135: 'limpkin, Aramus pictus', 136: 'European gallinule, Porphyrio porphyrio', 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana', 138: 'bustard', 139: 'ruddy turnstone, Arenaria interpres', 140: 'red-backed sandpiper, dunlin, Erolia alpina', 141: 'redshank, Tringa totanus', 142: 'dowitcher', 143: 'oystercatcher, oyster catcher', 144: 'pelican', 145: 'king penguin, Aptenodytes patagonica', 146: 'albatross, mollymawk', 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', 149: 'dugong, Dugong dugon', 150: 'sea lion', 151: 'Chihuahua', 152: 'Japanese spaniel', 153: 'Maltese dog, Maltese terrier, Maltese', 154: 'Pekinese, Pekingese, Peke', 155: 'Shih-Tzu', 156: 'Blenheim spaniel', 157: 'papillon', 158: 'toy terrier', 159: 'Rhodesian ridgeback', 160: 'Afghan hound, Afghan', 161: 'basset, basset hound', 162: 'beagle', 163: 'bloodhound, sleuthhound', 164: 'bluetick', 165: 'black-and-tan coonhound', 166: 'Walker hound, Walker foxhound', 167: 'English foxhound', 168: 'redbone', 169: 'borzoi, Russian wolfhound', 170: 'Irish wolfhound', 171: 'Italian greyhound', 172: 'whippet', 173: 'Ibizan hound, Ibizan Podenco', 174: 'Norwegian elkhound, elkhound', 175: 'otterhound, otter hound', 176: 'Saluki, gazelle hound', 177: 'Scottish deerhound, deerhound', 178: 'Weimaraner', 179: 'Staffordshire bullterrier, Staffordshire bull terrier', 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', 181: 'Bedlington terrier', 182: 'Border terrier', 183: 'Kerry blue terrier', 184: 'Irish terrier', 185: 'Norfolk terrier', 186: 'Norwich terrier', 187: 'Yorkshire terrier', 188: 'wire-haired fox terrier', 189: 'Lakeland terrier', 190: 'Sealyham terrier, Sealyham', 191: 'Airedale, Airedale terrier', 192: 'cairn, cairn terrier', 193: 'Australian terrier', 194: 'Dandie Dinmont, Dandie Dinmont terrier', 195: 'Boston bull, Boston terrier', 196: 'miniature schnauzer', 197: 'giant schnauzer', 198: 'standard schnauzer', 199: 'Scotch terrier, Scottish terrier, Scottie', 200: 'Tibetan terrier, chrysanthemum dog', 201: 'silky terrier, Sydney silky', 202: 'soft-coated wheaten terrier', 203: 'West Highland white terrier', 204: 'Lhasa, Lhasa apso', 205: 'flat-coated retriever', 206: 'curly-coated retriever', 207: 'golden retriever', 208: 'Labrador retriever', 209: 'Chesapeake Bay retriever', 210: 'German short-haired pointer', 211: 'vizsla, Hungarian pointer', 212: 'English setter', 213: 'Irish setter, red setter', 214: 'Gordon setter', 215: 'Brittany spaniel', 216: 'clumber, clumber spaniel', 217: 'English springer, English springer spaniel', 218: 'Welsh springer spaniel', 219: 'cocker spaniel, English cocker spaniel, cocker', 220: 'Sussex spaniel', 221: 'Irish water spaniel', 222: 'kuvasz', 223: 'schipperke', 224: 'groenendael', 225: 'malinois', 226: 'briard', 227: 'kelpie', 228: 'komondor', 229: 'Old English sheepdog, bobtail', 230: 'Shetland sheepdog, Shetland sheep dog, Shetland', 231: 'collie', 232: 'Border collie', 233: 'Bouvier des Flandres, Bouviers des Flandres', 234: 'Rottweiler', 235: 'German shepherd, German shepherd dog, German police dog, alsatian', 236: 'Doberman, Doberman pinscher', 237: 'miniature pinscher', 238: 'Greater Swiss Mountain dog', 239: 'Bernese mountain dog', 240: 'Appenzeller', 241: 'EntleBucher', 242: 'boxer', 243: 'bull mastiff', 244: 'Tibetan mastiff', 245: 'French bulldog', 246: 'Great Dane', 247: 'Saint Bernard, St Bernard', 248: 'Eskimo dog, husky', 249: 'malamute, malemute, Alaskan malamute', 250: 'Siberian husky', 251: 'dalmatian, coach dog, carriage dog', 252: 'affenpinscher, monkey pinscher, monkey dog', 253: 'basenji', 254: 'pug, pug-dog', 255: 'Leonberg', 256: 'Newfoundland, Newfoundland dog', 257: 'Great Pyrenees', 258: 'Samoyed, Samoyede', 259: 'Pomeranian', 260: 'chow, chow chow', 261: 'keeshond', 262: 'Brabancon griffon', 263: 'Pembroke, Pembroke Welsh corgi', 264: 'Cardigan, Cardigan Welsh corgi', 265: 'toy poodle', 266: 'miniature poodle', 267: 'standard poodle', 268: 'Mexican hairless', 269: 'timber wolf, grey wolf, gray wolf, Canis lupus', 270: 'white wolf, Arctic wolf, Canis lupus tundrarum', 271: 'red wolf, maned wolf, Canis rufus, Canis niger', 272: 'coyote, prairie wolf, brush wolf, Canis latrans', 273: 'dingo, warrigal, warragal, Canis dingo', 274: 'dhole, Cuon alpinus', 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus', 276: 'hyena, hyaena', 277: 'red fox, Vulpes vulpes', 278: 'kit fox, Vulpes macrotis', 279: 'Arctic fox, white fox, Alopex lagopus', 280: 'grey fox, gray fox, Urocyon cinereoargenteus', 281: 'tabby, tabby cat', 282: 'tiger cat', 283: 'Persian cat', 284: 'Siamese cat, Siamese', 285: 'Egyptian cat', 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', 287: 'lynx, catamount', 288: 'leopard, Panthera pardus', 289: 'snow leopard, ounce, Panthera uncia', 290: 'jaguar, panther, Panthera onca, Felis onca', 291: 'lion, king of beasts, Panthera leo', 292: 'tiger, Panthera tigris', 293: 'cheetah, chetah, Acinonyx jubatus', 294: 'brown bear, bruin, Ursus arctos', 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus', 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', 297: 'sloth bear, Melursus ursinus, Ursus ursinus', 298: 'mongoose', 299: 'meerkat, mierkat', 300: 'tiger beetle', 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', 302: 'ground beetle, carabid beetle', 303: 'long-horned beetle, longicorn, longicorn beetle', 304: 'leaf beetle, chrysomelid', 305: 'dung beetle', 306: 'rhinoceros beetle', 307: 'weevil', 308: 'fly', 309: 'bee', 310: 'ant, emmet, pismire', 311: 'grasshopper, hopper', 312: 'cricket', 313: 'walking stick, walkingstick, stick insect', 314: 'cockroach, roach', 315: 'mantis, mantid', 316: 'cicada, cicala', 317: 'leafhopper', 318: 'lacewing, lacewing fly', 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", 320: 'damselfly', 321: 'admiral', 322: 'ringlet, ringlet butterfly', 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', 324: 'cabbage butterfly', 325: 'sulphur butterfly, sulfur butterfly', 326: 'lycaenid, lycaenid butterfly', 327: 'starfish, sea star', 328: 'sea urchin', 329: 'sea cucumber, holothurian', 330: 'wood rabbit, cottontail, cottontail rabbit', 331: 'hare', 332: 'Angora, Angora rabbit', 333: 'hamster', 334: 'porcupine, hedgehog', 335: 'fox squirrel, eastern fox squirrel, Sciurus niger', 336: 'marmot', 337: 'beaver', 338: 'guinea pig, Cavia cobaya', 339: 'sorrel', 340: 'zebra', 341: 'hog, pig, grunter, squealer, Sus scrofa', 342: 'wild boar, boar, Sus scrofa', 343: 'warthog', 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius', 345: 'ox', 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', 347: 'bison', 348: 'ram, tup', 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis', 350: 'ibex, Capra ibex', 351: 'hartebeest', 352: 'impala, Aepyceros melampus', 353: 'gazelle', 354: 'Arabian camel, dromedary, Camelus dromedarius', 355: 'llama', 356: 'weasel', 357: 'mink', 358: 'polecat, fitch, foulmart, foumart, Mustela putorius', 359: 'black-footed ferret, ferret, Mustela nigripes', 360: 'otter', 361: 'skunk, polecat, wood pussy', 362: 'badger', 363: 'armadillo', 364: 'three-toed sloth, ai, Bradypus tridactylus', 365: 'orangutan, orang, orangutang, Pongo pygmaeus', 366: 'gorilla, Gorilla gorilla', 367: 'chimpanzee, chimp, Pan troglodytes', 368: 'gibbon, Hylobates lar', 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus', 370: 'guenon, guenon monkey', 371: 'patas, hussar monkey, Erythrocebus patas', 372: 'baboon', 373: 'macaque', 374: 'langur', 375: 'colobus, colobus monkey', 376: 'proboscis monkey, Nasalis larvatus', 377: 'marmoset', 378: 'capuchin, ringtail, Cebus capucinus', 379: 'howler monkey, howler', 380: 'titi, titi monkey', 381: 'spider monkey, Ateles geoffroyi', 382: 'squirrel monkey, Saimiri sciureus', 383: 'Madagascar cat, ring-tailed lemur, Lemur catta', 384: 'indri, indris, Indri indri, Indri brevicaudatus', 385: 'Indian elephant, Elephas maximus', 386: 'African elephant, Loxodonta africana', 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', 389: 'barracouta, snoek', 390: 'eel', 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', 392: 'rock beauty, Holocanthus tricolor', 393: 'anemone fish', 394: 'sturgeon', 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus', 396: 'lionfish', 397: 'puffer, pufferfish, blowfish, globefish', 398: 'abacus', 399: 'abaya', 400: "academic gown, academic robe, judge's robe", 401: 'accordion, piano accordion, squeeze box', 402: 'acoustic guitar', 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier', 404: 'airliner', 405: 'airship, dirigible', 406: 'altar', 407: 'ambulance', 408: 'amphibian, amphibious vehicle', 409: 'analog clock', 410: 'apiary, bee house', 411: 'apron', 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', 413: 'assault rifle, assault gun', 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack', 415: 'bakery, bakeshop, bakehouse', 416: 'balance beam, beam', 417: 'balloon', 418: 'ballpoint, ballpoint pen, ballpen, Biro', 419: 'Band Aid', 420: 'banjo', 421: 'bannister, banister, balustrade, balusters, handrail', 422: 'barbell', 423: 'barber chair', 424: 'barbershop', 425: 'barn', 426: 'barometer', 427: 'barrel, cask', 428: 'barrow, garden cart, lawn cart, wheelbarrow', 429: 'baseball', 430: 'basketball', 431: 'bassinet', 432: 'bassoon', 433: 'bathing cap, swimming cap', 434: 'bath towel', 435: 'bathtub, bathing tub, bath, tub', 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon', 437: 'beacon, lighthouse, beacon light, pharos', 438: 'beaker', 439: 'bearskin, busby, shako', 440: 'beer bottle', 441: 'beer glass', 442: 'bell cote, bell cot', 443: 'bib', 444: 'bicycle-built-for-two, tandem bicycle, tandem', 445: 'bikini, two-piece', 446: 'binder, ring-binder', 447: 'binoculars, field glasses, opera glasses', 448: 'birdhouse', 449: 'boathouse', 450: 'bobsled, bobsleigh, bob', 451: 'bolo tie, bolo, bola tie, bola', 452: 'bonnet, poke bonnet', 453: 'bookcase', 454: 'bookshop, bookstore, bookstall', 455: 'bottlecap', 456: 'bow', 457: 'bow tie, bow-tie, bowtie', 458: 'brass, memorial tablet, plaque', 459: 'brassiere, bra, bandeau', 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty', 461: 'breastplate, aegis, egis', 462: 'broom', 463: 'bucket, pail', 464: 'buckle', 465: 'bulletproof vest', 466: 'bullet train, bullet', 467: 'butcher shop, meat market', 468: 'cab, hack, taxi, taxicab', 469: 'caldron, cauldron', 470: 'candle, taper, wax light', 471: 'cannon', 472: 'canoe', 473: 'can opener, tin opener', 474: 'cardigan', 475: 'car mirror', 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig', 477: "carpenter's kit, tool kit", 478: 'carton', 479: 'car wheel', 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', 481: 'cassette', 482: 'cassette player', 483: 'castle', 484: 'catamaran', 485: 'CD player', 486: 'cello, violoncello', 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone', 488: 'chain', 489: 'chainlink fence', 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', 491: 'chain saw, chainsaw', 492: 'chest', 493: 'chiffonier, commode', 494: 'chime, bell, gong', 495: 'china cabinet, china closet', 496: 'Christmas stocking', 497: 'church, church building', 498: 'cinema, movie theater, movie theatre, movie house, picture palace', 499: 'cleaver, meat cleaver, chopper', 500: 'cliff dwelling', 501: 'cloak', 502: 'clog, geta, patten, sabot', 503: 'cocktail shaker', 504: 'coffee mug', 505: 'coffeepot', 506: 'coil, spiral, volute, whorl, helix', 507: 'combination lock', 508: 'computer keyboard, keypad', 509: 'confectionery, confectionary, candy store', 510: 'container ship, containership, container vessel', 511: 'convertible', 512: 'corkscrew, bottle screw', 513: 'cornet, horn, trumpet, trump', 514: 'cowboy boot', 515: 'cowboy hat, ten-gallon hat', 516: 'cradle', 517: 'crane', 518: 'crash helmet', 519: 'crate', 520: 'crib, cot', 521: 'Crock Pot', 522: 'croquet ball', 523: 'crutch', 524: 'cuirass', 525: 'dam, dike, dyke', 526: 'desk', 527: 'desktop computer', 528: 'dial telephone, dial phone', 529: 'diaper, nappy, napkin', 530: 'digital clock', 531: 'digital watch', 532: 'dining table, board', 533: 'dishrag, dishcloth', 534: 'dishwasher, dish washer, dishwashing machine', 535: 'disk brake, disc brake', 536: 'dock, dockage, docking facility', 537: 'dogsled, dog sled, dog sleigh', 538: 'dome', 539: 'doormat, welcome mat', 540: 'drilling platform, offshore rig', 541: 'drum, membranophone, tympan', 542: 'drumstick', 543: 'dumbbell', 544: 'Dutch oven', 545: 'electric fan, blower', 546: 'electric guitar', 547: 'electric locomotive', 548: 'entertainment center', 549: 'envelope', 550: 'espresso maker', 551: 'face powder', 552: 'feather boa, boa', 553: 'file, file cabinet, filing cabinet', 554: 'fireboat', 555: 'fire engine, fire truck', 556: 'fire screen, fireguard', 557: 'flagpole, flagstaff', 558: 'flute, transverse flute', 559: 'folding chair', 560: 'football helmet', 561: 'forklift', 562: 'fountain', 563: 'fountain pen', 564: 'four-poster', 565: 'freight car', 566: 'French horn, horn', 567: 'frying pan, frypan, skillet', 568: 'fur coat', 569: 'garbage truck, dustcart', 570: 'gasmask, respirator, gas helmet', 571: 'gas pump, gasoline pump, petrol pump, island dispenser', 572: 'goblet', 573: 'go-kart', 574: 'golf ball', 575: 'golfcart, golf cart', 576: 'gondola', 577: 'gong, tam-tam', 578: 'gown', 579: 'grand piano, grand', 580: 'greenhouse, nursery, glasshouse', 581: 'grille, radiator grille', 582: 'grocery store, grocery, food market, market', 583: 'guillotine', 584: 'hair slide', 585: 'hair spray', 586: 'half track', 587: 'hammer', 588: 'hamper', 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier', 590: 'hand-held computer, hand-held microcomputer', 591: 'handkerchief, hankie, hanky, hankey', 592: 'hard disc, hard disk, fixed disk', 593: 'harmonica, mouth organ, harp, mouth harp', 594: 'harp', 595: 'harvester, reaper', 596: 'hatchet', 597: 'holster', 598: 'home theater, home theatre', 599: 'honeycomb', 600: 'hook, claw', 601: 'hoopskirt, crinoline', 602: 'horizontal bar, high bar', 603: 'horse cart, horse-cart', 604: 'hourglass', 605: 'iPod', 606: 'iron, smoothing iron', 607: "jack-o'-lantern", 608: 'jean, blue jean, denim', 609: 'jeep, landrover', 610: 'jersey, T-shirt, tee shirt', 611: 'jigsaw puzzle', 612: 'jinrikisha, ricksha, rickshaw', 613: 'joystick', 614: 'kimono', 615: 'knee pad', 616: 'knot', 617: 'lab coat, laboratory coat', 618: 'ladle', 619: 'lampshade, lamp shade', 620: 'laptop, laptop computer', 621: 'lawn mower, mower', 622: 'lens cap, lens cover', 623: 'letter opener, paper knife, paperknife', 624: 'library', 625: 'lifeboat', 626: 'lighter, light, igniter, ignitor', 627: 'limousine, limo', 628: 'liner, ocean liner', 629: 'lipstick, lip rouge', 630: 'Loafer', 631: 'lotion', 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', 633: "loupe, jeweler's loupe", 634: 'lumbermill, sawmill', 635: 'magnetic compass', 636: 'mailbag, postbag', 637: 'mailbox, letter box', 638: 'maillot', 639: 'maillot, tank suit', 640: 'manhole cover', 641: 'maraca', 642: 'marimba, xylophone', 643: 'mask', 644: 'matchstick', 645: 'maypole', 646: 'maze, labyrinth', 647: 'measuring cup', 648: 'medicine chest, medicine cabinet', 649: 'megalith, megalithic structure', 650: 'microphone, mike', 651: 'microwave, microwave oven', 652: 'military uniform', 653: 'milk can', 654: 'minibus', 655: 'miniskirt, mini', 656: 'minivan', 657: 'missile', 658: 'mitten', 659: 'mixing bowl', 660: 'mobile home, manufactured home', 661: 'Model T', 662: 'modem', 663: 'monastery', 664: 'monitor', 665: 'moped', 666: 'mortar', 667: 'mortarboard', 668: 'mosque', 669: 'mosquito net', 670: 'motor scooter, scooter', 671: 'mountain bike, all-terrain bike, off-roader', 672: 'mountain tent', 673: 'mouse, computer mouse', 674: 'mousetrap', 675: 'moving van', 676: 'muzzle', 677: 'nail', 678: 'neck brace', 679: 'necklace', 680: 'nipple', 681: 'notebook, notebook computer', 682: 'obelisk', 683: 'oboe, hautboy, hautbois', 684: 'ocarina, sweet potato', 685: 'odometer, hodometer, mileometer, milometer', 686: 'oil filter', 687: 'organ, pipe organ', 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO', 689: 'overskirt', 690: 'oxcart', 691: 'oxygen mask', 692: 'packet', 693: 'paddle, boat paddle', 694: 'paddlewheel, paddle wheel', 695: 'padlock', 696: 'paintbrush', 697: "pajama, pyjama, pj's, jammies", 698: 'palace', 699: 'panpipe, pandean pipe, syrinx', 700: 'paper towel', 701: 'parachute, chute', 702: 'parallel bars, bars', 703: 'park bench', 704: 'parking meter', 705: 'passenger car, coach, carriage', 706: 'patio, terrace', 707: 'pay-phone, pay-station', 708: 'pedestal, plinth, footstall', 709: 'pencil box, pencil case', 710: 'pencil sharpener', 711: 'perfume, essence', 712: 'Petri dish', 713: 'photocopier', 714: 'pick, plectrum, plectron', 715: 'pickelhaube', 716: 'picket fence, paling', 717: 'pickup, pickup truck', 718: 'pier', 719: 'piggy bank, penny bank', 720: 'pill bottle', 721: 'pillow', 722: 'ping-pong ball', 723: 'pinwheel', 724: 'pirate, pirate ship', 725: 'pitcher, ewer', 726: "plane, carpenter's plane, woodworking plane", 727: 'planetarium', 728: 'plastic bag', 729: 'plate rack', 730: 'plow, plough', 731: "plunger, plumber's helper", 732: 'Polaroid camera, Polaroid Land camera', 733: 'pole', 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', 735: 'poncho', 736: 'pool table, billiard table, snooker table', 737: 'pop bottle, soda bottle', 738: 'pot, flowerpot', 739: "potter's wheel", 740: 'power drill', 741: 'prayer rug, prayer mat', 742: 'printer', 743: 'prison, prison house', 744: 'projectile, missile', 745: 'projector', 746: 'puck, hockey puck', 747: 'punching bag, punch bag, punching ball, punchball', 748: 'purse', 749: 'quill, quill pen', 750: 'quilt, comforter, comfort, puff', 751: 'racer, race car, racing car', 752: 'racket, racquet', 753: 'radiator', 754: 'radio, wireless', 755: 'radio telescope, radio reflector', 756: 'rain barrel', 757: 'recreational vehicle, RV, R.V.', 758: 'reel', 759: 'reflex camera', 760: 'refrigerator, icebox', 761: 'remote control, remote', 762: 'restaurant, eating house, eating place, eatery', 763: 'revolver, six-gun, six-shooter', 764: 'rifle', 765: 'rocking chair, rocker', 766: 'rotisserie', 767: 'rubber eraser, rubber, pencil eraser', 768: 'rugby ball', 769: 'rule, ruler', 770: 'running shoe', 771: 'safe', 772: 'safety pin', 773: 'saltshaker, salt shaker', 774: 'sandal', 775: 'sarong', 776: 'sax, saxophone', 777: 'scabbard', 778: 'scale, weighing machine', 779: 'school bus', 780: 'schooner', 781: 'scoreboard', 782: 'screen, CRT screen', 783: 'screw', 784: 'screwdriver', 785: 'seat belt, seatbelt', 786: 'sewing machine', 787: 'shield, buckler', 788: 'shoe shop, shoe-shop, shoe store', 789: 'shoji', 790: 'shopping basket', 791: 'shopping cart', 792: 'shovel', 793: 'shower cap', 794: 'shower curtain', 795: 'ski', 796: 'ski mask', 797: 'sleeping bag', 798: 'slide rule, slipstick', 799: 'sliding door', 800: 'slot, one-armed bandit', 801: 'snorkel', 802: 'snowmobile', 803: 'snowplow, snowplough', 804: 'soap dispenser', 805: 'soccer ball', 806: 'sock', 807: 'solar dish, solar collector, solar furnace', 808: 'sombrero', 809: 'soup bowl', 810: 'space bar', 811: 'space heater', 812: 'space shuttle', 813: 'spatula', 814: 'speedboat', 815: "spider web, spider's web", 816: 'spindle', 817: 'sports car, sport car', 818: 'spotlight, spot', 819: 'stage', 820: 'steam locomotive', 821: 'steel arch bridge', 822: 'steel drum', 823: 'stethoscope', 824: 'stole', 825: 'stone wall', 826: 'stopwatch, stop watch', 827: 'stove', 828: 'strainer', 829: 'streetcar, tram, tramcar, trolley, trolley car', 830: 'stretcher', 831: 'studio couch, day bed', 832: 'stupa, tope', 833: 'submarine, pigboat, sub, U-boat', 834: 'suit, suit of clothes', 835: 'sundial', 836: 'sunglass', 837: 'sunglasses, dark glasses, shades', 838: 'sunscreen, sunblock, sun blocker', 839: 'suspension bridge', 840: 'swab, swob, mop', 841: 'sweatshirt', 842: 'swimming trunks, bathing trunks', 843: 'swing', 844: 'switch, electric switch, electrical switch', 845: 'syringe', 846: 'table lamp', 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle', 848: 'tape player', 849: 'teapot', 850: 'teddy, teddy bear', 851: 'television, television system', 852: 'tennis ball', 853: 'thatch, thatched roof', 854: 'theater curtain, theatre curtain', 855: 'thimble', 856: 'thresher, thrasher, threshing machine', 857: 'throne', 858: 'tile roof', 859: 'toaster', 860: 'tobacco shop, tobacconist shop, tobacconist', 861: 'toilet seat', 862: 'torch', 863: 'totem pole', 864: 'tow truck, tow car, wrecker', 865: 'toyshop', 866: 'tractor', 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', 868: 'tray', 869: 'trench coat', 870: 'tricycle, trike, velocipede', 871: 'trimaran', 872: 'tripod', 873: 'triumphal arch', 874: 'trolleybus, trolley coach, trackless trolley', 875: 'trombone', 876: 'tub, vat', 877: 'turnstile', 878: 'typewriter keyboard', 879: 'umbrella', 880: 'unicycle, monocycle', 881: 'upright, upright piano', 882: 'vacuum, vacuum cleaner', 883: 'vase', 884: 'vault', 885: 'velvet', 886: 'vending machine', 887: 'vestment', 888: 'viaduct', 889: 'violin, fiddle', 890: 'volleyball', 891: 'waffle iron', 892: 'wall clock', 893: 'wallet, billfold, notecase, pocketbook', 894: 'wardrobe, closet, press', 895: 'warplane, military plane', 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin', 897: 'washer, automatic washer, washing machine', 898: 'water bottle', 899: 'water jug', 900: 'water tower', 901: 'whiskey jug', 902: 'whistle', 903: 'wig', 904: 'window screen', 905: 'window shade', 906: 'Windsor tie', 907: 'wine bottle', 908: 'wing', 909: 'wok', 910: 'wooden spoon', 911: 'wool, woolen, woollen', 912: 'worm fence, snake fence, snake-rail fence, Virginia fence', 913: 'wreck', 914: 'yawl', 915: 'yurt', 916: 'web site, website, internet site, site', 917: 'comic book', 918: 'crossword puzzle, crossword', 919: 'street sign', 920: 'traffic light, traffic signal, stoplight', 921: 'book jacket, dust cover, dust jacket, dust wrapper', 922: 'menu', 923: 'plate', 924: 'guacamole', 925: 'consomme', 926: 'hot pot, hotpot', 927: 'trifle', 928: 'ice cream, icecream', 929: 'ice lolly, lolly, lollipop, popsicle', 930: 'French loaf', 931: 'bagel, beigel', 932: 'pretzel', 933: 'cheeseburger', 934: 'hotdog, hot dog, red hot', 935: 'mashed potato', 936: 'head cabbage', 937: 'broccoli', 938: 'cauliflower', 939: 'zucchini, courgette', 940: 'spaghetti squash', 941: 'acorn squash', 942: 'butternut squash', 943: 'cucumber, cuke', 944: 'artichoke, globe artichoke', 945: 'bell pepper', 946: 'cardoon', 947: 'mushroom', 948: 'Granny Smith', 949: 'strawberry', 950: 'orange', 951: 'lemon', 952: 'fig', 953: 'pineapple, ananas', 954: 'banana', 955: 'jackfruit, jak, jack', 956: 'custard apple', 957: 'pomegranate', 958: 'hay', 959: 'carbonara', 960: 'chocolate sauce, chocolate syrup', 961: 'dough', 962: 'meat loaf, meatloaf', 963: 'pizza, pizza pie', 964: 'potpie', 965: 'burrito', 966: 'red wine', 967: 'espresso', 968: 'cup', 969: 'eggnog', 970: 'alp', 971: 'bubble', 972: 'cliff, drop, drop-off', 973: 'coral reef', 974: 'geyser', 975: 'lakeside, lakeshore', 976: 'promontory, headland, head, foreland', 977: 'sandbar, sand bar', 978: 'seashore, coast, seacoast, sea-coast', 979: 'valley, vale', 980: 'volcano', 981: 'ballplayer, baseball player', 982: 'groom, bridegroom', 983: 'scuba diver', 984: 'rapeseed', 985: 'daisy', 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", 987: 'corn', 988: 'acorn', 989: 'hip, rose hip, rosehip', 990: 'buckeye, horse chestnut, conker', 991: 'coral fungus', 992: 'agaric', 993: 'gyromitra', 994: 'stinkhorn, carrion fungus', 995: 'earthstar', 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', 997: 'bolete', 998: 'ear, spike, capitulum', 999: 'toilet tissue, toilet paper, bathroom tissue'}
[ "46166076+Tunoc@users.noreply.github.com" ]
46166076+Tunoc@users.noreply.github.com
b1da81e45980e885470ba6b0e3d6abd5ee4b893f
950eb2c41a9835c1fe0daffd8856039b2535072f
/index/migrations/0001_initial.py
9b198c2122bf3b192b5f306be1632ded398ccd96
[]
no_license
shazolKh/bloodbank
21f701e77c812b007eac6dea3e3520cf5a268f54
905479c57c68a7e872fac05ce0f5514ec01b02d6
refs/heads/master
2023-06-04T14:22:36.849281
2021-06-19T08:19:20
2021-06-19T08:19:20
331,898,006
0
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
# Generated by Django 3.1.1 on 2021-02-22 17:22 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('blood_group', models.CharField(max_length=5)), ('location', models.CharField(max_length=100)), ('hospital', models.CharField(max_length=100)), ('contact', models.CharField(max_length=30)), ('managed', models.CharField(max_length=5)), ('details', models.TextField()), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "shazol.kh@gmail.com" ]
shazol.kh@gmail.com
80c4f2efe33abda42f37afbea34d12a29ba0f188
b7a13f1c9e02bacb621febcf63f4245b24e2f6df
/tomopy/recon/algorithm.py
c48ac3f6a0e224df688857cc577e951a91f56184
[]
no_license
AaronBM/tomopy
551b94ebf69f546028fb49aaa5d70068cf608c24
bca22f8b0b2c9002d3e4fdeeeb99631d40bd085d
refs/heads/master
2021-01-21T03:02:51.190014
2015-05-19T17:22:58
2015-05-19T17:22:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,893
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ######################################################################### # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. # # # # Copyright 2015. UChicago Argonne, LLC. This software was produced # # under U.S. Government contract DE-AC02-06CH11357 for Argonne National # # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the # # U.S. Department of Energy. The U.S. Government has rights to use, # # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR # # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR # # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is # # modified to produce derivative works, such modified software should # # be clearly marked, so as not to confuse it with the version available # # from ANL. # # # # Additionally, redistribution and use in source and binary forms, with # # or without modification, are permitted provided that the following # # conditions are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of UChicago Argonne, LLC, Argonne National # # Laboratory, ANL, the U.S. Government, nor the names of its # # contributors may be used to endorse or promote products derived # # from this software without specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago # # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # # ######################################################################### """ Module for reconstruction algorithms. """ from __future__ import absolute_import, division, print_function import numpy as np import tomopy.util.mproc as mproc import tomopy.util.extern as extern import tomopy.util.dtype as dtype from tomopy.sim.project import angles, get_center import multiprocessing import logging logger = logging.getLogger(__name__) __author__ = "Doga Gursoy" __copyright__ = "Copyright (c) 2015, UChicago Argonne, LLC." __docformat__ = 'restructuredtext en' __all__ = ['recon'] def recon( tomo, theta, center=None, emission=True, algorithm=None, init_recon=None, ncore=None, nchunk=None, **kwargs): """ Reconstruct object from projection data. Parameters ---------- tomo : ndarray 3D tomographic data. theta : array Projection angles in radian. center: array, optional Location of rotation axis. emission : bool, optional Determines whether data is emission or transmission type. algorithm : {str, function} One of the following string values. 'art' Algebraic reconstruction technique :cite:`Kak:98`. 'bart' Block algebraic reconstruction technique. 'fbp' Filtered back-projection algorithm. 'gridrec' Fourier grid reconstruction algorithm :cite:`Dowd:99`, :cite:`Rivers:06`. 'mlem' Maximum-likelihood expectation maximization algorithm :cite:`Dempster:77`. 'osem' Ordered-subset expectation maximization algorithm :cite:`Hudson:94`. 'ospml_hybrid' Ordered-subset penalized maximum likelihood algorithm with weighted linear and quadratic penalties. 'ospml_quad' Ordered-subset penalized maximum likelihood algorithm with quadratic penalties. 'pml_hybrid' Penalized maximum likelihood algorithm with weighted linear and quadratic penalties :cite:`Chang:04`. 'pml_quad' Penalized maximum likelihood algorithm with quadratic penalty. 'sirt' Simultaneous algebraic reconstruction technique. num_gridx, num_gridy : int, optional Number of pixels along x- and y-axes in the reconstruction grid. num_iter : int, optional Number of algorithm iterations performed. num_block : int, optional Number of data blocks for intermediate updating the object. ind_block : array of int, optional Order of projections to be used for updating. num_iter : int, optional Number of algorithm iterations performed. reg_par : float, optional Regularization parameter for smoothing. init_recon : ndarray, optional Initial guess of the reconstruction. ncore : int, optional Number of cores that will be assigned to jobs. nchunk : int, optional Chunk size for each core. Returns ------- ndarray Reconstructed 3D object. Warning ------- Filtering is not implemented for fbp. Example ------- >>> import tomopy >>> obj = tomopy.shepp3d() # Generate an object. >>> ang = tomopy.angles(180) # Generate uniformly spaced tilt angles. >>> sim = tomopy.project(obj, ang) # Calculate projections. >>> rec = tomopy.recon(sim, ang, algorithm='art') # Reconstruct object. >>> >>> # Show 64th slice of the reconstructed object. >>> import pylab >>> pylab.imshow(rec[64], cmap='gray') >>> pylab.show() """ allowed_kwargs = { 'art': ['num_gridx', 'num_gridy', 'num_iter'], 'bart': ['num_gridx', 'num_gridy', 'num_iter', 'num_block', 'ind_block'], 'fbp': ['num_gridx', 'num_gridy', 'filter_name'], 'gridrec': ['num_gridx', 'num_gridy', 'filter_name'], 'mlem': ['num_gridx', 'num_gridy', 'num_iter'], 'osem': ['num_gridx', 'num_gridy', 'num_iter', 'num_block', 'ind_block'], 'ospml_hybrid': ['num_gridx', 'num_gridy', 'num_iter', 'reg_par', 'num_block', 'ind_block'], 'ospml_quad': ['num_gridx', 'num_gridy', 'num_iter', 'reg_par', 'num_block', 'ind_block'], 'pml_hybrid': ['num_gridx', 'num_gridy', 'num_iter', 'reg_par'], 'pml_quad': ['num_gridx', 'num_gridy', 'num_iter', 'reg_par'], 'sirt': ['num_gridx', 'num_gridy', 'num_iter'], } # Generate kwargs for the algorithm. kwargs_defaults = _get_algorithm_kwargs(tomo.shape) if isinstance(algorithm, str): # Make sure have allowed kwargs appropriate for algorithm. for key in kwargs: if key not in allowed_kwargs[algorithm]: raise ValueError('%s keyword not in allowed keywords %s' % (key, allowed_kwargs[algorithm])) # Set kwarg defaults. for kw in allowed_kwargs[algorithm]: kwargs.setdefault(kw, kwargs_defaults[kw]) elif algorithm is None: raise ValueError('Keyword "algorithm" must be one of %s.' % (list(allowed_kwargs.keys()),)) # Generate args for the algorithm. args = _get_algorithm_args(tomo.shape, theta, center) # Initialize tomography data and initial reconstruction. tomo = _init_tomo(tomo, emission) recon = _init_recon( (tomo.shape[1], kwargs['num_gridx'], kwargs['num_gridy']), init_recon) return _dist_recon( tomo, recon, _get_c_func(algorithm), args, kwargs, ncore, nchunk) def _init_tomo(tomo, emission): tomo = dtype.as_float32(tomo) if not emission: tomo = -np.log(tomo) return tomo def _init_recon(shape, init_recon, val=1e-6): if init_recon is None: recon = val * np.ones(shape, dtype='float32') else: recon = dtype.as_float32(recon) return recon def _get_c_func(algorithm): if algorithm == 'art': func = extern.c_art elif algorithm == 'bart': func = extern.c_bart elif algorithm == 'fbp': func = extern.c_fbp elif algorithm == 'gridrec': func = extern.c_gridrec elif algorithm == 'mlem': func = extern.c_mlem elif algorithm == 'osem': func = extern.c_osem elif algorithm == 'ospml_hybrid': func = extern.c_ospml_hybrid elif algorithm == 'ospml_quad': func = extern.c_ospml_quad elif algorithm == 'pml_hybrid': func = extern.c_pml_hybrid elif algorithm == 'pml_quad': func = extern.c_pml_quad elif algorithm == 'sirt': func = extern.c_sirt return func def _dist_recon(tomo, recon, algorithm, args, kwargs, ncore, nchunk): mproc.init_tomo(tomo) return mproc.distribute_jobs( recon, func=algorithm, args=args, kwargs=kwargs, axis=0, ncore=ncore, nchunk=nchunk) def _get_algorithm_args(shape, theta, center): dx, dy, dz = shape theta = dtype.as_float32(theta) center = get_center(shape, center) return (dx, dy, dz, center, theta) def _get_algorithm_kwargs(shape): dx, dy, dz = shape return { 'num_gridx': dz, 'num_gridy': dz, 'filter_name': np.array('shepp', dtype=(str, 16)), 'num_iter': dtype.as_int32(1), 'reg_par': np.ones(10, dtype='float32'), 'num_block': dtype.as_int32(1), 'ind_block': np.arange(0, dx, dtype='float32'), }
[ "sparsedata@gmail.com" ]
sparsedata@gmail.com
38034b21d34d73cf790818852942f4790e553aa7
1c5a8cf45bbba1a50ba5110090e0de7cd70a5677
/python/old/seq_lengths2.py
a522847e4c4b17cb19885e908fe2b6c05c2062d9
[]
no_license
bradleycolquitt/umi
d6e45f365c9ce4c2fc694b8d3c7418807ae59a38
f9e94974a20872ee373cd5dd91aaf951d90dc295
refs/heads/master
2021-05-16T02:44:51.127160
2017-07-25T17:25:48
2017-07-25T17:25:48
26,970,700
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
#! /usr/bin/env python import sys import gzip import time def main(argv): file = gzip.open(argv[1]) total_seq = 0 lineno = 0 start = time.time() for l in file: if lineno % 4 == 1: total_seq += len(l) lineno += 1 print "Time elapsed: " + str(time.time() - start) print "Total sequence: " + str(total_seq) if __name__ == "__main__": main(sys.argv)
[ "bradley.colquitt@gmail.com" ]
bradley.colquitt@gmail.com
7fa32bc0bce678ad3b24a49bff6158fcd8c850f8
98895acc9f12800ce7fc0d9e552d455db3489cd1
/lab3/ml_chunker_v2.py
4d7d410e5d05d3d883a88ee1bc854825fcb87386
[]
no_license
Ga22be/EDAN20
7a559595c3509648d752ba092b23b03790cc2a49
151ed285bc16de3e994a1012cfa7d60082d8b571
refs/heads/master
2020-07-23T10:10:52.854906
2019-10-15T09:48:11
2019-10-15T09:48:11
207,524,338
0
0
null
null
null
null
UTF-8
Python
false
false
6,272
py
""" Machine learning chunker for CoNLL 2000 """ __author__ = "Pierre Nugues" import time import conll_reader from sklearn.feature_extraction import DictVectorizer from sklearn import svm from sklearn import linear_model from sklearn import metrics from sklearn import tree from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import GridSearchCV def extract_features(sentences, w_size, feature_names): """ Builds X matrix and y vector X is a list of dictionaries and y is a list :param sentences: :param w_size: :return: """ X_l = [] y_l = [] for sentence in sentences: X, y = extract_features_sent(sentence, w_size, feature_names) X_l.extend(X) y_l.extend(y) return X_l, y_l def extract_features_sent(sentence, w_size, feature_names): """ Extract the features from one sentence returns X and y, where X is a list of dictionaries and y is a list of symbols :param sentence: string containing the CoNLL structure of a sentence :param w_size: :return: """ # We pad the sentence to extract the context window more easily start = "BOS BOS BOS\n" end = "\nEOS EOS EOS" start *= w_size end *= w_size sentence = start + sentence sentence += end # Each sentence is a list of rows sentence = sentence.splitlines() padded_sentence = list() for line in sentence: line = line.split() padded_sentence.append(line) # print(padded_sentence) # We extract the features and the classes # X contains is a list of features, where each feature vector is a dictionary # y is the list of classes X = list() y = list() for i in range(len(padded_sentence) - 2 * w_size): # x is a row of X x = list() # The words in lower case for j in range(2 * w_size + 1): x.append(padded_sentence[i + j][0].lower()) # The POS for j in range(2 * w_size + 1): x.append(padded_sentence[i + j][1]) # The chunks (Up to the word) ### I overwrite these in predict() for j in range(w_size): x.append(padded_sentence[i + j][2]) # We represent the feature vector as a dictionary X.append(dict(zip(feature_names, x))) # The classes are stored in a list y.append(padded_sentence[i + w_size][2]) return X, y def predict(test_sentences, feature_names, f_out): for test_sentence in test_sentences: X_test_dict, y_test = extract_features_sent(test_sentence, w_size, feature_names) ### We need to process word by word as well y_test_predicted = [] c1 = "BOS" c2 = "BOS" ### Iterate over the words in the sentence for w in X_test_dict: ### Overwrite the golden chunks from before w["chunk_n1"] = c1 w["chunk_n2"] = c2 # Vectorize the test sentence and one hot encoding X_test = vec.transform(w) # Predicts the chunks and returns numbers ### Predict the chunk for this iteration c0 = classifier.predict(X_test) ### Append to the sentence result y_test_predicted.append(c0[0]) ### Save the predicted chunk for future use c2 = c1 c1 = c0[0] # Appends the predicted chunks as a last column and saves the rows rows = test_sentence.splitlines() rows = [rows[i] + ' ' + y_test_predicted[i] for i in range(len(rows))] for row in rows: f_out.write(row + '\n') f_out.write('\n') f_out.close() if __name__ == '__main__': start_time = time.perf_counter() train_corpus = './train.txt' test_corpus = './test.txt' w_size = 2 # The size of the context window to the left and right of the word feature_names = ['word_n2', 'word_n1', 'word', 'word_p1', 'word_p2', 'pos_n2', 'pos_n1', 'pos', 'pos_p1', 'pos_p2', 'chunk_n2', 'chunk_n1'] train_sentences = conll_reader.read_sentences(train_corpus) print("Extracting the features...") X_dict, y = extract_features(train_sentences, w_size, feature_names) print("Encoding the features...") # Vectorize the feature matrix and carry out a one-hot encoding vec = DictVectorizer(sparse=True) X = vec.fit_transform(X_dict) # The statement below will swallow a considerable memory # X = vec.fit_transform(X_dict).toarray() # print(vec.get_feature_names()) training_start_time = time.perf_counter() print("Training the model...") classifier = linear_model.LogisticRegression(penalty='l2', dual=True, solver='liblinear', multi_class='auto') # classifier = linear_model.LogisticRegression(penalty='l2', dual=False, solver='lbfgs', multi_class='auto') # classifier = tree.DecisionTreeClassifier() # classifier = linear_model.Perceptron() model = classifier.fit(X, y) print(model) test_start_time = time.perf_counter() # We apply the model to the test set test_sentences = list(conll_reader.read_sentences(test_corpus)) # Here we carry out a chunk tag prediction and we report the per tag error # This is done for the whole corpus without regard for the sentence structure print("Predicting the chunks in the test set...") X_test_dict, y_test = extract_features(test_sentences, w_size, feature_names) # Vectorize the test set and one-hot encoding X_test = vec.transform(X_test_dict) # Possible to add: .toarray() y_test_predicted = classifier.predict(X_test) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(y_test, y_test_predicted))) # Here we tag the test set and we save it. # This prediction is redundant with the piece of code above, # but we need to predict one sentence at a time to have the same # corpus structure print("Predicting the test set...") f_out = open('out_ml_v2', 'w') predict(test_sentences, feature_names, f_out) end_time = time.perf_counter() print("Training time:", (test_start_time - training_start_time) / 60) print("Test time:", (end_time - test_start_time) / 60)
[ "ga22be@live.se" ]
ga22be@live.se
4b2d79da2c70a69a5b40dc5768cc07a4be93ee7a
6e17016e71e6a09bf44a4286b12383bd829ed02c
/base-semi.py
2bcbfea1807fc61800257d959f55964da4581ab6
[]
no_license
kazuyaYX/classification
0292c8e27844819875e4190a44d7b8f463b0de54
d7e54cad0bd307eb32937ced9c7a392a447dfcf3
refs/heads/master
2021-08-06T16:15:50.499733
2017-11-06T12:39:31
2017-11-06T12:39:31
105,126,963
0
0
null
null
null
null
UTF-8
Python
false
false
9,346
py
from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB from sklearn import metrics from sklearn.ensemble import GradientBoostingClassifier import sklearn.svm as svm from sklearn.svm import SVC from sklearn.externals import joblib import lda import numpy as np class data_20news(object): def __init__(self): self.train_labeled = [] self.train_labeled_target = [] self.train_unlabeled = [] self.train_unlabeled_target = [] self.train = [] self.test = [] self.test_target = [] self.target_names = [] def get_train_data(size): twenty_train = fetch_20newsgroups(subset='train', categories=None) twenty_test = fetch_20newsgroups(subset='test', categories=None) balance = [size for i in range(0, 20)] i = 0 data = data_20news() twenty_labeled_data = [] twenty_unlabeled_data = [] twenty_train_labeled = [] twenty_train_labeled_un = [] for d in twenty_train.data: if balance[twenty_train.target[i]] != 0: twenty_labeled_data.append(d) twenty_train_labeled.append(twenty_train.target[i]) balance[twenty_train.target[i]] -= 1 else: twenty_unlabeled_data.append(d) twenty_train_labeled_un.append(twenty_train.target[i]) i += 1 data.train_labeled = twenty_labeled_data data.train_labeled_target = twenty_train_labeled data.train_unlabeled = twenty_unlabeled_data data.train_unlabeled_target = twenty_train_labeled_un data.train = twenty_train.data data.test = twenty_test.data data.test_target = twenty_test.target data.target_names = twenty_test.target_names count = [0 for i in range(0, 20)] for i in range(0, len(data.train_labeled)): count[data.train_labeled_target[i]] += 1 print(count) return data def lda_self_training(data, n_iter, n_move, threshold): # count_transformer = get_count_transformer(data.train) # tfidf_transformer = get_tfidf_transformer(count_transformer) count_vect = CountVectorizer(stop_words='english') # count_vect.fit(data.train) count_vect.fit(data.train) # count_transformer = count_vect.transform(data.train) # tfidf_transformer = TfidfTransformer().fit(count_transformer) lda_model = joblib.load('lda100-1000.pkl') X_train_labeled_counts = count_vect.transform(data.train_labeled) X_train_lda = lda_model.transform(X_train_labeled_counts) clf = None for i in range(0, n_iter): clf = svm.SVC(kernel='linear', probability=True).fit(X_train_lda, data.train_labeled_target) unlabeled_data_lda = lda_model.transform(count_vect.transform(data.train_unlabeled)) predicted = clf.predict(unlabeled_data_lda) predicted_proba = clf.predict_proba(unlabeled_data_lda) score_dic = {} for j in range(0, len(predicted_proba)): sorted_proba = sorted(predicted_proba[j], reverse=True) score_dic[j] = sorted_proba[0] - sorted_proba[1] score_dic = sorted(score_dic.items(), key=lambda d: d[1], reverse=True) j = 0 balance = [n_move for k in range(0, 20)] keys = [] for key, score in score_dic: # print(predicted[key], score) if j == n_move*20: break if balance[predicted[key]] == 0: continue balance[predicted[key]] -= 1 if score < threshold: j += 1 continue # print(predicted[key], data.train_unlabeled_target[key]) data.train_labeled.append(data.train_unlabeled[key]) # twenty_train_labeled = np.append(twenty_train_labeled, predicted[key]) data.train_labeled_target.append(predicted[key]) keys.append(key) j += 1 keys = sorted(keys, reverse=True) for key in keys: # print(key, len(twenty_unlabeled_data)) del data.train_unlabeled[key] del data.train_unlabeled_target[key] X_train_labeled_counts = count_vect.transform(data.train_labeled) X_train_lda = lda_model.transform(X_train_labeled_counts) # print(X_train_tf.shape) # print(len(twenty_train_labeled)) if i % 10 == 0: clf = svm.SVC(kernel='linear', probability=True).fit(X_train_lda, data.train_labeled_target) predicted = clf.predict(lda_model.transform(count_vect.transform(data.test))) print(metrics.classification_report(data.test_target, predicted, target_names=data.target_names)) clf = svm.SVC(kernel='linear', probability=True).fit(X_train_lda, data.train_labeled_target) predicted = clf.predict(lda_model.transform(count_vect.transform(data.test))) predicted_proba = clf.predict_proba(lda_model.transform(count_vect.transform(data.test))) print(metrics.classification_report(data.test_target, predicted, target_names=data.target_names)) joblib.dump(clf, 'lda-' + str(n_iter) + '-' + str(n_move) + '-' + str(threshold) + '.pkl') return predicted_proba def tfidf_self_training(data, n_iter, n_move, threshold): # count_transformer = get_count_transformer(data.train) # tfidf_transformer = get_tfidf_transformer(count_transformer) count_vect = CountVectorizer(stop_words='english') # count_vect.fit(data.train) count_vect.fit(data.train) count_transformer = count_vect.transform(data.train) tfidf_transformer = TfidfTransformer().fit(count_transformer) X_train_labeled_counts = count_vect.transform(data.train_labeled) X_train_tfidf = tfidf_transformer.transform(X_train_labeled_counts) clf = None for i in range(0, n_iter): clf = svm.SVC(kernel='linear', probability=True).fit(X_train_tfidf, data.train_labeled_target) unlabeled_data_tfidf = tfidf_transformer.transform(count_vect.transform(data.train_unlabeled)) predicted = clf.predict(unlabeled_data_tfidf) predicted_proba = clf.predict_proba(unlabeled_data_tfidf) score_dic = {} for j in range(0, len(predicted_proba)): sorted_proba = sorted(predicted_proba[j], reverse=True) score_dic[j] = sorted_proba[0] - sorted_proba[1] score_dic = sorted(score_dic.items(), key=lambda d: d[1], reverse=True) j = 0 balance = [n_move for k in range(0, 20)] keys = [] for key, score in score_dic: # print(predicted[key], score) if j == n_move*20: break if balance[predicted[key]] == 0: continue balance[predicted[key]] -= 1 if score < threshold: j += 1 continue # print(predicted[key], data.train_unlabeled_target[key]) data.train_labeled.append(data.train_unlabeled[key]) # twenty_train_labeled = np.append(twenty_train_labeled, predicted[key]) data.train_labeled_target.append(predicted[key]) keys.append(key) j += 1 keys = sorted(keys, reverse=True) for key in keys: # print(key, len(twenty_unlabeled_data)) del data.train_unlabeled[key] del data.train_unlabeled_target[key] X_train_labeled_counts = count_vect.transform(data.train_labeled) X_train_tfidf = tfidf_transformer.transform(X_train_labeled_counts) # print(X_train_tf.shape) # print(len(twenty_train_labeled)) if i % 10 == 0: clf = svm.SVC(kernel='linear', probability=True).fit(X_train_tfidf, data.train_labeled_target) predicted = clf.predict(tfidf_transformer.transform(count_vect.transform(data.test))) print(metrics.classification_report(data.test_target, predicted, target_names=data.target_names)) clf = svm.SVC(kernel='linear', probability=True).fit(X_train_tfidf, data.train_labeled_target) predicted = clf.predict(tfidf_transformer.transform(count_vect.transform(data.test))) predicted_proba = clf.predict_proba(tfidf_transformer.transform(count_vect.transform(data.test))) print(metrics.classification_report(data.test_target, predicted, target_names=data.target_names)) joblib.dump(clf, 'tfidf-' + str(n_iter) + '-' + str(n_move) + '-' + str(threshold) + '.pkl') return predicted_proba def base_semi(predicted_proba1, predicted_proba2, data): predicted = [] for j in range(0, len(predicted_proba1)): predicted_proba = [] for p in range(0, len(predicted_proba1[j])): predicted_proba.append(predicted_proba1[j][p] + predicted_proba2[j][p]) # if j == 5: # print(predicted_proba) predicted.append(predicted_proba.index(max(predicted_proba))) # print(predicted) print("base-semi:") print(metrics.classification_report(data.test_target, predicted, target_names=data.target_names)) if __name__ == '__main__': data = get_train_data(10) predicted_proba1 = lda_self_training(data, 201, 1, 0.01) data = get_train_data(10) predicted_proba2 = tfidf_self_training(data, 201, 1, 0.01) base_semi(predicted_proba1, predicted_proba2, data)
[ "554810625@qq.com" ]
554810625@qq.com
11d31b02a955790e7ccfb3503a14a6da2560814e
cfb268f6090b55b5c51c7aadba3661790c0383ac
/setup.py
26a4b33b9156f0ee10476b427cfa07a8a1dbb816
[ "MIT" ]
permissive
theY4Kman/neoalchemy
1ceef03cc17815660d66bfa678f59f149923417c
66bf711502247a8464fd15e4256cf596c7c63de0
refs/heads/master
2016-09-06T16:14:48.406968
2014-12-03T22:55:03
2014-12-03T22:55:03
26,565,319
1
0
null
null
null
null
UTF-8
Python
false
false
1,220
py
import os from setuptools import setup, find_packages current_directory = os.path.dirname(__file__) with open(os.path.join(current_directory, 'requirements.txt')) as fp: install_requires = fp.readlines() with open(os.path.join(current_directory, 'test-requirements.txt')) as fp: tests_require = fp.readlines() setup( name='neoalchemy', version='0.0.1', description='A SQLAlchemy-like object graph mapper for neo4j', long_description=open('README.rst').read(), author='Zach Kanzler', author_email='they4kman@gmail.com', zip_safe=True, url='http://github.com/they4kman/neoalchemy', license='MIT', packages=find_packages(), keywords='graph neo4j py2neo ORM', tests_require=tests_require, test_suite='nose.collector', install_requires=install_requires, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Database', ])
[ "they4kman@gmail.com" ]
they4kman@gmail.com
75cc5a62e19034865c2d1b75f42907f97aa06dc8
c6c4c066b5c095c1fb9c4888eec34701edabc5a9
/CycleGAN/cyclegan_train.py
b3b608f91b4010541775471786b84cfaf1ba9c70
[ "MIT" ]
permissive
Sunshine352/Awesome-GANs
c24b0ae0de13e113423c8b8906e6f5076e10ab26
1f6e4a7d9c6a9d4e05ea142592fee2c700542009
refs/heads/master
2020-03-20T00:54:15.609319
2018-06-03T07:29:03
2018-06-03T07:29:03
137,060,041
1
0
null
2018-06-12T11:07:51
2018-06-12T11:07:51
null
UTF-8
Python
false
false
6,979
py
from __future__ import absolute_import from __future__ import print_function from __future__ import division import tensorflow as tf import numpy as np import sys import time import cyclegan_model as cyclegan sys.path.append('../') import image_utils as iu from datasets import Pix2PixDataSet as DataSet results = { 'output': './gen_img/', 'checkpoint': './model/checkpoint', 'model': './model/CycleGAN-model.ckpt' } train_step = { 'epochs': 201, 'batch_size': 8, 'logging_step': 100, } def main(): start_time = time.time() # Clocking start # GPU configure config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as s: image_size = crop_size = 128 # CycleGAN Model model = cyclegan.CycleGAN(s, input_height=image_size, input_width=image_size, input_channel=3, batch_size=train_step['batch_size']) # Celeb-A DataSet images data_set_name = 'vangogh2photo' ds = DataSet(input_height=image_size, input_width=image_size, input_channel=3, crop_size=crop_size, batch_size=train_step['batch_size'], name=data_set_name) img_a = ds.images_a img_b = ds.images_b print("[*] image A shape : ", img_a.shape) print("[*] image B shape : ", img_b.shape) n_sample = model.sample_num sample_image_height = model.sample_size sample_image_width = model.sample_size sample_dir_a = results['output'] + 'valid_a.png' sample_dir_b = results['output'] + 'valid_b.png' sample_a, sample_b = img_a[:n_sample], img_b[:n_sample] sample_a = np.reshape(sample_a, [-1] + model.image_shape[1:]) sample_b = np.reshape(sample_b, [-1] + model.image_shape[1:]) # Generated image save iu.save_images(sample_a, [sample_image_height, sample_image_width], sample_dir_a) iu.save_images(sample_b, [sample_image_height, sample_image_width], sample_dir_b) print("[+] pre-processing elapsed time : {:.8f}s".format(time.time() - start_time)) # Initializing s.run(tf.global_variables_initializer()) global_step = 0 for epoch in range(train_step['epochs']): # learning rate decay lr_decay = 1. if epoch >= 100 and epoch % 10 == 0: lr_decay = (train_step['epochs'] - epoch) / (train_step['epochs'] / 2.) # re-implement DataIterator for multi-input pointer = 0 num_images = min(ds.num_images_a, ds.num_images_b) for i in range(num_images // train_step['batch_size']): start = pointer pointer += train_step['batch_size'] if pointer > num_images: # if ended 1 epoch # Shuffle training DataSet perm_a, perm_b = np.arange(ds.num_images_a), np.arange(ds.num_images_b) np.random.shuffle(perm_a) np.random.shuffle(perm_b) img_a, img_b = img_a[perm_a], img_a[perm_b] start = 0 pointer = train_step['batch_size'] end = pointer batch_a = np.reshape(img_a[start:end], model.image_shape) batch_b = np.reshape(img_a[start:end], model.image_shape) for _ in range(model.n_train_critic): s.run(model.d_op, feed_dict={ model.a: batch_a, model.b: batch_b, model.lr_decay: lr_decay, }) w, gp, g_loss, cycle_loss, _ = s.run([model.w, model.gp, model.g_loss, model.cycle_loss, model.g_op], feed_dict={ model.a: batch_a, model.b: batch_b, model.lr_decay: lr_decay, }) if global_step % train_step['logging_step'] == 0: # Summary summary = s.run(model.merged, feed_dict={ model.a: batch_a, model.b: batch_b, model.lr_decay: lr_decay, }) # Print loss print("[+] Global Step %08d =>" % global_step, " G loss : {:.8f}".format(g_loss), " Cycle loss : {:.8f}".format(cycle_loss), " w : {:.8f}".format(w), " gp : {:.8f}".format(gp)) # Summary saver model.writer.add_summary(summary, global_step=global_step) # Training G model with sample image and noise samples_a2b = s.run(model.g_a2b, feed_dict={ model.a: sample_a, model.b: sample_b, model.lr_decay: lr_decay, }) samples_b2a = s.run(model.g_b2a, feed_dict={ model.a: sample_a, model.b: sample_b, model.lr_decay: lr_decay, }) # Export image generated by model G sample_image_height = model.sample_size sample_image_width = model.sample_size sample_dir_a2b = results['output'] + 'train_a2b_{0}.png'.format(global_step) sample_dir_b2a = results['output'] + 'train_b2a_{0}.png'.format(global_step) # Generated image save iu.save_images(samples_a2b, [sample_image_height, sample_image_width], sample_dir_a2b) iu.save_images(samples_b2a, [sample_image_height, sample_image_width], sample_dir_b2a) # Model save model.saver.save(s, results['model'], global_step=global_step) global_step += 1 end_time = time.time() - start_time # Clocking end # Elapsed time print("[+] Elapsed time {:.8f}s".format(end_time)) # Close tf.Session s.close() if __name__ == '__main__': main()
[ "kozistr@gmail.com" ]
kozistr@gmail.com
7ad2d903281abb04ba6f20108a4630a5b564596b
3641fd4b6e160be9da77b000935ddee5247fc601
/drf_spectacular/settings.py
2a35cc632b6470e489771e150c16eb2d78baeda8
[ "BSD-3-Clause" ]
permissive
tiago-peres/drf-spectacular
02f404380bad0d63e7a47ddcd43cdb5d93a97ba3
244be7a61b8f5e96f05797f1e73fb651b4e6b6a0
refs/heads/master
2023-01-06T17:22:08.860293
2020-10-29T19:42:25
2020-10-29T19:45:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,754
py
from typing import Any, Dict from django.conf import settings from rest_framework.settings import APISettings SPECTACULAR_DEFAULTS: Dict[str, Any] = { # path prefix is used for tagging the discovered operations. # use '/api/v[0-9]' for tagging apis like '/api/v1/albums' with ['albums'] 'SCHEMA_PATH_PREFIX': r'', 'DEFAULT_GENERATOR_CLASS': 'drf_spectacular.generators.SchemaGenerator', # Schema generation parameters to influence how components are constructed. # Some schema features might not translate well to your target. # Demultiplexing/modifying components might help alleviate those issues. # # Create separate components for PATCH endpoints (without required list) 'COMPONENT_SPLIT_PATCH': True, # Split components into request and response parts where appropriate 'COMPONENT_SPLIT_REQUEST': False, # Aid client generator targets that have trouble with read-only properties. 'COMPONENT_NO_READ_ONLY_REQUIRED': False, # Configuration for serving the schema with SpectacularAPIView 'SERVE_URLCONF': None, # complete public schema or a subset based on the requesting user 'SERVE_PUBLIC': True, # is the 'SERVE_INCLUDE_SCHEMA': True, 'SERVE_PERMISSIONS': ['rest_framework.permissions.AllowAny'], # Dictionary of configurations to pass to the SwaggerUI({ ... }) # https://swagger.io/docs/open-source-tools/swagger-ui/usage/configuration/ 'SWAGGER_UI_SETTINGS': { 'deepLinking': True, }, 'SWAGGER_UI_DIST': '//unpkg.com/swagger-ui-dist@3.35.1', 'SWAGGER_UI_FAVICON_HREF': '//unpkg.com/swagger-ui-dist@3.35.1/favicon-32x32.png', # Append OpenAPI objects to path and components in addition to the generated objects 'APPEND_PATHS': {}, 'APPEND_COMPONENTS': {}, # DISCOURAGED - please don't use this anymore as it has tricky implications that # are hard to get right. For authentication, OpenApiAuthenticationExtension are # strongly preferred because they are more robust and easy to write. # However if used, the list of methods is appended to every endpoint in the schema! 'SECURITY': [], # Postprocessing functions that run at the end of schema generation. # must satisfy interface result = hook(generator, request, public, result) 'POSTPROCESSING_HOOKS': [ 'drf_spectacular.hooks.postprocess_schema_enums' ], # Preprocessing functions that run before schema generation. # must satisfy interface result = hook(endpoints=result) where result # is a list of Tuples (path, path_regex, method, callback). # Example: 'drf_spectacular.hooks.preprocess_exclude_path_format' 'PREPROCESSING_HOOKS': [], # enum name overrides. dict with keys "YourEnum" and their choice values "field.choices" 'ENUM_NAME_OVERRIDES': {}, # function that returns a list of all classes that should be excluded from doc string extraction 'GET_LIB_DOC_EXCLUDES': 'drf_spectacular.plumbing.get_lib_doc_excludes', # Function that returns a mocked request for view processing. For CLI usage # original_request will be None. # interface: request = build_mock_request(method, path, view, original_request, **kwargs) 'GET_MOCK_REQUEST': 'drf_spectacular.plumbing.build_mock_request', # Camelize names like operationId and path parameter names 'CAMELIZE_NAMES': False, # General schema metadata. Refer to spec for valid inputs # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#openapi-object 'TITLE': '', 'DESCRIPTION': '', 'TOS': None, # Optional: MAY contain "name", "url", "email" 'CONTACT': {}, # Optional: MUST contain "name", MAY contain URL 'LICENSE': {}, 'VERSION': '0.0.0', # Optional list of servers. # Each entry MUST contain "url", MAY contain "description", "variables" 'SERVERS': [], # Tags defined in the global scope 'TAGS': [], # Optional: MUST contain 'url', may contain "description" 'EXTERNAL_DOCS': {}, # Oauth2 related settings. used for example by django-oauth2-toolkit. # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#oauth-flows-object 'OAUTH2_FLOWS': [], 'OAUTH2_AUTHORIZATION_URL': None, 'OAUTH2_TOKEN_URL': None, 'OAUTH2_REFRESH_URL': None, 'OAUTH2_SCOPES': None, } IMPORT_STRINGS = [ 'SCHEMA_AUTHENTICATION_CLASSES', 'DEFAULT_GENERATOR_CLASS', 'SERVE_PERMISSIONS', 'POSTPROCESSING_HOOKS', 'PREPROCESSING_HOOKS', 'GET_LIB_DOC_EXCLUDES', 'GET_MOCK_REQUEST', ] spectacular_settings = APISettings( user_settings=getattr(settings, 'SPECTACULAR_SETTINGS', {}), defaults=SPECTACULAR_DEFAULTS, import_strings=IMPORT_STRINGS, )
[ "13507857+tfranzel@users.noreply.github.com" ]
13507857+tfranzel@users.noreply.github.com
7221754c6507e44f0dce9224f846bc2bc2c1a474
217ee146317a3211622754fad14a67d9a1236dee
/modules/sites/__init__.py
69c26c39bf2b869e968f14120772d36080712b0c
[ "MIT" ]
permissive
Swapnil074/stopstalk-deployment
45a5e57d278ed38f7e0f528ad751813738504439
ab7b988105c880d7015c9eb0ccaef7acf87de953
refs/heads/master
2022-07-20T16:24:04.690019
2020-05-13T05:11:45
2020-05-13T05:11:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,272
py
""" Copyright (c) 2015-2020 Raj Patel(raj454raj@gmail.com), StopStalk Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import codechef import codeforces import spoj import hackerearth import hackerrank import uva import timus
[ "raj454raj@gmail.com" ]
raj454raj@gmail.com
24f7c3e99c2b67bfcbb4983009e5367253732ee5
deaa2ad0981659542b7518227eaa9b716545e3cc
/backend/authentication/permission.py
78c45835d020c58dce97c61b35e1b992f4dbac9f
[]
no_license
crabfishxy/SE-TSS
aec9d12eee82f06843f4f7501535ae5b9fd74f83
b5b0584b2332bbbd8f0e283f3b8a83cde916e9c9
refs/heads/master
2020-03-19T07:49:28.221760
2018-06-03T13:24:33
2018-06-03T13:24:33
136,151,755
0
0
null
2018-06-05T09:15:49
2018-06-05T09:15:49
null
UTF-8
Python
false
false
3,331
py
from rest_framework import permissions class RegisterCheck(permissions.BasePermission): def has_permission(self, request, view): type = request.user.user_type if not type == 4: return False else: return True class StudentCheck(permissions.BasePermission): def has_permission(self, request, view): url = "/api/student/" type = request.user.user_type path = request._request.path # all info if path == url: if type == 3 or type == 4: return True # some info else: if type == 1 or type == 3 or type == 4: return True return False def has_object_permission(self, request, view, obj): type = request.user.user_type if type == 1: if request.user.username == obj.username.username: return True else: return False else: return True class FacultyCheck(permissions.BasePermission): def has_permission(self, request, view): url = "/api/faculty/" type = request.user.user_type path = request._request.path # all info if path == url: if type == 3 or type == 4: return True # some info else: if type == 2 or type == 3 or type == 4: return True return False def has_object_permission(self, request, view, obj): type = request.user.user_type if type == 2: if request.user.username == obj.name: return True else: return False else: return True class StaffCheck(permissions.BasePermission): def has_permission(self, request, view): url = "/api/staff/" type = request.user.user_type path = request._request.path # all info if path == url: if type == 4: return True # some info else: if type == 3 or type == 4: return True return False def has_object_permission(self, request, view, obj): type = request.user.user_type if type == 3: if request.user.username == obj.name: return True else: return False else: return True class AdminCheck(permissions.BasePermission): def has_permission(self, request, view): url = "/api/admin/" type = request.user.user_type path = request._request.path # all info if type == 4: return True return False def has_object_permission(self, request, view, obj): type = request.user.user_type if type == 4: if request.user.username == obj.name: return True else: return False else: return True class CourseCheck(permissions.BasePermission): def has_permission(self, request, view): type = request.user.user_type if type == 2 or type == 3 or type == 4: return True return False def has_object_permission(self, request, view, obj): print(request) print('1') return True
[ "690764871@qq.com" ]
690764871@qq.com
260de58bcf5629fc47a52af9d530ff5e2524f762
e7805d33d8f98a4c514373ac98db219e50df750e
/main.py
6915091de896a3e90aaa467f440c7ac7d05e6d16
[]
no_license
MadmanSilver/my-first-neural-net
5265a3cabc9207509a7de5c76004ae2287303889
76cf1093bc0545aaf52b8b29f81828ea6092b350
refs/heads/main
2023-02-23T17:42:41.391353
2021-01-24T05:41:49
2021-01-24T05:41:49
311,505,414
0
0
null
null
null
null
UTF-8
Python
false
false
643
py
from perset import PerSet from random import uniform filename = "training.txt" max_words = 0 max_letters = 0 for line in open(filename, "r").read().split('\n'): if len(line.split('/')[0].split()) > max_words: max_words = len(line.split('/')[0].split()) for word in line.split('/')[0].split(): if len(word) > max_letters: max_letters = len(word) set1 = PerSet({l: uniform(0.0, 1.0) for l in "abcdefghijklmnopqrstuvwxyz"}, [[uniform(-4.0, 4.0) for l in range(max_letters)] for w in range(max_words)], [[uniform(-4.0, 4.0) for j in range(3)] for i in range(max_words)]) set1.train(filename) print(set1.err)
[ "silverwolf4350@gmail.com" ]
silverwolf4350@gmail.com
5a77f9bef1584293472acf02c7fa99e2e71c0e81
5e9ee05dce9287279223242a65f005a24db5e323
/count-lines.py
d63c45cf4e6776f0b7c386c123ed7ff30e2777fe
[]
no_license
LeslieMooyaart/patients-analysis
205e4ffe4284456451a1dac10f07da640c616d68
b726f1cd8baf31b2fc2b8f2a29a98b7cf566dad4
refs/heads/master
2023-06-02T19:38:24.201862
2021-06-22T14:20:38
2021-06-22T14:20:38
379,275,871
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
import sys """Adding documentation locally Adding documentation remotely""" count = 0 for line in sys.stdin: count += 1 print(count, 'lines in standard input')
[ "l.f.mooyaart@tudelft.nl" ]
l.f.mooyaart@tudelft.nl
dee0dd4897a3885c08bea8fc4eee4f83b31eee8e
4373488e0a2a34734fc6f6ffc7729e353c25fdfa
/exception_example.py
c8c84f10f12115c0d8ac3fae1e3a5599656d3436
[]
no_license
dmc200/Python-Projects
9a141b28004c913f7ec3714cbbdb7a9ed8952922
bcba096183d56fcbcc6f5869bd6ac32b87ce3720
refs/heads/master
2021-06-17T10:05:05.711876
2019-10-25T18:19:46
2019-10-25T18:19:46
202,403,008
0
0
null
2021-06-10T22:09:39
2019-08-14T18:16:34
Jupyter Notebook
UTF-8
Python
false
false
855
py
''' def div42by(divideBy): return 42 /divideBy try: print(div42by(1)) print(div42by(1)) print(div42by(0)) print(div42by(1)) except ZeroDivisionError: print("You have tried to divide by 0") finally: print("This is finally done") ''' play = True while play: print("How many cats do you have?") numCats = input() try: if int(numCats) >= 4: print("Wow that is a lot of cats!") elif int(numCats) < 0: myError = ValueError('# of cats should be a positive number') raise myError else: print("Not that many cats") break except ValueError: print("Not in integer, try again") play = input("Again?").lower() if play == 'y': play = True else: play = False
[ "dean.chirieleison@outlook.com" ]
dean.chirieleison@outlook.com
2c0dbf6acab109eb25c2d20033d8b05a692120fd
bd4955a474ec94f1d240641a303916f25e149333
/new/csvproject/csvproject/asgi.py
04124c3447788b1601a3e56798f390b794e260df
[]
no_license
pranavsharma707/csvproject
8d8de7c84fef211f99d06fffc65d5b59cdae164e
bc22cfcade2acba690328e185f545dc64045dce7
refs/heads/master
2023-07-14T14:31:59.607320
2021-08-25T13:19:58
2021-08-25T13:19:58
399,701,249
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" ASGI config for csvproject project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'csvproject.settings') application = get_asgi_application()
[ "pranavsharma.bluethink@gmail.com" ]
pranavsharma.bluethink@gmail.com
8ba930f1c714f0c44e85c4caa833e69602d2cab8
e993298ef337133c1c2997812904fca12fd91fde
/blue_garden/usr_login/usersdict.py
51ea982d126b5a422f506b697e888107b9ac683f
[]
no_license
jloc8749/info9117
54cbf91b8afe2f03cf8283dfe16a27cec86552c4
b256eec143c38489b6ca0587eacb11cbfa8f97d4
refs/heads/master
2021-01-10T09:50:31.239944
2016-04-13T05:36:39
2016-04-13T05:36:39
52,838,194
0
0
null
null
null
null
UTF-8
Python
false
false
937
py
#make dict of users testuser = 'jlock' testpass = 'jlock' usr_dict = {} def usrdict(): with open('users','r') as u: for each in u: usrname, usrpass = each.split() usr_dict[usrname] = usrpass #return usrdict def authuser(nombre,llave): usrdict() if nombre in usr_dict: if usr_dict[nombre] == llave: return True def newuser(nombre,llave): usrdict() with open('users','a') as u: if nombre not in usr_dict: #u.write(nombre + ' ' + llave + '/n') #appending to the same line.. print (nombre + ' ' + llave, file=u) def rm_usr(nombre,llave): tmp = [] with open('users','r') as u: for line in u: if nombre+' '+llave not in line: tmp.append(line) with open('users','w') as u: for line in tmp: print(line.strip(), file=u)
[ "jloc8749@uni.syd.edu.au" ]
jloc8749@uni.syd.edu.au
924887382913b82d8d2d05d43ee875974db1d057
cbac621ad77787ebe9bda49976dab711e3169362
/commercia/products/management/commands/remove_categories.py
db4ef8ef9ada36c1898e271a41801c13cf5dca57
[]
no_license
commoncode/economica
08292f28048281ee986ce4419c7d0af54ccad1db
3de2415d7f0e0e81cc6ac7a054839daeb1ba6748
refs/heads/master
2016-09-05T12:49:21.107938
2014-08-04T04:50:43
2014-08-04T04:50:43
9,742,821
2
0
null
null
null
null
UTF-8
Python
false
false
223
py
from django.core.management.base import BaseCommand from ...models import Category class Command(BaseCommand): help = 'Clean up Menus' def handle(self, *args, **options): Category.objects.all().delete()
[ "dboy.y3k@gmail.com" ]
dboy.y3k@gmail.com
59b2814b3a0dbeb677cab11c92ad4e0fcb9478f3
46ef1b8df9551c02c273ed39bd057daadca0e1fe
/parts/wrapper/zope/component/event.py
12abd1cfcc204ce689d7c2d5f7876ddf40d08551
[]
no_license
topiaruss/bfg-gae-logger
18f5a25168656afcabe1c89a9c7e0e25aa060c56
f2944f2c009007efd0fd09426111e4dfdab30098
refs/heads/master
2021-01-20T04:40:05.194810
2010-05-26T20:31:02
2010-05-26T20:31:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
/Users/russ/.common/sh/.buildout/eggs/zope.component-3.9.4-py2.5.egg/zope/component/event.py
[ "russf@topia.com" ]
russf@topia.com
4b89f7e8772827e23a6837fea948a8864f3ca14e
57d07cbe26827e3610f14294d00db60e62deb0c6
/BJ/sort/수정렬하기2/mergeSort.py
484275d7dfbccd645d12398be2b009577d9faba5
[]
no_license
wseungjin/AlgorithmCoding
98083f5b87db17bf4449c1ca23216dfa5fd66f73
00dc9a76ef1a890ddf185d1b7feecc71b2c95296
refs/heads/master
2021-06-22T04:02:30.390820
2021-04-12T15:00:16
2021-04-12T15:00:16
209,197,457
1
0
null
null
null
null
UTF-8
Python
false
false
1,014
py
# f = open("input.txt", 'r') # line = f.readline() line = input() num = int(line) array = [] for i in range(num): # line = f.readline() line = input() array.append(int(line)) def mergeSort(list): if(len(list)<=1): return list mid = len(list)//2 leftList = list[0:mid] rightList = list[mid:len(list)] leftList=mergeSort(leftList) rightList=mergeSort(rightList) return merge(leftList,rightList) def merge(left,right): mergedList =[] while len(left) != 0 or len(right) != 0: if len(left) == 0: mergedList.append(right[0]) right.pop(0) elif len(right) == 0: mergedList.append(left[0]) left.pop(0) elif(left[0]>right[0]): mergedList.append(right[0]) right.pop(0) else: mergedList.append(left[0]) left.pop(0) return mergedList array=mergeSort(array) for i in range(num): print(array[i])
[ "bose1021@naver.com" ]
bose1021@naver.com
c8b5729bd9c20925ad5ceacf9485ae56d25d8550
6dd6ff94464d53d5d65e36e86ece49f2902bc85f
/coupons/views.py
813aea7b230f7875ec1c3d88983abe228e08736a
[]
no_license
onealwills/myshop
6914981ba9de60316f9196ebf4a25ada87e81864
248a575072a8e9d5553d507b6a80f798e3bb8f39
refs/heads/main
2023-07-06T02:01:59.233570
2021-08-13T08:52:54
2021-08-13T08:52:54
394,821,023
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
from django.shortcuts import render, redirect from django.utils import timezone from django.views.decorators.http import require_POST from .models import Coupon from .forms import CouponApplyForm # Create your views here. @require_POST def coupon_apply(request): now = timezone.now() form = CouponApplyForm(request.POST) if form.is_valid(): code = form.cleaned_data['code'] try: coupon = Coupon.objects.get(code__iexact=code, valid_from__lte=now, valid_to__gte=now, active=True) request.session['coupon_id'] = coupon.id except Coupon.DoesNotExist: request.session['coupon_id'] = None return redirect('cart:cart_detail')
[ "oneal.wills@gmail.com" ]
oneal.wills@gmail.com
afa0407ed6f5d1af4d9575f2a95b7ab3e70e86b9
72e8d6fea71e523cee9aee585b7b52fccf36d4b5
/PythonExercicios/ex002.py
e01d06a9d6386ce09830cc06f9c987ff9fd5cb32
[]
no_license
maripaixao/PycharmProjects
e7939857ec995c39b4fb2e85f5075b41614509e8
3ecfa9aa6616c3bdcb5f0c029fdda2ea68e55d3c
refs/heads/master
2023-06-19T00:54:52.420194
2021-07-19T21:18:34
2021-07-19T21:18:34
387,594,007
0
0
null
null
null
null
UTF-8
Python
false
false
81
py
nome = input("Qual seu nome?") print("Prazer em te conhecer, {}!".format(nome))
[ "marinapaixao.25@gmail.com" ]
marinapaixao.25@gmail.com
f247cedc5f3d6f037b2f74c163e14180b0a056fd
53909cfcc2b142716021bf8589cccc37c426aa9c
/bin/blogtk2
2c2e50e6a98bd225e96d115696f9071700abf738
[ "Apache-2.0" ]
permissive
Ryuno-Ki/BloGTK3
7fba56ed0f6ed36eadadad374cf5e045fd9167e0
e410f164cb82ff37ca9c0f3ebaf8e57b76139551
refs/heads/master
2016-09-06T02:03:56.552113
2013-06-07T08:39:52
2013-06-07T08:39:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
210
#!/usr/bin/env python import sys from os.path import dirname, join, pardir sys.path.insert(0, join(dirname(__file__), pardir, 'share', 'blogtk2', 'lib')) from blogtk2 import main main()
[ "AndreJaenisch@googlemail.com" ]
AndreJaenisch@googlemail.com
87769f81ff8aa748efc928170fe85552099057a8
bf1af2969ce4952360c604844b1468e4ebce2fc6
/tictactoe/runner.py
35f1777fee7e44cf3be411a245a92b42f55b11e3
[]
no_license
emreisler/myprojects
2de7dbda68d6009bd19b640f5ef6ddae06748244
2d408cf2919aea4cfd8783b9e5dc2696d9d6b806
refs/heads/master
2023-01-05T20:53:53.420342
2020-11-04T12:25:54
2020-11-04T12:25:54
293,348,825
0
0
null
null
null
null
UTF-8
Python
false
false
4,737
py
import pygame import sys import time import tictactoe as ttt pygame.init() size = width, height = 600, 400 # Colors black = (0, 0, 0) white = (255, 255, 255) screen = pygame.display.set_mode(size) mediumFont = pygame.font.Font("OpenSans-Regular.ttf", 28) largeFont = pygame.font.Font("OpenSans-Regular.ttf", 40) moveFont = pygame.font.Font("OpenSans-Regular.ttf", 60) user = None board = ttt.initial_state() ai_turn = False while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() screen.fill(black) # Let user choose a player. if user is None: # Draw title title = largeFont.render("Play Tic-Tac-Toe", True, white) titleRect = title.get_rect() titleRect.center = ((width / 2), 50) screen.blit(title, titleRect) # Draw buttons playXButton = pygame.Rect((width / 8), (height / 2), width / 4, 50) playX = mediumFont.render("Play as X", True, black) playXRect = playX.get_rect() playXRect.center = playXButton.center pygame.draw.rect(screen, white, playXButton) screen.blit(playX, playXRect) playOButton = pygame.Rect(5 * (width / 8), (height / 2), width / 4, 50) playO = mediumFont.render("Play as O", True, black) playORect = playO.get_rect() playORect.center = playOButton.center pygame.draw.rect(screen, white, playOButton) screen.blit(playO, playORect) # Check if button is clicked click, _, _ = pygame.mouse.get_pressed() if click == 1: mouse = pygame.mouse.get_pos() if playXButton.collidepoint(mouse): time.sleep(0.2) user = ttt.X elif playOButton.collidepoint(mouse): time.sleep(0.2) user = ttt.O else: # Draw game board tile_size = 80 tile_origin = (width / 2 - (1.5 * tile_size), height / 2 - (1.5 * tile_size)) tiles = [] for i in range(3): row = [] for j in range(3): rect = pygame.Rect( tile_origin[0] + j * tile_size, tile_origin[1] + i * tile_size, tile_size, tile_size ) pygame.draw.rect(screen, white, rect, 3) if board[i][j] != ttt.EMPTY: move = moveFont.render(board[i][j], True, white) moveRect = move.get_rect() moveRect.center = rect.center screen.blit(move, moveRect) row.append(rect) tiles.append(row) game_over = ttt.terminal(board) player = ttt.player(board) # Show title if game_over: winner = ttt.winner(board) if winner is None: title = f"Game Over: Tie." else: title = f"Game Over: {winner} wins." elif user == player: title = f"Play as {user}" else: title = f"Computer thinking..." title = largeFont.render(title, True, white) titleRect = title.get_rect() titleRect.center = ((width / 2), 30) screen.blit(title, titleRect) # Check for AI move if user != player and not game_over: if ai_turn: time.sleep(0.5) move = ttt.minimax(board) board = ttt.result(board, move) ai_turn = False else: ai_turn = True # Check for a user move click, _, _ = pygame.mouse.get_pressed() if click == 1 and user == player and not game_over: mouse = pygame.mouse.get_pos() for i in range(3): for j in range(3): if (board[i][j] == ttt.EMPTY and tiles[i][j].collidepoint(mouse)): board = ttt.result(board, (i, j)) if game_over: againButton = pygame.Rect(width / 3, height - 65, width / 3, 50) again = mediumFont.render("Play Again", True, black) againRect = again.get_rect() againRect.center = againButton.center pygame.draw.rect(screen, white, againButton) screen.blit(again, againRect) click, _, _ = pygame.mouse.get_pressed() if click == 1: mouse = pygame.mouse.get_pos() if againButton.collidepoint(mouse): time.sleep(0.2) user = None board = ttt.initial_state() ai_turn = False pygame.display.flip()
[ "noreply@github.com" ]
emreisler.noreply@github.com
cb7487342f6f94441614a56b159aa70cef3ba11e
0ce3dfdc3d2de8cdee8116c97ed7a750e02d9040
/tests/test_class_auto_wiring.py
38255c0998e5c149c78ed9cdebb98701eb32bdf5
[ "MIT" ]
permissive
adriangb/antidote
c1d3d99406f1efce7b0e1f66373db7c00bbe1077
97751e0e6a1b8bd638a1c33212345c7a84ad97b8
refs/heads/master
2023-09-03T09:58:08.065608
2021-11-06T20:56:20
2021-11-06T21:48:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,752
py
import itertools from typing import Any, Callable, Optional, Tuple, Type, Union import pytest from antidote import Constants, Factory, Provide, Service, world, service from antidote._compatibility.typing import Protocol from antidote.core import Wiring class Interface: pass class FactoryOutput: pass class FactoryOutput2: pass class A: pass class B: pass @pytest.fixture(autouse=True) def new_world(): with world.test.new(): world.test.singleton({A: A(), B: B(), 'a': object(), 'b': object(), 'x': object(), 'y': object(), 'z': object()}) yield class DummyProtocol(Protocol): a: A b: B def __init__(self, a: A = None, b: B = None): pass def method_AB(self, a: A = None, b: B = None) -> Tuple[A, B]: pass def method_ab(self, a=None, b=None) -> Tuple[Any, Any]: pass def method_xyz(self, x=None, y=None, z=None) -> Tuple[Any, Any, Any]: pass DEFAULT_WIRING = object() def builder(cls_or_decorator: Union[type, Callable[..., Any]], wiring_kind: str = 'Wiring', subclass: bool = False): meta_kwargs = dict(abstract=True) if subclass else dict() if isinstance(cls_or_decorator, type): cls = cls_or_decorator def decorator(wiring=None): return lambda x: x else: cls = object decorator = cls_or_decorator def build(wiring: Wiring = None): decorate = (decorator(wiring=wiring) if wiring is not DEFAULT_WIRING else decorator()) @decorate class Dummy(cls, **meta_kwargs): if wiring is not DEFAULT_WIRING and cls is not object: if wiring is not None: if wiring_kind == 'Wiring': __antidote__ = cls.Conf(wiring=wiring) else: __antidote__ = cls.Conf().with_wiring(**{ attr: getattr(wiring, attr) for attr in Wiring.__slots__ }) else: __antidote__ = cls.Conf(wiring=None) def __init__(self, a: Provide[A] = None, b: Provide[B] = None): super().__init__() self.a = a self.b = b def method_AB(self, a: A = None, b: B = None) -> Tuple[A, B]: return a, b def method_ab(self, a=None, b=None) -> Tuple[Any, Any]: return a, b def method_xyz(self, x=None, y=None, z=None) -> Tuple[Any, Any, Any]: return x, y, z def __call__(self) -> FactoryOutput: # for Factory pass def get(self): # for Constants pass if subclass: class SubDummy(Dummy): def __call__(self) -> FactoryOutput2: # for Factory pass return SubDummy else: return Dummy return build @pytest.fixture(params=[ pytest.param((builder, service), id="@service"), *[ pytest.param((builder, c, w), id=f"{c.__name__} - {w}") for (c, w) in itertools.product([Factory, Service, Constants], ['with_wiring', 'Wiring']) ] ]) def class_builder(request): f, *args = request.param return f(*args) @pytest.fixture(params=[ pytest.param((c, w), id=f"{c.__name__} - w") for (c, w) in itertools.product([Factory, Service, Constants], ['with_wiring', 'Wiring']) ]) def subclass_builder(request): (cls, wiring_kind) = request.param return builder(cls, wiring_kind, subclass=True) F = Callable[[Optional[Wiring]], Type[DummyProtocol]] def test_default(class_builder: F): dummy = class_builder(DEFAULT_WIRING)() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is None assert b is None def test_no_wiring(class_builder: F): dummy = class_builder(None)() assert dummy.a is None assert dummy.b is None def test_methods(class_builder: F): dummy = class_builder(Wiring(methods=('__init__',)))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is None assert b is None dummy = class_builder(Wiring(methods=('method_AB',), auto_provide=True))() assert dummy.a is None assert dummy.b is None (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get(B) def test_auto_provide(class_builder: F): # Uses type hints by default dummy = class_builder(Wiring(methods=('method_AB',)))() (a, b) = dummy.method_AB() assert a is None assert b is None dummy = class_builder(Wiring(methods=('method_AB',), auto_provide=True))() (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get(B) dummy = class_builder(Wiring(methods=('method_AB',), auto_provide=False))() (a, b) = dummy.method_AB() assert a is None assert b is None dummy = class_builder(Wiring(methods=('method_AB',), auto_provide=[A]))() (a, b) = dummy.method_AB() assert a is world.get(A) assert b is None dummy = class_builder(Wiring(methods=('method_AB',), auto_provide=lambda cls: True))() (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get(B) dummy = class_builder(Wiring(methods=('method_AB',), auto_provide=lambda cls: issubclass(cls, A)))() (a, b) = dummy.method_AB() assert a is world.get(A) assert b is None dummy = class_builder(Wiring(methods=('method_AB',), auto_provide=lambda cls: False))() (a, b) = dummy.method_AB() assert a is None assert b is None def test_dependencies_dict(class_builder: F): dummy = class_builder(Wiring(dependencies=dict(), auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get(B) (a, b) = dummy.method_ab() assert a is None assert b is None dummy = class_builder(Wiring(dependencies=dict(a='x', b='y'), auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get('x') assert b is world.get('y') (a, b) = dummy.method_ab() assert a is world.get('x') assert b is world.get('y') dummy = class_builder(Wiring(dependencies=dict(b='y'), auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get('y') (a, b) = dummy.method_ab() assert a is None assert b is world.get('y') def test_dependencies_seq(class_builder: F): dummy = class_builder(Wiring(dependencies=[], auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get(B) (a, b) = dummy.method_ab() assert a is None assert b is None dummy = class_builder(Wiring(dependencies=[None, None], auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get(B) (a, b) = dummy.method_ab() assert a is None assert b is None dummy = class_builder(Wiring(dependencies=['x', 'y'], auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get('x') assert b is world.get('y') (a, b) = dummy.method_ab() assert a is world.get('x') assert b is world.get('y') dummy = class_builder(Wiring(dependencies=[None, 'y'], auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get('y') (a, b) = dummy.method_ab() assert a is None assert b is world.get('y') dummy = class_builder(Wiring(dependencies=['x', None], auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get('x') assert b is world.get(B) (a, b) = dummy.method_ab() assert a is world.get('x') assert b is None def test_dependencies_callable(class_builder: F): dummy = class_builder(Wiring(dependencies=lambda arg: None, auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get(B) (a, b) = dummy.method_ab() assert a is None assert b is None dummy = class_builder(Wiring(dependencies=lambda arg: 'x' if arg.name == 'a' else 'y', auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get('x') assert b is world.get('y') (a, b) = dummy.method_ab() assert a is world.get('x') assert b is world.get('y') dummy = class_builder(Wiring( dependencies=lambda arg: 'x' if arg.name == 'a' else None, auto_provide=True))() assert dummy.a is world.get(A) assert dummy.b is world.get(B) (a, b) = dummy.method_AB() assert a is world.get('x') assert b is world.get(B) (a, b) = dummy.method_ab() assert a is world.get('x') assert b is None def test_distinct_arguments(class_builder: F): # Having more arguments in dependencies seq is not an issue for methods having less. dummy = class_builder(Wiring(methods=('method_AB', 'method_xyz'), dependencies=['x', None, 'z'], auto_provide=True))() (a, b) = dummy.method_AB() assert a is world.get('x') assert b is world.get(B) (x, y, z) = dummy.method_xyz() assert x is world.get('x') assert y is None assert z is world.get('z') # Unknown argument in the dependencies dict won't raise an error. dummy = class_builder(Wiring(methods=('method_AB', 'method_xyz'), dependencies=dict(b='b', y='y'), auto_provide=True))() (a, b) = dummy.method_AB() assert a is world.get(A) assert b is world.get('b') (x, y, z) = dummy.method_xyz() assert x is None assert y is world.get('y') assert z is None # type_hints dummy = class_builder(Wiring(methods=('method_AB', 'method_xyz'), auto_provide=[A]))() (a, b) = dummy.method_AB() assert a is world.get(A) assert b is None (x, y, z) = dummy.method_xyz() assert x is None assert y is None assert z is None
[ "rabier.benj@gmail.com" ]
rabier.benj@gmail.com
fc67e11ae0ec8985fac5e9c4474302e3c792647f
6774b1ed1b40eb4777cddac01a8846fbb9b49d6f
/Stepik/13_function/test.py
e67b3c66824ae1faf9dcc3de4955fa43189baffe
[]
no_license
Surgeon-76/KaPythoshka
b664ed7c8552a01c4c931cbb5842fd9b189f4149
faf010e58d2d493ab0e91dc7e99540cb65c26a84
refs/heads/main
2023-08-28T19:20:21.818633
2023-08-09T11:14:51
2023-08-09T11:14:51
339,171,246
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
def print_text(text, num): while num > 0: print(text, end='') num -= 1 print_text('Python', 4)
[ "surgeon76@outlook.com" ]
surgeon76@outlook.com
6b244d907047478f01653ac411361939a79e31a0
cafb95a9475855c3ddf9d21de24d96d9fbcb4fee
/Wk5 Ex genPrimes.py
e181e94351f60c70da7f1cc3d200f5d15d4c4a81
[]
no_license
kj0y/edX-MITx-6.00.1x
3728e95062324092a5fe2d43955e70e0a635a2ba
f31fd8736d9d5adc6b2752777f46a8c57dc48d8b
refs/heads/master
2020-03-23T02:06:16.182107
2018-08-05T23:11:59
2018-08-05T23:11:59
140,955,107
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
# -*- coding: utf-8 -*- """ Created on Sun Aug 5 14:29:40 2018 @author: kandi """ def genPrimes(): primes = [] numerator = 2 last = numerator while True: for denom in primes: if numerator % denom == 0: numerator += 1 break else: primes.append(numerator) last = numerator numerator += 1 yield last
[ "noreply@github.com" ]
kj0y.noreply@github.com