blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
f1b02f8633cfc167c881db6c90101e38b82fd0a1
48f6b50c7765d427db95cf5c643240f00d37ee28
/docs/conf.py
f18ef64f5ac74de0118839f484da396e544f4b3d
[ "BSD-2-Clause" ]
permissive
PlayerYrcHen/cdlib
943bdbf2a26cc80a6f567268a958ffb12a140c97
bc2b5acf81fde1aef5bd9f9a24299cd8eb10b2d4
refs/heads/master
2023-03-12T15:19:59.028367
2021-03-04T12:48:35
2021-03-04T12:48:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,694
py
# -*- coding: utf-8 -*- # # CDlib documentation build configuration file, created by # sphinx-quickstart on Wed May 24 10:59:33 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os from mock import Mock as MagicMock import sphinx_rtd_theme class Mock(MagicMock): @classmethod def __getattr__(cls, name): return MagicMock() MOCK_MODULES = ['ASLPAw_package', 'ipaddress', 'ASLPAw', 'graph-tool', 'leidenalg', 'numpy', 'scipy', 'networkx', 'karateclub', 'bimlpa', 'sklearn', 'pquality', 'functools', 'nf1', 'ipython', 'pygtk', 'gtk', 'gobject', 'argparse', 'matplotlib', 'matplotlib.pyplot', 'scikit-learn', 'python-igraph', 'wurlitzer', 'pulp', 'seaborn', 'pandas', 'infomap', 'angel-cd', 'omega_index_py3', 'markov_clustering', 'chinese_whispers', 'scipy.sparse'] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme_options = { 'collapse_navigation': False, 'display_version': False, 'navigation_depth': 3 } # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.7.5' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. #autodoc_default_options = { # 'autosummary': True, #} extensions = [ 'sphinx.ext.mathjax', 'sphinx.ext.githubpages', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'CDlib' copyright = u'2019, Giulio Rossetti' author = u'Giulio Rossetti' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.2.0' # The full version, including alpha/beta/rc tags. release = u'0.2.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = ['cdlib.algorithms'] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. html_title = u'CDlib - Community Discovery library' # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = u'CDlib' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'cdlib_new.png' # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_context = {'css_files': ['_static/css/custom.css']} # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is ensemble. # html_domain_indices = True # If false, no index is ensemble. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'CDlibdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', # Latex figure (float) alignment # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'CDlib.tex', u'CDlib Documentation', u'Giulio Rossetti', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is ensemble. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'CDlib', u'CDlib Documentation', [author], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'CDlib', u'CDlib Documentation', author, 'CDlib', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is ensemble. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The basename for the epub file. It defaults to the project name. # epub_basename = project # The HTML theme for the epub output. Since the default themes are not # optimized for small screen space, using the same theme for HTML and epub # output is usually not wise. This defaults to 'epub', a theme designed to save # visual space. # epub_theme = 'epub' # The language of the text. It defaults to the language option # or 'en' if the language is not set. # epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. # epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. # epub_identifier = '' # A unique identification for the text. # epub_uid = '' # A tuple containing the cover image and cover page html template filenames. # epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. # epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. # epub_pre_files = [] # HTML files that should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. # epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. # epub_tocdepth = 3 # Allow duplicate toc entries. # epub_tocdup = True # Choose between 'default' and 'includehidden'. # epub_tocscope = 'default' # Fix unsupported image types using the Pillow. # epub_fix_images = False # Scale large images. # epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. # epub_show_urls = 'inline' # If false, no index is ensemble. # epub_use_index = True autosummary_generate = True
[ "giulio.rossetti@gmail.com" ]
giulio.rossetti@gmail.com
e44657d373b7abb167b5cd7ba6bcc10e855de8e4
8260dfeb7af3480fe164acc1959af16561d6e85b
/workgroup/Addons/gear/Application/Plugins/gear_curveTools.py
7a9621414630d7c2c35a4a366f086a7953e30288
[]
no_license
jpasserin/gear
78e9c93f08d1696a416d2659f1ce29a0fcbfca04
9729a7ced44bc1b0e903b64a256af0b6071a000a
refs/heads/master
2016-09-08T02:01:11.547362
2011-07-17T11:01:48
2011-07-17T11:01:48
2,061,266
6
2
null
null
null
null
UTF-8
Python
false
false
11,419
py
''' This file is part of GEAR. GEAR is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/lgpl.html>. Author: Jeremie Passerin geerem@hotmail.com Url : http://gear.jeremiepasserin.com Date: 2010 / 11 / 15 ''' ## @package gear_curveTools.py # @author Jeremie Passerin # ########################################################## # GLOBAL ########################################################## import gear from gear.xsi import xsi, c, dynDispatch import gear.xsi.primitive as pri import gear.xsi.curve as cur import gear.xsi.fcurve as fcv import gear.xsi.uitoolkit as uit import gear.xsi.applyop as aop ########################################################## # XSI LOAD / UNLOAD PLUGIN ########################################################## # ======================================================== def XSILoadPlugin(in_reg): in_reg.Author = "Jeremie Passerin" in_reg.Name = "gear_curveTools" in_reg.Email = "geerem@hotmail.com" in_reg.URL = "http://www.jeremiepasserin.com" in_reg.Major = 1 in_reg.Minor = 0 # Commands in_reg.RegisterCommand("gear_CurveResampler","gear_CurveResampler") in_reg.RegisterCommand("gear_ApplyZipperOp","gear_ApplyZipperOp") in_reg.RegisterCommand("gear_DrawCnsCurve_Linear","gear_DrawCnsCurve_Linear") in_reg.RegisterCommand("gear_DrawCnsCurve_Cubic","gear_DrawCnsCurve_Cubic") in_reg.RegisterCommand("gear_MergeCurves","gear_MergeCurves") in_reg.RegisterCommand("gear_SplitCurves","gear_SplitCurves") # Operators in_reg.RegisterOperator("gear_ZipperOp") return True # ======================================================== def XSIUnloadPlugin(in_reg): strPluginName = in_reg.Name gear.log(str(strPluginName) + str(" has been unloaded."), c.siVerbose) return True ########################################################## # CURVE RESAMPLER ########################################################## # Execute ================================================ def gear_CurveResampler_Execute(): if not xsi.Selection.Count or xsi.Selection(0).Type not in ["crvlist"]: gear.log("No selection or invalid Selection", gear.sev_error) return curve = xsi.Selection(0) if curve.ActivePrimitive.Geometry.Curves.Count > 1: gear.log("Curve Resampler works only with single curve", gear.sev_error) return ref_crv = uit.pickSession(c.siCurveFilter, "Pick Reference Curve", False) if not ref_crv: ref_crv = curve op = aop.gear_resampler_op(curve, ref_crv, 0, 1) xsi.InspectObj(op) ########################################################## # DRAW CONSTRAINED CURVE LINEAR ########################################################## # Execute ================================================ def gear_DrawCnsCurve_Linear_Execute(): if xsi.Selection.Count < 2: gear.log("Select enough centers", gear.sev_error) return cur.addCnsCurve(xsi.ActiveSceneRoot, "crvCns", xsi.Selection, False, 1) ########################################################## # DRAW CONSTRAINED CURVE CUBIC ########################################################## # Execute ================================================ def gear_DrawCnsCurve_Cubic_Execute(): if xsi.Selection.Count < 2: gear.log("Select enough centers", gear.sev_error) return cur.addCnsCurve(xsi.ActiveSceneRoot, "crvCns", xsi.Selection, False, 3) ########################################################## # MERGE CURVES ########################################################## # Execute ================================================ def gear_MergeCurves_Execute(): if not xsi.Selection.Count: gear.log("No selection", gear.sev_error) return curves = [curve for curve in xsi.Selection if curve.Type in ["crvlist"]] if not curves: gear.log("Invalid selection", gear.sev_error) return cur.mergeCurves(curves) ########################################################## # SPLIT CURVES ########################################################## # Execute ================================================ def gear_SplitCurves_Execute(): if not xsi.Selection.Count: gear.log("No selection", gear.sev_error) return for curve in xsi.Selection: if curve.Type not in ["crvlist"]: gear.log("Invalid selection", gear.sev_warning) continue cur.splitCurve(curve) ########################################################## # ZIPPER OP ########################################################## # Define ================================================= def gear_ZipperOp_Define(ctxt): op = ctxt.Source op.AlwaysEvaluate = False op.Debug = 0 pdef = XSIFactory.CreateParamDef("Zip", c.siDouble, 0, c.siPersistable|c.siAnimatable, "", "",0,0,10,0,1) op.AddParameter(pdef) pdef = XSIFactory.CreateParamDef("Bias", c.siDouble, 0, c.siPersistable|c.siAnimatable, "", "",0.5,0,1,0,1) op.AddParameter(pdef) # pdef = XSIFactory.CreateParamDef("Smooth", c.siDouble, 0, c.siPersistable|c.siAnimatable, "", "",0,0,1,0,1) # op.AddParameter(pdef) pdef = XSIFactory.CreateParamDef("Type", c.siDouble, 0, c.siPersistable|c.siAnimatable, "", "",0,0,1,0,1) op.AddParameter(pdef) pdef = XSIFactory.CreateParamDef("CurveCombo", c.siInt4, 0, c.siPersistable, "", "",0,0,1,0,1) op.AddParameter(pdef) pdef = XSIFactory.CreateFCurveParamDef("Start_FCurve") op.AddParameter(pdef) pdef = XSIFactory.CreateFCurveParamDef("Speed_FCurve") op.AddParameter(pdef) return True # Layout ================================================= def gear_ZipperOp_OnInit(): type_items = ["Points", 0, "Percentage", 1] curve_items = ["Start", 0, "Speed", 1] layout = PPG.PPGLayout layout.Clear() layout.AddGroup("Zip") layout.AddItem("Mute", "Mute") layout.AddItem("Zip", "Zip") layout.EndGroup() layout.AddGroup("Options") layout.AddEnumControl("Type", type_items, "Type", c.siControlCombo) layout.AddItem("Bias") layout.EndGroup() layout.AddGroup("Profile") item = layout.AddEnumControl("CurveCombo", curve_items, "Type", c.siControlCombo) item.SetAttribute(c.siUINoLabel, True) if PPG.CurveCombo.Value == 0: item = layout.AddFCurve("Start_FCurve") item.SetAttribute(c.siUIFCurveLabelX, "Points") item.SetAttribute(c.siUIFCurveLabelY, "Start") item.SetAttribute(c.siUIFCurveViewMinX,-.1) item.SetAttribute(c.siUIFCurveViewMaxX,1.1) item.SetAttribute(c.siUIFCurveViewMinY,-.1) item.SetAttribute(c.siUIFCurveViewMaxY,1.1) item.SetAttribute(c.siUIFCurveGridSpaceX, .1) item.SetAttribute(c.siUIFCurveGridSpaceY, .1) else: item = layout.AddFCurve("Speed_FCurve") item.SetAttribute(c.siUIFCurveLabelX, "Points") item.SetAttribute(c.siUIFCurveLabelY, "Speed") item.SetAttribute(c.siUIFCurveViewMinX,-.1) item.SetAttribute(c.siUIFCurveViewMaxX,2.1) item.SetAttribute(c.siUIFCurveViewMinY,-.1) item.SetAttribute(c.siUIFCurveViewMaxY,1.1) item.SetAttribute(c.siUIFCurveGridSpaceX, .1) item.SetAttribute(c.siUIFCurveGridSpaceY, .1) layout.EndGroup() PPG.Refresh() return True def gear_ZipperOp_CurveCombo_OnChanged(): gear_ZipperOp_OnInit() # Update ================================================= def gear_ZipperOp_Update(ctxt): # Inputs ----------------------------------------------- OutPort = ctxt.OutputPort crv_geo_A = ctxt.GetInputValue(0, 0, 0).Geometry ncrv_A = crv_geo_A.Curves(0) crv_geo_B = ctxt.GetInputValue(1, 0, 0).Geometry ncrv_B = crv_geo_B.Curves(0) zip = ctxt.GetParameterValue("Zip") bias = ctxt.GetParameterValue("Bias") zip_type = ctxt.GetParameterValue("Type") start_fcv = ctxt.GetParameterValue("Start_FCurve") speed_fcv = ctxt.GetParameterValue("Speed_FCurve") pnt_count_A = crv_geo_A.Points.Count pnt_count_B = crv_geo_B.Points.Count pos_tuple_A = crv_geo_A.Points.PositionArray pos_tuple_B = crv_geo_B.Points.PositionArray if zip_type == 0: pos_A = [pos_tuple_A[j][i] for i in range(len(pos_tuple_A[0])) for j in range(len(pos_tuple_A))] pos_B = [pos_tuple_B[j][i] for i in range(len(pos_tuple_B[0])) for j in range(len(pos_tuple_B))] else: step = 100 / (pnt_count_B-1.0) a = [ncrv_A.EvaluatePositionFromPercentage(i*step)[0].Get2() for i in range(pnt_count_B)] pos_A = [ a[j][i] for j in range(len(a)) for i in range(len(a[0])) ] step = 100 / (pnt_count_A-1.0) a = [ncrv_B.EvaluatePositionFromPercentage(i*step)[0].Get2() for i in range(pnt_count_A)] pos_B = [ a[j][i] for j in range(len(a)) for i in range(len(a[0])) ] mid_pos = [(pos_A[i]*bias+pos_B[i]*(1-bias)) for i in range(len(pos_A))] # Process ----------------------------------------------- if OutPort.Index == 2: t = pos_tuple_A p = pnt_count_A else: t = pos_tuple_B p = pnt_count_B pos = [] v = XSIMath.CreateVector3() for i in range(p): step = 1/(p-1.0) v0 = XSIMath.CreateVector3(t[0][i], t[1][i], t[2][i]) v1 = XSIMath.CreateVector3(mid_pos[i*3+0], mid_pos[i*3+1], mid_pos[i*3+2]) v.Sub(v1, v0) d = start_fcv.Eval(i*step) if zip < d: y = 0 else: y = changerange(zip, d, d+step, 0, 1) y = speed_fcv.Eval(y) v.ScaleInPlace(y) pos.append(v0.X + v.X) pos.append(v0.Y + v.Y) pos.append(v0.Z + v.Z) # Output ------------------------------------------------ Out = ctxt.OutputTarget Out.Geometry.Points.PositionArray = pos def changerange(x, a, b, c, d): return c + ( x - a ) * (( d-c) / (b-a+0.0)) # Execute ================================================ def gear_ApplyZipperOp_Execute(): if xsi.Selection.Count < 2: gear.log("Select 2 curve", gear.sev_error) return crv_A = xsi.Selection(0) crv_B = xsi.Selection(1) if crv_A.Type not in ["crvlist"] or crv_B.Type not in ["crvlist"]: gear.log("Select 2 curve", gear.sev_error) return # Apply Operator ---------------------- op = XSIFactory.CreateObject("gear_ZipperOp") op.AddIOPort(crv_A.ActivePrimitive) op.AddIOPort(crv_B.ActivePrimitive) pStart_fcv = op.Parameters("Start_FCurve").Value fcv.drawFCurve(pStart_fcv, [[0,0],[1,1]], c.siLinearKeyInterpolation) pSpeed_fcv = op.Parameters("Speed_FCurve").Value fcv.drawFCurve(pStart_fcv, [[0,0],[1,1]], c.siLinearKeyInterpolation) op.Connect() xsi.InspectObj(op) return op
[ "geerem@hotmail.com" ]
geerem@hotmail.com
3cfbf21556fcfdb61b05267fd0a89e6829891eaf
3b1b5a931e44566c97c6e4661d6c1c1d4ff1e9f5
/8queen.py
dfadd235e5487d174297d13b870cabf4e8467540
[]
no_license
Mahnoor507/8-Queen-Problem
b32530291cc1a9422839e4d2c99ecf036acd4777
88a09e91b60242b6e4878cb24a30ec1fba9d702c
refs/heads/main
2023-02-20T00:22:01.167763
2021-01-16T11:34:24
2021-01-16T11:34:24
330,147,948
0
0
null
null
null
null
UTF-8
Python
false
false
4,467
py
#!/usr/bin/env python # coding: utf-8 # In[456]: from random import randint import numpy as np for j in range(8): k=randint(0,7) cl1[j]=k for j in range(8): k=randint(0,7) cl2[j]=k for j in range(8): k=randint(0,7) cl3[j]=k for j in range(8): k=randint(0,7) cl4[j]=k #defining intial population of 4 #l containing 4 boards ... initial population print(cl1,cl2,cl3,cl4) def fitnessfun(queen): count =0 i=0 #creating a board new=np.zeros((8,8),dtype=int) #placing queens on that bord for x in range(8): y=int(queen[x]) new[y,x]=1 for col in range(8): verticalchk=0; horizontalchk=0; fdiagonal=0; bdiagonal=0; row=queen[col]; #horizontally checking queens for c in range(8): if(new[int(row),int(c)] == 1 and c != col): horizontalchk=1 #vertically checking queens for r in range(8): if(new[r,col] == 1 and r != row): verticalchk=1 #forward diagonal queens frow = int(row) fcol = int(col) while (frow > 0 and fcol > 0): frow = frow - 1 fcol = fcol - 1 while (frow < 8 and fcol < 8): if(new[frow,fcol] == 1 and frow != row and fcol != col): fdiagonal=1 frow = frow + 1 fcol = fcol + 1 #backward diagonal queens brow = int(row) bcol = int(col) while (brow > 0 and bcol < 7): brow = brow - 1 bcol = bcol + 1 while (brow < 8 and bcol >= 0): if(new[brow,bcol] == 1 and brow != row and bcol != col): bdiagonal=1 brow = brow + 1 bcol = bcol - 1 if horizontalchk!=1 and verticalchk!=1 and fdiagonal!=1 and bdiagonal!=1 : count=count+1 #total no of fitness queens or fitness val of a board return count; #for counting iterations count=0 #list for holding boards blue=[cl1,cl2,cl3,cl4] print("Finding best possible solution") flag=False; while flag!=True: #array for holding fitness valuess green=np.array([0,0,0,0]) y=0; for x in blue: green[y]=fitnessfun(x) y=y+1 #array for holding sorted fitness values red=np.array([0,0,0,0]) t=green.copy() red=t red.sort() #success yayyy found solution if 8 in green: print("yayyyy solutionnnnnnnnnnnnnn") for i in range(4): k=green[i] if(k==8): print("Required solution is: ") print(blue[i]) print("Total no of iterations: ") print(count) hen=np.zeros((8,8),dtype=int) var=0 for x in blue[i]: hen[x,var]=1 var=var+1 print("Board look like this") print(hen) flag=True break; #re arranging boardss for i in range(4): j=red[i] for b in range(4): h=green[b] if(h==j): temp[i]=blue[b] blue=temp #new arrays for working apple=mango=np.zeros(8,dtype=int) grapes=np.zeros(8,dtype=int) peach=np.zeros(8,dtype=int) #apple mango are parents best ones that kept apple=blue[3]; mango=blue[2]; #crossover for new child for x in range(4): grapes[x]=apple[x] peach[x]=mango[x] for x in range(4,8): grapes[x]=mango[x] peach[x]=apple[x] #mutation ran1=randint(0,7) while True: rn=randint(0,7) if grapes[ran1]!=rn: grapes[ran1]=rn break; ran2=random.randint(0,7) while True: rn=random.randint(0,7) if peach[ran2]!=rn: peach[ran2]=rn break; blue=[apple,mango,grapes,peach] count=count+1 if(count==10000): print("best possible solution in 10000 iterationss is: ") print(blue[3]) print("The fitness is: ") print(red[3]) hen=np.zeros((8,8),dtype=int) var=0 for x in blue[3]: hen[x,var]=1 var=var+1 print("Board look like this") print(hen) flag=True; break; # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]:
[ "noreply@github.com" ]
Mahnoor507.noreply@github.com
d19c3c52e2d9e87f01762f3ff3c0cbad3fdf54ad
505b9e87b297db12ad805979dd4455f4dbe0a38a
/techtrends/app.py
e512abcd87fd7d748c205cb6c823d17dec0a1c00
[]
no_license
sahil8060/TechTrends
0f18f878f0a5078892669d2bc9b996c61865cb13
666ff9e4670dc854508f27c8907d1d785dde4759
refs/heads/main
2023-03-05T11:11:39.785775
2021-02-18T09:14:13
2021-02-18T09:14:13
333,056,955
0
0
null
null
null
null
UTF-8
Python
false
false
3,619
py
import sqlite3 from flask import Flask, jsonify, json, render_template, request, url_for, redirect, flash from werkzeug.exceptions import abort import logging # Function to get a database connection. # This function connects to database with the name `database.db` db_file = "database.db" number_of_connections = 0 def get_db_connection(): connection = sqlite3.connect('database.db') connection.row_factory = sqlite3.Row return connection # Function to get a post using its ID def get_post(post_id): connection = get_db_connection() post = connection.execute('SELECT * FROM posts WHERE id = ?', (post_id,)).fetchone() connection.close() return post def get_number_of_posts(): connection = get_db_connection() post = connection.execute('SELECT COUNT(*) FROM posts').fetchall() connection.close() return post # Define the Flask application app = Flask(__name__) app.config['SECRET_KEY'] = 'your secret key' # Define the main route of the web application @app.route('/') def index(): global number_of_connections number_of_connections += 1 connection = get_db_connection() posts = connection.execute('SELECT * FROM posts').fetchall() connection.close() return render_template('index.html', posts=posts) # Define how each individual article is rendered # If the post ID is not found a 404 page is shown @app.route('/<int:post_id>') def post(post_id): global number_of_connections number_of_connections += 1 post = get_post(post_id) if post is None: app.logger.info("A non-existing article is accessed") return render_template('404.html'), 404 else: app.logger.info('Article "%s" retrieved!', post[2]) return render_template('post.html', post=post) # Define the About Us page @app.route('/about') def about(): app.logger.info('The "About Us" page is retrieved') return render_template('about.html') # Define the post creation functionality @app.route('/create', methods=('GET', 'POST')) def create(): if request.method == 'POST': title = request.form['title'] content = request.form['content'] if not title: app.logger.info('Tentative to create an article without a title') flash('Title is required!') else: connection = get_db_connection() connection.execute('INSERT INTO posts (title, content) VALUES (?, ?)', (title, content)) connection.commit() connection.close() global number_of_connections number_of_connections += 1 app.logger.info('A new article "%s" is created ', title) return redirect(url_for('index')) return render_template('create.html') @app.route('/healthz') def healthcheck(): response = app.response_class( response=json.dumps({"result":"OK - healthy"}), status=200, mimetype='application/json' ) app.logger.info('Health request successfull') return response @app.route('/metrics') def metrics(): posts = list(map(tuple, get_number_of_posts())) dict_data = {"db_connection_count": str(number_of_connections), "post_count": str(posts[0][0])} response = app.response_class( response=json.dumps(dict_data), status=200, mimetype='application/json' ) app.logger.info('Metrics request successfull') return response # start the application on port 3111 if __name__ == "__main__": app.run(host='0.0.0.0', port='3111', debug=True)
[ "sahilgoyal8060@gmail.com" ]
sahilgoyal8060@gmail.com
1c48c3df7db99ebc81d5a25661d1e37ddb9d6d58
a1b5036b5397fccd537bf492b83f52cede2ae254
/assistenza/migrations/0009_auto_20210222_1044.py
27a2467c2520bd782bf93adcc262ee095b0b3a47
[]
no_license
mat0ccdeekk/biomedicalservice
a78160902d5698724620b35b7d5a7f56f6cbd935
2e8a1306ab01460cff26a8bbdc20eeb8f8ce146a
refs/heads/main
2023-03-08T15:58:42.054744
2021-02-26T10:16:36
2021-02-26T10:16:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,568
py
# Generated by Django 2.0 on 2021-02-22 09:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('assistenza', '0008_verifica_tornaindietro'), ] operations = [ migrations.AddField( model_name='verifica', name='ceiMultiple', field=models.CharField(blank=True, default='C.E.I.', max_length=20, null=True), ), migrations.AlterField( model_name='verifica', name='cei', field=models.ManyToManyField(blank=True, related_name='has_verifica', to='assistenza.normativaCodice', verbose_name='CEI'), ), migrations.AlterField( model_name='verifica', name='noteFinali', field=models.CharField(blank=True, max_length=300, null=True, verbose_name='Note finali'), ), migrations.AlterField( model_name='verifica', name='noteIniziali', field=models.CharField(blank=True, max_length=300, null=True, verbose_name='Note iniziali'), ), migrations.AlterField( model_name='verifica', name='verificaElettrica', field=models.PositiveIntegerField(blank=True, default='0', null=True, verbose_name='Verifica elettrica'), ), migrations.AlterField( model_name='verifica', name='verificaFunzionale', field=models.PositiveIntegerField(blank=True, default='0', null=True, verbose_name='Verifica funzionale'), ), ]
[ "mattia.lavecchia@gmail.com" ]
mattia.lavecchia@gmail.com
db2f1df0ecb4adf327b4598cd6d38a501510a22f
d44b82d6477f965509a537db45c2d06215169724
/tests/files/isort/permuted_imports/mine.py
faab7f66854264eddf2242fd7b46a6c700ac1aff
[]
no_license
reef-technologies/reefmerge
caaf4a1c70cb51c86ed97bd80f825afeafb749a5
19a634627283a52ae5f1fc9528adbc2bd63cab35
refs/heads/master
2021-03-24T12:39:05.733618
2018-01-27T12:50:12
2018-01-27T12:50:12
100,640,609
0
0
null
null
null
null
UTF-8
Python
false
false
36
py
import a import b import c import d
[ "grzegorz.konefal@reef.pl" ]
grzegorz.konefal@reef.pl
97ba5f2f05e3c6e16b08094510599f2617d5f3cb
7c611e76eb9f1fe527365c11fc4ca4dcbfa3391b
/tests/project/polls/tests.py
81fa971bc9dc8accfc13c5cffbfa331b847bf714
[]
no_license
Scott-Wheeler/django-scenic
41b911039cf02a9f3bfb4513699c0bc23c913876
74465c7df68a535b6b9dfd35f0af06ea21e1c9e8
refs/heads/master
2020-04-02T01:04:53.308960
2016-01-10T17:26:18
2016-01-10T17:26:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,836
py
from django.core.urlresolvers import reverse from django.test import TestCase from django.utils.timezone import now from .models import Poll, Choice STATUS_OK = 200 STATUS_REDIRECT = 302 class MainIndexViewTests(TestCase): def test_index(self): response = self.client.get(reverse('main:index')) self.assertEqual(response.status_code, STATUS_OK) class IndexViewTests(TestCase): def test_index(self): response = self.client.get(reverse('polls:index')) self.assertEqual(response.status_code, STATUS_OK) class DetailViewTests(TestCase): def test_detail(self): poll = Poll.objects.create( pub_date=now() ) response = self.client.get(reverse('polls:detail', args=[poll.id])) self.assertEqual(response.status_code, STATUS_OK) class VoteViewTests(TestCase): def test_vote(self): poll = Poll.objects.create( pub_date=now() ) Choice.objects.create( poll=poll, votes=0 ) post_data = { 'choice': 1 } response = self.client.post(reverse('polls:vote', args=[poll.id]), post_data) self.assertEqual(response.status_code, STATUS_REDIRECT) def test_invalid_vote(self): poll = Poll.objects.create( pub_date=now() ) post_data = { 'choice': 100 } response = self.client.post(reverse('polls:vote', args=[poll.id]), post_data) self.assertEqual(response.status_code, STATUS_OK) class ResultsViewTests(TestCase): def test_results(self): poll = Poll.objects.create( pub_date=now() ) response = self.client.get(reverse('polls:results', args=[poll.id])) self.assertEqual(response.status_code, STATUS_OK)
[ "m.pricejones@gmail.com" ]
m.pricejones@gmail.com
202b670956a705c801ec7dd05df6991ae81bf928
11b4989e30bfbc4867a2fd3a2bcefb1eb290ec43
/quantrocket/cli/subcommands/blotter.py
0758fea01e41246bda5884adcddd14eb4401f131
[ "Apache-2.0" ]
permissive
stjordanis/quantrocket-client
138f0045eac553df3c1d998179669f96fcb66b84
a2eba9f5819c76a3327f85a8f3667101240eea99
refs/heads/master
2023-05-08T18:18:48.001971
2021-06-02T20:29:18
2021-06-02T20:29:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,372
py
# Copyright 2018 QuantRocket - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from quantrocket.cli.utils.parse import dict_str def add_subparser(subparsers): _parser = subparsers.add_parser("blotter", description="QuantRocket blotter CLI", help="Place orders and track executions") _subparsers = _parser.add_subparsers(title="subcommands", dest="subcommand") _subparsers.required = True examples = """ Place one or more orders. Returns a list of order IDs, which can be used to cancel the orders or check their status. Examples: Place orders from a CSV file. quantrocket blotter order -f orders.csv Place orders from a JSON file. quantrocket blotter order -f orders.json Place an order by specifying the order parameters on the command line: quantrocket blotter order --params Sid:FIBBG123456 Action:BUY Exchange:SMART TotalQuantity:100 OrderType:MKT Tif:Day Account:DU12345 OrderRef:my-strategy """ parser = _subparsers.add_parser( "order", help="place one or more orders", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) source_group = parser.add_mutually_exclusive_group() source_group.add_argument( "-f", "--infile", metavar="INFILE", dest="infilepath_or_buffer", help="place orders from this CSV or JSON file (specify '-' to read file " "from stdin)") source_group.add_argument( "-p", "--params", nargs="*", type=dict_str, metavar="PARAM:VALUE", help="order details as multiple key-value pairs (pass as 'param:value', for " "example OrderType:MKT)") parser.set_defaults(func="quantrocket.blotter._cli_place_orders") examples = """ Cancel one or more orders by order ID, sid, or order ref. Examples: Cancel orders by order ID: quantrocket blotter cancel -d 6002:45 6001:46 Cancel orders by sid: quantrocket blotter cancel -i FIBBG123456 Cancel orders by order ref: quantrocket blotter cancel --order-refs my-strategy Cancel all open orders: quantrocket blotter cancel --all """ parser = _subparsers.add_parser( "cancel", help="cancel one or more orders by order ID, sid, or order ref", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "-d", "--order-ids", metavar="ORDER_ID", nargs="*", help="cancel these order IDs") parser.add_argument( "-i", "--sids", nargs="*", metavar="SID", help="cancel orders for these sids") parser.add_argument( "-r", "--order-refs", nargs="*", metavar="ORDER_REF", help="cancel orders for these order refs") parser.add_argument( "-a", "--accounts", nargs="*", metavar="ACCOUNT", help="cancel orders for these accounts") parser.add_argument( "--all", action="store_true", default=False, dest="cancel_all", help="cancel all open orders") parser.set_defaults(func="quantrocket.blotter._cli_cancel_orders") examples = """ Download order statuses. Examples: Download order status by order ID and save to file: quantrocket blotter status -d 6002:45 6001:46 -o statuses.csv Download order status for all open orders and display in terminal: quantrocket blotter status --open | csvlook Download order status with extra fields and display as YAML: quantrocket blotter status --open --fields Exchange LmtPrice --json | json2yaml Download order status of open orders by sid: quantrocket blotter status -i FIBBG123456 --open Download order status of open orders by order ref: quantrocket blotter status --order-refs my-strategy --open """ parser = _subparsers.add_parser( "status", help="download order statuses", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) filters = parser.add_argument_group("filtering options") filters.add_argument( "-d", "--order-ids", metavar="ORDER_ID", nargs="*", help="limit to these order IDs") filters.add_argument( "-i", "--sids", nargs="*", metavar="SID", help="limit to orders for these sids") filters.add_argument( "-r", "--order-refs", nargs="*", metavar="ORDER_REF", help="limit to orders for these order refs") filters.add_argument( "-a", "--accounts", nargs="*", metavar="ACCOUNT", help="limit to orders for these accounts") filters.add_argument( "--open", action="store_true", dest="open_orders", help="limit to open orders") filters.add_argument( "-s", "--start-date", metavar="YYYY-MM-DD", help="limit to orders submitted on or after this date") filters.add_argument( "-e", "--end-date", metavar="YYYY-MM-DD", help="limit to orders submitted on or before this date") outputs = parser.add_argument_group("output options") outputs.add_argument( "-f", "--fields", metavar="FIELD", nargs="*", help="return these fields in addition to the default fields (pass '?' or any invalid " "fieldname to see available fields)") outputs.add_argument( "-o", "--outfile", metavar="OUTFILE", dest="filepath_or_buffer", help="filename to write the data to (default is stdout)") outputs.add_argument( "-j", "--json", action="store_const", const="json", dest="output", help="format output as JSON (default is CSV)") parser.set_defaults(func="quantrocket.blotter._cli_download_order_statuses") examples = """ Query current positions. There are two ways to view positions: blotter view (default) and broker view. The default "blotter view" returns positions by account, sid, and order ref. Positions are tracked based on execution records saved to the blotter database. "Broker view" (using the `--broker` option) returns positions by account and sid (but not order ref) as reported directly by the broker. Examples: Query current positions: quantrocket blotter positions Save current positions to CSV file: quantrocket blotter positions --outfile positions.csv Query positions for a single order ref: quantrocket blotter positions --order-refs my-strategy Query positions using broker view: quantrocket blotter positions --broker """ parser = _subparsers.add_parser( "positions", help="query current positions", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) filters = parser.add_argument_group("filtering options") filters.add_argument( "-i", "--sids", nargs="*", metavar="SID", help="limit to these sids") filters.add_argument( "-r", "--order-refs", nargs="*", metavar="ORDER_REF", help="limit to these order refs (not supported with broker view)") filters.add_argument( "-a", "--accounts", nargs="*", metavar="ACCOUNT", help="limit to these accounts") filters.add_argument( "--diff", action="store_true", help="limit to positions where the blotter quantity and broker quantity " "disagree (requires --broker)") outputs = parser.add_argument_group("output options") outputs.add_argument( "--broker", action="store_const", dest="view", const="broker", help="return 'broker' view of positions (by account and sid) instead " "of default 'blotter' view (by account, sid, and order ref)") outputs.add_argument( "-o", "--outfile", metavar="OUTFILE", dest="filepath_or_buffer", help="filename to write the data to (default is stdout)") outputs.add_argument( "-j", "--json", action="store_const", const="json", dest="output", help="format output as JSON (default is CSV)") parser.set_defaults(func="quantrocket.blotter._cli_download_positions") examples = """ Generate orders to close positions. Doesn't actually place any orders but returns an orders file that can be placed separately. Additional order parameters can be appended with the `--params` option. This endpoint can also be used to generate executions for marking a position as closed due to a tender offer, merger/acquisition, etc. (See `quantrocket blotter record` for more info.) Examples: Generate MKT orders to close positions for a particular strategy: quantrocket blotter close --order-refs my-strategy --params OrderType:MKT Tif:DAY Exchange:SMART Generate orders and also place them: quantrocket blotter close -r my-strategy -p OrderType:MKT Tif:DAY Exchange:SMART | quantrocket blotter order -f - After receiving 23.50 per share in a tender offer for a position, record the execution in the blotter in order to mark the position as closed: quantrocket blotter close --sids FIBBG123456 --params Price:23.50 | quantrocket blotter record -f - """ parser = _subparsers.add_parser( "close", help="generate orders to close positions", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) filters = parser.add_argument_group("filtering options") filters.add_argument( "-i", "--sids", nargs="*", metavar="SID", help="limit to these sids") filters.add_argument( "-r", "--order-refs", nargs="*", metavar="ORDER_REF", help="limit to these order refs") filters.add_argument( "-a", "--accounts", nargs="*", metavar="ACCOUNT", help="limit to these accounts") outputs = parser.add_argument_group("output options") outputs.add_argument( "-o", "--outfile", metavar="OUTFILE", dest="filepath_or_buffer", help="filename to write the data to (default is stdout)") outputs.add_argument( "-p", "--params", nargs="*", type=dict_str, metavar="PARAM:VALUE", help="additional parameters to append to each row in output " "(pass as 'param:value', for example OrderType:MKT)") outputs.add_argument( "-j", "--json", action="store_const", const="json", dest="output", help="format output as JSON (default is CSV)") parser.set_defaults(func="quantrocket.blotter._cli_close_positions") examples = """ Query executions from the executions database. Examples: Get a CSV of all executions: quantrocket blotter executions -o executions.csv """ parser = _subparsers.add_parser( "executions", help="query executions from the executions database", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) filters = parser.add_argument_group("filtering options") filters.add_argument( "-i", "--sids", nargs="*", metavar="SID", help="limit to these sids") filters.add_argument( "-r", "--order-refs", nargs="*", metavar="ORDER_REF", help="limit to these order refs") filters.add_argument( "-a", "--accounts", nargs="*", metavar="ACCOUNT", help="limit to these accounts") filters.add_argument( "-s", "--start-date", metavar="YYYY-MM-DD", help="limit to executions on or after this date") filters.add_argument( "-e", "--end-date", metavar="YYYY-MM-DD", help="limit to executions on or before this date") outputs = parser.add_argument_group("output options") outputs.add_argument( "-o", "--outfile", metavar="OUTFILE", dest="filepath_or_buffer", help="filename to write the data to (default is stdout)") parser.set_defaults(func="quantrocket.blotter._cli_download_executions") examples = """ Record executions that happened outside of QuantRocket's knowledge. This endpoint does not interact with the broker but simply adds one or more executions to the blotter database and updates the blotter's record of current positions accordingly. It can be used to bring the blotter in line with the broker when they differ. For example, when a position is liquidated because of a tender offer or merger/acquisition, you can use this endpoint to record the price received for your shares. Returns a list of execution IDs inserted into the database. Examples: After receiving 23.50 per share in a tender offer for a position, record the execution in the blotter in order to mark the position as closed: quantrocket blotter close --sids FIBBG123456 --params Price:23.50 | quantrocket blotter record -f - Record executions from a CSV file: quantrocket blotter record -f executions.csv Record an execution by specifying the parameters on the command line: quantrocket blotter record --params Sid:FIBBG123456 Action:BUY TotalQuantity:100 Account:DU12345 OrderRef:my-strategy Price:23.50 The required params are: - Account - Action ("BUY" or "SELL") - OrderRef - Price - Sid - TotalQuantity Optional params (rarely needed): - Commission (default is 0) - OrderId (default is an auto-generated ID) - Time (the time of execution, default is now) """ parser = _subparsers.add_parser( "record", help="record executions that happened outside of QuantRocket's knowledge", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) source_group = parser.add_mutually_exclusive_group() source_group.add_argument( "-f", "--infile", metavar="INFILE", dest="infilepath_or_buffer", help="record executions from this CSV or JSON file (specify '-' to read file " "from stdin)") source_group.add_argument( "-p", "--params", nargs="*", type=dict_str, metavar="PARAM:VALUE", help="execution details as multiple key-value pairs (pass as 'param:value', for " "example Price:23.50)") parser.set_defaults(func="quantrocket.blotter._cli_record_executions") examples = """ Query trading performance and return a PDF tearsheet or CSV of results. Trading performance is broken down by account and order ref and optionally by sid. Examples: Get a Moonchart PDF of all trading performance PNL: quantrocket blotter pnl -o pnl.pdf --pdf Get a PDF for a single account and order ref, broken down by sid: quantrocket blotter pnl --accounts U12345 --order-refs mystrategy1 --details --pdf -o pnl_details.pdf Get a CSV of performance results for a particular date range: quantrocket blotter pnl -s 2018-03-01 -e 2018-06-30 -o pnl_2018Q2.csv """ parser = _subparsers.add_parser( "pnl", help="query trading performance and return a PDF tearsheet or CSV of results", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) filters = parser.add_argument_group("filtering options") filters.add_argument( "-i", "--sids", nargs="*", metavar="SID", help="limit to these sids") filters.add_argument( "-r", "--order-refs", nargs="*", metavar="ORDER_REF", help="limit to these order refs") filters.add_argument( "-a", "--accounts", nargs="*", metavar="ACCOUNT", help="limit to these accounts") filters.add_argument( "-s", "--start-date", metavar="YYYY-MM-DD", help="limit to pnl on or after this date") filters.add_argument( "-e", "--end-date", metavar="YYYY-MM-DD", help="limit to pnl on or before this date") outputs = parser.add_argument_group("output options") outputs.add_argument( "-d", "--details", action="store_true", help="return detailed results for all securities instead of aggregating to " "account/order ref level (only supported for a single account and order ref " "at a time)") outputs.add_argument( "-t", "--timezone", help="return execution times in this timezone (default UTC)") outputs.add_argument( "--pdf", action="store_const", const="pdf", dest="output", help="return a PDF tear sheet of PNL (default is to return a CSV)") outputs.add_argument( "-o", "--outfile", metavar="OUTFILE", dest="filepath_or_buffer", help="filename to write the data to (default is stdout)") parser.set_defaults(func="quantrocket.blotter._cli_download_pnl")
[ "brian@quantrocket.com" ]
brian@quantrocket.com
b2de7e068783a9d963576481237545608664344f
3ede6ba53725febc6b30de297297656e4f41a259
/Neural Networks/nueral_nets/neuralnet.py
c86c19452301ff6e79cc94ceac911ede6db8073a
[]
no_license
PranathiPeri/Machine-Learning
8265201cd83f6511a6c97120dba81a18e315e28c
c8030f50747e2cff2dc2bead18a1deebd4cdf547
refs/heads/master
2020-03-13T16:24:54.842678
2018-04-26T19:05:15
2018-04-26T19:05:15
131,197,215
0
0
null
null
null
null
UTF-8
Python
false
false
7,960
py
import csv import sys import os import math import random import re import numpy as np # Reading Input File and different parameters neurons=list() input_file=sys.argv[1] error_tol = float(sys.argv[3]) train_per = float(sys.argv[2]) no_of_layers = int(sys.argv[4]) for k in range(no_of_layers): neurons = neurons + [int(sys.argv[5+k])] infile = input_file fh = csv.reader(open(infile)) data = list() train_data = list() test_data = list() eta=0.1 error=1.0 counter=0 #Sigmoid Function def sigmoid(x): try: sig = 1.0/(1+math.exp(-x)) return sig except OverflowError: if(x>0): return 1 else: return 0 for row in fh: if("\n" not in row): data.append(row) #selecting training_set and test set train_per = train_per/100.0 train = int(train_per*len(data)+0.5) random.shuffle(data) train_data = data[:train] test_data = data[train:] input_train=list() target_train=list() input_test=list() target_test=list() for row in train_data: input_train.append(row[:-1]) target_train.append(row[len(data[0])-1]) for row in test_data: input_test.append(row[:-1]) target_test.append(row[len(data[0])-1]) weights=list() input=len(input_train[0])+1 #generating random weights for hidden layer for i in range(no_of_layers): output=neurons[i]; temp=list() for j in range(input*output): temp.append(random.uniform(0,1)) weights.append(temp) input=output+1 temp=list() output=1 #generating random weights for output layer for j in range(input*output): temp.append(random.uniform(0,1)) weights.append(temp) #Back propagation Algorithm for training_set while((error>error_tol)&(counter<2000)): counter+=1 error=0.0 #Forward propagation for z in range(len(input_train)): temp_weights=list() temp_train = list() output_result=list() delta = list() a=1 temp_train.append([a]+input_train[z]) output_result.append(temp_train) temp_train=np.array(temp_train) for k in range(no_of_layers): for i in range(neurons[k]): temp_weights.append(weights[k][(i*(len(weights[k])/neurons[k])):(i+1)*(len(weights[k])/neurons[k])]) temp_weights=np.array(temp_weights) temp_train=temp_train.astype(np.float) temp_train=np.transpose(temp_train) temp_result=np.matmul(temp_weights,temp_train) temp_result=np.transpose(temp_result) temp_result=temp_result.tolist() temp_result=temp_result[0] net_result=list() for i in range(len(temp_result)): b=(sigmoid(temp_result[i])) net_result=net_result+[b] temp_weights=list() temp_train = list() temp_train.append([a]+net_result) output_result.append(temp_train) temp_train=np.array(temp_train) temp_weights.append(weights[k+1]) temp_weights=np.array(temp_weights) temp_train=temp_train.astype(np.float) temp_train=np.transpose(temp_train) temp_result=np.matmul(temp_weights,temp_train) temp_result=np.transpose(temp_result) temp_result=temp_result.tolist() temp_result=temp_result[0] net_result=list() for i in range(len(temp_result)): b=(sigmoid(temp_result[i])) net_result=net_result+[b] temp_delta=(net_result[0])*(1-net_result[0])*(float(target_train[z])-net_result[0]) #training set error calculation error+=((float(target_train[z])-net_result[0])*(float(target_train[z])-net_result[0])*0.5/len(input_train)) delta.append(temp_delta) #backward propagation for j in range(no_of_layers): temp1_delta=list() new_weights=list() for d in range(neurons[len(neurons)-j-1]+1): h=weights[len(weights)-j-1] temp_h = list() temp_delta=list() for i in range(len(h)/len(delta)): temp_h.append(h[(i*(len(delta))):(i+1)*(len(delta))]) temp_h=np.array(temp_h) temp_h=np.transpose(temp_h) temp_delta.append(delta) temp_delta=np.array(temp_delta) h1=np.matmul(temp_delta,temp_h) h1=h1.tolist() h1=h1[0][d] temp_delta1=(output_result[len(output_result)-j-1][0][d])*(1-(output_result[len(output_result)-j-1][0][d]))*(float(h1)) temp1_delta.append(temp_delta1) for d2 in range(len(delta)): for d1 in range(neurons[len(neurons)-j-1]+1): temp_new_weight=eta*delta[d2]*(output_result[len(output_result)-j-1][0][d1]) new_weights.append(temp_new_weight) for i in range(len(weights[len(weights)-j-1])): weights[len(weights)-j-1][i]=weights[len(weights)-j-1][i]+new_weights[i] delta=temp1_delta[1:] for d2 in range(len(delta)): for d1 in range(len(input_train[0])): temp_new_weight=eta*delta[d2]*(float(input_train[z][d1])) new_weights.append(temp_new_weight) for i in range(len(weights[0])): weights[0][i]=weights[0][i]+new_weights[i] error_test=0.0 #back propagation algorithm for test_set for z in range(len(input_test)): temp_weights=list() temp_train = list() output_result=list() delta = list() a=1 temp_train.append([a]+input_test[z]) output_result.append(temp_train) temp_train=np.array(temp_train) for k in range(no_of_layers): for i in range(neurons[k]): temp_weights.append(weights[k][(i*(len(weights[k])/neurons[k])):(i+1)*(len(weights[k])/neurons[k])]) temp_weights=np.array(temp_weights) temp_train=temp_train.astype(np.float) temp_train=np.transpose(temp_train) temp_result=np.matmul(temp_weights,temp_train) temp_result=np.transpose(temp_result) temp_result=temp_result.tolist() temp_result=temp_result[0] net_result=list() for i in range(len(temp_result)): b=(sigmoid(temp_result[i])) net_result=net_result+[b] temp_weights=list() temp_train = list() temp_train.append([a]+net_result) output_result.append(temp_train) temp_train=np.array(temp_train) temp_weights.append(weights[k+1]) temp_weights=np.array(temp_weights) temp_train=temp_train.astype(np.float) temp_train=np.transpose(temp_train) temp_result=np.matmul(temp_weights,temp_train) temp_result=np.transpose(temp_result) temp_result=temp_result.tolist() temp_result=temp_result[0] net_result=list() for i in range(len(temp_result)): b=(sigmoid(temp_result[i])) net_result=net_result+[b] temp_delta=(net_result[0])*(1-net_result[0])*(float(target_train[z])-net_result[0]) #test set error calculation error_test+=((float(target_test[z])-net_result[0])*(float(target_test[z])-net_result[0])*0.5/len(input_test)) delta.append(temp_delta) for i in range(no_of_layers): print("") print("Hidden Layer"+str(i+1)+":") print('\t'), for j in range(neurons[i]): print ("Neuron"+str(j+1) + ":"), print weights[i][j*len(weights[i])/neurons[i]:(j+1)*len(weights[i])/neurons[i]] print("\t"), i+=1 print("") print("Output Layer"+":") print('\t'), print ("Neuron1"+ ":"), print weights[i] print ("train error:"), print (error) print ("test error:"), print (error_test)
[ "noreply@github.com" ]
PranathiPeri.noreply@github.com
b0f2deb61589ddb276a4b53f9daa48f992546e8b
153b794b5c142065be19ada86177258d80b8d991
/scripts/isb_curl.py
b95a716334ec1d17c940062b2e3becb09428b7f6
[ "Apache-2.0" ]
permissive
isb-cgc/ISB-CGC-API
248baa26894f09ea68cb6b16d95f9ae63d674789
df3c7cbf3ef3a1cfc2d4dad6f90a75efb7f52481
refs/heads/master
2023-07-10T08:16:56.465584
2023-06-23T17:17:32
2023-06-23T17:17:32
45,219,634
2
1
Apache-2.0
2023-08-29T19:11:02
2015-10-30T00:41:28
Python
UTF-8
Python
false
false
4,449
py
#! /usr/bin/python2.7 ''' Copyright 2015, Institute for Systems Biology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. isb_curl can be called by commandline or used as a library URL = https://isb-cgc.appspot.com/_ah/api/{API-NAME}/{VERSION}/{ENDPOINT}?{QUERYSTRING-PARAMS} e.g. for the "cohorts_list" endpoint: https://isb-cgc.appspot.com/_ah/api/cohort_api/v1/cohorts_list A. Command Line: python isb_auth.py # saves the user's credentials to their root directory python isb_curl.py URL note: if the endpoint takes a resource in the request body, such as the save_cohort endpoint, use the following: python isb_curl.py https://isb-cgc.appspot.com/_ah/api/cohort_api/v1/save_cohort?name={YOUR-COHORT-NAME} \ -d '{"Study": "BRCA"}' -H "Content-Type: application/json" B. Python: import isb_auth import isb_curl import requests url = 'https://isb-cgc.appspot.com/_ah/api/cohort_api/v1/cohorts_list' token = isb_curl.get_access_token() head = {'Authorization': 'Bearer ' + token} # for GET requests resp = requests.get(url, headers=head) # querystring parameters can be added to either the url itself... url += '?cohort_id=1' resp = requests.get(url, headers=head) # ... or passed in with the params kwarg url = 'https://isb-cgc.appspot.com/_ah/api/cohort_api/v1/cohorts_list' params = {'cohort_id': 1} resp = requests.get(url, headers=head, params=params) # if the endpoint takes a resource in the request body, such as the save_cohort endpoint... url = https://isb-cgc.appspot.com/_ah/api/cohort_api/v1/save_cohort?name=my-new-cohort' head.update({'Content-Type': 'application/json'}) payload = {"SampleBarcode": "TCGA-02-0001-01C,TCGA-02-0001-10A,TCGA-01-0642-11A"} resp = requests.post(url, headers=head, json=payload) # if requests version < 2.4.2 import json resp = requests.post(url, headers=head, data=json.dumps(payload)) ''' import httplib2 import os import sys from oauth2client.file import Storage import json CREDENTIALS_LOC_ENV = 'ISB_CREDENTIALS' DEFAULT_CREDENTIALS_LOC = os.path.join(os.path.expanduser("~"), '.isb_credentials') def check(assertion, msg): if not assertion: error(msg) def error(msg): sys.stderr.write(msg + '\n') sys.exit(1) def get_credentials_location(): credentials_location = os.environ.get(CREDENTIALS_LOC_ENV, DEFAULT_CREDENTIALS_LOC) check(credentials_location, 'Couldn\'t locate the credentials file at {} - run isb_auth.py or check the DEFAULT_CREDENTIALS_LOC at the top of this script.'.format(credentials_location)) return credentials_location def load_credentials(credentials_location): storage = Storage(credentials_location) credentials = storage.get() check(credentials and not credentials.invalid, 'Couldn\'t locate the credentials file at {} - run isb_auth.py or check the DEFAULT_CREDENTIALS_LOC at the top of this script.'.format(credentials_location)) return credentials # Although we can use load_credentials to check the expiration (and re-up if needed), we need the # encrypted ID token, NOT the access_token, to do a request via the ESP. To this end we load the # file as JSON and pull the provided encrypted token there (it can also be reconstituted). def get_id_token(credentials_location=get_credentials_location()): credentials = load_credentials(credentials_location) if credentials.access_token_expired: credentials.refresh(httplib2.Http()) creds_json = open(credentials_location, "r") token = json.loads(creds_json.read()) return token['token_response']['id_token'] def main(): args = sys.argv[1:] check(args, 'usage: isb_curl.py <curl arguments>') id_token = get_id_token() curl_args = ['curl', '-H', 'Authorization: Bearer ' + id_token] + args os.execvp('curl', curl_args) # this allows us to call this from command line if __name__ == '__main__': main()
[ "spaquett@systemsbiology.org" ]
spaquett@systemsbiology.org
97f73f1b895eab9fa6064e7d70d372d8016c0db5
0ccc31838ee8a357264fea9037f9d70bbf523b99
/printTable.py
3cb9f518c77550567c745ee635dd4c15fb0ff3c9
[]
no_license
AnjaliG1999/Python-Mini-Projects
2062734969ede62d3561d337dd9de540880b3ab3
13577b511cefaa0c29a189ff89e087e357c340d2
refs/heads/master
2022-11-07T07:46:29.998363
2020-06-28T12:12:09
2020-06-28T12:12:09
273,784,328
0
0
null
null
null
null
UTF-8
Python
false
false
570
py
#! python3 #take a list of lists of strings and display it in a well-organized table with each column right-justified tableData = [['apples', 'oranges', 'cherries', 'banana'], ['Alice', 'Bob', 'Carol', 'David'], ['dogs', 'cats', 'moose', 'goose']] colWidths = list() for lst in tableData: lrg = 0 for l in lst: if len(l) > lrg: lrg = len(l) colWidths.append(lrg) print(colWidths) for tbl in range(len(tableData[0])): #4 times for i in range(len(tableData)): #3 times print(tableData[i][tbl].rjust(colWidths[i]), end = " ") print()
[ "noreply@github.com" ]
AnjaliG1999.noreply@github.com
4ba11d700b9938fd578d7d235221b919038e955c
4db34f4ac120894642ff9404a2d06af2e3d5a3f3
/backends/src/apollo/hiddenOfSafeInfo/sharingInfo.py
2fed72e7e736d977760eada4d8c5c474ce62aa4f
[]
no_license
zhanrui/apollo
a233449f27d7469e9d33d76bd4709bd05815ddc1
a43c007c9db340797b56649bc2b396d21ca50023
refs/heads/master
2020-05-19T18:55:37.053102
2015-05-24T22:45:54
2015-05-24T22:45:54
29,225,236
1
2
null
null
null
null
UTF-8
Python
false
false
920
py
#! /usr/bin/python #-*-coding:utf-8-*- import sys import os sys.path.append(os.path.dirname(os.getcwd())) from common.utils.log import log4py from apollo.commHandler import CommHandler class SharingInfo(CommHandler): def __init__(self): CommHandler.__init__(self) pass def getSharingInfo(self): return "" if __name__ == "__main__": objectTemp=SharingInfo() try: raise Exception dataReportMsg=objectTemp.orgDataReportMsg(objectTemp.getSharingInfo()) objectTemp.sendMsgToUI(dataReportMsg) progReportMsg=objectTemp.orgProgReportMsg("100", "共享信息检查完毕.") objectTemp.sendMsgToUI(progReportMsg) except Exception,e: print e log4py.error("共享信息检查出错." ) errReportMsg=objectTemp.orgErrReportMsg("共享信息检查出错.") objectTemp.sendMsgToUI(errReportMsg)
[ "yuxiangyang@rongshangsoft.com" ]
yuxiangyang@rongshangsoft.com
2c93a899ee9b847648dc183b13db47e7f6d55298
135c04de6b62c94e0f444689cf6cce9bd7f15754
/demo/migrations/0003_auto_20201128_1756.py
6e90bd83ae026ac8b248363efd27f78f3e5b8250
[]
no_license
nikolata/React-and-Django-Full-Stack
00781bee75fbf71ae5f75084a2cdf5e17d301112
ebd815b191d61330e255f0abe721483a7359b116
refs/heads/main
2023-01-27T23:35:59.894326
2020-12-01T23:37:28
2020-12-01T23:37:28
316,780,225
1
0
null
null
null
null
UTF-8
Python
false
false
1,062
py
# Generated by Django 3.1.3 on 2020-11-28 17:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('demo', '0002_auto_20201128_1745'), ] operations = [ migrations.AddField( model_name='book', name='cover', field=models.ImageField(blank=True, upload_to='covers/'), ), migrations.AddField( model_name='book', name='description', field=models.TextField(blank=True, max_length=256), ), migrations.AddField( model_name='book', name='is_published', field=models.BooleanField(default=False), ), migrations.AddField( model_name='book', name='price', field=models.DecimalField(decimal_places=2, default=0, max_digits=10), ), migrations.AddField( model_name='book', name='published', field=models.DateField(blank=True, null=True), ), ]
[ "npmetodiev@gmail.com" ]
npmetodiev@gmail.com
d27210c3e09681fd8068bbef5a96b896d1101486
4bfc3c184e736bb68dccbb6d5657f11c950df002
/tests/common/test_op/prelu_grad.py
252d3596ca9e9a3489c806cc07e116a7f75ad335
[ "Apache-2.0", "Zlib", "BSD-3-Clause", "MIT", "LicenseRef-scancode-unknown-license-reference", "Unlicense", "BSD-2-Clause" ]
permissive
laekov/akg
159aa64ef6135222b5af784c408731275dfa9bdb
5316b8cb2340bbf71bdc724dc9d81513a67b3104
refs/heads/master
2022-12-01T04:09:03.548063
2020-08-19T08:38:57
2020-08-19T08:41:28
288,678,192
0
0
Apache-2.0
2020-08-19T08:41:30
2020-08-19T08:36:53
Python
UTF-8
Python
false
false
10,574
py
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function:prelu""" import akg.tvm import akg.topi from akg.utils import validation_check as vc_util from akg.utils import custom_tiling as ct_util from akg.utils import kernel_exec as utils add_set_dim_map = { # str(((1, 64, 112, 112), (64,), "float16")): ((1, 1), (64, 1), (112, 1), (112, 1)), str(((1, 64, 56, 56), (64,), "float16")): ((1, 1), (64, 1), (56, 1), (56, 1)), str(((1, 128, 56, 56), (128,), "float16")): ((1, 1), (128, 1), (56, 1), (56, 1)), str(((1, 128, 28, 28), (128,), "float16")): ((1, 1), (128, 1), (28, 1), (28, 1)), str(((1, 256, 28, 28), (256,), "float16")): ((1, 1), (256, 1), (28, 1), (28, 1)), str(((1, 256, 14, 14), (256,), "float16")): ((1, 1), (256, 1), (14, 1), (14, 1)), str(((1, 512, 14, 14), (512,), "float16")): ((1, 1), (512, 1), (14, 1), (14, 1)), str(((1, 512, 7, 7), (512,), "float16")): ((1, 1), (512, 1), (7, 1), (7, 1)), # str(((1, 64, 112, 112), (1,), "float16")): ((1, 1), (64, 1), (112, 1), (112, 1)), str(((1, 64, 56, 56), (1,), "float16")): ((1, 1), (64, 1), (56, 1), (56, 1)), str(((1, 128, 56, 56), (1,), "float16")): ((1, 1), (128, 1), (56, 1), (56, 1)), str(((1, 128, 28, 28), (1,), "float16")): ((1, 1), (128, 1), (28, 1), (28, 1)), str(((1, 256, 28, 28), (1,), "float16")): ((1, 1), (256, 1), (28, 1), (28, 1)), str(((1, 256, 14, 14), (1,), "float16")): ((1, 1), (256, 1), (14, 1), (14, 1)), str(((1, 512, 14, 14), (1,), "float16")): ((1, 1), (512, 1), (14, 1), (14, 1)), str(((1, 512, 7, 7), (1,), "float16")): ((1, 1), (512, 1), (7, 1), (7, 1)), # str(((1, 64, 112, 112), (64,), "float32")): ((1, 1), (64, 1), (112, 1), (112, 1)), str(((1, 64, 56, 56), (64,), "float32")): ((1, 1), (64, 1), (56, 1), (56, 1)), str(((1, 128, 56, 56), (128,), "float32")): ((1, 1), (128, 1), (56, 1), (56, 1)), str(((1, 128, 28, 28), (128,), "float32")): ((1, 1), (128, 1), (28, 1), (28, 1)), str(((1, 256, 28, 28), (256,), "float32")): ((1, 1), (256, 1), (28, 1), (28, 1)), str(((1, 256, 14, 14), (256,), "float32")): ((1, 1), (256, 1), (14, 1), (14, 1)), str(((1, 512, 14, 14), (512,), "float32")): ((1, 1), (512, 1), (14, 1), (14, 1)), str(((1, 512, 7, 7), (512,), "float32")): ((1, 1), (512, 1), (7, 1), (7, 1)), # str(((1, 64, 112, 112), (1,), "float32")): ((1, 1), (64, 1), (112, 1), (112, 1)), str(((1, 64, 56, 56), (1,), "float32")): ((1, 1), (64, 1), (56, 1), (56, 1)), str(((1, 128, 56, 56), (1,), "float32")): ((1, 1), (128, 1), (56, 1), (56, 1)), str(((1, 128, 28, 28), (1,), "float32")): ((1, 1), (128, 1), (28, 1), (28, 1)), str(((1, 256, 28, 28), (1,), "float32")): ((1, 1), (256, 1), (28, 1), (28, 1)), str(((1, 256, 14, 14), (1,), "float32")): ((1, 1), (256, 1), (14, 1), (14, 1)), str(((1, 512, 14, 14), (1,), "float32")): ((1, 1), (512, 1), (14, 1), (14, 1)), str(((1, 512, 7, 7), (1,), "float32")): ((1, 1), (512, 1), (7, 1), (7, 1)), # str(((128, 64, 112, 112), (64,), "float16")): ((1, 1), (1, 1), (16, 1), (112, 1)), str(((128, 64, 56, 56), (64,), "float16")): ((1, 1), (1, 1), (56, 1), (56, 1)), str(((128, 128, 56, 56), (128,), "float16")): ((1, 1), (1, 1), (56, 1), (56, 1)), str(((128, 128, 28, 28), (128,), "float16")): ((1, 1), (1, 1), (28, 1), (28, 1)), str(((128, 256, 28, 28), (256,), "float16")): ((1, 1), (1, 1), (28, 1), (28, 1)), str(((128, 256, 14, 14), (256,), "float16")): ((1, 1), (1, 1), (14, 1), (14, 1)), str(((128, 512, 14, 14), (512,), "float16")): ((1, 1), (1, 1), (14, 1), (14, 1)), str(((128, 512, 7, 7), (512,), "float16")): ((1, 1), (1, 1), (7, 1), (7, 1)), # str(((128, 64, 112, 112), (1,), "float16")): ((1, 1), (1, 1), (112, 1), (112, 1)), str(((128, 64, 56, 56), (1,), "float16")): ((1, 1), (1, 1), (56, 1), (56, 1)), str(((128, 128, 56, 56), (1,), "float16")): ((1, 1), (1, 1), (56, 1), (56, 1)), str(((128, 128, 28, 28), (1,), "float16")): ((1, 1), (1, 1), (28, 1), (28, 1)), str(((128, 256, 28, 28), (1,), "float16")): ((1, 1), (1, 1), (28, 1), (28, 1)), str(((128, 256, 14, 14), (1,), "float16")): ((1, 1), (1, 1), (14, 1), (14, 1)), str(((128, 512, 14, 14), (1,), "float16")): ((1, 1), (1, 1), (14, 1), (14, 1)), str(((128, 512, 7, 7), (1,), "float16")): ((1, 1), (1, 1), (7, 1), (7, 1)), # str(((128, 64, 112, 112), (64,), "float32")): ((1, 1), (1, 1), (112, 1), (112, 1)), str(((128, 64, 56, 56), (64,), "float32")): ((1, 1), (1, 1), (56, 1), (56, 1)), str(((128, 128, 56, 56), (128,), "float32")): ((1, 1), (1, 1), (56, 1), (56, 1)), str(((128, 128, 28, 28), (128,), "float32")): ((1, 1), (1, 1), (28, 1), (28, 1)), str(((128, 256, 28, 28), (256,), "float32")): ((1, 1), (1, 1), (28, 1), (28, 1)), str(((128, 256, 14, 14), (256,), "float32")): ((1, 1), (1, 1), (14, 1), (14, 1)), str(((128, 512, 14, 14), (512,), "float32")): ((1, 1), (1, 1), (14, 1), (14, 1)), str(((128, 512, 7, 7), (512,), "float32")): ((1, 1), (1, 1), (7, 1), (7, 1)), # str(((128, 64, 112, 112), (1,), "float32")): ((1, 1), (1, 1), (112, 1), (112, 1)), str(((128, 64, 56, 56), (1,), "float32")): ((1, 1), (1, 1), (56, 1), (56, 1)), str(((128, 128, 56, 56), (1,), "float32")): ((1, 1), (1, 1), (56, 1), (56, 1)), str(((128, 128, 28, 28), (1,), "float32")): ((1, 1), (1, 1), (28, 1), (28, 1)), str(((128, 256, 28, 28), (1,), "float32")): ((1, 1), (1, 1), (28, 1), (28, 1)), str(((128, 256, 14, 14), (1,), "float32")): ((1, 1), (1, 1), (14, 1), (14, 1)), str(((128, 512, 14, 14), (1,), "float32")): ((1, 1), (1, 1), (14, 1), (14, 1)), str(((128, 512, 7, 7), (1,), "float32")): ((1, 1), (1, 1), (7, 1), (7, 1)), } def add_set_dim_func(dy, A, w): shape1 = [x.value for x in dy.shape] shape2 = [x.value for x in w.shape] hash_key = gen_set_dim_key(dy, shape1, shape2) return [ct_util.set_dims_by_key(hash_key, add_set_dim_map), hash_key] def gen_set_dim_key(dy, shape1, shape2): key = str((tuple(shape1), tuple(shape2), dy.dtype)) return key @ct_util.reg_set_dim_func(add_set_dim_func) def prelu_grad(dy, A, w): """ brief Computes backgrad prelu value of a tensor. \f[ dw = sum(dy * \\partial(prelu(A)) / \\partial w) dA = A > 0 ? dy : dy * w \f] param inputs akg.tvm.Tensor of type float16, float32 return akg.tvm.Tensor of same type and shape as inputs """ shape = [x.value for x in dy.shape] dtype = dy.dtype shape1 = [x.value for x in A.shape] dtype1 = A.dtype shape2 = [x.value for x in w.shape] dtype2 = w.dtype assert len(shape) == 4, "only support 4-dim pooling" # NCHW assert len(shape1) == 4, "only support 4-dim pooling" # NCHW assert len(shape2) == 1, "only support 1-dim a" assert (shape2[0] == shape1[1] or shape2[0] == 1), "there is only two values are legitimate: 1, or the number of channels at input. Default: 1" assert (shape[0] == shape1[0] and shape[1] == shape1[1] and shape[2] == shape1[2] and shape[3] == shape1[3]), "dim number must be equal" check_list = ["float16", "float32"] if not (dtype1.lower() in check_list and dtype2.lower() in check_list and dtype.lower() in check_list): raise RuntimeError("tile_cce only support %s while dtype is %s and %s and %s" % (",".join(check_list), dtype, dtype1, dtype2)) vc_util.check_shape(shape) vc_util.check_shape(shape1) vc_util.check_shape(shape2) def grad_dsl(): w_reshape = akg.topi.reshape(w, (1, shape2[0], 1, 1)) w_broadcast = akg.topi.broadcast_to(w_reshape, shape1) dA = akg.tvm.compute(shape, lambda *i: akg.tvm.if_then_else( A(*i) >= akg.tvm.const(0, dtype), dy(*i), dy(*i) * w_broadcast(*i) )) # dy * \partial(prelu(A)) / \partial w dw_intermediate = akg.tvm.compute(shape, lambda *i: akg.tvm.if_then_else( A(*i) >= akg.tvm.const(0, dtype), akg.tvm.const(0, dtype), dy(*i) * A(*i) )) # hybrid accuracy: sum use float32, other use fp16 # if dtype.lower() is not "float32": # dw_intermediate = akg.topi.cast(dw_intermediate, "float32") if shape2[0] == 1: # all channel share one w #dw = akg.topi.sum(dw_intermediate) dw = akg.topi.sum(dw_intermediate, axis=3) dw = akg.topi.sum(dw, axis=2) dw = akg.topi.sum(dw, axis=1) dw = akg.topi.sum(dw, axis=0) # dw = akg.topi.sum(dw_intermediate, axis=1) # dw = akg.topi.sum(dw, axis=2) # dw = akg.topi.sum(dw, axis=1) # dw = akg.topi.sum(dw, axis=0) #dw = akg.tvm.compute(shape, lambda *indice: akg.tvm.sum(dw_intermediate(*indice), axis=[0,1,2,3]), name="dw") #dw = akg.lang.cce.sum(dw_intermediate, axis=3, keepdims=False) #dw = akg.lang.cce.sum(dw_intermediate, axis=2, keepdims=False) #dw = akg.lang.cce.sum(dw_intermediate, axis=1, keepdims=False) #dw = akg.lang.cce.sum(dw_intermediate, axis=0, keepdims=False) else: # all channel use separate w # dw = akg.topi.sum(dw_intermediate, axis=[0,2,3]) # Accuracy is not up to standard dw = akg.topi.sum(dw_intermediate, axis=3) dw = akg.topi.sum(dw, axis=2) dw = akg.topi.sum(dw, axis=0) # dw = akg.topi.sum(dw_intermediate, axis=1) # dw = akg.topi.sum(dw, axis=1) # dw = akg.topi.sum(dw, axis=0) # hybrid accuracy: sum use float32, other use fp16 # if dtype.lower() is not "float32": # dw = akg.topi.cast(dw, "float16") return dA, dw attrs = {"pragma_checkcoincident": 0, "pragma_modshift": 1} return grad_dsl(), attrs
[ "ckey.chengbin@huawei.com" ]
ckey.chengbin@huawei.com
ee3adc81c5be7820b0c771c7d02a4e8adaeef85c
ac16a937f32602cf16114463f8e875a972f64c27
/docs/dolfin/1.4.0/python/source/demo/documented/neumann-poisson/python/demo_neumann-poisson.py
ac37eacd166e14d35fa167b4c5851f1a81f8b70c
[]
no_license
mparno/fenics-web
2073248da6f9918ffedbe9be8a3433bc1cbb7ffb
7202752da876b1f9ab02c1d5a5f28ff5da526528
refs/heads/master
2021-05-05T04:45:46.436236
2016-12-06T20:25:44
2016-12-06T20:25:44
118,628,385
2
0
null
2018-01-23T15:21:47
2018-01-23T15:21:46
null
UTF-8
Python
false
false
1,948
py
""" This demo program illustrates how to solve Poisson's equation - div grad u(x, y) = f(x, y) on the unit square with pure Neumann boundary conditions: du/dn(x, y) = -sin(5*x) and source f given by f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) Since only Neumann conditions are applied, u is only determined up to a constant c by the above equations. An addition constraint is thus required, for instance \int u = 0 This can be accomplished by introducing the constant c as an additional unknown (to be sought in the space of real numbers) and the above constraint. """ # Copyright (C) 2010 Marie E. Rognes # # This file is part of DOLFIN. # # DOLFIN is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # DOLFIN is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with DOLFIN. If not, see <http://www.gnu.org/licenses/>. # # Modified by Anders Logg 2011 # # First added: 2010-05-10 # Last changed: 2012-11-12 # Begin demo from dolfin import * # Create mesh and define function space mesh = UnitSquareMesh(64, 64) V = FunctionSpace(mesh, "CG", 1) R = FunctionSpace(mesh, "R", 0) W = V * R # Define variational problem (u, c) = TrialFunction(W) (v, d) = TestFunctions(W) f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") g = Expression("-sin(5*x[0])") a = (inner(grad(u), grad(v)) + c*v + u*d)*dx L = f*v*dx + g*v*ds # Compute solution w = Function(W) solve(a == L, w) (u, c) = w.split() # Plot solution plot(u, interactive=True)
[ "johannr@simula.no" ]
johannr@simula.no
b474c5650b5e463828451cdff9bd01b8d5ecb122
32c915adc51bdb5d2deab2a592d9f3ca7b7dc375
/Chapter_6_programming_tasks/printscreen_students.py
bd8ab316a53d216d9d384dd18f15599fc81cefa2
[]
no_license
nervig/Starting_Out_With_Python
603c2b8c9686edcf92c1a90596d552b873fe6229
d617ee479c7c77038331b5f262e00f59e8e90070
refs/heads/master
2023-02-25T07:14:12.685417
2021-02-02T18:45:00
2021-02-02T18:45:00
335,391,362
2
1
null
null
null
null
UTF-8
Python
false
false
500
py
def main(): read_students = open('students.txt', 'r') name_student = read_students.readline() while name_student != '': score_student = int(read_students.readline()) name_student = name_student.rstrip('\n') # show the record print("Name of students: ", name_student) print("Numbers of score of students: ", score_student) name_student = read_students.readline() # close the file read_students.close() # call main function main()
[ "solide@yandex.ru" ]
solide@yandex.ru
a89627ea6bf41889f9a0abb3633d45f5089c6a2a
a46e07b2914dbbf9f350a9280a8436305584a16b
/app_comments.py
a8de2f83633ed74f561660f8492652491641554f
[]
no_license
kllelndhlm/kllelndhlm-lists
04bcf7fa5ffc739ec075e37a83f641df1afb9ff6
cfe89c5f342df655a765d228f425047dd3d2f5f1
refs/heads/main
2023-04-25T03:39:53.487096
2021-05-09T19:53:38
2021-05-09T19:53:38
349,972,112
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
from flask import session, render_template, redirect, request from db import db from werkzeug.security import check_password_hash, generate_password_hash import secrets from datetime import datetime, timezone def send_comment(username, list_name, content, visible): sent_at = datetime.now(timezone.utc) sql = "INSERT INTO message (username, list_name, content, visible, sent_at) VALUES (:username, :list_name, :content, :visible, :sent_at)" db.session.execute(sql, {"username":username, "list_name":list_name, "content":content, "visible":visible, "sent_at":sent_at}) db.session.commit() return True def hide_comment(comment_id, visible): sql = "UPDATE message SET visible=0 WHERE id=:comment_id;" db.session.execute(sql, {"comment_id":comment_id}) db.session.commit() return True
[ "kalle.lindholm@helsinki.fi" ]
kalle.lindholm@helsinki.fi
b138033de087935a641b4d090a3a255f40998e4f
5413990914fbfd5eb928a5aae57c5554ccd07264
/HRD/HRD/settings.py
0e1bdc528e227dea1a993cc95648e13f2f9e88f0
[]
no_license
jhoveID/DsignV2
16095165199cdc709568ddf60808c6f2055fc1a9
495d17ff17726c1e2d602c41ba26d7fb359272f6
refs/heads/master
2023-04-15T09:04:14.497653
2021-04-23T00:42:41
2021-04-23T00:42:41
360,357,051
0
0
null
null
null
null
UTF-8
Python
false
false
3,285
py
""" Django settings for HRD project. Generated by 'django-admin startproject' using Django 3.2. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-2kxm=q0ic@#1+-06abwofecrgxkh_3t@#!as=r1xbd)8l@8)qs' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'mypage', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'HRD.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ BASE_DIR /"templates" ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'HRD.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "jhoveHQ@gmail.com" ]
jhoveHQ@gmail.com
f489ad3f083ebeb1bc6342c14459de37ca0830a5
04f6dac45bfba48d14f00f7b9d05e1071bc2f064
/baselines/deepq/simple_conservative.py
968a0bd7db48f601dae88147531e514889fdf0b1
[ "MIT" ]
permissive
masonwright14/baselines
d34eea5ff6b17d57e2e18ba5a5f687c9e4bbfb32
e7f08bdf154cc22bcba4ff76d53ca08f544cc15f
refs/heads/master
2020-03-13T16:39:26.580214
2018-08-08T20:10:49
2018-08-08T20:10:49
131,203,102
0
0
null
2018-04-26T19:45:34
2018-04-26T19:45:34
null
UTF-8
Python
false
false
61,739
py
import os import tempfile import zipfile import tensorflow as tf import cloudpickle import numpy as np import baselines.common.tf_util as U from baselines import logger from baselines.common.schedules import LinearSchedule from baselines import deepq from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer class ActWrapper(object): def __init__(self, act, act_params): self._act = act self._act_params = act_params @staticmethod def load_for_multiple_nets_with_scope(path, scope): with open(path, "rb") as f: model_data, act_params = cloudpickle.load(f) act_params["scope"] = scope cur_graph = tf.Graph() with cur_graph.as_default(): act = deepq.build_act(**act_params) sess = tf.Session(graph=cur_graph) with sess.as_default(): with tempfile.TemporaryDirectory() as td: arc_path = os.path.join(td, "packed.zip") with open(arc_path, "wb") as f: f.write(model_data) zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td) U.load_state(os.path.join(td, "model")) return ActWrapper(act, act_params), cur_graph, sess @staticmethod def load_for_multiple_nets(path): with open(path, "rb") as f: model_data, act_params = cloudpickle.load(f) cur_graph = tf.Graph() with cur_graph.as_default(): act = deepq.build_act(**act_params) sess = tf.Session(graph=cur_graph) with sess.as_default(): with tempfile.TemporaryDirectory() as td: arc_path = os.path.join(td, "packed.zip") with open(arc_path, "wb") as f: f.write(model_data) zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td) U.load_state(os.path.join(td, "model")) return ActWrapper(act, act_params), cur_graph, sess @staticmethod def load(path): with open(path, "rb") as f: model_data, act_params = cloudpickle.load(f) cur_graph = tf.Graph() with cur_graph.as_default(): act = deepq.build_act(**act_params) sess = tf.Session(graph=cur_graph) with sess.as_default(): with tempfile.TemporaryDirectory() as td: arc_path = os.path.join(td, "packed.zip") with open(arc_path, "wb") as f: f.write(model_data) zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td) U.load_state(os.path.join(td, "model")) return ActWrapper(act, act_params) @staticmethod def load_with_scope(path, scope): with open(path, "rb") as f: model_data, act_params = cloudpickle.load(f) act_params["scope"] = scope cur_graph = tf.Graph() with cur_graph.as_default(): act = deepq.build_act(**act_params) sess = tf.Session(graph=cur_graph) sess.__enter__() with tempfile.TemporaryDirectory() as td: arc_path = os.path.join(td, "packed.zip") with open(arc_path, "wb") as f: f.write(model_data) zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td) U.load_state(os.path.join(td, "model")) return ActWrapper(act, act_params) def __call__(self, *args, **kwargs): return self._act(*args, **kwargs) def save_with_sess(self, sess, path=None): """Save model to a pickle located at `path`""" if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: with sess.as_default(): # print("Saving state now") # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) U.save_state(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, 'w') as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f) def save(self, path=None): """Save model to a pickle located at `path`""" if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: U.save_state(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, 'w') as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f) def load_for_multiple_nets_with_scope(path, scope): return ActWrapper.load_for_multiple_nets_with_scope(path, scope) def load_for_multiple_nets(path): return ActWrapper.load_for_multiple_nets(path) def load_with_scope(path, scope): return ActWrapper.load_with_scope(path, scope) def load(path): """Load act function that was returned by learn function. Parameters ---------- path: str path to the act function pickle Returns ------- act: ActWrapper function that takes a batch of observations and returns actions. """ return ActWrapper.load(path) def learn(env, q_func, lr=5e-4, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, ep_mean_length=100, scope="deepq_train"): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = tf.Session() sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space_shape = env.observation_space.shape def make_obs_ph(name): return U.BatchInput(observation_space_shape, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, scope=scope ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: model_file = os.path.join(td, "model") for t in range(max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True with sess.as_default(): action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None with sess.as_default(): td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. with sess.as_default(): update_target() mean_ep_reward = round(np.mean(episode_rewards[(-ep_mean_length - 1):-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean " + str(ep_mean_length) + " episode reward", mean_ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > ep_mean_length and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_ep_reward)) with sess.as_default(): U.save_state(model_file) model_saved = True saved_mean_reward = mean_ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) with sess.as_default(): U.load_state(model_file) return act def learn_multiple_nets(env, q_func, lr=5e-4, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, ep_mean_length=100): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model cur_graph = tf.Graph() with cur_graph.as_default(): sess = tf.Session(graph=cur_graph) sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space_shape = env.observation_space.shape def make_obs_ph(name): return U.BatchInput(observation_space_shape, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: model_saved = False model_file = os.path.join(td, "model") for t in range(max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_ep_reward = round(np.mean(episode_rewards[(-ep_mean_length - 1):-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean " + str(ep_mean_length) + " episode reward", mean_ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > ep_mean_length and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_ep_reward)) U.save_state(model_file) model_saved = True saved_mean_reward = mean_ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) U.load_state(model_file) return act def learn_and_save(env, q_func, lr=5e-4, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, ep_mean_length=100, scope="deepq_train", path_for_save=None): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = tf.Session() sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space_shape = env.observation_space.shape def make_obs_ph(name): return U.BatchInput(observation_space_shape, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, scope=scope ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: model_saved = False model_file = os.path.join(td, "model") for t in range(max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True with sess.as_default(): action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: # print("Reset env") obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # print("Minimize error") # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None with sess.as_default(): td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. with sess.as_default(): # print("update target") update_target() mean_ep_reward = round(np.mean(episode_rewards[(-ep_mean_length - 1):-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean " + str(ep_mean_length) + " episode reward", mean_ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() # print("Checkpoint") # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) if (checkpoint_freq is not None and t > learning_starts and num_episodes > ep_mean_length and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_ep_reward)) with sess.as_default(): # print("Saving current state") U.save_state(model_file) model_saved = True saved_mean_reward = mean_ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) with sess.as_default(): # print("Loading old state") U.load_state(model_file) # for var in tf.global_variables(): # print('all variables: ' + var.op.name) # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) if path_for_save is not None: act.save_with_sess(sess, path=path_for_save) return act def print_debug_info(scope_old, scope_new, sess): vars_in_scope_old = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=scope_old) print("Variables in scope: " + scope_old) for v in vars_in_scope_old: print(v) vars_in_scope_new = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=scope_new) print("\nVariables in scope: " + scope_new) for v in vars_in_scope_new: print(v) trainables = sess.run(tf.trainable_variables()) print("\nTrainable variables:") for v in trainables: print(v) def print_old_and_new_weights(scope_old, scope_new, sess): old_weights_name = scope_old + "/q_func/fully_connected/weights:0" old_weights = [v for v in tf.global_variables() if v.name == old_weights_name][0] print("old weights:") print(old_weights) old_value = sess.run(old_weights) print(old_value) new_weights_name = scope_new + "/q_func/fully_connected/weights:0" new_weights = [v for v in tf.global_variables() if v.name == new_weights_name][0] print("new weights:") print(new_weights) new_value = sess.run(new_weights) print(new_value) # copy_into_new_weights = new_weights.assign(old_weights) # sess.run(copy_into_new_weights) # new_value_updated = sess.run(new_weights) # print("updated value of new weights:") # print(new_value_updated) def overwrite_new_net_with_old(scope_old, scope_new, sess): net_name_suffixes = [ "eps:0", "/q_func/fully_connected/weights:0", "/q_func/fully_connected/biases:0", "/q_func/fully_connected_1/weights:0", "/q_func/fully_connected_1/biases:0", "/q_func/fully_connected_2/weights:0", "/q_func/fully_connected_2/biases:0" ] for suffix in net_name_suffixes: old_var_name = scope_old + suffix new_var_name = scope_new + suffix old_var = [v for v in tf.global_variables() if v.name == old_var_name][0] new_var = [v for v in tf.global_variables() if v.name == new_var_name][0] copy_var = new_var.assign(old_var) sess.run(copy_var) old_var_value = sess.run(old_var) updated_new_var_value = sess.run(new_var) if old_var_value != updated_new_var_value: raise ValueError("Not equal: " + str(old_var_value) + "\n" + \ str(updated_new_var_value)) def retrain_and_save(env, q_func, lr=5e-4, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.5, exploration_initial_eps=0.3, exploration_final_eps=0.03, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, ep_mean_length=100, scope_old="deepq_train", scope_new="deepq_train_retrained", prefix_for_save=None, save_count=4): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model if save_count < 1: raise ValueError("save_count must be positive") sess = tf.Session() sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space_shape = env.observation_space.shape def make_obs_ph(name): return U.BatchInput(observation_space_shape, name=name) act, train, update_target, _ = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, scope=scope_new ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from exploration_initial_eps. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=exploration_initial_eps, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() # overwrite q_func values # with values from the inner "q_func_old" of old network, # where q_func is a lambda around a network with fully_connected() and relu() parts. # q_func_old has scope of scope_old, and q_func has scope of scope_new. # print_debug_info(scope_old, scope_new, sess) overwrite_new_net_with_old(scope_old, scope_new, sess) # print_old_and_new_weights(scope_old, scope_new, sess) update_target() # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True save_iter = 1 with tempfile.TemporaryDirectory() as td: model_saved = False model_file = os.path.join(td, "model") for t in range(max_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between # perturbed and non-perturbed # policy is comparable to eps-greedy exploration with # eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, # Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True with sess.as_default(): action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: # print("Reset env") obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # print("Minimize error") # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None with sess.as_default(): td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. with sess.as_default(): # print("update target") update_target() mean_ep_reward = round(np.mean(episode_rewards[(-ep_mean_length - 1):-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean " + str(ep_mean_length) + " episode reward", mean_ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() # print("Checkpoint") # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) if (checkpoint_freq is not None and t > learning_starts and num_episodes > ep_mean_length and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_ep_reward)) with sess.as_default(): # print("Saving current state") U.save_state(model_file) model_saved = True saved_mean_reward = mean_ep_reward if t > save_iter * (max_timesteps / save_count): cur_save_path = prefix_for_save + "_r" + str(save_iter) + ".pkl" act.save_with_sess(sess, path=cur_save_path) save_iter += 1 if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) with sess.as_default(): # print("Loading old state") U.load_state(model_file) # for var in tf.global_variables(): # print('all variables: ' + var.op.name) # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) if prefix_for_save is not None: cur_save_path = prefix_for_save + "_r" + str(save_count) + ".pkl" act.save_with_sess(sess, path=cur_save_path) return act def learn_retrain_and_save(env, q_func, lr=5e-4, max_timesteps_init=100000, buffer_size=50000, exploration_fraction=0.5, exploration_final_eps=0.03, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, ep_mean_length=100, scope="deepq_train", path_for_save=None, retrain_exploration_initial_eps=0.3, retrain_exploration_final_eps=0.03, retrain_save_count=4, max_timesteps_retrain=100000, retrain_config_str=None, prefix_for_save=None): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = tf.Session() sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space_shape = env.observation_space.shape def make_obs_ph(name): return U.BatchInput(observation_space_shape, name=name) act, train, update_target, _ = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise, scope=scope ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps_init + max_timesteps_retrain beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps_init), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: model_file = os.path.join(td, "model") for t in range(max_timesteps_init + max_timesteps_retrain): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} phase_t = t % max_timesteps_init if not param_noise: update_eps = exploration.value(phase_t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(phase_t) + exploration.value(phase_t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True with sess.as_default(): action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: # print("Reset env") obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # print("Minimize error") # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None with sess.as_default(): td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. with sess.as_default(): # print("update target") update_target() mean_ep_reward = round(np.mean(episode_rewards[(-ep_mean_length - 1):-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean " + str(ep_mean_length) + " episode reward", mean_ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(phase_t))) logger.dump_tabular() # print("Checkpoint") # for var in tf.trainable_variables(): # print('normal variable: ' + var.op.name) if (checkpoint_freq is not None and t > learning_starts and num_episodes > ep_mean_length and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_ep_reward)) with sess.as_default(): # print("Saving current state") U.save_state(model_file) saved_mean_reward = mean_ep_reward if t == max_timesteps_init: # change exploration curve exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps_retrain), initial_p=retrain_exploration_initial_eps, final_p=retrain_exploration_final_eps) # change opponent env.update_for_retrain(retrain_config_str) # reset state as if new game obs = env.reset() reset = True elif t - 1000 == max_timesteps_init: print("saving trained net: " + path_for_save) act.save_with_sess(sess, path=path_for_save) elif t > max_timesteps_init and (t - max_timesteps_init) % (max_timesteps_retrain // retrain_save_count) == 0: # save current network under new name save_iter = (t - max_timesteps_init) // (max_timesteps_retrain // retrain_save_count) cur_save_path = prefix_for_save + "_r" + str(save_iter) + ".pkl" print("saving from retrain: " + cur_save_path) act.save_with_sess(sess, path=cur_save_path) return act
[ "masonwright14@gmail.com" ]
masonwright14@gmail.com
69531891167d3e1b664371e3748feec5e264a3c5
2d9ae5e7493a983e0673f3ee2fb2ee357df38089
/wraling_data_with_python/chpt8/scr_wiki.py
1ff6ff3f1cb9586e7bbc2e89b253c0f71bd8fe0b
[]
no_license
saksim/python_data_analysis
e836a8e0f6e08a232725d9a4e427aa2665ac4f46
e5db206aeb95f028f725a2854fd1fc6f52916d37
refs/heads/master
2021-01-18T15:53:26.097424
2017-08-25T17:08:18
2017-08-25T17:08:18
86,688,449
0
0
null
null
null
null
UTF-8
Python
false
false
1,487
py
#!-*-encoding=utf-8-*- from urllib import urlopen from bs4 import BeautifulSoup import re import datetime import random import pymysql conn = pymysql.connect(host='127.0.0.1', user='root', passwd='MYFyxy5hww21', database='python_test', port=28080, charset='utf8') cur = conn.cursor() def crete_table(): statement = "CREATE TABLE pages (id BIGINT(7) NOT NULL AUTO_INCREMENT,title VARCHAR(200),content VARCHAR(10000),created TIMESTAMP DEFAULT CURRENT_TIMESTAMP,PRIMARY KEY(id));" # print statement cur.execute(statement) cur.connection.commit() def store(title, content): cur.execute("INSERT INTO pages (title, content) VALUES (\"%s\",\"%s\")", (title,content)) cur.connection.commit() def getLinks(articleurl): html = urlopen("http://en.wikipedia.org/wiki" + articleurl) bsobj = BeautifulSoup(html,"html5lib") title = bsobj.find("h1").get_text() for i in bsobj.find("div",{"id":"mw-content-text"}).find("p"): content = i.get_text() store(title,content) return bsobj.find("div",{"id":"bodyContent"}).findall("a",href =re.compile("^(/wiki/)")) links = getLinks("/Climate") if __name__ == "__main__": random.seed(datetime.datetime.now()) # crete_table() try: while len(links) > 0: newarticle = links[random.randint(0,len(links)-1)].attrs["href"] print(newarticle) links = getLinks(newarticle) finally: cur.close() conn.close()
[ "heweiwei0107@163.com" ]
heweiwei0107@163.com
41102e0fbd612f25a5a9c254b74f9855d5ecc203
a4d577b74e80c79ac94e0ded13ff25f06aa3bc13
/mysite/mysite/urls.py
60ea7f134a8c840077228d29e48f344d82a7a5ac
[]
no_license
lmdcma27/Progra-2-Practica1
1572ae02144ec7aad14a3946e5af8a28b86cff4b
f9b9943b45749844cbda746667b88146800f119c
refs/heads/master
2020-05-03T19:26:15.608056
2019-06-08T18:33:42
2019-06-08T18:33:42
178,783,991
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('polls/', include('polls.urls')) ]
[ "lmdcma27@gmail.com" ]
lmdcma27@gmail.com
1d988a601334f866cf0cfa29b4c28f8a8d0eb042
46afea2e3bef90b7fe21e6762c614ac98150df0a
/SMS19/wsgi.py
edea5478acd78f8cfc31ec2d6a0e340e6f4bc52a
[ "MIT" ]
permissive
bitsacm/SMS19
7dca5dc3a1f1683850e9a7fd548252e876dff315
03148e03165e06e97196ed8221c19151a68db9ea
refs/heads/master
2021-06-17T02:18:21.049015
2019-04-15T10:16:38
2019-04-15T10:16:38
184,020,771
0
2
MIT
2021-03-20T19:04:11
2019-04-29T07:22:57
HTML
UTF-8
Python
false
false
387
py
""" WSGI config for SMS19 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'SMS19.settings') application = get_wsgi_application()
[ "siddhantrkhandelwal@gmail.com" ]
siddhantrkhandelwal@gmail.com
d91bbfd4fdd6e554f03a9e6e836d1a9c3766be73
531c47c15b97cbcb263ec86821d7f258c81c0aaf
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/operations/_service_tags_operations.py
f9bdf3fc48b69402169eb1941b8801212dcb620f
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
YijunXieMS/azure-sdk-for-python
be364d3b88204fd3c7d223df23756386ff7a3361
f779de8e53dbec033f98f976284e6d9491fd60b3
refs/heads/master
2021-07-15T18:06:28.748507
2020-09-04T15:48:52
2020-09-04T15:48:52
205,457,088
1
2
MIT
2020-06-16T16:38:15
2019-08-30T21:08:55
Python
UTF-8
Python
false
false
4,510
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ServiceTagsOperations(object): """ServiceTagsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, location, # type: str **kwargs # type: Any ): # type: (...) -> "models.ServiceTagsListResult" """Gets a list of service tag information resources. :param location: The location that will be used as a reference for version (not as a filter based on location, you will get the list of service tags with prefix details across all regions but limited to the cloud that your subscription belongs to). :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ServiceTagsListResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.ServiceTagsListResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceTagsListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceTagsListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/locations/{location}/serviceTags'} # type: ignore
[ "noreply@github.com" ]
YijunXieMS.noreply@github.com
bbf9ef3f31be84a570b427f39ccb042200d4cd05
42792862e02664907a137b2db84f6c4337ca5ac2
/main.py
dc1d5c9b407c5a0168036027187dbadcedaa5691
[]
no_license
AlexeyBurkov/statisticLabs
87b4e07f02284d386b8ea6bc80bc163196588d04
7cdee9cb4d0f0fdeb0d6ca1c5ec608977cbdedea
refs/heads/master
2023-04-24T06:48:16.480240
2021-05-09T02:39:44
2021-05-09T02:39:44
358,225,168
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
import numpy as np from lab1 import do_hist_research from lab2 import do_characteristics_research from lab3 import do_boxplot_research from lab4 import do_func_plus_density_research from lab5 import do_correlation_research, do_ellipse_research if __name__ == '__main__': do_correlation_research() # do_ellipse_research()
[ "rubicks_cube@mail.ru" ]
rubicks_cube@mail.ru
710d650df521be4558296200acfa411b41f16e57
350db570521d3fc43f07df645addb9d6e648c17e
/0432_All_O`one_Data_Structure/solution.py
f9950ad44aecca27f66a9cb7b101ee26ce498043
[]
no_license
benjaminhuanghuang/ben-leetcode
2efcc9185459a1dd881c6e2ded96c42c5715560a
a2cd0dc5e098080df87c4fb57d16877d21ca47a3
refs/heads/master
2022-12-10T02:30:06.744566
2022-11-27T04:06:52
2022-11-27T04:06:52
236,252,145
1
1
null
null
null
null
UTF-8
Python
false
false
967
py
''' 432. All O`one Data Structure Level: Hard https://leetcode.com/problems/all-oone-data-structure ''' ''' Solution: ''' class AllOne: def __init__(self): """ Initialize your data structure here. """ def inc(self, key: str) -> None: """ Inserts a new key <Key> with value 1. Or increments an existing key by 1. """ def dec(self, key: str) -> None: """ Decrements an existing key by 1. If Key's value is 1, remove it from the data structure. """ def getMaxKey(self) -> str: """ Returns one of the keys with maximal value. """ def getMinKey(self) -> str: """ Returns one of the keys with Minimal value. """ # Your AllOne object will be instantiated and called as such: # obj = AllOne() # obj.inc(key) # obj.dec(key) # param_3 = obj.getMaxKey() # param_4 = obj.getMinKey()
[ "benjaminhuanghuang@gmail.com" ]
benjaminhuanghuang@gmail.com
c479330cbce640dd7b11335f7ba3f16c96e55c22
f61aa4d5791fc858e52db956f447cfd0af5182cf
/break_statement.py
7886f134ac68d97318181108c520437d6d9c7a19
[]
no_license
AshutoshPanwar/Python_udemy_course
70abda4418c4532dd886a2b98c0bfb0bc8fbc138
7b4698f47a9a80b4cbe07e2334ccc6bc1427118c
refs/heads/master
2023-04-19T00:02:48.129265
2021-05-05T10:23:52
2021-05-05T10:23:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
l = [10, 54 ,2 ,61, 14] n = int(input('Enter search key:')) for i in l: print(i,n) if i == n: print('found') break #continue statement l = [10, 54 , 2, 61, 15] for i in l: if i % 2 != 0: continue print(i)
[ "ashupanwar1100@gmail.com" ]
ashupanwar1100@gmail.com
ce94ad704754398daf3643ee705966752a50804f
7bbc83f3f84d7e5057cb04f6895082ab3e016e90
/ml/m22_pca3_cifar100.py
34b9db2a7cd8e68feed22b981d54296f0365123a
[]
no_license
osy1223/bit_seoul
908f6adf007c0a7d0df2659b4fae75eb705acaea
b523d78c7b80d378a2d148b35466304f10bf4af4
refs/heads/master
2023-02-02T14:26:40.120989
2020-12-18T00:46:04
2020-12-18T00:46:04
311,279,034
0
0
null
null
null
null
UTF-8
Python
false
false
2,930
py
import numpy as np from tensorflow.keras.datasets import cifar100 from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.utils import to_categorical from tensorflow.keras.callbacks import EarlyStopping, TensorBoard from sklearn.preprocessing import MinMaxScaler, StandardScaler # 1. 데이터 (x_train, y_train), (x_test, y_test) = cifar100.load_data() print(x_train.shape, x_test.shape) # (50000, 32, 32, 3) (10000, 32, 32, 3) print(y_train.shape, y_test.shape) # (50000, 1) (10000, 1) # 1.1 데이터 전처리 # append (데이터 합치기) x = np.append(x_train, x_test, axis=0) y = np.append(y_train, y_test, axis=0) print("x.shape:", x.shape) #x.shape:(60000, 32, 32, 3) # reshape x = x.reshape(60000, 32*32*3) print(x.shape) # (60000, 3072) # PCA pca = PCA() pca.fit(x) cumsum = np.cumsum(pca.explained_variance_ratio_) d = np.argmax(cumsum >= 0.95) +1 #d : 우리가 필요한 n_components의 개수 print("n_components:",d) # n_components: 202 pca = PCA(n_components=202) x2d = pca.fit_transform((x)) print(x2d.shape) #(60000, 202) pca_EVR = pca.explained_variance_ratio_ print(sum(pca_EVR)) # 1.0000000000000022 # OneHotEncoding y = to_categorical(y) # 1.2 train_test_split x_train, x_test, y_train, y_test = train_test_split( x, y, train_size=500) print("split shape:", x_train.shape, x_test.shape) # (500, 3072) (59500, 3072) # 이미지를 DNN 할 때에는 reshape하고 scaler 하자 # 1.3 Scaler scaler = StandardScaler() scaler.fit(x_train) # fit하고 x_train = scaler.transform(x_train) # 사용할 수 있게 바꿔서 저장하자 x_test = scaler.transform(x_test) # 사용할 수 있게 바꿔서 저장하자 # 2. 모델 model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Dense(500, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(100)) model.add(Dropout(0.2)) model.add(Dense(300)) model.add(Dense(100)) model.add(Dense(50)) model.add(Dense(3)) model.add(Dense(100, activation='softmax')) # 3. 컴파일, 훈련 model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['acc']) es = EarlyStopping( monitor='loss', patience=20, mode='auto', verbose=2) model.fit(x_train,y_train, epochs=1000, batch_size=128, verbose=1, validation_split=0.2, callbacks=[es]) # 4. 평가, 예측 loss,acc = model.evaluate(x_test, y_test, batch_size=128) print("loss : ",loss) print("acc : ",acc) ''' cifar100 dnn loss : 3.6389894485473633 acc : 0.14429999887943268 cumsum >= 0.95 n_components : 202 loss : 21.481054306030273 acc : 0.01484033651649952 cumsum >= 1 n_components: 3072 loss : 23.00354766845703 acc : 0.016857143491506577 '''
[ "osu1223@gmail.com" ]
osu1223@gmail.com
9f9f3712a05a0efffe7c2c99073775c38e808e62
a45e8ebc8030eeb080f0b2f483375173b05ccf60
/HRank/30days/day9.py
d74724f79f8801cea2a6df7426b08fd7e361f10f
[]
no_license
santoshr1016/OpenCV
436098b8cba2a2a2e955181eab9be096c57cb1ec
69456ea144e1586106bba7bdd92369aebc8625e2
refs/heads/master
2021-06-04T14:51:45.034114
2016-09-01T12:34:03
2016-09-01T12:34:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
def factorial(n): if n<=1: return 1 else: return n*factorial(n-1) N = int(input()) print(factorial(N))
[ "santy1016@gmail.com" ]
santy1016@gmail.com
34559726c4acdaebfc64114d524060dcad146149
d8f5bfee3f54d2d003575323c0ef305653fe77a2
/py/helpers/mongo_client.py
567044ef3bd07c215e47a7c96998135dad985477
[]
no_license
aspotashev/stupid-ids
c8ab7abe546a95fd79637c6ba94e6393ae400f8b
978c995c7fc0be90d181bc098d36219da333bdd1
refs/heads/master
2021-01-10T14:00:59.065046
2017-05-16T21:22:24
2017-05-16T21:22:24
44,253,139
0
1
null
null
null
null
UTF-8
Python
false
false
416
py
import pymongo class MongoClient(object): def __init__(self): connection = pymongo.MongoClient() self.__db = connection['stupids_db']['template_parts'] def get_first_id(self, tp_hash): rows = list(self.__db.find({'_id': tp_hash})) assert len(rows) <= 1 if len(rows) == 0: return None elif len(rows) == 1: return rows[0]['first_id']
[ "aspotashev@gmail.com" ]
aspotashev@gmail.com
20fb69cd069a164cee603d069a7a5f6b096580b3
494834a657d7419ebd1757ee4adb9661396c8b98
/Face Mask Detection/face_mask.py
5c9dee64ce7773e510305a3ac5db5dfc6abe396d
[]
no_license
AbhiGupta06/Project-face-mask-detection-
a0b05665590c50054e6475ccb69dc7113af2456e
4c81a7e187dbb30b8d51777e235823d62bd797e4
refs/heads/main
2023-03-13T02:04:00.668742
2021-02-26T07:52:37
2021-02-26T07:52:37
342,499,488
0
0
null
null
null
null
UTF-8
Python
false
false
6,612
py
# -*- coding: utf-8 -*- """face_mask.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1vFrGES-YoQk2rS1NFoRYaY_-GCuQBxTN **Let us first import all the necessary libraries we are going to need.** """ # from tensorflow.keras.preprocessing.image import ImageDataGenerator # from tensorflow.keras.applications import MobileNetV2 # from tensorflow.keras.layers import AveragePooling2D # from tensorflow.keras.layers import Dropout # from tensorflow.keras.layers import Flatten # from tensorflow.keras.layers import Dense # from tensorflow.keras.layers import Input # from tensorflow.keras.models import Model # from tensorflow.keras.optimizers import Adam # from tensorflow.keras.applications.mobilenet_v2 import preprocess_input # from tensorflow.keras.preprocessing.image import img_to_array # from tensorflow.keras.preprocessing.image import load_img # from tensorflow.keras.utils import to_categorical # from sklearn.preprocessing import LabelBinarizer # from sklearn.model_selection import train_test_split # from imutils import paths # import matplotlib.pyplot as plt # import numpy as np # import os # """**The next step is to read all the images and assign them to some list. Here we get all the paths associated with these images and then label them accordingly. Remember our dataset is contained in two folders viz- with_masks and without_masks. So we can easily get the labels by extracting the folder name from the path. Also, we preprocess the image and resize it to 224x 224 dimensions.**""" # imagePaths = list(paths.list_images('/content/drive/MyDrive/dataset')) # data = [] # labels = [] # # loop over the image paths # for imagePath in imagePaths: # # extract the class label from the filename # label = imagePath.split(os.path.sep)[-2] # # load the input image (224x224) and preprocess it # image = load_img(imagePath, target_size=(224, 224)) # image = img_to_array(image) # image = preprocess_input(image) # # update the data and labels lists, respectively # data.append(image) # labels.append(label) # # convert the data and labels to NumPy arrays # data = np.array(data, dtype="float32") # labels = np.array(labels) # baseModel = MobileNetV2(weights="imagenet", include_top=False, # input_shape=(224, 224, 3)) # # construct the head of the model that will be placed on top of the # # the base model # headModel = baseModel.output # headModel = AveragePooling2D(pool_size=(7, 7))(headModel) # headModel = Flatten(name="flatten")(headModel) # headModel = Dense(128, activation="relu")(headModel) # headModel = Dropout(0.5)(headModel) # headModel = Dense(2, activation="softmax")(headModel) # # place the head FC model on top of the base model (this will become # # the actual model we will train) # model = Model(inputs=baseModel.input, outputs=headModel) # # loop over all layers in the base model and freeze them so they will # # *not* be updated during the first training process # for layer in baseModel.layers: # layer.trainable = False # lb = LabelBinarizer() # labels = lb.fit_transform(labels) # labels = to_categorical(labels) # # partition the data into training and testing splits using 80% of # # the data for training and the remaining 20% for testing # (trainX, testX, trainY, testY) = train_test_split(data, labels, # test_size=0.20, stratify=labels, random_state=42) # # construct the training image generator for data augmentation # aug = ImageDataGenerator( # rotation_range=20, # zoom_range=0.15, # width_shift_range=0.2, # height_shift_range=0.2, # shear_range=0.15, # horizontal_flip=True, # fill_mode="nearest") # INIT_LR = 1e-4 # EPOCHS = 20 # BS = 32 # print("[INFO] compiling model...") # opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) # model.compile(loss="binary_crossentropy", optimizer=opt, # metrics=["accuracy"]) # # train the head of the network # print("[INFO] training head...") # H = model.fit( # aug.flow(trainX, trainY, batch_size=BS), # steps_per_epoch=len(trainX) // BS, # validation_data=(testX, testY), # validation_steps=len(testX) // BS, # epochs=EPOCHS) # N = EPOCHS # plt.style.use("ggplot") # plt.figure() # plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") # plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") # plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc") # plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc") # plt.title("Training Loss and Accuracy") # plt.xlabel("Epoch #") # plt.ylabel("Loss/Accuracy") # plt.legend(loc="lower left") # #To save the trained model # model.save('mask_recog_ver2.h5') import cv2 import os from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model from tensorflow.keras.applications.mobilenet_v2 import preprocess_input import numpy as np faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') model = load_model("C:/Users/Pawan Bharti/Downloads/mask_recog_ver2 (1).h5") video_capture = cv2.VideoCapture(0) while True: # Capture frame-by-frame ret, frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale(gray, scaleFactor=1.1,minNeighbors=5, minSize=(60, 60), flags=cv2.CASCADE_SCALE_IMAGE) faces_list=[] preds=[] for (x, y, w, h) in faces: face_frame = frame[y:y+h,x:x+w] face_frame = cv2.cvtColor(face_frame, cv2.COLOR_BGR2RGB) face_frame = cv2.resize(face_frame, (224, 224)) face_frame = img_to_array(face_frame) face_frame = np.expand_dims(face_frame, axis=0) face_frame = preprocess_input(face_frame) faces_list.append(face_frame) if len(faces_list)>0: preds = model.predict(faces_list) for pred in preds: (mask, withoutMask) = pred label = "Mask" if mask > withoutMask else "No Mask" color = (0, 255, 0) if label == "Mask" else (0, 0, 255) label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) cv2.putText(frame, label, (x, y- 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) cv2.rectangle(frame, (x, y), (x + w, y + h),color, 2) # Display the resulting frame cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()
[ "noreply@github.com" ]
AbhiGupta06.noreply@github.com
06f8c7e9b4817b1e660c155e751e1e20b9c1c96c
f1dbf2a4ddad50b53dacd2acf4071b12d393f232
/programming/basics/python/binary_search.py
916cd2ed15302f8a28e0a718b7f23b2cb80f6152
[]
no_license
adikabintang/kolor-di-dinding
e25b6033c3cc7a5da53681ec7904eb6c015a18ca
7450002fc8f9b8c276b021be21b9cd368bc5200e
refs/heads/master
2021-07-05T10:36:04.616308
2021-01-04T16:32:09
2021-01-04T16:32:09
218,272,042
1
0
null
null
null
null
UTF-8
Python
false
false
617
py
def bin_search(nums: [int], target: int) -> int: right = len(nums) middle_index = right // 2 left = 0 found_index = -1 while right > left: if target < nums[middle_index]: right = middle_index middle_index = (right - left) // 2 elif target > nums[middle_index]: left = middle_index middle_index = (right + left) // 2 else: found_index = middle_index break return found_index nums = [1, 2, 3, 4, 5, 6, 7] for i in nums: print(bin_search(nums, i)) print(bin_search(nums, -7))
[ "adika.bintang@ui.ac.id" ]
adika.bintang@ui.ac.id
7afe18193da612a4967d92db2639a1c5640c40bf
a6bdf7aa8f0a6282cc81e1acf97917dcd8821a7e
/module1.py
7f620c2f9cfa819d81da3a33c60119cb6cd413a9
[]
no_license
SNBhushan/BASICS-OF-PYTHON
28f66a24c774d24075ccd7ebea19286869ce15c8
beb5df71a9ef128b8800d5059778413521dd53f4
refs/heads/main
2023-05-27T16:57:15.709339
2021-06-08T09:26:09
2021-06-08T09:26:09
374,953,617
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
import math print(math.factorial(6))
[ "noreply@github.com" ]
SNBhushan.noreply@github.com
5cdd4ba6e42de150b30b0b660ce41f49f79da705
1eef92b94fb2a1af46714fc2309adb1eafdbeeaf
/shop/urls.py
6f5feef1e3659ecc8deb6ee6bbd184d6ac117af2
[]
no_license
Luxlorys/armeta
0201278ead2702868799863ed82a61576ca7cfec
8a8d8941efcd078ac950f2eb41502792757ca2db
refs/heads/master
2023-06-01T12:13:08.193469
2021-06-21T12:29:31
2021-06-21T12:29:31
375,623,727
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
from django.contrib import admin from django.urls import include, path from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('', include('main.urls')), path('admin/', admin.site.urls), ] urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ "bossbyrcev221@gmail.com" ]
bossbyrcev221@gmail.com
9002d90dcbc6c3137048964b4c1bd3cd7d83fd19
cf0d80a7f8a7e89405f2b818af416651d5667298
/docker-mapnik-polar/render-polar-tiles-3411.py
8c026b48223573f82369e801e56140f0fa22b509
[]
no_license
ingmapping/mapnik-stylesheets-polar
98ba249ab2be0128b5fa7a3471a40b6b90738c93
35e87e041d105f54d4d2baf1f03e4f42ba780c34
refs/heads/master
2020-03-21T12:47:13.604397
2018-07-06T12:22:34
2018-07-06T12:22:34
138,571,899
0
0
null
2018-06-25T09:21:01
2018-06-25T09:21:01
null
UTF-8
Python
false
false
10,201
py
#!/usr/bin/python # # Render tiles in an polar projection: EPSG 3411 (https://nsidc.org/data/atlas/epsg_3411.html) # OriginX:-12400000 / OriginY: 12400000 / Resolution: 96875 / BBOX: 12400000, 12400000, 12400000, 12400000. # from optparse import OptionParser import sys, os, multiprocessing import Queue try: import mapnik except: import mapnik2 as mapnik cairo_exists = True try: import cairo except ImportError: cairo_exists = False def main(): style = os.path.dirname(os.path.abspath(__file__))+"/osm.xml" dir = "tiles" type = "png" scale = 22800000 minzoom = 1 maxzoom = 6 threads = 1 context = 3 parser = OptionParser() parser.add_option("-s", "--style", action="store", type="string", dest="style", help="path to the mapnik stylesheet xml, defaults to: "+style) parser.add_option("-d", "--dir", action="store", type="string", dest="dir", help="path to the destination folder, defaults to "+type) parser.add_option("-t", "--type", action="store", type="string", dest="type", help="file type to render (png, png256, jpg), defaults to "+type) parser.add_option("-z", "--minzoom", action="store", type="int", dest="minzoom", help="minimum zoom level to render, defaults to "+str(minzoom)) parser.add_option("-Z", "--maxzoom", action="store", type="int", dest="maxzoom", help="maximum zoom level to render, defaults to "+str(maxzoom)) parser.add_option("-T", "--threads", action="store", type="int", dest="threads", help="number of threads to launch, defaults to "+str(threads)) parser.add_option("-i", "--only-interesting", action="store_true", dest="onlyinteresting", help="only render around interesting places (buildings, peaks, islands, ...)") parser.add_option("-c", "--only-interesting-context", action="store", type="int", dest="context", help="when rendering tiles around interesting places, how many tiles around those places should be rendered?"+ "0 means that only the tile with the interesting feature will be rendered; "+ "1 means that the 8 surrounding tiles will be rendered for each zoom level, too; "+ "2 adds 24 extra tiles; 3 adds 48 extra tiles; 4 adds 80 extra tiles; "+ "defaults to "+str(context)+", which should fill the most screens") parser.add_option("-l", "--only-interesting-list", action="store", type="string", dest="listfile", help="write a GeoJSON-List of interesting places") parser.add_option("-D", "--db", action="store", type="string", dest="dsn", default="", help="database connection string used for finding interesting places") parser.add_option("-e", "--skip-existing", action="store_true", dest="skipexisting", help="skip existing tiles, only render missing") (options, args) = parser.parse_args() if options.style: style = options.style if options.dir: dir = options.dir if options.type: type = options.type if options.minzoom: minzoom = options.minzoom if options.maxzoom: maxzoom = options.maxzoom if options.threads: threads = options.threads if options.context != None: context = options.context queue = multiprocessing.JoinableQueue(32) lock = multiprocessing.Lock() renderers = {} print "Starting %u render-threads" % (threads) for i in range(threads): renderer = RenderThread(i, queue, style, scale, dir, type, lock) render_thread = multiprocessing.Process(target=renderer.run) render_thread.start() renderers[i] = render_thread if options.onlyinteresting: import psycopg2 tileset = set() features = [] con = psycopg2.connect(options.dsn) sql = """ SELECT 'point' AS type, osm_id, name, ST_X(way), ST_Y(way), ST_X(ST_Transform(way, 3411)), ST_Y(ST_Transform(way, 3411)) FROM ant_point WHERE (place IS NOT NULL AND place IN ('hamlet', 'town', 'isolated_dwelling', 'cape', 'locality', 'island', 'islet')) OR building IS NOT NULL OR aeroway IS NOT NULL OR ("natural" IS NOT NULL AND "natural" IN ('volcano', 'ridge', 'cliff', 'cape', 'peak', 'valley', 'bay')) UNION ALL SELECT 'line' AS type, osm_id, name, ST_X(ST_Centroid(way)), ST_Y(ST_Centroid(way)), ST_X(ST_Transform(ST_Centroid(way), 3411)), ST_Y(ST_Transform(ST_Centroid(way), 3411)) FROM ant_line WHERE (place IS NOT NULL AND place IN ('hamlet', 'town', 'isolated_dwelling', 'cape', 'locality', 'island', 'islet')) OR building IS NOT NULL OR aeroway IS NOT NULL UNION ALL SELECT 'polygon' AS type, osm_id, name, ST_X(ST_Centroid(way)), ST_Y(ST_Centroid(way)), ST_X(ST_Transform(ST_Centroid(way), 3411)), ST_Y(ST_Transform(ST_Centroid(way), 3411)) FROM ant_polygon WHERE (name IS NOT NULL AND place IS NOT NULL AND place IN ('hamlet', 'town', 'isolated_dwelling', 'cape', 'locality', 'island', 'islet')) OR building IS NOT NULL OR aeroway IS NOT NULL; """; cur = con.cursor() cur.execute(sql) lock.acquire() print "found %u interesting nodes" % (cur.rowcount) lock.release() i = 0 for record in cur: (obj_type, osm_id, name, lat, lng, xmeter, ymeter) = record lock.acquire() i += 1 print "found interesting %s %u of %u: #%u (%s)" % (obj_type, i, cur.rowcount, osm_id, name) lock.release() if(options.listfile): features += ({ "type": "Feature", "properties": { "osm_id": osm_id, "name": name }, "geometry": { "type": "Point", "coordinates" : [ lat, lng ] } },) for z in range(minzoom, maxzoom+1): n = 2**z n2 = n/2 tilesz = float(scale) / float(n) xoff = float(xmeter) / tilesz yoff = float(ymeter) / tilesz x = int(xoff + n2) y = int(n2 - yoff) for xctx in range(-context, context+1): for yctx in range(-context, context+1): absx = x+xctx absy = y+yctx t = (z, absx, absy) if absx >= 0 and absx < n and absy >= 0 and absy < n and not t in tileset: queue.put(t) tileset.add(t) if(options.listfile): import json f = open(options.listfile, "w") f.write(json.dumps({ "type": "FeatureCollection", "features": features } )) f.close() else: for z in range(minzoom, maxzoom+1): n = 2**z for x in range(0, n): for y in range(0, n): if options.skipexisting and os.path.exists(dir + "/" + str(z) + "/" + str(x) + "/" + str(y) + "." + type): continue t = (z, x, y) queue.put(t) # Signal render threads to exit by sending empty request to queue for i in range(threads): queue.put(None) # wait for pending rendering jobs to complete queue.join() for i in range(threads): renderers[i].join() class RenderThread: def __init__(self, threadnum, queue, style, scale, dir, type, lock): self.threadnum = threadnum self.queue = queue self.scale = scale self.dir = dir self.type = type self.lock = lock self.style = style self.lock.acquire() print "Thread #%u created" % (threadnum) self.lock.release() def run(self): self.lock.acquire() print "Thread #%u started" % (self.threadnum) self.lock.release() m = mapnik.Map(256,256) mapnik.load_map(m, self.style, True) if(m.buffer_size < 32): m.buffer_size = 32 while True: r = self.queue.get() if (r == None): self.queue.task_done() self.lock.acquire() print "Thread #%u: closing" % (self.threadnum) self.lock.release() break else: (z, x, y) = r render_tile(m, z, x, y, self.scale, self.dir, self.type, self.lock, self.threadnum) self.queue.task_done() def render_tile(m, z, x, y, scale, dir, type, lock=None, threadnum=None): n = 2**z n2 = n/2 x2n = x-n2 y2n = (n-y-1)-n2 tilesize = float(scale) / float(n); bbox = [ tilesize * x2n, tilesize * y2n, tilesize * (x2n+1), tilesize * (y2n+1) ] pdir = dir + "/" + str(z) + "/" + str(x) if lock: lock.acquire() print "Thread #%u: z=%u x=%u y=%u -> (%f,%f,%f,%f)" % (threadnum, z, x, y, bbox[0], bbox[1], bbox[2], bbox[3]) if not os.path.exists(pdir): os.makedirs(pdir) lock.release() else: if not os.path.exists(pdir): os.makedirs(pdir) print "z=%u x=%u y=%u -> (%f,%f,%f,%f)" % (z, x, y, bbox[0], bbox[1], bbox[2], bbox[3]) if mapnik.Box2d: e = mapnik.Box2d(*bbox) else: e = mapnik.Envelope(*bbox) # zoom map to bounding box m.zoom_to_box(e) file = dir + "/" + str(z) + "/" + str(x) + "/" + str(y) + "." + type s = mapnik.Image(256, 256) mapnik.render(m, s) view = s.view(0, 0, 256, 256) view.save(file, type) if __name__ == "__main__": main()
[ "noreply@github.com" ]
ingmapping.noreply@github.com
5cb97df2409a65e5747704f8b77e52f8006b7bfd
9f95df6184ddc375d625a0655533f5cae3fc0fa4
/car/get_credentials.py
8022c4fdf356eb0640692f04e71940c3f9edb8f5
[ "BSD-3-Clause" ]
permissive
stvhay/car
401721e03a2f49ee5aaec0dbab003e9776cadf6b
c4e1810d6fa8869e33fcc77ac85614fd05620498
refs/heads/master
2022-04-09T13:59:48.862986
2020-03-17T00:14:58
2020-03-17T00:14:58
238,547,333
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
"""Get credentials function.""" import getpass import yaml def get_credentials(args): """ Load credentials from file or arguments. :param password: Password string. @return: (username, password) """ try: with open('.credentials') as f: c = yaml.safe_load(f.read()) password = c.get('password') if not password: getpass.getpass("Password") username = c.get('username') if not username: username = input("Username: ") if args.username: username = args.username except IOError: username = args.username password = getpass.getpass() return username, password
[ "hay.steve@gmail.com" ]
hay.steve@gmail.com
44816a213498e7601004b6e75d6fd842b6107828
1d5a8f91ca705482ac0d0d196797f7d9f4c4c669
/pico-ups/picofu.py
e4beb24ab3c222425d08a1b43999e1544b3408d9
[]
no_license
johkin/ohserver-install
a06c50e29be5992a22e927fa645c8336d8559879
58ee4be0e77d21db7b9f807f2d8f9c8eb8f764a9
refs/heads/master
2021-01-10T09:52:14.094275
2015-11-19T23:25:26
2015-11-19T23:25:26
46,526,441
0
0
null
null
null
null
UTF-8
Python
false
false
20,360
py
#!/usr/bin/python # -*- coding: iso8859_2 -*- #=============================================================================== # # USAGE: picofu.py -f <fw_file> [ -v | -h | -s | -p serial | --force ] # # DESCRIPTION: # This script uploads firmware to UPS PIco. Only mandatory input is new UPS PIco firmware. # # RETURN CODES: # 0 - Sucessfull update # 1 - Failed to parse command line arguments # 2 - Failed to establish communication with the UPS PIco # 3 - Incompatible UPS PIco powering mode (DISABLED FOR NOW) # 4 - Failed to validate firmware file # 5 - Failed during the FW upload # # OPTIONS: --- # REQUIREMENTS: # python-serial # python-smbus # Propoer HW setup and setup of Pi to enable Serial/I2C communication based on the UPS PIco manual # BUGS: --- # NOTES: Updated for the UPS PIco by www.pimodules.com # AUTHOR: Vit SAFAR <PIco@safar.info> # VERSION: 1.4 adopted for UPS PIco December 2014 by PiModules # CREATED: 2.6.2014 # REVISION: # v1.0 16.4.2014 - Vit SAFAR # - Initial release # v1.1 17.4.2014 - Vit SAFAR # - Added code documentation # - Some speed-up optimisations # v1.2 19.4.2014 - Vit SAFAR # - Disabled the power detection, until automatic switch to bootloader mode is enabled # v1.3 2.6.2014 - Vit SAFAR # - Fixed communication issue by adding dummy ';HELLO' command # # TODO: - Detect FW version # - Automatic switch to bootloader mode using @command when available # - Automatically enable of the I2C sw components in Pi (load kernel modules) if not done # - Perform optimisation of the FW file to speed up the upload process # - Make the switch to bootloader mode interactive for users who does not have the I2C interface available. # - Show UPS PIco @status after firmware update # - Detect progress of the factory reset, not just wait :) # - Set UPS PIco RTC clock after factory reset to the system time # #=============================================================================== import sys import time import datetime import os import re import getopt class FWUpdate(object): """ Only class performing the FW update The class performs following tasks 1) Check the command line arguments and performs validation of the expected/required parameters 2) Pereform detection of the Pi powering scheme via I2C or Serial interface 3) Perform validation of the FW file 4) Verify the connectivity to UPS PIco bootloader is working 5) Perform FW update 6) Perform UPS PIco factory reset """ # running in verbose mode verbose=False # force the FW update by skipping prechecks force=False # skip validation of the FW skip=False # firmware file filename=False # default serial port port='/dev/ttyAMA0' # serial connection established on bloader level seria_bloader=False # status of the i2c serial feature i2c=False # detected i2c bus i2c_bus=False # default I2C port of UPS PIco control interface i2c_port=0x69 # is Pi powered via Pi or not power=False # if power not via Pi USB and already warned about via Pi powering requirement power_warned=False def __init__(self): # check if smbus module is deployed and load it if possible try: import smbus self.i2c=True self.smbus=smbus except: print 'WARNING: I2C support is missing. Please install smbus support for python to enable additional functionality! (sudo apt-get install python-smbus)' self.i2c=False # check if pyserial module is deployed and load it if possible try: import serial self.serial=serial except: print 'ERROR: Serial support is missing. Please install pyserial support for python to enable additional functionality! (sudo apt-get install python-serial)' sys.exit(2) # parse command line arguments try: opts, args = getopt.getopt(sys.argv[1:], 'vhf:sp:', ['help', 'force' ]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" self.usage() sys.exit(1) for o, a in opts: # look for verbose argument if o =="-v": self.verbose = True # look for help argument elif o in ("-h", "--help"): self.usage() sys.exit(1) # look for fw filename argument elif o == "-f": self.filename = a # Check if fw filename really exists if not os.path.isfile(self.filename): print 'ERROR: Input file "'+str(self.filename)+'" cannot be found! Make sure file exists and is readable.' sys.exit(1) # look for force argument elif o == "--force": self.force = True # look for fw validation skip argument elif o == "-s": self.skip = True # look for serial port definition argument elif o == "-p": self.port = a if not os.path.exists(self.port): print 'ERROR: Serial port "'+str(self.port)+'" cannot be found! No need to change this value in most of the cases!' sys.exit(1) # in case of unknown argument else: assert False, "ERROR: Unknown option" sys.exit(1) # Check if serial port device exists if not os.path.exists(self.port): print 'ERROR: Serial port "'+str(self.port)+'" cannot be found!' sys.exit(1) # Check if fw filename is defined if not self.filename: print 'ERROR: Firmware filename has to be defined! :)' sys.exit(1) # check the powering option is ok ####self.power_detect() # validsate the provided firmware file if not self.skip: self.validate() else: if self.verbose: print 'WARNING: Skipping firmware validation' # verify bootloader connectivity self.serial_check() # launch FW upload self.fw_upload() # Execute factory reset of UPS PIco self.factory_reset() """ 2) Detects the powering status of the Pi a) Check the power status via I2C bus 0 and 1 (most common way to do it in the future?) b) In case that no answer found (yes or no), check via serial port. - We expect to have serial port in the bootloader mode at this time, so @command on serial interface is not available and it will fail in most of the cases """ def power_detect(self): if self.verbose: print 'INFO: Detecting power setup' # check if the system is powered via Pi USB connector if self.i2c: # it's I2C we expect somthing to go wrong :) try: if self.verbose: print 'INFO: Probing I2C bus 0' # open connection to the first I2C bus (applicable mainly for the Rev.1 Pi boards) bus = self.smbus.SMBus(0) # read the powering systus byte (reffer to the manual for the meaning) pwr=bus.read_byte_data(0x6a,0) # in case we got valid response (0 is not a vlid return value of this interface, so probably not connected :) ) if pwr>0: self.i2c_bus=0 # if powered via Pi, than ok if pwr==3: if self.verbose: print 'INFO: (I2C bus 1) System is powered via the Pi USB port.' self.power=True # otherwise powered using unsupported mode... # if forced to skip this check, lets do it :) elif self.force: print 'WARNING: (I2C-0) System is not powered via Pi USB port. There is a UPS PIco reset after a FW update, that would perform hard reset of Pi! (use --force to disable this check)' self.power_warned=True else: print 'ERROR: (I2C-0) System has to be powered via the Pi USB port. There is a PIco reset after a FW update, that would perform hard reset of Pi! (use --force to disable this check)' sys.exit(3) except SystemExit as e: sys.exit(e) except: pass if not self.power: try: if self.verbose: print 'INFO: Probing I2C bus 1' # open connection to the first I2C bus (applicable mainly for the Rev.2 Pi boards) bus = self.smbus.SMBus(1) # read the powering systus byte (reffer to the manual for the meaning) pwr=bus.read_byte_data(0x6a,0) # in case we got valid response (0 is not a vlid return value of this interface, so probably not connected :) ) if pwr>0: self.i2c_bus=1 # if powered via Pi, than ok if pwr==3: if self.verbose: print 'INFO: (I2C bus 1) System is powered via the Pi USB port.' self.power=True # otherwise powered using unsupported mode... # if forced to skip this check, lets do it :) elif self.force: print 'WARNING: (I2C-1) System is not powered via Pi USB port. There is a UPS PIco reset after a FW update, that would perform hard reset of Pi! (use --force to disable this check)' self.power_warned=True else: print 'ERROR: (I2C-1) System has to be powered via the Pi USB port. There is a UPS PIco reset after a FW update, that would perform hard reset of Pi! (use --force to disable this check)' sys.exit(3) except SystemExit as e: sys.exit(e) except: pass # in case power status not ok and we have not detected wrong power status already, check via Serial as a failback method (even though it is expected to fail also due to the bootloader mode requirement) if not self.power and not self.power_warned: if self.verbose: print 'INFO: Probing serial port' # Set up the connection to the UPS PIco PIco= self.serial.Serial(port=self.port,baudrate=38400,timeout=0.005,rtscts=0,xonxoff=0) # empty the input buffer for line in PIco: pass # get status of power via serial from PIco PIco.write('@PM\r') # wait for the answer time.sleep(0.5) # for each line in the output buffer (there are some newlines returned) for line in PIco: # get rid of the newline characters line=line.strip() # is it the answer we are looking for? (yep, should be regexp...) if line[:16] == 'Powering Source:': # get the power source (yep, should be regexp...) ret=line[16:20] # in case it is RPI, everything is ok :) if ret == 'RPI': self.power=True if self.verbose: print 'INFO: System is powered via the Pi USB port.' # otherwise powered using unsupported mode... # if forced to skip this check, lets do it :) elif self.force: if not self.power_warned: print 'WARNING: (Serial) System is not powered via Pi USB port. There is a PIco reset after a FW update, that would perform hard reset of Pi! (use --force to disable this check)' self.power_warned=True else: print 'ERROR: (Serial) System has to be powered via the Pi USB port. There is a PIco reset after a FW update, that would perform hard reset of Pi! (use --force to disable this check)' sys.exit(3) # close the connection to PIco via serial PIco.close() #print 'pwr:',self.power,' pwrw:',self.power_warned,' pwr',self.power # in case no power information gathered if not self.power: if self.force: if not self.power_warned: print 'WARNING: System powering mode not detected. There is a PIco reset after a FW update, that would perform hard reset of Pi! Use --force to disable this check.' else: print 'ERROR: System powering mode not detected. System has to be powered via the Pi USB port since here is a PIco reset after a FW update, that would perform hard reset of Pi! Make a proper HW/Pi setup of Serial interface or PiCo interface(I2C) to enable auto-detection. This can happen also in case that PIco is already in the bootload mode having PIco RED led lid. Use --force to disable this check.' sys.exit(3) """ 3) Check that there is a PIco bootloader connected to the other side of the serial interface :) - Send dummy command and get the confirmation from the bootloader """ def serial_check(self): print "Checking communication with bootloader:", status=False try: # Set up the connection to the PIco PIco = self.serial.Serial(port=self.port,baudrate=38400,timeout=0.005,rtscts=0,xonxoff=True) # empty the input buffer for line in PIco: pass # send dummy command PIco.write(":020000040000FA\r") except: print "KO\nERROR: Unable to establish communication with PIco bootloader via port:",self.port,'Please verify that the serial port is availble.' sys.exit(2) try: # set the wait iterations for the bootloader response rcnt=1000 # loop and wait for the response while rcnt>0: # in case there is something waiting on the serial line for resp in PIco: # get rid of the nwlines resp=resp.strip() # check if the response is the expected value or not :) if ord(resp[0])==6: print "OK" status=True rcnt=1 else: print "KO\nERROR: Invalid response from PIco:",ord(resp[0])," Please retry the FW upload process." sys.exit(2) break rcnt-=1 except: print "KO\nERROR: Something wrong happened during verification of communication channel with PIco bootloader via port:",self.port,'Please verify that the serial port is availble and not used by some other application.' sys.exit(2) # in case communication not verified if not status: if self.force: print "KO\nWARNING: Unable to verify communication with bootloader in PIco. Is the PIco in the bootloader mode? (Red LED lid on PIco)" else: print "KO\nERROR: Failed to establish communication with bootloader in PIco. Is the PIco in the bootloader mode? (Red LED lid on PIco)" sys.exit(2) # close the channel to PIco PIco.close() """ 4) Verify the content of the provided FW file by: a) validating crc b) validating format c) validating passed data syntax """ def validate(self): print "Validating firmware:", valid=False #count number of lines lnum=1 # open the FW file f = open(self.filename) # for each file line for line in f: #static LEN ADDR1 ADDR2 TYPE DATA CKSUM #: 04 05 00 00 50EF2EF0 9A # parse the line target = re.match( r"^:([a-fA-F0-9]{2})([a-fA-F0-9]{2})([a-fA-F0-9]{2})([a-fA-F0-9]{2})([a-fA-F0-9]*)([a-fA-F0-9]{2}).$", line, re.M|re.I|re.DOTALL) # in case the data field does not have correct size if len(target.group(5))%2!=0: print "KO\nLine",lnum,': Invalid bytecode message!' sys.exit(4) # get the CRC valucalculate CRC crc1=int(line[-4:-1],16) # calculate the CRC value of the data read crc2=0 for i in range(1, len(line)-5, 2): #print line[i:i+2] crc2+=int(line[i:i+2],16) # python cannot simulate byte overruns, so ugly math to be done crc2%=256 crc2=255-crc2+1 crc2%=256 # validate the CRC :) if crc1!=crc2: print "KO\nLine",lnum,': Invalid bytecode checksum! Defined:', crc1,'Calculated:', crc2 sys.exit(4) # in case that the done command is detected, than finish if target.group(4)=='01': valid=True break lnum+=1 # close the FW file f.close() if not valid: print "KO\n Termination signature not found in the firmware file." sys.exit(4) else: print 'OK' """ 5) Upload the FW to PIco """ def fw_upload(self): print "Uploading firmware: 0% ", # count the number fo lines in the file for the progress bar with open(self.filename) as f: lnum=len(list(f)) # open the FW file f = open(self.filename) # Set up the connection to the PIco PIco = self.serial.Serial(port=self.port,baudrate=38400,timeout=0.005,rtscts=0,xonxoff=True) # empty the input buffer for line in PIco: pass status=False # send the data to PIco PIco.write(";HELLO\r") rcnt=100 # loop and wait for the response while rcnt>0: # in case there is something waiting on the serial line for resp in PIco: # get rid of the nwlines resp=resp.strip() # check if the response is the expected value or not :) if ord(resp[0])==6: #print "Response OK:",ord(resp) status=True rcnt=1 else: print "KO\nERROR: Invalid status word from PIco (",ord(resp),') when processing initial line! Please retry the FW upload process.' sys.exit(5) break rcnt-=1 if not status: print "KO\nERROR: No status word from PIco revcieved when processing initial line! Please check possible warnings above and retry the FW upload process." sys.exit(5) # calculate 5% progress bar step lnumx=lnum/100*5 # count the processed lines lnum2=1 # for each line in the FW file for line in f: status=False # strp the \r\n and add only \r line=line.strip()+"\r" # send the data to PIco PIco.write(line) #print "Written:",line # set the wait iterations for the bootloader response rcnt=100 lrcnt=0 # loop and wait for the response while rcnt>0: # in case there is something waiting on the serial line for resp in PIco: # get rid of the nwlines resp=resp.strip() # check if the response is the expected value or not :) if ord(resp[0])==6: #print "Response OK:",ord(resp) #print "Waited:",rcnt status=True lrcnt=rcnt rcnt=1 else: print "KO\nERROR: Invalid status word from PIco (",ord(resp),') when processing line',lnum2,' Please retry the FW upload process.' sys.exit(5) break rcnt-=1 if not status: print "KO\nERROR: No status word from PIco revcieved when processing line",lnum2,' Please check possible warnings above and retry the FW upload process.' sys.exit(5) # in case that the done command is detected, than finish if line[7:9]=='01': break lnum2+=1 # show the update progress and show percentages of the process ssometimes if lnum2%lnumx==0: print ' '+str(round(float(100*lnum2/lnum)))+'% ', else: if lrcnt>80: sys.stdout.write('.') elif lrcnt>60: sys.stdout.write(',') elif lrcnt>40: sys.stdout.write('i') elif lrcnt>20: sys.stdout.write('|') else: sys.stdout.write('!') sys.stdout.flush() print ' Done uploading...' # close the FW file f.close() """ 6) Perform factory reset of the PIco """ def factory_reset(self): #time.sleep(1) print "Invoking factory reset of PIco..." time.sleep(5) status=False # Set up the connection to the PIco PIco = self.serial.Serial(port=self.port,baudrate=38400,timeout=0.005,rtscts=0,xonxoff=True) # empty the input buffer for line in PIco: pass # send factory reset command PIco.write('@factory\r') time.sleep(5) # close the channel to PIco PIco.close() print 'ALL Done :) Ready to go...' def usage(self): print "\n",sys.argv[0],' -f <fw_file> [ -v | -h | --force | -s | -p serial | -b i2c_bus_number ]',"\n" sys.exit(1) if __name__ == "__main__": FWUpdate()
[ "johan.kindgren@acrend.se" ]
johan.kindgren@acrend.se
e9c9f4f5309528d037dad01dd4af1472ed2e2ea5
49a9317592e84cac5e9cea791f33423bc2222462
/tests/test_full_stack.py
d8c4eb4b8b2c6f5785a5a298c558cb9acc6025fa
[ "Apache-2.0" ]
permissive
juju-solutions/matrix
874291b867c500968facdad05a60bbc60db03f7d
60ff9290591f034dbf92a1cd9494c02d51f28929
refs/heads/master
2021-01-11T02:09:55.674968
2017-04-28T14:10:14
2017-04-28T14:10:14
70,099,250
8
6
null
2017-04-28T13:56:10
2016-10-05T21:02:43
Python
UTF-8
Python
false
false
479
py
from pathlib import Path import pytest import unittest from matrix.main import main from matrix.utils import new_event_loop class TestFullStack(unittest.TestCase): def test_stack(self): controller = pytest.config.getoption('--controller') if not controller: raise unittest.SkipTest() with new_event_loop(): bundle = Path(__file__).parent / 'basic_bundle' main(['-c', controller, '-p', str(bundle), '-s', 'raw'])
[ "petevg@gmail.com" ]
petevg@gmail.com
3ccb2810111cc7c17fff1237b94360a7db98e23c
a573577081d7d33b4f8f52a7e5cfc5878a82161c
/backend/General/linear_search.py
6108582343e7f1646d079d93e632600befd7675c
[]
no_license
akshaygoregaonkar/Interview_prep
38d320aa92e0bfba5e6d8c36ad8f93bff6a11e97
abf6f2ffb969c7e1cd6c80cb79f41d4659de53ad
refs/heads/main
2023-06-18T00:47:51.102679
2021-07-19T06:51:30
2021-07-19T06:51:30
387,366,390
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
my_list=[1,2,4,5,6,7,8,1,2] def linear_search(arr,num): for i in range(len(arr)): if num==arr[i]: return f'fount at and index {i}' else: return "not found" print('hee') if __name__ =='__main__': print(linear_search(my_list,8))
[ "akshaygoregaonkar@gmail.com" ]
akshaygoregaonkar@gmail.com
d776256b9c0888939a4ddb81ebaea252992d1067
be2105e01881d4806c78e79fa05b73133a7a1d0b
/ABC/core/storage/storage.py
9331481eea8884445d2595c60f9b615911b82a2f
[]
no_license
git-alice/auto_bin_classification
8cbea0a5d356a0e041c92cc43f3f11ff68e9ac4b
0f07005cc99ca08437219a587d1a3d276503caab
refs/heads/master
2023-01-12T19:19:38.819864
2020-11-22T22:28:17
2020-11-22T22:28:17
313,606,108
0
0
null
null
null
null
UTF-8
Python
false
false
2,874
py
import cloudpickle as pickle from pathlib import Path from typing import Dict, Any, List, Union from ABC.core.storage.pickled import Pickled class Storage: root: Path = Path('./data/') verbose: bool = True _verbose_print_margin: str = '\t' @classmethod def set_root(cls, root: Union[str, Path]) -> None: cls.root = Path(root) @classmethod def save(cls, item: Any, filename: Union[str, Path], sub_storage: Union[str, Path] = '', **kwargs: Dict[str, Any]) -> None: print('Сохранение:') filename = Path(filename) if cls.verbose: print(f'{cls._verbose_print_margin}Текущая директория: {Path.cwd()}') print(f'{cls._verbose_print_margin}Корень базы данных: {cls.root}') print(f'{cls._verbose_print_margin}Хранилище/Подхранилище: {sub_storage or cls.root}') cls.root.mkdir(parents=True, exist_ok=True) if not filename.is_absolute(): (cls.root / sub_storage / filename).parent.mkdir(parents=True, exist_ok=True) try: filename = Path(f'{filename}.pickle') pickled_item = Pickled(item=item) pickled_item.save_data_hook(**kwargs) with open(cls.root / sub_storage / filename, 'wb') as f: pickle.dump(pickled_item, f) except Exception as e: print(f'{cls._verbose_print_margin}Тип данных не соответвует базе данных.') print(f'{cls._verbose_print_margin}Тип объекта: ', type(item)) print(f'{cls._verbose_print_margin}Исключение:', e) @classmethod def load(cls, filename: str, sub_storage: Union[str, Path] = '') -> Pickled: print('Загрузка:') try: filename = Path(f'{filename}.pickle') print(f'{cls._verbose_print_margin}Загрузка из: {cls.root / sub_storage / filename}') if cls.verbose else None with open(cls.root / sub_storage / filename, 'rb') as f: pickled = pickle.load(f) pickled.load_data_hook() return pickled.item except FileNotFoundError: print(f'{cls._verbose_print_margin}Объект отсутствует в базе данных.') @classmethod def get_storages(cls) -> List[str]: return [p.stem for p in cls.root.glob('*') if p.is_dir()] @classmethod def get_all_names_from_storage(cls, storage: Union[str, Path] = '', ext: str = 'pickle') -> List[str]: return [f.stem for f in cls.root.glob(f'{storage}/*.{ext}') if f.is_file()] @classmethod def load_all_from_storage(cls, storage: Union[str, Path] = '') -> List[Pickled]: objs = [cls.load(f) for f in cls.get_all_names_from_storage(storage)] return objs
[ "art.oxbow@gmail.com" ]
art.oxbow@gmail.com
08f1569e594d0509eedf93ee0f374cdca24efc59
59478c1c4146a49efbf3af2e86e0c6c76a7b6f47
/section16_DataAnalysis/IdentifyUniqueValueInSeries.py
80fe125b4bf7d1a3e032f062463e77c15135ff05
[]
no_license
CRUZEAAKASH/PyCharmProjects
ac7c0cc49a0be07d25723401609dc09692908e68
4037ce9022d1fa76f4e6b906c34718942b3bc01c
refs/heads/master
2020-06-06T15:22:13.442484
2019-07-19T04:09:23
2019-07-19T04:09:23
192,776,045
1
0
null
null
null
null
UTF-8
Python
false
false
137
py
from pandas import Series series = Series([100, 200, 300, 400, 500], index=[1, 1, 2, 2, 3]) print(series) print(series.index.is_unique)
[ "aakash.shinghal@gmail.com" ]
aakash.shinghal@gmail.com
0c7a9e9338398106e5ed1e1b8552fce1ccd6c84b
97b9e22b3177975ab14e2559dd2ab4b3078dc54a
/NEAL/NEAL/settings.py
c967198a4c4c42d7652970280bf135d1f5dbfe64
[ "Apache-2.0" ]
permissive
ankitshah009/Never_Ending_Learning_of_Sound
c969cbaa7827cf2349cf5212bbe112aed687bcd3
4f9425e8c16145def9e5d2fc9b5a397ad4c7d6ac
refs/heads/master
2021-01-21T19:19:13.586834
2015-03-28T13:15:16
2015-03-28T13:15:16
28,266,575
2
0
null
null
null
null
UTF-8
Python
false
false
2,204
py
""" Django settings for NEAL project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'tcktrq3#jbe9^pity=zdaz%@2tg9-n0j^9p(+sao)pg)gyd^$e' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'neal_main', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'NEAL.urls' WSGI_APPLICATION = 'NEAL.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_ROOT = os.path.join(os.path.abspath(__file__), './static/') STATIC_URL = '/static/' MEDIA_URL = 'media/' MEDIA_ROOT = os.path.join(os.path.abspath(__file__), './../../media/') #MEDIA_ROOT = '/home/rohan/Desktop/rohan/NITK/NEAL/media/'
[ "rohan.badlani@gmail.com" ]
rohan.badlani@gmail.com
b870395af63b1f010c5ef303162cc4266d545fe5
47bbbb5819fb18274a2a1b48ead23d62f22f0480
/Infection_vs_Inflammation/Code/Process_Data_V2.py
8c814d9d58ad9d0c75a1163e09e732ffc3a95126
[ "MIT" ]
permissive
MosabAboidrees/Machine-Learning-4-MRI
84df6def566d33d142f9e372183e3f4d2bf1ec39
973196063d69115048bfa97f213dd6ff0400f74d
refs/heads/master
2021-06-19T21:50:49.283163
2017-07-28T18:40:27
2017-07-28T18:40:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,314
py
# Import Modules as needed import numpy as np #import seaborn as sn import pandas as pd from mylocal_functions import * import matplotlib.pyplot as plt # ======== CEST============= # # Make list of all CEST.txt files CEST_list=get_ipython().getoutput('ls ../Study_03_CBA/*CEST.txt') # create function to normalize data def normalize_data(DataMatrix): rows,cols = DataMatrix.shape newData = np.zeros_like(DataMatrix) for row in range(rows): newData[row,:]=DataMatrix[row,:]/DataMatrix[row,8] return newData # extract CEST data as a 4 X 110 matrix Z=np.zeros((4,110)) for names in CEST_list: D=txt_2_array(names); #Convert txt file to array Zn=normalize_data(D.T) Z=np.concatenate((Z,Zn)) Z=Z[4::,9::] # define offsets in ppm a1=np.linspace(-55,-50,9); ppm=np.linspace(-8,8,101); full_ppm = np.concatenate((a1, ppm)) # Fit data to center it CEST_centered=np.zeros_like(Z); rows,cols = CEST_centered.shape; CEST_integral=np.zeros((rows,1)) for i in range(rows): p=fit_L2_scale(ppm,Z[i,:]) L=Lscale(ppm,p[0],p[1],p[2],p[3],p[4],p[5],p[6]); CEST_centered[i,:]=L CEST_integral[i,0]=np.sum(L) # create tissue label TissueLabel=np.zeros((rows,1)) for i in range(1,4): TissueLabel[i::4]=i CEST_integral_df= pd.DataFrame(data=CEST_integral,columns=["CEST_integral"]); CEST_integral_df["Tissue"]=TissueLabel Y=np.zeros((16,4)) for i in range(4): df=CEST_integral_df[CEST_integral_df["Tissue"]==i] Y[:,i]=df.CEST_integral.values; # ======== T2 MSME============= # # Make list of all T2.txt files T2_list = get_ipython().getoutput('ls ../Study_03_CBA/*S3*T2.txt') T2_matrix=np.zeros( (len(T2_list),4) ) TR=np.linspace(.012,.012*12,12) # Fit T2 for i in range(len(T2_list)): YDataMatrix=txt_2_array(T2_list[i]) #Estimate T2 T2time=fitT2(TR,YDataMatrix) T2_matrix[i,:]=T2time.T #======== create violing plots ============= # Tissues=["Infected","Healthy R","Sterile Infl.","Healthy K"] fig = plt.figure(); ax = fig.add_subplot(111) ax.set_xticks([1, 2, 3, 4]) ax.set_xticklabels(Tissues) plt.violinplot(Y); plt.ylabel("CEST Integral") # create violing plot fig = plt.figure(); ax = fig.add_subplot(111) ax.set_xticks([1, 2, 3, 4]) ax.set_xticklabels(Tissues) plt.violinplot(T2_matrix); plt.ylabel("T2 time")
[ "cardenaj@email.arizona.edu" ]
cardenaj@email.arizona.edu
e100368d8011cacb0b33df604df945f44851ff6d
4e82346452869030bd22c6c529fd8ce93ed9218b
/venv/bin/pip
faf00e9528fcca23fe1a046975f73e108eccfe7e
[]
no_license
rhofvendahl/factor_graph
155df6a11ee6c5c1217c79f14e205bebf7c73455
2ab9d05eadeb13340adb03b1798859dd7df68a76
refs/heads/master
2020-04-08T01:43:58.466840
2018-11-24T06:05:29
2018-11-24T06:05:29
158,907,575
0
0
null
null
null
null
UTF-8
Python
false
false
243
#!/home/russell/factor_graph/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "rhofvendahl@gmail.com" ]
rhofvendahl@gmail.com
09f9604f9c8ea22ee6f81a3c1d977d3508559134
f1738cd603e0b2e31143f4ebf7eba403402aecd6
/ucs/management/univention-directory-manager-modules/univention-cli-client
4d826e3ec396991d416322d0414d98e410fa4de7
[]
no_license
m-narayan/smart
92f42bf90d7d2b24f61915fac8abab70dd8282bc
1a6765deafd8679079b64dcc35f91933d37cf2dd
refs/heads/master
2016-08-05T17:29:30.847382
2013-01-04T04:50:26
2013-01-04T04:50:26
7,079,786
8
6
null
2015-04-29T08:54:12
2012-12-09T14:56:27
Python
UTF-8
Python
false
false
4,125
#!/usr/bin/python2.6 # -*- coding: utf-8 -*- # # Univention Admin Modules # the command line client program # # Copyright 2004-2012 Univention GmbH # # http://www.univention.de/ # # All rights reserved. # # The source code of this program is made available # under the terms of the GNU Affero General Public License version 3 # (GNU AGPL V3) as published by the Free Software Foundation. # # Binary versions of this program provided by Univention to you as # well as other copyrighted, protected or trademarked materials like # Logos, graphics, fonts, specific documentations and configurations, # cryptographic keys etc. are subject to a license agreement between # you and Univention and not subject to the GNU AGPL V3. # # In the case you use this program under the terms of the GNU AGPL V3, # the program is provided in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public # License with the Debian GNU/Linux or Univention distribution in file # /usr/share/common-licenses/AGPL-3; if not, see # <http://www.gnu.org/licenses/>. import locale import socket import time import os import sys import string import codecs from univention.config_registry import ConfigRegistry socket_dir='/tmp/admincli_%s/' % os.getuid() socket_filename='sock' socket_path=(socket_dir+socket_filename) s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) cmd='' data='' output=[] logfile='' pos = 0 for arg in sys.argv: pos += 1 if '--logfile' == arg[:9]: if len(arg) > 10 and arg[9] == "=": logfile = arg[10:] else: try: logfile=sys.argv[pos] except: print "E: Option --logfile requires an argument" sys.exit(1) try: s.connect(socket_path) except: pid=os.fork() if not pid: null = os.open('/dev/null', os.O_RDWR) os.dup2(null, sys.stdin.fileno()) os.dup2(null, sys.stdout.fileno()) os.dup2(null, sys.stderr.fileno()) if len(logfile) >0: os.execv('/usr/share/univention-directory-manager-tools/univention-cli-server', ['univention-cli-server', logfile]) else: os.execv('/usr/share/univention-directory-manager-tools/univention-cli-server', ['univention-cli-server']) else: os.waitpid(pid, os.P_NOWAIT) ucr = ConfigRegistry() ucr.load() socket_timeout = int(ucr.get('directory/manager/cmd/sockettimeout', '50')) stime=int(time.time()) while not os.path.exists('%s' % socket_path): time.sleep(0.1) if int(time.time()) > stime+socket_timeout: print 'E: Can`t find running daemon after %s Seconds. (No socketfile)' % socket_timeout sys.exit(1) connection_timeout=30 # this took a long time if getfqdn(host) was used in cli-server stime=int(time.time()) socking=0 while socking == 0: try: s.connect(socket_path) socking=1 except: time.sleep(0.1) if int(time.time()) > stime+connection_timeout: print 'E: Can`t connect daemon after %s seconds.' % connection_timeout sys.exit(1) #sys.exit(1) cmdfile=os.path.basename(sys.argv[0]) if cmdfile == 'univention-passwd': pwd1='x' pwd2='y' while pwd1 != pwd2: pwd1=raw_input('New password ') pwd2=raw_input('Re-enter new password ') if pwd1 != pwd2: print 'password missmatch' sys.argv.append('--pwd') sys.argv.append(pwd1) s.send(repr(sys.argv)+'\0') while 1: buf = s.recv(1024) if len(buf) <= 0: print 'E: Daemon died.' sys.exit(1) elif buf[-1] == '\0': buf = buf[0:-1] data += buf break else: data += buf rc=0 output = eval(data) s.close() if cmdfile == 'univention-passwd': for line in output: if line.startswith('passwd error: '): print line if line == 'passwd error: password alreay used': rc=1 elif line.startswith('passwd error: The password is to short'): rc=2 else: print line else: if output[-1] == "OPERATION FAILED": rc = 3 output = output [:-1] for i in output: if type(i) is unicode: print i.encode(locale.getpreferredencoding(), 'replace') else: print i sys.exit(rc)
[ "kartik@debian.org" ]
kartik@debian.org
485b3825671ed5a47eb13c5cc6185a30b8d8dace
8ff04ffaff45a852da164acff411b7eca2cc4039
/20.02.2017/4.9.5.py
63efcc8fd0a90d102def648a12797165cfacfbde
[]
no_license
NguyenVietTrung/Techkids-C4E8
477c1b8dff70a871374340efe9343a41db7df3bb
e54257ce8c1407cde69d9dc93c69df881c7060ae
refs/heads/master
2021-01-19T09:52:13.944261
2017-03-24T17:06:15
2017-03-24T17:06:15
82,156,797
0
1
null
null
null
null
UTF-8
Python
false
false
320
py
from turtle import * bgcolor("lightgreen") color("blue") pensize(2) speed(-1) def ds1(n, side): for i in range(n): forward(side) left(90) side = side + 1 def ds2(n, side): for i in range(n): forward(side) left(70) side = side + 1 ds1(100, 1) ds2(100, 1)
[ "trungnv.1710@gmail.com" ]
trungnv.1710@gmail.com
be4ba72cbcb00b5350e68c0fc76a4d61c8bed511
1cf9771570cd18202efc94cf42ca93dafdb98a7f
/python/pan.py
dc948c820c0792bf1f916e71e2bb67fe8ec235aa
[]
no_license
webis-de/python_deVel-01-email-authorship-forensics
6e95250f2711cd6d2f5b746f42cea6c22de98316
4f4725484199f012476f1eb0768a05f6d165478e
refs/heads/master
2021-08-24T01:55:31.384045
2017-12-07T14:57:14
2017-12-07T14:57:14
107,246,201
0
0
null
null
null
null
UTF-8
Python
false
false
2,768
py
# Credits to: https://raw.githubusercontent.com/webis-de/savoy13-authorship-attribution/master/pan.py?token=AVfOvTqGcG9_-XTWbTq1SMnuw_-OfUWaks5aKUj1wA%3D%3D from bs4 import BeautifulSoup from collections import Counter from heapq import nlargest import re class PAN_training: def cleanup(self, path): with open(path, 'r') as infile: data = re.sub(r'<(?!\/?(text|training|author|body|NAME))', '', infile.read()) with open(path, 'w') as outfile: outfile.write(data) def __init__(self, xml_location): self.cleanup(xml_location) self.data = {} with open(xml_location) as fp: xml_soup = BeautifulSoup(fp, "xml") root = xml_soup.training for child in root.findAll('text'): author = child.find('author').get('id') text = child.body.text.lower() \ .replace("don't", "do not") \ .replace("doesn't", "does not") \ .replace("didn't", "did not") \ .replace("can't", "cannot") \ .replace("mustn't", "must not") \ .replace("won't", "will not") \ .replace("shouldn't", "should not") \ .replace("couldn't", "could not") \ .replace("wouldn't", "would not") \ .replace("haven't", "have not") \ .replace("hasn't", "has not") \ .replace("wasn't", "was not") \ .replace("'ll", " will") wordlist = [] pointer = 0 for i, c in enumerate(text): if not (65 <= ord(c) <= 90 or 97 <= ord(c) <= 122): if i - pointer >= 1: wordlist.append(text[pointer:i]) if c in ".,:;-!?'": wordlist.append(c) pointer = i + 1 # todocount=child.get("file") self.data[author] = self.data.get(author, []) + [(wordlist, Counter(wordlist))] # print(todocount) def reduce_author_set(self, n=20): # TODO move to superclass self.data = dict(nlargest(n, self.data.items(), key=lambda a: len(a[1]))) def total_freqs(self): return sum((self.author_freqs(a) for a in self.data), Counter()) def total(self): return sum(self.data.values(), []) def author_freqs(self, author): return sum((a[1] for a in self.data[author]), Counter()) if __name__ == "__main__": p = PAN_training("raw/LargeTrain.xml") p.reduce_author_set(20) print("Number of articles by the", 20, "most active authors:", sum(len(p.data[v]) for v in p.data)) print(sum(p.total_freqs().values())) print(p.total_freqs().most_common(200)) p.total()
[ "marcel.schliebs@sciencespo.fr" ]
marcel.schliebs@sciencespo.fr
55ff97a0fcc757d4a27ac0c45b8f09b5d4eac8bb
c0809283f8747fb39a960a8f0d1ae08e90f738c5
/bezman_shop/accounts/decorators.py
aa2d89c58a5347458be84a42a0821c61f3f82914
[]
no_license
zarina494/BEZMAN
df8570b0178603c3ad193e47e3eaa359358ef870
279bf93cdab40d795ac00e4fb4200b9bd89bff1d
refs/heads/main
2023-01-30T11:52:23.954619
2020-12-16T05:54:08
2020-12-16T05:54:08
317,106,894
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
from django.shortcuts import redirect def admin_only(function): def wrap(request,*args,**kwargs): if request.user.is_staff: return function(request,*args,**kwargs) else: return redirect('products') return wrap
[ "Sadykova-zarina@inbox.ru" ]
Sadykova-zarina@inbox.ru
ffd5136b4c1fc3303bbea7946185e8061c4ec266
3b91490de7037e81092802b4e4dbbdc5c82d7764
/OP_ELM/elm.py
919af66ba238a03fef79927f1eb8734e346eb452
[]
no_license
tylerwmarrs/elm-skin-segmentation
199dc20fef2528ba27fcd662ec34ee64fa6d4ff9
88bc06321c462c940b6fd21d86e2f5cad1dfbbfd
refs/heads/master
2021-01-11T16:30:09.480761
2016-12-10T18:41:36
2016-12-10T18:41:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,083
py
# -*- coding: utf-8 -*- """ Created on Wed Nov 27 14:07:48 2013 @author: akusoka1 """ import numpy as np from numpy.linalg import inv from scipy.optimize import minimize from mrsr import mrsr from slfn import SLFN class ELMError(Exception): def __init__(self, v): self.val = v def __str__(self): return repr(self.val) class ELM(object): """Implementation of ELM. """ # global variables nn = None op_max_samples = 5000 # limit of samples for mrsr TOL = np.finfo(np.float32).eps * 50 # tolerance for linear solver def __init__(self, inputs, outputs=0, mirror=0, lin=0, tanh=0): """Starts ELM with parameters. X - input data OR elm parameters for running, with loaded parameters no training possible mirror - number of dimensions copied to hidden neurons, copy first #mirror dimensions lin - number of linear combination neurons tanh - number of tanh neurons """ # load trained network if isinstance(inputs, SLFN): self.nn = inputs # train a new elm else: # set input and output dimensions if (mirror<1) and (lin<1) and (tanh<1): raise ELMError("No neurons selected.") self.nn = SLFN() self.nn.d = inputs+1 self.nn.p = outputs self.nn.k = max(mirror,0) + max(lin,0) + max(tanh,0) self.nn.feats = np.arange(self.nn.d) self.nn.W = self._gen_random_weights(mirror, lin, tanh) # random projection matrix def _norm_X(self, X): # check saliency if len(X.shape) != 2: raise ELMError("X must be 2-dim numpy array.") if X.shape[1] < np.max(self.nn.feats): raise ELMError("Wrong input dimension: %d expected, %d found"\ % (np.max(self.nn.feats), X.shape[1])) # add bial column X = np.hstack((X, np.ones((X.shape[0],1)))) # add bias X = X.take(self.nn.feats, axis=1) return X def _norm_Y(self, Y, X): if len(Y.shape) == 1: # reshape single output to 2-dim form Y = np.reshape(Y, (-1,1)) if len(Y.shape) != 2: raise ELMError("Y must be 1-dim or 2-dim numpy array.") if Y.shape[0] != X.shape[0]: raise ELMError("X and Y have different number of samples.") if Y.shape[1] != self.nn.p: raise ELMError("Wrong output dimension: %d expected, %d found"\ % (self.nn.p, Y.shape[1])) return Y def _gen_random_weights(self, mirror, lin, tanh): """Generate random projection matrix and mapping functions. Identity function is 'None'. """ d = self.nn.d - 1 # without bias W = [] self.nn.f = [] # reset features # add mirrored neurons if mirror > 0: mirror = min(mirror, d) # limit to number of inputs W.append(np.eye(d, mirror)) self.nn.f.extend([0]*mirror) # add linear neurons if lin > 0: W.append(np.random.randn(d, lin)) self.nn.f.extend([0]*lin) # add tanh neurons if tanh > 0: W.append(np.random.randn(d, tanh)) self.nn.f.extend([1]*tanh) # add bias self.nn.f = np.array(self.nn.f) W = np.vstack((np.hstack(W), np.random.randn(1, self.nn.k))) return W def _press(self, H, Y, lmd=None): """According to Momo's article. Extended case for multiple outputs, 'W' is 2-dimensional. """ # no lambda version of PRESS if lmd is None: return self._press_basic(H,Y) X = H N = X.shape[0] U,S,V = np.linalg.svd(X, full_matrices=False) A = np.dot(X, V.T) B = np.dot(U.T, Y) # function for optimization def lmd_opt(lmd, S, A, B, U, N): Sd = S**2 + lmd C = A*(S/Sd) P = np.dot(C, B) D = np.ones((N,)) - np.einsum('ij,ji->i', C, U.T) e = (Y - P) / D.reshape((-1,1)) MSE = np.mean(e**2) return MSE res = minimize(lmd_opt, lmd, args=(S,A,B,U,N), method="Powell") if not res.success: print "Lambda optimization failed: (using basic results)" print res.message MSE = lmd_opt(lmd, S, A, B, U, N) self.nn.lmd = None else: lmd = res.x MSE = res.fun self.nn.lmd = lmd return MSE def _press_basic(self, H, Y): """According to Momo's article, fast version with no L2-regularization. Extended case for multiple outputs, 'W' is 2-dimensional. """ X = H N = X.shape[0] C = inv(np.dot(X.T, X)) P = X.dot(C) W = C.dot(X.T).dot(Y) D = np.ones((N,)) - np.einsum('ij,ji->i', P, X.T) e = (Y - X.dot(W)) / D.reshape((-1,1)) MSE = np.mean(e**2) return MSE def _op_core(self, X, Y, lmd=None, Kmax=0): """Core OP-ELM function, used in other methods. """ if Kmax == 0: Kmax = self.nn.k N = X.shape[0] if N > self.op_max_samples: idx = np.arange(N) np.random.shuffle(idx) idx = idx[:self.op_max_samples] X = X.take(idx, axis=0) Y = Y.take(idx, axis=0) H = self.nn._project(X) # rank all neurons wrt their usefullness rank = mrsr(Y, H, kmax=Kmax) """ tree-like close-to-optimal discrete function optimization evaluate 3 middle points every time, then reduce search range twice delta is distance between a <-> b1 <-> b2 <-> b3 <-> c note that b3 <-> c may be larger than delta! |-------------------------------------| a0 b1 b2 b3 c0 < say smallest error at b3 |------------------| a1 b1 b2 b3 c1 etc... """ a = 0 c = Kmax b = c E = np.ones((Kmax,)) while True: delta = max((c-a)/4, 1) # if delta==1, evaluate all points in range and exit if delta < 2: for i in range(a,b): if E[i] == 1: # if we have not calculated this yet Hi = H.take(rank[:i+1], axis=1) E[i] = self._press(Hi, Y, lmd) break # check 3 middle points for b in [a+delta, a+2*delta, a+3*delta]: if E[b] == 1: # if we have not calculated this yet Hi = H.take(rank[:b], axis=1) E[b] = self._press(Hi, Y, lmd) b = np.argmin(E) a = b-delta if b != (a+3*delta): # don't change the upper bound <Kmax> c = b+delta self.best_idx = rank[:np.argmin(E)+1] # indices of best neurons return E.min() def _update_nn(self): """Update ELM parameters using calculated best indices. """ best_idx = self.best_idx self.nn.k = len(best_idx) self.nn.W = self.nn.W.take(best_idx, axis=1) self.nn.f = np.array([self.nn.f[i] for i in best_idx], dtype=np.int) if len(self.nn.B) > 0: self.nn.B = self.nn.B.take(best_idx, axis=0) def _train_op(self, X, Y, Kmax=0): """Perform optimal pruning of ELM. kmax - maximum amount of samples for pruninig step - step for checking the results """ H = self.nn._project(X) E_min = self._op_core(X,Y,Kmax=Kmax) self._update_nn() H_new = self.nn._project(X) self.nn._solve(H_new, Y) return E_min def _train_trop(self, X, Y, Kmax=0): """Perform TR-optimized Optimal Pruning of ELM. kmax - maximum amount of samples for pruninig """ E_min = self._op_core(X, Y, lmd=1E-3, Kmax=Kmax) self._update_nn() H_new = self.nn._project(X) self.nn._solve(H_new, Y) return E_min def _train_tr(self, X, Y, Kmax=0): """Tikhonov-regularized ELM. """ H = self.nn._project(X) E = self._press(H, Y, 1E-5) # this finds optimal lambda self.nn._solve(H, Y) return E def _train_basic(self, X, Y, Kmax=0): """Train a basic version of ELM. """ H = self.nn._project(X) self.nn._solve(H, Y) ############################################################################## def train(self, X, Y, method='none', Kmax=0): """Training wrapper. """ X = self._norm_X(X) Y = self._norm_Y(Y,X) methods = {"basic": self._train_basic, "tr": self._train_tr, "op": self._train_op, "trop": self._train_trop} E = methods[method.lower()](X,Y,Kmax) return E def get_nn(self): return self.nn def set_nn(self, nn): self.nn = nn def run(self, X, Y=None): X = self._norm_X(X) H = self.nn._project(X) Yh = H.dot(self.nn.B) if Y is None: return Yh else: Y = self._norm_Y(Y,X) E = self._press(H, Y, self.nn.lmd) return Yh, E def try1(): ins = 50 outs = 5 N = 1000 X = np.random.randn(N,ins) Y = np.random.rand(N,outs) elm = ELM(ins, outs, mirror=ins, lin=0, tanh=100) elm.train(X, Y, method='op') Yh = elm.run(X) print "mse: ", np.mean((Y-Yh)**2) print "Done!" if __name__ == "__main__": print "numpy version: ", np.__version__ try1()
[ "noreply@github.com" ]
tylerwmarrs.noreply@github.com
688f53121ca85a7233c64051dc740b97edb52db7
c4b618ae721abc13862c617f91c6ccf0f86fc01b
/neutron/db/migration/alembic_migrations/versions/33dd0a9fa487_embrane_lbaas_driver.py
f1d5fd016160e72e2c73b888deb23d4dd724b8ba
[ "Apache-2.0" ]
permissive
virtualopensystems/neutron
2c3938375d02e3b80a0a32640573e3ed0dffa11d
067acd95ab6042ca5d123342abd420a2a938acd2
refs/heads/master
2020-07-02T03:22:36.448097
2019-04-18T09:46:34
2019-04-18T09:46:34
22,715,796
3
0
null
null
null
null
UTF-8
Python
false
false
1,871
py
# Copyright 2014 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """embrane_lbaas_driver Revision ID: 33dd0a9fa487 Revises: 19180cf98af6 Create Date: 2014-02-25 00:15:35.567111 """ # revision identifiers, used by Alembic. revision = '33dd0a9fa487' down_revision = '19180cf98af6' # Change to ['*'] if this migration applies to all plugins migration_for_plugins = [ 'neutron.services.loadbalancer.plugin.LoadBalancerPlugin' ] from alembic import op import sqlalchemy as sa from neutron.db import migration def upgrade(active_plugins=None, options=None): if not migration.should_run(active_plugins, migration_for_plugins): return op.create_table( u'embrane_pool_port', sa.Column(u'pool_id', sa.String(length=36), nullable=False), sa.Column(u'port_id', sa.String(length=36), nullable=False), sa.ForeignKeyConstraint(['pool_id'], [u'pools.id'], name=u'embrane_pool_port_ibfk_1'), sa.ForeignKeyConstraint(['port_id'], [u'ports.id'], name=u'embrane_pool_port_ibfk_2'), sa.PrimaryKeyConstraint(u'pool_id')) def downgrade(active_plugins=None, options=None): if not migration.should_run(active_plugins, migration_for_plugins): return op.drop_table(u'embrane_pool_port')
[ "ivar@embrane.com" ]
ivar@embrane.com
402eeea77c85ca02c197b2159a413415b91cc1e2
776a40cd263156146da7d9efb425daa9a06f1de1
/manage.py
e7dde1f7f0f8e42e7c318c92ef0fbd32222b5063
[]
no_license
VikkyyChavan/pdazure
5d5367785e17713466e409caf8eaa6a58106f48e
2fc91979f2b03a516d7ddc40de5b16fbb5b44861
refs/heads/master
2023-01-03T19:37:38.986642
2020-11-02T08:37:39
2020-11-02T08:37:39
309,304,231
0
0
null
null
null
null
UTF-8
Python
false
false
542
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'pddjango01.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "prafula.chavan@in.abb.com" ]
prafula.chavan@in.abb.com
6b7aef28c6bdd7ea5e6a9d231eeed282eb8e4034
5ed4a18dda71dcfe082326a2737a3c4d92a14b02
/blog/models.py
86fad0f01f134e963368845bb7fece31fa8178a1
[]
no_license
Shubham7567/blog-example
67b4f29981b4b0db08a635c13fbf65e9f61c41a8
8f1df3b391a5a499427d2ad858818f78b5c54e99
refs/heads/main
2023-04-09T00:15:14.318510
2021-04-23T04:37:37
2021-04-23T04:37:37
359,691,133
0
0
null
null
null
null
UTF-8
Python
false
false
1,859
py
from django.db import models from django.db.models.expressions import OrderBy from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse from taggit.managers import TaggableManager class PublishedManager(models.Manager): def get_queryset(self): return super(PublishedManager,self).get_queryset().filter(status = 'published') class Post(models.Model): STATUS_CHOICES = ( ('draft','Draft'), ('published','Published') ) title = models.CharField(max_length=250) slug = models.SlugField(max_length=250,unique_for_date='publish') author = models.ForeignKey(User,on_delete=models.CASCADE,related_name='blog_posts') body = models.TextField() publish = models.DateTimeField(default=timezone.now) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) status = models.CharField(max_length=10,choices=STATUS_CHOICES) tags = TaggableManager() objects = models.Manager() #The default manager published = PublishedManager() #our custom manager class Meta: ordering = ('-publish',) def __str__(self): return self.title def get_absolute_url(self): return reverse("blog:post-detail", args=[self.publish.year,self.publish.month,self.publish.day,self.slug]) class Comment(models.Model): post = models.ForeignKey(Post,on_delete=models.CASCADE,related_name='comments') name = models.CharField(max_length=80) email = models.EmailField() body = models.TextField() created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) active = models.BooleanField(default=True) class Meta: ordering = ('created',) def __str__(self): return f"Comment by {self.name} on {self.post}"
[ "shubhamrathore7567@gmail.com" ]
shubhamrathore7567@gmail.com
1a813f9881b069bb5007acf25da307c780bbc231
90914b7d84d69a86652e69d1ad72888af363367b
/sale_invoice_grouping/sale.py
2440c23b6557ffd7e215463fa95a4bb599b1af5b
[]
no_license
emperadorxp1/TrytonModules
754a3ca92c0ac7b2db9165208b1bc5fda5fe4a73
33ef61752e1c5f490e7ed4ee8a3f0cff63a8fc89
refs/heads/master
2020-12-19T18:41:05.260174
2020-01-23T15:32:57
2020-01-23T15:32:57
235,815,084
0
0
null
null
null
null
UTF-8
Python
false
false
2,027
py
# This file is part of Tryton. The COPYRIGHT file at the top level of # this repository contains the full copyright notices and license terms. from trytond.pool import PoolMeta from trytond.transaction import Transaction __all__ = ['Sale'] class Sale(metaclass=PoolMeta): __name__ = 'sale.sale' @property def invoice_grouping_method(self): return self.party.sale_invoice_grouping_method @property def _invoice_grouping_fields(self): return ('state', 'company', 'type', 'journal', 'party', 'invoice_address', 'currency', 'account', 'payment_term') def _get_grouped_invoice_order(self): "Returns the order clause used to find invoice that should be grouped" return None def _get_grouped_invoice_domain(self, invoice): "Returns a domain that will find invoices that should be grouped" Invoice = invoice.__class__ invoice_domain = [ ('lines.origin', 'like', 'sale.line,%'), ] defaults = Invoice.default_get(self._invoice_grouping_fields, with_rec_name=False) for field in self._invoice_grouping_fields: invoice_domain.append( (field, '=', getattr(invoice, field, defaults.get(field))) ) return invoice_domain def _get_invoice_sale(self): transaction = Transaction() context = transaction.context invoice = super(Sale, self)._get_invoice_sale() if (not context.get('skip_grouping', False) and self.invoice_grouping_method): with transaction.set_context(skip_grouping=True): invoice = self._get_invoice_sale() Invoice = invoice.__class__ domain = self._get_grouped_invoice_domain(invoice) order = self._get_grouped_invoice_order() grouped_invoices = Invoice.search(domain, order=order, limit=1) if grouped_invoices: invoice, = grouped_invoices return invoice
[ "joxua.1995@gmail.com" ]
joxua.1995@gmail.com
3ce5dbffdf45eda8cfd3efc1430f079848517ab7
2b62026b80f5f7ec9ccf179739baecd390ca4e05
/AuthApp/admin.py
0e19232a04fe17634a7236d8040224f222487679
[ "MIT" ]
permissive
ashwani202/DjangoProject
8abb51ccb552683199d71163bf1fe4e05fa6c8b7
b97ca37ad023c0ecba62a3fd63cf1ad55dd7f65f
refs/heads/master
2023-05-27T21:20:43.002211
2021-06-09T11:50:39
2021-06-09T11:50:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
from django.contrib import admin from .models import * # Register your models here. class MyUserAccountAdmin(admin.ModelAdmin): list_display = ('email', 'first_name', 'last_name', 'created_on',) search_fields = ['email', 'first_name', 'last_name'] list_filter = ('email',) admin.site.register(MyUserAccount, MyUserAccountAdmin) class EmailAdmin(admin.ModelAdmin): list_display = ('email_id', 'subject', 'uuid', 'token', 'is_verify', 'sent_on', 'user') search_fields = ['email_id', 'subject'] list_filter = ('email_id',) admin.site.register(emailHandler, EmailAdmin) # class FollowAdmin(admin.ModelAdmin): # list_display = ('follower', 'following') # search_fields = ['follower', 'following'] # list_filter = ('follower',) # # # admin.site.register(Follow, FollowAdmin)
[ "48996332+creativeweb-aj@users.noreply.github.com" ]
48996332+creativeweb-aj@users.noreply.github.com
8dea84c38579a1a042af9682a8b70c4e2f0de8a0
493b97dd77b094024188279a35de715716d6f63c
/main.py
62c66ffd894557e1dd69502f063e6e521791339b
[]
no_license
ztyoung86/brain-hole
2b58f95b16a996c4dac27ca59508cc158e47b336
d27e9249c9c3dc4d6c3462f9a4c8f87cd3b31987
refs/heads/master
2022-12-04T23:20:40.547801
2022-11-28T03:42:05
2022-11-28T03:42:05
12,968,127
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
# -*- coding: utf-8 -*- import jieba import operator jieba.enable_parallel(4) words = {} novel = open('lingyu.txt') for line in novel.readlines(): for word in jieba.cut(line): if words.has_key(word): words[word] = words[word] + 1 else: words[word] = 1 novel.close() # sort words sorted_words = sorted(words.items(), key=operator.itemgetter(1),reverse=True) words = dict(sorted_words) output = open('dict.txt','w') out_str = "" for word in sorted_words: out_str = word[0]+" "+str(word[1])+"\n" # print out_str, output.write(out_str.encode("utf-8")) output.close()
[ "albertyang@keep.edu.hk" ]
albertyang@keep.edu.hk
62c18da37f3b5289cbc746707a3236dfb64489f3
5994b1b618d59ae057b66eb4e619c28bfe7ccf05
/books/learn-python-the-hard-way/ex_0/ex25.py
b18559041c9fb506533c8992241ce1a728eec1f9
[]
no_license
NBR-hugh/python
3e2c821232c7b1f5e461fbffe209a0d8ba9084ca
68ce4140f5c8e39fc2582ee3c072ed5875f3e152
refs/heads/master
2021-01-13T15:47:58.057862
2017-08-17T08:40:41
2017-08-17T08:40:41
76,856,759
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
def break_words(stuff): """This function will break up words for us.""" words = stuff.split(' ') return words def sort_words(words): """Sorts the words.""" return sorted(words) def print_first_word(words): """Prints the first word after popping it off.""" word = words.pop(0) print word def print_last_word(words): """Prints the last word after poping it off.""" word = words.pop(-1) print word def sort_sentence(sentence): """Takes in a full sentence and returns the sorted words.""" words = break_words(sentence) return sort_words(words) def print_first_and_last(sentence): """Prints the first and last words of the sentence.""" words = break_words(sentence) print_first_word(words) print_last_word(words) def print_first_and_last_sorted(sentence): """Sorts the words then prints the prints the first and last one.""" words = sort_sentence(sentence) print_first_word(words) print_last_word(words)
[ "574168029@qq.com" ]
574168029@qq.com
148cbbaeaa8bac4d568f343d244063e18bc01502
0aa5749bffebd13598452a9ca589bd5eaadeb3e0
/usuario/admin.py
951e261d668bedd366325d8f3e053e182365e711
[]
no_license
BrenBc/subastaonlineproyecto
f1711196a3afba7d67ee4320e09308a07af4bdcc
a21311b8f0db19cabb189ef59b9b174e4a613270
refs/heads/master
2023-01-11T08:32:44.963799
2020-11-14T11:26:40
2020-11-14T11:26:40
312,799,832
0
0
null
null
null
null
UTF-8
Python
false
false
463
py
from django.contrib import admin from . models import Banco, Cliente, Proveedor, Tipotarjeta, Venta, Tarjeta, Puja from . models import * # Register your models here. admin.site.register(Banco) admin.site.register(Cliente) admin.site.register(Proveedor) admin.site.register(Tipotarjeta) admin.site.register(Venta) admin.site.register(Tarjeta) admin.site.register(Puja) admin.site.register(Vehiculo) admin.site.register(Fotografia) admin.site.register(Categoria)
[ "bren_tn5@hotmail.es" ]
bren_tn5@hotmail.es
370dc6f0e4efc80901dc654ec759b386b86d8c68
a30166ac71e4b1c1e07d67d07a07c99b12811005
/Topicos Especiais em Programação/rede_social/manage.py
a8297a1acdc2495c0a01a0ece10dbb175f394b53
[]
no_license
WalterBluman/Tecnologo-ADS
3615422a36d4b3169f7534601c8bbc9abe25f1ef
cebf94e482fa0e348aeda0f66b34ca3f26a2aa27
refs/heads/master
2020-12-03T19:15:28.025905
2018-07-18T18:22:54
2018-07-18T18:22:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
543
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "rede_social.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "sywrahgabriella@hotmail.com" ]
sywrahgabriella@hotmail.com
94efcfe4d501d4833645593f4f7ae01f97cfe608
aad55a3fbb66d05408c69e032c9188dc870a3df2
/TestCase/__init__.py
26588af7267c2c2ccd51ca85644b8b8dfdd7b3ce
[]
no_license
zjunbin/InternetThingsplatform
f2f86ca2e81a5edf732c677aa2e9e072eb784875
a8710f66f87fba0213fce62e3bd6483605a3ec8b
refs/heads/master
2020-05-24T05:59:43.446369
2019-07-05T09:16:56
2019-07-05T09:16:56
187,130,923
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
# coding utf-8 # @time :2019/5/615:02 # @Author :zjunbin # @Email :648060307@qq.com # @File :__init__.py.py
[ "648260307@qq.com" ]
648260307@qq.com
b3dcb41902a8b4ff489f8df77bc9a2de43e6826e
4a12ee57e670bfc574a1da1d6d61be1072d7c603
/interrogation/admin.py
d4f3790546036edff8b57d1687bc780181afc8ed
[]
no_license
Ganin-Alexey/TZ
cab1639cc6595b7608c214faf78d04c52c425231
3f62391a470c0705d08435192fc650c3ab804ad8
refs/heads/master
2023-06-12T12:00:31.376963
2021-07-05T11:44:00
2021-07-05T11:44:00
382,894,040
0
0
null
null
null
null
UTF-8
Python
false
false
1,224
py
from django.contrib import admin from .models import Interrogation, Question, Answer, Choice class ChoiceInline(admin.TabularInline): model = Choice extra = 0 @admin.register(Question) class QuestionAdmin(admin.ModelAdmin): list_display = [field.attname for field in Question._meta.fields] list_filter = ['type'] search_fields = ('text', 'type') list_display_links = ['text', 'id'] list_editable = ['type'] inlines = [ChoiceInline] class QuestionInline(admin.TabularInline): model = Question extra = 0 @admin.register(Interrogation) class InterrogationAdmin(admin.ModelAdmin): fields = ('title', 'description', 'is_active', 'start', 'stop') list_display = ['title', 'description', 'is_active', 'start', 'stop'] list_filter = ('is_active', 'start', 'stop') search_fields = ('title', 'description', 'is_active', 'start', 'stop') readonly_fields = ( 'start', ) list_display_links = ('title', 'description') list_editable = ['is_active'] inlines = [QuestionInline] @admin.register(Answer) class AnswerAdmin(admin.ModelAdmin): list_display = ( 'user', 'question', 'choice', ) list_filter = ('user',)
[ "anonim.minona.80@mail.ru" ]
anonim.minona.80@mail.ru
8db5fccd818f11b5aa9b4aa8217eea91ebb4770c
4beaf162bb9dc4fb555d06777b64ad8c21b4c607
/api/models.py
11f57128718f6d11492188a975e44546fcf78222
[]
no_license
fedotovdmitriy14/django_react_spotify
fd858fa8ff11a2a9bbf5516e443f08026d19e82b
6be94500a79f8b8eb7f4907a376bc580f91925cc
refs/heads/master
2023-08-23T00:33:16.329821
2021-10-24T14:26:59
2021-10-24T14:26:59
419,827,995
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
from django.db import models import string import random def generate_unique_code(): length = 6 while True: code = "".join(random.choices(string.ascii_uppercase, k=length)) if Room.objects.filter(code=code).count() == 0: break return code class Room(models.Model): code = models.CharField(max_length=8, default=generate_unique_code, unique=True) host = models.CharField(max_length=50, unique=True) guest_can_pause = models.BooleanField(null=False, default=False) votes_to_skip = models.IntegerField(null=False, default=1) created_at = models.DateTimeField(auto_now_add=True)
[ "fedotovdmitriy14@gmail" ]
fedotovdmitriy14@gmail
3a41eb79f7221cfd5e494b7d0967592147d0d134
0560aee2a84c507d2e91cb712393b37a7cfd4117
/trunk/testing/multi-mechanize_1.010/projects/constellation/test_scripts/mech_browsers.py
93c701b32c74ceb152c97324e5f0252a5dd9a409
[]
no_license
Mujj/Constellation
804df1190c7bf09c7498e0b6bcff247f5ae9c376
6bd9413cdd6bc835c0eddc48b1288b4132293cb6
refs/heads/master
2020-12-03T05:12:41.365567
2013-06-20T20:29:02
2013-06-20T20:29:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,805
py
#!/usr/bin/env python # # Copyright (c) 2010 Corey Goldberg (corey@goldb.org) # License: GNU LGPLv3 # # This file is part of Multi-Mechanize import sys import re import mechanize import cookielib import json import time import random import uuid from datetime import date from datetime import datetime class Transaction(object): def __init__(self): self.custom_timers = {} def run(self): # Browser br = mechanize.Browser() # Cookie Jar cj = cookielib.LWPCookieJar() br.set_cookiejar(cj) # Browser options br.set_handle_equiv(True) #br.set_handle_gzip(True) br.set_handle_redirect(True) br.set_handle_referer(True) br.set_handle_robots(False) # Follows refresh 0 but not hangs on refresh > 0 br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(), max_time=1) # Want debugging messages? #br.set_debug_http(True) #br.set_debug_redirects(True) #br.set_debug_responses(True) domain = 'http://test.constellation.tv' films = [ 4, 14, 15 ] film = str(random.choice( films )) # User-Agent (this is cheating, ok?) br.addheaders = [('User-agent', 'Mechanize Bot')] # start homepage view start_timer = time.time() r = br.open(domain + '/') r.read() latency = time.time() - start_timer self.custom_timers['Homepage'] = latency assert (r.code == 200), 'Bad HTTP Response' # end homepage # start homepage service start_timer = time.time() r = br.open(domain + '/services/Screenings/upcoming') r.read() latency = time.time() - start_timer self.custom_timers['Homepage Upcoming Service'] = latency assert (r.code == 200), 'Bad HTTP Response' # end homepage service # start homepage select start_timer = time.time() today = date.today().strftime("%m/%d/%Y") r = br.open(domain + '/services/Screenings/date?date='+today+'&film=null') r.read() latency = time.time() - start_timer self.custom_timers['Homepage Upcoming Select'] = latency assert (r.code == 200), 'Bad HTTP Response' # end homepage select # think-time time.sleep(2) # start filmpage view start_timer = time.time() r = br.open(domain + '/film/' + film) r.read() latency = time.time() - start_timer self.custom_timers['Filmpage View'] = latency assert (r.code == 200), 'Bad HTTP Response' # end filmpage view # start filmpage service start_timer = time.time() r = br.open(domain + '/services/Screenings/upcoming?film=' + film) r.read() latency = time.time() - start_timer self.custom_timers['Filmpage Upcoming Service'] = latency assert (r.code == 200), 'Bad HTTP Response' # end filmpage service # start filmpage select start_timer = time.time() today = date.today().strftime("%m/%d/%Y") r = br.open(domain + '/services/Screenings/date?date='+today+'&film=' + film) r.read() latency = time.time() - start_timer self.custom_timers['Filmpage Upcoming Select'] = latency assert (r.code == 200), 'Bad HTTP Response' # end filmpage select # think-time time.sleep(2) if __name__ == '__main__': trans = Transaction() trans.run() print trans.custom_timers
[ "root@development.motormeme.com" ]
root@development.motormeme.com
36f361356f2ca7bb600caea0da4248477a0b47ce
ff398239187d3b911f4c87bc607ec3690dbfa8aa
/batch_state.py
ae28ba275031aae0fdaa105a72aa9095187efd31
[]
no_license
xiefei0117/USDA-census-data-extraction-tool
95af513bc0b520ff5ab8c16767b87c2efa6ce99c
c8c95d2e32e1f88a97665d982d753fa7e03b6af5
refs/heads/main
2023-09-01T02:24:27.993687
2021-09-14T16:52:48
2021-09-14T16:52:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,647
py
""" This code creates batch processing of all required data from the USDA census file. Users need downloaded required state USDA file from the census and specifify the state name. Example usage is: state_batch = Batch_Process_State("California", "06") state_batch.run() @author: Fei Xie """ import pandas as pd from process_USDA_Chapter2_02282020 import Farm_County_Process class Batch_Process_State: def __init__(self, state_name, state_id): self.state_name = state_name self.state_USDA = Farm_County_Process(state_name+"_USDA.txt") #create a object for USDA processing self.county_list = pd.read_csv(state_name+"_county.csv", dtype=object) #read county list for the target state self.required_data_county_as_row = pd.read_csv("county_as_row.csv") self.required_data_county_as_column = pd.read_csv("county_as_column.csv") self.processed_data_county_as_row = self.required_data_county_as_row self.processed_data_county_as_column = self.required_data_county_as_column self.state_id = state_id; def batch_process_county_as_row(self): print("processing county as rows: ") self.processed_data_county_as_row = self.required_data_county_as_row for index, row in self.county_list.iterrows(): current_county = self.county_list.loc[index, 'CNTY_NAME'] print(current_county) self.processed_data_county_as_row[current_county] = "NA" for index2, row2 in self.processed_data_county_as_row.iterrows(): table_name = self.processed_data_county_as_row.loc[index2,"Table"] column_num = int(self.processed_data_county_as_row.loc[index2,"Column"]) item_name = self.processed_data_county_as_row.loc[index2,"Item"] self.processed_data_county_as_row.loc[index2,current_county] = self.state_USDA.retreve_value_county_as_row( table_name, current_county, column_num, item_name) self.processed_data_county_as_row.to_csv(r""+self.state_id+"_results_column_based_"+self.state_name + ".csv", index = None, header = True) def batch_process_county_as_column(self): print("processing county as columns: ") self.processed_data_county_as_column = self.required_data_county_as_column for index, row in self.county_list.iterrows(): current_county = self.county_list.loc[index, 'CNTY_NAME'] print(current_county) self.processed_data_county_as_column[current_county] = "NA" for index2, row2 in self.processed_data_county_as_column.iterrows(): table_name = self.processed_data_county_as_column.loc[index2,"Table"] item_name = self.processed_data_county_as_column.loc[index2,"Item"] unit_name = self.processed_data_county_as_column.loc[index2,"Unit"] print(table_name) print(item_name) print(unit_name) self.processed_data_county_as_column.loc[index2,current_county] = self.state_USDA.retreve_value_county_as_column( table_name, current_county, item_name, unit_name) self.processed_data_county_as_column.to_csv(r""+self.state_id+"_results_row_based_"+self.state_name + ".csv", index = None, header = True) def run(self): self.batch_process_county_as_row() self.batch_process_county_as_column() def main(): state_batch = Batch_Process_State("California", "06") state_batch.run() main()
[ "xiefei0117@gmail.com" ]
xiefei0117@gmail.com
af489b1b3636ad41953b1e94d5c6585ab4073d41
1e79f9969a0705ecd6558e1169d201a0227e6c38
/PageObject/all_sites/RS/Oplata/pagePayRS.py
a5281f2541e06aa3533293d3e1b7a97af5344b83
[]
no_license
mfcdnepr/Selenium_keyua
0d88be4160941b2279a3900999fc4b83f6d5d644
097f7a8ad7a026fc89ec532d8a570ce187f66757
refs/heads/master
2023-02-15T13:24:47.365241
2021-01-15T16:43:02
2021-01-15T16:43:02
313,406,002
0
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
def pagePayRS(browser,): #Payment browser.find_element_by_xpath('//*[@id="id_ccnum"]').send_keys('5169360004480400') browser.find_element_by_xpath('//*[@id="id_ccexp_m"]/option[4]').click() browser.find_element_by_xpath('//*[@id="id_ccexp_y"]/option[8]').click() # browser.find_element_by_xpath('//*[@id="id_ccnum"]').send_keys('4731185617318578') # browser.find_element_by_xpath('//*[@id="id_ccexp_m"]/option[2]').click() # browser.find_element_by_xpath('//*[@id="id_ccexp_y"]/option[10]').click() browser.find_element_by_xpath('//*[@id="id_addr1"]').send_keys('Address1') browser.find_element_by_xpath('//*[@id="id_city"]').send_keys('Dnipro') browser.find_element_by_xpath('//*[@id="id_zip"]').send_keys('49000') browser.find_element_by_xpath('//*[@id="id_referrer"]').send_keys('gregrublev13899') # browser.find_element_by_xpath('//*[@id="id_referrer"]').send_keys('deabec55-4e02-41ba-af2d-012f12f0df3b ') browser.find_element_by_xpath('/html/body/main/div/div[2]/div[1]/div[2]/div/div[1]/form/button').click()
[ "zeleniyanton@gmail.com" ]
zeleniyanton@gmail.com
6ef4f5dd5a38840b4bac64b24e2ef3679dea832b
10e5ecf13d2fa4e9e3d866fd42d68a99258d28b3
/tensor-note/tensor2.10/class5/tf_5_2_baseline.py
90bb3d3437ee463d29fbeef4a0b8757bdfd557ca
[]
no_license
FictionDk/python-repo
2ba20bece0e900040833be305eb81157704533cf
41fa3a95d62f16d7cf632cfefb09226ec24f4e1a
refs/heads/master
2023-04-27T18:39:53.998065
2023-04-18T10:33:23
2023-04-18T10:33:23
91,284,460
0
0
null
null
null
null
UTF-8
Python
false
false
1,653
py
# -*- coding: utf-8 -*- from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense from tf_5_1_data_set import DataSets import tf_5_0_utils as tf_utils class Baseline(Model): def __init__(self): super(Baseline, self).__init__() # 卷积 层,Convolutional self.c1 = Conv2D(filters=6, kernel_size=(5,5), padding='same') # 批标准化, BN self.b1 = BatchNormalization() # 激活 层,Activation self.a1 = Activation('relu') # 池化 层,Pooling self.p1 = MaxPool2D(pool_size=(2,2), strides=2, padding='same') # dropout 层 self.d1 = Dropout(0.2) self.flatten = Flatten() self.f1 = Dense(128, activation='relu') self.d2 = Dropout(0.2) self.f2 = Dense(10, activation='softmax') def call(self, x): # 卷积-- 特征提取器,CBAPD x = self.c1(x) x = self.b1(x) x = self.a1(x) x = self.p1(x) x = self.d1(x) x = self.flatten(x) x = self.f1(x) x = self.d2(x) y = self.f2(x) return y dat = DataSets() (x_train, y_train), (x_test, y_test) = dat.load_cifar10() x_train, x_test = x_train / 255.0, x_test / 255.0 model = Baseline() history = tf_utils.model_train(model, "Baseline", x_train, y_train, x_test, y_test) model.summary() file = open('./weighs.txt', 'w') for v in model.trainable_variables: file.write(str(v.name) + '\n') file.write(str(v.shape) + '\n') file.write(str(v.numpy()) + '\n') file.close() tf_utils.history_show(history)
[ "ficito.d2k@gmail.com" ]
ficito.d2k@gmail.com
b1f161576f69b29eea2c147ec803d1ac8dfb9f9d
a515800cfa247f52edfaebb2b94554a95278cef6
/load_weights.py
fc126d4045e7b8837d9ce6302ce51fec4a055caf
[ "Apache-2.0" ]
permissive
lilun-cheng/vehicle_highway_tracking
5cc1111516ad64564b5074102e642c16b6189de3
99c9981c2d9f998d90df070d271b7b88f6dc0a35
refs/heads/master
2023-02-09T22:11:32.889245
2021-01-05T01:30:51
2021-01-05T01:30:51
326,847,720
1
0
null
null
null
null
UTF-8
Python
false
false
1,126
py
from absl import app, flags, logging from absl.flags import FLAGS import numpy as np from yolov3_tf2.models import YoloV3, YoloV3Tiny from yolov3_tf2.utils import load_darknet_weights flags.DEFINE_string('weights', 'weights/yolov3_custom_train_final.weights', 'path to weights file') flags.DEFINE_string('output', 'weights/yolov3_car_truck.tf', 'path to output') flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny') flags.DEFINE_integer('num_classes', 2, 'number of classes in the model') def main(_argv): if FLAGS.tiny: yolo = YoloV3Tiny(classes=FLAGS.num_classes) else: yolo = YoloV3(classes=FLAGS.num_classes) yolo.summary() logging.info('model created') load_darknet_weights(yolo, FLAGS.weights, FLAGS.tiny) logging.info('weights loaded') img = np.random.random((1, 320, 320, 3)).astype(np.float32) output = yolo(img) logging.info('sanity check passed') yolo.save_weights(FLAGS.output) logging.info('weights saved') if __name__ == '__main__': try: app.run(main) except SystemExit: pass
[ "liluncheng@liluns-mbp-2.lan" ]
liluncheng@liluns-mbp-2.lan
72196bb5c3dbf9d5373b0e4f6e101a46c1e6d59d
f2dc4d2c716971b09205ed7c81e4d792a3b892a3
/mask-rcnn/libraries/mcoco/coco.py
075d578316c16cce04da32e553133d3173c9e945
[ "Apache-2.0" ]
permissive
pandamax/current-lane-drivable
c0412b5ee814e820b5a8673c11478f34d8718eb9
0727b101cec3d5663aa953209abf1f323b062a4f
refs/heads/master
2022-07-01T07:35:30.797585
2020-05-14T02:56:28
2020-05-14T02:56:28
262,209,978
6
0
null
null
null
null
UTF-8
Python
false
false
21,502
py
""" Mask R-CNN Configurations and data loading code for MS COCO. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla ------------------------------------------------------------ Usage: import the module (see Jupyter notebooks for examples), or run from the command line as such: # Train a new model starting from pre-trained COCO weights python3 coco.py train --dataset=/path/to/coco/ --model=coco # Train a new model starting from ImageNet weights. Also auto download COCO dataset python3 coco.py train --dataset=/path/to/coco/ --model=imagenet --download=True # Continue training a model that you had trained earlier python3 coco.py train --dataset=/path/to/coco/ --model=/path/to/weights.h5 # Continue training the last model you trained python3 coco.py train --dataset=/path/to/coco/ --model=last # Run COCO evaluatoin on the last model you trained python3 coco.py evaluate --dataset=/path/to/coco/ --model=last """ import os import sys import time import numpy as np import imgaug # https://github.com/aleju/imgaug (pip3 install imageaug) # Download and install the Python COCO tools from https://github.com/waleedka/coco # That's a fork from the original https://github.com/pdollar/coco with a bug # fix for Python 3. # I submitted a pull request https://github.com/cocodataset/cocoapi/pull/50 # If the PR is merged then use the original repo. # Note: Edit PythonAPI/Makefile and replace "python" with "python3". from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from pycocotools import mask as maskUtils import zipfile import urllib.request import shutil # Root directory of the project ROOT_DIR = os.path.abspath("../../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import model as modellib, utils # Path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Directory to save logs and model checkpoints, if not provided # through the command line argument --logs DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") DEFAULT_DATASET_YEAR = "2014" ############################################################ # Configurations ############################################################ class CocoConfig(Config): """Configuration for training on MS COCO. Derives from the base Config class and overrides values specific to the COCO dataset. """ # Give the configuration a recognizable name NAME = "coco" # We use a GPU with 12GB memory, which can fit two images. # Adjust down if you use a smaller GPU. IMAGES_PER_GPU = 1 # Uncomment to train on 8 GPUs (default is 1) # GPU_COUNT = 8 # Number of classes (including background) NUM_CLASSES = 1 + 80 # COCO has 80 classes ############################################################ # Dataset ############################################################ class CocoDataset(utils.Dataset): def load_coco(self, dataset_dir, subset, year=DEFAULT_DATASET_YEAR, class_ids=None, class_map=None, return_coco=False, auto_download=False): """Load a subset of the COCO dataset. dataset_dir: The root directory of the COCO dataset. subset: What to load (train, val, minival, valminusminival) year: What dataset year to load (2014, 2017) as a string, not an integer class_ids: If provided, only loads images that have the given classes. class_map: TODO: Not implemented yet. Supports maping classes from different datasets to the same class ID. return_coco: If True, returns the COCO object. auto_download: Automatically download and unzip MS-COCO images and annotations """ if auto_download is True: self.auto_download(dataset_dir, subset, year) coco = COCO("{}/annotations/instances_{}{}.json".format(dataset_dir, subset, year)) if subset == "minival" or subset == "valminusminival": subset = "val" image_dir = "{}/{}{}".format(dataset_dir, subset, year) # Load all classes or a subset? if not class_ids: # All classes class_ids = sorted(coco.getCatIds()) # All images or a subset? if class_ids: image_ids = [] for id in class_ids: image_ids.extend(list(coco.getImgIds(catIds=[id]))) # Remove duplicates image_ids = list(set(image_ids)) else: # All images image_ids = list(coco.imgs.keys()) # Add classes for i in class_ids: self.add_class("coco", i, coco.loadCats(i)[0]["name"]) # Add images for i in image_ids: self.add_image( "coco", image_id=i, path=os.path.join(image_dir, coco.imgs[i]['file_name']), width=coco.imgs[i]["width"], height=coco.imgs[i]["height"], annotations=coco.loadAnns(coco.getAnnIds( imgIds=[i], catIds=class_ids, iscrowd=None))) if return_coco: return coco def auto_download(self, dataDir, dataType, dataYear): """Download the COCO dataset/annotations if requested. dataDir: The root directory of the COCO dataset. dataType: What to load (train, val, minival, valminusminival) dataYear: What dataset year to load (2014, 2017) as a string, not an integer Note: For 2014, use "train", "val", "minival", or "valminusminival" For 2017, only "train" and "val" annotations are available """ # Setup paths and file names if dataType == "minival" or dataType == "valminusminival": imgDir = "{}/{}{}".format(dataDir, "val", dataYear) imgZipFile = "{}/{}{}.zip".format(dataDir, "val", dataYear) imgURL = "http://images.cocodataset.org/zips/{}{}.zip".format("val", dataYear) else: imgDir = "{}/{}{}".format(dataDir, dataType, dataYear) imgZipFile = "{}/{}{}.zip".format(dataDir, dataType, dataYear) imgURL = "http://images.cocodataset.org/zips/{}{}.zip".format(dataType, dataYear) # print("Image paths:"); print(imgDir); print(imgZipFile); print(imgURL) # Create main folder if it doesn't exist yet if not os.path.exists(dataDir): os.makedirs(dataDir) # Download images if not available locally if not os.path.exists(imgDir): os.makedirs(imgDir) print("Downloading images to " + imgZipFile + " ...") with urllib.request.urlopen(imgURL) as resp, open(imgZipFile, 'wb') as out: shutil.copyfileobj(resp, out) print("... done downloading.") print("Unzipping " + imgZipFile) with zipfile.ZipFile(imgZipFile, "r") as zip_ref: zip_ref.extractall(dataDir) print("... done unzipping") print("Will use images in " + imgDir) # Setup annotations data paths annDir = "{}/annotations".format(dataDir) if dataType == "minival": annZipFile = "{}/instances_minival2014.json.zip".format(dataDir) annFile = "{}/instances_minival2014.json".format(annDir) annURL = "https://dl.dropboxusercontent.com/s/o43o90bna78omob/instances_minival2014.json.zip?dl=0" unZipDir = annDir elif dataType == "valminusminival": annZipFile = "{}/instances_valminusminival2014.json.zip".format(dataDir) annFile = "{}/instances_valminusminival2014.json".format(annDir) annURL = "https://dl.dropboxusercontent.com/s/s3tw5zcg7395368/instances_valminusminival2014.json.zip?dl=0" unZipDir = annDir else: annZipFile = "{}/annotations_trainval{}.zip".format(dataDir, dataYear) annFile = "{}/instances_{}{}.json".format(annDir, dataType, dataYear) annURL = "http://images.cocodataset.org/annotations/annotations_trainval{}.zip".format(dataYear) unZipDir = dataDir # print("Annotations paths:"); print(annDir); print(annFile); print(annZipFile); print(annURL) # Download annotations if not available locally if not os.path.exists(annDir): os.makedirs(annDir) if not os.path.exists(annFile): if not os.path.exists(annZipFile): print("Downloading zipped annotations to " + annZipFile + " ...") with urllib.request.urlopen(annURL) as resp, open(annZipFile, 'wb') as out: shutil.copyfileobj(resp, out) print("... done downloading.") print("Unzipping " + annZipFile) with zipfile.ZipFile(annZipFile, "r") as zip_ref: zip_ref.extractall(unZipDir) print("... done unzipping") print("Will use annotations in " + annFile) def load_mask(self, image_id): """Load instance masks for the given image. Different datasets use different ways to store masks. This function converts the different mask format to one format in the form of a bitmap [height, width, instances]. Returns: masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ # If not a COCO image, delegate to parent class. image_info = self.image_info[image_id] if image_info["source"] != "coco": return super(CocoDataset, self).load_mask(image_id) instance_masks = [] class_ids = [] annotations = self.image_info[image_id]["annotations"] # Build mask of shape [height, width, instance_count] and list # of class IDs that correspond to each channel of the mask. for annotation in annotations: class_id = self.map_source_class_id( "coco.{}".format(annotation['category_id'])) if class_id: m = self.annToMask(annotation, image_info["height"], image_info["width"]) # Some objects are so small that they're less than 1 pixel area # and end up rounded out. Skip those objects. if m.max() < 1: continue # Is it a crowd? If so, use a negative class ID. if annotation['iscrowd']: # Use negative class ID for crowds class_id *= -1 # For crowd masks, annToMask() sometimes returns a mask # smaller than the given dimensions. If so, resize it. if m.shape[0] != image_info["height"] or m.shape[1] != image_info["width"]: m = np.ones([image_info["height"], image_info["width"]], dtype=bool) instance_masks.append(m) class_ids.append(class_id) # Pack instance masks into an array if class_ids: mask = np.stack(instance_masks, axis=2).astype(np.bool) class_ids = np.array(class_ids, dtype=np.int32) return mask, class_ids else: # Call super class to return an empty mask return super(CocoDataset, self).load_mask(image_id) def image_reference(self, image_id): """Return a link to the image in the COCO Website.""" info = self.image_info[image_id] if info["source"] == "coco": return "http://cocodataset.org/#explore?id={}".format(info["id"]) else: super(CocoDataset, self).image_reference(image_id) # The following two functions are from pycocotools with a few changes. def annToRLE(self, ann, height, width): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ segm = ann['segmentation'] if isinstance(segm, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, height, width) rle = maskUtils.merge(rles) elif isinstance(segm['counts'], list): # uncompressed RLE rle = maskUtils.frPyObjects(segm, height, width) else: # rle rle = ann['segmentation'] return rle def annToMask(self, ann, height, width): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ rle = self.annToRLE(ann, height, width) m = maskUtils.decode(rle) return m ############################################################ # COCO Evaluation ############################################################ def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks): """Arrange resutls to match COCO specs in http://cocodataset.org/#format """ # If no results, return an empty list if rois is None: return [] results = [] for image_id in image_ids: # Loop through detections for i in range(rois.shape[0]): class_id = class_ids[i] score = scores[i] bbox = np.around(rois[i], 1) mask = masks[:, :, i] result = { "image_id": image_id, "category_id": dataset.get_source_class_id(class_id, "coco"), "bbox": [bbox[1], bbox[0], bbox[3] - bbox[1], bbox[2] - bbox[0]], "score": score, "segmentation": maskUtils.encode(np.asfortranarray(mask)) } results.append(result) return results def evaluate_coco(model, dataset, coco, eval_type="bbox", limit=0, image_ids=None): """Runs official COCO evaluation. dataset: A Dataset object with valiadtion data eval_type: "bbox" or "segm" for bounding box or segmentation evaluation limit: if not 0, it's the number of images to use for evaluation """ # Pick COCO images from the dataset image_ids = image_ids or dataset.image_ids # Limit to a subset if limit: image_ids = image_ids[:limit] # Get corresponding COCO image IDs. coco_image_ids = [dataset.image_info[id]["id"] for id in image_ids] t_prediction = 0 t_start = time.time() results = [] for i, image_id in enumerate(image_ids): # Load image image = dataset.load_image(image_id) # Run detection t = time.time() r = model.detect([image], verbose=0)[0] t_prediction += (time.time() - t) # Convert results to COCO format # Cast masks to uint8 because COCO tools errors out on bool image_results = build_coco_results(dataset, coco_image_ids[i:i + 1], r["rois"], r["class_ids"], r["scores"], r["masks"].astype(np.uint8)) results.extend(image_results) # Load results. This modifies results with additional attributes. coco_results = coco.loadRes(results) # Evaluate cocoEval = COCOeval(coco, coco_results, eval_type) cocoEval.params.imgIds = coco_image_ids cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() print("Prediction time: {}. Average {}/image".format( t_prediction, t_prediction / len(image_ids))) print("Total time: ", time.time() - t_start) ############################################################ # Training ############################################################ if __name__ == '__main__': import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='Train Mask R-CNN on MS COCO.') parser.add_argument("command", metavar="<command>", help="'train' or 'evaluate' on MS COCO") parser.add_argument('--dataset', required=True, metavar="/path/to/coco/", help='Directory of the MS-COCO dataset') parser.add_argument('--year', required=False, default=DEFAULT_DATASET_YEAR, metavar="<year>", help='Year of the MS-COCO dataset (2014 or 2017) (default=2014)') parser.add_argument('--model', required=True, metavar="/path/to/weights.h5", help="Path to weights .h5 file or 'coco'") parser.add_argument('--logs', required=False, default=DEFAULT_LOGS_DIR, metavar="/path/to/logs/", help='Logs and checkpoints directory (default=logs/)') parser.add_argument('--limit', required=False, default=500, metavar="<image count>", help='Images to use for evaluation (default=500)') parser.add_argument('--download', required=False, default=False, metavar="<True|False>", help='Automatically download and unzip MS-COCO files (default=False)', type=bool) args = parser.parse_args() print("Command: ", args.command) print("Model: ", args.model) print("Dataset: ", args.dataset) print("Year: ", args.year) print("Logs: ", args.logs) print("Auto Download: ", args.download) # Configurations if args.command == "train": config = CocoConfig() else: class InferenceConfig(CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 DETECTION_MIN_CONFIDENCE = 0 config = InferenceConfig() config.display() # Create model if args.command == "train": model = modellib.MaskRCNN(mode="training", config=config, model_dir=args.logs) else: model = modellib.MaskRCNN(mode="inference", config=config, model_dir=args.logs) # Select weights file to load if args.model.lower() == "coco": model_path = COCO_MODEL_PATH elif args.model.lower() == "last": # Find last trained weights model_path = model.find_last()[1] elif args.model.lower() == "imagenet": # Start from ImageNet trained weights model_path = model.get_imagenet_weights() else: model_path = args.model # Load weights print("Loading weights ", model_path) model.load_weights(model_path, by_name=True) # Train or evaluate if args.command == "train": # Training dataset. Use the training set and 35K from the # validation set, as as in the Mask RCNN paper. dataset_train = CocoDataset() dataset_train.load_coco(args.dataset, "train", year=args.year, auto_download=args.download) dataset_train.load_coco(args.dataset, "valminusminival", year=args.year, auto_download=args.download) dataset_train.prepare() # Validation dataset dataset_val = CocoDataset() dataset_val.load_coco(args.dataset, "minival", year=args.year, auto_download=args.download) dataset_val.prepare() # Image Augmentation # Right/Left flip 50% of the time augmentation = imgaug.augmenters.Fliplr(0.5) # *** This training schedule is an example. Update to your needs *** # Training - Stage 1 print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=40, layers='heads', augmentation=augmentation) # Training - Stage 2 # Finetune layers from ResNet stage 4 and up print("Fine tune Resnet stage 4 and up") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=120, layers='4+', augmentation=augmentation) # Training - Stage 3 # Fine tune all layers print("Fine tune all layers") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE / 10, epochs=160, layers='all', augmentation=augmentation) elif args.command == "evaluate": # Validation dataset dataset_val = CocoDataset() coco = dataset_val.load_coco(args.dataset, "minival", year=args.year, return_coco=True, auto_download=args.download) dataset_val.prepare() print("Running COCO evaluation on {} images.".format(args.limit)) evaluate_coco(model, dataset_val, coco, "bbox", limit=int(args.limit)) # segmentation evaluate evaluate_coco(model, dataset_val, coco, "segm", limit=int(args.limit)) else: print("'{}' is not recognized. " "Use 'train' or 'evaluate'".format(args.command))
[ "noreply@github.com" ]
pandamax.noreply@github.com
de2c917992ce5b7f0f60750a7cea903d616e6bf6
5076013d00eebdcdc74b3de358c3c59bd34847c0
/venv/Scripts/pip-script.py
4b8ba4f8b61f40c8f1d75a6975b48670a9766b18
[]
no_license
arijit05saha/nopcommerceapp
ff1708440097d4c8cf608b26d9b247d7bfbb6caa
388b375cc9ac1ba2967d8099a412e0dbfb5f39db
refs/heads/master
2023-03-07T20:15:04.999737
2021-02-24T21:09:30
2021-02-24T21:09:30
342,031,902
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
#!C:\Users\Arijit\PycharmProjects\noCommerceApp\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip')() )
[ "arijit05saha@gmail.com" ]
arijit05saha@gmail.com
96caa9d7593ea74a948e4142a3d16877eaeb220f
48ea0bdd3985b76aacee3ab2c6f5334c08aa671b
/09day/3三角形.py
999372cd39064ff728ec1e114b964e949aed4835
[]
no_license
caozongliang/1805
d19a7dfe82bdb5bd572aa774c0911b1cb50ad952
00ea195af5567a5998c3987ddceaa51134f1a95b
refs/heads/master
2020-03-19T20:58:07.789690
2018-06-25T09:31:03
2018-06-25T09:31:03
136,141,802
2
0
null
null
null
null
UTF-8
Python
false
false
108
py
i = 1 while i < 6: t = 0 while t < i: print("*",end="") t+=1 print("") i+=1
[ "3141360536@qq.com" ]
3141360536@qq.com
264bd6975be7662b1e729d1229a5ecf0315961d0
4ff9529ec12b75a8453fdca7f36fc3d9e03e7615
/xcessiv/__init__.py
d02b77e2c1371871f43fafedb49a47daaf4c00b3
[ "Apache-2.0" ]
permissive
ferplascencia/xcessiv
5f1d6feaaf4783e6c0c9c3dce45720b3cb4c1fa3
fc7df4e42ee51859fc84b05725f3512d85e71bf4
refs/heads/master
2021-01-01T06:16:26.094662
2017-07-13T09:55:47
2017-07-13T09:55:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
from __future__ import absolute_import, print_function, division, unicode_literals from flask import Flask __version__ = '0.5.0' app = Flask(__name__, static_url_path='/static', static_folder='ui/build/static') app.config.from_object('xcessiv.config') import xcessiv.views
[ "reiichiro.s.nakano@gmail.com" ]
reiichiro.s.nakano@gmail.com
9f476d12b85c867f987ddf81d7744fd5102dcca5
fbbe424559f64e9a94116a07eaaa555a01b0a7bb
/Tensorflow_Pandas_Numpy/source3.6/tensorflow/contrib/memory_stats/ops/gen_memory_stats_ops.py
c07803ef193dbda5354cef2be4381457f0307e96
[ "MIT" ]
permissive
ryfeus/lambda-packs
6544adb4dec19b8e71d75c24d8ed789b785b0369
cabf6e4f1970dc14302f87414f170de19944bac2
refs/heads/master
2022-12-07T16:18:52.475504
2022-11-29T13:35:35
2022-11-29T13:35:35
71,386,735
1,283
263
MIT
2022-11-26T05:02:14
2016-10-19T18:22:39
Python
UTF-8
Python
false
false
3,855
py
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. Original C++ source file: memory_stats_ops.cc """ import collections as _collections from tensorflow.python.eager import execute as _execute from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library def bytes_in_use(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context.context() if _ctx.in_graph_mode(): _, _, _op = _op_def_lib._apply_op_helper( "BytesInUse", name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None else: _inputs_flat = [] _attrs = None _result = _execute.execute(b"BytesInUse", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BytesInUse", _inputs_flat, _attrs, _result, name) _result, = _result return _result _ops.RegisterShape("BytesInUse")(None) def bytes_limit(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context.context() if _ctx.in_graph_mode(): _, _, _op = _op_def_lib._apply_op_helper( "BytesLimit", name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None else: _inputs_flat = [] _attrs = None _result = _execute.execute(b"BytesLimit", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BytesLimit", _inputs_flat, _attrs, _result, name) _result, = _result return _result _ops.RegisterShape("BytesLimit")(None) def max_bytes_in_use(name=None): r"""TODO: add doc. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. """ _ctx = _context.context() if _ctx.in_graph_mode(): _, _, _op = _op_def_lib._apply_op_helper( "MaxBytesInUse", name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None else: _inputs_flat = [] _attrs = None _result = _execute.execute(b"MaxBytesInUse", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "MaxBytesInUse", _inputs_flat, _attrs, _result, name) _result, = _result return _result _ops.RegisterShape("MaxBytesInUse")(None) def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "BytesInUse" # output_arg { # name: "out" # type: DT_INT64 # } # is_stateful: true # } # op { # name: "BytesLimit" # output_arg { # name: "out" # type: DT_INT64 # } # is_stateful: true # } # op { # name: "MaxBytesInUse" # output_arg { # name: "out" # type: DT_INT64 # } # is_stateful: true # } _op_def_lib = _InitOpDefLibrary(b"\n\030\n\nBytesInUse\032\007\n\003out\030\t\210\001\001\n\030\n\nBytesLimit\032\007\n\003out\030\t\210\001\001\n\033\n\rMaxBytesInUse\032\007\n\003out\030\t\210\001\001")
[ "ryfeus@gmail.com" ]
ryfeus@gmail.com
81e057f75dd9cb80d8baccb74262ea4edcf325b8
d9d6fbe56103b3372aba402d1472226820b8466b
/anagrafiche/myTests_Libro_cap06.py
7eb1b59b754c0f41f4e87d35b63659dd9979979a
[]
no_license
ghiblin/wms2
673731f39ae8d82201acfd7e228bfc1cef6bf126
07a97e6136637830ca99ae0bb06d944755eab87c
refs/heads/master
2021-06-24T06:00:43.207129
2018-10-14T22:46:30
2018-10-14T22:46:30
214,431,330
0
0
null
2021-06-10T22:04:52
2019-10-11T12:30:57
Python
UTF-8
Python
false
false
4,389
py
#!/usr/bin/python # -*- coding: utf-8 -*- from django.core.urlresolvers import resolve from django.http import HttpRequest from django.template.loader import render_to_string from django.test import TestCase from lists.models import Item, List from lists.views import home_page class HomePageTest(TestCase): def test_root_url_resolves_to_home_page_view(self): found = resolve('/') self.assertEqual(found.func, home_page) def test_home_page_returns_correct_html(self): request = HttpRequest() response = home_page(request) expected_html = render_to_string('home.html') self.assertEqual(response.content.decode(), expected_html) class NewListTest(TestCase): def test_saving_a_POST_request(self): self.client.post( '/lists/new', data={'item_text': 'A new list item'} ) self.assertEqual(Item.objects.count(), 1) new_item = Item.objects.first() self.assertEqual(new_item.text, 'A new list item') def test_redirects_after_POST(self): response = self.client.post( '/lists/new', data={'item_text': 'A new list item'} ) new_list = List.objects.first() self.assertRedirects(response, '/lists/%d/' % (new_list.id,)) class NewItemTest(TestCase): def test_can_save_a_POST_request_to_an_existing_list(self): other_list = List.objects.create() correct_list = List.objects.create() self.client.post( '/lists/%d/add_item' % (correct_list.id,), data={'item_text': 'A new item for an existing list'} ) self.assertEqual(Item.objects.count(), 1) new_item = Item.objects.first() self.assertEqual(new_item.text, 'A new item for an existing list') self.assertEqual(new_item.list, correct_list) def test_redirects_to_list_view(self): other_list = List.objects.create() correct_list = List.objects.create() response = self.client.post( '/lists/%d/add_item' % (correct_list.id,), data={'item_text': 'A new item for an existing list'} ) self.assertRedirects(response, '/lists/%d/' % (correct_list.id,)) class ListViewTest(TestCase): def test_uses_list_template(self): list_ = List.objects.create() response = self.client.get('/lists/%d/' % (list_.id,)) self.assertTemplateUsed(response, 'list.html') def test_passes_correct_list_to_template(self): other_list = List.objects.create() correct_list = List.objects.create() response = self.client.get('/lists/%d/' % (correct_list.id,)) self.assertEqual(response.context['list'], correct_list) def test_displays_only_items_for_that_list(self): correct_list = List.objects.create() Item.objects.create(text='itemey 1', list=correct_list) Item.objects.create(text='itemey 2', list=correct_list) other_list = List.objects.create() Item.objects.create(text='other list item 1', list=other_list) Item.objects.create(text='other list item 2', list=other_list) response = self.client.get('/lists/%d/' % (correct_list.id,)) self.assertContains(response, 'itemey 1') self.assertContains(response, 'itemey 2') self.assertNotContains(response, 'other list item 1') self.assertNotContains(response, 'other list item 2') class ListAndItemModelsTest(TestCase): def test_saving_and_retrieving_items(self): list_ = List() list_.save() first_item = Item() first_item.text = 'The first (ever) list item' first_item.list = list_ first_item.save() second_item = Item() second_item.text = 'Item the second' second_item.list = list_ second_item.save() saved_list = List.objects.first() self.assertEqual(saved_list, list_) saved_items = Item.objects.all() self.assertEqual(saved_items.count(), 2) first_saved_item = saved_items[0] second_saved_item = saved_items[1] self.assertEqual(first_saved_item.text, 'The first (ever) list item') self.assertEqual(first_saved_item.list, list_) self.assertEqual(second_saved_item.text, 'Item the second') self.assertEqual(second_saved_item.list, list_)
[ "sergio.morstabilini@studiogammasnc.it" ]
sergio.morstabilini@studiogammasnc.it
86170857d96fa7d35c1f3d3d66444850e3e7b6e3
b75fa0885bc3ba3f153225fd3396aadef6c1f97e
/slides/pypyjs/lib-py3k/modules/test/test_site.py
ff1a5515931093585af46aef3c348e3a831a3f8f
[ "MIT" ]
permissive
rfk/talk-pypyjs-what-how-why
e084303185167dbc9b704c3568e0c31d0a1f6885
1ab62ee32ff9495ae9313ec81e8ee2044212ea71
refs/heads/master
2016-09-06T05:27:09.800382
2015-04-10T03:12:07
2015-04-10T03:12:07
22,421,369
2
0
null
null
null
null
UTF-8
Python
false
false
16,688
py
"""Tests for 'site'. Tests assume the initial paths in sys.path once the interpreter has begun executing have not been removed. """ import unittest from test.support import run_unittest, TESTFN, EnvironmentVarGuard from test.support import captured_stderr, check_impl_detail import builtins import os import sys import re import encodings import subprocess import sysconfig from copy import copy # Need to make sure to not import 'site' if someone specified ``-S`` at the # command-line. Detect this by just making sure 'site' has not been imported # already. if "site" in sys.modules: import site else: raise unittest.SkipTest("importation of site.py suppressed") if site.ENABLE_USER_SITE and not os.path.isdir(site.USER_SITE): # need to add user site directory for tests os.makedirs(site.USER_SITE) site.addsitedir(site.USER_SITE) class HelperFunctionsTests(unittest.TestCase): """Tests for helper functions. """ def setUp(self): """Save a copy of sys.path""" self.sys_path = sys.path[:] self.old_base = site.USER_BASE self.old_site = site.USER_SITE self.old_prefixes = site.PREFIXES self.old_vars = copy(sysconfig._CONFIG_VARS) def tearDown(self): """Restore sys.path""" sys.path[:] = self.sys_path site.USER_BASE = self.old_base site.USER_SITE = self.old_site site.PREFIXES = self.old_prefixes sysconfig._CONFIG_VARS = self.old_vars def test_makepath(self): # Test makepath() have an absolute path for its first return value # and a case-normalized version of the absolute path for its # second value. path_parts = ("Beginning", "End") original_dir = os.path.join(*path_parts) abs_dir, norm_dir = site.makepath(*path_parts) self.assertEqual(os.path.abspath(original_dir), abs_dir) if original_dir == os.path.normcase(original_dir): self.assertEqual(abs_dir, norm_dir) else: self.assertEqual(os.path.normcase(abs_dir), norm_dir) def test_init_pathinfo(self): dir_set = site._init_pathinfo() for entry in [site.makepath(path)[1] for path in sys.path if path and os.path.isdir(path)]: self.assertIn(entry, dir_set, "%s from sys.path not found in set returned " "by _init_pathinfo(): %s" % (entry, dir_set)) def pth_file_tests(self, pth_file): """Contain common code for testing results of reading a .pth file""" self.assertIn(pth_file.imported, sys.modules, "%s not in sys.modules" % pth_file.imported) self.assertIn(site.makepath(pth_file.good_dir_path)[0], sys.path) self.assertFalse(os.path.exists(pth_file.bad_dir_path)) def test_addpackage(self): # Make sure addpackage() imports if the line starts with 'import', # adds directories to sys.path for any line in the file that is not a # comment or import that is a valid directory name for where the .pth # file resides; invalid directories are not added pth_file = PthFile() pth_file.cleanup(prep=True) # to make sure that nothing is # pre-existing that shouldn't be try: pth_file.create() site.addpackage(pth_file.base_dir, pth_file.filename, set()) self.pth_file_tests(pth_file) finally: pth_file.cleanup() def make_pth(self, contents, pth_dir='.', pth_name=TESTFN): # Create a .pth file and return its (abspath, basename). pth_dir = os.path.abspath(pth_dir) pth_basename = pth_name + '.pth' pth_fn = os.path.join(pth_dir, pth_basename) pth_file = open(pth_fn, 'w', encoding='utf-8') self.addCleanup(lambda: os.remove(pth_fn)) pth_file.write(contents) pth_file.close() return pth_dir, pth_basename def test_addpackage_import_bad_syntax(self): # Issue 10642 pth_dir, pth_fn = self.make_pth("import bad)syntax\n") with captured_stderr() as err_out: site.addpackage(pth_dir, pth_fn, set()) self.assertRegex(err_out.getvalue(), "line 1") self.assertRegex(err_out.getvalue(), re.escape(os.path.join(pth_dir, pth_fn))) # XXX: the previous two should be independent checks so that the # order doesn't matter. The next three could be a single check # but my regex foo isn't good enough to write it. self.assertRegex(err_out.getvalue(), 'Traceback') self.assertRegex(err_out.getvalue(), r'import bad\)syntax') self.assertRegex(err_out.getvalue(), 'SyntaxError') def test_addpackage_import_bad_exec(self): # Issue 10642 pth_dir, pth_fn = self.make_pth("randompath\nimport nosuchmodule\n") with captured_stderr() as err_out: site.addpackage(pth_dir, pth_fn, set()) self.assertRegex(err_out.getvalue(), "line 2") self.assertRegex(err_out.getvalue(), re.escape(os.path.join(pth_dir, pth_fn))) # XXX: ditto previous XXX comment. self.assertRegex(err_out.getvalue(), 'Traceback') self.assertRegex(err_out.getvalue(), 'ImportError') @unittest.skipIf(sys.platform == "win32", "Windows does not raise an " "error for file paths containing null characters") def test_addpackage_import_bad_pth_file(self): # Issue 5258 pth_dir, pth_fn = self.make_pth("abc\x00def\n") with captured_stderr() as err_out: site.addpackage(pth_dir, pth_fn, set()) self.assertRegex(err_out.getvalue(), "line 1") self.assertRegex(err_out.getvalue(), re.escape(os.path.join(pth_dir, pth_fn))) # XXX: ditto previous XXX comment. self.assertRegex(err_out.getvalue(), 'Traceback') self.assertRegex(err_out.getvalue(), 'TypeError') def test_addsitedir(self): # Same tests for test_addpackage since addsitedir() essentially just # calls addpackage() for every .pth file in the directory pth_file = PthFile() pth_file.cleanup(prep=True) # Make sure that nothing is pre-existing # that is tested for try: pth_file.create() site.addsitedir(pth_file.base_dir, set()) self.pth_file_tests(pth_file) finally: pth_file.cleanup() @unittest.skipUnless(site.ENABLE_USER_SITE, "requires access to PEP 370 " "user-site (site.ENABLE_USER_SITE)") def test_s_option(self): usersite = site.USER_SITE self.assertIn(usersite, sys.path) env = os.environ.copy() rc = subprocess.call([sys.executable, '-c', 'import sys; sys.exit(%r in sys.path)' % usersite], env=env) self.assertEqual(rc, 1) env = os.environ.copy() rc = subprocess.call([sys.executable, '-s', '-c', 'import sys; sys.exit(%r in sys.path)' % usersite], env=env) self.assertEqual(rc, 0) env = os.environ.copy() env["PYTHONNOUSERSITE"] = "1" rc = subprocess.call([sys.executable, '-c', 'import sys; sys.exit(%r in sys.path)' % usersite], env=env) self.assertEqual(rc, 0) env = os.environ.copy() env["PYTHONUSERBASE"] = "/tmp" rc = subprocess.call([sys.executable, '-c', 'import sys, site; sys.exit(site.USER_BASE.startswith("/tmp"))'], env=env) self.assertEqual(rc, 1) def test_getuserbase(self): site.USER_BASE = None user_base = site.getuserbase() # the call sets site.USER_BASE self.assertEqual(site.USER_BASE, user_base) # let's set PYTHONUSERBASE and see if it uses it site.USER_BASE = None import sysconfig sysconfig._CONFIG_VARS = None with EnvironmentVarGuard() as environ: environ['PYTHONUSERBASE'] = 'xoxo' self.assertTrue(site.getuserbase().startswith('xoxo'), site.getuserbase()) def test_getusersitepackages(self): site.USER_SITE = None site.USER_BASE = None user_site = site.getusersitepackages() # the call sets USER_BASE *and* USER_SITE self.assertEqual(site.USER_SITE, user_site) self.assertTrue(user_site.startswith(site.USER_BASE), user_site) def test_getsitepackages(self): site.PREFIXES = ['xoxo'] dirs = site.getsitepackages() if sys.platform in ('os2emx', 'riscos'): self.assertEqual(len(dirs), 1) wanted = os.path.join('xoxo', 'Lib', 'site-packages') self.assertEqual(dirs[0], wanted) elif '__pypy__' in sys.builtin_module_names: self.assertEquals(len(dirs), 1) wanted = os.path.join('xoxo', 'site-packages') self.assertEquals(dirs[0], wanted) elif (sys.platform == "darwin" and sysconfig.get_config_var("PYTHONFRAMEWORK")): # OS X framework builds site.PREFIXES = ['Python.framework'] dirs = site.getsitepackages() self.assertEqual(len(dirs), 3) wanted = os.path.join('/Library', sysconfig.get_config_var("PYTHONFRAMEWORK"), sys.version[:3], 'site-packages') self.assertEqual(dirs[2], wanted) elif os.sep == '/': # OS X non-framwework builds, Linux, FreeBSD, etc self.assertEqual(len(dirs), 2) wanted = os.path.join('xoxo', 'lib', 'python' + sys.version[:3], 'site-packages') self.assertEqual(dirs[0], wanted) wanted = os.path.join('xoxo', 'lib', 'site-python') self.assertEqual(dirs[1], wanted) else: # other platforms self.assertEqual(len(dirs), 2) self.assertEqual(dirs[0], 'xoxo') wanted = os.path.join('xoxo', 'lib', 'site-packages') self.assertEqual(dirs[1], wanted) class PthFile(object): """Helper class for handling testing of .pth files""" def __init__(self, filename_base=TESTFN, imported="time", good_dirname="__testdir__", bad_dirname="__bad"): """Initialize instance variables""" self.filename = filename_base + ".pth" self.base_dir = os.path.abspath('') self.file_path = os.path.join(self.base_dir, self.filename) self.imported = imported self.good_dirname = good_dirname self.bad_dirname = bad_dirname self.good_dir_path = os.path.join(self.base_dir, self.good_dirname) self.bad_dir_path = os.path.join(self.base_dir, self.bad_dirname) def create(self): """Create a .pth file with a comment, blank lines, an ``import <self.imported>``, a line with self.good_dirname, and a line with self.bad_dirname. Creation of the directory for self.good_dir_path (based off of self.good_dirname) is also performed. Make sure to call self.cleanup() to undo anything done by this method. """ FILE = open(self.file_path, 'w') try: print("#import @bad module name", file=FILE) print("\n", file=FILE) print("import %s" % self.imported, file=FILE) print(self.good_dirname, file=FILE) print(self.bad_dirname, file=FILE) finally: FILE.close() os.mkdir(self.good_dir_path) def cleanup(self, prep=False): """Make sure that the .pth file is deleted, self.imported is not in sys.modules, and that both self.good_dirname and self.bad_dirname are not existing directories.""" if os.path.exists(self.file_path): os.remove(self.file_path) if prep: self.imported_module = sys.modules.get(self.imported) if self.imported_module: del sys.modules[self.imported] else: if self.imported_module: sys.modules[self.imported] = self.imported_module if os.path.exists(self.good_dir_path): os.rmdir(self.good_dir_path) if os.path.exists(self.bad_dir_path): os.rmdir(self.bad_dir_path) class ImportSideEffectTests(unittest.TestCase): """Test side-effects from importing 'site'.""" def setUp(self): """Make a copy of sys.path""" self.sys_path = sys.path[:] def tearDown(self): """Restore sys.path""" sys.path[:] = self.sys_path def test_abs_paths(self): # Make sure all imported modules have their __file__ and __cached__ # attributes as absolute paths. Arranging to put the Lib directory on # PYTHONPATH would cause the os module to have a relative path for # __file__ if abs_paths() does not get run. sys and builtins (the # only other modules imported before site.py runs) do not have # __file__ or __cached__ because they are built-in. parent = os.path.relpath(os.path.dirname(os.__file__)) env = os.environ.copy() env['PYTHONPATH'] = parent code = ('import os, sys', # use ASCII to avoid locale issues with non-ASCII directories 'os_file = os.__file__.encode("ascii", "backslashreplace")', r'sys.stdout.buffer.write(os_file + b"\n")', 'os_cached = os.__cached__.encode("ascii", "backslashreplace")', r'sys.stdout.buffer.write(os_cached + b"\n")') command = '\n'.join(code) # First, prove that with -S (no 'import site'), the paths are # relative. proc = subprocess.Popen([sys.executable, '-S', '-c', command], env=env, stdout=subprocess.PIPE) stdout, stderr = proc.communicate() self.assertEqual(proc.returncode, 0) os__file__, os__cached__ = stdout.splitlines()[:2] if check_impl_detail(cpython=True): self.assertFalse(os.path.isabs(os__file__)) self.assertFalse(os.path.isabs(os__cached__)) # Now, with 'import site', it works. proc = subprocess.Popen([sys.executable, '-c', command], env=env, stdout=subprocess.PIPE) stdout, stderr = proc.communicate() self.assertEqual(proc.returncode, 0) os__file__, os__cached__ = stdout.splitlines()[:2] self.assertTrue(os.path.isabs(os__file__)) self.assertTrue(os.path.isabs(os__cached__)) def test_no_duplicate_paths(self): # No duplicate paths should exist in sys.path # Handled by removeduppaths() site.removeduppaths() seen_paths = set() for path in sys.path: self.assertNotIn(path, seen_paths) seen_paths.add(path) def test_add_build_dir(self): # Test that the build directory's Modules directory is used when it # should be. # XXX: implement pass def test_setting_quit(self): # 'quit' and 'exit' should be injected into builtins self.assertTrue(hasattr(builtins, "quit")) self.assertTrue(hasattr(builtins, "exit")) def test_setting_copyright(self): # 'copyright' and 'credits' should be in builtins self.assertTrue(hasattr(builtins, "copyright")) self.assertTrue(hasattr(builtins, "credits")) def test_setting_help(self): # 'help' should be set in builtins self.assertTrue(hasattr(builtins, "help")) def test_aliasing_mbcs(self): if sys.platform == "win32": import locale if locale.getdefaultlocale()[1].startswith('cp'): for value in encodings.aliases.aliases.values(): if value == "mbcs": break else: self.fail("did not alias mbcs") def test_sitecustomize_executed(self): # If sitecustomize is available, it should have been imported. if "sitecustomize" not in sys.modules: try: import sitecustomize except ImportError: pass else: self.fail("sitecustomize not imported automatically") def test_main(): run_unittest(HelperFunctionsTests, ImportSideEffectTests) if __name__ == "__main__": test_main()
[ "ryan@rfk.id.au" ]
ryan@rfk.id.au
bb65a6f3ade0146e33605ebc9725287bcf876ccf
d028fe782122a52b2e8664296a3b7091016f4f8e
/reports/views.py
fb9fd75cf95647724dda4993490d1439c23156c5
[]
no_license
uhexos/Online-Learning-Platform
74b44650c4cc7234becff208a8030cc339973602
364d6e2a00ce3800c88e8a83b616a9a341bea7a4
refs/heads/master
2022-11-13T06:22:13.809303
2020-07-05T00:39:06
2020-07-05T00:39:06
224,997,720
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
from django.shortcuts import render from rest_framework import generics, permissions from courses.models import EnrolledCourses from .serializers import SalesSerializer # Create your views here. from django.db.models import Sum class SalesList(generics.ListAPIView): queryset = EnrolledCourses.objects.all() serializer_class = SalesSerializer def get_queryset(self): return EnrolledCourses.objects.filter(course__owner=self.request.user)
[ "uhexos@gmail.com" ]
uhexos@gmail.com
c662727a689e9edfd8365de13c7fc29fe0578ba0
1b6e60aa1b7b10ffc4f64f89fca9d33761d10764
/alembic/versions/7d92610a4f0d_create_post_table.py
1e133101adef7ac41e5323553f885498e2f642fa
[]
no_license
epm157/fastapitutorial
2e9464df1f843c07447a7c58153b7bf8590bae81
56944bd8bb5402eed72a300fc603992a83d61c96
refs/heads/main
2023-08-27T08:13:04.850666
2021-11-15T06:51:45
2021-11-15T06:51:45
425,637,473
0
0
null
null
null
null
UTF-8
Python
false
false
504
py
"""create post table Revision ID: 7d92610a4f0d Revises: Create Date: 2021-11-07 17:44:45.124468 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '7d92610a4f0d' down_revision = None branch_labels = None depends_on = None def upgrade(): op.create_table('posts', sa.Column('id', sa.Integer(), nullable=False, primary_key=True), sa.Column('title', sa.String(), nullable=False),) pass def downgrade(): op.drop_table('posts') pass
[ "ehsan.poormohammady@gdata.de" ]
ehsan.poormohammady@gdata.de
d32fa628d376417ab535348d4f96ac45c4116ea7
7b1af6defe4797d9d4a815c73f72965bd5cf0245
/python string formatting.py
4683b9c5a780b6aa9c6c9712cc6b3aecaea51cd1
[]
no_license
sivathedev/python65
e60a6777a02dfd664aeac8a0f0b6173c79db9c02
d16848c9b7889d7b51a49814af02d01e9c8162b7
refs/heads/master
2023-02-23T21:05:54.456743
2021-01-26T14:02:14
2021-01-26T14:02:14
289,531,925
0
0
null
null
null
null
UTF-8
Python
false
false
154
py
quantity = 3 itemno = 567 price = 49 myorder = "I want {} pieces of item number {} for {:.2f} dollars." print(myorder.format(quantity, itemno, price))
[ "noreply@github.com" ]
sivathedev.noreply@github.com
9ca816dea7c494fb4a933882aa28ad760c09847e
29c70f2129b1f7882abb7858c556c0287a0d1a6b
/data.py
926b485a09b547d8062eb0a2d818941f393714e9
[]
no_license
rakeshls/class103
379ccf8b77cc1589f919b2617a7deadac63397ed
34b2e0b3dbc31c75ee5984822679603bb93e1a3b
refs/heads/main
2023-05-24T01:24:22.772724
2021-06-09T13:26:49
2021-06-09T13:26:49
375,364,432
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
import pandas as pd import plotly.express as px #data = [10,20,30,40,50] #df = pd.DataFrame(data) #print(df) df = pd.read_csv('csvfiles/line_chart.csv') fig = px.line(df,x="Year",y="Per capita income",color="Country",title="Per capita income") fig.show()
[ "noreply@github.com" ]
rakeshls.noreply@github.com
f322a1c72f7e1c96948330f94ad1172954476178
a081bd5057e7deb8c1596b673b4a35d719477e20
/cliente.py
1311b2a5ba40b559612cd0b2178abe1df21c74be
[]
no_license
pablocandela/Practica08-Modelado20171
39e373b1ddc284d27b115d22a920ed35c47528bf
1f0d8290a735b44f96cd5b05e43d40498df612de
refs/heads/master
2021-01-24T11:28:21.170076
2016-10-07T01:49:20
2016-10-07T01:49:20
70,206,879
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
import sys from PyQt4 import QtGui,QtCore, uic class Ventana(QtGui.QMainWindow): def __init__(self): super(Ventana, self).__init__() uic.loadUi('cliente.ui', self) header_horizontal = self.tableWidget.horizontalHeader() header_horizontal.setResizeMode(QtGui.QHeaderView.Stretch) header_vertical = self.tableWidget.verticalHeader() header_vertical.setResizeMode(QtGui.QHeaderView.Stretch) self.show() def main(): app = QtGui.QApplication(sys.argv) ventana = Ventana() sys.exit(app.exec_()) if __name__ == '__main__': main()
[ "pabloantonio@ciencias.unam.mx" ]
pabloantonio@ciencias.unam.mx
365c552603fdb1b0f4540f30a40ca52234d87850
f6f02db9ea3fe650c759c0873d92a2a42edb588d
/bracketed.py
a5c276ec87a3fb5e8c9d09d4d90a8c97e8e03edc
[]
no_license
eclairss17/Python-test-cases-solving
f54e38b9f266bfdeea2431025744c2b95c4174bb
aeee800bad54dc41d1a6ff80329f7e169f2ad797
refs/heads/master
2021-02-18T06:26:34.084673
2020-03-05T13:30:53
2020-03-05T13:30:53
245,170,592
0
0
null
null
null
null
UTF-8
Python
false
false
525
py
#count pair bracket and return true PAIRINGS = { '(': ')' } def bracketed(symbols): stack = [] for s in symbols: if s in PAIRINGS: stack.append(s) continue try: expected_opening_symbol = stack.pop() except IndexError: # too many closing symbols return False if s != PAIRINGS[expected_opening_symbol]: # mismatch return False return len(stack) == 0 # false if too many opening symbols print(is_balanced('(a+b)'))
[ "td_1" ]
td_1
8e00f6ef0dc2ae442b4838f710c9a49f9afad966
426596e98832bded86dbc7ea829cff98aaec520e
/mysite/news/migrations/0008_auto_20210112_1636.py
ed9da176ed6c7023caabf61949acaab83ee76d46
[]
no_license
yaki771/yakiswork
8382458b23801e901be255dc6ec7146464a1c32b
679bb644ae119ba4fe87faa5eca3b128e70926b2
refs/heads/master
2023-02-15T23:01:29.422690
2021-01-12T15:24:50
2021-01-12T15:24:50
309,275,422
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
# Generated by Django 3.1.2 on 2021-01-12 08:36 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('news', '0007_交通工具'), ] operations = [ migrations.AlterField( model_name='homework', name='交通工具', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='news.交通工具'), ), ]
[ "fqjxxlyq@163.com" ]
fqjxxlyq@163.com
72dd8fbe932cd89098d3f68000ca5f2becadaee9
36548a42ad2e651d670d225c9b0d72fe3138dce2
/Exercise/4_Astrologer's_Stars.py
42f8f606c57db4a5c6a3b71afe97a654abda2c23
[]
no_license
Parth731/Python-Tutorial
a46f2f1ed85211eb23567778f092c24c5752f62a
a8ab0effe31e8d186b20296de171bc6e964b627c
refs/heads/master
2023-01-11T19:55:14.979699
2020-11-03T08:58:57
2020-11-03T08:58:57
288,523,912
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
# pattern printing ''' input = integer n Boolean = true/false True n=5 * ** *** **** false n=5 **** *** ** * ''' n = int(input("How many rows want to print\n")) b = bool(int(input("Please enter True or False"))) print(b) if b == True: for x in range(n): for y in range(x+1): print("*",end="") print() elif b == False: for x in range(n, 0, -1): for y in range(x): print("*", end="") print()
[ "patelparth31795@gmail.com" ]
patelparth31795@gmail.com
dfebb92b8ffa8311fe658092c45a2e4618fbedc4
0b26df6178c717f914356d17e5e78731b88e2de5
/session4/exercise2.py
112e877d297a076103c4209914bc9452d83e9b46
[]
no_license
Jacquelinediaznieto/PythonCourse
a6509656dbfcc71ab642b50da304e9506517846f
623579ed924cc33ea6c44956f798759bffa8ff07
refs/heads/main
2023-06-11T11:02:50.563680
2021-07-01T07:45:08
2021-07-01T07:45:08
371,450,061
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
#2a def shopping_calculator(shopping_cost, discount_applicable): if (discount_applicable == 'y'): total_cost = shopping_cost * 0.9 return total_cost elif(shopping_cost > 100): total_cost = shopping_cost * 0.95 return total_cost else: total_cost = shopping_cost return total_cost total_cost = shopping_calculator(200, 'y') print(f'The total cost is {total_cost}')
[ "Jacquelinediaznieto@hotmail.com" ]
Jacquelinediaznieto@hotmail.com
9c67ad30e03acf740b3284a4d84c947ee548dd6a
395aa16d8d8a1e34445387d40a02488c6c94db95
/lex/RE2NFA.py
33169968295b4a023bed937b421047fc308fd5c5
[]
no_license
1170300808/LexicalAnalysis
bf0a9827de2d4b158057e9b00e73197fe1d261c7
856e5f5899871e3db2f0ece10ee73ab0d21952f7
refs/heads/master
2021-05-22T00:43:46.971638
2020-04-04T03:46:13
2020-04-04T03:46:13
252,890,535
0
0
null
null
null
null
UTF-8
Python
false
false
8,308
py
# -*- coding: utf-8 -*- # @Time : 2020/3/27 12:06 # @Author : WDW # @File : RE2NFA.py ''' 使用thompson算法构建nfa,首先分析语法树,自底向上构建nfa 例子 ab*(a|b)* 语法树为 + + * a * | b a b 构建语法树的算法是: 使用两个栈,一个存放符号+,*,( 一个存放子表达式对应的子树 扫描表达式,遇到符号入栈1,遇到字符入栈2. (+表示连接) 理论上符号优先级 () > * > + > | 符号栈应该满足优先级递增.遇到右括号就一直出栈直到左括号出栈 括号比较特殊,左括号应该直接入栈,但是这会使得括号后面的符号无法入栈.所以,让括号优先级最低 出栈时,将运算结果放回栈2 这样可以构建一个树了. 例如对于a+b*+(a|b)* 最初: 读a: 读+ 读b 读* s1 : s1 : s1:+ s1:+ s1:+ *是一个单目运算符,遇到*时直接处理 s2 : s2 :a s2:a s2:a,b s2:a,b* 此时取出栈顶的子树,让*成为他的根节点 读+ 读( s1:+ 先让+出栈,构建对应子树后,后来的+入栈 s1:+( s2:a+b* s2:a+b* 读a 读| 读b 读) 读* s1:+( s1:+(| s1:+(| s1:+ 处理符号直到( s1:+ s1:a+b*,a s2:a+b*,a s2:a+b*,a,b s2:a+b*,a|b s2:a+b*,(a|b)* 读完后,s1还剩了一个符号+,对之处理得a+b*+(a|b)*的树 这里的过程本来可以简化的,比如可以直接搞出regex的后缀表达式,或者直接从语法树得到dfa. 由于本人很菜,所以只能搞出这样一个简陋的东西,之后会考虑支持[a-z]这样的操作 另外还需要转义字符,\\,\*这样的 ''' priority = {'?': 2, '*': 2, '(': -1, ')': -1, '`': 1, '|': 0} def getlevel(c): # 优先级 return priority[c] def isop(c): return c in {'*', '(', ')', '`', '|', '?'} class treenode(): def __init__(self, val=None, left=None, right=None): self.left = left self.right = right self.val = val class tree(): ''' 语法树 ''' def __init__(self, regex): print(regex) self.rawexp = regex self.regex = proprocess(regex) self.s1 = [] self.s2 = [] def getTree(self): l, i = len(self.regex), -1 while i < l - 1: i += 1 c = self.regex[i] # print(self.s1,self.s2,c) if c == '\\': i += 1 self.escape_char(self.regex[i]) continue if isop(c): if c == '(': self.s1.append(c) continue if c == ')': # 括号有点特殊,需要特殊处理 while self.s1[-1] != '(': self.connect(self.s1.pop()) self.s1.pop() continue if not self.s1 or getlevel(c) > getlevel(self.s1[-1]): self.s1.append(c) else: while self.s1 and getlevel(self.s1[-1]) >= getlevel(c): self.connect(self.s1.pop()) self.s1.append(c) else: self.s2.append(treenode(c)) while self.s1: c = self.s1.pop() self.connect(c) return self.s2.pop() def connect(self, c): # 连接节点 newnode = treenode(c) if c == '*' or c == '?': oldnode = self.s2.pop() newnode.left = oldnode else: # 这里的情况是 | + n1 = self.s2.pop() n2 = self.s2.pop() newnode.left = n1 newnode.right = n2 self.s2.append(newnode) def escape_char(self, c): # 处理转义字符 self.s2.append(treenode(c)) # _todo: 操,集合[],能不能实现了啊,操,你们这些狗,怎么跟狗一样 def proprocess(exp): # 或许会把表达式扩展,以支持更强大灵活的语法 # 何时该加+?两个表达式的中间.两个表达式的中间, # 要么是字母,字母 加+ # 要么是字母,符号 除了(都不用加+ a* a| a) a? a( # 要么是符号,字母 如果是单目运算符要加+了 (a |a *`a ?`a # 要么是符号,符号 不加 *| *) |) () |* )( def kuohao(exp): newexp = "" for c in exp: if c == '\\': continue exp = newexp # kuohao(exp) newexp = "" lastchar = None l, i = len(exp), -1 while i < l - 1: i += 1 c = exp[i] if lastchar == '\\': lastchar = '\\' + c newexp += c continue if c == '\\': # 转义符号,先忽略 if lastchar is None: newexp += c else: newexp += '`' newexp += c continue if lastchar is None: newexp += c elif not isop(lastchar): if c == '(' or not isop(c): newexp += '`' newexp += c else: if isop(c): if c == '(': newexp += '`' newexp += c else: if lastchar == '*' or lastchar == '?': newexp += '`' newexp += c lastchar = c return newexp ''' 下面是AST-->NFA的过程 ''' class nfaNode(): def __init__(self, isend=False): # 节点最多只有两条出边,且入边,要么一条或多条空边,要么一条非空边 self.epsilon = set() # ε边 self.char = {} # 非空边 self.state = nfa.cnt # 状态编号 nfa.cnt += 1 self.isend = isend nfa.pool.append(self) class nfa(): cnt = 0 pool = [] # 状态池 def __init__(self, startstate: nfaNode = None, endstate: nfaNode = None): self.startstate = startstate self.endstate = endstate def transit_table(self): # 输出转换表 print("开始状态:", self.startstate.state, "接收状态:", self.endstate.state) for node in nfa.pool: print("状态:", node.state, "空转移:", node.epsilon, "非空转移:", node.char) def constructNFA(tree: treenode): c = tree.val start = nfaNode() end = nfaNode(isend=True) if not tree.left and not tree.right: start.char[c] = end.state elif c == '*': subnfa = constructNFA(tree.left) subnfa.endstate.isend = False subnfa.endstate.epsilon.add(subnfa.startstate.state) start.epsilon.add(end.state) start.epsilon.add(subnfa.startstate.state) subnfa.endstate.epsilon.add(end.state) elif c == '?': # 直接加一条ε边 subnfa = constructNFA(tree.left) subnfa.endstate.isend = False subnfa.endstate.epsilon.add(end.state) start.epsilon.add(end.state) start.epsilon.add(subnfa.startstate.state) elif c == '|': subnfa1 = constructNFA(tree.left) subnfa2 = constructNFA(tree.right) subnfa1.endstate.isend = False subnfa2.endstate.isend = False start.epsilon.add(subnfa1.startstate.state) start.epsilon.add(subnfa2.startstate.state) subnfa1.endstate.epsilon.add(end.state) subnfa2.endstate.epsilon.add(end.state) elif c == '`': # 注意先后顺序哦,right是在前面的 subnfa1 = constructNFA(tree.left) subnfa2 = constructNFA(tree.right) subnfa2.endstate.isend = False subnfa2.endstate.epsilon.add(subnfa1.startstate.state) start.epsilon.add(subnfa2.startstate.state) subnfa1.endstate.epsilon.add(end.state) return nfa(start, end) def getnfa(re: str): t = tree(re) _t = t.getTree() ret = constructNFA(_t) # ret.endstate = [ret.endstate.state] return ret def main(): def houxu(t): if not t: return houxu(t.right) houxu(t.left) print(t.val, end="") re = '\\(' tre = tree(re) # print(tre.regex) t = tre.getTree() print("begin"), houxu(t), print('') mynfa = getnfa(re) # my = constructNFA(t) mynfa.transit_table() print(mynfa.endstate.state) if __name__ == "__main__": main()
[ "40755640+1170300808@users.noreply.github.com" ]
40755640+1170300808@users.noreply.github.com
d43dbdace5111dbc765bf9b16abcd3affd99e162
07a1d15b4ab9b34ae845a056f21ee5d407ec42da
/gx_gltf_type.py
5242828b7eca97cc6fa95c1c0662b11d16f04e64
[]
no_license
andreytata/py_gen_util
d987ebb2c04aca244e99f1cae9f61eacf568b0aa
f7bf2877ab511de860febf7949acd788cae9aef8
refs/heads/master
2020-06-01T03:56:59.335305
2019-07-26T12:43:34
2019-07-26T12:43:34
190,624,753
0
0
null
null
null
null
UTF-8
Python
false
false
50,207
py
#!/usr/bin/env python # coding: utf-8 """GLTF Definitions (schema: http://json-schema.org/draft-04/schema)""" # LESSONS/06 DIFFS: Tests delegated to python "unittest" framework # Tests code moved to test_gx_gltf_type.py # VSCode unittest support must be enabled and configured import inspect, pdb from pprint import pprint class Schema(object): refs = { 'accessor.schema.json' : 'GxAccessor' , 'animation.schema.json' : 'GxAnimation' , 'bufferView.schema.json' : 'GxBufferView' , 'buffer.schema.json' : 'GxBuffer' , 'camera.schema.json' : 'GxCamera' , 'image.schema.json' : 'GxImage' , 'material.schema.json' : 'GxMaterial' , 'mesh.schema.json' : 'GxMesh' , 'node.schema.json' : 'GxNode' , 'sampler.schema.json' : 'GxSampler' , 'scene.schema.json' : 'GxScene' , 'skin.schema.json' : 'GxSkin' , 'texture.schema.json' : 'GxTexture' , 'animation.channel.schema.json' : 'GxAnimationChannel' , 'animation.sampler.schema.json' : 'GxAnimationSampler' , 'mesh.primitive.schema.json' : 'GxMeshPrimitive' , 'glTFid.schema.json' : 'GLTF_ID' } schema = { } deps = { # when produced c++ class, some members can have complex type definition } @staticmethod def any_of(src): if list == type(src): enum = [] enum_type = 'UNDEFINED' for d in src: if 'enum' in d: enum.append(d['enum'][0]) elif 'type' in d: enum_type = d['type'] if 'integer' == enum_type: enum_type = 'int' else: enum_type = "<ERROR>"+repr(d) return [ enum_type, enum ] return repr(src) @classmethod # use decorator to define method bounded with class object, (not class instance) def get_schema(cls): # and collect type info for each class property from class.schema JSON-like info if not hasattr(cls, 'meta'): meta = dict() # __class_name = cls.__name__ ) prop = cls.schema['properties'] prop = sorted([ (i, prop[i]) for i in prop ]) for p, defs in prop: if 'type' in defs: if 'integer' == defs['type']: meta[p] = {'type': 'int'} elif 'string' == defs['type']: meta[p] = {'type': 'QString'} elif 'boolean' == defs['type']: meta[p] = {'type': 'bool'} elif 'array' == defs['type']: item_type = defs['items']['type'] if 'type' in defs['items'] else defs['items'] if dict == type(item_type): item_type = Schema.refs[item_type['$ref']] meta[p] = {'type': ('GxArray', 'int', item_type)} elif 'object' == defs['type']: meta[p] = {'type': defs['type']} else: meta[p] = {'type': 'GxDict'} elif 'allOf' in defs: meta[p] = {'type': ('int','allOf')} elif 'anyOf' in defs: meta[p] = {'type': (cls.any_of(defs['anyOf']),'anyOf')} else: if 'extensions' == p: continue elif 'extras' == p: continue elif 'name' == p: meta[p] = {'type': 'QString'} else: meta[p] = {'type': defs } setattr(cls,'meta',meta) return getattr(cls, 'meta') class Image(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Image", "type": "object", "description": "Image data used to create a texture. Image can be referenced by URI or `bufferView` index. `mimeType` is required in the latter case.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "uri": { "type": "string", "description": "The uri of the image.", "format": "uriref", "gltf_detailedDescription": "The uri of the image. Relative paths are relative to the .gltf file. Instead of referencing an external file, the uri can also be a data-uri. The image format must be jpg or png.", "gltf_uriType": "image" }, "mimeType": { "anyOf": [ { "enum": [ "image/jpeg" ] }, { "enum": [ "image/png" ] }, { "type": "string" } ], "description": "The image's MIME type. Required if `bufferView` is defined." }, "bufferView": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the bufferView that contains the image. Use this instead of the image's uri property." }, "name": { }, "extensions": { }, "extras": { } }, "dependencies": { "bufferView": [ "mimeType" ] }, "oneOf": [ { "required": [ "uri" ] }, { "required": [ "bufferView" ] } ] } class Skin(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Skin", "type": "object", "description": "Joints and matrices defining a skin.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "inverseBindMatrices": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the accessor containing the floating-point 4x4 inverse-bind matrices. The default is that each matrix is a 4x4 identity matrix, which implies that inverse-bind matrices were pre-applied." }, "skeleton": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the node used as a skeleton root.", "gltf_detailedDescription": "The index of the node used as a skeleton root. The node must be the closest common root of the joints hierarchy or a direct or indirect parent node of the closest common root." }, "joints": { "type": "array", "description": "Indices of skeleton nodes, used as joints in this skin.", "items": { "$ref": "glTFid.schema.json" }, "uniqueItems": True, "minItems": 1, "gltf_detailedDescription": "Indices of skeleton nodes, used as joints in this skin. The array length must be the same as the `count` property of the `inverseBindMatrices` accessor (when defined)." }, "name": { }, "extensions": { }, "extras": { } }, "required": [ "joints" ] } class Scene(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Scene", "type": "object", "description": "The root nodes of a scene.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "nodes": { "type": "array", "description": "The indices of each root node.", "items": { "$ref": "glTFid.schema.json" }, "uniqueItems": True, "minItems": 1 }, "name": { }, "extensions": { }, "extras": { } } } class Gltf(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "glTF", "type": "object", "description": "The root object for a glTF asset.", "allOf": [ { "$ref": "glTFProperty.schema.json" } ], "properties": { # "extensionsUsed": { # "type": "array", # "description": "Names of glTF extensions used somewhere in this asset.", # "items": { # "type": "string" # }, # "uniqueItems": True, # "minItems": 1 # }, # "extensionsRequired": { # "type": "array", # "description": "Names of glTF extensions required to properly load this asset.", # "items": { # "type": "string" # }, # "uniqueItems": True, # "minItems": 1 # }, "accessors": { "type": "array", "description": "An array of accessors.", "items": { "$ref": "accessor.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of accessors. An accessor is a typed view into a bufferView." }, "animations": { "type": "array", "description": "An array of keyframe animations.", "items": { "$ref": "animation.schema.json" }, "minItems": 1 }, "asset": { "allOf": [ { "$ref": "asset.schema.json" } ], "description": "Metadata about the glTF asset." }, "buffers": { "type": "array", "description": "An array of buffers.", "items": { "$ref": "buffer.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of buffers. A buffer points to binary geometry, animation, or skins." }, "bufferViews": { "type": "array", "description": "An array of bufferViews.", "items": { "$ref": "bufferView.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of bufferViews. A bufferView is a view into a buffer generally representing a subset of the buffer." }, "cameras": { "type": "array", "description": "An array of cameras.", "items": { "$ref": "camera.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of cameras. A camera defines a projection matrix." }, "images": { "type": "array", "description": "An array of images.", "items": { "$ref": "image.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of images. An image defines data used to create a texture." }, "materials": { "type": "array", "description": "An array of materials.", "items": { "$ref": "material.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of materials. A material defines the appearance of a primitive." }, "meshes": { "type": "array", "description": "An array of meshes.", "items": { "$ref": "mesh.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of meshes. A mesh is a set of primitives to be rendered." }, "nodes": { "type": "array", "description": "An array of nodes.", "items": { "$ref": "node.schema.json" }, "minItems": 1 }, "samplers": { "type": "array", "description": "An array of samplers.", "items": { "$ref": "sampler.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of samplers. A sampler contains properties for texture filtering and wrapping modes." }, "scene": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the default scene." }, "scenes": { "type": "array", "description": "An array of scenes.", "items": { "$ref": "scene.schema.json" }, "minItems": 1 }, "skins": { "type": "array", "description": "An array of skins.", "items": { "$ref": "skin.schema.json" }, "minItems": 1, "gltf_detailedDescription": "An array of skins. A skin is defined by joints and matrices." }, "textures": { "type": "array", "description": "An array of textures.", "items": { "$ref": "texture.schema.json" }, "minItems": 1 }, "extensions": { }, "extras": { } }, "dependencies": { "scene": [ "scenes" ] }, "required": [ "asset" ] } class Sampler(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Sampler", "type": "object", "description": "Texture sampler properties for filtering and wrapping modes.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "magFilter": { "description": "Magnification filter.", "gltf_detailedDescription": "Magnification filter. Valid values correspond to WebGL enums: `9728` (NEAREST) and `9729` (LINEAR).", "gltf_webgl": "`texParameterf()` with pname equal to TEXTURE_MAG_FILTER", "anyOf": [ { "enum": [ 9728 ], "description": "NEAREST", "type": "integer" }, { "enum": [ 9729 ], "description": "LINEAR", "type": "integer" }, { "type": "integer" } ] }, "minFilter": { "description": "Minification filter.", "gltf_detailedDescription": "Minification filter. All valid values correspond to WebGL enums.", "gltf_webgl": "`texParameterf()` with pname equal to TEXTURE_MIN_FILTER", "anyOf": [ { "enum": [ 9728 ], "description": "NEAREST", "type": "integer" }, { "enum": [ 9729 ], "description": "LINEAR", "type": "integer" }, { "enum": [ 9984 ], "description": "NEAREST_MIPMAP_NEAREST", "type": "integer" }, { "enum": [ 9985 ], "description": "LINEAR_MIPMAP_NEAREST", "type": "integer" }, { "enum": [ 9986 ], "description": "NEAREST_MIPMAP_LINEAR", "type": "integer" }, { "enum": [ 9987 ], "description": "LINEAR_MIPMAP_LINEAR", "type": "integer" }, { "type": "integer" } ] }, "wrapS": { "description": "s wrapping mode.", "default": 10497, "gltf_detailedDescription": "S (U) wrapping mode. All valid values correspond to WebGL enums.", "gltf_webgl": "`texParameterf()` with pname equal to TEXTURE_WRAP_S", "anyOf": [ { "enum": [ 33071 ], "description": "CLAMP_TO_EDGE", "type": "integer" }, { "enum": [ 33648 ], "description": "MIRRORED_REPEAT", "type": "integer" }, { "enum": [ 10497 ], "description": "REPEAT", "type": "integer" }, { "type": "integer" } ] }, "wrapT": { "description": "t wrapping mode.", "default": 10497, "gltf_detailedDescription": "T (V) wrapping mode. All valid values correspond to WebGL enums.", "gltf_webgl": "`texParameterf()` with pname equal to TEXTURE_WRAP_T", "anyOf": [ { "enum": [ 33071 ], "description": "CLAMP_TO_EDGE", "type": "integer" }, { "enum": [ 33648 ], "description": "MIRRORED_REPEAT", "type": "integer" }, { "enum": [ 10497 ], "description": "REPEAT", "type": "integer" }, { "type": "integer" } ] }, "name": { }, "extensions": { }, "extras": { } }, "gltf_webgl": "`texParameterf()`" } class Texture(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Texture", "type": "object", "description": "A texture and its sampler.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "sampler": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the sampler used by this texture. When undefined, a sampler with repeat wrapping and auto filtering should be used." }, "source": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the image used by this texture. When undefined, it is expected that an extension or other mechanism will supply an alternate texture source, otherwise behavior is undefined." }, "name": { }, "extensions": { }, "extras": { } }, "gltf_webgl": "`createTexture()`, `deleteTexture()`, `bindTexture()`, `texImage2D()`, and `texParameterf()`" } class Material(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Material", "type": "object", "description": "The material appearance of a primitive.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "name": { }, "extensions": { }, "extras": { }, "pbrMetallicRoughness": { "allOf": [ { "$ref": "material.pbrMetallicRoughness.schema.json" } ], "description": "A set of parameter values that are used to define the metallic-roughness material model from Physically-Based Rendering (PBR) methodology. When not specified, all the default values of `pbrMetallicRoughness` apply." }, "normalTexture": { "allOf": [ { "$ref": "material.normalTextureInfo.schema.json" } ], "description": "The normal map texture.", "gltf_detailedDescription": "A tangent space normal map. The texture contains RGB components in linear space. Each texel represents the XYZ components of a normal vector in tangent space. Red [0 to 255] maps to X [-1 to 1]. Green [0 to 255] maps to Y [-1 to 1]. Blue [128 to 255] maps to Z [1/255 to 1]. The normal vectors use OpenGL conventions where +X is right and +Y is up. +Z points toward the viewer. In GLSL, this vector would be unpacked like so: `float3 normalVector = tex2D(<sampled normal map texture value>, texCoord) * 2 - 1`. Client implementations should normalize the normal vectors before using them in lighting equations." }, "occlusionTexture": { "allOf": [ { "$ref": "material.occlusionTextureInfo.schema.json" } ], "description": "The occlusion map texture.", "gltf_detailedDescription": "The occlusion map texture. The occlusion values are sampled from the R channel. Higher values indicate areas that should receive full indirect lighting and lower values indicate no indirect lighting. These values are linear. If other channels are present (GBA), they are ignored for occlusion calculations." }, "emissiveTexture": { "allOf": [ { "$ref": "textureInfo.schema.json" } ], "description": "The emissive map texture.", "gltf_detailedDescription": "The emissive map controls the color and intensity of the light being emitted by the material. This texture contains RGB components in sRGB color space. If a fourth component (A) is present, it is ignored." }, "emissiveFactor": { "type": "array", "items": { "type": "number", "minimum": 0.0, "maximum": 1.0 }, "minItems": 3, "maxItems": 3, "default": [ 0.0, 0.0, 0.0 ], "description": "The emissive color of the material.", "gltf_detailedDescription": "The RGB components of the emissive color of the material. These values are linear. If an emissiveTexture is specified, this value is multiplied with the texel values." }, "alphaMode": { "default": "OPAQUE", "description": "The alpha rendering mode of the material.", "gltf_detailedDescription": "The material's alpha rendering mode enumeration specifying the interpretation of the alpha value of the main factor and texture.", "anyOf": [ { "enum": [ "OPAQUE" ], "description": "The alpha value is ignored and the rendered output is fully opaque." }, { "enum": [ "MASK" ], "description": "The rendered output is either fully opaque or fully transparent depending on the alpha value and the specified alpha cutoff value." }, { "enum": [ "BLEND" ], "description": "The alpha value is used to composite the source and destination areas. The rendered output is combined with the background using the normal painting operation (i.e. the Porter and Duff over operator)." }, { "type": "string" } ] }, "alphaCutoff": { "type": "number", "minimum": 0.0, "default": 0.5, "description": "The alpha cutoff value of the material.", "gltf_detailedDescription": "Specifies the cutoff threshold when in `MASK` mode. If the alpha value is greater than or equal to this value then it is rendered as fully opaque, otherwise, it is rendered as fully transparent. A value greater than 1.0 will render the entire material as fully transparent. This value is ignored for other modes." }, "doubleSided": { "type": "boolean", "default": False, "description": "Specifies whether the material is double sided.", "gltf_detailedDescription": "Specifies whether the material is double sided. When this value is false, back-face culling is enabled. When this value is true, back-face culling is disabled and double sided lighting is enabled. The back-face must have its normals reversed before the lighting equation is evaluated." } }, "dependencies" : { "alphaCutoff" : ["alphaMode"] } } class Node(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Node", "type": "object", "description": "A node in the node hierarchy. When the node contains `skin`, all `mesh.primitives` must contain `JOINTS_0` and `WEIGHTS_0` attributes. A node can have either a `matrix` or any combination of `translation`/`rotation`/`scale` (TRS) properties. TRS properties are converted to matrices and postmultiplied in the `T * R * S` order to compose the transformation matrix; first the scale is applied to the vertices, then the rotation, and then the translation. If none are provided, the transform is the identity. When a node is targeted for animation (referenced by an animation.channel.target), only TRS properties may be present; `matrix` will not be present.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "camera": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the camera referenced by this node." }, "children": { "type": "array", "description": "The indices of this node's children.", "items": { "$ref": "glTFid.schema.json" }, "uniqueItems": True, "minItems": 1 }, "skin": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the skin referenced by this node.", "gltf_detailedDescription": "The index of the skin referenced by this node. When a skin is referenced by a node within a scene, all joints used by the skin must belong to the same scene." }, "matrix": { "type": "array", "description": "A floating-point 4x4 transformation matrix stored in column-major order.", "items": { "type": "number" }, "minItems": 16, "maxItems": 16, "default": [ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ], "gltf_detailedDescription": "A floating-point 4x4 transformation matrix stored in column-major order.", "gltf_webgl": "`uniformMatrix4fv()` with the transpose parameter equal to false" }, "mesh": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the mesh in this node." }, "rotation": { "type": "array", "description": "The node's unit quaternion rotation in the order (x, y, z, w), where w is the scalar.", "items": { "type": "number", "minimum": -1.0, "maximum": 1.0 }, "minItems": 4, "maxItems": 4, "default": [ 0.0, 0.0, 0.0, 1.0 ] }, "scale": { "type": "array", "description": "The node's non-uniform scale, given as the scaling factors along the x, y, and z axes.", "items": { "type": "number" }, "minItems": 3, "maxItems": 3, "default": [ 1.0, 1.0, 1.0 ] }, "translation": { "type": "array", "description": "The node's translation along the x, y, and z axes.", "items": { "type": "number" }, "minItems": 3, "maxItems": 3, "default": [ 0.0, 0.0, 0.0 ] }, "weights": { "type": "array", "description": "The weights of the instantiated Morph Target. Number of elements must match number of Morph Targets of used mesh.", "minItems": 1, "items": { "type": "number" } }, "name": { }, "extensions": { }, "extras": { } }, "dependencies": { "weights": [ "mesh" ], "skin": [ "mesh" ] }, "not": { "anyOf": [ { "required": [ "matrix", "translation" ] }, { "required": [ "matrix", "rotation" ] }, { "required": [ "matrix", "scale" ] } ] } } class MeshPrimitive(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Mesh Primitive", "type": "object", "description": "Geometry to be rendered with the given material.", "allOf": [ { "$ref": "glTFProperty.schema.json" } ], "properties": { "attributes": { "type": "object", "description": "A dictionary object, where each key corresponds to mesh attribute semantic and each value is the index of the accessor containing attribute's data.", "minProperties": 1, "additionalProperties": { "$ref": "glTFid.schema.json" } }, "indices": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the accessor that contains the indices.", "gltf_detailedDescription": "The index of the accessor that contains mesh indices. When this is not defined, the primitives should be rendered without indices using `drawArrays()`. When defined, the accessor must contain indices: the `bufferView` referenced by the accessor should have a `target` equal to 34963 (ELEMENT_ARRAY_BUFFER); `componentType` must be 5121 (UNSIGNED_BYTE), 5123 (UNSIGNED_SHORT) or 5125 (UNSIGNED_INT), the latter may require enabling additional hardware support; `type` must be `\"SCALAR\"`. For triangle primitives, the front face has a counter-clockwise (CCW) winding order. Values of the index accessor must not include the maximum value for the given component type, which triggers primitive restart in several graphics APIs and would require client implementations to rebuild the index buffer. Primitive restart values are disallowed and all index values must refer to actual vertices. As a result, the index accessor's values must not exceed the following maxima: BYTE `< 255`, UNSIGNED_SHORT `< 65535`, UNSIGNED_INT `< 4294967295`." }, "material": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the material to apply to this primitive when rendering." }, "mode": { "description": "The type of primitives to render.", "default": 4, "gltf_detailedDescription": "The type of primitives to render. All valid values correspond to WebGL enums.", "anyOf": [ { "enum": [ 0 ], "description": "POINTS", "type": "integer" }, { "enum": [ 1 ], "description": "LINES", "type": "integer" }, { "enum": [ 2 ], "description": "LINE_LOOP", "type": "integer" }, { "enum": [ 3 ], "description": "LINE_STRIP", "type": "integer" }, { "enum": [ 4 ], "description": "TRIANGLES", "type": "integer" }, { "enum": [ 5 ], "description": "TRIANGLE_STRIP", "type": "integer" }, { "enum": [ 6 ], "description": "TRIANGLE_FAN", "type": "integer" }, { "type": "integer" } ] }, "targets": { "type": "array", "description": "An array of Morph Targets, each Morph Target is a dictionary mapping attributes (only `POSITION`, `NORMAL`, and `TANGENT` supported) to their deviations in the Morph Target.", "items": { "type": "object", "minProperties": 1, "additionalProperties": { "$ref": "glTFid.schema.json" }, "description": "A dictionary object specifying attributes displacements in a Morph Target, where each key corresponds to one of the three supported attribute semantic (`POSITION`, `NORMAL`, or `TANGENT`) and each value is the index of the accessor containing the attribute displacements' data." }, "minItems": 1 }, "extensions": { }, "extras": { } }, "gltf_webgl": "`drawElements()` and `drawArrays()`", "required": [ "attributes" ] } class Mesh(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Mesh", "type": "object", "description": "A set of primitives to be rendered. A node can contain one mesh. A node's transform places the mesh in the scene.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "primitives": { "type": "array", "description": "An array of primitives, each defining geometry to be rendered with a material.", "items": { "$ref": "mesh.primitive.schema.json" }, "minItems": 1 }, "weights": { "type": "array", "description": "Array of weights to be applied to the Morph Targets.", "items": { "type": "number" }, "minItems": 1 }, "name": { }, "extensions": { }, "extras": { } }, "required": [ "primitives" ] } class Animation(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Animation", "type": "object", "description": "A keyframe animation.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "channels": { "type": "array", "description": "An array of channels, each of which targets an animation's sampler at a node's property. Different channels of the same animation can't have equal targets.", "items": { "$ref": "animation.channel.schema.json" }, "minItems": 1 }, "samplers": { "type": "array", "description": "An array of samplers that combines input and output accessors with an interpolation algorithm to define a keyframe graph (but not its target).", "items": { "$ref": "animation.sampler.schema.json" }, "minItems": 1 }, "name": { }, "extensions": { }, "extras": { } }, "required": [ "channels", "samplers" ] } class Buffer(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Buffer", "type": "object", "description": "A buffer points to binary geometry, animation, or skins.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "uri": { "type": "string", "description": "The uri of the buffer.", "format": "uriref", "gltf_detailedDescription": "The uri of the buffer. Relative paths are relative to the .gltf file. Instead of referencing an external file, the uri can also be a data-uri.", "gltf_uriType": "application" }, "byteLength": { "type": "integer", "description": "The length of the buffer in bytes.", "minimum": 1 }, "name": { }, "extensions": { }, "extras": { } }, "required": [ "byteLength" ] } class BufferView(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Buffer View", "type": "object", "description": "A view into a buffer generally representing a subset of the buffer.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "buffer": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the buffer." }, "byteOffset": { "type": "integer", "description": "The offset into the buffer in bytes.", "minimum": 0, "default": 0 }, "byteLength": { "type": "integer", "description": "The total byte length of the buffer view.", "minimum": 1 }, "byteStride": { "type": "integer", "description": "The stride, in bytes.", "minimum": 4, "maximum": 252, "multipleOf": 4, "gltf_detailedDescription": "The stride, in bytes, between vertex attributes. When this is not defined, data is tightly packed. When two or more accessors use the same bufferView, this field must be defined.", "gltf_webgl": "`vertexAttribPointer()` stride parameter" }, "target": { "description": "The target that the GPU buffer should be bound to.", "gltf_webgl": "`bindBuffer()`", "anyOf": [ { "enum": [ 34962 ], "description": "ARRAY_BUFFER", "type": "integer" }, { "enum": [ 34963 ], "description": "ELEMENT_ARRAY_BUFFER", "type": "integer" }, { "type": "integer" } ] }, "name": { }, "extensions": { }, "extras": { } }, "required": [ "buffer", "byteLength" ] } class Camera(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Camera", "type": "object", "description": "A camera's projection. A node can reference a camera to apply a transform to place the camera in the scene.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "orthographic": { "allOf": [ { "$ref": "camera.orthographic.schema.json" } ], "description": "An orthographic camera containing properties to create an orthographic projection matrix." }, "perspective": { "allOf": [ { "$ref": "camera.perspective.schema.json" } ], "description": "A perspective camera containing properties to create a perspective projection matrix." }, "type": { "description": "Specifies if the camera uses a perspective or orthographic projection.", "gltf_detailedDescription": "Specifies if the camera uses a perspective or orthographic projection. Based on this, either the camera's `perspective` or `orthographic` property will be defined.", "anyOf": [ { "enum": [ "perspective" ] }, { "enum": [ "orthographic" ] }, { "type": "string" } ] }, "name": { }, "extensions": { }, "extras": { } }, "required": [ "type" ], "not": { "required": [ "perspective", "orthographic" ] } } class Accessor(Schema): schema = { "$schema": "http://json-schema.org/draft-04/schema", "title": "Accessor", "type": "object", "description": "A typed view into a bufferView. A bufferView contains raw binary data. An accessor provides a typed view into a bufferView or a subset of a bufferView similar to how WebGL's `vertexAttribPointer()` defines an attribute in a buffer.", "allOf": [ { "$ref": "glTFChildOfRootProperty.schema.json" } ], "properties": { "bufferView": { "allOf": [ { "$ref": "glTFid.schema.json" } ], "description": "The index of the bufferView.", "gltf_detailedDescription": "The index of the bufferView. When not defined, accessor must be initialized with zeros; `sparse` property or extensions could override zeros with actual values." }, "byteOffset": { "type": "integer", "description": "The offset relative to the start of the bufferView in bytes.", "minimum": 0, "default": 0, "gltf_detailedDescription": "The offset relative to the start of the bufferView in bytes. This must be a multiple of the size of the component datatype.", "gltf_webgl": "`vertexAttribPointer()` offset parameter" }, "componentType": { "description": "The datatype of components in the attribute.", "gltf_detailedDescription": "The datatype of components in the attribute. All valid values correspond to WebGL enums. The corresponding typed arrays are `Int8Array`, `Uint8Array`, `Int16Array`, `Uint16Array`, `Uint32Array`, and `Float32Array`, respectively. 5125 (UNSIGNED_INT) is only allowed when the accessor contains indices, i.e., the accessor is only referenced by `primitive.indices`.", "gltf_webgl": "`vertexAttribPointer()` type parameter", "anyOf": [ { "enum": [ 5120 ], "description": "BYTE", "type": "integer" }, { "enum": [ 5121 ], "description": "UNSIGNED_BYTE", "type": "integer" }, { "enum": [ 5122 ], "description": "SHORT", "type": "integer" }, { "enum": [ 5123 ], "description": "UNSIGNED_SHORT", "type": "integer" }, { "enum": [ 5125 ], "description": "UNSIGNED_INT", "type": "integer" }, { "enum": [ 5126 ], "description": "FLOAT", "type": "integer" }, { "type": "integer" } ] }, "normalized": { "type": "boolean", "description": "Specifies whether integer data values should be normalized.", "default": False, "gltf_detailedDescription": "Specifies whether integer data values should be normalized (`true`) to [0, 1] (for unsigned types) or [-1, 1] (for signed types), or converted directly (`false`) when they are accessed. This property is defined only for accessors that contain vertex attributes or animation output data.", "gltf_webgl": "`vertexAttribPointer()` normalized parameter" }, "count": { "type": "integer", "description": "The number of attributes referenced by this accessor.", "minimum": 1, "gltf_detailedDescription": "The number of attributes referenced by this accessor, not to be confused with the number of bytes or number of components." }, "type": { "description": "Specifies if the attribute is a scalar, vector, or matrix.", "anyOf": [ { "enum": [ "SCALAR" ] }, { "enum": [ "VEC2" ] }, { "enum": [ "VEC3" ] }, { "enum": [ "VEC4" ] }, { "enum": [ "MAT2" ] }, { "enum": [ "MAT3" ] }, { "enum": [ "MAT4" ] }, { "type": "string" } ] }, "max": { "type": "array", "description": "Maximum value of each component in this attribute.", "items": { "type": "number" }, "minItems": 1, "maxItems": 16, "gltf_detailedDescription": "Maximum value of each component in this attribute. Array elements must be treated as having the same data type as accessor's `componentType`. Both min and max arrays have the same length. The length is determined by the value of the type property; it can be 1, 2, 3, 4, 9, or 16.\n\n`normalized` property has no effect on array values: they always correspond to the actual values stored in the buffer. When accessor is sparse, this property must contain max values of accessor data with sparse substitution applied." }, "min": { "type": "array", "description": "Minimum value of each component in this attribute.", "items": { "type": "number" }, "minItems": 1, "maxItems": 16, "gltf_detailedDescription": "Minimum value of each component in this attribute. Array elements must be treated as having the same data type as accessor's `componentType`. Both min and max arrays have the same length. The length is determined by the value of the type property; it can be 1, 2, 3, 4, 9, or 16.\n\n`normalized` property has no effect on array values: they always correspond to the actual values stored in the buffer. When accessor is sparse, this property must contain min values of accessor data with sparse substitution applied." }, "sparse": { "allOf": [ { "$ref": "accessor.sparse.schema.json" } ], "description": "Sparse storage of attributes that deviate from their initialization value." }, "name": { }, "extensions": { }, "extras": { } }, "dependencies": { "byteOffset": [ "bufferView" ] }, "required": [ "componentType", "count", "type" ] } def get_schema_based_list(vars_dict): res = list() names = vars_dict.keys() for n in names: o = vars_dict[n] if inspect.isclass(o) and issubclass(o, Schema): if o == Schema: continue res.append(o) return res
[ "andreytata@ex.ua" ]
andreytata@ex.ua
7013dae4b744ed9423390c43b9f1563544a5bd17
5f3fff9854b6e2c52b7dc28c4854387867a5f761
/GDog/681. Next Closest Time.py
81064a5757776daa0c9ddbe7cd0e00af16edf3af
[]
no_license
taochenlei/leetcode_algorithm
444cc2204676fd703ae5f0f976fabd74868c2c98
b1a1d965ea99586e03fd975afca8815cd47a3c0f
refs/heads/master
2020-06-06T10:20:40.231897
2019-04-28T11:55:21
2019-04-28T11:55:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
class Solution: def nextClosestTime(self, time: str) -> str: h, m = time.split(":") origin = set(time) i = int(h) j = int(m) while True: j += 1 if j == 60: j = 0 i += 1 if i == 24: i = 0 str_i = str(i) if i > 9 else "0" + str(i) str_j = str(j) if j > 9 else "0" + str(j) cur_time = str_i + ":" + str_j if set(cur_time).issubset(origin): return cur_time
[ "noreply@github.com" ]
taochenlei.noreply@github.com
2801eeab4a6e20f5849681320dd45c0e879000c8
09eb1bf36a025af39dd10d28cf6fe94bacd4ce7f
/tests/test_core.py
b8abdc61c59b14e2863a3f3fc34caf0b26e54780
[ "MIT" ]
permissive
ExpertsTreinamentos/iron-erp
a538c34e96e8ed04142033815debe4cfc2d82d56
ca6d018eea8daef98d87b676beca371de92e2df2
refs/heads/master
2020-04-08T20:15:29.085835
2018-12-05T21:40:06
2018-12-05T21:40:06
159,691,047
1
0
null
null
null
null
UTF-8
Python
false
false
1,465
py
from datetime import date from django.db.utils import IntegrityError from django.utils import timezone import pytest pytestmark = pytest.mark.django_db from iron.core import models def test_cadastros_basicos(): curso = models.Curso.objects.create(nome='Curso', carga_horaria=20) prof = models.Professor.objects.create(nome='Professor') turma = models.Turma.objects.create( curso = curso, professor = prof, data_inicio = date(2000,1,1), vagas = 10, ) aluno1 = models.Aluno.objects.create(nome='Aluno 1') inscricao1 = models.Inscricao.objects.create( turma = turma, aluno = aluno1, data_entrada = timezone.now().date(), ) aluno2 = models.Aluno.objects.create(nome='Aluno 2') inscricao2 = models.Inscricao.objects.create( turma = turma, aluno = aluno2, data_entrada = timezone.now().date(), ) # consultas assert turma == curso.turmas.all()[0] assert turma == prof.turmas.all()[0] assert turma.inscricoes.count() == 2 assert turma == models.Turma.objects.filter(inscricoes__aluno=aluno1).get() def test_cadastro_aluno(): aluno1 = models.Aluno.objects.create(nome='Aluno 1') aluno2 = models.Aluno.objects.create(nome='Aluno 2') aluno3 = models.Aluno.objects.create(nome='Aluno 3', cpf='1234') with pytest.raises(IntegrityError): aluno4 = models.Aluno.objects.create(nome='Aluno 4', cpf='1234')
[ "david@kwast.net" ]
david@kwast.net
106b8ec454d21701a83da39b2bcf05c80452ce3d
7fb9d4e18e915e4be50a4f387586eee01c2c6d74
/venv/bin/flask
ce2b74cc4df4fa54c21d939cea2b4831346732ff
[]
no_license
Dezynre/project19
08825d583f340e0b394495f6549092dd717c1e99
22f51ab0157100e65818b89914936f9f42157337
refs/heads/master
2023-01-02T20:06:45.783947
2020-10-31T08:17:48
2020-10-31T08:17:48
308,834,896
2
1
null
null
null
null
UTF-8
Python
false
false
264
#!/home/super-user/Desktop/WEB_PROJECTS/PUBLIC_BLOG/venv/bin/python3.8 # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "dezynre254@gmail.com" ]
dezynre254@gmail.com
bc0d107eda0134dbc9d7e3850953956f9a76fa90
acc45babeb8c7d49b4845b24b3be5b55c4dff2ba
/motif_mark.py
9f4bae9e93a6de06dcb5a7876c1eb6089374ea6d
[]
no_license
ryanjdecourcy/motif-mark
3cacce10213685d97dff4647a28e4e697d33cbee
e2bf4716fc5243d5b86c92f51a2c36dfcf232188
refs/heads/main
2023-03-13T17:19:08.439642
2021-03-06T03:54:01
2021-03-06T03:54:01
335,823,957
0
0
null
null
null
null
UTF-8
Python
false
false
14,901
py
#!/usr/bin/env python # Importing modules # in bash terminal run "pip install pycairo" import cairo import re import argparse # Setting up argparse inputs parser = argparse.ArgumentParser(description="'-fa' to specify fasta file; '-m' to specify motif mark file") parser.add_argument("-fa", "--fasta_file", help="input file with fasta sequences", required = True) parser.add_argument("-m", "--motif_mark_file", help="input file with motif marks", required = True) args = parser.parse_args() fasta_input = args.fasta_file motif_input = args.motif_mark_file ############################################################### ################# BUILDING MOTIF CONVERSION FUNCTION BELOW def motif_conversion(amotif): reg_building = '' for x in range(len(amotif)): if (len(vIUPAC[amotif[x]])) == 1: reg_building += (vIUPAC[amotif[x]][0]) elif (len(vIUPAC[amotif[x]])) > 1: reg_building += "[" for y in range(len(vIUPAC[amotif[x]])): reg_building += (vIUPAC[amotif[x]][y]) reg_building += "]" return reg_building ########### END OF MOTIF CONVERSION FUNCTION ############################################################### ######## Start of exon_placer function def exon_placer(aread): exon_regex = "[A-Z]+" test_exon_indices = [match.start() for match in re.finditer(exon_regex, aread)] test_exon = re.findall(exon_regex, aread) anexon_reg_found = re.search(exon_regex, aread) anexon = anexon_reg_found[0] exon_start_indices = [match.start() for match in re.finditer(exon_regex, aread)] exon_start = exon_start_indices[0] exon_end = exon_start + len(anexon) # list to output: the exon sequence, start position and end position read_exon_start_end = [anexon, exon_start, exon_end] return read_exon_start_end # so exon_placer fn() outputs a list of 3 elements: # the exon found, the start position and the end position ###### End of exon_placer function ################################################################# # Dict to translate ambiguous IUPAC nt symbols # Credit to wikipedia: https://en.wikipedia.org/wiki/Nucleic_acid_notation) # Although the dictionary was expanded to include lowercase nt symbols vIUPAC = { "A":["A" ], "C":[ "C" ], "G":[ "G" ], "T":[ "T"], "U":[ "U"], "W":["A", "T"], "S":[ "C","G" ], "M":["A","C" ], "K":[ "G","T"], "R":["A", "G", ], "Y":[ "C", "T"], "B":[ "C","G","T"], "D":["A", "G","T"], "H":["A","C", "T"], "V":["A","C","G", ], "N":["A","C","G","T"], "Z":[ ], "a":["a" ], "c":[ "c" ], "g":[ "g" ], "t":[ "t"], "u":[ "u"], "w":["a", "t"], "s":[ "c","g" ], "m":["a","c" ], "k":[ "g","t"], "r":["a", "g", ], "y":[ "c", "t"], "b":[ "c","g","t"], "d":["a", "g","t"], "h":["a","c", "t"], "v":["a","c","g", ], "n":["a","c","g","t"], "z":[ ], } ######################################################################## # Building list of motifs from input file motif_list = [] with open(motif_input, "r") as mo: for line in mo: motif_list.append(line.replace('\n','')) ######################################################################## ########## USE MOTIF CONV. FN() TO MAKE DICTIONARY OF REGEX motif_regex_dict = {} for m in range(len(motif_list)): motif_regex_dict[motif_list[m]] = motif_conversion(motif_list[m]) # motif_regex_dict has keys with original motifs (with ambiguous IUPAC symbols) # and values with their corresponding reg. expressions # built with motif_conversion() fn previously defined ######################################################################## # Creating read and header lists to work from current_read_list = [] all_reads = [] all_read_headers = [] with open(fasta_input, "r") as fa: for line in fa: if ">" not in line: current_read_list.append(line.replace('\n','')) else: all_reads.append(''.join(current_read_list)) current_read_list = [] all_read_headers.append(line.replace('\n','')) all_reads.append(''.join(current_read_list)) # removing first (empty) read all_reads.pop(0) # Get list of just the gene symbols of the headers from the FASTA header lines header_list = [x.split()[0][1:] for x in all_read_headers] ########################################################## ########################################################## # OUTPUT TO GRAPHIC AND LOOPING THROUGH ALL READS # FOR PROCESSING STARTS BELOW HERE ########################################################## # Setting up cairo surface num_reads = len(all_reads) width, height = 1000, (500 * num_reads) + 200 # Setting up output to write to [file prefix of fasta input].svg surface = cairo.SVGSurface( ("%s.svg" % (fasta_input)), width, height) ctx = cairo.Context(surface) # Adding text to annotate motif output # Setting color, size and style of font ctx.set_source_rgb(0, 0, 0) ctx.set_font_size(15) ctx.select_font_face("Arial", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) # Getting dimensions of font output for centering (x, y, width, height, dx, dy) = ctx.text_extents("Longer vertical bars indicate start of motifs for discerning ambiguous overlapping sites") # Positioning and outputting text ctx.move_to( (500 - (width / 2)), ( (500 * num_reads) + 100 - height)) ctx.show_text("Longer vertical bars indicate start of motifs for discerning ambiguous overlapping sites") # Looping through all the FASTA records, using variable rec (for record) for rec in range(len(all_reads)): aread = all_reads[rec] aheader = all_read_headers[rec] ############################################################### # Getting indices from reads - where motifs start # Adding to empty (temporary) dictionary aread_motif_indices = {} # Looping through motif_list to check through each motif - adding all to temporary dictionary for x in range(len(motif_list)): current_motif_indices = [match.start() for match in re.finditer(motif_regex_dict[motif_list[x]], aread)] aread_motif_indices[motif_list[x]] = current_motif_indices # Above outputs "aread_motif_indices" dictionary with lists as indices of original motifs # empty lists indicate that the motif was not found in the read at all ################################################################### ########### CREATING GRAPHIC WITH PYCAIRO BELOW ########### Starting with defining functions # # Note: ## All positions and sizes in graphic output are scaled # to the size of the graphic output, in proportion to the actual genetic information x = 0 #####################################################3 # Defining color functions def intron_exon_col(): ctx.set_source_rgb(0.541176470588235, 0.772549019607843, 1.0) def red(): ctx.set_source_rgb((247/255), (35/255), (35/255)) def orange(): ctx.set_source_rgb((255/255), (140/255), 0) def yellow(): ctx.set_source_rgb((255/255), (234/255), 0) def green(): ctx.set_source_rgb((77/255), (255/255), 0) def indigo(): ctx.set_source_rgb((85/255), (43/255), (117/255)) def violet(): ctx.set_source_rgb((252/255), (50/255), (209/255)) def dark_green(): ctx.set_source_rgb((46/255), (102/255), (62/255)) def navy_blue(): ctx.set_source_rgb((10/255), (92/255), (170/255)) def burgundy(): ctx.set_source_rgb((128/255), (60/255), (60/255)) def purple(): ctx.set_source_rgb((158/255), (21/255), (142/255)) def black(): ctx.set_source_rgb(0, 0, 0) ###################################################### ### Setting up combination function to iterate through color-picking def col_fn_list(x): if x == 0: intron_exon_col() elif x == 1: red() elif x == 2: orange() elif x == 3: yellow() elif x == 4: green() elif x == 5: indigo() elif x == 6: violet() elif x == 7: dark_green() elif x == 8: navy_blue() elif x == 9: burgundy() elif x == 10: purple() elif x == 11: black() ######################################################### # col_fn_list() function chooses color based on number - pulls from previously defined color functions # 0: for intron/exon # 1 - 10 for colors of motifs # 11: black ###################################################### ### Drawing intron to overlay exon on # Variables for placement # Intron dimensions intron_tl_x = 0 intron_tl_y = 150 + (rec * 500) intron_width = 1000 intron_height = 10 # Drawing intron col_fn_list(0) ctx.rectangle(intron_tl_x, intron_tl_y, intron_width, intron_height) ctx.fill() # Getting positions for exon # test_exon_placer_output is a list containing the following: exon sequence, start and end (order-specific) test_exon_placer_output = (exon_placer(aread)) start_pct = (test_exon_placer_output[1] / len(aread)) * 1000 end_pct = ( (test_exon_placer_output[2] - test_exon_placer_output[1]) / len(aread) ) * 1000 # Exon # Variables for placement y_exon = 135 + (rec * 500) vert_len_exon = 40 # Drawing exon col_fn_list(0) ctx.rectangle(start_pct, y_exon, end_pct, vert_len_exon) ctx.fill() ###################################################### ### Adding header of read to top of output # Variables for placement # header_x_placement is picked based of text_extents, to center text in output header_y_placement = 25 + (rec * 500) # Making header text - only need gene name - # splitting on whitespace and leaving out the leading ">" character gene_name = aheader.split()[0][1:] # Setting color, size, style of font col_fn_list(11) ctx.set_font_size(20) ctx.select_font_face("Arial", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) # Getting dimensions of text in order to place with respect to center in .svg graphic output (x, y, width, height, dx, dy) = ctx.text_extents("Gene Symbol: " + gene_name) # Placing and outputting text ctx.move_to( (500 - (width / 2)), header_y_placement) ctx.show_text("Gene Symbol: " + gene_name) ###################################################### ### Making legend of different motif colors (max of 10) ### Building working_motif_list # Array containing: # list of motif, and corresponding list (in 2nd dimension) of position of occurrences # built from previous dictionary - # need list instead of dict to keep ordered (varying versions of python are different in this regard) working_motif_list = [] for (k, v) in aread_motif_indices.items(): if len(v) > 0: alist = [k, v] working_motif_list.append(alist) ##################################################################### # Making motif legend # Variables for placement legend_text_x = 50 legend_text_y = 280 + (rec * 500) # Color, size, style of font col_fn_list(11) ctx.set_font_size(15) ctx.select_font_face("Arial", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) # Positioning and outputting font ctx.move_to(legend_text_x, legend_text_y) ctx.show_text("Motif Legend") # Making motif legend outline # based on length of working_motif_list # how many motifs are found in this sequence # Setting dimensions of outline left = 50 right = 175 top = 290 + (rec * 500) bottom = top + (len(working_motif_list) * 25 ) # Setting color, line width, choosing path and drawing to .svg output col_fn_list(11) ctx.set_line_width(1) ctx.move_to(left, top) ctx.line_to(right, top) ctx.line_to(right, bottom) ctx.line_to(left, bottom) ctx.line_to(left, top) ctx.close_path() ctx.stroke() ########################### # Setting variable x for further use positioning individual genes in output graphic x = 0 + (rec * 500) # Setting loop - variable "m" for: 1 motif, and associated information for m in range(len(working_motif_list)): # Setting color; moving through list of colors in pre-defined swatch col_fn_list(m + 1) motif_len = len(working_motif_list[m][0]) curr_motif_width = (motif_len / len(aread)) * 1000 # Inner loop to move through each of the occurrences of finding a motif for p in range(len(working_motif_list[m][1])): # Setting position for motif start and scaling to size of graphic output raw_posn = working_motif_list[m][1][p] curr_motif_posn = (raw_posn / len(aread) ) * 1000 # Setting dimensions for motif y_top_main = 130 + (rec * 500) y_main_length = 50 y_top_starting = 100 + (rec * 500) y_starting_length = 110 # Drawing motifs, composed of two parts: # Main portion - the entire length of the motif is represented by this rectangle ctx.rectangle(curr_motif_posn, y_top_main, curr_motif_width, y_main_length) # "Starting" portion - the exact start of the motif is marked by this thin "line" (also a rectangle) ctx.rectangle(curr_motif_posn, y_top_starting, 1, y_starting_length) # Making swatches of color (squares) in the key legend, # to annotate motif colors with sequences from input # Variables for placement legend_col_x = 60 # Drawing squares to output ctx.rectangle(legend_col_x, (300 + x), 10, 10) ctx.fill() # Annotating legend with motif sequences: # Variables for placement motif_seqs_x = 85 # Choosing color, size and style of font col_fn_list(11) ctx.set_font_size(10) ctx.select_font_face("Arial", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) # Writing out individual motifs to their corresponding color swatches in the legend # Moving through system in a loop ctx.move_to(motif_seqs_x, (310 + x) ) ctx.show_text(working_motif_list[m][0]) # Incrementing x (used in placement) x += 15
[ "ryanjdecourcy@gmail.com" ]
ryanjdecourcy@gmail.com
707db000c00d3186f450c3d7d0744a961b6c3e59
d9ca319514ffe757ab36e87597f562b81153aefe
/estimator/TrainValTensorBoard.py
3028fd4759f4b4a693b510da10656d7c3076d1a2
[]
no_license
josecyc/PUBG
0f9ebde4dcc147ab52db0d237aa084121b898e5b
1b3cd74e101e6d56fd4099313a9e4dede91d193a
refs/heads/master
2020-04-27T22:24:18.404145
2019-03-11T18:15:41
2019-03-11T18:15:41
174,735,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,920
py
import os import tensorflow as tf from tensorflow.keras.callbacks import TensorBoard from tensorflow.python.eager import context from time import gmtime, strftime class TrainValTensorBoard(TensorBoard): def __init__(self, log_dir='./logs', **kwargs): st = strftime("training %a_%d_%b_%Y_%H:%M", gmtime()) sv = strftime("validation %a_%d_%b_%Y_%H:%M", gmtime()) self.val_log_dir = os.path.join(log_dir, sv) training_log_dir = os.path.join(log_dir, st) super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs) def set_model(self, model): if context.executing_eagerly(): self.val_writer = tf.contrib.summary.create_file_writer(self.val_log_dir) else: self.val_writer = tf.summary.FileWriter(self.val_log_dir) super(TrainValTensorBoard, self).set_model(model) def _write_custom_summaries(self, step, logs=None): logs = logs or {} val_logs = {k.replace('val_', ''): v for k, v in logs.items() if 'val_' in k} if context.executing_eagerly(): with self.val_writer.as_default(), tf.contrib.summary.always_record_summaries(): for name, value in val_logs.items(): tf.contrib.summary.scalar(name, value.item(), step=step) else: for name, value in val_logs.items(): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value.item() summary_value.tag = name self.val_writer.add_summary(summary, step) self.val_writer.flush() logs = {k: v for k, v in logs.items() if not 'val_' in k} super(TrainValTensorBoard, self)._write_custom_summaries(step, logs) def on_train_end(self, logs=None): super(TrainValTensorBoard, self).on_train_end(logs) self.val_writer.close()
[ "jcruz-y-@e1z4r13p9.42.us.org" ]
jcruz-y-@e1z4r13p9.42.us.org
9caa5ee05bebb29025bf46c0402d861d527d04ca
76ee0f818060fa568b00b3eebf8ab65743820069
/polls/views.py
f955bb01b6b83665363d93246ee1383a1250e46a
[]
no_license
seal031/DjangoProject
b592685616d7511dccd5a9826e08e1fa67655d3c
7c21affaf3a670a8e3b0a8823382cef8f89db492
refs/heads/master
2021-08-15T22:44:21.198212
2017-11-18T13:54:00
2017-11-18T13:54:00
111,088,091
0
0
null
null
null
null
UTF-8
Python
false
false
827
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.http import HttpResponse from .models import Question from django.shortcuts import get_object_or_404, render def index(request): latest_question_list = Question.objects.order_by('-pub_date')[:5] context = { 'latest_question_list': latest_question_list, } return render(request, 'polls/index.html', context) def detail(request, question_id): question = get_object_or_404(Question, pk=question_id) return render(request, 'polls/detail.html', {'question': question}) def results(request, question_id): response = "You're looking at the results of question %s." return HttpResponse(response % question_id) def vote(request, question_id): return HttpResponse("You're voting on question %s." % question_id)
[ "87749356@qq.com" ]
87749356@qq.com
8bdbcae864b577faa345cd9b564655bdc7663ecc
8fe3e891cbe304b1a0261dbcc3cb95e4ecbddd90
/bettron/soccer/views.py
36f51755b19c5c89efb4e3ec1d5e5ba1b032eb2b
[]
no_license
jtorresr1/BETTRON
e1be746b0fbb6f855c86fad5793c453519a59574
2e7d8b93945b391952e0714ca03085389d75f02e
refs/heads/master
2020-08-08T05:39:38.023916
2019-10-08T19:39:27
2019-10-08T19:39:27
213,737,108
0
0
null
null
null
null
UTF-8
Python
false
false
7,665
py
from django.shortcuts import render, redirect from django.http import HttpResponse from django.db.models import Count import csv from soccer.models import Ligas,Partidos,Equipos from soccer.forms import * from soccer.utils import * import os import time from datetime import datetime,timedelta from django.template.loader import get_template from selenium import webdriver def index(request): return render(request, 'soccer/index.html') def error(request): return render(request,'soccer/error.html') def apuestas(request): context = {} if request.method == 'POST': Nacion = request.POST['Nacion'] league = request.POST['Liga'] HomeTeam = request.POST['HomeTeam'] AwayTeam = request.POST['AwayTeam'] if Equipos.objects.filter(Nombre_Equipo=HomeTeam).count() != 1 or Equipos.objects.filter( Nombre_Equipo=AwayTeam).count() != 1: return redirect('futbol:error') probabilidadlocal, probabilidadvisita = promedio_goles(Nacion, league, HomeTeam, AwayTeam) if probabilidadlocal == 0: return HttpResponse("no tiene partidos previos para evaluar") evaluaciongoles = 8 probloc, probvis = probabilidad_goles(probabilidadlocal, probabilidadvisita, evaluaciongoles) context = context_goles(evaluaciongoles, probloc, probvis) context['local_team'] = HomeTeam context['away_team'] = AwayTeam context['local'] = probloc context['visita'] = probvis return render(request, 'soccer/result.html', context) else: league_form = RegPais() return render(request, 'soccer/apuestas.html', {'league_form':league_form}) def match_all(request): today = datetime.now() date_from_match = today.strftime("%Y-%m-%d") lugar = '/home/jaime/partidos/' + date_from_match if not os.path.exists(lugar): os.mkdir(lugar) Nacion = request.POST['Nacion'] league = request.POST['Liga'] HomeTeam = request.POST['HomeTeam'] AwayTeam = request.POST['AwayTeam'] if Equipos.objects.filter(Nombre_Equipo=HomeTeam).count() != 1 or Equipos.objects.filter( Nombre_Equipo=AwayTeam).count() != 1: return redirect('futbol:form_general') probabilidadlocal, probabilidadvisita = promedio_goles(Nacion, league, HomeTeam, AwayTeam) if probabilidadlocal == 0: return redirect('futbol:form_general') evaluaciongoles = 8 probloc, probvis = probabilidad_goles(probabilidadlocal, probabilidadvisita, evaluaciongoles) context = context_goles(evaluaciongoles, probloc, probvis) context['local_team'] = HomeTeam context['away_team'] = AwayTeam context['local'] = probloc context['visita'] = probvis template = get_template('forpdf.html') html = template.render(context) pdf = render_to_pdf('forpdf.html', context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') filename = str(HomeTeam) + "vs" + str(AwayTeam) + ".pdf" content = "inline; filename="+filename content = "attachment; filename="+filename response['Content-Disposition'] = content return response return redirect('futbol:index') def newmatch(request): actualizar_csv() context = {} with open('/home/jaime/PycharmProjects/Test1/Test/partidos_ayer.csv', 'r') as files: data = csv.reader(files) for row in data: nac = row[0].strip() league = row[1].strip() testeador = Ligas.objects.filter(Nacion=nac, Liga=league).count() if testeador == 0: for i in range(2): if testeador == 1 or len(league.split("-")) == 1: break if len(league.split("-")) == 2: leag, extra = league.split("-") else: leag, extra, extra1 = league.split("-") leag = leag.strip() league = leag testeador = Ligas.objects.filter(Nacion=nac, Liga=league).count() if testeador == 0: continue re = Ligas.objects.get(Nacion=nac, Liga=league) value = Partidos(Cod_Liga=re, HomeTeam=row[2], AwayTeam=row[3], date_match=row[4], GoalsHome=int(row[5]), GoalsAway=int(row[6]), Result=row[7]) try: value.save() except: context["error"] = "Fallo" context["exito"] = "Funciona" return render(request, 'soccer/add_ligas.html', context) def add_ligas(request): context = {} a = 1 with open('/home/jaime/PycharmProjects/Test1/Test/test1.csv', 'r') as files: data = csv.reader(files) for i in range(1): next(data) for row in data: value = Ligas(Nacion=row[0], Liga=row[1]) try: value.save() except: context["error"] = "Fallo" a=0 break if a: context["exito"] = "Funciona" return render(request,'soccer/add_ligas.html', context) def add_matches(request): context = {} with open('/home/jaime/PycharmProjects/Test1/Test/partidos.csv', 'r') as files: data = csv.reader(files) for row in data: codigo_league = int(row[0]) re = Ligas.objects.get(Codigo_liga=codigo_league) print (str(row)) fecha = row[3] dia, mes, anho = fecha.split(".") dateoriginal = anho + "-" + mes + "-" + dia value = Partidos(Cod_Liga=re, HomeTeam=row[1], AwayTeam=row[2], date_match=dateoriginal, GoalsHome=int(row[4]), GoalsAway=int(row[5]), Result=row[6]) try: value.save() except: context["error"] = "Fallo" context["exito"] = "Funciona" return render(request, 'soccer/add_ligas.html', context) def actualizar_matches(request): with open('/home/jaime/PycharmProjects/Test1/Test/partidos_actualizador.csv', 'r') as files: data = csv.reader(files) for row in data: codigo_league = int(row[0]) re = Ligas.objects.get(Codigo_liga=codigo_league) print(str(row)) fecha = row[3] dia, mes, anho = fecha.split(".") dateoriginal = anho + "-" + mes + "-" + dia value = Partidos(Cod_Liga=re, HomeTeam=row[1], AwayTeam=row[2], date_match=dateoriginal, GoalsHome=int(row[4]), GoalsAway=int(row[5]), Result=row[6]) try: value.save() except: return redirect('futbol:error') return redirect('futbol:index') def add_teams(request): context = {} with open('/home/jaime/PycharmProjects/Test1/Test/equipos.csv', 'r') as files: data = csv.reader(files) for row in data: value = Equipos(Nombre_Equipo=row[0]) try: value.save() except: context["error"] = "Se repitio" context["exito"] = "Funciona" return render(request, 'soccer/add_ligas.html', context) def general(request): if not os.path.exists('/home/jaime/PycharmProjects/Test1/Test/partidos_tomorrow.csv'): get_match_tomorrow() return redirect('futbol:form_general') def formulario_general(request): league_form = Checking() return render(request, 'soccer/complete_form.html', {'league_form': league_form}) def download_pdfs(request): manipulate() return redirect('futbol:index')
[ "jaimetr97@gmail.com" ]
jaimetr97@gmail.com
775808f38e23723aac6429aafe7a2baf9dfd7c3b
b6e31b6160efd3209badacf194b748dfbca3b2df
/blog/tests.py
99aea8f491c8cd1c815d91ccede6965e6a2fcc57
[]
no_license
AntonChernov/wonderslab_test
ef68f86a4c5b4f8de9973c48ad0c18a22f3ffc8a
3b394f9830244d7e469cf3b8585f27fc62524e6d
refs/heads/master
2021-05-07T17:23:32.851068
2017-11-01T05:51:29
2017-11-01T05:51:29
108,728,306
0
0
null
null
null
null
UTF-8
Python
false
false
2,704
py
from django.contrib.auth import get_user_model from django.test import Client from django.test import TestCase # Create your tests here. from django.urls import reverse_lazy from blog.models import Post class PostTests(TestCase): def setUp(self): self.user1 = get_user_model().objects.create( username='test1', email='test1@gmail.com', first_name='Billy', last_name='Dodson' ) self.user1.set_password('test1pass') self.user2 = get_user_model().objects.create( username='test2', email='test2@gmail.com', first_name='Jilian', last_name='Sommers' ) self.user2.set_password('test2pass') Post.objects.bulk_create( [ Post(author=self.user1, title='Some title 1', text='some text 1'), Post(author=self.user2, title='Some title 2', text='some text 2'), Post(author=self.user2, title='Some title 3', text='some text 3'), Post(author=self.user1, title='Some title 4', text='some text 4'), Post(author=self.user1, title='Some title 5', text='some text 5'), Post(author=self.user2, title='Some title 6', text='some text 6'), ] ) self.client = Client() def test_login(self): response = self.client.post(reverse_lazy('login'), data={ 'username': self.user1.username, 'password': 'test1pass' }) self.assertEqual(response.status_code, 200) def show_post_authenticate_user(self): user = self.client.force_login(user=self.user1) response = self.client.get(reverse_lazy('user_posts', kwargs={'pk': self.user1.id})) self.assertEqual(response.status_code, 200) response = self.client.get(reverse_lazy('user_posts', kwargs={'pk': 12})) self.assertEqual(response.status_code, 404) self.client.logout() def test_redirect_to_login(self): response = self.client.get(reverse_lazy('user_posts', kwargs={'pk': self.user1.id}), follow=True) last_url, status_code = response.redirect_chain[-1] self.assertEqual(last_url, reverse_lazy('login') + '?next=/blog/users/1/') self.assertEqual(status_code, 302) def test_change_if_not_post_owner(self): user = self.client.post(reverse_lazy('login'), {'username': self.user1.username, 'password': 'test1pass'}) response = self.client.post(reverse_lazy('update_post', kwargs={'pk': 3}), follow=True) print(response) self.assertEqual(response.status_code, 200)
[ "anton.chernov@steelkiwi.com" ]
anton.chernov@steelkiwi.com
70ee1afcd2e3855551589e7899518ff75e94ec41
656def2ca5c0bd959b31b98cdbc53fea3420b2dc
/Python3.7-VideoComposition/src/tencentcloud/cbs/v20170312/models.py
5b4e27df779ac6484fcc48eafcc445c9ede68e0e
[]
no_license
tencentyun/serverless-demo
120271b96f8f960b6125c9d1481a5d8fe56165ae
4c324bb186c460fe78252f0ca5c28132a8bce6c9
refs/heads/master
2023-08-25T17:07:04.959745
2023-08-25T08:10:49
2023-08-25T08:10:49
281,120,881
94
119
null
2023-08-31T06:34:36
2020-07-20T13:15:46
null
UTF-8
Python
false
false
128,684
py
# -*- coding: utf8 -*- # Copyright (c) 2017-2021 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from tencentcloud.common.abstract_model import AbstractModel class ApplySnapshotRequest(AbstractModel): """ApplySnapshot请求参数结构体 """ def __init__(self): r""" :param SnapshotId: 快照ID, 可通过[DescribeSnapshots](/document/product/362/15647)查询。 :type SnapshotId: str :param DiskId: 快照原云硬盘ID,可通过[DescribeDisks](/document/product/362/16315)接口查询。 :type DiskId: str :param AutoStopInstance: 回滚前是否执行自动关机 :type AutoStopInstance: bool :param AutoStartInstance: 回滚完成后是否自动开机 :type AutoStartInstance: bool """ self.SnapshotId = None self.DiskId = None self.AutoStopInstance = None self.AutoStartInstance = None def _deserialize(self, params): self.SnapshotId = params.get("SnapshotId") self.DiskId = params.get("DiskId") self.AutoStopInstance = params.get("AutoStopInstance") self.AutoStartInstance = params.get("AutoStartInstance") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ApplySnapshotResponse(AbstractModel): """ApplySnapshot返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class AttachDetail(AbstractModel): """描述一个实例已挂载和可挂载数据盘的数量。 """ def __init__(self): r""" :param InstanceId: 实例ID。 :type InstanceId: str :param AttachedDiskCount: 实例已挂载数据盘的数量。 :type AttachedDiskCount: int :param MaxAttachCount: 实例最大可挂载数据盘的数量。 :type MaxAttachCount: int """ self.InstanceId = None self.AttachedDiskCount = None self.MaxAttachCount = None def _deserialize(self, params): self.InstanceId = params.get("InstanceId") self.AttachedDiskCount = params.get("AttachedDiskCount") self.MaxAttachCount = params.get("MaxAttachCount") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class AttachDisksRequest(AbstractModel): """AttachDisks请求参数结构体 """ def __init__(self): r""" :param InstanceId: 云服务器实例ID。云盘将被挂载到此云服务器上,通过[DescribeInstances](/document/product/213/15728)接口查询。 :type InstanceId: str :param DiskIds: 将要被挂载的弹性云盘ID。通过[DescribeDisks](/document/product/362/16315)接口查询。单次最多可挂载10块弹性云盘。 :type DiskIds: list of str :param DeleteWithInstance: 可选参数,不传该参数则仅执行挂载操作。传入`True`时,会在挂载成功后将云硬盘设置为随云主机销毁模式,仅对按量计费云硬盘有效。 :type DeleteWithInstance: bool :param AttachMode: 可选参数,用于控制云盘挂载时使用的挂载模式,目前仅对黑石裸金属机型有效。取值范围:<br><li>PF<br><li>VF :type AttachMode: str """ self.InstanceId = None self.DiskIds = None self.DeleteWithInstance = None self.AttachMode = None def _deserialize(self, params): self.InstanceId = params.get("InstanceId") self.DiskIds = params.get("DiskIds") self.DeleteWithInstance = params.get("DeleteWithInstance") self.AttachMode = params.get("AttachMode") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class AttachDisksResponse(AbstractModel): """AttachDisks返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class AutoMountConfiguration(AbstractModel): """自动初始化、挂载云盘时指定配置。 """ def __init__(self): r""" :param InstanceId: 要挂载到的实例ID。 :type InstanceId: list of str :param MountPoint: 子机内的挂载点。 :type MountPoint: list of str :param FileSystemType: 文件系统类型,支持的有 ext4、xfs。 :type FileSystemType: str """ self.InstanceId = None self.MountPoint = None self.FileSystemType = None def _deserialize(self, params): self.InstanceId = params.get("InstanceId") self.MountPoint = params.get("MountPoint") self.FileSystemType = params.get("FileSystemType") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class AutoSnapshotPolicy(AbstractModel): """描述了定期快照策略的详细信息 """ def __init__(self): r""" :param AutoSnapshotPolicyId: 定期快照策略ID。 :type AutoSnapshotPolicyId: str :param AutoSnapshotPolicyName: 定期快照策略名称。 :type AutoSnapshotPolicyName: str :param AutoSnapshotPolicyState: 定期快照策略的状态。取值范围:<br><li>NORMAL:正常<br><li>ISOLATED:已隔离。 :type AutoSnapshotPolicyState: str :param IsActivated: 定期快照策略是否激活。 :type IsActivated: bool :param IsPermanent: 使用该定期快照策略创建出来的快照是否永久保留。 :type IsPermanent: bool :param RetentionDays: 使用该定期快照策略创建出来的快照保留天数。 :type RetentionDays: int :param CreateTime: 定期快照策略的创建时间。 :type CreateTime: str :param NextTriggerTime: 定期快照下次触发的时间。 :type NextTriggerTime: str :param Policy: 定期快照的执行策略。 :type Policy: list of Policy :param DiskIdSet: 已绑定当前定期快照策略的云盘ID列表。 :type DiskIdSet: list of str """ self.AutoSnapshotPolicyId = None self.AutoSnapshotPolicyName = None self.AutoSnapshotPolicyState = None self.IsActivated = None self.IsPermanent = None self.RetentionDays = None self.CreateTime = None self.NextTriggerTime = None self.Policy = None self.DiskIdSet = None def _deserialize(self, params): self.AutoSnapshotPolicyId = params.get("AutoSnapshotPolicyId") self.AutoSnapshotPolicyName = params.get("AutoSnapshotPolicyName") self.AutoSnapshotPolicyState = params.get("AutoSnapshotPolicyState") self.IsActivated = params.get("IsActivated") self.IsPermanent = params.get("IsPermanent") self.RetentionDays = params.get("RetentionDays") self.CreateTime = params.get("CreateTime") self.NextTriggerTime = params.get("NextTriggerTime") if params.get("Policy") is not None: self.Policy = [] for item in params.get("Policy"): obj = Policy() obj._deserialize(item) self.Policy.append(obj) self.DiskIdSet = params.get("DiskIdSet") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class BindAutoSnapshotPolicyRequest(AbstractModel): """BindAutoSnapshotPolicy请求参数结构体 """ def __init__(self): r""" :param AutoSnapshotPolicyId: 要绑定的定期快照策略ID。 :type AutoSnapshotPolicyId: str :param DiskIds: 要绑定的云硬盘ID列表,一次请求最多绑定80块云盘。 :type DiskIds: list of str """ self.AutoSnapshotPolicyId = None self.DiskIds = None def _deserialize(self, params): self.AutoSnapshotPolicyId = params.get("AutoSnapshotPolicyId") self.DiskIds = params.get("DiskIds") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class BindAutoSnapshotPolicyResponse(AbstractModel): """BindAutoSnapshotPolicy返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class Cdc(AbstractModel): """描述独享集群的详细信息。 """ def __init__(self): r""" :param CageId: 独享集群围笼ID。 注意:此字段可能返回 null,表示取不到有效值。 :type CageId: str :param CdcState: 独享集群状态。取值范围:<br><li>NORMAL:正常;<br><li>CLOSED:关闭,此时将不可使用该独享集群创建新的云硬盘;<br><li>FAULT:独享集群状态异常,此时独享集群将不可操作,腾讯云运维团队将会及时修复该集群;<br><li>ISOLATED:因未及时续费导致独享集群被隔离,此时将不可使用该独享集群创建新的云硬盘,对应的云硬盘也将不可操作。 :type CdcState: str :param Zone: 独享集群所属的[可用区](/document/product/213/15753#ZoneInfo)ID。 注意:此字段可能返回 null,表示取不到有效值。 :type Zone: str :param CdcName: 独享集群实例名称。 :type CdcName: str :param CdcResource: 独享集群的资源容量大小。 注意:此字段可能返回 null,表示取不到有效值。 :type CdcResource: :class:`tencentcloud.cbs.v20170312.models.CdcSize` :param CdcId: 独享集群实例id。 :type CdcId: str :param DiskType: 独享集群类型。取值范围:<br><li>CLOUD_BASIC:表示普通云硬盘集群<br><li>CLOUD_PREMIUM:表示高性能云硬盘集群<br><li>CLOUD_SSD:SSD表示SSD云硬盘集群。 :type DiskType: str :param ExpiredTime: 独享集群到期时间。 :type ExpiredTime: str """ self.CageId = None self.CdcState = None self.Zone = None self.CdcName = None self.CdcResource = None self.CdcId = None self.DiskType = None self.ExpiredTime = None def _deserialize(self, params): self.CageId = params.get("CageId") self.CdcState = params.get("CdcState") self.Zone = params.get("Zone") self.CdcName = params.get("CdcName") if params.get("CdcResource") is not None: self.CdcResource = CdcSize() self.CdcResource._deserialize(params.get("CdcResource")) self.CdcId = params.get("CdcId") self.DiskType = params.get("DiskType") self.ExpiredTime = params.get("ExpiredTime") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class CdcSize(AbstractModel): """显示独享集群的大小 """ def __init__(self): r""" :param DiskAavilable: 独享集群的可用容量大小,单位GiB :type DiskAavilable: int :param DiskTotal: 独享集群的总容量大小,单位GiB :type DiskTotal: int """ self.DiskAavilable = None self.DiskTotal = None def _deserialize(self, params): self.DiskAavilable = params.get("DiskAavilable") self.DiskTotal = params.get("DiskTotal") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class CreateAutoSnapshotPolicyRequest(AbstractModel): """CreateAutoSnapshotPolicy请求参数结构体 """ def __init__(self): r""" :param Policy: 定期快照的执行策略。 :type Policy: list of Policy :param AutoSnapshotPolicyName: 要创建的定期快照策略名。不传则默认为“未命名”。最大长度不能超60个字节。 :type AutoSnapshotPolicyName: str :param IsActivated: 是否激活定期快照策略,FALSE表示未激活,TRUE表示激活,默认为TRUE。 :type IsActivated: bool :param IsPermanent: 通过该定期快照策略创建的快照是否永久保留。FALSE表示非永久保留,TRUE表示永久保留,默认为FALSE。 :type IsPermanent: bool :param RetentionDays: 通过该定期快照策略创建的快照保留天数,默认保留7天。如果指定本参数,则IsPermanent入参不可指定为TRUE,否则会产生冲突。 :type RetentionDays: int :param DryRun: 是否创建定期快照的执行策略。TRUE表示只需获取首次开始备份的时间,不实际创建定期快照策略,FALSE表示创建,默认为FALSE。 :type DryRun: bool """ self.Policy = None self.AutoSnapshotPolicyName = None self.IsActivated = None self.IsPermanent = None self.RetentionDays = None self.DryRun = None def _deserialize(self, params): if params.get("Policy") is not None: self.Policy = [] for item in params.get("Policy"): obj = Policy() obj._deserialize(item) self.Policy.append(obj) self.AutoSnapshotPolicyName = params.get("AutoSnapshotPolicyName") self.IsActivated = params.get("IsActivated") self.IsPermanent = params.get("IsPermanent") self.RetentionDays = params.get("RetentionDays") self.DryRun = params.get("DryRun") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class CreateAutoSnapshotPolicyResponse(AbstractModel): """CreateAutoSnapshotPolicy返回参数结构体 """ def __init__(self): r""" :param AutoSnapshotPolicyId: 新创建的定期快照策略ID。 :type AutoSnapshotPolicyId: str :param NextTriggerTime: 首次开始备份的时间。 :type NextTriggerTime: str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.AutoSnapshotPolicyId = None self.NextTriggerTime = None self.RequestId = None def _deserialize(self, params): self.AutoSnapshotPolicyId = params.get("AutoSnapshotPolicyId") self.NextTriggerTime = params.get("NextTriggerTime") self.RequestId = params.get("RequestId") class CreateDisksRequest(AbstractModel): """CreateDisks请求参数结构体 """ def __init__(self): r""" :param Placement: 实例所在的位置。通过该参数可以指定实例所属可用区,所属项目。若不指定项目,将在默认项目下进行创建。 :type Placement: :class:`tencentcloud.cbs.v20170312.models.Placement` :param DiskChargeType: 云硬盘计费类型。<br><li>PREPAID:预付费,即包年包月<br><li>POSTPAID_BY_HOUR:按小时后付费<br><li>CDCPAID:独享集群付费<br>各类型价格请参考云硬盘[价格总览](/document/product/362/2413)。 :type DiskChargeType: str :param DiskType: 硬盘介质类型。取值范围:<br><li>CLOUD_BASIC:表示普通云硬盘<br><li>CLOUD_PREMIUM:表示高性能云硬盘<br><li>CLOUD_SSD:表示SSD云硬盘<br><li>CLOUD_HSSD:表示增强型SSD云硬盘<br><li>CLOUD_TSSD:表示极速型SSD云硬盘。 :type DiskType: str :param DiskName: 云盘显示名称。不传则默认为“未命名”。最大长度不能超60个字节。 :type DiskName: str :param Tags: 云盘绑定的标签。 :type Tags: list of Tag :param SnapshotId: 快照ID,如果传入则根据此快照创建云硬盘,快照类型必须为数据盘快照,可通过[DescribeSnapshots](/document/product/362/15647)接口查询快照,见输出参数DiskUsage解释。 :type SnapshotId: str :param DiskCount: 创建云硬盘数量,不传则默认为1。单次请求最多可创建的云盘数有限制,具体参见[云硬盘使用限制](https://cloud.tencent.com/doc/product/362/5145)。 :type DiskCount: int :param ThroughputPerformance: 可选参数。使用此参数可给云硬盘购买额外的性能。<br>当前仅支持极速型云盘(CLOUD_TSSD)和增强型SSD云硬盘(CLOUD_HSSD) :type ThroughputPerformance: int :param DiskSize: 云硬盘大小,单位为GB。<br><li>如果传入`SnapshotId`则可不传`DiskSize`,此时新建云盘的大小为快照大小<br><li>如果传入`SnapshotId`同时传入`DiskSize`,则云盘大小必须大于或等于快照大小<br><li>云盘大小取值范围参见云硬盘[产品分类](/document/product/362/2353)的说明。 :type DiskSize: int :param Shareable: 可选参数,默认为False。传入True时,云盘将创建为共享型云盘。 :type Shareable: bool :param ClientToken: 用于保证请求幂等性的字符串。该字符串由客户生成,需保证不同请求之间唯一,最大值不超过64个ASCII字符。若不指定该参数,则无法保证请求的幂等性。 :type ClientToken: str :param Encrypt: 传入该参数用于创建加密云盘,取值固定为ENCRYPT。 :type Encrypt: str :param DiskChargePrepaid: 预付费模式,即包年包月相关参数设置。通过该参数指定包年包月云盘的购买时长、是否设置自动续费等属性。<br>创建预付费云盘该参数必传,创建按小时后付费云盘无需传该参数。 :type DiskChargePrepaid: :class:`tencentcloud.cbs.v20170312.models.DiskChargePrepaid` :param DeleteSnapshot: 销毁云盘时删除关联的非永久保留快照。0 表示非永久快照不随云盘销毁而销毁,1表示非永久快照随云盘销毁而销毁,默认取0。快照是否永久保留可以通过DescribeSnapshots接口返回的快照详情的IsPermanent字段来判断,true表示永久快照,false表示非永久快照。 :type DeleteSnapshot: int :param AutoMountConfiguration: 创建云盘时指定自动挂载并初始化该数据盘。 :type AutoMountConfiguration: :class:`tencentcloud.cbs.v20170312.models.AutoMountConfiguration` """ self.Placement = None self.DiskChargeType = None self.DiskType = None self.DiskName = None self.Tags = None self.SnapshotId = None self.DiskCount = None self.ThroughputPerformance = None self.DiskSize = None self.Shareable = None self.ClientToken = None self.Encrypt = None self.DiskChargePrepaid = None self.DeleteSnapshot = None self.AutoMountConfiguration = None def _deserialize(self, params): if params.get("Placement") is not None: self.Placement = Placement() self.Placement._deserialize(params.get("Placement")) self.DiskChargeType = params.get("DiskChargeType") self.DiskType = params.get("DiskType") self.DiskName = params.get("DiskName") if params.get("Tags") is not None: self.Tags = [] for item in params.get("Tags"): obj = Tag() obj._deserialize(item) self.Tags.append(obj) self.SnapshotId = params.get("SnapshotId") self.DiskCount = params.get("DiskCount") self.ThroughputPerformance = params.get("ThroughputPerformance") self.DiskSize = params.get("DiskSize") self.Shareable = params.get("Shareable") self.ClientToken = params.get("ClientToken") self.Encrypt = params.get("Encrypt") if params.get("DiskChargePrepaid") is not None: self.DiskChargePrepaid = DiskChargePrepaid() self.DiskChargePrepaid._deserialize(params.get("DiskChargePrepaid")) self.DeleteSnapshot = params.get("DeleteSnapshot") if params.get("AutoMountConfiguration") is not None: self.AutoMountConfiguration = AutoMountConfiguration() self.AutoMountConfiguration._deserialize(params.get("AutoMountConfiguration")) memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class CreateDisksResponse(AbstractModel): """CreateDisks返回参数结构体 """ def __init__(self): r""" :param DiskIdSet: 创建的云硬盘ID列表。 :type DiskIdSet: list of str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DiskIdSet = None self.RequestId = None def _deserialize(self, params): self.DiskIdSet = params.get("DiskIdSet") self.RequestId = params.get("RequestId") class CreateSnapshotRequest(AbstractModel): """CreateSnapshot请求参数结构体 """ def __init__(self): r""" :param DiskId: 需要创建快照的云硬盘ID,可通过[DescribeDisks](/document/product/362/16315)接口查询。 :type DiskId: str :param SnapshotName: 快照名称,不传则新快照名称默认为“未命名”。 :type SnapshotName: str :param Deadline: 快照的到期时间,到期后该快照将会自动删除,需要传入UTC时间下的ISO-8601标准时间格式,例如:2022-01-08T09:47:55+00:00 :type Deadline: str """ self.DiskId = None self.SnapshotName = None self.Deadline = None def _deserialize(self, params): self.DiskId = params.get("DiskId") self.SnapshotName = params.get("SnapshotName") self.Deadline = params.get("Deadline") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class CreateSnapshotResponse(AbstractModel): """CreateSnapshot返回参数结构体 """ def __init__(self): r""" :param SnapshotId: 新创建的快照ID。 :type SnapshotId: str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.SnapshotId = None self.RequestId = None def _deserialize(self, params): self.SnapshotId = params.get("SnapshotId") self.RequestId = params.get("RequestId") class DeleteAutoSnapshotPoliciesRequest(AbstractModel): """DeleteAutoSnapshotPolicies请求参数结构体 """ def __init__(self): r""" :param AutoSnapshotPolicyIds: 要删除的定期快照策略ID列表。 :type AutoSnapshotPolicyIds: list of str """ self.AutoSnapshotPolicyIds = None def _deserialize(self, params): self.AutoSnapshotPolicyIds = params.get("AutoSnapshotPolicyIds") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DeleteAutoSnapshotPoliciesResponse(AbstractModel): """DeleteAutoSnapshotPolicies返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DeleteSnapshotsRequest(AbstractModel): """DeleteSnapshots请求参数结构体 """ def __init__(self): r""" :param SnapshotIds: 要删除的快照ID列表,可通过[DescribeSnapshots](/document/product/362/15647)查询。 :type SnapshotIds: list of str :param DeleteBindImages: 是否强制删除快照关联的镜像 :type DeleteBindImages: bool """ self.SnapshotIds = None self.DeleteBindImages = None def _deserialize(self, params): self.SnapshotIds = params.get("SnapshotIds") self.DeleteBindImages = params.get("DeleteBindImages") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DeleteSnapshotsResponse(AbstractModel): """DeleteSnapshots返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DescribeAutoSnapshotPoliciesRequest(AbstractModel): """DescribeAutoSnapshotPolicies请求参数结构体 """ def __init__(self): r""" :param AutoSnapshotPolicyIds: 要查询的定期快照策略ID列表。参数不支持同时指定`AutoSnapshotPolicyIds`和`Filters`。 :type AutoSnapshotPolicyIds: list of str :param Filters: 过滤条件。参数不支持同时指定`AutoSnapshotPolicyIds`和`Filters`。<br><li>auto-snapshot-policy-id - Array of String - 是否必填:否 -(过滤条件)按定期快照策略ID进行过滤。定期快照策略ID形如:`asp-11112222`。<br><li>auto-snapshot-policy-state - Array of String - 是否必填:否 -(过滤条件)按定期快照策略的状态进行过滤。定期快照策略ID形如:`asp-11112222`。(NORMAL:正常 | ISOLATED:已隔离。)<br><li>auto-snapshot-policy-name - Array of String - 是否必填:否 -(过滤条件)按定期快照策略名称进行过滤。 :type Filters: list of Filter :param Limit: 返回数量,默认为20,最大值为100。关于`Limit`的更进一步介绍请参考 API [简介](/document/product/362/15633)中的相关小节。 :type Limit: int :param Offset: 偏移量,默认为0。关于`Offset`的更进一步介绍请参考API[简介](/document/product/362/15633)中的相关小节。 :type Offset: int :param Order: 输出定期快照列表的排列顺序。取值范围:<br><li>ASC:升序排列<br><li>DESC:降序排列。 :type Order: str :param OrderField: 定期快照列表排序的依据字段。取值范围:<br><li>CREATETIME:依据定期快照的创建时间排序<br>默认按创建时间排序。 :type OrderField: str """ self.AutoSnapshotPolicyIds = None self.Filters = None self.Limit = None self.Offset = None self.Order = None self.OrderField = None def _deserialize(self, params): self.AutoSnapshotPolicyIds = params.get("AutoSnapshotPolicyIds") if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) self.Limit = params.get("Limit") self.Offset = params.get("Offset") self.Order = params.get("Order") self.OrderField = params.get("OrderField") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeAutoSnapshotPoliciesResponse(AbstractModel): """DescribeAutoSnapshotPolicies返回参数结构体 """ def __init__(self): r""" :param TotalCount: 有效的定期快照策略数量。 :type TotalCount: int :param AutoSnapshotPolicySet: 定期快照策略列表。 :type AutoSnapshotPolicySet: list of AutoSnapshotPolicy :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.AutoSnapshotPolicySet = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("AutoSnapshotPolicySet") is not None: self.AutoSnapshotPolicySet = [] for item in params.get("AutoSnapshotPolicySet"): obj = AutoSnapshotPolicy() obj._deserialize(item) self.AutoSnapshotPolicySet.append(obj) self.RequestId = params.get("RequestId") class DescribeDiskAssociatedAutoSnapshotPolicyRequest(AbstractModel): """DescribeDiskAssociatedAutoSnapshotPolicy请求参数结构体 """ def __init__(self): r""" :param DiskId: 要查询的云硬盘ID。 :type DiskId: str """ self.DiskId = None def _deserialize(self, params): self.DiskId = params.get("DiskId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeDiskAssociatedAutoSnapshotPolicyResponse(AbstractModel): """DescribeDiskAssociatedAutoSnapshotPolicy返回参数结构体 """ def __init__(self): r""" :param TotalCount: 云盘绑定的定期快照数量。 :type TotalCount: int :param AutoSnapshotPolicySet: 云盘绑定的定期快照列表。 :type AutoSnapshotPolicySet: list of AutoSnapshotPolicy :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.AutoSnapshotPolicySet = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("AutoSnapshotPolicySet") is not None: self.AutoSnapshotPolicySet = [] for item in params.get("AutoSnapshotPolicySet"): obj = AutoSnapshotPolicy() obj._deserialize(item) self.AutoSnapshotPolicySet.append(obj) self.RequestId = params.get("RequestId") class DescribeDiskConfigQuotaRequest(AbstractModel): """DescribeDiskConfigQuota请求参数结构体 """ def __init__(self): r""" :param InquiryType: 查询类别,取值范围。<br><li>INQUIRY_CBS_CONFIG:查询云盘配置列表<br><li>INQUIRY_CVM_CONFIG:查询云盘与实例搭配的配置列表。 :type InquiryType: str :param Zones: 查询一个或多个[可用区](/document/product/213/15753#ZoneInfo)下的配置。 :type Zones: list of str :param DiskChargeType: 付费模式。取值范围:<br><li>PREPAID:预付费<br><li>POSTPAID_BY_HOUR:后付费。 :type DiskChargeType: str :param DiskTypes: 硬盘介质类型。取值范围:<br><li>CLOUD_BASIC:表示普通云硬盘<br><li>CLOUD_PREMIUM:表示高性能云硬盘<br><li>CLOUD_SSD:表示SSD云硬盘<br><li>CLOUD_HSSD:表示增强型SSD云硬盘。 :type DiskTypes: list of str :param DiskUsage: 系统盘或数据盘。取值范围:<br><li>SYSTEM_DISK:表示系统盘<br><li>DATA_DISK:表示数据盘。 :type DiskUsage: str :param InstanceFamilies: 按照实例机型系列过滤。实例机型系列形如:S1、I1、M1等。详见[实例类型](https://cloud.tencent.com/document/product/213/11518) :type InstanceFamilies: list of str :param CPU: 实例CPU核数。 :type CPU: int :param Memory: 实例内存大小。 :type Memory: int """ self.InquiryType = None self.Zones = None self.DiskChargeType = None self.DiskTypes = None self.DiskUsage = None self.InstanceFamilies = None self.CPU = None self.Memory = None def _deserialize(self, params): self.InquiryType = params.get("InquiryType") self.Zones = params.get("Zones") self.DiskChargeType = params.get("DiskChargeType") self.DiskTypes = params.get("DiskTypes") self.DiskUsage = params.get("DiskUsage") self.InstanceFamilies = params.get("InstanceFamilies") self.CPU = params.get("CPU") self.Memory = params.get("Memory") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeDiskConfigQuotaResponse(AbstractModel): """DescribeDiskConfigQuota返回参数结构体 """ def __init__(self): r""" :param DiskConfigSet: 云盘配置列表。 :type DiskConfigSet: list of DiskConfig :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DiskConfigSet = None self.RequestId = None def _deserialize(self, params): if params.get("DiskConfigSet") is not None: self.DiskConfigSet = [] for item in params.get("DiskConfigSet"): obj = DiskConfig() obj._deserialize(item) self.DiskConfigSet.append(obj) self.RequestId = params.get("RequestId") class DescribeDiskOperationLogsRequest(AbstractModel): """DescribeDiskOperationLogs请求参数结构体 """ def __init__(self): r""" :param Filters: 过滤条件。支持以下条件: <li>disk-id - Array of String - 是否必填:是 - 按云盘ID过滤,每个请求最多可指定10个云盘ID。 :type Filters: list of Filter :param EndTime: 要查询的操作日志的截止时间,例如:“2019-11-22 23:59:59" :type EndTime: str :param BeginTime: 要查询的操作日志的起始时间,例如:“2019-11-22 00:00:00" :type BeginTime: str """ self.Filters = None self.EndTime = None self.BeginTime = None def _deserialize(self, params): if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) self.EndTime = params.get("EndTime") self.BeginTime = params.get("BeginTime") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeDiskOperationLogsResponse(AbstractModel): """DescribeDiskOperationLogs返回参数结构体 """ def __init__(self): r""" :param DiskOperationLogSet: 云盘的操作日志列表。 :type DiskOperationLogSet: list of DiskOperationLog :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DiskOperationLogSet = None self.RequestId = None def _deserialize(self, params): if params.get("DiskOperationLogSet") is not None: self.DiskOperationLogSet = [] for item in params.get("DiskOperationLogSet"): obj = DiskOperationLog() obj._deserialize(item) self.DiskOperationLogSet.append(obj) self.RequestId = params.get("RequestId") class DescribeDiskStoragePoolRequest(AbstractModel): """DescribeDiskStoragePool请求参数结构体 """ def __init__(self): r""" :param Limit: 返回数量,默认为20,最大值为100。关于`Limit`的更进一步介绍请参考 API [简介](/document/product/362/15633)中的相关小节。 :type Limit: int :param CdcIds: 指定需要查询的独享集群ID列表,该入参不能与Filters一起使用。 :type CdcIds: list of str :param Filters: 过滤条件。参数不支持同时指定`CdcIds`和`Filters`。<br><li>cdc-id - Array of String - 是否必填:否 -(过滤条件)按独享集群ID过滤。<br><li>zone - Array of String - 是否必填:否 -(过滤条件)按独享集群所在[可用区](/document/product/213/15753#ZoneInfo)过滤。<br><li>cage-id - Array of String - 是否必填:否 -(过滤条件)按独享集群所在围笼的ID过滤。<br><li>disk-type - Array of String - 是否必填:否 -(过滤条件)按照云盘介质类型过滤。(CLOUD_BASIC:表示普通云硬盘 | CLOUD_PREMIUM:表示高性能云硬盘。| CLOUD_SSD:SSD表示SSD云硬盘。) :type Filters: list of Filter :param Offset: 偏移量,默认为0。关于`Offset`的更进一步介绍请参考API[简介](/document/product/362/15633)中的相关小节。 :type Offset: int """ self.Limit = None self.CdcIds = None self.Filters = None self.Offset = None def _deserialize(self, params): self.Limit = params.get("Limit") self.CdcIds = params.get("CdcIds") if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) self.Offset = params.get("Offset") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeDiskStoragePoolResponse(AbstractModel): """DescribeDiskStoragePool返回参数结构体 """ def __init__(self): r""" :param TotalCount: 符合条件的独享集群的数量 :type TotalCount: int :param DiskStoragePoolSet: 独享集群的详细信息列表 :type DiskStoragePoolSet: list of Cdc :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.DiskStoragePoolSet = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("DiskStoragePoolSet") is not None: self.DiskStoragePoolSet = [] for item in params.get("DiskStoragePoolSet"): obj = Cdc() obj._deserialize(item) self.DiskStoragePoolSet.append(obj) self.RequestId = params.get("RequestId") class DescribeDisksRequest(AbstractModel): """DescribeDisks请求参数结构体 """ def __init__(self): r""" :param Filters: 过滤条件。参数不支持同时指定`DiskIds`和`Filters`。<br><li>disk-usage - Array of String - 是否必填:否 -(过滤条件)按云盘类型过滤。 (SYSTEM_DISK:表示系统盘 | DATA_DISK:表示数据盘)<br><li>disk-charge-type - Array of String - 是否必填:否 -(过滤条件)按照云硬盘计费模式过滤。 (PREPAID:表示预付费,即包年包月 | POSTPAID_BY_HOUR:表示后付费,即按量计费。)<br><li>portable - Array of String - 是否必填:否 -(过滤条件)按是否为弹性云盘过滤。 (TRUE:表示弹性云盘 | FALSE:表示非弹性云盘。)<br><li>project-id - Array of Integer - 是否必填:否 -(过滤条件)按云硬盘所属项目ID过滤。<br><li>disk-id - Array of String - 是否必填:否 -(过滤条件)按照云硬盘ID过滤。云盘ID形如:`disk-11112222`。<br><li>disk-name - Array of String - 是否必填:否 -(过滤条件)按照云盘名称过滤。<br><li>disk-type - Array of String - 是否必填:否 -(过滤条件)按照云盘介质类型过滤。(CLOUD_BASIC:表示普通云硬盘 | CLOUD_PREMIUM:表示高性能云硬盘。| CLOUD_SSD:表示SSD云硬盘 | CLOUD_HSSD:表示增强型SSD云硬盘。| CLOUD_TSSD:表示极速型云硬盘。)<br><li>disk-state - Array of String - 是否必填:否 -(过滤条件)按照云盘状态过滤。(UNATTACHED:未挂载 | ATTACHING:挂载中 | ATTACHED:已挂载 | DETACHING:解挂中 | EXPANDING:扩容中 | ROLLBACKING:回滚中 | TORECYCLE:待回收。)<br><li>instance-id - Array of String - 是否必填:否 -(过滤条件)按照云盘挂载的云主机实例ID过滤。可根据此参数查询挂载在指定云主机下的云硬盘。<br><li>zone - Array of String - 是否必填:否 -(过滤条件)按照[可用区](/document/product/213/15753#ZoneInfo)过滤。<br><li>instance-ip-address - Array of String - 是否必填:否 -(过滤条件)按云盘所挂载云主机的内网或外网IP过滤。<br><li>instance-name - Array of String - 是否必填:否 -(过滤条件)按云盘所挂载的实例名称过滤。<br><li>tag-key - Array of String - 是否必填:否 -(过滤条件)按照标签键进行过滤。<br><li>tag-value - Array of String - 是否必填:否 -(过滤条件)照标签值进行过滤。<br><li>tag:tag-key - Array of String - 是否必填:否 -(过滤条件)按照标签键值对进行过滤。 tag-key使用具体的标签键进行替换。 :type Filters: list of Filter :param Limit: 返回数量,默认为20,最大值为100。关于`Limit`的更进一步介绍请参考 API [简介](/document/product/362/15633)中的相关小节。 :type Limit: int :param OrderField: 云盘列表排序的依据字段。取值范围:<br><li>CREATE_TIME:依据云盘的创建时间排序<br><li>DEADLINE:依据云盘的到期时间排序<br>默认按云盘创建时间排序。 :type OrderField: str :param Offset: 偏移量,默认为0。关于`Offset`的更进一步介绍请参考API[简介](/document/product/362/15633)中的相关小节。 :type Offset: int :param ReturnBindAutoSnapshotPolicy: 云盘详情中是否需要返回云盘绑定的定期快照策略ID,TRUE表示需要返回,FALSE表示不返回。 :type ReturnBindAutoSnapshotPolicy: bool :param DiskIds: 按照一个或者多个云硬盘ID查询。云硬盘ID形如:`disk-11112222`,此参数的具体格式可参考API[简介](/document/product/362/15633)的ids.N一节)。参数不支持同时指定`DiskIds`和`Filters`。 :type DiskIds: list of str :param Order: 输出云盘列表的排列顺序。取值范围:<br><li>ASC:升序排列<br><li>DESC:降序排列。 :type Order: str """ self.Filters = None self.Limit = None self.OrderField = None self.Offset = None self.ReturnBindAutoSnapshotPolicy = None self.DiskIds = None self.Order = None def _deserialize(self, params): if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) self.Limit = params.get("Limit") self.OrderField = params.get("OrderField") self.Offset = params.get("Offset") self.ReturnBindAutoSnapshotPolicy = params.get("ReturnBindAutoSnapshotPolicy") self.DiskIds = params.get("DiskIds") self.Order = params.get("Order") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeDisksResponse(AbstractModel): """DescribeDisks返回参数结构体 """ def __init__(self): r""" :param TotalCount: 符合条件的云硬盘数量。 :type TotalCount: int :param DiskSet: 云硬盘的详细信息列表。 :type DiskSet: list of Disk :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.DiskSet = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("DiskSet") is not None: self.DiskSet = [] for item in params.get("DiskSet"): obj = Disk() obj._deserialize(item) self.DiskSet.append(obj) self.RequestId = params.get("RequestId") class DescribeInstancesDiskNumRequest(AbstractModel): """DescribeInstancesDiskNum请求参数结构体 """ def __init__(self): r""" :param InstanceIds: 云服务器实例ID,通过[DescribeInstances](/document/product/213/15728)接口查询。 :type InstanceIds: list of str """ self.InstanceIds = None def _deserialize(self, params): self.InstanceIds = params.get("InstanceIds") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeInstancesDiskNumResponse(AbstractModel): """DescribeInstancesDiskNum返回参数结构体 """ def __init__(self): r""" :param AttachDetail: 各个云服务器已挂载和可挂载弹性云盘的数量。 :type AttachDetail: list of AttachDetail :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.AttachDetail = None self.RequestId = None def _deserialize(self, params): if params.get("AttachDetail") is not None: self.AttachDetail = [] for item in params.get("AttachDetail"): obj = AttachDetail() obj._deserialize(item) self.AttachDetail.append(obj) self.RequestId = params.get("RequestId") class DescribeSnapshotOperationLogsRequest(AbstractModel): """DescribeSnapshotOperationLogs请求参数结构体 """ def __init__(self): r""" :param Filters: 过滤条件。支持以下条件: <li>snapshot-id - Array of String - 是否必填:是 - 按快照ID过滤,每个请求最多可指定10个快照ID。 :type Filters: list of Filter :param BeginTime: 要查询的操作日志的起始时间,例如:“2019-11-22 00:00:00" :type BeginTime: str :param EndTime: 要查询的操作日志的截止时间,例如:“2019-11-22 23:59:59" :type EndTime: str """ self.Filters = None self.BeginTime = None self.EndTime = None def _deserialize(self, params): if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) self.BeginTime = params.get("BeginTime") self.EndTime = params.get("EndTime") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeSnapshotOperationLogsResponse(AbstractModel): """DescribeSnapshotOperationLogs返回参数结构体 """ def __init__(self): r""" :param SnapshotOperationLogSet: 快照操作日志列表。 :type SnapshotOperationLogSet: list of SnapshotOperationLog :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.SnapshotOperationLogSet = None self.RequestId = None def _deserialize(self, params): if params.get("SnapshotOperationLogSet") is not None: self.SnapshotOperationLogSet = [] for item in params.get("SnapshotOperationLogSet"): obj = SnapshotOperationLog() obj._deserialize(item) self.SnapshotOperationLogSet.append(obj) self.RequestId = params.get("RequestId") class DescribeSnapshotSharePermissionRequest(AbstractModel): """DescribeSnapshotSharePermission请求参数结构体 """ def __init__(self): r""" :param SnapshotId: 要查询快照的ID。可通过[DescribeSnapshots](https://cloud.tencent.com/document/api/362/15647)查询获取。 :type SnapshotId: str """ self.SnapshotId = None def _deserialize(self, params): self.SnapshotId = params.get("SnapshotId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeSnapshotSharePermissionResponse(AbstractModel): """DescribeSnapshotSharePermission返回参数结构体 """ def __init__(self): r""" :param SharePermissionSet: 快照的分享信息的集合 :type SharePermissionSet: list of SharePermission :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.SharePermissionSet = None self.RequestId = None def _deserialize(self, params): if params.get("SharePermissionSet") is not None: self.SharePermissionSet = [] for item in params.get("SharePermissionSet"): obj = SharePermission() obj._deserialize(item) self.SharePermissionSet.append(obj) self.RequestId = params.get("RequestId") class DescribeSnapshotsRequest(AbstractModel): """DescribeSnapshots请求参数结构体 """ def __init__(self): r""" :param SnapshotIds: 要查询快照的ID列表。参数不支持同时指定`SnapshotIds`和`Filters`。 :type SnapshotIds: list of str :param Filters: 过滤条件。参数不支持同时指定`SnapshotIds`和`Filters`。<br><li>snapshot-id - Array of String - 是否必填:否 -(过滤条件)按照快照的ID过滤。快照ID形如:`snap-11112222`。<br><li>snapshot-name - Array of String - 是否必填:否 -(过滤条件)按照快照名称过滤。<br><li>snapshot-state - Array of String - 是否必填:否 -(过滤条件)按照快照状态过滤。 (NORMAL:正常 | CREATING:创建中 | ROLLBACKING:回滚中。)<br><li>disk-usage - Array of String - 是否必填:否 -(过滤条件)按创建快照的云盘类型过滤。 (SYSTEM_DISK:代表系统盘 | DATA_DISK:代表数据盘。)<br><li>project-id - Array of String - 是否必填:否 -(过滤条件)按云硬盘所属项目ID过滤。<br><li>disk-id - Array of String - 是否必填:否 -(过滤条件)按照创建快照的云硬盘ID过滤。<br><li>zone - Array of String - 是否必填:否 -(过滤条件)按照[可用区](/document/product/213/15753#ZoneInfo)过滤。<br><li>encrypt - Array of String - 是否必填:否 -(过滤条件)按是否加密盘快照过滤。 (TRUE:表示加密盘快照 | FALSE:表示非加密盘快照。) <li>snapshot-type- Array of String - 是否必填:否 -(过滤条件)根据snapshot-type指定的快照类型查询对应的快照。 (SHARED_SNAPSHOT:表示共享过来的快照 | PRIVATE_SNAPSHOT:表示自己私有快照。) :type Filters: list of Filter :param Offset: 偏移量,默认为0。关于`Offset`的更进一步介绍请参考API[简介](/document/product/362/15633)中的相关小节。 :type Offset: int :param Limit: 返回数量,默认为20,最大值为100。关于`Limit`的更进一步介绍请参考 API [简介](/document/product/362/15633)中的相关小节。 :type Limit: int :param Order: 输出云盘列表的排列顺序。取值范围:<br><li>ASC:升序排列<br><li>DESC:降序排列。 :type Order: str :param OrderField: 快照列表排序的依据字段。取值范围:<br><li>CREATE_TIME:依据快照的创建时间排序<br>默认按创建时间排序。 :type OrderField: str """ self.SnapshotIds = None self.Filters = None self.Offset = None self.Limit = None self.Order = None self.OrderField = None def _deserialize(self, params): self.SnapshotIds = params.get("SnapshotIds") if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) self.Offset = params.get("Offset") self.Limit = params.get("Limit") self.Order = params.get("Order") self.OrderField = params.get("OrderField") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeSnapshotsResponse(AbstractModel): """DescribeSnapshots返回参数结构体 """ def __init__(self): r""" :param TotalCount: 快照的数量。 :type TotalCount: int :param SnapshotSet: 快照的详情列表。 :type SnapshotSet: list of Snapshot :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.SnapshotSet = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("SnapshotSet") is not None: self.SnapshotSet = [] for item in params.get("SnapshotSet"): obj = Snapshot() obj._deserialize(item) self.SnapshotSet.append(obj) self.RequestId = params.get("RequestId") class DetachDisksRequest(AbstractModel): """DetachDisks请求参数结构体 """ def __init__(self): r""" :param DiskIds: 将要卸载的云硬盘ID, 通过[DescribeDisks](/document/product/362/16315)接口查询,单次请求最多可卸载10块弹性云盘。 :type DiskIds: list of str :param InstanceId: 对于非共享型云盘,会忽略该参数;对于共享型云盘,该参数表示要从哪个CVM实例上卸载云盘。 :type InstanceId: str """ self.DiskIds = None self.InstanceId = None def _deserialize(self, params): self.DiskIds = params.get("DiskIds") self.InstanceId = params.get("InstanceId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DetachDisksResponse(AbstractModel): """DetachDisks返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class Disk(AbstractModel): """描述了云硬盘的详细信息 """ def __init__(self): r""" :param DeleteWithInstance: 云盘是否与挂载的实例一起销毁。<br><li>true:销毁实例时会同时销毁云盘,只支持按小时后付费云盘。<br><li>false:销毁实例时不销毁云盘。 注意:此字段可能返回 null,表示取不到有效值。 :type DeleteWithInstance: bool :param RenewFlag: 自动续费标识。取值范围:<br><li>NOTIFY_AND_AUTO_RENEW:通知过期且自动续费<br><li>NOTIFY_AND_MANUAL_RENEW:通知过期不自动续费<br><li>DISABLE_NOTIFY_AND_MANUAL_RENEW:不通知过期不自动续费。 注意:此字段可能返回 null,表示取不到有效值。 :type RenewFlag: str :param DiskType: 硬盘介质类型。取值范围:<br><li>CLOUD_BASIC:表示普通云硬盘<br><li>CLOUD_PREMIUM:表示高性能云硬盘<br><li>CLOUD_SSD:表示SSD云硬盘<br><li>CLOUD_HSSD:表示增强型SSD云硬盘<br><li>CLOUD_TSSD:表示极速型SSD云硬盘。 :type DiskType: str :param DiskState: 云盘状态。取值范围:<br><li>UNATTACHED:未挂载<br><li>ATTACHING:挂载中<br><li>ATTACHED:已挂载<br><li>DETACHING:解挂中<br><li>EXPANDING:扩容中<br><li>ROLLBACKING:回滚中<br><li>TORECYCLE:待回收<br><li>DUMPING:拷贝硬盘中。 :type DiskState: str :param SnapshotCount: 云盘拥有的快照总数。 :type SnapshotCount: int :param AutoRenewFlagError: 云盘已挂载到子机,且子机与云盘都是包年包月。<br><li>true:子机设置了自动续费标识,但云盘未设置<br><li>false:云盘自动续费标识正常。 注意:此字段可能返回 null,表示取不到有效值。 :type AutoRenewFlagError: bool :param Rollbacking: 云盘是否处于快照回滚状态。取值范围:<br><li>false:表示不处于快照回滚状态<br><li>true:表示处于快照回滚状态。 :type Rollbacking: bool :param InstanceIdList: 对于非共享型云盘,该参数为空数组。对于共享型云盘,则表示该云盘当前被挂载到的CVM实例InstanceId :type InstanceIdList: list of str :param Encrypt: 云盘是否为加密盘。取值范围:<br><li>false:表示非加密盘<br><li>true:表示加密盘。 :type Encrypt: bool :param DiskName: 云硬盘名称。 :type DiskName: str :param BackupDisk: 云硬盘因欠费销毁或者到期销毁时, 是否使用快照备份数据的标识。true表示销毁时创建快照进行数据备份。false表示直接销毁,不进行数据备份。 :type BackupDisk: bool :param Tags: 与云盘绑定的标签,云盘未绑定标签则取值为空。 注意:此字段可能返回 null,表示取不到有效值。 :type Tags: list of Tag :param InstanceId: 云硬盘挂载的云主机ID。 :type InstanceId: str :param AttachMode: 云盘的挂载类型。取值范围:<br><li>PF: PF挂载<br><li>VF: VF挂载 注意:此字段可能返回 null,表示取不到有效值。 :type AttachMode: str :param AutoSnapshotPolicyIds: 云盘关联的定期快照ID。只有在调用DescribeDisks接口时,入参ReturnBindAutoSnapshotPolicy取值为TRUE才会返回该参数。 注意:此字段可能返回 null,表示取不到有效值。 :type AutoSnapshotPolicyIds: list of str :param ThroughputPerformance: 云硬盘额外性能值,单位MB/s。 注意:此字段可能返回 null,表示取不到有效值。 :type ThroughputPerformance: int :param Migrating: 云盘是否处于类型变更中。取值范围:<br><li>false:表示云盘不处于类型变更中<br><li>true:表示云盘已发起类型变更,正处于迁移中。 注意:此字段可能返回 null,表示取不到有效值。 :type Migrating: bool :param DiskId: 云硬盘ID。 :type DiskId: str :param SnapshotSize: 云盘拥有的快照总容量,单位为MB。 :type SnapshotSize: int :param Placement: 云硬盘所在的位置。 :type Placement: :class:`tencentcloud.cbs.v20170312.models.Placement` :param IsReturnable: 判断预付费的云盘是否支持主动退还。<br><li>true:支持主动退还<br><li>false:不支持主动退还。 注意:此字段可能返回 null,表示取不到有效值。 :type IsReturnable: bool :param DeadlineTime: 云硬盘的到期时间。 :type DeadlineTime: str :param Attached: 云盘是否挂载到云主机上。取值范围:<br><li>false:表示未挂载<br><li>true:表示已挂载。 :type Attached: bool :param DiskSize: 云硬盘大小,单位GB。 :type DiskSize: int :param MigratePercent: 云盘类型变更的迁移进度,取值0到100。 注意:此字段可能返回 null,表示取不到有效值。 :type MigratePercent: int :param DiskUsage: 云硬盘类型。取值范围:<br><li>SYSTEM_DISK:系统盘<br><li>DATA_DISK:数据盘。 :type DiskUsage: str :param DiskChargeType: 付费模式。取值范围:<br><li>PREPAID:预付费,即包年包月<br><li>POSTPAID_BY_HOUR:后付费,即按量计费。 :type DiskChargeType: str :param Portable: 是否为弹性云盘,false表示非弹性云盘,true表示弹性云盘。 :type Portable: bool :param SnapshotAbility: 云盘是否具备创建快照的能力。取值范围:<br><li>false表示不具备<br><li>true表示具备。 :type SnapshotAbility: bool :param DeadlineError: 在云盘已挂载到实例,且实例与云盘都是包年包月的条件下,此字段才有意义。<br><li>true:云盘到期时间早于实例。<br><li>false:云盘到期时间晚于实例。 注意:此字段可能返回 null,表示取不到有效值。 :type DeadlineError: bool :param RollbackPercent: 云盘快照回滚的进度。 :type RollbackPercent: int :param DifferDaysOfDeadline: 当前时间距离盘到期的天数(仅对预付费盘有意义)。 注意:此字段可能返回 null,表示取不到有效值。 :type DifferDaysOfDeadline: int :param ReturnFailCode: 预付费云盘在不支持主动退还的情况下,该参数表明不支持主动退还的具体原因。取值范围:<br><li>1:云硬盘已经退还<br><li>2:云硬盘已过期<br><li>3:云盘不支持退还<br><li>8:超过可退还数量的限制。 注意:此字段可能返回 null,表示取不到有效值。 :type ReturnFailCode: int :param Shareable: 云盘是否为共享型云盘。 :type Shareable: bool :param CreateTime: 云硬盘的创建时间。 :type CreateTime: str :param DeleteSnapshot: 销毁云盘时删除关联的非永久保留快照。0 表示非永久快照不随云盘销毁而销毁,1表示非永久快照随云盘销毁而销毁,默认取0。快照是否永久保留可以通过DescribeSnapshots接口返回的快照详情的IsPermanent字段来判断,true表示永久快照,false表示非永久快照。 :type DeleteSnapshot: int """ self.DeleteWithInstance = None self.RenewFlag = None self.DiskType = None self.DiskState = None self.SnapshotCount = None self.AutoRenewFlagError = None self.Rollbacking = None self.InstanceIdList = None self.Encrypt = None self.DiskName = None self.BackupDisk = None self.Tags = None self.InstanceId = None self.AttachMode = None self.AutoSnapshotPolicyIds = None self.ThroughputPerformance = None self.Migrating = None self.DiskId = None self.SnapshotSize = None self.Placement = None self.IsReturnable = None self.DeadlineTime = None self.Attached = None self.DiskSize = None self.MigratePercent = None self.DiskUsage = None self.DiskChargeType = None self.Portable = None self.SnapshotAbility = None self.DeadlineError = None self.RollbackPercent = None self.DifferDaysOfDeadline = None self.ReturnFailCode = None self.Shareable = None self.CreateTime = None self.DeleteSnapshot = None def _deserialize(self, params): self.DeleteWithInstance = params.get("DeleteWithInstance") self.RenewFlag = params.get("RenewFlag") self.DiskType = params.get("DiskType") self.DiskState = params.get("DiskState") self.SnapshotCount = params.get("SnapshotCount") self.AutoRenewFlagError = params.get("AutoRenewFlagError") self.Rollbacking = params.get("Rollbacking") self.InstanceIdList = params.get("InstanceIdList") self.Encrypt = params.get("Encrypt") self.DiskName = params.get("DiskName") self.BackupDisk = params.get("BackupDisk") if params.get("Tags") is not None: self.Tags = [] for item in params.get("Tags"): obj = Tag() obj._deserialize(item) self.Tags.append(obj) self.InstanceId = params.get("InstanceId") self.AttachMode = params.get("AttachMode") self.AutoSnapshotPolicyIds = params.get("AutoSnapshotPolicyIds") self.ThroughputPerformance = params.get("ThroughputPerformance") self.Migrating = params.get("Migrating") self.DiskId = params.get("DiskId") self.SnapshotSize = params.get("SnapshotSize") if params.get("Placement") is not None: self.Placement = Placement() self.Placement._deserialize(params.get("Placement")) self.IsReturnable = params.get("IsReturnable") self.DeadlineTime = params.get("DeadlineTime") self.Attached = params.get("Attached") self.DiskSize = params.get("DiskSize") self.MigratePercent = params.get("MigratePercent") self.DiskUsage = params.get("DiskUsage") self.DiskChargeType = params.get("DiskChargeType") self.Portable = params.get("Portable") self.SnapshotAbility = params.get("SnapshotAbility") self.DeadlineError = params.get("DeadlineError") self.RollbackPercent = params.get("RollbackPercent") self.DifferDaysOfDeadline = params.get("DifferDaysOfDeadline") self.ReturnFailCode = params.get("ReturnFailCode") self.Shareable = params.get("Shareable") self.CreateTime = params.get("CreateTime") self.DeleteSnapshot = params.get("DeleteSnapshot") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DiskChargePrepaid(AbstractModel): """描述了实例的计费模式 """ def __init__(self): r""" :param Period: 购买云盘的时长,默认单位为月,取值范围:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 36。 :type Period: int :param RenewFlag: 自动续费标识。取值范围:<br><li>NOTIFY_AND_AUTO_RENEW:通知过期且自动续费<br><li>NOTIFY_AND_MANUAL_RENEW:通知过期不自动续费<br><li>DISABLE_NOTIFY_AND_MANUAL_RENEW:不通知过期不自动续费<br><br>默认取值:NOTIFY_AND_MANUAL_RENEW:通知过期不自动续费。 :type RenewFlag: str :param CurInstanceDeadline: 需要将云盘的到期时间与挂载的子机对齐时,可传入该参数。该参数表示子机当前的到期时间,此时Period如果传入,则表示子机需要续费的时长,云盘会自动按对齐到子机续费后的到期时间续费,示例取值:2018-03-30 20:15:03。 :type CurInstanceDeadline: str """ self.Period = None self.RenewFlag = None self.CurInstanceDeadline = None def _deserialize(self, params): self.Period = params.get("Period") self.RenewFlag = params.get("RenewFlag") self.CurInstanceDeadline = params.get("CurInstanceDeadline") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DiskConfig(AbstractModel): """云盘配置。 """ def __init__(self): r""" :param Available: 配置是否可用。 :type Available: bool :param DiskType: 云盘介质类型。取值范围:<br><li>CLOUD_BASIC:表示普通云硬盘<br><li>CLOUD_PREMIUM:表示高性能云硬盘<br><li>CLOUD_SSD:SSD表示SSD云硬盘。 :type DiskType: str :param DiskUsage: 云盘类型。取值范围:<br><li>SYSTEM_DISK:表示系统盘<br><li>DATA_DISK:表示数据盘。 :type DiskUsage: str :param DiskChargeType: 付费模式。取值范围:<br><li>PREPAID:表示预付费,即包年包月<br><li>POSTPAID_BY_HOUR:表示后付费,即按量计费。 :type DiskChargeType: str :param MaxDiskSize: 最大可配置云盘大小,单位GB。 :type MaxDiskSize: int :param MinDiskSize: 最小可配置云盘大小,单位GB。 :type MinDiskSize: int :param Zone: 云硬盘所属的[可用区](/document/product/213/15753#ZoneInfo)。 :type Zone: str :param DeviceClass: 实例机型。 注意:此字段可能返回 null,表示取不到有效值。 :type DeviceClass: str :param InstanceFamily: 实例机型系列。详见[实例类型](https://cloud.tencent.com/document/product/213/11518) 注意:此字段可能返回 null,表示取不到有效值。 :type InstanceFamily: str """ self.Available = None self.DiskType = None self.DiskUsage = None self.DiskChargeType = None self.MaxDiskSize = None self.MinDiskSize = None self.Zone = None self.DeviceClass = None self.InstanceFamily = None def _deserialize(self, params): self.Available = params.get("Available") self.DiskType = params.get("DiskType") self.DiskUsage = params.get("DiskUsage") self.DiskChargeType = params.get("DiskChargeType") self.MaxDiskSize = params.get("MaxDiskSize") self.MinDiskSize = params.get("MinDiskSize") self.Zone = params.get("Zone") self.DeviceClass = params.get("DeviceClass") self.InstanceFamily = params.get("InstanceFamily") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DiskOperationLog(AbstractModel): """云盘操作日志。 """ def __init__(self): r""" :param OperationState: 操作的状态。取值范围: SUCCESS :表示操作成功 FAILED :表示操作失败 PROCESSING :表示操作中。 :type OperationState: str :param StartTime: 开始时间。 :type StartTime: str :param Operator: 操作者的UIN。 :type Operator: str :param Operation: 操作类型。取值范围: CBS_OPERATION_ATTACH:挂载云硬盘 CBS_OPERATION_DETACH:解挂云硬盘 CBS_OPERATION_RENEW:续费 CBS_OPERATION_EXPAND:扩容 CBS_OPERATION_CREATE:创建 CBS_OPERATION_ISOLATE:隔离 CBS_OPERATION_MODIFY:修改云硬盘属性 ASP_OPERATION_BIND:关联定期快照策略 ASP_OPERATION_UNBIND:取消关联定期快照策略 :type Operation: str :param EndTime: 结束时间。 :type EndTime: str :param DiskId: 操作的云盘ID。 :type DiskId: str """ self.OperationState = None self.StartTime = None self.Operator = None self.Operation = None self.EndTime = None self.DiskId = None def _deserialize(self, params): self.OperationState = params.get("OperationState") self.StartTime = params.get("StartTime") self.Operator = params.get("Operator") self.Operation = params.get("Operation") self.EndTime = params.get("EndTime") self.DiskId = params.get("DiskId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class Filter(AbstractModel): """描述键值对过滤器,用于条件过滤查询。 """ def __init__(self): r""" :param Values: 一个或者多个过滤值。 :type Values: list of str :param Name: 过滤键的名称。 :type Name: str """ self.Values = None self.Name = None def _deserialize(self, params): self.Values = params.get("Values") self.Name = params.get("Name") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class GetSnapOverviewRequest(AbstractModel): """GetSnapOverview请求参数结构体 """ class GetSnapOverviewResponse(AbstractModel): """GetSnapOverview返回参数结构体 """ def __init__(self): r""" :param TotalSize: 用户快照总大小 :type TotalSize: float :param RealTradeSize: 用户快照总大小(用于计费) :type RealTradeSize: float :param FreeQuota: 快照免费额度 :type FreeQuota: float :param TotalNums: 快照总个数 :type TotalNums: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalSize = None self.RealTradeSize = None self.FreeQuota = None self.TotalNums = None self.RequestId = None def _deserialize(self, params): self.TotalSize = params.get("TotalSize") self.RealTradeSize = params.get("RealTradeSize") self.FreeQuota = params.get("FreeQuota") self.TotalNums = params.get("TotalNums") self.RequestId = params.get("RequestId") class Image(AbstractModel): """镜像。 """ def __init__(self): r""" :param ImageName: 镜像名称。 :type ImageName: str :param ImageId: 镜像实例ID。 :type ImageId: str """ self.ImageName = None self.ImageId = None def _deserialize(self, params): self.ImageName = params.get("ImageName") self.ImageId = params.get("ImageId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class InitializeDisksRequest(AbstractModel): """InitializeDisks请求参数结构体 """ def __init__(self): r""" :param DiskIds: 待重新初始化的云硬盘ID列表, 单次初始化限制20块以内 :type DiskIds: list of str """ self.DiskIds = None def _deserialize(self, params): self.DiskIds = params.get("DiskIds") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class InitializeDisksResponse(AbstractModel): """InitializeDisks返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class InquirePriceModifyDiskExtraPerformanceRequest(AbstractModel): """InquirePriceModifyDiskExtraPerformance请求参数结构体 """ def __init__(self): r""" :param DiskId: 云硬盘ID, 通过[DescribeDisks](/document/product/362/16315)接口查询。 :type DiskId: str :param ThroughputPerformance: 额外购买的云硬盘性能值,单位MB/s。 :type ThroughputPerformance: int """ self.DiskId = None self.ThroughputPerformance = None def _deserialize(self, params): self.DiskId = params.get("DiskId") self.ThroughputPerformance = params.get("ThroughputPerformance") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class InquirePriceModifyDiskExtraPerformanceResponse(AbstractModel): """InquirePriceModifyDiskExtraPerformance返回参数结构体 """ def __init__(self): r""" :param DiskPrice: 描述了调整云盘额外性能时对应的价格。 :type DiskPrice: :class:`tencentcloud.cbs.v20170312.models.Price` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DiskPrice = None self.RequestId = None def _deserialize(self, params): if params.get("DiskPrice") is not None: self.DiskPrice = Price() self.DiskPrice._deserialize(params.get("DiskPrice")) self.RequestId = params.get("RequestId") class InquiryPriceCreateDisksRequest(AbstractModel): """InquiryPriceCreateDisks请求参数结构体 """ def __init__(self): r""" :param DiskType: 硬盘介质类型。取值范围:<br><li>CLOUD_BASIC:表示普通云硬盘<br><li>CLOUD_PREMIUM:表示高性能云硬盘<br><li>CLOUD_SSD:表示SSD云硬盘<br><li>CLOUD_HSSD:表示增强型SSD云硬盘<br><li>CLOUD_TSSD:表示极速型SSD云硬盘。 :type DiskType: str :param DiskSize: 云硬盘大小,单位为GB。云盘大小取值范围参见云硬盘[产品分类](/document/product/362/2353)的说明。 :type DiskSize: int :param DiskChargeType: 云硬盘计费类型。<br><li>PREPAID:预付费,即包年包月<br><li>POSTPAID_BY_HOUR:按小时后付费 :type DiskChargeType: str :param DiskChargePrepaid: 预付费模式,即包年包月相关参数设置。通过该参数指定包年包月云盘的购买时长、是否设置自动续费等属性。<br>创建预付费云盘该参数必传,创建按小时后付费云盘无需传该参数。 :type DiskChargePrepaid: :class:`tencentcloud.cbs.v20170312.models.DiskChargePrepaid` :param DiskCount: 购买云盘的数量。不填则默认为1。 :type DiskCount: int :param ProjectId: 云盘所属项目ID。 :type ProjectId: int :param ThroughputPerformance: 额外购买的云硬盘性能值,单位MB/s。<br>目前仅支持增强型SSD云硬盘(CLOUD_HSSD)和极速型SSD云硬盘(CLOUD_TSSD) :type ThroughputPerformance: int """ self.DiskType = None self.DiskSize = None self.DiskChargeType = None self.DiskChargePrepaid = None self.DiskCount = None self.ProjectId = None self.ThroughputPerformance = None def _deserialize(self, params): self.DiskType = params.get("DiskType") self.DiskSize = params.get("DiskSize") self.DiskChargeType = params.get("DiskChargeType") if params.get("DiskChargePrepaid") is not None: self.DiskChargePrepaid = DiskChargePrepaid() self.DiskChargePrepaid._deserialize(params.get("DiskChargePrepaid")) self.DiskCount = params.get("DiskCount") self.ProjectId = params.get("ProjectId") self.ThroughputPerformance = params.get("ThroughputPerformance") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class InquiryPriceCreateDisksResponse(AbstractModel): """InquiryPriceCreateDisks返回参数结构体 """ def __init__(self): r""" :param DiskPrice: 描述了新购云盘的价格。 :type DiskPrice: :class:`tencentcloud.cbs.v20170312.models.Price` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DiskPrice = None self.RequestId = None def _deserialize(self, params): if params.get("DiskPrice") is not None: self.DiskPrice = Price() self.DiskPrice._deserialize(params.get("DiskPrice")) self.RequestId = params.get("RequestId") class InquiryPriceRenewDisksRequest(AbstractModel): """InquiryPriceRenewDisks请求参数结构体 """ def __init__(self): r""" :param DiskIds: 云硬盘ID, 通过[DescribeDisks](/document/product/362/16315)接口查询。 :type DiskIds: list of str :param DiskChargePrepaids: 预付费模式,即包年包月相关参数设置。通过该参数可以指定包年包月云盘的购买时长。如果在该参数中指定CurInstanceDeadline,则会按对齐到子机到期时间来续费。如果是批量续费询价,该参数与Disks参数一一对应,元素数量需保持一致。 :type DiskChargePrepaids: list of DiskChargePrepaid :param NewDeadline: 指定云盘新的到期时间,形式如:2017-12-17 00:00:00。参数`NewDeadline`和`DiskChargePrepaids`是两种指定询价时长的方式,两者必传一个。 :type NewDeadline: str :param ProjectId: 云盘所属项目ID。 如传入则仅用于鉴权。 :type ProjectId: int """ self.DiskIds = None self.DiskChargePrepaids = None self.NewDeadline = None self.ProjectId = None def _deserialize(self, params): self.DiskIds = params.get("DiskIds") if params.get("DiskChargePrepaids") is not None: self.DiskChargePrepaids = [] for item in params.get("DiskChargePrepaids"): obj = DiskChargePrepaid() obj._deserialize(item) self.DiskChargePrepaids.append(obj) self.NewDeadline = params.get("NewDeadline") self.ProjectId = params.get("ProjectId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class InquiryPriceRenewDisksResponse(AbstractModel): """InquiryPriceRenewDisks返回参数结构体 """ def __init__(self): r""" :param DiskPrice: 描述了续费云盘的价格。 :type DiskPrice: :class:`tencentcloud.cbs.v20170312.models.PrepayPrice` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DiskPrice = None self.RequestId = None def _deserialize(self, params): if params.get("DiskPrice") is not None: self.DiskPrice = PrepayPrice() self.DiskPrice._deserialize(params.get("DiskPrice")) self.RequestId = params.get("RequestId") class InquiryPriceResizeDiskRequest(AbstractModel): """InquiryPriceResizeDisk请求参数结构体 """ def __init__(self): r""" :param DiskId: 云硬盘ID, 通过[DescribeDisks](/document/product/362/16315)接口查询。 :type DiskId: str :param DiskSize: 云硬盘扩容后的大小,单位为GB,不得小于当前云硬盘大小。云盘大小取值范围参见云硬盘[产品分类](/document/product/362/2353)的说明。 :type DiskSize: int :param ProjectId: 云盘所属项目ID。 如传入则仅用于鉴权。 :type ProjectId: int """ self.DiskId = None self.DiskSize = None self.ProjectId = None def _deserialize(self, params): self.DiskId = params.get("DiskId") self.DiskSize = params.get("DiskSize") self.ProjectId = params.get("ProjectId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class InquiryPriceResizeDiskResponse(AbstractModel): """InquiryPriceResizeDisk返回参数结构体 """ def __init__(self): r""" :param DiskPrice: 描述了扩容云盘的价格。 :type DiskPrice: :class:`tencentcloud.cbs.v20170312.models.PrepayPrice` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DiskPrice = None self.RequestId = None def _deserialize(self, params): if params.get("DiskPrice") is not None: self.DiskPrice = PrepayPrice() self.DiskPrice._deserialize(params.get("DiskPrice")) self.RequestId = params.get("RequestId") class ModifyAutoSnapshotPolicyAttributeRequest(AbstractModel): """ModifyAutoSnapshotPolicyAttribute请求参数结构体 """ def __init__(self): r""" :param AutoSnapshotPolicyId: 定期快照策略ID。 :type AutoSnapshotPolicyId: str :param Policy: 定期快照的执行策略。 :type Policy: list of Policy :param AutoSnapshotPolicyName: 要创建的定期快照策略名。不传则默认为“未命名”。最大长度不能超60个字节。 :type AutoSnapshotPolicyName: str :param IsActivated: 是否激活定期快照策略,FALSE表示未激活,TRUE表示激活,默认为TRUE。 :type IsActivated: bool :param IsPermanent: 通过该定期快照策略创建的快照是否永久保留。FALSE表示非永久保留,TRUE表示永久保留,默认为FALSE。 :type IsPermanent: bool :param RetentionDays: 通过该定期快照策略创建的快照保留天数,该参数不可与`IsPermanent`参数冲突,即若定期快照策略设置为永久保留,`RetentionDays`应置0。 :type RetentionDays: int """ self.AutoSnapshotPolicyId = None self.Policy = None self.AutoSnapshotPolicyName = None self.IsActivated = None self.IsPermanent = None self.RetentionDays = None def _deserialize(self, params): self.AutoSnapshotPolicyId = params.get("AutoSnapshotPolicyId") if params.get("Policy") is not None: self.Policy = [] for item in params.get("Policy"): obj = Policy() obj._deserialize(item) self.Policy.append(obj) self.AutoSnapshotPolicyName = params.get("AutoSnapshotPolicyName") self.IsActivated = params.get("IsActivated") self.IsPermanent = params.get("IsPermanent") self.RetentionDays = params.get("RetentionDays") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ModifyAutoSnapshotPolicyAttributeResponse(AbstractModel): """ModifyAutoSnapshotPolicyAttribute返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class ModifyDiskAttributesRequest(AbstractModel): """ModifyDiskAttributes请求参数结构体 """ def __init__(self): r""" :param DiskIds: 一个或多个待操作的云硬盘ID。如果传入多个云盘ID,仅支持所有云盘修改为同一属性。 :type DiskIds: list of str :param ProjectId: 新的云硬盘项目ID,只支持修改弹性云盘的项目ID。通过[DescribeProject](/document/api/378/4400)接口查询可用项目及其ID。 :type ProjectId: int :param DiskName: 新的云硬盘名称。 :type DiskName: str :param Portable: 是否为弹性云盘,FALSE表示非弹性云盘,TRUE表示弹性云盘。仅支持非弹性云盘修改为弹性云盘。 :type Portable: bool :param DeleteWithInstance: 成功挂载到云主机后该云硬盘是否随云主机销毁,TRUE表示随云主机销毁,FALSE表示不随云主机销毁。仅支持按量计费云硬盘数据盘。 :type DeleteWithInstance: bool :param DiskType: 变更云盘类型时,可传入该参数,表示变更的目标类型,取值范围:<br><li>CLOUD_PREMIUM:表示高性能云硬盘<br><li>CLOUD_SSD:表示SSD云硬盘。<br>当前不支持批量变更类型,即传入DiskType时,DiskIds仅支持传入一块云盘;<br>变更云盘类型时不支持同时变更其他属性。 :type DiskType: str """ self.DiskIds = None self.ProjectId = None self.DiskName = None self.Portable = None self.DeleteWithInstance = None self.DiskType = None def _deserialize(self, params): self.DiskIds = params.get("DiskIds") self.ProjectId = params.get("ProjectId") self.DiskName = params.get("DiskName") self.Portable = params.get("Portable") self.DeleteWithInstance = params.get("DeleteWithInstance") self.DiskType = params.get("DiskType") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ModifyDiskAttributesResponse(AbstractModel): """ModifyDiskAttributes返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class ModifyDiskExtraPerformanceRequest(AbstractModel): """ModifyDiskExtraPerformance请求参数结构体 """ def __init__(self): r""" :param DiskId: 需要创建快照的云硬盘ID,可通过[DescribeDisks](/document/product/362/16315)接口查询。 :type DiskId: str :param ThroughputPerformance: 额外购买的云硬盘性能值,单位MB/s。 :type ThroughputPerformance: int """ self.DiskId = None self.ThroughputPerformance = None def _deserialize(self, params): self.DiskId = params.get("DiskId") self.ThroughputPerformance = params.get("ThroughputPerformance") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ModifyDiskExtraPerformanceResponse(AbstractModel): """ModifyDiskExtraPerformance返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class ModifyDisksChargeTypeRequest(AbstractModel): """ModifyDisksChargeType请求参数结构体 """ def __init__(self): r""" :param DiskIds: 一个或多个待操作的云硬盘ID。每次请求批量云盘上限为100。 :type DiskIds: list of str :param DiskChargePrepaid: 预付费模式,即包年包月相关参数设置。通过该参数可以指定包年包月实例的购买时长、是否设置自动续费等属性。 :type DiskChargePrepaid: :class:`tencentcloud.cbs.v20170312.models.DiskChargePrepaid` :param DiskChargePostpaid: 后付费模式 :type DiskChargePostpaid: bool """ self.DiskIds = None self.DiskChargePrepaid = None self.DiskChargePostpaid = None def _deserialize(self, params): self.DiskIds = params.get("DiskIds") if params.get("DiskChargePrepaid") is not None: self.DiskChargePrepaid = DiskChargePrepaid() self.DiskChargePrepaid._deserialize(params.get("DiskChargePrepaid")) self.DiskChargePostpaid = params.get("DiskChargePostpaid") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ModifyDisksChargeTypeResponse(AbstractModel): """ModifyDisksChargeType返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class ModifyDisksRenewFlagRequest(AbstractModel): """ModifyDisksRenewFlag请求参数结构体 """ def __init__(self): r""" :param DiskIds: 一个或多个待操作的云硬盘ID。 :type DiskIds: list of str :param RenewFlag: 云盘的续费标识。取值范围:<br><li>NOTIFY_AND_AUTO_RENEW:通知过期且自动续费<br><li>NOTIFY_AND_MANUAL_RENEW:通知过期不自动续费<br><li>DISABLE_NOTIFY_AND_MANUAL_RENEW:不通知过期不自动续费。 :type RenewFlag: str """ self.DiskIds = None self.RenewFlag = None def _deserialize(self, params): self.DiskIds = params.get("DiskIds") self.RenewFlag = params.get("RenewFlag") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ModifyDisksRenewFlagResponse(AbstractModel): """ModifyDisksRenewFlag返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class ModifySnapshotAttributeRequest(AbstractModel): """ModifySnapshotAttribute请求参数结构体 """ def __init__(self): r""" :param SnapshotId: 快照ID, 可通过[DescribeSnapshots](/document/product/362/15647)查询。 :type SnapshotId: str :param SnapshotName: 新的快照名称。最长为60个字符。 :type SnapshotName: str :param IsPermanent: 快照的保留方式,FALSE表示非永久保留,TRUE表示永久保留。 :type IsPermanent: bool :param Deadline: 快照的到期时间;设置好快照将会被同时设置为非永久保留方式;超过到期时间后快照将会被自动删除。 :type Deadline: str """ self.SnapshotId = None self.SnapshotName = None self.IsPermanent = None self.Deadline = None def _deserialize(self, params): self.SnapshotId = params.get("SnapshotId") self.SnapshotName = params.get("SnapshotName") self.IsPermanent = params.get("IsPermanent") self.Deadline = params.get("Deadline") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ModifySnapshotAttributeResponse(AbstractModel): """ModifySnapshotAttribute返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class ModifySnapshotsSharePermissionRequest(AbstractModel): """ModifySnapshotsSharePermission请求参数结构体 """ def __init__(self): r""" :param AccountIds: 接收分享快照的账号Id列表,array型参数的格式可以参考[API简介](https://cloud.tencent.com/document/api/213/568)。帐号ID不同于QQ号,查询用户帐号ID请查看[帐号信息](https://console.cloud.tencent.com/developer)中的帐号ID栏。 :type AccountIds: list of str :param Permission: 操作,包括 SHARE,CANCEL。其中SHARE代表分享操作,CANCEL代表取消分享操作。 :type Permission: str :param SnapshotIds: 快照ID, 可通过[DescribeSnapshots](https://cloud.tencent.com/document/api/362/15647)查询获取。 :type SnapshotIds: list of str """ self.AccountIds = None self.Permission = None self.SnapshotIds = None def _deserialize(self, params): self.AccountIds = params.get("AccountIds") self.Permission = params.get("Permission") self.SnapshotIds = params.get("SnapshotIds") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ModifySnapshotsSharePermissionResponse(AbstractModel): """ModifySnapshotsSharePermission返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class Placement(AbstractModel): """描述了实例的抽象位置,包括其所在的可用区,所属的项目,以及所属的独享集群的ID和名字。 """ def __init__(self): r""" :param Zone: 云硬盘所属的[可用区](/document/product/213/15753#ZoneInfo)。该参数也可以通过调用 [DescribeZones](/document/product/213/15707) 的返回值中的Zone字段来获取。 :type Zone: str :param CageId: 围笼Id。作为入参时,表示对指定的CageId的资源进行操作,可为空。 作为出参时,表示资源所属围笼ID,可为空。 注意:此字段可能返回 null,表示取不到有效值。 :type CageId: str :param ProjectId: 实例所属项目ID。该参数可以通过调用 [DescribeProject](/document/api/378/4400) 的返回值中的 projectId 字段来获取。不填为默认项目。 :type ProjectId: int :param CdcName: 独享集群名字。作为入参时,忽略。作为出参时,表示云硬盘所属的独享集群名,可为空。 注意:此字段可能返回 null,表示取不到有效值。 :type CdcName: str :param CdcId: 实例所属的独享集群ID。作为入参时,表示对指定的CdcId独享集群的资源进行操作,可为空。 作为出参时,表示资源所属的独享集群的ID,可为空。 注意:此字段可能返回 null,表示取不到有效值。 :type CdcId: str :param DedicatedClusterId: 独享集群id。 :type DedicatedClusterId: str """ self.Zone = None self.CageId = None self.ProjectId = None self.CdcName = None self.CdcId = None self.DedicatedClusterId = None def _deserialize(self, params): self.Zone = params.get("Zone") self.CageId = params.get("CageId") self.ProjectId = params.get("ProjectId") self.CdcName = params.get("CdcName") self.CdcId = params.get("CdcId") self.DedicatedClusterId = params.get("DedicatedClusterId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class Policy(AbstractModel): """描述了定期快照的执行策略。可理解为在DayOfWeek指定的那几天中,在Hour指定的小时执行该条定期快照策略。 """ def __init__(self): r""" :param DayOfWeek: 指定每周从周一到周日需要触发定期快照的日期,取值范围:[0, 6]。0表示周日触发,1-6分别表示周一至周六。 :type DayOfWeek: list of int non-negative :param Hour: 指定定期快照策略的触发时间。单位为小时,取值范围:[0, 23]。00:00 ~ 23:00 共 24 个时间点可选,1表示 01:00,依此类推。 :type Hour: list of int non-negative """ self.DayOfWeek = None self.Hour = None def _deserialize(self, params): self.DayOfWeek = params.get("DayOfWeek") self.Hour = params.get("Hour") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class PrepayPrice(AbstractModel): """预付费订单的费用。 """ def __init__(self): r""" :param OriginalPrice: 预付费云盘或快照预支费用的原价,单位:元。 注意:此字段可能返回 null,表示取不到有效值。 :type OriginalPrice: float :param DiscountPrice: 预付费云盘或快照预支费用的折扣价,单位:元。 注意:此字段可能返回 null,表示取不到有效值。 :type DiscountPrice: float :param OriginalPriceHigh: 高精度预付费云盘或快照预支费用的原价,单位:元 注意:此字段可能返回 null,表示取不到有效值。 :type OriginalPriceHigh: str :param DiscountPriceHigh: 高精度预付费云盘或快照预支费用的折扣价,单位:元 注意:此字段可能返回 null,表示取不到有效值。 :type DiscountPriceHigh: str :param UnitPrice: 后付费云盘原单价,单位:元。 注意:此字段可能返回 null,表示取不到有效值。 :type UnitPrice: float :param ChargeUnit: 后付费云盘的计价单元,取值范围:<br><li>HOUR:表示后付费云盘的计价单元是按小时计算。 注意:此字段可能返回 null,表示取不到有效值。 :type ChargeUnit: str :param UnitPriceDiscount: 后付费云盘折扣单价,单位:元。 注意:此字段可能返回 null,表示取不到有效值。 :type UnitPriceDiscount: float :param UnitPriceHigh: 高精度后付费云盘原单价, 单位:元 注意:此字段可能返回 null,表示取不到有效值。 :type UnitPriceHigh: str :param UnitPriceDiscountHigh: 高精度后付费云盘折扣单价, 单位:元 注意:此字段可能返回 null,表示取不到有效值。 :type UnitPriceDiscountHigh: str """ self.OriginalPrice = None self.DiscountPrice = None self.OriginalPriceHigh = None self.DiscountPriceHigh = None self.UnitPrice = None self.ChargeUnit = None self.UnitPriceDiscount = None self.UnitPriceHigh = None self.UnitPriceDiscountHigh = None def _deserialize(self, params): self.OriginalPrice = params.get("OriginalPrice") self.DiscountPrice = params.get("DiscountPrice") self.OriginalPriceHigh = params.get("OriginalPriceHigh") self.DiscountPriceHigh = params.get("DiscountPriceHigh") self.UnitPrice = params.get("UnitPrice") self.ChargeUnit = params.get("ChargeUnit") self.UnitPriceDiscount = params.get("UnitPriceDiscount") self.UnitPriceHigh = params.get("UnitPriceHigh") self.UnitPriceDiscountHigh = params.get("UnitPriceDiscountHigh") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class Price(AbstractModel): """描述预付费或后付费云盘的价格。 """ def __init__(self): r""" :param OriginalPrice: 预付费云盘预支费用的原价,单位:元。 注意:此字段可能返回 null,表示取不到有效值。 :type OriginalPrice: float :param DiscountPrice: 预付费云盘预支费用的折扣价,单位:元。 注意:此字段可能返回 null,表示取不到有效值。 :type DiscountPrice: float :param UnitPrice: 后付费云盘原单价,单位:元。 注意:此字段可能返回 null,表示取不到有效值。 :type UnitPrice: float :param ChargeUnit: 后付费云盘的计价单元,取值范围:<br><li>HOUR:表示后付费云盘的计价单元是按小时计算。 注意:此字段可能返回 null,表示取不到有效值。 :type ChargeUnit: str :param UnitPriceDiscount: 后付费云盘折扣单价,单位:元。 注意:此字段可能返回 null,表示取不到有效值。 :type UnitPriceDiscount: float :param OriginalPriceHigh: 高精度预付费云盘预支费用的原价, 单位:元 。 注意:此字段可能返回 null,表示取不到有效值。 :type OriginalPriceHigh: str :param DiscountPriceHigh: 高精度预付费云盘预支费用的折扣价, 单位:元 注意:此字段可能返回 null,表示取不到有效值。 :type DiscountPriceHigh: str :param UnitPriceHigh: 高精度后付费云盘原单价, 单位:元 注意:此字段可能返回 null,表示取不到有效值。 :type UnitPriceHigh: str :param UnitPriceDiscountHigh: 高精度后付费云盘折扣单价, 单位:元 注意:此字段可能返回 null,表示取不到有效值。 :type UnitPriceDiscountHigh: str """ self.OriginalPrice = None self.DiscountPrice = None self.UnitPrice = None self.ChargeUnit = None self.UnitPriceDiscount = None self.OriginalPriceHigh = None self.DiscountPriceHigh = None self.UnitPriceHigh = None self.UnitPriceDiscountHigh = None def _deserialize(self, params): self.OriginalPrice = params.get("OriginalPrice") self.DiscountPrice = params.get("DiscountPrice") self.UnitPrice = params.get("UnitPrice") self.ChargeUnit = params.get("ChargeUnit") self.UnitPriceDiscount = params.get("UnitPriceDiscount") self.OriginalPriceHigh = params.get("OriginalPriceHigh") self.DiscountPriceHigh = params.get("DiscountPriceHigh") self.UnitPriceHigh = params.get("UnitPriceHigh") self.UnitPriceDiscountHigh = params.get("UnitPriceDiscountHigh") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class RenewDiskRequest(AbstractModel): """RenewDisk请求参数结构体 """ def __init__(self): r""" :param DiskChargePrepaid: 预付费模式,即包年包月相关参数设置。通过该参数可以指定包年包月云盘的续费时长。<br>在云盘与挂载的实例一起续费的场景下,可以指定参数CurInstanceDeadline,此时云盘会按对齐到实例续费后的到期时间来续费。 :type DiskChargePrepaid: :class:`tencentcloud.cbs.v20170312.models.DiskChargePrepaid` :param DiskId: 云硬盘ID, 通过[DescribeDisks](/document/product/362/16315)接口查询。 :type DiskId: str """ self.DiskChargePrepaid = None self.DiskId = None def _deserialize(self, params): if params.get("DiskChargePrepaid") is not None: self.DiskChargePrepaid = DiskChargePrepaid() self.DiskChargePrepaid._deserialize(params.get("DiskChargePrepaid")) self.DiskId = params.get("DiskId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class RenewDiskResponse(AbstractModel): """RenewDisk返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class ResizeDiskRequest(AbstractModel): """ResizeDisk请求参数结构体 """ def __init__(self): r""" :param DiskId: 云硬盘ID, 通过[DescribeDisks](/document/product/362/16315)接口查询。 :type DiskId: str :param DiskSize: 云硬盘扩容后的大小,单位为GB,必须大于当前云硬盘大小。云盘大小取值范围参见云硬盘[产品分类](/document/product/362/2353)的说明。 :type DiskSize: int """ self.DiskId = None self.DiskSize = None def _deserialize(self, params): self.DiskId = params.get("DiskId") self.DiskSize = params.get("DiskSize") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ResizeDiskResponse(AbstractModel): """ResizeDisk返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class SharePermission(AbstractModel): """快照分享信息集合 """ def __init__(self): r""" :param CreatedTime: 快照分享的时间 :type CreatedTime: str :param AccountId: 分享的账号Id :type AccountId: str """ self.CreatedTime = None self.AccountId = None def _deserialize(self, params): self.CreatedTime = params.get("CreatedTime") self.AccountId = params.get("AccountId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class Snapshot(AbstractModel): """描述了快照的详细信息 """ def __init__(self): r""" :param Placement: 快照所在的位置。 :type Placement: :class:`tencentcloud.cbs.v20170312.models.Placement` :param CopyFromRemote: 是否为跨地域复制的快照。取值范围:<br><li>true:表示为跨地域复制的快照。<br><li>false:本地域的快照。 :type CopyFromRemote: bool :param SnapshotState: 快照的状态。取值范围:<br><li>NORMAL:正常<br><li>CREATING:创建中<br><li>ROLLBACKING:回滚中<br><li>COPYING_FROM_REMOTE:跨地域复制中<br><li>CHECKING_COPIED:复制校验中<br><li>TORECYCLE:待回收。 :type SnapshotState: str :param IsPermanent: 是否为永久快照。取值范围:<br><li>true:永久快照<br><li>false:非永久快照。 :type IsPermanent: bool :param SnapshotName: 快照名称,用户自定义的快照别名。调用[ModifySnapshotAttribute](/document/product/362/15650)可修改此字段。 :type SnapshotName: str :param DeadlineTime: 快照到期时间。如果快照为永久保留,此字段为空。 :type DeadlineTime: str :param Percent: 快照创建进度百分比,快照创建成功后此字段恒为100。 :type Percent: int :param Images: 快照关联的镜像列表。 :type Images: list of Image :param ShareReference: 快照当前被共享数。 :type ShareReference: int :param SnapshotType: 快照类型,目前该项取值可以为PRIVATE_SNAPSHOT或者SHARED_SNAPSHOT :type SnapshotType: str :param DiskSize: 创建此快照的云硬盘大小,单位GB。 :type DiskSize: int :param DiskId: 创建此快照的云硬盘ID。 :type DiskId: str :param CopyingToRegions: 快照正在跨地域复制的目的地域,默认取值为[]。 :type CopyingToRegions: list of str :param Encrypt: 是否为加密盘创建的快照。取值范围:<br><li>true:该快照为加密盘创建的<br><li>false:非加密盘创建的快照。 :type Encrypt: bool :param CreateTime: 快照的创建时间。 :type CreateTime: str :param ImageCount: 快照关联的镜像个数。 :type ImageCount: int :param DiskUsage: 创建此快照的云硬盘类型。取值范围:<br><li>SYSTEM_DISK:系统盘<br><li>DATA_DISK:数据盘。 :type DiskUsage: str :param SnapshotId: 快照ID。 :type SnapshotId: str :param TimeStartShare: 快照开始共享的时间。 :type TimeStartShare: str """ self.Placement = None self.CopyFromRemote = None self.SnapshotState = None self.IsPermanent = None self.SnapshotName = None self.DeadlineTime = None self.Percent = None self.Images = None self.ShareReference = None self.SnapshotType = None self.DiskSize = None self.DiskId = None self.CopyingToRegions = None self.Encrypt = None self.CreateTime = None self.ImageCount = None self.DiskUsage = None self.SnapshotId = None self.TimeStartShare = None def _deserialize(self, params): if params.get("Placement") is not None: self.Placement = Placement() self.Placement._deserialize(params.get("Placement")) self.CopyFromRemote = params.get("CopyFromRemote") self.SnapshotState = params.get("SnapshotState") self.IsPermanent = params.get("IsPermanent") self.SnapshotName = params.get("SnapshotName") self.DeadlineTime = params.get("DeadlineTime") self.Percent = params.get("Percent") if params.get("Images") is not None: self.Images = [] for item in params.get("Images"): obj = Image() obj._deserialize(item) self.Images.append(obj) self.ShareReference = params.get("ShareReference") self.SnapshotType = params.get("SnapshotType") self.DiskSize = params.get("DiskSize") self.DiskId = params.get("DiskId") self.CopyingToRegions = params.get("CopyingToRegions") self.Encrypt = params.get("Encrypt") self.CreateTime = params.get("CreateTime") self.ImageCount = params.get("ImageCount") self.DiskUsage = params.get("DiskUsage") self.SnapshotId = params.get("SnapshotId") self.TimeStartShare = params.get("TimeStartShare") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class SnapshotOperationLog(AbstractModel): """快照操作日志。 """ def __init__(self): r""" :param Operator: 操作者的UIN。 注意:此字段可能返回 null,表示取不到有效值。 :type Operator: str :param Operation: 操作类型。取值范围: SNAP_OPERATION_DELETE:删除快照 SNAP_OPERATION_ROLLBACK:回滚快照 SNAP_OPERATION_MODIFY:修改快照属性 SNAP_OPERATION_CREATE:创建快照 SNAP_OPERATION_COPY:跨地域复制快照 ASP_OPERATION_CREATE_SNAP:由定期快照策略创建快照 ASP_OPERATION_DELETE_SNAP:由定期快照策略删除快照 :type Operation: str :param SnapshotId: 操作的快照ID。 :type SnapshotId: str :param OperationState: 操作的状态。取值范围: SUCCESS :表示操作成功 FAILED :表示操作失败 PROCESSING :表示操作中。 :type OperationState: str :param StartTime: 开始时间。 :type StartTime: str :param EndTime: 结束时间。 :type EndTime: str """ self.Operator = None self.Operation = None self.SnapshotId = None self.OperationState = None self.StartTime = None self.EndTime = None def _deserialize(self, params): self.Operator = params.get("Operator") self.Operation = params.get("Operation") self.SnapshotId = params.get("SnapshotId") self.OperationState = params.get("OperationState") self.StartTime = params.get("StartTime") self.EndTime = params.get("EndTime") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class Tag(AbstractModel): """标签。 """ def __init__(self): r""" :param Key: 标签健。 :type Key: str :param Value: 标签值。 :type Value: str """ self.Key = None self.Value = None def _deserialize(self, params): self.Key = params.get("Key") self.Value = params.get("Value") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class TerminateDisksRequest(AbstractModel): """TerminateDisks请求参数结构体 """ def __init__(self): r""" :param DiskIds: 需退还的云盘ID列表。 :type DiskIds: list of str :param DeleteSnapshot: 销毁云盘时删除关联的非永久保留快照。0 表示非永久快照不随云盘销毁而销毁,1表示非永久快照随云盘销毁而销毁,默认取0。快照是否永久保留可以通过DescribeSnapshots接口返回的快照详情的IsPermanent字段来判断,true表示永久快照,false表示非永久快照。 :type DeleteSnapshot: int """ self.DiskIds = None self.DeleteSnapshot = None def _deserialize(self, params): self.DiskIds = params.get("DiskIds") self.DeleteSnapshot = params.get("DeleteSnapshot") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class TerminateDisksResponse(AbstractModel): """TerminateDisks返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class UnbindAutoSnapshotPolicyRequest(AbstractModel): """UnbindAutoSnapshotPolicy请求参数结构体 """ def __init__(self): r""" :param DiskIds: 要解绑定期快照策略的云盘ID列表。 :type DiskIds: list of str :param AutoSnapshotPolicyId: 要解绑的定期快照策略ID。 :type AutoSnapshotPolicyId: str """ self.DiskIds = None self.AutoSnapshotPolicyId = None def _deserialize(self, params): self.DiskIds = params.get("DiskIds") self.AutoSnapshotPolicyId = params.get("AutoSnapshotPolicyId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class UnbindAutoSnapshotPolicyResponse(AbstractModel): """UnbindAutoSnapshotPolicy返回参数结构体 """ def __init__(self): r""" :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId")
[ "colorguitar@hotmail.com" ]
colorguitar@hotmail.com
283c6b43e1fb09e472f80084576279baec25468a
dbd1dd2b00a3c3cb25f7dd4faf08c3fc35aae7bf
/leetcode/add-one-row-to-tree.py
6d765a9da7de47530ff7f21eacfe56ba1e0aa231
[ "MIT" ]
permissive
hg-pyun/algorithm
2fa4260e96fbef1c23daf2c330db1e863401ea85
305100c9e9a09ee08082a1798e2599f2d4d3ebad
refs/heads/master
2023-08-03T12:52:00.362607
2023-07-25T13:24:52
2023-07-25T13:24:52
148,906,547
9
1
null
null
null
null
UTF-8
Python
false
false
992
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def addOneRow(self, root: TreeNode, v: int, d: int) -> TreeNode: if d == 1: return TreeNode(v, root) def traversal(node, depth, prev, direct): if depth == d: new = TreeNode(v) if direct == 'left': new.left = node prev.left = new elif direct == 'right': new.right = node prev.right = new if node is None: return traversal(node.left, depth + 1, node, 'left') traversal(node.right, depth + 1, node, 'right') traversal(root, 1, None, None) return root
[ "noreply@github.com" ]
hg-pyun.noreply@github.com
823e3eb060b99776cbbc0b7143e98b3dadd30ec0
064a8e3d4e2a31b322dff757daf11408241a0974
/webeloper2021/wsgi.py
658ddeb56dda47b66f410e7cb331b88be208ac11
[]
no_license
mohammadsedehi78/mosabeghe
f556334875986d33322e56217c86b16a6e4602e9
6ea5083894ba80041793c015641d1738ec3bbcca
refs/heads/master
2023-03-18T08:59:10.344490
2021-03-05T11:09:29
2021-03-05T11:09:29
344,783,574
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
""" WSGI config for webeloper2021 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'webeloper2021.settings') application = get_wsgi_application()
[ "mohammad.sedehi78@gmail.com" ]
mohammad.sedehi78@gmail.com
6bbae3d5e5fcfab52cf056ce10cfcd8242cb6d43
f569978afb27e72bf6a88438aa622b8c50cbc61b
/douyin_open/EnterpriseGrouponGrouponCommonGrouponEvent/models/order_info.py
1c155ea165949da316be534caa2cc9ea5ce8beb2
[]
no_license
strangebank/swagger-petstore-perl
4834409d6225b8a09b8195128d74a9b10ef1484a
49dfc229e2e897cdb15cbf969121713162154f28
refs/heads/master
2023-01-05T10:21:33.518937
2020-11-05T04:33:16
2020-11-05T04:33:16
310,189,316
1
0
null
null
null
null
UTF-8
Python
false
false
14,221
py
# coding: utf-8 """ 团购活动事件回调 No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class OrderInfo(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'order_id': 'str', 'channel': 'str', 'buyer_open_id': 'str', 'original_amount': 'int', 'amount': 'int', 'refund_amount': 'int', 'settle_amount': 'int', 'item_count': 'int', 'status': 'int', 'create_time': 'int', 'pay_time': 'int', 'refund_time': 'int', 'codes': 'list[CodeInfo]' } attribute_map = { 'order_id': 'order_id', 'channel': 'channel', 'buyer_open_id': 'buyer_open_id', 'original_amount': 'original_amount', 'amount': 'amount', 'refund_amount': 'refund_amount', 'settle_amount': 'settle_amount', 'item_count': 'item_count', 'status': 'status', 'create_time': 'create_time', 'pay_time': 'pay_time', 'refund_time': 'refund_time', 'codes': 'codes' } def __init__(self, order_id=None, channel=None, buyer_open_id=None, original_amount=None, amount=None, refund_amount=None, settle_amount=None, item_count=None, status=None, create_time=None, pay_time=None, refund_time=None, codes=None): # noqa: E501 """OrderInfo - a model defined in Swagger""" # noqa: E501 self._order_id = None self._channel = None self._buyer_open_id = None self._original_amount = None self._amount = None self._refund_amount = None self._settle_amount = None self._item_count = None self._status = None self._create_time = None self._pay_time = None self._refund_time = None self._codes = None self.discriminator = None self.order_id = order_id self.channel = channel self.buyer_open_id = buyer_open_id self.original_amount = original_amount self.amount = amount self.refund_amount = refund_amount self.settle_amount = settle_amount self.item_count = item_count self.status = status self.create_time = create_time self.pay_time = pay_time if refund_time is not None: self.refund_time = refund_time self.codes = codes @property def order_id(self): """Gets the order_id of this OrderInfo. # noqa: E501 团购活动订单Id # noqa: E501 :return: The order_id of this OrderInfo. # noqa: E501 :rtype: str """ return self._order_id @order_id.setter def order_id(self, order_id): """Sets the order_id of this OrderInfo. 团购活动订单Id # noqa: E501 :param order_id: The order_id of this OrderInfo. # noqa: E501 :type: str """ if order_id is None: raise ValueError("Invalid value for `order_id`, must not be `None`") # noqa: E501 self._order_id = order_id @property def channel(self): """Gets the channel of this OrderInfo. # noqa: E501 订单来源 # noqa: E501 :return: The channel of this OrderInfo. # noqa: E501 :rtype: str """ return self._channel @channel.setter def channel(self, channel): """Sets the channel of this OrderInfo. 订单来源 # noqa: E501 :param channel: The channel of this OrderInfo. # noqa: E501 :type: str """ if channel is None: raise ValueError("Invalid value for `channel`, must not be `None`") # noqa: E501 self._channel = channel @property def buyer_open_id(self): """Gets the buyer_open_id of this OrderInfo. # noqa: E501 买家的open_id # noqa: E501 :return: The buyer_open_id of this OrderInfo. # noqa: E501 :rtype: str """ return self._buyer_open_id @buyer_open_id.setter def buyer_open_id(self, buyer_open_id): """Sets the buyer_open_id of this OrderInfo. 买家的open_id # noqa: E501 :param buyer_open_id: The buyer_open_id of this OrderInfo. # noqa: E501 :type: str """ if buyer_open_id is None: raise ValueError("Invalid value for `buyer_open_id`, must not be `None`") # noqa: E501 self._buyer_open_id = buyer_open_id @property def original_amount(self): """Gets the original_amount of this OrderInfo. # noqa: E501 原价,单位分 # noqa: E501 :return: The original_amount of this OrderInfo. # noqa: E501 :rtype: int """ return self._original_amount @original_amount.setter def original_amount(self, original_amount): """Sets the original_amount of this OrderInfo. 原价,单位分 # noqa: E501 :param original_amount: The original_amount of this OrderInfo. # noqa: E501 :type: int """ if original_amount is None: raise ValueError("Invalid value for `original_amount`, must not be `None`") # noqa: E501 self._original_amount = original_amount @property def amount(self): """Gets the amount of this OrderInfo. # noqa: E501 订单金额,单位分 # noqa: E501 :return: The amount of this OrderInfo. # noqa: E501 :rtype: int """ return self._amount @amount.setter def amount(self, amount): """Sets the amount of this OrderInfo. 订单金额,单位分 # noqa: E501 :param amount: The amount of this OrderInfo. # noqa: E501 :type: int """ if amount is None: raise ValueError("Invalid value for `amount`, must not be `None`") # noqa: E501 self._amount = amount @property def refund_amount(self): """Gets the refund_amount of this OrderInfo. # noqa: E501 退款金额,单位分 # noqa: E501 :return: The refund_amount of this OrderInfo. # noqa: E501 :rtype: int """ return self._refund_amount @refund_amount.setter def refund_amount(self, refund_amount): """Sets the refund_amount of this OrderInfo. 退款金额,单位分 # noqa: E501 :param refund_amount: The refund_amount of this OrderInfo. # noqa: E501 :type: int """ if refund_amount is None: raise ValueError("Invalid value for `refund_amount`, must not be `None`") # noqa: E501 self._refund_amount = refund_amount @property def settle_amount(self): """Gets the settle_amount of this OrderInfo. # noqa: E501 结算金额,单位分 # noqa: E501 :return: The settle_amount of this OrderInfo. # noqa: E501 :rtype: int """ return self._settle_amount @settle_amount.setter def settle_amount(self, settle_amount): """Sets the settle_amount of this OrderInfo. 结算金额,单位分 # noqa: E501 :param settle_amount: The settle_amount of this OrderInfo. # noqa: E501 :type: int """ if settle_amount is None: raise ValueError("Invalid value for `settle_amount`, must not be `None`") # noqa: E501 self._settle_amount = settle_amount @property def item_count(self): """Gets the item_count of this OrderInfo. # noqa: E501 团购券个数 # noqa: E501 :return: The item_count of this OrderInfo. # noqa: E501 :rtype: int """ return self._item_count @item_count.setter def item_count(self, item_count): """Sets the item_count of this OrderInfo. 团购券个数 # noqa: E501 :param item_count: The item_count of this OrderInfo. # noqa: E501 :type: int """ if item_count is None: raise ValueError("Invalid value for `item_count`, must not be `None`") # noqa: E501 self._item_count = item_count @property def status(self): """Gets the status of this OrderInfo. # noqa: E501 * 订单状态 * 1: 订单完成 * 101: 支付完成 * 200: 发起核销 * 201: 核销完成 * 202: 核销失败 * 299: 用户申请退款 * 300: 商户发起退款 * 301: 退款成功 * 302: 退款失败 # noqa: E501 :return: The status of this OrderInfo. # noqa: E501 :rtype: int """ return self._status @status.setter def status(self, status): """Sets the status of this OrderInfo. * 订单状态 * 1: 订单完成 * 101: 支付完成 * 200: 发起核销 * 201: 核销完成 * 202: 核销失败 * 299: 用户申请退款 * 300: 商户发起退款 * 301: 退款成功 * 302: 退款失败 # noqa: E501 :param status: The status of this OrderInfo. # noqa: E501 :type: int """ if status is None: raise ValueError("Invalid value for `status`, must not be `None`") # noqa: E501 allowed_values = [1, 101, 200, 201, 202, 299, 300, 301, 302, ""] # noqa: E501 if status not in allowed_values: raise ValueError( "Invalid value for `status` ({0}), must be one of {1}" # noqa: E501 .format(status, allowed_values) ) self._status = status @property def create_time(self): """Gets the create_time of this OrderInfo. # noqa: E501 订单创建时间 unix time # noqa: E501 :return: The create_time of this OrderInfo. # noqa: E501 :rtype: int """ return self._create_time @create_time.setter def create_time(self, create_time): """Sets the create_time of this OrderInfo. 订单创建时间 unix time # noqa: E501 :param create_time: The create_time of this OrderInfo. # noqa: E501 :type: int """ if create_time is None: raise ValueError("Invalid value for `create_time`, must not be `None`") # noqa: E501 self._create_time = create_time @property def pay_time(self): """Gets the pay_time of this OrderInfo. # noqa: E501 订单支付时间 unix time # noqa: E501 :return: The pay_time of this OrderInfo. # noqa: E501 :rtype: int """ return self._pay_time @pay_time.setter def pay_time(self, pay_time): """Sets the pay_time of this OrderInfo. 订单支付时间 unix time # noqa: E501 :param pay_time: The pay_time of this OrderInfo. # noqa: E501 :type: int """ if pay_time is None: raise ValueError("Invalid value for `pay_time`, must not be `None`") # noqa: E501 self._pay_time = pay_time @property def refund_time(self): """Gets the refund_time of this OrderInfo. # noqa: E501 退款完成时间 unix time # noqa: E501 :return: The refund_time of this OrderInfo. # noqa: E501 :rtype: int """ return self._refund_time @refund_time.setter def refund_time(self, refund_time): """Sets the refund_time of this OrderInfo. 退款完成时间 unix time # noqa: E501 :param refund_time: The refund_time of this OrderInfo. # noqa: E501 :type: int """ self._refund_time = refund_time @property def codes(self): """Gets the codes of this OrderInfo. # noqa: E501 团购券码列表 # noqa: E501 :return: The codes of this OrderInfo. # noqa: E501 :rtype: list[CodeInfo] """ return self._codes @codes.setter def codes(self, codes): """Sets the codes of this OrderInfo. 团购券码列表 # noqa: E501 :param codes: The codes of this OrderInfo. # noqa: E501 :type: list[CodeInfo] """ if codes is None: raise ValueError("Invalid value for `codes`, must not be `None`") # noqa: E501 self._codes = codes def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(OrderInfo, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OrderInfo): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "strangebank@gmail.com" ]
strangebank@gmail.com
91532410123870d4d3c1bb39763e33fc807220b4
931b39931325cfc51494e80439355b8a8a03ab1e
/parameter_fitting/FRET/compute_Jacobian_mkVI.py
d45ae61a0c94ae0cc439e344fe37a81d671824b1
[]
no_license
ajkluber/project_tools
908fca3babd173eb22a1c2d28cbb930137c5a4a8
5ebbbcb10b3d8efe555e981eba6c5a401db80884
refs/heads/master
2021-06-06T15:04:29.394560
2017-09-08T20:10:54
2017-09-08T20:10:54
15,809,249
1
1
null
2014-11-13T22:11:32
2014-01-10T20:48:50
Python
UTF-8
Python
false
false
11,351
py
""" Compute Jacobian for matching a distance distribution Description: This module computes the jacobian of a distance distribution such as measured with FRET. note: as of now, only compute distances for FRET is updated last updated: Justin Chen, May 05, 2015 """ import numpy as np import os import time import argparse try: import mdtraj as md except: pass import model_builder as mdb import scipy.stats as stats from project_tools.parameter_fitting.util.util import * global GAS_CONSTANT_KJ_MOL GAS_CONSTANT_KJ_MOL = 0.0083144621 def_FRET_pairs = [[114,192]] defspacing = 0.1 ## in nm def_forster_radius = 5.1 ## in nm def find_sim_bins(savelocation, FRETeff, fit_temp, residues=def_FRET_pairs, spacing=defspacing, weights=None): """find_sim_bins calculates and writes the simulation files """ ##assumes nothing about where you are, but assumes the savelocation is specified correctly print "Calculating Simulation FRET bins" cwd = os.getcwd() if not os.path.isdir(savelocation): os.mkdir(savelocation) os.chdir(savelocation) #calcualte the parameters for binning maxvalue = int(np.amax(FRETeff)/spacing) + 1 minvalue = int(np.amin(FRETeff)/spacing) num_bins = maxvalue - minvalue ran_size = (minvalue*spacing,maxvalue*spacing) #if not weighted, set weights to ones if weights == None: weights = np.ones(np.shape(FRETeff)[0]) #actually histogram it print "***************************" print np.shape(FRETeff) print np.shape(residues) print "***************************" hist, edges, slices = stats.binned_statistic(FRETeff, weights, statistic="sum", range=[ran_size], bins=num_bins) hist = hist/(np.sum(hist)*spacing) bincenters = 0.5 * (edges[1:] + edges[:-1]) print "Making list of values:" #actually save it np.savetxt("simf_valuesT%d-P%d-%d.dat"%(fit_temp, residues[0], residues[1]),hist) np.savetxt("simf_edgesT%d-P%d-%d.dat"%(fit_temp, residues[0], residues[1]),edges) np.savetxt("simf-paramsT%d-P%d-%d.dat"%(fit_temp, residues[0], residues[1]),np.array([num_bins,minvalue*spacing,maxvalue*spacing,spacing])) os.chdir(cwd) print "Calculated bins for simulation data at a spacing of %.4f" % spacing return hist, slices def fret_hist_calc(model, fitopts): fit_temp = fitopts["t_fit"] ##read trace file from cwd = os.getcwd() subdir = model.name #load iteration number iteration = fitopts["iteration"] #load fret pairs and format correctly fret_pairs = fitopts["fret_pairs"] FRET_pairs = np.array(fret_pairs) - 1 sub = "%s/%s/iteration_%d" % (cwd,subdir,iteration) subdirec = "%s/fitting_%d" % (sub,iteration) FRETfile = "%s/FRET_hist.dat" % subdirec if not "fretdata" in fitopts: FRETtracefile = "%s/FRET_trace.dat" % cwd else: FRETtracefile = fitopts["fretdata"] print "FRETtracefile is:" print FRETtracefile for i in range(np.shape(FRET_pairs)[0]): residues = FRET_pairs[i,:] ftrace = np.loadtxt(FRETtracefile[i]) edge_file = "%s/simf_edgesT%d-P%d-%d.dat"%(subdirec, fit_temp, residues[0], residues[1]) edges = np.loadtxt(edge_file) hist, edges = np.histogram(ftrace, bins=edges, normed=True) bincenters = (edges[:-1] + edges[1:]) / 2 datas = np.array([bincenters,hist]) datas = np.transpose(datas) if i == 0: fret_total = datas else: fret_total = np.append(fret_total, datas, axis=0) np.savetxt(FRETfile, fret_total) print "Binned FRET_hist_calc Data" def check_exp_data(FRETdata, bin_centers): #if correct within this marigin, then thinks its okay #Will check that the FRETdata centers and bin)centers are within 10^-6 of the spacing terms = np.shape(FRETdata)[0] i = 0 spacing_FRET = FRETdata[1] - FRETdata[0] spacing_bin_centers = bin_centers[1] - bin_centers[0] min_difference = (min([spacing_FRET, spacing_bin_centers]))/1000000 #if correct within this marigin, then thinks its okay recalc = not np.shape(FRETdata)[0] == np.shape(bin_centers)[0] ##Verify that the bins line up while (not recalc) and i<terms: if not (FRETdata[i] - bin_centers[i]) < min_difference: recalc = True i += 1 return recalc def add_error_log(note, fit_temp): errfile = "error_log-JC.txt" if not os.path.isfile(errfile): f = open("error_log-JC.txt","w") f.write("Error Log for This run\n\n") f.write("Global variables are:\n") f.write("Gas constant in kJ per mol = %d\n" % GAS_CONSTANT_KJ_MOL) f.write("pairs used are = " + str(def_FRET_pairs) + "\n") f.write("Temperature for Fitting used is T = %d\n" % fit_temp) f.write("Spacing in FRET pair distance used is = %d\n" %defspacing) f.write("\n") f.write(note) f.write("\n") f.close() else: f = f = open("error_log-JC.txt","a") f.write("\n") f.write(note) f.write("\n") f.close() print "ERROR: CHECK LOG \n %s" % note def get_target_feature(model,fitopts): """ Get target features """ fit_temp = fitopts["t_fit"] cwd = os.getcwd() subdir = model.name iteration = fitopts["iteration"] sub = "%s/%s/iteration_%d" % (cwd,subdir,iteration) subdirec = "%s/fitting_%d" % (sub,iteration) simfile = "%s/simf_centers%d.dat" % (subdirec,fit_temp) FRETfile = "%s/FRET_hist.dat" % subdirec fret_hist_calc(model, fitopts) FRETdata = np.loadtxt(FRETfile) print "initial FRET data and bin_centers" print FRETdata target = FRETdata[:,1] target_err = target**0.5 ##for lack of a better way, take sqrt of bins for error estimate return target, target_err def compute_efficiency(FRETr, R0): """Convert a FRET distance trace to a FRET efficiency trace""" eff = 1.0/(1.0+(FRETr/R0)**6) print "FRET efficiencies: " print eff return eff def calculate_average_Jacobian(model,fitopts, FRET_pairs=def_FRET_pairs, spacing=defspacing ): """ Calculate the average feature vector (ddG's) and Jacobian """ if "t_fit" in fitopts: fit_temp = fitopts["t_fit"] else: raise IOError("Missing the fit_temperature, please specify in .ini file") if "fret_pairs" in fitopts: fret_pairs = fitopts["fret_pairs"] FRET_pairs = np.array(fret_pairs) - 1 print "The FRET pairs are:" print FRET_pairs if "y_shift" in fitopts: y_shift = fitopts["y_shift"] else: y_shift = 0.0 fitopts["y_shift"] = 0.0 if "spacing" in fitopts: spacing = fitopts["spacing"] if "forster_radius" in fitopts: forster_radius = fitopts["forster_radius"] else: forster_radius = def_forster_radius ##Define location of logical files cwd = os.getcwd() subdir = model.name iteration = fitopts["iteration"] sub = "%s/%s/iteration_%d" % (cwd,subdir,iteration) traj_location = "%s/%d_0" % (sub, fit_temp) sim_location = "%s/fitting_%d" % (sub,iteration) ##define location of logical files os.chdir(traj_location) ## Get trajectory, state indicators, contact energy print "Working on calculating model's trajectory and contact info" traj,rij,qij = get_rij_Vp(model) ## Get simulation feature print "Now working on calculating the trajectories" beta = 1.0 / (GAS_CONSTANT_KJ_MOL*float(fit_temp)) FRETr = md.compute_distances(traj,FRET_pairs, periodic=False) print "Computing Jacobian and Simparams for the temperature %d, with spacing %f" % (fit_temp, spacing) for i in range(np.shape(FRET_pairs)[0]): FRETr_use = FRETr[:,i] + y_shift print "Shifted simulated FRET-distance data by a y_shift = %f" % y_shift print FRETr_use ###CONVERT DISTANCE TO FRET EFFICIENCY FRETeff = compute_efficiency(FRETr_use, forster_radius) sim_feature, sim_slices = find_sim_bins(sim_location, FRETeff, fit_temp, residues=FRET_pairs[i,:], spacing=spacing, weights=None) Jacobian = compute_Jacobian_basic(qij,sim_feature*spacing, sim_slices, beta) Jacobian /= spacing #store the sim_feature into a total array: if i == 0: sim_feature_all = sim_feature Jacobian_all = Jacobian else: sim_feature_all = np.append(sim_feature_all, sim_feature) Jacobian_all = np.append(Jacobian_all, Jacobian, axis=0) #save the temperature this was done in if not os.path.isdir("%s/newton"%sub): os.mkdir("%s/newton"%sub) f = open("%s/newton/temp-used-here.txt"%sub, "w") f.write(str(fit_temp)) f.close() os.chdir(cwd) sim_feature_err = sim_feature_all ** 0.5 Jacobian_err = np.zeros(np.shape(Jacobian_all)) return sim_feature_all, sim_feature_err, Jacobian_all, Jacobian_err def compute_Jacobian_basic(qij, fr, sim_slices, beta, weights=None): """ Method for computing a Jacobian given only the rudimenary pieces necessary """ ## qij is a NXM array containing the Qij values from the simulation ## fr is a RX1 array containing the normalized distributin f(r) ## Sim_slices is an NX1 array containing the bin_index+1 for the r matrix ## beta is the kbT for this particular Jacobian ## N = Number of frames, M = number of contacts to be fitted, R=number of bins of R data ## Note: assumes fr is already weighted! nbins = np.shape(fr)[0] (N_total_traj, npairs) = np.shape(qij) if weights == None: N_total_weight = N_total_traj weights = np.ones(N_total_traj) else: if not np.shape(weights)[0] == N_total_traj: raise IOError("Not every frame is weighted, aborting! Check to make sure weights is same length as trajectory") N_total_weight = np.sum(weights) Jacobian = np.zeros((nbins, npairs),float) for idx, bin_location in enumerate(sim_slices): Jacobian[bin_location-1, :] += qij[idx,:]*weights[idx] Jacobian /= N_total_weight Qavg = np.sum(Jacobian, axis=0) avg_matrix = np.dot(np.array([fr]).transpose(), np.array([Qavg])) print "The shape of these matrices are:" print np.shape(avg_matrix) print np.shape(Jacobian) Jacobian -= avg_matrix Jacobian *= (-1.0) * beta return Jacobian if __name__ == "__main__": import model_builder as mdb parser = argparse.ArgumentParser(description='Calculate .') parser.add_argument('--name', type=str, required=True, help='name.') parser.add_argument('--iteration', type=int, required=True, help='iteration.') args = parser.parse_args() name = args.name iteration= args.iteration pairs = np.loadtxt("%s/pairs.dat" % name,dtype=int) defaults = True model = mdb.models.SmogCalpha.SmogCalpha(name=name,pairs=pairs,defaults=defaults,iteration=iteration) sim_feature_avg, sim_feature_err, Jacobian_avg, Jacobian_err = calculate_average_Jacobian(model)
[ "jc75@rice.edu" ]
jc75@rice.edu
93fda853410026abf9e2436c1f5c95874f6cee15
f5963c8644391770a2fbc0aaf1af6d7545d533e2
/src/lib/trains/train_factory.py
21c6a4cef331461361faf667545a60224d3b9ab0
[ "MIT", "BSD-3-Clause" ]
permissive
ajaichemmanam/CenterSeg
d33c181a952355bd6196e50b1901816ee3a5b15d
7a6d181961ae8a195d21c71d1fd68da36bcac70f
refs/heads/master
2022-12-24T19:01:55.609704
2020-09-16T06:14:01
2020-09-17T04:18:12
267,252,926
13
1
null
null
null
null
UTF-8
Python
false
false
435
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from .ctdet import CtdetTrainer from .ddd import DddTrainer from .exdet import ExdetTrainer from .multi_pose import MultiPoseTrainer from .ctseg import CtsegTrainer train_factory = { 'exdet': ExdetTrainer, 'ddd': DddTrainer, 'ctdet': CtdetTrainer, 'multi_pose': MultiPoseTrainer, 'ctseg': CtsegTrainer }
[ "ajaichemmanam@gmail.com" ]
ajaichemmanam@gmail.com
cf644a12670d8aff34b7a1413556ac7855213a69
3e19165859b69351301f683292135cba75549db6
/Stanford/CS224n/a3/parser_model.py
05b40e4ed8149b60b1c996c72d73acb6abfa0832
[]
no_license
k-ye/OpenCourses
b084638e212920a831a6baf74d740dd704b9447f
7ac57b6fbfe1ae574f60378cf15d308e191be3eb
refs/heads/master
2021-07-04T19:50:34.040105
2020-04-05T09:02:14
2020-04-05T09:02:14
99,991,859
27
9
null
null
null
null
UTF-8
Python
false
false
8,174
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ CS224N 2018-19: Homework 3 parser_model.py: Feed-Forward Neural Network for Dependency Parsing Sahil Chopra <schopra8@stanford.edu> """ import pickle import os import time import torch import torch.nn as nn import torch.nn.functional as F class ParserModel(nn.Module): """ Feedforward neural network with an embedding layer and single hidden layer. The ParserModel will predict which transition should be applied to a given partial parse configuration. PyTorch Notes: - Note that "ParserModel" is a subclass of the "nn.Module" class. In PyTorch all neural networks are a subclass of this "nn.Module". - The "__init__" method is where you define all the layers and their respective parameters (embedding layers, linear layers, dropout layers, etc.). - "__init__" gets automatically called when you create a new instance of your class, e.g. when you write "m = ParserModel()". - Other methods of ParserModel can access variables that have "self." prefix. Thus, you should add the "self." prefix layers, values, etc. that you want to utilize in other ParserModel methods. - For further documentation on "nn.Module" please see https://pytorch.org/docs/stable/nn.html. """ def __init__(self, embeddings, n_features=36, hidden_size=200, n_classes=3, dropout_prob=0.5): """ Initialize the parser model. @param embeddings (Tensor): word embeddings (num_words, embedding_size) @param n_features (int): number of input features @param hidden_size (int): number of hidden units @param n_classes (int): number of output classes @param dropout_prob (float): dropout probability """ super(ParserModel, self).__init__() self.n_features = n_features self.n_classes = n_classes self.dropout_prob = dropout_prob self.embed_size = embeddings.shape[1] self.hidden_size = hidden_size self.pretrained_embeddings = nn.Embedding( embeddings.shape[0], self.embed_size) self.pretrained_embeddings.weight = nn.Parameter( torch.tensor(embeddings)) # YOUR CODE HERE (~5 Lines) # TODO: # 1) Construct `self.embed_to_hidden` linear layer, initializing the weight matrix # with the `nn.init.xavier_uniform_` function with `gain = 1` (default) # 2) Construct `self.dropout` layer. # 3) Construct `self.hidden_to_logits` linear layer, initializing the weight matrix # with the `nn.init.xavier_uniform_` function with `gain = 1` (default) ### # Note: Here, we use Xavier Uniform Initialization for our Weight initialization. # It has been shown empirically, that this provides better initial weights # for training networks than random uniform initialization. # For more details checkout this great blogpost: # http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization # Hints: # - After you create a linear layer you can access the weight # matrix via: # linear_layer.weight ### # Please see the following docs for support: # Linear Layer: https://pytorch.org/docs/stable/nn.html#torch.nn.Linear # Xavier Init: https://pytorch.org/docs/stable/nn.html#torch.nn.init.xavier_uniform_ # Dropout: https://pytorch.org/docs/stable/nn.html#torch.nn.Dropout xavier_init = torch.nn.init.xavier_uniform_ self.embed_to_hidden = torch.nn.Linear( self.n_features * self.embed_size, self.hidden_size) self.dropout = torch.nn.Dropout(self.dropout_prob) self.hidden_to_logits = torch.nn.Linear( self.hidden_size, self.n_classes) xavier_init(self.embed_to_hidden.weight) xavier_init(self.hidden_to_logits.weight) # END YOUR CODE def embedding_lookup(self, t): """ Utilize `self.pretrained_embeddings` to map input `t` from input tokens (integers) to embedding vectors. PyTorch Notes: - `self.pretrained_embeddings` is a torch.nn.Embedding object that we defined in __init__ - Here `t` is a tensor where each row represents a list of features. Each feature is represented by an integer (input token). - In PyTorch the Embedding object, e.g. `self.pretrained_embeddings`, allows you to go from an index to embedding. Please see the documentation (https://pytorch.org/docs/stable/nn.html#torch.nn.Embedding) to learn how to use `self.pretrained_embeddings` to extract the embeddings for your tensor `t`. @param t (Tensor): input tensor of tokens (batch_size, n_features) @return x (Tensor): tensor of embeddings for words represented in t (batch_size, n_features * embed_size) """ # YOUR CODE HERE (~1-3 Lines) # TODO: # 1) Use `self.pretrained_embeddings` to lookup the embeddings for the input tokens in `t`. # 2) After you apply the embedding lookup, you will have a tensor shape (batch_size, n_features, embedding_size). # Use the tensor `view` method to reshape the embeddings tensor to (batch_size, n_features * embedding_size) ### # Note: In order to get batch_size, you may need use the tensor .size() function: # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size ### # Please see the following docs for support: # Embedding Layer: https://pytorch.org/docs/stable/nn.html#torch.nn.Embedding # View: https://pytorch.org/docs/stable/tensors.html#torch.Tensor.view # print(f'embedding_lookup t.shape={t.shape}') batch_size = t.shape[0] x = self.pretrained_embeddings(t).view(batch_size, -1) # END YOUR CODE return x def forward(self, t): """ Run the model forward. Note that we will not apply the softmax function here because it is included in the loss function nn.CrossEntropyLoss PyTorch Notes: - Every nn.Module object (PyTorch model) has a `forward` function. - When you apply your nn.Module to an input tensor `t` this function is applied to the tensor. For example, if you created an instance of your ParserModel and applied it to some `t` as follows, the `forward` function would called on `t` and the result would be stored in the `output` variable: model = ParserModel() output = model(t) # this calls the forward function - For more details checkout: https://pytorch.org/docs/stable/nn.html#torch.nn.Module.forward @param t (Tensor): input tensor of tokens (batch_size, n_features) @return logits (Tensor): tensor of predictions (output after applying the layers of the network) without applying softmax (batch_size, n_classes) """ # YOUR CODE HERE (~3-5 lines) # TODO: # 1) Apply `self.embedding_lookup` to `t` to get the embeddings # 2) Apply `embed_to_hidden` linear layer to the embeddings # 3) Apply relu non-linearity to the output of step 2 to get the hidden units. # 4) Apply dropout layer to the output of step 3. # 5) Apply `hidden_to_logits` layer to the output of step 4 to get the logits. ### # Note: We do not apply the softmax to the logits here, because # the loss function (torch.nn.CrossEntropyLoss) applies it more efficiently. ### # Please see the following docs for support: # ReLU: https://pytorch.org/docs/stable/nn.html?highlight=relu#torch.nn.functional.relu relu = torch.nn.functional.relu x = self.embedding_lookup(t) h = self.dropout(relu(self.embed_to_hidden(x))) logits = self.hidden_to_logits(h) # END YOUR CODE return logits
[ "yekuang.ky@gmail.com" ]
yekuang.ky@gmail.com
841d788c0340dbd5bee7b8992b8b850a786977ba
3ca1902888282bc4c0ca9ffb4d1f13487df889c2
/tito/compiler/ir.py
424aa265e29adcc7de7fbc4fbea93b5267caa766
[]
no_license
minttu/tito.py
0d3e2e3ca6222ca02638bdf6ea1dda1219779c6d
efd54c56f6944597a677785780b02dc8965418e9
refs/heads/master
2020-04-09T08:38:10.589300
2015-03-13T17:48:00
2015-03-13T17:48:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,054
py
from collections import OrderedDict from tito.errors import InvalidCommandError, MalformedAddressError from tito.data.commands import commands from tito.data.registers import registers from tito.data.symbols import symbols from .binary_command import BinaryCommand class IR(object): def __init__(self): self.binary_code = [] self.ir_code = [] self.data = [] self.symbol_table = OrderedDict() def add_equ(self, name, val): self.symbol_table[name] = (False, val) def add_dc(self, name, val): pos = len(self.data) self.data.append(val) self.symbol_table[name] = (True, pos) def add_ds(self, name, val): pos = len(self.data) for i in range(val): self.data.append(0) self.symbol_table[name] = (True, pos) def add_label(self, name, row): self.symbol_table[name] = (False, row) def add_line(self, code): self.ir_code.append(code) def generate(self): for ind, line in enumerate(self.ir_code): gen = BinaryCommand() self.binary_code.append(gen) if line.op not in commands: raise InvalidCommandError(line.op, line.number, line.raw) gen["op"].set(commands[line.op][0]) gen["m"].set(["=", None, "@"].index(line.m)) if line.op == "STORE" and gen["m"].value == 2: gen["m"].set(1) elif line.op == "STORE" or line.op == "CALL" or line.op[0] == "J": gen["m"].set(0) gen["rj"].set(registers[line.rj]) gen["ri"].set(registers[line.ri]) if line.addr in symbols and not line.addr in self.symbol_table: self.symbol_table[line.addr] = (False, symbols[line.addr]) if line.addr in registers: gen["ri"].set(registers[line.addr]) gen["m"].set(0) elif line.addr in self.symbol_table: sym = self.symbol_table[line.addr] if sym[0]: gen["addr"].set(sym[1] + len(self.ir_code)) else: gen["addr"].set(sym[1]) elif gen["m"].value == 0: gen["addr"].set(int(line.addr)) else: raise MalformedAddressError(line.number, line.raw) def __repr__(self): ret = "" code_len = len(self.ir_code) data_len = len(self.data) sec = lambda x: "___{}___\n".format(x) ret += sec("b91") ret += sec("code") ret += "0 {}\n".format(code_len - 1) ret += "\n".join(map(repr, self.binary_code)) ret += "\n" ret += sec("data") ret += "{} {}\n".format(code_len, code_len + data_len - 1) ret += "\n".join(map(str, self.data)) ret += "\n" ret += sec("symboltable") for ind, val in self.symbol_table.items(): ret += "{} {}\n".format(ind.lower(), val[1] + code_len if val[0] else val[1]) ret += sec("end") return ret
[ "juhani@imberg.fi" ]
juhani@imberg.fi
92d205d31d38912cad2577572b1027e6e26ac755
47030207bc09be135fe9f7647610a1bb190e51dd
/sequencer/frontend.py
4000e0befa3e00d395583ab2403d69661f5f7e5f
[]
no_license
ETH-NEXUS/lego_sequencer
df974c440264bf5f58bdc0a60cd65c6ddcc07108
ddea7b2753b577cc2c24603f7e5ee948fb789698
refs/heads/master
2022-12-11T08:44:31.957695
2019-09-24T14:02:06
2019-09-24T14:02:06
203,398,224
1
0
null
2022-12-11T06:50:05
2019-08-20T14:56:09
Python
UTF-8
Python
false
false
577
py
from flask import ( Blueprint, flash, g, redirect, render_template, request, session, url_for, jsonify ) bp = Blueprint( 'frontend', __name__, url_prefix='/', static_folder="../frontend/dist", template_folder="../frontend/dist" ) @bp.route('/', defaults={'path': ''}) @bp.route('/<path:path>') # url /books will fail into here def index(path): if path: return bp.send_static_file(path) return bp.send_static_file('index.html') # @bp.route('/static/<path:path>') # def static_file(path): # return bp.send_static_file(path)
[ "alquaddoomi@nexus.ethz.ch" ]
alquaddoomi@nexus.ethz.ch