blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
f02ce7c29dca4a27b5e73592695c617c66c56a61
15f4c8766ef89772d4e1ef9b4b680024681401b6
/Alumnos/views.py
adf7f453b91a3b6e09326c1835bd0bfa54de5c7b
[]
no_license
Marabo98/DatosPersonales
445419eb4c5e8c2b4497acaa76dbee760e7a098d
c24e68c75940b568539b049313a7d5bfe6c82e8b
refs/heads/master
2020-05-19T15:43:31.614636
2019-05-05T22:47:59
2019-05-05T22:47:59
185,084,696
1
0
null
null
null
null
UTF-8
Python
false
false
276
py
from django.shortcuts import render from .models import DatosPersonales def index(request): return render(request,"Alumnos/index.html") def res(request): Datos=DatosPersonales.objects.all() return render(request, "Alumnos/resultado.html",{"Alumnos":Datos})
[ "noreply@github.com" ]
Marabo98.noreply@github.com
d30137c4a1d499e1b0f216205e234323c2e84340
288714c273eae2bf13985c0f2927d915b3e84313
/version3/version3/urls.py
d5ccad7bda0cf8b46ff549b5e8f78fdd4a358bc3
[]
no_license
To-Heaven/authority-management-system
2ae3fb4708daeba4498ae8dcca24f2fc43bece60
33bf101fa73ce5eb2c0b280666979ec89a34788a
refs/heads/master
2021-08-24T07:18:34.605907
2017-12-08T16:00:47
2017-12-08T16:00:47
113,591,564
1
0
null
null
null
null
UTF-8
Python
false
false
877
py
"""version3 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from app import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^login/', views.login), url(r'^home/', views.home), ]
[ "ziawang2017@outlook.com" ]
ziawang2017@outlook.com
36b47d0a16d7e6e8b51e7aaa3dd00334f08d3f44
2b690fe997b38b2b491cc8096e60196f2a976b19
/ch04modules/src/ds_using_list.py
a1979326446885bc482c964e2d88bcd2dfc43179
[]
no_license
songxowe/PythonApp
9d15ce39aab8dfd62a88b5322d6b647102dc70fb
6fc81c69c1550799ac85ea18f79a819158780072
refs/heads/master
2021-01-23T15:27:46.427387
2018-07-02T09:51:34
2018-07-02T09:51:34
102,711,224
6
3
null
null
null
null
UTF-8
Python
false
false
570
py
# This is my shopping list shoplist = ['apple', 'mango', 'carrot', 'banana'] print('I have', len(shoplist), 'items to purchase.') print('These items are:', end=' ') for item in shoplist: print(item, end=' ') print('\nI also have to buy rice.') shoplist.append('rice') print('My shopping list is now', shoplist) print('I will sort my list now') shoplist.sort() print('Sorted shopping list is', shoplist) print('The first item I will buy is', shoplist[0]) olditem = shoplist[0] del shoplist[0] print('I bought the', olditem) print('My shopping list is now', shoplist)
[ "songxowe@hotmail.com" ]
songxowe@hotmail.com
79e6da3b4d658993b4978ba6089d86128dce378a
55c3a742168c1a5cf131df01d897b5e750d5c172
/hr_holidays_usability/wizard/hr_holidays_post.py
b178152e4ee7ae0d9a014221677fa50b1af5d5ea
[]
no_license
ursais/odoo-usability
cd22e9176e5a4e45c079be45955f415178a86105
216369f66c8c2da45d94fefc72276483c00edeef
refs/heads/10.0
2021-12-10T16:50:23.111985
2017-04-05T17:23:18
2017-04-05T17:23:18
88,552,310
0
0
null
2021-12-02T22:49:23
2017-04-17T21:27:15
Python
UTF-8
Python
false
false
2,666
py
# -*- coding: utf-8 -*- # © 2015-2017 Akretion (http://www.akretion.com) # @author Alexis de Lattre <alexis.delattre@akretion.com> # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). from odoo import models, fields, api, _ from odoo.exceptions import UserError class HrHolidaysPost(models.TransientModel): _name = 'hr.holidays.post' _description = 'Wizard for post holidays' before_date = fields.Date( string='Select Leave Requests That Ended Before', required=True, default=fields.Date.context_today, help="The wizard will select the validated holidays " "that ended before that date (including holidays that " "ended on that date).") holidays_to_post_ids = fields.Many2many( 'hr.holidays', string='Leave Requests to Post', domain=[ ('type', '=', 'remove'), ('holiday_type', '=', 'employee'), ('state', '=', 'validate'), ('posted_date', '=', False), ]) state = fields.Selection([ ('draft', 'Draft'), ('done', 'Done'), ], string='State', readonly=True, default='draft') @api.multi def select_date(self): self.ensure_one() hols = self.env['hr.holidays'].search([ ('type', '=', 'remove'), ('holiday_type', '=', 'employee'), ('state', '=', 'validate'), ('posted_date', '=', False), ('vacation_date_to', '<=', self.before_date), ]) self.write({ 'state': 'done', 'holidays_to_post_ids': [(6, 0, hols.ids)], }) action = self.env['ir.actions.act_window'].for_xml_id( 'hr_holidays_usability', 'hr_holidays_post_action') action['res_id'] = self.id return action @api.multi def run(self): self.ensure_one() # I have to make a copy of self.holidays_to_post_ids in a variable # because, after the write, it doesn't have a value any more !!! holidays_to_post = self.holidays_to_post_ids today = fields.Date.context_today(self) if not self.holidays_to_post_ids: raise UserError(_('No leave request to post.')) self.holidays_to_post_ids.write({'posted_date': today}) view_id = self.env.ref('hr_holidays_usability.hr_holiday_pivot').id action = { 'name': _('Leave Requests'), 'res_model': 'hr.holidays', 'type': 'ir.actions.act_window', 'domain': [('id', 'in', holidays_to_post.ids)], 'view_mode': 'pivot', 'view_id': view_id, } return action
[ "alexis.delattre@akretion.com" ]
alexis.delattre@akretion.com
3be5ebce37acada992508c3ea1fe44a9c7c5231c
71e8291ec9658e85989db9c7dcad92ea517b8c89
/backend/polls/serializers.py
29569e0b1dd2a41316231bcd1fc8470e61087083
[ "Apache-2.0" ]
permissive
IINamelessII/YesOrNo
b942104e8feadf3c1b08d5f66f85f3fff3e3ccd7
0ebbdfbae73f0be7c807a8f6ca0ec7c2040cca19
refs/heads/master
2023-01-07T06:54:06.384209
2019-05-26T11:34:11
2019-05-26T11:34:11
155,479,502
3
2
Apache-2.0
2023-01-04T19:50:11
2018-10-31T01:24:06
Python
UTF-8
Python
false
false
826
py
from django.contrib.auth.models import User from rest_framework import serializers from polls.models import Poll, Flow class FlowSerializer(serializers.ModelSerializer): class Meta: model = Flow fields = '__all__' class PollSerializer(serializers.ModelSerializer): flow = serializers.ReadOnlyField(source='flow.name') class Meta: model = Poll fields = ('id', 'flow', 'statement', 'agree', 'disagree', 'likes', 'dislikes') class ShortPollSerializer(serializers.ModelSerializer): class Meta: model = Poll fields = ('agree_rate', 'rate') class UserSerializer(serializers.ModelSerializer): polls = serializers.PrimaryKeyRelatedField(many=True, queryset=Poll.objects.all()) class Meta: model = User fields = ('id', 'username', 'polls')
[ "justnitro26@gmail.com" ]
justnitro26@gmail.com
0efce5e84b3ecd6417977d55a558b91a32a83e07
e420b0cd5f02b088d83327882ae149042c1232ea
/build.py
47cc18572832eee74fb5d1a2c910032a860869ca
[]
no_license
aechaechaech/Jerma-Imposter-Message-Generator
e6129bb9b5da6e8af2f87dffe10debef5fab5beb
583100fc208186e0f680abec0a81bf35d047b744
refs/heads/main
2023-04-12T06:23:50.578470
2021-05-10T15:45:37
2021-05-10T15:45:37
327,178,852
11
3
null
2021-04-03T01:28:13
2021-01-06T02:36:23
Python
UTF-8
Python
false
false
77
py
from distutils.core import setup import py2exe setup(console=['main.py'])
[ "noreply@github.com" ]
aechaechaech.noreply@github.com
e79d5279d124db882897b667b9e1754ebabd8484
2f5033c5d6a4e8d668933a066332aabff1e337d0
/docs/conf.py
e2910e1b3fe6f266b8983004af140329adda0f16
[ "BSD-3-Clause" ]
permissive
linlearn/linlearn
fad723b360606b22646b88e0e3718c26a458664e
b37a2ce810573a4b603142c8f2902b66c2154647
refs/heads/master
2022-10-11T00:12:57.326079
2022-09-27T17:26:30
2022-09-27T17:26:30
227,420,583
6
2
BSD-3-Clause
2022-09-27T17:26:31
2019-12-11T17:16:23
Python
UTF-8
Python
false
false
4,777
py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import os import sys # import sphinx_readable_theme # html_theme_path = [sphinx_readable_theme.get_html_theme_path()] # html_theme = 'readable' html_theme = 'sphinx_rtd_theme' # html_theme = 'python_docs_theme' sys.path.insert(0, os.path.abspath(".")) sys.path.insert(0, os.path.abspath("../")) sys.path.insert(0, os.path.abspath("../..")) sys.path.insert(0, os.path.abspath("sphinx_ext")) # from linlearn import * # from github_link import make_linkcode_resolve # -- Project information ----------------------------------------------------- project = "linlearn" copyright = "2020, Stéphane Gaïffas" author = "Stéphane Gaïffas" # The full version, including alpha/beta/rc tags release = "0.0.1" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.napoleon", "sphinx.ext.ifconfig", "sphinx.ext.mathjax", # "sphinx.ext.linkcode", # "sphinx_gallery.gen_gallery", ] # autosummary_generate = True autoclass_content = "class" autodoc_inherit_docstrings = True autodoc_default_flags = "inherited-members" autodoc_default_options = { # "members": None, "member-order": "bysource", # "inherited-members": None, "autoclass_content": "class", } # sphinx_gallery_conf = { # "examples_dirs": "../examples", # "doc_module": "linlearn", # "gallery_dirs": "auto_examples", # "ignore_pattern": "../run_*|../playground_*", # "backreferences_dir": os.path.join("modules", "generated"), # "show_memory": False, # "reference_url": {"onelearn": None}, # } # linkcode_resolve = make_linkcode_resolve( # "linlearn", # u"https://github.com/linlearn/" # "linlearn/blob/{revision}/" # "{package}/{path}#L{lineno}", # ) # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] source_suffix = ".rst" # Generate the plots for the gallery plot_gallery = "True" # The master toctree document. master_doc = "index" # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = "press" # html_theme = "readable" # html_sidebars = { # "**": ["about.html", "navigation.html", "searchbox.html"], # "auto_examples": ["index.html"], # } html_theme_options = { # "description": "Linear methods in Python", # "github_user": "linlearn", # "github_repo": "linlearn", # "github_button": True, # "fixed_sidebar": True, # "travis_button": False, # "logo_text_align": "center", # "github_banner": True, } # html_logo = "images/logo.png" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # from datetime import datetime # now = datetime.now() # html_show_copyright = copyright = ( # str(now.year) # + ', <a href="https://github.com/linlearn/linlearn/graphs/contributors">linlearn developers</a>. Updated on ' # + now.strftime("%B %d<, %Y") # ) # intersphinx_mapping = { # "python": ("https://docs.python.org/{.major}".format(sys.version_info), None), # "numpy": ("https://docs.scipy.org/doc/numpy/", None), # "scipy": ("https://docs.scipy.org/doc/scipy/reference", None), # "matplotlib": ("https://matplotlib.org/", None), # "pandas": ("https://pandas.pydata.org/pandas-docs/stable/", None), # "joblib": ("https://joblib.readthedocs.io/en/latest/", None), # "sklearn": ("https://scikit-learn.org/stable/", None), # }
[ "stephane.gaiffas@gmail.com" ]
stephane.gaiffas@gmail.com
b7db04729ee4eed895c34171563555bd33dda7f0
61bfee44a4566670f7ed1c6218892d575c73d952
/DataManagement/Phase1/CsvDistinctExtractor.py
bc269ea2bcfe744d19fadc109b01296d9d60398d
[]
no_license
yaoReadingCode/CSCI-620
45b5fc840fe7bba93492fe44ea8e6ff48c03289d
fe26b99dba3462305cf6a0497da321505bec53c3
refs/heads/master
2022-06-06T06:08:48.914593
2019-12-02T03:53:55
2019-12-02T03:53:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,117
py
import pandas as pd import json import re def extractValues(qualifiedFilePath, column): distinct = set() fileData = pd.read_csv(qualifiedFilePath, sep='\t', header=0) for index in range(len(fileData)): rowValue: str = fileData[column][index] match = re.match("^\\[(.*)\\]$", str(rowValue)) if match != None: rowValue = match.group(1) distinct.update(str(rowValue).split(',')) with open(column + '.txt', 'w', encoding="utf-8") as file: file.write(",".join( [ "('" + str(v).replace("'", "''") + "')" for v in distinct ] )) print("processed " + qualifiedFilePath + " : " + column) def main(): with open('distinct_file_config.json') as jsonFile: distinctFileConfig = json.load(jsonFile) filePath = distinctFileConfig["filePath"] for key in distinctFileConfig["files"].keys(): for column in distinctFileConfig["files"][key]: print("processing " + key + " : " + column) extractValues(filePath + key, column) if __name__ == "__main__": main()
[ "apurav.khare@gmail.com" ]
apurav.khare@gmail.com
ac144cfea22e1272d79d2dedb4eaf49d65fb89b4
637c1fb7d20c6f6f0bcfdc398ce663b26a0c5629
/marathon/marathon-lb/tests/test_common.py
77963524d70802f37fc17658e74fbecb450a1315
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
slpcat/docker-images
e00ae70158f540c45aede98874cbfed00d1bf12f
cd99c1f375ea153d9d50ab4fa49ceb13583e6bab
refs/heads/master
2023-08-31T23:57:07.582361
2023-08-17T05:34:05
2023-08-17T05:34:05
107,383,466
44
31
BSD-3-Clause
2020-03-17T17:00:45
2017-10-18T08:59:12
Go
UTF-8
Python
false
false
645
py
import unittest from mock import Mock import common class TestCommon(unittest.TestCase): def test_setup_logging_log_level(self): logger = Mock() common.setup_logging(logger, '/dev/null', '%(name)s: %(message)s', 'info') logger.setLevel.assert_called_with(20) def test_setup_logging_invalid_log_level(self): logger = Mock() with self.assertRaises(Exception) as context: common.setup_logging(logger, '/dev/null', '%(name)s: %(message)s', 'banana') assert str(context.exception) == 'Invalid log level: BANANA'
[ "slpcat@qq.com" ]
slpcat@qq.com
b1b60c4d44cf84dc029df650bb592b547e9ea863
debb553bf97dbc550a619f97598e35b2b43fbfa0
/ChatBot/Lec 01 聊天机器人的基础模型与综述/Debugs/debug_find_path.py
27c35b820133a3b413d72251a1f96248d23f3148
[]
no_license
jacky-guo/July-NLP
e9c050ae1cab32a6fa534da858544d11c56fdb22
f8aa6c01d5e7349b7e4e89ce103dd7acb3f62048
refs/heads/master
2020-08-06T19:09:38.877281
2018-10-19T09:47:20
2018-10-19T09:47:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
# -*- coding:utf-8 -*- graph = {'上海': ['苏州', '常州'], '苏州': ['常州', '镇江'], '常州': ['镇江'], '镇江': ['常州'], '盐城': ['南通'], '南通': ['常州']} # 明确如何找到从A到B的路径 def find_path(start, end, path=[]): path = path + [start] if start == end: return path if start not in graph: return None for node in graph[start]: if node not in path: newpath = find_path(node, end, path) if newpath: return newpath return None if __name__=='__main__': print(find_path('上海','镇江'))
[ "740465595@qq.com" ]
740465595@qq.com
01d6d7f9f190a36964f6276c6d587f83b503bfe0
6349c8168b6f4cb57a0370e46f789a566d60dc21
/tweet_analyzer_old.py
585b5dbc2b10b7faed6e0e5bd0c9f36ea655d391
[]
no_license
bksim/tweet-moods
daf99f21cefdc30a097fcb96b3f69c0d92731798
809778986f9aec724c4fa8263cf111dbc1957e6f
refs/heads/master
2021-05-04T11:07:51.701789
2019-09-18T03:19:26
2019-09-18T03:19:26
36,324,786
0
0
null
2019-11-02T23:11:49
2015-05-26T21:29:23
Python
UTF-8
Python
false
false
6,527
py
#!/usr/bin/python # -*- coding: utf-8 -*- import numpy as np from datetime import date from datetime import timedelta from sklearn.naive_bayes import BernoulliNB from TwitterSearch import * import tweepy import sys import pickle reload(sys) sys.setdefaultencoding('utf8') #outputs past numdays days in format yyyy-mm-dd *NOT* including todays date def last_dates(numdays): return [date.today()-timedelta(days=x) for x in range(1, numdays)] # queries twitter given the query def grab_tweets(query): #consumer_key = 'RXZnGOT0HIMzlvluC49971qnW' consumer_key = 'uTAwmsVanLasrKPnPL2vMYWFe' #consumer_secret = 'f6ZXMiirMw1b9a9QNSZYxhIXHAV4MoxOA4y16pmWfJV8zG0Gam' consumer_secret = '9mZvzzsdbv1Hf1RzrOd1cMRTn2PjivqE4XWgzr9mlScz95rMM7' #access_token = '1121237479-li2tQfxLq8eCpgJu5JAG33U0ViLXgZQg2KBLhEm' access_token = '2521477255-6FWcso042sTIZ3eSzHofYLnNCHsPRanJmidOzF0' #access_token_secret = 'm9Ucvzl6HkqE1yxrK946BsEu6wfMBDI9YoXlnUbpz95Af' access_token_secret = 'wWAlsb14aYwp3LwQOimyPdwam5aE3B2x1h4XEyYyvuuy4' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) all_tweets = [] # get today's tweets tweets = api.search(query, lang='en', rpp=100, count=100, result_type='recent') for tweet in tweets: all_tweets.append(tweet) #print tweet.created_at tweet.created_at = tweet.created_at.date() #print tweet.text # get tweets for past week for date in last_dates(7): #print "**HERE**" #tweets = api.search(query, lang='en', rpp=100, count=100, result_type='recent') tweets = api.search(query, lang='en', rpp=100, count=100, result_type='mixed', until=date) for tweet in tweets: all_tweets.append(tweet) #print tweet.created_at tweet.created_at = tweet.created_at.date() #print tweet.text return all_tweets # writes training set to file for the michigan data set. # currently: NOT IN USE def write_training_set_mich(filename): word_freq = {} stopwords = [] with open("training/stopwords.txt") as f: for line in f: stopwords.append(line.rstrip('\n').lower()) labels = [] texts = [] with open(filename) as f: for line in f: temp = line.split('\t') labels.append('pos' if temp[0] == '1' else 'neg') words = temp[1].rstrip('\n').lower().split(' ') texts.append(words) for w in words: if w not in stopwords: if w in word_freq: word_freq[w] += 1 else: word_freq[w] = 1 features = [] for t in texts: features.append([1 if w in t else 0 for w in word_freq.keys()]) with open('training/umich/results.txt', 'w') as fout: pickle.dump(features, fout) with open('training/umich/labels.txt', 'w') as fout: pickle.dump(labels, fout) with open('training/umich/wordslist.txt', 'w') as fout: pickle.dump(word_freq.keys(), fout) return # writes training set for the movie review training set. currently: NOT IN USE #numwords is the number of keys to consider. most common numwords number of keys will be used as feature vectors #numsamples number of reviews to use (total 5331) def write_training_set(numwords=500, numsamples=1000): word_freq = {} stopwords = [] with open("training/stopwords.txt") as f: for line in f: stopwords.append(line.rstrip('\n').lower()) #words_list = set() positive = [] i = 0 with open('training/rt-polaritydata/rt-polarity.pos') as f: for line in f: i += 1 if i <= numsamples: words = line.rstrip('\n').lower().split() positive.append(words) #words_list |= set(words) for w in words: if w not in stopwords: if w in word_freq: word_freq[w] += 1 else: word_freq[w] = 1 negative = [] i = 0 with open('training/rt-polaritydata/rt-polarity.neg') as f: for line in f: i += 1 if i <= numsamples: words = line.rstrip('\n').lower().split() negative.append(words) #words_list |= set(words) for w in words: if w not in stopwords: if w in word_freq: word_freq[w] += 1 else: word_freq[w] = 1 words_list_truncated = zip(*sorted(word_freq.items(), key=lambda x:x[1], reverse=True))[0][0:numwords] train_pos = [] train_neg = [] for p in positive: train_pos.append([1 if w in p else 0 for w in words_list_truncated]) with open('training/rt-polaritydata/training_pos.txt', 'w') as fout: pickle.dump(train_pos, fout) for n in negative: train_neg.append([1 if w in n else 0 for w in words_list_truncated]) with open('training/rt-polaritydata/training_neg.txt', 'w') as fout: pickle.dump(train_neg, fout) with open('training/rt-polaritydata/words_list_truncated.txt', 'w') as fout: pickle.dump(words_list_truncated, fout) print "done" def load_data(filename): with open(filename) as f: data = pickle.load(f) return data def get_sentiment_data(query, training_set): tweets = grab_tweets(query) #print "****HERE****" #train_pos = load_data('training_pos.txt') #train_neg = load_data('training_neg.txt') #words_list = load_data('words_list_truncated.txt') #clf.fit(train_pos+train_neg, ['pos']*len(train_pos) + ['neg']*len(train_neg)) train = load_data('training/' + training_set + '/results.txt') #print "HERE" labels = load_data('training/' + training_set + '/labels.txt') words_list = load_data('training/' + training_set + '/wordslist.txt') #print labels clf = BernoulliNB(binarize=None) clf.fit(train, labels) classified = {} for tweet in tweets: if tweet.created_at in classified.keys(): classified[tweet.created_at] = classified[tweet.created_at] + [classify(tweet.text, clf, words_list)[0]] else: classified[tweet.created_at] = [classify(tweet.text, clf, words_list)[0]] #print classified returndata = {} for key in classified: numpos = sum([1 if v=='pos' else 0 for v in classified[key]]) #returndata[key] = (numpos, len(classified[key]) - numpos) #tuple of positive, negative # percent: #returndata[key] = float(sum([1 if v == 'pos' else 0 for v in classified[key]]))/len(classified[key]) returndata[key] = ceil(float(sum([1 if v == 'pos' else 0 for v in classified[key]]))/len(classified[key])*100)/100.0 return returndata #print percents def classify(query, clf, words_list): tokens = query.rstrip('\n').lower().split() feature = [1 if w in tokens else 0 for w in words_list] return clf.predict(feature) if __name__ == "__main__": #write_training_set_mich('training/umich/training.txt') print get_sentiment_data('%23ucsb', 'umich')
[ "simpavid@gmail.com" ]
simpavid@gmail.com
9570c49843328e84d51d010763252fc26e8d87e5
f04a0ebca2b4ef6348755be8e1aff6d0febd50f1
/CAI_p5/GA.py
677609851e6f1f9bf6e514270daf9d85a8287c76
[]
no_license
kiarash97/CAI_5_Genetic
9e3cb0dae1cbc515da02fc345e8a9477c73af236
43f8473e8ee4eb5e05e59771ac3cee5a8aa4243c
refs/heads/master
2020-04-02T00:41:27.155608
2018-10-19T17:14:24
2018-10-19T17:14:24
153,816,905
0
0
null
null
null
null
UTF-8
Python
false
false
3,081
py
import random class genome: def __init__(self,lst): self.gens = [] for i in lst: self.gens.append(i) #random gens if len(lst) == 0 : self.randomGens() def randomGens(self): while (len(self.gens) < 8): x = random.randint(0,7) if x not in self.gens: self.gens.append(x) def isCorrect(self): for i in self.gens: if self.gens.count(i) != 1 : return False return True def __str__(self): return str(self.gens) def initialize_population(num = 100): population = [] for i in range(num): population.append(genome(lst = [])) return population def one_point_cross_over(gen1 , gen2): cross_point = random.randint(0,6) result = [] result.append(gen1.gens[0:cross_point]) result = result[0] i = cross_point while len(result)<8: if gen2.gens[i] not in result : result.append(gen2.gens[i]) i+=1 if i>7: i=0 result = genome(lst = result) if result.isCorrect(): return result else : return False def mutation(gen ,p = 0.001): for i in range(len(gen.gens)): if random.random() < p : x = random.randint(0,7) s = gen.gens.index(x) gen.gens[i] , gen.gens[s] = gen.gens[s] , gen.gens[i] def fitness(gen): threat_count = 0 max_threat = 28 for i in range(len(gen.gens)): for j in range(i,len(gen.gens)): if i != j : if i-gen.gens[i] == j-gen.gens[j] or i+gen.gens[i] == j+gen.gens[j]: threat_count +=1 return max_threat-threat_count def sort_by_fitness(population): result = [] for i in range(len(population)): for j in range(len(population)): if fitness(population[i]) > fitness(population[j]): population[i] , population[j] = population[j] , population[i] def genetic(initPopulationSize = 100 , pairsNumber = 100, populationSize = 30 , mutationProbability = 0.001): generation = 1 population = initialize_population(num= initPopulationSize) sort_by_fitness(population) while True: print ("genaration = ",generation , "population number = ", len(population)) if fitness(population[0]) == 28: print("Urekaaa !! ") return population[0] #each epoch for i in range(pairsNumber): x= random.randint(0,len(population)-1) y= random.randint(0,len(population)-1) if x!=y : child = one_point_cross_over(population[x],population[y]) if child: mutation(child , p=mutationProbability) population.append(child) sort_by_fitness(population) population = population[0:populationSize] generation += 1 result = genetic(initPopulationSize = 100 , pairsNumber = 100, populationSize = 30 , mutationProbability = 0.001) print ("answer = " , result)
[ "kasirikiarash@gmail.com" ]
kasirikiarash@gmail.com
8cebf3db3d8ed108a7aa3b6a756866083b2da720
bc2c2eb2f74c345e91f2c49b1de37321227a90b8
/src/preprocess.py
97e234b1a3ddbb7a0ea6cf6369573f5e874252dd
[]
no_license
emilebourban/ML-Project-2
a9567aad95372adfc75d8117a5a85a7a4005fe23
9e443ff5ad7870939616057a58d36b9606718d4b
refs/heads/master
2021-07-02T22:36:59.492531
2020-10-05T14:50:38
2020-10-05T14:50:38
159,149,665
2
0
null
null
null
null
UTF-8
Python
false
false
6,074
py
# -*- coding: utf-8 -*- import os import re from nltk.stem.porter import * from nltk.corpus import brown import itertools def load_dicts(DICT_PATH): """ """ dict_typo = {} with open(os.path.join(DICT_PATH, "emnlp_dict.txt"), mode='rt') as f: for line in f: key, value = line.rstrip('\n').split('\t') dict_typo.update({key:value}) with open(os.path.join(DICT_PATH, "Test_Set_3802_Pairs.txt") , mode='r') as f: for line in f: try: key, value = line.rstrip('\n').split('\t')[1].split(' | ') dict_typo.update({key:value}) # Some values have multiple keys affected to them except ValueError: ls = line.rstrip('\n').split('\t')[1].split(' | ') key = ls[0] value= ls[1] # Update dict with all the keys dict_typo.update({key:value}) with open(os.path.join(DICT_PATH, "typo-corpus-r1.txt"), mode='rt') as f: for line in f: key, value, _, _, _, _ = line.rstrip('\n').split('\t') dict_typo.update({key:value}) return dict_typo def remove_repetitions(tweet): """ Functions that remove noisy character repetition like for instance : llloooooooovvvvvve ====> love This function reduce the number of character repetition to 2 and checks if the word belong the english vocabulary by use of pyEnchant and reduce the number of character repetition to 1 otherwise Arguments: tweet (the tweet) """ tweet = tweet.split() for i in range(len(tweet)): # tweet[i]=''.join(''.join(s)[:2] for _, s in itertools.groupby(tweet[i])).replace('#', '') # if len(tweet[i])>0: # if tweet[i] not in word_list: tweet[i] = ''.join(''.join(s)[:1] for _, s in itertools.groupby(tweet[i])).replace('#', '') tweet=' '.join(tweet) return tweet def clean_tweets(filename, in_path, out_path, dict_typo, word_list, only_words=False, stemmer=None, min_len=None): """ """ print("Cleaning with: only words={}, stemmer={}, minimal length={}".format(only_words, stemmer!=None, min_len)) with open(os.path.join(in_path, filename), mode='rt', encoding='utf-8') as rf: with open(os.path.join(out_path, 'cl_'+filename), mode='wt', encoding='utf-8') as wf: for line in rf: if 'test' in filename: ID = line.strip().split(',')[0]+',' tweet = ' '.join(line.strip().split()[1:]) else: ID = '' tweet = line.strip() remove_repetitions(tweet) tweet = tweet.strip().split() for i, word in enumerate(tweet): if word in dict_typo.keys(): tweet[i] = dict_typo[word] tweet = ' '.join(tweet) tweet = re.sub(r"\'s", " \'s", tweet) tweet = re.sub(r"\'ve", " \'ve", tweet) tweet = re.sub(r"n\'t", " n\'t", tweet) tweet = re.sub(r" ca ", " can ", tweet) tweet = re.sub(r"\'re", " \'re", tweet) tweet = re.sub(r"\'d", " \'d", tweet) tweet = re.sub(r"\'l", " \'ll", tweet) tweet = re.sub(r"\'ll", " \'ll", tweet) # tweet = re.sub(r",", " , ", tweet) # tweet = re.sub(r"!", " ! ", tweet) # tweet = re.sub(r"\(", " \( ", tweet) # tweet = re.sub(r"\)", " \) ", tweet) # tweet = re.sub(r"\?", " \? ", tweet) tweet = re.sub(r"\s{2,}", " ", tweet) tweet = re.sub(r'<([^>]+)>', ' ',tweet) # Removes usr and url tweet = re.sub(r'^#| #', ' ', tweet) # Removes hashtags tweet = re.sub(r'\d+(x)\d+', '<img>', tweet) # Removes picture frames # tweet = re.sub(r'n\'t$|n\'t ', ' not', tweet) # Converts negation contraction to verb + not if only_words: tweet = re.sub(r'[^a-z]', ' ', tweet) # Only keeps words tweet = tweet.strip().split() if stemmer != None: tweet = [stemmer.stem(word) for word in tweet] # stemming # Spell checker for commonly missspeled words for i, word in enumerate(tweet): if word in dict_typo.keys(): tweet[i] = dict_typo[word] if min_len is not None: wf.write(ID+' '.join([word for word in tweet if len(word) >= min_len])+'\n') else: wf.write(ID+' '.join(tweet)+'\n') def main(): DICT_PATH = "../dict" OR_TWITT_PATH = "../data/twitter-datasets-original" NEW_TWITT_PATH = "../data/twitter-datasets" DATA_PATH = "../data" FULL = True # dict_typo = load_dicts(DICT_PATH) word_list = brown.words() if FULL: files = [i for i in os.listdir(OR_TWITT_PATH) if i.endswith('.txt')] else: files = [i for i in os.listdir(OR_TWITT_PATH) if not i.endswith('full.txt')] stemmer = PorterStemmer() for file in files: print("Processing {} ...".format(file)) clean_tweets(file, OR_TWITT_PATH, NEW_TWITT_PATH, dict_typo, word_list, only_words=False, stemmer=None, min_len=None) if __name__ == '__main__': main()
[ "noreply@github.com" ]
emilebourban.noreply@github.com
b6c46a8f86767ee4d504896126681b76d2154528
247dad430fd808f516def928cbcd64ae07da0e51
/article/migrations/0001_initial.py
90fa2f05ac7cfcb32cc7e0e9de97841abeac08b6
[]
no_license
manlife2017/my_blog
f8f33083bf9c4763c2f3727d4320a48692c4e4d5
9e43fbc79ae3f9c36ed05f47071d33ffcf27131d
refs/heads/master
2021-01-21T19:01:38.668765
2017-05-23T00:33:37
2017-05-23T00:33:37
92,107,165
0
0
null
null
null
null
UTF-8
Python
false
false
839
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-05-19 12:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('category', models.CharField(max_length=50)), ('date_time', models.DateTimeField(auto_now_add=True)), ('content', models.TextField(blank=True, null=True)), ], options={ 'ordering': ['-date_time'], }, ), ]
[ "xwp_fullstack@163.com" ]
xwp_fullstack@163.com
fdf2f52741bb4e9aed4af0d9607587f3c2a94a64
5ad5e0880164736c0ffcebcb631e803f0e44c78e
/dumbo/migrations/0013_comment.py
6c37a4f5dcc3e3b0cea42424f1eabbd859c55acf
[]
no_license
adarshsanjeev/dumbo
4f45400430aa7bcc773457529df6c6b46f1b2cdc
9a35187df26973cf379ac55c09223a98ab9a66dd
refs/heads/master
2020-04-15T03:52:20.824305
2016-06-06T04:48:00
2016-06-06T04:48:00
60,191,950
0
0
null
null
null
null
UTF-8
Python
false
false
1,046
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-06-05 00:37 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('dumbo', '0012_auto_20160604_1835'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', models.TextField()), ('timestamp', models.DateTimeField(default=django.utils.timezone.now)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('issue', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dumbo.Issue')), ], ), ]
[ "adarshsanjeev@gmail.com" ]
adarshsanjeev@gmail.com
04218200d29ae2eb7ca49c722ea5dda1781ec7ae
851a1203432c6e3f2a233094cdc756c6775105ad
/Ladies/migrations/0003_auto_20160619_1329.py
37793e2b63008793b4903febde161d17b0fea7d0
[]
no_license
AliSamir730/afportal
b859530fcd4c0b1a596f6ce6f3204a7e2417baa3
1e1b1c45521dc8a438b4237b235bb495b68b1840
refs/heads/master
2021-01-17T20:50:00.653370
2016-06-20T09:23:26
2016-06-20T09:23:26
61,533,140
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-06-19 08:59 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Ladies', '0002_auto_20160619_1326'), ] operations = [ migrations.AlterField( model_name='lady', name='pictures', field=models.ImageField(upload_to='Ladies/%Y/%m/%d/'), ), ]
[ "Sayyed Ali Hashimi" ]
Sayyed Ali Hashimi
c2043258d0cb1b2340d9b37092c14dd00108570a
ae9e7000a0929c66ca6f37fdcbd6bf1b074f4ce6
/prime number.py
931db63ba68aa56297f885b55553f43ae7df473c
[]
no_license
Rafsun83/Python-Basic-Practice-Code-
cd5c9b840c3a39254678ba452c4d152e323e1616
9f5b952403420c4f61a967e575e8ac4bd9969c7b
refs/heads/main
2023-05-31T23:01:15.279984
2021-06-13T15:13:10
2021-06-13T15:13:10
376,364,459
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
import math n = int(input("enter the number: ")) count = 0 val = int(math.sqrt(n)) for x in range(2, val+1, 1): if (n % x) == 0: count = 1 break if count==0: print(n, "prime") else: print(n, "not prime")
[ "noreply@github.com" ]
Rafsun83.noreply@github.com
b0e2c4a1e312ad2f25c5eb05bb59537b4ea2d16d
465a569faf4c7c08462c19b16ee7a69b799099cf
/ImagineCup/Backend/BERT_Model.py
135910286c772d8e6a7af1187ea8990fc00181ae
[]
no_license
SaiG18/ReadAR
9d8387fa3d792a4e5c3ed57cd04fc6f58ffe5a40
8ea22ce1812002e56add19d56e2df4d312a3a4df
refs/heads/master
2023-03-04T23:18:37.443075
2021-02-17T20:42:34
2021-02-17T20:42:34
240,667,249
1
0
null
null
null
null
UTF-8
Python
false
false
18,604
py
import xml.etree.ElementTree as ET import torch import pickle import glob import argparse import numpy as np from pytorch_pretrained_bert import BertTokenizer, BertModel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import euclidean_distances from nltk.stem import WordNetLemmatizer from WordNet_Lookup import WN_lookup from tqdm import tqdm, trange from copy import deepcopy import warnings warnings.filterwarnings('ignore') class BERT: def __init__(self, use_cuda=False): self.use_cuda = use_cuda self.tokenizer = BertTokenizer.from_pretrained('bert-large-uncased') self.model = BertModel.from_pretrained('bert-large-uncased') self.model.eval() self.model.to(torch.device("cpu")) class Word_Sense_Model: def __init__(self, use_cuda=False): self.use_cuda = use_cuda self.sense_number_map = {'N': 1, 'V': 2, 'J': 3, 'R': 4} self.Bert_Model = BERT(use_cuda) self.lemmatizer = WordNetLemmatizer() def open_xml_file(self, file_name): tree = ET.parse(file_name) root = tree.getroot() return root, tree def wngt_sent_sense_collect(self, xml_struct): _sent = [] _sent1 = [] _senses = [] temp_list_pos = [] _back_sent = [] _back_sent1 = "" _back_senses = [] for idx, j in enumerate(xml_struct.iter('word')): _temp_dict = j.attrib if 'lemma' in _temp_dict: _word = _temp_dict['lemma'].lower() else: _word = _temp_dict['surface_form'].lower() _back_sent.extend([_word]) _back_sent1 += _word + " " if 'wn30_key' in _temp_dict: _back_senses.extend([_temp_dict['wn30_key']] * len([_word])) else: _back_senses.extend([0] * len([_word])) _temp_dict = xml_struct.attrib if 'wn30_key' in _temp_dict: _senses1 = _temp_dict['wn30_key'].split(';') for i in _senses1: _word = [str(i.split('%')[0]), 'is'] _temp_sent = [] _temp_sent1 = "" _temp_senses = [] _temp_sent.extend(_word) _temp_sent.extend(_back_sent) _temp_sent1 += ' '.join(_word) + " " + _back_sent1 _temp_senses.extend([i, 0]) _temp_senses.extend(_back_senses) _sent.append(_temp_sent) _sent1.append(_temp_sent1) _senses.append(_temp_senses) return _sent, _sent1, _senses, temp_list_pos def semcor_sent_sense_collect(self, xml_struct): _sent = [] _sent1 = "" _senses = [] temp_list_pos = [] for idx, j in enumerate(xml_struct.iter('word')): _temp_dict = j.attrib flag = 0 if 'lemma' not in _temp_dict: words = _temp_dict['surface_form'].lower() _sent1 += words + " " words = words.split('_') words1 = words[0:1] words2 = words[1:] else: _pos = _temp_dict['pos'].lower()[0] if _pos not in ['a', 'v', 'n']: _pos = 'n' w2 = _temp_dict['lemma'].lower().split('_') words = _temp_dict['surface_form'].lower() _sent1 += words + " " words = words.split('_') l = self.lemmatizer.lemmatize(words[0], pos=_pos) if str(l).startswith(w2[0]) or str(w2[0]).startswith(l): words1 = words[0:1] words2 = words[1:] else: flag = 1 _sent.extend(words) if 'wn30_key' in _temp_dict: if not flag: _senses.extend([_temp_dict['wn30_key']] * len(words1)) _senses.extend([0] * len(words2)) else: _senses.extend([0] * len(words)) else: _senses.extend([0] * len(words)) return _sent, _sent1, _senses, temp_list_pos def semeval_sent_sense_collect(self, xml_struct): _sent = [] _sent1 = "" _senses = [] pos = [] for idx, j in enumerate(xml_struct.iter('word')): _temp_dict = j.attrib if 'lemma' in _temp_dict: words = _temp_dict['lemma'].lower() else: words = _temp_dict['surface_form'].lower() if '*' not in words: _sent1 += words + " " _sent.extend([words]) if 'pos' in _temp_dict: pos.extend([_temp_dict['pos']] * len([words])) else: pos.extend([0] * len([words])) if 'wn30_key' in _temp_dict: _senses.extend([_temp_dict['wn30_key']] * len([words])) else: _senses.extend([0] * len([words])) return _sent, _sent1, _senses, pos def apply_bert_tokenizer(self, word): return self.Bert_Model.tokenizer.tokenize(word) def collect_bert_tokens(self, _sent, lemma=False): _bert_tokens = ['[CLS]', ] if lemma: for idx, j in enumerate(_sent): _sent[idx] = self.lemmatizer.lemmatize(_sent[idx]) _tokens = self.apply_bert_tokenizer(_sent[idx]) _bert_tokens.extend(_tokens) else: for idx, j in enumerate(_sent): _tokens = self.apply_bert_tokenizer(_sent[idx]) _bert_tokens.extend(_tokens) _bert_tokens.append('[SEP]') return _bert_tokens def get_bert_embeddings(self, tokens): _ib = self.Bert_Model.tokenizer.convert_tokens_to_ids(tokens) _st = [0] * len(_ib) _t1, _t2 = torch.tensor([_ib]), torch.tensor([_st]) with torch.no_grad(): _encoded_layers, _ = self.Bert_Model.model( _t1, _t2, output_all_encoded_layers=True) _e1 = _encoded_layers[-4:] _e2 = torch.cat((_e1[0], _e1[1], _e1[2], _e1[3]), 2) if self.use_cuda: _final_layer = _e2[0].cpu().numpy() else: _final_layer = _e2[0].numpy() return _final_layer def create_word_sense_maps(self, _word_sense_emb): _sense_emb = {} _sentence_maps = {} _sense_word_map = {} _word_sense_map = {} for i in _word_sense_emb: if i not in _word_sense_map: _word_sense_map[i] = [] for j in _word_sense_emb[i]: if j not in _sense_word_map: _sense_word_map[j] = [] _sense_word_map[j].append(i) _word_sense_map[i].append(j) if j not in _sense_emb: _sense_emb[j] = [] _sentence_maps[j] = [] _sense_emb[j].extend(_word_sense_emb[i][j]['embs']) _sentence_maps[j].extend(_word_sense_emb[i][j]['sentences']) return _sense_emb, _sentence_maps, _sense_word_map, _word_sense_map def train(self, train_file, training_data_type): print("Training Embeddings") _word_sense_emb = {} _train_root, _train_tree = self.open_xml_file(train_file) for i in tqdm(_train_root.iter('sentence')): if training_data_type == "SE": all_sent, all_sent1, all_senses, _ = self.semeval_sent_sense_collect( i) all_sent, all_sent1, all_senses = [ all_sent], [all_sent1], [all_senses] elif training_data_type == "SEM": all_sent, all_sent1, all_senses, _ = self.semcor_sent_sense_collect( i) all_sent, all_sent1, all_senses = [ all_sent], [all_sent1], [all_senses] elif training_data_type == "WNGT": all_sent, all_sent1, all_senses, _ = self.wngt_sent_sense_collect( i) else: print("Argument train_type not specified properly") quit() for sent, sent1, senses in zip(all_sent, all_sent1, all_senses): try: bert_tokens = self.collect_bert_tokens(sent) final_layer = self.get_bert_embeddings(bert_tokens) count = 1 for idx, j in enumerate(zip(senses, sent)): sense = j[0] word = j[1] if sense != 0: embedding = np.mean( final_layer[count: count + len(self.apply_bert_tokenizer(word))], 0) if word not in _word_sense_emb: _word_sense_emb[word] = {} for s in sense.split(';'): if s not in _word_sense_emb[word]: _word_sense_emb[word][s] = {} _word_sense_emb[word][s]['embs'] = [] _word_sense_emb[word][s]['sentences'] = [] _word_sense_emb[word][s][ 'embs'].append(embedding) _word_sense_emb[word][s][ 'sentences'].append(sent1) count += len(self.apply_bert_tokenizer(word)) except Exception as e: print(e) return _word_sense_emb def load_embeddings(self, pickle_file_name, train_file, training_data_type): try: with open(pickle_file_name, 'rb') as h: _x = pickle.load(h) print("EMBEDDINGS FOUND") return _x except: print("Embedding File Not Found \n") word_sense_emb = self.train(train_file, training_data_type) with open(pickle_file_name, 'wb') as h: pickle.dump(word_sense_emb, h) print("Embeddings Saved to " + pickle_file_name) return word_sense_emb def test(self, train_file, test_file, emb_pickle_file, training_data_type, save_to, k=1, use_euclidean=False, reduced_search=True): word_sense_emb = self.load_embeddings( emb_pickle_file, train_file, training_data_type) print("Testing") sense_emb, sentence_maps, sense_word_map, word_sense_map = self.create_word_sense_maps( word_sense_emb) _test_root, _test_tree = self.open_xml_file(test_file) _correct, _wrong = [], [] open(save_to, "w").close() for i in tqdm(_test_root.iter('sentence')): sent, sent1, senses, pos = self.semeval_sent_sense_collect(i) print(senses, sent) bert_tokens = self.collect_bert_tokens(sent) final_layer = self.get_bert_embeddings(bert_tokens) count, tag, nn_sentences = 1, [], [] for idx, j in enumerate(zip(senses, sent, pos)): word = j[1] pos_tag = j[2][0] if j[0] != 0: _temp_tag = 0 max_score = -99 nearest_sent = 'NONE' embedding = np.mean( final_layer[count:count + len(self.apply_bert_tokenizer(word))], 0) min_span = 10000 if word in word_sense_map: concat_senses = [] concat_sentences = [] index_maps = {} _reduced_sense_map = [] if reduced_search: for sense_id in word_sense_map[word]: if self.sense_number_map[pos_tag] == int(sense_id.split('%')[1][0]): _reduced_sense_map.append(sense_id) if len(_reduced_sense_map) == 0: _reduced_sense_map = list(word_sense_map[word]) for sense_id in _reduced_sense_map: index_maps[sense_id] = {} index_maps[sense_id]['start'] = len(concat_senses) concat_senses.extend(sense_emb[sense_id]) concat_sentences.extend(sentence_maps[sense_id]) index_maps[sense_id]['end'] = len( concat_senses) - 1 index_maps[sense_id]['count'] = 0 if min_span > (index_maps[sense_id]['end'] - index_maps[sense_id]['start'] + 1): min_span = (index_maps[sense_id][ 'end'] - index_maps[sense_id]['start'] + 1) min_nearest = min(min_span, k) concat_senses = np.array(concat_senses) if use_euclidean: simis = euclidean_distances( embedding.reshape(1, -1), concat_senses)[0] nearest_indexes = simis.argsort()[:min_nearest] else: simis = cosine_similarity( embedding.reshape(1, -1), concat_senses)[0] nearest_indexes = simis.argsort( )[-min_nearest:][::-1] for idx1 in nearest_indexes: for sense_id in _reduced_sense_map: if index_maps[sense_id]['start'] <= idx1 and index_maps[sense_id]['end'] >= idx1: index_maps[sense_id]['count'] += 1 score = index_maps[sense_id]['count'] if score > max_score: max_score = score _temp_tag = sense_id nearest_sent = concat_sentences[idx1] tag.append(_temp_tag) nn_sentences.append(nearest_sent) print(_temp_tag) count += len(self.apply_bert_tokenizer(word)) _counter = 0 for j in i.iter('word'): temp_dict = j.attrib try: if 'wn30_key' in temp_dict: if tag[_counter] == 0: pass else: # lemma_key = tag[_counter].split(";")[0] # wrd_def = WN_lookup(lemma_key) # print(wrd_def) j.attrib['WSD'] = str(tag[_counter]) if j.attrib['WSD'] in str(temp_dict['wn30_key']).split(';'): _correct.append([temp_dict['wn30_key'], j.attrib[ 'WSD'], (sent1), nn_sentences[_counter]]) else: _wrong.append([temp_dict['wn30_key'], j.attrib[ 'WSD'], (sent1), nn_sentences[_counter]]) _counter += 1 except Exception as e: print(e) with open(save_to, "w") as f: _test_tree.write(f, encoding="unicode") print("OUTPUT STORED TO FILE: " + str(save_to)) return _correct, _wrong if __name__ == '__main__': parser = argparse.ArgumentParser(description='WSD using BERT') parser.add_argument('--device', type=str, default='cuda:2', help='GPU Device to Use?') parser.add_argument('--train_corpus', type=str, required=True, help='Training Corpus') parser.add_argument('--train_type', type=str, required=True, help='SEM/WNGT/SE') parser.add_argument('--trained_pickle', type=str, help='Pickle file of Trained Bert Embeddings/Save Embeddings to this file') parser.add_argument('--test_corpus', type=str, required=True, help='Testing Corpus') parser.add_argument('--start_k', type=int, default=1, help='Start value of Nearest Neighbour') parser.add_argument('--end_k', type=int, default=1, help='End value of Nearest Neighbour') parser.add_argument('--save_xml_to', type=str, help='Save the final output to?') parser.add_argument('--use_euclidean', type=int, default=0, help='Use Euclidean Distance to Find NNs?') parser.add_argument('--reduced_search', type=int, default=0, help='Apply Reduced POS Search?') args = parser.parse_args() print("Training Corpus is: " + args.train_corpus) print("Testing Corpus is: " + args.test_corpus) print("Nearest Neighbour start: " + str(args.start_k)) print("Nearest Neighbour end: " + str(args.end_k)) if args.reduced_search: print("Using Reduced POS Search") else: print("Using the Search without POS") if args.use_euclidean: print("Using Euclidean Distance") else: print("Using Cosine Similarity") print("Loading WSD Model") WSD = Word_Sense_Model(False) print("Loaded WSD Model") for nn in range(args.start_k, args.end_k + 1): correct, wrong = WSD.test(train_file=args.train_corpus, test_file=args.test_corpus, training_data_type=args.train_type, emb_pickle_file=args.trained_pickle, save_to=args.save_xml_to[ :-4] + "_" + str(nn) + args.save_xml_to[-4:], k=nn, use_euclidean=args.use_euclidean, reduced_search=args.reduced_search) print(float(len(correct)) / (len(wrong) + len(correct)))
[ "saigurrapu18@gmail.com" ]
saigurrapu18@gmail.com
0b3ffa2472130f693f78b74241bc9622c723b9ae
bfd1401812b40d8d03f3244197602ce881ba8d18
/disquaire_project/store/migrations/0001_initial.py
e1370a5821780da13df47c088023f0c14b7fb15d
[]
no_license
zohraDev/Web_site_Discaire
9ead99c93f236a13a61742b89288a0e621afa2a5
ff77855790cd68dbffac62a469fa4e7ee5bba12d
refs/heads/master
2023-04-21T05:41:08.560462
2021-05-04T22:03:09
2021-05-04T22:03:09
362,398,740
0
0
null
null
null
null
UTF-8
Python
false
false
2,191
py
# Generated by Django 3.2 on 2021-04-30 10:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Album', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('reference', models.IntegerField(null=True)), ('created_at', models.DateField(auto_now_add=True)), ('available', models.BooleanField(default=True)), ('title', models.CharField(max_length=200)), ('picture', models.URLField()), ], ), migrations.CreateModel( name='Artist', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, unique=True)), ], ), migrations.CreateModel( name='Contact', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(max_length=100)), ('name', models.CharField(max_length=200)), ], ), migrations.CreateModel( name='Booking', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateField(auto_now_add=True)), ('contacted', models.BooleanField(default=True)), ('album', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='store.album')), ('contact', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='store.contact')), ], ), migrations.AddField( model_name='album', name='artists', field=models.ManyToManyField(blank=True, related_name='albums', to='store.Artist'), ), ]
[ "zohra.bachi@edu.itescia.fr" ]
zohra.bachi@edu.itescia.fr
ec284b07ef46968568cf8bc5f0c5444b6a483e9c
c3e93cba8c95d47c08e04a7d40478a894bb34c75
/point_pick_test.py
a14f509f5c7c32c71fff2dcaba5c7f0ddbd263de
[]
no_license
aransena/home_ws
2cef097f2961a1519b078346383b53f9fe67df21
b240d257e8b65ba88acc5ad28a017b7f4b9f8ff4
refs/heads/master
2021-01-12T12:12:54.897028
2019-10-11T14:46:36
2019-10-11T14:46:36
72,365,622
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
import matplotlib.pyplot as plt fig = plt.figure() plt.axis([0, 1, 0, 1]) ax = fig.add_subplot(111) #ax.plot(np.random.rand(10)) def onclick(event): print('button=%d, x=%d, y=%d, xdata=%f, ydata=%f' % (event.button, event.x, event.y, event.xdata, event.ydata)) plt.scatter(event.xdata, event.ydata,c='r',marker='o') plt.draw() cid = fig.canvas.mpl_connect('button_press_event', onclick) plt.show()
[ "Aran Sena" ]
Aran Sena
44fb15e133cabafabb0c6d5f000523ccf9ea8efc
c7c37bf0fac9b0fa35def68c3e8e6a6dde26e586
/accounts/urls.py
3a281c92ba2957f271d598c22e872810fab5ca4c
[]
no_license
prakashjha18/Django-app
281eb9f490f9ee8db6f0cde38a0eda58f826c179
16a7fb015f389031d5cd676a99f98f3df0e2b12b
refs/heads/master
2020-09-16T14:14:34.130277
2019-11-26T10:00:51
2019-11-26T10:00:51
223,795,458
0
0
null
null
null
null
UTF-8
Python
false
false
212
py
from django.urls import path from . import views urlpatterns = [ path("register",views.register, name="register"), path("login",views.login,name="login"), path("logout",views.logout,name="logout") ]
[ "prkjha25@gmail.com" ]
prkjha25@gmail.com
77bce1362f9ddb1605900f9b2a128548e9573777
6090a53bf400d979e221f4751e9f77a053da1dba
/fuzzy.random.py
ffa39e2e8b5142563f679652d54856c893b52f81
[ "MIT" ]
permissive
ronniechong/python-fuzzyrandom
2db73f6b2e248ba674b63fe29d6a99d8339d6e87
2dce5e37bf1efbca171d76f7cde701bb23c38537
refs/heads/master
2020-05-30T13:06:06.651374
2014-06-14T13:40:18
2014-06-14T13:40:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
class Shape(object): locX = 0 locY = 0 rgba = [0,0,0,1] radius = 1 def __init__(self, locX, locY,rgba,radius): self.locX = locX self.locY = locY self.rgba = rgba self.radius = radius def fnGetShapes(): shape = Shape(10,10,[0,0,0,1],1) if __name__ == "__main__": fnGetShapes()
[ "ronnie@otakuness.com" ]
ronnie@otakuness.com
fc55ca8cdf98282b6938cf1baeadca9c0a489bc6
cc213aac5f386f9384a098913b24e035a5d989d9
/customer/urls.py
c9f4311675e69c697f6a0a4a25786e1964e23927
[ "MIT" ]
permissive
arunkgupta/e-commerce-with-django
0d92dff9d3d2d02f379b073a5d756a6893868db3
f3ed08f6a1e2de1d787c10aad08a3e13ec25d489
refs/heads/master
2022-10-27T13:33:55.047909
2020-06-07T15:29:43
2020-06-07T15:29:43
270,604,127
1
0
MIT
2020-06-08T09:15:52
2020-06-08T09:15:51
null
UTF-8
Python
false
false
733
py
from django.contrib import admin from django.urls import path, include from . import views urlpatterns = [ path("",views.home_page,name="home_page"), path("shirts",views.shirts_page,name="Shirt"), path("sports-wear",views.sports_wear_page,name="Sport Wear"), path("outwear",views.outwear_page,name="Outwear"), path("checkout/",views.checkout,name="checkout"), path("product-detail/<int:id>/",views.product_detail,name="product_detail"), path("cart/",views.cart,name="cart"), path("update_item/",views.update_item,name="update_item"), path("sign-in/",views.sign_in,name="sign_in"), path("sign-out/",views.signOut,name="sign_out"), path("register/",views.register,name="register"), ]
[ "49620321+UsamaKashif@users.noreply.github.com" ]
49620321+UsamaKashif@users.noreply.github.com
e6be3362e3ca61dd08ffe293157ca23f84ef44ef
43b91b923df83cbae79c17fdb56217ffecb4ec61
/models/lfesm.py
98f2989c181a744a5645ebf6fd4cd723705d8951
[ "Apache-2.0" ]
permissive
Thesharing/LFESM
c6248552688f71a7cec636a50f7dd72566c4352c
e956ed76f5a85259000742db093726d4b4c51751
refs/heads/master
2020-12-24T04:04:15.257184
2020-02-17T19:32:11
2020-02-17T19:32:11
237,376,207
12
4
null
null
null
null
UTF-8
Python
false
false
6,286
py
import torch from torch import nn from torch.autograd import Variable from torch.nn import CrossEntropyLoss from transformers.modeling_bert import BertPreTrainedModel, BertModel from .esim.layers import Seq2SeqEncoder, SoftmaxAttention from .esim.utils import replace_masked class LFESM(BertPreTrainedModel): """ Legal Feature Enhanced Semantic Matching Network for Similar Case Matching. """ def __init__(self, config): super(LFESM, self).__init__(config) self.bert = BertModel(config) # self.dropout = nn.Dropout(config.hidden_dropout_prob) # self.seq_relationship = nn.Linear(config.hidden_size, 2) self.init_weights() # dropout = 0.5 # self._rnn_dropout = RNNDropout(p=dropout) feature_size = 28 self._feature = nn.Linear(feature_size, config.hidden_size) self._attention = SoftmaxAttention() self._projection = nn.Sequential(nn.Linear(4 * config.hidden_size, config.hidden_size), nn.ReLU()) self._composition = Seq2SeqEncoder(nn.LSTM, config.hidden_size, config.hidden_size, bidirectional=True) self._classification = nn.Sequential(nn.Dropout(p=config.hidden_dropout_prob), # p=dropout nn.Linear(4 * 2 * config.hidden_size, config.hidden_size), nn.Tanh(), nn.Dropout(p=config.hidden_dropout_prob), # p=dropout nn.Linear(config.hidden_size, 2)) self.apply(self.init_esim_weights) def forward(self, a, b, c, labels=None, mode="prob"): # the parameter is: input_ids, attention_mask, token_type_ids # which is corresponding to input_ids, input_mask and segment_ids in InputFeatures a_output = self.bert(*a[:3])[0] b_output = self.bert(*b[:3])[0] c_output = self.bert(*c[:3])[0] # The return value: sequence_output, pooled_output, (hidden_states), (attentions) a_feature = self._feature(a[3].unsqueeze(1)) b_feature = self._feature(b[3].unsqueeze(1)) c_feature = self._feature(c[3].unsqueeze(1)) a_extend = torch.cat([a_feature, a_output], dim=1) b_extend = torch.cat([b_feature, b_output], dim=1) c_extend = torch.cat([c_feature, c_output], dim=1) a_mask = torch.cat([a[4], a[1]], dim=1).float() b_mask = torch.cat([b[4], b[1]], dim=1).float() c_mask = torch.cat([c[4], c[1]], dim=1).float() v_ab = self.siamese(a_extend, b_extend, a_mask, b_mask) v_ac = self.siamese(a_extend, c_extend, a_mask, c_mask) subtraction = v_ab - v_ac # TODO: Try three solutions # Solution 1: v_ab - v_ac # Solution 2: cat(v_ab, v_ac) # Solution 3: margin - sim_a + sim_b output = self._classification(subtraction) if mode == "prob": prob = torch.nn.functional.softmax(Variable(output), dim=1) return prob elif mode == "logits": return output elif mode == "loss": loss_fct = CrossEntropyLoss() loss = loss_fct(output.view(-1, 2), labels.view(-1)) return loss elif mode == "evaluate": prob = torch.nn.functional.softmax(Variable(output), dim=1) loss_fct = CrossEntropyLoss() loss = loss_fct(output.view(-1, 2), labels.view(-1)) return output, prob, loss def siamese(self, a_output, b_output, a_mask, b_mask): a_length = a_mask.sum(dim=-1).long() b_length = b_mask.sum(dim=-1).long() attended_a, attended_b = self._attention(a_output, a_mask, b_output, b_mask) enhanced_a = torch.cat([a_output, attended_a, a_output - attended_a, a_output * attended_a], dim=-1) enhanced_b = torch.cat([b_output, attended_b, b_output - attended_b, b_output * attended_b], dim=-1) projected_a = self._projection(enhanced_a) projected_b = self._projection(enhanced_b) # TODO: Add RNN Dropout # projected_a = self._rnn_dropout(projected_a) # projected_b = self._rnn_dropout(projected_b) v_ai = self._composition(projected_a, a_length) v_bj = self._composition(projected_b, b_length) v_a_avg = torch.sum(v_ai * a_mask.unsqueeze(1) .transpose(2, 1), dim=1) / torch.sum(a_mask, dim=1, keepdim=True) v_b_avg = torch.sum(v_bj * b_mask.unsqueeze(1) .transpose(2, 1), dim=1) / torch.sum(b_mask, dim=1, keepdim=True) v_a_max, _ = replace_masked(v_ai, a_mask, -1e7).max(dim=1) v_b_max, _ = replace_masked(v_bj, b_mask, -1e7).max(dim=1) v = torch.cat([v_a_avg, v_a_max, v_b_avg, v_b_max], dim=1) return v @staticmethod def init_esim_weights(module): if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight.data) nn.init.constant_(module.bias.data, 0.0) elif isinstance(module, nn.LSTM): nn.init.xavier_uniform_(module.weight_ih_l0.data) nn.init.orthogonal_(module.weight_hh_l0.data) nn.init.constant_(module.bias_ih_l0.data, 0.0) nn.init.constant_(module.bias_hh_l0.data, 0.0) hidden_size = module.bias_hh_l0.data.shape[0] // 4 module.bias_hh_l0.data[hidden_size:(2 * hidden_size)] = 1.0 if module.bidirectional: nn.init.xavier_uniform_(module.weight_ih_l0_reverse.data) nn.init.orthogonal_(module.weight_hh_l0_reverse.data) nn.init.constant_(module.bias_ih_l0_reverse.data, 0.0) nn.init.constant_(module.bias_hh_l0_reverse.data, 0.0) module.bias_hh_l0_reverse.data[hidden_size:(2 * hidden_size)] = 1.0
[ "cyprestar@outlook.com" ]
cyprestar@outlook.com
21e15bdd3e1ab4966d5e747d337391f72e4f311a
c6a2e58311b2d81429a1c5daadfd77891527cc35
/easypr_ng/migrations/0001_initial.py
a44403dbc328a8f1427e1757933293eae6570303
[]
no_license
EzechukwuJI/easypr
5ab1115d84aa843cf9684af1184626cb42f7d8e0
32fab5e1236d3098c7b5ea884c243def1075ad96
refs/heads/master
2020-05-21T22:38:07.872764
2016-12-23T10:46:41
2016-12-23T10:46:41
65,491,758
1
0
null
null
null
null
UTF-8
Python
false
false
25,577
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ ('sites', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Blogs', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=200)), ('blog_url', models.URLField()), ('name_slug', models.CharField(max_length=275)), ('category', models.CharField(max_length=125, choices=[(b'top-blogs', b'Top Blogs'), (b'technology', b'Technology')])), ('price', models.FloatField(default=0.0)), ('active', models.BooleanField(default=True)), ], options={ 'verbose_name_plural': 'Blogs', }, ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('date_posted', models.DateTimeField(auto_now_add=True)), ('comment', models.TextField(max_length=1000)), ('website', models.CharField(max_length=150, null=True, blank=True)), ], ), migrations.CreateModel( name='CommentReply', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('date_posted', models.DateTimeField(auto_now_add=True)), ('reply', models.TextField(max_length=1000)), ('comment', models.ForeignKey(to='easypr_ng.Comment')), ('posted_by', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='InterviewRequest', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('ticket_number', models.CharField(max_length=14)), ('date_requested', models.DateTimeField(auto_now_add=True)), ('date_closed', models.DateTimeField(null=True, blank=True)), ('status', models.CharField(default=b'new', max_length=25, choices=[(b'new', b'new'), (b'contacted', b'contacted'), (b'in_progress', b'In progress'), (b'closed', b'closed')])), ('request_outcome', models.CharField(default=b'pending', max_length=25, choices=[(b'pending', b'pending'), (b'success', b'success'), (b'declined', b'declined'), (b'deferred', b'deferred'), (b'dropped', b'dropped')])), ('contact_person', models.CharField(max_length=125)), ('contact_email', models.EmailField(max_length=255)), ('phone_number', models.CharField(max_length=15)), ('preferred_interview_date', models.DateTimeField()), ('interview_venue', models.TextField(max_length=300, null=True)), ('interview_date', models.DateTimeField()), ('interview_time', models.DateTimeField()), ('person_to_be_interviewed', models.CharField(max_length=125)), ('closed_by', models.OneToOneField(related_name='interview_closed_by', null=True, blank=True, to=settings.AUTH_USER_MODEL)), ('contacted_by', models.OneToOneField(related_name='interview_contacted_by', null=True, blank=True, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('-date_requested',), 'verbose_name_plural': 'Interview request', }, ), migrations.CreateModel( name='MediaContact', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('first_name', models.CharField(max_length=125)), ('last_name', models.CharField(max_length=125)), ('date_added', models.DateTimeField(auto_now_add=True)), ('email', models.CharField(max_length=225)), ('phone_number', models.CharField(max_length=15, null=True, blank=True)), ], ), migrations.CreateModel( name='MediaHouse', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=200)), ('name_slug', models.CharField(max_length=200)), ('date_added', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='MediaPlatform', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=60)), ('name_slug', models.CharField(max_length=75)), ('active', models.BooleanField(default=True)), ], ), migrations.CreateModel( name='Package', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=75, choices=[(b'basic', b'Basic'), (b'regular', b'Regular'), (b'premium', b'Premium'), (b'premium-plus', b'Premium Plus')])), ('media_outreach_credit', models.CharField(default=1, max_length=25)), ('online', models.CharField(max_length=5, verbose_name=b'online_newspaper_publishing', choices=[(b'yes', b'yes'), (b'no', b'no')])), ('monitoring', models.CharField(max_length=5, choices=[(b'yes', b'yes'), (b'no', b'no')])), ('free_consulting', models.CharField(max_length=5, choices=[(b'yes', b'yes'), (b'no', b'no')])), ('newsroom', models.CharField(max_length=5, verbose_name=b'Newsroom via EasyPR Media Desk', choices=[(b'yes', b'yes'), (b'no', b'no')])), ('google_news_inclusions', models.CharField(max_length=5, choices=[(b'yes', b'yes'), (b'no', b'no')])), ('reuters_news_network', models.CharField(max_length=5, choices=[(b'yes', b'yes'), (b'no', b'no')])), ('hyperlinks', models.CharField(max_length=5, verbose_name=b'hyperlinks in online press release')), ('notification', models.CharField(max_length=5, verbose_name=b'publication notification via email', choices=[(b'yes', b'yes'), (b'no', b'no')])), ('autopost', models.CharField(max_length=5, verbose_name=b'autopost to social media account', choices=[(b'yes', b'yes'), (b'no', b'no')])), ('analytics', models.CharField(max_length=5, verbose_name=b'detailed analytics report', choices=[(b'yes', b'yes'), (b'no', b'no')])), ('expedited', models.CharField(max_length=5, verbose_name=b'expedited release processing', choices=[(b'yes', b'yes'), (b'no', b'no')])), ('available_on_homepage', models.CharField(max_length=5, verbose_name=b'news made available to journalists, bloggers and researchers via EasyPR homepage', choices=[(b'yes', b'yes'), (b'no', b'no')])), ('content_writing', models.CharField(max_length=5, choices=[(b'yes', b'yes'), (b'no', b'no')])), ('content_editing', models.CharField(max_length=5, choices=[(b'yes', b'yes'), (b'no', b'no')])), ('featured_package', models.CharField(max_length=5, choices=[(b'yes', b'yes'), (b'no', b'no')])), ('price_naira', models.FloatField(default=0.0, max_length=25)), ('price_dollar', models.FloatField(default=0.0, max_length=25)), ('active', models.BooleanField(default=False)), ('is_promo', models.BooleanField(default=False)), ('promo_starts', models.DateTimeField(auto_now_add=True)), ('promo_ends', models.DateTimeField(auto_now_add=True)), ('promo_price_dollar', models.FloatField(default=0.0, max_length=25)), ('promo_price_naira', models.FloatField(default=0.0, max_length=25)), ], options={ 'verbose_name_plural': 'Packages', }, ), migrations.CreateModel( name='PayDetails', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('transaction_id', models.CharField(max_length=25, null=True)), ('payment_method', models.CharField(default=b'', max_length=75, choices=[(b'Bank Deposit', b'Bank Deposit'), (b'Card Payment', b'Card Payment'), (b'Bank Transfer', b'Bank Transfer')])), ('amount_paid', models.FloatField(default=0.0)), ('date_paid', models.CharField(max_length=100, null=True, blank=True)), ('bank_name', models.CharField(blank=True, max_length=100, null=True, choices=[(b'Diamond Bank', b'Diamond Bank'), (b'GTB', b'GTB')])), ('currency', models.CharField(max_length=100, null=True, blank=True)), ('teller_number', models.CharField(max_length=15, null=True, blank=True)), ('pay_status', models.CharField(default=b'pending', max_length=25, choices=[(b'verified', b'verified'), (b'pending', b'pending'), (b'failed', b'failed')])), ('verified_by', models.BooleanField(default=False)), ('date_verified', models.DateTimeField(null=True, blank=True)), ('user', models.ForeignKey(verbose_name=b'Payment By', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='PressMaterial', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name_slug', models.CharField(max_length=150)), ('media_type', models.CharField(max_length=150)), ('price_per', models.FloatField(default=0.0)), ('date_added', models.DateTimeField(auto_now_add=True)), ('caption', models.CharField(max_length=125)), ], ), migrations.CreateModel( name='PRStrategy', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('anon_userID', models.CharField(max_length=75, verbose_name=b'Annonymous user ID')), ('business_type', models.CharField(default=b'Company', max_length=25, choices=[(b'NA', b'NA'), (b'Company', b'Company'), (b'Individual', b'Individual')])), ('company_type', models.CharField(default=b'Private', max_length=75, choices=[(b'NA', b'NA'), (b'Public', b'Public'), (b'Private', b'Private')])), ('is_pr_agent', models.CharField(default=b'No', max_length=75, choices=[(b'Yes', b'Yes'), (b'No', b'No')])), ('size_of_pr_team', models.IntegerField(default=0)), ('target_audience', models.TextField(max_length=1000, null=True)), ('pr_goals', models.TextField(max_length=1000, null=True)), ('frequency_of_pr', models.CharField(default=b'monthly', max_length=100, choices=[(b'NA', b'NA'), (b'weekly', b'Weekly'), (b'monthly', b'Monthly'), (b'several-times-a-month', b'Several Times a Month'), (b'quartely', b'Quartely'), (b'annually', b'Annually'), (b'first-time-user', b'First Time User')])), ('target_audience_location', models.CharField(max_length=250, null=True)), ('currently_use_pr_db', models.BooleanField(default=False)), ('social_media_used', models.TextField(max_length=1000, null=True)), ('pr_db_used', models.TextField(max_length=1000, null=True)), ('require_pr_writing', models.BooleanField(default=False)), ('require_media_pitching', models.BooleanField(default=False)), ('do_you_have_newsroom', models.BooleanField(default=False)), ('name_pr_newsroom_link', models.CharField(max_length=200)), ('date_submitted', models.DateTimeField(auto_now_add=True)), ('action_status', models.CharField(default=b'Contacted', max_length=75, choices=[(b'new', b'new'), (b'contacted', b'contacted'), (b'in_progress', b'In progress'), (b'closed', b'closed')])), ('company_name', models.CharField(max_length=200, null=True)), ('contact_name', models.CharField(max_length=125, null=True)), ('email', models.CharField(max_length=125, null=True)), ('phone_number', models.CharField(max_length=25, null=True)), ('completed', models.BooleanField(default=False)), ], options={ 'ordering': ['date_submitted'], 'verbose_name_plural': 'PR Strategy', }, ), migrations.CreateModel( name='Publication', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('transaction_id', models.CharField(max_length=15)), ('post_title', models.CharField(max_length=175)), ('title_slug', models.CharField(max_length=200)), ('status', models.CharField(default=b'New', max_length=50, choices=[(b'New', b'New'), (b'sent_to_external_editor', b'sent_to_external_editor'), (b'Processing', b'Processing'), (b'Published', b'Published'), (b'Rejected', b'Rejected')])), ('post_body', models.TextField(max_length=3000, null=True, blank=True)), ('person_to_quote', models.CharField(max_length=125, null=True, blank=True)), ('persons_position', models.CharField(max_length=125, null=True, blank=True)), ('uploaded_text', models.FileField(null=True, upload_to=b'uploads/publication/%Y-%M-%D', blank=True)), ('date_published', models.DateTimeField(null=True, blank=True)), ('date_posted', models.DateTimeField(auto_now_add=True)), ('deleted', models.BooleanField(default=False)), ('publish_online', models.BooleanField(default=False, verbose_name=b'Do you also want online publication of the chosen media? ')), ('completed', models.BooleanField(default=False)), ('assigned_to', models.ForeignKey(related_name='Third_party_Editor', blank=True, to=settings.AUTH_USER_MODEL, null=True)), ('media_houses', models.ManyToManyField(to='easypr_ng.MediaHouse')), ('platform', models.ForeignKey(verbose_name=b'Media platform', blank=True, to='easypr_ng.MediaPlatform', null=True)), ('posted_by', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ('press_material', models.ForeignKey(verbose_name=b'Media category', blank=True, to='easypr_ng.PressMaterial', null=True)), ('published_by', models.ForeignKey(related_name='Edited_and_published_by', blank=True, to=settings.AUTH_USER_MODEL, null=True)), ], ), migrations.CreateModel( name='PublicationImage', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('image', models.ImageField(null=True, upload_to=b'uploads/images/publication', blank=True)), ('caption', models.CharField(max_length=200, null=True, blank=True)), ('post', models.ForeignKey(blank=True, to='easypr_ng.Publication', null=True)), ], ), migrations.CreateModel( name='Purchase', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('transaction_id', models.CharField(max_length=15)), ('deleted', models.BooleanField(default=False)), ('ordered', models.BooleanField(default=False)), ('status', models.CharField(default=b'New', max_length=75, choices=[(b'New', b'New'), (b'Processing', b'Processing'), (b'Pending', b'Pending'), (b'Rejected', b'Rejected'), (b'Closed', b'Closed')])), ('date_purchased', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='Redirect_url', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('url', models.CharField(default=None, max_length=200, null=True, blank=True)), ('post', models.ForeignKey(blank=True, to='easypr_ng.Publication', null=True)), ], ), migrations.CreateModel( name='RequestImage', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('image', models.ImageField(null=True, upload_to=b'uploads/images/request', blank=True)), ('caption', models.CharField(max_length=200, null=True, blank=True)), ], ), migrations.CreateModel( name='Sector', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=60)), ('name_slug', models.CharField(max_length=75)), ('active', models.BooleanField(default=True)), ], ), migrations.CreateModel( name='ServiceRequest', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('ticket_number', models.CharField(max_length=14)), ('date_requested', models.DateTimeField(auto_now_add=True)), ('date_closed', models.DateTimeField(null=True, blank=True)), ('status', models.CharField(default=b'new', max_length=25, choices=[(b'new', b'new'), (b'contacted', b'contacted'), (b'in_progress', b'In progress'), (b'closed', b'closed')])), ('request_outcome', models.CharField(default=b'pending', max_length=25, choices=[(b'pending', b'pending'), (b'success', b'success'), (b'declined', b'declined'), (b'deferred', b'deferred'), (b'dropped', b'dropped')])), ('contact_person', models.CharField(max_length=125)), ('contact_email', models.EmailField(max_length=255)), ('phone_number', models.CharField(max_length=15)), ('service_type', models.CharField(max_length=100)), ('sector', models.CharField(max_length=100, choices=[(b'Finance', b'Finance')])), ('brief_description', models.TextField(max_length=500, null=True, blank=True)), ('target_media', models.CharField(max_length=125, null=True, choices=[(b'Newspaper', b'Newspaper'), (b'Blog', b'Blog')])), ('time_service_needed', models.CharField(max_length=75, null=True)), ('preferred_call_time', models.CharField(max_length=50, null=True)), ('allow_call', models.BooleanField(default=False)), ('name_of_event', models.CharField(default=b'Not Applicable', max_length=100)), ('event_date', models.DateTimeField(null=True)), ('event_time', models.CharField(max_length=10, null=True)), ('event_venue', models.CharField(max_length=225, null=True)), ('total_price', models.FloatField(default=0.0)), ('post_content', models.TextField(max_length=3000)), ('uploaded_post_content', models.FileField(help_text=b'for blogger distibution submission', upload_to=b'uploads/images/blogger_distribution/contents/')), ('page_size', models.CharField(max_length=125, null=True, blank=True)), ('page_color', models.CharField(blank=True, max_length=125, null=True, choices=[(b'black and white', b'black and white'), (b'color', b'color')])), ('media_house', models.CharField(max_length=125, null=True)), ('region', models.CharField(max_length=125, null=True)), ('adv_duration', models.CharField(max_length=125, null=True)), ('adv_service_type', models.CharField(max_length=125, null=True)), ('audio_file', models.FileField(help_text=b'for Radio advert submission', null=True, upload_to=b'uploads/audio/')), ('video_file', models.FileField(help_text=b'for TV advert submission', null=True, upload_to=b'uploads/video/')), ('advert_image_file', models.FileField(help_text=b'for newpaper advert submission', null=True, upload_to=b'uploads/newspaper/advert')), ('adv_instructions', models.TextField(max_length=250, null=True)), ('allow_content_editing', models.BooleanField(default=False, help_text=b'for newpaper advert submission')), ('blog_list', models.ManyToManyField(to='easypr_ng.Blogs')), ('closed_by', models.OneToOneField(related_name='closed_by', null=True, blank=True, to=settings.AUTH_USER_MODEL)), ('contacted_by', models.OneToOneField(related_name='contacted_by', null=True, blank=True, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('-date_requested',), 'verbose_name_plural': 'Service request', }, ), migrations.CreateModel( name='Testimonial', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('comment', models.CharField(max_length=165)), ('date_posted', models.DateTimeField(auto_now_add=True)), ('posted_by', models.CharField(max_length=150)), ('persons_position', models.CharField(max_length=75)), ('persons_company', models.CharField(max_length=125)), ('persons_image', models.FileField(upload_to=b'uploads/testimonial/images')), ], ), migrations.CreateModel( name='PurchaseInvoice', fields=[ ('purchase_ptr', models.OneToOneField(parent_link=True, auto_created=True, primary_key=True, serialize=False, to='easypr_ng.Purchase')), ('receipt_no', models.CharField(max_length=12)), ('invoice', models.FileField(null=True, upload_to=b'Invoices/%Y-%M-%D', blank=True)), ], bases=('easypr_ng.purchase',), ), migrations.AddField( model_name='requestimage', name='request', field=models.ForeignKey(blank=True, to='easypr_ng.ServiceRequest', null=True), ), migrations.AddField( model_name='purchase', name='package', field=models.ForeignKey(to='easypr_ng.Package'), ), migrations.AddField( model_name='purchase', name='payment_details', field=models.ForeignKey(default=None, verbose_name=b'Payment details', to='easypr_ng.PayDetails'), ), migrations.AddField( model_name='purchase', name='publication', field=models.OneToOneField(to='easypr_ng.Publication'), ), migrations.AddField( model_name='purchase', name='user', field=models.ForeignKey(verbose_name=b'Purchased By', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='publication', name='sector', field=models.ForeignKey(verbose_name=b'Media sector', blank=True, to='easypr_ng.Sector', null=True), ), migrations.AddField( model_name='publication', name='site', field=models.ManyToManyField(to='sites.Site'), ), migrations.AddField( model_name='package', name='category', field=models.ForeignKey(to='easypr_ng.PressMaterial'), ), migrations.AddField( model_name='mediahouse', name='platform', field=models.ManyToManyField(to='easypr_ng.MediaPlatform'), ), migrations.AddField( model_name='mediacontact', name='media_house', field=models.ForeignKey(to='easypr_ng.MediaHouse'), ), migrations.AddField( model_name='interviewrequest', name='preferred_media_house', field=models.ManyToManyField(to='easypr_ng.MediaHouse'), ), migrations.AddField( model_name='comment', name='post', field=models.ForeignKey(to='easypr_ng.Publication'), ), migrations.AddField( model_name='comment', name='posted_by', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), ]
[ "ezechukwuji@gmail.com" ]
ezechukwuji@gmail.com
628248bbe6a9431ccf0dcc7c8c86b2be54c57be1
4b57d0707a5a9336749cdeab89289d9359b90ade
/main/routes.py
6ed5b1a1e8ea2cb56964044f1ec498307dd77e4f
[]
no_license
rahulsingh03/flask_blog
b7a761a6ce650d54e3a99475b3a9b46069a16e54
5686a9d3cc328ad39193df425b323a87b5671e37
refs/heads/main
2023-03-11T12:55:31.741863
2021-03-06T17:33:56
2021-03-06T17:33:56
343,853,311
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
from flask import render_template,request,Blueprint from flask_blog.models import Post main = Blueprint('main',__name__) @main.route("/") @main.route("/home") def home(): page = request.args.get('page',1,type=int) posts = Post.query.order_by(Post.date_posted.desc()).paginate(page=page, per_page=5) return render_template('home.html',posts = posts) @main.route("/about") def about(): return render_template('about.html',title='About')
[ "rahulsingh03" ]
rahulsingh03
7084db07473bea0106fc62aa37080ec18e0b155d
f3baf8b850c896231b4c254a22567fd5d7a5035c
/Aula 5/Aula5.py
9a5f8d8ffe7262bf95b7a16cc7342e14b5900b56
[ "MIT" ]
permissive
Katakhan/TrabalhosPython2
e1c23119ef582038ceea0004c872c00778fd326e
ab47af0ff3c00922857578e58a1a149d9e65e229
refs/heads/master
2020-09-21T02:15:04.505791
2020-03-19T13:23:41
2020-03-19T13:23:41
224,650,620
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
# crie um programa que leia 4 notas #imprima a maior # imprima a menor #imprima a media #imprima se o aluno foi aprovado ou reprovado (Média 7 ) n1 = float(input('Insira sua 1 Nota')) n2 = float(input('Insira sua 2 Nota')) n3 = float(input('Insira sua 3 Nota')) n4 = float(input('Insira sua 4 Nota')) if n1 > n2 and n1>n3 and n1>n4: print(f'A maior nota é: {n1}') elif n2 > n1 and n2>n3 and n2>n4: print(f'A maior nota é :{n2}') elif n3 > n1 and n3>n2 and n3>n4: print(f'A maior nota é :{n3}') else: print(f'a maior nota é: {n4}') if n1>n2: print(f'A menor nota é: {n2}') elif n2 > n3: print(f'A menor nota é :{n3}') elif n3 > n4 : print(f'A menor nota é : {n4}') else: print(f'a menor nota é: {n1}') media = (n1+n2+n3+n4)/4 print(f'A média é: {media}') if media >= 7: print('aluno aprovado') else: print('aluno reprovado')
[ "antoniorafaelgastaldi@hotmail.com" ]
antoniorafaelgastaldi@hotmail.com
e6b31beaef8c8f88ec504ad4710f02fb3f5d4da8
03e910208d4a1709f976ca985769a1179ca58b36
/prueba2.py
06114c0d88a35b13e10d5d2b0a2a7e7f476d5751
[]
no_license
Aleredfer/kata1_morse
2a8aef9cd2c65d8e87521f1f18f76cd2ca5cc0f0
a26e029a2106e627aee77f37c26fbc1f275728c9
refs/heads/master
2020-06-09T23:29:54.351569
2019-07-03T16:54:31
2019-07-03T16:54:31
193,527,872
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
import morse from docx import Document mensaje = input("dime algo: ") telegrama = morse.toMorse(mensaje) print(telegrama) original = morse.toPlain(telegrama) print(original)
[ "aleredfer@hotmail.com" ]
aleredfer@hotmail.com
fff21f3b86b8f64b2a98ff4439c32671983f23a0
97ba9d460d60617f43649699e6f58bc27053786e
/bankapp/MainClass.py
54051541cfaac60e3ea9b8d951e3c67ba852b0bb
[]
no_license
prasad417/PythonDataScience
259db1c022d030c20cfbbb6e8f6592e7cec9f0a3
6f4b28c5b3530fa783fe8efc652f850f43d11abb
refs/heads/master
2020-06-12T22:39:21.508630
2019-07-25T03:20:36
2019-07-25T03:20:36
194,450,130
0
0
null
null
null
null
UTF-8
Python
false
false
1,277
py
from bankapp.bank.Bank import Bank from bankapp.address.Address import Address from bankapp.bankaccount.CertificateOfDeposit import CertificateOfDeposit from bankapp.bankaccount.CheckingAccount import CheckingAccount from bankapp.bankaccount.SavingsAccount import SavingsAccount from bankapp.bankcustomer.Customer import Customer from bankapp.bankcustomer.Identification import Identification from bankapp.bankcustomer.PersonalInformation import PersonalInformation import json class MainClass: bank = Bank() bank.get_bank_details() personal_info = PersonalInformation('Ryan', '', 'Beck', '11/28/1986', 'email@email.com', '1234567890', 'Male') address = Address('4101 W 98th', '101', 'Minneapolis', 'MN', '55437') identification = Identification('MN1234567890', '11/22', '123456789') customer = Customer(personal_info, address, identification) ca = CheckingAccount() customer.open_bank_account(ca) sa = SavingsAccount() customer.open_bank_account(sa) customer1 = Customer(personal_info, address, identification) ca = CheckingAccount() customer1.open_bank_account(ca) sa = SavingsAccount() customer1.open_bank_account(sa) cd = CertificateOfDeposit() customer.open_bank_account(cd) print('Test')
[ "417.prasad@gmail.com" ]
417.prasad@gmail.com
491a75c45c5d9ecbdff33f07e22e1616e566865c
f395dd29a02de72ee5d07a2bd50fc6548d427838
/02-Welcome-to-Python/the-print-function-III-parameters-and-arguments.py
c78ab769e71a0fd9f4a5af86d5452f12881f1dd7
[]
no_license
susanahidalgo/python_class
f629b112d7a3c90dfa9cea2e37be17a0c44c6b4f
34a8108e3515e00db1213e9126ada7c9754ba25a
refs/heads/main
2023-03-02T23:23:36.404238
2021-02-03T11:18:08
2021-02-03T11:18:08
315,392,344
0
0
null
2021-02-03T11:18:10
2020-11-23T17:35:42
Python
UTF-8
Python
false
false
275
py
print("ABC", "DEF", "GHI") print("ABC", "DEF", "GHI", sep="!") print("ABC", "DEF", "GHI", sep="__*__") print("ABC", "DEF", "GHI", sep=" ") print ("Hello", "Goodbye", end="!§$") print ("Hello") print("A", "B", "C", sep="**", end="#") print("A", "B", "C", end="#", sep="**")
[ "susanahidalgofernandez@MacBook-Air-de-Susana.local" ]
susanahidalgofernandez@MacBook-Air-de-Susana.local
160f25500408285b50b57c713a0c4a7f21c5bad5
fddc7a97ec337255247432140121519971121c25
/boilerplate/model/Employee.py
b0d903e9ee07350b647bfbf430729e568ed4705a
[ "MIT" ]
permissive
DitoHI/flask-graphql
5eaf6c46b617d008d535dc94b1a75db882fa791d
e27924ffe72f61feb8108f63af9245a1a5efa42f
refs/heads/master
2020-05-18T11:48:37.320122
2019-05-01T08:34:54
2019-05-01T08:34:54
184,389,474
1
0
null
null
null
null
UTF-8
Python
false
false
597
py
from datetime import datetime from mongoengine import Document from mongoengine.fields import ( StringField, DateTimeField, ReferenceField, ListField, EmbeddedDocumentField, ) from .Department import Department from .Role import Role from .Task import Task class Employee(Document): meta = {"collection": "employee"} name = StringField() hired_on = DateTimeField(default=datetime.now()) department = ReferenceField(Department) roles = ListField(ReferenceField(Role)) leader = ReferenceField("self") tasks = ListField(EmbeddedDocumentField(Task))
[ "ditohafizh@gmail.com" ]
ditohafizh@gmail.com
ef9fb4dc93e0a719098e904c830a62c0ff4593f6
3d4c4c95c5599626ee5fd753261af5474b265a4a
/alice/karen.py
1eac535056e5be8e7dff132d9c335d846a270901
[]
no_license
nya3jp/icfpc2014
a605119561be61ad0015c4c6477cbed7cebb25fc
0617ce46d619e99db5763d3d25581fe9da842414
refs/heads/master
2020-05-19T21:44:37.047921
2014-07-28T17:36:18
2014-07-28T17:36:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,148
py
### ### How is the progress? ### def main(world, ghosts): map = convert_2d_array(get_map(world)) return (map, step) def step(map, world): x, y = get_my_pos(world) map = set_2d_array(map, y, x, 1) dir = decide(map, world) print dir return (map, dir) def decide(map, world): cx, cy = get_my_pos(world) cdir = get_my_dir(world) best_dir = 0 best_score = -1000000 for dir in xrange(4): score = eval_move(adj_move(cx, cy, dir), dir, 0, 1, map, world) if dir == (cdir + 2) % 4: score -= 1 print dir, score if score > best_score: best_dir = dir best_score = score return best_dir def eval_move(cx, cy, cdir, branches, dist, map, world): cell_score = eval_cell(cx, cy, dist, map, world) if cell_score < 0: return cell_score future_score = -1000000 choices = [] for ndir in range(4): if ndir == (cdir + 2) % 4: continue if get_cell(adj_move(cx, cy, ndir), map) > 0: choices = (ndir, choices) # prepend if len(choices) >= 2: branches += 1 if branches >= 3: return cell_score for ndir in choices: nscore = eval_move(adj_move(cx, cy, ndir), ndir, branches, dist + 1, map, world) if nscore > future_score: future_score = nscore return cell_score + future_score def eval_cell(x, y, dist, map, world): star = get_my_vitality(world) / 150 for ghost in get_ghosts(world): gx, gy = unpair(car(cdr(ghost))) if x == gx and y == gy: if dist < star: return 10000 return -1000000 cell = get_cell(x, y, map) if cell == 0: return -1000000 if cell == 2: return 100 if cell == 3: return 1000 return 0 def get_cell(x, y, map): return get_2d_array(map, y, x) @rank(2) def adj_move(x, y, dir): if dir == 0: y -= 1 elif dir == 1: x += 1 elif dir == 2: y += 1 elif dir == 3: x -= 1 return x, y ### ### 2D-arrays ### def convert_2d_array(map): h = len(map) w = len(map[0]) array = make_array(h, make_array(w, 0)) y = 0 for row in map: x = 0 for cell in row: array = set_2d_array(array, y, x, cell) x += 1 y += 1 return array @nolocals def set_2d_array(array, i, j, value): return set_array(array, i, set_array(get_array(array, i), j, value)) @nolocals def get_2d_array(array, i, j): return get_array(get_array(array, i), j) ### ### world accessors ### @rank(2) def get_my_pos(world): return unpair(car(cdr(car(cdr(world))))) def get_my_dir(world): return car(cdr(cdr(car(cdr(world))))) def get_my_vitality(world): return car(car(cdr(world))) def get_ghosts(world): return car(cdr(cdr(world))) def get_map(world): return car(world) ### ### immutable arrays ### def make_array(n, value): width = 1 while width < n: width *= 2 return (width, _make_tree(width, value)) @nolocals def _make_tree(width, value): if width == 1: return value return (_make_tree(width / 2, value), _make_tree(width / 2, value)) @asm @rank(1) def get_array(array, index): """ ; left_size = car(array) / 2 LD 0 0 CAR LDC 2 DIV ; array = cdr(array) LD 0 0 CDR ST 0 0 LDF %_body AP 1 RTN %_body: ; while left_size: LD 0 0 TSEL %_descent %_exit %_descent: ; if index >= left_size: LD 1 1 LD 0 0 CGTE TSEL %_right %_left %_right: ; array = cdr(array) LD 1 0 CDR ST 1 0 ; index -= left_size LD 1 1 LD 0 0 SUB ST 1 1 ; left_size /= 2 LD 0 0 LDC 2 DIV ST 0 0 LDC 283283283 TSEL %_body %_body %_left: ; array = car(array) LD 1 0 CAR ST 1 0 ; left_size /= 2 LD 0 0 LDC 2 DIV ST 0 0 LDC 283283283 TSEL %_body %_body %_exit: ; return array LD 1 0 RTN """ def set_array(array, index, value): width = car(array) left_size = width / 2 tree = cdr(array) return (width, _set_tree_impl(tree, index, value, left_size)) @nolocals def _set_tree_impl(tree, index, value, left_size): if left_size == 0: return value if index >= left_size: return (car(tree), _set_tree_impl(cdr(tree), index - left_size, value, left_size / 2)) return (_set_tree_impl(car(tree), index, value, left_size / 2), cdr(tree))
[ "takahashi.shuhei@gmail.com" ]
takahashi.shuhei@gmail.com
6a0e594abf0e7e7595f7a372a3e2cf905d28aec4
a4c8cdda03d435c782ace8e5ef7923e925265a8c
/src/web_store_django/asgi.py
ff3dedfa7f677d01f1b7a889c0683d5741f4b20a
[]
no_license
orbitturner/WebStoreDjango
a67102ba803ec0c265779c174563a150f5c5e86d
4377b2c915f95aac89f922486a15b067c41eedb4
refs/heads/master
2023-02-13T09:50:15.892916
2021-01-17T20:05:46
2021-01-17T20:05:46
327,995,513
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" ASGI config for web_store_django project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'web_store_django.settings') application = get_asgi_application()
[ "orbitturner@gmail.com" ]
orbitturner@gmail.com
5a618f4ae147e389b88cd9be40e2216243232861
9c85b53419c785421360bfbbe89a78ac6bc78861
/data/df_tools.py
1c812f8bebc9a380c2a49345a2c28685b6dc68ad
[]
no_license
quant911/gafe_py
a5755e8b0a722d30bc691d7efb85abf0172db772
2be86ac6c13c131989fdeeb5cc0eab5667b91111
refs/heads/master
2022-04-07T12:50:32.037532
2020-03-15T03:32:43
2020-03-15T03:32:43
226,588,605
0
0
null
null
null
null
UTF-8
Python
false
false
995
py
# DataFrame and other Pandas related tools # below is less than ideal, do we know why? import pandas as pd def waterfall_combine(combine_field, *args): # type: (str, List[pd.DataFrame]) -> pd.DataFrame df = pd.DataFrame() for one_df in args: if not one_df.empty: if one_df.index.name != combine_field: one_df = one_df.set_index(combine_field, drop=False) if not df.empty: one_df = one_df.drop(df.index, errors='ignore') df = pd.concat([df, one_df]) df.reset_index(inplace=True, drop=True) if len(df) == 0: df[combine_field] = None # minimal requirement: the waterfall col exists #todo: do we impose condition on Index of output DataFrame return df def waterfall_combine_dict(combine_field, df_dic, waterfall_sources): # type: (str, Dict[str, pd.DataFrame], List[str]) -> pd.DataFrame return waterfall_combine(combine_field, [df_dic[s] for s in waterfall_sources])
[ "feng.ning@iaqs.edu" ]
feng.ning@iaqs.edu
445242551b300d4f1f525847dbb3e8b08e0460ff
da3d09b4449e311bc16a3c253a99169eacba2f83
/muddery/utils/quest_dependency_handler.py
03d9310255340b493b14b4eb7508553f4d3bf8b1
[ "BSD-3-Clause" ]
permissive
lynnyuue/muddery
02848c3d83626edb3eddd8e46d534a95e981c759
8211d4e98843b557bd45198474fa8966806f6245
refs/heads/master
2021-01-19T10:34:33.113253
2017-03-13T15:56:49
2017-03-13T15:56:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,992
py
""" QuestDependencyHandler deals quest's dependencies. """ from muddery.utils import defines from django.conf import settings from django.apps import apps from evennia.utils import logger class QuestDependencyHandler(object): """ This class handels the relation of quest. """ def __init__(self): """ Initialize handler """ self.quest_depencences = {} def get_quest_dependencies(self, quest): """ Get quest's dependencies. """ if not quest: return self.load_dependencies_cache(quest) return self.quest_depencences[quest] def load_dependencies_cache(self, quest): """ To reduce database accesses, add a cache. """ if not quest: return if quest in self.quest_depencences: # already cached return # Add cache of the whole dialogue. self.quest_depencences[quest] = [] # Get db model dependencies = [] model_dependencies = apps.get_model(settings.WORLD_DATA_APP, settings.QUEST_DEPENDENCIES) if model_dependencies: # Get records. dependencies = model_dependencies.objects.filter(quest=quest) # Add db fields to data object. data = [] for dependency in dependencies: data.append({"quest": dependency.dependency, "type": dependency.type}) # Add to cache. self.quest_depencences[quest] = data def match_quest_dependencies(self, caller, quest): """ If the quest matches its dependencies. """ if not caller: return False if not quest: return False for dependency in self.get_quest_dependencies(quest): # match each dependency if not self.match_dependency(caller, dependency["quest"], dependency["type"]): return False return True def match_dependency(self, caller, quest, dependency_type): """ check a dependency """ if dependency_type == defines.DEPENDENCY_QUEST_CAN_PROVIDE: if not caller.quest_handler.can_provide(quest): return False elif dependency_type == defines.DEPENDENCY_QUEST_IN_PROGRESS: if not caller.quest_handler.is_in_progress(quest): return False elif dependency_type == defines.DEPENDENCY_QUEST_NOT_IN_PROGRESS: if caller.quest_handler.is_in_progress(quest): return False elif dependency_type == defines.DEPENDENCY_QUEST_ACCOMPLISHED: if not caller.quest_handler.is_accomplished(quest): return False elif dependency_type == defines.DEPENDENCY_QUEST_NOT_ACCOMPLISHED: if not caller.quest_handler.is_in_progress(quest): return False if caller.quest_handler.is_accomplished(quest): return False elif dependency_type == defines.DEPENDENCY_QUEST_COMPLETED: if not caller.quest_handler.is_completed(quest): return False elif dependency_type == defines.DEPENDENCY_QUEST_NOT_COMPLETED: if caller.quest_handler.is_completed(quest): return False elif dependency_type == defines.DEPENDENCY_QUEST_ACCEPTED: if not caller.quest_handler.is_completed(quest) and \ not caller.quest_handler.is_in_progress(quest): return False elif dependency_type == defines.DEPENDENCY_QUEST_NOT_ACCEPTED: if caller.quest_handler.is_completed(quest) or \ caller.quest_handler.is_in_progress(quest): return False return True def clear(self): """ clear cache """ self.quest_depencences = {} # main quest_dependendy_handler QUEST_DEP_HANDLER = QuestDependencyHandler()
[ "luyijun999@gmail.com" ]
luyijun999@gmail.com
5a3358d07af3369d81ddbf4aabc3a0d348ac7017
13e101e5bf17a12f1b2053974c0bff09d9b39e45
/commands/api/api_func/func_weather_api.py
f8569bf7f09f3edf2f33ca8aff3ba8c720bfd1cc
[ "MIT" ]
permissive
WayniD1973/Discord_bot.py
6f823c34e3806c32cf451987d111a0685915b084
c8cc3c7adcccbe2f1bc8a77cfb5a58eab2f7e10b
refs/heads/master
2023-03-16T12:36:33.987243
2020-04-30T10:43:09
2020-04-30T10:43:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,124
py
from urllib import request import json from commands.api.api_func.api_setting_and_keys.api_keys import weather_api_key from settings import ( setting_city, setting_countries_code, temprature_scale, ) from list_and_dicts.countries_codes import countries_list def weather(): # Weather check command url = f"https://api.openweathermap.org/data/2.5/weather?q={setting_city},{setting_countries_code}&appid={weather_api_key}" weather_dict_reformating(url=url) def city_weather(city, countries_code): # Weather check command url = f"https://api.openweathermap.org/data/2.5/weather?q={city},{countries_code}&appid={weather_api_key}" weather_dict_reformating(url=url) def weather_dict_reformating(url): weather_info_dict = request.urlopen(url) weather_info_dict = json.load(weather_info_dict) print(weather_info_dict) # Reformating weather_info_dict["humidity"] = weather_info_dict["main"]["humidity"] weather_info_dict["temp"] = weather_info_dict["main"]["temp"] weather_info_dict["clouds"] = weather_info_dict["clouds"]["all"] weather_info_dict["description_weather"] = weather_info_dict["weather"][0][ "description" ] weather_info_dict["weather_icon"] = weather_info_dict["weather"][0]["icon"] weather_info_dict["weather"] = weather_info_dict["weather"][0]["main"] weather_info_dict["wind_speed"] = weather_info_dict["wind"]["speed"] weather_info_dict["wind_direction"] = weather_info_dict["wind"]["deg"] weather_info_dict["city"] = weather_info_dict["name"] # Removing unused information del_list = ( "coord", "base", "main", "wind", "visibility", "dt", "sys", "timezone", "id", "cod", "name", ) for item in del_list: del weather_info_dict[item] # Temp reformating to celsius with one decimal if temprature_scale.upper() == "C": weather_info_dict["temp"] = -273.15 elif temprature_scale.upper() == "F": weather_info_dict["temp"] = 1.8 * (weather_info_dict["temp"] - 273.15) + 32 elif temprature_scale.upper() == "K": pass else: weather_info_dict["temp"] = -273.15 weather_info_dict["temp"] weather_info_dict["temp"] = round(weather_info_dict["temp"], 1) wind_dict = { "NE": {"min_deg": 23, "max_deg": 68}, "E": {"min_deg": 68, "max_deg": 113}, "SE": {"min_deg": 113, "max_deg": 158}, "S": {"min_deg": 158, "max_deg": 203}, "SW": {"min_deg": 203, "max_deg": 248}, "W": {"min_deg": 248, "max_deg": 293}, "NW": {"min_deg": 293, "max_deg": 338}, } temporary_wind = "nordlig" for wind_direction in wind_dict: if ( int(weather_info_dict["wind_direction"]) < wind_dict[wind_direction]["min_deg"] and int(weather_info_dict["wind_direction"]) < wind_dict[wind_direction]["max_deg"] ): temporary_wind = "wind_direction" weather_info_dict["wind_direction"] = temporary_wind return weather_info_dict
[ "Fredrik.Berzins@gmail.com" ]
Fredrik.Berzins@gmail.com
a2b82844efe85b5b365a9021beec559448a80aaa
11a883d6016167deffe5cc065fc08d492e727d34
/dzisholiday/holidays.py
f56fd90a3439f086a56d7a1b884a8ed8ae3a9c75
[ "CC0-1.0" ]
permissive
zichd/dzisholiday
2a6d759a7ea0f9e6206e05769d55b87c3bf19a98
512886557eae5e99a79d03597bf1a8e073add702
refs/heads/master
2020-05-14T17:57:36.378782
2019-04-17T15:37:29
2019-04-17T15:37:29
181,902,002
0
0
null
null
null
null
UTF-8
Python
false
false
1,374
py
#!/usr/bin/env python3 import datetime def getholidays(year): """Return a set public holidays in CZ as (day, month) tuples.""" holidays = { (1, 1), #Novy rok (1, 5), #Svatek prace (8, 5), #Den vitezstvi (5, 7), #Cyril a Metodej (6, 7), #Jan Hus (28, 9), #Den Ceske statnosti (28, 10), #Vznik CS statu (17, 11), #Den boje za svobodu a dem. (24, 12), #Stedry den (25, 12), #1. svatek Vanocni (26, 12), #2. svatek Vanocni } # Easter holiday LUT source http://www.whyeaster.com/customs/dateofeaster.shtml easterlut = [(4, 14), (4, 3), (3, 23), (4, 11), (3, 31), (4, 18), (4, 8), (3, 28), (4, 16), (4, 5), (3, 25), (4, 13), (4, 2), (3, 22), (4, 10), (3, 30), (4, 17), (4, 7), (3, 27)] easterday = datetime.date(year, *easterlut[year%19]) easterday += datetime.timedelta(6 - easterday.weekday()) # print("Easter Sunday is on ", easterday) holidays.update(((d.day, d.month) for d in [easterday - datetime.timedelta(2), easterday + datetime.timedelta(1)])) return holidays def isholiday(date): return (date.day, date.month) in getholidays(date.year)
[ "dzich@us.ibm.com" ]
dzich@us.ibm.com
cba8906ed12ed46f8421e36895b3d60b14d9ffa7
5811411533f0afb074fcdac1b4c4be7a5165ca0b
/uva12250/uva12250.py
c95dbb0b899412509197e8bd94fbe488800b07d2
[]
no_license
juanestebancg2806/uvaProblems
f49ef4de9b22106c14a5b60bac7ae84f2f02032b
d1ba9dd04705f53d5422651269a421d5066486f9
refs/heads/master
2022-04-26T04:12:45.906249
2020-04-27T00:13:31
2020-04-27T00:13:31
258,819,804
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
from sys import stdin def solve(s): ans = "" if s == "HELLO": ans = "ENGLISH" elif s == "HOLA": ans = "SPANISH" elif s == "HALLO": ans = "GERMAN" elif s == "BONJOUR": ans = "FRENCH" elif s == "CIAO": ans = "ITALIAN" elif s == "ZDRAVSTVUJTE": ans = "RUSSIAN" else: ans = "UNKNOWN" return ans def main(): s = stdin.readline().strip() tc = 1 while s != '#': ans = solve(s) print("Case {0}: {1}".format(tc,ans)) tc += 1 s = stdin.readline().strip() main()
[ "juanestebancg_@hotmail.com" ]
juanestebancg_@hotmail.com
bc3d096110ff058ef2e3871a7175bde4321301b6
1983f6ee12926998d7f74e7842604374dd90a133
/surrogate_models/surrogate_model.py
a1fa9ed9f74f1d769b66e6c32f345a6d490ceafc
[]
no_license
LMZimmer/temp
89548560d9263141f1d8cdecaecb4a2833942db9
4a4505657aeb5765631bc2cb46307f797a555f2d
refs/heads/main
2023-02-27T05:52:53.998222
2021-02-04T13:23:54
2021-02-04T13:23:54
300,592,569
0
0
null
null
null
null
UTF-8
Python
false
false
6,918
py
import json import logging import os import sys from abc import ABC, abstractmethod from IPython import embed import numpy as np import pathvalidate import torch import torch.backends.cudnn as cudnn from surrogate_models import utils class SurrogateModel(ABC): def __init__(self, data_root, log_dir, seed, model_config, data_config): self.data_root = data_root self.log_dir = log_dir self.model_config = model_config self.data_config = data_config self.seed = seed # Seeding np.random.seed(seed) cudnn.benchmark = True torch.manual_seed(seed) cudnn.enabled = True torch.cuda.manual_seed(seed) # Create config loader self.config_loader = utils.ConfigLoader('configspace.json') # Load the data if log_dir is not None: os.makedirs(log_dir, exist_ok=True) # Add logger log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(log_dir, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) # Dump the config of the run to log_dir self.data_config['seed'] = seed logging.info('MODEL CONFIG: {}'.format(model_config)) logging.info('DATA CONFIG: {}'.format(data_config)) self._load_data() logging.info( 'DATA: No. train data {}, No. val data {}, No. test data {}'.format(len(self.train_paths), len(self.val_paths), len(self.test_paths))) with open(os.path.join(log_dir, 'model_config.json'), 'w') as fp: json.dump(model_config, fp) with open(os.path.join(log_dir, 'data_config.json'), 'w') as fp: json.dump(data_config, fp) #with open(os.path.join(log_dir, 'train_paths.json'), 'w') as fp: # json.dump(self.train_paths, fp) #with open(os.path.join(log_dir, 'val_paths.json'), 'w') as fp: # json.dump(self.val_paths, fp) #with open(os.path.join(log_dir, 'test_paths.json'), 'w') as fp: # json.dump(self.test_paths, fp) def _load_data(self): # Get the result train/val/test split train_paths = [] val_paths = [] test_paths = [] for key, data_config in self.data_config.items(): if type(data_config) == dict: result_loader = utils.ResultLoader( self.data_root, filepath_regex=data_config['filepath_regex'], train_val_test_split=data_config, seed=self.seed) train_val_test_split = result_loader.return_train_val_test() # Save the paths for paths, filename in zip(train_val_test_split, ['train_paths', 'val_paths', 'test_paths']): file_path = os.path.join(self.log_dir, pathvalidate.sanitize_filename('{}_{}.json'.format(key, filename))) json.dump(paths, open(file_path, 'w')) train_paths.extend(train_val_test_split[0]) val_paths.extend(train_val_test_split[1]) test_paths.extend(train_val_test_split[2]) ''' # Add extra paths to test # Increased ratio of skip-connections. matching_files = lambda dir: [str(path) for path in Path(os.path.join(self.data_root, dir)).rglob('*.json')] test_paths.extend(matching_files('groundtruths/low_parameter/')) # Extreme hyperparameter settings # Learning rate test_paths.extend(matching_files('groundtruths/hyperparameters/learning_rate/')) test_paths.extend(matching_files('groundtruths/hyperparameters/weight_decay/')) # Load the blacklist to filter out those elements if self.model_config["model"].endswith("_time"): blacklist = json.load(open('surrogate_models/configs/data_configs/blacklist_runtimes.json')) else: blacklist = json.load(open('surrogate_models/configs/data_configs/blacklist.json')) filter_out_black_list = lambda paths: list(filter(lambda path: path not in blacklist, paths)) train_paths, val_paths, test_paths = map(filter_out_black_list, [train_paths, val_paths, test_paths]) ''' # Shuffle the total file paths again rng = np.random.RandomState(6) rng.shuffle(train_paths) rng.shuffle(val_paths) rng.shuffle(test_paths) self.train_paths = train_paths self.val_paths = val_paths self.test_paths = test_paths def _get_labels_and_preds(self, result_paths): """Get labels and predictions from json paths""" labels = [] preds = [] for result_path in result_paths: config_space_instance, val_accuracy_true, test_accuracy_true, _ = self.config_loader[result_path] val_pred = self.query(config_space_instance.get_dictionary()) labels.append(val_accuracy_true) preds.append(val_pred) return labels, preds def _log_predictions(self, result_paths, labels, preds, identifier): """Log paths, labels and predictions for one split""" if not isinstance(preds[0], float): preds = [p[0] for p in preds] logdir = os.path.join(self.log_dir, identifier+"_preds.json") dump_dict = {"paths": result_paths, "labels": labels, "predictions": preds} with open(logdir, "w") as f: json.dump(dump_dict, f) def log_dataset_predictions(self): """Log paths, labels and predictions for train, val, test splits""" data_splits = {"train": self.train_paths, "val": self.val_paths, "test": self.test_paths} for split_identifier, result_paths in data_splits.items(): print("==> Logging predictions of %s split" %split_identifier) labels, preds = self._get_labels_and_preds(result_paths) self._log_predictions(result_paths, labels, preds, split_identifier) @abstractmethod def train(self): raise NotImplementedError() @abstractmethod def validate(self): raise NotImplementedError() @abstractmethod def test(self): raise NotImplementedError() @abstractmethod def save(self): raise NotImplementedError() @abstractmethod def load(self, model_path): raise NotImplementedError() @abstractmethod def query(self, config_dict): raise NotImplementedError()
[ "zimmerl@informatik.uni-freiburg.de" ]
zimmerl@informatik.uni-freiburg.de
8b24409e35432496ca5297dc316aab3b31fa776c
38536d63a23e3ce1df00ff065f5c8a29bdb9dcf8
/archivehb/settings.py
f144cb9ac61503e9a8fbd81e7d38dfdb89cbde3d
[]
no_license
himelbikon/archivehb
08b84cff1f98c66a62abd431bddbefb8955b7e23
e238b3344ccf4b5d53e5a5f9f8e3743bb903a249
refs/heads/master
2023-02-20T06:04:36.979158
2021-01-12T15:38:55
2021-01-12T15:38:55
318,464,227
0
0
null
null
null
null
UTF-8
Python
false
false
3,571
py
""" Django settings for archivehb project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'l)fkimczhvbuycbyacca8u@%&+j9-u$dxfkf38zsaaizvq&yn3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['himelbikon.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'home', 'note', 'quiz', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'archivehb.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'archivehb.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' '''STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ]''' try: from .local_settings import * STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ] print('Setup is completed for local server') except ImportError: STATIC_ROOT = os.path.join(BASE_DIR, 'static') print('Here is no local_settings file. you must be on production.')
[ "skhimelhaque@gmail.com" ]
skhimelhaque@gmail.com
a422c47d80ec8012d7987dbd727c5b148a59e05d
7d018a6dd9afeb1a1086538991c11cae73462a01
/rss/migrations/0003_auto_20200902_1526.py
82f14d5ca3bb6356de1a4e6dab9dff11fde78697
[]
no_license
dbrian57/rss-reader-api
289c82aae9998e2c7bb24533bd5c9b203387ffaf
0ae718eee23e05b045739983b14fb28a8ed0198c
refs/heads/main
2023-08-16T19:22:30.985148
2021-09-27T23:12:16
2021-09-27T23:12:16
400,309,826
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
# Generated by Django 3.1.1 on 2020-09-02 15:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rss', '0002_auto_20200902_1424'), ] operations = [ migrations.AlterField( model_name='rssfeed', name='categories', field=models.ManyToManyField(blank=True, to='rss.Category'), ), ]
[ "mason@masonegger.com" ]
mason@masonegger.com
637bc4fa6b7e8999fe8509be90307bb89d4a1521
580113f827c013c2248d8ed4410cc5bb3cf9f112
/oscar/lib/python3.6/site-packages/easy_thumbnails/tests/test_widgets.py
6f7259e83c75b5efa3b9e5f5488edab55cbc7f44
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
aiegoo/oscar
2019a04f13920d0c0451e22fd20753bef01480cc
ab9b8a278cbc92a76ef2a92347cc44ced5a4e1d3
refs/heads/master
2022-12-23T14:07:29.747431
2019-10-03T05:06:02
2019-10-03T05:06:02
212,476,972
0
1
BSD-3-Clause
2022-12-10T04:26:14
2019-10-03T01:42:24
Python
UTF-8
Python
false
false
4,464
py
from easy_thumbnails import widgets from django.core.files.uploadedfile import SimpleUploadedFile from django.forms.widgets import ClearableFileInput from easy_thumbnails.tests import utils as test class ImageClearableFileInput(test.BaseTest): def setUp(self): super(ImageClearableFileInput, self).setUp() self.storage = test.TemporaryStorage() def tearDown(self): self.storage.delete_temporary_storage() super(ImageClearableFileInput, self).tearDown() def test_options_default(self): """ If thumbnail options are not passed, default options will be used. """ widget = widgets.ImageClearableFileInput() self.assertEqual(widget.thumbnail_options, {'size': (80, 80)}) def test_options_custom(self): """ A dictionary can be passed as the thumbnail options. The dictionary is copied so it isn't just a mutable reference of the original. """ options = {'size': (300, 100), 'crop': True} widget = widgets.ImageClearableFileInput(thumbnail_options=options) # Changing the options won't change the thumbnail options in the widget # now. options['crop'] = False self.assertEqual( widget.thumbnail_options, {'size': (300, 100), 'crop': True}) def test_render(self): """ The output contains a link to both the source image and the thumbnail. """ source_filename = self.create_image(self.storage, 'test.jpg') widget = widgets.ImageClearableFileInput() source_file = self.storage.open(source_filename) source_file.storage = self.storage source_file.thumbnail_storage = self.storage html = widget.render('photo', source_file) self.assertIn(source_filename, html) self.assertIn('.80x80_', html) def test_render_custom(self): """ The thumbnail is generated using the options provided to the widget. """ source_filename = self.create_image(self.storage, 'test.jpg') options = {'size': (100, 500), 'quality': 90, 'crop': True} widget = widgets.ImageClearableFileInput(thumbnail_options=options) source_file = self.storage.open(source_filename) source_file.storage = self.storage source_file.thumbnail_storage = self.storage html = widget.render('photo', source_file) self.assertIn(source_filename, html) self.assertIn('.100x500_q90_crop.jpg', html) def test_custom_template(self): """ The template used to render the thumbnail and the standard ``ClearableFileInput`` output can be customized. """ source_filename = self.create_image(self.storage, 'test.jpg') widget = widgets.ImageClearableFileInput() widget.template_with_thumbnail = ( u'%(template)s<br />' u'<a href="%(source_url)s">%(thumb)s</a> FOO' ) source_file = self.storage.open(source_filename) source_file.storage = self.storage source_file.thumbnail_storage = self.storage html = widget.render('photo', source_file) self.assertIn(source_filename, html) self.assertIn('.80x80_', html) self.assertIn('FOO', html) def test_render_without_value(self): """ If value not passed, use super widget. """ widget = widgets.ImageClearableFileInput() base_widget = ClearableFileInput() html = widget.render('photo', None) base_html = base_widget.render('photo', None) self.assertEqual(base_html, html) def test_render_uploaded(self): """ The widget treats UploadedFile as no input. Rationale: When widget is used in ModelForm and the form (submitted with upload) is not valid, widget should discard the value (just like standard Django ClearableFileInput does). """ widget = widgets.ImageClearableFileInput() base_widget = ClearableFileInput() file_name = 'test.jpg' # storage=None to get raw content. image = self.create_image(None, file_name) upload_file = SimpleUploadedFile(file_name, image.getvalue()) html = widget.render('photo', upload_file) base_html = base_widget.render('photo', upload_file) self.assertEqual(base_html, html) self.assertNotIn(file_name, html) # Widget is empty.
[ "eozz21@gmail.com" ]
eozz21@gmail.com
808f8d67e107a2468bd12ea900d3b6bcad763710
c0f56e9d408dcb636a553e1b124a904feed88a6a
/python/test-dask.py
690a8b76ead85a1967ccc003cb2a6c8bcda79f2f
[]
no_license
andrejsim/test-analytic
7be77153768f2860cee52a4f41546f11edc38987
b0300ccb415f0fae0b51d0e95cb8c7c7f0e74068
refs/heads/master
2020-04-30T00:23:25.988682
2019-05-14T08:31:33
2019-05-14T08:31:33
176,501,855
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
from dask.distributed import Client, progress # pip install dask[complete] client = Client(processes=False, threads_per_worker=4, n_workers=1, memory_limit='2GB') print(client) import dask.array as da x = da.random.random((10000, 10000), chunks=(1000, 1000)) y = x + x.T z = y[::2, 5000:].mean(axis=1) print(z.compute()) y.sum().compute()
[ "andrej.mihajlovski@meteogroup.com" ]
andrej.mihajlovski@meteogroup.com
63233c2df1086b23480471755aed96e3819bcd65
1cd48a9c3e558e05e0ceeb9ab4b689a2d2be5cf8
/sebs/gcp/__init__.py
f76e7c75d61c025df110e81852d4e582b46949f6
[ "BSD-3-Clause" ]
permissive
spcl/serverless-benchmarks
e4d51042ab0c658e65a828d74e6123da8f4f97f6
c9f0e25455ae9e0ebf8dc86fdc88bf5e6720db48
refs/heads/master
2023-08-31T08:57:25.961768
2023-08-23T11:50:35
2023-08-23T11:50:35
227,820,874
92
43
BSD-3-Clause
2023-08-23T11:27:10
2019-12-13T11:04:54
Python
UTF-8
Python
false
false
149
py
from .gcp import GCP # noqa from .config import GCPConfig # noqa from .storage import GCPStorage # noqa from .function import GCPFunction # noqa
[ "mcopik@gmail.com" ]
mcopik@gmail.com
297aedb083d337383a8b7258cd2fc3d034ba1dd1
85584daa79b6c43fd07c49a977a129e04315d8ce
/enemy.py
0bafe9d181d7987359e0d4239d0336748f59cca8
[]
no_license
VoX/mazerun
7a23df4bc8b2ccccbb4bcf9d999fead92424b7a2
a6c5691104db59f70dd5002fb8d7dc9610bf98de
refs/heads/master
2021-01-17T22:45:19.633251
2015-02-24T04:29:13
2015-02-24T04:29:13
31,239,967
1
0
null
2015-02-24T01:43:54
2015-02-24T01:43:54
null
UTF-8
Python
false
false
2,216
py
import pygame from constants import * import random from util.perlin import SimplexNoise perlin = SimplexNoise(period=500) class Enemy(pygame.sprite.Sprite): # base enemy class # set speed change_x = 0 change_y = 0 def __init__(self): # call parent super(Enemy, self).__init__() # set height/width self.image = pygame.image.load(IMG_DIR + 'slime.png') # set location self.rect = self.image.get_rect() self.health = 30 self.counter = 30 @property def damage(self): return 5 @property def EXP(self): return 25 def change_speed(self, x, y): # change enemy speed, called with keypress self.change_x += x self.change_y += y def move(self, walls): # find new enemy position if self.counter < 20: self.counter += 1 else: self.change_x = random.randint(-1,1) self.change_y = random.randint(-1,1) # move left/right self.rect.x += self.change_x # horizontal collision? block_hit_list = pygame.sprite.spritecollide(self, walls, False) for block in block_hit_list: # if moving right, set our right side to the left side of # collided object if self.change_x > 0: self.rect.right = block.rect.left else: # if moving left, do opposite self.rect.left = block.rect.right # move up/down self.rect.y += self.change_y # vertical collision? block_hit_list = pygame.sprite.spritecollide(self, walls, False) for block in block_hit_list: # if moving down, set our bottom side to the top side of # collided object if self.change_y > 0: self.rect.bottom = block.rect.top else: # if moving up, do opposite self.rect.top = block.rect.bottom def take_damage(self, damage, incoming_x, incoming_y): self.damage_taken = damage self.health -= self.damage_taken self.incoming_x = incoming_x self.incoming_y = incoming_y self.counter = 0 rand = 2*(perlin.noise2(self.incoming_x, self.incoming_y)) if (self.rect.x - self.incoming_x) < 0: self.change_x = (-0.5) elif (self.rect.x - self.incoming_x) > 0: self.change_x = (1.5+rand) if (self.rect.y - self.incoming_y) < 0: self.change_y = (-0.5) elif (self.rect.y - self.incoming_y) > 0: self.change_y = (1.5+rand)
[ "nlax76@gmail.com" ]
nlax76@gmail.com
3fdda1fb75e41e5c677d25dc130e7d22dcd5c2cc
2b9d16318d5d38a72e96e31b4e568b4fde5c9cee
/venv/bin/pip3
bc57ca82760da914df822a4e7e1328d12e1f7959
[]
no_license
shubhaminstazen/twitter_rest
b500d3e26ae6cfffd32ff4933a28b20aad419640
d3b0c815bd29f86524d9e3e642ae7e6845a07fa1
refs/heads/master
2020-07-08T03:48:30.897080
2019-08-24T11:57:10
2019-08-24T11:57:10
203,555,060
0
0
null
null
null
null
UTF-8
Python
false
false
409
#!/home/shubhamkathe/PycharmProjects/twitter/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3')() )
[ "shubham.kathe@instazen.com" ]
shubham.kathe@instazen.com
bb44827457f093c2de5ae63b100be439f73457ad
db12d6ac87844e8a3d6e1c2e4e9f01743c35e63d
/mygroup.py
1b2d9a07c3d0c516965bb89e5e44f74ebdd0d32d
[]
no_license
Kisuyamii/Iamcountingonlove
a67da9decb729ec87578cd97857e6c72ed9fa446
38244e218ff036926b7da68bc3ebe92b2d7fd181
refs/heads/main
2023-01-23T08:18:28.766345
2020-11-25T22:09:46
2020-11-25T22:09:46
316,063,343
0
0
null
null
null
null
UTF-8
Python
false
false
1,245
py
groupmates = [ { "name": "Василий ", "surname": "Петрушкин", "exams": ["Информатика", "Физика", "Web"], "marks": [5, 5, 5] }, { "name": "Савелий", "surname": "Петров", "exams": ["Физика", "Web", "КТП"], "marks": [5, 3, 4] }, { "name": "Эльдар", "surname": "Смирнов", "exams": ["Философия", "ИС", "КТП"], "marks": [5, 4, 5] }, { "name": "Фёдор", "surname": "Жизин", "exams": ["Философия", "ИС", "КТП"], "marks": [2, 3, 2] }, { "name": "Гомер", "surname": "Симпсон", "exams": ["", "ИС", "Web"], "marks": [5, 4, 3] }, { "name": "Анастасия", "surname": "Васина", "exams": ["Философия", "ИС", "КТП"], "marks": [5, 5, 5] }, ] def count_mark(students,mark): print ("surname".ljust(15), "marks".ljust(20)) for student in students: marks_list = student["marks"] result = (sum(marks_list)/len(marks_list)) if result >= need: print(student["surname"].ljust(15), str(student["marks"]).ljust(20)) need = int(input('Input :')) count_mark(groupmates,need)
[ "noreply@github.com" ]
Kisuyamii.noreply@github.com
b9ed4c62008e28d2bf0ade31b99bc33a80d4800b
18d11ee454b05f0344b9f5542916d18685473ba5
/chipy_org/libs/slack_utils.py
37489aaf26a481deafb8e4734377c3d8dd39982f
[ "MIT" ]
permissive
chicagopython/chipy.org
d117040761d35bb106d6e45e092c96c073827277
c14182b7ad3d9d889c0127d20d32a8c78c05924d
refs/heads/main
2023-07-12T22:00:54.381936
2023-06-20T04:48:02
2023-06-20T04:48:02
4,348,048
94
86
MIT
2023-07-06T21:29:09
2012-05-16T14:47:15
Python
UTF-8
Python
false
false
897
py
import json import requests def post_message_to_slack(channel_key: str, channel_name: str, message: str): """ This function is used to post messages from chipy.org to the chipy slack channel_key: secret key for slack channel channel_name: human readable description of the slack channel message: string formatted text to post to the slack channel """ webhook_url = f"https://hooks.slack.com/services/{channel_key}" slack_data = {"text": message} response = requests.post( webhook_url, data=json.dumps(slack_data), headers={"Content-Type": "application/json"}, allow_redirects=False, ) if response.status_code != 200: raise requests.HTTPError( f"Failed to post message '{message[:25]}...' to slack channel '{channel_name}'. \ Status code {response.status_code} != 200." )
[ "noreply@github.com" ]
chicagopython.noreply@github.com
95aec0d065df00a7668e67fcb6e19b3cd23b539b
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/XYYdtkhGPXXJ3QQNB_24.py
997a52f1323cf1df1a0b52572d1f0f25f1fb8cdf
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
780
py
""" Create a function that takes a list of strings and returns a list with only the strings that have numbers in them. If there are no strings containing numbers, return an empty list. ### Examples num_in_str(["1a", "a", "2b", "b"]) ➞ ["1a", "2b"] num_in_str(["abc", "abc10"]) ➞ ["abc10"] num_in_str(["abc", "ab10c", "a10bc", "bcd"]) ➞ ["ab10c", "a10bc"] num_in_str(["this is a test", "test1"]) ➞ ["test1"] ### Notes * The strings can contain white spaces or any type of characters. * **Bonus:** Try solving this without regex. """ def contains_num(s): nums = [str(x) for x in range(10)] for x in nums: if x in s: return True return False ​ def num_in_str(lst): return [s for s in lst if contains_num(s)]
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
f50106ca09c41774778c8e2b795cdcdfef3b92a2
f49530a0c567260bb4fda613a19f37b95c9ec91f
/Website/data_omzetten_bruikbare_table.py
5e03d9c24873b5fbb36deb23ae0cf7026e82376a
[]
no_license
brandonhillert/GroupProjectAI
8be70503b5a8387cc9a079efe73e29f58d79d204
e201807c6a6344ebf547aa9128626ef39836c328
refs/heads/master
2021-04-20T11:21:36.325546
2020-04-08T20:16:03
2020-04-08T20:16:03
249,678,795
0
0
null
null
null
null
UTF-8
Python
false
false
2,973
py
import psycopg2 import re def insert_into_table(newrecs): try: if len(newrecs) >= 6: c.execute( "INSERT INTO categoryrecommendations (id, prod1, prod2, prod3, prod4, prod5) VALUES (%s, %s, %s, %s, %s, %s)", (newrecs[0], newrecs[1], newrecs[2], newrecs[3], newrecs[4], newrecs[5])) elif len(newrecs) == 5: c.execute( "INSERT INTO categoryrecommendations (id, prod1, prod2, prod3, prod4) VALUES ( %s, %s, %s, %s,%s)", (newrecs[0], newrecs[1], newrecs[2], newrecs[3])) elif len(newrecs) == 4: c.execute("INSERT INTO categoryrecommendations (id, prod1, prod2, prod3) VALUES ( %s, %s, %s, %s)", (newrecs[0], newrecs[1], newrecs[2])) elif len(newrecs) == 3: c.execute("INSERT INTO categoryrecommendations (id, prod1, prod2) VALUES ( %s, %s, %s)", (newrecs[0], newrecs[1])) elif len(newrecs) == 2: c.execute("INSERT INTO categoryrecommendations (id, prod1) VALUES ( %s, %s)", (newrecs[0], newrecs[1])) elif len(newrecs) == 1: c.execute("INSERT INTO categoryrecommendations (id) VALUES ( %s)", (newrecs[0])) except: pass def only_numerics(seq): # Behoud alleen nummer van string seq_type = type(seq) return seq_type().join(filter(seq_type.isdigit, seq)) def formatting_item(product): product = product[1:-1] product = product.split(",") product = product[0] product = only_numerics(product) if product != '': product = int(product) return product connect = psycopg2.connect("user=postgres password=pgadminJTgeest dbname=voordeelshopgpx") c = connect.cursor() c.execute("DROP TABLE IF EXISTS categoryrecommendations CASCADE") c.execute("CREATE TABLE categoryrecommendations (id VARCHAR PRIMARY KEY, " "prod1 VARCHAR, prod2 VARCHAR, prod3 VARCHAR, prod4 VARCHAR, prod5 VARCHAR);") c.execute("select id, recommendations from profile where recommendations != '{}'") idprevrec = c.fetchall() counter = 0 for item in idprevrec: product = item[1] product = formatting_item(product) try: c.execute("select id, product1, product2, product3, product4, product5 from categorie_algoritme " "where id = '{}';".format(product)) newrecs = c.fetchall() if newrecs != []: newrecs = newrecs[0] newrecs = list(newrecs) if len(newrecs) > 6: newrecs = newrecs[0:6] newrecs.remove(newrecs[0]) copy = newrecs.copy() for rec in copy: if rec == None: newrecs.remove(rec) newrecs.insert(0, item[0]) else: continue insert_into_table(newrecs) except: print("foutmelding") counter += 1 if counter % 10000 == 0: print(counter) connect.commit() c.close()
[ "brandon.hillert@student.hu.nl" ]
brandon.hillert@student.hu.nl
556bd1d5550ba4a7b8c38f6abbe20587e61facf1
abcd9c54883eef187a8314988431945a1a0f8676
/old/tests/test_zebra2/test_simulation/test_controller.py
817519986b9e28135811bb57d4812489d0459c1a
[ "Apache-2.0" ]
permissive
PandABlocks/PandABlocks-FPGA
834f6eba17ffc0372e82495e1a456858b20b55c5
9ad5512556c94d38f817b0c02a38d660c8777f43
refs/heads/master
2023-08-16T23:40:38.067162
2023-08-01T16:36:39
2023-08-02T10:08:47
86,712,341
17
11
Apache-2.0
2023-09-08T13:19:55
2017-03-30T14:29:10
VHDL
UTF-8
Python
false
false
6,591
py
#!/usr/bin/env python import unittest import sys import os import time from pkg_resources import require require("numpy") # Module import sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "..", "python")) from zebra2.simulation.controller import Controller, Block, CLOCK_TICK class ControllerTest(unittest.TestCase): def setUp(self): config_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", "config_d") self.c = Controller(config_dir) def test_init(self): for i, val in enumerate(Block.bit_bus): if i == Block.parser.bit_bus["BITS.ONE"]: self.assertEqual(val, 1, "Bit bus index %d != 1" % i) else: self.assertEqual(val, 0, "Bit bus index %d != 0" % i) for i, val in enumerate(Block.pos_bus): self.assertEqual(val, 0) def do_set_reg(self, blockname, blocknum, regname, val): config = Block.parser.blocks[blockname] reg, _ = config.registers[regname] self.c.do_write_register(config.base, blocknum, reg, val) def get_instance(self, blockname, blocknum=0): config = Block.parser.blocks[blockname] for (base, num, reg), (block, attr) in self.c.lookup.items(): if base == config.base and num == blocknum: return block def test_clocks_set(self): clocks = self.get_instance("CLOCKS") clocks_a_idx = Block.parser.bit_bus["CLOCKS.OUTA"] self.assertEqual(clocks.A_PERIOD, 0) self.assertEqual(self.c.wakeups, []) self.assertEqual(clocks.OUTA, 0) # set 1s period s = int(1.0 / CLOCK_TICK + 0.5) self.do_set_reg("CLOCKS", 0, "A_PERIOD", s) # number of clockticks to reg set reg_ticks = (time.time() - self.c.start_time) / CLOCK_TICK self.assertEqual(clocks.A_PERIOD, s) self.assertEqual(len(self.c.wakeups), 1) # check wakeup scheduled for 0.5s from now self.assertAlmostEqual( self.c.wakeups[0][0], reg_ticks + s / 2, delta=10000) self.assertEqual(self.c.wakeups[0][1], clocks) self.assertEqual(self.c.wakeups[0][2], {}) self.assertEqual(clocks.OUTA, 0) self.assertEqual(Block.bit_bus[clocks_a_idx], 0) # handle another event timeout = self.c.calc_timeout() self.assertAlmostEqual(timeout, 0.5, delta=0.001) time.sleep(0.5) self.c.do_tick() self.assertEqual(clocks.A_PERIOD, s) self.assertEqual(len(self.c.wakeups), 1) self.assertAlmostEqual( self.c.wakeups[0][0], reg_ticks + s, delta=10000) self.assertEqual(self.c.wakeups[0][1], clocks) self.assertEqual(clocks.OUTA, 1) self.assertEqual(Block.bit_bus[clocks_a_idx], 1) def test_changing_inp(self): # get the div block, and set it enabled bits_one_idx = Block.parser.bit_bus["BITS.ONE"] div = self.get_instance("DIV", 0) self.do_set_reg("DIV", 0, "ENABLE", bits_one_idx) self.assertEqual(div.ENABLE, 1) # get the bits block bits = self.get_instance("BITS", 0) bits_outa_idx = Block.parser.bit_bus["BITS.OUTA"] # check disconnected self.assertEqual(div.INP, 0) # connect to BITS.OUTA self.do_set_reg("DIV", 0, "INP", bits_outa_idx) self.assertEqual(div.INP, 0) self.assertEqual(self.c.listeners[(bits, "OUTA")], [(div, "INP")]) self.assertEqual(bits.OUTA, 0) self.assertEqual(div.OUTD, 0) # toggle self.do_set_reg("BITS", 0, "A", 1) self.assertEqual(bits.OUTA, 1) self.assertEqual(Block.bit_bus[bits_outa_idx], 1) self.assertEqual(div.INP, 0) self.assertEqual(div.OUTN, 0) self.assertEqual(div.OUTD, 0) # Check that there is a wakeup queued self.assertEqual(len(self.c.wakeups), 1) # do another tick and check it has propogated self.c.do_tick() self.assertEqual(div.INP, 1) self.assertEqual(div.OUTN, 0) self.assertEqual(div.OUTD, 1) def test_delay(self): # get the div blocks and set them enabled bits_one_idx = Block.parser.bit_bus["BITS.ONE"] div1 = self.get_instance("DIV", 0) div2 = self.get_instance("DIV", 1) self.do_set_reg("DIV", 0, "ENABLE", bits_one_idx) self.do_set_reg("DIV", 1, "ENABLE", bits_one_idx) self.assertEqual(div1.ENABLE, 1) self.assertEqual(div2.ENABLE, 1) # get the bits block bits = self.get_instance("BITS", 0) bits_outa_idx = Block.parser.bit_bus["BITS.OUTA"] # check disconnected self.assertEqual(div1.INP, 0) # connect to BITS.OUTA self.do_set_reg("DIV", 0, "INP", bits_outa_idx) self.do_set_reg("DIV", 1, "INP", bits_outa_idx) self.assertEqual(div1.INP, 0) self.assertEqual(div2.INP, 0) self.assertEqual(self.c.listeners[(bits, "OUTA")], [(div1, "INP"), (div2, "INP")]) # Add a delay on the second self.do_set_reg("DIV", 1, "INP_DLY", 4) self.assertEqual(self.c.delays, {(div2, "INP"): 4}) self.assertEqual(bits.OUTA, 0) self.assertEqual(div1.OUTD, 0) self.assertEqual(div2.OUTD, 0) # toggle self.do_set_reg("BITS", 0, "A", 1) self.assertEqual(bits.OUTA, 1) self.assertEqual(Block.bit_bus[bits_outa_idx], 1) self.assertEqual(div1.INP, 0) self.assertEqual(div1.OUTN, 0) self.assertEqual(div1.OUTD, 0) # check that there are two wakeups queued self.assertEqual(len(self.c.wakeups), 2) self.assertEqual(self.c.wakeups[0][1], div1) self.assertEqual(self.c.wakeups[1][1], div2) self.assertEqual(self.c.wakeups[1][0] - self.c.wakeups[0][0], 4) # do another tick and check it has propogated self.c.do_tick() self.assertEqual(div1.INP, 1) self.assertEqual(div1.OUTN, 0) self.assertEqual(div1.OUTD, 1) self.assertEqual(div2.INP, 0) self.assertEqual(div2.OUTN, 0) self.assertEqual(div2.OUTD, 0) # And again for the delayed self.c.do_tick() self.assertEqual(div1.INP, 1) self.assertEqual(div1.OUTN, 0) self.assertEqual(div1.OUTD, 1) self.assertEqual(div2.INP, 1) self.assertEqual(div2.OUTN, 0) self.assertEqual(div2.OUTD, 1) if __name__ == '__main__': unittest.main(verbosity=2)
[ "tom.cobb@diamond.ac.uk" ]
tom.cobb@diamond.ac.uk
5bdfe72f4ae8eae50237cbd9ac83a08e78210719
3821faabdf6d2cf8577ebcceea78986018766a80
/project/configuration.py
3624cd4408a5d0c3c28396b1898c9237f24aefc9
[]
no_license
andrei4b/Music-Transcription-with-Semantic-Segmantation
b40ac200ff5389ed190f29b4214b6658bbb1166b
5c5f1b5ee1af90e37079a6b0f18c15e31e1ba2b6
refs/heads/master
2020-04-16T07:43:11.908510
2019-06-21T11:31:45
2019-06-21T11:31:45
165,396,953
0
0
null
null
null
null
UTF-8
Python
false
false
843
py
MusicNet_Instruments = ["Piano", "Harpsichord", "Violin", "Viola", "Cello", "Contrabass", "Horn", "Oboe", "Bassoon", "Clarinet", "Flute"] Harmonic_Num = 6 def get_MusicNet_label_num_mapping(offset=1, spec_inst=None): ori_num = [1, 7, 41, 42, 43, 44, 61, 69, 71, 72, 74] mapping = {} if spec_inst is None: return mapping if "All" in spec_inst: spec_inst = MusicNet_Instruments for idx, name in enumerate(spec_inst): ii = MusicNet_Instruments.index(name) n = ori_num[ii] mapping[n] = idx + offset return mapping def get_instruments_num(insts): if insts is None: instruments = 1 elif "All" in insts: instruments = 11 # For MusicNet else: instruments = len(insts) return instruments def epsilon(): return 0.000000001
[ "whitebreeze@MCTLAb-Tim.iis.sinica.edu.tw" ]
whitebreeze@MCTLAb-Tim.iis.sinica.edu.tw
35c7a6434893bd97a06d7e1efc7402d9569d27e1
ff05d487fa7a79e3045c139421ce9031b2aa7360
/effdet/__init__.py
e18f261c1e0db380dc4c33563dd29d204da34d34
[ "Apache-2.0" ]
permissive
phager90/efficientdet-pytorch
eb92e6d5d4eb6c367d23081ce6abd0b2d1fa0cf2
bbd84c0e7ec2a23c6ae7447c437789524ba141dd
refs/heads/master
2023-07-17T13:33:25.835335
2021-08-30T18:23:37
2021-08-30T18:23:37
291,003,268
0
0
Apache-2.0
2020-08-28T09:14:34
2020-08-28T09:14:34
null
UTF-8
Python
false
false
350
py
from .efficientdet import EfficientDet from .bench import DetBenchPredict, DetBenchTrain, unwrap_bench from .evaluator import COCOEvaluator, FastMapEvalluator from .config import get_efficientdet_config, default_detection_model_configs from .factory import create_model, create_model_from_config from .helpers import load_checkpoint, load_pretrained
[ "rwightman@gmail.com" ]
rwightman@gmail.com
dfb72750f57261a472645ea9dcd6437e8b99810f
5a7a0a268e281dd985eb9889a152114da249f7ea
/0x01-python-if_else_loops_functions/1-last_digit.py
b1ec9ca9294af9e4471fc3cd19cf83d6ce7b3db4
[]
no_license
Gt-gih/holbertonschool-higher_level_programming
3b17b910c3496f482e203fca26d72b71be3fe471
fb765e2d1f2a4a6fba1a24bbb1c2a0b2a7ca269a
refs/heads/master
2023-03-17T01:53:12.367576
2020-11-04T20:39:32
2020-11-04T20:39:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
#!/usr/bin/python3 import random number = random.randint(-10000, 10000) if number < 0: sign = number * -1 lastdigit = sign % 10 lastdigit = lastdigit * -1 else: lastdigit = number % 10 print("Last digit of {} is {} and is ".format(number, lastdigit), end="") if lastdigit > 5: print("greater than 5") elif lastdigit is 0: print("0") else: print("less than 6 and not 0")
[ "juan.bueno01@usc.edu.co" ]
juan.bueno01@usc.edu.co
b539d96fb9dfac175343b0bfb1eb0c9df1eaa14c
d2fe4daf1d56448da419c4f821d33480571d614d
/polls/migrations/0001_initial.py
34084c4d0ef07b0c6d2e8c9bf61653af689b0713
[]
no_license
ahmadRagheb/-Python-Django-Polls
94c6299d56f11624619d8cc0783a03897ad60fb3
59ed11cbf171f05ce3d8f484a9d389ba797c74c1
refs/heads/master
2021-01-18T15:46:07.404407
2017-04-05T06:33:46
2017-04-05T06:33:46
86,681,904
0
0
null
null
null
null
UTF-8
Python
false
false
1,227
py
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2017-03-27 11:02 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=200)), ('votes', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='date published')), ], ), migrations.AddField( model_name='choice', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.Question'), ), ]
[ "pq4@hotmail.co.uk" ]
pq4@hotmail.co.uk
fc85e3f36afff9d60b70d5c926133f8d8913420a
e22e03d9761f5c6d581b5af2e77343e8ee4b201d
/edk2/UefiCpuPkg/ResetVector/Vtf0/Tools/FixupForRawSection.py
f88c8a4cd7d55b1a6d81d116255186447fc8022a
[ "OpenSSL", "BSD-2-Clause" ]
permissive
SamuelTulach/SecureFakePkg
759975fcc84d62f05ac577da48353752e5334878
f34080a6c0efb6ca3dd755365778d0bcdca6b991
refs/heads/main
2023-08-17T07:51:22.175924
2021-10-01T10:46:14
2021-10-01T10:46:14
410,938,306
94
14
null
null
null
null
UTF-8
Python
false
false
781
py
## @file # Apply fixup to VTF binary image for FFS Raw section # # Copyright (c) 2008, Intel Corporation. All rights reserved.<BR> # # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # import sys filename = sys.argv[1] d = open(sys.argv[1], 'rb').read() c = ((len(d) + 4 + 7) & ~7) - 4 if c > len(d): c -= len(d) f = open(sys.argv[1], 'wb') f.write('\x90' * c) f.write(d) f.close()
[ "samtulach@gmail.com" ]
samtulach@gmail.com
d3edf2087f2d3f1fd55bfdc256ecf4c7e731bc80
220535ba153c2fca757c264cab56d2ff835f4fd4
/06_支持向量机SVM/SVM.py
ccd576a8492ed9058fb35c7649529824503ccbdf
[]
no_license
cp4011/Machine-Learning
d41b5b8533b8d2210d1e69b944f8ea997c2488b4
7f4576278990f8a2de302e69eb6373d169f9fbc8
refs/heads/master
2020-04-04T15:41:53.912450
2019-03-26T15:37:35
2019-03-26T15:37:35
156,048,459
2
0
null
2018-11-04T06:14:57
2018-11-04T04:16:03
Python
UTF-8
Python
false
false
34,559
py
from numpy import * import matplotlib.pyplot as plt """SMO算法工作原理:每次循环中选择两个alpha进行优化处理。一旦找到一对合适的alpha,那么就增大其中一个同时减小另一个。 这里所谓的“合适”就是指两个alpha必须要符合一定的条件,条件之一就是这两个alpha必须要在间隔边界之外,另一个条件则是这两个 alpha还没有进行过区间化处理或者不在边界上 """ # SMO算法相关辅助中的辅助函数 # 1.解析文本数据函数,提取每个样本的特征组成向量,添加到数据矩阵; 添加样本标签到标签向量 def loadDataSet(filename): data_matrix = [] label_matrix = [] with open(filename, 'r') as fr: for line in fr.readlines(): line_array = line.strip().split('\t') # strip删除头尾空白字符(空格+回车),再进行分割 data_matrix.append([float(line_array[0]), float(line_array[1])]) # 填充数据集 label_matrix.append(float(line_array[2])) # 填充类别标签 return data_matrix, label_matrix # 返回数据集和标签列表 # 测试 # data_matrix, label_matrix = loadDataSet("testSet.txt") # print(label_matrix) # 2.在样本集中采取随机选择的方法选取第二个不等于第一个alphai的优化向量alphaj def selectJrand(i, m): """ Function: 随机选择 Input: i:alpha下标 m:alpha数目 Output: j:随机选择的alpha下标 """ # 初始化下标j j = i # 随机化产生j,直到不等于i while (j == i): j = int(random.uniform(0,m)) # 返回j的值 return j def clipAlpha(aj, H, L): """ Function: 设定alpha阈值 Input: aj:alpha的值 H:alpha的最大值 L:alpha的最小值 Output: aj:处理后的alpha的值 """ # 如果输入alpha的值大于最大值,则令aj=H if aj > H: aj = H # 如果输入alpha的值小于最小值,则令aj=L if L > aj: aj = L # 返回处理后的alpha的值 return aj """简化版SMO伪代码: 创建一个alpha向量并将其初始化为0向量 当迭代次数小于最大迭代次数时(外循环): 对数据集中的每个数据向量(内循环): 如果该数据向量可以被优化: 随机选择另外一个数据向量 同时优化这两个向量 如果两个向量都不能被优化,退出内循环 如果所有向量都没被优化,则增加迭代数目,继续下一次循环 """ def smoSimple(dataMatIn, classLabels, C, toler, maxIter): """ Function: 简化版SMO算法 Input: dataMatIn:数据集 classLabels:类别标签 C:常数C toler:容错率 maxIter:最大的循环次数 Output: b:常数项 alphas:数据向量 """ # 将输入的数据集和类别标签转换为NumPy矩阵 dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose() # 初始化常数项b,初始化行列数m、n b = 0; m, n = shape(dataMatrix) # 初始化alphas数据向量为0向量 alphas = mat(zeros((m, 1))) # 初始化iter变量,存储的是在没有任何alpha改变的情况下遍历数据集的次数 iter = 0 # 外循环,当迭代次数小于maxIter时执行 while (iter < maxIter): # alpha改变标志位每次都要初始化为0 alphaPairsChanged = 0 # 内循环,遍历所有数据集 for i in range(m): # multiply将alphas和labelMat进行矩阵相乘,求出法向量w(m,1),w`(1,m) # dataMatrix * dataMatrix[i,:].T,求出输入向量x(m,1) # 整个对应输出公式f(x)=w`x + b fXi = float(multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[i, :].T)) + b # 计算误差 Ei = fXi - float(labelMat[i]) # 如果标签与误差相乘之后在容错范围之外,且超过各自对应的常数值,则进行优化 if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i] * Ei > toler) and (alphas[i] > 0)): # 随机化选择另一个数据向量 j = selectJrand(i, m) # 对此向量进行同样的计算 fXj = float(multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[j,:].T)) + b # 计算误差 Ej = fXj - float(labelMat[j]) # 利用copy存储刚才的计算值,便于后期比较 alphaIold = alphas[i].copy(); alpahJold = alphas[j].copy() # 保证alpha在0和C之间 if (labelMat[i] != labelMat[j]): L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) # 如果界限值相同,则不做处理直接跳出本次循环 if L == H: print("L == H"); continue # 最优修改量,求两个向量的内积(核函数) eta = 2.0 * dataMatrix[i, :] * dataMatrix[j,:].T - dataMatrix[i,:] * dataMatrix[i,:].T - dataMatrix[j,:] * dataMatrix[j,:].T # 如果最优修改量大于0,则不做处理直接跳出本次循环,这里对真实SMO做了简化处理 if eta >= 0: print("eta >= 0"); continue # 计算新的alphas[j]的值 alphas[j] -= labelMat[j] * (Ei - Ej) / eta # 对新的alphas[j]进行阈值处理 alphas[j] = clipAlpha(alphas[j], H, L) # 如果新旧值差很小,则不做处理跳出本次循环 if (abs(alphas[j] - alpahJold) < 0.00001): print("j not moving enough"); continue # 对i进行修改,修改量相同,但是方向相反 alphas[i] += labelMat[j] * labelMat[i] * (alpahJold - alphas[j]) # 新的常数项 b1 = b - Ei - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i,:] * dataMatrix[i,:].T - labelMat[i] * (alphas[j] - alpahJold) * dataMatrix[i,:] * dataMatrix[j,:].T b2 = b - Ej - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i,:] * dataMatrix[j,:].T - labelMat[j] * (alphas[j] - alpahJold) * dataMatrix[j,:] * dataMatrix[j,:].T # 谁在0到C之间,就听谁的,否则就取平均值 if (0 < alphas[i]) and (C > alphas[i]): b = b1 elif (0 < alphas[j]) and (C > alphas[j]): b = b2 else: b = (b1 + b2) / 2.0 # 标志位加1 alphaPairsChanged += 1 # 输出迭代次数,alphas的标号以及标志位的值 print("iter: %d i: %d, pairs changed %d" % (iter, i, alphaPairsChanged)) # 如果标志位没变,即没有进行优化,那么迭代值加1 if (alphaPairsChanged == 0): iter += 1 # 否则迭代值为0 else: iter = 0 # 打印迭代次数 print("iteration number: %d" % iter) # 返回常数项和alphas的数据向量 return b, alphas """和简化版一样,完整版也需要一些支持函数。 首要的事情就是建立一个数据结构来保存所有的重要值,而这个过程可以通过一个对象来完成; 对于给定的alpha值,第一个辅助函数calcEk()能够计算E值并返回(因为调用频繁,所以必须要单独拎出来); selectJ()用于选择第二个alpha或者说内循环的alpha值,选择合适的值以保证在每次优化中采用最大步长; updateEk()用于计算误差值并将其存入缓存中。 """ # SMO完整版(Non-Kernel VErsions below) class optStruct: """ Function: 存放运算中重要的值 Input: dataMatIn:数据集 classLabels:类别标签 C:常数C toler:容错率 Output: X:数据集 labelMat:类别标签 C:常数C tol:容错率 m:数据集行数 b:常数项 alphas:alphas矩阵 eCache:误差缓存 """ def __init__(self, dataMatIn, classLabels, C, toler): self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m, 1))) self.b = 0 self.eCache = mat(zeros((self.m, 2))) def calcEk(oS, k): """ Function: 计算误差值E Input: oS:数据结构 k:下标 Output: Ek:计算的E值 """ # 计算fXk,整个对应输出公式f(x)=w`x + b fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k,:].T)) + oS.b # 计算E值 Ek = fXk - float(oS.labelMat[k]) # 返回计算的误差值E return Ek def selectJ(i, oS, Ei): """ Function: 选择第二个alpha的值 Input: i:第一个alpha的下标 oS:数据结构 Ei:计算出的第一个alpha的误差值 Output: j:第二个alpha的下标 Ej:计算出的第二个alpha的误差值 """ # 初始化参数值 maxK = -1; maxDeltaE = 0; Ej = 0 # 构建误差缓存 oS.eCache[i] = [1, Ei] # 构建一个非零列表,返回值是第一个非零E所对应的alpha值,而不是E本身 validEcacheList = nonzero(oS.eCache[:, 0].A)[0] # 如果列表长度大于1,说明不是第一次循环 if (len(validEcacheList)) > 1: # 遍历列表中所有元素 for k in validEcacheList: # 如果是第一个alpha的下标,就跳出本次循环 if k == i: continue # 计算k下标对应的误差值 Ek = calcEk(oS, k) # 取两个alpha误差值的差值的绝对值 deltaE = abs(Ei - Ek) # 最大值更新 if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek # 返回最大差值的下标maxK和误差值Ej return maxK, Ej # 如果是第一次循环,则随机选择alpha,然后计算误差 else: j = selectJrand(i, oS.m) Ej = calcEk(oS, j) # 返回下标j和其对应的误差Ej return j, Ej def updateEk(oS, k): """ Function: 更新误差缓存 Input: oS:数据结构 j:alpha的下标 Output: 无 """ # 计算下表为k的参数的误差 Ek = calcEk(oS, k) # 将误差放入缓存 oS.eCache[k] = [1, Ek] """优化例程   接下来简单介绍一下用于寻找决策边界的优化例程。大部分代码和之前的smoSimple()是一样的,区别在于: 使用了自己的数据结构,该结构在oS中传递; 使用selectJ()而不是selectJrand()来选择第二个alpha的值; 在alpha值改变时更新Ecache。 """ def innerL(i, oS): """ Function: 完整SMO算法中的优化例程 Input: oS:数据结构 i:alpha的下标 Output: 无 """ # 计算误差 Ei = calcEk(oS, i) # 如果标签与误差相乘之后在容错范围之外,且超过各自对应的常数值,则进行优化 if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): # 启发式选择第二个alpha值 j, Ej = selectJ(i, oS, Ei) # 利用copy存储刚才的计算值,便于后期比较 alphaIold = oS.alphas[i].copy(); alpahJold = oS.alphas[j].copy(); # 保证alpha在0和C之间 if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS. alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) # 如果界限值相同,则不做处理直接跳出本次循环 if L == H: print("L==H"); return 0 # 最优修改量,求两个向量的内积(核函数) eta = 2.0 * oS.X[i, :]*oS.X[j, :].T - oS.X[i, :]*oS.X[i, :].T - oS.X[j, :]*oS.X[j, :].T # 如果最优修改量大于0,则不做处理直接跳出本次循环,这里对真实SMO做了简化处理 if eta >= 0: print("eta>=0"); return 0 # 计算新的alphas[j]的值 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta # 对新的alphas[j]进行阈值处理 oS.alphas[j] = clipAlpha(oS.alphas[j], H, L) # 更新误差缓存 updateEk(oS, j) # 如果新旧值差很小,则不做处理跳出本次循环 if (abs(oS.alphas[j] - alpahJold) < 0.00001): print("j not moving enough"); return 0 # 对i进行修改,修改量相同,但是方向相反 oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alpahJold - oS.alphas[j]) # 更新误差缓存 updateEk(oS, i) # 更新常数项 b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :]*oS.X[i, :].T - oS.labelMat[j] * (oS.alphas[j] - alpahJold) * oS.X[i, :]*oS.X[j, :].T b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :]*oS.X[j, :].T - oS.labelMat[j] * (oS.alphas[j] - alpahJold) * oS.X[j, :]*oS.X[j, :].T # 谁在0到C之间,就听谁的,否则就取平均值 if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[i]): oS.b = b2 else: oS.b = (b1 + b2) / 2.0 # 成功返回1 return 1 # 失败返回0 else: return 0 """外循环代码   外循环代码的输入和函数smoSimple()完全一样。整个代码的主体是while循环,终止条件:当迭代次数超过指定的最大值,或者遍历 整个集合都未对任意alpha对进行修改时,就退出循环。while循环内部与smoSimple()中有所不同,一开始的for循环在数据集上遍历任意 可能的alpha。通过innerL()来选择第二个alpha,并在可能时对其进行优化处理。如果有任意一对alpha值发生改变,就会返回1.第二个 for循环遍历所有的非边界alpha值,也就是不在边界0或C上的值。 """ def smoP(dataMatIn, classLabels, C, toler, maxIter): """ Function: 完整SMO算法 Input: dataMatIn:数据集 classLabels:类别标签 C:常数C toler:容错率 maxIter:最大的循环次数 Output: b:常数项 alphas:数据向量 """ # 新建数据结构对象 oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler) # 初始化迭代次数 iter = 0 # 初始化标志位 entireSet = True; alphaPairsChanged = 0 # 终止条件:迭代次数超限、遍历整个集合都未对alpha进行修改 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 # 根据标志位选择不同的遍历方式 if entireSet: # 遍历任意可能的alpha值 for i in range(oS.m): # 选择第二个alpha值,并在可能时对其进行优化处理 alphaPairsChanged += innerL(i, oS) print("fullSet, iter: %d i: %d, pairs changed %d" % (iter, i, alphaPairsChanged)) # 迭代次数累加 iter += 1 else: # 得出所有的非边界alpha值 nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] # 遍历所有的非边界alpha值 for i in nonBoundIs: # 选择第二个alpha值,并在可能时对其进行优化处理 alphaPairsChanged += innerL(i, oS) print("non-bound, iter: %d i: %d, pairs changed %d" % (iter, i, alphaPairsChanged)) # 迭代次数累加 iter += 1 # 在非边界循环和完整遍历之间进行切换 if entireSet: entireSet = False elif (alphaPairsChanged == 0): entireSet =True print("iteration number: %d" % iter) # 返回常数项和数据向量 return oS.b, oS.alphas """分类测试 可以拿我们计算出来的alpha值进行分类了。首先必须基于alpha值得到超平面,这也包括了w的计算 """ def calcWs(alphas, dataArr, classLabels): """ Function: 计算W Input: alphas:数据向量 dataArr:数据集 classLabels:类别标签 Output: w:w*x+b中的w """ # 初始化参数 X = mat(dataArr); labelMat = mat(classLabels).transpose() # 获取数据行列值 m, n = shape(X) # 初始化w w = zeros((n, 1)) # 遍历alpha,更新w for i in range(m): w += multiply(alphas[i]*labelMat[i],X[i,:].T) # 返回w值 return w # 测试test # dataArr, labelArr = loadDataSet('testSet.txt') # b, alphas = smoP(dataArr, labelArr, 0.6, 0.001, 40) # ws = calcWs(alphas, dataArr, labelArr) # # print(ws) # datMat = mat(dataArr) # print(datMat[0] * mat(ws)+b, labelArr[0]) # print(datMat[1] * mat(ws)+b, labelArr[1]) # print(datMat[2] * mat(ws)+b, labelArr[2]) """至此,线性分类器介绍完了,如果数据集非线性可分,那么我们就需要引入核函数的概念了""" # 核函数实现 """如果在svmMLiA.py文件中添加一个函数并稍作修改,那么我们就能在已有代码中使用核函数了(所有与核函数实现相关的函数,函数 名末尾都是K)。其中主要区分代码在innerLK()和calcEk()中 """ # 新添加的核转换函数,主要用于填充结构体和后续的计算 def kernelTrans(X, A, kTup): """ Function: 核转换函数 Input: X:数据集 A:某一行数据 kTup:核函数信息 Output: K:计算出的核向量 """ # 获取数据集行列数 m, n = shape(X) # 初始化列向量 K = mat(zeros((m, 1))) # 根据键值选择相应核函数 # lin表示的是线性核函数 if kTup[0] == 'lin': K = X * A.T # rbf表示径向基核函数 elif kTup[0] == 'rbf': for j in range(m): deltaRow = X[j, :] - A K[j] = deltaRow * deltaRow.T # 对矩阵元素展开计算,而不像在MATLAB中一样计算矩阵的逆 K = exp(K/(-1*kTup[1]**2)) # 如果无法识别,就报错 else: raise NameError('Houston We Have a Problem -- That Kernel is not recognized') # 返回计算出的核向量 return K # 其他函数 class optStructK: """ Function: 存放运算中重要的值 Input: dataMatIn:数据集 classLabels:类别标签 C:常数C toler:容错率 kTup:速度参数 Output: X:数据集 labelMat:类别标签 C:常数C tol:容错率 m:数据集行数 b:常数项 alphas:alphas矩阵 eCache:误差缓存 K:核函数矩阵 """ def __init__(self, dataMatIn, classLabels, C, toler, kTup): self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m, 1))) self.b = 0 self.eCache = mat(zeros((self.m, 2))) """ 主要区分 """ self.K = mat(zeros((self.m, self.m))) for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) """ 主要区分 """ def calcEkK(oS, k): """ Function: 计算误差值E Input: oS:数据结构 k:下标 Output: Ek:计算的E值 """ """ 主要区分 """ # 计算fXk,整个对应输出公式f(x)=w`x + b # fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k,:].T)) + oS.b fXk = float(multiply(oS.alphas, oS.labelMat).T*oS.K[:, k] + oS.b) """ 主要区分 """ # 计算E值 Ek = fXk - float(oS.labelMat[k]) # 返回计算的误差值E return Ek def selectJK(i, oS, Ei): """ Function: 选择第二个alpha的值 Input: i:第一个alpha的下标 oS:数据结构 Ei:计算出的第一个alpha的误差值 Output: j:第二个alpha的下标 Ej:计算出的第二个alpha的误差值 """ # 初始化参数值 maxK = -1; maxDeltaE = 0; Ej = 0 # 构建误差缓存 oS.eCache[i] = [1, Ei] # 构建一个非零列表,返回值是第一个非零E所对应的alpha值,而不是E本身 validEcacheList = nonzero(oS.eCache[:, 0].A)[0] # 如果列表长度大于1,说明不是第一次循环 if (len(validEcacheList)) > 1: # 遍历列表中所有元素 for k in validEcacheList: # 如果是第一个alpha的下标,就跳出本次循环 if k == i: continue # 计算k下标对应的误差值 Ek = calcEkK(oS, k) # 取两个alpha误差值的差值的绝对值 deltaE = abs(Ei - Ek) # 最大值更新 if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek # 返回最大差值的下标maxK和误差值Ej return maxK, Ej # 如果是第一次循环,则随机选择alpha,然后计算误差 else: j = selectJrand(i, oS.m) Ej = calcEkK(oS, j) # 返回下标j和其对应的误差Ej return j, Ej def updateEkK(oS, k): """ Function: 更新误差缓存 Input: oS:数据结构 j:alpha的下标 Output: 无 """ # 计算下表为k的参数的误差 Ek = calcEkK(oS, k) # 将误差放入缓存 oS.eCache[k] = [1, Ek] def innerLK(i, oS): """ Function: 完整SMO算法中的优化例程 Input: oS:数据结构 i:alpha的下标 Output: 无 """ # 计算误差 Ei = calcEkK(oS, i) # 如果标签与误差相乘之后在容错范围之外,且超过各自对应的常数值,则进行优化 if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): # 启发式选择第二个alpha值 j, Ej = selectJK(i, oS, Ei) # 利用copy存储刚才的计算值,便于后期比较 alphaIold = oS.alphas[i].copy(); alpahJold = oS.alphas[j].copy(); # 保证alpha在0和C之间 if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS. alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) # 如果界限值相同,则不做处理直接跳出本次循环 if L == H: print("L==H"); return 0 """ 主要区分 """ # 最优修改量,求两个向量的内积(核函数) # eta = 2.0 * oS.X[i, :]*oS.X[j, :].T - oS.X[i, :]*oS.X[i, :].T - oS.X[j, :]*oS.X[j, :].T eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j] """ 主要区分 """ # 如果最优修改量大于0,则不做处理直接跳出本次循环,这里对真实SMO做了简化处理 if eta >= 0: print("eta>=0"); return 0 # 计算新的alphas[j]的值 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta # 对新的alphas[j]进行阈值处理 oS.alphas[j] = clipAlpha(oS.alphas[j], H, L) # 更新误差缓存 updateEkK(oS, j) # 如果新旧值差很小,则不做处理跳出本次循环 if (abs(oS.alphas[j] - alpahJold) < 0.00001): print("j not moving enough"); return 0 # 对i进行修改,修改量相同,但是方向相反 oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alpahJold - oS.alphas[j]) # 更新误差缓存 updateEkK(oS, i) """ 主要区分 """ # 更新常数项 # b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :]*oS.X[i, :].T - oS.labelMat[j] * (oS.alphas[j] - alpahJold) * oS.X[i, :]*oS.X[j, :].T # b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :]*oS.X[j, :].T - oS.labelMat[j] * (oS.alphas[j] - alpahJold) * oS.X[j, :]*oS.X[j, :].T b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (oS.alphas[j] - alpahJold) * oS.K[i, j] b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (oS.alphas[j] - alpahJold) * oS.K[j, j] """ 主要区分 """ # 谁在0到C之间,就听谁的,否则就取平均值 if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[i]): oS.b = b2 else: oS.b = (b1 + b2) / 2.0 # 成功返回1 return 1 # 失败返回0 else: return 0 def smoPK(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin', 0)): """ Function: 完整SMO算法 Input: dataMatIn:数据集 classLabels:类别标签 C:常数C toler:容错率 maxIter:最大的循环次数 kTup:速度参数 Output: b:常数项 alphas:数据向量 """ # 新建数据结构对象 oS = optStructK(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup) # 初始化迭代次数 iter = 0 # 初始化标志位 entireSet = True; alphaPairsChanged = 0 # 终止条件:迭代次数超限、遍历整个集合都未对alpha进行修改 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 # 根据标志位选择不同的遍历方式 if entireSet: # 遍历任意可能的alpha值 for i in range(oS.m): # 选择第二个alpha值,并在可能时对其进行优化处理 alphaPairsChanged += innerLK(i, oS) print("fullSet, iter: %d i: %d, pairs changed %d" % (iter, i, alphaPairsChanged)) # 迭代次数累加 iter += 1 else: # 得出所有的非边界alpha值 nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] # 遍历所有的非边界alpha值 for i in nonBoundIs: # 选择第二个alpha值,并在可能时对其进行优化处理 alphaPairsChanged += innerLK(i, oS) print("non-bound, iter: %d i: %d, pairs changed %d" % (iter, i, alphaPairsChanged)) # 迭代次数累加 iter += 1 # 在非边界循环和完整遍历之间进行切换 if entireSet: entireSet = False elif (alphaPairsChanged == 0): entireSet =True print("iteration number: %d" % iter) # 返回常数项和数据向量 return oS.b, oS.alphas """测试函数。整个代码中最重要的是for循环开始的那两行,他们给出了如何利用核函数进行分类。首先利用结构初始化方法中使用过的 kernelTrans()函数,得到转换后的数据。然后,再用其与前面的alpha及类别标签值求积。特别需要注意观察的是,我们是如何做到只需 要支持向量数据就可以进行分类的 """ def testRbf(k1=1.3): """ Function: 利用核函数进行分类的径向基测试函数 Input: k1:径向基函数的速度参数 Output: 输出打印信息 """ # 导入数据集 dataArr, labelArr = loadDataSet('testSetRBF.txt') # 调用Platt SMO算法 b, alphas = smoPK(dataArr, labelArr, 200, 0.00001, 10000, ('rbf', k1)) # 初始化数据矩阵和标签向量 datMat = mat(dataArr); labelMat = mat(labelArr).transpose() # 记录支持向量序号 svInd = nonzero(alphas.A > 0)[0] # 读取支持向量 sVs = datMat[svInd] # 读取支持向量对应标签 labelSV = labelMat[svInd] # 输出打印信息 print("there are %d Support Vectors" % shape(sVs)[0]) # 获取数据集行列值 m, n = shape(datMat) # 初始化误差计数 errorCount = 0 # 遍历每一行,利用核函数对训练集进行分类 for i in range(m): # 利用核函数转换数据 kernelEval = kernelTrans(sVs, datMat[i,:], ('rbf', k1)) # 仅用支持向量预测分类 predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b # 预测分类结果与标签不符则错误计数加一 if sign(predict) != sign(labelArr[i]): errorCount += 1 # 打印输出分类错误率 print("the training error rate is: %f" % (float(errorCount)/m)) #导入测试数据集 dataArr, labelArr = loadDataSet('testSetRBF2.txt') # 初始化误差计数 errorCount = 0 #初始化数据矩阵和标签向量 datMat = mat(dataArr); labelMat = mat(labelArr).transpose() # 获取数据集行列值 m, n = shape(datMat) # 遍历每一行,利用核函数对测试集进行分类 for i in range(m): #利用核函数转换数据 kernelEval = kernelTrans(sVs, datMat[i,:], ('rbf', k1)) # 仅用支持向量预测分类 predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b # 预测分类结果与标签不符则错误计数加一 if sign(predict) != sign(labelArr[i]): errorCount += 1 # 打印输出分类错误率 print("the test error rate is: %f" % (float(errorCount)/m)) # test # testRbf() # SVM识别手写数据集 def img2vector(filename): """ Function: 32*32图像转换为1*1024向量 Input: filename:文件名称字符串 Output: returnVect:转换之后的1*1024向量 """ # 初始化要返回的1*1024向量 returnVect = zeros((1, 1024)) # 打开文件 fr = open(filename) # 读取文件信息 for i in range(32): # 循环读取文件的前32行 lineStr = fr.readline() for j in range(32): # 将每行的头32个字符存储到要返回的向量中 returnVect[0, 32*i+j] = int(lineStr[j]) # 返回要输出的1*1024向量 return returnVect def loadImages(dirName): """ Function: 加载图片 Input: dirName:文件路径 Output: trainingMat:训练数据集 hwLabels:数据标签 """ from os import listdir # 初始化数据标签 hwLabels = [] # 读取文件列表 trainingFileList = listdir(dirName) # 读取文件个数 m = len(trainingFileList) # 初始化训练数据集 trainingMat = zeros((m, 1024)) # 填充数据集 for i in range(m): # 遍历所有文件 fileNameStr = trainingFileList[i] # 提取文件名称 fileStr = fileNameStr.split('.')[0] # 提取数字标识 classNumStr = int(fileStr.split('_')[0]) # 数字9记为-1类 if classNumStr == 9: hwLabels.append(-1) # 其他数字记为+1类 else: hwLabels.append(1) # 提取图像向量,填充数据集 trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr)) # 返回数据集和数据标签 return trainingMat, hwLabels def testDigits(kTup = ('rbf', 10)): """ Function: 手写数字分类函数 Input: kTup:核函数采用径向基函数 Output: 输出打印信息 """ # 导入数据集 dataArr, labelArr = loadImages('trainingDigits') # 调用Platt SMO算法 b, alphas = smoPK(dataArr, labelArr, 200, 0.0001, 10000, kTup) # 初始化数据矩阵和标签向量 datMat = mat(dataArr); labelMat = mat(labelArr).transpose() # 记录支持向量序号 svInd = nonzero(alphas.A > 0)[0] # 读取支持向量 sVs = datMat[svInd] # 读取支持向量对应标签 labelSV = labelMat[svInd] # 输出打印信息 print("there are %d Support Vectors" % shape(sVs)[0]) # 获取数据集行列值 m, n = shape(datMat) # 初始化误差计数 errorCount = 0 # 遍历每一行,利用核函数对训练集进行分类 for i in range(m): # 利用核函数转换数据 kernelEval = kernelTrans(sVs, datMat[i, :], kTup) # 仅用支持向量预测分类 predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b # 预测分类结果与标签不符则错误计数加一 if sign(predict) != sign(labelArr[i]): errorCount += 1 # 打印输出分类错误率 print("the training error rate is: %f" % (float(errorCount)/m)) # 导入测试数据集 dataArr, labelArr = loadImages('testDigits') # 初始化误差计数 errorCount = 0 # 初始化数据矩阵和标签向量 datMat = mat(dataArr); labelMat = mat(labelArr).transpose() # 获取数据集行列值 m, n = shape(datMat) # 遍历每一行,利用核函数对测试集进行分类 for i in range(m): # 利用核函数转换数据 kernelEval = kernelTrans(sVs, datMat[i, :], kTup) # 仅用支持向量预测分类 predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b # 预测分类结果与标签不符则错误计数加一 if sign(predict) != sign(labelArr[i]): errorCount += 1 # 打印输出分类错误率 print("the test error rate is: %f" % (float(errorCount)/m)) testDigits(('rbf', 20)) """支持向量机是一种分类器。之所以称为“机”是因为它会产生一个二值决策结果,即它是一种决策“机”。支持向量机的泛化错误率 较低,具有良好的学习能力,且学到的结果具有很好的推广性。这些优点使得支持向量机十分流行,有些人认为他是监督学习中 最好的定式算法 """
[ "957628963@qq.com" ]
957628963@qq.com
7cb2c5805eecc9c8faee87a4930868df40309f57
d18a109c3edea57ffada8b7e8aa52e6923986ca2
/farmacia/Farmaceutico.py
7c2022c8e44fac6a8eead73383cc2dea472377f0
[]
no_license
LuisNataan/sistema-farmacia
ac9bbd71a6d3e72e2b93e8e740731dd1adb3a2fa
174b106044b1a68c3cce5f2ac2441ba50196de4d
refs/heads/master
2023-04-09T19:20:20.044014
2021-04-15T20:13:55
2021-04-15T20:13:55
358,262,032
0
0
null
null
null
null
UTF-8
Python
false
false
1,344
py
import Receita import Paciente from datetime import date class Farmaceutico: def __init__(self, nome): self.nome = nome def receber_receita(self, paciente: Paciente, receita: Receita): self.paciente = paciente self.receita = paciente def validar_receita(self): validade = self.receita.validade.split("/") if len(validade) == 2: print(validade.reverse()) ano = int(validade[0]) mes = int(validade[1]) dia = int(validade[2]) validacoes = list() validacoes.append(self.paciente == self.receita.nome) validacoes.append(date(dia, mes, ano) >= date.today()) validacoes.append(self.paciente.idade >= 18) return all(validacoes) def verificar_estoque(self): if not self.validar_receita(): return False nome = '' quantidade = 0 with open("Estoque.txt", "r") as file: for line in file: medicamento = line.split(';') # Verifica se if medicamento[1] == self.receita.medicamento: nome = medicamento[1] quantidade = int(medicamento[3].strip()) break def entregar_medicamento(self): pass def retirar_item_estoque(self): pass
[ "luisnataan556@gmail.com" ]
luisnataan556@gmail.com
b84badf5453b9da77d6585eaf0168e546e5134ae
bd79fcab4cc4914acca2b0c8b13c0917124ef22b
/gwmemory_install/waveforms/__init__.py
7c2b03b41f0c1e5c49cc360d7efc990437b4f212
[]
no_license
TheArctarax/Mumma-project-data
14b9cfe667999e5b5f072d6d23edd575aa0e0d65
1f7ed64be8cf5dfbf20ea4b16c4b245f2c50ee27
refs/heads/master
2023-01-01T00:23:46.302217
2020-10-17T00:31:58
2020-10-17T00:31:58
272,562,449
0
0
null
null
null
null
UTF-8
Python
false
false
80
py
from .base import MemoryGenerator from . import approximant, mwm, nr, surrogate
[ "alvin.li@ligo.org" ]
alvin.li@ligo.org
46aee3666a0496d5b3452ceceaeb8da128d70334
6ec91b363b077bffd33f15300a0935124e9fb915
/Cracking_the_Code_Interview/Leetcode/1.Array/83.Remove_Duplicates_from_Sorted_List.py
a9f8e6c2b167393289ada32678731d6b428df83f
[]
no_license
lzxyzq/Cracking_the_Coding_Interview
03232515ae8eb50394d46322d36b230d1a626fcf
79dee7dab41830c4ff9e38858dad229815c719a0
refs/heads/master
2023-06-05T19:52:15.595289
2021-06-23T22:46:02
2021-06-23T22:46:02
238,068,000
0
1
null
null
null
null
UTF-8
Python
false
false
727
py
''' @Author: your name @Date: 2020-05-31 21:12:01 @LastEditTime: 2020-05-31 21:13:10 @LastEditors: your name @Description: In User Settings Edit @FilePath: /Cracking_the_Code_Interview/Leetcode/Array/83.Remove_Duplicates_from_Sorted_List.py ''' # Given a sorted linked list, delete all duplicates such that each element appear only once. ''' Example 1: Input: 1->1->2 Output: 1->2 Example 2: Input: 1->1->2->3->3 Output: 1->2->3 ''' class Solution: def deleteDuplicates(self, head): current = head while current and current.next: if current.next.val == current.val: current.next = current.next.next else: current = current.next return head
[ "lzxyzq@gmail.com" ]
lzxyzq@gmail.com
d86206d066645cd8abe5f89fee940a84256ca9f5
d9c4257225ec78fa89f5fffdb831078baa7a6831
/generate_googleip.py
43417a5e18c6a51d36d578990b4a9a8051f5a13f
[]
no_license
bygloam/checkiptools
e892be612748411db762029447f0e46b50fabbcf
0a0b9e6511f7b718142beabb3096b5e363917307
refs/heads/master
2021-01-18T03:50:23.526187
2015-09-28T06:38:09
2015-09-28T06:38:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,947
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import re import netaddr import ip_utils # generate_ip_range 整合IP段去黑名单IP并排序 # test_load 计数IP数量 # ip_range_to_cidrs 将IP转换为CIDR格式 # Support format(支持的格式): # # Comment (#后面为注释) # # range seperater: # 每个范围可以用 逗号(,) 和竖线(|) 或分行进行分割 # # Single rang format: (单个范围的格式): # "xxx.xxx.xxx-xxx.xxx-xxx" (范围格式) # "xxx.xxx.xxx." (前缀格式) # "xxx.xxx.xxx.xxx/xx" (掩码格式) # "xxx.xxx.xxx.xxx" (单个ip) # 包含原始IP段的文件 f = open("ip_original_list.txt") input_good_range_lines = f.read() # IP段黑名单 input_bad_ip_range_lines = """ 45.64.20.0/24 #中国澳门 58.205.224.0/24 #湖北省武汉市华中科技大学教育网无线校园项目 58.205.224.0/24 #中国 湖北 武汉 华中科技大学 58.240.77.0/24 #中国 江苏 南京 58.240.77.0/24 #江苏省南京市联通 59.78.209.0/24 #中国 上海 上海 59.78.209.0/24 #上海市腾讯公司教育网节点 101.198.128.0/19 #北京市奇虎360科技有限公司 103.7.28.0/22 #香港腾讯公司数据中心 110.75.151.0/24 #中国 浙江 杭州 111.30.128.0/24 #中国 天津 天津 111.30.136.0/24 #中国 天津 天津 111.30.139.0/24 #中国 天津 天津 111.30.140.0/24 #中国 天津 天津 115.159.0.0/24 #中国 上海 上海 119.28.0.0/16 #香港北京康盛新创科技有限责任公司 119.29.0.0/16 #广东省广州市海珠区腾讯云服务器(广州市海珠区新港中路397号TIT创意园) 119.29.0.0/24 #中国 广东 广州 119.29.17.0/24 #中国 广东 广州 119.57.55.0/24 #中国 北京 北京 119.57.55.0/24 #北京市东四IDC机房 119.147.146.0/24 #中国 广东 东莞 121.51.0.0/24 #中国 广东 121.194.0.0/24 #中国 北京 北京 121.195.178.0/24 #中国 北京 北京 124.160.89.0/24 #中国 浙江 杭州 130.211.0.0/16 #用了会出现错误 180.93.32.0/24 #越南 CZ88.NET, 用了会出现错误 180.96.70.0/23 #江苏省南京市电信 180.149.61.0/24 #印度NKN Research Institutes, 用了会出现错误 180.150.1.0/24 #澳大利亚 CZ88.NET, 用了会出现错误 180.188.250.0/24 #印度 CZ88.NET, 用了会出现错误 182.254.0.0/24 #中国 广东 广州 202.69.26.0/24 #中国 广东 深圳 202.86.162.0/24 #中国 澳门 202.106.93.0/24 #中国 北京 北京 203.195.128.0/24 #中国 广东 广州 203.208.32.0/24 #中国 北京 北京 GOOGLE 203.208.40.0/24 #中国 北京 北京 GOOGLE 203.208.41.0/24 #中国 北京 北京 GOOGLE 203.208.48.0/24 #中国 北京 北京 GOOGLE 203.208.49.0/24 #中国 北京 北京 GOOGLE 203.208.50.0/24 #中国 北京 北京 GOOGLE 203.208.52.0/24 #中国 北京 北京 GOOGLE 203.205.128.0/19 #香港腾讯公司数据中心 216.58.196.0/24 #有问题216段 216.58.208.0/20 #有问题216段 255.255.255.255/32 #for algorithm """ def print_range_list(ip_range_list): for ip_range in ip_range_list: begin = ip_range[0] end = ip_range[1] print ip_utils.ip_num_to_string(begin), ip_utils.ip_num_to_string(end) def parse_range_string(input_lines): ip_range_list = [] ip_lines_list = re.split("\r|\n", input_lines) for raw_line in ip_lines_list: raw_s = raw_line.split("#") context_line = raw_s[0] context_line = context_line.replace(' ', '') ips = re.split(",|\|", context_line) for line in ips: if len(line) == 0: #print "non line:", line continue begin, end = ip_utils.split_ip(line) if ip_utils.check_ip_valid(begin) == 0 or ip_utils.check_ip_valid(end) == 0: print("ip format is error,line:%s, begin: %s,end: %s" % (line, begin, end)) continue nbegin = ip_utils.ip_string_to_num(begin) nend = ip_utils.ip_string_to_num(end) ip_range_list.append([nbegin,nend]) #print begin, end ip_range_list.sort() return ip_range_list def merge_range(input_ip_range_list): output_ip_range_list = [] range_num = len(input_ip_range_list) last_begin = input_ip_range_list[0][0] last_end = input_ip_range_list[0][1] for i in range(1,range_num): ip_range = input_ip_range_list[i] begin = ip_range[0] end = ip_range[1] #print "now:",ip_utils.ip_num_to_string(begin), ip_utils.ip_num_to_string(end) if begin > last_end + 2: #print "add:",ip_utils.ip_num_to_string(begin), ip_utils.ip_num_to_string(end) output_ip_range_list.append([last_begin, last_end]) last_begin = begin last_end = end else: print "merge:", ip_utils.ip_num_to_string(last_begin), ip_utils.ip_num_to_string(last_end), ip_utils.ip_num_to_string(begin), ip_utils.ip_num_to_string(end) if end > last_end: last_end = end output_ip_range_list.append([last_begin, last_end]) return output_ip_range_list def filter_ip_range(good_range, bad_range): out_good_range = [] bad_i = 0 bad_range_num = len(bad_range) bad_begin, bad_end = bad_range[bad_i] for good_begin, good_end in good_range: while True: if good_begin > good_end: print("bad good ip range when filter:%s-%s" % (ip_utils.ip_num_to_string(good_begin), ip_utils.ip_num_to_string(good_end))) if good_end < bad_begin: # case: # [ good ] # [ bad ] out_good_range.append([good_begin, good_end]) break elif bad_end < good_begin: # case: # [ good ] # [ bad ] bad_i += 1 bad_begin, bad_end = bad_range[bad_i] continue elif good_begin <= bad_begin and good_end <= bad_end: # case: # [ good ] # [ bad ] print("cut bad ip case 1:%s - %s" % (ip_utils.ip_num_to_string(bad_begin), ip_utils.ip_num_to_string(good_end))) if bad_begin - 1 > good_begin: out_good_range.append([good_begin, bad_begin - 1]) break elif good_begin >= bad_begin and good_end >= bad_end: # case: # [ good ] # [ bad ] print("cut bad ip case 2:%s - %s" % (ip_utils.ip_num_to_string(good_begin), ip_utils.ip_num_to_string(bad_end))) good_begin = bad_end + 1 bad_i += 1 bad_begin, bad_end = bad_range[bad_i] continue elif good_begin <= bad_begin and good_end >= bad_end: # case: # [ good ] # [ bad ] out_good_range.append([good_begin, bad_begin - 1]) print("cut bad ip case 3:%s - %s" % (ip_utils.ip_num_to_string(bad_begin), ip_utils.ip_num_to_string(bad_end))) good_begin = bad_end + 1 bad_i += 1 bad_begin, bad_end = bad_range[bad_i] continue elif good_begin >= bad_begin and good_end <= bad_end: # case: # [good] # [ bad ] print("cut bad ip case 4:%s - %s" % (ip_utils.ip_num_to_string(good_begin), ip_utils.ip_num_to_string(good_end))) break else: print("any case?") return out_good_range def generate_ip_range(): print("\nGood ip range:") ip_range_list = parse_range_string(input_good_range_lines) ip_range_list = merge_range(ip_range_list) print("\nBad ip range:") bad_range_list = parse_range_string(input_bad_ip_range_lines) bad_range_list = merge_range(bad_range_list) print("\nCut Bad ip range:") ip_range_list = filter_ip_range(ip_range_list, bad_range_list) print("\nOutput ip range") print_range_list(ip_range_list) # write out fd = open("googleip.txt", "w") for ip_range in ip_range_list: begin = ip_range[0] end = ip_range[1] #print ip_utils.ip_num_to_string(begin), ip_utils.ip_num_to_string(end) fd.write(ip_utils.ip_num_to_string(begin)+ "-" + ip_utils.ip_num_to_string(end)+"\n") fd.close() generate_ip_range() # 计数IP数量,源代码来自XX-Net def test_load(): print("\nBegin test load googleip.txt") fd = open("googleip.txt", "r") if not fd: print "open googleip.txt fail." exit() amount = 0 for line in fd.readlines(): if len(line) == 0 or line[0] == '#': continue begin, end = ip_utils.split_ip(line) nbegin = ip_utils.ip_string_to_num(begin) nend = ip_utils.ip_string_to_num(end) num = nend - nbegin amount += num print ip_utils.ip_num_to_string(nbegin), ip_utils.ip_num_to_string(nend), num fd.close() print "amount ip:", amount test_load() # 转换IP范围,需要 netaddr,将 xxx.xxx.xxx.xxx-xxx.xxx.xxx.xxx 转换成 xxx.xxx.xxx.xxx/xx def ip_range_to_cidrs(): ip_lists = [] ip_lists_2 = [] ip_range = open('googleip.txt') for x in ip_range: sline = x.strip().split('-') ip_lists.append(sline) for ip_line in ip_lists: cidrs = netaddr.iprange_to_cidrs(ip_line[0], ip_line[1]) for k, v in enumerate(cidrs): iplist = v ip_lists_2.append(iplist) #print ip_lists_2 fd = open('googleip.ip.txt', 'w') for ip_cidr in ip_lists_2: #print ip_cidr fd.write(str(ip_cidr) + "\n") fd.close() ip_range_to_cidrs()
[ "x19960620" ]
x19960620
8e8d199f66b95bc37ea3a43acad4e07b5f58432a
b4b232b43fe6e78958fd7acc89bf4ad3cf952e14
/hw1bp6.py
946ca62e1e6ac458207c2385cdd345ff1ecbfb43
[]
no_license
tsbertalan-homework/holmes323hw1b
0e174fa218d89a4a617e5b7fb1f666c5ec203cf6
222d90f58668bd2f110032ceec48e620290551de
refs/heads/master
2020-05-30T23:10:44.152141
2014-02-25T18:18:51
2014-02-25T18:18:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,970
py
''' Created on Feb 24, 2014, 3:58:19 PM @author: bertalan ''' import numpy as np import matplotlib.pyplot as plt from Integrators import integrate, logging def FitzhughNagumo(Iapp): '''This closure gives the RHS function for a particular applied current value.''' def dXdt(X, t): '''t is not used (the ODE is autonomous)''' v = X[0] r = X[1] tv = .1 tr = 1 dvdt = (v - v**3 / 3 - r + Iapp) / tv drdt = (-r + 1.25 * v + 1.5) / tr return np.array([dvdt, drdt]) return dXdt fig = plt.figure() Iapps = 0, 0.9, 1.01, 1.5, 2.05, 2.1 # for Iapp = 0, the fixed point is (-3/2, -3/8) axes = [] for i in range(6): axes.append(fig.add_subplot(2, 3, i+1)) for ax, Iapp in zip(axes, Iapps): logging.info('Iapp=%f' % Iapp) dXdt = FitzhughNagumo(Iapp) ax.axhline(0, color='red') ax.axvline(0, color='red') ax.scatter(-3./2, -3./8, color='blue') for v0 in np.linspace(-2, 2.5, 8): # logging.info('v0=%s' % str(v0)) for r0 in np.linspace(-1, 3.5, 8): X0 = v0, r0 logging.info('X0=%s' % str(X0)) # Uncomment these two lines to verify the Euler solution with RK4: #X, T = integrate(dXdt, .01, 0, 10.0, X0, method='rungekutta') #ax.plot(X[0,:], X[1,:], 'r.') X, T = integrate(dXdt, .01, 0, 10.0, X0, method='euler') ax.plot(X[0,:], X[1,:], 'k') ax.scatter(X[0,0], X[1,0], color='green') # the initial condition... ax.scatter(X[0,-1], X[1,-1], color='red') # ...and the final point ax.set_title('$I_\mathrm{app} = %.2f$' % Iapp) for i in 0, 1, 2: axes[i].set_xticks([]) for i in 1, 2, 4, 5: axes[i].set_yticks([]) for i in 0, 3: axes[i].set_ylabel('$r(t)$') for i in 3, 4, 5: axes[i].set_xlabel('$v(t)$') for ax in axes: ax.set_xlim(-3, 3) ax.set_ylim(-2, 4) ax.legend() fig.savefig('hw1bp6-flows.pdf') plt.show()
[ "tom@tombertalan.com" ]
tom@tombertalan.com
908ca3d0e98cfce504182b72c1cda8b7034148f1
ce972e94fcdf19d6809d94c2a73595233d1f741d
/catkin_ws/devel/lib/python3/dist-packages/tf2_msgs/msg/_TFMessage.py
7c572a7bef8e93d5b177fa3298b0e13c1f0b6527
[]
no_license
WilliamZipanHe/reward_shaping_ttr
cfa0e26579f31837c61af3e09621b4dad7eaaba2
df56cc0153147bb067bc3a0eee0e1e4e1044407f
refs/heads/master
2022-02-23T05:02:00.120626
2019-08-07T21:52:50
2019-08-07T21:52:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
105
py
/local-scratch/xlv/catkin_ws/devel/.private/tf2_msgs/lib/python3/dist-packages/tf2_msgs/msg/_TFMessage.py
[ "xlv@cs-mars-01.cmpt.sfu.ca" ]
xlv@cs-mars-01.cmpt.sfu.ca
79045d0e08c92e2a3c5caab247a184ca753ba7e7
10f047c7631b3aad90c7410c567c588993bfa647
/PythonDispersal/src/testingTheequations/testingOneandMxRnk.py
fd3836064bed75df86f5c4fa20d5f02e4d5e77cc
[]
no_license
ruthubc/ruthubc
ee5bc4aa2b3509986e8471f049b320e1b93ce1d5
efa8a29fcff863a2419319b3d156b293a398c3a9
refs/heads/master
2021-01-24T08:05:40.590243
2017-08-30T01:37:56
2017-08-30T01:37:56
34,295,740
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
''' Created on Mar 18, 2015 @author: Ruth ''' med_rnk = 50.0 numJuvs = 100.0 inputSlope = 2.0 xbr = 0.5 slp = inputSlope/numJuvs oneRnk = ((-1 + (med_rnk * slp) + xbr) /slp) # The max rank where everyone gets 1 (max) food mxRnk = (((med_rnk * slp) + xbr) / slp) # the max rank that receives food print "one rank", oneRnk print "max rank", mxRnk
[ "rvsharpe.ubc@gmail.com@69186f74-b5a6-b451-f1d6-44d06303a42d" ]
rvsharpe.ubc@gmail.com@69186f74-b5a6-b451-f1d6-44d06303a42d
5bd256c007d5edd5a6b9ae55770467ce2b973d6e
99c04a62991acb6149c719baed073d64999c8275
/test/pos.py
be997fd354ea8a1dae104af2546b4c3de1d9741c
[]
no_license
SaraBazargan/SpellChecker
924e6dddd456cba57df5318c4de247e57deffb1b
22866d806647973a12738fb8177efe44d3021339
refs/heads/master
2020-07-07T16:59:15.974046
2019-08-20T16:30:11
2019-08-20T16:30:11
203,414,104
0
0
null
null
null
null
UTF-8
Python
false
false
2,601
py
import codecs import lxmls.sequences.hmm as hmmc import simple_sequence as sq simple=sq.SimpleSequence() hmm = hmmc.HMM(simple.x_dict, simple.y_dict) hmm.train_supervised(simple.train,smoothing=0.0000001) ''' print "Initial Probabilities:" , hmm.initial_probs print "Transition Probabilities:" , hmm.transition_probs print "Final Probabilities:" , hmm.final_probs print "Emission Probabilities" , hmm.emission_probs initial_scores, transition_scores, final_scores, emission_scores = hmm.compute_scores(simple.train.seq_list[0]) print 'initial_scores=' , initial_scores print 'transition_scores' , transition_scores print 'final_scores' , final_scores print 'emission_scores' ,emission_scores import numpy as np #from lxmls.sequences.log_domain import * a = np.random.rand(10) print np.log(sum(np.exp(a))) log_likelihood, forward = hmm.decoder.run_forward(initial_scores, transition_scores,final_scores, emission_scores) print 'Log-Likelihood =', log_likelihood state_posteriors, _, _ = hmm.compute_posteriors(initial_scores,transition_scores,final_scores,emission_scores) print state_posteriors[0] print len(state_posteriors) y_pred = hmm.posterior_decode(simple.test.seq_list[0]) print len(simple.test.seq_list) print "Prediction test 0:", y_pred print "Truth test 0:", simple.train.seq_list[0] log_likelihood, backward = hmm.decoder.run_backward(initial_scores, transition_scores, final_scores, emission_scores) #print 'Log-Likelihood =', log_likelihood ''' Err=[] a=float(len(simple.test.seq_list)) print 'Number Of Characters For Test :',int(a) output = '' #h=0 #q=0 #count=0 for e in range(0,len(simple.test.seq_list)): y_pred, score = hmm.viterbi_decode(simple.test.seq_list[e]) #print y_pred #print "Viterbi decoding Prediction test 0 with smoothing:", y_pred, score #h=h+1 #x=str(simple.test.seq_list[e]) y=str(y_pred) #count =count +1 #x1=x.rstrip().split(' ') y1=y.rstrip().split(' ') #for u in range(0,len(x1)): # tmp1=x1[u].split('/') # tmp1=str(tmp1[1]).rstrip().split('@') tmp2=y1[0].split('/') tmp2=str(tmp2[1]).rstrip().split('@') if tmp2[0] == '_': output = output + ' ' else: output = output + tmp2[0] fp = open('output.txt', 'w' , 'utf8') fp.write(output) fp.close() # if tmp1[1]==tmp2[1]: # q=q+1 #print x1[u].split('/'),y1[u].split('/') #print 'q=',q #print 'count=',count #print y #print x[0],x[6] #print 'Mean_Err_Correcting typos10 without a dictionary=',1-(float(q)/count) #print Err
[ "sara.bazargan@gmail.com" ]
sara.bazargan@gmail.com
768845d0f820cd84af0e1e5bef463ee48cb0ca5c
f441552f25387a2d6be4052fa54fb83d1ef0de68
/make_test_valid.py
8a66b57f3e5c5e54258051623141d892c3f2e5a3
[]
no_license
knkumar/find_mentions
e7d3138c47dc420204a4740fb359d5864b726c9d
4fddcdae0621a078864f70f4f98f9d906017af70
refs/heads/master
2021-01-21T12:39:28.209813
2012-03-27T21:56:21
2012-03-27T21:56:21
2,906,541
0
0
null
null
null
null
UTF-8
Python
false
false
4,851
py
#L645 Final Project #Dec 24 2011 #This file writes the "test file" with the mention/coref information as input to the scorer # The way we do this is to mark every start with (0 and every end with 0) # if there are more than 2 coref-spans starting on the same word, then the longer span start first followed by | - (0|(0 and end with 0) or 0)|0) import re import pickle import numpy as np out = open("../conll_st_Data/test/final_test.txt","wb") class mention_frame: def __init__(self, number, sent, pos, bracket, nps_finder): self.sent_number = number self.sent = sent self.pos_tags = pos self.bracket = bracket self.nps = nps_finder def get_nps(self): ret_np = {} def insert_nps(key, val): ret_np[key] = val map(lambda key: insert_nps(key,map(lambda x,y,z: [x,x+y,z], self.nps[key][0],self.nps[key][1],self.nps[key][2])), self.nps.keys()) return ret_np def get_sent(self,start,end): return ' '.join(self.sent[start:end]) def get_sent_full(self): return ' '.join(self.sent) #insert the tokens into the dictionary def insert_tokens(sent_feat,token, num): if num in sent_feat.keys(): temp = sent_feat[num] temp.append(token) sent_feat[num] = temp else: sent_feat[num] = [token] return sent_feat #extract interesting features from the data def extract_features(sent_features, tokens): for i in range(len(tokens)): sent_features = insert_tokens(sent_features, tokens[i], i) return sent_features def flatten_spans(mention_spans,num): spans = [] for key in mention_spans[num].keys(): for item in mention_spans[num][key]: if item[0] == item[1]: spans.append([ item[0], item[1]]) else: spans.append([ item[0], item[1] ]) return spans def mark_spans(sent_features, span, coref): start = sent_features[coref][span[0]] try: end = sent_features[coref][span[1]] except: span[1] = span[1]-1 end = sent_features[coref][span[1]] if start==end: if start == '-': sent_features[coref][span[0]] = '(0)' elif re.match(".*0\)",start): sent_features[coref][span[0]] = start+'(0)' else: sent_features[coref][span[0]] = start+'|(0)' else: if start == '-': sent_features[coref][span[0]] = '(0' elif re.match(".*0\)",start): sent_features[coref][span[0]] = start+'(0' else: sent_features[coref][span[0]] = start+'|(0' if end == '-': sent_features[coref][span[1]] = '0)' elif re.match("\(0.*",end): sent_features[coref][span[1]] = '0)'+end else: sent_features[coref][span[1]] = '0)|'+end return sent_features[coref] def mark_all_spans(sent_features, mention_spans, singleton_span, num): coref = max(sent_features.keys()) spans = flatten_spans(mention_spans,num) for span in spans: sent_features[coref] = mark_spans(sent_features, span, coref) return sent_features def write_back(sent_features): #print sent_features line = {} values = np.array(sent_features.values()) for i in range(len(sent_features.values()[0])): out.write(' '.join(values[:,i])+"\n") out.write("\n") def mark_coref(lines, mention_span, singleton_span): # need a dict for every line in the input, enter the coref_column according to the spans for the sent_num in mention_span sent_features = {} sent_num = 0 for line in lines: #for every line in input tokens = line.strip().split() #get all the columns for that word if len(tokens) !=0: if len(tokens) < 12: # if this is a new sentence ## write this as it is :) out.write(line) sent_features = {} continue sent_features = extract_features(sent_features,tokens) # first mark all endings # if coref_column has - insert (0 --- if coref_column has (0 insert |(0 else: sent_features = mark_all_spans(sent_features, mention_span, singleton_span, sent_num) write_back(sent_features) sent_num += 1 sent_features = {} def main(): #""" data = open("../conll_st_Data/test/en.finalCoNLL_test.txt","rb") mention_span = pickle.load(open("result.pkl","rb")) singleton_span = pickle.load(open("singleton.pkl","rb")) lines = iter(data.readlines()) sent_features = ['','',''] lines.next() mark_coref(lines,mention_span,singleton_span) # contains parses for all the sentences #sent_num : {column_no : [[words],[spans],[nps|args]]} #pickle.dump(sent_dict,sent_out) data.close() """ test = "(NP(NP**)**)(VP*(ADJP*(PP*(NP***))))*" ret_np = get_nps(test,"NP") print ret_np #""" if __name__ == "__main__": main()
[ "krankumar@gmail.com" ]
krankumar@gmail.com
ed47896ec418bbdf18a3fc7db9e939b7324fa5ca
5cf44be60a9accc2aa8b0cea1c8790f023b10553
/build/lib.linux-x86_64-2.7/npmc/atom_class.py
e8140144adf3d3aa48c68cbd9a1137b351c65eed
[]
no_license
smerz1989/np-mc
7ecc36864a1975bde42d0ddf579e8a1bb9666de9
3d13104edf1b36f0817928f262a0b9ae40f6bfb1
refs/heads/master
2023-07-20T03:25:48.891576
2023-03-07T20:55:58
2023-03-07T20:55:58
37,389,780
0
2
null
2023-07-06T21:15:55
2015-06-13T22:14:58
Python
UTF-8
Python
false
false
2,224
py
"""This module contains the Atom class and all the helper functions associated with atoms. """ import read_lmp_rev6 as rdlmp class Atom(object): """The Atom class represents an atom described by the LAMMPS full atom style. Parameters ---------- atomID : int The unique integer identifier of the atom as specified in the LAMMPS input file. molID : int The unique integer identifier of the molecule associated with this atom as specified in the LAMMPS input file. atomType : int The integer that identifies the atom type as specified in the LAMMPS input file. charge : float, optional The charge on the atom defaults to 0. position : float vector, optional A three element vector which represent the X,Y,Z coordinates of the atom. It defaults to a vector of [X=0,Y=0,Z=0]. """ def __init__(self,atomID,molID,atomType,charge=0.,position=[0.,0.,0.]): self.atomID = int(atomID) self.molID = int(molID) self.atomType = int(atomType) self.charge = float(charge) self.position = position def __eq__(self,other): if isinstance(other, self.__class__): return self.atomID == other.atomID else: return False def __neq__(self,other): return not self.__eq__(other) def get_pos(self): return self.position def get_charge(self): return self.charge def get_type(self): return self.atomType def get_mol_ID(self): return self.molID def get_atom_ID(self): return self.atomID def loadAtoms(filename): """Loads the atoms from a LAMMPS input file and returns a list of Atom object which represent those atoms. Parameters ---------- filename : str The name of the LAMMPS input file which contain the atoms Returns ------- Atom List A list of Atom objects which contains the atom info in the given LAMMPS input file. """ atoms = rdlmp.readAtoms(filename) atom_list = [Atom(atom[0],atom[1],atom[2],atom[3],atom[4:7]) for atom in atoms] return atom_list
[ "stevennmerz@gmail.com" ]
stevennmerz@gmail.com
07669307b0bba93e4d0932b52de1644fa2f27b4f
5e24036ad211e48d3563e894706f9ac4e061cb6b
/flatdata-py/generator/tree/nodes/trivial/enumeration_value.py
25cbf82d8e24defe0542ab18359903f5848dcdc1
[ "Apache-2.0" ]
permissive
tianchengli/flatdata
b7a02d23cf8bb5e84e8e1b01d2f94874c832876b
03ccf3669254ddef171d23a287c643dcd28650d2
refs/heads/master
2020-04-29T15:49:02.229669
2019-03-17T21:34:51
2019-03-17T21:34:51
176,240,604
0
0
Apache-2.0
2019-03-18T08:50:36
2019-03-18T08:50:35
null
UTF-8
Python
false
false
538
py
from generator.tree.nodes.node import Node class EnumerationValue(Node): def __init__(self, name, value, properties=None): super(EnumerationValue, self).__init__(name=name, properties=properties) self._value = value @staticmethod def create(properties, value): result = EnumerationValue(name=properties.name, properties=properties, value=value) return result @property def doc(self): return self._properties.doc @property def value(self): return self._value
[ "noreply@github.com" ]
tianchengli.noreply@github.com
66953d5904633965862c7f85713173bc73e0f6f7
0a5a8a2a5ca8156abd04b9ec01f43dac15d6d396
/lists.py
0fcc574ae9f8424992b72194fc43fed57d77941d
[]
no_license
AlexandrTyurikov/rock_paper_scissors_bot
1343a095bd877e218b1746991cb3d3304848a548
ae0f547fb23cb08dfea4988d50b7b73734b52988
refs/heads/master
2020-08-23T20:46:11.678830
2020-03-12T01:01:19
2020-03-12T01:01:19
216,704,070
0
0
null
null
null
null
UTF-8
Python
false
false
5,802
py
from random import choice def rand_rps(): list_rps = [ "👊🏻", "✌🏻", "✋🏻" ] ran_rps = choice(list_rps) return ran_rps def rand_win(): list_win = [ "👍 Ты победил, давай еще❗️", "👍 Ты справился❗️", "👍 Я проиграл❗️", "👍 Я повержен, сыграем вновь❓", "👍 Ты одержал победу❗️", "👍 Красавчик, может еще разок❓", "👍 Твоя взяла, еще?", "👍 Победа осталась за табой❗️", "👍 Уделал меня, повторим?", "👍 Разбил меня в пух и прах❗️", "👍 Разгромил меня❗️", "👍 Переиграл меня, может еще❓" ] ran_win = choice(list_win) return ran_win def rand_lose(): list_lose = [ "👎 Я победил, повторим❓", "👎 Я справился❗️", "👎 Ты проиграл, давай еще❗️", "👎 Ты повержен, сыграем вновь❓", "👎 Я одержал победу❗️", "👎 Тебе не повезло, может еще разок❓", "👎 Моя взяла, еще❓", "👎 Победа осталась за мной❗️", "👎 Уделал тебя❗️", "👎 Разгромил тебя, может еще❓", "👎 Я переиграл тебя❗️", "👎 Ты продул❗️" ] ran_lose = choice(list_lose) return ran_lose def rand_draw(): list_draw = [ "🤝 Ничья, ходи еще раз❗️", "🤝 Победила дружба, еще❓", "🤝 Мир! Может еще разок❓" ] ran_draw = choice(list_draw) return ran_draw def rand_emoji(): list_emoji = [ '😀', '😃', '😄', '😁', '😆', '😅', '🤣', '😂', '🙂', '🙃', '😉', '😊', '😇', '🥰', '😍', '🤩', '😘', '😗', '☺️', '☺', '😚', '😙', '😋', '😛', '😜', '🤪', '😝', '🤑', '🤗', '🤭', '🤫', '🤔', '🤐', '🤨', '😐', '😑', '😶', '😏', '😒', '🙄', '😬', '🤥', '😌', '😔', '😪', '🤤', '😴', '😷', '🤒', '🤕', '🤢', '🤮', '🤧', '🥵', '🥶', '🥴', '😵', '🤯', '🤠', '🥳', '😎', '🤓', '🧐', '😕', '😟', '🙁', '☹️', '☹', '😮', '😯', '😲', '😳', '🥺', '😦', '😧', '😨', '😰', '😥', '😢', '😭', '😱', '😖', '😣', '😞', '😓', '😩', '😫', '🥱', '😤', '😡', '😠', '🤬', '😈', '👿', '💀', '☠️', '☠', '💩', '🤡', '👹', '👺', '👻', '👽', '👾', '🤖', '😺', '😸', '😹', '😻', '😼', '😽', '🙀', '😿', '😾', '🙈', '🙉', '🙊', '🐵', '🐒', '🦍', '🦧', '🐶', '🐕', '🦮', '🐕‍🦺', '🐩', '🐺', '🦊', '🦝', '🐱', '🐈', '🦁', '🐯', '🐅', '🐆', '🐴', '🐎', '🦄', '🦓', '🦌', '🐮', '🐂', '🐃', '🐄', '🐷', '🐖', '🐗', '🐽', '🐏', '🐑', '🐐', '🐪', '🐫', '🦙', '🦒', '🐘', '🦏', '🦛', '🐭', '🐁', '🐀', '🐹', '🐰', '🐇', '🐿️', '🐿', '🦔', '🦇', '🐻', '🐨', '🐼', '🦥', '🦦', '🦨', '🦘', '🦡', '🐾', '🦃', '🐔', '🐓', '🐣', '🐤', '🐥', '🐦', '🐧', '🕊️', '🕊', '🦅', '🦆', '🦢', '🦉', '🦩', '🦚', '🦜', '🐸', '🐊', '🐢', '🦎', '🐍', '🐲', '🐉', '🦕', '🦖', '🐳', '🐋', '🐬', '🐟', '🐠', '🐡', '🦈', '🐙', '🐚', '🐌', '🦋', '🐛', '🐜', '🐝', '🐞', '🦗', '🕷️', '🕷', '🕸️', '🕸', '🦂', '🦟', '🦠', '🦀', '🦞', '🦐', '🦑', '🦪', ] ran_em = choice(list_emoji) return ran_em
[ "tyur.sh@gmail.com" ]
tyur.sh@gmail.com
10fe56ba44affdbad6d967b5a30aa266284a8baf
15c1f0560c3f910fb7c332b2cd0cd9ccdcb230f5
/auto-grader/testCode/testhomework2.py
2e7d967f958b3791e0f1f19bbd26bf2652d2a5a0
[]
no_license
IzayoiNamida/JHU2020_WebSecurity
3356ef578dab48981ca601c8c302947047d721d1
7ce466eace4f9725124e4db43c56790b3f73fea3
refs/heads/master
2023-01-29T15:57:48.556969
2020-12-14T03:46:18
2020-12-14T03:46:18
320,150,131
0
1
null
null
null
null
UTF-8
Python
false
false
777
py
from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from webdriver_manager.chrome import ChromeDriverManager url = "http://127.0.0.1/sampletest.html" driver = webdriver.Chrome(ChromeDriverManager().install()) driver.get(url) total = 10 passed = 0 def test(a,b,c): global passed driver.find_element_by_id("a").clear() driver.find_element_by_id("a").send_keys(a) driver.find_element_by_id("b").clear() driver.find_element_by_id("b").send_keys(b) driver.find_element_by_id("bt").click() val = driver.find_element_by_id("c").text if int(val) == int(c): passed = passed + 1 if __name__ == "__main__": test(1,2,3) test(3,4,7) test(6,7,13) test(10,20,30) print(passed/total)
[ "cuigang@MacBook-Pro.local" ]
cuigang@MacBook-Pro.local
8c0d4280ef7b0ca550d5ae718533d5ce2a45db18
2500528e85c5629432c8e16120891eb75c722475
/dataset_specific.py
8028ba99c37603e4267329763d4e5dce98c3fa1e
[ "BSD-3-Clause" ]
permissive
sunnyhardasani/caleydo_server
443c1dbdcaafcb48ac5ad356a72c16b26911848e
58414e5088ddb668d0e209f24445c7aea7090a1a
refs/heads/master
2020-09-05T12:22:18.676944
2015-09-17T11:02:19
2015-09-17T11:02:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,333
py
__author__ = 'Samuel Gratzl' import flask import range as ranges from caleydo_server.util import jsonify import caleydo_server.plugin def asrange(r): if r is None: return None return ranges.parse(r) def format_json(dataset, range, args): d = dataset.asjson(range) if bool(args.get('f_pretty_print', False)): return jsonify(d, indent=' ') return jsonify(d) def format_csv(dataset, range, args): include_rows = bool(args.get('f_rows', False)) include_cols = bool(args.get('f_cols', False)) delimiter = args.get('f_delimiter',';') import itertools def gen(): if include_cols and dataset.type == 'matrix': cols = dataset.cols(range[1] if range is not None else None) header = delimiter.join(cols) elif dataset.type == 'table': header = delimiter.join([d.name for d in dataset.columns]) else: header = '' d = dataset.asnumpy(range) if include_rows: rows = dataset.rows(range[0] if range is not None else None) yield dataset.idtype if dataset.type == 'table' else dataset.rowtype yield delimiter yield header yield '\n' if include_rows: #extend with the row ids for row, line in itertools.izip(rows, d): yield row yield delimiter yield delimiter.join(map(str, line)) yield '\n' else: for line in d: yield delimiter.join(map(str, line)) yield '\n' return flask.Response(gen(), mimetype='text/csv', headers={'Content-Disposition': 'attachment;filename='+dataset.name+'.csv'}) def format_image(dataset, range, args): format = args.get('format','png') import scipy.misc import io #TODO set a palette to specify colors instead of gray scales #how to interpolate / sample colors - which space? minmax = dataset.range img = scipy.misc.toimage(dataset.asnumpy(range), cmin=minmax[0], cmax=minmax[1]) b = io.BytesIO() img.save(b, format=format) b.seek(0) return flask.send_file(b, mimetype='image/'+format.replace('jpg','jpeg')) def resolve_formatter(type, format): for p in caleydo_server.plugin.list(type+'-formatter'): if p.format == format: return p.load() flask.abort(400,'unknown format "{0}" possible formats are: {1}'.format(format, ','.join((p.format for p in caleydo_server.plugin.list(type+'-formatter'))))) def _add_handler(app, dataset_getter, type): def desc_gen(dataset_id): d = dataset_getter(dataset_id, type) return jsonify(d.to_description()) app.add_url_rule('/'+type+'/<dataset_id>','desc_'+type, desc_gen) def rows_gen(dataset_id): d = dataset_getter(dataset_id, type) r = asrange(flask.request.args.get('range',None)) return jsonify(d.rows(r[0] if r is not None else None)) app.add_url_rule('/'+type+'/<dataset_id>/rows','rows_'+type, rows_gen) def rowids_gen(dataset_id): d = dataset_getter(dataset_id, type) r = asrange(flask.request.args.get('range',None)) return jsonify(d.rowids(r[0] if r is not None else None)) app.add_url_rule('/'+type+'/<dataset_id>/rowIds','rowids_'+type, rowids_gen) def data_gen(dataset_id): d = dataset_getter(dataset_id, type) r = asrange(flask.request.args.get('range',None)) formatter = resolve_formatter(type, flask.request.args.get('format','json')) return formatter(d, r, args=flask.request.args) app.add_url_rule('/'+type+'/<dataset_id>/data','data_'+type, data_gen) def add_table_handler(app, dataset_getter): _add_handler(app, dataset_getter, 'table') def add_vector_handler(app, dataset_getter): _add_handler(app, dataset_getter, 'vector') def add_matrix_handler(app, dataset_getter): """ add the handlers for handling a matrix :param app: :param dataset_getter: :return: """ _add_handler(app, dataset_getter, 'matrix') def cols_matrix(dataset_id): d = dataset_getter(dataset_id, 'matrix') r = asrange(flask.request.args.get('range',None)) return jsonify(d.cols(r[0] if r is not None else None)) app.add_url_rule('/matrix/<dataset_id>/cols','cols_matrix', cols_matrix) def colids_matrix(dataset_id): d = dataset_getter(dataset_id, 'matrix') r = asrange(flask.request.args.get('range',None)) return jsonify(d.colids(r[0] if r is not None else None)) app.add_url_rule('/matrix/<dataset_id>/colIds','colids_matrix', colids_matrix)
[ "samuel_gratzl@gmx.at" ]
samuel_gratzl@gmx.at
4788aecda97b3c91c49bc69c3976cb26b649805f
e5d8bf505f6988be4a6c9e65b1d8e6a424bad033
/app/main_test.py
88ac1bf328d638a7c8b8eaf0d33a65fa086ff260
[]
no_license
nyctrn/fastapi-postgres-example
0c274728912fd9988d9f4b7db04db32ff15311d0
0d1497021bff5beb6c37d9022742e73e91c7f365
refs/heads/orm
2023-04-28T14:06:27.782104
2021-05-15T14:49:14
2021-05-15T14:49:14
366,810,296
0
0
null
2021-05-12T18:14:23
2021-05-12T18:14:23
null
UTF-8
Python
false
false
1,114
py
from fastapi.testclient import TestClient from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from data.database import Base from main import app, get_db import pytest SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db" engine = create_engine( SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False} ) TestingSessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) Base.metadata.create_all(bind=engine) client = TestClient(app) def override_get_db(): try: db = TestingSessionLocal() yield db finally: db.close() app.dependency_overrides[get_db] = override_get_db def test_read_main(): response = client.get("/items") assert response.status_code == 200 def test_create_user(): response = client.post( "/users/", headers={'Content-Type': 'application/json'}, json={"email": "user@test.com", "password": "pass123"}, ) assert response.status_code == 200 assert response.json() == { "email": "user@test.com", "id": 1, "is_active": True, "items": [] }
[ "argiris@norbloc.com" ]
argiris@norbloc.com
0566f90892410f98c94c99c1f00e2466aee8578f
659d44eb7549cfa346a0224edc7559520d776529
/ColumnDeriver/__init__.py
7c1f598d85fccf352b12ac63e534c78cc5f6ce5f
[]
no_license
willsmithorg/gridtools
862db6a3573785128e7348dd1332b309fbb17cbb
cfe83b0a9b33992c68fd885ae10c5c954314c912
refs/heads/master
2023-04-18T19:38:34.536593
2021-05-03T00:57:48
2021-05-03T00:57:48
336,426,422
0
0
null
null
null
null
UTF-8
Python
false
false
50
py
__all__ = ['Base', 'Len', ]
[ "will@willsmith.org" ]
will@willsmith.org
5dcd673fb7d0be9ebfc26aecdd35d14589069ac0
8021e122ba6bad9caf3b7ceed25fd3aab93dc2a2
/bookexchanger/asgi.py
ba5c9ec98c4285ff7add0d6581e887766b66ff35
[]
no_license
shubhnagar/bookexchanger
55c94b311662e25161f638a0024d1ff8065e34cc
354cc75e9f101d99773f110344f89bd5892f2e1a
refs/heads/master
2022-04-06T14:26:14.407920
2020-03-07T19:33:51
2020-03-07T19:33:51
245,693,158
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
""" ASGI config for bookexchanger project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'bookexchanger.settings') application = get_asgi_application()
[ "nagarshubh2000@gmail.com" ]
nagarshubh2000@gmail.com
f55dc596a671b7e0de6e99d22584ed490c2d2b65
f1d48c192ea2fac7736c6d24476dff3ddb34f9be
/company/forms.py
ce0fbee091135dd8f22bcb5c6b02ac1a6f5e159f
[]
no_license
amrithrajvb/EmployeeDjango
99e58bca60a14bc99951492df3443908ca384c9e
5fd00aca92ef78876a8c8e94bdf605acff497882
refs/heads/master
2023-07-14T21:34:02.786231
2021-09-02T08:01:36
2021-09-02T08:01:36
401,602,819
0
0
null
null
null
null
UTF-8
Python
false
false
3,155
py
from django import forms from django.forms import ModelForm from company.models import Employee import re class EmployeeAddForm(ModelForm): class Meta: model=Employee fields="__all__" widgets={ "emp_name":forms.TextInput(attrs={"class":"form-control"}), "department":forms.TextInput(attrs={"class":"form-control"}), "salary":forms.TextInput(attrs={"class":"form-control"}), "experience":forms.TextInput(attrs={"class":"form-control"}) } labels={ "emp_name":"Employee Name" } # emp_name=forms.CharField(widget=forms.TextInput(attrs={"class":"form-control"})) # department=forms.CharField(widget=forms.TextInput(attrs={"class":"form-control"})) # salary=forms.CharField(widget=forms.NumberInput(attrs={"class":"form-control"})) # experience=forms.CharField(widget=forms.NumberInput(attrs={"class":"form-control"})) def clean(self): cleaned_data=super().clean() emp_name=cleaned_data["emp_name"] salary=cleaned_data["salary"] department=cleaned_data["department"] experience=cleaned_data["experience"] x="[a-zA-Z]*" if int(salary)<0: msg="invalid salary" self.add_error("salary",msg) if int(experience)<0: msg="invalid experience" self.add_error("experience",msg) matcher=re.fullmatch(x,emp_name) if matcher is not None: pass else: msg="please enter valid employee name" self.add_error("emp_name",msg) depmatcher = re.fullmatch(x, department) if depmatcher is not None: pass else: msg = "please enter valid department name" self.add_error("department", msg) class EmployeeChange(ModelForm): class Meta: model=Employee fields="__all__" widgets={ "emp_name":forms.TextInput(attrs={"class":"form-control"}), "department":forms.TextInput(attrs={"class":"form-control"}), "salary":forms.TextInput(attrs={"class":"form-control"}), "experience":forms.TextInput(attrs={"class":"form-control"}) } labels={ "emp_name":"Employee Name" } # emp_name = forms.CharField(widget=forms.TextInput(attrs={"class": "form-control"})) # department = forms.CharField(widget=forms.TextInput(attrs={"class": "form-control"})) # salary = forms.CharField(widget=forms.NumberInput(attrs={"class": "form-control"})) # experience = forms.CharField(widget=forms.NumberInput(attrs={"class": "form-control"})) def clean(self): cleaned_data=super().clean() salary = cleaned_data["salary"] experience = cleaned_data["experience"] if int(salary) < 0: msg="invalid price" self.add_error("salary",msg) if int(experience) < 0: msg="invalid experience" self.add_error("experience",msg) class SearchEmpForm(forms.Form): emp_name=forms.CharField(widget=forms.TextInput(attrs={"class":"form-control"}))
[ "amrithrajvb012@gmail.com" ]
amrithrajvb012@gmail.com
4934988b2db6dae86e095bc58f45321b12ccc344
ac10533762ea45494b7f17f9dcb5ed8e83e81aaa
/InvoiceSchedule.py
6720f4255ddcdb2887ee8ed704fbb20bee962b43
[]
no_license
mdabdulkhaliq/workspace
9b1916a8863f0ad83331768c039670abbed57b39
4bc434e29f3e0b67c8ee5a1b342dd97397737e97
refs/heads/master
2022-12-06T04:24:52.216773
2020-08-20T13:02:59
2020-08-20T13:02:59
288,977,052
0
0
null
null
null
null
UTF-8
Python
false
false
3,225
py
from datetime import datetime from datetime import timedelta Order_Term_Start_Date = datetime(Quote.EffectiveDate).date() Order_Term_End_Date_String = Quote.GetCustomField('Order Term End Date').Content Order_Term_End_Date = datetime.strptime(Order_Term_End_Date_String, '%d/%m/%y').date() No_Of_Years = (Order_Term_End_Date.year - Order_Term_Start_Date.year) No_Of_Months = Order_Term_End_Date.month - Order_Term_Start_Date.month if No_Of_Months < 0: globals()['No_Of_Years'] -= 1 globals()['No_Of_Months'] = 12 - abs(No_Of_Months) No_Of_Days = Order_Term_End_Date.day - Order_Term_Start_Date.day if No_Of_Days < 0: globals()['No_Of_Months'] = globals()['No_Of_Months'] - 1 globals()['No_Of_Days'] = Order_Term_End_Date.day + 30 - Order_Term_Start_Date.day Total_No_Of_Months = No_Of_Years * 12 + No_Of_Months Invoice_Date = Order_Term_Start_Date Quote_Items = Quote.Items Total_Amounts = {"Subscriptions": 0, "Events": 0, "Education Services": 0} for Item in Quote_Items: Total_Amounts[Item.CategoryName] = Total_Amounts[Item.CategoryName] + Item.ExtendedAmount quoteTable = Quote.QuoteTables['Invoice_Details'] quoteTable.Rows.Clear() if Total_Amounts['Events'] > 0: invRow = quoteTable.AddNewRow() invRow['Invoice_Schedule'] = 'Knowledge & Other' invRow['Invoice_Date'] = "Upon Signature" invRow['Amount'] = Total_Amounts['Events'] invRow['Estimated_Tax'] = 0 invRow['Grand_Total'] = Total_Amounts['Events'] if Total_Amounts['Education Services'] > 0: invRow = quoteTable.AddNewRow() invRow['Invoice_Schedule'] = 'Training Fees' invRow['Invoice_Date'] = "Upon Signature" invRow['Amount'] = Total_Amounts['Education Services'] invRow['Estimated_Tax'] = 0 invRow['Grand_Total'] = Total_Amounts['Education Services'] Invoice_Schedule = '' if No_Of_Months > 0 and No_Of_Days > 0: globals()['Invoice_Schedule'] = str(No_Of_Months) + ' Months and ' + str(No_Of_Days) + " days Subscription Fee" elif No_Of_Months > 0: globals()['Invoice_Schedule'] = str(No_Of_Months) + " Months Subscription Fee" else: globals()['Invoice_Schedule'] = str(No_Of_Days) + " Days Subscription Fee" if Total_Amounts['Subscriptions'] > 0: if Invoice_Schedule != '': invRow = quoteTable.AddNewRow() invRow['Invoice_Schedule'] = Invoice_Schedule invRow['Invoice_Date'] = "Upon Signature" invRow['Amount'] = (Total_Amounts['Subscriptions'] / Total_No_Of_Months) * No_Of_Months invRow['Estimated_Tax'] = 0 invRow['Grand_Total'] = (Total_Amounts['Subscriptions'] / Total_No_Of_Months) * No_Of_Months for count in range(No_Of_Years): invRow = quoteTable.AddNewRow() invRow['Invoice_Schedule'] = 'Annual Subscription Fee' if count == 0: invRow['Invoice_Date'] = "Upon Signature" else: Invoice_Date = Invoice_Date + timedelta(days=365) invRow['Invoice_Date'] = Invoice_Date.strftime("%B %d,%Y").ToString() invRow['Amount'] = (Total_Amounts['Subscriptions'] / Total_No_Of_Months) * 12 invRow['Estimated_Tax'] = 0 invRow['Grand_Total'] = (Total_Amounts['Subscriptions'] / Total_No_Of_Months) * 12 quoteTable.Save()
[ "noreply@github.com" ]
mdabdulkhaliq.noreply@github.com
2925395fc52a4049109545beef4c2ae0eb988174
ef9ff20d1983b018cb768320f1cf01af0376fe0e
/ppmessage/api/handlers/ppaddpredefinedscriptgroup.py
743916545473f0af76710312de4fd03c2f92f821
[ "Apache-2.0" ]
permissive
Vegisau/ppmessage
f3f802903f3fb50b2efed319ca7da46674f97cae
d63337bf03f47570a9dd722b1f4c76464bffbc85
refs/heads/master
2020-04-08T11:01:28.744508
2018-11-27T07:01:12
2018-11-27T07:01:12
159,290,481
0
0
NOASSERTION
2018-11-27T07:00:32
2018-11-27T07:00:31
null
UTF-8
Python
false
false
1,477
py
# -*- coding: utf-8 -*- # # Copyright (C) 2010-2016 PPMessage. # Guijin Ding, dingguijin@gmail.com # # from .basehandler import BaseHandler from ppmessage.api.error import API_ERR from ppmessage.core.constant import API_LEVEL from ppmessage.db.models import PredefinedScript import copy import uuid import json import logging class PPAddPredefinedScriptGroup(BaseHandler): def _add(self): _request = json.loads(self.request.body) _app_uuid = _request.get("app_uuid") _group_name = _request.get("group_name") if _group_name == None or len(_group_name) == 0 or \ len(_group_name) > PredefinedScriptGroup.group_name.property.columns[0].type.length: self.setErrorCode(API_ERR.NO_PARA) return _uuid = str(uuid.uuid1()) _row = PredefinedScriptGroup(uuid=_uuid, app_uuid=_app_uuid, group_name=_group_name) _row.async_add(self.application.redis) _row.create_redis_keys(self.application.redis) _ret = self.getReturnData() _ret = copy.deepcopy(_request) _ret.update({"uuid": _uuid}) return def initialize(self): self.addPermission(app_uuid=True) self.addPermission(api_level=API_LEVEL.PPCONSOLE) self.addPermission(api_level=API_LEVEL.THIRD_PARTY_CONSOLE) return def _Task(self): super(PPAddPredefinedScriptGroup, self)._Task() self._add() return
[ "dingguijin@gmail.com" ]
dingguijin@gmail.com
1481ce54c560bf109cb0a252866aa68141fad3cf
a49b59bc6e24f8f0e4967e6ad42568c0b4225f01
/HotelBedsSimulation.py
48f0387e6f9e7efb1fa8a583ffc0492760538165
[ "Apache-2.0" ]
permissive
matabares/NaxcaServer
5738fa137df76b743832906fbd86bc7a783a85a7
be3fd1df1d015f5099e1684d6b5b6309e3aeb45d
refs/heads/master
2020-04-03T23:15:02.654103
2019-07-12T22:48:30
2019-07-12T22:48:30
155,624,392
0
0
null
null
null
null
UTF-8
Python
false
false
3,166
py
class HotelBedsSimulation: def HotelBedsResponse(self, info): info.send_response(200) info.send_header('Content-Type', 'text/xml;charset=UTF-8') info.end_headers() contentLen = int(info.headers['Content-Length']) postBody = info.rfile.read(contentLen) body = str(postBody, "utf-8") if "HotelValuedAvailRQ" in body: if "CTG" in body: file = open( "providersimulation/hotelBeds/Busqueda_HotelValuedAvailRS.xml", "r", encoding='utf8') data = file.read() file.close() info.wfile.write(bytes(data, 'UTF-8')) return info else: file = open("providersimulation/hotelBeds/Search 113715943-808B5D-DFROM_20190301_DTO_20190305_CTO_MDE_HotelValuedAvailRS.xml","r", encoding='utf8') data = file.read() file.close() info.wfile.write(bytes(data, 'UTF-8')) return info if "ServiceAddRQ" in body: if "MIA" in body: file = open("providersimulation/hotelBeds/Tarifa mas alta 113933827-F87ED6-DFROM_20190301_DTO_20190305_CTO_MDE_ServiceAddRS.xml", "r", encoding='utf8') data = file.read() file.close() info.wfile.write(bytes(data, 'UTF-8')) return info if "PAR" in body: file = open("providersimulation/hotelBeds/Cambio de tarifa y descuento 113933827-F87ED6-DFROM_20190301_DTO_20190305_CTO_MDE_ServiceAddRS.xml", "r", encoding='utf8') data = file.read() file.close() info.wfile.write(bytes(data, 'UTF-8')) return info if "BOG" in body: file = open("providersimulation/hotelBeds/Cambio de tarifa 113933827-F87ED6-DFROM_20190301_DTO_20190305_CTO_MDE_ServiceAddRS.xml", "r", encoding='utf8') data = file.read() file.close() info.wfile.write(bytes(data, 'UTF-8')) return info if "MZL" in body: file = open("providersimulation/hotelBeds/Cambio de políticas 113933827-F87ED6-DFROM_20190301_DTO_20190305_CTO_MDE_ServiceAddRS.xml", "r", encoding='utf8') data = file.read() file.close() info.wfile.write(bytes(data, 'UTF-8')) return info if "ADZ" in body: file = open("providersimulation/hotelBeds/Cambio de descuento 113933827-F87ED6-DFROM_20190301_DTO_20190305_CTO_MDE_ServiceAddRS.xml", "r", encoding='utf8') data = file.read() file.close() info.wfile.write(bytes(data, 'UTF-8')) return info if "CTG" in body: file = open( "providersimulation/hotelBeds/Habitaciones-ServiceAddRS.xml", "r", encoding='utf8') data = file.read() file.close() info.wfile.write(bytes(data, 'UTF-8')) return info
[ "cdaniel94@gmail.com" ]
cdaniel94@gmail.com
a3710acc85b2f157b0c4e2eb34b2128a47cdb2d7
cf1c2e7420c4432f3b51e421d56a48fd58bbf6cf
/main.py
d6edbf6bb45648d91ded43319c458785780d777f
[ "MIT" ]
permissive
jaggiJ/alpharena
aac443c93c84196fdbe820bc60de9e94e8d37591
bd5a359fc11be0d9a5f2f0a711caa10ddc3c984d
refs/heads/master
2020-04-02T21:38:42.013247
2018-11-21T13:00:14
2018-11-21T13:00:14
154,806,451
1
0
null
null
null
null
UTF-8
Python
false
false
3,714
py
import sys from classes.base_class import Glad from modules.base_mods import yes_or_no magic = [{'name': 'Fire', 'cost': 40, 'dmg': 180}, {'name': 'Water', 'cost': 30, 'dmg': 150}, {'name': 'Earth', 'cost': 20, 'dmg': 110}, {'name': 'Air', 'cost': 10, 'dmg': 60}, {'name': 'Heal', 'cost': 30, 'dmg': 100}] round_number = 1 level = 1 print('You are sitting in first row of a big arena.\n Crowds are crazy for blood and show, but ' 'no one seems to come on the arena?\n WHOOP.\n You have been pushed down right into the fray' ' by member of your own family. Soon gate is opened and tough peasant charges at you.') input('Press (Enter)') """ MAIN LOOP Player chooses option of attack, then based on actions he took resolution is applied to his HP and MP and enemy HP until one reaches 0 HP """ while True: """ FIGHT ROUND Player chooses action and resolution of that action is applied. Round ends with HP summary. """ if round_number == 1: # New game generation player = Glad(460, 60, 60, magic) enemy = Glad(545 + 5*level, 0, 60, []) print('=' * 79) print('Player HP ', player.hp, '| MP', player.mp) # Prints HP MP stats of player & enemy print('Enemy HP ', enemy.hp, '\n' + '=' * 79) user_input = player.print_actions() # Print actions and returns correct user input (index of action as integer) if user_input == 0: # attacking print('You strike the enemy for ', enemy.reduce_hp(player.attack_damage()), 'he retaliates with ', player.reduce_hp(enemy.attack_damage())) elif user_input == 1: # casing spell while True: # user cast spell resolution print('='*79) print('Choose your spell:') # Player spells player.print_magic() user_input = input() if user_input not in [str(item) for item in range(len(player.magic))]: # input err handler continue user_input = int(user_input) if player.mp < player.magic[user_input]['cost']: print('-'*34+'Not enough MP !!!'+'-'*(79-17-35)) break player.mp -= player.magic[user_input]['cost'] # Decrease player MP by amount cast if player.magic[user_input]['name'] == 'Heal': # Casting heal spell print('test OK') amount_healed = player.spell_damage(user_input) player.hp += amount_healed print('Player heals himself for ' + str(amount_healed)) break print('Player casts', player.magic[user_input]['name'], 'for', enemy.reduce_hp(player.spell_damage(user_input)), 'damage. Enemy retaliates with', player.reduce_hp(enemy.attack_damage())) break while player.hp == 0 or enemy.hp == 0: # End game conditions print('The fight lasted %d rounds' % round_number) if player.hp > 0: print('The enemy is dead. You have win') elif enemy.hp > 0: print('You are dead. You have lost.') else: print('The enemy is dead. Who is left to be happy? That is a draw.') print('=' * 79) print('Player HP ', player.hp, '| MP', player.mp) # Prints HP MP stats of player & enemy print('Enemy HP ', enemy.hp, '\n' + '=' * 79) print('New game? (y)es or (n)o') new_game = yes_or_no() if new_game == 'yes': level += 1 print('Soon gate is opened and tougher one charges at you.') round_number = 0 break else: sys.exit() round_number += 1
[ "jagged93@gmail.com" ]
jagged93@gmail.com
c019c47ddd586097167ac1adad4d580e98f8f0b3
6fde327fb62be930204d97105453323cb51009fd
/list3.py
14d4d82bea9e44a5c638e28bb52cb2b9ecc89116
[ "MIT" ]
permissive
Kantheesh/Learning-Python
ff7551c77972fd788651ad95026786eb1c897bb6
d2dc9f1b9f652e6a6d84028e86a1daf77551eb5f
refs/heads/master
2020-06-04T21:36:24.266039
2019-08-13T19:11:53
2019-08-13T19:11:53
192,200,396
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
names = ['ajay', 'kiran', 'ramesh'] print(names[1]) # update -> change ajay to vijay names[0] = 'vijay' print(names) # names[3] = "new" # IndexError
[ "noreply@github.com" ]
Kantheesh.noreply@github.com
5b7d6b08d473ac8bdbbca0d226f93664b99bb724
668fe42b774e7bac84722aae166346436946f6fc
/test/test_modify_group.py
9fefc2c8959b63b39f45693888a044da651d3f19
[ "Apache-2.0" ]
permissive
olgadmitrishena/python_training2
38ab84a7245c486057d0e13e0d632d24090179e3
0b618f8aab2603c3fa42fdcb4d4bcc3f0a84a1c3
refs/heads/master
2020-03-21T02:31:17.363059
2018-08-20T05:59:17
2018-08-20T05:59:17
138,002,504
0
0
null
null
null
null
UTF-8
Python
false
false
828
py
from model.group import Group from random import randrange def test_modify_group_name(app): if app.group.count() == 0: app.group.create(Group(name="test")) old_groups = app.group.get_group_list() index = randrange(len(old_groups)) group = Group(name="New group") group.id = old_groups[index].id app.group.modify_group_by_index(index, group) assert len(old_groups) == app.group.count() new_groups = app.group.get_group_list() old_groups[index] = group assert sorted(old_groups, key=Group.id_or_max) == sorted(new_groups, key=Group.id_or_max) #def test_modify_group_header(app): # old_groups = app.group.get_group_list() # app.group.modify_first_group(Group(header="New header")) # new_groups = app.group.get_group_list() # assert len(old_groups) == len(new_groups)
[ "olga.dmitrishena@gmail.com" ]
olga.dmitrishena@gmail.com
3e9ab12e3f05521915f005600258b1671d2a2c34
2b807998aefb868f0c64c69a8dc9be1fd11a3380
/WiCRM/settings/views.py
17cfa1320b0e7eaf67e69ec8c0e901d33e730549
[]
no_license
WiWhite/WiCRM
a7d1b12531f235948645f1dbb2c69a1cb284ab38
d85de1112b3cfc6b26b89450551682ea88c0a4fb
refs/heads/master
2023-04-05T17:20:18.890662
2021-04-13T12:27:46
2021-04-13T12:27:46
333,537,398
0
0
null
null
null
null
UTF-8
Python
false
false
6,767
py
from smtplib import SMTPException from django.shortcuts import render, redirect from django.views.generic import CreateView, View from django.contrib.auth.mixins import LoginRequiredMixin from django.urls import reverse_lazy from django.contrib import messages from django.conf import settings from django.core.mail import send_mail, get_connection from .models import * from .forms import * from .mixins import CreateDelObjectMixin, CheckConnSaveMixin from .utils import * from referral.models import Referrals from accounts.models import User class SettingsPersonnel(LoginRequiredMixin, CreateView): """ View for displaying, creating, updating and deleting employees. """ model = Personnel form_class = PersonnelForm template_name = 'settings/settings_staff.html' success_url = reverse_lazy('settings_staff') raise_exception = True def get(self, requests, *args, **kwargs): owner = User.objects.get(username=self.request.user) self.object = owner form = self.form_class(owner=owner) context = super().get_context_data(**kwargs) context['staff'] = Personnel.objects.filter( owner=self.request.user, dismissal=None ) context['fields'] = Personnel._meta.fields context['form'] = form return render(requests, self.template_name, context) def post(self, request, *args, **kwargs): owner = User.objects.get(username=self.request.user) self.object = owner self.request.POST = self.request.POST.copy() self.request.POST['owner'] = f'{owner.pk}' # staff delete request delete_pk = self.request.POST.get('delete_pk') if delete_pk: staff = self.model.objects.get(pk=delete_pk) staff.delete() messages.success(self.request, f'{staff} successfully deleted!') return redirect('settings_staff') # staff delete request update_pk = self.request.POST.get('update_pk') if update_pk: staff = self.model.objects.get(pk=update_pk) form = self.form_class(owner.pk, self.request.POST, instance=staff) if form.is_valid(): form.save() messages.success( self.request, f'{staff} successfully updated!' ) return redirect('settings_staff') else: messages.error( self.request, f'{staff} has\'t been changed. The data isn\'t correct!' ) return redirect('settings_staff') # staff created form = self.form_class(owner.pk, self.request.POST) if form.is_valid(): try: service = EmailService.objects.get(pk=owner.pk) check_connection(service.__dict__) form.save() messages.success( self.request, f'{form.cleaned_data["first_name"]} ' f'{form.cleaned_data["last_name"]} successfully created!' ) staff = Personnel.objects.get(email=form.cleaned_data['email']) connection = create_connection(service) body = f'{settings.ALLOWED_HOSTS[0]}:8000/' \ f'registration-referral={staff.referral}' send_invite( service.email_login, [form.cleaned_data['email']], connection, body, ) return redirect(self.request.path) except SMTPException: messages.error( self.request, 'Something is wrong with the connection to the mailing ' 'server! Check if the settings are correct on the Email' ' Service tab.' ) return redirect(self.request.path) else: messages.error( self.request, f'{form.errors}' ) return self.form_invalid(form) class SettingsPositions(LoginRequiredMixin, CreateDelObjectMixin): """ View to display, create and delete positions of my employees. """ model = Positions form_class = PositionsForm template_name = 'settings/settings_positions.html' success_url = reverse_lazy('settings_positions') raise_exception = True class SettingsService(LoginRequiredMixin, CreateDelObjectMixin): """ View to display, create and delete the services provided. """ model = Services form_class = ServicesForm template_name = 'settings/settings_services.html' success_url = reverse_lazy('settings_services') raise_exception = True class SettingsEmailService(CheckConnSaveMixin): def get(self, request): try: obj = EmailService.objects.get(owner=request.user) form = EmailServiceForm(instance=obj) context = { 'form': form, 'obj': obj, } return render( request, 'settings/settings_email_service.html', context ) except models.ObjectDoesNotExist: form = EmailServiceForm() context = { 'form': form, } return render( request, 'settings/settings_email_service.html', context ) def post(self, request): data = self.request.POST.copy() data['owner'] = self.request.user form = EmailServiceForm(data) if self.request.POST.get('update'): obj = EmailService.objects.get(owner=request.user) form = EmailServiceForm(data, instance=obj) if form.is_valid(): self.check_save(request, form) return redirect(self.request.path) else: messages.error(request, f'{form.errors}') return render( request, 'settings/settings_email_service.html', {'form': form} ) elif form.is_valid(): self.check_save(request, form) context = {'form': form} return render( request, 'settings/settings_email_service.html', context, ) else: messages.error(request, f'{form.errors}') return render( request, 'settings/settings_email_service.html', {'form': form} )
[ "bigsplash1990@gmail.com" ]
bigsplash1990@gmail.com
db23dd07ed6c386f68b59e8625caf8620674e3d0
44e8cea8e2c995e82c6e829d724cd74c2c48a3be
/prob2.py
a564470589063ef90f6bd2d2342c5e65c0fc8030
[]
no_license
paulneves77/8.942-HW5
84a7f2fa851e77ea91c84f0a45869cf72d1f3954
d4c5ca98500788c85ea4db8e7f922fe738929fe1
refs/heads/main
2022-12-20T02:03:28.744007
2020-10-02T07:16:29
2020-10-02T07:16:29
300,437,934
0
0
null
null
null
null
UTF-8
Python
false
false
1,756
py
# -*- coding: utf-8 -*- import getpass username = getpass.getuser() from pathlib import Path from astropy import constants as const from astropy import units as u import numpy as np from scipy.special import zeta, gamma # formatting for matplotlib import matplotlib.pyplot as plt plt.style.use(Path(f'C:\\Users\\{username}\\Dropbox (MIT)\\Research\\useful_code\\python\\paul_style.mplstyle')) import matplotlib.ticker as ticker import addcopyfighandler plt.close(fig = 'all') # calc number densities photon_density = (zeta(3) * gamma(3) * (2.725 * u.K)**3 / np.pi**2) photon_density = photon_density * const.k_B**3 * const.hbar**-3 * const.c**-3 print(f"photon density = {photon_density.to(u.cm**-3)}") neutrino_density = 3 / 11* photon_density print(f"neutrino density = {neutrino_density.to(u.cm**-3)}") # calc temps print(f"min temp = {(0.06 * u.eV / const.k_B).to(u.K)}") print(f"max temp = {(0.12 * u.eV / const.k_B).to(u.K)}") # neutrino temperature, a, z when became non-relativistic T_nu_final = (4/11)**(1/3) * 2.725 * u.K print(f"final neutrino temp = {T_nu_final}") a_max = T_nu_final/(1390*u.K) a_min = T_nu_final/(700*u.K) print(f"max a = {a_max}") print(f"min a = {a_min}") z_max = 1/a_min-1 z_min = 1/a_max-1 print(f"max z = {z_max}") print(f"min z = {z_min}") print(f"avg z = {np.mean([z_max,z_min])}") print(f"z unc = {np.ptp([z_max,z_min])}") # calc min and max omega_nu*h^2 rho_crit = 3*(100 * u.km/u.s/u.Mpc)**2/(8*np.pi*const.G) print(f"rho crit = {rho_crit.to(u.g*u.cm**-3)}") prefactor = 112*u.cm**-3/(rho_crit*const.c**2) print(f"inverse prefactor = {(prefactor**-1).to(u.eV)}") print(f"neutrino fraction max = {(prefactor*0.06*u.eV).decompose()}") print(f"neutrino fraction max = {(prefactor*0.12*u.eV).decompose()}")
[ "paulneves77@gmail.com" ]
paulneves77@gmail.com
473071e28a906231ae8b197469deb81a91806af8
52e32bccdbc85d41d97b81d7ebaf48cea0d783b7
/constants.py
018c78aa9ef112a3fa1d35c5c276fad84c6b3ca1
[]
no_license
Casidi/ParallelPBT
996203dee1bdb1f18c847530c3da6e4208f8b2ff
82fdaf0954a17d29800881fae6d4293f0920d2da
refs/heads/master
2020-04-04T10:30:14.843043
2018-12-08T05:37:42
2018-12-08T05:37:42
155,857,210
0
0
null
null
null
null
UTF-8
Python
false
false
3,541
py
from enum import Enum from hyperopt import hp import hyperopt.pyll.stochastic class WorkerInstruction(Enum): ADD_GRAPHS = 0 EXIT = 1 TRAIN = 2 GET = 3 SET = 4 EXPLORE = 5 def get_hp_range_definition(): range_def_dict = { 'h_0': [0.0, 1.0], 'h_1': [0.0, 1.0], 'optimizer_list': ['Adadelta', 'Adagrad', 'Momentum', \ 'Adam', 'RMSProp', 'gd'], 'lr': { 'Adadelta': [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0], 'Adagrad': [1e-3, 1e-2, 1e-1, 0.5, 1.0], 'Momentum': [1e-3, 1e-2, 1e-1, 0.5, 1.0], 'Adam': [1e-4, 1e-3, 1e-2, 1e-1], 'RMSProp': [1e-5, 1e-4, 1e-3], 'gd': [1e-2, 1e-1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0] }, 'momentum': [0.00, 0.9], 'grad_decay': [0.00, 0.9], 'decay_steps': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'decay_rate': [0.1, 1.0], 'weight_decay': [1e-8, 1e-2], 'regularizer': ['l1_regularizer', \ 'l2_regularizer', \ 'l1_l2_regularizer', \ 'None'], 'initializer': ['glorot_normal', \ 'orthogonal', \ 'he_init', 'None'], 'batch_size': [191] } return range_def_dict def load_hp_space(): range_def = get_hp_range_definition() space = { 'opt_case':hp.choice('opt_case', [ { 'optimizer': 'Adadelta', 'lr': hp.choice('lr', range_def['lr']['Adadelta']) }, { 'optimizer': 'Adagrad', 'lr': hp.choice('lr', range_def['lr']['Adagrad']) }, { 'optimizer': 'Momentum', 'lr': hp.choice('lr', range_def['lr']['Momentum']), 'momentum': hp.uniform('momentum', \ range_def['momentum'][0], range_def['momentum'][1]) }, { 'optimizer': 'Adam', 'lr': hp.choice('lr', range_def['lr']['Adam']) }, { 'optimizer': 'RMSProp', 'lr': hp.choice('lr', range_def['lr']['RMSProp']), 'grad_decay': hp.uniform('grad_decay', \ range_def['grad_decay'][0], range_def['grad_decay'][1]), 'momentum': hp.uniform('momentum', \ range_def['momentum'][0], range_def['momentum'][1]) }, { 'optimizer': 'gd', 'lr': hp.choice('lr', range_def['lr']['gd']) } ]), 'decay_steps': hp.choice('decay_steps', \ range_def['decay_steps']), 'decay_rate': hp.uniform('decay_rate', \ range_def['decay_rate'][0], range_def['decay_rate'][1]), 'weight_decay': hp.uniform('weight_decay', \ range_def['weight_decay'][0], range_def['weight_decay'][1]), 'regularizer': hp.choice('regularizer', \ range_def['regularizer']), 'initializer': hp.choice('initializer', \ range_def['initializer']), 'batch_size': hp.randint('batch_size', range_def['batch_size'][0]) } space['batch_size'] += 65 return space def generate_random_hparam(): hp_space = load_hp_space() return hyperopt.pyll.stochastic.sample(hp_space)
[ "tcfsh22215@gmail.com" ]
tcfsh22215@gmail.com
100e43951fa34d533d26b0d85b60addf2a22611b
0a06fe98a9c5938e7f4befbf1d256a19e00adf6c
/projects/mdb/rsf/su/rsflab5/SConstruct
df7b143604b2d7c43b5a296712765efdcb6dd7c4
[]
no_license
chenyk1990/useful-utilities
44259cc7ceb8804b9da86133ec81fa9b65096cea
55d4a220f8467d666358b2ebff4b5cee1ade33c3
refs/heads/master
2023-08-15T18:42:55.899015
2023-08-10T03:00:13
2023-08-10T03:00:13
49,804,476
17
13
null
null
null
null
UTF-8
Python
false
false
1,568
from rsf.proj import * # Velocity model Flow('syncline.asc',None, ''' echo 0 1100 0 1100 500 1100 1000 1300 2000 1000 2700 1100 3200 1000 4000 1050 n1=2 n2=8 in=$TARGET data_format=ascii_float ''') Flow('syncline','syncline.asc', ''' dd form=native | spline n1=400 d1=10 o1=0 | unif2 n1=200 d1=10 v00=2000,3000 | put label1=Depth unit1=m label2=Distance unit2=m label=Velocity unit=m/s ''') Result('syncline', ''' grey color=j scalebar=y barreverse=y mean=y screenht=7 screenwd=14 title="Syncline Model" ''') # Source Flow('sou',None,'spike n1=2 nsp=2 k1=1,2 mag=1000,20') # Receivers Flow('recx','syncline','window n1=1 squeeze=n | math output=x2') Flow('recz','recx','math output=20') Flow('rec','recx recz','cat axis=1 ${SOURCES[1]}') # Wavelet Flow('wav',None, ''' spike n1=2200 d1=0.001 k1=200 | ricker1 frequency=20 ''') # Density Flow('den','syncline','math output=1') # Finite-difference modeling Flow('hseis seis','wav syncline sou rec den', ''' transp | awefd2d verb=y free=n snap=y dabc=y jdata=2 jsnap=10 vel=${SOURCES[1]} sou=${SOURCES[2]} rec=${SOURCES[3]} den=${SOURCES[4]} wfl=${TARGETS[1]} | window f2=100 | put o2=0 | transp | put label1=Time label2=Distance unit1=s unit2=m ''') Plot('seis', ''' grey gainpanel=a title=Wave label1=Depth label2=Distance unit1=m unit2=m ''',view=1) Result('hseis','grey title=Data') End()
[ "chenyk1990@gmail.com" ]
chenyk1990@gmail.com
8fb31fd438861607ff4d545d20935ab962ad9aa6
7afdb701907c6e1ed983cec7b6fbabb5db4948a7
/cmake-build-debug/catkin_generated/pkg.develspace.context.pc.py
5c799291511e6728d79cd4f1640930f774563027
[]
no_license
kmpchk/hector_quadrotor_swarm
09addf613f430a94dc47a8e40feb628ae70c808a
e96bdce7c3c94d623f5e320aba34eb58a783d6c0
refs/heads/master
2020-04-07T06:24:22.025484
2018-11-18T23:31:42
2018-11-18T23:31:42
158,133,693
1
1
null
null
null
null
UTF-8
Python
false
false
418
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "quadrotor_flight" PROJECT_SPACE_DIR = "/home/optio32/catkin_ws/src/quadrotor_flight/cmake-build-debug/devel" PROJECT_VERSION = "0.0.0"
[ "iregin50" ]
iregin50
382f559a6b0e883aaa56c6502e8f06fe7b0e9a2c
29ea573a3cdde125282292948b5868dc7d02d49d
/Educated_cinema/child/src/cinema/models.py
bf922797e42aadc2a1e488be8afde97546e26e33
[]
no_license
EngCoder-Hawraa/CHILD-CINEMA
dff3a2c4e679b333982159aec3be3b21e2790040
2ca3314a3fb8e67c66a2ee687dfdc19060051651
refs/heads/master
2022-02-07T03:57:57.055761
2019-08-16T03:17:51
2019-08-16T03:17:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
599
py
from django.db import models class Category(models.Model): name = models.CharField(max_length=150) def __str__(self): return self.name class Cinema(models.Model): name = models.CharField(max_length=150) date = models.DateTimeField(auto_now='') content = models.TextField(null=False) pic = models.ImageField('default.jpg', upload_to='profile_pics') cat = models.ForeignKey(Category, on_delete=models.CASCADE) def __str__(self): return self.name class Meta: ordering = ('content',) # python manage.py makemigrations # python manage.py migrate
[ "hawraa arkan" ]
hawraa arkan
643ce15c8585b0ffba4cc46cf62532e5c3935ec6
1b211954e6056644f4c2485fed2a87529c272cf6
/db.py
0404738a1bf40225b3a320875525f5a3fe5e3dc7
[]
no_license
shushanfx/quick-stock
d75fe1a5f8b6f31263a3950b0877c42de26b32b8
0ba6a48135b461d1993d688ba3c8d093a0e09064
refs/heads/master
2020-03-21T18:05:51.255136
2019-02-01T11:22:11
2019-02-01T11:22:11
138,872,402
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
import os.path import codecs import demjson def save(stock_id, a_list): file_path = os.path.join('./data', stock_id + '.json') return demjson.encode_to_file(file_path, a_list, encoding ='utf-8', overwrite=True, compactly = False) def fetch(stock_id): file_path = os.path.join('./data', stock_id + '.json') return demjson.decode_file(file_path, encoding='utf-8')
[ "dengjianxin@qiyi.com" ]
dengjianxin@qiyi.com
af5ae2b698dc0367aac55dff558ad448399ff2c2
e6b4985e2c492c6cc329ff8490ead0f88642e250
/Amazon/array/ Implement strStr().py
0e78039d2f5ab3518bb0e28fd8994821496ddf72
[]
no_license
rohith788/Leetcode
6ded5e80728159391069b688d47eb74e0315b165
a86f569fd752fcc4ca15d8fdf0b0c29dd00d614e
refs/heads/master
2021-07-08T02:49:14.746255
2021-03-07T22:08:51
2021-03-07T22:08:51
228,939,832
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
class Solution: def strStr(self, haystack: str, needle: str) -> int: if len(needle) == 0: return 0 #if needle is blank if len(haystack) != 0: if len(needle) > len(haystack): #if haystack is smaller than needle return -1 n_len = len(needle) h_len = len(haystack) for i in range(h_len):#iterate through haystack j = 0 if(i + n_len <= h_len): #check if needle is bigger than the rest of haystack if(haystack[i:(i+n_len)] == needle): return i #check match and return index return -1
[ "srohith788@gmail.com" ]
srohith788@gmail.com
386602ebed8e9d086f216a0cc688279869226701
9ae6ce54bf9a2a86201961fdbd5e7b0ec913ff56
/google/ads/googleads/v9/errors/types/invoice_error.py
431d0930370e00ac85c01434493a999174a378c9
[ "Apache-2.0" ]
permissive
GerhardusM/google-ads-python
73b275a06e5401e6b951a6cd99af98c247e34aa3
676ac5fcb5bec0d9b5897f4c950049dac5647555
refs/heads/master
2022-07-06T19:05:50.932553
2022-06-17T20:41:17
2022-06-17T20:41:17
207,535,443
0
0
Apache-2.0
2019-09-10T10:58:55
2019-09-10T10:58:55
null
UTF-8
Python
false
false
1,269
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.ads.googleads.v9.errors", marshal="google.ads.googleads.v9", manifest={"InvoiceErrorEnum",}, ) class InvoiceErrorEnum(proto.Message): r"""Container for enum describing possible invoice errors. """ class InvoiceError(proto.Enum): r"""Enum describing possible invoice errors.""" UNSPECIFIED = 0 UNKNOWN = 1 YEAR_MONTH_TOO_OLD = 2 NOT_INVOICED_CUSTOMER = 3 BILLING_SETUP_NOT_APPROVED = 4 BILLING_SETUP_NOT_ON_MONTHLY_INVOICING = 5 NON_SERVING_CUSTOMER = 6 __all__ = tuple(sorted(__protobuf__.manifest))
[ "noreply@github.com" ]
GerhardusM.noreply@github.com
f80e20e6ce7eef5b226bd559cf2d35b7f2a0700c
3b4c766ed91d0b7b5244df0b9cf2b66215e7f280
/hello/urls.py
272c2b7ea0bfc90962bbcd2253ace604591c16cd
[]
no_license
shake551/SNS_wannabe
d36c0e0907a7c53476e441cb096b103c15c2c787
562adafdf4157fc58d5b10a2a71bfe33baa0918d
refs/heads/main
2023-02-21T06:55:43.569986
2021-01-05T07:00:33
2021-01-05T07:00:33
324,520,697
1
0
null
null
null
null
UTF-8
Python
false
false
680
py
from django.urls import path from . import views from .views import FriendList from .views import FriendDetail urlpatterns = [ path('', views.index, name='index'), path('<int:num>', views.index, name='index'), path('create', views.create, name='create'), path('edit/<int:num>', views.edit, name='edit'), path('delete/<int:num>', views.delete, name='delete'), path('list', FriendList.as_view()), path('detail/<int:pk>', FriendDetail.as_view()), path('find', views.find, name='find'), path('check', views.check, name='check'), path('message/', views.message, name='message'), path('message/<int:page>', views.message, name='message'), ]
[ "hiroki.yamako@ezweb.ne.jp" ]
hiroki.yamako@ezweb.ne.jp
720b0285c77d6be38d36e2c71c5c67d9c734648d
4b529326a5ada3a655c38301be781c33669839f5
/tsunami_tools.py
9233ce158eee338ae81a0591bbdf21f02e276d66
[]
no_license
harshita-kaushal/TsunamiGlobe
0ab816ee84065dfca73b97e6d3de0652f05b7997
d2267fb0e79466fbe5ed6c086d83446be09c169b
refs/heads/master
2020-03-19T01:24:04.675889
2018-05-09T17:30:05
2018-05-09T17:30:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
36,048
py
#!/usr/bin/env python import sys import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pylab from matplotlib import pyplot as plt import matplotlib.colors as mcolor import matplotlib.animation as manimation import matplotlib.colorbar as mcolorbar from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.basemap import Basemap import matplotlib.font_manager as mfont import scipy as sp import argparse from geographiclib.geodesic import Geodesic as geo from netCDF4 import Dataset import os import read_ETOPO1 import pandas as pd import json import itertools #import quakelib # -------------------------------------------------------------------------------- class simAnalyzer: def __init__(self, sim_file_path): self.save_file_prefix = os.path.splitext(sim_file_path)[0] #sim_data = np.genfromtxt(sim_file, dtype=[('time','f8'),('lat','f8'),('lon','f8'), ('z','f8'), ('alt','f8')]) self.sim_data = Dataset(sim_file_path, 'r', format='NETCDF4') # These arrays shouldn't be too big, so go ahead and load them into memory as numpy arrays self.times = np.array(self.sim_data.variables['time']) self.lons = np.array(self.sim_data.variables['longitude']) self.lats = np.array(self.sim_data.variables['latitude']) #TODO: check for simulation that wraps around int date line. self.numlons, self.minlon, self.maxlon, self.meanlon = len(self.lons), self.lons.min(), self.lons.max(), self.lons.mean() self.numlats, self.minlat, self.maxlat, self.meanlat = len(self.lats), self.lats.min(), self.lats.max(), self.lats.mean() self.dlon = abs(self.lons[1]-self.lons[0]) self.dlat = abs(self.lats[1]-self.lats[0]) height_ncVar = self.sim_data.variables['height'] alt_ncVar = self.sim_data.variables['altitude'] # Calculate locations where we simulated ocean runup ever_has_water = np.any(height_ncVar, axis=0) self.sim_inundation_array = np.ma.masked_where(alt_ncVar[0] < 0, ever_has_water) def make_grid_animation(self, FPS, DPI, zminmax=None, doBasemap=False): save_file = self.save_file_prefix+"_grid.mp4" # Keep the data from each time step in netCDF variable form, and slice into it as needed level_ncVar = self.sim_data.variables['level'] height_ncVar = self.sim_data.variables['height'] alt_ncVar = self.sim_data.variables['altitude'] # Get ranges N_STEP = len(self.times) z_min = np.inf z_max = -np.inf z_avs = [] for i, levelstep in enumerate(level_ncVar): masked_data = np.ma.masked_where(height_ncVar[i] == 0.0000, levelstep) z_min = min(masked_data.min(), z_min) z_max = max(masked_data.max(), z_max) z_avs.append(masked_data.mean()) z_max = np.max(np.ma.masked_where(height_ncVar[0] == 0.0000, level_ncVar[0])) print("min: {}, max: {}, av: {}".format(z_min, z_max, np.array(z_avs).mean())) if(zminmax != None): z_min,z_max = zminmax # Initialize movie writing stuff FFMpegWriter = manimation.writers['ffmpeg'] metadata = dict(title='TsunamiSquares', artist='Matplotlib', comment='Animation') writer = FFMpegWriter(fps=FPS, metadata=metadata, bitrate=1000) # Initialize the frame and axes fig = plt.figure() if not doBasemap: ax = fig.add_subplot(111) plt.xlim(self.minlon, self.maxlon) plt.ylim(self.minlat, self.maxlat) #ax.get_xaxis().get_major_formatter().set_useOffset(False) #ax.get_yaxis().get_major_formatter().set_useOffset(False) else: m = Basemap(projection='cyl', llcrnrlat=self.minlat, urcrnrlat=self.maxlat, llcrnrlon=self.minlon, urcrnrlon=self.maxlon, lat_0=self.meanlat, lon_0=self.meanlon, resolution='h') m.drawmeridians(np.linspace(self.minlon, self.maxlon, num=5.0), labels=[0,0,0,1], linewidth=0) m.drawparallels(np.linspace(self.minlat, self.maxlat, num=5.0), labels=[1,0,0,0], linewidth=0) m.drawcoastlines(linewidth=0.5) m.ax = fig.add_subplot(111) ax = m.ax # Colorbar cmap = plt.get_cmap('Blues_r') landcolor = 'orange'#'black'#'#FFFFCC' cmap.set_bad(landcolor, 1.0) norm = mcolor.Normalize(vmin=z_min, vmax=z_max) divider = make_axes_locatable(ax) cbar_ax = divider.append_axes("right", size="5%",pad=0.05) cb = mcolorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=norm) framelabelfont = mfont.FontProperties(style='normal', variant='normal', size=14) plt.figtext(0.95, 0.7, r'water altitude $[m]$', rotation='vertical', fontproperties=framelabelfont) surface = None with writer.saving(fig, save_file, DPI): for index in range(int(N_STEP)): # Get the subset of data corresponding to current time this_level = level_ncVar[index] this_height = height_ncVar[index] this_alt = alt_ncVar[index] time = self.times[index] # Masked array via conditional, don't color the land unless it has water on it masked_data = np.ma.masked_where(this_height == 0.0000, this_level) print("step: {} time: {}".format(index, time)) # Plot the surface for this time step if surface is None: ax.imshow(masked_data, cmap=cmap, origin='lower', norm=norm, extent=[self.minlon, self.maxlon, self.minlat, self.maxlat], interpolation='none') else: surface.set_data(masked_data) # Text box with the time plt.figtext(0.02, 0.5, 'Time: {:02d}:{:02d}'.format(int(time/60), int(time%60)), bbox={'facecolor':'yellow', 'pad':5}) writer.grab_frame() def make_crosssection_animation(self, FPS, DPI): save_file = self.save_file_prefix+"_crosssection.mp4" #sim_data is expected to be a netcdf dataset lons = np.array(self.sim_data.variables['longitude']) lats = np.array(self.sim_data.variables['latitude']) # But keep the data from each time step in netCDF variable form, and slice into it as needed level_ncVar = self.sim_data.variables['level'] height_ncVar = self.sim_data.variables['height'] alt_ncVar = self.sim_data.variables['altitude'] # Get ranges N_STEP = len(self.times) z_min = np.inf z_max = -np.inf z_avs = [] for i, levelstep in enumerate(level_ncVar): masked_data = np.ma.masked_where(height_ncVar[i] == 0.0000, levelstep) z_min = min(masked_data.min(), z_min) z_max = max(masked_data.max(), z_max) z_avs.append(masked_data.mean()) print("min: {}, max: {}, av: {}".format(z_min, z_max, np.array(z_avs).mean())) # Initialize movie writing stuff FFMpegWriter = manimation.writers['ffmpeg'] metadata = dict(title='TsunamiSquares', artist='Matplotlib', comment='Animation') writer = FFMpegWriter(fps=FPS, metadata=metadata, bitrate=1000) # Initialize the frame and axes fig = plt.figure() ax = fig.add_subplot(111) plt.xlim(self.minlon, self.maxlon) plt.ylim(z_min, z_max) ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.get_yaxis().get_major_formatter().set_useOffset(False) divider = make_axes_locatable(ax) midlat_index = int(len(self.lats)/2) # Make array of distances from mean lat/lon dist_array = [] geod = geo(6371000, 0) for lon in self.lons: distance = geod.Inverse(self.lats[midlat_index], lon, self.meanlat, self.meanlon)['s12'] dist_array.append(abs(distance)) dist_array = np.array(dist_array) sim_plot = ax.plot([], [], 'b')[0] analytic_plot = ax.plot([], [], 'r')[0] with writer.saving(fig, save_file, DPI): for index in range(int(N_STEP)): time = self.times[index] print("step: {} time: {}".format(index, time)) analytic_Z = [] for dist in dist_array: analytic_Z.append(analyticGaussPile(dist, time, 10, 5000, 1000)) # Plot the cross section for this time step sim_plot.set_data(self.lons, level_ncVar[index][midlat_index]) analytic_plot.set_data(self.lons, analytic_Z) # Text box with the time plt.figtext(0.02, 0.5, 'Time: {:02f}:{:02f}'.format(int(time)/60, int(time)%60), bbox={'facecolor':'yellow', 'pad':5}) writer.grab_frame() def load_historical_runup_CSV(self, csv_file_path, date, fill_bool): year = date[0] month = date[1] day = date[2] self.fill_bool = fill_bool print("Loading historical runup for simulation region...") inund_df = pd.read_csv(csv_file_path, sep='\t') inund_df = inund_df[inund_df.LATITUDE.notnull()] inund_df = inund_df[inund_df.LONGITUDE.notnull()] inund_df = inund_df[inund_df.HORIZONTAL_INUNDATION.notnull()] self.inund_df = inund_df[((inund_df.YEAR == year) & (inund_df.MONTH == month) & (inund_df.DAY == day) & (inund_df.LATITUDE >= self.minlat) & (inund_df.LATITUDE <= self.maxlat) & (inund_df.LONGITUDE >= self.minlon) & (inund_df.LONGITUDE <= self.maxlon) & (inund_df.HORIZONTAL_INUNDATION > 0))] # Now create an array to match the simulated inundation array showing observed inundations obs_histogram, xedge, yedge = np.histogram2d(inund_df.LONGITUDE, inund_df.LATITUDE, bins=[len(self.lons), len(self.lats)], range=[[self.minlon-self.dlon/2.0, self.maxlon+self.dlon/2.0], [self.minlat-self.dlat/2.0, self.maxlat+self.dlat/2.0]]) #TODO: figure out right orientation of array obs_histogram obs_histogram = np.flipud(obs_histogram.T) if self.fill_bool: # Fill the map with unobserved inundation by "flowing" observed points into nearby squares obs_array = self._obs_array_filler(obs_histogram) else: obs_array = obs_histogram alt_ncVar = self.sim_data.variables['altitude'] self.obs_inundation_array = np.ma.masked_where(alt_ncVar[0] < 0, (obs_array>0)) def _obs_array_filler(self, obs_histogram): alt_array = self.sim_data.variables['altitude'][0] filled_array = np.copy(obs_histogram) filling_pass_count = 0 did_some_filling = True print("Filling pass: ") while did_some_filling: did_some_filling = False filling_pass_count += 1 print(filling_pass_count) for j, i in itertools.product(range(self.numlats), range(self.numlons)): #I find a square with water: if filled_array[j][i] > 0: this_height = alt_array[j][i] # Look to neighboring squares for vert_ind_mod, horiz_ind_mod in itertools.combinations_with_replacement([-1,0,1], 2): # Avoid indexing out of the arrays if i==0 and horiz_ind_mod == -1: continue if i==self.numlons-1 and horiz_ind_mod == 1: continue if j==0 and vert_ind_mod == -1: continue if j==self.numlats-1 and vert_ind_mod == 1: continue if i==0 and j==0: continue # If the neighbor is lower altitude and empty, fill it if filled_array[j+vert_ind_mod][i+horiz_ind_mod] == 0 and alt_array[j+vert_ind_mod][i+horiz_ind_mod] < this_height: did_some_filling = True filled_array[j+vert_ind_mod][i+horiz_ind_mod] = 1 return filled_array def compare_sim_and_obs_runup(self): print("Comparing simulation inundation and observation...") all_inundation_results = np.zeros_like(self.sim_inundation_array.astype(int)) all_inundation_results[np.logical_and(self.sim_inundation_array==0, self.obs_inundation_array==1)] = 1 all_inundation_results[np.logical_and(self.sim_inundation_array==1, self.obs_inundation_array==0)] = 2 all_inundation_results[np.logical_and(self.sim_inundation_array==1, self.obs_inundation_array==1)] = 3 alt_ncVar = self.sim_data.variables['altitude'] self.all_inundation_results = np.ma.masked_where(alt_ncVar[0]<0, all_inundation_results) plt.close(1) fig, ax = plt.subplots(num=1) m = Basemap(projection='cyl',llcrnrlat=self.minlat, urcrnrlat=self.maxlat, llcrnrlon=self.minlon, urcrnrlon=self.maxlon, lat_0=self.meanlat, lon_0=self.meanlon, resolution='i') m.drawmeridians(np.linspace(self.minlon, self.maxlon, num=5.0), labels=[0,0,0,1], linewidth=0) m.drawparallels(np.linspace(self.minlat, self.maxlat, num=5.0), labels=[1,0,0,0], linewidth=0) #m.drawcoastlines(linewidth=0.5) cm = mcolor.LinearSegmentedColormap.from_list('custom_cmap', ['gray', 'maroon', 'blue', 'lime'], N=4) map_ax = m.imshow(self.all_inundation_results, origin='upper', extent=[self.minlon, self.maxlon, self.maxlat, self.minlat], interpolation='nearest', cmap=cm) cbar = fig.colorbar(map_ax, ticks=[3/8., 9/8., 15/8., 21/8.]) cbar.ax.set_yticklabels(['Dry', 'Miss', 'False\nAlarm', 'Success']) fill_suffix = '' if self.fill_bool: fill_suffix = '_filled' plt.savefig(self.save_file_prefix+'_inundation{}.png'.format(fill_suffix), dpi=100) def analyticGaussPileIntegrand(k, r, t, Dc, Rc, depth): dispersion = np.sqrt(9.80665*k*np.tanh(k*depth)) #dispersion = k*np.sqrt(9.80665*depth) return Dc*Rc**2*k/2*np.cos(dispersion*t)*sp.special.jv(0, k*r)*np.exp(-(k*Rc/2)**2) def analyticGaussPile(r, t, Dc, Rc, depth): return sp.integrate.quad(analyticGaussPileIntegrand, 0, 1e3, args=(r, t, Dc, Rc, depth), points=[0, 2e-3])[0] # k = np.linspace(0, 2e-3, 1e4) # sumd = np.sum(analyticGaussIntegrand(k, r, t, Dc, Rc, depth)) # return np.diff(k)[0]*sumd def plot_eq_displacements(disp_file): save_file = os.path.splitext(disp_file)[0] + "_disp_z.png" # Read displacement data disp_data = np.genfromtxt(LLD_FILE, dtype=[('lat','f8'),('lon','f8'), ('z','f8')],skip_header=3) # Data ranges lon_min,lon_max = disp_data['lon'].min(),disp_data['lon'].max() lat_min,lat_max = disp_data['lat'].min(),disp_data['lat'].max() mean_lat = 0.5*(lat_min + lat_max) mean_lon = 0.5*(lon_min + lon_max) lon_range = lon_max - lon_min lat_range = lat_max - lat_min z_min,z_max = disp_data['z'].min(),disp_data['z'].max() z_lim = max(np.abs(z_min),np.abs(z_max)) cmap = plt.get_cmap('seismic') LEVELS = np.concatenate((-1*np.linspace(0.01, z_lim, 6)[::-1], np.linspace(0.01, z_lim, 6))) norm = mcolor.Normalize(vmin=-z_lim, vmax=z_lim) interp = 'cubic' landcolor = '#FFFFCC' framelabelfont = mfont.FontProperties(family='Arial', style='normal', variant='normal', size=14) # Initialize the frame and axes fig = plt.figure() m = Basemap(projection='cyl',llcrnrlat=lat_min, urcrnrlat=lat_max, llcrnrlon=lon_min, urcrnrlon=lon_max, lat_0=mean_lat, lon_0=mean_lon, resolution='h') m.ax = fig.add_subplot(111) m.drawmeridians(np.linspace(lon_min,lon_max,num=5.0),labels=[0,0,0,1], linewidth=0) m.drawparallels(np.linspace(lat_min,lat_max,num=5.0),labels=[1,0,0,0], linewidth=0) m.drawcoastlines(linewidth=0.5) m.fillcontinents(color=landcolor, zorder=0) # Colorbar divider = make_axes_locatable(m.ax) cbar_ax = divider.append_axes("right", size="5%",pad=0.05) plt.figtext(0.96, 0.7, r'displacement $[m]$', rotation='vertical', fontproperties=framelabelfont) cb = mcolorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=norm) # Reshape into matrices Ncols = len(np.unique(disp_data['lon'])) Nrows = len(np.unique(disp_data['lat'])) X = disp_data['lon'].reshape(Nrows, Ncols) Y = disp_data['lat'].reshape(Nrows, Ncols) Z = disp_data['z'].reshape(Nrows, Ncols) # Masked array via conditional, don't color the land unless it has water on it zero_below = int(len(LEVELS)/2)-1 zero_above = zero_below+1 masked_data = np.ma.masked_where(np.logical_and(np.array(Z <= LEVELS[zero_above]),np.array(Z >= LEVELS[zero_below])), Z) # Set masked pixels to the land color cmap.set_bad(landcolor, 0.0) # set alpha=0.0 for transparent # Plot the contours m.contourf(X, Y, masked_data, LEVELS, cmap=cmap, norm=norm, extend='both', zorder=1) plt.savefig(save_file,dpi=100) print("Saved to "+save_file) def plot_eq_disps_horiz(disp_file): # Read displacement data disp_data = np.genfromtxt(disp_file, dtype=[('lon','f8'), ('lat','f8'), ('z','f8'), ('eU','f8'), ('nV','f8')]) save_file_prefix = os.path.splitext(disp_file)[0]+"_disp" # Data ranges lon_min,lon_max = disp_data['lon'].min(),disp_data['lon'].max() lat_min,lat_max = disp_data['lat'].min(),disp_data['lat'].max() mean_lat = 0.5*(lat_min + lat_max) mean_lon = 0.5*(lon_min + lon_max) lon_range = lon_max - lon_min lat_range = lat_max - lat_min # Reshape into matrices Ncols = len(np.unique(disp_data['lon'])) Nrows = len(np.unique(disp_data['lat'])) X = disp_data['lon'].reshape(Nrows, Ncols) Y = disp_data['lat'].reshape(Nrows, Ncols) Z = disp_data['z'].reshape(Nrows, Ncols) eU = disp_data['eU'].reshape(Nrows, Ncols) nV = disp_data['nV'].reshape(Nrows, Ncols) cmap = plt.get_cmap('seismic') z_min,z_max = disp_data['z'].min(),disp_data['z'].max() z_lim = max(np.abs(z_min),np.abs(z_max)) normz = mcolor.Normalize(vmin=-z_lim, vmax=z_lim) #LEVELSz = np.concatenate((-1*np.logspace(-3, np.log10(z_lim), 6)[::-1], np.logspace(-3, np.log10(z_lim), 6))) LEVELSz = np.concatenate((-1*np.linspace(0.01, z_lim, 6)[::-1], np.linspace(0.01, z_lim, 6))) e_min,e_max = disp_data['eU'].min(),disp_data['eU'].max() e_lim = max(np.abs(e_min),np.abs(e_max)) norme = mcolor.Normalize(vmin=-e_lim, vmax=e_lim) #LEVELSe = np.concatenate((-1*np.logspace(-3, np.log10(e_lim), 6)[::-1], np.logspace(-3, np.log10(e_lim), 6))) LEVELSe = np.concatenate((-1*np.linspace(0.01, e_lim, 6)[::-1], np.linspace(0.01, e_lim, 6))) n_min,n_max = disp_data['nV'].min(),disp_data['nV'].max() n_lim = max(np.abs(n_min),np.abs(n_max)) normn = mcolor.Normalize(vmin=-n_lim, vmax=n_lim) #LEVELSn = np.concatenate((-1*np.logspace(-3, np.log10(n_lim), 6)[::-1], np.logspace(-3, np.log10(n_lim), 6))) LEVELSn = np.concatenate((-1*np.linspace(0.01, n_lim, 6)[::-1], np.linspace(0.01, n_lim, 6))) interp = 'cubic' landcolor = '#FFFFCC' framelabelfont = mfont.FontProperties(family='Arial', style='normal', variant='normal', size=14) # Initialize the frame and axes fig = plt.figure(0) m = Basemap(projection='cyl',llcrnrlat=lat_min, urcrnrlat=lat_max, llcrnrlon=lon_min, urcrnrlon=lon_max, lat_0=mean_lat, lon_0=mean_lon, resolution='h') m.ax = fig.add_subplot(111) m.drawmeridians(np.linspace(lon_min,lon_max,num=5.0),labels=[0,0,0,1], linewidth=0) m.drawparallels(np.linspace(lat_min,lat_max,num=5.0),labels=[1,0,0,0], linewidth=0) m.drawcoastlines(linewidth=0.5) m.fillcontinents(color=landcolor, zorder=0) # Colorbar divider = make_axes_locatable(m.ax) cbar_ax = divider.append_axes("right", size="5%",pad=0.05) plt.figtext(0.96, 0.7, r'Vertical disp $[m]$', rotation='vertical', fontproperties=framelabelfont) cbz = mcolorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=normz) # Masked array via conditional, don't color the land unless it has water on it zero_below = int(len(LEVELSz)/2)-1 zero_above = zero_below+1 masked_data = np.ma.masked_where(np.logical_and(np.array(Z <= LEVELSz[zero_above]),np.array(Z >= LEVELSz[zero_below])), Z) # Set masked pixels to the land color cmap.set_bad(landcolor, 0.0) # set alpha=0.0 for transparent # Plot the contours m.contourf(X, Y, masked_data, LEVELSz, cmap=cmap, norm=normz, extend='both', zorder=1) plt.savefig(save_file_prefix+'_z.png',dpi=100) # Initialize the frame and axes fig = plt.figure(1) m = Basemap(projection='cyl',llcrnrlat=lat_min, urcrnrlat=lat_max, llcrnrlon=lon_min, urcrnrlon=lon_max, lat_0=mean_lat, lon_0=mean_lon, resolution='h') m.ax = fig.add_subplot(111) m.drawmeridians(np.linspace(lon_min,lon_max,num=5.0),labels=[0,0,0,1], linewidth=0) m.drawparallels(np.linspace(lat_min,lat_max,num=5.0),labels=[1,0,0,0], linewidth=0) m.drawcoastlines(linewidth=0.5) m.fillcontinents(color=landcolor, zorder=0) # Colorbar divider = make_axes_locatable(m.ax) cbar_ax = divider.append_axes("right", size="5%",pad=0.05) plt.figtext(0.96, 0.7, r'East disp $[m]$', rotation='vertical', fontproperties=framelabelfont) cbe = mcolorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=norme) # Masked array via conditional, don't color the land unless it has water on it zero_below = int(len(LEVELSe)/2)-1 zero_above = zero_below+1 masked_data = np.ma.masked_where(np.logical_and(np.array(eU <= LEVELSe[zero_above]),np.array(eU >= LEVELSe[zero_below])), eU) # Set masked pixels to the land color cmap.set_bad(landcolor, 0.0) # set alpha=0.0 for transparent # Plot the contours m.contourf(X, Y, masked_data, LEVELSe, cmap=cmap, norm=norme, extend='both', zorder=1) plt.savefig(save_file_prefix+'_e.png',dpi=100) # Initialize the frame and axes fig = plt.figure(2) m = Basemap(projection='cyl',llcrnrlat=lat_min, urcrnrlat=lat_max, llcrnrlon=lon_min, urcrnrlon=lon_max, lat_0=mean_lat, lon_0=mean_lon, resolution='h') m.ax = fig.add_subplot(111) m.drawmeridians(np.linspace(lon_min,lon_max,num=5.0),labels=[0,0,0,1], linewidth=0) m.drawparallels(np.linspace(lat_min,lat_max,num=5.0),labels=[1,0,0,0], linewidth=0) m.drawcoastlines(linewidth=0.5) m.fillcontinents(color=landcolor, zorder=0) # Colorbar divider = make_axes_locatable(m.ax) cbar_ax = divider.append_axes("right", size="5%",pad=0.05) plt.figtext(0.96, 0.7, r'North disp $[m]$', rotation='vertical', fontproperties=framelabelfont) cbn = mcolorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=normn) # Masked array via conditional, don't color the land unless it has water on it zero_below = int(len(LEVELSn)/2)-1 zero_above = zero_below+1 masked_data = np.ma.masked_where(np.logical_and(np.array(nV <= LEVELSn[zero_above]),np.array(nV >= LEVELSn[zero_below])), nV) # Set masked pixels to the land color cmap.set_bad(landcolor, 0.0) # set alpha=0.0 for transparent # Plot the contours m.contourf(X, Y, masked_data, LEVELSn, cmap=cmap, norm=normn, extend='both', zorder=1) plt.savefig(save_file_prefix+'_n.png',dpi=100) print("Saved to "+save_file) def bathy_topo_map(LLD_FILE): save_file = os.path.splitext(LLD_FILE)[0]+'_bathymap.png' extension = os.path.splitext(LLD_FILE)[1] # Read bathymetry/topography data if extension == ".txt": data = np.genfromtxt(LLD_FILE, dtype=[('lat','f8'),('lon','f8'), ('z','f8')], skip_header=6) # Reshape into matrices Ncols = len(np.unique(data['lon'])) Nrows = len(np.unique(data['lat'])) X = data['lon'].reshape(Nrows, Ncols) Y = data['lat'].reshape(Nrows, Ncols) Z = data['z'].reshape(Nrows, Ncols) # Data ranges lon_min,lon_max = data['lon'].min(),data['lon'].max() lat_min,lat_max = data['lat'].min(),data['lat'].max() elif extension == ".nc": data = Dataset(LLD_FILE, 'r') # Reshape into matrices Ncols = len(data['longitude'][:]) Nrows = len(data['latitude'][:]) X, Y = np.meshgrid(data['longitude'][:], data['latitude'][:]) Z = data['altitude'][::] # Data ranges lon_min, lon_max = data['longitude'][:].min(), data['longitude'][:].max() lat_min, lat_max = data['latitude'][:].min(), data['latitude'][:].max() else: raise BaseException("Bathymetry file is an unsupported file type") mean_lat = 0.5*(lat_min + lat_max) mean_lon = 0.5*(lon_min + lon_max) lon_range = lon_max - lon_min lat_range = lat_max - lat_min cmap = plt.get_cmap('terrain') interp = 'nearest' framelabelfont = mfont.FontProperties(family='Arial', style='normal', variant='normal', size=14) # catch any nan values masked_data = np.ma.masked_invalid(Z) cmap.set_bad('red') # Color limits z_min,z_max = masked_data.min(),masked_data.max() z_lim = max(np.abs(z_min),np.abs(z_max)) norm = mcolor.Normalize(vmin=-z_lim, vmax=z_lim) # Initialize the frame and axes fig = plt.figure() m = Basemap(projection='cyl',llcrnrlat=lat_min, urcrnrlat=lat_max, llcrnrlon=lon_min, urcrnrlon=lon_max, lat_0=mean_lat, lon_0=mean_lon, resolution='h') m.ax = fig.add_subplot(111) m.drawmeridians(np.linspace(lon_min,lon_max,num=5.0),labels=[0,0,0,1], linewidth=0) m.drawparallels(np.linspace(lat_min,lat_max,num=5.0),labels=[1,0,0,0], linewidth=0) m.drawcoastlines(linewidth=0.5) # Colorbar divider = make_axes_locatable(m.ax) cbar_ax = divider.append_axes("right", size="5%",pad=0.05) plt.figtext(0.96, 0.7, r'elevation $[m]$', rotation='vertical', fontproperties=framelabelfont) cb = mcolorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=norm) # Plot the contours #m.contourf(X, Y, masked_data, 100, cmap=cmap, norm=norm, extend='both', zorder=1) m.ax.imshow(masked_data, cmap=cmap, origin='lower', norm=norm, extent=[lon_min, lon_max, lat_min, lat_max], interpolation=interp) plt.savefig(save_file,dpi=100) print("Saved to "+save_file) # -------------------------------------------------------------------------------- if __name__ == "__main__": parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(title='mode', description='valid modes of usage', dest='mode') # Arguments for generating bathymetry LLD files parser_gen = subparsers.add_parser('generate_bathy', help='generate interpolated bathymetry subset from NOAA\'s ETOPO1 dataset') parser_gen.add_argument('--info_file', required=True, help='json containing regional and earthquake information') parser_gen.add_argument('--etopo1_file', required=False, default="~/Tsunami/ETOPO1/ETOPO1_Ice_g_gmt4.grd", help="NOAA ETOPO1 combined topography and bathymetry file path") parser_gen.add_argument('--resolution', type=int, required=False, default=1, help="Resolution interpolation multiplier for NOAA topography") parser_gen.add_argument('--text', action="store_true", required=False, help="Store bathymetry as a text lld file") # Arguments for plotting bathymetry parser_plot_bathy = subparsers.add_parser('plot_bathy', help='Plot previously-generated bathymetry LLD file') parser_plot_bathy.add_argument('--lld_file', required=True, help="Path of bathymetry file") # Arguments for generating EQ surface displacement fields parser_field_eval = subparsers.add_parser('eq_field_eval', help='Generate surface displacement for a VQ fault model') parser_field_eval.add_argument('--info_file', required=True, help='json containing regional and earthquake information') parser_field_eval.add_argument('--lld_file', required=True, help="Path of bathymetry file") parser_field_eval.add_argument('--slip_from', choices=['vq_sim', 'uniform', 'slipmap'], required=True, help="Sources of displacements") # Arguments for plotting eq displacement fields parser_field_plot = subparsers.add_parser('eq_field_plot', help='Plot a surface displacement field') parser_field_plot.add_argument('--field_file', required=True, help="Path of surface displacement file") parser_field_plot.add_argument('--plot_horizontal', action="store_true", required=False, help="Whether to plot the horizontal displacements in addition to vertical") # Arguments for plotting simulation results parser_animate = subparsers.add_parser('animate', help='Make animations from simulation output') parser_animate.add_argument('--type', choices=['grid', 'xsection'], required=True, help="Type of animation to make; birds-eye grid or cross-sectional verification against analytic solution") parser_animate.add_argument('--sim_file', required=True, help="Name of simulation file to analyze.") parser_animate.add_argument('--zminmax', type=float, nargs=2, required=False, help="Bounds for water height color bar") parser_animate.add_argument('--use_basemap', action="store_true", required=False, help="Whether to plot a basemap coastal outline over the grid animation") parser_animate.add_argument('--fps', type=int, required=False, default=20, help="Frames per second for animations") parser_animate.add_argument('--dpi', type=int, required=False, default=100, help="Bounds for water height color bar") # Arguments for verifying simualtion against observed historical runups parser_verify = subparsers.add_parser('verify', help='Verify simulation results against NOAA historical runup data') parser_verify.add_argument('--sim_file', required=True, help="Name of simulation file to analyze.") parser_verify.add_argument('--obs_file', required=True, help="Observed historical tsunami runup CSV file") parser_verify.add_argument('--info_file', required=True, help='json containing regional and earthquake information') parser_verify.add_argument('--fill', required=False, action="store_true", help='json containing regional and earthquake information') # args = parser.parse_args(['verify', '--sim_file', 'outputs/Tohoku/TohokuSmall_x2_contRealisticX1_output_000-1600.nc', # '--obs_file', '../historical_runups/tsrunup.csv', '--ymd', '2011', '3', '11']) args = parser.parse_args() if args.mode == 'generate_bathy': with open(args.info_file, "r") as open_info_file: region_info = json.load(open_info_file) # ====== PARSE ETOPO1 FILE, SAVE SUBSET ===== ETOPO1_FILE = args.etopo1_file FACTOR = args.resolution SAVE_NAME = os.path.join(os.path.split(args.info_file)[0], 'bathymetry', region_info['name']+'_x'+str(FACTOR)+'_lld.txt') save_dir = os.path.join(os.path.split(args.info_file)[0], 'bathymetry') if args.text: save_name = region_info['name']+'_x'+str(FACTOR)+'_lld.txt' else: save_name = region_info['name']+'_x'+str(FACTOR)+'_lld.nc' if not os.path.isdir(save_dir): os.makedirs(save_dir) SAVE_PATH = os.path.join(save_dir, save_name) MIN_LAT = region_info['lat_bounds'][0] MAX_LAT = region_info['lat_bounds'][1] MIN_LON = region_info['lon_bounds'][0] MAX_LON = region_info['lon_bounds'][1] # --- write grid ------ # TODO: transition from txt files to netCDF files containing bathymetry data lats, lons, bathy = read_ETOPO1.grab_ETOPO1_subset_interpolated(ETOPO1_FILE, min_lat=MIN_LAT, max_lat=MAX_LAT, min_lon=MIN_LON, max_lon=MAX_LON, factor=FACTOR) if args.text: read_ETOPO1.write_grid(SAVE_PATH, lats, lons, bathy) else: read_ETOPO1.write_grid_netCDF(SAVE_PATH, lats, lons, bathy) if args.mode == 'plot_bathy': bathy_topo_map(args.lld_file) if args.mode == 'eq_field_eval': with open(args.info_file, "r") as open_info_file: region_info = json.load(open_info_file) VQ_DIR = "~/VirtQuake/" system_command = "python "+VQ_DIR+"vq/PyVQ/pyvq/pyvq.py --field_eval --netCDF --horizontal --model_file {} --lld_file {}".format(region_info['model_file'], args.lld_file) if args.slip_from == 'vq_sim': if not region_info['event_file'] or not region_info['event_id']: raise BaseException("Must specify both an event file and an event ID in info file") system_command += " --event_file {} --event_id {}".format(region_info['event_file'], region_info['event_id']) elif args.slip_from == 'uniform': system_command += " --uniform_slip 10" elif args.slip_from == 'slipmap': if not region_info['slip_map']: raise BaseException("Must specify slipmap file") system_command += " --slipmap_file {}".format(region_info['slip_map']) os.system(system_command) if args.mode == 'eq_field_plot': if not args.plot_horizontal: plot_eq_displacements(args.field_file) else: if not os.path.splitext(args.field_file)[1] == 'xyuen': raise BaseException("Must have .xyuen file format for horizontal field plotting") plot_eq_disps_horiz(args.field_file) if args.mode in ['animate', 'verify']: this_sim = simAnalyzer(args.sim_file) if args.mode == 'verify': with open(args.info_file, "r") as open_info_file: region_info = json.load(open_info_file) # Load historical inundation data and compare it to simulated results this_sim.load_historical_runup_CSV(args.obs_file, region_info["date"], args.fill) this_sim.compare_sim_and_obs_runup() if args.mode == 'animate': if args.type == 'grid': #zminmax = (-1,1)#(-sim_data['z'].std(), sim_data['z'].std()) # Makes animation this_sim.make_grid_animation(args.fps, args.dpi, zminmax = args.zminmax, doBasemap = args.use_basemap) if args.type == 'xsection': this_sim.make_crosssection_animation(args.fps, args.dpi)
[ "johnmaxwilson@gmail.com" ]
johnmaxwilson@gmail.com
3c500db05684cd0c0482c6ba1043cb8711687527
739696cb824ea23405173c5051f08534c6ae27d3
/day2-homework/exercise4.py
9c0428e01ac97b9a3b19e6ee41d8ba21360985af
[]
no_license
hgalagali/qbb2015-homework
025285d9dd0dbf2faaa3921f8e76aa2ce30654ea
1d78925658acbed8ef990e5fec6e0ebc8ddcba00
refs/heads/master
2020-05-31T12:13:37.868899
2015-08-31T15:25:39
2015-08-31T15:25:39
41,310,717
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
#!/usr/bin/env python import pandas as pd import matplotlib.pyplot as plt df=pd.read_table("/Users/cmdb/qbb2015/stringtie/SRR072893/t_data.ctab") df2=df["FPKM"] top=df2[0:11572] middle=df2[11572:23144] bottom=df2[23144:34718] plt.figure() plt.title("FPKM values") plt.boxplot([top, middle, bottom]) plt.savefig("boxplot.png")
[ "hgalaga1@jhu.edu" ]
hgalaga1@jhu.edu
513488fb677a28b865c94788e32575b2a4c788da
1c965e975218b6478e50413fb87b75b7d5e9dadd
/blog/urls.py
bb0e157d0d0f4a7436063f7bee1b4dfef2c68f15
[]
no_license
latishasumardy/my-first-blog
6f97371091fac1af9afaf915694c422f131a2e31
51ae0593ee693c497fbb9d5104f3b89ccb6f7e20
refs/heads/master
2021-01-01T16:02:15.781327
2017-07-20T23:00:20
2017-07-20T23:00:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.post_list, name='post_list'), url(r'^post/(?P<pk>\d+)/$', views.post_detail, name='post_detail'), url(r'^post/new/$', views.post_new, name='post_new'), url(r'^post/(?P<pk>\d+)/edit/$', views.post_edit, name='post_edit'), url(r'^aboutme$', views.aboutme, name='aboutme'), ]
[ "lsmarty23@gmail.com" ]
lsmarty23@gmail.com
ac97c7b842716eb74b97408e214b725c9617484a
b59c2f4d476dae4e37acb30bb9df71daf589c708
/singleton.py
733d8fd7f5317813e5a9058b91c6ce7d5573fa75
[]
no_license
catVSdog/design_patterns
3cd5ab583b37e4149e55c59fa08d1c6e0b1ffcfd
b9384ef5b40259f9c855f4d60bf02b0e2d3bd933
refs/heads/master
2021-07-09T10:43:23.437706
2021-03-19T01:38:10
2021-03-19T01:38:10
231,211,122
2
0
null
2021-03-03T09:17:25
2020-01-01T12:02:49
Python
UTF-8
Python
false
false
6,358
py
""" 单例模式 一般情况下,一个类每次实例化都会产生一个单独的对象。而单例模式的要求是:多次实例化,只产生一个对象。 这就要求对类的实例化过程进行干预,使其只有在第一次实例化时产生一个对象,以后的多次实例化,都是返回第一次创建的对象。 这就需要两个步骤: 1.是否已经有了实例了。 2.1 如果没有,那么创建实例,存储实例,将实例返回 2.2 如果已经有了,那么取出实例,将其返回 首先说,如何存储实例,一般利用具有唯一性的东西, 如 类变量 在说,如何干预实例化: 1.将类视作类,类实际通过 __new__ 方法,创建新对象,那么就重写 __new__方法。 2.有一个对象object, 当 object()时,其实调用的是 object的类的 __call__ 方法.python中一切皆对象,类也是其他类(又叫元类, 默认是type) 的对象。 因此可以重写类的元类的 __call__ 方法 > 以上两种都是从类创建对象的角度,进行干预, 还有一种方法是将类创建对象的过程,转换为一个函数调用的过程,在函数调用的过程中,创建/查找 返回类. 即:使用装饰器,将 cls() 操作转换为函数调用过程. 具体又分: 3.函数装饰器 4.类装饰器 还有一种是利用 python 包导入特性——每个包只导入一次,在一个模块中实例化一个类,然后在其他模块中直接导入该实例。 """ ### 第一种,重写 __new__ class Sun: __instance__ = None # 使用类变量指代实例 def __new__(cls, *args, **kwargs): if cls.__instance__ is None: cls.__instance__ = super().__new__(cls) return cls.__instance__ sun_1 = Sun() sun_2 = Sun() assert sun_1 == sun_2 class Changjiang: __instance__ = {} # 使用类变量存储实例 def __new__(cls, *args, **kwargs): if cls not in cls.__instance__: cls.__instance__[cls] = super().__new__(cls) return cls.__instance__[cls] changjiang_1 = Changjiang() changjiang_2 = Changjiang() assert changjiang_1 == changjiang_2 # 第二种, 重写 __call__ class Person(type): __instance__ = None # 使用类变量指代实例 def __call__(self, *args, **kwargs): # 这里的self 其实是 ChairMan 这个类 if self.__instance__ is None: self.__instance__ = super().__call__(*args, **kwargs) return self.__instance__ class ChairMan(metaclass=Person): pass chairman_1 = ChairMan() chairman_2 = ChairMan() assert chairman_1 == chairman_2 class River(type): # 注意这里, 元类继承自 type __instance__ = {} # 使用类变量存储实例 def __call__(cls, *args, **kwargs): # 为了更明显,我们将 self 改为了 cls. if cls not in cls.__instance__: cls.__instance__[cls] = super().__call__(*args, **kwargs) return cls.__instance__[cls] class Huanghe(metaclass=River): # 更改元类为 River pass huanghe_1 = Huanghe() huanghe_2 = Huanghe() assert huanghe_1 == huanghe_2 # 第三种 函数装饰器 def singletone(cls): __instance__ = {} def wrapper(*args, **kwargs): if cls not in __instance__: __instance__[cls] = cls(*args, **kwargs) return __instance__[cls] return wrapper @singletone class Beijing: # 经过装饰以后,通过访问 globals(),可以看到 Beijing 已经不是类了,而是一个函数 pass beijing_1 = Beijing() # 其实是 wrapper() beijing_2 = Beijing() assert beijing_1 == beijing_2 # print(globals()) # {'Beijing': <function singletone.<locals>.wrapper at 0x7f5df7d88f70> } # def singletone(cls): # __instance__ None # # def wrapper(*args, **kwargs): # if __instance__ is None: # 这么做是不行的,这涉及到作用域的嵌套与覆盖,以及变量的遮罩 # __instance__ = cls(*args, **kwargs) # return __instance__[cls] # return wrapper # 第四种 类装饰器. 被类装饰器装饰的东西(类/函数),都会作为装饰器类的初始化参数,创建一个装饰器类的实例。通过重写装饰器类的__call__方法, # 干预类实例化的过程 class Singletone1: __instance__ = None # 使用类变量指向实例 def __init__(self, cls): self.cls = cls def __call__(self, *args, **kwargs): if self.__instance__ is None: self.__instance__ = self.cls(*args, **kwargs) return self.__instance__ @Singletone1 class Guangzhou: # 这里的Guangzhou已经不是类了,而是Singletone1的一个对象 'Guangzhou': <__main__.Singletone1 object at 0x7fcc0cdfd430> pass guangzhou_1 = Guangzhou() guangzhou_2 = Guangzhou() assert guangzhou_1 == guangzhou_2 class Singletone2: __instance__ = {} # 使用类变量存储实例 def __init__(self, cls): self.cls = cls def __call__(self, *args, **kwargs): if self.cls not in self.__instance__: self.__instance__[self.cls] = self.cls(*args, **kwargs) return self.__instance__[self.cls] @Singletone2 class Shanghai: # 这里的 Shanghai 已经不是类了,而是 Singletone2的一个对象 'Shanghai': <__main__.Singletone2 object at 0x7fcc0cdfd520> pass shanghai_1 = Shanghai() shanghai_2 = Shanghai() assert shanghai_1 == shanghai_2 class Singletone3: def __init__(self, cls): self.cls = cls self.__instance = None # 使用实例变量指向实例 def __call__(self, *args, **kwargs): if self.__instance is None: self.__instance = self.cls(*args, **kwargs) return self.__instance @Singletone3 class Shenzhen: pass shenzhen_1 = Shenzhen() shenzhen_2 = Shenzhen() assert shenzhen_1 == shenzhen_2 class Singletone4: def __init__(self, cls): self.cls = cls self.__instance = {} # 使用实例变量存储实例 def __call__(self, *args, **kwargs): if self.cls not in self.__instance: self.__instance[self.cls] = self.cls(*args, **kwargs) return self.__instance[self.cls] @Singletone4 class Hangzhou: pass hangzhou_1 = Hangzhou() hangzhou_2 = Hangzhou() assert hangzhou_1 == hangzhou_2 # 第五种 # a.py class A: pass aa = A() # b.py # from a import aa # aa.xxxx
[ "windorbird@gmail.com" ]
windorbird@gmail.com
821a2b4b9edb37d15409ef8739f0428c789f0cff
7b95d4f78b6bd1e6eb089b57ac38f89c48685ee8
/migrations/versions/2b1dbac24b45_new_fields_in_user_model.py
98f3f2ea72fb664f37ade67431735d833dbe0f3d
[]
no_license
pandreyn/microblog-python-flex
77e822b6f564f39180f50aa294d2708a2a67df18
f02759fd98264c2efeae5bf828c1ccfd8b3332d1
refs/heads/master
2021-04-29T23:12:12.930862
2018-03-06T05:33:07
2018-03-06T05:33:07
121,550,673
0
0
null
null
null
null
UTF-8
Python
false
false
792
py
"""new fields in user model Revision ID: 2b1dbac24b45 Revises: c414e32cfcd9 Create Date: 2018-02-14 18:55:15.665604 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '2b1dbac24b45' down_revision = 'c414e32cfcd9' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('user', sa.Column('about_me', sa.String(length=140), nullable=True)) op.add_column('user', sa.Column('last_seen', sa.DateTime(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('user', 'last_seen') op.drop_column('user', 'about_me') # ### end Alembic commands ###
[ "v-anpetk@microsoft.com" ]
v-anpetk@microsoft.com
7329b36832858ee7f92c5421d1a10f57c7733671
f1e203b154f309dc0025f88acc5d0f369c031a70
/reddit_api.py
230feead556e84f490815697b941201d231b8af8
[]
no_license
radiochickenwax/algo_challenge
eb8382d5713dce4f1f2880cf36e6451907eca7a7
4992ed7ba2d11bf80a0f64c8c90f4e7d370d7f9d
refs/heads/master
2021-08-15T12:25:45.034102
2017-11-17T21:12:36
2017-11-17T21:12:36
111,150,761
0
0
null
2017-11-17T21:08:20
2017-11-17T21:08:20
null
UTF-8
Python
false
false
4,808
py
import requests import json import re from bson import json_util import os from models import User, Team, Game, Challenge from datetime import datetime from random import shuffle from slackclient import SlackClient num_teams = int(os.environ['NUM_TEAMS']) team_members = int(os.environ['NUM_MEMBERS']) token = os.environ["SLACK_TOKEN"] sc = SlackClient(token) def get_random_post(requested_difficulty='Easy', any_difficulty=False): r = requests.get('http://reddit.com/r/dailyprogrammer/random.json', headers = {'User-agent': 'reddit_daily_algo_bot 0.1'}) data = r.json() post = data[0]['data']['children'][0]['data'] title = post['title'] regex = r"\[[^)]+\].*?\[([^)]+)\]" try: difficulty = re.search(regex, title).group(1) except: return get_random_post(requested_difficulty) # if difficulty != requested_difficulty and not any_difficulty: # print("wrong difficulty", difficulty) # return get_random_post(requested_difficulty) description = post['selftext'] description = description.replace('\n', '\\n') regex = r"^#(.*?)\\n#" try: description = re.search(regex, description).group(1) except: # print("regex failed for desc",post['selftext']) return get_random_post(requested_difficulty) description = description.replace('\\n', '\n') try: Challenge.objects.get(description=description) print("challenge already exists") return get_random_post(requested_difficulty) except: pass url = post['url'] data = { 'title': title, 'description': description, 'url': url, 'difficulty': difficulty } return data def diff_color(diff): if diff == "Hard": return "#CB3535" elif diff == "Intermediate": return "#E7AB17" elif diff == "Easy": return "#54D600" else: return "#2E5DFF" def background_worker(response_url, channel): data = [] for i in range(3): challenge = get_random_post(any_difficulty=True) new_challenge = Challenge( title=challenge['title'], description=challenge['description'], difficulty=challenge['difficulty'], url=challenge['url']) data.append(new_challenge.save()) game = Game(choices=data) game = game.save() game_id = json.loads(json_util.dumps(game.id)) message = { "response_type": "in_channel", "text": "Here are three random Algorithm challenges!", "attachments": []} choices = { "title": "Choose which Algo you'd like to solve!", "callback_id": game_id['$oid'], "attachment_type": "default", "actions": [] } for i, chall in enumerate(data): challenge_attachment = {} challenge_attachment["title"] = "<" + chall.url + "|" + chall.title + ">" challenge_attachment["text"] = chall.description challenge_attachment["color"] = diff_color(chall.difficulty) message["attachments"].append(challenge_attachment) choice = {} choice["name"] = "choice" choice["text"] = "Challenge #" + str(i+1) choice["type"] = "button" choice["value"] = json.loads(json_util.dumps(chall.id))["$oid"] choices["actions"].append(choice) message["attachments"].append(choices) sc.api_call( "chat.postMessage", channel=channel, text=message["text"], response_type=message["response_type"], attachments=message["attachments"] ) def randomize_teams(names, no_teams, game): teams = [] shuffle(names) for _ in range(no_teams): teams.append([]) last_game = Game.objects.first() last = last_game.teams while names: for team in teams: if names: team.append(names.pop()) for team in teams: if team in last: return randomize_teams(names, no_teams, game) teams_object = [] for team in teams: max_driver_time = datetime.now() current_driver = "" for (idx, member) in enumerate(team): if 'last_lead' in member: if member.last_lead < max_driver_time: max_driver_time = member.last_lead current_driver = idx else: current_driver = idx break temp = team[0] team[0] = team[current_driver] team[current_driver] = temp team[0].last_lead = datetime.now() team[0].save() team = Team(members=team) teams_object.append(team) print(teams,teams_object) game.teams = teams_object game.save() return teams if __name__ == "__main__": get_random_post()
[ "kyle.bible@gmail.com" ]
kyle.bible@gmail.com
2d73ae346589bc5cd766d0a44c3a57acc84e8252
48350e98d638656d8cac51b539c98a000400f8da
/ex5.py
dda6bab367d22b99294f885352766cfbd9a80d64
[]
no_license
WenHuber/Learn-Python3-the-Hard-Way-ExampleCodes
25a09ea5c95bd8a3a644e8da33f813f7562dce31
1cfdb1f7be08906ba18abc6408f8b24f7acb2094
refs/heads/master
2020-04-18T13:18:13.251863
2019-01-25T15:10:31
2019-01-25T15:10:31
167,558,855
0
0
null
null
null
null
UTF-8
Python
false
false
631
py
#Exercise5. More Variables and Printing my_name = 'Zed A. Shaw' my_age = 35 #not a lie my_height = 74 #inches my_weight = 180 #lbs my_eyes = 'Blue' my_teeth = 'White' my_hair = 'Brown' print(f"Let's talk about {my_name}.") print(f"He's {my_height} inches tall.") print(f"He's {my_weight} pounds heavy.") print("Actually that's not too heavy.") print(f"He's got {my_eyes} eyes and {my_hair} hair.") print(f"His teeth are usually {my_teeth} depending on the coffee.") #this line is tricky, try to get it exactly right total = my_age + my_height + my_weight print(f"If I add {my_age}, {my_height}, and {my_weight} I get {total}.")
[ "noreply@github.com" ]
WenHuber.noreply@github.com
7a5391e4a8541d1248b470d05a858b472d81f6cb
713028844e118751c0bcf79627b8ebfe7599c608
/RealTimeFaceDetectionOnLiveVideoFeed/src/GoogleNet.py
c3ff2046b015f6b6ff98b41e53de87e2a37ea4a4
[]
no_license
mahima14/FaceDetectionRealTimeVideo
c103e2d1e7a3df2b8c4ca99e118196acd97d6ea0
5d6561c709c4b7144a677b28b5b88e8f781c7ced
refs/heads/master
2021-04-06T01:23:28.220467
2018-07-25T16:08:51
2018-07-25T16:08:51
124,431,129
0
0
null
null
null
null
UTF-8
Python
false
false
3,181
py
from keras.layers import Convolution2D, MaxPooling2D from keras.layers import Dropout, Flatten, Dense import numpy as np import pandas as pd from keras.utils import np_utils from keras.layers.containers import Graph from keras.models import Sequential #DATA PREPROCESSING df = pd.read_csv("fer2013.csv") df.head() df.shape df["Usage"].value_counts() train = df[["emotion", "pixels"]][df["Usage"] == "Training"] train.isnull().sum() train['pixels'] = train['pixels'].apply(lambda im: np.fromstring(im, sep=' ')) x_train = np.vstack(train['pixels'].values) y_train = np.array(train["emotion"]) x_train.shape, y_train.shape public_test_df = df[["emotion", "pixels"]][df["Usage"]=="PublicTest"] public_test_df["pixels"] = public_test_df["pixels"].apply(lambda im: np.fromstring(im, sep=' ')) x_test = np.vstack(public_test_df["pixels"].values) y_test = np.array(public_test_df["emotion"]) x_train = x_train.reshape(-1, 48, 48, 1) x_test = x_test.reshape(-1, 48, 48, 1) x_train.shape, x_test.shape y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) y_train.shape, y_test.shape batch_size = 128 nb_epoch = 50 print 'X_train shape: ', x_train.shape print 'y_train shape: ', y_train.shape print 'img size: ', x_train.shape[2], x_train.shape[3] print 'batch size: ', batch_size print 'nb_epoch: ', nb_epoch # model architecture: model = Graph() model.add_input(name='n00', input_shape=(1,48,48)) # layer 1 model.add_node(Convolution2D(64,1,1, activation='relu'), name='n11', input='n00') model.add_node(Flatten(), name='n11_f', input='n11') model.add_node(Convolution2D(96,1,1, activation='relu'), name='n12', input='n00') model.add_node(Convolution2D(16,1,1, activation='relu'), name='n13', input='n00') model.add_node(MaxPooling2D((3,3),strides=(2,2)), name='n14', input='n00') # layer 2 model.add_node(Convolution2D(128,3,3, activation='relu'), name='n22', input='n12') model.add_node(Flatten(), name='n22_f', input='n22') model.add_node(Convolution2D(32,5,5, activation='relu'), name='n23', input='n13') model.add_node(Flatten(), name='n23_f', input='n23') model.add_node(Convolution2D(32,1,1, activation='relu'), name='n24', input='n14') model.add_node(Flatten(), name='n24_f', input='n24') # output layer model.add_node(Dense(1024, activation='relu'), name='layer4', inputs=['n11_f', 'n22_f', 'n23_f', 'n24_f'], merge_mode='concat') model.add_node(Dense(10, activation='softmax'), name='layer5', input='layer4') model.add_output(name='output1',input='layer5') print 'Training....' model.compile(loss={'output1':'categorical_crossentropy'}, optimizer='adam',metrics=['accuracy']) model.fit({'n00':x_train, 'output1':y_train}, nb_epoch=nb_epoch, batch_size=batch_size,validation_split=0.3, shuffle=True, verbose=1) #Model result: loss_and_metrics = model.evaluate(x_train, y_train, batch_size=batch_size, verbose=1) print 'Done!' print 'Loss: ', loss_and_metrics[0] print ' Acc: ', loss_and_metrics[1] #Saving Model json_string = model.to_json() model.save_weights('emotion_weights_googleNet.h5') open('emotion_model_googleNet.json', 'w').write(json_string) model.save_weights('emotion_weights_googleNet.h5')
[ "mahima.agarwal14@gmail.com" ]
mahima.agarwal14@gmail.com
c0789c0f07c9a60555475f1427905abf58911feb
591018f4f72b57028f65ac840d81f19a6ad9368b
/zimu_ml_sys/core/graph_embedding/graph_embedding_base_task.py
c66255bc4f4cc1dd070a681949068fdad23683d6
[]
no_license
nicaibutou1993/ZimuMLSys
4bea11be191218061d13c8ca816db5aa2ea42f3f
2ff8f7e4eff5ad30f1d52c75348cf1e93adce52e
refs/heads/main
2023-05-08T09:46:29.674308
2021-06-04T06:45:31
2021-06-04T06:45:31
365,101,549
0
0
null
null
null
null
UTF-8
Python
false
false
9,905
py
# -*- coding: utf-8 -*- import os import time import numpy as np import pandas as pd from zimu_ml_sys.constant import PREPROCESS_DATA_PATH, FEATURE_DATA_PATH from zimu_ml_sys.core.graph_embedding.deep_walk import DeepWalk from zimu_ml_sys.core.graph_embedding.graph import build_graph from zimu_ml_sys.core.graph_embedding.node2vector import Node2Vec from zimu_ml_sys.utils.data_util import df_group_parallel from gensim.models import KeyedVectors class GraphEmbeddingBaseTask(): """ 根据用户历史点击行为,将 item 向量化处理 1. node2vector: 有向图 边与边的权重 即为:item 与 item 权重: 使用用户点击 序列,两两相邻点击的item 作为边与边的关系。 权重: 取决于 相邻两个item: 1. 点击时间差: 两个item 点击时间越相近,表示两个item 关系越重要,权重值 越大 2. item1的热度 与item2 的热度: 这个主要是: 1. 如果你想要优先 热门item,那么冷门item 到热门item 的权重 你就设置 大一点 2. 如果你想要近可能 降低热门item,那么热门item 到冷门item 的权重 设置大一点 max(3, np.log(1, item1_click / item2_click)) ## 降低热门,使得在node2vector 随机游走的时候 能尽量不要总是选择热门item / (1 + 时间差) ## 时间差 2. deepwalker:无向图 仅仅根据 用户的点击序列:,item与item 连接边的权重都是1, 如果item1 与item2 共线次数多,item1 与item3 仅出现一次,他们在被item1 选择的概率是一样的。 """ """原始数据""" preprocess_root_data_path = '' """item embedding 存放根路径""" feature_root_data_path = '' """句子的长度""" walk_length = 20 """循环步数 总的样本数: 80 * len(items)""" num_walks = 80 """当前节点 返回上一次节点 惩罚项,值 越大,表示当前节点越不会返回上一个节点 w * 1 / p """ p = 2 """当前节点 选择邻居节点, 且 该邻居节点 与 上一个节点 不是邻居,值越小,表示 当前节点 会去比较深的地方去 w * 1 / q """ q = 0.5 """item向量维度""" embed_size = 128 """窗口大小""" window_size = 10 """word2vector 训练 并发数""" workers = 6 """word2vector 模型 迭代次数""" epochs = 3 user_field_name = 'user_id' item_field_name = 'item_id' time_field_name = 'time' train_df = None def read_data(self): """读取数据集""" # train_df = pd.read_csv(os.path.join(self.preprocess_root_data_path, 'train.csv')) # self.train_df = train_df.sort_values('time') raise NotImplementedError def train_node2vector(self): """ 构建有向图 训练node2vector 模型 边与边的权重 即为:item 与 item 权重: 使用用户点击 序列,两两相邻点击的item 作为边与边的关系。 权重: 取决于 相邻两个item: 1. 点击时间差: 两个item 点击时间越相近,表示两个item 关系越重要,权重值 越大 2. item1的热度 与item2 的热度: 这个主要是: 1. 如果你想要优先 热门item,那么冷门item 到热门item 的权重 你就设置 大一点 2. 如果你想要近可能 降低热门item,那么热门item 到冷门item 的权重 设置大一点 max(3, np.log(1, item1_click / item2_click)) ## 降低热门,使得在node2vector 随机游走的时候 能尽量不要总是选择热门item / (1 + 时间差) ## 时间差 :return: """ if self.train_df is None: self.train_df = self.read_data() self.train_df = self.train_df.sort_values(self.time_field_name) edges = self.build_edges() graph = build_graph(edges) print('load node2vector') node_model = Node2Vec(graph, walk_length=self.walk_length, num_walks=self.num_walks, p=self.p, q=self.q, workers=1) print('train node2vector') node_model.train(embed_size=self.embed_size, window_size=self.window_size, workers=self.workers, epochs=self.epochs) node_model.w2v_model.wv.save_word2vec_format( os.path.join(self.feature_root_data_path, "node2vec_embedding.bin"), binary=True) def train_deepwalker(self): """ 构建无向图 训练deepwalker 仅仅根据 用户的点击序列:,item与item 连接边的权重都是1, 如果item1 与item2 共线次数多,item1 与item3 仅出现一次,他们在被item1 选择的概率是一样的。 :return: """ direction = False if self.train_df is None: self.train_df = self.read_data() self.train_df = self.train_df.sort_values(self.time_field_name) edges = self.build_edges(direction=direction) graph = build_graph(edges, direction=direction) deep_model = DeepWalk(graph, walk_length=self.walk_length, num_walks=self.num_walks, workers=1) deep_model.train(embed_size=self.embed_size, window_size=self.window_size, workers=self.workers, epochs=self.epochs) deep_model.w2v_model.wv.save_word2vec_format( os.path.join(self.feature_root_data_path, "deepwalk_embedding.bin"), binary=True) def run(self): """ 执行入口,训练node2vector 和 deepwalker 两个模型 :return: """ time_time = time.time() self.train_df = self.read_data() self.train_df = self.train_df.sort_values(self.time_field_name) self.train_node2vector() print(time.time() - time_time) self.train_deepwalker() print(time.time() - time_time) def build_edges(self, direction=True): """ 构建边与边 :param direction: 是否有向图 :return: 边的集合 """ item_value_counts = dict(self.train_df[self.item_field_name].value_counts()) edgelist = [] for _, user_group_data in self.train_df.groupby(self.user_field_name): items = user_group_data[self.item_field_name].values times = user_group_data[self.time_field_name].values for i in range(len(items) - 1): delta = abs(times[i] - items[i + 1]) / (60 * 60 * 12) ai, aj = item_value_counts[items[i]], item_value_counts[items[i + 1]] """热门与非热门:之比 在 20倍以上,体现当前3""" """1. delta_t: 时间差 时间差越大,表示两个节点 相关性越低 2. np.log(1 + ai / aj) 前者相比后者热度越高,则权重越大,使得node2vector 加大对冷门item 进行采样 3. 0.8:表示逆序情况下,需要降低 两item 之间的权重值 有向有权图,热门商品-->冷门商品权重=热门商品个数/冷门商品个数 """ if direction: edgelist.append([items[i], items[i + 1], max(3, np.log(1 + ai / aj)) * 1 / (1 + delta)]) edgelist.append([items[i + 1], items[i], max(3, np.log(1 + aj / ai)) * 0.8 * 1 / (1 + delta)]) else: edgelist.append([items[i], items[i + 1], 1.0]) print('load edges success') return edgelist def load_node2vector_model(self): node_model = KeyedVectors.load_word2vec_format( os.path.join(self.feature_root_data_path, "node2vec_embedding.bin"), binary=True) return node_model def load_deepwalker_model(self): deep_model = KeyedVectors.load_word2vec_format( os.path.join(self.feature_root_data_path, "deepwalk_embedding.bin"), binary=True) return deep_model def explore_time_importance(self): """ 探索 用户相邻点击的item,时间相关性,一般来说 上一次点击 如果与 当前点击的 商品 点击距离越近 则与之 关系越近 相邻item: 时间关系权重,时间越大,相邻item 权重越小: delta = abs( time(item1) - time(item2) ) / (60 * 60 * 12) ## 60 * 60 * 12 时间 约束小一点 1 / ( 1 + delta ) min 0.000000 1% 4.955338 5% 10.901743 10% 19.821351 25% 62.437254 50% 291.373855 75% 6101.011731 90% 46305.648330 95% 77996.023756 99% 152713.001474 max 327660.801257 :param train_df: :return: """ self.train_df = self.read_data() train_df = self.train_df.sort_values(self.time_field_name) def compute_interval(name, group_df): group_df['time_shift'] = group_df[self.time_field_name].shift(-1) group_df['time_interval'] = group_df['time_shift'] - group_df[self.time_field_name] return group_df train_df = df_group_parallel(train_df.groupby(self.user_field_name), compute_interval, n_jobs=1) train_df = train_df[train_df['time_interval'].notnull()] print(train_df['time_interval'].describe([.01, .05, .10, .25, .5, .75, .90, .95, .99])) if __name__ == '__main__': GraphEmbeddingBaseTask().run()
[ "nijian@jiangduoduo.com" ]
nijian@jiangduoduo.com