blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
244f75e62fee8f8b35e9746f07e2afee7fd1090b
03499bffca838f407e3a22b216df0d1807fe8c97
/dive/customserializer.py
6ec8bb14312c7cc3ddf3f6986a2bc9beda769819
[]
no_license
tsukit2/mypythonlearning
54dfe9845937f1e678db91f154ed66f32d995289
a8a85bf25fe91b0fc12c8a43f701552bacd8acbe
refs/heads/master
2021-01-10T19:55:32.598001
2011-03-17T23:46:10
2011-03-17T23:46:10
32,286,507
0
0
null
null
null
null
UTF-8
Python
false
false
673
py
import time def to_json(python_object): if isinstance(python_object, time.struct_time): return {'__class__': 'time.asctime', '__value__': time.asctime(python_object)} if isinstance(python_object, bytes): return {'__class__': 'bytes', '__value__': list(python_object)} raise TypeError(repr(python_object) + ' is not JSON serializable') def from_json(json_object): if '__class__' in json_object: if json_object['__class__'] == 'time.asctime': return time.strptime(json_object['__value__']) if json_object['__class__'] == 'bytes': return bytes(json_object['__value__']) return json_object
[ "tsukit@135c47a1-433c-b587-80eb-c937e1a09c14" ]
tsukit@135c47a1-433c-b587-80eb-c937e1a09c14
c6d010f69671e1eab1e3fee2a0b591e19cbad069
ea356efac5279de4e5926b5eeb6ecf477146fa12
/bookmart/views.py
93f481efd29562bcaf2b9d1ab6360a57c7c0094a
[]
no_license
ndneighbor/bookshop
75581b72aba9f0bd462249545492789af63e7355
6a47166dcd441c27c062184016141c7adb1d0fbb
refs/heads/master
2020-03-29T04:00:15.924221
2018-11-22T01:54:35
2018-11-22T01:54:35
149,510,812
0
4
null
2018-11-22T03:03:44
2018-09-19T20:51:42
JavaScript
UTF-8
Python
false
false
379
py
from django.views.generic.list import ListView from books.models import Book class HomePageView(ListView): model = Book template_name = "index.html" def get_context_data(self, **kwargs): context = super(HomePageView, self).get_context_data(**kwargs) context['latest_books'] = Book.objects.all().order_by('-release_date')[:8] return context
[ "asara019@fiu.edu" ]
asara019@fiu.edu
ccda4da05cc51efda1da87649564874afc8467cc
ef68be7662c2f189e381682b08ec6f41bdf374b3
/path_finding/scripts/plan_path.py
559f2efe363625bb24040a838736b09ccad2354f
[]
no_license
DudekPL/tiago
65ef3e8863d27308ea6d45cb8aa1e7f024998426
5fdea4a34e3fb5b9cc3045ac9c7dafb6936072fa
refs/heads/master
2023-02-21T20:20:28.925499
2021-01-26T22:25:27
2021-01-26T22:25:27
329,358,664
0
0
null
null
null
null
UTF-8
Python
false
false
5,146
py
#!/usr/bin/env python import rospkg import sqlite3 as sql import rospy from path_finding.srv import Plan_path, Plan_pathResponse from path_finding.msg import Point import itertools as itt import random start_point = 'spawn' class Object: def __init__(self, _name, _expiring, _priority): self.name = _name self.expiring = _expiring self.priority = _priority def get_objects_from_db(_cur, _objects_names): _query = "SELECT name, expiring, prority FROM objects WHERE name IN ("+",".join(["?"]*len(_objects_names))+")" _cur.execute(_query, _objects_names) _dict = {} for _row in _cur.fetchall(): _dict[_row['name']] = Object(_row['name'], _row['expiring'], _row['prority']) return _dict def get_look_up_points_from_db(_cur, _objects, _world_name): _query = "SELECT * FROM look_up_points WHERE map=(?) AND object IN ("+",".join(["?"]*len(_objects))+")" _args = [_world_name] _args.extend([_o.name for _o in _objects]) _cur.execute(_query, _args) _list = [] for _row in _cur.fetchall(): _list.append(Point(_row['id'], _row['object'], _row['x'], _row['y'], _row['yaw'])) return _list def get_distances_dict_from_db(_cur, _points, _spawn): _all_points = list(_points) _all_points.append(_spawn) _query = 'SELECT * FROM distances WHERE start IN (' + ",".join(["?"] * len(_all_points)) + ")" _query = _query + 'AND finish IN (' + ",".join(["?"] * len(_all_points)) + ")" _args = [_p.id for _p in _all_points] _args.extend([_p.id for _p in _all_points]) _cur.execute(_query, _args) _dict = {_p.id: {} for _p in _all_points} for _row in _cur.fetchall(): _dict[_row['start']][_row['finish']] = _row['distance'] return _dict def get_spawn_from_db(_cur, _map): _query = 'SELECT * FROM look_up_points WHERE object=(?) AND map=(?)' _cur.execute(_query, [start_point, _map]) _row = _cur.fetchone() return Point(_row['id'], _row['object'], _row['x'], _row['y'], _row['yaw']) def get_spawn_distances_from_db(_cur, _spawn_id): _query = 'SELECT * FROM distances WHERE start=(?)' _cur.execute(_query, [_spawn_id]) _dict = {} for _row in _cur.fetchall(): _dict[_row['finish']] = _row['distance'] return _dict def get_priority(_point, _objects): return _objects[_point.object].priority def path_length(_path, _spawn_distances, _distance_dictionary): prev_p = _path[0] _dist = _spawn_distances[_path[0].id] for point in _path: _dist += _distance_dictionary[prev_p.id][point.id] prev_p = point _dist += _spawn_distances[prev_p.id] return _dist def choose_random(_list): return random.choice(_list) def initialize_GRASP(_sorted_points, _d, _k, _spawn_point, _distance_dictionary, _objects): _groups = itt.groupby(_sorted_points, key=lambda _p: get_priority(_p, _objects)) _points_to_visit = list(_sorted_points) _path = [] last_point = _spawn_point for priority, group in _groups: d_relaxed = [_p for _p in _points_to_visit if get_priority(_p, _objects) >= priority - _d] current_group = [_p for _p in d_relaxed if get_priority(_p, _objects) == priority] while len(current_group) > 0: # not empty d_relaxed = sorted(d_relaxed, key=lambda _p: _distance_dictionary[last_point.id][_p.id]) restricted_candidates = d_relaxed[:_k] _random = choose_random(restricted_candidates) _path.append(_random) # remove point from lists if get_priority(_random, _objects) == priority: current_group.remove(_random) d_relaxed.remove(_random) _points_to_visit.remove(_random) _path.append(_spawn_point) return _path def plan_path(_req, _Imax, _d, _k): to_pickup = _req.objects world_name = _req.world_name # connection to database db_path = rospkg.RosPack().get_path('path_finding') conn = sql.connect(db_path + "/../test.db") conn.row_factory = sql.Row cursor = conn.cursor() # selects from db spawn = get_spawn_from_db(cursor, world_name) objects = get_objects_from_db(cursor, to_pickup) points = get_look_up_points_from_db(cursor, objects.values(), world_name) dist_dict = get_distances_dict_from_db(cursor, points, spawn) spawn_dist = get_spawn_distances_from_db(cursor, spawn.id) shortest_path = [] shortest_dist = float('inf') _sorted_points = sorted(points, reverse=True, key=lambda _p: get_priority(_p, objects)) for i in range(0, _Imax): _path = initialize_GRASP(_sorted_points, _d, _k, spawn, dist_dict, objects) _dist = path_length(_path, spawn_dist, dist_dict) if _dist < shortest_dist: shortest_dist = _dist shortest_path = list(_path) conn.close() response = Plan_pathResponse() response.path = shortest_path return response if __name__ == '__main__': rospy.init_node('plan_path') Imax = 5 d = 2 k = 4 rospy.Service('plan_path_srv', Plan_path, lambda _req: plan_path(_req, Imax, d, k)) rospy.spin()
[ "" ]
39c7e75594ee71653f29814148eeebb5b8a2bc8e
b4024a1b406361542d3e91e4cae1ad02ec238b7b
/VideoGameMarket/VideoGameMarket/urls.py
acd8d89d55dbb94f55a61280803ddb4806aa102e
[]
no_license
oscargarza356/UIGameMarket
2a52b19597bed3e7788a601ceb52a416b2a8aa33
a5e75be1f9f198e4eeea08e27fde2d0523e019f7
refs/heads/master
2020-04-04T20:57:35.385940
2018-12-11T21:11:29
2018-12-11T21:11:29
156,266,965
1
0
null
null
null
null
UTF-8
Python
false
false
1,104
py
"""VideoGameMarket URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin import accounts.views from games import views from django.conf.urls.static import static from django.conf import settings urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^accounts/', include('accounts.urls')), url(r'^$', views.home, name="home"), url(r'^games/', include('games.urls')), ] + static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
[ "oscar35689@hotmail.com" ]
oscar35689@hotmail.com
7cbba5c870078f20312a03fa2521edf549d6b736
ade562bdcf0c1c0cc06e0c19984b04edeb29cf0c
/swarooop_c_h/a_byte_of_python_russian/world/__init__.py
5fd989663d759471fcb6c3be3a30b699040de390
[]
no_license
FoctoDev/Learning_Python_3
f6a0b9bd805f60fa6519c587c7b12c7aaecddc3a
7e4b6e847b1831477bec1b9a88cf8f70c7f198b8
refs/heads/master
2022-11-11T09:18:47.072687
2020-07-05T08:45:37
2020-07-05T08:45:37
263,550,904
0
0
null
null
null
null
UTF-8
Python
false
false
70
py
# Пакет world содержит субпакеты africa И asia
[ "foctodev@gmail.com" ]
foctodev@gmail.com
5cd98bad4ada4798b10dc59ca7971861b1bb8d7b
dad3a74ca26e0fa955a8a199f771af07f5465635
/train_options.py
b154cc770eb0538cd0d5140228a547fda84ec939
[]
no_license
mujtaba-hike/canny_dlib_semantic_maps
92b3d503971c7af9fa602f311dec0b5c480ac612
f87e50a1bc235f0f55c599f1a584be2575bb0c68
refs/heads/master
2021-01-04T08:57:59.016331
2020-02-14T10:19:27
2020-02-14T10:19:27
240,477,411
0
0
null
null
null
null
UTF-8
Python
false
false
4,223
py
from base_options import BaseOptions class TrainOptions(BaseOptions): def initialize(self): BaseOptions.initialize(self) self.parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen') self.parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') self.parser.add_argument('--save_latest_freq', type=int, default=1000, help='frequency of saving the latest results') self.parser.add_argument('--save_epoch_freq', type=int, default=1, help='frequency of saving checkpoints at the end of epochs') self.parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') self.parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') self.parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') self.parser.add_argument('--niter', type=int, default=10, help='# of iter at starting learning rate') self.parser.add_argument('--niter_decay', type=int, default=10, help='# of iter to linearly decay learning rate to zero') self.parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') self.parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') self.parser.add_argument('--TTUR', action='store_true', help='Use TTUR training scheme') self.parser.add_argument('--gan_mode', type=str, default='ls', help='(ls|original|hinge)') self.parser.add_argument('--pool_size', type=int, default=1, help='the size of image buffer that stores previously generated images') self.parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') # for discriminators self.parser.add_argument('--num_D', type=int, default=2, help='number of patch scales in each discriminator') self.parser.add_argument('--n_layers_D', type=int, default=3, help='number of layers in discriminator') self.parser.add_argument('--no_vgg', action='store_true', help='do not use VGG feature matching loss') self.parser.add_argument('--no_ganFeat', action='store_true', help='do not match discriminator features') self.parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching') self.parser.add_argument('--sparse_D', action='store_true', help='use sparse temporal discriminators to save memory') # for temporal self.parser.add_argument('--lambda_T', type=float, default=10.0, help='weight for temporal loss') self.parser.add_argument('--lambda_F', type=float, default=10.0, help='weight for flow loss') self.parser.add_argument('--n_frames_D', type=int, default=3, help='number of frames to feed into temporal discriminator') self.parser.add_argument('--n_scales_temporal', type=int, default=2, help='number of temporal scales in the temporal discriminator') self.parser.add_argument('--max_frames_per_gpu', type=int, default=1, help='max number of frames to load into one GPU at a time') self.parser.add_argument('--max_frames_backpropagate', type=int, default=1, help='max number of frames to backpropagate') self.parser.add_argument('--max_t_step', type=int, default=1, help='max spacing between neighboring sampled frames. If greater than 1, the network may randomly skip frames during training.') self.parser.add_argument('--n_frames_total', type=int, default=30, help='the overall number of frames in a sequence to train with') self.parser.add_argument('--niter_step', type=int, default=5, help='how many epochs do we change training batch size again') self.parser.add_argument('--niter_fix_global', type=int, default=0, help='if specified, only train the finest spatial layer for the given iterations') self.isTrain = True
[ "noreply@github.com" ]
mujtaba-hike.noreply@github.com
b9e099fbd31518d084e13449c5d6d6f2991e681e
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/cv/classification/Gluon_ResNet50_v1c_for_PyTorch/timm/models/hardcorenas.py
af5cfed312b0317f6a062e08f0427637cf188e9d
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later", "CC-BY-NC-4.0", "LicenseRef-scancode-proprietary-license", "LGPL-2.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
8,655
py
# Copyright 2019 Ross Wightman # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .efficientnet_blocks import SqueezeExcite from .efficientnet_builder import decode_arch_def, resolve_act_layer, resolve_bn_args, round_channels from .helpers import build_model_with_cfg, default_cfg_for_features from .layers import get_act_fn from .mobilenetv3 import MobileNetV3, MobileNetV3Features from .registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = { 'hardcorenas_a': _cfg(url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/public/HardCoReNAS/HardCoreNAS_A_Green_38ms_75.9_23474aeb.pth'), 'hardcorenas_b': _cfg(url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/public/HardCoReNAS/HardCoreNAS_B_Green_40ms_76.5_1f882d1e.pth'), 'hardcorenas_c': _cfg(url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/public/HardCoReNAS/HardCoreNAS_C_Green_44ms_77.1_d4148c9e.pth'), 'hardcorenas_d': _cfg(url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/public/HardCoReNAS/HardCoreNAS_D_Green_50ms_77.4_23e3cdde.pth'), 'hardcorenas_e': _cfg(url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/public/HardCoReNAS/HardCoreNAS_E_Green_55ms_77.9_90f20e8a.pth'), 'hardcorenas_f': _cfg(url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/public/HardCoReNAS/HardCoreNAS_F_Green_60ms_78.1_2855edf1.pth'), } def _gen_hardcorenas(pretrained, variant, arch_def, **kwargs): """Creates a hardcorenas model Ref impl: https://github.com/Alibaba-MIIL/HardCoReNAS Paper: https://arxiv.org/abs/2102.11646 """ num_features = 1280 se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels) model_kwargs = dict( block_args=decode_arch_def(arch_def), num_features=num_features, stem_size=32, norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'hard_swish'), se_layer=se_layer, **kwargs, ) features_only = False model_cls = MobileNetV3 kwargs_filter = None if model_kwargs.pop('features_only', False): features_only = True kwargs_filter = ('num_classes', 'num_features', 'global_pool', 'head_conv', 'head_bias', 'global_pool') model_cls = MobileNetV3Features model = build_model_with_cfg( model_cls, variant, pretrained, default_cfg=default_cfgs[variant], pretrained_strict=not features_only, kwargs_filter=kwargs_filter, **model_kwargs) if features_only: model.default_cfg = default_cfg_for_features(model.default_cfg) return model @register_model def hardcorenas_a(pretrained=False, **kwargs): """ hardcorenas_A """ arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e6_c40_nre_se0.25'], ['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25'], ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_a', arch_def=arch_def, **kwargs) return model @register_model def hardcorenas_b(pretrained=False, **kwargs): """ hardcorenas_B """ arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25', 'ir_r1_k3_s1_e3_c24_nre'], ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre'], ['ir_r1_k5_s2_e3_c80', 'ir_r1_k5_s1_e3_c80', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'], ['ir_r1_k5_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'], ['cn_r1_k1_s1_c960']] model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_b', arch_def=arch_def, **kwargs) return model @register_model def hardcorenas_c(pretrained=False, **kwargs): """ hardcorenas_C """ arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre'], ['ir_r1_k5_s2_e4_c80', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'], ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'], ['cn_r1_k1_s1_c960']] model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_c', arch_def=arch_def, **kwargs) return model @register_model def hardcorenas_d(pretrained=False, **kwargs): """ hardcorenas_D """ arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e3_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'], ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25'], ['ir_r1_k3_s1_e4_c112_se0.25', 'ir_r1_k5_s1_e4_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25', 'ir_r1_k5_s1_e3_c112_se0.25'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_d', arch_def=arch_def, **kwargs) return model @register_model def hardcorenas_e(pretrained=False, **kwargs): """ hardcorenas_E """ arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'], ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e6_c80_se0.25'], ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e3_c112_se0.25'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_e', arch_def=arch_def, **kwargs) return model @register_model def hardcorenas_f(pretrained=False, **kwargs): """ hardcorenas_F """ arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], ['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e6_c40_nre_se0.25'], ['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25'], ['ir_r1_k3_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25'], ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_f', arch_def=arch_def, **kwargs) return model
[ "wangjiangben@huawei.com" ]
wangjiangben@huawei.com
d1fcc2af5073643edff19b55c7c399a98d88cac1
e79e28d847df55aa46374888ac20e351c8a58b9b
/LongestSubstringNoRepeats.py
67cbd951c25ddc8f8bfe7b52d2811c8a40662ae5
[]
no_license
anderskswanson/lc
2adeedaaf99b2ae0ddb1865ec0efb262e1872134
f38e2a1d2680f3e5240e06775707722825ba5e0f
refs/heads/master
2020-03-23T04:16:53.363927
2018-07-25T04:18:06
2018-07-25T04:18:06
141,074,004
0
0
null
null
null
null
UTF-8
Python
false
false
471
py
class Solution(object): def lengthOfLongestSubstring(self, s): """ :type s: str :rtype: int """ start = 0 bestlength = 0 chars = dict() n = len(s) for i in range(n): if s[i] in chars and start <= chars[s[i]]: start = chars[s[i]] + 1 else: bestlength = max(bestlength, i - start + 1) chars[s[i]] = i return bestlength
[ "anders@AnderPC.localdomain" ]
anders@AnderPC.localdomain
23801067b7034dc6aae9117c4c155c9e03938021
e59a742c56cb4671dff31b044adbcf93b2341670
/packages/sdk/odahuflow/sdk/models/user_info.py
274f340938588ce93c3f76a33113a8b3e8e72826
[ "Apache-2.0" ]
permissive
odahu/odahu-flow
c90f638dfb6a03942d6f1686ec4d95564e073915
58c3220a266a61bb893cf79c4b994569e3445097
refs/heads/develop
2023-03-06T22:47:21.215830
2022-04-27T11:14:36
2022-04-27T11:14:36
219,930,786
12
4
Apache-2.0
2023-02-25T03:18:51
2019-11-06T06:50:47
Go
UTF-8
Python
false
false
2,134
py
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from odahuflow.sdk.models.base_model_ import Model from odahuflow.sdk.models import util class UserInfo(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, email: str=None, username: str=None): # noqa: E501 """UserInfo - a model defined in Swagger :param email: The email of this UserInfo. # noqa: E501 :type email: str :param username: The username of this UserInfo. # noqa: E501 :type username: str """ self.swagger_types = { 'email': str, 'username': str } self.attribute_map = { 'email': 'email', 'username': 'username' } self._email = email self._username = username @classmethod def from_dict(cls, dikt) -> 'UserInfo': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The UserInfo of this UserInfo. # noqa: E501 :rtype: UserInfo """ return util.deserialize_model(dikt, cls) @property def email(self) -> str: """Gets the email of this UserInfo. :return: The email of this UserInfo. :rtype: str """ return self._email @email.setter def email(self, email: str): """Sets the email of this UserInfo. :param email: The email of this UserInfo. :type email: str """ self._email = email @property def username(self) -> str: """Gets the username of this UserInfo. :return: The username of this UserInfo. :rtype: str """ return self._username @username.setter def username(self, username: str): """Sets the username of this UserInfo. :param username: The username of this UserInfo. :type username: str """ self._username = username
[ "noreply@github.com" ]
odahu.noreply@github.com
481330b2b92ea8b4d3678661c58325f6c3a0c8a0
3cf249eb18fe5b60bc581c4570a3de6a4a28c1dc
/httpserver.py
ad45fc6f9da0ed8b0564d42a1f1dc8baa683eae9
[]
no_license
nandix/BasicPythonServer
a59e73dfd2a34022f5c5b34afe391bb973a8e14a
53cd684cd05aa7860da0af4c4e5f48509c14bafc
refs/heads/master
2021-01-14T12:56:55.300555
2014-03-05T03:13:51
2014-03-05T03:13:51
17,293,419
0
0
null
null
null
null
UTF-8
Python
false
false
2,760
py
''' Name: prog1_server.py Brief: This program acts as a simple python server and responds to http get requests. By: Daniel Nix Date: 2/28/2014 For: Networking (CSC 492) Description: This python script acts as a server to send html files using http protocols. It sets up a socket at port 9876 and listens for incoming http requests. Upon receiving a request the server tries to find the file requested and serves it to the client. If the file is not found a 404 Not Found response is sent and an appropriate 404.html page is presented. The server runs indefinitely and has no elegant way of closing. The most effective method to close the server is using Ctrl-C from the command line. ''' #import socket module to use sockets from socket import * #import threading to use threads import threading #create a socket object for the server to use serverSocket = socket(AF_INET, SOCK_STREAM) #Prepare a sever socket #Set and fix (bind) the port number serverPort = 9876 serverSocket.bind(('',serverPort)) #Start the server by letting it listen for requests. serverSocket.listen(1) def processRequest( connectionSocket, addr ): ''' Funtion: processRequest Arguments: connectionSocket: socket connection to client addr: ip address of client Description: Process Request gets a client socket and processes a request incoming from that client. ''' try: # Wait for an incoming request message = connectionSocket.recv(1024) # Get the name of the file requested filename = message.split()[1] # Open the file f = open(filename[1:]) # Read the file's contents into a string outputdata = f.read() #Send one HTTP header line into socket connectionSocket.send( b"HTTP/1.1 200 OK \r\n" ) #Send the content of the requested file to the client for i in range(0, len(outputdata)): connectionSocket.send( str.encode(outputdata[i]) ) #Close the client's socket connectionSocket.close() except IOError: #Send response message for file not found # Open the 404 file f = open("404.html") # Read the 404 file outputdata = f.read() # Send the 404 response connectionSocket.send( b"HTTP/1.1 404 Not Found \r\n") # Send the 404 file for i in range(0, len(outputdata)): connectionSocket.send( str.encode(outputdata[i])) #Close client socket connectionSocket.close() #Infinite loop for server to run forever to process requests while True: #Establish the connection connectionSocket, addr = serverSocket.accept() #Creat a thread to process the request threading.Thread( target=processRequest, \ args=(connectionSocket, addr), \ ).start() #Close the Server's connection socket serverSocket.close()
[ "dan@localhost.localdomain" ]
dan@localhost.localdomain
83cc7cd16e0edfaed53c3e05ce4cc3b73b988e29
57074435fcf3b2779376bdd43b937a4d250f6b6e
/2_Vigenere/GUI_Vigenere.py
a9f1ef988058a365c9c66a1c8844d9c0e76f9a11
[]
no_license
NickLc/Ciphers
f9854c7b8ba1433e9a59e47048c72b753c19285d
3bf58042327bd4d04dd4d9191c9111f93b79c7f3
refs/heads/master
2022-11-11T20:35:20.165964
2020-07-04T02:34:33
2020-07-04T02:34:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,694
py
import tkinter as tk from tkinter import Spinbox from tkinter.ttk import Combobox from tkinter import scrolledtext from tkinter import Frame from tkinter import Entry from tkinter import messagebox class Vigenere: def __init__(self, abc="ABCDEFGHIJKLMNOPQRSTUVWXYZÑÁÉÍÓÚ"): self.abc = abc def encriptar(self,text,key): newText = '' keyIndex = 0 for i in text: num = self.abc.find(i) if num != -1: num += self.abc.find(key[keyIndex]) num %= len(self.abc) newText += self.abc[num] keyIndex +=1 if keyIndex == len(key): keyIndex = 0 else: newText += i return newText def desencriptar(self, text, key): newText = '' keyIndex = 0 for i in text: num = self.abc.find(i) if num != -1: num -= self.abc.find(key[keyIndex]) num %= len(self.abc) newText += self.abc[num] keyIndex +=1 if keyIndex == len(key): keyIndex = 0 else: newText += i return newText class App: def __init__(self): self.window = tk.Tk() self.window.title("Cripto Vigenere") self.window.geometry('430x410') self.window.config(bg="#FFFFFF") self.vigenere = Vigenere() frameHead = Frame(self.window) lbl_method = tk.Label(frameHead, text='Metodo') lbl_method.grid(column=0, row=0, sticky='W', padx=5) lbl_key = tk.Label(frameHead, text='Clave') lbl_key.grid(column=1, row=0, sticky='W', padx=5) frameHead.grid(column=0,row=0) self.frame = Frame(self.window) self.combo = Combobox(self.frame) self.combo['values'] = ("Encriptar", "Desencriptar") self.combo.grid(column=0, row=0, sticky='W',padx=10) self.keyInput = Entry(self.frame) self.keyInput.grid(column =1, row=0, sticky='W',padx=10) buton = tk.Button(self.frame, text='Start', command = self.clicked) buton.grid(column=2, row=0, sticky='W',padx=10) self.frame.grid(column=0, row=1) lbl_txt_init = tk.Label(self.window, text='Input') lbl_txt_init.grid(column =0, row=3, sticky='W',padx=10) self.scroll_txt_init = tk.scrolledtext.ScrolledText(self.window,width=50,height=10) self.scroll_txt_init.grid(column=0,row=4, sticky='W',padx=10) lbl_txt_end = tk.Label(self.window, text='Output') lbl_txt_end.grid(column =0, row=5, sticky='W',padx=10) self.scroll_txt_end = scrolledtext.ScrolledText(self.window,width=50,height=10) self.scroll_txt_end.grid(column=0,row=6, sticky='W',padx=10) self.window.mainloop() def clicked(self): # Clear buffer f self.scroll_txt_end.delete(0.0, tk.END) textInput = self.scroll_txt_init.get("0.0", tk.END) key = self.keyInput.get() typeAction = self.combo.get() if(len(key)>len(textInput)): messagebox.showerror('Mensaje Error', 'La longitud de la clave debe ser menor que del input') else: # Decode string if typeAction == "Encriptar": textOutput = self.vigenere.encriptar(textInput, key) else: textOutput = self.vigenere.desencriptar(textInput, key) # Put new string into of stroll self.scroll_txt_end.insert(tk.INSERT, textOutput) if __name__=='__main__': # Start App Apx = App()
[ "edsonlc_007@hotmail.com" ]
edsonlc_007@hotmail.com
13572e80382af8809f09917252cdbee893598358
824ddb497551887f04d2f70fe89666b67b4515e0
/02_OldCustLossing_Model/construction_featrues.py
b87f9011f0c244ac813c4a01a5b070943915be9f
[]
no_license
luzhonghe999/WorkDemo-MachineLearning
75ae40d91210f44b7391457268b46a8ae45c85a3
0298277e5b66be3259ae0ceb00c4f315609ecc82
refs/heads/master
2021-04-06T10:31:49.443602
2018-04-09T07:24:31
2018-04-09T07:24:31
125,346,880
0
0
null
null
null
null
UTF-8
Python
false
false
4,948
py
import numpy as np import pandas as pd class construction_featrues: ''' 用于计算衍生指标,输出衍生指标dataframe ''' def __init__(self,data): self.data = data def cal_featrues(self): df = self.data df = df[(df['TARGET'] == 1) | (df['TARGET'] == 0)] #(3.2) asset df['asset_up1']=df['ASSET_NOW1']-df['ASSET_NOW2'] df['asset_up2']=df['ASSET_NOW2']-df['ASSET_NOW3'] df['asset_up']=df['asset_up1']+df['asset_up2'] df['hold1']= df['STK_NOW1']+ df['PRD_NOW1'] df['hold2']= df['STK_NOW2']+ df['PRD_NOW2'] df['hold3']= df['STK_NOW3']+ df['PRD_NOW3'] df['hold_chg1']=df['hold1']-df['hold2'] df['hold_chg2']=df['hold2']-df['hold3'] df['hold_chg']=df['hold1']-df['hold3'] df['hold_chg_percent']=df['hold_chg']/(np.abs(df['hold3'])+1) df['hold_stk_cnt_chg']=df['STK_BS_CNT1']-df['STK_BS_CNT2'] df['cash_flow1']= df['OUT_CASH1'] - df['IN_CASH1'] df['cash_flow2']= df['OUT_CASH2'] - df['IN_CASH2'] df['cash_flow']= df['cash_flow1']+df['cash_flow2'] df['cash_cnt_in']= df['IN_CNT1'] - df['IN_CNT2'] df['cash_cnt_out']= df['OUT_CNT1'] - df['OUT_CNT2'] df['stk_flow']= df['STK_SELL_AMT1'] - df['STK_BUY_AMT1'] df['stk_sell_all']=df['STK_SELL_AMT1'] +df['STK_SELL_AMT2'] df['stk_buy_all']=df['STK_BUY_AMT1'] +df['STK_BUY_AMT2'] df['login1'] = df['APP_LOGIN1'] +df['FY_LOGIN1']+df['ZHLC_LOGIN1'] df['login2'] = df['APP_LOGIN2'] +df['FY_LOGIN2']+df['ZHLC_LOGIN2'] df['login_up']= df['login1'] - df['login2'] df['cash_in_per_login1']=df['IN_CNT1']/(df['login1'] +1) df['cash_out_per_login1']=df['OUT_CNT1']/(df['login1'] +1) df['cash_in_per_login2']=df['IN_CNT2']/(df['login2'] +1) df['cash_out_per_login2']=df['OUT_CNT2']/(df['login2'] +1) df['cash_in_per_login_chg']=df['cash_in_per_login1']-df['cash_in_per_login2'] df['cash_out_per_login_chg']=df['cash_out_per_login1']-df['cash_out_per_login2'] df['asset_top_flow']=df['ASSET_TOP1']-df['ASSET_TOP2'] df['asset_chg_percent1']=(df['ASSET_NOW1']-df['ASSET_NOW2'])/(df['ASSET_NOW2']+1) df['asset_chg_percent2']=(df['ASSET_NOW2']-df['ASSET_NOW3'])/(df['ASSET_NOW3']+1) df['asset_chg_percent']=(df['asset_up1']+df['asset_up2'])/(df['ASSET_NOW3']+1) df['stk_percent1']=(df['STK_NOW1']+1)/(df['ASSET_NOW1']+1) df['stk_percent2']=(df['STK_NOW2']+1)/(df['ASSET_NOW2']+1) df['stk_percent3']=(df['STK_NOW3']+1)/(df['ASSET_NOW3']+1) df['stk_percent_chg1']=df['stk_percent1']-df['stk_percent2'] df['stk_percent_chg2']=df['stk_percent2']-df['stk_percent3'] df['in_out_cnt_times']=(df['IN_CNT1'] + df['IN_CNT2']+1)/(df['OUT_CNT1'] + df['OUT_CNT2']+1) df['in_cash_aseet_percent1']=(df['IN_CASH1'])/(df['IN_CASH1']+df['OUT_CASH1']+1) df['out_cash_aseet_percent1']=(df['OUT_CASH1'])/(df['IN_CASH1']+df['OUT_CASH1']+1) df['in_cash_aseet_percent2']=(df['IN_CASH2'])/(df['IN_CASH2']+df['OUT_CASH2']+1) df['out_cash_aseet_percent2']=(df['OUT_CASH2'])/(df['IN_CASH2']+df['OUT_CASH2']+1) df['asset_now_top1']=df['ASSET_NOW1']-df['ASSET_TOP1'] df['asset_now_top2']=df['ASSET_NOW2']-df['ASSET_TOP2'] df['stk_now_top1']=df['STK_NOW1']-df['STK_TOP1'] df['stk_now_top2']=df['STK_NOW2']-df['STK_TOP2'] df['prd_now_top1']=df['PRD_NOW1']-df['PRD_TOP1'] df['prd_now_top2']=df['PRD_NOW2']-df['PRD_TOP2'] df[df['AGE']>100].AGE=100 df[df['AGE']<16].AGE=0 df[df['S_AGE']>30].S_AGE=30 df[df['S_AGE']<0].S_AGE=0 df['out_asset_up1']=df['OUT_ASEET_NOW1']-df['OUT_ASEET_NOW2'] df['out_asset_up2']=df['OUT_ASEET_NOW2']-df['OUT_ASEET_NOW3'] df['out_asset_up']=df['out_asset_up1']+df['out_asset_up2'] df['commi_all']=df['NET_COMMI_GJ1']+df['NET_COMMI_GJ1'] df['commi_rate']=(df['NET_COMMI_GJ1']+df['NET_COMMI_GJ1'])/(df['stk_sell_all']+df['stk_buy_all']+1) df[df['commi_rate']<=0].commi_rate=0 df['trade_days_dif']=df['TRADE_DAYS1']-df['TRADE_DAYS2'] df['is_oper1']=df['OUT_CASH1']+df['IN_CASH1']+df['STK_BUY_AMT1']+df['STK_SELL_AMT1'] df[df['is_oper1']>0].is_oper1=1 df[df['is_oper1']<=0].is_oper1=0 df['is_oper2']=df['OUT_CASH2']+df['IN_CASH2']+df['STK_BUY_AMT2']+df['STK_SELL_AMT2'] df[df['is_oper2']>0].is_oper2=1 df[df['is_oper2']<=0].is_oper2=0 df['is_oper']=df['is_oper1']+df['is_oper2'] df['profit_asset1']=df['PROFIT1']/(df['ASSET_NOW2']+1) df['profit_asset2']=df['PROFIT2']/(df['ASSET_NOW3']+1) df['profit_asset']=(df['PROFIT1']+df['PROFIT2'])/(df['ASSET_NOW3']+1) # (3.3) false del df['CUSTOMER_NO'] del df['PROM_TYPE'] print('df.shape',df.shape) print('Generate Finish') return df
[ "luzhonghe999@gmail.com" ]
luzhonghe999@gmail.com
1c7724ee37d22d1684aed42520fca9c81429947f
e70a17e8a37847a961f19b136f3bbe74393fa2af
/PC/build/turtlebot3_gazebo/catkin_generated/installspace/_setup_util.py
99c7bb3b668de77abd4ff88f2cc163915ae0ae5e
[ "MIT" ]
permissive
Mondiegus/ROS-4x4-CAR-AI
1413ead6f46a8b16005abeea3e0b215caa45f27e
124efe39168ce96eec13d57e644f4ddb6dfe2364
refs/heads/Master
2023-07-14T23:56:53.519082
2021-03-27T17:28:45
2021-03-27T17:28:45
334,233,839
0
0
MIT
2021-02-02T13:00:30
2021-01-29T18:46:16
Makefile
UTF-8
Python
false
false
13,337
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """This file generates shell code for the setup.SHELL scripts to set environment variables.""" from __future__ import print_function import argparse import copy import errno import os import platform import sys CATKIN_MARKER_FILE = '.catkin' system = platform.system() IS_DARWIN = (system == 'Darwin') IS_WINDOWS = (system == 'Windows') PATH_TO_ADD_SUFFIX = ['bin'] if IS_WINDOWS: # while catkin recommends putting dll's into bin, 3rd party packages often put dll's into lib # since Windows finds dll's via the PATH variable, prepend it with path to lib PATH_TO_ADD_SUFFIX.extend([['lib', os.path.join('lib', 'x86_64-linux-gnu')]]) # subfolder of workspace prepended to CMAKE_PREFIX_PATH ENV_VAR_SUBFOLDERS = { 'CMAKE_PREFIX_PATH': '', 'LD_LIBRARY_PATH' if not IS_DARWIN else 'DYLD_LIBRARY_PATH': ['lib', os.path.join('lib', 'x86_64-linux-gnu')], 'PATH': PATH_TO_ADD_SUFFIX, 'PKG_CONFIG_PATH': [os.path.join('lib', 'pkgconfig'), os.path.join('lib', 'x86_64-linux-gnu', 'pkgconfig')], 'PYTHONPATH': 'lib/python3/dist-packages', } def rollback_env_variables(environ, env_var_subfolders): """ Generate shell code to reset environment variables. by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH. This does not cover modifications performed by environment hooks. """ lines = [] unmodified_environ = copy.copy(environ) for key in sorted(env_var_subfolders.keys()): subfolders = env_var_subfolders[key] if not isinstance(subfolders, list): subfolders = [subfolders] value = _rollback_env_variable(unmodified_environ, key, subfolders) if value is not None: environ[key] = value lines.append(assignment(key, value)) if lines: lines.insert(0, comment('reset environment variables by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH')) return lines def _rollback_env_variable(environ, name, subfolders): """ For each catkin workspace in CMAKE_PREFIX_PATH remove the first entry from env[NAME] matching workspace + subfolder. :param subfolders: list of str '' or subfoldername that may start with '/' :returns: the updated value of the environment variable. """ value = environ[name] if name in environ else '' env_paths = [path for path in value.split(os.pathsep) if path] value_modified = False for subfolder in subfolders: if subfolder: if subfolder.startswith(os.path.sep) or (os.path.altsep and subfolder.startswith(os.path.altsep)): subfolder = subfolder[1:] if subfolder.endswith(os.path.sep) or (os.path.altsep and subfolder.endswith(os.path.altsep)): subfolder = subfolder[:-1] for ws_path in _get_workspaces(environ, include_fuerte=True, include_non_existing=True): path_to_find = os.path.join(ws_path, subfolder) if subfolder else ws_path path_to_remove = None for env_path in env_paths: env_path_clean = env_path[:-1] if env_path and env_path[-1] in [os.path.sep, os.path.altsep] else env_path if env_path_clean == path_to_find: path_to_remove = env_path break if path_to_remove: env_paths.remove(path_to_remove) value_modified = True new_value = os.pathsep.join(env_paths) return new_value if value_modified else None def _get_workspaces(environ, include_fuerte=False, include_non_existing=False): """ Based on CMAKE_PREFIX_PATH return all catkin workspaces. :param include_fuerte: The flag if paths starting with '/opt/ros/fuerte' should be considered workspaces, ``bool`` """ # get all cmake prefix paths env_name = 'CMAKE_PREFIX_PATH' value = environ[env_name] if env_name in environ else '' paths = [path for path in value.split(os.pathsep) if path] # remove non-workspace paths workspaces = [path for path in paths if os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE)) or (include_fuerte and path.startswith('/opt/ros/fuerte')) or (include_non_existing and not os.path.exists(path))] return workspaces def prepend_env_variables(environ, env_var_subfolders, workspaces): """Generate shell code to prepend environment variables for the all workspaces.""" lines = [] lines.append(comment('prepend folders of workspaces to environment variables')) paths = [path for path in workspaces.split(os.pathsep) if path] prefix = _prefix_env_variable(environ, 'CMAKE_PREFIX_PATH', paths, '') lines.append(prepend(environ, 'CMAKE_PREFIX_PATH', prefix)) for key in sorted(key for key in env_var_subfolders.keys() if key != 'CMAKE_PREFIX_PATH'): subfolder = env_var_subfolders[key] prefix = _prefix_env_variable(environ, key, paths, subfolder) lines.append(prepend(environ, key, prefix)) return lines def _prefix_env_variable(environ, name, paths, subfolders): """ Return the prefix to prepend to the environment variable NAME. Adding any path in NEW_PATHS_STR without creating duplicate or empty items. """ value = environ[name] if name in environ else '' environ_paths = [path for path in value.split(os.pathsep) if path] checked_paths = [] for path in paths: if not isinstance(subfolders, list): subfolders = [subfolders] for subfolder in subfolders: path_tmp = path if subfolder: path_tmp = os.path.join(path_tmp, subfolder) # skip nonexistent paths if not os.path.exists(path_tmp): continue # exclude any path already in env and any path we already added if path_tmp not in environ_paths and path_tmp not in checked_paths: checked_paths.append(path_tmp) prefix_str = os.pathsep.join(checked_paths) if prefix_str != '' and environ_paths: prefix_str += os.pathsep return prefix_str def assignment(key, value): if not IS_WINDOWS: return 'export %s="%s"' % (key, value) else: return 'set %s=%s' % (key, value) def comment(msg): if not IS_WINDOWS: return '# %s' % msg else: return 'REM %s' % msg def prepend(environ, key, prefix): if key not in environ or not environ[key]: return assignment(key, prefix) if not IS_WINDOWS: return 'export %s="%s$%s"' % (key, prefix, key) else: return 'set %s=%s%%%s%%' % (key, prefix, key) def find_env_hooks(environ, cmake_prefix_path): """Generate shell code with found environment hooks for the all workspaces.""" lines = [] lines.append(comment('found environment hooks in workspaces')) generic_env_hooks = [] generic_env_hooks_workspace = [] specific_env_hooks = [] specific_env_hooks_workspace = [] generic_env_hooks_by_filename = {} specific_env_hooks_by_filename = {} generic_env_hook_ext = 'bat' if IS_WINDOWS else 'sh' specific_env_hook_ext = environ['CATKIN_SHELL'] if not IS_WINDOWS and 'CATKIN_SHELL' in environ and environ['CATKIN_SHELL'] else None # remove non-workspace paths workspaces = [path for path in cmake_prefix_path.split(os.pathsep) if path and os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE))] for workspace in reversed(workspaces): env_hook_dir = os.path.join(workspace, 'etc', 'catkin', 'profile.d') if os.path.isdir(env_hook_dir): for filename in sorted(os.listdir(env_hook_dir)): if filename.endswith('.%s' % generic_env_hook_ext): # remove previous env hook with same name if present if filename in generic_env_hooks_by_filename: i = generic_env_hooks.index(generic_env_hooks_by_filename[filename]) generic_env_hooks.pop(i) generic_env_hooks_workspace.pop(i) # append env hook generic_env_hooks.append(os.path.join(env_hook_dir, filename)) generic_env_hooks_workspace.append(workspace) generic_env_hooks_by_filename[filename] = generic_env_hooks[-1] elif specific_env_hook_ext is not None and filename.endswith('.%s' % specific_env_hook_ext): # remove previous env hook with same name if present if filename in specific_env_hooks_by_filename: i = specific_env_hooks.index(specific_env_hooks_by_filename[filename]) specific_env_hooks.pop(i) specific_env_hooks_workspace.pop(i) # append env hook specific_env_hooks.append(os.path.join(env_hook_dir, filename)) specific_env_hooks_workspace.append(workspace) specific_env_hooks_by_filename[filename] = specific_env_hooks[-1] env_hooks = generic_env_hooks + specific_env_hooks env_hooks_workspace = generic_env_hooks_workspace + specific_env_hooks_workspace count = len(env_hooks) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_COUNT', count)) for i in range(count): lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d' % i, env_hooks[i])) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d_WORKSPACE' % i, env_hooks_workspace[i])) return lines def _parse_arguments(args=None): parser = argparse.ArgumentParser(description='Generates code blocks for the setup.SHELL script.') parser.add_argument('--extend', action='store_true', help='Skip unsetting previous environment variables to extend context') parser.add_argument('--local', action='store_true', help='Only consider this prefix path and ignore other prefix path in the environment') return parser.parse_known_args(args=args)[0] if __name__ == '__main__': try: try: args = _parse_arguments() except Exception as e: print(e, file=sys.stderr) sys.exit(1) if not args.local: # environment at generation time CMAKE_PREFIX_PATH = r'/home/mondi/catkin_ws/devel;/opt/ros/noetic'.split(';') else: # don't consider any other prefix path than this one CMAKE_PREFIX_PATH = [] # prepend current workspace if not already part of CPP base_path = os.path.dirname(__file__) # CMAKE_PREFIX_PATH uses forward slash on all platforms, but __file__ is platform dependent # base_path on Windows contains backward slashes, need to be converted to forward slashes before comparison if os.path.sep != '/': base_path = base_path.replace(os.path.sep, '/') if base_path not in CMAKE_PREFIX_PATH: CMAKE_PREFIX_PATH.insert(0, base_path) CMAKE_PREFIX_PATH = os.pathsep.join(CMAKE_PREFIX_PATH) environ = dict(os.environ) lines = [] if not args.extend: lines += rollback_env_variables(environ, ENV_VAR_SUBFOLDERS) lines += prepend_env_variables(environ, ENV_VAR_SUBFOLDERS, CMAKE_PREFIX_PATH) lines += find_env_hooks(environ, CMAKE_PREFIX_PATH) print('\n'.join(lines)) # need to explicitly flush the output sys.stdout.flush() except IOError as e: # and catch potential "broken pipe" if stdout is not writable # which can happen when piping the output to a file but the disk is full if e.errno == errno.EPIPE: print(e, file=sys.stderr) sys.exit(2) raise sys.exit(0)
[ "Mondiegus9@gmail.com" ]
Mondiegus9@gmail.com
b6587d832b17a5f3e431610d1d4d49eadc8e30f6
a3d9701d8074ba66edf51a54038707acb9e0e9b6
/food_express/wsgi.py
bd72fa0536afffa0ebcdbb1da2c4547e6e16b67c
[]
no_license
jdshah98/Food-Express
2e6b5cc7e0e6bc26f35a12b1a1bb2e336b756187
3b152239be47228540556e5de96586f7618d7de5
refs/heads/master
2020-06-19T04:13:04.258793
2019-09-10T07:36:01
2019-09-10T07:36:01
196,556,614
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for food_express project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'food_express.settings') application = get_wsgi_application()
[ "jdshahstudio@gmail.com" ]
jdshahstudio@gmail.com
d55910c880d0c3d1a2f34f4cbfb944fd9d8adc4e
06268dbf15a1ef8e1e522977dad6e9f52e04ee40
/src/deploy/osp_deployer/sah.py
0dfa9fec1e499484dd3cfaa07660760c09c71594
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
juliovp01/JetPack
a909b0d66fa0054bf5074922280c286779129efe
88ab3a50cc5f7e6581b006954b722d113924a96c
refs/heads/master
2021-07-22T23:44:07.747074
2017-11-01T21:17:52
2017-11-01T21:17:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,244
py
#!/usr/bin/env python # Copyright (c) 2015-2017 Dell Inc. or its subsidiaries. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from osp_deployer.settings.config import Settings from infra_host import InfraHost from auto_common import Scp, Ssh, FileHelper import logging import time import shutil import os import subprocess logger = logging.getLogger("osp_deployer") exitFlag = 0 class Sah(InfraHost): def __init__(self): self.settings = Settings.settings self.user = "root" self.ip = self.settings.sah_node.public_api_ip self.pwd = self.settings.sah_node.root_password self.root_pwd = self.settings.sah_node.root_password def update_kickstart_usb(self): sets = self.settings shutil.copyfile(sets.sah_kickstart, sets.cloud_repo_dir + "/../osp-sah.ks") sets.sah_kickstart = sets.cloud_repo_dir + "/../osp-sah.ks" FileHelper.replace_expression(sets.sah_kickstart, '^HostName=.*', 'HostName="' + sets.sah_node.hostname + "." + sets.domain + '"') FileHelper.replace_expression(sets.sah_kickstart, '^SystemPassword=.*', 'SystemPassword="' + sets.sah_node.root_password + '"') FileHelper.replace_expression(sets.sah_kickstart, '^SubscriptionManagerUser=.*', 'SubscriptionManagerUser="' + sets.subscription_manager_user + '"') FileHelper.replace_expression(sets.sah_kickstart, '^SubscriptionManagerPassword=.*', 'SubscriptionManagerPassword="' + sets.subscription_manager_password + '"') FileHelper.replace_expression(sets.sah_kickstart, '^SubscriptionManagerPool=.*', 'SubscriptionManagerPool="' + sets.subscription_manager_pool_sah + '"') FileHelper.replace_expression(sets.sah_kickstart, '^Gateway=.*', 'Gateway="' + sets.public_api_gateway + '"') FileHelper.replace_expression(sets.sah_kickstart, '^NameServers=.*', 'NameServers="' + sets.name_server + '"') FileHelper.replace_expression(sets.sah_kickstart, '^NTPServers=.*', 'NTPServers="' + sets.ntp_server + '"') FileHelper.replace_expression(sets.sah_kickstart, '^TimeZone=.*', 'TimeZone="' + sets.time_zone + '"') FileHelper.replace_expression(sets.sah_kickstart, '^anaconda_interface=.*', 'anaconda_interface="' + sets.sah_node.anaconda_ip + '/' + sets.public_api_netmask + ' ' + sets.sah_node.anaconda_iface + ' no"') FileHelper.replace_expression(sets.sah_kickstart, '^anaconda_vlanid=.*', 'anaconda_vlanid="' + sets.public_api_vlanid + '"') FileHelper.replace_expression(sets.sah_kickstart, '^extern_bond_name=.*', 'extern_bond_name="' + sets.sah_node.public_bond + '"') FileHelper.replace_expression(sets.sah_kickstart, '^extern_bond_opts=.*', 'extern_bond_opts="mode=' + sets.sah_bond_opts + '"') FileHelper.replace_expression(sets.sah_kickstart, '^extern_ifaces=.*', 'extern_ifaces="' + sets.sah_node.public_slaves + '"') FileHelper.replace_expression(sets.sah_kickstart, '^internal_bond_name=.*', 'internal_bond_name="' + sets.sah_node.private_bond + '"') FileHelper.replace_expression(sets.sah_kickstart, '^internal_bond_opts=.*', 'internal_bond_opts="mode=' + sets.sah_bond_opts + '"') FileHelper.replace_expression(sets.sah_kickstart, '^internal_ifaces=.*', 'internal_ifaces="' + sets.sah_node.private_slaves + '"') FileHelper.replace_expression(sets.sah_kickstart, '^prov_bond_name=.*', 'prov_bond_name="bond0.' + sets.provisioning_vlanid + '"') FileHelper.replace_expression(sets.sah_kickstart, '^stor_bond_name=.*', 'stor_bond_name="bond0.' + sets.storage_vlanid + '"') FileHelper.replace_expression(sets.sah_kickstart, '^mgmt_bond_name=.*', 'mgmt_bond_name="bond0.' + sets.management_vlanid + '"') FileHelper.replace_expression(sets.sah_kickstart, '^pub_api_bond_name=.*', 'pub_api_bond_name="bond1.' + sets.public_api_vlanid + '"') FileHelper.replace_expression(sets.sah_kickstart, '^priv_api_bond_name=.*', 'priv_api_bond_name="bond0.' + sets.private_api_vlanid + '"') FileHelper.replace_expression(sets.sah_kickstart, '^br_prov_boot_opts=.*', 'br_prov_boot_opts="onboot static ' + sets.sah_node.provisioning_ip + '/' + sets.provisioning_netmask + '"') FileHelper.replace_expression(sets.sah_kickstart, '^br_stor_boot_opts=.*', 'br_stor_boot_opts="onboot static ' + sets.sah_node.storage_ip + '/' + sets.storage_netmask + '"') FileHelper.replace_expression(sets.sah_kickstart, '^br_mgmt_boot_opts=.*', 'br_mgmt_boot_opts="onboot static ' + sets.sah_node.management_ip + '/' + sets.management_netmask + '"') FileHelper.replace_expression(sets.sah_kickstart, '^br_pub_api_boot_opts=.*', 'br_pub_api_boot_opts="onboot static ' + sets.sah_node.public_api_ip + '/' + sets.public_api_netmask + '"') FileHelper.replace_expression(sets.sah_kickstart, '^br_priv_api_boot_opts=.*', 'br_priv_api_boot_opts="onboot static ' + sets.sah_node.private_api_ip + '/' + sets.private_api_netmask + '"') FileHelper.replace_expression(sets.sah_kickstart, '^prov_network=.*', 'prov_network="' + sets.provisioning_network.split("/")[0] + '"') FileHelper.replace_expression(sets.sah_kickstart, '^prov_netmask=.*', 'prov_netmask="' + sets.provisioning_netmask + '"') time.sleep(3) if self.settings.is_fx is True: cmds = ["sed -i 's/{AnacondaIface_device}/{" + "AnacondaIface_device}." + self.settings.public_api_vlanid + "/' " + sets.sah_kickstart, "sed -i 's/bootproto=static/vlanid=" + self.settings.public_api_vlanid + " --bootproto=static/' " + sets.sah_kickstart] for cmd in cmds: os.system(cmd) def upload_iso(self): shutil.copyfile(self.settings.rhel_iso, "/store/data/iso/RHEL7.iso") def clear_known_hosts(self): hosts = [ self.settings.director_node.public_api_ip, self.settings.rhscon_node.public_api_ip ] # Check wether we're running from the SAH node out = subprocess.check_output("ip addr", stderr=subprocess.STDOUT, shell=True) if self.settings.sah_node.public_api_ip in out: for host in hosts: cmd = 'ssh-keygen -R ' + host self.run(cmd) else: for host in hosts: subprocess.check_output('ssh-keygen -R ' + host, stderr=subprocess.STDOUT, shell=True) def handle_lock_files(self): files = [ 'rhscon_vm.vlock', 'director_vm.vlock', ] # Delete any staged locking files to prevent accidental reuse for eachone in files: staged_file_name = '/root/' + eachone if os.path.isfile(staged_file_name): os.remove(staged_file_name) if self.settings.version_locking_enabled is True: logger.debug( "Uploading version locking files for director & rhscon VMs") for eachone in files: source_file_name = self.settings.lock_files_dir + "/" + eachone dest_file_name = '/root/' + eachone shutil.copyfile(source_file_name, dest_file_name) def upload_director_scripts(self): remote_file = "/root/deploy-director-vm.sh" self.upload_file(self.settings.director_deploy_sh, remote_file) self.run("chmod 777 /root/deploy-director-vm.sh") def create_director_vm(self): director_conf = "/root/director.cfg" self.run("rm " + director_conf + " -f") conf = ("rootpassword " + self.settings.director_node.root_password, "timezone " + self.settings.time_zone, "smuser " + self.settings.subscription_manager_user, "smpassword " + self.settings.subscription_manager_password, "smpool " + self.settings.subscription_manager_pool_vm_rhel, "hostname " + self.settings.director_node.hostname + "." + self.settings.domain, "gateway " + self.settings.public_api_gateway, "nameserver " + self.settings.name_server, "ntpserver " + self.settings.sah_node.provisioning_ip, "user " + self.settings.director_install_account_user, "password " + self.settings.director_install_account_pwd, "# Iface IP NETMASK ",) conf = conf + ("eth0 " + self.settings.director_node.public_api_ip + " " + self.settings.public_api_netmask,) conf = conf + ("eth1 " + self.settings.director_node.provisioning_ip + " " + self.settings.provisioning_netmask,) conf = conf + ("eth2 " + self.settings.director_node.management_ip + " " + self.settings.management_netmask,) conf = conf + ("eth3 " + self.settings.director_node.private_api_ip + " " + self.settings.private_api_netmask,) for line in conf: self.run("echo '" + line + "' >> " + director_conf) remote_file = "sh /root/deploy-director-vm.sh " + \ director_conf + " " + \ "/store/data/iso/RHEL7.iso" re = self.run_tty(remote_file) startVM = True for ln in re[0].split("\n"): if "Restarting guest" in ln: startVM = False if startVM: logger.debug( "=== wait for the director vm install " "to be complete") while "shut off" not in \ self.run("virsh list --all | grep director")[0]: time.sleep(60) logger.debug("=== power on the director VM ") self.run("virsh start director") logger.debug("=== waiting for the director vm to boot up") self.wait_for_vm_to_come_up(self.settings.director_node.public_api_ip, "root", self.settings.director_node.root_password) logger.debug("director host is up") def wait_for_vm_to_come_up(self, target_ip, user, password): while True: status = Ssh.execute_command( target_ip, user, password, "ps")[0] if status != "host not up": break logger.debug("vm is not up. Sleeping...") time.sleep(10) def delete_director_vm(self): while "director" in \ self.run("virsh list --all | grep director")[0]: self.run("virsh destroy director") time.sleep(20) self.run("virsh undefine director") time.sleep(20) def create_rhscon_vm(self): remote_file = "/root/deploy-rhscon-vm.py" self.upload_file(self.settings.rhscon_deploy_py, remote_file) logger.debug("=== create rhscon.cfg") rhscon_conf = "/root/rhscon.cfg" self.run("rm " + rhscon_conf + " -f") conf = ("rootpassword " + self.settings.rhscon_node.root_password, "timezone " + self.settings.time_zone, "smuser " + self.settings.subscription_manager_user, "smpassword " + self.settings.subscription_manager_password, "smpool " + self.settings.subscription_manager_vm_ceph, "hostname " + self.settings.rhscon_node.hostname + "." + self.settings.domain, "gateway " + self.settings.public_api_gateway, "nameserver " + self.settings.name_server, "ntpserver " + self.settings.sah_node.provisioning_ip, "# Iface IP NETMASK ",) conf = conf + ("eth0 " + self.settings.rhscon_node.public_api_ip + " " + self.settings.public_api_netmask,) conf = conf + ("eth1 " + self.settings.rhscon_node.storage_ip + " " + self.settings.storage_netmask,) for comd in conf: self.run("echo '" + comd + "' >> " + rhscon_conf) logger.debug("=== kick off the Storage Console VM deployment") re = self.run_tty("python " + remote_file + " /root/rhscon.cfg " + "/store/data/iso/RHEL7.iso") startVM = True for ln in re[0].split("\n"): if "Restarting guest" in ln: startVM = False if startVM: logger.debug( "=== wait for the Storage Console VM install to be complete \ & power it on") while "shut off" \ not in self.run("virsh list --all | grep rhscon")[0]: time.sleep(60) logger.debug("=== power on the Storage Console VM ") self.run("virsh start rhscon") logger.debug("=== waiting for the Storage Console vm to boot up") self.wait_for_vm_to_come_up(self.settings.rhscon_node.public_api_ip, "root", self.settings.rhscon_node.root_password) logger.debug("Storage Console VM is up") def delete_rhscon_vm(self): # Also delete any leftover "ceph" VM so that it cannot interfere # with the new "rhscon" VM that replaces it. for vm in "ceph", "rhscon": if vm in self.run("virsh list --all | grep {}".format(vm))[0]: if vm == "ceph": logger.info("=== deleting deprecated ceph VM") if "running" in self.run("virsh domstate {}".format(vm))[0]: self.run("virsh destroy {}".format(vm)) time.sleep(20) self.run("virsh undefine {}".format(vm)) time.sleep(20)
[ "gael01@gmail.com" ]
gael01@gmail.com
2451db96195a6ccf741363e24b3bd80870964b28
d317a0828f8aa49d0a29a67251e221a642fd90c0
/content/migrations/0002_auto_20160511_0822.py
d6d1229dbe2a5def7591a6dc386d99969cfda4df
[]
no_license
ntuckovic/simple_cms
45136d65703e789656aa7ae44c3bb85c3cae88a3
4d484ae4b47ba088c9af04c8df8626548e64dc63
refs/heads/master
2016-09-12T16:24:53.307081
2016-05-20T18:40:59
2016-05-20T18:40:59
58,266,532
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-11 06:22 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('content', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='category', options={'verbose_name': 'Category', 'verbose_name_plural': 'Categories'}, ), ]
[ "nikola.tuckovic@styria.hr" ]
nikola.tuckovic@styria.hr
8c493f0ad40467553ef929410b4c2e22d271f3a9
07f932c30bec781f383c16ccaa4bb0188bbeb719
/class4/exercise1.py
f76d5047c5234de093cbcf30c62f73384d4af26e
[]
no_license
mrreyes512/pynet_ansible
1e4b8381080a393ef74fce35a2cd31c2e7a43011
98d773443dd224c580ed60fc089ce9352cae9547
refs/heads/master
2021-01-11T03:29:13.879845
2017-01-19T07:08:17
2017-01-19T07:08:17
71,002,914
0
0
null
null
null
null
UTF-8
Python
false
false
811
py
#!/usr/bin/env python """ Use Paramiko to retrieve the entire 'show version' output from pynet-rtr2. """ import paramiko from getpass import getpass ip_addr = '184.105.247.71' port = 22 username = 'pyclass' #password = getpass() password = '88newclass' remote_conn_pre=paramiko.SSHClient() #remote_conn_pre.load_system_host_keys() remote_conn_pre.set_missing_host_key_policy(paramiko.AutoAddPolicy()) remote_conn_pre.connect(ip_addr, username=username, password=password, look_for_keys=False, allow_agent=False, port=port) stdin, stdout, stderr = remote_conn_pre.exec_command('show version\n') #print stdout.readlines() for line in stdout.readlines(): print line.strip() #remote_conn = remote_conn_pre.invoke_shell() #remote_conn.send("show ip int brief\n") #outp = remote_conn.recv(5000) #print outp
[ "mark.reyes@twcable.com" ]
mark.reyes@twcable.com
e72041dd1699534744c115c7c5505d836205fc6e
9ee4692e9e0c6d9b9ccd865ecb26d97f682d34c7
/factorial_restocking.py
67abdcd7c48e7ab646fadebcbc0803c28d49139c
[]
no_license
yanickdi/clsc_numeric
d752f2ff028ea97db307c9978ecd7136c4c75bac
e58a2de81ae29949cfc5ebcf8297cb5e61763fb4
refs/heads/master
2021-01-23T04:45:26.794805
2018-03-19T10:53:15
2018-03-19T10:53:15
92,942,793
0
0
null
null
null
null
UTF-8
Python
false
false
8,028
py
import sys, os.path, re from statistics import mean from jinja2 import Template from solver import SolverProxy, Parameter, MODEL_2, MODEL_NB, ModelNBSolver LATEX_SUBS = ( (re.compile(r'\\'), r'\\textbackslash'), (re.compile(r'([{}_#%&$])'), r'\\\1'), (re.compile(r'~'), r'\~{}'), (re.compile(r'\^'), r'\^{}'), (re.compile(r'"'), r"''"), (re.compile(r'\.\.\.+'), r'\\ldots'), ) def escape_tex(value): newval = value for pattern, replacement in LATEX_SUBS: newval = pattern.sub(replacement, newval) return newval class Factorial: tau_lh = lambda : (.15, .5) s_lh = lambda cn: (0, cn/2) cr_lh = lambda cn, delta : (.1*cn, .4*cn) delta_lh = lambda : (.5, .85) cn_lh = lambda : (.1, .5) a_lh = lambda : (.001, .01) LOW, HIGH = 'LOW', 'HIGH' def __init__(self): self.__dict = {} self.__proxy = SolverProxy() self.__calc__() self.__fullFactorialTable() def __key(self, model, tau, a, s, cr, cn, delta): assert model in (MODEL_2, MODEL_NB) for val in (tau, a, s, cr, cn): assert val in (Factorial.LOW, Factorial.HIGH) return '{},tau={},a={},s={},cr={},cn={},delta={}'.format(model, tau, a, s, cr, cn,delta) def _add(self, key, par, sol): assert key not in self.__dict self.__dict[key] = {'par' : par, 'sol': sol} def _get(self, key): return self.__dict[key] def __calc__(self): p = Factorial iter = self.__state_iter proxy = SolverProxy() num = 0 for tau, tau_state in iter(p.tau_lh()): for delta, delta_state in iter(p.delta_lh()): for cn, cn_state in iter(p.cn_lh()): for cr, cr_state in iter(p.cr_lh(cn, delta)): for s, s_state in iter(p.s_lh(cn)): for a, a_state in iter(p.a_lh()): # calculate model with restocking_fee par_nb = Parameter(MODEL_NB, tau=tau, a=a, s=s, cn=cn) sol_nb = proxy.read_or_calc_and_write(par_nb, resolution='middle') num += 1; print(num) #sol_nb = ModelNBSolver.solve(par_nb, 'low') key_n = self.__key(MODEL_NB, tau_state, a_state, s_state, cr_state, cn_state, delta_state) self._add(key_n, par_nb, sol_nb) # calculate model two par_o = Parameter(MODEL_2, tau=tau, a=a, s=s, cr=cr, cn=cn, delta=delta) sol_o = proxy.calculate(par_o) key_o = self.__key(MODEL_2, tau_state, a_state, s_state, cr_state, cn_state, delta_state) self._add(key_o, par_o, sol_o) proxy.commit() def __fullFactorialTable(self): self.__ff_table = [[None for j in range(8)] for i in range(8)] lohi = (Factorial.LOW, Factorial.HIGH) for i, (s, cr, a) in enumerate([(s, cr, a) for s in lohi for cr in lohi for a in lohi]): for j, (cn, delta, tau) in enumerate([(cn, delta, tau) for cn in lohi for delta in lohi for tau in lohi]): key_nb = self.__key(MODEL_NB, tau, a, s, cr, cn, delta) key_o = self.__key(MODEL_2, tau, a, s, cr, cn, delta) val_n = self._get(key_nb) val_o = self._get(key_o) self.__ff_table[i][j] = {'o' : val_o, 'n' : val_n} def __anal_line_parameters(self, table, par): f = Factorial pars = [] if table == 'delta': delta = par for tau, cn in [(tau,cn) for tau in f.tau_lh() for cn in f.cn_lh()]: for a, s, cr in [(a,s,cr) for a in f.a_lh() for s in f.s_lh(cn) for cr in f.cr_lh(cn,delta)]: pars.append([tau, a, s, cr, cn, delta]) if table == 'tau': tau = par for delta, cn in [(delta,cn) for delta in f.delta_lh() for cn in f.cn_lh()]: for a, s, cr in [(a,s,cr) for a in f.a_lh() for s in f.s_lh(cn) for cr in f.cr_lh(cn,delta)]: pars.append([tau, a, s, cr, cn, delta]) if table == 'cn': cn = par for tau, delta in [(tau, delta) for tau in f.tau_lh() for delta in f.delta_lh()]: for a, s, cr in [(a,s,cr) for a in f.a_lh() for s in f.s_lh(cn) for cr in f.cr_lh(cn,delta)]: pars.append([tau, a, s, cr, cn, delta]) if table == 'a': a = par for tau, delta, cn in [(tau,delta,cn) for tau in f.tau_lh() for delta in f.delta_lh() for cn in f.cn_lh()]: for s, cr in [(s,cr) for s in f.s_lh(cn) for cr in f.cr_lh(cn,delta)]: pars.append([tau, a, s, cr, cn, delta]) assert len(pars) == int(2**5) return pars def getAnalysisLine(self, table, par): raise NotImplementedError() def __both_solutions(self, tau, a, s, cr, cn, delta): raise NotImplementedError() def __state_iter(self, iterable): state = Factorial.LOW for val in iterable: yield (val, state) state = Factorial.HIGH if state == Factorial.LOW else Factorial.LOW def getTableValue(self, table, i, j): o_val, n_val = self.__ff_table[i][j]['o'], self.__ff_table[i][j]['n'] o_sol, n_sol = o_val['sol'], n_val['sol'] if table == 'case': print(n_sol) return '{}/{}'.format(o_sol.case, n_sol.case) elif table == 'profits': prof = (o_val['sol'].profit_man / n_val['sol'].profit_man)*100 return '{:.2f}\\%'.format(prof) elif table == 'retailerprof': prof = (o_val['sol'].profit_ret / n_val['sol'].profit_ret)*100 return '{:.2f}\\%'.format(prof) elif table == 'rho': rho_dec = (o_val['sol'].dec.rho / n_val['sol'].dec.rho) *100 return '{:.2f}\\%'.format(rho_dec) elif table == 'price_new': price_dec = (o_val['sol'].dec.pn / n_val['sol'].dec.pn) * 100 return '{:.2f}\\%'.format(price_dec) elif table == 'wholesale_price': wn_dec = (o_val['sol'].dec.wn / n_val['sol'].dec.wn) * 100 #wn_dec = n_val['sol'].dec.wn return '{:.2f}\\%'.format(wn_dec) elif table == 'restocking_price': #b_rel = n_val['sol'].dec.b b_rel = (n_sol.dec.b - n_val['par'].s) / (n_sol.dec.wn - n_val['par'].s) #'{:.2f}\\%'.format(b_rel) return '{:.2f}\\%'.format(b_rel) elif table.startswith('par'): par = table.split('_')[1] if par == 'tau': return o_val['par'].tau elif par == 'cn': return o_val['par'].cn elif par == 'cr': return o_val['par'].cr elif par == 'a': return o_val['par'].a elif par == 's': return o_val['par'].s elif par == 'delta': return o_val['par'].delta def main(): if len(sys.argv) != 2: print('usage {} template.tex'.format(os.path.basename(sys.argv[0]))) sys.exit() fullFactorial = Factorial() tplfile = sys.argv[1] # read template file with open(tplfile, 'r') as f: template = Template(f.read()) # open output file output_file = 'output.tex' if tplfile.endswith('.tex') else 'output.csv' with open(output_file, 'w', newline='\n') as f: renderedString = template.render({ 'full': fullFactorial, 'ft' : fullFactorial.getTableValue, 'at' : fullFactorial.getAnalysisLine, 'esc' : escape_tex }) f.write(renderedString) if __name__ == '__main__': main()
[ "yanick.dickbauer@uni-graz.at" ]
yanick.dickbauer@uni-graz.at
3cbf8df1e8e863b25afe9f35429a2b205af7ac9c
795cb0b80b5f8cf709a07843dbfb93adf2ad8942
/ghmirror/app/__init__.py
f19c3fdc4744f2cfc0482d7886d6f26bc7ff7dd8
[]
no_license
maorfr/github-mirror
8ff2db7a8c9a085fe7a599586697def1f0a5c849
1a282fe7028aab61e307372edf93f909500c7bbc
refs/heads/master
2022-11-15T01:16:51.462768
2020-02-10T17:05:01
2020-02-10T17:15:09
239,732,236
0
0
null
2020-02-11T10:14:23
2020-02-11T10:14:22
null
UTF-8
Python
false
false
4,224
py
# This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # See LICENSE for more details. # # Copyright: Red Hat Inc. 2020 # Author: Amador Pahim <apahim@redhat.com> """ The GitHub Mirror endpoints """ import hashlib import logging import requests import flask from ghmirror.app.response import MirrorResponse from ghmirror.data_structures.monostate import RequestsCache from ghmirror.data_structures.monostate import StatsCache logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(message)s') LOG = logging.getLogger(__name__) GH_API = 'https://api.github.com' APP = flask.Flask(__name__) @APP.route('/healthz', methods=["GET"]) def healthz(): """ Health check endpoint for Kubernetes. """ return flask.Response('OK') @APP.route('/stats', methods=["GET"]) def stats(): """ Cache statistics endpoint. """ stats_cache = StatsCache() return flask.jsonify( { 'cache_hit': stats_cache.hits, 'cache_miss': stats_cache.misses, } ) @APP.route('/', defaults={'path': ''}) @APP.route('/<path:path>', methods=["GET", "POST", "PUT", "PATCH", "DELETE"]) def ghmirror(path): """ Default endpoint, matching any url without a specific endpoint. """ url = f'{GH_API}/{path}' if flask.request.args: url += '?' for key, value in flask.request.args.items(): url += f'{key}={value}&' url = url.rstrip('&') headers = {} authorization = flask.request.headers.get('Authorization') auth_sha = None if authorization is not None: headers['Authorization'] = authorization # The authorization token will be used as cache key, # so let's hash it for additional security. auth_sha = hashlib.sha1(authorization.encode()).hexdigest() if flask.request.method != 'GET': LOG.info('[%s] BYPASS %s', flask.request.method, url) resp = requests.request(flask.request.method, url=url, headers=headers, data=flask.request.data) return flask.Response(resp.content, resp.status_code) stats_cache = StatsCache() cache = RequestsCache() cache_key = (url, auth_sha) if cache_key in cache: etag = cache[cache_key].headers.get('ETag') if etag is not None: headers['If-None-Match'] = etag last_mod = cache[cache_key].headers.get('Last-Modified') if last_mod is not None: headers['If-Modified-Since'] = last_mod resp = requests.request(flask.request.method, url=url, headers=headers) if resp.status_code != 304: LOG.info('[GET] CACHE_MISS %s', url) stats_cache.miss() # Caching only makes sense when at least one # of those headers is present if any(['ETag' in resp.headers, 'Last-Modified' in resp.headers]): cache[cache_key] = resp mirror_response = MirrorResponse(original_response=resp, gh_api_url=GH_API, gh_mirror_url=flask.request.host_url) else: LOG.info('[GET] CACHE_HIT %s', url) stats_cache.hit() mirror_response = MirrorResponse(original_response=cache[cache_key], gh_api_url=GH_API, gh_mirror_url=flask.request.host_url) return flask.Response(mirror_response.content, mirror_response.status_code, mirror_response.headers) if __name__ == '__main__': # pragma: no cover APP.run(host='127.0.0.1', debug=True, port='8080')
[ "apahim@redhat.com" ]
apahim@redhat.com
9e0ede3a2753d931b34906babaf3125fe709eebd
34975bd680962abba1ecd970c7320c8454a3a3b7
/05_List/05_List_14.py
787d2dc923ee345a234957bf1fcb339d5adfb754
[]
no_license
miello/com_prog
64df2dfa57f7f65cacef2d737e3639fa9b656fdf
074241646f42f05c117649a94651eb2916fb468e
refs/heads/master
2023-01-07T19:03:31.781243
2020-11-15T18:21:24
2020-11-15T18:21:24
288,693,402
1
0
null
null
null
null
UTF-8
Python
false
false
160
py
inp = [int(e) for e in input().split()] co = 0 for p in range(1, len(inp) - 1): if inp[p - 1] < inp[p] and inp[p] > inp[p + 1]: co += 1 print(co)
[ "partearth1212@gmail.com" ]
partearth1212@gmail.com
22793485a0f7007c064110e5272ecbb694f25b5c
07b0a4cb98d79295ebd26bb8c8d7a46afdfb083c
/解答/14文字列操作_回答例/14_3.py
d40d5363c6b17d027c1d528d2b13d0e5e45894d9
[]
no_license
kubotaaaaaaaaaa/python
a9d023a4ae4c3eee0e96e1f1c38ee2f96dc307ba
aa8a4239e56d2101101db6c8ff0d6657c7475877
refs/heads/master
2023-08-01T13:23:45.927737
2021-09-22T02:21:09
2021-09-22T02:21:09
409,025,350
0
0
null
null
null
null
UTF-8
Python
false
false
331
py
# 入力された文字列が11文字以上だったら10文字目以降は削除して表示 # 文字列を入力 in_str = input("文字列を入力:") # 11文字以上だったら10文字目以降は削除する if len(in_str) > 10: in_str = in_str[0:10] # 文字数を表示 print("結果文字列:", in_str, sep="")
[ "ykh2135212@stu.o-hara.ac.jp" ]
ykh2135212@stu.o-hara.ac.jp
c38d87877d10582f005561fd99d0f442d987576d
27f13ed7130ac753111beb3025e406b8e6ecee5d
/amazon/books.py
e03fd1d037ba27a230b5a545df42e37195f3d556
[]
no_license
jonzingale/jonzingale.github.io
85d4da81a49bf18765c3fbfbcc22f8b6c14b53ea
15cb257adb5b9f9b3982c380666a6bd3b5737e37
refs/heads/master
2023-06-21T15:29:21.552683
2023-06-14T04:43:15
2023-06-14T04:43:15
139,901,966
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
# import urllib3 # from bs4 import BeautifulSoup from pdb import set_trace as st import json import csv # urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) # Parse Amazon purchases, and display books # in a clever way. Consider using LCC for classification. class Graph: def __init__(self): self.json = {} self.edges = self.json.values() self.nodes = self.json.keys() # subgraph :: {user_stub: [user_stubs]} def add_subgraph(self, node, edges): self.json[node] = edges class Agent: def __init__(self): self.http = urllib3.PoolManager() self.csvData = self.parseCSV() self.graph = Graph() self.writeJSON() def writeJSON(self): encoder = json.JSONEncoder() file = open("./opponents_of_%s.json" % self.user, "w") file.write(encoder.encode(self.graph.json)) file.close() def parseCSV(self, user): #### Write this correctly. file = open("./opponents_of_%s.json" % self.user, "r") page = BeautifulSoup(file.data, features="lxml") # ordered data rather than csv.reader: data[0]['game_id'] dictCsv = csv.DictReader(page.p.text.splitlines(), delimiter='\t') return dictCsv def data_writer(self, file, data): jsonEnc = json.JSONEncoder() file.write(jsonEnc.encode(data)) agent = Agent()
[ "jonzingale@gmail.com" ]
jonzingale@gmail.com
0036b7e44c99c4b71575861c0070e88fcab5cc22
484f4ff9103a0f997eaa9a84efa35a12377d6540
/rfc_record.py
a65074e6adc0633c9071480e991d973c6cfcd959
[]
no_license
ruturajvy/P2P-Distributed-Index
85199b62deb658d2bbf472894a2814db0d53a754
6e77d3aebdba65d0144f54fb93234bb8de21bdd8
refs/heads/master
2020-04-12T11:54:19.670334
2018-12-19T18:32:47
2018-12-19T18:32:47
162,475,785
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
class rfc_record: '''Class that describes each record of RFC index''' def __init__(self, id, title, hostname, ttl = 7200): self.id = id self.title = title self.hostname = hostname self.ttl = ttl def rfc_rec_string(self): sep ='*' rfc_rec_str = str(self.id) + sep + self.title + sep + str(self.hostname) + sep + str(self.ttl) return rfc_rec_str
[ "ruturaj8396@gmail.com" ]
ruturaj8396@gmail.com
d22000aa293a9346c4dc46c9a669f81b8433ecd2
896717bb0762e5a6c259dd9194726ba2a84e8f42
/beg95.py
024b6b31cd53191c2b532676d18afffd6b3c118b
[]
no_license
sarureddi/floorvalue
d0cb81db0f0081091f9cfadf1d85230035f34593
27105728d260f236460cce0e59da74bdcd4c5fe6
refs/heads/master
2020-06-03T19:42:58.872883
2019-06-13T06:50:02
2019-06-13T06:50:02
191,707,126
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
Pr1,Ti1,Rt1=map(int,input().split()) i1=Pr1*Ti1*Rt1 si1=i1//100 print(si1)
[ "noreply@github.com" ]
sarureddi.noreply@github.com
72e69dc8ecc9b944bfda48844915f1c3a7db0ec0
5daee2edd3f676ad0d1cebf223a1ecc6bc251e14
/Course4FinalProject/controller2d.py
b12979bea5fc2ffc962b39433022c2716bca4e40
[]
no_license
Aniket-Gujarathi/Motion-Planning-for-Self-Driving-Cars
48d4fc06b7d0afeea5a509d44051eaee6811be3c
a446341b71ab5abf3b21b7ca7b31a2ca7fe00ea3
refs/heads/master
2020-12-14T22:20:51.778698
2020-03-30T15:26:08
2020-03-30T15:26:08
234,890,721
4
2
null
null
null
null
UTF-8
Python
false
false
9,393
py
#!/usr/bin/env python3 """ 2D Controller Class to be used for the CARLA waypoint follower demo. """ import cutils import numpy as np class Controller2D(object): def __init__(self, waypoints): self.vars = cutils.CUtils() self._lookahead_distance = 2.0 self._current_x = 0 self._current_y = 0 self._current_yaw = 0 self._current_speed = 0 self._desired_speed = 0 self._current_frame = 0 self._current_timestamp = 0 self._start_control_loop = False self._set_throttle = 0 self._set_brake = 0 self._set_steer = 0 self._waypoints = waypoints self._conv_rad_to_steer = 180.0 / 70.0 / np.pi self._pi = np.pi self._2pi = 2.0 * np.pi def update_values(self, x, y, yaw, speed, timestamp, frame): self._current_x = x self._current_y = y self._current_yaw = yaw self._current_speed = speed self._current_timestamp = timestamp self._current_frame = frame if self._current_frame: self._start_control_loop = True def get_lookahead_index(self, lookahead_distance): min_idx = 0 min_dist = float("inf") for i in range(len(self._waypoints)): dist = np.linalg.norm(np.array([ self._waypoints[i][0] - self._current_x, self._waypoints[i][1] - self._current_y])) if dist < min_dist: min_dist = dist min_idx = i total_dist = min_dist lookahead_idx = min_idx for i in range(min_idx + 1, len(self._waypoints)): if total_dist >= lookahead_distance: break total_dist += np.linalg.norm(np.array([ self._waypoints[i][0] - self._waypoints[i-1][0], self._waypoints[i][1] - self._waypoints[i-1][1]])) lookahead_idx = i return lookahead_idx def update_desired_speed(self): min_idx = 0 min_dist = float("inf") desired_speed = 0 for i in range(len(self._waypoints)): dist = np.linalg.norm(np.array([ self._waypoints[i][0] - self._current_x, self._waypoints[i][1] - self._current_y])) if dist < min_dist: min_dist = dist min_idx = i self._desired_speed = self._waypoints[min_idx][2] def update_waypoints(self, new_waypoints): self._waypoints = new_waypoints def get_commands(self): return self._set_throttle, self._set_steer, self._set_brake def set_throttle(self, input_throttle): # Clamp the throttle command to valid bounds throttle = np.fmax(np.fmin(input_throttle, 1.0), 0.0) self._set_throttle = throttle def set_steer(self, input_steer_in_rad): # Covnert radians to [-1, 1] input_steer = self._conv_rad_to_steer * input_steer_in_rad # Clamp the steering command to valid bounds steer = np.fmax(np.fmin(input_steer, 1.0), -1.0) self._set_steer = steer def set_brake(self, input_brake): # Clamp the steering command to valid bounds brake = np.fmax(np.fmin(input_brake, 1.0), 0.0) self._set_brake = brake def update_controls(self): ###################################################### # RETRIEVE SIMULATOR FEEDBACK ###################################################### x = self._current_x y = self._current_y yaw = self._current_yaw v = self._current_speed self.update_desired_speed() v_desired = self._desired_speed t = self._current_timestamp waypoints = self._waypoints throttle_output = 0 steer_output = 0 brake_output = 0 self.vars.create_var('kp', 0.50) self.vars.create_var('ki', 0.30) self.vars.create_var('integrator_min', 0.0) self.vars.create_var('integrator_max', 10.0) self.vars.create_var('kd', 0.13) self.vars.create_var('kp_heading', 8.00) self.vars.create_var('k_speed_crosstrack', 0.00) self.vars.create_var('cross_track_deadband', 0.01) self.vars.create_var('x_prev', 0.0) self.vars.create_var('y_prev', 0.0) self.vars.create_var('yaw_prev', 0.0) self.vars.create_var('v_prev', 0.0) self.vars.create_var('t_prev', 0.0) self.vars.create_var('v_error', 0.0) self.vars.create_var('v_error_prev', 0.0) self.vars.create_var('v_error_integral', 0.0) # Skip the first frame to store previous values properly if self._start_control_loop: self.vars.v_error = v_desired - v self.vars.v_error_integral += self.vars.v_error * \ (t - self.vars.t_prev) v_error_rate_of_change = (self.vars.v_error - self.vars.v_error_prev) /\ (t - self.vars.t_prev) # cap the integrator sum to a min/max self.vars.v_error_integral = \ np.fmax(np.fmin(self.vars.v_error_integral, self.vars.integrator_max), self.vars.integrator_min) throttle_output = self.vars.kp * self.vars.v_error +\ self.vars.ki * self.vars.v_error_integral +\ self.vars.kd * v_error_rate_of_change # Find cross track error (assume point with closest distance) crosstrack_error = float("inf") crosstrack_vector = np.array([float("inf"), float("inf")]) ce_idx = self.get_lookahead_index(self._lookahead_distance) crosstrack_vector = np.array([waypoints[ce_idx][0] - \ x - self._lookahead_distance*np.cos(yaw), waypoints[ce_idx][1] - \ y - self._lookahead_distance*np.sin(yaw)]) crosstrack_error = np.linalg.norm(crosstrack_vector) # set deadband to reduce oscillations print(crosstrack_error) if crosstrack_error < self.vars.cross_track_deadband: crosstrack_error = 0.0 # Compute the sign of the crosstrack error crosstrack_heading = np.arctan2(crosstrack_vector[1], crosstrack_vector[0]) crosstrack_heading_error = crosstrack_heading - yaw crosstrack_heading_error = \ (crosstrack_heading_error + self._pi) % \ self._2pi - self._pi crosstrack_sign = np.sign(crosstrack_heading_error) # Compute heading relative to trajectory (heading error) # First ensure that we are not at the last index. If we are, # flip back to the first index (loop the waypoints) if ce_idx < len(waypoints)-1: vect_wp0_to_wp1 = np.array( [waypoints[ce_idx+1][0] - waypoints[ce_idx][0], waypoints[ce_idx+1][1] - waypoints[ce_idx][1]]) trajectory_heading = np.arctan2(vect_wp0_to_wp1[1], vect_wp0_to_wp1[0]) else: vect_wp0_to_wp1 = np.array( [waypoints[0][0] - waypoints[-1][0], waypoints[0][1] - waypoints[-1][1]]) trajectory_heading = np.arctan2(vect_wp0_to_wp1[1], vect_wp0_to_wp1[0]) heading_error = trajectory_heading - yaw heading_error = \ (heading_error + self._pi) % self._2pi - self._pi # Compute steering command based on error steer_output = heading_error + \ np.arctan(self.vars.kp_heading * \ crosstrack_sign * \ crosstrack_error / \ (v + self.vars.k_speed_crosstrack)) ###################################################### # SET CONTROLS OUTPUT ###################################################### self.set_throttle(throttle_output) # in percent (0 to 1) self.set_steer(steer_output) # in rad (-1.22 to 1.22) self.set_brake(brake_output) # in percent (0 to 1) self.vars.x_prev = x self.vars.y_prev = y self.vars.yaw_prev = yaw self.vars.v_prev = v self.vars.v_error_prev = self.vars.v_error self.vars.t_prev = t
[ "aniketg.vnit@gmail.com" ]
aniketg.vnit@gmail.com
1cd5e48e7a21108e144335c0a8f255ad91eded7d
a4f3e7f4f0d28f2c072a6378487760a067e838e6
/Webmap_with_folium/webmap_main.py
aa5facae500ca7d8e6aaed7a1025d0b1f2b1c919
[]
no_license
algebra-det/Python
50cacdb517a863ef914dd8ce8b835091f28aa9f6
c4506f4df0c2ec103b1bcebcfedca78cbe705541
refs/heads/master
2020-12-14T15:35:26.727430
2020-05-01T10:21:09
2020-05-01T10:21:09
234,789,421
0
0
null
null
null
null
UTF-8
Python
false
false
4,188
py
from folium import * import pandas # For Volcanoes data = pandas.read_csv("Volcanoes_USA.txt") lat = list(data["LAT"]) lon = list(data["LON"]) elev = list(data["ELEV"]) name_v = list(data["NAME"]) # For airport data_airports = pandas.read_csv("airport.txt") cor = list(data_airports["coordinates"]) # as in airports.txt file contains cordinates but they are not in list unlike Volcanoes_USA.txt and are seperated by commas name = list(data_airports["name"]) lati_for_airport = [] long_for_airport = [] for i in cor: # breaking the coordinates and storing them seperately in a list j,k = i.split(",") lati_for_airport.append(j) long_for_airport.append(k) def color_producer(elevation): if elevation<1500: return "green" elif 1500<=elevation<2500: return "grey" else: return "cadetblue" # Initializing Map map = Map(location=[28.339080, 77.319134], zoom_start=7, title="Mapbox Bright") # INDIA - Defining a Marker map.add_child(Marker(location=[28.539080, 77.319134], popup="<i>Pochinki</i>", tooltip="click to know more", icon=Icon(color='blue'))) #creating a FeatureGroup() for airport # AIRPORT Marker fg_airport = FeatureGroup(name="Airports") for laa,loa,na in zip(lati_for_airport,long_for_airport,name): fg_airport.add_child(Marker(location=[laa,loa], popup =na, icon=Icon(color="orange"))) fg_airport.add_to(map) # Taking a variable for Tooltip tooltip = "Click Me!" #creating a FeatureGroup() for volcanoes # for VOLCANOES circles fg_volcanoes = FeatureGroup(name="Volcanoes") # Using loop for more markers for lt, ln, el, nm in zip(lat, lon, elev, name_v): fg_volcanoes.add_child(CircleMarker(location=[lt, ln], radius=7, popup=nm, fill_color=color_producer(el), color="grey", fill_opacity=0.7)) map.add_child(fg_volcanoes) # or fg.add_to(Map) # using GeoJason() in folium to take .json file - Polygon fg_polygon = FeatureGroup(name="Polygon Layer") fg_polygon.add_child(GeoJson(data=open("world.json", "r", encoding="utf-8-sig").read(), control=False, style_function=lambda x: {"fillColor":"yellow" if x["properties"]["POP2005"] < 1000000 else "orange" if 1000000<=x["properties"]["POP2005"]<2000000 else "red"} )) fg_polygon.add_to(map) #INDIA - Anothere way of marking - in here we can enable the whole set with map.add_child(fg) #If map.add_child(fg) is not written this whole fg won't work fg2 = FeatureGroup(name="Pubg In INDIA") fg2.add_child(Marker(location=[28.739080, 77.319134], popup="<b>Bootcamp</b>", icon=Icon(color="green", icon="info-sign", angle='30'),tooltip=tooltip)) fg2.add_child(Marker(location=[28.939080, 77.319134], popup="<b>Bootcamp</b>", icon=Icon(color="green",icon="info-sign",angle=30),tooltip=tooltip)) fg2.add_child(Marker(location=[28.139080, 77.319134], popup="<b>Bootcamp</b>", icon=Icon(color="green",icon="info-sign",angle=30),tooltip=tooltip)) map.add_child(fg2) # INDIA - Iterating via for Loop fg1 = FeatureGroup(name="Pubg2 In INDIA") for coordinate in [[28.139080, 77.919134],[28.239080, 77.319134]]: fg1.add_child(Marker(location=coordinate, popup="Something New", icon=Icon(color="lightgray", icon="cloud"))) fg1.add_to(map) # INDIA - One more way of marking Marker([28.739080, 77.519134], popup="Camp Alpha", icon=Icon(color="red", icon="cloud"), tooltip="CLICK").add_to(map) Marker([27.739080, 77.519134], popup="School", icon=Icon(color="cadetblue",icon_color="white"), tooltip="NewOne").add_to(map) # INDIA - defining click to mark function map.add_child(ClickForMarker(popup="Waypoint Bro")) # defining latitude/longitude popovers #map.add_child(LatLngPopup()) # Creating custom icon - just simply download any image in png from anywhere in the current direcotry url = 'http://leafletjs.com/examples/custom-icons/{}'.format icon = CustomIcon( icon_image="leaf-green.png", icon_size=(28,55), icon_anchor=(22,94), shadow_image="leaf-shadow.png", shadow_size=(50,64), shadow_anchor=(4,62), popup_anchor=(-3,-76) ) mark = Marker(location=[27.739080, 76.519134], Popup="Ballabgarh",icon=icon) map.add_child(mark) map.add_child(LayerControl()) map.save("map.html")
[ "noreply@github.com" ]
algebra-det.noreply@github.com
b6ae1fdd6178033aedd235ce4f78cc3d7e1cd15f
7477865482948b6206c89df9e6fed64e1b92e879
/flowretrieval.py
a30932dfafc6b0b1977a75ff84b681ac68979054
[]
no_license
mann8352/Multipath-routing-using-SDN
fb6250b60181d57d31314e93fd3144b6540e7ae7
5811f83c1f64da448947a069d0ae72358403510b
refs/heads/master
2021-04-15T12:38:51.382381
2016-08-02T12:53:13
2016-08-02T12:53:13
62,341,284
1
0
null
null
null
null
UTF-8
Python
false
false
1,567
py
import json import httplib2 import traceback class FlowRetrieval: """Retrives all details of flow of each switch""" def __init__(self): pass def retrieveFlow(self, switch): """retrieves flows""" h = httplib2.Http(".cache") h.add_credentials('admin', 'admin') base_url='http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/' tail_url='/table/0/' url=base_url+switch+tail_url header={'Content-Type':'application/json', 'Accept': 'application/json'} try: resp, content = h.request(url, "GET") response=json.loads(content) flowlist=response['flow-node-inventory:table'][0]['flow'] except: print ' No flow exists' print '-----------------------------------' return return flowlist def getFlowDetails(self, switch): """gives the details of each flow of a switch""" flist=[] flowlist=self.retrieveFlow(switch) try: for f in flowlist: flowdict={'id':'', 'match':{}, 'instruction':{}} flowdict['id']=f['id'] flowdict['match']=f['match'] try: flowdict['instruction']=f['instructions'] except: flist.append(flowdict) continue flist.append(flowdict) except: return return flist def getFlowIds(self, switch): """returns flow-ids of all flows of a switch""" try: flowlist=self.getFlowDetails(switch) flowidlst=[] for flow in flowlist: flowidlst.append(str(flow['id'])) return flowidlst except: return [] def main(): print FlowRetrieval().getFlowIds('openflow:24') if __name__ == '__main__': main()
[ "mann8352@gmail.com" ]
mann8352@gmail.com
c366dc8950f6732516f2639a9e4367e64256fa62
665a7b06935defb8e7b36b7dd91c3901f997aa22
/build/test_python.py
750882ee8e40def5dfd4c3a40393a88b833f5c62
[]
no_license
SemQ20/CppPython
1512a80e432b8e06c5cb0f6971218df4cc3d79b6
463c626cf505c30c6fca318e70907839065d708e
refs/heads/master
2023-03-09T10:26:54.036735
2021-02-09T18:33:18
2021-02-09T18:33:18
260,982,255
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
def sum_one(a,b,d): c = a + b + d return c def sum(a,b,d): c = sum_one(a, b, d) return c
[ "goodsk1llomg@gmail.com" ]
goodsk1llomg@gmail.com
e5f1c102be91be7d06c912ccc3583ef91985a394
067078390e2250174f9cf9ce42da7c3770940ef8
/src/modules/user_input_handle_block_action.py
5f43bfb2d20d6936ad89dc3e34c8b57f4c3c52d9
[ "MIT" ]
permissive
AndreasVikke-School/ComputerScience-Final
0444e93fb500efe724f59af82b0ebb6f5f239e41
52d09a5876bfde661a00736712db6e3d19be877d
refs/heads/master
2023-02-10T16:38:13.171988
2021-01-15T11:21:25
2021-01-15T11:21:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,670
py
""" Processes user input block action from slack :license: MIT """ import json from typing import Dict, List from src.modules.private_metedata import read_metadata from src.modules.slack_template_parts import ( create_checkbox, create_checkboxes_with_initial_values, create_select_for_drop_down, create_input_box) from src.modules.type_enum import Types from src.modules.user_input_global import UserInputGlobal class UserInputHandleBlockAction(): ''' User Input Handle Block Action Class ''' def __init__(self, payload: Dict, test: bool = False): ''' Init for class - :param payload: Payload of the event :param test: true for test ''' self.payload = payload self.metadata = read_metadata(payload) self.user_input_global = UserInputGlobal(payload, test) def send_to_sqs(self, value, message_type: Types, action_type = None, consultant_uuid = None): ''' Send message to SQS ''' return self.user_input_global.send_to_sqs( self.payload['actions'][0]['action_id'], self.payload['actions'][0]['type']\ if action_type is None else action_type, value, message_type, consultant_uuid) def handle_block_action(self): ''' Handle block action ''' if self.payload['actions'][0]['type'] == 'button': if self.payload['actions'][0]['value'].split(';')[0] == 'start': response = self.make_customers_modal() elif self.payload['actions'][0]['value'].split(';')[0] == 'time': response = self.send_to_sqs(self.payload['actions'][0]['value'].split(';')[1],\ Types.UserInput) self.update_time_view() elif self.payload['actions'][0]['value'].split(';')[0] == 'signup': response = self.make_sign_up_home_tap('signup') elif self.payload['actions'][0]['type'] == 'checkboxes': if self.payload['actions'][0]['action_id'] == 'same_day_checkin': response = self.make_sign_up_home_tap('same_day_checkin') else: response = self.send_to_sqs(self.payload['actions'][0]['selected_options'],\ Types.UserInput) elif self.payload['actions'][0]['type'] == 'radio_buttons': response = self.send_to_sqs(self.payload['actions'][0]['selected_option'],\ Types.UserInput) elif self.payload['actions'][0]['type'] == 'static_select': self.update_customers_modal() response = self.send_to_sqs(self.payload['actions'][0]['selected_option'],\ Types.UserInput) elif self.payload['actions'][0]['type'] == 'timepicker': response = self.make_sign_up_home_tap('time_for_checkin') elif self.payload['actions'][0]['type'] == 'plain_text_input': if self.payload['actions'][0]['block_id'] == 'add_new_project_block': self.update_time_modal() response = self.send_to_sqs(self.payload['actions'][0]['value'],\ Types.Project_Create) print("Response: ", response) print(response) def make_customers_modal(self): ''' Publishes the modal to the user ''' checkin_id = self.payload['actions'][0]['value'].split(';')[1] checkin = self.user_input_global.checkin_model.get(checkin_id) predictions = json.loads(checkin.predictions) customers = sorted(self.user_input_global.customers_model.scan(),\ key=lambda x: x.friendlyName) # Load UserInput if not none if checkin.user_input is not None: user_inputs = json.loads(checkin.user_input) else: user_inputs = [] # Load Modal view body = self.user_input_global.reader(checkin_id, 'modal_customer_template', None, None) initial_values, new_elements = create_checkboxes_with_initial_values( predictions, user_inputs, 'activity', 'customers', 4,\ self.user_input_global.customers_model) # Append selected customers from dropdown to variables selected_customers = next((x for x in user_inputs if x['action_id'] == 'customers'),\ {}).get('value', []) for selected in list(filter(lambda x: not x['unchecked'], selected_customers)): customer = next((x for x in customers if x.uuid == selected['value']), None) checkbox = create_checkbox(customer.friendlyName, 'activity', selected['value']) if checkbox not in new_elements: initial_values.append(checkbox) new_elements.append(checkbox) # Append initial_values and new_elements to body if initial_values is not None: body['blocks'][1]['elements'][0]['initial_options'] = initial_values print(new_elements) print(len(new_elements)) if new_elements is None or len(new_elements) <= 0: new_elements.append(create_checkbox(customers[0].friendlyName,\ 'activity', customers[0].uuid)) body['blocks'][1]['elements'][0]['options'] = new_elements # Append all customers to drop down exclude = list(map(lambda x: x['value'].split(';')[1], new_elements)) all_customers_block = get_by_block_or_action_id(body['blocks'], 'all_customers') if all_customers_block is not None: all_customers_block['elements'][0]['options'] =\ [create_select_for_drop_down(x.friendlyName,'add_customer', x.uuid)\ for x in list(filter(lambda x: x.uuid not in exclude, customers))] if len(all_customers_block['elements'][0]['options']) == 0: body['blocks'].pop(2) # Get yesterdays date to set the actual day body['blocks'][0]['text']['text'] = self.user_input_global.get_yesterday_date(checkin.date) activities = next((x for x in user_inputs if x['action_id'] == 'activity'), None) if activities is not None: initial_values = [create_checkbox(x['value'], 'activity', x['value'])\ for x in activities['value'] if not x['unchecked']] if len(initial_values) > 0: next((x for x in body['blocks'] if 'block_id' in x\ and x['block_id'] == 'activities'),\ {})['elements'][0]['initial_options'] = initial_values print(body) return self.user_input_global.post('https://slack.com/api/views.open', { "trigger_id": self.payload['trigger_id'], "view": body }) def update_time_view(self): ''' Updates the current view on a modal ''' checkin_id = self.metadata['checkin_id'] checkin = self.user_input_global.checkin_model.get(checkin_id) body = self.user_input_global.reader(checkin_id, 'modal_time_template',\ self.metadata['current_customer'], self.metadata['current_activity']) body['blocks'] = self.payload['view']['blocks'] value = self.payload['actions'][0]['value'] if value is not None: for button in body['blocks'][1]['elements']: if button['value'] == value: button['style'] = 'primary' else: button.pop('style', None) # Get yesterdays date to set the actual day current_text = self.metadata['current_activity'] if self.metadata['current_activity']\ is not None else self.metadata['current_customer'] if self.metadata['current_customer'] is not None: body['blocks'][0]['text']['text'] =\ self.user_input_global.get_yesterday_date(checkin.date,\ current_text, self.metadata['current_activity'] is not None) data = { "view_id": self.payload['view']['id'], "view": body } print('DATA FROM BUTTON PRESSED: ', json.dumps(data)) return self.user_input_global.post('https://slack.com/api/views.update', data) def update_customers_modal(self) -> Dict: ''' Update the customer modal ''' checkin_id = self.metadata['checkin_id'] body = self.user_input_global.reader(checkin_id, 'modal_customer_template', None, None) body['blocks'] = self.payload['view']['blocks'] selected_option = self.payload['actions'][0]['selected_option'] checkbox = create_checkbox(selected_option['text']['text'], 'activity',\ selected_option['value'].split(';')[1]) if 'initial_options' not in body['blocks'][1]['elements'][0]: body['blocks'][1]['elements'][0]['initial_options'] = [] body['blocks'][1]['elements'][0]['initial_options'].append(checkbox) body['blocks'][1]['elements'][0]['options'].append(checkbox) data = { "view_id": self.payload['view']['id'], "view": body } print('DATA FROM BUTTON PRESSED: ', json.dumps(data)) return self.user_input_global.post('https://slack.com/api/views.update', data) def update_time_modal(self): ''' Update the time modal. ''' checkin_id = self.metadata['checkin_id'] body = self.user_input_global.reader(checkin_id, 'modal_time_template',\ self.metadata['current_customer'], self.metadata['current_activity']) body['blocks'] = self.payload['view']['blocks'] index = len(self.payload['view']['blocks']) - 3 print("index length: ", index) block_builder = { "type": "input", "optional": True, "element": { "type": "plain_text_input", "placeholder": { "type": "plain_text", "text": "Enter time and description (Format H.M desc)" } }, "label": { "type": "plain_text", "text": self.payload['actions'][0]['value'], "emoji": True } } block_builder['element'] = create_input_box(self.metadata['current_customer'],\ 'time_desc_input', None, False, project = self.payload['actions'][0]['value']) body['blocks'].insert(index, block_builder) print("BUTTON PRESSED!: ", self.payload) print("METADATA!!!: ", self.metadata) data = { "view_id": self.payload['view']['id'], "view": body } print('DATA FROM BUTTON PRESSED: ', json.dumps(data)) return self.user_input_global.post('https://slack.com/api/views.update', data) def make_sign_up_home_tap(self, action_type: str): ''' Makes the new Home Page Tap for singedup users - :param action_type: type of home page action ''' user_id = self.payload['user']['id'] consultant = next(self.user_input_global.consultant_model.slack_id_index.query(user_id),\ None) if action_type == 'signup': response = self.send_to_sqs(user_id, Types.Consultant_Update, 'sign_up', "None") elif action_type == 'time_for_checkin': response = self.send_to_sqs(self.payload['actions'][0]['selected_time'],\ Types.Consultant_Update, 'checkin_time', consultant.uuid) elif action_type == 'same_day_checkin': response = self.send_to_sqs(str(len(self.payload['actions'][0]['selected_options'])\ > 0), Types.Consultant_Update, 'checkin_time', consultant.uuid) print(response) return "Saved To Consultant" def get_by_block_or_action_id(blocks: List, block_action_id: str, return_type = None): ''' Get block by block id or action id - :param blocks: array to look in :param block_action_id: block or action id :param return_type: the return type if not found ''' output = next((x for x in blocks if 'block_id' in x and x['block_id']\ == block_action_id), return_type) if output is None or not output or output == return_type: output = next((x for x in blocks if 'action_id' in x and x['action_id']\ == block_action_id), return_type) return output
[ "andreasvikke@gmail.com" ]
andreasvikke@gmail.com
2831a8999135f4fcca2518ad672cebed6c20e6a6
08bfc8a1f8e44adc624d1f1c6250a3d9635f99de
/SDKs/swig/Examples/python/import_template/runme.py
21a876dcc50a33ed51ef5728620bd028545ae124
[]
no_license
Personwithhat/CE_SDKs
cd998a2181fcbc9e3de8c58c7cc7b2156ca21d02
7afbd2f7767c9c5e95912a1af42b37c24d57f0d4
refs/heads/master
2020-04-09T22:14:56.917176
2019-07-04T00:19:11
2019-07-04T00:19:11
160,623,495
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:6e7ca728db56fe89feafc30fb2c2d46f69a2f7d25eb2e7eb8c294346908c389c size 1744
[ "personwithhats2@Gmail.com" ]
personwithhats2@Gmail.com
6aa52154d3a60b6b0b2211e5fdf177377d5dfcc3
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/ICal/recurrencetype_frequency.py
f35061c4dcfda7a3be139e19b0a60512a84f5e30
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
13,990
py
# encoding: utf-8 # module gi.repository.ICal # from /usr/lib64/girepository-1.0/ICal-3.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gobject as __gobject class recurrencetype_frequency(__gobject.GEnum): # no doc def as_integer_ratio(self): # real signature unknown; restored from __doc__ """ Return integer ratio. Return a pair of integers, whose ratio is exactly equal to the original int and with a positive denominator. >>> (10).as_integer_ratio() (10, 1) >>> (-10).as_integer_ratio() (-10, 1) >>> (0).as_integer_ratio() (0, 1) """ pass def bit_length(self): # real signature unknown; restored from __doc__ """ Number of bits necessary to represent self in binary. >>> bin(37) '0b100101' >>> (37).bit_length() 6 """ pass def conjugate(self, *args, **kwargs): # real signature unknown """ Returns self, the complex conjugate of any int. """ pass def from_bytes(self, *args, **kwargs): # real signature unknown """ Return the integer represented by the given array of bytes. bytes Holds the array of bytes to convert. The argument must either support the buffer protocol or be an iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the buffer protocol. byteorder The byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. signed Indicates whether two's complement is used to represent the integer. """ pass def to_bytes(self, *args, **kwargs): # real signature unknown """ Return an array of bytes representing an integer. length Length of bytes object to use. An OverflowError is raised if the integer is not representable with the given number of bytes. byteorder The byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. signed Determines whether two's complement is used to represent the integer. If signed is False and a negative integer is given, an OverflowError is raised. """ pass def __abs__(self, *args, **kwargs): # real signature unknown """ abs(self) """ pass def __add__(self, *args, **kwargs): # real signature unknown """ Return self+value. """ pass def __and__(self, *args, **kwargs): # real signature unknown """ Return self&value. """ pass def __bool__(self, *args, **kwargs): # real signature unknown """ self != 0 """ pass def __ceil__(self, *args, **kwargs): # real signature unknown """ Ceiling of an Integral returns itself. """ pass def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __divmod__(self, *args, **kwargs): # real signature unknown """ Return divmod(self, value). """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __float__(self, *args, **kwargs): # real signature unknown """ float(self) """ pass def __floordiv__(self, *args, **kwargs): # real signature unknown """ Return self//value. """ pass def __floor__(self, *args, **kwargs): # real signature unknown """ Flooring an Integral returns itself. """ pass def __format__(self, *args, **kwargs): # real signature unknown pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __getnewargs__(self, *args, **kwargs): # real signature unknown pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __index__(self, *args, **kwargs): # real signature unknown """ Return self converted to an integer, if self is suitable for use as an index into a list. """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __int__(self, *args, **kwargs): # real signature unknown """ int(self) """ pass def __invert__(self, *args, **kwargs): # real signature unknown """ ~self """ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lshift__(self, *args, **kwargs): # real signature unknown """ Return self<<value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass def __mod__(self, *args, **kwargs): # real signature unknown """ Return self%value. """ pass def __mul__(self, *args, **kwargs): # real signature unknown """ Return self*value. """ pass def __neg__(self, *args, **kwargs): # real signature unknown """ -self """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __or__(self, *args, **kwargs): # real signature unknown """ Return self|value. """ pass def __pos__(self, *args, **kwargs): # real signature unknown """ +self """ pass def __pow__(self, *args, **kwargs): # real signature unknown """ Return pow(self, value, mod). """ pass def __radd__(self, *args, **kwargs): # real signature unknown """ Return value+self. """ pass def __rand__(self, *args, **kwargs): # real signature unknown """ Return value&self. """ pass def __rdivmod__(self, *args, **kwargs): # real signature unknown """ Return divmod(value, self). """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __rfloordiv__(self, *args, **kwargs): # real signature unknown """ Return value//self. """ pass def __rlshift__(self, *args, **kwargs): # real signature unknown """ Return value<<self. """ pass def __rmod__(self, *args, **kwargs): # real signature unknown """ Return value%self. """ pass def __rmul__(self, *args, **kwargs): # real signature unknown """ Return value*self. """ pass def __ror__(self, *args, **kwargs): # real signature unknown """ Return value|self. """ pass def __round__(self, *args, **kwargs): # real signature unknown """ Rounding an Integral returns itself. Rounding with an ndigits argument also returns an integer. """ pass def __rpow__(self, *args, **kwargs): # real signature unknown """ Return pow(value, self, mod). """ pass def __rrshift__(self, *args, **kwargs): # real signature unknown """ Return value>>self. """ pass def __rshift__(self, *args, **kwargs): # real signature unknown """ Return self>>value. """ pass def __rsub__(self, *args, **kwargs): # real signature unknown """ Return value-self. """ pass def __rtruediv__(self, *args, **kwargs): # real signature unknown """ Return value/self. """ pass def __rxor__(self, *args, **kwargs): # real signature unknown """ Return value^self. """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Returns size in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __sub__(self, *args, **kwargs): # real signature unknown """ Return self-value. """ pass def __truediv__(self, *args, **kwargs): # real signature unknown """ Return self/value. """ pass def __trunc__(self, *args, **kwargs): # real signature unknown """ Truncating an Integral returns itself. """ pass def __xor__(self, *args, **kwargs): # real signature unknown """ Return self^value. """ pass denominator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the denominator of a rational number in lowest terms""" imag = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the imaginary part of a complex number""" numerator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the numerator of a rational number in lowest terms""" real = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the real part of a complex number""" value_name = property(lambda self: object(), lambda self, v: None, lambda self: None) # default value_nick = property(lambda self: object(), lambda self, v: None, lambda self: None) # default DAILY_RECURRENCE = 3 HOURLY_RECURRENCE = 2 MINUTELY_RECURRENCE = 1 MONTHLY_RECURRENCE = 5 NO_RECURRENCE = 7 SECONDLY_RECURRENCE = 0 WEEKLY_RECURRENCE = 4 YEARLY_RECURRENCE = 6 __class__ = type __dict__ = None # (!) real value is "mappingproxy({'__module__': 'gi.repository.ICal', '__dict__': <attribute '__dict__' of 'recurrencetype_frequency' objects>, '__doc__': None, '__gtype__': <GType PyICalrecurrencetype_frequency (94628528832464)>, '__enum_values__': {0: <enum ICAL_SECONDLY_RECURRENCE of type ICal.recurrencetype_frequency>, 1: <enum ICAL_MINUTELY_RECURRENCE of type ICal.recurrencetype_frequency>, 2: <enum ICAL_HOURLY_RECURRENCE of type ICal.recurrencetype_frequency>, 3: <enum ICAL_DAILY_RECURRENCE of type ICal.recurrencetype_frequency>, 4: <enum ICAL_WEEKLY_RECURRENCE of type ICal.recurrencetype_frequency>, 5: <enum ICAL_MONTHLY_RECURRENCE of type ICal.recurrencetype_frequency>, 6: <enum ICAL_YEARLY_RECURRENCE of type ICal.recurrencetype_frequency>, 7: <enum ICAL_NO_RECURRENCE of type ICal.recurrencetype_frequency>}, '__info__': gi.EnumInfo(recurrencetype_frequency), 'SECONDLY_RECURRENCE': <enum ICAL_SECONDLY_RECURRENCE of type ICal.recurrencetype_frequency>, 'MINUTELY_RECURRENCE': <enum ICAL_MINUTELY_RECURRENCE of type ICal.recurrencetype_frequency>, 'HOURLY_RECURRENCE': <enum ICAL_HOURLY_RECURRENCE of type ICal.recurrencetype_frequency>, 'DAILY_RECURRENCE': <enum ICAL_DAILY_RECURRENCE of type ICal.recurrencetype_frequency>, 'WEEKLY_RECURRENCE': <enum ICAL_WEEKLY_RECURRENCE of type ICal.recurrencetype_frequency>, 'MONTHLY_RECURRENCE': <enum ICAL_MONTHLY_RECURRENCE of type ICal.recurrencetype_frequency>, 'YEARLY_RECURRENCE': <enum ICAL_YEARLY_RECURRENCE of type ICal.recurrencetype_frequency>, 'NO_RECURRENCE': <enum ICAL_NO_RECURRENCE of type ICal.recurrencetype_frequency>})" __enum_values__ = { 0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, } __gtype__ = None # (!) real value is '<GType PyICalrecurrencetype_frequency (94628528832464)>' __info__ = gi.EnumInfo(recurrencetype_frequency)
[ "ttys3@outlook.com" ]
ttys3@outlook.com
fc4f948f429da2c1ee07543726234d782b8fdc93
3d55f067e6645cc7d073f57b16318253c34bed75
/build_network_for_autoencoder.py
ca5a73da0e7bf3099b26eea3905f0b0f5a8ba09e
[]
no_license
ibrahimkaya754/modules2import
73ebde4db0704bf035d5b369abe6bae676934909
746fd65b6b93d1e420168b3b6c17939456988e32
refs/heads/master
2023-01-01T21:02:24.695663
2020-02-24T10:43:52
2020-02-24T10:43:52
242,708,718
0
0
null
null
null
null
UTF-8
Python
false
false
23,536
py
from import_modules import * from helper_functions import * class prepare_inputs: def __init__(self, data_splitted, list_tests, list_params, feature_keys, target_keys,cnn=False): ########################################################################################################## self.data_splitted = data_splitted self.list_tests = list_tests self.list_params = list_params self.feature_keys = feature_keys self.target_keys = target_keys self.dict_x = {} self.dict_y = {} self.dict_x_sc = {} self.dict_y_sc = {} self.cnn = cnn self.list_split_through = [key for key in self.data_splitted.dict_x.keys()] for key in self.list_split_through: self.dict_x[key] = self.data_splitted.dict_x[key] self.dict_y[key] = self.data_splitted.dict_y[key] self.dict_x_sc[key] = self.data_splitted.dict_x_sc[key] self.dict_y_sc[key] = self.data_splitted.dict_y_sc[key] print('Shapes of the %s and Sets of Input Features \n' % (self.list_split_through)) for data in self.list_split_through: print('--------------------------------------------------------------') for feature in self.feature_keys: print(data,' input set shape for ',feature,' is: ', self.dict_x_sc[data][feature].shape) print('\n*******************************************************************************\n') # Shapes of the Train, Test and Validation Sets of Output Targets print('Shapes of the %s and Sets of Output Targets \n' % (self.list_split_through)) for data in self.list_split_through: print('--------------------------------------------------------------') for target in self.target_keys: print(data,' target output set shape for ',target,' is: ', self.dict_y_sc[data][target].shape) print('\n') ########################################################################################################## self.input_dl = {} self.output_dl = {} for key in self.list_split_through: self.input_dl[key] = {'input_all' : self.dict_x_sc[key][list_params[0]]} self.output_dl[key] = {'all_targets' : self.dict_y_sc[key][list_params[0]]} for key in self.list_split_through: for param in list_params[1:]: self.input_dl[key]['input_all'] = np.hstack((self.input_dl[key]['input_all'],self.dict_x_sc[key][param])) self.output_dl[key]['all_targets'] = np.hstack((self.output_dl[key]['all_targets'],self.dict_y_sc[key][param])) if self.cnn: self.input_all = Input(shape=(self.input_dl['train']['input_all'].shape[1],1), name='input_all') for key in self.list_split_through: self.input_dl[key]['input_all'] = self.input_dl[key]['input_all'].reshape(self.input_dl[key]['input_all'].shape[0], self.input_dl[key]['input_all'].shape[1],1) else: self.input_all = Input(shape=(self.input_dl['train']['input_all'].shape[1],), name='input_all') ########################################################################################################## # BUILD CUSTOM NETWORK class model(prepare_inputs): def __init__(self, data_splitted, list_tests, list_params, feature_keys, target_keys,cnn,mdl_name, act='tanh', trainable_layer=True, bottleneck=3, initializer='glorot_normal', list_nn=[150,100,20],load_weights=True): super().__init__(data_splitted, list_tests, list_params, feature_keys, target_keys,cnn=False) self.model_name = mdl_name self.act = act self.trainable_layer = trainable_layer self.init = initializer self.opt = Yogi(lr=0.001) self.list_nn = list_nn self.bottleneck = bottleneck self.losses = {} self.lossWeights = {} self.scaler_path = {'feature' : None, 'target' : None} self.regularization_paramater = 0.0 self.dict_scalery = data_splitted.dict_scalery self.dict_scalerx = data_splitted.dict_scalerx L1 = Dense(self.list_nn[0], activation=self.act, kernel_initializer=self.init, trainable = self.trainable_layer, kernel_regularizer=regularizers.l2(self.regularization_paramater))(self.input_all) for ii in range(1,len(self.list_nn)): L1 = Dense(self.list_nn[ii], activation=self.act, trainable = self.trainable_layer, kernel_initializer=self.init, kernel_regularizer=regularizers.l2(self.regularization_paramater))(L1) L1 = Dense(self.bottleneck, activation='linear', name='bottleneck', kernel_initializer=self.init, kernel_regularizer=regularizers.l2(self.regularization_paramater))(L1) for ii in range(0,len(self.list_nn)): L1 = Dense(self.list_nn[-ii-1], activation=self.act, trainable = self.trainable_layer, kernel_initializer=self.init, kernel_regularizer=regularizers.l2(self.regularization_paramater))(L1) LOut = Dense(len(self.target_keys), activation=self.act, name='all_targets', kernel_initializer=self.init, kernel_regularizer=regularizers.l2(self.regularization_paramater))(L1) self.model = Model(inputs=[self.input_all], outputs=LOut) self.description = None self.losses['all_targets'] = huber_loss self.lossWeights['all_targets'] = 1.0 self.model_path = os.getcwd()+"/" + self.model_name + '.hdf5' self.learning_rate_decrease_factor = 0.97 self.learning_rate_patience = 5 self.number_of_params = self.model.count_params() self.reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=self.learning_rate_decrease_factor, patience=self.learning_rate_patience, min_lr=0.0000001, mode='min', verbose=1) self.checkpoint = ModelCheckpoint(self.model_path, monitor='val_loss', verbose=1, save_best_only=True, period=1, mode='min',save_weights_only=False) self.model.compile(optimizer=self.opt, loss=self.losses['all_targets'], metrics=['mse']) plot_model(self.model,to_file=self.model_name+'.png', show_layer_names=True,show_shapes=True) print('\n%s with %s params created' % (self.model_name,self.number_of_params)) if os.path.exists(self.model_path): if load_weights: print('weights loaded for %s' % (self.model_name)) self.model.load_weights(self.model_path) # Make the prediction for bottleneck layer self.bottleneck_layer = Model(self.model.input,self.model.get_layer('bottleneck').output) self.target_bn = ['dim'+str(ii) for ii in range(self.bottleneck)] def __describe__(self): return self.description def summary(self): self.model.summary() print('\nModel Name is: ',self.model_name) print('\nModel Path is: ',self.model_path) print('\nActivation Function is: ',self.act) print('\nLearning Rate Decreases by a factor of %s with patience of %s' % (self.learning_rate_decrease_factor, self.learning_rate_patience)) if self.description != None: print('\nModel Description: '+self.__describe__()) def run(self,num_epochs,batch_size): self.num_epochs = num_epochs self.batch_size = batch_size print('Start Running \n') self.history = self.model.fit(self.input_dl['train'], self.output_dl['train'], batch_size=self.batch_size, epochs=self.num_epochs, shuffle=True, callbacks=[self.checkpoint, self.reduce_lr], validation_data=(self.input_dl['test'],self.output_dl['test']), verbose=1) self.val_loss = np.min(self.history.history['val_loss']) def results(self,load_weights=False): if load_weights: self.model.load_weights(self.model_path) print('Weights Loaded') self.out_dl_predicted = {} self.out_dl_predicted_bottleneck = {} for data in self.list_split_through: self.out_dl_predicted[data] = {'all_target' : self.model.predict(self.input_dl[data], batch_size=None)} self.out_dl_predicted_bottleneck[data] = {'all_target' : self.bottleneck_layer.predict(self.input_dl[data], batch_size=None)} print('Prediction for %s set is completed' % (data)) print('Bottleneck Prediction for %s set is completed' % (data)) for value,key in enumerate(self.list_params): self.out_dl_predicted[data][key] = {'scaled' : self.out_dl_predicted[data]['all_target'][:,value]} self.out_dl_predicted[data][key]['inverse'] = self.dict_scalery[key].inverse_transform(self.out_dl_predicted[data][key]['scaled'].reshape(-1,1)) for value,key in enumerate(self.target_bn): self.out_dl_predicted_bottleneck[data][key] = {'scaled' : self.out_dl_predicted_bottleneck[data]['all_target'][:,value]} print('-------------------------------------------------------------------------------------\n') for data in self.list_split_through: print('\nExplained Variance Calculation for %s set' % (data)) for param in self.list_params: print("Explained Variance of %s set for %s : %.8f" % (data,param,explained_variance_score(self.dict_y_sc[data][param], self.out_dl_predicted[data][param]['scaled'].reshape(self.out_dl_predicted[data][param]['scaled'].shape[0],1)))) print('-------------------------------------------------------------------------------------') def plots(self,pnt_number=250,plot_train=False,plot_test=False,plot_valid=False,plot_flight=False): self.pnt_number = pnt_number self.plot_list = {'train' :plot_train, 'test' :plot_test, 'valid' :plot_valid, 'flight' :plot_flight} for data in self.list_split_through: if data == 'flight': self.pnt_number = -1 if self.plot_list[data]: print('\nPlot for %s set\n' % (data)) for param in self.list_params: print(param) plt.figure(figsize=(26,9)) plt.plot(self.out_dl_predicted[data][param]['scaled'][0:self.pnt_number],'--',markersize=1,label='predicted',color='tab:red') plt.plot(self.dict_y_sc[data][param][0:self.pnt_number],'--', markersize=1, label='actual', color = 'tab:blue') plt.legend() plt.xlabel('sample point') plt.ylabel(param) plt.title('explained variance score for the %s set for %s is: ' % (data,param)) plt.grid() plt.show() def scatter_plot_for_bottleneck(self): for value1,key1 in enumerate(self.target_bn): if key1 == self.target_bn[-1]: break else: for key2 in self.target_bn[value1+1:]: if key1 == key2: continue else: fig = plt.figure(figsize=(26,9)) for data in self.list_split_through: plt.scatter(self.out_dl_predicted_bottleneck[data][key1]['scaled'],self.out_dl_predicted_bottleneck[data][key2]['scaled'],label=data) plt.legend() plt.xlabel(key1) plt.ylabel(key2) plt.grid() plt.show() #fig.savefig('./images/scatterplot_bottleneck_') def __mae__(self): self.mae = {} for data in self.list_split_through: self.mae[data] = {param:np.zeros((self.out_dl_predicted[data][param]['scaled'].shape[0],1)) for param in self.list_params} for data in self.list_split_through: for param in self.list_params: self.mae[data][param] = self.out_dl_predicted[data][param]['scaled'].reshape(-1,1) - self.dict_y_sc[data][param] def histogram_mae(self): self.__mae__() for param in self.list_params: print('************ Histogram Plot of Mae for %s set****************\n' % (self.list_split_through)) for value,data in enumerate(self.list_split_through): fig = plt.figure(figsize=(25,36)) plt.subplot(411+value) plt.hist(self.mae[data][param],label='%s for %s set' %(param,data),bins=500) plt.legend() plt.xlabel(param) plt.grid() plt.xlim((-0.50,+0.50)) plt.show() #fig.savefig('./images/error_hist'+self.target_keys[ii]) print("*******************************************************************************************************************") print("*******************************************************************************************************************") def corr(self): # Pearson Correlation self.covariance = {} self.sigma = {} self.correlation = {} for data in self.list_split_through: self.covariance[data] = {} self.sigma[data] = {} self.correlation[data] = {} for data in self.list_split_through: for dim in self.target_bn: self.covariance[data][dim] = {} self.correlation[data][dim] = {} for data in self.list_split_through: for dim1 in self.target_bn: self.sigma[data][dim1] = sigma(self.out_dl_predicted_bottleneck[data][dim1]['scaled']) for dim2 in self.target_bn: self.sigma[data][dim2] = sigma(self.out_dl_predicted_bottleneck[data][dim2]['scaled']) self.covariance[data][dim1][dim2] = covar(self.out_dl_predicted_bottleneck[data][dim1]['scaled'],self.out_dl_predicted_bottleneck[data][dim2]['scaled']) self.correlation[data][dim1][dim2] = self.covariance[data][dim1][dim2] / (self.sigma[data][dim1] * self.sigma[data][dim2]) # Scaler Plot for the Correlations of Dimensions Obtained in Bottleneck for data in self.list_split_through: print('\nCorrelation Coefficient for %s data' % (data)) for dim1 in self.target_bn: plt.figure(figsize=(26,9)) plt.scatter(np.arange(len(self.correlation[data][dim1])),[self.correlation[data][dim1][dim] for dim in self.target_bn], label= 'correlation for %s' % (dim1)) plt.legend() plt.xlabel([dim for dim in self.target_bn]) plt.ylabel(dim1) plt.title('Correlation for %s obtained from the prediction of bottleneck of AutoEncoder' % (dim1)) plt.grid() plt.show() def mean_distance(self): print('Mean Distance for the bottleneck dimensions') self.shuffling = {} self.mean_dist = {} self.mean = {} self.sigma = {} for data in self.list_split_through: self.shuffling[data] = np.random.permutation(np.arange(self.out_dl_predicted_bottleneck[data][self.target_bn[0]]['scaled'].shape[0])) self.mean_dist[data] = {} self.mean[data] = {} self.sigma[data] = {} for data in self.list_split_through: for dim in self.target_bn: self.out_dl_predicted_bottleneck[data][dim]['scaled_shuffled'] = self.out_dl_predicted_bottleneck[data][dim]['scaled'][self.shuffling[data]] for param in self.list_params: self.out_dl_predicted[data][param]['scaled_shuffled'] = self.out_dl_predicted[data][param]['scaled'][self.shuffling[data]] self.out_dl_predicted[data][param]['inverse_shuffled'] = self.out_dl_predicted[data][param]['inverse'][self.shuffling[data]] self.out_dl_predicted[data][param]['scaled_shuffled_outlier'] = [] self.out_dl_predicted[data][param]['inverse_shuffled_outlier'] = [] for data in self.list_split_through: for dim in self.target_bn: self.sigma[data][dim] = {'original' : np.std(self.out_dl_predicted_bottleneck[data][dim]['scaled_shuffled'])} self.mean[data][dim] = {'original' : np.mean(self.out_dl_predicted_bottleneck[data][dim]['scaled_shuffled'])} for dim in self.target_bn: for data1 in self.list_split_through: self.out_dl_predicted_bottleneck[data1][dim]['ztransformed'] = {data2 : (self.out_dl_predicted_bottleneck[data1][dim]['scaled_shuffled'] - \ self.mean[data2][dim]['original'])/self.sigma[data2][dim]['original'] for data2 in self.list_split_through} for dim in self.target_bn: for data1 in self.list_split_through: self.sigma[data1][dim]['ztransformed'] = {data2 : np.std(self.out_dl_predicted_bottleneck[data1][dim]['ztransformed'][data2]) for data2 in self.list_split_through} self.mean[data1][dim]['ztransformed'] = {data2 : np.mean(self.out_dl_predicted_bottleneck[data1][dim]['ztransformed'][data2]) for data2 in self.list_split_through} for data in self.list_split_through: for dim in self.target_bn: self.mean_dist[data][dim] = {'all_data' :np.abs(self.out_dl_predicted_bottleneck[data][dim]['ztransformed']['train'] - self.mean['train'][dim]['ztransformed']['train']), 'outlier_indices' :np.where(np.abs(self.out_dl_predicted_bottleneck[data][dim]['ztransformed']['train'] - self.mean['train'][dim]['ztransformed']['train']) > \ (self.mean['train'][dim]['ztransformed']['train']+3*self.sigma['train'][dim]['ztransformed']['train']))} for data in self.list_split_through: for dim in self.target_bn: self.out_dl_predicted_bottleneck[data][dim]['scaled_shuffled_outlier'] = self.out_dl_predicted_bottleneck[data][dim]['scaled_shuffled']\ [self.mean_dist[data][dim]['outlier_indices'][0]] for data in self.list_split_through: for param in self.list_params: for dim in self.target_bn: for datum in self.out_dl_predicted_bottleneck[data][dim]['scaled_shuffled_outlier']: self.out_dl_predicted[data][param]['scaled_shuffled_outlier'].append(datum) # Scatter Plot for the Mean Distance for data in self.list_split_through: for dim in self.target_bn: fig = plt.figure(figsize=(26,9)) plt.scatter(np.arange(self.out_dl_predicted_bottleneck[data][dim]['scaled'].shape[0]), self.mean_dist[data][dim]['all_data'], label='%s vs train for %s' % (data,dim)) plt.scatter(np.arange(self.out_dl_predicted_bottleneck[data][dim]['scaled'].shape[0]), np.ones((self.out_dl_predicted_bottleneck[data][dim]['scaled'].shape[0],1)) * \ (self.mean['train'][dim]['ztransformed']['train']+3*self.sigma['train'][dim]['ztransformed']['train']), label='3 sigma distance from the mean of %s of the train data' % (dim)) plt.legend() plt.xlabel('data') plt.ylabel('distance between ztransformed %s of %s data according to train data' % (dim,data)) plt.grid() plt.show() def writeStandartScaler_AsMatFile(self,scaler,fileName,keys): if os.path.exists('./MatFiles/')==False: os.makedirs('./MatFiles/') self.mean = {} self.variance = {} self.scale = {} self.scaler = {} for key in keys: self.mean[key] = scaler[key].mean_ self.variance[key] = scaler[key].var_ self.scale[key] = scaler[key].scale_ self.scaler['mean'] = self.mean self.scaler['variance'] = self.variance self.scaler['scale'] = self.scale sio.savemat(fileName, self.scaler) return self.scaler def writeMinMaxScaler_AsMatFile(self,scaler,fileName,keys): if os.path.exists('./MatFiles/')==False: os.makedirs('./MatFiles/') self.min = {} self.max = {} self.scale = {} self.data_min = {} self.data_max = {} self.scaler = {} for key in keys: self.min[key], self.max[key] = scaler[key].feature_range self.scale[key] = scaler[key].scale_ self.data_min[key] = scaler[key].data_min_ self.data_max[key] = scaler[key].data_max_ self.scaler['min'] = self.min self.scaler['max'] = self.max self.scaler['scale'] = self.scale self.scaler['data_min'] = self.data_min self.scaler['data_max'] = self.data_max sio.savemat(fileName, self.scaler) return self.scaler
[ "noreply@github.com" ]
ibrahimkaya754.noreply@github.com
16ccc3251632fa54c80b6e90631f62c807be6e4a
8094d7c7270ebb59a7b63444e429de2fd8e0d4fc
/algo/bin/easy_install
fec17cc0315dded7dc28bf66ece53d35b9585910
[ "MIT" ]
permissive
Ge0f3/Algo_comparision
8a347b04db287da1f2a475b5b64d3e9671ee7c4d
d55087c3273030f8a8e7005a97c15424ea244f38
refs/heads/master
2021-08-06T08:11:58.851584
2018-11-28T02:19:32
2018-11-28T02:19:32
145,577,506
0
0
null
null
null
null
UTF-8
Python
false
false
299
#!/Users/geoffreygeo/Documents/workspace/Projects/algorithm_comp/algo/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "geoffrey.geofe@gmail.com" ]
geoffrey.geofe@gmail.com
8466595a464939367e4ea3817124ca9719941ac2
682449f5dcc61c85eda4e673c6404b1af1ebec45
/horses/spiders/horseids_spider.py
20e28171c352ffa5ad17112e2f3dc5392d8581cd
[]
no_license
anailis/dressage-horses
2e712eb9e6984dc7d2ebe6732774d0ec78d67238
64cf94a6e47c11a56ef79f761b961e6c5dcc0e36
refs/heads/master
2022-12-10T04:06:06.039667
2020-08-22T15:42:52
2020-08-22T15:42:52
264,661,423
1
0
null
null
null
null
UTF-8
Python
false
false
587
py
import scrapy class HorseIDSpider(scrapy.Spider): name = "horseids" def start_requests(self): urls = [ 'http://webcache.googleusercontent.com/search?q=cache:https://data.fei.org/Ranking/Search.aspx?rankingCode=D_WR', ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): links = response.xpath('//*[@id="PlaceHolderBottom_gvcResults"]/tr/td[position()=5]/a/@href').extract() with open("horselinks.txt", "a") as f: f.writelines(l + "\n" for l in links)
[ "s1533194@ed.ac.uk" ]
s1533194@ed.ac.uk
9b760a64c9099644c16228671bf11e44fb1e847c
adf7c2bb565e0fff5086f762fd3e1f078574d9db
/test/core/1-main/batch/batch_request_test.py
ecbc1c3e97f6ce8a7ed638059576dbc8fbe2723f
[ "Apache-2.0" ]
permissive
midnightlynx/py2neo
cf7af2a43bf7b4ace8662e683ac18dff42a6ab12
3b8a18ad5ac594d16a8fb3be75c7ca64a9aed5bf
refs/heads/release/2.0.9
2021-01-22T00:24:21.726398
2015-10-02T12:56:32
2015-10-02T12:56:32
44,700,090
0
0
null
2015-10-21T19:45:40
2015-10-21T19:45:40
null
UTF-8
Python
false
false
1,631
py
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2011-2014, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from py2neo.batch import Job, Target def test_can_create_batch_request(): method = "POST" endpoint = "cypher" target = Target(endpoint) body = {"query": "CREATE (a) RETURN a"} request = Job(method, target, body) assert request.method == method assert request.target.uri_string == endpoint assert request.body == body def test_batch_requests_are_equal_if_same(): method = "POST" endpoint = "cypher" target = Target(endpoint) body = {"query": "CREATE (a) RETURN a"} request_1 = Job(method, target, body) request_2 = request_1 assert request_1 == request_2 assert hash(request_1) == hash(request_2) def test_batch_requests_are_unequal_if_not_same(): method = "POST" endpoint = "cypher" target = Target(endpoint) body = {"query": "CREATE (a) RETURN a"} request_1 = Job(method, target, body) request_2 = Job(method, target, body) assert request_1 != request_2 assert hash(request_1) != hash(request_2)
[ "nigel@nigelsmall.com" ]
nigel@nigelsmall.com
d94af8a81ede6c35e19c00d438187b27fe6e7346
c195fcc28afdb912ba37de325ee0ab740e0964ca
/python/tests/test_euler005.py
5462c8fa00fe23b5ce0d2a41dd6effc83cc865f8
[]
no_license
gfcharles/euler
f979ec77692bf40a59e3ce97d94ce9a319c9e8a1
08dc8d6fed8806d0ac72b394ea582dd62e50e61b
refs/heads/master
2023-07-04T01:01:03.335968
2023-06-19T16:39:31
2023-06-19T16:39:31
65,490,721
0
0
null
null
null
null
UTF-8
Python
false
false
181
py
from euler005 import euler005 from tests.test_euler import TestEuler, TestEulerSetup class TestEuler005(TestEulerSetup, TestEuler): problem_number = 5 function = euler005
[ "gregcharles@javaranch.com" ]
gregcharles@javaranch.com
e1a48dad8fe4cf914dd8dbcd3a3ad21b261b2037
91cbf0598b824f3936981e40dcd94b17d9644a79
/zclassifiershiftedae/ctrl_gen_model.py
1f0125bc49b713d1126c10d7eb76630da19f8a26
[ "Apache-2.0" ]
permissive
VAShibaev/text_style_transfer
c9bcaa17e199c7d24c0bd26ac7a9ec9c010cc675
42a4a653d7c47b5f04fe8c2b043f70a28b924e1f
refs/heads/master
2021-07-21T08:21:54.010645
2020-08-14T11:57:04
2020-08-14T11:57:04
205,176,809
45
5
null
null
null
null
UTF-8
Python
false
false
10,613
py
# -*- coding: utf-8 -*- # Copyright 2019 "Style Transfer for Texts: to Err is Human, but Error Margins Matter" Authors. All Rights Reserved. # # It's a modified code from # Toward Controlled Generation of Text, ICML2017 # Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, Eric Xing # https://github.com/asyml/texar/tree/master/examples/text_style_transfer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ NN Model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=invalid-name, too-many-locals import tensorflow as tf import texar as tx from texar.modules import WordEmbedder, UnidirectionalRNNEncoder, \ MLPTransformConnector, AttentionRNNDecoder, \ GumbelSoftmaxEmbeddingHelper, Conv1DClassifier from texar.core import get_train_op from texar.utils import collect_trainable_variables, get_batch_size class CtrlGenModel(object): def __init__(self, inputs, vocab, gamma, lambda_g, lambda_z, lambda_z1, lambda_z2, lambda_ae, hparams=None): self._hparams = tx.HParams(hparams, None) self._build_model(inputs, vocab, gamma, lambda_g, lambda_z, lambda_z1, lambda_z2, lambda_ae) def _build_model(self, inputs, vocab, gamma, lambda_g, lambda_z, lambda_z1, lambda_z2, lambda_ae): embedder = WordEmbedder( vocab_size=vocab.size, hparams=self._hparams.embedder) encoder = UnidirectionalRNNEncoder(hparams=self._hparams.encoder) enc_text_ids = inputs['text_ids'][:, 1:] enc_outputs, final_state = encoder(embedder(enc_text_ids), sequence_length=inputs['length']-1) z = final_state[:, self._hparams.dim_c:] # -------------------- CLASSIFIER --------------------- n_classes = self._hparams.num_classes z_classifier_l1 = MLPTransformConnector(256, hparams=self._hparams.z_classifier_l1) z_classifier_l2 = MLPTransformConnector(64, hparams=self._hparams.z_classifier_l2) z_classifier_out = MLPTransformConnector(n_classes if n_classes > 2 else 1) z_logits = z_classifier_l1(z) z_logits = z_classifier_l2(z_logits) z_logits = z_classifier_out(z_logits) z_pred = tf.greater(z_logits, 0) z_logits = tf.reshape(z_logits, [-1]) z_pred = tf.to_int64(tf.reshape(z_pred, [-1])) loss_z_clas = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.to_float(inputs['labels']), logits=z_logits) loss_z_clas = tf.reduce_mean(loss_z_clas) accu_z_clas = tx.evals.accuracy(labels=inputs['labels'], preds=z_pred) # -------------------________________--------------------- label_connector = MLPTransformConnector(self._hparams.dim_c) labels = tf.to_float(tf.reshape(inputs['labels'], [-1, 1])) c = label_connector(labels) c_ = label_connector(1 - labels) h = tf.concat([c, z], 1) h_ = tf.concat([c_, z], 1) # Teacher-force decoding and the auto-encoding loss for G decoder = AttentionRNNDecoder( memory=enc_outputs, memory_sequence_length=inputs['length']-1, cell_input_fn=lambda inputs, attention: inputs, vocab_size=vocab.size, hparams=self._hparams.decoder) connector = MLPTransformConnector(decoder.state_size) g_outputs, _, _ = decoder( initial_state=connector(h), inputs=inputs['text_ids'], embedding=embedder, sequence_length=inputs['length']-1) loss_g_ae = tx.losses.sequence_sparse_softmax_cross_entropy( labels=inputs['text_ids'][:, 1:], logits=g_outputs.logits, sequence_length=inputs['length']-1, average_across_timesteps=True, sum_over_timesteps=False) # Gumbel-softmax decoding, used in training start_tokens = tf.ones_like(inputs['labels']) * vocab.bos_token_id end_token = vocab.eos_token_id gumbel_helper = GumbelSoftmaxEmbeddingHelper( embedder.embedding, start_tokens, end_token, gamma) soft_outputs_, _, soft_length_, = decoder( helper=gumbel_helper, initial_state=connector(h_)) soft_outputs, _, soft_length, = decoder( helper=gumbel_helper, initial_state=connector(h)) # ---------------------------- SHIFTED LOSS ------------------------------------- _, encoder_final_state_ = encoder(embedder(soft_ids=soft_outputs_.sample_id), sequence_length=inputs['length'] - 1) _, encoder_final_state = encoder(embedder(soft_ids=soft_outputs.sample_id), sequence_length=inputs['length'] - 1) new_z_ = encoder_final_state_[:, self._hparams.dim_c:] new_z = encoder_final_state[:, self._hparams.dim_c:] cos_distance_z_ = tf.abs( tf.losses.cosine_distance(tf.nn.l2_normalize(z, axis=1), tf.nn.l2_normalize(new_z_, axis=1), axis=1)) cos_distance_z = tf.abs( tf.losses.cosine_distance(tf.nn.l2_normalize(z, axis=1), tf.nn.l2_normalize(new_z, axis=1), axis=1)) # ----------------------------______________------------------------------------- # Greedy decoding, used in eval outputs_, _, length_ = decoder( decoding_strategy='infer_greedy', initial_state=connector(h_), embedding=embedder, start_tokens=start_tokens, end_token=end_token) # Creates classifier classifier = Conv1DClassifier(hparams=self._hparams.classifier) clas_embedder = WordEmbedder(vocab_size=vocab.size, hparams=self._hparams.embedder) # Classification loss for the classifier clas_logits, clas_preds = classifier( inputs=clas_embedder(ids=inputs['text_ids'][:, 1:]), sequence_length=inputs['length']-1) loss_d_clas = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.to_float(inputs['labels']), logits=clas_logits) loss_d_clas = tf.reduce_mean(loss_d_clas) accu_d = tx.evals.accuracy(labels=inputs['labels'], preds=clas_preds) # Classification loss for the generator, based on soft samples soft_logits, soft_preds = classifier( inputs=clas_embedder(soft_ids=soft_outputs_.sample_id), sequence_length=soft_length_) loss_g_clas = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.to_float(1-inputs['labels']), logits=soft_logits) loss_g_clas = tf.reduce_mean(loss_g_clas) # Accuracy on soft samples, for training progress monitoring accu_g = tx.evals.accuracy(labels=1-inputs['labels'], preds=soft_preds) # Accuracy on greedy-decoded samples, for training progress monitoring _, gdy_preds = classifier( inputs=clas_embedder(ids=outputs_.sample_id), sequence_length=length_) accu_g_gdy = tx.evals.accuracy( labels=1-inputs['labels'], preds=gdy_preds) # Aggregates losses loss_g = lambda_ae * loss_g_ae + \ lambda_g * loss_g_clas + \ lambda_z1 * cos_distance_z + cos_distance_z_ * lambda_z2 \ - lambda_z * loss_z_clas loss_d = loss_d_clas loss_z = loss_z_clas # Creates optimizers g_vars = collect_trainable_variables( [embedder, encoder, label_connector, connector, decoder]) d_vars = collect_trainable_variables([clas_embedder, classifier]) z_vars = collect_trainable_variables([z_classifier_l1, z_classifier_l2, z_classifier_out]) train_op_g = get_train_op( loss_g, g_vars, hparams=self._hparams.opt) train_op_g_ae = get_train_op( loss_g_ae, g_vars, hparams=self._hparams.opt) train_op_d = get_train_op( loss_d, d_vars, hparams=self._hparams.opt) train_op_z = get_train_op( loss_z, z_vars, hparams=self._hparams.opt ) # Interface tensors self.losses = { "loss_g": loss_g, "loss_g_ae": loss_g_ae, "loss_g_clas": loss_g_clas, "loss_d": loss_d_clas, "loss_z_clas": loss_z_clas, "loss_cos_": cos_distance_z_, "loss_cos": cos_distance_z } self.metrics = { "accu_d": accu_d, "accu_g": accu_g, "accu_g_gdy": accu_g_gdy, "accu_z_clas": accu_z_clas } self.train_ops = { "train_op_g": train_op_g, "train_op_g_ae": train_op_g_ae, "train_op_d": train_op_d, "train_op_z": train_op_z } self.samples = { "original": inputs['text_ids'][:, 1:], "transferred": outputs_.sample_id, "z_vector": z, "labels_source": inputs['labels'], "labels_target": 1 - inputs['labels'], "labels_predicted": gdy_preds } self.fetches_train_g = { "loss_g": self.train_ops["train_op_g"], "loss_g_ae": self.losses["loss_g_ae"], "loss_g_clas": self.losses["loss_g_clas"], "loss_shifted_ae1": self.losses["loss_cos"], "loss_shifted_ae2": self.losses["loss_cos_"], "accu_g": self.metrics["accu_g"], "accu_g_gdy": self.metrics["accu_g_gdy"], "accu_z_clas": self.metrics["accu_z_clas"] } self.fetches_train_z = { "loss_z": self.train_ops["train_op_z"], "accu_z": self.metrics["accu_z_clas"] } self.fetches_train_d = { "loss_d": self.train_ops["train_op_d"], "accu_d": self.metrics["accu_d"] } fetches_eval = {"batch_size": get_batch_size(inputs['text_ids'])} fetches_eval.update(self.losses) fetches_eval.update(self.metrics) fetches_eval.update(self.samples) self.fetches_eval = fetches_eval
[ "noreply@github.com" ]
VAShibaev.noreply@github.com
1457deb196fdf8459944ff741a9f967060cc1345
ef54d37f8a3303013ca7469871a320d303957ed7
/robo4.2/fusion/FusionLibrary/__init__.py
afedb07962f29a037d08a6de6e4e364cf357fca4
[]
no_license
richa92/Jenkin_Regression_Testing
d18badfcf16bda682dfe7bcbbd66f54a9a27a58d
24a74926170cbdfafa47e972644e2fe5b627d8ff
refs/heads/master
2020-07-12T10:01:59.099137
2019-08-27T12:14:53
2019-08-27T12:14:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,541
py
""" FusionLibrary instance """ from dateutil.parser import parse as parse_date from dateutil import tz import datetime from collections import namedtuple from git import Repo import socket from time import sleep import json from Queue import Queue from threading import Thread import os import uuid from SSHLibrary import SSHLibrary import sys from robot import version as robot_version from robot.libraries.BuiltIn import BuiltIn from RoboGalaxyLibrary.utilitylib import logging as logger from RoboGalaxyLibrary.ui.common import ui_lib from FusionLibrary.version import get_version from FusionLibrary.keywords.fusion_api import FusionAPIKeywords from FusionLibrary.keywords.hellfire_api import SVMCAPIKeywords from FusionLibrary.keywords.hellfire_api import HellfireAPIKeywords from FusionLibrary.keywords.fusion_sanmanager_ui import FusionSanmanagerUIKeywords from FusionLibrary.keywords.fusion_san_ui import FusionSanUIKeywords from FusionLibrary.keywords.fusion_ui import FusionUIKeywords from FusionLibrary.keywords.mantra_ui import MantraUIKeywords # from FusionLibrary.keywords.hal_api import HalAPIKeywords from FusionLibrary.keywords.dcs_api import DCSAPIKeywords from FusionLibrary.keywords.fusion_srm_api import FusionSRMOaApiKeywords from FusionLibrary.keywords.fusion_srm_api import FusionSRMIloApiKeywords from FusionLibrary.keywords.fusion_pmsan_ui import FusionPMSanUiKeywords from FusionLibrary.cli.oa.oa_operation import OACLIKeywords from FusionLibrary.cli.oneview.fusion_operation import FusionCLIKeywords from FusionLibrary.cli.traffic.keywords import TrafficLibraryKeywords from FusionLibrary.keywords.tru import TRUKeywords from FusionLibrary.libs.utils.elk import ElkQueueWriter from FusionLibrary.keywords.cpt.payload_generator import CptPayloadGenerator from FusionLibrary.keywords.network.config_generator import NetworkConfigGenerator THIS_DIR = os.path.dirname(os.path.abspath(__file__)) execfile(os.path.join(THIS_DIR, 'version.py')) __version__ = get_version() # These constants define the endpoint for activity logging DEFAULT_ACTIVITY_LOGGING_SERVER = 'http://rist-elk.vse.rdlabs.hpecorp.net:9200' DEFAULT_ACTIVITY_INDEX_NAME = "fusionlibrary-activity" def _get_host_variable(): """ find the variable that contains the OV ip :return: """ # typical OneView IP variables glist = ['${APPLIANCE_IP}', '${IP}', '${FUSION_IP}', '${OV_IP}', '${OV}', '${ONEVIEW}', '${ONEVIEW_IP}'] for k, v in BuiltIn().get_variables().iteritems(): if k.upper() in [i.upper() for i in glist]: return v class FusionLibrary( FusionAPIKeywords, FusionAPIKeywords.ActiveUserSessionsKeywords, FusionAPIKeywords.AlertKeywords, FusionAPIKeywords.AuditLogKeywords, FusionAPIKeywords.AuthorizationsKeywords, FusionAPIKeywords.ApplianceDeviceReadCommunityKeywords, FusionAPIKeywords.ApplianceEulaKeywords, FusionAPIKeywords.ApplianceFactoryResetKeywords, FusionAPIKeywords.ApplianceFirmwareKeywords, FusionAPIKeywords.ApplianceHealthStatusKeywords, FusionAPIKeywords.ApplianceNetworkInterfacesKeywords, FusionAPIKeywords.ApplianceNodeInformationKeywords, FusionAPIKeywords.ApplianceShutdownKeywords, FusionAPIKeywords.ApplianceStateKeywords, FusionAPIKeywords.ApplianceSupportDumpKeywords, FusionAPIKeywords.ApplianceTimeAndLocaleConfigurationKeywords, FusionAPIKeywords.ApplianceTrapDestinationKeywords, FusionAPIKeywords.ApplianceSnmpv3TrapDestinationKeywords, FusionAPIKeywords.ApplianceSnmpv3TrapForwardingUserKeywords, FusionAPIKeywords.ApplianceUpgrade, FusionAPIKeywords.BackupKeywords, FusionAPIKeywords.CertificateAuthorityKeywords, FusionAPIKeywords.CertificateValidationConfigurationKeywords, FusionAPIKeywords.CertificateClientRabbitMqKeywords, FusionAPIKeywords.ClientCertificateKeywords, FusionAPIKeywords.ConnectionsKeywords, FusionAPIKeywords.ConnectionTemplateKeywords, FusionAPIKeywords.DatacenterKeywords, FusionAPIKeywords.DeviceManagerKeywords, FusionAPIKeywords.DeploymentManagerKeywords, FusionAPIKeywords.DriveEnclosureKeywords, FusionAPIKeywords.DomainsKeywords, FusionAPIKeywords.EmailNotificationKeywords, FusionAPIKeywords.EnclosureKeywords, FusionAPIKeywords.RackManagerKeywords, FusionAPIKeywords.EnclosureGroupKeywords, FusionAPIKeywords.EthernetNetworkKeywords, FusionAPIKeywords.EventKeywords, FusionAPIKeywords.FabricKeywords, FusionAPIKeywords.FabricManagerKeywords, FusionAPIKeywords.FcNetworkKeywords, FusionAPIKeywords.FcoeNetworkKeywords, FusionAPIKeywords.FirmwareBundleKeywords, FusionAPIKeywords.FirmwareDriverKeywords, FusionAPIKeywords.GlobalSettingsKeywords, FusionAPIKeywords.HaNodesKeywords, FusionAPIKeywords.HypervisorManagerKeywords, FusionAPIKeywords.HypervisorClusterProfileKeywords, FusionAPIKeywords.HypervisorHostProfileKeywords, FusionAPIKeywords.HypervisorHostKeywords, FusionAPIKeywords.HypervisorClustersKeywords, FusionAPIKeywords.IdPoolKeywords, FusionAPIKeywords.IdPoolsIpv4RangeKeywords, FusionAPIKeywords.IdPoolsIpv4SubnetKeywords, FusionAPIKeywords.IdPoolsVmacRangeKeywords, FusionAPIKeywords.IdPoolsVsnRangeKeywords, FusionAPIKeywords.IdPoolsVwwnRangeKeywords, FusionAPIKeywords.IndexAssociationKeywords, # FusionAPIKeywords.IndexResourceKeywords, FusionAPIKeywords.IndexResourceKeywords, # FusionAPIKeywords.IndexSearchSuggestionKeywords, # FusionAPIKeywords.IndexTreeKeywords, FusionAPIKeywords.InterconnectLinkTopologyKeywords, FusionAPIKeywords.InterconnectKeywords, FusionAPIKeywords.InterconnectTypesKeywords, FusionAPIKeywords.InternalLinkSetKeywords, # FusionAPIKeywords.LabelKeywords, FusionAPIKeywords.LicensesKeywords, FusionAPIKeywords.SecurityStandardsKeywords, FusionAPIKeywords.LoginDetailsKeywords, FusionAPIKeywords.LoginDomainKeywords, FusionAPIKeywords.LogicalDownlinkKeywords, FusionAPIKeywords.LoginDomainsGlobalSettingsKeywords, FusionAPIKeywords.LoginDomainsLoginCertificatesKeywords, FusionAPIKeywords.LoginDomainsGroupToRoleMappingKeywords, FusionAPIKeywords.LoginSessionKeywords, FusionAPIKeywords.LogicalInterconnectKeywords, FusionAPIKeywords.LogicalInterconnectGroupKeywords, FusionAPIKeywords.LogicalSwitchGroupKeywords, FusionAPIKeywords.LogicalSwitchKeywords, FusionAPIKeywords.LogicalEnclosureKeywords, FusionAPIKeywords.ManagedSanKeywords, FusionAPIKeywords.MetricStreamingKeywords, FusionAPIKeywords.NetworkSetKeywords, FusionAPIKeywords.MigratableVcDomainKeywords, FusionAPIKeywords.PingKeywords, FusionAPIKeywords.PowerDeviceKeywords, FusionAPIKeywords.ProviderKeywords, FusionAPIKeywords.RackKeywords, FusionAPIKeywords.RemoteSyslogKeywords, FusionAPIKeywords.RemoteSupportKeywords, FusionAPIKeywords.ConfigurationKeywords, FusionAPIKeywords.ReportKeywords, FusionAPIKeywords.RestoreKeywords, FusionAPIKeywords.RolesKeywords, FusionAPIKeywords.SasInterconnectsKeywords, FusionAPIKeywords.SasInterconnectTypesKeywords, FusionAPIKeywords.SasLogicalInterconnectGroupKeywords, FusionAPIKeywords.SasLogicalInterconnectKeywords, FusionAPIKeywords.ServerHardwareTypesKeywords, FusionAPIKeywords.ServerHardwareKeywords, FusionAPIKeywords.ServerProfileKeywords, FusionAPIKeywords.ServerProfileTemplateKeywords, FusionAPIKeywords.ServiceAccessKeywords, FusionAPIKeywords.SessionsKeywords, FusionAPIKeywords.StartupProgressKeywords, FusionAPIKeywords.StoragePoolKeywords, FusionAPIKeywords.StorageSystemKeywords, FusionAPIKeywords.StorageVolumeKeywords, FusionAPIKeywords.StorageVolumeTemplateKeywords, FusionAPIKeywords.StorageVolumeAttachmentKeywords, FusionAPIKeywords.SwitchKeywords, FusionAPIKeywords.SwitchTypesKeywords, FusionAPIKeywords.TaskKeywords, FusionAPIKeywords.UplinkSetKeywords, FusionAPIKeywords.UserKeywords, FusionAPIKeywords.VersionKeywords, FusionAPIKeywords.SasLogicalJbodsKeywords, FusionAPIKeywords.SasLogicalJbodAttachmentsKeywords, FusionAPIKeywords.WebServerCertificateKeywords, FusionAPIKeywords.HalAPIKeywords, FusionAPIKeywords.PermAPIKeywords, FusionAPIKeywords.ProxyServerKeywords, FusionAPIKeywords.IPKeywords, FusionAPIKeywords.ScopeKeywords, FusionAPIKeywords.RepositoryKeywords, FusionAPIKeywords.SshAccessKeywords, FusionAPIKeywords.ApplianceCertificateKeywords, FusionAPIKeywords.RemoteCertificateKeywords, FusionAPIKeywords.ServerCertificateKeywords, FusionAPIKeywords.CertificateStatusKeywords, FusionUIKeywords, MantraUIKeywords, FusionSRMOaApiKeywords, FusionSRMIloApiKeywords, FusionSanmanagerUIKeywords, FusionSanUIKeywords, DCSAPIKeywords, FusionPMSanUiKeywords, HellfireAPIKeywords.InfrastructureVmsKeywords, HellfireAPIKeywords.StoreVirtualVsaClusterKeywords, OACLIKeywords, FusionCLIKeywords, HellfireAPIKeywords, SVMCAPIKeywords, TrafficLibraryKeywords, TrafficLibraryKeywords.VspLibraryKeywords, TrafficLibraryKeywords.PingTrafficLibraryKeywords, TrafficLibraryKeywords.IPerfTrafficLibraryKeywords, TrafficLibraryKeywords.IOMeterLibraryKeywords, FusionAPIKeywords.OSDeploymentServerKeywords, TRUKeywords, CptPayloadGenerator, NetworkConfigGenerator): """ Main FusionLibrary keyword class definition """ ROBOT_LIBRARY_SCOPE = 'GLOBAL' ROBOT_LIBRARY_VERSION = __version__ ROBOT_LISTENER_API_VERSION = 2 FILTER_LIBRARIES = ['BuiltIn', 'Collections', 'Dialogs', 'OperatingSystem', 'SSHLibrary', 'String', 'XML'] MAX_QUEUE = 1000 # max elk data queue size # Elk data encapsulation object ElkItem = namedtuple("ElkItem", "obj_type, data") def _gather_repo_info(self): """ Private method to initialize variables pertaining to Test repository :return: None """ try: # Invalid error would be thrown if path is not source_root repo = Repo(os.path.dirname(THIS_DIR)) self.repo_commit = str(repo.rev_parse('HEAD')) self.repo_branch_name = repo.git.rev_parse('--abbrev-ref', '--symbolic-full-name', '@{u}') del repo except: # noqa pass def __init__(self): self.ROBOT_LIBRARY_LISTENER = self self.elk_queue_writer = None self.hostname = socket.gethostname() self.uuid = str(uuid.uuid1()) self._ov = None self._ssh = None self.activity_queue = None self.log_activity = False self.log_activity_to_cidebug_log = False self.queue_writer = None self.repo_commit = 'Not Found' self.repo_branch_name = 'Not identified' self._gather_repo_info() logger._log_to_console_and_log_file("Fusion library version %s" % __version__) for base in FusionLibrary.__bases__: base.__init__(self) def __logging_activity(self): """ This private method handles writing to the ElkWriter thread if logging is enabled. Note: log activity with -v LOG_ACTIVITY:True """ # initialize and start the activity logging queue self.log_activity = BuiltIn().get_variable_value("${LOG_ACTIVITY}") if self.log_activity == 'False': return False # initialize queue and queue writer if not self.activity_queue: self.activity_queue = Queue(maxsize=self.MAX_QUEUE) if not self.queue_writer: host = BuiltIn().get_variable_value("${ACTIVITY_LOGGING_SERVER}") index = BuiltIn().get_variable_value("${ACTIVITY_INDEX_NAME}") if not host: host = DEFAULT_ACTIVITY_LOGGING_SERVER if not index: index = DEFAULT_ACTIVITY_INDEX_NAME self.queue_writer = ElkQueueWriter(host, index, self.activity_queue) self.queue_writer.start() return True def __logging_activity_to_cidebug_log(self): """ This private method handles writing to the /ci/logs/ciDebug.log file on the appliance if logging is enabled. Note: log activity with -v LOG_ACTIVITY_TO_CIDEBUG:True """ # initialize and start the activity logging queue self.log_activity_to_cidebug_log = BuiltIn().get_variable_value("${LOG_ACTIVITY_TO_CIDEBUG}") if not self.log_activity_to_cidebug_log: return False # get the appliance host and open ssh session if not self._ov: self._ov = _get_host_variable() if not self._ssh: self.__create_ssh_connection_and_login(self._ov) return True def __create_ssh_connection_and_login(self, host, username='root', password='hpvse1'): """ Create a new SSH connection and log in """ try: self._ssh = SSHLibrary() self._ssh.set_default_configuration(timeout='15 seconds', term_type='xterm', prompt='#') self._ssh.open_connection(host) self._ssh.login(username, password) except: # noqa e = sys.exc_info()[0] logger._log_to_console_and_log_file("unable to connect ssh: {} {}".format(host, e)) self._ssh = None def __run_ssh_commands(self, cmds): """ Run an SSH command """ if self._ssh is not None: if self._ssh.get_connection(host=True) is not None: try: self._ssh.write(cmds) except: # noqa e = sys.exc_info()[0] logger._log_to_console_and_log_file("unable to write to ssh: {} {}".format(cmds, e)) self._ssh.close_connection() self._ssh = None else: logger.info("no ssh: session {}".format(cmds)) self._ssh.close_connection() self._ssh = None def _write_log(self, ltype, stat, attrs): """ Write a log entry """ name = None if 'longname' in attrs: name = attrs['longname'] elif 'kwname' in attrs: name = attrs['kwname'] return """date +"%Y-%m-%d %H:%M:%S.%N %Z,INFO,ROBO,{},{},{},{}" >> /ci/logs/ciDebug.log""".format(self.uuid, ltype.upper(), name, stat.upper()) def _add_data_to_attrs(self, name, attrs): """ Add additional data to suite/test/keyword attributes for Elk logging. """ metadata = BuiltIn().get_variable_value("&{SUITE METADATA}") if not self._ov: self._ov = _get_host_variable() if 'kwname' in attrs: attrs['name'] = attrs['kwname'] del attrs['kwname'] else: attrs['name'] = name attrs['suiteName'] = BuiltIn().get_variable_value("${SUITE_NAME)") attrs['suiteSource'] = BuiltIn().get_variable_value("${SUITE_SOURCE)") attrs['testName'] = BuiltIn().get_variable_value("${TEST_NAME)") attrs['oneViewIp'] = self._ov attrs['oneViewVersion'] = metadata.get("OneView Version") if 'starttime' in attrs: attrs['starttime'] = parse_date(attrs['starttime']).replace(tzinfo=tz.tzlocal()).astimezone(tz.tzutc()).isoformat() if 'endtime' in attrs: attrs['endtime'] = parse_date(attrs['endtime']).replace(tzinfo=tz.tzlocal()).astimezone(tz.tzutc()).isoformat() attrs['@timestamp'] = attrs.get('starttime') attrs['hostname'] = self.hostname attrs['runId'] = self.uuid attrs['gitCommitId'] = self.repo_commit attrs['gitRemoteBranch'] = self.repo_branch_name return attrs def _start_suite(self, name, attrs): # pylint: disable=unused-argument """ This listener logs suite start """ if self.__logging_activity_to_cidebug_log(): self.__run_ssh_commands(self._write_log('suite', 'started', attrs)) BuiltIn().set_global_variable("${RUN_UUID}", self.uuid) def _end_suite(self, name, attrs): # pylint: disable=unused-argument """ This listener logs suite activity """ if self.__logging_activity_to_cidebug_log(): self.__run_ssh_commands(self._write_log('suite', 'ended', attrs)) self._ssh.close_connection() if self.__logging_activity(): # If the queue is full, don't write anything (since queue.put blocks, it would halt the test). # Otherwise, write the name and attrs to Elk if not self.activity_queue.full(): self.activity_queue.put_nowait(self.ElkItem('suite', self._add_data_to_attrs(name, attrs))) if attrs.get('id') == 's1': # In order to process all queue items before the test suite exits, # it's necessary to wait for the queue to become empty or until the timer expires. # Otherwise, the test will exit before the queue is fully written. start = datetime.datetime.now() while not self.activity_queue.empty() and (datetime.datetime.now() - start).total_seconds() < 10.0: sleep(1) def _start_test(self, name, attrs): # pylint: disable=unused-argument """ This listener logs test activity """ if self.__logging_activity_to_cidebug_log(): self.__run_ssh_commands(self._write_log('test case', 'started', attrs)) def _end_test(self, name, attrs): """ This listener logs test activity """ if self.__logging_activity_to_cidebug_log(): self.__run_ssh_commands(self._write_log('test case', 'ended', attrs)) # If the queue is full, don't write anything (since queue.put blocks, it would halt the test). # Otherwise, write the name and attrs to Elk if self.__logging_activity() and not self.activity_queue.full(): self.activity_queue.put_nowait(self.ElkItem('test', self._add_data_to_attrs(name, attrs))) def _start_keyword(self, name, attrs): # pylint: disable=unused-argument """ This listener logs keyword activity """ if self.__logging_activity_to_cidebug_log(): # filter out libraries and keyword types we're not interested in if attrs.get('libname') not in self.FILTER_LIBRARIES and attrs.get('type') not in ['For', 'For Item']: self.__run_ssh_commands(self._write_log('keyword', 'started', attrs)) def _end_keyword(self, name, attrs): """ This listener logs keyword activity """ if self.__logging_activity_to_cidebug_log(): # filter out libraries and keyword types we're not interested in if attrs.get('libname') not in self.FILTER_LIBRARIES and attrs.get('type') not in ['For', 'For Item']: self.__run_ssh_commands(self._write_log('keyword', 'ended', attrs)) if self.__logging_activity(): # filter out libraries and keyword types we're not interested in if attrs.get('libname') not in self.FILTER_LIBRARIES and attrs.get('type') not in ['For', 'For Item']: if not self.activity_queue.full(): self.activity_queue.put_nowait(self.ElkItem('keyword', self._add_data_to_attrs(name, attrs)))
[ "akul@SAC0MKUVCQ.asiapacific.hpqcorp.net" ]
akul@SAC0MKUVCQ.asiapacific.hpqcorp.net
6545437c315e183c27122cfafa9f1822e292430d
96884ea775ca5dc138e328710cdb7f7a0095530a
/django_lesson_5/mysite/article/migrations/0005_article_description_en.py
5375de4d3ffecb9ede5ecdd14313ed736a5b2e7b
[]
no_license
rudneff13/python-course-alphabet
2ec370274ba4bfa46ca36b739854e7f4b3b9bc76
d8f50b46919655ec9ac4337551165e1a029b880b
refs/heads/master
2020-05-09T14:58:22.419700
2019-07-20T13:20:42
2019-07-20T13:20:42
181,216,097
1
0
null
2019-06-20T10:43:20
2019-04-13T18:59:17
Python
UTF-8
Python
false
false
456
py
# Generated by Django 2.2.2 on 2019-07-02 17:03 import ckeditor_uploader.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('article', '0004_auto_20190628_1720'), ] operations = [ migrations.AddField( model_name='article', name='description_en', field=ckeditor_uploader.fields.RichTextUploadingField(blank=True, null=True), ), ]
[ "ali@echoua.com" ]
ali@echoua.com
804d650c334596fa3f2252bb27787f4cce9f4663
0687bdd028d25829ac424a847a6389bdc9159975
/client/delivery/migrations/0001_initial.py
78027523fa7bf54cf8618c4cc23c1257a742f827
[ "Apache-2.0" ]
permissive
daniel-waruo/e-commerse-api
a9fbea57348c3295d1092b906e201fe10c6d1b3e
6b080039398fb4099a34335317d649dd67783f63
refs/heads/master
2020-08-04T07:09:41.840976
2020-06-19T16:41:13
2020-06-19T16:41:13
212,050,169
6
0
Apache-2.0
2020-03-15T10:17:53
2019-10-01T08:45:04
Python
UTF-8
Python
false
false
977
py
# Generated by Django 3.0.3 on 2020-02-18 07:07 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import utils.phone_number_field class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='DeliveryInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('phone_number', utils.phone_number_field.PhoneNumberField(max_length=128, region=None)), ('email', models.EmailField(max_length=254)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Delivery Information', }, ), ]
[ "warudaniel@gmail.com" ]
warudaniel@gmail.com
63168dc4fe2a4edf82b769b7d765f861cbb60ccf
ab323e14ea148257439dd32ea96dc3c815b1660a
/house/__init__.py
d9e800339eb9bae0b03dee59ff6323462747fd31
[]
no_license
SuperTapood/Discord-Bots
b12081180acde2ef1dcb70aaf9329d52e42be096
7353766b991ada442cead3ad36dd9f5f1f529ad0
refs/heads/main
2023-03-24T19:50:35.516065
2021-03-24T20:33:11
2021-03-24T20:33:11
329,584,006
0
0
null
null
null
null
UTF-8
Python
false
false
30
py
from house.house import House
[ "yoav.o252@gmail.com" ]
yoav.o252@gmail.com
b61f84a91f0e0a85dcf189a6d9a80abcab47f3a5
a586a86f2e04eea667ceb9ce85ae260bfb4e6cc0
/main.py
58d75dbbbb70383a5ca0b4319344cbcbf728b1a3
[]
no_license
OlafMerkert/avpy
87b3dcc3a67c84228d543a80bca662fc0008303f
7db08483a2175b529df12101c1673747f341ec54
refs/heads/master
2021-01-19T08:29:04.600235
2011-08-26T16:38:30
2011-08-26T16:38:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "Olaf Merkert" import sys from PyQt4 import QtGui import ui.data_entry_forms as forms import data.models import data.daten as daten from ui.data_display import AssistentenTabelle, TaetigkeitenTabelle, AssistentEntryUi, TaetigkeitEntryUi if __name__ == '__main__': app = QtGui.QApplication([]) daten.load() # print daten.assistenten m = AssistentEntryUi() # m = TaetigkeitEntryUi() m.show() sys.exit(app.exec_())
[ "olaf@m-merkert.de" ]
olaf@m-merkert.de
8cb048e720abbdf1ceb6f19fe5ccc17db88c7fe4
247d3f01f609062410004228297307c42fdf7e52
/Stock_Prediction_SM.py
2613dba4d925846f65336c2886ca7d987770fc22
[]
no_license
SomnathMukherjee88/Apple-Stock-Price-Prediction
24dffc8814f02cfeb412b8a136ca89130d12f663
0101b9ab585bfe1da027013cfc4d4e8a637ac02e
refs/heads/main
2023-07-19T12:52:09.171646
2021-09-04T10:26:44
2021-09-04T10:26:44
403,026,981
0
0
null
null
null
null
UTF-8
Python
false
false
2,172
py
import pandas as pd apple = pd.read_csv("AAPL.csv") print(apple.head()) import matplotlib.pyplot as plt import seaborn as sns sns.set() plt.figure(figsize=(10, 4)) plt.title("Apple's Stock Price") plt.xlabel("Days") plt.ylabel("Close Price USD ($)") plt.plot(apple["Close Price"]) plt.show() apple = apple[["Close Price"]] print(apple.head()) futureDays = 25 apple["Prediction"] = apple[["Close Price"]].shift(-futureDays) print(apple.head()) print(apple.tail()) import numpy as np x = np.array(apple.drop(["Prediction"], 1))[:-futureDays] print(x) y = np.array(apple["Prediction"])[:-futureDays] print(y) from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.25) # Creating the decision tree regressor model from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor().fit(xtrain, ytrain) # creating the Linear Regression model from sklearn.linear_model import LinearRegression linear = LinearRegression().fit(xtrain, ytrain) xfuture = apple.drop(["Prediction"], 1)[:-futureDays] xfuture = xfuture.tail(futureDays) xfuture = np.array(xfuture) print(xfuture) treePrediction = tree.predict(xfuture) print("Decision Tree prediction =",treePrediction) linearPrediction = linear.predict(xfuture) print("Linear regression Prediction =",linearPrediction) predictions = treePrediction valid = apple[x.shape[0]:] valid["Predictions"] = predictions plt.figure(figsize=(10, 6)) plt.title("Apple's Stock Price Prediction Model(Decision Tree Regressor Model)") plt.xlabel("Days") plt.ylabel("Close Price USD ($)") plt.plot(apple["Close Price"]) plt.plot(valid[["Close Price", "Predictions"]]) plt.legend(["Original", "Valid", "Predictions"]) plt.show() predictions = linearPrediction valid = apple[x.shape[0]:] valid["Predictions"] = predictions plt.figure(figsize=(10, 6)) plt.title("Apple's Stock Price Prediction Model(Linear Regression Model)") plt.xlabel("Days") plt.ylabel("Close Price USD ($)") plt.plot(apple["Close Price"]) plt.plot(valid[["Close Price", "Predictions"]]) plt.legend(["Original", "Valid", "Predictions"]) plt.show()
[ "noreply@github.com" ]
SomnathMukherjee88.noreply@github.com
b0fcb097793bbd9511da6ebe8abcf120b17237e0
a5cfb7f657c59cae663a20630d6b8c755ab4f48a
/root_numpy/tmva/tests.py
f3a04f6f4a1044fc5a2fe0eca5e2f8d282bcc82b
[ "MIT" ]
permissive
w-c/root_numpy
ef916f8ed5ea963c53dc39aea8f10da0502f2c2f
42302b41fa81d5a13cff12556468e08a5698a506
refs/heads/master
2021-01-12T14:43:58.161670
2016-03-18T01:23:01
2016-03-18T01:23:01
54,745,729
1
0
null
2016-03-25T20:27:52
2016-03-25T20:27:52
null
UTF-8
Python
false
false
10,042
py
import os import tempfile import shutil from array import array import atexit import numpy as np from numpy.testing import assert_array_equal from numpy.random import RandomState import ROOT from ROOT import TFile, TCut, TMVA import root_numpy as rnp from nose.tools import assert_raises, assert_true, assert_equal ROOT.gErrorIgnoreLevel = ROOT.kFatal RNG = RandomState(42) class TMVA_Estimator(object): def __init__(self, name, n_vars, n_targets=1, method='BDT', task='Classification'): self.name = name self.n_vars = n_vars self.n_targets = n_targets self.method = method self.task = task self.tmpdir = tempfile.mkdtemp() self.output = TFile(os.path.join(self.tmpdir, 'tmva_output.root'), 'recreate') self.factory = TMVA.Factory(name, self.output, 'AnalysisType={0}:Silent'.format(task)) for n in range(n_vars): self.factory.AddVariable('X_{0}'.format(n), 'F') if task == 'Regression': for n in range(n_targets): self.factory.AddTarget('y_{0}'.format(n), 'F') def __del__(self): self.output.Close() shutil.rmtree(self.tmpdir) def fit(self, X, y, X_test=None, y_test=None, weights=None, weights_test=None, signal_label=None, **kwargs): # (re)configure settings since deleting a previous Factory resets all # this. This is poor design, TMVA. config = TMVA.gConfig() config.GetIONames().fWeightFileDir = self.tmpdir config.SetSilent(True) config.SetDrawProgressBar(False) self.factory.DeleteAllMethods() extra_kwargs = dict() if self.task == 'Regression': func = rnp.tmva.add_regression_events else: func = rnp.tmva.add_classification_events extra_kwargs['signal_label'] = signal_label # test exceptions assert_raises(TypeError, func, object(), X, y) assert_raises(ValueError, func, self.factory, X, y[:y.shape[0] / 2]) if weights is not None: assert_raises(ValueError, func, self.factory, X, y, weights=weights[:weights.shape[0]/2]) assert_raises(ValueError, func, self.factory, X, y, weights=weights[:, np.newaxis]) assert_raises(ValueError, func, self.factory, [[[1, 2]]], [1]) assert_raises(ValueError, func, self.factory, [[1, 2]], [[[1]]]) func(self.factory, X, y, weights=weights, **extra_kwargs) if X_test is None: X_test = X y_test = y weights_test = weights func(self.factory, X_test, y_test, weights=weights_test, test=True, **extra_kwargs) self.factory.PrepareTrainingAndTestTree( TCut('1'), 'NormMode=EqualNumEvents') options = [] for param, value in kwargs.items(): if value is True: options.append(param) elif value is False: options.append('!{0}'.format(param)) else: options.append('{0}={1}'.format(param, value)) options = ':'.join(options) self.factory.BookMethod(self.method, self.method, options) self.factory.TrainAllMethods() def predict(self, X, aux=0.): reader = TMVA.Reader() for n in range(self.n_vars): reader.AddVariable('X_{0}'.format(n), array('f', [0.])) reader.BookMVA(self.method, os.path.join(self.tmpdir, '{0}_{1}.weights.xml'.format( self.name, self.method))) assert_raises(TypeError, rnp.tmva.evaluate_reader, object(), self.method, X) assert_raises(ValueError, rnp.tmva.evaluate_reader, reader, 'DoesNotExist', X) assert_raises(ValueError, rnp.tmva.evaluate_reader, reader, self.method, [[[1]]]) if self.task != 'Regression': assert_raises(ValueError, rnp.tmva.evaluate_reader, reader, self.method, [1, 2, 3]) output = rnp.tmva.evaluate_reader(reader, self.method, X, aux) if ROOT.gROOT.GetVersionInt() >= 60300: method = reader.FindMVA(self.method) assert_raises(TypeError, rnp.tmva.evaluate_method, object(), X) assert_raises(ValueError, rnp.tmva.evaluate_method, method, [[[1]]]) output_method = rnp.tmva.evaluate_method(method, X, aux) assert_array_equal(output, output_method) return output def make_classification(n_features, n_events_per_class, n_classes): blobs = [] for idx in range(n_classes): blob = RNG.multivariate_normal( np.ones(n_features) * idx * 5, np.diag(np.ones(n_features)), n_events_per_class) blobs.append(blob) X = np.concatenate(blobs) # class labels y = np.repeat(np.arange(n_classes), n_events_per_class) * 2 - 1 # event weights w = RNG.randint(1, 10, n_events_per_class * n_classes) # shuffle permute = RNG.permutation(y.shape[0]) X = X[permute] y = y[permute] return X, y, w def test_tmva_methodcuts(): X, y, w = make_classification(2, 300, 2) est = TMVA_Estimator('Cuts', 2, method='Cuts') est.fit(X, y, FitMethod='MC', EffSel=True, SampleSize=100, VarProp='FSmart') y_predict_1 = est.predict(X, 0.1) y_predict_9 = est.predict(X, 0.9) assert_true((y_predict_1 != y_predict_9).any()) assert_true((y_predict_1 <= y_predict_9).all()) def test_tmva_twoclass(): n_vars = 2 n_events = 1000 X, y, w = make_classification(n_vars, n_events, 2) X_train, y_train, w_train = X[:n_events], y[:n_events], w[:n_events] X_test, y_test, w_test = X[n_events:], y[n_events:], w[n_events:] clf = TMVA_Estimator('unweighted', n_vars) clf.fit(X_train, y_train, X_test=X_test, y_test=y_test, nCuts=20, NTrees=10, MaxDepth=3) y_decision = clf.predict(X_test) y_predicted = 2 * (y_decision > 0) - 1 assert_true(np.sum(np.abs(y_predicted - y_test)) < 0.1 * y_test.shape[0]) clf = TMVA_Estimator('unweighted_label', n_vars) clf.fit(X_train, y_train, X_test=X_test, y_test=y_test, signal_label=1, nCuts=20, NTrees=10, MaxDepth=3) y_decision_label = clf.predict(X_test) assert_array_equal(y_decision_label, y_decision) # train with weights clf = TMVA_Estimator('weighted', n_vars) clf.fit(X_train, y_train, X_test=X_test, y_test=y_test, weights=w_train, weights_test=w_test, nCuts=20, NTrees=10, MaxDepth=3) y_decision_weighted = clf.predict(X_test) assert_true(np.any(y_decision_weighted != y_decision)) # unit weights should not change output clf = TMVA_Estimator('unit_weights', n_vars) clf.fit(X_train, y_train, X_test=X_test, y_test=y_test, weights=np.ones(y_train.shape[0]), weights_test=np.ones(y_test.shape[0]), nCuts=20, NTrees=10, MaxDepth=3) y_decision_unit_weights = clf.predict(X_test) assert_array_equal(y_decision, y_decision_unit_weights) # events can be 1D clf = TMVA_Estimator('onedim_events', 1) clf.fit(X_train[:, 0], y_train, X_test=X_test[:, 0], y_test=y_test, nCuts=20, NTrees=10, MaxDepth=3) def test_tmva_multiclass(): n_vars = 2 n_events = 500 X, y, w = make_classification(n_vars, n_events, 3) # Split into training and test datasets X_train, y_train, w_train = X[:n_events], y[:n_events], w[:n_events] X_test, y_test, w_test = X[n_events:], y[n_events:], w[n_events:] clf = TMVA_Estimator('unweighted', n_vars, task='Multiclass') clf.fit(X_train, y_train, X_test=X_test, y_test=y_test, nCuts=20, NTrees=10, MaxDepth=3, BoostType='Grad', Shrinkage='0.10') y_decision = clf.predict(X_test) # Class probabilities should sum to one assert_array_equal(np.sum(y_decision, axis=1), np.ones(y_decision.shape[0])) def test_tmva_regression(): X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + \ np.sin(6 * X).ravel() + \ RNG.normal(0, 0.1, X.shape[0]) w = RNG.randint(1, 10, y.shape[0]) reg = TMVA_Estimator('regressor', 1, task='Regression') reg.fit(np.ravel(X), y, X_test=X, y_test=y, nCuts=20, NTrees=10, MaxDepth=3, boosttype='AdaBoostR2', SeparationType='RegressionVariance') y_predict = reg.predict(np.ravel(X)) assert_equal(y_predict.ndim, 1) # train with weights reg = TMVA_Estimator('regressor_weighted', 1, task='Regression') reg.fit(X, y, X_test=X, y_test=y, weights=w, weights_test=w, nCuts=20, NTrees=10, MaxDepth=3, boosttype='AdaBoostR2', SeparationType='RegressionVariance') y_predict_weighted = reg.predict(X) assert_true(np.any(y_predict_weighted != y_predict)) # unit weights should not change output reg = TMVA_Estimator('regressor_unit_weights', 1, task='Regression') reg.fit(X, y, X_test=X, y_test=y, weights=np.ones(y.shape[0]), weights_test=np.ones(y.shape[0]), nCuts=20, NTrees=10, MaxDepth=3, boosttype='AdaBoostR2', SeparationType='RegressionVariance') y_predict_unit_weights = reg.predict(X) assert_array_equal(y_predict_unit_weights, y_predict) # Multi-output y_multi = np.c_[y, 1. - y] reg = TMVA_Estimator('regressor_multioutput', 1, n_targets=2, method='KNN', task='Regression') reg.fit(X, y_multi, X_test=X, y_test=y_multi, nkNN=20, ScaleFrac=0.8, SigmaFact=1.0, Kernel='Gaus', UseKernel='F', UseWeight='T') y_predict = reg.predict(X) assert_equal(y_predict.ndim, 2)
[ "noel.dawe@gmail.com" ]
noel.dawe@gmail.com
ab497be63b96de1653e351973f94ca5afe61d49d
6751b8da62c0e862599e7b56f3e4bbc646047e7e
/convertImg.py
aee175b0607d32db4c8170f6da759b872123a280
[]
no_license
jinlongwang/pic2word
2b00dc8d28b1ee6066c160f8862d8eeeac663099
a92128edcf33f477218870556bb7010364da036d
refs/heads/master
2020-04-06T06:16:05.276615
2015-06-18T03:48:09
2015-06-18T03:48:09
37,451,733
0
0
null
null
null
null
UTF-8
Python
false
false
1,585
py
# -*- coding=utf-8 -*- from PIL import Image def convertImg(src): res = [] img = Image.open(src) img = img.convert("L") img.save("tem.jpg") pixel = img.load() #print list(img.getdata()) h = img.size[0] w = img.size[1] if h != w: raise Exception("error") print "hight: %s, width: %s" %(h,w) for i in range(h): row = "" for j in range(w): #print i, j row += toBinary(pixel[j,i]) res.append(row) return res def toBinary(value): print (value+1)%32 res = '1' if value <= 127: res = '0' return res class Img2ascii: __chars=[' ', ',', '+', '1', 'n','D','&','M'] def getchar(self,pi): for i in range(0,8): if pi< (i+1)*32: return self.__chars[7-i] def __init__(self,src,resize=1.0): img = Image.open(src) if img.mode=='P' or img.mode =='RGBA': im=Image.new('RGB',img.size,'white') im.paste(img.convert('RGBA'),img.convert('RGBA')) img= im img= img.convert('L') w,h =img.size h/=2 w=int(w*resize) h=int(h*resize) img=img.resize((w,h),Image.ANTIALIAS) #img.save('tmp.jpg') pixs = img.load() self.data=[] for i in range(0,h): line ='' for j in range(0,w): line+=self.getchar(pixs[j,i]) self.data.append(line) a = convertImg("img.jpg") #output = file('aaa.txt','w') #for line in a.data: # print >>output, line #output.close()
[ "jinlongwang89@gmail.com" ]
jinlongwang89@gmail.com
4ec31459287dc5c81a8a93a1536b9bf25e9cd3d0
105360f2e39a0d53c95341f8edd3cb2d6de135f3
/Assignment 4 plotting and Extension.py
9d18142d649b6f24a32e0c277ac28540613b80ea
[]
no_license
haicizh/Assignment-4
0a56b1326b65b1ac99081c53a126aa9692417c2e
a0e4141c907168d74ab9c5a72ee887e05fe3ceac
refs/heads/master
2020-05-09T18:03:50.244146
2019-04-14T15:10:02
2019-04-14T15:10:02
181,325,232
0
0
null
null
null
null
UTF-8
Python
false
false
8,180
py
# coding: utf-8 # In[1]: import os import pandas as pd import numpy as np import random get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') # In[2]: os.chdir(r"D:\Shiny\Machine Learning\Assignment 4") # In[3]: sm_value = pd.read_csv("SM_value.csv") sm_policy = pd.read_csv("SM_policy.csv") # In[4]: lm_value = pd.read_csv("LM_value.csv") lm_policy = pd.read_csv("LM_policy.csv") # In[6]: lm_value.head() # In[56]: smv_step = sm_value.iloc[:,1] smv_reward = sm_value.iloc[:,2] smv_time = sm_value.iloc[:,3] smp_step = sm_policy.iloc[:,1] smp_reward = sm_policy.iloc[:,2] smp_time = sm_policy.iloc[:,3] # In[7]: lmv_step = lm_value.iloc[:,1] lmv_reward = lm_value.iloc[:,2] lmv_time = lm_value.iloc[:,3] lmp_step = lm_policy.iloc[:,1] lmp_reward = lm_policy.iloc[:,2] lmp_time = lm_policy.iloc[:,3] # In[8]: n = np.size(lmv_step) # In[9]: np.size(lmp_step) # In[10]: def compare_time(n,x,y,title): plt.figure() plt.title("Model Training Times: " + title) plt.xlabel("Iteration") plt.ylabel("Time (in milliseconds)") plt.plot(n, x, '-', color="b", label="Value Iteration") plt.plot(n, y, '-', color="r", label="Policy Iteration") plt.legend(loc="best") plt.show() def compare_reward(n,x,y, title): plt.figure() plt.title("Model Reward: " + title) plt.xlabel("Iteration") plt.ylabel("Reward") plt.plot(n, x, '-', color="b", label="Value Iteration") plt.plot(n, y, '-', color="r", label="Policy Iteration") plt.legend(loc="best") plt.show() def compare_step(n,x,y, title): plt.figure() plt.title("Model Step: " + title) plt.xlabel("Iteration") plt.ylabel("Step") plt.plot(n, x, '-', color="b", label="Value Iteration") plt.plot(n, y, '-', color="r", label="Policy Iteration") plt.legend(loc="best") plt.show() # In[14]: k = (np.linspace(.01, 1.0, 200)*n).astype('int') # In[15]: k # In[18]: compare_time(k,lmv_time, lmp_time,'Large Maze') # In[17]: compare_reward(k, lmv_reward, lmp_reward, 'Large Maze') compare_step(k, lmv_step, lmp_step, 'Large Maze') # In[65]: smq_1 = pd.read_csv("SMQ_0.1.csv") smq_2 = pd.read_csv("SMQ_0.3.csv") smq_3 = pd.read_csv("SMQ_0.5.csv") smq_4 = pd.read_csv("SMQ_0.7.csv") smq_5 = pd.read_csv("SMQ_0.9.csv") # In[19]: lm_1 = pd.read_csv("LM_0.1.csv") lm_2 = pd.read_csv("LM_0.3.csv") lm_3 = pd.read_csv("LM_0.5.csv") lm_4 = pd.read_csv("LM_0.7.csv") lm_5 = pd.read_csv("LM_0.9.csv") # In[20]: lm_1.head() # In[21]: lm1_step = lm_1.iloc[:,1] lm1_reward = lm_1.iloc[:,2] lm1_time = lm_1.iloc[:,3] lm2_step = lm_2.iloc[:,1] lm2_reward = lm_2.iloc[:,2] lm2_time = lm_2.iloc[:,3] lm3_step = lm_3.iloc[:,1] lm3_reward = lm_3.iloc[:,2] lm3_time = lm_3.iloc[:,3] lm4_step = lm_4.iloc[:,1] lm4_reward = lm_4.iloc[:,2] lm4_time = lm_4.iloc[:,3] lm5_step = lm_5.iloc[:,1] lm5_reward = lm_5.iloc[:,2] lm5_time = lm_5.iloc[:,3] # In[22]: def compare_time(n,x,y,z,m,l,title): plt.figure() plt.title("Model Training Times: " + title) plt.xlabel("Iteration") plt.ylabel("Time (in milliseconds)") plt.plot(n, x, '-', color="k", label="Learning rate = 0.1") plt.plot(n, y, '-', color="b", label="Learning rate = 0.3") plt.plot(n, z, '-', color="r", label="Learning rate = 0.5") plt.plot(n, m, '-', color="g", label="Learning rate = 0.7") plt.plot(n, l, '-', color="m", label="Learning rate = 0.9") plt.legend(loc="best") plt.show() def compare_reward(n,x,y,z,m,l, title): plt.figure() plt.title("Model Reward: " + title) plt.xlabel("Iteration") plt.ylabel("Reward") plt.plot(n, x, '-', color="k", label="Learning rate = 0.1") plt.plot(n, y, '-', color="b", label="Learning rate = 0.3") plt.plot(n, z, '-', color="r", label="Learning rate = 0.5") plt.plot(n, m, '-', color="g", label="Learning rate = 0.7") plt.plot(n, l, '-', color="m", label="Learning rate = 0.9") plt.legend(loc="best") plt.show() def compare_step(n,x,y,z,m,l, title): plt.figure() plt.title("Model Step: " + title) plt.xlabel("Iteration") plt.ylabel("Step") plt.plot(n, x, '-', color="k", label="Learning rate = 0.1") plt.plot(n, y, '-', color="b", label="Learning rate = 0.3") plt.plot(n, z, '-', color="r", label="Learning rate = 0.5") plt.plot(n, m, '-', color="g", label="Learning rate = 0.7") plt.plot(n, l, '-', color="m", label="Learning rate = 0.9") plt.legend(loc="best") plt.show() # In[23]: n= np.size(lm1_step ) # In[70]: n= np.size(smq1_step ) # In[24]: n # In[30]: k = (np.linspace(.001, 1.0, 1000)*n).astype('int') # In[31]: k # In[32]: compare_time(k,lm1_time, lm2_time,lm3_time,lm4_time,lm5_time,'Large Maze') compare_reward(k, lm1_reward, lm2_reward,lm3_reward,lm4_reward,lm5_reward, 'Large Maze') compare_step(k, lm1_step, lm2_step,lm3_step,lm4_step,lm5_step, 'Large Maze') # In[1]: from IPython.display import HTML HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/q2ZOEFAaaI0?showinfo=0" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>') # In[2]: import numpy as np import gym import random # In[3]: from gym.envs.registration import register register( id='FrozenLakeNotSlippery-v0', entry_point='gym.envs.toy_text:FrozenLakeEnv', kwargs={'map_name' : '4x4', 'is_slippery': False}, max_episode_steps=100, reward_threshold=0.8196, # optimum = .8196, changing this seems have no influence ) # In[4]: env = gym.make("FrozenLakeNotSlippery-v0") # In[5]: #env = gym.make("FrozenLake-v0") # In[6]: action_size = env.action_space.n state_size = env.observation_space.n # In[7]: qtable = np.zeros((state_size, action_size)) # In[34]: total_episodes = 200 # Total episodes learning_rate = 0.8 # Learning rate max_steps = 99 # Max steps per episode gamma = 0.95 # Discounting rate # Exploration parameters epsilon = 0.1 # Exploration rate max_epsilon = 0.1 # Exploration probability at start min_epsilon = 0.01 # Minimum exploration probability decay_rate = 0.001 # Exponential decay rate for exploration prob #I find that decay_rate=0.001 works much better than 0.01 # In[35]: rewards = [] # 2 For life or until learning is stopped for episode in range(total_episodes): # Reset the environment state = env.reset() step = 0 done = False total_rewards = 0 for step in range(max_steps): # 3. Choose an action a in the current world state (s) ## First we randomize a number exp_exp_tradeoff = random.uniform(0, 1) ## If this number > greater than epsilon --> exploitation (taking the biggest Q value for this state) if exp_exp_tradeoff > epsilon: action = np.argmax(qtable[state,:]) # Else doing a random choice --> exploration else: action = env.action_space.sample() # Take the action (a) and observe the outcome state(s') and reward (r) new_state, reward, done, info = env.step(action) # Update Q(s,a):= Q(s,a) + lr [R(s,a) + gamma * max Q(s',a') - Q(s,a)] # qtable[new_state,:] : all the actions we can take from new state qtable[state, action] = qtable[state, action] + learning_rate * (reward + gamma * np.max(qtable[new_state, :]) - qtable[state, action]) total_rewards =total_rewards + reward # Our new state is state state = new_state # If done (if we're dead) : finish episode if done == True: break episode += 1 # Reduce epsilon (because we need less and less exploration) epsilon = min_epsilon + (max_epsilon - min_epsilon)*np.exp(-decay_rate*episode) rewards.append(total_rewards) print ("Score over time: " + str(sum(rewards)/total_episodes)) print(qtable) print(epsilon) # In[22]: env.reset() env.render() print(np.argmax(qtable,axis=1).reshape(4,4))
[ "noreply@github.com" ]
haicizh.noreply@github.com
e9f46372c63c6378dc0057561505e5256b7b4bc4
bd49c7977fb9fa6c1cd3bf040396eaec077b5b22
/items.py
91c95f18944ef7e3fb343b5fbb8027c280cd5a23
[ "MIT" ]
permissive
Jasper2-0/scrape-fontaneljobs
d1be5d91f3fa71bb79b4017ba5e64210d3605790
f174e42cc2b352302e7432a57a5bad42ea3ee8b0
refs/heads/master
2020-11-27T05:24:59.322340
2019-12-22T22:47:50
2019-12-22T22:47:50
229,321,207
0
0
null
null
null
null
UTF-8
Python
false
false
793
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class ScrapeFontaneljobsItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass class CompanyItem(scrapy.Item): url = scrapy.Field() logo_url = scrapy.Field() meta_data = scrapy.Field() name = scrapy.Field() short_description = scrapy.Field() long_description = scrapy.Field() address = scrapy.Field() postal_code = scrapy.Field() city = scrapy.Field() class VacancyItem(scrapy.Item): title = scrapy.Field() short_description = scrapy.Field() company = scrapy.Field() job_type = scrapy.Field() date = scrapy.Field()
[ "jasper@jasperschelling.com" ]
jasper@jasperschelling.com
a18e8dceb99b923a3e54ae3ca00e5fcb3d665c0b
7663f23c3edf3026bbf729adf5a75a6b954fb940
/Project_2/test_gilded_rose.py
b24b7cefdf1f4148b22d66ab656c7da1ae9948a1
[]
no_license
mehraj24158/gilded-rose
b330274932609ece1482bdb95ea6b6265c4bad89
f4c7c7a8ae6bd232a0aad84a1b2133ad3a1f5f12
refs/heads/master
2023-01-05T09:00:34.823937
2020-11-03T02:44:43
2020-11-03T02:44:43
299,934,577
0
0
null
null
null
null
UTF-8
Python
false
false
2,790
py
import pytest from Refactor.gilded_rose import * """ Global item list for testing. """ items = [ Item(name="+5 Dexterity Vest", sell_in=10, quality=20), Aged(name="Aged Brie", sell_in=2, quality=0), Item(name="Elixir of the Mongoose", sell_in=5, quality=7), LegendaryItem(name="Sulfuras, Hand of Ragnaros", sell_in=0, quality=80), LegendaryItem(name="Sulfuras, Hand of Ragnaros", sell_in=-1, quality=80), BackStagePass(name="Backstage passes to a TAFKAL80ETC concert", sell_in=15, quality=20), BackStagePass(name="Backstage passes to a TAFKAL80ETC concert", sell_in=10, quality=27), BackStagePass(name="Backstage passes to a TAFKAL80ETC concert", sell_in=5, quality=42), BackStagePass(name="Backstage passes to a TAFKAL80ETC concert", sell_in=2, quality=49), ConjuredItem(name="Conjured Mana Cake", sell_in=3, quality=6), ] @pytest.fixture def test_load(): print("\n----SETUP----") gild_rose = Inventory(items) print(gild_rose) return gild_rose def test_equality(test_load): # Ensures the __eq__ method correctly compares items for inventory_item, item in zip(test_load.items, items): assert inventory_item == item def test_print(test_load): # Ensures the Inventory __str__ method correctly prints all items within the inventory assert str(test_load) == str(['+5 Dexterity Vest, 10, 20', 'Aged Brie, 2, 0', 'Elixir of the Mongoose, 5, 7', 'Sulfuras, Hand of Ragnaros, 0, 80', 'Sulfuras, Hand of Ragnaros, -1, 80', 'Backstage passes to a TAFKAL80ETC concert, 15, 20', 'Backstage passes to a TAFKAL80ETC concert, 10, 27', 'Backstage passes to a TAFKAL80ETC concert, 5, 42', 'Backstage passes to a TAFKAL80ETC concert, 2, 49', 'Conjured Mana Cake, 3, 6']) def test_update(test_load): # Ensures the update method updates the inventory correctly test_load.update() new_items = [ Item(name="+5 Dexterity Vest", sell_in=9, quality=19), Aged(name="Aged Brie", sell_in=1, quality=1), Item(name="Elixir of the Mongoose", sell_in=4, quality=6), LegendaryItem(name="Sulfuras, Hand of Ragnaros", sell_in=0, quality=80), LegendaryItem(name="Sulfuras, Hand of Ragnaros", sell_in=-1, quality=80), BackStagePass(name="Backstage passes to a TAFKAL80ETC concert", sell_in=14, quality=21), BackStagePass(name="Backstage passes to a TAFKAL80ETC concert", sell_in=9, quality=29), BackStagePass(name="Backstage passes to a TAFKAL80ETC concert", sell_in=4, quality=45), BackStagePass(name="Backstage passes to a TAFKAL80ETC concert", sell_in=1, quality=50), ConjuredItem(name="Conjured Mana Cake", sell_in=2, quality=4), ] assert test_load.items == new_items
[ "mehraj24158@gmail.com" ]
mehraj24158@gmail.com
1c68155f88d608d49cc19d91519520eeaafcb002
d88ad64b1dfaba11f55e8da2934541b02f75bbde
/arduino.py
1adae7dd26a84a3ad9a85a4535c5bddd898f0a21
[]
no_license
Chusa007/Face_Recognition
cb4838bfb3dc0bc255722002a1a83ab4cf5b0b9f
bfd552f026ae895475688a8c820eed68caffaf25
refs/heads/master
2021-10-03T10:05:32.400469
2018-12-02T11:49:15
2018-12-02T11:49:15
159,300,861
1
1
null
2018-12-01T21:36:35
2018-11-27T08:24:53
JavaScript
UTF-8
Python
false
false
167
py
import serial import time ser = serial.Serial('/dev/ttyACM0') ser.baudrate = 9600 # ser = serial.Serial('COM3', 9600) time.sleep(2) ser.write(str.encode("Unknown#"))
[ "chusa007@mail.ru" ]
chusa007@mail.ru
e3dbc85560e90e24e1d68b173e25f658e8bf6a7d
eaf67c8d08ac7fb3437e521c90abaeda290488b9
/tensorflow_federated/python/core/impl/executors/cardinalities_utils.py
023d459538f8cebaf8b83e97183cfce3c388a662
[ "Apache-2.0" ]
permissive
mhalawad/federated
a89194a4b03205fa272b29931bb56e6d0603aaca
d683db15d87eb545e3df6530a698ba1c785ebe79
refs/heads/master
2022-12-22T00:18:43.005904
2020-08-26T20:34:43
2020-08-26T20:35:15
290,794,371
1
0
Apache-2.0
2020-08-27T14:15:56
2020-08-27T14:15:55
null
UTF-8
Python
false
false
3,380
py
# Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common functions needed across executor classes.""" import collections from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.common_libs import structure from tensorflow_federated.python.core.api import computation_types from tensorflow_federated.python.core.impl.types import placement_literals def merge_cardinalities(existing, to_add): """Merges dicts `existing` and `to_add`, checking for conflicts.""" py_typecheck.check_type(existing, dict) py_typecheck.check_type(to_add, dict) for key, val in existing.items(): py_typecheck.check_type(key, placement_literals.PlacementLiteral) py_typecheck.check_type(val, int) if not to_add: return existing elif not existing: return to_add cardinalities = {} cardinalities.update(existing) for key, val in to_add.items(): py_typecheck.check_type(key, placement_literals.PlacementLiteral) py_typecheck.check_type(val, int) if key not in cardinalities: cardinalities[key] = val elif cardinalities[key] != val: raise ValueError('Conflicting cardinalities for {}: {} vs {}'.format( key, val, cardinalities[key])) return cardinalities def infer_cardinalities(value, type_spec): """Infers cardinalities from Python `value`. Allows for any Python object to represent a federated value; enforcing particular representations is not the job of this inference function, but rather ingestion functions lower in the stack. Args: value: Python object from which to infer TFF placement cardinalities. type_spec: The TFF type spec for `value`, determining the semantics for inferring cardinalities. That is, we only pull the cardinality off of federated types. Returns: Dict of cardinalities. Raises: ValueError: If conflicting cardinalities are inferred from `value`. TypeError: If the arguments are of the wrong types, or if `type_spec` is a federated type which is not `all_equal` but the yet-to-be-embedded `value` is not represented as a Python `list`. """ py_typecheck.check_not_none(value) py_typecheck.check_type(type_spec, computation_types.Type) if type_spec.is_federated(): if type_spec.all_equal: return {} py_typecheck.check_type(value, collections.Sized) return {type_spec.placement: len(value)} elif type_spec.is_struct(): structure_value = structure.from_container(value, recursive=False) cardinality_dict = {} for idx, (_, elem_type) in enumerate(structure.to_elements(type_spec)): cardinality_dict = merge_cardinalities( cardinality_dict, infer_cardinalities(structure_value[idx], elem_type)) return cardinality_dict else: return {}
[ "tensorflow.copybara@gmail.com" ]
tensorflow.copybara@gmail.com
9f747d70aee6ad7ca96404b2a149820dd89c86a2
d38328298ffa320bac87f0ec08df6c04d75cde41
/testing_main.py
ec8de6cacbf6a6e6b5dc6c76e2ea4f8e7a758897
[]
no_license
Wang3960/deep_learning_for_demosaicing
0bc5a3886f52d74052318f51b369b614c4945f35
6ef83c2763ce06ae2df18c4ac7fb1c26881f352d
refs/heads/main
2023-04-21T20:34:17.657950
2021-05-12T01:12:36
2021-05-12T01:12:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,413
py
import os import math from tqdm import tqdm from PIL import Image import pickle import torch import torch.nn as nn import numpy as np import argparse from testing_model import test_model from model import Net_Superresolution,REDNet_model,SRCNN,model_with_upsampling,VDSR_Net from model_utils import str2bool device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if __name__ == "__main__": # Create the parser parser = argparse.ArgumentParser() # Add an argument parser.add_argument("--trial_number", type=int, required=True, help="Trial number.") parser.add_argument("--model", type=str, required=True, help="The model you want to use.") parser.add_argument("--psnr_only", type=str2bool, nargs='?', default=False, help="Compute psnr only, without saving resulting images.") # Parse the argument args = parser.parse_args() # assign the variables according to the argument values trialNumber = args.trial_number psnr_only = args.psnr_only if args.model == 'deep_residual_network': model = Net_Superresolution(withRedNet=False,withSRCNN=False) elif args.model == 'deep_residual_network_rednet': model = Net_Superresolution(withRedNet=True,withSRCNN=False) elif args.model == 'deep_residual_network_SRCNN': model = Net_Superresolution(withRedNet=False,withSRCNN=True) elif args.model == 'rednet': model = REDNet_model() elif args.model == 'SRCNN': SRCNN_model = SRCNN(num_channels=3) model = model_with_upsampling(SRCNN_model) elif args.model == 'VDSR': VDSR_model = VDSR_Net() model = model_with_upsampling(VDSR_model) else: raise argparse.ArgumentError("Invalid model") var_save_dir = './data/variables' var_name = 'dataloaders'+'_trial'+str(trialNumber)+'.pkl' path = var_save_dir + '/' + var_name with open(path, 'rb') as file: # Call load method to deserialze dataloaders = pickle.load(file) model_path_retrieve = "./model/"+"trial"+str(trialNumber)+".pth" model.load_state_dict(torch.load(model_path_retrieve)) model = model.to(device) image_saving_dir = './data/CUB200_outs' if not os.path.exists(image_saving_dir): os.makedirs(image_saving_dir) if psnr_only: test_model(model,image_saving_dir,dataloaders,psnr_only=True) else: test_model(model,image_saving_dir,dataloaders)
[ "lauhoiyangladys@gmail.com" ]
lauhoiyangladys@gmail.com
4331304248d90d998e7b9838a4f4c35eae4055d5
a46b064486b703b5424a5e59fb6d567a0c08d480
/setup.py
30e73a7ef6a7a63f779f7f363b895ca7e75aae22
[ "MIT" ]
permissive
nick-youngblut/pushmsg
1dd3ca23dbfa8277f92b7261c5eabeb6ea5bd3c6
389cd22476077198593bd4b4af3900fd1644da65
refs/heads/master
2022-07-23T14:52:46.886835
2020-05-23T19:21:22
2020-05-23T19:21:22
71,820,460
3
1
null
null
null
null
UTF-8
Python
false
false
776
py
from setuptools import setup, find_packages import os import pushmsg VERSION = pushmsg.__version__ install_reqs = [ 'ipython', 'configparser', 'pushbullet.py>=0.10.0' ] desc = """An IPython magic extension for sending notifications with Pushbullet. It is useful for setting notfications for the completion of long jobs. """ setup( name='pushmsg', version=VERSION, license='MIT', description=('IPython magic function to send notifications with Pushbullet'), author='Nicholas Youngblut', author_email='nyoungb2@gmail.com', url='https://github.com/nick-youngblut/pushmsg', packages=find_packages(exclude=[]), scripts=['scripts/pushmsg', 'scripts/pushmsg_qstat'], install_requires=install_reqs, long_description=desc )
[ "nicholas.youngblut@tuebingen.mpg.de" ]
nicholas.youngblut@tuebingen.mpg.de
2d70297ee8e965de82220eaf045dfbba8bb59865
17cd34729422f7f22c8b71c715d57954bcd1577e
/events.py
9472826c1178b99c34fbb733973f83f35f31db79
[]
no_license
ehsan108190/shinytouch
4de4a0e5cbd4f43b1b26f925bfc641d3cf0d62fa
57f7e3e99c2b739192c58119cc5e9b2f8602312e
refs/heads/master
2021-01-01T20:41:03.132467
2010-01-17T02:10:32
2010-01-17T02:10:32
37,240,090
0
0
null
null
null
null
UTF-8
Python
false
false
1,458
py
import tuio import math oxd, oyd = 0, 0 #import mouse #mousectl = mouse.MouseControl() #mousedown = False #lastcoord = (0,0) #lasttime = 0 def dist(x1, y1, x2, y2): return math.sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1)) def handle_touch(x, y): global width, height #THE MOUSE CONTROLS ON LINUX ONLY #THIS MOUSE STUFF IS DEPRECATED. USE TUIOMOUSE OR SIMILAR INSTEAD. #global mousectl, mousedown, lastcoord, lasttime #import datetime, math #if lasttime != 0: # dist = math.sqrt((xd-lastcoord[0])*(xd-lastcoord[0]) + (yd-lastcoord[1])*(yd-lastcoord[1])) # timediff = datetime.datetime.now() - lasttime # if dist/(timediff.microseconds/1000) < 5: # if mousedown == False: # mousedown = True # mousectl.mouse_down(1) # scr = mousectl.get_screen_resolution() # mousectl.mouse_warp(int(1600*(xd/width.0)),int(1200*(yd/height.0))) #lasttime = datetime.datetime.now() xd = width * x yd = height * y draw2.rectangle(((xd-2, yd-2),(xd+2, yd+2)), outline=(100,255,100)) global oxd, oyd if oxd and oyd and dist(xd, yd, oxd, oyd) < 100: draw2.line(((oxd, oyd),(xd, yd)), fill=(100,255,100)) oxd=xd oyd=yd tuio.alive([1]) #one alive tuio.fseq() tuio.move(1, x, y) def handle_lift(): #global mousectl, mousedown #if mousedown == True: # pass # mousectl.mouse_up(1) #mousedown = False global oxd, oyd oxd = 0.0 oyd = 0.0 tuio.alive([]) #none alive
[ "antimatter15@56b13c6e-67d3-11de-a84c-2f1c77ec4fbd" ]
antimatter15@56b13c6e-67d3-11de-a84c-2f1c77ec4fbd
aba58cfea3f786c3c26480ea8a19b55e513c103f
0b27f0352a75035a8e9bdabb67d137195d3ec789
/conv_network.py
235b9d8064716033592d67f4571e95e5a43a6f47
[]
no_license
mneis1/caption_net
b7ced16396abad724ddcc02d8d1dcd843b5ed36e
6c4fb619d78cd80f5f0ea8914f2690965d48598f
refs/heads/master
2020-05-24T13:31:04.087451
2019-05-22T03:59:00
2019-05-22T03:59:00
187,290,479
0
0
null
2019-05-22T03:56:48
2019-05-17T22:54:04
Python
UTF-8
Python
false
false
2,775
py
from keras.applications import vgg16, inception_v3 from keras.models import Model from keras.preprocessing import image from PIL import Image import numpy as np import os import pickle class conv_network: def __init__(self, imgnet_model_name): self.model_name = imgnet_model_name self.imgnet_model, self.model_params = self.fetch_model(imgnet_model_name) #load_model #remove softmax layer self.model = Model(inputs=self.imgnet_model.input, outputs=self.imgnet_model.layers[-2].output) #self.model_params = fetch_model_params(imgnet_model_name) def get_img_features(self, image_path): dim = self.model_params['resize_dims'] img = image.load_img(image_path, target_size=(dim,dim)) img = image.img_to_array(img) img = np.expand_dims(img, axis=0) #img = img.reshape((-1,img.shape[0],img.shape[1],img.shape[2])) img = self.img_preprocessing(img) pred = self.model.predict(img, verbose=0) return pred def img_preprocessing(self, img): model_name_ = self.model_name if model_name_ == 'vgg16': return vgg16.preprocess_input(img) elif model_name_ == 'inception_v3': return inception_v3.preprocess_input(img) def compile_features(self, data_path): features_dict = dict() for image in os.listdir(data_path): image_path = data_path + '/' + image img_id, _ = os.path.splitext(image) features_dict[img_id] = self.get_img_features(image_path) #dump features to file so program doesnt have to compute everytime dump_loc = open('data_features.pkl','wb') pickle.dump(features_dict, dump_loc) def fetch_model(self, model_name): if model_name == 'vgg16': model = vgg16.VGG16() model_params = {'resize_dims': 224} elif model_name == 'inception_v3': model = inception_v3.InceptionV3() model_params = {'resize_dims': 299} #TODO: add error for incorrect model name return model, model_params def fetch_model_params(self, model_name): #get expected resize model expects and other params specific to the pretrained net if model_name == 'vgg16': model_params = {'resize_dims': 224} elif model_name == 'inception_v3': model_params = {'resize_dims': 299} return model_params def load_features(self, dir='data_features.pkl'): return pickle.load(open(dir, 'rb')) #returns features that are in a given set of data. data should be a list of data id's to compare def filter_features(self, features, data): return {id_: features[id_] for id_ in data}
[ "marcneisser@Marcs-MacBook-Pro.local" ]
marcneisser@Marcs-MacBook-Pro.local
4a0be4007c24f7b752c819eb6e9f9fa481354984
d0d8ca85502ab9f336ca22ee7a6e9fcd0e522ea3
/壁纸爬虫/pic.py
197e20aed216ff06d5126b77023cc58ec6253ede
[]
no_license
0xl2oot/notes
7d752a643cde157bce21a50f1a7eb6c35066d809
2e0b2ef6a95085cbf0297a837948de0c753c3365
refs/heads/master
2021-05-09T11:35:30.717905
2019-03-20T10:18:57
2019-03-20T10:18:57
118,992,872
1
0
null
null
null
null
UTF-8
Python
false
false
2,216
py
import urllib.request as u import os,re from bs4 import BeautifulSoup def str_del(string): #处理字符串 ban = ['\\','/',':','*','','"','<','>','|'] for i in string: if i in ban: string = string.replace(i,'') return string def save_pic(pic_urls,title): title = str_del(title) #保存图片 try: os.mkdir(title) os.chdir(title) for i in range(len(pic_urls)): #得到每张图片 html = url_open(pic_urls[i]).decode('gb2312', 'ignore') soup = BeautifulSoup(html, "html.parser") pic = soup.find(id = 'bizhiimg').p.a.img['src'] filename = soup.find(id = 'bizhiimg').p.a.img['alt'] + '.jpg' filename = str_del(filename) #保存 with open(filename,'wb') as f: print('已保存:' + filename) img = url_open(pic) f.write(img) os.chdir('..') except FileExistsError: pass def url_open(url): #得到并返回转码后的网页列表 req = u.Request(url) req.add_header('User-Agent', 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36') req.add_header('Referer', 'http://www.zhuoku.com') res = u.urlopen(req) html = res.read() return html def main(): #先只下载第一页的壁纸 url = 'http://www.zhuoku.com/new/index.html' #注意,该网页的编码方式是gb2312 html = url_open(url).decode('gb2312', 'ignore') soup = BeautifulSoup(html, "html.parser") divs = soup.find_all(id = "xinbizhi")#得到div的列表 for div in divs: #使用BeautifulSoup来得到需要的信息 title = div.a['title'] num = re.findall('共有.{1,3}张', str(div))[0][2:-1] urls = 'http://www.zhuoku.com' + div.a['href'] pic_urls = [] for i in range(int(num)): pic_url = urls.replace('.htm', '(%d).htm'%(i+1)) pic_urls.append(pic_url) save_pic(pic_urls,title) if __name__ == '__main__': try: os.mkdir('壁纸') except FileExistsError: pass os.chdir('壁纸') main()
[ "yonghongwang@163.com" ]
yonghongwang@163.com
30eaa5f3c004cf9d6014266444ad0822593e74ca
3d6dcf456d17aaae71e650f90c7d70e52699403f
/mnist/plot.py
77fa5b960cd3afbbd069c96a0cd11e038207df8f
[]
no_license
CNLHC/ai_accelerator_2020
bbcf82593e3f9ed470f620b0037e06d33af2f57a
298c97ce83bf4830e3e8c07f62bc5fdc42661420
refs/heads/master
2023-01-05T05:03:53.294053
2020-11-02T09:28:37
2020-11-02T09:28:37
301,689,163
0
0
null
null
null
null
UTF-8
Python
false
false
504
py
import matplotlib.pyplot as plt import matplotlib def main(): def toFloat(x): try: return float(x) except: return None li = [toFloat(x) for x in open("./assets/loss",'r').readlines()] li = [x for x in li if x is not None] plt.figure(figsize=(35,20)) matplotlib.rcParams.update({'font.size': 32}) plt.ylabel("Cross Entropy Loss") plt.xlabel("Samples") plt.plot(li[::5],linewidth=3,color="k") plt.savefig("loss.eps") main()
[ "cn_lhc@qq.com" ]
cn_lhc@qq.com
e45daa193b93ee9c1ee5767173a49870d4d8145a
b20fde97e70b20c8301d844ad0b07facb70af9b3
/hello-flask/main.py
0c56546b1e0802e1d5aa5ca3e8e96a03a39dab80
[]
no_license
krgirard33/lc101_2018
a42ea56cba9119d097c7e8884d90b07db235adfc
2603fd0e13e4e537a847a389ef2287764b6d582f
refs/heads/master
2021-05-01T08:48:44.962435
2018-04-24T00:38:50
2018-04-24T00:38:50
121,175,788
0
0
null
null
null
null
UTF-8
Python
false
false
591
py
from flask import Flask, request, redirect, render_template import cgi import os import jinja2 import tasklist.py template_dir = os.path.join(os.path.dirname(__file__), 'templates') jinja_env = jinja2.Environment( loader = jinja2.FileSystemLoader(template_dir), autoescape=True ) app = Flask(__name__) app.config['DEBUG'] = True @app.route("/") def index(): return render_template('hello_form.html') @app.route('/hello', methods=['POST']) def hello(): first_name = request.form['first_name'] return render_template('hello_greeting.html', name=first_name) app.run()
[ "ken.girard@gmail.com" ]
ken.girard@gmail.com
5006858f56019a73a6dd2128541e817171e202e9
0d7308b8fe87b61a8294688f61fd3100c3be5bd4
/src/star_sampler1.py
5b95b7744697cb6c280b646b8798dc68e0232421
[]
no_license
mlm2299/StoneMallernee
2ff07091dbdfcd1d0c475ed2e48669aad2eb5252
80d738f8ad7824db04fb08365afac033a84bad49
refs/heads/master
2021-05-08T00:39:02.532420
2017-10-20T15:43:40
2017-10-20T15:43:40
107,691,831
0
0
null
null
null
null
UTF-8
Python
false
false
4,689
py
''' Created on June 16, 2015 @author: Maggie Mallernee To sample stellar orbits assuming isotropy and spherical distribution, with angles in DEGREES ''' #from scipy import constants as c import random from math import cos, asin, degrees import anomaly_convert as ac #Function that calculates the radius of influence (of a black hole), in parsecs #Need to verify units & empirics (r_infl ~ 0.76 ( M_bh / 10^6 M_s)^(0.58) def get_r_infl(mass): return (mass / (10**6 * 1.98855 * 10**30)) ** 0.5 #def get_r_max def star_sampler(mass_bh, num_stars): sample_array = [] #name = "" for x in range(1, num_stars+1): #name = 'S' + str(x) #randomly sample omega, w, M (mean anomaly) **in DEGREES omega = random.uniform(0.0, 360.) w = random.uniform(0.0, 360.) M = random.uniform(0.0, 360.) #randomly sample i sin_i = random.uniform(0.0, 2.0) - 1.0 i = degrees( asin(sin_i) ) #randomly sample e using its cdf F(X) = e**2 #thermal distribution of e is_ok = False while(is_ok != True): X = random.random() e = X ** 0.5 if(e != (1.0 / cos(1.0) )): is_ok = True #get f from M E = ac.newton(e, 1.0, M) #need method to choose the initial guess f = ac.get_f(e, E) #randomly sample a using the Bahcall-Wolf Cusp distribution X = random.random() #a = X ** (4./5.) * 1240 #4:2 outer bound? #for initial GR computational testing -- bound to the 3:1 resonance #(48.0750 - for 100 AU binary separation) #(14.4225 - for 30 AU binary separation) a = X ** (4./5.) * (48.0750) #radius of pericentre -- for sorting purposes only r_p = a * (1 - e) sample_array.append([a, e, i, omega, w, f, r_p]) return sample_array #sorts by pericentre, ascending def sort_sample_by_peri(sample): sample.sort(key=lambda x: x[6]) return sample def star_sample_file_writer(file_name, mass_bh, num_stars_to_sample, num_to_include): sample = sort_sample_by_peri(star_sampler(mass_bh, num_stars_to_sample)) get_file(file_name, sample, num_to_include) #to_include ought to be a list of different numbers to sample def sample_multiple(mass_bh, num_stars, to_include): sample = sort_sample_by_peri(star_sampler(mass_bh, num_stars)) for n in range(len(to_include)): file_name = "small" + str(to_include[n]) + ".in" get_file(file_name, sample, to_include[n]) #returns a file with the smallest num_included number of stars with pericentres greater than twice the tidal radius #r_t currently set to 1.0016247683 AU def get_file(file_name, sample, num_included): with open(file_name, 'w') as file: file.write(')O+_06 Small-body initial data (WARNING: Do not delete this line!!) \n') file.write(") Lines beginning with `)' are ignored. \n") file.write(")--------------------------------------------------------------------- \n") file.write(" style (Cartesian, Asteroidal, Cometary) = Ast \n") file.write(")--------------------------------------------------------------------- \n") name = "" r_t = 1.0016247683 n = 0 i = 1 while i <= num_included: if sample[n][6] > (2 * r_t): name = "S" + str(i) i += 1 #write to the file #TEST file.write("Test - radius of pericentre: %s \n" % (sample[n][6])) file.write(' %s ep=2450400.5 \n' % (name)) if i > num_included: file.write(" %s %s %s %s %s %s 0 0 0\n\n" % (sample[n][0], sample[n][1], sample[n][2], sample[n][3], sample[n][4], sample[n][5])) else: file.write(" %s %s %s %s %s %s 0 0 0\n" % (sample[n][0], sample[n][1], sample[n][2], sample[n][3], sample[n][4], sample[n][5])) n += 1 #name = "S" + str(num_included) #file.write(' %s ep=2450400.5 \n' % (name)) #file.write(" %s %s %s %s %s %s 0 0 0 " % (sample[n][0], sample[n][1], sample[n][2], sample[n][3], sample[n][4], sample[n][5])) return file #MAIN
[ "mlm2299@columbia.edu" ]
mlm2299@columbia.edu
929a7e390ef29badc40568612ddcfd1a26849d40
f7c482bd2a5af72d56f7506219fd3ae81ea0eb69
/venv/Scripts/rst2man.py
7d48736a4a76bbf70945812b4d7034e56a46d001
[]
no_license
Shakikhanli/Repo-Finder
d80ab19f8a5c5e4b421b1eaf376ffa9fce195fc8
f922ab491d77dd7eacb574bdfd2f4117d1c62aa0
refs/heads/master
2022-11-12T14:22:33.165194
2020-07-07T10:10:42
2020-07-07T10:10:42
277,782,498
0
1
null
null
null
null
UTF-8
Python
false
false
661
py
#!C:\MPF\Programming\Python Projects\Github Repo Finder\venv\Scripts\python.exe # Author: # Contact: grubert@users.sf.net # Copyright: This module has been placed in the public domain. """ man.py ====== This module provides a simple command line interface that uses the man page writer to output from ReStructuredText source. """ import locale try: locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description from docutils.writers import manpage description = ("Generates plain unix manual documents. " + default_description) publish_cmdline(writer=manpage.Writer(), description=description)
[ "shekikhanli@gmail.com" ]
shekikhanli@gmail.com
94f6e0c71843c2dce709f89a98354f01226fc707
07e69d44a874884678297a668632c040b7df8eef
/dataAnalysis.py
ba5677b5601721850dc94f13953a5cefd82d9ffa
[]
no_license
maigahurairah15/Hurairah-GWC-2018
178e10e719ec8803fe4bd46a12450265c02aaa70
b55f32fd887c5ab149aab129a2ff3589ee04dbc5
refs/heads/master
2020-03-26T16:48:50.181435
2018-08-17T13:50:08
2018-08-17T13:50:08
145,124,583
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
import school_scores list_of_records = school_scores.get_all() print(list_of_records[0]) for i in list_of_records: print(i["State"]["Name"],i["Gender"]["Female"],i["Score Ranges"]["Between 600 to 700"]["Math"])
[ "noreply@github.com" ]
maigahurairah15.noreply@github.com
ccd19b0b85e78710f0ee8289121587e93d8b0e6f
ee96b1349c9a8926836e8a00ecd99af9ae3fd9d3
/fetch_scrapy/fetch/pipelines/__init__.py
75d7ec22cde0a75d82b15426f61ed511b6fe07be
[]
no_license
aiportal/zb123
f201e701e6dff4e4e957410f9df0cadb8feb9d51
7316880e2444a8af02e2f44af38dd7ae708ccbb6
refs/heads/master
2023-08-06T13:23:47.421260
2018-08-14T03:03:49
2018-08-14T03:03:49
170,792,729
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
from .mysql import MysqlPipeline from .sqlite import SQLitePipeline from .zip import ZipPackagePipeline from .csv import CsvFilePipeline
[ "bfbd@163.com" ]
bfbd@163.com
0f4121425d642124405d6605b83f29e697901a2e
84de064b2994516f14950cd31e815a410bce1433
/week5/FileDownload1.py
042f9d092bd6be38f952a7e61a93e80a5fe366c3
[]
no_license
stefancoe/uw_python
442697d6d815a6b3a3f8ec87c8bbff54b480a243
1bd7cd1a15fd994c7690f04e7b55984df68bd173
refs/heads/master
2020-05-29T13:42:15.806345
2012-02-29T03:02:55
2012-02-29T03:02:55
3,099,659
1
0
null
null
null
null
UTF-8
Python
false
false
776
py
import urllib2 from BeautifulSoup import BeautifulSoup from urlparse import * from urllib import urlretrieve import os import sys site = 'http://jon-jacky.github.com/uw_python/winter_2012/index.html' page = urllib2.urlopen(site).read() soup = BeautifulSoup(page) anchors = soup.findAll('a') o = urlparse(site) print type (anchors) for item in anchors: myUrl = str(item) if myUrl.rfind('.py<') != -1: myUrl = myUrl[myUrl.find("=")+2:] myUrl = myUrl[:0] + myUrl[:myUrl.find(">")-1] myUrl = urljoin(site, myUrl) fileName = myUrl.split("/") fileName = fileName[-1] print fileName folder = 'C:/Temp/' folder = folder + "/" + fileName urlretrieve(myUrl, folder) #print soup.prettify()
[ "coestefan@gmail.com" ]
coestefan@gmail.com
acfb84dcfe41a00d92a140f5dee85df17a52d2a9
afa377c993ac69c03d8cfd9c587409a5616ce9b9
/recursividad.py
e0c9e2d7918751e016c174c6f5a97371ee872b9c
[]
no_license
ealexisaraujo/basicoPython
45b01237ad184535d51ce745dc11dc3284e930f7
8419595e2884569224207deabd24006d4fa922f6
refs/heads/master
2023-05-29T01:53:43.954711
2020-03-15T14:46:23
2020-03-15T14:46:23
245,044,203
0
0
null
2023-05-22T21:38:57
2020-03-05T01:47:04
Python
UTF-8
Python
false
false
362
py
# -*- coding: utf-8 -*- def sumrec(number): if number == 1: return 1 return number + sumrec(number-1) def run(): number = int(input('Ingresa el número a sumar: ')) res = sumrec(number) print('El resultado de la suma recursiva, tomando como base el {} es :{}'.format( number, res)) if __name__ == '__main__': run()
[ "ala1289@gmail.com" ]
ala1289@gmail.com
aff53125e814dfb37ed5e60ec9904b09180fa0fe
86beb084541d582c7547ca8fabafd326a150a8a9
/ReviewPython/linting/better_hello.py
5b490b9eef19a012b485c709e8a7fbd044ec6126
[]
no_license
Computational-Physics-Research/CompPhys
ea8e806a0f79560c21aad7969337b0a1e97f2fbd
7ae65dc1ba754c8b6addd8fbde3f7beff4f00523
refs/heads/main
2023-04-19T00:14:41.369953
2021-04-02T17:35:10
2021-04-05T19:16:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
""" This is the hello world module """ def hello(): """ My Hello World program """ print("Hello World")
[ "thomay@buffalo.edu" ]
thomay@buffalo.edu
d1155513c9c21f51d0829ee7664d1e093062b6cf
e40933249f51eaf43b85ea183bb4ee12d4c32828
/pipeline/binaries/evaluation.py
b21b4b9e6d8dc710e5aff1bf223860375cb0b2ed
[]
no_license
stage-comprection/pipeline
3b34447b4f043fcdee9f078197014848ad89a8db
1dcf55bffdc3bb8a0aeee0117eba66cb847c9e76
refs/heads/master
2021-01-10T03:25:58.911767
2016-03-23T16:33:07
2016-03-23T16:33:07
51,996,124
0
0
null
null
null
null
UTF-8
Python
false
false
1,499
py
""" Functions to evaluate the results of correction using the evaluation pipeline. Parameters are given using a .ini file instead of command-line arguments. """ from ..settings import * import os def generate_settings_file(settings): """ Generates an .ini file used by the evaluation pipeline to initialize parameter values. """ pathToSettingsFile = (settings[GENERAL][OUTPUT_PATH] + settings[EVALUATION][SETTINGS_FILE]) with open(pathToSettingsFile, 'w') as o: o.write("outputFolderPath=" + settings[GENERAL][OUTPUT_PATH] + "\n") o.write("readsFolderPath=" + settings[DATA][READS_PATH] + "\n") o.write("referenceFolderPath=" + settings[DATA][REF_PATH] + "\n") o.write("readSet=" + settings[DATA][READS_FILE] + "\n") o.write("reference=" + settings[DATA][REF_FILE] + "\n") o.write("nThreads=" + str(settings[GENERAL][N_THREADS]) + "\n") o.write("nTempFiles=" + str(settings[EVALUATION][N_TEMP_FILES]) + "\n") def evaluation(settings): """Evaluates the results of correction using the evaluation pipeline """ # Generates the settings file used by the evaluation pipeline generate_settings_file(settings) # Runs evaluation_correction binary os.system(settings[EVALUATION][PATH] + 'evaluation_correction ' + settings[GENERAL][OUTPUT_PATH])
[ "romain.feron@evobio.eu" ]
romain.feron@evobio.eu
97a01674c332bb5bad4dc14ea5e57e111626b8d6
d7704c107f9cb0cdb92a4c864863ff087fcfda35
/etl.py
b4bda19b21d5a6ddc698677133fee1276b02070c
[]
no_license
maullaina/Data_Modeling_with_Postgres
0c8d21d1f5e7fae7b51e73ebf3ebef6ddbc85f3f
4111743da6f66456890126f5adc77c67a38ea3bb
refs/heads/main
2023-08-19T12:21:43.530703
2021-10-20T10:41:22
2021-10-20T10:41:22
419,286,067
0
0
null
null
null
null
UTF-8
Python
false
false
6,133
py
import os import glob import psycopg2 import pandas as pd from sql_queries import * from datetime import datetime def process_song_file(cur, filepath): """ Get information about songs and artists from raw data and introduce it in the SQL tables. Arguments: cur {object}: element that will represent a dataset determined by a T-SQL query. Cursors allow to traverse row by row, read and eventually modify this result set. filepath {str}: a string with the file path for each document. Returns: None """ # open song file df = pd.read_json(filepath, lines=True) # insert song record song_data=[] song_data.append(df.song_id.values[0]) song_data.append(df.title.values[0]) song_data.append(df.artist_id.values[0]) song_data.append(int(df.year.values[0])) song_data.append(df.duration.values[0]) cur.execute(song_table_insert, song_data) # insert artist record artist_data=[] artist_data.append(df.artist_id.values[0]) artist_data.append(df.artist_name.values[0]) artist_data.append(df.artist_location.values[0]) artist_data.append(df.artist_latitude.values[0]) artist_data.append(df.artist_longitude.values[0]) cur.execute(artist_table_insert, artist_data) def get_fields_time(x): """ Get further information from datetime format Arguments: x {dataframe}: each of the different rows per each log_data file Return: A list with all the values to insert into the time table """ hour = x.hour day = x.day week = x.week month = x.month year = x.year weekday= x.dayofweek return [x,hour, day, week, month, year, weekday] def process_log_file(cur, filepath): """ Get information about time and users from raw data and introduce it in the SQL tables and create the fact table songplays. Arguments: cur {object}: element that will represent a dataset determined by a T-SQL query. Cursors allow to traverse row by row, read and eventually modify this result set. filepath {str}: a string with the file path for each document. Returns: None """ # open log file df = pd.read_json(filepath, lines=True) # filter by NextSong action df_nxt = df.page=='NextSong' df = df[df_nxt] # convert timestamp column to datetime df.ts = df.ts/1000 t = df.ts.map(datetime.fromtimestamp) # insert time data records time_data = [get_fields_time(x) for x in t] column_labels = [ 'timestamp', 'hour', 'day', 'week', 'month', 'year', 'weekday'] time_df = pd.DataFrame(time_data, columns=column_labels) for i, row in time_df.iterrows(): cur.execute(time_table_insert, list(row)) # load user table user_data=[] for index, row in df.iterrows(): user_id=row["userId"] first_name= row["firstName"] last_name= row["lastName"] gendre=row["gender"] level=row["level"] list_user=[user_id, first_name, last_name, gendre, level] if list_user not in user_data: user_data.append(list_user) column_labels = ['user_id', 'first_name', 'last_name', 'gender', 'level'] user_df = pd.DataFrame(user_data, columns=column_labels) # insert user records for i, row in user_df.iterrows(): cur.execute(user_table_insert, tuple(row)) # insert songplay records df.ts=df.ts.map(datetime.fromtimestamp) for index, row in df.iterrows(): # get songid and artistid from song and artist tables cur.execute(song_select, (row.song, row.artist, row.length)) results = cur.fetchone() if results: songid, artistid = results else: songid, artistid = None, None # insert songplay record songplay_data = [] songplay_data.append(row.ts) songplay_data.append(row.userId) songplay_data.append(row.level) songplay_data.append(songid) songplay_data.append(artistid) songplay_data.append(row.sessionId) songplay_data.append(row.location) songplay_data.append(row.userAgent) cur.execute(songplay_table_insert, songplay_data) def process_data(cur, conn, filepath, func): """ given a created DB space, this function gets the filepath and give it as an arguments to th etwo functions that will process tha raw data. Arguments: cur {object}: element that will represent a dataset determined by a T-SQL query. Cursors allow to traverse row by row, read and eventually modify this result set. conn {object}: The connector allows you to connect to the following databases and perform multiple database actions filepath {str}: a string with the file path for each document. func {function}: a specific function name to execute Return: None """ # get all files matching extension from directory all_files = [] for root, dirs, files in os.walk(filepath): files = glob.glob(os.path.join(root,'*.json')) for f in files : all_files.append(os.path.abspath(f)) # get total number of files found num_files = len(all_files) print('{} files found in {}'.format(num_files, filepath)) # iterate over files and process for i, datafile in enumerate(all_files, 1): func(cur, datafile) conn.commit() print('{}/{} files processed.'.format(i, num_files)) def main(): conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student") cur = conn.cursor() process_data(cur, conn, filepath='data/song_data', func=process_song_file) process_data(cur, conn, filepath='data/log_data', func=process_log_file) conn.close() if __name__ == "__main__": main()
[ "noreply@github.com" ]
maullaina.noreply@github.com
71443d75a70b60067dca5151d9f4b254511d4d0a
1cba599fd19adf5c83dcaa68394f47f78dd15039
/store/migrations/0002_rename_price_product_unit_price.py
212285c394a257f2157a6935639367c08124a7b6
[]
no_license
I-am-vishalmaurya/Django_Store_Backend
f0b957d79fbad90d1d258b65934797f32911e7df
db910d606cdd751c467a4c0ddc6a5f02c1aa1ec6
refs/heads/master
2023-08-11T16:09:59.677089
2021-10-15T03:10:00
2021-10-15T03:10:00
393,366,931
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
# Generated by Django 3.2.5 on 2021-08-01 10:44 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('store', '0001_initial'), ] operations = [ migrations.RenameField( model_name='product', old_name='price', new_name='unit_price', ), ]
[ "vishalmaurya3112@gmail.com" ]
vishalmaurya3112@gmail.com
515d67d4076f5ef6779953138fa64a6a4359a46f
3b6e75ae5390abf9a47c22867fc967683e257301
/opnet_aa/baselines/tracking_utils.py
b55119fea4c22594c47cd133e1acfed477768fbe
[]
no_license
GakkiChen/OPNet-AA
fd24c591128559856c0c66104401fafee1708168
ca764439f24d7e1249a5ff6609b1e3dcb2343e88
refs/heads/main
2023-07-05T21:28:39.624750
2021-08-11T03:18:32
2021-08-11T03:18:32
390,297,756
0
0
null
null
null
null
UTF-8
Python
false
false
16,953
py
import json from pathlib import Path from typing import List, Dict, Tuple import pandas as pd import numpy as np import cv2 class VideoHandling(object): def __init__(self, vid_path: str, output_path: str = None): self.vid_path = vid_path self.output_path = output_path self.cap: cv2.VideoCapture = None self.vid_writer: cv2.VideoWriter = None self.current_frame: np.ndarray = None self.current_frame_index: int = -1 self.video_still_active: bool = False self.num_valid_frames = None self._init_video_cap() def _init_video_cap(self) -> None: self.cap = cv2.VideoCapture(self.vid_path) if not self.cap.isOpened(): raise 'Unable to open video {}'.format(self.vid_path) # for some reason cap always returns extra frame # our labels are aligned with the 300 first frames # thus, we will omit the last frame that cv2 reader returns self.num_valid_frames = self.cap.get(cv2.CAP_PROP_FRAME_COUNT) - 1 def _init_video_writer(self, w_frame, h_frame) -> None: self.vid_writer = cv2.VideoWriter(self.output_path, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), 30, (w_frame, h_frame)) def get_current_frame(self) -> np.ndarray: return self.current_frame def get_current_frame_index(self) -> int: return self.current_frame_index def check_video_still_active(self) -> bool: return self.current_frame_index < self.num_valid_frames def write_debug_frame(self) -> None: frame = self.current_frame h_frame, w_frame, _ = frame.shape # init video writer if not initiated yet if self.vid_writer is None: self._init_video_writer(w_frame, h_frame) self.vid_writer.write(frame) def read_next_frame(self) -> None: _, frame = self.cap.read() # update current frame and status self.current_frame = frame self.current_frame_index += 1 def write_bb_to_frame(self, bbox: List[int], color: Tuple[int, int, int]) -> None: frame = self.current_frame cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 3) def complete_video_writing(self) -> None: self.cap.release() self.vid_writer.release() class DataHelper(object): @staticmethod def parse_obj_gt_bb(bb_gt: Dict[str, List[List[int]]], object_name: str = "small_gold_spl_metal_Spl_0") -> List[List[int]]: object_bb = bb_gt[object_name] # transform from xy_wh bb format to xy_xy format object_bb = [[x, y, x + w, y + h] for x, y, w, h in object_bb] return object_bb @staticmethod def read_obj_gt_bb(vid_path: str, bb_dir_path: str) -> List[List[int]]: video_name = Path(vid_path).stem video_bb_file_suffix = video_name + "_bb.json" video_bb_full_path = Path(bb_dir_path) / video_bb_file_suffix with open(video_bb_full_path, "rb") as f: bb_objects_gt: Dict[str, List[List[int]]] = json.load(f) snitch_gt_bb = DataHelper.parse_obj_gt_bb(bb_objects_gt) return snitch_gt_bb @staticmethod def write_bb_predictions_to_file(video_path: str, predictions_dir: str, snitch_bb_prediction: List[List[int]]) -> None: video_name = Path(video_path).stem prediction_file_name = video_name + "_bb.json" predictions_path = Path(predictions_dir) / prediction_file_name snitch_bb_prediction = [[int(x1), int(y1), int(x2), int(y2)] for [x1, y1, x2, y2] in snitch_bb_prediction] with open(predictions_path, 'w') as f: json.dump(snitch_bb_prediction, f, indent=2) class ResultsAnalyzer(object): @staticmethod def compute_iou_for_frame(box_1: List[int], box_2: List[int]) -> float: """ computes intersection over union of two bounding boxes arrays it's a symmetrical measurement, it doesn't matter which one it prediction and which one it ground truth """ # obtain the X,Y of the intersection rectangle intersection_x_1: int = max(box_1[0], box_2[0]) intersection_y_1: int = max(box_1[1], box_2[1]) intersection_x_2: int = min(box_1[2], box_2[2]) intersection_y_2: int = min(box_1[3], box_2[3]) # calc the area of intersection rectangle intersection_area: int = max(0, intersection_x_2 - intersection_x_1 + 1) * max(0, intersection_y_2 - intersection_y_1 + 1) # compute the area of both the prediction and ground-truth rectangles box_1_area: int = (box_1[2] - box_1[0] + 1) * (box_1[3] - box_1[1] + 1) box_2_area: int = (box_2[2] - box_2[0] + 1) * (box_2[3] - box_2[1] + 1) # Subtracting interArea because we sum it twice union_area: int = box_1_area + box_2_area - intersection_area # compute intersection over union iou: float = intersection_area / float(union_area) return iou @staticmethod def compute_vectorized_iou_for_video(boxes_1: np.ndarray, boxes_2: np.ndarray) -> np.ndarray: # divide the boxes to coordinates x11, y11, x12, y12 = np.split(boxes_1, 4, axis=1) x21, y21, x22, y22 = np.split(boxes_2, 4, axis=1) # obtain XY of intersection rectangle area xA: np.ndarray = np.maximum(x11, x21) yA: np.ndarray = np.maximum(y11, y21) xB: np.ndarray = np.minimum(x12, x22) yB: np.ndarray = np.minimum(y12, y22) # compute intersection area interArea: np.ndarray = np.maximum((xB - xA + 1), 0) * np.maximum((yB - yA + 1), 0) # compute each one of the boxes area boxAArea: np.ndarray = (x12 - x11 + 1) * (y12 - y11 + 1) boxBArea: np.ndarray = (x22 - x21 + 1) * (y22 - y21 + 1) iou: np.ndarray = interArea / (boxAArea + boxBArea - interArea) iou = iou.flatten() return iou @classmethod def init_from_files(cls, bb_prediction_dir: str, bb_gt_dir: str, iou_thresh: float = None): video_files: List[str] = [] video_bb_predictions: Dict[str, List[List[int]]] = {} video_bb_gt: Dict[str, List[List[int]]] = {} # parse predictions predictions_files = Path(bb_prediction_dir).glob("*.json") for f_predict in predictions_files: # extract video name video_name = f_predict.stem[:-3] # remove _bb suffix video_files.append(video_name) # read and parse json file with open(f_predict, "rb") as f: snitch_predictions_locations: List[List[int]] = json.load(f) # fix bug in current ground truth locations, remove first frame annotations # snitch_predictions_locations = snitch_predictions_locations[1:] video_bb_predictions[video_name] = snitch_predictions_locations # parse ground truth locations gt_files = Path(bb_gt_dir).glob("*.json") for f_gt in gt_files: # extract video name video_name = f_gt.stem[:-3] # remove _bb suffix # skip videos we don't have predictions for if video_name in video_files: # read and parse json file with open(f_gt, "rb") as f: all_objects_locations: Dict[str, List[List[int]]] = json.load(f) snitch_gt_locations: List[List[int]] = DataHelper.parse_obj_gt_bb(all_objects_locations) video_bb_gt[video_name] = snitch_gt_locations # sort data to make sure predictions and ground truth are aligned to same video sorted_bb_predictions = sorted(video_bb_predictions.items(), key=lambda x: x[0]) sorted_bb_gt = sorted(video_bb_gt.items(), key=lambda x: x[0]) video_files = sorted(video_files) bb_predictions: List[List[List[int]]] = [bb_pred for video_name, bb_pred in sorted_bb_predictions] bb_gt: List[List[List[int]]] = [bb_gt for video_name, bb_gt in sorted_bb_gt] return cls(video_files, bb_predictions, bb_gt, iou_thresh) def __init__(self, videos_files: List[str], bb_predictions: List[List[List[int]]], bb_gt: List[List[List[int]]], iou_thresh: List[float] = None): assert len(videos_files) == len(bb_predictions) == len(bb_gt) self.videos_names: List[str] = [] self.videos_num_frames: Dict[str, int] = {} self.bb_predictions: Dict[str, List[List[int]]] = {} self.bb_gt: Dict[str, List[List[int]]] = {} self.iou_results: Dict[str, List[float]] = {} self.map_results: Dict[str, Dict[str, List[bool]]] = {thresh: {} for thresh in iou_thresh} if iou_thresh else {} self.videos_metrics: Dict[str, Dict[str, float]] = {} self.iou_thresh: List[float] = iou_thresh self._init_videos_data(videos_files, bb_predictions, bb_gt) self._compute_iou_results() self._compute_bool_overlap(self.iou_thresh) def _init_videos_data(self, videos_files: List[str], bb_predictions: List[List[List[int]]], bb_gt: List[List[List[int]]]) -> None: all_videos_names = list(map(lambda x: Path(x).stem, videos_files)) num_potential_videos = len(all_videos_names) for i in range(num_potential_videos): current_video = all_videos_names[i] current_predictions = bb_predictions[i] current_gt = bb_gt[i] current_video_length = len(current_gt) if -100 in current_predictions: continue # skip defected videos self.bb_predictions[current_video] = current_predictions self.bb_gt[current_video] = current_gt self.videos_num_frames[current_video] = current_video_length self.videos_names.append(current_video) def _compute_iou_results(self) -> None: for video_name in self.videos_names: video_predictions: np.ndarray = np.array(self.bb_predictions[video_name]) video_gt: np.ndarray = np.array(self.bb_gt[video_name]) batch_video_iou_results = self.compute_vectorized_iou_for_video(video_predictions, video_gt) self.iou_results[video_name] = batch_video_iou_results def _compute_bool_overlap(self, iou_thresh) -> None: if iou_thresh is not None: for threshold in iou_thresh: for video_name, frame_iou in self.iou_results.items(): self.map_results[threshold][video_name] = frame_iou > threshold def get_frames_mask(self, occlusion_frames_file: str) -> Dict[str, np.ndarray]: occlusion_masks = {} with open(occlusion_frames_file, "r") as f: for line in f: line = line[:-1] video_name, occlusion_frames_str = line.split("\t") if video_name not in self.bb_gt: continue if occlusion_frames_str == "": occlusion_frames = [] else: occlusion_frames = np.array(occlusion_frames_str.split(","), dtype=np.int) video_length = self.videos_num_frames[video_name] mask = np.zeros(video_length, dtype=np.bool) mask[occlusion_frames] = True occlusion_masks[video_name] = mask return occlusion_masks def compute_aggregated_metric(self, aggregations_name: str, aggregation_function, metric: str = "iou") -> None: if metric == "iou": video_mean_results = {} for video_name in self.videos_names: video_metric_results = np.array(self.iou_results[video_name]) video_mean_metric = float(aggregation_function(video_metric_results)) video_mean_results[video_name] = video_mean_metric self.videos_metrics[f"{aggregations_name}_{metric}"] = video_mean_results elif metric == "map": for iou_threshold, video_overlap_dict in self.map_results.items(): video_mean_results = {} for video_name in self.videos_names: video_metric_results = np.array(video_overlap_dict[video_name]) video_mean_metric = float(aggregation_function(video_metric_results)) video_mean_results[video_name] = video_mean_metric self.videos_metrics[f"{aggregations_name}_{metric}_{iou_threshold}"] = video_mean_results else: raise NotImplementedError("This metric is not supported") def get_videos_names(self): return self.videos_names def compute_metric_mask(self, occlusions_mask: Dict[str, np.ndarray], video_metric_results: np.ndarray, aggregation_function, video_name: str): video_mean_results = {} video_mask: List[bool] = occlusions_mask[video_name] num_mask_frames = np.sum(video_mask) if num_mask_frames == 0: video_mean_metric = np.nan else: video_metric_mask_frames = video_metric_results[video_mask] video_mean_metric = float(aggregation_function(video_metric_mask_frames)) video_mean_results[video_name] = video_mean_metric return video_mean_results def compute_aggregated_metric_masking_frames(self, aggregation_name: str, aggregation_function, occlusions_mask: Dict[str, np.ndarray], metric: str = "iou") -> None: ratio_column_name = f"{aggregation_name}_ratio" video_mask_ratio = {} if metric == "iou": video_metric = {} metric_column_name = f"{aggregation_name}_mean_{metric}" for video_name in self.videos_names: video_metric_results = np.array(self.iou_results[video_name]) video_metric.update(self.compute_metric_mask(occlusions_mask, video_metric_results, aggregation_function, video_name)) video_mask = occlusions_mask[video_name] num_mask_frames = np.sum(video_mask) if num_mask_frames == 0: mask_ratio = 0.0 else: mask_ratio = num_mask_frames / len(video_mask) video_mask_ratio[video_name] = mask_ratio self.videos_metrics[metric_column_name] = video_metric self.videos_metrics[ratio_column_name] = video_mask_ratio elif metric == "map": video_metric = {key: {} for key in self.map_results.keys()} for video_name in self.videos_names: for threshold, video_overlap in self.map_results.items(): video_metric_results = np.array(video_overlap[video_name]) video_metric[threshold].update(self.compute_metric_mask(occlusions_mask, video_metric_results, aggregation_function, video_name)) for threshold, map_value in video_metric.items(): metric_column_name = f"{aggregation_name}_mean_{metric}_{threshold}" self.videos_metrics[metric_column_name] = map_value else: raise NotImplementedError("This metric is not supported") def compute_precision_data(self, thresholds: List[float] = None, occlusions_mask: Dict[str, np.ndarray] = None): if thresholds is None: thresholds = [i / 20 for i in range(20)] # 0 - 0.95 with 0.05 step with_occlusions = False if occlusions_mask is not None: with_occlusions = True for t in thresholds: def t_agg_func(x): return np.sum(x > t) / x.shape[0] if with_occlusions: aggregation_name = f"occ_precision_{t}" self.compute_aggregated_metric_masking_frames("iou", aggregation_name, t_agg_func, occlusions_mask) else: aggregation_name = f"precision_{t}" self.compute_aggregated_metric("iou", aggregation_name, t_agg_func) def get_analysis_df(self) -> pd.DataFrame: video_data = { "videos_names": sorted(self.videos_names) } for metric_name, metric_data_dict in self.videos_metrics.items(): sorted_metric_data = sorted(metric_data_dict.items(), key=lambda x: x[0]) metric_values = list(map(lambda x: x[1], sorted_metric_data)) video_data[metric_name] = metric_values results_df = pd.DataFrame.from_dict(video_data) return results_df def write_results(self, results_filepath: str) -> None: # create a dictionary later be converted to DataFrame results_df = self.get_analysis_df() results_df = results_df.round(3) results_df.to_csv(results_filepath, index=None)
[ "noreply@github.com" ]
GakkiChen.noreply@github.com
7622759d9e9e7476c8de41b06c5d38bac544425b
782a3a5dfd619edf015e3000f9bcd6607dd9a027
/MISC/mainDNN.py
636f6ef4c420a586628bc13819a24f63f7096198
[]
no_license
yujianyuanhaha/BerPredict
b0ee5d0ad9b3f7e90f49bab0954d0ba903db89a4
57f3d15e04399ac114fd0188c35670de791e30fe
refs/heads/master
2022-04-21T20:34:09.211610
2020-04-20T14:12:31
2020-04-20T14:12:31
214,231,021
1
0
null
null
null
null
UTF-8
Python
false
false
2,849
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 12 11:09:17 2019 @author: Jet 1. TODO, lack of early stop, likely overfit """ import time import os import math os.environ["KMP_DUPLICATE_LIB_OK"] = "1" # sometime make "1" for Mac import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD import numpy as np from keras.utils import to_categorical import hdf5storage from keras import callbacks from keras.callbacks import EarlyStopping import matplotlib.pyplot as plt early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1, mode='auto') # ---------------- settings--------------------------------- epochs = 20 ID = 0 # 0 for umit, 1 for mit MAXdB = 40 batch_size = 4096 # ---------------- load data --------------------------------- t = hdf5storage.loadmat('./DATA/X_200k.mat') X = t['X'] t = hdf5storage.loadmat('./DATA/Y_200k.mat') U = t['Y'] Ndat = U.shape[0] U = - 10*(np.log(U/1000)/np.log(10)); # log value for i in range(0,Ndat): for j in range(0,2): if np.isinf(U[i,j]) or np.isnan(U[i,j]) or U[i,j] > MAXdB: U[i,j] = MAXdB U[i,j] = int(U[i,j]/2.50) plt.figure(2) plt.hist(U[:,1],bins=64) plt.ylabel('Number of occurence') plt.xlabel('BER (-10log)') plt.grid(True) plt.title('histogram of BER') plt.savefig('./hist_BER_umit_float.png') Y = to_categorical(U[:,ID] ) numClass = Y.shape[1] Xtest = X[ int(X.shape[0]*0.8):,:] Ytest = Y[ int(X.shape[0]*0.8):] Xtrain = X[ :int(X.shape[0]*0.8),:] Ytrain = Y[ :int(X.shape[0]*0.8)] # ---------------- constrcut NN --------------------------------- tic = time.time() model = Sequential() model.add(Dense(256, activation='relu')) #model.add(Dropout(0.2)) model.add(Dense(256, activation='relu')) #model.add(Dropout(0.2)) model.add(Dense(256, activation='relu')) #model.add(Dropout(0.2)) model.add(Dense(numClass, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, \ nesterov=True) model.compile(loss='mse', optimizer='Adam', metrics=['accuracy']) model.fit(Xtrain, Ytrain, epochs=epochs, batch_size=batch_size, shuffle = True, validation_split=0.1, callbacks=[early_stop]) model.summary() toc = time.time() timeCost = toc - tic print( "--- Totally %s seconds ---" %(timeCost)) # ---------------- eval NN --------------------------------- score = model.evaluate(Xtest, Xtest, batch_size=128) y_pred = model.predict(Xtest) y_pred = np.argmax(y_pred,axis=1) y_test = np.argmax(Ytest,axis=1) acc = np.sum(y_pred==y_test)*1.0/len(y_test) print( "--- acc %s ---" %(acc)) import scipy.io as sio sio.savemat('DNN_Ypred.mat', {'y_pred':y_pred}); sio.savemat('DNN_Ytest.mat',{'y_test': y_test});
[ "cherry.figh0918@gmail.com" ]
cherry.figh0918@gmail.com
bcd167bec77fb09db4e886c1b90754f3a3fb8aaf
c150eb515e39f81b7e324bb27b1a506ecd2e35a0
/project-base/album/migrations/0004_auto_20180401_1945.py
d885ade1352a1494f55c5cfa04449bc4da93e9d2
[]
no_license
anwar03/PhotoShare
194a7ecc7663e14ab64355f9a203ae946f6239a5
6851945948be08176ca863f9a722f4168fc917a2
refs/heads/master
2020-03-07T09:41:37.218387
2018-04-05T13:38:30
2018-04-05T13:38:30
127,413,902
0
0
null
null
null
null
UTF-8
Python
false
false
1,995
py
# Generated by Django 2.0.3 on 2018-04-01 19:45 import album.models from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('album', '0003_auto_20180331_1027'), ] operations = [ migrations.RenameField( model_name='album', old_name='uploaded_at', new_name='created_at', ), migrations.RemoveField( model_name='album', name='album_name', ), migrations.AddField( model_name='album', name='name', field=models.CharField(blank=True, max_length=100), ), migrations.AddField( model_name='album', name='password', field=models.CharField(default=album.models.password_generator, max_length=6, unique=True), ), migrations.AddField( model_name='album', name='slug', field=models.SlugField(default=album.models.slug_generator, max_length=10, unique=True), ), migrations.AddField( model_name='image', name='publisher', field=models.ForeignKey(default='', on_delete=django.db.models.deletion.CASCADE, related_name='images', to=settings.AUTH_USER_MODEL), preserve_default=False, ), migrations.AddField( model_name='image', name='uploaded_at', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AlterField( model_name='album', name='publisher', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='album', to=settings.AUTH_USER_MODEL), ), ]
[ "anwarazim03@gmail.com" ]
anwarazim03@gmail.com
1f5383f1a0601d5509be673f0da83b08ffd1c253
8a025f191ccfee9ffa05af4b0fa03110ab09d777
/tests.py
0f8fa65a9c15bc266631310491598ab31f919992
[ "MIT" ]
permissive
quentinguidee/todo-cli
3c68451794d8d24e228ee2f8a8b5d97b2190650d
7e91579a9046ef6ce7720835550410ef068bbfbb
refs/heads/main
2023-06-01T23:57:53.959091
2021-06-20T13:01:47
2021-06-20T13:04:35
376,773,183
5
2
MIT
2021-06-19T08:51:10
2021-06-14T09:42:57
Python
UTF-8
Python
false
false
949
py
import sys import unittest from tests.e2e.test_e2e import TestE2E from tests.unit_tests.test_storage import TestStorage from tests.unit_tests.test_task import TestTask from tests.unit_tests.test_task import TestTaskStatus from tests.unit_tests.test_event import TestEvent from tests.unit_tests.test_time import TestTime def tests_suite(): suite = unittest.TestSuite([ unittest.TestLoader().loadTestsFromTestCase(TestTaskStatus), unittest.TestLoader().loadTestsFromTestCase(TestTask), unittest.TestLoader().loadTestsFromTestCase(TestTime), unittest.TestLoader().loadTestsFromTestCase(TestEvent), unittest.TestLoader().loadTestsFromTestCase(TestStorage), unittest.TestLoader().loadTestsFromTestCase(TestE2E), ]) return suite if __name__ == '__main__': runner = unittest.TextTestRunner() success = runner.run(tests_suite()).wasSuccessful() sys.exit(1 if not success else 0)
[ "quentin.guidee@gmail.com" ]
quentin.guidee@gmail.com
10d13a7fa211f2e897ffa0cba4545edf6a108753
97ae9eb19037ad15943baa5298a12a5dabcd86b5
/gridworld.py
12e26c19db0a00d1a6153ffb1e2b35108d923ed7
[]
no_license
shunzh/Keepaway
2f6bf608a67e9163b6b8544761fdbfd63f120090
056ba40c7ad5e0c99f705b02e06cd4423f2f15d0
refs/heads/master
2021-01-21T13:17:52.518043
2016-04-18T23:42:32
2016-04-18T23:42:32
54,331,895
2
0
null
null
null
null
UTF-8
Python
false
false
25,924
py
# gridworld.py # ------------ # Licensing Information: Please do not distribute or publish solutions to this # project. You are free to use and extend these projects for educational # purposes. The Pacman AI projects were developed at UC Berkeley, primarily by # John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html import random import sys import mdp import environment import util import optparse import pickle class Gridworld(mdp.MarkovDecisionProcess): """ Gridworld """ def __init__(self, grid, transition = None): """ A gridworld might have biased transition function. If so, idicate that by transition argument. Otherwise, that argument is None, and the agent follows uniform distribution. """ # layout if type(grid) == type([]): grid = makeGrid(grid) self.grid = grid self.transition = transition # parameters self.livingReward = 0.0 self.noise = 0.2 def setLivingReward(self, reward): """ The (negative) reward for exiting "normal" states. Note that in the R+N text, this reward is on entering a state and therefore is not clearly part of the state's future rewards. """ self.livingReward = reward def setNoise(self, noise): """ The probability of moving in an unintended direction. """ self.noise = noise def getPossibleActions(self, state): """ Returns list of valid actions for 'state'. Note that you can request moves into walls and that "exit" states transition to the terminal state under the special action "done". """ if state == self.grid.terminalState: return () x,y = state if type(self.grid[x][y]) == int: return ('exit',) return ('north','west','south','east') def getStates(self): """ Return list of all states. """ # The true terminal state. states = [self.grid.terminalState] for x in range(self.grid.width): for y in range(self.grid.height): if self.grid[x][y] != '#': state = (x,y) states.append(state) return states def getReward(self, state, action, nextState): """ Get reward for state, action, nextState transition. Note that the reward depends only on the state being departed (as in the R+N book examples, which more or less use this convention). """ if state == self.grid.terminalState: return 0.0 x, y = state cell = self.grid[x][y] if type(cell) == int or type(cell) == float: return cell return self.livingReward def getStartState(self): """ Start state should be marked as 'S' If there are mutliple start states, choose randomly """ startStateSet = [] for x in range(self.grid.width): for y in range(self.grid.height): if self.grid[x][y] == 'S': startStateSet.append((x, y)) if startStateSet == []: raise 'Grid has no start state' else: return random.choice(startStateSet) def isTerminal(self, state): """ Only the TERMINAL_STATE state is *actually* a terminal state. The other "exit" states are technically non-terminals with a single action "exit" which leads to the true terminal state. This convention is to make the grids line up with the examples in the R+N textbook. """ return state == self.grid.terminalState def getTransitionStatesAndProbs(self, state, action): """ Returns list of (nextState, prob) pairs representing the states reachable from 'state' by taking 'action' along with their transition probabilities. """ if action not in self.getPossibleActions(state): raise "Illegal action!" if self.isTerminal(state): return [] if self.transition != None and type(self.transition[state, action]) == type([]): # when this transition mapping is initialized # the transition is in util.Counter type. 0 for uninitialized entries. return self.transition[state, action] x, y = state if type(self.grid[x][y]) == int or type(self.grid[x][y]) == float: termState = self.grid.terminalState return [(termState, 1.0)] successors = [] northState = (self.__isAllowed(y+1,x) and (x,y+1)) or state westState = (self.__isAllowed(y,x-1) and (x-1,y)) or state southState = (self.__isAllowed(y-1,x) and (x,y-1)) or state eastState = (self.__isAllowed(y,x+1) and (x+1,y)) or state if action == 'north' or action == 'south': if action == 'north': successors.append((northState,1-self.noise)) else: successors.append((southState,1-self.noise)) massLeft = self.noise successors.append((westState,massLeft/2.0)) successors.append((eastState,massLeft/2.0)) if action == 'west' or action == 'east': if action == 'west': successors.append((westState,1-self.noise)) else: successors.append((eastState,1-self.noise)) massLeft = self.noise successors.append((northState,massLeft/2.0)) successors.append((southState,massLeft/2.0)) successors = self.__aggregate(successors) return successors def __aggregate(self, statesAndProbs): counter = util.Counter() for state, prob in statesAndProbs: counter[state] += prob newStatesAndProbs = [] for state, prob in counter.items(): newStatesAndProbs.append((state, prob)) return newStatesAndProbs def __isAllowed(self, y, x): if y < 0 or y >= self.grid.height: return False if x < 0 or x >= self.grid.width: return False return self.grid[x][y] != '#' class BairdsGridworld(Gridworld): """ (0,1), (1,1), (2,1), (3,1), (4,1) \ \ | / / > > \ / < < (2,0)->(3,0) Rewards are all 0. The world of Baird's Counter-example. Its transition model is different from a normal gridworld. So it's defined separately. """ def getPossibleActions(self, state): "V1 to V5 can only go down to V6. V6 can stay or go right." if self.isTerminal(state): return [] elif state == (3, 0): return ['exit'] else: return ['south'] class GridworldEnvironment(environment.Environment): def __init__(self, gridWorld): self.gridWorld = gridWorld self.reset() def getCurrentState(self): return self.state def getPossibleActions(self, state): return self.gridWorld.getPossibleActions(state) def doAction(self, action): successors = self.gridWorld.getTransitionStatesAndProbs(self.state, action) sum = 0.0 rand = random.random() state = self.getCurrentState() for nextState, prob in successors: sum += prob if sum > 1.0: raise 'Total transition probability more than one; sample failure.' if rand < sum: reward = self.gridWorld.getReward(state, action, nextState) self.state = nextState return (nextState, reward) raise 'Total transition probability less than one; sample failure.' def reset(self): self.state = self.gridWorld.getStartState() class Grid: """ A 2-dimensional array of immutables backed by a list of lists. Data is accessed via grid[x][y] where (x,y) are cartesian coordinates with x horizontal, y vertical and the origin (0,0) in the bottom left corner. The __str__ method constructs an output that is oriented appropriately. """ def __init__(self, width, height, initialValue=' '): self.width = width self.height = height self.data = [[initialValue for y in range(height)] for x in range(width)] self.terminalState = 'TERMINAL_STATE' def __getitem__(self, i): return self.data[i] def __setitem__(self, key, item): self.data[key] = item def __eq__(self, other): if other == None: return False return self.data == other.data def __hash__(self): return hash(self.data) def copy(self): g = Grid(self.width, self.height) g.data = [x[:] for x in self.data] return g def deepCopy(self): return self.copy() def shallowCopy(self): g = Grid(self.width, self.height) g.data = self.data return g def _getLegacyText(self): t = [[self.data[x][y] for x in range(self.width)] for y in range(self.height)] t.reverse() return t def __str__(self): return str(self._getLegacyText()) def makeGrid(gridString): width, height = len(gridString[0]), len(gridString) grid = Grid(width, height) for ybar, line in enumerate(gridString): y = height - ybar - 1 for x, el in enumerate(line): grid[x][y] = el return grid def getCliffGrid(): grid = [[' ',' ',' ',' ',' '], ['S',' ',' ',' ',10], [-100,-100, -100, -100, -100]] return Gridworld(makeGrid(grid)) def getCliffGrid2(): grid = [[' ',' ',' ',' ',' '], [8,'S',' ',' ',10], [-100,-100, -100, -100, -100]] return Gridworld(grid) def getDiscountGrid(): grid = [[' ',' ',' ',' ',' '], [' ','#',' ',' ',' '], [' ','#', 1,'#', 10], ['S',' ',' ',' ',' '], [-10,-10, -10, -10, -10]] return Gridworld(grid) def getBridgeGrid(): grid = [[ '#',-100, -100, -100, -100, -100, '#'], [ 1, 'S', ' ', ' ', ' ', ' ', 10], [ '#',-100, -100, -100, -100, -100, '#']] return Gridworld(grid) def getBookGrid(): grid = [[' ',' ',' ',+1], [' ','#',' ',' '], ['S',' ',' ',' ']] return Gridworld(grid) def getMazeGrid(): grid = [[' ',' ',' ',+1], ['#','#',' ','#'], [' ','#',' ',' '], [' ','#','#',' '], ['S',' ',' ',' ']] return Gridworld(grid) def getRandomWalk(): grid = [[0,' ',' ','S',' ',' ',1]] return Gridworld(grid) def getFourRoomGrid(): grid = [['S','S','S','S','S','#',' ',' ',' ',' ',' '], ['S','S','S','S','S','#',' ',' ',' ',' ',' '], ['S','S','S','S','S',' ',' ',' ',' ',' ',' '], ['S','S','S','S','S','#',' ',' ',' ',' ',' '], ['S','S','S','S','S','#',' ',' ',' ',' ',' '], ['#',' ','#','#','#','#','#','#',' ','#','#'], [' ',' ',' ',' ',' ','#',' ',' ',' ',' ',' '], [' ',' ',' ',' ',' ','#',' ',' ',' ',' ',' '], [' ',' ',' ',' ',' ','#',' ',' ',' ',' ',' '], [' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',1], [' ',' ',' ',' ',' ','#',' ',' ',' ',' ',' ']] return Gridworld(grid) def getBairdsGrid(): """ (0,1), (1,1), (2,1), (3,1), (4,1) \ \ | / / > > \ / < < (2,0)->(3,0) """ grid = [['S','S','S','S','S'], ['#','#',' ','#','#']] transition = util.Counter() # first row for i in range(0, 5): transition[(i, 1), 'south'] = [((2, 0), 1)] # second row transition[(2, 0), 'south'] = [((2, 0), .99), ('TERMINAL_STATE', .01)] return BairdsGridworld(grid, transition) def getUserAction(state, actionFunction): """ Get an action from the user (rather than the agent). Used for debugging and lecture demos. """ import graphicsUtils action = None while True: keys = graphicsUtils.wait_for_keys() if 'Up' in keys: action = 'north' if 'Down' in keys: action = 'south' if 'Left' in keys: action = 'west' if 'Right' in keys: action = 'east' if 'q' in keys: sys.exit(0) if action == None: continue break actions = actionFunction(state) if action not in actions: action = actions[0] return action def printString(x): print x def runEpisode(agent, environment, discount, decision, display, message, pause, episode): returns = 0 totalDiscount = 1.0 environment.reset() if 'startEpisode' in dir(agent): agent.startEpisode() message("BEGINNING EPISODE: "+str(episode)+"\n") while True: # DISPLAY CURRENT STATE state = environment.getCurrentState() display(state) pause() # END IF IN A TERMINAL STATE actions = environment.getPossibleActions(state) if len(actions) == 0: message("EPISODE "+str(episode)+" COMPLETE: RETURN WAS "+str(returns)+"\n") return returns # GET ACTION (USUALLY FROM AGENT) action = decision(state) if action == None: raise 'Error: Agent returned None action' # EXECUTE ACTION nextState, reward = environment.doAction(action) message("Started in state: "+str(state)+ "\nTook action: "+str(action)+ "\nEnded in state: "+str(nextState)+ "\nGot reward: "+str(reward)+"\n") # UPDATE LEARNER if 'observeTransition' in dir(agent): agent.observeTransition(state, action, nextState, reward) returns += reward * totalDiscount totalDiscount *= discount def parseOptions(): optParser = optparse.OptionParser() optParser.add_option('-d', '--discount',action='store', type='float',dest='discount',default=0.9, help='Discount on future (default %default)') optParser.add_option('-r', '--livingReward',action='store', type='float',dest='livingReward',default=0.0, metavar="R", help='Reward for living for a time step (default %default)') optParser.add_option('-n', '--noise',action='store', type='float',dest='noise',default=0.2, metavar="P", help='How often action results in ' + 'unintended direction (default %default)' ) optParser.add_option('-e', '--epsilon',action='store', type='float',dest='epsilon',default=0.3, metavar="E", help='Chance of taking a random action in q-learning (default %default)') optParser.add_option('-x', '--lambda',action='store', type='float',dest='lambdaValue',default=0.9, help='Lambda for SARSA(lambda) (default %default)') optParser.add_option('-l', '--learningRate',action='store', type='float',dest='learningRate',default=0.1, metavar="P", help='TD learning rate (default %default)' ) optParser.add_option('-i', '--iterations',action='store', type='int',dest='iters',default=10, metavar="K", help='Number of rounds of value iteration (default %default)') optParser.add_option('-k', '--episodes',action='store', type='int',dest='episodes',default=1, metavar="K", help='Number of epsiodes of the MDP to run (default %default)') optParser.add_option('-g', '--grid',action='store', metavar="G", type='string',dest='grid',default="BookGrid", help='Grid to use (case sensitive; options are BookGrid, BridgeGrid, CliffGrid, MazeGrid, default %default)' ) optParser.add_option('-w', '--windowSize', metavar="X", type='int',dest='gridSize',default=150, help='Request a window width of X pixels *per grid cell* (default %default)') optParser.add_option('-a', '--agent',action='store', metavar="A", type='string',dest='agent',default="random", help='Agent type (options are \'random\', \'value\' and \'q\', default %default)') optParser.add_option('-f', '--feature',action='store', metavar="A", type='string',dest='extractor',default="IdentityExtractor", help='Type of extractor if function approximation is applied.') optParser.add_option('-t', '--text',action='store_true', dest='textDisplay',default=False, help='Use text-only ASCII display') optParser.add_option('-p', '--pause',action='store_true', dest='pause',default=False, help='Pause GUI after each time step when running the MDP') optParser.add_option('-q', '--quiet',action='store_true', dest='quiet',default=False, help='Skip display of any learning episodes') optParser.add_option('-y', '--replace',action='store_true', dest='replace',default=False, help='Replacing trace applied') optParser.add_option('-z', '--fileoutput',action='store_true', dest='fileoutput',default=False, help='File output') optParser.add_option('-s', '--speed',action='store', metavar="S", type=float, dest='speed',default=1.0, help='Speed of animation, S > 1.0 is faster, 0.0 < S < 1.0 is slower (default %default)') optParser.add_option('-m', '--manual',action='store_true', dest='manual',default=False, help='Manually control agent') optParser.add_option('-v', '--valueSteps',action='store_true' ,default=False, help='Display each step of value iteration') opts, args = optParser.parse_args() if opts.manual and opts.agent != 'q': print '## Disabling Agents in Manual Mode (-m) ##' opts.agent = None # MANAGE CONFLICTS if opts.textDisplay or opts.quiet: # if opts.quiet: opts.pause = False # opts.manual = False if opts.manual: opts.pause = True return opts def checkPolicy(agent): """ FIXME should be generalized! the difference between optimal policy and this policy """ p = agent.getPolicy consistence = [p((0, 0)) == 'north', p((0, 1)) == 'north', p((0, 2)) == 'east', p((1, 2)) == 'east', p((2, 2)) == 'east'] return consistence.count(True) if __name__ == '__main__': opts = parseOptions() ########################### # GET THE GRIDWORLD ########################### import gridworld mdpFunction = getattr(gridworld, "get"+opts.grid) mdp = mdpFunction() mdp.setLivingReward(opts.livingReward) mdp.setNoise(opts.noise) env = gridworld.GridworldEnvironment(mdp) ########################### # GET THE DISPLAY ADAPTER ########################### import textGridworldDisplay display = textGridworldDisplay.TextGridworldDisplay(mdp) if not opts.textDisplay: import graphicsGridworldDisplay display = graphicsGridworldDisplay.GraphicsGridworldDisplay(mdp, opts.gridSize, opts.speed) display.start() ########################### # GET THE AGENT ########################### import valueIterationAgents, qlearningAgents, sarsaLambdaAgents a = None if opts.agent == 'value': a = valueIterationAgents.ValueIterationAgent(mdp, opts.discount, opts.iters) elif opts.agent == 'valueApproximate': actionFn = lambda state: mdp.getPossibleActions(state) qLearnOpts = {'gamma': opts.discount, 'iterations': opts.iters, 'mdp': mdp, 'alpha': opts.learningRate, 'epsilon': opts.epsilon, 'extractor': opts.extractor, 'actionFn': actionFn} a = valueIterationAgents.ApproximateValueIterAgent(**qLearnOpts) elif opts.agent == 'q': #env.getPossibleActions, opts.discount, opts.learningRate, opts.epsilon #simulationFn = lambda agent, state: simulation.GridworldSimulation(agent,state,mdp) actionFn = lambda state: mdp.getPossibleActions(state) qLearnOpts = {'gamma': opts.discount, 'alpha': opts.learningRate, 'epsilon': opts.epsilon, 'actionFn': actionFn} a = qlearningAgents.QLearningAgent(**qLearnOpts) elif opts.agent == 'qApproximate': actionFn = lambda state: mdp.getPossibleActions(state) qLearnOpts = {'gamma': opts.discount, 'alpha': opts.learningRate, 'epsilon': opts.epsilon, 'extractor': opts.extractor, 'actionFn': actionFn} a = qlearningAgents.ApproximateQAgent(**qLearnOpts) elif opts.agent == 'sarsa': actionFn = lambda state: mdp.getPossibleActions(state) qLearnOpts = {'gamma': opts.discount, 'alpha': opts.learningRate, 'epsilon': opts.epsilon, 'lambdaValue' : opts.lambdaValue, 'replace' : opts.replace, 'actionFn': actionFn} a = sarsaLambdaAgents.SarsaLambdaAgent(**qLearnOpts) elif opts.agent == 'sarsaApproximate': actionFn = lambda state: mdp.getPossibleActions(state) qLearnOpts = {'gamma': opts.discount, 'alpha': opts.learningRate, 'epsilon': opts.epsilon, 'extractor': opts.extractor, 'lambdaValue' : opts.lambdaValue, 'replace' : opts.replace, 'actionFn': actionFn} a = sarsaLambdaAgents.ApproximateSarsaAgent(**qLearnOpts) elif opts.agent == 'random': # # No reason to use the random agent without episodes if opts.episodes == 0: opts.episodes = 10 class RandomAgent: def getAction(self, state): return random.choice(mdp.getPossibleActions(state)) def getValue(self, state): return 0.0 def getQValue(self, state, action): return 0.0 def getPolicy(self, state): "NOTE: 'random' is a special policy value; don't use it in your code." return 'random' def update(self, state, action, nextState, reward): pass a = RandomAgent() else: if not opts.manual: raise 'Unknown agent type: '+opts.agent ########################### # RUN EPISODES ########################### # DISPLAY Q/V VALUES BEFORE SIMULATION OF EPISODES if not opts.manual and opts.agent == 'value': if opts.valueSteps: for i in range(opts.iters): tempAgent = valueIterationAgents.ValueIterationAgent(mdp, opts.discount, i) display.displayValues(tempAgent, message = "VALUES AFTER "+str(i)+" ITERATIONS") display.pause() display.displayValues(a, message = "VALUES AFTER "+str(opts.iters)+" ITERATIONS") display.pause() display.displayQValues(a, message = "Q-VALUES AFTER "+str(opts.iters)+" ITERATIONS") display.pause() # FIGURE OUT WHAT TO DISPLAY EACH TIME STEP (IF ANYTHING) displayCallback = lambda x: None if not opts.quiet: if opts.manual and opts.agent == None: displayCallback = lambda state: display.displayNullValues(state) else: if opts.agent == 'random': displayCallback = lambda state: display.displayValues(a, state, "CURRENT VALUES") if opts.agent == 'value': displayCallback = lambda state: display.displayValues(a, state, "CURRENT VALUES") if opts.agent == 'q': displayCallback = lambda state: display.displayQValues(a, state, "CURRENT Q-VALUES") if opts.agent == 'qApproximate': displayCallback = lambda state: display.displayQValues(a, state, "CURRENT Q-VALUES") if opts.agent == 'sarsa': displayCallback = lambda state: display.displayQValues(a, state, "CURRENT Q-VALUES") if opts.agent == 'sarsaApproximate': displayCallback = lambda state: display.displayQValues(a, state, "CURRENT Q-VALUES") messageCallback = lambda x: printString(x) if opts.quiet: messageCallback = lambda x: None # FIGURE OUT WHETHER TO WAIT FOR A KEY PRESS AFTER EACH TIME STEP pauseCallback = lambda : None if opts.pause: pauseCallback = lambda : display.pause() # FIGURE OUT WHETHER THE USER WANTS MANUAL CONTROL (FOR DEBUGGING AND DEMOS) if opts.manual: decisionCallback = lambda state : getUserAction(state, mdp.getPossibleActions) else: decisionCallback = a.getAction # RUN EPISODES if opts.episodes > 0: print print "RUNNING", opts.episodes, "EPISODES" print returns = 0 #policyFile = open('policy' + opts.agent + str(opts.lambdaValue), 'a') #policyFile.write(str(opts.iters) + ' ' + str(checkPolicy(a)) + '\n') for episode in range(1, opts.episodes+1): thisReturn = runEpisode(a, env, opts.discount, decisionCallback, displayCallback, messageCallback, pauseCallback, episode) a.final(None)#fixme """ if opts.agent == 'qApproximate' or opts.agent == 'sarsaApproximate': #a.final('TERMINAL_STATE') f = open("lambda" + str(a.lambdaValue), 'a') # get values from value iteration values = a.getValues(mdp.getStates()) valueIter = pickle.load(open("valueIterAnswer")) # calculate rms and outoput f.write(str(episode) + ' ' + str(values.rms(valueIter)) + '\n') f.close() """ returns += thisReturn if opts.episodes > 0: print print "AVERAGE RETURNS FROM START STATE: "+str((returns+0.0) / opts.episodes) print print # DISPLAY POST-LEARNING VALUES / Q-VALUES if opts.agent != 'random' and not opts.manual: if not opts.fileoutput: # original output by gridworld display.displayQValues(a, message = "Q-VALUES AFTER "+str(opts.episodes)+" EPISODES") display.pause() display.displayValues(a, message = "VALUES AFTER "+str(opts.episodes)+" EPISODES") display.pause() if (opts.agent == 'value') and not opts.manual: if opts.fileoutput: values = a.getValues(mdp.getStates()) f = open("valueIterAnswer", "w") pickle.dump(values, f)
[ "menie482@gmail.com" ]
menie482@gmail.com
4de8d566f66a8afe643d08ee77b4a4f754c26a21
a6fe3f180d4c7d418579e4b8186a80ba569d999d
/django/blog/blogproject/views.py
ef19f4980221b15f591a86fb7dfead53e3e217e9
[]
no_license
15871687941/PyCode
0f773038ee713b6a16ab9ab7ae7b6823b9b85b3e
61f8c0a7aa41574e31765155142d8c16e5759582
refs/heads/master
2020-04-02T09:24:58.258959
2018-10-23T08:12:31
2018-10-23T08:12:31
154,288,569
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
from django.shortcuts import render # Create your views here. from django.http import HttpResponse from .models import Post def index(request): post_list = Post.objects.all() return render(request, 'blog/index.html', context={'title': '博客', 'post_list': post_list})
[ "1806521378@qq.com" ]
1806521378@qq.com
093225e40403e92a439ffb6fbb4fd88116bf79bf
ddfc0775cbd90f8fff2ee11c7e6b17e72f26b273
/crawler/zip_5o_miles.py
e4a4aef966869a9c64286e477746cce3e4e3645b
[]
no_license
akshaytanmane150294/Dealer_scraper
b73389a8e34a6564b176eced9056bdae8494b44d
82bbf2f2e2a82c934e14616aa2462ee8a5cfc40d
refs/heads/master
2020-07-16T13:38:15.977340
2019-09-02T07:39:52
2019-09-02T07:39:52
205,798,549
0
0
null
null
null
null
UTF-8
Python
false
false
4,926
py
from _dbus_bindings import String def _zip(): arr = ["17087","95666","53936","83330","17006","42157","57562","28349","85743","38471","81212","82058","84721","62469","97635","87943","58561","95421","24211","47930","64761","56025","49635","28376","69128","84766","30454","59230","32350","12969","31312","12455","65263","01550","48894","88434","36374","35570","97741","68936","74370","69165","75844","59901","99731","73044","81239","14747","55749","88435","71452","32352","00602","55725","89301","00802","75119","89445","97904","68636","50632","30189","53801","61440","79849","85533","83286","48462","36875","61721","84315","66549","02050","54835","93675","93622","70589","40815","72102","15055","14877","59255","69301","45340","72522","01222","50447","82435","72346","82701","04957","53572","12170","52621","71837","38488","49733","03435","85242","70453","25113","95988","87420","82229","16373","78063","59486","27886","47557","96727","49286","38647","57476","65074","67867","70036","78383","04764","68047","87551","96137","20677","57365","39345","78639","41310","96756","36003","95960","68753","55336","03777","18938","39464","00957","35058","74464","23038","71999","72025","84034","83631","86047","73658","34120","76854","05442","77483","98801","97492","71663","35960","95618","32455","29440","76234","99572","81425","38382","76372","35466","29831","54529","97065","83209","82844","63336","49011","37128","75692","36545","97640","57748","49913","98814","42048","24555","46741","71841","54107","89419","58458","85603","59022","80447","32456","84072","40444","94015","03833","57315","39641","10925","43011","48759","24981","23970","80116","97467","59524","68632","78829","58718","58564","80424","67059","37865","76943","77974","61414","67445","13031","84532","84069","93451","72760","14072","71373","77830","97484","89027","85322","82514","82332","99775","58009","79714","97365","67669","49782","46501","59347","26386","97877","74039","21234","63556","60958","83450","81089","55751","85929","75457","47840","16411","89502","99686","32583","29045","80644","79082","58801","95345","42701","39058","97848","58647","59344","89017","85324","96022","85640","98381","57223","36748","57658","88345","95385","57770","27617","50645","56245","76845","49460","17754","76525","64489","42634","28754","78638","58634","31087","81154","76682","13669","67025","96793","54454","97722","68464","79015","97107","48740","73005","97024","95546","59521","33786","29685","59337","98582","56685","87544","74501","44889","02554","37340","77655","67879","73717","73673","67464","59069","79561","69129","72938","54669","67520","39769","91007","38645","12883","29340","32776","59405","35043","04462","29666","23851","59722","27265","95437","54742","56762","67753","59865","13650","56566","13331","79548","58321","74878","34990","87014","28681","41189","79014","57620","73945","82646","58523","14485","87750","29471","72442","78828","23161","83544","56379","68930","88045","84533","79029","18347","92280","81045","98239","48632","31599","28571","96006","08302","83624","61053","79511","52305","82240","77664","38924","97826","50116","63775","81084","97885","99138","45601","33960","34229","21540","37140","28906","56381","27925","59343","65470","65656","06516","32694","93256","88220","93203","21659","88230","45050","45729","66020","34448","45872","79355","68305","44288","97360","92347","59739","88118","23418","68873","85643","58455","78012","53153","38675","99012","16836","95012","74004","78560","62269","70514","97712","31512","72645","39426","83466","66835","57022","74523","64622","99347","49849","30223","33060","30633","87821","97414","32046","65637","13361","47338","76934","51501","36582","24920","98548","62533","69040","54855","76049","63943","70652","79734","29571","83860","49883","93043","84635","59059","47234","81638","63473","42204","73933","54119","25443","99330","92332","24549","54006","56455","82710","25638","67741","58313","32908","69366","73855","42303","89406","13827","75937","71232","63068","59867","57262","65785","81610","57301","04024","54021","65566","61325","97534","73447","81320","76437","55976","87044","67839","67122","87325","82052","96017","49127","49925","57564","88318","81630","83226","74646","58018","75758","76384","59339","04743","66775","86444","97627","86336","57481","92305","51033","28422","89010","04622","73548","92257","76578","98952","45623","33839","60135","66064","56567","89420","38572","83120","59751","93434","57780","88005","31063","71644","56626","53049","22743","68860","36456","98631","49715","83302","61847","03579","82932","97913","24343","59078","71268","79356","84528","32359","49449","69211","56137","44629","51442","36278","62899","99159","88414","04554","78938","57724","86022","59875","89161","82725","63867","92055","77401","83610","59451","28174","47167","62917","04945","31721","75424","95542","79234","15945","83414","40359","50212","50858","88410","71730","57001"] return arr
[ "noreply@github.com" ]
akshaytanmane150294.noreply@github.com
35fa9008f4968f017ed8097fed6ae73e343e2a9b
bdbb6000355a717ce55cabd45525700643ab5b5f
/Version 2a 050321/mycopi_default_programme.py
329bbc638e1aaf77898a5d63f82b2b7cf190a139
[]
no_license
Trober-Llemchit/MyCoPi
abf8c4817f00541d029e9d695728b5176cd7549a
71913d64e9b136417c525243bfba2732bf63fa79
refs/heads/main
2023-03-15T15:46:18.515042
2021-03-05T12:54:24
2021-03-05T12:54:24
344,796,221
0
0
null
null
null
null
UTF-8
Python
false
false
2,649
py
#mycopi_default_programme.py import mycopi_convert def address_plus_1(address): dec_address=int(address,16) dec_address+=1 hex_address=hex(dec_address) address=hex_address[2:].upper() return address def details(): print("1110: ex.13: count") print("1101: ex.3: AD/PWM") print("1011: ex.4: random") print("0111: ex.16: stop on S1") print("0011: ex.33: start/stop") print("else: ex. 2 LED blink") def starts(): print("20: ex.1: 2 LED blink") print("25: ex.13: count") print("2A: ex.3: AD/PWM") print("30: ex.4: random") print("34: ex.16: stop on S1") print("40: ex.40: start/stop") print("80: ex.32: morse") print("A0: ex.36: combination lock(continues at B0)") def make_dict(): short_code_0=['64','51','4E','80','C3','98','82','95','4D','80','C3','9E','82','9A','4B','81'] short_code_1=['C3','94','83','90','47','81','C3','9A','83','94','43','82','C3','90','84','90'] short_code_2=['11','28','18','28','34','71','54','59','26','34','69','54','59','26','34','FF'] short_code_3=['54','CE','71','33','22','CC','32','40','22','71','54','CE','34','39','FF','FF'] short_code_4=['86','D0','40','71','54','23','CD','34','D8','40','54','3B','FF','FF','FF','FF'] short_code_5=['4F','93','45','53','19','11','21','19','11','21','19','11','20','B4','10','E0'] short_code_6=['23','CE','32','23','CC','31','E0','FF','23','CF','32','23','CD','31','E0','FF'] short_code_7=['CC','31','40','54','23','CE','32','CF','E0','CC','33','71','23','CC','31','3C'] short_code_8=['8C','D2','26','D0','26','D0','26','D0','26','28','D2','26','D0','26','D0','26']#Morse: SR call changed from 85 to 8C, BK changed to JP short_code_9=['D2','30','FF','FF','FF','FF','FF','FF','FF','FF','FF','FF','FF','FF','FF','FF']#continuation of code_8 short_code_A=['87','43','51','D0','C3','30','11','45','51','D0','C3','33','10','42','51','D0']#comb. lock short_code_B=['C3','30','17','4F','59','30','FF','FF','FF','FF','FF','FF','FF','FF','FF','FF']#continuation of code_A short_code_C=['4F','93','45','53','11','25','B4','10','E0','FF','FF','FF','FF','FF','FF','FF']#new version of Morse sub-routine code_list=[short_code_0,short_code_1,short_code_2,short_code_3,short_code_4,short_code_5,short_code_6,short_code_7,short_code_8,short_code_9,short_code_A,short_code_B,short_code_C] address='00' def_prog={} for i in code_list: code=i page=address[0] sub_address=address[1] for i in code: inst=i[0] data=i[1] def_prog[page+sub_address]=[inst,data] sub_address=address_plus_1(sub_address) page=mycopi_convert.hex_to_decimal(page) page+=1 page=mycopi_convert.hex_from_decimal(page) address=page+'0' return def_prog
[ "noreply@github.com" ]
Trober-Llemchit.noreply@github.com
6acd05799d3e1f656cf1508204ec1ca8480faba4
a33d41d895912c7c15f3430f2fee9ff638234e84
/ReportCreatorGui/XmlAnalysis.py
d4427787fcd86aed36ab53028f55750169cf503a
[]
no_license
qbvn/PyCharm-Projects
9047f6ba0582c801fc41eba23108189a723d9c84
da1e00fa478f641732e86bf71342abbbeba975c7
refs/heads/master
2021-07-23T20:23:16.522792
2021-05-06T11:14:05
2021-05-06T11:14:05
64,391,355
0
0
null
null
null
null
UTF-8
Python
false
false
10,663
py
# -*- coding: utf-8 -*- import os.path import sys # import wx from datetime import datetime from docx import Document, opc from docx.shared import Pt, RGBColor from NiXml import StimulusProfile, Testrun, ErrorElements import XmlParser class ReportGenerate: def __init__(self, xml_file, ms_word_file): """ creates a MS Word Report from XML File. :param xml_file: :param ms_word_file: """ self.xml_file = xml_file self.ms_word_file_template = "Report_Template.docx" self.xml_parser = XmlParser.XmlParser(self.xml_file) self.testrun_l = [] self.createTestruns() self.errors_l = [] ## statistic variables ## self.nTestruns = len(self.testrun_l) if self.nTestruns == 0: # TODO: Outputdialog print("Keine Testruns in XML File gefunden.") print("Programm wird beendet.") #sys.exit() self.count_ok_testruns = 0 self.count_nok_testruns = 0 self.count_ntestruns = 0 self.runtime_testruns = 0 self.analyse_testruns() self.StimulusProfileInfo = self.createStimulusProfile() self.analyse_errors() # self.create_ms_word_report() def analyse_errors(self): """ create error elements :return: """ for error_el in self.xml_parser.get_error_elements(): self.errors_l.append(ErrorElements(error_el)) def analyse_testruns(self): """ count ok/nok in testruns and summarise runningtime of each testrun :return: None """ for test in self.testrun_l: if "Passed" in test.result: self.count_ok_testruns = self.count_ok_testruns + 1 else: self.count_nok_testruns = self.count_nok_testruns + 1 self.count_ntestruns = self.count_ntestruns + 1 self.runtime_testruns = self.runtime_testruns + test.runningTime_seconds def createTestruns(self): """ create Testrun xml tree objects :return: None """ for el in self.xml_parser.get_testruns(): self.testrun_l.append(Testrun(el)) def createStimulusProfile(self): """ create StimulusProfile xml tree objects :return: None """ return StimulusProfile(self.xml_parser.get_root_tree()) def create_ms_word_report(self, outputDir): """ Creates the microsoft word report from template :return: None """ try: document = Document(self.ms_word_file_template) paragraph = document.add_paragraph() # print sections to document self.print_section_StimulusProfile(paragraph) self.print_section_testrun(paragraph) self.print_section_statistics(paragraph) if len(self.errors_l): self.print_section_error(paragraph) date = datetime.now().isoformat() date = date.replace(":", "_") document.save(os.path.join(outputDir, "Report_Date_" + date + ".docx")) except opc.exceptions.PackageNotFoundError: # TODO: call dialog print("Word Template not found" + self.ms_word_file) raise except IOError: # TODO: call dialog print("Report konnte nicht erstellt werden.") raise except Exception, e: print("Report Erstellung fehlgeschlagen") raise def print_section_StimulusProfile(self, paragraph): """ print stimulus profile information :param paragraph: python docx paragraph :return: """ self.add_formated_run(paragraph, "Stimulus Profile:\n\n", 11, True) self.add_formated_run(paragraph, "Name:\t", 9.5, True) self.add_formated_run(paragraph, self.StimulusProfileInfo.name + "\n", 9.5) self.add_formated_run(paragraph, "Pfad:\t", 9.5, True) self.add_formated_run(paragraph, self.StimulusProfileInfo.path + "\n", 9.5) # Wenn Beschreibung vorhanden if self.StimulusProfileInfo.description: self.add_formated_run(paragraph, "Beschreibung:\t", 9.5, True) self.add_formated_run(paragraph, self.StimulusProfileInfo.description + "\n\n", 9.5) else: self.add_newline(paragraph, 2) def print_section_testrun(self, paragraph): """ print all Testruns to document :param paragraph: python docx paragraph :return: """ self.add_formated_run(paragraph, "Testrun:\n", 11, True) self.draw_hline(paragraph, 95) self.add_newline(paragraph, 1) for i, testruns in enumerate(self.testrun_l): i = i + 1 self.add_formated_run(paragraph, "Nr." + str(i) + "\n", 11, True) self.add_formated_run(paragraph, "Name:\t", 11, True) self.add_formated_run(paragraph, testruns.name + "\n", 9.5) self.add_formated_run(paragraph, "Pfad:\t", 11, True) self.add_formated_run(paragraph, testruns.path + "\n", 9.5) # Wenn Beschreibung vorhanden if testruns.description: self.add_formated_run(paragraph, "Beschreibung:\t", 9.5, True) self.add_formated_run(paragraph, testruns.description + "\n\n", 9.5) else: self.add_newline(paragraph, 2) self.add_formated_run(paragraph, "Startzeit:\t", 11, True) self.add_formated_run(paragraph, testruns.starttime.strftime("Datum %d.%m.%Y %H:%M:%S") + "\n", 9.5, color=[165, 42, 42]) self.add_formated_run(paragraph, "Endzeit:\t", 11, True) self.add_formated_run(paragraph, testruns.endtime.strftime("Datum %d.%m.%Y %H:%M:%S") + "\n", 9.5, color=[165, 42, 42]) self.add_formated_run(paragraph, "Laufzeit:\t", 11, True) self.add_formated_run(paragraph, str(testruns.timedelta.total_seconds()) + " Sekunden\n", 9.5, color=[165, 42, 42]) self.add_formated_run(paragraph, "Ergebnis:\t", 11, True) if "Passed" in testruns.result: self.add_formated_run(paragraph, "OK", 9.5, color=[0, 176, 80]) else: self.add_formated_run(paragraph, "NOK", 9.5, color=[255, 0, 0]) self.add_newline(paragraph, 1) self.draw_hline(paragraph, 95) self.add_newline(paragraph, 2) def print_section_error(self, paragraph): """ print all errors :param paragraph: Pyth :return: None """ self.add_newline(paragraph, 5) self.add_formated_run(paragraph, "Error:\n", 11, True) self.draw_hline(paragraph, 95) self.add_newline(paragraph, 1) for i, errors in enumerate(self.errors_l): i = i + 1 self.add_formated_run(paragraph, "Nr." + str(i) + "\n", 11, True) self.add_formated_run(paragraph, "Name:\t", 11, True) self.add_formated_run(paragraph, errors.name + "\n", 9.5) self.add_formated_run(paragraph, "ID:\t", 11, True) self.add_formated_run(paragraph, errors.ID + "\n", 9.5) self.add_formated_run(paragraph, "Beschreibung:\t", 11, True) self.add_formated_run(paragraph, errors.ErrorDescription + "\n", 9.5) self.draw_hline(paragraph, 95) def print_section_statistics(self, paragraph): """ :param paragraph: :return: """ self.add_formated_run(paragraph, "Zusammenfassung:\n", 11, True) self.add_newline(paragraph, 1) self.add_formated_run(paragraph, "Testruns ", 11, bold_flag=True) self.add_formated_run(paragraph, "OK", 9.5, bold_flag=True, color=[0, 176, 80]) self.add_formated_run(paragraph, " :\t\t" + str(self.count_ok_testruns) + "/" + str(self.count_ntestruns) + "\n", 9.5) self.add_formated_run(paragraph, "Testruns ", 11, bold_flag=True) self.add_formated_run(paragraph, "NOK", 9.5, bold_flag=True, color=[255, 0, 0]) self.add_formated_run(paragraph, " :\t" + str(self.count_nok_testruns) + "/" + str(self.count_ntestruns) + "\n", 9.5) self.add_formated_run(paragraph, "Gesamtlaufzeit:\t", 11, True) self.add_formated_run(paragraph, str(self.runtime_testruns), 9.5) def add_formated_run(self, paragraph, text, size=10, bold_flag=False, color=None): """ wrapper function for formatted printing. Print at the current cursor position :param paragraph: paragraph object :param text: text which will be printed to document :param size: fontsize :param bold_flag: True or False :param color: rgb colorcode as pyhton list [r,g,b] :return: """ run = paragraph.add_run(text) run.font.size = Pt(size) run.font.bold = bold_flag if color: run.font.color.rgb = RGBColor(*color) def draw_hline(self, paragraph, length): """ draw a horizontal lines from underscores at the current cursor position :param paragraph: paragraph object :param length: length of summarised underscores :return: """ underline = "_" for uline in range(length): underline = underline + "_" run = paragraph.add_run(underline) def add_newline(self, paragraph, n): """ add a newline at the current cursor position :param paragraph: paragraph object :param n: number of newlines :return: """ newlines = "" for el in range(n): newlines = newlines + "\n" run = paragraph.add_run(newlines) # def Warn(parent, message, caption='Warning!'): # dlg = wx.MessageDialog(parent, message, caption, wx.OK | wx.ICON_EXCLAMATION) # dlg.ShowModal() # dlg.Destroy() def XmlAnalysis(xmlFile, outputDir): if not os.path.isfile(xmlFile): print("FEHLER: Konnte XML Datei nicht finden->" + xmlFile) print("Programm ende") sys.exit(1) if not os.path.isdir(outputDir): print("FEHLER: Ziel Ordner für Report nicht gefunden -> " + outputDir) print("Programm ende") sys.exit(1) RG = ReportGenerate(xmlFile, "Report_Template.docx") RG.create_ms_word_report(outputDir) # sys.exit(0) # succes
[ "quocbinhtrinh@gmail.com" ]
quocbinhtrinh@gmail.com
8cc9ca36a5d4db817f08b76168f2d46d98b3a192
220058941fd9810a580b66198c0f921ec95c1650
/walmart/pipelines.py
c57e3846edf0ce00e167808ada5f5b0ea5b70f13
[]
no_license
githubmaster1987/walmart_scrapy
d6b3ce9afacc785258bd66f64f8aafcc7e729c26
5801aedf0374f0de247f6c8f0cdba92cb103826b
refs/heads/master
2020-05-20T19:32:24.142306
2017-03-10T03:15:13
2017-03-10T03:15:13
84,512,762
0
0
null
null
null
null
UTF-8
Python
false
false
5,918
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import spiders.config_scrapy as config import MySQLdb as mdb import numbers import random import json from datetime import datetime from items import WalmartItem import logging from time import sleep con = mdb.connect(config.db_host, config.db_user, config.db_pwd, config.db_database) class WalmartPipeline(object): save_item_cnt = 0 def insert_many(self,sql, sqldata): with con: cur = con.cursor() cur.executemany(sql, sqldata) con.commit() def update_sql(self,sql, sqldata): with con: cur = con.cursor() cur.execute(sql, sqldata) con.commit() def process_item(self, item, spider): if isinstance(item, WalmartItem): self.insert_products(item) return item def retrieve_data(self,sql): with con: cur = con.cursor() cur.execute(sql) rows = cur.fetchall() return rows def delete_product(): sql = "DELETE FROM product" execute_sql(sql) sql = "DELETE FROM product_picture" execute_sql(sql) sql = "DELETE FROM product_options" execute_sql(sql) sql = "DELETE FROM product_detail" execute_sql(sql) def insert_products(self, item): table = item["select_table"] if table == "upload": return # product_url = scrapy.Field() # product_name = scrapy.Field() # unique_id = scrapy.Field() # cost = scrapy.Field() # delivery_time = scrapy.Field() # pictures_url = scrapy.Field() # bullet_points = scrapy.Field() # details = scrapy.Field() # review_numbers = scrapy.Field() # category = scrapy.Field() # inventory = scrapy.Field() # options = scrapy.Field() # seller = scrapy.Field() # product_type = scrapy.Field() product_data_list = [] #Product product Part product_data = ( item["product_id"], #product_id item["product_type"], #product_type item["delivery_time"], #delivery_time item["product_name"], #product_name item["product_url"], #product_url item["review_numbers"], #review_numbers item["cost"], #cost item["bullet_points"], #bullet_points item["seller"], #seller "", #options item["category"], #category item["inventory"], #inventory item["special_offer"], # speciall offer str(item["fulfillment"]), #shipping info item["create_time"], #scraping date str(item["details"]), #details item["usItemId"], #USItemId item["unique_id"], #SKU "") product_data_list.append(product_data) product_sql = """INSERT INTO """ + table + """ (product_id, product_type, delivery_time, product_name, product_url, \ review_numbers, cost, bullet_points, seller, options, category, inventory, create_date, special_offer, fulfillment, scraping_date, details, unique_id, usItemId, picture_url) VALUES (\ %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, Now(), %s, %s, %s, %s, %s, %s, %s)""" picture_sql = """INSERT INTO """ + table + "_pictures " + """ (product_id, picture_url) Values(%s, %s)""" picture_data_list = [] for picture in item["pictures_url"]: picture_data = (item["product_id"], picture) picture_data_list.append(picture_data) detail_sql = """INSERT INTO """ + table + "_details " + """ (product_id, detail_content) Values(%s, %s)""" detail_data_list = [] for detail in item["options"]: detail_data = (item["product_id"], str(detail)) detail_data_list.append(detail_data) if self.save_item_cnt > random.randrange(0, 100): logging.info(str(self.save_item_cnt) + " items saved") self.save_item_cnt = 0 try: sleep(0.02) self.insert_many(product_sql, product_data_list) sleep(0.02) self.insert_many(picture_sql, picture_data_list) sleep(0.02) self.insert_many(detail_sql, detail_data_list) self.save_item_cnt += 1 except mdb.IntegrityError as err: #logging.info("Error: {}".format(err)) return #logging.info(item) except mdb.OperationalError as err: logging.info("Error: {}".format(err)) # logging.info(detail_data_list) # logging.info(picture_data_list) # logging.info(product_data_list) con = mdb.connect(config.db_host, config.db_user, config.db_pwd, config.db_database) return except mdb.DataError as err: logging.info("Error: {}".format(err)) return
[ "silverstart1987913@yahoo.com" ]
silverstart1987913@yahoo.com
252bc4abf7927c6d07ff920723e8ad236a229b65
ee49b6c2dbe0f163737d79ffd88264541d304951
/eventwarning/views.py
a1238402443440cd0d6136ae5c60672e75ac2fff
[]
no_license
duplico/event-traffic-warning
4b2b19a76a399f6fd85e8ea2fbfbfdaba3c320c9
b2533170d72fccc2abbc010163503d188f84a4e6
refs/heads/master
2023-05-12T09:40:40.682219
2014-01-30T04:59:29
2014-01-30T04:59:29
277,707,793
0
0
null
null
null
null
UTF-8
Python
false
false
3,978
py
from datetime import datetime from flask import request, make_response, render_template, url_for, flash from flask import redirect import flask import danger_backend as danger #danger.VERBOSE = False from eventwarning import app from eventwarning import models from eventwarning import executor, running_futures DEFAULT_ZIP = "74103" # / # /zip/<zip>/d/<date> # # @app.route('/', methods=['GET',]) def landing(): return redirect(url_for('danger_zip', zip='74103', date=datetime.now().strftime('%Y-%m-%d'))) @app.route('/d/<date>/') def default_zip_danger(date): return danger_zip(DEFAULT_ZIP, date) @app.route('/zip/<zip>/d/<date>/', methods=['GET',]) def danger_zip(zip, date): day_obj = datetime.strptime(date, '%Y-%m-%d').date() id = '/dangers/zip/%s/d/%s' % (zip, day_obj.strftime('%Y-%m-%d')) danger_record = models.DangerEntry.load(id) if not danger_record: if id in running_futures: if running_futures[id].done(): danger_record = running_futures[id].result() else: pass # In progress else: running_futures[id] = executor.submit( models.get_or_create_danger_entry, day_obj, zip, db=flask.g.couch ) # In progress if not danger_record: return make_response('In progress\n', 202) return render_template( 'events.html', zip=zip, day=day_obj, events=None, ) tweet = danger_record.get_tweet() events_prioritized = danger_record.prioritized() region_capacity = danger.get_zip_capacity('74103') percent = int((100.0 * danger_record.total() / region_capacity)) percent_str = '%d%%' % percent return render_template( 'events.html', zip=zip, events=events_prioritized['useful'], other_events=events_prioritized['useless'], total=danger_record.total(), day=day_obj, region_capacity=region_capacity, percent_str=percent_str, percent=percent, tweet=tweet, ) @app.route('/q/z/<zip>/d/<date>/', methods=['GET',]) def query_danger_status(zip, date): day_obj = datetime.strptime(date, '%Y-%m-%d').date() events = models.get_or_create_danger_entry(day_obj, zip) events_prioritized = events.prioritized() region_capacity = danger.get_zip_capacity('74103') percent = int((100.0 * events.total() / region_capacity)) percent_str = '%d%%' % percent print events.get_tweet() return render_template( 'events.html', zip=zip, events=events_prioritized['useful'], other_events=events_prioritized['useless'], total=events.total(), day=day_obj, region_capacity=region_capacity, percent_str=percent_str, percent=percent ) @app.route('/locations/index_zips/', methods=['POST',]) def index_zips(): # curl -X POST http://localhost:5000/locations/index_zips/?key=ADMIN_SECRET if request.args.get('key', None) == app.config.get('ADMIN_SECRET'): if 'index_zips' in running_futures: print 'in' if running_futures['index_zips'].done(): return make_response('/locations/\n', 200) else: return make_response('In progress\n', 202) else: task = executor.submit(models.store_all_zips, app.config.get('ZIP_DB'), db=flask.g.couch) running_futures['index_zips'] = task return make_response('Job started\n', 202) else: return make_response('INVALID SECRET\n', 403) @app.route('/p<shortcut>', methods=['GET',]) def shortcut_entry(shortcut): pass
[ "duplico@dupli.co" ]
duplico@dupli.co
8d729913131bff94532ce64ca9ca5e50f25f2cc7
dbf7d177d2fa11314b81806ed1e0187133b8da9d
/play_50.py
76c186df7f8764e60091c1750c0e6353097b427b
[]
no_license
sushmithanat/player_guvi
79ed4aab807715f4bf8d975225242d0a72dbfd8d
56e8a09d695b63b6b318b515ecfb9138164371ca
refs/heads/master
2020-03-28T09:36:47.491591
2018-06-12T05:56:24
2018-06-12T05:56:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
def play_50(): n=int(input('Enter n:')) for i in range(2,n//2): if n%i==0: return "yes" return "no" play_50()
[ "noreply@github.com" ]
sushmithanat.noreply@github.com
eebc60e0ac20e673cf5883a22b54ac1bd9e9efb0
4c1ca80e3897e0af4ff3f16771e6e54eb52dfe9f
/restaurants/api/serializers.py
a410e69b5f71211260f9607b0e96cc13524638f1
[]
no_license
vpatel85/gas-up
7a7185a29aaf013cfa8fc7099d2edc2731428b58
973d41da4e8f2dff81f0d3705fa0331d6b1d0419
refs/heads/master
2021-01-13T02:11:27.725433
2014-11-10T22:24:33
2014-11-10T22:24:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,314
py
from rest_framework import serializers from django.contrib.auth.models import User from restaurants.models import UserProfile, Restaurant, Comment, SubComment class SubCommentSerializer(serializers.ModelSerializer): class Meta: model = SubComment fields = ('parent', 'comment') class CommentSerializer(serializers.ModelSerializer): subcomment_set = SubCommentSerializer(many=True) class Meta: model = Comment fields = ('id', 'subcomment_set', 'restaurant', 'comment') class UserSerializer(serializers.ModelSerializer): comment_set = CommentSerializer() class Meta: model = User fields = ('comment_set', 'username', 'first_name', 'last_name', 'email') class UserProfileSerializer(serializers.HyperlinkedModelSerializer): user = UserSerializer() visited = serializers.RelatedField(many=True) dislike = serializers.RelatedField(many=True) class Meta: model = UserProfile fields = ('url', 'user', 'visited', 'dislike') class RestaurantSerializer(serializers.HyperlinkedModelSerializer): comment_set = CommentSerializer(many=True) class Meta: model = Restaurant fields = ('url', 'name', 'google_rating', 'up_vote', 'down_vote', 'price_level', 'icon', 'created', 'updated', 'comment_set')
[ "vpatel@visual-a.com" ]
vpatel@visual-a.com
a41d7cf025c623d35ced20217816991bbf758202
1566af780ae7342760609d194bc50512777c9a44
/pyNastran/op2/op2_interface/op2_scalar.py
771c8fafb29cac8410e40224e97fe3f460b0bf70
[]
no_license
JamesdeanP/pyNastran
61bb43127601a2f1ba09166bfca1783e989afbe3
c7a9a72c6b4d1778ef2f72c5f6f67e5df4b0233e
refs/heads/master
2020-09-24T04:50:33.559676
2019-11-29T22:27:23
2019-11-29T22:27:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
79,315
py
#pylint: disable=R0913 """ Defines the sub-OP2 class. This should never be called outisde of the OP2 class. - OP2_Scalar(debug=False, log=None, debug_file=None) **Methods** - set_subcases(subcases=None) - set_transient_times(times) - read_op2(op2_filename=None, combine=False) - set_additional_generalized_tables_to_read(tables) - set_additional_result_tables_to_read(tables) - set_additional_matrices_to_read(matrices) **Attributes** - total_effective_mass_matrix - effective_mass_matrix - rigid_body_mass_matrix - modal_effective_mass_fraction - modal_participation_factors - modal_effective_mass - modal_effective_weight - set_as_msc() - set_as_optistruct() **Private Methods** - _get_table_mapper() - _not_available(data, ndata) - _table_crasher(data, ndata) - _table_passer(data, ndata) - _validate_op2_filename(op2_filename) - _create_binary_debug() - _make_tables() - _read_tables(table_name) - _skip_table(table_name) - _read_table_name(rewind=False, stop_on_failure=True) - _update_generalized_tables(tables) - _read_cmodext() - _read_cmodext_helper(marker_orig, debug=False) - _read_geom_table() - _finish() """ import os from struct import Struct, unpack from collections import defaultdict from typing import List, Tuple, Dict, Union, Any from numpy import array import numpy as np from cpylog import get_logger from pyNastran import is_release, __version__ from pyNastran.f06.errors import FatalError from pyNastran.op2.op2_interface.op2_reader import OP2Reader from pyNastran.bdf.cards.params import PARAM #============================ from pyNastran.op2.op2_interface.msc_tables import MSC_RESULT_TABLES, MSC_MATRIX_TABLES, MSC_GEOM_TABLES from pyNastran.op2.op2_interface.nx_tables import NX_RESULT_TABLES, NX_MATRIX_TABLES, NX_GEOM_TABLES from pyNastran.op2.tables.lama_eigenvalues.lama import LAMA from pyNastran.op2.tables.oee_energy.onr import ONR from pyNastran.op2.tables.ogf_gridPointForces.ogpf import OGPF from pyNastran.op2.tables.oef_forces.oef import OEF from pyNastran.op2.tables.oes_stressStrain.oes import OES #from pyNastran.op2.tables.oes_stressStrain.oesm import OESM from pyNastran.op2.tables.ogs_grid_point_stresses.ogs import OGS from pyNastran.op2.tables.opg_appliedLoads.opg import OPG from pyNastran.op2.tables.oqg_constraintForces.oqg import OQG from pyNastran.op2.tables.oug.oug import OUG from pyNastran.op2.tables.ogpwg import OGPWG from pyNastran.op2.fortran_format import FortranFormat from pyNastran.utils import is_binary_file """ ftp://161.24.15.247/Nastran2011/seminar/SEC04-DMAP_MODULES.pdf Datablock Type Description EFMFSMS Matrix 6 x 1 Total Effective mass matrix EFMASSS Matrix 6 x 6 Effective mass matrix RBMASS Matrix 6 x 6 Rigid body mass matrix EFMFACS Matrix 6 X N Modal effective mass fraction matrix MPFACS Matrix 6 x N Modal participation factor matrix MEFMASS Matrix 6 x N Modal effective mass matrix MEFWTS Matrix 6 x N Modal effective weight matrix RAFGEN Matrix N x M Generalized force matrix RADEFMP Matrix N X U2 Effective inertia loads BHH Matrix N x N Viscous damping matrix K4HH Matrix N x N Structural damping matrix RADAMPZ Matrix N x N equivalent viscous damping ratios RADAMPG Matrix N X N equivalent structural damping ratio LAMA LAMA Eigenvalue summary table OGPWG OGPWG Mass properties output OQMG1 OQMG Modal MPC forces RANCONS ORGY1 Constraint mode element strain energy table RANEATC ORGY1 Attachment mode element strain energy table RAGCONS OGPFB Constraint mode grid point force table RAGEATC OGPFB Attachment mode grid point force table RAPCONS OES Constraint mode ply stress table RAPEATC OES Attachment mode ply stress table RASCONS OES Constraint mode element stress table RAECONS OES Constraint mode element strain table RASEATC OES Attachment mode element stress table RAEEATC OES Attachment mode element strain table OES1C OES Modal Element Stress Table OES1X OES Modal Element Stress Table OSTR1C OES Modal Element Strain Table OSTR1X OSTR Modal Element Strain Table RAQCONS OUG Constraint mode MPC force table RADCONS OUG Constraint mode displacement table RADEFFM OUG Effective inertia displacement table RAQEATC OUG Attachment mode MPC force table RADEATC OUG Attachment mode displacement table OUGV1 OUG Eigenvector Table RAFCONS OEF Constraint mode element force table RAFEATC OEF Attachment mode element force table OEF1X OEF Modal Element Force Table OGPFB1 OGPFB Modal Grid Point Force Table ONRGY1 ONRGY1 Modal Element Strain Energy Table ONRGY2 ONRGY1 #-------------------- RADCONS - Displacement Constraint Mode RADDATC - Displacement Distributed Attachment Mode RADNATC - Displacement Nodal Attachment Mode RADEATC - Displacement Equivalent Inertia Attachment Mode RADEFFM - Displacement Effective Inertia Mode RAECONS - Strain Constraint Mode RAEDATC - Strain Distributed Attachment Mode RAENATC - Strain Nodal Attachment Mode RAEEATC - Strain Equivalent Inertia Attachment Mode RAFCONS - Element Force Constraint Mode RAFDATC - Element Force Distributed Attachment Mode RAFNATC - Element Force Nodal Attachment Mode RAFEATC - Element Force Equivalent Inertia Attachment Mode RALDATC - Load Vector Used to Compute the Distributed Attachment M RANCONS - Strain Energy Constraint Mode RANDATC - Strain Energy Distributed Attachment Mode RANNATC - Strain Energy Nodal Attachment Mode RANEATC - Strain Energy Equivalent Inertia Attachment Mode RAQCONS - Ply Strains Constraint Mode RAQDATC - Ply Strains Distributed Attachment Mode RAQNATC - Ply Strains Nodal Attachment Mode RAQEATC - Ply Strains Equivalent Inertia Attachment Mode RARCONS - Reaction Force Constraint Mode RARDATC - Reaction Force Distributed Attachment Mode RARNATC - Reaction Force Nodal Attachment Mode RAREATC - Reaction Force Equivalent Inertia Attachment Mode RASCONS - Stress Constraint Mode RASDATC - Stress Distributed Attachment Mode RASNATC - Stress Nodal Attachment Mode RASEATC - Stress Equivalent Inertia Attachment Mode RAPCONS - Ply Stresses Constraint Mode RAPDATC - Ply Stresses Distributed Attachment Mode RAPNATC - Ply Stresses Nodal Attachment Mode RAPEATC - Ply Stresses Equivalent Inertia Attachment Mode RAGCONS - Grid Point Forces Constraint Mode RAGDATC - Grid Point Forces Distributed Attachment Mode RAGNATC - Grid Point Forces Nodal Attachment Mode RAGEATC - Grid Point Forces Equivalent Inertia Attachment Mode RADEFMP - Displacement PHA^T * Effective Inertia Mode RADAMPZ - Viscous Damping Ratio Matrix RADAMPG - Structural Damping Ratio Matrix RAFGEN - Generalized Forces BHH - Modal Viscous Damping Matrix K4HH - Modal Structural Damping Matrix """ GEOM_TABLES = MSC_GEOM_TABLES + NX_GEOM_TABLES AUTODESK_MATRIX_TABLES = [ #b'BELM', b'KELM', #b'MELM', ] # type: List[bytes] # this will be split later TEST_MATRIX_TABLES = [b'ATB', b'BTA', b'MYDOF'] RESULT_TABLES = NX_RESULT_TABLES + MSC_RESULT_TABLES MATRIX_TABLES = NX_MATRIX_TABLES + MSC_MATRIX_TABLES + AUTODESK_MATRIX_TABLES + TEST_MATRIX_TABLES + [b'MEFF'] #GEOM_TABLES = MSC_GEOM_TABLES #RESULT_TABLES = MSC_RESULT_TABLES #MATRIX_TABLES = MSC_MATRIX_TABLES # TODO: these are weird... # RPOSTS1, MAXRATI, RESCOMP, PDRMSG INT_PARAMS_1 = [ b'POST', b'OPPHIPA', b'OPPHIPB', b'GRDPNT', b'RPOSTS1', b'BAILOUT', b'COUPMASS', b'CURV', b'INREL', b'MAXRATI', b'OG', b'S1AM', b'S1M', b'DDRMM', b'MAXIT', b'PLTMSG', b'LGDISP', b'NLDISP', b'OUNIT2K', b'OUNIT2M', b'RESCOMP', b'PDRMSG', b'LMODES', b'USETPRT', b'NOCOMPS', b'OPTEXIT', b'RSOPT', b'GUSTAERO', b'MPTUNIT', b'USETSEL', b'NASPRT', b'DESPCH', b'DESPCH1', b'COMPARE', b'DBNBLKS', b'NEWSEQ', b'OLDSEQ', b'METHCMRS', b'NOFISR', b'KGGCPCH', b'ERROR', b'DBCDIAG', b'GPECT', b'LSTRN', b'DBDROPT', b'SEOP2CV', b'IRES', b'SNORMPRT', b'DBDRNL', b'VMOPT', b'OSWPPT', b'KDAMP', b'KDAMPFL', b'MATNL', b'MPCX', b'GEOMPLT', b'NOELOP', b'NOGPF', b'PROUT', b'SUPER', b'LGDIS', b'EST', b'SEP1XOVR', b'FRSEID', b'HRSEID', b'LRSEID', b'MODACC', b'XFLAG', b'TSTATIC', b'NASPDV', b'RMXCRT', b'RMXTRN', b'DBCLEAN', b'LANGLE', b'SEMAPPRT', b'FIXEDB', b'AMGOK', b'ASING', b'CNSTRT', b'CURVPLOT', b'CYCIO', b'CYCSEQ', b'DBDICT', b'DBINIT', b'DBSET1', b'DBSET2', b'DBSET3', b'DBSET4', b'DBSORT', b'DOPT', b'FACTOR', b'ALTSHAPE', b'MODTRK', b'IFTM', b'INRLM', b'KINDEX', b'KMIN', b'KMAX', b'LARGEDB', b'LOADINC', b'LOADING', b'LOOP', b'LOOPID', b'MODEL', b'MOREK', b'NEWDYN', b'NFECI', b'NINTPTS', b'NLAYERS', b'NOELOF', b'NOMSGSTR', b'NONCUP', b'NUMOUT', b'NUMOUT1', b'NUMOUT2', b'OPGTKG', b'OPPHIB', b'OUTOPT', b'PKRSP', b'RSPECTRA', b'RSPRINT', b'S1G', b'SCRSPEC', b'SEMAPOPT', b'SEQOUT', b'SESEF', b'SKPAMG', b'SKPAMP', b'SLOOPID', b'SOLID', b'SPCGEN', b'SRTELTYP', b'SRTOPT', b'START', b'SUBID', b'SUBSKP', b'TABID', b'TESTNEG', b'BDMNCON', # not defined in qrg... b'NT', b'PNCHDB', b'DLOAD', b'NLOAD', b'NOAP', b'NOCMPFLD', b'NODATA', b'NODJE', b'NOMECH', b'NOSDR1', b'NOSHADE', b'NOSORT1', b'NOTRED', b'NSEGS', b'OLDELM', b'OPADOF', b'OUTPUT', b'P1', b'P2', b'P3', b'PCHRESP', b'PLOT', b'PLOTSUP', b'PRTPCH', b'RADLIN', b'RESDUAL', b'S1', b'SDATA', b'SEFINAL', b'SEMAP1', b'SKPLOAD', b'SKPMTRX', b'SOLID1', b'SSG3', b'PEDGEP', b'ACMSPROC', b'ACMSSEID', b'ACOUS', b'ACOUSTIC', b'ADJFLG', b'ADJLDF', b'AEDBCP', b'AESRNDM', b'ARCSIGNS', b'ATVUSE', b'BADMESH', b'BCHNG', b'BCTABLE', b'ROTCSV', b'ROTGPF', ] FLOAT_PARAMS_1 = [ b'K6ROT', b'WTMASS', b'SNORM', b'PATVER', b'MAXRATIO', b'EPSHT', b'SIGMA', b'TABS', b'EPPRT', b'AUNITS', b'BOLTFACT', b'LMSCAL', 'DSZERO', b'G', b'GFL', b'LFREQ', b'HFREQ', b'ADPCON', b'W3', b'W4', b'W3FL', b'W4FL', b'PREFDB', b'EPZERO', b'DSZERO', b'TINY', b'TOLRSC', b'FRSPD', b'HRSPD', b'LRSPD', b'MTRFMAX', b'ROTCMRF', b'MTRRMAX', b'LAMLIM', b'BIGER', b'BIGER1', b'BIGER2', b'CLOSE', b'EPSBIG', b'EPSMALC', b'EPSMALU', b'HIRES', b'KDIAG', b'MACH', b'VREF', b'STIME', b'TESTSE', b'LFREQFL', b'Q', b'ADPCONS', b'AFNORM', b'AFZERO', # not defined b'PRPA', b'PRPHIVZ', b'PRPJ', b'PRRULV', b'RMAX', b'ADJFRQ', b'ARF', b'ARS', ] FLOAT_PARAMS_2 = [ b'BETA', b'CB1', b'CB2', b'CK1', b'CK2', b'CK3', b'CK41', b'CK42', b'CM1', b'CM2', b'G2', b'G4', b'G5', b'G6', b'G7', b'G8', b'G9', b'G10', b'G12', b'G13', b'ALPHA1', b'ALPHA2', b'APPF', ] INT_PARAMS_2 = [b'APPI',] DOUBLE_PARAMS_1 = [] # b'Q' STR_PARAMS_1 = [ b'POSTEXT', b'PRTMAXIM', b'AUTOSPC', b'OGEOM', b'PRGPST', b'RESVEC', b'RESVINER', b'ALTRED', b'OGPS', b'OIBULK', b'OMACHPR', b'UNITSYS', b'F56', b'OUGCORD', b'OGEM', b'EXTSEOUT', b'CDIF', b'SUPAERO', b'RSCON', b'AUTOMPC', b'DBCCONV', b'AUTOSPRT', b'PBRPROP', b'OMID', b'HEATSTAT', b'SECOMB', b'ELEMITER', b'ELITASPC', b'DBCONV', b'SHLDAMP', b'COMPMATT', b'SPCSTR', b'ASCOUP', b'PRTRESLT', b'SRCOMPS', b'CHECKOUT', b'SEMAP', b'AESMETH', b'RESVALT', b'ROTSYNC', b'SYNCDAMP', b'PRGPOST', b'WMODAL', b'SDAMPUP', b'COLPHEXA', b'CHKOUT', b'CTYPE', b'DBNAME', b'VUHEXA', b'VUPENTA', b'VUTETRA', b'MESH', b'OPTION', b'PRINT', b'SENAME', b'MECHFIX', b'RMXTRAN', b'FLEXINV', b'ADSTAT', b'ACOUT', b'ACSYM', b'ACTYPE', b'ADBX', b'AUTOSEEL', b'RDSPARSE', # part of param, checkout b'PRTBGPDT', b'PRTCSTM', b'PRTEQXIN', b'PRTGPDT', b'PRTGPL', b'PRTGPTT', b'PRTMGG', b'PRTPG', # superelements b'EXTOUT', b'SESDAMP', # TODO: remove these as they're in the matrix test and are user # defined PARAMs; arguably all official examples should just work # TODO: add an option for custom PARAMs b'ADB', b'AEDB', b'MREDUC', b'OUTDRM', b'OUTFORM', b'REDMETH', b'DEBUG', b'AEDBX', b'AERO', b'AUTOSUP0', b'AXIOPT', ] class OP2_Scalar(LAMA, ONR, OGPF, OEF, OES, OGS, OPG, OQG, OUG, OGPWG, FortranFormat): """ Defines an interface for the Nastran OP2 file. """ @property def total_effective_mass_matrix(self): """6x6 matrix""" return self.matrices['EFMFSMS'] @property def effective_mass_matrix(self): """6x6 matrix""" return self.matrices['EFMASSS'] @property def rigid_body_mass_matrix(self): """6x6 matrix""" return self.matrices['RBMASS'] @property def modal_effective_mass_fraction(self): """6xnmodes matrix""" return self.matrices['EFMFACS']#.dataframe @property def modal_participation_factors(self): """6xnmodes matrix""" return self.matrices['MPFACS']#.dataframe @property def modal_effective_mass(self): """6xnmodes matrix""" return self.matrices['MEFMASS']#.dataframe @property def modal_effective_weight(self): """6xnmodes matrix""" return self.matrices['MEFWTS']#.dataframe @property def matrix_tables(self): return MATRIX_TABLES def set_as_nx(self): self.is_nx = True self.is_msc = False self.is_autodesk = False self.is_optistruct = False self._nastran_format = 'nx' def set_as_msc(self): self.is_nx = False self.is_msc = True self.is_autodesk = False self.is_optistruct = False self._nastran_format = 'msc' def set_as_autodesk(self): self.is_nx = False self.is_msc = False self.is_autodesk = True self.is_optistruct = False self._nastran_format = 'autodesk' def set_as_optistruct(self): self.is_nx = False self.is_msc = False self.is_autodesk = False self.is_optistruct = True self._nastran_format = 'optistruct' def __init__(self, debug=False, log=None, debug_file=None): """ Initializes the OP2_Scalar object Parameters ---------- debug : bool; default=False enables the debug log and sets the debug in the logger log : Log() a logging object to write debug messages to (.. seealso:: import logging) debug_file : str; default=None (No debug) sets the filename that will be written to """ assert isinstance(debug, bool), 'debug=%r' % debug self.log = get_logger(log, 'debug' if debug else 'info') self._count = 0 self.op2_filename = None self.bdf_filename = None self.f06_filename = None self.des_filename = None self.h5_filename = None self._encoding = 'utf8' #: should a MATPOOL "symmetric" matrix be stored as symmetric #: it takes double the RAM, but is easier to use self.apply_symmetry = True LAMA.__init__(self) ONR.__init__(self) OGPF.__init__(self) OEF.__init__(self) OES.__init__(self) #OESM.__init__(self) OGS.__init__(self) OPG.__init__(self) OQG.__init__(self) OUG.__init__(self) OGPWG.__init__(self) FortranFormat.__init__(self) self.is_vectorized = False self._close_op2 = True self.result_names = set() self.grid_point_weight = {} self.words = [] self.debug = debug self._last_comment = None #self.debug = True #self.debug = False #debug_file = None if debug_file is None: self.debug_file = None else: assert isinstance(debug_file, str), debug_file self.debug_file = debug_file self.op2_reader = OP2Reader(self) def set_subcases(self, subcases=None): """ Allows you to read only the subcases in the list of isubcases Parameters ---------- subcases : List[int, ...] / int; default=None->all subcases list of [subcase1_ID,subcase2_ID] """ #: stores the set of all subcases that are in the OP2 #self.subcases = set() if subcases is None or subcases == []: #: stores if the user entered [] for isubcases self.is_all_subcases = True self.valid_subcases = [] else: #: should all the subcases be read (default=True) self.is_all_subcases = False if isinstance(subcases, int): subcases = [subcases] #: the set of valid subcases -> set([1,2,3]) self.valid_subcases = set(subcases) self.log.debug("set_subcases - subcases = %s" % self.valid_subcases) def set_transient_times(self, times): # TODO this name sucks... """ Takes a dictionary of list of times in a transient case and gets the output closest to those times. Examples -------- >>> times = {subcase_id_1: [time1, time2], subcase_id_2: [time3, time4]} .. warning:: I'm not sure this still works... """ expected_times = {} for (isubcase, etimes) in times.items(): etimes = list(times) etimes.sort() expected_times[isubcase] = array(etimes) self.expected_times = expected_times def _get_table_mapper(self): """gets the dictionary of function3 / function4""" # MSC table mapper table_mapper = { # per NX b'OESVM1' : [self._read_oes1_3, self._read_oes1_4], # isat_random b'OESVM1C' : [self._read_oes1_3, self._read_oes1_4], # isat_random b'OSTRVM1' : [self._read_oes1_3, self._read_ostr1_4], # isat_random b'OSTRVM1C' : [self._read_oes1_3, self._read_ostr1_4], # isat_random b'OSTRVM2' : [self._read_oes2_3, self._read_ostr2_4], b'OESVM2' : [self._read_oes2_3, self._read_oes2_4], # big random b'OES2C' : [self._read_oes2_3, self._read_oes2_4], b'OSTR2' : [self._read_oes2_3, self._read_ostr2_4], # TODO: disable b'OSTR2C' : [self._read_oes2_3, self._read_ostr2_4], #b'OES2C' : [self._table_passer, self._table_passer], # stress #b'OSTR2' : [self._table_passer, self._table_passer], # TODO: enable #b'OSTR2C' : [self._table_passer, self._table_passer], b'OTEMP1' : [self._read_otemp1_3, self._read_otemp1_4], # -------------------------------------------------------------------------- # MSC TABLES # common tables # unorganized b'RADCONS': [self._read_oug1_3, self._read_oug_4], # Displacement Constraint Mode (OUG) b'RADEFFM': [self._read_oug1_3, self._read_oug_4], # Displacement Effective Inertia Mode (OUG) b'RADEATC': [self._read_oug1_3, self._read_oug_4], # Displacement Equivalent Inertia Attachment mode (OUG) # broken - isat_launch_100hz.op2 - wrong numwide # spc forces b'RAQCONS': [self._read_oqg1_3, self._read_oqg_4], # Constraint mode MPC force table (OQG) b'RAQEATC': [self._read_oqg1_3, self._read_oqg_4], # Attachment mode MPC force table (OQG) #b'RAQCONS': [self._table_passer, self._table_passer], # temporary #b'RAQEATC': [self._table_passer, self._table_passer], # temporary # element forces b'RAFCONS': [self._read_oef1_3, self._read_oef1_4], # Element Force Constraint Mode (OEF) b'RAFEATC': [self._read_oef1_3, self._read_oef1_4], # Element Force Equivalent Inertia Attachment mode (OEF) #b'RAFCONS': [self._table_passer, self._table_passer], # temporary #b'RAFEATC': [self._table_passer, self._table_passer], # temporary # grid point forces b'RAGCONS': [self._read_ogpf1_3, self._read_ogpf1_4], # Grid Point Forces Constraint Mode (OGPFB) b'RAGEATC': [self._read_ogpf1_3, self._read_ogpf1_4], # Grid Point Forces Equivalent Inertia Attachment mode (OEF) #b'RAGCONS': [self._table_passer, self._table_passer], # Grid Point Forces Constraint Mode (OGPFB) #b'RAGEATC': [self._table_passer, self._table_passer], # Grid Point Forces Equivalent Inertia Attachment mode (OEF) # stress b'RAPCONS': [self._read_oes1_3, self._read_oes1_4], # Constraint mode ply stress table (OES) b'RAPEATC': [self._read_oes1_3, self._read_oes1_4], # Attachment mode ply stress table (OES) #b'RAPCONS': [self._table_passer, self._table_passer], # Constraint mode ply stress table (OES) #b'RAPEATC': [self._table_passer, self._table_passer], # Attachment mode ply stress table (OES) # stress b'RASCONS': [self._read_oes1_3, self._read_oes1_4], # Stress Constraint Mode (OES) b'RASEATC': [self._read_oes1_3, self._read_oes1_4], # Stress Equivalent Inertia Attachment mode (OES) #b'RASCONS': [self._table_passer, self._table_passer], # temporary #b'RASEATC': [self._table_passer, self._table_passer], # temporary # strain b'RAEEATC': [self._read_oes1_3, self._read_ostr1_4], # Strain Equivalent Inertia Attachment mode (OES) b'RAECONS': [self._read_oes1_3, self._read_ostr1_4], # Strain Constraint Mode (OSTR) #b'RAEEATC': [self._table_passer, self._table_passer], # temporary #b'RAECONS': [self._table_passer, self._table_passer], # temporary # strain energy b'RANEATC' : [self._read_onr1_3, self._read_onr1_4], # Strain Energy Equivalent Inertia Attachment mode (ORGY1) b'RANCONS': [self._read_onr1_3, self._read_onr1_4], # Constraint mode element strain energy table (ORGY1) #b'RANEATC': [self._table_passer, self._table_passer], # Strain Energy Equivalent Inertia Attachment mode (ORGY1) #b'RANCONS': [self._table_passer, self._table_passer], # Constraint mode element strain energy table (ORGY1) b'R1TABRG': [self._table_passer, self.op2_reader.read_r1tabrg], #b'TOL': [self._table_passer, self._table_passer], b'MATPOOL': [self._table_passer, self._table_passer], # DMIG bulk data entries # this comment may refer to CSTM? #F:\work\pyNastran\examples\Dropbox\pyNastran\bdf\cards\test\test_mass_01.op2 #F:\work\pyNastran\examples\matpool\gpsc1.op2 b'AXIC': [self._table_passer, self._table_passer], b'RSOUGV1': [self._table_passer, self._table_passer], b'RESOES1': [self._table_passer, self._table_passer], b'RESEF1' : [self._table_passer, self._table_passer], b'DESCYC' : [self._table_passer, self._table_passer], #b'AEMONPT' : [self._read_aemonpt_3, self._read_aemonpt_4], #======================= # OEF # element forces #b'OEFITSTN' : [self._table_passer, self._table_passer], # works b'OEFITSTN' : [self._read_oef1_3, self._read_oef1_4], b'OEFIT' : [self._read_oef1_3, self._read_oef1_4], # failure indices b'OEF1X' : [self._read_oef1_3, self._read_oef1_4], # element forces at intermediate stations b'OEF1' : [self._read_oef1_3, self._read_oef1_4], # element forces or heat flux b'HOEF1' : [self._read_oef1_3, self._read_oef1_4], # element heat flux b'DOEF1' : [self._read_oef1_3, self._read_oef1_4], # scaled response spectra - forces # off force b'OEF2' : [self._read_oef2_3, self._read_oef2_4], # element forces or heat flux #======================= # OQG # spc forces # OQG1/OQGV1 - spc forces in the nodal frame # OQP1 - scaled response spectra - spc-forces b'OQG1' : [self._read_oqg1_3, self._read_oqg_4], b'OQG2' : [self._read_oqg2_3, self._read_oqg_4], b'OQGV1' : [self._read_oqg1_3, self._read_oqg_4], b'OQGV2' : [self._read_oqg2_3, self._read_oqg_4], b'OQP1' : [self._read_oqg1_3, self._read_oqg_4], b'OQP2' : [self._read_oqg2_3, self._read_oqg_4], # SPC/MPC tables depending on table_code # SPC - NX/MSC # MPC - MSC b'OQGATO1' : [self._read_oqg1_3, self._read_oqg_4], b'OQGCRM1' : [self._read_oqg1_3, self._read_oqg_4], b'OQGPSD1' : [self._read_oqg1_3, self._read_oqg_4], b'OQGRMS1' : [self._read_oqg1_3, self._read_oqg_4], b'OQGNO1' : [self._read_oqg1_3, self._read_oqg_4], b'OQGATO2' : [self._read_oqg2_3, self._read_oqg_4], b'OQGCRM2' : [self._read_oqg2_3, self._read_oqg_4], b'OQGPSD2' : [self._read_oqg2_3, self._read_oqg_4], b'OQGRMS2' : [self._table_passer, self._table_passer], # buggy on isat random b'OQGNO2' : [self._table_passer, self._table_passer], # buggy on isat random #b'OQGRMS2' : [self._read_oqg2_3, self._read_oqg_4], # buggy on isat random #b'OQGNO2' : [self._read_oqg2_3, self._read_oqg_4], # buggy on isat random #======================= # MPC Forces # these are NX tables # OQGM1 - mpc forces in the nodal frame b'OQMG1' : [self._read_oqg1_3, self._read_oqg_mpc_forces], b'OQMATO1' : [self._read_oqg1_3, self._read_oqg_mpc_ato], b'OQMCRM1' : [self._read_oqg1_3, self._read_oqg_mpc_crm], b'OQMPSD1' : [self._read_oqg1_3, self._read_oqg_mpc_psd], b'OQMRMS1' : [self._read_oqg1_3, self._read_oqg_mpc_rms], b'OQMNO1' : [self._read_oqg1_3, self._read_oqg_mpc_no], b'OQMG2' : [self._read_oqg2_3, self._read_oqg_mpc_forces], # big random b'OQMATO2' : [self._read_oqg2_3, self._read_oqg_mpc_ato], b'OQMCRM2' : [self._read_oqg2_3, self._read_oqg_mpc_crm], b'OQMPSD2' : [self._read_oqg2_3, self._read_oqg_mpc_psd], b'OQMRMS2' : [self._table_passer, self._table_passer], # buggy on isat random b'OQMNO2' : [self._table_passer, self._table_passer], # buggy on isat random #b'OQMRMS2' : [self._read_oqg2_3, self._read_oqg_mpc_rms], # buggy on isat random #b'OQMNO2' : [self._read_oqg2_3, self._read_oqg_mpc_no], # buggy on isat random #======================= # OPG # applied loads b'OPG1' : [self._read_opg1_3, self._read_opg1_4], # applied loads in the nodal frame b'OPGV1' : [self._read_opg1_3, self._read_opg1_4], # solution set applied loads? b'OPNL1' : [self._read_opg1_3, self._read_opg1_4], # nonlinear loads b'OCRPG' : [self._read_opg1_3, self._read_opg1_4], # post-buckling loads b'OPG2' : [self._read_opg2_3, self._read_opg1_4], # applied loads in the nodal frame b'OPNL2' : [self._read_opg2_3, self._read_opg1_4], # nonlinear loads b'OPGATO1' : [self._read_opg1_3, self._read_opg1_4], b'OPGCRM1' : [self._read_opg1_3, self._read_opg1_4], b'OPGPSD1' : [self._read_opg1_3, self._read_opg1_4], b'OPGRMS1' : [self._read_opg1_3, self._read_opg1_4], b'OPGNO1' : [self._read_opg1_3, self._read_opg1_4], b'OPGATO2' : [self._read_opg2_3, self._read_opg1_4], b'OPGCRM2' : [self._read_opg2_3, self._read_opg1_4], b'OPGPSD2' : [self._read_opg2_3, self._read_opg1_4], #b'OPGRMS2' : [self._table_passer, self._table_passer], #b'OPGNO2' : [self._table_passer, self._table_passer], b'OPGRMS2' : [self._read_opg2_3, self._read_opg1_4], b'OPGNO2' : [self._read_opg2_3, self._read_opg1_4], #======================= # OGPFB1 # grid point forces b'OGPFB1' : [self._read_ogpf1_3, self._read_ogpf1_4], # grid point forces #======================= # ONR/OEE # strain energy density b'ONRGY' : [self._read_onr1_3, self._read_onr1_4], b'ONRGY1' : [self._read_onr1_3, self._read_onr1_4], # strain energy density b'ONRGY2': [self._read_onr2_3, self._read_onr1_4], #b'ONRGY2': [self._table_passer, self._table_passer], #=========================================================== # OES # stress # OES1C - Table of composite element stresses or strains in SORT1 format # OESRT - Table of composite element ply strength ratio. Output by SDRCOMP b'OES1X1' : [self._read_oes1_3, self._read_oes1_4], # stress - nonlinear elements b'OES1' : [self._read_oes1_3, self._read_oes1_4], # stress - linear only b'OES1X' : [self._read_oes1_3, self._read_oes1_4], # element stresses at intermediate stations & nonlinear stresses b'OES1C' : [self._read_oes1_3, self._read_oes1_4], # stress - composite b'OESCP' : [self._read_oes1_3, self._read_oes1_4], # stress - nonlinear??? b'OESRT' : [self._read_oes1_3, self._read_oes1_4], # ply strength ratio # strain b'OSTR1' : [self._read_oes1_3, self._read_ostr1_4], # strain - autodesk/9zk6b5uuo.op2 b'OSTR1X' : [self._read_oes1_3, self._read_ostr1_4], # strain - isotropic b'OSTR1C' : [self._read_oes1_3, self._read_ostr1_4], # strain - composite b'OESTRCP' : [self._read_oes1_3, self._read_ostr1_4], # special nonlinear tables # OESNLBR - Slideline stresses # OESNLXD - Nonlinear transient stresses # OESNLXR - Nonlinear stress # Table of nonlinear element stresses in SORT1 format and appended for all subcases b'OESNLXR' : [self._read_oes1_3, self._read_oes1_4], # nonlinear stresses b'OESNLXD' : [self._read_oes1_3, self._read_oes1_4], # nonlinear transient stresses b'OESNLBR' : [self._read_oes1_3, self._read_oes1_4], b'OESNL1X' : [self._read_oes1_3, self._read_oes1_4], b'OESNL2' : [self._read_oes2_3, self._read_oes2_4], b'OESNLXR2' : [self._read_oes2_3, self._read_oes2_4], b'OESNLBR2' : [self._read_oes2_3, self._read_oes2_4], #b'OESNLXR2' : [self._table_passer, self._table_passer], #b'OESNLBR2' : [self._table_passer, self._table_passer], # off stress b'OES2' : [self._read_oes2_3, self._read_oes2_4], # stress - linear only - disabled; need better tests #b'OES2' : [self._table_passer, self._table_passer], # stress - linear only - disabled; need better tests #b'OESPSD2C' : [self._table_passer, self._table_passer], #b'OSTPSD2C' : [self._table_passer, self._table_passer], #======================= # off strain b'OSTRATO1' : [self._read_oes1_3, self._read_ostr1_4], b'OSTRCRM1' : [self._read_oes1_3, self._read_ostr1_4], b'OSTRPSD1' : [self._read_oes1_3, self._read_ostr1_4], b'OSTRRMS1' : [self._read_oes1_3, self._read_ostr1_4], # isat_random b'OSTRNO1' : [self._read_oes1_3, self._read_ostr1_4], # isat_random b'OSTRATO2' : [self._read_oes2_3, self._read_ostr2_4], b'OSTRCRM2' : [self._read_oes2_3, self._read_ostr2_4], b'OSTRPSD2' : [self._read_oes2_3, self._read_ostr2_4], b'OSTRRMS2' : [self._table_passer, self._table_passer], # buggy on isat random b'OSTRNO2' : [self._table_passer, self._table_passer], # buggy on isat random #b'OSTRRMS2' : [self._read_oes2_3, self._read_ostr2_4], # buggy on isat random #b'OSTRNO2' : [self._read_oes2_3, self._read_ostr2_4], # buggy on isat random b'OSTRMS1C' : [self._read_oes1_3, self._read_ostr1_4], # isat_random b'OSTNO1C' : [self._read_oes1_3, self._read_ostr1_4], # isat_random #======================= # OUG # displacement/velocity/acceleration/eigenvector/temperature b'OUG1' : [self._read_oug1_3, self._read_oug_4], # displacements in nodal frame # OVG1? b'OAG1' : [self._read_oug1_3, self._read_oug_4], # accelerations in nodal frame b'OUGV1' : [self._read_oug1_3, self._read_oug_4], # displacements in nodal frame b'BOUGV1' : [self._read_oug1_3, self._read_oug_4], # OUG1 on the boundary??? b'OUGV1PAT': [self._read_oug1_3, self._read_oug_4], # OUG1 + coord ID b'OUPV1' : [self._read_oug1_3, self._read_oug_4], # scaled response spectra - displacement b'TOUGV1' : [self._read_oug1_3, self._read_oug_4], # grid point temperature b'ROUGV1' : [self._read_oug1_3, self._read_oug_4], # relative OUG b'OPHSA' : [self._read_oug1_3, self._read_oug_4], # Displacement output table in SORT1 b'OUXY1' : [self._read_oug1_3, self._read_oug_4], # Displacements in SORT1 format for h-set or d-set. b'OUGV2' : [self._read_oug2_3, self._read_oug_4], # displacements in nodal frame b'ROUGV2' : [self._read_oug2_3, self._read_oug_4], # relative OUG b'OUXY2' : [self._read_oug2_3, self._read_oug_4], # Displacements in SORT2 format for h-set or d-set. #F:\work\pyNastran\examples\Dropbox\move_tpl\sbuckl2a.op2 b'OCRUG' : [self._read_oug1_3, self._read_oug_4], # post-buckling displacement b'OPHIG' : [self._read_oug1_3, self._read_oug_4], # eigenvectors in basic coordinate system b'BOPHIG' : [self._read_oug1_3, self._read_oug_4], # eigenvectors in basic coordinate system b'BOPHIGF' : [self._read_oug1_3, self._read_oug_4], # Eigenvectors in the basic coordinate system for the fluid portion of the model. b'BOPHIGS' : [self._read_oug1_3, self._read_oug_4], # Eigenvectors in the basic coordinate system for the structural portion of the model. b'BOPG1' : [self._read_opg1_3, self._read_opg1_4], # applied loads in basic coordinate system b'OUGATO1' : [self._read_oug1_3, self._read_oug_ato], b'OUGCRM1' : [self._read_oug1_3, self._read_oug_crm], b'OUGPSD1' : [self._read_oug1_3, self._read_oug_psd], b'OUGRMS1' : [self._read_oug1_3, self._read_oug_rms], b'OUGNO1' : [self._read_oug1_3, self._read_oug_no], b'OUGATO2' : [self._read_oug2_3, self._read_oug_ato], b'OUGCRM2' : [self._read_oug2_3, self._read_oug_crm], b'OUGPSD2' : [self._read_oug2_3, self._read_oug_psd], b'OUGRMS2' : [self._table_passer, self._table_passer], # buggy on isat random b'OUGNO2' : [self._table_passer, self._table_passer], # buggy on isat random #b'OUGRMS2' : [self._read_oug2_3, self._read_oug_rms], # buggy on isat random #b'OUGNO2' : [self._read_oug2_3, self._read_oug_no], # buggy on isat random #======================= # extreme values of the respective table b'OUGV1MX' : [self._table_passer, self._table_passer], b'OEF1MX' : [self._table_passer, self._table_passer], b'OES1MX' : [self._table_passer, self._table_passer], #======================= # contact b'OQGCF1' : [self._table_passer, self._table_passer], # Contact force at grid point. b'OQGCF2' : [self._table_passer, self._table_passer], # Contact force at grid point. b'OSPDS1' : [self._table_passer, self._table_passer], # Final separation distance. b'OSPDS2' : [self._table_passer, self._table_passer], b'OSPDSI1' : [self._table_passer, self._table_passer], # Initial separation distance. b'OSPDSI2' : [self._table_passer, self._table_passer], # Output contact separation distance results. b'OBC1' : [self._table_passer, self._table_passer], b'OBC2' : [self._table_passer, self._table_passer], # Contact pressures and tractions at grid points. # Glue normal and tangential tractions at grid point in basic coordinate system b'OBG1' : [self._table_passer, self._table_passer], b'OBG2' : [self._table_passer, self._table_passer], b'OQGGF1' : [self._table_passer, self._table_passer], # Glue forces at grid point in basic coordinate system b'OQGGF2' : [self._table_passer, self._table_passer], #======================= # OGPWG # grid point weight b'OGPWG' : [self._read_ogpwg_3, self._read_ogpwg_4], # grid point weight b'OGPWGM' : [self._read_ogpwg_3, self._read_ogpwg_4], # modal? grid point weight #======================= # OGS # grid point stresses b'OGS1' : [self._read_ogs1_3, self._read_ogs1_4], # grid point stresses #b'OGS2' : [self._read_ogs1_3, self._read_ogs1_4], # grid point stresses #======================= # eigenvalues b'BLAMA' : [self._read_buckling_eigenvalue_3, self._read_buckling_eigenvalue_4], # buckling eigenvalues b'CLAMA' : [self._read_complex_eigenvalue_3, self._read_complex_eigenvalue_4], # complex eigenvalues b'LAMA' : [self._read_real_eigenvalue_3, self._read_real_eigenvalue_4], # eigenvalues b'LAMAS' : [self._read_real_eigenvalue_3, self._read_real_eigenvalue_4], # eigenvalues-structure b'LAMAF' : [self._read_real_eigenvalue_3, self._read_real_eigenvalue_4], # eigenvalues-fluid # ===========================geom passers=========================== # geometry b'GEOM1' : [self._table_passer, self._table_passer], # GEOM1-Geometry-related bulk data b'GEOM2' : [self._table_passer, self._table_passer], # GEOM2-element connectivity and SPOINT-related data b'GEOM3' : [self._table_passer, self._table_passer], # GEOM3-Static and thermal loads b'GEOM4' : [self._table_passer, self._table_passer], # GEOM4-constraints, DOF membership entries, MPC, and R-type element data # superelements b'GEOM1S' : [self._table_passer, self._table_passer], # GEOMx + superelement b'GEOM2S' : [self._table_passer, self._table_passer], b'GEOM3S' : [self._table_passer, self._table_passer], b'GEOM4S' : [self._table_passer, self._table_passer], b'GEOM1VU' : [self._table_passer, self._table_passer], b'GEOM2VU' : [self._table_passer, self._table_passer], b'BGPDTVU' : [self._table_passer, self._table_passer], b'GEOM1N' : [self._table_passer, self._table_passer], b'GEOM2N' : [self._table_passer, self._table_passer], b'GEOM3N' : [self._table_passer, self._table_passer], b'GEOM4N' : [self._table_passer, self._table_passer], b'GEOM1OLD' : [self._table_passer, self._table_passer], b'GEOM2OLD' : [self._table_passer, self._table_passer], b'GEOM3OLD' : [self._table_passer, self._table_passer], b'GEOM4OLD' : [self._table_passer, self._table_passer], b'EPT' : [self._table_passer, self._table_passer], # elements b'EPTS' : [self._table_passer, self._table_passer], # elements - superelements b'EPTOLD' : [self._table_passer, self._table_passer], b'MPT' : [self._table_passer, self._table_passer], # materials b'MPTS' : [self._table_passer, self._table_passer], # materials - superelements b'DYNAMIC' : [self._table_passer, self._table_passer], b'DYNAMICS' : [self._table_passer, self._table_passer], b'DIT' : [self._table_passer, self._table_passer], b'DITS' : [self._table_passer, self._table_passer], b'AXIC' : [self._table_passer, self._table_passer], # =========================end geom passers========================= # ===passers=== #b'EQEXIN': [self._table_passer, self._table_passer], #b'EQEXINS': [self._table_passer, self._table_passer], b'GPDT' : [self._table_passer, self._table_passer], # grid points? b'BGPDT' : [self._table_passer, self._table_passer], # basic grid point defintion table b'BGPDTS' : [self._table_passer, self._table_passer], b'BGPDTOLD' : [self._table_passer, self._table_passer], b'PVT' : [self._read_pvto_3, self._read_pvto_4], # PVT - Parameter Variable Table b'PVTS' : [self._read_pvto_3, self._read_pvto_4], # ??? b'PVT0' : [self._read_pvto_3, self._read_pvto_4], # user parameter value table b'TOLD' : [self._table_passer, self._table_passer], b'CASECC' : [self._table_passer, self._table_passer], # case control deck b'STDISP' : [self._table_passer, self._table_passer], # matrix? b'AEDISP' : [self._table_passer, self._table_passer], # matrix? #b'TOLB2' : [self._table_passer, self._table_passer], # matrix? # EDT - element deformation, aerodynamics, p-element, divergence analysis, # and iterative solver input (includes SET1 entries) b'EDT' : [self._table_passer, self._table_passer], b'EDTS' : [self._table_passer, self._table_passer], b'FOL' : [self._table_passer, self._table_passer], b'PERF' : [self._table_passer, self._table_passer], b'VIEWTB' : [self._table_passer, self._table_passer], # view elements # DSCMCOL - Correlation table for normalized design sensitivity coefficient matrix. # Output by DSTAP2. # DBCOPT - Design optimization history table for b'CONTACT' : [self._table_passer, self._table_passer], b'CONTACTS' : [self._table_passer, self._table_passer], b'OEKE1' : [self._table_passer, self._table_passer], #b'DSCMCOL' : [self._table_passer, self._table_passer], #b'DBCOPT' : [self._table_passer, self._table_passer], #b'FRL0': [self._table_passer, self._table_passer], # frequency response list #================================== # modal participation factors # OFMPF2M Table of fluid mode participation factors by normal mode. b'OFMPF2M' : [self._read_mpf_3, self._read_mpf_4], # OLMPF2M Load mode participation factors by normal mode. b'OLMPF2M' : [self._read_mpf_3, self._read_mpf_4], # OPMPF2M Panel mode participation factors by normal mode. b'OPMPF2M' : [self._read_mpf_3, self._read_mpf_4], # OPMPF2M Panel mode participation factors by normal mode. b'OSMPF2M' : [self._read_mpf_3, self._read_mpf_4], # OGMPF2M Grid mode participation factors by normal mode. b'OGPMPF2M' : [self._read_mpf_3, self._read_mpf_4], #OFMPF2E Table of fluid mode participation factors by excitation frequencies. #OSMPF2E Table of structure mode participation factors by excitation frequencies. #OPMPF2E Table of panel mode participation factors by excitation frequencies. #OLMPF2E Table of load mode participation factors by excitation frequencies. #OGMPF2E Table of grid mode participation factors by excitation frequencies. # velocity b'OVGATO1' : [self._read_oug1_3, self._read_oug_ato], b'OVGCRM1' : [self._read_oug1_3, self._read_oug_crm], b'OVGPSD1' : [self._read_oug1_3, self._read_oug_psd], b'OVGRMS1' : [self._read_oug1_3, self._read_oug_rms], b'OVGNO1' : [self._read_oug1_3, self._read_oug_no], b'OVGATO2' : [self._read_oug2_3, self._read_oug_ato], b'OVGCRM2' : [self._read_oug2_3, self._read_oug_crm], b'OVGPSD2' : [self._read_oug2_3, self._read_oug_psd], #b'OVGRMS2' : [self._table_passer, self._table_passer], #b'OVGNO2' : [self._table_passer, self._table_passer], b'OVGRMS2' : [self._read_oug2_3, self._read_oug_rms], b'OVGNO2' : [self._read_oug2_3, self._read_oug_no], #================================== #b'GPL': [self._table_passer, self._table_passer], #b'OMM2' : [self._table_passer, self._table_passer], # max/min table - kinda useless b'ERRORN' : [self._table_passer, self._table_passer], # p-element error summary table #================================== b'EDOM' : [self._table_passer, self._table_passer], b'OUG2T' : [self._table_passer, self._table_passer], # acceleration b'OAGATO1' : [self._read_oug1_3, self._read_oug_ato], b'OAGCRM1' : [self._read_oug1_3, self._read_oug_crm], b'OAGPSD1' : [self._read_oug1_3, self._read_oug_psd], b'OAGRMS1' : [self._read_oug1_3, self._read_oug_rms], b'OAGNO1' : [self._read_oug1_3, self._read_oug_no], b'OAGATO2' : [self._read_oug2_3, self._read_oug_ato], b'OAGCRM2' : [self._read_oug2_3, self._read_oug_crm], b'OAGPSD2' : [self._read_oug2_3, self._read_oug_psd], #b'OAGRMS2' : [self._table_passer, self._table_passer], #b'OAGNO2' : [self._table_passer, self._table_passer], b'OAGRMS2' : [self._read_oug2_3, self._read_oug_rms], b'OAGNO2' : [self._read_oug2_3, self._read_oug_no], # stress b'OESATO1' : [self._read_oes1_3, self._read_oes1_4], b'OESCRM1' : [self._read_oes1_3, self._read_oes1_4], b'OESPSD1' : [self._read_oes1_3, self._read_oes1_4], b'OESRMS1' : [self._read_oes1_3, self._read_oes1_4], b'OESNO1' : [self._read_oes1_3, self._read_oes1_4], # OESXRM1C : Composite element RMS stresses in SORT1 format for random analysis that includes von Mises stress output. b'OESXRMS1' : [self._read_oes1_3, self._read_oes1_4], b'OESXRM1C' : [self._read_oes1_3, self._read_oes1_4], b'OESXNO1' : [self._read_oes1_3, self._read_oes1_4], b'OESXNO1C' : [self._read_oes1_3, self._read_oes1_4], b'OESATO2' : [self._read_oes2_3, self._read_oes2_4], b'OESCRM2' : [self._read_oes2_3, self._read_oes2_4], b'OESPSD2' : [self._read_oes2_3, self._read_oes2_4], #b'OESRMS2' : [self._read_oes1_3, self._read_oes1_4], # buggy on isat random #b'OESNO2' : [self._read_oes1_3, self._read_oes1_4], # buggy on isat random b'OESRMS2' : [self._table_passer, self._table_passer], # buggy on isat random b'OESNO2' : [self._table_passer, self._table_passer], # buggy on isat random # force b'OEFATO1' : [self._read_oef1_3, self._read_oef1_4], b'OEFCRM1' : [self._read_oef1_3, self._read_oef1_4], b'OEFPSD1' : [self._read_oef1_3, self._read_oef1_4], b'OEFRMS1' : [self._read_oef1_3, self._read_oef1_4], b'OEFNO1' : [self._read_oef1_3, self._read_oef1_4], b'OEFATO2' : [self._read_oef2_3, self._read_oef2_4], b'OEFCRM2' : [self._read_oef2_3, self._read_oef2_4], b'OEFPSD2' : [self._read_oef2_3, self._read_oef2_4], #b'OEFRMS2' : [self._read_oef2_3, self._read_oef2_4], # buggy on isat random } if self.is_nx and 0: table_mapper2 = { #b'OUGRMS2' : [self._table_passer, self._table_passer], # buggy on isat random #b'OUGNO2' : [self._table_passer, self._table_passer], # buggy on isat random b'OUGRMS2' : [self._read_oug2_3, self._read_oug_rms], # buggy on isat random b'OUGNO2' : [self._read_oug2_3, self._read_oug_no], # buggy on isat random #b'OQMRMS2' : [self._table_passer, self._table_passer], # buggy on isat random #b'OQMNO2' : [self._table_passer, self._table_passer], # buggy on isat random b'OQMRMS2' : [self._read_oqg2_3, self._read_oqg_mpc_rms], # buggy on isat random b'OQMNO2' : [self._read_oqg2_3, self._read_oqg_mpc_no], # buggy on isat random #b'OSTRRMS2' : [self._table_passer, self._table_passer], # buggy on isat random #b'OSTRNO2' : [self._table_passer, self._table_passer], # buggy on isat random b'OSTRRMS2' : [self._read_oes2_3, self._read_ostr2_4], # buggy on isat random b'OSTRNO2' : [self._read_oes2_3, self._read_ostr2_4], # buggy on isat random b'OESRMS2' : [self._read_oes1_3, self._read_oes1_4], # buggy on isat random b'OESNO2' : [self._read_oes1_3, self._read_oes1_4], # buggy on isat random #b'OESRMS2' : [self._table_passer, self._table_passer], # buggy on isat random #b'OESNO2' : [self._table_passer, self._table_passer], # buggy on isat random b'OEFNO2' : [self._read_oef2_3, self._read_oef2_4], #b'OEFNO2' : [self._table_passer, self._table_passer], # buggy on isat_random_steve2.op2 } for key, value in table_mapper2.items(): table_mapper[key] = value #table_mapper.update(table_mapper2) return table_mapper def _read_mpf_3(self, data, ndata: int) -> int: """reads table 3 (the header table) OFMPF2E Table of fluid mode participation factors by excitation frequencies. OFMPF2M Table of fluid mode participation factors by normal mode. OSMPF2E Table of structure mode participation factors by excitation frequencies. OSMPF2M Table of structure mode participation factors by normal mode. OPMPF2E Table of panel mode participation factors by excitation frequencies. OPMPF2M Table of panel mode participation factors by normal mode. OLMPF2E Table of load mode participation factors by excitation frequencies. OLMPF2M Table of load mode participation factors by normal mode. OGMPF2E Table of grid mode participation factors by excitation frequencies. OGMPF2M Table of grid mode participation factors by normal mode. """ #self._set_times_dtype() self.nonlinear_factor = np.nan self.is_table_1 = True self.is_table_2 = False unused_three = self.parse_approach_code(data) self.words = [ 'approach_code', 'table_code', '???', 'isubcase', '???', '???', '???', 'random_code', 'format_code', 'num_wide', '???', '???', 'acoustic_flag', '???', '???', '???', '???', '???', '???', '???', '???', '???', 'thermal', '???', '???', 'Title', 'subtitle', 'label'] ## random code self.random_code = self.add_data_parameter(data, 'random_code', b'i', 8, False) ## format code self.format_code = self.add_data_parameter(data, 'format_code', b'i', 9, False) ## number of words per entry in record self.num_wide = self.add_data_parameter(data, 'num_wide', b'i', 10, False) ## acoustic pressure flag self.acoustic_flag = self.add_data_parameter(data, 'acoustic_flag', b'i', 13, False) ## thermal flag; 1 for heat transfer, 0 otherwise self.thermal = self.add_data_parameter(data, 'thermal', b'i', 23, False) #if self.analysis_code == 1: # statics / displacement / heat flux ## load set number #self.lsdvmn = self.add_data_parameter(data, 'lsdvmn', b'i', 5, False) #self.data_names = self.apply_data_code_value('data_names', ['lsdvmn']) #self.setNullNonlinearFactor() #elif self.analysis_code == 2: # real eigenvalues ## mode number #self.mode = self.add_data_parameter(data, 'mode', b'i', 5) ## eigenvalue #self.eign = self.add_data_parameter(data, 'eign', b'f', 6, False) ## mode or cycle .. todo:: confused on the type - F1??? #self.mode_cycle = self.add_data_parameter(data, 'mode_cycle', b'i', 7, False) #self.update_mode_cycle('mode_cycle') #self.data_names = self.apply_data_code_value('data_names', ['mode', 'eign', 'mode_cycle']) #elif self.analysis_code == 3: # differential stiffness #self.lsdvmn = self.get_values(data, b'i', 5) ## load set number #self.data_code['lsdvmn'] = self.lsdvmn #elif self.analysis_code == 4: # differential stiffness #self.lsdvmn = self.get_values(data, b'i', 5) ## load set number if self.analysis_code == 5: # frequency # frequency self.node_id = self.add_data_parameter(data, 'node_id', b'i', 5, fix_device_code=True) self.data_names = self.apply_data_code_value('data_names', ['node_id']) #self.freq = self.add_data_parameter(data, 'freq', b'f', 5) #self.data_names = self.apply_data_code_value('data_names', ['freq']) #elif self.analysis_code == 6: # transient ## time step #self.dt = self.add_data_parameter(data, 'dt', b'f', 5) #self.data_names = self.apply_data_code_value('data_names', ['dt']) #elif self.analysis_code == 7: # pre-buckling ## load set number #self.lsdvmn = self.add_data_parameter(data, 'lsdvmn', b'i', 5) #self.data_names = self.apply_data_code_value('data_names', ['lsdvmn']) #elif self.analysis_code == 8: # post-buckling ## load set number #self.lsdvmn = self.add_data_parameter(data, 'lsdvmn', b'i', 5) ## real eigenvalue #self.eigr = self.add_data_parameter(data, 'eigr', b'f', 6, False) #self.data_names = self.apply_data_code_value('data_names', ['lsdvmn', 'eigr']) #elif self.analysis_code == 9: # complex eigenvalues ## mode number #self.mode = self.add_data_parameter(data, 'mode', b'i', 5) ## real eigenvalue #self.eigr = self.add_data_parameter(data, 'eigr', b'f', 6, False) ## imaginary eigenvalue #self.eigi = self.add_data_parameter(data, 'eigi', b'f', 7, False) #self.data_names = self.apply_data_code_value('data_names', ['mode', 'eigr', 'eigi']) #elif self.analysis_code == 10: # nonlinear statics ## load step #self.lftsfq = self.add_data_parameter(data, 'lftsfq', b'f', 5) #self.data_names = self.apply_data_code_value('data_names', ['lftsfq']) #elif self.analysis_code == 11: # old geometric nonlinear statics ## load set number #self.lsdvmn = self.add_data_parameter(data, 'lsdvmn', b'i', 5) #self.data_names = self.apply_data_code_value('data_names', ['lsdvmn']) #elif self.analysis_code == 12: # contran ? (may appear as aCode=6) --> straight from DMAP...grrr... ## load set number #self.lsdvmn = self.add_data_parameter(data, 'lsdvmn', b'i', 5) #self.data_names = self.apply_data_code_value('data_names', ['lsdvmn']) else: msg = f'invalid analysis_code...analysis_code={self.analysis_code}\ndata={self.data_code}' raise RuntimeError(msg) #print self.code_information() # self.fix_format_code() if self.num_wide == 8: self.format_code = 1 self.data_code['format_code'] = 1 else: #self.fix_format_code() if self.format_code == 1: self.format_code = 2 self.data_code['format_code'] = 2 assert self.format_code in [2, 3], self.code_information() self._parse_thermal_code() if self.is_debug_file: self.binary_debug.write(' approach_code = %r\n' % self.approach_code) self.binary_debug.write(' tCode = %r\n' % self.tCode) self.binary_debug.write(' isubcase = %r\n' % self.isubcase) self._read_title(data) self._write_debug_bits() def _read_mpf_4(self, data, ndata): """unused""" if self.read_mode == 1: # or self.table_name_str not in ['OFMPF2M']: return ndata #print(self.table_name_str, ndata, self.num_wide) # 176 #self.show_ndata(100, types='ifs') structi = Struct('fiff') nelements = ndata // 16 ndev = ndata % 16 assert ndev == 0, ndev for i in range(nelements): datai = data[i*16 : (i+1)*16] freq, dunno_int, mag, phase = structi.unpack(datai) assert dunno_int == 2, str(self.node_id, freq, dunno_int, mag, phase) #print(self.node_id, freq, dunno_int, mag, phase) #print() if self.isubtable == -4: self.log.warning('%s results were read, but not saved' % self.table_name_str) return ndata def _read_pvto_3(self, data, ndata): """unused""" raise RuntimeError(self.read_mode) def _read_pvto_4(self, data, ndata): """reads PARAM cards""" if self.read_mode == 1: return ndata iloc = self.f.tell() try: ndata2 = self._read_pvto_4_helper(data, ndata) except Exception as e: self.log.error(str(e)) if 'dev' in __version__: raise # only for testing self.f.seek(iloc) ndata2 = ndata return ndata2 def _read_pvto_4_helper(self, data, ndata): """reads PARAM cards""" nvalues = ndata // 4 assert ndata % 4 == 0, ndata structs8 = Struct(b'8s') #struct2s8 = Struct(b'4s8s') struct2i = Struct(b'ii') struct2f = Struct(b'ff') struct2d = Struct(b'dd') i = 0 #print('---------------------------') while i < nvalues: #print('*i=%s nvalues=%s' % (i, nvalues)) word = data[i*4:(i+2)*4].rstrip() #print('word=%r' % word) #word = s8.unpack(word)[0]#.decode(self._encoding) # the first two entries are typically trash, then we can get values if word in INT_PARAMS_1: slot = data[(i+2)*4:(i+4)*4] value = struct2i.unpack(slot)[1] i += 4 elif word in FLOAT_PARAMS_1: slot = data[(i+2)*4:(i+4)*4] value = struct2f.unpack(slot)[1] i += 4 elif word in FLOAT_PARAMS_2: slot = data[(i+3)*4:(i+5)*4] value = struct2f.unpack(slot) i += 5 elif word in INT_PARAMS_2: slot = data[(i+3)*4:(i+5)*4] value = struct2i.unpack(slot) i += 5 elif word in DOUBLE_PARAMS_1: slot = data[(i+1)*4:(i+8)*4] try: value = struct2d.unpack(slot)[1] except: print(word) raise i += 8 #elif word in [b'VUHEXA']: #self.show_data(data[i*4:(i+5)*4], types='ifs', endian=None) #aaa elif word in STR_PARAMS_1: i += 3 slot = data[i*4:(i+2)*4] value = structs8.unpack(slot)[0].decode('latin1').rstrip() i += 2 else: self.show_data(data[i*4:(i+4)*4], types='ifsd') self.show_data(data[i*4+4:i*4+i*4+12], types='ifsd') raise NotImplementedError('%r is not a supported PARAM' % word) key = word.decode('latin1') #print(key, value) self.params[key] = PARAM(key, [value], comment='') return nvalues def _not_available(self, data, ndata): """testing function""" if ndata > 0: raise RuntimeError('this should never be called...' 'table_name=%r len(data)=%s' % (self.table_name, ndata)) def _table_crasher(self, data, ndata): """auto-table crasher""" if self.is_debug_file: self.binary_debug.write(' crashing table = %s\n' % self.table_name) raise NotImplementedError(self.table_name) return ndata def _table_passer(self, data, ndata): """auto-table skipper""" if self.is_debug_file: self.binary_debug.write(' skipping table = %s\n' % self.table_name) if self.table_name not in GEOM_TABLES and self.isubtable > -4: self.log.warning(' skipping table: %s' % self.table_name_str) if not is_release and self.isubtable > -4: if self.table_name in GEOM_TABLES and not self.make_geom: pass else: print('dont skip table %r' % self.table_name_str) raise RuntimeError('dont skip table %r' % self.table_name_str) return ndata def _validate_op2_filename(self, op2_filename): """ Pops a GUI if the op2_filename hasn't been set. Parameters ---------- op2_filename : str the filename to check (None -> gui) Returns ------- op2_filename : str a valid file string """ if op2_filename is None: from pyNastran.utils.gui_io import load_file_dialog wildcard_wx = "Nastran OP2 (*.op2)|*.op2|" \ "All files (*.*)|*.*" wildcard_qt = "Nastran OP2 (*.op2);;All files (*)" title = 'Please select a OP2 to load' op2_filename, unused_wildcard_level = load_file_dialog( title, wildcard_wx, wildcard_qt, dirname='') assert op2_filename is not None, op2_filename return op2_filename def _create_binary_debug(self): """Instatiates the ``self.binary_debug`` variable/file""" if hasattr(self, 'binary_debug') and self.binary_debug is not None: self.binary_debug.close() del self.binary_debug self.is_debug_file, self.binary_debug = create_binary_debug( self.op2_filename, self.debug_file, self.log) def read_op2(self, op2_filename=None, combine=False, load_as_h5=False, h5_file=None, mode=None): """ Starts the OP2 file reading Parameters ---------- op2_filename : str the op2 file combine : bool; default=True True : objects are isubcase based False : objects are (isubcase, subtitle) based; will be used for superelements regardless of the option load_as_h5 : default=None False : don't setup the h5_file True : loads the op2 as an h5 file to save memory stores the result.element/data attributes in h5 format h5_file : h5File; default=None None : ??? h5File : ??? +--------------+-----------------------+ | op2_filename | Description | +--------------+-----------------------+ | None | a dialog is popped up | +--------------+-----------------------+ | string | the path is used | +--------------+-----------------------+ """ fname = os.path.splitext(op2_filename)[0] self.op2_filename = op2_filename self.bdf_filename = fname + '.bdf' self.f06_filename = fname + '.f06' self.des_filename = fname + '.des' self.h5_filename = fname + '.h5' self.op2_reader.load_as_h5 = load_as_h5 if load_as_h5: h5_file = None import h5py self.h5_file = h5py.File(self.h5_filename, 'w') self.op2_reader.h5_file = self.h5_file self._count = 0 if self.read_mode == 1: #sr = list(self._results.saved) #sr.sort() #self.log.debug('_results.saved = %s' % str(sr)) #self.log.info('_results.saved = %s' % str(sr)) pass if self.read_mode != 2: op2_filename = self._validate_op2_filename(op2_filename) self.log.info('op2_filename = %r' % op2_filename) if not is_binary_file(op2_filename): if os.path.getsize(op2_filename) == 0: raise IOError('op2_filename=%r is empty.' % op2_filename) raise IOError('op2_filename=%r is not a binary OP2.' % op2_filename) self._create_binary_debug() self._setup_op2() self.op2_reader.read_nastran_version(mode) _op2 = self.op2_reader.op2 data = _op2.f.read(4) _op2.f.seek(_op2.n) if len(data) == 0: raise FatalError('There was a Nastran FATAL Error. Check the F06.\n' 'No tables exist...check for a license issue') #================= table_name = self.op2_reader._read_table_name(rewind=True, stop_on_failure=False) if table_name is None: raise FatalError('There was a Nastran FATAL Error. Check the F06.\n' 'No tables exist...check for a license issue') self._make_tables() table_names = self._read_tables(table_name) self.close_op2(force=False) #self.remove_unpickable_data() return table_names def close_op2(self, force=True): """closes the OP2 and debug file""" if self.is_debug_file: self.binary_debug.write('-' * 80 + '\n') self.binary_debug.write('f.tell()=%s\ndone...\n' % self.f.tell()) self.binary_debug.close() if self._close_op2 or force: if self.f is not None: # can happen if: # - is ascii file self.f.close() del self.binary_debug del self.f self._cleanup_data_members() self._cleanup_words() #self.op2_reader.h5_file.close() def _cleanup_words(self): """ Remove internal parameters that are not useful and just clutter the object attributes. """ words = [ 'isubcase', 'int3', '_table4_count', 'nonlinear_factor', 'is_start_of_subtable', 'superelement_adaptivity_index', 'thermal_bits', 'is_vectorized', 'pval_step', #'_frequencies', '_analysis_code_fmt', 'isubtable', '_data_factor', 'sort_method', 'acoustic_flag', 'approach_code', 'format_code_original', 'element_name', 'sort_bits', 'code', 'n', 'use_vector', 'ask', 'stress_bits', 'expected_times', 'table_code', 'sort_code', 'is_all_subcases', 'num_wide', '_table_mapper', 'label', 'apply_symmetry', 'words', 'device_code', 'table_name', '_count', 'additional_matrices', # 350 'data_names', '_close_op2', 'op2_reader', # 74 'generalized_tables', # 124 'is_table_1', 'is_table_2', 'ntotal', 'element_mapper', 'is_debug_file', 'debug_file', '_results', 'skip_undefined_matrices', # 140 #--------------------------------------------------------- # dont remove... # make_geom, title, read_mode # result_names, op2_results ] for word in words: if hasattr(self, word): delattr(self, word) def _setup_op2(self): """ Does preliminary op2 tasks like: - open the file - set the endian - preallocate some struct objects """ #: file index self.n = 0 self.table_name = None if not hasattr(self, 'f') or self.f is None: #: the OP2 file object self.f = open(self.op2_filename, 'rb') #: the endian in bytes self._endian = None #: the endian in unicode self._uendian = None flag_data = self.f.read(20) self.f.seek(0) if unpack(b'>5i', flag_data)[0] == 4: self._uendian = '>' self._endian = b'>' elif unpack(b'<5i', flag_data)[0] == 4: self._uendian = '<' self._endian = b'<' #elif unpack(b'<ii', flag_data)[0] == 4: #self._endian = b'<' else: # Matrices from test show # (24, 10, 10, 6, 2) before the Matrix Name... #self.show_data(flag_data, types='iqlfsld', endian='<') #print('----------') #self.show_data(flag_data, types='iqlfsld', endian='>') raise FatalError('cannot determine endian') else: self.op2_reader._goto(self.n) if self.read_mode == 1: self._set_structs() def _make_tables(self): return #global RESULT_TABLES, NX_RESULT_TABLES, MSC_RESULT_TABLES #table_mapper = self._get_table_mapper() #RESULT_TABLES = table_mapper.keys() def _read_tables(self, table_name: bytes) -> List[bytes]: """ Reads all the geometry/result tables. The OP2 header is not read by this function. Parameters ---------- table_name : bytes str the first table's name Returns ------- table_names : List[bytes str] the table names that were read """ op2_reader = self.op2_reader table_names = [] self.table_count = defaultdict(int) while table_name is not None: self.table_count[table_name] += 1 table_names.append(table_name) if self.is_debug_file: self.binary_debug.write('-' * 80 + '\n') self.binary_debug.write('table_name = %r\n' % (table_name)) if is_release: self.log.debug(' table_name=%r' % table_name) self.table_name = table_name #if 0: #op2_reader._skip_table(table_name) #else: #print(table_name, table_name in op2_reader.mapped_tables) if table_name in self.generalized_tables: t0 = self.f.tell() self.generalized_tables[table_name](self) assert self.f.tell() != t0, 'the position was unchanged...' elif table_name in op2_reader.mapped_tables: t0 = self.f.tell() op2_reader.mapped_tables[table_name]() assert self.f.tell() != t0, 'the position was unchanged...' elif table_name in GEOM_TABLES: op2_reader.read_geom_table() # DIT (agard) elif table_name in MATRIX_TABLES: op2_reader.read_matrix(table_name) elif table_name in RESULT_TABLES: op2_reader.read_results_table() elif self.skip_undefined_matrices: op2_reader.read_matrix(table_name) elif table_name.strip() in self.additional_matrices: op2_reader.read_matrix(table_name) else: msg = ( 'Invalid Table = %r\n\n' 'If you have matrices that you want to read, see:\n' ' model.set_additional_matrices_to_read(matrices)' ' matrices = {\n' " b'BHH' : True,\n" " b'KHH' : False,\n" ' } # you want to read some matrices, but not others\n' " matrices = [b'BHH', b'KHH'] # assumes True\n\n" 'If you the table is a geom/result table, see:\n' ' model.set_additional_result_tables_to_read(methods_dict)\n' " methods_dict = {\n" " b'OUGV1' : [method3, method4],\n" " b'GEOM4SX' : [method3, method4],\n" " b'OES1X1' : False,\n" ' }\n\n' 'If you want to take control of the OP2 reader (mainly useful ' 'for obscure tables), see:\n' " methods_dict = {\n" " b'OUGV1' : [method],\n" ' }\n' ' model.set_additional_generalized_tables_to_read(methods_dict)\n' % ( table_name) ) raise NotImplementedError(msg) table_name = op2_reader._read_table_name(rewind=True, stop_on_failure=False) return table_names def set_additional_generalized_tables_to_read(self, tables): """ Adds methods to call a generalized table. Everything is left to the user. :: def read_some_table(self): # read the data from self.f pass # let's overwrite the existing OP2 table model2 = OP2Geom(debug=True) generalized_tables = { b'GEOM1S' : read_some_table, } model.set_additional_generalized_tables_to_read(generalized_tables) """ self._update_generalized_tables(tables) self.generalized_tables = tables def set_additional_result_tables_to_read(self, tables): """ Adds methods to read additional result tables. This is expected to really only be used for skipping unsupported tables or disabling enabled tables that are buggy (e.g., OUGV1). Parameters ---------- tables : Dict[bytes] = varies a dictionary of key=name, value=list[method3, method4]/False, False : skips a table applies self._table_passer to method3 and method4 method3 : function function to read table 3 results (e.g., metadata) method4 : function function to read table 4 results (e.g., the actual results) """ self._update_generalized_tables(tables) table_mapper = self._get_table_mapper() #is_added = False def func(): """overloaded version of _get_table_mapper""" #if is_added: #return table_mapper for _key, methods in tables.items(): if methods is False: table_mapper[_key] = [self._table_passer, self._table_passer] else: assert len(methods) == 2, methods table_mapper[_key] = methods #is_added = True return table_mapper self._get_table_mapper = func def _update_generalized_tables(self, tables): """ helper function for: - set_additional_generalized_tables_to_read - set_additional_result_tables_to_read """ global NX_RESULT_TABLES global MSC_RESULT_TABLES global RESULT_TABLES failed_keys = [] keys = list(tables.keys()) for _key in keys: if not isinstance(_key, bytes): failed_keys.append(_key) if hasattr(self, 'is_nx') and self.is_nx: NX_RESULT_TABLES.append(_key) else: MSC_RESULT_TABLES.append(_key) if failed_keys: failed_keys_str = [str(_key) for _key in failed_keys] raise TypeError('[%s] must be bytes' % ', '. join(failed_keys_str)) RESULT_TABLES = NX_RESULT_TABLES + MSC_RESULT_TABLES #RESULT_TABLES.sort() #assert 'OESXRMS1' in RESULT_TABLES, RESULT_TABLES def set_additional_matrices_to_read(self, matrices: Union[List[str], Dict[str, bool]]): """ Matrices (e.g., KHH) can be sparse or dense. Parameters ---------- matrices : List[str]; Dict[str] = bool List[str]: simplified method to add matrices; value will be True Dict[str] = bool: a dictionary of key=name, value=True/False, where True/False indicates the matrix should be read .. note:: If you use an already defined table (e.g. KHH), it will be ignored. If the table you requested doesn't exist, there will be no effect. .. note:: Do not use this for result tables like OUGV1, which store results like displacement. Those are not matrices. Matrices are things like DMIGs. """ if isinstance(matrices, list): matrices2 = {} for matrix in matrices: assert isinstance(matrix, str), 'matrix=%r' % str(matrix) matrices2[matrix] = True matrices = matrices2 self.additional_matrices = matrices self.additional_matrices = {} for matrix_name, matrix in matrices.items(): if isinstance(matrix_name, bytes): self.additional_matrices[matrix_name] = matrix else: self.additional_matrices[matrix_name.encode('latin1')] = matrix def _finish(self): """ Clears out the data members contained within the self.words variable. This prevents mixups when working on the next table, but otherwise has no effect. """ for word in self.words: if word != '???' and hasattr(self, word): if word not in ['Title', 'reference_point']: delattr(self, word) self.obj = None if hasattr(self, 'subtable_name'): del self.subtable_name def main(): # pragma: no cover """testing pickling""" from pickle import dump, load txt_filename = 'solid_shell_bar.txt' pickle_file = open(txt_filename, 'wb') op2_filename = 'solid_shell_bar.op2' op2 = OP2_Scalar() op2.read_op2(op2_filename) print(op2.displacements[1]) dump(op2, pickle_file) pickle_file.close() pickle_file = open(txt_filename, 'r') op2 = load(pickle_file) pickle_file.close() print(op2.displacements[1]) #import sys #op2_filename = sys.argv[1] #o = OP2_Scalar() #o.read_op2(op2_filename) #(model, ext) = os.path.splitext(op2_filename) #f06_outname = model + '.test_op2.f06' #o.write_f06(f06_outname) def create_binary_debug(op2_filename: str, debug_file: str, log) -> Tuple[bool, Any]: """helper method""" binary_debug = None if debug_file is not None: #: an ASCII version of the op2 (creates lots of output) log.debug('debug_file = %s' % debug_file) binary_debug = open(debug_file, 'w') binary_debug.write(op2_filename + '\n') is_debug_file = True else: is_debug_file = False return is_debug_file, binary_debug if __name__ == '__main__': # pragma: no cover main()
[ "mesheb82@gmail.com" ]
mesheb82@gmail.com
231c5670a7b9101a97de1e024359e17b16341b00
26f6313772161851b3b28b32a4f8d255499b3974
/Python/480_SlidingWindowMedian.py
2cd4bf46c6091ce083662f732c6a2cd957c5e801
[]
no_license
here0009/LeetCode
693e634a3096d929e5c842c5c5b989fa388e0fcd
f96a2273c6831a8035e1adacfa452f73c599ae16
refs/heads/master
2023-06-30T19:07:23.645941
2021-07-31T03:38:51
2021-07-31T03:38:51
266,287,834
1
0
null
null
null
null
UTF-8
Python
false
false
5,531
py
""" Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value. Examples: [2,3,4] , the median is 3 [2,3], the median is (2 + 3) / 2 = 2.5 Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array. For example, Given nums = [1,3,-1,-3,5,3,6,7], and k = 3. Window position Median --------------- ----- [1 3 -1] -3 5 3 6 7 1 1 [3 -1 -3] 5 3 6 7 -1 1 3 [-1 -3 5] 3 6 7 -1 1 3 -1 [-3 5 3] 6 7 3 1 3 -1 -3 [5 3 6] 7 5 1 3 -1 -3 5 [3 6 7] 6 Therefore, return the median sliding window as [1,-1,-1,3,5,6]. Note: You may assume k is always valid, ie: k is always smaller than input array's size for non-empty array. Answers within 10^-5 of the actual value will be accepted as correct. """ from typing import List class Solution: def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]: """ use a fenwick tree to store sorted index based on the value of nums update the fenwick tree when the window slides query k//2 + 1 (and k // 2 if k is even) for median """ def update(i, v): while i <= length: counts[i] += v i += i & -i pass def query(k): while counts[i] > k: pass length = len(nums) vals = sorted([(v, i) for i, v in enumerate(nums)]) counts = [0] * (length + 1) index_convert = dict(zip(i, vals[i][1] + 1) for i in range(length)) # link the index in nums and counts from bisect import insort class Solution: def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]: res = [] lst = sorted(nums[:k - 1]) len_n = len(nums) half_k, rmd = divmod(k, 2) for i in range(k - 1, len_n): if i >= k: lst.remove(nums[i - k]) insort(lst, nums[i]) # print(i, nums[i], lst) if rmd == 1: res.append(lst[half_k]) else: res.append((lst[half_k] + lst[half_k - 1]) / 2) return res from sortedcontainers import SortedList class Solution: def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]: window = SortedList(nums[:k]) res = [] half_k, rmd = divmod(k, 2) tmp = window[half_k] if rmd == 1 else (window[half_k] + window[half_k - 1]) / 2 res.append(tmp) for i in range(k, len(nums)): window.remove(nums[i - k]) window.add(nums[i]) tmp = window[half_k] if rmd == 1 else (window[half_k] + window[half_k - 1]) / 2 res.append(tmp) return res # https://leetcode.com/problems/sliding-window-median/discuss/333240/Python-O(NlogN)-using-heap import heapq class Solution: def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]: """ use a upper heap and lower heap, keep the max and min part of the window respectively keep the length of the lower heap len_k//2 and the length of the upper heap len_k - len_k//2. iterate over the nums, keep the valid (in window) nums in upper and lower heap always to be len_k - len_k//2 and len_k//2. only delete the invalid nums if they are at the top of the heap """ def poppush(h1, h2): """ pop an element from h1, push it to h2, convert the sign """ v, i = heapq.heappop(h1) heapq.heappush(h2, (-v, i)) lower, upper = [], [] res = [] half_k, rmd = divmod(k, 2) len_n = len(nums) for i, v in enumerate(nums[:k]): heapq.heappush(upper, (v, i)) for _ in range(half_k): poppush(upper, lower) res.append(upper[0][0] if rmd else (upper[0][0] - lower[0][0]) / 2) # print(lower, upper) for i in range(k, len_n): v = nums[i] j = i - k pre_v = nums[j] if v >= upper[0][0]: heapq.heappush(upper, (v, i)) if pre_v <= upper[0][0]: # if pre_v > upper[0][0] then it is in upper, so the valid nums in lower and upper are the same, we do nothing. but if the pre_v is in lower, we need to transfer an element to lower to keep the balance. # if (pre_v, j) is upper[0], we can transfer it to lower for removal, no loss for lower # if (pre_v, j) is not upper[0], it can compensate the loss of lower poppush(upper, lower) else: heapq.heappush(lower, (-v, i)) if pre_v >= upper[0][0]: poppush(lower, upper) while lower and lower[0][1] <= j: heapq.heappop(lower) while upper and upper[0][1] <= j: heapq.heappop(upper) # print(lower, upper) res.append(upper[0][0] if rmd else (upper[0][0] - lower[0][0]) / 2) return res S = Solution() nums = [1,3,-1,-3,5,3,6,7] k = 3 print(S.medianSlidingWindow(nums, k)) nums = [1,4,2,3] k = 4 print(S.medianSlidingWindow(nums, k))
[ "here0009@163.com" ]
here0009@163.com
1d80cf91b20248fcd2018eb5e08868d720f55b3e
336dfb6b67520a04e71e2ef58fff1ab5794c63d9
/Tweet_streaming_crawler_20170519J.py
7d268714aa83a22fc5ce62902bf33ecdca4b3d77
[]
no_license
pil0706/Tweet_Crawler_with_Jin
9e61230625f7c6e9d9af606d9d2b04c59403c987
8543bbb1fa6b258e2dcbd2545d9c6108ecaf8fe3
refs/heads/master
2021-01-21T19:02:05.586954
2017-05-23T05:52:56
2017-05-23T05:52:56
92,110,600
0
0
null
null
null
null
UTF-8
Python
false
false
1,613
py
#-*- coding: utf-8 -*- from tweepy import StreamListener from tweepy import Stream import json import tweepy import sys import jsonpickle import datetime # consumer_key = 'TcSyTjO8ycNRXWUIxxP0rbBFG' consumer_secret = 'm6uNwnPkMwJkMqWwB4DPqRNlpmfdnEHyJcgiQUsI0tYjpiHaBi' access_token = '142620900-cOv68WHjBU6WPxPRTGVcxbIaICeSweNGnsxgDNXR' access_secret = 'QBrzkiCDx8auR5CtjcB8KYdsqnwUXrDFB5LGi51pjgpRQ' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) if (not api): print ("Problem connecting to API") sys.exit(-1) #start timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") fName = 'stream_tweets' + timestamp +'.json' file = open(fName, mode='a', encoding="utf-8") class CustomStreamListener(StreamListener): """ A listener handles tweets that are received from the stream. This is a basic listener that just prints received tweets to stdout. """ non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) def on_status(self, status): print(status) def on_data(self, data): parsed = json.loads(data) text = parsed['text'].translate(non_bmp_map) print(text) file.write(text) return True def on_error(self, status): print(status) return True def on_timeout(self): print (sys.stderr, 'Timeout...') return True stream = Stream(auth, CustomStreamListener()) stream.filter(track=[u'문재인', u'심상정', u'안철수'])
[ "pil0706@gmail.com" ]
pil0706@gmail.com
ca84b99a622c454d4e778aa201ee5b822cb49cff
c63aeed37436715b06a0e0c98c05dbf426a51817
/CODEUP/recursion/ex1901.py
3a7554c83944e12a932fd64405cff8371290b47b
[ "MIT" ]
permissive
FridayAlgorithm/taesong_study
8fca9fa6a14b7dfadf984ce2efcb00038ae6ad07
50c07ee6ead0fb5bb80e0decb03b801cbbbabf9c
refs/heads/main
2023-05-14T21:06:17.595287
2021-06-06T15:00:34
2021-06-06T15:00:34
323,922,637
0
2
null
null
null
null
UTF-8
Python
false
false
275
py
n = int(input()) # 정수 n을 입력 받음 def integer_print(a): # 재귀 함수 if a == 0: # 종료 조건 return else: print(n-a+1) # 순서대로 출력 integer_print(a-1) # 자기 자신 호출 integer_print(n) # 함수 호출
[ "taesongweb@gmail.com" ]
taesongweb@gmail.com
24d3e0b3de437c4336060cee7f12b0c827c09418
6533df70738b94e44e98c36f1fb1b087598054c1
/roosterize/ml/onmt/MultiSourceInputFeedRNNDecoder.py
a2eb3f1ccddb665eb05840eda5238f8b581f55d0
[ "MIT" ]
permissive
Desperatesonic/roosterize
579989a838a591289f7ed6f67d017f538260d4b9
2990f7bdef8889045a26f3e9aaaca96d9c92e0bc
refs/heads/master
2023-01-22T03:24:31.595188
2020-11-23T16:18:33
2020-11-23T16:18:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,379
py
from typing import * from roosterize.ml.onmt.MultiSourceGlobalAttention import MultiSourceGlobalAttention from onmt.decoders.decoder import DecoderBase from onmt.models.stacked_rnn import StackedLSTM, StackedGRU from onmt.modules import context_gate_factory, GlobalAttention from onmt.utils.misc import aeq import torch import torch.nn as nn from seutil import LoggingUtils class MultiSourceInputFeedRNNDecoder(DecoderBase): logger = LoggingUtils.get_logger(__name__) def __init__(self, rnn_type, bidirectional_encoder, num_layers, hidden_size, attn_type="general", attn_func="softmax", coverage_attn=False, context_gate=None, copy_attn=False, dropout=0.0, embeddings=None, reuse_copy_attn=False, copy_attn_type="general", num_srcs: int = 1, ): super().__init__(attentional=attn_type != "none" and attn_type is not None) self.bidirectional_encoder = bidirectional_encoder self.num_layers = num_layers self.hidden_size = hidden_size self.embeddings = embeddings self.dropout = nn.Dropout(dropout) self.num_srcs = num_srcs # Decoder state self.state = {} # Build the RNN. self.rnn = self._build_rnn(rnn_type, input_size=self._input_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout) # Hidden state merging self.hidden_merge_0 = nn.Linear( in_features=self.hidden_size * self.num_srcs, out_features=self.hidden_size, ) if rnn_type == "LSTM": self.hidden_merge_1 = nn.Linear( in_features=self.hidden_size * self.num_srcs, out_features=self.hidden_size, ) # end if # Set up the context gate. self.context_gate = None if context_gate is not None: self.context_gate = context_gate_factory( context_gate, self._input_size, hidden_size, hidden_size, hidden_size ) # end if # Set up the standard attention. assert not coverage_attn, "Coverage attention is not supported" self._coverage: bool = coverage_attn if not self.attentional: if self._coverage: raise ValueError("Cannot use coverage term with no attention.") self.ms_attn = None else: self.ms_attn = MultiSourceGlobalAttention( hidden_size, coverage=coverage_attn, attn_type=attn_type, attn_func=attn_func ) # end if # Copy attention if copy_attn and not reuse_copy_attn: if copy_attn_type == "none" or copy_attn_type is None: raise ValueError("Cannot use copy_attn with copy_attn_type none") self.copy_ms_attn = MultiSourceGlobalAttention( hidden_size, attn_type=copy_attn_type, attn_func=attn_func ) else: self.copy_ms_attn = None # end if self._reuse_copy_attn = reuse_copy_attn and copy_attn if self._reuse_copy_attn and not self.attentional: raise ValueError("Cannot reuse copy attention with no attention.") return @classmethod def from_opt(cls, opt, embeddings): """Alternate constructor.""" return cls( opt.rnn_type, opt.brnn, opt.dec_layers, opt.dec_rnn_size, opt.global_attention, opt.global_attention_function, opt.coverage_attn, opt.context_gate, opt.copy_attn, opt.dropout[0] if type(opt.dropout) is list else opt.dropout, embeddings, opt.reuse_copy_attn, opt.copy_attn_type, opt.num_srcs, ) def init_state(self, src_list: List, memory_bank_list: List, encoder_final_list: List, # [srcs] x [layers*directions, batch, dim] ) -> NoReturn: """Initialize decoder state with last state of the encoder.""" def _fix_enc_hidden(hidden): # The encoder hidden is (layers*directions) x batch x dim. # We need to convert it to layers x batch x (directions*dim). if self.bidirectional_encoder: hidden = torch.cat([hidden[0:hidden.size(0):2], hidden[1:hidden.size(0):2]], 2) return hidden if isinstance(encoder_final_list[0], tuple): # LSTM self.state["hidden"] = ( self.hidden_merge_0(torch.cat([_fix_enc_hidden(encoder_final[0]) for encoder_final in encoder_final_list], dim=2)), self.hidden_merge_1(torch.cat([_fix_enc_hidden(encoder_final[1]) for encoder_final in encoder_final_list], dim=2)) ) else: # GRU self.state["hidden"] = ( self.hidden_merge_0(torch.cat(_fix_enc_hidden(encoder_final_list), dim=2)), ) # end if # Init the input feed. batch_size = self.state["hidden"][0].size(1) h_size = (batch_size, self.hidden_size) self.state["input_feed"] = self.state["hidden"][0].data.new(*h_size).zero_().unsqueeze(0) self.state["coverage"] = None return def map_state(self, fn): self.state["hidden"] = tuple(fn(h, 1) for h in self.state["hidden"]) self.state["input_feed"] = fn(self.state["input_feed"], 1) if self._coverage and self.state["coverage"] is not None: self.state["coverage"] = fn(self.state["coverage"], 1) def detach_state(self): self.state["hidden"] = tuple(h.detach() for h in self.state["hidden"]) self.state["input_feed"] = self.state["input_feed"].detach() def forward(self, tgt: torch.LongTensor, # [tgt_len, batch, nfeats] memory_bank_list: List[torch.FloatTensor], # [srcs] x [src_len, batch, hidden] memory_lengths_list: List[torch.LongTensor] = None, # [srcs] x [batch] step=None ) -> Tuple[List[torch.FloatTensor], Dict[str, List[torch.FloatTensor]]]: # dec_outs: [tgt_len, batch, hidden] # attns: Dict[.., [tgt_len, batch, src_len]] dec_state, dec_outs, attns = self._run_forward_pass(tgt, memory_bank_list, memory_lengths_list=memory_lengths_list) # Update the state with the result. if not isinstance(dec_state, tuple): dec_state = (dec_state,) self.state["hidden"] = dec_state self.state["input_feed"] = dec_outs[-1].unsqueeze(0) self.state["coverage"] = None if "coverage" in attns: self.state["coverage"] = attns["coverage"][-1].unsqueeze(0) # end if # Concatenates sequence of tensors along a new dimension. # NOTE: v0.3 to 0.4: dec_outs / attns[*] may not be list # (in particular in case of SRU) it was not raising error in 0.3 # since stack(Variable) was allowed. # In 0.4, SRU returns a tensor that shouldn't be stacke if type(dec_outs) == list: dec_outs = torch.stack(dec_outs) for k in attns: if type(attns[k]) == list: attns[k] = torch.stack(attns[k]) # end for # end if return dec_outs, attns def _run_forward_pass(self, tgt: torch.LongTensor, # [tgt_len, batch, nfeats] memory_bank_list: List[torch.FloatTensor], # [srcs] x [src_len, batch, hidden] memory_lengths_list: List[torch.LongTensor] = None, # [srcs] x [batch] ) -> Tuple[torch.Tensor, List[torch.FloatTensor], Dict[str, List[torch.FloatTensor]]]: # dec_state # dec_outs # attns batch_size = tgt.size()[1] # Additional args check. input_feed = self.state["input_feed"].squeeze(0) input_feed_batch, _ = input_feed.size() _, tgt_batch, _ = tgt.size() aeq(tgt_batch, input_feed_batch) # END Additional args check. dec_outs: List[torch.FloatTensor] = [] attns: Dict[str, List[torch.FloatTensor]] = {} if self.ms_attn is not None: attns["std"] = [] if self.copy_ms_attn is not None or self._reuse_copy_attn: attns["copy"] = [] if self._coverage: attns["coverage"] = [] emb = self.embeddings(tgt) assert emb.dim() == 3 # len x batch x embedding_dim dec_state = self.state["hidden"] coverage = self.state["coverage"].squeeze(0) if self.state["coverage"] is not None else None # Input feed concatenates hidden state with # input at every time step. for emb_t in emb.split(1): decoder_input = torch.cat([emb_t.squeeze(0), input_feed], 1) rnn_output, dec_state = self.rnn(decoder_input, dec_state) # [batch, tgt_len, dim] if self.attentional: decoder_output, align_vectors = self.ms_attn( rnn_output, [mb.transpose(0, 1) for mb in memory_bank_list], memory_lengths_list, ) # [tgt_len, batch, dim], [tgt_len, batch, num_srcs*src_len] attns["std"].append(align_vectors) else: decoder_output = rnn_output # end if if self.context_gate is not None: # TODO: context gate should be employed # instead of second RNN transform. decoder_output = self.context_gate( decoder_input, rnn_output, decoder_output ) decoder_output = self.dropout(decoder_output) input_feed = decoder_output dec_outs += [decoder_output] # Update the coverage attention. # PN: disabled coverage attention for now # if self._coverage: # coverage = p_attn if coverage is None else p_attn + coverage # attns["coverage"] += [coverage] if self.copy_ms_attn is not None: _, copy_attn = self.copy_ms_attn( decoder_output, [mb.transpose(0, 1) for mb in memory_bank_list], memory_lengths_list, ) attns["copy"] += [copy_attn] elif self._reuse_copy_attn: for enc_i in range(self.num_srcs): attns["copy"] = attns["std"] # end for # end if return dec_state, dec_outs, attns def _build_rnn(self, rnn_type, input_size, hidden_size, num_layers, dropout): assert rnn_type != "SRU", "SRU doesn't support input feed! " \ "Please set -input_feed 0!" stacked_cell = StackedLSTM if rnn_type == "LSTM" else StackedGRU return stacked_cell(num_layers, input_size, hidden_size, dropout) @property def _input_size(self): """Using input feed by concatenating input with attention vectors.""" return self.embeddings.embedding_size + self.hidden_size def update_dropout(self, dropout): self.dropout.p = dropout self.embeddings.update_dropout(dropout)
[ "prodigy.sov@gmail.com" ]
prodigy.sov@gmail.com
034340941526fdd10366317b3ece8cc1ffa4281b
7ec9ed419217eb3b313659c44dbda90eb2ddcb87
/util/visual.py
0913a2e8238055856b53c2a78c7a8ca83d90a172
[]
no_license
adityapurohit1996/6DOF_arm
823db8bd7c3236aeb980149f348104180f387169
9193f9efeb92d9b2bf2004820ae9d653c59f5521
refs/heads/master
2021-01-14T04:03:32.207942
2019-10-07T02:14:41
2019-10-07T02:14:41
242,593,970
0
0
null
null
null
null
UTF-8
Python
false
false
1,605
py
import time import numpy as np import tp_test import matplotlib.pyplot as plt tp = tp_test.TrajectoryPlanner() waypoints = np.array([[ 0.0, 0.0, 0.0, 0.0, 0.0], [ 1.0, 0.8, 1.0, 0.5, 1.0], [-1.0,-0.8,-1.0,-0.5, -1.0], [-1.0, 0.8, 1.0, 0.5, 1.0], [1.0, -0.8,-1.0,-0.5, -1.0], [ 0.0, 0.0, 0.0, 0.0, 0.0]]) max_speed = 0.4 # in radius/s Time = [] Q = [] V = [] t_last = 0 for i in range(len(waypoints) - 1): tp.set_initial_wp(waypoints[i]) tp.set_final_wp(waypoints[i+1]) T = tp.calc_time_from_waypoints(max_speed) [t, plan] = tp.generate_cubic_spline(T) plan_q = plan[0] plan_v = plan[1] plan_q = plan_q.transpose() plan_v = plan_v.transpose() if i == 0: Time = t Q = plan_q V = plan_v else: Time = np.concatenate((Time, t+t_last)) Q = np.concatenate((Q,plan_q), axis=1) V = np.concatenate((V,plan_v), axis=1) t_last = t_last + t[-1] inte_q = np.zeros((5,1)) for qi in Q.T: for ax1 = plt.subplot2grid(shape=(2,6), loc=(0,0), colspan=2) ax2 = plt.subplot2grid((2,6), (0,2), colspan=2) ax3 = plt.subplot2grid((2,6), (0,4), colspan=2) ax4 = plt.subplot2grid((2,6), (1,1), colspan=2) ax5 = plt.subplot2grid((2,6), (1,3), colspan=2) axs = [ax1, ax2, ax3, ax4, ax5] for i, [Qi, Vi] in enumerate(zip(Q, V)): plt.suptitle(['joint #', i]) axs[i].plot(Time, Qi, 'r--', Time, Vi, 'b') plt.show() # print(plan[0][-1]) # tp.execute_plan(plan, 10) # self.set_next_state("idle")
[ "shihchil@umich.edu" ]
shihchil@umich.edu
431801fd48391f0e3cf3900712086036292262cd
07b043cd032ac348b44220823cb2ac3cf0d7f5a7
/DJANGO_ADMIN_CSV/urls.py
393dd8d1a3d5111b58d9b14db437da9febc2e326
[]
no_license
muhtomakin/DJANGO_ADMIN_CSV
73439a5822805fb15d5fc6b863f5b0f388bd80e8
5ad210afeb7e636a7c6add67e42aeeee3b587424
refs/heads/main
2023-08-23T02:32:48.482946
2021-11-05T19:28:16
2021-11-05T19:28:16
425,062,226
1
0
null
null
null
null
UTF-8
Python
false
false
758
py
"""DJANGO_ADMIN_CSV URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), ]
[ "muhtomakin@gmail.com" ]
muhtomakin@gmail.com
68c981f552ca351da797b3fb8d65913ca2acff6c
ac0d651b78ded1de9f0bf5c8aa8350627deea063
/tests/box_sim.py
87ea6b3dd669d265e072d2b8c1e631962dc9c526
[]
no_license
cbott/PiWeatherBox
5d67e677028e314c0c720c3b5c904646fd680e5c
04b0056dd4711f3be73aeebe63fa09c99cc5156c
refs/heads/master
2023-04-07T06:02:16.747034
2023-03-25T21:02:30
2023-03-25T21:02:30
92,607,849
0
0
null
2021-03-07T01:43:33
2017-05-27T15:39:48
Python
UTF-8
Python
false
false
2,938
py
import tkinter as tk import tkinter.font from collections import namedtuple from typing import Callable # Duplicated from hardware.LED to avoid needing to import Color = namedtuple('Color', ['Red', 'Green', 'Blue']) def duty_cycle_to_intensity(duty_cycle: float) -> int: """ Converts a 0-100 duty cycle to a 0-255 color intensity Inverse of intensity_to_duty_cycle() from hardware.led """ return int(duty_cycle * 255.0 / 100.0) class BoxWindow(tk.Frame): """ Tk window with a "button" and "led" acting as a stand-in for the real hardware """ # Map "hardware" pin numbers to colors RED_PIN = 16 GREEN_PIN = 20 BLUE_PIN = 21 def __init__(self, button_callback: Callable): # Store current RGB color values of the Fake LED (0-255) self.current_color = { self.RED_PIN: 0, self.GREEN_PIN: 0, self.BLUE_PIN: 0 } self.master = tk.Tk() tk.Frame.__init__(self, self.master) self.button_callback = button_callback self.status_text = tk.Label(text='off') self.status_text.pack() self.led = tk.Label(text='⬤', foreground='#000000', font=tkinter.font.Font(size=64)) self.led.pack() self.button = tk.Button(text='', width=4, height=2, background='#AA0000') self.button.bind("<ButtonPress>", self._wrap_button_callback) # TODO: bind <ButtonRelease> for button hold shutdown condition self.button.pack() self.master.wm_title("PiBox Sim") self.master.geometry("250x200") self._update_color() def _wrap_button_callback(self, event: tk.Event): self.button_callback() def set_led_channel_duty_cycle(self, pin: int, duty_cycle: float): self.current_color[pin] = duty_cycle_to_intensity(duty_cycle) def _update_color(self): """ Refresh the display every 50ms If we try to call this every time the color updates it slows things down way too much """ r = self.current_color[self.RED_PIN] g = self.current_color[self.GREEN_PIN] b = self.current_color[self.BLUE_PIN] color_string = f'#{r:02x}{g:02x}{b:02x}' self.led['foreground'] = color_string self.status_text['text'] = color_string self.master.after(50, self._update_color) def set_callback(self, new_callback: Callable): self.button_callback = new_callback class FakePWM: """ Stand-in for RPi.GPIO.pwm to pass the relevant commands to the BoxWindow sim """ def __init__(self, window: BoxWindow, pin: int, freq: int): self.pin = pin self.window = window def start(self, dutycycle: float): self.window.set_led_channel_duty_cycle(self.pin, dutycycle) def ChangeDutyCycle(self, dutycycle: float): self.window.set_led_channel_duty_cycle(self.pin, dutycycle) def stop(self): pass
[ "cbott6@gmail.com" ]
cbott6@gmail.com
a4d60ee0f64911922d9ab22391fb998f01caa2d6
34998c0baf6922a5dfd11ad239077ab6c06fb0b0
/FetchMaker.py
67bfb11e1a2636e7208d4fa130db1404c212b5b2
[]
no_license
amanm063/codecademy-practice
ac449b31235c872caba38945044fa4e80b27cdce
6260b6447e3997c662b976b16936607c50cc997b
refs/heads/main
2023-03-22T05:37:31.169092
2021-03-12T05:21:19
2021-03-12T05:21:19
330,562,997
0
0
null
null
null
null
UTF-8
Python
false
false
1,565
py
"""Congratulations! You’ve just started working at the hottest new tech startup, FetchMaker. FetchMaker’s mission is to match up prospective dog owners with their perfect pet. FetchMaker has been collecting data on their adoptable dogs, and it’s your job to analyze some of that data.""" # Import libraries import numpy as np import pandas as pd import codecademylib3 from scipy.stats import binom_test from scipy.stats import f_oneway from statsmodels.stats.multicomp import pairwise_tukeyhsd from scipy.stats import chi2_contingency # Import data dogs = pd.read_csv('dog_data.csv') # Subset to just whippets, terriers, and pitbulls dogs_wtp = dogs[dogs.breed.isin(['whippet', 'terrier', 'pitbull'])] # Subset to just poodles and shihtzus dogs_ps = dogs[dogs.breed.isin(['poodle', 'shihtzu'])] print(dogs.head()) whippet_rescue = dogs.is_rescue[dogs.breed == "whippet"] print(whippet_rescue.head()) num_whippet_rescues = np.sum(whippet_rescue == 1) print(num_whippet_rescues) num_whippets = len(whippet_rescue) print(num_whippets) pval = binom_test(x=num_whippet_rescues,n=num_whippets,p=0.08) print(pval) wt_whippets = dogs.weight[dogs.breed == "whippet"] wt_terriers = dogs.weight[dogs.breed == "terrier"] wt_pitbulls = dogs.weight[dogs.breed == "pitbull"] stat,p = f_oneway(wt_whippets,wt_terriers,wt_pitbulls) print(p) results = pairwise_tukeyhsd(endog=dogs_wtp.weight,groups = dogs_wtp.breed) print(results) print(dogs_ps.head()) xtab = pd.crosstab(dogs_ps.breed,dogs_ps.color) print(xtab) chi2,p2,dof,exp = chi2_contingency(xtab) print(p2)
[ "65498402+amanm063@users.noreply.github.com" ]
65498402+amanm063@users.noreply.github.com
db0413d8e67dc999e25725427036dbe9057a3f23
93e2b70ed42261423e8cabd482b10e0087f00832
/ClassicalField/Laplace/LaplacePy/LaplaceExample.py
4218854d0ecc9d8b19a2d4a68c5137af499cae4e
[]
no_license
JessicaJor/examples
b4cb68250cdb6b976a7aedbfb19f70791e3b57b2
146b3cab0c88760e9687b99a5bdc2325615be39e
refs/heads/master
2021-01-18T09:40:24.095806
2011-12-09T10:13:28
2011-12-09T10:13:28
2,258,279
3
0
null
null
null
null
UTF-8
Python
false
false
6,651
py
#!/usr/bin/env python # Add Python bindings directory to PATH import sys, os sys.path.append(os.sep.join((os.environ['OPENCMISS_ROOT'],'cm','bindings','python'))) # Intialise OpenCMISS from opencmiss import CMISS # Set problem parameters height = 1.0 width = 2.0 length = 3.0 (coordinateSystemUserNumber, regionUserNumber, basisUserNumber, generatedMeshUserNumber, meshUserNumber, decompositionUserNumber, geometricFieldUserNumber, equationsSetFieldUserNumber, dependentFieldUserNumber, equationsSetUserNumber, problemUserNumber) = range(1,12) numberGlobalXElements = 5 numberGlobalYElements = 5 numberGlobalZElements = 5 CMISS.DiagnosticsSetOn(CMISS.DiagnosticTypes.In,[1,2,3,4,5],"Diagnostics",["DOMAIN_MAPPINGS_LOCAL_FROM_GLOBAL_CALCULATE"]) # Get the computational nodes information numberOfComputationalNodes = CMISS.ComputationalNumberOfNodesGet() computationalNodeNumber = CMISS.ComputationalNodeNumberGet() # Creation a RC coordinate system coordinateSystem = CMISS.CoordinateSystem() coordinateSystem.CreateStart(coordinateSystemUserNumber) coordinateSystem.dimension = 3 coordinateSystem.CreateFinish() # Create a region region = CMISS.Region() region.CreateStart(regionUserNumber,CMISS.WorldRegion) region.label = "LaplaceRegion" region.coordinateSystem = coordinateSystem region.CreateFinish() # Create a tri-linear lagrange basis basis = CMISS.Basis() basis.CreateStart(basisUserNumber) basis.type = CMISS.BasisTypes.LagrangeHermiteTP basis.numberOfXi = 3 basis.interpolationXi = [CMISS.BasisInterpolationSpecifications.LinearLagrange]*3 basis.quadratureNumberOfGaussXi = [2]*3 basis.CreateFinish() # Create a generated mesh generatedMesh = CMISS.GeneratedMesh() generatedMesh.CreateStart(generatedMeshUserNumber,region) generatedMesh.type = CMISS.GeneratedMeshTypes.Regular generatedMesh.basis = [basis] generatedMesh.extent = [width,height,length] generatedMesh.numberOfElements = [numberGlobalXElements,numberGlobalYElements,numberGlobalZElements] mesh = CMISS.Mesh() generatedMesh.CreateFinish(meshUserNumber,mesh) # Create a decomposition for the mesh decomposition = CMISS.Decomposition() decomposition.CreateStart(decompositionUserNumber,mesh) decomposition.type = CMISS.DecompositionTypes.Calculated decomposition.numberOfDomains = numberOfComputationalNodes decomposition.CreateFinish() # Create a field for the geometry geometricField = CMISS.Field() geometricField.CreateStart(geometricFieldUserNumber,region) geometricField.meshDecomposition = decomposition geometricField.ComponentMeshComponentSet(CMISS.FieldVariableTypes.U,1,1) geometricField.ComponentMeshComponentSet(CMISS.FieldVariableTypes.U,2,1) geometricField.ComponentMeshComponentSet(CMISS.FieldVariableTypes.U,3,1) geometricField.CreateFinish() # Set geometry from the generated mesh CMISS.GeneratedMeshGeometricParametersCalculate(geometricField,generatedMesh) # Create standard Laplace equations set equationsSetField = CMISS.Field() equationsSet = CMISS.EquationsSet() equationsSet.CreateStart(equationsSetUserNumber,region,geometricField, \ CMISS.EquationsSetClasses.ClassicalField, CMISS.EquationsSetTypes.LaplaceEquation, \ CMISS.EquationsSetSubtypes.StandardLaplace, \ equationsSetFieldUserNumber, equationsSetField) equationsSet.CreateFinish() # Create dependent field dependentField = CMISS.Field() equationsSet.DependentCreateStart(dependentFieldUserNumber,dependentField) dependentField.DOFOrderTypeSet(CMISS.FieldVariableTypes.U,CMISS.FieldDOFOrderTypes.Separated) dependentField.DOFOrderTypeSet(CMISS.FieldVariableTypes.DelUDelN,CMISS.FieldDOFOrderTypes.Separated) equationsSet.DependentCreateFinish() # Initialise dependent field dependentField.ComponentValuesInitialiseDP(CMISS.FieldVariableTypes.U,CMISS.FieldParameterSetTypes.FieldValues,1,0.5) # Create equations equations = CMISS.Equations() equationsSet.EquationsCreateStart(equations) equations.sparsityType = CMISS.EquationsSparsityTypes.Sparse equations.outputType = CMISS.EquationsOutputTypes.NONE equationsSet.EquationsCreateFinish() # Create Laplace problem problem = CMISS.Problem() problem.CreateStart(problemUserNumber) problem.SpecificationSet(CMISS.ProblemClasses.ClassicalField, \ CMISS.ProblemTypes.LaplaceEquation, \ CMISS.ProblemSubTypes.StandardLaplace) problem.CreateFinish() # Create control loops problem.ControlLoopCreateStart() problem.ControlLoopCreateFinish() # Create problem solver solver = CMISS.Solver() problem.SolversCreateStart() problem.SolverGet([CMISS.ControlLoopIdentifiers.Node],1,solver) solver.outputType = CMISS.SolverOutputTypes.Solver solver.linearType = CMISS.LinearSolverTypes.Iterative solver.linearIterativeAbsoluteTolerance = 1.0E-12 solver.linearIterativeRelativeTolerance = 1.0E-12 problem.SolversCreateFinish() # Create solver equations and add equations set to solver equations solver = CMISS.Solver() solverEquations = CMISS.SolverEquations() problem.SolverEquationsCreateStart() problem.SolverGet([CMISS.ControlLoopIdentifiers.Node],1,solver) solver.SolverEquationsGet(solverEquations) solverEquations.sparsityType = CMISS.SolverEquationsSparsityTypes.Sparse equationsSetIndex = solverEquations.EquationsSetAdd(equationsSet) problem.SolverEquationsCreateFinish() # Create boundary conditions and set first and last nodes to 0.0 and 1.0 boundaryConditions = CMISS.BoundaryConditions() solverEquations.BoundaryConditionsCreateStart(boundaryConditions) firstNodeNumber=1 nodes = CMISS.Nodes() region.NodesGet(nodes) lastNodeNumber = nodes.numberOfNodes firstNodeDomain = decomposition.NodeDomainGet(firstNodeNumber,1) lastNodeDomain = decomposition.NodeDomainGet(lastNodeNumber,1) if firstNodeDomain == computationalNodeNumber: boundaryConditions.SetNode(dependentField,CMISS.FieldVariableTypes.U,1,1,firstNodeNumber,1,CMISS.BoundaryConditionsTypes.Fixed,0.0) if lastNodeDomain == computationalNodeNumber: boundaryConditions.SetNode(dependentField,CMISS.FieldVariableTypes.U,1,1,lastNodeNumber,1,CMISS.BoundaryConditionsTypes.Fixed,1.0) solverEquations.BoundaryConditionsCreateFinish() # Solve the problem problem.Solve() # Export results baseName = "laplace" dataFormat = "PLAIN_TEXT" fml = CMISS.FieldMLIO() fml.OutputCreate(mesh, "", baseName, dataFormat) fml.OutputAddFieldNoType(baseName+".geometric", dataFormat, geometricField, CMISS.FieldVariableTypes.U, CMISS.FieldParameterSetTypes.FieldValues) fml.OutputAddFieldNoType(baseName+".phi", dataFormat, dependentField, CMISS.FieldVariableTypes.U, CMISS.FieldParameterSetTypes.FieldValues) fml.OutputWrite("LaplaceExample.xml") fml.Finalise() CMISS.Finalise()
[ "aree035@aucklanduni.ac.nz" ]
aree035@aucklanduni.ac.nz
27b5cc635f28293b0be825c39684f54d3fae813c
99b7f63fc1fc3a69177ac4f8f3f6ea510f67c7d2
/top100/python/medium/309_Best_Time_to_Buy_and_Sell_Stock_with_Cooldown.py
d4e0c9e575c980a181e5aa2c6822332bd4f6d9b2
[]
no_license
zbw0034/coding-practise
5e030e61faaf6addedf0896be7355dfae1faa564
9a749ea81b353ed41993bd03dae4bceb46d795a2
refs/heads/master
2022-04-26T22:17:32.458145
2020-04-29T12:47:40
2020-04-29T12:47:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
786
py
""" Jesse@FDU-VTS-MIA created by 2019/12/23 """ from typing import List class Solution: def maxProfit(self, prices: List[int]) -> int: dp = [[0 for _ in range(2)] for _ in range(len(prices)+1)] # 初始化状态转移矩阵 dp[0][1] = float('-inf') # 不可能持有股票,置为负无穷 for i in range(1, len(prices)+1): dp[i][0] = max(dp[i-1][1]+prices[i-1], dp[i-1][0]) # 今天没有,要么昨天卖了,要么昨天也没买保持了 dp_pre_0 = dp[i-2][0]-prices[i-1] if i >= 2 else -prices[i-1] dp[i][1] = max(dp_pre_0, dp[i-1][1]) # 今天有,要么昨天买了,要么昨天买了(因为冷却一天,所以从前两天转移状态) return dp[len(prices)][0]
[ "jesse_ecnu@126.com" ]
jesse_ecnu@126.com
c216e210a3cd4f60ddcd94220107bcf6a2f2ad58
290fa984448c3350fa4059fa8852f8a1321109ab
/services/users/src/tests/test_admin.py
c5485a60d9b67dc9cad9af5833edad25ca6b1003
[]
no_license
testdrivenio/flask-react-aws
673a612ae3368e7a9dcd7ddb50c0ea03e3221928
365f0771d5234b0b4dfe05d59bab29a03845af4f
refs/heads/master
2023-07-19T19:45:14.042103
2022-05-04T16:08:52
2022-05-04T16:08:52
198,724,692
29
21
null
2023-07-19T14:39:18
2019-07-24T23:54:07
Python
UTF-8
Python
false
false
984
py
import os from src import create_app, db def test_admin_view_dev(): os.environ["FLASK_ENV"] = "development" assert os.getenv("FLASK_ENV") == "development" app = create_app() app.config.from_object("src.config.TestingConfig") with app.app_context(): db.session.remove() db.drop_all() db.create_all() client = app.test_client() resp = client.get("/admin/user/") assert resp.status_code == 200 assert os.getenv("FLASK_ENV") == "development" def test_admin_view_prod(): os.environ["FLASK_ENV"] = "production" assert os.getenv("FLASK_ENV") == "production" app = create_app() app.config.from_object("src.config.TestingConfig") with app.app_context(): db.session.remove() db.drop_all() db.create_all() client = app.test_client() resp = client.get("/admin/user/") assert resp.status_code == 404 assert os.getenv("FLASK_ENV") == "production"
[ "hermanmu@gmail.com" ]
hermanmu@gmail.com
05c74d4ba9f7b0c9cc53d7982072cb98b41192d7
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4146/codes/1585_1571.py
3c1bfbd4a36765c09fbb267862444daf795d8032
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
239
py
# Teste seu codigo aos poucos. # Nao teste tudo no final, pois fica mais dificil de identificar erros. # Nao se intimide com as mensagens de erro. Elas ajudam a corrigir seu codigo. texto = input("Digite a string: ") print(texto.upper())
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
6471dcb5fcce92aba50f34df3aa21e8ac3868163
ae03a82147b154e037ba088174b342acd334262e
/external_teachers/manage.py
f01a9f6c2ff5b678e45804eb6cfa7e8f5963236b
[]
no_license
samfcmc/manage_external_teachers
d0f23e55495510a9c6243f9b7080b30bd7a09c63
fc63d5b152e636a85ffe0a4a6c7a5894b5bdc732
refs/heads/master
2021-01-10T19:03:26.153753
2015-02-06T15:08:38
2015-02-06T15:08:38
16,146,008
0
1
null
null
null
null
UTF-8
Python
false
false
260
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "external_teachers.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "samuelfcmc@gmail.com" ]
samuelfcmc@gmail.com
975f7015b7ddf2009c5828c36b1d817a6d76d931
508661f0dbb012eecd6f6c1aaeac0a7cc86aa667
/Praktikum 6/DemoQComboBox/DemoQComboBox.py
1761d23c17dc4d7f85185687532da71bd9ee622c
[]
no_license
anggeralmasih/Pemrograman-dan-Praktikum-GUI_19104073_Anggeralmasih-WR_S1SE03B
e060fb99dc4d6b0c2d94f27ebb6b82621f2370f2
edc865581ecbe8136fea50f8d73219231089663d
refs/heads/main
2023-06-29T08:03:54.501644
2021-07-11T08:42:54
2021-07-11T08:42:54
356,132,323
0
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
import sys from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * class MainForm(QWidget): def __init__(self): super().__init__() self.setupUi() def setupUi(self): self.resize(300, 100) self.move(300, 300) self.setWindowTitle('Demo QComboBox') self.combo = QComboBox() for i in range(1,11): self.combo.addItem('Item ke-%d' % i) self.getTextButton = QPushButton('Ambil Teks') layout = QVBoxLayout() layout.addWidget(self.combo) layout.addWidget(self.getTextButton) layout.addStretch() self.setLayout(layout) self.getTextButton.clicked.connect(self.getTextButtonClick) def getTextButtonClick(self): QMessageBox.information(self, 'Informasi', 'Anda memilih: ' + self.combo.currentText()) if __name__ == '__main__': a = QApplication(sys.argv) form = MainForm() form.show() a.exec_()
[ "noreply@github.com" ]
anggeralmasih.noreply@github.com
49610d80d561c60ef23817e11e2e344424d7bc74
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/nlp/FairSeq_Transformer_ID0496_for_PyTorch/examples/noisychannel/rerank_utils.py
3056f54bfef9a854ae562221701e982f9ad82220
[ "GPL-1.0-or-later", "MIT", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
29,170
py
# # BSD 3-Clause License # # Copyright (c) 2017 xxxx # All rights reserved. # Copyright 2021 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================ # import subprocess import os import re from fairseq import options import eval_lm import preprocess from contextlib import redirect_stdout import math def reprocess(fle): # takes in a file of generate.py translation generate_output # returns a source dict and hypothesis dict, where keys are the ID num (as a string) # and values and the corresponding source and translation. There may be several translations # per source, so the values for hypothesis_dict are lists. # parses output of generate.py with open(fle, 'r') as f: txt = f.read() """reprocess generate.py output""" p = re.compile(r"[STHP][-]\d+\s*") hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)") source_dict = {} hypothesis_dict = {} score_dict = {} target_dict = {} pos_score_dict = {} lines = txt.split("\n") for line in lines: line += "\n" prefix = re.search(p, line) if prefix is not None: assert len(prefix.group()) > 2, "prefix id not found" _, j = prefix.span() id_num = prefix.group()[2:] id_num = int(id_num) line_type = prefix.group()[0] if line_type == "H": h_txt = line[j:] hypo = re.search(hp, h_txt) assert hypo is not None, ("regular expression failed to find the hypothesis scoring") _, i = hypo.span() score = hypo.group() if id_num in hypothesis_dict: hypothesis_dict[id_num].append(h_txt[i:]) score_dict[id_num].append(float(score)) else: hypothesis_dict[id_num] = [h_txt[i:]] score_dict[id_num] = [float(score)] elif line_type == "S": source_dict[id_num] = (line[j:]) elif line_type == "T": target_dict[id_num] = (line[j:]) elif line_type == "P": pos_scores = (line[j:]).split() pos_scores = [float(x) for x in pos_scores] if id_num in pos_score_dict: pos_score_dict[id_num].append(pos_scores) else: pos_score_dict[id_num] = [pos_scores] return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict def reprocess_nbest(fle): """reprocess interactive.py output""" with open(fle, 'r') as f: txt = f.read() source_dict = {} hypothesis_dict = {} score_dict = {} target_dict = {} pos_score_dict = {} lines = txt.split("\n") hp = re.compile(r'[-]?\d+[.]?\d+') j = -1 for _i, line in enumerate(lines): line += "\n" line_type = line[0] if line_type == "H": hypo = re.search(hp, line) _, start_index = hypo.span() score = hypo.group() if j in score_dict: score_dict[j].append(float(score)) hypothesis_dict[j].append(line[start_index:].strip("\t")) else: score_dict[j] = [float(score)] hypothesis_dict[j] = [line[start_index:].strip("\t")] elif line_type == "O": j += 1 source_dict[j] = line[2:] # we don't have the targets for interactive.py target_dict[j] = "filler" elif line_type == "P": pos_scores = [float(pos_score) for pos_score in line.split()[1:]] if j in pos_score_dict: pos_score_dict[j].append(pos_scores) else: pos_score_dict[j] = [pos_scores] assert source_dict.keys() == hypothesis_dict.keys() assert source_dict.keys() == pos_score_dict.keys() assert source_dict.keys() == score_dict.keys() return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict def write_reprocessed(sources, hypos, targets, source_outfile, hypo_outfile, target_outfile, right_to_left=False, prefix_len=None, bpe_symbol=None, target_prefix_frac=None, source_prefix_frac=None): """writes nbest hypothesis for rescoring""" assert not (prefix_len is not None and target_prefix_frac is not None), \ "in writing reprocessed, only one type of prefix may be used" assert not (prefix_len is not None and source_prefix_frac is not None), \ "in writing reprocessed, only one type of prefix may be used" assert not (target_prefix_frac is not None and source_prefix_frac is not None), \ "in writing reprocessed, only one type of prefix may be used" with open(source_outfile, 'w') as source_file, \ open(hypo_outfile, 'w') as hypo_file, \ open(target_outfile, 'w') as target_file: assert len(sources) == len(hypos), "sources and hypos list length mismatch" if right_to_left: for i in range(len(sources)): for j in range(len(hypos[i])): if prefix_len is None: hypo_file.write(make_right_to_left(hypos[i][j])+"\n") else: raise NotImplementedError() source_file.write(make_right_to_left(sources[i])+"\n") target_file.write(make_right_to_left(targets[i])+"\n") else: for i in sorted(sources.keys()): for j in range(len(hypos[i])): if prefix_len is not None: shortened = get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len)+"\n" hypo_file.write(shortened) source_file.write(sources[i]) target_file.write(targets[i]) elif target_prefix_frac is not None: num_words, shortened, num_bpe_tokens = \ calc_length_from_frac(hypos[i][j], target_prefix_frac, bpe_symbol) shortened += "\n" hypo_file.write(shortened) source_file.write(sources[i]) target_file.write(targets[i]) elif source_prefix_frac is not None: num_words, shortened, num_bpe_tokensn = \ calc_length_from_frac(sources[i], source_prefix_frac, bpe_symbol) shortened += "\n" hypo_file.write(hypos[i][j]) source_file.write(shortened) target_file.write(targets[i]) else: hypo_file.write(hypos[i][j]) source_file.write(sources[i]) target_file.write(targets[i]) def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol): # return number of words, (not bpe tokens) that we want no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol) len_sen = len(no_bpe_sen.split()) num_words = math.ceil(len_sen * prefix_frac) prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words) num_bpe_tokens = len(prefix.split()) return num_words, prefix, num_bpe_tokens def get_prefix(sentence, prefix_len): """assuming no bpe, gets the prefix of the sentence with prefix_len words""" tokens = sentence.strip("\n").split() if prefix_len >= len(tokens): return sentence.strip("\n") else: return " ".join(tokens[:prefix_len]) def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len): if bpe_symbol is None: return get_prefix(sentence, prefix_len) else: return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len)) def get_prefix_from_len(sentence, bpe_symbol, prefix_len): """get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens""" bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]]) if bpe_count == 0: return sentence[:prefix_len] else: return sentence[:prefix_len]+get_prefix_from_len(sentence[prefix_len:], bpe_symbol, bpe_count) def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len): """given a prefix length in terms of words, return the number of bpe tokens""" prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len) assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len return len(prefix.split(" ")) def make_right_to_left(line): tokens = line.split() tokens.reverse() new_line = " ".join(tokens) return new_line def remove_bpe(line, bpe_symbol): line = line.replace("\n", '') line = (line + ' ').replace(bpe_symbol, '').rstrip() return line+("\n") def remove_bpe_dict(pred_dict, bpe_symbol): new_dict = {} for i in pred_dict: if type(pred_dict[i]) == list: new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]] new_dict[i] = new_list else: new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol) return new_dict def parse_bleu_scoring(line): p = re.compile(r'(BLEU4 = )\d+[.]\d+') res = re.search(p, line) assert res is not None, line return float(res.group()[8:]) def get_full_from_prefix(hypo_prefix, hypos): """given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix""" for hypo in hypos: hypo_prefix = hypo_prefix.strip("\n") len_prefix = len(hypo_prefix) if hypo[:len_prefix] == hypo_prefix: return hypo # no match found raise Exception() def get_score(a, b, c, target_len, bitext_score1, bitext_score2=None, lm_score=None, lenpen=None, src_len=None, tgt_len=None, bitext1_backwards=False, bitext2_backwards=False, normalize=False): if bitext1_backwards: bitext1_norm = src_len else: bitext1_norm = tgt_len if bitext_score2 is not None: if bitext2_backwards: bitext2_norm = src_len else: bitext2_norm = tgt_len else: bitext2_norm = 1 bitext_score2 = 0 if normalize: score = a*bitext_score1/bitext1_norm + b*bitext_score2/bitext2_norm+c*lm_score/src_len else: score = a*bitext_score1 + b*bitext_score2+c*lm_score if lenpen is not None: score /= (target_len) ** float(lenpen) return score class BitextOutput(object): def __init__(self, output_file, backwards, right_to_left, bpe_symbol, prefix_len=None, target_prefix_frac=None, source_prefix_frac=None): """process output from rescoring""" source, hypo, score, target, pos_score = reprocess(output_file) if backwards: self.hypo_fracs = source_prefix_frac else: self.hypo_fracs = target_prefix_frac # remove length penalty so we can use raw scores score, num_bpe_tokens = get_score_from_pos(pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards) source_lengths = {} target_lengths = {} assert hypo.keys() == source.keys(), "key mismatch" if backwards: tmp = hypo hypo = source source = tmp for i in source: # since we are reranking, there should only be one hypo per source sentence if backwards: len_src = len(source[i][0].split()) # record length without <eos> if len_src == num_bpe_tokens[i][0] - 1: source_lengths[i] = num_bpe_tokens[i][0] - 1 else: source_lengths[i] = num_bpe_tokens[i][0] target_lengths[i] = len(hypo[i].split()) source[i] = remove_bpe(source[i][0], bpe_symbol) target[i] = remove_bpe(target[i], bpe_symbol) hypo[i] = remove_bpe(hypo[i], bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] else: len_tgt = len(hypo[i][0].split()) # record length without <eos> if len_tgt == num_bpe_tokens[i][0] - 1: target_lengths[i] = num_bpe_tokens[i][0] - 1 else: target_lengths[i] = num_bpe_tokens[i][0] source_lengths[i] = len(source[i].split()) if right_to_left: source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol) target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol) hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] else: assert len(hypo[i]) == 1, "expected only one hypothesis per source sentence" source[i] = remove_bpe(source[i], bpe_symbol) target[i] = remove_bpe(target[i], bpe_symbol) hypo[i] = remove_bpe(hypo[i][0], bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] self.rescore_source = source self.rescore_hypo = hypo self.rescore_score = score self.rescore_target = target self.rescore_pos_score = pos_score self.backwards = backwards self.right_to_left = right_to_left self.target_lengths = target_lengths self.source_lengths = source_lengths class BitextOutputFromGen(object): def __init__(self, predictions_bpe_file, bpe_symbol=None, nbest=False, prefix_len=None, target_prefix_frac=None): if nbest: pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess_nbest(predictions_bpe_file) else: pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess(predictions_bpe_file) assert len(pred_source) == len(pred_hypo) assert len(pred_source) == len(pred_score) assert len(pred_source) == len(pred_target) assert len(pred_source) == len(pred_pos_score) # remove length penalty so we can use raw scores pred_score, num_bpe_tokens = get_score_from_pos(pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False) self.source = pred_source self.target = pred_target self.score = pred_score self.pos_score = pred_pos_score self.hypo = pred_hypo self.target_lengths = {} self.source_lengths = {} self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol) self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol) self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol) # indexes to match those from the rescoring models self.rescore_source = {} self.rescore_target = {} self.rescore_pos_score = {} self.rescore_hypo = {} self.rescore_score = {} self.num_hypos = {} self.backwards = False self.right_to_left = False index = 0 for i in sorted(pred_source.keys()): for j in range(len(pred_hypo[i])): self.target_lengths[index] = len(self.hypo[i][j].split()) self.source_lengths[index] = len(self.source[i].split()) self.rescore_source[index] = self.no_bpe_source[i] self.rescore_target[index] = self.no_bpe_target[i] self.rescore_hypo[index] = self.no_bpe_hypo[i][j] self.rescore_score[index] = float(pred_score[i][j]) self.rescore_pos_score[index] = pred_pos_score[i][j] self.num_hypos[index] = len(pred_hypo[i]) index += 1 def get_score_from_pos(pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards): score_dict = {} num_bpe_tokens_dict = {} assert prefix_len is None or hypo_frac is None for key in pos_score_dict: score_dict[key] = [] num_bpe_tokens_dict[key] = [] for i in range(len(pos_score_dict[key])): if prefix_len is not None and not backwards: num_bpe_tokens = get_num_bpe_tokens_from_len(hypo_dict[key][i], bpe_symbol, prefix_len) score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens])) num_bpe_tokens_dict[key].append(num_bpe_tokens) elif hypo_frac is not None: num_words, shortened, hypo_prefix_len = calc_length_from_frac(hypo_dict[key][i], hypo_frac, bpe_symbol) score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len])) num_bpe_tokens_dict[key].append(hypo_prefix_len) else: score_dict[key].append(sum(pos_score_dict[key][i])) num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i])) return score_dict, num_bpe_tokens_dict class LMOutput(object): def __init__(self, lm_score_file, lm_dict=None, prefix_len=None, bpe_symbol=None, target_prefix_frac=None): lm_sentences, lm_sen_scores, lm_sen_pos_scores, lm_no_bpe_sentences, lm_bpe_tokens = \ parse_lm(lm_score_file, prefix_len=prefix_len, bpe_symbol=bpe_symbol, target_prefix_frac=target_prefix_frac) self.sentences = lm_sentences self.score = lm_sen_scores self.pos_score = lm_sen_pos_scores self.lm_dict = lm_dict self.no_bpe_sentences = lm_no_bpe_sentences self.bpe_tokens = lm_bpe_tokens def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None): """parse output of eval_lm""" with open(input_file, 'r') as f: text = f.readlines() text = text[7:] cleaned_text = text[:-2] sentences = {} sen_scores = {} sen_pos_scores = {} no_bpe_sentences = {} num_bpe_tokens_dict = {} for _i, line in enumerate(cleaned_text): tokens = line.split() if tokens[0].isdigit(): line_id = int(tokens[0]) scores = [float(x[1:-1]) for x in tokens[2::2]] sentences[line_id] = " ".join(tokens[1::2][:-1])+"\n" if bpe_symbol is not None: # exclude <eos> symbol to match output from generate.py bpe_sen = " ".join(tokens[1::2][:-1])+"\n" no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol) no_bpe_sentences[line_id] = no_bpe_sen if prefix_len is not None: num_bpe_tokens = get_num_bpe_tokens_from_len(bpe_sen, bpe_symbol, prefix_len) sen_scores[line_id] = sum(scores[:num_bpe_tokens]) num_bpe_tokens_dict[line_id] = num_bpe_tokens elif target_prefix_frac is not None: num_words, shortened, target_prefix_len = calc_length_from_frac(bpe_sen, target_prefix_frac, bpe_symbol) sen_scores[line_id] = sum(scores[:target_prefix_len]) num_bpe_tokens_dict[line_id] = target_prefix_len else: sen_scores[line_id] = sum(scores) num_bpe_tokens_dict[line_id] = len(scores) sen_pos_scores[line_id] = scores return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict def get_directories(data_dir_name, num_rescore, gen_subset, fw_name, shard_id, num_shards, sampling=False, prefix_len=None, target_prefix_frac=None, source_prefix_frac=None): nbest_file_id = "nbest_" + str(num_rescore) + \ "_subset_" + gen_subset + \ "_fw_name_" + fw_name + \ "_shard_" + str(shard_id) + \ "_of_" + str(num_shards) if sampling: nbest_file_id += "_sampling" # the directory containing all information for this nbest list pre_gen = os.path.join(os.path.dirname(__file__))+"/rerank_data/"+data_dir_name+"/"+nbest_file_id # the directory to store the preprocessed nbest list, for left to right rescoring left_to_right_preprocessed_dir = pre_gen+"/left_to_right_preprocessed" if source_prefix_frac is not None: left_to_right_preprocessed_dir = left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac) # the directory to store the preprocessed nbest list, for right to left rescoring right_to_left_preprocessed_dir = pre_gen+"/right_to_left_preprocessed" # the directory to store the preprocessed nbest list, for backwards rescoring backwards_preprocessed_dir = pre_gen+"/backwards" if target_prefix_frac is not None: backwards_preprocessed_dir = backwards_preprocessed_dir+"/prefix_frac"+str(target_prefix_frac) elif prefix_len is not None: backwards_preprocessed_dir = backwards_preprocessed_dir+"/prefix_"+str(prefix_len) # the directory to store the preprocessed nbest list, for rescoring with P(T) lm_preprocessed_dir = pre_gen+"/lm_preprocessed" return pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, \ backwards_preprocessed_dir, lm_preprocessed_dir def lm_scoring(preprocess_directory, bpe_status, gen_output, pre_gen, cur_lm_dict, cur_lm_name, cur_language_model, cur_lm_bpe_code, batch_size, lm_score_file, target_lang, source_lang, prefix_len=None): if prefix_len is not None: assert bpe_status == "different", "bpe status must be different to use prefix len" if bpe_status == "no bpe": # run lm on output without bpe write_reprocessed(gen_output.no_bpe_source, gen_output.no_bpe_hypo, gen_output.no_bpe_target, pre_gen+"/rescore_data_no_bpe.de", pre_gen+"/rescore_data_no_bpe.en", pre_gen+"/reference_file_no_bpe") preprocess_lm_param = ["--only-source", "--trainpref", pre_gen+"/rescore_data_no_bpe."+target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_directory] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [preprocess_directory, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--max-tokens", "1024", "--sample-break-mode", "eos", "--gen-subset", "train"] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, 'w') as f: with redirect_stdout(f): eval_lm.main(input_args) elif bpe_status == "shared": preprocess_lm_param = ["--only-source", "--trainpref", pre_gen+"/rescore_data."+target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_directory] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [preprocess_directory, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--sample-break-mode", "eos", "--gen-subset", "train"] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, 'w') as f: with redirect_stdout(f): eval_lm.main(input_args) elif bpe_status == "different": rescore_file = pre_gen+"/rescore_data_no_bpe" rescore_bpe = pre_gen+"/rescore_data_new_bpe" rescore_file += "." rescore_bpe += "." write_reprocessed(gen_output.no_bpe_source, gen_output.no_bpe_hypo, gen_output.no_bpe_target, rescore_file+source_lang, rescore_file+target_lang, pre_gen+"/reference_file_no_bpe", bpe_symbol=None) # apply LM bpe to nbest list bpe_src_param = ["-c", cur_lm_bpe_code, "--input", rescore_file+target_lang, "--output", rescore_bpe+target_lang] subprocess.call(["python", os.path.join(os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py")] + bpe_src_param, shell=False) # uncomment to use fastbpe instead of subword-nmt bpe # bpe_src_param = [rescore_bpe+target_lang, rescore_file+target_lang, cur_lm_bpe_code] # subprocess.call(["/private/home/edunov/fastBPE/fast", "applybpe"] + bpe_src_param, shell=False) preprocess_dir = preprocess_directory preprocess_lm_param = ["--only-source", "--trainpref", rescore_bpe+target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_dir] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [preprocess_dir, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--max-tokens", "1024", "--sample-break-mode", "eos", "--gen-subset", "train"] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, 'w') as f: with redirect_stdout(f): eval_lm.main(input_args) def rescore_file_name(nbest_dir, prefix_len, scorer_name, lm_file=False, target_prefix_frac=None, source_prefix_frac=None, backwards=None): if lm_file: score_file = nbest_dir+"/lm_score_translations_model_"+scorer_name+".txt" else: score_file = nbest_dir+"/"+scorer_name+"_score_translations.txt" if backwards: if prefix_len is not None: score_file += "prefix_len"+str(prefix_len) elif target_prefix_frac is not None: score_file += "target_prefix_frac"+str(target_prefix_frac) else: if source_prefix_frac is not None: score_file += "source_prefix_frac"+str(source_prefix_frac) return score_file
[ "wangjiangben@huawei.com" ]
wangjiangben@huawei.com
ea6c1da884dcbb87f7983256016e00195b4d66b2
dd2d29b326d9adb5743f6588d4248f8358b82d8d
/torchaudio/backend/utils.py
cb53b3e02ff24dfc1f4e55dc13b198af41d13bba
[ "BSD-2-Clause" ]
permissive
mmxgn/audio
0e6bc06a738db3b353e88d70e1fed3964ee70a58
24741fdb97b9257868ae1caf593207aa7e581b6d
refs/heads/master
2022-11-21T23:55:12.584975
2020-07-18T10:16:32
2020-07-18T10:16:32
267,539,108
0
0
BSD-2-Clause
2020-05-28T08:46:43
2020-05-28T08:46:42
null
UTF-8
Python
false
false
2,265
py
"""Defines utilities for switching audio backends""" import warnings from typing import Optional, List import torchaudio from torchaudio._internal.module_utils import is_module_available from . import ( no_backend, sox_backend, sox_io_backend, soundfile_backend, ) __all__ = [ 'list_audio_backends', 'get_audio_backend', 'set_audio_backend', ] def list_audio_backends() -> List[str]: """List available backends""" backends = [] if is_module_available('soundfile'): backends.append('soundfile') if is_module_available('torchaudio._torchaudio'): backends.append('sox') backends.append('sox_io') return backends def set_audio_backend(backend: Optional[str]) -> None: """Set the backend for I/O operation Args: backend (str): Name of the backend. One of "sox" or "soundfile", based on availability of the system. """ if backend is not None and backend not in list_audio_backends(): raise RuntimeError( f'Backend "{backend}" is not one of ' f'available backends: {list_audio_backends()}.') if backend is None: module = no_backend elif backend == 'sox': module = sox_backend elif backend == 'sox_io': module = sox_io_backend elif backend == 'soundfile': module = soundfile_backend else: raise NotImplementedError(f'Unexpected backend "{backend}"') for func in ['save', 'load', 'load_wav', 'info']: setattr(torchaudio, func, getattr(module, func)) def _init_audio_backend(): backends = list_audio_backends() if 'sox' in backends: set_audio_backend('sox') elif 'soundfile' in backends: set_audio_backend('soundfile') else: warnings.warn('No audio backend is available.') set_audio_backend(None) def get_audio_backend() -> Optional[str]: """Get the name of the current backend""" if torchaudio.load == no_backend.load: return None if torchaudio.load == sox_backend.load: return 'sox' if torchaudio.load == sox_io_backend.load: return 'sox_io' if torchaudio.load == soundfile_backend.load: return 'soundfile' raise ValueError('Unknown backend.')
[ "noreply@github.com" ]
mmxgn.noreply@github.com
7c2f3314655e6df4b85ee81a43b4a4f4a3751002
d8edd97f8f8dea3f9f02da6c40d331682bb43113
/train_wgangp_augment2_weightinit_noxy_singlegp.py
addd4121f7df27acdf60083943957ec45428d914
[]
no_license
mdubouch/noise-gan
bdd5b2fff3aff70d5f464150443d51c2192eeafd
639859ec4a2aa809d17eb6998a5a7d217559888a
refs/heads/master
2023-07-15T09:37:57.631656
2021-08-27T11:02:45
2021-08-27T11:02:45
284,072,311
0
0
null
null
null
null
UTF-8
Python
false
false
16,790
py
#!/usr/bin/python3 #$ -P P_comet #$ -j y #$ -cwd #$ -M m.dubouchet18@imperial.ac.uk #$ -m be #$ -q mc_gpu_long #$ -pe multicores_gpu 4 #$ -l sps=1,GPU=1,GPUtype=V100 import os import sys sys.path.append(os.getcwd()) import argparse import logging import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=UserWarning) parser = argparse.ArgumentParser('Train CDC GAN') parser.add_argument('--n-epochs', type=int, default=1) parser.add_argument('--ngf', type=int, default=16) parser.add_argument('--ndf', type=int, default=16) parser.add_argument('--latent-dims', type=int, default=256) parser.add_argument('--sequence-length', type=int, default=2048) parser.add_argument('--net-version', type=int) parser.add_argument('--dataset', type=str, default='dataset') parser.add_argument('--batch-size', type=int, default=2) parser.add_argument('--enc-dim', type=int, default=4) parser.add_argument('--log', type=str, default='info') parser.add_argument('--gfx', type=bool, default=False) parser.add_argument('--seed', type=int, default=1337) parser.add_argument('--save-every', type=int, default=1) parser.add_argument('--continue-from-epoch', '--cfe', type=int) parser.add_argument('--continue-from-job', '--cfj', type=int) args = parser.parse_args() job_id = int(os.getenv('JOB_ID', default='0')) output_dir = 'output_%d/' % (job_id) print('Outputting to %s' % (output_dir)) if not os.path.exists(output_dir): os.makedirs(output_dir) logging.basicConfig(filename=output_dir+'output.log', level=getattr(logging, args.log.upper()), format='%(asctime)s %(message)s') n_epochs = args.n_epochs ngf = args.ngf ndf = args.ndf logging.info('ndf=%d' % (ndf)) logging.info('ngf=%d' % (ngf)) latent_dims = args.latent_dims seq_len = args.sequence_length encoded_dim = args.enc_dim torch.manual_seed(args.seed) np.random.seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(args.seed) logging.info('Running on GPU: %s' % (torch.cuda.get_device_name())) else: logging.info('Running on CPU') def to_device(x): if torch.cuda.is_available(): return x.cuda() else: return x import importlib print('Importing dataset...') print('Importing dataset from %s.py' % (args.dataset)) dataset = importlib.import_module(args.dataset) #smplr = dataset.SequenceSampler(np.arange(1000) // 3, 128) #for s in smplr: # #print(s) # pass #exit(0) data = dataset.Data() data.load() logging.info('pot %d bunches %d', data.n_pot, data.n_bunches) logging.info('dtypes {0}'.format(data.data.dtype)) logging.info('shape {0}'.format(data.data.shape)) import geom_util gu = geom_util.GeomUtil(data.get_cdc_tree()) gu.validate_wire_pos() print('Import networks version %d' % (args.net_version)) logging.info('networks=%d' % (args.net_version)) networks = importlib.import_module('networks%d' % (args.net_version)) print('Importing networks from "%s"...' % (networks.__name__)) gen = to_device(networks.Gen(ngf=ngf, latent_dims=latent_dims, seq_len=seq_len, encoded_dim=encoded_dim, n_wires=gu.n_wires)) logging.info(gen) disc = to_device(networks.Disc(ndf=ndf, seq_len=seq_len, encoded_dim=encoded_dim, n_wires=gu.n_wires)) logging.info(disc) print('Generator params: {:,}'.format(networks.get_n_params(gen))) print('Discriminator params: {:,}'.format(networks.get_n_params(disc))) logging.info('generator params: %d' % (networks.get_n_params(gen))) logging.info('discriminator params: %d' % (networks.get_n_params(disc))) logging.info('%s %s' % (data.get_cdc_tree().shape, data.get_cdc_tree().dtype)) import matplotlib if args.gfx: matplotlib.use('TkAgg') else: matplotlib.use('Agg') import matplotlib.pyplot as plt plt.rcParams['savefig.bbox'] = 'tight' plt.rcParams['savefig.transparent'] = False plt.rcParams['axes.labelsize'] = 'large' plt.rcParams['axes.titlesize'] = 'x-large' plt.rcParams['savefig.facecolor'] = 'white' plt.figure(figsize=(6,6)) plt.scatter(gu.wire_x, gu.wire_y, s=1, c=gu.layer) plt.xlabel('x [mm]') plt.ylabel('y [mm]') plt.savefig(output_dir+'wire_position.png', dpi=120) plt.clf() print('Pre-processing...') train_minmax = data.preprocess() data.diagnostic_plots(output_dir) train_loader, train_dataset, n_chunks = data.chunk(seq_len, batch_size=args.batch_size) logging.info('%s' % (train_dataset[0:4][0].shape,)) geom_dim=2 wire_sphere = torch.zeros((geom_dim, gu.n_wires), device='cuda') wire_sphere[0] = torch.from_numpy(gu.wire_x) wire_sphere[1] = torch.from_numpy(gu.wire_y) logging.info('{}'.format(wire_sphere.norm(dim=0))) #data_std = data.train_dataset.tensors[0].permute(1,0,2).flatten(1,2).std(dim=1) #logging.info('DATA STD {}'.format(data_std)) logging.info('VAR {}'.format(wire_sphere.std(dim=1))) logging.info('NORM {}'.format(wire_sphere.norm(dim=0))) logging.info('MAX {}'.format(wire_sphere.argmax(dim=1))) #wire_sphere = wire_sphere / wire_sphere.std(dim=1, keepdim=True) - wire_sphere.mean(dim=1, keepdim=True) #wire_sphere[2] += torch.randn_like(wire_sphere[2]) * 0.01 #wire_sphere[3] += torch.randn_like(wire_sphere[2]) * 0.01 # STANDARDIZATION #wire_sphere = (wire_sphere - wire_sphere.mean(dim=1, keepdim=True)) / wire_sphere.std(dim=1, keepdim=True) smax = wire_sphere.max(dim=1, keepdim=True)[0] smin = wire_sphere.min(dim=1, keepdim=True)[0] wire_sphere = (wire_sphere - smin) / (smax - smin + 1e-8) logging.info('DISTANCE BETWEEN WIRES: {}'.format(torch.norm(wire_sphere[:,1] - wire_sphere[:,0]))) plt.figure() plt.plot(wire_sphere[0].detach().cpu()) plt.savefig(output_dir+'geom_tensor.png') plt.close() from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111, projection='3d') x = wire_sphere[0].cpu() y = wire_sphere[1].cpu() z = np.zeros_like(x) ax.scatter(x, y, z, s=1, c=gu.layer) #ax.set_zlim(-1, 1) #for i in range(gu.n_layers): # idx = gu.cum_n_wires[i] - gu.n_wires_per_layer[i] # ax.text(x[idx], y[idx], z[idx], str(i)) plt.savefig(output_dir+'wire_3d.png', dpi=120) plt.close() plt.figure(figsize=(8,8)) plt.plot(wire_sphere.norm(dim=0).cpu(), marker='.', linewidth=0) plt.savefig(output_dir+'wire_sphere_norm.png', dpi=60) plt.close() def sample_fake(batch_size, tau): noise = to_device(torch.randn((batch_size, latent_dims), requires_grad=True)) sample = gen(noise) return sample #_p, _w = sample_real(2) #print(_p.shape, _w.shape) __f = sample_fake(2, 1.0) #print(__f.shape) # Initialisation of saved variables and lists tau = 2/3 discriminator_losses = [] generator_losses = [] gradient_pen_hist = [] start_epoch = 0 validation_losses = [] optimizer_gen = torch.optim.Adam(list(gen.parameters()), lr=1e-4, betas=(0.9, 0.999)) optimizer_disc = torch.optim.Adam(list(disc.parameters()), lr=1e-4, betas=(0.9, 0.999)) def weight_init_relu(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.normal_(m.weight, 0.0, 0.02) if m.bias is not None: nn.init.zeros_(m.bias) #elif classname.find('Norm') != -1: # nn.init.ones_(m.weight) # nn.init.zeros_(m.bias) #elif classname.find('Linear') != -1: # nn.init.normal_(m.weight, 0.0, 0.02) # if m.bias is not None: # nn.init.zeros_(m.bias) def weight_init_leakyrelu(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: #nn.init.kaiming_normal_(m.weight, a=0.2, mode='fan_in', nonlinearity='leaky_relu') nn.init.normal_(m.weight, 0.0, 0.02) if m.bias is not None: nn.init.zeros_(m.bias) if classname.find('Linear') != -1: nn.init.normal_(m.weight, 0.0, 0.02) if m.bias is not None: nn.init.zeros_(m.bias) if args.continue_from_epoch is not None: path = '' if args.continue_from_job is not None: path = 'output_%d/states_%d.pt' % (args.continue_from_job, args.continue_from_epoch) else: path = output_dir+'states_%d.pt' % (args.continue_from_epoch) print('Loading GAN states from %s...' % (path)) device = torch.device('cpu') if torch.cuda.is_available(): device = torch.device('cuda') states = torch.load(path, map_location=device) disc.load_state_dict(states['disc']) optimizer_disc.load_state_dict(states['d_opt']) discriminator_losses = states['d_loss'] gen.load_state_dict(states['gen']) optimizer_gen.load_state_dict(states['g_opt']) generator_losses = states['g_loss'] tau = states['tau'] start_epoch = states['n_epochs'] print('Starting from', start_epoch) #data.qt = states['qt'] #data.minmax = states['minmax'] if 'validation_loss' in states: validation_losses = states['validation_loss'] if 'gradient_penalty' in states: gradient_pen_hist = states['gradient_penalty'] print('OK') else: pass disc.apply(weight_init_leakyrelu) gen.apply(weight_init_relu) print('Training begin') import time import torch.autograd as autograd def save_states(epoch): states = { 'disc': disc.state_dict(), 'd_opt': optimizer_disc.state_dict(), 'd_loss': discriminator_losses, 'gen': gen.state_dict(), 'g_opt': optimizer_gen.state_dict(), 'g_loss': generator_losses, 'tau': tau, 'n_epochs': epoch, 'qt': data.qt, 'minmax': data.minmax, 'gradient_penalty': gradient_pen_hist, 'validation_loss': validation_losses} torch.save(states, output_dir + 'states_%d.pt' % (epoch)) print("Saved after epoch %d (%d gen its) to" % (epoch, len(generator_losses)), output_dir + '/states_%d.pt' % (epoch)) def wire_hook(grad): print('%.2e' % (grad.abs().mean().item())) return grad # Implement "Gradient Penalty" for WGAN-GP (https://arxiv.org/pdf/1704.00028.pdf) def gradient_penalty(disc, interp): interp.requires_grad_() d_interpolates = disc(interp).squeeze() grad_outputs = torch.ones(d_interpolates.shape, requires_grad=False, device='cuda') gradients = autograd.grad(outputs=d_interpolates, inputs=interp, grad_outputs=grad_outputs, create_graph=True, # IMPORTANT! Allows to compute gradient with respect to gradient only_inputs=False )[0] gradients_pen = (gradients.pow(2).flatten(1, 2).sum(dim=1).pow(0.5) - 1)**2 gradient_pen = torch.mean(gradients_pen) return gradient_pen def get_wire_weights(): wire_counts = np.bincount(data.wire, minlength=gu.n_wires) logging.info('{}'.format(wire_counts.shape)) return torch.tensor(1 / (wire_counts + 1e-1), device='cuda', dtype=torch.float) wire_weights = get_wire_weights() logging.info('{}'.format(wire_weights)) logging.info('{}'.format(wire_weights[1600])) logging.info('{}'.format(wire_weights.shape)) gen.train() disc.train() lambda_gp = 10 n_critic = 5 critic_count = 0 for e in range(start_epoch, start_epoch + n_epochs): logging.info('Epoch %d, generator iterations %d' % (e, len(generator_losses))) print('Epoch %d, generator iterations %d' % (e, len(generator_losses))) for i, (real_p, real_w) in enumerate(train_loader): if i % 10 == 0: print("it %d" % (i)) # real_p (batch, n_features, seq_len) # real_w (batch, 1, seq_len) real_p = real_p.cuda().permute(0,2,1) real_w_ohe = F.one_hot(real_w.cuda(), num_classes=gu.cum_n_wires[-1]).squeeze(2).permute(0, 2, 1).float() # real_w_ohe (batch, n_wires, seq_len) gen.requires_grad_(False) #disc.requires_grad_(True) # Critic optimization step optimizer_disc.zero_grad() # Weight clipping #for p in disc.parameters(): # p.data.clamp_(-0.01, 0.01) #real_xy = wire_sphere[:,real_w].squeeze(2).permute(1, 0, 2) #print(real_xy[0,:,0]) #real_xy = torch.tensordot(real_w_ohe, wire_sphere, dims=[[1], [1]]).permute(0,2,1) #real_xy = real_xy + torch.randn_like(real_xy) * 1.1 #real_x = torch.cat([real_p, real_w_ohe], dim=1).requires_grad_() out_real = disc(torch.cat([real_p, real_w_ohe], dim=1)) #D_loss_real = F.binary_cross_entropy_with_logits(out_real, torch.ones_like(out_real)) #print('out real %.2e' % out_real.mean()) #with torch.no_grad(): fake_p, fake_wg = sample_fake(real_p.shape[0], tau) #fake_wg.register_hook(wire_hook) #fake_xy = fake_xy + torch.randn_like(fake_xy) * 1.1 #print(torch.randn_like(fake_xy) * 500.1) #print('fk',fake_xy[0,:,0]) #fake_x = torch.cat([fake_p, fake_wg], dim=1) out_fake = disc(torch.cat([fake_p, fake_wg], dim=1)) #print('out fake %.2e' % out_fake.mean()) #D_loss_fake = F.binary_cross_entropy_with_logits(out_fake, torch.zeros_like(out_fake)) #D_loss_fake.backward() #print('D loss fake', D_loss_fake.item()) eps = torch.rand((real_p.shape[0], 1, 1), device='cuda') #seq_stop = (eps[0] * seq_len).long() ##interpolates_p = (eps * real_p + (1-eps) * fake_p).requires_grad_(True) ##interpolates_x = torch.cat([real_x[:,:,:seq_stop], fake_x[:,:,seq_stop:]], dim=2) #reverse = torch.rand(1) #if (reverse > 0.5): # p1 = real_p[:,:,:seq_stop] # p2 = fake_p[:,:,seq_stop:].detach() # wg1 = real_w_ohe[:,:,:seq_stop] # wg2 = fake_wg[:,:,seq_stop:].detach() #else: # p1 = fake_p[:,:,:seq_stop].detach() # p2 = real_p[:,:,seq_stop:] # wg1 = fake_wg[:,:,:seq_stop].detach() # wg2 = real_w_ohe[:,:,seq_stop:] #interpolates_p = torch.cat([p1, p2], dim=2).requires_grad_(True) #interpolates_w = torch.cat([wg1, wg2], dim=2) interpolates_p = eps * real_p + (1-eps) * fake_p interpolates_w = eps * real_w_ohe + (1-eps) * fake_wg #interpolates_x = torch.cat([interpolates_p, interpolates_w], dim=1) gp = gradient_penalty(disc, torch.cat([interpolates_p, interpolates_w], dim=1)) gradient_pen_hist.append(gp.item()) D_loss = -out_real.mean() + out_fake.mean() + lambda_gp * gp D_loss.backward() discriminator_losses.append(D_loss.item()) optimizer_disc.step() critic_count += 1 if (critic_count % n_critic == 0): critic_count = 0 gen.requires_grad_(True) #disc.requires_grad_(False) # Generator update optimizer_gen.zero_grad() fake_p, fake_wg = sample_fake(real_p.shape[0], tau) # Figure out what the avg gradient is in inner and outer layers #fake_xy = wireproj(fake_wg) #fake_xy = fake_xy + torch.randn_like(fake_xy) * 1.1 #print('fk',fake_xy[0,:,0]) #fake_x = torch.cat([fake_p, fake_wg], dim=1) out_fake = disc(torch.cat([fake_p, fake_wg], dim=1)) G_loss = -out_fake.mean() generator_losses.append(G_loss.item()) #print(fake_wg.grad, fake_xy.grad, fake_p.grad) G_loss.backward() optimizer_gen.step() optimizer_disc.zero_grad() # Calculate validation loss once every epoch if (e+1) % 100 == 0: _val_loss_values = [] for val_p, val_w in data.test_loader: print('test') val_p = val_p.cuda().permute(0,2,1) val_w_ohe = F.one_hot(val_w.cuda(), num_classes=gu.cum_n_wires[-1]).squeeze(2).permute(0, 2, 1).float() #val_xy = torch.tensordot(val_w_ohe, wire_sphere, dims=[[1], [1]]).permute(0,2,1) out_real = disc(torch.cat([val_p, val_w_ohe], dim=1)) fake_p, fake_wg = sample_fake(val_p.shape[0], tau) eps = torch.rand((val_p.shape[0], 1, 1), device='cuda') interpolates_p = eps * val_p + (1-eps) * fake_p interpolates_w = eps * val_w_ohe + (1-eps) * fake_wg gp = gradient_penalty(disc, torch.cat([interpolates_p, interpolates_w], dim=1)) D_loss = -out_real.mean() + out_fake.mean() + lambda_gp * gp _val_loss_values.append(D_loss.item()) validation_losses.append(np.mean(_val_loss_values)) if ((e+1) % args.save_every) == 0: save_states(e+1) print('Done') print('Saving models...') plt.figure() plt.plot(np.linspace(0, n_epochs, num=len(discriminator_losses)), discriminator_losses, alpha=0.7) plt.plot(np.linspace(0, n_epochs, num=len(validation_losses)), validation_losses, alpha=0.7) plt.savefig(output_dir + 'val_loss.png') plt.close() print(start_epoch + n_epochs) save_states(start_epoch + n_epochs)
[ "m.dubouchet18@imperial.ac.uk" ]
m.dubouchet18@imperial.ac.uk
6a4bdafbf51409445c87afc8b35917d30df7031b
c167c5a7cd73dc4296520544dac20833f4b61ffd
/src/GridSearchCV.py
5cdbc58085608fefae38b87dff7218c1ea8383a8
[]
no_license
gvisani/enzyme_promiscuity
b63f7a89f9000e57dca01292a658b078ca8a02ad
fd27a4e515b5af96fed4bbed2568b12ed10b74fa
refs/heads/master
2021-05-23T11:39:11.515508
2020-07-30T19:27:34
2020-07-30T19:27:34
253,266,683
0
0
null
null
null
null
UTF-8
Python
false
false
7,547
py
import numpy as np import sklearn class GridSearchCV(object): def __init__(self, estimator, param_grid, cv=5, proba=False): self.estimator = estimator self.num_folds = cv self.param_grid = param_grid self.proba = proba def prepare_folds(self, x_NF, y_N, y_prev, y_binary_orig, sample_weight): x_pos_NF = x_NF[y_binary_orig == 1.0] y_pos_N = y_N[y_binary_orig == 1.0] y_pos_prev = y_prev[y_binary_orig == 1.0] y_pos_binary_orig = y_binary_orig[y_binary_orig == 1.0] sample_weight_pos = sample_weight[y_binary_orig == 1.0] x_neg_NF = x_NF[y_binary_orig == 0.0] y_neg_N = y_N[y_binary_orig == 0.0] y_neg_prev = y_prev[y_binary_orig == 0.0] y_neg_binary_orig = y_binary_orig[y_binary_orig == 0.0] sample_weight_neg = sample_weight[y_binary_orig == 0.0] x_tr_NF_list_pos, y_tr_N_list_pos, w_tr_N_list_pos, x_va_NF_list_pos, y_va_N_list_pos, y_va_prev_list_pos, y_va_orig_list_pos, w_va_N_list_pos = self.prepare_singleclass_folds(x_pos_NF, y_pos_N, y_pos_prev, y_pos_binary_orig, sample_weight_pos) x_tr_NF_list_neg, y_tr_N_list_neg, w_tr_N_list_neg, x_va_NF_list_neg, y_va_N_list_neg, y_va_prev_list_neg, y_va_orig_list_neg, w_va_N_list_neg = self.prepare_singleclass_folds(x_neg_NF, y_neg_N, y_neg_prev, y_neg_binary_orig, sample_weight_neg) x_tr_NF_list = [] y_tr_N_list = [] w_tr_N_list = [] x_va_NF_list = [] y_va_N_list = [] y_va_prev_list = [] y_va_orig_list = [] w_va_N_list = [] for i in range(self.num_folds): x_tr_NF_list.append(np.vstack((x_tr_NF_list_pos[i], x_tr_NF_list_neg[i]))) y_tr_N_list.append(np.hstack((y_tr_N_list_pos[i], y_tr_N_list_neg[i]))) w_tr_N_list.append(np.hstack((w_tr_N_list_pos[i], w_tr_N_list_neg[i]))) x_va_NF_list.append(np.vstack((x_va_NF_list_pos[i], x_va_NF_list_neg[i]))) y_va_N_list.append(np.hstack((y_va_N_list_pos[i], y_va_N_list_neg[i]))) y_va_prev_list.append(np.hstack((y_va_prev_list_pos[i], y_va_prev_list_neg[i]))) y_va_orig_list.append(np.hstack((y_va_orig_list_pos[i], y_va_orig_list_neg[i]))) w_va_N_list.append(np.hstack((w_va_N_list_pos[i], w_va_N_list_neg[i]))) return x_tr_NF_list, y_tr_N_list, w_tr_N_list, x_va_NF_list, y_va_N_list, y_va_prev_list, y_va_orig_list, w_va_N_list def prepare_singleclass_folds(self, x_NF, y_N, y_prev, y_binary_orig, sample_weight): N = y_N.size n_rows_per_fold = int(np.ceil(N / float(self.num_folds))) * np.ones(self.num_folds, dtype=np.int32) n_surplus = np.sum(n_rows_per_fold) - N if n_surplus > 0: n_rows_per_fold[-n_surplus:] -= 1 assert np.allclose(np.sum(n_rows_per_fold), N) fold_boundaries = np.hstack([0, np.cumsum(n_rows_per_fold)]) start_per_fold = fold_boundaries[:-1] stop_per_fold = fold_boundaries[1:] x_tr_NF_list = [] y_tr_N_list = [] w_tr_N_list = [] x_va_NF_list = [] y_va_N_list = [] y_va_prev_list = [] y_va_orig_list = [] w_va_N_list = [] ## Loop over folds from 1, 2, ... K=num_folds for fold_id in range(1, self.num_folds + 1): fold_start = start_per_fold[fold_id-1] fold_stop = stop_per_fold[fold_id-1] # Training data is everything that's not current validation fold x_tr_NF = np.vstack([x_NF[:fold_start], x_NF[fold_stop:]]) y_tr_N = np.hstack([y_N[:fold_start], y_N[fold_stop:]]) w_tr_N = np.hstack([sample_weight[:fold_start], sample_weight[fold_stop:]]) x_va_NF = x_NF[fold_start:fold_stop].copy() y_va_N = y_N[fold_start:fold_stop].copy() y_va_prev = y_prev[fold_start:fold_stop].copy() y_va_orig = y_binary_orig[fold_start:fold_stop].copy() w_va_N = sample_weight[fold_start:fold_stop].copy() x_tr_NF_list.append(x_tr_NF) y_tr_N_list.append(y_tr_N) w_tr_N_list.append(w_tr_N) x_va_NF_list.append(x_va_NF) y_va_N_list.append(y_va_N) y_va_prev_list.append(y_va_prev) y_va_orig_list.append(y_va_orig) w_va_N_list.append(w_va_N) return x_tr_NF_list, y_tr_N_list, w_tr_N_list, x_va_NF_list, y_va_N_list, y_va_prev_list, y_va_orig_list, w_va_N_list def fit(self, x_NF, y_N, y_prev, y_binary_orig, sample_weight=None): if sample_weight is None: sample_weight = np.ones(y_N.size) x_tr_NF_list, y_tr_N_list, w_tr_N_list, x_va_NF_list, y_va_N_list, y_prev_list, y_va_orig_list, w_va_N_list = self.prepare_folds(x_NF, y_N, y_prev, y_binary_orig, sample_weight) scores = [] param_combinations = generate_argument_dicts(self.param_grid) for params in param_combinations: param_scores = [] for fold in range(self.num_folds): self.estimator.set_params(**params) self.estimator.fit(x_tr_NF_list[fold], y_tr_N_list[fold], sample_weight=w_tr_N_list[fold]) s = self.average_precision_hierarchy(self.estimator, x_va_NF_list[fold], y_prev_list[fold], y_va_orig_list[fold], w_va_N_list[fold]) param_scores.append(s) scores.append(np.mean(param_scores)) best_params = param_combinations[np.argmax(np.array(scores))] self.estimator.set_params(**best_params) self.estimator.fit(x_NF, y_N) self.best_estimator_ = self.estimator self.best_params_ = best_params self.best_score_ = np.max(np.array(scores)) def average_precision_hierarchy(self, estimator, x, y_prev, y_binary_orig, sample_weight): if self.proba: y_hat = estimator.predict_proba(x)[:,1] else: y_hat = estimator.predict(x) y_hat += y_prev # y_hat[y_hat >= 0.5] = 1.0 # y_hat[y_hat < 0.5] = 0.0 score = sklearn.metrics.average_precision_score(y_binary_orig, y_hat, sample_weight=sample_weight) return score def balanced_accuracy_hierarchy(estimator, x, y_prev, y_binary_orig, sample_weight): y_hat = estimator.predict(x) + y_prev y_hat[y_hat >= 0.5] = 1.0 y_hat[y_hat < 0.5] = 0.0 # print(y_hat) # print(y_binary_orig) score = sklearn.metrics.balanced_accuracy_score(y_binary_orig, y_hat, sample_weight=sample_weight) return score def generate_argument_dicts(param_grid): params = [] values_list = [] for param in param_grid: params.append(param) values_list.append(param_grid[param]) list_of_permutations = [list(x) for x in np.array(np.meshgrid(*values_list)).T.reshape(-1,len(values_list))] dicts = [] for perms in list_of_permutations: adict = {} for i, value in enumerate(perms): if value != 'sqrt': value = int(value) adict[params[i]] = value dicts.append(adict) return dicts
[ "gian_marco.visani@tufts.edu" ]
gian_marco.visani@tufts.edu
ed8eeaa3cf57ec9beead485077c332fd71a176d6
dd2b4d26d44774b0dd4b5bb52af4923300398d43
/src/bvexp201007/first_order/first_order_sensels.py
017eab59c0fe8a5f82096cf02dbe31ebfa8448a4
[]
no_license
AndreaCensi/bvexp201007
7fe6e4c428c7face83383bbdc91d14c286029b08
0030d19f2914329f1d93c560b83f711b07ed0313
refs/heads/master
2021-01-21T00:45:23.108676
2011-05-29T17:53:58
2011-05-29T17:53:58
916,496
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
from numpy import zeros from pybv.utils import weighted_average, outer class FirstorderSensels: def __init__(self, config): n = config.num_sensels k = config.num_commands self.T = zeros((k, n, n)) self.num_samples = 0 def process_data(self, data): y = data.sensels y_dot = data.sensels_dot u = data.commands T = outer(u, outer(y, y_dot)) self.T = weighted_average(self.T, self.num_samples, T) self.num_samples += 1
[ "andrea@cds.caltech.edu" ]
andrea@cds.caltech.edu