blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
2558802259f4e94409d37148c0262295c24ccc25
a4a18abbfae9584116a847bec4a1dfb9e9d3d306
/exporter/context.py
3d31a81cc82a0fcd48fc84534070802a36690bbf
[ "MIT" ]
permissive
KTOmega/Slack-Exporter
c6e4d15a5d0c775dd98ef71a3f1528eea337924f
b9bec58464cebd64be61b0cc30cffa1a63737007
refs/heads/master
2023-03-09T13:38:47.474733
2021-02-25T02:51:43
2021-02-25T02:51:43
341,296,567
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
from dataclasses import dataclass import json import os from typing import Dict, Any from slack_sdk.web.async_client import AsyncWebClient from . import constants from .downloader import FileDownloader from .fragment import FragmentFactory class JsonSerializable: def to_json(self) -> str: return json.dumps(self.__dict__, separators=(',', ':')) def to_dict(self) -> Dict[str, Any]: return self.__dict__ @dataclass class ExporterMetadata(JsonSerializable): export_time: int @dataclass class ExporterContext: export_time: int output_directory: str slack_client: AsyncWebClient downloader: FileDownloader fragments: FragmentFactory last_export_time: int = 0 async def close(self): await self.downloader.close() self.fragments.close() def to_metadata(self) -> ExporterMetadata: return ExporterMetadata(self.export_time) def save(self): self.downloader.write_json(constants.CONTEXT_JSON_FILE, self.to_metadata().to_dict()) @staticmethod def get_last_export_time(base_dir) -> int: context_file = os.path.join(base_dir, constants.CONTEXT_JSON_FILE) if os.path.exists(context_file): with open(context_file, "r") as fd: context = json.load(fd) if "export_time" in context: return context["export_time"] return 0
[ "me@kevintran.codes" ]
me@kevintran.codes
fef7c0c91068ec1bbab26c4cd51b3f1a5a9f0367
21f96bc814627ffb98c965f7615b893c7490b16f
/Ejercicio 2/clase_helado.py
d2447921a4f3e868cead9b2a108bf7fdff444962
[]
no_license
msoto-27/ejercicios-u3
2b09cec1ac18018a9eb98d0e8b25e7c6e3043133
9ad6b72bdf84efe94c2cec3740728ea4d3f8886d
refs/heads/master
2022-10-08T11:49:49.898024
2020-06-09T00:30:13
2020-06-09T00:30:13
266,607,755
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
class Helado(object): __gramos = 0 __sabores = [] def __init__(self, gramos, sabores): self.__gramos = gramos self.__sabores = sabores def getGramos(self): return self.__gramos def getSabores(self): return self.__sabores def getGramosPorSabor(self, sabor): c = 0 for i in self.__sabores: if sabor == i: c += self.__gramos / len(self.__sabores) return c
[ "noreply@github.com" ]
msoto-27.noreply@github.com
48593e14dda5f79c55a7ca3e20e0609b9f360191
656b45ea0ec5bb9645527fe124b7a3670aa06efd
/sentry_variable_update.py
3410232a7521ed96ce486deea5bde6ab8cab71fe
[]
no_license
SabiqulHassan13/python3-coding-try
5e982cc4b9a1832021c82d35cc73ed7e83510f21
d90c9eda628a5874ebff4aef4b5bb842c71ae160
refs/heads/main
2023-02-10T11:19:14.830872
2021-01-03T15:25:09
2021-01-03T15:25:09
326,437,762
0
0
null
null
null
null
UTF-8
Python
false
false
581
py
# -*- coding: utf-8 -*- """ Created on Thu Dec 13 10:59:46 2018 @author: Robin """ # sentry variable update # counter is a sentry variable here # if you don't update the value of sentry variable then the loop will be infinite # use ctrl + C to terminate the infinite loop counter = 0 while(counter <= 10): print("value of :", counter, "is", counter) # only string can be concatenate not number # if you want to concatenate number then it must be converted to string by str(number_value) print("value of : " + str(counter) + " is " + str(counter)) counter += 1
[ "sabiqulhassan98@gmail.com" ]
sabiqulhassan98@gmail.com
6bde59f8802326df778c3f3ffebdbb6839952624
7b20e2f86c2bb2145ae9ca5bcd4b9ad1566e79b0
/ABC/ABC142/C.py
c206041e53f07ca481b643a9184535cff9b3a464
[]
no_license
pto8913/KyoPro
5f5e769960dfec73af5b0f338f32659ff067094b
29ebc30a3d45fea273cb9034fba8311673a406dd
refs/heads/master
2021-06-13T16:43:40.275854
2021-03-23T00:02:25
2021-03-23T00:02:25
174,684,331
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
import sys stdin = sys.stdin ns = lambda : stdin.readline().rstrip() ni = lambda : int(ns()) na = lambda : map(int, stdin.readline().split()) def main(): n = ni() a = list(na()) d = {} for i, a in enumerate(a): d[a] = i+1 res = [] for i in range(n): res.append(d[i+1]) print(*res) main()
[ "nn3kskyou@gmail.com" ]
nn3kskyou@gmail.com
6c0098dcc19c3cbece8de20ee5fcd0b905bef052
009ac7a8a9a219affa944eff3747924a9639ef43
/lib/rram_NN/train.py
e613c03410ad8ae91217373e070768d3e891f650
[ "MIT" ]
permissive
amohant4/RSA_TF
586b797f51d882255a6ff5da9063f1c16e09082c
5b6705e167ca4f7039e900f9921b90087c9542fd
refs/heads/master
2020-04-20T09:04:29.242554
2019-02-01T20:31:48
2019-02-01T20:31:48
168,756,637
0
1
null
null
null
null
UTF-8
Python
false
false
25,669
py
# file: train.py # Author : Abinash Mohanty # Date : 05/10/2017 # Project : RRAM training NN import tensorflow as tf import os import sys from rram_NN.config import cfg from rram_NN.rram_modeling import addDefects, readVerifyTopN import numpy as np import cPickle import math import random import matplotlib.pyplot as plt # change dataset_name to dataset.name class SolverWrapper(object): def __init__(self, sess, saver, dataset, network, output_dir, dataset_name, stddevVar): """ SolverWrapper constructor. Inputs are: tensorflow session, tensorflow saver, dataset, network, output directory. """ self.net = network self.stddevVar = stddevVar self.dataset_name = dataset_name self.dataset = dataset self.output_dir = output_dir self.saver = saver self._masks = None self.v_trainable = self._get_trainable() self.v_non_trainable = self._get_non_trainable() self.optimizer = self.net.optimizer self.pretrained_model_tf = os.path.join(self.output_dir, self.net.name, 'baseline', \ self.net.name+'_'+self.dataset_name+'.ckpt') self.pretrained_model_pkl = os.path.join(self.output_dir, self.net.name, 'baseline', \ self.net.name+'_'+self.dataset_name +'.pkl') self.pretrained_variation_pkl = os.path.join(self.output_dir, self.net.name, 'variation', \ self.net.name +'_'+ self.dataset_name + '_' + str(stddevVar) +'.pkl') self.summaryDir = os.path.join(output_dir, self.net.name,'summary') self._create_dirs() if cfg.DEBUG_ALL or cfg.WRITE_TO_SUMMARY: self.writer = tf.summary.FileWriter(self.summaryDir) def _create_dirs(self): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) if not os.path.exists(os.path.join(self.output_dir, self.net.name)): os.makedirs(os.path.join(self.output_dir, self.net.name)) if not os.path.exists(os.path.join(self.output_dir, self.net.name, 'baseline')): os.makedirs(os.path.join(self.output_dir, self.net.name, 'baseline')) if not os.path.exists(os.path.join(self.output_dir, self.net.name, 'variation')): os.makedirs(os.path.join(self.output_dir, self.net.name, 'variation')) if not os.path.exists(self.summaryDir): os.makedirs(self.summaryDir) def _snapshot(self, sess, iter, mode=1): """ Writes snapshot of the network to file in output directory. inputs: tensorflow session, current iteration number, mode. mode : 0 = baseline model 1 = with variation model 2 = retrained model to rectify variation """ prefix = '' if mode == 2: prefix='retrained_' elif mode == 1: prefix='withVariation_' filename = prefix + self.net.name + '_iter_{:d}_'.format(iter+1) +self.dataset_name+ '.ckpt' if mode == 0: filename = prefix + self.net.name +'_'+self.dataset_name+ '.ckpt' if mode == 0: filename = os.path.join(self.output_dir, self.net.name, 'baseline', filename) elif mode == 1: filename = os.path.join(self.output_dir, self.net.name,'variation', filename) elif mode == 2: filename = os.path.join(self.output_dir, self.net.name, filename) self.saver.save(sess, filename) if cfg.DEBUG_TRAINING or cfg.DEBUG_ALL: print 'Wrote snapshot to: {:s}'.format(filename) def _train_model_software_baseline(self, sess, max_iters): """ Trains a model and implements the network training loop. Inputs: tensorflow session, maximum number of iterations. This is the software base line code that trains using float32 """ print("Creating baseline model ... ") accuracy = self.net.accuracy grads = self.net.gradients grads_and_vars = list(zip(grads, self.v_trainable)) train_step = self.optimizer.apply_gradients(grads_and_vars=grads_and_vars,global_step=self.net.global_step) sess.run(tf.global_variables_initializer()) if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: merged = tf.summary.merge_all() for iter in range(max_iters): batch = self.dataset.train.next_batch(cfg.TRAIN.TRAIN_BATCH_SIZE) if cfg.DEBUG_TRAINING or cfg.DEBUG_ALL: if (iter+1) % 1000 == 0: train_accuracy = accuracy.eval(feed_dict={self.net.x : batch[0], self.net.y_ : batch[1], self.net.phase : 0.0, self.net.keep_prob : 1.0}) print("Step : %d, training accuracy : %g"%(iter, train_accuracy)) feed_dict = {self.net.x : batch[0], self.net.y_ : batch[1], self.net.phase : 1.0 ,self.net.keep_prob : 0.5} if cfg.DEBUG_ALL or cfg.WRITE_TO_SUMMARY: summary, _ = sess.run([merged, train_step], feed_dict=feed_dict) self.writer.add_summary(summary, iter) else: _ = sess.run([train_step], feed_dict=feed_dict) self._snapshot(sess, iter, 0) self._saveTrainedModel(sess, self.pretrained_model_pkl) def _saveTrainedModel(self, sess, location): """ Helper function to save models as python variables. It is stored using cPickle as binary files. Prior to this the variables in the models must be initialized. Args: sess: tensorflow session location: file address where the models will be savedd """ variables_names =[v.name for v in tf.global_variables()] values = sess.run(variables_names) netParams = dict(zip(variables_names, values)) with open(location, 'wb') as fid: cPickle.dump(netParams, fid, cPickle.HIGHEST_PROTOCOL) print 'saved models at "{}"'.format(location) def _find_or_train_baseline(self, sess, iters): """ Function looks for the baseline software models. Incase it doesn't find that, it call the _train_model_software_baseline() to create baseline models. """ filename = self.net.name + '_' + self.dataset_name + '.ckpt' if not os.path.isfile(os.path.join(self.output_dir, self.net.name,'baseline', filename + '.index')): print 'Baseline software models not found. Training software baseline' self._train_model_software_baseline(sess, iters) else: print 'Baseline models for {} found at {}'.format(self.net.name, os.path.join(self.output_dir, self.net.name,'baseline')) self.saver.restore(sess, os.path.join(self.output_dir, self.net.name,'baseline', filename)) return self._eval_net('Baseline') def _create_mask_v0(self, percentRetrainable): """ Function to create a random mask to stop gradient flow through specific prameters of the network while retraining the network. This creates a list of ndarrays with values equal to 0/1 and dimention same as the variables in the net. """ if cfg.DEBUG_LEVEL_1 or cfg.DEBUG_ALL: print 'Creating masks for stoping random gradient with \ retention ratio = {}'.format(percentRetrainable) allShapes = [v.get_shape() for v in tf.trainable_variables()] keys = [v.name for v in tf.trainable_variables()] masks = {} for i in range(len(allShapes)): mask = np.random.rand(*allShapes[i]) mask = np.where(mask < percentRetrainable/100.0, 1., 0.) masks[keys[i]] = mask return masks def _create_mask_debug(self, percentRetrain): shapes = [v.get_shape().as_list() for v in tf.trainable_variables()] keys = [v.name for v in tf.trainable_variables()] masks = {} for i in range(len(shapes)): mask = np.zeros(shapes[i]) masks[keys[i]] = mask return masks def _create_mask_topk(self, percentRetrain): if cfg.DEBUG_LEVEL_1 or cfg.DEBUG_ALL: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Creating masks for tarining top {}% of parameters '.format(percentRetrain) print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' shapes = [v.get_shape().as_list() for v in tf.trainable_variables()] keys = [v.name for v in tf.trainable_variables()] masks = {} if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: totalRetrained = 0 totalParams = 0 for i in range(len(shapes)): mask = np.zeros(shapes[i]) dims = len(shapes[i]) if dims == 4: pecentPerDiagonal = 100.0/float(min(shapes[i][0], shapes[i][1])) numDiagonals = int(math.ceil(percentRetrain / pecentPerDiagonal)) x = np.arange(shapes[i][0]) y = np.arange(shapes[i][1]) for ii in range(numDiagonals): for j in range(shapes[i][3]): for k in range(shapes[i][2]): random.shuffle(x) random.shuffle(y) for m in range(min(shapes[i][0], shapes[i][1])): mask[x[m],y[m],k,j] = 1.0 if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: totalParams += shapes[i][0]*shapes[i][1]*shapes[i][2]*shapes[i][3] totalRetrained += sum(sum(sum(sum(mask)))) print 'For layer ',str(keys[i]),' percentage per diagonal = ',pecentPerDiagonal print 'For layer ',str(keys[i]),' number of diagonals selected = ',numDiagonals print 'For layer ',keys[i],' % of retrained parameters = ', float(sum(sum(sum(sum(mask)))))*100.0/float(shapes[i][0]*shapes[i][1]*shapes[i][2]*shapes[i][3]) print '~~~ ~~~ ~~~ ~~~~ ' elif dims == 2: maxDim = max(shapes[i][0], shapes[i][1]) pecentPerDiagonal = float(min(shapes[i][0],shapes[i][1]))*100/float(shapes[i][0]*shapes[i][1]) numDiagonals = int(math.ceil(percentRetrain/pecentPerDiagonal)) x = np.arange(maxDim) y = np.arange(maxDim) dummy = np.zeros((maxDim, maxDim)) for k in range(numDiagonals): random.shuffle(x) random.shuffle(y) for m in range(len(x)): dummy[x[m],y[m]] = 1.0 mask = dummy[:shapes[i][0], :shapes[i][1]] if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: totalRetrained += sum(sum(mask)) totalParams += shapes[i][0]*shapes[i][1] print 'For layer ',keys[i],' percentage per diagonal = ',pecentPerDiagonal print 'For layer ',keys[i],' number of diagonals selected = ',numDiagonals print 'For layer ',keys[i],' % of retrained parameters = ', float(sum(sum(mask)))*100.0/float(shapes[i][0]*shapes[i][1]) print '~~~ ~~~ ~~~ ~~~~ ' elif dims == 1: x = np.arange(shapes[i][0]) random.shuffle(x) num = int(math.ceil(shapes[i][0]*percentRetrain/100.0)) for p in range(num): mask[x[p]] = 1.0 if cfg.DEBUG_ALL: totalRetrained += num totalParams += shapes[i][0] if cfg.DEBUG_ALL: print 'For layer ',keys[i],' % of num retrained = ', num print 'For layer ',keys[i],' % of num totalParams = ', shapes[i][0] print 'For layer ',keys[i],' % of retrained parameters = ', float(sum(mask))*100.0/float(shapes[i][0]) print '~~~ ~~~ ~~~ ~~~~ ' masks[keys[i]] = mask if cfg.DEBUG_ALL or cfg.DEBUG_ALL: totalPercentRetrained = float(totalRetrained)*100.0/float(totalParams) print 'Final Retrained parameter % = ', totalPercentRetrained return masks def _create_mask(self, percentRetrain): """ Function to create a random mask to stop gradient flow through specific prameters of the network while retraining the network. This creates a list of ndarrays with values equal to 0/1 and dimention same as the variables in the net. """ if cfg.DEBUG_LEVEL_1 or cfg.DEBUG_ALL: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Creating masks for stoping random gradient with retention ratio = {}'.format(percentRetrain) print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' shapes = [v.get_shape().as_list() for v in tf.trainable_variables()] keys = [v.name for v in tf.trainable_variables()] masks = {} if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: totalRetrained = 0 totalParams = 0 for i in range(len(shapes)): mask = np.zeros(shapes[i]) dims = len(shapes[i]) if dims == 4: pecentPerDiagonal = 100.0/float(min(shapes[i][0], shapes[i][1])) numDiagonals = int(math.ceil(percentRetrain / pecentPerDiagonal)) x = np.arange(shapes[i][0]) y = np.arange(shapes[i][1]) for ii in range(numDiagonals): for j in range(shapes[i][3]): for k in range(shapes[i][2]): random.shuffle(x) random.shuffle(y) for m in range(min(shapes[i][0], shapes[i][1])): mask[x[m],y[m],k,j] = 1.0 if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: totalParams += shapes[i][0]*shapes[i][1]*shapes[i][2]*shapes[i][3] totalRetrained += sum(sum(sum(sum(mask)))) print 'For layer ',str(keys[i]),' percentage per diagonal = ',pecentPerDiagonal print 'For layer ',str(keys[i]),' number of diagonals selected = ',numDiagonals print 'For layer ',keys[i],' % of retrained parameters = ', float(sum(sum(sum(sum(mask)))))*100.0/float(shapes[i][0]*shapes[i][1]*shapes[i][2]*shapes[i][3]) print '~~~ ~~~ ~~~ ~~~~ ' elif dims == 2: maxDim = max(shapes[i][0], shapes[i][1]) pecentPerDiagonal = float(min(shapes[i][0],shapes[i][1]))*100/float(shapes[i][0]*shapes[i][1]) numDiagonals = int(math.ceil(percentRetrain/pecentPerDiagonal)) x = np.arange(maxDim) y = np.arange(maxDim) dummy = np.zeros((maxDim, maxDim)) for k in range(numDiagonals): random.shuffle(x) random.shuffle(y) for m in range(len(x)): dummy[x[m],y[m]] = 1.0 mask = dummy[:shapes[i][0], :shapes[i][1]] if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: totalRetrained += sum(sum(mask)) totalParams += shapes[i][0]*shapes[i][1] print 'For layer ',keys[i],' percentage per diagonal = ',pecentPerDiagonal print 'For layer ',keys[i],' number of diagonals selected = ',numDiagonals print 'For layer ',keys[i],' % of retrained parameters = ', float(sum(sum(mask)))*100.0/float(shapes[i][0]*shapes[i][1]) print '~~~ ~~~ ~~~ ~~~~ ' elif dims == 1: x = np.arange(shapes[i][0]) random.shuffle(x) num = int(math.ceil(shapes[i][0]*percentRetrain/100.0)) for p in range(num): mask[x[p]] = 1.0 if cfg.DEBUG_ALL: totalRetrained += num totalParams += shapes[i][0] if cfg.DEBUG_ALL: print 'For layer ',keys[i],' % of num retrained = ', num print 'For layer ',keys[i],' % of num totalParams = ', shapes[i][0] print 'For layer ',keys[i],' % of retrained parameters = ', float(sum(mask))*100.0/float(shapes[i][0]) print '~~~ ~~~ ~~~ ~~~~ ' masks[keys[i]] = mask if cfg.DEBUG_ALL or cfg.DEBUG_ALL: totalPercentRetrained = float(totalRetrained)*100.0/float(totalParams) print 'Final Retrained parameter % = ', totalPercentRetrained return masks def _get_trainable(self): """ Function to return the trainable variables in the current graph. """ v_trainable = [v for v in tf.trainable_variables()] return v_trainable def _get_non_trainable(self): """ Function to return the non_trainable variables in the current graph. It returns only the trainable parameters in the baseline neural network which are non trainable in the SRAM branched neural network. The returned values do not include the variables like global step, learning rate etc. """ if cfg.DEBUG_TRAINING or cfg.DEBUG_ALL: print '[',os.path.basename(sys.argv[0]),'] Separating trainable and non-trainable variables in the graph.' v_all = [v for v in tf.global_variables()] v_trainable = [v for v in tf.trainable_variables()] v_no_train = list(set(v_all)-set(v_trainable)) v_non_trainable = [v for v in v_no_train if v.name != 'global_step:0'] return v_non_trainable def _load_model(self, path, variableList): """ Function to load model parameters from cPickle file. the pickle file should be a dictoary with keys as the variable names and values as the variable values. Args: path: location of the pickle file variableList: list of tensors which are to be loaded. """ with open(path) as fid: if cfg.DEBUG_TRAINING or cfg.DEBUG_ALL: print '[',os.path.basename(sys.argv[0]),'] Models weight from : ', path params = cPickle.load(fid) for i in range(len(variableList)): if cfg.DEBUG_TRAINING or cfg.DEBUG_ALL: print '[',os.path.basename(sys.argv[0]),'] Loading variables for : ', variableList[i].name, ' - ', variableList[i].shape variableList[i].load(params[variableList[i].name]) def _init_baseline_network(self, sess): """ Initializes only the baseline network. creates gradient mask / connectivity matrix for SRAM crossbar. Args: sess: tensorflow session in which graph is present. """ sess.run(tf.global_variables_initializer()) self._load_model(self.pretrained_model_pkl, self.v_trainable) def _init_network(self, sess, percentRetrainable): """ Initializes the network. creates gradient mask / connectivity matrix for SRAM crossbar. Args: sess: tensorflow session in which graph is present. percentRetrainable: percentage of trainable parameters in SRAM crossbar. """ sess.run(tf.global_variables_initializer()) self._load_model(self.pretrained_model_pkl, self.v_non_trainable) self._masks = self._create_mask(percentRetrainable) #self._masks = self._create_mask_debug(percentRetrainable) if cfg.DEBUG_TRAINING or cfg.DEBUG_ALL: for key in self._masks.keys(): print key, ' -- ',self._masks[key].shape for i in range(len(self.v_trainable)): parameters = self.v_trainable[i].eval() parameters = parameters * self._masks[self.v_trainable[i].name] self.v_trainable[i].load(parameters) def _eval_net(self, description=''): """ This function evaluates the performance of the current network in the given session. Args: sess: Tensorflow session description: string describing the network for loggin. """ accuracy = self.net.accuracy.eval(feed_dict={self.net.x : self.dataset.test.images, self.net.y_ : self.dataset.test.labels, self.net.phase: 0.0, self.net.keep_prob : 1.0}) print description, ' Network accuracy : {}'.format(accuracy) return accuracy def _train_model(self, sess, max_iters): """ Function to train the model. Args: sess: tensorflow session. max_iters: maximum number of batches. """ accuracy = self.net.accuracy grads = self.net.gradients keys = [v.name for v in self.v_trainable] for i in range(len(grads)): grads[i] = grads[i]*self._masks[keys[i]] grads_and_vars = list(zip(grads, self.v_trainable)) train_step = self.optimizer.apply_gradients(grads_and_vars=grads_and_vars,global_step=self.net.global_step) if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: merged = tf.summary.merge_all() last_snapshot_iter = -1 for iter in range(max_iters): batch = self.dataset.train.next_batch(cfg.TRAIN.TRAIN_BATCH_SIZE) if cfg.DEBUG_TRAINING or cfg.DEBUG_ALL: if (iter+1) % 1000 == 0: train_accuracy = accuracy.eval(feed_dict={self.net.x : batch[0], self.net.y_ : batch[1], self.net.phase: 0.0, self.net.keep_prob : 1.0}) print("Step : %d, training accuracy : %g"%(iter, train_accuracy)) feed_dict = {self.net.x : batch[0], self.net.y_ : batch[1], self.net.phase : 1.0,self.net.keep_prob : 0.5} if cfg.DEBUG_ALL or cfg.WRITE_TO_SUMMARY: summary, _ = sess.run([merged, train_step], feed_dict=feed_dict) self.writer.add_summary(summary, iter) else: _ = sess.run([train_step], feed_dict=feed_dict) if (iter+1) % cfg.TRAIN.SNAPSHOT_ITERS == 0: last_snapshot_iter = iter self._snapshot(sess, iter, 2) if last_snapshot_iter != iter: self._snapshot(sess, iter, 2) def _train_model_v1(self, sess, max_iters): """ Function to train the model. Args: sess: tensorflow session. max_iters: maximum number of batches. """ accuracy = self.net.accuracy grads = self.net.gradients keys = [v.name for v in self.v_trainable] for i in range(len(grads)): grads[i] = grads[i]*self._masks[keys[i]] grads_and_vars = list(zip(grads, self.v_trainable)) train_step = self.optimizer.apply_gradients(grads_and_vars=grads_and_vars,global_step=self.net.global_step) if cfg.DEBUG_ALL or cfg.DEBUG_TRAINING: merged = tf.summary.merge_all() last_snapshot_iter = -1 acc = [] iterations = [] for iter in range(max_iters): batch = self.dataset.train.next_batch(cfg.TRAIN.TRAIN_BATCH_SIZE) if cfg.DEBUG_TRAINING or cfg.DEBUG_ALL: if (iter+1) % 50 == 0: train_accuracy = accuracy.eval(feed_dict={self.net.x : self.dataset.test.images, self.net.y_ : self.dataset.test.labels, self.net.phase: 0.0, self.net.keep_prob : 1.0}) print("Step : %d, training accuracy : %g"%(iter, train_accuracy)) acc.append(train_accuracy) iterations.append(iter) feed_dict = {self.net.x : batch[0], self.net.y_ : batch[1], self.net.phase : 1.0,self.net.keep_prob : 0.5} if cfg.DEBUG_ALL or cfg.WRITE_TO_SUMMARY: summary, _ = sess.run([merged, train_step], feed_dict=feed_dict) self.writer.add_summary(summary, iter) else: _ = sess.run([train_step], feed_dict=feed_dict) if (iter+1) % cfg.TRAIN.SNAPSHOT_ITERS == 0: last_snapshot_iter = iter self._snapshot(sess, iter, 2) if last_snapshot_iter != iter: self._snapshot(sess, iter, 2) return acc, iterations def _add_variation_to_baseline(self, sess, stddevVar, num_levels=32, writeToPickle=True): self._init_baseline_network(sess) _ = self._eval_net('Baseline') """ addDefects(self.v_trainable, stddevVar, num_levels, cfg.RRAM.SA0, cfg.RRAM.SA1) acc = self._eval_net('Write Variation') """ #""" if not os.path.exists(self.pretrained_variation_pkl): addDefects(self.v_trainable, stddevVar , num_levels, cfg.RRAM.SA0, cfg.RRAM.SA1) if writeToPickle: self._saveTrainedModel(sess, self.pretrained_variation_pkl) else: self._load_model(self.pretrained_variation_pkl, self.v_trainable) acc = self._eval_net('Write Variation') #""" return acc def _checkNVerifyTopN(self, sess, topN, stddev, netName, datasetName): #self._init_baseline_network(sess) sess.run(tf.global_variables_initializer()) path = os.path.join(self.output_dir, self.net.name, 'baseline', \ self.net.name+'_'+self.dataset_name +'_quatized.pkl') self._load_model(path, self.v_trainable) _ = self._eval_net('Quantized') print '_checkNVerifyTopN | stddev', str(stddev) readVerifyTopN(self.v_trainable, topN, stddev, netName, datasetName) acc = self._eval_net('Top N Read-Verified') return acc def _retrain_baseline(self, sess, max_iters, stddevVar, percentRetrainable): _ = self._add_variation_to_baseline(sess, stddevVar, 32, True) self._masks = self._create_mask(percentRetrainable) self._train_model(sess, max_iters) return self._eval_net('Retrained') def _iters_vs_accuracy(self, sess, max_iters, stddevVar, percentRetrainable): _ = self._add_variation_to_baseline(sess, stddevVar, 32, True) self._masks = self._create_mask(percentRetrainable) acc, iters = self._train_model_v1(sess, max_iters) _ = self._eval_net('Retrained') return acc, iters def plot_images(images, cls_true, cls_pred=None, smooth=True): assert len(images) == len(cls_true) == 9 fig, axes = plt.subplots(3, 3) if cls_pred is None: hspace = 0.3 else: hspace = 0.6 fig.subplots_adjust(hspace=hspace, wspace=0.3) for i, ax in enumerate(axes.flat): if smooth: interpolation = 'spline16' else: interpolation = 'nearest' ax.imshow(images[i, :, :, :], interpolation=interpolation) cls_true_name = 'XXX' if cls_pred is None: xlabel = "True: {0}".format(cls_true_name) else: cls_pred_name = class_names[cls_pred[i]] xlabel = "True: {0}\nPred: {1}".format(cls_true_name, cls_pred_name) ax.set_xlabel(xlabel) ax.set_xticks([]) ax.set_yticks([]) plt.show() def verifyTopN(network, dataset, output_dir, stddevVar, dataset_name, num_levels, topN): saver = tf.train.Saver(max_to_keep=100) sess = tf.InteractiveSession() sw = SolverWrapper(sess, saver, dataset, network, output_dir, dataset_name, stddevVar) print 'Solving ... ' print 'VerifyTopN | stddev', str(stddevVar) acc = sw._checkNVerifyTopN(sess, topN, stddevVar, network.name, dataset_name) if cfg.WRITE_TO_SUMMARY or cfg.DEBUG_ALL: graphWriter = tf.summary.FileWriter(sw.summaryDir, sess.graph) print 'Done Training' return acc def train_net_v1(network, dataset, output_dir, iters, stddevVar, percentRetrainable, dataset_name, num_levels): saver = tf.train.Saver(max_to_keep=100) sess = tf.InteractiveSession() sw = SolverWrapper(sess, saver, dataset, network, output_dir, dataset_name, stddevVar) print 'Solving ... ' acc, iters = sw._iters_vs_accuracy(sess, iters, stddevVar, percentRetrainable) if cfg.WRITE_TO_SUMMARY or cfg.DEBUG_ALL: graphWriter = tf.summary.FileWriter(sw.summaryDir, sess.graph) print 'Done Training' return acc, iters def train_net(network, dataset, output_dir, iters, stddevVar, percentRetrainable, dataset_name, num_levels): """ Trains a network for a given dataset. Args: network: tensorflow network to train dataset: dataset for training and testing output_dir: directory to store checkpoints iters: maximum iterations to run the training process baselineWeights: path to the trained weights of the original network stddevVar: standard deviation of variation to be introduced in the weights as device parameters. percentRetrainable: percentage of parameters to retrain (Number of parameters in the SRAM array). """ saver = tf.train.Saver(max_to_keep=100) sess = tf.InteractiveSession() sw = SolverWrapper(sess, saver, dataset, network, output_dir, dataset_name, stddevVar) print 'Solving ... ' #acc = sw._find_or_train_baseline(sess, iters) #acc = sw._add_variation_to_baseline(sess, stddevVar, num_levels, True) #acc = sw._test_new(sess, iters, stddevVar, percentRetrainable) acc = sw._retrain_baseline(sess, iters, stddevVar, percentRetrainable) #acc, iters = sw._iters_vs_accuracy(sess, iters, stddevVar, percentRetrainable) if cfg.WRITE_TO_SUMMARY or cfg.DEBUG_ALL: graphWriter = tf.summary.FileWriter(sw.summaryDir, sess.graph) print 'Done Training' return acc
[ "amohant4@asu.edu" ]
amohant4@asu.edu
3a5e1a7ef80e8a89992fa1345dcb1ea176fe38d4
a34f36f2f08791d353b63e786fa99fe7e7c65d9f
/contest2.py
827d8394e48b289789f5150a96d809ca1e99d7fb
[]
no_license
vijay9908/code_forces
5f758c4417d448fb2637dd4b896dfc59409f8b97
7d58e52aabea612dfed52dd3534e38563bf78633
refs/heads/master
2021-06-25T11:54:55.179108
2020-11-19T15:24:08
2020-11-19T15:24:08
173,603,181
1
0
null
null
null
null
UTF-8
Python
false
false
328
py
n = int(input()) a = list(map(int,input().split())) uniques = sorted(set(a)) if len(uniques) == 1: print("0") elif len(uniques) == 2: print((uniques[1] - uniques[0])) elif(len(uniques)== 3): if((uniques[1]-uniques[0])==(uniques[2]-uniques[1])): print(uniques[1]-uniques[0]) else: print("-1")
[ "vijaytanmay055@gmail.com" ]
vijaytanmay055@gmail.com
63c2196afa1515e12620f4d54e719a0bdb60cc3c
e6c65e2e354336a4bea5b6a4ccbccd3682915fe2
/out-bin/py/google/fhir/models/model_test.runfiles/pypi__tensorflow_1_12_0/tensorflow-1.12.0.data/purelib/tensorflow/contrib/boosted_trees/proto/split_info_pb2.py
8db7c5a5c0b0998a4b09a264af429e20ea8570c3
[ "Apache-2.0" ]
permissive
rasalt/fhir-datalab
c30ab773d84983dd04a37e9d0ddec8bf2824b8a4
3e329fc8b4226d3e3a4a7c23c306a86e7a9ea0de
refs/heads/master
2021-10-09T05:51:04.593416
2018-12-21T18:11:03
2018-12-22T05:38:32
162,744,237
0
0
null
null
null
null
UTF-8
Python
false
false
197
py
/home/rkharwar/.cache/bazel/_bazel_rkharwar/0ddaa3627472ad9d1367a008236ce2f5/external/pypi__tensorflow_1_12_0/tensorflow-1.12.0.data/purelib/tensorflow/contrib/boosted_trees/proto/split_info_pb2.py
[ "ruchika.kharwar@gmail.com" ]
ruchika.kharwar@gmail.com
1387c0e3357b7e14538121bd9b9b1a0f6218b211
b52d75d6880cee281a024a3d6d83dc94ccd4985c
/pyconfort/pyconfort/cheshire_lookup.py
36cb10164145d42b7dfc92d59d467a2cfca9512d
[ "MIT" ]
permissive
SabariKumar/KimLabCodingCamp2021
536fa1b5d1863986386c5aa584f4279782ebf945
7c8a7086997c8f99d0509b38a120961050f47dbb
refs/heads/main
2023-06-21T22:36:57.116822
2021-07-08T04:34:43
2021-07-08T04:34:43
367,467,756
0
0
null
null
null
null
UTF-8
Python
false
false
6,125
py
#!/usr/bin/env python from __future__ import print_function import datetime import sys import unicodedata import pandas as pd ## convert HTML table to Pandas dataframe def parse_html_table(table): n_rows=0; n_columns = 0; column_names = [] ## the tables contain different numbers of columns; get their names rows = table.find_all('tr') tds = rows[1].find_all('td') # avoid having two column names the same - for i in range(0,len(tds)): if i == 2: column_names.append('scale_'+tds[i].get_text().split('\n')[0]) elif i == 3 and tds[i].get_text().split('\n')[0].upper() == '13C': column_names.append('scale_'+tds[i].get_text().split('\n')[0]) else: column_names.append(tds[i].get_text().split('\n')[0]) n_columns = len(column_names) # Determine the number of rows in the table i = 1 for row in rows[2:]: td_tags = row.find_all('td') if len(td_tags) == n_columns: n_rows+=1 columns = column_names df = pd.DataFrame(columns = columns, index= list(range(0,n_rows))) row_marker = 0 for row in rows[2:]: column_marker = 0 columns = row.find_all('td') for column in columns: #print row_marker, column_marker, ' '.join(column.get_text().split()) df.iat[row_marker,column_marker] = ' '.join(column.get_text().split()) column_marker += 1 if len(columns) > 0: row_marker += 1 return df ## Parse from local offline version of the CHESHIRE scaling factors html or directly from the web def cheshire(online, nucleus, opt_method, opt_basis, opt_solv, nmr_method, nmr_basis, nmr_solv, nmr_aos,log): try: from bs4 import BeautifulSoup except (ModuleNotFoundError,AttributeError): log.write('\nThe bs4 module is not installed correctly - CHESHIRE search is not available') sys.exit() ## current time for printing now = datetime.datetime.now() if online == False: log.write(" READING FROM LOCAL VERSION OF CHESHIRE {0}".format( now.strftime("%Y-%m-%d %H:%M"))) html = BeautifulSoup(open('./scaling_factors.html'), "lxml") else: import requests log.write(" READING FROM http://cheshirenmr.info/ScalingFactors.htm {0}".format(now.strftime("%Y-%m-%d %H:%M"))) url = 'http://cheshirenmr.info/ScalingFactors.htm' response = requests.get(url) html = BeautifulSoup(response.text, "lxml") calc_opt = opt_method.upper()+'/'+opt_basis calc_nmr = nmr_method.upper()+'/'+nmr_basis if nmr_solv == None: log.write(" ", nmr_aos.upper()+'-'+calc_nmr+'//'+calc_opt) else: if opt_solv == None: log.write(" ", nmr_solv[0].upper()+'('+nmr_solv[1]+')-'+nmr_aos.upper()+'-'+calc_nmr+'//'+calc_opt) else: log.write(" ", nmr_solv[0].upper()+'('+nmr_solv[1]+')-'+nmr_aos.upper()+'-'+calc_nmr+'//'+opt_solv[0].upper()+'('+opt_solv[1]+')-'+calc_opt) for table in html.find_all('table'): id = table['id'] scaling_table = parse_html_table(table) # solvent details for the CHESHIRE database # manually entered would be better to parse from HTML - will add in due course if id == 'table1a': scrf = ['pcm', 'acetone'] elif id == 'table1b': scrf = ['smd', 'chloroform'] elif id == 'table1c': scrf = ['cpcm', 'chloroform'] #UAKS radii, nosymmcav elif id == 'table1d': scrf = ['smd', 'chloroform'] elif id == 'table2': scrf = ['pcm', 'chloroform'] elif id == 'table3a': scrf = ['pcm', 'toluene'] elif id == 'table5-acetone': scrf = ['pcm', 'acetone'] elif id == 'table5-acetonitrile': scrf = ['pcm', 'acetonitrile'] elif id == 'table5-benzene': scrf = ['pcm', 'benzene'] elif id == 'table5-chloroform': scrf = ['pcm', 'chloroform'] elif id == 'table5-dichloromethane': scrf = ['pcm', 'dichloromethane'] elif id == 'table5-dimethylsulfoxide': scrf = ['pcm', 'dimethylsulfoxide'] elif id == 'table5-methanol': scrf = ['pcm', 'methanol'] elif id == 'table5-tetrahydrofuran': scrf = ['pcm', 'tetrahydrofuran'] elif id == 'table5-toluene': scrf = ['pcm', 'toluene'] elif id == 'table5-water': scrf = ['pcm', 'water'] elif id == 'table7': scrf = ['smd', 'chloroform'] else: scrf = None # Look for a match between calculation and database (case insensitive) # Returns the first match and then breaks for index, row in scaling_table.iterrows(): db_nmr_solv = None; db_opt_solv = None; db_nmr_aos = 'GIAO' try: db_nmr = row['NMR'].lower().split()[0].split("/") if row['NMR'].lower().find('scrf') >-1: db_nmr_solv = scrf if row['NMR'].lower().find('cgst') >-1: db_nmr_aos = 'CGST' try: [db_nmr_method, db_nmr_basis] = db_nmr except ValueError: pass if db_nmr_method[0] == '#': db_nmr_method = db_nmr_method[1:] db_opt = row['Geometry'].lower().split()[0].split("/") if row['Geometry'].lower().find('scrf') >-1: db_opt_solv = scrf try: [db_opt_method, db_opt_basis] = db_opt except ValueError: pass if db_opt_method[0] == '#': db_opt_method = db_opt_method[1:] if db_nmr_method.lower() == nmr_method.lower() and db_nmr_basis.lower() == nmr_basis.lower() and db_nmr_aos.lower() == nmr_aos.lower(): if db_opt_method.lower() == opt_method.lower() and db_opt_basis.lower() == opt_basis.lower(): #print "matched levels of theory" #print db_nmr_solv, nmr_solv, db_opt_solv, opt_solv if db_nmr_solv == nmr_solv and db_opt_solv == opt_solv: log.write(" --- MATCH ---", id.upper()); return row['scale_'+nucleus] except: pass
[ "sabarinkumar@gmail.com" ]
sabarinkumar@gmail.com
a11f6cff83681db94d4d84752d0362fdd9555b99
aafff2ac6e153ac2b35a351fc9292d5ec73e9267
/network/multi_net.py
24e029360c482bd7b653385a8432930541a19514
[]
no_license
ssungjun/Comparative-Analysis-of-Relative-Camera-Pose-Estimation-based-on-Deep-Learning
fafe4b6101c6f44a10babce011d0eee6768095dc
5f34f13632801c0c83cd5a08ae22617f17899137
refs/heads/master
2020-11-25T04:49:25.745692
2019-12-17T02:22:51
2019-12-17T02:22:51
228,509,036
2
0
null
null
null
null
UTF-8
Python
false
false
4,668
py
import torch import torch.nn as nn import torch.nn.functional as F from network.backbone.resnet_base import Bottleneck_elu from network.backbone.resnet_base import * from util import * class ResNetHead(nn.Module): def __init__(self): super(ResNetHead, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.elu = nn.ELU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.elu(x) x = self.maxpool(x) return x class ResModule(nn.Module): def __init__(self, inplanes, planes, blocks_n, stride, layer_idx, block=Bottleneck_elu): super(ResModule, self).__init__() self.module_name = 'layer'+str(layer_idx) self.inplanes = inplanes self.planes = planes self.resModule = nn.ModuleDict({ self.module_name: self._make_layer( block, self.planes, blocks_n, stride) }) # self.__dict__.update( # {self.module_name: self._make_layer( # block, self.planes, blocks_n, stride) # } # ) # self.layer = self._make_layer( # block, self.planes, blocks_n, stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): # x = self.__dict__[self.module_name](x) # x = vars(self)[self.module_name](x) # x = self.layer(x) x = self.resModule[self.module_name](x) return x class MultiNet(nn.Module): _inplanes = 64 def __init__(self, pose_type='quaternion'): # fc1_shape super(MultiNet, self).__init__() self.feature_resnet = resnet50(pretrained=True) self.feature_down = nn.Sequential( nn.Linear(2048, 512), nn.LeakyReLU(), nn.Dropout(0.5)) # phase1 self.regressor1 = nn.Sequential( nn.Linear(1024, 1024), nn.LeakyReLU(), nn.Dropout(0.5), nn.Linear(1024, 256), nn.LeakyReLU(), nn.Dropout(0.5), nn.Linear(256, 7)) # phase2 self.lstm = nn.LSTM(input_size=1024, hidden_size=512, num_layers=3, batch_first=True, dropout=0.5, bidirectional=True) self.regressor2 = nn.Sequential( nn.Linear(1024, 1024), nn.LeakyReLU(), nn.Dropout(0.5), nn.Linear(1024, 256), nn.LeakyReLU(), nn.Dropout(0.5), nn.Linear(256, 7)) def forward(self, image1, image2, image3, image4, image5, phase=1): self.lstm.flatten_parameters() out1 = self.feature_down(self.feature_resnet(image1)) out2 = self.feature_down(self.feature_resnet(image2)) out3 = self.feature_down(self.feature_resnet(image3)) out4 = self.feature_down(self.feature_resnet(image4)) out5 = self.feature_down(self.feature_resnet(image5)) lstm_in1 = torch.cat([out1, out2], dim=1) lstm_in2 = torch.cat([out2, out3], dim=1) lstm_in3 = torch.cat([out3, out4], dim=1) lstm_in4 = torch.cat([out4, out5], dim=1) outputs = [] lstm_input_list = [lstm_in1, lstm_in2, lstm_in3, lstm_in4] # phase1 if phase == 1: for i in range(len(lstm_input_list)): out = self.regressor1(lstm_input_list[i]) outputs.append(out) else: # phase2 lstm_in = torch.stack(lstm_input_list, 1) lstm_out = self.lstm(lstm_in) for i in range(lstm_out[0].size()[1]): out = self.regressor2(lstm_out[0][:, i, :]) outputs.append(out) return outputs
[ "noreply@github.com" ]
ssungjun.noreply@github.com
20f492a58694e5bed3221a4b86be5554bd64b1df
c7a397bd377fa8f310a715ea35fb2e0b54001e88
/scripts/build_perfect_run.py
7f393cb7fcae1e631e7c5dff9c8e4b759e7b5329
[]
no_license
felipemoraes/dynamic
bf1f928b7c396eaff972efc92b2d47407bb9b3a8
a7c797bdc158e006575ee82d3d269099c5dea611
refs/heads/master
2021-03-27T14:23:33.237885
2018-11-14T15:17:42
2018-11-14T15:17:42
60,723,517
0
0
null
null
null
null
UTF-8
Python
false
false
6,108
py
# -*- encoding: utf-8 -*- from collections import OrderedDict import sys import math MAX_JUDGMENT = 4 MAX_HEIGHT = 5 beta = 1 gamma = 0.5 # $topic $docno $subtopic $judgement qrels = {} #$topic $subtopic $area subtopic_weight = {} # $topic $subtopic $gainHeights current_gain_height = {} # $topic $subtopic $occurrences subtopic_cover = {} ######################################### #### Read qrels file(groundtruth), check format, and sort def prepare_qrels(qrelsfile): global qrels, subtopic_weight, current_gain_height, subtopic_cover # $topic $docno $subtopic $judgement qrels = {} #$topic $subtopic $area subtopic_weight = {} # $topic $subtopic $gainHeights current_gain_height = {} # $topic $subtopic $occurrences subtopic_cover = {} tmp_qrels = {} count = 0 for line in open(qrelsfile): topic, subtopic, docno, passage, judgment = line.strip().split('\t') if int(judgment) > 0 : judgment = int(judgment) else : judgment = 1 if not tmp_qrels.has_key(topic): tmp_qrels[topic] = {} tmp_qrels[topic][docno] = {} tmp_qrels[topic][docno][subtopic] = {} if not tmp_qrels[topic].has_key(docno): tmp_qrels[topic][docno] = {} tmp_qrels[topic][docno][subtopic] = {} if not tmp_qrels[topic][docno].has_key(subtopic): tmp_qrels[topic][docno][subtopic] = {} tmp_qrels[topic][docno][subtopic][passage] = judgment for topic, docs in tmp_qrels.iteritems(): for docno, subtopics in docs.iteritems(): for subtopic, rels in subtopics.iteritems(): rels = sorted(rels.values(),reverse=True) log2 = math.log(2) rel = sum([ rel/(math.log(rank+2)/log2) for rank, rel in enumerate(rels)]) if not qrels.has_key(topic): qrels[topic] = {} subtopic_weight[topic] = {} current_gain_height[topic] = {} subtopic_cover[topic] = {} qrels[topic][docno] = {} qrels[topic][docno][subtopic] = {} if not qrels[topic].has_key(docno): qrels[topic][docno] = {} qrels[topic][docno][subtopic] = {} if not qrels[topic][docno].has_key(subtopic): qrels[topic][docno][subtopic] = {} qrels[topic][docno][subtopic] = rel subtopic_weight[topic][subtopic] = 1 current_gain_height[topic][subtopic] = 0 subtopic_cover[topic][subtopic] = 0 #### Normalize subtopic weight for topic, subtopics in subtopic_weight.iteritems(): max_weight = get_max_weight(topic) for subtopic in subtopics: subtopic_weight[topic][subtopic] /= float(max_weight) def get_doc_gain(topic,docno): gain = 0 for subtopic, area in subtopic_weight[topic].iteritems(): nrel = subtopic_cover[topic][subtopic] if qrels[topic].has_key(docno): if not qrels[topic][docno].has_key(subtopic): continue else: continue hight_keepfilling = get_hight_keepfilling(topic, docno, subtopic, nrel+1) area = get_area(topic,subtopic) gain += area*hight_keepfilling return gain def update_doc_gain(topic,docno): gain = 0 for subtopic, area in subtopic_weight[topic].iteritems(): nrel = subtopic_cover[topic][subtopic] if qrels[topic].has_key(docno): if not qrels[topic][docno].has_key(subtopic): continue else: continue hight_keepfilling = update_hight_keepfilling(topic, docno, subtopic, nrel+1) area = get_area(topic,subtopic) gain += area*hight_keepfilling subtopic_cover[topic][subtopic] +=1 return gain def get_hight_keepfilling(topic, docno, subtopic, nrel): rel = 0 if qrels[topic].has_key(docno): if qrels[topic][docno].has_key(subtopic): rel = qrels[topic][docno][subtopic] if rel == 0: return 0 current_gain = current_gain_height[topic][subtopic] gain = get_hight_discount(nrel)*rel return gain def update_hight_keepfilling(topic, docno, subtopic, nrel): rel = 0 if qrels[topic].has_key(docno): if qrels[topic][docno].has_key(subtopic): rel = qrels[topic][docno][subtopic] if rel == 0: return 0 current_gain = current_gain_height[topic][subtopic] gain = get_hight_discount(nrel)*rel if current_gain + gain > MAX_HEIGHT: gain = MAX_HEIGHT - current_gain current_gain_height[topic][subtopic] += gain return gain def get_area(topic, subtopic): if subtopic_weight[topic].has_key(subtopic): return subtopic_weight[topic][subtopic] return 0 def get_hight_discount(nrels): return gamma ** nrels def get_max_weight(topic): max_weight = sum([v for v in subtopic_weight[topic].values()]) return max_weight def perfect_run(qrelsfile): prepare_qrels(qrelsfile) for topic, docs in qrels.iteritems(): candidate_docs = docs.keys() best_docs = set() i = 0 while len(best_docs) < len(candidate_docs): best_doc = "-" best_gain = -1 for docno in candidate_docs: if docno in best_docs: continue gain = get_doc_gain(topic,docno) if gain > best_gain: best_doc = docno best_gain = gain update_doc_gain(topic,docno) best_docs.add(best_doc) print "%s\t%s\t%s\t%f\t1\t%s" % (topic, (i/5), best_doc, ((len(candidate_docs)-i)/float(len(candidate_docs))), "|".join(["%s:%f" % (subtopic, qrels[topic][best_doc][subtopic]) for subtopic in qrels[topic][best_doc]])) i+=1 perfect_run(sys.argv[1])
[ "fe.moraesg@gmail.com" ]
fe.moraesg@gmail.com
24d99fae3b1ddd8240944745bf0aacfc89d1c413
c88e0a47b1065c8f00dc30a85580cf4b1e3ee0e7
/dosyayaYazmak.py
51fe6f6e2ca4bda046cc83c4216f2b2b7f53434d
[]
no_license
adalix/py2-book
09b0a09b1d762562534b999eca81a40cfbdc6cd8
256d920ba7ba1d5e8128c0f71479e51755b281cd
refs/heads/master
2021-01-10T14:50:09.638783
2016-03-10T13:49:15
2016-03-10T13:49:15
51,669,594
1
0
null
null
null
null
UTF-8
Python
false
false
112
py
tg = open ("tg.txt","w") tg.write("tolgahan faln faln") tg.close() tg = open("tg.txt","r") print tg.read()
[ "gumustolgahan@gmail.com" ]
gumustolgahan@gmail.com
c3948213eed1ef36d98427854f530df32182dc2e
9051a18b68f7c74fcb1356e573419cd0ab2e2b8d
/web/update_4.py
4d70b8314ccb5d307a8f0edcafef915e0f2d27f1
[]
no_license
paulie367/paulie367.github.io
4dbc25faea6ccce16e1aec38fd943aae9f30bdc3
71ee318c978839cdfac603109d56559a60d95310
refs/heads/master
2023-08-03T03:02:19.752849
2021-09-27T08:41:07
2021-09-27T08:41:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,623
py
#!C:\Users\2054069\AppData\Local\Programs\Python\Python39\python.exe print("Content-Type: text/html; charset=utf-8") print("") import cgi, os files = os.listdir('data') #print(files) listStr = '' for item in files: listStr = listStr + '<li><a href="index_4_update.py?id={name}">{name}</a></li>'.format(name=item) #print(listStr) form = cgi.FieldStorage() if 'id' in form: pageID = form["id"].value description = open('data/'+pageID, 'r').read() else: pageID = 'welcome' description = 'hello, web' print("hello world") print("of ") print(pageID) import sys import io #encoding utf-8 설정 sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding = 'utf-8') #encoding utf-8 설정 sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding = 'utf-8') #encoding utf-8 설정 print('''<!doctype html> <html> <head> <title> WEB1 - welcome </title> <meta charset="utf-8"> </head> <body> <h1><a href="index_4_update.py">WEB</a></h1> <ol> {listStr} </ol> <h2>{title}</h2> <p>{desc} </p> <a href="create_4.py">create</a> <form action="process_update_4.py" method="post"> <p><input type="hidden" name="pageID" value="{form_default_title}" ></p> <p><input type="text" name="title" placeholder="title" value="{form_default_title}"></p> <p><textarea rows="4" name="description" placeholder="description">{form_default_description}</textarea></p> <p><input type="submit" value="submit" ></p> </form> <img src="engine.jpg" alt="My Image" width = 40%"> </body> </html> '''.format(title=pageID, desc=description, listStr=listStr, form_default_title=pageID, form_default_description=description))
[ "noreply@github.com" ]
paulie367.noreply@github.com
f7df70c87749177fdb0473207659ba0ee49741c0
01c14348768543446220e4892ecb289aeb04af50
/palindrome.py
33d27dd5418e4f060fc2302abb691308143f08de
[]
no_license
beyzakilickol/week1Wednesaday
c92c715516b173361c1e02efeaba4b7168d43de4
c4b66a2a83a857a8e60f6394225a29eef173ecb2
refs/heads/master
2020-03-29T03:56:30.764880
2018-09-19T20:30:35
2018-09-19T20:30:35
149,508,175
0
0
null
null
null
null
UTF-8
Python
false
false
591
py
word = input('Enter the word: ') arr = list(word) second_word = [] for index in range(len(arr)-1, -1 , -1): second_word.append(arr[index]) print(second_word) reversed = ''.join(second_word) print(reversed) def is_palindrome(): if(word == reversed): return True else: return False print(is_palindrome()) #-----------------------------------second way----------------------- #word = input('Enter the word: ') #reversed = word[::-1] #def is_palindrome(): # if(word == reversed): # return True # else: # return False #print(is_palindrome())
[ "43250495+beyzakilickol@users.noreply.github.com" ]
43250495+beyzakilickol@users.noreply.github.com
92cedf3e8cefe043ac52a07aa1226af00f782812
390eae08be96c6f5ddc78434cfb0398cb0095f3b
/tf_runner.py
299af6dd0b028c145a824c376b96aa37949cfd85
[]
no_license
BurakCinar07/RealTimePedestrianDetection
500f41f43780a5359047059bd37135817e1763db
34ed89d1b0b5e53efe5e9bc5e9cc08ef6876c4d2
refs/heads/master
2020-03-21T07:26:11.047926
2018-06-22T09:00:46
2018-06-22T09:00:46
126,314,520
1
0
null
null
null
null
UTF-8
Python
false
false
8,327
py
import sys import time import tensorflow as tf import nn_datasource as ds from checkpoint_manager import CheckpointManager IMAGE_WIDTH = 72 IMAGE_HEIGHT = 170 IMAGE_CHANNEL = 1 EPOCH_LENGTH = 300 BATCH_SIZE = 100 LEARNING_RATE = 0.001 RANDOM_SEED = 2 WEIGHT_COUNTER = 0 BIAS_COUNTER = 0 CONVOLUTION_COUNTER = 0 POOLING_COUNTER = 0 sess = None def new_weights(shape): global WEIGHT_COUNTER weight = tf.Variable(tf.random_normal( shape=shape, seed=RANDOM_SEED), name='w_' + str(WEIGHT_COUNTER)) WEIGHT_COUNTER += 1 return weight def new_biases(length): global BIAS_COUNTER bias = tf.Variable( tf.zeros(shape=[length]), name='b_' + str(BIAS_COUNTER)) BIAS_COUNTER += 1 return bias def new_conv_layer(input, num_input_channels, filter_size, num_filters, pooling=2): global CONVOLUTION_COUNTER global POOLING_COUNTER shape = [filter_size, filter_size, num_input_channels, num_filters] weights = new_weights(shape=shape) biases = new_biases(length=num_filters) layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], padding='SAME', name='conv_' + str(CONVOLUTION_COUNTER)) CONVOLUTION_COUNTER += 1 layer = tf.add(layer, biases) layer = tf.nn.relu(layer) if pooling is not None and pooling > 1: layer = tf.nn.max_pool(value=layer, ksize=[1, pooling, pooling, 1], strides=[1, pooling, pooling, 1], padding='SAME', name='pool_' + str(POOLING_COUNTER)) POOLING_COUNTER += 1 return layer, weights def flatten_layer(layer): layer_shape = layer.get_shape() num_features = layer_shape[1:4].num_elements() layer_flat = tf.reshape(layer, [-1, num_features]) return layer_flat, num_features def new_fc_layer(input, num_inputs, num_outputs): weights = new_weights(shape=[num_inputs, num_outputs]) biases = new_biases(length=num_outputs) layer = tf.add(tf.matmul(input, weights), biases) # layer = tf.nn.relu(layer) return layer tf.reset_default_graph() TEST = True NETWORK_NUMBER = 4 print(NETWORK_NUMBER) input_placeholder = tf.placeholder( tf.float32, shape=[None, IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNEL], name='input_placeholder') output_placeholder = tf.placeholder(tf.float32, shape=[None, 2], name='output_placeholder') layer_conv_1, weights_conv_1 = new_conv_layer( input=input_placeholder, num_input_channels=IMAGE_CHANNEL, filter_size=5, num_filters=64, pooling=2 ) layer_conv_2, weights_conv_2 = new_conv_layer( input=layer_conv_1, num_input_channels=64, filter_size=3, num_filters=128, pooling=2 ) layer_conv_3, weights_conv_3 = new_conv_layer( input=layer_conv_2, num_input_channels=128, filter_size=3, num_filters=128, pooling=None ) layer_conv_4, weights_conv_4 = new_conv_layer( input=layer_conv_3, num_input_channels=128, filter_size=3, num_filters=128, pooling=None ) layer_conv_5, weights_conv_5 = new_conv_layer( input=layer_conv_4, num_input_channels=128, filter_size=3, num_filters=256, pooling=3 ) layer_flat, num_features = flatten_layer(layer_conv_5) layer_fc_1 = new_fc_layer( input=layer_flat, num_inputs=num_features, num_outputs=4096) layer_fc_1 = tf.nn.softmax(layer_fc_1) if TEST is not True: layer_fc_1 = tf.nn.dropout(layer_fc_1, 0.5) layer_fc_2 = new_fc_layer( input=layer_fc_1, num_inputs=4096, num_outputs=4096) layer_fc_2 = tf.nn.softmax(layer_fc_2) if TEST is not True: layer_fc_2 = tf.nn.dropout(layer_fc_2, 0.5) layer_output = new_fc_layer( input=layer_fc_2, num_inputs=4096, num_outputs=2) cross_entropy = tf.nn.softmax_cross_entropy_with_logits( labels=output_placeholder, logits=layer_output) cost = tf.reduce_mean(cross_entropy) # cost = tf.losses.mean_squared_error(output_placeholder, layer_output) optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost) predictions = tf.argmax(tf.nn.softmax(layer_output), dimension=1) prediction_equalities = tf.equal(predictions, tf.argmax(output_placeholder, dimension=1)) accuracy = tf.reduce_mean(tf.cast(prediction_equalities, tf.float32)) def train_nn(number, input_placeholder, output_placeholder, accuracy, cost, optimizer): global TEST checkpoint_manager = CheckpointManager(number) init_g = tf.global_variables_initializer() init_l = tf.local_variables_initializer() with tf.Session() as sess: sess.run(init_g) sess.run(init_l) checkpoint_manager.on_training_start( ds.DATASET_FOLDER, EPOCH_LENGTH, BATCH_SIZE, LEARNING_RATE, "AdamOptimizer", True) for batch_index, batch_images, batch_labels in ds.training_batch_generator(BATCH_SIZE, grayscale=True): print("Starting batch {:3}".format(batch_index + 1)) for current_epoch in range(EPOCH_LENGTH): feed = { input_placeholder: batch_images, output_placeholder: batch_labels } epoch_accuracy, epoch_cost, _ = sess.run( [accuracy, cost, optimizer], feed_dict=feed) print("Batch {:3}, Epoch {:3} -> Accuracy: {:3.1%}, Cost: {}".format( batch_index + 1, current_epoch + 1, epoch_accuracy, epoch_cost)) checkpoint_manager.on_epoch_completed() TEST = True batch_accuracy_training, batch_cost_training = sess.run( [accuracy, cost], feed_dict=feed) TEST = False print("Batch {} has been finished. Accuracy: {:3.1%}, Cost: {}".format( batch_index + 1, batch_accuracy_training, batch_cost_training)) checkpoint_manager.on_batch_completed( batch_cost_training, batch_accuracy_training) checkpoint_manager.save_model(sess) print("\nTraining finished at {}!".format(time.asctime())) # overall_accuracy, overall_cost = \ # test_nn(number, input_placeholder, output_placeholder, accuracy, cost) checkpoint_manager.on_training_completed(None) def test_frame(frame): prediction = tf.argmax(tf.nn.softmax(layer_output), 1) print(prediction.eval(feed_dict={input_placeholder:[frame]}, session=sess)) def test_nn(number, input_placeholder, output_placeholder, accuracy, cost): checkpoint_manager = CheckpointManager(number) init_g = tf.global_variables_initializer() init_l = tf.local_variables_initializer() with tf.Session() as sess: sess.run(init_g) sess.run(init_l) checkpoint_manager.restore_model(sess) total_accuracy = 0 total_cost = 0 batches = None for batch_index, test_images, test_labels in ds.test_batch_generator(100, grayscale=True): feed = { input_placeholder: test_images, output_placeholder: test_labels } test_accuracy, test_cost = sess.run( [accuracy, cost], feed_dict=feed) print("Batch {:3}, Accuracy: {:3.1%}, Cost: {}" \ .format(batch_index, test_accuracy, test_cost)) total_accuracy += test_accuracy total_cost += test_cost batches = batch_index overall_accuracy = total_accuracy / (batches + 1) overall_cost = total_cost / (batches + 1) print("Total test accuracy: {:5.1%}".format(overall_accuracy)) return overall_accuracy, overall_cost def main(): pass def init(): checkpoint_manager = CheckpointManager(NETWORK_NUMBER) init_g = tf.global_variables_initializer() init_l = tf.local_variables_initializer() with tf.Session() as ses: ses.run(init_g) ses.run(init_l) checkpoint_manager.restore_model(ses) sess = ses if __name__ == '__main__': main()
[ "noreply@github.com" ]
BurakCinar07.noreply@github.com
331a858abcf24bb56d1b2857284bce312868b9d3
f6e83bc298b24bfec278683341b2629388b22e6c
/scripts/generate_shutdown_order.py
a9a1168a051ec2bc8adb0ea3bf0f478399207a45
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
noaOrMlnx/sonic-utilities
8d8ee86a9c258b4a5f37af69359ce100c29ad99c
9881f3edaa136233456408190367a09e53386376
refs/heads/master
2022-08-17T23:15:57.577454
2022-05-18T21:49:32
2022-05-18T21:49:32
225,886,772
1
0
NOASSERTION
2022-07-19T08:49:40
2019-12-04T14:31:32
Python
UTF-8
Python
false
false
463
py
#!/usr/bin/python3 ''' This script is used to generate initial warm/fast shutdown order file ''' from sonic_package_manager import PackageManager def main(): manager = PackageManager.get_manager() installed_packages = manager.get_installed_packages() print('installed packages {}'.format(installed_packages)) manager.service_creator.generate_shutdown_sequence_files(installed_packages) print('Done.') if __name__ == '__main__': main()
[ "noreply@github.com" ]
noaOrMlnx.noreply@github.com
3f04a266de102089706de59d6fedfe00242dd410
0dd1f090cd4dbcda484dca07ae279f3673e31a14
/flask/restful_flask_apis/requ.py
80452d396cd3cbd4ab25cbd6124fa6a81cbcdcea
[]
no_license
HaidiChen/WebAPIs
53fd668a3f5ce91a15166e519f8990f7c41799af
5cc108d774c3764c3f5146143af091409bbdf4c0
refs/heads/master
2020-05-02T17:49:59.267234
2019-07-15T00:28:02
2019-07-15T00:28:02
178,110,617
0
1
null
null
null
null
UTF-8
Python
false
false
999
py
from flask import Flask from flask_restful import Resource, Api, reqparse app = Flask(__name__) api = Api(app) parser = reqparse.RequestParser(bundle_errors=True) parser.add_argument('rate', type=int, help='Rate to change for this Resource') # argument is required parser.add_argument('name', required=True, action='append', help="Name cannot be blank!") parser.add_argument('foo', type=int, required=True, choices=(1, 2), help='Bad choice: {error_msg}') # change the name of argument when it is parsed parser.add_argument('color', dest='public_color') class Price(Resource): def post(self): args = parser.parse_args() rate = args['rate'] names = args['name'] pc = args['public_color'] if rate: rate = str(rate * 100) return {'price': rate, 'names': names} return {'price': 'nothing', 'names': names, 'color': pc} api.add_resource(Price, '/price') if __name__ == "__main__": app.run(debug=True)
[ "chenhaidi43@163.com" ]
chenhaidi43@163.com
86fed817850caaf05d4b6eafcbc82e9e4f727b43
0ca5780b8a121b90e2191d7e394e35f49ab68828
/controllers/player.py
430bafb76594668e60744516af0a07a1a2086e27
[ "MIT" ]
permissive
Ghloin/tweeria
805091a40a2625f4983b960ccd477af6ffb1c1ba
5f7cf917a6e08f15cd914c11823dbd81c11b95a1
refs/heads/master
2021-01-21T05:59:24.279175
2015-04-11T23:49:09
2015-04-11T23:49:09
33,859,414
1
0
null
2015-04-13T09:22:40
2015-04-13T09:22:39
null
UTF-8
Python
false
false
47,767
py
# -*- coding: UTF-8 -*- import basic import tweepy import re import json import math from sets import Set from time import time, localtime from guild import guildsController from random import randint, sample import memcache_controller from functions import getMessages, prettyItemBonus, getRelativeDate, getDisplayPages from misc import miscController import cherrypy class playerController(basic.defaultController): DIR = './players/' RE_ITEMS_UIDS = re.compile('^(\d)\#(.*)') query_result = False def __init__(self): basic.defaultController.__init__(self) self._getStaticAchvs() self.cache = memcache_controller.cacheController() @basic.printpage def printPage(self, page, params): return { 'top': self.printTopList, 'registration': self.redirectToTwitter, 'new': self.printCreatingPlayerPage, 'spellbook': self.printSpellbook, 'inv': self.printInviteCenter, 'authors': self.printTopAuthors, 'settings': self.printSettings, '__default__': { 'method': self.printPlayerPage, 'params': {'username': page} } } @basic.methods def methods(self, params={}): return { 'type_of_form': { 'add_user': self.finishCreatingNewPlayer, 'equip_item': self.equipItem, 'sell_item': self.sellItem, 'change_title': self.changeSettings, 'change_player_settings': self.changeSettings, 'change_pvp': self.changeSettings, 'change_artwork': self.changeSettings, 'move_spell_to_book': self.setSpellActive, 'move_spell_from_book': self.setSpellInactive, 'change_post_setting': self.changePostToTwitter, 'send_mention_invite': self.sendMentionInvite, 'get_friends': self.getFriends, 'reset_hero': self.resetHero } } # -------------------------------------------------------------------------------------------------- # Misc def _getStaticAchvs(self): self.static = self.model.players.getAchvStaticForPrint() def isPlayerAlreadyRegistered(self, user_id): player = self.model.players.getPlayer(user_id) return player def authorizePlayer(self, player, to_invite_page=False): self.sbuilder.createSession(int(player['user_id'])) if to_invite_page: return self.sbuilder.redirect(self.core.HOST + 'inv', 'Redirecting ... ') else: backlink = self.sbuilder.getOneCookie('login_back_url') if backlink: return self.sbuilder.redirect(self.core.HOST + backlink, 'Redirecting ... ') else: return self.sbuilder.redirect(self.core.HOST + player['name'], 'Redirecting to your profile') def redirectToTwitter(self, fields=None, params=None): if 'backlink' in params: self.sbuilder.setCookie({'login_back_url': params['backlink']}, 30) self.sbuilder.setCookie({'just_login': True}, 30) # реферальная кука username = False if len(params) > 1: for param in params: if not param in ['__page__', '__query__', 'backlink', 'guild']: self.sbuilder.setCookie({'referal_name': param}, 300) username = param if 'guild' in params and username: info = self.model.players.getPlayerRawByName(username, {'_guild_name': 1}) if info and info['_guild_name']: self.sbuilder.setCookie({'guild_invite': info['_guild_name']}, 300) break auth = tweepy.OAuthHandler(self.core.p_key, self.core.p_secret) url = auth.get_authorization_url(True) return self.sbuilder.redirect(url) def getPlayersGuild(self, user_id): return self.model.guilds.getPlayersGuild(user_id) # -------------------------------------------------------------------------------------------------- # Page methods def sendMentionInvite(self, params): if self.cur_player and 'name' in params and params['name']: if params['name'][0] == '@': params['name'] = params['name'][1:] text = '@' + params['name'] + ' join my journey in Tweeria http://tweeria.com/invite?' + self.cur_player[ 'login_name'] + ' #rpg' result = self.model.players.postMentionInvite(self.cur_player['login_id'], text) else: result = False cherrypy.response.headers['Content-Type'] = "application/json" return json.dumps({"invited": result}) # ------------- def equipItem(self, params): if 'uid' in params: uid = params['uid'] if 'old_id' in params: old_id = params['old_id'] else: old_id = '0' returnHash = { "equipted": self.model.items.equipItem( uid, self.cur_player['login_id'], self.cur_player['login_class'], old_id, self.cur_player['login_lvl'] ), "stats": self.model.players.recalculateStats(self.cur_player['login_id']) } else: returnHash = {'equipted': False, 'stats': {}} cherrypy.response.headers['Content-Type'] = "application/json" return json.dumps(returnHash) def sellItem(self, params): rules = { 'uid': {'not_null': 1}, } returnHash = {'sold': False} status = self.checkParams(params, rules) if status['status']: created_by_player = int(params['created_by_player']) == 1 cost = self.model.items.sellItem(self.cur_player['login_id'], params['uid'], to_pool=created_by_player) if created_by_player: cost = int(float(cost) / 2) returnHash = { "sold": True, "goldgained": cost, "stats": self.model.players.recalculateStats(self.cur_player['login_id']) } cherrypy.response.headers['Content-Type'] = "application/json" return json.dumps(returnHash) def changePostToTwitter(self, param): checked = 'post_to_twitter' in param and param['post_to_twitter'] == '1' self.model.players.updatePlayerData(self.cur_player['login_id'], {'post_to_twitter': checked}) self.httpRedirect(param) def changeSettings(self, param): # метод для смены артворка/титула def changeThings(type_name, param_name, param, field_name): availiable_things = self.mongo.getu('players', {'_id': self.cur_player['login_id'], type_name: {'$exists': 1}}, {'_id': 1, type_name: 1}) if availiable_things: things = [] for thing in availiable_things[0][type_name]: if thing[field_name] == int(param[param_name]): thing.update({'current': True}) else: thing.update({'current': False}) things.append(thing) self.mongo.update('players', {'_id': self.cur_player['login_id']}, {type_name: things}) if 'pvp_mode' in param: pvp = int(param['pvp_mode']) if not pvp in [0, 1]: pvp = 0 param.update({'success': True}) self.mongo.update('players', {'user_id': self.cur_player['login_user_id']}, {'pvp': pvp}, True) if 'change_title' in param: changeThings('titles', 'change_title', param, 'item_UID') if 'change_artwork' in param: self.model.misc.changePlayerArtworks(self.cur_player['login_id'], param['change_artwork']) self.sbuilder.httpRedirect(param['__page__']) def printCreatingPlayerPage(self, fields, param): fields.update({self.title: 'Choose your path'}) def checkInfoActuality(old_data, new_data, auth): record = {} if new_data.screen_name != old_data['name']: record.update({'name': new_data.screen_name}) if new_data.profile_image_url != old_data['avatar']: record.update({'img': new_data.profile_image_url}) if auth.access_token.key != old_data['token1'] or auth.access_token.secret != old_data['token2']: record.update({ 'token1': auth.access_token.key, 'token2': auth.access_token.secret }) if not 'utc_offset' in old_data or new_data.utc_offset != old_data['utc_offset']: record.update({'utc_offset': new_data.utc_offset}) return record def getLeadership(following, followers): if following == 0: ratio = 0 else: ratio = int(float(followers) / following) lead = 0 for record in self.balance.LEAD: if record['min'] <= ratio and record['min_fol'] <= followers: lead = record['lead'] return lead if not 'oauth_token' in param and not 'oauth_verifier' in param: return self.sbuilder.redirect('../') consumer_key = self.core.p_key consumer_secret = self.core.p_secret auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_request_token(param['oauth_token'], param['oauth_verifier']) try: auth.get_access_token(param['oauth_verifier']) except tweepy.TweepError: return self.sbuilder.throwWebError(2001) api = tweepy.API(auth) user = api.me() if 'invites' in self.core.debug and self.core.debug['invites']: allowed = self.model.misc.getPlayerInvite(user.screen_name) if not allowed: return self.sbuilder.throwWebError(2001) #login = self.sbuilder.getLoginCookie() player = self.isPlayerAlreadyRegistered(user.id) if player: diff_data = checkInfoActuality(player, user, auth) if diff_data: self.model.players.updatePlayerData(player['_id'], diff_data) return self.authorizePlayer({'name': user.screen_name, 'user_id': int(user.id)}) if user.utc_offset: utc_offset = user.utc_offset else: utc_offset = 0 fields.update({ 'id': user.id, 'login_name': user.screen_name, 'avatar': user.profile_image_url, 'access_key': auth.access_token.key, 'access_secret': auth.access_token.secret, 'step': 1, 'utc': utc_offset, 'rto': getLeadership(user.friends_count, user.followers_count) }) buff = self.sbuilder.balance.classes classes = [] for key in buff: record = { 'id': key, 'name': buff[key] } classes.append(record) fields.update({'classes': classes}) # check referal referal_name = self.sbuilder.getOneCookie('referal_name') if referal_name: fields.update({'referal': referal_name}) guild_invite = self.sbuilder.getOneCookie('guild_invite') if guild_invite: fields.update({'guild_invite': guild_invite}) return self.sbuilder.loadTemplate(self.DIR + 'registration.jinja2', fields) def finishCreatingNewPlayer(self, param): def getReferalBonus(referal_name, user_id, user_name): self.model.players.giveBonusToReferal(referal_name, user_id, user_name) if self.isPlayerAlreadyRegistered(int(param['id'])): return self.authorizePlayer({'name': param['login_name'], 'user_id': int(param['id'])}) rules = { 'token1': {}, 'token2': {}, 'login_name': {'not_null': True}, 'avatar': {}, 'id': {'gt': 1}, 'sex': {'gte': 0, 'lte': 1}, 'class': {'gte': 1, 'lte': len(self.balance.classes)}, 'utc': {'int': 1} } status = self.checkParams(param, rules) if 'race' in param: buff = param['race'].split(':') try: faction = int(buff[0]) race = int(buff[1]) except Exception: status = False else: status = False if status: # чтобы в параметры фигню не передали и 500 не упала try: _class = int(param['class']) _user_id = int(param['id']) _sex = int(param['sex']) _utc = int(param['utc']) _rto = int(param['rto']) except Exception: return self.redirectToTwitter() new_player = self.model.playerInstance({ 'class': _class, 'user_id': _user_id, 'avatar': param['avatar'], 'name': param['login_name'], 'token1': param['token1'], 'token2': param['token2'], 'sex': _sex, 'post_to_twitter': 'post_to_twitter' in param, 'race': race, 'utc_offset': _utc, 'faction': faction, 'last_login': time(), 'position': self.balance.started_locations[faction] }) stats = {} for stat in self.balance.classes_stats[param['class']]: value = self.balance.classes_stats[param['class']][stat] stats.update({stat: {'current': value, 'max': value, 'max_dirty': value}}) # бонус по реферальной программе if 'referal' in param: for type_name in stats['HP']: stats['HP'][type_name] += 5 stats['luck'][type_name] += 1 # присоединятся к гильдии? join_guild = '' if 'guild_invite' in param and param['guild_invite'].strip(): join_guild = param['guild_invite'].strip() if 'rto' in param: rto = _rto if rto > 10: rto = 10 stats.update({ "lead": { "current": rto, "max": rto, "max_dirty": rto } }) new_player.data.update({'stat': stats}) player_id = self.model.players.addNewPlayer( new_player.data.copy(), self.balance.starter_equip[param['class']], # стартовые вещи (UIDs) join_guild ) if self.model.players.isBetaPlayer(_user_id): player_info = self.model.players.getPlayerRaw(_user_id, {'_id': 1, 'user_id': 1, 'name': 1}) self.model.items.unpackBetaItems(player_info) self.model.spells.unpackBetaSpells(player_info) self.model.misc.unpackBetaArtworks(player_info) if 'referal' in param: getReferalBonus(param['referal'], int(param['id']), param['login_name']) try: tweet_text = self.balance.REGISTRATION_TWEET + ' http://tweeria.com/invite?' + param['login_name'] self.model.players.postMentionInvite(player_id, tweet_text) except Exception: pass del new_player return self.authorizePlayer({'name': param['login_name'], 'user_id': param['id']}, to_invite_page=True) else: return self.redirectToTwitter() def setSpellActive(self, params): if 'id' in params: id = params['id'] builtin = False else: id = params['uid'] builtin = True active_spells = self.model.spells.getCountActiveSpells(self.cur_player['login_id']) if active_spells < self.sbuilder.balance.MAX_ACTIVE_SPELLS: result = self.model.spells.moveToBook(self.cur_player['login_id'], id, self.cur_player['login_lvl'], builtin) changed = result else: changed = False returnHash = {"changed": changed} return json.dumps(returnHash) def setSpellInactive(self, params): if 'id' in params: id = params['id'] builtin = False else: id = params['uid'] builtin = True self.model.spells.moveFromBook(self.cur_player['login_id'], id, builtin) return json.dumps({"changed": True}) def getFriends(self, params): max_players_on_page = 25 skip = 0 if 'skip' in params: try: skip = int(params['skip']) except Exception: pass raw_friends = self.model.players.getFriends(self.cur_player['login_id']) friends = [] count = 0 if raw_friends: for friend in raw_friends: if count >= skip and count < (skip + max_players_on_page): friends.append({ 'name': friend.screen_name, 'avatar': friend.profile_image_url, 'counte': count }) count += 1 cherrypy.response.headers['Content-Type'] = "application/json" return json.dumps(friends) def resetHero(self, params): if not self.cur_player: return self.sbuilder.redirect('http://tweeria.com') try: class_id = int(params['class']) faction_id, race_id = map(int, params['race'].split(':')) except Exception: return False player = self.model.players.getPlayerBy_ID(self.cur_player['login_id'], { 'lvl': 1, 'resources': 1, 'exp': 1, 'stat.lead.current': 1 }) record = { # lvl restrictions 'lvl': int(float(player['lvl'] / 2)), 'exp': 0, 'race': race_id, 'class': class_id, 'faction': faction_id, 'artworks': {}, 'position': self.balance.started_locations[faction_id] } if record['lvl'] <= 0: record['lvl'] = 1 stats = {} for stat in self.balance.classes_stats[str(record['class'])]: value = self.balance.classes_stats[str(record['class'])][stat] * record['lvl'] stats.update({stat: {'current': value, 'max': value, 'max_dirty': value}}) lead = player['stat']['lead']['current'] stats['lead'].update({'current': lead, 'max': lead, 'max_dirty': lead}) # resource restrictions for res_name in player['resources']: player['resources'][res_name] = int(float(player['resources'][res_name]) / 2) record.update({ 'resources': player['resources'], 'stat': stats }) self.model.players.resetPlayerData(self.cur_player['login_id'], record) self.httpRedirect(params, '?success=reset') # -------------------------------------------------------------------------------------------------- # Print pages def printPlayerPage(self, fields, params): def getPlayerItems(player, fields): all_items = self.model.players.getPlayerHaveItems(player['_id']) items = {} wealth_items = [] inventory = [] ring1_exists = False if self.cur_player: str_class = str(self.cur_player['login_class']) else: str_class = False authors_ids = Set() for item in all_items: if "author" in item: authors_ids.add(item['author']) players_names = self.model.players.getPlayersList(authors_ids, ['_id', 'name']) for item in all_items: item['type'] = int(item['type']) # после type 100 начинаются неигровые предметы # которые учитывать не нужно if item['type'] < 100: if 'author' in item: item.update({ 'img': item['img'] + '_thumb.png', 'big_img': item['img'] + '_fit.png' }) else: item['img'] = '/data/items/' + item['img'] + '.jpg' if item['equipped'] and item['type'] == 6: if ring1_exists: item['type'] = 66 else: ring1_exists = True if 'UID' in item and 'pooled_date' in item and item['img'][:2] != './': item['img'] = '/data/items/' + item['img'][:-10] + '.jpg' if 'UID' in item and not 'author' in item: item_uid_str = str(int(item['UID'])) created_by_player = False else: item_uid_str = str(item['_id']) item['color'] = 1 created_by_player = True can_use_item = '0' if self.cur_player and 'lvl_min' in item and int(item['lvl_min']) <= int( self.cur_player['login_lvl']): can_use_item = '1' item.update(prettyItemBonus(item, self.balance.stats_name)) record = item record.update({ 'link': '/obj/1/' + item_uid_str + '/' + can_use_item, 'id': str(item['_id']), 'created_by_player': created_by_player, }) if item['type'] == 1 and str_class: if not item['view'] in self.sbuilder.balance.available_weapons[str_class]: item['cant_use'] = True if item['type'] == 1: item['str_type'] = item['view'] else: item['str_type'] = self.sbuilder.balance.item_types[item['type'] % 60] for player in players_names: if "author" in item and player['_id'] == item['author']: item['author_name'] = player['name'] if item['equipped']: items.update({'slot' + str(item['type']): record}) else: inventory.append(record) # shop items else: wealth_items.append(item) fields.update({ 'items': items, 'inventory': inventory, 'wealth': wealth_items }) def getCurrentTitle(player, fields): for title in player['titles']: if 'current' in title and title['current']: fields['player'].update({'current_title': title['name']}) fields['player'].update({'name_with_title': re.sub('\{player\}', player['name'], title['desc'])}) return True fields['player'].update({'name_with_title': fields['player']['name']}) return False def getEventsByPlayer(player, fields): if self.cur_player and self.cur_player['login_utc_offset']: utc_offset = self.cur_player['login_utc_offset'] else: utc_offset = self.core.server_utc_offset events = self.model.events.getEvents( player_id=player['_id'], query={'upcoming': 1}, fields={ 'start_date': 1, 'guild_side_name': 1, 'sides_names': 1, 'target_name': 1, '_id': 1, 'finish_date': 1, 'type': 1 } ) current_time = time() for event in events: event.update({'start_date_f': getRelativeDate(int(event['start_date']) + utc_offset)}) if event['start_date'] <= current_time <= event['finish_date']: fields.update({ 'in_progress_event': event }) fields.update({'events': events}) def getPlayerStats(player, fields): static = self.model.players.getStatisticStaticForPrint() buff_players_stats = self.model.players.getPlayerStatistics(player['user_id'])['stats'] player_stats = [] group = [] group_name = '' for stat_static in static: if stat_static['type'] == 'none': if group_name: player_stats.append({'name': group_name, 'stats': group}) group_name = stat_static['text'] group = [] else: if stat_static['visibility']: group.append({ 'name': stat_static['text'], 'value': buff_players_stats[stat_static['name']] }) fields.update({'statistics': player_stats}) def getPlayerAchvs(player, fields): buff_player_achvs = self.model.players.getPlayerAchvs(player['user_id'])['achvs'] player_achvs = [] group = [] group_name = '' for achv_static in self.static: if achv_static['type'] == 0: if group_name: player_achvs.append({'name': group_name, 'achvs': group}) group_name = achv_static['name'] group = [] else: if achv_static['visibility']: group.append({ 'name': achv_static['name'], 'complete': buff_player_achvs[str(achv_static['UID'])], 'UID': achv_static['UID'], 'text': achv_static['text'], 'img': achv_static['img'] }) player_achvs.append({'name': group_name, 'achvs': group}) fields.update({'achvs': player_achvs}) def getPlayerSpells(player, fields): spellbook = self.model.spells.getSpellBook(player['_id']) spells_ids = [] for item in spellbook['spells']: if 'spell_UID' in item: spells_ids.append(item['spell_UID']) else: spells_ids.append(item['spell_id']) spells = self.model.spells.getSpellsByIds(spells_ids) for spell in spells: if 'author' in spell: spell['img'] += '_thumb.png' else: spell['img'] = '/' + self.core.IMAGE_SPELL_FOLDER + spell['img'] + '.jpg' fields.update({'spells': spells}) def getArtwork(player, fields): # Получаем artwork is_artwork = False artwork_path = '' artwork_id = 0 if 'artworks' in player: for artwork in player['artworks']: if 'current' in artwork and artwork['current']: if 'UID' in artwork: artwork_path = self.core.ARTWORK_PATH + artwork['img'] + '.jpg' else: if artwork['img'] == './data/artwork_delete.jpg': artwork_path = artwork['img'] else: artwork_path = artwork['img'] + '_fit.png' is_artwork = True if '_id' in artwork: artwork_id = artwork['_id'] break else: artwork_id = 'none' if not is_artwork: key = str(player['faction']) + str(player['race']) + str(player['class']) if key in self.balance.default_artworks: artwork_path = self.core.ARTWORK_PATH + self.balance.default_artworks[key]['src'] + '.jpg' artwork_id = self.balance.default_artworks[key]['_id'] else: fields.update({'default_artwork': True}) fields['player'].update({ 'artwork': artwork_path, 'artwork_id': artwork_id }) def getPlayerBuffs(player, fields): fields.update({'stat_names': self.balance.stats_name}) inactive_count = 0 for buff in player['buffs']: buff['type'] = 'buff' buff['minutes'] = int(float(buff['start_time'] + buff['length'] - time()) / 60) if buff['minutes'] > 0: if 'buff_uid' in buff: buff['buff_img'] = '/data/spells/' + buff['buff_img'] + '.jpg' for action_name in buff['actions']: if action_name in player['stat']: player['stat'][action_name]['current'] += buff['actions'][action_name] is_buff = buff['actions'][action_name] > 0 buff['actions'][action_name] = str(buff['actions'][action_name]) if is_buff: buff['actions'][action_name] = '+' + buff['actions'][action_name] else: buff['type'] = 'debuff' player['stat'][action_name]['change'] = is_buff else: inactive_count += 1 if inactive_count != 0 and inactive_count == len(fields['player']['buffs']): fields['player']['buffs'] = [] def getNearPlayers(player, fields): def miniFormatPlayers(players): for player in players: player.update({ 'class_name': self.balance.classes[str(player['class'])], 'race_name': self.balance.races[player['faction']][player['race']], }) return players rad = 6 players_count = self.model.players.getNearPlayersCount( player['position']['x'], player['position']['y'], rad, player['name'] ) raw_records = self.model.players.getNearEnemies(rad, player) enemies = miniFormatPlayers(sample(raw_records, min(5, len(raw_records)))) raw_records = self.model.players.getNearFriends(rad, player) friends = miniFormatPlayers(sample(raw_records, min(5, len(raw_records)))) fields.update({ 'nearby_players': { 'count': players_count, 'enemies': enemies, 'friends': friends } }) def getAuthorInfo(player, fields): info = self.model.misc.getAuthorLikes(player['_id'], {'likes': 1}) if not info and 'ugc_enabled' in player and player['ugc_enabled']: info = {'likes': 0} if info: fields.update({'author_info': info}) player = self.model.players.getPlayer(params['username'], fields='game') if not player: return self.sbuilder.throwWebError(7001) getAuthorInfo(player, fields) if 'works' in params: fields.update({'player': player}) return self.printWorksPage(fields, params) fields.update({self.title: player['name'] + '\'s profile'}) lvl_caps = self.model.getLvls() cache_need_save = False from_cache = False if self.cur_player and player['name'] == self.cur_player['login_name']: fields.update({'player_self': True}) if from_cache: # fields = dict(loaded['content'].items() + fields.items()) pass else: fields.update({'player': player}) fields['player']['is_sleep'] = not (fields['player']['last_login'] >= time() - self.core.MAX_TIME_TO_SLEEP) # format player's last events messages tags = self.model.misc.getTags() fields['player']['messages'] = getMessages(fields['player']['messages'], host=self.core.HOST, tags=tags) if self.cur_player and 'login_id' in self.cur_player and player and self.cur_player['login_id'] == player['_id']: getEventsByPlayer(player, fields) getPlayerSpells(player, fields) getPlayerBuffs(player, fields) getPlayerItems(player, fields) getCurrentTitle(player, fields) getPlayerStats(player, fields) getPlayerAchvs(player, fields) if self.cur_player and self.cur_player['login_id'] == player['_id']: getNearPlayers(player, fields) getPlayerSpells(player, fields) if 'pvp' in player and player['pvp'] == 1: fields.update({'pvp_mode': 1}) fields['player'].update({ 'exp_level_cap': '', 'exp_percent': 0 }) if int(player['lvl']) != self.balance.max_lvl: lvl_cap = lvl_caps[str(fields['player']['lvl'] + 1)] fields['player'].update({ 'exp_level_cap': str(player['exp']) + ' / ' + str(lvl_cap), 'exp_percent': int((float(player['exp']) / float(lvl_cap)) * 100) }) fields['player'].update({ 'HP_percent': int(float(fields['player']['stat']['HP']['current']) / fields['player']['stat']['HP']['max_dirty'] * 100), 'MP_percent': int(float(fields['player']['stat']['MP']['current']) / fields['player']['stat']['MP']['max_dirty'] * 100) } ) # Получаем расу fields['player']['race_name'] = self.balance.races[fields['player']['faction']][fields['player']['race']] # Получаем название класса fields['player']['class_name'] = self.balance.classes[str(fields['player']['class'])] # Получаем название пола fields['player']['sex_name'] = ['Female', 'Male'][fields['player']['sex']] getArtwork(player, fields) # получаем гильдию guild = self.getPlayersGuild(player['_id']) if guild: fields.update({'guild': {'name': guild['name'], 'link': guild['link_name']}}) # Получаем тип урона fields['player']['damage_type'] = self.balance.damage_type[str(fields['player']['class'])] if self.cur_player: inventory_count = self.model.items.getInventoryCount(self.cur_player['login_id']) else: inventory_count = 0 fields.update({ 'help': 'help' in params, 'inventory_count': inventory_count, 'player_coords': self.core.relativePosition(player['position']) }) if cache_need_save: self.cache.cacheSave('!' + player['name'], content=fields) return basic.defaultController._printTemplate(self, 'player', fields) def printWorksPage(self, fields, params): def getLikesDict(items_ids): buff_item_likes = self.model.items.getItemsLikes(items_ids) item_likes = {} for item_like in buff_item_likes: item_likes.update({ str(item_like['item_id']): { 'count': len(item_like['people']), 'people': item_like['people'] } }) return item_likes def getLike(item_likes, _id): str_id = str(_id) record = { 'likes': 0, 'is_like': False } if str_id in item_likes: record['likes'] = item_likes[str_id]['count'] if self.cur_player: record['is_like'] = self.cur_player['login_id'] in item_likes[str_id]['people'] return record def formatArtworks(likes, artworks): for artwork in artworks: artwork.update(getLike(likes, artwork['_id'])) return miscController.formatArtworks(self, artworks) def formatItems(likes, items): for item in items: item['img'] = '/' + item['img'] + '_fit.png' item['author_name'] = player['name'] item.update(prettyItemBonus(item, self.balance.stats_name)) if "stat_parsed" in item: item.update({"bonus_parsed": json.dumps(item['stat_parsed'])}) if "img" in item: item.update({"share_img": item["img"][3:]}) item.update(getLike(likes, item['_id'])) return items def formatSpells(likes, spells): for spell in spells: spell['author_name'] = player['name'] spell['img'] += '_fit.png' if "spell_actions" in spell: for action in spell["spell_actions"]: if action["effect"].upper() in self.balance.stats_name: stat = action["effect"].upper() else: stat = action["effect"].lower() action.update({ "stat_name": self.balance.stats_name[stat] }) spell.update(getLike(likes, spell['_id'])) return spells player = fields['player'] if not ('ugc_enabled' in player and player['ugc_enabled']): return self.sbuilder.throwWebError(404) fields.update({self.title: player['name'] + '\'s portfolio'}) artworks = self.model.misc.getActiveArtworksByPlayer(player['_id']) items = self.model.items.getActiveItemsByPlayer(player['_id']) spells = self.model.spells.getActiveSpellsPattern(player['_id']) _ids = Set() for thing in artworks + items + spells: _ids.add(thing['_id']) _likes = getLikesDict(_ids) fields.update({ 'items': formatItems(_likes, items), 'spells': formatSpells(_likes, spells), 'artworks': formatArtworks(_likes, artworks), 'stat_names': self.balance.stats_name }) return basic.defaultController._printTemplate(self, 'works', fields) def printTopList(self, fields, params): fields.update({self.title: 'Top'}) needed_fields = {'name': 1, 'class': 1, 'race': 1, 'lvl': 1, 'faction': 1, 'pvp_score': 1, 'achv_points': 1, 'avatar': 1, '_guild_name': 1} no_60lvl = {'lvl': {'$lte': 60}} players_by_lvl = self.mongo.getu('players', search=no_60lvl, limit=10, sort={'lvl': -1}, fields=needed_fields) for players in [players_by_lvl]: for player in players: player.update({ 'class_name': self.balance.classes[str(player['class'])], 'race_name': self.balance.races[player['faction']][player['race']], }) player['pvp_score'] = int(player['pvp_score']) player['achv_points'] = int(player['achv_points']) player['lvl'] = int(player['lvl']) top_players_guilds = self.model.guilds.getTopGuildsByPeopleCount(10) if self.cur_player: guild = self.getPlayersGuild(self.cur_player['login_id']) if guild: guild = guildsController.formatGuilds(self, [guild])[0] fields.update({ 'your_guild': guild }) fields.update({ 'top_by_lvl': players_by_lvl, 'top_popular_guilds': guildsController.formatGuilds(self, top_players_guilds) }) return basic.defaultController._printTemplate(self, 'top', fields) def printTopAuthors(self, fields, params): fields.update({self.title: 'Top authors'}) def getPaginatorData(players_on_page): players_count = self.model.misc.getAuthorsCount() pages = int(math.ceil(float(players_count) / players_on_page)) fields.update({ 'total_pages': pages }) def getSortParams(): if not 'pi' in params: fields.update({'param_pi': 1}) try: page_number = int(params['pi']) except Exception: page_number = 1 return { 'page_number': page_number, 'sort_field': '', 'sort_order': '' } authors_on_page = 20 getPaginatorData(authors_on_page) sort_params = getSortParams() authors = self.model.misc.getAuthorsLikes( authors_on_page, skip=(sort_params['page_number'] - 1) * authors_on_page ) author_ids = Set() for author in authors: author_ids.add(author['author_id']) authors_info = self.model.players.getPlayersList2(author_ids, {'name': 1, '_guild_name': 1, 'lvl': 1}) authors_guilds = {} for author in authors_info: authors_guilds.update({author['name']: author}) for author in authors: author.update({ '_guild_name': authors_guilds[author['author_name']]['_guild_name'], 'lvl': authors_guilds[author['author_name']]['lvl'] }) fields.update({ 'authors': authors, 'display_pages': getDisplayPages(int(fields['param_pi']), fields['total_pages'], 10) }) return basic.defaultController._printTemplate(self, 'all_authors', fields) def printSpellbook(self, fields, params): fields.update({self.title: 'Spellbook'}) if not self.cur_player: return self.sbuilder.redirect('../') fields.update({'stat_names': self.balance.stats_name}) if 'type_of_form' in params and params['type_of_form'] in ["equip_item", "sell_item", "move_spell_to_book", "move_spell_from_book"]: fields.update({"result": self.query_result}) self.query_result = False return self.sbuilder.loadTemplate(self.DIR + 'player-ajax.jinja2', fields) spellbook = self.model.spells.getSpellBook(self.cur_player['login_id']) available_spells = self.model.spells.getAvailableStandartSpells(self.cur_player['login_lvl']) buyed_spells = self.model.spells.getBuyedSpells(self.cur_player['login_id']) for spell in available_spells: spell['img'] = '/data/spells/' + spell['img'] + '.jpg' if buyed_spells: available_spells += buyed_spells for tmp_spell in available_spells: for spell_info in spellbook['spells']: if 'UID' in tmp_spell and spell_info['spell_id'] == tmp_spell['UID'] or spell_info['spell_id'] == tmp_spell['_id']: tmp_spell.update({'active': True}) tmp_spell['can_use'] = tmp_spell['lvl_min'] <= self.cur_player['login_lvl'] fields.update({'spells': available_spells}) return basic.defaultController._printTemplate(self, 'spellbook', fields) def printInviteCenter(self, fields, params): if not self.cur_player: return self.sbuilder.redirect('http://tweeria.com') #fields.update({'friends': self.getFriends(params)}) return basic.defaultController._printTemplate(self, 'invite_center', fields) def printSettings(self, fields, params): if not self.cur_player: return self.sbuilder.redirect('http://tweeria.com') player_info = self.model.players.getPlayerBy_ID(self.cur_player['login_id'], { 'pvp': 1, 'titles': 1, 'artworks': 1, '_id': 1, 'race': 1, 'faction': 1, 'class': 1, 'sex': 1, 'post_to_twitter': 1 }) # Получаем расу player_info.update({ 'race_name': self.balance.races[player_info['faction']][player_info['race']], 'class_name': self.balance.classes[str(player_info['class'])], 'sex_name': ['Female', 'Male'][player_info['sex']] }) is_artwork = False if 'artworks' in player_info: for artwork in player_info['artworks']: if 'current' in artwork and artwork['current']: is_artwork = True if not is_artwork: fields.update({'default_artwork': True}) fields.update(player_info) fields.update(self.balance.classes_and_races) return basic.defaultController._printTemplate(self, 'settings', fields) data = { 'class': playerController, 'type': ['default'], 'urls': ['top', 'registration', 'new', 'spellbook', 'inv', 'settings', 'authors'] }
[ "alex.shteinikov@gmail.com" ]
alex.shteinikov@gmail.com
83372bea64fdb4871d2df6d228c8bcf2e665d059
4c9580b2e09e2b000e27a1c9021b12cf2747f56a
/chapter03/books/migrations/0001_initial.py
b438ba725fa795db838cd03b02cd0b3cf499c4dc
[]
no_license
jzplyy/xiaoyue_mall
69072c0657a6878a4cf799b8c8218cc7d88c8d12
4f9353d6857d1bd7dc54151ca8b34dcb4671b8dc
refs/heads/master
2023-06-26T02:48:03.103635
2021-07-22T15:51:07
2021-07-22T15:51:07
388,514,311
1
0
null
null
null
null
UTF-8
Python
false
false
887
py
# Generated by Django 2.2 on 2020-11-04 02:12 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='BookInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, verbose_name='名称')), ('pub_date', models.DateField(verbose_name='发布日期')), ('readcount', models.IntegerField(default=0, verbose_name='阅读量')), ('commentcount', models.IntegerField(default=0, verbose_name='评论量')), ('is_delete', models.BooleanField(default=False, verbose_name='逻辑删除')), ], ), ]
[ "jzplyy@126.com" ]
jzplyy@126.com
e7d3f66bb4533ea1ce904edcdd4759047c80cb24
ae3d81f1e78b628a9917f35e691acef485f7287e
/Python/reverse.py
ee11c6515e31f8cd1a81260731b9d48a897ba438
[]
no_license
Stanwar/Code_Academy
3499d127b179b82496347bb0fbcb1fd1dcdcfb72
3d218c84f87bec2fc9ee35d7692f4546dbdd4096
refs/heads/master
2020-04-29T03:40:59.072515
2015-08-11T03:25:30
2015-08-11T03:25:30
40,500,665
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
def reverse(text): result = "" for i in range(1,len(text)+1): result = result + (text[len(text)-i]) print result return str(result) reverse('abcd')
[ "sharad_Tanwar@outlook.com" ]
sharad_Tanwar@outlook.com
8f6f823d5574cd3ae68bdfdd3c962695662a5115
61eac26b73015c5af29768cbdb103334b73d2e81
/actas/migrations/0014_auto_20160908_1409.py
968b004ad74bf2de00398e6a37f8342da4bb9a28
[]
no_license
nwvaras/Discusion-Abierta
08af886449078f97fd8c3dbb910e077acae612f7
81a47dce9b4be4d18a060d01bc0666c1cfd3a073
refs/heads/master
2021-01-22T13:13:11.505839
2017-04-11T11:30:09
2017-04-11T11:30:09
67,081,722
0
2
null
2016-08-31T23:46:10
2016-08-31T23:46:10
null
UTF-8
Python
false
false
485
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-09-08 14:09 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('actas', '0013_auto_20160907_2137'), ] operations = [ migrations.AlterField( model_name='encuentro', name='hash_search', field=models.UUIDField(default=b'e39b001475cd11e69768645a04c2662c'), ), ]
[ "nsdelgadov@gmail.com" ]
nsdelgadov@gmail.com
a0ed9b01ff6ad8ebf0668267d6c250b2ab2dbe00
da4c10ba7f7a499b5192eb82e49fe0a678cc6e82
/yelp/items.py
0ffa58216ac6ed18013a6bef7a563d66668e5c8c
[]
no_license
symoon94/yelp-scrapy
7fa90bf22f6b490209d68b8258a44692dea77eb2
a42c0fd0411c952951959a1a664ae0778628f268
refs/heads/master
2020-12-14T21:45:46.094017
2020-01-26T00:11:52
2020-01-26T00:11:52
234,879,414
0
0
null
null
null
null
UTF-8
Python
false
false
779
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class Place(scrapy.Item): url = scrapy.Field() lat = scrapy.Field() lon = scrapy.Field() searchActions = scrapy.Field() allPhotosHref = scrapy.Field() reviewCount = scrapy.Field() name = scrapy.Field() rating = scrapy.Field() phone = scrapy.Field() allPhotosHref = scrapy.Field() photoHref = scrapy.Field() reviewCount = scrapy.Field() formattedAddress = scrapy.Field() categories = scrapy.Field() reviews = scrapy.Field() class Review(scrapy.Item): ratingValue = scrapy.Field() datePublished = scrapy.Field() url = scrapy.Field()
[ "msy0128@gmail.com" ]
msy0128@gmail.com
9c08a5c942654c7f869124ca9cccd78e9d54a5de
ebcd8c5360cbfe8ed50d5332fbc665321b87de88
/module_meshes.py
1a37899a2a1f8131e48c53bfac6d6d4ae4e0ce96
[ "Unlicense" ]
permissive
Ikaguia/LWBR-WarForge
dabe7a3d4dc9251edddc0df5a0d06d23756e4382
0099fe20188b2dbfff237e8690ae54c33671656f
refs/heads/master
2021-05-07T17:56:43.982163
2018-03-06T02:24:49
2018-03-06T02:24:49
108,722,885
0
0
null
null
null
null
UTF-8
Python
false
false
41,206
py
from compiler import * #################################################################################################################### # Each mesh record contains the following fields: # 1) Mesh id: used for referencing meshes in other files. The prefix mesh_ is automatically added before each mesh id. # 2) Mesh flags. See header_meshes.py for a list of available flags # 3) Mesh resource name: Resource name of the mesh # 4) Mesh translation on x axis: Will be done automatically when the mesh is loaded # 5) Mesh translation on y axis: Will be done automatically when the mesh is loaded # 6) Mesh translation on z axis: Will be done automatically when the mesh is loaded # 7) Mesh rotation angle over x axis: Will be done automatically when the mesh is loaded # 8) Mesh rotation angle over y axis: Will be done automatically when the mesh is loaded # 9) Mesh rotation angle over z axis: Will be done automatically when the mesh is loaded # 10) Mesh x scale: Will be done automatically when the mesh is loaded # 11) Mesh y scale: Will be done automatically when the mesh is loaded # 12) Mesh z scale: Will be done automatically when the mesh is loaded #################################################################################################################### meshes = [ ("pic_bandits", 0, "pic_bandits", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_mb_warrior_1", 0, "pic_mb_warrior_1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_messenger", 0, "pic_messenger", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_prisoner_man", 0, "pic_prisoner_man", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_prisoner_fem", 0, "pic_prisoner_fem", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_prisoner_wilderness", 0, "pic_prisoner_wilderness", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_siege_sighted", 0, "pic_siege_sighted", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_siege_sighted_fem", 0, "pic_siege_sighted_fem", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_camp", 0, "pic_camp", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_payment", 0, "pic_payment", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_escape_1", 0, "pic_escape_1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_escape_1_fem", 0, "pic_escape_1_fem", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_victory", 0, "pic_victory", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_defeat", 0, "pic_defeat", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_wounded", 0, "pic_wounded", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_wounded_fem", 0, "pic_wounded_fem", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_steppe_bandits", 0, "pic_steppe_bandits", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_mountain_bandits", 0, "pic_mountain_bandits", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_sea_raiders", 0, "pic_sea_raiders", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_deserters", 0, "pic_deserters", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_forest_bandits", 0, "pic_forest_bandits", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_cattle", 0, "pic_cattle", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_looted_village", 0, "pic_looted_village", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_village_p", 0, "pic_village_p", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_village_s", 0, "pic_village_s", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_village_w", 0, "pic_village_w", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_recruits", 0, "pic_recruits", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_arms_swadian", 0, "pic_arms_swadian", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_arms_vaegir", 0, "pic_arms_vaegir", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_arms_khergit", 0, "pic_arms_khergit", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_arms_nord", 0, "pic_arms_nord", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_arms_rhodok", 0, "pic_arms_rhodok", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_sarranid_arms", 0, "pic_sarranid_arms", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_castle1", 0, "pic_castle1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_castledes", 0, "pic_castledes", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_castlesnow", 0, "pic_castlesnow", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_charge", 0, "pic_charge", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_khergit", 0, "pic_khergit", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_nord", 0, "pic_nord", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_rhodock", 0, "pic_rhodock", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_sally_out", 0, "pic_sally_out", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_siege_attack", 0, "pic_siege_attack", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_swad", 0, "pic_swad", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_town1", 0, "pic_town1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_towndes", 0, "pic_towndes", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_townriot", 0, "pic_townriot", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_townsnow", 0, "pic_townsnow", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_vaegir", 0, "pic_vaegir", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_villageriot", 0, "pic_villageriot", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("pic_sarranid_encounter", 0, "pic_sarranid_encounter", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_score_a", 0, "mp_score_a", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_score_b", 0, "mp_score_b", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("portrait_blend_out", 0, "portrait_blend_out", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("load_window", 0, "load_window", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("checkbox_off", render_order_plus_1, "checkbox_off", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("checkbox_on", render_order_plus_1, "checkbox_on", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("white_plane", 0, "white_plane", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("white_dot", 0, "white_dot", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("player_dot", 0, "player_dot", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_infantry", 0, "flag_infantry", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_archers", 0, "flag_archers", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_cavalry", 0, "flag_cavalry", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("inv_slot", 0, "inv_slot", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ingame_menu", 0, "mp_ingame_menu", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_left", 0, "mp_inventory_left", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_right", 0, "mp_inventory_right", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_choose", 0, "mp_inventory_choose", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_slot_glove", 0, "mp_inventory_slot_glove", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_slot_horse", 0, "mp_inventory_slot_horse", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_slot_armor", 0, "mp_inventory_slot_armor", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_slot_helmet", 0, "mp_inventory_slot_helmet", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_slot_boot", 0, "mp_inventory_slot_boot", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_slot_empty", 0, "mp_inventory_slot_empty", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_slot_equip", 0, "mp_inventory_slot_equip", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_left_arrow", 0, "mp_inventory_left_arrow", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_inventory_right_arrow", 0, "mp_inventory_right_arrow", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_main", 0, "mp_ui_host_main", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_1", 0, "mp_ui_host_maps_a1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_2", 0, "mp_ui_host_maps_a2", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_3", 0, "mp_ui_host_maps_c", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_4", 0, "mp_ui_host_maps_ruinedf", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_5", 0, "mp_ui_host_maps_a1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_6", 0, "mp_ui_host_maps_a1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_7", 0, "mp_ui_host_maps_fieldby", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_8", 0, "mp_ui_host_maps_castle2", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_9", 0, "mp_ui_host_maps_snovyv", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_10", 0, "mp_ui_host_maps_castle3", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_11", 0, "mp_ui_host_maps_c1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_12", 0, "mp_ui_host_maps_c2", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_13", 0, "mp_ui_host_maps_c3", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_randomp", 0, "mp_ui_host_maps_randomp", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_randoms", 0, "mp_ui_host_maps_randoms", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_command_panel", 0, "mp_ui_command_panel", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_command_border_l", 0, "mp_ui_command_border_l", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_command_border_r", 0, "mp_ui_command_border_r", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_welcome_panel", 0, "mp_ui_welcome_panel", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_sw", 0, "flag_project_sw", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_vg", 0, "flag_project_vg", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_kh", 0, "flag_project_kh", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_nd", 0, "flag_project_nd", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_rh", 0, "flag_project_rh", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_sr", 0, "flag_project_sr", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_projects_end", 0, "0", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_sw_miss", 0, "flag_project_sw_miss", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_vg_miss", 0, "flag_project_vg_miss", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_kh_miss", 0, "flag_project_kh_miss", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_nd_miss", 0, "flag_project_nd_miss", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_rh_miss", 0, "flag_project_rh_miss", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_sr_miss", 0, "flag_project_sr_miss", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_misses_end", 0, "0", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("color_picker", 0, "color_picker", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("custom_map_banner_01", 0, "custom_map_banner_01", 0, 0, 0, -90, 0, 90, 1, 1, 1), ("custom_map_banner_02", 0, "custom_map_banner_02", 0, 0, 0, -90, 0, 90, 1, 1, 1), ("custom_map_banner_03", 0, "custom_map_banner_03", 0, 0, 0, -90, 0, 90, 1, 1, 1), ("custom_banner_01", 0, "custom_banner_01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("custom_banner_02", 0, "custom_banner_02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("custom_banner_bg", 0, "custom_banner_bg", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg01", 0, "custom_banner_fg01", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg02", 0, "custom_banner_fg02", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg03", 0, "custom_banner_fg03", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg04", 0, "custom_banner_fg04", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg05", 0, "custom_banner_fg05", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg06", 0, "custom_banner_fg06", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg07", 0, "custom_banner_fg07", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg08", 0, "custom_banner_fg08", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg09", 0, "custom_banner_fg09", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg10", 0, "custom_banner_fg10", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg11", 0, "custom_banner_fg11", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg12", 0, "custom_banner_fg12", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg13", 0, "custom_banner_fg13", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg14", 0, "custom_banner_fg14", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg15", 0, "custom_banner_fg15", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg16", 0, "custom_banner_fg16", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg17", 0, "custom_banner_fg17", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg18", 0, "custom_banner_fg18", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg19", 0, "custom_banner_fg19", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg20", 0, "custom_banner_fg20", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg21", 0, "custom_banner_fg21", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg22", 0, "custom_banner_fg22", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_fg23", 0, "custom_banner_fg23", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_01", 0, "custom_banner_charge_01", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_02", 0, "custom_banner_charge_02", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_03", 0, "custom_banner_charge_03", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_04", 0, "custom_banner_charge_04", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_05", 0, "custom_banner_charge_05", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_06", 0, "custom_banner_charge_06", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_07", 0, "custom_banner_charge_07", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_08", 0, "custom_banner_charge_08", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_09", 0, "custom_banner_charge_09", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_10", 0, "custom_banner_charge_10", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_11", 0, "custom_banner_charge_11", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_12", 0, "custom_banner_charge_12", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_13", 0, "custom_banner_charge_13", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_14", 0, "custom_banner_charge_14", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_15", 0, "custom_banner_charge_15", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_16", 0, "custom_banner_charge_16", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_17", 0, "custom_banner_charge_17", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_18", 0, "custom_banner_charge_18", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_19", 0, "custom_banner_charge_19", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_20", 0, "custom_banner_charge_20", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_21", 0, "custom_banner_charge_21", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_22", 0, "custom_banner_charge_22", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_23", 0, "custom_banner_charge_23", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_24", 0, "custom_banner_charge_24", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_25", 0, "custom_banner_charge_25", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_26", 0, "custom_banner_charge_26", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_27", 0, "custom_banner_charge_27", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_28", 0, "custom_banner_charge_28", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_29", 0, "custom_banner_charge_29", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_30", 0, "custom_banner_charge_30", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_31", 0, "custom_banner_charge_31", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_32", 0, "custom_banner_charge_32", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_33", 0, "custom_banner_charge_33", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_34", 0, "custom_banner_charge_34", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_35", 0, "custom_banner_charge_35", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_36", 0, "custom_banner_charge_36", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_37", 0, "custom_banner_charge_37", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_38", 0, "custom_banner_charge_38", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_39", 0, "custom_banner_charge_39", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_40", 0, "custom_banner_charge_40", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_41", 0, "custom_banner_charge_41", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_42", 0, "custom_banner_charge_42", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_43", 0, "custom_banner_charge_43", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_44", 0, "custom_banner_charge_44", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_45", 0, "custom_banner_charge_45", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("custom_banner_charge_46", 0, "custom_banner_charge_46", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_custom_banner", 0, "tableau_mesh_custom_banner", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_custom_banner_square", 0, "tableau_mesh_custom_banner_square", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_custom_banner_tall", 0, "tableau_mesh_custom_banner_tall", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_custom_banner_short", 0, "tableau_mesh_custom_banner_short", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_round_1", 0, "tableau_mesh_shield_round_1", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_round_2", 0, "tableau_mesh_shield_round_2", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_round_3", 0, "tableau_mesh_shield_round_3", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_round_4", 0, "tableau_mesh_shield_round_4", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_round_5", 0, "tableau_mesh_shield_round_5", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_small_round_1", 0, "tableau_mesh_shield_small_round_1", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_small_round_2", 0, "tableau_mesh_shield_small_round_2", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_small_round_3", 0, "tableau_mesh_shield_small_round_3", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_kite_1", 0, "tableau_mesh_shield_kite_1", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_kite_2", 0, "tableau_mesh_shield_kite_2", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_kite_3", 0, "tableau_mesh_shield_kite_3", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_kite_4", 0, "tableau_mesh_shield_kite_4", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_heater_1", 0, "tableau_mesh_shield_heater_1", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_heater_2", 0, "tableau_mesh_shield_heater_2", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_pavise_1", 0, "tableau_mesh_shield_pavise_1", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_shield_pavise_2", 0, "tableau_mesh_shield_pavise_2", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("heraldic_armor_bg", 0, "heraldic_armor_bg", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("tableau_mesh_heraldic_armor_a", 0, "tableau_mesh_heraldic_armor_a", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("tableau_mesh_heraldic_armor_b", 0, "tableau_mesh_heraldic_armor_b", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("tableau_mesh_heraldic_armor_c", 0, "tableau_mesh_heraldic_armor_c", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("tableau_mesh_heraldic_armor_d", 0, "tableau_mesh_heraldic_armor_d", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("outer_terrain_plain_1", 0, "ter_border_a", -90, 0, 0, 0, 0, 0, 1, 1, 1), ("banner_a01", 0, "banner_a01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a02", 0, "banner_a02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a03", 0, "banner_a03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a04", 0, "banner_a04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a05", 0, "banner_a05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a06", 0, "banner_a06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a07", 0, "banner_a07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a08", 0, "banner_a08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a09", 0, "banner_a09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a10", 0, "banner_a10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a11", 0, "banner_a11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a12", 0, "banner_a12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a13", 0, "banner_a13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a14", 0, "banner_a14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a15", 0, "banner_f21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a16", 0, "banner_a16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a17", 0, "banner_a17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a18", 0, "banner_a18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a19", 0, "banner_a19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a20", 0, "banner_a20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_a21", 0, "banner_a21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b01", 0, "banner_b01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b02", 0, "banner_b02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b03", 0, "banner_b03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b04", 0, "banner_b04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b05", 0, "banner_b05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b06", 0, "banner_b06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b07", 0, "banner_b07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b08", 0, "banner_b08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b09", 0, "banner_b09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b10", 0, "banner_b10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b11", 0, "banner_b11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b12", 0, "banner_b12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b13", 0, "banner_b13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b14", 0, "banner_b14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b15", 0, "banner_b15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b16", 0, "banner_b16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b17", 0, "banner_b17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b18", 0, "banner_b18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b19", 0, "banner_b19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b20", 0, "banner_b20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_b21", 0, "banner_b21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c01", 0, "banner_c01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c02", 0, "banner_c02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c03", 0, "banner_c03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c04", 0, "banner_c04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c05", 0, "banner_c05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c06", 0, "banner_c06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c07", 0, "banner_c07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c08", 0, "banner_c08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c09", 0, "banner_c09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c10", 0, "banner_c10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c11", 0, "banner_c11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c12", 0, "banner_c12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c13", 0, "banner_c13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c14", 0, "banner_c14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c15", 0, "banner_c15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c16", 0, "banner_c16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c17", 0, "banner_c17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c18", 0, "banner_c18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c19", 0, "banner_c19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c20", 0, "banner_c20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_c21", 0, "banner_c21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d01", 0, "banner_d01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d02", 0, "banner_d02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d03", 0, "banner_d03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d04", 0, "banner_d04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d05", 0, "banner_d05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d06", 0, "banner_d06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d07", 0, "banner_d07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d08", 0, "banner_d08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d09", 0, "banner_d09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d10", 0, "banner_d10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d11", 0, "banner_d11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d12", 0, "banner_d12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d13", 0, "banner_d13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d14", 0, "banner_d14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d15", 0, "banner_d15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d16", 0, "banner_d16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d17", 0, "banner_d17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d18", 0, "banner_d18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d19", 0, "banner_d19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d20", 0, "banner_d20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_d21", 0, "banner_d21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e01", 0, "banner_e01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e02", 0, "banner_e02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e03", 0, "banner_e03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e04", 0, "banner_e04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e05", 0, "banner_e05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e06", 0, "banner_e06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e07", 0, "banner_e07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e08", 0, "banner_e08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e09", 0, "banner_e09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e10", 0, "banner_e10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e11", 0, "banner_e11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e12", 0, "banner_e12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e13", 0, "banner_e13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e14", 0, "banner_e14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e15", 0, "banner_e15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e16", 0, "banner_e16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e17", 0, "banner_e17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e18", 0, "banner_e18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e19", 0, "banner_e19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e20", 0, "banner_e20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_e21", 0, "banner_e21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f01", 0, "banner_f01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f02", 0, "banner_f02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f03", 0, "banner_f03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f04", 0, "banner_f04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f05", 0, "banner_f05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f06", 0, "banner_f06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f07", 0, "banner_f07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f08", 0, "banner_f08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f09", 0, "banner_f09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f10", 0, "banner_f10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f11", 0, "banner_f11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f12", 0, "banner_f12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f13", 0, "banner_f13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f14", 0, "banner_f14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f15", 0, "banner_f15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f16", 0, "banner_f16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f17", 0, "banner_f17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f18", 0, "banner_f18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f19", 0, "banner_f19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f20", 0, "banner_f20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g01", 0, "banner_f01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g02", 0, "banner_f02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g03", 0, "banner_f03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g04", 0, "banner_f04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g05", 0, "banner_f05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g06", 0, "banner_f06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g07", 0, "banner_f07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g08", 0, "banner_f08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g09", 0, "banner_f09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_g10", 0, "banner_f10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_kingdom_a", 0, "banner_kingdom_a", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_kingdom_b", 0, "banner_kingdom_b", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_kingdom_c", 0, "banner_kingdom_c", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_kingdom_d", 0, "banner_kingdom_d", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_kingdom_e", 0, "banner_kingdom_e", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_kingdom_f", 0, "banner_kingdom_f", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banner_f21", 0, "banner_a15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a01", 0, "arms_a01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a02", 0, "arms_a02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a03", 0, "arms_a03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a04", 0, "arms_a04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a05", 0, "banner_a05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a06", 0, "arms_a06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a07", 0, "banner_a07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a08", 0, "arms_a08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a09", 0, "banner_a09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a10", 0, "banner_a10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a11", 0, "banner_a11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a12", 0, "arms_a12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a13", 0, "arms_a13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a14", 0, "banner_a14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a15", 0, "banner_f21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a16", 0, "arms_a16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a17", 0, "arms_a17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a18", 0, "arms_a18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a19", 0, "arms_a19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a20", 0, "arms_a20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_a21", 0, "arms_a21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b01", 0, "arms_b01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b02", 0, "arms_b02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b03", 0, "banner_b03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b04", 0, "banner_b04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b05", 0, "arms_b05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b06", 0, "arms_b06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b07", 0, "arms_b07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b08", 0, "arms_b08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b09", 0, "arms_b09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b10", 0, "arms_b10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b11", 0, "banner_b11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b12", 0, "banner_b12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b13", 0, "banner_b13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b14", 0, "arms_b14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b15", 0, "arms_b15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b16", 0, "arms_b16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b17", 0, "banner_b17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b18", 0, "arms_b18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b19", 0, "banner_b19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b20", 0, "arms_b20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_b21", 0, "banner_b21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c01", 0, "arms_c01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c02", 0, "banner_c02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c03", 0, "banner_c03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c04", 0, "arms_c04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c05", 0, "banner_c05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c06", 0, "arms_c06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c07", 0, "arms_c07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c08", 0, "banner_c08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c09", 0, "banner_c09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c10", 0, "arms_c10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c11", 0, "banner_c11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c12", 0, "arms_c12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c13", 0, "arms_c13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c14", 0, "arms_c14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c15", 0, "banner_c15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c16", 0, "arms_c16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c17", 0, "banner_c17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c18", 0, "banner_c18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c19", 0, "arms_c19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c20", 0, "banner_c20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_c21", 0, "banner_c21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d01", 0, "banner_d01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d02", 0, "arms_d02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d03", 0, "arms_d03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d04", 0, "arms_d04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d05", 0, "banner_d05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d06", 0, "arms_d06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d07", 0, "arms_d07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d08", 0, "arms_d08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d09", 0, "arms_d09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d10", 0, "banner_d10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d11", 0, "arms_d11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d12", 0, "arms_d12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d13", 0, "arms_d13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d14", 0, "arms_d14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d15", 0, "arms_d15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d16", 0, "arms_d16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d17", 0, "arms_d17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d18", 0, "arms_d18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d19", 0, "arms_d19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d20", 0, "arms_d20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_d21", 0, "arms_d21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e01", 0, "banner_e01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e02", 0, "arms_e02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e03", 0, "banner_e03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e04", 0, "banner_e04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e05", 0, "banner_e05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e06", 0, "banner_e06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e07", 0, "banner_e07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e08", 0, "banner_e08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e09", 0, "banner_e09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e10", 0, "banner_e10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e11", 0, "banner_e11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e12", 0, "banner_e12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e13", 0, "banner_e13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e14", 0, "banner_e14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e15", 0, "banner_e15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e16", 0, "banner_e16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e17", 0, "banner_e17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e18", 0, "banner_e18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e19", 0, "banner_e19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e20", 0, "banner_e20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_e21", 0, "banner_e21", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f01", 0, "banner_f01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f02", 0, "banner_f02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f03", 0, "banner_f03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f04", 0, "banner_f04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f05", 0, "banner_f05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f06", 0, "banner_f06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f07", 0, "banner_f07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f08", 0, "banner_f08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f09", 0, "banner_f09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f10", 0, "banner_f10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f11", 0, "banner_f11", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f12", 0, "banner_f12", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f13", 0, "banner_f13", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f14", 0, "banner_f14", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f15", 0, "banner_f15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f16", 0, "banner_f16", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f17", 0, "banner_f17", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f18", 0, "banner_f18", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f19", 0, "banner_f19", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f20", 0, "banner_f20", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g01", 0, "banner_f01", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g02", 0, "banner_f02", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g03", 0, "banner_f03", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g04", 0, "banner_f04", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g05", 0, "banner_f05", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g06", 0, "banner_f06", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g07", 0, "banner_f07", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g08", 0, "banner_f08", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g09", 0, "banner_f09", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_g10", 0, "banner_f10", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_kingdom_a", 0, "banner_kingdom_a", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_kingdom_b", 0, "banner_kingdom_b", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_kingdom_c", 0, "banner_kingdom_c", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_kingdom_d", 0, "banner_kingdom_d", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_kingdom_e", 0, "banner_kingdom_e", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_kingdom_f", 0, "banner_kingdom_f", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("arms_f21", 0, "banner_a15", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banners_default_a", 0, "banners_default_a", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banners_default_b", 0, "banners_default_b", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banners_default_c", 0, "banners_default_c", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banners_default_d", 0, "banners_default_d", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("banners_default_e", 0, "banners_default_e", 0, 0, 0, -90, 0, 0, 1, 1, 1), ("troop_label_banner", 0, "troop_label_banner", 0, 0, 0, 0, 0, 0, 10, 10, 10), ("ui_kingdom_shield_1", 0, "ui_kingdom_shield_1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ui_kingdom_shield_2", 0, "ui_kingdom_shield_2", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ui_kingdom_shield_3", 0, "ui_kingdom_shield_3", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ui_kingdom_shield_4", 0, "ui_kingdom_shield_4", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ui_kingdom_shield_5", 0, "ui_kingdom_shield_5", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ui_kingdom_shield_6", 0, "ui_kingdom_shield_6", 0, 0, 0, 0, 0, 0, 1, 1, 1), #("flag_swadian", 0, "banner_a01", 0, 0, 0, 0, 0, 0, 1, 1, 1), #("flag_vaegir", 0, "banner_a02", 0, 0, 0, 0, 0, 0, 1, 1, 1), #("flag_khergit", 0, "banner_d01", 0, 0, 0, 0, 0, 0, 1, 1, 1), #("flag_nord", 0, "banner_a03", 0, 0, 0, 0, 0, 0, 1, 1, 1), #("flag_rhodok", 0, "banner_a04", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mouse_arrow_down", 0, "mouse_arrow_down", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mouse_arrow_right", 0, "mouse_arrow_right", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mouse_arrow_left", 0, "mouse_arrow_left", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mouse_arrow_up", 0, "mouse_arrow_up", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mouse_arrow_plus", 0, "mouse_arrow_plus", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mouse_left_click", 0, "mouse_left_click", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mouse_right_click", 0, "mouse_right_click", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("status_ammo_ready", 0, "status_ammo_ready", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("main_menu_background", 0, "main_menu_nord", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("loading_background", 0, "load_screen_2", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ui_quick_battle_a", 0, "ui_quick_battle_a", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("white_bg_plane_a", 0, "white_bg_plane_a", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_icon_infantry", 0, "cb_ui_icon_infantry", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_icon_archer", 0, "cb_ui_icon_archer", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_icon_horseman", 0, "cb_ui_icon_horseman", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_main", 0, "cb_ui_main", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_01", 0, "cb_ui_maps_scene_01", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_02", 0, "cb_ui_maps_scene_02", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_03", 0, "cb_ui_maps_scene_03", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_04", 0, "cb_ui_maps_scene_04", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_05", 0, "cb_ui_maps_scene_05", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_06", 0, "cb_ui_maps_scene_06", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_07", 0, "cb_ui_maps_scene_07", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_08", 0, "cb_ui_maps_scene_08", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("cb_ui_maps_scene_09", 0, "cb_ui_maps_scene_09", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_14", 0, "mp_ui_host_maps_c4", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_15", 0, "mp_ui_host_maps_c5", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("quit_adv", 0, "quit_adv", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("quit_adv_b", 0, "quit_adv_b", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ui_kingdom_shield_7", 0, "ui_kingdom_shield_7", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_rb", 0, "flag_project_rb", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("flag_project_rb_miss", 0, "flag_project_rb_miss", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_16", 0, "mp_ui_host_maps_d1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_17", 0, "mp_ui_host_maps_d2", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_18", 0, "mp_ui_host_maps_d3", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_19", 0, "mp_ui_host_maps_e2", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_20", 0, "mp_ui_host_maps_e1", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("mp_ui_host_maps_21", 0, "mp_ui_host_maps_cold_cost", 0, 0, 0, 0, 0, 0, 1, 1, 1), #INVASION MODE START ("incoming_enemy", 0, "cb_ui_icon_infantry", 0, 0, 0, 0, 0, 0, 2, 2, 2), ("prison_cart_pos", 0, "ccoop_prison_cart", 0, 0, 0, 0, 0, 0, 2, 2, 2), ("ccoop_drop_chest_top", 0, "ccoop_drop_chest_top", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ccoop_drop_chest_bottom", 0, "ccoop_drop_chest_bottom", 0, 0, 200, 0, 0, 0, 1, 1, 1), ("ccoop_random_class", 0, "ccoop_random_class", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ccoop_default_class", 0, "ccoop_default_class", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ccoop_melee_class", 0, "ccoop_melee_class", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ccoop_ranged_class", 0, "ccoop_ranged_class", 0, 0, 0, 0, 0, 0, 1, 1, 1), ("ccoop_mounted_class", 0, "ccoop_mounted_class", 0, 0, 0, 0, 0, 0, 1, 1, 1), #INVASION MODE END ] #LWBR WarForge 2.0 --- BEGIN if not IS_CLIENT: for g in xrange(len(meshes)): meshes[g] = (meshes[g][0],0,"pic_bandits",0,0,0,0,0,0,0,0,0) #LWBR WarForge 2.0 --- END
[ "cristianobrust123@gmail.com" ]
cristianobrust123@gmail.com
b769eca771f05f093f3193a9bfb26ffd56ba7b94
14c67704c62b1676fcf7ef34fef5d863004e41c8
/My-Subpixel-Corr-TF/My-Subpixel-Corr-TF-master/src/training_schedules.py
526cc7789cbd4acfc378f2eb4b4a9a3f3a1ad9a2
[ "MIT" ]
permissive
jinwooklim/DML-subpixel-corr-tf
3e149ab7a5c9908918dec0a302065ef9fb1a2a7e
8ce20a9381c19adc762cbab256b6851f07064ea4
refs/heads/master
2022-04-04T11:39:28.043927
2020-02-13T07:53:08
2020-02-13T07:53:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
645
py
LONG_SCHEDULE = { 'step_values': [400000, 600000, 800000, 1000000], 'learning_rates': [0.0001, 0.00005, 0.000025, 0.0000125, 0.00000625], 'momentum': 0.9, 'momentum2': 0.999, 'weight_decay': 0.0004, 'max_iter': 1200000, } SUBPIXEL_SCHEDULE = { 'step_values': [8000, 11000, 14000, 17000], #'learning_rates': [0.0001, 0.00005, 0.000025, 0.0000125, 0.00000625], # (1) jy 'learning_rates': [0.00005, 0.000025, 0.0000125, 0.00000625, 0.000003125], # (2) jwlim 'momentum': 0.9, 'momentum2': 0.999, 'weight_decay': 0.0004, 'max_iter': 20000, } FINETUNE_SCHEDULE = { # TODO: Finetune schedule }
[ "aiden.limo@outlook.com" ]
aiden.limo@outlook.com
f35e5e02de4e8499e7ef24adcf93184ea3aabb86
6a2ee082bdc2cda591c1d2f96114d89843687bc5
/portfolio/blog/urls.py
78de6ee3e63da2274bdb8c76e54081ad5794468e
[]
no_license
iamrames/portfolio
f1e89b0f71af8fe2a0f6d3608b21b077ff036b91
fd2a839178ea4055a3c012bde3cdbf48080c42ff
refs/heads/master
2021-04-09T14:49:33.420541
2018-03-18T05:06:29
2018-03-18T05:06:29
125,694,180
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
from . import views from django.urls import path urlpatterns = [ path("",views.index.as_view(),name='index'), path("about/",views.about.as_view(),name="about"), path("contact/",views.form_name_view,name="contact"), path("portfolio/",views.portfolio.as_view(),name="portfolio"), path("photos/",views.photos.as_view(),name="photos"), path("rames/",views.rames.as_view(),name="rames"), ]
[ "addictedtomig@gmail.com" ]
addictedtomig@gmail.com
f6eff06c09abb93aca4a5c682634404aa8f93f25
99b36e8d9d5996d134c82b42b2f89a456b713fb5
/day3/day3Code.py
93df1be9692769de6c184c66c083cfd714ecd67c
[]
no_license
brendanbikes/adventOfCode2020
2087d3251a3b38d6aa7e686239784f8df2594579
47d56075a7ea3a50d168f3ccd67270e441ed85aa
refs/heads/main
2023-02-10T13:22:06.021238
2020-12-27T21:55:50
2020-12-27T21:55:50
319,201,167
0
0
null
null
null
null
UTF-8
Python
false
false
831
py
import numpy as np import sys def readInput(): with open('day3input.txt', 'r') as f: grid = f.read().splitlines() #extend the grid to the right a bunch newGrid=[] for row in grid: row = row*1000 newGrid.append(row) return newGrid def process(): grid = readInput() slopes = [(1, 1), (3, 1), (5, 1), (7, 1), (1, 2)] rows = len(grid) columns = len(grid[0]) treeCountProduct=1 for pair in slopes: slope_x, slope_y = pair i_x = 0 i_y = 0 treeCount = 0 while i_x <= columns-1 and i_y <= rows-1: #detect tree if grid[i_y][i_x] == '#': treeCount+=1 #increment position i_x+=slope_x i_y+=slope_y print('Found {} trees.'.format(treeCount)) treeCountProduct*=treeCount print('This is the product of all tree counts: {}'.format(treeCountProduct)) if __name__ == "__main__": process()
[ "brendanmurphy@orolo-3.local" ]
brendanmurphy@orolo-3.local
76d1e00dcaaafe6d64f477cafa4e096279d9856c
5c724d6e03e4194680c793718a4f72a58ca66bb1
/app/migrations/0094_auto_20180928_1207.py
ac9b198eca9891502fecb050653a4d47fb3fcb0a
[]
no_license
tigrezhito1/bat
26002de4540bb4eac2751a31171adc45687f4293
0ea6b9b85e130a201c21eb6cbf09bc21988d6443
refs/heads/master
2020-05-02T07:13:06.936015
2019-03-26T15:04:17
2019-03-26T15:04:17
177,812,144
0
0
null
null
null
null
UTF-8
Python
false
false
868
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2018-09-28 17:07 from __future__ import unicode_literals import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0093_auto_20180925_1800'), ] operations = [ migrations.AlterField( model_name='produccion', name='fecha', field=models.DateTimeField(default=datetime.datetime(2018, 9, 28, 12, 7, 16, 43141), editable=False, help_text='Fecha de recepci\xf3n de la llamada (No se puede modificar)'), ), migrations.AlterField( model_name='produccion', name='hora_instalacion', field=models.TimeField(blank=True, default=datetime.datetime(2018, 9, 28, 12, 7, 16, 45305), editable=False, max_length=1000, null=True), ), ]
[ "you@example.com" ]
you@example.com
cb5666570d2b3412233d972cc57a2e6f65ace92d
ce72637209547fe47301f03cc5cb11c6f614c095
/Custom/events/Zabbix/API/httpretty/core.py
3317543778464170d02e5f9bbd082d5864d13272
[ "Apache-2.0" ]
permissive
ThinkboxSoftware/Deadline
29d1168efeb3c9a2f26a05d725eb63746d46499e
bfc97123e259f5e8392d3d45101c52ac79a07609
refs/heads/master
2023-08-28T01:05:24.365336
2023-08-05T20:31:06
2023-08-05T20:31:06
4,706,359
136
50
Apache-2.0
2023-08-05T20:31:07
2012-06-18T21:17:32
Python
UTF-8
Python
false
false
34,264
py
# #!/usr/bin/env python # -*- coding: utf-8 -*- # <HTTPretty - HTTP client mock for Python> # Copyright (C) <2011-2013> Gabriel Falcão <gabriel@nacaolivre.org> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. from __future__ import unicode_literals import re import codecs import inspect import socket import functools import itertools import warnings import logging import traceback import json import contextlib from .compat import ( PY3, StringIO, text_type, BaseClass, BaseHTTPRequestHandler, quote, quote_plus, urlunsplit, urlsplit, parse_qs, unquote, unquote_utf8, ClassTypes, basestring ) from .http import ( STATUSES, HttpBaseClass, parse_requestline, last_requestline, ) from .utils import ( utf8, decode_utf8, ) from .errors import HTTPrettyError from datetime import datetime from datetime import timedelta from errno import EAGAIN old_socket = socket.socket old_create_connection = socket.create_connection old_gethostbyname = socket.gethostbyname old_gethostname = socket.gethostname old_getaddrinfo = socket.getaddrinfo old_socksocket = None old_ssl_wrap_socket = None old_sslwrap_simple = None old_sslsocket = None if PY3: # pragma: no cover basestring = (bytes, str) try: # pragma: no cover import socks old_socksocket = socks.socksocket except ImportError: socks = None try: # pragma: no cover import ssl old_ssl_wrap_socket = ssl.wrap_socket if not PY3: old_sslwrap_simple = ssl.sslwrap_simple old_sslsocket = ssl.SSLSocket except ImportError: # pragma: no cover ssl = None DEFAULT_HTTP_PORTS = frozenset([80]) POTENTIAL_HTTP_PORTS = set(DEFAULT_HTTP_PORTS) DEFAULT_HTTPS_PORTS = frozenset([443]) POTENTIAL_HTTPS_PORTS = set(DEFAULT_HTTPS_PORTS) class HTTPrettyRequest(BaseHTTPRequestHandler, BaseClass): """Represents a HTTP request. It takes a valid multi-line, `\r\n` separated string with HTTP headers and parse them out using the internal `parse_request` method. It also replaces the `rfile` and `wfile` attributes with StringIO instances so that we garantee that it won't make any I/O, neighter for writing nor reading. It has some convenience attributes: `headers` -> a mimetype object that can be cast into a dictionary, contains all the request headers `method` -> the HTTP method used in this request `querystring` -> a dictionary containing lists with the attributes. Please notice that if you need a single value from a query string you will need to get it manually like: ```python >>> request.querystring {'name': ['Gabriel Falcao']} >>> print request.querystring['name'][0] ``` `parsed_body` -> a dictionary containing parsed request body or None if HTTPrettyRequest doesn't know how to parse it. It currently supports parsing body data that was sent under the `content-type` headers values: 'application/json' or 'application/x-www-form-urlencoded' """ def __init__(self, headers, body=''): # first of all, lets make sure that if headers or body are # unicode strings, it must be converted into a utf-8 encoded # byte string self.raw_headers = utf8(headers.strip()) self.body = utf8(body) # Now let's concatenate the headers with the body, and create # `rfile` based on it self.rfile = StringIO(b'\r\n\r\n'.join([self.raw_headers, self.body])) self.wfile = StringIO() # Creating `wfile` as an empty # StringIO, just to avoid any real # I/O calls # parsing the request line preemptively self.raw_requestline = self.rfile.readline() # initiating the error attributes with None self.error_code = None self.error_message = None # Parse the request based on the attributes above self.parse_request() # making the HTTP method string available as the command self.method = self.command # Now 2 convenient attributes for the HTTPretty API: # `querystring` holds a dictionary with the parsed query string try: self.path = self.path.encode('iso-8859-1') except UnicodeDecodeError: pass self.path = decode_utf8(self.path) qstring = self.path.split("?", 1)[-1] self.querystring = self.parse_querystring(qstring) # And the body will be attempted to be parsed as # `application/json` or `application/x-www-form-urlencoded` self.parsed_body = self.parse_request_body(self.body) def __str__(self): return '<HTTPrettyRequest("{0}", total_headers={1}, body_length={2})>'.format( self.headers.get('content-type', ''), len(self.headers), len(self.body), ) def parse_querystring(self, qs): expanded = unquote_utf8(qs) parsed = parse_qs(expanded) result = {} for k in parsed: result[k] = list(map(decode_utf8, parsed[k])) return result def parse_request_body(self, body): """ Attempt to parse the post based on the content-type passed. Return the regular body if not """ PARSING_FUNCTIONS = { 'application/json': json.loads, 'text/json': json.loads, 'application/x-www-form-urlencoded': self.parse_querystring, } FALLBACK_FUNCTION = lambda x: x content_type = self.headers.get('content-type', '') do_parse = PARSING_FUNCTIONS.get(content_type, FALLBACK_FUNCTION) try: body = decode_utf8(body) return do_parse(body) except: return body class EmptyRequestHeaders(dict): pass class HTTPrettyRequestEmpty(object): body = '' headers = EmptyRequestHeaders() class FakeSockFile(StringIO): pass class FakeSSLSocket(object): def __init__(self, sock, *args, **kw): self._httpretty_sock = sock def __getattr__(self, attr): return getattr(self._httpretty_sock, attr) class fakesock(object): class socket(object): _entry = None debuglevel = 0 _sent_data = [] def __init__(self, family=socket.AF_INET, type=socket.SOCK_STREAM, protocol=0): self.setsockopt(family, type, protocol) self.truesock = old_socket(family, type, protocol) self._closed = True self.fd = FakeSockFile() self.timeout = socket._GLOBAL_DEFAULT_TIMEOUT self._sock = self self.is_http = False self._bufsize = 16 def getpeercert(self, *a, **kw): now = datetime.now() shift = now + timedelta(days=30 * 12) return { 'notAfter': shift.strftime('%b %d %H:%M:%S GMT'), 'subjectAltName': ( ('DNS', '*%s' % self._host), ('DNS', self._host), ('DNS', '*'), ), 'subject': ( ( ('organizationName', '*.%s' % self._host), ), ( ('organizationalUnitName', 'Domain Control Validated'), ), ( ('commonName', '*.%s' % self._host), ), ), } def ssl(self, sock, *args, **kw): return sock def setsockopt(self, family, type, protocol): self.family = family self.protocol = protocol self.type = type def connect(self, address): self._address = (self._host, self._port) = address self._closed = False self.is_http = self._port in POTENTIAL_HTTP_PORTS | POTENTIAL_HTTPS_PORTS if not self.is_http: self.truesock.connect(self._address) def close(self): if not (self.is_http and self._closed): self.truesock.close() self._closed = True def makefile(self, mode='r', bufsize=-1): """Returns this fake socket's own StringIO buffer. If there is an entry associated with the socket, the file descriptor gets filled in with the entry data before being returned. """ self._mode = mode self._bufsize = bufsize if self._entry: self._entry.fill_filekind(self.fd) return self.fd def real_sendall(self, data, *args, **kw): """Sends data to the remote server. This method is called when HTTPretty identifies that someone is trying to send non-http data. The received bytes are written in this socket's StringIO buffer so that HTTPretty can return it accordingly when necessary. """ if self.is_http: # no need to connect if `self.is_http` is # False because self.connect already did # that self.truesock.connect(self._address) self.truesock.settimeout(0) self.truesock.sendall(data, *args, **kw) should_continue = True while should_continue: try: received = self.truesock.recv(self._bufsize) self.fd.write(received) should_continue = len(received) > 0 except socket.error as e: if e.errno == EAGAIN: continue break self.fd.seek(0) def sendall(self, data, *args, **kw): self._sent_data.append(data) try: requestline, _ = data.split(b'\r\n', 1) method, path, version = parse_requestline(decode_utf8(requestline)) is_parsing_headers = True except ValueError: is_parsing_headers = False if not self._entry: # If the previous request wasn't mocked, don't mock the subsequent sending of data return self.real_sendall(data, *args, **kw) self.fd.seek(0) if not is_parsing_headers: if len(self._sent_data) > 1: headers = utf8(last_requestline(self._sent_data)) meta = self._entry.request.headers body = utf8(self._sent_data[-1]) if meta.get('transfer-encoding', '') == 'chunked': if not body.isdigit() and body != b'\r\n' and body != b'0\r\n\r\n': self._entry.request.body += body else: self._entry.request.body += body httpretty.historify_request(headers, body, False) return # path might come with s = urlsplit(path) POTENTIAL_HTTP_PORTS.add(int(s.port or 80)) headers, body = list(map(utf8, data.split(b'\r\n\r\n', 1))) request = httpretty.historify_request(headers, body) info = URIInfo(hostname=self._host, port=self._port, path=s.path, query=s.query, last_request=request) matcher, entries = httpretty.match_uriinfo(info) if not entries: self._entry = None self.real_sendall(data) return self._entry = matcher.get_next_entry(method, info, request) def debug(self, func, *a, **kw): if self.is_http: frame = inspect.stack()[0][0] lines = list(map(utf8, traceback.format_stack(frame))) message = [ "HTTPretty intercepted and unexpected socket method call.", ("Please open an issue at " "'https://github.com/gabrielfalcao/HTTPretty/issues'"), "And paste the following traceback:\n", "".join(decode_utf8(lines)), ] raise RuntimeError("\n".join(message)) return func(*a, **kw) def settimeout(self, new_timeout): self.timeout = new_timeout def send(self, *args, **kwargs): return self.debug(self.truesock.send, *args, **kwargs) def sendto(self, *args, **kwargs): return self.debug(self.truesock.sendto, *args, **kwargs) def recvfrom_into(self, *args, **kwargs): return self.debug(self.truesock.recvfrom_into, *args, **kwargs) def recv_into(self, *args, **kwargs): return self.debug(self.truesock.recv_into, *args, **kwargs) def recvfrom(self, *args, **kwargs): return self.debug(self.truesock.recvfrom, *args, **kwargs) def recv(self, *args, **kwargs): return self.debug(self.truesock.recv, *args, **kwargs) def __getattr__(self, name): return getattr(self.truesock, name) def fake_wrap_socket(s, *args, **kw): return s def create_fake_connection(address, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None): s = fakesock.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_TCP) if timeout is not socket._GLOBAL_DEFAULT_TIMEOUT: s.settimeout(timeout) if source_address: s.bind(source_address) s.connect(address) return s def fake_gethostbyname(host): return '127.0.0.1' def fake_gethostname(): return 'localhost' def fake_getaddrinfo( host, port, family=None, socktype=None, proto=None, flags=None): return [(2, 1, 6, '', (host, port))] class Entry(BaseClass): def __init__(self, method, uri, body, adding_headers=None, forcing_headers=None, status=200, streaming=False, **headers): self.method = method self.uri = uri self.info = None self.request = None self.body_is_callable = False if hasattr(body, "__call__"): self.callable_body = body self.body = None self.body_is_callable = True elif isinstance(body, text_type): self.body = utf8(body) else: self.body = body self.streaming = streaming if not streaming and not self.body_is_callable: self.body_length = len(self.body or '') else: self.body_length = 0 self.adding_headers = adding_headers or {} self.forcing_headers = forcing_headers or {} self.status = int(status) for k, v in headers.items(): name = "-".join(k.split("_")).title() self.adding_headers[name] = v self.validate() def validate(self): content_length_keys = 'Content-Length', 'content-length' for key in content_length_keys: got = self.adding_headers.get( key, self.forcing_headers.get(key, None)) if got is None: continue try: igot = int(got) except ValueError: warnings.warn( 'HTTPretty got to register the Content-Length header ' \ 'with "%r" which is not a number' % got, ) if igot > self.body_length: raise HTTPrettyError( 'HTTPretty got inconsistent parameters. The header ' \ 'Content-Length you registered expects size "%d" but ' \ 'the body you registered for that has actually length ' \ '"%d".' % ( igot, self.body_length, ) ) def __str__(self): return r'<Entry %s %s getting %d>' % ( self.method, self.uri, self.status) def normalize_headers(self, headers): new = {} for k in headers: new_k = '-'.join([s.lower() for s in k.split('-')]) new[new_k] = headers[k] return new def fill_filekind(self, fk): now = datetime.utcnow() headers = { 'status': self.status, 'date': now.strftime('%a, %d %b %Y %H:%M:%S GMT'), 'server': 'Python/HTTPretty', 'connection': 'close', } if self.forcing_headers: headers = self.forcing_headers if self.adding_headers: headers.update(self.normalize_headers(self.adding_headers)) headers = self.normalize_headers(headers) status = headers.get('status', self.status) if self.body_is_callable: status, headers, self.body = self.callable_body(self.request, self.info.full_url(), headers) headers.update({ 'content-length': len(self.body) }) string_list = [ 'HTTP/1.1 %d %s' % (status, STATUSES[status]), ] if 'date' in headers: string_list.append('date: %s' % headers.pop('date')) if not self.forcing_headers: content_type = headers.pop('content-type', 'text/plain; charset=utf-8') content_length = headers.pop('content-length', self.body_length) string_list.append('content-type: %s' % content_type) if not self.streaming: string_list.append('content-length: %s' % content_length) string_list.append('server: %s' % headers.pop('server')) for k, v in headers.items(): string_list.append( '{0}: {1}'.format(k, v), ) for item in string_list: fk.write(utf8(item) + b'\n') fk.write(b'\r\n') if self.streaming: self.body, body = itertools.tee(self.body) for chunk in body: fk.write(utf8(chunk)) else: fk.write(utf8(self.body)) fk.seek(0) def url_fix(s, charset='utf-8'): scheme, netloc, path, querystring, fragment = urlsplit(s) path = quote(path, b'/%') querystring = quote_plus(querystring, b':&=') return urlunsplit((scheme, netloc, path, querystring, fragment)) class URIInfo(BaseClass): def __init__(self, username='', password='', hostname='', port=80, path='/', query='', fragment='', scheme='', last_request=None): self.username = username or '' self.password = password or '' self.hostname = hostname or '' if port: port = int(port) elif scheme == 'https': port = 443 self.port = port or 80 self.path = path or '' self.query = query or '' if scheme: self.scheme = scheme elif self.port in POTENTIAL_HTTPS_PORTS: self.scheme = 'https' else: self.scheme = 'http' self.fragment = fragment or '' self.last_request = last_request def __str__(self): attrs = ( 'username', 'password', 'hostname', 'port', 'path', ) fmt = ", ".join(['%s="%s"' % (k, getattr(self, k, '')) for k in attrs]) return r'<httpretty.URIInfo(%s)>' % fmt def __hash__(self): return hash(text_type(self)) def __eq__(self, other): self_tuple = ( self.port, decode_utf8(self.hostname.lower()), url_fix(decode_utf8(self.path)), ) other_tuple = ( other.port, decode_utf8(other.hostname.lower()), url_fix(decode_utf8(other.path)), ) return self_tuple == other_tuple def full_url(self, use_querystring=True): credentials = "" if self.password: credentials = "{0}:{1}@".format( self.username, self.password) query = "" if use_querystring and self.query: query = "?{0}".format(decode_utf8(self.query)) result = "{scheme}://{credentials}{domain}{path}{query}".format( scheme=self.scheme, credentials=credentials, domain=self.get_full_domain(), path=decode_utf8(self.path), query=query ) return result def get_full_domain(self): hostname = decode_utf8(self.hostname) # Port 80/443 should not be appended to the url if self.port not in DEFAULT_HTTP_PORTS | DEFAULT_HTTPS_PORTS: return ":".join([hostname, str(self.port)]) return hostname @classmethod def from_uri(cls, uri, entry): result = urlsplit(uri) if result.scheme == 'https': POTENTIAL_HTTPS_PORTS.add(int(result.port or 443)) else: POTENTIAL_HTTP_PORTS.add(int(result.port or 80)) return cls(result.username, result.password, result.hostname, result.port, result.path, result.query, result.fragment, result.scheme, entry) class URIMatcher(object): regex = None info = None def __init__(self, uri, entries, match_querystring=False): self._match_querystring = match_querystring if type(uri).__name__ == 'SRE_Pattern': self.regex = uri result = urlsplit(uri.pattern) if result.scheme == 'https': POTENTIAL_HTTPS_PORTS.add(int(result.port or 443)) else: POTENTIAL_HTTP_PORTS.add(int(result.port or 80)) else: self.info = URIInfo.from_uri(uri, entries) self.entries = entries #hash of current_entry pointers, per method. self.current_entries = {} def matches(self, info): if self.info: return self.info == info else: return self.regex.search(info.full_url( use_querystring=self._match_querystring)) def __str__(self): wrap = 'URLMatcher({0})' if self.info: return wrap.format(text_type(self.info)) else: return wrap.format(self.regex.pattern) def get_next_entry(self, method, info, request): """Cycle through available responses, but only once. Any subsequent requests will receive the last response""" if method not in self.current_entries: self.current_entries[method] = 0 #restrict selection to entries that match the requested method entries_for_method = [e for e in self.entries if e.method == method] if self.current_entries[method] >= len(entries_for_method): self.current_entries[method] = -1 if not self.entries or not entries_for_method: raise ValueError('I have no entries for method %s: %s' % (method, self)) entry = entries_for_method[self.current_entries[method]] if self.current_entries[method] != -1: self.current_entries[method] += 1 # Attach more info to the entry # So the callback can be more clever about what to do # This does also fix the case where the callback # would be handed a compiled regex as uri instead of the # real uri entry.info = info entry.request = request return entry def __hash__(self): return hash(text_type(self)) def __eq__(self, other): return text_type(self) == text_type(other) class httpretty(HttpBaseClass): """The URI registration class""" _entries = {} latest_requests = [] last_request = HTTPrettyRequestEmpty() _is_enabled = False @classmethod def match_uriinfo(cls, info): for matcher, value in cls._entries.items(): if matcher.matches(info): return (matcher, info) return (None, []) @classmethod @contextlib.contextmanager def record(cls, filename, indentation=4, encoding='utf-8'): try: import urllib3 except ImportError: raise RuntimeError('HTTPretty requires urllib3 installed for recording actual requests.') http = urllib3.PoolManager() cls.enable() calls = [] def record_request(request, uri, headers): cls.disable() response = http.request(request.method, uri) calls.append({ 'request': { 'uri': uri, 'method': request.method, 'headers': dict(request.headers), 'body': decode_utf8(request.body), 'querystring': request.querystring }, 'response': { 'status': response.status, 'body': decode_utf8(response.data), 'headers': dict(response.headers) } }) cls.enable() return response.status, response.headers, response.data for method in cls.METHODS: cls.register_uri(method, re.compile(r'.*', re.M), body=record_request) yield cls.disable() with codecs.open(filename, 'w', encoding) as f: f.write(json.dumps(calls, indent=indentation)) @classmethod @contextlib.contextmanager def playback(cls, origin): cls.enable() data = json.loads(open(origin).read()) for item in data: uri = item['request']['uri'] method = item['request']['method'] cls.register_uri(method, uri, body=item['response']['body'], forcing_headers=item['response']['headers']) yield cls.disable() @classmethod def reset(cls): POTENTIAL_HTTP_PORTS.intersection_update(DEFAULT_HTTP_PORTS) POTENTIAL_HTTPS_PORTS.intersection_update(DEFAULT_HTTPS_PORTS) cls._entries.clear() cls.latest_requests = [] cls.last_request = HTTPrettyRequestEmpty() @classmethod def historify_request(cls, headers, body='', append=True): request = HTTPrettyRequest(headers, body) cls.last_request = request if append or not cls.latest_requests: cls.latest_requests.append(request) else: cls.latest_requests[-1] = request return request @classmethod def register_uri(cls, method, uri, body='HTTPretty :)', adding_headers=None, forcing_headers=None, status=200, responses=None, match_querystring=False, **headers): uri_is_string = isinstance(uri, basestring) if uri_is_string and re.search(r'^\w+://[^/]+[.]\w{2,}$', uri): uri += '/' if isinstance(responses, list) and len(responses) > 0: for response in responses: response.uri = uri response.method = method entries_for_this_uri = responses else: headers[str('body')] = body headers[str('adding_headers')] = adding_headers headers[str('forcing_headers')] = forcing_headers headers[str('status')] = status entries_for_this_uri = [ cls.Response(method=method, uri=uri, **headers), ] matcher = URIMatcher(uri, entries_for_this_uri, match_querystring) if matcher in cls._entries: matcher.entries.extend(cls._entries[matcher]) del cls._entries[matcher] cls._entries[matcher] = entries_for_this_uri def __str__(self): return '<HTTPretty with %d URI entries>' % len(self._entries) @classmethod def Response(cls, body, method=None, uri=None, adding_headers=None, forcing_headers=None, status=200, streaming=False, **headers): headers[str('body')] = body headers[str('adding_headers')] = adding_headers headers[str('forcing_headers')] = forcing_headers headers[str('status')] = int(status) headers[str('streaming')] = streaming return Entry(method, uri, **headers) @classmethod def disable(cls): cls._is_enabled = False socket.socket = old_socket socket.SocketType = old_socket socket._socketobject = old_socket socket.create_connection = old_create_connection socket.gethostname = old_gethostname socket.gethostbyname = old_gethostbyname socket.getaddrinfo = old_getaddrinfo socket.__dict__['socket'] = old_socket socket.__dict__['_socketobject'] = old_socket socket.__dict__['SocketType'] = old_socket socket.__dict__['create_connection'] = old_create_connection socket.__dict__['gethostname'] = old_gethostname socket.__dict__['gethostbyname'] = old_gethostbyname socket.__dict__['getaddrinfo'] = old_getaddrinfo if socks: socks.socksocket = old_socksocket socks.__dict__['socksocket'] = old_socksocket if ssl: ssl.wrap_socket = old_ssl_wrap_socket ssl.SSLSocket = old_sslsocket ssl.__dict__['wrap_socket'] = old_ssl_wrap_socket ssl.__dict__['SSLSocket'] = old_sslsocket if not PY3: ssl.sslwrap_simple = old_sslwrap_simple ssl.__dict__['sslwrap_simple'] = old_sslwrap_simple @classmethod def is_enabled(cls): return cls._is_enabled @classmethod def enable(cls): cls._is_enabled = True socket.socket = fakesock.socket socket._socketobject = fakesock.socket socket.SocketType = fakesock.socket socket.create_connection = create_fake_connection socket.gethostname = fake_gethostname socket.gethostbyname = fake_gethostbyname socket.getaddrinfo = fake_getaddrinfo socket.__dict__['socket'] = fakesock.socket socket.__dict__['_socketobject'] = fakesock.socket socket.__dict__['SocketType'] = fakesock.socket socket.__dict__['create_connection'] = create_fake_connection socket.__dict__['gethostname'] = fake_gethostname socket.__dict__['gethostbyname'] = fake_gethostbyname socket.__dict__['getaddrinfo'] = fake_getaddrinfo if socks: socks.socksocket = fakesock.socket socks.__dict__['socksocket'] = fakesock.socket if ssl: ssl.wrap_socket = fake_wrap_socket ssl.SSLSocket = FakeSSLSocket ssl.__dict__['wrap_socket'] = fake_wrap_socket ssl.__dict__['SSLSocket'] = FakeSSLSocket if not PY3: ssl.sslwrap_simple = fake_wrap_socket ssl.__dict__['sslwrap_simple'] = fake_wrap_socket def httprettified(test): "A decorator tests that use HTTPretty" def decorate_class(klass): for attr in dir(klass): if not attr.startswith('test_'): continue attr_value = getattr(klass, attr) if not hasattr(attr_value, "__call__"): continue setattr(klass, attr, decorate_callable(attr_value)) return klass def decorate_callable(test): @functools.wraps(test) def wrapper(*args, **kw): httpretty.reset() httpretty.enable() try: return test(*args, **kw) finally: httpretty.disable() return wrapper if isinstance(test, ClassTypes): return decorate_class(test) return decorate_callable(test)
[ "jamescoulter@thinkboxsoftware.com" ]
jamescoulter@thinkboxsoftware.com
dd99d186c0a5d2a69b445acf76a84a4e543f5ee3
8a0d2d3d387ff97e24d6d10dd4d8575f834ddba6
/practice050718.py
0563a41878bd1f64c775fb4000575cba09427644
[]
no_license
simonnunn/python
9265f3b6be509cdb2356e7bb884dfbef80c6eabe
b6294bbf1fa25a4d23f639ef5a16425860c60aee
refs/heads/master
2020-03-22T11:27:53.170317
2018-07-06T10:53:14
2018-07-06T10:53:14
139,972,264
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
file = open("teams.txt","r") (file.readline()) (file.readline()) print("Second and Third Character from the third team:") (file.read(0)) (file.read(1)) print(file.read(1)) print(file.read(1)) file.seek(0) print("Rest of file:") print(file.read()) file.close()
[ "noreply@github.com" ]
simonnunn.noreply@github.com
7648b67635a5b5bf0cef50f3b8042857a0caa9d2
6df9a960c0a4e2049b5932938a83ee82d4516412
/creating-project/application/table/migrations/0005_filepath_folder_name.py
2106a336466bdd5fec83c6c7831cffbc37e71568
[]
no_license
alekseykonotop/dj_hw
9585f0d42ec95d31f5eeae09b953e5f195bc9ee7
6752361d007d777127eb77445d45da58332e0223
refs/heads/master
2021-07-19T06:30:04.333018
2019-09-21T18:12:38
2019-09-21T18:12:38
177,439,677
0
0
null
2020-06-05T22:56:52
2019-03-24T16:24:46
Python
UTF-8
Python
false
false
458
py
# Generated by Django 2.2 on 2019-09-11 17:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('table', '0004_auto_20190911_1412'), ] operations = [ migrations.AddField( model_name='filepath', name='folder_name', field=models.CharField(default='', max_length=100, verbose_name='Имя папки для хранения'), ), ]
[ "alekseykonotop@gmail.com" ]
alekseykonotop@gmail.com
7697a6995f82fc580f90a49854e81fad1c3504cb
00f9d3664d012cd7964bd0993bafe624cfe75d80
/Using LSTM/model.py
5c067ab49182c40c33cc83cd674c2dd3a57cd620
[]
no_license
Aakash12980/Disaster-Prediction-
6fef85afb7b7cd0d553b90cf396386c9c8763204
b397a72faff1bfb9048ef38989e87e66e1c9a019
refs/heads/master
2023-01-08T16:28:49.294465
2020-10-30T17:17:15
2020-10-30T17:17:15
296,061,088
0
0
null
null
null
null
UTF-8
Python
false
false
1,631
py
import torch import torch.nn as nn import sys from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence from model_embeddings import ModelEmbeddings from typing import List, Tuple, Dict, Set, Union class ClassifyModel(nn.Module): def __init__(self, embed_size, hidden_size, output_size, n_layers, vocab, device, drop_out=0.2): super(ClassifyModel, self).__init__() self.model_embed = ModelEmbeddings(embed_size, vocab) self.hidden_size = hidden_size self.output_size = output_size self.drop_out = drop_out self.n_layers = n_layers self.vocab = vocab self.device = device self.encoder = nn.LSTM(input_size=embed_size, hidden_size=self.hidden_size, num_layers=self.n_layers, bias=True, bidirectional=False, dropout=self.drop_out) self.fully_connected_layer = nn.Linear(in_features=self.hidden_size, out_features=self.output_size, bias=True) self.sigmoid_layer = nn.Sigmoid() def forward(self, x_data, hidden): x_len = [len(i) for i in x_data] x_padded = self.vocab.x.to_input_tensor(x_data, device=self.device) embed_mat = self.model_embed.embed_x(x_padded) seq_padded = pack_padded_sequence(embed_mat, x_len) enc_hiddens, (last_hidden, last_cell) = self.encoder(seq_padded) enc_hiddens = pad_packed_sequence(sequence=enc_hiddens)[0].permute(1,0,2) # concat_layers = torch.cat((last_hidden[-2, :, :], last_hidden[-1, :, :]), 1) fully_connect_output = self.fully_connected_layer(last_hidden[0]) return self.sigmoid_layer(fully_connect_output)
[ "Bhandariaakash9@gmail.com" ]
Bhandariaakash9@gmail.com
d9ce7335aef2bd731017faf59e41c3b883a0d6f9
6ae93145e035a063cb8cd87d663f35f53d3bfe9e
/src/bot.py
27e1b964d6ddd19483932506938a102412f84d30
[ "MIT" ]
permissive
Eduardo3445/flappyAI
533672366031e7ad4644707c58367ad5a16bb94d
0d1e0ec8195f095d7f7e8f5010a13599328654ff
refs/heads/master
2020-12-22T17:53:14.534227
2019-04-06T02:34:52
2019-04-06T02:34:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,023
py
import json class Bot(object): """ The Bot class that applies the Qlearning logic to Flappy bird game After every iteration (iteration = 1 game that ends with the bird dying) updates Q values After every DUMPING_N iterations, dumps the Q values to the local JSON file """ def __init__(self): self.gameCNT = 0 # Game count of current run, incremented after every death self.DUMPING_N = 25 # Number of iterations to dump Q values to JSON after self.discount = 1.0 self.r = {0: 1, 1: -1000} # Reward function self.lr = 0.7 self.load_qvalues() self.last_state = "420_240_0" self.last_action = 0 self.moves = [] def load_qvalues(self): """ Load q values from a JSON file """ self.qvalues = {} try: fil = open("qvalues.json", "r") except IOError: return self.qvalues = json.load(fil) fil.close() def act(self, xdif, ydif, vel): """ Chooses the best action with respect to the current state - Chooses 0 (don't flap) to tie-break """ state = self.map_state(xdif, ydif, vel) self.moves.append( (self.last_state, self.last_action, state) ) # Add the experience to the history self.last_state = state # Update the last_state with the current state if self.qvalues[state][0] >= self.qvalues[state][1]: self.last_action = 0 return 0 else: self.last_action = 1 return 1 def update_scores(self, dump_qvalues = True): """ Update qvalues via iterating over experiences """ history = list(reversed(self.moves)) # Flag if the bird died in the top pipe high_death_flag = True if int(history[0][2].split("_")[1]) > 120 else False # Q-learning score updates t = 1 for exp in history: state = exp[0] act = exp[1] res_state = exp[2] # Select reward if t == 1 or t == 2: cur_reward = self.r[1] elif high_death_flag and act: cur_reward = self.r[1] high_death_flag = False else: cur_reward = self.r[0] # Update # self.qvalues[state][act] = (1-self.lr) * (self.qvalues[state][act]) + \ # self.lr * ( cur_reward + self.discount*max(self.qvalues[res_state]) ) # SARSA self.qvalues[state][act] = self.qvalues[state][act] + \ self.lr * (cur_reward + self.discount * max(self.qvalues[res_state]) - self.qvalues[state][act]) t += 1 self.gameCNT += 1 # increase game count if dump_qvalues: self.dump_qvalues() # Dump q values (if game count % DUMPING_N == 0) self.moves = [] # clear history after updating strategies def map_state(self, xdif, ydif, vel): """ Map the (xdif, ydif, vel) to the respective state, with regards to the grids The state is a string, "xdif_ydif_vel" X -> [-40,-30...120] U [140, 210 ... 420] Y -> [-300, -290 ... 160] U [180, 240 ... 420] """ if xdif < 140: xdif = int(xdif) - (int(xdif) % 10) else: xdif = int(xdif) - (int(xdif) % 70) if ydif < 180: ydif = int(ydif) - (int(ydif) % 10) else: ydif = int(ydif) - (int(ydif) % 60) return str(int(xdif)) + "_" + str(int(ydif)) + "_" + str(vel) def dump_qvalues(self, force = False): """ Dump the qvalues to the JSON file """ if self.gameCNT % self.DUMPING_N == 0 or force: fil = open("qvalues.json", "w") json.dump(self.qvalues, fil) fil.close() print("Q-values updated on local file.")
[ "guilhermenazb@gmail.com" ]
guilhermenazb@gmail.com
e802e9dfae9b27c85a6898fd055e57234915dfb5
e01fb71c991e57504fa745d0a29b4a84033db438
/collectiveintelligence_book_master/feedfilter.py
6167fcf2df278aaaf041ecc8d8e836fcc4bc69dd
[]
no_license
NandaCj/Machine_Learning1
6707f36d71e26dcdca03fc11da27f724e21f265e
fc2255f6932d8fd7a0ec002e6885e5a45fd04fe5
refs/heads/master
2021-06-20T01:32:17.249662
2019-05-30T06:42:13
2019-05-30T06:42:13
134,279,997
2
0
null
2019-05-30T06:42:14
2018-05-21T14:25:13
Jupyter Notebook
UTF-8
Python
false
false
1,757
py
import feedparser import re def interestingwords(s): splitter = re.compile(r'\W*') return [s.lower() for s in splitter.split(s) if len(s) > 2 and len(s) < 20] def entryfeatures(entry): f = {} # extract title titlewords = interestingwords(entry['title']) for w in titlewords: f['Title:' + w] = 1 # extract summary summarywords = interestingwords(entry['summary']) # count uppercase words uc = 0 for i in range(len(summarywords)): w = summarywords[i] f[w] = 1 if w.isupper(): uc += 1 # get word pairs in summary aas features if i < len(summarywords) - 1: twowords = ' '.join(summarywords[i:i+1]) f[twowords] = 1 # keep creator and publisher as a whole f['Publisher:' + entry['publisher']] = 1 # Insert virtual keyword for uppercase words if float(uc) / len(summarywords) > 0.3: f['UPPERCASE'] = 1 print f.keys() return f.keys() def read(feed, classifier): f = feedparser.parse(feed) for entry in f['entries']: print print '----' print 'Title: ' + entry['title'].encode('utf-8') print 'Publisher: ' + entry['publisher'].encode('utf-8') print print entry['summary'].encode('utf-8') fulltext = '%s\n%s\n%s' % ( entry['title'], entry['publisher'], entry['summary']) #print 'Guess: ' + str(classifier.classify(fulltext)) #cl = raw_input('Enter category: ') #classifier.train(fulltext, cl) print 'Guess: ' + str(classifier.classify(entry)) cl = raw_input('Enter category: ') classifier.train(entry, cl) if __name__ == '__main__': import docclass #cl = docclass.fisherclassifier(docclass.getwords) cl = docclass.fisherclassifier(entryfeatures) cl.setdb('python_feed.db') read('python_search.xml', cl)
[ "nandpara@cisco.com" ]
nandpara@cisco.com
d297cee91f53501ac87135d881bc7513083be016
2bc6a464116ca246ec7688938a5160549d0b2638
/src/entities/towers/tower.py
61083c7ddc728c8ae81f2bc7d0d6b3c27e936894
[ "MIT" ]
permissive
evrardco/GameJam-lln-2021
4d7657d507132d055c42e650ad4adf4fd6aebf91
ee2cce0feb423a0b3319c9933c8c8b5748225e39
refs/heads/main
2023-03-20T21:17:07.779340
2021-03-21T13:02:00
2021-03-21T13:02:00
349,721,579
1
0
null
null
null
null
UTF-8
Python
false
false
1,820
py
from arcade import Sprite from arcade import color from arcade.draw_commands import draw_circle_outline class Tower(Sprite): def __init__(self, game_level, *args, **kwargs): super().__init__(*args, **kwargs) self.range = 100 self.max_lvl = 1 self.lvl = 0 self.fire_rate = 1 # fire per ms self.game_level =game_level self.enemies = self.game_level.enemy_list self.id = Tower.id_counter self.selected = False self._elapsed_fire = self.fire_rate self.cost = 1 self.dmg = 1 self.name = "Tower" Tower.id_counter += 1 def draw(self): super().draw() if self.selected: draw_circle_outline(self.center_x, self.center_y, self.range, color.BLUE) def on_update(self, delta_time: float): targets = self.targets_in_range() if self.lvl > 0 and targets and self._elapsed_fire >= self.fire_rate: self.fire(targets) self._elapsed_fire = 0 self._elapsed_fire = min(self._elapsed_fire + delta_time, self.fire_rate) super().on_update(delta_time=delta_time) def targets_in_range(self): enemies_in_range = [] for e in self.enemies: if abs(e.center_x - self.center_x) + abs(e.center_y - self.center_y) < self.range: enemies_in_range.append(e) return enemies_in_range def fire(self, targets): # print(f"[Tower {self.id}] {len(targets)} enemies in range") pass def lvl_up(self): if self.game_level.followers < self.cost or self.lvl + 1 > self.max_lvl: return False self.lvl += 1 self.game_level.set_followers(self.game_level.followers - self.cost) return True Tower.id_counter = 0
[ "maxime_postaire@hotmail.fr" ]
maxime_postaire@hotmail.fr
db0f581d7ce78000bfb096134567d12e6a21a513
476936830895db3551e622c8289f6af22f1a81d2
/image_processing/pixelate.py
96942bfe799d7a60a3f92b97e56fab15b15aca0a
[]
no_license
harshitgarg22/learn-python
b5705fb5e77f86444ed3da72d6d0edc7b48d0b48
ccd0e614bb381b800e9cc224d87bbdacaff2daaf
refs/heads/master
2022-12-07T21:59:25.213842
2020-04-28T15:12:33
2020-04-28T15:12:33
142,181,275
0
0
null
2022-11-22T05:59:41
2018-07-24T15:54:10
Python
UTF-8
Python
false
false
563
py
from PIL import Image from utils_pixelate import create_image, get_pixel def pixelate(image, STEP=50): width, height = image.size outImage = create_image(width, height) pixels = outImage.load() for i in range(0, width, STEP): for j in range(0, height, STEP): for a in range(0, STEP): for b in range(0, STEP): try: pixels[i + a, j + b] = get_pixel(image, i, j) except: pass # Return new image return outImage
[ "hg1229@gmail.com" ]
hg1229@gmail.com
ada2aa2d1c79110f48f2d4b2b1baff97eab6529c
5eaed6eaf1ad846e3603c070658fc1b5b8b09072
/Day11-class2/practice04.py
fd54c999c5130460a42d2c6f7c53a3f2f3e1773f
[]
no_license
Heez27/AI_Edu
c3de56d532a616247f4d79606043f85f652c93e7
79025327e6eed2c368fec1d73ac94aaf271754a7
refs/heads/main
2023-05-09T12:35:22.000559
2021-05-31T07:45:42
2021-05-31T07:45:42
349,044,578
1
3
null
null
null
null
UTF-8
Python
false
false
299
py
#다음과 같은 출력이 되도록 구구단을 작성하세요.(이중 for~in) #1 x 1 = 1 2 x 1 = 2 ... 9 x 1 = 9 #... #1 x 9 = 9 2 x 9 = 18 ... 9 x 9 = 81 for i in range(1,10): for j in range(1,10): print('%d x %d = %d '%(j,i,i*j),end='') print()
[ "noreply@github.com" ]
Heez27.noreply@github.com
23bb63cf22fff9fd08050e0f1b3f3c7a82d38052
aeef73ecc10cf276b82246a0fab4b824a69e3e71
/TEpython4.py
e59e7fe9fe902f790e3c9dfb80408177988f9ed5
[]
no_license
LaurelOak/Peatland-Flux-Analysis
dad07c4770ba5ffc67c3c4e487a63ccf86f428b8
31a86f0ff403f495835cf2bc5b470f12c11aa610
refs/heads/master
2021-03-04T13:34:03.184874
2020-03-11T15:09:00
2020-03-11T15:09:00
246,037,736
1
0
null
null
null
null
UTF-8
Python
false
false
41,148
py
#!/usr/bin/env python # coding: utf-8 # ## This module contains the TE code translation from Matlab # # (MatLab version written by Laurel L. and modified by Dino B. Translation to Python by Edom M.) # (Updated 2/25/20 by Laurel to accept inputs with NaNs.) # Subsequent major update on 3/9/20 by Laurel L. to calculate the TE significance threshold on M rather than Mshort. Previously, the truncated dataset (Mshort) was reshuffled and then relagged, which shortened the dataset further. Now, the data are shuffled and then resampled, lagged, and truncated as in the calculation of TE on the full dataset. Thus, different datapoints may go into the computation of TE for the shuffled probability distribution, but the number of datapoints is the same as in the original TE calculation. #Also new in this version: Resampling the data matrices based on the source data's autocorrelation function. This makes the computation more appropriate for information transfer due to low-frequency signals (e.g., day-of-year anomalies, as opposed to high-frequency anomalies calculated from moving average filters) because each feature of the signal is theoretically only sampled once. This avoids pseudoreplication.To turn this feature off, specify a period of 1 instead of per in the functions that are called internally in the RunNewTEVarsSer codes, but this is not recommended. # The following functions are included in this module: # # 1. Mutual information # # 1. mutinfo_new(M, nbins) - Calculates mutual information I(x,y). # # # 2. Tranfer entropy # # 1. transen_new(M, lag, nbins) - Calculates transfer information - TE(x,y) x to y. x source M[:,0] and y the sink M[:,1]. # # # 3. Intermediate functions # # 1. LagData_new - shifts a matrix so that it is rearranged to be ready for TE calculation as in Knutt et al., 2005 # 2. jointentropy_new(M, nbins) - Calculates the joint entropy H(x,y) # 3. jointentropy3_new(M, nbins) - Calculates the joint entropy for three variables H(x,y,z) # 4. shuffle( M ) - shuffles the entries of the matrix M in time while keeping NaNs (blank data values) NaNs. So that, Monte Carlo is possible # 5. transenshuffle_new(M, lag, nbins) - Calculates the transfer entropy for a shuffled time series that has already been lined up with LagData # # # 4. Monte Carlo analysis of mutual information and transfer entropy # # 1. mutinfo_crit_new( M, nbins, alpha, numiter) - Finds critical values of mutual information statistics that needs to be exceeded for statistical significance # 2. transen_crit_new( M, lag, alpha, numiter, nbins) - Finds the critical value of the transfer entropy statistic that needs to be exceeded for statistical signficance # # # 5. All in one code # 1. RunNewTE2VarsSer(DataMatrix, LabelCell, SinkNodes, SourceNodes, resultsDir, maxLag, minSamples, numShuffles, sigLevel, numBins) - runs all together in serial mode. # 2. RunNewTE2VarsSer2(DataMatrix, LabelCell, SinkNodes, SourceNodes, resultsDir, maxLag, minSamples, numShuffles, sigLevel, numBins) - runs all together in serial mode. Sink lag fixed at lag 1 for self optimality. get_ipython().run_line_magic('matplotlib', 'inline') import pandas as pd import numpy as np import datetime as dt import matplotlib.pyplot as plt import copy import os np.random.seed(50) from scipy.stats import norm # In[2]: def checkMakeDir2(dirName): # result = dirName result2 = dirName*2 return result, result2 # In[4]: # def checkMakeDir(dirName): # ### Mutual information # In[9]: def mutinfo_new(M, nbins): # Calculates mutual information # M is an array with two columns [ source, sink] # nbins list of number of bins in 1D, 2D and 3D, with three elements ths = 1e-5 this_col1 = M[:,0] counts1, binEdges1=np.histogram(this_col1[~np.isnan(this_col1)],bins=nbins[1]) # Source Variable. Figure out bin edges without NaNs. binEdges1[0] = binEdges1[0]-ths binEdges1[len(binEdges1)-1]=binEdges1[len(binEdges1)-1]+ths col1cat = np.digitize(M[:,0], binEdges1, right=False) #Bin index for each entry. NaN values are assigned to index = nbins + 1 this_col2 = M[:,1] counts2, binEdges2=np.histogram(this_col2[~np.isnan(this_col2)],bins=nbins[1]) # Sink Variable binEdges2[0] = binEdges2[0]-ths binEdges2[len(binEdges2)-1]=binEdges2[len(binEdges2)-1]+ths col2cat = np.digitize(M[:,1], binEdges2, right=False) # which bin (ID) is the data located. NaN values are assigned to index = nbins + 1 #Now assign the NaN values to bin 0 col1cat[col1cat==nbins[1]+1] = 0 col2cat[col2cat==nbins[1]+1] = 0 col1cat[col2cat==0] = 0 #If there is an NaN for any row, assign the other column in that row to the NaN bin too col2cat[col1cat==0] = 0 #If there is an NaN for any row, assign the other column in that row to the NaN bin too #print(col1cat) # convert 1D histogram to a 2D histogram jointentcat = (col1cat-1)*nbins[1]+col2cat #This classifies the joint entropy bin into a number between 1 and nbins^2. 0 is assigned to rows with misisng data. nbins_2 = nbins[1]**2 N = np.bincount(jointentcat[jointentcat>0]) # Number of datapoints within each joint entropy bin, not including NaN bins. p = N/sum(N); # Vector of probabilities # 1D probability/histogram N1, binEdges1d1=np.histogram(this_col1[~np.isnan(this_col1)],bins=nbins[0]) # Which bin the first data column is in N2, binEdges1d2=np.histogram(this_col2[~np.isnan(this_col2)],bins=nbins[0]) #Which bin the second data column is in p1 = N1/sum(N1) p2 = N2/sum(N2) # Shanon entropy pgt0 = p[p>0] # px,y p1gt0 = p1[p1>0] # px p2gt0 = p2[p2>0] # py log2p2gt0 = np.log2(p2gt0) #Shannon entropy of the sink variable. Used to normalize mutual informaiton in the next line. Hy = (-sum(p2gt0*log2p2gt0)) # Mutual information, in bits. Joint entropy is scaled to the number of bins in a single dimension. I = ( (-sum(p1gt0*np.log2(p1gt0)) - sum(p2gt0*log2p2gt0) ) + (sum(pgt0*np.log2(pgt0)))*np.log2(nbins[0])/np.log2(nbins[1]))/Hy # double integral in the last component is done as a 1D. #return nbins_2, jointentcat,p , sum(N), I, Hy return I # ## Intermediate functions # In[13]: def PickSampleInterval(X, maxlag=365, alpha=0.05): #Dynamically selects the appropriate interval for sampling the data, based on the autocorrelation function. Nans are OK. Alpha is the significance level for assessing the significance of the autocorrelation function. nX = len(X) r = np.zeros(maxlag) sig_thr = np.zeros(maxlag) for ii in range(maxlag): if ii == 0: Y = X Z = X else: Y = X[:-ii].copy() Z = X[ii:].copy() Y[np.isnan(Z)]=np.nan Z[np.isnan(Y)]=np.nan r[ii] = np.corrcoef(Y[~np.isnan(Y)], Z[~np.isnan(Z)])[0,1] sig_thr[ii] = norm.ppf(1-alpha/2)/np.sqrt(np.sum(~np.isnan(Y))) # plt.plot(r) # plt.xlabel('Lag') # plt.ylabel('Autocorrelation') above_thr = r-sig_thr not_corr = np.where(above_thr<0) if np.min(np.size(not_corr))>0: per = not_corr[0][0] # "per" is the period. The data should be sampled once per period. else: per = maxlag return per def LagData_new( M_unlagged, shift ): # LagData Shifts two time-series so that a matrix is generated that allows easy computation of Knutt et al 2005 based TE computation # M_unlagged is a matrix [X Y..n], where X and Y are column vectors of the # variables to be compared. shift is a row vector that says how much each # variable in M_unlagged is to be shifted by. nR,nC = np.shape(M_unlagged) maxShift = max(shift) minShift = min(shift) newlength = nR - maxShift + minShift M_lagged = np.nan*np.ones([newlength, nC]) #[source_lagged(1:n-lag), sink_unlagged(lag:n), sink_lagged(1:n-lag)] #@@@@@@@@@@@@@@######## Dino's verson uses shift of [0, 0, -lag ] for the shuffle case of transfer entropy (transenshuffle_new) for ii in range(np.shape(M_lagged)[1]): M_lagged[:,ii] = M_unlagged[(shift[ii]-minShift):(np.shape(M_unlagged)[0]-maxShift+shift[ii]), ii] return M_lagged def ResampleLagged(M_lagged, per): #Resample the data in M to avoid pseudoreplication. Per is the output of PickSampleInterval. M_lagged = M_lagged[::per][:] return M_lagged # Alternatively # lag = np.abs(shift[0]) # M_lagged[:,0] = M_unlagged[0:(nR-lag), 0] # M_lagged[:,1] = M_unlagged[lag:(nR),1] # M_lagged[:,2] = M_unlagged[0:(nR-lag),2] # return M_lagged # In[27]: def jointentropy_new(M, nbins): # Calculates the joint entropy H(x,y) # M is two dimensional column matrix for which joint entropy is to be computed # H is the normalized joint entropy # nvalidpoints is the number of rows (samples) used to calculate the joint entropy ths = 1e-5 #tolerance this_col = M[:,0] counts1, binEdges1=np.histogram(this_col[~np.isnan(this_col)],bins=nbins) # Source Variable [ ] binEdges1[0] = binEdges1[0]-ths binEdges1[len(binEdges1)-1]=binEdges1[len(binEdges1)-1]+ths col1cat = np.digitize(M[:,0], binEdges1, right=False) #NaNs will be in bin nbins+1 this_col = M[:,1] counts2, binEdges2=np.histogram(this_col[~np.isnan(this_col)],bins=nbins) # Sink Variable binEdges2[0] = binEdges2[0]-ths binEdges2[len(binEdges2)-1]=binEdges2[len(binEdges2)-1]+ths col2cat = np.digitize(M[:,1], binEdges2, right=False) # which bin (ID) is the data located #Now assign the NaN values to bin 0 col1cat[col1cat==nbins+1] = 0 col2cat[col2cat==nbins+1] = 0 col1cat[col2cat==0] = 0 #If there is an NaN for any row, assign the other column in that row to the NaN bin too col2cat[col1cat==0] = 0 #If there is an NaN for any row, assign the other column in that row to the NaN bin too #print(col1cat) # convert 1D histogram to a 2D histogram jointentcat = (col1cat-1)*nbins+col2cat #This classifies the joint entropy bin into a number between 1 and nbins^2. 0 is assigned to rows with misisng data. nbins_2 = nbins**2 N = np.bincount(jointentcat[jointentcat>0]) # Number of datapoints within each joint entropy bin, not including NaN bins. p = N/sum(N); # Vector of probabilities pgt0 = p[p>0] # p(x,y) H = -sum(pgt0*np.log2(pgt0)) nvalidpoints = sum(N) return H, nvalidpoints # In[29]: def jointentropy3_new(M, nbins): # Calculates the joint entropy for three variables H(x,y,z) # M is a three-column matrix that contains the input vectors of data. # nvalidpoints is the number of rows (samples) used to calculate the joint entropy ths = 1e-5 #tolerance this_col = M[:,0] #Source variable counts1, binEdges1=np.histogram(this_col[~np.isnan(this_col)],bins=nbins) # Determine bin edges from non-NaN dataset binEdges1[0] = binEdges1[0]-ths binEdges1[len(binEdges1)-1]=binEdges1[len(binEdges1)-1]+ths col1cat = np.digitize(M[:,0], binEdges1, right=False) this_col = M[:,1] #Sink variable counts2, binEdges2=np.histogram(this_col[~np.isnan(this_col)],bins=nbins) # Determine bin edges from non-NaN dataset binEdges2[0] = binEdges2[0]-ths binEdges2[len(binEdges2)-1]=binEdges2[len(binEdges2)-1]+ths col2cat = np.digitize(M[:,1], binEdges2, right=False) # which bin (ID) is the data located this_col = M[:,2] # Source variable counts3, binEdges3=np.histogram(this_col[~np.isnan(this_col)],bins=nbins) # Determine bin edges from non-NaN dataset binEdges3[0] = binEdges3[0]-ths binEdges3[len(binEdges3)-1]=binEdges3[len(binEdges3)-1]+ths col3cat = np.digitize(M[:,2], binEdges3, right=False) #Now assign the NaN values to bin 0 col1cat[col1cat==nbins+1] = 0 col2cat[col2cat==nbins+1] = 0 col3cat[col3cat==nbins+1] = 0 #If there is an NaN for any row, assign the other column in that row to the NaN bin too col1cat[col2cat==0] = 0 col1cat[col3cat==0] = 0 col2cat[col1cat==0] = 0 col3cat[col1cat==0] = 0 # This classifies the joint entropy bin into a number between 1 and nbins^2. 0 is assigned to rows with misisng data. jointentcat = (col1cat-1)*nbins**2 + (col2cat-1)*nbins + col3cat #print(np.asarray((jointentcat,col1cat,col2cat, col3cat)).T) nbins_3 = nbins**3 N = np.bincount(jointentcat[jointentcat>0]) # Number of datapoints within each joint entropy bin. sumN = sum(N) p = N/sumN # Vector of probabilities pgt0 = p[p>0] H = -sum(pgt0*np.log2(pgt0)) nvalidpoints = sumN return H, nvalidpoints # In[32]: def shuffle( M ): # shuffles the entries of the matrix M in time while keeping NaNs (blank data values) NaNs. # M is the matrix where the columns are individual variables and the rows are entries in time Mss = np.ones(np.shape(M))*np.nan # Initialize for n in range(np.shape(M)[1]): # Columns are shuffled separately notnans = np.argwhere(~np.isnan(M[:,n])) R = np.random.rand(np.shape(notnans)[0],1) #np.random.rand(5,1) I = np.argsort(R,axis=0) #print(notnans[:,0]) #print(notnans[I,0]) #print('a',M[notnans[:,0],n]) Mss[notnans[:,0],n] = M[notnans[I[:],0],n].reshape(np.shape(notnans)[0],) #In the last version, the argument of np.shape() was M. This is not correct. It should be notnans. (Updated 2/25/20) return Mss # ## Transfer entropy # In[34]: def transen_new(M, lag, nbins, per=1, resample_on=0): # Calculates transfer information # M is an array with two columns [ source, sink] # nbins list of number of bins in 1D, 2D and 3D, with three elements # lag is the time lag of interest. # per is the period for resampling (from PickSampleInterval) # resample_on is binary, indicating whether resampling in accordance with per should be done.It should be off for determining critical values, as that subroutine is passed an already-resampled matrix. # M4 is the lagged subset of data transfer entropy was run on. M4 = LagData_new(np.column_stack((M, M[:,1])), [-lag, 0, -lag]) # source, sink, sink is input then # M4 becomes [source_lagged(1:n-lag), sink_unlagged(lag:n), sink_lagged(1:n-lag)] => H(Xt-T, Yt, Yt-T) M4[np.argwhere(np.isnan(np.sum(M4,axis=1))), :] = np.nan # Reset rows with any NaN entry to NaN. M4 = ResampleLagged(M4, per) #Resample the lagged M by the autocorrelation-determined "period" to avoid pseudoreplication M1 = M4[:,(0,2)] # [source_lagged(1:n-lag), sink_lagged(1:n-lag)] =>H(Xt-T,Yt-T) M2 = M4[:,(1,2)] # [sink_unlagged(lag:n), sink_lagged(1:n-lag)] =>H(Yt,Yt-T) #@@@@@@@@@@@@@@######## Dino uses M4[:,1] to be predicted M3 = M4[:,2] # [sink_unlagged(lag:n)] to be predicted is used with DINO. BUT, need CORRECTION =>H(Yt) should be corrected to H(Yt-T) M[:,2]. Laurel's note: These two will have approximately the same entropy. The lagged version will just be the entropy over a partially truncated time series. # Knutt et al indicates lagged being used H(Yt-T). Thus, M4[:,2] # Now calculate the joint and marginal entropy components: T1, n_valid_pairs1 = jointentropy_new(M1,nbins[1]) T2, n_valid_pairs2 = jointentropy_new(M2,nbins[1]) # Entropy for the single predictor n3, valueatn = np.histogram(M3[~np.isnan(M3)], nbins[0]) # results in count [n3] and the corresponding value. Updated 2/25/20 to do this just over non-NaNs. n3gt0 = n3[n3>0] sumn3gt0 = sum(n3gt0) T3 = -sum((n3gt0/sumn3gt0)*(np.log2(n3gt0/sumn3gt0))) # Nonnormalized Shannon entropy of variable Y # Three variable entropy T4, n_valid_pairs4 = jointentropy3_new(M4,nbins[2]) Tn = T3 # This is the Shannon entropy of Y, used to normalize the value of transfer entropy obtained below. log2nbins1 = np.log2(nbins[0]) log2nbins2 = np.log2(nbins[1]) log2nbins3 = np.log2(nbins[2]) log2nbins1_2 = log2nbins1/log2nbins2 log2nbins1_3 = log2nbins1/log2nbins3 T1 = T1*log2nbins1_2 T2 = T2*log2nbins1_2 T4 = T4*log2nbins1_3 T = (T1+T2-T3-T4)/Tn # Knuth formulation of transfer entropy N = min([n_valid_pairs1, n_valid_pairs2, n_valid_pairs4]) # Number of valid matched pairs used in the calculation return T, N # In[42]: def transen_new2(M, shift, nbins, per): # with shift as an input different lags btween source and sink are possible # shift [-lag of source, 0, - lag of sink] # lag of sink usually being 1 # Calculates transfer information # M is an array with two columns [ source, sink] # nbins list of number of bins in 1D, 2D and 3D, with three elements # lag is the time lag of interest. # per is the period for resampling (from PickSampleInterval) # M4 is the lagged subset of data transfer entropy was run on. M4 = LagData_new(np.column_stack((M, M[:,1])), shift) # source, sink, sink is input then # M4 becomes [source_lagged(1:n-lag), sink_unlagged(lag:n), sink_lagged(1:n-lag)] => H(Xt-T, Yt, Yt-T) M4[np.argwhere(np.isnan(np.sum(M4,axis=1))), :] = np.nan # Reset rows with any NaN entry to NaN. M4 = ResampleLagged(M4, per) #Resample the lagged M by the autocorrelation-determined "period" to avoid pseudoreplication M1 = M4[:,(0,2)] # [source_lagged(1:n-lag), sink_lagged(1:n-lag)] =>H(Xt-T,Yt-T) M2 = M4[:,(1,2)] # [sink_unlagged(lag:n), sink_lagged(1:n-lag)] =>H(Yt,Yt-T) #@@@@@@@@@@@@@@######## Dino uses M4[:,1] to be predicted M3 = M4[:,2] # [sink_unlagged(lag:n)] to be predicted is used with DINO. BUT, need CORRECTION =>H(Yt) should be corrected to H(Yt-T) M[:,2] # Knutt et al indicates lagged being used H(Yt-T). Thus, M4[:,2] # Now calculate the joint and marginal entropy components: T1, n_valid_pairs1 = jointentropy_new(M1,nbins[1]) T2, n_valid_pairs2 = jointentropy_new(M2,nbins[1]) # Entropy for the single predictor n3, valueatn = np.histogram(M3[~np.isnan(M3)], nbins[0]) # results in count [n3] and the corresponding value n3gt0 = n3[n3>0] sumn3gt0 = sum(n3gt0) T3 = -sum((n3gt0/sumn3gt0)*(np.log2(n3gt0/sumn3gt0))) # Nonnormalized Shannon entropy of variable Y # Three variable entropy T4, n_valid_pairs4 = jointentropy3_new(M4,nbins[2]) Tn = T3 # This is the Shannon entropy of Y, used to normalize the value of transfer entropy obtained below. log2nbins1 = np.log2(nbins[0]) log2nbins2 = np.log2(nbins[1]) log2nbins3 = np.log2(nbins[2]) log2nbins1_2 = log2nbins1/log2nbins2 log2nbins1_3 = log2nbins1/log2nbins3 T1 = T1*log2nbins1_2 T2 = T2*log2nbins1_2 T4 = T4*log2nbins1_3 T = (T1+T2-T3-T4)/Tn # Knuth formulation of transfer entropy N = min([n_valid_pairs1, n_valid_pairs2, n_valid_pairs4]) # Number of valid matched pairs used in the calculation return T, N # In[44]: def transenshuffle_new(M, lag, nbins, per): # Calculates the transfer entropy for a shuffled time series that has already been lined up with LagData # Calculates the transfer entropy of X>Y, the amount by which knowledge # of variable X at a time lag reduces the uncertainty in variable Y. M = # [X Y], and lag is the time lag of interest. nbins is the number of bins # used to discretize the probability distributions. # per is the period for resampling (from PickSampleInterval) Minput = shuffle(M[:,(0,1)]) T, N = transen_new(Minput, lag, nbins, per) return T, N # In[59]: def transenshuffle_new2(M, shift, nbins, per): # Calculates the transfer entropy for a shuffled time series that has already been lined up with LagData # Calculates the transfer entropy of X>Y, the amount by which knowledge # of variable X at a time lag reduces the uncertainty in variable Y. M = # [X Y], and lag is the time lag of interest. nbins is the number of bins # used to discretize the probability distributions. # per is the period for resampling (from PickSampleInterval) Minput = shuffle(M[:,(0,1)]) T, N = transen_new2(Minput, shift, nbins, per) return T, N # ## Critical values of Mutual information and Transfer entropy # In[65]: def mutinfo_crit_new( M, nbins, alpha, numiter): # Finds critical values of mutual information statistics that needs to be exceeded for statistical significance # M is the matrix where columns are the individual variables and rows ae the values in time. # nbins - number of bins # alpha - is the significance level # numiter - is the number of Monte Carlo simulations for shuffling MIss = np.ones([numiter])*np.nan for ii in range(numiter): Mss = shuffle(M) MIss[ii] = mutinfo_new(Mss,nbins) #print(MIss.shape) MIss = np.sort(MIss) MIcrit = MIss[round((1-alpha)*numiter)] # develop a histogram and peak the 95% quantile significance level with alpha = 0.05 return MIcrit # In[67]: def transen_crit_new( M, lag, alpha, numiter, nbins, per): # Finds the critical value of the transfer entropy statistic # that needs to be exceeded for statistical signficance. # M = matrix of unshifted variables, e.g., [X Y] for calculating the X>Y transfer entropy. # lag = time lag. # alpha = significance level. # numiter = number of Monte Carlo shufflings to perform. # nbins = number of bins to use to discretize the probability distributions. # per is the period for resampling (from PickSampleInterval) Tss = np.ones([numiter])*np.nan # Initializing shuffled transfer entropy table #print(Tss) for ii in range(numiter): Tss[ii], a = transenshuffle_new(M, lag, nbins, per) # Calculates TE for each Monte Carlo Shuffling #print(Tss) Tss = np.sort(Tss) Tcrit = Tss[round((1-alpha)*numiter)] # develop a histogram and peaks the 1-aplpha (95%) quantile significance level with alpha (= 0.05) return Tcrit # In[68]: def transen_crit_new2( M, shift, alpha, numiter, nbins, per): # Finds the critical value of the transfer entropy statistic # that needs to be exceeded for statistical signficance. # M = matrix of unshifted variables, e.g., [X Y] for calculating the X>Y transfer entropy. # lag = time lag. # alpha = significance level. # numiter = number of Monte Carlo shufflings to perform. # nbins = number of bins to use to discretize the probability distributions. # per is the period for resampling (from PickSampleInterval) Tss = np.ones([numiter])*np.nan # Initializing shuffled transfer entropy table #print(Tss) for ii in range(numiter): Tss[ii], a = transenshuffle_new2(M, shift, nbins, per) # Calculates TE for each Monte Carlo Shuffling #print(Tss) Tss = np.sort(Tss) Tcrit = Tss[round((1-alpha)*numiter)] # develop a histogram and peaks the 1-aplpha (95%) quantile significance level with alpha (= 0.05) return Tcrit # ## Serial TE & I calculater # In[52]: # number of monteCarlo shuffle - kills the time - going from 100 to 1000 very time consuming. Parallel!! # maxLag also takes a lot of time. Number of lag considered. 3*365 # number of source variables -- 20 def RunNewTE2VarsSer(DataMatrix, LabelCell, SinkNodes=None, SourceNodes=None, resultsDir = './Results/', maxLag=3*365, minSamples=200, numShuffles = 100, sigLevel=0.05, numBins=[11,11,11], do_not_resample=['none']): # computes TE assumes a data matrix with time in first columns and vars on others # do_not_resample is a list of variable names not to resample # Inputs # DataMatrix - data matrix with time in the first column # LabelCell - variable name of each data matrix entry # Source_nodes - array of column indices for source variables [2] # Sink_nodes - array of column of indices for sink variales [3:end] # resultsDir - directory for results ./Results/ # maxLag - maximum lag (3*365) 3 years # minSamples - minimum number of valid samples for TE (suggestion 200) # numShuffles - number of MonteCarlo shuffle iterations (suggestion 500) # sigLevel - significance level (suggested 0.05) # numBins - number of bins to use in 1, 2, and 3 dimensions default [11,11,11] # Outputs # Imat - mutual information # Icritmat - significance threshold # Tfirstmat - first T > Tcrit # Tbiggestmat - Tmax for T > Tcrit # Tcube_store - all T for all sink, source, lag combinations # Tcritcube_store - all Tcrits for all sink, source, lag combinations if DataMatrix.size == 0: return 'no dataMatrix' if LabelCell.size == 0: return 'no variable names' if SourceNodes is None: SourceNodes = np.arange(2,np.shape(DataMatrix)[1]) if SinkNodes is None: SinkNodes = np.array([1]) nSources = len(SourceNodes) nSinks = len(SinkNodes) # Start clock print('Beginning 2-variable analysis (serial) ...') # Tot = tic # print(SourceNodes,SinkNodes) # ========================================= ## Shrink input matrices to include only variables that are used # now the order is time, sinks, sources #@@@@@@@@@@@@@@@@@@@@@ # from Pd to np.array dataMat = np.column_stack((DataMatrix[:,0], DataMatrix[:,SinkNodes], DataMatrix[:,SourceNodes])) # date, sink, sources labCell = np.r_[np.array([LabelCell[0]]), np.array(LabelCell[SinkNodes]), np.array(LabelCell[SourceNodes])] #np.r_[np.array([LabelCell[0]]), np.array(LabelCell[SinkNodes]), np.array(LabelCell[SourceNodes])] #np.r_[np.array(LabelCell[0]), np.array(LabelCell[1]), np.array(LabelCell[[2,3,4]])] #Or labCell = np.column_stack((LabelCell[:,0], LabelCell[:,SinkNodes], LabelCell[:,SourceNodes])) del DataMatrix # or set it to empty DataMatrix = [] del LabelCell # ============================================= # Initialize output matrices # mutual information between sources and sinks # the sink is daily mean Q, and all pairwise interactions are evaluated Imat = np.ones([nSinks,nSources])*np.nan # row value = # sink vars, col values = # source vars; # significance threshold Icritmat = copy.deepcopy(Imat) # first T > Tcrit Tfirstmat = copy.deepcopy(Imat) # Tmax for T > Tcrit Tbiggestmat = copy.deepcopy(Imat) # All T for all sink, source, lag combinations Tcube_store = np.ones([nSinks,nSources,maxLag])*np.nan # All Tcrits for all sink, source, lag combinations Tcritcube_store = copy.deepcopy(Tcube_store) # ============================================= # LOOP OVER ALL PAIRS OF SOURCE AND SINK VARIABLES TO CALCULATE MI and TE for mySinkIter in range(nSinks): # loop over Sink nodes (information receivers) [ 0] mySinkNum = SinkNodes[mySinkIter] mySinkInd = 1 + mySinkIter # exclude time # extract sub-matrices for the ease of computation Ivec = Imat[mySinkIter,:] Icritvec = Icritmat[mySinkIter,:] Tfirstvec = Tfirstmat[mySinkIter,:] Tbiggestvec = Tbiggestmat[mySinkIter,:] Tmat_store = np.reshape(Tcube_store[mySinkIter,:,:],[nSources,maxLag]) Tcritmat_store = np.reshape(Tcritcube_store[mySinkIter,:,:], [nSources,maxLag]) sinkName = labCell[mySinkInd] # Text name of the Sink variable MmySink = dataMat[:,mySinkInd] # Select the sink variable to run #print(mySinkIter) for mySourceIter in range(nSources): # Loop over the source nodes #print(mySourceIter) mySourceNum = SourceNodes[mySourceIter] mySourceInd = 1 + nSinks + mySourceIter Mmysource = dataMat[:,mySourceInd] # Select source variables sourceName = labCell[mySourceInd] # Name of the source variable print('Source node ', mySourceNum-1, sourceName, ':=>', 'Sink node ', mySinkNum, sinkName) print('Lag ', 'Sink', 'Source') if sourceName in do_not_resample: per = 1 else: per = PickSampleInterval(np.float64(Mmysource), maxLag, 0.01) #Pick the sample interval based on autocorrelation. New 3/8/20 print(per) M = np.column_stack((Mmysource, MmySink)) # Source followed by Sink M = M.astype('float') #print(M.shape) # MUTUAL INFORMATION Mmut = ResampleLagged(M, per) #Resample to avoid pseudoreplication I = mutinfo_new(Mmut,numBins) # computes mutual information Ivec[mySourceIter] = I # save it in a matrix Icrit = mutinfo_crit_new(M=Mmut, alpha=sigLevel, nbins=numBins,numiter = numShuffles) Icritvec[mySourceIter] = Icrit # TRANSFER ENTROPY T = np.ones([maxLag])*np.nan # intialize the TE vector over the range of lags examined Tcrit = copy.deepcopy(T) # Initialize the vector of the critical TE for lag in range(maxLag): #[0 to 364] in a year i.e., no lag day t, N = transen_new(M=M, lag=lag, nbins=numBins, per=per) # Computes TE for at a given lag of 'lag'. if N >= minSamples: # enough length to compute TE T[lag] = t # save TE computed Tcrit[lag] = transen_crit_new(M=M, alpha= sigLevel, lag=lag, nbins=numBins,numiter=numShuffles, per=per) # TE critical Updated 3/9/20. Previously, Mshort was used, but because of the lag, this can cut down on the number of valid pairs. print(lag, mySinkIter, mySourceIter, N) # Save the first and biggest value of T over the significance threshold TgTcrit = np.argwhere(T >= Tcrit) # np.argwhere(np.array([5,6,9,18]) > np.array([3,9,2,9])) if any(TgTcrit): Tfirstvec[mySourceIter] = T[TgTcrit[0,0]] Tbiggestvec[mySourceIter] = max(T[TgTcrit[:,0]]) # @@@@@ Should be T-Tcrit biggest!!!!!! #print(Tcrit.shape, T.shape, Tcritcube_store.shape) Tmat_store[mySourceIter,:] = T Tcritmat_store[mySourceIter,:] = Tcrit #print(np.arange(maxLag), T) fH = plt.figure(figsize= [5,5],dpi=150) plt.plot(np.arange(maxLag), T, color='green', marker='o', linewidth=2, markersize=0.5) plt.xlabel('Lag, days') plt.ylabel('Tz') plt.plot(np.arange(maxLag), Tcrit, color = 'black', linewidth=2, linestyle='dashed') plt.title([sourceName, 'vs', sinkName]) # Save the graphics #save_results_to = '/Users/S/Desktop/Results/' f_name = resultsDir + 'TE_analysis' + str(sourceName) + '_Vs_' + str(sinkName) +'.png' plt.savefig(f_name, dpi=150) plt.close(fH) # close it with out displaying # replace column vectors from source iterations into matrices Imat[mySinkIter, :] = Ivec Icritmat[mySinkIter, :] = Icritvec Tfirstmat[mySinkIter,:] = Tfirstvec Tbiggestmat[mySinkIter,:] = Tbiggestvec Tcube_store[mySinkIter,:,:] = Tmat_store Tcritcube_store[mySinkIter,:,:] = Tcritmat_store # save results (modify to save just relevant variables) # save([resultsDir 'TE_analysis_workspace.mat'], '-v7.3'); # Stop clock print('Finished 2-variable analysis (serial)!'); return Imat, Icritmat, Tfirstmat, Tbiggestmat, Tcube_store, Tcritcube_store # | sink | source | lag | # In[69]: # number of monteCarlo shuffle - kills the time - going from 100 to 1000 very time consuming. Parallel!! # maxLag also takes a lot of time. Number of lag considered. 3*365 # number of source variables -- 20 def RunNewTE2VarsSer2(DataMatrix, LabelCell, shift, SinkNodes=None, SourceNodes=None, resultsDir = './Results/', maxLag=3*365, minSamples=200, numShuffles = 100, sigLevel=0.05, numBins=[11,11,11], do_not_resample=['none']): # computes TE assumes a data matrix with time in first columns and vars on others # do_not_resample is a list of variable names not to resample # Inputs # DataMatrix - data matrix with time in the first column # LabelCell - variable name of each data matrix entry # Source_nodes - array of column indices for source variables [2] # Sink_nodes - array of column of indices for sink variales [3:end] # resultsDir - directory for results ./Results/ # maxLag - maximum lag (3*365) 3 years # minSamples - minimum number of valid samples for TE (suggestion 200) # numShuffles - number of MonteCarlo shuffle iterations (suggestion 500) # sigLevel - significance level (suggested 0.05) # numBins - number of bins to use in 1, 2, and 3 dimensions default [11,11,11] # Outputs # Imat - mutual information # Icritmat - significance threshold # Tfirstmat - first T > Tcrit # Tbiggestmat - Tmax for T > Tcrit # Tcube_store - all T for all sink, source, lag combinations # Tcritcube_store - all Tcrits for all sink, source, lag combinations if DataMatrix.size == 0: return 'no dataMatrix' if LabelCell.size == 0: return 'no variable names' if SourceNodes is None: SourceNodes = np.arange(2,np.shape(DataMatrix)[1]) if SinkNodes is None: SinkNodes = np.array([1]) nSources = len(SourceNodes) nSinks = len(SinkNodes) # Start clock print('Beginning 2-variable analysis (serial) ...') # Tot = tic # print(SourceNodes,SinkNodes) # ========================================= ## Shrink input matrices to include only variables that are used # now the order is time, sinks, sources #@@@@@@@@@@@@@@@@@@@@@ # from Pd to np.array dataMat = np.column_stack((DataMatrix[:,0], DataMatrix[:,SinkNodes], DataMatrix[:,SourceNodes])) # date, sink, sources labCell = np.r_[[np.array(LabelCell[0])], np.array(LabelCell[SinkNodes]), np.array(LabelCell[SourceNodes])] #np.r_[np.array(LabelCell[0]), np.array(LabelCell[1]), np.array(LabelCell[[2,3,4]])] #Or labCell = np.column_stack((LabelCell[:,0], LabelCell[:,SinkNodes], LabelCell[:,SourceNodes])) del DataMatrix # or set it to empty DataMatrix = [] del LabelCell # ============================================= # Initialize output matrices # mutual information between sources and sinks # the sink is daily mean Q, and all pairwise interactions are evaluated Imat = np.ones([nSinks,nSources])*np.nan # row value = # sink vars, col values = # source vars; # significance threshold Icritmat = copy.deepcopy(Imat) # first T > Tcrit Tfirstmat = copy.deepcopy(Imat) # Tmax for T > Tcrit Tbiggestmat = copy.deepcopy(Imat) # All T for all sink, source, lag combinations Tcube_store = np.ones([nSinks,nSources,maxLag])*np.nan # All Tcrits for all sink, source, lag combinations Tcritcube_store = copy.deepcopy(Tcube_store) # ============================================= # LOOP OVER ALL PAIRS OF SOURCE AND SINK VARIABLES TO CALCULATE MI and TE for mySinkIter in range(nSinks): # loop over Sink nodes (information receivers) [ 0] mySinkNum = SinkNodes[mySinkIter] mySinkInd = 1 + mySinkIter # exclude time # extract sub-matrices for the ease of computation Ivec = Imat[mySinkIter,:] Icritvec = Icritmat[mySinkIter,:] Tfirstvec = Tfirstmat[mySinkIter,:] Tbiggestvec = Tbiggestmat[mySinkIter,:] Tmat_store = np.reshape(Tcube_store[mySinkIter,:,:],[nSources,maxLag]) Tcritmat_store = np.reshape(Tcritcube_store[mySinkIter,:,:], [nSources,maxLag]) sinkName = labCell[mySinkInd] # Text name of the Sink variable MmySink = dataMat[:,mySinkInd] # Select the sink variable to run #print(mySinkIter) for mySourceIter in range(nSources): # Loop over the source nodes #print(mySourceIter) mySourceNum = SourceNodes[mySourceIter] mySourceInd = 1 + nSinks + mySourceIter Mmysource = dataMat[:,mySourceInd] # Select source variables sourceName = labCell[mySourceInd] # Name of the source variable print('Source node ', mySourceNum-1, sourceName, ':=>', 'Sink node ', mySinkNum, sinkName) print('Lag ', 'Sink', 'Source') if sourceName in do_not_resample: per = 1 else: per = PickSampleInterval(np.float64(Mmysource), maxLag, 0.01) #Pick the sample interval based on autocorrelation. New 3/8/20 print(per) M = np.column_stack((Mmysource, MmySink)) # Source followed by Sink M = M.astype('float') #print(M.shape) # MUTUAL INFORMATION Mmut = ResampleLagged(M, per) #Resample to avoid pseudoreplication I = mutinfo_new(Mmut,numBins) # computes mutual information Ivec[mySourceIter] = I # save it in a matrix Icrit = mutinfo_crit_new(M=Mmut, alpha=sigLevel, nbins=numBins,numiter = numShuffles) Icritvec[mySourceIter] = Icrit # TRANSFER ENTROPY T = np.ones([maxLag])*np.nan # intialize the TE vector over the range of lags examined Tcrit = copy.deepcopy(T) # Initialize the vector of the critical TE for lag in range(maxLag): #[0 to 364] in a year i.e., no lag day t, N = transen_new2(M=M, shift=[-lag,shift[1],-per], nbins=numBins, per=per) # Computes TE for at a given lag of 'lag' if N >= minSamples: # enough length to compute TE T[lag] = t # save TE computed Tcrit[lag] = transen_crit_new2(M=M, shift=[-lag,shift[1],shift[2]], alpha= sigLevel,nbins=numBins,numiter=numShuffles, per=per) # TE critical. Updated 3/9/20. Previously, Mshort was used, but because of the lag, this can cut down on the number of valid pairs. print(lag, mySinkIter, mySourceIter, N) # Save the first and biggest value of T over the significance threshold TgTcrit = np.argwhere(T >= Tcrit) # np.argwhere(np.array([5,6,9,18]) > np.array([3,9,2,9])) if any(TgTcrit): Tfirstvec[mySourceIter] = T[TgTcrit[0,0]] Tbiggestvec[mySourceIter] = max(T[TgTcrit[:,0]]) # @@@@@ Should be T-Tcrit biggest!!!!!! #print(Tcrit.shape, T.shape, Tcritcube_store.shape) Tmat_store[mySourceIter,:] = T Tcritmat_store[mySourceIter,:] = Tcrit #print(np.arange(maxLag), T) fH = plt.figure(figsize= [5,5],dpi=150) plt.plot(np.arange(maxLag), T, color='green', marker='o', linewidth=2, markersize=0.5) plt.xlabel('Lag, days') plt.ylabel('Tz') plt.plot(np.arange(maxLag), Tcrit, color = 'black', linewidth=2, linestyle='dashed') plt.title([sourceName, 'vs', sinkName]) # Save the graphics #save_results_to = '/Users/S/Desktop/Results/' f_name = resultsDir + 'TE_analysis' + str(sourceName) + '_Vs_' + str(sinkName) +'.png' plt.savefig(f_name, dpi=150) plt.close(fH) # close it with out displaying # replace column vectors from source iterations into matrices Imat[mySinkIter, :] = Ivec Icritmat[mySinkIter, :] = Icritvec Tfirstmat[mySinkIter,:] = Tfirstvec Tbiggestmat[mySinkIter,:] = Tbiggestvec Tcube_store[mySinkIter,:,:] = Tmat_store Tcritcube_store[mySinkIter,:,:] = Tcritmat_store # save results (modify to save just relevant variables) # save([resultsDir 'TE_analysis_workspace.mat'], '-v7.3'); # Stop clock print('Finished 2-variable analysis (serial)!'); return Imat, Icritmat, Tfirstmat, Tbiggestmat, Tcube_store, Tcritcube_store # | sink | source | lag |
[ "laurel@berkeley.edu" ]
laurel@berkeley.edu
4f7edf5d9993d14ed93c595d1579ad18089cac63
5c034122de6639bf3f6d7192ab0ea7da036d22db
/словари2.py
f15aeabb12ce787e92b5b439695f9e863e10d46e
[]
no_license
Nurlis98/Exersices-from-Eric-Metiz-book
85111a2d94448853b785bf0c230ac903d6d44809
79074c10c90426dbb8b0aab275d437652d06ae90
refs/heads/master
2020-05-09T12:40:45.130513
2019-04-13T05:21:24
2019-04-13T05:21:24
181,119,726
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
favorite_numbers= {'Nurbek': 5, 'Aslan': 8, 'Adilet':7, 'Neymar':10} print(favorite_numbers)
[ "noreply@github.com" ]
Nurlis98.noreply@github.com
864fb65f15185ee5517a83c165df9ec067743ca7
8f1043dabe7275b33d7fe8e9095e474023f9de6c
/ghost.py
0b80e62be1f829115e2488998b16a65a62eb9393
[]
no_license
pietjan12/pacman_deeplearning
acd84dd063f8f76754ee9a9ee558d9d321b7c618
1456d6c1daef2fd2b8805a5a2d734dc1127956ef
refs/heads/main
2023-01-05T05:31:46.217709
2020-11-04T12:57:26
2020-11-04T12:57:26
296,563,462
0
0
null
2020-11-04T09:54:41
2020-09-18T08:37:46
Python
UTF-8
Python
false
false
7,238
py
import random #color of ghosts. ghostcolor = {} ghostcolor[0] = (255, 0, 0, 255) ghostcolor[1] = (255, 128, 255, 255) ghostcolor[2] = (128, 255, 255, 255) ghostcolor[3] = (255, 128, 0, 255) ghostcolor[4] = (50, 50, 255, 255) # blue, vulnerable ghost ghostcolor[5] = (255, 255, 255, 255) # white, flashing ghost class ghost(): def __init__(self, ghostID): self.x = 0 self.y = 0 self.velX = 0 self.velY = 0 self.speed = 1 self.nearestRow = 0 self.nearestCol = 0 self.id = ghostID # ghost "state" variable # 1 = normal # 2 = vulnerable # 3 = spectacles self.state = 1 self.homeX = 0 self.homeY = 0 self.currentPath = "" self.anim = {} from pacman import pygame for i in range(1, 7, 1): self.anim[i] = pygame.image.load('sprites/ghost ' + str(i) + '.gif') # change the ghost color in this frame for y in range(0, 16, 1): for x in range(0, 16, 1): if self.anim[i].get_at((x, y)) == (255, 0, 0, 255): # default, red ghost body color self.anim[i].set_at((x, y), ghostcolor[self.id]) self.animFrame = 1 self.animDelay = 0 def Draw(self): from pacman import thisGame, player, screen if thisGame.mode == 3: return False # ghost eyes -- for y in range(4, 8, 1): for x in range(3, 7, 1): self.anim[self.animFrame].set_at((x, y), (255, 255, 255, 255)) self.anim[self.animFrame].set_at((x + 6, y), (255, 255, 255, 255)) if player.x > self.x and player.y > self.y: # player is to lower-right pupilSet = (5, 6) elif player.x < self.x and player.y > self.y: # player is to lower-left pupilSet = (3, 6) elif player.x > self.x and player.y < self.y: # player is to upper-right pupilSet = (5, 4) elif player.x < self.x and player.y < self.y: # player is to upper-left pupilSet = (3, 4) else: pupilSet = (4, 6) for y in range(pupilSet[1], pupilSet[1] + 2, 1): for x in range(pupilSet[0], pupilSet[0] + 2, 1): self.anim[self.animFrame].set_at((x, y), (0, 0, 255, 255)) self.anim[self.animFrame].set_at((x + 6, y), (0, 0, 255, 255)) # -- end ghost eyes if self.state == 1: # draw regular ghost (this one) screen.blit(self.anim[self.animFrame], (self.x - thisGame.screenPixelPos[0], self.y - thisGame.screenPixelPos[1])) elif self.state == 2: # draw vulnerable ghost from pacman import ghosts if thisGame.ghostTimer > 100: # blue screen.blit(ghosts[4].anim[self.animFrame], (self.x - thisGame.screenPixelPos[0], self.y - thisGame.screenPixelPos[1])) else: # blue/white flashing tempTimerI = int(thisGame.ghostTimer / 10) if tempTimerI == 1 or tempTimerI == 3 or tempTimerI == 5 or tempTimerI == 7 or tempTimerI == 9: screen.blit(ghosts[5].anim[self.animFrame], (self.x - thisGame.screenPixelPos[0], self.y - thisGame.screenPixelPos[1])) else: screen.blit(ghosts[4].anim[self.animFrame], (self.x - thisGame.screenPixelPos[0], self.y - thisGame.screenPixelPos[1])) elif self.state == 3: import tile_ids # draw glasses screen.blit(tile_ids.tileIDImage[tile_ids.tileID['glasses']], (self.x - thisGame.screenPixelPos[0], self.y - thisGame.screenPixelPos[1])) if thisGame.mode == 6 or thisGame.mode == 7: # don't animate ghost if the level is complete return False self.animDelay += 1 if self.animDelay == 2: self.animFrame += 1 if self.animFrame == 7: # wrap to beginning self.animFrame = 1 self.animDelay = 0 def Move(self): from pacman import path, player self.x += self.velX self.y += self.velY self.nearestRow = int(((self.y + 8) / 16)) self.nearestCol = int(((self.x + 8) / 16)) if (self.x % 16) == 0 and (self.y % 16) == 0: # if the ghost is lined up with the grid again # meaning, it's time to go to the next path item if (self.currentPath): self.currentPath = self.currentPath[1:] self.FollowNextPathWay() else: self.x = self.nearestCol * 16 self.y = self.nearestRow * 16 # chase pac-man self.currentPath = path.FindPath((self.nearestRow, self.nearestCol), (player.nearestRow, player.nearestCol)) self.FollowNextPathWay() def FollowNextPathWay(self): from pacman import path, player, thisLevel import tile_ids # print "Ghost " + str(self.id) + " rem: " + self.currentPath # only follow this pathway if there is a possible path found! if not self.currentPath == False: if len(self.currentPath) > 0: if self.currentPath[0] == "L": (self.velX, self.velY) = (-self.speed, 0) elif self.currentPath[0] == "R": (self.velX, self.velY) = (self.speed, 0) elif self.currentPath[0] == "U": (self.velX, self.velY) = (0, -self.speed) elif self.currentPath[0] == "D": (self.velX, self.velY) = (0, self.speed) else: # this ghost has reached his destination!! if not self.state == 3: # chase pac-man self.currentPath = path.FindPath((self.nearestRow, self.nearestCol), (player.nearestRow, player.nearestCol)) self.FollowNextPathWay() else: # glasses found way back to ghost box self.state = 1 self.speed = self.speed / 4 # give ghost a path to a random spot (containing a pellet) (randRow, randCol) = (0, 0) while not thisLevel.GetMapTile(randRow, randCol) == tile_ids.tileID['pellet'] or (randRow, randCol) == ( 0, 0): randRow = random.randint(1, thisLevel.lvlHeight - 2) randCol = random.randint(1, thisLevel.lvlWidth - 2) self.currentPath = path.FindPath((self.nearestRow, self.nearestCol), (randRow, randCol)) self.FollowNextPathWay()
[ "n.vanderburgt@student.fontys.nl" ]
n.vanderburgt@student.fontys.nl
635a83d12ba05a184e2ed5f76db283eb66e94e73
444c07a8d8f55866403b2f2ab4138c20a0e328c7
/projeto_agendas/urls.py
ae3f72c74d1859de948467d971f23cae887e99a4
[]
no_license
TheQuito/projeto_agendas
b1b33526b50e2cbde93220875a507bd358e6d406
d36e17079afb5009d642ca38aa940a923efdb167
refs/heads/master
2020-04-14T15:02:27.176067
2019-02-26T20:34:47
2019-02-26T20:34:47
160,865,774
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
"""projeto_agendas URL Configuration """ from django.contrib import admin from django.urls import path, include from rest_framework import routers urlpatterns = [ path('admin/', admin.site.urls), path('api-auth/', include('rest_framework.urls')), path('agendas_rest_api/', include('agendas_rest_api.urls')), ]
[ "jonesdhy@hotmail.com" ]
jonesdhy@hotmail.com
50ab680a0d68f273e6acbc7e9f5081f0336f9178
b64e879968bc2a977d0800164eeaae887608465b
/Source/vvc_project/wizards/review_detail_project_wizard.py
dc7e7061de468272801cebc897f313899e46c607
[]
no_license
PhuocThinh/OdooDocument
371df0b450d5ed662717c308a7c9ffbca2f65656
1a0ca11c729e919b34f3bb8a2e12d481fbd27f2f
refs/heads/master
2020-08-16T04:44:24.700066
2019-10-30T09:43:00
2019-10-30T09:43:00
215,456,739
0
0
null
null
null
null
UTF-8
Python
false
false
535
py
from odoo import api, models, fields class ReviewDetailProjectWizard(models.TransientModel): _name = 'review.detail.wizard.project' _description = 'Project Review Detail Wizard' content = fields.Html(string='Content') status = fields.Selection([('new', "New"), ('done', "Done"), ('cancel', "Cancel") ], 'Status', default='new', required=True) review_id = fields.Many2one('review.history.project.wizard', string="Review")
[ "thinh.pvp@vn.vinx.asia" ]
thinh.pvp@vn.vinx.asia
3687486371728e2b0c5aea7f520cefa19b5385d1
4aaef00df82d733dcef81bbb77b04ad92c5f512f
/server.py
38188c4b40b03cdcc79e9cdbe460dc747e46ad8c
[]
no_license
niallo/mongo-perf
0f48cbba7e6a56a6379ce69c708164279fa12f24
4b1b2a5de72dd0f1deb8d46b7acbb555086050eb
refs/heads/master
2021-01-24T02:39:29.411930
2013-02-09T19:52:46
2013-02-09T19:52:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,139
py
#!/usr/bin/python from bottle import * import pymongo from datetime import datetime import sys import json db = pymongo.Connection('localhost', 27017)['bench_results'] @route('/static/:filename#.*#') def static_file(filename): send_file(filename, root='./static') @route("/raw") def raw_data(): out = [] versions = request.GET.get('versions', '') if versions: if versions.startswith('/') and versions.endswith('/'): q = {'mongodb_version': {'$regex': versions[1:-1]}} else: q = {'mongodb_version': {'$in': versions.split()}} else: q = {} cursor = db.raw.find(q).sort([('name',1), ('mongodb_version',1), ('mongodb_git',1)]) name = None results = [] for result in cursor: if result['name'] != name: if name is not None: out.append({'name':name, 'results':results}) name = result['name'] results = [] row = dict(version=result['mongodb_version'], date=result['mongodb_date']) for (n, res) in result['results'].iteritems(): row[n] = res results.append(row) out.append({'name':name, 'results':results}) return out @route("/") def main_page(): metric = request.GET.get('metric', 'ops_per_sec') results = raw_data() threads = set() flot_results = [] for outer_result in results: out = [] for i, result in enumerate(outer_result['results']): out.append({'label': result['version'] ,'data': sorted([int(k), v[metric]] for (k,v) in result.iteritems() if k.isdigit()) }) threads.update(int(k) for k in result if k.isdigit()) flot_results.append(json.dumps(out)) return template('main_page.tpl' ,results=results ,flot_results=flot_results ,request=request ,threads=sorted(threads) ) if __name__ == '__main__': do_reload = '--reload' in sys.argv debug(do_reload) run(reloader=do_reload, host='0.0.0.0', server=AutoServer)
[ "redbeard0531@gmail.com" ]
redbeard0531@gmail.com
590a3359c5f5ac28c8d7ac33a1d38153112d62a8
e24bf8b1ae9071ef29393e25e55d57e57ecaa4d4
/HLTBendingAngle/python/ConfFile_cfg.py
6c9663541350f7f1067424a131c023c1281f15af
[]
no_license
tahuang1991/MuJetAnalysis
35444464054fb1f3a69980d80a1a87c0530ad1c4
2b7bb07ad1e428d13411c6594db01f075fcffdf6
refs/heads/master
2020-12-03T08:03:53.099393
2016-01-26T22:52:19
2016-01-26T22:52:19
46,516,216
0
0
null
2015-11-19T19:46:24
2015-11-19T19:46:24
null
UTF-8
Python
false
false
474
py
import FWCore.ParameterSet.Config as cms process = cms.Process("Demo") process.load("FWCore.MessageService.MessageLogger_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("PoolSource", # replace 'myfile.root' with the source file you want to use fileNames = cms.untracked.vstring( 'file:myfile.root' ) ) process.demo = cms.EDAnalyzer('HLTBendingAngle' ) process.p = cms.Path(process.demo)
[ "jrdv009@tamu.edu" ]
jrdv009@tamu.edu
61d64f4a573e2b561240731d80288fbdd110a42a
5b976ba89e3de22bd00ccd6a6e2eafde807bf8cf
/computer/training_image_collection.py
1e56d8ccac481018c686f3fefd6188b43c126bb8
[ "MIT" ]
permissive
cfizette/Neural-Net-RC-Car
fec8348fa14240c336c95775f1bda58afba9e7ed
a45c13d2b1a7107d5f41645c258d7d000cf63b0d
refs/heads/master
2021-01-02T23:05:02.957073
2017-11-04T04:35:26
2017-11-04T04:35:26
99,464,029
0
0
null
null
null
null
UTF-8
Python
false
false
5,616
py
import threading import io import socket import struct import serial import pygame import _thread as thread import cv2 import numpy as np import os import time ''' Notes: The pygame window will take a few moments to warm up and may be unresponsive during this time, just wait. Usage: First start this program, then start the client side program on the Pi. Drive the car through your track. When you reach the end of the track, either end the program by pressing Q or rearrange the track and drive through it again. The program will only save data when the car is moving forwards. ''' # Folder for saving training data folder = 'training_images' # Com port for Arduino com_port = 3 # IP Address ip_address = '192.168.1.14' color = 1 # 1 for color, 0 for false def rc_controller(): ser = serial.Serial(com_port, 115200, timeout=1) pygame.init() disp = pygame.display.set_mode((800, 600)) print('getting input') # Get keyboard input and send data while True: for event in pygame.event.get(): if event.type == pygame.KEYDOWN or event.type == pygame.KEYUP: key_input = pygame.key.get_pressed() if key_input[pygame.K_UP] and key_input[pygame.K_RIGHT]: print('Forward Right') ser.write(b'5') elif key_input[pygame.K_UP] and key_input[pygame.K_LEFT]: print('Forward Left') ser.write(b'6') elif key_input[pygame.K_DOWN] and key_input[pygame.K_LEFT]: print('Reverse Left') ser.write(b'8') elif key_input[pygame.K_DOWN] and key_input[pygame.K_RIGHT]: print('Reverse Right') ser.write(b'7') elif key_input[pygame.K_UP]: print("Forward") ser.write(b'1') elif key_input[pygame.K_DOWN]: print("Reverse") ser.write(b'2') elif key_input[pygame.K_RIGHT]: print("Right") ser.write(b'4') elif key_input[pygame.K_LEFT]: print("Left") ser.write(b'3') else: ser.write(b'0') def get_input(): key_in = pygame.key.get_pressed() # Only collect when moving forward if key_in[pygame.K_UP]: if key_in[pygame.K_LEFT]: return 'left' elif key_in[pygame.K_RIGHT]: return 'right' else: return 'straight' else: return 'stationary' def get_train_images(): class GetTrainImages(object): def __init__(self): self.server_socket = socket.socket() self.server_socket.bind((ip_address, 8000)) self.server_socket.listen(0) self.connection = self.server_socket.accept()[0].makefile('rb') self.send_inst = True self.collect_images() def collect_images(self): print('collecting images') # left = 0 # right = 1 # straight = 2 label_array = np.zeros(1) left_array = np.zeros(1) right_array = 1*np.ones(1) straight_array = 2*np.ones(1) frame_num = 1 try: stream_bytes = ' ' while self.send_inst: # Read the length of image, if 0 break image_len = struct.unpack('<L', self.connection.read(struct.calcsize('<L')))[0] if not image_len: break # Check for exit command key_in = pygame.key.get_pressed() if key_in[pygame.K_q]: break # Construct stream and read image from connection image_stream = io.BytesIO() image_stream.write(self.connection.read(image_len)) # Show video feed data = np.fromstring(image_stream.getvalue(), dtype=np.uint8) image = cv2.imdecode(data, color) try: cv2.imshow('image', image) cv2.waitKey(1) except: print("error displaying image") # Get input from pygame user_input = get_input() # Add to label_array, only when moving if user_input is not 'stationary': if user_input is 'left': label_array = np.append(label_array, left_array, axis=0) elif user_input is 'right': label_array = np.append(label_array, right_array, axis=0) elif user_input is 'straight': label_array = np.append(label_array, straight_array, axis=0) # Save frame cv2.imwrite(folder + '/' + str(frame_num) + '.jpg', image) frame_num += 1 except IOError as e: print(e) # Save label_array label_array = np.delete(label_array, 0) np.save(folder + '/labels.npy', label_array) GetTrainImages() try: threading.Thread(target=get_train_images).start() threading.Thread(target=rc_controller).start() except: print("Unable to start new thread") while True: pass
[ "cfizett1@binghamton.edu" ]
cfizett1@binghamton.edu
9cc50ddd7c4aa4f288db9b25f241d953d7ffc2c6
c2e6dc71f1533a5201b527b13ca50641f51bbb06
/empireofcode/done/even_last.py
12d2dc1126971a8e9387ccead4d7a39f5f653928
[]
no_license
paolo12/first_gift
3ecb2c96aa110e557765331e991031b5c4141b31
89bc214bff6fe54d8580cb5eb087ae42c8ff2d14
refs/heads/master
2021-01-10T05:24:39.865929
2017-05-30T13:36:42
2017-05-30T13:36:42
53,891,429
0
0
null
2016-03-16T21:42:55
2016-03-14T20:58:52
Python
UTF-8
Python
false
false
834
py
def even_last(array): summ_array = [] i = 0 if len(array) == 0: return 0 else: while (i <= len(array)-1) and (len(summ_array) < len(array)): summ_array.append(array[i]) print("summ_array = ", summ_array) if i + 1 <= len(array): i += 2 else: continue result = sum(summ_array) * array[-1] return result """ if __name__ == '__main__': # These "asserts" using only for self-checking and not necessary for auto-testing assert even_last([0, 1, 2, 3, 4, 5]) == 30, "(0+2+4)*5=30" assert even_last([1, 3, 5]) == 30, "(1+5)*5=30" assert even_last([6]) == 36, "(6)*6=36" assert even_last([]) == 0, "An empty array = 0" print("Use 'Check' to earn sweet rewards!") """ print(even_last([]))
[ "ppyakov@gmail.com" ]
ppyakov@gmail.com
12dce45fd1b5b8283d9673ea5a485939792dec47
ccfe0a1b394e105eb547555ba5eb32010cfbea1e
/src/__init__.py
5657196915b800db2eb43fe3a913e2c31ae69e5e
[]
no_license
aponamarev/CarND-Vehicle-Detection
4fe33b7c1e34d39fa9da8bf52ce5dadd51094263
13b077bb3bccd2b6d46aff9e23050f90d5f3e92d
refs/heads/master
2020-12-25T18:33:26.820217
2017-06-13T05:35:59
2017-06-13T05:35:59
93,965,965
0
0
null
2017-06-10T21:20:11
2017-06-10T21:20:11
null
UTF-8
Python
false
false
122
py
#!/usr/bin/env python """ Created 6/12/17. """ __author__ = "Alexander Ponamarev" __email__ = "alex.ponamaryov@gmail.com"
[ "alex.ponamaryov@gmail.com" ]
alex.ponamaryov@gmail.com
aed660996022b455724c7d0ca62cb8c4e9ba82c9
16bf0672cdec5f6a680a8af02c0a0a3fb0b36189
/modules/4h 32m zip function.py
2887f9f9c0f366401e7a8f71bf95314ccd2654f5
[]
no_license
tanbir6666/test-01
91bfb82dc928a7d2a07b8b5a31501d7c4284435f
2d5a5f67d56a6288beea5a6ed6f3102e43c083c3
refs/heads/master
2023-06-30T11:41:31.542298
2021-08-04T19:33:18
2021-08-04T19:33:18
392,805,328
0
0
null
null
null
null
UTF-8
Python
false
false
1,715
py
#zip function will marge 2 list items Names=["Tanbir","Taohid","Shmu","Hiru","Tayeb"] Ages=[21,11,42,58] height=["5f9inc","4f5inc","5ft3inc","5ft5inc","5ft10inc"] #here height has the shortest amount . here 2 & and zip index will reach max 2 Rows # that means in all zip inside items , whoever has the sortest amount of data will be equal to the zip row value zip_function=list(zip(Names,Ages,height)) print(zip_function) for zi in zip_function: print("name : ",zi[0]," & ","Age : ",zi[1]," & Height :",zi[2]) unzipped_function=list(zip(*zip_function)) print(unzipped_function) for unzipped_tuple in unzipped_function: print(list(unzipped_tuple)) list_one=[1,2,3,4,5,6,7,8,9,10,11] list_two=["one","Two","Three","Four","Five","six","Seven","Eight"] for l1, l2 in zip(list_one, list_two): print(l1) print(l2) # zip is used to marge 2 or more datas and loop threw Together on_line_loop = [[l1,l2] for l1, l2 in zip(list_one, list_two)] print(on_line_loop) items=["Mothboard","RAM","Hard Drive","Power Supply"] prices=[4000,2000,4000,2600] amounts=[10,12,13,25] Sentences=[] for (item,price,amount) in zip(items,prices,amounts): Sentences.append((item+"\'s Price are "+str(price*amount)+" taka & "+str(price)+" taka per pice")) for sen in Sentences: print(sen) import pandas datas=pandas.DataFrame({ "Product Name": items, "Product Price": prices, "Product Amount": amounts, }) print(datas.loc[0:]) datas.to_csv("Product info.csv") my_Serise=pandas.Series(data=items,index=["one","Two","three","four"]) print(my_Serise) print(pandas.read_csv("product info.csv"))
[ "tanbirhawlader12690@gmail.com" ]
tanbirhawlader12690@gmail.com
e1292eb1c55d1880ef69645fdde2e50902e6482e
2b0f9a38782d55ff24b369f2f699359fe89e7654
/PythonWork/Palindromes.py
3b416af369ae8e0eaee3fe42da3930c9a704854d
[ "BSD-3-Clause" ]
permissive
truggles/ProjectEuler
a8534ee4d2a0469708bfc203c7cc3dd781554229
714026567686779eafbf3cc3e1d7c7ebc6cca9c3
refs/heads/master
2020-12-02T21:37:02.795551
2016-02-07T12:09:01
2016-02-07T12:09:01
30,518,146
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
numA = 999 numB = 999 isGreatest = False isGreat = False greatestTempNum = 0 greatestTempSt = '' greatestNum = 0 greatestSt = '' #while numA > numB: for i in range(0, numA-900): nAtemp = numA - i isPalin = False for j in range(0, numB): nBtemp = numB - j product = nAtemp * nBtemp #print product stP = str(product) if len(stP) == 6 and stP[0] == stP[-1] and stP[1] == stP[-2] and stP[2] == stP[-3]: print "%s is a Palindrome!" % stP print "%s = %i x %i" % (stP, nAtemp, nBtemp) if greatestTempNum < product: greatestTempNum = product isPalin = True break print "Greatest is: %i" % greatestTempNum
[ "truggles@wisc.edu" ]
truggles@wisc.edu
6387acf0252dc6b79f49e2b205834defd521184a
4ee8b8bdd3d271a07fd9771133a5562e872fc9ff
/celcius_to_f.py
c671133dfc2722c6670932c088011b4c366afb52
[]
no_license
Ogeoluwa/third
5bab45fe24a9fb5640bb76a3a2527762eaa5eae4
490aaf8d8df2079ac63a09470aa1ca02b42d6dda
refs/heads/main
2023-01-01T15:34:55.960997
2020-11-02T16:37:22
2020-11-02T16:37:22
309,427,027
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
temp = input('What temperature do you want to convert to? (c or f)') if temp == f: fahrenheit = (c * 9/5) + 32
[ "ogeoluwa.otitoloju@gmail.com" ]
ogeoluwa.otitoloju@gmail.com
5d8568be87f3c82feb8f0c5d90fb567f5345adac
07f6b61aacfad5f30d9eedc384f2198fb303a094
/Practice/CodingBat/sleepIn.py
f1ca6cbb029a12e9770552553c78660cb78fcc4a
[]
no_license
tiendong96/Python
5f0306da422d08cebcde948e346c17a3f9556d50
c4b7bc10a1400d346d32357c502e418ad9219f78
refs/heads/master
2023-03-21T17:31:46.863163
2021-03-10T21:52:55
2021-03-10T21:52:55
335,058,019
0
0
null
2021-02-01T20:14:22
2021-02-01T19:18:04
Python
UTF-8
Python
false
false
355
py
# The parameter weekday is True if it is a weekday, # and the parameter vacation is True if we are on vacation. # We sleep in if it is not a weekday or we're on vacation. Return True if we sleep in. def sleep_in(weekday, vacation): return (not weekday or vacation) if __name__ == '__main__': print(sleep_in(False, True)) #not weekday, vacation
[ "tienbusinessinquiry@gmail.com" ]
tienbusinessinquiry@gmail.com
9f56ec17df57c3123fc94c0484a3164bb7f25abe
1130e63c96649389760e6fb98aeee3a9b2bffcb3
/script/test_all_branches
023aa79eb966c58e67e54587454ed9fe7e46073e
[ "BSD-3-Clause" ]
permissive
jrogstad/mopub-android-sdk
e81647c677fe684af49cae87a32a69505649909a
4eed7087a55ec766dfa6b03f4f8ff4ec85c02bfd
refs/heads/master
2021-01-15T18:45:25.968660
2013-11-20T04:51:50
2013-11-20T04:51:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
417
#!/usr/bin/python import os import shared_values import git_helper import os_helper original_branch = git_helper.git_current_branch() for branch in shared_values.branches_synced_with_master: os_helper.try_system_quiet('git co ' + branch) if os.system('mvn clean install'): print "FALURE!!!!!!!!!!!!!!!" exit(1) os_helper.system_quiet('git co ' + original_branch) print "SUCCESS!!!!!!!!!!!"
[ "pair+nat+phil@pivotallabs.com" ]
pair+nat+phil@pivotallabs.com
ca452e16876c0dc2101adadbac281236e1a6d309
b777204c31f83d563b511b2f84c955bd49da9f17
/doctors/models.py
87fe654546e55546dee65ba45321e6b2aca102e5
[]
no_license
DavronR/timesheet
aa5b8f8bdd1e14429e4b5d6ba1edec6c496a53af
5eaa75c0c0186e3eba5cfc47a251ca50baf6f6d5
refs/heads/main
2023-04-01T08:41:31.404284
2021-04-06T21:52:38
2021-04-06T21:52:38
355,235,857
0
0
null
null
null
null
UTF-8
Python
false
false
1,758
py
from django.contrib.auth.models import AbstractUser from django.db import models from django.utils import timezone import datetime from datetime import timedelta # Create your models here. class User(AbstractUser): is_doctor = models.BooleanField(default=False) class Location(models.Model): name = models.CharField(max_length=200) sector = models.CharField(max_length=20) def __str__(self): return self.name class HourCode(models.Model): name = models.CharField(max_length=200) def __str__(self): return self.name class Activity(models.Model): work_date = models.DateField() location = models.ForeignKey(Location, related_name="location", on_delete=models.CASCADE) user = models.ForeignKey(User, related_name="activities", on_delete=models.CASCADE) time_in = models.TimeField() time_out = models.TimeField() hour_code = models.ForeignKey(HourCode, related_name="hour_code", on_delete=models.CASCADE) fbp_payrol = models.DecimalField(max_digits=10, decimal_places=2) amco_payrol = models.DecimalField(max_digits=10, decimal_places=2) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def is_locked(self): today = timezone.now() if (today-self.created).days >= 45: return True return False def hours_worked(self): start = timedelta(hours=self.time_in.hour, minutes=self.time_in.minute) end = timedelta(hours=self.time_out.hour, minutes=self.time_out.minute) td = end - start days, hours, minutes = td.days, td.seconds // 3600, td.seconds // 60 % 60 return f"{hours} hours and {minutes} minutes"
[ "turaboy.holmirzaev@toptal.com" ]
turaboy.holmirzaev@toptal.com
7a5951f31b24674123c2b2f97433fe00f3f35f76
7dd5b9012401afa2e48b3e8d988592cc318a844b
/page_loader/cli.py
cefd4876d9a4d32f3a0df5fc90ba658be2202da4
[]
no_license
twistby/python-project-lvl3
0d5f57bdbb9360960f8f928026a4119a3ab71786
1388a699b51fec948ba2d7f471d63c0eb2ece056
refs/heads/main
2023-08-20T06:50:53.295528
2021-10-31T15:10:39
2021-10-31T15:10:39
392,060,083
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
"""Cli modul.""" import argparse def make_parser(default_folder: str): """Make argparse parser.""" parser = argparse.ArgumentParser( description='Use this utility to download web page localy.', usage='page-loader -o tmp_dir http://template.com', ) parser.add_argument( 'page_address', help='web-page address', ) parser.add_argument( '-o', '--output', help='directory where to save the page', default=default_folder, ) return parser def get_args(default_folder: str): """Return arguments.""" parser = make_parser(default_folder) return parser.parse_args()
[ "pref@outlook.com" ]
pref@outlook.com
a803778b4200d3de5eb086211d30a7d03cd014bf
9e05945d1ed9fcece072a789c3f606e75b27cfcf
/python_study_3/page4/script.py
bf4729462cbd60b0e78d6b86c37b81d1d8f79a5c
[]
no_license
taiga-ishii/Python_Progate
9ad0b8f6aa73e6e1b5eac90cd628c594d18d3009
e121532b2b558aa80e863caee683146e4a87ad67
refs/heads/master
2020-03-27T08:47:54.590587
2018-08-27T11:34:26
2018-08-27T11:34:26
146,288,348
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
# 名前を第2引数で受け取れるようにしてください def print_hand(hand,name): # 「◯◯は□□を出しました」と出力されるように書き換えてください print(name+'は'+hand + 'を出しました') # 第2引数に文字列「にんじゃわんこ」を入れてください print_hand('グー','にんじゃわんこ') # 第2引数に文字列「コンピューター」を入れてください print_hand('パー','コンピューター')
[ "tiger1410111@gmail.com" ]
tiger1410111@gmail.com
177f83fef3510a591e1377a6f8e002e183abe263
968e923ef73711944895e00ec0571387b608b6ce
/exec/runExperiment.py
f2e75c0e432b2094a737a98df6762ea7df4b6011
[]
no_license
chengshaozhe/commitmentSnake
b3805b573e5a8205d146418873ef9ccb91eb5929
76523aee98f5a28ede59d9e5e96f5634e4cfabb3
refs/heads/master
2021-07-06T19:39:30.994709
2020-12-18T10:20:01
2020-12-18T10:20:01
214,105,726
0
0
null
2019-10-10T06:36:39
2019-10-10T06:36:39
null
UTF-8
Python
false
false
3,129
py
import pygame as pg import os import collections as co import numpy as np import pickle import sys import math sys.path.append(os.path.join(os.path.join(os.path.dirname(__file__), '..'))) from src.Visualization import DrawBackground, DrawNewState, DrawImage from src.Controller import HumanController, CheckBoundary from src.UpdateWorld import * from src.Trial import Trial from src.Experiment import Experiment from src.Writer import WriteDataFrameToCSV def main(): dimension = 15 bounds = [0, 0, dimension - 1, dimension - 1] condition = [-5, -3, -1, 0, 1, 3, 5] minDistanceBetweenGrids = max(condition) + 1 maxDistanceBetweenGrids = calculateMaxDistanceOfGrid(bounds) - minDistanceBetweenGrids initialWorld = InitialWorld(bounds) updateWorld = UpdateWorld(bounds, condition, minDistanceBetweenGrids, maxDistanceBetweenGrids) pg.init() screenWidth = 680 screenHeight = 680 screen = pg.display.set_mode((screenWidth, screenHeight)) leaveEdgeSpace = 2 lineWidth = 1 backgroundColor = [205, 255, 204] lineColor = [0, 0, 0] targetColor = [255, 50, 50] playerColor = [50, 50, 255] targetRadius = 10 playerRadius = 10 textColorTuple = (255, 50, 50) pg.event.set_allowed([pg.KEYDOWN, pg.QUIT]) picturePath = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) + '/pictures/' resultsPath = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) + '/results/' humanController = HumanController(dimension) controller = humanController experimentValues = co.OrderedDict() # experimentValues["name"] = input("Please enter your name:").capitalize() experimentValues["name"] = 'test' experimentValues["condition"] = 'None' writerPath = resultsPath + experimentValues["name"] + '.csv' writer = WriteDataFrameToCSV(writerPath) introductionImage = pg.image.load(picturePath + 'introduction.png') restImage = pg.image.load(picturePath + 'rest.png') finishImage = pg.image.load(picturePath + 'finish.png') introductionImage = pg.transform.scale(introductionImage, (screenWidth, screenHeight)) finishImage = pg.transform.scale(finishImage, (int(screenWidth * 2 / 3), int(screenHeight / 4))) drawBackground = DrawBackground(screen, dimension, leaveEdgeSpace, backgroundColor, lineColor, lineWidth, textColorTuple) drawNewState = DrawNewState(screen, drawBackground, targetColor, playerColor, targetRadius, playerRadius) drawImage = DrawImage(screen) block = 15 designValues = createDesignValues(condition * 3, block) checkBoundary = CheckBoundary([0, dimension - 1], [0, dimension - 1]) trial = Trial(controller, drawNewState, checkBoundary) restTrialInterval = math.ceil(len(designValues) / 6) restTrial = list(range(0, len(designValues), restTrialInterval)) experiment = Experiment(trial, writer, experimentValues, initialWorld, updateWorld, drawImage, resultsPath, minDistanceBetweenGrids, maxDistanceBetweenGrids, restImage, finishImage, restTrial) drawImage(introductionImage) experiment(designValues) if __name__ == "__main__": main()
[ "shaozhecheng@outlook.com" ]
shaozhecheng@outlook.com
37a50da5e3dc6a53a4249b19d9105573ad01a331
a10efbf594de50b829e259b4e5f1ef73fa92bb7c
/Sem 4/lab5.py
e86e9783f779b706928164258ca0f6a4f364213e
[]
no_license
andrew-kulikov/digital-analysis
a3e213ce9dd3d634b5fe1f3d20f4125035e75e08
f8a9d25ca4d21adf6a8c0a29f24de7ddae807f3d
refs/heads/master
2020-04-05T09:58:46.473376
2018-11-27T20:51:06
2018-11-27T20:51:06
156,782,906
1
0
null
null
null
null
UTF-8
Python
false
false
4,412
py
from matplotlib import pyplot as plt import numpy as np from sympy import * from sympy.plotting import plot_parametric from sympy.utilities.lambdify import lambdastr from pprint import pprint def f(x): return x * x + np.log(x) - 2 def graph(): x = Symbol('x') y = Symbol('y') p1 = plot_implicit(Eq(sin(x+y)-1.5*x, 0.1), (x, -2, 2), (y, -2, 2)) p2 = plot_implicit(Eq(x**2+y**2, 1), (x, -2, 2), (y, -2, 2)) p1.extend(p2) p1.show() def newton_eq(f, fstr, x0, e=0.00001, max_iterations=10000): print('Newton method is running') x = Symbol('x') df = lambdify(x, fstr.diff(x), 'numpy') xk = x0 - f(x0) / df(x0) for k in range(max_iterations): xp = xk xk -= f(xk) / df(xk) print('Iteration #' + str(k + 1) + ' Current solution: ' + str(xk)) if abs(xp - xk) < e: break return xk, k def chords(f, a, b, e=0.001, max_iterations=10000): print('Chords method is running') xn = b xp = a i = 0 while abs(f(xn)) > e: tmp = xn xn = xp - f(xp) / (f(xn) - f(xp)) * (xn - xp) xp = tmp i += 1 print('Iteration #' + str(i) + ' Current solution: ' + str(xn)) if i > max_iterations: break return xn, i def iterations(x0, F, e=0.001, max_iterations=10000): print('Iterations method is running') xp = np.copy(x0) for i in range(max_iterations): xk = np.copy(xp) for j in range(len(xk)): xk[j] = F[j](*xp) print('Iteration #' + str(i + 1) + ' Current solution: ' + str(xk)) if np.max(np.abs(xk - xp)) < e: break xp = xk return xp, i + 1 def build_F(exprs): x, y = symbols('x y') F = [] for i in range(len(exprs)): F.append(lambdify((x, y), exprs[i], 'numpy')) return F def build_jacobian(syms, funcs): J = [] for i in range(len(funcs)): J.append([]) for sym in syms: J[i].append(lambdify(syms, funcs[i].diff(sym), 'numpy')) return J def eval_jacobian(J, vals): rows, cols = J.shape M = np.zeros(J.shape) for i in range(rows): for j in range(cols): M[i, j] = J[i, j](*vals) return M def eval_F(F, vals): F1 = np.zeros(F.shape) for i in range(len(F)): F1[i] = F[i](*vals) return F1 def newton_syst(J, F, x0, e=0.001, max_iterations=10000): print('Newton method is running') xp = np.copy(x0) xk = np.copy(x0) for i in range(max_iterations): xp = np.copy(xk) xk = xk - np.dot( np.linalg.inv(eval_jacobian(J, xk)), eval_F(F, xk)) print('Iteration #' + str(i + 1) + ' Current solution: ' + str(xk)) if np.max(np.abs(xp - xk)) < e: break return xk, i + 1 def newton_syst_mod(J, F, x0, e=0.001, max_iterations=10000): print('Modified Newton method is running') xp = np.copy(x0) xk = np.copy(x0) J0 = np.linalg.inv(eval_jacobian(J, xk)) for i in range(max_iterations): xp = np.copy(xk) xk = xk - np.dot(J0, eval_F(F, xk)) print('Iteration #' + str(i + 1) + ' Current solution: ' + str(xk)) if np.max(np.abs(xp - xk)) < e: break return xk, i + 1 def main(): a = 1 b = 1.5 ans, iters_chords = chords(f, a, b) x, y = symbols('x y') fstr = x**2 + log(x) - 2 plot(x**2 + log(x) - 2, (x, 0.01, 4)) ans1, iters_newton_eq = newton_eq(f, fstr, 1.25) print(ans, ans1) print(iters_chords, iters_newton_eq) graph() F = build_F([2/3*(sin(x+y) - 0.1), x**2+y**2-1+y]) x0 = np.zeros(2) x0, iters_iter = iterations([-0.5, -0.4], F) print('Iterations method for system: ') print('Amount of iterations: ' + str(iters_iter)) print('Answer: ' + str(x0)) J = np.array(build_jacobian([x, y], [sin(x+y)-0.1-1.5*x, x**2+y**2-1])) F = np.array(build_F([sin(x+y)-0.1-1.5*x, x**2+y**2-1])) x0, iters_newton_sys = newton_syst(J, F, [0.5, 0.75]) print('Newton method for system: ') print('Amount of iterations: ' + str(iters_newton_sys)) print('Answer: ' + str(x0)) x0, iters_newton_sys_mod = newton_syst_mod(J, F, [0.5, 0.75]) print('Modified newton method for system: ') print('Amount of iterations: ' + str(iters_newton_sys_mod)) print(x0) if __name__ == '__main__': main()
[ "andrew.1.kulikov@gmail.com" ]
andrew.1.kulikov@gmail.com
3deab869a7655e415fb6f31d42792fab08077a20
fa04326369fe55edbc72958b7a77affe8c38e7e4
/pyart/correct/unwrap.py
7c6a903447e52e921844c9fc5775989681393ab7
[ "BSD-3-Clause" ]
permissive
tsupinie/pyart
9a8259c243deaf237f5395e27957678a11c86bb9
a65dfa86726bf9b69c41eaefc598d3b48007d128
refs/heads/master
2021-01-12T21:03:08.429546
2015-05-26T15:18:13
2015-05-26T15:18:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,318
py
""" pyart.correct.unwrap ==================== Dealias using multidimensional phase unwrapping algorithms. .. autosummary:: :toctree: generated/ dealias_unwrap_phase _dealias_unwrap_3d _dealias_unwrap_2d _dealias_unwrap_1d _verify_unwrap_unit _is_radar_cubic _is_radar_sweep_aligned _is_radar_sequential _is_sweep_sequential """ from __future__ import print_function import numpy as np from ..config import get_metadata from ._common_dealias import _parse_fields, _parse_gatefilter from ._common_dealias import _parse_rays_wrap_around, _parse_nyquist_vel from ._unwrap_1d import unwrap_1d from ._unwrap_2d import unwrap_2d from ._unwrap_3d import unwrap_3d def dealias_unwrap_phase( radar, unwrap_unit='sweep', nyquist_vel=None, check_nyquist_uniform=True, gatefilter=False, rays_wrap_around=None, keep_original=False, vel_field=None, corr_vel_field=None, skip_checks=False, **kwargs): """ Dealias Doppler velocities using multi-dimensional phase unwrapping. Parameters ---------- radar : Radar Radar object containing Doppler velocities to dealias. unwrap_unit : {'ray', 'sweep', 'volume'}, optional Unit to unwrap independently. 'ray' will unwrap each ray individually, 'sweep' each sweep, and 'volume' will unwrap the entire volume in a single pass. 'sweep', the default, often gives superior results when the lower sweeps of the radar volume are contaminated by clutter. 'ray' does not use the gatefilter parameter and rays where gates ared masked will result in poor dealiasing for that ray. nyquist_velocity : array like or float, optional Nyquist velocity in unit identical to those stored in the radar's velocity field, either for each sweep or a single value which will be used for all sweeps. None will attempt to determine this value from the Radar object. The Nyquist velocity of the first sweep is used for all dealiasing unless the unwrap_unit is 'sweep' when the velocities of each sweep are used. check_nyquist_uniform : bool, optional True to check if the Nyquist velocities are uniform for all rays within a sweep, False will skip this check. This parameter is ignored when the nyquist_velocity parameter is not None. gatefilter : GateFilter, None or False, optional. A GateFilter instance which specified which gates should be ignored when performing de-aliasing. A value of None created this filter from the radar moments using any additional arguments by passing them to :py:func:`moment_based_gate_filter`. False, the default, disables filtering including all gates in the dealiasing. rays_wrap_around : bool or None, optional True when the rays at the beginning of the sweep and end of the sweep should be interpreted as connected when de-aliasing (PPI scans). False if they edges should not be interpreted as connected (other scan types). None will determine the correct value from the radar scan type. keep_original : bool, optional True to retain the original Doppler velocity values at gates where the dealiasing procedure fails or was not applied. False does not replacement and these gates will be masked in the corrected velocity field. vel_field : str, optional Field in radar to use as the Doppler velocities during dealiasing. None will use the default field name from the Py-ART configuration file. corr_vel_field : str, optional Name to use for the dealiased Doppler velocity field metadata. None will use the default field name from the Py-ART configuration file. skip_checks : bool True to skip checks verifing that an appropiate unwrap_unit is selected, False retains these checked. Setting this parameter to True is not recommended and is only offered as an option for extreme cases. Returns ------- corr_vel : dict Field dictionary containing dealiased Doppler velocities. Dealiased array is stored under the 'data' key. References ---------- .. [1] Miguel Arevallilo Herraez, David R. Burton, Michael J. Lalor, and Munther A. Gdeisat, "Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path", Journal Applied Optics, Vol. 41, No. 35 (2002) 7437, .. [2] Abdul-Rahman, H., Gdeisat, M., Burton, D., & Lalor, M., "Fast three-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path. In W. Osten, C. Gorecki, & E. L. Novak (Eds.), Optical Metrology (2005) 32--40, International Society for Optics and Photonics. """ vel_field, corr_vel_field = _parse_fields(vel_field, corr_vel_field) gatefilter = _parse_gatefilter(gatefilter, radar, **kwargs) rays_wrap_around = _parse_rays_wrap_around(rays_wrap_around, radar) nyquist_vel = _parse_nyquist_vel(nyquist_vel, radar, check_nyquist_uniform) if not skip_checks: _verify_unwrap_unit(radar, unwrap_unit) # exclude masked and invalid velocity gates gatefilter.exclude_masked(vel_field) gatefilter.exclude_invalid(vel_field) gfilter = gatefilter.gate_excluded # raw vel. data possibly with masking raw_vdata = radar.fields[vel_field]['data'] vdata = raw_vdata.view(np.ndarray) # mask removed # perform dealiasing if unwrap_unit == 'ray': # 1D unwrapping does not use the gate filter nor respect # masked gates in the rays. No information from the radar object is # needed for the unfolding data = _dealias_unwrap_1d(vdata, nyquist_vel) elif unwrap_unit == 'sweep': data = _dealias_unwrap_2d( radar, vdata, nyquist_vel, gfilter, rays_wrap_around) elif unwrap_unit == 'volume': data = _dealias_unwrap_3d( radar, vdata, nyquist_vel, gfilter, rays_wrap_around) else: message = ("Unknown `unwrap_unit` parameter, must be one of" "'ray', 'sweep', or 'volume'") raise ValueError(message) # mask filtered gates if np.any(gfilter): data = np.ma.array(data, mask=gfilter) # restore original values where dealiasing not applied if keep_original: data[gfilter] = raw_vdata[gfilter] # return field dictionary containing dealiased Doppler velocities corr_vel = get_metadata(corr_vel_field) corr_vel['data'] = data return corr_vel def _dealias_unwrap_3d(radar, vdata, nyquist_vel, gfilter, rays_wrap_around): """ Dealias using 3D phase unwrapping (full volume at once). """ # form cube and scale to phase units nyquist_vel = nyquist_vel[0] # must be uniform, not checked shape = (radar.nsweeps, -1, radar.ngates) scaled_cube = (np.pi * vdata / nyquist_vel).reshape(shape) filter_cube = gfilter.reshape(shape) # perform unwrapping wrapped = np.require(scaled_cube, np.float64, ['C']) mask = np.require(filter_cube, np.uint8, ['C']) unwrapped = np.empty_like(wrapped, dtype=np.float64, order='C') unwrap_3d(wrapped, mask, unwrapped, [False, rays_wrap_around, False]) # scale back to velocity units unwrapped_cube = unwrapped * nyquist_vel / np.pi unwrapped_volume = unwrapped_cube.reshape(-1, radar.ngates) unwrapped_volume = unwrapped_volume.astype(vdata.dtype) return unwrapped_volume def _dealias_unwrap_1d(vdata, nyquist_vel): """ Dealias using 1D phase unwrapping (ray-by-ray) """ # nyquist_vel is only available sweep by sweep which has been lost at # this point. Metioned in the documentation nyquist_vel = nyquist_vel[0] data = np.empty_like(vdata) for i, ray in enumerate(vdata): # extract ray and scale to phase units scaled_ray = ray * np.pi / nyquist_vel # perform unwrapping wrapped = np.require(scaled_ray, np.float64, ['C']) unwrapped = np.empty_like(wrapped, dtype=np.float64, order='C') unwrap_1d(wrapped, unwrapped) # scale back into velocity units and store data[i] = unwrapped * nyquist_vel / np.pi return data def _dealias_unwrap_2d(radar, vdata, nyquist_vel, gfilter, rays_wrap_around): """ Dealias using 2D phase unwrapping (sweep-by-sweep). """ data = np.zeros_like(vdata) for nsweep, sweep_slice in enumerate(radar.iter_slice()): # extract sweep and scale to phase units sweep_nyquist_vel = nyquist_vel[nsweep] scaled_sweep = vdata[sweep_slice] * np.pi / sweep_nyquist_vel sweep_mask = gfilter[sweep_slice] # perform unwrapping wrapped = np.require(scaled_sweep, np.float64, ['C']) mask = np.require(sweep_mask, np.uint8, ['C']) unwrapped = np.empty_like(wrapped, dtype=np.float64, order='C') unwrap_2d(wrapped, mask, unwrapped, [rays_wrap_around, False]) # scale back into velocity units and store data[sweep_slice, :] = unwrapped * sweep_nyquist_vel / np.pi return data def _verify_unwrap_unit(radar, unwrap_unit): """ Verify that the radar supports the requested unwrap unit raises a ValueError if the unwrap_unit is not supported. """ if unwrap_unit == 'sweep' or unwrap_unit == 'volume': if _is_radar_sequential(radar) is False: mess = ("rays are not sequentially ordered, must use 'ray' " "unwrap_unit.") raise ValueError(mess) if unwrap_unit == 'volume': if _is_radar_cubic(radar) is False: mess = "Non-cubic radar volume, 'volume' unwrap_unit invalid. " raise ValueError(mess) if _is_radar_sweep_aligned(radar) is False: mess = ("Angle in sequential sweeps in radar volumes are not " "aligned, 'volume unwrap_unit invalid") raise ValueError(mess) def _is_radar_cubic(radar): """ Test if a radar is cubic (sweeps have the same number of rays). """ rays_per_sweep = radar.rays_per_sweep['data'] return bool(np.all(rays_per_sweep == rays_per_sweep[0])) def _is_radar_sweep_aligned(radar, diff=0.1): """ Test that all sweeps in the radar sample nearly the same angles. Test that the maximum difference in sweep sampled angles is below `diff` degrees. The radar should first be tested to verify that is cubic before calling this function using the _is_radar_cubic function. """ if radar.nsweeps == 1: return True # all single sweep volume are sweep aligned if radar.scan_type == 'ppi': angles = radar.azimuth['data'] elif radar.scan_type == 'rhi': angles = radar.elevation['data'] else: raise ValueError('invalid scan_type: %s' % (radar.scan_type)) starts = radar.sweep_start_ray_index['data'] ends = radar.sweep_end_ray_index['data'] ref_angles = angles[starts[0]:ends[0] + 1] for start, end in zip(starts, ends): test_angles = angles[start:end+1] if np.any(np.abs(test_angles - ref_angles) > diff): return False return True def _is_radar_sequential(radar): """ Test if all sweeps in radar are sequentially ordered. """ for i in xrange(radar.nsweeps): if not _is_sweep_sequential(radar, i): return False return True def _is_sweep_sequential(radar, sweep_number): """ Test if a specific sweep is sequentially ordered. """ start = radar.sweep_start_ray_index['data'][sweep_number] end = radar.sweep_end_ray_index['data'][sweep_number] if radar.scan_type == 'ppi': angles = radar.azimuth['data'][start:end+1] elif radar.scan_type == 'rhi': angles = radar.elevation['data'][start:end+1] elif radar.scan_type == 'vpt': # for VPT scan time should not run backwards, so time is the # equivalent variable to an angle. angles = radar.time['data'] else: raise ValueError('invalid scan_type: %s' % (radar.scan_type)) rolled_angles = np.roll(angles, -np.argmin(angles)) return np.all(np.diff(rolled_angles) >= 0)
[ "jjhelmus@gmail.com" ]
jjhelmus@gmail.com
9024dbe589356bc46c896a0da84b6eb270ac2e4f
6a63a3b241e161d1e69f1521077617ad86f31eab
/python/ray/util/client/__init__.py
17094dae04f1470fa1ddd2b12dcae5e97f7f3a43
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
jovany-wang/ray
47a9df67e8ea26337517d625df50eb0b8b892135
227aef381a605cb1ebccbba4e84b840634196a35
refs/heads/master
2023-09-03T23:53:00.050619
2022-08-20T21:50:52
2022-08-20T21:50:52
240,190,407
1
1
Apache-2.0
2023-03-04T08:57:04
2020-02-13T06:13:19
Python
UTF-8
Python
false
false
11,454
py
import logging import os import sys import threading from typing import Any, Dict, List, Optional, Tuple import grpc import ray._private.ray_constants as ray_constants from ray._private.client_mode_hook import ( _explicitly_disable_client_mode, _explicitly_enable_client_mode, ) from ray._private.ray_logging import setup_logger from ray.job_config import JobConfig from ray.util.annotations import DeveloperAPI logger = logging.getLogger(__name__) # This version string is incremented to indicate breaking changes in the # protocol that require upgrading the client version. CURRENT_PROTOCOL_VERSION = "2022-07-24" class _ClientContext: def __init__(self): from ray.util.client.api import _ClientAPI self.api = _ClientAPI() self.client_worker = None self._server = None self._connected_with_init = False self._inside_client_test = False def connect( self, conn_str: str, job_config: JobConfig = None, secure: bool = False, metadata: List[Tuple[str, str]] = None, connection_retries: int = 3, namespace: str = None, *, ignore_version: bool = False, _credentials: Optional[grpc.ChannelCredentials] = None, ray_init_kwargs: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """Connect the Ray Client to a server. Args: conn_str: Connection string, in the form "[host]:port" job_config: The job config of the server. secure: Whether to use a TLS secured gRPC channel metadata: gRPC metadata to send on connect connection_retries: number of connection attempts to make ignore_version: whether to ignore Python or Ray version mismatches. This should only be used for debugging purposes. Returns: Dictionary of connection info, e.g., {"num_clients": 1}. """ # Delay imports until connect to avoid circular imports. from ray.util.client.worker import Worker if self.client_worker is not None: if self._connected_with_init: return raise Exception("ray.init() called, but ray client is already connected") if not self._inside_client_test: # If we're calling a client connect specifically and we're not # currently in client mode, ensure we are. _explicitly_enable_client_mode() if namespace is not None: job_config = job_config or JobConfig() job_config.set_ray_namespace(namespace) logging_level = ray_constants.LOGGER_LEVEL logging_format = ray_constants.LOGGER_FORMAT if ray_init_kwargs is None: ray_init_kwargs = {} # NOTE(architkulkarni): env_hook is not supported with Ray Client. ray_init_kwargs["_skip_env_hook"] = True if ray_init_kwargs.get("logging_level") is not None: logging_level = ray_init_kwargs["logging_level"] if ray_init_kwargs.get("logging_format") is not None: logging_format = ray_init_kwargs["logging_format"] setup_logger(logging_level, logging_format) try: self.client_worker = Worker( conn_str, secure=secure, _credentials=_credentials, metadata=metadata, connection_retries=connection_retries, ) self.api.worker = self.client_worker self.client_worker._server_init(job_config, ray_init_kwargs) conn_info = self.client_worker.connection_info() self._check_versions(conn_info, ignore_version) self._register_serializers() return conn_info except Exception: self.disconnect() raise def _register_serializers(self): """Register the custom serializer addons at the client side. The server side should have already registered the serializers via regular worker's serialization_context mechanism. """ import ray.util.serialization_addons from ray.util.serialization import StandaloneSerializationContext ctx = StandaloneSerializationContext() ray.util.serialization_addons.apply(ctx) def _check_versions(self, conn_info: Dict[str, Any], ignore_version: bool) -> None: local_major_minor = f"{sys.version_info[0]}.{sys.version_info[1]}" if not conn_info["python_version"].startswith(local_major_minor): version_str = f"{local_major_minor}.{sys.version_info[2]}" msg = ( "Python minor versions differ between client and server:" + f" client is {version_str}," + f" server is {conn_info['python_version']}" ) if ignore_version or "RAY_IGNORE_VERSION_MISMATCH" in os.environ: logger.warning(msg) else: raise RuntimeError(msg) if CURRENT_PROTOCOL_VERSION != conn_info["protocol_version"]: msg = ( "Client Ray installation incompatible with server:" + f" client is {CURRENT_PROTOCOL_VERSION}," + f" server is {conn_info['protocol_version']}" ) if ignore_version or "RAY_IGNORE_VERSION_MISMATCH" in os.environ: logger.warning(msg) else: raise RuntimeError(msg) def disconnect(self): """Disconnect the Ray Client.""" from ray.util.client.api import _ClientAPI if self.client_worker is not None: self.client_worker.close() self.api = _ClientAPI() self.client_worker = None # remote can be called outside of a connection, which is why it # exists on the same API layer as connect() itself. def remote(self, *args, **kwargs): """remote is the hook stub passed on to replace `ray.remote`. This sets up remote functions or actors, as the decorator, but does not execute them. Args: args: opaque arguments kwargs: opaque keyword arguments """ return self.api.remote(*args, **kwargs) def __getattr__(self, key: str): if self.is_connected(): return getattr(self.api, key) elif key in ["is_initialized", "_internal_kv_initialized"]: # Client is not connected, thus Ray is not considered initialized. return lambda: False else: raise Exception( "Ray Client is not connected. Please connect by calling `ray.init`." ) def is_connected(self) -> bool: if self.client_worker is None: return False return self.client_worker.is_connected() def init(self, *args, **kwargs): if self._server is not None: raise Exception("Trying to start two instances of ray via client") import ray.util.client.server.server as ray_client_server server_handle, address_info = ray_client_server.init_and_serve( "127.0.0.1:50051", *args, **kwargs ) self._server = server_handle.grpc_server self.connect("127.0.0.1:50051") self._connected_with_init = True return address_info def shutdown(self, _exiting_interpreter=False): self.disconnect() import ray.util.client.server.server as ray_client_server if self._server is None: return ray_client_server.shutdown_with_server(self._server, _exiting_interpreter) self._server = None # All connected context will be put here # This struct will be guarded by a lock for thread safety _all_contexts = set() _lock = threading.Lock() # This is the default context which is used when allow_multiple is not True _default_context = _ClientContext() @DeveloperAPI class RayAPIStub: """This class stands in as the replacement API for the `import ray` module. Much like the ray module, this mostly delegates the work to the _client_worker. As parts of the ray API are covered, they are piped through here or on the client worker API. """ def __init__(self): self._cxt = threading.local() self._cxt.handler = _default_context self._inside_client_test = False def get_context(self): try: return self._cxt.__getattribute__("handler") except AttributeError: self._cxt.handler = _default_context return self._cxt.handler def set_context(self, cxt): old_cxt = self.get_context() if cxt is None: self._cxt.handler = _ClientContext() else: self._cxt.handler = cxt return old_cxt def is_default(self): return self.get_context() == _default_context def connect(self, *args, **kw_args): self.get_context()._inside_client_test = self._inside_client_test conn = self.get_context().connect(*args, **kw_args) global _lock, _all_contexts with _lock: _all_contexts.add(self._cxt.handler) return conn def disconnect(self, *args, **kw_args): global _lock, _all_contexts, _default_context with _lock: if _default_context == self.get_context(): for cxt in _all_contexts: cxt.disconnect(*args, **kw_args) _all_contexts = set() else: self.get_context().disconnect(*args, **kw_args) if self.get_context() in _all_contexts: _all_contexts.remove(self.get_context()) if len(_all_contexts) == 0: _explicitly_disable_client_mode() def remote(self, *args, **kwargs): return self.get_context().remote(*args, **kwargs) def __getattr__(self, name): return self.get_context().__getattr__(name) def is_connected(self, *args, **kwargs): return self.get_context().is_connected(*args, **kwargs) def init(self, *args, **kwargs): ret = self.get_context().init(*args, **kwargs) global _lock, _all_contexts with _lock: _all_contexts.add(self._cxt.handler) return ret def shutdown(self, *args, **kwargs): global _lock, _all_contexts with _lock: if _default_context == self.get_context(): for cxt in _all_contexts: cxt.shutdown(*args, **kwargs) _all_contexts = set() else: self.get_context().shutdown(*args, **kwargs) if self.get_context() in _all_contexts: _all_contexts.remove(self.get_context()) if len(_all_contexts) == 0: _explicitly_disable_client_mode() ray = RayAPIStub() @DeveloperAPI def num_connected_contexts(): """Return the number of client connections active.""" global _lock, _all_contexts with _lock: return len(_all_contexts) # Someday we might add methods in this module so that someone who # tries to `import ray_client as ray` -- as a module, instead of # `from ray_client import ray` -- as the API stub # still gets expected functionality. This is the way the ray package # worked in the past. # # This really calls for PEP 562: https://www.python.org/dev/peps/pep-0562/ # But until Python 3.6 is EOL, here we are.
[ "noreply@github.com" ]
jovany-wang.noreply@github.com
c2705f3045b807f67db1b7f4cad8f941630fc88b
61fb59938d2bf5d658a90a7ccc21665fd1da0af8
/apps/gateway/forms.py
f2e818293c751ff4a7754d522a8f586c2ad28540
[]
no_license
ian0411/oscar
712f88c27050877071eba998637211aba0703547
29529e6cea4dc97c75fc22534413c2fb041e9a52
refs/heads/master
2020-12-03T03:51:20.256079
2017-06-29T13:51:15
2017-06-29T13:51:15
95,782,541
0
0
null
null
null
null
UTF-8
Python
false
false
490
py
from django import forms from django.contrib.auth.models import User from oscar.apps.customer.utils import normalise_email class GatewayForm(forms.Form): email = forms.EmailField() def clean_email(self): email = normalise_email(self.cleaned_data['email']) if User.objects.filter(email__iexact=email).exists(): raise forms.ValidationError( "A user already exists with email %s" % email ) return email
[ "ian0411@hotmail.com" ]
ian0411@hotmail.com
b1845fcdadfeb8237cb59e861fa3452738df75e7
886aed76cc1a26de9eb5b42f446022cafe63b03c
/haste_processing_node/haste_storage_client_cache.py
a51c743413a0f3a113d50dc2103dd2e0fb2d033c
[]
no_license
HASTE-project/haste-image-analysis-container
83411dab2be41e2a85194e4302e5920db95998b1
5f84b2cd8947797b774bb95e1edc8e5e5e5f7c13
refs/heads/master
2021-10-11T22:54:27.170172
2019-01-30T09:57:05
2019-01-30T09:57:05
119,521,462
0
0
null
2019-01-30T09:57:06
2018-01-30T10:36:22
Python
UTF-8
Python
false
false
3,260
py
from haste_storage_client.core import HasteStorageClient, OS_SWIFT_STORAGE, TRASH from haste.windowed_conformal_model.conformal_interestingness_model import ConformalInterestingnessModel import json import os.path import urllib.request haste_storage_clients_az_lnp = {} haste_storage_clients_vironova = {} def __get_magic_haste_client_config_from_server(host): print('attempting to read config info from ' + host + '...', flush=True) t = 'w0rj540vhw8dx0ng0t6nw8cghp' url = 'http://' + host + ':27000/' + t + '/haste_storage_client_config.json' stream = urllib.request.urlopen(url, timeout=2) config = stream.read() config = config.decode('utf-8') config = json.loads(config) return config def __get_haste_storage_client_config(): # If a local config file exists, use it: json_config = os.path.expanduser('~/.haste/haste_storage_client_config.json') if os.path.isfile(json_config): return None # Client will attempt to read config from this file if passed 'None'. # Otherwise, use the auto-configuration server: # There is no DNS for SNIC, so hostnames won't work here. (unless /etc/hosts is updated inside the container). for host in ['192.168.1.28', # metadata-db-prod (private) '130.239.81.96', # metadata-db-prod (public) '127.0.0.1']: try: return __get_magic_haste_client_config_from_server(host) except Exception as e: print(e) print('...failed') print('failed reading config from all locations', flush=True) def get_storage_client_az_lnp(stream_id): # For the Vironova dataset, streamed from microscope. if stream_id not in haste_storage_clients_az_lnp: haste_storage_client_config = __get_haste_storage_client_config() model = ConformalInterestingnessModel() client = HasteStorageClient(stream_id, config=haste_storage_client_config, interestingness_model=model, storage_policy=[(0.5, 1.0, OS_SWIFT_STORAGE)]) # discard blobs which don't match the policy. print('creating client for stream ID: ' + stream_id, flush=True) haste_storage_clients_az_lnp[stream_id] = client # TODO: only cache N clients. return haste_storage_clients_az_lnp[stream_id] def get_storage_client_vironova(stream_id): if stream_id not in haste_storage_clients_vironova: haste_storage_client_config = __get_haste_storage_client_config() # Default to 1.0 model = None client = HasteStorageClient(stream_id, config=haste_storage_client_config, interestingness_model=model, storage_policy=[(0.0, 1.0, OS_SWIFT_STORAGE)]) # discard blobs which don't match the policy. print('creating client for stream ID: ' + stream_id, flush=True) haste_storage_clients_vironova[stream_id] = client # TODO: only cache N clients. return haste_storage_clients_vironova[stream_id] if __name__ == '__main__': # Test config = __get_haste_storage_client_config() print(config)
[ "blamey.ben@gmail.com" ]
blamey.ben@gmail.com
06fe70e2702191d04c51c0c22a73d8d266a8bc53
b98aa0f5c354a1840a8be7ecd92445edc9a7f280
/manage.py
64c973d6e7dc217a367dfb4bff92d3a4a6374d9c
[ "Unlicense" ]
permissive
SpaceHotDog/Flask_API
337297ceb36367505bb7e19cde3dbdb462d87058
8ce5136f44ee21a0e0ab77a1d8fefadb0dbeb74d
refs/heads/master
2021-01-16T18:00:16.591922
2017-08-12T18:24:01
2017-08-12T18:24:01
100,034,648
0
0
null
null
null
null
UTF-8
Python
false
false
719
py
# manage.py import os from flask_script import Manager # Class for handling a set of commands. from flask_migrate import Migrate, MigrateCommand from app import db, create_app # Import the models so that the script can find the models to be migrated. from app import models app = create_app(config_name=os.getenv('APP_SETTINGS')) # The MigrateCommand contains a set of migration commands. migrate = Migrate(app, db) # The Manager class keeps track of all the commands and handles how they are called from the command line. manager = Manager(app) # Manager also adds the migration commands and enforces that they start with db. manager.add_command('db', MigrateCommand) if __name__ == '__main__': manager.run()
[ "noreply@github.com" ]
SpaceHotDog.noreply@github.com
70525813a57f89b68432c0c09c5e6cc1b4285b92
627867eca0d82f8fb399a4b7320da7979af3e8dd
/venv/bin/pip3
d631029b89174cafdc79fb08b15d169c09560ff3
[]
no_license
itoutsourcing86/photo-api
bd3bf6f79a163d26f6bb3629861e3bdc190a17d5
8886b8fb86dbcc7163cdb4f3ad519ffb9d8ddc33
refs/heads/master
2021-04-06T19:51:33.166133
2018-03-15T10:45:20
2018-03-15T10:45:20
125,268,301
0
0
null
null
null
null
UTF-8
Python
false
false
394
#!/home/alex/PycharmProjects/api/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip3' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip3')() )
[ "itoutsourcing86@gmail.com" ]
itoutsourcing86@gmail.com
2b3d1686bc46f44039b6cf79b155c3b1269ec801
ee1de78906a835f60a2f4e7eec5daac6acec4d41
/day07/buying3_4.py
dc18e8d21b78787a258e7165e258e948f962ba48
[]
no_license
ktb5891/ML_lecture
7d3663f550ffbaa9aa18462c53d48e94bd6a22bf
ee691d6fdfe9a2835be7f65fbce96cf1d160e15a
refs/heads/main
2023-06-03T03:03:10.667083
2021-06-24T00:43:15
2021-06-24T00:43:15
377,467,891
0
0
null
null
null
null
UTF-8
Python
false
false
4,034
py
import requests from bs4 import BeautifulSoup import pymysql def save_data(item_info): sql = "select count(*) from items where item_code= " + item_info['item_code'] + ";" cursor.execute(sql) result = cursor.fetchone() if result[0] == 0: sql2 = """insert into items values('""" + item_info['item_code'] + """', '""" + item_info['title'] + """', """ + str(item_info['origin_price']) + """, """ + str(item_info['discount_price']) + """, """ + str(item_info['discount_percent']) + """, '""" + item_info['provider'] + """');""" # print(sql2) cursor.execute(sql2) sql1 = """insert into ranking(main_category, sub_category, item_ranking, item_code) values('""" + item_info[ 'category_name'] + """', '""" + item_info['sub_category_name'] + """', """ + str(item_info['ranking']) + """, '""" + item_info['item_code'] + """');""" # print(sql1) cursor.execute(sql1) def get_items(html, category_name, sub_category_name): items_result_list = list() best_item = html.select('div.best-list') for idx, item in enumerate(best_item[1].select('li')): dict_data = dict() ranking = idx + 1 title = item.select_one('a.itemname') origin_price = item.select_one('div.o-price') discount_price = item.select_one('div.s-price strong span') discount_percent = item.select_one('div.s-price em') if origin_price == None or origin_price.get_text() == '': origin_price = discount_price if discount_price == None: origin_price, discount_price = 0, 0 else: origin_price = origin_price.get_text().replace(',', '').replace('원', '') discount_price = discount_price.get_text().replace(',', '').replace('원', '') if discount_percent == None or discount_percent == '': discount_percent = 0 else: discount_percent = discount_percent.get_text().replace('%', '') product_link = item.select_one('div.thumb > a') item_code = product_link.attrs['href'].split('=')[1].split('&')[0] res = requests.get(product_link.attrs['href']) soup = BeautifulSoup(res.content, 'html.parser') provider = soup.select_one('div.item-topinfo_headline > p > span') if provider == None: provider = '' else: provider = provider.get_text() dict_data['category_name'] = category_name dict_data['sub_category_name'] = sub_category_name dict_data['ranking'] = ranking dict_data['title'] = title.get_text() dict_data['origin_price'] = origin_price dict_data['discount_price'] = discount_price dict_data['discount_percent'] = discount_percent dict_data['item_code'] = item_code dict_data['provider'] = provider.replace('\n', '') save_data(dict_data) # print(dict_data) # print(category_name, sub_category_name, ranking, item_code, provider, title.get_text(), origin_price, discount_price, discount_percent) def get_category(category_link, category_name): res = requests.get(category_link) soup = BeautifulSoup(res.content, "html.parser") # print(category_link, category_name) # get_items(soup, category_name, "ALL") sub_categories = soup.select('div.gbest-cate div.cate-l div.navi.group ul li a') for sub_category in categories: res = requests.get('http://corners.gmarket.co.kr' + sub_category['href']) soup = BeautifulSoup(res.content, 'html.parser') get_items(soup, category_name, sub_category.get_text()) print(category_link, category_name, sub_category.get_text(), 'http://corners.gmarket.co.kr' + sub_category['href']) conn = pymysql.connect(host='localhost', port=3306, user='root', passwd='1234', db='mydb', charset='utf8') cursor = conn.cursor() res = requests.get("http://corners.gmarket.co.kr") soup = BeautifulSoup(res.content, "html.parser") categories = soup.select('div.gbest-cate ul.by-group li a') for category in categories: print('http://corners.gmarket.co.kr' + category['href'], category.get_text()) get_category('http://corners.gmarket.co.kr' + category['href'], category.get_text())
[ "ktb5891@gmail.com" ]
ktb5891@gmail.com
19b532f43cbeab3da7e5490cd2edcb009dd28067
a9665b57c3ecf22fbd372b7433ea72b8959695c6
/catkin_ws/build/gazebo_simulation_scene/catkin_generated/pkg.develspace.context.pc.py
2ed6bf622a24187d4d45f0d536ba33fb81f3d89d
[]
no_license
ShamaineChung/ROS_ABB_workspace
5196aa792927498da7d03de800f5c3695525de1b
64373a8287af1e53f50110e8def1463c63f0dcd7
refs/heads/main
2023-07-12T18:10:18.757134
2021-08-25T10:07:13
2021-08-25T10:07:13
385,182,730
1
0
null
null
null
null
UTF-8
Python
false
false
387
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "gazebo_simulation_scene" PROJECT_SPACE_DIR = "/home/shamaine/catkin_ws/devel" PROJECT_VERSION = "0.0.0"
[ "A00215756@student.ait.ie" ]
A00215756@student.ait.ie
11ff1d1611b9c40fc911df54b4e95a6d14dabf45
0ef53ff59c5584588ed2e85390b0383bd34de73e
/Python/SICP/3.5.py
a3a06237648c1eaa71c37fdd425ab5878e0cde2b
[]
no_license
bgmnbear/learn
f309fa459e0328a80e450fc4d37fba68015a2ece
0a29be76c715d37e6d7124103283b849831c3b58
refs/heads/master
2023-01-22T15:12:25.526422
2019-08-18T09:02:10
2019-08-18T09:02:10
115,715,622
0
2
null
2023-01-19T10:34:36
2017-12-29T11:07:19
Python
UTF-8
Python
false
false
3,699
py
from functools import reduce from operator import mul class Exp(object): """A call expression in Calculator.""" def __init__(self, operator, operands): self.operator = operator self.operands = operands def __repr__(self): return 'Exp({0}, {1})'.format(repr(self.operator), repr(self.operands)) def __str__(self): operand_strs = ', '.join(map(str, self.operands)) return '{0}({1})'.format(self.operator, operand_strs) def calc_apply(operator, args): """Apply the named operator to a list of args.""" if operator in ('add', '+'): return sum(args) if operator in ('sub', '-'): if len(args) == 0: raise TypeError(operator + ' requires at least 1 argument') if len(args) == 1: return -args[0] return sum(args[:1] + [-arg for arg in args[1:]]) if operator in ('mul', '*'): return reduce(mul, args, 1) if operator in ('div', '/'): if len(args) != 2: raise TypeError(operator + ' requires exactly 2 arguments') numer, denom = args return numer / denom def tokenize(line): """Convert a string into a list of tokens.""" spaced = line.replace('(', ' ( ').replace(')', ' ) ').replace(',', ' , ') return spaced.split() known_operators = ['add', 'sub', 'mul', 'div', '+', '-', '*', '/'] def analyze(tokens): """Create a tree of nested lists from a sequence of tokens.""" assert_non_empty(tokens) token = analyze_token(tokens.pop(0)) if type(token) in (int, float): return token if token in known_operators: if len(tokens) == 0 or tokens.pop(0) != '(': raise SyntaxError('expected ( after ' + token) return Exp(token, analyze_operands(tokens)) else: raise SyntaxError('unexpected ' + token) def analyze_operands(tokens): """Analyze a sequence of comma-separated operands.""" assert_non_empty(tokens) operands = [] while tokens[0] != ')': if operands and tokens.pop(0) != ',': raise SyntaxError('expected ,') operands.append(analyze(tokens)) assert_non_empty(tokens) tokens.pop(0) # Remove ) return operands def assert_non_empty(tokens): """Raise an exception if tokens is empty.""" if len(tokens) == 0: raise SyntaxError('unexpected end of line') def analyze_token(token): """Return the value of token if it can be analyzed as a number, or token.""" try: return int(token) except (TypeError, ValueError): try: return float(token) except (TypeError, ValueError): return token def calc_parse(line): """Parse a line of calculator input and return an expression tree.""" tokens = tokenize(line) expression_tree = analyze(tokens) if len(tokens) > 0: raise SyntaxError('Extra token(s): ' + ' '.join(tokens)) return expression_tree def calc_eval(expression_tree): pass def read_eval_print_loop(): """Run a read-eval-print loop for calculator.""" while True: try: expression_tree = calc_parse(input('calc> ')) print(calc_eval(expression_tree)) except (SyntaxError, TypeError, ZeroDivisionError) as err: print(type(err).__name__ + ':', err) except (KeyboardInterrupt, EOFError): # <Control>-D, etc. print('Calculation completed.') return if __name__ == '__main__': print(calc_apply('+', [1, 2, 3])) print(calc_apply('-', [10, 1, 2, 3])) print(calc_apply('*', [])) print(calc_apply('/', [40, 5])) e = Exp('add', [2, Exp('mul', [4, 6])]) print(e, str(e))
[ "jasonwhister@gmail.com" ]
jasonwhister@gmail.com
19f4062693725a5f8233224741ba911bc40832cb
1dea0c959bdc0d8a3c4be5b89e09cda994d96ced
/preprocess/utils.py
c591317e31c29cfb31c99aef1583bdf5dead8d83
[ "Apache-2.0" ]
permissive
fangzheng354/relogic
d06796b95969b68a211664605f446f91eccba743
2e0ebae773ff39260e35e29eaae625182031f991
refs/heads/main
2023-07-01T12:31:56.384754
2021-08-03T04:40:41
2021-08-03T04:40:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,874
py
import os from config import * import random import json from tqdm import tqdm from sql_formatter.formatting import translate_sql import sqlite3 import multiprocessing from multiprocessing import Manager import time random.seed(33) def mkdir(path): if os.path.exists(path): print("{} already exists".format(path)) else: os.mkdir(path) print("{} creates".format(path)) def read_json(path): f = open(path, "r", encoding="utf-8") content = json.load(f) f.close() return content def write_json(path, data): f = open(path, "w", encoding="utf-8") f.write(json.dumps(data, indent=4)) f.close() def preprocess_spider(rawdata, t): preprocess = {} print("preprocess {}".format(t)) for data in tqdm(rawdata): query = data[Spider_query] translated_sql, translated_struct_sql = translate_sql(query) preprocess[query] = translated_struct_sql print("{} done".format(t)) return preprocess def execute_sql(c, mutated_sql, return_dict, executable_SQL): try: cursor = c.execute(mutated_sql) if executable_SQL: if list(cursor): return_dict[mutated_sql] = mutated_sql else: return_dict[mutated_sql] = mutated_sql except: pass def get_dbschema(path): db_schema = {} with open(path) as f: db_file = json.load(f) for data in db_file: db_schema[data['db_id']] = {} for tab_id, col in data['column_names_original']: if col == '*': continue if tab_id not in db_schema[data['db_id']]: db_schema[data['db_id']][tab_id] = [col, '~', '*'] else: db_schema[data['db_id']][tab_id] += [col] return db_schema def mutate_sql(index, data, time_out, sql_dict, db_schema, db_dir): manager = Manager() return_dict = manager.dict() jobs = [] db_id = data['db_id'] raw_sql = data['query'] sql = data['query_toks'] tables = db_schema[db_id] db_path = os.path.join(db_dir, db_id, db_id + '.sqlite') mutated_sqls = [] if raw_sql not in sql_dict: sql_dict[raw_sql] = [] else: return executable_SQL = True conn = sqlite3.connect(db_path, timeout=10.0) c = conn.cursor() try: cursor = c.execute(raw_sql) if not list(cursor): executable_SQL = False except: executable_SQL = False for i in range(mutate_iter_num): mutated_sql = [] for tok_i, tok in enumerate(sql): upper_tok = tok.upper() new_tok = tok if random.random() > alpha: for k, v in swap_dict.items(): if upper_tok in v: swap_tok = random.choice(v) new_tok = swap_tok if swap_tok != tok.upper() else tok if random.random() > beta: for k, v in tables.items(): if '.' in tok: alias = tok.split('.')[0] col = tok.split('.')[1] if col in v or col.capitalize() in v: col = random.choice(v) new_tok = alias + '.' + col else: if tok in v or tok.capitalize() in v: new_tok = random.choice(v) if random.random() > gamma and new_tok != tok: new_tok = tok + ' , ' + new_tok if tok.isnumeric() and random.random() < theta: tok = max(int(tok) + random.randint(-10, 10), 0) new_tok = str(tok) mutated_sql.append(new_tok) mutated_sql = ' '.join(mutated_sql) mutated_sql = mutated_sql.replace(", ~ ", ",").replace(" ~ ,", ",").replace(", ~ ,", ",").replace("~", "").replace( '``', '\"').replace("''", '\"') if mutated_sql == ' '.join(sql): continue p = multiprocessing.Process(target=execute_sql, args=(c, mutated_sql, return_dict, executable_SQL)) jobs.append(p) p.start() start = time.time() while time.time() - start <= time_out: if not any(p.is_alive() for p in jobs): break time.sleep(.1) else: print("Timeout with processing: {} \n".format(raw_sql)) for p in jobs: p.terminate() p.join() mutated_sqls = return_dict.values() mutated_sqls = list(set(mutated_sqls)) sql_dict[raw_sql] = mutated_sqls if len(mutated_sqls) < 5: print("SQL {}: {}".format(index, raw_sql)) print(mutated_sqls) print('Valid Muatation: {}'.format(len(mutated_sqls)), "\n--------------------------------------") def create_output(t, idir, odir): rawdir = os.path.join(odir, Raw) preprocessdir = os.path.join(odir, Preprocess) mkdir(rawdir) mkdir(preprocessdir) if t == 'spider': traindata = read_json(os.path.join(idir, Spider_train)) otherdata = read_json(os.path.join(idir, Spider_others)) devdata = read_json(os.path.join(idir, Spider_dev)) rawtrain = [] rawdev = [] rawtest = devdata rawoutofdomain = otherdata random.shuffle(traindata) train_len = round(len(traindata) * 0.8) print("spider raw starts") for i, data in enumerate(tqdm(traindata)): if i < train_len: rawtrain.append(data) else: rawdev.append(data) print("spider raw done") write_json(os.path.join(rawdir, Trainjson), rawtrain) write_json(os.path.join(rawdir, Devjson), rawdev) write_json(os.path.join(rawdir, Testjson), rawtest) write_json(os.path.join(rawdir, Outofdomainjson), rawoutofdomain) print("spider preprocess starts") preprocesstrain = preprocess_spider(rawtrain, 'train') write_json(os.path.join(preprocessdir, Trainjson), preprocesstrain) preprocessdev = preprocess_spider(rawdev, 'dev') write_json(os.path.join(preprocessdir, Devjson), preprocessdev) preprocesstest = preprocess_spider(rawtest, 'test') write_json(os.path.join(preprocessdir, Testjson), preprocesstest) preprocessoutofdomain = preprocess_spider(rawoutofdomain, 'outofdomain') write_json(os.path.join(preprocessdir, Outofdomainjson), preprocessoutofdomain) print("spider preprocess done") print("mutate starts") db_schema = get_dbschema(os.path.join(idir, Spider_table)) total_data = [] total_data += traindata + devdata + otherdata sql_dict = {} for index, data in enumerate(tqdm(total_data)): time_out = 3 mutate_sql(index, data, time_out, sql_dict, db_schema, os.path.join(idir, Spider_database)) write_json(os.path.join(preprocessdir, Mutationjson), sql_dict) print("mutate done") else: print("spider preprocess starts") preprocesstrain = preprocess_spider(rawtrain, 'train') write_json(os.path.join(preprocessdir, Trainjson), preprocesstrain) print("spider preprocess done") """print("mutate starts") db_schema = get_dbschema(os.path.join(idir, Spider_table)) total_data = [] total_data += traindata + devdata + otherdata sql_dict = {} for index, data in enumerate(tqdm(total_data)): time_out = 3 mutate_sql(index, data, time_out, sql_dict, db_schema, os.path.join(idir, Spider_database)) write_json(os.path.join(preprocessdir, Mutationjson), sql_dict) print("mutate done")"""
[ "cjs7605@AD.PSU.EDU@e5-cse-rz01.ad.psu.edu" ]
cjs7605@AD.PSU.EDU@e5-cse-rz01.ad.psu.edu
ce70ac7410a74010846a19763d8efd727ced99c9
5fdc2f8550925e79f4ae7f526327456a10ad1148
/object/method.py
450e18d81444b8324cee8e577002353e63683cde
[]
no_license
bingozhou/python
d58ae62bf371eaef54887cdc187b62eddd695627
7a794acddac84e76f22c8fe7ec42147df61b9058
refs/heads/master
2021-01-01T18:32:56.121045
2017-07-31T01:26:10
2017-07-31T01:26:10
98,365,059
0
0
null
null
null
null
UTF-8
Python
false
false
123
py
#!/usr/bin/python # Filename:method.py class Person: def sayHi(self): print 'Hello,how are you?' p=Person() p.sayHi()
[ "bingozhouy@qq.com" ]
bingozhouy@qq.com
2a37f2bf163bae21be3b19485e8128f0b4923702
fa25d937309fea55ff5a33d30262012adedfaf19
/02_Arrays/anti_diagonals.py
4906cf5524a596ee5f150a96e1300cb1eed2dff8
[ "MIT" ]
permissive
alqamahjsr/InterviewBit-1
20d033a2feecb85a37b28f2ff178b8d85424a6ea
fe2ce1bd64814c3a5687bf9b827b46bdbcf9144f
refs/heads/master
2020-09-16T18:31:10.326427
2018-12-09T11:13:14
2018-12-09T11:13:14
223,853,679
1
3
MIT
2019-11-25T03:31:24
2019-11-25T03:31:23
null
UTF-8
Python
false
false
975
py
# Anti Diagonals # https://www.interviewbit.com/problems/anti-diagonals/ # # Give a N*N square matrix, return an array of its anti-diagonals. Look at the example for more details. # # Example: # # Input: # # 1 2 3 # 4 5 6 # 7 8 9 # # Return the following : # # [ # [1], # [2, 4], # [3, 5, 7], # [6, 8], # [9] # ] # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # class Solution: # @param A : list of list of integers # @return a list of list of integers def diagonal(self, A): res = [list() for i in range(2 * len(A) - 1)] for i in range(len(A)): for j in range(len(A)): res[i + j].append(A[i][j]) return res # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if __name__ == "__main__": s = Solution() print(s.diagonal([ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]))
[ "sladjan.kantar@modoolar.com" ]
sladjan.kantar@modoolar.com
6d816f2493b0abbe65f6c1d2490503b6956f567a
f39806c814b8672b26c8b3d328c7003daa6ff3b5
/admin.py
6ddc3ea4b362b256b0d744898ccdf5835b17addf
[]
no_license
veenakrishna123/POLLPROJECT
1f42fc1634f45ceb0a1a9133b15b5fe100c74873
457586a5931ff755356829a2095101df60a21c54
refs/heads/master
2020-06-07T14:50:27.380759
2019-06-21T06:34:18
2019-06-21T06:34:18
193,044,097
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
from django.contrib import admin from .models import Question from .models import Choice admin.site.register(Question) admin.site.register(Choice) # Register your models here.
[ "noreply@github.com" ]
veenakrishna123.noreply@github.com
1063f283444a8d4655b18e4f02e7125c1cd8136f
9a585288deadd7020eb61bd7dd61312fe64880a8
/BirdCNN/birdConstants.py
2f6a02bed6e5b0c72e8e4e888cd591e056458365
[]
no_license
arevello/BirdProject
d55ce32db69393b7eebc3d9c3598b1ff63a49eb9
702b0e7f1a39c903a9c4f74bc46b56ccd70dc3d7
refs/heads/master
2023-07-29T05:29:29.143529
2021-09-08T18:35:18
2021-09-08T18:35:18
246,415,035
0
0
null
null
null
null
UTF-8
Python
false
false
1,100
py
''' Created on Jun 8, 2020 @author: Alex ''' class BirdConstants(object): #species classifications HERG = 0 GBBG = 1 COEI = 2 #COEI_M = 2 #COEI_F = 3 TERN = 4 DCCO = 5 CANG = 6 GBHE = 7 LAGU = 8 #unsure of SNEG = 9 BAEA = 10 GLIB = 11 BCNE = 12 BLGU = 13 ATPU = 14 TernSPP = 15 OTHER = 16 specieStrAll = ["HERG", "GBBG", "COEI", "TERN", "DCCO", "CANG", "GBHE", "LAGU", "SNEG", "BAEA", "GLIB", "BCNE", "BLGU", "ATPU", "Tern spp", "Other"] specieStrUseful = ["HERG", "GBBG", "DCCO", "COEI", "Tern spp"] #numSpeciesClass = 9 #behavior classifications roosting = 0 nesting = 1 flying = 2 numBehaviorClass = 3 # def strToSpecies(self, spcStr): # idx = 0 # while idx < len(self.specieStrAll): # if spcStr == self.specieStrAll[idx]: # return idx # idx += 1 # print("cant find match for ", spcStr) # return 16 def __init__(self): ''' Constructor '''
[ "alexander.revello@maine.edu" ]
alexander.revello@maine.edu
7893ea96f01537030520c994aaa38ba14a74866f
259e48ed815719914cce22478361eb34f7d61e88
/api/file/urls.py
4993a4760cbe8e761f9279c089ab1c5e4661c3d5
[]
no_license
YAG19/django-react
719ebf73688c51cf817193486364f680f1ca533d
0a58d94476b5ab820fcea502c182f743b2c6650b
refs/heads/main
2023-06-10T17:37:40.666854
2021-07-09T13:21:23
2021-07-09T13:21:23
384,442,207
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
from rest_framework import routers from django.urls import path , include from . import views router = routers.DefaultRouter() router.register(r'',views.ProductViewSet) urlpatterns = [ path('',include(router.urls)), ]
[ "[yagnesh.patel9898@gmail.com]" ]
[yagnesh.patel9898@gmail.com]
a1776bfbc30847148388fcd483940e42351ef4ec
a4681043cb56a9ab45be32a62fa9700b391f087f
/14-Statistics_with_Python/Histograms/Plotting_a_Histogram.py
45ed0cd1e64ea34834f4002801b2e547c54d40c1
[]
no_license
MarceloDL-A/Python
b16b221ae4355b6323092d069bf83d1d142b9975
c091446ae0089f03ffbdc47b3a6901f4fa2a25fb
refs/heads/main
2023-01-01T02:29:31.591861
2020-10-27T19:04:11
2020-10-27T19:04:11
301,565,957
0
0
null
2020-10-27T19:04:12
2020-10-05T23:41:30
Python
WINDOWS-1252
Python
false
false
2,737
py
""" HISTOGRAMS Plotting a Histogram At this point, you’ve learned how to find the numerical inputs to a histogram. Thus far the size of our datasets and bins have produced results that we can interpret. This becomes increasingly difficult as the number of bins in a histogram increases. Because of this, histograms are typically viewed graphically, with bin ranges on the x-axis and counts on the y-axis. The figure below shows the graphical representation of the histogram for our exercise class example from last exercise. Notice, there are five equally-spaced bars, with each displaying a count for an age range. Compare the graph to the table, just below it. Histogram 20-29 30-39 40-49 50-59 60-69 7 4 4 3 2 Histograms are an easy way to visualize trends in your data. When I look at the above graph, I think, “More people in the exercise class are in their twenties than any other decade. Additionally, the histogram is skewed, indicating the class is made of more younger people than older people.” We created the plot above using the matplotlib.pyplot package. We imported the package using the following code: from matplotlib import pyplot as plt We plotted the histogram with the following code. Notice, the range and bins arguments are the same as we used in the last exercise: plt.hist(exercise_ages, range = (20, 70), bins = 5, edgecolor='black') plt.title("Decade Frequency") plt.xlabel("Ages") plt.ylabel("Count") plt.show() In the code above, we used the plt.hist() function to create the plot, then added a title, x-label, and y-label before showing the graph with plt.show(). """ # Import packages import codecademylib import numpy as np import pandas as pd """ At the top of script.py, we’ve imported codecademylib, which is a package that Codecademy uses to plot your histogram in the panel to the right. Don’t worry about this library. Any Python development environment that you may use will take care of this for you. From matplotlib, import pyplot as plt. """ # import pyplot as plt import pyplot as plt # Read in transactions data transactions = pd.read_csv("transactions.csv") # Save transaction times to a separate numpy array times = transactions["Transaction Time"].values """ Use the plt.hist() function to create a plot for each six-hour period in a day. Use the following range and number of bins. Range: 0 to 24 Bins: 4 """ # Use plt.hist() below plt.hist(times, range = (0, 24), bins = 4, edgecolor='black') """ Use plt.show() to show the figure. Feel free to add a title, x-label, and y-label if you want. You can copy the code from the hint as an example. """ plt.title("Weekday Frequency of Customers") plt.xlabel("Hours (1 hour increments)") plt.ylabel("Count") plt.show()
[ "marcelo.delmondes.lima@usp.br" ]
marcelo.delmondes.lima@usp.br
97aeecb03460947eec33e9b36bbba8f69d437700
f2e9eabc8ea32c4381525f8dfb7865aaa98af460
/LostLeptonBkg/python/makeLLFromNTuple_cff.py
2502d0e77c912eec7ff70d2966c438822893da35
[]
no_license
kheine/RA2Classic
a75977dc3ae1ce5a51bc5471111c69c00137bfdb
0f48e482da6859dad96002ad68fb78b9a56fac57
refs/heads/master
2020-04-13T18:49:31.530643
2013-08-02T13:28:46
2013-08-02T13:28:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,205
py
# $Id: makeEffFromMC_cff.py,v 1.7 2012/12/05 13:10:48 adraeger Exp $ # import FWCore.ParameterSet.Config as cms def makeLLFromNTuple(process, outFileName, useCHSJets=True, invertLeptonVeto=False, NJetsMin=2, HTMin=500., MHTMin=200., reportEveryEvt=10, Global_Tag="", testFileName=["/store/user/kheine/HT/RA2PreSelectionOnData_Run2012A_HT_PromptReco-v1_v5/71cce229addb17644d40a607fa20b5d7/RA2SkimsOnData_99_3_TPC.root"], numProcessedEvt=1000): process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.GlobalTag.globaltag = Global_Tag ## --- Log output ------------------------------------------------------ process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger.cerr = cms.untracked.PSet( placeholder = cms.untracked.bool(True) ) process.MessageLogger.statistics.append('cout') process.MessageLogger.cout = cms.untracked.PSet( INFO = cms.untracked.PSet(reportEvery = cms.untracked.int32(reportEveryEvt)) ) ## --- Files to process ------------------------------------------------ process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(12) ) process.source = cms.Source("EmptySource" ) ## --- Output file ----------------------------------------------------- process.TFileService = cms.Service( "TFileService", fileName = cms.string(outFileName+".root") ) ## --- Selection sequences --------------------------------------------- # Filter-related selection process.load('RA2Classic.TreeMaker.filterSelection_cff') process.load('SandBox.Skims.RA2Leptons_cff') process.CleaningSelection = cms.Sequence( process.filterSelection ) # Filter-related selection # process.load('RA2Classic.TreeMaker.filterSelection_cff') # from RecoMET.METFilters.jetIDFailureFilter_cfi import jetIDFailure # process.PBNRFilter = jetIDFailure.clone( # JetSource = cms.InputTag('MHTJets'), # MinJetPt = cms.double(30.0), # taggingMode = cms.bool(False) # ) # process.filterSelection += process.PBNRFilter # from RecoMET.METFilters.multiEventFilter_cfi import multiEventFilter # process.HCALLaserEvtFilterList2012 = multiEventFilter.clone( # file = cms.FileInPath('EventFilter/HcalRawToDigi/data/AllBadHCALLaser.txt'), # taggingMode = cms.bool(False) # ) # process.filterSelection += process.HCALLaserEvtFilterList2012 # Produce RA2 jets if useCHSJets: process.load('RA2Classic.Utils.produceRA2JetsPFCHS_cff') process.ProduceRA2Jets = cms.Sequence( process.produceRA2JetsPFCHS ) else: process.load('RA2Classic.Utils.produceRA2JetsAK5PF_cff') process.ProduceRA2Jets = cms.Sequence( process.produceRA2JetsAK5PF ) # Select events with at least 'NJetsMin' of the above jets from PhysicsTools.PatAlgos.selectionLayer1.jetCountFilter_cfi import countPatJets process.NumJetSelection = countPatJets.clone( src = cms.InputTag('HTJets'), minNumber = cms.uint32(NJetsMin) ) # HT selection htInputCol = 'htPF' if useCHSJets: htInputCol = 'htPFchs' from SandBox.Skims.RA2HT_cff import htPFFilter process.HTSelection = htPFFilter.clone( HTSource = cms.InputTag(htInputCol), MinHT = cms.double(HTMin) ) # MHT selection mhtMin = 0. mhtInputCol = 'mhtPF' if useCHSJets: mhtInputCol = 'mhtPFchs' from SandBox.Skims.RA2MHT_cff import mhtPFFilter process.MHTSelection = mhtPFFilter.clone( MHTSource = cms.InputTag(mhtInputCol), MinMHT = cms.double(MHTMin) ) ## --- Additional Filters (not tagging mode) ------------------------------ from RecoMET.METFilters.jetIDFailureFilter_cfi import jetIDFailure process.PBNRFilter = jetIDFailure.clone( JetSource = cms.InputTag('MHTJets'), MinJetPt = cms.double(30.0), taggingMode = cms.bool(False) ) from RecoMET.METFilters.multiEventFilter_cfi import multiEventFilter process.HCALLaserEvtFilterList2012 = multiEventFilter.clone( file = cms.FileInPath('RA2Classic/LostLeptonBkg/data/HCALLaserEventList_20Nov2012-v2_HT-HTMHT.txt'), taggingMode = cms.bool(False) ) process.AdditionalFiltersInTagMode = cms.Sequence( process.PBNRFilter ) # process.lostLeptonPrediction = llPrediction() from RA2Classic.LostLeptonBkg.limit_ll_cfi import Limit_ll process.limit_ll = Limit_ll.clone() # process.lostLeptonPrediction = llPrediction() ## --- Final paths ---------------------------------------------------- process.dump = cms.EDAnalyzer("EventContentAnalyzer") process.WriteTree = cms.Path( process.limit_ll # process.RA2TreeMaker )
[ "" ]
6e6268ff5a363f492e7aee2d497862051ed431f6
c13b953c274ea0801ccb37e036a9da98592f9745
/source/main/urls.py
dc856eec3e1aaaf3ada62a824b5cec955915c52d
[]
no_license
Ruslan-dev-1996/python_4_home_work_50_keneshbaev_ruslan
911dfaa1c6dc0c0c83f596e0d419051591c27cb5
7247d2c81c4c83ea651fedd0b3275a76be5a7057
refs/heads/master
2023-05-02T18:41:25.848804
2019-10-02T23:28:24
2019-10-02T23:28:24
212,454,652
0
0
null
2023-04-21T20:37:41
2019-10-02T22:41:35
Python
UTF-8
Python
false
false
1,633
py
"""main URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from webapp.views import IndexView, ArticleView, ArticleCreateView, \ ArticleUpdateView, ArticleDeleteView, CommentCreateView, \ CommentView, CommentUpdateView, CommentDeleteView urlpatterns = [ path('admin/', admin.site.urls), path('', IndexView.as_view(), name='index'), path('article/<int:pk>/', ArticleView.as_view(), name='article_view'), path('article/add/', ArticleCreateView.as_view(), name='article_add'), path('article/<int:pk>/edit/', ArticleUpdateView.as_view(), name='article_update'), path('article/<int:pk>/delete/', ArticleDeleteView.as_view(), name='article_delete'), path('comment/add/', CommentCreateView.as_view(), name='comment_add'), path('comment/view', CommentView.as_view(), name='comment_view'), path('comment/<int:pk>/edit/', CommentUpdateView.as_view(), name='comment_update'), path('comment/<int:pk>/delete/', CommentDeleteView.as_view(), name='comment_delete'), ]
[ "Kasabolotov96.emil.ru" ]
Kasabolotov96.emil.ru
fd2b90837b9a0d5297b449f4e936a93d12867567
9144b98606eafd5d5b4cb78f5adbdc012c092d79
/LoginApp/myapp/urls.py
324d33def053d6a795b63a1871cb6f0fa4130532
[]
no_license
chaitrak05/chaitra_django_projects
5a48333d162051ef32b13cef179903783cdf8b74
0227a55b11eaf75d99c14be5fe867e0b5ea6664e
refs/heads/master
2022-05-30T21:39:16.514252
2020-04-30T05:13:37
2020-04-30T05:13:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
from django.contrib import admin from django.urls import path from .views import HomePageView from . import views urlpatterns = [ path('', views.HomePageView.as_view(),name='home'), ]
[ "chaitrak05@gmail.com" ]
chaitrak05@gmail.com
8e965ea67180f65424e32935037adc72b6aa873f
104388651ccd05c4b6006b64c7ea4a16a858ba24
/queues/ended_linked_list.py
ff3ff8f5c038498336855802b468bfb592722156
[]
no_license
MikeYu123/algorithms-lafore
d5ec02d13e267f96e7d084415db13aa1502ca2f8
8a59ab7149c4cb6fdc091512eb668f0bfc9f6a7c
refs/heads/master
2020-03-20T09:11:06.282882
2018-07-16T13:28:52
2018-07-16T13:28:52
137,330,509
0
0
null
null
null
null
UTF-8
Python
false
false
29
py
../lists/ended_linked_list.py
[ "m.yurchenkov@maximatelecom.ru" ]
m.yurchenkov@maximatelecom.ru
f253133c353abfb770023e56b2d1ec354db1532b
de0a605ab85cbc34bebb9638ab3aa681479d90aa
/app/modules/__init__.py
192744d1a077bad78461cbc9dad860332d954d5b
[]
no_license
sbravell/Geocoding-Proxy-service
2989d21a2397ca25d35a19b1edf501549349ae8c
e2b2714c0863515d0441f9cb5136138eb75baaf7
refs/heads/master
2020-03-07T19:37:06.614404
2017-10-08T06:58:02
2017-10-09T20:35:50
127,675,867
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
from os.path import dirname, basename, isfile import glob modules = glob.glob(dirname(__file__)+"/*.py") __all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py') and not f.endswith('base.py')]
[ "leo@sh1n.com" ]
leo@sh1n.com
c33b0629a869598b6d3053841bfbc68cbba9368a
2fc415dfa31d77d6b396be5ae80752edc93947ee
/SimMuL1/test/New_Up/PU140_v2/tmbReadoutEarliest2.py
bab9c742a6a3bcbe320fbe70fa69d45f19bc1f4d
[]
no_license
jrdimasvalle/GEMCode
ca86237cb878fed42d2fef51ba9b7e6cc32bd949
983aec67dd114d8fe5a10dd76c3d14cb03f44d9b
refs/heads/master
2021-01-16T20:46:11.356096
2014-06-30T04:37:36
2014-06-30T04:37:36
20,639,444
0
0
null
2015-07-08T22:25:15
2014-06-09T08:27:07
C++
UTF-8
Python
false
false
6,965
py
## pick your scenario: ## 1: 2019 ## 2: 2019WithGem ## 3: 2023Muon scenario = 1 ## This configuration runs the DIGI+L1Emulator step import os import FWCore.ParameterSet.Config as cms process = cms.Process("MUTRG") ## Standard sequence process.load('Configuration.StandardSequences.Services_cff') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('SimGeneral.MixingModule.mixNoPU_cfi') if scenario is 1 or scenario is 2: process.load('Configuration.Geometry.GeometryExtended2019Reco_cff') process.load('Configuration.Geometry.GeometryExtended2019_cff') elif scenario is 3: process.load('Configuration.Geometry.GeometryExtended2023MuonReco_cff') process.load('Configuration.Geometry.GeometryExtended2023Muon_cff') else: print 'Something wrong with geometry' process.load('Configuration.StandardSequences.MagneticField_38T_PostLS1_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load("Configuration.StandardSequences.SimL1Emulator_cff") process.load("Configuration.StandardSequences.L1Extra_cff") process.load('Configuration.StandardSequences.EndOfProcess_cff') from Configuration.AlCa.GlobalTag import GlobalTag if scenario is 1 or scenario is 2: process.GlobalTag = GlobalTag(process.GlobalTag, 'auto:upgrade2019', '') elif scenario is 3: process.GlobalTag = GlobalTag(process.GlobalTag, 'auto:upgradePLS3', '') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) ## calibration from CalibMuon.CSCCalibration.CSCIndexer_cfi import CSCIndexerESProducer process.CSCIndexerESProducer= CSCIndexerESProducer from CalibMuon.CSCCalibration.CSCChannelMapper_cfi import CSCChannelMapperESProducer process.CSCChannelMapperESProducer= CSCChannelMapperESProducer ## input commands process.source = cms.Source("PoolSource", duplicateCheckMode = cms.untracked.string('noDuplicateCheck'), inputCommands = cms.untracked.vstring('keep *_*_*_*'), fileNames = cms.untracked.vstring('file:out_digi.root') ) ## input from GEMCode.SimMuL1.GEMCSCTriggerSamplesLib import eosfiles from GEMCode.GEMValidation.InputFileHelpers import useInputDir #ataset = '_Nu_SLHC12_2023Muon_PU140' #dataset = "_pt2-50_SLHC11_2023Muon_PU140" dataset = 'Digi_PU140' process = useInputDir(process, eosfiles[dataset], True) process.source.duplicateCheckMode = cms.untracked.string('noDuplicateCheck') physics = False if not physics: ## drop all unnecessary collections process.source.inputCommands = cms.untracked.vstring( 'keep *_*_*_*', 'drop *_simCscTriggerPrimitiveDigis_*_*', 'drop *_simDtTriggerPrimitiveDigis_*_*', 'drop *_simRpcTriggerDigis_*_*', 'drop *_simCsctfTrackDigis_*_*', 'drop *_simDttfDigis_*_*', 'drop *_simCsctfDigis_*_*', 'drop *_simGmtDigis_*_*', 'drop *_l1extraParticles_*_*' ) ## output commands theOutDir = '' theFileName = 'out_L1' + '.root' process.output = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string(theOutDir + theFileName), outputCommands = cms.untracked.vstring('keep *_*_*_*') ) physics = False if not physics: ## drop all unnecessary collections process.output.outputCommands = cms.untracked.vstring( 'keep *_*_*_*', # drop all CF stuff 'drop *_mix_*_*', # drop tracker simhits 'drop PSimHits_*_Tracker*_*', # drop calorimetry stuff 'drop PCaloHits_*_*_*', 'drop L1Calo*_*_*_*', 'drop L1Gct*_*_*_*', # drop calorimetry l1extra 'drop l1extraL1Em*_*_*_*', 'drop l1extraL1Jet*_*_*_*', 'drop l1extraL1EtMiss*_*_*_*', # clean up simhits from other detectors 'drop PSimHits_*_Totem*_*', 'drop PSimHits_*_FP420*_*', 'drop PSimHits_*_BSC*_*', # drop some not useful muon digis and links 'drop *_*_MuonCSCStripDigi_*', 'drop *_*_MuonCSCStripDigiSimLinks_*', 'drop *SimLink*_*_*_*', 'drop *RandomEngineStates_*_*_*', 'drop *_randomEngineStateProducer_*_*' ) ## custom sequences process.mul1 = cms.Sequence( process.SimL1MuTriggerPrimitives * process.SimL1MuTrackFinders * process.simRpcTriggerDigis * process.simGmtDigis * process.L1Extra ) process.muL1Short = cms.Sequence( process.simCscTriggerPrimitiveDigis * process.SimL1MuTrackFinders * process.simGmtDigis * process.L1Extra ) ## define path-steps shortRun = False if shortRun: process.L1simulation_step = cms.Path(process.muL1Short) else: process.L1simulation_step = cms.Path(process.mul1) process.endjob_step = cms.Path(process.endOfProcess) process.out_step = cms.EndPath(process.output) ## Schedule definition process.schedule = cms.Schedule( process.L1simulation_step, process.endjob_step, process.out_step ) ## customization if scenario is 1: from SLHCUpgradeSimulations.Configuration.combinedCustoms import cust_2019 process = cust_2019(process) elif scenario is 2: from SLHCUpgradeSimulations.Configuration.combinedCustoms import cust_2019WithGem process = cust_2019WithGem(process) elif scenario is 3: from SLHCUpgradeSimulations.Configuration.combinedCustoms import cust_2023Muon process = cust_2023Muon(process) ## some extra L1 customs process.l1extraParticles.centralBxOnly = cms.bool(True) process.l1extraParticles.produceMuonParticles = cms.bool(True) process.l1extraParticles.produceCaloParticles = cms.bool(False) process.l1extraParticles.ignoreHtMiss = cms.bool(False) tmbp=process.simCscTriggerPrimitiveDigis.tmbSLHC tmbp.tmbReadoutEarliest2 = cms.bool(False) tmbp.tmbCrossBxAlgorithm = cms.uint32(1) tmbp.matchEarliestClctME11Only = cms.bool(False) tmbp.tmbDropUsedClcts=cms.bool(False) tmbp.clctToAlct = cms.bool(False) tmbp.tmbDropUsedAlcts = cms.bool(True) tmbp.matchTrigWindowSize = cms.uint32(3) clctp=process.simCscTriggerPrimitiveDigis.clctSLHC clctp.clctUseCorrectedBx = cms.bool(True) alctp=process.simCscTriggerPrimitiveDigis.alctSLHC alctp.alctUseCorrectedBx = cms.bool(True) clctp.clctMinSeparation = cms.uint32(5) clctp.clctPidThreshPretrig = cms.uint32(4) clctp.useDynamicStateMachineZone = cms.bool(True) clctp.useDeadTimeZoning = cms.bool(True) alctp.alctPretrigDeadtime = cms.uint32(0) alctp.alctNarrowMaskForR1 = cms.bool(True) alctp.alctGhostCancellationSideQuality = cms.bool(True) alctp.alctGhostCancellationBxDepth = cms.int32(1) process.simCscTriggerPrimitiveDigis.commonParam.disableME42 = cms.bool(True) ## messages print print 'Input files:' print '----------------------------------------' print process.source.fileNames print print 'Output file:' print '----------------------------------------' print process.output.fileName print
[ "jrdv009@neo.tamu.edu" ]
jrdv009@neo.tamu.edu
cc3a1dfdeb99711758e7df153e707f6f8f8f766d
31255e05b44feec469330b5a02c8ff2ba16cbe9e
/setup.py
0131b45573cdb263046de07429e4b6ff70d8dc1d
[]
no_license
marco79423/paji-sdk.py
94dfb8fa1a576c3402adc21bcb76c1e05d4f2d30
de48b1a9bd2b3b0e6519695077577385818ab54a
refs/heads/main
2023-06-09T16:16:09.993931
2021-07-02T07:05:58
2021-07-02T07:05:58
382,250,729
0
0
null
null
null
null
UTF-8
Python
false
false
1,124
py
# mypy: ignore_errors import os import setuptools base_dir = os.path.abspath(os.path.dirname(__file__)) REQUIREMENTS = [] with open(os.path.join(base_dir, 'requirements.txt'), encoding='utf-8') as fp: for line in fp.readlines(): line = line.strip() if line and not line.startswith('#'): REQUIREMENTS.append(line) with open(os.path.join(base_dir, 'README.md'), encoding='utf-8') as fp: long_description = fp.read() setuptools.setup( name="paji-sdk", version='0.2.2', author='兩大類', author_email='marco79423@gmail.com', url='https://github.com/marco79423/paji-sdk.py', python_requires='>=3.6', description='Python 開發工具包', long_description=long_description, long_description_content_type='text/markdown', packages=setuptools.find_packages(), install_requires=REQUIREMENTS, include_package_data=True, classifiers=[ 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], )
[ "marco79423@gmail.com" ]
marco79423@gmail.com
c50d7f36277dcc42963584dba56133330ce1fabf
ac4c02606b84f5f09edc7e48fa44a10621e9ef81
/python/detectionformats/stationinfo.py
43624ebc54f7595953e0df86eaa319c5a3cf2d5d
[ "JSON", "LicenseRef-scancode-public-domain", "CC0-1.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
jpatton-USGS/earthquake-detection-formats
5f8df7e6d543abd1b64624522715663d49d8eddf
8d52104c2f093ede1d67a94f43fce51eb172c8cc
refs/heads/master
2022-07-01T19:28:46.224141
2021-06-08T20:40:20
2021-06-08T20:40:20
69,907,599
0
0
null
2016-10-03T20:18:57
2016-10-03T20:18:57
null
UTF-8
Python
false
false
7,274
py
#!/usr/bin/env python #package imports import detectionformats.site import detectionformats.source #stdlib imports import json class StationInfo: """ StationInfo - a conversion class used to create, parse, and validate station info data as part of detection data. """ # json keys TYPE_KEY = "Type" SITE_KEY = "Site" QUALITY_KEY = "Quality" ENABLE_KEY = "Enable" USEFORTELESEISMIC_KEY = "UseForTeleseismic" INFORMATIONREQUESTOR_KEY = "InformationRequestor" def __init__(self, newSite=None, newQuality=None, newEnable=None, newUseForTeleseismic=None, newInformationRequestor=None): """Initialize the station info object. Constructs an empty object if all arguments are None Args: newSite: a required detectionformats.site.Site containing the desired site newLatitude: a required Number containing the latitude as a float in degrees newLongitude: a required Number containing the longitude as a float in degrees newElevation: a required Number containing the elevation as a float newQuality: an optional Number containing the station quality newEnable: an optional Boolean indicating whether the station should be used or not newUseForTeleseismic: an optional Boolean indicating whether the station should for teleseismic calculations or not newInformationRequestor: an optional detectionformats.source.Source containing the source of the information Returns: Nothing Raises: Nothing """ # first required keys self.type = 'StationInfo' if newSite is not None: self.site = newSite else: self.site = detectionformats.site.Site() # second optional keys if newQuality is not None: self.quality = newQuality if newEnable is not None: self.enable = newEnable if newUseForTeleseismic is not None: self.useForTeleseismic = newUseForTeleseismic if newInformationRequestor is not None: self.informationRequestor = newInformationRequestor else: self.informationRequestor = detectionformats.source.Source() def fromJSONString(self, jsonString): """Populates the object from a json formatted string Args: jsonString: a required String containing the json formatted text Returns: Nothing Raises: Nothing """ jsonObject = json.loads(jsonString) self.fromDict(jsonObject) def fromDict(self, aDict): """Populates the object from a dictionary Args: aDict: a required dictionary Returns: Nothing Raises: Nothing """ # first required keys try: self.type = aDict[self.TYPE_KEY] self.site.fromDict(aDict[self.SITE_KEY]) except(ValueError, KeyError, TypeError) as e: print("Dict format error, missing required keys: %s" % e) # second optional keys if self.QUALITY_KEY in aDict: self.quality = aDict[self.QUALITY_KEY] if self.ENABLE_KEY in aDict: self.enable = aDict[self.ENABLE_KEY] if self.USEFORTELESEISMIC_KEY in aDict: self.useForTeleseismic = aDict[self.USEFORTELESEISMIC_KEY] if self.INFORMATIONREQUESTOR_KEY in aDict: self.informationRequestor.fromDict(aDict[self.INFORMATIONREQUESTOR_KEY]) def toJSONString(self): """Converts the object to a json formatted string Args: None Returns: The JSON formatted message as a String Raises: Nothing """ jsonObject = self.toDict() return json.dumps(jsonObject, ensure_ascii=False) def toDict(self): """Converts the object to a dictionary Args: None Returns: The dictionary Raises: Nothing """ aDict = {} # first required keys try: aDict[self.TYPE_KEY] = self.type aDict[self.SITE_KEY] = self.site.toDict() except(NameError, AttributeError) as e: print("Missing required data error: %s" % e) # second optional keys if hasattr(self, 'quality'): aDict[self.QUALITY_KEY] = self.quality if hasattr(self, 'enable'): aDict[self.ENABLE_KEY] = self.enable if hasattr(self, 'useForTeleseismic'): aDict[self.USEFORTELESEISMIC_KEY] = self.useForTeleseismic if hasattr(self, 'informationRequestor'): aDict[self.INFORMATIONREQUESTOR_KEY] = self.informationRequestor.toDict() return aDict def isValid(self): """Checks to see if the object is valid Args: None Returns: True if the object is valid, False otherwise Raises: Nothing """ errorList = self.getErrors() return not errorList def getErrors(self): """Gets a list of object validation errors Args: None Returns: A List of Strings containing the validation error messages Raises: Nothing """ errorList = [] # first required keys try: if self.type == '': errorList.append('Empty Type in StationInfo Class.') elif self.type != 'StationInfo': errorList.append('Non-StationInfo Type in StationInfo Class.') except(NameError, AttributeError): errorList.append('No Type in StationInfo Class.') try: if not self.site.isValid(): errorList.append('Invalid Site in StationInfo Class.') except(NameError, AttributeError): errorList.append('No Site in StationInfo Class.') try: if self.site.latitude < -90 or self.site.latitude > 90: errorList.append('Latitude in StationInfo Class not in the range of -90 to 90.') except(NameError, AttributeError): errorList.append('No Latitude in StationInfo Class.') try: if self.site.longitude < -180 or self.site.longitude > 180: errorList.append('Longitude in StationInfo Class not in the range of -180 to 180.') except(NameError, AttributeError): errorList.append('No Longitude in StationInfo Class.') try: if self.site.elevation < -550 or self.site.elevation > 8900: errorList.append('Elevation in StationInfo Class not in the range of -550 to 8900.') except(NameError, AttributeError): errorList.append('No Elevation in StationInfo Class.') # second optional keys if hasattr(self, 'informationRequestor'): if not self.informationRequestor.isValid(): errorList.append('Invalid InformationRequestor in StationInfo Class.') return errorList
[ "jpatton@usgs.gov" ]
jpatton@usgs.gov
9d09fc080a0cb3fd2bea907f9b35c1986e5f2c71
6d31a9de85ca2f32911a7ae5b69b31611dd2a44b
/Prac 09/sort_files_1.py
f59c5415b089f0269637b43de24c3bae1dcb55e1
[]
no_license
SuriyaaMurali/Practicals
77a3dbb20c908e2270a592ae3091a1b10a781d05
9399855be2d014c4ed3c77cd7db29f2487cdb851
refs/heads/master
2022-12-26T11:21:12.027936
2020-10-01T06:58:46
2020-10-01T06:58:46
283,677,094
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
import os def main(): os.chdir("FilesToSort") for filename in os.listdir('.'): if os.path.isdir(filename): continue extension = filename.split('.')[-1] try: os.mkdir(extension) except FileExistsError: pass print("{}/{}".format(extension, filename)) os.rename(filename, "{}/{}".format(extension, filename)) main()
[ "suriyaa007car@gmail.com" ]
suriyaa007car@gmail.com
e0e3c59ad146e502a0274b86c741095d6e3ecdd9
25adbd31e1e652d47a096e231859262619b0e15a
/icekey/utils.py
67872e82c459ec974fe3aba270433eae1a127c6f
[ "Unlicense" ]
permissive
pixelindigo/icekey
eac140bed99be728193803ce29c1fd4dc295d021
f88294bc34af8b55bb0e2a768dc5cd86d16a8f89
refs/heads/master
2020-06-25T09:22:12.951903
2019-07-29T16:17:20
2019-07-29T16:17:20
199,270,430
1
0
null
null
null
null
UTF-8
Python
false
false
599
py
def gf_mult(a, b, m): """Galois Field multiplication of a by b, modulo m. Just like arithmetic multiplication, except that additions and subtractions are replaced by XOR. """ res = 0 while b != 0: if b & 1: res ^= a a <<= 1 b >>= 1 if a >= 256: a ^= m return res def gf_exp7(b, m): """Galois Field exponentiation. Raise the base to the power of 7, modulo m. """ if b == 0: return 0 x = gf_mult(b, b, m) x = gf_mult(b, x, m) x = gf_mult(x, x, m) return gf_mult(b, x, m)
[ "1370291+pixelindigo@users.noreply.github.com" ]
1370291+pixelindigo@users.noreply.github.com
0542afffd1b6d7982c976d9431212f0b84581937
d8cf93900e6d86240ceb7643fd78bd2841b38152
/test/unit_test_g/unittest_simple/setup_teardown_usage.py
641da38a953ddd23cef166636e271683b8f2452d
[]
no_license
Onebigbera/Daily_Practice
165cee0ee7883b90bcf126b23ff993fed0ceffef
8f1018a9c1e17c958bce91cbecae88b0bb3c946b
refs/heads/master
2020-04-09T01:20:48.857114
2019-01-03T03:24:59
2019-01-03T03:24:59
159,900,636
1
0
null
null
null
null
UTF-8
Python
false
false
1,840
py
# -*-coding:utf-8 -*- # File :setup_teardown_usage.py # Author:George # Date : 2018/12/2 """ setUp 和 tearDown的运用 """ import unittest import HTMLTestRunner import xmlrunner class TestUsage(unittest.TestCase): @classmethod # 类开始运行前 比如在执行这些实例之前需要备份数据库等操作 def setUpClass(cls): print('Before class operation perform') @classmethod # 类结束运行后 比如在执行完这些类后需要还原数据库 def tearDownClass(cls): print('After class operation perform ') # 测试用例执行前 def setUp(self): string = 'before' print('----这是在测试用例执行前----') # 测试用例执行后 def tearDown(self): string = 'after' print('----测试用例执行后----') def testProcess(self): print('----测试执行1---') self.assertEqual(1, 1) def testProcess2(self): print('---测试用例2----') self.assertEqual(1, 2) if __name__ == "__main__": # 第一步 实例化suite套件 suite = unittest.TestSuite() # 第二步 向实例化的套件中添加类或者方法 suite.addTest(unittest.makeSuite(TestUsage)) # 添加单独方法用例 # suite.addTest(TestUsage('testprocess')) # 第三步 生成xml或者html打印装置 fw = open(r'F:\Python_guide\Daily_Practice\test\unit_test_g\unittest_simple\test_report\setUp_tearDown_usage.html', 'wb') runner = HTMLTestRunner.HTMLTestRunner(stream=fw, title='usage_setUp_tearDown', description='how it work') # 生成xml runner # runner = xmlrunner.XMLTestRunner(output=r'F:\Python_guide\Daily_Practice\test\unit_test_g\unittest_simple\test_report') # 第四步 运行xmlrunner runner.run(suite) # 第五步 在cmd中执行
[ "2578288992@qq.com" ]
2578288992@qq.com
cefef0af30e3c643b07b5203e304558f983b808f
00ea72326a1f559e72a6512dad21812cab3a1714
/1-12-2020/puzzle1/resolve.py
8af0ce419eff2b7daccab5a46e52193386f1bf4d
[]
no_license
Jnsll/AdventOfCode2020
5dcfdd2225d7fc06c16a5e22c30b60198dc3bd02
41b6558e157913bc6b3e23b5cfb2cfd893540249
refs/heads/main
2023-01-21T18:45:28.065686
2020-12-06T11:39:23
2020-12-06T11:39:23
317,467,429
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
import pandas as pd expense_report = pd.read_csv("input", 'r', header=None) expense_report.columns = ["expense"] print(expense_report) for i in range(len(expense_report)): for j in range(i+1, len(expense_report)): if expense_report.iloc[i, 0] + expense_report.iloc[j, 0] == 2020: answer = expense_report.iloc[i, 0] * expense_report.iloc[j, 0] print(expense_report.iloc[i, 0], expense_report.iloc[j, 0]) break print(answer)
[ "june.benvegnu-sallou@irisa.fr" ]
june.benvegnu-sallou@irisa.fr
e1057c349330190300117c83a27784ae8eb0df29
7d4124c4d98a9ea1f2fc06a5ab9519f7586d7a42
/MESSAGE/RECC_Paths.py
0a8a2a29edb74a58dac935d26dae707bf559366b
[]
no_license
SteffiKlose/OMli
3d5c5f916f23019cee45e29ddcb2a17377211204
36dfb48225763e6588a83cc1655570add005f34c
refs/heads/master
2020-06-23T15:05:45.865791
2019-08-18T14:44:14
2019-08-18T14:44:14
198,657,836
0
0
null
null
null
null
UTF-8
Python
false
false
931
py
''' This is the RECC model path file. RECC will use the paths specified here to search for the necessary data and modules. ''' ### Start of path file ### ### These paths are for Steffi's windows machine ### current = 'C:\\Users\\sklose\\Documents\\ODYM-RECC-Repos\\RECC-Cu-Repo\\ODYM-RECC Cu' odym_path = 'C:\\Users\\sklose\\Documents\\ODYM-RECC-Repos\\ODYM-Repo\\ODYM\\odym\\modules\\' data_path = 'C:\\Users\\sklose\\Documents\\ODYM-RECC-Repos\\RECC-Cu-Repo\\ODYM-RECC Cu\\data\\CURRENT' results_path = 'C:\\Users\\sklose\\Documents\\ODYM-RECC-Repos\\RECC-Cu-Repo\\ODYM-RECC Cu\\RECC_Results' rawdata_pathMESSAGE = 'C:\\Users\\sklose\\Documents\\ODYM-RECC-Repos\\RECC-Cu-Repo\\ODYM-RECC Cu\\MESSAGE' rawdata_pathIMAGE = 'C:\\Users\\sklose\\Documents\\ODYM-RECC-Repos\\RECC-Cu-Repo\\ODYM-RECC Cu\\IMAGE' rawdata_path = 'C:\\Users\\sklose\\Documents\\ODYM-RECC-Repos\\RECC-Cu-Repo\\ODYM-RECC Cu' ### End of path file ###
[ "stefanie.klose@indecol.uni-freiburg.de" ]
stefanie.klose@indecol.uni-freiburg.de
5ae349c7e0f77dd771ef3a1f0957256772a92f70
91b29aa5a0f852cb89083d8b87e3cea2f1a7e08a
/noel.py
ba867b69fcb8c590823d1f109085b0ef52ae9797
[]
no_license
Blakeh37/cse210-tc03
9c9c2a7a12d2915aa8c0ff202ada0102d3605b8d
94eb02961c25fdf406cf3a7e3e08632b583a50c1
refs/heads/main
2023-07-18T21:29:16.840644
2021-10-02T15:40:26
2021-10-02T15:40:26
412,800,794
0
0
null
2021-10-02T14:40:14
2021-10-02T13:14:08
null
UTF-8
Python
false
false
62
py
def greet(): print("Welcome to our collaborative project")
[ "noe21002@byui.edu" ]
noe21002@byui.edu
3b39d6fbe492f80432018b1df6de5e0694515e92
8f268d06ab6be7a5910a4f68753c20dfc41ec5c4
/json_parser/screen_data_parser.py
c6385eb3eda3ffd363587865a8325b9b50a1e651
[]
no_license
Klooskie/GraphicsGenerator
5b5ad62cb95d9ef39067b14008613986fad48b1a
51be945c244b5a99bfca26eb1aa6422d8a992936
refs/heads/master
2020-03-18T10:37:01.779634
2019-03-26T23:10:31
2019-03-26T23:10:31
134,623,029
0
0
null
null
null
null
UTF-8
Python
false
false
1,402
py
from pygame import display from .colors_data_parser import format_color class ScreenData: def __init__(self, file_content, color_palette): self._parse_screen_data(file_content, color_palette) def generate_screen(self): screen = display.set_mode(self._size) screen.fill(self._bg_color) return screen def _parse_screen_data(self, file_content, color_palette): screen_parameters = file_content['Screen'] if 'width' in screen_parameters.keys(): width = screen_parameters['width'] else: print('Using default screen width of 500 pixels') width = 500 if 'height' in screen_parameters.keys(): height = screen_parameters['height'] else: print('Using default screen height of 500 pixels') height = 500 self._size = (width, height) if 'bg_color' in screen_parameters.keys(): self._bg_color = format_color(screen_parameters['bg_color'], color_palette) else: print('Using default background color - white') self._bg_color = (255, 255, 255) if 'fg_color' in screen_parameters.keys(): self.fg_color = format_color(screen_parameters['fg_color'], color_palette) else: print('Using default foreground color - black') self.fg_color = (0, 0, 0)
[ "kuba.koniecznyxx@gmail.com" ]
kuba.koniecznyxx@gmail.com
af076219a10cff760841a83970ec79b7faa08010
473f138db6d5f27007453c5550544663abefe992
/1_Cipher.py
fb68bb3a9a012ae2ca1f65cfb3c93141b093b727
[ "MIT" ]
permissive
Jaber-Valinejad/Simple-Ciphers-Cryptanalysis
fbae71d0ac24e8ab7607a347224e28ef3bd10fb8
9456196e9f3699682fd8257b31e9136ff813e8b0
refs/heads/main
2023-09-05T11:35:53.171472
2021-09-29T02:31:38
2021-09-29T02:31:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,210
py
import numpy as np Letter=['a','b', 'c', 'd', 'e', 'f','g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] numb_letter=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] def Convert_to_letter(mat): mat=Round_fun(mat) MM=np.chararray((mat.shape[0], mat.shape[1]), unicode=True) for i in range(mat.shape[0]): for j in range(mat.shape[1]): MM[i][j]=Letter[int(mat[i][j])] return MM def num_char(X): X=X.upper() return ord(X)-65 def text_to_num(Y): Y=Y.replace(' ','') return [num_char(i) for i in Y] def Mat_text(text,n_key): if len(text) % n_key != 0: for i in range(0, len(text)): text.append(text[i]) if len(text) % n_key == 0: break K=0 Out_text=np.zeros(( (len(text)// n_key) ,n_key )) for i in range(len(text)// n_key): for j in range(n_key): Out_text[i][j] =text[K] K=K+1 return Out_text def Round_fun(mat): for i in range(mat.shape[0]): for j in range(mat.shape[1]): mat[i][j]=round(mat[i][j],1) return mat def Multiplicative_inverse(determinant): multiplicative_inverse = -1 for i in range(26): inverse = determinant * i if inverse % 26 == 1: multiplicative_inverse = i break return multiplicative_inverse def invesre_mat(key): if np.linalg.det(key) == 0: print('Key is not invertible') else: det=round(np.linalg.det(key)%26) det=Multiplicative_inverse(det) if det == -1: print("Determinant is not relatively prime to 26, uninvertible matrix") Adj=(np.linalg.inv(key) *np.linalg.det(key) ) %26 return Round_fun(Adj*det)%26 def Text_encryption(text,key): n_key=key.shape[0] Matrix_text=Mat_text(text_to_num(text),n_key) Matrix_tex=np.matmul(Matrix_text,key) return Matrix_tex%26,Convert_to_letter(Matrix_tex%26) def Text_Decryption(cipher_text,key): n_key=key.shape[0] key_inverse=invesre_mat(key) Matrix_tex=np.matmul(cipher_text,key_inverse) return Matrix_tex%26,Convert_to_letter(Matrix_tex%26)
[ "noreply@github.com" ]
Jaber-Valinejad.noreply@github.com
3925ced5ea1d9889bfb4e137465e8102dae3f9ab
35d2bbd3813a3d5caf0c3bfb077a8fc3f3295dfb
/URI/uri_1011.py
819970b60be549a4ac5dffdfcfc376ae81e95005
[]
no_license
carlosMachado1/carlosMachado1
e32283c841f7067e370f56ce535a01f55b21b906
19973a1e12d8511082f5b3a9be715e4164ce301d
refs/heads/main
2023-03-17T04:06:01.604381
2021-03-11T00:54:42
2021-03-11T00:54:42
341,776,039
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
raio = float(input()) pi = 3.14159 vol_esfera = (4 / 3) * pi * (raio ** 3) print("VOLUME = {:.3f}".format(vol_esfera))
[ "cgdsm.eng18@uea.edu.br" ]
cgdsm.eng18@uea.edu.br
fc7ab6c5b42fba3b85367fd1d7fa8adb2fcdd4f1
b6250655508f4b4f5b37edaf6963092588586b8b
/translateBatchToENG3.py
1fe988292819c46a0ee2bc932ccce54cdcfb45a3
[]
no_license
E4RTTH/BigBirdNDSC2019
9953f37513b13bcd32fbec10d90f9b78eff4d733
bb3673f6d9ac395b3a2813769d53cd38454afaa8
refs/heads/master
2021-10-24T01:34:02.075613
2019-03-21T08:56:41
2019-03-21T08:56:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,828
py
import pandas as pd import textblob import re # Create a function called "chunks" with two arguments, l and n: def chunks(l, n): # For item i in a range that is a length of l, for i in range(0, len(l), n): # Create an index range for l of n items: yield l[i:i+n] dataset = pd.read_csv('mobile_data_info_train_competition.csv', quoting = 3) titles = dataset['title'].values.tolist() titles_eng = [] chunks = list(chunks(titles, 10000)) print("length chunk=", len(chunks)) for i in range(0, len(chunks)/3): eng_chunk = [] print("processing chunk num ", i) for i, title in enumerate(chunks): try: test = str(textblob.TextBlob(title).translate(from_lang='id', to="en")) except Exception: test = title title = re.sub('[^a-zA-Z0-9\.]', ' ', title) eng_chunk.append(test) titles_eng.extend(eng_chunk) df = pd.DataFrame(data={'eng': titles_eng}) df.to_csv('mobile_data_info_train_competition_eng2a.csv', index=False) dataset['title_eng'] = titles_eng dataset.to_csv('mobile_data_info_train_competition_eng2.csv', index=False) dataset = pd.read_csv('mobile_data_info_train_competition.csv', quoting = 3) titles = dataset['title'].values titles_eng = [] chunks = list(chunks(titles, 100)) for i in range(39, len(chunks)): title_eng = [translator.translate(title) for title in chunks[i]] title_eng = [re.sub('[^a-zA-Z0-9]', ' ', title) for title in title_eng] titles_eng.append(title_eng) engdf = pd.read_csv('mobile_data_info_train_competition_eng.csv', quoting = 3) eng = engdf['eng'].values.tolist() flat_list = [item for sublist in titles_eng for item in sublist] eng.extend(flat_list) df = pd.DataFrame(data={'eng': eng}) df.to_csv('mobile_data_info_train_competition_eng.csv', index=False)
[ "jiayuan.chia@besi.com" ]
jiayuan.chia@besi.com
5d36c31abe62d3bc24967d257bd7acde33fa81c8
c38301f203d4af89c1d10c9cfe6626ef7666ac19
/extensions/info_commands.py
27a04c9258c04c687f6c4110d31138719730cce7
[]
no_license
matthew-lowe/RoboJosh
a9551152507dac5fefbbf480aff8410eb928809a
ec8f09a221d3c2e8cecc31ba65623aa3920e6464
refs/heads/master
2022-07-03T16:40:43.249517
2020-05-09T18:32:20
2020-05-09T18:32:20
255,172,347
1
0
null
null
null
null
UTF-8
Python
false
false
2,325
py
import datetime import discord from discord.ext import commands class InfoCommands(commands.Cog): def __init__(self, bot): self.bot = bot # Displays the avatar @commands.command(help="Show the avatar of a user", usage=";avatar [user]") async def avatar(self, ctx, target=None): utils = self.bot.get_cog("Utils") # Set the target user if given, else message author user = utils.get_target(ctx, target) if user is None: await ctx.send("`Invalid user! Please tag a member of the server`") return # URL Discord stores avatars in url = "https://cdn.discordapp.com/avatars/{0.id}/{0.avatar}.png?size=1024".format(user) # Send avatar as a swanky embed embed = discord.Embed(title="Avatar URL", url=url, description=user.name + '#' + user.discriminator) embed.set_image(url=url) utils.style_embed(embed, ctx) await ctx.send(embed=embed) # Gives some info about a user @commands.command(help="Get information about a user", usage=";info [user]") async def info(self, ctx, target=None): utils = self.bot.get_cog("Utils") # Set the target user if given, else message author user = utils.get_target(ctx, target) if user is None: await ctx.send("`Invalid user! Please tag a member of the server`") return member = ctx.guild.get_member(user.id) author_avatar = "https://cdn.discordapp.com/avatars/{0.id}/{0.avatar}.png?size=1024".format(ctx.author) user_avatar = "https://cdn.discordapp.com/avatars/{0.id}/{0.avatar}.png?size=1024".format(user) # Ommits the first value (@everyone) member_roles = member.roles[1:] role_string = "" for role in member_roles: role_string += f"<@&{role.id}> " embed = discord.Embed(title=f"{user.name}#{user.discriminator}") embed.add_field(name="User ID:", value=user.id, inline=True) embed.add_field(name="Display name:", value=member.display_name, inline=True) embed.add_field(name="Account Created:", value=user.created_at.strftime('%A %d %b %Y, %I:%M %p'), inline=False) embed.add_field(name="Guild Join Date:", value=member.joined_at.strftime('%A %d %b %Y, %I:%M %p'), inline=False) embed.add_field(name="Server Roles:", value=role_string, inline=False) embed.set_thumbnail(url=user_avatar) utils.style_embed(embed, ctx) await ctx.send(embed=embed) def setup(bot): bot.add_cog(InfoCommands(bot))
[ "jedijasper2004@gmail.com" ]
jedijasper2004@gmail.com
59ee46640c67428e82b8c1ce5e8430455253579e
d1c55aa9a65bad122aeb2a0fcdf11c8fa4d76997
/divvy/app/models.py
61098cd5d7aff474311cce333213b3aee36f8e28
[]
no_license
CristinaGradinaru/DivvyChallange
b62dc47afa06363ac9b85d4140bf87aac5578050
217b33f86e51fc045a738fc8d775611e32fc3450
refs/heads/master
2023-03-31T16:43:46.868716
2021-04-10T20:10:45
2021-04-10T20:10:45
356,683,538
0
0
null
null
null
null
UTF-8
Python
false
false
1,084
py
from app import db from datetime import datetime class Divvy(db.Model): trip_id= db.Column(db.Integer, primary_key = True) starttime= db.Column(db.DateTime, nullable= False) stoptime= db.Column(db.DateTime, nullable= False) bikeid= db.Column(db.Integer, nullable=False) from_station_id = db.Column(db.Integer) from_station_name = db.Column(db.String) to_station_id = db.Column(db.Integer) to_station_name = db.Column(db.String) usertype = db.Column(db.String) gender = db.Column(db.String) birthday = db.Column(db.String) trip_duration = db.Column(db.Integer) def __init__(self): self.trip_id= trip_id self.starttime= starttime self.stoptime = stoptime self.bikeid = bikeid self.from_station_id= from_station_id self.from_station_name= from_station_name self.to_station_id = to_station_id self.to_station_name = to_station_name self.usertype = usertype self.gender = gender self.birthday=birthday self.trip_duration = trip_duration
[ "cristinagradinaru90@gmail.com" ]
cristinagradinaru90@gmail.com
f0f015d200157c4bc2421548d0d2b2ed31545e38
29d08e80ba14e903e95c92b91fc6a9019570d7c5
/Datasets/SmallNorbLoader.py
0254ecaf19eab4b878f0eb96e408dacd0a40d87b
[ "Apache-2.0" ]
permissive
puzzlelib/PuzzleLib
0d576eaad761a90490450efc41d3253019006bfd
73a14457e4d8afc60fea331556581b641a34d125
refs/heads/master
2022-12-06T19:42:02.041605
2022-11-24T10:09:45
2022-11-24T10:09:45
243,770,185
59
9
null
null
null
null
UTF-8
Python
false
false
4,988
py
import os, struct import numpy as np import h5py from PIL import Image from PuzzleLib.Datasets.DataLoader import DataLoader class SmallNorbLoader(DataLoader): def __init__(self, onSample=None, sampleInfo=None, cachename=None): super().__init__(("data", "labels", "info"), "smallnorb.hdf" if cachename is None else cachename) self.sampleInfo = lambda: (np.float32, (28, 28)) if sampleInfo is None else sampleInfo self.onSample = lambda sample: np.array(Image.fromarray(sample).resize((28, 28))) \ if onSample is None else onSample self.testdata = "smallnorb-5x01235x9x18x6x2x96x96-testing-dat.mat" self.testlabels = "smallnorb-5x01235x9x18x6x2x96x96-testing-cat.mat" self.testinfo = "smallnorb-5x01235x9x18x6x2x96x96-testing-info.mat" self.traindata = "smallnorb-5x46789x9x18x6x2x96x96-training-dat.mat" self.trainlabels = "smallnorb-5x46789x9x18x6x2x96x96-training-cat.mat" self.traininfo = "smallnorb-5x46789x9x18x6x2x96x96-training-info.mat" self.nlabels = 5 self.ninstances = 10 self.nelevs = 9 self.nazimuths = 18 self.nlights = 6 def load(self, path, sort=False, compress="gzip", log=True, onlyTest=False): self.cachename = os.path.join(path, self.cachename) if not os.path.exists(self.cachename): if log: print("[%s] Started unpacking ..." % self.__class__.__name__) data, labels, info = None, None, None files = [self.testdata] if onlyTest else [self.traindata, self.testdata] for filename in files: with open(os.path.join(path, filename), "rb") as file: magic, ndim = struct.unpack("<ii", file.read(8)) dims = struct.unpack("<" + "i" * max(ndim, 3), file.read(max(ndim, 3) * 4)) trueMagic = 0x1E3D4C55 if magic != trueMagic: raise ValueError("Bad magic number (got 0x%x, expected 0x%x)" % (magic, trueMagic)) indata = np.fromfile(file, dtype=np.uint8).reshape(*dims) dtype, reqdims = self.sampleInfo() outdata = np.empty(dims[:2] + reqdims, dtype=dtype) for i in range(dims[0]): for j in range(dims[1]): outdata[i, j] = self.onSample(indata[i, j]) if (i + 1) % 100 == 0 and log: print("[%s] Unpacked %s pairs out of %s" % (self.__class__.__name__, i + 1, dims[0])) data = outdata if data is None else np.vstack((data, outdata)) for filename in [self.trainlabels, self.testlabels]: with open(os.path.join(path, filename), "rb") as file: magic, ndim = struct.unpack("<ii", file.read(8)) struct.unpack("<" + "i" * max(ndim, 3), file.read(max(ndim, 3) * 4)) trueMagic = 0x1E3D4C54 if magic != trueMagic: raise ValueError("Bad magic number (got 0x%x, expected 0x%x)" % (magic, trueMagic)) inlabels = np.fromfile(file, dtype=np.uint32) labels = inlabels if labels is None else np.concatenate((labels, inlabels)) for filename in [self.traininfo, self.testinfo]: with open(os.path.join(path, filename), "rb") as file: magic, ndim = struct.unpack("<ii", file.read(8)) dims = struct.unpack("<" + "i" * max(ndim, 3), file.read(max(ndim, 3) * 4)) trueMagic = 0x1E3D4C54 if magic != trueMagic: raise ValueError("Bad magic number (got 0x%x, expected 0x%x)" % (magic, trueMagic)) ininfo = np.fromfile(file, dtype=np.uint32).reshape(dims[:2]) info = ininfo if info is None else np.vstack((info, ininfo)) if sort: data, labels, info = self.sortDataset(data, labels, info, log=log) print("[%s] Building cache ..." % self.__class__.__name__) with h5py.File(self.cachename, "w") as hdf: dsetname, lblsetname, infosetname = self.datanames hdf.create_dataset(dsetname, data=data, compression=compress) hdf.create_dataset(lblsetname, data=labels, compression=compress) hdf.create_dataset(infosetname, data=info, compression=compress) hdf = h5py.File(self.cachename, "r") dsetname, lblsetname, infosetname = self.datanames return hdf[dsetname], hdf[lblsetname], hdf[infosetname] def sortDataset(self, data, labels, info, log=True): shape = (self.nlabels, self.ninstances, self.nlights, self.nelevs, self.nazimuths) sortdata = np.empty(shape + data.shape[1:], dtype=np.float32) sortlabels = np.empty(shape, dtype=np.uint32) sortinfo = np.empty(shape + info.shape[1:], dtype=np.uint32) if log: print("[%s] Started sorting dataset ..." % self.__class__.__name__) for i in range(data.shape[0]): instance, elev, azimuth, light = info[i] label = labels[i] sortdata[label, instance, light, elev, azimuth // 2] = data[i] sortlabels[labels, instance, light, elev, azimuth // 2] = label sortinfo[labels, instance, light, elev, azimuth // 2] = info[i] if log and (i + 1) % 100 == 0: print("[%s] Sorted %s pairs out of %s" % (self.__class__.__name__, i + 1, data.shape[0])) return sortdata, sortlabels, sortinfo def unittest(): smallnorb = SmallNorbLoader() smallnorb.load(path="../TestData/", sort=True, onlyTest=True) smallnorb.clear() if __name__ == "__main__": unittest()
[ "psukhachev@yahoo.com" ]
psukhachev@yahoo.com
c98d95ce2a2eee2b73af1f2353638fe7a1da1ca2
7b36edbd77315c7d53a3c98dba9b5c8a4b4449a4
/Chapter4/4-3.py
89cfd5d8b33ae5b35aae4ba71a21d34aa30770c9
[]
no_license
chenfancy/PAT_Python
974ffde2b5c67e8b706b29696e9605279e30dd77
f9bb1c2f39246d7c70433d4880f4d57d3dfbd0a7
refs/heads/master
2022-03-30T06:29:23.665693
2020-01-28T14:10:55
2020-01-28T14:10:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
n=int(input()) x=1 for _ in range(1,n): x=(x+1)*2 print(x)
[ "han@163.com" ]
han@163.com
2860d75f902b1c7deae9502759161e1be8413369
dff19113a90e93db18c09b05bd94cfb41d917fb1
/build_train_dataset.py
4b444e465739bbd6b14bdf0fbabe5cfc650a79e3
[]
no_license
johncuicui/grapeMRCNN
ec97cb070f3ba2ab7f3fd952d023a5401c38d579
2eea60ad5c212275f97b6e535ae4ce39efcfccb5
refs/heads/master
2020-08-22T19:02:13.891261
2019-10-22T08:17:56
2019-10-22T08:17:56
216,461,939
4
3
null
null
null
null
UTF-8
Python
false
false
1,749
py
import os import numpy as np import random import shutil def create_dataset(dataset_folder,data_folder,image_list): for image in image_list: image_src_path=data_folder+image+'.jpg' image_dst_path=dataset_folder+os.sep+image+'.jpg' shutil.copy2(image_src_path,image_dst_path) bbox_src_path = data_folder + image + '.txt' bbox_dst_path = dataset_folder +os.sep+image+'.txt' shutil.copy2(bbox_src_path, bbox_dst_path) mask_src_path = data_folder + image + '.npz' mask_dst_path = dataset_folder + os.sep + image + '.npz' shutil.copy2(mask_src_path, mask_dst_path) data_folder='D:/DLCode/wgisd/data/' train_masked_path ='D:/DLCode/wgisd/train_masked.txt' ROOT_DIR = os.path.abspath(".") print(ROOT_DIR) # load the names of the images with open(train_masked_path, 'r') as fp: data_list = fp.readlines() data_list = set([i[:-1] for i in data_list]) # split data_list=sorted(data_list) random.shuffle(data_list) i = int(len(data_list) * 0.8) data_list_train = data_list[:i] data_list_val = data_list[i:] #create dataset folder dataset_folder= os.path.sep.join([ROOT_DIR,"dataset"]) if not os.path.exists(dataset_folder): os.makedirs(dataset_folder) #build train dataset dataset_folder_train= os.path.sep.join([dataset_folder,"train"]) if not os.path.exists(dataset_folder_train): os.makedirs(dataset_folder_train) create_dataset(dataset_folder_train,data_folder,data_list_train) # build Validation dataset dataset_folder_val= os.path.sep.join([dataset_folder,"val"]) if not os.path.exists(dataset_folder_val): os.makedirs(dataset_folder_val) create_dataset(dataset_folder_val,data_folder,data_list_val) #for i in data_list: # print(i) print("\ntrain:{},val:{}".format(len(data_list_train),len(data_list_val)))
[ "johncuicui@163.com" ]
johncuicui@163.com
914e091332b302fa954ad8c9bb449d1ce9798f9e
280847f527e7064c6e767ec60c5017ab6ddd94eb
/catkin_ws/build/my_first_topic/cmake/my_first_topic-genmsg-context.py
c8600df1b9a5b8c9d5fc9baf38013503ed615209
[]
no_license
WiloSensei07/ROS
b268e5c2ab09fc16688530ac8ec94b7bb3a0428d
b0c5bb0430c39bb4a519a0cfc9b79c06f4ace5ab
refs/heads/main
2023-05-23T23:11:26.555642
2021-06-09T10:12:29
2021-06-09T10:12:29
375,308,827
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/wilo/catkin_ws/src/my_first_topic/msg/position.msg" services_str = "" pkg_name = "my_first_topic" dependencies_str = "std_msgs" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "my_first_topic;/home/wilo/catkin_ws/src/my_first_topic/msg;std_msgs;/opt/ros/melodic/share/std_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python2" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/melodic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
[ "sinkamwilfried@gmail.com" ]
sinkamwilfried@gmail.com
af827d4a20d673b71ec3580e040f84acab99e937
d2af7c3c2ccd8fb87e5f593658d466d07e310c21
/lesson08/exception/ExceptDemo3.py
844e12514f0218c8139e33b2b8f2835b5ccc72d0
[]
no_license
yuan018/yzu_python
cd64131bdf3f923b9b68c34350b181d6f4f0da11
f72088834814f4843fe0b2407b926ccc23302a96
refs/heads/master
2021-05-26T10:22:59.021685
2020-06-03T13:31:27
2020-06-03T13:31:27
254,094,610
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
def input_number(): x = 10 try: y = int(input('請輸入數字:')) z = x / y except ZeroDivisionError as e: print('分母不可 = 0, 請重新輸入~', e) input_number() except ValueError as e: print('輸入資料錯誤, 請重新輸入~', e) input_number() except Exception as e: print("發生了一個我料想不到的錯誤,", e) else: print(z) if __name__ == '__main__': input_number()
[ "kakab45@gmail.com" ]
kakab45@gmail.com
9623c677ffe0f82fb1e9d27cfa80474221f3c11d
5df24c960d03f6b569247dc625c49116bb517fb7
/logica/CampanaPrevencion.py
9684da2bd17996654b9265580f35fb1a0a0f804a
[]
no_license
BryanTabarez/ProyectoBD
7a60e4ab0cc2a5200bceebfefdcdf24258d73107
ed9f42aaa390b695004e3acfd7afc669968df22c
refs/heads/master
2021-01-18T01:43:35.990092
2015-10-31T03:31:16
2015-10-31T03:31:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
class CampanaPrevencion(): """Clase CampanaPrevencion( [{codigo,} id_medico, nombre, fecha_realizacion, objetivo] )""" def __init__(self, *args): if len(args) is 5: self.__codigo = args[0] self.__id_medico = args[1] self.__nombre = args[2] self.__fecha_realizacion = args[3] self.__objetivo = args[4] if len(args) is 4: self.__id_medico = args[0] self.__nombre = args[1] self.__fecha_realizacion = args[2] self.__objetivo = args[3] def get_codigo(self): return self.__codigo def get_id_medico(self): return self.__id_medico def get_nombre(self): return self.__nombre def get_fecha_realizacion(self): return self.__fecha_realizacion def get_objetivo(self): return self.__objetivo def set_nombre(self, nombre): self.__nombre = nombre def set_id_medico(self, id_medico): self.__id_medico = id_medico def set_fecha_realizacion(self, fecha_realizacion): self.__fecha_realizacion = fecha_realizacion def set_objetivo(self, objetivo): self.__objetivo = objetivo
[ "userbryan@gmail.com" ]
userbryan@gmail.com
a1a9fd6ebc0d15c11122032f395e325a20dc3ec7
9348adc3dbf30292ff63542d778fb8dc617ea482
/autoregressor/test/test_data_pipeline.py
84ab7900d90dcea26a9728d8b1fc5587f9f8ead0
[]
no_license
myrywy/autoregressor
2a4883d805567379088fcf40ecc696d143b3dea2
7dabab4f9da69cd94d485fafd6a3150df92db4ed
refs/heads/master
2020-04-03T23:41:45.436751
2019-01-17T23:20:55
2019-01-17T23:20:55
155,628,559
0
0
null
null
null
null
UTF-8
Python
false
false
11,713
py
from data_pipeline import DataPipeline import tensorflow as tf import numpy as np import pytest from pytest import approx def test_add_structural_transformation(): def input_data_generator(): yield np.array([1,2,3,4]) yield np.array([1,2,3]) yield np.array([1,2]) yield np.array([1]) yield np.array([1,2]) yield np.array([1,2,3]) yield np.array([1,2,3,4]) def expected_output_data_generator(): yield {"input_sequnce": np.array([1,2,3,4]), "length": 4} yield {"input_sequnce": np.array([1,2,3]), "length": 3} yield {"input_sequnce": np.array([1,2]), "length": 2} yield {"input_sequnce": np.array([1]), "length": 1} yield {"input_sequnce": np.array([1,2]), "length": 2} yield {"input_sequnce": np.array([1,2,3]), "length": 3} yield {"input_sequnce": np.array([1,2,3,4]), "length": 4} input_dataset = tf.data.Dataset.from_generator(input_data_generator, output_types=tf.int32) expected_output_dataset = tf.data.Dataset.from_generator(expected_output_data_generator, output_types={"input_sequnce": tf.int32, "length": tf.int32}) def add_length(input_sequnce): return { "input_sequnce": input_sequnce, "length": tf.shape(input_sequnce)[0] } pipeline = DataPipeline() pipeline.add_structural_transformation(add_length) output_dataset = pipeline.transform_dataset(input_dataset) output_next = output_dataset.make_one_shot_iterator().get_next() expected_next = expected_output_dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(7): r_output, r_expected = sess.run((output_next, expected_next)) assert r_output["input_sequnce"] == approx(r_expected["input_sequnce"]) assert r_output["length"] == approx(r_expected["length"]) def test_add_unit_transformation(): def input_data_generator(): yield {"input_sequence": np.array([1,2,3,4]), "length": 4} yield {"input_sequence": np.array([1,2,3]), "length": 3} yield {"input_sequence": np.array([1,2]), "length": 2} yield {"input_sequence": np.array([1]), "length": 1} yield {"input_sequence": np.array([1,2]), "length": 2} yield {"input_sequence": np.array([1,2,3]), "length": 3} yield {"input_sequence": np.array([1,2,3,4]), "length": 4} def expected_output_data_generator(): yield {"input_sequence": np.array([4,5,6,7]), "length": 4} yield {"input_sequence": np.array([4,5,6]), "length": 3} yield {"input_sequence": np.array([4,5]), "length": 2} yield {"input_sequence": np.array([4]), "length": 1} yield {"input_sequence": np.array([4,5]), "length": 2} yield {"input_sequence": np.array([4,5,6]), "length": 3} yield {"input_sequence": np.array([4,5,6,7]), "length": 4} input_dataset = tf.data.Dataset.from_generator(input_data_generator, output_types={"input_sequence": tf.int32, "length": tf.int32}) expected_output_dataset = tf.data.Dataset.from_generator(expected_output_data_generator, output_types={"input_sequence": tf.int32, "length": tf.int32}) def add3(x): return x+3 pipeline = DataPipeline() pipeline.add_unit_transformation(add3, "input_sequence") output_dataset = pipeline.transform_dataset(input_dataset) output_next = output_dataset.make_one_shot_iterator().get_next() expected_next = expected_output_dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(7): r_output, r_expected = sess.run((output_next, expected_next)) assert r_output["input_sequence"] == approx(r_expected["input_sequence"]) assert r_output["length"] == approx(r_expected["length"]) def test_add_unit_transformation_nested(): def input_data_generator(): yield {"input_sequence": np.array([1,2,3,4]), "length": 4}, 9 yield {"input_sequence": np.array([1,2,3]), "length": 3}, 9 yield {"input_sequence": np.array([1,2]), "length": 2}, 9 yield {"input_sequence": np.array([1]), "length": 1}, 9 yield {"input_sequence": np.array([1,2]), "length": 2}, 9 yield {"input_sequence": np.array([1,2,3]), "length": 3}, 9 yield {"input_sequence": np.array([1,2,3,4]), "length": 4}, 9 def expected_output_data_generator(): yield {"input_sequence": np.array([4,5,6,7]), "length": 4}, 9 yield {"input_sequence": np.array([4,5,6]), "length": 3}, 9 yield {"input_sequence": np.array([4,5]), "length": 2}, 9 yield {"input_sequence": np.array([4]), "length": 1}, 9 yield {"input_sequence": np.array([4,5]), "length": 2}, 9 yield {"input_sequence": np.array([4,5,6]), "length": 3}, 9 yield {"input_sequence": np.array([4,5,6,7]), "length": 4}, 9 input_dataset = tf.data.Dataset.from_generator(input_data_generator, output_types=({"input_sequence": tf.int32, "length": tf.int32}, tf.int32)) expected_output_dataset = tf.data.Dataset.from_generator(expected_output_data_generator, output_types=({"input_sequence": tf.int32, "length": tf.int32},tf.int32)) def add3(x): return x+3 pipeline = DataPipeline() pipeline.add_unit_transformation(add3, 0, "input_sequence") output_dataset = pipeline.transform_dataset(input_dataset) output_next = output_dataset.make_one_shot_iterator().get_next() expected_next = expected_output_dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(7): r_output, r_expected = sess.run((output_next, expected_next)) assert r_output[0]["input_sequence"] == approx(r_expected[0]["input_sequence"]) assert r_output[0]["length"] == approx(r_expected[0]["length"]) assert r_output[1] == approx(r_expected[1]) def test_add_unit_transformation_simple(): def input_data_generator(): yield np.array([1,2,3,4]) yield np.array([1,2,3]) yield np.array([1,2]) yield np.array([1]) yield np.array([1,2]) yield np.array([1,2,3]) yield np.array([1,2,3,4]) def expected_output_data_generator(): yield np.array([4,5,6,7]) yield np.array([4,5,6]) yield np.array([4,5]) yield np.array([4]) yield np.array([4,5]) yield np.array([4,5,6]) yield np.array([4,5,6,7]) input_dataset = tf.data.Dataset.from_generator(input_data_generator, output_types=tf.int32) expected_output_dataset = tf.data.Dataset.from_generator(expected_output_data_generator, output_types=tf.int32) def add3(x): return x+3 pipeline = DataPipeline() pipeline.add_unit_transformation(add3) output_dataset = pipeline.transform_dataset(input_dataset) output_next = output_dataset.make_one_shot_iterator().get_next() expected_next = expected_output_dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(7): r_output, r_expected = sess.run((output_next, expected_next)) assert r_output == approx(r_expected) def test_add_unit_transformation_simple_tensor_slices(): input_data = np.array( [ [1,2,3,4], [1,2,3,0], [1,2,0,0], [1,0,0,0], ] ) expected_output_data = np.array( [ [4, 5, 6, 7], [4, 5, 6, 3], [4, 5, 3, 3], [4, 3, 3, 3], ] ) input_dataset = tf.data.Dataset.from_tensor_slices(input_data) expected_output_dataset = tf.data.Dataset.from_tensor_slices(expected_output_data) def add3(x): return x+3 pipeline = DataPipeline() pipeline.add_unit_transformation(add3) output_dataset = pipeline.transform_dataset(input_dataset) output_next = output_dataset.make_one_shot_iterator().get_next() expected_next = expected_output_dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(4): r_output, r_expected = sess.run((output_next, expected_next)) assert r_output == approx(r_expected) def test_add_unit_transformation_tuple_tensor_slices(): input_data = np.array( [ [1,2,3,4], [1,2,3,0], [1,2,0,0], [1,0,0,0], ] ) expected_output_data = np.array( [ [4, 5, 6, 7], [4, 5, 6, 3], [4, 5, 3, 3], [4, 3, 3, 3], ] ) input_dataset = tf.data.Dataset.from_tensor_slices((input_data, input_data[:,0])) expected_output_dataset = tf.data.Dataset.from_tensor_slices((expected_output_data, input_data[:,0])) def add3(x): return x+3 pipeline = DataPipeline() pipeline.add_unit_transformation(add3, 0) output_dataset = pipeline.transform_dataset(input_dataset) output_next = output_dataset.make_one_shot_iterator().get_next() expected_next = expected_output_dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(4): r_output, r_expected = sess.run((output_next, expected_next)) assert r_output[0] == approx(r_expected[0]) assert r_output[1] == approx(r_expected[1]) def test_add_unit_transformation_one_element_tuple_tensor_slices(): input_data = np.array( [ [1,2,3,4], [1,2,3,0], [1,2,0,0], [1,0,0,0], ] ) expected_output_data = np.array( [ [4, 5, 6, 7], [4, 5, 6, 3], [4, 5, 3, 3], [4, 3, 3, 3], ] ) input_dataset = tf.data.Dataset.from_tensor_slices((input_data,)) expected_output_dataset = tf.data.Dataset.from_tensor_slices(expected_output_data) def add3(x): return x+3 pipeline = DataPipeline() pipeline.add_unit_transformation(add3) output_dataset = pipeline.transform_dataset(input_dataset) output_next = output_dataset.make_one_shot_iterator().get_next() expected_next = expected_output_dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(4): r_output, r_expected = sess.run((output_next, expected_next)) assert r_output == approx(r_expected) def test_add_unit_transformation_one_element_tuple(): def input_data_generator(): yield np.array([1,2,3,4]), yield np.array([1,2,3]), yield np.array([1,2]), yield np.array([1]), yield np.array([1,2]), yield np.array([1,2,3]), yield np.array([1,2,3,4]), def expected_output_data_generator(): yield np.array([4,5,6,7]) yield np.array([4,5,6]) yield np.array([4,5]) yield np.array([4]) yield np.array([4,5]) yield np.array([4,5,6]) yield np.array([4,5,6,7]) input_dataset = tf.data.Dataset.from_generator(input_data_generator, output_types=(tf.int32,)) expected_output_dataset = tf.data.Dataset.from_generator(expected_output_data_generator, output_types=tf.int32) def add3(x): return x+3 pipeline = DataPipeline() pipeline.add_unit_transformation(add3) output_dataset = pipeline.transform_dataset(input_dataset) output_next = output_dataset.make_one_shot_iterator().get_next() expected_next = expected_output_dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(7): r_output, r_expected = sess.run((output_next, expected_next)) assert r_output == approx(r_expected)
[ "marcinlewy22@gmail.com" ]
marcinlewy22@gmail.com
b562693940f57aee2704a7f4d8653268ddf53124
63e2bed7329c79bf67279f9071194c9cba88a82c
/SevOneApi/python-client/test/test_net_flow_direction_dto.py
7b1fdcddfbf76aa18f834699f063812d07cefed0
[]
no_license
jsthomason/LearningPython
12422b969dbef89578ed326852dd65f65ab77496
2f71223250b6a198f2736bcb1b8681c51aa12c03
refs/heads/master
2021-01-21T01:05:46.208994
2019-06-27T13:40:37
2019-06-27T13:40:37
63,447,703
0
0
null
null
null
null
UTF-8
Python
false
false
947
py
# coding: utf-8 """ SevOne API Documentation Supported endpoints by the new RESTful API # noqa: E501 OpenAPI spec version: 2.1.18, Hash: db562e6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.net_flow_direction_dto import NetFlowDirectionDto # noqa: E501 from swagger_client.rest import ApiException class TestNetFlowDirectionDto(unittest.TestCase): """NetFlowDirectionDto unit test stubs""" def setUp(self): pass def tearDown(self): pass def testNetFlowDirectionDto(self): """Test NetFlowDirectionDto""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.net_flow_direction_dto.NetFlowDirectionDto() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "johnsthomason@gmail.com" ]
johnsthomason@gmail.com
dbefbc5f019d54bb59addf4ec8cda717551bc439
e8f4df6ccf3ee4673e1d8be3320d04650200d3c4
/CRF/2B/q2q3.py
d6cee5d599c9f332d36ec8df051b9dc4590dcce8
[]
no_license
ashishiiith/Graphical-Models
16559bd17958daad9266a05ec59c007f2430bd30
1e312b62b6254057e74889e23a095e85e1eca83f
refs/heads/master
2021-01-01T16:55:17.667267
2015-05-20T18:43:09
2015-05-20T18:43:09
30,876,622
0
0
null
null
null
null
UTF-8
Python
false
false
10,270
py
#Author: Ashish Jain #How to Run Code? python sumProduct.py <arg1> <arg2> #arg 1 - path of test image file, arg2 - test word corresponding to that test file import os import sys import time import itertools from numpy import * from math import * import scipy from scipy.optimize import fmin_bfgs from scipy.optimize import fmin_l_bfgs_b char_ordering = {'e':0, 't':1, 'a':2, 'i':3, 'n':4, 'o':5, 's':6, 'h':7, 'r':8, 'd':9} y_label = {} FP = zeros( (10, 321) ) TP = zeros( (10, 10) ) node_potential = None clique_potential = None beliefs = None size = 0 n=10 feat_size = 321 num_words = None forward_msg = {} backward_msg = {} pairwise_marginal = None marginal_distribution = None xij = None correct_char = 0 total_char = 0 likelihood = 1.0 def load_FP(fname): #loading feature parameters into a dictionary global FP lines = open(fname, "r").readlines() l = [] for i in xrange(0, len(lines)): FP[i] = map(lambda x: float(x), lines[i].strip().split()) def load_TP(fname): #loading transition parameter global TP y = 0 for line in open(fname, "r"): x = 0 tokens = line.strip().split() for token in tokens: TP[x][y] = float(token) x+=1 y+=1 def compute_node_potential(fname): global node_potential global xij node_potential = [] xij = [] for vector in open(fname, "r"): feature_vec = map(lambda x:float(x), vector.split()) vec = [] for i in xrange(0, 10): vec.append(dot(FP[i], feature_vec)) #dot product of feature vector and learned feature parameter from model node_potential.append(vec) xij.append(feature_vec) #print "Node Potential: " + str(node_potential) return node_potential def compute_clique_potential(fname, word): # computing clique potential corresponding to each of the clique in markov network global clique_potential global size size = len(word) clique_potential = zeros(shape=(len(word)-1, 10 ,10)) for i in xrange(0, len(word)-1): #storing clique potential for each of the clique node if i == len(word)-2: clique_potential[i] = matrix(node_potential[i]).T + matrix(node_potential[i+1]) + TP else: clique_potential[i] = matrix(node_potential[i]).T + TP #for i in xrange(0, len(word)-1): # for char1 in ['t', 'a', 'h']: # for char2 in ['t', 'a', 'h']: # print str(clique_potential[i][char_ordering[char1]][char_ordering[char2]]) + " ", # print # print def logsumexp(vector): c = max(vector) vector = map(lambda x : math.exp(x-c), vector) return c + math.log( sum(vector) ) def sumproduct_message(): global forward_msg global backward_msg potential = zeros(shape=(10,10)) ''' Implementing forward message passing. ''' forward_msg[1] = [0.0 for i in xrange(10)] for i in xrange(0, len(clique_potential)-1): key = str(i+1) + "->" + str(i+2) potential = clique_potential[i] forward_msg[i+2] = [] for j in xrange(0, 10): forward_msg[i+2].append(logsumexp(array(potential[:,j]+matrix(forward_msg[i+1])).flatten())) #print key + ":" + str(forward_msg[i+2]) '''Implementing backward message passing ''' backward_msg[size-1] = [0.0 for i in xrange(10)] for i in xrange(size-2, 0, -1): key = str(i+1) + "->"+str(i) potential = clique_potential[i] backward_msg[i] = [] for j in xrange(0, 10): backward_msg[i].append(logsumexp(array(potential[j, :] + matrix(backward_msg[i+1])).flatten())) #print key + ":" + str(backward_msg[i]) def logbeliefs(): global beliefs beliefs = zeros(shape=(size-1, 10, 10)) for i in xrange(size-1): if i == 0: beliefs[i] = clique_potential[i] + matrix(backward_msg[i+1]) elif i == size-2: beliefs[i] = clique_potential[i] + matrix(forward_msg[i+1]).T else: beliefs[i] = clique_potential[i] + matrix(backward_msg[i+1]) + matrix(forward_msg[i+1]).T #for i in xrange(0, len(beliefs)): # for ch1 in ['t', 'a']: # for ch2 in ['t', 'a']: # print ch1 + " : " + ch2 + " " + str(beliefs[i][char_ordering[ch1]][char_ordering[ch2]]) def marginal_probability(): global marginal_distribution global pairwise_marginal l = len(beliefs) pairwise_marginal = zeros(shape=(l, 10, 10)) marginal_distribution = zeros(shape=(l+1, 10)) for i in xrange(l): normalizer = 0.0 for ch1 in xrange(0, 10): for ch2 in xrange(0, 10): normalizer+=exp(beliefs[i][ch1][ch2]) for ch1 in xrange(0,10): for ch2 in xrange(0,10): #normalizing each value in belief table pairwise_marginal[i][ch1][ch2] = exp(beliefs[i][ch1][ch2])/normalizer #for ch1 in ['t', 'a', 'h']: # for ch2 in ['t', 'a', 'h']: # print ch1 + " : " + ch2 + " " + str(pairwise_marginal[i][char_ordering[ch1]][char_ordering[ch2]]) #adding up parisewise marginal probability along a row to compute marginal probability for j in xrange(10): marginal_distribution[i][j] = sum(pairwise_marginal[i][j]) if i==l-1: marginal_distribution[i+1][j] = sum(pairwise_marginal[i,:,j]) #for i in xrange(l+1): # for j in char_ordering.keys(): # print str(j) + " " + str(marginal_distribution[i][char_ordering[j]]) + " ", # print def predict_character(correct_word): global correct_char global total_char #using marginal probability to predict character for a given state predicted_word = "" for i in xrange(0, len(marginal_distribution)): index = argmax(array(marginal_distribution[i]).flatten()) for char, order in char_ordering.items(): if order==index: predicted_word+=char for j in xrange(0, len(predicted_word)): if predicted_word[j] == correct_word[j]: correct_char +=1 total_char += len(correct_word) #print predicted_word def average_loglikelihood(word): global likelihood for i in xrange(0, len(word)): likelihood *= marginal_distribution[i][char_ordering[word[i]]] def partition_function(): l = [] for i in xrange(0,10): l.append(logsumexp(list(beliefs[0][i]))) return logsumexp(l) def loglikelihood(word): #compute energy energy = 0.0 for i in xrange(0, len(word)-1): energy+=clique_potential[i][char_ordering[word[i]]][char_ordering[word[i+1]]] logZ = partition_function() return energy - logZ def sumProduct(fname, word): compute_node_potential(fname) compute_clique_potential(fname, word) sumproduct_message() logbeliefs() marginal_probability() predict_character(word) def load_weights(wgts): global TP global FP i = 0 for c in range(10): for cprime in range(10): TP[c][cprime] = wgts[i] i += 1 for c in range(10): for f in range(321): FP[c][f] = wgts[i] i += 1 def objective_function(weights): global TP global FP TP = weights[0:n*n].reshape([n, n]) FP = weights[n*n:].reshape([n, feat_size]) #load_weights(init_weights) count =1 likelihood = 0.0 for word in open("../2A/data/train_words.txt", "r"): sumProduct("../2A/data/train_img"+str(count)+".txt" , str(word.strip('\n'))) likelihood += loglikelihood(str(word.strip('\n'))) count+=1 if count == num_words+1: break avg_likelihood = -likelihood/float(num_words) return avg_likelihood def gradient_function(weights): global TP global FP TP = weights[0:n*n].reshape([n, n]) FP = weights[n*n:].reshape([n, feat_size]) gradient_feat = zeros([10, feat_size]) gradient_trans = zeros([10, 10]) count = 1 for words in open("../2A/data/train_words.txt", "r"): word = str(words.strip('\n')) sumProduct("../2A/data/train_img"+str(count)+".txt" , word) #for transition distribution for i in xrange(0, size-1): label1 = char_ordering[word[i]] label2 = char_ordering[word[i+1]] gradient_trans[label1][label2] += 1 for label1 in xrange(0, 10): for label2 in xrange(0, 10): gradient_trans[label1][label2] -= pairwise_marginal[i][label1][label2] #print "tansition gradient\n" #print gradient_trans #for marginal distribution #print "len xij : " + str(word) + " " + str( len(xij)) for i in xrange(0, size): label = char_ordering[word[i]] for f in xrange(0, feat_size): gradient_feat[label][f]+=xij[i][f] for c in xrange(0, 10): gradient_feat[c][f] -= marginal_distribution[i][c]*xij[i][f] count+=1 if count == num_words+1: break gradient_feat = concatenate(gradient_feat, axis=1) gradient_trans = concatenate(gradient_trans, axis=1) print -concatenate([gradient_trans, gradient_feat], axis=1)/float(num_words) return -concatenate([gradient_trans, gradient_feat], axis=1)/float(num_words) def output_result(result): fd = open("result", "a") for val in result: fd.write(str(val) + " ") fd.flush() fd.close() def main(): t0 = time.clock() global num_words wgts = open("result", "r").readline().split() load_weights(wgts) count = 1 for word in open("../2A/data/test_words.txt", "r"): sumProduct("../2A/data/test_img"+str(count)+".txt" , str(word.strip('\n'))) count+=1 print correct_char print total_char if __name__ == "__main__": main() #uncomment this function if you want to see results for Question 3.5
[ "ashish.iiith@gmail.com" ]
ashish.iiith@gmail.com