blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
72ef04a7112fdfe6416035af77af107421f3f6c0
699a2d030163de1230a7b3d274e8913268526df9
/practice/22.py
d9a48cf29f89cc0e475f7d8607059f4e1b93ddc9
[]
no_license
chaoyifei/python
b04bde2fcb28fb60777da40313299a7598595d47
3679f442ee8ab1f8b18a2989382ea48ea910ec8f
refs/heads/master
2020-06-25T04:21:53.218396
2018-06-11T16:15:50
2018-06-11T16:15:50
96,958,407
0
0
null
null
null
null
UTF-8
Python
false
false
116
py
def fun(age,rank): if rank==1: return age else: return fun(age+2,rank-1) print(fun(10,5))
[ "451089603@qq.com" ]
451089603@qq.com
ae5d4af3010b6833426055e197315c7f3f116d38
a6c888da394e0e961cea3a2c025a686ea949b2b6
/richweb/node_modules/sails-mongo/node_modules/mongodb/node_modules/bson/build/config.gypi
43fececb4b8008073f10977309b9fc5b8316e52a
[ "Apache-2.0", "MIT" ]
permissive
kyleotoole/RichWebGlenKyle
3f060993fbfa86d6a846ebc7bbaceb1951ad0ab7
ed98cf04c2a95bea0a720bfb1562738a7bd6834c
refs/heads/master
2021-01-01T05:49:01.115932
2013-12-10T13:06:58
2013-12-10T13:06:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,015
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 0, "gcc_version": 46, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "/usr", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "false", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_systemtap": "false", "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "false", "nodedir": "/home/kylerdp/.node-gyp/0.10.22", "copy_dev_lib": "true", "standalone_static_library": 1, "cache_lock_stale": "60000", "pre": "", "sign_git_tag": "", "always_auth": "", "user_agent": "node/v0.10.22 linux x64", "bin_links": "true", "description": "true", "fetch_retries": "2", "init_version": "0.0.0", "user": "1001", "force": "", "ignore": "", "cache_min": "10", "editor": "vi", "rollback": "true", "cache_max": "null", "userconfig": "/home/kylerdp/.npmrc", "coverage": "", "engine_strict": "", "init_author_name": "", "init_author_url": "", "tmp": "/home/kylerdp/tmp", "userignorefile": "/home/kylerdp/.npmignore", "yes": "", "depth": "null", "save_dev": "", "usage": "", "https_proxy": "", "onload_script": "", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "prefix": "/usr", "registry": "https://registry.npmjs.org/", "browser": "", "cache_lock_wait": "10000", "save_optional": "", "searchopts": "", "versions": "", "cache": "/home/kylerdp/.npm", "npaturl": "http://npat.npmjs.org/", "searchsort": "name", "version": "", "viewer": "man", "color": "true", "fetch_retry_mintimeout": "10000", "umask": "18", "fetch_retry_maxtimeout": "60000", "message": "%s", "global": "", "link": "", "save": "true", "unicode": "true", "long": "", "production": "", "unsafe_perm": "", "node_version": "v0.10.22", "tag": "latest", "shrinkwrap": "true", "fetch_retry_factor": "10", "npat": "", "proprietary_attribs": "true", "strict_ssl": "true", "username": "", "dev": "", "globalconfig": "/usr/etc/npmrc", "init_module": "/home/kylerdp/.npm-init.js", "parseable": "", "globalignorefile": "/usr/etc/npmignore", "cache_lock_retries": "10", "group": "1001", "init_author_email": "", "searchexclude": "", "git": "git", "optional": "true", "json": "" } }
[ "kyle-360@hotmail.com" ]
kyle-360@hotmail.com
64a6de3eb6458cc47ecc4139a3032c93beacdb52
b3d7f2c8b09a6fc4c1965b9d48baaf6927762e4f
/test/hummingbot/connector/exchange/lbank/test_lbank_exchange.py
3a70b0ae996f1fb9605e64a1de965701b6bd8e18
[ "Apache-2.0" ]
permissive
SaucyOfficiale/hummingbot
29f836a66881ae9e0b2a416d2220dd9f5e70a883
23a9a90047384176483d427ddfc73c2e21ed4512
refs/heads/master
2023-01-07T16:36:41.192517
2022-12-21T11:52:41
2022-12-21T11:52:41
183,094,523
1
0
Apache-2.0
2019-04-23T20:54:05
2019-04-23T20:54:05
null
UTF-8
Python
false
false
24,671
py
import json import re from decimal import Decimal from typing import Any, Callable, Dict, List, Optional, Tuple from aioresponses import aioresponses from aioresponses.core import RequestCall from hummingbot.client.config.client_config_map import ClientConfigMap from hummingbot.client.config.config_helpers import ClientConfigAdapter from hummingbot.connector.exchange.lbank import lbank_constants as CONSTANTS, lbank_web_utils as web_utils from hummingbot.connector.exchange.lbank.lbank_exchange import LbankExchange from hummingbot.connector.test_support.exchange_connector_test import AbstractExchangeConnectorTests from hummingbot.connector.trading_rule import TradingRule from hummingbot.core.data_type.in_flight_order import InFlightOrder from hummingbot.core.data_type.trade_fee import AddedToCostTradeFee, TokenAmount, TradeFeeBase from hummingbot.core.event.events import OrderType class LbankExchangeTests(AbstractExchangeConnectorTests.ExchangeConnectorTests): def setUp(self) -> None: self.api_key = "someKey" self.api_secret_key = "someSecretKey" self.auth_method = "HmacSHA256" self.ex_trading_pair = self.exchange_symbol_for_tokens(self.base_asset, self.quote_asset) super().setUp() @property def all_symbols_url(self): url = web_utils.public_rest_url(path_url=CONSTANTS.LBANK_TRADING_PAIRS_PATH_URL) return url @property def latest_prices_url(self): url = web_utils.public_rest_url(path_url=CONSTANTS.LBANK_CURRENT_MARKET_DATA_PATH_URL) url = f"{url}?symbol={self.base_asset.lower()}_{self.quote_asset.lower()}" regex_url = re.compile(f"^{url}".replace(".", r"\.").replace("?", r"\?")) return regex_url @property def network_status_url(self): url = web_utils.public_rest_url(path_url=CONSTANTS.LBANK_GET_TIMESTAMP_PATH_URL) return url @property def trading_rules_url(self): return self.all_symbols_url @property def order_creation_url(self): url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_CREATE_ORDER_PATH_URL) return url @property def balance_url(self): url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_USER_ASSET_PATH_URL) return url @property def all_symbols_request_mock_response(self): return { "result": True, "data": [ { "symbol": f"{self.base_asset.lower()}_{self.quote_asset.lower()}", "quantityAccuracy": "4", "minTranQua": "0.0001", "priceAccuracy": "2", } ], "error_code": 0, "ts": 1655827232443, } @property def all_symbols_including_invalid_pair_mock_response(self) -> Tuple[str, Any]: response = { "result": True, "data": [{"unrecognized_data_field": "INVALID-PAIR"}], "error_code": 0, "ts": 1655827232443, } return "INVALID-PAIR", response @property def latest_prices_request_mock_response(self): return { "result": True, "data": [ { "symbol": f"{self.base_asset.lower()}_{self.quote_asset.lower()}", "ticker": { "high": 10000, "vol": 33281.2314, "low": 9998, "change": 2, "turnover": 688968000.92, "latest": self.expected_latest_price, }, "timestamp": 1655827019966, } ], "error_code": 0, "ts": 1655827021679, } @property def network_status_request_successful_mock_response(self): return {"result": True, "data": 1655827102315, "error_code": 0, "ts": 1655827102315} @property def trading_rules_request_mock_response(self): return self.all_symbols_request_mock_response @property def trading_rules_request_erroneous_mock_response(self): # Missing data fields for Trading Rules response = { "result": True, "data": [{"symbol": f"{self.base_asset.lower()}_{self.quote_asset.lower()}"}], "error_code": 0, "ts": 1655827232443, } return response @property def order_creation_request_successful_mock_response(self): return {"result": True, "data": {"order_id": self.expected_exchange_order_id}} @property def balance_request_mock_response_for_base_and_quote(self): return { "result": True, "data": { "freeze": { # Locked Balance self.base_asset.lower(): 5.0, self.quote_asset.lower(): 0.0 }, "asset": { # Total Balance self.base_asset.lower(): 15.0, self.quote_asset.lower(): 2000.0 }, "free": { # Available Balance self.base_asset.lower(): 10.0, self.quote_asset.lower(): 2000.0 }, }, } @property def balance_request_mock_response_only_base(self): return { "result": True, "data": { "freeze": { # Locked Balance self.base_asset.lower(): 5.0 }, "asset": { # Total Balance self.base_asset.lower(): 15.0 }, "free": { # Available Balance self.base_asset.lower(): 10.0 }, }, } @property def balance_event_websocket_update(self): return { "data": { "asset": "15", "assetCode": self.base_asset.lower(), "free": "10", "freeze": "5", "time": 1655785565477, "type": "ORDER_CREATE", }, "SERVER": "V2", "type": "assetUpdate", "TS": "2022-06-21T12:26:05.478", } @property def expected_latest_price(self): return 9999.9 @property def expected_supported_order_types(self): return [OrderType.LIMIT, OrderType.MARKET] @property def expected_trading_rule(self): return TradingRule( trading_pair=self.trading_pair, min_order_size=Decimal(self.trading_rules_request_mock_response["data"][0]["minTranQua"]), min_base_amount_increment=Decimal( f"1e-{self.trading_rules_request_mock_response['data'][0]['quantityAccuracy']}" ), min_price_increment=Decimal( f"1e-{self.trading_rules_request_mock_response['data'][0]['priceAccuracy']}"), ) @property def expected_logged_error_for_erroneous_trading_rule(self): erroneous_rule = self.trading_rules_request_erroneous_mock_response["data"][0] return f"Error parsing trading pair rule {erroneous_rule}. Skipping." @property def expected_exchange_order_id(self): return "07b37475-6624-46ba-8668-09cc609e7032" @property def expected_partial_fill_price(self) -> Decimal: return Decimal(10500) @property def expected_partial_fill_amount(self) -> Decimal: return Decimal("0.5") @property def expected_fill_fee(self) -> TradeFeeBase: return AddedToCostTradeFee( flat_fees=[TokenAmount(token=self.base_asset, amount=Decimal("1e-6"))] ) @property def expected_fill_trade_id(self) -> str: return "TrID1" @property def is_cancel_request_executed_synchronously_by_server(self) -> bool: return False @property def is_order_fill_http_update_included_in_status_update(self) -> bool: return True @property def is_order_fill_http_update_executed_during_websocket_order_event_processing(self) -> bool: return True def exchange_symbol_for_tokens(self, base_token: str, quote_token: str) -> str: return f"{base_token.lower()}_{quote_token.lower()}" def create_exchange_instance(self): client_config_map = ClientConfigAdapter(ClientConfigMap()) return LbankExchange( client_config_map=client_config_map, lbank_api_key=self.api_key, lbank_secret_key=self.api_secret_key, lbank_auth_method=self.auth_method, trading_pairs=[self.trading_pair]) def validate_auth_credentials_present(self, request_call: RequestCall): request_headers = request_call.kwargs["headers"] request_data = request_call.kwargs["data"] self.assertIn("echostr", request_headers) self.assertIn("signature_method", request_headers) self.assertEqual(self.auth_method, request_headers["signature_method"]) self.assertIn("timestamp", request_headers) self.assertIn("Content-Type", request_headers) self.assertEqual("application/x-www-form-urlencoded", request_headers["Content-Type"]) self.assertIn("sign", request_data) def validate_order_creation_request(self, order: InFlightOrder, request_call: RequestCall): request_data = request_call.kwargs["data"] self.assertEqual(self.exchange_symbol_for_tokens(self.base_asset, self.quote_asset), request_data["symbol"]) self.assertIn("sign", request_data) self.assertIn("api_key", request_data) self.assertEqual(self.api_key, request_data["api_key"]) self.assertIn("type", request_data) self.assertEqual(order.trade_type.name.lower(), request_data["type"]) self.assertIn("price", request_data) self.assertEqual(order.price, Decimal(request_data["price"])) self.assertIn("amount", request_data) self.assertEqual(order.amount, Decimal(request_data["amount"])) self.assertIn("custom_id", request_data) self.assertEqual(order.client_order_id, request_data["custom_id"]) def validate_order_cancelation_request(self, order: InFlightOrder, request_call: RequestCall): request_data = request_call.kwargs["data"] self.assertIn("sign", request_data) self.assertIn("api_key", request_data) self.assertEqual(self.api_key, request_data["api_key"]) self.assertIn("symbol", request_data) self.assertEqual(self.exchange_symbol_for_tokens(self.base_asset, self.quote_asset), request_data["symbol"]) self.assertIn("customer_id", request_data) self.assertEqual(order.client_order_id, request_data["customer_id"]) def validate_order_status_request(self, order: InFlightOrder, request_call: RequestCall): request_data = request_call.kwargs["data"] self.assertIn("sign", request_data) self.assertIn("api_key", request_data) self.assertEqual(self.api_key, request_data["api_key"]) self.assertIn("symbol", request_data) self.assertEqual(self.exchange_symbol_for_tokens(self.base_asset, self.quote_asset), request_data["symbol"]) self.assertIn("order_id", request_data) self.assertEqual(order.exchange_order_id, request_data["order_id"]) def validate_trades_request(self, order: InFlightOrder, request_call: RequestCall): request_data = request_call.kwargs["data"] self.assertIn("api_key", request_data) self.assertEqual(self.api_key, request_data["api_key"]) self.assertIn("symbol", request_data) self.assertEqual(self.exchange_symbol_for_tokens(self.base_asset, self.quote_asset), request_data["symbol"]) self.assertIn("order_id", request_data) self.assertEqual(order.exchange_order_id, request_data["order_id"]) def configure_successful_cancelation_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_CANCEL_ORDER_PATH_URL) response = {"result": True, "data": {"customer_id": order.client_order_id}} mock_api.post(url, body=json.dumps(response), callback=callback) return url def configure_erroneous_cancelation_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_CANCEL_ORDER_PATH_URL) response = {"result": False, "data": {"error": [order.client_order_id]}} mock_api.post(url, body=json.dumps(response), callback=callback) return url def configure_one_successful_one_erroneous_cancel_all_response( self, successful_order: InFlightOrder, erroneous_order: InFlightOrder, mock_api: aioresponses ) -> List[str]: """ :return: a list of all configured URLs for the cancelations """ all_urls = [] url = self.configure_successful_cancelation_response(order=successful_order, mock_api=mock_api) all_urls.append(url) url = self.configure_erroneous_cancelation_response(order=erroneous_order, mock_api=mock_api) all_urls.append(url) return all_urls def configure_completely_filled_order_status_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_ORDER_UPDATES_PATH_URL) response = self._order_status_request_completely_filled_mock_response(order=order) mock_api.post(url, body=json.dumps(response), callback=callback) return url def configure_canceled_order_status_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_ORDER_UPDATES_PATH_URL) response = self._order_status_request_canceled_mock_response(order=order) mock_api.post(url, body=json.dumps(response), callback=callback) return url def configure_open_order_status_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_ORDER_UPDATES_PATH_URL) response = self._order_status_request_open_mock_response(order=order) mock_api.post(url, body=json.dumps(response), callback=callback) return url def configure_http_error_order_status_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_ORDER_UPDATES_PATH_URL) mock_api.post(url, status=404, callback=callback) return url def configure_partially_filled_order_status_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_ORDER_UPDATES_PATH_URL) response = self._order_status_request_partially_filled_mock_response(order=order) mock_api.post(url, body=json.dumps(response), callback=callback) return url def configure_partial_fill_trade_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_TRADE_UPDATES_PATH_URL) response = self._order_fills_request_partial_fill_mock_response(order=order) mock_api.post(url, body=json.dumps(response), callback=callback) return url def configure_full_fill_trade_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_TRADE_UPDATES_PATH_URL) response = self._order_fills_request_full_fill_mock_response(order=order) mock_api.post(url, body=json.dumps(response), callback=callback) return url def configure_erroneous_http_fill_trade_response( self, order: InFlightOrder, mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = web_utils.private_rest_url(path_url=CONSTANTS.LBANK_TRADE_UPDATES_PATH_URL) mock_api.post(url, status=400, callback=callback) return url def _configure_balance_response( self, response: Dict[str, Any], mock_api: aioresponses, callback: Optional[Callable] = lambda *args, **kwargs: None ) -> str: url = self.balance_url mock_api.post(url, body=json.dumps(response)) def order_event_for_new_order_websocket_update(self, order: InFlightOrder): return { "SERVER": "V2", "orderUpdate": { "accAmt": "0", "amount": "0", "avgPrice": "0", "customerID": order.client_order_id, "orderAmt": str(order.amount), "orderPrice": str(order.price), "orderStatus": 0, "price": "0", "remainAmt": str(order.amount), "role": "taker", "symbol": self.ex_trading_pair, "type": "buy", "updateTime": 1655785565476, "uuid": self.expected_exchange_order_id, "volumePrice": "0", }, "type": "orderUpdate", "pair": self.ex_trading_pair, "TS": "2022-06-21T12:26:05.479", } def order_event_for_canceled_order_websocket_update(self, order: InFlightOrder): return { "SERVER": "V2", "orderUpdate": { "accAmt": "0", "amount": "0", "avgPrice": "0", "customerID": order.client_order_id, "orderAmt": str(order.amount), "orderPrice": str(order.price), "orderStatus": -1, "price": "0", "remainAmt": "0", "role": "taker", "symbol": self.ex_trading_pair, "type": "buy", "updateTime": 1655785577941, "uuid": self.expected_exchange_order_id, "volumePrice": "0", }, "type": "orderUpdate", "pair": self.ex_trading_pair, "TS": "2022-06-21T12:26:17.943", } def order_event_for_full_fill_websocket_update(self, order: InFlightOrder): return { "SERVER": "V2", "orderUpdate": { "accAmt": str(order.amount), "amount": str(order.amount), "avgPrice": str(order.price), "customerID": order.client_order_id, "orderAmt": str(order.amount), "orderPrice": str(order.price), "orderStatus": 2, "price": str(order.price), "remainAmt": "0", "role": "taker", "symbol": self.ex_trading_pair, "type": "buy", "updateTime": 1655785577941, "uuid": self.expected_exchange_order_id, "volumePrice": "0", }, "type": "orderUpdate", "pair": self.ex_trading_pair, "TS": "2022-06-21T12:26:17.943", } def trade_event_for_full_fill_websocket_update(self, order: InFlightOrder): # NOTE: LBank does not have any trade events over their private stream channels return None def _order_status_request_completely_filled_mock_response(self, order: InFlightOrder) -> Any: return { "result": True, "data": [ { "symbol": self.ex_trading_pair, "amount": str(order.amount), "create_time": int(order.creation_timestamp), "price": str(order.price), "avg_price": str(order.price), "type": order.trade_type.name.lower(), "order_id": order.exchange_order_id, "deal_amount": 0, "status": 2 } ], "error_code": 0, "ts": 1656406392759 } def _order_status_request_canceled_mock_response(self, order: InFlightOrder) -> Any: return { "result": True, "data": [ { "symbol": self.ex_trading_pair, "amount": str(order.amount), "create_time": int(order.creation_timestamp), "price": str(order.price), "avg_price": 0, "type": order.trade_type.name.lower(), "order_id": order.exchange_order_id, "deal_amount": 0, "status": -1 } ], "error_code": 0, "ts": 1656406392759 } def _order_status_request_open_mock_response(self, order: InFlightOrder) -> Any: return { "result": True, "data": [ { "symbol": self.ex_trading_pair, "amount": str(order.amount), "create_time": int(order.creation_timestamp), "price": str(order.price), "avg_price": 0, "type": order.trade_type.name.lower(), "order_id": order.exchange_order_id, "deal_amount": 0, "status": 0 } ], "error_code": 0, "ts": 1656406392759 } def _order_status_request_partially_filled_mock_response(self, order: InFlightOrder) -> Any: return { "result": True, "data": [ { "symbol": self.ex_trading_pair, "amount": str(order.amount), "create_time": order.creation_timestamp, "price": str(order.price), "avg_price": str(self.expected_partial_fill_price), "type": order.trade_type.name.lower(), "order_id": order.exchange_order_id, "deal_amount": str(self.expected_partial_fill_amount), "status": 1, "customer_id": order.client_order_id, } ], "error_code": 0, "ts": 1656406392759 } def _order_fills_request_partial_fill_mock_response(self, order: InFlightOrder): return { "result": True, "data": [ { "txUuid": self.expected_fill_trade_id, "orderUuid": order.exchange_order_id, "tradeType": order.trade_type.name.lower(), "dealTime": 1562553793113, "dealPrice": str(self.expected_partial_fill_price), "dealQuantity": str(self.expected_partial_fill_amount), "dealVolumePrice": str(self.expected_partial_fill_price * self.expected_partial_fill_amount), "tradeFee": 0.0000010000, "tradeFeeRate": 0.000001, } ], "error_code": 0, "ts": 1656406325921 } def _order_fills_request_full_fill_mock_response(self, order: InFlightOrder): return { "result": True, "data": [ { "txUuid": self.expected_fill_trade_id, "orderUuid": order.exchange_order_id, "tradeType": order.trade_type.name.lower(), "dealTime": 1562553793113, "dealPrice": str(order.price), "dealQuantity": str(order.amount), "dealVolumePrice": str(order.price * order.amount), "tradeFee": 0.0000010000, "tradeFeeRate": 0.000001, } ], "error_code": 0, "ts": 1656406325921 }
[ "abel@hummingbot.io" ]
abel@hummingbot.io
c529ecc46016f20514c8238e75e8b5c76ebdca4d
45a962c477826051726b5dcec088567623c5894c
/manage.py
62d32c4571a7034476d475e25659bee94ebe0ab7
[]
no_license
Sks2000Sks/BASIC-BANKING-SYSTEM
a14c3aab37203b5678b9178acd5de5628e9bf21e
80172da18c131e31afd2aece15b98d35a4dedbce
refs/heads/main
2023-07-18T01:45:44.024448
2021-08-18T11:41:21
2021-08-18T11:41:21
397,579,189
0
0
null
null
null
null
UTF-8
Python
false
false
682
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'bank.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "noreply@github.com" ]
Sks2000Sks.noreply@github.com
53243d6c671c147e708797250ac2f0b78b3e21db
05a70c12df808455100598d8a6fdb5635c641ab8
/Ago-Dic-2018/ArmandoGarcia/practica2/usuarios.py
6eb4c7ba62b34fd889e8874f47b87f8d57ce400f
[ "MIT" ]
permissive
Jonathan-aguilar/DAS_Sistemas
991edcc929c33ba9bb8bc84e741b55c10a8420a3
4d02efc64161871084df1bff258112351e5d1241
refs/heads/development
2023-07-24T12:26:54.698452
2021-09-02T20:52:26
2021-09-02T20:52:26
289,764,892
1
0
MIT
2021-09-02T20:52:27
2020-08-23T20:54:55
Python
UTF-8
Python
false
false
668
py
# Ejercicio 9-3 class usuario: def __init__(self, first_name, last_name, semestre, escuela): self.first_name = first_name self.last_name = last_name self.semestre = semestre self.escuela = escuela def __str__(self): return 'Nombre: {} \nApellido: {} \nSemestre: {} \nEscuela: {}'.format(self.first_name,self.last_name,self.semestre,self.escuela) usuario_1 = usuario('Luis','Rodas','Sexto','TEC Monterry') usuario_2 = usuario('Alfonso','Hinojosa','Primero','Cbtis 300') usuario_3 = usuario('Alexander','Jimenez','Decimo','Escuela de la vida') print(usuario_1) print('\n') print(usuario_2) print('\n') print(usuario_3)
[ "mastersky_96@hotmail.com" ]
mastersky_96@hotmail.com
58b9e4472680e80a72d209324fc8d287a77f59e5
2c6f33443234c4b7732d7bf0aee51e5844021312
/assignment.py
b6e8bc282fce2654d016e9d5ac0795b4d201f337
[]
no_license
afzalIbnSH/eagle-owl-assignment
5cd9a0dfa71cf973a13873c56e5b9c48e865e48c
6900eebcc5edade25fe7680054769de239d26aba
refs/heads/master
2022-12-05T06:02:50.489426
2020-08-21T11:16:24
2020-08-21T11:16:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,421
py
""" customerdata.txt contains transactional data from a fictitious website. Parse it and generate a report with the following information 1. How many orders did the site receive? 2. What was the total amount of the orders? 3. List the names of the customers who ordered once and did not order again. 4. Get a distribution of customers who ordered exactly once, exactly twice, and so on up to 4 orders and group the rest as 5 orders and above 5. Generate this report as a simple HTML page with a table. 6. Add a bar graph for the information in Q4 in your HTML report. """ from os import getcwd def structure_data(): """ Reads the customerdata.txt file and returns data structured as below { <phone_number>: { "name": <name> "orders": [ {"date": <date>, "amount": <amount>}, .. .. ] }, .. .. } It also returns the total number and total amount of orders """ with open("customerdata.txt") as f: f.readline() data = {} total_orders = 0 total_amount = 0 while True: try: date, phone_number, name, amount = f.readline().strip().split(", ") amount = int(amount) try: # Neglect if there is a name mismatch for the same number data[phone_number]["orders"].append( {"date": date, "amount": amount} ) except KeyError: data[phone_number] = { "name": name, "orders": [{"date": date, "amount": amount}], } total_amount += amount total_orders += 1 except ValueError: break return data, total_orders, total_amount def group_customers(data): """ Groups customers as per number of orders made Also collects names of customers who never reordered """ groups = {"1": 0, "2": 0, "3": 0, "4": 0, "5+": 0} non_repeat_customers = [] for value in data.values(): orders_made = len(value["orders"]) try: groups[str(orders_made)] += 1 except KeyError: groups["5+"] += 1 if orders_made == 1: non_repeat_customers.append(value["name"]) return groups, non_repeat_customers def generate_html(groups, distinct_customers_count): table = """ <table width="100%" border=1> <tr> <th align="left">No of orders</th> <th align="left">Count of customers</th> </tr> """ for number_of_orders, count in groups.items(): table = ( table + f""" <tr> <td>{number_of_orders}</td> <td>{count}</td> </tr> """ ) table = table + "</table>" bar_chart = '<table border="0" width="100%" cellpadding = "0" cellspacing="0">' for number_of_orders, count in groups.items(): percentage = round((100 / distinct_customers_count) * count, 2) bar_chart = ( bar_chart + f""" <tr> <td width="20%">{number_of_orders} order(s)</td> <td width="75%"> <table border = "0" width = "100%" cellpadding = "1" cellspacing="1"> <tr> <td align="left" bgcolor="blue" width="{percentage}%"> </td> <td align="left">{percentage}%</td> </tr> </table> </td> </tr> """ ) bar_chart = bar_chart + "</table>" return f""" <h1>Distribution of customers who ordered exactly once, exactly twice, and so on up to 4 orders and the rest as 5 orders and above</h1> <br> <h2>Table:</h2> {table} <br> <h2>Bar chart:</h2> {bar_chart} """ if __name__ == "__main__": data, total_orders, total_amount = structure_data() print(f"Total orders => {total_orders}") print(f"Total amount of orders => {total_amount}") groups, non_repeat_customers = group_customers(data) print(f"Customers who never reordered => {non_repeat_customers}") with open("customerdata.html", "w") as f: f.write(generate_html(groups, len(data))) print(f"HTML => Open file://{getcwd()}/{f.name}")
[ "aflibnush@gmail.com" ]
aflibnush@gmail.com
78f27398c8a4dfc39b5112cc8e8da601f5e3041d
ffcc2b42850fdf8780064d22e2fabf2df894f51d
/converter/gameconstants.py
71f7c27a47e476df5079d2c00f0354e02590126b
[ "MIT" ]
permissive
NNTin/Reply-LoL-Reddit
05a31a270136c2237798c46b9aca6e3e9c01a7b5
f971a8dfaafcd13912097018fbfb40ab72f09b1e
refs/heads/master
2020-04-12T05:37:24.746633
2017-04-02T12:47:29
2017-04-02T12:47:29
64,067,308
8
1
null
null
null
null
UTF-8
Python
false
false
8,552
py
matchMode = {"CLASSIC": "Classic","ODIN": "Dominion/Crystal","ARAM": "ARAM","TUTORIAL": "Tutorial","ONEFORALL": "One","ASCENSION": "Ascension","FIRSTBLOOD": "Snowdown","KINGPORO": "King","SIEGE": "Nexus"} #queueType = {'CUSTOM': 'CUSTOM', 'NORMAL_5x5_BLIND': 'NORMAL_5x5_BLIND', 'RANKED_SOLO_5x5': 'RANKED_SOLO_5x5', 'RANKED_PREMADE_5x5': 'RANKED_PREMADE_5x5', 'BOT_5x5': 'BOT_5x5', 'NORMAL_3x3': 'NORMAL_3x3', 'RANKED_PREMADE_3x3': 'RANKED_PREMADE_3x3', 'NORMAL_5x5_DRAFT': 'NORMAL_5x5_DRAFT', 'ODIN_5x5_BLIND': 'ODIN_5x5_BLIND', 'ODIN_5x5_DRAFT': 'ODIN_5x5_DRAFT', 'BOT_ODIN_5x5': 'BOT_ODIN_5x5', 'BOT_5x5_INTRO': 'BOT_5x5_INTRO', 'BOT_5x5_BEGINNER': 'BOT_5x5_BEGINNER', 'BOT_5x5_INTERMEDIATE': 'BOT_5x5_INTERMEDIATE', 'RANKED_TEAM_3x3': 'RANKED_TEAM_3x3', 'RANKED_TEAM_5x5': 'RANKED_TEAM_5x5', 'BOT_TT_3x3': 'BOT_TT_3x3', 'GROUP_FINDER_5x5': 'GROUP_FINDER_5x5', 'ARAM_5x5': 'ARAM_5x5', 'ONEFORALL_5x5': 'ONEFORALL_5x5', 'FIRSTBLOOD_1x1': 'FIRSTBLOOD_1x1', 'FIRSTBLOOD_2x2': 'FIRSTBLOOD_2x2', 'SR_6x6': 'SR_6x6', 'URF_5x5': 'URF_5x5', 'ONEFORALL_MIRRORMODE_5x5': 'ONEFORALL_MIRRORMODE_5x5', 'BOT_URF_5x5': 'BOT_URF_5x5', 'NIGHTMARE_BOT_5x5_RANK1': 'NIGHTMARE_BOT_5x5_RANK1', 'NIGHTMARE_BOT_5x5_RANK2': 'NIGHTMARE_BOT_5x5_RANK2', 'NIGHTMARE_BOT_5x5_RANK5': 'NIGHTMARE_BOT_5x5_RANK5', 'ASCENSION_5x5': 'ASCENSION_5x5', 'HEXAKILL': 'HEXAKILL', 'BILGEWATER_ARAM_5x5': 'BILGEWATER_ARAM_5x5', 'KING_PORO_5x5': 'KING_PORO_5x5', 'COUNTER_PICK': 'COUNTER_PICK', 'BILGEWATER_5x5': 'BILGEWATER_5x5', 'TEAM_BUILDER_DRAFT_UNRANKED_5x5': 'TEAM_BUILDER_DRAFT_UNRANKED_5x5', 'TEAM_BUILDER_DRAFT_RANKED_5x5': 'TEAM_BUILDER_DRAFT_RANKED_5x5'} queueTypeByName = {"CUSTOM": {"id": 0, "name": "Custom"}, "NORMAL_3x3": {"id": 8, "name": "Normal 3v3"}, "NORMAL_5x5_BLIND": {"id": 2, "name": "Normal 5v5 Blind Pick"}, "NORMAL_5x5_DRAFT": {"id": 14, "name": "Normal 5v5 Draft Pick"}, "RANKED_SOLO_5x5": {"id": 4, "name": "Ranked Solo 5v5"}, "RANKED_PREMADE_5x5": {"id": 6, "name": "Ranked Premade 5v5"}, "RANKED_PREMADE_3x3": {"id": 9, "name": "Ranked Premade 3v3"}, "RANKED_TEAM_3x3": {"id": 41, "name": "Ranked Team 3v3"}, "RANKED_TEAM_5x5": {"id": 42, "name": "Ranked Team 5v5"}, "ODIN_5x5_BLIND": {"id": 16, "name": "Dominion 5v5 Blind Pick"}, "ODIN_5x5_DRAFT": {"id": 17, "name": "Dominion 5v5 Draft Pick"}, "BOT_5x5": {"id": 7, "name": "Historical Summoner's Rift Coop vs AI"}, "BOT_ODIN_5x5": {"id": 25, "name": "Dominion Coop vs AI"}, "BOT_5x5_INTRO": {"id": 31, "name": "Summoner's Rift Coop vs AI Intro Bot"}, "BOT_5x5_BEGINNER": {"id": 32, "name": "Summoner's Rift Coop vs AI Beginner Bot"}, "BOT_5x5_INTERMEDIATE": {"id": 33, "name": "Historical Summoner's Rift Coop vs AI Intermediate Bot"}, "BOT_TT_3x3": {"id": 52, "name": "Twisted Treeline Coop vs AI"}, "GROUP_FINDER_5x5": {"id": 61, "name": "Team Builder"}, "ARAM_5x5": {"id": 65, "name": "ARAM"}, "ONEFORALL_5x5": {"id": 70, "name": "One for All"}, "FIRSTBLOOD_1x1": {"id": 72, "name": "Snowdown Showdown 1v1"}, "FIRSTBLOOD_2x2": {"id": 73, "name": "Snowdown Showdown 2v2"}, "SR_6x6": {"id": 75, "name": "Summoner's Rift 6x6 Hexakill"}, "URF_5x5": {"id": 76, "name": "Ultra Rapid Fire"}, "ONEFORALL_MIRRORMODE_5x5": {"id": 78, "name": "One for All (Mirror mode)"}, "BOT_URF_5x5": {"id": 83, "name": "Ultra Rapid Fire played against AI"}, "NIGHTMARE_BOT_5x5_RANK1": {"id": 91, "name": "Doom Bots Rank 1"}, "NIGHTMARE_BOT_5x5_RANK2": {"id": 92, "name": "Doom Bots Rank 2"}, "NIGHTMARE_BOT_5x5_RANK5": {"id": 93, "name": "Doom Bots Rank 5"}, "ASCENSION_5x5": {"id": 96, "name": "Ascension"}, "EXAKILL": {"id": 98, "name": "Twisted Treeline 6x6 Hexakill"}, "BILGEWATER_ARAM_5x5": {"id": 100, "name": "Butcher's Bridge"}, "KING_PORO_5x5": {"id": 300, "name": "King Poro"}, "COUNTER_PICK": {"id": 310, "name": "Nemesis"}, "BILGEWATER_5x5": {"id": 313, "name": "Black Market Brawlers"}, "SIEGE": {"id": 315, "name": "Nexus Siege"}, "DEFINITELY_NOT_DOMINION_5x5": {"id": 317, "name": "Definitely Not Dominion"}, "TEAM_BUILDER_DRAFT_UNRANKED_5x5": {"id": 400, "name": "Normal 5v5 Draft Pick"}, "TEAM_BUILDER_DRAFT_RANKED_5x5": {"id": 410, "name": "Ranked 5v5 Draft Pick"}} queueTypeById = {"0": {"nameId": "CUSTOM", "name": "Custom"},"8": {"nameId": "NORMAL_3x3", "name": "Normal 3v3"},"2": {"nameId": "NORMAL_5x5_BLIND", "name": "Normal 5v5 Blind Pick"},"14": {"nameId": "NORMAL_5x5_DRAFT", "name": "Normal 5v5 Draft Pick"},"4": {"nameId": "RANKED_SOLO_5x5", "name": "Ranked Solo 5v5"},"6": {"nameId": "RANKED_PREMADE_5x5", "name": "Ranked Premade 5v5"},"9": {"nameId": "RANKED_PREMADE_3x3", "name": "Ranked Premade 3v3"},"41": {"nameId": "RANKED_TEAM_3x3", "name": "Ranked Team 3v3"},"42": {"nameId": "RANKED_TEAM_5x5", "name": "Ranked Team 5v5"},"16": {"nameId": "ODIN_5x5_BLIND", "name": "Dominion 5v5 Blind Pick"},"17": {"nameId": "ODIN_5x5_DRAFT", "name": "Dominion 5v5 Draft Pick"},"7": {"nameId": "BOT_5x5", "name": "Historical Summoner's Rift Coop vs AI"},"25": {"nameId": "BOT_ODIN_5x5", "name": "Dominion Coop vs AI"},"31": {"nameId": "BOT_5x5_INTRO", "name": "Summoner's Rift Coop vs AI Intro Bot"},"32": {"nameId": "BOT_5x5_BEGINNER", "name": "Summoner's Rift Coop vs AI Beginner Bot"},"33": {"nameId": "BOT_5x5_INTERMEDIATE", "name": "Historical Summoner's Rift Coop vs AI Intermediate Bot"},"52": {"nameId": "BOT_TT_3x3", "name": "Twisted Treeline Coop vs AI"},"61": {"nameId": "GROUP_FINDER_5x5", "name": "Team Builder"},"65": {"nameId": "ARAM_5x5", "name": "ARAM"},"70": {"nameId": "ONEFORALL_5x5", "name": "One for All"},"72": {"nameId": "FIRSTBLOOD_1x1", "name": "Snowdown Showdown 1v1"},"73": {"nameId": "FIRSTBLOOD_2x2", "name": "Snowdown Showdown 2v2"},"75": {"nameId": "SR_6x6", "name": "Summoner's Rift 6x6 Hexakill"},"76": {"nameId": "URF_5x5", "name": "Ultra Rapid Fire"},"78": {"nameId": "ONEFORALL_MIRRORMODE_5x5", "name": "One for All (Mirror mode)"},"83": {"nameId": "BOT_URF_5x5", "name": "Ultra Rapid Fire played against AI"},"91": {"nameId": "NIGHTMARE_BOT_5x5_RANK1", "name": "Doom Bots Rank 1"},"92": {"nameId": "NIGHTMARE_BOT_5x5_RANK2", "name": "Doom Bots Rank 2"},"93": {"nameId": "NIGHTMARE_BOT_5x5_RANK5", "name": "Doom Bots Rank 5"},"96": {"nameId": "ASCENSION_5x5", "name": "Ascension"},"98": {"nameId": "EXAKILL", "name": "Twisted Treeline 6x6 Hexakill"},"100": {"nameId": "BILGEWATER_ARAM_5x5", "name": "Butcher's Bridge"},"300": {"nameId": "KING_PORO_5x5", "name": "King Poro"},"310": {"nameId": "COUNTER_PICK", "name": "Nemesis"},"313": {"nameId": "BILGEWATER_5x5", "name": "Black Market Brawlers"},"315": {"nameId": "IEGE", "name": "Nexus Siege"},"317": {"nameId": "DEFINITELY_NOT_DOMINION_5x5", "name": "Definitely Not Dominion"},"400": {"nameId": "TEAM_BUILDER_DRAFT_UNRANKED_5x5", "name": "Normal 5v5 Draft Pick"},"410": {"nameId": "TEAM_BUILDER_DRAFT_RANKED_5x5", "name": "Ranked 5v5 Draft Pick"}} matchType = {'CUSTOM_GAME': 'Custom', 'MATCHED_GAME': 'Matched', 'TUTORIAL_GAME': 'Tutorial'} subType = {"NONE": "Custom","NORMAL": "Summoner's","NORMAL_3x3": "Twisted","ODIN_UNRANKED": "Dominion/Crystal","ARAM_UNRANKED_5x5": "ARAM","BOT": "Summoner's","BOT_3x3": "Twisted","ANKED_SOLO_5x5": "Summoner's","RANKED_TEAM_3x3": "Twisted","RANKED_TEAM_5x5": "Summoner's","ONEFORALL_5x5": "One","FIRSTBLOOD_1x1": "Snowdown","FIRSTBLOOD_2x2": "Snowdown","SR_6x6": "Summoner's","CAP_5x5": "Team","URF": "Ultra","URF_BOT": "Ultra","NIGHTMARE_BOT": "Summoner's","ASCENSION": "Ascension","HEXAKILL": "Twisted","KING_PORO": "King","COUNTER_PICK": "Nemesis","BILGEWATER": "Black","SIEGE": "Nexus"} playerStatSummaryType = {"Unranked": "Summoner's","Unranked3x3": "Twisted","OdinUnranked": "Dominion/Crystal","AramUnranked5x5": "ARAM","CoopVsAI": "Summoner's","CoopVsAI3x3": "Twisted","RankedSolo5x5": "Summoner's","RankedTeam3x3": "Twisted","RankedTeam5x5": "Summoner's","OneForAll5x5": "One","FirstBlood1x1": "Snowdown","FirstBlood2x2": "Snowdown","SummonersRift6x6": "Summoner's","CAP5x5": "Team","URF": "Ultra","URFBots": "Ultra","NightmareBot": "Summoner's","Ascension": "Ascension","Hexakill": "Twisted","KingPoro": "King","CounterPick": "Nemesis","Bilgewater": "Black","Siege": "Nexus"} season = {'PRESEASON3,': 'PRESEASON3,', 'SEASON3,': 'SEASON3,', 'PRESEASON2014,': 'PRESEASON2014,', 'SEASON2014,': 'SEASON2014,', 'PRESEASON2015,': 'PRESEASON2015,', 'SEASON2015,': 'SEASON2015,', 'PRESEASON2016,': 'PRESEASON2016,', 'SEASON2016': 'SEASON2016'} highestAchievedSeasonTier = {'CHALLENGER,': 'CHALLENGER,', 'MASTER,': 'MASTER,', 'DIAMOND,': 'DIAMOND,', 'PLATINUM,': 'PLATINUM,', 'GOLD,': 'GOLD,', 'SILVER,': 'SILVER,', 'BRONZE,': 'BRONZE,', 'UNRANKED': 'UNRANKED'}
[ "ngoctinnguyen1993@gmail.com" ]
ngoctinnguyen1993@gmail.com
addc8cb7baab1254b5c892410c0387f5eea9293f
c3d5add5ab632f7b456f89ff5ed392ae0221c0e7
/system/init/configuration.py
b2099905dcfa97573b595008ca228bba0b70c87b
[]
no_license
readysetrock/Sugr_Daddy
6596b25ce3ea5cc82c0ddba04881f85b58a7b39a
09e6f7e8220a5de104778ddb479c6cad9ae45554
refs/heads/master
2021-01-15T09:38:08.995910
2016-02-21T23:52:28
2016-02-21T23:52:28
43,457,156
6
0
null
null
null
null
UTF-8
Python
false
false
502
py
""" Configuration initialization file This file initializes all of the base configurations defined in the config.base file """ from app.config import base import os def _get_config(env): return { 'DEVELOPMENT': base.DevelopmentConfig, 'STAGING': base.StagingConfig, 'PRODUCTION': base.ProductionConfig, }.get(env, base.DevelopmentConfig) def initialize_config(app): env = os.getenv('PYLOT_ENV', 'DEVELOPMENT') app.config.from_object(_get_config(env))
[ "tytowry@gmail.com" ]
tytowry@gmail.com
9f54a3b4dafb6a44a94fe17ce7837f9d314d62cc
bfcd398b8045d7b542db9b5c3b54130f3ac7ad66
/userdashboard/apps/userd/migrations/0004_remove_message_msguser.py
6fa6d3d5dd79ef6ec50579a41530fada9d7f47e9
[]
no_license
acn545/Django
32b8b216fe1e73885e3bd583e98627b938f79866
d2f52da3599e930ef1728fc5f6a6ef7150c413cd
refs/heads/master
2020-03-18T15:26:14.692243
2018-05-25T21:34:50
2018-05-25T21:34:50
134,907,674
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.12 on 2018-04-23 21:43 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('userd', '0003_message_msguser'), ] operations = [ migrations.RemoveField( model_name='message', name='msgUser', ), ]
[ "anthonycnoble@live.com" ]
anthonycnoble@live.com
265522a7deada1360fac4df736f45501ac5024dc
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_285/ch5_2019_06_03_01_06_29_598637.py
b4bfd46781ff35c49180a25a814cd9a7dfae311a
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
def verifica_primo(n): if n<0: return -1 num=3 while num<n: if n%2==0 or n%num==0: return False num+=2 if n==0 or n==1: return False else: return True def maior_primo_menor_que(n): if verifica_primo(n)== True: return n elif verifica_primo(n)== False: lista=[] for e in range(n): if verifica_primo(n-e)==True: return n-e else: return -1
[ "you@example.com" ]
you@example.com
88ba592a61b2d4e2fa4ac35b512f13126a93e8f8
985ce7108f56d8f7acd9ac35cdd87f08db5caac4
/database.py
f0e07da64471c0f83486fd85dbaffc5144f9d23e
[]
no_license
ariaramin/login-signin-system
ce7d102d38f140ea2be2f6b652f2a2e30d440e15
b12c0eb945aca6c44ada375f8efa84ee55df16e5
refs/heads/main
2023-03-03T03:07:01.603808
2021-02-16T15:28:52
2021-02-16T15:28:52
339,441,150
3
0
null
null
null
null
UTF-8
Python
false
false
1,637
py
from pymysql import connect #connect to DB class connector: def connection(self): try: self.con = connect('localhost','root', '', 'users') self.cursor = self.con.cursor() except: print('error') #insert a data class signin(connector): def __init__(self, username, email, password): connector.connection(self) data = (username, email, password) query = 'INSERT INTO users_info(username, email, password) VALUES (%s,%s,%s)' self.cursor.execute(query, data) self.con.commit() #get username and password class login(connector): def __init__(self, username, password): connector.connection(self) data = (username, password) query = 'SELECT * FROM users_info WHERE username LIKE %s AND password LIKE %s' self.cursor.execute(query, data) self.values = self.cursor.fetchall() def get(self): return self.values #get email class getpass(connector): def __init__(self, email): connector.connection(self) data = (email) query = 'SELECT * FROM users_info WHERE email LIKE %s' self.cursor.execute(query, data) self.result = self.cursor.fetchall() def get(self): return self.result #get username class account(connector): def __init__(self, username): connector.connection(self) data = (username) query = 'SELECT * FROM users_info WHERE username LIKE %s' self.cursor.execute(query, data) self.result = self.cursor.fetchall() def get(self): return self.result
[ "ariaramin24@gmail.com" ]
ariaramin24@gmail.com
277b12248e81a6e903b561cf68a167cc5ac531a0
e0c2a8a544be42490ad86e232b26156317c9fb7f
/Encapsulation/Client.py
deb75779fb6c2ce70274ac2796081022f4fb4588
[]
no_license
hhitman47/oop-python
8133cebcdbac5b5f24756772ab20357c4a4aa8af
0d44dbaf0213b314a1b55a24b3524ea89554bc56
refs/heads/master
2022-04-20T22:59:38.345445
2020-04-22T17:28:37
2020-04-22T17:28:37
257,969,405
0
0
null
null
null
null
UTF-8
Python
false
false
599
py
from Encapsulation.Bank import Bank class Clinet(Bank): pass client_1 = Bank() #print(client_1.Bank__Client_info()) print(client_1._Bank__bank_name) while True: print("1. Check Account Balance ") print("2. Withdraw Funds ") menu_option = int(input()) if menu_option == 1: #client_1._Bank__Client_info() print("Your Current Balance is : ",client_1.Balance_getter()) elif menu_option == 2: value = int(input("How much would you like to withdreaw : ")) client_1.Balance_Setter(value) else: print("Wrong menu choice ....")
[ "h.hitman47@gmail.com" ]
h.hitman47@gmail.com
9902776c082c92c16c89cd39d922e4b461482b88
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/authorization/azure-mgmt-authorization/azure/mgmt/authorization/v2018_05_01_preview/models/__init__.py
b555500e3ca24979e6c5c02f7be553bf65fd61c7
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
3,815
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._models_py3 import AccessReviewDecision from ._models_py3 import AccessReviewDecisionListResult from ._models_py3 import AccessReviewDecisionProperties from ._models_py3 import AccessReviewDecisionTarget from ._models_py3 import AccessReviewDefaultSettings from ._models_py3 import AccessReviewInstance from ._models_py3 import AccessReviewInstanceListResult from ._models_py3 import AccessReviewReviewer from ._models_py3 import AccessReviewScheduleDefinition from ._models_py3 import AccessReviewScheduleDefinitionListResult from ._models_py3 import AccessReviewScheduleDefinitionProperties from ._models_py3 import AccessReviewScheduleSettings from ._models_py3 import ErrorDefinition from ._models_py3 import ErrorDefinitionProperties from ._models_py3 import Operation from ._models_py3 import OperationDisplay from ._models_py3 import OperationListResult from ._models_py3 import ServicePrincipalDecisionTarget from ._models_py3 import UserDecisionTarget from ._authorization_management_client_enums import AccessRecommendationType from ._authorization_management_client_enums import AccessReviewActorIdentityType from ._authorization_management_client_enums import AccessReviewApplyResult from ._authorization_management_client_enums import AccessReviewInstanceStatus from ._authorization_management_client_enums import AccessReviewRecurrencePatternType from ._authorization_management_client_enums import AccessReviewRecurrenceRangeType from ._authorization_management_client_enums import AccessReviewResult from ._authorization_management_client_enums import AccessReviewReviewerType from ._authorization_management_client_enums import AccessReviewScheduleDefinitionReviewersType from ._authorization_management_client_enums import AccessReviewScheduleDefinitionStatus from ._authorization_management_client_enums import AccessReviewScopePrincipalType from ._authorization_management_client_enums import DecisionTargetType from ._authorization_management_client_enums import DefaultDecisionType from ._patch import __all__ as _patch_all from ._patch import * # type: ignore # pylint: disable=unused-wildcard-import from ._patch import patch_sdk as _patch_sdk __all__ = [ "AccessReviewDecision", "AccessReviewDecisionListResult", "AccessReviewDecisionProperties", "AccessReviewDecisionTarget", "AccessReviewDefaultSettings", "AccessReviewInstance", "AccessReviewInstanceListResult", "AccessReviewReviewer", "AccessReviewScheduleDefinition", "AccessReviewScheduleDefinitionListResult", "AccessReviewScheduleDefinitionProperties", "AccessReviewScheduleSettings", "ErrorDefinition", "ErrorDefinitionProperties", "Operation", "OperationDisplay", "OperationListResult", "ServicePrincipalDecisionTarget", "UserDecisionTarget", "AccessRecommendationType", "AccessReviewActorIdentityType", "AccessReviewApplyResult", "AccessReviewInstanceStatus", "AccessReviewRecurrencePatternType", "AccessReviewRecurrenceRangeType", "AccessReviewResult", "AccessReviewReviewerType", "AccessReviewScheduleDefinitionReviewersType", "AccessReviewScheduleDefinitionStatus", "AccessReviewScopePrincipalType", "DecisionTargetType", "DefaultDecisionType", ] __all__.extend([p for p in _patch_all if p not in __all__]) _patch_sdk()
[ "noreply@github.com" ]
test-repo-billy.noreply@github.com
67beea05ca779525eb2784422ef64d3f81fc9c53
23fbb376cbe173d0dd2cdf28b478abce7c9a42e3
/Maturka/trojkat.py
aeba49521908c67d3bc5445e3e8047eb7f67c257
[]
no_license
PanOscar/MaturaInf
cfe025b97565f07938b808727616bb52f7cef1d2
f2c98a4dc336e72556b95c70f0af7faf6eb7873f
refs/heads/master
2023-08-13T15:56:51.057069
2021-10-05T20:28:21
2021-10-05T20:28:21
234,733,029
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
from turtle import * color("blue","white") lt(180) for n in range(3): for i in range(5): begin_fill() for j in range(3): fd(50*(i+1)) rt(120) fd(250) rt(120) end_fill() done()
[ "osi23.78@gmail.com" ]
osi23.78@gmail.com
ecd1fe8a8b5678366ade3ae81684187a171f55f5
4c601eaa346e660c296e270cc2d79aea9a3721fe
/homeassistant/components/atag/__init__.py
237a82f207a51306dfec01869827bd135973d15b
[ "Apache-2.0" ]
permissive
basnijholt/home-assistant
f55110af9ff602274c0a929c7298ef97a0ef282f
ba55b4b8338a2dc0ba3f1d750efea49d86571291
refs/heads/dev
2023-01-21T11:53:52.621353
2020-08-08T15:03:06
2020-08-08T15:03:06
220,313,680
5
1
Apache-2.0
2023-01-13T06:04:49
2019-11-07T19:29:54
Python
UTF-8
Python
false
false
4,345
py
"""The ATAG Integration.""" from datetime import timedelta import logging import async_timeout from pyatag import AtagException, AtagOne from homeassistant.components.climate import DOMAIN as CLIMATE from homeassistant.components.sensor import DOMAIN as SENSOR from homeassistant.components.water_heater import DOMAIN as WATER_HEATER from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, asyncio from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.entity import Entity from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed _LOGGER = logging.getLogger(__name__) DOMAIN = "atag" PLATFORMS = [CLIMATE, WATER_HEATER, SENSOR] async def async_setup(hass: HomeAssistant, config): """Set up the Atag component.""" return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up Atag integration from a config entry.""" session = async_get_clientsession(hass) coordinator = AtagDataUpdateCoordinator(hass, session, entry) await coordinator.async_refresh() if not coordinator.last_update_success: raise ConfigEntryNotReady hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN][entry.entry_id] = coordinator if entry.unique_id is None: hass.config_entries.async_update_entry(entry, unique_id=coordinator.atag.id) for platform in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, platform) ) return True class AtagDataUpdateCoordinator(DataUpdateCoordinator): """Define an object to hold Atag data.""" def __init__(self, hass, session, entry): """Initialize.""" self.atag = AtagOne(session=session, **entry.data) super().__init__( hass, _LOGGER, name=DOMAIN, update_interval=timedelta(seconds=30) ) async def _async_update_data(self): """Update data via library.""" with async_timeout.timeout(20): try: if not await self.atag.update(): raise UpdateFailed("No data received") except AtagException as error: raise UpdateFailed(error) return self.atag.report async def async_unload_entry(hass, entry): """Unload Atag config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ] ) ) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) return unload_ok class AtagEntity(Entity): """Defines a base Atag entity.""" def __init__(self, coordinator: AtagDataUpdateCoordinator, atag_id: str) -> None: """Initialize the Atag entity.""" self.coordinator = coordinator self._id = atag_id self._name = DOMAIN.title() @property def device_info(self) -> dict: """Return info for device registry.""" device = self.coordinator.atag.id version = self.coordinator.atag.apiversion return { "identifiers": {(DOMAIN, device)}, "name": "Atag Thermostat", "model": "Atag One", "sw_version": version, "manufacturer": "Atag", } @property def name(self) -> str: """Return the name of the entity.""" return self._name @property def should_poll(self) -> bool: """Return the polling requirement of the entity.""" return False @property def available(self): """Return True if entity is available.""" return self.coordinator.last_update_success @property def unique_id(self): """Return a unique ID to use for this entity.""" return f"{self.coordinator.atag.id}-{self._id}" async def async_added_to_hass(self): """Connect to dispatcher listening for entity data notifications.""" self.async_on_remove( self.coordinator.async_add_listener(self.async_write_ha_state) ) async def async_update(self): """Update Atag entity.""" await self.coordinator.async_request_refresh()
[ "noreply@github.com" ]
basnijholt.noreply@github.com
40aab536212b385feeecf7caa7c71a167555dbc5
4e3da889cc9ebf460db841665e3559efbc96b5fb
/regions_extractor.py
b0500b570b209b637388af4cca3dc48acb2a8732
[]
no_license
Jellycious/morph-detection
5fdd02de355a8beb407264e4d32b9b9388a35b59
9230c1f674ee9028d134b35cc3e15d0fdcd77206
refs/heads/main
2023-01-30T18:39:47.074924
2020-12-08T15:19:02
2020-12-08T15:19:02
319,674,730
0
1
null
null
null
null
UTF-8
Python
false
false
16,597
py
#!/home/jelle/.virtualenvs/face-morphing/bin/python # This makes sure that it runs the virtual env # third party libraries import dlib import cv2 import numpy as np from sklearn.model_selection import train_test_split # standard libraries import os import sys import pickle # our libraries import utils detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('./predictors/shape_predictor_68_face_landmarks.dat') win = dlib.image_window() def main(): for (trusted, questioned) in utils.pairs_iter(): show_extracted_regions(trusted) def save_fft_example_image(): for (trusted, questioned) in utils.pairs_iter(): dirn = os.path.dirname(trusted) for (prefix, trusted, questioned) in utils.get_regions(dirn): region_img = cv2.imread(trusted, 0) region_fft = np.fft.fftshift(np.fft.fft2(region_img)) region_fft_img = 20 * np.log(np.abs(region_fft)) print(trusted) cv2.imwrite('fft_region_example.png', region_fft_img) return def check_bona_fide_of_directory(dirn): if os.path.split(dirn)[1][0] == 'M': bona_fide = False return bona_fide elif os.path.split(dirn)[1][0] == 'B': bona_fide = True return bona_fide else: raise Exception("Could not determine class of: " + dirn) def create_frequency_training_data(): frequency_data_list = list() for (trusted, questioned) in utils.pairs_iter(): # dirn = os.path.join(os.path.dirname(trusted), '33x33') dirn = os.path.dirname(trusted) region_dict = dict() for (prefix, trusted, questioned) in utils.get_regions(dirn): try: trusted_img = cv2.imread(trusted, 0) trusted_fft = np.fft.fft2(trusted_img) trusted_fft = np.fft.fftshift(trusted_fft) questioned_img = cv2.imread(questioned, 0) questioned_fft = np.fft.fft2(questioned_img) questioned_fft = np.fft.fftshift(questioned_fft) region_dict[prefix] = (trusted_fft, questioned_fft) except Exception as e: print(e) print(trusted) bona_fide = True if os.path.split(dirn)[1][0] == 'M': bona_fide = False elif os.path.split(dirn)[1][0] == 'B': bona_fide = True else: raise Exception("Could not determine class of: " + dirn) frequency_data_list.append((region_dict, bona_fide, os.path.split(dirn)[1])) spliced = train_test_split(frequency_data_list, train_size=0.8) train_test_frequency_data = {'training': spliced[0], 'test': spliced[1]} with open("train_test_frequency_data_RAW.pk", "wb") as output_file: pickle.dump(train_test_frequency_data, output_file) def create_spectral_training_data(): spectral_data_list = list() for (trusted, questioned) in utils.pairs_iter(): # dirn = os.path.join(os.path.dirname(trusted), '33x33') dirn = os.path.dirname(trusted) region_dict = dict() for (prefix, trusted, questioned) in utils.get_regions(dirn): try: trusted_img = cv2.imread(trusted, 0) trusted_spec = get_spectrum_img_32(trusted_img, replace_negatives=False, log=False) questioned_img = cv2.imread(questioned, 0) questioned_spec = get_spectrum_img_32(questioned_img, replace_negatives=False, log=False) region_dict[prefix] = (trusted_spec, questioned_spec) except Exception as e: print(e) print(trusted) bona_fide = True if os.path.split(dirn)[1][0] == 'M': bona_fide = False elif os.path.split(dirn)[1][0] == 'B': bona_fide = True else: raise Exception("Could not determine class of: " + dirn) spectral_data_list.append((region_dict, bona_fide, os.path.split(dirn)[1])) spliced = train_test_split(spectral_data_list, train_size=0.8) train_test_spectral_data = {'training': spliced[0], 'test': spliced[1]} with open("train_test_spectral_data_RAW_nolog.pk", "wb") as output_file: pickle.dump(train_test_spectral_data, output_file) def get_spectrum_img_32(img, replace_negatives=True, log=True): ''' EXPECTS AN IMAGE TO BE 32x32 in size ''' fft = np.fft.fft2(img) fft = np.fft.fftshift(fft) magnitude = np.abs(fft) if log: magnitude = 20 * np.log(magnitude) if replace_negatives: magnitude[magnitude < 0] = 0 CENTER = (16, 16) # since image is 32x32 MAX_RADIUS = 16 warped = cv2.warpPolar(magnitude, (0, 0), CENTER, MAX_RADIUS, cv2.WARP_POLAR_LINEAR + cv2.WARP_FILL_OUTLIERS) warped_transposed = np.transpose(warped) spectrum = list() for n in warped_transposed: avg = np.average(n) spectrum.append(avg) return spectrum def increase_image_size(img, scaling): height = len(img) width = len(img[0]) return cv2.resize(img, (int(width * scaling), int(height * scaling)), interpolation=cv2.INTER_NEAREST) def complex_to_polar2(carr): ''' Converts complex numbers into polar coordinates. Since complex numbers are a single datatype this will increase the dimension of the matrix by 1. The output of a complex number c will be the tuple (distance, angle) ''' # probably this function is useless distance = np.abs(carr) angle = np.angle(carr) return np.dstack((distance, angle)) def frequency_domain_to_polar_frequency_domain(parr): ''' converts frequency domain represented by (hF, vF) to (D, angle) :param parr: polar coordinate matrix. ''' return def extract_regions(imgpath): ''' Extracts the different regions and stores them in the directory. Trusted: whether the given image is a trusted image ''' # create file path basename = os.path.basename(imgpath) dirn = os.path.dirname(imgpath) # Check whether image is trusted or questioned if basename.startswith('Q'): imgcat = 'Q' elif basename.startswith('T'): imgcat = 'T' else: raise Exception("Could not determine img state") # load image in BGR format img = cv2.imread(imgpath) first_face_bounding_box = detector(img, 0)[0] shape = predictor(img, first_face_bounding_box) # get all regions nose_region = create_rectangle(shape.parts()[29], 32) nose_region_img = extract_rectangle_from_img(img, nose_region) cv2.imwrite(os.path.join(dirn, 'NO_' + imgcat + '.png'), nose_region_img) right_cheekbone_region = create_rectangle(right_cheekbone_point(shape), 32) right_cheekbone_region_img = extract_rectangle_from_img(img, right_cheekbone_region) cv2.imwrite(os.path.join(dirn, 'RB_' + imgcat + '.png'), right_cheekbone_region_img) left_cheekbone_region = create_rectangle(left_cheekbone_point(shape), 32) left_cheekbone_region_img = extract_rectangle_from_img(img, left_cheekbone_region) cv2.imwrite(os.path.join(dirn, 'LB_' + imgcat + '.png'), left_cheekbone_region_img) right_cheek_region = create_rectangle(right_cheek_point(shape), 32) right_cheek_region_img = extract_rectangle_from_img(img, right_cheek_region) cv2.imwrite(os.path.join(dirn, 'RC_' + imgcat + '.png'), right_cheek_region_img) left_cheek_region = create_rectangle(left_cheek_point(shape), 32) left_cheek_region_img = extract_rectangle_from_img(img, left_cheek_region) cv2.imwrite(os.path.join(dirn, 'LC_' + imgcat + '.png'), left_cheek_region_img) forehead_region = create_rectangle(forehead_point(shape), 32) forehead_region_img = extract_rectangle_from_img(img, forehead_region) cv2.imwrite(os.path.join(dirn, 'FH_' + imgcat + '.png'), forehead_region_img) chin_region = create_rectangle(chin_point(shape), 32) chin_region_img = extract_rectangle_from_img(img, chin_region) cv2.imwrite(os.path.join(dirn, 'CH_' + imgcat + '.png'), chin_region_img) return def extract_regions(imgpath, size): ''' Extracts regions with dimensions: size x size. The results are stored in a directory named "'size'x'size'" ''' # create file path basename = os.path.basename(imgpath) dirn = os.path.dirname(imgpath) # Check whether image is trusted or questioned if basename.startswith('Q'): imgcat = 'Q' elif basename.startswith('T'): imgcat = 'T' else: raise Exception("Could not determine img state") # create directory new_dir = os.path.join(dirn, '{}x{}'.format(size, size)) try: os.mkdir(new_dir) except FileExistsError: pass except Exception as e: print(e) # load image in BGR format img = cv2.imread(imgpath) first_face_bounding_box = detector(img, 0)[0] shape = predictor(img, first_face_bounding_box) # get all regions nose_region = create_rectangle(shape.parts()[29], size) nose_region_img = extract_rectangle_from_img(img, nose_region) cv2.imwrite(os.path.join(new_dir, 'NO_' + imgcat + '.png'), nose_region_img) right_cheekbone_region = create_rectangle(right_cheekbone_point(shape), size) right_cheekbone_region_img = extract_rectangle_from_img(img, right_cheekbone_region) cv2.imwrite(os.path.join(new_dir, 'RB_' + imgcat + '.png'), right_cheekbone_region_img) left_cheekbone_region = create_rectangle(left_cheekbone_point(shape), size) left_cheekbone_region_img = extract_rectangle_from_img(img, left_cheekbone_region) cv2.imwrite(os.path.join(new_dir, 'LB_' + imgcat + '.png'), left_cheekbone_region_img) right_cheek_region = create_rectangle(right_cheek_point(shape), size) right_cheek_region_img = extract_rectangle_from_img(img, right_cheek_region) cv2.imwrite(os.path.join(new_dir, 'RC_' + imgcat + '.png'), right_cheek_region_img) left_cheek_region = create_rectangle(left_cheek_point(shape), size) left_cheek_region_img = extract_rectangle_from_img(img, left_cheek_region) cv2.imwrite(os.path.join(new_dir, 'LC_' + imgcat + '.png'), left_cheek_region_img) forehead_region = create_rectangle(forehead_point(shape), size) forehead_region_img = extract_rectangle_from_img(img, forehead_region) cv2.imwrite(os.path.join(new_dir, 'FH_' + imgcat + '.png'), forehead_region_img) chin_region = create_rectangle(chin_point(shape), size) chin_region_img = extract_rectangle_from_img(img, chin_region) cv2.imwrite(os.path.join(new_dir, 'CH_' + imgcat + '.png'), chin_region_img) return def show_extracted_regions(imgpath): win = dlib.image_window() # load grayscale img img = cv2.imread(imgpath) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) win.clear_overlay() win.set_image(img) # detect face first_face_bounding_box = detector(img, 0)[0] shape = predictor(img, first_face_bounding_box) # nose region #win.add_overlay(create_rectangle(shape.parts()[29], 32), dlib.rgb_pixel(255, 0, 0)) #right_cheekbone_center = right_cheekbone_point(shape) #win.add_overlay(create_rectangle(right_cheekbone_center, 32), dlib.rgb_pixel(0, 255, 0)) #left_cheekbone_center = left_cheekbone_point(shape) #win.add_overlay(create_rectangle(left_cheekbone_center, 32), dlib.rgb_pixel(0, 0, 255)) #right_cheek_center = right_cheek_point(shape) #win.add_overlay(create_rectangle(right_cheek_center, 32), dlib.rgb_pixel(255, 255, 0)) #left_cheek_center = left_cheek_point(shape) #win.add_overlay(create_rectangle(left_cheek_center, 32), dlib.rgb_pixel(255, 0, 255)) #forehead = forehead_point(shape) #win.add_overlay(create_rectangle(forehead, 32), dlib.rgb_pixel(0, 255, 255)) #chin = chin_point(shape) #win.add_overlay(create_rectangle(chin, 32), dlib.rgb_pixel(255, 255, 255)) draw_shape_points(shape, win) #wait_for_next_input(win) #extr_img = extract_rectangle_from_img(img, create_rectangle(shape.parts()[29], 32)) #win.clear_overlay() #win.set_image(extr_img) wait_for_next_input(win) win.clear_overlay() def extract_rectangle_from_img(img, rectangle): ''' Returns new img with content of the rectangle on the image. ''' tl = rectangle.tl_corner() tr = rectangle.tr_corner() bl = rectangle.bl_corner() return img[tl.y:bl.y, tl.x:tr.x] def right_cheekbone_point(shape): ''' Gets the right cheekbone point. Shape needs to be shape from dlib 68 landmark predictor. ''' points = shape.parts() # cheekbone points middle_cheekbone_point = points[29] right_cheekbone_upper = points[15] right_cheekbone_lower = points[14] x = int(0.33 * middle_cheekbone_point.x + 0.33 * right_cheekbone_upper.x + 0.33 * right_cheekbone_lower.x) y = int(0.33 * middle_cheekbone_point.y + 0.33 * right_cheekbone_upper.y + 0.33 * right_cheekbone_lower.y) right_cheekbone_center = dlib.point(x, y) return right_cheekbone_center def left_cheekbone_point(shape): ''' Gets the left cheekbone point. Shape needs to be shape from dlib 68 landmark predictor. ''' # cheekbone points points = shape.parts() middle_cheekbone_point = points[29] left_cheekbone_upper = points[1] left_cheekbone_lower = points[2] x = int(0.33 * middle_cheekbone_point.x + 0.33 * left_cheekbone_upper.x + 0.33 * left_cheekbone_lower.x) y = int(0.33 * middle_cheekbone_point.y + 0.33 * left_cheekbone_upper.y + 0.33 * left_cheekbone_lower.y) left_cheekbone_center = dlib.point(x, y) return left_cheekbone_center def left_cheek_point(shape): ''' Left point of cheek. Close to the corner of the mouth. Shape needs to be from dlib 68 landmark predictor. ''' points = shape.parts() left_mouth_point = points[48] left_cheek_upper = points[3] left_cheek_lower = points[4] x = int(0.5 * left_mouth_point.x + 0.25 * left_cheek_upper.x + 0.25 * left_cheek_lower.x) y = int(0.5 * left_mouth_point.y + 0.25 * left_cheek_upper.y + 0.25 * left_cheek_lower.y) left_cheek_center = dlib.point(x, y) return left_cheek_center def right_cheek_point(shape): ''' Right point of cheek. Close to the corner of the mouth. Shape needs to be from dlib 68 landmark predictor. ''' points = shape.parts() right_mouth_point = points[54] right_cheek_upper = points[13] right_cheek_lower = points[12] # right cheek region x = int(0.5 * right_mouth_point.x + 0.25 * right_cheek_upper.x + 0.25 * right_cheek_lower.x) y = int(0.5 * right_mouth_point.y + 0.25 * right_cheek_upper.y + 0.25 * right_cheek_lower.y) right_cheek_center = dlib.point(x, y) return right_cheek_center def forehead_point(shape): ''' Forehead point. ''' points = shape.parts() left = points[19] right = points[24] nose_upper = points[27] x = int(0.5 * left.x + 0.5 * right.x) y = int(0.5 * left.y + 0.5 * right.y) y_change = int(0.5 * (nose_upper.y - y)) forehead_point = dlib.point(x, y - y_change) return forehead_point def draw_shape_points(shape, win): for point in shape.parts(): win.add_overlay_circle(point, 2, dlib.rgb_pixel(0, 255, 0)) def chin_point(shape): ''' Chin point ''' points = shape.parts() bottom_mouth = points[57] right_chin = points[9] left_chin = points[7] x = int(0.5 * bottom_mouth.x + 0.25 * right_chin.x + 0.25 * left_chin.x) y = int(0.5 * bottom_mouth.y + 0.25 * right_chin.y + 0.25 * left_chin.y) chin_point = dlib.point(x, y) return chin_point def create_rectangle(center, size): if (size % 2) == 0: s = size / 2 x1 = int(center.x - s) x2 = int(center.x + s) y1 = int(center.y - s) y2 = int(center.y + s) else: # since we are dealing with a discrete space. # the solution is to offset the region to the right and top with 1 pixel. # not ideal, but this should not matter, since this is done for all images. s = int(size / 2) x1 = int(center.x - s) - 1 x2 = int(center.x + s) y1 = int(center.y - s) - 1 y2 = int(center.y + s) return dlib.rectangle(x1, y1, x2, y2) def wait_for_next_input(win): ''' Wait untill the user presses a key. If the key is 'x' exit. ''' keypress = win.get_next_keypress() if (keypress) == 'x': sys.exit(0) if __name__ == '__main__': main()
[ "jellejanwil@gmail.com" ]
jellejanwil@gmail.com
06fdcad4c808d645f460770dc5cda45ab67815ba
a4b83f339b9e0bab850e9e2dbd2640c7a032b1ff
/dependencies_analysis/src/main.py
405318cd5ff8ea64af598d5cc2413eec808b65d2
[ "BSD-3-Clause" ]
permissive
afdaniele/director
75e9a34393b3dcb6c50de32b6c5739b04f64f23a
845ba027f9009803fcf77f44874f2ab9d7ab72e3
refs/heads/master
2020-04-18T21:31:49.734108
2019-05-01T04:42:02
2019-05-01T04:42:02
167,767,383
0
0
BSD-3-Clause
2019-01-27T03:59:31
2019-01-27T03:59:31
null
UTF-8
Python
false
false
4,374
py
from os.path import join import networkx as nx from utils import ProgressBar, FileReader ENVIRONMENT = "director" DATA_DIR = "/code/dependencies_analysis/data" ALLOWED_SOURCE_PKG = None ALLOWED_TARGET_PKG = [ "/code/director/src/python", "/usr/lib/python2.7", "/usr/lib/python2.7/dist-packages", "/usr/local/lib/python2.7/dist-packages" "/usr/local/lib/python2.7/site-packages" ] ENTRYPOINT_PKG = "/code/director_entrypoint" PLUGINS_PKG = "/code/director_plugins" def file_path(file_id): return join(DATA_DIR, ENVIRONMENT, file_id) def cut_zero_in_degree_nodes(G, packages): cut = [] for n in G.in_degree_iter(): if n[1] == 0: parts = n[0].split('/') pack_id = int(parts[0][1:]) if pack_id in [packages[ENTRYPOINT_PKG], packages[PLUGINS_PKG]]: continue cut.append(n[0]) G.remove_node(n[0]) return cut def main(): all, dependencies, errors = [], [], [] for section in ["director", "entrypoint", "plugins"]: files_to_load = ['all_imports.list', 'dependencies.list', 'import_errors.list'] data = [] for file in files_to_load: fname = '_'.join([section, file]) fr = FileReader(file_path(fname)) print "Loading file '%s'... " % fname, data.append(fr.lines()) print "Done!" # unpack data sec_all, sec_dependencies, sec_errors = data # extend data all.extend(sec_all) dependencies.extend(sec_dependencies) errors.extend(sec_errors) # filter dependencies packages = { ENTRYPOINT_PKG : 0, PLUGINS_PKG : 1 } pbar = ProgressBar(len(dependencies)) G = nx.DiGraph() excluded_source = set() excluded_target = set() print "Processing dependencies... ", for dep in dependencies: # convert string -> tuple dep = eval(dep) source, target = dep pbar.next() # ignore package if not allowed if ALLOWED_SOURCE_PKG and source[0] not in ALLOWED_SOURCE_PKG: excluded_source.add(source[0]) continue if ALLOWED_TARGET_PKG and target[0] not in ALLOWED_TARGET_PKG: excluded_target.add(target[0]) continue # get source package id source_pkg_id = len(packages) if source[0] in packages: source_pkg_id = packages[source[0]] else: packages[source[0]] = source_pkg_id # get target package id target_pkg_id = len(packages) if target[0] in packages: target_pkg_id = packages[target[0]] else: packages[target[0]] = target_pkg_id # create unique ID for file source = 'P%d/%s' % (source_pkg_id, source[1]) target = 'P%d/%s' % (target_pkg_id, target[1]) # add dependency edge to the graph G.add_edge(source, target) # print excluded print "Excluded sources: %d" % len(excluded_source) for p in excluded_source: print "\t%s" % p print "" print "Excluded targets: %d" % len(excluded_target) for p in excluded_target: print "\t%s" % p print "" # print packages print "Packages:" for p,i in packages.items(): print "\tP%d : %s" % (i,p) print "" # print stats print nx.info(G) print "Nodes with self-loops:" for n in G.nodes_with_selfloops(): print "\t"+str(n) print "" print "Trimming nodes:" step = 1 files_to_remove = [] cut = cut_zero_in_degree_nodes(G, packages) while len(cut) > 0: files_to_remove.extend(cut) print "Step %d. Pruned %d nodes." % (step, len(cut)) print "Modules pruned:" print "\t" + "\n\t".join(cut) print "Graph stats:" print nx.info(G) step += 1 cut = cut_zero_in_degree_nodes(G, packages) # print stats print "Graph pruned!" print nx.info(G) dot = nx.nx_pydot.to_pydot(G) # print dir(dot) # pos = nx.nx_pydot.graphviz_layout(G) #nx.kamada_kawai_layout(G) # dot.set_layout(pos) # with open(join(DATA_DIR, 'graph.dot'), "wb") as fo: # # fo.write(dot) # fo.write(pos) # dot.set_size(2000, 2000) # dot.set_nodesep(20) # # dot.set_ranksep(20) # # dot.write_pdf( join(DATA_DIR, 'graph.pdf'), prog='neato' ) nx.drawing.nx_pydot.write_dot(G, join(DATA_DIR, 'graph.dot')) print "Files we can remove:" pkg_id_to_pkg_path = { v : k for k,v in packages.items() } for f in files_to_remove: parts = f.split('/') pack_id = int(parts[0][1:]) pack_path = pkg_id_to_pkg_path[pack_id] print "\t%s" % join(pack_path, "/".join(parts[1:])) if __name__ == '__main__': main()
[ "cha@drive.ai" ]
cha@drive.ai
ef4e45fe551d5134930a7c4748f00fe58bf60c90
23ec2d36bc6f3706483b4d3c863ffd11b8247839
/fundclear/models.py
f62dc5d7515d8b25124e2059be0c2a4056f9e151
[]
no_license
slee124565/philcop
4d6f536d2d0536d2c9110f4ea2d5b88995322cba
592ce889f7eb59f4cf3c02a8ffa85cb505ee7add
refs/heads/master
2021-01-11T03:58:55.028400
2018-01-06T15:30:45
2018-01-06T15:30:45
71,266,174
1
0
null
null
null
null
UTF-8
Python
false
false
10,265
py
import calendar import logging from google.appengine.ext import db from lxml.html import document_fromstring from lxml import etree from datetime import date from dateutil import parser from dateutil.relativedelta import relativedelta from urlsrc.models import WebContentModel import phicops.utils URL_TEMPLATE = 'http://announce.fundclear.com.tw/MOPSFundWeb/D02_02P.jsp?fundId={fund_id}&beginDate={begin_date}&endDate={end_date}' DATE_INDEX = 0 VALUE_INDEX = 1 class dFundCodeModel(db.Model): content = db.BlobProperty() class FundClearModel(WebContentModel): fund_name = db.StringProperty() @classmethod def get_fund(cls, p_fund_id, p_months=37): if (p_fund_id == ''): logging.warn('Invalid Parameter Value p_fund_id ' + p_fund_id) return None if p_months < 0: logging.warning('Invalid Parameter Value p_month ' + str(p_months)) return None end_date = date.today() - relativedelta(days=+1) begin_date = end_date - relativedelta(months=p_months) t_url = URL_TEMPLATE.format(fund_id=p_fund_id,begin_date=begin_date.strftime("%Y/%m/%d"),end_date=end_date.strftime("%Y/%m/%d")) fund_model = FundClearModel.get_or_insert_webcontent(p_fund_id,t_url,date.today(),p_months) if fund_model == None: logging.warning('FundClearModel get_fund fail') return fund_model def get_sample_value_list(self, p_date_list): ''' return a list of [date, nav] according to date list p_date_list ''' nav_list = self.get_value_list() return self.sample_value_list(p_date_list, nav_list) def get_nav_by_date(self, p_date): nav_list = self.get_value_list() t_count = 0 if (nav_list[0][DATE_INDEX]).date() <= p_date: for t_entry in nav_list: if p_date == t_entry[DATE_INDEX].date(): logging.debug(__name__ + ': get_nav_by_date: matched entry ' + str(nav_list[t_count])) return nav_list[t_count-1][VALUE_INDEX] t_count += 1 logging.warning(__name__ + ': get_nav_by_date: no matched date value exist!') return False def get_single_html_table(self): stk_data = str(self.content).decode('big5') t_page = document_fromstring(stk_data) t_tables = t_page.xpath("//table") t_total = len(t_tables) #logging.info('total table count: ' + str(t_total)) if t_total < 4: #return 'TABLE ERROR' logging.warning('Source HTML TABLE Count ERROR') return None html = '<table width="100%" border="1" cellpadding="1" cellspacing="1">' html += etree.tostring(t_tables[4][0]) for t_table in t_tables[5:-1]: for t_child in t_table: if (t_child.tag == 'tr'): if t_child != None: html += etree.tostring(t_child) html += '</table>' return html def get_discrete_value_list(self, p_select_day=phicops.utils.MONTH_DAY_END): value_list = self.get_value_list() return phicops.utils.get_discrete_date_data_list(value_list, p_select_day) def get_value_list(self): ''' return list of [datetime.datetime, float] ''' dataset = [] stk_data = str(self.content).decode('big5') t_page = document_fromstring(stk_data) t_tables = t_page.xpath("//table") t_total = len(t_tables) logging.debug(__name__ + ', get_value_list: total table count: ' + str(t_total)) if t_total < 4: logging.warning(__name__ + 'Source HTML TABLE ERROR, count ' + str(t_total)) return None #logging.info('fund title:' + etree.tostring(t_tables[4][0][0])) t_fund_name = t_tables[4][0][0].text t_fund_name = t_fund_name.replace('\r\n','') #t_fund_name = str(t_fund_name).encode('big5').splitlines() #t_fund_name = t_fund_name[0] logging.debug(__name__ + ', get_value_list: fund_name: ' + t_fund_name) if (self.fund_name == None) or (self.fund_name != t_fund_name): self.fund_name = t_fund_name self.put() t_count = 5 while (t_count <= (t_total-1)): #logging.info('table child len ' + str(len(t_tables[t_count]))) if len(t_tables[t_count]) == 2: t_date_list = [t_child.text for t_child in t_tables[t_count][0]] t_value_list = [t_child.text for t_child in t_tables[t_count][1]] #logging.info(t_date_list) #logging.info(t_value_list) #logging.info('t_count:' + str(t_count) + '/' + str(t_total)) for i in range(0,len(t_date_list)): #logging.info('t_count:' + str(i) + '/' + str(len(t_date_list))) #logging.info([t_date_list[i],t_value_list[i]]) if i != 0: if (t_date_list[i].strip() != ''): #logging.info([t_date_list[i],t_value_list[i]]) #dataset.append([calendar.timegm((parser.parse(t_date_list[i])).timetuple()) * 1000,t_value_list[i]]) dataset.append([t_date_list[i],str(t_value_list[i]).strip()]) #else: # logging.debug('remove element ('+ str(t_count) + '#' + str(i) + '): ' + str([t_date_list[i],t_value_list[i]])) else: #logging.debug('skip table:\n' + etree.tostring(t_tables[t_count])) logging.debug(__name__ + ', get_value_list: skip table ' + str(t_count)) t_count += 1 #break t_count = 0 while (t_count < len(dataset)): #logging.info('t_count ' + str(t_count)) (t_date,t_value) = dataset[t_count] if (t_value == '--') or (t_value == 'N/A'): if (t_count ==0): #logging.debug(__name__ + ', get_value_list: removeing dataset element ' + str(dataset[t_count])) del dataset[t_count] continue else: #logging.debug('replace value with previous one, date ' + str(dataset[t_count])) dataset[t_count][1] = dataset[t_count-1][1] #if (t_count > 192): # logging.info('DEBUG:' + str([t_date,t_value])) dataset[t_count][0] = parser.parse(t_date).date() dataset[t_count][1] = float(dataset[t_count][1]) t_count += 1 #logging.debug(dataset) return dataset def get_dateset(self): ''' return Flow diagram data list ''' dataset = [] stk_data = str(self.content).decode('big5') t_page = document_fromstring(stk_data) t_tables = t_page.xpath("//table") t_total = len(t_tables) logging.info('total table count: ' + str(t_total)) if t_total < 4: logging.warning('Source HTML TABLE Count ERROR') return None #logging.info('fund title:' + etree.tostring(t_tables[4][0][0])) t_fund_name = t_tables[4][0][0].text t_fund_name = t_fund_name.replace('\r\n','') #t_fund_name = str(t_fund_name).encode('big5').splitlines() #t_fund_name = t_fund_name[0] logging.info('fund_name: ' + t_fund_name) if self.fund_name == None: self.fund_name = t_fund_name self.put() t_count = 5 while (t_count <= (t_total-1)): #logging.info('table child len ' + str(len(t_tables[t_count]))) if len(t_tables[t_count]) == 2: t_date_list = [t_child.text for t_child in t_tables[t_count][0]] t_value_list = [t_child.text for t_child in t_tables[t_count][1]] #logging.info(t_date_list) #logging.info(t_value_list) #logging.info('t_count:' + str(t_count) + '/' + str(t_total)) for i in range(0,len(t_date_list)): #logging.info('t_count:' + str(i) + '/' + str(len(t_date_list))) #logging.info([t_date_list[i],t_value_list[i]]) if i != 0: if (t_date_list[i].strip() != ''): #logging.info([t_date_list[i],t_value_list[i]]) #dataset.append([calendar.timegm((parser.parse(t_date_list[i])).timetuple()) * 1000,t_value_list[i]]) dataset.append([t_date_list[i],t_value_list[i]]) else: logging.info('remove element ('+ str(t_count) + '#' + str(i) + '): ' + str([t_date_list[i],t_value_list[i]])) else: logging.info('skip table:\n' + etree.tostring(t_tables[t_count])) t_count += 1 #break t_count = 0 while (t_count < len(dataset)): #logging.info('t_count ' + str(t_count)) (t_date,t_value) = dataset[t_count] if (t_value == '--') or (t_value == 'N/A'): if (t_count ==0): logging.warning('removeing dataset element ' + str(dataset[t_count])) del dataset[t_count] continue else: logging.warning('replace value with previous one, date ' + str(dataset[t_count])) dataset[t_count][1] = dataset[t_count-1][1] #if (t_count > 192): # logging.info('DEBUG:' + str([t_date,t_value])) dataset[t_count][0] = calendar.timegm((parser.parse(t_date)).timetuple()) * 1000 dataset[t_count][1] = float(dataset[t_count][1]) t_count += 1 logging.info(dataset) return dataset
[ "lee.shiueh@gmail.com" ]
lee.shiueh@gmail.com
0f4f37974c4711d3de9916cb7c8e4431e2521018
0034018a0fd230a16203509b89652fa570fba1a8
/resources/thread.py
c936d114ba401ce43ee6886f16f257535e490a53
[]
no_license
miguelreisa/engsoftwarebackend
7f3a0898b676df2957f06e8d012746c8a50706ce
a913cedb236e8da9563e5bd483bbcee56a43ca02
refs/heads/master
2020-03-18T06:25:04.391236
2018-05-22T10:20:31
2018-05-22T10:20:31
134,394,242
0
0
null
null
null
null
UTF-8
Python
false
false
3,732
py
import sqlite3 from flask_restful import Resource, reqparse from models.conference import ConferenceModel from models.paper import PaperModel from models.user import UserModel from models.token import TokenModel from models.thread import ThreadModel from models.threadresponse import ThreadResponseModel class ThreadResponses(Resource): parser = reqparse.RequestParser() parser.add_argument('tokenId', type = str, required = True, help = "This field cannot be left blank!" ) parser.add_argument('messageAuthor', type = str, required = True, help = "This field cannot be left blank!" ) parser.add_argument('messageContent', type = str, required = True, help = "This field cannot be left blank!" ) def get(self, threadId): thread = ThreadModel.find_by_id(threadId) if thread: return thread.json2() return {'message' : 'Thread not found'}, 404 def post(self, threadId): data = ThreadResponses.parser.parse_args() user = UserModel.find_by_username(data['messageAuthor']) if user: userToken = TokenModel.find_by_username(data['messageAuthor']) if userToken: if userToken.tokenId == data['tokenId']: #if PaperModel.find_by_name(data['paperName']): #return {"message" : "Paper with that name already exists."}, 400 thread_selected = ThreadModel.find_by_id(threadId) if thread_selected is None: return {"message" : "Thread selected doesn't exist."}, 400 thread_response = ThreadResponseModel(data['messageAuthor'], data['messageContent'], threadId) thread_response.save_to_db() return {'message' : 'Thread response accepted and created!'}, 201 #return {"message":"An error occurred, if this continues please contact us."}, 500 return {'message' : 'Invalid input.'}, 403 class Thread(Resource): parser = reqparse.RequestParser() parser.add_argument('tokenId', type = str, required = True, help = "This field cannot be left blank!" ) parser.add_argument('threadAuthor', type = str, required = True, help = "This field cannot be left blank!" ) parser.add_argument('topic', type = str, required = True, help = "This field cannot be left blank!" ) parser.add_argument('conferenceId', type = int, required = True, help = "This field cannot be left blank!" ) def post(self): data = Thread.parser.parse_args() user = UserModel.find_by_username(data['threadAuthor']) if user: userToken = TokenModel.find_by_username(data['threadAuthor']) if userToken: if userToken.tokenId == data['tokenId']: #if PaperModel.find_by_name(data['paperName']): #return {"message" : "Paper with that name already exists."}, 400 conference_selected = ConferenceModel.find_by_id(data['conferenceId']) if conference_selected is None: return {"message" : "Conference selected doesn't exist."}, 400 thread = ThreadModel(data['threadAuthor'], data['topic'], data['conferenceId']) thread.save_to_db() return {'message' : 'Thread accepted and created!'}, 201 #return {"message":"An error occurred, if this continues please contact us."}, 500 return {'message' : 'Invalid input.'}, 403
[ "migpe.reis@gmail.com" ]
migpe.reis@gmail.com
6edfde8225367d10e96adf64cbd1036b97fdc7b0
df3217c8747d36f4beb3e7543228967fb078cd8b
/data_analysis/create_sample.py
96d5cb81a805586a29655147f9f11d9b22fd7658
[]
no_license
Timthony/dogs_vs_cats
acaad004f443d3b338abf74812bf5fef077bfa66
25e7e4b530c823a4c8428651c084ba9be3a833e4
refs/heads/master
2020-03-19T07:40:41.339341
2018-05-08T20:14:53
2018-05-08T20:14:53
136,138,485
1
1
null
2018-06-05T07:35:48
2018-06-05T07:35:47
null
UTF-8
Python
false
false
1,522
py
# -*- coding: utf-8 -*- """ Created on Thu Apr 12 05:11:38 2018 @author: liguo 从训练集和测试集中选取部分样本,以进行特征观察 """ import os import shutil import random TRAIN_PATH = "../train/" TEST_PATH = "../test/" SAMPLE_PATH = "sample/" TRAIN_SAMPLE_PATH = SAMPLE_PATH + "train/" TRAIN_CAT_SAMPLE_PATH = TRAIN_SAMPLE_PATH + "cat/" TRAIN_DOG_SAMPLE_PATH = TRAIN_SAMPLE_PATH + "dog/" TEST_SAMPLE_PATH = SAMPLE_PATH + "test/" SAMPLE_SIZE = 50 def checkDir(dir_path): if not os.path.exists(dir_path): os.makedirs(dir_path) checkDir(SAMPLE_PATH) checkDir(TRAIN_SAMPLE_PATH) checkDir(TRAIN_CAT_SAMPLE_PATH) checkDir(TRAIN_DOG_SAMPLE_PATH) checkDir(TEST_SAMPLE_PATH) # 创建训练集样本 files = os.listdir(TRAIN_PATH) random.shuffle(files) train_cat_sample_num = 0 train_dog_sample_num = 0 i = 0 while train_cat_sample_num < SAMPLE_SIZE or train_dog_sample_num < SAMPLE_SIZE: if 'cat' in files[i] and train_cat_sample_num < SAMPLE_SIZE: shutil.copyfile(TRAIN_PATH + files[i], TRAIN_CAT_SAMPLE_PATH + files[i]) train_cat_sample_num += 1 if 'dog' in files[i] and train_dog_sample_num < SAMPLE_SIZE: shutil.copyfile(TRAIN_PATH + files[i], TRAIN_DOG_SAMPLE_PATH + files[i]) train_dog_sample_num += 1 i += 1 # 创建测试集样本 files = os.listdir(TEST_PATH) random.shuffle(files) for i in range(SAMPLE_SIZE*2): shutil.copyfile(TEST_PATH + files[i], TEST_SAMPLE_PATH + files[i])
[ "liguo@fenbi.com" ]
liguo@fenbi.com
e050beb4b72499f095479534ef15503012f24674
8eb8f8d88994b22db7e661f0cdf6b0ed34a172bf
/sap/cli/object.py
595a1294a6cb05cc0b517617033f29ad4a79cc2e
[ "Apache-2.0" ]
permissive
kksat/sapcli
f85d3376979157145436f5b87ee67ecf423b3ab4
8a21809d5a636f126a12d2da4af864b01867e490
refs/heads/master
2023-04-20T14:59:31.410367
2021-05-05T12:54:15
2021-05-05T12:54:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,255
py
"""ADT Object CLI templates""" import sys import os import collections import sap.cli.core from sap.cli.core import InvalidCommandLineError, printout import sap.errors import sap.adt import sap.adt.wb import sap.cli.wb _NAME_INDEX = 0 _SUFFIX_INDEX = 1 def object_name_from_source_file(filesystem_path): """Splits the given file system path into object name and suffix. It is expected that the object name makes the file name prefix up to the first dot. Example: ./src/object.abap ^^^^--- suffix (the 2nd return value) ^^^^^^-------- object name (the 1st return value) """ basename = os.path.basename(filesystem_path) parts = basename.split('.', 1) if len(parts) <= 1 or not parts[_NAME_INDEX] or not parts[_SUFFIX_INDEX]: raise InvalidCommandLineError(f'"{basename}" does not match the pattern NAME.SUFFIX') return parts def write_args_to_objects(command, connection, args, metadata=None): """Converts parameters of the action 'write object' into a iteration of objects with the text lines content """ name = args.name text_lines = None if name == '-': for filepath in args.source: if filepath == '-': raise InvalidCommandLineError('Source file cannot be - when Object name is - too') obj = command.instance_from_file_path(connection, filepath, args, metadata=metadata) with open(filepath, 'r') as filesrc: text_lines = filesrc.readlines() yield (obj, text_lines) elif len(args.source) == 1: if args.source[0] == '-': text_lines = sys.stdin.readlines() else: with open(args.source[0], 'r') as filesrc: text_lines = filesrc.readlines() yield (command.instance(connection, args.name, args, metadata=metadata), text_lines) else: raise InvalidCommandLineError('Source file can be a list only when Object name is -') def printout_activation_stats(stats): """Prints out activation statistics""" printout('Warnings:', stats.warnings) printout('Errors:', stats.errors) def printout_adt_object(prefix, obj): """Prints out ADT object in identifiable way""" printout(f'{prefix}{obj.objtype.code} {obj.name}') def activate_object_list(activator, object_enumerable, count): """Starts object activation and handles results""" try: stats = activator.activate_sequentially(object_enumerable, count) except sap.cli.wb.StopObjectActivation as ex: printout('Activation has stopped') printout_activation_stats(ex.stats) if ex.stats.active_objects: printout('Active objects:') for obj in ex.stats.active_objects: printout_adt_object(' ', obj) return 1 else: printout('Activation has finished') printout_activation_stats(stats) if stats.inactive_objects: printout('Inactive objects:') for obj in stats.inactive_objects: printout_adt_object(' ', obj) return 1 return 1 if stats.errors > 0 else 0 class CommandGroupObjectTemplate(sap.cli.core.CommandGroup): """Template Class converting command line parameters to ADT Object methods calls. """ def instance(self, connection, name, args, metadata=None): """Returns new instance of the ADT Object proxy class""" raise NotImplementedError() def instance_from_file_path(self, connection, filepath, args, metadata=None): """Returns new instance of the ADT Object proxy class where the object name should be deduced from the given file path. """ name, _ = object_name_from_source_file(filepath) return self.instance(connection, name, args, metadata=metadata) def build_new_metadata(self, connection, args): """Creates an instance of the ADT Object Metadata class for a new object""" raise NotImplementedError() def define_create(self, commands): """Declares the Create command with its parameters and returns the definition. Notice, that this command does not declare the parameter package which should be create by descendants if necessary. """ create_cmd = commands.add_command(self.create_object, name='create') create_cmd.append_argument('name') create_cmd.append_argument('description') create_cmd.declare_corrnr() return create_cmd def define_read(self, commands): """Declares the Read command with its parameters and returns the definition """ read_cmd = commands.add_command(self.read_object_text, name='read') read_cmd.append_argument('name') return read_cmd def define_write(self, commands): """Declares the Write command with its parameters and returns the definition. """ write_cmd = commands.add_command(self.write_object_text, name='write') write_cmd.append_argument('name', help='an object name or - for getting it from the source file name') write_cmd.append_argument('source', nargs='+', help='a path or - for reading stdin; multiple allowed only when name is -') write_cmd.append_argument('-a', '--activate', action='store_true', default=False, help='activate after write') write_cmd.append_argument('--ignore-errors', action='store_true', default=False, help='Do not stop activation in case of errors') write_cmd.append_argument('--warning-errors', action='store_true', default=False, help='Treat Activation warnings as errors') write_cmd.declare_corrnr() return write_cmd def define_activate(self, commands): """Declares the Activate command with its parameters and returns the definition. Notice that it allows multiple names on input. """ activate_cmd = commands.add_command(self.activate_objects, name='activate') activate_cmd.append_argument('name', nargs='+') activate_cmd.append_argument('--ignore-errors', action='store_true', default=False, help='Do not stop activation in case of errors') activate_cmd.append_argument('--warning-errors', action='store_true', default=False, help='Treat Activation warnings as errors') return activate_cmd def define(self): """Defines the commands Create, Read, Write, and Activate and returns the command list """ cls = self.__class__ if hasattr(cls, '_instance'): return None # pylint: disable=protected-access cls._instance = self commands = cls.get_commands() self.define_create(commands) self.define_read(commands) self.define_write(commands) self.define_activate(commands) return commands def build_new_object(self, connection, args, metadata): """Creates an instance of the ADT Object proxy class for a new object""" return self.instance(connection, args.name, args, metadata=metadata) def create_object(self, connection, args): """Creates the given object.""" metadata = self.build_new_metadata(connection, args) obj = self.build_new_object(connection, args, metadata) obj.description = args.description obj.create(corrnr=args.corrnr) def read_object_text(self, connection, args): """Retrieves the request command prints it out based on command line configuration. """ obj = self.instance(connection, args.name, args) print(obj.text) # pylint: disable=no-self-use def build_activator(self, args): """For children to customize""" activator = sap.cli.wb.ObjectActivationWorker() activator.continue_on_errors = args.ignore_errors activator.warnings_as_errors = args.warning_errors return activator def write_object_text(self, connection, args): """Changes source code of the given program include""" toactivate = collections.OrderedDict() printout('Writing:') for obj, text in write_args_to_objects(self, connection, args): printout('*', str(obj)) with obj.open_editor(corrnr=args.corrnr) as editor: editor.write(''.join(text)) toactivate[obj.name] = obj if not args.activate: return 0 activated_items = toactivate.items() return activate_object_list(self.build_activator(args), activated_items, count=len(activated_items)) def activate_objects(self, connection, args): """Actives the given object.""" activated_items = ((name, self.instance(connection, name, args)) for name in args.name) return activate_object_list(self.build_activator(args), activated_items, count=len(args.name)) # pylint: disable=abstract-method class CommandGroupObjectMaster(CommandGroupObjectTemplate): """Commands for objects that belongs to a package. The class CommandGroupObjectTemplate defines the command create without the parameter packages because there are objects that belongs to a container object (i.e. Function Module). """ def build_new_metadata(self, connection, args): """Creates an instance of the ADT Object Metadata class for a new object""" return sap.adt.ADTCoreData(language='EN', master_language='EN', package=args.package.upper(), responsible=connection.user.upper()) def define_create(self, commands): """Calls the super's define_create and inserts the parameter package right behind the parameter description """ create_cmd = super().define_create(commands) create_cmd.insert_argument(2, 'package') return create_cmd
[ "jakub@thefilaks.net" ]
jakub@thefilaks.net
dfa25b44c043edce1aa14686208aa2b37f404f0e
5a2579dfae9ccd1b9c8c0471f07a6de5eb4eac15
/_Turtle2/11.py
d5032d7e319ff7deaa1201a416094bf7c9e59d36
[]
no_license
finchnest/Python-prac-files
0983d4645992f4ad26603a4f259cc563604c52e2
61da3c9240b3022d59ef2ed7cc90fb598045e470
refs/heads/master
2022-02-28T19:32:44.515138
2019-10-08T18:07:37
2019-10-08T18:07:37
203,052,507
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
from turtle import * def rec(): pendown() forward(200) right(90) forward(200) right(90) forward(200) right(90) forward(200) right(90) forward(100) right(90) forward(200) right(90) forward(100) right(90) forward(100) right(90) forward(200) rec()
[ "noreply@github.com" ]
finchnest.noreply@github.com
90a3e8ebed6129293171a632099674f3a120fbc8
33f0e02c56f2d49b629557e4d5bad5df848974d1
/agri/dynamic.sh
fe8778fe5aeca6ed3563349ba635367903eec17d
[]
no_license
wuyohee2004/learn
b7126e1471d8dcea3f60d9af17a199d62f4c4aec
b6c0302c541a26f296693438841869f1b366e355
refs/heads/master
2016-09-05T17:13:50.940534
2014-06-22T11:08:49
2014-06-22T11:08:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
274
sh
#!/usr/bin/python def dynamic(arr): max = arr[0] sum = arr[0] for i in range(1,len(arr)): print ("the %d st loop" %i) if sum >= 0: sum += arr[i] else: sum = arr[i] if sum > max: max = sum return max a=[1,-9,12,-33,1,5,6,-99,10,20,12] print dynamic(a)
[ "wuyohee2004@hotmail.com" ]
wuyohee2004@hotmail.com
21d409ea07621875c07d01754c51b28d26439459
545caa38cd01d618f4b27ea41928656a2a4071fe
/Linked list/Q2_7.py
aaeabc70548be4f6f1e1f5c891183e63714a4869
[]
no_license
tusharkailash/CTCI
e4dcd6e7709a3dd3887c8efa7e52000688bd83d6
ed71f602a32c7f11212617168c28d20c833940a5
refs/heads/master
2020-08-22T20:21:15.822941
2019-10-21T03:37:38
2019-10-21T03:37:38
216,471,158
0
0
null
null
null
null
UTF-8
Python
false
false
944
py
# Implement a function to check if a linked list is a palindrome. class ListNode: def __init__(self,x): self.val = x self.next = None class Solution(object): def palindrome(self,head): slow = fast = head while fast and fast.next: fast = fast.next.next slow = slow.next #mid-point formed here #reverse the second half prev = None while slow: next = slow.next slow.next = prev prev = slow slow = next #check the first half with the second half while prev: if head.val != prev.val: return False prev = prev.next head = head.next return True head = ListNode(1) head.next = ListNode(2) head.next.next = ListNode(1) head.next.next.next = ListNode(2) head.next.next.next.next = ListNode(1) print Solution().palindrome(head)
[ "tusharkailash29@gmail.com" ]
tusharkailash29@gmail.com
971927d242b085015088addb9a51eb5f257f38f0
0fb0ed44dded93eab10b7ed4dfc916c3875eb3e3
/Musicapp/migrations/0023_alter_post_options.py
57df348fb12b375b8ca1e91d3a494f5d90a38c5a
[]
no_license
Darkbeast-glitch/Realmusic
ceb87ed88eb70ab47979e1657d389e7dfbce988c
23a6b956e322f8557210a90d55171e72aa8734e4
refs/heads/main
2023-08-27T19:30:18.643534
2021-10-21T03:21:31
2021-10-21T03:21:31
417,349,671
1
0
null
null
null
null
UTF-8
Python
false
false
324
py
# Generated by Django 3.2.8 on 2021-10-21 02:31 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Musicapp', '0022_auto_20211021_0226'), ] operations = [ migrations.AlterModelOptions( name='post', options={}, ), ]
[ "bbjulius900@gmail.com" ]
bbjulius900@gmail.com
519493ac81fc5d1155c473041a6e5c07b171f538
a8ee0d102b54edb6316f50405353d53cc8a38553
/app.py
2625086947a20c7221b803db8673f8a12c29108e
[]
no_license
ved08/Github-API
f1e1a6606ddf3040e71a3f6d980d161622e2f44a
b06c4525c6df65f925be7bfc6bd6b68023902f0b
refs/heads/master
2022-12-04T05:25:10.365899
2020-08-26T19:25:00
2020-08-26T19:25:00
290,744,160
1
0
null
2020-08-27T10:19:23
2020-08-27T10:19:22
null
UTF-8
Python
false
false
1,887
py
from flask import Flask from flask import jsonify from flask_cors import CORS import requests from bs4 import BeautifulSoup import html5lib app=Flask(__name__) cors = CORS(app, resources={r"/*": {"origins": "*"}}) @app.route("/") def hello(): return "hello world" @app.route("/repo/<id>") def hh(id): urll="https://github.com/"+id+"?tab=repositories" r=requests.get(urll) soup=BeautifulSoup(r.content,'html5lib') a=soup.find(id="user-repositories-list") z=a.find_all('li') yo={} er=[] for i in range(0,len(z)): s=z[i] try: y=s.find('a') x=y['href'] try: ur=[] sds=s.find('a',class_="muted-link mr-3").getText() j=s.find('p').getText() name=y.getText() url="https://github.com"+x k={'name':name.strip(),'description':j.strip(),'url':url,"stars":sds.strip()} er=er+[k] except: ur=[] h=y.getText() y="https://github.com"+x k={'name': h.strip(),'url':y,"stars":sds.strip()} er=er+[k] except: print("none") return jsonify(er) @app.route('/user/<id>') def st(id): urll="https://github.com/"+id r=requests.get(urll) soup=BeautifulSoup(r.content,'html5lib') asd=soup.find(class_="flex-order-1 flex-md-order-none mt-2 mt-md-0") dd=asd.find(class_="mb-3") followers=dd.find_all('a')[0].find('span').getText().strip(' ') following=dd.find_all('a')[1].find('span').getText().strip(' ') totstars=dd.find_all('a')[2].find('span').getText().strip(' ') las={'Followers':followers,'Following':following,'Total_stars':totstars} return(las) if __name__ == "__main__": app.run()
[ "noreply@github.com" ]
ved08.noreply@github.com
155abd7d13912aa0987c80a0c964ad7d4fc7990e
09b22d1bd1263e4082e6bba7afa2f2b7a66afd4a
/FaceDetection/Smile Detector.py
5dfcb45bf4e354761a24d3842578b36decee18d7
[]
no_license
yogeshkushwahait/Machine-Learning-Using-Python
b70bc5334c4178fecc175451b8b7e04e50a60917
8102ce7b0cba5d48e923f979ae0a8e71c25857b1
refs/heads/master
2022-03-28T05:21:24.332537
2019-11-05T06:34:00
2020-01-09T16:06:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,172
py
# coding: utf-8 # In[2]: import cv2 # In[3]: face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml'); eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml'); smile_cascade = cv2.CascadeClassifier('haarcascade_smile.xml'); # In[4]: def detect(gray,frame): faces = face_cascade.detectMultiScale(gray, 1.3,5) for (x,y,w,h) in faces: cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) roi_gray = gray[y:y+h,x:x+w] roi_color = frame[y:y+h,x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray, 1.1,22) for (ex,ey,ew,eh) in eyes: cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) smiles = smile_cascade.detectMultiScale(roi_gray, 1.7,22) for (sx,sy,sw,sh) in smiles: cv2.rectangle(roi_color,(sx,sy),(sx+sw,sy+sh),(0,0,255),2) return frame # In[5]: video_capture = cv2.VideoCapture(0) while True: _, frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) canvas = detect(gray, frame) cv2.imshow('Video', canvas) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()
[ "rishav.jnit@gmail.com" ]
rishav.jnit@gmail.com
ae037578c4aae2b761816ff3ddd5b625e2564255
9375d105fd18d5d7af31b7350b56d82894fabb17
/03_Lists_Tuples/01_lists.py
4cb9046835ab6fcf2957d5cc75b3124818aa2459
[]
no_license
shas-hank7/python
597ebcd31e8855b88e7c8cfb1f15b709dbb73b4f
9ef2a80f087936eccb36ec51a3758be981dc80f4
refs/heads/master
2023-08-02T11:29:16.172087
2021-09-14T19:54:08
2021-09-14T19:54:08
406,503,745
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
a=[1,2,3,4, 'Hello'] print(a) #List Slicing """ friends=["Shashank", "Binod", "Parmod", "Vinod", 45, "Raje"] print(friends[-5:-1]) print(friends[-5:]) print(friends[-5::2]) """ a=[3,4,2,1] #a.sort() print(a.sort())
[ "shashank770@gmail.com" ]
shashank770@gmail.com
cc08681f4493d7f771380a720f36835b308b17ae
a48fbf8dd09b6f5f3c879495905a04187758ac19
/TrafficSignDetection/PreprocessCode/mser_red.py
51767f9a65789a939e6fb71e8cc184e585adcf58
[]
no_license
davidwang318/ComputerVision-Classical
b2c751678cc472677384af0d0ba4cc44bef31ef8
6763dc02ee872d44c99e5273b6cc64c90dfa7824
refs/heads/master
2021-07-07T19:17:22.376654
2021-04-21T02:23:04
2021-04-21T02:23:04
238,592,340
5
1
null
null
null
null
UTF-8
Python
false
false
1,273
py
import cv2 import numpy as np import os index = 2600 while True: # Input image #img_b = cv2.imread("frame_normalize_blue_0/frame%d.jpg" %index, -1) img_r = cv2.imread("frame_normalize_red_0/frame%d.jpg" %index, -1) img_rgb = cv2.imread("Loose_Red_result/%d.jpg" %index) img_tem = cv2.imread("frame_denoise/frame%d.jpg" %index) images = [img_b] mask = np.zeros(img_b.shape).astype(np.uint8) for img in images: # Region proposals based on MSER feature mser = cv2.MSER_create(_min_area=300, _max_area=10000, _max_variation=0.5, _min_diversity=0.2, _delta=2) regions = np.array(mser.detectRegions(img)[0]) hulls = [cv2.convexHull(p) for p in regions] for p in hulls: epsilon = 0.008 * cv2.arcLength(p, True) approx = cv2.approxPolyDP(p, epsilon, True) x, y, w, h = cv2.boundingRect(p) if 0.6 <= w/h <= 1.4 and 200 < w*h < 12000 and y < 700: cv2.rectangle(mask, (x, y), (x+w,y+h), 1, -1) img_rgb = cv2.bitwise_and(img_rgb, img_rgb, mask=mask) cv2.imwrite("blue_hsv_mser/frame%d.jpg" %index, img_rgb) cv2.imshow('img', img_rgb) cv2.imshow('template', img_tem) index += 1 cv2.waitKey(1) cv2.destroyAllWindows()
[ "davidwang106@gmail.com" ]
davidwang106@gmail.com
aad1a694a84413a0ae76f87d45095993d9197327
e28ea03cf2a1082c57d49cc0da97b2115a8af823
/cmsplugin_wordpress_api/cms_plugins.py
0e912853fa81407ad0aa06004385fa0789768d19
[ "MIT" ]
permissive
ImaginaryLandscape/django-wordpress-api
a5c0ecfacef2ea999b439012d7b9f84192038d11
1dd205d095b6f637779cc437ffa8b6004e40075a
refs/heads/master
2023-04-24T14:43:03.089617
2021-02-02T19:27:52
2021-02-02T19:27:52
269,103,150
1
0
MIT
2020-06-03T14:00:15
2020-06-03T14:00:14
null
UTF-8
Python
false
false
1,716
py
from cms.plugin_base import CMSPluginBase from cms.plugin_pool import plugin_pool from django import forms from .models import LatestBlogs, BlogsByAuthor, BlogsByCategory, BlogsByTag from .utils import get_authors, get_categories, get_tags class AuthorForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(AuthorForm, self).__init__(*args, **kwargs) self.fields['authors'] = forms.ChoiceField(choices=get_authors()) class CategoryForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(CategoryForm, self).__init__(*args, **kwargs) self.fields['categories'] = forms.ChoiceField(choices=get_categories()) class TagForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(TagForm, self).__init__(*args, **kwargs) self.fields['tags'] = forms.ChoiceField(choices=get_tags()) @plugin_pool.register_plugin class LatestBlogsPlugin(CMSPluginBase): module = "Wordpress Blogs" model = LatestBlogs render_template = "cmsplugin_wordpress_api/latest_blogs.html" @plugin_pool.register_plugin class BlogsByAuthorPlugin(CMSPluginBase): form = AuthorForm module = "Wordpress Blogs" model = BlogsByAuthor render_template = "cmsplugin_wordpress_api/blogs_by_author.html" @plugin_pool.register_plugin class BlogsByCategoryPlugin(CMSPluginBase): form = CategoryForm module = "Wordpress Blogs" model = BlogsByCategory render_template = "cmsplugin_wordpress_api/blogs_by_category.html" @plugin_pool.register_plugin class BlogsByTagPlugin(CMSPluginBase): form = TagForm module = "Wordpress Blogs" model = BlogsByTag render_template = "cmsplugin_wordpress_api/blogs_by_tag.html"
[ "dbertrand@imagescape.com" ]
dbertrand@imagescape.com
ab7b1c1bf14852dceacb9b0d162e57497089bcec
d828cbdacfce323f7014e232cff8961ae4219918
/apps/api/migrations/0031_auto_20210811_1621.py
c061d671a2054a0c6c00818ba8fd002cd74b2a0a
[]
no_license
MK-Achmerouanine/ML_Perception
a4e1347970f0c2d920cf96c80aa252d415d3e16d
c6b08e6f7a939b3a80913a033bbc007809ffacfc
refs/heads/main
2023-07-15T02:28:26.520143
2021-08-29T00:09:34
2021-08-29T00:09:34
394,370,442
0
2
null
null
null
null
UTF-8
Python
false
false
929
py
# Generated by Django 3.2.6 on 2021-08-11 16:21 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('api', '0030_auto_20210811_1614'), ] operations = [ migrations.AlterField( model_name='endpoint', name='slug', field=models.SlugField(blank=True, default=uuid.UUID('287ef094-8fba-4221-b865-36b8ef49eb65'), null=True, verbose_name='Slug'), ), migrations.AlterField( model_name='imagetotranslate', name='slug', field=models.SlugField(default=uuid.UUID('748ef6c8-9c32-455b-963d-7f35777accc7'), verbose_name='Slug'), ), migrations.AlterField( model_name='texttoaudio', name='slug', field=models.SlugField(default=uuid.UUID('56abffb0-2777-4bf3-b0c2-ea4f3e758477'), verbose_name='Slug'), ), ]
[ "baouhamismail98@gmail.com" ]
baouhamismail98@gmail.com
ff20d14ea17953aab8f491c608bffae140cdf61b
2b5d21e22604aaefe2d03efc79d55983800416a7
/Programming/Practice/03/Python/arithmetic_for_different_types.py
e57cb25dccdfd9fe1af481a966df7facce0920a0
[]
no_license
VladSmiyan/prt
bdc6fa03b60c540f60b6f3f6d9eb08ec00020fb5
d7403bcaea6236f7e67ef3deb8d1da21ed2b0222
refs/heads/main
2023-01-02T12:27:49.413441
2020-10-30T19:11:54
2020-10-30T19:11:54
308,720,800
1
0
null
null
null
null
UTF-8
Python
false
false
392
py
#!/usr/bin/python3 # Задание 3 - Арифметика для разных типов # Оператор (//) Python соответствует оператору (/) C++ # (в C++ мы используем int'ы) print('3. Арифметика для разных типов: ') a, b = map(int, input('Введите a и b: ').split(' ')) print((a + b), (a - b), (a * b), (a / b))
[ "noreply@github.com" ]
VladSmiyan.noreply@github.com
4402400f9646593187e43c7982a4e61d0d01b033
786de89be635eb21295070a6a3452f3a7fe6712c
/pandas/tags/V00-00-02/SConscript
b42efd570012fd5fb90cb1ffb13d916266eb5ce8
[]
no_license
connectthefuture/psdmrepo
85267cfe8d54564f99e17035efe931077c8f7a37
f32870a987a7493e7bf0f0a5c1712a5a030ef199
refs/heads/master
2021-01-13T03:26:35.494026
2015-09-03T22:22:11
2015-09-03T22:22:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
769
#------------------------------------------------------------------------ # File and Version Information: # $Id: SConscript 4651 2012-10-26 16:55:30Z salnikov@SLAC.STANFORD.EDU $ # # Description: # SConscript file for package pandas #------------------------------------------------------------------------ # Do not delete following line, it must be present in # SConscript file for any SIT project Import('*') from os.path import join as pjoin from SConsTools.standardExternalPackage import standardExternalPackage pkg = "pandas" pkg_ver = "0.13.1b" PREFIX = pjoin('$SIT_EXTERNAL_SW', pkg, pkg_ver) PYDIR = pjoin('$PYTHON_LIBDIRNAME', '$PYTHON', "site-packages") PKGINFO = (pkg, pkg_ver, '$PYTHON', '$SIT_ARCH.found') standardExternalPackage(pkg, **locals())
[ "gapon@SLAC.STANFORD.EDU@b967ad99-d558-0410-b138-e0f6c56caec7" ]
gapon@SLAC.STANFORD.EDU@b967ad99-d558-0410-b138-e0f6c56caec7
7242a46a79f26f1224fb7ddb1288eee1b2dcbd7a
7f24ccbb1f054f9caa5c5ddb7ff486622030df3e
/configs/iou-aware_rcnn_final/iou_aware_rcnn_r50_baseline2_2.py
9628e160b4739e9c28d0ab06dc624ff173dc176f
[ "Apache-2.0" ]
permissive
shouwangzhe134/IoU-Aware-R-CNN
674808e158ae85bf2b621002cfea7827104e94ce
262f038ff401da53511f60c29bd4c2957befbb0c
refs/heads/main
2023-07-31T07:10:53.510129
2021-09-20T03:00:40
2021-09-20T03:00:40
408,291,765
2
0
null
null
null
null
UTF-8
Python
false
false
5,065
py
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] work_dir='./work_dirs/iou-aware_rcnn_final/' # model settings model = dict( type='FasterRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='IoUAwareRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), dict( type='IoUAwareBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, reg_class_agnostic=True, loss_iou=dict(type='L1Loss', loss_weight=1.0)) ])) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False ), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5,# the initial proposals without gt bboxes neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='IoUSampler', num=32), pos_weight=-1, debug=False ), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5,# the regressed proposals from the initial proposals neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='IoUSampler', num=32), pos_weight=-1, debug=False ) ]) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, #score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), #ms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.001), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05) )
[ "2014210059@tju.edu.cn" ]
2014210059@tju.edu.cn
8eafbee307efaea9b8d218e26c0dfc888e0b2028
418c3f3ca224cad9f7c538ab6f01c7675d8885bf
/our_normals/source/points_to_surf_model.py
cd4ac12aff7da4b83ee72401eaf6cb4e6baeff1e
[ "MIT" ]
permissive
joycewangsy/pcpnet_normal
9df0d1aa4f6911d8c006afd4c5cc3efcc54d4a78
b4c8b5b5bf52481b49cf1c3cf14f7c84eb04d0fa
refs/heads/main
2023-01-29T06:26:46.510436
2020-12-02T05:46:24
2020-12-02T05:46:24
317,741,889
1
0
null
null
null
null
UTF-8
Python
false
false
25,527
py
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.nn.functional as F import source.network as sn from source.base import utils input_dims_per_point = 3 class STN(nn.Module): def __init__(self, net_size_max=1024, num_scales=1, num_points=500, dim=3, sym_op='max'): super(STN, self).__init__() self.net_size_max = net_size_max self.dim = dim self.sym_op = sym_op self.num_scales = num_scales self.num_points = num_points self.conv1 = torch.nn.Conv1d(self.dim, 64, 1) self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, self.net_size_max, 1) self.mp1 = torch.nn.MaxPool1d(num_points) self.fc1 = nn.Linear(self.net_size_max, int(self.net_size_max / 2)) self.fc2 = nn.Linear(int(self.net_size_max / 2), int(self.net_size_max / 4)) self.fc3 = nn.Linear(int(self.net_size_max / 4), self.dim*self.dim) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(self.net_size_max) self.bn4 = nn.BatchNorm1d(int(self.net_size_max / 2)) self.bn5 = nn.BatchNorm1d(int(self.net_size_max / 4)) if self.num_scales > 1: self.fc0 = nn.Linear(self.net_size_max * self.num_scales, self.net_size_max) self.bn0 = nn.BatchNorm1d(self.net_size_max) def forward(self, x): batch_size = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) # symmetric operation over all points if self.num_scales == 1: x = self.mp1(x) else: x_scales = x.new_empty(x.size(0), self.net_size_max * self.num_scales, 1) for s in range(self.num_scales): x_scales[:, s*self.net_size_max:(s+1)*self.net_size_max, :] = \ self.mp1(x[:, :, s*self.num_points:(s+1)*self.num_points]) x = x_scales x = x.view(-1, self.net_size_max*self.num_scales) if self.num_scales > 1: x = F.relu(self.bn0(self.fc0(x))) x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) iden = torch.eye(self.dim, dtype=x.dtype, device=x.device).view(1, self.dim*self.dim).repeat(batch_size, 1) x = x + iden x = x.view(-1, self.dim, self.dim) return x class QSTN(nn.Module): def __init__(self, net_size_max=1024, num_scales=1, num_points=500, dim=3, sym_op='max'): super(QSTN, self).__init__() self.net_size_max = net_size_max self.dim = dim self.sym_op = sym_op self.num_scales = num_scales self.num_points = num_points self.conv1 = torch.nn.Conv1d(self.dim, 64, 1) self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, self.net_size_max, 1) self.mp1 = torch.nn.MaxPool1d(num_points) self.fc1 = nn.Linear(self.net_size_max, int(self.net_size_max / 2)) self.fc2 = nn.Linear(int(self.net_size_max / 2), int(self.net_size_max / 4)) self.fc3 = nn.Linear(int(self.net_size_max / 4), 4) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(self.net_size_max) self.bn4 = nn.BatchNorm1d(int(self.net_size_max / 2)) self.bn5 = nn.BatchNorm1d(int(self.net_size_max / 4)) if self.num_scales > 1: self.fc0 = nn.Linear(self.net_size_max*self.num_scales, self.net_size_max) self.bn0 = nn.BatchNorm1d(self.net_size_max) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) # symmetric operation over all points if self.num_scales == 1: x = self.mp1(x) else: x_scales = x.new_empty(x.size(0), self.net_size_max*self.num_scales, 1) for s in range(self.num_scales): x_scales[:, s*self.net_size_max:(s+1)*self.net_size_max, :] = \ self.mp1(x[:, :, s*self.num_points:(s+1)*self.num_points]) x = x_scales x = x.view(-1, self.net_size_max*self.num_scales) if self.num_scales > 1: x = F.relu(self.bn0(self.fc0(x))) x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) # add identity quaternion (so the network can output 0 to leave the point cloud identical) iden = x.new_tensor([1, 0, 0, 0]) x_quat = x + iden # convert quaternion to rotation matrix x = utils.batch_quat_to_rotmat(x_quat) return x, x_quat class PointNetfeat(nn.Module): def __init__(self, net_size_max=1024, num_scales=1, num_points=500, use_point_stn=True, use_feat_stn=True, output_size=100, sym_op='max'): super(PointNetfeat, self).__init__() self.net_size_max = net_size_max self.num_points = num_points self.num_scales = num_scales self.use_point_stn = use_point_stn self.use_feat_stn = use_feat_stn self.sym_op = sym_op self.output_size = output_size if self.use_point_stn: self.stn1 = QSTN(net_size_max=net_size_max, num_scales=self.num_scales, num_points=num_points, dim=3, sym_op=self.sym_op) if self.use_feat_stn: self.stn2 = STN(net_size_max=net_size_max, num_scales=self.num_scales, num_points=num_points, dim=64, sym_op=self.sym_op) self.conv0a = torch.nn.Conv1d(input_dims_per_point, 64, 1) self.conv0b = torch.nn.Conv1d(64, 64, 1) self.bn0a = nn.BatchNorm1d(64) self.bn0b = nn.BatchNorm1d(64) self.conv1 = torch.nn.Conv1d(64, 64, 1) self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, output_size, 1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(output_size) if self.num_scales > 1: self.conv4 = torch.nn.Conv1d(output_size, output_size*self.num_scales, 1) self.bn4 = nn.BatchNorm1d(output_size*self.num_scales) if self.sym_op == 'max': self.mp1 = torch.nn.MaxPool1d(num_points) elif self.sym_op == 'sum': self.mp1 = None else: raise ValueError('Unsupported symmetric operation: %s' % self.sym_op) def forward(self, x): # input transform if self.use_point_stn: trans, trans_quat = self.stn1(x[:, :3, :]) # transform only point data # an error here can mean that your input size is wrong (e.g. added normals in the point cloud files) x_transformed = torch.bmm(trans, x[:, :3, :]) # transform only point data x = torch.cat((x_transformed, x[:, 3:, :]), dim=1) else: trans = None trans_quat = None # mlp (64,64) x = F.relu(self.bn0a(self.conv0a(x))) x = F.relu(self.bn0b(self.conv0b(x))) # feature transform if self.use_feat_stn: trans2 = self.stn2(x) x = torch.bmm(trans2, x) else: trans2 = None # mlp (64,128,output_size) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.bn3(self.conv3(x)) # mlp (output_size,output_size*num_scales) if self.num_scales > 1: x = self.bn4(self.conv4(F.relu(x))) # symmetric max operation over all points if self.num_scales == 1: if self.sym_op == 'max': x = self.mp1(x) elif self.sym_op == 'sum': x = torch.sum(x, 2, keepdim=True) else: raise ValueError('Unsupported symmetric operation: %s' % self.sym_op) else: x_scales = x.new_empty(x.size(0), self.output_size*self.num_scales**2, 1) if self.sym_op == 'max': for s in range(self.num_scales): x_scales[:, s*self.num_scales*self.output_size:(s+1)*self.num_scales*self.output_size, :] = \ self.mp1(x[:, :, s*self.num_points:(s+1)*self.num_points]) elif self.sym_op == 'sum': for s in range(self.num_scales): x_scales[:, s*self.num_scales*self.output_size:(s+1)*self.num_scales*self.output_size, :] = \ torch.sum(x[:, :, s*self.num_points:(s+1)*self.num_points], 2, keepdim=True) else: raise ValueError('Unsupported symmetric operation: %s' % self.sym_op) x = x_scales x = x.view(-1, self.output_size * self.num_scales ** 2) return x, trans, trans_quat, trans2 class PointSIFTfeat(nn.Module): def __init__(self,net_size_max=1024, num_scales=1, num_points=500, use_point_stn=True, use_feat_stn=True, output_size=100, sym_op='max'): super(PointSIFTfeat, self).__init__() self.net_size_max = net_size_max self.num_points = num_points self.num_scales = num_scales self.use_point_stn = use_point_stn self.use_feat_stn = use_feat_stn self.sym_op = sym_op self.output_size = output_size if self.use_point_stn: self.stn1 = QSTN(net_size_max=net_size_max, num_scales=self.num_scales, num_points=num_points, dim=3, sym_op=self.sym_op) self.pointsift_res_m1 = sn.PointSIFT_res_module(radius=0.1, output_channel=64, merge='concat') self.pointnet_sa_m1 = sn.Pointnet_SA_module(npoint=1024, radius=0.1, nsample=32, in_channel=64, mlp=[64, 128], group_all=False) self.pointsift_res_m2 = sn.PointSIFT_res_module(radius=0.25, output_channel=128, extra_input_channel=128) self.pointnet_sa_m2 = sn.Pointnet_SA_module(npoint=256, radius=0.2, nsample=32, in_channel=128, mlp=[128, 256], group_all=False) self.pointsift_res_m3_1 = sn.PointSIFT_res_module(radius=0.5, output_channel=256, extra_input_channel=256) self.pointsift_res_m3_2 = sn.PointSIFT_res_module(radius=0.5, output_channel=512, extra_input_channel=256, same_dim=True) self.pointnet_sa_m3 = sn.Pointnet_SA_module(npoint=64, radius=0.4, nsample=32, in_channel=512, mlp=[512, self.output_size], group_all=True) self.convt = nn.Sequential( nn.Conv1d(512 + 256, 512, 1), nn.BatchNorm1d(512), nn.ReLU() ) def forward(self, xyz, points=None): """ Input: xyz: is the raw point cloud(B * N * 3) Return: """ B = xyz.size()[0] if self.use_point_stn: trans, trans_quat = self.stn1(xyz[:, :3, :]) # transform only point data # an error here can mean that your input size is wrong (e.g. added normals in the point cloud files) x_transformed = torch.bmm(trans, xyz[:, :3, :]) # transform only point data xyz = torch.cat((x_transformed, xyz[:, 3:, :]), dim=1) else: trans = None trans_quat = None # ---- c1 ---- # l1_xyz, l1_points = self.pointsift_res_m1(xyz.transpose(2,1), points) # print('l1_xyz:{}, l1_points:{}'.format(l1_xyz.shape, l1_points.shape)) c1_xyz, c1_points = self.pointnet_sa_m1(l1_xyz, l1_points) # print('c1_xyz:{}, c1_points:{}'.format(c1_xyz.shape, c1_points.shape)) # ---- c2 ---- # l2_xyz, l2_points = self.pointsift_res_m2(c1_xyz, c1_points) # print('l2_xyz:{}, l2_points:{}'.format(l2_xyz.shape, l2_points.shape)) c2_xyz, c2_points = self.pointnet_sa_m2(l2_xyz, l2_points) # print('c2_xyz:{}, c2_points:{}'.format(c2_xyz.shape, c2_points.shape)) # ---- c3 ---- # l3_1_xyz, l3_1_points = self.pointsift_res_m3_1(c2_xyz, c2_points) # print('l3_1_xyz:{}, l3_1_points:{}'.format(l3_1_xyz.shape, l3_1_points.shape)) l3_2_xyz, l3_2_points = self.pointsift_res_m3_2(l3_1_xyz, l3_1_points) # print('l3_2_xyz:{}, l3_2_points:{}'.format(l3_2_xyz.shape, l3_2_points.shape)) l3_points = torch.cat([l3_1_points, l3_2_points], dim=-1) l3_points = l3_points.permute(0, 2, 1).contiguous() l3_points = self.convt(l3_points) l3_points = l3_points.permute(0, 2, 1).contiguous() l3_xyz = l3_2_xyz # print('l3_xyz:{}, l3_points:{}'.format(l3_xyz.shape, l3_points.shape)) # ---- c4 ---- # c4_xyz, c4_points = self.pointnet_sa_m3(l3_xyz, l3_points) # print(c4_points.shape) trans2=None x = c4_points.view(B, 1024) return x, trans, trans_quat, trans2 class PointsToSurfModel(nn.Module): # basing on PointNetDenseCls def __init__(self, net_size_max=1024, num_points=500, output_dim=3, use_point_stn=True, use_feat_stn=True, sym_op='max', use_query_point=False, sub_sample_size=500, do_augmentation=True, single_transformer=False, shared_transformation=False): super(PointsToSurfModel, self).__init__() self.net_size_max = net_size_max self.num_points = num_points self.use_query_point = use_query_point self.use_point_stn = use_point_stn self.sub_sample_size = sub_sample_size self.num_query_points = int(self.use_query_point) self.do_augmentation = do_augmentation self.single_transformer = bool(single_transformer) self.shared_transformation = shared_transformation if self.single_transformer: self.feat_local_global = PointNetfeat( net_size_max=net_size_max, num_points=self.num_points + self.sub_sample_size, num_scales=1, use_point_stn=use_point_stn, use_feat_stn=use_feat_stn, output_size=self.net_size_max, sym_op=sym_op) self.fc1_local_global = nn.Linear(int(self.net_size_max), int(self.net_size_max)) self.bn1_local_global = nn.BatchNorm1d(int(self.net_size_max)) else: if self.use_point_stn and self.shared_transformation: self.point_stn = QSTN(net_size_max=net_size_max, num_scales=1, num_points=self.num_points+self.sub_sample_size, dim=3, sym_op=sym_op) self.feat_local = PointNetfeat( net_size_max=net_size_max, num_points=self.num_points, num_scales=1, use_point_stn=False, use_feat_stn=use_feat_stn, output_size=self.net_size_max, sym_op=sym_op) self.feat_global = PointNetfeat( net_size_max=net_size_max, num_points=self.sub_sample_size, num_scales=1, use_point_stn=use_point_stn and not self.shared_transformation, use_feat_stn=use_feat_stn, output_size=self.net_size_max, sym_op=sym_op) self.fc1_local = nn.Linear(int(self.net_size_max), int(self.net_size_max / 2)) self.fc1_global = nn.Linear(int(self.net_size_max), int(self.net_size_max / 2)) self.bn1_local = nn.BatchNorm1d(int(self.net_size_max / 2)) self.bn1_global = nn.BatchNorm1d(int(self.net_size_max / 2)) self.fc2 = nn.Linear(int(self.net_size_max / 2) * 2, int(self.net_size_max / 4)) self.fc3 = nn.Linear(int(self.net_size_max / 4), int(self.net_size_max / 8)) self.fc4 = nn.Linear(int(self.net_size_max / 8), output_dim) self.bn2 = nn.BatchNorm1d(int(self.net_size_max / 4)) self.bn3 = nn.BatchNorm1d(int(self.net_size_max / 8)) def forward(self, x): patch_features = x['patch_pts_ps'].transpose(1, 2) shape_features = x['pts_sub_sample_ms'].transpose(1, 2) shape_query_point = x['imp_surf_query_point_ms'].unsqueeze(2) # move global points to query point so that both local and global information are centered at the query point shape_features -= shape_query_point.expand(shape_features.shape) # # debug output for a single patch with its sub-sample # if True: # from source import utils_eval # out_file = 'debug/train_sample.ply' # evaluation.visualize_patch( # patch_pts_ps=patch_features[0].detach().cpu().numpy().transpose(), # patch_pts_ms=None, # #query_point_ps=patch_query_point[0].detach().cpu().numpy().transpose().squeeze(), # query_point_ps=torch.zeros(3), # pts_sub_sample_ms=shape_features[0].detach().cpu().numpy().transpose(), # #query_point_ms=shape_query_point[0].detach().cpu().numpy().transpose().squeeze(), # query_point_ms=torch.zeros(3), # file_path=out_file) # print('wrote training sample to {}'.format(out_file)) if self.single_transformer: local_global_features = torch.cat((patch_features, shape_features), dim=2) local_global_features_transformed, _, _, _ = self.feat_local_global(local_global_features) patch_features = F.relu(self.bn1_local_global(self.fc1_local_global(local_global_features_transformed))) else: if self.use_point_stn and self.shared_transformation: feats = torch.cat((patch_features, shape_features), dim=2) trans, trans_quat = self.point_stn(feats[:, :3, :]) shape_features_transformed = torch.bmm(trans, shape_features[:, :3, :]) patch_features_transformed = torch.bmm(trans, patch_features[:, :3, :]) shape_features = torch.cat([shape_features_transformed, shape_features[:, 3:, :]], dim=1) patch_features = torch.cat([patch_features_transformed, patch_features[:, 3:, :]], dim=1) shape_features, trans_global_pts, _, _ = \ self.feat_global(shape_features) shape_features = F.relu(self.bn1_global(self.fc1_global(shape_features))) if self.use_point_stn and not self.shared_transformation: # rotate patch-space points like the subsample patch_features = torch.bmm(trans_global_pts, patch_features) patch_features, _, _, _ = \ self.feat_local(patch_features) patch_features = F.relu(self.bn1_local(self.fc1_local(patch_features))) # rotate query points like the patch patch_features = torch.cat((patch_features, shape_features), dim=1) patch_features = F.relu(self.bn2(self.fc2(patch_features))) patch_features = F.relu(self.bn3(self.fc3(patch_features))) patch_features = self.fc4(patch_features) return patch_features,trans,trans_global_pts class siftPointsToSurfModel(nn.Module): # basing on PointNetDenseCls def __init__(self, net_size_max=1024, num_points=500, output_dim=3, use_point_stn=True, use_feat_stn=True, sym_op='max', use_query_point=False, sub_sample_size=500, do_augmentation=True, single_transformer=False, shared_transformation=False): super(siftPointsToSurfModel, self).__init__() self.net_size_max = net_size_max self.num_points = num_points self.use_query_point = use_query_point self.use_point_stn = use_point_stn self.sub_sample_size = sub_sample_size self.num_query_points = int(self.use_query_point) self.do_augmentation = do_augmentation self.single_transformer = bool(single_transformer) self.shared_transformation = shared_transformation if self.single_transformer: self.feat_local_global = PointNetfeat( net_size_max=net_size_max, num_points=self.num_points + self.sub_sample_size, num_scales=1, use_point_stn=use_point_stn, use_feat_stn=use_feat_stn, output_size=self.net_size_max, sym_op=sym_op) self.fc1_local_global = nn.Linear(int(self.net_size_max), int(self.net_size_max)) self.bn1_local_global = nn.BatchNorm1d(int(self.net_size_max)) else: if self.use_point_stn and self.shared_transformation: self.point_stn = QSTN(net_size_max=net_size_max, num_scales=1, num_points=self.num_points+self.sub_sample_size, dim=3, sym_op=sym_op) self.feat_local = PointNetfeat( net_size_max=net_size_max, num_points=self.num_points, num_scales=1, use_point_stn=False, use_feat_stn=use_feat_stn, output_size=self.net_size_max, sym_op=sym_op) self.feat_global = PointSIFTfeat( net_size_max=net_size_max, num_points=self.sub_sample_size, num_scales=1, use_point_stn=use_point_stn and not self.shared_transformation, use_feat_stn=use_feat_stn, output_size=self.net_size_max, sym_op=sym_op) self.fc1_local = nn.Linear(int(self.net_size_max), int(self.net_size_max / 2)) self.fc1_global = nn.Linear(int(self.net_size_max), int(self.net_size_max / 2)) self.bn1_local = nn.BatchNorm1d(int(self.net_size_max / 2)) self.bn1_global = nn.BatchNorm1d(int(self.net_size_max / 2)) self.fc2 = nn.Linear(int(self.net_size_max / 2) * 2, int(self.net_size_max / 4)) self.fc3 = nn.Linear(int(self.net_size_max / 4), int(self.net_size_max / 8)) self.fc4 = nn.Linear(int(self.net_size_max / 8), output_dim) self.bn2 = nn.BatchNorm1d(int(self.net_size_max / 4)) self.bn3 = nn.BatchNorm1d(int(self.net_size_max / 8)) def forward(self, x): patch_features = x['patch_pts_ps'].transpose(1, 2) shape_features = x['pts_sub_sample_ms'].transpose(1, 2) shape_query_point = x['imp_surf_query_point_ms'].unsqueeze(2) # move global points to query point so that both local and global information are centered at the query point shape_features -= shape_query_point.expand(shape_features.shape) # # debug output for a single patch with its sub-sample # if True: # from source import utils_eval # out_file = 'debug/train_sample.ply' # evaluation.visualize_patch( # patch_pts_ps=patch_features[0].detach().cpu().numpy().transpose(), # patch_pts_ms=None, # #query_point_ps=patch_query_point[0].detach().cpu().numpy().transpose().squeeze(), # query_point_ps=torch.zeros(3), # pts_sub_sample_ms=shape_features[0].detach().cpu().numpy().transpose(), # #query_point_ms=shape_query_point[0].detach().cpu().numpy().transpose().squeeze(), # query_point_ms=torch.zeros(3), # file_path=out_file) # print('wrote training sample to {}'.format(out_file)) if self.single_transformer: local_global_features = torch.cat((patch_features, shape_features), dim=2) local_global_features_transformed, _, _, _ = self.feat_local_global(local_global_features) patch_features = F.relu(self.bn1_local_global(self.fc1_local_global(local_global_features_transformed))) else: if self.use_point_stn and self.shared_transformation: feats = torch.cat((patch_features, shape_features), dim=2) trans, trans_quat = self.point_stn(feats[:, :3, :]) shape_features_transformed = torch.bmm(trans, shape_features[:, :3, :]) patch_features_transformed = torch.bmm(trans, patch_features[:, :3, :]) shape_features = torch.cat([shape_features_transformed, shape_features[:, 3:, :]], dim=1) patch_features = torch.cat([patch_features_transformed, patch_features[:, 3:, :]], dim=1) shape_features, trans_global_pts, _, _ = \ self.feat_global(shape_features) shape_features = F.relu(self.bn1_global(self.fc1_global(shape_features))) if self.use_point_stn and not self.shared_transformation: # rotate patch-space points like the subsample patch_features = torch.bmm(trans_global_pts, patch_features) patch_features, _, _, _ = \ self.feat_local(patch_features) patch_features = F.relu(self.bn1_local(self.fc1_local(patch_features))) # rotate query points like the patch patch_features = torch.cat((patch_features, shape_features), dim=1) patch_features = F.relu(self.bn2(self.fc2(patch_features))) patch_features = F.relu(self.bn3(self.fc3(patch_features))) patch_features = self.fc4(patch_features) return patch_features,trans,trans_global_pts
[ "923751881@qq.com" ]
923751881@qq.com
7db428084f3310782f3c761b98d335ad28b9dfd0
bd2622778606ba60d863ad9695724dcbf52eb247
/Generator/MethodGenerator/__init__.py
7fce20c4976e2a5f0445612790a503aa47abd4cd
[]
no_license
Danielhhs/UITestingCommandGenerator
7bebbbbdafe7578586df5c30cd2db03bb4bf415e
a106f47fdf89f9a00a6765237906349db11a65c7
refs/heads/master
2021-01-16T21:41:06.489612
2016-05-30T08:11:30
2016-05-30T08:11:30
59,992,680
0
0
null
null
null
null
UTF-8
Python
false
false
28
py
__author__ = 'huanghongsen'
[ "hhuang@microstrategy.com" ]
hhuang@microstrategy.com
6ab209a70725243dab54bf6c366a0983bfb3f00d
826ea45107bde5d09b4d4e53b5de5d499990c5a2
/myproject/venv/bin/wheel
67a2bbb1d1c12be05a98613692de3809f7dc9b97
[]
no_license
xiaoqian123/wechat_lawinfo_back
26010aa781c043cb87f1ffc5503a8769e7c07bba
f15ceab89e28a0b3b7a933ebcec62a31801da2a8
refs/heads/master
2020-03-24T20:58:07.215532
2018-07-31T11:52:28
2018-07-31T11:52:28
143,006,413
0
0
null
null
null
null
UTF-8
Python
false
false
227
#!/tmp/myproject/venv/bin/python # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "luhongxin@weinventing.com" ]
luhongxin@weinventing.com
007f483db4f55e9196bfd7c756d6ec6a1d47b18a
977a0fe8964570de1f89671bbc7021b5b89c4a79
/ml_models/outlier_detect/__init__.py
768ea86efa3a4a5a13992e7a8f7e0517304e5c39
[]
no_license
SatanAngelos/ML
d46ed6a7b191ea091da29b035e81434affbb379c
61be5dc5e4214a6ecebed0b814832885a1f26697
refs/heads/main
2023-08-28T19:32:13.956085
2021-10-22T01:22:07
2021-10-22T01:22:07
419,658,400
2
1
null
null
null
null
UTF-8
Python
false
false
102
py
from .hbos import * from .iforest import * from .knn import * from .phbos import * from .lof import *
[ "xuxl@t.edu.vn" ]
xuxl@t.edu.vn
69053ce7572bab092815a048e7c63b0f8cd43adf
b52e5ed4c912e9d68ad033812a88158ec1c30ca7
/charts/samples/updating_chart_properties.py
cf4d5f32986114c4c57e87387512251949cd059f
[]
no_license
catocodex/charts
edb4a0ab2edd0be81c33fa683820e310575ee3cc
b8c47c56c5715dbe4bf95de075065ce605f7a009
refs/heads/master
2022-12-15T11:20:37.133725
2020-09-15T04:40:38
2020-09-15T04:40:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,045
py
from django.shortcuts import render # Include the `fusioncharts.py` file which has required functions to embed the charts in html page from charts.fusioncharts import FusionCharts from django.views.decorators.clickjacking import xframe_options_exempt @xframe_options_exempt # Loading Data from a Static JSON String # It is a example to show a Column 2D chart where data is passed as JSON string format. # The `chart` method is defined to load chart data from an JSON string. def chart(request): # Create an object for the column2d chart using the FusionCharts class constructor column2d = FusionCharts("column2d", "ex1", 600, 400, "chart-1", "json", # The chart data is passed as a string to the `dataSource` parameter. """{ "chart": { "caption": "Countries With Most Oil Reserves [2017-18]", "subcaption": "In MMbbl = One Million barrels", "xaxisname": "Country", "yaxisname": "Reserves (MMbbl)", "numbersuffix": "K", "theme": "fusion" }, "data": [{ "label": "Venezuela", "value": "290" }, { "label": "Saudi", "value": "260" }, { "label": "Canada", "value": "180" }, { "label": "Iran", "value": "140" }, { "label": "Russia", "value": "115" }, { "label": "UAE", "value": "100" }, { "label": "US", "value": "30" }, { "label": "China", "value": "30" }] }""") # returning complete JavaScript and HTML code, which is used to generate chart in the browsers. return render(request, 'chart-product-level-api.html', {'output' : column2d.render(), 'chartTitle': 'Updating chart properties at runtime'})
[ "carlos.tovar@ariwonto.com" ]
carlos.tovar@ariwonto.com
dc008fa679bb4de8e9a90b20ea024a0de74ae5bb
9b5fe9ec46b6715e118a003da92989688e0429f3
/Udacity/Tournament Results and Catalog/Restaurant Menu and Catalog/Oauth/project.py
e834ca5214b59cbc939fa0c47c8f3ae1b03222f0
[]
no_license
dreedgibson/Projects
a8057828594b93e8ff8ad39d5363bf331096ae07
07b932b8b5ca4d5b3f3fbfddb63bedb523ce59f8
refs/heads/master
2021-01-11T22:00:33.854325
2017-03-27T22:24:51
2017-03-27T22:24:51
78,891,653
0
0
null
null
null
null
UTF-8
Python
false
false
15,190
py
from flask import Flask, render_template, request, redirect,jsonify, url_for, flash app = Flask(__name__) from sqlalchemy import create_engine, asc from sqlalchemy.orm import sessionmaker from database_setup import Base, Restaurant, MenuItem, User from flask import session as login_session import random, string from oauth2client.client import flow_from_clientsecrets from oauth2client.client import FlowExchangeError import httplib2 import json from flask import make_response import requests CLIENT_ID = json.loads( open('client_secrets.json','r').read())['web']['client_id'] #Connect to Database and create database session engine = create_engine('sqlite:///restaurantmenu.db') Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() # Create a state token to prevent request forgery # Store in session for later validation @app.route('/login') def showLogin(): state = ''.join(random.choice(string.ascii_uppercase + string. digits) for x in xrange(32)) login_session['state'] = state return render_template('login.html', STATE = state) @app.route('/login/gconnect', methods=['POST']) def gconnect(): if request.args.get('state') != login_session['state']: response = make_response(json.dumps('Invalid state'), 401) response.headers['Content-Type'] = 'application/json' return response code = request.data try: oauth_flow = flow_from_clientsecrets('client_secrets.json', scope='') oauth_flow.redirect_uri = 'postmessage' credentials = oauth_flow.step2_exchange(code) except FlowExchangeError: response = make_response(json.dumps('Failed to upgrade the authorization code'), 401) response.headers['Content-Type'] = 'application/json' return response access_token = credentials. access_token url = ('https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=%s' %access_token) h = httplib2.Http() result = json.loads(h.request(url, 'GET')[1]) if result.get('error') is not None: response = make_response(json.dumps(result.get('error')), 500) response.headers['Content-Type'] = 'application/json' gplus_id = credentials.id_token['sub'] if result['user_id'] != gplus_id: response = make_response(json.dumps("Tokens user ID doesn't match given user ID"), 401) response.headers['Content-Type'] = 'application/json' return response if result['issued_to'] != CLIENT_ID: response = make_response(json.dumps("Tokens client ID doesn't match app's"), 401) response.headers['Content-Type'] = 'application/json' return response stored_credentials = login_session.get('credentials') stored_gplus_id = login_session.get('gplus_id') if stored_credentials is not None and gplus_id == stored_gplus_id: response = make_response(json.dumps('Current user is already connected'), 200) response.headers['Content-Type'] = 'application/json' login_session['provider'] = 'google' login_session['credentials'] = credentials login_session['gplus_id'] = gplus_id userinfo_url = "https://www.googleapis.com/oauth2/v1/userinfo" params = {'access_token': credentials.access_token, 'alt': 'json'} answer = requests.get(userinfo_url, params = params) data = json.loads(answer.text) login_session['username'] = data["name"] login_session['picture'] = data["picture"] login_session['email'] = data["email"] user_id = getUserID(login_session['email']) if not user_id: user_id = createUser(login_session) login_session['user_id'] = user_id output = '' output += '<h1>Welcome, ' output += login_session['username'] output += '!</h1>' output += '<img src="' output += login_session['picture'] output += ' " style = "width: 300px; height: 300px;border-radius: 150px;-webkit-border-radius: 150px;-moz-border-radius: 150px;"> ' flash("you are now logged in as %s" % login_session['username']) print "done!" return output @app.route('/gdisconnect') def gdisconnect(): credentials = login_session['credentials'] if credentials is None: response = make_response(json.dumps('Current user is not connected'), 401) response.headers['Content-Type'] = 'application/json' return response access_token = credentials.access_token url = 'https://accounts.google.com/o/oauth2/revoke?token=%s' % access_token h = httplib2.Http() result = h.request(url, 'GET')[0] if result['status'] == '200': del login_session['credentials'] del login_session['gplus_id'] del login_session['username'] del login_session['email'] del login_session['picture'] response = make_response(json.dumps('Successfully disconnected.'), 200) response.headers['Content-Type'] = 'application/json' return response else: response = make_response(json.dumps('Failed to revoke token for given user.', 400)) response.headers['Content-Type'] = 'application/json' return response # facebook login @app.route('/fbconnect', methods=['POST']) def fbconnect(): if request.args.get('state') != login_session['state']: response = make_response(json.dumps('Invalid state'), 401) response.headers['Content-Type'] = 'application/json' return response access_token = request.data # exchange client token for server side token app_id = json.loads(open('fb_client_secrets.json','r').read())['web']['app_id'] app_secret = json.loads(open('fb_client_secrets.json','r').read())['web']['app_secret'] url = 'https://graph.facebook.com/oauth/access_token?grant_type=fb_exchange_token&client_id=%s&client_secret=%s&fb_exchange_token=%s' % (app_id,app_secret,access_token) h = httplib2.Http() result = h.request(url, 'GET')[1] userinfo_url = "https://graph.facebook.com/v2.2/me" token = result.split("&")[0] url = 'https://graph.facebook.com/v2.4/me?%s&fields=name,id,email' % token h = httplib2.Http() result = h.request(url, 'GET')[1] data = json.loads(result) login_session['provider'] = 'facebook' login_session['username'] = data["name"] login_session['email'] = data["email"] login_session['facebook_id'] = data['id'] url = "https://graph.facebook.com/v2.2/me/picture?%s&redirect=0&height=200&width=200" % token h = httplib2.Http() result = h.request(url, 'GET')[1] data = json.loads(result) login_session['picture'] = data["data"]["url"] user_id = getUserID(login_session['email']) if not user_id: user_id = createUser(login_session) login_session['user_id'] = user_id output = '' output += '<h1>Welcome, ' output += login_session['username'] output += '!</h1>' output += '<img src="' output += login_session['picture'] output += ' " style = "width: 300px; height: 300px;border-radius: 150px;-webkit-border-radius: 150px;-moz-border-radius: 150px;"> ' flash("you are now logged in as %s" % login_session['username']) print "done!" return output @app.route('/fbdisconnect') def fbdisconnect(): facebook_id = login_session['facebook_id'] url ='https://graph.facebook.com/%s/permissions' % facebook_id h= httplib2.Http() result = h.request(url, 'DELETE')[1] del login_session['username'] del login_session['email'] del login_session['picture'] del login_session['user_id'] del login_session['facebook_id'] return "you have been logged out" @app.route('/disconnect') def disconnect(): if 'provider' in login_session: if login_session['provider'] == 'google': gdisconnect() del login_session['gplus_id'] del login_session['credentials'] if login_session['provider'] == 'facebook': fbdisconnect() del login_session['facebook_id'] del login_session['username'] del login_session['email'] del login_session['picture'] del login_session['user_id'] del login_session['provider'] flash("You have successfully logged out") return redirect(url_for('showRestaurants')) else: flash("you aren't logged in") return redirect(url_for('showRestaurants')) #JSON APIs to view Restaurant Information @app.route('/restaurant/<int:restaurant_id>/menu/JSON') def restaurantMenuJSON(restaurant_id): restaurant = session.query(Restaurant).filter_by(id = restaurant_id).one() items = session.query(MenuItem).filter_by(restaurant_id = restaurant_id).all() return jsonify(MenuItems=[i.serialize for i in items]) @app.route('/restaurant/<int:restaurant_id>/menu/<int:menu_id>/JSON') def menuItemJSON(restaurant_id, menu_id): Menu_Item = session.query(MenuItem).filter_by(id = menu_id).one() return jsonify(Menu_Item = Menu_Item.serialize) @app.route('/restaurant/JSON') def restaurantsJSON(): restaurants = session.query(Restaurant).all() return jsonify(restaurants= [r.serialize for r in restaurants]) #Show all restaurants @app.route('/') @app.route('/restaurant/') def showRestaurants(): restaurants = session.query(Restaurant).order_by(asc(Restaurant.name)) if 'username' not in login_session: return render_template('publicrestaurants.html', restaurants = restaurants) else: return render_template('restaurants.html', restaurants = restaurants) #Create a new restaurant @app.route('/restaurant/new/', methods=['GET','POST']) def newRestaurant(): if 'username' not in login_session: return redirect('/login') if request.method == 'POST': newRestaurant = Restaurant(name = request.form['name'], user_id = login_session['user_id']) session.add(newRestaurant) flash('New Restaurant %s Successfully Created' % newRestaurant.name) session.commit() return redirect(url_for('showRestaurants')) else: return render_template('newRestaurant.html') #Edit a restaurant @app.route('/restaurant/<int:restaurant_id>/edit/', methods = ['GET', 'POST']) def editRestaurant(restaurant_id): if 'username' not in login_session: return redirect('/login') editedRestaurant = session.query(Restaurant).filter_by(id = restaurant_id).one() if request.method == 'POST': if request.form['name']: editedRestaurant.name = request.form['name'] flash('Restaurant Successfully Edited %s' % editedRestaurant.name) return redirect(url_for('showRestaurants')) else: return render_template('editRestaurant.html', restaurant = editedRestaurant) #Delete a restaurant @app.route('/restaurant/<int:restaurant_id>/delete/', methods = ['GET','POST']) def deleteRestaurant(restaurant_id): if 'username' not in login_session: return redirect('/login') restaurantToDelete = session.query(Restaurant).filter_by(id = restaurant_id).one() if restaurantToDelete.user_id != login_session['user_id']: return "<script>function myFunction() {alert('You are not authorized to delete this restaurant.');}</script><body onload='myFunction()'>" if request.method == 'POST': session.delete(restaurantToDelete) flash('%s Successfully Deleted' % restaurantToDelete.name) session.commit() return redirect(url_for('showRestaurants', restaurant_id = restaurant_id)) else: return render_template('deleteRestaurant.html',restaurant = restaurantToDelete) #Show a restaurant menu @app.route('/restaurant/<int:restaurant_id>/') @app.route('/restaurant/<int:restaurant_id>/menu/') def showMenu(restaurant_id): restaurant = session.query(Restaurant).filter_by(id = restaurant_id).one() creator = getUserInfo(restaurant.user_id) items = session.query(MenuItem).filter_by(restaurant_id = restaurant_id).all() if 'username' not in login_session or creator.id != login_session['user_id']: return render_template('publicmenu.html', items = items, restaurant = restaurant, creator = creator) else: return render_template('menu.html', items = items, restaurant = restaurant, creator = creator) #Create a new menu item @app.route('/restaurant/<int:restaurant_id>/menu/new/',methods=['GET','POST']) def newMenuItem(restaurant_id): if 'username' not in login_session: return redirect('/login') restaurant = session.query(Restaurant).filter_by(id = restaurant_id).one() if request.method == 'POST': newItem = MenuItem(name = request.form['name'], description = request.form['description'], price = request.form['price'], course = request.form['course'], restaurant_id = restaurant_id, user_id = restaurant.user_id) session.add(newItem) session.commit() flash('New Menu %s Item Successfully Created' % (newItem.name)) return redirect(url_for('showMenu', restaurant_id = restaurant_id)) else: return render_template('newmenuitem.html', restaurant_id = restaurant_id) #Edit a menu item @app.route('/restaurant/<int:restaurant_id>/menu/<int:menu_id>/edit', methods=['GET','POST']) def editMenuItem(restaurant_id, menu_id): if 'username' not in login_session: return redirect('/login') editedItem = session.query(MenuItem).filter_by(id = menu_id).one() restaurant = session.query(Restaurant).filter_by(id = restaurant_id).one() if request.method == 'POST': if request.form['name']: editedItem.name = request.form['name'] if request.form['description']: editedItem.description = request.form['description'] if request.form['price']: editedItem.price = request.form['price'] if request.form['course']: editedItem.course = request.form['course'] session.add(editedItem) session.commit() flash('Menu Item Successfully Edited') return redirect(url_for('showMenu', restaurant_id = restaurant_id)) else: return render_template('editmenuitem.html', restaurant_id = restaurant_id, menu_id = menu_id, item = editedItem) #Delete a menu item @app.route('/restaurant/<int:restaurant_id>/menu/<int:menu_id>/delete', methods = ['GET','POST']) def deleteMenuItem(restaurant_id,menu_id): if 'username' not in login_session: return redirect('/login') restaurant = session.query(Restaurant).filter_by(id = restaurant_id).one() itemToDelete = session.query(MenuItem).filter_by(id = menu_id).one() if itemToDelete.user_id != login_session['user_id']: return "<script>function myFunction() {alert('You are not authorized to delete this item.');}</script><body onload='myFunction()'>" if request.method == 'POST': session.delete(itemToDelete) session.commit() flash('Menu Item Successfully Deleted') return redirect(url_for('showMenu', restaurant_id = restaurant_id)) else: return render_template('deleteMenuItem.html', item = itemToDelete) def getUserID(email): try: user = session.query(User).filter_by(email = email).one() return user.id except: return None def getUserInfo(user_id): user = session.query(User).filter_by(id = user_id).one() return user def createUser(login_session): newUser = User(name=login_session['username'], email = login_session['email'], picture = login_session['picture']) session.add(newUser) session.commit() user = session.query(User).filter_by(email = login_session['email']).one() return user.id if __name__ == '__main__': app.secret_key = 'super_secret_key' app.debug = True app.run(host = '0.0.0.0', port = 5000)
[ "dennis.reed.gibson@gmail.com" ]
dennis.reed.gibson@gmail.com
d6daf791ae48ee6f94e3de12b0ee88e5643381eb
4c8eb3d5a63ac2a8ddbb7f997b27f08b8019d5f7
/models/polyencoder/config_polyencoder.py
3feea746ce3222911402f234fed24a7eb875a35c
[]
no_license
RaphaelOlivier/collision-bert
94974ed8c94295b9d7ed760cb0ad79f2856d34aa
43eda087bf6d632bdb150d98e934206327f8d082
refs/heads/master
2023-01-20T08:09:47.449597
2020-11-21T20:01:43
2020-11-21T20:01:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,392
py
from parlai.core.opt import load_opt_file from constant import PARLAI_DIR PARLAI_MODEL_DIR = PARLAI_DIR + '/models/' POLYENC_MODEL_DIR = PARLAI_MODEL_DIR + 'model_poly/' POLYENC_OPT_FILE = POLYENC_MODEL_DIR + 'model.opt' BI_MODEL_DIR = PARLAI_MODEL_DIR + 'model_bi/' BIENC_OPT_FILE = BI_MODEL_DIR + 'model.opt' PRETRAINED_BI_MODEL_DIR = PARLAI_MODEL_DIR + 'bi_model_huge_reddit/' PRETRAINED_BIENC_OPT_FILE = PRETRAINED_BI_MODEL_DIR + 'model.opt' PRETRAINED_POLY_MODEL_DIR = PARLAI_MODEL_DIR + 'poly_model_huge_reddit/' PRETRAINED_POLYENC_OPT_FILE = PRETRAINED_POLY_MODEL_DIR + 'model.opt' def load_poly_encoder_opt(): opt = load_opt_file(POLYENC_OPT_FILE) if isinstance(opt['fixed_candidates_path'], str): opt['fixed_candidates_path'] = PARLAI_DIR + opt['fixed_candidates_path'] opt['data_path'] = PARLAI_DIR + 'data' opt['datapath'] = PARLAI_DIR + 'data' opt['model_file'] = POLYENC_MODEL_DIR + 'model' opt['dict_file'] = POLYENC_MODEL_DIR + 'model.dict' opt['encode_candidate_vecs'] = False return opt def load_bi_encoder_opt(): opt = load_opt_file(BIENC_OPT_FILE) if isinstance(opt['fixed_candidates_path'], str): opt['fixed_candidates_path'] = PARLAI_DIR + opt['fixed_candidates_path'] opt['data_path'] = PARLAI_DIR + 'data' opt['datapath'] = PARLAI_DIR + 'data' opt['model_file'] = BI_MODEL_DIR + 'model' opt['dict_file'] = BI_MODEL_DIR + 'model.dict' opt['encode_candidate_vecs'] = False return opt def load_pretrained_poly_encoder_opt(): opt = load_opt_file(PRETRAINED_POLYENC_OPT_FILE) if isinstance(opt['fixed_candidates_path'], str): opt['fixed_candidates_path'] = PARLAI_DIR + opt['fixed_candidates_path'] opt['data_path'] = PARLAI_DIR + 'data' opt['datapath'] = PARLAI_DIR + 'data' opt['model_file'] = PRETRAINED_POLY_MODEL_DIR + 'model' opt['dict_file'] = PRETRAINED_POLY_MODEL_DIR + 'model.dict' opt['encode_candidate_vecs'] = False return opt def load_pretrained_bi_encoder_opt(): opt = load_opt_file(PRETRAINED_BIENC_OPT_FILE) if isinstance(opt['fixed_candidates_path'], str): opt['fixed_candidates_path'] = PARLAI_DIR + opt['fixed_candidates_path'] opt['data_path'] = PARLAI_DIR + 'data' opt['datapath'] = PARLAI_DIR + 'data' opt['model_file'] = PRETRAINED_BI_MODEL_DIR + 'model' opt['dict_file'] = PRETRAINED_BI_MODEL_DIR + 'model.dict' opt['encode_candidate_vecs'] = False return opt
[ "csong27@outlook.com" ]
csong27@outlook.com
7c6e1b6c33ea05d437ed23695e22c0b12681b0c2
6a10d4d17bef4918e8f188d98ada1d599578ca62
/An3/Sem1/Python/Lab4/s4.py
a61acbc85fd7dbd9b457dcb6312cfbfc002c5148
[]
no_license
iceeye7gabi/FII
c9870203b25606464e4f5613e0c7eabad946c85f
d1a0726f687290c517a47bb96478010403354436
refs/heads/master
2022-11-19T09:37:47.740963
2020-07-20T09:27:03
2020-07-20T09:27:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
585
py
def problema4(my_list): result = [] for elem in my_list: if isinstance(elem, int): result.append(elem) return sorted(result, reverse=True) my_list = [404, 2, 'trei', 4, 5.0, [5, 6]] print(problema4(my_list)) def checkPrime(n): if n <= 1: return False for i in range(2, n): if n % i == 0: return False return True def problema3(m): result = [] for i in range(2, m): if checkPrime(i) is True: result.append(i) return result print(problema3(14))
[ "noreply@github.com" ]
iceeye7gabi.noreply@github.com
92237f74bc30ca5a47e2331be90e813865a10295
ce0e38abc34bfda2ad29f66fdb1cde80393a3c68
/panorama.py
9cc654f8ccd74b5fe5382ec64e9132d5e25e0f8d
[]
no_license
tshr-d-dragon/Panorama_Stitching
28d1b2c70de9eeb01f8a698e468fcc80fb1bdecc
8c48b719ecbe6c37414371e6290457a78292bedd
refs/heads/main
2023-05-07T05:48:35.624435
2021-05-18T16:01:49
2021-05-18T16:01:49
368,261,869
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
import cv2 import os stitcher = cv2.Stitcher_create() path = 'cv2/panorama' images = [] for i in os.listdir(path): a = cv2.imread(f'{path}/{i}') images.append(a) _, Panorama = stitcher.stitch(images) if _ == 0: print('Panorama Operation Successful') cv2.imwrite(f'{path}/Panorama.jpg', Panorama) else: print('Panorama Operation Unsuccessful')
[ "noreply@github.com" ]
tshr-d-dragon.noreply@github.com
d66a5b4ced8bf2e594226a025143dab3d66cedfd
712dad88ba912bcb10ca491e4d8abe1c40e24581
/part_3/part3.2.py
66b3bcf6df05dc068f333ae42ffb5b0409222c30
[]
no_license
kartikeya-badola/Visual-Sudoku-Solver
e3d4fe7cbb849f46b7a78e52488fd58435412110
19885388edca46d254883f2f25c03a3b0628fb2b
refs/heads/master
2023-07-05T23:49:09.785432
2021-08-17T06:17:41
2021-08-17T06:17:41
397,127,992
0
0
null
null
null
null
UTF-8
Python
false
false
9,350
py
import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import torch.nn.functional as F import copy from sklearn.utils import shuffle import torch.utils.data as data from torch.utils.data import random_split from tqdm import tqdm from PIL import Image import os import argparse import random device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') from PIL import Image from tqdm import tqdm parser = argparse.ArgumentParser(description='COL 870 Assignment 2.3') parser.add_argument('--train_path', default='/content/Assignment 2/visual_sudoku/train', type=str, help='path to train images') parser.add_argument('--test_query', default = '/content/Assignment 2/visual_sudoku/train/query/', type=str, help='path to test_query') parser.add_argument('--sample_images', default = '/content/Assignment 2/sample_images.npy', type=str, help='path to sample images.npy') args = parser.parse_args() img_list = [] for l in tqdm(sorted(os.listdir(args.train_path+'/target'))): pil_img = Image.open(args.train_path+'/target/'+l) tensor = transforms.ToTensor()(pil_img) img_list.append(tensor.unsqueeze(0)) imgs = torch.cat(img_list,dim=0) patches = imgs.unfold(2, 28, 28).unfold(3, 28, 28) patches = patches.reshape(10000,1,64,28,28).permute(0,2,1,3,4) class TripletDataset(data.Dataset): def __init__(self): self.target = patches.reshape(640000,28,28) self.augment = transforms.Compose([transforms.ToPILImage(), transforms.RandomAffine(degrees=15, translate=(0.1,0.1), scale=(1.2,1.2)), transforms.ToTensor() ]) def __len__(self): return 14 * self.target.shape[0] def __getitem__(self, S): i, j = S // 14, S % 14 image = self.target[i] if j < 7: idx = 8 * (i // 8) + (i + j + 1) % 8 else: idx = 64 * (i // 64) + (i + 8 * (j - 6)) % 64 negative = self.target[idx] return image.unsqueeze(0), self.augment(image), negative.unsqueeze(0) trainset = TripletDataset() trainloader = torch.utils.data.DataLoader(trainset, batch_size=256, shuffle=True, num_workers=4) class residual_block(nn.Module): def __init__(self,in_channels: int, downsample: bool,normalization): super(residual_block,self).__init__() self.downsample=downsample self.perform_norm=not (normalization is None) print('using norm?',self.perform_norm) if downsample: self.identity_downsample = nn.Conv2d(in_channels=in_channels,out_channels=in_channels*2,kernel_size=1,stride=2,padding=0) self.layer1 = nn.Conv2d(in_channels=in_channels,out_channels=in_channels*2,kernel_size=3,stride=2,padding=1) self.layer2 = nn.Conv2d(in_channels=in_channels*2,out_channels=in_channels*2,kernel_size=3,stride=1,padding=1) if self.perform_norm: self.norm1 = normalization(in_channels*2) self.norm2 = normalization(in_channels*2) else: self.layer1 = nn.Conv2d(in_channels=in_channels,out_channels=in_channels,kernel_size=3,stride=1,padding=1) self.layer2 = nn.Conv2d(in_channels=in_channels,out_channels=in_channels,kernel_size=3,stride=1,padding=1) if self.perform_norm: self.norm1 = normalization(in_channels) self.norm2 = normalization(in_channels) def forward(self,x): residual=x if self.downsample: residual=self.identity_downsample(x) if self.perform_norm: x = self.norm2(self.layer2(nn.ReLU()(self.norm1(self.layer1(x))))) else: x = self.layer2(nn.ReLU()(self.layer1(x))) x = nn.ReLU()(residual+x) return x class block_of_residual_blocks(nn.Module): def __init__(self,num_blocks: int, in_channels: int ,firstblock: bool,normalization): super(block_of_residual_blocks,self).__init__() self.blocks = [] if firstblock: self.blocks.append(residual_block(in_channels=in_channels,downsample=False,normalization=normalization)) for i in range(num_blocks-1): self.blocks.append(residual_block(in_channels=in_channels,downsample=False,normalization=normalization)) else: self.blocks.append(residual_block(in_channels=in_channels,downsample=True,normalization=normalization)) for i in range(num_blocks-1): self.blocks.append(residual_block(in_channels=2*in_channels,downsample=False,normalization=normalization)) self.blocks = nn.ModuleList(self.blocks) def forward(self,x): for block in self.blocks: x=block(x) return x class my_resnet(nn.Module): def __init__(self,num_blocks: int,normalization): super(my_resnet,self).__init__() self.input_layer = nn.Conv2d(in_channels=1,out_channels=16,kernel_size=3,stride=1,padding=1) self.perform_norm = not (normalization is None) print('using input norm?',self.perform_norm) if self.perform_norm: self.input_norm = normalization(16) self.block1 = block_of_residual_blocks(num_blocks=num_blocks,in_channels=16,firstblock=True,normalization=normalization) self.block2 = block_of_residual_blocks(num_blocks=num_blocks,in_channels=16,firstblock=False,normalization=normalization) self.block3 = block_of_residual_blocks(num_blocks=num_blocks,in_channels=32,firstblock=False,normalization=normalization) # self.fc = nn.Linear(8*8,num_classes) self.pool = nn.AdaptiveAvgPool2d((1, 1)) def forward(self,x): x= self.input_layer(x) if self.perform_norm: x = self.block3(self.block2(self.block1(nn.ReLU()(self.input_norm(x))))) else: x = self.block3(self.block2(self.block1(nn.ReLU()(x)))) x = self.pool(x) x = torch.flatten(x, 1) return F.sigmoid(x) model = my_resnet(4,nn.BatchNorm2d).to(device) loss = nn.TripletMarginLoss(margin=2.0) optimizer = optim.Adam(model.parameters()) for epoch in range(1): print('Epoch {}/{}'.format(epoch, 9)) print('-' * 10) # Each epoch has a training and validation phase model.train() running_loss = 0.0 running_corrects = 0 running_total = 0 num_batches=0 # predlist=torch.zeros(0,dtype=torch.long, device='cpu') # labellist=torch.zeros(0,dtype=torch.long, device='cpu') # Iterate over data. # for inputs, labels in dataloaders[phase]: for i,(a,p,n) in tqdm(enumerate(trainloader)): if i==5000: break # im = im.to(device) # labels = labels.to(device) emb_a = model(a.to(device)) emb_p = model(p.to(device)) emb_n = model(n.to(device)) loss_value = loss(emb_a,emb_p,emb_n) optimizer.zero_grad() loss_value.backward() optimizer.step() # statistics running_loss += loss_value.item() running_total += len(a) if i%1000==1: print('loss:',running_loss/i) torch.save(model,'triplet_loss.pth') # if phase == 'train': # scheduler.step() # epoch_loss = running_loss/i # epoch_acc = running_corrects/running_total # print('{} Loss: {:.4f} acc: {:.4f}'.format(epoch_loss, epoch_acc)) # model = torch.load('triplet_loss.pth').to(device) torch.save(model,'triplet_loss.pth') imgs = np.load(args.sample_images) classes = torch.Tensor(imgs[1:-1]/255.0) model.eval() gt_emb = model(classes.unsqueeze(1).to(device)) gt_emb = gt_emb.unsqueeze(0).repeat(64,1,1) sudoku=[] for p in tqdm(patches): p_emb = model(p.to(device)) p_emb = p_emb.unsqueeze(1).repeat(1,8,1) # print(p_emb.shape,gt_emb.shape) x = torch.norm(gt_emb-p_emb,dim=2) # print(x) _,pred = x.min(dim=1) # assert 1==2 sudoku.append(pred.cpu().reshape(8,8)) for i,s in enumerate(sudoku): sudoku[i]=s.unsqueeze(0) for i,s in enumerate(sudoku): sudoku[i]=s+1 sudoku_dataset = torch.cat(sudoku,dim=0) torch.save(sudoku_dataset,'target_sudoku.pth') for i in range(1,9): os.mkdir('gan_Dataset/'+str(i)) for i in tqdm(range(len(sudoku))): s= sudoku[i].reshape(64) imgs = patches[i] for j in range(64): torchvision.utils.save_image(1-imgs[j],'gan_Dataset/'+str(s[j].item())+'/'+str(i)+'_'+str(j)+'.png') img_list = [] for l in tqdm(sorted(os.listdir(args.test_query))): pil_img = Image.open(args.test_query+l) tensor = transforms.ToTensor()(pil_img) img_list.append(tensor.unsqueeze(0)) imgs = torch.cat(img_list,dim=0) patches = imgs.unfold(2, 28, 28).unfold(3, 28, 28) patches = patches.reshape(10000,1,64,28,28).permute(0,2,1,3,4) sudoku=[] for p in tqdm(patches): p_emb = model(p.to(device)) p_emb = p_emb.unsqueeze(1).repeat(1,8,1) # print(p_emb.shape,gt_emb.shape) x = torch.norm(gt_emb-p_emb,dim=2) # print(x) _,pred = x.min(dim=1) # assert 1==2 sudoku.append(pred.cpu().reshape(8,8)) for i,s in enumerate(sudoku): sudoku[i]=s.unsqueeze(0) for i,s in enumerate(sudoku): sudoku[i]=s+1 sudoku_dataset = torch.cat(sudoku,dim=0) torch.save(sudoku_dataset,'test_query_sudoku.pth')
[ "kartikeya.badola@gmail.com" ]
kartikeya.badola@gmail.com
9fda23a05e1bd04a774047aebab26396f716dc34
f3333e23a0f86d917a15271c0c7a458d50b55779
/flask/app.py
b447205ef9736c026201b9ec8d7ee62dfe9f2b8e
[]
no_license
johnwashburne/hackSC
e7c7fd26658875f3f14851a28db779016b3386a8
ba684ff292a89380446abc31141d1f2c5b976180
refs/heads/master
2020-12-26T16:36:50.992505
2020-02-04T01:53:30
2020-02-04T01:53:30
237,566,418
0
0
null
null
null
null
UTF-8
Python
false
false
8,138
py
from flask import Flask, render_template, make_response, jsonify, request, session, send_from_directory, flash, redirect, url_for from translator import translate_data, translate_questions, translate_phrase, translate_dict import html from PIL import Image, ImageDraw, ImageFont from classifier import Classifier import json import os app = Flask(__name__) app.secret_key = 'super secret key' app.config['UPLOAD_FOLDER'] = "images" lower = 'abcdefghijklmno' # fixes issue with cached images being displayed @app.after_request def after_request(response): response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate, public, max-age=0" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response @app.route('/getQuestions/', methods=['GET']) def get_questions(): lang = request.args.get("lang") document = request.args.get("document") # classify uploaded image if document == 'upload': c = Classifier() questions = c.process('images/upload.png') with open('upload.json', 'w') as outfile: json.dump(questions, outfile) else: questions = json.load(open('{}.json'.format(document), 'r')) if request.args.get('type') == 'json': return jsonify(questions) questions = translate_questions(questions, lang) placeholder = translate_phrase('Answer here', lang) a = "" for q in questions: if q['qtype'] == 'text' and len(q['children']) == 0: a += ''' <div class="form-group"> <label for="{}">{}</label> <input type="name" name="{}" class="form-control" placeholder="{}"></div> '''.format(q['main']['text'].split('.')[0], q['main']['text'], q['main']['text'].split('.')[0], placeholder) elif q['qtype'] == 'text': a += ''' <div class="form-group"> <label for="{}">{}</label><br> '''.format(q['main']['text'].split('.')[0], q['main']['text']) count = 0 for s in q['children']: a += ''' <div class="form-group"> <label for="{}">{}</label> <input type="name" class="form-control" id="{}" placeholder="{}" name="{}"></div> '''.format(q['main']['text'].split('.')[0] + lower[count] + '. ', lower[count] + '. ' + s['text'], q['main']['text'].split('.')[0] + lower[count] + '. ', placeholder, q['main']['text'].split('.')[0] + lower[count]) count += 1 a += "</div>" elif q['qtype'] == 'radio': a += ''' <label for="{}">{}</label> <div class="form-group form-inline" id ="{}"> '''.format(q['main']['text'].split('.')[0], q['main']['text'], q['main']['text'].split('.')[0]) count = 0 for s in q['children']: a += ''' <div class="form-check form-check-inline"> <input class="form-check-input" type="radio" name="{}" id="Yes" value="{}" checked> <label class="form-check-label" for="Yes">{}</label> </div> '''.format(q['main']['text'].split('.')[0], count, s['text']) count += 1 a += "</div>" else: a += ''' <p>{}</p> '''.format(q['main']['text']) for s in q['children']: a += ''' <input type="checkbox" name="vehicle1" value="Bike">{}<br> '''.format(s['text']) a += """ <input class="btn btn-primary" type="submit" value="Submit"> """ return a @app.route('/formSubmit', methods=['GET', 'POST']) def form_submit(): if request.method == 'POST': answers = request.form.to_dict() answers = translate_dict(answers, 'en') questions = json.load(open('{}.json'.format(session.get('document')), 'r')) for key in answers: if key[-1] not in lower: questions[int(key)-1]['answer'] = answers[key] else: questions[int(key[:-1])-1]['children'][lower.index(key[-1])]['answer'] = answers[key] im = Image.open('{}/{}.png'.format(app.config['UPLOAD_FOLDER'], session.get('document'))) im = im.convert('RGBA') coordinates = questions[0]['main']['box'] height = int(im.height*coordinates['Height']) text_layer = Image.new('RGBA', im.size, (255,255,255,0)) fnt = ImageFont.truetype('arial.ttf', height) d = ImageDraw.Draw(text_layer) for question in questions: # textbox inputs no subfields if question['qtype'] == 'text' and len(question['children']) == 0: coordinates = question['main']['box'] d.text((im.width*coordinates['Left'], im.height*coordinates['Top']+(height*1.4)), question['answer'], font=fnt, fill=(0,0,0,255)) # texbox input w/ subfields elif question['qtype'] == 'text': for i in question['children']: coordinates = i['box'] d.text((im.width*coordinates['Left'], im.height*coordinates['Top']+(height*1.4)), i['answer'], font=fnt, fill=(0,0,0,255)) # radio button input elif question['qtype'] == 'radio': answer = question['answer'] coordinates = question['children'][int(answer)]['box'] d.text((im.width*coordinates['Left']-im.width*.025, im.height*coordinates['Top']),"X", font=fnt, fill=(0,0,0,255)) out = Image.alpha_composite(im, text_layer) document = session.get('document') out.save('{}/{}1.png'.format(app.config['UPLOAD_FOLDER'], document)) out = out.convert('RGB') out.save('{}/{}.pdf'.format(app.config['UPLOAD_FOLDER'], document)) session.clear() return render_template('result.html', fileName='{}1.png'.format(document), dlFileName='{}.pdf'.format(document)) return 'you are a failure' @app.route('/document/<lang>') def document_select(lang): session['lang'] = lang data = [{'title':'I-589', 'body':'Complete the Application for Asylum and for Withholding of Removal', 'upload': 'Go'}, {'title':'I-485', 'body':'Complete the Application to Register Permanent Residence or Adjust Status.', 'upload': 'Go'}, {'title':'Other', 'body':'Complete a form different from the ones presented.', 'upload':'Upload'}] data = translate_data(data, lang) data[0]['url'] = '/i589/{}'.format(lang) data[1]['url'] = '/i485/{}'.format(lang) data[2]['url'] = '/upload/{}'.format(lang) for d in data: d['body'] = html.unescape(d['body']) return render_template("document.html", data=data) @app.route('/forms/<filename>', methods=['GET']) def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) @app.route('/i589/<lang>') def i589(lang): session['document'] = 'i589' return render_template('form.html', lang=lang, document='i589') @app.route('/i485/<lang>') def i485(lang): session['document'] = 'i485' return render_template('form.html', lang=lang, document='i485') @app.route('/uploadForm/<lang>') def upload_form(lang): session['document'] = 'upload' return render_template('form.html', lang=lang, document='upload') @app.route('/upload/<lang>', methods=['GET', 'POST']) def upload(lang): if request.method == 'POST': if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] if file: file.save(os.path.join(app.config['UPLOAD_FOLDER'], 'upload.png')) return redirect(url_for('upload_form', lang=lang)) return render_template('upload.html', lang=lang) @app.route('/about') def about(): return render_template('about.html') @app.route('/') def index(): return render_template('index.html') if __name__ == "__main__": app.run()
[ "johnwashburne@outlook.com" ]
johnwashburne@outlook.com
b9f2e13111c68a6e023b3157402e3b2464bf08a3
e11e1cf6d7916009543bbb54100882b8989d09c5
/docs/conf.py
b582669c7b1543755c6730e8330bf81a82a83265
[ "MIT" ]
permissive
sgmagar/django-circleci-example
fac705d5a6b700c64a81c19a5c47acd24b3b8c60
7352f0bc9a1b10deb2d9be592c89f73ca455b883
refs/heads/master
2020-12-14T15:50:03.686396
2019-05-02T13:07:43
2019-05-02T13:07:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,064
py
# Django CircleCI example documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "Django CircleCI example" copyright = """2019, Timmy O'Mahony""" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "0.1" # The full version, including alpha/beta/rc tags. release = "0.1" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "django_circleci_exampledoc" # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ( "index", "django_circleci_example.tex", "Django CircleCI example Documentation", """Timmy O'Mahony""", "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( "index", "django_circleci_example", "Django CircleCI example Documentation", ["""Timmy O'Mahony"""], 1, ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "django_circleci_example", "Django CircleCI example Documentation", """Timmy O'Mahony""", "Django CircleCI example", """A CircleCI Django example project""", "Miscellaneous", ) ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
[ "hey@timmyomahony.com" ]
hey@timmyomahony.com
2ad628a29a18f6ef3219307d5349625a027c37a8
16856157985fcc8c06973c3fc552f05ec7b5c6e7
/core/migrations/0004_wordnormal_record.py
cc26f2bb72f36d2d785f686c6690578862b617fb
[]
no_license
glader/ZeonSearch
c592e024540d153e12bcf1de1f73fe73bc8c179c
8132f1b9978d0af2e8b703ddd9b394d72a5424ed
refs/heads/master
2021-01-23T21:18:29.046316
2017-10-11T07:20:22
2017-10-11T07:20:22
102,892,858
0
0
null
null
null
null
UTF-8
Python
false
false
632
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-09-08 16:50 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20170908_2134'), ] operations = [ migrations.AddField( model_name='wordnormal', name='record', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='core.Record', verbose_name='\u0417\u0430\u043f\u0438\u0441\u044c'), preserve_default=False, ), ]
[ "glader@yandex-team.ru" ]
glader@yandex-team.ru
cd6ca5bdf2986ee0c718790d29620cf74d6edd35
2e0f9c2c31fb2d4a9b56ab841a3bba0f1a5b5b17
/trainval_net.py
15ca80be407d2c1be8d2ec669bdfc4d118f3a93b
[]
no_license
LanyiWanggg/domain_adaption_caption
f78376bd2c09e50e111b9e8b0bfadf82a4795a36
98a7bd3cc82df0d1b70ddfc659fdd74ed625dde0
refs/heads/master
2023-05-30T22:38:51.703735
2021-06-08T20:15:29
2021-06-08T20:15:29
375,111,069
0
0
null
null
null
null
UTF-8
Python
false
false
18,213
py
# -------------------------------------------------------- # Pytorch multi-GPU Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time from processCaption import Vocabulary import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data.sampler import Sampler from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from model.utils.net_utils import weights_normal_init, save_net, load_net, \ adjust_learning_rate, save_checkpoint, clip_gradient, get_lr_at_iter from model.faster_rcnn.vgg16 import vgg16 from model.faster_rcnn.resnet import resnet def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='cityscape_multi', type=str) parser.add_argument('--net', dest='net', help='vgg16, res101', default='vgg16', type=str) parser.add_argument('--start_epoch', dest='start_epoch', help='starting epoch', default=1, type=int) parser.add_argument('--epochs', dest='max_epochs', help='number of epochs to train', default=20, type=int) parser.add_argument('--disp_interval', dest='disp_interval', help='number of iterations to display', default=100, type=int) parser.add_argument('--checkpoint_interval', dest='checkpoint_interval', help='number of iterations to display', default=10000, type=int) parser.add_argument('--save_dir', dest='save_dir', help='directory to save models', default="results", type=str) parser.add_argument('--nw', dest='num_workers', help='number of worker to load data', default=0, type=int) parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true', default=True) parser.add_argument('--ls', dest='large_scale', help='whether use large imag scale', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--bs', dest='batch_size', help='batch_size', default=1, type=int) parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') # config optimization parser.add_argument('--o', dest='optimizer', help='training optimizer', default="sgd", type=str) parser.add_argument('--lr', dest='lr', help='starting learning rate', default=0.001, type=float) parser.add_argument('--lr_decay_step', dest='lr_decay_step', help='step to do learning rate decay, unit is epoch', default=5, type=int) parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma', help='learning rate decay ratio', default=0.1, type=float) # set training session parser.add_argument('--s', dest='session', help='training session', default=1, type=int) # resume trained model parser.add_argument('--r', dest='resume', help='resume checkpoint or not', default=False, type=bool) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load model', default=1, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load model', default=0, type=int) # log and diaplay parser.add_argument('--use_tfb', dest='use_tfboard', help='whether use tensorboard', action='store_true') parser.add_argument('--warm_up', dest='warm_up', help='warm_up iters', default=200, type=int) parser.add_argument('--save_model_dir', dest='save_model_dir', help='save_model_dir', default="cityscape_multi", type=str) args = parser.parse_args() return args class sampler(Sampler): def __init__(self, train_size, batch_size): self.num_data = train_size self.num_per_batch = int(train_size / batch_size) self.batch_size = batch_size self.range = torch.arange(0, batch_size).view(1, batch_size).long() self.leftover_flag = False if train_size % batch_size: self.leftover = torch.arange(self.num_per_batch * batch_size, train_size).long() self.leftover_flag = True def __iter__(self): rand_num = torch.randperm(self.num_per_batch).view(-1, 1) * self.batch_size self.rand_num = rand_num.expand(self.num_per_batch, self.batch_size) + self.range self.rand_num_view = self.rand_num.view(-1) if self.leftover_flag: self.rand_num_view = torch.cat((self.rand_num_view, self.leftover), 0) return iter(self.rand_num_view) def __len__(self): return self.num_data if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.dataset == "pascal_voc": args.imdb_name = "voc_2007_trainval" args.imdbval_name = "voc_2007_test" args.set_cfgs = [ 'ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20' ] elif args.dataset == "coco": args.imdb_name = "coco_2014_train+coco_2014_valminusminival" args.imdbval_name = "coco_2014_minival" args.set_cfgs = [ 'ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50' ] elif args.dataset == "cityscape_multi": args.imdb_name = "cityscape_multi_train" args.imdbval_name = "cityscape_multi_val" args.set_cfgs = [ 'ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20' ] elif args.dataset == "foggy_cityscape_multi": args.imdb_name = "foggy_cityscape_multi_train" args.imdbval_name = "foggy_cityscape_multi_val" args.set_cfgs = [ 'ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20' ] args.cfg_file = "cfgs/{}_ls.yml".format( args.net) if args.large_scale else "cfgs/{}.yml".format(args.net) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print('Using config:') pprint.pprint(cfg) np.random.seed(cfg.RNG_SEED) #torch.backends.cudnn.benchmark = True if torch.cuda.is_available() and not args.cuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) # train set # -- Note: Use validation set and disable the flipped to enable faster loading. cfg.TRAIN.USE_FLIPPED = True cfg.USE_GPU_NMS = args.cuda imdb, roidb, ratio_list, ratio_index, _ = combined_roidb(args.imdb_name) train_size = len(roidb) print('{:d} roidb entries'.format(len(roidb))) output_dir = args.save_dir + "/" + args.net + "/" + args.save_model_dir if not os.path.exists(output_dir): os.makedirs(output_dir) sampler_batch = sampler(train_size, args.batch_size) dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \ imdb.num_classes, training=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, sampler=sampler_batch, num_workers=args.num_workers) # initilize the tensor holder here. im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) # ship to cuda if args.cuda: im_data = im_data.cuda() im_info = im_info.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() # make variable im_data = Variable(im_data) im_info = Variable(im_info) num_boxes = Variable(num_boxes) gt_boxes = Variable(gt_boxes) if args.cuda: cfg.CUDA = True # initilize the network here. if args.net == 'vgg16': fasterRCNN = vgg16(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'res101': fasterRCNN = resnet(imdb.classes, 101, pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'res50': fasterRCNN = resnet(imdb.classes, 50, pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'res152': fasterRCNN = resnet(imdb.classes, 152, pretrained=True, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() lr = cfg.TRAIN.LEARNING_RATE lr = args.lr #tr_momentum = cfg.TRAIN.MOMENTUM #tr_momentum = args.momentum params = [] for key, value in dict(fasterRCNN.named_parameters()).items(): if value.requires_grad: if 'bias' in key: params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), \ 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}] else: params += [{ 'params': [value], 'lr': lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY }] if args.cuda: fasterRCNN.cuda() if args.optimizer == "adam": lr = lr * 0.1 optimizer = torch.optim.Adam(params) elif args.optimizer == "sgd": optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM) if args.resume: load_name = os.path.join( output_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) print("loading checkpoint %s" % (load_name)) checkpoint = torch.load(load_name) args.session = checkpoint['session'] args.start_epoch = checkpoint['epoch'] fasterRCNN.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) lr = optimizer.param_groups[0]['lr'] if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print("loaded checkpoint %s" % (load_name)) if args.mGPUs: fasterRCNN = nn.DataParallel(fasterRCNN) iters_per_epoch = int(train_size / args.batch_size) if args.use_tfboard: from tensorboardX import SummaryWriter logger = SummaryWriter("logs") for epoch in range(args.start_epoch, args.max_epochs + 1): # setting to train mode fasterRCNN.train() loss_temp = 0 start = time.time() if epoch % (args.lr_decay_step + 1) == 0: adjust_learning_rate(optimizer, args.lr_decay_gamma) lr *= args.lr_decay_gamma data_iter = iter(dataloader) base_lr = lr for step in range(iters_per_epoch): if epoch == 1 and step <= args.warm_up: lr = base_lr * get_lr_at_iter(step / args.warm_up) else: lr = base_lr data = next(data_iter) with torch.no_grad(): im_data.resize_(data[0].size()).copy_(data[0]) im_info.resize_(data[1].size()).copy_(data[1]) gt_boxes.resize_(data[2].size()).copy_(data[2]) num_boxes.resize_(data[3].size()).copy_(data[3]) fasterRCNN.zero_grad() rois, cls_prob, bbox_pred, \ rpn_loss_cls, rpn_loss_box, \ RCNN_loss_cls, RCNN_loss_bbox, \ rois_label = fasterRCNN(im_data, im_info, gt_boxes, num_boxes) loss = rpn_loss_cls.mean() + rpn_loss_box.mean() \ + RCNN_loss_cls.mean() + RCNN_loss_bbox.mean() loss_temp += loss.item() # backward optimizer.zero_grad() loss.backward() if args.net == "vgg16": clip_gradient(fasterRCNN, 10.) optimizer.step() if step % args.disp_interval == 0: end = time.time() if step > 0: loss_temp /= (args.disp_interval + 1) if args.mGPUs: loss_rpn_cls = rpn_loss_cls.mean().item() loss_rpn_box = rpn_loss_box.mean().item() loss_rcnn_cls = RCNN_loss_cls.mean().item() loss_rcnn_box = RCNN_loss_bbox.mean().item() fg_cnt = torch.sum(rois_label.data.ne(0)) bg_cnt = rois_label.data.numel() - fg_cnt else: loss_rpn_cls = rpn_loss_cls.item() loss_rpn_box = rpn_loss_box.item() loss_rcnn_cls = RCNN_loss_cls.item() loss_rcnn_box = RCNN_loss_bbox.item() fg_cnt = torch.sum(rois_label.data.ne(0)) bg_cnt = rois_label.data.numel() - fg_cnt print("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \ % (args.session, epoch, step, iters_per_epoch, loss_temp, lr)) print("\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end - start)) print("\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f" \ % (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box)) if args.use_tfboard: info = { 'loss': loss_temp, 'loss_rpn_cls': loss_rpn_cls, 'loss_rpn_box': loss_rpn_box, 'loss_rcnn_cls': loss_rcnn_cls, 'loss_rcnn_box': loss_rcnn_box } logger.add_scalars("logs_s_{}/losses".format(args.session), info, (epoch - 1) * iters_per_epoch + step) loss_temp = 0 start = time.time() save_name = os.path.join( output_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step)) save_checkpoint( { 'session': args.session, 'epoch': epoch + 1, 'model': fasterRCNN.module.state_dict() if args.mGPUs else fasterRCNN.state_dict(), 'optimizer': optimizer.state_dict(), 'pooling_mode': cfg.POOLING_MODE, 'class_agnostic': args.class_agnostic, }, save_name) print('save model: {}'.format(save_name)) if args.use_tfboard: logger.close()
[ "law190@pitt.edu" ]
law190@pitt.edu
e51fbe1d83fc18c0809ef65f62e0f7a148dfdd77
a672f984782a1fa328069363671c328da3e4d8bd
/weatherdaily/views.py
40d1077ff5095487d6bbd95bd1a79c2aceed8864
[]
no_license
avs8/yourweather
396a0b093cbc9fc9b501eb979418e10eecfadf2b
2415769dad416c9fcf99d57cba93b455d30447fc
refs/heads/master
2021-08-29T08:11:16.664340
2017-12-13T14:15:44
2017-12-13T14:15:44
112,365,929
0
0
null
2017-12-11T14:35:38
2017-11-28T17:20:17
JavaScript
UTF-8
Python
false
false
558
py
from django.shortcuts import render, render_to_response from .forms import WeatherForm from django.http import HttpResponse from django.template import RequestContext from .models import * def index(request): args = {} if request.POST: form = WeatherForm(request.POST) if form.is_valid(): form.save() return HttpResponse("Thanks for submitting your information!!") else: form = WeatherForm() args = {} args['form'] = form return render(request, 'weatherdaily/index.html', args)
[ "ajitavsingh_8@yahoo.com" ]
ajitavsingh_8@yahoo.com
22026862c4779187068f89cb47fe0e6b11a7c0f0
18a6b272d4c55b24d9c179ae1e58959674e53afe
/tf_rl/test/CartPole/CartPole_recording_test.py
b8d3760e15ebd4d0ca5d66f39bae6090d71f9a17
[ "MIT" ]
permissive
Rowing0914/TF2_RL
6cce916f409b3d4ef2a5a40a0611908f20d08b2c
c1b7f9b376cbecf01deb17f76f8e761035ed336a
refs/heads/master
2022-12-10T09:58:57.456415
2021-05-23T02:43:21
2021-05-23T02:43:21
233,476,950
9
1
MIT
2022-12-08T07:02:42
2020-01-12T23:53:48
Python
UTF-8
Python
false
false
503
py
import gym env = gym.make('CartPole-v0') gym.wrappers.Monitor(env, './tmp/cartpole-experiment-1', force=True, video_callable=lambda episode_id: True) for i_episode in range(20): observation = env.reset() for t in range(100): env.render() print(observation) action = env.action_space.sample() observation, reward, done, info = env.step(action) if done: print("Episode finished after {} timesteps".format(t + 1)) break env.close()
[ "kosakaboat@gmail.com" ]
kosakaboat@gmail.com
bdb8cf15fdb8a61b89ec89976790c6752abf3dcf
2f78d6d5c92449acb0ade6f8e89ef40acc205f85
/DAA/knapsack.py
c0383d90a963ecd08b05bd356dc2cb0502308d1c
[]
no_license
bhagyeshdholaria/mit_codes
e80a767de7841cdb1ca1f7487a69dc5b17236824
a1894b93bc749a43eaa8d7e49791346c033da2f8
refs/heads/master
2023-03-06T17:19:48.664264
2021-02-14T11:21:10
2021-02-14T11:21:10
231,590,299
0
0
null
null
null
null
UTF-8
Python
false
false
972
py
def ksp(warr,parr,m): pw=[] final=[0]*len(warr) p=0 for i in range(len(warr)): #n pw.append(parr[i]/warr[i])#n while m!=0:#n k = pw.index(max(pw)) if warr[k] <= m: m -= warr[k] final[k] = 1 p += parr[k] pw[k] = -1 else: final[k] = m / warr[k] p += m*pw[k] m = 0 pw[k] = -1 print("\nmax profit:",p) print("Elements Selection:",final) while 1: try: warr = list(map(int,input("Enter weights seperated by a space:").split())) parr = list(map(int,input("Enter Profits seperated by a space:").split())) if len(warr) != len(parr): print("\n***Enter equal no of profits and weights***\n") continue m= int(input("Enter knapsack capacity:")) except: print("\n***Enter valid values***\n") continue ksp(warr,parr,m)
[ "bhagyeshdholaria@gmail.com" ]
bhagyeshdholaria@gmail.com
011ccef6c00ec639d7eee1281266fbff05e9f6b7
c5b72e3ea097c8647f8e393b35aa8df721c0cba0
/notification.py
6053c0a0a5f6e5cc8a81f99910a15670bf8e4e2c
[]
no_license
CBEB/jd
6f88c9dc1d5b98ef3f3650adf410a638b5d1e6f4
99afaae5ca3010a53d38f8c84ec827dec0c24a26
refs/heads/main
2023-06-23T19:38:05.154281
2021-07-13T06:29:28
2021-07-13T06:29:28
345,933,264
0
0
null
null
null
null
UTF-8
Python
false
false
3,438
py
import requests import os import smtplib from email.mime.text import MIMEText import time ####################### # 通知服务 ####################### # [0,1,2,3] 0:不通知 1:server酱 2:SMTP邮件服务 3:bark服务 needYou2Know = 0 SCKEY = '' # Server酱的SCKEY email_dict = { "sender": '', # ① sender是邮件发送人邮箱 "passWord": '', # ② passWord是服务器授权码 "mail_host": 'smtp.qq.com', # ③ mail_host是服务器地址(这里是QQsmtp服务器) "port": 465, # ④ QQsmtp服务器的端口号为465或587 "receiver": '' # ⑤ receiver是邮件接收人 } BARK = '' # bark服务,自行搜索 ################################################################## def n0(a, b): """空函数,即不使用通知服务""" print(">>>>未开启通知服务") return def send_email(subject, msg_content): """SMTP邮件服务,暂不支持读取Secrets""" if not email_dict["sender"]: print("SMTP服务的未设置!!\n取消推送") return print("SMTP服务启动") mail_host = email_dict["mail_host"] mail_user = email_dict["sender"] mail_pass = email_dict["passWord"] sender = mail_user receiver = email_dict["receiver"] message = MIMEText(msg_content, 'plain', 'utf-8') message['From'] = sender message['To'] = receiver message['Subject'] = subject try: smtpObj = smtplib.SMTP_SSL(mail_host, email_dict["port"]) # ssl加密 # smtpObj = smtplib.SMTP(mail_host, 25) # 明文发送 smtpObj.login(mail_user, mail_pass) print("邮件登录成功") smtpObj.sendmail(sender, receiver, message.as_string()) smtpObj.quit() print("邮件发送成功") except smtplib.SMTPException as e: print("Error: 无法发送邮件", e) def serverJ(title, content): """server酱服务""" sckey = SCKEY if "SCKEY" in os.environ: """ 判断是否运行自GitHub action,"SCKEY" 该参数与 repo里的Secrets的名称保持一致 """ sckey = os.environ["SCKEY"] if not sckey: print("server酱服务的SCKEY未设置!!\n取消推送") return print("serverJ服务启动") data = { "text": title, "desp": content } response = requests.post(f"https://sc.ftqq.com/{sckey}.send", data=data) print(response.text) def bark(title, content): """bark服务""" bark_token = BARK title = content.replace("#", "") content = content.replace("#", "") if "BARK" in os.environ: """ 判断是否运行自GitHub action,"BARK" 该参数与 repo里的Secrets的名称保持一致 """ bark_token = os.environ["BARK"] if not bark_token: print("bark服务的bark_token未设置!!\n取消推送") return response = requests.get( f"""https://api.day.app/{bark_token}/{title}/{content}""") print(response.text) notify = [n0, serverJ, send_email, bark][needYou2Know] if __name__ == "__main__": print("通知服务测试") start = time.time() notify("JD_tools脚本通知服务", "needYou2Know\n通知服务测试") print("耗时: ", time.time()-start, "s")
[ "ggw@a.com" ]
ggw@a.com
2cf4a770d57e959caa25911922f9826db78558dd
c309fa04fe4f3803a92c98cd7297ea98a8c47d71
/tencent/tencent/pipelines.py
52ce22659d23ff8c389648ae51f03824657e20e9
[]
no_license
OoGod/tencentRecuitmentSpider
538b9544103692d6f33544c4e029065b53daa9f0
de8c086d9cca0a6aa8bd8e238ee0067b8333b930
refs/heads/master
2020-04-28T21:42:45.114679
2019-03-16T14:53:57
2019-03-16T14:53:57
175,591,894
0
0
null
null
null
null
UTF-8
Python
false
false
544
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import json class TencentPipeline(object): def __init__(self): self.filename = open("tencent.json", "w") def process_item(self, item, spider): text = json.dumps(dict(item), ensure_ascii = False) + ",\n" self.filename.write(text) return item def close_spider(self, spider): self.filename.close()
[ "1617605689@qq.com" ]
1617605689@qq.com
2dae2c56c83c3067962ddff4ccc886190c2d0810
a0ccbe5aa927c05e2ac468963d133a2649431515
/realtors/admin.py
b6ff1fa78697c74f1120772e62461f381dfbd6ff
[]
no_license
Salman85365/btre-RealEstate
f2e636562c80c619ebd1db47b963c62852185a7e
2a4bc163d01ea3927d7d40af3828fc59f36a0251
refs/heads/master
2023-04-14T09:01:33.306540
2021-04-28T13:24:28
2021-04-28T13:24:28
362,467,287
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
from django.contrib import admin from .models import Realtor class RealtorAdmin(admin.ModelAdmin): list_display =('name','hire_date','email','phone') list_display_links=('name','email','phone') search_fields=('name','email') admin.site.register(Realtor, RealtorAdmin) # Register your models here.
[ "salman8585365@gmail.com" ]
salman8585365@gmail.com
a6e7c6a73dfe263727c51c21d89a1afe7a338a7e
6071669daca2b70f0bd6067e4a54c2558ccafd0d
/project/site/__init__.py
c76991b8a23ee6169cacae9380ce599e16a53728
[]
no_license
nymann/Accountant
3d4ee2a85daa2879a7505727c7a7a76eb2df2446
6d2c7260388575883e02c3f2a426536861b860c5
refs/heads/master
2021-10-09T21:48:16.315340
2019-01-03T19:36:08
2019-01-03T19:36:08
132,523,024
2
0
null
null
null
null
UTF-8
Python
false
false
157
py
from flask import Blueprint site = Blueprint( 'site', __name__, template_folder='templates', static_folder='static', ) from . import views
[ "s144833@student.dtu.dk" ]
s144833@student.dtu.dk
06f6d45f1419ff49988efce532928e427ada4086
0607c5e5edf323c35fca70e9dd857cf17722b8e2
/rw_visual.py
75249fac44872174314f6da61fa0c0cc509aaaf3
[]
no_license
paszo/data_visualization
68b31b07f9d2dad1213065c937d53b9b30756911
d3d19670585583ad4b918f047987597301efda3c
refs/heads/master
2020-05-05T09:52:06.942624
2019-04-19T17:45:35
2019-04-19T17:45:35
179,920,750
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
import matplotlib.pyplot as plt from random_walk import RandomWalk # Make a random walk and plot the points. rw = RandomWalk(50000) rw.fill_walk() # Set the size of the plotting window. plt.figure(dpi=128, figsize=(10, 6)) point_numbers = list(range(rw.num_points)) plt.scatter(rw.x_values, rw.y_values, c=point_numbers, cmap=plt.cm.Blues, edgecolor='none', s=1) # Emphasize the first and last points. plt.scatter(0, 0, c='green', edgecolors='none', s=100) plt.scatter(rw.x_values[-1], rw.y_values[-1], c='red', edgecolors='none', s=100) # Remove the axes. plt.axes().get_xaxis().set_visible(False) plt.axes().get_yaxis().set_visible(False) plt.show()
[ "paszo2008@gmail.com" ]
paszo2008@gmail.com
093bd3bfd9cfc28adf2c304250b74955b9339704
5c68f2e003f371317c72d19aaaeec1ad41888d00
/blog/urls.py
30ae7f985a8772c3196b0419760bc14d8affcae7
[]
no_license
kutritee/my-first-blog
75faf850e2abfac135fff0740e96d4145a08bc19
01b813282faf3e963dbb65f84e5b44da1590016f
refs/heads/master
2021-07-25T19:20:51.710020
2017-11-04T15:02:37
2017-11-04T15:02:37
109,483,886
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
from django.conf.urls import url from . import views from django.shortcuts import render, get_object_or_404 urlpatterns = [ url(r'^$', views.post_list, name='post_list'), url(r'^post/(?P<pk>\d+)/$', views.post_detail, name='post_detail'), ] def post_detail(request, pk): post = get_object_or_404(Post, pk=pk) return render(request, 'blog/post_detail.html', {'post': post})
[ "katri.raffi@gmail.com" ]
katri.raffi@gmail.com
21fe54b94c5e5b3cd05505d1e5b489b734e9a820
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/helpers/typeshed/stubs/setuptools/setuptools/_distutils/archive_util.pyi
38458fc0e00349e77ebf105fdf5a52e850bc9e25
[ "Apache-2.0", "MIT" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
548
pyi
def make_archive( base_name: str, format: str, root_dir: str | None = ..., base_dir: str | None = ..., verbose: int = ..., dry_run: int = ..., owner: str | None = ..., group: str | None = ..., ) -> str: ... def make_tarball( base_name: str, base_dir: str, compress: str | None = ..., verbose: int = ..., dry_run: int = ..., owner: str | None = ..., group: str | None = ..., ) -> str: ... def make_zipfile(base_name: str, base_dir: str, verbose: int = ..., dry_run: int = ...) -> str: ...
[ "intellij-monorepo-bot-no-reply@jetbrains.com" ]
intellij-monorepo-bot-no-reply@jetbrains.com
d8c5df127d6718475f170e98770c24e5d59e6fe1
08eead02cfa5bdfbd5d7733573c253254f64e1b2
/Collection/ms/01 Arrays/02_valid_alphaNumericPalindrome.py
019b3d18366840f6d8c52276c3adb4b09facc4c4
[ "MIT" ]
permissive
vicchu/leetcode-101
4cd33d8658375889b831e1fa1ce7062fa5b322e6
8a9db22d98692d634a497ba76c7e9f792bb1f1bc
refs/heads/main
2023-06-20T04:39:48.666282
2021-07-15T16:03:34
2021-07-15T16:03:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
class Solution: def checkRange(self, x): if (x.lower() >= 'a' and x.lower() <= 'z') or (x.lower() >= '0' and x.lower() <= '9'): return True return False def isPalindrome(self, s: str) -> bool: # Make everything Lower & Filter non-alphaNumeric alphaNumericStr = [x.lower() for x in s if self.checkRange(x)] return alphaNumericStr == alphaNumericStr[::-1]
[ "kmanadkat@gmail.com" ]
kmanadkat@gmail.com
150bdc2e80df90fdee9674431ee71b1d81186d77
d2be5705c55199f3d55c1c07b06dbe8fea26461e
/ATC/ATC001-C.py
c59cbf7cfe1e58c14aa342219b54f140c211f042
[]
no_license
hsuetsugu/atc
6ad1a2f06e528c4f96bf7ebd2eb9ab33c49eeea7
ad2a4dcf392f66ad8bf0349c0bf8b8a3413567aa
refs/heads/master
2021-05-19T09:08:06.143811
2020-06-28T23:51:50
2020-06-28T23:51:50
251,620,591
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
# -*- coding: utf-8 -*- # C - FFT # https://atcoder.jp/contests/atc001/tasks/fft_c ''' 4 1 1 2 2 3 4 4 8 ''' N = int(input()) a = [0] * 2 * N b = [0] * 2 * N for i in range(N): a[i], b[i] = map(int, input().split()) for k in range(1, 2*N+1): sum_ = 0 if k == 1: print(sum_) continue for idx_k in range(1, N+1): sum_ = sum_ + a[idx_k - 1] * b[k - idx_k - 1] print(sum_)
[ "hsuetsugu@sglab.co.jp" ]
hsuetsugu@sglab.co.jp
2699cb945ccb2374364ae003531ffc3b5fb90aa7
e7436666fd09e85a088d27ae741739d4c2425259
/mir/test_essentia.py
fa8f40d1ca219bfc96a3581dbf0e98198942999a
[ "CC0-1.0" ]
permissive
faroit/midihack
ea647c3850c69012719b8f5486cf2a9613ea24ce
5ce927576c4967499e164d95262a8391173c23ab
refs/heads/master
2021-01-22T13:02:58.790799
2014-06-01T21:12:56
2014-06-01T21:12:56
19,882,044
0
0
null
null
null
null
UTF-8
Python
false
false
2,122
py
from __future__ import division #import music21 from music21 import * import essentia.standard import numpy as np def stretch(data, bins, interpolation_type='linear'): ip1d = interpolate.interp1d(np.arange(data.shape[0]), data, kind=interpolation_type) return ip1d(np.linspace(0, data.shape[0] - 1, bins)) def onsets2BPM(stream21): onsets = [] for i in stream.notes: onsets.append(i.offset) onsets = numpy.array(onsets) onsets = stretch(onsets, 44100) onsets = essentia.array(onsets) getTempo = essentia.standard.TempoTapDegara() return def corrSequence( seq ): myCorr = np.zeros([len(seq),1]); for i in range(0,len(seq)): myCorr[i] = np.sum(seq == np.roll(seq, i)) return myCorr/len(seq) def findRepeat( seq ): if len( seq ) == 1: return -1 else: # compute "string correlation" corrSeqBool = corrSequence( seq ); # return index of loop start loopStartIdx = corrSeqBool[1:].argmax() + 1; # interpret "correlation" as score value loopScore = corrSeqBool[loopStartIdx]; ##print loopScore thresh = 1; if loopScore >= thresh: loop = loopStartIdx; else: loop = -1 return loop def analyzeStream( seq ): "" pass #s = converter.parse('./data/6.mid') #s.plot('pianoroll') s = converter.parse('./data/lessSimple2bars.mid') #s = converter.parse('./data/verySimple2bars.mid') chordList = []; sChords = s.chordify() sChordsFlat = sChords.flat for myChord in sChordsFlat: if "Chord" in myChord.classes: if 2 < len( myChord ) < 6: #and ( myChord.isTriad() ): chordList.append(myChord.pitchedCommonName) numpyArray = np.array(chordList) print findRepeat( numpyArray ) # print xChord.pitchClasses # print xChord.intervalVector #cc.show('text') #s.show('text') #print harmony.chordSymbolFigureFromChord(chord.Chord(['C3','E3','G3'])) #standard example #print findRepeat()
[ "fabian-robert.stoeter@audiolabs-erlangen.de" ]
fabian-robert.stoeter@audiolabs-erlangen.de
cece48f8cb5615e6431c63285a03c652e7424655
24e932fa3b14c8779dd36ba900c9344046e9ed46
/main.py
a27940edb010dbb11286ecbd1fa3ac3441918bb2
[]
no_license
RavenCheng1120/VFX
c9a86b8d88b602bed45787d2414ebac888913e85
d08310599931a8803b575898698b43c732d863a9
refs/heads/main
2023-03-29T09:52:55.602270
2021-04-01T06:43:11
2021-04-01T06:43:11
350,090,591
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
import cv2 import numpy as np import glob from Robertson import Robertson from PIL import Image def readImages(folder): imageFormat = ['png', 'JPG'] files = [] [files.extend(glob.glob(folder + '*.' + e)) for e in imageFormat] imageList = [cv2.imread(file) for file in sorted(files)] exposureTimeList = [] images = glob.glob(folder+"*.JPG") for image in sorted(images): with open(image, 'rb') as file: tempImage = Image.open(file) exifdata = tempImage.getexif() # 0x829A: "ExposureTime" data = exifdata.get(0x829A) if isinstance(data, bytes): data = data.decode() dataValue = data[0] / data[1] exposureTimeList.append(dataValue) return imageList, exposureTimeList if __name__ == '__main__': sourceImages, ExposureTimes = readImages('SocialScienceLibrary/') myhdrPic = Robertson().process(sourceImages, ExposureTimes)
[ "ravencheng66@gmail.com" ]
ravencheng66@gmail.com
418b0f88b0eab98e3c05436c6fea4a9e02badb90
2d2a0651507d90b1e8e672b3f4074e7118c4d945
/AutoLiker/Trial.py
6e6635805eb2aa01b1c11607d7b336f583de74de
[]
no_license
j105sahil/Youtube-Auto-Liker
42053b079a3546b7da81148c1eaaad8532d58af9
f410ce5bdf90af9b793e238e9380524abdb8741b
refs/heads/master
2020-03-22T21:43:50.213692
2018-09-06T07:24:03
2018-09-06T07:24:03
140,710,488
0
0
null
null
null
null
UTF-8
Python
false
false
839
py
import openpyxl import webbrowser,sys import pyautogui from time import sleep import random import subprocess chrome_path = 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s' workbook = openpyxl.load_workbook('trial.xlsx') sheet = workbook.get_sheet_by_name('Sheet1') i=1 while True: if i%10==0: sleep(10) subprocess.call("taskkill /IM chrome.exe") if sheet.cell(row = i , column = 1).value!=None: a=random.randint(5,500) b=random.randint(5,500) webbrowser.get(chrome_path).open(sheet.cell(row = i , column = 1).value) pyautogui.moveTo(a,b,duration=3) #postion = pyautogui.locateCenterOnScreen('Capture.PNG') #pyautogui.click(postion) else: break sleep(5) i +=1 subprocess.call("taskkill /IM chrome.exe")
[ "noreply@github.com" ]
j105sahil.noreply@github.com
26556f32fd856b8732227ea6ddcc48bd711e6877
4412fd856cfbdfab98122b11ea01e447a76851b3
/rodentdb/querysets.py
063568ed8e0276d9a070a898fd61d93c93f1a13b
[]
no_license
fchampalimaud/rodentdb
d8e8c0c7552de638d3a2fd57de287401997fdf3c
4a970c09da78f22a8c57d8ea98d29a569f531613
refs/heads/master
2021-06-18T02:05:19.200858
2019-09-17T18:09:57
2019-09-17T18:09:57
185,334,185
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
from django.db import models from users.mixins import PyformsPermissionsMixin # FIXME import this when users model is not present # try: # from users.mixins import PyformsPermissionsMixin # except ImportError: # PyformsPermissionsMixin = None # # PyformsPermissionsMixin = object class RodentQuerySet(PyformsPermissionsMixin, models.QuerySet): ...
[ "hugo.cachitas@research.fchampalimaud.org" ]
hugo.cachitas@research.fchampalimaud.org
7b227f8b4fb8363cfc5ac52f09135c06f74aed51
0b5c517c147df3dc4d60a21277c3f29daa3fbfbb
/temp_20170919.py
1c4fe34099c009937a8c80764709d18bda0024bb
[]
no_license
acercyc/V_REP_armDemo_stage_1
c91682010fd9d5017ccab1ee1f8c1f4b0090d9d8
f7b3b69f7375e5f7184c8d233f87c0cb0568d4f6
refs/heads/master
2021-05-16T09:32:00.452940
2017-09-22T05:48:01
2017-09-22T05:48:01
104,433,694
0
0
null
null
null
null
UTF-8
Python
false
false
707
py
from acerlib.RemoteSession import findX11DisplayPort findX11DisplayPort() import importlib from datetime import datetime import os import matplotlib.pyplot as plt import numpy as np from numpy import array as npa from scipy import interpolate from VrepPythonApi import vrep from VrepPythonApi import vrep_ext from armDemo import ArmDemo, waitSecs, ProxSensor_top from armDemo_stage1_loadData import imgPreprocess from acerlib import logging_ext, keras_ext from keras.models import load_model arm = ArmDemo('192.168.1.170', commThreadCycleInMs=1) arm.restartSim() for i in range(20): arm.moveTo([0.8, 0.3, 0.25]) arm.waitToDistination() arm.resetArmPosition() arm.waitToDistination()
[ "acercyc@gmail.com" ]
acercyc@gmail.com
59b0ce8038051b923da1779ad300057f96e36409
d90724db44810e51a0586ab6e379afb4f41ca9c9
/guess_number.py
40affe78bc1220a38afd81e50ae91064bd98ac9a
[]
no_license
Rutvi-Patel/cecs-174
e31cbd31a261677f3f3125d6aaa55aa92d5f125e
6011871cede8eec64ef3f1dc442387f08d7a937f
refs/heads/master
2020-05-01T06:14:28.009489
2019-09-27T22:03:53
2019-09-27T22:03:53
177,325,041
0
0
null
null
null
null
UTF-8
Python
false
false
950
py
import random print("I am thinking of a number between 1 and 10.") ask = "yes" while ask == 'yes': num = random.randint(1, 10) for x in range (5): use =input("Take a guess :") while not use.isdigit() or not 0<int(use)<11: print("Wrong value, re-enter:") use =input("Take a guess :") user = int(use) while user>num or user<num: if x == 4 and user != num: print("You guessed wrong, the number I was thinking of was",num) ask = str(input("Enter yes to try again else enter no to stop:")) break if user>num: print("Your guess is too high.") break if user<num: print("Your guess is too low.") break else: print("Good job, you got it with",x+1,"guesses") ask = "no" break
[ "noreply@github.com" ]
Rutvi-Patel.noreply@github.com
b75806926dcb3bbbf4251fca79a3bd28f9300dab
71b86fc54e811c3a06d6d2db32a65a212f642bac
/scripts/create_prod_optfreq_jobs.py
298897a5ec19bd62538151015a4d4e84b1ae396f
[ "MIT" ]
permissive
yunsiechung/ard_gsm
c773f4454836b54f6bb788c8d038d60d628ffcf2
82826011b0edf7122e16063094b04ecd16bf1cf5
refs/heads/master
2021-05-20T12:01:32.981441
2020-01-20T17:08:31
2020-01-20T17:08:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,879
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import argparse import glob import os import re from ard_gsm.qchem import QChem from ard_gsm.util import iter_sub_dirs, read_xyz_file def main(): args = parse_args() num_regex = re.compile(r'\d+') maxnum = float('inf') if args.maxnum is None else args.maxnum for gsm_sub_dir in iter_sub_dirs(args.gsm_dir, pattern=r'gsm\d+'): gsm_num = int(num_regex.search(os.path.basename(gsm_sub_dir)).group(0)) if gsm_num > maxnum: continue out_dir = os.path.join(args.out_dir, os.path.basename(gsm_sub_dir)) if not os.path.exists(out_dir): os.makedirs(out_dir) elif not args.overwrite: continue qstart_file = os.path.join(gsm_sub_dir, 'qstart') qtmp = QChem(logfile=qstart_file) charge, multiplicity = qtmp.get_charge(), qtmp.get_multiplicity() print(f'Extracting from {gsm_sub_dir}...') for gsm_log in glob.iglob(os.path.join(gsm_sub_dir, 'gsm*.out')): num = int(num_regex.search(os.path.basename(gsm_log)).group(0)) string_file = os.path.join(gsm_sub_dir, f'stringfile.xyz{num:04}') if not (os.path.isfile(string_file) and os.path.getsize(string_file) > 0): continue if args.ignore_errors and has_error(gsm_log): continue if args.ignore_errors or is_successful(gsm_log): # Optimize van-der-Waals wells instead of separated products # Also check if product optimization during GSM failed xyzs = read_xyz_file(string_file, with_energy=True) last_energy = xyzs[-1][-1] second_to_last_energy = xyzs[-2][-1] if last_energy > second_to_last_energy: # Something went wrong in product optimization continue path = os.path.join(out_dir, f'prod_optfreq{num:04}.in') q = QChem(config_file=args.config) q.make_input_from_coords(path, *xyzs[-1][:-1], charge=charge, multiplicity=multiplicity, mem=args.mem) def is_successful(gsm_log): """ Success is defined as having converged to a transition state. """ with open(gsm_log) as f: for line in reversed(f.readlines()): if '-XTS-' in line or '-TS-' in line: return True return False def has_error(gsm_log): """ Check if last node is high in energy or if the path is dissociative. """ with open(gsm_log) as f: for line in reversed(f.readlines()): if 'high energy' in line and '-exit early-' in line: return True if 'terminating due to dissociation' in line: return True return False def parse_args(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('gsm_dir', metavar='GSMDIR', help='Path to directory containing GSM folders') parser.add_argument('out_dir', metavar='ODIR', help='Path to output directory') parser.add_argument('--mem', type=int, metavar='MEM', help='Q-Chem memory') parser.add_argument('--overwrite', action='store_true', help='Overwrite input files in existing directories') parser.add_argument('--maxnum', type=int, metavar='NUM', help='Only make jobs from GSM folders up to this number') parser.add_argument('--ignore_errors', action='store_true', help='Extract from all GSM calculations ignoring (most) errors') parser.add_argument( '--config', metavar='FILE', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir, 'config', 'qchem.opt_freq'), help='Configuration file for product optfreq jobs in Q-Chem' ) return parser.parse_args() if __name__ == '__main__': main()
[ "cgrambow@mit.edu" ]
cgrambow@mit.edu
53932616f06d5bdf5c3873b0eccb0779b2212eb4
15229da763b74cccf53a62fac0e7f9282eef309e
/hardware/mdp/ltl-MDP-face.py
0f65a0f046a947469acd6901fb43fd82f4acf8ed
[]
no_license
InspectorDidi/Neuromorphic_Hardware_learns_to_learn
214162bb8be5ac3cb590c57e3c06e1340453ada4
920858c172cdd85521646d0ab8ee077002aa1b17
refs/heads/master
2020-08-03T10:44:36.026398
2019-04-05T04:40:50
2019-04-05T04:40:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,258
py
import logging.config import os from pypet import Environment from pypet import pypetconstants import sys sys.path.append('../LTL') from ltl.optimizers.crossentropy.distribution import Gaussian from ltl.optimizers.face.optimizer import FACEOptimizer, FACEParameters from ltl.paths import Paths from ltl.recorder import Recorder import numpy as np from ltl.logging_tools import create_shared_logger_data, configure_loggers from NetworkMDP_Optimizee import DLSMDPOptimizee logger = logging.getLogger('bin.ltl-fun-face') def main(): name = 'LTL-MDP-FACE' try: with open('path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation" ) paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes a PyPet environment env = Environment(trajectory=name, filename=traj_file, file_title=u'{} data'.format(name), comment=u'{} data'.format(name), add_time=True, # freeze_input=True, # multiproc=True, # use_scoop=True, wrap_mode=pypetconstants.WRAP_MODE_LOCK, automatic_storing=True, log_stdout=False, # Sends stdout to logs log_folder=os.path.join(paths.output_dir_path, 'logs') ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory optimizee = DLSMDPOptimizee(traj) # NOTE: Outerloop optimizer initialization # TODO: Change the optimizer to the appropriate Optimizer class parameters = FACEParameters(min_pop_size=25, max_pop_size=25, n_elite=10, smoothing=0.2, temp_decay=0, n_iteration=100, distribution=Gaussian(), n_expand=5, stop_criterion=np.inf, seed=109) optimizer = FACEOptimizer(traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-1.), parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging() if __name__ == '__main__': main()
[ "franz.scherr@tugraz.at" ]
franz.scherr@tugraz.at
e9077fa3fbda560e0da3e80119eca9188995a279
11abaae6662dfbbe5d323459fa93c505112a0739
/import_tiger_lm.py
d013b1ffeeffff1638eaf618c70fc5297e1fee47
[]
no_license
Web5design/simplegeo-bulk-import
c6d71ff372ac7d1f1201308440b1d081053616d7
a514f5b36ad095a90f8266d2df3f11461851566c
refs/heads/master
2021-01-18T17:34:02.486434
2010-09-01T21:21:57
2010-09-01T21:21:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
from bulk_import import create_client, add_records import sys def skip_unnamed_landmarks(id, point, attrs): if not attrs["fullname"]: return None return attrs["pointid"], point, attrs client = create_client() for input_file in sys.argv[1:]: add_records(client, "net.nocat.tigerlm", input_file, skip_unnamed_landmarks)
[ "schuyler@simplegeo.com" ]
schuyler@simplegeo.com
5a850bb6a63234b950eedb091013eaf3870c052c
88237dd1932c346acade7001f22d0fc7190da55c
/torch/testing/_internal/distributed/rpc/rpc_test.py
a149c541a090e422aa02b0beb16eeb237c85ba35
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
kkleidal/pytorch
4d7e95d0035bb03509dce6624e857c118279d08d
815d38395a5081adef6ecec3372474f6f41b2a7c
refs/heads/master
2023-02-06T11:00:27.985596
2020-12-17T17:30:02
2020-12-17T17:32:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
178,866
py
import concurrent.futures import contextlib import json import logging import os import sys from threading import Lock import time import unittest from collections import namedtuple from functools import partial from unittest import mock import torch import torch.distributed as dist import torch.distributed.rpc as rpc import torch.distributed.autograd as dist_autograd from torch.distributed.rpc import RRef, _get_debug_info, _rref_context_get_debug_info from torch.distributed.rpc.api import _delete_all_user_and_unforked_owner_rrefs, _use_rpc_pickler, _thread_local_var, _wait_all from torch.distributed.rpc.internal import ( PythonUDF, RPCExecMode, _internal_rpc_pickler, _build_rpc_profiling_key, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu, captured_output from torch.testing._internal.common_utils import IS_MACOS, load_tests from torch.testing._internal.dist_utils import ( dist_init, get_function_event, initialize_pg, wait_until_node_failure, wait_until_pending_futures_and_users_flushed, wait_until_owners_and_forks_on_rank, worker_name, single_threaded_process_group_agent, ) from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import ( RpcAgentTestFixture, ) from torch.testing._internal.common_utils import TemporaryFileName def foo_add(): return torch.add(torch.ones(1), torch.ones(1)) def udf_with_torch_ops(device=-1, use_record_function=False): device_ctx = contextlib.suppress() if device == -1 else torch.cuda.device(device) record_function_ctx = ( torch.autograd.profiler.record_function("##forward##") if use_record_function else contextlib.suppress() ) with device_ctx, record_function_ctx: t1, t2 = torch.ones(1), torch.ones(1) t = torch.add(t1, t2) t = torch.mul(t, t) t = t.relu() t = t.sigmoid() # Events (operator invocations) that are expected to be ran as part of the above # function. EXPECTED_REMOTE_EVENTS = [ "aten::ones", "aten::ones", "aten::add", "aten::mul", "aten::relu", "aten::threshold", "aten::sigmoid", ] # Remote operations are prefixed with the following string for RPC profiling. REMOTE_OP_STR = "#remote_op: " VALUE_FUTURE = concurrent.futures.Future() DONE_FUTURE = concurrent.futures.Future() class StubRpcAgent: def __init__(self, world_size): self.world_size = world_size def get_worker_infos(self): return { rpc.WorkerInfo(name=worker_name(rank), id=rank) for rank in range(self.world_size) } def _stub_construct_rpc_backend_options_handler(**kwargs): return mock.Mock() # RpcBackendOptions. def _stub_init_rpc_backend_handler(store, name, rank, world_size, rpc_backend_options): return StubRpcAgent(world_size=world_size) def set_value(value): VALUE_FUTURE.set_result(value) def wait_for_value_future(): return VALUE_FUTURE.result() def set_and_check_done(value): VALUE_FUTURE.set_result(value) return DONE_FUTURE.result() # it is used to test python user defined function over rpc # classes and functions are used to test python user defined class and # methods over rpc TensorClass = namedtuple("TensorClass", ["tensors"]) class MyPickleClass: def __init__(self): self.t = None def __getstate__(self): (pickled_python_udf, tensors) = _internal_rpc_pickler.serialize( PythonUDF(my_tensor_function, (torch.ones(2, 2), torch.ones(2, 2)), None) ) return (pickled_python_udf, tensors) def __setstate__(self, obj): python_udf = _internal_rpc_pickler.deserialize(obj[0], obj[1]) result = python_udf.func(python_udf.args[0], python_udf.args[1]) self.t = result def set(self, val): self.t = val class SlowPickleClass: def __init__(self, t): self.t = t def __getstate__(self): time.sleep(self.t) return (self.t, ) def __setstate__(self, obj): self.t = obj[0] time.sleep(self.t) class MyClass: def __init__(self, a): self.a = a def my_instance_method(self, b): return self.a + b @classmethod def my_class_method(cls, d, e): return d + e @staticmethod def my_static_method(f): return f > 10 def increment_value(self, increment): self.a += increment def get_value(self): return self.a def _call_method_on_rref(method, rref, *args, **kwargs): return method(rref.local_value(), *args, **kwargs) def get_rref_list(values): return [RRef(MyClass(a)) for a in values] def add_rref_to_value(rref, value): return rref.to_here() + value def run_nested_pickle(pickle_cls_instance, tensor): return pickle_cls_instance.t + tensor def build_complex_tensors(): a = torch.ones(3, 3) b = [a, a] c = [b, b] d = [a, b] e = {a: d} return [a, b, c, d, e] def non_cont_test(t_view, t_cont): if t_view.is_contiguous(): raise Exception('t_view is contiguous!') if not t_cont.is_contiguous(): raise Exception('t_cont is not contiguous!') if not torch.equal(t_view, t_cont): raise Exception('t_view is not equal to t_cont!') return t_view def my_function(a, b, c): return a + b + c def my_tensor_function(a, b): return a + b def my_sleep_func(seconds=1): time.sleep(seconds) return torch.mul(torch.tensor(1), torch.tensor(1)) def my_complex_tensor_function(list_input, tensor_class_input, dict_input): res = list_input[0] for t in list_input: res += t for k, v in dict_input.items(): res += v complex_tensors = tensor_class_input.tensors return (res, complex_tensors[0], complex_tensors[1], complex_tensors[2]) def my_rref_function(rref_a, rref_b): return rref_a.to_here() + rref_b.to_here() def delayed_add(a, b, seconds=0.05): time.sleep(seconds) return a + b def no_result(): print("do nothing") def raise_or_inc(value): if value.numel() == 2: raise ValueError("Expected error") return value + 1 def nested_rpc(dst): return rpc.rpc_sync(dst, torch.add, args=(torch.ones(2, 2), 1)) def multi_layer_nested_async_rpc(dst, world_size, ttl): # this method returns immediately without blocking the callee, but will # generate additional requests. if ttl > 0: current_dst = worker_name(dst) next_dst = (dst + 1) % world_size rpc.rpc_async( current_dst, multi_layer_nested_async_rpc, args=(next_dst, world_size, ttl - 1), ) return 0 def nested_rref(dst): return ( rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 1)), rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 2)), ) def nested_remote(dst): rref = rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 3)) return rref.to_here() def rref_forward_chain(dst, world_size, rref, ttl): if ttl > 0: current_dst = worker_name(dst) next_dst = (dst + 1) % world_size ret_rref = rpc.remote( current_dst, rref_forward_chain, args=(next_dst, world_size, rref, ttl - 1) ) return [ret_rref] else: return rref.to_here() def rpc_return_rref(dst): return rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 1)) def light_rpc(): return 0 def heavy_rpc(tensor): for i in range(1, 100): tensor *= i tensor /= i + 1 return 0 @torch.jit.script def heavy_rpc_torchscript(tensor): for i in range(1, 100): tensor *= i tensor /= i + 1 return 0 @torch.jit.script def my_script_func(tensor): return torch.add(tensor, tensor) expected_err = "Expected error" def raise_func(): raise ValueError(expected_err) expected_err_escape = "\nFirst line of error \n next line of error \n last line of error" def raise_func_escape(): raise ValueError(expected_err_escape) global_rref = None def set_global_rref(rref): global global_rref global_rref = rref def clear_global_rref(): global global_rref global_rref = None def check_rref_confirmed(rref): return rref.confirmed_by_owner() def get_rref_debug_info(): return _rref_context_get_debug_info() def add_use_future_cb(to, x, y, z): out = concurrent.futures.Future() def callback(fut): out.set_result(fut.wait() + z) fut = rpc.rpc_async(to, torch.add, args=(x, y)) fut.then(callback) return out.result() def get_events_from_profile(profile_rref): return profile_rref.local_value().process_global_function_events def add_use_future_set_result(to, x, y, z): out = torch.futures.Future() fut = rpc.rpc_async(to, torch.add, args=(x, y)) fut.then(lambda fut : out.set_result(fut.wait() + z)) return out.wait() def add_use_future_nested_cb(to, x, y, z): out = torch.futures.Future() def callback(fut1): fut2 = rpc.rpc_async(to, torch.add, args=(fut1.wait(), z)) fut2.then(lambda fut2 : out.set_result(fut2.wait())) fut1 = rpc.rpc_async(to, torch.add, args=(x, y)) fut1.then(callback) return out.wait() def fail_on_fut(fut): pass @rpc.functions.async_execution def async_raise_func(): raise RuntimeError("Expected error") @rpc.functions.async_execution def async_wrong_type(): return torch.zeros(2, 2) @rpc.functions.async_execution def async_add(to, x, y): return rpc.rpc_async(to, torch.add, args=(x, y)) def slow_add(x, y, device="cpu"): time.sleep(1) x = x.to(device) y = y.to(device) return torch.add(x, y).cpu() @rpc.functions.async_execution def slow_async_add(to, x, y, device="cpu"): return rpc.rpc_async(to, slow_add, args=(x, y, device)) @rpc.functions.async_execution def async_add_with_future_ctor(to, x, y, z): fut = torch.futures.Future() rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut1: fut.set_result(fut1.wait() + z) ) return fut @rpc.functions.async_execution def async_add_chained(to, x, y, z): return rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut: fut.wait() + z ) @rpc.functions.async_execution def async_add_chained_multi(to, x, num, step): fut = rpc.rpc_async(to, torch.add, args=(x, 0)) for _ in range(num): fut = fut.then(lambda fut: fut.wait() + step) return fut @rpc.functions.async_execution def async_add_nested(to, x, y, z): return rpc.rpc_async(to, async_add, args=(to, x, y)).then( lambda fut: fut.wait() + z ) @rpc.functions.async_execution def async_add_multi_fanout(to, x, num, step): futs = [] for i in range(num): if i == 0: futs.append(rpc.rpc_async(to, torch.add, args=(x, step))) else: futs.append(rpc.rpc_async(to, torch.add, args=(0, step))) # TODO: use torch.futures.collect_all lock = Lock() state = {"cnt": 0, "ret": torch.zeros_like(x)} ret_future = torch.futures.Future() def inc_and_set(fut): with lock: state["cnt"] += 1 state["ret"] += fut.wait() if state["cnt"] >= len(futs): ret_future.set_result(state["ret"]) for fut in futs: fut.then(inc_and_set) return ret_future class AsyncExecutionClass: @staticmethod @rpc.functions.async_execution def static_async_add(to, x, y, z): return rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut: fut.wait() + z ) @classmethod @rpc.functions.async_execution def class_async_add(cls, to, x, y, z): ret_fut = torch.futures.Future() rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut: ret_fut.set_result(fut.wait() + z) ) return ret_fut @rpc.functions.async_execution def bound_async_add(self, to, x, y, z): return rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut: fut.wait() + z ) def return_future(): return torch.futures.Future() class FooBackendOptions(rpc.RpcBackendOptions): def __init__(self, init_method): # Must call the __init__ of the superclass (and do so directly, # without using super()) because... pybind. rpc.RpcBackendOptions.__init__(self) self.init_method = init_method # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests class RpcTest(RpcAgentTestFixture): @dist_init def test_worker_id(self): n = self.rank + 1 peer_rank = n % self.world_size self_worker_info = rpc.get_worker_info() peer_worker_info = rpc.get_worker_info(worker_name(peer_rank)) self.assertEqual(self_worker_info.name, worker_name(self.rank)) self.assertEqual(peer_worker_info.name, worker_name(peer_rank)) with self.assertRaisesRegex(RuntimeError, "Unknown destination worker"): unknown_worker_id = rpc.get_worker_info("WorkerUnknown") @dist_init def test_get_worker_infos(self): worker_infos = rpc.api._get_current_rpc_agent().get_worker_infos() worker_names = {worker_info.name for worker_info in worker_infos} expected_worker_names = { worker_name(rank) for rank in range(self.world_size) } self.assertEqual(worker_names, expected_worker_names) worker_ids = {worker_info.id for worker_info in worker_infos} expected_worker_ids = set(range(self.world_size)) self.assertEqual(worker_ids, expected_worker_ids) @dist_init def test_self_add(self): self_worker_info = rpc.get_worker_info() self_worker_name = worker_name(self.rank) fut = rpc.rpc_async(self_worker_info, torch.add, args=(torch.ones(2, 2), 1)) ret = rpc.rpc_sync(self_worker_info, torch.add, args=(torch.ones(2, 2), 1)) self.assertEqual(fut.wait(), torch.ones(2, 2) + 1) self.assertEqual(ret, torch.ones(2, 2) + 1) @dist_init def test_send_to_rank(self): dst_rank = (self.rank + 1) % self.world_size for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: ret = self._run_func_in_mode(dst_rank, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) self.assertEqual(ret, torch.ones(2, 2) + 1) # Test invalid ranks for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: with self.assertRaises(RuntimeError): self._run_func_in_mode(self.world_size + 1, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: with self.assertRaises(RuntimeError): self._run_func_in_mode(-1, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: with self.assertRaises(ValueError): self._run_func_in_mode(dst_rank + 0.5, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: with self.assertRaises(ValueError): self._run_func_in_mode(dst_rank - 0.5, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) @dist_init def test_self_py_udf_remote(self): self_worker_info = rpc.get_worker_info() rref = rpc.remote(self_worker_info, my_function, args=(torch.ones(2, 2), 1, 3)) self.assertEqual(rref.to_here(), torch.ones(2, 2) + 1 + 3) def _test_self_remote_rref_as_rpc_arg(self, dst): self_worker_info = rpc.get_worker_info() rref = rpc.remote(self_worker_info, my_function, args=(torch.ones(2, 2), 1, 3)) fut = rpc.rpc_async(dst, add_rref_to_value, args=(rref, torch.ones(2, 2))) ret = rpc.rpc_sync(dst, add_rref_to_value, args=(rref, torch.ones(2, 2) + 1)) self.assertEqual(ret, torch.ones(2, 2) + 1 + 3 + torch.ones(2, 2) + 1) self.assertEqual(fut.wait(), torch.ones(2, 2) + 1 + 3 + torch.ones(2, 2)) @dist_init def test_self_remote_rref_as_rpc_arg(self): dst = worker_name((self.rank + 1) % self.world_size) self._test_self_remote_rref_as_rpc_arg(dst) @dist_init def test_self_remote_rref_as_self_rpc_arg(self): self._test_self_remote_rref_as_rpc_arg(rpc.get_worker_info()) def _test_self_remote_rref_as_remote_arg(self, dst): self_worker_info = rpc.get_worker_info() rref = rpc.remote(self_worker_info, my_function, args=(torch.ones(2, 2), 1, 3)) ret_rref = rpc.remote(dst, add_rref_to_value, args=(rref, torch.ones(2, 2))) self.assertEqual( ret_rref.to_here(), torch.ones(2, 2) + 1 + 3 + torch.ones(2, 2) ) @dist_init def test_self_remote_rref_as_remote_arg(self): dst = worker_name((self.rank + 1) % self.world_size) self._test_self_remote_rref_as_remote_arg(dst) @dist_init def test_rref_proxy_non_exist(self): dst = worker_name((self.rank + 1) % self.world_size) rref = rpc.remote(dst, my_function, args=(torch.ones(2, 2), 1, 3)) msg = "has no attribute \'non_exist\'" with self.assertRaisesRegex(AttributeError, msg): rref.rpc_sync().non_exist() with self.assertRaisesRegex(AttributeError, msg): rref.rpc_async().non_exist() with self.assertRaisesRegex(AttributeError, msg): rref.remote().non_exist() def _test_rref_proxy_tensor(self, dst): rref = rpc.remote(dst, my_function, args=(torch.ones(2, 2), 1, 3)) expected = torch.ones(2, 2) + 1 + 3 self.assertEqual(expected.size(), rref.rpc_sync().size()) self.assertEqual(expected + 1, rref.rpc_async().add(1).wait()) self.assertEqual(expected.view(1, 4), rref.remote().view(1, 4).to_here()) @dist_init def test_rref_proxy_tensor(self): self._test_rref_proxy_tensor(worker_name((self.rank + 1) % self.world_size)) @dist_init def test_rref_proxy_tensor_self(self): self._test_rref_proxy_tensor(rpc.get_worker_info()) @dist_init def test_rref_proxy_reuse(self): rref = rpc.remote( worker_name((self.rank + 1) % self.world_size), my_function, args=(torch.ones(2, 2), 1, 3) ) expected = torch.ones(2, 2) + 1 + 3 proxy_rpc_sync = rref.rpc_sync() proxy_rpc_async = rref.rpc_async() proxy_remote = rref.remote() self.assertEqual(expected.size(), proxy_rpc_sync.size()) self.assertEqual(expected + 1, proxy_rpc_sync.add(1)) self.assertEqual(expected.view(1, 4), proxy_rpc_sync.view(1, 4)) self.assertEqual(expected.size(), proxy_rpc_async.size().wait()) self.assertEqual(expected + 3, proxy_rpc_async.add(3).wait()) self.assertEqual(expected.view(4, 1), proxy_rpc_async.view(4, 1).wait()) self.assertEqual(expected.size(), proxy_remote.size().to_here()) self.assertEqual(expected + 5, proxy_remote.add(5).to_here()) self.assertEqual(expected.view(-1), proxy_remote.view(-1).to_here()) def _test_rref_proxy_class(self, dst): rref = rpc.remote(dst, MyClass, args=(7,)) expected = MyClass(7) self.assertEqual(expected.get_value(), rref.rpc_sync().get_value()) self.assertEqual(expected.get_value(), rref.rpc_async().get_value().wait()) self.assertEqual(expected.get_value(), rref.remote().get_value().to_here()) expected.increment_value(3) self.assertEqual(None, rref.rpc_sync().increment_value(1)) self.assertEqual(None, rref.rpc_async().increment_value(1).wait()) self.assertEqual(None, rref.remote().increment_value(1).to_here()) self.assertEqual(expected.get_value(), rref.rpc_sync().get_value()) self.assertEqual(expected.get_value(), rref.rpc_async().get_value().wait()) self.assertEqual(expected.get_value(), rref.remote().get_value().to_here()) self.assertEqual( expected.my_instance_method(2), rref.rpc_sync().my_instance_method(2) ) self.assertEqual( expected.my_instance_method(3), rref.rpc_async().my_instance_method(3).wait() ) self.assertEqual( expected.my_instance_method(4), rref.remote().my_instance_method(4).to_here() ) self.assertEqual( expected.my_static_method(9), rref.rpc_sync().my_static_method(9) ) self.assertEqual( expected.my_static_method(10), rref.rpc_async().my_static_method(10).wait() ) self.assertEqual( expected.my_static_method(11), rref.remote().my_static_method(11).to_here() ) self.assertEqual( expected.my_class_method(2, torch.zeros(2, 2)), rref.rpc_sync().my_class_method(2, torch.zeros(2, 2)) ) self.assertEqual( expected.my_class_method(2, torch.ones(3, 3)), rref.rpc_async().my_class_method(2, torch.ones(3, 3)).wait() ) self.assertEqual( expected.my_class_method(2, torch.ones(4, 4)), rref.remote().my_class_method(2, torch.ones(4, 4)).to_here() ) @dist_init def test_rref_proxy_class(self): self._test_rref_proxy_class(worker_name((self.rank + 1) % self.world_size)) @dist_init def test_rref_proxy_class_self(self): self._test_rref_proxy_class(rpc.get_worker_info()) @dist_init def test_self_remote_rref_as_self_remote_arg(self): self._test_self_remote_rref_as_remote_arg(rpc.get_worker_info()) @mock.patch.object(torch.distributed.autograd, "_init") @mock.patch.object(torch.distributed.rpc.api, "_set_and_start_rpc_agent") @dist_init(setup_rpc=False) def test_register_rpc_backend_and_set_and_start_rpc_backend( self, mock_rpc_agent, mock_dist_autograd_init ): backend_name = "stub_backend" backend = rpc.backend_registry.register_backend( backend_name, _stub_construct_rpc_backend_options_handler, _stub_init_rpc_backend_handler, ) with self.assertRaisesRegex( RuntimeError, "^RPC backend .+: already registered$" ): backend = rpc.backend_registry.register_backend( backend_name, _stub_construct_rpc_backend_options_handler, _stub_init_rpc_backend_handler, ) rpc.init_rpc( name="worker1", backend=backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) @dist_init(setup_rpc=False) def test_duplicate_name(self): with self.assertRaisesRegex(RuntimeError, "is not unique"): store, _, _ = next( torch.distributed.rendezvous( self.init_method, rank=self.rank, world_size=self.world_size ) ) rpc._init_rpc_backend( backend=self.rpc_backend, store=store, name="duplicate_name", rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) @dist_init(setup_rpc=False) def test_reinit(self): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) initialize_pg(self.file_init_method, self.rank, self.world_size) # Wait for all init to complete. dist.barrier() # TODO: with TCP init, rank 0 raises Address already in use because # rank 0 is the start daemon and the store is created before checking if # RPC is already initialized in init_rpc. if os.environ.get("RPC_INIT_WITH_TCP", None) == "1" and self.rank == 0: expected_reinit_err = "Address already in use" else: expected_reinit_err = "is already initialized" with self.assertRaisesRegex(RuntimeError, expected_reinit_err): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) rpc.shutdown() def test_world_size_one(self): if self.rank == 0: rpc.init_rpc( name="me", backend=self.rpc_backend, rank=0, world_size=1, rpc_backend_options=self.rpc_backend_options, ) expect = torch.ones(2, 2) * 2 result = rpc.rpc_sync( "me", my_tensor_function, args=(torch.ones(2, 2), torch.ones(2, 2)) ) self.assertEqual(expect, result) expect = torch.ones(3, 3) * 2 result = rpc.rpc_async( "me", my_tensor_function, args=(torch.ones(3, 3), torch.ones(3, 3)) ).wait() self.assertEqual(expect, result) expect = torch.ones(4, 4) * 2 result = rpc.remote( "me", my_tensor_function, args=(torch.ones(4, 4), torch.ones(4, 4)) ).to_here() self.assertEqual(expect, result) rpc.shutdown() @dist_init(setup_rpc=False) def test_invalid_names(self): from torch.distributed.rpc import WorkerInfo worker_id = 0 with self.assertRaisesRegex(RuntimeError, "Worker name must match"): info = WorkerInfo("abc*", worker_id) with self.assertRaisesRegex(RuntimeError, "Worker name must match"): info = WorkerInfo(" ", worker_id) with self.assertRaisesRegex(RuntimeError, "must be non-empty"): info = WorkerInfo("", worker_id) # If the number in the message does not match, it is likely that the # value of MAX_NAME_LEN in RPC WorkerInfo has changed. with self.assertRaisesRegex(RuntimeError, "shorter than 128"): info = WorkerInfo("".join(["a" for i in range(500)]), worker_id) @dist_init def test_add(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(ret, torch.ones(n, n) * 2) @dist_init def test_add_with_id(self): n = self.rank + 1 dst_rank = n % self.world_size workder_info = rpc.get_worker_info(worker_name(dst_rank)) ret = rpc.rpc_sync( workder_info, torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) self.assertEqual(ret, torch.ones(n, n) * 2) @dist_init def test_scalar_add(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), n) ) self.assertEqual(ret, (torch.ones(n, n) + n)) @dist_init def test_async_add(self): n = self.rank + 1 dst_rank = n % self.world_size fut = rpc.rpc_async( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) @dist_init def test_nonzero(self): n = self.rank + 1 dst_rank = n % self.world_size x = torch.ones(self.world_size, self.world_size) x[self.rank][self.rank] = 0 ret = rpc.rpc_sync(worker_name(dst_rank), torch.nonzero, args=(x,)) self.assertEqual(ret, x.nonzero()) @dist_init def test_multi_rpc(self): dst_rank = (self.rank + 1) % self.world_size for i in range(20): n = i + self.rank + 1 ret = rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(ret, torch.ones(n, n) * 2) def _run_uneven_workload(self, num_repeat=30): # worker0 drives and waits for worker1 and worker2 # throughout the test. if self.rank == 0: self.assertTrue(self.world_size >= 3) # Phase 1: Only worker1 has workload. dst = "worker1" futs = [] for _ in range(num_repeat): fut = rpc.rpc_async(dst, heavy_rpc, args=(torch.ones(100, 100),)) futs.append(fut) for fut in torch.futures.collect_all(futs).wait(): self.assertEqual(fut.wait(), 0) # Phase 2: Only worker2 has workload. # If join is not correctly implemented, # worker2 should be closed by now. dst = "worker2" futs = [] for _ in range(num_repeat): fut = rpc.rpc_async(dst, heavy_rpc, args=(torch.ones(100, 100),)) futs.append(fut) for val in torch.futures.wait_all(futs): self.assertEqual(val, 0) def test_wait_all_workers(self): rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) self._run_uneven_workload() # worker0 calls this at the end after waiting for RPC responses. # worker1/2 calls this immediately and has some works after it. # worker3 calls this immediately and has no more work. rpc.api._wait_all_workers() rpc.shutdown(graceful=False) def test_wait_all_workers_twice(self): rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) self._run_uneven_workload() # worker0 calls this at the end after waiting for RPC responses. # worker1/2 calls this immediately and has some works after it. # worker3 calls this immediately and has no more work. rpc.api._wait_all_workers() rpc.api._wait_all_workers() rpc.shutdown(graceful=False) @dist_init def test_all_gather(self): info = rpc.get_worker_info() results = rpc.api._all_gather(info.id) expected = {} for info in rpc._get_current_rpc_agent().get_worker_infos(): expected[info.name] = info.id self.assertEqual(expected, results) @dist_init def test_all_gather_timeout(self): rpc._set_rpc_timeout(0.1) if self.rank == 0: with self.assertRaisesRegex( RuntimeError, "timed out in _all_gather after 0\\.10 seconds" ): rpc.api._all_gather(SlowPickleClass(0.5)) else: expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rpc.api._all_gather(SlowPickleClass(0.5)) @dist_init def test_graceful_shutdown_with_uneven_workload(self): """Test graceful termination.""" self._run_uneven_workload() @dist_init(setup_rpc=False) def test_shutdown_followed_by_rpc(self): # Initialize RPC. rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(ret, torch.ones(n, n) * 2) rpc.shutdown() with self.assertRaisesRegex(RuntimeError, "^RPC has not been initialized"): rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) @dist_init def test_expected_src(self): dst_rank = (self.rank + 1) % self.world_size expected_src_rank = (self.rank - 1) % self.world_size ret = rpc.rpc_sync(worker_name(dst_rank), set_value, args=(self.rank,)) value = VALUE_FUTURE.result() self.assertEqual(value, expected_src_rank) @dist_init def test_py_built_in(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync(worker_name(dst_rank), min, args=(n, n + 1, n + 2)) self.assertEqual(ret, min(n, n + 1, n + 2)) @dist_init def test_py_user_defined(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), my_function, kwargs={"a": n, "b": n + 1, "c": n + 2}, ) self.assertEqual(ret, my_function(n, n + 1, n + 2)) def test_build_rpc_profiling_key(self): # Tests that the name that shows up as an Event in profiling RPCs has all # the necessary information. for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: rpc_profiling_key = _build_rpc_profiling_key( exec_mode, "foo", "worker0", "worker1" ) self.assertIn(exec_mode.value, rpc_profiling_key) self.assertIn("foo", rpc_profiling_key) self.assertIn("worker0", rpc_profiling_key) self.assertIn("worker1", rpc_profiling_key) def check_profiling_info(self, self_worker_name, dst_worker_name, func, rpc_event, rpc_exec_mode): self.assertTrue(self_worker_name in rpc_event.name) self.assertTrue(dst_worker_name in rpc_event.name) if isinstance(func, torch.jit.ScriptFunction): self.assertTrue(torch._jit_internal._qualified_name(func) in rpc_event.name) else: self.assertTrue(func.__name__ in rpc_event.name) self.assertTrue(rpc_exec_mode.value in rpc_event.name) self.assertEqual(rpc_event.count, 1) @dist_init def test_profiler_rpc_record_shapes(self): if self.rank != 1: return dst = (self.rank + 1) % self.world_size dst_worker = worker_name(dst) t1, t2 = torch.ones(100), torch.ones(100) with torch.autograd.profiler.profile(record_shapes=True) as prof: rpc.rpc_sync(dst_worker, torch.add, args=(t1, t2)) function_events = prof.function_events remote_events = [event for event in function_events if event.is_remote] remote_add_event = [ event for event in remote_events if "aten::add" in event.name ][0] remote_add_input_shapes = remote_add_event.input_shapes # Run profiler on equivalent local op and validate shapes are the same. with torch.autograd.profiler.profile(record_shapes=True) as prof: torch.add(t1, t2) local_function_events = prof.function_events local_add_event = [ event for event in local_function_events if "aten::add" in event.name ][0] local_add_input_shapes = local_add_event.input_shapes self.assertEqual(remote_add_input_shapes, local_add_input_shapes) @dist_init def test_profiler_rpc_memory(self): if self.rank != 1: return dst = (self.rank + 1) % self.world_size dst_worker = worker_name(dst) with torch.autograd.profiler.profile(profile_memory=True) as p: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) res = fut.wait() function_events = p.function_events event_cpu_mem_usages = set(event.cpu_memory_usage for event in function_events) # if cpu_memory_usage was not propagated over the wire, this set would # only contain 0 (indicates no memory being profiled) self.assertNotEqual({0}, event_cpu_mem_usages) # No memory profiled if profile_memory=False with torch.autograd.profiler.profile(profile_memory=False) as p: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) res = fut.wait() function_events = p.function_events event_cpu_mem_usages = set(event.cpu_memory_usage for event in function_events) self.assertEqual({0}, event_cpu_mem_usages) @skip_if_lt_x_gpu(2) @dist_init def test_profiler_remote_cuda(self): if self.rank != 1: return dst_cuda_0 = (self.rank + 1) % self.world_size dst_cuda_1 = (self.rank + 2) % self.world_size dst_worker_cuda_0 = worker_name(dst_cuda_0) dst_worker_cuda_1 = worker_name(dst_cuda_1) with torch.autograd.profiler.profile(use_cuda=True) as p: fut1 = rpc.rpc_async(dst_worker_cuda_0, udf_with_torch_ops, args=(0, )) fut2 = rpc.rpc_async(dst_worker_cuda_1, udf_with_torch_ops, args=(1, )) fut1.wait() fut2.wait() def get_name(event): return event.name[event.name.find(REMOTE_OP_STR) + len(REMOTE_OP_STR):] function_events = p.function_events for event in function_events: if event.is_async: self.assertEqual(0, event.cuda_time_total) self.assertEqual([], event.kernels) self.assertEqual(0, event.cuda_time) else: if event.node_id == 1: continue self.assertTrue(event.node_id in [dst_cuda_0, dst_cuda_1]) if get_name(event) in EXPECTED_REMOTE_EVENTS: self.assertGreater(event.cuda_time_total, 0) self.assertEqual(1, len(event.kernels)) kernel = event.kernels[0] if event.node_id == dst_cuda_0: self.assertEqual(kernel.device, 0) if event.node_id == dst_cuda_1: self.assertEqual(kernel.device, 1) self.assertGreater(event.cuda_time, 0) # Validate that EXPECTED_REMOTE_EVENTS is a subset of remotely profiled # events. remote_events = [event for event in function_events if event.is_remote] remote_event_names = [get_name(event) for event in remote_events if get_name(event) in EXPECTED_REMOTE_EVENTS] self.assertEqual(set(remote_event_names), set(EXPECTED_REMOTE_EVENTS)) @dist_init def test_profiler_export_trace(self): if self.rank != 1: return dst = (self.rank + 1) % self.world_size dst_worker = worker_name(dst) with torch.autograd.profiler.profile() as p: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) res = fut.wait() events = p.function_events with TemporaryFileName() as fname: path = fname p.export_chrome_trace(path) with open(path) as f: trace = json.load(f) event_names = [event['name'] for event in trace] for expected_event_name in EXPECTED_REMOTE_EVENTS + [RPCExecMode.ASYNC.value]: event_exists = any([expected_event_name in event_name for event_name in event_names]) self.assertTrue(event_exists) @dist_init def test_profiler_rpc_key_names(self): # tests that remote events are properly prefixed with the RPC profiling key. if self.rank != 1: return # Spawn multiple threads that send RPCs to ensure keys are correctly # prefixied when there are multiple RPCs being created/in flight at the # same time. dst_ranks = [rank for rank in range(0, self.world_size) if rank != self.rank] def rpc_with_profiling(dst_worker): with torch.autograd.profiler.profile() as prof: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) fut.wait() events = prof.function_events remote_event_names = { event.name: event for event in events if event.is_remote } rpc_profiling_key = _build_rpc_profiling_key( RPCExecMode.ASYNC, udf_with_torch_ops.__qualname__, worker_name(self.rank), dst_worker, ) remote_event_name_set = set(EXPECTED_REMOTE_EVENTS) for name, event in remote_event_names.items(): # Ensure that we have the expected key as part of the remote # event. self.assertTrue(name.startswith(rpc_profiling_key)) self.assertTrue(event.is_remote) self.assertTrue(event.node_id == rpc.get_worker_info(dst_worker).id) # Ensure that the remote event name also contains the operator. operator_name_substr = name[len(rpc_profiling_key) :] # Note: we don't assert that every remote event needs to be # in the above set, the set is just a representative set of # what we expect to see. The profiler can change and add more # events, but we should always expect to see this representative # set. matching_event = { remote_event_name for remote_event_name in remote_event_name_set if remote_event_name in operator_name_substr } remote_event_name_set -= matching_event # The set should be empty, otherwise its contained elements did # not show up in the remote profiler output. self.assertTrue( remote_event_name_set == set(), f"Expected {remote_event_name_set} to be included in remote profiler output.", ) for dst in dst_ranks: dst_worker = worker_name(dst) num_parallel_rpcs = 2 with concurrent.futures.ThreadPoolExecutor( max_workers=num_parallel_rpcs ) as executor: futs = [ executor.submit(rpc_with_profiling, dst_worker) for _ in range(num_parallel_rpcs) ] # Wait for workers to finish test for fut in futs: fut.result() def _run_test_profiler_remote_events_profiled(self): # Tests that we can successfully invoke the profiler on a remote node, # and collect the remote events back in the local profiler. if self.rank != 1: return dst_ranks = [rank for rank in range(0, self.world_size) if rank != self.rank] for dst in dst_ranks: dst_worker = worker_name(dst) with torch.autograd.profiler.profile() as prof: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) ret = fut.wait() events = prof.function_events rpc_event = get_function_event(events, RPCExecMode.ASYNC.value) self.check_profiling_info( worker_name(self.rank), dst_worker, udf_with_torch_ops, rpc_event, RPCExecMode.ASYNC, ) remote_events = {event.name: event for event in events if event.is_remote} rpc_profiling_key = _build_rpc_profiling_key( RPCExecMode.ASYNC, udf_with_torch_ops.__qualname__, worker_name(self.rank), worker_name(dst), ) for expected_remote_event_name in EXPECTED_REMOTE_EVENTS: expected_key = rpc_profiling_key + REMOTE_OP_STR + expected_remote_event_name self.assertTrue(expected_key in remote_events) remote_event = remote_events[expected_key] # Remote event should have a node ID corresponding to the worker # it ran on. self.assertEqual(remote_event.node_id, dst) # Validate order remote events show up in profiling output. def convert_remote_to_local(event_name): remote_op_key = rpc_profiling_key + REMOTE_OP_STR return event_name[ event_name.find(remote_op_key) + len(remote_op_key) : ] remote_events_list = [ convert_remote_to_local(event.name) for event in events if convert_remote_to_local(event.name) in EXPECTED_REMOTE_EVENTS ] self.assertEqual(remote_events_list, EXPECTED_REMOTE_EVENTS) @dist_init def test_profiler_remote_events_profiled(self): self._run_test_profiler_remote_events_profiled() @single_threaded_process_group_agent @dist_init def test_profiler_remote_events_profiled_single_threaded(self): self._run_test_profiler_remote_events_profiled() def run_profiling_workload(self, dst): fut = rpc.rpc_async( worker_name(dst), torch.mul, args=( torch.tensor(1.0, requires_grad=True), torch.tensor(1.0, requires_grad=True), ), ) fut.wait() def _run_rpc_profiling_async_function(self, device="cpu"): if self.rank != 1: return dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) x = torch.ones(2) y = torch.ones(2) with torch.autograd.profiler.profile() as prof: ret = rpc.rpc_async( dst1, slow_async_add, args=(dst2, x, y, device), timeout=20 ) out = ret.wait() function_events = prof.function_events # slow_async_add resulted in an RPC from dst1 -> dst2, so this should be # recorded. key_prefix = _build_rpc_profiling_key( RPCExecMode.ASYNC, slow_async_add.__qualname__, worker_name(self.rank), dst1 ) nested_rpc_key_prefix = _build_rpc_profiling_key( RPCExecMode.ASYNC, slow_add.__qualname__, dst1, dst2 ) expected_key = key_prefix + REMOTE_OP_STR + nested_rpc_key_prefix remote_events = [event for event in function_events if event.is_remote] rpc_remote_event = [ event for event in remote_events if event.name == expected_key ] self.assertEqual(1, len(rpc_remote_event)) rpc_remote_event = rpc_remote_event[0] self.assertEqual(rpc_remote_event.node_id, (self.rank + 1) % self.world_size) # slow_async_add's RPC does an add on dst2, which should be reflected as well. remote_add_key = ( expected_key + REMOTE_OP_STR + torch.jit._builtins._find_builtin(torch.add) ) remote_add_event = [ event for event in remote_events if event.name == remote_add_key ] self.assertEqual(1, len(remote_add_event)) remote_add_event = remote_add_event[0] # Validate that node_id is dst2. self.assertEqual(remote_add_event.node_id, (self.rank + 2) % self.world_size) @dist_init def test_rpc_profiling_async_function(self): initialize_pg(self.file_init_method, self.rank, self.world_size) self._run_rpc_profiling_async_function() if torch.cuda.is_available(): dist.barrier() self._run_rpc_profiling_async_function(device="cuda:0") @single_threaded_process_group_agent @dist_init def test_rpc_profiling_async_function_single_threaded(self): initialize_pg(self.file_init_method, self.rank, self.world_size) self._run_rpc_profiling_async_function() if torch.cuda.is_available(): dist.barrier() self._run_rpc_profiling_async_function(device="cuda:0") @dist_init def test_rpc_profiling_remote_record_function(self): # test that functions run over RPC with record_function show the expected # profiled block. if self.rank != 1: return dst_ranks = [i for i in range(self.world_size) if i != self.rank] for dst_rank in dst_ranks: dst_worker = worker_name(dst_rank) with torch.autograd.profiler.profile() as prof: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=(-1, True)) fut.wait() function_events = prof.function_events record_function_remote_event = [ evt for evt in function_events if "##forward##" in evt.name ] self.assertEqual(1, len(record_function_remote_event)) record_function_remote_event = record_function_remote_event[0] self.assertEqual(record_function_remote_event.node_id, dst_rank) remaining_remote_events = { evt for evt in function_events if evt.node_id == dst_rank } - {record_function_remote_event} # These ops are created by the hack of casting record_function to a # tensor, so they should not count in the actual UDF profiled time. # TODO remove after https://github.com/pytorch/pytorch/issues/43868 # is resolved. remote_events_denylist = [ "aten::zeros", "aten::empty", "aten::zero_", "aten::fill_", ] REMOTE_OP_STR = "#remote_op: " def convert_remote_to_local(event_name): remote_op_key = REMOTE_OP_STR return event_name[event_name.find(remote_op_key) + len(remote_op_key) :] # Ideally, we should validate that the sum of remote operations within # record_function are less than record_function's CPU time. However, # there is a known bug in profiling # (https://github.com/pytorch/pytorch/issues/45160) due to which we # can't do this. So, we just validate they are child events. prof.key_averages() # cpu_children only returns direct children, so here we get all # children recursively. def get_cpu_children(event): if not event.cpu_children: return [] cpu_children = event.cpu_children for e in event.cpu_children: cpu_children.extend(get_cpu_children(e)) return cpu_children record_function_children_names = [ convert_remote_to_local(c.name) for c in get_cpu_children(record_function_remote_event) ] for evt in remaining_remote_events: local_name = convert_remote_to_local(evt.name) if local_name not in remote_events_denylist: self.assertTrue( local_name in record_function_children_names, f"{local_name} not in {record_function_children_names}", ) def validate_profiling_workload(self, dst, prof): def convert_remote_to_local(event_name): return event_name[event_name.find(REMOTE_OP_STR) + len(REMOTE_OP_STR) :] events = prof.function_events remote_events = { convert_remote_to_local(event.name): event for event in events if event.is_remote } self.assertTrue("aten::mul" in remote_events) remote_mul_event = remote_events["aten::mul"] self.assertEqual(remote_mul_event.node_id, dst) self.check_profiling_info( worker_name(self.rank), worker_name(dst), torch.mul, remote_mul_event, RPCExecMode.ASYNC, ) def _run_test_profiler_with_autograd_context(self): dst = (self.rank + 1) % self.world_size if self.rank == 1: # Cases where we can double wrap messages with profiling information and autograd info. with dist_autograd.context() as context_id: with torch.autograd.profiler.profile() as prof: self.run_profiling_workload(dst) self.validate_profiling_workload(dst, prof) # Ensure that flipped order of ctx managers results in events being # recorded as expected. with torch.autograd.profiler.profile() as prof: with dist_autograd.context() as context_id: self.run_profiling_workload(dst) self.validate_profiling_workload(dst, prof) @single_threaded_process_group_agent @dist_init def test_profiler_with_autograd_context_single_threaded(self): self._run_test_profiler_with_autograd_context() @dist_init def test_profiler_with_autograd_context(self): self._run_test_profiler_with_autograd_context() def _profiler_test_with_rpc(self, rpc_exec_mode, func, args, use_record_function=False, dst=None): dst = dst if dst is not None else (self.rank + 1) % self.world_size # only run profiler on rank 1. if self.rank == 1: with torch.autograd.profiler.profile() as prof: record_function_ctx_mgr = ( contextlib.suppress() if not use_record_function else torch.autograd.profiler.record_function( "foo" ) ) with record_function_ctx_mgr as rf: if rpc_exec_mode == RPCExecMode.SYNC: rpc.rpc_sync(worker_name(dst), func, args=args) elif rpc_exec_mode == RPCExecMode.ASYNC: fut = rpc.rpc_async(worker_name(dst), func, args=args) fut.wait() else: self.assertTrue(rpc_exec_mode == RPCExecMode.REMOTE) rref = rpc.remote(worker_name(dst), func, args=args) rref.to_here() # To avoid flakiness, wait for the RRef to be profiled. This # means that we received the acknowledgement of successful # creation on the owner and ran the callbacks responsible # for recording the profiling event. rref._get_profiling_future().wait() events = prof.function_events rpc_event = get_function_event(events, rpc_exec_mode.value) # verify Node ID for this rpc event. self.assertEqual(rpc_event.node_id, self.rank) # Ensure recording of remote events. remote_events = {event for event in events if event.node_id == dst} - {rpc_event} self.assertGreaterEqual(len(remote_events), 1) for remote_event in remote_events: self.assertEqual(remote_event.node_id, dst) if use_record_function: scope_event = get_function_event(events, "foo") # Since RPC call is within the scope, its CPU interval should be # contained within foo's interval. self.assertTrue(scope_event.time_range.start < rpc_event.time_range.start) self.assertTrue(scope_event.time_range.end > rpc_event.time_range.end) # the sender, dest worker, function run, and type of RPC should all # be recorded. self_worker_name = worker_name(self.rank) dst_worker_name = worker_name(dst) self.check_profiling_info(self_worker_name, dst_worker_name, func, rpc_event, rpc_exec_mode) if use_record_function: # verify order by ensuring that the outer context comes # before the rpc event. foo_event_ix = next(i for i, event in enumerate(events) if "foo" in event.name) rpc_event_idx = next(i for i, event in enumerate(events) if rpc_exec_mode.value in event.name) self.assertLess(foo_event_ix, rpc_event_idx) def _run_test_profiler_with_sync_rpc_udf(self): self._profiler_test_with_rpc(RPCExecMode.SYNC, my_sleep_func, args=(1,)) self._profiler_test_with_rpc(RPCExecMode.SYNC, my_sleep_func, args=(1,), use_record_function=True) @dist_init def test_profiler_with_sync_rpc_udf(self): self._run_test_profiler_with_sync_rpc_udf() @single_threaded_process_group_agent @dist_init def test_profiler_with_sync_rpc_udf_single_threaded(self): self._run_test_profiler_with_sync_rpc_udf() def _run_test_profiler_with_sync_rpc_builtin(self): self._profiler_test_with_rpc( RPCExecMode.SYNC, torch.mul, args=(torch.ones(1), torch.ones(1)) ) self._profiler_test_with_rpc( RPCExecMode.SYNC, torch.mul, args=(torch.ones(1), torch.ones(1)), use_record_function=True ) @dist_init def test_profiler_with_sync_rpc_builtin(self): self._run_test_profiler_with_sync_rpc_builtin() @single_threaded_process_group_agent @dist_init def test_profiler_with_sync_rpc_builtin_single_threaded(self): self._run_test_profiler_with_sync_rpc_builtin() def _run_test_profiler_with_async_rpc_udf(self): self._profiler_test_with_rpc(RPCExecMode.ASYNC, my_sleep_func, args=(1,)) self._profiler_test_with_rpc(RPCExecMode.ASYNC, my_sleep_func, args=(1,), use_record_function=True) @dist_init def test_profiler_with_async_rpc_udf(self): self._run_test_profiler_with_async_rpc_udf() @single_threaded_process_group_agent @dist_init def test_profiler_with_async_rpc_udf_single_threaded(self): self._run_test_profiler_with_async_rpc_udf() def _run_test_profiler_with_async_rpc_builtin(self): self._profiler_test_with_rpc( RPCExecMode.ASYNC, torch.mul, args=(torch.ones(1), torch.ones(1)) ) self._profiler_test_with_rpc( RPCExecMode.ASYNC, torch.mul, args=(torch.ones(1), torch.ones(1)), use_record_function=True ) @dist_init def test_profiler_with_async_rpc_builtin(self): self._run_test_profiler_with_async_rpc_builtin() @single_threaded_process_group_agent @dist_init def test_profiler_with_async_rpc_builtin_single_threaded(self): self._run_test_profiler_with_async_rpc_builtin() def _run_test_profiler_with_remote_udf(self): self._profiler_test_with_rpc(RPCExecMode.REMOTE, my_sleep_func, args=(1,)) self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_sleep_func, args=(1,), use_record_function=True ) # test remote to self self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_sleep_func, args=(1,), dst=self.rank ) @dist_init def test_profiler_with_remote_udf(self): self._run_test_profiler_with_remote_udf() @single_threaded_process_group_agent @dist_init def test_profiler_with_remote_udf_single_threaded(self): self._run_test_profiler_with_remote_udf() def _run_test_profiler_with_remote_builtin(self): self._profiler_test_with_rpc( RPCExecMode.REMOTE, torch.mul, args=(torch.ones(1), torch.ones(1)) ) self._profiler_test_with_rpc( RPCExecMode.REMOTE, torch.mul, args=(torch.ones(1), torch.ones(1)), use_record_function=True ) # test remote to self self._profiler_test_with_rpc( RPCExecMode.REMOTE, torch.mul, args=(torch.ones(1), torch.ones(1)), dst=self.rank, ) @dist_init def test_profiler_with_remote_builtin(self): self._run_test_profiler_with_remote_builtin() @single_threaded_process_group_agent @dist_init def test_profiler_with_remote_builtin_single_threaded(self): self._run_test_profiler_with_remote_builtin() def _run_test_profiler_with_script_async_rpc(self): self._profiler_test_with_rpc( RPCExecMode.ASYNC, my_script_func, args=(torch.tensor(1),) ) self._profiler_test_with_rpc( RPCExecMode.ASYNC, my_script_func, args=(torch.tensor(1),), use_record_function=True, ) @dist_init def test_profiler_with_script_async_rpc(self): self._run_test_profiler_with_script_async_rpc() @single_threaded_process_group_agent @dist_init def test_profiler_with_script_async_rpc_single_threaded(self): self._run_test_profiler_with_script_async_rpc() def _run_test_profiler_with_script_sync_rpc(self): self._profiler_test_with_rpc( RPCExecMode.SYNC, my_script_func, args=(torch.tensor(1),) ) self._profiler_test_with_rpc( RPCExecMode.SYNC, my_script_func, args=(torch.tensor(1),), use_record_function=True, ) @dist_init def test_profiler_with_script_sync_rpc(self): self._run_test_profiler_with_script_sync_rpc() @single_threaded_process_group_agent @dist_init def test_profiler_with_script_sync_rpc_single_threaded(self): self._run_test_profiler_with_script_sync_rpc() def _run_test_profiler_with_script_remote_rpc(self): self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_script_func, args=(torch.tensor(1),) ) self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_script_func, args=(torch.tensor(1),), use_record_function=True, ) # test remote to self self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_script_func, args=(torch.tensor(1),), dst=self.rank ) @dist_init def test_profiler_with_script_remote_rpc(self): self._run_test_profiler_with_script_remote_rpc() @single_threaded_process_group_agent @dist_init def test_profiler_with_script_remote_rpc_single_threaded(self): self._run_test_profiler_with_script_remote_rpc() def _assert_top_level_events(self, process_global_events, expected_top_level_event_names): top_level_event_names = [] for thread_local_events in process_global_events: # Get top-level events from all events happened on a thread. last_end_time = 0 for event in thread_local_events: event_name = event.name time_range = event.time_range if time_range.start > last_end_time: top_level_event_names.append(event_name) last_end_time = time_range.end self.assertEqual(sorted(top_level_event_names), sorted(expected_top_level_event_names)) @dist_init def test_server_process_global_profiler(self): if self.rank != 0: return dst_rank = (self.rank + 1) % self.world_size dst_worker_name = worker_name(dst_rank) x = torch.tensor(1) y = torch.tensor(2) outer_profile_rref = rpc.remote(dst_worker_name, rpc._server_process_global_profile) outer_profile_rref.rpc_sync().__enter__() rpc.rpc_sync(dst_worker_name, torch.add, (x, y)) inner_profile_rref = rpc.remote(dst_worker_name, rpc._server_process_global_profile) inner_profile_rref.rpc_sync().__enter__() rpc.rpc_sync(dst_worker_name, torch.sub, (x, y)) inner_profile_rref.rpc_sync().__exit__(None, None, None) outer_profile_rref.rpc_sync().__exit__(None, None, None) inner_events = rpc.rpc_sync(dst_worker_name, get_events_from_profile, (inner_profile_rref,)) self._assert_top_level_events(inner_events, ['aten::sub']) outer_events = rpc.rpc_sync(dst_worker_name, get_events_from_profile, (outer_profile_rref,)) self._assert_top_level_events(outer_events, ['aten::add', 'aten::sub']) inner_profile_rref.rpc_sync().key_averages() outer_profile_rref.rpc_sync().key_averages() @dist_init def test_async_record_function_double_end_callbacks(self): num_sleep_seconds = 1 if self.rank == 1: # Validate that calling the function twice results in an error. with torch.autograd.profiler.profile() as pf: with torch.autograd.profiler.record_function("foo") as rf: fut = rpc.rpc_async( worker_name(0), my_sleep_func, args=(num_sleep_seconds,) ) rf._call_end_callbacks_on_future(fut) with self.assertRaisesRegex( RuntimeError, "can only be called once." ): rf._call_end_callbacks_on_future(fut) fut.wait() @dist_init def test_async_record_function_cbs_jit_call(self): if self.rank == 1: with torch.autograd.profiler.profile() as pf: key = _build_rpc_profiling_key( RPCExecMode.ASYNC, torch._jit_internal._qualified_name(my_script_func), "worker1", "worker0", ) with torch.autograd.profiler.record_function(key) as rf: fut = rpc.rpc_async( worker_name(0), my_script_func, args=(torch.tensor(1),) ) # Intentionally calling record_function internals fut = torch.ops.profiler._call_end_callbacks_on_jit_fut(rf.handle, fut) result = fut.wait() # Validate that the profiling future returns the same value as the RPC # future. expected = torch.add(torch.tensor(1), torch.tensor(1)) self.assertEqual(result, expected) events = pf.function_events rpc_event = get_function_event( events, torch._jit_internal._qualified_name(my_script_func) ) self.assertTrue(torch._jit_internal._qualified_name(my_script_func) in rpc_event.name) @dist_init def test_py_class_constructor(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync(worker_name(dst_rank), MyClass, args=(n,)) self.assertEqual(ret.a, n) @dist_init def test_py_class_instance_method(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), MyClass(2).my_instance_method, args=(n,) ) self.assertEqual(ret, MyClass(2).my_instance_method(n)) @dist_init def test_py_class_method(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), MyClass.my_class_method, args=(n, n + 1) ) self.assertEqual(ret, MyClass.my_class_method(n, n + 1)) @dist_init def test_py_class_static_method(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), MyClass.my_static_method, args=(n + 10,) ) self.assertEqual(ret, MyClass.my_static_method(n + 10)) @dist_init def test_py_multi_async_call(self): n = self.rank + 1 dst_rank = n % self.world_size dst_worker_info = rpc.get_worker_info(worker_name(dst_rank)) fut1 = rpc.rpc_async(dst_worker_info, MyClass.my_static_method, args=(n + 10,)) fut2 = rpc.rpc_async(dst_worker_info, min, args=(n, n + 1, n + 2)) self.assertEqual(fut1.wait(), MyClass.my_static_method(n + 10)) self.assertEqual(fut2.wait(), min(n, n + 1, n + 2)) @dist_init def test_py_no_return_result(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync(worker_name(dst_rank), no_result) self.assertEqual(ret, no_result()) @dist_init def test_py_tensors(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), my_tensor_function, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(ret, my_tensor_function(torch.ones(n, n), torch.ones(n, n))) @dist_init def test_py_tensors_multi_async_call(self): futs = [] n = self.rank + 1 dst_rank = n % self.world_size for i in range(100): fut = rpc.rpc_async( worker_name(dst_rank), my_tensor_function, args=(torch.ones(i, i), torch.ones(i, i)), ) futs.append(fut) j = 0 for val in torch.futures.wait_all(futs): self.assertEqual( val, my_tensor_function(torch.ones(j, j), torch.ones(j, j)) ) j += 1 @dist_init def test_py_tensors_in_container(self): n = self.rank + 1 dst_rank = n % self.world_size a = [torch.ones(n, n), torch.ones(n, n)] b = TensorClass(build_complex_tensors()) c = {"foo": torch.ones(n, n), "bar": torch.ones(n, n)} ret = rpc.rpc_sync( worker_name(dst_rank), my_complex_tensor_function, args=(a, b, c) ) self.assertEqual(ret, my_complex_tensor_function(a, b, c)) @dist_init def test_py_nested_pickle(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), run_nested_pickle, args=(MyPickleClass(), torch.ones(2, 2)), ) m = MyPickleClass() m.set(my_tensor_function(torch.ones(2, 2), torch.ones(2, 2))) self.assertEqual(ret, run_nested_pickle(m, torch.ones(2, 2))) @dist_init def test_py_function_exception(self): n = self.rank + 1 dst_rank = n % self.world_size with self.assertRaises(TypeError): ret = rpc.rpc_sync(worker_name(dst_rank), no_result, args=(10,)) @dist_init def test_py_raise_in_user_func(self): with captured_output() as (_, err): # This barrier prevents a race condition where the main thread has # not entered the context manager when the remote function runs. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() n = self.rank + 1 dst_rank = n % self.world_size fut = rpc.rpc_async(worker_name(dst_rank), raise_func) with self.assertRaisesRegex(ValueError, expected_err): fut.wait() # This barrier prevents a race condition where the main thread exits # context manager before the remote function has ran. dist.barrier() # Validate that trainers log errors when running functions. stderr_lines = err.getvalue() self.assertTrue(expected_err in stderr_lines) @dist_init def test_py_raise_in_user_func_escaped_str(self): n = self.rank + 1 dst_rank = n % self.world_size fut = rpc.rpc_async(worker_name(dst_rank), raise_func_escape) try: fut.wait() except ValueError as e: msg = str(e) # Ensure newlines are unescaped to provide a better repr of error. self.assertEqual(msg, msg.encode("utf-8").decode("unicode_escape")) else: self.assertTrue(False, "expected raise_func_escape to raise ValueError.") @dist_init def test_nested_rpc(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), nested_rpc, args=(worker_name(self.rank),), ) self.assertEqual(ret, torch.ones(2, 2) + 1) def _stress_test_rpc(self, f, repeat=1000, args=()): n = self.rank + 1 dst_rank = n % self.world_size futs = [] tik = time.time() for _ in range(repeat): fut = rpc.rpc_async(worker_name(dst_rank), f, args=args) futs.append(fut) for val in torch.futures.wait_all(futs): self.assertEqual(val, 0) tok = time.time() print( "Rank {} finished testing {} times in {} seconds.".format( self.rank, repeat, tok - tik ) ) @dist_init def test_stress_light_rpc(self): self._stress_test_rpc(light_rpc) @dist_init def test_stress_heavy_rpc(self): self._stress_test_rpc(heavy_rpc, repeat=20, args=(torch.ones(100, 100),)) @dist_init def test_stress_heavy_rpc_torchscript(self): self._stress_test_rpc(heavy_rpc_torchscript, repeat=20, args=(torch.ones(100, 100),)) @dist_init def test_builtin_remote_ret(self): n = self.rank + 1 dst_rank = n % self.world_size rref = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(rref.to_here(), torch.ones(n, n) * 2) @dist_init def test_builtin_remote_self(self): rref = rpc.remote( worker_name(self.rank), torch.add, args=(torch.ones(2, 2), torch.ones(2, 2)), ) self.assertEqual(rref.local_value(), torch.ones(2, 2) * 2) def _test_multi_remote_call(self, fn, args_fn=lambda x: (), kwargs_fn=lambda x: {}): m = 10 n = self.rank + 1 dst_rank = n % self.world_size rrefs = [] expected = [] for i in range(m): n = n + i rrefs.append( rpc.remote( worker_name(dst_rank), fn, args=args_fn(n), kwargs=kwargs_fn(n), ) ) expected.append(fn(*args_fn(n), **kwargs_fn(n))) for i in range(m): self.assertEqual(rrefs[i].to_here(), expected[i]) @dist_init def test_multi_builtin_remote_ret(self): def args_fn(n): return (torch.ones(n, n), torch.ones(n, n)) self._test_multi_remote_call(torch.add, args_fn=args_fn) @dist_init def test_py_udf_remote(self): n = self.rank + 1 dst_rank = n % self.world_size rref = rpc.remote( worker_name(dst_rank), my_function, kwargs={"a": n, "b": n + 1, "c": n + 2}, ) self.assertEqual(rref.to_here(), my_function(n, n + 1, n + 2)) @dist_init def test_multi_py_udf_remote(self): def kwargs_fn(n): return {"a": torch.ones(n, n), "b": torch.ones(n, n), "c": torch.ones(n, n)} self._test_multi_remote_call(my_function, kwargs_fn=kwargs_fn) @dist_init def test_py_rref_args(self): n = self.rank + 1 dst_rank = n % self.world_size rref_a = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 2) ) rref_b = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 1) ) rref_c = rpc.remote( worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) ) self.assertEqual(rref_c.to_here(), torch.ones(n, n) + 4) @dist_init def test_py_rref_args_user_share(self): n = self.rank + 1 owner_rank = n % self.world_size user_rank = (n + 1) % self.world_size rref_a = rpc.remote( worker_name(owner_rank), my_function, args=(torch.ones(n, n), 2, 0) ) rref_b = rpc.remote( worker_name(owner_rank), my_function, args=(torch.ones(n, n), 1, 0) ) rref_c = rpc.remote( worker_name(user_rank), my_rref_function, args=(rref_a, rref_b) ) self.assertEqual(rref_c.to_here(), torch.ones(n, n) + 4) @dist_init def test_py_rpc_rref_args(self): n = self.rank + 1 dst_rank = n % self.world_size rref_a = rpc.remote( worker_name(dst_rank), my_function, args=(torch.ones(n, n), 2, 0) ) rref_b = rpc.remote( worker_name(dst_rank), my_function, args=(torch.ones(n, n), 1, 0) ) c = rpc.rpc_sync( worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) ) self.assertEqual(c, torch.ones(n, n) + 4) @dist_init def test_nested_remote(self): n = self.rank + 1 dst_rank1 = n % self.world_size dst_rank2 = (n + 1) % self.world_size rref = rpc.remote( worker_name(dst_rank1), nested_remote, args=(worker_name(dst_rank2),), ) self.assertEqual(rref.to_here(), torch.ones(2, 2) + 3) @dist_init def test_nested_rref(self): n = self.rank + 1 dst_rank1 = n % self.world_size dst_rank2 = (n + 1) % self.world_size rref_of_rrefs = rpc.remote( worker_name(dst_rank1), nested_rref, args=(worker_name(dst_rank2),), ) # Say C has 2 OwnerRRefs. # B has 2 UserRRefs to those 2 OwnerRRefs, respectively. # This call is effectively A asking B to share its 2 UserRRefs. rrefs = rref_of_rrefs.to_here() self.assertEqual(len(rrefs), 2) self.assertEqual(rrefs[0].to_here(), torch.ones(2, 2) + 1) self.assertEqual(rrefs[1].to_here(), torch.ones(2, 2) + 2) @dist_init def test_nested_rref_stress(self): n = self.rank + 1 dst_rank1 = n % self.world_size dst_rank2 = (n + 1) % self.world_size all_rrefs = [] for _ in range(20): all_rrefs.append( rpc.remote( worker_name(dst_rank1), nested_rref, args=(worker_name(dst_rank2),), ) ) for i in range(20): rref_of_rrefs = all_rrefs[i] rrefs = rref_of_rrefs.to_here() self.assertEqual(len(rrefs), 2) self.assertEqual(rrefs[0].to_here(), torch.ones(2, 2) + 1) self.assertEqual(rrefs[1].to_here(), torch.ones(2, 2) + 2) @dist_init def test_multi_layer_nested_async_rpc(self): # This test will exit right away, but there will be a chain of async # RPCs. The termination algorithm should detect those messages properly. # Otherwise, some peer could exit early, leaving others to timeout # errors or connection closed errors. ttl = 20 n = self.rank + 1 dst_rank = n % self.world_size multi_layer_nested_async_rpc(dst_rank, self.world_size, ttl) @dist_init def test_remote_with_exception(self): n = self.rank + 1 dst_rank = n % self.world_size # check ref to other workers rref = rpc.remote(worker_name(dst_rank), raise_func) with self.assertRaises(ValueError): rref.to_here() # check ref to itself rref = rpc.remote(worker_name(self.rank), no_result, args=(10,)) with self.assertRaises(TypeError): rref.to_here() @dist_init def test_rpc_return_rref(self): n = self.rank + 1 dst_rank1 = n % self.world_size dst_rank2 = (n + 1) % self.world_size rref = rpc.rpc_sync( worker_name(dst_rank1), rpc_return_rref, args=(worker_name(dst_rank2),), ) self.assertEqual(rref.to_here(), torch.ones(2, 2) + 1) @dist_init def test_rref_forward_chain(self): ttl = 8 n = self.rank + 1 dst_rank = n % self.world_size rref = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 1) ) ret_rref = rref_forward_chain(dst_rank, self.world_size, rref, ttl) for i in range(ttl): self.assertEqual(len(ret_rref), 1) ret_rref = ret_rref[0].to_here() ret = ret_rref self.assertEqual(ret, torch.add(torch.ones(n, n), 1)) @dist_init def test_local_rref_no_fork(self): local_rref = RRef(35) self.assertEqual(local_rref.local_value(), 35) @dist_init def test_local_value_not_on_owner(self): # ensure that an error message is thrown if a user tries to call # local_value() on a non-owning node. next_rank = (self.rank + 1) % self.world_size rref = rpc.remote( worker_name(next_rank), torch.add, args=(torch.ones(1), torch.ones(1)) ) with self.assertRaisesRegex( RuntimeError, ( fr"For UserRRef\(rref_id=GloballyUniqueId\(created_on={self.rank}, local_id=0\), " fr"fork_id=GloballyUniqueId\(created_on={self.rank}, local_id=1\)\), " r"can't call localValue\(\) on user " fr"WorkerInfo\(id={self.rank}, name={worker_name(self.rank)}\). " fr"Call it on owner WorkerInfo\(id={next_rank}, name={worker_name(next_rank)}\)" ) ): rref.local_value() @dist_init def test_return_local_rrefs(self): n = self.rank + 1 dst_rank = n % self.world_size rref_list = rpc.rpc_sync( worker_name(dst_rank), get_rref_list, args=([1, 2, 3],) ) for rref in rref_list: rpc.rpc_sync( rref.owner(), _call_method_on_rref, args=(MyClass.increment_value, rref, 10), ) rets = [ rpc.rpc_sync( rref.owner(), _call_method_on_rref, args=(MyClass.get_value, rref) ) for rref in rref_list ] self.assertEqual(rets, [11, 12, 13]) @dist_init def test_rref_type(self): def launched_rpc(events): expected_name = "rpc_sync#_rref_typeof_on_owner" return any([e.name.startswith(expected_name) for e in events]) dst = worker_name((self.rank + 1) % self.world_size) rref = rpc.remote(dst, torch.add, args=(torch.ones(2), 1)) with torch.autograd.profiler.profile() as p: t = rref._get_type() self.assertTrue(launched_rpc(p.function_events)) self.assertEqual(t, type(torch.ones(2))) with torch.autograd.profiler.profile() as p: for _ in range(10): t = rref._get_type() self.assertFalse(launched_rpc(p.function_events)) self.assertEqual(t, type(torch.ones(2))) rref = rpc.remote(dst, MyClass, args=(0,)) self.assertEqual(rref._get_type(), MyClass) @dist_init def test_rref_type_with_error(self): dst = worker_name((self.rank + 1) % self.world_size) # 10 ms timeout rref = rpc.remote(dst, raise_func) with self.assertRaisesRegex(ValueError, "Expected error"): rref._get_type() @dist_init def test_rref_type_owner(self): rref = RRef(torch.ones(2) + 1) self.assertEqual(rref._get_type(), type(torch.ones(2))) rref = RRef(MyClass(0)) self.assertEqual(rref._get_type(), MyClass) @staticmethod def _slow_add(x, y): time.sleep(1) return x + y @dist_init def test_rref_type_slow_init(self): dst = worker_name((self.rank + 1) % self.world_size) rref = rpc.remote(dst, RpcTest._slow_add, args=(torch.ones(2), 1)) self.assertEqual(rref._get_type(), type(torch.ones(2))) @dist_init def test_owner_equality(self): a = RRef(40) b = RRef(50) other_rank = (self.rank + 1) % self.world_size other_a = rpc.remote( worker_name(other_rank), torch.add, args=(torch.ones(1), 1) ) other_b = rpc.remote( worker_name(other_rank), torch.add, args=(torch.ones(1), 1) ) other_a.to_here() # to ensure clean termination other_b.to_here() self.assertNotEqual(a.owner(), 23) self.assertEqual(other_a.owner(), other_b.owner()) self.assertNotEqual(a.owner(), other_a.owner()) self.assertEqual(other_a.owner(), other_a.owner()) self.assertEqual(other_a.owner(), other_b.owner()) self.assertEqual(a.owner(), a.owner()) self.assertEqual(a.owner(), b.owner()) self.assertEqual(a.owner(), rpc.get_worker_info()) x = dict() x[a.owner()] = a x[other_a.owner()] = other_a self.assertEqual(x[a.owner()], a) self.assertEqual(x[b.owner()], a) self.assertEqual(x[other_a.owner()], other_a) self.assertEqual(x[other_b.owner()], other_a) self.assertEqual(len(x), 2) @dist_init def test_pass_local_rrefs(self): n = self.rank + 1 dst_rank = n % self.world_size dst_worker = worker_name(dst_rank) rref = RRef(40) self.assertEqual( rpc.rpc_sync(dst_worker, add_rref_to_value, args=(rref, 50)), 90 ) self.assertEqual( rpc.rpc_async(dst_worker, add_rref_to_value, args=(rref, 50)).wait(), 90 ) self.assertEqual( rpc.remote(dst_worker, add_rref_to_value, args=(rref, 50)).to_here(), 90 ) @dist_init def test_remote_same_worker(self): n = self.rank + 1 dst_rank = n % self.world_size rref_a = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 2) ) rref_b = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 1) ) rref_c = rpc.remote( worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) ) self.assertEqual(rref_c.to_here(), torch.ones(n, n) + 4) @dist_init(setup_rpc=True) def test_call_method_on_rref(self): """ Tests that it is possible to call an instance method on a remote objet by using rref.owner() as destination of the call. """ vals = [10, 2, 5, 7] dst_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(dst_rank) # creates a remote object rref = rpc.remote(dst_worker, MyClass, args=(vals[0],)) # modifies state of the remote object rpc.rpc_sync( rref.owner(), _call_method_on_rref, args=(MyClass.increment_value, rref, vals[1]), ) rpc.rpc_async( rref.owner(), _call_method_on_rref, args=(MyClass.increment_value, rref, vals[2]), ).wait() rpc.remote( rref.owner(), _call_method_on_rref, args=(MyClass.increment_value, rref, vals[3]), ).to_here() # queries state of the remote object result = rpc.rpc_sync( dst_worker, _call_method_on_rref, args=(MyClass.get_value, rref) ) self.assertEqual(result, sum(vals)) # Notice `rpc.api.shutdown()` accesses # `_delete_all_user_and_unforked_owner_rrefs` through # `torch.distributed.rpc.api`, so patching # `torch.distributed.rpc._delete_all_user_and_unforked_owner_rrefs` will # not help. @mock.patch.object(torch.distributed.rpc.api, "_delete_all_user_and_unforked_owner_rrefs") def _test_rref_leak(self, _mock_delete_all_user_and_unforked_owner_rrefs, ignore_leak): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) initialize_pg(self.file_init_method, self.rank, self.world_size) # Wait for all init to complete. dist.barrier() rref = rpc.remote( worker_name((self.rank + 1) % self.world_size), torch.add, args=(torch.ones(2, 2), 1), ) import torch.distributed.rpc.api as api if ignore_leak: api._ignore_rref_leak = True rpc.shutdown(graceful=True) else: api._ignore_rref_leak = False with self.assertRaisesRegex(RuntimeError, "Leaking RRef"): rpc.shutdown(graceful=True) @dist_init(setup_rpc=False) def test_rref_leak(self): self._test_rref_leak(ignore_leak=False) @dist_init(setup_rpc=False) def test_ignore_rref_leak(self): self._test_rref_leak(ignore_leak=True) @dist_init def test_rref_str(self): rref1 = RRef(self.rank) id_class = "GloballyUniqueId" self.assertEqual( "OwnerRRef({}(created_on={}, local_id=0))".format(id_class, self.rank), rref1.__str__() ) dst_rank = (self.rank + 1) % self.world_size rref2 = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) ) self.assertEqual( rref2.__str__(), "UserRRef(RRefId = {0}(created_on={1}, local_id=1), ForkId = {0}(created_on={1}, local_id=2))".format( id_class, self.rank ), ) @dist_init def test_rref_get_future(self): # Tests that we can obtain the future corresponding to the creation of # the RRef on remote end if self.rank == 0: # Builtin rref = rpc.remote(worker_name(1), torch.add, args=(1, 1)) rref.to_here() fut = rref._get_future() self.assertIsInstance(fut, torch._C.Future) # UDF rref = rpc.remote(worker_name(1), foo_add, args=()) rref.to_here() fut = rref._get_future() self.assertIsInstance(fut, torch._C.Future) # Script rref = rpc.remote(worker_name(1), my_script_func, args=(torch.tensor(1), )) rref.to_here() fut = rref._get_future() self.assertIsInstance(fut, torch._C.Future) @dist_init def test_rref_context_debug_info(self): # This test checks local states that are modified by remote workers. # This means that we would need barrier before and after every check. # The barrier before the check makes sure that all previous states are # cleared globally, the barrier after ensures that no following states # change gets into the current check. initialize_pg(self.file_init_method, self.rank, self.world_size) # Check 1: local RRef does not update owners_ map or add a pending user. ################################################# rref1 = RRef(self.rank) # don't need a barrier here as local RRef is handled by this thread info = _rref_context_get_debug_info() self.assertIn("num_owner_rrefs", info) self.assertIn("num_pending_users", info) # RRef on local value is not added to context until shared across RPC self.assertEqual(0, int(info["num_owner_rrefs"])) self.assertEqual(0, int(info["num_pending_users"])) # barrier after the check 1 dist.barrier() # Check 2: Sharing RRef as an arg should update owners_ map ########################################################### dst_rank = (self.rank + 1) % self.world_size rpc.rpc_sync(worker_name(dst_rank), set_global_rref, args=(rref1,)) # barrier before check 2 wait_until_pending_futures_and_users_flushed() dist.barrier() info = _rref_context_get_debug_info() self.assertIn("num_owner_rrefs", info) self.assertEqual(1, int(info["num_owner_rrefs"])) # no pending users since the fork is finished self.assertEqual(0, int(info["num_pending_users"])) # barrier after check 2 dist.barrier() # clear states for check 2 rpc.rpc_sync(worker_name(dst_rank), clear_global_rref) # Check 3: rpc.remote call should update owners_ map #################################################### rref2 = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) ) rref3 = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) ) rref2.to_here() rref3.to_here() # barrier before check 3 wait_until_pending_futures_and_users_flushed() dist.barrier() info = _rref_context_get_debug_info() self.assertIn("num_owner_rrefs", info) self.assertEqual(2, int(info["num_owner_rrefs"])) # no pending users since the fork is finished self.assertEqual(0, int(info["num_pending_users"])) # barrier after check 3 dist.barrier() @dist_init def test_disable_gil_profiling(self): # test that rpc.enable_gil_profiling(false) will result in # GIL wait time not being recorded. # GIL profiling should be disabled by default. dst_rank = (self.rank + 1) % self.world_size rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(1), torch.ones(1)) ) info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertRaises(KeyError, lambda: info["agent.gil_average_wait_time_us"]) rpc.enable_gil_profiling(True) rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(1), torch.ones(1)) ) info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertIn("agent.gil_average_wait_time_us", info) @dist_init(setup_rpc=False) def test_local_shutdown(self): # test that we can start RPC and then immediately locally shutdown # without sending any messages. rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) # pass in graceful=False to ensure that we don't wait for other workers. rpc.shutdown(graceful=False) @dist_init def test_debug_info(self): # only test keys in this test case. Values should be covered by # individual module debug info tests import torch.distributed.autograd as dist_autograd info = _get_debug_info() rref_info = _rref_context_get_debug_info() agent_info = rpc.api._get_current_rpc_agent().get_debug_info() autograd_info = dist_autograd._get_debug_info() common_keys = rref_info.keys() & agent_info.keys() & autograd_info.keys() self.assertEqual(0, len(common_keys)) expected = {} expected.update(rref_info) expected.update(agent_info) expected.update(autograd_info) # NB: Key ordering is only preserved in python 3.6+. So here, we # manually check keys are equal. for key in expected.keys(): self.assertIn(key, info.keys()) for key in info.keys(): self.assertIn(key, expected.keys()) @dist_init(setup_rpc=False) @unittest.skipIf( IS_MACOS, "Test is flaky on MacOS since libuv error handling is not as robust as TCP", ) def test_handle_send_exceptions(self): # test that if a callee node has gone down, we raise an appropriate # exception instead of just crashing. rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) rpc._set_rpc_timeout(10) # This barrier is needed to ensure that some workers do not exit before # others have been brought up, for non ProcessGroupAgent backends. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() if self.rank == 1: dst_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(dst_rank) # allow destination worker to exit without joining error_str = self.get_shutdown_error_regex() wait_until_node_failure(dst_rank, error_str) fut = rpc.rpc_async(dst_worker, torch.add, args=(torch.ones(1), 3)) # Shutdown sequence is not very well defined and as a result # we can see any of the error messages defined in get_shutdown_error_regex. with self.assertRaisesRegex(RuntimeError, error_str): fut.wait() # exit all workers non-gracefully. rpc.shutdown(graceful=False) @dist_init def test_deadlock(self): # this test is copied from https://github.com/pytorch/pytorch/issues/45089 if self.rank == 1: dst1 = worker_name((self.rank + 1) % self.world_size) x = torch.ones(2) y = torch.ones(2) rpc.rpc_async(dst1, RpcTest._slow_add, args=(x, y), timeout=15).wait() dist_initialized = dist.is_initialized() if not dist_initialized: dist.init_process_group( backend="gloo", init_method=self.file_init_method, rank=self.rank, world_size=self.world_size, ) @dist_init(setup_rpc=False) def test_local_shutdown_with_rpc(self): # test that we can start RPC, send RPCs, and then run local shutdown. rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) n = self.rank + 1 dst_rank = n % self.world_size rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) # A barrier is needed to ensure that all RPCs are processed. # Otherwise, some RPCs can timeout since the receiving end # has terminated. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() # pass in graceful=False to ensure that we don't wait for other workers. rpc.shutdown(graceful=False) @dist_init(setup_rpc=False) def test_set_and_get_default_rpc_timeout(self): timeout = 0.5 # A new `RpcBackendOptions` is constructed # when accessing `self.rpc_backend_options`. rpc_backend_options = self.rpc_backend_options rpc_backend_options.rpc_timeout = timeout rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) set_timeout = rpc.get_rpc_timeout() self.assertEqual(timeout, set_timeout) rpc.shutdown() @dist_init def test_default_timeout_used(self): """ Tests that if no timeout is passed into rpc_async and rpc_sync, then the default timeout is used. """ dst_rank = (self.rank + 1) % self.world_size rpc._set_rpc_timeout(0.001) # 1 ms # futures should time out and be marked with an exception indicating it as such. futs = [ rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=()) for _ in range(10) ] expected_error = self.get_timeout_error_regex() for fut in futs: with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # ensure that if a new timeout is set old futures don't time out but new ones do. rpc._set_rpc_timeout(200) # 200 seconds # create a longstanding RPC. fut1 = rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=(1,)) # now, set a short timeout. rpc._set_rpc_timeout(0.001) # fut2 should time out, fut1 should not. fut2 = rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=(1,)) with self.assertRaisesRegex(RuntimeError, expected_error): fut2.wait() fut1.wait() # Zero timeout means infinity, so future should run to completion. rpc._set_rpc_timeout(0) rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=()).wait() # reset to default timeout so shutdown messages can process cleanly. rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) @dist_init def test_rpc_timeouts(self): # TODO: enable timeouts for rpc.remote/RRef (https://github.com/pytorch/pytorch/issues/33803) dst_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(dst_rank) timeout = 0.1 # 100 ms expected_error = self.get_timeout_error_regex() # Test async UDF fut = rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=timeout) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure run to completion if there is no timeout and we use the default # RPC timeout. rpc.rpc_async(dst_worker, my_sleep_func, args=(1,)).wait() # Test sync UDF with self.assertRaisesRegex(RuntimeError, expected_error): rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=timeout) # Ensure run to completion if there is no timeout and we use the default # RPC timeout. rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,)) # If we set a default timeout for RPCs, it should be respected, though # still overridden if we pass in a different timeout to the APIs. rpc._set_rpc_timeout(0.001) fut = rpc.rpc_async(dst_worker, my_sleep_func, args=(1,)) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() with self.assertRaisesRegex(RuntimeError, expected_error): rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,)) # The RPCs should run to completion since we override the timeout. rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=5).wait() rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=5) # Passing in a zero timeout should ensure that the RPC won't time out. rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=0).wait() rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=0) # Reset for clean shutdown rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) def test_dist_init_decorator(self): @dist_init(setup_rpc=False) def test_func(self): return "expected result" self.assertEqual(test_func(self), "expected result") @dist_init def test_func(self): return "expected result" self.assertEqual(test_func(self), "expected result") def test_use_rpc_pickler(self): class TestPickler: pass test_pickler = TestPickler() with _use_rpc_pickler(test_pickler): self.assertTrue(torch.distributed.rpc.api._default_pickler is test_pickler) self.assertTrue( torch.distributed.rpc.api._default_pickler is _internal_rpc_pickler ) @dist_init def test_wait_all(self): with _wait_all(): self.assertTrue(_thread_local_var.future_list == []) dst = worker_name((self.rank + 1) % self.world_size) fut = rpc.rpc_async(dst, torch.add, (torch.ones(2, 2), 1)) self.assertTrue(len(_thread_local_var.future_list) == 1) self.assertTrue(isinstance(_thread_local_var.future_list[0], torch._C.Future)) self.assertTrue(fut.done()) self.assertEqual(fut.wait(), torch.ones(2, 2) + 1) self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_wait_all_multiple_call(self): with _wait_all(): self.assertTrue(_thread_local_var.future_list == []) dst = worker_name((self.rank + 1) % self.world_size) for i in range(20): fut = rpc.rpc_async(dst, torch.add, (torch.ones(i, i), 1)) res = rpc.rpc_sync(dst, torch.add, (torch.ones(i, i), 1)) self.assertEqual(res, torch.ones(i, i) + 1) self.assertEqual(fut.wait(), torch.ones(i, i) + 1) self.assertTrue(len(_thread_local_var.future_list) == 20) self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_wait_all_timeout(self): expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): with _wait_all(): self.assertTrue(_thread_local_var.future_list == []) dst = worker_name((self.rank + 1) % self.world_size) timeout = 0.1 # 100 ms fut = rpc.rpc_async(dst, my_sleep_func, args=(1,), timeout=timeout) self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_wait_all_raise_in_user_func(self): with self.assertRaises(ValueError): with _wait_all(): self.assertTrue(_thread_local_var.future_list == []) dst = worker_name((self.rank + 1) % self.world_size) fut = rpc.rpc_async(dst, raise_func) self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_wait_all_raise_in_body(self): with self.assertRaises(ValueError): with _wait_all(): raise_func() self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_function_not_on_callee(self): # test that if a function does not exist on a callee, we don't crash, # instead we get an AttributeError indicating that the func does not exist. this_module = sys.modules[__name__] caller_worker = "worker0" callee_worker = "worker1" if self.rank == 1: # Use delattr to remove the binding of a func on this nodes delattr(this_module, "foo_add") # notify remote end that we have removed it. rpc.rpc_sync(caller_worker, set_value, args=(self.rank,)) if self.rank == 0: # func exists on caller, but not callee. # wait for remote end to remove the binding of foo_add func. wait_for_value_future() # Ensure that we have the attribute on this module. Otherwise, the test could fail due to a caller-side pickling error. self.assertTrue(hasattr(this_module, "foo_add")) with self.assertRaisesRegex( AttributeError, "RPC pickler does not serialize" ): rpc.rpc_sync(callee_worker, foo_add, args=()) @dist_init def test_non_garbage_collected_user_rref_due_to_local_circular_dependency(self): dst_worker_name = worker_name((self.rank + 1) % self.world_size) a = MyClass(1) b = MyClass(2) # This is to make Python not garbage collect a and b. a.other = b b.other = a n = self.rank a.rref = rpc.remote( dst_worker_name, torch.add, args=(torch.ones(n, n), 2) ) @dist_init(setup_rpc=False) def test_use_rref_after_shutdown(self): rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) n = self.rank + 1 dst_rank = n % self.world_size rref = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) # pass in graceful=True to ensure that local UserRRefs are deleted. rpc.shutdown(graceful=True) with self.assertRaisesRegex( RuntimeError, "Cannot call to_here\\(\\) on it after deletion." ): rref.to_here() with self.assertRaisesRegex( RuntimeError, "Cannot call fork an UserRRef after deletion." ): import torch.distributed.rpc.internal as internal internal.serialize(rref) @staticmethod def _return_gpu_tensor(): return torch.rand(3, 3).cuda(0) @staticmethod def _return_gpu_tensor_list(): return [torch.rand(3, 3).cuda(0), torch.rand(3, 3).cuda(1)] @staticmethod def _gpu_tensor_list_arg(tensor_list): return torch.rand(3, 3) def _create_rref(self): owner_rank = (self.rank + 2) % self.world_size return rpc.remote( worker_name(owner_rank), torch.add, args=(torch.zeros(2, 2), 1) ) @dist_init def test_user_rrefs_confirmed(self): dst_rank = (self.rank + 1) % self.world_size rref = self._create_rref() ret = rpc.rpc_sync( worker_name(dst_rank), check_rref_confirmed, args=(rref,) ) self.assertEqual(ret, True) @dist_init def test_user_rrefs_confirmed_remote(self): dst_rank = (self.rank + 1) % self.world_size rref = self._create_rref() ret_rref = rpc.remote( worker_name(dst_rank), check_rref_confirmed, args=(rref,) ) self.assertEqual(ret_rref.to_here(), True) @dist_init def test_rref_py_pickle_not_supported(self): local_rref = RRef(35) with TemporaryFileName() as fname: with self.assertRaisesRegex(RuntimeError, "Can not pickle rref in python pickler"): torch.save(local_rref, fname) @dist_init def test_remote_throw(self): rref = rpc.remote(worker_name((self.rank + 1) % self.world_size), raise_or_inc, args=(torch.ones(2),)) with self.assertRaisesRegex(Exception, ".*Expected error.*"): rref.to_here() @dist_init def test_non_cont_tensors(self): if self.rank == 0: # Create a non-contiguous tensor. t = torch.rand(5, 5) t_view = t.narrow(1, 2, 2) self.assertFalse(t_view.is_contiguous()) t_cont = t_view.contiguous() self.assertTrue(t_cont.is_contiguous()) self.assertEqual(t_view, t_cont) # Send non-cont tensor over RPC. next_rank = (self.rank + 1) % self.world_size t_ret = rpc.rpc_sync(worker_name(next_rank), non_cont_test, args=(t_view, t_cont)) # Verify the returned tensor. self.assertEqual(t_view, t_ret) self.assertFalse(t_ret.is_contiguous()) @dist_init def test_callback_simple(self): set_by_cb = concurrent.futures.Future() n = self.rank + 1 def callback(fut): ret = fut.wait() self.assertEqual(ret, torch.ones(n, n) * 2) set_by_cb.set_result(ret.clone() + 1) fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) fut.then(callback) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) self.assertEqual(set_by_cb.result(), torch.ones(n, n) * 2 + 1) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) @dist_init def test_callback_wrong_arg_num(self): set_by_cb = concurrent.futures.Future() n = self.rank + 1 fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) cb_fut = fut.then(my_function) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) with self.assertRaisesRegex( RuntimeError, "my\\_function\\(\\) missing 2 required positional arguments" ): cb_fut.wait() @dist_init def test_callback_wrong_arg_type(self): dst = worker_name((self.rank + 1) % self.world_size) fut0 = rpc.rpc_async(dst, torch.add, args=(torch.ones(2, 2), 1)) fut1 = fut0.then(lambda x: x + 1) with self.assertRaisesRegex( RuntimeError, "unsupported operand type\\(s\\) for \\+" ): fut1.wait() @dist_init def test_callback_multi(self): num_cbs = 10 n = self.rank + 1 def callback(idx, fut): ret = fut.wait() self.assertEqual(ret, torch.ones(n, n) * 2) return ret + idx fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) cb_futs = [] for idx in range(num_cbs): cb_futs.append(fut.then(partial(callback, idx))) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) for idx in range(num_cbs): self.assertEqual( cb_futs[idx].wait(), torch.ones(n, n) * 2 + idx ) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) @dist_init def test_callback_chain(self): n = self.rank + 1 dst = worker_name(n % self.world_size) def callback(fut): return fut.wait() + 1 fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), 1) ) num_cbs = 20 for _ in range(num_cbs): fut = fut.then(callback) self.assertEqual(fut.wait(), torch.ones(n, n) + 1 + num_cbs) @dist_init def test_callback_in_rpc(self): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) ret = rpc.rpc_sync( dst1, add_use_future_cb, args=(dst2, torch.ones(2, 2), 1, 2) ) self.assertEqual(ret, torch.ones(2, 2) + 1 + 2) @dist_init def test_callback_with_ret(self): dst = worker_name((self.rank + 1) % self.world_size) def callback(fut0): fut2 = rpc.rpc_async( dst, torch.add, args=(fut0.wait(), 1) ).then(lambda fut1: fut1.wait() + 1) return fut2.wait() fut3 = rpc.rpc_async( dst, torch.add, args=(torch.ones(2, 2), 1) ).then(callback) self.assertEqual(fut3.wait(), torch.ones(2, 2) + 3) @dist_init def test_callback_with_error(self): dst = worker_name((self.rank + 1) % self.world_size) def callback(fut0): with self.assertRaisesRegex(ValueError, "Expected error"): fut0.wait() raise RuntimeError("Another expected error") fut1 = rpc.rpc_async(dst, raise_func).then(callback) with self.assertRaisesRegex(RuntimeError, "Another expected error"): fut1.wait() @dist_init def test_callback_none(self): dst = worker_name((self.rank + 1) % self.world_size) with self.assertRaisesRegex( TypeError, "incompatible function arguments." ): rpc.rpc_async(dst, raise_func).then(None) @dist_init def test_add_done_callback(self): set_by_cb = False n = self.rank + 1 def callback(fut): nonlocal set_by_cb fut.wait() set_by_cb = True fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) fut.add_done_callback(callback) fut_then = fut.then(lambda _: True) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) # We have no guarantee that the add_done_callback fn will execute before the test finishes. # Adding a 'then' callback that runs afterwards to guarantee we wait for the first callback fut_then.wait() self.assertTrue(set_by_cb) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) @dist_init def test_mark_future_twice(self): fut = rpc.rpc_async( worker_name((self.rank + 1) % self.world_size), torch.add, args=(torch.zeros(2, 2), 1) ) self.assertEqual(fut.wait(), torch.zeros(2, 2) + 1) with self.assertRaisesRegex( RuntimeError, "Future can only be marked completed once" ): fut.set_result(1) @dist_init def test_pickle_future(self): fut = torch.futures.Future() errMsg = "Can not pickle torch.futures.Future" dst = worker_name((self.rank + 1) % self.world_size) with TemporaryFileName() as fname: with self.assertRaisesRegex(RuntimeError, errMsg): rpc.rpc_sync(dst, fail_on_fut, args=(fut,)) with TemporaryFileName() as fname: with self.assertRaisesRegex(RuntimeError, errMsg): rpc.rpc_async(dst, fail_on_fut, args=(fut,)) with TemporaryFileName() as fname: with self.assertRaisesRegex(RuntimeError, errMsg): rpc.remote(dst, fail_on_fut, args=(fut,)) @dist_init def test_future_done(self): dst = worker_name((self.rank + 1) % self.world_size) fut = rpc.rpc_async(dst, torch.add, args=(torch.zeros(2), 1)) fut.wait() self.assertTrue(fut.done()) @dist_init def test_future_done_exception(self): dst = worker_name((self.rank + 1) % self.world_size) fut = rpc.rpc_async(dst, raise_func) with self.assertRaisesRegex(ValueError, "Expected error"): fut.wait() self.assertTrue(fut.done()) def _test_future_cb(self, func): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) ret = rpc.rpc_sync( dst1, func, args=(dst2, torch.ones(2, 2), 1, 2) ) self.assertEqual(ret, torch.ones(2, 2) + 1 + 2) @dist_init def test_future_in_rpc(self): self._test_future_cb(add_use_future_set_result) @dist_init def test_future_nested_callback(self): self._test_future_cb(add_use_future_nested_cb) def _run_func_in_mode(self, to, fn, mode, args=None, kwargs=None): if mode == RPCExecMode.SYNC: return rpc.rpc_sync(to, fn, args=args, kwargs=kwargs) elif mode == RPCExecMode.ASYNC: return rpc.rpc_async(to, fn, args=args, kwargs=kwargs).wait() elif mode == RPCExecMode.REMOTE: return rpc.remote(to, fn, args=args, kwargs=kwargs).to_here() def _test_async_function_raise(self, mode): with self.assertRaisesRegex(RuntimeError, "Expected error"): self._run_func_in_mode( worker_name((self.rank + 1) % self.world_size), async_raise_func, mode ) @dist_init def test_async_function_raise(self): self._test_async_function_raise(RPCExecMode.SYNC) @dist_init def test_async_function_raise_async(self): self._test_async_function_raise(RPCExecMode.ASYNC) @dist_init def test_async_function_raise_remote(self): self._test_async_function_raise(RPCExecMode.REMOTE) def _test_async_function_wrong_return_type(self, mode): errMsg = ( "Functions decorated with @rpc\\.async_function must return a " "torch\\.futures\\.Future object," ) with self.assertRaisesRegex(RuntimeError, errMsg): self._run_func_in_mode( worker_name((self.rank + 1) % self.world_size), async_wrong_type, mode ) @dist_init def test_async_function_wrong_return_type(self): self._test_async_function_wrong_return_type(RPCExecMode.SYNC) @dist_init def test_async_function_wrong_return_type_async(self): self._test_async_function_wrong_return_type(RPCExecMode.ASYNC) @dist_init def test_async_function_wrong_return_type_remote(self): self._test_async_function_wrong_return_type(RPCExecMode.REMOTE) @dist_init def test_async_function_simple(self): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) ret = rpc.rpc_sync(dst1, async_add, args=(dst2, torch.ones(2, 2), 1)) self.assertEqual(ret, torch.ones(2, 2) + 1) def _test_async_function(self, fn, mode=RPCExecMode.SYNC): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) args = (dst2, torch.ones(2, 2), 1, 2) ret = self._run_func_in_mode(dst1, fn, mode, args=args) self.assertEqual(ret, torch.ones(2, 2) + 3) @dist_init def test_async_function_with_future_ctor(self): self._test_async_function(async_add_with_future_ctor) @dist_init def test_async_function_with_future_ctor_remote(self): self._test_async_function( async_add_with_future_ctor, RPCExecMode.REMOTE ) @dist_init def test_async_function_chained(self): self._test_async_function(async_add_chained) @dist_init def test_async_function_chained_remote(self): self._test_async_function(async_add_chained, RPCExecMode.REMOTE) @dist_init def test_async_function_nested(self): self._test_async_function(async_add_nested) @dist_init def test_async_function_nested_remote(self): self._test_async_function(async_add_nested, RPCExecMode.REMOTE) @dist_init def test_async_static_method(self): self._test_async_function(AsyncExecutionClass.static_async_add) @dist_init def test_async_static_method_remote(self): self._test_async_function( AsyncExecutionClass.static_async_add, RPCExecMode.REMOTE ) @dist_init def test_async_class_method(self): self._test_async_function(AsyncExecutionClass.class_async_add) @dist_init def test_async_class_method_remote(self): self._test_async_function( AsyncExecutionClass.class_async_add, RPCExecMode.REMOTE ) def _test_test_async_class_rref_proxy(self, mode=RPCExecMode.SYNC): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) rref = rpc.remote(dst1, AsyncExecutionClass) x = torch.ones(2, 2) y = torch.ones(2, 2) + 1 if mode == RPCExecMode.SYNC: ret = rref.rpc_sync().static_async_add(dst2, x, x, y) ret += rref.rpc_sync().class_async_add(dst2, x, x, y) ret += rref.rpc_sync().bound_async_add(dst2, x, x, y) elif mode == RPCExecMode.ASYNC: ret = rref.rpc_async().static_async_add(dst2, x, x, y).wait() ret += rref.rpc_async().class_async_add(dst2, x, x, y).wait() ret += rref.rpc_async().bound_async_add(dst2, x, x, y).wait() elif mode == RPCExecMode.REMOTE: ret = rref.remote().static_async_add(dst2, x, x, y).to_here() ret += rref.remote().class_async_add(dst2, x, x, y).to_here() ret += rref.remote().bound_async_add(dst2, x, x, y).to_here() self.assertEqual(ret, 3 * 4 * x) @dist_init def test_async_class_rref_proxy(self): self._test_test_async_class_rref_proxy() @dist_init def test_async_class_rref_proxy_async(self): self._test_test_async_class_rref_proxy(mode=RPCExecMode.ASYNC) @dist_init def test_async_class_rref_proxy_remote(self): self._test_test_async_class_rref_proxy(mode=RPCExecMode.REMOTE) def _test_async_function_multi(self, fn, mode=RPCExecMode.SYNC): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) num = 20 step = 3 args = (dst2, torch.ones(2, 2), num, step) ret = self._run_func_in_mode(dst1, fn, mode, args=args) self.assertEqual(ret, torch.ones(2, 2) + num * step) @dist_init def test_async_function_multi_chained(self): self._test_async_function_multi(async_add_chained_multi) @dist_init def test_async_function_multi_chained_async(self): self._test_async_function_multi( async_add_chained_multi, RPCExecMode.ASYNC ) @dist_init def test_async_function_multi_chained_remote(self): self._test_async_function_multi( async_add_chained_multi, RPCExecMode.REMOTE ) @dist_init def test_async_function_multi_fanout(self): self._test_async_function_multi(async_add_multi_fanout) @dist_init def test_async_function_multi_fanout_async(self): self._test_async_function_multi( async_add_multi_fanout, RPCExecMode.ASYNC ) @dist_init def test_async_function_multi_fanout_remote(self): self._test_async_function_multi( async_add_multi_fanout, RPCExecMode.REMOTE ) def _test_return_future(self, mode): with self.assertRaisesRegex( RuntimeError, "Can not pickle torch.futures.Future" ): self._run_func_in_mode( worker_name((self.rank + 1) % self.world_size), return_future, mode ) @dist_init def test_return_future(self): self._test_return_future(RPCExecMode.SYNC) @dist_init def test_return_future_async(self): self._test_return_future(RPCExecMode.ASYNC) @dist_init def test_return_future_remote(self): self._test_return_future(RPCExecMode.REMOTE) @dist_init def test_rref_timeout(self): # This test is similar to ones in FaultyProcessGroupTest, but is meant to be # run with other backends besides ProcessGroup. if self.rank != 0: return dst_rank = (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) # 10 ms timeout rref = rpc.remote(dst_worker, my_sleep_func, args=(2, ), timeout=0.01) # Future corresponding to the remote creation should time out. expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rref._get_future().wait() # Call to ensure pending callbacks are run. wait_until_pending_futures_and_users_flushed() with self.assertRaisesRegex(RuntimeError, "RRef creation"): rref.to_here() wait_until_owners_and_forks_on_rank(1, 1, rank=1) @dist_init(setup_rpc=False) @unittest.skipIf( os.environ.get("RPC_INIT_WITH_TCP", None) == "1", "init_pg_then_rpc does not work with TCP init, see https://github.com/pytorch/pytorch/issues/41614." ) def test_init_pg_then_rpc(self): dist.init_process_group( backend="gloo", init_method=self.init_method, rank=self.rank, world_size=self.world_size, ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) # Test RPC. next_rank = (self.rank + 1) % self.world_size ret = rpc.rpc_sync(worker_name(next_rank), torch.add, args=(torch.ones(2, 2), 1)) self.assertEqual(ret, torch.ones(2, 2) + 1) # Test PG dist.barrier() rpc.shutdown() @dist_init(setup_rpc=False) @unittest.skipIf( os.environ.get("RPC_INIT_WITH_TCP", None) == "1", "init_rpc_then_pg does not work with TCP init, see https://github.com/pytorch/pytorch/issues/41614." ) def test_init_rpc_then_pg(self): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) dist.init_process_group( backend="gloo", init_method=self.init_method, rank=self.rank, world_size=self.world_size, ) # Test RPC. next_rank = (self.rank + 1) % self.world_size ret = rpc.rpc_sync(worker_name(next_rank), torch.add, args=(torch.ones(2, 2), 1)) self.assertEqual(ret, torch.ones(2, 2) + 1) # Test PG dist.barrier() rpc.shutdown() @dist_init def test_wait_all_with_exception(self): futs = [] dst = worker_name((self.rank + 1) % self.world_size) for _ in range(10): futs.append(rpc.rpc_async(dst, raise_func)) with self.assertRaisesRegex(ValueError, "Expected error"): ret = torch.futures.wait_all(futs) @dist_init def test_wait_all_with_partial_exception(self): futs = [] dst = worker_name((self.rank + 1) % self.world_size) for _ in range(10): futs.append(rpc.rpc_async(dst, torch.add, args=(torch.ones(2), 1))) futs.append(rpc.rpc_async(dst, raise_func)) with self.assertRaisesRegex(ValueError, "Expected error"): ret = torch.futures.wait_all(futs) @dist_init(setup_rpc=False) @unittest.skipIf( os.environ.get("RPC_INIT_WITH_TCP", None) == "1", "Test does not work with TCP init, see https://github.com/pytorch/pytorch/issues/46491", ) def test_init_rpc_twice(self): initialize_pg(self.file_init_method, self.rank, self.world_size) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) rpc.shutdown() # Wait for all init to complete. dist.barrier() # Ensure rpc initialization works again. rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) # Verify RPCs work after re-init. dst = worker_name((self.rank + 1) % self.world_size) rpc.rpc_sync(dst, torch.add, args=(torch.ones(2, 2), 1)) rpc.rpc_sync(dst, foo_add, args=()) rpc.shutdown() def test_wrong_types(self): with self.assertRaisesRegex( TypeError, "Argument backend must be a member of BackendType", ): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, backend="TENSORPIPE", ) with self.assertRaisesRegex( TypeError, "Argument rpc_backend_options must be an instance of RpcBackendOptions", ): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, backend=self.rpc_backend, rpc_backend_options={"init_method": self.init_method} ) def test_cannot_infer_backend_from_options(self): # An exception should be raised if the backend isn't specified but # options are given which are not an instance of any of the known # agents' option classes. rpc_backend_options = FooBackendOptions(self.init_method) with self.assertRaisesRegex(TypeError, "Could not infer backend for options"): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, # Do _not_ pass backend. rpc_backend_options=rpc_backend_options, ) @dist_init def test_owner_rref_backward(self): dst = worker_name((self.rank + 1) % self.world_size) t1 = torch.rand(10, 10, requires_grad=True) rref = rpc.RRef(t1.sum() + t1.sum()) rref.backward() expected_grad = torch.ones_like(t1) * 2 self.assertEqual(expected_grad, t1.grad) with dist_autograd.context() as context_id: t2 = rpc.rpc_sync(dst, torch.add, args=(t1, t1)) rref = rpc.RRef(t2.sum()) rref.backward(context_id) self.assertEqual(expected_grad, dist_autograd.get_gradients(context_id)[t1]) # Double backward. with dist_autograd.context() as context_id: t2 = rpc.rpc_sync(dst, torch.add, args=(t1, t1)) rref = rpc.RRef(t2.sum()) rref.backward(context_id, retain_graph=True) rref.backward(context_id) self.assertEqual(expected_grad * 2, dist_autograd.get_gradients(context_id)[t1]) # Test errors. with self.assertRaisesRegex(RuntimeError, "tensors does not require grad and does not have a grad_fn"): rpc.RRef(torch.rand(10)).backward() with self.assertRaisesRegex(RuntimeError, "grad can be implicitly created only for scalar outputs"): rpc.RRef(torch.rand(10, requires_grad=True)).backward() with self.assertRaisesRegex(RuntimeError, "Could not find autograd context with id: 100"): rpc.RRef(torch.rand(10, requires_grad=True).sum()).backward(100) with self.assertRaisesRegex(RuntimeError, "RRef should contain a tensor for .backward()"): rpc.RRef("foo").backward() @staticmethod def _sum(x): return x.sum() @staticmethod def _identity(x): return x @dist_init def test_user_rref_backward(self): dst = worker_name((self.rank + 1) % self.world_size) t = torch.rand(10, requires_grad=True) with dist_autograd.context() as context_id: rref = rpc.remote(dst, RpcTest._sum, args=(t,)) rref.backward(context_id, retain_graph=True) rref.backward(context_id) self.assertEqual(torch.ones_like(t) * 2, dist_autograd.get_gradients(context_id)[t]) with dist_autograd.context() as context_id: rref = rpc.remote(dst, RpcTest._identity, args=("foo",)) with self.assertRaisesRegex(RuntimeError, "RRef should contain a tensor for .backward()"): rref.backward(context_id) with self.assertRaisesRegex(RuntimeError, "User RRefs require 'dist_autograd_ctx_id' to be specified"): rref.backward() class ProcessGroupAgentRpcTest(RpcAgentTestFixture): def test_mismatched_type_for_options(self): # An exception should be raised if the options are not an instance of # ProcessGroupRpcBackendOptions. rpc_backend_options = FooBackendOptions(self.init_method) with self.assertRaisesRegex( TypeError, "`rpc_backend_options` must be a `ProcessGroupRpcBackendOptions`" ): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, backend=rpc.BackendType.PROCESS_GROUP, rpc_backend_options=rpc_backend_options, ) def test_infer_backend_from_options(self): rpc_backend_options = rpc.ProcessGroupRpcBackendOptions( init_method=self.init_method ) with self.assertLogs("torch.distributed.rpc", logging.WARNING) as cm: rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, # Do _not_ pass backend. rpc_backend_options=rpc_backend_options, ) self.assertIn( "To silence this warning pass `backend=BackendType.PROCESS_GROUP` explicitly.", "\n".join(cm.output), ) self.assertIsInstance(rpc.api._get_current_rpc_agent(), rpc.ProcessGroupAgent) def test_logs_deprecation_warning(self): with self.assertLogs("torch.distributed.rpc", logging.WARNING) as cm: rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, backend=rpc.BackendType.PROCESS_GROUP, rpc_backend_options=self.rpc_backend_options, ) self.assertIn( "It is recommended to migrate to the TENSORPIPE backend.", "\n".join(cm.output), ) @skip_if_lt_x_gpu(2) @dist_init def test_cuda(self): dst = worker_name((self.rank + 1) % self.world_size) t1 = torch.rand(3, 3).cuda(0) t2 = torch.rand(3, 3).cuda(1) t3 = torch.rand(3, 3) # cuda tensors as args fail. with self.assertRaisesRegex(RuntimeError, "RPC backend only supports CPU tensors.*Found tensor on device: cuda:0"): rpc.rpc_sync(dst, torch.add, args=(t1, t2)) # mix of cpu and cuda tensors as args fail. with self.assertRaisesRegex(RuntimeError, "RPC backend only supports CPU tensors.*Found tensor on device: cuda:0"): rpc.rpc_sync(dst, torch.add, args=(t1, t3)) # gpu tensor list as args fails. with self.assertRaisesRegex(RuntimeError, "RPC backend only supports CPU tensors.*Found tensor on device: cuda:0"): rpc.rpc_sync(dst, RpcTest._gpu_tensor_list_arg, args=([t1, t2])) # cuda tensors as return values fail. with self.assertRaisesRegex(RuntimeError, "RPC backend only supports CPU tensors.*Found tensor on device: cuda:0"): rpc.rpc_sync(dst, RpcTest._return_gpu_tensor, args=()) # cuda tensors as a list of return value fails with self.assertRaisesRegex(RuntimeError, "RPC backend only supports CPU tensors.*Found tensor on device: cuda:0"): rpc.rpc_sync(dst, RpcTest._return_gpu_tensor_list, args=()) # Sending to self should fail too. with self.assertRaisesRegex(RuntimeError, "RPC backend only supports CPU tensors.*Found tensor on device: cuda:0"): rpc.rpc_sync(worker_name(self.rank), torch.add, args=(t1, t2)) def test_single_threaded_rref_owner(self): # We need a process group in order to perform a barrier at the end. initialize_pg(self.file_init_method, self.rank, self.world_size) # This test aims to verify if the server can handle all internal RPC # messages using just one thread. caller_rank = 0 callee_rank = 1 rpc_backend_options = rpc.ProcessGroupRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_send_recv_threads=1 ) if self.rank == callee_rank else self.rpc_backend_options rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) if self.rank == caller_rank: dst = worker_name(callee_rank) rrefs = [] # makes sure there is no existing OwnerRRefs on dst info = rpc.rpc_sync(dst, get_rref_debug_info) self.assertEqual(0, int(info["num_owner_rrefs"])) # creating RRefs on dst for i in range(20): rrefs.append( rpc.remote(dst, delayed_add, args=(torch.zeros(2, 2), i)) ) # using RRefs on dst futs = [] for i in range(len(rrefs)): futs.append( rpc.rpc_async(dst, my_rref_function, args=(rrefs[i], rrefs[i])) ) # wait for results and check for i in range(len(futs)): self.assertEqual(2 * (torch.zeros(2, 2) + i), futs[i].wait()) # check we created the expected number of RRefs on dst info = rpc.rpc_sync(dst, get_rref_debug_info) num_owner_rrefs = int(info["num_owner_rrefs"]) self.assertEqual(len(futs), num_owner_rrefs) # trigger RRef deletion del futs del rrefs # wait until OwnerRRefs are cleared on dst while num_owner_rrefs > 0: info = rpc.rpc_sync(dst, get_rref_debug_info) num_owner_rrefs = int(info["num_owner_rrefs"]) time.sleep(0.01) # use a barrier to prevent messages sent during shutdown occupies the # only thread on callee (rank == 1) too early. dist.barrier() rpc.shutdown() def test_single_threaded_rref_to_here(self): # We need a process group in order to perform a barrier at the end. initialize_pg(self.file_init_method, self.rank, self.world_size) # This test aims to verify if the server can handle all internal RPC # messages using just one thread. caller_rank = 0 callee_rank = 1 rpc_backend_options = rpc.ProcessGroupRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_send_recv_threads=1 ) if self.rank == callee_rank else self.rpc_backend_options rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) if self.rank == caller_rank: dst = worker_name(callee_rank) rrefs = [] # makes sure there is no existing OwnerRRefs on dst info = rpc.rpc_sync(dst, get_rref_debug_info) self.assertEqual(0, int(info["num_owner_rrefs"])) # creating RRefs on dst for i in range(20): rrefs.append( rpc.remote(dst, delayed_add, args=(torch.zeros(2, 2), i)) ) # wait for results and check for i in range(len(rrefs)): self.assertEqual(torch.zeros(2, 2) + i, rrefs[i].to_here()) # check we created the expected number of RRefs on dst info = rpc.rpc_sync(dst, get_rref_debug_info) num_owner_rrefs = int(info["num_owner_rrefs"]) self.assertEqual(len(rrefs), num_owner_rrefs) # trigger RRef deletion del rrefs # wait until OwnerRRefs are cleared on dst while num_owner_rrefs > 0: info = rpc.rpc_sync(dst, get_rref_debug_info) num_owner_rrefs = int(info["num_owner_rrefs"]) time.sleep(0.01) # use a barrier to prevent messages sent during shutdown occupies the # only thread on callee (rank == 1) too early. dist.barrier() rpc.shutdown() @dist_init def test_process_group_debug_info(self): rpc.enable_gil_profiling(True) initialize_pg(self.file_init_method, self.rank, self.world_size) NUM_THREAD = self.rpc_backend_options.num_send_recv_threads info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertIn("agent.num_pending_requests", info) self.assertIn("agent.thread_pool_size", info) self.assertIn("agent.num_idle_threads", info) self.assertIn("agent.gil_average_wait_time_us", info) self.assertEqual(int(info["agent.num_pending_requests"]), 0) self.assertEqual(int(info["agent.thread_pool_size"]), NUM_THREAD) self.assertEqual(int(info["agent.num_idle_threads"]), NUM_THREAD) # for the above check, add a barrier to ensure that another worker # cannot send a request before we check num_idle_threads, since we'd # use up an idle thread if we start processing that request. dist.barrier() dst_rank = (self.rank + 1) % self.world_size fut = rpc.rpc_async( worker_name(dst_rank), set_and_check_done, args=(dst_rank,) ) # blocks until the request arrives self.assertEqual(self.rank, VALUE_FUTURE.result()) info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertIn("agent.num_pending_requests", info) self.assertIn("agent.thread_pool_size", info) self.assertIn("agent.num_idle_threads", info) self.assertIn("agent.gil_average_wait_time_us", info) self.assertGreaterEqual(float(info["agent.gil_average_wait_time_us"]), 0) self.assertEqual(int(info["agent.num_pending_requests"]), 1) self.assertEqual(int(info["agent.thread_pool_size"]), NUM_THREAD) num_idle_threads = int(info["agent.num_idle_threads"]) # as we cannot know for sure whether the send thread has returned, there # might be either 1 or 2 busy threads self.assertTrue(num_idle_threads in [NUM_THREAD - 1, NUM_THREAD - 2]) # add a barrier to make sure the request is not finished before checking # num_pending_requests dist.barrier() DONE_FUTURE.set_result(self.rank) self.assertEqual(dst_rank, fut.wait()) # add a barrier to make sure the dst_rank has finished processing the # request dist.barrier() info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertIn("agent.num_pending_requests", info) self.assertIn("agent.thread_pool_size", info) self.assertIn("agent.num_idle_threads", info) self.assertEqual(int(info["agent.num_pending_requests"]), 0) self.assertEqual(int(info["agent.thread_pool_size"]), NUM_THREAD) for retry in range(3): # even if the future has completed, there is no guarantee that # the local send/recv threads would have finished. We try three # times. (NB: this might potentially be flaky. If flakiness does # occur, then we have to relax the assert.) info = rpc.api._get_current_rpc_agent().get_debug_info() if int(info["agent.num_idle_threads"]) == NUM_THREAD: break time.sleep(0.1) self.assertEqual(int(info["agent.num_idle_threads"]), NUM_THREAD) # add a barrier to make sure SHUTDOWN message is not sent dist.barrier() @dist_init(setup_rpc=False) def test_set_and_get_num_send_recv_threads(self): NUM_THREADS = 27 rpc_backend_options = rpc.ProcessGroupRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_send_recv_threads=NUM_THREADS ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertEqual(int(info["agent.thread_pool_size"]), NUM_THREADS) rpc.shutdown() @dist_init(setup_rpc=False) def test_process_group_set_default_timeout(self): timeout = 0.5 rpc_backend_options = rpc.ProcessGroupRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_send_recv_threads=self.rpc_backend_options.num_send_recv_threads, rpc_timeout=timeout ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) default_timeout = rpc.get_rpc_timeout() self.assertEqual(default_timeout, timeout) rpc.shutdown() @dist_init(setup_rpc=False) def test_process_group_options_throw_on_timedelta_timeout(self): from datetime import timedelta timeout = timedelta() # Ensure that constructing ProcessGroupRpcBackendOptions with timedelta fails with self.assertRaisesRegex(TypeError, "incompatible constructor arguments"): rpc_backend_options = rpc.ProcessGroupRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_send_recv_threads=self.rpc_backend_options.num_send_recv_threads, rpc_timeout=timeout, ) class FaultyAgentRpcTest(RpcAgentTestFixture): # no faulty_messages defined so this fails all retryable messages - see # faulty_rpc_agent_test_fixture.py for the list of retryable messages. @dist_init(messages_to_delay={}) def test_check_failed_messages(self): if self.rank == 0: dst_worker_b = worker_name((self.rank + 1) % self.world_size) dst_worker_c = worker_name((self.rank + 2) % self.world_size) # Worker0 sends RPC to Worker1 and creates an RRef there rref = rpc.remote(dst_worker_b, torch.add, args=(torch.ones(2, 2), torch.ones(2, 2))) # Worker0 sends an RPC to Worker2 with the RRef as an arg rpc.remote(dst_worker_c, add_rref_to_value, args=(rref, torch.ones(2, 2))) # check if the output is as expected self.assertEqual(rref.to_here(), torch.add(torch.ones(2, 2), torch.ones(2, 2))) # explicitly delete all User RRefs _delete_all_user_and_unforked_owner_rrefs() @dist_init def test_verify_backend_options(self): self.assertEqual(self.rpc_backend, rpc.backend_registry.BackendType.FAULTY_PROCESS_GROUP) self.assertEqual(self.rpc_backend_options.num_send_recv_threads, 8) self.assertEqual(self.rpc_backend_options.num_fail_sends, 3) self.assertEqual(len(self.rpc_backend_options.messages_to_fail), 4) self.assertEqual(len(self.rpc_backend_options.messages_to_delay), 2) self.assertEqual(self.rpc_backend_options.rpc_timeout, rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) @dist_init(faulty_messages=["RREF_FORK_REQUEST", "RREF_CHILD_ACCEPT"]) def test_custom_faulty_messages(self): self.assertEqual( set(["RREF_FORK_REQUEST", "RREF_CHILD_ACCEPT"]), set(self.rpc_backend_options.messages_to_fail), ) @dist_init(faulty_messages=[]) def test_no_faulty_messages(self): self.assertEqual(len(self.rpc_backend_options.messages_to_fail), 0) @dist_init(messages_to_delay={"SCRIPT_CALL": 1.5}) def test_custom_messages_to_delay(self): self.assertEqual(self.rpc_backend_options.messages_to_delay, {"SCRIPT_CALL": 1.5}) def _test_remote_message_dropped_pickle(self, dst=None): if self.rank != 0: return dst_rank = dst if dst is not None else (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) # Since we fail python_remote_call messages synchronously, the future # corresponding to this remote call will be marked with an error when # this function returns. rref = rpc.remote(dst_worker, my_sleep_func, args=(1,)) # Call to ensure pending callbacks are run. wait_until_pending_futures_and_users_flushed() # Attempt to fork the RRef should raise an error indicating the rpc.remote timeout. with self.assertRaisesRegex(RuntimeError, "RRef creation"): rref._serialize() # Test that using RRef as arg over RPC (which forks) results in the same # error with self.assertRaisesRegex(RuntimeError, "RRef creation"): rpc.rpc_async(dst_worker, add_rref_to_value, args=(rref, 1)) @dist_init(faulty_messages=["PYTHON_REMOTE_CALL"]) def test_remote_message_dropped_pickle(self): self._test_remote_message_dropped_pickle() @dist_init(faulty_messages=["PYTHON_REMOTE_CALL"]) def test_remote_message_dropped_pickle_to_self(self): self._test_remote_message_dropped_pickle(self.rank) def _test_remote_message_dropped_timeout(self, func, args, dst=None): if self.rank != 0: return # test the case where rpc.remote() message creation is completely dropped. dst_rank = dst if dst is not None else (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) # Since we fail python_remote_call messages synchronously, the future # corresponding to this remote call will be marked with an error when # this function returns. rref = rpc.remote(dst_worker, func, args=args) # Call to ensure pending callbacks are run. wait_until_pending_futures_and_users_flushed() with self.assertRaisesRegex(RuntimeError, "RRef creation"): rref.to_here() # Note: during shutdown, logs will indicate "Could not find OwnerRRef..." # on the owning nodes, this is expected because the OwnerRRef was never # successfully created. Therefore, delAllUsers will work as expected. @dist_init(faulty_messages=["SCRIPT_REMOTE_CALL"]) def test_builtin_remote_message_dropped_timeout(self): func = torch.add args = (torch.tensor(1), torch.tensor(1)) self._test_remote_message_dropped_timeout(func, args) @dist_init(faulty_messages=["SCRIPT_REMOTE_CALL"]) def test_builtin_remote_message_dropped_timeout_to_self(self): func = torch.add args = (torch.tensor(1), torch.tensor(1)) self._test_remote_message_dropped_timeout(func, args, dst=0) @dist_init(faulty_messages=["PYTHON_REMOTE_CALL"]) def test_udf_remote_message_dropped_timeout(self): func = my_sleep_func args = (2,) self._test_remote_message_dropped_timeout(func, args) @dist_init(faulty_messages=["PYTHON_REMOTE_CALL"]) def test_udf_remote_message_dropped_timeout_to_self(self): func = my_sleep_func args = (2,) self._test_remote_message_dropped_timeout(func, args, dst=0) def _test_remote_message_delay_timeout(self, func, args, dst=None): if self.rank != 0: return # Test the case where remote message is eventually processed on the owner, # but the future on the creator times out before the response comes back. dst_rank = dst if dst is not None else (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) # 10 ms timeout rref = rpc.remote(dst_worker, func, args=args, timeout=0.001) # Future corresponding to the remote creation should time out. expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rref._get_future().wait() # Call to ensure pending callbacks are run. wait_until_pending_futures_and_users_flushed() # to_here() should now pick up that rpc.remote() creation has failed. with self.assertRaisesRegex(RuntimeError, "RRef creation"): rref.to_here() # Test the case where rpc.remote() times out, but to_here() has already # started blocking before. # NOTE: we only test this when not sending to self, as to_here() calls # calls localValue(), which does not send an RPC and thus does not have # a timeout. This can be supported by allowing future.wait() to # take in an optional timeout (https://github.com/pytorch/pytorch/issues/39280) if dst_rank != self.rank: slow_rref = rpc.remote(dst_worker, func, args=args, timeout=2) with self.assertRaisesRegex(RuntimeError, expected_error): # to_here() should raise timeout error, since it does not know about the # status of rpc.remote(). slow_rref.to_here(0.001) # Note: If we proceed with shutdown, UserRRef will send out a RRefUserDelete # but this can be a noop since it may not exist on the owner yet. Later, # the owner can process the RRef creation and wait for the delete message, # thus leading to a timeout. # Therefore, we wait until we get notification that pending owners have # been confirmed before sending out RRefUserDeletes. if dst_rank != self.rank: wait_until_owners_and_forks_on_rank(2, 2, rank=dst_rank) @dist_init(faulty_messages=[], messages_to_delay={"PYTHON_REMOTE_CALL": 2}) def test_udf_remote_message_delay_timeout(self): func = my_sleep_func args = (2,) self._test_remote_message_delay_timeout(func, args) @dist_init(faulty_messages=[], messages_to_delay={"PYTHON_REMOTE_CALL": 2}) def test_udf_remote_message_delay_timeout_to_self(self): func = my_sleep_func args = (1,) self._test_remote_message_delay_timeout(func, args, dst=0) @dist_init( faulty_messages=[], messages_to_delay={"SCRIPT_REMOTE_CALL": 2, "SCRIPT_RREF_FETCH_CALL": 1}, ) def test_remote_message_builtin_delay_timeout(self): func = torch.add args = (torch.tensor(1), torch.tensor(1)) self._test_remote_message_delay_timeout(func, args) @dist_init( faulty_messages=[], messages_to_delay={"SCRIPT_REMOTE_CALL": 2, "SCRIPT_RREF_FETCH_CALL": 1}, ) def test_remote_message_builtin_delay_timeout_to_self(self): func = torch.add args = (torch.tensor(1), torch.tensor(1)) self._test_remote_message_delay_timeout(func, args, dst=0) @dist_init( faulty_messages=[], messages_to_delay={"SCRIPT_REMOTE_CALL": 2, "SCRIPT_RREF_FETCH_CALL": 1}, ) def test_remote_message_script_delay_timeout(self): func = my_script_func args = (torch.tensor(1),) self._test_remote_message_delay_timeout(func, args) @dist_init( faulty_messages=[], messages_to_delay={"SCRIPT_REMOTE_CALL": 2, "SCRIPT_RREF_FETCH_CALL": 1}, ) def test_remote_message_script_delay_timeout_to_self(self): func = my_script_func args = (torch.tensor(1),) self._test_remote_message_delay_timeout(func, args, dst=0) @dist_init(faulty_messages=[], messages_to_delay={"SCRIPT_RREF_FETCH_CALL": 1}) def test_rref_to_here_timeout(self): if self.rank != 0: return dst_rank = (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) rref = rpc.remote( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)) ) expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rref.to_here(0.01) rref.to_here() @dist_init(faulty_messages=[]) def test_rpc_builtin_timeout(self): next_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(next_rank) expected_error = self.get_timeout_error_regex() # PYTHON_CALL message types which correspond to Python UDF over RPC # by default get a delay (see faulty_rpc_agent_test_fixture) with self.assertRaisesRegex(RuntimeError, expected_error): rpc.rpc_sync( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)), timeout=1, ) fut = rpc.rpc_async( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)), timeout=1 ) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure that the currently set default timeout is large enough such # that RPCs with delays still complete. self.assertEqual(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC, rpc.get_rpc_timeout()) fut = rpc.rpc_async( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)) ) fut.wait() # Ensure timeout if we set a new default and don't override rpc._set_rpc_timeout(0.001) fut = rpc.rpc_async( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)) ) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure run to completion if we specify timeout of 0 fut = rpc.rpc_async( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)), timeout=0 ) fut.wait() # Reset for clean shutdown rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) @dist_init(faulty_messages=[], messages_to_delay={"SCRIPT_CALL": 1.5}) def test_rpc_script_timeout(self): next_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(next_rank) expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rpc.rpc_sync(dst_worker, my_script_func, args=(torch.tensor(1),), timeout=1) fut = rpc.rpc_async(dst_worker, my_script_func, args=(torch.tensor(1),), timeout=1) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure that the currently set default timeout is large enough such # that RPCs with delays still complete. self.assertEqual(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC, rpc.get_rpc_timeout()) fut = rpc.rpc_async( dst_worker, my_script_func, args=(torch.tensor(1),) ) fut.wait() # Ensure timeout if we set a new default and don't override rpc._set_rpc_timeout(0.001) fut = rpc.rpc_async( dst_worker, my_script_func, args=(torch.tensor(1),) ) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure run to completion if we specify timeout of 0 rpc._set_rpc_timeout(0.001) fut = rpc.rpc_async( dst_worker, my_script_func, args=(torch.tensor(1),), timeout=0 ) fut.wait() # Reset for clean shutdown rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) class TensorPipeAgentRpcTest(RpcAgentTestFixture): def test_mismatched_type_for_options(self): # An exception should be raised if the options are not an instance of # TensorPipeRpcBackendOptions. rpc_backend_options = FooBackendOptions(self.init_method) with self.assertRaisesRegex( TypeError, "`rpc_backend_options` must be a `TensorPipeRpcBackendOptions`" ): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, backend=rpc.BackendType.TENSORPIPE, rpc_backend_options=rpc_backend_options, ) def test_infer_backend_from_options(self): rpc_backend_options = rpc.TensorPipeRpcBackendOptions( init_method=self.init_method ) rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, # Do _not_ pass backend. rpc_backend_options=rpc_backend_options, ) self.assertIsInstance(rpc.api._get_current_rpc_agent(), rpc.TensorPipeAgent) # FIXME Merge this test with the corresponding one in RpcTest. @dist_init(setup_rpc=False) def test_set_and_get_num_worker_threads(self): NUM_THREADS = 27 rpc_backend_options = rpc.TensorPipeRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_worker_threads=NUM_THREADS ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertEqual(int(info["agent.thread_pool_size"]), NUM_THREADS) rpc.shutdown() # FIXME Merge this test with the corresponding one in RpcTest. @dist_init(setup_rpc=False) def test_tensorpipe_set_default_timeout(self): timeout = 0.5 rpc_backend_options = rpc.TensorPipeRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_worker_threads=self.rpc_backend_options.num_worker_threads, rpc_timeout=timeout ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) default_timeout = rpc.get_rpc_timeout() self.assertEqual(default_timeout, timeout) rpc.shutdown() # FIXME Merge this test with the corresponding one in RpcTest. @dist_init(setup_rpc=False) def test_tensorpipe_options_throw_on_timedelta_timeout(self): from datetime import timedelta timeout = timedelta() # Ensure that constructing TensorPipeRpcBackendOptions with timedelta fails with self.assertRaisesRegex(TypeError, "incompatible constructor arguments"): rpc_backend_options = rpc.TensorPipeRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_worker_threads=self.rpc_backend_options.num_worker_threads, rpc_timeout=timeout, ) def _test_device_maps(self, options, errMsg="Invalid device_map"): with self.assertRaisesRegex(ValueError, errMsg): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) self.assertFalse(rpc.api._is_current_rpc_agent_set()) @skip_if_lt_x_gpu(2) def test_device_maps_wrong_worker_name(self): options = self.rpc_backend_options options.set_device_map("none_exist", {0: 1}) self._test_device_maps(options, "Wrong worker names") @skip_if_lt_x_gpu(1) def test_device_maps_invalid_max_local_device(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {torch.cuda.device_count(): 0}) self._test_device_maps(options) @skip_if_lt_x_gpu(1) def test_device_maps_invalid_max_remote_device(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {0: torch.cuda.device_count()}) self._test_device_maps(options) @skip_if_lt_x_gpu(2) def test_device_maps_many_to_one(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {1: 0}) options.set_device_map(dst, {0: 0}) self._test_device_maps(options) @skip_if_lt_x_gpu(2) def test_device_maps_one_to_many(self): if self.rank == 0: options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {0: 1}) with self.assertRaisesRegex( ValueError, "`set_device_map` only supports 1-to-1 mapping" ): options.set_device_map(dst, {0: 0}) @skip_if_lt_x_gpu(1) def test_device_maps_invalid_min_device(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) with self.assertRaisesRegex( RuntimeError, "Device index must not be negative" ): options.set_device_map(dst, {-1: 0}) with self.assertRaisesRegex( RuntimeError, "Device index must not be negative" ): options.set_device_map(dst, {0: -1}) @staticmethod def _gpu_add(x, y): if all([x.is_cuda, x.device.index == 1, y.is_cuda, y.device.index == 1]): return (x + y).to(0) else: raise ValueError("Wrong device affinity") @skip_if_lt_x_gpu(2) def test_device_maps_gpu(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {0: 1, 1: 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) ret = rpc.rpc_sync( dst, TensorPipeAgentRpcTest._gpu_add, args=(torch.zeros(2).to(0), torch.ones(2).to(0)) ) self.assertEqual(ret.device, torch.device(1)) self.assertEqual(ret, (torch.zeros(2) + torch.ones(2)).to(1)) rpc.shutdown() @staticmethod def _gpu_add_multi_gpu(x, y): if all([x.is_cuda, x.device.index == 0, y.is_cuda, y.device.index == 1]): return x + y.to(0), x.to(1) - y else: raise ValueError("Wrong device affinity") def _test_device_maps_multi_gpu(self, dst): options = self.rpc_backend_options options.set_device_map(dst, {1: 0}) options.set_device_map(dst, {0: 1}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) rets = rpc.rpc_sync( dst, TensorPipeAgentRpcTest._gpu_add_multi_gpu, args=(torch.zeros(2).to(1), torch.ones(2).to(0)) ) self.assertEqual(rets[0].device, torch.device(1)) self.assertEqual(rets[1].device, torch.device(0)) self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(1)) self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) rpc.shutdown() @skip_if_lt_x_gpu(2) def test_device_maps_multi_gpu(self): dst = worker_name((self.rank + 1) % self.world_size) self._test_device_maps_multi_gpu(dst) @skip_if_lt_x_gpu(2) def test_device_maps_multi_gpu_self(self): dst = worker_name(self.rank) self._test_device_maps_multi_gpu(dst) @staticmethod def _gpu_add_return_to_gpu(x, y): if x.device.type == 'cpu' and y.device.type == 'cpu': return (x + y).to(0), (x - y).to(1), (x * y).to(2), (x / y).to(3) else: raise ValueError("Wrong device affinity") @skip_if_lt_x_gpu(2) def test_device_maps_in_options(self): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc.TensorPipeRpcBackendOptions( init_method=options.init_method, num_worker_threads=options.num_worker_threads, device_maps={dst: {0: 1, 1: 0}} ) ) rets = rpc.rpc_sync( dst, TensorPipeAgentRpcTest._gpu_add_multi_gpu, args=(torch.zeros(2).to(1), torch.ones(2).to(0)) ) self.assertEqual(rets[0].device, torch.device(1)) self.assertEqual(rets[1].device, torch.device(0)) self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(1)) self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) rpc.shutdown() def _test_device_maps_return_to_gpu(self, dst): options = self.rpc_backend_options options.set_device_map(dst, {0: 1}) options.set_device_map(dst, {1: 2}) options.set_device_map(dst, {2: 3}) options.set_device_map(dst, {3: 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) rets = rpc.rpc_sync( dst, TensorPipeAgentRpcTest._gpu_add_return_to_gpu, args=(torch.zeros(2), torch.ones(2)) ) for i in range(len(rets)): self.assertEqual(rets[i].device, torch.device((3 + i) % 4)) self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(3)) self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) self.assertEqual(rets[2], (torch.zeros(2) * torch.ones(2)).to(1)) self.assertEqual(rets[3], (torch.zeros(2) / torch.ones(2)).to(2)) rpc.shutdown() @skip_if_lt_x_gpu(4) def test_device_maps_return_to_gpu(self): dst = worker_name((self.rank + 1) % self.world_size) self._test_device_maps_return_to_gpu(dst) @skip_if_lt_x_gpu(4) def test_device_maps_return_to_gpu_self(self): dst = worker_name(self.rank) self._test_device_maps_return_to_gpu(dst) @staticmethod def _add_to_gpu(x, y): return (x + y).to(0) def _test_device_maps_missing_config(self, mode): dst = worker_name((self.rank + 1) % self.world_size) errMsg = ( "TensorPipe RPC backend only supports CPU tensors by default.*" "`set_device_map` on `TensorPipeRpcBackendOptions`" ) with self.assertRaisesRegex(RuntimeError, errMsg): if mode == RPCExecMode.SYNC: rpc.rpc_sync(dst, torch.add, args=(torch.zeros(2).to(0), 1)) elif mode == RPCExecMode.REMOTE: rpc.remote(dst, torch.add, args=(torch.zeros(2).to(0), 1)).to_here() else: raise ValueError(f"unexpected mode {mode}") # make sure RPC is still functioning ret = rpc.rpc_sync(dst, torch.add, args=(torch.ones(2), 1)) self.assertEqual(ret, torch.ones(2) + 1) def _test_device_maps_missing_config_response(self, mode): dst = worker_name((self.rank + 1) % self.world_size) errMsg = "Response device mapping is not available" with self.assertRaisesRegex(RuntimeError, errMsg): if mode == RPCExecMode.SYNC: rpc.rpc_sync( dst, TensorPipeAgentRpcTest._add_to_gpu, args=(torch.zeros(2), 1) ) elif mode == RPCExecMode.REMOTE: rpc.remote( dst, TensorPipeAgentRpcTest._add_to_gpu, args=(torch.zeros(2), 1) ).to_here() else: raise ValueError(f"unexpected mode {mode}") # make sure RPC is still functioning ret = rpc.rpc_sync(dst, torch.add, args=(torch.ones(2), 1)) self.assertEqual(ret, torch.ones(2) + 1) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config(self): self._test_device_maps_missing_config(RPCExecMode.SYNC) @skip_if_lt_x_gpu(1) def test_device_maps_missing_config_not_timeout(self): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options ) timeout = rpc.get_rpc_timeout() tik = time.time() self._test_device_maps_missing_config(RPCExecMode.SYNC) rpc.shutdown() tok = time.time() self.assertTrue(tok - tik < timeout) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_loop(self): for _ in range(self.rpc_backend_options.num_worker_threads + 5): self._test_device_maps_missing_config(RPCExecMode.SYNC) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_response(self): self._test_device_maps_missing_config_response(RPCExecMode.SYNC) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_response_loop(self): for _ in range(self.rpc_backend_options.num_worker_threads + 5): self._test_device_maps_missing_config_response(RPCExecMode.SYNC) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_remote(self): self._test_device_maps_missing_config(RPCExecMode.REMOTE) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_remote_response(self): self._test_device_maps_missing_config_response(RPCExecMode.REMOTE) @skip_if_lt_x_gpu(2) def test_device_maps_remote(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {1: 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) rref = rpc.remote( dst, TensorPipeAgentRpcTest._add_to_gpu, args=(torch.zeros(2), 1) ) self.assertEqual(rref.to_here(), torch.ones(2).to(1)) rpc.shutdown()
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
188c718d6467ae8fa888ac5aae2b97fa2aea6c74
5c0a0e9696a1b38ff6663440d21c94cbb6730ab1
/1 resnet training (CIFAR10).py
6ee2bf9da2c3570bf6250a3c8594527cda5c5469
[]
no_license
DeBur19/FGE_reproduction_project
93107a9f9399022bf5c08e8f54d5fd22294a00ca
82143ac593dc6707d799378a699bd1c772e43126
refs/heads/master
2020-11-25T23:34:19.854559
2019-12-20T19:47:39
2019-12-20T19:47:39
228,890,009
0
0
null
null
null
null
UTF-8
Python
false
false
4,416
py
import torch import torch.nn as nn from torch.nn import functional as F import torch.optim as optim from torch.optim.lr_scheduler import StepLR, MultiStepLR import random import pandas as pd from skimage import io, transform import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torchvision import transforms, datasets, utils, models from tqdm import tnrange from time import time data_transform_train = transforms.Compose([ transforms.RandomSizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) data_transform_test = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) train_cifar10 = datasets.CIFAR10(root='cifar10/train', train=True, transform=data_transform_train, download=True) test_cifar10 = datasets.CIFAR10(root='cifar10/test', train=False, transform=data_transform_test, download=True) dataset_loader_train = torch.utils.data.DataLoader(train_cifar10, batch_size=32, shuffle=True, num_workers=4) dataset_loader_test = torch.utils.data.DataLoader(test_cifar10, batch_size=32, shuffle=False, num_workers=4) def train_epoch(model, data_iter, criterion, optimizer): model.train() losses = [] for _, batch in zip(tnrange(len(data_iter)), data_iter): images, labels = batch images, labels = images.cuda(), labels.cuda() optimizer.zero_grad() out = model(images) loss = criterion(out, labels) loss.backward() optimizer.step() losses.append(loss.item()) return losses def val(model, data_iter, criterion): model.eval() losses = [] acc = 0.0 with torch.no_grad(): for _, batch in zip(tnrange(len(data_iter)), data_iter): images, labels = batch images, labels = images.cuda(), labels.cuda() out = model(images) loss = criterion(out, labels) _, preds = torch.max(out, 1) acc += torch.sum(preds == labels).type(torch.float) losses.append(loss.item()) return losses, acc / len(data_iter.dataset) def train(model, opt, crit, train_iter, val_iter, num_epochs, sched, checkpoint_epoch, n_model, n_classes): train_log, val_log = [], [] val_accs = [] last_acc = 0.0 t1 = time() for epoch in range(num_epochs): tic = time() train_loss = train_epoch(model, train_iter, crit, opt) tac = time() tic1 = time() val_loss, val_acc = val(model, val_iter, crit) tac1 = time() val_accs.append(val_acc) sched.step() train_log.extend(train_loss) val_log.append((len(train_iter) * (epoch + 1), np.mean(val_loss))) t2 = time() #print('EPOCH {}:'.format(epoch)) #print('Total time from start: {}min {}s'.format((t2 - t1) // 60, (t2 - t1) % 60)) #print('TRAIN: {}min {}s for epoch, mean loss = {}'.format((tac - tic) // 60, (tac - tic) % 60, np.mean(train_loss))) #print('VAL: {}min {}s for epoch, mean loss = {}, acc = {}'.format((tac1 - tic1) // 60, (tac1 - tic1) % 60, np.mean(val_loss), val_acc)) last_acc = val_acc if epoch == checkpoint_epoch: torch.save(model.state_dict(), 'resnet_cifar{}_32ep_{}.pt'.format(n_classes, n_model)) torch.save(opt.state_dict(), 'resnet_cifar{}_32ep_{}_opt.pt'.format(n_classes, n_model)) return train_log, val_log, last_acc, model # First model: random.seed(42) np.random.seed(42) torch.manual_seed(42) if torch.cuda.is_available(): torch.cuda.manual_seed_all(42) resnet_cifar10 = models.resnet152(pretrained=False, **{'num_classes' : 10}) resnet_cifar10 = resnet_cifar10.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(resnet_cifar10.parameters(), lr=0.01, weight_decay=0.0005, momentum=0.9) sched = MultiStepLR(optimizer, milestones=[20,30], gamma=0.1) train_log, val_log, resnet_cifar10_2_acc, resnet_cifar10 = train(resnet_cifar10, optimizer, criterion, dataset_loader_train, dataset_loader_test, 40, sched,31, 1, 10) torch.save(resnet_cifar10.state_dict(), 'resnet_cifar10_40ep_1.pt')
[ "noreply@github.com" ]
DeBur19.noreply@github.com
2a7e760536c47ab9bfd21b678dd36dc283094496
769518eaef4ad25335bd917409136eccade1c0b1
/label_gen/removenolabeldata.py
94e8562ef19ea53a8f271caf6e1a8d4bbbbd8b4d
[]
no_license
xk-wang/polyphonic-omr
eaade114eccb42d2137b7a5c857659d628ed4220
264b17302f9029460840c79014d0aa75b68d38b5
refs/heads/main
2023-07-19T11:40:52.007262
2021-09-20T21:20:02
2021-09-20T21:20:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,957
py
# Removes the imgs that have no corresponding label # python removenolabel.py -imgs <img dir> -labels <label dir> import os import argparse def main(): """ Main method """ # Parse command line arguments for input parser = argparse.ArgumentParser() parser.add_argument('-imgs', dest='imgs', type=str, required=True, help='Path to the directory with imgs.') parser.add_argument('-labels', dest='labels', type=str, required=True, help='Path to the directory with labels.') args = parser.parse_args() num_missing = 0 num_total = 0 # Go through all files in input directory for file_name in os.listdir(args.imgs): if not file_name.endswith('.png'): continue num_total += 1 sample_id = file_name.split('-')[0] num = file_name.split('-')[1].split('.')[0] if num.startswith('00'): num = num[2:] elif num.startswith('0'): num = num[1:] sem_name1 = sample_id + '-' + num + '.semantic' sem_name2 = sample_id + '-0' + num + '.semantic' sem_name3 = sample_id + '-00' + num + '.semantic' # Open semantic file (try different names with/without leading 0s) try: sem_file = open(os.path.join(args.labels, sem_name1), 'r') sem_file.close() except FileNotFoundError: try: sem_file = open(os.path.join(args.labels, sem_name2), 'r') sem_file.close() except FileNotFoundError: try: sem_file = open(os.path.join(args.labels, sem_name3), 'r') sem_file.close() except FileNotFoundError: num_missing += 1 os.remove(os.path.join(args.imgs, file_name)) continue print(num_missing,num_total,num_total-num_missing) if __name__ == "__main__": main()
[ "sedirisooriya10@gmail.com" ]
sedirisooriya10@gmail.com
6006a738df99a24e60f0d1202d8a0998e6f3c28b
45f93a9d47204d76b8bf25a71dfb79403e75c33c
/CodeForces/yes-or-yes.py
cb4db3b37842abd3b41cac071b12adb1ab078941
[]
no_license
tahmid-tanzim/problem-solving
0173bce1973ac3e95441a76c10324c0e1b0a57c3
6ddb51de6772130f209474e76f39ca2938f444f0
refs/heads/master
2023-06-25T02:18:03.690263
2023-06-20T06:58:46
2023-06-20T06:58:46
137,173,850
4
1
null
2022-03-30T08:28:41
2018-06-13T06:44:25
Python
UTF-8
Python
false
false
189
py
# https://codeforces.com/problemset/problem/1703/A # A. YES or YES? if __name__ == "__main__": for _ in range(int(input())): print('YES' if input().lower() == 'yes' else 'NO')
[ "tahmid.tanzim@gmail.com" ]
tahmid.tanzim@gmail.com
538ee5795f2f172fc105da720d85536515dbfad0
2a6627109f9e3caff5aea4a902f7c902d1e9ac40
/ee/clickhouse/views/person.py
6c15329824809af7c9ba886a4629a7b3387e8ab4
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
suresh1999/posthog
0739d631e5efb96dd00f4d5544f14e885d567b7a
14d37dd38cd63b501324856e7dc6602a596efd1e
refs/heads/master
2023-01-24T22:49:19.026411
2020-12-04T16:13:52
2020-12-04T16:13:52
318,311,546
0
0
NOASSERTION
2020-12-04T16:18:23
2020-12-03T20:28:05
Python
UTF-8
Python
false
false
1,021
py
from rest_framework import request, response from ee.clickhouse.models.person import delete_person from ee.clickhouse.queries.clickhouse_retention import ClickhouseRetention from ee.clickhouse.queries.trends.lifecycle import ClickhouseLifecycle from posthog.api.person import PersonViewSet from posthog.models import Event, Person # TODO: Move grabbing all this to Clickhouse. See WIP-people-from-clickhouse branch. class ClickhousePersonViewSet(PersonViewSet): lifecycle_class = ClickhouseLifecycle retention_class = ClickhouseRetention def destroy(self, request: request.Request, pk=None, **kwargs): # type: ignore team = self.team person = Person.objects.get(team=team, pk=pk) # TODO: Probably won't need this after a while events = Event.objects.filter(team=team, distinct_id__in=person.distinct_ids) events.delete() delete_person(person.uuid, delete_events=True, team_id=team.pk) person.delete() return response.Response(status=204)
[ "noreply@github.com" ]
suresh1999.noreply@github.com
0026affaf4db9c312ccfe2ba3d12b23bd58c0c57
3179016c72059999d5d35c18724d4dcf84b2a225
/test_scripts/test_permute.py
a202c18f9a93f422e6986fc2a0a6ab456d42c5c8
[]
no_license
thematrixduo/DAIR
e51a1f5e7c13090e103afea8ffdbcb4a6504389a
5e6f76c97880114b606d054375250da0522babaa
refs/heads/master
2022-12-11T05:11:07.079300
2020-08-31T13:19:07
2020-08-31T13:19:07
291,719,391
0
0
null
null
null
null
UTF-8
Python
false
false
499
py
import torch import numpy as np torch_array = [] np_array = [] for i in range(3): data = np.random.normal(0,1,(64,3)) #print(data.shape) np_array.append(data) torch_array.append(torch.tensor(data)) stacked_tensor = torch.stack(torch_array) print(stacked_tensor.size()) permuted_tensor = stacked_tensor.permute(1,0,2) print(permuted_tensor.size()) #print((stacked_tensor[0]-permuted_tensor[:,0,:]).data) permuted_np = permuted_tensor.numpy() print(np_array[0] - permuted_np[:,0,:])
[ "wangduo1992@hotmail.com" ]
wangduo1992@hotmail.com
ea458da44d9961bee35199279e20dc43ab8ce4f3
567055ea99ac7ca3fa3fd77c36f5535b8fb6f546
/2018-W-450-4/02-learning-curves/__init__.py
3ee4e18e89186a452bc3744e947f3ff5262e3079
[]
no_license
lssnadia/JupyterNotebooks
f72e58101250a129792639c90f4e276154bb7e6d
d36756ee4f46718bc2cffa7ef2d43b95938fd879
refs/heads/master
2020-03-08T13:41:29.826373
2018-04-05T06:00:49
2018-04-05T06:00:49
128,164,318
0
1
null
null
null
null
UTF-8
Python
false
false
266
py
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from scipy import stats from IPython.display import display from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'inline') # makes the picture show up
[ "ubuntu@ip-172-31-22-81.us-west-2.compute.internal" ]
ubuntu@ip-172-31-22-81.us-west-2.compute.internal
9ce6ce54431bf4e550f269c6bf8dc6421f443ae8
1770a4b13c908bc80b3cfc7e41b22648e434823e
/Assignments/homework_assignment_5/is_it_in_stock.py
12a31c5427831c3f701731c3635d0b9dfcd432a7
[]
no_license
lshi0335/MSITM6341
51071ceafa9bb7df42e00ce42375e15f4bf1872e
1cbcf1237aaf8e8771eeb6817b72d5db193179b5
refs/heads/master
2020-07-12T12:38:19.398701
2019-12-17T04:13:45
2019-12-17T04:13:45
204,822,097
0
0
null
null
null
null
UTF-8
Python
false
false
651
py
# Lei Shi # 0985491 # MSITM6341 # 9/29/2019 # Assignment 5 # Initialize lists menu_items_in_stock = ['Tacos', 'Chips', 'Salsa', 'Quesadilla'] customer_order = ['Tacos', 'Guacamole', 'Burrito', 'Chips', 'Salsa'] # Change all elements in lists to lower case menu_items_in_stock = [x.lower() for x in menu_items_in_stock] customer_order = [x.lower() for x in customer_order] # Check if an item in customer_order is in menu_items_in_stock for x in customer_order: if x in menu_items_in_stock: print('We have ' + x.capitalize() + ' in stock.') else: print('We do not have ' + x.capitalize() + ' in stock.')
[ "noreply@github.com" ]
lshi0335.noreply@github.com
5f2d1ac25562db38ab4a821c2566217b269f5519
f8ab044c34f0d286195c8e5abfae6f451e6c8223
/test_arg.py
58c8a56dafab815d14bbf764635a534ade273ed5
[]
no_license
liuyug/pytest
aa512e902cf4ba9afb91b6b5b5c5cb9dccdc6478
ffc14dbee70ff6fd9c8ab63a1c771fddc8bf5491
refs/heads/master
2020-05-19T12:20:57.958939
2016-09-06T03:01:38
2016-09-06T03:01:38
15,447,570
0
0
null
null
null
null
UTF-8
Python
false
false
996
py
#!/usr/bin/env python # -*- encoding:utf-8 -*- import argparse import unittest class testArgs(unittest.TestCase): def setUp(self): self.args = ( ['--foo', 'abc', 'abcdefg.ext'], ['-a', 'abc', '-a', 'bcd', '-a', 'cde', 'def.def'], ['-vvvv', 'abc.ea'], #['--version'], ) self.parser = argparse.ArgumentParser() self.parser.add_argument('--foo', help='foo help', default='foo') self.parser.add_argument('-a', '--all', help='all help', action='append') self.parser.add_argument('-v', '--verbose', help='verbose help', action='count') #self.parser.add_argument('--version', action='version', version='%(prog)s 0.3') self.parser.add_argument('file', help='add filename') def testargs(self): for args in self.args: print('args: ', args) pargs = self.parser.parse_args(args) print(pargs) if __name__ == '__main__': unittest.main()
[ "liuyug@gmail.com" ]
liuyug@gmail.com
660bc9b69bbe66c2d9ce7f4e54e3b4a1dcabcda8
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/334/usersdata/294/100466/submittedfiles/listas.py
90a4557636f7b45bccefc918ec87c0a87bd5ae66
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
389
py
# -*- coding: utf-8 -*- n= int(input('Digite o número de elementos: ')) while n<2: n= int(input('Digite o número de elementos: ')) a=[] for i in range (0,n,1): a.append(int(input('Digite o elemento%d: ' %(i+1)))) for i in range (0,n-1,1): dif= a[i]-a[i+1] if dif>0: dif=dif*1 degrau=0 for i in range (0,n-1,1): if dif>degrau: degrau=dif print(degrau)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
998989ef69a190607170515fdb349911ee57ef91
df7d030146c901790ab49402140f40fb26d03c8a
/PiTemperature/RPiWebThermometer.py
97b0ccc67ad3e3960d92a34216af4aa3910870ec
[]
no_license
Adrian-Rosoga/code_pi
955316914a4ab51513e75a8da82cca8c3a71a14a
0a0b57489a4dce2021c03ee10a1d6002c3e34180
refs/heads/master
2021-06-23T11:35:12.992361
2021-05-25T17:05:47
2021-05-25T17:05:47
211,540,445
0
0
null
null
null
null
UTF-8
Python
false
false
2,448
py
#!/usr/bin/python # # One-trick-pony web server serving page with temperature reading # from DS18B20 sensor attached to a Raspberry Pi # # # Configuration # PORT = 8000 DS18B20_OUTPUT_FILE = '/sys/bus/w1/devices/28-0000045bf342/w1_slave' MAX_TEMPERATURE_ALERT = 22.0 MIN_TEMPERATURE_ALERT = 18.0 import re, time from BaseHTTPServer import HTTPServer from SimpleHTTPServer import SimpleHTTPRequestHandler regex = re.compile(r't=(\d+)') def get_temperature(): file = open(DS18B20_OUTPUT_FILE, 'r') file.readline() line = file.readline() file.close() data = regex.search(line) temperature = float(data.group(1)[0:4])/100.0 return temperature body_template = '<HTML>\ <HEAD>\ <TITLE>Temperature</TITLE>\ <META HTTP-EQUIV=PRAGMA CONTENT=NO-CACHE>\ <META HTTP-EQUIV=EXPIRES CONTENT=-1>\ <META HTTP-EQUIV=REFRESH CONTENT=30>\ </HEAD>\ <BODY>\ <B><BR>\ <P ALIGN=CENTER>\ <FONT SIZE=12>Web Thermometer</FONT>\ <BR>\ <FONT SIZE=5>(Raspberry Pi, DS18B20)</FONT>\ <BR><BR><BR>\ <FONT SIZE=14 COLOR=%s>%s &deg;C</FONT>\ <BR><BR><BR>\ <FONT SIZE=6>%s</FONT>\ <BR><BR>\ <FONT SIZE=5 COLOR=RED>%s</FONT>\ <BR><HR>\ <FONT SIZE=3>Page autorefreshes every 30 seconds.</FONT>\ </P>\ </B>\ </BODY>\ </HTML>' class TemperatureHandler(SimpleHTTPRequestHandler, object): def do_GET(self): # Only the request for favicon is honored, for all else tell the temperature if self.path == '/favicon.ico': return SimpleHTTPRequestHandler.do_GET(self) self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() temperature = get_temperature() print 'Temperature = ' + str(temperature) alert = '' color = 'GREEN' if (temperature > MAX_TEMPERATURE_ALERT): alert = 'ALERT - Temperature above ' + str(MAX_TEMPERATURE_ALERT) + ' &deg;C!' color = 'RED' elif (temperature < MIN_TEMPERATURE_ALERT): alert = 'ALERT - Temperature below ' + str(MIN_TEMPERATURE_ALERT) + ' &deg;C!' color = 'RED' self.wfile.write( body_template % (color, temperature, time.ctime(), alert ) ) self.wfile.close() try: server = HTTPServer(('', PORT), TemperatureHandler) print 'Started HTTP server on port ' + str(PORT) + '...' server.serve_forever() except KeyboardInterrupt: print('^C received, shutting down...') server.socket.close()
[ "arosoga@yahoo.com" ]
arosoga@yahoo.com
445c6ff875319e02bf6c664717e3b20fcc1eeef2
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_peters.py
5c5535b7cf2fe2459518556a2fea0f4e76f710a9
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#calss header class _PETERS(): def __init__(self,): self.name = "PETERS" self.definitions = peter self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['peter']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
9390417b1a18bcc58789ad980862c773d4cafc48
ba2039cf6d664c733cf1ff62dae0bb30e10798a9
/SUSTILP3/urls.py
2535aceee788fca6a3907b92d654cdc26fac7eb1
[]
no_license
PauloR1997/EXAM_SUS_PL3
0a11c9c1531534ad5496cebbab1f9b373ea2b074
8e64326321f934f25e6ba6c43c8c906bcaa5b360
refs/heads/main
2023-03-01T19:32:37.853716
2021-02-17T16:53:51
2021-02-17T16:53:51
339,769,444
0
0
null
null
null
null
UTF-8
Python
false
false
1,367
py
"""SUSTILP3 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf import settings from miapp import views urlpatterns = [ path('admin/', admin.site.urls), path('',views.index,name="index"), path('inicio/',views.index, name="inicio"), path('listar_region/', views.listar_region, name="listar_region"), path('create-full-region/',views.create_full_region, name="create_full_region"), path('eliminar_region/<int:id>',views.eliminar_region, name="eliminar_region"), path('save-region/',views.save_region, name="save_region"), path('listar_empleado/', views.listar_empleado, name="listar_empleado"), path('create-full-empleado/',views.create_full_empleado, name="create_full_empleado"), ]
[ "oyepaulo57@gmail.com" ]
oyepaulo57@gmail.com
da10a3b12aca6306765f2a69092175ef54860514
d11b6555f38c1b05998d85c4b9be3c93e9a7e819
/Hello.py
eaef9e1f7b0cbd8f5d6dc725eb06923b587f3617
[]
no_license
Vatty20/LearningPython
949b789a9c2182630b94d167e885069ba9e29fd7
00212c9aa8f6c18ee78a7a96536354b5dc0b6b19
refs/heads/main
2023-08-28T00:35:44.812062
2021-10-19T06:42:48
2021-10-19T06:42:48
418,799,833
0
0
null
null
null
null
UTF-8
Python
false
false
38
py
print('Hello World') print('Wassup')
[ "harlalka.vatsal@gmail.com" ]
harlalka.vatsal@gmail.com
de8fae9c0ec7bb4c55a0e206af361d75c14fe612
b91bc02a5650597b8c217750c4fef238cb2b3363
/etcd_client/models/etcdserverpb_lease_time_to_live_request.py
8174a404dac146c49249468a580e235bf226a191
[]
no_license
NimbleBoxAI/etcd-client-python
6d578fd5c588e7b691e6a41a45cb5f93afab279b
4d67692b0d75e4b14747f34f3d13998529216a3f
refs/heads/master
2023-07-13T19:04:36.118319
2021-08-21T15:29:11
2021-08-21T15:29:11
390,751,648
1
0
null
null
null
null
UTF-8
Python
false
false
4,436
py
# coding: utf-8 """ api/etcdserverpb/rpc.proto No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: version not set Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from etcd_client.configuration import Configuration class EtcdserverpbLeaseTimeToLiveRequest(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'keys': 'bool' } attribute_map = { 'id': 'ID', 'keys': 'keys' } def __init__(self, id=None, keys=None, _configuration=None): # noqa: E501 """EtcdserverpbLeaseTimeToLiveRequest - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._id = None self._keys = None self.discriminator = None if id is not None: self.id = id if keys is not None: self.keys = keys @property def id(self): """Gets the id of this EtcdserverpbLeaseTimeToLiveRequest. # noqa: E501 ID is the lease ID for the lease. # noqa: E501 :return: The id of this EtcdserverpbLeaseTimeToLiveRequest. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this EtcdserverpbLeaseTimeToLiveRequest. ID is the lease ID for the lease. # noqa: E501 :param id: The id of this EtcdserverpbLeaseTimeToLiveRequest. # noqa: E501 :type: str """ self._id = id @property def keys(self): """Gets the keys of this EtcdserverpbLeaseTimeToLiveRequest. # noqa: E501 keys is true to query all the keys attached to this lease. # noqa: E501 :return: The keys of this EtcdserverpbLeaseTimeToLiveRequest. # noqa: E501 :rtype: bool """ return self._keys @keys.setter def keys(self, keys): """Sets the keys of this EtcdserverpbLeaseTimeToLiveRequest. keys is true to query all the keys attached to this lease. # noqa: E501 :param keys: The keys of this EtcdserverpbLeaseTimeToLiveRequest. # noqa: E501 :type: bool """ self._keys = keys def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(EtcdserverpbLeaseTimeToLiveRequest, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, EtcdserverpbLeaseTimeToLiveRequest): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, EtcdserverpbLeaseTimeToLiveRequest): return True return self.to_dict() != other.to_dict()
[ "cshubhamrao@gmail.com" ]
cshubhamrao@gmail.com
d4cc69a7a8a0f8fee5660e5ea167301c123bedaa
faa741e4a1a44eb00daacbf5cfe73027f5a44200
/SRC/Controllers/sentiment.py
335ad8a19893431098435d93199a005f2f8e34d3
[]
no_license
uscoburgo/API-Sentiment
53383406fcc3ac983594699aa9856700680cd033
fa66321ccf0e73f418fcb0d07885df46f7d1a556
refs/heads/master
2023-05-25T03:50:32.510912
2020-07-14T15:44:36
2020-07-14T15:44:36
279,024,151
0
1
null
2023-05-22T23:32:54
2020-07-12T08:35:32
Jupyter Notebook
UTF-8
Python
false
false
2,242
py
from src.Controllers.chats import getMessage from src.app import app from pymongo import MongoClient from src.Helpers.errorHelpers import errorHelper ,Error404 ,APIError from src.config import DBURL import json import nltk import ast from nltk.sentiment.vader import SentimentIntensityAnalyzer from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity as distance import pandas as pd from bson import ObjectId client = MongoClient(DBURL, connectTimeoutMS=2000, serverSelectionTimeoutMS=2000) db = client.get_database() nltk.download("vader_lexicon") sia = SentimentIntensityAnalyzer() @app.route("/chat/<chat_id>/sentiment") #?lang=<lang> @errorHelper def getSentiment(chat_id): sentimentMessage={} for ID, message in getMessage(chat_id).items(): sentimentMessage[ID]={"message":message,"sentiment":sia.polarity_scores(message)} sums=0 for v in sentimentMessage.values(): print(v) sums+=v['sentiment']['compound'] average = sums/len(sentimentMessage) sentimentMessage['overall sentiment']=average return sentimentMessage """ @app.route("/user/<user_id>/recommend") @errorHelper def getRecommendation(user_id): stringsDict = {} cur = db.messages.find({},{'_id':0,'user_id':1,'text':1}) data = list(cur) for e in len(data): stringsDict.update({data[e]['user_id'] : data[e]['text']}) sent1 = {}#k =user_id, v=text for k,v in stringsDict.items(): sent1[k]=str(v) count_vectorizer = CountVectorizer() sparse_matrix = count_vectorizer.fit_transform(sent1.values()) doc_term_matrix = sparse_matrix.todense() df = pd.DataFrame(doc_term_matrix, columns=count_vectorizer.get_feature_names(), index=sent1.keys()) similarity_matrix = distance(df,df) sim_df = pd.DataFrame(similarity_matrix, columns=sent1.keys(), index=sent1.keys()) def get3closest(sim_df,user_id):#user is an ObjectId col=sim_df[user_id].sort_values(ascending=False)[1:] return list(col[0:3].index) output= get3closest(sim_df,ObjectId(user_id)) output=[str(el) for el in output] return {'recommended':output} """
[ "uscoburgo@gmail.com" ]
uscoburgo@gmail.com
ec14651799152533ae1afb6b7c4b39d5335c4ecb
2e74cff6c9639f3903ccde662e79359d0724285e
/2019_late/20190829/swea_5105_미로의거리.py
a33cf516df96ab271637b2d73566c84324d7b61b
[]
no_license
dodonmountain/algorithm
e29988071f651e51ba65e3926302f94a3d4074a5
ce33e0d74220839aed4b17a47fa0069458a4324e
refs/heads/master
2022-11-05T05:14:01.527015
2022-11-01T04:29:37
2022-11-01T04:29:37
200,008,533
0
0
null
null
null
null
UTF-8
Python
false
false
1,349
py
import sys sys.stdin = open('5105.txt') from pprint import pprint from collections import deque from collections import deque def bfs(x, y): global shortest Q = deque() visit[x][y] == True Q.append((x, y)) dx = [0, 0, -1, 1] dy = [-1, 1, 0, 0] D = [[0] * N for _ in range(N)] # 최단 거리를 저장 while Q: xx, yy = Q.popleft() for step in range(4): nx = xx + dx[step] ny = yy + dy[step] if nx < 0 or ny < 0 or nx > N-1 or ny > N-1: continue if maze[nx][ny] == 3: shortest = D[xx][yy] return if maze[nx][ny] == 0 and visit[nx][ny] == False: visit[nx][ny] = 1 # 방문표시 D[nx][ny] = D[xx][yy] + 1 Q.append((nx, ny)) T = int(input()) for t_case in range(T): shortest = 0 N = int(input()) visit = [[0] * N for _ in range(N)] maze = [] for _ in range(N): maze.append(list(map(int,input()))) # pprint(maze, width=30) for i in range(N): for j in range(N): if maze[i][j] == 2: start = [i, j] elif maze[i][j] == 3: goal = [i, j] bfs(start[0], start[1]) pprint(visit,width=40) print('#{} {}'.format(t_case + 1, shortest))
[ "lkh151515@gmail.com" ]
lkh151515@gmail.com
22c73317a38a0b6c83062567b5d226553b2468c6
17f74be7a38e5e86539a239e3a8d642bdf1b36ff
/PYTHON_SYNTAX/two_types_of_division.py
9c020eb74b20dc7cd9d42de0ebbc833dc7bc5591
[]
no_license
vishal-1codes/python
5d56825a02bc27375b6f6fba65cf0cad1596f87a
53c41e4f04933c5e911b2b0473d1ecf886955869
refs/heads/master
2023-08-13T21:16:17.995213
2021-09-25T17:21:01
2021-09-25T17:21:01
345,704,819
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
#if we want float number in result cucumbers=100 num_people=6 whole_cucumbers_per_person=cucumbers/num_people float_cucumbers_per_person=float(cucumbers)/num_people print(float_cucumbers_per_person)
[ "pawarvishal10k@gmail.com" ]
pawarvishal10k@gmail.com
01d0c81a95e80f405f125fd99caa00848d8f6f63
a86ca34e23afaf67fdf858df9e47847606b23e0c
/lib/temboo/Library/MailChimp/ListSubscribe.py
1366bda24013c469dbaa94248b91bb53f0dbbfa1
[]
no_license
miriammelnick/dont-get-mugged
6026ad93c910baaecbc3f5477629b0322e116fa8
1613ee636c027ccc49c3f84a5f186e27de7f0f9d
refs/heads/master
2021-01-13T02:18:39.599323
2012-08-12T23:25:47
2012-08-12T23:25:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,083
py
############################################################################### # # ListSubscribe # Adds a subscriber to a MailChimp list. # # Python version 2.6 # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution class ListSubscribe(Choreography): """ Create a new instance of the ListSubscribe Choreography. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ def __init__(self, temboo_session): Choreography.__init__(self, temboo_session, '/Library/MailChimp/ListSubscribe') def new_input_set(self): return ListSubscribeInputSet() def _make_result_set(self, result, path): return ListSubscribeResultSet(result, path) def _make_execution(self, session, exec_id, path): return ListSubscribeChoreographyExecution(session, exec_id, path) """ An InputSet with methods appropriate for specifying the inputs to the ListSubscribe choreography. The InputSet object is used to specify input parameters when executing this choreo. """ class ListSubscribeInputSet(InputSet): """ Set the value of the APIKey input for this choreography. ((required, string) The API Key provided by Mailchimp.) """ def set_APIKey(self, value): InputSet._set_input(self, 'APIKey', value) """ Set the value of the DoubleOptIn input for this choreography. ((optional, boolean) Flag to control whether a double opt-in confirmation message is sent. Specify '1' (true) or '0' (false). Defaults to 0.) """ def set_DoubleOptIn(self, value): InputSet._set_input(self, 'DoubleOptIn', value) """ Set the value of the EmailAddress input for this choreography. ((conditional, string) The email address for the subscriber you want to create. Required unless the email address is included in the MergeVars input as part of your JSON object.) """ def set_EmailAddress(self, value): InputSet._set_input(self, 'EmailAddress', value) """ Set the value of the EmailType input for this choreography. ((optional, string) Must be one of 'text', 'html', or 'mobile'. Defaults to html.) """ def set_EmailType(self, value): InputSet._set_input(self, 'EmailType', value) """ Set the value of the ListId input for this choreography. ((required, string) The id of the list that the subsbriber will be added to.) """ def set_ListId(self, value): InputSet._set_input(self, 'ListId', value) """ Set the value of the MergeVars input for this choreography. ((conditional, json) A JSON object of the merge fields for this subscriber. If the subscriber email address is not provided for the EmailAddress input, it must be specified here.) """ def set_MergeVars(self, value): InputSet._set_input(self, 'MergeVars', value) """ Set the value of the ReplaceInterests input for this choreography. ((optional, boolean) A flag to determine whether to replace the interest groups with the groups provided or add the provided groups to the member's interest groups. Specify '1' (true) or '0' (false). Defaults to 1.) """ def set_ReplaceInterests(self, value): InputSet._set_input(self, 'ReplaceInterests', value) """ Set the value of the SendWelcome input for this choreography. ((optional, boolean) If double_optin is false and this flag is true, a welcome email will be sent. Note that this does not apply when updating records. Specify '1' (true) or '0' (false). Defaults to 0.) """ def set_SendWelcome(self, value): InputSet._set_input(self, 'SendWelcome', value) """ Set the value of the UpdateExisting input for this choreography. ((optional, boolean) Indicates that if the email already exists, this request will perform an update instead of an insert. Specify '1' (true) or '0' (false). Defaults to 1.) """ def set_UpdateExisting(self, value): InputSet._set_input(self, 'UpdateExisting', value) """ A ResultSet with methods tailored to the values returned by the ListSubscribe choreography. The ResultSet object is used to retrieve the results of a choreography execution. """ class ListSubscribeResultSet(ResultSet): """ Retrieve the value for the "Response" output from this choreography execution. (The response from Mailchimp. Returns the string "true" for success and an error description for failures.) """ def get_Response(self): return self._output.get('Response', None) class ListSubscribeChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return ListSubscribeResultSet(response, path)
[ "miriam@famulus" ]
miriam@famulus
2627c321f4755387617ebb32925ede73ea39af0d
5fafdbc2818450646d83550a0be2fe080a6f6b4d
/src/wagtail_email_subscription/config.py
95a8c23beeebc142315f14ade1e222ff2b7668e9
[ "MIT" ]
permissive
robmoorman/wagtail-email-subscription
527bbbc9e298a7e712319892040152dc05495d91
59b6874ecdf562201e4867a2465ac24a4f4c157d
refs/heads/main
2023-04-20T19:39:23.611378
2021-05-04T13:50:22
2021-05-04T13:52:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
from django.apps import AppConfig class WagtailEmailSubscription(AppConfig): name = "wagtail_email_subscription" verbose_name = "Wagtail Email Subscription"
[ "maerteijn@gmail.com" ]
maerteijn@gmail.com
a6bec2e6e27892e9e71ddf65399e880ac78e4293
f00ad57c98e554470a72511dda7a7bfd160aca19
/linear_structure/stack/infix_expression_ui.py
5a43f72bf018cb2935ef1500165bb647398f3437
[]
no_license
fanzhangg/algorithm-problems
d60115210aaaffcd094b34b9db5b46dadf93fe9e
43b111ad625f197ba0905abceab9ee4484284e08
refs/heads/master
2021-07-12T20:24:46.265700
2020-07-06T17:58:31
2020-07-06T17:58:31
171,220,135
1
0
null
null
null
null
UTF-8
Python
false
false
516
py
from infix_expression import * def eval_infix_input(): while True: infix = input(">>>") if not infix: print("Session ended. Thanks for using!") break try: postfix = infix_to_postfix(infix) answer = eval_postfix(postfix) if int(answer) == answer: answer = int(answer) print(answer) except SyntaxError: print("Invalid syntax!") if __name__ == "__main__": eval_infix_input()
[ "vanadiumzhang@gmail.com" ]
vanadiumzhang@gmail.com
1fb40fbffed2a13ac1dd57353e0da19e31b8beb0
ea1e7cb5499dd9273352f55788251341a1e20dac
/finchcollector_project/settings.py
c6e846e1b23931ea29ef615906be73a27c95022f
[]
no_license
jpardike/Finch-collector-lab-views
68a06d024529fa2ac40fe25f642432469db9b648
05a1ab69126dee7ba2b6f9fe7923b2b7d5bf3341
refs/heads/master
2023-01-30T23:56:47.929203
2020-11-03T08:04:08
2020-11-03T08:04:08
320,217,551
0
0
null
null
null
null
UTF-8
Python
false
false
3,243
py
""" Django settings for finchcollector_project project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import django_on_heroku # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '#846welivxg$0w9r-%ey+o1v$u-x7ey1y(ry2$l(0$!vhx^$3(' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'main_app', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'finchcollector_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'finchcollector_project.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'finchcollector', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' LOGIN_REDIRECT_URL = '/finches/' LOGOUT_REDIRECT_URL = '/' django_on_heroku.settings(locals())
[ "jpardike@gmail.com" ]
jpardike@gmail.com
869bef9db0f826ce4bfa32b021923192fba92284
95ddd1469d43d3dc1a61e3195b6ece492eb96296
/lesson 3/promblem1/problem1.py
b8f393530c32dfac73968f7df30f46e4f6e6e1ff
[]
no_license
agp123/U3_lesson3
1f82f70e4c3c1b51c16309146582e1d7d299760e
3ea55353c97f2dc9d21ff2d69559255dc7385eec
refs/heads/master
2020-04-09T09:14:35.118198
2018-12-14T14:41:19
2018-12-14T14:41:19
160,226,093
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
x1 = -12 y1 = 6 x2 = -4 y2 =4 slope = (y2 - y1) / (x2 - x1) print(slope)
[ "noreply@github.com" ]
agp123.noreply@github.com
05dfdbb7f1fe32835a1c9b65abe2e372a8d9fad3
3eff0ac549dd24fbade02d63c3a541ab88db1e5b
/ultimate_python/pythonrefresh.py
36dd68b468c98ac1e89ac271b58821745d51e6d4
[]
no_license
lisaolson/udemy
618410fb548db864b7878de5a2231e8293daa2ad
f40f947f6f79d692748f3efba02176fb360f0c4e
refs/heads/master
2020-03-28T20:14:23.028759
2018-09-18T19:45:32
2018-09-18T19:45:32
149,051,967
0
0
null
null
null
null
UTF-8
Python
false
false
1,845
py
# VARIABLE age = 21 name="Lisa" # print("Hello my name is {} and I am {} years old".format(name, age)) if age < 25: print('You are young') def hello(name, age): return 'Hello {} you are {} years old'.format(name, age) sentence = hello('Lisa', 21) print(sentence) # LIST dognames = ["Fido", "Sean", "Sally", "Mark"] dognames.insert(0, "Jane") print(dognames) print(dognames[2]) print(len(dognames)) dognames[1] = "Lilo" print(dognames) # FOR LOOP for dog in dognames: print(dog) for x in range(1,10): print(x) age = 0 # WHILE LOOP while age < 18: print(age) age += 1 numbers = [76, 83, 16, 69, 52, 78, 10, 77, 45, 52, 32, 17, 58, 54, 79, 72, 55, 50, 81, 74, 45, 33, 38, 10, 40, 44, 70, 81, 79, 28, 83, 41, 14, 16, 27, 38, 20, 84, 24, 50, 59, 71, 1, 13, 56, 91, 29, 54, 65, 23, 60, 57, 13, 39, 58, 94, 94, 42, 46, 58, 59, 29, 69, 60, 83, 9, 83, 5, 64, 70, 55, 89, 67, 89, 70, 8, 90, 17, 48, 17, 94, 18, 98, 72, 96, 26, 13, 7, 58, 67, 38, 48, 43, 98, 65, 8, 74, 44, 92] for number in numbers: if number > 90: print(number) # LIBRARY dogs = {"Fido":8, "Sally":17, "Sean":2} print(dogs["Sally"]) dogs["Sarah"] = 6 print(dogs) # CLASS class Dog: dogInfo = "Hey dogs are cool!" def bark(self, str): # self as the first parameter then you can add something for the second parameter print('BARK!' + str) mydog = Dog() mydog.bark("bark bark bark bark") mydog.name = "Fido" mydog.age = 16 print(mydog.name) print(mydog.age) Dog.dogInfo = "Hey there" print(Dog.dogInfo) class Horse: def __init__(self, name, age, furcolor): # you can call 'self' anything as long as it's the same everywhere self.name = name self.age = age self.furcolor = furcolor def neigh(self): print("NEIGH!") myhorse = Horse("Joker", 7, "Brown") print(myhorse.age)
[ "olson.lisa94@gmail.com" ]
olson.lisa94@gmail.com
a83a2545f465ee61b698cfbea8d5b6debcef42ec
c05e1c1ee73951856a49ec53612f91f8a656931a
/conf.py
1fc76619acfd81514b95d7d25835aeca29c9621a
[]
no_license
pylgrym/pyscify
b3bb33009994236578271c71c21fc734d0f6df9d
5e7f722a1a4b40f01546b160083fa6269bff9fe9
refs/heads/master
2021-01-10T04:47:19.918697
2016-02-20T20:50:00
2016-02-20T20:50:00
52,174,607
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
# -*- coding: utf-8 -*- from pysite.conf import PySiteConfiguration from pysite.compat import PORTABLE_STRING class HelloworldConf(PySiteConfiguration): sitename = 'helloworld' translations = ['en'] sitetitle = PORTABLE_STRING('yes') def __init__(self,basedir): super(HelloworldConf, self).__init__(basedir) siteconf = HelloworldConf
[ "jgaardsted@gmail.com" ]
jgaardsted@gmail.com
6171becb207e276db36bc6653ed1900ae7e3400d
a5424e248051f1cf2542aa82f040f7173aa8f8d8
/ExamenUII.2/ExamenU22/Examen/admin.py
6f540ae7584dda48774c6e956324debaa0392758
[]
no_license
luisfbarajas/PWeb
dd23a744357e5b961b3a1c23756bf60cc6741b08
e514d0f5710e33c718de8e27a06321643a271e17
refs/heads/master
2020-03-28T07:11:33.107934
2018-12-06T07:56:17
2018-12-06T07:56:17
147,886,217
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
from django.contrib import admin from .models import Personal, Activities # Register your models here. admin.site.register(Personal) admin.site.register(Activities)
[ "luisf.barajas.btz@gamil.com" ]
luisf.barajas.btz@gamil.com
09d99350cbbabc222a77496c6c03229d663ceb9a
f3438f7b9925a16efa3240ae35b08efb4f567fec
/python_tutorial/Session 1/shout_it_out.py
34253082f4c81336fcb18f5dc81bc5075b5c4df2
[]
no_license
Bing-Violet/Code-Like-a-Girl
cf1a0c8bff2f1c9f9092e89a6d50c1bf7ec7db8d
c72aa2aed9ca8ed2a9d20172a2a2c681f544c8ab
refs/heads/master
2021-03-15T10:41:53.185751
2020-03-12T13:51:46
2020-03-12T13:51:46
246,844,560
0
0
null
null
null
null
UTF-8
Python
false
false
82
py
sentence = "I'm hungry!" sentence_shout = sentence.upper() print(sentence_shout)
[ "Bing_Violet@hotmail.com" ]
Bing_Violet@hotmail.com
f16f18958e39635b2ec69e9ef800bff4f89db0b2
b05761d771bb5a85d39d370c649567c1ff3eb089
/venv/lib/python3.10/site-packages/poetry/core/_vendor/tomlkit/api.py
23658477769d0ea33af12aa07d3fc063cfaeaef7
[]
no_license
JawshyJ/Coding_Practice
88c49cab955eab04609ec1003b6b8c20f103fc06
eb6b229d41aa49b1545af2120e6bee8e982adb41
refs/heads/master
2023-02-19T10:18:04.818542
2023-02-06T21:22:58
2023-02-06T21:22:58
247,788,631
4
0
null
null
null
null
UTF-8
Python
false
false
96
py
/home/runner/.cache/pip/pool/3c/67/92/c18b0ffb5593ff972c09bb41120b8c23e3d192f2ff675748efe3028432
[ "37465112+JawshyJ@users.noreply.github.com" ]
37465112+JawshyJ@users.noreply.github.com
cf3c79f12e13974f1a2fc914f299f7f6b79b0301
49692b22e38afe5fc6cf7144cd830e11a9a43d47
/cse101/asgn4/random_generator.py
7d6633063b576641eb97f343be08a0df60dec5bf
[]
no_license
juliofuentesUI/cse
1b0080cabe8301c3149d9b0ab498f17a7ca7a7e8
4e86df10ee9c23bdfeeafb61106d664aa0d136ff
refs/heads/main
2023-08-21T19:27:03.697081
2021-10-04T07:09:44
2021-10-04T07:09:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
import random actors = [] with open("cleaned_movielist.txt", 'r') as movie_list: for line, cast in enumerate(movie_list.readlines()): actor_list=cast.split() for i in range(1,len(actor_list)): actors.append(actor_list[i]) with open("random.txt",'w') as output: for i in range(0,10): rand1=random.randint(0,len(actors)-1) rand2=random.randint(0,len(actors)-1) output.write(actors[rand1]+" "+ actors[rand2]+"\n")
[ "zliu259@ussc.edu" ]
zliu259@ussc.edu
aedb32df31a1c5530d48f12e8a44775169b392d2
9d9e6e909e3f94ca62eef648c9e0b43473fa132e
/anagrams.py
495d404764901a8b900808bf62c07565468dba8e
[]
no_license
Adi1729/Coding_100
a73fe21344c5da42cd72a829018fdf593299e4b9
61bd8838b1c989b0199d486f0a7269f8386ae924
refs/heads/master
2021-06-29T04:28:05.570383
2020-08-28T07:30:48
2020-08-28T07:30:48
142,202,161
0
0
null
2018-08-01T08:40:46
2018-07-24T19:10:38
Python
UTF-8
Python
false
false
1,107
py
s= 'cbaebabacd' a = 'abc' s="ababababab" a="aab" a ='acb' q= [i for i in a] q.sort() a = ''.join(q) a_orig =a b= 'b' l=[] i=0 i=1 pcounter = collections.Counter(a) scounter = collections.Counter(s[:len(a)]) for i in range(0,len(s)-len(a)+1): scounter = collections.Counter(s[i:len(a)+i]) if pcounter==scounter: l.append(i) c='a' a_orig ='abc' a=a_orig p=a #Method 1 : Using Counters result = [] pcounter = collections.Counter(p) scounter = collections.Counter(s[:len(p) - 1]) begin = 0 for i in range(len(p) - 1, len(s)) : scounter[s[i]] += 1 if scounter == pcounter : print(scounter) result.append(begin) scounter[s[begin]] -= 1 if scounter[s[begin]] == 0 : del(scounter[s[begin]]) begin += 1 return result Input: ["eat", "tea", "tan", "ate", "nat", "bat"], Output: [ ["ate","eat","tea"], ["nat","tan"], ["bat"] ] a='ate' l = [i for i in a] l.sort() q = ''.join(l)
[ "adiyadav.1729@gmail.com" ]
adiyadav.1729@gmail.com
eb9232dcd2be9ba8cbd5bd42e4ba39ef045ea84e
babaa02f2c866c20d9753193a7c3193c149fd09f
/12month_report/report/__init__.py
1982030fa17f97418fa32dfb22dc26a17de0fb2f
[]
no_license
solbutec/kmart
5a03a4743bc8e935669e4aadea732d402dd59867
b73316e6c0ce79bbc463d7198f5c9fe181f70531
refs/heads/master
2022-12-05T19:19:29.393040
2020-08-24T13:50:14
2020-08-24T13:50:14
290,629,983
0
1
null
2020-08-26T23:55:19
2020-08-26T23:55:18
null
UTF-8
Python
false
false
50
py
# -*- coding: utf-8 -*- from . import twelvemonth
[ "kyawzinoo@asiamatrixsoftware.com" ]
kyawzinoo@asiamatrixsoftware.com