blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
e9f868ff815024c1e16fbad4fecdd0555aa18e30
77c5e35467b91bb10967a141f7caa3a3c0b4095f
/associate_name_with_cat_reduce.py
a29676a9d7f78ae6f5f9930e603d8adcd190b9b8
[]
no_license
yan9liu/title_search
cab9cd19841dbf895dc165f0172e079129c8650d
b155c4c3b9a4e306a121e89247f4bad72c3bbe65
refs/heads/master
2021-01-09T21:52:24.787824
2016-01-04T07:32:40
2016-01-04T07:32:40
48,975,494
0
0
null
null
null
null
UTF-8
Python
false
false
785
py
import sys def reduce(): cats = [] names = [] pre_pid = None for line in sys.stdin: splits = line.decode('utf-8').strip().split('\t', 1) pid = splits[0] if pid != pre_pid: if cats and names: output(pre_pid, cats, names) cats = [] names = [] pre_pid = pid if ':' in splits[1]: names.append(splits[1]) else: cats.append(splits[1]) if cats and names: output(pre_pid, cats, names) def output(pid, cats, names): for name in names: for cat in cats: out_s = pid + "\t" + cat + "\t" + name print out_s.encode('utf-8') if __name__=="__main__": reduce()
[ "liu.ocean@outlook.com" ]
liu.ocean@outlook.com
6dd5458bc61691ad70c9076ff0135c5343b37efb
cc343475ca61c167944a0c0f59f531ca4f43b5c8
/NetworksLabCode/httpclient.py
197f5da8fc07afac1bef6611ebba7a87d3d40e8d
[]
no_license
sambathkumar02/Python
55f20f47c333eb5bb3947c8b4d14495c9fb210dc
ce569a18c4f35de70aeba0007bbf4bc48730b3d4
refs/heads/master
2023-03-15T05:25:50.531048
2021-03-18T11:08:21
2021-03-18T11:08:21
257,019,558
2
0
null
null
null
null
UTF-8
Python
false
false
451
py
import socket client=socket.socket() server=('saranathan.ac.in',80) client.connect(server) header = b'GET / HTTP/1.1\r\n' header += b'Host: saranathan.ac.in:80\r\n' header += b'Accept:text/html\r\n' header += b'Connection: close\r\n' header += b'\r\n' client.send(header) response=b'' while True: buffer=client.recv(4096) if not buffer: break response +=buffer print(response.decode()) client.close()
[ "noreply@github.com" ]
sambathkumar02.noreply@github.com
860ed367c2aca7e4dd6deba69f2855fdacc19f00
f49c866f416a0c2cf89347aa2e0814553f4b5d52
/train_eval_for_mrc.py
6c3a3cc2610e4fbcbbd86c58408dec97802e41b3
[]
no_license
thunderboom/NER_MRC
3fec4a4a821592fe9d092ac2b3b9b167dee25cb5
a0f6a9a77ed7ed5d6ff4d46d114b83871480b1e7
refs/heads/main
2022-12-31T17:06:08.782889
2020-10-27T10:04:31
2020-10-27T10:04:31
307,647,627
0
0
null
null
null
null
UTF-8
Python
false
false
14,300
py
# coding: UTF-8 import os import logging import numpy as np import torch import torch.nn as nn from sklearn import metrics from seqeval.metrics import f1_score, precision_score, recall_score, classification_report import time from utils import extract_flat_spans_batch from models.loss import DiceLoss from torch.nn.modules import BCEWithLogitsLoss from transformers import AdamW, get_linear_schedule_with_warmup logger = logging.getLogger(__name__) def compute_loss(config, start_logits, end_logits, span_logits, start_labels, end_labels, match_labels, start_label_mask, end_label_mask): batch_size, seq_len = start_logits.size() start_float_label_mask = start_label_mask.view(-1).float() end_float_label_mask = end_label_mask.view(-1).float() match_label_row_mask = start_label_mask.bool().unsqueeze(-1).expand(-1, -1, seq_len) match_label_col_mask = end_label_mask.bool().unsqueeze(-2).expand(-1, seq_len, -1) match_label_mask = match_label_row_mask & match_label_col_mask match_label_mask = torch.triu(match_label_mask, 0) # start should be less equal to end if config.span_loss_candidates == "all": # naive mask float_match_label_mask = match_label_mask.view(batch_size, -1).float() else: # use only pred or golden start/end to compute match loss start_preds = start_logits > 0 end_preds = end_logits > 0 if config.span_loss_candidates == "gold": match_candidates = ((start_labels.unsqueeze(-1).expand(-1, -1, seq_len) > 0) & (end_labels.unsqueeze(-2).expand(-1, seq_len, -1) > 0)) else: match_candidates = torch.logical_or( (start_preds.unsqueeze(-1).expand(-1, -1, seq_len) & end_preds.unsqueeze(-2).expand(-1, seq_len, -1)), (start_labels.unsqueeze(-1).expand(-1, -1, seq_len) & end_labels.unsqueeze(-2).expand(-1, seq_len, -1)) ) match_label_mask = match_label_mask & match_candidates float_match_label_mask = match_label_mask.view(batch_size, -1).float() if config.loss_type == "bce": bce_loss = BCEWithLogitsLoss(reduction="none") start_loss = bce_loss(start_logits.view(-1), start_labels.view(-1).float()) start_loss = (start_loss * start_float_label_mask).sum() / start_float_label_mask.sum() end_loss = bce_loss(end_logits.view(-1), end_labels.view(-1).float()) end_loss = (end_loss * end_float_label_mask).sum() / end_float_label_mask.sum() match_loss = bce_loss(span_logits.view(batch_size, -1), match_labels.view(batch_size, -1).float()) match_loss = match_loss * float_match_label_mask match_loss = match_loss.sum() / (float_match_label_mask.sum() + 1e-10) else: dice_loss = DiceLoss(with_logits=True, smooth=config.dice_smooth) start_loss = dice_loss(start_logits, start_labels.float(), start_float_label_mask) end_loss = dice_loss(end_logits, end_labels.float(), end_float_label_mask) match_loss = dice_loss(span_logits, match_labels.float(), float_match_label_mask) return start_loss, end_loss, match_loss def model_train(config, model, train_iter, dev_iter): start_time = time.time() # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": config.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0 }, ] t_total = len(train_iter) * config.num_train_epochs optimizer = AdamW(optimizer_grouped_parameters, lr=config.learning_rate) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=t_total * config.warmup_proportion, num_training_steps=t_total ) #FocalLoss(gamma =2, alpha = 1) #调整gamma=0,1,2,3 # Train! logger.info("***** Running training *****") logger.info(" Train Num examples = %d", len(train_iter)) logger.info(" Dev Num examples = %d", len(dev_iter)) logger.info(" Num Epochs = %d", config.num_train_epochs) logger.info(" Instantaneous batch size GPU/CPU = %d", config.batch_size) logger.info(" Total optimization steps = %d", t_total) logger.info(" Train device:%s, id:%d", config.device, config.device_id) global_batch = 0 # 记录进行到多少batch dev_best_loss = float('inf') last_improve = 0 # 记录上次验证集loss下降的batch数 flag = False # 记录是否很久没有效果提升 predict_all = np.array([], dtype=int) labels_all = np.array([], dtype=int) total_loss = 0. for epoch in range(config.num_train_epochs): logger.info('Epoch [{}/{}]'.format(epoch + 1, config.num_train_epochs)) scheduler.step() # 学习率衰减 for i, (_, input_ids, attention_mask, token_type_ids, type_start_labels, type_end_labels, start_label_mask, end_label_mask, match_labels, type_) in enumerate(train_iter): global_batch += 1 model.train() input_ids = torch.tensor(input_ids).type(torch.LongTensor).to(config.device) attention_mask = torch.tensor(attention_mask).type(torch.LongTensor).to(config.device) token_type_ids = torch.tensor(token_type_ids).type(torch.LongTensor).to(config.device) type_start_labels = torch.tensor(type_start_labels).type(torch.LongTensor).to(config.device) type_end_labels = torch.tensor(type_end_labels).type(torch.LongTensor).to(config.device) start_label_mask = torch.tensor(start_label_mask).type(torch.LongTensor).to(config.device) end_label_mask = torch.tensor(end_label_mask).type(torch.LongTensor).to(config.device) match_labels = torch.tensor(match_labels).type(torch.LongTensor).to(config.device) # model output start_logits, end_logits, span_logits = model(input_ids, attention_mask, token_type_ids) start_loss, end_loss, match_loss = compute_loss( config=config, start_logits=start_logits, end_logits=end_logits, span_logits=span_logits, start_labels=type_start_labels, end_labels=type_end_labels, match_labels=match_labels, start_label_mask=start_label_mask, end_label_mask=end_label_mask ) loss = config.weight_start * start_loss + config.weight_end * end_loss + config.weight_span * match_loss model.zero_grad() total_loss += loss loss.backward() optimizer.step() scheduler.step() # Update learning rate schedule # [B, length], [B, length], [B, length, length] start_preds, end_preds, span_pred = start_logits > 0, end_logits > 0, span_logits>0 active_labels = extract_flat_spans_batch(start_pred=type_start_labels, end_pred=type_end_labels, match_pred=match_labels, label_mask=start_label_mask, pseudo_tag=type_ ) predic = extract_flat_spans_batch(start_pred=start_preds, end_pred=end_preds, match_pred=span_pred, label_mask=start_label_mask, pseudo_tag=type_ ) labels_all = np.append(labels_all, active_labels) predict_all = np.append(predict_all, predic) if global_batch % config.output == 0: # 每多少轮输出在训练集和验证集上的效果 true_label = labels_all predict_label = predict_all train_acc = metrics.accuracy_score(labels_all, predict_all) train_precision = precision_score(true_label, predict_label) train_recall = recall_score(true_label, predict_label) train_f1 = f1_score(true_label, predict_label) predict_all = np.array([], dtype=int) labels_all = np.array([], dtype=int) acc, precision, recall, f1, dev_loss = model_evaluate(config, model, dev_iter) if dev_loss < dev_best_loss: dev_best_loss = dev_loss improve = '*' last_improve = global_batch else: improve = '' time_dif = time.time() - start_time msg = '{0:>6}, Train Loss: {1:>.4f}, train_acc: {2:>.2%}, precision: {3:>.2%}, recall: {4:>.2%}, f1: {5:>.2%}' \ ' Val Loss: {6:>5.6f}, acc: {7:>.2%}, precision: {8:>.2%}, recall: {9:>.2%}, f1: {10:>.2%}, ' \ ' Time: {11} - {12}' logger.info(msg.format(global_batch, total_loss / config.output, train_acc, train_precision, train_recall, train_f1, dev_loss, acc, precision, recall, f1, time_dif, improve)) total_loss = 0. if config.early_stop and global_batch - last_improve > config.require_improvement: # 验证集loss超过1000batch没下降,结束训练 logger.info("No optimization for a long time, auto-stopping...") flag = True break if flag: break def model_evaluate(config, model, data_iter, test=False): model.eval() loss_total = 0 predict_all = np.array([], dtype=int) labels_all = np.array([], dtype=int) with torch.no_grad(): for i, (_, input_ids, attention_mask, token_type_ids, type_start_labels, type_end_labels, start_label_mask, end_label_mask, match_labels, type_) in enumerate(data_iter): input_ids = torch.tensor(input_ids).type(torch.LongTensor).to(config.device) attention_mask = torch.tensor(attention_mask).type(torch.LongTensor).to(config.device) token_type_ids = torch.tensor(token_type_ids).type(torch.LongTensor).to(config.device) type_start_labels = torch.tensor(type_start_labels).type(torch.LongTensor).to(config.device) type_end_labels = torch.tensor(type_end_labels).type(torch.LongTensor).to(config.device) start_label_mask = torch.tensor(start_label_mask).type(torch.LongTensor).to(config.device) end_label_mask = torch.tensor(end_label_mask).type(torch.LongTensor).to(config.device) match_labels = torch.tensor(match_labels).type(torch.LongTensor).to(config.device) # model output start_logits, end_logits, span_logits = model(input_ids, attention_mask, token_type_ids) start_loss, end_loss, match_loss = compute_loss( config=config, start_logits=start_logits, end_logits=end_logits, span_logits=span_logits, start_labels=type_start_labels, end_labels=type_end_labels, match_labels=match_labels, start_label_mask=start_label_mask, end_label_mask=end_label_mask ) loss = config.weight_start * start_loss + config.weight_end * end_loss + config.weight_span * match_loss loss_total += loss # [B, length], [B, length], [B, length, length] start_preds, end_preds, span_pred = start_logits > 0, end_logits > 0, span_logits>0 active_labels = extract_flat_spans_batch(start_pred=type_start_labels, end_pred=type_end_labels, match_pred=match_labels, label_mask=start_label_mask, pseudo_tag=type_ ) predic = extract_flat_spans_batch(start_pred=start_preds, end_pred=end_preds, match_pred=span_pred, label_mask=start_label_mask, pseudo_tag=type_ ) labels_all = np.append(labels_all, active_labels) predict_all = np.append(predict_all, predic) true_label = labels_all predict_label = predict_all acc = metrics.accuracy_score(labels_all, predict_all) precision = precision_score(true_label, predict_label) recall = recall_score(true_label, predict_label) f1 = f1_score(true_label, predict_label) if test: report = classification_report(true_label, predict_label, digits=4) confusion = metrics.confusion_matrix(true_label, predict_label) return acc, precision, recall, f1, loss_total / len(data_iter), report, confusion return acc, precision, recall, f1, loss_total / len(data_iter) def model_test(config, model, test_iter): # test! logger.info("***** Running testing *****") logger.info(" Test Num examples = %d", len(test_iter)) start_time = time.time() acc, precision, recall, f1, test_loss, test_report, test_confusion = model_evaluate(config, model, test_iter, test=True) msg = 'Test Loss: {0:>5.4f}, Test acc: {1:>.2%}, precision: {2:>.2%} recall: {3:>.2%}, f1: {4:>.2%}' logger.info(msg.format(test_loss, acc, precision, recall, f1)) logger.info("Precision, Recall and F1-Score...") logger.info(test_report) logger.info("Confusion Matrix...") logger.info(test_confusion) time_dif = time.time() - start_time logger.info("Time usage:%.6fs", time_dif)
[ "470810634@qq.com" ]
470810634@qq.com
b0a496a2adad7d4299f3c94ceb3f5651a373a629
ee8c4c954b7c1711899b6d2527bdb12b5c79c9be
/assessment2/amazon/run/core/controllers/manage.py
436b9b54ecb5b87023cfad764e11bb94a803445a
[]
no_license
sqlconsult/byte
02ac9899aebea4475614969b594bfe2992ffe29a
548f6cb5038e927b54adca29caf02c981fdcecfc
refs/heads/master
2021-01-25T14:45:42.120220
2018-08-11T23:45:31
2018-08-11T23:45:31
117,135,069
0
0
null
null
null
null
UTF-8
Python
false
false
366
py
#!/usr/bin/env python3 from flask import Blueprint, Flask, render_template, request, url_for controller = Blueprint('manage', __name__, url_prefix='/manage') # @controller.route('/<string:title>', methods=['GET']) # def lookup(title): # if title == 'Republic': # TODO 2 # return render_template('republic.html') # TODO 2 # else: # pass
[ "sqlconsult@hotmail.com" ]
sqlconsult@hotmail.com
a6feea4e0041758fbcfcdf08169d6272e1d4ea41
bdba52c756cc09f192b720ea318510c265665dcd
/swagger_client/api/character_api.py
c1e1cd12abcec0f72554fd46436981b2dad6fbd7
[ "MIT" ]
permissive
rseichter/bootini-star
6b38195890f383615cc2b422c365ac28c5b87292
a80258f01a05e4df38748b8cb47dfadabd42c20d
refs/heads/master
2020-03-14T03:17:11.385048
2018-06-28T17:23:23
2018-06-28T17:23:23
131,416,504
0
0
MIT
2018-05-01T14:26:04
2018-04-28T14:28:46
Python
UTF-8
Python
false
false
94,170
py
# coding: utf-8 """ EVE Swagger Interface An OpenAPI for EVE Online # noqa: E501 OpenAPI spec version: 0.8.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from swagger_client.api_client import ApiClient class CharacterApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_characters_character_id(self, character_id, **kwargs): # noqa: E501 """Get character&#39;s public information # noqa: E501 Public information about a character --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCharactersCharacterIdOk If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get character&#39;s public information # noqa: E501 Public information about a character --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCharactersCharacterIdOk If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v4/characters/{character_id}/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='GetCharactersCharacterIdOk', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_agents_research(self, character_id, **kwargs): # noqa: E501 """Get agents research # noqa: E501 Return a list of agents research information for a character. The formula for finding the current research points with an agent is: currentPoints = remainderPoints + pointsPerDay * days(currentTime - researchStartDate) --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_agents_research(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdAgentsResearch200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_agents_research_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_agents_research_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_agents_research_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get agents research # noqa: E501 Return a list of agents research information for a character. The formula for finding the current research points with an agent is: currentPoints = remainderPoints + pointsPerDay * days(currentTime - researchStartDate) --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_agents_research_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdAgentsResearch200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_agents_research" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_agents_research`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_agents_research`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v1/characters/{character_id}/agents_research/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdAgentsResearch200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_blueprints(self, character_id, **kwargs): # noqa: E501 """Get blueprints # noqa: E501 Return a list of blueprints the character owns --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_blueprints(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param int page: Which page of results to return :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdBlueprints200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_blueprints_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_blueprints_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_blueprints_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get blueprints # noqa: E501 Return a list of blueprints the character owns --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_blueprints_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param int page: Which page of results to return :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdBlueprints200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'page', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_blueprints" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_blueprints`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_blueprints`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v2/characters/{character_id}/blueprints/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdBlueprints200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_chat_channels(self, character_id, **kwargs): # noqa: E501 """Get chat channels # noqa: E501 Return chat channels that a character is the owner or operator of --- This route is cached for up to 300 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_chat_channels(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdChatChannels200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_chat_channels_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_chat_channels_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_chat_channels_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get chat channels # noqa: E501 Return chat channels that a character is the owner or operator of --- This route is cached for up to 300 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_chat_channels_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdChatChannels200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_chat_channels" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_chat_channels`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_chat_channels`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v1/characters/{character_id}/chat_channels/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdChatChannels200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_corporationhistory(self, character_id, **kwargs): # noqa: E501 """Get corporation history # noqa: E501 Get a list of all the corporations a character has been a member of --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_corporationhistory(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdCorporationhistory200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_corporationhistory_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_corporationhistory_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_corporationhistory_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get corporation history # noqa: E501 Get a list of all the corporations a character has been a member of --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_corporationhistory_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdCorporationhistory200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_corporationhistory" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_corporationhistory`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_corporationhistory`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v1/characters/{character_id}/corporationhistory/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdCorporationhistory200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_fatigue(self, character_id, **kwargs): # noqa: E501 """Get jump fatigue # noqa: E501 Return a character's jump activation and fatigue information --- This route is cached for up to 300 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_fatigue(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCharactersCharacterIdFatigueOk If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_fatigue_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_fatigue_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_fatigue_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get jump fatigue # noqa: E501 Return a character's jump activation and fatigue information --- This route is cached for up to 300 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_fatigue_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCharactersCharacterIdFatigueOk If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_fatigue" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_fatigue`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_fatigue`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v1/characters/{character_id}/fatigue/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='GetCharactersCharacterIdFatigueOk', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_medals(self, character_id, **kwargs): # noqa: E501 """Get medals # noqa: E501 Return a list of medals the character has --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_medals(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdMedals200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_medals_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_medals_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_medals_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get medals # noqa: E501 Return a list of medals the character has --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_medals_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdMedals200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_medals" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_medals`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_medals`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v1/characters/{character_id}/medals/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdMedals200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_notifications(self, character_id, **kwargs): # noqa: E501 """Get character notifications # noqa: E501 Return character notifications --- This route is cached for up to 600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_notifications(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdNotifications200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_notifications_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_notifications_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_notifications_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get character notifications # noqa: E501 Return character notifications --- This route is cached for up to 600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_notifications_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdNotifications200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_notifications" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_notifications`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_notifications`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v2/characters/{character_id}/notifications/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdNotifications200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_notifications_contacts(self, character_id, **kwargs): # noqa: E501 """Get new contact notifications # noqa: E501 Return notifications about having been added to someone's contact list --- This route is cached for up to 600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_notifications_contacts(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdNotificationsContacts200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_notifications_contacts_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_notifications_contacts_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_notifications_contacts_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get new contact notifications # noqa: E501 Return notifications about having been added to someone's contact list --- This route is cached for up to 600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_notifications_contacts_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdNotificationsContacts200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_notifications_contacts" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_notifications_contacts`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_notifications_contacts`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v1/characters/{character_id}/notifications/contacts/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdNotificationsContacts200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_portrait(self, character_id, **kwargs): # noqa: E501 """Get character portraits # noqa: E501 Get portrait urls for a character --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_portrait(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCharactersCharacterIdPortraitOk If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_portrait_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_portrait_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_portrait_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get character portraits # noqa: E501 Get portrait urls for a character --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_portrait_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCharactersCharacterIdPortraitOk If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_portrait" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_portrait`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_portrait`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v2/characters/{character_id}/portrait/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='GetCharactersCharacterIdPortraitOk', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_roles(self, character_id, **kwargs): # noqa: E501 """Get character corporation roles # noqa: E501 Returns a character's corporation roles --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_roles(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCharactersCharacterIdRolesOk If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_roles_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_roles_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_roles_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get character corporation roles # noqa: E501 Returns a character's corporation roles --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_roles_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCharactersCharacterIdRolesOk If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_roles" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_roles`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_roles`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v2/characters/{character_id}/roles/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='GetCharactersCharacterIdRolesOk', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_standings(self, character_id, **kwargs): # noqa: E501 """Get standings # noqa: E501 Return character standings from agents, NPC corporations, and factions --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_standings(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdStandings200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_standings_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_standings_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_standings_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get standings # noqa: E501 Return character standings from agents, NPC corporations, and factions --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_standings_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdStandings200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_standings" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_standings`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_standings`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v1/characters/{character_id}/standings/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdStandings200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_stats(self, character_id, **kwargs): # noqa: E501 """Yearly aggregate stats # noqa: E501 Returns aggregate yearly stats for a character --- This route is cached for up to 86400 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_stats(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdStats200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_stats_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_stats_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_stats_with_http_info(self, character_id, **kwargs): # noqa: E501 """Yearly aggregate stats # noqa: E501 Returns aggregate yearly stats for a character --- This route is cached for up to 86400 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_stats_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdStats200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_stats" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_stats`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_stats`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v2/characters/{character_id}/stats/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdStats200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_character_id_titles(self, character_id, **kwargs): # noqa: E501 """Get character corporation titles # noqa: E501 Returns a character's titles --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_titles(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdTitles200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_character_id_titles_with_http_info(character_id, **kwargs) # noqa: E501 else: (data) = self.get_characters_character_id_titles_with_http_info(character_id, **kwargs) # noqa: E501 return data def get_characters_character_id_titles_with_http_info(self, character_id, **kwargs): # noqa: E501 """Get character corporation titles # noqa: E501 Returns a character's titles --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_character_id_titles_with_http_info(character_id, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersCharacterIdTitles200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_titles" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_titles`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `get_characters_character_id_titles`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v1/characters/{character_id}/titles/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdTitles200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_characters_names(self, character_ids, **kwargs): # noqa: E501 """Get character names # noqa: E501 Resolve a set of character IDs to character names --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_names(character_ids, async=True) >>> result = thread.get() :param async bool :param list[int] character_ids: A comma separated list of character IDs (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersNames200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_characters_names_with_http_info(character_ids, **kwargs) # noqa: E501 else: (data) = self.get_characters_names_with_http_info(character_ids, **kwargs) # noqa: E501 return data def get_characters_names_with_http_info(self, character_ids, **kwargs): # noqa: E501 """Get character names # noqa: E501 Resolve a set of character IDs to character names --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_characters_names_with_http_info(character_ids, async=True) >>> result = thread.get() :param async bool :param list[int] character_ids: A comma separated list of character IDs (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCharactersNames200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['character_ids', 'datasource', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_names" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_ids' is set if ('character_ids' not in params or params['character_ids'] is None): raise ValueError("Missing the required parameter `character_ids` when calling `get_characters_names`") # noqa: E501 if ('character_ids' in params and len(params['character_ids']) > 1000): raise ValueError("Invalid value for parameter `character_ids` when calling `get_characters_names`, number of items must be less than or equal to `1000`") # noqa: E501 if ('character_ids' in params and len(params['character_ids']) < 1): raise ValueError("Invalid value for parameter `character_ids` when calling `get_characters_names`, number of items must be greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'character_ids' in params: query_params.append(('character_ids', params['character_ids'])) # noqa: E501 collection_formats['character_ids'] = 'csv' # noqa: E501 if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v1/characters/names/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersNames200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def post_characters_affiliation(self, characters, **kwargs): # noqa: E501 """Character affiliation # noqa: E501 Bulk lookup of character IDs to corporation, alliance and faction --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.post_characters_affiliation(characters, async=True) >>> result = thread.get() :param async bool :param list[int] characters: The character IDs to fetch affiliations for. All characters must exist, or none will be returned. (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[PostCharactersAffiliation200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.post_characters_affiliation_with_http_info(characters, **kwargs) # noqa: E501 else: (data) = self.post_characters_affiliation_with_http_info(characters, **kwargs) # noqa: E501 return data def post_characters_affiliation_with_http_info(self, characters, **kwargs): # noqa: E501 """Character affiliation # noqa: E501 Bulk lookup of character IDs to corporation, alliance and faction --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.post_characters_affiliation_with_http_info(characters, async=True) >>> result = thread.get() :param async bool :param list[int] characters: The character IDs to fetch affiliations for. All characters must exist, or none will be returned. (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[PostCharactersAffiliation200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['characters', 'datasource', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method post_characters_affiliation" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'characters' is set if ('characters' not in params or params['characters'] is None): raise ValueError("Missing the required parameter `characters` when calling `post_characters_affiliation`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'characters' in params: body_params = params['characters'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v1/characters/affiliation/', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[PostCharactersAffiliation200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def post_characters_character_id_cspa(self, character_id, characters, **kwargs): # noqa: E501 """Calculate a CSPA charge cost # noqa: E501 Takes a source character ID in the url and a set of target character ID's in the body, returns a CSPA charge cost --- # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.post_characters_character_id_cspa(character_id, characters, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param list[int] characters: The target characters to calculate the charge for (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: float If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.post_characters_character_id_cspa_with_http_info(character_id, characters, **kwargs) # noqa: E501 else: (data) = self.post_characters_character_id_cspa_with_http_info(character_id, characters, **kwargs) # noqa: E501 return data def post_characters_character_id_cspa_with_http_info(self, character_id, characters, **kwargs): # noqa: E501 """Calculate a CSPA charge cost # noqa: E501 Takes a source character ID in the url and a set of target character ID's in the body, returns a CSPA charge cost --- # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.post_characters_character_id_cspa_with_http_info(character_id, characters, async=True) >>> result = thread.get() :param async bool :param int character_id: An EVE character ID (required) :param list[int] characters: The target characters to calculate the charge for (required) :param str datasource: The server name you would like data from :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: float If the method is called asynchronously, returns the request thread. """ all_params = ['character_id', 'characters', 'datasource', 'token', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method post_characters_character_id_cspa" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'character_id' is set if ('character_id' not in params or params['character_id'] is None): raise ValueError("Missing the required parameter `character_id` when calling `post_characters_character_id_cspa`") # noqa: E501 # verify the required parameter 'characters' is set if ('characters' not in params or params['characters'] is None): raise ValueError("Missing the required parameter `characters` when calling `post_characters_character_id_cspa`") # noqa: E501 if 'character_id' in params and params['character_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `character_id` when calling `post_characters_character_id_cspa`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'character_id' in params: path_params['character_id'] = params['character_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'token' in params: query_params.append(('token', params['token'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'characters' in params: body_params = params['characters'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['evesso'] # noqa: E501 return self.api_client.call_api( '/v4/characters/{character_id}/cspa/', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='float', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
[ "github@seichter.de" ]
github@seichter.de
4dd3029190c967aa1021f127e1f73e6489ab3fb7
b012b7ce6a371511de44eee63e8bcceb29ae4a23
/manage.py
2aee2cf4a1d44bbe7e9e6f5984a50da229840468
[]
no_license
Srinivasu-Gillella/djtemplates1
f23974b7af13f64717eeb9d8547cc38e046e7383
f77b700e6a444362c2c4c68b7836bf6f417a1a96
refs/heads/master
2022-12-16T04:12:19.059026
2020-09-28T12:10:16
2020-09-28T12:10:16
299,296,765
0
0
null
null
null
null
UTF-8
Python
false
false
632
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djtemplates1.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "64829989+Srinivasu-Gillella@users.noreply.github.com" ]
64829989+Srinivasu-Gillella@users.noreply.github.com
1d04d3d4f51fb6e30bcbf047d655a4f3121f14ce
73dc6b3fdb07592f10b8e02b7ca053deb61a2dc9
/msof_api/comments/admin.py
4e3be735e10ca856e607a6d04ccf86bad757bf99
[]
no_license
likelion-kookmin/msof_api
4143c09f93b68d219aa20de3bd57ec544c2bdf32
f9fec7d31ebdb465a8935711da715db6d87c0fce
refs/heads/develop
2023-06-28T15:35:45.240871
2021-07-31T16:38:35
2021-07-31T16:38:35
347,298,658
3
1
null
2021-07-31T16:38:36
2021-03-13T07:02:56
Python
UTF-8
Python
false
false
784
py
"""# comments admin - CommentAdmin """ from django.contrib import admin from .models import Comment @admin.register(Comment) class CommentAdmin(admin.ModelAdmin): """## CommentAdmin - admin에서 관리할 Comment 모델 설정 """ list_display = [ 'author', 'question', 'parent', 'selected', 'content', 'status', 'liked_count', 'disliked_count', ] list_editable = [ 'status', ] list_filter = [ 'author', 'question', 'parent', 'selected', 'status', ] search_fields = [ 'content', 'author__name', 'question__title', 'question__content', ] ordering = [ '-updated_at', ]
[ "singun11@kookmin.ac.kr" ]
singun11@kookmin.ac.kr
652e8c01463ca031788666db93024bbc761ec75d
14856ffe01c711af7a41af0b1abf0378ba4ffde6
/Python/Fundamentals/Fun_with_Functions.py
4db600213841d74d4382c1514cc6f369abdc29a8
[]
no_license
sharonanchel/coding-dojo
9a8db24eec17b0ae0c220592e6864510297371c3
d6c4a7efd0804353b27a49e16255984c4f4b7f2a
refs/heads/master
2021-05-05T18:17:48.101853
2017-06-23T23:53:51
2017-06-23T23:53:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
# Odd/Even def odd_even(): for i in range(1,2001): if i%2 == 0: type = 'even' else: type = 'odd' print 'Number is',i, 'This is an',type,'number.' odd_even() # Multiply def multiply(arr, num): for i in range(0,len(arr)): arr[i] *= num return arr print multiply([2,4,10,16],5) # Hacker Challenge def layered_multiples(arr): newerArray = [] for i in arr: newArray = [] for x in range(0,i): newArray.append(1) newerArray.append(newArray) return newerArray print layered_multiples(multiply([2,4,5],3))
[ "jao.colin@gmail.com" ]
jao.colin@gmail.com
b32d0c2672ca5d2afe58d2b5c3af3ad37e89ffba
f23c9196b21e4ff189d2c8399f4a77de2813d2b2
/tests/Python + Tornado/simpleserver.py
1f5bb8f4f2c28b1d9f901d93d82e36fa91b26a74
[]
no_license
gchatelet/web-performance-tests
bcf903135bfcdc46a485c5a0acb9175d125ab3a2
3e0b526132abf840dfbc9dd235a94dd4713f9c9b
refs/heads/master
2020-04-14T23:54:02.606248
2013-03-18T11:10:18
2013-03-18T11:10:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
import tornado.ioloop import tornado.web class GreetingResourceHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, " + self.get_argument('name', True)) application = tornado.web.Application([ (r"/", GreetingResourceHandler), ]) if __name__ == "__main__": application.listen(8080) tornado.ioloop.IOLoop.instance().start()
[ "chatelet.guillaume@gmail.com" ]
chatelet.guillaume@gmail.com
cf384ca62ab9185a7636264fbac38c353fd2bb0c
a7c6cf9663f1db1ed407f70e3ee2578ee38b0eca
/main.py
e452961320167ed3fba64a2ba5ca1561ae0dfe9e
[ "MIT" ]
permissive
theSlayer4089/EasyFNBotGlitch
bfce879c92c56a239b698b4802c45a04e1452053
fd214dc3984092b3a845b7ab6960ba389893dc50
refs/heads/master
2020-12-05T22:36:01.536330
2020-01-05T16:45:38
2020-01-05T16:45:38
232,265,289
1
0
MIT
2020-01-07T07:12:19
2020-01-07T07:12:19
null
UTF-8
Python
false
false
8,429
py
import json,fortniteAPI,functions,MultipleClients,os,UpdateCheck from functools import partial from Events import ready,friends,party,message from threading import Thread try: import fortnitepy,asyncio,aiofiles from termcolor import colored from flask import Flask except: os.system("pip3 install --user -r requirements.txt") Settings = json.loads(open("Settings.json").read()) Languages = ["ar","de","es-419","es","en","fr","it","ja","ko","pl","pt-BR","ru","tr","zh-CN","zh-Hant"] fortniteClient = fortnitepy.Client(email=Settings["Email"],password=Settings["Password"],status="Join my Discord\nIf you want your own bot\nhttps://discord.gg/jxgZH6Z\nOr Follow me on Twitter\n@LupusLeaks") fortniteClient.Settings = Settings fortniteClient.Clients = {} fortniteClient.RemovingFriends = False default_party_member = [] default_party = {} #Default language if Settings["Default item search language"] in Languages: fortniteClient.DefaultLang = Settings["Default item search language"].lower() else: print(f'ERROR: Couldn\'t find {Settings["DefaultItemSearchLanguage"]} as a language') fortniteClient.DefaultLang = "en" #Banner SeasonLevel=1000 if Settings["Default season level"] and type(Settings["Default season level"]) == int: SeasonLevel = Settings["Default season level"] else: print(f'ERROR: {Settings["Default season level"]} is invaild, make sure you only use numbers') default_party_member.append(partial(fortnitepy.ClientPartyMember.set_banner,season_level=SeasonLevel,icon=Settings["Default banner"],color=Settings["Default banner color"])) #Platform + Privacy if Settings["Platform"].upper() in fortnitepy.Platform.__members__: fortniteClient.platform = fortnitepy.Platform[Settings["Platform"].upper()] if Settings["Privacy"].upper() in fortnitepy.PartyPrivacy.__members__: default_party["privacy"] = fortnitepy.PartyPrivacy[Settings["Privacy"].upper()] #Cosmetics #Backpack if Settings["Default backpack"] and not Settings["Default pet"]: Backpack = fortniteAPI.SGetBackpack(Settings["Default backpack"],fortniteClient.DefaultLang) if not "status" in Backpack: v = [] if Settings["Default backpack varaint channel name"] and Settings["Default backpack varaint name"] and Backpack["variants"]["en"]: VariantChannelName = Settings["Default backpack varaint channel name"].upper() Variant = Settings["Default backpack varaint name"].upper() for variant in Backpack["variants"]["en"]: if variant["type"].upper() == VariantChannelName: for tag in variant["options"]: if tag["name"].upper() == Variant: v.append(functions.create_variant(variant["channel"],tag["tag"],item="AthenaBackpack")) default_party_member.append(partial(fortnitepy.ClientPartyMember.set_backpack,asset=f'{str(Backpack["path"]).replace("FortniteGame/Content","/Game")}.{Backpack["id"]}',variants=v)) #Skin if Settings["Default skin"]: Skin = fortniteAPI.SGetSkin(Settings["Default skin"],fortniteClient.DefaultLang) if not "status" in Skin: v = [] if Settings["Default skin varaint channel name"] and Settings["Default skin varaint name"] and Skin["variants"]["en"]: VariantChannelName = Settings["Default skin varaint channel name"].upper() Variant = Settings["Default skin varaint name"].upper() for variant in Skin["variants"]["en"]: if variant["type"].upper() == VariantChannelName: for tag in variant["options"]: if tag["name"].upper() == Variant: v.append(functions.create_variant(variant["channel"],tag["tag"],item="AthenaCharacter")) default_party_member.append(partial(fortnitepy.ClientPartyMember.set_outfit,asset=f'{str(Skin["path"]).replace("FortniteGame/Content","/Game")}.{Skin["id"]}',variants=v)) #Pickaxe if Settings["Default pickaxe"]: Pickaxe = fortniteAPI.SGetPickaxe(Settings["Default pickaxe"],fortniteClient.DefaultLang) if not "status" in Pickaxe: v = [] if Settings["Default pickaxe varaint channel name"] and Settings["Default pickaxe varaint name"] and Pickaxe["variants"]["en"]: VariantChannelName = Settings["Default pickaxe varaint channel name"].upper() Variant = Settings["Default pickaxe varaint name"].upper() for variant in Pickaxe["variants"]["en"]: if variant["type"].upper() == VariantChannelName: for tag in variant["options"]: if tag["name"].upper() == Variant: v.append(functions.create_variant(variant["channel"],tag["tag"],item="AthenaPickaxe")) default_party_member.append(partial(fortnitepy.ClientPartyMember.set_pickaxe,asset=f'{str(Pickaxe["path"]).replace("FortniteGame/Content","/Game")}.{Pickaxe["id"]}',variants=v)) #Pet if Settings["Default pet"]: Pet = fortniteAPI.SGetPet(Settings["Default pet"],fortniteClient.DefaultLang) if not "status" in Pet: v = [] if Settings["Default pet varaint channel name"] and Settings["Default pet varaint name"] and Pet["variants"]["en"]: VariantChannelName = Settings["Default pet varaint channel name"].upper() Variant = Settings["Default pet varaint name"].upper() for variant in Pickaxe["variants"]["en"]: if variant["type"].upper() == VariantChannelName: for tag in variant["options"]: if tag["name"].upper() == Variant: v.append(functions.create_variant(variant["channel"],tag["tag"],item="AthenaPetCarrier")) default_party_member.append(partial(fortnitepy.ClientPartyMember.set_backpack,asset=f'{str(Pet["path"]).replace("FortniteGame/Content","/Game")}.{Pet["id"]}',variants=v)) fortniteClient.default_party_config = default_party fortniteClient.default_party_member_config = default_party_member @fortniteClient.event async def event_ready(): fortniteClient.starting = True fortniteClient.mainID = fortniteClient.user.id tasks = [] for email,password in Settings["SubAccounts"].items(): if "@" in email: tasks.append(MultipleClients.LoadAccount(fortniteClient,email,password)) if len(tasks) > 0: print("Starting sub accounts!") await asyncio.wait(tasks) for Client in fortniteClient.Clients.values(): Friends = fortniteClient.has_friend(Client.user.id) if not Friends: try: await fortniteClient.add_friend(Client.user.id) except: pass Client.starting = False await ready.Ready(fortniteClient) fortniteClient.starting = False @fortniteClient.event async def event_friend_add(friend): await friends.event_friend_add(fortniteClient, friend) @fortniteClient.event async def event_friend_remove(friend): await friends.event_friend_remove(fortniteClient, friend) @fortniteClient.event async def event_friend_request(friend): await friends.event_friend_request(fortniteClient, friend) @fortniteClient.event async def event_party_invite(invitation): await party.event_party_invite(fortniteClient, invitation) @fortniteClient.event async def event_party_member_join(Member): await party.event_party_member_join(fortniteClient,Member) @fortniteClient.event async def event_party_member_promote(old_leader, new_leader): await party.event_party_member_promote(fortniteClient, old_leader,new_leader) @fortniteClient.event async def event_party_message(Message): await message.Command(fortniteClient, Message) @fortniteClient.event async def event_friend_message(Message): await message.Command(fortniteClient, Message) app = Flask(__name__) @app.route('/') def Home(): return "Follow @LupusLeaks on Twitter" Thread(target=app.run).start() Thread(target=UpdateCheck.CheckVersion).start() Thread(target=UpdateCheck.CheckItems).start() try: fortniteClient.run() except fortnitepy.errors.AuthException: print(colored("Invalid account credentials!","red"))
[ "noreply@github.com" ]
theSlayer4089.noreply@github.com
a959feaae80f94e9b538502bda97297c7f29dc52
0d7085e202a232b419e4a2d0efca07ec30b474e6
/src/storage.py
6070abacfb99463a396ca4d48626e45a122dec50
[]
no_license
maconel/fastrun
8a0880cb4078d93da2f8ae24ab52044efb34e78b
131701aa6f95b9692965461d395d8a7d0e5f6c13
refs/heads/master
2021-01-01T19:39:28.499482
2011-10-30T13:37:06
2011-10-30T13:37:06
2,520,012
0
0
null
null
null
null
UTF-8
Python
false
false
1,915
py
# -*- coding: utf-8 -*- from __future__ import with_statement import os import sys import pinyinlib datafilepath = r'..\data\data.txt' #name |path |cmd0 :cmd1 :cmd2 |priority #记事本|c:\windows\notepad.exe|记事本:notepad.ex:jishibene|18 class Item(object): def __init__(self, name, path, cmd, priority): self.name = name self.path = path self.cmd = cmd self.priority = priority class Storage(object): def __init__(self): self.items = [] def load(self): self.items = [] with file(os.path.join(curfilepath(), datafilepath), 'rt') as f: lineno = 0 for line in f: fields = line.rstrip('\r\n').split('|') if len(fields) != 4: continue self.items.append(Item(fields[0], fields[1], fields[2].lower().split(':'), int(fields[3]))) lineno += 1 def raise_priority(self, item): item.priority += 1 self.items.sort(key=lambda(item):item.priority, reverse=True) with file(os.path.join(curfilepath(), datafilepath), 'wt') as f: for item in self.items: f.write(self.item_to_str(item)) f.write('\n') def item_to_str(self, item): return '|'.join((item.name, item.path, ':'.join(item.cmd), '%04d' % item.priority)) def add(self, name, path): pinyinlist = pinyinlib.wordlist_to_pinyin(name) item = Item(name, path, ':'.join((name, os.path.basename(path), ':'.join(pinyinlist))), 0) self.items.append(item) with file(os.path.join(curfilepath(), datafilepath), 'at') as f: f.write(self.item_to_str(item)) f.write('\n') def curfilepath(): return os.path.dirname(os.path.abspath(os.path.join(os.getcwd(), __file__)))
[ "maconel.reg@gmail.com" ]
maconel.reg@gmail.com
4199440910460a422c013a0c40e9ecddfe383267
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nnbelt.py
a561c79d95be99afc054e24528da2a296c42f2e6
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
1,067
py
ii = [('LyelCPG2.py', 1), ('MarrFDI.py', 1), ('CoolWHM2.py', 2), ('KembFFF.py', 1), ('RogePAV.py', 4), ('RennJIT.py', 1), ('LeakWTI2.py', 1), ('LeakWTI3.py', 1), ('PettTHE.py', 1), ('TennAP.py', 1), ('PeckJNG.py', 1), ('BailJD2.py', 1), ('FitzRNS3.py', 2), ('WilkJMC2.py', 3), ('CarlTFR.py', 4), ('LyttELD.py', 1), ('BailJD1.py', 1), ('RoscTTI2.py', 1), ('CrokTPS.py', 1), ('ClarGE.py', 2), ('BuckWGM.py', 2), ('LyelCPG.py', 3), ('GilmCRS.py', 1), ('WestJIT2.py', 1), ('DibdTRL2.py', 1), ('CrocDNL.py', 3), ('FerrSDO2.py', 1), ('LeakWTI.py', 1), ('BachARE.py', 1), ('MereHHB3.py', 1), ('HowiWRL2.py', 3), ('BailJD3.py', 1), ('WilkJMC.py', 5), ('MartHRW.py', 4), ('MackCNH.py', 1), ('FitzRNS4.py', 5), ('CoolWHM3.py', 1), ('DequTKM.py', 5), ('FitzRNS.py', 3), ('BowrJMM.py', 1), ('LyttELD3.py', 1), ('RoscTTI.py', 2), ('LewiMJW.py', 1), ('JacoWHI2.py', 1), ('SomeMMH.py', 2), ('BrewDTO.py', 2), ('RogeSIP.py', 6), ('MartHRW2.py', 3), ('MartHSI.py', 3), ('DwigTHH.py', 1), ('BowrJMM2.py', 1), ('BowrJMM3.py', 2), ('BeckWRE.py', 1), ('KeigTSS.py', 1), ('HowiWRL.py', 1)]
[ "varunwachaspati@gmail.com" ]
varunwachaspati@gmail.com
4d3d7789762162ec46b85085c7c5971a1c7ab7cc
aab2f73ce75434ae127a00c708ec14e29d99dfec
/fermi_level/carrier_con_instrinsic_semi.py
7f2d08137e2169990632993d6e2db1a9438df8a2
[]
no_license
dadhikar/semiconductor_physics_and_modeling
29a7c008d93906d40d82a6ef4657da7c28830a6a
8e9c082daaf41b228641bc6741e04a491eb7a06f
refs/heads/master
2022-11-29T04:26:00.530412
2020-08-18T21:08:18
2020-08-18T21:08:18
256,613,677
4
0
null
null
null
null
UTF-8
Python
false
false
2,986
py
""" For an intrinsic semiconductor, calculating electron density at conduction band. This involves solving Fermi-Dirac integral """ # importing required libraries import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['xtick.top'] = True mpl.rcParams['ytick.right'] = True from scipy.integrate import quad def fermi_dirac_dist(e, ef, T): """ define Fermi-Dirac distribution function where, e - energy level in eV ef - fermi energy level in eV T - temperature return: probability value for the distribution """ kb = 8.33e-5 # Boltzmann constant in eV/K if T == 0.0: if e <= ef: f2 = 1.0 else: f2 = 0.0 else: f1 = np.exp((e-ef)/(kb*T)) f2 = 1/(1+f1) return f2 # T = np.linspace(2, 100, 20, endpoint=True) # e = np.linspace(0.2, 0.4, 50, endpoint=True) # print(T) # f = fermi_dirac_dist(e, 0.3, 300) # plt.plot(e, f) # plt.show() def density_of_states(e, ec): """ Density of states near the bottom of the conduction band for low-enough carrier density and temperature ec (in eV) - conduction band edge e (in eV)- energy value close to ec """ me = 0.5110e6 # electron mass (in eV) factor = 0.91 # this will be material dependent meff = factor*me # effective electron mass h_cross = 6.582e-16 # in eV-s f1 = (np.sqrt(2)/np.power(np.pi, 2))*np.power(meff, 1.5) f2 = np.power(e-ec, 0.5)/np.power(h_cross, 3) return f1*f2 # print(density_of_states(0.302, 0.3)) def fermi_dirac_integrand(x, xf): """ x = (e-ec)/kB*T xf = (ef-ec)/kB*T ef = Fermi enegry in eV ec = conduction band edge in eV kB = Boltzmann constant T = Temperature """ return np.power(x, 0.5)/(1+np.exp(x-xf)) def fermi_dirac_integral(xf): """ """ integral_value, _ = quad(func= fermi_dirac_integrand, a=0, b=10, args=(xf), full_output=0, epsabs=1.49e-08, epsrel=1.49e-08, limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50) return integral_value fermi_integral = [] xf = np.linspace(-10, 10, 1000) for x in xf: integral_value = fermi_dirac_integral(x) # print(xf, integral_value) fermi_integral.append(integral_value) plt.semilogy(xf, np.asarray(fermi_integral), 'ro', ms=2.5, label=r'Fermi-Dirac') plt.semilogy(xf, 0.5*np.power(np.pi, 0.5)*np.exp(xf), 'ko', ms=2.5, label=r'Boltzmann approx.' ) plt.vlines(x=0.0, ymin= 1e-5, ymax= 30, colors='g', linestyles='--',linewidth=2.0) plt.xlabel(r'(E$_{f}$ - E$_{c}$) / k$_{B}$T [no unit]') plt.ylabel('Fermi-Dirac Integral [ab. unit]') plt.xlim(-10, 10) plt.ylim(1e-5, 25) plt.legend() #plt.text(0.55, 0.5, r'E$_{f}$ = 0.5 eV', c='r', fontsize=12) plt.title(r'Intrinsic Semiconductor') plt.show()
[ "dadhikar@dadhikar.local" ]
dadhikar@dadhikar.local
5f6535ea4fadf155e1c96cc0508e31a1a8227986
9c0bb2bd2788bac007f857eca11a672751c8d808
/hello_world.py
a2a497ef8c45ee1717f3cbe8af39a268a1c98ac3
[]
no_license
michaelorr/10gen
e52b5ff697fa845ab523e1268b38502b4bb61c61
e938d92a291c1986deb51de84043efff446bc170
refs/heads/master
2016-09-06T16:00:28.218176
2013-02-24T18:48:11
2013-02-24T18:48:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
from bottle import route, run, template @route('/hello/:name') def index(name='World'): return template('<b>Hello {{name}}</b>', name=name) run(host='localhost', port=8888)
[ "michael@orr.co" ]
michael@orr.co
e5f68e03c3e1f9546ede6129f969da71ae852f20
2369cb94be22a6dcaf5694faf7b40a440d24c3ef
/rally_plugins/scenarios/kubernetes/replication_controllers.py
bc305f074bf4bebeb74cfd3c4dc2a36732466f0b
[ "Apache-2.0" ]
permissive
xinhuihu/rally-plugins
c1c5c9a595c4fbe23e81923da224a7ddd06c15dc
a26fe046862b4fcf695dd237586134f81953d707
refs/heads/master
2020-08-09T13:38:53.745630
2019-08-02T10:33:57
2019-08-02T10:33:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,445
py
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from rally.task import scenario from rally_plugins.scenarios.kubernetes import common as common_scenario @scenario.configure(name="Kubernetes.create_and_delete_replication_controller", platform="kubernetes") class RCCreateAndDelete(common_scenario.BaseKubernetesScenario): """Kubernetes replication controller create and delete test. Choose created namespace, create replication controller with defined image and number of replicas, wait until it won't be running and delete it after. """ def run(self, image, replicas, command=None, status_wait=True): """Create and delete replication controller. :param replicas: number of replicas for replication controller :param image: replication controller image :param command: array of strings representing container command :param status_wait: wait replication controller status """ namespace = self.choose_namespace() name = self.client.create_rc( replicas=replicas, image=image, namespace=namespace, command=command, status_wait=status_wait ) self.client.delete_rc( name, namespace=namespace, status_wait=status_wait ) @scenario.configure( name="Kubernetes.create_scale_and_delete_replication_controller", platform="kubernetes" ) class CreateScaleAndDeleteRCPlugin(common_scenario.BaseKubernetesScenario): """Kubernetes replication controller scale test. Create replication controller, scale it with number of replicas, scale it with original number of replicas, delete replication controller. """ def run(self, image, replicas, scale_replicas, command=None, status_wait=True): """Create RC, scale with replicas, revert scale and then delete it. :param image: RC pod template image :param replicas: original number of replicas :param scale_replicas: number of replicas to scale :param command: array of strings representing container command :param status_wait: wait replication controller status """ namespace = self.choose_namespace() name = self.client.create_rc( namespace=namespace, replicas=replicas, image=image, command=command, status_wait=status_wait ) self.client.scale_rc( name, namespace=namespace, replicas=scale_replicas, status_wait=status_wait ) self.client.scale_rc( name, namespace=namespace, replicas=replicas, status_wait=status_wait ) self.client.delete_rc( name, namespace=namespace, status_wait=status_wait )
[ "prazumovsky@mirantis.com" ]
prazumovsky@mirantis.com
fb7e3fc360eec3bf7e5029668cb7c5c927013bc2
aa43cbcef5414f240e72b6840b1acc462dccc528
/Functions exercises/18.py
147de8be9382b2833c8ca80cfe2d2ce048cf7bce
[]
no_license
Jeevan5955/Python
730a7fd70eb9719e59173231a0530946010da45b
7cd46e46787d5ee51524a551f68975c4c9806e48
refs/heads/master
2022-11-20T11:43:56.586066
2020-07-27T05:51:38
2020-07-27T05:51:38
278,003,415
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
def count_primes(num): primes = [2] x = 3 if num < 2: # for the case of num = 0 or 1 return 0 while x <= num: for y in range(3,x,2): # test all odd factors up to x-1 if x%y == 0: x += 2 break else: primes.append(x) x += 2 print(primes) return len(primes)
[ "noreply@github.com" ]
Jeevan5955.noreply@github.com
92d91153f08b294489b5212a168455b19ff4682c
cd8ca699f1f7ba14f731db76acc025ad97de01fe
/ref_sys/oper/migrations/0002_alter_invite_status.py
b5418854527b652a7a9dbde1148e21a3edcbc8d4
[]
no_license
valbayzak/ref_system
8784fef3e85683208bed9a0bf3ae7bd632f44146
67fc708d5f28ed2c007a825faa17230460e05481
refs/heads/main
2023-06-03T18:22:01.572896
2021-06-21T16:53:17
2021-06-21T16:53:17
378,987,422
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
# Generated by Django 3.2.4 on 2021-06-21 14:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('oper', '0001_initial'), ] operations = [ migrations.AlterField( model_name='invite', name='status', field=models.PositiveSmallIntegerField(choices=[(1, 'ACTIVE'), (2, 'NOT_ACTIVE'), (3, 'ACCEPTED')], default=1, verbose_name='Статус'), ), ]
[ "85289417+vallbay@users.noreply.github.com" ]
85289417+vallbay@users.noreply.github.com
5cf35eeab105fc35d939285aa6aaed87c88a0b92
a91b9cc658421d078520f73320bd4551b74ed51f
/dev3/demo3/models.py
cb564a1b90f3dcea0ac7262e543cc3dadbf0c4a0
[]
no_license
2519325088/dev3
e0ea12a54a36dc722747dc693974a0ccd11a5bd9
847a49542c2612d7fc879438d65a542158c93f12
refs/heads/master
2020-05-15T02:19:58.605565
2019-04-19T03:19:56
2019-04-19T03:19:56
182,047,444
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
from django.db import models # Create your models here. class Problem(models.Model): pname=models.CharField(max_length=200) def __str__(self): return self.pname class Option(models.Model): oname=models.CharField(max_length=100) oshu=models.IntegerField(default=0) pid=models.ForeignKey('Problem',on_delete=models.CASCADE) def __str__(self): return self.oname
[ "2519325088@qq.com" ]
2519325088@qq.com
79c1cfdd225efbe367313be720d75fd7941a44b2
4eebce0d0c1132aed8227325bd58faf61a4010c7
/CONTEXT_178/d2.py
7a83e4ac92f0948ab14911f4a674624665be9101
[]
no_license
xu1718191411/AT_CODE_BEGINNER_SELECTION
05836cfcc63dab2a0a82166c8f4c43c82b72686b
e4e412733d1a632ce6c33c739064fe036367899e
refs/heads/master
2021-07-17T00:59:46.315645
2020-09-22T06:14:27
2020-09-22T06:14:27
214,153,758
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
def calculate(n): arr = [0 for i in range(2000 + 1)] arr[3] = 1 arr[4] = 1 arr[5] = 1 for i in range(6, n + 1): arr[i] = (arr[i - 2] + arr[i - 3] + arr[i - 4]) % (1000000000 + 7) print(arr[n]) calculate(int(input()))
[ "xu1718191411@gmail.com" ]
xu1718191411@gmail.com
9906f5196c28ef9676151c8ed0c701f327159f25
96afce5cdd9c636f066830aa41d4eb9fce1a42d1
/pull_list_of_books.py
ffd62cd7061bac27e5b98af8e110f5dcf60eee5b
[]
no_license
davehedengren/authors
d588026f8d29ac96f204bb89d196268ae9fb1faf
94c8a288ad5ea6c59313ce4a609ea7b0bc92e1b7
refs/heads/master
2016-09-06T15:19:03.836097
2014-09-20T02:15:36
2014-09-20T02:15:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
books = requests.get('https://www.goodreads.com/author/list.xml', params={'key':my_key,'id':author_id,'page':pg}) books2 = ET.fromstring(books.content) fields=[0,4,13,14,15,19] for book in books2[1][3]: x = unicode(str(author_id) + '|' + str(books2[1][1].text) + '|','utf-8','ignore') for f in fields: y = unicode(book[f].text) x += y +'|' print x
[ "davehedengren@gmail.com" ]
davehedengren@gmail.com
0f537880f6377398a6e8bee99458346243422035
3eab5590af67374ac8fab14111c3c9f62da3b809
/aes-tests.py
c86125adb3d0b0671a05954e0875255f56fca8a5
[]
no_license
ungear/cardinal
497ed16a0a348155a175d4efc510c3e72d0b5e9b
448ce9282d0fcf665fb5c49083367a8c4888c813
refs/heads/master
2021-09-04T02:08:32.286779
2018-01-14T12:37:26
2018-01-14T12:37:26
114,804,899
0
0
null
null
null
null
UTF-8
Python
false
false
6,915
py
import aes import unittest TEST_MESSAGE_BLOCK = [0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70] TEST_KEY_BYTES = [0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c] class TestKeyExpansion(unittest.TestCase): def testKeyScheduleLastKey(self): keySchedule = aes.keyExpansion(TEST_KEY_BYTES) lastKey = keySchedule[len(keySchedule)-1] self.assertEqual(lastKey, 0xb6630ca6) def testKeyScheduleLength(self): keySchedule = aes.keyExpansion(TEST_KEY_BYTES) self.assertEqual(len(keySchedule), 44) def testKeyScheduleException(self): with self.assertRaises(ValueError): aes.keyExpansion(TEST_KEY_BYTES[:10:]) class TestCreateWord(unittest.TestCase): def testWord(self): self.assertEqual(aes.createWord(0xa1, 0x11, 0x3b, 0x59), 0xa1113b59) class TestRotWord(unittest.TestCase): def testWord(self): self.assertEqual(aes.rotWord(0xa13c3b59), 0x3c3b59a1) class TestSubWord(unittest.TestCase): def testWord(self): self.assertEqual(aes.subWord(0xa13c3b59), 0x32ebe2cb) class TestCreateState(unittest.TestCase): def testState(self): state = aes.createState(TEST_MESSAGE_BLOCK) expectedState = [ TEST_MESSAGE_BLOCK[0::4], TEST_MESSAGE_BLOCK[1::4], TEST_MESSAGE_BLOCK[2::4], TEST_MESSAGE_BLOCK[3::4], ] self.assertEqual(state, expectedState) class TestSubBytes(unittest.TestCase): def testSubBytes(self): state = aes.createState(TEST_MESSAGE_BLOCK) expectedBytes = [0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51] expectedMutatedState = aes.createState(expectedBytes) aes.subBytes(state) self.assertEqual(state, expectedMutatedState) class TestInvSubBytes(unittest.TestCase): def testSubBytes(self): state = aes.createState(TEST_MESSAGE_BLOCK) expectedBytes = [0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0] expectedMutatedState = aes.createState(expectedBytes) aes.invSubBytes(state) self.assertEqual(state, expectedMutatedState) class TestShiftRows(unittest.TestCase): def testShiftRows(self): state = aes.createState(TEST_MESSAGE_BLOCK) expectedBytes = [0x61, 0x66, 0x6b, 0x70, 0x65, 0x6a, 0x6f, 0x64, 0x69, 0x6e, 0x63, 0x68, 0x6d, 0x62, 0x67, 0x6c] expectedState = aes.createState(expectedBytes) aes.shiftRows(state) self.assertEqual(state, expectedState) class TestInvShiftRows(unittest.TestCase): def testInvShiftRows(self): state = aes.createState(TEST_MESSAGE_BLOCK) expectedBytes = [0x61, 0x6e, 0x6b, 0x68, 0x65, 0x62, 0x6f, 0x6c, 0x69, 0x66, 0x63, 0x70, 0x6d, 0x6a, 0x67, 0x64] expectedState = aes.createState(expectedBytes) aes.invShiftRows(state) self.assertEqual(state, expectedState) class TestMixColumns(unittest.TestCase): def testMixColumns(self): originalBytes = [0xd4, 0xbf, 0x5d, 0x30, 0xe0, 0xb4, 0x52, 0xae, 0xb8, 0x41, 0x11, 0xf1, 0x1e, 0x27, 0x98, 0xe5] expectedBytes = [0x04, 0x66, 0x81, 0xe5, 0xe0, 0xcb, 0x19, 0x9a, 0x48, 0xf8, 0xd3, 0x7a, 0x28, 0x06, 0x26, 0x4c] state = aes.createState(originalBytes) expectedState = aes.createState(expectedBytes) aes.mixColumns(state) self.assertEqual(state, expectedState) class TestInvMixColumns(unittest.TestCase): def testInvMixColumns(self): originalBytes = [0x04, 0x66, 0x81, 0xe5, 0xe0, 0xcb, 0x19, 0x9a, 0x48, 0xf8, 0xd3, 0x7a, 0x28, 0x06, 0x26, 0x4c] expectedBytes = [0xd4, 0xbf, 0x5d, 0x30, 0xe0, 0xb4, 0x52, 0xae, 0xb8, 0x41, 0x11, 0xf1, 0x1e, 0x27, 0x98, 0xe5] state = aes.createState(originalBytes) expectedState = aes.createState(expectedBytes) aes.invMixColumns(state) self.assertEqual(state, expectedState) class TestCipher(unittest.TestCase): def testCipher(self): inputBytes = [0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, 0x31, 0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34] exampleCypherKeyBytes = [0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c] expectedResultBytes = [0x39, 0x25, 0x84, 0x1d, 0x02, 0xdc, 0x09, 0xfb, 0xdc, 0x11, 0x85, 0x97, 0x19, 0x6a, 0x0b, 0x32] inputState = aes.createState(inputBytes) expectedState = aes.createState(expectedResultBytes) keySchedule = aes.keyExpansion(exampleCypherKeyBytes) result = aes.cipher(inputState, keySchedule) self.assertEqual(result, expectedState) def testCipher2(self): inputBytes = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff] exampleCypherKeyBytes = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f] expectedResultBytes = [0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a] inputState = aes.createState(inputBytes) expectedState = aes.createState(expectedResultBytes) keySchedule = aes.keyExpansion(exampleCypherKeyBytes) result = aes.cipher(inputState, keySchedule) self.assertEqual(result, expectedState) class TestInvCipher(unittest.TestCase): def testInvCipher(self): inputBytes = [0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a] exampleCypherKeyBytes = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f] expectedResultBytes = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff] inputState = aes.createState(inputBytes) expectedState = aes.createState(expectedResultBytes) keySchedule = aes.keyExpansion(exampleCypherKeyBytes) result = aes.invCipher(inputState, keySchedule) self.assertEqual(result, expectedState) class TestTheWholeProcess(unittest.TestCase): def testEncriptDecript(self): plainText = 'idjpi23j023uc0j1-0i-soxl=kixq[wkz=21ks[qqwdqwd' password = 'dke8qpend' encodedText = aes.encode(password, plainText) decodedText = aes.decode(password, encodedText) self.assertEqual(decodedText, plainText) class TestGetPasswordHash(unittest.TestCase): def testHashLength(self): password7 = '1234567' password20 = '0123456789abcdef0123' hash7 = aes.getPasswordHash(password7) hash20 = aes.getPasswordHash(password20) self.assertEqual(len(hash7), 16) self.assertEqual(len(hash20), 16) if __name__ == '__main__': unittest.main()
[ "redeemer@inbox.ru" ]
redeemer@inbox.ru
a1206366cfe0cff96c0e2306766ca9fd485e3b71
ec61946a176935044d08cf1244d2185f2460df32
/pyleecan/Methods/Machine/Lamination/comp_surface_axial_vent.py
67a12115e86fe145e22c9c128345b44e666dd252
[ "Apache-2.0" ]
permissive
Lunreth/pyleecan
d3974a144cb8a6c332339ab0426f1630b7516fc9
1faedde4b24acc6361fa1fdd4e980eaec4ca3a62
refs/heads/master
2023-06-07T01:46:32.453763
2021-07-01T21:29:51
2021-07-01T21:29:51
383,880,732
1
0
Apache-2.0
2021-07-07T17:47:01
2021-07-07T17:47:01
null
UTF-8
Python
false
false
426
py
# -*- coding: utf-8 -*- def comp_surface_axial_vent(self): """Compute the Lamination axial vent Parameters ---------- self : Lamination A Lamination object Returns ------- Svent: float Surface of the Lamination's axial ventilation [m**2] """ if len(self.axial_vent) > 0: return sum([vent.comp_surface() for vent in self.axial_vent]) else: return 0
[ "pierre.bonneel@eomys.com" ]
pierre.bonneel@eomys.com
ab8a37c6cec2cd67dee3e609825cc30311aeeacd
6d8ed4233a766ed34f3e3924fcba241e11341cbc
/TestBase64.py
bccaf7d0f0bab3149626f3d0982c6fd43a30a27b
[]
no_license
kuxingseng/learnPython
56b77b01ddfbc3c8483d8abec2bd1eea186b6f19
73a746a9329f0ba3bfabb7f5e47864364ed44391
refs/heads/master
2021-09-12T11:07:33.951552
2018-04-08T02:42:05
2018-04-08T02:42:05
113,518,262
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
# Base64是一种用64个字符来表示任意二进制数据的方法。 # 每6个bit转换为一个字符 import base64 b64_encode = base64.b64encode(b'test') print(b64_encode) b64_decode = base64.b64decode(b64_encode) print(b64_decode) def safe_base64_decode(s): # 数字乘以字符,等于数字个字符组成的字符串 s = s + len(s) % 4 * b'=' return base64.b64decode(s) print(safe_base64_decode(b'dGVzdA')) print(5 * 't')
[ "chshuai@hotmail.com" ]
chshuai@hotmail.com
41496b02cff46275f641d32d95dd21b748f7f1e3
08ff60b74fe11b8aa3d01e69de58a12d44aa6c0b
/webServer/webServer.py
0a08cd1e39bef63318e3ee77a5247383260cec21
[]
no_license
jim-stickney/aquariumController
cee7dc477ff6db64adce91911d90b0158f9b31c1
a3c4de39fafe21a209c4eeae4a7d4712b9e51eb6
refs/heads/master
2016-09-06T09:35:27.389195
2016-02-27T19:13:52
2016-02-27T19:13:52
33,930,196
0
1
null
null
null
null
UTF-8
Python
false
false
2,875
py
from flask import Flask, render_template, Markup import datetime import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy plt.ioff() from dateutil import parser import mpld3 import Pyro4 app = Flask(__name__) data_logger = Pyro4.Proxy('PYRONAME:data.logger') @app.route("/") def hello(): times = [] temps = [] data = data_logger.getData() if 'avgTemps' in data.keys(): temps += data['avgTemps'] for t in data['avgTimes']: times.append(parser.parse(t)) if 'temps' in data.keys(): temps += data['temps'] for t in data['time']: times.append(parser.parse(t)) temps = numpy.array(temps) fig, ax = plt.subplots() ax.cla() ax.plot_date(times, temps, '-') ax.set_xlabel("Time") ax.set_ylabel("Temperature (in deg F)") fig1, ax1 = plt.subplots() ax1.cla() nT = len(data['thermostatTime1']) thermostatTimes = [0]*(nT+1) thermostatState = numpy.zeros(nT+1) for iii in range(nT): thermostatState[iii] = int(data['thermostatState1'][iii] ) thermostatTimes[iii] = parser.parse(data['thermostatTime1'][iii]) thermostatTimes[-1] = datetime.datetime.now() thermostatState[-1] = thermostatState[-2] ax1.plot_date(thermostatTimes, thermostatState, '-') nT = len(data['thermostatTime15']) thermostatTimes = [0]*(nT+1) thermostatState = numpy.zeros(nT+1) for iii in range(nT): thermostatState[iii] = int(data['thermostatState15'][iii] ) thermostatTimes[iii] = parser.parse(data['thermostatTime15'][iii]) thermostatTimes[-1] = datetime.datetime.now() thermostatState[-1] = thermostatState[-2] ax1.plot_date(thermostatTimes, thermostatState, '-') ax1.set_xlabel("Time") ax1.set_ylabel("Thermostat State") nT = len(data['fillingTime0']) fillingTimes = [0]*(nT+1) fillingState = numpy.zeros(nT+1) for iii in range(nT): fillingState[iii] = int(data['fillingState0'][iii] ) fillingTimes[iii] = parser.parse(data['fillingTime0'][iii]) fillingTimes[-1] = datetime.datetime.now() fillingState[-1] = fillingState[-2] fig2, ax2 = plt.subplots() ax2.cla() ax2.plot_date(fillingTimes, fillingState, '-') ax2.set_xlabel("Time") ax2.set_ylabel("Filling State") now = datetime.datetime.now() timeString = now.strftime("%Y-%m-%d %H:%M") templateData = {'title': "My aquarium status", 'time': timeString, 'tempFigure' : Markup(mpld3.fig_to_html(fig)), 'thermostatFigure' : Markup(mpld3.fig_to_html(fig1)), 'fillingFigure' : Markup(mpld3.fig_to_html(fig2)), } return render_template('main.html', **templateData) app.run(host='0.0.0.0', port=80, debug=True)
[ "jim.stickney@gmail.com" ]
jim.stickney@gmail.com
0886616bd81e0a2e31e16fed2ae9620947223dac
ae326c4e6a2b2d5b67fa8d175249ef90f6a3021a
/leo/external/rope/ropetest/refactor/extracttest.py
167f7984d254f4be25e2554d9f39807e0827d542
[ "GPL-2.0-only", "GPL-1.0-or-later", "MIT" ]
permissive
frakel/leo-editor
f95e6c77d60485d80fddfbeaf35db961cf691177
b574118ee3b7ffe8344fa0d00dac603096117ac7
refs/heads/master
2020-03-28T10:40:24.621077
2018-10-23T14:39:31
2018-10-23T14:39:31
148,132,817
0
0
MIT
2018-09-10T09:40:18
2018-09-10T09:40:18
null
UTF-8
Python
false
false
42,781
py
try: import unittest2 as unittest except ImportError: import unittest import rope.base.codeanalyze import rope.base.exceptions from rope.refactor import extract from ropetest import testutils class ExtractMethodTest(unittest.TestCase): def setUp(self): super(ExtractMethodTest, self).setUp() self.project = testutils.sample_project() self.pycore = self.project.pycore def tearDown(self): testutils.remove_project(self.project) super(ExtractMethodTest, self).tearDown() def do_extract_method(self, source_code, start, end, extracted, **kwds): testmod = testutils.create_module(self.project, 'testmod') testmod.write(source_code) extractor = extract.ExtractMethod( self.project, testmod, start, end) self.project.do(extractor.get_changes(extracted, **kwds)) return testmod.read() def do_extract_variable(self, source_code, start, end, extracted, **kwds): testmod = testutils.create_module(self.project, 'testmod') testmod.write(source_code) extractor = extract.ExtractVariable(self.project, testmod, start, end) self.project.do(extractor.get_changes(extracted, **kwds)) return testmod.read() def _convert_line_range_to_offset(self, code, start, end): lines = rope.base.codeanalyze.SourceLinesAdapter(code) return lines.get_line_start(start), lines.get_line_end(end) def test_simple_extract_function(self): code = "def a_func():\n print('one')\n print('two')\n" start, end = self._convert_line_range_to_offset(code, 2, 2) refactored = self.do_extract_method(code, start, end, 'extracted') expected = "def a_func():\n extracted()\n print('two')\n\n" \ "def extracted():\n print('one')\n" self.assertEquals(expected, refactored) def test_extract_function_at_the_end_of_file(self): code = "def a_func():\n print('one')" start, end = self._convert_line_range_to_offset(code, 2, 2) refactored = self.do_extract_method(code, start, end, 'extracted') expected = "def a_func():\n extracted()\n" \ "def extracted():\n print('one')\n" self.assertEquals(expected, refactored) def test_extract_function_after_scope(self): code = "def a_func():\n print('one')\n print('two')" \ "\n\nprint('hey')\n" start, end = self._convert_line_range_to_offset(code, 2, 2) refactored = self.do_extract_method(code, start, end, 'extracted') expected = "def a_func():\n extracted()\n print('two')\n\n" \ "def extracted():\n print('one')\n\nprint('hey')\n" self.assertEquals(expected, refactored) def test_simple_extract_function_with_parameter(self): code = "def a_func():\n a_var = 10\n print(a_var)\n" start, end = self._convert_line_range_to_offset(code, 3, 3) refactored = self.do_extract_method(code, start, end, 'new_func') expected = "def a_func():\n a_var = 10\n new_func(a_var)\n\n" \ "def new_func(a_var):\n print(a_var)\n" self.assertEquals(expected, refactored) def test_not_unread_variables_as_parameter(self): code = "def a_func():\n a_var = 10\n print('hey')\n" start, end = self._convert_line_range_to_offset(code, 3, 3) refactored = self.do_extract_method(code, start, end, 'new_func') expected = "def a_func():\n a_var = 10\n new_func()\n\n" \ "def new_func():\n print('hey')\n" self.assertEquals(expected, refactored) def test_simple_extract_function_with_two_parameter(self): code = 'def a_func():\n a_var = 10\n another_var = 20\n' \ ' third_var = a_var + another_var\n' start, end = self._convert_line_range_to_offset(code, 4, 4) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n a_var = 10\n another_var = 20\n' \ ' new_func(a_var, another_var)\n\n' \ 'def new_func(a_var, another_var):\n' \ ' third_var = a_var + another_var\n' self.assertEquals(expected, refactored) def test_simple_extract_function_with_return_value(self): code = 'def a_func():\n a_var = 10\n print(a_var)\n' start, end = self._convert_line_range_to_offset(code, 2, 2) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n a_var = new_func()' \ '\n print(a_var)\n\n' \ 'def new_func():\n a_var = 10\n return a_var\n' self.assertEquals(expected, refactored) def test_extract_function_with_multiple_return_values(self): code = 'def a_func():\n a_var = 10\n another_var = 20\n' \ ' third_var = a_var + another_var\n' start, end = self._convert_line_range_to_offset(code, 2, 3) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n a_var, another_var = new_func()\n' \ ' third_var = a_var + another_var\n\n' \ 'def new_func():\n a_var = 10\n another_var = 20\n' \ ' return a_var, another_var\n' self.assertEquals(expected, refactored) def test_simple_extract_method(self): code = 'class AClass(object):\n\n' \ ' def a_func(self):\n print(1)\n print(2)\n' start, end = self._convert_line_range_to_offset(code, 4, 4) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'class AClass(object):\n\n' \ ' def a_func(self):\n' \ ' self.new_func()\n' \ ' print(2)\n\n' \ ' def new_func(self):\n print(1)\n' self.assertEquals(expected, refactored) def test_extract_method_with_args_and_returns(self): code = 'class AClass(object):\n' \ ' def a_func(self):\n' \ ' a_var = 10\n' \ ' another_var = a_var * 3\n' \ ' third_var = a_var + another_var\n' start, end = self._convert_line_range_to_offset(code, 4, 4) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'class AClass(object):\n' \ ' def a_func(self):\n' \ ' a_var = 10\n' \ ' another_var = self.new_func(a_var)\n' \ ' third_var = a_var + another_var\n\n' \ ' def new_func(self, a_var):\n' \ ' another_var = a_var * 3\n' \ ' return another_var\n' self.assertEquals(expected, refactored) def test_extract_method_with_self_as_argument(self): code = 'class AClass(object):\n' \ ' def a_func(self):\n' \ ' print(self)\n' start, end = self._convert_line_range_to_offset(code, 3, 3) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'class AClass(object):\n' \ ' def a_func(self):\n' \ ' self.new_func()\n\n' \ ' def new_func(self):\n' \ ' print(self)\n' self.assertEquals(expected, refactored) def test_extract_method_with_no_self_as_argument(self): code = 'class AClass(object):\n' \ ' def a_func():\n' \ ' print(1)\n' start, end = self._convert_line_range_to_offset(code, 3, 3) with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_extract_method_with_multiple_methods(self): code = 'class AClass(object):\n' \ ' def a_func(self):\n' \ ' print(self)\n\n' \ ' def another_func(self):\n' \ ' pass\n' start, end = self._convert_line_range_to_offset(code, 3, 3) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'class AClass(object):\n' \ ' def a_func(self):\n' \ ' self.new_func()\n\n' \ ' def new_func(self):\n' \ ' print(self)\n\n' \ ' def another_func(self):\n' \ ' pass\n' self.assertEquals(expected, refactored) def test_extract_function_with_function_returns(self): code = 'def a_func():\n def inner_func():\n pass\n' \ ' inner_func()\n' start, end = self._convert_line_range_to_offset(code, 2, 3) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n' \ ' inner_func = new_func()\n inner_func()\n\n' \ 'def new_func():\n' \ ' def inner_func():\n pass\n' \ ' return inner_func\n' self.assertEquals(expected, refactored) def test_simple_extract_global_function(self): code = "print('one')\nprint('two')\nprint('three')\n" start, end = self._convert_line_range_to_offset(code, 2, 2) refactored = self.do_extract_method(code, start, end, 'new_func') expected = "print('one')\n\ndef new_func():\n print('two')\n" \ "\nnew_func()\nprint('three')\n" self.assertEquals(expected, refactored) def test_extract_global_function_inside_ifs(self): code = 'if True:\n a = 10\n' start, end = self._convert_line_range_to_offset(code, 2, 2) refactored = self.do_extract_method(code, start, end, 'new_func') expected = '\ndef new_func():\n a = 10\n\nif True:\n' \ ' new_func()\n' self.assertEquals(expected, refactored) def test_extract_function_while_inner_function_reads(self): code = 'def a_func():\n a_var = 10\n' \ ' def inner_func():\n print(a_var)\n' \ ' return inner_func\n' start, end = self._convert_line_range_to_offset(code, 3, 4) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n a_var = 10\n' \ ' inner_func = new_func(a_var)' \ '\n return inner_func\n\n' \ 'def new_func(a_var):\n' \ ' def inner_func():\n print(a_var)\n' \ ' return inner_func\n' self.assertEquals(expected, refactored) def test_extract_method_bad_range(self): code = "def a_func():\n pass\na_var = 10\n" start, end = self._convert_line_range_to_offset(code, 2, 3) with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_extract_method_bad_range2(self): code = "class AClass(object):\n pass\n" start, end = self._convert_line_range_to_offset(code, 1, 1) with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_extract_method_containing_return(self): code = 'def a_func(arg):\n if arg:\n return arg * 2' \ '\n return 1' start, end = self._convert_line_range_to_offset(code, 2, 4) with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_extract_method_containing_yield(self): code = "def a_func(arg):\n yield arg * 2\n" start, end = self._convert_line_range_to_offset(code, 2, 2) with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_extract_method_containing_uncomplete_lines(self): code = 'a_var = 20\nanother_var = 30\n' start = code.index('20') end = code.index('30') + 2 with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_extract_method_containing_uncomplete_lines2(self): code = 'a_var = 20\nanother_var = 30\n' start = code.index('20') end = code.index('another') + 5 with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_extract_function_and_argument_as_paramenter(self): code = 'def a_func(arg):\n print(arg)\n' start, end = self._convert_line_range_to_offset(code, 2, 2) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func(arg):\n new_func(arg)\n\n' \ 'def new_func(arg):\n print(arg)\n' self.assertEquals(expected, refactored) def test_extract_function_and_end_as_the_start_of_a_line(self): code = 'print("hey")\nif True:\n pass\n' start = 0 end = code.index('\n') + 1 refactored = self.do_extract_method(code, start, end, 'new_func') expected = '\ndef new_func():\n print("hey")\n\n' \ 'new_func()\nif True:\n pass\n' self.assertEquals(expected, refactored) def test_extract_function_and_indented_blocks(self): code = 'def a_func(arg):\n if True:\n' \ ' if True:\n print(arg)\n' start, end = self._convert_line_range_to_offset(code, 3, 4) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func(arg):\n ' \ 'if True:\n new_func(arg)\n\n' \ 'def new_func(arg):\n if True:\n print(arg)\n' self.assertEquals(expected, refactored) def test_extract_method_and_multi_line_headers(self): code = 'def a_func(\n arg):\n print(arg)\n' start, end = self._convert_line_range_to_offset(code, 3, 3) refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func(\n arg):\n new_func(arg)\n\n' \ 'def new_func(arg):\n print(arg)\n' self.assertEquals(expected, refactored) def test_single_line_extract_function(self): code = 'a_var = 10 + 20\n' start = code.index('10') end = code.index('20') + 2 refactored = self.do_extract_method(code, start, end, 'new_func') expected = "\ndef new_func():\n " \ "return 10 + 20\n\na_var = new_func()\n" self.assertEquals(expected, refactored) def test_single_line_extract_function2(self): code = 'def a_func():\n a = 10\n b = a * 20\n' start = code.rindex('a') end = code.index('20') + 2 refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n a = 10\n b = new_func(a)\n' \ '\ndef new_func(a):\n return a * 20\n' self.assertEquals(expected, refactored) def test_single_line_extract_method_and_logical_lines(self): code = 'a_var = 10 +\\\n 20\n' start = code.index('10') end = code.index('20') + 2 refactored = self.do_extract_method(code, start, end, 'new_func') expected = '\ndef new_func():\n ' \ 'return 10 + 20\n\na_var = new_func()\n' self.assertEquals(expected, refactored) def test_single_line_extract_method_and_logical_lines2(self): code = 'a_var = (10,\\\n 20)\n' start = code.index('10') - 1 end = code.index('20') + 3 refactored = self.do_extract_method(code, start, end, 'new_func') expected = '\ndef new_func():\n' \ ' return (10, 20)\n\na_var = new_func()\n' self.assertEquals(expected, refactored) def test_single_line_extract_method(self): code = "class AClass(object):\n\n" \ " def a_func(self):\n a = 10\n b = a * a\n" start = code.rindex('=') + 2 end = code.rindex('a') + 1 refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'class AClass(object):\n\n' \ ' def a_func(self):\n' \ ' a = 10\n b = self.new_func(a)\n\n' \ ' def new_func(self, a):\n return a * a\n' self.assertEquals(expected, refactored) def test_single_line_extract_function_if_condition(self): code = 'if True:\n pass\n' start = code.index('True') end = code.index('True') + 4 refactored = self.do_extract_method(code, start, end, 'new_func') expected = "\ndef new_func():\n return True\n\nif new_func():" \ "\n pass\n" self.assertEquals(expected, refactored) def test_unneeded_params(self): code = 'class A(object):\n ' \ 'def a_func(self):\n a_var = 10\n a_var += 2\n' start = code.rindex('2') end = code.rindex('2') + 1 refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'class A(object):\n' \ ' def a_func(self):\n a_var = 10\n' \ ' a_var += self.new_func()\n\n' \ ' def new_func(self):\n return 2\n' self.assertEquals(expected, refactored) def test_breaks_and_continues_inside_loops(self): code = 'def a_func():\n for i in range(10):\n continue\n' start = code.index('for') end = len(code) - 1 refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n new_func()\n\n' \ 'def new_func():\n' \ ' for i in range(10):\n continue\n' self.assertEquals(expected, refactored) def test_breaks_and_continues_outside_loops(self): code = 'def a_func():\n' \ ' for i in range(10):\n a = i\n continue\n' start = code.index('a = i') end = len(code) - 1 with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_variable_writes_followed_by_variable_reads_after_extraction(self): code = 'def a_func():\n a = 1\n a = 2\n b = a\n' start = code.index('a = 1') end = code.index('a = 2') - 1 refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n new_func()\n a = 2\n b = a\n\n' \ 'def new_func():\n a = 1\n' self.assertEquals(expected, refactored) def test_var_writes_followed_by_var_reads_inside_extraction(self): code = 'def a_func():\n a = 1\n a = 2\n b = a\n' start = code.index('a = 2') end = len(code) - 1 refactored = self.do_extract_method(code, start, end, 'new_func') expected = 'def a_func():\n a = 1\n new_func()\n\n' \ 'def new_func():\n a = 2\n b = a\n' self.assertEquals(expected, refactored) def test_extract_variable(self): code = 'a_var = 10 + 20\n' start = code.index('10') end = code.index('20') + 2 refactored = self.do_extract_variable(code, start, end, 'new_var') expected = 'new_var = 10 + 20\na_var = new_var\n' self.assertEquals(expected, refactored) def test_extract_variable_multiple_lines(self): code = 'a = 1\nb = 2\n' start = code.index('1') end = code.index('1') + 1 refactored = self.do_extract_variable(code, start, end, 'c') expected = 'c = 1\na = c\nb = 2\n' self.assertEquals(expected, refactored) def test_extract_variable_in_the_middle_of_statements(self): code = 'a = 1 + 2\n' start = code.index('1') end = code.index('1') + 1 refactored = self.do_extract_variable(code, start, end, 'c') expected = 'c = 1\na = c + 2\n' self.assertEquals(expected, refactored) def test_extract_variable_for_a_tuple(self): code = 'a = 1, 2\n' start = code.index('1') end = code.index('2') + 1 refactored = self.do_extract_variable(code, start, end, 'c') expected = 'c = 1, 2\na = c\n' self.assertEquals(expected, refactored) def test_extract_variable_for_a_string(self): code = 'def a_func():\n a = "hey!"\n' start = code.index('"') end = code.rindex('"') + 1 refactored = self.do_extract_variable(code, start, end, 'c') expected = 'def a_func():\n c = "hey!"\n a = c\n' self.assertEquals(expected, refactored) def test_extract_variable_inside_ifs(self): code = 'if True:\n a = 1 + 2\n' start = code.index('1') end = code.rindex('2') + 1 refactored = self.do_extract_variable(code, start, end, 'b') expected = 'if True:\n b = 1 + 2\n a = b\n' self.assertEquals(expected, refactored) def test_extract_variable_inside_ifs_and_logical_lines(self): code = 'if True:\n a = (3 + \n(1 + 2))\n' start = code.index('1') end = code.index('2') + 1 refactored = self.do_extract_variable(code, start, end, 'b') expected = 'if True:\n b = 1 + 2\n a = (3 + \n(b))\n' self.assertEquals(expected, refactored) # TODO: Handle when extracting a subexpression def xxx_test_extract_variable_for_a_subexpression(self): code = 'a = 3 + 1 + 2\n' start = code.index('1') end = code.index('2') + 1 refactored = self.do_extract_variable(code, start, end, 'b') expected = 'b = 1 + 2\na = 3 + b\n' self.assertEquals(expected, refactored) def test_extract_variable_starting_from_the_start_of_the_line(self): code = 'a_dict = {1: 1}\na_dict.values().count(1)\n' start = code.rindex('a_dict') end = code.index('count') - 1 refactored = self.do_extract_variable(code, start, end, 'values') expected = 'a_dict = {1: 1}\n' \ 'values = a_dict.values()\nvalues.count(1)\n' self.assertEquals(expected, refactored) def test_extract_variable_on_the_last_line_of_a_function(self): code = 'def f():\n a_var = {}\n a_var.keys()\n' start = code.rindex('a_var') end = code.index('.keys') refactored = self.do_extract_variable(code, start, end, 'new_var') expected = 'def f():\n a_var = {}\n ' \ 'new_var = a_var\n new_var.keys()\n' self.assertEquals(expected, refactored) def test_extract_variable_on_the_indented_function_statement(self): code = 'def f():\n if True:\n a_var = 1 + 2\n' start = code.index('1') end = code.index('2') + 1 refactored = self.do_extract_variable(code, start, end, 'new_var') expected = 'def f():\n if True:\n' \ ' new_var = 1 + 2\n a_var = new_var\n' self.assertEquals(expected, refactored) def test_extract_method_on_the_last_line_of_a_function(self): code = 'def f():\n a_var = {}\n a_var.keys()\n' start = code.rindex('a_var') end = code.index('.keys') refactored = self.do_extract_method(code, start, end, 'new_f') expected = 'def f():\n a_var = {}\n new_f(a_var).keys()\n\n' \ 'def new_f(a_var):\n return a_var\n' self.assertEquals(expected, refactored) def test_raising_exception_when_on_incomplete_variables(self): code = 'a_var = 10 + 20\n' start = code.index('10') + 1 end = code.index('20') + 2 with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_raising_exception_when_on_incomplete_variables_on_end(self): code = 'a_var = 10 + 20\n' start = code.index('10') end = code.index('20') + 1 with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_raising_exception_on_bad_parens(self): code = 'a_var = (10 + 20) + 30\n' start = code.index('20') end = code.index('30') + 2 with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_raising_exception_on_bad_operators(self): code = 'a_var = 10 + 20 + 30\n' start = code.index('10') end = code.rindex('+') + 1 with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') # FIXME: Extract method should be more intelligent about bad ranges def xxx_test_raising_exception_on_function_parens(self): code = 'a = range(10)' start = code.index('(') end = code.rindex(')') + 1 with self.assertRaises(rope.base.exceptions.RefactoringError): self.do_extract_method(code, start, end, 'new_func') def test_extract_method_and_extra_blank_lines(self): code = '\nprint(1)\n' refactored = self.do_extract_method(code, 0, len(code), 'new_f') expected = '\n\ndef new_f():\n print(1)\n\nnew_f()\n' self.assertEquals(expected, refactored) def test_variable_writes_in_the_same_line_as_variable_read(self): code = 'a = 1\na = 1 + a\n' start = code.index('\n') + 1 end = len(code) refactored = self.do_extract_method(code, start, end, 'new_f', global_=True) expected = 'a = 1\n\ndef new_f(a):\n a = 1 + a\n\nnew_f(a)\n' self.assertEquals(expected, refactored) def test_variable_writes_in_the_same_line_as_variable_read2(self): code = 'a = 1\na += 1\n' start = code.index('\n') + 1 end = len(code) refactored = self.do_extract_method(code, start, end, 'new_f', global_=True) expected = 'a = 1\n\ndef new_f():\n a += 1\n\nnew_f()\n' self.assertEquals(expected, refactored) def test_variable_and_similar_expressions(self): code = 'a = 1\nb = 1\n' start = code.index('1') end = start + 1 refactored = self.do_extract_variable(code, start, end, 'one', similar=True) expected = 'one = 1\na = one\nb = one\n' self.assertEquals(expected, refactored) def test_definition_should_appear_before_the_first_use(self): code = 'a = 1\nb = 1\n' start = code.rindex('1') end = start + 1 refactored = self.do_extract_variable(code, start, end, 'one', similar=True) expected = 'one = 1\na = one\nb = one\n' self.assertEquals(expected, refactored) def test_extract_method_and_similar_expressions(self): code = 'a = 1\nb = 1\n' start = code.index('1') end = start + 1 refactored = self.do_extract_method(code, start, end, 'one', similar=True) expected = '\ndef one():\n return 1\n\na = one()\nb = one()\n' self.assertEquals(expected, refactored) def test_simple_extract_method_and_similar_statements(self): code = 'class AClass(object):\n\n' \ ' def func1(self):\n a = 1 + 2\n b = a\n' \ ' def func2(self):\n a = 1 + 2\n b = a\n' start, end = self._convert_line_range_to_offset(code, 4, 4) refactored = self.do_extract_method(code, start, end, 'new_func', similar=True) expected = 'class AClass(object):\n\n' \ ' def func1(self):\n' \ ' a = self.new_func()\n b = a\n\n' \ ' def new_func(self):\n' \ ' a = 1 + 2\n return a\n' \ ' def func2(self):\n' \ ' a = self.new_func()\n b = a\n' self.assertEquals(expected, refactored) def test_extract_method_and_similar_statements2(self): code = 'class AClass(object):\n\n' \ ' def func1(self, p1):\n a = p1 + 2\n' \ ' def func2(self, p2):\n a = p2 + 2\n' start = code.rindex('p1') end = code.index('2\n') + 1 refactored = self.do_extract_method(code, start, end, 'new_func', similar=True) expected = 'class AClass(object):\n\n' \ ' def func1(self, p1):\n ' \ 'a = self.new_func(p1)\n\n' \ ' def new_func(self, p1):\n return p1 + 2\n' \ ' def func2(self, p2):\n a = self.new_func(p2)\n' self.assertEquals(expected, refactored) def test_extract_method_and_similar_sttemnts_return_is_different(self): code = 'class AClass(object):\n\n' \ ' def func1(self, p1):\n a = p1 + 2\n' \ ' def func2(self, p2):\n self.attr = p2 + 2\n' start = code.rindex('p1') end = code.index('2\n') + 1 refactored = self.do_extract_method(code, start, end, 'new_func', similar=True) expected = 'class AClass(object):\n\n' \ ' def func1(self, p1):' \ '\n a = self.new_func(p1)\n\n' \ ' def new_func(self, p1):\n return p1 + 2\n' \ ' def func2(self, p2):\n' \ ' self.attr = self.new_func(p2)\n' self.assertEquals(expected, refactored) def test_definition_should_appear_where_it_is_visible(self): code = 'if True:\n a = 1\nelse:\n b = 1\n' start = code.rindex('1') end = start + 1 refactored = self.do_extract_variable(code, start, end, 'one', similar=True) expected = 'one = 1\nif True:\n a = one\nelse:\n b = one\n' self.assertEquals(expected, refactored) def test_extract_variable_and_similar_statements_in_classes(self): code = 'class AClass(object):\n\n' \ ' def func1(self):\n a = 1\n' \ ' def func2(self):\n b = 1\n' start = code.index(' 1') + 1 refactored = self.do_extract_variable(code, start, start + 1, 'one', similar=True) expected = 'class AClass(object):\n\n' \ ' def func1(self):\n one = 1\n a = one\n' \ ' def func2(self):\n b = 1\n' self.assertEquals(expected, refactored) def test_extract_method_in_staticmethods(self): code = 'class AClass(object):\n\n' \ ' @staticmethod\n def func2():\n b = 1\n' start = code.index(' 1') + 1 refactored = self.do_extract_method(code, start, start + 1, 'one', similar=True) expected = 'class AClass(object):\n\n' \ ' @staticmethod\n def func2():\n' \ ' b = AClass.one()\n\n' \ ' @staticmethod\n def one():\n' \ ' return 1\n' self.assertEquals(expected, refactored) def test_extract_normal_method_with_staticmethods(self): code = 'class AClass(object):\n\n' \ ' @staticmethod\n def func1():\n b = 1\n' \ ' def func2(self):\n b = 1\n' start = code.rindex(' 1') + 1 refactored = self.do_extract_method(code, start, start + 1, 'one', similar=True) expected = 'class AClass(object):\n\n' \ ' @staticmethod\n def func1():\n b = 1\n' \ ' def func2(self):\n b = self.one()\n\n' \ ' def one(self):\n return 1\n' self.assertEquals(expected, refactored) def test_extract_variable_with_no_new_lines_at_the_end(self): code = 'a_var = 10' start = code.index('10') end = start + 2 refactored = self.do_extract_variable(code, start, end, 'new_var') expected = 'new_var = 10\na_var = new_var' self.assertEquals(expected, refactored) def test_extract_method_containing_return_in_functions(self): code = 'def f(arg):\n return arg\nprint(f(1))\n' start, end = self._convert_line_range_to_offset(code, 1, 3) refactored = self.do_extract_method(code, start, end, 'a_func') expected = '\ndef a_func():\n def f(arg):\n return arg\n' \ ' print(f(1))\n\na_func()\n' self.assertEquals(expected, refactored) def test_extract_method_and_varying_first_parameter(self): code = 'class C(object):\n' \ ' def f1(self):\n print(str(self))\n' \ ' def f2(self):\n print(str(1))\n' start = code.index('print(') + 6 end = code.index('))\n') + 1 refactored = self.do_extract_method(code, start, end, 'to_str', similar=True) expected = 'class C(object):\n' \ ' def f1(self):\n print(self.to_str())\n\n' \ ' def to_str(self):\n return str(self)\n' \ ' def f2(self):\n print(str(1))\n' self.assertEquals(expected, refactored) def test_extract_method_when_an_attribute_exists_in_function_scope(self): code = 'class A(object):\n def func(self):\n pass\n' \ 'a = A()\n' \ 'def f():\n' \ ' func = a.func()\n' \ ' print func\n' start, end = self._convert_line_range_to_offset(code, 6, 6) refactored = self.do_extract_method(code, start, end, 'g') refactored = refactored[refactored.index('A()') + 4:] expected = 'def f():\n func = g()\n print func\n\n' \ 'def g():\n func = a.func()\n return func\n' self.assertEquals(expected, refactored) def test_global_option_for_extract_method(self): code = 'def a_func():\n print(1)\n' start, end = self._convert_line_range_to_offset(code, 2, 2) refactored = self.do_extract_method(code, start, end, 'extracted', global_=True) expected = 'def a_func():\n extracted()\n\n' \ 'def extracted():\n print(1)\n' self.assertEquals(expected, refactored) def test_global_extract_method(self): code = 'class AClass(object):\n\n' \ ' def a_func(self):\n print(1)\n' start, end = self._convert_line_range_to_offset(code, 4, 4) refactored = self.do_extract_method(code, start, end, 'new_func', global_=True) expected = 'class AClass(object):\n\n' \ ' def a_func(self):\n new_func()\n\n' \ 'def new_func():\n print(1)\n' self.assertEquals(expected, refactored) def test_extract_method_with_multiple_methods(self): # noqa code = 'class AClass(object):\n' \ ' def a_func(self):\n' \ ' print(1)\n\n' \ ' def another_func(self):\n' \ ' pass\n' start, end = self._convert_line_range_to_offset(code, 3, 3) refactored = self.do_extract_method(code, start, end, 'new_func', global_=True) expected = 'class AClass(object):\n' \ ' def a_func(self):\n' \ ' new_func()\n\n' \ ' def another_func(self):\n' \ ' pass\n\n' \ 'def new_func():\n' \ ' print(1)\n' self.assertEquals(expected, refactored) def test_where_to_seach_when_extracting_global_names(self): code = 'def a():\n return 1\ndef b():\n return 1\nb = 1\n' start = code.index('1') end = start + 1 refactored = self.do_extract_variable(code, start, end, 'one', similar=True, global_=True) expected = 'def a():\n return one\none = 1\n' \ 'def b():\n return one\nb = one\n' self.assertEquals(expected, refactored) def test_extracting_pieces_with_distinct_temp_names(self): code = 'a = 1\nprint a\nb = 1\nprint b\n' start = code.index('a') end = code.index('\nb') refactored = self.do_extract_method(code, start, end, 'f', similar=True, global_=True) expected = '\ndef f():\n a = 1\n print a\n\nf()\nf()\n' self.assertEquals(expected, refactored) def test_extract_methods_in_glob_funcs_should_be_glob(self): code = 'def f():\n a = 1\ndef g():\n b = 1\n' start = code.rindex('1') refactored = self.do_extract_method(code, start, start + 1, 'one', similar=True, global_=False) expected = 'def f():\n a = one()\ndef g():\n b = one()\n\n' \ 'def one():\n return 1\n' self.assertEquals(expected, refactored) def test_extract_methods_in_glob_funcs_should_be_glob_2(self): code = 'if 1:\n var = 2\n' start = code.rindex('2') refactored = self.do_extract_method(code, start, start + 1, 'two', similar=True, global_=False) expected = '\ndef two():\n return 2\n\nif 1:\n var = two()\n' self.assertEquals(expected, refactored) def test_extract_method_and_try_blocks(self): code = 'def f():\n try:\n pass\n' \ ' except Exception:\n pass\n' start, end = self._convert_line_range_to_offset(code, 2, 5) refactored = self.do_extract_method(code, start, end, 'g') expected = 'def f():\n g()\n\ndef g():\n try:\n pass\n' \ ' except Exception:\n pass\n' self.assertEquals(expected, refactored) def test_extract_and_not_passing_global_functions(self): code = 'def next(p):\n return p + 1\nvar = next(1)\n' start = code.rindex('next') refactored = self.do_extract_method(code, start, len(code) - 1, 'two') expected = 'def next(p):\n return p + 1\n' \ '\ndef two():\n return next(1)\n\nvar = two()\n' self.assertEquals(expected, refactored) def test_extracting_with_only_one_return(self): code = 'def f():\n var = 1\n return var\n' start, end = self._convert_line_range_to_offset(code, 2, 3) refactored = self.do_extract_method(code, start, end, 'g') expected = 'def f():\n return g()\n\n' \ 'def g():\n var = 1\n return var\n' self.assertEquals(expected, refactored) def test_extracting_variable_and_implicit_continuations(self): code = 's = ("1"\n "2")\n' start = code.index('"') end = code.rindex('"') + 1 refactored = self.do_extract_variable(code, start, end, 's2') expected = 's2 = "1" "2"\ns = (s2)\n' self.assertEquals(expected, refactored) def test_extracting_method_and_implicit_continuations(self): code = 's = ("1"\n "2")\n' start = code.index('"') end = code.rindex('"') + 1 refactored = self.do_extract_method(code, start, end, 'f') expected = '\ndef f():\n return "1" "2"\n\ns = (f())\n' self.assertEquals(expected, refactored) def test_passing_conditional_updated_vars_in_extracted(self): code = 'def f(a):\n' \ ' if 0:\n' \ ' a = 1\n' \ ' print(a)\n' start, end = self._convert_line_range_to_offset(code, 2, 4) refactored = self.do_extract_method(code, start, end, 'g') expected = 'def f(a):\n' \ ' g(a)\n\n' \ 'def g(a):\n' \ ' if 0:\n' \ ' a = 1\n' \ ' print(a)\n' self.assertEquals(expected, refactored) def test_returning_conditional_updated_vars_in_extracted(self): code = 'def f(a):\n' \ ' if 0:\n' \ ' a = 1\n' \ ' print(a)\n' start, end = self._convert_line_range_to_offset(code, 2, 3) refactored = self.do_extract_method(code, start, end, 'g') expected = 'def f(a):\n' \ ' a = g(a)\n' \ ' print(a)\n\n' \ 'def g(a):\n' \ ' if 0:\n' \ ' a = 1\n' \ ' return a\n' self.assertEquals(expected, refactored) def test_extract_method_with_variables_possibly_written_to(self): code = "def a_func(b):\n" \ " if b > 0:\n" \ " a = 2\n" \ " print a\n" start, end = self._convert_line_range_to_offset(code, 2, 3) refactored = self.do_extract_method(code, start, end, 'extracted') expected = "def a_func(b):\n" \ " a = extracted(b)\n" \ " print a\n\n" \ "def extracted(b):\n" \ " if b > 0:\n" \ " a = 2\n" \ " return a\n" self.assertEquals(expected, refactored) if __name__ == '__main__': unittest.main()
[ "edreamleo@gmail.com" ]
edreamleo@gmail.com
044bc7efb85e34003ae56c0d48f464ec535fc949
7700fd9502e46b9c742093ac8748c43919a84091
/rbac_blog/blog/forms.py
aebe7f6c213ef3608de4b1fb267456437a4e718d
[]
no_license
Guo-kai-feng/python_project
e825bf2e20d79bde3facf6e08a4482a025cfe2d4
5a24734ad5d4aa82ac47c5d912d1dc48c32c8f24
refs/heads/master
2020-07-13T22:00:37.493273
2019-08-29T13:07:46
2019-08-29T13:07:46
205,163,822
0
0
null
null
null
null
UTF-8
Python
false
false
1,190
py
#!/usr/bin/env python # -*- coding:utf-8 -*- from blog import models from django import forms class AlterBlogForm(forms.ModelForm): class Meta: model = models.Blog fields = '__all__' exclude = [] error_messages = { 'name': {'required': '不能为空'}, 'user': {'required': '不能为空'}, } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) from multiselectfield.forms.fields import MultiSelectFormField for field_name, field in self.fields.items(): if not isinstance(field, MultiSelectFormField): field.widget.attrs.update({'class': 'form-control'}) class AlterArticleForm(forms.ModelForm): class Meta: model = models.Article fields = '__all__' exclude = ['create_at', ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) from multiselectfield.forms.fields import MultiSelectFormField for field_name, field in self.fields.items(): if not isinstance(field, MultiSelectFormField): field.widget.attrs.update({'class': 'form-control'})
[ "798136317@qq.com" ]
798136317@qq.com
42860a6c8058042cf8d6eefda4f3cc8887a54477
b7ffa11d72642c5b547f4a48307401cbd379cc43
/src/cart/urls.py
5948162b0be5bb65c606f441ca98da30f69d521e
[]
no_license
gummigun/captainconsole-git
8d5a27d042c8a1fe4fa3bf7d89d45ce871ab4eac
886e9a86052684256a5473495759996894b261ce
refs/heads/master
2023-08-14T23:00:02.699957
2020-05-15T23:23:44
2020-05-15T23:23:44
259,331,163
0
0
null
2021-09-22T19:02:10
2020-04-27T13:32:13
Python
UTF-8
Python
false
false
515
py
from django.urls import path, include, re_path from . import views urlpatterns = [ # Home page url pattern path('', views.index, name="cart"), path('add/<int:id>', views.update_cart, name="update_cart"), path('remove/<int:id>', views.remove_cart, name="remove_cart"), path('review/', views.review, name="review"), path('checkout/', views.checkout, name="checkout"), path('process/', views.process, name="process") #re_path(r'^add/[0-9]$', views.update_cart, name="update_cart"), ]
[ "gummi.gunnlaugsson@gmail.com" ]
gummi.gunnlaugsson@gmail.com
fba3989988948bd693ff0403cfac404b8e39195b
fbf05e2d3eef31367f26af979150f1d8325f6b2f
/flask_dmango/query/exceptions.py
12742acd9013a856f68e40b5a47283c5465a20f1
[]
no_license
jungkoo/flask-dmango
0b653dac9b72935315244b9ff74b5fc89c5bb542
abecafa611fce10cd34c9b8401df179b163a9424
refs/heads/master
2021-01-10T09:29:01.651686
2016-03-27T08:27:57
2016-03-27T08:27:57
54,324,383
1
1
null
2016-03-22T04:18:53
2016-03-20T15:14:43
Python
UTF-8
Python
false
false
1,152
py
#-*- coding: utf-8 -*- class DmangoException(Exception): def __init__(self, message): self._message = message def _get_message(self): return self._message def _set_message(self, message): self._message = message message = property(_get_message, _set_message) class NotSupportMethod(DmangoException): def __init__(self, method): self.method = method def __str__(self): return '"%s" is not a valid method name' % (str(self.method), ) class DmangoValueException(DmangoException): """ value 를 관련 문제를 의미한다. 예를 들어 'a' 를 int 로 변경하려고 했을경우라거나... 값이 허용되는게 아니라거나. """ def __init__(self, value_name): self._value_name = value_name def __str__(self): return '[DMANGO-100002] value Error. (value name="%s")' % (self._value_name,) class DmangoParseException(DmangoException): def __init__(self, errmsg='parse error'): self.errmsg = errmsg def __str__(self): return "[DMANGO-100003] " + self.errmsg
[ "deajang@gmail.com" ]
deajang@gmail.com
cd42b43018616531062a56884c91ab6fd2f1ea44
cc52dc8b6295c9617ae8df40d0dbe9a062f0d7de
/dinerindex.py
44a69ab9afc22b4c8821608ed28a80df8bd6729d
[]
no_license
mariopedregon/python-diner-bottega
f98cbcae3f67145b0a163666eb40ceebf91bdcfe
43829fed3cf982925c45c62932b839ccc5e30c22
refs/heads/master
2020-05-23T06:13:59.391487
2019-05-14T16:45:29
2019-05-14T16:45:29
186,662,610
0
0
null
null
null
null
UTF-8
Python
false
false
2,257
py
def main(): totalCost = 0 print(''' "Welcome to the Bottega Diner , What can we get you started today!" ''') name = input("What is your name?") print("Hello " + name + "!") print(''' You get one entree and two side choices at regular cost. ''') print(''' Here is our menu! ''') mainMenu(totalCost) def mainMenu(totalCost): print("1.Steak $13.99") print("2.Chicken $11.99") print("3.Ribs $15.99") selection = int(input("Enter Choice:")) print("\n") if selection == 1: totalCost += Steak(totalCost) totalCost += sideMenu(totalCost) receipt = "your total is $" + str(totalCost) print(receipt) elif selection == 2: totalCost += Chicken(totalCost) totalCost += sideMenu(totalCost) receipt = "your total is $" + str(totalCost) print(receipt) elif selection == 3: totalCost += Ribs(totalCost) totalCost += sideMenu(totalCost) receipt = "your total is $" + str(totalCost) print(receipt) else: print("Invalid choice. enter 1-3") mainMenu() def Steak(totalCost): print("Great choice!") totalCost += 8 return totalCost def Chicken(totalCost): print("Great choice!") totalCost += 7.5 return totalCost def Ribs(totalCost): print("Great Choice") totalCost += 6 return totalCost def sideMenu(totalCost): print("1.corn on the cob $10.50") print("2.house salad $7.50") print("3.Fries $3") selection = int(input("Enter Choice:")) if selection == 1: totalCost += corn(totalCost) return totalCost elif selection == 2: totalCost += house(totalCost) return totalCost elif selection == 3: totalCost += Drink(totalCost) return totalCost else: print("Invalid choice. enter 1-3") sideMenu() def corn(totalCost): print("That'll be $10.50.") totalCost += 10.5 return totalCost def house(totalCost): print("That'll be $7.50") totalCost += 7.5 return totalCost def Drink(totalCost): print("Sweet!") totalCost += 3 return totalCost receipt = "your total is $" + str(totalCost) main()
[ "mariopedregon93@gmail.com" ]
mariopedregon93@gmail.com
76958178b7438bb05a58d4bf3edd04bf9ee28403
cc212540f928a95fa56f4679e3eb58e2ad329ca5
/annpy/training/trainer.py
c93d497850a77427e0a1ba0888254a24da4a10e7
[ "LicenseRef-scancode-mit-taylor-variant", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
nirvguy/annpy
ec05e07316bddd4bc5fbbd3d9e73ec94dc52a4b9
ea5f92048173d0ebd1ad134cf626fa623569905e
refs/heads/master
2018-06-03T06:11:21.911758
2018-05-30T16:16:46
2018-05-30T16:16:48
118,555,614
0
0
null
null
null
null
UTF-8
Python
false
false
1,346
py
# See LICENSE file for copyright and license details. import torch class Trainer(object): def __init__(self, learning_rule): self._learning_rule = learning_rule self._epoch = 0 self._hooks = [] self._remaining_epochs = 0 @property def epoch(self): return self._epoch @staticmethod def check_batch(batch): if not isinstance(batch, torch.Tensor): raise Exception("Batchs must be torch.Tensor's") if len(batch.shape) <= 1: raise Exception("Batch shape must have at least dimension two") def _notify(self, msg): for hook in self._hooks: hook.notify(msg) def train(self, batchs, epochs=1): if len(batchs) == 0: return for batch in batchs: self.check_batch(batch) self._remaining_epochs = epochs self._notify('pre_training') for _ in range(epochs): self._notify('pre_epoch') for batch in batchs: self._learning_rule.step(batch) self._epoch += 1 self._remaining_epochs -= 1 self._notify('post_epoch') self._notify('post_training') def remaining_epochs(self): return self._remaining_epochs def attach(self, hook): self._hooks.append(hook)
[ "nirvguy@gmail.com" ]
nirvguy@gmail.com
b089edef3519feb7f892bdd66d7ebb57fe321c27
d214b72b3ae340d288c683afe356de6846a9b09d
/动态规划/最大矩形_85.py
d5fa9f35ee7dab90956eab9b4c2c0e9f34d1993c
[]
no_license
Xiaoctw/LeetCode1_python
540af6402e82b3221dad8648bbdcce44954a9832
b2228230c90d7c91b0a40399fa631520c290b61d
refs/heads/master
2021-08-29T15:02:37.786181
2021-08-22T11:12:07
2021-08-22T11:12:07
168,444,276
0
0
null
null
null
null
UTF-8
Python
false
false
1,071
py
from typing import * class Solution: def maximalRectangle(self, matrix: List[List[str]]) -> int: m, n = len(matrix), len(matrix[0]) num_up = [[0] * n for _ in range(m)] for i in range(n): if matrix[0][i] == '1': num_up[0][i] = 1 for i in range(1, m): for j in range(n): if matrix[i][j] == '1': num_up[i][j] = num_up[i - 1][j] + 1 ans = 0 for i in range(m): pre_zero = -1 min_up = float('inf') for j in range(n): if matrix[i][j] == '0': pre_zero = j min_up=float('inf') else: min_up = min(min_up, num_up[i][j]) ans = max(ans, min_up * (j - pre_zero)) return ans if __name__ == '__main__': matrix = [["1", "0", "1", "0", "0"], ["1", "0", "1", "1", "1"], ["1", "1", "1", "1", "1"], ["1", "0", "0", "1", "0"]] sol=Solution() print(sol.maximalRectangle(matrix))
[ "m18846183092@163.com" ]
m18846183092@163.com
1fab3a455107a4685915923d7fdca0125d651eae
f7b47ac437f2c60c99fa004a5f11563cc2340c98
/migrations/versions/ba949b44fadf_.py
6caacd88df68bf1244959e34581efd7d76baafd4
[]
no_license
QYJiua/myblogproject
23586970b9b8ccdf7aa4a931adde1a7a4e04a673
0a6749306ca74bb2d7d1f876c03e945a259c0909
refs/heads/master
2023-07-29T22:27:07.373173
2021-09-16T14:43:29
2021-09-16T14:43:29
407,197,481
0
0
null
null
null
null
UTF-8
Python
false
false
1,876
py
"""empty message Revision ID: ba949b44fadf Revises: 7afb21f57fac Create Date: 2021-08-28 22:06:03.824638 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql # revision identifiers, used by Alembic. revision = 'ba949b44fadf' down_revision = '7afb21f57fac' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('article_type', sa.Column('id', sa.Integer(), autoincrement=True, nullable=False), sa.Column('type_name', sa.String(length=20), nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_table('comment', sa.Column('id', sa.Integer(), autoincrement=True, nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('article_id', sa.Integer(), nullable=True), sa.Column('comment', sa.String(length=255), nullable=False), sa.Column('cdatetime', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['article_id'], ['article.id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.add_column('article', sa.Column('type_id', sa.Integer(), nullable=True)) op.alter_column('article', 'user_id', existing_type=mysql.INTEGER(display_width=11), nullable=True) op.create_foreign_key(None, 'article', 'article_type', ['type_id'], ['id']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'article', type_='foreignkey') op.alter_column('article', 'user_id', existing_type=mysql.INTEGER(display_width=11), nullable=False) op.drop_column('article', 'type_id') op.drop_table('comment') op.drop_table('article_type') # ### end Alembic commands ###
[ "1273884908@qq.com" ]
1273884908@qq.com
a7b5924d50b1d26afe48b186debeead1b5c2ba60
5e3768b724a93e834eca6c92f54f45bd45b05106
/automate_models.py
1da485abbe89f744c99b449feb929897d2d07ede
[ "MIT" ]
permissive
BorisBorshevsky/ML-Elections
e10bd578e2923ef15112165702280ceca8f0f285
26a0b7b184deceb7a1c2727ba8e458d565b19512
refs/heads/master
2021-05-06T19:08:15.226036
2018-01-15T00:57:55
2018-01-15T00:57:55
112,019,076
0
1
MIT
2017-12-04T00:48:08
2017-11-25T16:43:39
Jupyter Notebook
UTF-8
Python
false
false
3,584
py
import pandas as pd import numpy as np from IPython import embed from sklearn import clone from sklearn.model_selection import cross_val_score, train_test_split from sklearn.multiclass import OneVsOneClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import Perceptron from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.svm import LinearSVC from sklearn.metrics import classification_report from sklearn.model_selection import cross_val_predict from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.metrics import confusion_matrix from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier models = { "SVC Linear kernel": SVC(kernel='linear'), "linearSVC OVR": LinearSVC(multi_class='ovr'), "linearSVC crammer_singer": LinearSVC(multi_class='crammer_singer'), "One Vs One": OneVsOneClassifier(LinearSVC()), "Naive Bayes": GaussianNB(), "Perceptron": Perceptron(max_iter=300), "LinearDiscriminantAnalysis": LinearDiscriminantAnalysis() } def add_parametrized_models(): for splitter in range(2, 20): models["DecisionTreeClassifier with splitter %d" % splitter] = DecisionTreeClassifier(min_samples_split=splitter, random_state=0) for splitter in range(2, 20): models["RandomForestClassifier with splitter %d" % splitter] = RandomForestClassifier(min_samples_split=splitter, random_state=0) for n in range(2, 20): models["KNeighborsClassifier with n=%d" % n] = KNeighborsClassifier(n_neighbors=n) def load_prepared_data(): df_train = pd.read_csv('./data/output/processed_train.csv', header=0) df_test = pd.read_csv('./data/output/processed_test.csv', header=0) features = list(set(df_train.columns) - {'Vote'}) target = 'Vote' df_train_X = df_train[features] df_train_Y = df_train[target] df_test_X = df_test[features] df_test_Y = df_test[target] # labels = {"0":"Blues","1":"Browns","2":"Greens","3":"Greys","4":"Oranges","5":"Pinks","6":"Purples","7":"Reds","8":"Whites","9":"Yellows" } labels = ["Blues", "Browns", "Greens", "Greys", "Oranges", "Pinks", "Purples", "Reds", "Whites", "Yellows"] return df_train_X, df_train_Y, df_test_X, df_test_Y, labels def evaluate_and_get_best(features, target): max_model = "linearSVC crammer_singer" max_score = 0 for k, v in models.iteritems(): scores = cross_val_score(v, features, target, cv=15) score = np.mean(scores) print "%s - Score: %f" % (k, score) if score > max_score: max_score = score max_model = k return max_model def main(): df_train_X, df_train_Y, df_test_X, df_test_Y, labels = load_prepared_data() train_val_data = pd.concat([df_train_X]) features = train_val_data.values target = pd.concat([df_train_Y]).values add_parametrized_models() best_model_name = evaluate_and_get_best(features, target) clf = clone(models[best_model_name]) clf.fit(df_test_X, df_test_Y) print "#######################" print "Prediction" print "#######################" pred = clf.predict(df_test_X) distribution = np.bincount(pred.astype('int64')) for index, party in enumerate(distribution): print "%s, %f, %f" % (labels[index], distribution[index], distribution[index] / float(df_test_Y.size) * 100) + '%' if __name__ == '__main__': main()
[ "BorisBorshevsky@gmail.com" ]
BorisBorshevsky@gmail.com
1f57a94143af972a289bfc920a65f67f1bd6adf6
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_17171.py
41ccf0e53304977e412d274d7efa76fe1482d35e
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
35
py
# Integer to Boolean return a != b
[ "ubuntu@ip-172-31-7-228.us-west-2.compute.internal" ]
ubuntu@ip-172-31-7-228.us-west-2.compute.internal
04777f286a93e171d45397ce0a3643795c4b76af
9d3cab321f1b940bc7ef0ffbd1c7779d58008e35
/hooks.py
b2c04ec8ba85f827c9081d4e87b7c411a59aea3d
[]
no_license
celsoflores/orbui
ae37d2497c1eebc3132097d98a1847950cfd6eed
6b8ac794832e4baa6cf5ef8e0d7ba5ed8eda12e6
refs/heads/master
2022-11-13T03:20:40.098283
2016-05-16T22:16:41
2016-05-16T22:16:41
276,276,112
0
0
null
null
null
null
UTF-8
Python
false
false
3,127
py
# -*- coding: utf-8 -*- # Validation hook for relationship # Author: Softtek - MLCS # Date: Jun 2014 # Project: Platypus from cubicweb import ValidationError from cubicweb.server.hook import Hook, match_rtype from cubes.orbui.views.autocomplete_edition_view import AutoCompleteEntityRetriever class Validate_Autocomplete_RulesHook(Hook): """ Validate the correct application of the autocomplete rules """ __regid__ = 'validateAutocompleteRules' __select__ = Hook.__select__ & ~match_rtype('created_by', 'owned_by') events = ('before_add_relation',) def __call__(self): #print 'eidfrom: %s, eidto: %s, rtype: %s' % (self.eidfrom, self.eidto, self.rtype) #Cuando ya existe la relación no se evaluan las condiciones especiales srql = 'Any X, Y WHERE X %s Y, X eid %s, Y eid %s' % (self.rtype, self.eidfrom, self.eidto) if self._cw.execute(srql).rowcount > 0: return eidfrom = self._cw.entity_from_eid(self.eidfrom) eidto = self._cw.entity_from_eid(self.eidto) #Evaluate the direct relation target = '' specialsearch = AutoCompleteEntityRetriever().getSpecialSearch(self._cw, eidfrom, self.rtype, type(eidto).__name__, 'subject') if specialsearch != ' ': unrelated = eidfrom.cw_unrelated_rql(self.rtype, type(eidto).__name__, 'subject') srql = ((unrelated[0] % unrelated[1]) + specialsearch + ', O eid ' + str(self.eidto)) if self._cw.execute(srql).rowcount < 1: target = ('%(entity)s|%(relation)s%(role)s|%(etype_search)s' % {'entity': type(eidfrom).__name__, 'relation': self.rtype, 'role': '', 'etype_search': type(eidto).__name__}) helpmsg = self._cw._('Validation error, relation not valid') if target in AutoCompleteEntityRetriever().HELP_MESSAGES: helpmsg = self._cw._(AutoCompleteEntityRetriever().HELP_MESSAGES[target]) raise ValidationError(self.eidfrom, {self.rtype: helpmsg}) #Evaluate the reverse relation target = '' specialsearch = AutoCompleteEntityRetriever().getSpecialSearch(self._cw, eidto, self.rtype, type(eidfrom).__name__, 'object') if specialsearch != ' ': unrelated = eidto.cw_unrelated_rql(self.rtype, type(eidfrom).__name__, 'object') srql = ((unrelated[0] % unrelated[1]) + specialsearch + ', S eid ' + str(self.eidfrom)) if self._cw.execute(srql).rowcount < 1: target = ('%(entity)s|%(relation)s%(role)s|%(etype_search)s' % {'entity': type(eidto).__name__, 'relation': self.rtype, 'role': '_object', 'etype_search': type(eidfrom).__name__}) helpmsg = self._cw._('Validation error, relation not valid') if target in AutoCompleteEntityRetriever().HELP_MESSAGES: helpmsg = self._cw._(AutoCompleteEntityRetriever().HELP_MESSAGES[target]) raise ValidationError(self.eidto, {self.rtype: helpmsg})
[ "walter.arriaga@softtek.com" ]
walter.arriaga@softtek.com
c96e3d5f4930ba27639b6713431e4463fe902921
74e516e50d5f7181d0ef340f0941e8ffc7b20022
/1-100/6/sum_square.py
872f7bf384605bbeae6bf4eb7891d10f3711eb67
[]
no_license
js837/project-euler
fb261a8fc2898f4e86bb66ad8c119c961a8178a6
8b32fdbdfda13cf7c8881b400c6ce59334749dad
refs/heads/master
2016-09-05T16:38:09.639874
2015-04-21T21:10:17
2015-04-21T21:10:17
34,351,684
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
# Sum of squares forumla is: n*(n+1)(2*n+1)/6 n=100 sum_sqaures=n*(n+1)*(2*n+1)/6 square_sum=n**2*(n+1)**2/4 print square_sum-sum_sqaures
[ "stacey.jake@gmail.com" ]
stacey.jake@gmail.com
a519de5be7a9fc0af870c2e10b69c7887da9f26a
cf97a7de6fad3c917356a0c7fb75bda1b4e31981
/unravel/text/legal/glossary.py
e866b388acfda0220997586ac84c01a56dd5d2cf
[ "Apache-2.0" ]
permissive
unravel-text/unravel
a2614de23e0676d5b7027d2e397ee39a0d9942e4
d819b90bfd1e4c0dd3157f43595fdbb38ae82d50
refs/heads/master
2023-06-26T13:52:33.611158
2023-06-17T03:41:41
2023-06-17T03:41:41
155,546,598
1
0
null
null
null
null
UTF-8
Python
false
false
25
py
class Glossary: pass
[ "cofiem@gmail.com" ]
cofiem@gmail.com
f841e9e9170838ca8c2972ca807eedb0e4ecd954
e905abd9bb7bd7017657d0a0c4d724d16e37044c
/.history/article/settings_20210208181317.py
5959719e37fa4bb9dcbc2f1420a4a206f030284f
[]
no_license
tabdelbari/articles
a8b921841f84fb473f5ed1cdcda743863e6bc246
f0e1dfdc9e818e43095933139b6379a232647898
refs/heads/main
2023-03-05T10:21:35.565767
2021-02-10T13:35:14
2021-02-10T13:35:14
325,654,973
0
0
null
null
null
null
UTF-8
Python
false
false
3,437
py
# -*- coding: utf-8 -*- # Scrapy settings for article project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html MONGO_URI = 'mongodb://localhost:27017/' MONGO_DATABASE = 'articles' BOT_NAME = 'article' SPIDER_MODULES = ['article.spiders'] NEWSPIDER_MODULE = 'article.spiders' SPLASH_URL = 'http://localhost:8050' DUPEFILTER_CLASS = 'scrapy_splash.SplashAwareDupeFilter' HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'article (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 10 # The download delay setting will honor only one of: CONCURRENT_REQUESTS_PER_DOMAIN = 1 CONCURRENT_REQUESTS_PER_IP = 1 # Disable cookies (enabled by default) COOKIES_ENABLED = True COOKIES_DEBUG = True # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en', } # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html SPIDER_MIDDLEWARES = { 'scrapy_splash.SplashDeduplicateArgsMiddleware': 100, } # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { 'scrapy_splash.SplashCookiesMiddleware': 723, 'scrapy_splash.SplashMiddleware': 725, 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810, } # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'article.pipelines.MongoPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "abdelbari1996@hotmail.com" ]
abdelbari1996@hotmail.com
30bcc49e425481fed6a6df0a85ca78f5255b3b93
200abee8ebb5fa255e594c8d901c8c68eb9c1a9c
/venv/03_old/hello_world.py
3ef7463bc3ca43192af6add6ec132d91cd3a73f7
[]
no_license
Vestenar/PythonProjects
f083cbc07df57ea7a560c6b18efed2bb0dc42efb
f8fdf9faff013165f8d835b0ccb807f8bef6dac4
refs/heads/master
2021-07-20T14:14:15.739074
2019-03-12T18:05:38
2019-03-12T18:05:38
163,770,129
0
0
null
null
null
null
UTF-8
Python
false
false
9,760
py
'''def sum(param1, param2): return param1 + param2 # return result to the function caller param1 = int(input()) param2 = int(input()) c = sum(param1, param2) print(c) nlen=0 def checkPalindrome(inputString): nlen = len(inputString) if nlen == 1: t = True else: for i in range(nlen//2): if inputString[i] == inputString[-i-1]: t = True else: t = False break return t inputString = "sasass" print(checkPalindrome(inputString))''' '''def adjacentElementsProduct(inputArray): test = inputArray[0]*inputArray[1] for i in range((len(inputArray)-2)): nmax = inputArray[i+1]*inputArray[i+2] if test < nmax: test = nmax return test inputArray = [6, 2, 3, 8] max = 0 max = adjacentElementsProduct(inputArray) print(max)''' '''sequence = [1, 3, 2, 1] count = 0 t = True t1 = True t2 = True narray = list(sequence) for b in range(2): for i in range(len(narray)-1): if narray[i] < narray[i-1]: narray[i-1:i] = [] count += 1 if count < 2: t1 = False count = 0 narray2 = list(sequence) narray = list(sequence) for b in range(2): for i in range(len(narray)-1): if narray[i] < narray[i-1]: narray[i:i+1] = [] count += 1 if count < 2: t1 = False t = t1 or t2 print(narray) print(narray2) print(t1, t2, t)''' '''t = True count = 0 for i in range(len(sequence)): if count > 2: data = False break if i+1 < len(sequence) and sequence[i] >= sequence[i+1]: count += 1 if i+2 < len(sequence) and sequence[i] >= sequence[i+2]: count += 1 print(t) ''' '''matrix = [[1,1,1], [2,2,2], [3,3,3]] price = 0 for i in range(len(matrix)): for j in range(len(matrix[i])): if i != 0 and matrix[i-1][j] == 0: matrix[i][j] = 0 for row in matrix: for elem in row: price += elem print(price)''' '''inputArray = ["aba", "aa", "ad", "vcd", "aba"] lenw = 0 out = [] for i in range(len(inputArray)): if lenw < len(inputArray[i]): lenw = len(inputArray[i]) for i in range(len(inputArray)): if len(inputArray[i]) == max(len(s) for s in inputArray): out.append(inputArray[i]) print(out)''' '''s1 = "aabzca" s2 = "adcaaz" n = 0 for i in s1: if i in s2: n +=1 s2 = s2.replace(i, "0", 1) print(n)''' '''n = str(int(123610)) mid = len(n)//2 n1 = n[:mid] n2 = n[mid:] sum1 = 0 for i in range(len(n1)): sum1 +=int(n1[i]) for i in range(len(n2)): sum1 -=int(n2[i]) if sum1 == 0: out = "Счастливый" else: out = "Обычный" print(out)''' '''s = 'aaaabbcccaabb' t = s[0] count = 0 out = '' for i in s: if i == t: count += 1 else: out = out + t+str(count) t = i count = 1 out = out + t + str(count) print(t, out)''' '''a = [23, 54, -1, 43, 1, -1, -1, 77, -1, -1, -1, 3] print([1, 3, -1, 23, 43, -1, -1, 54, -1, -1, -1, 77]) m = max(a) for i in range(1, len(a)): if a[-i] != -1: a[-i], a[a.index(m)] = a[a.index(m)], a[-i] m = max(a[:-i]) print(a) ''' '''s = "The ((quick (brown) (fox) jumps over the lazy) dog)" count = s.count('(') op = [] cl = [] id = 0 for ch in s: if ch == '(': op.append(id) id += 1 op = op[::-1] id = 0 'ускорить поиск скобок путем определения начала поиска' for i in range(count): for ch in s: if ch == ')' and id > op[i] and id not in cl: cl.append(id) break id += 1 id = 0 for i in range(count): sh = s[op[i]+1:cl[i]] s = s.replace(sh, sh[::-1]) s = s.replace("(", "") s = s.replace(")", "") print(s)''' '''s = "The ((quick (brown) (fox) jumps over the lazy) dog)" while ')' in s: j = s.index(')') i = s.rindex('(', 0, j) s = s[:i] + s[j-1:i:-1] + s[j+1:] print(s)''' '''a = [50] b = [0,0] for i in range(len(a)): b[i%2] += a[i] print(b)''' ''' a = ["*****", "*abc*", "*ded*", "*****"] picture = ["abc", "ded"] picture.insert(0,"*" * len(picture[0])) picture.append("*" * len(picture[0])) for i in range(len(picture)): test = picture[i] test = "*" + test + "*" picture[i] = test print(picture)''' '''def areSimilar(a, b): idx = [] if len(a) != len(b): return False for i in range(len(a)): if a[i] != b[i]: idx.append(i) if len(idx) == 0: return True if len(idx) != 2: return False if a[idx[0]] == b[idx[1]] and a[idx[1]] == b[idx[0]]: return True else: return False 'заносим в массив idx только те символы, которые не совпадают в исходных массивах, если таких символов только две пары, то проверяем взаимозаменяемость пар' a = [1, 2, 2] b = [2, 1, 1] print(areSimilar(a, b))''' '''def arrayChange(inputArray): n = 0 for i in range(1, len(inputArray)): if inputArray[i] <= inputArray[i-1]: n += inputArray[i - 1] - inputArray[i] + 1 inputArray[i] += inputArray[i-1] - inputArray[i] +1 return n inputArray = [2, 3, 3, 5, 5, 5, 4, 12, 12, 10, 15] print(arrayChange(inputArray)) ''' '''a = [int(i) for i in input().split()] b = [] ans = '' for i in range(len(a)): if a.count(a[i]) > 1 and (a[i] not in b): b.append(a[i]) for i in b: ans += str(i) + ' ' print(ans) ''' ''' проверка строки на возможность получить палиндром перестановкой символов. считаем только символы, количество которых нечетное и заносим в массив def palindromeRearranging(inputString): a = [] for i in range(len(inputString)): if inputString.count(inputString[i]) % 2 != 0: if inputString[i] != inputString[i-1]: a.append(inputString.count(inputString[i])) return len(a) <= 1 task = 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaccc' print(palindromeRearranging(task)) ''' '''САПЕР codesignal def minesweeper(matrix): row, col = len(matrix), len(matrix[0]) ans = [[0 for c in range(col)] for r in range(row)] for i in range(row): for j in range(col): if matrix[i][j]: ans[i][j] = -1 for di in range(-1, 2): for dj in range(-1, 2): ai = i + di aj = j + dj if 0 <= ai < row and 0 <= aj < col and matrix[ai][aj]: ans[i][j] += 1 return ans task = [[True,False,False],[False,True,False],[False,False,False]] print(minesweeper(task)) ''' ''' def avoidObstacles(inputArray): jump = 1 a = 0 while a < max(inputArray)//jump: jump += 1 for i in range(1, max(inputArray)//jump+1): if jump*i not in inputArray: a += 1 else: a = 0 break return jump task = [5, 3, 6, 7, 9] print(avoidObstacles(task)) ''' ''' # эффект блюр для "фотографии" def boxBlur(image): row, col = len(image), len(image[0]) # row rows, col columns ans = [] for i in range(1, row-1): ans.append([]) for j in range(1, col-1): flsum = 0 for k in range(-1, 2): for l in range(-1, 2): flsum += image[i+k][j+l] ans[i-1].append(int(flsum/9)) return ans task = [[7, 4, 0, 1], [5, 6, 2, 2], [6, 10, 7, 8], [1, 4, 2, 0]] print(boxBlur(task)) ''' '''codesignal является ли имя переменой корректным def variableName(name): if not name[0].isalpha() and name[0] != '_': return False else: for i in range(1, len(name)): if not name[i].isalnum() and name[i] != '_': return False return True name = 'var1_' print(variableName(name)) ''' '''codesignal def absoluteValuesSumMinimization(a): # x = a[0] list = {} for i in range(len(a)): sabs = 0 for j in range(len(a)): sabs += abs(a[j] - a[-(i+1)]) list[sabs] = a[-(i+1)] print(list) return list[min(list)] test = [1, 1, 3, 4] print(absoluteValuesSumMinimization(test)) ''' ''' задача на брутфорс всех перестановок def stringsRearrangement(inputArray): import itertools perm = list(itertools.permutations(inputArray, len(inputArray))) #полный список всех перестановок for k in perm: #проверяем каждый вариант перестановки for i in range(1, len(k)): a = k[i] b = k[i-1] count = 0 for index in range(len(a)): if a[index] != b[index]: count += 1 if count != 1: break if count == 1: return True return False''' '''#codesignal #Given array of integers, find the maximal possible sum of some of its k consecutive elements. def arrayMaxConsecutiveSum(a, k): c = m = sum(a[:k]) #посчитали исходную сумму for i in range(len(a) - k): c = c + a[i + k] - a[i] #уменьшили сумму на предыдущий элемент и увеличили на следующий m = max(c, m) #проверили максимум и сохранили в m return m test = [1, 3, 2, 4] k = 3 print(arrayMaxConsecutiveSum(test, k))'''
[ "vestenar@gmail.com" ]
vestenar@gmail.com
fde156d69337a167c10dea149b053022dba9878a
bd38b6be261e997e1a34694b70f3e9fa22e73c8e
/StatMyBallsApi/migrations/0003_goal_goal_date.py
a065c4260cca8911bebe0264d213452e776fbc15
[]
no_license
Strapontin/StatMyBallsDjango
05e73a502a8db8bdeeeef7533a1a3514773261b4
8082b2630a2ddf4dded999636c8fd39b0fb65b0a
refs/heads/main
2023-04-27T17:17:12.815401
2021-05-16T19:27:32
2021-05-16T19:27:32
305,686,523
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
# Generated by Django 3.1.3 on 2020-11-11 10:07 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('StatMyBallsApi', '0002_auto_20201111_1058'), ] operations = [ migrations.AddField( model_name='goal', name='goal_date', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now, verbose_name='goal_date'), preserve_default=False, ), ]
[ "cedric.hernandez.soto@gmail.com" ]
cedric.hernandez.soto@gmail.com
3cd5a1b7ce865bf7a94113f781c663ed6ae8ebe9
21ff624abb58c2af27d209f7b1d1e167244b7536
/adminLab/adminLab/settings.py
cb4f9842ab89239aec4bb420614f742c7ea339ef
[]
no_license
SachekDenisHomePc/DjangoLab2-3
95c858bcdcbd6458a5eedd6805245d4217e93e7d
e062898f91fbabb98605a4207953c3786e4751bf
refs/heads/master
2021-05-24T12:18:53.901085
2020-04-06T16:41:56
2020-04-06T16:41:56
253,558,121
0
0
null
null
null
null
UTF-8
Python
false
false
3,314
py
""" Django settings for adminLab project. Generated by 'django-admin startproject' using Django 3.0.4. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 't1&t_zu8r+y)1)^b%)w*%ypu^i#@1%(7(fa9n51_62qkktjocg' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'lab1DB', 'Lab2', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'adminLab.urls' TEMPLATE_DIR = os.path.join(BASE_DIR, "templates") TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR, ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'adminLab.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), }, 'Lab2Db': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'lab2Db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
[ "sachek.denis@gmail.com" ]
sachek.denis@gmail.com
19907e7cb61cd025d174242e51357e774a777801
d257ddf7e6959d0989d76080a8a048e82393657f
/002_TemplateMatching/002_template_match_implemented.py
112464bcd0690858ab97442b59d77b3d552eca7f
[ "MIT" ]
permissive
remichartier/027_selfDrivingCarND_ObjectDetectionExercises
d210f37b7baf306dd034c09f62e125b263f8270d
ccd853c975d35df5f31e1a445a1a8757b8bd13f5
refs/heads/main
2023-04-17T08:09:55.465143
2021-05-03T07:11:16
2021-05-03T07:11:16
362,013,745
0
0
null
null
null
null
UTF-8
Python
false
false
2,661
py
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg image = mpimg.imread('bbox-example-image.jpg') #image = mpimg.imread('temp-matching-example-2.jpg') templist = ['cutout1.jpg', 'cutout2.jpg', 'cutout3.jpg', 'cutout4.jpg', 'cutout5.jpg', 'cutout6.jpg'] # Here is your draw_boxes function from the previous exercise def draw_boxes(img, bboxes, color=(0, 0, 255), thick=6): # Make a copy of the image imcopy = np.copy(img) # Iterate through the bounding boxes for bbox in bboxes: # Draw a rectangle given bbox coordinates cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick) # Return the image copy with boxes drawn return imcopy # All the 6 methods for comparison in a list # methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', # 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED'] # Define a function that takes an image and a list of templates as inputs # then searches the image and returns the a list of bounding boxes # for matched templates def find_matches(img, template_list): # Make a copy of the image to draw on imcopy = np.copy(img) # Define an empty list to take bbox coords bbox_list = [] # Iterate through template list for temp in template_list: # Read in templates one by one templ = mpimg.imread(temp) print(templ.shape[::-1]) l, w, h = templ.shape[::-1] # Use cv2.matchTemplate() to search the image # using whichever of the OpenCV search methods you prefer #meth = 'cv2.TM_SQDIFF' # --> Not working meth = 'cv2.TM_CCOEFF' # --> Working #meth = 'cv2.TM_CCOEFF_NORMED' # --> Working #meth = 'cv2.TM_CCORR' # --> Not working #meth = 'cv2.TM_CCORR_NORMED' # --> Working #meth = 'cv2.TM_SQDIFF' # --> Not working #meth = 'cv2.TM_SQDIFF_NORMED' # --> Not working method = eval(meth) res = cv2.matchTemplate(img,templ,method) # Use cv2.minMaxLoc() to extract the location of the best match min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # Determine bounding box corners for the match if meth in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]: top_left = min_loc else: top_left = max_loc bottom_right = (top_left[0] + w, top_left[1] + h) bbox_list.append((top_left,bottom_right)) # Return the list of bounding boxes return bbox_list bboxes = find_matches(image, templist) result = draw_boxes(image, bboxes) plt.imshow(result)
[ "remipr.chartier@gmail.com" ]
remipr.chartier@gmail.com
3f0ba0135eca1c3fa561a27e6ca70bbfd56d36ce
dbc35bdcec5f64ef8482c709a28e527c6b66d638
/company_admin/urls.py
d643efa64d0a8b4422c90ea707d9d82e77bb0054
[]
no_license
PkQDark/Dosa
2bc001f1ab7c2e15ae2c8fb0f2309185024be590
bcead811892b2f0c06e2cb5e03cf3f98a0dc9b7b
refs/heads/master
2021-01-01T06:56:46.259731
2017-09-19T17:29:43
2017-09-19T17:29:43
97,556,407
0
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
from django.conf.urls import url from .views import dosing, \ cistern_add, cistern_list, cistern_edit, cistern_info, \ add_fuel, fuels_list, fuel_info,\ keys, edit_key, \ users, add_local_user, edit_local_user urlpatterns = [ url(r'^$', dosing, name='dosing'), url(r'^cisterns/$', cistern_list, name='cistern_list'), url(r'^cisterns/add-cistern/$', cistern_add, name='cistern_add'), url(r'^cisterns/edit/(?P<cist_id>\d+)/', cistern_edit, name='cist_edit'), url(r'^cisterns/(?P<cist_id>\d+)/', cistern_info, name='cist_info'), url(r'^fuels/$', fuels_list, name='fuels'), url(r'^fuels/add-fuel/$', add_fuel, name='add_fuel'), url(r'^fuels/(?P<fuel_id>\d+)/', fuel_info, name='fuel_info'), url(r'^keys/$', keys, name='keys'), url(r'^keys/edit/(?P<key_id>\d+)/', edit_key, name='edit_key'), url(r'^users/$', users, name='users'), url(r'^users/add-user/$', add_local_user, name='add_user'), url(r'^users/edit/(?P<user_id>\d+)/', edit_local_user, name='edit_user'), ]
[ "blackbirdvlad@gmail.com" ]
blackbirdvlad@gmail.com
ed0d0eca931fce65500d604ab0cbc8aa1dbd612c
227a045665ea8c5b1822bed84c38b990a1343770
/libs/sms.py
f6376bdddca1492090f0f94c2f3fc68aebad1f1a
[ "Apache-2.0" ]
permissive
theEndProject/aboutTa
f31a1629afdf7fc157e219b2499b47c2c2181e98
33a1e391e56e76006ee6ef3d9102efc496251cb6
refs/heads/main
2023-01-02T01:31:10.635058
2020-10-26T09:33:05
2020-10-26T09:33:05
303,625,794
0
0
null
null
null
null
UTF-8
Python
false
false
1,185
py
import time import json from hashlib import md5 import requests from aboutTa import config as cfg def send_sms(phonenum, vcode): '''发送短信''' args = { 'appid': cfg.SD_APPID, # APPID 'to': phonenum, # 手机号 'project': cfg.SD_PROJECT, # 短信模板的ID 'vars': json.dumps({'code': vcode}), 'timestamp': int(time.time()), 'sign_type': cfg.SD_SIGN_TYPE, } # 计算参数的签名 sorted_args = sorted(args.items()) # 提取每一项 args_str = '&'.join([f'{key}={value}' for key, value in sorted_args]) # 对参数排序、组合 sign_str = f'{cfg.SD_APPID}{cfg.SD_APPKEY}{args_str}{cfg.SD_APPID}{cfg.SD_APPKEY}' # 拼接成待签名字符串 sign_bytes = sign_str.encode('utf8') # 转换成bytes(二进制) signature = md5(sign_bytes).hexdigest() # 计算签名 args['signature'] = signature response = requests.post(cfg.SD_API, data=args) if response.status_code == 200: result = response.json() print('短信结果:', result) if result.get('status') == 'success': return True return False
[ "472437593@qq.com" ]
472437593@qq.com
d8a49d368a82b0008bacdd568c57aa745bde3133
d86ed2c37a55b4a3118131a04f9a68dbd3b51a7f
/sherpatest/lev3fft-bar.py
384437c626b0fbb39addb9d1c5274f6e57b5fd62
[]
no_license
hamogu/sherpa-test-data
f745cc907c2535a721d46472b33f7281bd6e6711
77d9fc563875c59a4acff2960d46180ee7a8ec14
refs/heads/master
2023-06-18T22:30:44.947033
2020-08-03T12:07:13
2020-08-03T12:07:13
275,202,255
0
0
null
2020-06-26T16:38:19
2020-06-26T16:38:19
null
UTF-8
Python
false
false
1,244
py
#!/usr/bin/env python from sherpa.astro.ui import * image_file = "acisf07999_000N001_r0035_regevt3_srcimg.fits" psf_file = "acisf07999_000N001_r0035b_psf3.fits" reg_file = "ellipse(3145.8947368421,4520.7894736842,37.0615234375,15.3881587982,92.2273254395)" srcid = 1 load_data(srcid, image_file) load_psf("psf%i" % srcid, psf_file) set_psf(srcid, "psf%i" % srcid) set_coord(srcid, "physical") notice2d_id(srcid, reg_file) # Switch to WCS for fitting set_coord(srcid, "wcs") # Use Nelder-Mead, C-statistic as fit method, statistic set_method("neldermead") set_stat("cstat") set_source(srcid, 'gauss2d.src + const2d.bkg') guess(srcid, src) image_file = "acisf08478_000N001_r0043_regevt3_srcimg.fits" psf_file = "acisf08478_000N001_r0043b_psf3.fits" reg_file = "ellipse(3144.5238095238,4518.8095238095,25.2978591919,19.1118583679,42.9872131348)" srcid = 2 load_data(srcid, image_file) load_psf("psf%i" % srcid, psf_file) set_psf(srcid, "psf%i" % srcid) set_coord(srcid, "physical") notice2d_id(srcid, reg_file) # Switch to WCS for fitting set_coord(srcid, "wcs") # Use Nelder-Mead, C-statistic as fit method, statistic set_method("neldermead") set_stat("cstat") set_source(srcid, 'gauss2d.src + const2d.bkg') guess(srcid, src) fit()
[ "olaurino@cfa.harvard.edu" ]
olaurino@cfa.harvard.edu
51b331eccb9809f73598d78540ae4e6af635ee6f
f83839dfcbd8bfd5c535f819cf9bb9c303ff3f94
/MachineBookExtract/book_tools/characters_tool.py
8dce0f703472fc5e254302b519d10a0b74df7fbc
[]
no_license
pawo97/MachineBookExtract
8cabc4c18a65022c1b61a6bd9e9f47eb60753401
33fab023b7b0e48e5fe043f504269d80cb964237
refs/heads/main
2023-07-25T01:45:43.711512
2021-09-06T21:11:32
2021-09-06T21:11:32
345,401,332
2
0
null
null
null
null
UTF-8
Python
false
false
6,519
py
import traceback from book_tools.characters_person_rate import characters_person_rate class characters_tool: def get_list_non_alpha_numeric(self, words): non_alpha_words = [] for w in words: # blank if w != '': alphanumeric = "" for character in w: if character.isalnum(): alphanumeric += character non_alpha_words.append(alphanumeric.lower()) return list(dict.fromkeys(non_alpha_words)) def get_second_word(self, li): li_second_word = [] for i in li: if ' ' in i: j = i.split(' ') if len(j) >= 2: li_second_word.append(j[1]) else: li_second_word.append(i) return li_second_word def get_words_with_prefix(self, nouns): prefix_list = [] for s in nouns: s_final = '' if (s.startswith('a ') or s.startswith('A ')) and s[2].isupper() and 'CHAPTER' not in s: s_final = s[2:] # print("LL", s[2:]) prefix_list.append(s_final) elif (s.startswith('the ') or s.startswith('The ')) and s[4].isupper() and 'CHAPTER' not in s: s_final = s[4:] # print("LL", s[4:]) prefix_list.append(s_final) return prefix_list def get_persons_no_duplicates(self, doc): persons = [] for entity in doc.ents: if entity.label_ == 'PERSON': if entity.text[0].isupper(): persons.append(entity.text) return list(dict.fromkeys(persons)) def get_last_word(self, persons): new_persons = [] for i in persons: i = i.replace('\n', ' ') if ' ' in i: j = i.split(' ') if len(j) >= 2: new_persons.append(j[len(j) - 1]) else: new_persons.append(i) return new_persons def remove_dot_s(self, persons): new_persons = [] for w in persons: if w.endswith("’s"): w = w[0:len(w) - 2] new_persons.append(w) return new_persons def check_spacy_tags(self, nlp, words_selected, persons): # Create rating list person_rates = [] for p in persons: if p != 'the' and p != 'a' and len(p) > 1: # check spacy tag doc = nlp(p) if 'NN' == doc[0].tag_: person = characters_person_rate() person.rate = 0 person.word = p person.tag = doc[0].tag_ person_rates.append(person) elif 'NNS' == doc[0].tag_: person = characters_person_rate() person.rate = 0 person.word = p[0:len(p) - 1] person.tag = doc[0].tag_ person_rates.append(person) elif 'NNP' == doc[0].tag_: person = characters_person_rate() person.rate = 0 person.word = p person.tag = doc[0].tag_ person_rates.append(person) # Count in words for w in words_selected: for p in person_rates: if p.word in w or p.word == w: p.rate += 1 person_rates.sort(key=lambda x: x.rate, reverse=True) person_rates = list(dict.fromkeys(person_rates)) return person_rates def capital_letter_and_not_empty_str_list(self, persons): del persons[30:] # capital letter for i in range(len(persons)): persons[i] = persons[i].title() # delete empty strings final_person = [] for i in range(len(persons)): if persons[i] != '' and len(persons[i]) > 2: final_person.append(persons[i]) return final_person def sum_lists_rates(self, one, two, three): d = {} for i in one: d[i.lower()] = 0 for i in two: if i not in d.keys(): d[i.lower()] = 0 else: d[i] += 1 for i in three: if i not in d.keys(): d[i.lower()] = 0 else: d[i] += 1 d = list(dict(sorted(d.items(), key=lambda item: item[1], reverse=True)).keys()) return d def get_characters(self, words, doc, nlp): try: words_selected = self.get_list_non_alpha_numeric(words) # ==================================================================== GET BY TAGS nouns = [chunk.text for chunk in doc.noun_chunks] a_the_lists = self.get_words_with_prefix(nouns) second_words_list = self.get_second_word(a_the_lists) li_not_alpha = self.get_list_non_alpha_numeric(second_words_list) li_not_alpha_duplicates = list(dict.fromkeys(li_not_alpha)) # ==================================================================== GET BY WORDS persons = self.get_persons_no_duplicates(doc) li_not_space = self.get_last_word(persons) li_dot_s = self.remove_dot_s(li_not_space) persons_result_list = self.get_list_non_alpha_numeric(li_dot_s) # ==================================================================== RATING PERSONS li_persons = list(dict.fromkeys(persons_result_list)) # Create rating list li_person_rate = self.check_spacy_tags(nlp, words_selected, li_persons) del li_person_rate[30:] li_persons = [] for p in li_person_rate: li_persons.append(str(p.word)) # ==================================================================== SUM RESULTS persons_result_list = self.capital_letter_and_not_empty_str_list(persons_result_list) # sum and the biggest values from three lists d = self.sum_lists_rates(persons_result_list, li_persons, li_not_alpha_duplicates) # capitalize first letter final_list = self.capital_letter_and_not_empty_str_list(d) except Exception as e: print(traceback.format_exc()) final_list = [] return final_list
[ "pa-wo97@o2.pl" ]
pa-wo97@o2.pl
77c55d04b0a750c8b0c0dc571cf5927a6d78e179
356f3f1b7caf0ccb20cc830d40821dfb2cbda046
/sfit/sfit/doctype/items/items.py
c1943c13dec9e21c63e99267eb3e87e7de102726
[ "MIT" ]
permissive
vignesharumainayagam/sfit
f4b75b9a8b2de08d0eaa4eadbcd3d5e432ffba56
a96afbf35b0e1635e44cb5f83d7f86c83abedb8f
refs/heads/master
2021-09-05T18:22:43.494208
2018-01-30T07:23:02
2018-01-30T07:23:02
104,332,803
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
# -*- coding: utf-8 -*- # Copyright (c) 2017, Valiant Systems and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class Items(Document): pass
[ "vigneshwaran@valiantsystems.com" ]
vigneshwaran@valiantsystems.com
9bd93aab5d5388ddaa38608af37c4a2b0e8f8509
d46db380847d51cea1966ba514d856f22251019e
/app/core/migrations/0001_initial.py
0a6c4c2dffc565e27135176e19bd4e4b03b6e1ba
[ "MIT" ]
permissive
bilesanmiahmad/recipe-app-api
bc3b2004146ed46bbaf427947db63c8215c3230a
b292c0212627513bc62eb48cc187bfb6c5fd0aed
refs/heads/master
2022-12-22T10:08:15.240112
2020-10-01T09:48:27
2020-10-01T09:48:27
294,135,372
0
0
null
null
null
null
UTF-8
Python
false
false
1,715
py
# Generated by Django 3.1.1 on 2020-10-01 08:54 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='CustomUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(max_length=255, unique=True)), ('name', models.CharField(max_length=255)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
[ "fbilesanmi@gmail.com" ]
fbilesanmi@gmail.com
75d4242afd465b53edbc623e479a98134dddabf9
1735d7a35e9a3bc9b423d6960310b4bb80ca6b42
/py3bc/17_functions_03.py
deac79e8d38581446c4dc3a10ce91f3d7ee10321
[]
no_license
qwertyzhed/python3bootcamp
38c0c1f2d354094f90db0fb54c9955c1befe4a56
0257ab47155115bf9994e6da77f7daab89d64fc3
refs/heads/master
2020-03-20T18:39:40.989958
2018-06-19T15:54:30
2018-06-19T15:54:30
137,598,832
0
0
null
null
null
null
UTF-8
Python
false
false
68
py
def yell(word): return print(word.upper() + '!') yell('fk you')
[ "alex@gmail.com" ]
alex@gmail.com
bc16f890677503af70743dd56dce78a66b1d4d0b
726c443d00ca8b43cc2a7559c2ae21fbad3bda10
/order/migrations/0008_auto_20191208_1242.py
a5bd9f20b96975e7f9a87f15c41c817b9ec1ba97
[]
no_license
djleeyuanfang/onlineshop
3af8ef9e213ccc3a18f5f61ab20e8c1bfbfdf5b0
f3d15614f4104475a98b3d387aee6d2121639c12
refs/heads/master
2020-11-24T13:37:46.709584
2020-08-29T11:36:38
2020-08-29T11:36:38
228,171,654
0
0
null
null
null
null
UTF-8
Python
false
false
1,498
py
# Generated by Django 3.0 on 2019-12-08 12:42 from django.db import migrations, models import django.db.models.deletion import order.models class Migration(migrations.Migration): dependencies = [ ('order', '0007_auto_20191207_1950'), ] operations = [ migrations.CreateModel( name='ImageDir', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('direction', models.CharField(max_length=50, unique=True, verbose_name='分类目录')), ], ), migrations.RemoveField( model_name='goodimage', name='img', ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file_name', models.CharField(max_length=32, verbose_name='上传文件名')), ('img', models.ImageField(upload_to=order.models.dre_path)), ('ImageDir', models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='order.ImageDir', verbose_name='目录')), ], ), migrations.AddField( model_name='goodimage', name='image', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='order.Image', verbose_name='图片'), ), ]
[ "1025939769@qq.com" ]
1025939769@qq.com
fa09f73820c428ce2463a685f915692ae007b9f1
782160673937ccf69c809e1ed3edca6d08bbc171
/Chapter5/5-9.py
667e06267d49334e52d8fc311668b4d42a1e84dd
[]
no_license
ParkEunbin/17.02-Python
6549f4fd10fe366f100082dd3834135aef584562
8e3831d8a911263ddd7b9f83bb26bcc79e34efb0
refs/heads/master
2021-06-18T08:03:07.099654
2021-01-20T05:38:10
2021-01-20T05:38:10
158,062,168
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
#과일 가격계산 fruit={"apple":1500,"banana":1300,"melon":2000} for a,b in fruit.items(): print(a,b) total=0 for c in fruit.keys(): print("%s의 갯수:"%c, end=" ") num=int(input()) total+=(fruit[c]*num) print(total,"원")
[ "noreply@github.com" ]
ParkEunbin.noreply@github.com
2cd28a19444e56e138b55bd4f48633e1c6bb8a0f
085551650c697038bdfaebe4778e9741d3f1431a
/dashboard/urls.py
a596cb731368ad6c8cb3e4c609ca4d104d86ba18
[]
no_license
AlonsoCN/chat-school-project
8029f011645c7043c27fd6583532e6dbc4ad063f
946b19352406804fd363582be56cd58dc426d149
refs/heads/master
2020-04-05T23:15:44.616122
2016-06-07T18:46:18
2016-06-07T18:46:18
60,637,883
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
from django.conf.urls import patterns, url urlpatterns = patterns('dashboard.views', url(r'^$', 'dashboard_view', name='dashboard'), )
[ "luis.alonso.cn@gmail.com" ]
luis.alonso.cn@gmail.com
c42d909697d0db5a72ae51a3c5d635841a1787f8
a8fca7b6bc1f0eeaba12b682a81d880dc71cc929
/FlaskEndpoint/tests/system/test_home.py
38225c4925d80136cac8cbc7e3a04b5a0ac7ca4e
[]
no_license
sineczek/Automated-Software-Testing-with-Python
cb74d8714ad5b2ec9a6ffc013a400f0181f8095b
2e7c4ff4bb5acfd53afb43a4bfa7191eb58a899c
refs/heads/main
2023-04-14T08:15:53.917614
2021-04-24T17:18:23
2021-04-24T17:18:23
345,342,351
0
0
null
null
null
null
UTF-8
Python
false
false
454
py
from tests.system.base_test import BaseTest import json class TestHome(BaseTest): def test_home(self): with self.app() as c: resp = c.get('/') self.assertEqual( resp.status_code, 200 ) self.assertEqual( json.loads(resp.get_data()), # loads - ładuje stringa; potem zmienia go na json'a czyli słownik {'message': 'Hello, world!'} )
[ "michalzaitz@gmail.com" ]
michalzaitz@gmail.com
8f885274db507628a34e8f8f094526a25c935972
cc9d1aeb8aefe3d4f86c94b4279a64e70bf5fd80
/setup.py
be0365371238e8e2c7a86eb0bd4aa3c81f749446
[ "MIT" ]
permissive
sdelquin/sendgrify
a520a2da7d6c6d7c4707c325f6d67523e53803eb
fe8ee1d0efd0c8d8034d1c57cfc07672f77d7e8e
refs/heads/main
2023-06-11T15:49:27.284693
2023-05-28T12:54:34
2023-05-28T12:54:34
342,843,979
0
0
null
null
null
null
UTF-8
Python
false
false
650
py
# read the contents of your README file from pathlib import Path from setuptools import setup this_directory = Path(__file__).parent long_description = (this_directory / 'README.md').read_text() REQUIREMENTS = ( 'sendgrid==5.3.0', 'markdown', ) setup( name='sendgrify', version='2.0.3', url='https://github.com/sdelquin/sendgrify.git', author='Sergio Delgado Quintero', author_email='sdelquin@gmail.com', description='SendGrid for Humans', license='MIT', packages=['sendgrify'], install_requires=REQUIREMENTS, long_description=long_description, long_description_content_type='text/markdown', )
[ "sdelquin@gmail.com" ]
sdelquin@gmail.com
4080d41a60b85ff5500efacfc8fa63c51b33899f
2d1ffb862ec65116f88b0986e4f36d36110cbfe5
/app/views.py
ced21fb3eae0537fbf78312e2c9f3eb801e59a90
[]
no_license
stkc282/wedding
c38afc7861119b8cf4490fa35007841d58e161c7
1799b72820787a59d0d5b7edf7748b1ab7af9a98
refs/heads/master
2021-06-18T04:15:20.293547
2019-08-19T10:17:13
2019-08-19T10:17:13
202,826,952
0
0
null
2021-06-10T21:52:12
2019-08-17T02:48:38
JavaScript
UTF-8
Python
false
false
3,288
py
# from django.contrib.auth.mixins import LoginRequiredMixin from django.urls import reverse_lazy from django.views.generic import DetailView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django_filters.views import FilterView from .filters import ItemFilter from .forms import ItemForm from .models import Item from django.shortcuts import render # # Create your views here. # # 検索一覧画面 class ItemFilterView(FilterView): model = Item # # # デフォルトの並び順を新しい順とする # queryset = Item.objects.all().order_by('-created_at') # # # django-filter用設定 # filterset_class = ItemFilter # strict = False # # # 1ページあたりの表示件数 # paginate_by = 10 # # # 検索条件をセッションに保存する # def get(self, request, **kwargs): # if request.GET: # request.session['query'] = request.GET # else: # request.GET = request.GET.copy() # if 'query' in request.session.keys(): # for key in request.session['query'].keys(): # request.GET[key] = request.session['query'][key] # # return super().get(request, **kwargs) # # 検索一覧画面 # class ItemFilterView(LoginRequiredMixin, FilterView): # model = Item # # # デフォルトの並び順を新しい順とする # queryset = Item.objects.all().order_by('-created_at') # # # django-filter用設定 # filterset_class = ItemFilter # strict = False # # # 1ページあたりの表示件数 # paginate_by = 10 # # # 検索条件をセッションに保存する # def get(self, request, **kwargs): # if request.GET: # request.session['query'] = request.GET # else: # request.GET = request.GET.copy() # if 'query' in request.session.keys(): # for key in request.session['query'].keys(): # request.GET[key] = request.session['query'][key] # # return super().get(request, **kwargs) # # 詳細画面 class ItemDetailView( DetailView): model = Item # # 詳細画面 # class ItemDetailView(LoginRequiredMixin, DetailView): # model = Item # 登録画面 class ItemCreateView(CreateView): model = Item form_class = ItemForm success_url = reverse_lazy('thanks') # 更新画面 class ItemUpdateView(UpdateView): model = Item form_class = ItemForm success_url = reverse_lazy('index') # 削除画面 class ItemDeleteView(DeleteView): model = Item success_url = reverse_lazy('index') def invitation(request): # post = get_object_or_404(Post, pk=pk ) return render(request, 'app/invitation.html', {}) def thanks(request): return render(request, 'app/thanks.html', {}) def access(request): return render(request, 'app/access.html', {}) # def create(request): # if request.method == 'POST': # form_class = ItemForm(request.POST) # if form_class.is_valid(): # model = form_class.save(commit=False) # model.save() # return redirect('index', pk=form_class.pk) # else: # form_class = ItemForm # return render(request, 'app/thanks.html', {'form': form_class})
[ "you@example.com" ]
you@example.com
39d7269798832e93cc7391c6516b8df87b50ca36
59c0669a38c4178f2f5cf8f9dca7553849c286a2
/MyPro/pythonScript/QRCodeDetect/Invoice/hough_tansform_bad.py
437f292bb460649c54b3fb981f99722309b81288
[]
no_license
AUGUSTRUSH8/ImageProcess
f33ceaabaac67436df47fd1e1f115a8f44a6f556
46fc85b61dab52c3876dfacb4dfd22c962dc13bf
refs/heads/master
2023-04-27T21:39:36.044320
2022-07-04T14:59:35
2022-07-04T14:59:35
174,789,186
31
17
null
2022-07-06T20:07:14
2019-03-10T07:01:13
Java
UTF-8
Python
false
false
4,007
py
# -*- coding: utf-8 -*- import cv2 import numpy as np from matplotlib import pyplot as plt import math def rotate_about_center2(src, radian, scale=1.): #入参:弧度 w = src.shape[1] h = src.shape[0] angle = radian * 180 / np.pi # now calculate new image width and height nw = (abs(np.sin(radian)*h) + abs(np.cos(radian)*w))*scale nh = (abs(np.cos(radian)*h) + abs(np.sin(radian)*w))*scale # ask OpenCV for the rotation matrix rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale) # calculate the move from the old center to the new center combined # with the rotation rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0])) # the move only affects the translation, so update the translation # part of the transform rot_mat[0,2] += rot_move[0] rot_mat[1,2] += rot_move[1] return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) def get_group(arr): #按照4个弧度区间分组,返回不为空的分组数据 radian_45 = np.pi/4 radian_90 = np.pi/2 radian_135 = radian_45 * 3 radian_180 = np.pi ret_arr = [[],[],[],[]] for i in range(len(arr)): if arr[i] < radian_45: ret_arr[0].append(arr[i]) elif arr[i] < radian_90: ret_arr[1].append(arr[i]) elif arr[i] < radian_135: ret_arr[2].append(arr[i]) else: ret_arr[3].append(arr[i]) while [] in ret_arr: ret_arr.remove([]) #print ret_arr return ret_arr def get_min_var_avg(arr): #按照不同弧度区间分组,返回方差最小的一个分组的弧度平均值 group_arr = get_group(arr) print(group_arr) cv2.waitKey(0) var_arr = [] if len(group_arr) <= 1: var_arr.append(np.var(group_arr[0])) print(var_arr) cv2.waitKey(0) else: for i in range(len(group_arr)): var_arr.append(np.var(group_arr[i])) print(var_arr) min_var = 10000 min_i = 0 for i in range(len(var_arr)): if var_arr[i] < min_var: min_var = var_arr[i] min_i = i #print min_var, i avg = np.mean(group_arr[min_i]) return avg def get_rotate_radian(radian, reverse = False): #旋转弧度转换 radian_45 = np.pi/4 radian_90 = np.pi/2 radian_135 = radian_45 * 3 radian_180 = np.pi ret_radian = 0 if radian < radian_45: ret_radian = radian elif radian < radian_90: ret_radian = radian - radian_90 elif radian < radian_135: ret_radian = radian - radian_90 else: ret_radian = radian - radian_180 if reverse: ret_radian += radian_90 print(ret_radian) return ret_radian def rotate(): image = cv2.imread("test3.jpg", 0) print(image.shape) #高斯模糊 blur = cv2.GaussianBlur(image,(7,7),0)#自己调整,经验数据 cv2.imshow('image',blur) cv2.waitKey(0) #Canny边缘检测 canny = cv2.Canny(blur, 20, 150, 3) cv2.imshow("canny",canny) lines = cv2.HoughLines(canny, 1, np.pi/180, 200)#自己调整,经验数据 #求平均弧度 l = len(lines[0]) print(l) theta_arr = [lines[0][i][1] for i in range(l)] print(theta_arr) cv2.waitKey(0) rotate_theta = get_min_var_avg(theta_arr) print(rotate_theta) #print lines '''for line in lines[0]: rho = line[0] theta = line[1] a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho cv2.line(image, (int(x0 - 1000*b), int(y0 + 1000*a)), (int(x0 + 1000*b), int(y0 - 1000*a)), (0,255,0), 2) #cv2.imshow('image',image) #cv2.waitKey(0)''' img2 = rotate_about_center2(image, get_rotate_radian(rotate_theta, image.shape[0] > image.shape[1])) # hight > width plt.imshow(img2) plt.show() if __name__ == '__main__': rotate()
[ "l" ]
l
f879c61a6efd8aa975d90fa1e48070580dd1f2ae
8081310a546b0bd93abebbac5066c81b21c38482
/utils/helper.py
6aaa4e42e5327833afeea950df2eb77bfb12884c
[]
no_license
Xiang-Deng-DL/GFKD
dd9130169a59216aed63e9fc22baabf758f15add
e68e4d6777af526f84ef1efab0a261cb8f5ac968
refs/heads/main
2023-07-06T18:56:45.224307
2021-08-13T17:37:55
2021-08-13T17:37:55
366,174,979
24
2
null
null
null
null
UTF-8
Python
false
false
9,505
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 13 01:33:09 2020 @author: xiangdeng """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import torch import copy from model.GIN import GIN_dict from model.GCN import GCN_dict from Temp.dataset import GINDataset from utils.GIN.full_loader import GraphFullDataLoader from Temp.stru_dataset import STRDataset from utils.GIN.data_loader import GraphDataLoader, collate import os def adjust_learning_rate(epoch, learning_rate, optimizer, model): """Sets the learning rate to the initial LR decayed by decay rate every steep step""" if model=='gin': step = int(epoch/700) new_lr = learning_rate * (0.1 ** step) for param_group in optimizer.param_groups: param_group['lr'] = new_lr elif model=='gcn': step = int(epoch/700) new_lr = learning_rate * (0.1 ** step) for param_group in optimizer.param_groups: param_group['lr'] = new_lr def nernulli_sample(params): strus = [] for parm in params: pro = torch.sigmoid(parm) stru = (pro>=0.5).type(torch.int).cuda() #or torch.bernoulli(pro) strus +=[stru] return strus def norm_loss(n, params, feature_paras, targets, criterion, self_loop, degree_as_label, net, loss_r_feature_layers, bn_reg_scale, batch_size, gpu, onehot, onehot_cof): strus = nernulli_sample(params) if onehot: graphfeatures = [] for fp in feature_paras: fea = torch.softmax(fp,1) graphfeatures += [fea] else: graphfeatures = feature_paras dataset = STRDataset(strus, graphfeatures, targets, self_loop, degree_as_label) train_loader = GraphFullDataLoader(dataset, batch_size=batch_size, device=gpu).train_loader() for graphs, labels in train_loader: labels = labels.cuda() features = graphs.ndata['attr'].cuda() outputs = net(graphs, features) loss1 = criterion(outputs, labels) loss_distr = sum([mod.r_feature for mod in loss_r_feature_layers]) loss = loss1 + bn_reg_scale*loss_distr #print('start sample second') for i in range(n-1): strus = nernulli_sample(params) dataset = STRDataset(strus, graphfeatures, targets, self_loop, degree_as_label) train_loader = GraphFullDataLoader(dataset, batch_size=batch_size, device=gpu).train_loader() for graphs, labels in train_loader: labels = labels.cuda() features = graphs.ndata['attr'].cuda() outputs = net(graphs, features) loss1 = criterion(outputs, labels) loss_distr = sum([mod.r_feature for mod in loss_r_feature_layers]) curloss = loss1+bn_reg_scale*loss_distr loss+=curloss loss = loss/n if onehot: allfeatures = torch.cat(graphfeatures, dim=0) b = allfeatures * torch.log(allfeatures) h = -1.0 * b.sum()/len(allfeatures) loss = loss + onehot_cof*h return loss, strus def generate_b(param): num=len(param) first =[] second=[] noise=[] for i in range(num): temparam=param[i] noise_shape=temparam.shape u_noise = torch.rand(size=noise_shape).cuda() P1 = torch.sigmoid(-temparam) E1 = (u_noise>P1).type(torch.int).cuda() P2 = 1 - P1 E2 = (u_noise<P2).type(torch.int).cuda() first+=[E1] second+=[E2] noise+=[u_noise] return first, second, noise def bernulli_fastgrad(params, feature_paras, targets, criterion_stru, self_loop, degree_as_label, net, batch_size, gpu, onehot, loss_r_feature_layers, bn_reg_scale): first, second, noise = generate_b(params) if onehot: graphfeatures = [] for fp in feature_paras: fea = torch.softmax(fp,1) graphfeatures += [fea] else: graphfeatures = feature_paras grads = [] dataset1 = STRDataset(first, graphfeatures, targets, self_loop, degree_as_label) train_loader1 = GraphFullDataLoader(dataset1, batch_size=batch_size, device=gpu).train_loader() for graphs1, labels1 in train_loader1: labels1 = labels1.cuda() features1 = graphs1.ndata['attr'].cuda() outputs1 = net(graphs1, features1) loss_ce1 = criterion_stru(outputs1, labels1) loss_distr1 = sum([mod.r_feature for mod in loss_r_feature_layers])*bn_reg_scale dataset2 = STRDataset(second, graphfeatures, targets, self_loop, degree_as_label) train_loader2 = GraphFullDataLoader(dataset2, batch_size=batch_size, device=gpu).train_loader() for graphs2, labels2 in train_loader2: labels2 = labels2.cuda() features2 = graphs2.ndata['attr'].cuda() outputs2 = net(graphs2, features2) loss_ce2 = criterion_stru(outputs2, labels2) loss_distr2 = sum([mod.r_feature for mod in loss_r_feature_layers])*bn_reg_scale for i in range( len(noise) ): grad = (loss_ce1[i]-loss_ce2[i] + loss_distr1-loss_distr2 )*(noise[i] - 0.5) grads+=[grad] return grads def task_data(args): # step 0: setting for gpu if args.gpu >= 0: torch.cuda.set_device(args.gpu) # step 1: prepare dataset dataset = GINDataset(args.dataset, args.self_loop, args.degree_as_label) print(dataset.dim_nfeats) # step 2: prepare data_loader _, valid_loader = GraphDataLoader( dataset, batch_size=32, device=args.gpu, collate_fn=collate, seed=args.dataseed, shuffle=True, split_name=args.split_name).train_valid_loader() return dataset, valid_loader def task_model(args, dataset): # step 1: prepare model assert args.tmodel in ['GIN', 'GCN'] assert args.smodel in ['GIN', 'GCN'] if args.tmodel == 'GIN': modelt = GIN_dict[args.modelt](dataset) elif args.tmodel == 'GCN': modelt = GCN_dict[args.modelt](dataset) else: raise('Not supporting such model!') if args.smodel == 'GIN': models = GIN_dict[args.models](dataset) elif args.smodel == 'GCN': models = GCN_dict[args.models](dataset) else: raise('Not supporting such model!') modelt = modelt.cuda() models = models.cuda() return modelt, models def evaluate(model, dataloader, loss_fcn): model.eval() total = 0 total_loss = 0 total_correct = 0 with torch.no_grad(): for data in dataloader: graphs, labels = data feat = graphs.ndata['attr'].cuda() labels = labels.cuda() total += len(labels) outputs = model(graphs, feat) _, predicted = torch.max(outputs.data, 1) total_correct += (predicted == labels.data).sum().item() loss = loss_fcn(outputs, labels) total_loss += loss * len(labels) loss, acc = 1.0 * total_loss / total, 1.0 * total_correct / total return loss, acc def generate_graphs(sturectures, features, targets, path, daseed, trial, modelname, bat_num, total_num): graph_num = len(sturectures) filep = path+modelname+'fake_mutag'+ str(daseed)+'_'+str(trial)+ '.txt' if bat_num ==0: open(filep, 'w').close() with open(filep,'a') as f: if bat_num==0: tnum = str(total_num) f.write(tnum) f.write('\n') for i in range(graph_num): # node num and label feas = features[i] feas = torch.argmax(feas, 1) feas = feas.to('cpu').numpy() stru = sturectures[i] node_number, label = stru.shape[0], targets[i] label = str(label) content = str(node_number)+' '+label #content = content.replace('/n', ' ') f.write(content) f.write('\n') # for j in range(node_number): cur_row = stru[j] neig = ((cur_row == 1).nonzero()) neig = neig[neig!=j] num = len(neig) neig = neig.to('cpu').numpy() '''if num>7: neig = list(neig) num = 7 neig = np.array(random.sample(neig, 7))''' if num>0: neig=str(neig)[1:-1] else: neig = str(neig) #node_label = random.sample(range(0, 7), 1)[0] node_label = feas[j] node_inf = str(node_label)+' '+str(num)+' '+neig node_inf = node_inf.replace('\n', ' ').replace('\r', ' ') f.write(node_inf) f.write('\n') def create_folder(directory): # from https://stackoverflow.com/a/273227 if not os.path.exists(directory): os.makedirs(directory)
[ "noreply@github.com" ]
Xiang-Deng-DL.noreply@github.com
0660e025dd554b5703ef032f89a0902e86d1a771
7dad4550554888a865334df8023970378e17ae56
/Longitud.py
e1fbc88390d8150834b146b0e08cdf5e05066f06
[]
no_license
JRLV14/Pensamiento_Computacional
8ba79875bfed8d67e76e3d24847c55d61f47e149
e2af455f1f7ae8922c414617c3b75ada40c7bc4f
refs/heads/master
2023-06-09T22:52:54.986837
2021-07-02T17:43:09
2021-07-02T17:43:09
381,734,397
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
def run(): Nombre = input("Escribe tu nombre: ") Nombre = Nombre.replace (" ", "") letras = int(len (Nombre)) print ("Hola " + Nombre + " Tu nombre tiene " + str(letras) + " letras") if __name__ == '__main__': run()
[ "jrlv4070@gmail.com" ]
jrlv4070@gmail.com
0085fd62735222af905666b50be03358a0c3f7ec
1b52887970b2ed95e73b950862a050b58fa7269d
/network/core_net.py
c17213c039d4648e74e04ed41b5518b5566d0c86
[]
no_license
FreescaleFlyaway/lizard
1516ff009f08a742ad835134f4278202a9714355
3db9d49cb45ff13f295f77fa592467cf793611c9
refs/heads/master
2020-05-19T10:12:13.315447
2018-03-26T08:36:43
2018-03-26T08:36:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,906
py
# $File: core_net.py # $Author: Harvey Chang import tensorflow as tf import numpy as np def actor_net(obs_ph, act_dim, suppress_ratio=1.0): with tf.variable_scope('actor'): obs_dim = obs_ph.shape.as_list()[-1] # the last dim of shape hid1_size = obs_dim * 10 hid3_size = act_dim * 10 hid2_size = int(np.sqrt(hid1_size * hid3_size)) # hidden net: out = tf.layers.dense(obs_ph, hid1_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=suppress_ratio*np.sqrt(1/obs_dim)), name="h1") out = tf.layers.dense(out, hid2_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=suppress_ratio*np.sqrt(1/hid1_size)), name="h2") out = tf.layers.dense(out, hid3_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=suppress_ratio*np.sqrt(1/hid2_size)), name="h3") means = tf.layers.dense(out, act_dim, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=suppress_ratio*np.sqrt(1 / hid3_size)), name='means') # variance: log_vars = tf.get_variable('logvars', [act_dim], tf.float32, tf.random_normal_initializer(mean=-2, stddev=1.0/act_dim)) sigma_init = tf.variables_initializer([log_vars], 'sigma_initializer') sigma = tf.exp(log_vars) return means, sigma, sigma_init def critic_net(obs_ph, suppress_ratio=1.0): with tf.variable_scope('critic'): obs_dim = obs_ph.shape.as_list()[-1] hid1_size = obs_dim * 10 hid3_size = 10 hid2_size = int(np.sqrt(hid1_size * hid3_size)) out = tf.layers.dense(obs_ph, hid1_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=suppress_ratio * np.sqrt(1 / obs_dim)), name="h1") out = tf.layers.dense(out, hid2_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=suppress_ratio * np.sqrt(1 / hid1_size)), name="h2") out = tf.layers.dense(out, hid3_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=suppress_ratio * np.sqrt(1 / hid2_size)), name="h3") out = tf.layers.dense(out, 1, kernel_initializer=tf.random_normal_initializer( stddev=suppress_ratio * np.sqrt(1 / hid3_size)), name='output') out = tf.squeeze(out) return out def activate_net(obs_ph): with tf.variable_scope('activate'): obs_dim = obs_ph.shape.as_list()[-1] hid1_size = obs_dim * 10 hid3_size = 10 hid2_size = int(np.sqrt(hid1_size * hid3_size)) out = tf.layers.dense(obs_ph, hid1_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=np.sqrt(1 / obs_dim)), name="h1") out = tf.layers.dense(out, hid2_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=np.sqrt(1 / hid1_size)), name="h2") out = tf.layers.dense(out, hid3_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=np.sqrt(1 / hid2_size)), name="h3") out = tf.layers.dense(out, 1, kernel_initializer=tf.random_normal_initializer( stddev=np.sqrt(1 / hid3_size)), name='output') out = tf.squeeze(out) return out
[ "zhengwxthu@163.com" ]
zhengwxthu@163.com
14a4fe4b25d073188b3eb9b8c1910bf1d861c999
97e06c68fe4ddb3a93ab665b6c8ae3d835eb484b
/catch/baidubaike_catch_data.py
64196fb01683723e6f1448a6e0a58b0462a3d1d7
[]
no_license
baby-H/MachineStudy
2b4545ff9af00f9121210fc94469db1f60ad259a
4bfb3f9cc13ebbfbf6652d94697d87fd12b47179
refs/heads/master
2020-04-28T03:25:04.244351
2019-05-25T07:44:05
2019-05-25T07:44:05
174,936,531
0
0
null
null
null
null
UTF-8
Python
false
false
1,519
py
# -*- coding: utf-8 -*- # Author: Hu Ying Jie ( huyingjie2123@163.com ) from bs4 import BeautifulSoup import urllib from urllib import request import re import os def get_html(url): return urllib.request.urlopen(url, timeout=20).read().decode('utf-8') temp_str = '' n = 0 f = open(r'test.txt', 'r', encoding='utf8') fp = open(r'word_0_out.txt', 'w+', encoding='utf8') for line in f: if len(temp_str) > 400000: fp.close() path = os.path.join('word_' + str(++n) + '_out.txt') fp = open(path, 'w+', encoding='utf8') fp.write(line) line = line[:-1] print(line) try: url0 = "https://baike.baidu.com/item/" url = url0 + urllib.parse.quote(str(line)) html = get_html(url) soup = BeautifulSoup(html, 'html.parser') if str(soup.title) == '<title>百度百科——全球最大中文百科全书</title>': print('404') continue for text in soup.find_all('div', class_="para"): for div_tag in text.find_all('div', class_="description"): div_tag.decompose() if text.span: text.span.decompose() new_str = "".join(text.get_text().split()) new_str = re.sub(r'\[[\d]*\]', '', new_str) new_str = re.sub(r'\[[\d]*-[\d]\]', '', new_str) temp_str = temp_str + new_str fp.write(new_str) print() fp.write(u"\n") except: print('error') continue fp.close() f.close()
[ "huyj@tongc-soft.com" ]
huyj@tongc-soft.com
e69735542275999d2049a87b2ac118f4185c1903
5abdea0be9021f13909c38b09a68bde2d153b210
/src/imbalance_strategies.py
da7a33632423a1ac5fad4d93f683776a55ae6493
[]
no_license
NWPU-IST/hbrPredictor
cdcccf0f900d6135f8bab355a71f9b8bc2f2c981
a67ca29f7191f816e8bc388449059984e1d86e81
refs/heads/master
2023-03-19T04:50:15.458017
2021-03-09T15:15:44
2021-03-09T15:15:44
326,311,570
9
1
null
null
null
null
UTF-8
Python
false
false
6,948
py
# -*- coding: utf-8 -*- __author__ = 'Junzheng Chen' import random import numpy as np from sklearn.neighbors import NearestNeighbors from imblearn.over_sampling import SMOTE from imblearn.over_sampling import SMOTENC from imblearn.over_sampling import ADASYN from imblearn.over_sampling import BorderlineSMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.under_sampling import NearMiss from imblearn.under_sampling import EditedNearestNeighbours from imblearn.under_sampling import CondensedNearestNeighbour from imblearn.combine import SMOTEENN from imblearn.combine import SMOTETomek class Smote: def __init__(self, samples, N=10, k=5): self.n_samples, self.n_attrs = samples.shape self.N = N self.k = k self.samples = samples self.newindex = 0 # self.synthetic=np.zeros((self.n_samples*N,self.n_attrs)) def over_sampling(self): N = self.N print(self.n_attrs) self.synthetic = np.zeros((self.n_samples * N, self.n_attrs)) neighbors = NearestNeighbors(n_neighbors=self.k).fit(self.samples) print('neighbors', neighbors) for i in range(len(self.samples)): nnarray = neighbors.kneighbors(self.samples[i].reshape(1, -1), return_distance=False)[0] self._populate(N, i, nnarray) return self.synthetic # for each minority class samples,choose N of the k nearest neighbors and generate N synthetic samples. def _populate(self, N, i, nnarray): for j in range(N): nn = random.randint(0, self.k - 1) dif = self.samples[nnarray[nn]] - self.samples[i] gap = random.random() self.synthetic[self.newindex] = self.samples[i] + gap * dif self.newindex += 1 def get_smote_result(data_list, label, N): length = len(data_list) postive_data = [] for i in range(0, length): if label[i] == 1: postive_data.append(data_list[i]) data_array = np.array(postive_data) smoke = Smote(data_array, N, 5) return smoke.over_sampling() # Combination of over-and under-sampling methods def get_cbs_smoteenn(data_list, label): smo = SMOTEENN(random_state=42) X_smo, y_smo = smo.fit_resample(data_list, label) return X_smo, y_smo def get_cbs_smotetomek(data_list, label): smo = SMOTETomek(random_state=42) X_smo, y_smo = smo.fit_resample(data_list, label) return X_smo, y_smo # Under sampling def get_uds_rdm(data_list, label): rdm = RandomUnderSampler() X_rdm, y_rdm = rdm.fit_resample(data_list, label) return X_rdm, y_rdm def get_uds_nm(data_list, label): nm = NearMiss() X_nm, y_nm = nm.fit_resample(data_list, label) return X_nm, y_nm def get_uds_enn(data_list, label): enn = EditedNearestNeighbours() X_res, y_res = enn.fit_resample(data_list, label) def get_uds_CNN(data_list, label): cnn = CondensedNearestNeighbour(random_state=42) X_res, y_res = cnn.fit_resample(data_list, label) # Over sampling def get_ovs_smote_standard(data_list, label): smo = SMOTE(random_state=42) X_smo, y_smo = smo.fit_sample(data_list, label) return X_smo, y_smo def get_ovs_adasyn(data_list, label): smo = ADASYN(random_state=42) X_smo, y_smo = smo.fit_resample(data_list, label) return X_smo, y_smo def get_ovs_smotenc(data_list, label): smo = SMOTENC(random_state=42, categorical_features=[18, 19]) X_smo, y_smo = smo.fit_resample(data_list, label) return X_smo, y_smo def get_ovs_BorderlineSMOTE(data_list, label): bd_smt = BorderlineSMOTE() X_smo, y_smo = bd_smt.fit_resample(data_list, label) return X_smo, y_smo def get_ovs_smote_borderline_1(clf, data, label, m, s, k=5): label_local = label[:] clf.fit(data, label_local) data_list = data.tolist() data_list = data_list[:] length = len(data_list) T = np.array(data_list) n_samples, n_attrs = T.shape # get p list P = [] for i in range(0, length): if label_local[i] == 1: P.append(i) n_samples = len(P) # calc m for all the positive sample neighbors = NearestNeighbors(n_neighbors=k).fit(T) synthetic = np.zeros((n_samples * m, n_attrs)) newindex = 0 for i in range(len(P)): nnarray = neighbors.kneighbors(T[P[i]].reshape(1, -1), return_distance=False)[0] for j in range(m): nn = random.randint(0, k - 1) dif = T[nnarray[nn]] - T[P[i]] gap = random.random() synthetic[newindex] = T[P[i]] + gap * dif newindex += 1 pred = [] danger = [] noise = [] for i in range(0, n_samples * m): pred.append(clf.predict(synthetic[i].reshape(1, -1))) for i in range(0, len(pred)): if i % 5 != 0: continue count = 0 for j in range(0, 5): if i + j >= len(pred) - 1: continue if pred[i + j] == 0: count += 1 if count == 5: noise.append(P[int(i / 5)]) elif count > 2: danger.append(P[int(i / 5)]) n_samples_danger = len(danger) # calc m for all the positive sample danger_list = [] for i in danger: danger_list.append(T[i]) if not danger_list: result = [] result.append(data_list) result.append(label) return result neighbors = NearestNeighbors(n_neighbors=k).fit(danger_list) synthetic_danger = np.zeros((n_samples_danger * s, n_attrs), dtype=float) newindex_danger = 0 for i in range(len(danger)): if 5 > len(danger): result = [] result.append(data_list) result.append(label) return result nnarray = neighbors.kneighbors(T[danger[i]].reshape(1, -1), return_distance=False)[0] for j in range(m): nn = random.randint(0, k - 1) dif = T[nnarray[nn]] - T[danger[i]] gap = random.random() synthetic_danger[newindex_danger] = T[danger[i]] + gap * dif newindex_danger += 1 synthetic_danger_list = synthetic_danger.tolist() noise.reverse() # 删除noise for i in range(0,len(noise)): del data_list[noise[i]] del label_local[noise[i]] # 添加正项 random_list = [] for i in range(0, len(synthetic_danger_list)): random_list.append(int(random.random() * len(data_list))) for i in range(0, len(random_list)): data_list.insert(random_list[i], synthetic_danger_list[i]) label_local.insert(random_list[i], 1) result = [] result.append(data_list) result.append(label_local) return result
[ "noreply@github.com" ]
NWPU-IST.noreply@github.com
342d4a56a9680e0518979d48af56e27109bc1403
56c89d49b0b5fd567783f056637a312d81b187bd
/lab 3/a5.py
10240b377d5d4806ada151f46c5f9b54e8e4067c
[]
no_license
vedeninvv/Algorithms
acdfb16721437a81d8b0c5abd5b5185abf45254d
8e4e0bbc9ebf872f44ebbe709b6045f453e42aee
refs/heads/master
2022-12-19T06:08:35.259425
2020-09-28T18:31:35
2020-09-28T18:31:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
fin = open("radixsort.in") fout = open("radixsort.out", "w") input = fin.readline().split() n = int(input[0]) m = int(input[1]) k = int(input[2]) strings = [] for line in fin: strings.append(line[0: len(line) - 1]) i = min(k, m) while i > 0: buf = [[] for j in range(57)] for j in range(n): buf[ord(strings[j][m - 1]) - 65].append(strings[j]) kol = 0 for j in range(57): for el in buf[j]: strings[kol] = el kol += 1 i -= 1 m -= 1 for i in strings: print(i, file=fout)
[ "vedeninvv@mail.ru" ]
vedeninvv@mail.ru
2bd8d6cbcaa1f087d3413725ed8af20316077c61
a20db420b58321756676ddf41a2833f0283c6f66
/src/Chrysalis.py
9b2b01b931d3063fbaa23bb87d37f3ec12972c9c
[]
no_license
CPSibo/Chrysalis
5a3194cfb0be8c24543ffb51dd52643afea9c2b1
a2cfaaf4aeb4ad7adb48f1229ba291a9af6dc263
refs/heads/master
2020-04-15T07:54:00.249188
2019-10-01T01:12:06
2019-10-01T01:12:06
164,506,527
0
0
null
null
null
null
UTF-8
Python
false
false
5,298
py
# region Imports import os import subprocess import pathlib import sys import argparse import json from dotenv import load_dotenv from Utilities.Arguments import args from Utilities.Logger import Logger from Subscription import Subscription from Repositories import REPOSITORIES from Destinations import DESTINATIONS # endregion class Chrysalis: """ The entry point for Chrysalis. Attributes: subscriptions (dict): Decoded subscription settings. """ # region Attributes subscriptions = [] # endregion # region Constructors def __init__(self): load_dotenv() self.load_subscriptions() # endregion # region Functions def load_subscriptions(self): """ Reads in subscriptions.json and decodes all the settings into Subscription objects. """ with open('src/subscriptions.json', 'r') as myfile: subscription_encoded=myfile.read() subscriptions_decoded = json.loads(subscription_encoded) self.subscriptions = [] for sub in subscriptions_decoded: self.subscriptions.append(Subscription(dict_config = sub)) def process_subscription(self, subscription: Subscription): """ Runs youtube-dl and the post-processing for the given subscription. Parameters: subscription (Subscription): The subscription to process. """ if not subscription.enabled: return Logger.log(r'Chrysalis', r'Processing "{}"...'.format(subscription.name)) self.setup_staging_directory(subscription) if subscription.logging and subscription.logging.path: pathlib.Path(subscription.logging.path).parent.mkdir(parents=True, exist_ok=True) command = self.construct_command(subscription) subprocess.run(command, shell=True) def setup_staging_directory(self, subscription: Subscription) -> str: """ Constructs and creates the staging directory for the given subscription. Parameters: subscription (Subscription): The subscription to process. Returns: str: The path to the staging directory. """ pathlib.Path(subscription.staging_directory).mkdir(parents=True, exist_ok=True) return subscription.staging_directory def construct_command(self, subscription: Subscription) -> str: """ Builds the youtube-dl command for the given subscription. Args: subscription (Subscription): The subscription to process. Returns: str: The youtube-dl command with all desired arguments. """ command = r'youtube-dl' # Add the youtube-dl config path. if subscription.youtubedl_config.config: config_path = os.path.join(os.getenv('youtubedl_config_directory'), subscription.youtubedl_config.config) command += r' --config-location "{}"'.format(config_path) # Add the metadata-from-title pattern. if subscription.youtubedl_config.metadata_format: command += r' --metadata-from-title "{}"'.format(subscription.youtubedl_config.metadata_format) # Add the output pattern. if subscription.youtubedl_config.output_format: output_format = subscription.staging_directory + '/staging_area/' + subscription.youtubedl_config.output_format command += r' -o "{}"'.format(output_format) # Add the path to the video ID archive. if subscription.youtubedl_config.archive: archive_path = os.path.join(subscription.staging_directory, subscription.youtubedl_config.archive) command += r' --download-archive "{}"'.format(archive_path) # Add any extra arguments this sub has. if subscription.youtubedl_config.extra_commands: command += " " + subscription.youtubedl_config.extra_commands # Add the subscription URL. command += r' "{}"'.format(subscription.url) # Construct the post-processing call back into # Chrysalis to be run after each successful download. if subscription.post_processing: command += ' --exec \'"{}" "{}" --postprocess {{}} --subscription "{}"\''.format( sys.executable, __file__, subscription.name ) # Construct the stdout redirect to the log file. if subscription.logging.path: command += r' {} "{}"'.format( '>>' if subscription.logging.append == True else '>', subscription.logging.path ) Logger.log(r'Chrysalis', r'Command to be run: [{}]'.format(command)) return command def postprocess(self, file: str, subscription: Subscription) -> str: """ Runs the post-processing for the given youtube-dl output file. Args: file (str): Absolute path to the youtube-dl output file. subscription (Subscription): The settings to process the file under. Returns: str: The absolute path to the folder where all the files were moved. """ from PostProcessor import PostProcessor Logger.log(r'Crysalis', r'Starting PostProcessor for {}'.format(file), 1) postprocessor = PostProcessor( file = file, settings = subscription ) postprocessor.run() Logger.tabs -= 1 def run(self) -> int: """ Entry point for the Chrysalis process. Returns: int: Status code. """ if args.postprocess is not None: subs = [item for item in self.subscriptions if item.name == args.subscription] subscription = subs[0] if subs else None if not subscription: return -1 self.postprocess(args.postprocess, subscription) else: for subscription in self.subscriptions: self.process_subscription(subscription) # endregion Chrysalis().run()
[ "cpsibo@gmail.com" ]
cpsibo@gmail.com
bb6e52fee441903389167e2b4292125b69cdb8b8
ce3964c7195de67e07818b08a43286f7ec9fec3e
/dl_poly/get_pvt.py
6fd5f7613ff6286470a47abe111c368b60d57ff7
[]
no_license
zhuligs/physics
82b601c856f12817c0cfedb17394b7b6ce6b843c
7cbac1be7904612fd65b66b34edef453aac77973
refs/heads/master
2021-05-28T07:39:19.822692
2013-06-05T04:53:08
2013-06-05T04:53:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,852
py
#!/usr/bin/env python # Try retrieving P,V,T, etc. from the STATIS file, may be easier than from OUTPUT... import os, sys, commands def readlines(FILE,n): '''Read n lines from FILE''' for i in range(n): FILE.readline() try: s = open('STATIS','r') header1 = s.readline() header2 = s.readline() c = open('CONTROL','r') lines = c.readlines() for line in lines: if len(line.split()) == 2: var, value = line.split() if var == 'steps': steps = int(value) elif var == 'stats': stats = int(value) c.close() except: print 'Could not open STATIS and CONTROL files successfully--stopping' sys.exit(0) # Total energy is row 1 value 1 # Temp is row 1, value 2 # Pres is row 6, value 2 # Vol is row 4, value 4 nblocks = int(steps)/int(stats) out = open('pvt.dat','w') out.write('# --Data extracted from STATIS file--\n') out.write('#tstep\tpres (GPa)\tvol (ang^3)\ttemp (K)\tetot (eV)\t\tpot (eV)\n') for i in range(nblocks): tstep, t, elements = s.readline().split() row1 = s.readline().split() Etot = str( float(row1[0]) * 1.036426865E-4 ) # convert unit to eV T = row1[1] s.readline() s.readline() V = s.readline().split()[3] s.readline() P = str( float(s.readline().split()[1]) * 0.016605402 ) # convert atm unit to GPa # Every line has 5 values, each line read is 5 elements gone leftover = int(elements) - 5*6 if leftover % 5 == 0: extra_lines = leftover/5 else: extra_lines = leftover/5 + 1 readlines(s,extra_lines) # Calculate Etot - 3*k_b*T k_b = 8.617343E-5 # Boltzmann's const in eV/K pot = str( float(Etot) - 3*k_b*float(T) ) out.write(tstep+'\t'+P+' \t'+V+'\t'+T+'\t'+Etot+'\t'+pot+'\n') s.close() out.close()
[ "boates@gmail.com" ]
boates@gmail.com
bc643726dc086d01106b5695c1317266b5900390
f269b417034e397139adf2802514165b0eb26f7c
/Python/food_choice_assay/food_choice.py
cea19764b5e3f648af452c4bde1d79a5a3d5567d
[]
no_license
saulmoore1/PhD_Project
2d333f7fdbd8b2b1932007e7cc6e05b3108ed325
a235bf8700e4b5a311fc1dfd79c474c5467e9c7a
refs/heads/master
2023-08-03T17:51:17.262188
2023-07-26T12:35:37
2023-07-26T12:35:37
158,314,469
1
2
null
null
null
null
UTF-8
Python
false
false
27,255
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ SCRIPT: FOOD CHOICE A script written to analyse the food choice assay videos and Tierpsy-generated feature summary data. It calculates, plots and saves results for worm food preference (for each video separately). @author: sm5911 @date: 21/03/2019 """ #%% Imports import os, time import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import patches as mpatches # Custom imports from time_series.time_series_helper import plot_timeseries_phenix from visualisation.plotting_helper import hexcolours, plot_pie from food_choice_assay.food_choice_helper import foodchoice, summarystats from _deprecated.find import change_path_phenix #%% Globals PROJECT_ROOT_DIR = '/Volumes/behavgenom$/Saul/FoodChoiceAssay/' # Project working directory DATA_DIR = PROJECT_ROOT_DIR.replace('Saul', 'Priota/Data') # Location of features files # Plot parameters fps = 25 # frames per second smooth_window = fps*60*2 # 2-minute moving average window for time-series plot smoothing OpticalDensity600 = 1.8 # E. coli average OD600 NEW = True # Conduct analysis on new videos only? #%% Preamble # Read metadata fullMetaData = pd.read_csv(os.path.join(PROJECT_ROOT_DIR, "fullmetadata.csv"), header=0, index_col=0) if NEW: fullMetaData = fullMetaData[fullMetaData['worm number']==10] n_files = len(fullMetaData['filename']) if NEW: print("%d NEW video file entries found in metadata." % n_files) else: print("%d video file entries found in metadata." % n_files) # Extract assay information pretreatments = list(np.unique(fullMetaData['Prefed_on'])) assaychoices = list(np.unique(fullMetaData['Food_Combination'])) treatments = list(np.unique([assay.split('/') for assay in assaychoices])) treatments.insert(len(treatments),"None") # treatments = [OP50, HB101, None] concentrations = list(np.unique(fullMetaData['Food_Conc'])) # Plot parameters colours = hexcolours(len(treatments)) # Create a dictionary of colours for each treatment (for plotting) colour_dict = {key: value for (key, value) in zip(treatments, colours)} #%% CALCULATE MEAN NUMBER OF WORMS ON/OFF FOOD IN EACH FRAME (FOR EACH VIDEO SEPARATELY) # - PROPORTION of total worms in each frame errorlog = 'ErrorLog_FoodChoice.txt' FAIL = [] tic = time.time() for i, maskedfilepath in enumerate(fullMetaData['filename']): toc = time.time() # Extract file information file_info = fullMetaData.iloc[i,:] date = file_info['date(YEARMODA)'] conc = file_info['Food_Conc'] assaychoice = file_info['Food_Combination'] prefed = file_info['Prefed_on'] print("\nProcessing file: %d/%d\n%s\nAssay: %s\nConc: %.3f\nPrefed: %s" % (i + 1,\ len(fullMetaData['filename']), maskedfilepath, assaychoice, conc, prefed)) try: # Specify file paths onfoodpath = change_path_phenix(maskedfilepath, returnpath='onfood') foodchoicepath = change_path_phenix(maskedfilepath, returnpath='foodchoice') # Read on/off food results onfood_df = pd.read_csv(onfoodpath, header=0, index_col=0) # Calculate mean + count number of worms on/off food in each frame # NB: Store proportions, along with total nworms, ie. mean (worms per frame) and later calculate mean (per frame across videos) choice_df = foodchoice(onfood_df, mean=True, tellme=True) # Save food choice results directory = os.path.dirname(foodchoicepath) if not os.path.exists(directory): os.makedirs(directory) choice_df.to_csv(foodchoicepath) print("Food choice results saved. \n(Time taken: %d seconds)\n" % (time.time() - toc)) except: FAIL.append(maskedfilepath) print("ERROR! Failed to calculate food preference in file:\n %s\n" % maskedfilepath) print("Complete!\n(Total time taken: %d seconds.)\n" % (time.time() - tic)) # If errors, save error log to file if FAIL: fid = open(os.path.join(PROJECT_ROOT_DIR, errorlog), 'w') print(FAIL, file=fid) fid.close() #%% FOOD CHOICE SUMMARY STATS + PIE/BOX PLOTS (FOR EACH VIDEO SEPARATELY) # - Calculate summary statistics for mean proportion worms feeding in each video # - Plot and save box plots + pie charts of mean proportion of worms on food # ============================================================================= # # NB: Cannot pre-allocate full results dataframe to store food choice mean # # proportion feeding per frame across all videos due to file size = 23GB # colnames = ['filename','worm_number','Food_Conc','Food_Combination','Prefed_on',\ # 'Acclim_time_s','frame_number','Food','Mean'] # results_df = pd.DataFrame(columns=colnames) # ============================================================================= tic = time.time() for i, maskedfilepath in enumerate(fullMetaData['filename']): # Extract file information file_info = fullMetaData.iloc[i,:] date = file_info['date(YEARMODA)'] conc = file_info['Food_Conc'] assaychoice = file_info['Food_Combination'] prefed = file_info['Prefed_on'] print("\nProcessing file: %d/%d\n%s\nAssay: %s\nConc: %.3f\nPrefed: %s" % (i + 1,\ len(fullMetaData['filename']), maskedfilepath, assaychoice, conc, prefed)) # Specify file paths foodchoicepath = change_path_phenix(maskedfilepath, returnpath='foodchoice') statspath = change_path_phenix(maskedfilepath, returnpath='summary') pieplotpath = change_path_phenix(maskedfilepath, returnpath='plots', figname='PiePlot.eps') boxplotpath = change_path_phenix(maskedfilepath, returnpath='plots', figname='BoxPlot.eps') try: # READ FOOD CHOICE RESULTS (csv) choice_df = pd.read_csv(foodchoicepath, header=0, index_col=0) # SUMMARY STATISTICS feeding_stats = summarystats(choice_df) # Save summary stats feeding_stats.to_csv(statspath) # Save to CSV # Define plot labels + colours colnames = list(choice_df.columns) labels = [lab.split('_')[0] for lab in colnames] colours = [colour_dict[treatment] for treatment in labels] # Specify seaborn colour palette RGBAcolours = sns.color_palette(colours) palette = {key: val for key, val in zip(colnames, RGBAcolours)} # sns.palplot(sns.color_palette(values)) # PIE CHARTS - mean proportion on food df_pie = feeding_stats.loc['mean'] df_pie.index = df_pie.index.get_level_values(0) df_pie = df_pie.loc[df_pie!=0] # Remove any empty rows plt.close("all") fig = plot_pie(df_pie, rm_empty=False, show=True, labels=df_pie.index,\ colors=colours, textprops={'fontsize': 15}, startangle=90,\ wedgeprops={'edgecolor': 'k', 'linewidth': 1,\ 'linestyle': 'solid', 'antialiased': True}) # Save pie charts directory = os.path.dirname(pieplotpath) if not os.path.exists(directory): os.makedirs(directory) plt.tight_layout() plt.savefig(pieplotpath, dpi=300) # Convert to long format choice_df['frame_number'] = choice_df.index choice_df_long = choice_df.melt(id_vars='frame_number', value_vars=choice_df.columns[:-1],\ var_name='Food', value_name='Mean') # BOX PLOTS (Seaborn) - Mean proportion of worms on each food plt.close("all") fig, ax = plt.subplots(figsize=(9,7)) ax = sns.boxplot(x='Food', y='Mean', hue='Food', data=choice_df_long, palette=palette, dodge=False) # NB: Could also produce violinplots, but why not swarmplots? Too many points? # ax = sns.violinplot(x='Food', y='Mean', hue='Food', data=choice_df_long, palette=palette, dodge=False) ax.set_ylim(-0.1,1.1) ax.set_xlim(-1,len(treatments)+0.25) ax.set_xlabel("Food",fontsize=20) ax.set_ylabel("Mean Proportion Feeding",fontsize=20) ax.xaxis.labelpad = 15; ax.yaxis.labelpad = 15 ax.tick_params(labelsize=13, pad=5) fig.tight_layout(rect=[0.02, 0.07, 0.95, 0.95]) plt.text(0.03, 0.93, "{0} worms".format(file_info['worm number']), transform=ax.transAxes, fontsize=20) plt.text(len(treatments)+0.25, -0.35, "Prefed on: {0}".format(prefed),\ horizontalalignment='right', fontsize=25) plt.legend(loc="upper right", borderaxespad=0.4, frameon=False, fontsize=15) plt.show(); plt.pause(0.0001) # Save box plots plt.tight_layout() plt.savefig(boxplotpath, format='eps', dpi=300) print("Plots saved.\n") # ============================================================================= # # Append file info # choice_df_long['filename'] = maskedfilepath # choice_df_long['worm_number'] = file_info['worm number'] # choice_df_long['Food_Conc'] = conc # choice_df_long['Food_Combination'] = assaychoice # choice_df_long['Prefed_on'] = prefed # choice_df_long['Acclim_time_s'] = file_info['Acclim_time_s'] # # # Append to full results dataframe # results_df = results_df.append(choice_df_long[colnames]) # ============================================================================= except: print("Error processing file:\n%s" % maskedfilepath) continue print("Done.\n(Time taken: %d seconds.)" % (time.time() - tic)) # ============================================================================= # size = sys.getsizeof(results_df) # # File size is too big! Not a good idea to save as full results file # ============================================================================= #%% Time-series plots of proportion feeding through time (FOR EACH VIDEO SEPARATELY) tic = time.time() for i, maskedfilepath in enumerate(fullMetaData['filename']): toc = time.time() # Extract file information file_info = fullMetaData.iloc[i,:] conc = file_info['Food_Conc'] assaychoice = file_info['Food_Combination'] prefed = file_info['Prefed_on'] print("\nProcessing file: %d/%d\n%s\nAssay: %s\nConc: %.3f\nPrefed: %s" % (i + 1,\ len(fullMetaData['filename']), maskedfilepath, assaychoice, conc, prefed)) # Specify file paths onfoodpath = change_path_phenix(maskedfilepath, returnpath='onfood') foodchoicepath = change_path_phenix(maskedfilepath, returnpath='foodchoice') plotpath = change_path_phenix(maskedfilepath, returnpath='plots', figname='FoodChoiceTS.png') # Path to save time series plots onfood_df = pd.read_csv(onfoodpath, header=0, index_col=0) # READ FOOD CHOICE RESULTS # df = pd.read_csv(foodchoicepath, header=0, index_col=0) df = foodchoice(onfood_df, mean=True, std=True, tellme=True) # Shift plot to include acclimation time prior to assay recording (ie. t(0) = pick time) acclim = int(file_info['Acclim_time_s'] * fps) df.index = df.index + acclim # Caclculate mean + standard deviation per frame across videos colnames = list(df.columns.levels[0]) # Remove erroneous frames where on/off food does not sum to 1 frames_to_rm = np.where(np.sum([df[x]['mean'] for x in colnames], axis=0).round(decimals=5)!=1)[0] assert frames_to_rm.size == 0,\ "{:d} frames found in which feeding proportions do not sum to 1.".format(len(frames_to_rm)) # PLOT TIME-SERIES ON/OFF FOOD (count) plt.close("all") fig = plot_timeseries_phenix(df=df, colour_dict=colour_dict, window=smooth_window,\ acclimtime=acclim, annotate=True, legend=True, ls='-') # SAVE TIME SERIES PLOTS directory = os.path.dirname(plotpath) if not os.path.exists(directory): os.makedirs(directory) plt.tight_layout() plt.savefig(plotpath, format='png', dpi=300) print("Time series plots saved.\n(Time taken: %d seconds.)\n" % (time.time() - toc)) print("Complete!\n(Total time taken: %d seconds.)\n" % (time.time() - tic)) #%% FIGURE 1 - Box plots of food choice (Grouped by treatment combination: prefed on (HB101/OP50), food combination (control/choice), and concentration (0.125,0.25,0.5,1)) # - Subset results by grouping files by assay type (control/choice experiment) and by food concentration tic = time.time() # Group files in metadata by prefed, assaychoice and concentration treatment combinations groupedMetaData = fullMetaData.groupby(['Prefed_on','Food_Combination','Food_Conc']) # For each prefood-assaychoice-concentration treatment combination for p, prefood in enumerate(pretreatments): # Initialise plot for prefed group (12 subplots - 3 food combinations, 4 concentrations) plt.close("all") fig, axs = plt.subplots(nrows=len(assaychoices), ncols=len(concentrations),\ figsize=(14,10), sharey=True) for a, assay in enumerate(assaychoices): for c, conc in enumerate(concentrations): try: # Get prefood-assaychoice-concentration group df_conc = groupedMetaData.get_group((prefood,assay,conc)) # Get group info info = df_conc.iloc[0,:] colnames = info['Food_Combination'].split('/') if colnames[0] == colnames[1]: colnames = ["{}_{}".format(food, f + 1) for f, food in enumerate(colnames)] colnames.insert(len(colnames), "None") # Pre-allocate dataframe for boxplots df = pd.DataFrame(index=range(df_conc.shape[0]), columns=colnames) # If single file, read full food choice data (mean proportion feeding) if df_conc.shape[0] == 1: foodchoicepath = change_path_phenix(info['filename'], returnpath='foodchoice') df = pd.read_csv(foodchoicepath, header=0, index_col=0) # Read summary stats for mean proportion feeding in each video elif df_conc.shape[0] > 1: for i in range(df_conc.shape[0]): info = df_conc.iloc[i] # Read in food choice summary stats (mean proportion feeding) statspath = change_path_phenix(info['filename'], returnpath='summary') df.iloc[i] = pd.read_csv(statspath, header=0, index_col=0).loc['mean'] # ============================================================================= # # Read food choice data for each file and compile into df for plotting # df = pd.DataFrame() # for row in range(df_conc.shape[0]): # info = df_conc.iloc[row,:] # foodchoicepath = changepath(info['filename'], returnpath='foodchoice') # tmp_df = pd.read_csv(foodchoicepath, header=0, index_col=0) # if df.empty: # df = tmp_df # else: # df = df.append(tmp_df, sort=True) # ============================================================================= # Plot labels/colours labels = [lab.split('_')[0] for lab in colnames] colours = [colour_dict[treatment] for treatment in labels] # Seaborn colour palette RGBAcolours = sns.color_palette(colours) palette = {key: val for key, val in zip(colnames, RGBAcolours)} # sns.palplot(sns.color_palette(values)) # Convert to long format df['videoID'] = df.index df_long = df.melt(id_vars='videoID', value_vars=df.columns[:-1],\ var_name='Food', value_name='Mean') df_long['Mean'] = df_long['Mean'].astype(float) # ============================================================================= # # Convert to long format # df['frame_number'] = df.index # df_long = df.melt(id_vars='frame_number', value_vars=df.columns[:-1],\ # var_name='Food', value_name='Mean') # ============================================================================= # Plot Seaborn boxplots sns.boxplot(data=df_long, x='Food', y='Mean', hue='Food', ax=axs[a,c], palette=palette, dodge=False) axs[a,c].get_legend().set_visible(False) axs[a,c].set_ylabel('') axs[a,c].set_xlabel('') xlabs = axs[a,c].get_xticklabels() xlabs = [lab.get_text().split('_')[0] for lab in xlabs[:]] axs[a,c].set_xticklabels(labels=xlabs, fontsize=12) axs[a,c].set_ylim(-0.05, 1.05) axs[a,c].set_xlim(-0.75,len(np.unique(df_long['Food']))-0.25) axs[a,c].text(0.81, 0.9, ("n={0}".format(df_conc.shape[0])),\ transform=axs[a,c].transAxes, fontsize=12) if a == 0: axs[a,c].text(0.5, 1.1, "$OD_{{{}}}={}$".format(600, conc*OpticalDensity600),\ horizontalalignment='center', fontsize=18,\ transform=axs[a,c].transAxes) if c == 0: axs[a,c].set_ylabel("{0}".format(assay), labelpad=15, fontsize=18) if a == 1: axs[a,c].text(-2.75, 0.5, "Mean Proportion Feeding",\ fontsize=25, rotation=90, horizontalalignment='center',\ verticalalignment='center') except Exception as e: print("No videos found for concentration: %s\n(Assay: %s, Prefed on: %s)\n" % (e, assay, prefood)) axs[a,c].axis('off') axs[a,c].text(0.81, 0.9, "n=0", fontsize=12, transform=axs[a,c].transAxes) if a == 0: axs[a,c].text(0.5, 1.1, "$OD_{{{}}}={}$".format(600, conc*OpticalDensity600),\ horizontalalignment='center', fontsize=18,\ transform=axs[a,c].transAxes) if c == 0: axs[a,c].set_ylabel("{0}".format(assay), labelpad=15, fontsize=18) if a == 1: axs[a,c].text(-3.2, 0.5, "Mean Proportion Feeding",\ fontsize=25, rotation=90, horizontalalignment='center',\ verticalalignment='center') # plt.text(3, -0.7, "Prefed on: {0}".format(prefood), horizontalalignment='center', fontsize=25) patches = [] for i, (key, value) in enumerate(colour_dict.items()): patch = mpatches.Patch(color=value, label=key) patches.append(patch) fig.legend(handles=patches, labels=list(colour_dict.keys()), loc="upper right", borderaxespad=0.4,\ frameon=False, fontsize=15) fig.tight_layout(rect=[0.07, 0.02, 0.88, 0.95]) fig.subplots_adjust(hspace=0.2, wspace=0.1) plt.show(); plt.pause(2) # Save figure 1 fig_name = "FoodChoiceBox_prefed" + prefood + ".eps" figure_out = os.path.join(PROJECT_ROOT_DIR, "Results", "Plots", fig_name) plt.savefig(figure_out, format='eps', dpi=300) print("Complete!\n(Time taken: %d seconds)" % (time.time() - tic)) #%% FIGURE 2 # - OPTIONAL: Plot as fraction of a constant total? #%% FIGURE 3 - Time series plots of food choice by concentration and by assay type (GROUPED BY ASSAY/CONC) # Plot time series plots - proportion on-food through time tic = time.time() # Group files in metadata by prefed, assaychoice and concentration treatment combinations groupedMetaData = fullMetaData.groupby(['Prefed_on','Food_Combination','Food_Conc']) # For each prefood-assaychoice-concentration treatment combination for p, prefood in enumerate(pretreatments): # Initialise plot for prefed group plt.close("all") xmax = 180000 fig, axs = plt.subplots(nrows=len(assaychoices), ncols=len(concentrations),\ figsize=(16,7), sharex=True) # 12 subplots (3 food combinations, 4 food concentrations) for a, assay in enumerate(assaychoices): for c, conc in enumerate(concentrations): try: # Get prefood-assaychoice-concentration group df_conc = groupedMetaData.get_group((prefood,assay,conc)) # Get acclim time info = df_conc.iloc[0,:] acclim = int(info['Acclim_time_s'] * fps) # If single file, read food choice data (mean proportion feeding) if df_conc.shape[0] == 1: foodchoicepath = change_path_phenix(info['filename'], returnpath='foodchoice') df = pd.read_csv(foodchoicepath, header=0, index_col=0) # Shift df indices to account for acclimation (t0 = pick time) acclim = int(info['Acclim_time_s'] * fps) df.index = df.index + acclim # If multiple files, read food choice data for each file and compile into df for plotting elif df_conc.shape[0] > 1: df = pd.DataFrame() for row in range(df_conc.shape[0]): info = df_conc.iloc[row,:] foodchoicepath = change_path_phenix(info['filename'], returnpath='foodchoice') tmp_df = pd.read_csv(foodchoicepath, header=0, index_col=0) # Shift df indices to account for acclimation (t0 = pick time) acclim = int(info['Acclim_time_s'] * fps) tmp_df.index = tmp_df.index + acclim if df.empty: df = tmp_df else: df = df.append(tmp_df, sort=True) # Caclculate mean + standard deviation per frame across videos colnames = list(df.columns) df['frame'] = df.index fundict = {x:['mean','std'] for x in colnames} df_plot = df.groupby('frame').agg(fundict) # Remove erroneous frames where on/off food does not sum to 1 frames_to_rm = np.where(np.sum([df_plot[x]['mean'] for x in colnames], axis=0).round(decimals=5)!=1)[0] assert frames_to_rm.size == 0,\ "{:d} frames found in which feeding proportions do not sum to 1.".format(len(frames_to_rm)) # Time series plots plot_timeseries_phenix(df_plot, colour_dict, window=smooth_window, legend=False, annotate=False, acclimtime=acclim, ax=axs[a,c]) # Add number of replicates (videos) for each treatment combination axs[a,c].text(0.79, 0.9, ("n={0}".format(df_conc.shape[0])),\ transform=axs[a,c].transAxes, fontsize=13) # Set axis limits if max(df_plot.index) > xmax: xmax = max(df_plot.index) axs[a,c].set_xlim(0, np.round(xmax,-5)) axs[a,c].set_ylim(-0.05, 1.05) # Set column labels on first row if a == 0: axs[a,c].text(0.5, 1.15, "$OD_{{{}}}={}$".format(600, conc*OpticalDensity600),\ horizontalalignment='center', fontsize=18,\ transform=axs[a,c].transAxes) # Set main y axis label + ticks along first column of plots if c == 0: yticks = list(np.round(np.linspace(0,1,num=6,endpoint=True),decimals=1)) axs[a,c].set_yticks(yticks) axs[a,c].set_yticklabels(yticks) axs[a,c].set_ylabel("{0}".format(assay), labelpad=15, fontsize=15) if a == 1: axs[a,c].text(-np.round(xmax,-5)/2, 0.5, "Mean Proportion Feeding",\ fontsize=22, rotation=90, horizontalalignment='center',\ verticalalignment='center') else: axs[a,c].set_yticklabels([]) # Set main x axis label + ticks along final row of plots if a == len(assaychoices) - 1: xticklabels = ["0", "30", "60", "90", "120"] xticks = [int(int(lab)*fps*60) for lab in xticklabels] axs[a,c].set_xticks(xticks) axs[a,c].set_xticklabels(xticklabels) if c == 1: axs[a,c].set_xlabel("Time (minutes)", labelpad=25, fontsize=20, horizontalalignment='left') else: axs[a,c].set_xticklabels([]) except Exception as e: # Empty plots print("No videos found for concentration: %s\n(Assay: %s, Prefed on: %s)\n" % (e, assay, prefood)) # Add number of replicates (videos) for each treatment combination axs[a,c].text(0.79, 0.9, "n=0", fontsize=13, transform=axs[a,c].transAxes) # Set column labels on first row if a == 0: axs[a,c].text(0.5, 1.15, ("conc={0}".format(conc)),\ horizontalalignment='center', fontsize=18,\ transform=axs[a,c].transAxes) axs[a,c].axis('off') # Add 'prefed on' to multiplot # plt.text(max(df_plot.index), -0.7, "Prefed on: {0}".format(prefood), horizontalalignment='right', fontsize=30) # Add legend patches = [] for key, value in colour_dict.items(): patch = mpatches.Patch(color=value, label=key) patches.append(patch) fig.legend(handles=patches, labels=treatments, loc="upper right", borderaxespad=0.4,\ frameon=False, fontsize=15) # Tight-layout + adjustments fig.tight_layout(rect=[0.07, 0.02, 0.9, 0.93]) fig.subplots_adjust(hspace=0.1, wspace=0.1) plt.show(); plt.pause(1) # Save figure 3 fig_name = "FoodChoiceTS_prefed" + prefood + ".png" figure_out = os.path.join(PROJECT_ROOT_DIR, "Results", "Plots", fig_name) plt.savefig(figure_out, saveFormat='png', dpi=300) print("Complete!\n(Time taken: %d seconds)" % (time.time() - tic))
[ "saulmoore1@bitbucket.org" ]
saulmoore1@bitbucket.org
b536af523c5e69ea18ffeaf04df2fc80b986dd1f
a1aea2567fd4176fdcdf66250e933b32d1d3db27
/vdW_force.py
1587ff12264830cc0ea3cc4fa7f4c66e98e01689
[]
no_license
toftul/fiber_binding_advanced
c4df1a7b60d392745ac3eb8e4424659750ccafa4
5fc737de0ce6f4d4253932044f6f1ef8b4e11e0d
refs/heads/master
2021-05-15T15:02:11.976213
2018-05-25T11:39:00
2018-05-25T11:39:00
107,274,065
0
0
null
null
null
null
UTF-8
Python
false
false
2,400
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat May 12 12:06:10 2018 @author: ivan """ import numpy as np from scipy.integrate import quad import matplotlib.pyplot as plt def integrand_drho(H, A, y, phi): def f(rho): C1 = H + A + y + rho * np.cos(phi) return(rho * C1 / (C1 * C1 + rho*rho*np.sin(phi)*np.sin(phi))**3.5) return(quad(f, 0, A)[0]) def integrand_dphi(H, A, y): f = lambda phi: integrand_drho(H, A, y, phi) return(quad(f, 0, np.pi)[0]) def FvdW(H, A, a, A123): int_y = lambda y: (2 - y) * y * integrand_dphi(H, A, y) f = -15/4 * quad(int_y, 0, 2)[0] return(A123/a * f) # %% rp = 120e-9 # [m] particle radius rfMM = 495e-9 # [m] fiber radius rfSM = 130e-9 # [m] fiber radius # A = R / a ASM = rfSM / rp AMM = rfMM / rp A123 = 10e-20 # [J] approx value for the Hamaker constant # gap between particle and fiber surface gapSpace = np.logspace(np.log10(rp/50), np.log10(5*rp), 30) # [m] FSpaceSM = np.zeros(len(gapSpace)) FSpaceMM = np.zeros(len(gapSpace)) for i, gap in enumerate(gapSpace): print(i/len(gapSpace)) FSpaceSM[i] = FvdW(gap/rp, ASM, rp, A123) FSpaceMM[i] = FvdW(gap/rp, AMM, rp, A123) # %% plt.rcParams.update({'font.size': 14}) plt.figure(figsize=(8,5)) #plt.title('Attractive vdW force') plt.semilogy(gapSpace/rp, np.abs(FSpaceSM)*1e12, 'k-', label='SM') plt.semilogy(gapSpace/rp, np.abs(FSpaceMM)*1e12, 'k--', label='MM') plt.xlabel('Relative gap width, $g/R_p$') plt.ylabel('vdW attractive force $|F^{wdW}_r|$, pN') #plt.xlim((1e-2, 1e1)) #plt.xlim((np.min(gapSpace/rp), np.max(gapSpace/rp))) plt.ylim((0.1*np.min(np.abs(FSpaceSM)*1e12), 10*np.max(np.abs(FSpaceSM)*1e12))) plt.legend() #plt.grid(True,which="both",ls="-", alpha=0.4) #plt.savefig('results/vdw.pdf') plt.show() # %% ### sanity check # Compare with # 'The van der Waals Interaction between a Spherical Particle and a Cylinder' #A = 1 # #Hspace = np.logspace(-2, 2, num=10) #FSpace = np.zeros(len(Hspace)) #for i, H in enumerate(Hspace): # print(i) # FSpace[i] = FvdW(H, A, 1, 1) # %% # plot #plt.figure(figsize=(8,5)) #plt.rcParams.update({'font.size': 16}) #plt.loglog(Hspace, -FSpace, '-k') #plt.xlabel('D, nm') #plt.ylabel('$F^{wdW}_r$, pN') #plt.grid() #plt.show() # STATUS: CHACKED!
[ "toftul.ivan@gmail.com" ]
toftul.ivan@gmail.com
9cfcec30b699e1871fb85a7b2b0c628a6a1052da
2502facbf895f3e27b3ce77b223452171ab1d532
/utilities/customLogger.py
be6c5325a9ac366defb8ba9f630e35b0df58ac5b
[]
no_license
Kavya1709/nopCommerce
538dac6e9f62dd8fa716a77bde4c119347d49c8d
024c149a2bf5caa493c82929feb6497fe22eda8a
refs/heads/master
2022-12-17T19:49:41.865873
2020-09-11T13:38:55
2020-09-11T13:38:55
294,701,209
0
0
null
null
null
null
UTF-8
Python
false
false
956
py
import logging class LogGen: @staticmethod def loggen(): for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename='.\\Logs\\automation.log', format='%(asctime)s: %(levelname)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') logger = logging.getLogger() logger.setLevel(logging.INFO) return logger # @staticmethod # def log_gen(): # # LOG_FILENAME = '.\\Logs\\automation.log' # # # Set up a specific logger with our desired output level # my_logger = logging.getLogger('nopCommerce') # my_logger.setLevel(logging.INFO) # # # Add the log message handler to the logger # handler = logging.handlers.RotatingFileHandler( # LOG_FILENAME, maxBytes=20, backupCount=5) # # my_logger.addHandler(handler) # # return my_logger
[ "kavyaprakash17@gmail.com" ]
kavyaprakash17@gmail.com
6000fbee425fac253a92896202dbe378a0ccf7ea
e50994cf741d5221080cc5c4d7a5e53e43d58b36
/20190119/testcase2/test3.py
5c1a53666c46fa65064b98a62bfa812c154edbd9
[ "Apache-2.0" ]
permissive
sly1314sly/selenium_basic
5fff7f9aa11d95d892ebfe013007bc5aaba2ea84
53bc2bf4d8a81bcd71f7fe5910cbc34ecfc6869a
refs/heads/master
2020-04-13T08:49:01.812269
2020-01-10T09:29:10
2020-01-10T09:29:10
163,092,788
1
0
null
null
null
null
UTF-8
Python
false
false
544
py
import unittest class TestStringMethods3(unittest.TestCase): def test_upper3(self): self.assertEqual('foo'.upper(), 'FOO') def test_isupper3(self): self.assertTrue('FOO'.isupper()) self.assertFalse('Foo'.isupper()) def test_split3(self): s = 'hello world' self.assertEqual(s.split(), ['hello', 'world']) # check that s.split fails when the separator is not a string with self.assertRaises(TypeError): s.split(2) if __name__ == '__main__': unittest.main()
[ "928446761@qq.com" ]
928446761@qq.com
edc58be22d8da0892938e5e2414d522b0016bddc
9b9ae524386d16396a8c69d671d1e588ac1fb7f9
/week13/maoyan/maoyan/items.py
25ca9521abf8bf9253dec44bfa2263b81e6b7382
[]
no_license
WeiZhixiong/Python006-006
d4d15977ac3f44566123cb029ae2015e2d24f133
6263b78f211c66332c27949bacadd28f6f19ffdb
refs/heads/main
2023-04-15T10:35:42.376722
2021-04-29T05:25:50
2021-04-29T05:25:50
322,471,510
0
0
null
2020-12-18T02:52:30
2020-12-18T02:52:30
null
UTF-8
Python
false
false
271
py
# Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class MaoYanItem(scrapy.Item): movie_name = scrapy.Field() movie_type = scrapy.Field() show_time = scrapy.Field()
[ "zhixiong.wei@qq.com" ]
zhixiong.wei@qq.com
df268ec9f4a7b257c6ca9892b85d4be9155b5b5c
27824a7e18764de82ad0a80025d1390094abfe65
/introduction/start.py
63a1e1009de6a0feceda5b9d04e8a08b2cf91b94
[]
no_license
oliviergimenez/python-training
aec501740130edc39b78dd87976384732e5fb7df
3d0f8f19d1d3dff9d372950dbb95a5f043d60f97
refs/heads/master
2023-01-28T21:06:46.182978
2020-12-08T07:40:34
2020-12-08T07:40:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,081
py
# --- # jupyter: # jupytext: # formats: ipynb,py # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Getting started # # ## Python Install # # ### Anaconda # # Is is strongly advised to install Python by using [Anaconda](https://www.anaconda.com/): # # - Ready to go Python, with the main libraries installed (Numpy, Scipy, Matplotlib) # - Possibility to create multiple environments with different versions of Python and packages ([conda](https://conda.io/en/latest/)). # # In practice: # # - Download the distribution corresponding to your system (cf. [Download](https://www.anaconda.com/distribution/#download-section)) # - Install it in a place where you have read and write access. # # # # # ## Running Python # # ### Python console # # To run Python in normal mode, type in a terminal: # # ``` # python # ``` # # <img src="figs/console.png" width="70%"> # # ### Interactive Python console # # To run Python in interactive mode, type in a terminal: # # ``` # ipython # ``` # # <img src="figs/ipython.png" width="70%"> # # ### Spyder (IDE) # # To run the Python IDE, type in a terminal: # # ``` # spyder & # ``` # # <img src="figs/spyder.png" width="70%"> # # # ### Jupyter Notebook # # To run the Jupyter Notebook, type in a terminal: # # ``` # jupyter notebook & # ``` # # <img src="figs/notebook.png" width="70%"> # ## Running scripts # # Open a text editor and type in: # # ``` # import sys # # # my first program (comment) # print('hello ', sys.argv) # ``` # # Save as ```hello.py``` # # ### Running using python # # From the terminal type: # # ``` # python hello.py arg1 arg2 arg3 # ``` # # You should see: # # ``` # hello ['hello.py', 'arg1', 'arg2', 'arg3'] # ``` # # <div class='alert alert-info'> # <strong>Note: </strong>The <i>sys.argv</i> statements returns the list of arguments, with the 1st element the name of the script. # </div> # # # ### Running using ipython # # Open `ipython` from the terminal, then type: # # ``` # run hello.py arg1 arg2 arg3 # ``` # # To check the environment, type `whos`. You should see: # # ``` # In [2]: whos # Variable Type Data/Info # ------------------------------ # sys module <module 'sys' (built-in)> # ``` # # ### Running from Spyder # # Open `spyder`, open the file and click on the **Run -> Configuration per file** menu. Add arguments to the program as follows: # # <img src="figs/args_spyder.png" width="40%"> # # Then, click on the **Run file** button to run all the program or the **Run selection** button to run the current line # # <br> # <figure> # <center> # <img src="figs/run_file.png" width="50" text-align=center> # <figcaption text-align=center><i>Run file button</i></figcaption> # </figure> # # <br> # <figure> # <center> # <img src="figs/run_sel.png" width="50"> # <figcaption text-align=center><i>Run selection button</i></figcaption> # </figure>
[ "nicolas.barrier@ird.fr" ]
nicolas.barrier@ird.fr
07b351aef518fd66e7d562465c2c742ce426dfb8
f73d1fcf5ab749a703881971310518762c823713
/BarrettDylanRockPaperScissors/RPS.py
8824f750bb8b3436f96c8a008a04bf22e446583f
[]
no_license
DylanBarrett/IT1040-Mizzou
42f3766158b1c30178f8004303062ea06b7026f8
64c7e07af83d45c79974e469d4225adbf145ae08
refs/heads/master
2020-03-26T15:33:24.407276
2018-08-16T23:52:42
2018-08-16T23:52:42
145,050,316
0
1
null
null
null
null
UTF-8
Python
false
false
5,172
py
import random import pickle class GameStatus(): def __init__(self, name): self.tie = 0 self.playerWon = 0 self.pcWon = 0 self.name = name def get_round(self): return self.tie + self.playerWon + self.pcWon + 1 # Displays program information, starts main play loop def main(): print("Welcome to a game of Rock, Paper, Scissors!") print("What would you like to choose?") print("") game_status = welcomemenu() while True: play(game_status) endGameSelect(game_status) def welcomemenu(): while True: print("[1]: Start New Game") print("[2]: Load Game") print("[3]: Quit") print("") menuselect = int(input("Enter your choice: ")) if int(menuselect) in [1, 2, 3]: break else: print("Wrong choice. select again.") if menuselect == 1: name = input("What is your name?: ") print(("Hello %s.") % name) print("Let's play!") game_status = GameStatus(name) elif menuselect == 2: while True: name = input("What is your name?: ") try: user_file = open('%s.rsp' % name, 'r') except IOError: print(("Sorry there is no game found with name %s") % name) continue break print(("Welcome back %s.") % name) print("Let's play!") game_status = pickle.load(user_file) displayScoreBoard(game_status) user_file.close() elif menuselect == 3: print("Bye!!!") exit() return return game_status def play(game_status): playerChoice = int(playerMenu()) pcChoice = pcGenerate() outcome = evaluateGame(playerChoice, pcChoice) updateScoreBoard(outcome, game_status) def playerMenu(): print("Select a choice: \n [1]: Rock \n [2]: Paper \n [3]: Scissors\n") menuSelect = int(input("What will it be? ")) while not validateInput(menuSelect): invalidChoice(menuSelect) menuSelect = input("Enter a correct value: ") return menuSelect def validateInput(menuSelection): if menuSelection in [1, 2, 3]: return True else: return False def pcGenerate(): pcChoice = random.randint(1,3) return pcChoice # Calculate ties,wins,lose def evaluateGame(playerChoice, pcChoice): rsp = ['rock', 'paper', 'scissors'] win_statement = ['Rock breaks scissors', 'Paper covers rock', 'Scissors cut paper'] win_status = (playerChoice - pcChoice) % 3 print(("You have chosen %s") % rsp[playerChoice - 1]) what_to_say =(("Computer has chose %s") % rsp[pcChoice - 1]) if win_status == 0: what_to_say +=(" as Well. TIE!") elif win_status == 1: what_to_say +=((". %s. You WIN!") % win_statement[playerChoice - 1]) else: what_to_say +=((". %s. You LOSE!") % win_statement[pcChoice - 1]) print(what_to_say) return win_status # Update track of ties, player wins, and computer wins def updateScoreBoard(outcome, game_status): if outcome == 0: game_status.tie += 1 elif outcome == 1: game_status.playerWon += 1 else: game_status.pcWon += 1 # If user input is invalid, let them know. def invalidChoice(menuSelect): print(menuSelect,("is not a valid option. Please select 1-3")) # Print the scores before terminating the program. def displayScoreBoard(game_status): print("") print("Statistics:") print(("Ties: %d") % game_status.tie) print(("Player Wins: %d") % game_status.playerWon) print(("Computer Wins: %d") % game_status.pcWon) if game_status.pcWon > 0: print(("Win/Loss Ratio: %f") % (float(game_status.playerWon) / game_status.pcWon)) else: print("Win/Loss Ratio: Always Win.") print(("Rounds: %d") % game_status.get_round()) def endGameSelect(game_status): print("") print("[1]: Play again") print("[2]: Show Statistics") print("[3]: Save Game") print("[4]: Quit") print("") while True: menuselect = int(input("Enter your choice: ")) if menuselect in [1, 2, 3, 4]: break else: print("Wrong input.") if menuselect == 2: displayScoreBoard(game_status) endGameSelect(game_status) elif menuselect == 3: def load_users(self): try: f = open("%s.rsp" % game_status.name, 'wb') pickle.dump(game_status, f) f.close() except: print("error loading make sure file is valid") print("Your game is saved successfully.") endGameSelect(game_status) elif menuselect == 4: print("Bye!!!") exit() main()
[ "noreply@github.com" ]
DylanBarrett.noreply@github.com
e396119de92c2a9d0442f560d6abcdd894436e17
484f111548e9d7192a5748eb202c08802484d747
/fw/flash.py
8361fc57a27f60367e21952493f6068dcb8a037a
[ "Apache-2.0" ]
permissive
cmcmurrough/moteus
dafb2e5224409aaf1d57b66f58965d298845678d
6780967ec40ad7f1ab76cdbd7021f2d07b739efe
refs/heads/main
2023-07-11T10:29:58.645291
2021-08-13T13:38:32
2021-08-13T13:38:32
396,627,837
2
0
Apache-2.0
2021-08-16T05:07:08
2021-08-16T05:07:07
null
UTF-8
Python
false
false
2,193
py
#!/usr/bin/python3 # Copyright 2021 Josh Pieper, jjp@pobox.com. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import platform import subprocess import sys import tempfile BINPREFIX = '' if platform.machine().startswith('arm') else 'arm-none-eabi-' OBJCOPY = BINPREFIX + 'objcopy' OPENOCD = 'openocd -f interface/stlink.cfg -f target/stm32g4x.cfg ' def main(): tmpdir = tempfile.TemporaryDirectory() moteus_elffile = ( sys.argv[1] if len(sys.argv) > 1 else 'bazel-out/stm32g4-opt/bin/fw/moteus.elf') bootloader_elffile = ( sys.argv[2] if len(sys.argv) > 2 else 'bazel-out/stm32g4-opt/bin/fw/can_bootloader.elf') subprocess.check_call( f'{OBJCOPY} -Obinary ' + f'-j .isr_vector ' + f'{moteus_elffile} {tmpdir.name}/out.08000000.bin', shell=True) subprocess.check_call( f'{OBJCOPY} -Obinary ' + f'-j .text -j .ARM.extab -j .ARM.exidx -j .data -j .bss ' + f'{bootloader_elffile} {tmpdir.name}/out.0800c000.bin', shell=True) subprocess.check_call( f'{OBJCOPY} -Obinary ' + f'-j .text -j .ARM.extab -j .ARM.exidx -j .data -j .ccmram -j .bss ' + f'{moteus_elffile} {tmpdir.name}/out.08010000.bin', shell=True) subprocess.check_call( f'{OPENOCD} -c "init" ' + f'-c "reset_config none separate; ' + f' program {tmpdir.name}/out.08000000.bin verify 0x8000000; ' + f' program {tmpdir.name}/out.0800c000.bin verify 0x800c000; ' + f' program {tmpdir.name}/out.08010000.bin verify ' + f' reset exit 0x08010000"', shell=True) if __name__ == '__main__': main()
[ "jjp@pobox.com" ]
jjp@pobox.com
df68a0ed14ee3d9143270beb9c86e524ff1c717e
907d9d6ab8a2bb296a704e9338badde755e7d9f3
/testSpn.py
1e0679dff3917a51a722731b42278161d6d16da2
[]
no_license
nisargap/spn-crypto
ddd6082629677fd21879e9feecac51b7bef73363
f072264123c0058b5e89356689e11b37723b9d8f
refs/heads/master
2021-01-10T05:43:45.970971
2015-10-05T19:31:30
2015-10-05T19:31:30
43,708,513
1
3
null
null
null
null
UTF-8
Python
false
false
1,541
py
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ' Author: Nisarga Patel ' Document: testSpn.py ' Description: This is a test file for the Substitution Permutation ' Network module created to encrypt binary plaintext strings. The ' exact key for this test is defined at the top of the SPNencrypt ' module. This test file was created in order to look for cipher ' text attacks in this specific Substitution Permutation Network. ' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' import SPNencrypt def main(): plain = "0010011010110111" SPNencrypt.spn(plain) plain = "1111111111111111" SPNencrypt.spn(plain) plain = "0000000000000000" SPNencrypt.spn(plain) plain = "1111111111111110" SPNencrypt.spn(plain) plain = "1110111111011110" SPNencrypt.spn(plain) plain = "1110101011011110" SPNencrypt.spn(plain) plain = "1110101000011110" SPNencrypt.spn(plain) plain = "0101010101010101" SPNencrypt.spn(plain) plain = "0101010101010101" SPNencrypt.spn(plain) plain = "0101000000000101" SPNencrypt.spn(plain) plain = "0101000010100101" SPNencrypt.spn(plain) plain = "1110111111110101" SPNencrypt.spn(plain) plain = "0000000100001000" SPNencrypt.spn(plain) plain = "0001000100001001" SPNencrypt.spn(plain) plain = "0110111001110111" SPNencrypt.spn(plain) plain = "1111011111011101" SPNencrypt.spn(plain) main()
[ "patelnisarga1@gmail.com" ]
patelnisarga1@gmail.com
fbb7c0b773c663b598397c813719054f055a6897
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/lib/python2.7/site-packages/openpyxl/worksheet/pivot.py
b1905be6298ea1c57f774cae821fbc482b8bf25b
[ "Python-2.0", "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
4,984
py
from __future__ import absolute_import # Copyright (c) 2010-2015 openpyxl from openpyxl.descriptors import ( Bool, Integer, String, Set, NoneSet, ) from openpyxl.descriptors.serialisable import Serialisable class PivotSelection(Serialisable): pane = Set(values=("bottomRight", "topRight", "bottomLeft", "topLeft")) showHeader = Bool() label = Bool() data = Bool() extendable = Bool() count = Integer() axis = String(allow_none=True) dimension = Integer() start = Integer() min = Integer() max = Integer() activeRow = Integer() activeCol = Integer() previousRow = Integer() previousCol = Integer() click = Integer() def __init__(self, pane=None, showHeader=None, label=None, data=None, extendable=None, count=None, axis=None, dimension=None, start=None, min=None, max=None, activeRow=None, activeCol=None, previousRow=None, previousCol=None, click=None): self.pane = pane self.showHeader = showHeader self.label = label self.data = data self.extendable = extendable self.count = count self.axis = axis self.dimension = dimension self.start = start self.min = min self.max = max self.activeRow = activeRow self.activeCol = activeCol self.previousRow = previousRow self.previousCol = previousCol self.click = click class PivotArea(Serialisable): field = Integer(allow_none=True) type = NoneSet(values=("normal", "data", "all", "origin", "button", "topEnd")) dataOnly = Bool() labelOnly = Bool() grandRow = Bool() grandCol = Bool() cacheIndex = Bool() outline = Bool() offset = String() collapsedLevelsAreSubtotals = Bool() axis = String(allow_none=True) fieldPosition = Integer(allow_none=True) def __init__(self, field=None, type=None, dataOnly=None, labelOnly=None, grandRow=None, grandCol=None, cacheIndex=None, outline=None, offset=None, collapsedLevelsAreSubtotals=None, axis=None, fieldPosition=None): self.field = field self.type = type self.dataOnly = dataOnly self.labelOnly = labelOnly self.grandRow = grandRow self.grandCol = grandCol self.cacheIndex = cacheIndex self.outline = outline self.offset = offset self.collapsedLevelsAreSubtotals = collapsedLevelsAreSubtotals self.axis = axis self.fieldPosition = fieldPosition class PivotAreaReferences(Serialisable): count = Integer() def __init__(self, count=None): count = count class PivotAreaReference(Serialisable): field = Integer(allow_none=True) count = Integer() selected = Bool() byPosition = Bool() relative = Bool() defaultSubtotal = Bool() sumSubtotal = Bool() countASubtotal = Bool() avgSubtotal = Bool() maxSubtotal = Bool() minSubtotal = Bool() productSubtotal = Bool() countSubtotal = Bool() stdDevSubtotal = Bool() stdDevPSubtotal = Bool() varSubtotal = Bool() varPSubtotal = Bool() def __init__(self, field=None, count=None, selected=None, byPosition=None, relative=None, defaultSubtotal=None, sumSubtotal=None, countASubtotal=None, avgSubtotal=None, maxSubtotal=None, minSubtotal=None, productSubtotal=None, countSubtotal=None, stdDevSubtotal=None, stdDevPSubtotal=None, varSubtotal=None, varPSubtotal=None): self.field = field self.count = count self.selected = selected self.byPosition = byPosition self.relative = relative self.defaultSubtotal = defaultSubtotal self.sumSubtotal = sumSubtotal self.countASubtotal = countASubtotal self.avgSubtotal = avgSubtotal self.maxSubtotal = maxSubtotal self.minSubtotal = minSubtotal self.productSubtotal = productSubtotal self.countSubtotal = countSubtotal self.stdDevSubtotal = stdDevSubtotal self.stdDevPSubtotal = stdDevPSubtotal self.varSubtotal = varSubtotal self.varPSubtotal = varPSubtotal class Index(Serialisable): v = Integer() def __init__(self, v=None): self.v = v
[ "wgyumg@mgail.com" ]
wgyumg@mgail.com
40b5a7f814ed68cbc12969cb867747a1687e0e1b
ac1e60fd4bb3b7cc04e413ae394836abad8947b1
/email_verification_api/wsgi.py
e60483842d64ef833b28dfd12be0cfe5d6bf9eba
[]
no_license
Taycode/email-verification-api
9c48642f34671232c388a7c763541f02ff9ae614
f3abe35a010d5b2d3d2c269fa728eb40f26630a0
refs/heads/master
2020-08-04T11:00:29.103892
2019-10-01T14:49:14
2019-10-01T14:49:14
212,114,710
0
0
null
2019-10-01T14:16:59
2019-10-01T14:16:58
null
UTF-8
Python
false
false
421
py
""" WSGI config for email_verification_api project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'email_verification_api.settings') application = get_wsgi_application()
[ "tay2druh@gmail.com" ]
tay2druh@gmail.com
575ec3fde6902f2199dd97ec7bcc0c58ef03bab3
ec0b547830e10e11de13f6d5e375f2ee746c64ff
/pos_retail/wizards/__init__.py
8dfb1563dff3e3ae399cce0e45dc71a6969c3c6c
[]
no_license
babarlhr/third-party-apps
cc4a83df48e00d35c3fd7bbd06ed9ef738f1ba99
f882e65b9873a937aa7f62171bcefb8b4982366b
refs/heads/13.0
2023-04-02T14:32:37.980953
2021-04-10T19:58:07
2021-04-10T19:58:07
584,900,514
1
0
null
2023-01-03T20:06:22
2023-01-03T20:06:22
null
UTF-8
Python
false
false
150
py
from . import StockImmediateTransfer from . import RemovePosOrder from . import PosRemoteSession from . import PosMakePayment from . import CashBoxOut
[ "lucaslsoto95@gmail.com" ]
lucaslsoto95@gmail.com
84c1041757c13e9f14ac643dc4bfae4d661fad21
04a17e0f43befad7be3518a99eadbf5123e31dd3
/semana5/MyHolidays/myholidays/holidays.py
b49f9254358e14edfca59fffdb88133641e5f8d4
[]
no_license
grcopia/NappAcademy
587b49263e704b56d804567ec1efadc1c72bf0c0
64f3732c3ca4337c4811bee3736be61b6169985a
refs/heads/master
2023-04-23T04:47:45.789203
2021-04-17T18:33:32
2021-04-17T18:33:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,427
py
from datetime import date from datetime import datetime from dateutil.parser import parse class MyCalendar: def __init__(self, *args): self.datas = [] self.check_holiday() for item in args: if isinstance(item, date): self.datas.append(item) elif type(item) == str: if len(str(item).split('/')) > 2: if int(str(item).split('/')[1]) > 12 or len(str(item).split('/')[0]) > 2: continue self.datas.append(parse(item).date()) else: pass # self.datas = [parse(str(item)) for item in args if type(item) not in types and len(str(item).split('/')) > 2] def check_holiday(self, *args): check_day = [] for data in args: print(data) if len(str(data).split('/')[0]) > 2: check_day.append('invalido') continue if isinstance(data, date): check_day.append(data) elif type(data) == str: if int(str(data).split('/')[1]) > 12 or len(str(data)) <= 5: check_day.append('invalido') else: check_day.append(parse(data)) else: pass for day in check_day: print(day) if day == 'invalido': return False if day.weekday() == 6 or day.weekday() == 5: return True else: return False def add_holiday(self, *args): for item in args: if type(item) == str: if int(str(item).split('/')[1]) > 12 or len(str(item).split('/')[0]) >= 3: continue if parse(str(item)).date() in self.datas: pass elif isinstance(item, date): self.datas.append(item) elif type(item) == str: self.datas.append(parse(item)) if __name__ == '__main__': dt1 = '15/15/2021' dt2 = '120/3/2021' dt3 = '15/03/2021' dt4 = '15/05' dt5 = '24/24/2021' objeto = MyCalendar(dt1, dt2) assert objeto.check_holiday(dt1) is False assert objeto.check_holiday(dt2) is False assert objeto.check_holiday(dt3) is False assert objeto.check_holiday(dt4) is False assert objeto.check_holiday(dt5) is False
[ "vagnerpelais@gmail.com" ]
vagnerpelais@gmail.com
4d641b7b452b7e43378724205d8c5690b44cd11a
5b9c50baaa3182868c9f4a744a7361abe422a510
/tests/test_base.py
f7f5133f7951074f1287e3257df0b73b129805e8
[ "MIT" ]
permissive
jasontangxf/geometer
3307889c087a1f498d58b5ae6bbf1b037119ca46
931df0aff6c680ad13a6c5989f2a89c276370c5e
refs/heads/master
2023-01-06T17:39:41.837342
2020-11-07T15:42:10
2020-11-07T15:42:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,251
py
import numpy as np from geometer.base import TensorDiagram, Tensor, TensorCollection, LeviCivitaTensor, KroneckerDelta class TestTensor: def test_arithmetic(self): a = Tensor(2, 3) b = Tensor(5, 4) # vector operations assert a + b == Tensor(7, 7) assert a - b == Tensor(-3, -1) assert -a == Tensor(-2, -3) # scalar operations assert a + 6 == Tensor(8, 9) assert a - 6 == Tensor(-4, -3) assert a * 6 == Tensor(12, 18) assert a / 6 == Tensor(1/3, 0.5) def test_transpose(self): a = Tensor([[1, 2], [3, 4]], covariant=[0]) assert a.transpose() == Tensor([[1, 3], [2, 4]]) assert a.T._covariant_indices == {1} assert a.T.T == a def test_getitem(self): a = Tensor([[1, 2], [3, 4]], covariant=[0]) assert a[0, 1] == 2 assert a[None, 1] == [[3, 4]] assert a[None, 1].tensor_shape == (0, 1) assert a[::-1, 0] == [3, 1] assert a[::-1, 0].tensor_shape == (1, 0) def test_dtype(self): a = Tensor(2, 3, dtype=np.float32) assert a.dtype == np.float32 a = Tensor(2, 3, dtype=np.complex64) assert a.dtype == np.complex64 class TestTensorCollection: def test_init(self): # empty list a = TensorCollection([]) assert len(a) == 0 # numpy array a = TensorCollection(np.ones((1, 2, 3))) assert len(a) == 1 assert a.size == 2 # nested list of numbers a = TensorCollection([[1, 2], [3, 4]]) assert len(a) == 2 assert a.size == 2 # nested tuple of numbers a = TensorCollection(((1, 2), (3, 4))) assert len(a) == 2 assert a.size == 2 # nested list of Tensor objects a = TensorCollection([[Tensor(1, 2, 3), Tensor(3, 4, 5)]]) assert a.shape == (1, 2, 3) assert len(a) == 1 assert a.size == 2 # object with __array__ function class A: def __array__(self): return np.array([Tensor(1, 2), Tensor(3, 4)]) a = TensorCollection(A()) assert len(a) == 2 assert a.size == 2 def test_flat(self): a = [Tensor([[1, 2], [3, 4]]), Tensor([[5, 6], [7, 8]])] b = TensorCollection([a], tensor_rank=2) assert list(b.flat) == a def test_getitem(self): a = Tensor([[1, 2], [3, 4]]) b = Tensor([[5, 6], [7, 8]]) c = TensorCollection([a, b]) assert c[0] == a assert c[1] == b assert list(c) == [a, b] assert c[:, 1] == TensorCollection([Tensor([3, 4]), Tensor([7, 8])]) assert c[:, 0, 0] == [1, 5] class TestTensorDiagram: def test_add_edge(self): a = Tensor([1, 0, 0, 0]) b = Tensor([[42, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], covariant=False) diagram = TensorDiagram((a, b)) assert diagram.calculate() == Tensor([42, 0, 0, 0]) diagram.add_edge(a.copy(), b) assert diagram.calculate() == 42 def test_tensor_product(self): e1 = Tensor(1, 0) e2 = Tensor(0, 1) a = Tensor([0, 1], [1, 0], covariant=[0]) b = Tensor([1, 0], [0, 1], covariant=[0]) m = a.tensor_product(b) e = e1.tensor_product(e2) assert TensorDiagram((e, m), (e, m)).calculate() == (a * e1).tensor_product(b * e2) d = TensorDiagram() d.add_node(a) d.add_node(b) assert d.calculate() == a.tensor_product(b) def test_epsilon_delta_rule(self): e1 = LeviCivitaTensor(3, True) e2 = LeviCivitaTensor(3, False) d = KroneckerDelta(3) d2 = d.tensor_product(d) d1 = d2.transpose((0, 1)) diagram = TensorDiagram((e1, e2.transpose())) assert diagram.calculate() == d1 - d2 def test_kronecker_delta(self): d = KroneckerDelta(4, 3) assert d.array.shape == (4,)*6 assert d.array[0, 1, 2, 0, 1, 2] == 1 assert d.array[0, 2, 1, 0, 1, 2] == -1
[ "jan.rv@t-online.de" ]
jan.rv@t-online.de
1c10e66617f17ae42de12803b880e514daca1829
e4e44097320d056f3768eb3a53f28f4c19cdc7ce
/findSubstring.py
cb2251aa8f1dbb867af20c7a065e334f694cbfda
[]
no_license
amisyy/leetcode
0640e009c02956778f402eb89b74c98c36882d44
ba8ab343a246aa3eead75a23dc69b5a76680d290
refs/heads/master
2021-06-03T06:27:38.216035
2020-11-08T06:59:40
2020-11-08T06:59:40
103,757,845
0
0
null
null
null
null
UTF-8
Python
false
false
1,116
py
class Solution(object): def findSubstring(self, s, words): """ :type s: str :type words: List[str] :rtype: List[int] """ word_length = len(words[0]) word_num = len(words) length = len(s) words_dict = {} for i in words: if i not in words_dict: words_dict[i] = 1 else: words_dict[i]+=1 res = [] for i in range(length -word_length*word_num +1 ): dict_curr={} j=0 while j < word_num: word = s[i+j*word_length:i+(j+1)*word_length] if word not in words_dict: break elif word not in dict_curr: dict_curr[word] = 1 else: dict_curr[word] +=1 if dict_curr[word] > words_dict[word]: break j +=1 if j==word_num: res.append(i) return res u = Solution() print(u.findSubstring("barfoothefoobarman",["foo","bar"]))
[ "amisyy@sina.cn" ]
amisyy@sina.cn
4c10f5dbe66a1ecd6b2cb0e0d1cb6a3481ac2ca0
1b94c7cfd66804fe8d40b5def35e4b9b18d69ba2
/old_py2/controllers/apiai_controller.py
dfff3930d0c210a7d0d4eb8c2af95d15d9d7e374
[ "MIT" ]
permissive
the-blue-alliance/the-blue-alliance
3dc210a9611ce9b240907ffd420f78040318dcdc
6d42f3cdb2f785d192f2871419e58aaae3445029
refs/heads/py3
2023-08-22T21:02:36.398100
2023-08-22T19:14:01
2023-08-22T19:14:01
888,427
344
263
MIT
2023-09-14T18:35:20
2010-09-04T20:34:11
HTML
UTF-8
Python
false
false
635
py
import json from base_controller import LoggedInHandler from helpers.apiai_helper import APIAIHelper from models.sitevar import Sitevar class APIAIHandler(LoggedInHandler): def __init__(self, *args, **kw): super(APIAIHandler, self).__init__(*args, **kw) def post(self): if self.request.headers.get('X-TBA-APIAI-Auth') != Sitevar.get_by_id('apiai.secrets').contents['key']: return request = json.loads(self.request.body) self.response.headers['content-type'] = 'application/json; charset="utf-8"' self.response.out.write(json.dumps(APIAIHelper.process_request(request)))
[ "noreply@github.com" ]
the-blue-alliance.noreply@github.com
08273d87152e339e41af2407ff4bbad8cc28e79c
f2b91692a434ee79ff5d68ed3111d60d90315f00
/src/command_modules/azure-cli-servicebus/azure/cli/command_modules/servicebus/_validators.py
6a4509e9f662b17fe8494f89fce3441aa9719205
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
cal5barton/azure-cli
f883bc7d481b163d4c4af1fa154a990182e5de80
6ebc6f810f32b8fce30a360633a70fcfdea15e7b
refs/heads/dev
2023-05-24T18:12:36.151238
2018-07-12T16:16:29
2018-07-12T16:16:29
140,749,210
0
0
MIT
2023-05-15T18:58:31
2018-07-12T18:13:18
Python
UTF-8
Python
false
false
4,322
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long # pylint: disable=unused-variable import re from datetime import timedelta from isodate import parse_duration from knack.util import CLIError # PARAMETER VALIDATORS # Type ISO 8061 duration iso8601pattern = re.compile("^P(?!$)(\\d+Y)?(\\d+M)?(\\d+W)?(\\d+D)?(T(?=\\d)(\\d+H)?(\\d+M)?(\\d+.)?(\\d+S)?)?$") timedeltapattern = re.compile("^\\d+:\\d+:\\d+$") def _validate_lock_duration(namespace): if namespace.lock_duration: if iso8601pattern.match(namespace.lock_duration): if parse_duration(namespace.lock_duration) > timedelta(days=0, minutes=6, seconds=0): raise CLIError( '--lock-duration Value Error : {0} value, The maximum value for LockDuration is 5 minutes; the default value is 1 minute.'.format( namespace.lock_duration)) elif timedeltapattern.match(namespace.lock_duration): day, miniute, seconds = namespace.lock_duration.split(":") if int(day) > 0 or int(miniute) > 6: raise CLIError( '--lock-duration Value Error : {0} value, The maximum value for LockDuration is 5 minutes; the default value is 1 minute.'.format( namespace.lock_duration)) else: raise CLIError('--lock-duration Value Error : {0} value is not in ISO 8601 timespan / duration format. e.g.' ' PT10M for duration of 10 min or 00:10:00 for duration of 10 min'.format(namespace.lock_duration)) def _validate_default_message_time_to_live(namespace): if namespace.default_message_time_to_live: if not iso8601pattern.match(namespace.default_message_time_to_live) and not timedeltapattern.match(namespace.default_message_time_to_live): raise CLIError('--default-message-time-to-live Value Error : {0} value is not in ISO 8601 timespan / duration format. e.g. PT10M for duration of 10 min or 00:10:00 for duration of 10 min'.format(namespace.default_message_time_to_live)) def _validate_duplicate_detection_history_time_window(namespace): if namespace.duplicate_detection_history_time_window: if iso8601pattern.match(namespace.duplicate_detection_history_time_window): pass elif timedeltapattern.match(namespace.duplicate_detection_history_time_window): pass else: raise CLIError('--duplicate-detection-history-time-window Value Error : {0} value is not in ISO 8601 timespan / duration format. e.g. PT10M for duration of 10 min or 00:10:00 for duration of 10 min'.format(namespace.duplicate_detection_history_time_window)) def _validate_auto_delete_on_idle(namespace): if namespace.auto_delete_on_idle: if iso8601pattern.match(namespace.auto_delete_on_idle): pass elif timedeltapattern.match(namespace.auto_delete_on_idle): pass else: raise CLIError('--auto-delete-on-idle Value Error : {0} value is not in ISO 8601 timespan / duration format. e.g. PT10M for duration of 10 min or 00:10:00 for duration of 10 min'.format(namespace.auto_delete_on_idle)) def validate_partner_namespace(cmd, namespace): from azure.cli.core.commands.client_factory import get_subscription_id from msrestazure.tools import is_valid_resource_id, resource_id if namespace.partner_namespace: if not is_valid_resource_id(namespace.partner_namespace): namespace.partner_namespace = resource_id( subscription=get_subscription_id(cmd.cli_ctx), resource_group=namespace.resource_group_name, namespace='Microsoft.ServiceBus', type='namespaces', name=namespace.partner_namespace) def validate_premiumsku_capacity(namespace): if namespace.sku and namespace.sku != 'Premium' and namespace.capacity: raise CLIError('--capacity - This property is only applicable to namespaces of Premium SKU')
[ "tjprescott@users.noreply.github.com" ]
tjprescott@users.noreply.github.com
00cbe7556cb10b9d98cdd70f69f8f9392fef4b9a
325512acc574dffa50d3d7d9645391e2928df127
/main.py
137f8ee5729044c1f7a1566aec02584d702c168f
[]
no_license
sunca7/ff
8366d4d6d7c7f22201ae9c324960a16dea045437
a6f43f55dc7ed1602908f58c3710cf0b1846b8d9
refs/heads/master
2022-12-01T02:57:12.815321
2020-08-04T14:35:41
2020-08-04T14:35:41
285,006,260
0
0
null
null
null
null
UTF-8
Python
false
false
8,190
py
import os import requests from flask import Flask, render_template, request from bs4 import BeautifulSoup from save import save_to_file LIMIT = 20 db = {} level_four_db = [{'company': '삼성전자', 'company_url': '/item/main.nhn?code=005930'}, {'company': 'NAVER', 'company_url': '/item/main.nhn?code=035420'}, {'company': '셀트리온', 'company_url': '/item/main.nhn?code=068270'}, {'company': '현대모비스', 'company_url': '/item/main.nhn?code=012330'}, {'company': '엔씨소프트', 'company_url': '/item/main.nhn?code=036570'}, {'company': 'POSCO', 'company_url': '/item/main.nhn?code=005490'}, {'company': 'KB금융', 'company_url': '/item/main.nhn?code=105560'}, {'company': '신한지주', 'company_url': '/item/main.nhn?code=055550'}, {'company': 'KT&G', 'company_url': '/item/main.nhn?code=033780'}, {'company': '넷마블', 'company_url': '/item/main.nhn?code=251270'}, {'company': '삼성생명', 'company_url': '/item/main.nhn?code=032830'}, {'company': '하나금융지주', 'company_url': '/item/main.nhn?code=086790'}, {'company': '삼성화재', 'company_url': '/item/main.nhn?code=000810'}, {'company': '고려아연', 'company_url': '/item/main.nhn?code=010130'}, {'company': '우리금융지주', 'company_url': '/item/main.nhn?code=316140'}, {'company': '기업은행', 'company_url': '/item/main.nhn?code=024110'}, {'company': '미래에셋대우', 'company_url': '/item/main.nhn?code=006800'}, {'company': '포스코케미칼', 'company_url': '/item/main.nhn?code=003670'}, {'company': '현대글로비스', 'company_url': '/item/main.nhn?code=086280'}, {'company': '현대건설', 'company_url': '/item/main.nhn?code=000720'}, {'company': '유한양행', 'company_url': '/item/main.nhn?code=000100'}, {'company': 'DB손해보험', 'company_url': '/item/main.nhn?code=005830'}, {'company': '삼성카드', 'company_url': '/item/main.nhn?code=029780'}, {'company': '삼성증권', 'company_url': '/item/main.nhn?code=016360'}, {'company': 'NH투자증권', 'company_url': '/item/main.nhn?code=005940'}, {'company': '일진머티리얼즈', 'company_url': '/item/main.nhn?code=020150'}, {'company': '농심', 'company_url': '/item/main.nhn?code=004370'}, {'company': '메리츠증권', 'company_url': '/item/main.nhn?code=008560'}, {'company': '현대해상', 'company_url': '/item/main.nhn?code=001450'}, {'company': '제일기획', 'company_url': '/item/main.nhn?code=030000'}, {'company': '동서', 'company_url': '/item/main.nhn?code=026960'}, {'company': 'LS ELECTRIC', 'company_url': '/item/main.nhn?code=010120'}, {'company': 'BNK금융지주', 'company_url': '/item/main.nhn?code=138930'}, {'company': '한올바이오파마', 'company_url': '/item/main.nhn?code=009420'}, {'company': '종근당', 'company_url': '/item/main.nhn?code=185750'}, {'company': 'HDC현대산업개발', 'company_url': '/item/main.nhn?code=294870'}, {'company': 'DB하이텍', 'company_url': '/item/main.nhn?code=000990'}, {'company': '한전KPS', 'company_url': '/item/main.nhn?code=051600'}, {'company': '영원무역', 'company_url': '/item/main.nhn?code=111770'}, {'company': '한국테크놀로지그룹', 'company_url': '/item/main.nhn?code=000240'}, {'company': '이노션', 'company_url': '/item/main.nhn?code=214320'}, {'company': '영풍', 'company_url': '/item/main.nhn?code=000670'}, {'company': '쿠쿠홈시스', 'company_url': '/item/main.nhn?code=284740'}, {'company': '보령제약', 'company_url': '/item/main.nhn?code=003850'}, {'company': '휴켐스', 'company_url': '/item/main.nhn?code=069260'}, {'company': '빙그레', 'company_url': '/item/main.nhn?code=005180'}, {'company': '락앤락', 'company_url': '/item/main.nhn?code=115390'}, {'company': '쿠쿠홀딩스', 'company_url': '/item/main.nhn?code=192400'}, {'company': '세방전지', 'company_url': '/item/main.nhn?code=004490'}] company_list_url = f"https://finance.naver.com/sise/entryJongmok.nhn?&page=" company_info_base_url = "https://finance.naver.com" kosdaq_list_url = "https://finance.naver.com/sise/sise_market_sum.nhn?sosok=1&page=" app = Flask("ff") # os.system('cls' if os.name=='nt' else 'clear') def request_company_list(): company_list = [] # for nb in range(1,21): for nb in range(1,21): request_company_list = requests.get(f"{company_list_url}{nb}") soup = BeautifulSoup(request_company_list.text, "html.parser") company_table_list = soup.find_all("td", {"class":"ctg"}) for info in company_table_list: company = info.find('a').text company_url = info.find('a')["href"] company_list.append({"company": company, "company_url": company_url}) return company_list def extract_indiv_table(company): request_company_info = requests.get(f"{company_info_base_url}{company.get('company_url')}") soup = BeautifulSoup(request_company_info.text, "html.parser") info_table = soup.find("table", {"class": "tb_type1_ifrs"}) info_table_row = info_table.find_all("tr") return info_table_row def level_one_extract(company): info_table_row = extract_indiv_table(company) net_income_ten = info_table_row[5].find_all("td") for net_income in net_income_ten: if "-" in net_income.text.strip(): return -1 else: result = 1 return result def level_one_company(company_list): print("request level one") level_one = [] # for company in company_list: # for company in company_list[:1]: for company in company_list: one = level_one_extract(company) if one == 1: level_one.append(company) print("level 1 len: ", len(level_one)) return level_one def four_extract_company(company): info_table_row = extract_indiv_table(company) debt_ratio_ten = info_table_row[9].find_all("td") for debt_ratio in debt_ratio_ten: nbr = debt_ratio.text.strip().split('.')[0].replace(',','') if nbr != '': if int(nbr) > 100: return -4 else: result = 4 return result def four_second_extract_company(company): info_table_row = extract_indiv_table(company) checking_ratio_ten = info_table_row[10].find_all("td") for checking_ratio in checking_ratio_ten: nbr = checking_ratio.text.strip().split('.')[0].replace(',','') if nbr != '': if int(nbr) < 100: return -4 else: result = 4 return result def level_four_company(company_list): print("request level four") level_four = [] for company in company_list: four = four_extract_company(company) four = four_second_extract_company(company) if four == 4: level_four.append(company) print("level 4 len: ", len(level_four)) return level_four def six_extract_company(company): pass def request_kosdaq(): kosdaq_list = [] for nb in range(1,5): print(f"{nb}") request_kosdaq_list = requests.get(f"{kosdaq_list_url}{nb}") soup = BeautifulSoup(request_kosdaq_list.text, "html.parser") kosdaq_table_list = soup.find_all("tr") for info in kosdaq_table_list[7:-1]: if info.find("a"): company = info.find('a').text company_url = info.find('a')["href"] kosdaq_list.append({"company": company, "company_url": company_url}) else : continue print(kosdaq_list) return kosdaq_list def ff_program(company_list): level_one = level_one_company(company_list) level_four = level_four_company(level_one) return level_four # @app.route("/") # def kospi(): # print("Level four len", len(level_four_db)) # print(level_four_db) # save_to_file(level_four_db) # return render_template("index.html", level_four=level_four_db) # def kosdaq(): # kosdaq_list = request_kosdaq() # return kosdaq_list @app.route("/") def financial_freedom(): # kospi_list = request_company_list() kosdaq_list = request_kosdaq() kosdaq_level_four = ff_program(kosdaq_list) print(kosdaq_level_four) save_to_file(kosdaq_level_four) # app.run(host="0.0.0.0") financial_freedom() # if "company" not in db: # print("request company") # db["company"] = request_company_list() # company_list = db["company"] # if "one" not in db: # print("request level one") # db["one"] = level_one_company(company_list) # level_one = db["one"] # print("Level one len ", len(level_one)) #
[ "kosah302@gmail.com" ]
kosah302@gmail.com
9ec5875503577bf114e6521a6174ca229c968b95
c1e0874f55d05ee990ed2d637c2910701b32d246
/soft_uni_OOP/Defining Classes/lab/scope_mess_3.py
03d81f4774c92bdc435a7583da245e72d79f8461
[]
no_license
borislavstoychev/Soft_Uni
5d047bef402c50215e0abc825476326889ffd0be
ccc0b2fb18f8ad6809b475eb20e82a9e4eb4b0b0
refs/heads/master
2023-05-11T12:27:08.672058
2021-05-28T18:00:10
2021-05-28T18:00:10
277,556,731
3
2
null
2021-02-11T19:57:37
2020-07-06T13:58:23
Python
UTF-8
Python
false
false
311
py
x = "global" def outer(): x = "local" def inner(): nonlocal x x = "nonlocal" print("inner:", x) def change_global(): global x x = "global: changed!" print("outer:", x) inner() print("outer:", x) change_global() print(x) outer() print(x)
[ "stoy4ew@gmail.com" ]
stoy4ew@gmail.com
8ff2bd1fe3bcae9eaddea886a981234c02e1ccc7
8faa47c6b03940bc382a654fcc5ac99babd99d4e
/auth.py
9cbb74114c71c49a43a0eb158b05868fef3f1d79
[]
no_license
TobiasGrosch/sprint-velocity-planning
7262038cf2359f0d55834c9333386be1342f947c
e575416fcc3bb70ebe9d1c0702c1d2a6c4606bdd
refs/heads/master
2023-04-19T07:22:35.989809
2021-04-25T06:47:53
2021-04-25T06:47:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,050
py
import json from flask import request, _request_ctx_stack, abort from functools import wraps from jose import jwt from urllib.request import urlopen AUTH0_DOMAIN = 'fsnd-groscht.eu.auth0.com' ALGORITHMS = ['RS256'] API_AUDIENCE = 'sprint_vel' ## AuthError Exception ''' AuthError Exception A standardized way to communicate auth failure modes ''' class AuthError(Exception): def __init__(self, error, status_code): self.error = error self.status_code = status_code ## Auth Header def get_token_auth_header(): """Obtains the Access Token from the Authorization Header """ auth = request.headers.get('Authorization', None) if not auth: raise AuthError({ 'code': 'authorization_header_missing', 'description': 'Authorization header is expected.' }, 401) parts = auth.split() if parts[0].lower() != 'bearer': raise AuthError({ 'code': 'invalid_header', 'description': 'Authorization header must start with "Bearer".' }, 401) elif len(parts) == 1: raise AuthError({ 'code': 'invalid_header', 'description': 'Token not found.' }, 401) elif len(parts) > 2: raise AuthError({ 'code': 'invalid_header', 'description': 'Authorization header must be bearer token.' }, 401) token = parts[1] return token def check_permissions(permission, payload): if 'permissions' not in payload: raise AuthError({ 'code': 'invalid_claims', 'description': 'Permissions not included in JWT.' }, 400) if permission not in payload['permissions']: raise AuthError({ 'code': 'unauthorized', 'description': 'Permission not found.' }, 401) return True def verify_decode_jwt(token): jsonurl = urlopen(f'https://{AUTH0_DOMAIN}/.well-known/jwks.json') jwks = json.loads(jsonurl.read()) unverified_header = jwt.get_unverified_header(token) rsa_key = {} if 'kid' not in unverified_header: raise AuthError({ 'code': 'invalid_header', 'description': 'Authorization malformed.' }, 401) for key in jwks['keys']: if key['kid'] == unverified_header['kid']: rsa_key = { 'kty': key['kty'], 'kid': key['kid'], 'use': key['use'], 'n': key['n'], 'e': key['e'] } if rsa_key: try: payload = jwt.decode( token, rsa_key, algorithms=ALGORITHMS, audience=API_AUDIENCE, issuer='https://' + AUTH0_DOMAIN + '/' ) return payload except jwt.ExpiredSignatureError: raise AuthError({ 'code': 'token_expired', 'description': 'Token expired.' }, 401) except jwt.JWTClaimsError: raise AuthError({ 'code': 'invalid_claims', 'description': 'Incorrect claims. Please, check the audience and issuer.' }, 401) except Exception: raise AuthError({ 'code': 'invalid_header', 'description': 'Unable to parse authentication token.' }, 400) raise AuthError({ 'code': 'invalid_header', 'description': 'Unable to find the appropriate key.' }, 400) def requires_auth(permission=''): def requires_auth_decorator(f): @wraps(f) def wrapper(*args, **kwargs): token = get_token_auth_header() try: payload = verify_decode_jwt(token) except: abort(401) check_permissions(permission, payload) return f(payload, *args, **kwargs) return wrapper return requires_auth_decorator
[ "ubuntu@ip-10-101-1-61.eu-central-1.compute.internal" ]
ubuntu@ip-10-101-1-61.eu-central-1.compute.internal
2e93f6d19a1051930f841ffd22fefbc664870f58
3c2dd7932308cf47ca9910d963affa5a67beb97f
/model/callback.py
c2177b884353fae0e4f5603bcba99584c3450724
[]
no_license
HaroldLiuJ/CGSum
cb65dc65a7c300f32412bf7f3fbfea4c07d2680c
ef372b0b126553d531fedb53f0a1a72b36a82b63
refs/heads/main
2023-06-06T10:17:54.917198
2021-06-25T14:09:23
2021-06-25T14:09:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,289
py
import os import sys import time import numpy as np import torch from data_util.logging import logger from data_util.utils import calc_running_avg_loss from fastNLP.core.callback import Callback, EarlyStopError class TrainCallback(Callback): def __init__(self, config, patience=10, quit_all=True): super().__init__() self.config = config self.patience = patience self.wait = 0 self.running_avg_loss = 0 self.loss_update_every = [] if type(quit_all) != bool: raise ValueError("In KeyBoardInterrupt, quit_all arguemnt must be a bool.") self.quit_all = quit_all def on_epoch_begin(self): self.epoch_start_time = time.time() if self.epoch == self.config.coverage_at: self.config.is_coverage = True if self.config.is_coverage: self.trainer.do_valid = True else: self.trainer.do_valid = False def on_backward_begin(self, loss): self.loss_update_every.append(loss.item()) if isinstance(loss, tuple) and not np.isfinite(loss[0].item()): logger.error("train Loss is not finite. Stopping.") logger.info(loss[0].item()) for name, param in self.model.named_parameters(): if param.requires_grad: logger.info(name) logger.info(param.grad.data.sum()) raise Exception("train Loss is not finite. Stopping.") if self.step % self.update_every == 0: assert len(self.loss_update_every) == self.update_every loss_batch = sum(self.loss_update_every) self.loss_update_every = [] # report the loss if self.step < 10 or self.step % 1000 == 0: logger.info("|epoch: %d step: %d log_loss: %.4f |" % (self.epoch, self.step / self.update_every, loss_batch)) self.running_avg_loss = calc_running_avg_loss(loss_batch, self.running_avg_loss, self.step / self.update_every) def on_backward_end(self): if self.config.max_grad_norm: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm) def on_epoch_end(self): logger.info( ' | end of epoch {:3d} | time: {:5.2f}s | '.format(self.epoch, (time.time() - self.epoch_start_time))) def on_valid_begin(self): self.valid_start_time = time.time() def on_valid_end(self, eval_result, metric_key, optimizer, is_better_eval): logger.info( ' | end of valid {:3d} | time: {:5.2f}s | '.format(self.epoch, (time.time() - self.valid_start_time))) # save the better checkpoint if is_better_eval: logger.info("got better results on dev, save checkpoint.. ") model_save_path = os.path.join(self.config.model_path, f'CGSum_{self.config.setting}_{self.config.n_hop}hopNbrs.pt') checkpoint = {"state_dict": self.model.state_dict(), "config": self.model.config.__dict__} torch.save(checkpoint, model_save_path) # early stop if not is_better_eval: if self.wait == self.patience: raise EarlyStopError("Early stopping raised.") else: self.wait += 1 else: self.wait = 0 def on_exception(self, exception): if isinstance(exception, KeyboardInterrupt): if self.quit_all is True: sys.exit(0) else: pass else: raise exception class LRDecayCallback(Callback): def __init__(self, parameters, decay_rate=1e-3, steps=100): super().__init__() self.paras = parameters self.decay_rate = decay_rate self.steps = steps def on_step_end(self): if self.step % self.update_every == 0: step = self.step // self.update_every if step % self.steps == 0: for para in self.paras: para['lr'] = para['lr'] * (1 - self.decay_rate)
[ "cxan@ChenxindeMacBook-Pro.local" ]
cxan@ChenxindeMacBook-Pro.local
490df8c8807c725fdf915ccba2ff1496bd0ac937
60cb975f3e0251c73c457271bce8a7b2036e422b
/studysrc/mytest/websppider/transtest.py
23c308fa3b1c83bba1c6cd379e0c29e746a2f19d
[]
no_license
49257620/reboot
0a2341f23bc1a6f3ae47b59f772919228c623544
86b348228d1a25d78c45b0e9022d7c773544373b
refs/heads/master
2018-11-17T19:19:58.969710
2018-09-25T03:15:57
2018-09-25T03:15:57
125,727,532
0
0
null
null
null
null
UTF-8
Python
false
false
976
py
# encoding: utf-8 # Author: LW import urllib.request import urllib.parse import time import random import hashlib content = 'what fuck' url = 'http://fanyi.youdao.com/translate?smartresult=dict&smartresult=rule' data = {} ''' 1523493384696 1523493371204 351ac046404e1bbcb9442615f964a96d cb2731255a15489013919b3788953bdc ''' u = 'fanyideskweb' d = content f = str(int(time.time()*1000) + random.randint(1,10)) c = 'ebSeFb%=XZ%T[KZ)c(sy!' sign = hashlib.md5((u + d + f + c).encode('utf-8')).hexdigest() print(f) print(sign) data['i']: content data['from']: 'AUTO' data['to']: 'AUTO' data['smartresult']: 'dict' data['client']: 'fanyideskweb' data['salt'] = f data['sign'] = sign data['doctype']: 'json' data['version']: '2.1' data['keyfrom']: 'fanyi.web' data['action']: 'FY_BY_CLICKBUTTION' data['typoResult']: 'false' data = urllib.parse.urlencode(data).encode('utf-8') response = urllib.request.urlopen(url, data) html = response.read().decode('utf-8') print(html)
[ "49257620@qq.com" ]
49257620@qq.com
8b37209b33d201b789d2658845aa87843ef7a8e0
db144fdc9a1948cce066bed20912c32e1a18a8aa
/accounts/views.py
49c0aa25bf7c13a2faa3ed61bf4acc3c6a75f458
[]
no_license
masato932/django-blog3
cd01101cbffdbaa33d2cb9bf696e5a5cdf8cd6fa
769068ba356cf8e0cc0bbde76e82e116e58b8bab
refs/heads/main
2023-05-13T20:14:43.706480
2021-06-05T14:03:13
2021-06-05T14:03:13
365,480,981
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
from django.shortcuts import render, redirect from allauth.account import views class LoginView(views.LoginView): template_name = 'accounts/login.html' class LogoutView(views.LogoutView): template_name = 'accounts/logout.html' def post(self, *args, **kwargs): if self.request.user.is_authenticated: self.logout() return redirect('/') class SignupView(views.SignupView): template_name = 'accounts/signup.html' # Create your views here.
[ "masatowada66@gmail.com" ]
masatowada66@gmail.com
9ed2c8e05d8b011321f54977f2d63a7de27935b1
e93117371d0c5c6b3eb0b177fc4b2acc8f9524de
/TestFiles/test_cp.py
8d5a4bfb1545f4f8b2be1b6b96f89b41a25a789c
[]
no_license
marthinwurer/TournamentRecorder
94dfc8af28455e3844628616cef45d1e3a3fdd6c
87f04c4caa68d12935e339d253525e3364ab8f68
refs/heads/master
2021-03-24T09:11:44.460711
2016-11-29T04:47:44
2016-11-29T04:47:44
67,151,794
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
""" This file tests the create player (cp) method of the API Author: TangentTally """ import unittest import sys sys.path.insert(0, "../src") import tr_api class TestAp(unittest.TestCase): def setUp(self): tr_api.createPlayer(1, 'Evan') self.topdict = tr_api.listPlayers() self.topdict2 = tr_api.createPlayer(1, "Fail2") def tearDown(self): tr_api.createPlayer(2, 'Ben') tr_api.createPlayer(3, 'Will') tr_api.createPlayer(4, 'Jon') def test_add_player(self): self.assertEqual(len(self.topdict.get('rows')), 1) def test_new_player_id(self): self.assertEqual(self.topdict.get('rows')[0].get('id'), 1) def test_new_player_name(self): self.assertEqual(self.topdict.get('rows')[0].get('name'), 'Evan') def test_fail_cp_same_id(self): self.assertFalse(self.topdict2.get('outcome')) def test_fail_cp_error_message(self): self.assertEqual(self.topdict2.get('reason'), 'DCI Exists')
[ "evanditto9@gmail.com" ]
evanditto9@gmail.com
69f95154a6b1698708090146d7eafde38aea3f17
955781aa0539cb4b61c189ad86d61f332c60f307
/project/rmethods_rec_train.py
bfe1b663e861095bfec55ea328a660409faea4a1
[ "Apache-2.0" ]
permissive
LARC-CMU-SMU/coleridge-rich-context-larc
26039a436555fb0ab0d38f4af442f389f32da5ca
a0b6cba59b843bbaf98cdcb5e661b1c524a79db0
refs/heads/master
2020-04-08T18:45:30.960621
2019-06-15T10:02:11
2019-06-15T10:02:11
159,623,704
0
0
null
null
null
null
UTF-8
Python
false
false
2,811
py
import argparse import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.linear_model import SGDClassifier from sklearn.utils import shuffle from sklearn.externals import joblib from rcc_conf import RAND_SEED from rcc_utils import json_from_file class RMethodContextExtractor(BaseEstimator, TransformerMixin): """Extract title and contents features. """ def fit(self, x, y=None): return self def transform(self, data): # construct object dtype array with two columns # first column = 'title' and second column = 'contents' features = np.empty(shape=(len(data), 2), dtype=object) for i, d in enumerate(data): features[i, 0] = d['title'] features[i, 1] = d['contents'] return features def _generate_train_model(data_train, labels_train, output_file): print('Training research method model for recommendation...') features = ColumnTransformer( [ ('title', TfidfVectorizer(ngram_range=(1, 2)), 0), ('contents', TfidfVectorizer(ngram_range=(1, 1)), 1), ], transformer_weights={ 'title': 1.0, 'contents': 1.0 } ) sgd = SGDClassifier(loss='log', penalty='l2', alpha=1e-4, random_state=RAND_SEED, max_iter=2000, tol=1e-3) pipeline = Pipeline([ ('feature_set_extractor', RMethodContextExtractor()), ('union', features), ('clf', sgd)]) pipeline.fit(data_train, labels_train) joblib.dump(pipeline, output_file, compress='zlib') print('Model file {} saved.'.format(output_file)) def main(args): rmethod_ctx_train = json_from_file(args.input) rmethod_ctx_train = [d for d in rmethod_ctx_train if d['title'] is not None] labels_train = [d['method'] for d in rmethod_ctx_train] rmethod_ctx_train, labels_train = shuffle(rmethod_ctx_train, labels_train, random_state=RAND_SEED) _generate_train_model(rmethod_ctx_train, labels_train, args.output) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Train classifier model for \ research method recommendation.') parser.add_argument('--input', type=str, required=True, help='Filename of input dataset to train the models.') parser.add_argument('--output', type=str, required=True, help='Filename of model output') args = parser.parse_args() main(args)
[ "philipskokoh@gmail.com" ]
philipskokoh@gmail.com
8c8a966e406d530b9ab30c7abb9645b76d1a5898
bf833d3048f1eabc3e47101412ac77d14a43f332
/src/augment_me.py
e546249219c040609b22161b7fa6182efc20e5ce
[]
no_license
DavidDavidsonDK/Person-Detection
c6c177ab0ddd42320741796edc372e4a5f42d11a
718d16e8cd1f5b4e876951365c75ee88d752c308
refs/heads/master
2020-04-11T22:34:42.747205
2018-12-29T07:15:33
2018-12-29T07:15:33
162,140,905
0
0
null
null
null
null
UTF-8
Python
false
false
2,962
py
import numpy as np import cv2 from ano_parser import PascalVocWriter,PascalVocReader from plot import draw_rect from PIL import Image import matplotlib.pyplot as plt import math from tqdm import tqdm from rotation import Rotation from random_translation import Translate from random_scale import Scale from horizontal_flip import HorizontalFlip import os class Augmentation(object): def __init__(self,rotation=True,translate=True,scale=True,horizontal_flip=True,**kwargs): self.augmentators = {} if rotation: ag = kwargs['ag'] if 'ag' in kwargs else 30 self.rotation = Rotation(ag) self.augmentators['rotation'] = self.rotation if translate: tr = kwargs['tr'] if 'tr' in kwargs else 0.2 self.translate = Translate(tr) self.augmentators['translate'] = self.translate if scale: sc_lower = kwargs['sc_lower'] if 'sc_lower' in kwargs else 0.2 sc_upper = kwargs['sc_upper'] if 'sc_upper' in kwargs else 0.2 self.scale = Scale((sc_lower,sc_upper)) self.augmentators['scale'] = self.scale if horizontal_flip: self.horizontal_flip = HorizontalFlip() self.augmentators['horizontal_flip'] = self.horizontal_flip def __augment(self,im_path,im_name,ano_reader,dest_path): im = np.array(Image.open(im_path+im_name+'.jpg'), dtype=np.uint8) boxes = np.array([[shape[1][0][0],shape[1][0][1], shape[1][1][0],shape[1][1][1]] for shape in ano_reader.getShapes()]) d_flags = [int(shape[4]) for shape in ano_reader.getShapes()] i = 0 for key,transformer in self.augmentators.items(): name_like = dest_path + im_name + '_'+key ano_writer = PascalVocWriter('augmented', im_name + '_'+key+'.jpg', im.shape,localImgPath=name_like+'.jpg') a_im,a_boxes = transformer(im,boxes.astype(np.float64)) for box in a_boxes: ano_writer.addBndBox(math.ceil(box[0]),math.ceil(box[1]),math.ceil(box[2]),math.ceil(box[3]),'person',d_flags[i]) #the last 0 means dificult i+=1 ano_writer.save(name_like+'.xml') cv2.imwrite(name_like+'.jpg',a_im) i = 0 def augment(self, file_path='../data/raw/citycams_1/', dest_path='../data/augmented/'): for img_or_xml in tqdm(os.listdir(file_path)): if img_or_xml.endswith('.jpg'): main_part_of_name = img_or_xml.split('.')[0] ano_reader = PascalVocReader(file_path+main_part_of_name+'.xml') self.__augment(file_path,main_part_of_name,ano_reader,dest_path) if __name__ == '__main__': print('Augmantation start...') aug = Augmentation(rotation=True, translate=True, scale=True, horizontal_flip=True,ag = 20,tr=0.2,sc_lower=0.2,sc_upper=0.6) aug.augment() print('Augmantation finish')
[ "d.kprogrammer0.0@gmail.com" ]
d.kprogrammer0.0@gmail.com
e5be18291d8f73243a4c9f25f3a48e3ce073b814
a7e40fc92f2681beef1c41afb0e348a910d0dc06
/misc_tool/fixfix.py
07be6bea5d3f88e9f20eff4f8610623fda11e076
[]
no_license
yacheng1127/YW-Python
ae0e7480859e21c6aaab20a166561c818387ec44
e88cfd202c7449a23dd8bb8d659bbdc0df1a1ff9
refs/heads/package
2020-12-24T17:26:23.905392
2013-09-26T13:41:49
2013-09-26T13:41:49
7,425,035
0
1
null
2013-05-14T13:04:40
2013-01-03T15:36:42
Python
UTF-8
Python
false
false
22,076
py
################################################################################################ ## fixfix: post-processes drifter tracks ## xiuling.wu ## August 9, 2011 ## ## Jim Manning modifications ## October 2011 ## March 2012 ## Nov 2012 trouble with ginput causing segfault ## STEPS ARE AS FOLLOWS: # - load all the ascii data file # - for each drifter it conducts 4 basic steps # - eliminate repeat times # - calculate forward and backward differences (velocity) and eliminate bad points # - writes meta data to log file # - check for drogue loss # - clean plots of track (pth) and velocity uv_id_final.png) # - generates oracle ready ascii file ################################################################################################## import sys sys.path.append("/home3/ocn/jmanning/py/jmanning/whython6/") import csv from conversions import ll2uv #To convert from longitude/latitude to unit vectors import numpy as np import matplotlib as mpl import matplotlib.mlab as ml #part1 #import scipy #from scipy import * #import pylab from pylab import * import matplotlib.pyplot as plt #import basemap from matplotlib.dates import num2date,date2num, DateFormatter import math ### HARD CODE ################################################################################ critfactor=8 #multipe of the mean velcity to discard minla=20;maxla=48;minlo=-150;maxlo=-20 # delimiting data to make it easier bathy=True # set to "True" if isobaths are wanted fid=open("/home3/ocn/jmanning/drift/drift.log","a")#permanent log file that is appended to../home3/ocn/jmanning/drift/drift.log # load /data5/jmanning/drift/massdmf/withtemp_2009.dat ##ids with temperature #list(set(line.strip() for line in open('X:/drift/bowdoin/2009/withtemp_2009.dat'))) # ids with temperature #fileformat='bowdoin'; # format of temperature data (sometimes "emolt") if using minilog/dat files #wt='withtemp_2009' direcin="/net/nwebserver/drifter/" # directory where the final plots are stored #direcout='/net/data5/jmanning/drift/umassb/2012' #'/data5/jmanning/drift/css/2011' #fn='drift_umb_2012_1.dat' direcout='/net/data5/jmanning/drift/kocik/2012' #'/data5/jmanning/drift/css/2011' fn='drift_cfcc_2012_1.dat' fid.write('\n'+'#'*40+' below is '+str(fn)+' log '+'#'*40+'\n') depcont=[-10] # depth contour in final plot (apparently not used in 5/2012) year=int(2012) strattle=0 # this will eventually flag to "1" if yeardays change by more than 365 ### END HARDCODES ################################################ #raw data loaded idss,yeardays_all,lat_all,lon_all,day_all,hours_all,minutes_all,depths,temps=[],[],[],[],[],[],[],[],[] csv_reader=csv.reader(open(direcin+fn,"r")) for line in (x for x in csv_reader if x[0][0] !='%'): # if the first line is comment line, skip # print float(line[0].split()[8]) if float(line[0].split()[8])<maxla and float(line[0].split()[8])>minla and float(line[0].split()[7])>minlo and float(line[0].split()[7])<maxlo: idss.append(line[0].split()[0]) yeardays_all.append(line[0].split()[6]) lat_all.append(line[0].split()[8]) lon_all.append(line[0].split()[7]) day_all.append(line[0].split()[3]) hours_all.append(line[0].split()[4]) minutes_all.append(line[0].split()[5]) depths.append(line[0].split()[9]) temps.append(line[0].split()[10]) # get ids id=list(set(idss)) # convert string to float yeardays_all=[float(i)+1 for i in yeardays_all]# in python num2date(), less one day than matlab, so add 1 here lat_all=[float(i) for i in lat_all] lon_all=[float(i) for i in lon_all] #days_all=[float(i) for i in days_all] #ids=[float(i) for i in ids] days_all,ids=[],[] for i in range(len(day_all)): days_all.append(int(float(day_all[i]))) for i in range(len(id)): ids.append(int(float(id[i]))) fido=open(direcout+'/prep_for_oracle_'+fn[6:],'w') ids=np.sort(ids) #ids=[110410712]#,11041073] for k in range(len(ids)): #where "ids" is a list of distinct ids and int # latitude, longitude, time strattle=0 lat,lon,time,yeardays,depth,temp=[],[],[],[],[],[] for i in range(len(idss)): if int(float(idss[i]))==ids[k]: lat.append(lat_all[i]) lon.append(lon_all[i]) if (i>1)&(strattle==0):# here's where we account for a new year if yeardays_all[i]-yeardays_all[i-1]<-200: year=year+1 print 'incremented year to '+str(year) strattle=1 yeardays.append(yeardays_all[i]) #time.append(date2num(num2date(yeardays_all[i]).replace(year=year).replace(day=days_all[i]))) time.append(date2num(num2date(yeardays_all[i]).replace(year=year))) depth.append(depths[i]) temp.append(temps[i]) #print time print "there are ", len(lat), " fixes for id =",ids[k] print "Note: Check to see if any of these already exist in database before loading" # STEP 1a: check to make sure time is monotonic #if len(find(diff(time)<=0))>0: # plot(time) # show() #raw_input('Trouble with time not increasing press return to continue') # close() # STEP 1b: check for repeat times ###### while time[i]==time[i-1], get the del_same_time_index ######## del_same_time_index=[] for i in range(1,len(time)): if int(time[i-1])==int(time[i]) and num2date(time[i-1]).hour== num2date(time[i]).hour and num2date(time[i-1]).minute== num2date(time[i]).minute: del_same_time_index.append(i) del_same_time_index.reverse() if del_same_time_index==[]: print "there is no same time." else: print str(len(del_same_time_index))+' points deleted with the same times' index=range(len(time)) for i in del_same_time_index: del lat[i],lon[i],time[i],yeardays[i],depth[i],temp[i] # STEP 2a: ############ calculate forward and backward velocities of the raw data ########################## forward_u,forward_v,forward_spd,jdn=ll2uv(time,lat,lon)# was yeardays but now uses "time" as of 3/29/2012 backward_u,backward_v,backward_spd,backward_jdn=ll2uv(time[::-1],lat[::-1],lon[::-1]) ## calculate resultants id_fs=list(np.where(np.array(forward_spd)<500)[0]) id_bs=list(np.where(np.array(backward_spd)<500)[0]) idc=[val for val in id_fs if val in id_bs] jdraw,spdraw=[],[] for i in idc: jdraw.append(jdn[i]) spdraw.append(forward_spd[i]) ########### plot the velocities ################################################### ## def plot_speed(time,speed): ## #fig=plt.figure() ## ax = fig.add_subplot(111) #to divide the fig into some area and (line row chose) ## plt.title('Difter#'+str(ids[k])) ## jd=[] ## for i in time: ## jd.append(i) ## plt.plot(jd,speed,'b-') #locator = mpl.dates.AutoDateLocator() #ax.xaxis.set_major_locator(locator) ## if len(jd)<100: ## else: ## monthsFmt = DateFormatter('%b/%d') ## ax.set_ylabel('cm/s') #ax.xaxis.set_major_formatter(monthsFmt) ## ax.set_xlabel(str(year),fontsize=17) ## plt.grid() ## fig=plt.figure() ## plot_speed(jdraw,spdraw)## plot speed ## plt.show() ## plt.close() ####################################################################################### # calculate a reasonable criteria for this drifter crit=np.mean([abs(i) for i in forward_spd])*critfactor print "Velocity criteria set to ", str(critfactor),' times the mean or ',str(crit),' cm/s' # check for drifter going aground (ie very low velocity) idlow=list(np.where(np.array(spdraw)<float(np.mean([abs(i) for i in forward_spd]))/100)[0]) # if idlow is not empty, add the comments in fid file if idlow<>[]: for i in range(len(idlow)): print 'WARNING: Drifter ',str(ids[k]),' may be hung up on gear or aground on ',str(idlow[i]),' where velocity is < 1# mean' #fid.write(str(ids[k]).rjust(10)+' apparently hung-up on '+str(idlow[i])+'\n') idlow_print0=str(sorted(idlow)) idlow_print1=idlow_print0.replace(', ',' ') tempochunk0=str(ids[k]).rjust(10)+' apparently hung-up on '+str(idlow_print1)+'\n'#'from'+str(idlow[0])+'to'+str(idlow[-1])+'\n' else: tempochunk0='There is no point hung up\n' #### find bad velocities where criteria was just calculated idbadf=list(np.where(abs(np.array(forward_spd))>crit)[0]) idbadb=list(np.where(abs(np.array(backward_spd))>crit)[0]) #if it is the 2nd time/point in the bad forward velocity (fu) that caused the problem # then the 2nd time/point associated with the bad backward velocity should match timeb=time[::-1] # backwards time vector badtime=list(set([time[i+1] for i in idbadf]).intersection(set([timeb[i+1] for i in idbadb]))) print "%10.3f percent bad velocities deleted according to velocity criteria" % float(len(badtime)/float(len(lat))*100.) index_badtime=[]# find near the badtime points for i in badtime: index_badtime.append(int(np.interp(i,time,range(len(time))))) if index_badtime<>[]: index_badtime.reverse() for i in index_badtime: index_near_badtimes=[] if i-5<0: ra=range(0,i+5) elif i+5>len(lat): ra=range(i-5,len(lat)-1) else: ra=range(i-5,i+5) for m in ra: index_near_badtimes.append(m) plot_badtime=list(set(index_near_badtimes)) #plot the bad time data and near the bad time data's points #plt.plot([lon[l] for l in plot_badtime],[lat[l] for l in plot_badtime],marker='.',) #plt.plot([lon[l] for l in index_badtime],[lat[l] for l in index_badtime],marker='o',markerfacecolor='r',linestyle='None') fig=plt.figure() plt.plot([lon[l] for l in plot_badtime],[lat[l] for l in plot_badtime],marker='.',) plt.plot(lon[i],lat[i],marker='o',markerfacecolor='r',linestyle='None') plt.show() #plt.close() del_or_not=raw_input('Delete? (y/n or 1 for the end point): ') if del_or_not=='y': del time[i],lat[i],lon[i],yeardays[i],depth[i],temp[i] elif del_or_not=='1': plt.plot(lon[i-1],lat[i-1],marker='o',markerfacecolor='r',linestyle='None') plt.show() raw_input('How is that? press return') del time[i-1],lat[i-1],lon[i-1],yeardays[i-1],depth[i-1],temp[i-1] plt.close() plt.close() # STEP 3: # delelte values bad due to objective criteria #index_badtime.reverse() #for i in index_badtime: # if lat[i]!=999: # del time[i],lat[i],lon[i],yeardays[i],depth[i],temp[i] #print str(float(len(badtime))/len(time)*100),'# editted due to bad velocities > criteria' idgood=len(lat) ############################################################################################### # Step 4a: # calculate forward velocities of the automatically editted data fu,fv,spd1,jd1=ll2uv(time,lat,lon) fig=plt.figure() #plot_speed(jd1,spd1) plt.plot(jd1,spd1) plt.plot(jd1,spd1,marker="o",markerfacecolor="r",linestyle='None') plt.show() print 'click on any obviously bad points and then press the enter key.' badpoints=ginput(n=0) print badpoints#,timeout=10) #badpoints=ginput(0,timeout=10,mouse_stop=3) #badpoints=[] #close() # Step 4b: # eliminate those points clicked as bads # find badpoints index in yeardays index_badpoints=[] badpoints_num=len(badpoints) for i in range(len(badpoints)): index_badpoints.append(int(np.interp(badpoints[i][0],jd1,range(len(jd1))))) print index_badpoints index_badpoints=list(set(index_badpoints)) print "%10.2f percent bad velocities deleted according to manual clicks on velocity" % float(float(badpoints_num)/len(lat)*100.) for i in sorted(index_badpoints)[::-1]: del time[i], lat[i], lon[i], yeardays[i],depth[i],temp[i] #plt.close() plot_again=raw_input("Do you want to replot the figure after delete the bad points?(y/n)") #plot_again='y' if plot_again=="y" or plot_again=="Y" or plot_again=="yes": #plt.close('all') fig=plt.figure() fu2,fv2,spd2,jd2=ll2uv(time,lat,lon) #plot_speed(jd2,spd2) plt.plot(jd2,spd2,'mo-',markersize=5)#marker='o',markerfacecolor="r",linestyle='None') plt.show() #plt.close() #print 'pausing 10 seconds' #sleep(10) # if there are a list of bad points, click the first point and the last point, then delete between them del_between=raw_input('Do you want to delete all the points between two points? input "N" or "Y"' ) #del_between='N' if del_between=="N" or del_between=="n": print "You have choosen NOT to delete all the points between two points." if del_between=="Y" or del_between=="y" : print "Please click the first bad point and the last bad point to choose the range of the bad points" between_badpoints=ginput(n=0) print between_badpoints#,timeout=0)#,mouse_stop=2) index_between_badpoints=[] for i in range(len(between_badpoints)): index_between_badpoints.append(int(np.interp(between_badpoints[i][0],jd2,range(len(jd2))))) print index_between_badpoints index_betweens=[] for i in range(sorted(index_between_badpoints)[0],sorted(index_between_badpoints)[1]+1): index_betweens.append(i) for i in index_betweens[::-1]: del lat[i],lon[i],time[i],yeardays[i],depth[i],temp[i] del_between_badpoints=sorted(index_between_badpoints)[1]-sorted(index_between_badpoints)[0]+1 badpoints_num=len(badpoints)+del_between_badpoints print "%10.2f percent editted due to bad velocities from manual clicks between two points" % float(float(badpoints_num)/len(time)*100.) if ids[k]==1174306915 or ids[k]==1174306911: del time[-1], lat[-1], lon[-1], yeardays[-1],depth[-1],temp[-1] fig=plt.figure() fu3,fv3,spd3,jd3=ll2uv(time,lat,lon) #plot_speed(jd3,spd3) plt.plot(jd3,spd3,'bo-') plt.show() #step 5a: #manually delete points based on track ############################################################################################################## fig=plt.figure() #plt.figure(2) #plt.plot(lon,lat,'k-') plt.plot(lon,lat,'ro-') plt.show() print 'click on any obviously bad points and then press the enter key on the track.' bad=ginput(n=0) print bad badplotpts=[] #index of points that are found to be near the same index of x & y if len(bad)>0: for kbad in range(len(bad)): idxbad=ml.find(abs(lon-bad[kbad][0])==min(abs(lon-bad[kbad][0]))) idybad=ml.find(abs(lat-bad[kbad][1])==min(abs(lat-bad[kbad][1]))) print idxbad,idybad if idxbad==idybad: print lat[int(idxbad)],lon[int(idxbad)],' is bad' badplotpts.append(int(idxbad)) for kk in range(len(badplotpts)): plt.plot(lon[badplotpts[kk]],lat[badplotpts[kk]],'bo') # #thismanager = get_current_fig_manager() # #thismanager.window.SetPosition((1000,500)) plt.show() for i in sorted(badplotpts)[::-1]: del time[i], lat[i], lon[i], yeardays[i],depth[i],temp[i] #fig=plt.figure() plt.plot(lon,lat,'yo-') plt.show() raw_input(str(len(badplotpts))+' deleted from manual click on track. Press return to continue') #plt.close() # write to log file if some data was editted if badpoints_num>0: tempochunk1=(str(ids[k]).rjust(10)+' '+ str(crit).rjust(10)+' '+ str(badpoints_num).rjust(10)+' '+ str(idgood).rjust(10)+" "+str(math.floor(time[-1]-time[0])).rjust(10)+" manual editted uv plot\n") else: tempochunk1='There is no bad point delete manual.\n' if len(badtime)>0: tempochunk2=(str(ids[k]).rjust(10)+' '+ str(crit).rjust(10)+' '+ str(len(badtime)).rjust(10)+' '+ str(idgood).rjust(10)+" "+str(math.floor(time[-1]-time[0])).rjust(10)+" objectively editted\n") else: tempochunk2='There is no bad velocities deleted according to velocity criteria.\n' if len(badplotpts)>0: tempochunk3=(str(ids[k]).rjust(10)+' '+ str(crit).rjust(10)+' '+ str(len(badplotpts)).rjust(10)+' '+ str(idgood).rjust(10)+" "+str(math.floor(time[-1]-time[0])).rjust(10)+" manually editted track points\n") else: tempochunk3='There is no bad point delete manual on track.\n' # clean velocities w/out bad points [u2,v2,spd2,jd2]=ll2uv(time,lat,lon) #was "yeardays" until 3/2012 to deal with strattling new year #plot time, lat,lon fig=plt.figure(figsize=(10,8)) ax = fig.add_subplot(111) print 'calling basemap_usgs ' #print min(lat),min(lon),max(lat),max(lon) #if max(lon)-min(lon)>4.0: # basemap.basemap(lat,lon)#,(float(min(max(lat)-min(lat),max(lon)-min(lon)))+1.0)/5*4) #else: # basemap.basemap_detail(lat,lon,bathy, False,float(min(max(lat)-min(lat),max(lon)-min(lon)))/5*4) #basemap.basemap_usgs(lat,lon,False)#,depcont) print 'past basemap' ax.plot(lon,lat,marker=".",markerfacecolor='r',markersize=10) points_num=10 ax.set_ylabel('latitude') ax.set_xlabel("longitude") #ax.set_xlim(min(lon)-(max(lon)-min(lon))/10.,max(lon)+(max(lon)-min(lon))/10.) #ax.set_ylim(min(lat)-(max(lat)-min(lat))/10.,max(lat)+(max(lat)-min(lat))/10.) ax.set_xlim(min(lon),max(lon)) ax.set_ylim(min(lat),max(lat)) plt.title('Drifter #'+str(ids[k]),fontsize=16) # fig.autofmt_xdate() #display the time "lean" ax.xaxis.set_label_coords(0.5, -0.1)#set the position of the xtick labels ax.yaxis.set_label_coords(-0.08, 0.4) # the last points, annotate "end" self_annotate1=ax.annotate("End", xy=(lon[-1], lat[-1]),xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) self_annotate2=ax.annotate("Start", xy=(lon[0], lat[0]),xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) if time[-1]-time[0]<=2: if len(time)<5: skip=1 else: skip=int(float(len(time))/5) for i in range(0,len(time),skip): self_annotate3=ax.annotate(num2date(time[i]).replace(tzinfo=None).strftime('%d-%b %H:%M'), xy=(lon[i], lat[i]), xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) # self_annotate3.draggable() elif (time[-1]-time[0]>2.0)&(time[-1]-time[0]<20.0): for i in range(1,len(time)): if num2date(time[i-1]).day<>num2date(time[i]).day: self_annotate4=ax.annotate(num2date(time[i]).replace(tzinfo=None).strftime('%d-%b'), xy=(lon[i], lat[i]), xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) else: # place approximately 10 labels for i in range(1,len(time),int(len(time)/10.)): #if num2date(time[i-1]).day<>num2date(time[i]).day: self_annotate4=ax.annotate(num2date(time[i]).replace(tzinfo=None).strftime('%d-%b'), xy=(lon[i], lat[i]), xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) # self_annotate4.draggable() #drag the text if you want thismanager = plt.get_current_fig_manager() thismanager.window.SetPosition((1000, 0)) plt.show() plt.savefig(direcin+'pth_'+str(ids[k])+'_final'+".ps") plt.savefig(direcin+'pth_'+str(ids[k])+'_final'+".png") raw_input('press return to close final track window') plt.close() # plt.show() #plot u & v fig=plt.figure() ax1 = fig.add_subplot(111) plt.plot(jdn,forward_u,"r",label='raw eastward') plt.plot(jdn, forward_v,"b",label='raw northward') plt.plot(jd2,u2,"m",linewidth=2,label='final eastward') plt.plot(jd2,v2,"g",linewidth=2,label='final northward') leg=plt.legend() # leg.draggable() locator = mpl.dates.AutoDateLocator() ax1.xaxis.set_major_locator(locator) if len(jdn)<100: monthsFmt = DateFormatter('%b/%d %H:') else: monthsFmt = DateFormatter('%b/%d') ax1.xaxis.set_major_formatter(monthsFmt) ax1.set_xlabel(str(year)) ax1.set_ylabel('cm/s (where 50 ~ 1 knot)') fig.autofmt_xdate() #display the time "lean" plt.title('Drifter '+str(ids[k])+' cleaned',fontsize=16) plt.savefig(direcin+'uv_'+str(ids[k])+'_final'+'.ps') plt.savefig(direcin+'uv_'+str(ids[k])+'_final'+'.png') plt.show() raw_input('press return to close uv window') # close() # write out id,date,lat,lon,yrday0_gmt,temp, and depth_i depth=[float(i) for i in depth] for i in range(len(time)): fido.write(str(ids[k]).rjust(10)+ " " +num2date(time[i]).replace(tzinfo=None).strftime('%d-%b-%Y:%H:%M')+" ") fido.write(("%10.6f") %(lat[i])) fido.write(" ") fido.write(("%10.6f") %(lon[i])) fido.write(" ") fido.write(("%10.6f") %(yeardays[i]-1)) fido.write(" ") fido.write(temp[i]+ " ") fido.write(("%5.1f") %(depth[i])) fido.write('\n') if k<>len(ids)-1: raw_input("Press Enter to process next drifter") whetherlog=raw_input('Do you want to keep this log?') if whetherlog=="Y" or whetherlog=="y" : fid.write(tempochunk0) fid.write(tempochunk1) fid.write(tempochunk2) fid.write(tempochunk3) print 'log has been saved.' fido.close() fid.close()
[ "james.manning@noaa.gov" ]
james.manning@noaa.gov
9c85a3150d50dce18e37c4fd3faae85c74370fc8
32b628faa8b8ca8d11d8837cc495c0013f58b71a
/scripts/matrix2matrix.py
db91bd6468fb706939d9b97cc2c5810de2e084d0
[ "BSD-2-Clause" ]
permissive
jaquol/cgat
40b81617625ae9f0ba352caf38c2afd6a13c58f6
d26fab0dff2192d4accc128d2895e668254d7b65
refs/heads/master
2021-01-12T22:33:46.186451
2016-01-15T16:56:43
2016-01-15T16:56:43
49,868,597
1
0
null
2016-01-18T10:10:24
2016-01-18T10:10:24
null
UTF-8
Python
false
false
17,852
py
''' matrix2matrix.py - operate on matrices ====================================== :Author: Andreas Heger :Release: $Id$ :Date: |today| :Tags: Python Purpose ------- * full: full matrix with row and column headers (unless --no-headers is given.) * sparse: sparse matrix * phylip: phylip formatted matrix, but using tabs as separators and long names. Methods: sort-rows sort rows by order in --rows-tsv-file sort-columns sort columns by order in --columns-tsv-file mask-rows set rows matching ids in --rows-tsv-file to --value mask-columns set columns matching ids in --columns-tsv-file to --value mask-rows-and-columns set rows and columns matching ids in --columns-tsv-file to --value (and) Usage ----- Example:: python matrix2matrix.py --help Type:: python matrix2matrix.py --help for command line help. Command line options -------------------- ''' import sys import math import StringIO import numpy import CGAT.Experiment as E import CGAT.IOTools as IOTools import CGAT.CorrespondenceAnalysis as CorrespondenceAnalysis import CGAT.MatlabTools as MatlabTools import scipy def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if argv is None: argv = sys.argv parser = E.OptionParser( version="%prog version: $Id: matrix2matrix.py 2782 2009-09-10 11:40:29Z andreas $") parser.add_option("-m", "--method", dest="methods", type="choice", action="append", choices=("normalize-by-min-diagonal", "normalize-by-column", "log", "ln", "negzero2value", "set-diagonal", "subtract-matrix", "mix-matrix", "normalize-by-matrix", "normalize-by-column-max", "normalize-by-row-max", "normalize-by-column-min", "normalize-by-row-min", "normalize-by-column-median", "normalize-by-row-median", "normalize-by-column-mean", "normalize-by-row-mean", "normalize-by-column-total", "normalize-by-row-total", "correspondence-analysis", "normalize-by-value", "add-value", "sort-rows", "sort-columns", "transpose", "upper-bound", "lower-bound", "subtract-first-col", "multiply-by-value", "divide-by-value", "mask-rows", "mask-columns", "mask-rows-and-columns", "symmetrize-mean", "symmetrize-max", "symmetrize-min", ), help="""method to use [default=%default]""" ) parser.add_option("-s", "--scale", dest="scale", type="float", help="factor to scale matrix by [default=%default].") parser.add_option("-f", "--format", dest="format", type="string", help="output number format [default=%default].") parser.add_option("--rows-tsv-file", dest="filename_rows", type="string", help="filename with rows to mask [default=%default].") parser.add_option("--columns-tsv-file", dest="filename_columns", type="string", help="filename with columns to mask [default=%default].") parser.add_option("-p", "--parameters", dest="parameters", type="string", help="Parameters for various functions.") parser.add_option("-t", "--header-names", dest="headers", action="store_true", help="matrix has row/column headers.") parser.add_option("--no-headers", dest="headers", action="store_false", help="matrix has no row/column headers.") parser.add_option("-a", "--value", dest="value", type="float", help="value to use for various algorithms.") parser.add_option("-i", "--input-format", dest="input_format", type="choice", choices=("full", "sparse", "phylip"), help="""input format for matrix.""" ) parser.add_option("-o", "--output-format", dest="output_format", type="choice", choices=("full", "sparse", "phylip"), help="""output format for matrix.""" ) parser.add_option("--missing-value", dest="missing", type="float", help="value to use for missing values. If not set, missing values will cause the script to fail [default=%default].") parser.set_defaults( methods=[], scale=1.0, headers=True, format="%6.4f", output_format="full", input_format="full", value=0.0, parameters="", write_separators=True, filename_rows=None, filename_columns=None, missing=None, ) (options, args) = E.Start(parser) options.parameters = options.parameters.split(",") lines = filter(lambda x: x[0] != "#", sys.stdin.readlines()) if len(lines) == 0: raise IOError("no input") chunks = filter(lambda x: lines[x][0] == ">", range(len(lines))) if not chunks: options.write_separators = False chunks = [-1] chunks.append(len(lines)) if options.filename_rows: row_names, n = IOTools.ReadList(open(options.filename_rows, "r")) if options.filename_columns: column_names, n = IOTools.ReadList(open(options.filename_columns, "r")) for chunk in range(len(chunks) - 1): try: raw_matrix, row_headers, col_headers = MatlabTools.readMatrix(StringIO.StringIO("".join(lines[chunks[chunk] + 1:chunks[chunk + 1]])), format=options.input_format, headers=options.headers, missing=options.missing) except ValueError, msg: E.warn("matrix could not be read: %s" % msg) continue nrows, ncols = raw_matrix.shape E.debug("read matrix: %i x %i, %i row titles, %i colum titles" % (nrows, ncols, len(row_headers), len(col_headers))) parameter = 0 for method in options.methods: matrix = numpy.reshape(numpy.array(raw_matrix), raw_matrix.shape) if method in ("normalize-by-matrix", "subtract-matrix", "mix-matrix", "add-matrix"): other_matrix, other_row_headers, other_col_headers = MatlabTools.ReadMatrix(open(options.parameters[parameter], "r"), headers=options.headers) other_nrows, other_ncols = other_matrix.shape if options.loglevel >= 2: options.stdlog.write("# read second matrix from %s: %i x %i, %i row titles, %i colum titles.\n" % (options.parameters[parameter], other_nrows, other_ncols, len(other_row_headers), len(other_col_headers))) parameter += 1 elif method == "normalize-by-min-diagonal": for x in range(nrows): for y in range(ncols): m = min(raw_matrix[x, x], raw_matrix[y, y]) if m > 0: matrix[x, y] = raw_matrix[x, y] / m elif method == "normalize-by-column": if nrows != ncols: raise "only supported for symmeric matrices." for x in range(nrows): for y in range(ncols): if raw_matrix[y, y] > 0: matrix[x, y] = raw_matrix[x, y] / raw_matrix[y, y] elif method == "normalize-by-value": matrix = raw_matrix / float(options.parameters[parameter]) parameter += 1 elif method == "normalize-by-row": if nrows != ncols: raise "only supported for symmeric matrices." for x in range(nrows): for y in range(ncols): if raw_matrix[y, y] > 0: matrix[x, y] = raw_matrix[x, y] / raw_matrix[x, x] elif method == "subtract-first-col": for x in range(nrows): for y in range(ncols): matrix[x, y] -= raw_matrix[x, 0] elif method.startswith("normalize-by-column"): if method.endswith("max"): f = max elif method.endswith("min"): f = min elif method.endswith("median"): f = scipy.median elif method.endswith("mean"): f = scipy.mean elif method.endswith("total"): f = sum for y in range(ncols): m = f(matrix[:, y]) if m != 0: for x in range(nrows): matrix[x, y] = matrix[x, y] / m elif method.startswith("normalize-by-row"): if method.endswith("max"): f = max elif method.endswith("min"): f = min elif method.endswith("median"): f = scipy.median elif method.endswith("mean"): f = scipy.mean elif method.endswith("total"): f = sum for x in range(nrows): m = f(matrix[x, :]) if m != 0: for y in range(ncols): matrix[x, y] = raw_matrix[x, y] / m elif method == "negzero2value": # set zero/negative values to a value for x in range(nrows): for y in range(ncols): if matrix[x, y] <= 0: matrix[x, y] = options.value elif method == "minmax": # set zero/negative values to a value for x in range(nrows): for y in range(ncols): matrix[x, y], matrix[y, x] = \ min(matrix[x, y], matrix[y, x]), \ max(matrix[x, y], matrix[y, x]) elif method == "log": # apply log to all values. for x in range(nrows): for y in range(ncols): if matrix[x, y] > 0: matrix[x, y] = math.log10(matrix[x, y]) elif method == "ln": for x in range(nrows): for y in range(ncols): if matrix[x, y] > 0: matrix[x, y] = math.log(matrix[x, y]) elif method == "transpose": matrix = numpy.transpose(matrix) row_headers, col_headers = col_headers, row_headers nrows, ncols = ncols, nrows elif method == "mul": matrix = numpy.dot(matrix, numpy.transpose(matrix)) col_headers = row_headers elif method == "multiply-by-value": matrix *= options.value elif method == "divide-by-value": matrix /= options.value elif method == "add-value": matrix += options.value elif method == "angle": # write angles between col vectors v1 = numpy.sqrt(numpy.sum(numpy.power(matrix, 2), 0)) matrix = numpy.dot(numpy.transpose(matrix), matrix) row_headers = col_headers nrows = ncols for x in range(nrows): for y in range(ncols): matrix[x, y] /= v1[x] * v1[y] elif method == "euclid": # convert to euclidean distance matrix matrix = numpy.zeros((ncols, ncols), numpy.float) for c1 in range(0, ncols - 1): for c2 in range(c1 + 1, ncols): for r in range(0, nrows): d = raw_matrix[r][c1] - raw_matrix[r][c2] matrix[c1, c2] += (d * d) matrix[c2, c1] = matrix[c1, c2] matrix = numpy.sqrt(matrix) row_headers = col_headers nrows = ncols elif method.startswith("symmetrize"): f = method.split("-")[1] if f == "max": f = max elif f == "min": f = min elif f == "mean": f = lambda x, y: float(x + y) / 2 if nrows != ncols: raise ValueError( "symmetrize only available for symmetric matrices") if row_headers != col_headers: raise ValueError( "symmetrize not available for permuted matrices") for x in range(nrows): for y in range(ncols): matrix[x, y] = matrix[y, x] = f( matrix[x, y], matrix[y, x]) elif method == "sub": matrix = options.value - matrix elif method in ("lower-bound", "upper-bound"): boundary = float(options.parameters[parameter]) new_value = float(options.parameters[parameter + 1]) parameter += 2 if method == "upper-bound": for x in range(nrows): for y in range(ncols): if matrix[x, y] > boundary: matrix[x, y] = new_value else: for x in range(nrows): for y in range(ncols): if matrix[x, y] < boundary: matrix[x, y] = new_value elif method == "subtract-matrix": matrix = matrix - other_matrix elif method == "add-matrix": matrix = matrix + other_matrix elif method == "normalize-by-matrix": # set 0s to 1 in the other matrix for x in range(nrows): for y in range(ncols): if other_matrix[x, y] == 0: other_matrix[x, y] = 1.0 matrix = matrix / other_matrix elif method == "mix-matrix": for x in range(len(other_row_headers) - 1): for y in range(x + 1, len(other_col_headers)): matrix[x, y] = other_matrix[x, y] elif method == "set-diagonal": value = float(options.parameters[parameter]) for x in range(min(nrows, ncols)): matrix[x, x] = value parameter += 1 elif method == "transpose": matrix = numpy.transpose(raw_matrix) row_headers, col_headers = col_headers, row_headers elif method == "correspondence-analysis": row_indices, col_indices = CorrespondenceAnalysis.GetIndices( raw_matrix) map_row_new2old = numpy.argsort(row_indices) map_col_new2old = numpy.argsort(col_indices) matrix, row_headers, col_headers = CorrespondenceAnalysis.GetPermutatedMatrix(raw_matrix, map_row_new2old, map_col_new2old, row_headers=row_headers, col_headers=col_headers) elif method == "mask-rows": r = set(row_names) for x in range(len(row_headers)): if row_headers[x] in r: matrix[x, :] = options.value elif method == "mask-columns": r = set(column_names) for x in range(len(col_headers)): if col_headers[x] in r: matrix[:, x] = options.value elif method == "mask-rows-and-columns": r = set(row_names) c = set(column_names) for x in range(len(row_headers)): for y in range(len(col_headers)): if row_headers[x] in r and col_headers[y] in c: matrix[x, y] = options.value raw_matrix = numpy.reshape(numpy.array(matrix), matrix.shape) else: # for simple re-formatting jobs matrix = raw_matrix if options.write_separators: options.stdout.write(lines[chunks[chunk]]) MatlabTools.writeMatrix(sys.stdout, matrix, value_format=options.format, format=options.output_format, row_headers=row_headers, col_headers=col_headers) E.Stop() if __name__ == "__main__": sys.exit(main(sys.argv))
[ "andreas.heger@gmail.com" ]
andreas.heger@gmail.com
b62893ee1712e3ddf4365071e6596e2d820ac5dc
cf57cd3355471f035ca429302742b4eb4baf1214
/Comparações/SHI-TOMASI/SHI-TOMASI_sift.py
7a91ba9cb2b4ae56f47b6d8069c64cbee54c797b
[]
no_license
RobotColony-UEFS/feature-match
c56d78230d86948e5612a9645c71a0647eb94604
ac421989aa1ee3893243122a0cf041b30e038a28
refs/heads/master
2022-11-27T15:31:20.570505
2020-08-04T19:24:17
2020-08-04T19:24:17
285,063,878
0
0
null
null
null
null
UTF-8
Python
false
false
3,365
py
#coding: utf-8 import cv2 import numpy as np import mysql.connector import math mydb = mysql.connector.connect( host="localhost", user="descritores", passwd="12345678", database="referencias" ) def desvio (vetResult): # Desvio padrão populacional soma = float(sum(vetResult)) media = soma/len(vetResult) res = 0 for valor in vetResult: res += ((valor - media)**2) desvio = (math.sqrt(res/len(vetResult))) return (media, desvio) vet_matches = [] vet_corretos = [] img11 = cv2.imread("../../imgReferencia/img00.jpg", 0) altura = img11.shape[0] largura = img11.shape[1] img1 = cv2.resize(img11, (int(largura*0.4), int(altura*0.4))) corners11 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10) corners1 = np.int0(corners11) kp1 = cv2.KeyPoint_convert(corners1) sift = cv2.xfeatures2d.SIFT_create() bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True) kp1, des1 = sift.compute(img1, kp1) quantidadeImagens = 1 while(quantidadeImagens<=13): acertos = 0 img22 = cv2.imread("../../imgTeste/img"+str(quantidadeImagens)+".jpg", 0) altura2 = img22.shape[0] largura2 = img22.shape[1] img2 = cv2.resize(img22, (int(largura2*0.4), int(altura2*0.4))) corners22 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10) corners2 = np.int0(corners22) kp2 = cv2.KeyPoint_convert(corners2) kp2, des2 = sift.compute(img2, kp2) mat = bf.match(des1,des2) mat = sorted(mat, key = lambda x:x.distance) matches = mat[0:150] with open("../../imgTeste/img"+str(quantidadeImagens)+".txt",'r') as f: texto=f.readlines() posicao_x= np.float_(texto[0:4]) posicao_y = np.float_(texto[4:8]) min_x = float(min(posicao_x)) max_x = float(max(posicao_x)) min_y = float(min(posicao_y)) max_y = float(max(posicao_y)) if len(matches)>10: src_pts = np.float32([ kp1[m.queryIdx].pt for m in matches ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in matches ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) h,w = img1.shape pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts,M) img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA) for pos in dst_pts: if((pos[0][0]>(min_x) and pos[0][0]<(max_x)) and (pos[0][1]>(min_y) and pos[0][1]<(max_y))): acertos+=1 img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:],None,flags=2) cv2.imwrite("../resultados/shiTomasi-sift/img"+str(quantidadeImagens)+".jpg", img3) vet_matches.append(len(matches)) vet_corretos.append(acertos) mycursor = mydb.cursor() sql = "INSERT INTO shiTomasi_sift(Nome, Matches, Correto, ImgReferente) VALUES (%s, %s, %s, %s)" valor = ("ShiTomasi-Sift"+str(quantidadeImagens), len(matches), acertos, "img"+str(quantidadeImagens)+".jpg") mycursor.execute(sql, valor) mydb.commit() print(len(matches), acertos) quantidadeImagens+=1 media_matches, desvio_matches = desvio(vet_matches) media_corretos, desvio_corretos = desvio(vet_corretos) porcentagem = (media_corretos/media_matches)*100 sql2 = "INSERT INTO medias_desvios(Nome, MediaMatches, DesvioMatches, MediaCorretos, DesvioCorretos, Porcentagem) VALUES (%s, %s, %s, %s, %s, %s)" valor2 = ("shiTomasi_sift", media_matches, desvio_matches, media_corretos, desvio_corretos, porcentagem) mycursor.execute(sql2, valor2) mydb.commit()
[ "samuelreboucas07@hotmail.com" ]
samuelreboucas07@hotmail.com
c7323c619a500829099442ad1c4249689bb1dc1e
ca292e954d548c62f0c4604dc46cb9faac914a2f
/max_of_two.py
b87410a3cb5d90d5d170799f4f46230a547ce7f4
[]
no_license
rawgni/empireofcode
e73ee032266e85bb062ad03e34f8c37bf69072c3
8f00029ddc38759c77ac6308fe65ae07c44960fc
refs/heads/master
2021-06-08T22:50:44.828587
2016-11-29T13:59:00
2016-11-29T13:59:00
71,658,210
0
1
null
null
null
null
UTF-8
Python
false
false
38
py
def my_max(a, b): return max(a,b)
[ "ingwar.wirjawan@gmail.com" ]
ingwar.wirjawan@gmail.com
b17874da1534c1635ec7a910c3ce1d32eda7ff50
5252efd0922ea5be93dfc63db6de282184505346
/ds/tests/test_linked_list.py
72dc77493dcc768bc3624b55b39b9e4ab6554da2
[]
no_license
faddy/ds-with-python
157b35a5f22107f6dfba7604ed3ca87d33df6c5e
6fba0eeb4552fa03fcbfb2f84ce747a2dc2c3e79
refs/heads/master
2016-09-11T05:02:18.879067
2013-08-18T21:47:46
2013-08-18T21:47:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,453
py
import unittest from data_structures.linked_lists import Node from data_structures.linked_lists import UnorderedList class TestNode(unittest.TestCase): def setUp(self): self.input_list = [0, -4, 10, None, 'one'] def test_object_creation(self): node_list = [Node(item)for item in self.input_list] for node in node_list: self.assertIsNotNone(node) def test_data_and_next(self): node_list = [Node(item)for item in self.input_list] for node, inp in zip(node_list, self.input_list): self.assertEqual(node.get_data(), inp) self.assertIsNone(node.get_next()) def test_setting_next(self): node = Node([]) node.set_next(Node(3)) self.assertEqual(node.get_next().get_data(), 3) class TestLinkedListCreation(unittest.TestCase): def test_list_creation(self): llist = UnorderedList() self.assertIsNotNone(llist) class TestLinkedList(unittest.TestCase): def setUp(self): self.llist = UnorderedList() self.input_list = [0, -4, 10, None, 'one'] def populate_list(self): for item in self.input_list: self.llist.append(item) def node_spitter(self): node = self.llist.head while node: yield node node = node.get_next() def test_list_head(self): self.assertIsNone(self.llist.head) self.assertTrue(self.llist.is_empty()) def test_add_and_length(self): self.populate_list() self.assertEqual(self.llist.length(), len(self.input_list)) for i, j in zip(self.node_spitter(), self.input_list): self.assertEqual(i.get_data(), j) def test_index(self): self.populate_list() self.assertEqual(self.llist.index(0), 0) self.assertEqual(self.llist.index(-4), 1) self.assertEqual(self.llist.index(None), 3) self.assertEqual(self.llist.index('one'), 4) def test_return_last_node(self): self.assertIsNone(self.llist._return_last_node()) self.populate_list() self.assertEqual(self.llist._return_last_node().get_data(), self.input_list[-1]) def test_insert(self): self.populate_list() self.assertRaises(ValueError, self.llist.insert, -1, 5) self.assertRaises(ValueError, self.llist.insert, len(self.input_list)+2, 5) self.llist.insert(0, 'zeroth') result = [n.get_data() for n in self.llist.get_node_generator()] self.assertEqual(self.llist.head.get_data(), 'zeroth') self.assertEqual(result, ['zeroth', 0, -4, 10, None, 'one']) self.llist.insert(1, 'first') result = [n.get_data() for n in self.llist.get_node_generator()] self.assertEqual(result, ['zeroth', 'first', 0, -4, 10, None, 'one']) self.llist.insert(6, 'sixth') result = [n.get_data() for n in self.llist.get_node_generator()] self.assertEqual(result, ['zeroth', 'first', 0, -4, 10, None, 'sixth', 'one']) self.llist.insert(8, 'last') result = [n.get_data() for n in self.llist.get_node_generator()] self.assertEqual(result, ['zeroth', 'first', 0, -4, 10, None, 'sixth', 'one', 'last']) def test_pop(self): self.assertRaises(Exception, self.llist.pop) self.populate_list() result = [] while not self.llist.is_empty(): item = self.llist.pop() result.append(item) self.assertEqual(result, list(reversed(self.input_list))) def test_search(self): self.populate_list() self.assertTrue(self.llist.search(10)) self.assertTrue(self.llist.search(None)) self.assertFalse(self.llist.search(123)) def test_remove(self): self.populate_list() self.llist.remove(10) result = [n.get_data() for n in self.llist.get_node_generator()] self.input_list.remove(10) self.assertEqual(result, self.input_list) self.llist.remove(None) result = [n.get_data() for n in self.llist.get_node_generator()] self.input_list.remove(None) self.assertEqual(result, self.input_list) self.llist.remove(0) result = [x.get_data() for x in self.llist.get_node_generator()] self.input_list.remove(0) self.assertEqual(result, self.input_list) if __name__ == '__main__': unittest.main()
[ "fahadghanidgp@gmail.com" ]
fahadghanidgp@gmail.com
d716a64d25d8ed53904876bd54c1a98a7b88deb5
9dab41a71bf19a9ad17ee3e9f77c0f58aebd1d6d
/python/uline/uline/uline/handlers/app/distributor/balance/distributorBalanceList.py
4116d637e99da40fb08daa5c8fdc82a1bdbb023b
[]
no_license
apollowesley/Demo
f0ef8ec6c4ceb0aec76771da8dd9a62fb579eac8
471c4af95d3a7222d6933afc571a8e52e8fe4aee
refs/heads/master
2021-02-15T04:01:51.590697
2018-01-29T01:44:29
2018-01-29T01:44:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,367
py
# -*- coding: utf-8 -*- from __future__ import division import tornado.web import tornado.gen from uline.handlers.baseHandlers import DtAdminHandler from .form import DistributorBalanceList from uline.public.constants import TO_PAY, PAY_CHANNEL from datetime import timedelta, datetime from uline.public.permit import check_permission class DistributorBalanceListHandler(DtAdminHandler): @tornado.web.authenticated @check_permission def prepare(self): form = DistributorBalanceList(self) if not form.validate(): self.redirect('/dist/balance/dt/list') return self.dt_daily_balance_no = form.ddb_no.data @tornado.web.asynchronous @tornado.gen.coroutine def get(self): data = self.do_execute() self.render('distributor/balance/distributorBalanceList.html', data=data) def do_execute(self): dt_id = self.current_user query = """select to_char(ddbi.pay_start_time, 'YYYY-MM-DD HH24:MI:SS'), to_char(ddbi.need_pay_time,'YYYY-MM-DD'), ddbi.rcvAcctName, ddbi.channel, ddbi.rcvacctno, ddbi.rcvBankName, ddbi.tranAmt, ddbi.pay_status, ddbi.failure_details from dt_daily_balance_info as ddbi inner join dt_balance db on db.dt_id = ddbi.dt_id where ddbi.dt_id=%(dt_id)s and ddbi.dt_daily_balance_no=%(dt_daily_balance_no)s;""" ret = self.db.selectSQL(query, {'dt_daily_balance_no': self.dt_daily_balance_no, 'dt_id': dt_id}) fields = ['create_at', 'need_pay_time', 'rcvAcctName', 'channel', 'balance_account', 'rcvBankName', 'tranAmt', 'pay_status', 'failure_details'] dt_info = dict(zip(fields, ret)) dt_info['tranAmt'], dt_info['pay_status'], dt_info['channel'] = dt_info['tranAmt'] / 100, \ TO_PAY[str(dt_info['pay_status'])], \ PAY_CHANNEL[str(dt_info['channel'])], dt_info['need_pay_time'] = datetime.strptime(dt_info['need_pay_time'], '%Y-%m-%d') - timedelta(days=1) dt_info['need_pay_time'] = datetime.strftime(dt_info['need_pay_time'], '%Y-%m-%d') # todo 缺少划付状态详情数据表 return dt_info
[ "36821277@qq.com" ]
36821277@qq.com
6f4fda92cc404753602829b7b45f67c7d15c83ed
d3cc5966bccf06dd733bc6b51a0c4d9d8fc1baec
/ingest/ingest-equipment.py
0c39157df34390570655eea8020c053643c2272b
[]
no_license
zhongh/Additive-Manufacturing-Processing-Ontology
0229464dfe9e474b1e2b50abefe48a6436cb4569
a729aef5db049de13718c9b4de56ad93f7ec7985
refs/heads/master
2020-03-23T15:18:22.076341
2016-11-30T21:11:26
2016-11-30T21:11:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,639
py
__author__ = 'congrui_li' from SPARQLWrapper import SPARQLWrapper, JSON from rdflib import Namespace, RDF import json import requests import multiprocessing from itertools import chain import functools import argparse from Maybe import * import collections def load_file(filepath): with open(filepath) as _file: return _file.read().replace('\n', " ") AMPO = Namespace("https://tw.rpi.edu/web/project/ampo#") SIO = Namespace("http://semanticscience.org/ontology/sio.owl#") FOAF = Namespace("http://xmlns.com/foaf/0.1/") PROV = Namespace("http://www.w3.org/ns/prov#") QUDT = Namespace("http://data.qudt.org/qudt/owl/1.0.0/qudt.owl#") VITRO = Namespace("http://vitro.mannlib.cornell.edu/ns/vitro/0.7#") BIBO = Namespace("http://purl.org/ontology/bibo/") VCARD = Namespace("http://www.w3.org/2006/vcard/ns#") VIVO = Namespace('http://vivoweb.org/ontology/core#') get_equipment_query = load_file("queries/listEquip.rq") describe_equipment_query = load_file("queries/describeEquip.rq") # standard filters non_empty_str = lambda s: True if s else False has_label = lambda o: True if o.label() else False def get_metadata(id): return {"index": {"_index": "ampo", "_type": "equipment", "_id": id}} def select(endpoint, query): sparql = SPARQLWrapper(endpoint) sparql.setQuery(query) sparql.setReturnFormat(JSON) results = sparql.query().convert() return results["results"]["bindings"] def describe(endpoint, query): sparql = SPARQLWrapper(endpoint) sparql.setQuery(query) try: return sparql.query().convert() except RuntimeWarning: pass def has_type(resource, type): for rtype in resource.objects(RDF.type): if str(rtype.identifier) == str(type): return True return False def get_equipment(endpoint): r = select(endpoint, get_equipment_query) return [rs["equipment"]["value"] for rs in r] def describe_equipment(endpoint, equipment): q = describe_equipment_query.replace("?equipment", "<" + equipment + ">") return describe(endpoint, q) def get_most_specific_type(equipment): return Maybe.of(equipment).stream() \ .flatmap(lambda p: p.objects(VITRO.mostSpecificType)) \ .map(lambda t: t.label()) \ .filter(non_empty_str) \ .one().value def get_processes(equipment): return Maybe.of(equipment).stream() \ .flatmap(lambda p: p.objects(AMPO.isParticipantIn)) \ .filter(has_label) \ .map(lambda r: {"uri": str(r.identifier), "name": str(r.label())}).list() def get_larger_equip(equipment): return Maybe.of(equipment).stream() \ .flatmap(lambda p: p.objects(AMPO.isPartOf)) \ .filter(has_label) \ .map(lambda r: {"uri": str(r.identifier), "name": str(r.label())}).list() def get_smaller_equip(equipment): return Maybe.of(equipment).stream() \ .flatmap(lambda p: p.objects(AMPO.hasPart)) \ .filter(has_label) \ .map(lambda r: {"uri": str(r.identifier), "name": str(r.label())}).list() def get_inputs(equipment): return Maybe.of(equipment).stream() \ .flatmap(lambda p: p.objects(AMPO.hasInput)) \ .filter(has_label) \ .map(lambda r: {"uri": str(r.identifier), "name": str(r.label())}).list() def get_attrs(equipment): return Maybe.of(equipment).stream() \ .flatmap(lambda p: p.objects(AMPO.hasAttribute)) \ .filter(has_label) \ .map(lambda r: {"uri": str(r.identifier), "name": str(r.label())}).list() def create_equipment_doc(equipment, endpoint): graph = describe_equipment(endpoint=endpoint, equipment=equipment) equ = graph.resource(equipment) try: name = equ.label() except AttributeError: print("missing name:", equipment) return {} doc = {"uri": equipment, "name": name} most_specific_type = get_most_specific_type(equ) if most_specific_type: doc.update({"mostSpecificType": most_specific_type}) processes = get_processes(equ) if processes: new_processes = sorted(processes, key=lambda k: k['name']) doc.update({"process": new_processes[0]}) larger_equip = get_larger_equip(equ) if larger_equip: doc.update({"largerEquip": larger_equip}) smaller_equip = get_smaller_equip(equ) if smaller_equip: doc.update({"smallerEquip": smaller_equip}) inputs = get_inputs(equ) if inputs: doc.update({"input": inputs}) attrs = get_attrs(equ) if attrs: doc.update({"attr": attrs}) return doc def process_equipment(equipment, endpoint): equ = create_equipment_doc(equipment=equipment, endpoint=endpoint) es_id = equ["uri"] return [json.dumps(get_metadata(es_id)), json.dumps(equ)] def publish(bulk, endpoint, rebuild, mapping): # if configured to rebuild_index # Delete and then re-create to publication index (via PUT request) index_url = endpoint + "/ampo" if rebuild: requests.delete(index_url) r = requests.put(index_url) if r.status_code != requests.codes.ok: print(r.url, r.status_code) r.raise_for_status() # push current publication document mapping mapping_url = endpoint + "/ampo/equipment/_mapping" with open(mapping) as mapping_file: r = requests.put(mapping_url, data=mapping_file) if r.status_code != requests.codes.ok: # new mapping may be incompatible with previous # delete current mapping and re-push requests.delete(mapping_url) r = requests.put(mapping_url, data=mapping_file) if r.status_code != requests.codes.ok: print(r.url, r.status_code) r.raise_for_status() # bulk import new publication documents bulk_import_url = endpoint + "/_bulk" r = requests.post(bulk_import_url, data=bulk) if r.status_code != requests.codes.ok: print(r.url, r.status_code) r.raise_for_status() def generate(threads, sparql): pool = multiprocessing.Pool(threads) params = [(equipment, sparql) for equipment in get_equipment(endpoint=sparql)] return list(chain.from_iterable(pool.starmap(process_equipment, params))) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--threads', default=8, help='number of threads to use (default = 8)') parser.add_argument('--es', default="http://localhost:9200", help="elasticsearch service URL") parser.add_argument('--publish', default=False, action="store_true", help="publish to elasticsearch?") parser.add_argument('--rebuild', default=False, action="store_true", help="rebuild elasticsearch index?") parser.add_argument('--mapping', default="mappings/equipment.json", help="publication elasticsearch mapping document") parser.add_argument('--sparql', default='https://dofamp.tw.rpi.edu/fuseki/ampo/query', help='sparql endpoint') parser.add_argument('out', metavar='OUT', help='elasticsearch bulk ingest file') args = parser.parse_args() # generate bulk import document for publications records = generate(threads=int(args.threads), sparql=args.sparql) # save generated bulk import file so it can be backed up or reviewed if there are publish errors with open(args.out, "w") as bulk_file: bulk_file.write('\n'.join(records)+'\n') # publish the results to elasticsearch if "--publish" was specified on the command line if args.publish: bulk_str = '\n'.join(records)+'\n' publish(bulk=bulk_str, endpoint=args.es, rebuild=args.rebuild, mapping=args.mapping)
[ "lic10@rpi.edu" ]
lic10@rpi.edu
48056c7a32622758cfb3818b9273a4f1de5b1921
0475b7d5791114c913e0ccc432ea7893fcd5182d
/webServer/webServer.py
f7b6750739694524227ed9c31fa897f53dcbaa67
[]
no_license
jonzhaocn/python_projects
5c7717f5e81248e99f3252bba94c81d0cf3b6d5f
22d171aebd46590661c0ea3fc20a3fa5bef8bafd
refs/heads/master
2021-09-13T00:25:45.990594
2018-04-23T07:20:06
2018-04-23T07:20:06
87,550,515
1
0
null
null
null
null
UTF-8
Python
false
false
7,828
py
import socket import os import logging import subprocess # 自己写的一个简单的we服务器代码,实现了get、post class WebServer(object): def __init__(self): self.HOST = '' self.PORT = 80 self.root_dir = 'd:/root_dir' # 文件的根目录 self.server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 设置协议、套接字 self.server.bind((self.HOST, self.PORT)) # 绑定端口 self.server.listen() self.allowed_readable_text_file_types = ['.html', '.htm', '.txt', '.js', '.css'] # 设置允许访问的文件类型 self.allowed_readable_img_file_types = ['.jpg', '.gif', '.png', '.jpeg'] self.allowed_readable_file = self.allowed_readable_text_file_types + self.allowed_readable_img_file_types self.allow_show_dir = True # 如果文件夹下没有index.html文件是否允许显示文件夹的结构 self.HTTP_version = 'HTTP/1.x' logging.basicConfig(level=logging.DEBUG, # 设置log日志 format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='mylog.log', filemode='w') server_Logging = logging.StreamHandler() server_Logging.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s: %(message)s') server_Logging.setFormatter(formatter) logging.getLogger('').addHandler(server_Logging) def serve_forever(self): # 开启服务的主函数 while True: client, address = self.server.accept() # 接受请求 request = client.recv(1024).decode() if request is None or len(request) == 0: continue else: request_list = request.split(' ') method = request_list[0] # 请求是get还是post file_src = request_list[1] # 请求的文件路径 content = None path = self.root_dir + file_src logging.info(str(address) + ':' + method + ' ' + file_src) if method == 'GET': if os.path.exists(path): # 该路径存在 if os.path.isdir(path): # 该路径是一个文件夹 if self.allow_show_dir: # 如果允许显示文件夹中的内容 content = self.read_index_file(path) if content is None: content = self.display_dir_structure(path) else: content = self.get_head(200, '.html') + content else: # 如果不允许显示文件夹中的内容 content = self.read_index_file(path) # 查找该文件夹中是否存在index.html if content is None: content = self.get_head(403, '.html') + self.create_info_html("Forbidden") else: content = self.get_head(200, '.html') + content elif os.path.isfile(path): # 该路径是一个文件 file_type = self.get_filnameExt(path) if file_type in self.allowed_readable_file: # 如果该文件内容允许读取 content = self.get_head(200, '.html') + self.read_file(path) else: content = self.get_head(403, '.html') + self.create_info_html("Forbidden") else: # 如果该路径不存在 content = self.get_head(404, '.html')+self.create_info_html("file not found") client.sendall(content) client.close() if method == 'POST': # Post请求 # new_process = subprocess.Popen('') content = None if os.path.exists(path): # 处理表单的文件存在 form = request.split('\r\n')[-1] # 表单的内容在request的最后一行 form_list = form.split('&') # 如果表单中有多个内容,内容已&分隔 submit_args = '' for item in form_list: submit_args = submit_args + item + ";" # 提取表单中的内容 # python post.py firstname=1;lastname=2 args = ['python', path, submit_args] try: result = subprocess.check_output(args, shell=True) # 运行请求 except subprocess.CalledProcessError as e: result = self.create_info_html('error') content = self.get_head(200, '.html') + result else: # 处理表单的文件不存在 content = self.get_head(404, '.html') + self.create_info_html('file not found') client.sendall(content) client.close() def display_dir_structure(self, path): # 用于展示指定路径下的目录结构 dir_structure = ''' <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=mbcs"> <title>Directory listing for {path}</title> </head> <body> <h1>Directory listing for {path}</h1> <hr> <ul> ''' for file in os.listdir(path): dir_structure += '<li><a href=\"'+file+'\">'+file+'</a></li>' dir_structure += ''' </ul> <hr> </body> </html>''' index = len(self.root_dir) path = path[index:] dir_structure = dir_structure.format(path=path).encode() dir_structure = self.get_head(200, '.html')+dir_structure return dir_structure def get_head(self, status_code, file_type): # 返回头信息 status_code_dict = { 100: 'Continue', 101: 'Switching Protocols', 102: 'Processing', 200: 'OK', 400: 'Bad Request', 401: 'Unauthorized', 402: 'Payment Required', 403: 'Forbidden', 404: 'Not Found' } content = self.HTTP_version + ' ' + str(status_code) + ' ' + status_code_dict[status_code]+'\n' if file_type in self.allowed_readable_text_file_types: content += 'Content-Type: text/'+file_type.split('.')[-1]+'\n'+'\n' elif file_type in self.allowed_readable_img_file_types: content += 'Content-Type: image/'+file_type.split('.')[-1]+'\n'+'\n' return content.encode() def read_file(self, path): # 读取指定文件并返回 file = open(path, 'rb') content = file.read() file.close() return content def read_index_file(self, path): # 查找制定目录下的index文件,并返回其内容 for file in os.listdir(path): list = file.split('.') if len(list) == 2 and list[0].upper() == 'INDEX' and list[1] == 'html': return self.read_file(path+'/'+file) return None def create_info_html(self, info): # 生成指定内容的网页 content = ''' <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=mbcs"> <title>{info}</title> </head> <body> <h1>{info}</h1> </body> </html> '''.format(info=info).encode() return content def get_filnameExt(self, filename): # 获取文件的扩展名 import os (filepath, tempfilename) = os.path.split(filename); (shotname, extension) = os.path.splitext(tempfilename); return extension if __name__ == '__main__': server = WebServer() server.serve_forever()
[ "1044264932@qq.com" ]
1044264932@qq.com
690ebfa7539e477c986cc44439b64ed513a1e44b
6356b828b1209c409be87783107ad2e96f7fc0e4
/data/main.py
aff69002d470a47b481ce58543aede4cf670b59e
[ "MIT" ]
permissive
vkazei/deeplogs
01e4d1eedbb220b921a2ccd7a2b015b684006086
4f6f853ce608a59e9d4b1a3160eb6b0035f333c0
refs/heads/master
2021-07-09T20:01:48.121545
2020-09-15T16:14:15
2020-09-15T16:14:15
194,487,355
33
18
null
null
null
null
UTF-8
Python
false
false
37,572
py
#%% [markdown] # # Smart velocity analysis : mapping raw data to velocity logs #%% #(c) Vladimir Kazei, Oleg Ovcharenko; KAUST 2020 # cell with imports import importlib import multiprocessing import os import sys import time import pickle import threading import random # learning import keras # madagascar API import m8r as sf import matplotlib import matplotlib.pyplot as plt import numpy as np import seaborn import tensorflow as tf # images from IPython import get_ipython from keras import backend as K from keras.utils import multi_gpu_model from keras.callbacks import (EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, TensorBoard) from keras.layers import (AveragePooling2D, BatchNormalization, Conv2D, Dense, Lambda, Dropout, Flatten, MaxPool2D, Reshape, GaussianNoise, GaussianDropout) from keras.models import load_model from numpy.random import randint, seed from scipy import ndimage from skimage.transform import resize from skimage.util import view_as_windows from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score #import styler from myutils import (cd, cmd, const, elastic_transform, plt_nb_T, toc, aug_flip, upsample, merge_dict, np_to_rsf, rsf_to_np, nrms, tf_random_flip_channels) from myutils import const as c from generate_data import (generate_model, show_model_generation, alpha_deform, sigma_deform, generate_all_data, generate_rsf_data) seed() # set up matplotlib matplotlib.rc('image', cmap='RdBu_r') seaborn.set_context('paper', font_scale=5) CUDA_VISIBLE_DEVICES = "0" os.environ["CUDA_VISIBLE_DEVICES"]=CUDA_VISIBLE_DEVICES os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # Madagascar binaries will be stored in DATAPATH (RAM on Linux recommended) cmd("mkdir /dev/shm/RSFTMP") cmd("chmod 777 /dev/shm/RSFTMP") os.environ["DATAPATH"]="/dev/shm/RSFTMP/" # execution flags generate_rsf_data_flag = True retrain_flag = False #(sys.argv[1] == "--retrain") print(f"retrain_flag = {retrain_flag}") print(type(retrain_flag)) tic_total = time.time() #%% [markdown] # ## Introduction # # ### Why? # FWI provides high resolution models, yet it is very computationally expensive and it can fail with the lack of low frequencies. # # Velocity analysis is on the other hand very cheap computationally, but limited by the assumptions on the background medium. # # ### Goal # Combine advantages of both methods with deep learning # # ### Solution # We will train a deep convolutional neural network to perform velocity analysis in inhomogeneous media ##%% [markdown] # We estimate velocity $v(x_{CMP}, z)$ from presure field # $p_{obs}(x_{CMP}-\varepsilon:x_{CMP}+\varepsilon, 0:h_{max}, f)$, where # $x_{CMP}$ is the central midpoint, # $p_{obs}$ is the observed pressure. # # $\varepsilon = 0$ in this first part of the application => single CMP as input ##%% [markdown] # ## Method # # 0) generate a model set # 1) generate seismic data set # 2) build neural network # 3) train neural network # 4) test it on a model that it has not seen #%% [markdown] # ## Model generation # # we utilize common deep learning image augmentation technique -- elastic transform #%% show_model_generation() #%% [markdown] # ## Gaussian fields to generate a coordinate shift for laterally smooth models # # # # ### Large correlation radius in horizontal direction -- to keep it almost horizontally layered # # ### Small correlation radius in vertical direction -- to make it represent different layering scenarios # # ### Same parameters but different fields for horizontal and vertical components # # ### Large vertical shifts and small horizontal -- to keep it laterally slowly varying #%% [markdown] # ## Modeling data with constant offset on GPU with Madagascar #%% # Setting up parameters _vel = generate_model() N = np.shape(_vel) dt = c.dt dx = c.dx T_max = c.T_max nt = c.nt print(f"number of time steps = {nt}") # check stability print(f"you chose dt = {dt}, dt < {dx/np.max(_vel):.4f} should be chosen for stability \n") # force stability assert dt < dx/np.max(_vel) # ricker wavelet is roughly bounded by 3f_dominant # therefore the sampling rate principally acceptable sampling rate would be central_freq = c.central_freq print(f"dt from Nyquist criterion is {1/(2*3*central_freq)}") print(f"dt chosen for CNN is {c.jdt*dt}, which is {(1/(3*central_freq))/(c.jdt*dt)} samples per cycle") #%% [markdown] # ## Read data into numpy and check that the number of logs is the same as number of shots #%% nCMP=21 def read_rsf_XT(shots_rsf='shots_cmp_full.rsf', logs_rsf='logs_full.rsf', j_log_z=c.jlogz): X = rsf_to_np(shots_rsf) # single model exception if X.ndim == 3: X = np.expand_dims(X, axis=0) X_f = np.flip(X, axis=2) X = np.maximum(np.abs(X), np.abs(X_f)) * np.sign(X+X_f) X = X[:,:,:(np.shape(X)[2] + 1) // 2,:] T = rsf_to_np(logs_rsf) # single model exception if T.ndim == 2: T = np.expand_dims(T, axis=0) # decimate logs in vertical direction --2 times by default T = resize(T, (*T.shape[0:2], np.shape(T)[2] // j_log_z)) T_size = np.shape(T) print(T_size) # ensure that the number of logs is equal to the number of CMPs assert (X.shape[0:2] == T.shape[0:2]) return X, T #%% while not os.path.exists('new_data_ready'): time.sleep(1) print("waiting for new data, run python generate_data.py if you didn't", end="\r") cmd("rm new_data_ready") #%% X, T = read_rsf_XT(shots_rsf='shots_cmp_full.rsf', logs_rsf='logs_full.rsf') T_multi = view_as_windows(T, (1, nCMP, T.shape[2])).squeeze().reshape((-1, nCMP, T.shape[2]))[:,nCMP//2,:].squeeze() # create scaler for the outputs T_scaler = StandardScaler().fit(T_multi) scale = np.copy(T_scaler.scale_) mean = np.copy(T_scaler.mean_) np.save("scale", scale) np.save("mean", mean) #%% T_scaler.scale_[:] = 1 T_scaler.mean_[:] = 0 # X has the format (model, CMP, offset, time) plt_nb_T(X[1,:10, -1,:200], title="Common offset (600 m) gather", dx=c.dx*c.jgx*2, dz=1e3*dt*c.jdt, origin_in_middle=True, ylabel="Time(s)", fname="../latex/Fig/X_short_offset", vmin=-1e-4, vmax=1e-4) plt_nb_T(T[1,:10,:100], title="Model", dx=c.dx*c.jgx*2, dz=c.dx*c.jlogz, origin_in_middle=True, ylabel="Time(s)", fname="../latex/Fig/X_short_offset") #X=X[:,:-3,:,:] #%% def prepare_XT(X,T, T_scaler=T_scaler, gen_plots=False): nCMP = 21 X_multi = view_as_windows(X, (1,nCMP,X.shape[2],X.shape[3])).squeeze().reshape((-1, nCMP, X.shape[2], X.shape[3])) X_multi = np.swapaxes(X_multi,1,3) X_multi = np.swapaxes(X_multi,1,2) T_multi = view_as_windows(T, (1, nCMP, T.shape[2])).squeeze().reshape((-1, nCMP, T.shape[2]))[:,nCMP//2,:].squeeze() X_scaled_multi = X_multi T_scaled_multi = T_scaler.transform(T_multi) # extract central CMPs for singleCMP network X_scaled = X_scaled_multi[:,:,:,nCMP//2:nCMP//2+1] T_scaled = T_scaled_multi #%% if gen_plots: plt_nb_T(T_multi, dx=c.jgx*c.dx, dz=c.jlogz*c.dx, fname="../latex/Fig/T_multi") plt_nb_T(1e3*T_scaled, dx=c.jgx*dx, dz=c.jlogz*c.dx, fname="../latex/Fig/T_scaled") #%% # show single training sample sample_reveal = nCMP plt_nb_T(1e3*np.concatenate((np.squeeze(X_scaled_multi[sample_reveal,:,:,-1]), np.flipud(np.squeeze(X_scaled_multi[sample_reveal,:,:,0]))), axis=0), title="CMP first | CMP last", dx=200, dz=1e3*dt*c.jdt, origin_in_middle=True, ylabel="Time(s)", fname="../latex/Fig/X_scaled", cbar_label = "") print(np.shape(1e3*T_scaled[sample_reveal-(nCMP+1)//2:sample_reveal+(nCMP-1)//2:nCMP])) plt_nb_T(1e3*T_multi[sample_reveal-(nCMP-1)//2:sample_reveal+(nCMP-1)//2,:], dx=100, dz=c.dx*c.jlogz, title="scaled velocity logs") return X_scaled_multi, T_scaled_multi X_scaled_multi, T_scaled_multi = prepare_XT(X,T, T_scaler=T_scaler, gen_plots=False) #%% plot single input into the network plt_nb_T(1e3*np.reshape(X[0, :21, :, :], (21*X.shape[2], X.shape[3])), vmin=-0.1, vmax=0.1, figsize=(48,12), no_labels=True, cbar=True, fname="../latex/Fig/input_multi") #%% [markdown] # # CNN construction single CMP -> log under the CMP # 1D total variation for the output def tv_loss(y_true, y_pred): #b, h, w, c = img.shape.as_list() a = K.abs(y_pred[:, :-1] - y_pred[:, 1:]) tv = 0.0 * K.mean(a, axis=-1) total = tv + K.mean(K.square(y_pred - y_true), axis=-1) return total def random_channel_flip(x): print(x.shape) return K.in_train_phase(tf_random_flip_channels(x), x) def R2(y_true, y_pred): SS_res = K.sum(K.square(y_true-y_pred)) SS_tot = K.sum(K.square(y_true - K.mean(y_true))) return (1 - SS_res/(SS_tot + K.epsilon())) def create_model(inp_shape, out_shape, jlogz=c.jlogz): model = keras.models.Sequential() activation = 'elu' padding = 'same' kernel_size = (3, 11) model.add(Lambda(random_channel_flip, input_shape=inp_shape, output_shape=inp_shape)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=32, kernel_size=kernel_size, activation=activation, padding=padding, input_shape=inp_shape)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=32, kernel_size=kernel_size, strides=(2,2), activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, strides=(2,2), activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=128, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=128, kernel_size=kernel_size, strides=(2,2), activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=32, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=32, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=16, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=16, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=8, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=8, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=4, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=4, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=2, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=2, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=1, kernel_size=(3, 15), activation='linear', padding="valid")) model.add(Flatten()) model.add(Lambda(lambda x: K.tf.add(K.tf.multiply(x, K.variable(scale.squeeze)), K.variable(mean.squeeze)))) return model #%% class threadsafe_iter: """Takes an iterator/generator and makes it thread-safe by serializing call to the `next` method of given iterator/generator. """ def __init__(self, it): self.it = it self.lock = threading.Lock() def __iter__(self): return self def __next__(self): with self.lock: return self.it.__next__() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g @threadsafe_generator def batch_generator(X, T, T_scaler=T_scaler, batch_size = None): batch=[] print("generator restarted !!!!!!!!!!!!!!!!!!!!!!!!!!! waiting for new data") while not os.path.exists("new_data_ready"): time.sleep(1) while True: # it might be a good idea to shuffle your data before each epoch # for iData in range(40): # print(f"loading NEW DATA {iData}") # X_rsf, T_rsf = read_rsf_XT(shots_rsf=f'/data/ibex_data/fullCMP_{iData}/shots_cmp_full.hh', # logs_rsf=f'/data/ibex_data/fullCMP_{iData}/logs_cmp_full.hh') # X, T = prepare_XT(X_rsf, T_rsf, T_scaler) # indices = np.arange(len(X)) # np.random.shuffle(indices) # for i in indices: # # if os.path.exists("new_data_ready"): # # break # batch.append(i) # if len(batch)==batch_size: # yield X[batch], T[batch] # batch=[] if os.path.exists("new_data_ready"): cmd("rm new_data_ready") X_rsf, T_rsf = read_rsf_XT(shots_rsf='shots_cmp_full.rsf', logs_rsf='logs_full.rsf') #cmd("ssh glogin.ibex.kaust.edu.sa 'rm ~/log_estimation/data/new_data_ready'") X, T = prepare_XT(X_rsf, T_rsf, T_scaler) print("new data loaded") else: print("reusing the old data") indices = np.arange(len(X)) np.random.shuffle(indices) print("indices reshuffled") for i in indices: if os.path.exists("new_data_ready"): break batch.append(i) if len(batch)==batch_size: yield X[batch], T[batch] batch=[] #%% # Init callbacks def train_model(prefix="multi", X_scaled=X_scaled_multi, T_scaled=T_scaled_multi, weights=None): cmd("rm new_data_ready") #cmd("ssh 10.109.66.7 'rm ~/log_estimation/data/new_data_ready'") lr_start = 0.001 if weights != None: lr_start = 1e-5 net = create_model(np.shape(X_scaled)[1:], np.shape(T_scaled)[1:]) net.compile(loss=tv_loss, optimizer=keras.optimizers.Nadam(lr_start), metrics=[R2]) #net.summary() if weights != None: net.load_weights(weights) early_stopping = EarlyStopping(monitor='val_loss', patience=21) model_checkpoint = ModelCheckpoint("trained_net", monitor='val_loss', save_best_only=True, verbose=1, period=5) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=7, min_lr=1e-5, verbose=1) X_valid = X_scaled T_valid = T_scaled print(f"X validation data size = {np.shape(X_valid)}") # TRAINING batch_size = 64 # we flip every batch, so, going through whole data needs twice as many batches steps_per_epoch = len(X_scaled)//batch_size print(f"Batch size = {batch_size}, batches per epoch = {steps_per_epoch}") history = net.fit_generator(batch_generator(X_scaled, T_scaled, batch_size=batch_size), validation_data=(X_valid, T_valid), epochs=200, verbose=2, shuffle=True, max_queue_size=200, workers=10, use_multiprocessing=False, steps_per_epoch = steps_per_epoch, callbacks=[model_checkpoint, reduce_lr, early_stopping]) print("Optimization Finished!") return net, history def load_history(fname_history): with open(fname_history,'rb') as f: return pickle.load(f) def save_history(history, fname_history): with open(fname_history,'wb') as f: pickle.dump(history, f) def train_ensemble(prefix, X_scaled, T_scaled): valid_best=1e100 net_dict = {} history_dict = {} for iNet in range(5): if retrain_flag: weights = f"{prefix}_weights.h5" history_prev = load_history(f"history_{prefix}") else: weights = None net, history = train_model(prefix=prefix, X_scaled=X_scaled, T_scaled=T_scaled, weights=weights) cur_val_loss = np.min(history.history['val_loss']) print(cur_val_loss) if cur_val_loss < valid_best: valid_best = cur_val_loss net_best = net history_best = history.history net_dict[f"{iNet}"] = net history_dict[f"{iNet}"] = history.history if retrain_flag: history_best = merge_dict(history_prev, history_best) net_best.save_weights(f"{prefix}_weights.h5") save_history(history_best, f"history_{prefix}") return net_dict, history_dict, net_best, history_best #singleCMP_net_dict, singleCMP_net_best, history_best = train_ensemble("singleCMP", X_scaled, T_scaled) #cmd("rm new_data_ready") multiCMP_net_dict, history_dict, multiCMP_net_best, history_best = train_ensemble("multiCMP", X_scaled_multi, T_scaled_multi) # stop generator cmd("touch training_finished") #%% KOSTYLI for testing history_best = load_history("history_multiCMP") prefix = "multiCMP" plt.figure(figsize=(16,9)) r2_arr = np.zeros((history_dict.__len__(),2)) for iNet in history_dict.keys(): r2_arr[int(iNet),0] = history_dict[iNet]['R2'][-1] r2_arr[int(iNet),1] = history_dict[iNet]['val_R2'][-1] print(f"netN={iNet}, R2={history_dict[iNet]['R2'][-1]},{history_dict[iNet]['val_R2'][-1]}") plt.plot(history_dict[iNet]['R2'][:],'b--') plt.plot(history_dict[iNet]['val_R2'][:],'r') print(f"Average R2={np.mean(r2_arr, 0)}") plt.plot(history_best['R2'][:],'b--', label='Training R2', linewidth=3) plt.plot(history_best['val_R2'][:],'r', label='Validation R2', linewidth=3) plt.xlabel("epoch") plt.legend() plt.savefig(f"../latex/Fig/{prefix}_R2", bbox_inches='tight') plt.grid(True,which="both",ls="-") plt.show(block=False) plt.pause(1) plt.close() plt.figure(figsize=(16,9)) for iNet in history_dict.keys(): print(iNet) plt.plot(history_dict[iNet]['loss'][:],'b--') plt.plot(history_dict[iNet]['val_loss'][:],'r') plt.semilogy(history_best['loss'][:],'b--', label='Training loss', linewidth=3) plt.semilogy(history_best['val_loss'][:],'r', label='Validation loss', linewidth=3) plt.xlabel("epoch") plt.legend() plt.savefig(f"../latex/Fig/{prefix}_loss", bbox_inches='tight') plt.grid(True,which="both",ls="-") plt.show(block=False) plt.pause(1) plt.close() # #%% # multiCMP_net_dict={} # net_best = create_model(np.shape(X_scaled_multi)[1:], np.shape(T_scaled_multi)[1:]) # net_best.summary() # net_best.compile(loss=tv_loss, # optimizer=keras.optimizers.Nadam(1e-6), # metrics=[R2]) # net_best.load_weights("multiCMP_weights.h5") # multiCMP_net_dict["0"] = net_best #%% [markdown] # # We trained the neural net, it fits the training and validation data... # # ## How well does it fit? # # ## Does it fit stretched marmousi itself? # # ## Could we learn more from models like this? # # ## Does it work on something different? # # ## When does it break?! #%% [markdown] # # Testing #%% uncomment for loading initial weights # singleCMP_net_dict={} # net = create_model(np.shape(X_scaled)[1:], np.shape(T_scaled)[1:]) # net.summary() # net.load_weights("singleCMP_weights.h5") # singleCMP_net_dict["0"] = net # multiCMP_net_dict={} # netM = create_model(np.shape(X_scaled_multi)[1:], np.shape(T_scaled_multi)[1:]) # netM.summary() # netM.load_weights("multiCMP_weights.h5") # multiCMP_net_dict["0"] = netM def test_on_model(folder="marmvel1D", net_dict=None, prefix="singleCMP", model_filename=None, distort_flag=False, stretch_X=None, nCMP_max=nCMP, generate_rsf_data_flag=True, jlogz=c.jlogz, jgx=c.jgx, sxbeg=c.sxbeg, gxbeg=c.gxbeg): if model_filename==None: model_filename=f"{folder}.hh" fig_path = f"../latex/Fig/test_{prefix}_{folder}" # expand model model_output="vel_test.rsf" print(model_output) vel_test = generate_model(model_input=model_filename, model_output=model_output, stretch_X=stretch_X, random_state_number=c.random_state_number, distort_flag=distort_flag, crop_flag=False, test_flag=True) # model data if generate_rsf_data_flag: cmd(f"mkdir {folder}") cmd(f"cp {model_output} {folder}/{model_output}") # check stability print(f"you chose dt = {dt}, dt < {dx/np.max(vel_test):.4f} should be chosen for stability \n") # force stability assert dt < dx/np.max(vel_test) generate_rsf_data(model_name=f"{folder}/vel_test.rsf", shots_out=f"{folder}/shots_cmp_test.rsf", logs_out=f"{folder}/logs_test.rsf") # read data X_test, T_test = read_rsf_XT(shots_rsf=f"{folder}/shots_cmp_test.rsf", logs_rsf=f"{folder}/logs_test.rsf") nCMP = int(net_dict["0"].input.shape[3]) # X_scaled, T_test = make_multi_CMP_inputs(X_scaled, T_test, nCMP_max) X_scaled, T_scaled = prepare_XT(X_test, T_test) T_test = T_scaler.inverse_transform(T_scaled) sample_reveal = nCMP_max+1 plt_nb_T(1e3*np.concatenate((np.squeeze(X_scaled[sample_reveal,:,:,-1]), np.flipud(np.squeeze(X_scaled[sample_reveal,:,:,0]))), axis=0), title="CMP first | CMP last", dx=200, dz=1e3*dt*c.jdt, vmin=-0.1, vmax=0.1, origin_in_middle=True, ylabel="Time(s)", fname=f"{fig_path}_X_scaled", cbar_label = "") if nCMP == 1: X_scaled = X_scaled[:,:,:,nCMP_max//2:nCMP_max//2+1] # predict with all networks and save average T_pred_total = np.zeros_like(net_dict["0"].predict(X_scaled)) T_pred_dict = np.zeros((2*len(net_dict), T_pred_total.shape[0], T_pred_total.shape[1])) iNet=0 for net in net_dict.values(): T_pred_tmp = net.predict(X_scaled) T_pred_tmp = T_scaler.inverse_transform(T_pred_tmp) T_pred_dict[iNet,:,:] = T_pred_tmp T_pred_tmp = net.predict(np.flip(X_scaled, axis=3)) T_pred_tmp = T_scaler.inverse_transform(T_pred_tmp) T_pred_dict[iNet+1,:,:] = T_pred_tmp iNet += 2 T_pred = np.mean(T_pred_dict, axis=0) # interpolation for display ups_plot = c.ups_plot T_pred = upsample(T_pred, ups_plot) T_test = upsample(T_test, ups_plot) np_to_rsf(T_pred, f"{folder}/logs_pred.rsf", d1=25, d2=25) np_to_rsf(T_test, f"{folder}/logs_test_m.rsf", d1=25, d2=25) variance = np.var(T_pred_dict, axis=0) plt_nb_T(upsample(np.sqrt(variance), ups_plot), title="Standard deviation", dx=jgx*dx/ups_plot, dz=jlogz*dx/ups_plot, fname=f"{fig_path}_inverted_std_dev", vmin=0, vmax=1, figsize=(16,6)) plt_nb_T(T_pred-T_test, title="Pred-True", dx=jgx*dx, dz=jlogz*dx, fname=f"{fig_path}_inverted_error", vmin=-1, vmax=1) plt_nb_T(T_pred, title=f"DL, R2 = {r2_score(T_test.flatten(), T_pred.flatten()):.2f}, NRMS={nrms(T_pred, T_test):.1f}%", dx=jgx*dx/ups_plot, dz=jgx*dx/ups_plot, vmin=np.min(1e-3*T_test), vmax=np.max(1e-3*T_test), fname=f"{fig_path}_inverted", figsize=(16,6)) plt_nb_T(T_test, dx=jgx*dx/ups_plot, dz=jgx*dx/ups_plot, vmin=np.min(1e-3*T_test), vmax=np.max(1e-3*T_test), fname=f"{fig_path}_true", title=f"True model", figsize=(16,6)) #%% def run_all_tests(net_dict=None, prefix="single", generate_rsf_data_flag=False): # Marmousi-based tests test_on_model("marmvel1D", net_dict=net_dict, prefix=prefix, stretch_X=10, generate_rsf_data_flag=generate_rsf_data_flag) test_on_model("marmvel", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) test_on_model("marm2", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) # Overthrust-based tests test_on_model("overthrust1D", net_dict=net_dict, prefix=prefix, stretch_X=2, generate_rsf_data_flag=generate_rsf_data_flag) # cmd("sfadd < overthrust3D_orig.hh add=-1 | sfclip2 lower=1.5 --out=stdout > overthrust3D.hh") # cmd("sfwindow < overthrust3D_orig.hh n3=120 f1=400 n1=1 | sftransp | sfadd scale=1000 | sfput d1=25 d2=25 --out=stdout > overthrust_test_2D_1.hh") test_on_model("overthrust_test_2D_1", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) # cmd("sfwindow < overthrust3D.hh n3=120 f2=400 n2=1 | sftransp | sfadd scale=1000 | sfput d1=25 d2=25 --out=stdout > overthrust_test_2D_2.hh") test_on_model("overthrust_test_2D_2", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) # SEAM I based tests test_on_model("seam100", net_dict=net_dict, prefix=prefix, stretch_X=2, generate_rsf_data_flag=generate_rsf_data_flag) # cmd("sfwindow < SEAM_I_3D_20m.hh f3=100 n3=151 f1=1400 | sftransp memsize=100000 plane=13 | sfwindow f3=20 n3=1 f2=500 n2=1000 | sfput o1=0 o2=0 --out=stdout > seam_i_sediments.hh") test_on_model("seam_i_sediments", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) test_on_model("seam_karst", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) #cmd("sfwindow < SEAM_I_3D_20m.hh f3=10 n3=151 | sftransp memsize=100000 plane=23 | sftransp memsize=100000 plane=12 | sfwindow f3=1455 n3=1 --out=stdout > seam_i_salt.hh") test_on_model("seam_i_salt", net_dict=net_dict, prefix=prefix, stretch_X=2, generate_rsf_data_flag=generate_rsf_data_flag) test_on_model("seam_arid", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) #run_all_tests(net_dict=singleCMP_net_dict, prefix="singleCMP", generate_rsf_data_flag=True) run_all_tests(net_dict=multiCMP_net_dict, prefix="multiCMP", generate_rsf_data_flag=True) print(f"Total execution time is {toc(tic_total)}") #%% PLOT FWI RESULTS # for folder in ["marm2", # "seam_i_sediments", # "seam100", # "overthrust"]: for folder in ["overthrust"]: with cd(f"fwi_{folder}"): cmd("scons -j 4") fwi1 = rsf_to_np("fwi2.rsf") fwi2 = rsf_to_np("fwi_shi.rsf") velo = rsf_to_np("vel.rsf") velsm = rsf_to_np("smvel.rsf") R2o = r2_score(velo.flatten(), fwi2.flatten()) fwi2 = resize(fwi2, (fwi2.shape[0], 120)) fwi1 = resize(fwi1, (fwi2.shape[0], 120)) plt_nb_T(fwi2, title=f"DL+MSFWI, R2={R2o:.2f}, NRMS={nrms(velo,fwi2):.1f}%", fname=f"../../latex/Fig/msfwi_{folder}", dx=25, dz=25, figsize=(32,6), vmin=1.5, vmax=4.5) plt_nb_T(velsm, title=f"DL, R2={r2_score(velo.flatten(),velsm.flatten()):.2f}, NRMS={nrms(velo,velsm):.1f}%", fname=f"../../latex/Fig/dl_{folder}", dx=25, dz=25, figsize=(16,6), vmin=1.5, vmax=4.5) plt_nb_T(velo, title=f"True model", fname=f"../../latex/Fig/true_{folder}", dx=25, dz=25, figsize=(16,6), vmin=1.5, vmax=4.5) def plot_logs(log_x): plt.figure(figsize=(11,18)) depth = 0.025*np.array(range(120)) plt.plot( 1e-3*velsm[log_x,:], depth, 'r', label="DL", linewidth=6) plt.plot(1e-3*fwi1[log_x,:], depth, 'b--', label="DL+FWI", linewidth=6) plt.plot(1e-3*fwi2[log_x,:], depth, 'bo', label="+MSFWI", markersize=15) plt.plot( 1e-3*velo[log_x,:], depth, 'black', label="True", linewidth=8, alpha=0.6) plt.ylabel("Depth (km)") plt.xlabel("Velocity (km/s)") plt.xlim((1.5, 4.5)) plt.yticks([0,1,2,3]) plt.title(f"Log at {int(0.025*log_x)} km") plt.gca().invert_yaxis() plt.legend() plt.axis("tight") plt.savefig(f"../latex/Fig/log_{int(0.025*log_x)}") plot_logs(240) plot_logs(400) plot_logs(480) # %%
[ "vkazei@gmail.com" ]
vkazei@gmail.com
59c2e6f44d3b4e5943e33fae3055bca489248b1f
0d261e74c5cfcc7631cf17e5e5ea67ac146c9929
/1-Neural_Networks_and_Deep_Learning/vectorization.py
7a583c48d8b1449c4511c9e9c14c5de5001332b3
[]
no_license
zoro16/deep-learning
61c4b2d85867fc9761badf1286a29dcc1360130c
4130b3591bb04cff5771e7cca0e122ab897afff0
refs/heads/master
2021-09-10T12:19:14.013642
2018-03-26T06:11:30
2018-03-26T06:11:30
113,404,656
1
1
null
null
null
null
UTF-8
Python
false
false
383
py
import numpy as np import time a = np.random.rand(1000000) b = np.random.rand(1000000) started = time.time() c = np.dot(a, b) ended = time.time() print("Vertorized version: {} ms".format(str(1000*(ended-started)))) c = 0 started = time.time() for i in range(1000000): c += a[i] * b[i] ended = time.time() print("For loop version: {} ms".format(str(1000*(ended-started))))
[ "mohamed.saleh16@gmail.com" ]
mohamed.saleh16@gmail.com