blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
111859fe0f3c3ce7e9ce96a399d4144f3ca12f60
9dca27bf3f45fe55d4ad557ec377836eb5b32611
/plottingScripts/myKalman.py
65ace041584e5b6767edd4e2309eab98d3e93e59
[]
no_license
Hayels406/Tracking
42441ffa5724c8c5adece74b45755eccbbd16f5e
c82908147f1084937b80943725001f870f4125aa
refs/heads/master
2021-03-22T04:04:05.040970
2018-08-09T12:43:05
2018-08-09T12:43:05
109,285,863
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
/home/b1033128/Documents/Tracking/myKalman.py
[ "h.e.l.moore@newcastle.ac.uk" ]
h.e.l.moore@newcastle.ac.uk
0237b7a65a84dd7422316e2658be58ff39456d31
4f8bdddd8a6a9b6bd7ef42ee4c2f89a73ce5564b
/Image Recognition.py
ea31c007b23ba6ffaae6cb9b3c0bed4011e28785
[]
no_license
KshitizzB/Image-Recognition
b169233d3e10362d32c8df2f2c7b0a3cf85f856d
951ab0b08fcf443bd5df58a474f9ff821f56eb21
refs/heads/master
2020-03-22T11:56:53.908138
2018-07-06T16:23:00
2018-07-06T16:23:00
140,006,522
1
0
null
null
null
null
UTF-8
Python
false
false
1,962
py
# Importing the Keras libraries and packages from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense # Initialising the CNN classifier = Sequential() # Step 1 - Convolution classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu')) # Step 2 - Pooling classifier.add(MaxPooling2D(pool_size = (2, 2))) # Adding a second convolutional layer classifier.add(Conv2D(32, (3, 3), activation = 'relu')) classifier.add(MaxPooling2D(pool_size = (2, 2))) # Step 3 - Flattening classifier.add(Flatten()) # Step 4 - Full connection classifier.add(Dense(units = 128, activation = 'relu')) classifier.add(Dense(units = 1, activation = 'sigmoid')) # Compiling the CNN classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) # Part 2 - Fitting the CNN to the images from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale = 1./255,shear_range = 0.2,zoom_range = 0.2,horizontal_flip = True) test_datagen = ImageDataGenerator(rescale = 1./255) training_set = train_datagen.flow_from_directory('dataset/training_set',target_size = (64, 64),batch_size = 32,class_mode = 'binary') test_set = test_datagen.flow_from_directory('dataset/test_set',target_size = (64, 64),batch_size = 32,class_mode = 'binary') classifier.fit_generator(training_set,steps_per_epoch = 8000,epochs = 1,validation_data = test_set,validation_steps = 2000) # Part 3 - Making new predictions import numpy as np from keras.preprocessing import image test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64)) test_image = image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis = 0) result = classifier.predict(test_image) training_set.class_indices if result[0][0] == 1: prediction = 'dog' else: prediction = 'cat'
[ "noreply@github.com" ]
KshitizzB.noreply@github.com
58eef6f7c5bccd89ee0ccd34eafd3e455e420680
d40a047b3f409760e5dbcf6768df7047e5f487ff
/web/adoption_stories/adopteeStories/urls.py
678426b7b507245babddb10a3858b928c423d22e
[]
no_license
ourchinastories/ourchinastories
72629aed44ea15c43f75f753180e57be9566f87c
593904786abac0294c3e933456987ffeff9026e2
refs/heads/master
2021-06-09T05:20:31.304499
2016-10-26T10:28:37
2016-10-26T10:28:37
71,987,907
0
0
null
null
null
null
UTF-8
Python
false
false
1,161
py
from adopteeStories import views from django.conf.urls import url urlpatterns = [ url(r'^adoptee/(?P<pk>[0-9]+)/$', views.AdopteeDetail.as_view(), name="adopteeDetail"), # TODO: Eliminate tech debt and have better REST behavior here url(r'^adopteeCreate/$', views.AdopteeCreate.as_view(), name="adopteeCreate"), url(r'^storytellerCreate/$', views.StoryTellerCreate.as_view(), name="storytellerCreate"), #url(r'^adoptee/$', views.AdopteeList.as_view(), # name="adopteeList"), url(r'^adopteeList/(?P<q>[^/]+)/$', views.AdopteeList.as_view(), name="adopteeList"), url(r'^search/adoptee/(?P<q>[^/]+)/$', views.AdopteeSearch.as_view(), name="adopteeSearch"), url(r'^category/$', views.CategoryListAndCreate.as_view(), name="categoryListAndCreate"), url(r'^photoUpload/$', views.PhotoFileCreate.as_view(), name="photoCreate"), url(r'^audio/$', views.AudioCreate.as_view(), name="audioCreate"), url(r'^video/$', views.VideoCreate.as_view(), name="videoCreate"), url(r'^about/$', views.AboutPersonList.as_view(), name="aboutList") ]
[ "jennah@stedwards.edu" ]
jennah@stedwards.edu
4aa4a264e521e8263d040372856d3cbd5cf179fc
d6f3a38313fa132bf882173602a58b4e88615230
/compare_image/compare4.py
2517d6f51e53ad79f2ac004f76f4bd854d624f25
[]
no_license
thouger/FGO_Battle
531173ab209f30a915dc0e6b75e65babded87364
7ab00b6b939a1b3d8e7de89df73c5fe9e6f17285
refs/heads/master
2020-03-30T00:51:18.842574
2018-11-26T10:09:49
2018-11-26T10:09:49
150,547,308
1
0
null
2018-09-29T05:06:52
2018-09-27T07:32:44
Python
UTF-8
Python
false
false
3,771
py
import cv2 import imageio import numpy as np import scipy import scipy.spatial import pickle import random import os import matplotlib.pyplot as plt # Feature extractor def extract_features(image_path, vector_size=32): image = imageio.imread(image_path, pilmode="RGB") try: # Using KAZE, cause SIFT, ORB and other was moved to additional module # which is adding addtional pain during install alg = cv2.KAZE_create() # Dinding image keypoints kps = alg.detect(image) # Getting first 32 of them. # Number of keypoints is varies depend on image size and color pallet # Sorting them based on keypoint response value(bigger is better) kps = sorted(kps, key=lambda x: -x.response)[:vector_size] # computing descriptors vector kps, dsc = alg.compute(image, kps) # Flatten all of them in one big vector - our feature vector dsc = dsc.flatten() # Making descriptor of same size # Descriptor vector size is 64 needed_size = (vector_size * 64) if dsc.size < needed_size: # if we have less the 32 descriptors then just adding zeros at the # end of our feature vector dsc = np.concatenate([dsc, np.zeros(needed_size - dsc.size)]) except cv2.error as e: print('Error: ', e) return None return dsc def batch_extractor(images_path, pickled_db_path="features.pck"): files = [os.path.join(images_path, p) for p in sorted(os.listdir(images_path))] result = {} for f in files: print('Extracting features from image %s' % f) name = f.split('/')[-1].lower() result[name] = extract_features(f) # saving all our feature vectors in pickled file with open(pickled_db_path, 'wb') as fp: pickle.dump(result, fp) class Matcher(object): def __init__(self, pickled_db_path="features.pck"): with open(pickled_db_path,'rb') as fp: self.data = pickle.load(fp) self.names = [] self.matrix = [] for k, v in self.data.items(): self.names.append(k) self.matrix.append(v) self.matrix = np.array(self.matrix) self.names = np.array(self.names) def cos_cdist(self, vector): # getting cosine distance between search image and images database v = vector.reshape(1, -1) return scipy.spatial.distance.cdist(self.matrix, v, 'cosine').reshape(-1) def match(self, image_path, topn=5): features = extract_features(image_path) img_distances = self.cos_cdist(features) # getting top 5 records nearest_ids = np.argsort(img_distances)[:topn].tolist() nearest_img_paths = self.names[nearest_ids].tolist() return nearest_img_paths, img_distances[nearest_ids].tolist() def show_img(path): img = imageio.imread(path, pilmode="RGB") plt.imshow(img) plt.show() def run(): images_path = './resources/images/' files = [os.path.join(images_path, p) for p in sorted(os.listdir(images_path))] # getting 3 random images sample = random.sample(files, 9) batch_extractor(images_path) ma = Matcher('features.pck') for s in sample: print('Query image ==========================================') show_img(s) names, match = ma.match(s, topn=3) print('Result images ========================================') for i in range(3): # we got cosine distance, less cosine distance between vectors # more they similar, thus we subtruct it from 1 to get match value print('Match %s' % (1-match[i])) show_img(os.path.join(images_path, names[i])) if __name__ == '__main__': run()
[ "t@e.com" ]
t@e.com
b1b10f74c7b2b141fab2f67520ef2bafb047a1f3
051d25888b6a36e50714fa5940f6a31ee951ce77
/gentb_website/tb_website/apps/dropbox_helper/dropbox_util.py
f43f6ff658915949644e878347d6b70ddd524912
[ "MIT" ]
permissive
cchoirat/gentb-site
d0d627ffc160c53b61d92dc8f02a11f930a2b09a
24ebce58cd5f5e0a2f1449e2f14b1f75b592f28f
refs/heads/master
2021-01-21T02:20:55.909012
2015-11-25T18:27:23
2015-11-25T18:27:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,476
py
from os.path import join, isdir import os from apps.dropbox_helper.dropbox_retriever import DropboxRetriever from apps.dropbox_helper.models import DropboxRetrievalLog from django.conf import settings def get_dropbox_metadata(predict_dataset): """ Wrap the DropboxRetriever function - (True, DropboxRetrievalLog object) - (False, error message string) """ if predict_dataset is None: return (False, "The dataset was not found.") # Initialize # dr = DropboxRetriever(predict_dataset.dropbox_url, destination_dir=predict_dataset.file_directory, file_patterns=self.predict_dataset.get_file_patterns()) db_log = DropboxRetrievalLog(dataset=predict_dataset) if dr.err_found: db_log.file_metadata_err_msg = dr.err_msg db_log.save() return (False, dr.err_msg) # Get the metadata # if not dr.step1_retrieve_metadata(): db_log.file_metadata_err_msg = dr.err_msg db_log.save() return (False, dr.err_msg) # Does it have what we want? # if not dr.step2_check_file_matches(): db_log.file_metadata_err_msg = dr.err_msg db_log.save() return (False, dr.err_msg) # Yes! db_log.file_metadata = dr.dropbox_link_metadata db_log.selected_files = dr.matching_files_metadata db_log.save() return (True, dr) def get_dropbox_metadata_from_link(dropbox_link, file_patterns=None): """ Wrap the DropboxRetriever function - (True, DropboxRetriever object) - (False, error message string) """ if dropbox_link is None: return (False, "The dataset was not found.") # This directory doesn't actually get used # tmp_dir = join(settings.TB_SHARED_DATAFILE_DIRECTORY, 'tmp') if not isdir(tmp_dir): os.makedirs(tmp_dir) # Initialize # if file_patterns: dr = DropboxRetriever(dropbox_link,\ destination_dir=tmp_dir,\ file_patterns=file_patterns) else: dr = DropboxRetriever(dropbox_link,\ destination_dir=tmp_dir) if dr.err_found: return (False, dr.err_msg) # Get the metadata # if not dr.step1_retrieve_metadata(): return (False, dr.err_msg) # Does it have what we want? # if not dr.step2_check_file_matches(): return (False, dr.err_msg) # Yes! return (True, dr)
[ "raman_prasad@harvard.edu" ]
raman_prasad@harvard.edu
3b973d3e09c9f97de38156ab5d5c65f3f37eac88
3b9898c95102c35ac05079ebbff68a2553951c65
/Ch5.DePitta/pycustommodules/solvers/solver_utils.py
797b9b1319b828083195c02d56ad4b284c422b59
[]
no_license
savagedude3/comp-glia-book
902460f1137c4ee0d9fc53993412376eec08668e
c2e3fa54c22c9c2e04376e9af4cb3491ad1dfe91
refs/heads/master
2022-03-29T04:38:16.565159
2019-04-27T20:48:29
2019-04-27T20:48:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,196
py
""" solvers_utils.py Library that defines solver related data structures. Methods: - solver_opts : create dictionary for settings of "continuous solvers such as Euler or RK4 solvers (in related H and CPP files). v1.0 Maurizio De Pitta', The University of Chicago, March 1st, 2015. """ import numpy as np from scipy import * import sys, os base_dir = '/Ch4.DePitta' sys.path.append(os.path.join(os.path.expanduser('~'),base_dir+'/pycustommodules')) import pycustommodules.general_utils as gu def solver_opts(method='euler',**kwargs): """ Define a standard dictionary to use in C/C++ simulators. Use: options = solver_opts(...) Input: - method : {'euler'} | 'rk4' | 'gsl' | 'gsl_rk8pd' | 'gsl_msadams' - ndims : {1} | Integer Number of equations (i.e. dimension) of the system to integrate **kwargs: - t0 : initial instant of integration [s] - tfin : final instant of integration [s] - transient : transient to drop from output result [s] - tbin : time bin of solution [s] - dt : step of integration [s] - solver : string {"euler"} | "rk4" Output: - options : dictionary of solver settings (keys are inputs). v1.3 Added options for GSL solvers. Append 'solver' key at the end for all methods. Maurizio De Pitta', INRIA Rhone-Alpes, November 1st, 2017. """ ## User-defined parameters if method in ['euler','rk4']: opts = {'t0' : 0.0, 'tfin' : 20.0, 'transient' : 0.0, 'tbin' : 1e-2, 'dt' : 1e-3 } elif method in ['gsl', 'gsl_rk8pd', 'gsl_msadams']: opts = {'t0' : 0.0, 'tfin' : 1.0, 'dt' : 1e-3, 'atol' : 1e-8, 'rtol' : 1e-6 } else: # This is the case of solver 'None','none','steady_state' opts = {'nmax' : 1000, # Max number of iterations for the solver 'atol' : 1e-10,# Absolute tolerance on error 'rtol' : 0.0 # Relative tolerance on error (default: 0.0: not considered) } opts = gu.varargin(opts, **kwargs) for k,item in opts.iteritems(): if (not isinstance(item, (basestring, bool)))&(not hasattr(item, '__len__'))&(item != None): opts[k] = float(item) if method in ['gsl','gsl_rk8pd']: opts['nstep'] = (opts['tfin']-opts['t0'])//opts['dt'] + 1 # +1 if when we start counting from zero if (not method) or (method in ['none','steady_state']): for p in ['nmax']: opts[p] = np.intc(opts[p]) # Include solver specifier in the final dictionary opts['solver'] = method return opts #----------------------------------------------------------------------------------------------------------------------- # Testing #----------------------------------------------------------------------------------------------------------------------- if __name__ == "__main__": algparams = solver_opts(method='gsl_rk8pd',ndims=7) print algparams
[ "maurizio.depitta@gmail.com" ]
maurizio.depitta@gmail.com
bcb660a70c23a57e06a129b7d5e0ac8a48ccc062
440736bf8cdfff0b5569105519204414414b455a
/reviewboard/hostingsvcs/tests/test_bitbucket.py
17ebf6a31a0ba0b0ec1a00ab52f35359a3acad75
[ "MIT" ]
permissive
bbbbbgit/reviewboard
ef456bbd848a26a0babe9bbf9d1ccfdf6cafcffc
f9cff6699ec387600d1d0540db32d1a0517c203d
refs/heads/master
2022-07-17T01:38:12.774767
2020-05-12T02:43:03
2020-05-12T02:43:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
60,819
py
"""Unit tests for the Bitbucket hosting service.""" from __future__ import unicode_literals import logging from django.contrib.auth.models import User from django.test.client import RequestFactory from django.utils.safestring import SafeText from djblets.testing.decorators import add_fixtures from reviewboard.hostingsvcs.bitbucket import BitbucketAuthForm from reviewboard.hostingsvcs.errors import (AuthorizationError, RepositoryError) from reviewboard.hostingsvcs.testing import HostingServiceTestCase from reviewboard.reviews.models import ReviewRequest from reviewboard.scmtools.core import Branch, Commit from reviewboard.scmtools.crypto_utils import (decrypt_password, encrypt_password) from reviewboard.scmtools.errors import FileNotFoundError from reviewboard.site.models import LocalSite from reviewboard.site.urlresolvers import local_site_reverse class BitbucketTestCase(HostingServiceTestCase): """Base class for Bitbucket test suites.""" service_name = 'bitbucket' fixtures = ['test_scmtools'] default_account_data = { 'password': encrypt_password(HostingServiceTestCase.default_password), } default_repository_extra_data = { 'bitbucket_repo_name': 'myrepo', } class BitbucketTests(BitbucketTestCase): """Unit tests for the Bitbucket hosting service.""" def test_service_support(self): """Testing Bitbucket service support capabilities""" self.assertTrue(self.service_class.supports_bug_trackers) self.assertTrue(self.service_class.supports_repositories) def test_get_repository_fields_with_git_and_personal_plan(self): """Testing Bitbucket.get_repository_fields for Git and plan=personal""" self.assertEqual( self.get_repository_fields( 'Git', fields={ 'bitbucket_repo_name': 'myrepo', }, plan='personal' ), { 'path': 'git@bitbucket.org:myuser/myrepo.git', 'mirror_path': ('https://myuser@bitbucket.org/myuser/' 'myrepo.git'), }) def test_get_repository_fields_with_mercurial_and_personal_plan(self): """Testing Bitbucket.get_repository_fields for Mercurial and plan=personal """ self.assertEqual( self.get_repository_fields( 'Mercurial', fields={ 'bitbucket_repo_name': 'myrepo', }, plan='personal' ), { 'path': 'https://myuser@bitbucket.org/myuser/myrepo', 'mirror_path': 'ssh://hg@bitbucket.org/myuser/myrepo', }) def test_get_repository_fields_with_git_and_team_plan(self): """Testing Bitbucket.get_repository_fields for Git and plan=team""" self.assertEqual( self.get_repository_fields( 'Git', fields={ 'bitbucket_team_name': 'myteam', 'bitbucket_team_repo_name': 'myrepo', }, plan='team' ), { 'path': 'git@bitbucket.org:myteam/myrepo.git', 'mirror_path': ('https://myuser@bitbucket.org/myteam/' 'myrepo.git'), }) def test_get_repository_fields_with_mercurial_and_team_plan(self): """Testing Bitbucket.get_repository_fields for Mercurial and plan=team """ self.assertEqual( self.get_repository_fields( 'Mercurial', fields={ 'bitbucket_team_name': 'myteam', 'bitbucket_team_repo_name': 'myrepo', }, plan='team' ), { 'path': 'https://myuser@bitbucket.org/myteam/myrepo', 'mirror_path': 'ssh://hg@bitbucket.org/myteam/myrepo', }) def test_get_repository_fields_with_git_and_other_user_plan(self): """Testing Bitbucket.get_repository_fields for Git and plan=other-user """ self.assertEqual( self.get_repository_fields( 'Git', fields={ 'bitbucket_other_user_username': 'someuser', 'bitbucket_other_user_repo_name': 'myrepo', }, plan='other-user' ), { 'path': 'git@bitbucket.org:someuser/myrepo.git', 'mirror_path': ('https://myuser@bitbucket.org/someuser/' 'myrepo.git'), }) def test_get_repository_fields_with_mercurial_and_other_user_plan(self): """Testing Bitbucket.get_repository_fields for Mercurial and plan=other-user """ self.assertEqual( self.get_repository_fields( 'Mercurial', fields={ 'bitbucket_other_user_username': 'someuser', 'bitbucket_other_user_repo_name': 'myrepo', }, plan='other-user' ), { 'path': 'https://myuser@bitbucket.org/someuser/myrepo', 'mirror_path': 'ssh://hg@bitbucket.org/someuser/myrepo', }) def test_get_bug_tracker_field_with_personal_plan(self): """Testing Bitbucket.get_bug_tracker_field with plan=personal""" self.assertTrue(self.service_class.get_bug_tracker_requires_username( plan='personal')) self.assertEqual( self.service_class.get_bug_tracker_field( 'personal', { 'bitbucket_repo_name': 'myrepo', 'hosting_account_username': 'myuser', }), 'https://bitbucket.org/myuser/myrepo/issue/%s/') def test_get_bug_tracker_field_with_team_plan(self): """Testing Bitbucket.get_bug_tracker_field with plan=team""" self.assertFalse(self.service_class.get_bug_tracker_requires_username( plan='team')) self.assertEqual( self.service_class.get_bug_tracker_field( 'team', { 'bitbucket_team_name': 'myteam', 'bitbucket_team_repo_name': 'myrepo', }), 'https://bitbucket.org/myteam/myrepo/issue/%s/') def test_get_bug_tracker_field_with_other_user_plan(self): """Testing Bitbucket.get_bug_tracker_field with plan=other-user""" self.assertFalse(self.service_class.get_bug_tracker_requires_username( plan='other-user')) self.assertEqual( self.service_class.get_bug_tracker_field( 'other-user', { 'bitbucket_other_user_username': 'someuser', 'bitbucket_other_user_repo_name': 'myrepo', }), 'https://bitbucket.org/someuser/myrepo/issue/%s/') def test_get_repository_hook_instructions(self): """Testing BitBucket.get_repository_hook_instructions""" account = self.create_hosting_account() repository = self.create_repository(hosting_account=account) hooks_uuid = repository.get_or_create_hooks_uuid() request = RequestFactory().get(path='/') request.user = User.objects.create(username='test-user') content = repository.hosting_service.get_repository_hook_instructions( request=request, repository=repository) self.assertIsInstance(content, SafeText) self.assertIn( ('https://bitbucket.org/myuser/myrepo/admin/addon/admin/' 'bitbucket-webhooks/bb-webhooks-repo-admin'), content) self.assertIn( ('http://example.com/repos/1/bitbucket/hooks/%s/close-submitted/' % hooks_uuid), content) self.assertIn('Review Board supports closing', content) self.assertIn('<code>Review Board</code>', content) def test_check_repository_with_personal_plan(self): """Testing Bitbucket.check_repository with plan=personal""" with self.setup_http_test(payload=b'{"scm": "git"}', expected_http_calls=1) as ctx: ctx.service.check_repository(bitbucket_repo_name='myrepo', plan='personal', tool_name='Git') ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo' '?fields=scm')) def test_check_repository_with_team_plan(self): """Testing Bitbucket.check_repository with plan=team""" with self.setup_http_test(payload=b'{"scm": "git"}', expected_http_calls=1) as ctx: ctx.service.check_repository(bitbucket_team_name='myteam', bitbucket_team_repo_name='myrepo', tool_name='Git', plan='team') ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myteam/myrepo' '?fields=scm')) def test_check_repository_with_other_user_plan(self): """Testing Bitbucket.check_repository with plan=other-user""" with self.setup_http_test(payload=b'{"scm": "git"}', expected_http_calls=1) as ctx: ctx.service.check_repository( bitbucket_other_user_username='someuser', bitbucket_other_user_repo_name='myrepo', plan='other-user', tool_name='Git') ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/someuser/myrepo' '?fields=scm')) def test_check_repository_with_slash(self): """Testing Bitbucket.check_repository with /""" expected_message = \ 'Please specify just the name of the repository, not a path.' with self.setup_http_test(expected_http_calls=0) as ctx: with self.assertRaisesMessage(RepositoryError, expected_message): ctx.service.check_repository( bitbucket_team_name='myteam', bitbucket_team_repo_name='myteam/myrepo', plan='team') def test_check_repository_with_dot_git(self): """Testing Bitbucket.check_repository with .git""" expected_message = \ 'Please specify just the name of the repository without ".git".' with self.setup_http_test(expected_http_calls=0) as ctx: with self.assertRaisesMessage(RepositoryError, expected_message): ctx.service.check_repository( bitbucket_team_name='myteam', bitbucket_team_repo_name='myrepo.git', plan='team') def test_check_repository_with_type_mismatch(self): """Testing Bitbucket.check_repository with type mismatch""" error_message = ( 'The Bitbucket repository being configured does not match the ' 'type of repository you have selected.' ) with self.setup_http_test(payload=b'{"scm": "git"}', expected_http_calls=1) as ctx: # Check Git repositories. with self.assertRaisesMessage(RepositoryError, error_message): ctx.service.check_repository( bitbucket_team_name='myteam', bitbucket_team_repo_name='myrepo', plan='team', tool_name='Mercurial') ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myteam/myrepo' '?fields=scm')) # Now check Mercurial repositories. with self.setup_http_test(payload=b'{"scm": "hg"}', expected_http_calls=1) as ctx: with self.assertRaisesMessage(RepositoryError, error_message): ctx.service.check_repository( bitbucket_team_name='myteam', bitbucket_team_repo_name='myrepo', plan='team', tool_name='Git') ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myteam/myrepo' '?fields=scm')) def test_authorize(self): """Testing Bitbucket.authorize""" hosting_account = self.create_hosting_account(data={}) with self.setup_http_test(payload=b'{}', hosting_account=hosting_account, expected_http_calls=1) as ctx: self.assertFalse(ctx.service.is_authorized()) ctx.service.authorize(username='myuser', password='abc123') self.assertIn('password', hosting_account.data) self.assertNotEqual(hosting_account.data['password'], 'abc123') self.assertEqual(decrypt_password(hosting_account.data['password']), 'abc123') self.assertTrue(ctx.service.is_authorized()) ctx.assertHTTPCall( 0, url='https://bitbucket.org/api/2.0/user', username='myuser', password='abc123') def test_authorize_with_bad_credentials(self): """Testing Bitbucket.authorize with bad credentials""" hosting_account = self.create_hosting_account(data={}) expected_message = ( 'Invalid Bitbucket username or password. Make sure you are using ' 'your Bitbucket username and not e-mail address, and are using an ' 'app password if two-factor authentication is enabled.' ) with self.setup_http_test(status_code=401, hosting_account=hosting_account, expected_http_calls=1) as ctx: self.assertFalse(ctx.service.is_authorized()) with self.assertRaisesMessage(AuthorizationError, expected_message): ctx.service.authorize(username='myuser', password='abc123') self.assertNotIn('password', hosting_account.data) self.assertFalse(ctx.service.is_authorized()) ctx.assertHTTPCall( 0, url='https://bitbucket.org/api/2.0/user', username='myuser', password='abc123') def test_get_file_with_mercurial_and_base_commit_id(self): """Testing Bitbucket.get_file with Mercurial and base commit ID""" self._test_get_file( tool_name='Mercurial', revision='123', base_commit_id='456', expected_revision='456') def test_get_file_with_mercurial_and_revision(self): """Testing Bitbucket.get_file with Mercurial and revision""" self._test_get_file( tool_name='Mercurial', revision='123', base_commit_id=None, expected_revision='123') def test_get_file_with_git_and_base_commit_id(self): """Testing Bitbucket.get_file with Git and base commit ID""" self._test_get_file( tool_name='Git', revision='123', base_commit_id='456', expected_revision='456') def test_get_file_with_git_and_revision(self): """Testing Bitbucket.get_file with Git and revision""" with self.assertRaises(FileNotFoundError): self._test_get_file(tool_name='Git', revision='123', base_commit_id=None, expected_revision='123') def test_get_file_exists_with_mercurial_and_base_commit_id(self): """Testing Bitbucket.get_file_exists with Mercurial and base commit ID """ self._test_get_file_exists( tool_name='Mercurial', revision='123', base_commit_id='456', expected_revision='456', expected_found=True) def test_get_file_exists_with_mercurial_and_revision(self): """Testing Bitbucket.get_file_exists with Mercurial and revision""" self._test_get_file_exists( tool_name='Mercurial', revision='123', base_commit_id=None, expected_revision='123', expected_found=True) def test_get_file_exists_with_git_and_base_commit_id(self): """Testing Bitbucket.get_file_exists with Git and base commit ID""" self._test_get_file_exists( tool_name='Git', revision='123', base_commit_id='456', expected_revision='456', expected_found=True) def test_get_file_exists_with_git_and_revision(self): """Testing Bitbucket.get_file_exists with Git and revision""" self._test_get_file_exists( tool_name='Git', revision='123', base_commit_id=None, expected_revision='123', expected_found=False, expected_http_called=False) def test_get_file_exists_with_git_and_404(self): """Testing BitBucket.get_file_exists with Git and a 404 error""" self._test_get_file_exists( tool_name='Git', revision='123', base_commit_id='456', expected_revision='456', expected_found=False) def test_get_branches(self): """Testing Bitbucket.get_branches""" branches_api_response_1 = self.dump_json({ 'next': ('https://bitbucket.org/api/2.0/repositories/myuser/' 'myrepo/refs/branches' '?fields=values.name%2Cvalues.target.hash%2Cnext' '&pagelen=100&page=2'), 'values': [ { 'name': 'branch1', 'target': { 'hash': '1c44b461cebe5874a857c51a4a13a849a4d1e52d', }, }, { 'name': 'branch2', 'target': { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', }, }, ], }) branches_api_response_2 = self.dump_json({ 'values': [ { 'name': 'branch3', 'target': { 'hash': 'e5874a857c51a4a13a849a4d1e52d1c44b461ceb', }, }, { 'name': 'branch4', 'target': { 'hash': 'd286691517e6325fea5c7a21d5e44568f7d33647', }, }, ], }) get_repository_api_response = self.dump_json({ 'mainbranch': { 'name': 'branch3', }, }) paths = { '/api/2.0/repositories/myuser/myrepo': { 'payload': get_repository_api_response, }, ('/api/2.0/repositories/myuser/myrepo/refs/branches' '?fields=values.name%2Cvalues.target.hash%2Cnext&pagelen=100'): { 'payload': branches_api_response_1, }, ('/api/2.0/repositories/myuser/myrepo/refs/branches' '?fields=values.name%2Cvalues.target.hash%2Cnext&page=2' '&pagelen=100'): { 'payload': branches_api_response_2, }, } with self.setup_http_test(self.make_handler_for_paths(paths), expected_http_calls=3) as ctx: repository = self.create_repository(tool_name='Git') branches = ctx.service.get_branches(repository) ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo' '?fields=mainbranch.name')) ctx.assertHTTPCall( 1, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'refs/branches' '?fields=values.name%2Cvalues.target.hash%2Cnext' '&pagelen=100')) ctx.assertHTTPCall( 2, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'refs/branches' '?fields=values.name%2Cvalues.target.hash%2Cnext' '&page=2&pagelen=100')) self.assertEqual( branches, [ Branch(id='branch1', commit='1c44b461cebe5874a857c51a4a13a849a4d1e52d'), Branch(id='branch2', commit='44568f7d33647d286691517e6325fea5c7a21d5e'), Branch(id='branch3', commit='e5874a857c51a4a13a849a4d1e52d1c44b461ceb', default=True), Branch(id='branch4', commit='d286691517e6325fea5c7a21d5e44568f7d33647'), ]) def test_get_commits(self): """Testing Bitbucket.get_commits""" payload = self.dump_json({ 'size': 2, 'values': [ { 'hash': '1c44b461cebe5874a857c51a4a13a849a4d1e52d', 'author': { 'raw': 'Some User 1 <user1@example.com>', }, 'date': '2017-01-24T13:11:22+00:00', 'message': 'This is commit 1.', 'parents': [ { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', }, ], }, { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', 'author': { 'raw': 'Some User 2 <user2@example.com>', }, 'date': '2017-01-23T08:09:10+00:00', 'message': 'This is commit 2.', 'parents': [ { 'hash': 'e5874a857c51a4a13a849a4d1e52d1c44b461ceb', }, ], }, ], }) with self.setup_http_test(payload=payload, expected_http_calls=1) as ctx: repository = ctx.create_repository(tool_name='Git') commits = ctx.service.get_commits(repository) ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'commits' '?fields=values.author.raw%2Cvalues.hash%2Cvalues.date' '%2Cvalues.message%2Cvalues.parents.hash' '&pagelen=20')) self.assertEqual( commits, [ Commit(author_name='Some User 1 <user1@example.com>', date='2017-01-24T13:11:22+00:00', id='1c44b461cebe5874a857c51a4a13a849a4d1e52d', message='This is commit 1.', parent='44568f7d33647d286691517e6325fea5c7a21d5e'), Commit(author_name='Some User 2 <user2@example.com>', date='2017-01-23T08:09:10+00:00', id='44568f7d33647d286691517e6325fea5c7a21d5e', message='This is commit 2.', parent='e5874a857c51a4a13a849a4d1e52d1c44b461ceb'), ]) for commit in commits: self.assertIsNone(commit.diff) def test_get_commits_with_start(self): """Testing Bitbucket.get_commits with start=""" payload = self.dump_json({ 'size': 2, 'values': [ { 'hash': '1c44b461cebe5874a857c51a4a13a849a4d1e52d', 'author': { 'raw': 'Some User 1 <user1@example.com>', }, 'date': '2017-01-24T13:11:22+00:00', 'message': 'This is commit 1.', 'parents': [ { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', }, ], }, { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', 'author': { 'raw': 'Some User 2 <user2@example.com>', }, 'date': '2017-01-23T08:09:10+00:00', 'message': 'This is commit 2.', 'parents': [ { 'hash': 'e5874a857c51a4a13a849a4d1e52d1c44b461ceb', }, ], }, ], }) with self.setup_http_test(payload=payload, expected_http_calls=1) as ctx: repository = ctx.create_repository(tool_name='Git') commits = ctx.service.get_commits( repository, start='1c44b461cebe5874a857c51a4a13a849a4d1e5') ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'commits/1c44b461cebe5874a857c51a4a13a849a4d1e5' '?fields=values.author.raw%2Cvalues.hash%2Cvalues.date' '%2Cvalues.message%2Cvalues.parents.hash' '&pagelen=20')) self.assertEqual( commits, [ Commit(author_name='Some User 1 <user1@example.com>', date='2017-01-24T13:11:22+00:00', id='1c44b461cebe5874a857c51a4a13a849a4d1e52d', message='This is commit 1.', parent='44568f7d33647d286691517e6325fea5c7a21d5e'), Commit(author_name='Some User 2 <user2@example.com>', date='2017-01-23T08:09:10+00:00', id='44568f7d33647d286691517e6325fea5c7a21d5e', message='This is commit 2.', parent='e5874a857c51a4a13a849a4d1e52d1c44b461ceb'), ]) for commit in commits: self.assertIsNone(commit.diff) def test_get_commits_with_branch(self): """Testing Bitbucket.get_commits with branch=""" payload = self.dump_json({ 'size': 2, 'values': [ { 'hash': '1c44b461cebe5874a857c51a4a13a849a4d1e52d', 'author': { 'raw': 'Some User 1 <user1@example.com>', }, 'date': '2017-01-24T13:11:22+00:00', 'message': 'This is commit 1.', 'parents': [ { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', }, ], }, { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', 'author': { 'raw': 'Some User 2 <user2@example.com>', }, 'date': '2017-01-23T08:09:10+00:00', 'message': 'This is commit 2.', 'parents': [ { 'hash': 'e5874a857c51a4a13a849a4d1e52d1c44b461ceb', }, ], }, ], }) with self.setup_http_test(payload=payload, expected_http_calls=1) as ctx: repository = ctx.create_repository(tool_name='Git') commits = ctx.service.get_commits(repository, branch='master') ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'commits/master' '?fields=values.author.raw%2Cvalues.hash%2Cvalues.date' '%2Cvalues.message%2Cvalues.parents.hash' '&pagelen=20')) self.assertEqual( commits, [ Commit(author_name='Some User 1 <user1@example.com>', date='2017-01-24T13:11:22+00:00', id='1c44b461cebe5874a857c51a4a13a849a4d1e52d', message='This is commit 1.', parent='44568f7d33647d286691517e6325fea5c7a21d5e'), Commit(author_name='Some User 2 <user2@example.com>', date='2017-01-23T08:09:10+00:00', id='44568f7d33647d286691517e6325fea5c7a21d5e', message='This is commit 2.', parent='e5874a857c51a4a13a849a4d1e52d1c44b461ceb'), ]) for commit in commits: self.assertIsNone(commit.diff) def test_get_commits_with_start_and_branch(self): """Testing Bitbucket.get_commits with start= and branch=""" payload = self.dump_json({ 'size': 2, 'values': [ { 'hash': '1c44b461cebe5874a857c51a4a13a849a4d1e52d', 'author': { 'raw': 'Some User 1 <user1@example.com>', }, 'date': '2017-01-24T13:11:22+00:00', 'message': 'This is commit 1.', 'parents': [ { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', }, ], }, { 'hash': '44568f7d33647d286691517e6325fea5c7a21d5e', 'author': { 'raw': 'Some User 2 <user2@example.com>', }, 'date': '2017-01-23T08:09:10+00:00', 'message': 'This is commit 2.', 'parents': [ { 'hash': 'e5874a857c51a4a13a849a4d1e52d1c44b461ceb', }, ], }, ], }) with self.setup_http_test(payload=payload, expected_http_calls=1) as ctx: repository = ctx.create_repository(tool_name='Git') commits = ctx.service.get_commits( repository, start='1c44b461cebe5874a857c51a4a13a849a4d1e52d', branch='master') ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'commits/1c44b461cebe5874a857c51a4a13a849a4d1e52d' '?fields=values.author.raw%2Cvalues.hash%2Cvalues.date' '%2Cvalues.message%2Cvalues.parents.hash' '&pagelen=20')) self.assertEqual( commits, [ Commit(author_name='Some User 1 <user1@example.com>', date='2017-01-24T13:11:22+00:00', id='1c44b461cebe5874a857c51a4a13a849a4d1e52d', message='This is commit 1.', parent='44568f7d33647d286691517e6325fea5c7a21d5e'), Commit(author_name='Some User 2 <user2@example.com>', date='2017-01-23T08:09:10+00:00', id='44568f7d33647d286691517e6325fea5c7a21d5e', message='This is commit 2.', parent='e5874a857c51a4a13a849a4d1e52d1c44b461ceb'), ]) for commit in commits: self.assertIsNone(commit.diff) def test_get_change(self): """Testing BitBucket.get_change""" commit_sha = '1c44b461cebe5874a857c51a4a13a849a4d1e52d' parent_sha = '44568f7d33647d286691517e6325fea5c7a21d5e' paths = { '/api/2.0/repositories/myuser/myrepo/commit/%s' % commit_sha: { 'payload': self.dump_json({ 'hash': commit_sha, 'author': { 'raw': 'Some User <user@example.com>', }, 'date': '2017-01-24T13:11:22+00:00', 'message': 'This is a message.', 'parents': [{'hash': parent_sha}], }), }, '/api/2.0/repositories/myuser/myrepo/diff/%s' % commit_sha: { 'payload': b'This is a test \xc7.', }, } with self.setup_http_test(self.make_handler_for_paths(paths), expected_http_calls=2) as ctx: repository = ctx.create_repository(tool_name='Git') commit = ctx.service.get_change(repository, commit_sha) ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'commit/1c44b461cebe5874a857c51a4a13a849a4d1e52d' '?fields=author.raw%2Chash%2Cdate%2Cmessage%2Cparents.hash')) ctx.assertHTTPCall( 1, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'diff/1c44b461cebe5874a857c51a4a13a849a4d1e52d')) self.assertEqual( commit, Commit(author_name='Some User <user@example.com>', date='2017-01-24T13:11:22+00:00', id=commit_sha, message='This is a message.', parent=parent_sha)) self.assertEqual(commit.diff, b'This is a test \xc7.\n') def _test_get_file(self, tool_name, revision, base_commit_id, expected_revision): """Test file fetching. Args: tool_name (unicode): The name of the SCM Tool to test with. revision (unicode, optional): The revision to check. base_commit_id (unicode, optional): The base commit to fetch against. expected_revision (unicode, optional): The revision expected in the payload. """ with self.setup_http_test(payload=b'My data', expected_http_calls=1) as ctx: repository = ctx.create_repository(tool_name=tool_name) result = ctx.service.get_file(repository=repository, path='path', revision=revision, base_commit_id=base_commit_id) ctx.assertHTTPCall( 0, url=('https://bitbucket.org/api/2.0/repositories/myuser/myrepo/' 'src/%s/path' % expected_revision)) self.assertIsInstance(result, bytes) self.assertEqual(result, b'My data') def _test_get_file_exists(self, tool_name, revision, base_commit_id, expected_revision, expected_found, expected_http_called=True): """Test file existence checks. Args: tool_name (unicode): The name of the SCM Tool to test with. revision (unicode, optional): The revision to check. base_commit_id (unicode, optional): The base commit to fetch against. expected_revision (unicode, optional): The revision expected in the payload. expected_found (bool, optional): Whether a truthy response should be expected. expected_http_called (bool, optional): Whether an HTTP request is expected to have been made. """ if expected_found: payload = b'file...' status_code = None else: payload = None status_code = 404 if expected_http_called: expected_calls = 1 else: expected_calls = 0 with self.setup_http_test(payload=payload, status_code=status_code, expected_http_calls=expected_calls) as ctx: repository = ctx.create_repository(tool_name=tool_name) result = ctx.service.get_file_exists(repository=repository, path='path', revision=revision, base_commit_id=base_commit_id) if expected_http_called: ctx.assertHTTPCall( 0, method='HEAD', url=('https://bitbucket.org/api/2.0/repositories/myuser/' 'myrepo/src/%s/path' % expected_revision)) self.assertEqual(result, expected_found) class BitbucketAuthFormTests(BitbucketTestCase): """Unit tests for BitbucketAuthForm.""" def test_clean_hosting_account_username_with_username(self): """Testing BitbucketAuthForm.clean_hosting_account_username with username """ form = BitbucketAuthForm( hosting_service_cls=self.service_class, data={ 'hosting_account_username': 'myuser', 'hosting_account_password': 'mypass', }) self.assertTrue(form.is_valid()) def test_clean_hosting_account_username_with_email(self): """Testing BitbucketAuthForm.clean_hosting_account_username with e-mail address """ form = BitbucketAuthForm( hosting_service_cls=self.service_class, data={ 'hosting_account_username': 'myuser@example.com', 'hosting_account_password': 'mypass', }) self.assertFalse(form.is_valid()) self.assertEqual(form.errors['hosting_account_username'], ['This must be your Bitbucket username (the same one ' 'you would see in URLs for your own repositories), ' 'not your Atlassian e-mail address.']) class CloseSubmittedHookTests(BitbucketTestCase): """Unit tests for the Bitbucket close-submitted webhook.""" fixtures = ['test_users', 'test_scmtools'] COMMITS_URL = ('/api/2.0/repositories/test/test/commits' '?exclude=abc123&include=def123') def test_close_submitted_hook(self): """Testing BitBucket close_submitted hook""" self._test_post_commit_hook() @add_fixtures(['test_site']) def test_close_submitted_hook_with_local_site(self): """Testing BitBucket close_submitted hook with a Local Site""" self._test_post_commit_hook( LocalSite.objects.get(name=self.local_site_name)) def test_close_submitted_hook_with_truncated_commits(self): """Testing BitBucket close_submitted hook with truncated list of commits """ account = self.create_hosting_account() repository = self.create_repository(hosting_account=account) # Create two review requests: One per referenced commit. review_request1 = self.create_review_request(id=99, repository=repository, publish=True) self.assertTrue(review_request1.public) self.assertEqual(review_request1.status, review_request1.PENDING_REVIEW) review_request2 = self.create_review_request(id=100, repository=repository, publish=True) self.assertTrue(review_request2.public) self.assertEqual(review_request2.status, review_request2.PENDING_REVIEW) page2_url = '%s&page=2&pagelen=100' % self.COMMITS_URL paths = { '%s&pagelen=100' % self.COMMITS_URL: { 'payload': self.dump_json({ 'next': page2_url, 'values': [ { 'hash': '1c44b461cebe5874a857c51a4a13a84' '9a4d1e52d', 'message': 'This is my fancy commit.\n' '\n' 'Reviewed at http://example.com%s' % review_request1.get_absolute_url(), }, ], }), }, page2_url: { 'payload': self.dump_json({ 'values': [ { 'hash': '9fad89712ebe5874a857c5112a3c9d1' '87ada0dbc', 'message': 'This is another commit\n' '\n' 'Reviewed at http://example.com%s' % review_request2.get_absolute_url(), }, ], }), } } # Simulate the webhook. url = local_site_reverse( 'bitbucket-hooks-close-submitted', kwargs={ 'repository_id': repository.pk, 'hosting_service_id': 'bitbucket', 'hooks_uuid': repository.get_or_create_hooks_uuid(), }) with self.setup_http_test(self.make_handler_for_paths(paths), expected_http_calls=2): self._post_commit_hook_payload( post_url=url, review_request_url=review_request1.get_absolute_url(), truncated=True) # Check the first review request. # # The first review request has an entry in the truncated list and the # fetched list. We'll make sure we've only processed it once. review_request1 = ReviewRequest.objects.get(pk=review_request1.pk) self.assertTrue(review_request1.public) self.assertEqual(review_request1.status, review_request1.SUBMITTED) self.assertEqual(review_request1.changedescs.count(), 1) changedesc = review_request1.changedescs.get() self.assertEqual(changedesc.text, 'Pushed to master (1c44b46)') # Check the first review request. review_request2 = ReviewRequest.objects.get(pk=review_request2.pk) self.assertTrue(review_request2.public) self.assertEqual(review_request2.status, review_request2.SUBMITTED) self.assertEqual(review_request2.changedescs.count(), 1) changedesc = review_request2.changedescs.get() self.assertEqual(changedesc.text, 'Pushed to master (9fad897)') def test_close_submitted_hook_with_truncated_commits_limits(self): """Testing BitBucket close_submitted hook with truncated list of commits obeys limits """ paths = { '%s&pagelen=100' % self.COMMITS_URL: { 'payload': self.dump_json({ 'next': '%s&page=2' % self.COMMITS_URL, 'values': [], }), }, } paths.update({ '%s&page=%s&pagelen=100' % (self.COMMITS_URL, i): { 'payload': self.dump_json({ 'next': '%s&page=%s' % (self.COMMITS_URL, i + 1), 'values': [], }), } for i in range(1, 10) }) account = self.create_hosting_account() repository = self.create_repository(hosting_account=account) # Create two review requests: One per referenced commit. review_request1 = self.create_review_request(id=99, repository=repository, publish=True) self.assertTrue(review_request1.public) self.assertEqual(review_request1.status, review_request1.PENDING_REVIEW) review_request2 = self.create_review_request(id=100, repository=repository, publish=True) self.assertTrue(review_request2.public) self.assertEqual(review_request2.status, review_request2.PENDING_REVIEW) # Simulate the webhook. url = local_site_reverse( 'bitbucket-hooks-close-submitted', kwargs={ 'repository_id': repository.pk, 'hosting_service_id': 'bitbucket', 'hooks_uuid': repository.get_or_create_hooks_uuid(), }) # There should have been 5 API requests. We'll never hit the final # page. with self.setup_http_test(self.make_handler_for_paths(paths), expected_http_calls=5): self._post_commit_hook_payload( post_url=url, review_request_url=review_request1.get_absolute_url(), truncated=True) # The review requests should not have been updated. review_request1 = ReviewRequest.objects.get(pk=review_request1.pk) self.assertTrue(review_request1.public) self.assertEqual(review_request1.status, review_request1.PENDING_REVIEW) self.assertEqual(review_request1.changedescs.count(), 0) # Check the first review request. review_request2 = ReviewRequest.objects.get(pk=review_request2.pk) self.assertTrue(review_request2.public) self.assertEqual(review_request1.status, review_request1.PENDING_REVIEW) self.assertEqual(review_request2.changedescs.count(), 0) def test_close_submitted_hook_with_truncated_and_auth_error(self): """Testing BitBucket close_submitted hook with truncated list of commits and authentication error talking to Bitbucket """ account = self.create_hosting_account() repository = self.create_repository(hosting_account=account) # Create two review requests: One per referenced commit. review_request1 = self.create_review_request(id=99, repository=repository, publish=True) self.assertTrue(review_request1.public) self.assertEqual(review_request1.status, review_request1.PENDING_REVIEW) review_request2 = self.create_review_request(id=100, repository=repository, publish=True) self.assertTrue(review_request2.public) self.assertEqual(review_request2.status, review_request2.PENDING_REVIEW) # Simulate the webhook. url = local_site_reverse( 'bitbucket-hooks-close-submitted', kwargs={ 'repository_id': repository.pk, 'hosting_service_id': 'bitbucket', 'hooks_uuid': repository.get_or_create_hooks_uuid(), }) with self.setup_http_test(status_code=401, hosting_account=account, expected_http_calls=1): response = self._post_commit_hook_payload( post_url=url, review_request_url=review_request1.get_absolute_url(), truncated=True) self.assertEqual(response.status_code, 403) self.assertEqual(response.content, b'Incorrect username or password configured for ' b'this repository on Review Board.') # The review requests should not have been updated. review_request1 = ReviewRequest.objects.get(pk=review_request1.pk) self.assertTrue(review_request1.public) self.assertEqual(review_request1.status, review_request1.PENDING_REVIEW) self.assertEqual(review_request1.changedescs.count(), 0) # Check the first review request. review_request2 = ReviewRequest.objects.get(pk=review_request2.pk) self.assertTrue(review_request2.public) self.assertEqual(review_request1.status, review_request1.PENDING_REVIEW) self.assertEqual(review_request2.changedescs.count(), 0) def test_close_submitted_hook_with_invalid_repo(self): """Testing BitBucket close_submitted hook with invalid repository""" repository = self.create_repository() review_request = self.create_review_request(repository=repository, publish=True) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) url = local_site_reverse( 'bitbucket-hooks-close-submitted', kwargs={ 'repository_id': repository.pk, 'hosting_service_id': 'bitbucket', 'hooks_uuid': repository.get_or_create_hooks_uuid(), }) response = self._post_commit_hook_payload( post_url=url, review_request_url=review_request.get_absolute_url()) self.assertEqual(response.status_code, 404) review_request = ReviewRequest.objects.get(pk=review_request.pk) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) self.assertEqual(review_request.changedescs.count(), 0) @add_fixtures(['test_site']) def test_close_submitted_hook_with_invalid_site(self): """Testing BitBucket close_submitted hook with invalid Local Site""" local_site = LocalSite.objects.get(name=self.local_site_name) account = self.create_hosting_account(local_site=local_site) account.save() repository = self.create_repository(hosting_account=account, local_site=local_site) review_request = self.create_review_request(repository=repository, publish=True) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) url = local_site_reverse( 'bitbucket-hooks-close-submitted', local_site_name='badsite', kwargs={ 'repository_id': repository.pk, 'hosting_service_id': 'bitbucket', 'hooks_uuid': repository.get_or_create_hooks_uuid(), }) response = self._post_commit_hook_payload( post_url=url, review_request_url=review_request.get_absolute_url()) self.assertEqual(response.status_code, 404) review_request = ReviewRequest.objects.get(pk=review_request.pk) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) self.assertEqual(review_request.changedescs.count(), 0) def test_close_submitted_hook_with_invalid_service_id(self): """Testing BitBucket close_submitted hook with invalid hosting service ID """ # We'll test against GitHub for this test. account = self.create_hosting_account() account.service_name = 'github' account.save() repository = self.create_repository(hosting_account=account) review_request = self.create_review_request(repository=repository, publish=True) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) url = local_site_reverse( 'bitbucket-hooks-close-submitted', kwargs={ 'repository_id': repository.pk, 'hosting_service_id': 'bitbucket', 'hooks_uuid': repository.get_or_create_hooks_uuid(), }) response = self._post_commit_hook_payload( post_url=url, review_request_url=review_request.get_absolute_url()) self.assertEqual(response.status_code, 404) review_request = ReviewRequest.objects.get(pk=review_request.pk) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) self.assertEqual(review_request.changedescs.count(), 0) def test_close_submitted_hook_with_invalid_review_request(self): """Testing BitBucket close_submitted hook with invalid review request """ self.spy_on(logging.error) account = self.create_hosting_account() repository = self.create_repository(hosting_account=account) review_request = self.create_review_request(repository=repository, publish=True) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) url = local_site_reverse( 'bitbucket-hooks-close-submitted', kwargs={ 'repository_id': repository.pk, 'hosting_service_id': 'bitbucket', 'hooks_uuid': repository.get_or_create_hooks_uuid(), }) response = self._post_commit_hook_payload( post_url=url, review_request_url='/r/9999/') self.assertEqual(response.status_code, 200) review_request = ReviewRequest.objects.get(pk=review_request.pk) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) self.assertEqual(review_request.changedescs.count(), 0) self.assertTrue(logging.error.called_with( 'close_all_review_requests: Review request #%s does not exist.', 9999)) def _test_post_commit_hook(self, local_site=None): """Testing posting to a commit hook. This will simulate pushing a commit and posting the resulting webhook payload from Bitbucket to the handler for the hook. Args: local_site (reviewboard.site.models.LocalSite, optional): The Local Site owning the review request. """ account = self.create_hosting_account(local_site=local_site) repository = self.create_repository(hosting_account=account, local_site=local_site) review_request = self.create_review_request(repository=repository, local_site=local_site, publish=True) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.PENDING_REVIEW) url = local_site_reverse( 'bitbucket-hooks-close-submitted', local_site=local_site, kwargs={ 'repository_id': repository.pk, 'hosting_service_id': 'bitbucket', 'hooks_uuid': repository.get_or_create_hooks_uuid(), }) self._post_commit_hook_payload( post_url=url, review_request_url=review_request.get_absolute_url()) review_request = ReviewRequest.objects.get(pk=review_request.pk) self.assertTrue(review_request.public) self.assertEqual(review_request.status, review_request.SUBMITTED) self.assertEqual(review_request.changedescs.count(), 1) changedesc = review_request.changedescs.get() self.assertEqual(changedesc.text, 'Pushed to master (1c44b46)') def _post_commit_hook_payload(self, post_url, review_request_url, truncated=False): """Post a payload for a hook for testing. Args: post_url (unicode): The URL to post to. review_request_url (unicode): The URL of the review request being represented in the payload. truncated (bool, optional): Whether the commit list should be marked truncated. Results: django.core.handlers.request.wsgi.WSGIRequest: The post request. """ return self.client.post( post_url, content_type='application/json', data=self.dump_json({ # NOTE: This payload only contains the content we make # use of in the hook. 'push': { 'changes': [ { 'new': { 'type': 'branch', 'name': 'master', }, 'truncated': truncated, 'commits': [ { 'hash': '1c44b461cebe5874a857c51a4a13a84' '9a4d1e52d', 'message': 'This is my fancy commit\n' '\n' 'Reviewed at http://example.com' '%s' % review_request_url, }, ], 'links': { 'commits': { 'href': self.COMMITS_URL, }, }, }, # Some entries containing missing keys. { 'new': { 'type': 'frobblegobble', 'name': 'master', }, 'truncated': truncated, 'commits': [ { 'hash': '1c44b461cebe5874a857c51a4a13a84' '9a4d1e52d', 'message': 'This is my fancy commit\n' '\n' 'Reviewed at http://example.com' '%s' % review_request_url, }, ], 'links': { 'commits': { 'href': self.COMMITS_URL, }, }, }, { 'new': { 'type': 'branch', 'name': 'other', }, 'truncated': truncated, 'commits': [ { 'hash': 'f46a13a1cc43bebea857c558741a484' '1e52d9a4d', 'message': 'Ignored commit.' }, ], 'links': {}, }, { 'new': {}, 'commits': [], }, { 'new': None, 'commits': None, }, { } ], } }, for_response=False))
[ "christian@beanbaginc.com" ]
christian@beanbaginc.com
b793c18b73cf718d4a56d2d86079e007fcdd1110
5b2525863ad7d02aae57328e598493a5dd816335
/oli_crm/cliente.py
7bc5f3e6aaed34d06c324b2800cf9c5c9473d4db
[]
no_license
rejamen/oli_studio
4707a718baa27630571caadd0298ee654799ef6b
56fc6a2456dff51d9d9182648b3d62bb6cc69dee
refs/heads/master
2020-06-14T17:20:00.239332
2018-01-24T21:19:05
2018-01-24T21:19:05
195,070,415
1
0
null
null
null
null
UTF-8
Python
false
false
3,536
py
# -*- coding: utf-8 -*- from openerp import models, fields, api import os, sys from openerp.osv import osv from openerp.tools.translate import _ from datetime import datetime, date class cliente_cliente(models.Model): _name = 'cliente.cliente' def check_permission(self, cr, uid, ids, context=None): for s in self.browse(cr, uid, ids, context=context): res = False # group_obj = self.pool.get('res.groups') # manager_ids = group_obj.search(cr, uid, [('name','=', 'Configuration')]) # if uid == manager_ids[0]: # res = True s.update({'admin': res}) def set_vip(self, cr, uid, ids, context=None): for c in self.browse(cr, uid, ids, context=context): self.write(cr, uid, c.id, {'tipo': 'vip'}) return True def set_normal(self, cr, uid, ids, context=None): for c in self.browse(cr, uid, ids, context=context): self.write(cr, uid, c.id, {'tipo': 'normal'}) return True @api.depends('tipo') #establece color segun el estado def _get_color_from_type(self, cr, uid, ids, context=None): for record in self.browse(cr, uid, ids, context=context): color = 1 if record.tipo == 'vip': color = 2 record.update({'color': color}) def clear_historial(self, cr, uid, ids, context=None): for e in self.browse(cr, uid, ids, context=context): self.write(cr, uid, [e.id], {'state': 'contratado'}) return True @api.depends('historial_line.cliente_id') def _get_total_trabajos(self): for order in self: total = 0 abonado = 0.0 for line in order.historial_line: total += 1 abonado += line.costo order.update({'total_abonado': abonado}) name = fields.Char('Nombre y Apellidos', required=True) tipo = fields.Selection([ ('normal', 'Normal'), ('vip', 'VIP'), ], 'Tipo', help="Los clientes VIP disfrutan de facilidades segun las estrategias de marketing", default='normal') phone = fields.Char('Telefono') mobile = fields.Char('Movil') mail = fields.Char('e-mail') address = fields.Char('Direccion') color = fields.Char('Color', compute='_get_color_from_type') historial_line = fields.One2many('historial.cliente', 'cliente_id', 'Historial Lines') total_abonado = fields.Float(compute='_get_total_trabajos', string='Total abonado') admin = fields.Boolean(compute='check_permission', string='Admin') # @api.multi # def unlink(self): # if not self.admin: # raise UserError(_('No se puede eliminar un cliente pues se afectan los registros que dependen de él.')) # ret = super(cliente_cliente, self).unlink() # return ret def name_get(self, cr, uid, ids, context=None): res = [] for e in self.browse(cr,uid, ids, context=context): name = e.name res.append((e['id'],name)) return res class historial_cliente(models.Model): _name="historial.cliente" _order = "fecha desc" def preparar_historial(self, cr, uid, cliente, fecha, description, costo, context=None): historial_vals = { 'cliente_id': cliente.id, 'fecha': fecha, 'description': description, 'costo': costo, } return historial_vals cliente_id = fields.Many2one('cliente.cliente', 'Cliente', select=True, ondelete='cascade') fecha = fields.Date('Fecha', default=fields.Date.context_today) description = fields.Char('Descripcion') costo = fields.Float('Costo', help="Costo del trabajo realizado")
[ "rejamen@gmail.com" ]
rejamen@gmail.com
0f575114c740a9d4d0a6ef18d6c3eed531df65f9
fff3c194287eea1260c18a638d2d0287b7ce80d7
/Fazt-Python/functions.py
c87f77e9c30fab3ed7fe2178a8fa86871f35eab8
[]
no_license
jav2074/python-curso
8efecd848df9d9949220d1edcadbf546662c9972
8bbc1215a00efe80ecade8b7bc79607e9a201010
refs/heads/master
2022-05-23T03:09:11.874813
2020-04-28T04:05:20
2020-04-28T04:05:20
259,351,416
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
def funcion(): print("Hello dude!!") ## Declaración normal sumar = lambda n1, n2: n1 + n2 ## Declaración más cool print(f"La suma de 10 + 30 = {sumar(10,30)}")
[ "jav.electrochance@gmail.com" ]
jav.electrochance@gmail.com
7d73a85d5a3225d378732273639e817589855b7f
1f6fcaba4fb7c5023e21105f3941ff921b48f9da
/manage.py
20465c7d94f9f938d476f83ea55f69edb8f3ccd8
[ "MIT" ]
permissive
Hugo-mesk/sb-admin-django
79564c2cda609be1159413de16ddc103daa9efca
55cb7c6704db9ac287ead67c76b4e9666e55a231
refs/heads/master
2020-04-29T19:52:31.816341
2019-09-18T01:14:09
2019-09-18T01:14:09
176,368,959
0
0
null
null
null
null
UTF-8
Python
false
false
628
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'sb_admin.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "hugo.mesk@gmail.com" ]
hugo.mesk@gmail.com
32f23cb372dfdf98567ae16228bdbb95e6934524
74549d7c57b4746ac2a9c275aa12bfc577b0e8af
/hogwartsEmailAdderss.py
245b738aa52c6cc12e18274915c1042e79fc0fa9
[]
no_license
abidkhan484/hackerrank_solution
af9dbf6ec1ead920dc18df233f40db0c867720b4
b0a98e4bdfa71a4671999f16ab313cc5c76a1b7a
refs/heads/master
2022-05-02T11:13:29.447127
2022-04-13T03:02:59
2022-04-13T03:02:59
99,207,401
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
#!/bin/python3 import string def isValid(email): for i in range(5): if email[i] not in string.ascii_lowercase: return 'No' else: if email[5:] != '@hogwarts.com': return 'No' return 'Yes' if __name__ == "__main__": s = input().strip() result = isValid(s) print(result)
[ "noreply@github.com" ]
abidkhan484.noreply@github.com
30be4f592bf60c640c8d02efec383730b5e1a5b5
8bcf166b364427c77daebaca28e30145ffefe72e
/v0.5/training/keyword_spotting/eval_quantized_model.py
9f9648df0cb1234ca6e78506c79f4b0a2fd1c2c3
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
shahbazabbasi313/tiny
61992854194460a03b94b45ee5719d60ad7aa4a6
0b04bcd402ee28f84e79fa86d8bb8e731d9497b8
refs/heads/master
2023-07-22T13:04:03.353053
2021-08-16T15:30:00
2021-08-16T15:30:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,654
py
import tensorflow as tf import os import numpy as np import argparse import get_dataset as kws_data import kws_util def predict(interpreter, data): # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Test the model on input data. input_shape = input_details[0]['shape'] input_data = np.array(data, dtype=np.int8) output_data = np.empty_like(data) interpreter.set_tensor(input_details[0]['index'], input_data[i:i+1, :]) interpreter.invoke() # The function `get_tensor()` returns a copy of the tensor data. # Use `tensor()` in order to get a pointer to the tensor. output_data[i:i+1, :] = interpreter.get_tensor(output_details[0]['index']) return output_data if __name__ == '__main__': Flags, unparsed = kws_util.parse_command() ds_train, ds_test, ds_val = kws_data.get_training_data(Flags) interpreter = tf.lite.Interpreter(model_path=Flags.tfl_file_name) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]['shape'] output_data = [] labels = [] if Flags.target_set[0:3].lower() == 'val': eval_data = ds_val print("Evaluating on the validation set") elif Flags.target_set[0:4].lower() == 'test': eval_data = ds_test print("Evaluating on the test set") elif Flags.target_set[0:5].lower() == 'train': eval_data = ds_train print("Evaluating on the training set") eval_data = eval_data.unbatch().batch(1).as_numpy_iterator() input_scale, input_zero_point = input_details[0]["quantization"] for dat, label in eval_data: if input_details[0]['dtype'] == np.float32: interpreter.set_tensor(input_details[0]['index'], dat) elif input_details[0]['dtype'] == np.int8: dat_q = np.array(dat/input_scale + input_zero_point, dtype=np.int8) # should match input type in quantize.py interpreter.set_tensor(input_details[0]['index'], dat_q) else: raise ValueError("TFLite file has input dtype {:}. Only np.int8 and np.float32 are supported".format( input_details[0]['dtype'])) interpreter.invoke() # The function `get_tensor()` returns a copy of the tensor data. # Use `tensor()` in order to get a pointer to the tensor. output_data.append(np.argmax(interpreter.get_tensor(output_details[0]['index']))) labels.append(label[0]) num_correct = np.sum(np.array(labels) == output_data) acc = num_correct / len(labels) print(f"Accuracy on {Flags.target_set} = {acc:5.3f} ({num_correct}/{len(labels)})")
[ "noreply@github.com" ]
shahbazabbasi313.noreply@github.com
dbab2a986b7d8d5f43a5b9fe7805078b099fd92d
42b6dbe23ba392fe53d958e26d77a596ee5b7c5a
/RegistroHoras/Actividades/admin.py
6b324b6805062a400c7aa894be36788e987df86c
[]
no_license
parraletz/RegistroHoras
611d0eb44542d595b65f97c66f17bfff9af167d3
6096f26af84932f4f2cb8764e76cc2bd54f8bb7a
refs/heads/master
2020-04-06T07:06:11.313349
2012-09-13T02:10:33
2012-09-13T02:10:33
5,774,219
1
0
null
null
null
null
UTF-8
Python
false
false
347
py
from django.contrib import admin from RegistroHoras.Actividades.models import Actividad class ActividadAdmin(admin.ModelAdmin): list_display = ('ticket', 'usuario' , 'fecha', ) ordering = ['ticket',] class Media: js = ('/media/js/tiny_mce/tiny_mce.js', '/media/js/textarea.js') admin.site.register(Actividad, ActividadAdmin)
[ "parraletz@MacBook-de-Alex.local" ]
parraletz@MacBook-de-Alex.local
6d77d6d52951c53f4d0ef07221cb6ae33d1286a2
2c904b9f2cdb7baf1f84dbd622312357e05de734
/config/wsgi.py
b6b2b1f00bf49f88e5a2ca9848f049a169f6e0c1
[]
no_license
teresaliu20/Social-News-Backend
e026701531df198592138f11b1d5ab71bc0ea8b9
86d0823f27a265d6e977240de7fbbe9e524199f4
refs/heads/master
2021-09-09T09:33:50.202607
2019-05-06T03:02:42
2019-05-06T03:02:42
170,370,281
0
0
null
2021-09-08T00:59:58
2019-02-12T18:35:01
Python
UTF-8
Python
false
false
1,942
py
""" WSGI config for paper project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os import sys from django.core.wsgi import get_wsgi_application # This allows easy placement of apps within the interior # paper directory. app_path = os.path.abspath(os.path.join( os.path.dirname(os.path.abspath(__file__)), os.pardir)) sys.path.append(os.path.join(app_path, 'paper')) if os.environ.get('DJANGO_SETTINGS_MODULE') == 'config.settings.production': from raven.contrib.django.raven_compat.middleware.wsgi import Sentry # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "config.settings.production" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.production") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. application = get_wsgi_application() if os.environ.get('DJANGO_SETTINGS_MODULE') == 'config.settings.production': application = Sentry(application) # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
[ "teresali@usc.edu" ]
teresali@usc.edu
1fcb89c5c39abd1703dd85a4ef5a5f187e638036
e0985213177cb63350db6efa9c2be93af3dccc55
/1. Neural Networks and Deep Learning/Week 3/planar_utils.py
852c34d6eca94af4e2e40240ffd97764b5cd764b
[]
no_license
Tinsae/Deep-Learning-Projects
c3e7172d31e6b4ebae63b23b7b8a4584b243c7b3
9853ed9d0e0675dab5d612bcc267ae9a666c17e2
refs/heads/master
2020-04-05T13:47:22.006512
2019-06-10T00:20:49
2019-06-10T00:20:49
156,909,625
0
0
null
null
null
null
UTF-8
Python
false
false
2,716
py
import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid # TGA Note: this will unroll xx into 1D array and also yy. ## Then it concatenates the 2 to create a 2 column table ## which correspond to a 2 feature dataset ## Remember that sklearn likes data to be in rows and ## features to be in columns.'model' is sklearn function Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples # TGA Note: this one is predicted class for range of values # the range will surely cover the data in X plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') ## TGA Note: this one is a plot using the ground truth plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): """ Compute the sigmoid of x Arguments: x -- A scalar or numpy array of any size. Return: s -- sigmoid(x) """ s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(N*j,N*(j+1)) t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
[ "Tinsae@users.noreply.github.com" ]
Tinsae@users.noreply.github.com
f401333e5549b41f09b8c1318936448c3a83d737
98e1716c1c3d071b2fedef0ac029eb410f55762c
/part9-Manipulating-DataFrames-with-pandas/No08-Changing-index-of-a-DataFrame.py
c7f11201fbcc7e64a48481ca0e8a27f8c2375844
[]
no_license
iamashu/Data-Camp-exercise-PythonTrack
564531bcf1dff119949cbb75e1fd63d89cb2779f
c72a4e806494f0e263ced9594597dc8882c2131c
refs/heads/master
2020-07-22T00:23:12.024386
2019-04-12T09:24:42
2019-04-12T09:24:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,477
py
#Changing index of a DataFrame ''' As you saw in the previous exercise, indexes are immutable objects. This means that if you want to change or modify the index in a DataFrame, then you need to change the whole index. You will do this now, using a list comprehension to create the new index. A list comprehension is a succinct way to generate a list in one line. For example, the following list comprehension generates a list that contains the cubes of all numbers from 0 to 9: cubes = [i**3 for i in range(10)]. This is equivalent to the following code: cubes = [] for i in range(10): cubes.append(i**3) Before getting started, print the sales DataFrame in the IPython Shell and verify that the index is given by month abbreviations containing lowercase characters. Instructions 100 XP Create a list new_idx with the same elements as in sales.index, but with all characters capitalized. Assign new_idx to sales.index. Print the sales dataframe. This has been done for you, so hit 'Submit Answer' and to see how the index changed. ''' # Code # Create the list of new indexes: new_idx new_idx = [i.upper() for i in sales.index] #my error: new_idx = [sales.index.upper() for sales.index in sales.index] # Assign new_idx to sales.index sales.index = new_idx # Print the sales DataFrame print(sales) '''result eggs salt spam JAN 47 12.0 17 FEB 110 50.0 31 MAR 221 89.0 72 APR 77 87.0 20 MAY 132 NaN 52 JUN 205 60.0 55 '''
[ "beiran@hotmail.com" ]
beiran@hotmail.com
66f58fbdd6e05d8b3b7be819f956b8858a9e2dd3
df1ce1c88d5997259a8429dfbb07377a561113f0
/assignments/2008-2012/universityOfWaterloo/cs116/a6/a6q1.py
c984ed2cee674a280cf845e45c2f89b6f98d8798
[]
no_license
watadarkstar/school-works
0b4c5603461b02cd573ac00caa04660ddd58ad78
d4b7c8a19415bc2d74c73eb4a5da0932020ee5a6
refs/heads/master
2016-09-05T22:53:27.341377
2013-08-26T06:04:43
2013-08-26T06:04:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
## ## ***************************************************** ## ## CS 116 Assignment 6, Question 1 ## Darren Poon ## (How_many_buckets) ## ## ***************************************************** ## Contract: how_many_buckets: int[>o] int[>0] int[>0] -> int[>0] ## Purpose: consumes the height and radius of a cylindrical bucket and the number of cubic centimetres of sand available and produce an integer indicating the number of complete buckets of sand possible. ## Examples: ## how_many_buckets(2,1,62.8) => 39 ## how_many_buckets(1,1,1) => 0 ## how_many_buckets(2,1,30) => 4 ## Definition: import math def how_many_buckets(height,radius,cubic_cm): return int(cubic_cm /(radius *radius *math.pi *height)) ## No test is needed
[ "dyhpoon@gmail.com" ]
dyhpoon@gmail.com
ffcd183098cfe16aeeca43b435378c6bfc58a74c
586973165efb8ac1347b1d5e5187200d9fbaa4e1
/prediction/Long_short_term_memory_keras_in_tf.py
bd0fd73b9bf1c26a15965bd57caa0e27b27bdfba
[]
no_license
Jaehoon-Cha/machine_learning
01dd84445fa646786b503122b21477209a574f8a
a0f84da3dc1df5a99a05ec09b4913c14bf4820f2
refs/heads/master
2020-06-10T20:20:33.194291
2019-07-17T03:05:58
2019-07-17T03:05:58
193,735,274
0
0
null
null
null
null
UTF-8
Python
false
false
2,785
py
# -*- coding: utf-8 -*- """ Created on Fri Jun 28 13:10:13 2019 @author: jaehooncha """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import scale import tensorflow as tf from tensorflow.keras.layers import Dense, Dropout, CuDNNLSTM, BatchNormalization from tensorflow.keras.layers import TimeDistributed ### data load ### features = pd.read_pickle('../datasets/four_features.pickle') features = np.array(features) features = scale(features) time_seq = 10 n_features = features.shape[1]-1 def make_sequence(features, s_seq): features_seq = [] m, n = features.shape for i in range(m - s_seq + 1): features_seq.append([np.array(features[i:i+s_seq, :-1]), features[i+s_seq-1, -1]]) return features_seq features_seq = make_sequence(features, time_seq) train = features_seq[:-365] test = features_seq[-365:] ### seperate features and target ### train_x = [item[0] for item in train] train_x = np.concatenate(train_x) train_x = train_x.reshape(-1,time_seq, n_features) train_y = [item[1] for item in train] train_y = np.array(train_y) test_x = [item[0] for item in test] test_x = np.concatenate(test_x) test_x = test_x.reshape(-1,time_seq, n_features) test_y = [item[1] for item in test] test_y = np.array(test_y) ### LSTM ### def rnn_train(X, Y, h1 = 64, h2 = 32, n_epochs = 100, s_batch = 100, Lr = 0.001): model = tf.keras.models.Sequential() model.add(CuDNNLSTM(h1, input_shape = (X.shape[1:]), return_sequences = True)) model.add(CuDNNLSTM(h2)) model.add(Dense(1)) optimizer = tf.keras.optimizers.Adam(lr=Lr) model.compile(optimizer = optimizer, loss = 'mse', metrics =['mae', 'mse']) hist = model.fit(X, Y, epochs = n_epochs, batch_size = s_batch) return hist def rnn_predict(rnn_model, X): rnn = rnn_model rnn_prediction = rnn.predict(X) rnn_prediction = rnn_prediction.reshape(-1) return rnn_prediction ### implement ### rnn_model = rnn_train(train_x, train_y, h1 = 64, h2 = 32, n_epochs = 100, s_batch = 100).model train_predict_y = rnn_predict(rnn_model, train_x) test_predict_y = rnn_predict(rnn_model, test_x) ### root mean squared error ### train_rmse = np.sqrt(np.mean((train_predict_y - train_y)**2)) test_rmse = np.sqrt(np.mean((test_predict_y - test_y)**2)) print('train RMSE is %.4f' %(train_rmse)) print('test RMSE is %.4f' %(test_rmse)) ### font size ### plt.rcParams.update({'font.size': 15}) ### draw outputs ### plt.figure(figsize=(15,7)) plt.plot(test_y, label = 'true', c = 'r', marker = '_') plt.plot(test_predict_y, label = 'prediction', c = 'k') plt.title('Long Short Term Memory Keras') plt.xlabel('X', size = 20) plt.ylabel('Y', size = 20) plt.legend(loc = 1)
[ "Jaehoon.Cha@xjtlu.edu.cn" ]
Jaehoon.Cha@xjtlu.edu.cn
317c96201c4bbb1152cd1d5db29ad9863b206e8f
e2e9714ed29e337598f104873e3ee6f476fd1030
/URET/uret/__init__.py
ff4f758dc2ce7d0931600204c606355fe8e9e787
[ "MIT" ]
permissive
shekoelnawawy/Ohio_13
5cc776431e31fcb2d4b0aed43d35d3d4cf25dea8
14ec296603a3a0cbd0a0ff0dceebf4cd48e24de9
refs/heads/master
2023-08-09T21:28:13.880192
2023-07-25T19:04:46
2023-07-25T19:04:46
637,802,729
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
""" Universal Robustness Evaluation Toolkit (URET). """ import logging.config # Project Imports from uret import core from uret import transformers from uret import utils # Semantic Version __version__ = "0.1"
[ "shekoelnawawy@gmail.com" ]
shekoelnawawy@gmail.com
d027bb05b1862af384adc59f927dd4b314f9cd57
2ab1359e620d3cde6aa6dbbc4ac0052aa4d8b60d
/not_used/pd_dash.py
0176797fff5b79e89fe8824ed903ff1dd563d52b
[]
no_license
lauratomkins/gis714_project
167fef58e09ae3d841dca07c96b6d1186c7e2541
5261b4751ba040e4b9732cdf553a80b886570408
refs/heads/master
2022-11-12T08:07:57.670108
2020-06-25T18:10:49
2020-06-25T18:10:49
258,236,602
0
0
null
null
null
null
UTF-8
Python
false
false
7,010
py
# step3_map.py # GIS 715 Student-led lab - Dash # Add map of California fires by cause. # Now we will add a second component to the Dash layout. We can use the scattermapbox plotly object to create a map of fire point locations. # For now the map is not interactive (beyond the out of the box functionality). # We will use a style sheet (CSS) to place the components within the layout into rows and columns. import dash from dash.dependencies import Input, Output import dash_html_components as html import dash_core_components as dcc import numpy as np import os import pandas as pd import plotly.express as px import plotly.graph_objects as go external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] # Boostrap CSS for styling. #app.css.append_css({'external_url': 'https://codepen.io/amyoshino/pen/jzXypZ.css'}) filepath = 'G://My Drive//phd//plotly//data//pd_waves//KTYX//20200218//' filelist = os.listdir(filepath) df = pd.read_pickle(filepath + filelist[0]) df = df.dropna(axis=0, how='all', subset=['ref', 'rho', 'vel']) # if all values are NaN then remove that row # Mapbox API key # Insert your key below. mapbox_access_token = 'pk.eyJ1Ijoia2VsbHlubSIsImEiOiJjanM0eDF0ZngwMjZ0M3lwYjV5MWxqZm1xIn0.49GaijkpupewHcHf2niUDA' fig = px.scatter_mapbox( df, lat='lat', lon='lon', color='ref', color_continuous_scale=px.colors.sequential.Magma[::-1], zoom=4, opacity=0.8, range_color=[0,40]) #fig.update_traces(marker_size=0.5) fig.update_layout( title="Reflectivity [dBZ]", autosize=True, height=800, margin=dict( l=35, r=35, b=35, t=25), hovermode="closest", mapbox=dict( accesstoken=mapbox_access_token, style="light", center = dict( lon=-75.6791, lat=43.7558), zoom=6) ) fig2 = px.scatter_mapbox( df, lat='lat', lon='lon', color='rho', color_continuous_scale=px.colors.sequential.deep, zoom=4, opacity=0.8, #title="rhoHV", range_color=[0.8,1]) fig2.update_layout( title='rhoHV', autosize=True, height=800, margin=dict( l=35, r=35, b=35, t=25), hovermode="closest", mapbox=dict( accesstoken=mapbox_access_token, style="light", center = dict( lon=-75.6791, lat=43.7558), zoom=6) ) app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'Radar Image Muting' app.layout = html.Div([ html.H1(children='Radar Image Muting'), html.H2(children='GIS715 Class Project, Spring 2020'), html.Div([ html.Div([html.Label(["Select file"]),dcc.Dropdown( id="file-selector", options=[ {'label': i, 'value': i} for i in filelist ], value = filelist[0] )], style={'padding':10,'backgroundColor':'transparent'},className = "six columns"), ], style={'padding':10},className = "row"), html.Div([ html.Div([html.Label(["Select rhoHV threshold to 'mute' reflectivity"]),dcc.Slider( id="threshold-slider", min=0.5, max=1, step=0.01, value=0, marks={ i: '{:1.2f}'.format(i) for i in np.arange(0.5,1.05,0.05) }, )], style={'padding':10,'backgroundColor':'transparent'},className = "six columns"), html.Div([html.Label(["Select secondary variable to plot"]),dcc.Dropdown( id='variable-checklist', options=[ {'label': 'Correlation Coefficient', 'value': 'rho'}, {'label': 'Waves', 'value': 'waves'}, {'label': 'Velocity', 'value': 'vel'} ], value= 'rho', )],style={'padding':10,'backgroundColor':'transparent'},className = "six columns"), ], style={'padding':10},className = "row"), html.Div([ html.Div(dcc.Graph(id = "ref_map", figure=fig), style={'padding':10},className = "six columns"), html.Div(dcc.Graph(id = "rho-vel_map", figure=fig2), style={'padding': 10},className = "six columns") ], style={'padding':10},className = 'row') ]) @app.callback(Output('rho-vel_map', "figure"), [Input('variable-checklist', 'value'), Input('file-selector', 'value')]) def update_graph(variable_value, file_value): df = pd.read_pickle(filepath + file_value) df = df.dropna(axis=0, how='all', subset=['ref', 'rho', 'vel']) # if all values are NaN then remove that row if variable_value == 'rho': rng = [0.8,1] cb = px.colors.sequential.deep title_label='rhoHV' elif variable_value == 'waves': df = df[df['waves']==1] cb = px.colors.sequential.gray[::-1] rng = [0,1] title_label = 'Waves' elif variable_value == 'vel': rng = [-30, 30] cb = px.colors.sequential.RdBu[::-1] title_label="Velocity [m/s]" fig = px.scatter_mapbox( df, lat='lat', lon='lon', color=variable_value, color_continuous_scale=cb, zoom=4, opacity=0.8, range_color=rng) fig.update_layout( title=title_label, autosize=True, height=800, margin=dict( l=35, r=35, b=35, t=25 ), hovermode="closest", mapbox=dict( accesstoken=mapbox_access_token, style="light", center = dict( lon=-75.6791, lat=43.7558 ), zoom=6) ) return fig @app.callback(Output('ref_map', "figure"), [Input('threshold-slider', 'value'), Input('file-selector', 'value')]) def update_graph2(threshold_value, file_value): df = pd.read_pickle(filepath + file_value) df = df.dropna(axis=0, how='all', subset=['ref', 'rho', 'vel']) # if all values are NaN then remove that row temp = df temp.loc[df['rho'] < threshold_value, 'ref'] = np.nan fig = px.scatter_mapbox( temp, lat='lat', lon='lon', color='ref', color_continuous_scale=px.colors.sequential.Magma[::-1], zoom=4, opacity=0.8, range_color=[0,40]) #fig.update_traces(marker_size=0.5) fig.update_layout( title="Reflectivity [dBZ]", autosize=True, height=800, margin=dict( l=35, r=35,b=35,t=25 ), hovermode="closest", mapbox=dict( accesstoken=mapbox_access_token, style="light", center = dict( lon=-75.6791, lat=43.7558 ), zoom=6) ) return fig if __name__ == '__main__': app.run_server(debug=True)
[ "lmtomkin@ncsu.edu" ]
lmtomkin@ncsu.edu
f66ad507a19057092e4b6df1111b5029c988e1a9
20448841fe75541d2f5b9879178e0f874daede38
/Whats Your Name.py
57d7231ef7080fc9104d81d3a0bc0a99dc7fff91
[]
no_license
dnskvamsi/Hacker_rank_python_solutions
d421bfe231c3d6913fc5285c254ec67ea2c76845
d118734f2cee1df64df02e0421fff68aa5c51cc7
refs/heads/main
2023-05-03T23:28:20.035678
2021-05-26T10:59:31
2021-05-26T10:59:31
370,945,352
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
#!/usr/bin/env python # coding: utf-8 # In[ ]: def print_full_name(first, last): print("Hello "+first+" "+last+"! You just delved into python.") if __name__ == '__main__': first_name = input() last_name = input() print_full_name(first_name, last_name)
[ "noreply@github.com" ]
dnskvamsi.noreply@github.com
844110cd890f6188de3e075fd83348fe08cb99db
14869a028857850c9847780a18949e40f23f2390
/format.py
1195d3754b01c9375087971705df0cceb8462387
[]
no_license
djdevastate123/gittest
97c17428b3d7d05475c2094258c06f3afabecf8a
9b9f554ba8231cd3639cc9e80f2d6c75623c0534
refs/heads/master
2021-01-20T15:07:08.724089
2018-04-26T05:58:07
2018-04-26T05:58:07
82,796,154
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # format.py # def main(args): print("{} {}".format(1,2)) print("{1:>20} {0:>10}".format(1,2)) print("{1:_>20} {0:.>10}".format(1,2)) print("{1:_^20} {0:.^10}".format(1,2)) print("{:10.5f}".format(3.14159265)) print("{:*^30.5f}".format(3.14159265)) print(hex(100)) print(oct(100)) print(bin(100)) return 0 if __name__ == '__main__': import sys sys.exit(main(sys.argv))
[ "krzysiek.st12@vp.pl" ]
krzysiek.st12@vp.pl
9d5dc3893913b6b5006a5bcb85823c9e26f502f5
c923b6c128d59346b628f8e7efb44733dea75188
/serialize.py
20c0fad1302e25937454ce0dec9c66ff53788846
[]
no_license
archcompyym/lab_1
391fc9d9e4aaa11d19c80d1b27c2a8fa0d867d37
29a0ceec5fefe41935b939670d7e7eaa0d4725ab
refs/heads/master
2021-01-19T02:50:48.285775
2017-06-07T09:55:16
2017-06-07T09:55:16
87,296,523
0
0
null
null
null
null
UTF-8
Python
false
false
817
py
import pickle import yaml import json pickle_type = "pickle" yaml_type = "yaml" json_type = "json" def load(file_obj, serialize_method): """ deserialize data""" if serialize_method == pickle_type: return pickle.load(file_obj) elif serialize_method == yaml_type: return yaml.load(file_obj) elif serialize_method == json_type: return json.load(file_obj) def save(data, file_obj, serialize_method): """ serialize data """ if serialize_method == pickle_type: if file_obj: return pickle.dump(data, file_obj) else: return pickle.dumps(data) elif serialize_method == yaml_type: return yaml.dump(data, file_obj, default_flow_style=False) elif serialize_method == json_type: return json.dumps(data, file_obj)
[ "vimikeva@gmail.com" ]
vimikeva@gmail.com
24558780b52d38e43180b755205c210b0960481d
80308dc6fcbc87294d4ae96c4b30d0aac6e88d6a
/multifield_batch_update/dialogs/change_log.py
33ff4545cf46192dd83b0ce3824a14148f628e55
[ "Apache-2.0" ]
permissive
d3v3l0/anki_multifield_batch_update
0d2924b4d2c164d7aee5702fb6b648878da5aaea
4960a6e969256ff0df2ebf37312e80fa009fcddb
refs/heads/master
2022-01-07T00:08:58.959963
2019-07-16T04:54:29
2019-07-16T04:54:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,817
py
# Copyright 2019 Matthew Hayes # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import datetime import os import traceback from aqt.qt import (QDialog, QDialogButtonBox, QFileDialog, QFontDatabase, QHBoxLayout, QLabel, QPlainTextEdit, QStandardPaths, Qt, QVBoxLayout) from aqt.utils import askUser, tooltip from ..db.change_log import ChangeLog class ChangeLogDialog(QDialog): """Dialog to view changelog""" def __init__(self, browser): super().__init__(parent=browser) self.browser = browser self.changelog = ChangeLog() self.display_limit = 500 self._setup_ui() def _setup_ui(self): self.setWindowTitle("View Log") self.setMinimumWidth(600) self.setMinimumHeight(400) vbox = QVBoxLayout() vbox.addLayout(self._ui_top_row()) vbox.addWidget(self._ui_log()) vbox.addLayout(self._ui_bottom_row()) self.setLayout(vbox) self.fillLog() def _ui_top_row(self): hbox = QHBoxLayout() hbox.addWidget(QLabel("Last {} updates".format(self.display_limit))) return hbox def _ui_log(self): self.log = QPlainTextEdit() self.log.setTabChangesFocus(False) self.log.setReadOnly(True) font = QFontDatabase.systemFont(QFontDatabase.FixedFont) font.setPointSize(self.log.font().pointSize() - 2) self.log.setFont(font) return self.log def _ui_bottom_row(self): hbox = QHBoxLayout() buttons = QDialogButtonBox(Qt.Horizontal, self) # Button to export changelog to a CSV file export_btn = buttons.addButton("&Export full history", QDialogButtonBox.ActionRole) export_btn.setToolTip("Export full history to CSV") export_btn.clicked.connect(lambda _: self.onExport()) # Button to close this dialog close_btn = buttons.addButton("&Close", QDialogButtonBox.RejectRole) close_btn.clicked.connect(self.close) hbox.addWidget(buttons) return hbox def fillLog(self): append_to_log = self.log.appendPlainText self.has_records = False for rec in reversed(self.changelog.db.all(""" select op, ts, nid, fld, old, new from changelog order by ts desc limit {} """.format(self.display_limit))): self.has_records = True op, ts, nid, fld, old, new = rec dt = datetime.datetime.utcfromtimestamp(ts / 1000) ts_formatted = dt.strftime("%Y-%m-%dT%H:%M:%S") append_to_log("""{} [{}] Change {} of nid {}:\n{}\n=>\n{}\n""".format( ts_formatted, op, fld, nid, old, new)) # Ensure QPlainTextEdit refreshes (not clear why this is necessary) self.log.repaint() def onExport(self): append_to_log = self.log.appendPlainText if not self.has_records: tooltip("Log is empty") return try: ext = ".csv" default_path = QStandardPaths.writableLocation(QStandardPaths.DocumentsLocation) path = os.path.join(default_path, f"changes{ext}") options = QFileDialog.Options() # native doesn't seem to works options |= QFileDialog.DontUseNativeDialog # we'll confirm ourselves options |= QFileDialog.DontConfirmOverwrite result = QFileDialog.getSaveFileName( self, "Save CSV", path, f"CSV (*{ext})", options=options) if not isinstance(result, tuple): raise Exception("Expected a tuple from save dialog") file = result[0] if file: do_save = True if not file.lower().endswith(ext): file += ext if os.path.exists(file): if not askUser("{} already exists. Are you sure you want to overwrite it?".format(file), parent=self): do_save = False if do_save: append_to_log("Saving to {}".format(file)) with open(file, "w", encoding="utf-8") as outf: field_names = ["ts", "op", "nid", "fld", "old", "new"] writer = csv.DictWriter(outf, fieldnames=field_names) writer.writeheader() for rec in self.changelog.db.all(""" select op, ts, nid, fld, old, new from changelog order by ts asc """): op, ts, nid, fld, old, new = rec writer.writerow({ "op": op, "ts": ts, "nid": nid, "fld": fld, "old": old, "new": new }) append_to_log("Done") except Exception: append_to_log("Failed while writing CSV:\n{}".format(traceback.format_exc()))
[ "matthew.terence.hayes@gmail.com" ]
matthew.terence.hayes@gmail.com
5dd3020194be4c171728f463e6545624855f4e17
0ce2222dea1171a118fa248eb4c5e5f0f6c653a3
/tests/main_test.py
cb849772a8efd556c8df21c09b3cbf5d4deb0f8b
[]
no_license
ijandric97/pawtrails-api
b7e801edee740f1ba8e78d94c9bee147f09074a1
04f821ba92642d36eed7131388e52a8a7e17134c
refs/heads/master
2023-08-05T04:49:46.486757
2021-08-20T13:17:12
2021-08-20T13:17:12
365,889,839
0
1
null
null
null
null
UTF-8
Python
false
false
210
py
from fastapi.testclient import TestClient def test_healthcheck(client: TestClient) -> None: response = client.get("/healthcheck") assert response.status_code == 200 assert response.json() == "OK"
[ "ijandric97@gmail.com" ]
ijandric97@gmail.com
8ba3cfe7aac4b2be3b6c7f45f3b277c2dfa3d565
4de1ebd9870e264128a9bbdce1f25af5256de543
/Functions2.py
453854b2456236d4ccdd5d8020a59e86f3b7aeb2
[]
no_license
lhenslee/superscreener
80d2bbfcf750f3f7b0b42d2b21b223f1ba680dbc
b92374d8b392be2bca36191f36505234a2949492
refs/heads/master
2021-01-23T20:38:33.655630
2017-09-11T20:59:26
2017-09-11T20:59:26
102,870,037
0
0
null
null
null
null
UTF-8
Python
false
false
15,430
py
from alpha_vantage.timeseries import TimeSeries from bs4 import BeautifulSoup as bs import datetime as dt from decimal import * import numpy as np import os import pandas as pd import pandas_datareader as pdr from pandas_datareader._utils import RemoteDataError import pickle import threading from urllib.request import urlopen as uReq from queue import Queue my_api = 'SJVPVKHFF14WYJ5Q' class C: screen_folder = '' pickle_file = '' csv_folder = '' screener_csv = '' analysis_file = '' # Used in setting up the list of tickers def set_recent_screener(a,b): C.screen_folder = a C.pickle_file = b def new_ticker_list(my_url): count = 1 tickers = [] uClient = uReq(my_url) page_html = uClient.read() uClient.close() soup = bs(page_html,'html.parser') screen_name = soup.title.text.replace('Stock Screener - Overview','').title().strip() list_name = screen_name.replace(" ","")+'.pickle' C.screen_folder = 'Recent Screens/'+screen_name+'/' C.pickle_file = C.screen_folder+list_name if not os.path.exists(C.screen_folder): os.makedirs(C.screen_folder) page_classes = soup.findAll('a',{'class':'screener-pages'}) last_page_holder = len(page_classes)-1 last_page = page_classes[last_page_holder].text print('You have '+str(last_page)+' pages to go through.') for number in range(int(last_page)): my_url = my_url+'&r='+str(count) uClient = uReq(my_url) page_html = uClient.read() soup = bs(page_html,'html.parser') count+=20 ticker_holders = soup.findAll('a',{'class':'screener-link-primary'}) for ticker_holder in ticker_holders: ticker = ticker_holder.text tickers.append(ticker) with open(C.pickle_file,'wb') as f: pickle.dump(tickers,f) print(tickers) # Used in gathering data for each ticker in the list class V: Date = [] Open = [] High = [] Low = [] Close = [] Vol = [] def pct_oc(i): return str('%.2f' %(100*(V.Close[i]-V.Open[i])/V.Open[i]))+'%' def pct_gap(i): if i<1: return 'nan' else: return str('%.2f' %(100*(V.Open[i]-V.Close[i-1])/V.Close[i-1]))+'%' def pct_cc(i): if i<1: return 'nan' else: return str('%.2f' %(100*(V.Close[i]-V.Close[i-1])/V.Close[i-1]))+'%' def pct_2(i): if i<2: return 'nan' else: return str('%.2f' %(100*(V.Close[i]-V.Close[i-2])/V.Close[i-2]))+'%' def pct_3(i): if i<3: return 'nan' else: return str('%.2f' %(100*(V.Close[i]-V.Close[i-3])/V.Close[i-3]))+'%' def make_percents(csv_file): f = open(C.csv_folder+csv_file,'w') headers = 'Date,Open,High,Low,Close,Volume,O/C%,Gap%,C/C%,2Days,3Days+\n' f.write(headers) for i in range(len(V.Date)): line = (str(V.Date[i])+','+str(V.Open[i])+','+str(V.High[i])+','+str(V.Low[i])+','+str(V.Close[i])+','+ str(V.Vol[i])+','+pct_oc(i)+','+pct_gap(i)+','+pct_cc(i)+','+pct_2(i)+','+pct_3(i)+'\n') f.write(line) f.close() def get_data(start_year,start_month,start_day,end_year,end_month,end_day): with open(C.pickle_file,'rb') as f: tickers = pickle.load(f) start_string = str(start_year)+'-'+str(start_month)+'-'+str(start_day) end_string = str(end_year)+'-'+str(end_month)+'-'+str(end_day) start = dt.datetime(start_year,start_month,start_day) end = dt.datetime(end_year,end_month,end_day) C.csv_folder = 'stock_dfs/'+start_string+' to '+end_string+'/' if not os.path.exists(C.csv_folder): os.makedirs(C.csv_folder) for ticker in tickers: csv_file = ticker+'.csv' if not os.path.exists(C.csv_folder+csv_file): try: df = pdr.DataReader(ticker,'google',start,end).reset_index() V.Date = df['Date'] V.Open = df['Open'] V.High = df['High'] V.Low = df['Low'] V.Close = df['Close'] V.Vol = df['Volume'] make_percents(csv_file) except RemoteDataError: print('Unable to read '+ticker) tickers.remove(ticker) with open(C.pickle_file,'wb') as f: pickle.dump(tickers,f) ''' This screener takes screen criteria that the user inputs into the GUI.''' class S: Date,Open,High,Low,Close,Vol,oc,gap,cc,cc2,cc3 = ([] for i in range(11)) (d1min,d1max,d2min,d2max,d3min,d3max, gmin,gmax,pmin,pmax,vmin,vmax) = ('' for i in range(12)) oo2ar,oc2ar,ocar,ccar,cc2ar,gapar =([] for i in range(6)) def set_entries(d1min,d1max,d2min,d2max,d3min,d3max,gmin,gmax,pmin,pmax,vmin,vmax): S.d1min = d1min S.d1max = d1max S.d2min = d2min S.d2max = d2max S.d3min = d3min S.d3max = d3max S.gmin = gmin S.gmax = gmax S.pmin = pmin S.pmax = pmax S.vmin = vmin S.vmax = vmax def big_nan(var): pos = str(1000000000000) return Decimal(var.replace('%','').replace('nan',pos)) def small_nan(var): neg = str(-1000000000000) return Decimal(var.replace('%','').replace('nan',neg)) def makeD(var): return Decimal(var.replace('%','')) def comb_screens(f,ticker): for i in range(1,len(S.Date)-2): if (small_nan(S.cc[i])>S.d1min and big_nan(S.cc[i])<S.d1max and small_nan(S.cc2[i])>S.d2min and big_nan(S.cc2[i])<S.d2max and small_nan(S.cc3[i])>S.d3min and big_nan(S.cc3[i])<S.d2max and small_nan(S.gap[i+1])>S.gmin and big_nan(S.gap[i+1])<S.gmax and small_nan(S.Open[i])>S.pmin and big_nan(S.Open[i])<S.pmax and small_nan(S.Vol[i])>S.vmin and big_nan(S.Vol[i])<S.pmax): oc2 = str('%.2f' %(100*(makeD(S.Close[i+2])-makeD(S.Open[i+1]))/makeD(S.Open[i+1])))+'%' oo2 = str('%.2f' %(100*(makeD(S.Open[i+2])-makeD(S.Open[i+1]))/makeD(S.Open[i+1])))+'%' S.oo2ar.append(oo2) S.oc2ar.append(oc2) S.ocar.append(S.oc[i+1]) S.ccar.append(S.cc[i+1]) S.cc2ar.append(S.cc[i+2]) S.gapar.append(S.gap[i+1]) line = (ticker+','+S.Date[i]+','+S.Open[i]+','+S.High[i]+','+S.Low[i]+','+ S.Close[i]+','+S.Vol[i]+','+S.oc[i]+','+S.gap[i]+','+S.cc[i]+','+S.cc2[i]+ ','+S.cc3[i]+',,'+S.Open[i+1]+','+S.High[i+1]+','+S.Low[i+1]+','+S.Close[i+1]+ ','+S.Vol[i+1]+',,'+S.oc[i+1]+','+oo2+','+oc2+','+S.cc[i+1]+','+ S.cc[i+2]+','+S.gap[i+1]+'\n') f.write(line) def firstred(f,ticker): for i in range(1,len(S.Date)-2): if (small_nan(S.cc[i])>S.d1min and big_nan(S.cc[i])<S.d1max and small_nan(S.cc2[i])>S.d2min and big_nan(S.cc2[i])<S.d2max and small_nan(S.cc3[i])>S.d3min and big_nan(S.cc3[i])<S.d2max and small_nan(S.gap[i+1])>S.gmin and big_nan(S.gap[i+1])<S.gmax and small_nan(S.Open[i])>S.pmin and big_nan(S.Open[i])<S.pmax and small_nan(S.Vol[i])>S.vmin and big_nan(S.Vol[i])<S.pmax and small_nan(S.cc[i-1])>0): oc2 = str('%.2f' %(100*(makeD(S.Close[i+2])-makeD(S.Open[i+1]))/makeD(S.Open[i+1])))+'%' oo2 = str('%.2f' %(100*(makeD(S.Open[i+2])-makeD(S.Open[i+1]))/makeD(S.Open[i+1])))+'%' S.oo2ar.append(oo2) S.oc2ar.append(oc2) S.ocar.append(S.oc[i+1]) S.ccar.append(S.cc[i+1]) S.cc2ar.append(S.cc[i+2]) S.gapar.append(S.gap[i+1]) line = (ticker+','+S.Date[i]+','+S.Open[i]+','+S.High[i]+','+S.Low[i]+','+ S.Close[i]+','+S.Vol[i]+','+S.oc[i]+','+S.gap[i]+','+S.cc[i]+','+S.cc2[i]+ ','+S.cc3[i]+',,'+S.Open[i+1]+','+S.High[i+1]+','+S.Low[i+1]+','+S.Close[i+1]+ ','+S.Vol[i+1]+',,'+S.oc[i+1]+','+oo2+','+oc2+','+S.cc[i+1]+','+ S.cc[i+2]+','+S.gap[i+1]+'\n') f.write(line) def firstgreen(f,ticker): for i in range(1,len(S.Date)-2): if (small_nan(S.cc[i])>S.d1min and big_nan(S.cc[i])<S.d1max and small_nan(S.cc2[i])>S.d2min and big_nan(S.cc2[i])<S.d2max and small_nan(S.cc3[i])>S.d3min and big_nan(S.cc3[i])<S.d2max and small_nan(S.gap[i+1])>S.gmin and big_nan(S.gap[i+1])<S.gmax and small_nan(S.Open[i])>S.pmin and big_nan(S.Open[i])<S.pmax and small_nan(S.Vol[i])>S.vmin and big_nan(S.Vol[i])<S.pmax and big_nan(S.cc[i-1])<0): oc2 = str('%.2f' %(100*(makeD(S.Close[i+2])-makeD(S.Open[i+1]))/makeD(S.Open[i+1])))+'%' oo2 = str('%.2f' %(100*(makeD(S.Open[i+2])-makeD(S.Open[i+1]))/makeD(S.Open[i+1])))+'%' S.oo2ar.append(oo2) S.oc2ar.append(oc2) S.ocar.append(S.oc[i+1]) S.ccar.append(S.cc[i+1]) S.cc2ar.append(S.cc[i+2]) S.gapar.append(S.gap[i+1]) line = (ticker+','+S.Date[i]+','+S.Open[i]+','+S.High[i]+','+S.Low[i]+','+ S.Close[i]+','+S.Vol[i]+','+S.oc[i]+','+S.gap[i]+','+S.cc[i]+','+S.cc2[i]+ ','+S.cc3[i]+',,'+S.Open[i+1]+','+S.High[i+1]+','+S.Low[i+1]+','+S.Close[i+1]+ ','+S.Vol[i+1]+',,'+S.oc[i+1]+','+oo2+','+oc2+','+S.cc[i+1]+','+ S.cc[i+2]+','+S.gap[i+1]+'\n') f.write(line) def analysis(col): total = len(col) win_count = 0 sums = 0 sumdown = 0 sumup = 0 for i in range(total): sums+=makeD(col[i]) if makeD(col[i])<0: sumdown+=makeD(col[i]) if makeD(col[i])>0: win_count+=1 sumup+=makeD(col[i]) win_percent = str('%.2f' %(win_count/total*100))+'%' avgdown = str('%.2f' %(sumdown/total))+'%' avgup = str('%.2f' %(sumup/total))+'%' avg = str('%.2f' %(sums/total)) return (win_percent, avgup, str(sumup)+'%', avgdown, str(sumdown)+'%', avg, str(sums)+ '%', (','.join([win_percent, avgup, str(sumup)+'%', avgdown, str(sumdown)+'%', avg, str(sums)+ '%\n']))) def screener_analysis(): C.analysis_file = C.screen_folder+'analysis.csv' f = open(C.analysis_file,'w') file = ('Strats,Win%,Avg Up,Sum Up,Avg Down,Sum Down,Avg,Sum,'+str(len(S.ocar))+' Passed'+'\n'+ 'O/C,'+analysis(S.ocar)[7]+'O/O2,'+analysis(S.oo2ar)[7]+'O/C2,'+analysis(S.oc2ar)[7]+'C/C,'+analysis(S.ccar)[7]+ 'C/C2,'+analysis(S.cc2ar)[7]+'Gap,'+analysis(S.gapar)[7]) f.write(file) f.close() def screener(gr,rg): S.oo2ar,S.oc2ar,S.ocar,S.ccar,S.cc2ar,S.gapar =([] for i in range(6)) C.screener_csv = C.screen_folder+'screener.csv' with open(C.pickle_file,'rb') as f: tickers = pickle.load(f) f = open(C.screener_csv,'w') headers = ('Ticker,Date,Open,High,Low,Close,Volume,O/C,Gap,C/C,2Days,3Days,Day2'+ ',Open,High,Low,Close,Volume,Srats,O1/C1,O/O2,O1/C2,C/C1,C1/C2,Gap\n') f.write(headers) for ticker in tickers: try: (S.Date,S.Open,S.High,S.Low,S.Close,S.Vol,S.oc, S.gap,S.cc,S.cc2,S.cc3) = np.loadtxt(C.csv_folder+ticker+'.csv', delimiter=',', unpack=True, dtype='str') if gr==1 and rg==0: firstred(f,ticker) if gr==0 and rg==1: firstgreen(f,ticker) if gr==1 and rg==1: pass if gr==0 and rg==0: comb_screens(f,ticker) except InvalidOperation: print(ticker+' was banned for being empty') tickers.remove(ticker) f.close() screener_analysis() with open(C.pickle_file,'wb') as f: pickle.dump(tickers,f) return C.analysis_file ''' This is the screener of every combination of screeners. A screen will be ran for each input for the screener function. The user can identify stocks needed to pass the screen, winning percent, and the average needed for the screen strategy to appear. The user close on the first, second and third day. User may specify the previous day as a positive or negative. User can decide whether or not gap ups are involved in checking the strategies as well. ''' class ms: stocks_passed = 15 win_needed = 80 loss_needed = 20 avg_needed = 5 numbers = [0,5,10,15,20] line_1day = [] tickers = [] volume = 10000 def set_ms_crit(passed,win,loss,avg): ms.line_1day = [] ms.stocks_passed = passed ms.win_needed = win ms.loss_needed = loss ms.avg_needed = avg def single_day_screen(d1min): (S.oo2ar,S.oc2ar,S.ocar,S.ccar,S.cc2ar,S.gapar) =([] for i in range(6)) for ticker in ms.tickers: try: (S.Date,S.Open,S.High,S.Low,S.Close,S.Vol,S.oc, S.gap,S.cc,S.cc2,S.cc3) = np.loadtxt(C.csv_folder+ticker+'.csv', delimiter=',', unpack=True, dtype='str') for i in range(1,len(S.Date)-2): if small_nan(S.cc[i])>d1min: oc2 = str('%.2f' %(100*(makeD(S.Close[i+2])-makeD(S.Open[i+1]))/makeD(S.Open[i+1])))+'%' oo2 = str('%.2f' %(100*(makeD(S.Open[i+2])-makeD(S.Open[i+1]))/makeD(S.Open[i+1])))+'%' S.oo2ar.append(oo2) S.oc2ar.append(oc2) S.ocar.append(S.oc[i+1]) S.ccar.append(S.cc[i+1]) S.cc2ar.append(S.cc[i+2]) S.gapar.append(S.gap[i+1]) strats = ['O/O2','O/C2','O/C','C/C1','C/C2','Gap'] count = 0 for x in [S.oo2ar,S.oc2ar,S.ocar,S.ccar,S.cc2ar,S.gapar]: temp = analysis(x) if (makeD(temp[0])>ms.win_needed and makeD(temp[5])>ms.avg_needed and len(S.ocar)>ms.stocks_passed or makeD(temp[0])<ms.loss_needed and makeD(temp[5])<-ms.avg_needed and len(S.ocar)>ms.stocks_passed): ms.line_1day.append(','.join([strats[count], str(d1min)+'%', temp[0], temp[5], temp[6], str(len(S.ocar))])) count+=1 except (InvalidOperation, FileNotFoundError): print(ticker+' was banned for being empty') ms.tickers.remove(ticker) def print_strats(): with open(C.pickle_file,'rb') as f: ms.tickers = pickle.load(f) C.best_screens_file = C.screen_folder+'bestscreens.csv' f = open(C.best_screens_file,'w') f.write('Strat,1Day min,Win%,Avg,Sum,Passed\n') for d1min in ms.numbers: single_day_screen(d1min) file = '\n'.join(ms.line_1day) f.write(file) f.close() with open(C.pickle_file,'wb') as f: pickle.dump(ms.tickers,f) return C.best_screens_file
[ "ilanetheboss@debianlane.lane.com" ]
ilanetheboss@debianlane.lane.com
8e9117700b1d68aac821093d352d3191e6d3d04b
77296ca8e8e7d52fdf5b7a51edfd81b4d2a6411e
/{{cookiecutter.project_slug}}/tests/params.py
28a95129ea1c626d96bc858e9f7aefc608dc0884
[]
no_license
ann-cooper/cookiecutter-estimator
686bd73805e8305adda4a04024a3460583c61c42
f68bdf6dc041128b071b9ff85e1405746567b553
refs/heads/main
2023-03-24T01:38:47.668365
2021-03-23T11:12:24
2021-03-23T11:12:24
349,731,710
0
1
null
null
null
null
UTF-8
Python
false
false
2,008
py
from collections import Counter rules_params = [ ("1. 1, 1 returns 3", 1, 1, 3, False), ("2. 0, 1 returns 3", 0, 1, 3, False), ("3. 1,0 returns 1", 1, 0, 1, False), ("4. 3, 0 returns 3", 3, 0, 1, False), ("5. 0, 2 returns 3", 0, 2, 3, False), ("6. 3, 2 returns 5", 3, 2, 5, False), ("7. 3, 1 returns 5", 3, 1, 3, False), ("8. 3, 4 returns too_many_points", 3, 4, False, True), ("9. 0, 2 returns 3", 0, 2, 3, False), ("10. 4, 0 returns 3", 4, 0, 3, False), ("11. 6, 0 returns 5", 6, 0, 5, False), ("12. 0, 3 returns 5", 0, 3, 5, False), ] rules_ids = [x[0] for x in rules_params] rules_invalid = [ ("1. 0,0 raises exception", 0, 0, False), ("2. None input raises exception", None, None, False), ("3. Negative numbers raises exception", -1, -2, False), ("4. Non-integer input raises exception", "a", "b", False), ] invalid_ids = [x[0] for x in rules_invalid] profile_params = [ ( "1. Valid options and work factors", ["type1"], { "simple": 2, "complex": 1, "counts": Counter({"simple": 2, "A": 1, "B": 1, "complex": 1, "E": 1}), }, ) ] profile_ids = [x[0] for x in profile_params] estimate_points = [ ( "1. Valid profile input succeeds", (2, 1, Counter({"simple": 2, "A": 1, "B": 1, "complex": 1, "E": 1})), 3, {"E", "A", "B"}, ), ( "2. Invalid options and work factors", ( 4, 4, Counter( { "simple": 4, "A": 1, "B": 1, "C": 1, "H": 1, "complex": 4, "E": 1, "D": 1, "F": 1, "G": 1, } ), ), False, {"A", "B", "C", "H", "E", "D", "F", "G"}, ), ] estimate_points_ids = [x[0] for x in estimate_points]
[ "cooperannc@gmail.com" ]
cooperannc@gmail.com
013654ac9a924e69f4700208a6c896d4f852b00f
3afab94a839e6a3b3c393adc489d49d3f95e325f
/core/api/viewsets.py
ff0065ac63d86c96d4b140574d35b45b14660695
[]
no_license
gustavolio/DjangoREST-APIPontosTuristicos
ec9b88560bd4b619cdb0ae7e53b11a5c97e0aa36
f1bae32a5979eefea14c4ee02dc647fa8041aa37
refs/heads/master
2023-01-23T10:49:25.542990
2020-12-03T20:02:44
2020-12-03T20:02:44
284,767,780
0
0
null
null
null
null
UTF-8
Python
false
false
1,969
py
from rest_framework import viewsets, filters from .serializers import PontoTuristicoSerializer from core.models import PontoTuristico from rest_framework.permissions import IsAuthenticated # from rest_framework.permissions import IsAdminUser from rest_framework.authentication import TokenAuthentication class PontoTuristicoViewSet(viewsets.ModelViewSet): serializer_class = PontoTuristicoSerializer filter_backends = [filters.SearchFilter] permission_classes = [IsAuthenticated] authentication_classes = [TokenAuthentication] search_fields = ['nome', 'descricao', 'endereco__linha1'] # lookup_field = 'nome' def get_queryset(self): id = self.request.query_params.get('id', None) nome = self.request.query_params.get('nome', None) descricao = self.request.query_params.get('descricao', None) query_set = PontoTuristico.objects.all() if id: query_set = query_set.filter(id=id) if nome: query_set = query_set.filter(nome__iexact=nome) if descricao: query_set = query_set.filter(descricao__iexact=descricao) return query_set def list(self, request, *args, **kwargs): return super(PontoTuristicoViewSet, self).list(request, *args, **kwargs) def create(self, request, *args, **kwargs): return super(PontoTuristicoViewSet, self).create(request, *args, **kwargs) def destroy(self, request, *args, **kwargs): return super(PontoTuristicoViewSet, self). destroy(request, *args, **kwargs) def retrieve(self, request, *args, **kwargs): return super(PontoTuristicoViewSet, self).retrieve(request, *args, **kwargs) def update(self, request, *args, **kwargs): return super(PontoTuristicoViewSet, self).update(request, *args, **kwargs) def partial_update(self, *args, **kwargs): return super(PontoTuristico, self).partial_update(request, *args, **kwargs)
[ "g.cdcomp@gmail.com" ]
g.cdcomp@gmail.com
7a557dc7b524ac47a104f6c74e8d7e1557c61e19
93b6ec0a0b7d350e42a96f662bd8c19038915373
/scripts/gen_release.py
dc62bf7ab977f1199b48f0e2e110064bddfc86ea
[ "Apache-2.0" ]
permissive
thought-machine/please-servers
10c2fc20207249d18c116f2baa5d1c76a5a95c5f
d31c2a2ade0b80aac9067b00a43d7d0a073489d7
refs/heads/master
2023-08-22T13:58:36.814065
2023-08-15T14:43:24
2023-08-15T14:43:24
232,153,786
7
12
Apache-2.0
2023-08-24T08:39:55
2020-01-06T17:47:53
Go
UTF-8
Python
false
false
3,661
py
#!/usr/bin/env python3 """Script to create Github releases.""" import hashlib import json import logging import os import subprocess import sys import zipfile from third_party.python import colorlog, requests from third_party.python.absl import app, flags logging.root.handlers[0].setFormatter(colorlog.ColoredFormatter('%(log_color)s%(levelname)s: %(message)s')) flags.DEFINE_string('github_token', os.environ.get('GITHUB_TOKEN'), 'Github API token') flags.DEFINE_bool('dry_run', False, "Don't actually do the release, just print it.") flags.mark_flag_as_required('github_token') FLAGS = flags.FLAGS class ReleaseGen: def __init__(self, github_token:str, dry_run:bool=False): self.url = 'https://api.github.com' self.releases_url = self.url + '/repos/thought-machine/please-servers/releases' self.upload_url = self.releases_url.replace('api.', 'uploads.') + '/<id>/assets?name=' self.session = requests.Session() self.session.verify = '/etc/ssl/certs/ca-certificates.crt' if not dry_run: self.session.headers.update({ 'Accept': 'application/vnd.github.v3+json', 'Authorization': 'token ' + github_token, }) self.version = self.read_file('VERSION').strip() self.version_name = 'Version ' + self.version def needs_release(self): """Returns true if the current version is not yet released to Github.""" url = self.releases_url + '/tags/v' + self.version logging.info('Checking %s for release...', url) response = self.session.get(url) return response.status_code == 404 def release(self): """Submits a new release to Github.""" data = { 'tag_name': 'v' + self.version, 'target_commitish': os.environ.get('CIRCLE_SHA1'), 'name': 'v' + self.version, 'body': '', 'prerelease': False, 'draft': False, } if FLAGS.dry_run: logging.info('Would post the following to Github: %s', json.dumps(data, indent=4)) return logging.info('Creating release: %s', json.dumps(data, indent=4)) response = self.session.post(self.releases_url, json=data) response.raise_for_status() data = response.json() self.upload_url = data['upload_url'].replace('{?name,label}', '?name=') logging.info('Release id %s created', data['id']) def upload(self, artifact:str): """Uploads the given artifact to the new release.""" filename = os.path.basename(artifact) content_type = 'application/octet-stream' url = self.upload_url + filename if FLAGS.dry_run: logging.info('Would upload %s to %s as %s', filename, url, content_type) return logging.info('Uploading %s to %s as %s', filename, url, content_type) with open(artifact, 'rb') as f: self.session.headers.update({'Content-Type': content_type}) response = self.session.post(url, data=f) response.raise_for_status() print('%s uploaded' % filename) def read_file(self, filename): """Read a file from the .pex.""" with zipfile.ZipFile(sys.argv[0]) as zf: return zf.read(filename).decode('utf-8') def main(argv): r = ReleaseGen(FLAGS.github_token, dry_run=FLAGS.dry_run) if not r.needs_release(): logging.info('Current version has already been released, nothing to be done!') return r.release() for artifact in argv[1:]: r.upload(artifact) if __name__ == '__main__': app.run(main)
[ "peter.ebden@gmail.com" ]
peter.ebden@gmail.com
2c876b1f1e1c38c15823f76a07a89de077f6621b
b6ba70e8535ccd4df1d14dc7c07a093642e281a0
/examples/function_and_class/knn.py
f7a495bf0ea5c9b8a18579b30927ac40d3e3b7a3
[ "MIT" ]
permissive
Obarads/torchpcp
99b233c086617697dfc7e5f0c04ae16aff247daf
86e19cc5c1196f22f609f2d98504b913272cbba8
refs/heads/master
2023-07-05T20:44:20.485218
2021-08-16T01:53:47
2021-08-16T01:53:47
293,244,333
1
0
null
null
null
null
UTF-8
Python
false
false
51,451
py
import numpy as np import torch from torch.utils.data import DataLoader # local package from libs import tpcpath from libs.dataset import SimpleSceneDataset from libs.three_nn import three_nn # PointRCNN # torch-points-kernels import torch_points_kernels as tpk # torchpcp pacakage from torchpcp.modules.functional.other import index2points from torchpcp.modules.functional.sampling import furthest_point_sampling from torchpcp.modules.functional import nns from torchpcp.utils.monitor import timecheck from torchpcp.utils import pytorch_tools # pytorch_tools.set_seed(0) device = pytorch_tools.select_device("cuda") def speed_test(method, loader): for i, data in enumerate(loader): pass # for speed processing # print name if method == 0: t_name = "original c++ impl. time" elif method == 1: t_name = "original py impl. time" elif method == 2: t_name = "other c++ impl. time" elif method == 3: t_name = "tpk impl. time" else: raise NotImplementedError() # timer start t = timecheck() for _ in range(100): for i, data in enumerate(loader): point_clouds, sem_labels, ins_labels = data point_clouds = torch.transpose(point_clouds[:, :, :3].to(device), 1, 2) center_idxs = furthest_point_sampling(point_clouds, 1024) center_pc = index2points(point_clouds, center_idxs) if method == 0: pred, _ = nns.k_nearest_neighbors(center_pc, point_clouds, k=3) elif method == 1: pred, _ = nns.py_k_nearest_neighbors(center_pc, point_clouds, k=3, memory_saving=False) elif method == 2: pred = three_nn(center_pc.transpose(1,2).contiguous(), point_clouds.transpose(1,2).contiguous()) elif method == 3: pred, _ = tpk.knn(point_clouds.transpose(1,2).contiguous(), center_pc.transpose(1,2).contiguous(), 3) else: raise NotImplementedError() # timer end timecheck(t, t_name) gt, _ = nns.py_k_nearest_neighbors(center_pc, point_clouds, k=3, memory_saving=False) print(False in (pred == gt)) np.set_printoptions(threshold=np.inf) torch.set_printoptions(threshold=np.inf) # get dataset dataset = SimpleSceneDataset() points, sem_label, ins_label = dataset[0] pc = torch.tensor([points[:, :3]], device="cuda").transpose(1,2) # compare knn k = 20 idx, dist = nns.k_nearest_neighbors(pc, pc, k) idx2, dist2 = nns.py_k_nearest_neighbors(pc, pc, k) check_idx = idx == idx2 if True: for ib in range(len(check_idx)): b_idxs = check_idx[ib] for i_n in range(len(b_idxs)): n_idxs = b_idxs[i_n] if False in n_idxs: for i_p in range(len(n_idxs)): k_idxs = n_idxs[i_p] if False == k_idxs: print("pyknn ib {}, in {}, ip {} dist {} idx {}".format(ib, i_n, i_p, dist[ib, i_n, i_p], idx[ib, i_n, i_p])) # print("pybq and dist2 {}".format(dist[ib, i_n, i_p])) print("dist {} idx {}".format(dist2[ib, i_n, i_p], idx2[ib, i_n, i_p])) # else: # print("pyknn ib {}, in {}, ip {} dist {} idx {}".format(ib, i_n, i_p, dist[ib, i_n, i_p], idx[ib, i_n, i_p])) print("CHECK1:", False in (check_idx)) # ↑ result (a part) """ pyknn ib 0, in 3397, ip 5 dist 0.0005849996232427657 idx 2927 dist 0.0005850791931152344 idx 542 pyknn ib 0, in 3398, ip 10 dist 0.009334004484117031 idx 3892 dist 0.00933384895324707 idx 1082 pyknn ib 0, in 3398, ip 11 dist 0.009334005415439606 idx 1082 dist 0.00933384895324707 idx 3892 pyknn ib 0, in 3402, ip 6 dist 0.01157099287956953 idx 1313 dist 0.011570453643798828 idx 2092 pyknn ib 0, in 3402, ip 7 dist 0.01157099287956953 idx 2092 dist 0.011570453643798828 idx 1313 pyknn ib 0, in 3402, ip 9 dist 0.013051005080342293 idx 2169 dist 0.013050079345703125 idx 2962 pyknn ib 0, in 3402, ip 10 dist 0.013051005080342293 idx 2962 dist 0.013050079345703125 idx 2169 pyknn ib 0, in 3402, ip 14 dist 0.019140997901558876 idx 128 dist 0.019140243530273438 idx 1118 pyknn ib 0, in 3402, ip 15 dist 0.019140997901558876 idx 1118 dist 0.019140243530273438 idx 128 pyknn ib 0, in 3403, ip 2 dist 0.0013459994224831462 idx 3251 dist 0.001345992088317871 idx 3264 pyknn ib 0, in 3403, ip 3 dist 0.0013459994224831462 idx 3264 dist 0.001345992088317871 idx 3251 pyknn ib 0, in 3404, ip 13 dist 0.005812999792397022 idx 2701 dist 0.0058135986328125 idx 3754 pyknn ib 0, in 3404, ip 14 dist 0.005812999792397022 idx 3754 dist 0.0058135986328125 idx 2701 pyknn ib 0, in 3407, ip 4 dist 0.002997000701725483 idx 1947 dist 0.0029970109462738037 idx 3656 pyknn ib 0, in 3407, ip 5 dist 0.002997000701725483 idx 3656 dist 0.0029970109462738037 idx 1947 pyknn ib 0, in 3409, ip 0 dist 0.0 idx 1269 dist -2.384185791015625e-07 idx 3409 pyknn ib 0, in 3409, ip 1 dist 0.0 idx 3409 dist -2.384185791015625e-07 idx 1269 pyknn ib 0, in 3409, ip 17 dist 0.008043000474572182 idx 1042 dist 0.00804293155670166 idx 1482 pyknn ib 0, in 3409, ip 18 dist 0.008043000474572182 idx 1482 dist 0.00804293155670166 idx 1042 pyknn ib 0, in 3410, ip 11 dist 0.005334001034498215 idx 1024 dist 0.00533401221036911 idx 2834 pyknn ib 0, in 3410, ip 12 dist 0.005334001034498215 idx 2834 dist 0.00533401221036911 idx 1024 pyknn ib 0, in 3413, ip 0 dist 0.0 idx 152 dist 0.0 idx 3413 pyknn ib 0, in 3413, ip 1 dist 0.0 idx 3413 dist 0.0 idx 152 pyknn ib 0, in 3413, ip 14 dist 0.010057998821139336 idx 2104 dist 0.010058045387268066 idx 2583 pyknn ib 0, in 3413, ip 15 dist 0.010057998821139336 idx 2583 dist 0.010058045387268066 idx 2104 pyknn ib 0, in 3414, ip 9 dist 0.00410101655870676 idx 2055 dist 0.004100799560546875 idx 2936 pyknn ib 0, in 3414, ip 10 dist 0.00410101655870676 idx 2936 dist 0.004100799560546875 idx 2055 pyknn ib 0, in 3415, ip 1 dist 0.00021200145420152694 idx 1176 dist 0.0002117156982421875 idx 3866 pyknn ib 0, in 3415, ip 2 dist 0.00021200145420152694 idx 3866 dist 0.0002117156982421875 idx 1176 pyknn ib 0, in 3415, ip 11 dist 0.007836993783712387 idx 3519 dist 0.007837295532226562 idx 4066 pyknn ib 0, in 3415, ip 12 dist 0.007836993783712387 idx 4066 dist 0.007837295532226562 idx 3519 pyknn ib 0, in 3416, ip 4 dist 0.001897998503409326 idx 3325 dist 0.001898050308227539 idx 3729 pyknn ib 0, in 3416, ip 5 dist 0.001897998503409326 idx 3729 dist 0.001898050308227539 idx 3325 pyknn ib 0, in 3421, ip 7 dist 0.004901004955172539 idx 1018 dist 0.00490117073059082 idx 3982 pyknn ib 0, in 3421, ip 8 dist 0.004901004955172539 idx 3982 dist 0.00490117073059082 idx 1018 pyknn ib 0, in 3429, ip 3 dist 0.00023299954773392528 idx 1024 dist 0.00023300200700759888 idx 2834 pyknn ib 0, in 3429, ip 4 dist 0.00023299954773392528 idx 2834 dist 0.00023300200700759888 idx 1024 pyknn ib 0, in 3430, ip 13 dist 0.00894500408321619 idx 810 dist 0.008943557739257812 idx 3766 pyknn ib 0, in 3430, ip 14 dist 0.00894500408321619 idx 3766 dist 0.008943557739257812 idx 810 pyknn ib 0, in 3440, ip 4 dist 0.003592999652028084 idx 2143 dist 0.0035930201411247253 idx 4072 pyknn ib 0, in 3440, ip 5 dist 0.003592999652028084 idx 4072 dist 0.0035930201411247253 idx 2143 pyknn ib 0, in 3440, ip 11 dist 0.006083999294787645 idx 2987 dist 0.006083987653255463 idx 868 pyknn ib 0, in 3440, ip 12 dist 0.006084000691771507 idx 868 dist 0.00608399510383606 idx 2987 pyknn ib 0, in 3440, ip 18 dist 0.010029001161456108 idx 0 dist 0.010029010474681854 idx 1032 pyknn ib 0, in 3440, ip 19 dist 0.010029001161456108 idx 1032 dist 0.010029010474681854 idx 0 pyknn ib 0, in 3441, ip 16 dist 0.007686000782996416 idx 0 dist 0.007686004042625427 idx 1032 pyknn ib 0, in 3441, ip 17 dist 0.007686000782996416 idx 1032 dist 0.007686004042625427 idx 1850 pyknn ib 0, in 3441, ip 18 dist 0.007686000782996416 idx 1850 dist 0.007686004042625427 idx 0 pyknn ib 0, in 3442, ip 11 dist 0.004209999926388264 idx 1947 dist 0.004209995269775391 idx 3656 pyknn ib 0, in 3442, ip 12 dist 0.004209999926388264 idx 3656 dist 0.004209995269775391 idx 1947 pyknn ib 0, in 3445, ip 10 dist 0.004147999454289675 idx 488 dist 0.004148006439208984 idx 2434 pyknn ib 0, in 3445, ip 11 dist 0.004147999454289675 idx 2434 dist 0.004148006439208984 idx 488 pyknn ib 0, in 3456, ip 7 dist 0.0031460002064704895 idx 1024 dist 0.0031460076570510864 idx 2834 pyknn ib 0, in 3456, ip 8 dist 0.0031460002064704895 idx 2834 dist 0.0031460076570510864 idx 1024 pyknn ib 0, in 3456, ip 9 dist 0.004821000155061483 idx 363 dist 0.004821024835109711 idx 694 pyknn ib 0, in 3456, ip 10 dist 0.004821000155061483 idx 694 dist 0.004821024835109711 idx 363 pyknn ib 0, in 3456, ip 11 dist 0.004900998901575804 idx 2953 dist 0.004901014268398285 idx 3429 pyknn ib 0, in 3456, ip 12 dist 0.004900998901575804 idx 3429 dist 0.004901014268398285 idx 2953 pyknn ib 0, in 3461, ip 13 dist 0.013138998299837112 idx 1212 dist 0.013138949871063232 idx 3522 pyknn ib 0, in 3461, ip 14 dist 0.013138998299837112 idx 3522 dist 0.013138949871063232 idx 1212 pyknn ib 0, in 3462, ip 0 dist 0.0 idx 3462 dist 0.0 idx 3465 pyknn ib 0, in 3462, ip 1 dist 0.0 idx 3465 dist 0.0 idx 3462 pyknn ib 0, in 3465, ip 0 dist 0.0 idx 3462 dist 0.0 idx 3465 pyknn ib 0, in 3465, ip 1 dist 0.0 idx 3465 dist 0.0 idx 3462 pyknn ib 0, in 3470, ip 9 dist 0.0076049999333918095 idx 281 dist 0.007604971528053284 idx 2437 pyknn ib 0, in 3470, ip 10 dist 0.0076049999333918095 idx 2437 dist 0.007604971528053284 idx 281 pyknn ib 0, in 3472, ip 18 dist 0.014760998077690601 idx 158 dist 0.014760971069335938 idx 1404 pyknn ib 0, in 3472, ip 19 dist 0.014760998077690601 idx 1404 dist 0.014760971069335938 idx 158 pyknn ib 0, in 3474, ip 12 dist 0.010493999347090721 idx 666 dist 0.010493874549865723 idx 2543 pyknn ib 0, in 3474, ip 13 dist 0.010493999347090721 idx 2543 dist 0.010493874549865723 idx 666 pyknn ib 0, in 3474, ip 15 dist 0.011125998571515083 idx 1590 dist 0.011126160621643066 idx 2927 pyknn ib 0, in 3474, ip 16 dist 0.011125998571515083 idx 2927 dist 0.011126160621643066 idx 1590 pyknn ib 0, in 3480, ip 4 dist 0.012818001210689545 idx 1951 dist 0.012817949056625366 idx 2710 pyknn ib 0, in 3480, ip 5 dist 0.012818001210689545 idx 2710 dist 0.012817949056625366 idx 1951 pyknn ib 0, in 3481, ip 2 dist 0.000298000784823671 idx 128 dist 0.0002970695495605469 idx 1118 pyknn ib 0, in 3481, ip 3 dist 0.000298000784823671 idx 1118 dist 0.0002970695495605469 idx 128 pyknn ib 0, in 3481, ip 9 dist 0.004514000378549099 idx 1313 dist 0.004513740539550781 idx 2092 pyknn ib 0, in 3481, ip 10 dist 0.004514000378549099 idx 2092 dist 0.004513740539550781 idx 1313 pyknn ib 0, in 3488, ip 6 dist 0.005204994697123766 idx 1304 dist 0.005205094814300537 idx 2654 pyknn ib 0, in 3488, ip 7 dist 0.005204994697123766 idx 2654 dist 0.005205094814300537 idx 1304 pyknn ib 0, in 3488, ip 11 dist 0.00811500009149313 idx 2397 dist 0.008115053176879883 idx 4050 pyknn ib 0, in 3488, ip 12 dist 0.00811500009149313 idx 4050 dist 0.008115053176879883 idx 2397 pyknn ib 0, in 3491, ip 18 dist 0.008860995061695576 idx 1304 dist 0.008860945701599121 idx 2654 pyknn ib 0, in 3491, ip 19 dist 0.008860995061695576 idx 2654 dist 0.008860945701599121 idx 1304 pyknn ib 0, in 3495, ip 0 dist 0.0 idx 1425 dist 0.0 idx 3495 pyknn ib 0, in 3495, ip 1 dist 0.0 idx 3495 dist 0.0 idx 1425 pyknn ib 0, in 3500, ip 18 dist 0.013730003498494625 idx 1487 dist 0.01372992992401123 idx 3004 pyknn ib 0, in 3500, ip 19 dist 0.013730003498494625 idx 3004 dist 0.01372992992401123 idx 1487 pyknn ib 0, in 3501, ip 2 dist 0.0018849981715902686 idx 1225 dist 0.0018854141235351562 idx 1637 pyknn ib 0, in 3501, ip 3 dist 0.0018849981715902686 idx 1637 dist 0.0018854141235351562 idx 1225 pyknn ib 0, in 3504, ip 3 dist 0.0021460067946463823 idx 869 dist 0.0021452903747558594 idx 2454 pyknn ib 0, in 3504, ip 4 dist 0.0021460067946463823 idx 2454 dist 0.0021452903747558594 idx 869 pyknn ib 0, in 3507, ip 10 dist 0.006412987597286701 idx 1487 dist 0.0064127445220947266 idx 3004 pyknn ib 0, in 3507, ip 11 dist 0.006412987597286701 idx 3004 dist 0.0064127445220947266 idx 1487 pyknn ib 0, in 3508, ip 1 dist 0.001189997885376215 idx 1052 dist 0.0011899471282958984 idx 2093 pyknn ib 0, in 3508, ip 2 dist 0.001189997885376215 idx 2093 dist 0.0011899471282958984 idx 1052 pyknn ib 0, in 3509, ip 1 dist 0.0012090002419427037 idx 1304 dist 0.001208961009979248 idx 2654 pyknn ib 0, in 3509, ip 2 dist 0.0012090002419427037 idx 2654 dist 0.001208961009979248 idx 1304 pyknn ib 0, in 3511, ip 8 dist 0.002437000395730138 idx 2701 dist 0.002437591552734375 idx 3754 pyknn ib 0, in 3511, ip 9 dist 0.002437000395730138 idx 3754 dist 0.002437591552734375 idx 2701 pyknn ib 0, in 3512, ip 10 dist 0.006725003011524677 idx 937 dist 0.006725311279296875 idx 2228 pyknn ib 0, in 3512, ip 11 dist 0.006725003011524677 idx 2228 dist 0.006725311279296875 idx 937 pyknn ib 0, in 3512, ip 18 dist 0.014550035819411278 idx 1400 dist 0.014549732208251953 idx 3069 pyknn ib 0, in 3512, ip 19 dist 0.014550035819411278 idx 3069 dist 0.014549732208251953 idx 1400 pyknn ib 0, in 3519, ip 0 dist 0.0 idx 3519 dist 0.0 idx 4066 pyknn ib 0, in 3519, ip 1 dist 0.0 idx 4066 dist 0.0 idx 3519 pyknn ib 0, in 3519, ip 2 dist 0.0004419961478561163 idx 829 dist 0.00044155120849609375 idx 3173 pyknn ib 0, in 3519, ip 3 dist 0.0004419961478561163 idx 3173 dist 0.00044155120849609375 idx 829 pyknn ib 0, in 3520, ip 1 dist 0.00022599961084779352 idx 818 dist 0.00022605061531066895 idx 3318 pyknn ib 0, in 3520, ip 2 dist 0.00022599961084779352 idx 3318 dist 0.00022605061531066895 idx 818 pyknn ib 0, in 3524, ip 10 dist 0.006727982312440872 idx 810 dist 0.006728172302246094 idx 3766 pyknn ib 0, in 3524, ip 11 dist 0.006727982312440872 idx 3766 dist 0.006728172302246094 idx 810 pyknn ib 0, in 3525, ip 4 dist 0.001409997814334929 idx 1649 dist 0.0014100074768066406 idx 3471 pyknn ib 0, in 3525, ip 5 dist 0.001409997814334929 idx 3471 dist 0.0014100074768066406 idx 1649 pyknn ib 0, in 3526, ip 6 dist 0.00230899965390563 idx 1123 dist 0.0023088455200195312 idx 2937 pyknn ib 0, in 3526, ip 7 dist 0.00230899965390563 idx 2937 dist 0.0023088455200195312 idx 1123 pyknn ib 0, in 3527, ip 10 dist 0.009864001534879208 idx 1212 dist 0.009863987565040588 idx 3522 pyknn ib 0, in 3527, ip 11 dist 0.009864001534879208 idx 3522 dist 0.009863987565040588 idx 1212 pyknn ib 0, in 3528, ip 3 dist 0.0019439997849985957 idx 1947 dist 0.0019440054893493652 idx 3656 pyknn ib 0, in 3528, ip 4 dist 0.0019439997849985957 idx 3656 dist 0.0019440054893493652 idx 1947 pyknn ib 0, in 3530, ip 11 dist 0.004930997267365456 idx 1871 dist 0.0049304962158203125 idx 3541 pyknn ib 0, in 3530, ip 12 dist 0.004930997267365456 idx 3541 dist 0.0049304962158203125 idx 1871 pyknn ib 0, in 3535, ip 2 dist 0.00040199910290539265 idx 2176 dist 0.00040340423583984375 idx 2815 pyknn ib 0, in 3535, ip 3 dist 0.00040199910290539265 idx 2815 dist 0.00040340423583984375 idx 2176 pyknn ib 0, in 3541, ip 0 dist 0.0 idx 1871 dist -1.9073486328125e-06 idx 3541 pyknn ib 0, in 3541, ip 1 dist 0.0 idx 3541 dist -1.9073486328125e-06 idx 1871 pyknn ib 0, in 3546, ip 11 dist 0.005651996936649084 idx 2316 dist 0.005651950836181641 idx 2761 pyknn ib 0, in 3546, ip 12 dist 0.005651996936649084 idx 2761 dist 0.005651950836181641 idx 2316 pyknn ib 0, in 3553, ip 16 dist 0.003945999778807163 idx 2502 dist 0.003945887088775635 idx 3168 pyknn ib 0, in 3553, ip 17 dist 0.003945999778807163 idx 3168 dist 0.003945887088775635 idx 2502 pyknn ib 0, in 3560, ip 11 dist 0.00826500728726387 idx 2745 dist 0.008264780044555664 idx 3933 pyknn ib 0, in 3560, ip 12 dist 0.00826500728726387 idx 3933 dist 0.008264780044555664 idx 2745 pyknn ib 0, in 3567, ip 7 dist 0.004524988122284412 idx 1297 dist 0.00452423095703125 idx 2984 pyknn ib 0, in 3567, ip 8 dist 0.004524995107203722 idx 2984 dist 0.00452423095703125 idx 1297 pyknn ib 0, in 3575, ip 2 dist 0.0017249988159164786 idx 2854 dist 0.0017247200012207031 idx 3996 pyknn ib 0, in 3575, ip 3 dist 0.0017249988159164786 idx 3996 dist 0.0017247200012207031 idx 2854 pyknn ib 0, in 3579, ip 1 dist 0.00023399594647344202 idx 810 dist 0.000232696533203125 idx 3766 pyknn ib 0, in 3579, ip 2 dist 0.00023399594647344202 idx 3766 dist 0.000232696533203125 idx 810 pyknn ib 0, in 3579, ip 10 dist 0.008099023252725601 idx 1093 dist 0.008098602294921875 idx 2320 pyknn ib 0, in 3579, ip 11 dist 0.008099023252725601 idx 2320 dist 0.008098602294921875 idx 1093 pyknn ib 0, in 3581, ip 9 dist 0.006384999491274357 idx 2176 dist 0.00638580322265625 idx 2815 pyknn ib 0, in 3581, ip 10 dist 0.006384999491274357 idx 2815 dist 0.00638580322265625 idx 2176 pyknn ib 0, in 3582, ip 11 dist 0.006272999569773674 idx 1952 dist 0.00627291202545166 idx 2823 pyknn ib 0, in 3582, ip 12 dist 0.006272999569773674 idx 2823 dist 0.00627291202545166 idx 1952 pyknn ib 0, in 3583, ip 1 dist 0.0015939960721880198 idx 1313 dist 0.0015935897827148438 idx 2092 pyknn ib 0, in 3583, ip 2 dist 0.0015939960721880198 idx 2092 dist 0.0015935897827148438 idx 1313 pyknn ib 0, in 3594, ip 12 dist 0.006574000231921673 idx 849 dist 0.006572723388671875 idx 1128 pyknn ib 0, in 3594, ip 13 dist 0.006574000231921673 idx 1128 dist 0.006572723388671875 idx 849 pyknn ib 0, in 3598, ip 18 dist 0.008245003409683704 idx 193 dist 0.008244991302490234 idx 231 pyknn ib 0, in 3598, ip 19 dist 0.008245003409683704 idx 231 dist 0.008244991302490234 idx 193 pyknn ib 0, in 3600, ip 11 dist 0.0064890035428106785 idx 1059 dist 0.006489008665084839 idx 3232 pyknn ib 0, in 3600, ip 12 dist 0.0064890035428106785 idx 3232 dist 0.006489008665084839 idx 1059 pyknn ib 0, in 3610, ip 14 dist 0.007984996773302555 idx 1925 dist 0.00798499584197998 idx 2416 pyknn ib 0, in 3610, ip 15 dist 0.007984996773302555 idx 2416 dist 0.00798499584197998 idx 1925 pyknn ib 0, in 3612, ip 5 dist 0.0035329984966665506 idx 2316 dist 0.003532886505126953 idx 2761 pyknn ib 0, in 3612, ip 6 dist 0.0035329984966665506 idx 2761 dist 0.003532886505126953 idx 2316 pyknn ib 0, in 3621, ip 10 dist 0.006896963343024254 idx 937 dist 0.006896495819091797 idx 2228 pyknn ib 0, in 3621, ip 11 dist 0.006896963343024254 idx 2228 dist 0.006896495819091797 idx 937 pyknn ib 0, in 3627, ip 11 dist 0.008366001769900322 idx 767 dist 0.008365988731384277 idx 1375 pyknn ib 0, in 3627, ip 13 dist 0.008366001769900322 idx 1375 dist 0.008365988731384277 idx 767 pyknn ib 0, in 3629, ip 12 dist 0.0073130009695887566 idx 403 dist 0.007312774658203125 idx 2045 pyknn ib 0, in 3629, ip 13 dist 0.0073130009695887566 idx 2045 dist 0.007312774658203125 idx 403 pyknn ib 0, in 3631, ip 0 dist 0.0 idx 3631 dist 0.0 idx 4089 pyknn ib 0, in 3631, ip 1 dist 0.0 idx 4089 dist 0.0 idx 3631 pyknn ib 0, in 3634, ip 18 dist 0.009790007025003433 idx 2397 dist 0.00978994369506836 idx 4050 pyknn ib 0, in 3634, ip 19 dist 0.009790007025003433 idx 4050 dist 0.00978994369506836 idx 2397 pyknn ib 0, in 3635, ip 0 dist 0.0 idx 1906 dist 9.5367431640625e-07 idx 3635 pyknn ib 0, in 3635, ip 1 dist 0.0 idx 3635 dist 9.5367431640625e-07 idx 1906 pyknn ib 0, in 3635, ip 7 dist 0.006624998524785042 idx 2790 dist 0.006625652313232422 idx 3722 pyknn ib 0, in 3635, ip 8 dist 0.006624998524785042 idx 3722 dist 0.006625652313232422 idx 2790 pyknn ib 0, in 3637, ip 18 dist 0.010817998088896275 idx 1123 dist 0.010816574096679688 idx 2937 pyknn ib 0, in 3637, ip 19 dist 0.010817998088896275 idx 2937 dist 0.010816574096679688 idx 1123 pyknn ib 0, in 3638, ip 0 dist 0.0 idx 2780 dist -4.76837158203125e-07 idx 3638 pyknn ib 0, in 3638, ip 1 dist 0.0 idx 3638 dist -4.76837158203125e-07 idx 2780 pyknn ib 0, in 3642, ip 4 dist 0.0014510012697428465 idx 363 dist 0.0014509856700897217 idx 694 pyknn ib 0, in 3642, ip 5 dist 0.0014510012697428465 idx 694 dist 0.0014509856700897217 idx 363 pyknn ib 0, in 3645, ip 8 dist 0.0035089822486042976 idx 615 dist 0.0035085678100585938 idx 2297 pyknn ib 0, in 3645, ip 9 dist 0.0035089822486042976 idx 2297 dist 0.0035085678100585938 idx 615 pyknn ib 0, in 3653, ip 8 dist 0.005330007988959551 idx 236 dist 0.0053310394287109375 idx 1959 pyknn ib 0, in 3653, ip 9 dist 0.005330007988959551 idx 1959 dist 0.0053310394287109375 idx 236 pyknn ib 0, in 3653, ip 12 dist 0.007883005775511265 idx 483 dist 0.007884025573730469 idx 2764 pyknn ib 0, in 3653, ip 13 dist 0.007883005775511265 idx 2764 dist 0.007884025573730469 idx 483 pyknn ib 0, in 3655, ip 10 dist 0.005937003064900637 idx 962 dist 0.005936622619628906 idx 3213 pyknn ib 0, in 3655, ip 11 dist 0.005937003064900637 idx 3213 dist 0.005936622619628906 idx 962 pyknn ib 0, in 3656, ip 0 dist 0.0 idx 1947 dist 5.960464477539063e-08 idx 3656 pyknn ib 0, in 3656, ip 1 dist 0.0 idx 3656 dist 5.960464477539063e-08 idx 1947 pyknn ib 0, in 3668, ip 4 dist 0.002050999319180846 idx 829 dist 0.0020503997802734375 idx 3173 pyknn ib 0, in 3668, ip 5 dist 0.002050999319180846 idx 3173 dist 0.0020503997802734375 idx 829 pyknn ib 0, in 3668, ip 9 dist 0.0033809910528361797 idx 3519 dist 0.0033788681030273438 idx 4066 pyknn ib 0, in 3668, ip 10 dist 0.0033809910528361797 idx 4066 dist 0.0033788681030273438 idx 3519 pyknn ib 0, in 3673, ip 11 dist 0.005558010656386614 idx 1052 dist 0.0055577754974365234 idx 2093 pyknn ib 0, in 3673, ip 12 dist 0.005558010656386614 idx 2093 dist 0.0055577754974365234 idx 1052 pyknn ib 0, in 3674, ip 2 dist 0.0007700005662627518 idx 344 dist 0.0007699877023696899 idx 1751 pyknn ib 0, in 3674, ip 3 dist 0.0007700005662627518 idx 1751 dist 0.0007699877023696899 idx 344 pyknn ib 0, in 3675, ip 10 dist 0.006197004113346338 idx 3140 dist 0.006197214126586914 idx 2736 pyknn ib 0, in 3675, ip 11 dist 0.006197008304297924 idx 2736 dist 0.006197214126586914 idx 3140 pyknn ib 0, in 3682, ip 2 dist 0.000953999871853739 idx 1031 dist 0.0009539127349853516 idx 1100 pyknn ib 0, in 3682, ip 3 dist 0.000953999871853739 idx 1100 dist 0.0009539127349853516 idx 2711 pyknn ib 0, in 3682, ip 4 dist 0.000953999871853739 idx 2711 dist 0.0009539127349853516 idx 1031 pyknn ib 0, in 3682, ip 5 dist 0.002277006395161152 idx 744 dist 0.002276897430419922 idx 3909 pyknn ib 0, in 3682, ip 6 dist 0.002277006395161152 idx 3909 dist 0.002276897430419922 idx 744 pyknn ib 0, in 3685, ip 6 dist 0.0022769994102418423 idx 1032 dist 0.002277001738548279 idx 1850 pyknn ib 0, in 3685, ip 7 dist 0.0022769994102418423 idx 1850 dist 0.002277001738548279 idx 1032 pyknn ib 0, in 3686, ip 18 dist 0.012762016616761684 idx 962 dist 0.012761116027832031 idx 3213 pyknn ib 0, in 3686, ip 19 dist 0.012762016616761684 idx 3213 dist 0.012761116027832031 idx 962 pyknn ib 0, in 3699, ip 9 dist 0.006161997560411692 idx 158 dist 0.006161689758300781 idx 1404 pyknn ib 0, in 3699, ip 10 dist 0.006161997560411692 idx 1404 dist 0.006161689758300781 idx 158 pyknn ib 0, in 3703, ip 0 dist 0.0 idx 963 dist 0.0 idx 3703 pyknn ib 0, in 3703, ip 1 dist 0.0 idx 3703 dist 0.0 idx 963 pyknn ib 0, in 3705, ip 7 dist 0.005197002552449703 idx 869 dist 0.005197048187255859 idx 2454 pyknn ib 0, in 3705, ip 8 dist 0.005197002552449703 idx 2454 dist 0.005197048187255859 idx 869 pyknn ib 0, in 3706, ip 1 dist 0.0005649998784065247 idx 497 dist 0.0005649328231811523 idx 2785 pyknn ib 0, in 3706, ip 2 dist 0.0005649998784065247 idx 2785 dist 0.0005649328231811523 idx 497 pyknn ib 0, in 3707, ip 0 dist 0.0 idx 719 dist -4.76837158203125e-07 idx 3707 pyknn ib 0, in 3707, ip 1 dist 0.0 idx 3707 dist -4.76837158203125e-07 idx 719 pyknn ib 0, in 3714, ip 5 dist 0.0016370017547160387 idx 2328 dist 0.0016369819641113281 idx 3774 pyknn ib 0, in 3714, ip 6 dist 0.0016370017547160387 idx 3774 dist 0.0016369819641113281 idx 2328 pyknn ib 0, in 3715, ip 3 dist 0.000400999968405813 idx 636 dist 0.0004010051488876343 idx 3362 pyknn ib 0, in 3715, ip 4 dist 0.000400999968405813 idx 3362 dist 0.0004010051488876343 idx 636 pyknn ib 0, in 3717, ip 10 dist 0.0069059995003044605 idx 767 dist 0.0069060176610946655 idx 1375 pyknn ib 0, in 3717, ip 12 dist 0.0069059995003044605 idx 1375 dist 0.0069060176610946655 idx 767 pyknn ib 0, in 3720, ip 5 dist 0.0029769993852823973 idx 1024 dist 0.0029769912362098694 idx 2834 pyknn ib 0, in 3720, ip 6 dist 0.0029769993852823973 idx 2834 dist 0.0029769912362098694 idx 1024 pyknn ib 0, in 3720, ip 8 dist 0.0040999967604875565 idx 2953 dist 0.004099994897842407 idx 3429 pyknn ib 0, in 3720, ip 9 dist 0.0040999967604875565 idx 3429 dist 0.004099994897842407 idx 2953 pyknn ib 0, in 3721, ip 1 dist 0.0002810000441968441 idx 1647 dist 0.0002810955047607422 idx 2457 pyknn ib 0, in 3721, ip 2 dist 0.0002810000441968441 idx 2457 dist 0.0002810955047607422 idx 1647 pyknn ib 0, in 3721, ip 12 dist 0.006165006663650274 idx 282 dist 0.0061647891998291016 idx 2323 pyknn ib 0, in 3721, ip 13 dist 0.006165006663650274 idx 2323 dist 0.0061647891998291016 idx 282 pyknn ib 0, in 3722, ip 0 dist 0.0 idx 2790 dist 0.0 idx 3722 pyknn ib 0, in 3722, ip 1 dist 0.0 idx 3722 dist 0.0 idx 2790 pyknn ib 0, in 3722, ip 14 dist 0.006624998524785042 idx 1906 dist 0.006625652313232422 idx 3635 pyknn ib 0, in 3722, ip 15 dist 0.006624998524785042 idx 3635 dist 0.006625652313232422 idx 1906 pyknn ib 0, in 3723, ip 11 dist 0.006090002600103617 idx 497 dist 0.006090044975280762 idx 2785 pyknn ib 0, in 3723, ip 12 dist 0.006090002600103617 idx 2785 dist 0.006090044975280762 idx 497 pyknn ib 0, in 3725, ip 9 dist 0.004778000060468912 idx 683 dist 0.004777997732162476 idx 3377 pyknn ib 0, in 3725, ip 10 dist 0.004778000060468912 idx 2705 dist 0.004777997732162476 idx 683 pyknn ib 0, in 3725, ip 11 dist 0.004778000060468912 idx 3377 dist 0.004777997732162476 idx 2705 pyknn ib 0, in 3728, ip 5 dist 0.003074999898672104 idx 722 dist 0.0030749994330108166 idx 3776 pyknn ib 0, in 3728, ip 6 dist 0.003074999898672104 idx 3776 dist 0.0030749994330108166 idx 722 pyknn ib 0, in 3731, ip 16 dist 0.01155802421271801 idx 2854 dist 0.011558055877685547 idx 3996 pyknn ib 0, in 3731, ip 17 dist 0.01155802421271801 idx 3996 dist 0.011558055877685547 idx 2854 pyknn ib 0, in 3734, ip 2 dist 0.0009229975985363126 idx 1649 dist 0.0009236335754394531 idx 3471 pyknn ib 0, in 3734, ip 3 dist 0.0009229975985363126 idx 3471 dist 0.0009236335754394531 idx 1649 pyknn ib 0, in 3737, ip 0 dist 0.0 idx 3261 dist 0.0 idx 3737 pyknn ib 0, in 3737, ip 1 dist 0.0 idx 3737 dist 0.0 idx 3261 pyknn ib 0, in 3738, ip 3 dist 0.0022369935177266598 idx 959 dist 0.0022363662719726562 idx 2733 pyknn ib 0, in 3738, ip 4 dist 0.0022370037622749805 idx 2733 dist 0.0022363662719726562 idx 959 pyknn ib 0, in 3740, ip 1 dist 0.0019520005444064736 idx 1647 dist 0.0019516944885253906 idx 2457 pyknn ib 0, in 3740, ip 2 dist 0.0019520005444064736 idx 2457 dist 0.0019516944885253906 idx 1647 pyknn ib 0, in 3740, ip 4 dist 0.0031559993512928486 idx 282 dist 0.0031557083129882812 idx 2323 pyknn ib 0, in 3740, ip 5 dist 0.0031559993512928486 idx 2323 dist 0.0031557083129882812 idx 282 pyknn ib 0, in 3742, ip 11 dist 0.007034010253846645 idx 937 dist 0.007033348083496094 idx 2228 pyknn ib 0, in 3742, ip 12 dist 0.007034010253846645 idx 2228 dist 0.007033348083496094 idx 937 pyknn ib 0, in 3746, ip 4 dist 0.0036910013295710087 idx 1342 dist 0.003690958023071289 idx 2235 pyknn ib 0, in 3746, ip 5 dist 0.0036910013295710087 idx 2235 dist 0.003690958023071289 idx 1342 pyknn ib 0, in 3746, ip 6 dist 0.003737997729331255 idx 847 dist 0.003737926483154297 idx 2932 pyknn ib 0, in 3746, ip 7 dist 0.003737997729331255 idx 2932 dist 0.003737926483154297 idx 847 pyknn ib 0, in 3749, ip 11 dist 0.004900988657027483 idx 2055 dist 0.004900932312011719 idx 2936 pyknn ib 0, in 3749, ip 12 dist 0.004900988657027483 idx 2936 dist 0.004900932312011719 idx 2055 pyknn ib 0, in 3752, ip 6 dist 0.0036260022316128016 idx 1248 dist 0.0036258697509765625 idx 3939 pyknn ib 0, in 3752, ip 7 dist 0.0036260022316128016 idx 3939 dist 0.0036258697509765625 idx 1248 pyknn ib 0, in 3753, ip 10 dist 0.005917004309594631 idx 1881 dist 0.0059168338775634766 idx 2188 pyknn ib 0, in 3753, ip 11 dist 0.005917004309594631 idx 2188 dist 0.0059168338775634766 idx 1881 pyknn ib 0, in 3754, ip 0 dist 0.0 idx 2701 dist 0.0 idx 3754 pyknn ib 0, in 3754, ip 1 dist 0.0 idx 3754 dist 0.0 idx 2701 pyknn ib 0, in 3758, ip 18 dist 0.01014699973165989 idx 127 dist 0.010146856307983398 idx 2848 pyknn ib 0, in 3758, ip 19 dist 0.01014699973165989 idx 2848 dist 0.010146856307983398 idx 127 pyknn ib 0, in 3765, ip 3 dist 0.001645983662456274 idx 2854 dist 0.0016455650329589844 idx 3996 pyknn ib 0, in 3765, ip 4 dist 0.001645983662456274 idx 3996 dist 0.0016455650329589844 idx 2854 pyknn ib 0, in 3766, ip 0 dist 0.0 idx 810 dist -1.9073486328125e-06 idx 3766 pyknn ib 0, in 3766, ip 1 dist 0.0 idx 3766 dist -1.9073486328125e-06 idx 810 pyknn ib 0, in 3767, ip 5 dist 0.004002002067863941 idx 3251 dist 0.0040018558502197266 idx 3264 pyknn ib 0, in 3767, ip 6 dist 0.004002002067863941 idx 3264 dist 0.0040018558502197266 idx 3251 pyknn ib 0, in 3768, ip 9 dist 0.005507001653313637 idx 1167 dist 0.005507469177246094 idx 2174 pyknn ib 0, in 3768, ip 10 dist 0.005507001653313637 idx 2174 dist 0.005507469177246094 idx 1167 pyknn ib 0, in 3774, ip 0 dist 0.0 idx 2328 dist 0.0 idx 3774 pyknn ib 0, in 3774, ip 1 dist 0.0 idx 3774 dist 0.0 idx 2328 pyknn ib 0, in 3776, ip 0 dist 0.0 idx 722 dist 0.0 idx 3776 pyknn ib 0, in 3776, ip 1 dist 0.0 idx 3776 dist 0.0 idx 722 pyknn ib 0, in 3777, ip 0 dist 0.0 idx 1062 dist 5.960464477539063e-08 idx 3777 pyknn ib 0, in 3777, ip 2 dist 0.0 idx 3777 dist 5.960464477539063e-08 idx 1062 pyknn ib 0, in 3778, ip 14 dist 0.006602999288588762 idx 722 dist 0.006602998822927475 idx 3776 pyknn ib 0, in 3778, ip 15 dist 0.006602999288588762 idx 3776 dist 0.006602998822927475 idx 722 pyknn ib 0, in 3785, ip 17 dist 0.010439997538924217 idx 363 dist 0.01043999195098877 idx 694 pyknn ib 0, in 3785, ip 18 dist 0.010439997538924217 idx 694 dist 0.01043999195098877 idx 363 pyknn ib 0, in 3791, ip 16 dist 0.010437000542879105 idx 722 dist 0.01043699961155653 idx 3776 pyknn ib 0, in 3791, ip 17 dist 0.010437000542879105 idx 3776 dist 0.01043699961155653 idx 722 pyknn ib 0, in 3792, ip 3 dist 0.001552001223899424 idx 1871 dist 0.0015506744384765625 idx 3541 pyknn ib 0, in 3792, ip 4 dist 0.001552001223899424 idx 3541 dist 0.0015506744384765625 idx 1871 pyknn ib 0, in 3792, ip 18 dist 0.013074001297354698 idx 1167 dist 0.013072013854980469 idx 2174 pyknn ib 0, in 3792, ip 19 dist 0.013074001297354698 idx 2174 dist 0.013072013854980469 idx 1167 pyknn ib 0, in 3796, ip 18 dist 0.011904004961252213 idx 963 dist 0.011904239654541016 idx 3703 pyknn ib 0, in 3796, ip 19 dist 0.011904004961252213 idx 3703 dist 0.011904239654541016 idx 963 pyknn ib 0, in 3797, ip 1 dist 0.00010100007784785703 idx 3325 dist 0.00010102987289428711 idx 3729 pyknn ib 0, in 3797, ip 2 dist 0.00010100007784785703 idx 3729 dist 0.00010102987289428711 idx 3325 pyknn ib 0, in 3799, ip 3 dist 0.00041699971188791096 idx 2266 dist 0.0004177093505859375 idx 3388 pyknn ib 0, in 3799, ip 4 dist 0.00041699971188791096 idx 3388 dist 0.0004177093505859375 idx 2266 pyknn ib 0, in 3802, ip 14 dist 0.011641998775303364 idx 3383 dist 0.011641979217529297 idx 3439 pyknn ib 0, in 3802, ip 15 dist 0.011641998775303364 idx 3439 dist 0.011641979217529297 idx 3383 pyknn ib 0, in 3805, ip 7 dist 0.0040910011157393456 idx 792 dist 0.004091024398803711 idx 974 pyknn ib 0, in 3805, ip 8 dist 0.0040910011157393456 idx 974 dist 0.004091024398803711 idx 792 pyknn ib 0, in 3807, ip 14 dist 0.008724001236259937 idx 744 dist 0.008723974227905273 idx 3909 pyknn ib 0, in 3807, ip 15 dist 0.008724001236259937 idx 3909 dist 0.008723974227905273 idx 744 pyknn ib 0, in 3818, ip 2 dist 0.000551996985450387 idx 2458 dist 0.0005519390106201172 idx 2645 pyknn ib 0, in 3818, ip 3 dist 0.000551996985450387 idx 2645 dist 0.0005519390106201172 idx 2458 pyknn ib 0, in 3821, ip 14 dist 0.004901000298559666 idx 2701 dist 0.004901885986328125 idx 3754 pyknn ib 0, in 3821, ip 15 dist 0.004901000298559666 idx 3754 dist 0.004901885986328125 idx 2701 pyknn ib 0, in 3826, ip 12 dist 0.010700996033847332 idx 1031 dist 0.01070094108581543 idx 1100 pyknn ib 0, in 3826, ip 13 dist 0.010700996033847332 idx 1100 dist 0.01070094108581543 idx 1031 pyknn ib 0, in 3826, ip 16 dist 0.012152014300227165 idx 744 dist 0.01215219497680664 idx 3909 pyknn ib 0, in 3826, ip 17 dist 0.012152014300227165 idx 3909 dist 0.01215219497680664 idx 744 pyknn ib 0, in 3833, ip 9 dist 0.003604000201448798 idx 281 dist 0.003603994846343994 idx 2437 pyknn ib 0, in 3833, ip 10 dist 0.003604000201448798 idx 2437 dist 0.003603994846343994 idx 281 pyknn ib 0, in 3835, ip 7 dist 0.004132998175919056 idx 1093 dist 0.004132270812988281 idx 2320 pyknn ib 0, in 3835, ip 8 dist 0.004132998175919056 idx 2320 dist 0.004132270812988281 idx 1093 pyknn ib 0, in 3835, ip 18 dist 0.010659990832209587 idx 810 dist 0.010659217834472656 idx 3766 pyknn ib 0, in 3835, ip 19 dist 0.010659990832209587 idx 3766 dist 0.010659217834472656 idx 810 pyknn ib 0, in 3842, ip 8 dist 0.005413996987044811 idx 2767 dist 0.005414038896560669 idx 3503 pyknn ib 0, in 3842, ip 9 dist 0.005413996987044811 idx 3503 dist 0.005414038896560669 idx 2767 pyknn ib 0, in 3843, ip 12 dist 0.005192999728024006 idx 847 dist 0.005192995071411133 idx 2932 pyknn ib 0, in 3843, ip 13 dist 0.005192999728024006 idx 2932 dist 0.005192995071411133 idx 847 pyknn ib 0, in 3851, ip 7 dist 0.0037380007561296225 idx 1333 dist 0.003738000988960266 idx 1388 pyknn ib 0, in 3851, ip 8 dist 0.0037380007561296225 idx 1388 dist 0.003738000988960266 idx 1333 pyknn ib 0, in 3853, ip 2 dist 0.0003970006946474314 idx 818 dist 0.00039702653884887695 idx 3318 pyknn ib 0, in 3853, ip 3 dist 0.0003970006946474314 idx 3318 dist 0.00039702653884887695 idx 818 pyknn ib 0, in 3853, ip 18 dist 0.025717997923493385 idx 3462 dist 0.025718003511428833 idx 3465 pyknn ib 0, in 3853, ip 19 dist 0.025717997923493385 idx 3465 dist 0.025718003511428833 idx 3462 pyknn ib 0, in 3858, ip 3 dist 0.004686000291258097 idx 636 dist 0.004686005413532257 idx 3362 pyknn ib 0, in 3858, ip 4 dist 0.004686000291258097 idx 3362 dist 0.004686005413532257 idx 636 pyknn ib 0, in 3859, ip 8 dist 0.0045179990120232105 idx 2502 dist 0.004517912864685059 idx 3168 pyknn ib 0, in 3859, ip 9 dist 0.0045179990120232105 idx 3168 dist 0.004517912864685059 idx 2502 pyknn ib 0, in 3859, ip 17 dist 0.0062250057235360146 idx 2316 dist 0.006224989891052246 idx 2761 pyknn ib 0, in 3859, ip 18 dist 0.0062250057235360146 idx 2761 dist 0.006224989891052246 idx 2316 pyknn ib 0, in 3860, ip 1 dist 0.001565000507980585 idx 768 dist 0.00156499445438385 idx 2765 pyknn ib 0, in 3860, ip 2 dist 0.001565000507980585 idx 2765 dist 0.00156499445438385 idx 768 pyknn ib 0, in 3864, ip 8 dist 0.0025200005620718002 idx 1219 dist 0.0025200843811035156 idx 3352 pyknn ib 0, in 3864, ip 9 dist 0.0025200005620718002 idx 3352 dist 0.0025200843811035156 idx 1219 pyknn ib 0, in 3866, ip 9 dist 0.008149027824401855 idx 3519 dist 0.008148193359375 idx 4066 pyknn ib 0, in 3866, ip 10 dist 0.008149027824401855 idx 4066 dist 0.008148193359375 idx 3519 pyknn ib 0, in 3866, ip 18 dist 0.011526023969054222 idx 2377 dist 0.011525154113769531 idx 3132 pyknn ib 0, in 3866, ip 19 dist 0.011526023969054222 idx 3132 dist 0.011525154113769531 idx 2377 pyknn ib 0, in 3867, ip 9 dist 0.004133999813348055 idx 857 dist 0.004133939743041992 idx 2424 pyknn ib 0, in 3867, ip 10 dist 0.004133999813348055 idx 2424 dist 0.004133939743041992 idx 857 pyknn ib 0, in 3868, ip 18 dist 0.012170001864433289 idx 1333 dist 0.012169986963272095 idx 1388 pyknn ib 0, in 3868, ip 19 dist 0.012170001864433289 idx 1388 dist 0.012169986963272095 idx 1333 pyknn ib 0, in 3869, ip 3 dist 0.002033001510426402 idx 938 dist 0.0020329952239990234 idx 1350 pyknn ib 0, in 3869, ip 4 dist 0.002033001510426402 idx 1350 dist 0.0020329952239990234 idx 938 pyknn ib 0, in 3872, ip 4 dist 0.0024029994383454323 idx 683 dist 0.0024029985070228577 idx 2705 pyknn ib 0, in 3872, ip 5 dist 0.0024029994383454323 idx 2705 dist 0.0024029985070228577 idx 3377 pyknn ib 0, in 3872, ip 6 dist 0.0024029994383454323 idx 3377 dist 0.0024029985070228577 idx 683 pyknn ib 0, in 3873, ip 4 dist 0.0017179968999698758 idx 1304 dist 0.001717984676361084 idx 2654 pyknn ib 0, in 3873, ip 5 dist 0.0017179968999698758 idx 2654 dist 0.001717984676361084 idx 1304 pyknn ib 0, in 3874, ip 10 dist 0.007155999541282654 idx 366 dist 0.0071561336517333984 idx 3555 pyknn ib 0, in 3874, ip 11 dist 0.007155999541282654 idx 3555 dist 0.0071561336517333984 idx 366 pyknn ib 0, in 3883, ip 2 dist 0.0005449995514936745 idx 158 dist 0.0005464553833007812 idx 1404 pyknn ib 0, in 3883, ip 3 dist 0.0005449995514936745 idx 1404 dist 0.0005464553833007812 idx 158 pyknn ib 0, in 3884, ip 7 dist 0.0038480001967400312 idx 1018 dist 0.003847837448120117 idx 3982 pyknn ib 0, in 3884, ip 8 dist 0.0038480001967400312 idx 3982 dist 0.003847837448120117 idx 1018 pyknn ib 0, in 3887, ip 10 dist 0.006790000945329666 idx 3107 dist 0.006789207458496094 idx 1966 pyknn ib 0, in 3887, ip 11 dist 0.006790002807974815 idx 1966 dist 0.006789207458496094 idx 3107 pyknn ib 0, in 3890, ip 0 dist 0.0 idx 1426 dist 0.0 idx 3890 pyknn ib 0, in 3890, ip 1 dist 0.0 idx 3890 dist 0.0 idx 1426 pyknn ib 0, in 3890, ip 6 dist 0.0032750004902482033 idx 2328 dist 0.0032750368118286133 idx 3774 pyknn ib 0, in 3890, ip 7 dist 0.0032750004902482033 idx 3774 dist 0.0032750368118286133 idx 2328 pyknn ib 0, in 3894, ip 4 dist 0.002228998579084873 idx 1254 dist 0.0022287368774414062 idx 2552 pyknn ib 0, in 3894, ip 5 dist 0.002228998579084873 idx 2552 dist 0.0022287368774414062 idx 1254 pyknn ib 0, in 3899, ip 11 dist 0.006374003365635872 idx 497 dist 0.006373763084411621 idx 2785 pyknn ib 0, in 3899, ip 12 dist 0.006374003365635872 idx 2785 dist 0.006373763084411621 idx 497 pyknn ib 0, in 3902, ip 2 dist 0.000996999442577362 idx 1333 dist 0.0009969770908355713 idx 1388 pyknn ib 0, in 3902, ip 3 dist 0.000996999442577362 idx 1388 dist 0.0009969770908355713 idx 1333 pyknn ib 0, in 3906, ip 11 dist 0.008240998722612858 idx 768 dist 0.00824098289012909 idx 2765 pyknn ib 0, in 3906, ip 12 dist 0.008240998722612858 idx 2765 dist 0.00824098289012909 idx 768 pyknn ib 0, in 3909, ip 0 dist 0.0 idx 744 dist 0.0 idx 3909 pyknn ib 0, in 3909, ip 1 dist 0.0 idx 3909 dist 0.0 idx 744 pyknn ib 0, in 3909, ip 3 dist 0.0003130019176751375 idx 1031 dist 0.00031256675720214844 idx 2711 pyknn ib 0, in 3909, ip 4 dist 0.0003130019176751375 idx 1100 dist 0.00031256675720214844 idx 1031 pyknn ib 0, in 3909, ip 5 dist 0.0003130019176751375 idx 2711 dist 0.00031256675720214844 idx 1100 pyknn ib 0, in 3911, ip 3 dist 0.0003949997771997005 idx 2143 dist 0.00039499253034591675 idx 4072 pyknn ib 0, in 3911, ip 4 dist 0.0003949997771997005 idx 4072 dist 0.00039499253034591675 idx 2143 pyknn ib 0, in 3912, ip 18 dist 0.007466008421033621 idx 476 dist 0.007465362548828125 idx 784 pyknn ib 0, in 3912, ip 19 dist 0.007466008421033621 idx 784 dist 0.007465362548828125 idx 476 pyknn ib 0, in 3916, ip 12 dist 0.00708600040525198 idx 488 dist 0.007086008787155151 idx 2434 pyknn ib 0, in 3916, ip 13 dist 0.00708600040525198 idx 2434 dist 0.007086008787155151 idx 488 pyknn ib 0, in 3918, ip 13 dist 0.009893002919852734 idx 3325 dist 0.009893059730529785 idx 3729 pyknn ib 0, in 3918, ip 14 dist 0.009893002919852734 idx 3729 dist 0.009893059730529785 idx 3325 pyknn ib 0, in 3918, ip 18 dist 0.012113000266253948 idx 1426 dist 0.012112975120544434 idx 3890 pyknn ib 0, in 3918, ip 19 dist 0.012113000266253948 idx 3890 dist 0.012112975120544434 idx 1426 pyknn ib 0, in 3921, ip 3 dist 0.003403998911380768 idx 281 dist 0.003403991460800171 idx 2437 pyknn ib 0, in 3921, ip 4 dist 0.003403998911380768 idx 2437 dist 0.003403991460800171 idx 281 pyknn ib 0, in 3931, ip 5 dist 0.0017810005228966475 idx 2701 dist 0.001781463623046875 idx 3754 pyknn ib 0, in 3931, ip 6 dist 0.0017810005228966475 idx 3754 dist 0.001781463623046875 idx 2701 pyknn ib 0, in 3933, ip 0 dist 0.0 idx 2745 dist -4.76837158203125e-07 idx 3933 pyknn ib 0, in 3933, ip 1 dist 0.0 idx 3933 dist -4.76837158203125e-07 idx 2745 pyknn ib 0, in 3936, ip 13 dist 0.013471986167132854 idx 1031 dist 0.013471603393554688 idx 1100 pyknn ib 0, in 3936, ip 14 dist 0.013471986167132854 idx 1100 dist 0.013471603393554688 idx 2711 pyknn ib 0, in 3936, ip 15 dist 0.013471986167132854 idx 2711 dist 0.013471603393554688 idx 1031 pyknn ib 0, in 3936, ip 16 dist 0.013521000742912292 idx 744 dist 0.013520956039428711 idx 3909 pyknn ib 0, in 3936, ip 17 dist 0.013521000742912292 idx 3909 dist 0.013520956039428711 idx 744 pyknn ib 0, in 3938, ip 4 dist 0.004649000242352486 idx 1555 dist 0.004649162292480469 idx 2866 pyknn ib 0, in 3938, ip 5 dist 0.004649000242352486 idx 2866 dist 0.004649162292480469 idx 1555 pyknn ib 0, in 3939, ip 0 dist 0.0 idx 1248 dist 0.0 idx 3939 pyknn ib 0, in 3939, ip 1 dist 0.0 idx 3939 dist 0.0 idx 1248 pyknn ib 0, in 3940, ip 2 dist 0.002899995306506753 idx 1231 dist 0.002899169921875 idx 533 pyknn ib 0, in 3940, ip 3 dist 0.002900000661611557 idx 533 dist 0.002899646759033203 idx 1231 pyknn ib 0, in 3940, ip 14 dist 0.00899400096386671 idx 1021 dist 0.008993148803710938 idx 1857 pyknn ib 0, in 3940, ip 15 dist 0.00899400096386671 idx 1857 dist 0.008993148803710938 idx 1021 pyknn ib 0, in 3942, ip 1 dist 0.0005389998550526798 idx 2767 dist 0.0005390048027038574 idx 3503 pyknn ib 0, in 3942, ip 2 dist 0.0005389998550526798 idx 3503 dist 0.0005390048027038574 idx 2767 pyknn ib 0, in 3943, ip 5 dist 0.002406000392511487 idx 1426 dist 0.002406001091003418 idx 3890 pyknn ib 0, in 3943, ip 6 dist 0.002406000392511487 idx 3890 dist 0.002406001091003418 idx 1426 pyknn ib 0, in 3943, ip 9 dist 0.004201000090688467 idx 2328 dist 0.004200935363769531 idx 3774 pyknn ib 0, in 3943, ip 10 dist 0.004201000090688467 idx 3774 dist 0.004200935363769531 idx 2328 pyknn ib 0, in 3950, ip 8 dist 0.003989000804722309 idx 1718 dist 0.003989040851593018 idx 2775 pyknn ib 0, in 3950, ip 9 dist 0.003989000804722309 idx 2775 dist 0.003989040851593018 idx 1718 pyknn ib 0, in 3951, ip 8 dist 0.004125999752432108 idx 2266 dist 0.004126548767089844 idx 3388 pyknn ib 0, in 3951, ip 9 dist 0.004125999752432108 idx 3388 dist 0.004126548767089844 idx 2266 pyknn ib 0, in 3952, ip 5 dist 0.003297999268397689 idx 744 dist 0.0032978057861328125 idx 3909 pyknn ib 0, in 3952, ip 6 dist 0.003297999268397689 idx 3909 dist 0.0032978057861328125 idx 744 pyknn ib 0, in 3952, ip 9 dist 0.005625006277114153 idx 1031 dist 0.005624532699584961 idx 2711 pyknn ib 0, in 3952, ip 11 dist 0.005625006277114153 idx 2711 dist 0.005624532699584961 idx 1031 pyknn ib 0, in 3953, ip 9 dist 0.009367999620735645 idx 542 dist 0.009368062019348145 idx 1590 pyknn ib 0, in 3953, ip 10 dist 0.009367999620735645 idx 1590 dist 0.009368062019348145 idx 542 pyknn ib 0, in 3953, ip 16 dist 0.014188993722200394 idx 798 dist 0.014188885688781738 idx 3397 pyknn ib 0, in 3953, ip 17 dist 0.014188996516168118 idx 3397 dist 0.014189004898071289 idx 798 pyknn ib 0, in 3955, ip 6 dist 0.0023769985418766737 idx 3325 dist 0.002377033233642578 idx 3729 pyknn ib 0, in 3955, ip 7 dist 0.0023769985418766737 idx 3729 dist 0.002377033233642578 idx 3325 pyknn ib 0, in 3959, ip 6 dist 0.0041410005651414394 idx 2780 dist 0.004140615463256836 idx 3638 pyknn ib 0, in 3959, ip 7 dist 0.0041410005651414394 idx 3638 dist 0.004140615463256836 idx 2780 pyknn ib 0, in 3962, ip 4 dist 0.001824999344535172 idx 768 dist 0.0018250048160552979 idx 2765 pyknn ib 0, in 3962, ip 5 dist 0.001824999344535172 idx 2765 dist 0.0018250048160552979 idx 768 pyknn ib 0, in 3962, ip 11 dist 0.0032780019100755453 idx 281 dist 0.003278002142906189 idx 2437 pyknn ib 0, in 3962, ip 12 dist 0.0032780019100755453 idx 2437 dist 0.003278002142906189 idx 281 pyknn ib 0, in 3971, ip 12 dist 0.007450995501130819 idx 1157 dist 0.007451057434082031 idx 2023 pyknn ib 0, in 3971, ip 13 dist 0.007450995501130819 idx 2023 dist 0.007451057434082031 idx 1157 pyknn ib 0, in 3976, ip 1 dist 0.0003900023002643138 idx 963 dist 0.00039005279541015625 idx 3703 pyknn ib 0, in 3976, ip 2 dist 0.0003900023002643138 idx 3703 dist 0.00039005279541015625 idx 963 pyknn ib 0, in 3977, ip 5 dist 0.003753000171855092 idx 767 dist 0.0037530213594436646 idx 1375 pyknn ib 0, in 3977, ip 6 dist 0.003753000171855092 idx 954 dist 0.0037530213594436646 idx 767 pyknn ib 0, in 3977, ip 7 dist 0.003753000171855092 idx 1375 dist 0.0037530213594436646 idx 954 pyknn ib 0, in 3982, ip 0 dist 0.0 idx 1018 dist 0.0 idx 3982 pyknn ib 0, in 3982, ip 1 dist 0.0 idx 3982 dist 0.0 idx 1018 pyknn ib 0, in 3987, ip 3 dist 0.0009689986472949386 idx 282 dist 0.0009691715240478516 idx 2323 pyknn ib 0, in 3987, ip 4 dist 0.0009689986472949386 idx 2323 dist 0.0009691715240478516 idx 282 pyknn ib 0, in 3988, ip 8 dist 0.004057002253830433 idx 2745 dist 0.004056692123413086 idx 3933 pyknn ib 0, in 3988, ip 9 dist 0.004057002253830433 idx 3933 dist 0.004056692123413086 idx 2745 pyknn ib 0, in 3989, ip 7 dist 0.007250993978232145 idx 1031 dist 0.007250308990478516 idx 1100 pyknn ib 0, in 3989, ip 8 dist 0.007250993978232145 idx 1100 dist 0.007250308990478516 idx 1031 pyknn ib 0, in 3989, ip 14 dist 0.010538001544773579 idx 744 dist 0.010537862777709961 idx 3909 pyknn ib 0, in 3989, ip 15 dist 0.010538001544773579 idx 3909 dist 0.010537862777709961 idx 744 pyknn ib 0, in 3996, ip 0 dist 0.0 idx 2854 dist 0.0 idx 3996 pyknn ib 0, in 3996, ip 1 dist 0.0 idx 3996 dist 0.0 idx 2854 pyknn ib 0, in 3999, ip 12 dist 0.010126007720828056 idx 1018 dist 0.010125875473022461 idx 3982 pyknn ib 0, in 3999, ip 13 dist 0.010126007720828056 idx 3982 dist 0.010125875473022461 idx 1018 pyknn ib 0, in 4005, ip 11 dist 0.004081999883055687 idx 193 dist 0.004082083702087402 idx 231 pyknn ib 0, in 4005, ip 12 dist 0.004081999883055687 idx 231 dist 0.004082083702087402 idx 193 pyknn ib 0, in 4007, ip 7 dist 0.0034770015627145767 idx 1800 dist 0.003475189208984375 idx 2901 pyknn ib 0, in 4007, ip 8 dist 0.0034770015627145767 idx 2901 dist 0.003475189208984375 idx 1800 pyknn ib 0, in 4011, ip 4 dist 0.0019210001919418573 idx 281 dist 0.0019209980964660645 idx 2437 pyknn ib 0, in 4011, ip 5 dist 0.0019210001919418573 idx 2437 dist 0.0019209980964660645 idx 281 pyknn ib 0, in 4011, ip 8 dist 0.0032220007851719856 idx 768 dist 0.0032220035791397095 idx 2765 pyknn ib 0, in 4011, ip 9 dist 0.0032220007851719856 idx 2765 dist 0.0032220035791397095 idx 768 pyknn ib 0, in 4015, ip 6 dist 0.0012199964839965105 idx 1925 dist 0.0012197494506835938 idx 2416 pyknn ib 0, in 4015, ip 7 dist 0.0012199964839965105 idx 2416 dist 0.0012197494506835938 idx 1925 pyknn ib 0, in 4017, ip 9 dist 0.0036890103947371244 idx 366 dist 0.003688812255859375 idx 3555 pyknn ib 0, in 4017, ip 10 dist 0.0036890103947371244 idx 3555 dist 0.003688812255859375 idx 366 pyknn ib 0, in 4019, ip 8 dist 0.003205000888556242 idx 1225 dist 0.0032033920288085938 idx 1637 pyknn ib 0, in 4019, ip 9 dist 0.003205000888556242 idx 1637 dist 0.0032033920288085938 idx 1225 pyknn ib 0, in 4026, ip 7 dist 0.002222006907686591 idx 595 dist 0.0022215843200683594 idx 2077 pyknn ib 0, in 4026, ip 8 dist 0.002222006907686591 idx 2077 dist 0.0022215843200683594 idx 595 pyknn ib 0, in 4032, ip 12 dist 0.007041999604552984 idx 792 dist 0.0070416927337646484 idx 974 pyknn ib 0, in 4032, ip 13 dist 0.007041999604552984 idx 974 dist 0.0070416927337646484 idx 792 pyknn ib 0, in 4038, ip 2 dist 0.0010400002356618643 idx 636 dist 0.0010400041937828064 idx 3362 pyknn ib 0, in 4038, ip 3 dist 0.0010400002356618643 idx 3362 dist 0.0010400041937828064 idx 636 pyknn ib 0, in 4047, ip 5 dist 0.0014030011370778084 idx 719 dist 0.0014026165008544922 idx 3707 pyknn ib 0, in 4047, ip 6 dist 0.0014030011370778084 idx 3707 dist 0.0014026165008544922 idx 719 pyknn ib 0, in 4050, ip 0 dist 0.0 idx 2397 dist 0.0 idx 4050 pyknn ib 0, in 4050, ip 1 dist 0.0 idx 4050 dist 0.0 idx 2397 pyknn ib 0, in 4058, ip 6 dist 0.0026439952198415995 idx 1225 dist 0.0026445388793945312 idx 1637 pyknn ib 0, in 4058, ip 7 dist 0.0026439952198415995 idx 1637 dist 0.0026445388793945312 idx 1225 pyknn ib 0, in 4058, ip 8 dist 0.0026499878149479628 idx 29 dist 0.0026502609252929688 idx 1466 pyknn ib 0, in 4058, ip 9 dist 0.0026499878149479628 idx 1466 dist 0.0026502609252929688 idx 29 pyknn ib 0, in 4058, ip 19 dist 0.009620998986065388 idx 1176 dist 0.00962066650390625 idx 2555 pyknn ib 0, in 4061, ip 10 dist 0.006673999130725861 idx 3462 dist 0.006673991680145264 idx 3465 pyknn ib 0, in 4061, ip 11 dist 0.006673999130725861 idx 3465 dist 0.006673991680145264 idx 3462 pyknn ib 0, in 4062, ip 3 dist 0.001948998891748488 idx 315 dist 0.0019488334655761719 idx 3219 pyknn ib 0, in 4062, ip 4 dist 0.001948998891748488 idx 3219 dist 0.0019488334655761719 idx 315 pyknn ib 0, in 4063, ip 1 dist 6.1000100686214864e-05 idx 1951 dist 6.097555160522461e-05 idx 2710 pyknn ib 0, in 4063, ip 2 dist 6.1000100686214864e-05 idx 2710 dist 6.097555160522461e-05 idx 1951 pyknn ib 0, in 4063, ip 9 dist 0.006617994979023933 idx 1161 dist 0.006617993116378784 idx 2641 pyknn ib 0, in 4063, ip 10 dist 0.006617994979023933 idx 2641 dist 0.006617993116378784 idx 1161 pyknn ib 0, in 4065, ip 5 dist 0.0018000002019107342 idx 2790 dist 0.001800537109375 idx 3722 pyknn ib 0, in 4065, ip 6 dist 0.0018000002019107342 idx 3722 dist 0.001800537109375 idx 2790 pyknn ib 0, in 4065, ip 8 dist 0.0027250039856880903 idx 1906 dist 0.0027251243591308594 idx 3635 pyknn ib 0, in 4065, ip 9 dist 0.0027250039856880903 idx 3635 dist 0.0027251243591308594 idx 1906 pyknn ib 0, in 4066, ip 0 dist 0.0 idx 3519 dist 0.0 idx 4066 pyknn ib 0, in 4066, ip 1 dist 0.0 idx 4066 dist 0.0 idx 3519 pyknn ib 0, in 4066, ip 2 dist 0.0004419961478561163 idx 829 dist 0.00044155120849609375 idx 3173 pyknn ib 0, in 4066, ip 3 dist 0.0004419961478561163 idx 3173 dist 0.00044155120849609375 idx 829 pyknn ib 0, in 4070, ip 9 dist 0.004648996517062187 idx 1248 dist 0.004649162292480469 idx 3939 pyknn ib 0, in 4070, ip 10 dist 0.004648996517062187 idx 3939 dist 0.004649162292480469 idx 1248 pyknn ib 0, in 4072, ip 0 dist 0.0 idx 2143 dist 0.0 idx 4072 pyknn ib 0, in 4072, ip 1 dist 0.0 idx 4072 dist 0.0 idx 2143 pyknn ib 0, in 4074, ip 1 dist 0.0005799981881864369 idx 1259 dist 0.0005799531936645508 idx 310 pyknn ib 0, in 4074, ip 2 dist 0.0005799999344162643 idx 310 dist 0.0005799531936645508 idx 1259 pyknn ib 0, in 4083, ip 3 dist 0.0021730000153183937 idx 965 dist 0.0021734237670898438 idx 1552 pyknn ib 0, in 4083, ip 4 dist 0.0021730000153183937 idx 1552 dist 0.0021734237670898438 idx 965 pyknn ib 0, in 4087, ip 2 dist 0.00047799956519156694 idx 991 dist 0.000476837158203125 idx 2895 pyknn ib 0, in 4087, ip 3 dist 0.00047799956519156694 idx 2895 dist 0.000476837158203125 idx 991 pyknn ib 0, in 4088, ip 15 dist 0.012462000362575054 idx 965 dist 0.012462615966796875 idx 1552 pyknn ib 0, in 4088, ip 16 dist 0.012462000362575054 idx 1552 dist 0.012462615966796875 idx 965 pyknn ib 0, in 4089, ip 0 dist 0.0 idx 3631 dist 0.0 idx 4089 pyknn ib 0, in 4089, ip 1 dist 0.0 idx 4089 dist 0.0 idx 3631 CHECK1: True """ # print(idx) # speed test # loader = DataLoader( # dataset, # batch_size=2, # num_workers=8, # pin_memory=True, # shuffle=False # ) # speed_test(0, loader) # speed_test(1, loader) # speed_test(2, loader) # speed_test(3, loader)
[ "id115561@gmail.com" ]
id115561@gmail.com
20ac97c759b78886592cf435a9a22569d62392bd
4d9422c56a606432eaa2d0a45c16ee0df390b639
/model/callbacks.py
df0cbd8ef1c382663eba693f5150bbe52ed9a5b4
[ "MIT" ]
permissive
svpeeters/performance_prediction
f3f139d93d2527752bba41ab1c305e74925c1073
713e78441d59a5dafccaa43858a0478a29b43e2f
refs/heads/main
2023-04-11T05:20:43.247242
2021-04-22T19:43:44
2021-04-22T19:43:44
314,288,762
0
0
null
2020-11-20T14:50:38
2020-11-19T15:26:25
Python
UTF-8
Python
false
false
4,409
py
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf tf.get_logger().setLevel('ERROR') class MonotonicCallback(tf.keras.callbacks.Callback): """ Callback that organizes the monotonic penalty computation for the training and th validation set. If the model is in training mode the penalty term incorporates the training set and otherwise the validation set. This callback is needed since TensorFlow 2 does not allow to have separated loss functions for training and validation set (set on which the early stopping will be done). This callback essentially alters a TensorFlow variable which indicates if the model is in training mode or not. Based on the Variable the monotonic loss function uses the training or the validation set for the computation of the penalty term. """ def __init__(self, train_indicator: tf.Variable, last_penalty: tf.Variable): super().__init__() self.train_indicator = train_indicator self.last_penalty = last_penalty self.train_penalty = 0.0 self.val_penalty = 0.0 self.num_train_batches = 0 self.num_val_batches = 0 def on_train_begin(self, logs=None): self.train_indicator.assign(1) def on_train_batch_begin(self, batch, logs=None): self.num_train_batches += 1 def on_train_batch_end(self, batch, logs=None): self.train_penalty += self.last_penalty.numpy() def on_test_begin(self, logs=None): self.train_indicator.assign(0) def on_test_batch_begin(self, batch, logs=None): self.num_val_batches += 1 def on_test_end(self, logs=None): self.train_indicator.assign(1) def on_test_batch_end(self, batch, logs=None): self.val_penalty += self.last_penalty.numpy() def on_epoch_end(self, epoch, logs=None): logs['mon_penalty'] = self.train_penalty / self.num_train_batches logs['val_mon_penalty'] = self.val_penalty / self.num_val_batches self.train_penalty = 0.0 self.val_penalty = 0.0 self.num_train_batches = 0 self.num_val_batches = 0 class MonotonicBatchCallback(tf.keras.callbacks.Callback): """ Callback that organizes the monotonic penalty computation for the training and th validation set. If the model is in training mode the penalty term incorporates the training set and otherwise the validation set. This callback is needed since TensorFlow 2 does not allow to have separated loss functions for training and validation set (set on which the early stopping will be done). This callback essentially alters a TensorFlow variable which indicates if the model is in training mode or not and which batch is the current batch used in training and validation. Based on the Variables the monotonic loss function uses the corresponding batch from the training or the validation set for the computation of the penalty term. """ def __init__(self, train_indicator: tf.Variable, last_penalty: tf.Variable, current_step): super().__init__() self.train_indicator = train_indicator self.last_penalty = last_penalty self.train_penalty = 0.0 self.current_step = current_step self.val_penalty = 0.0 self.num_train_batches = 0 self.num_val_batches = 0 def on_train_begin(self, logs=None): self.train_indicator.assign(1) def on_train_batch_begin(self, batch, logs=None): self.current_step.assign(self.num_train_batches) self.num_train_batches += 1 def on_train_batch_end(self, batch, logs=None): self.train_penalty += self.last_penalty.numpy() def on_test_begin(self, logs=None): self.train_indicator.assign(0) def on_test_batch_begin(self, batch, logs=None): self.current_step.assign(self.num_val_batches) self.num_val_batches += 1 def on_test_end(self, logs=None): self.train_indicator.assign(1) def on_test_batch_end(self, batch, logs=None): self.val_penalty += self.last_penalty.numpy() def on_epoch_end(self, epoch, logs=None): logs['mon_penalty'] = self.train_penalty / self.num_train_batches logs['val_mon_penalty'] = self.val_penalty / self.num_val_batches self.train_penalty = 0.0 self.val_penalty = 0.0 self.num_train_batches = 0 self.num_val_batches = 0
[ "speeters@mail.upb.de" ]
speeters@mail.upb.de
0d788a1849f7407ed0c963a2f1ff2282a44211eb
a8599b7cb0f1deac1b8a62a35f3f1c95c6d0e7ba
/lookerapi/models/prefetch_access_filter_value.py
57b4a9ca5a801c241765ae52b290b512cbe56f01
[ "MIT" ]
permissive
llooker/python_sdk
b82b1dbe30a734b1cc1e1bcafd3d2ac7ce9fa705
8364839b1de0519771f2f749e45b4e6cb1c75577
refs/heads/master
2020-03-30T08:40:42.562469
2020-01-16T00:08:31
2020-01-16T00:08:31
151,030,473
13
10
MIT
2020-01-16T00:08:32
2018-10-01T03:07:09
Python
UTF-8
Python
false
false
6,563
py
# coding: utf-8 """ Looker API 3.0 Reference ### Authorization The Looker API uses Looker **API3** credentials for authorization and access control. Looker admins can create API3 credentials on Looker's **Admin/Users** page. Pass API3 credentials to the **/login** endpoint to obtain a temporary access_token. Include that access_token in the Authorization header of Looker API requests. For details, see [Looker API Authorization](https://looker.com/docs/r/api/authorization) ### Client SDKs The Looker API is a RESTful system that should be usable by any programming language capable of making HTTPS requests. Client SDKs for a variety of programming languages can be generated from the Looker API's Swagger JSON metadata to streamline use of the Looker API in your applications. A client SDK for Ruby is available as an example. For more information, see [Looker API Client SDKs](https://looker.com/docs/r/api/client_sdks) ### Try It Out! The 'api-docs' page served by the Looker instance includes 'Try It Out!' buttons for each API method. After logging in with API3 credentials, you can use the \"Try It Out!\" buttons to call the API directly from the documentation page to interactively explore API features and responses. ### Versioning Future releases of Looker will expand this API release-by-release to securely expose more and more of the core power of Looker to API client applications. API endpoints marked as \"beta\" may receive breaking changes without warning. Stable (non-beta) API endpoints should not receive breaking changes in future releases. For more information, see [Looker API Versioning](https://looker.com/docs/r/api/versioning) OpenAPI spec version: 3.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class PrefetchAccessFilterValue(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, model=None, field=None, value=None, can=None): """ PrefetchAccessFilterValue - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'model': 'str', 'field': 'str', 'value': 'str', 'can': 'dict(str, bool)' } self.attribute_map = { 'model': 'model', 'field': 'field', 'value': 'value', 'can': 'can' } self._model = model self._field = field self._value = value self._can = can @property def model(self): """ Gets the model of this PrefetchAccessFilterValue. Access filter model name. :return: The model of this PrefetchAccessFilterValue. :rtype: str """ return self._model @model.setter def model(self, model): """ Sets the model of this PrefetchAccessFilterValue. Access filter model name. :param model: The model of this PrefetchAccessFilterValue. :type: str """ self._model = model @property def field(self): """ Gets the field of this PrefetchAccessFilterValue. Access filter field name. :return: The field of this PrefetchAccessFilterValue. :rtype: str """ return self._field @field.setter def field(self, field): """ Sets the field of this PrefetchAccessFilterValue. Access filter field name. :param field: The field of this PrefetchAccessFilterValue. :type: str """ self._field = field @property def value(self): """ Gets the value of this PrefetchAccessFilterValue. Access filter value :return: The value of this PrefetchAccessFilterValue. :rtype: str """ return self._value @value.setter def value(self, value): """ Sets the value of this PrefetchAccessFilterValue. Access filter value :param value: The value of this PrefetchAccessFilterValue. :type: str """ self._value = value @property def can(self): """ Gets the can of this PrefetchAccessFilterValue. Operations the current user is able to perform on this object :return: The can of this PrefetchAccessFilterValue. :rtype: dict(str, bool) """ return self._can @can.setter def can(self, can): """ Sets the can of this PrefetchAccessFilterValue. Operations the current user is able to perform on this object :param can: The can of this PrefetchAccessFilterValue. :type: dict(str, bool) """ self._can = can def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, PrefetchAccessFilterValue): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
[ "russell@looker.com" ]
russell@looker.com
524b08c17f3b308214909ee6b437d2bfceb346b4
6c8d702b5956aab847f5783d96965a227e649eff
/find_coordinates_germany.py
d752a4b2b2c7684dabd77aa075ccb048cae9e6dd
[]
no_license
ew-shopp/weather_import
2155d83476f7106348bae086ec97ad21cc5caa8a
c1880223714f1ce6d369feeed7ed7907eeb3639f
refs/heads/master
2021-04-30T01:44:05.197464
2019-09-10T13:50:44
2019-09-10T13:50:44
121,489,170
0
0
null
null
null
null
UTF-8
Python
false
false
3,100
py
import pandas as pd import geopy.distance jot_cities = pd.read_json("sf/citiesInJotDataset_germany.json", typ="series") geonames = pd.read_csv('sf/download.geonames.org-export-dump/DE.txt', sep='\t', header=None) geoname_cities = [] for i in range(len(geonames)): if "P" == geonames.loc[i,6]: entry = {"name": geonames.loc[i,2].lower(), "lat": geonames.loc[i,4], "lon":geonames.loc[i,5], "geonameid":geonames.loc[i,0]} geoname_cities.append(entry) one_equal_match = 0 several_equal_match = 0 one_in_match = 0 several_in_match = 0 no_match = 0 f_out= open("match.csv","w+") #f_out.write('City,Latitude,Longitude\n') print len(geoname_cities) print"Matches\tSearch_type\tjot_city\tgeo_name_city\tlat\tlon\tdist_from_first\tgeonameid" for jot in range(len(jot_cities)): jot_city = jot_cities.loc[jot] found_match = 0 matches = [] for geo in range(len(geoname_cities)): if jot_city == geoname_cities[geo]["name"]: found_match += 1 match_coord = (geoname_cities[geo]["lat"], geoname_cities[geo]["lon"]) if found_match == 1: first_coord = match_coord first_line = "%s,%f,%f\n" % (jot_city, geoname_cities[geo]["lat"], geoname_cities[geo]["lon"]) distance_km = geopy.distance.vincenty(first_coord, match_coord).km s = "EQ:\t%s\t%s\t%f\t%f\t%fkm\t%d" % (jot_city, geoname_cities[geo]["name"], geoname_cities[geo]["lat"], geoname_cities[geo]["lon"], distance_km, geoname_cities[geo]["geonameid"]) matches.append(s) if found_match == 1: one_equal_match += 1 f_out.write(first_line) if found_match > 1: several_equal_match += 1 if found_match == 0: for geo in range(len(geoname_cities)): if jot_city in geoname_cities[geo]["name"]: found_match += 1 match_coord = (geoname_cities[geo]["lat"], geoname_cities[geo]["lon"]) if found_match == 1: first_coord = match_coord first_line = "%s,%f,%f\n" % (jot_city, geoname_cities[geo]["lat"], geoname_cities[geo]["lon"]) distance_km = geopy.distance.vincenty(first_coord, match_coord).km s = "IN:\t%s\t%s\t%f\t%f\t%fkm\t%d" % (jot_city, geoname_cities[geo]["name"], geoname_cities[geo]["lat"], geoname_cities[geo]["lon"], distance_km, geoname_cities[geo]["geonameid"]) matches.append(s) if found_match == 1: one_in_match += 1 f_out.write(first_line) if found_match > 1: several_in_match += 1 if found_match == 0: s = "No match: %s" % (jot_city) matches.append(s) no_match += 1 for s in matches: print "(%d)\t%s" % (found_match, s) print "one_equal_match %d" % one_equal_match print "several_equal_match %d" % several_equal_match print "one_in_match %d" % one_in_match print "several_in_match %d" % several_in_match print "no_match %d" % no_match f_out.close() print 'Ending program'
[ "steffen.dalgard@sintef.no" ]
steffen.dalgard@sintef.no
bbe71ab825436d8c21b377fc1eec83eefb6a5520
dda122e6ba6d3b591dd7c0e808a4c42e8a93d714
/data_structures/stack/test_stack.py
0a9367dda1e9bd14aaa55bd37da9e38df6adfe73
[]
no_license
tobyatgithub/data_structure_and_algorithms
4c8e1d8a756ba8950446ffd00568a237204f5684
bd2f46bf9bffb846dc1262093619b7da395a2203
refs/heads/master
2020-04-08T13:42:56.661842
2019-02-13T08:38:16
2019-02-13T08:38:16
159,403,405
0
0
null
2019-02-13T08:37:51
2018-11-27T21:44:50
Python
UTF-8
Python
false
false
1,516
py
from .stack import Stack from node import Node import pytest @pytest.fixture() def empty_stack(): return Stack() @pytest.fixture() def single_stack(): tmp = Stack() tmp.push(2) return tmp @pytest.fixture() def mid_stack(): tmp = Stack() tmp.push(2) tmp.push("4") tmp.push(['6']) return tmp @pytest.fixture() def long_stack(): return Stack([5,4,3,2,1]) def test_empty_stack(empty_stack): # because empty stack is empty, pytest test whether assert True assert not empty_stack def test_input_rasie(): # tmp = Stack(2) with pytest.raises(TypeError): Stack(2) # assert TypeError("Stack only take <None> or a <list> as input init value") def test_singly_stack(single_stack): assert len(single_stack) == 1 single_stack.push(22) assert len(single_stack) == 2 def test_singly_stack2(single_stack): assert single_stack.peek().val == 2 assert len(single_stack) == 1 def test_stack_length(empty_stack): assert len(empty_stack) == 0 def test_iterable_input_stack(long_stack): assert long_stack assert long_stack.peek().val == 1 def test_stack_pop_empty(empty_stack): assert empty_stack.pop() == None def test_stack_pop1(single_stack): # before assert len(single_stack) == 1 assert single_stack.pop().val == 2 #after assert len(single_stack) == 0 def test_stack_pop3(mid_stack): assert mid_stack.pop().val ==['6'] def test_stack_pop2(long_stack): assert long_stack.pop().val == 1
[ "toby.fangyuan@gmail.com" ]
toby.fangyuan@gmail.com
19cb350fe6ef91ef6239c5d4681aab2a4ccd5ce6
397e4863f1d123c9a7d5e0dac74d8747c3408b83
/netmikouse.py
3bab56ba7739b8337568ca73d5c97d9d6fb6fe16
[]
no_license
javincraig/Homelab
91686d858dff55c6f3eaf8a02d121e3dc8179af4
c0513378c20bd3928d875b3006dff16421d0696d
refs/heads/master
2020-04-27T08:16:56.346167
2019-08-18T16:37:54
2019-08-18T16:37:54
174,164,649
0
1
null
null
null
null
UTF-8
Python
false
false
1,467
py
from netmiko import ConnectHandler #---------------Gather information--------------------- ip = input('What is the management IP?: ') username = input('What is the username? [cisco]: ') or 'cisco' password = input('What is the password? [cisco]: ') or 'cisco' cisco_switch = {'device_type': 'cisco_ios', 'ip': ip, 'username': username, 'password': password} connection = ConnectHandler(**cisco_switch) interface_output = connection.send_command('show ip interface brief') #print(interface_output) for line in interface_output: if 'up' in line: print(line) print('--------adding AAA commands to the device ------') commands = ['aaa authentication login default group radius local-case', 'aaa authentication login vty group radius local-case', 'aaa authorization exec default group radius local if-authenticated', 'aaa accounting system default start-stop group radius', 'ip radius source-interface Vlan1301', 'radius-server host 192.168.1.10 auth-port 1645 acct-port 1646', 'radius-server key cisco', 'line vty 0 4', 'login authentication vty'] configoutput = connection.config_mode() if 'Invalid input' in configoutput: print(configoutput) configoutput = connection.send_config_set(commands) if 'Invalid input' in configoutput: print(configoutput) print('------------------done------------------')
[ "noreply@github.com" ]
javincraig.noreply@github.com
6a7d74b421446916cc56287fe801c65bbd719a47
fce9aa2870a749dd9eb86c4123360467f524fb7b
/Team-Notes/Python-Competitive-Programming-Team-Notes/Number Theory/is_prime_number.py
d7547f3caf17e834eb73568817631687fb352b02
[]
no_license
KOYOEN/Coding-Test
82ae0f5cfe6fb02b9b8ab4322e94c554fb64cda4
6080cfae3d7c317b9ae0c5d097046431b857954f
refs/heads/master
2022-12-28T19:28:07.070033
2020-10-08T04:28:27
2020-10-08T04:28:27
298,543,539
0
0
null
null
null
null
UTF-8
Python
false
false
867
py
import math # 소수 판별 함수(에라토스테네스의 체) def is_prime_number(n): # 2부터 n까지의 모든 수에 대하여 소수 판별 array = [True for i in range(n+1)] # 처음엔 모든 수가 소수(True)인 것으로 초기화(0과 1은 제외) # 에라토스테네스의 체 for i in range(2, int(math.sqrt(n)) + 1): #2부터 n의 제곱근까지의 모든 수를 확인하며 if array[i] == True: # i가 소수인 경우(남은 수인 경우) # i를 제외한 i의 모든 배수를 지우기 j = 2 while i * j <= n: array[i * j] = False j += 1 return [ i for i in range(2, n+1) if array[i] ] # N이 1,000,000 이내로 주어지는 경우 활용할 것 => 이론상 400만번 정도 연산이고 메모리도 충분함 print(is_prime_number(26))
[ "happy2473@me.com" ]
happy2473@me.com
3e351c8c1dc090583cc67990266dda903cd032c1
bf2608e054216fdacfd81ace22080b85b373d08d
/lib/python/usdNodeGraph/ui/graph/pipe.py
4f3e46bddb8fee82a2787221ffb305947313909c
[]
no_license
yoann01/usdNodeGraph
89d31dcf6d25ad9da557ee035483ac6e4972361f
30909589bc546d24e55b8eeed4a61b17bef65d97
refs/heads/master
2020-09-08T09:35:20.244013
2019-09-26T15:42:23
2019-09-26T15:42:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,724
py
# -*- coding: utf-8 -*- # __author__ = 'XingHuan' # 8/29/2018 from usdNodeGraph.module.sqt import * import math PIPE_NORMAL_COLOR = QColor(130, 130, 130) PIPE_HIGHTLIGHT_COLOR = QColor(250, 250, 100) class Pipe(QGraphicsPathItem): """A connection between two versions""" def __init__(self, orientation=0, **kwargs): super(Pipe, self).__init__(**kwargs) self.setFlag(QGraphicsItem.ItemIsSelectable, False) self.setAcceptHoverEvents(True) self.lineColor = PIPE_NORMAL_COLOR self.thickness = 1.5 self.pointAtLength = 7 self.orientation = orientation self.source = None self.target = None self.isFloat = False self.foundPort = None self.curv1 = 0.5 self.curv3 = 0.5 self.curv2 = 0.0 self.curv4 = 1.0 def setLineColor(self, highlight=False, color=None): if color is not None: self.lineColor = color return if highlight: self.lineColor = PIPE_HIGHTLIGHT_COLOR else: self.lineColor = PIPE_NORMAL_COLOR def updatePath(self, sourcePos=None, targetPos=None): orientation = self.orientation if self.source: sourcePos = self.source.mapToScene(self.source.boundingRect().center()) if self.target: targetPos = self.target.mapToScene(self.target.boundingRect().center()) path = QPainterPath() path.moveTo(sourcePos) dx = targetPos.x() - sourcePos.x() dy = targetPos.y() - sourcePos.y() if orientation in [1, 3]: if (dx < 0 and orientation == 1) or (dx >= 0 and orientation == 3): self.curv1 = -0.5 self.curv3 = 1.5 self.curv2 = 0.2 self.curv4 = 0.8 else: self.curv1 = 0.5 self.curv3 = 0.5 self.curv2 = 0.0 self.curv4 = 1.0 elif orientation in [0, 2]: if (dy < 0 and orientation == 0) or (dy >= 0 and orientation == 2): self.curv1 = 0.2 self.curv3 = 0.8 self.curv2 = -0.5 self.curv4 = 1.5 else: self.curv1 = 0.0 self.curv3 = 1.0 self.curv2 = 0.5 self.curv4 = 0.5 ctrl1 = QPointF( sourcePos.x() + dx * self.curv1, sourcePos.y() + dy * self.curv2) ctrl2 = QPointF( sourcePos.x() + dx * self.curv3, sourcePos.y() + dy * self.curv4) path.cubicTo(ctrl1, ctrl2, targetPos) self.setPath(path) def breakConnection(self): if self.source is not None: self.source.removePipe(self) if self.target is not None: self.target.removePipe(self) def paint(self, painter, option, widget): zoom = self.scene().views()[0].currentZoom thickness = self.thickness / math.sqrt(zoom) pointAtLength = self.pointAtLength / math.sqrt(zoom) if self.isSelected(): pen = QPen(PIPE_HIGHTLIGHT_COLOR, thickness) else: pen = QPen(self.lineColor, thickness) self.setPen(pen) self.setZValue(-1) super(Pipe, self).paint(painter, option, widget) center_pos = self.path().pointAtPercent(0.5) center_angle = self.path().angleAtPercent(0.5) painter.setPen(pen) painter.translate(center_pos) painter.rotate(180 - (center_angle + 30)) painter.drawLine(QPointF(0, 0), QPointF(pointAtLength, 0)) painter.rotate(60) painter.drawLine(QPointF(0, 0), QPointF(pointAtLength, 0)) def _getDistance(self, currentPos): sourcePos = self.path().pointAtPercent(0) targetPos = self.path().pointAtPercent(1) dis1 = math.hypot(sourcePos.x() - currentPos.x(), sourcePos.y() - currentPos.y()) dis2 = math.hypot(targetPos.x() - currentPos.x(), targetPos.y() - currentPos.y()) minDis = 30 if dis1 < minDis: return True, self.source if dis2 < minDis: return True, self.target return False, None def hoverEnterEvent(self, event): currentPos = event.pos() aroundPort, port = self._getDistance(currentPos) if aroundPort: self.setLineColor(True) self.update() def hoverLeaveEvent(self, event): self.setLineColor(False) self.update() def mousePressEvent(self, event): if event.button() == Qt.LeftButton: currentPos = event.pos() self.startPos = currentPos aroundPort, port = self._getDistance(currentPos) if aroundPort: port.removePipe(self) if port == self.source: self.source = None if port == self.target: self.target = None self.isFloat = True else: super(Pipe, self).mousePressEvent(event) def mouseMoveEvent(self, event): super(Pipe, self).mouseMoveEvent(event) from usdNodeGraph.ui.graph.node.port import Port currentPos = event.pos() if self.isFloat: if self.source is not None: self.updatePath(targetPos=currentPos) elif self.target is not None: self.updatePath(sourcePos=currentPos) findPort = self.scene().itemAt(currentPos, QTransform()) if findPort is not None and isinstance(findPort, Port): self.foundPort = findPort self.foundPort.setHighlight(True) else: if self.foundPort is not None: self.foundPort.setHighlight(False) self.foundPort = None def mouseReleaseEvent(self, event): super(Pipe, self).mouseReleaseEvent(event) if self.isFloat: from .node.port import Port, InputPort, OutputPort scenePos = event.pos() findPort = self.scene().itemAt(scenePos, QTransform()) if findPort is not None and isinstance(findPort, Port): if (isinstance(findPort, InputPort) and self.source is not None): self.source.connectTo(findPort) elif (isinstance(findPort, OutputPort) and self.target is not None): self.target.connectTo(findPort) self.breakConnection() self.scene().removeItem(self) self.isFloat = False if self.foundPort is not None: self.foundPort.setHighlight(False) self.foundPort = None
[ "xinghuan951230@gmail.com" ]
xinghuan951230@gmail.com
f8072d166c27ede45c6eea1cc9f07f9f1b317f63
3ec8a082b67f01ec09e0fc70d13551dc8785c935
/src/Network.py
edecac642235a0f5120c0ec227e66adef4baa76d
[]
no_license
SiWALLE/ML-Exercises
efbddd0794c67bd429c5620a0c362c1b9cbc6c89
ea316b56ce06000882eefeb6c12fd69bbca3b531
refs/heads/master
2021-01-10T15:45:13.825332
2015-11-23T11:56:18
2015-11-23T11:56:18
43,604,271
0
0
null
null
null
null
UTF-8
Python
false
false
3,106
py
import numpy as np import random class Network(object): def __init__(self,sizes): self.num_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y,1) for y in sizes[1:]] self.weights = [np.random.randn(y,x) for x,y in zip(sizes[:-1],sizes[1:])] def feedforward(self,a): """ return the ouput of a network if "a" is input""" for b,w in zip(self.biases,self.weights): a = sigmoid(np.dot(w,a)+b) return a def SGD(self,training_data,epoches,mini_batch_size,eta, test_data=None): if test_data:n_test = len(test_data) n = len(training_data) for j in xrange(epoches): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in xrange(0,n,mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch,eta) if(test_data): print "Epoch {0}:{1}/{2}".format( j, self.evaluate(test_data),n_test) else: print "Epoch {0} complete".format(j) def update_mini_batch(self,mini_batch,eta): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.wights] for x,y in mini_batch: delta_nabla_b,delta_nabla_w = self.backprop(x,y) nabla_b = [nb+dnb for nb,dnb in zip(nabla_b,delta_nabla_b)] nabla_w = [nw+dnw for nw,dnw in zip(nabla_w,delta_nabla_w)] self.weights = [w-(eta/len(mini_batch))*nw for w,nw in zip(self.weights,nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b,nb in zip(self.biases,self.nabla_b)] def backprop(self,x,y): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] activation = x activations = [x] zs = [] for b,w in zip(self.biases,self.weights): z = np.dot(w,activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) delta = self.cost_derivative(activation[-1],y)*\ sigmoid_prime(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta,activations[-2].transpose()) for l in xrange(2,self.num_layers): z = zs[-1] sp = sigmoid_prime(z) delta = np.dot(self.weights[-l+1].transpose(),delta)*sp nabla_b[-1] = delta nabla_w[-1] = np.dot(delta,activation[-l-1].transpose()) return (nabla_b,nabla_w) def evaluate(self,test_data): test_results = [(np.argmax(self.feedforward(x)),y) for x,y in test_data] return sum(int(x==y) for (x,y) in test_results) def cost_derivative(self,output_activations,y): return (output_activations-y) def sigmoid(z): return 1.0/(1.0+np.exp(-z)) def sigmoid_prime(z): temp = sigmoid(z) return temp*(1-temp)
[ "liangsibiao@live.com" ]
liangsibiao@live.com
1d0f1708b2047d74b522e65d8dec492d48924d31
b01fa826686cd72a1d132e9c719c3341a104e837
/backend/vacancies/urls.py
9a41152607890096d8b98d94c6b3af765254d9e6
[]
no_license
V-ampire/kmsjob
d52a265eb79c778098294778d8d1730e05ef1b05
6c73f296cb74090c165dfee102ea99d46f299038
refs/heads/master
2023-08-10T19:57:42.693168
2021-09-29T11:24:17
2021-09-29T11:24:17
372,736,939
1
0
null
null
null
null
UTF-8
Python
false
false
365
py
from django.urls import path from . import views app_name = 'vacancies' urlpatterns = [ path('', views.IndexView.as_view(), name='index'), path('by_date/', views.ByDateView.as_view(), name='by_date'), path('search/', views.SearchView.as_view(), name='search'), path('detail/<int:pk>/', views.VacancyDetailView.as_view(), name='vacancy_detail'), ]
[ "webjob010@gmail.com" ]
webjob010@gmail.com
8d9ed80c405b51c9ccd69aa03cda41513299e041
2bca0f3f0eb3d0560cf5953a1bcc6bfb4f1e8262
/python_test.py
7c16d4fd6d0e9d6f991ed8f53af9d22c21b7f837
[]
no_license
apdjustino/UrbanSimDataExplorer
2254f1bd437e92695948409ebfd518ba2d314768
f5fdd4848d2efc5350ef19c1cc428808fb6555fa
refs/heads/master
2021-01-24T20:40:20.156171
2018-01-10T15:56:37
2018-01-10T15:56:37
51,838,158
1
1
null
null
null
null
UTF-8
Python
false
false
78
py
import datetime print "Current time is: {0}".format(datetime.datetime.now())
[ "justinmartinez14@gmail.com" ]
justinmartinez14@gmail.com
ce8c9ecc1ead17d79aae5400b88c34aa2d8b7af9
9a78e2a176f93fce034b16d67dd47ed80e875dfa
/diploma/settings.py
d5b620694ca73d45ea871d164e8ca7c2d1fff431
[]
no_license
sinchuk140995/courseon
f431a4071321b7a7e7d9315ad508e0feddd1204a
0e955db4f35cc6cdbde6b919095dd5885e45094c
refs/heads/master
2021-06-18T11:32:26.261228
2017-06-10T12:26:24
2017-06-10T12:26:24
94,334,435
0
0
null
null
null
null
UTF-8
Python
false
false
4,071
py
""" Django settings for diploma project. Generated by 'django-admin startproject' using Django 1.11.1. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import dj_database_url from decouple import config import cloudinary # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', default=False, cast=bool) ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # third party stuff 'pagedown', 'crispy_forms', 'cloudinary', # local app 'accounts', 'cabinets', 'comments', 'moderator', 'blog', ] # Cloudinary cloudinary.config( cloud_name=config('cloud_name'), api_key=config('api_key'), api_secret=config('api_secret'), ) CRISPY_TEMPLATE_PACK = 'bootstrap3' MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'diploma.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'diploma.wsgi.application' DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage' # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Kiev' USE_I18N = True USE_L10N = True USE_TZ = True PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') STATIC_URL = '/static/' # Extra places for collectstatic to find static files. STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, 'static'), ) LOGIN_REDIRECT_URL = '/' LOGIN_URL = '/login/' EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 EMAIL_HOST_USER = config('email') EMAIL_HOST_PASSWORD = config('email_password') DEFAULT_FROM_EMAIL = EMAIL_HOST_USER SERVER_EMAIL = EMAIL_HOST_USER
[ "sinchuk140995@gmail.com" ]
sinchuk140995@gmail.com
6d448fccf0934c608839d970b48032d28903b3bb
a6b543cd11b2d5e66a87c7240b80050b34616aef
/code-implementation/dstree_random_forest.py
04e383c0f82a77d7e84864129767f516606a9d09
[ "MIT" ]
permissive
GamjaPower/kaggle
e7814de293d5eee58653eccf1700fd6033548726
8ebedc73769c3c04d9c80f9e8877a10164c9c5e8
refs/heads/master
2020-03-30T05:56:26.882863
2018-09-29T09:13:57
2018-09-29T09:13:57
150,828,879
0
0
null
null
null
null
UTF-8
Python
false
false
5,176
py
# -*- coding: utf-8 -*- ''' Created on 2018. 9. 24. @author: jason96 Apply Gini Impurity ''' import pandas as pd from graphviz import Digraph import os import operator import numpy as np raw_data = { 'name': ["Kang", "Kim", "Choi", "Park", "Yoon"], '짱절미': [True, False, False, False, False], '셀스타그램': [False, False, True, False, False], 'like': [True, False, True, True, False] } pd_data = pd.DataFrame(raw_data) pd_data = pd_data.set_index("name") label_name = "like" feature_names = pd_data.columns.difference([label_name]) def display_node(dot, key, node): if node["leaf"] is True: proba = node['proba'] proba = round(proba, 4) proba = str(proba) dot.node(key, proba) else: desc = node['desc'] dot.node(key, desc) if "left" in node: left_key = key + "L" display_node(dot, left_key, node['left']) dot.edge(key, left_key) if "right" in node: right_key = key + "R" display_node(dot, right_key, node['right']) dot.edge(key, right_key) dot.render('graphviz-files/dstree.gv', view=True) def display_tree(tree): dot = Digraph(comment='Decision Tree') display_node(dot, "Root", tree) def predict(data, node): if node['leaf']: proba = node["proba"] result = dict(zip(data.index, len(data) * [proba])) else: rule = node['rule'] left_data = data[rule(data)] left_result = predict(left_data, node['left']) right_data = data[~rule(data)] right_result = predict(right_data, node['right']) return {**left_result, **right_result} return result def binary_rule(data, feature_name, value): return data[feature_name] == value def make_rule(method, feature_name, value): def call_condition(data): return method(data, feature_name, value) return call_condition def make_rules(feature_names): rules = {} feature_names = list(feature_names) for feature_name in feature_names: rules[feature_name] = make_rule(binary_rule, feature_name, True) return rules def get_best_rule(data, rules): gini_indexes = {} for feature_name, rule in rules.items(): true_data = data[rule(data)] true_proba = true_data[label_name].mean() false_proba = 1 - true_proba gini_index = true_proba*(1-false_proba) - false_proba*(1-true_proba) gini_indexes[feature_name] = gini_index sorted_x = sorted(gini_indexes.items(), key=operator.itemgetter(1)) for k, v in sorted_x: # @UnusedVariable return k, rules[k] def make_node(data, rules): if len(rules) > 0: feature_name, rule = get_best_rule(data, rules) left_data = data[rule(data)] right_data = data[~rule(data)] if len(left_data) > 0 and len(right_data) > 0: del rules[feature_name] node = {'leaf': False, 'desc': feature_name, 'rule': rule} node['left'] = make_tree(left_data, rules.copy()) node['right'] = make_tree(right_data, rules.copy()) return node proba = data[label_name].mean() node = {'leaf': True, 'proba': proba} return node def make_tree(data, feature_names): rules = make_rules(feature_names) return make_node(data, rules) def display_predict(predict): for k, v in predict.items(): print(k, v) def bootstrap(data, feature_names, label_name): feature_data = data[feature_names] num_rows, num_cols = feature_data.shape index = np.random.choice(feature_data.index, size=num_rows, replace=True) if max_feature == None: # @IgnorePep8 num_cols = np.sqrt(num_cols) else: num_cols = num_cols * max_feature num_cols = int(num_cols) columns = np.random.choice(feature_data.columns, size=num_cols, replace=False) # If index and columns are specified, # a new table is created based on the values. result = feature_data.loc[index, columns] result[label_name] = data[label_name] return result def make_forest(data): forest = [] for _ in range(n_estimators): bootstrapped_data = bootstrap(data, feature_names, label_name) bs_feature_names = bootstrapped_data.columns.difference([label_name]) tree = make_tree(bootstrapped_data, bs_feature_names) forest.append(tree) return forest def predict_forest(data, forest): prediction_total = [] for tree in forest: prediction = predict(data, tree) prediction = pd.Series(prediction) prediction_total.append(prediction) prediction_total = pd.concat(prediction_total, axis=1, sort=False) prediction_total = prediction_total.mean(axis=1) return prediction_total if __name__ == '__main__': max_feature = None n_estimators = 10 os.environ["PATH"] += os.pathsep + '/usr/local/bin' forest = make_forest(pd_data) display_predict(predict_forest(pd_data, forest)) # tree = make_tree(pd_data, rules) # display_tree(tree) # display_predict(predict(pd_data, tree))
[ "jason96@localhost" ]
jason96@localhost
7dbdef860fb395b2ba8fcbbcdc96fb4cfb5f506f
c742b2449118a93dbd3dc02bd4c2c0f64aada70d
/config/urls.py
28f590cbf43e5437ca9e146844c888203f13795a
[]
no_license
XerxesDGreat/lego-django
28cf927a5d887a60df0744bb8f545a938b99581c
413bd783e4591b1659b369f539214d546fcfefbd
refs/heads/master
2022-12-09T19:22:02.409304
2018-07-28T14:50:29
2018-07-28T14:50:29
134,971,037
0
0
null
2022-12-08T02:17:43
2018-05-26T15:03:52
Python
UTF-8
Python
false
false
798
py
"""lego URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('project.api.urls')), ]
[ "josh@life360.com" ]
josh@life360.com
f28354d557aa4187afb4bed39f29e95ef56adc1a
bbe62b72f111dbff6d4640b4466e6fc9f750ee06
/Ryker.py
c32dae111b1de922bd51eb0c94b15341d09f62a3
[]
no_license
Get2dacode/python_projects
210f54e8f9af394d82d4423c474e4d2e46d28270
e3e54d0d403486eabefbda4ec3e7eb997fd4e984
refs/heads/main
2023-09-01T02:14:43.762971
2021-10-04T14:38:36
2021-10-04T14:38:36
411,525,952
0
0
null
null
null
null
UTF-8
Python
false
false
3,467
py
from gtts import gTTS import speech_recognition as sr import os import re import webbrowser import smtplib import json import datetime import wikipedia def talkToMe(audio): "speaks audio passed as argument" print(audio) for line in audio.splitlines(): os.system("say " + audio) # use the system's inbuilt say command instead of mpg123 # text_to_speech = gTTS(text=audio, lang='en') # text_to_speech.save('audio.mp3') # os.system('mpg123 audio.mp3') def ok(): talkToMe('ok here we go') def myCommand(): "listens for commands" r = sr.Recognizer() with sr.Microphone() as source: print('Ready...') r.pause_threshold = 1 r.adjust_for_ambient_noise(source, duration=1) audio = r.listen(source) try: command = r.recognize_google(audio).lower() print('You said: ' + command + '\n') # loop back to continue to listen for commands if unrecognizable speech is received except sr.UnknownValueError: print('Your last command couldn\'t be heard') command = myCommand() return command def time(): hour = int(datetime.datetime.now().hour) if hour >= 0 and hour < 12: talkToMe("Good Morning Sir !") elif hour >= 12 and hour < 18: talkToMe("Good Afternoon Sir !") else: talkToMe("Good Evening Sir !") def nameMe(): talkToMe("I am your Assistant") assname = "Ryker" talkToMe(assname) def assistant(command): "if statements for executing commands" if 'song' in command: reg_ex = re.search('what is (.*)', command) url = 'https://www.youtube.com/watch?v=dQw4w9WgXcQ' if reg_ex: subreddit = reg_ex.group(1) url = url + 'r/' + subreddit ok() webbrowser.open(url) print('Done!') elif 'open website' in command: reg_ex = re.search('open website (.+)', command) if reg_ex: domain = reg_ex.group(1) url = 'https://www.' + domain + '.com' ok() webbrowser.open(url) print('Done!') else: pass elif "what's up" in command: talkToMe('what it do baby') talkToMe('what can i help you with ') elif 'search' in command: talkToMe('Searching Wikipedia...') results = wikipedia.summary(command, sentences=1) talkToMe("According to Wikipedia") print(results) talkToMe(results) elif 'joke' in command: talkToMe('ok') res = requests.get( 'https://icanhazdadjoke.com/', headers={"Accept": "application/json"} ) if res.status_code == requests.codes.ok: talkToMe(str(res.json()['joke'])) else: talkToMe('oops!I ran out of jokes') elif "where is" in command: reg_ex = re.search('where is (.*)', command) location = reg_ex.group(1) ok() webbrowser.open( 'https://www.google.com/maps/place/' + location + "") elif 'the time' in command: time = datetime.datetime.now().strftime("%I,%M,%p") talkToMe("the time is") talkToMe(time) elif 'close up' in command: talkToMe("Ok make sure to shut down your computer") exit() time() nameMe() talkToMe('I am ready for your command') # loop to continue executing multiple commands while True: assistant(myCommand())
[ "noreply@github.com" ]
Get2dacode.noreply@github.com
5d72ac65b8e839c4bc6c03dba165452e798e2782
033f74cb79f13ac11fdd350988ade17d9a574512
/pages/urls.py
b548e1bb25545969789f2e0e907aecaafd97c33b
[]
no_license
LevitKanner/LK
0c8f9371c02cf9b505b4c410133fff9351dae87d
06299b4cf9254b02c248a402463151eda6e987af
refs/heads/master
2023-01-30T18:54:24.429389
2020-12-15T16:57:19
2020-12-15T16:57:19
320,998,763
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
from django.urls import path from . import views app_name = 'pages' urlpatterns = [ path('contact', views.contact, name='contact'), path('<str:page_name>', views.index, name='index'), path('', views.index, {'page_name': ''}, name='home') ]
[ "lkanner21@gmail.com" ]
lkanner21@gmail.com
ff232665d973cfa366f41832e709d9e67bf27184
8666bba3cef8dabf3fbe129eb7f32c46f4715c35
/src/db/MainLandMarket/GetStockHistory_wind.py
a670f2053c031b7895fce66c841936e097e60994
[]
no_license
Wangxian111/nsnqt
0c357130f9923097b03eb43eaf1317d044027fc7
b1536d857be526501578a7c7da6137e0a51c9cf0
refs/heads/master
2020-05-23T08:18:51.809583
2016-10-07T06:55:30
2016-10-07T06:55:30
70,222,925
0
0
null
2016-10-07T07:00:58
2016-10-07T07:00:57
null
UTF-8
Python
false
false
1,391
py
from WindPy import * from datetime import * par_list = "pre_close","open","high","low","close","volume","amt","dealnum" #full value set #w.wsd("600518.SH", "pre_close,open,high,low,close,volume,amt,dealnum,chg,pct_chg,swing,vwap,adjfactor,close2,turn,free_turn,oi,oi_chg,trade_status,susp_reason,mf_amt,mf_vol,mf_amt_ratio,mf_vol_ratio,mf_amt_close,mf_amt_open,ev,pe_ttm,val_pe_deducted_ttm,pb_lf,ps_ttm", "2009-03-19", "2016-09-24", "adjDate=0") #only update key values for demo only #win_data=w.wsd(stock_name, "pre_close,open,high,low,close,volume,amt,dealnum", "2009-03-19", datetime.today(), "adjDate=0") def get_par_string(): par_string = par_list[0] if len(par_list)<2: return par_string for i in range(len(par_list)-1): par_string = par_string+","+ par_list[i+1] return par_string def get_history_data(stock_code,start_day,end_day=datetime.today()): print ("start to query data from wind") par_string = get_par_string() print(par_string) wind_data = w.wsd(stock_code, par_string, start_day, end_day, "adjDate=0") print("Data query finished, %d record be found" %len(wind_data.Data[0])) return wind_data def connect_to_wind(): w.start() print("wind connection is:", end="") print(w.isconnected()) def disconnect_to_wind(): #w.disconnect() print("wind connection has been closed")
[ "harry0519@gmail.com" ]
harry0519@gmail.com
cd6ec6391a155ab9683f22c18d3cb4dcde470e84
aab2ad13d6023544fbe546d8ca90bb28259a6fc1
/image_rc.py
8f670933f38a45cfdfee90bb8a9b0eebbe0b71de
[]
no_license
HanzoZY/DBCD
c141384ac85226f5dfbe16cdbe478251d5bfc3ee
c3818bb6738f64d3a6a1ccdbc40124b05307a200
refs/heads/master
2020-03-28T20:55:59.939875
2018-09-17T11:32:09
2018-09-17T11:36:53
149,114,828
1
0
null
null
null
null
UTF-8
Python
false
false
198
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'image_rc.qrc' # # Created by: PyQt5 UI code generator 5.10.1 # # WARNING! All changes made in this file will be lost!
[ "zhangyuhan@zyhdeMacBook-Pro.local" ]
zhangyuhan@zyhdeMacBook-Pro.local
3d456ff2fdf7f69d9519317f0a9a47b44322d273
f4b75e06e456dbd065dc57f07d55a2f5ec4ad688
/openstates/data/migrations/0012_person_current_role.py
d9e866c1e3a313f007b32336097bd875c571590a
[ "MIT" ]
permissive
openstates/openstates-core
19bf927a2e72c8808a5601f4454846acaf32218a
3055632ea7ddab6432cc009989ffb437aed6e530
refs/heads/main
2023-09-05T10:30:58.866474
2023-09-01T15:43:59
2023-09-01T15:43:59
251,511,904
19
27
MIT
2023-09-06T19:30:03
2020-03-31T05:47:28
Python
UTF-8
Python
false
false
477
py
# Generated by Django 3.0.5 on 2020-08-04 15:24 import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [("data", "0011_auto_20200804_1108")] operations = [ migrations.AddField( model_name="person", name="current_role", field=django.contrib.postgres.fields.jsonb.JSONField( default=None, null=True ), ) ]
[ "dev@jamesturk.net" ]
dev@jamesturk.net
a3a06aca09ad8ed5aa53a1d92bd793ea85813cff
fb8bc02a724a3cb907920f4bff8d26b27b42683f
/Day 4/My_Package/setup.py
59d31a59cfd3aec65a8fd6b7cc3576aa05384883
[]
no_license
timelyanswer/python-hafb_KHK
24c507f71d7381194e573ece6b7892de7921fe86
5f0e9d306eea28aa0886071c5e1bead44ede8025
refs/heads/main
2023-07-08T02:16:39.793601
2021-08-12T22:12:09
2021-08-12T22:12:09
394,317,069
0
0
null
null
null
null
UTF-8
Python
false
false
664
py
#!/usr/bin/env python3 """ Author : t11 <me@wsu.com> Date : 8/12/2021 Purpose: """ from distutils.core import setup setup( name='class_decorator', version='0.1', py_modules=['my_class_decorator'], # need my_xxx so it does not confuse with the other #Metadata author='Waldo Weber', author_email='waldo@weber.edu', description='A module that shows how to use Class Decorators', license='Public domain', keywords='decorators', ) # -------------------------------------------------- def main(): """Make your noise here""" # -------------------------------------------------- if __name__ == '__main__': main()
[ "kimjeong@hotmail.com" ]
kimjeong@hotmail.com
67feadc4b9b3d489f7627d697e4e124f5a290f02
2869a088aa01d8ca6349f855d882630ff1431a7b
/PythonBasics/Chapter9/chapter9.py
6af27ec025a3bd33981637074e7cb29311d1db5f
[]
no_license
hectordelahoz/PythonExercises
56b2081da1db85d916aafc7b046b94245892bf38
d21a704a76a7e7f2ecac6a774ef74f3595cc2d2c
refs/heads/master
2022-09-24T08:51:12.402383
2022-08-30T00:56:54
2022-08-30T00:56:54
235,253,926
0
0
null
2022-08-30T00:56:55
2020-01-21T04:13:12
Python
UTF-8
Python
false
false
2,188
py
class Person: def __init__(self, **kwargs): self.__myName = kwargs['name'] if 'name' in kwargs else 'John' self.__myAge = kwargs['age'] if 'age' in kwargs else '21' self.__myNationality = kwargs['nationality'] if 'nationality' in kwargs else 'American' def name(self,myName = None): if myName: self.__myName = myName return self.__myName def age(self, myAge = None): if myAge: self.__myAge = myAge return self.__myAge def nationality(self, myNationaltiy = None): if myNationaltiy: self.__myNationality = myNationaltiy return self.__myNationality def __str__(self): return f'My Name is {self.name()}, I am {self.nationality()}, I am {str(self.age())} years old!' class GeEmployee(Person): def __init__(self, **kwargs): self.__myCompany = 'GE' self.__mySSO = kwargs['sso'] if 'sso' in kwargs else 'TBD' super().__init__(**kwargs) def sso(self, mySSO = None): if mySSO: self.__mySSO = mySSO return self.__mySSO def __str__(self): return f'{super().__str__()} and I am a GE Employee {self.sso()}' def addPerson(p,reg): if not isinstance(p,Person): print('it is not a Person') return False reg.append(p) return True def generateRegister(reg): allData = [] for person in reg: allData.append({'Name':person.name(),'Age':person.age(),'Nationality':person.nationality()}) else: return allData def printRegister(reg): for entry in reg: for key in entry.keys(): print(f'{key}: {entry[key]}', end=' ; ', flush=True) else: print() def main(): hector = Person(name='Hector', age=35, nationality='Colombian') john = Person() luis = GeEmployee(name = 'Luis', age = '32', nationality='Brazilian', sso='212518053') register = [] addPerson(hector,register) addPerson(john,register) addPerson(luis,register) entries = generateRegister(register) printRegister(entries) print(luis) if __name__ == '__main__': main()
[ "212518053@ge.com" ]
212518053@ge.com
e6310bc1faa76aed5031790a2ab7dd92ca71f610
c50ca4ccf0fba21386368a18b5db3bb13544a9ec
/todo/models.py
9b4b45d740194da4464b7dd3de81fe3ba91e6bc8
[]
no_license
Nairmangit/django
380e578a192791e9775952ad242d40e767bb1763
2d52f10bce52ea9043a434e21ebdd7d1dc2974d1
refs/heads/master
2020-09-21T00:20:21.882923
2019-12-03T09:57:52
2019-12-03T09:57:52
224,626,808
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
from django.db import models class Todo(models.Model): text = models.CharField(max_length=30) complete = models.BooleanField(default=False) def __str__(self): return self.text
[ "pavelshuralyov@yandex.ru" ]
pavelshuralyov@yandex.ru
9856f239043013457366bdb2394c01a64ad38b85
564642b3ba5ec3a240f816f3dac7f8f95aa7520e
/classification/lossfun.py
e92d09f561657ef89001666381916e2403fd3512
[]
no_license
JinZT-Git/HS-Codes
933f7c097b7e0111561c43336cd84486484267dc
a3705b4db5323502a20d3e4cb363d57e6946e713
refs/heads/main
2023-08-23T17:12:20.277977
2021-10-15T12:05:32
2021-10-15T12:05:32
417,377,870
0
0
null
null
null
null
UTF-8
Python
false
false
1,732
py
import torch import os import torch.nn.functional as F from config import Config as cfg class_weight = cfg.class_weight os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpu_device def cross_entropy_loss(preds, target, reduction): logp = F.log_softmax(preds, dim=1) loss = torch.sum(-logp * target, dim=1) if reduction == 'none': return loss elif reduction == 'mean': return loss.mean() elif reduction == 'sum': return loss.sum() else: raise ValueError( '`reduction` must be one of \'none\', \'mean\', or \'sum\'.') def onehot_encoding(labels, n_classes): return torch.zeros(labels.size(0), n_classes).to(labels.device).scatter_( dim=1, index=labels.view(-1, 1), value=1) def label_smoothing(preds, targets, epsilon=0.1): # preds为网络最后一层输出的logits # targets为未one-hot的真实标签 n_classes = preds.size(1) device = preds.device onehot = onehot_encoding(targets, n_classes).float().to(device) targets = onehot * (1 - epsilon) + torch.ones_like(onehot).to( device) * epsilon / n_classes loss = cross_entropy_loss(preds, targets, reduction="mean") return loss class ContrastiveLoss(torch.nn.Module): def __init__(self, margin=2.0): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output, label): criterion = [] for i in range(8): w = torch.FloatTensor(class_weight[i]).cuda() criterion.append(torch.nn.CrossEntropyLoss(weight=w)) loss = 0 for _ in (0, len(output)): for i in range(0, 8): loss += criterion[i](output[i], label[i]) return loss
[ "915681919@qq.com" ]
915681919@qq.com
c9db921904acd0462c0ff0fb4a4c844a1efe7c31
4b9fb3080a86e036536471a6c10697ee375be6b9
/image_handlers/split_image_text.py
72b9f7b9477f1fa825a71d3caf38a61dc64edfae
[]
no_license
Lai-smile/decompress_extract_file
f2a4ec5582cd7d7490eb4e26f621bcfada9262e7
eb736bc138727240a45e7e88696023549029990c
refs/heads/master
2022-05-30T03:30:58.465864
2020-05-01T03:33:10
2020-05-01T03:33:10
260,361,821
0
0
null
null
null
null
UTF-8
Python
false
false
4,895
py
# Created by lixingxing at 2018/11/14 """ Feature: #Enter feature name here # Enter feature description here Scenario: #Enter scenario name here # Enter steps here Test File LocationL: # Enter """ import os import time import cv2 import numpy as np from constants import path_manager from image_handlers.image_utilities import get_iso_content_highlight, tencent_ocr, my_ocr def pre_process(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) sobel = cv2.Sobel(gray_img, cv2.CV_8U, 1, 0, ksize=7) # 1,0 x方向求梯度, 0,1 y方向求梯度 ret, binary = cv2.threshold(sobel, 0, 255, cv2.THRESH_BINARY) # cv2.THRESH_OTSU + element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (24, 6)) element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 15)) # 15 element3 = cv2.getStructuringElement(cv2.MORPH_RECT, (40, 10)) dilation = cv2.dilate(binary, element1, iterations=1) erosion = cv2.erode(dilation, element2, iterations=1) dilation2 = cv2.dilate(erosion, element3, iterations=2) # cv2.imwrite("binary.png", binary) # cv2.imwrite("dilation.png", dilation) # cv2.imwrite("erosion.png", erosion) # cv2.imwrite("dilation2.png", dilation2) return dilation2 def find_text_region(img): region = [] img, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for i in range(len(contours)): cnt = contours[i] area = cv2.contourArea(cnt) if area < 3000: continue rect = cv2.minAreaRect(cnt) # print("rect is: ", rect) box = cv2.boxPoints(rect) box = np.int0(box) # point = box.tolist() # min_point = min(point) # max_point = max(point) # print(min_point, max_point) region.append(box) return region def text_ocr(region, o_img): text_dicts_group = [] iso_table_dict = {} box_num = 0 img_c = o_img.copy() for box in region: box_num += 1 point = box.tolist() min_point = min(point) max_point = max(point) max_y = max(max_point[0], min_point[0]) max_x = max(max_point[1], min_point[1]) min_y = min(max_point[0], min_point[0]) min_x = min(max_point[1], min_point[1]) represent_point = min_point[:] width = max_point[0] - min_point[0] height = max_point[1] - min_point[1] represent_point.append(width) represent_point.append(height) # print(o_img.shape) # print(min_point, max_point) text_region = o_img[min_x:max_x, min_y:max_y] cv2.drawContours(img_c, [box], 0, (0, 255, 0), 2) # cv2.imwrite('text_region_RAM.png', text_region) # iso_table_dict = tencent_ocr('text_region_RAM.png', blank, 10, [0, 0]) text = my_ocr(text_region, blank, represent_point, 10) if text: iso_table_dict[tuple(represent_point)] = text text_dicts_group.append(iso_table_dict) # cv2.imwrite('contours.png', img_c) return text_dicts_group def pure_text_region(no_table_image, background_color, blank_image): global blank # img = cv2.imread(no_table_image) blank = blank_image max_x, max_y, dim = no_table_image.shape max_area = max_x * max_y # print(img.shape) gray_img = cv2.cvtColor(no_table_image, cv2.COLOR_BGR2GRAY) res, binary_img = cv2.threshold(gray_img, 45, 255, cv2.THRESH_BINARY_INV) # canny_img = cv2.Canny(img, 50, 150) # dilate_kernel = cv2.getStructuringElement(cv2.MORPH_OPEN, (3, 3)) # dilate_image = cv2.dilate(canny_img, dilate_kernel, iterations=1) b_img, contours, h = cv2.findContours(binary_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # cv2.drawContours(no_table_image, contours, -1, (0, 255, 0), thickness=4) for contour_num in range(len(contours)): contour = contours[contour_num] area = cv2.contourArea(contour) if 3000 < area < 2*max_area/3: cv2.drawContours(no_table_image, contours, contour_num, background_color, thickness=-1) # cv2.imwrite('test_text.png', no_table_image) dilation = pre_process(no_table_image) region = find_text_region(dilation) if region: dict_group = text_ocr(region, no_table_image) return dict_group else: return [] if __name__ == '__main__': # input_file = 'pure_table.png' input_file = os.path.join(path_manager.root, path_manager.IMAGE_TEXT_DATA_PATH, 'su_4.png') start_time = time.time() img = cv2.imread(input_file) print(img.shape) blank = np.zeros(list(img.shape), img.dtype) dict = pure_text_region(img, (0, 0, 0), blank) print('time spend is: {}'.format(time.time() - start_time)) print(dict) # print(len(dict[0]))
[ "noreply@github.com" ]
Lai-smile.noreply@github.com
497e345288a9d28536fdbaf5f67a2102b003849e
7652b3d21519771aa073c4f4a9d66f4f4d5db013
/creating-project/project/project_app/urls.py
de7fffc7ea068fde214f0d92d79c134b3e945a32
[]
no_license
pavkozlov/NETOLOGY-Django-homeworks
9c64cde294590c8a85c5f89fd2190fe989720c84
c331fa10906470c974802932e9d7d7526841f6f1
refs/heads/master
2022-11-27T22:36:12.537296
2019-07-17T16:19:11
2019-07-17T16:19:11
189,250,824
0
1
null
2022-11-22T03:14:37
2019-05-29T15:20:09
Python
UTF-8
Python
false
false
282
py
from django.urls import path from .views import stations_view from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('stations/', stations_view, name='stations_view') ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ "it.pavelkozlov@gmail.com" ]
it.pavelkozlov@gmail.com
f30f5d1496cb56926ce73d581deca33497224893
4c446b67986260b37978e663bcef040e4e925a33
/project2/part b/reddit_model_v2.py
108ea81f02317afae0ff5ff679171106797716d9
[]
no_license
xukaiyuan/Database-Systems
1ec815533c5c61765a48d00f3d7133ca1453232e
bd3fa8275b117f221431b37cc9b067387b9c9089
refs/heads/master
2020-03-11T10:34:14.252258
2018-06-07T03:25:32
2018-06-07T03:25:32
129,946,450
0
1
null
null
null
null
UTF-8
Python
false
false
8,573
py
from __future__ import print_function from pyspark import SparkConf, SparkContext from pyspark.sql import SQLContext # IMPORT OTHER MODULES HERE flag = 0 save = 0 predict = 1 from pyspark.sql.functions import * from pyspark.sql.types import * from pyspark.ml.feature import CountVectorizer, CountVectorizerModel from pyspark.ml.classification import LogisticRegression from pyspark.ml.tuning import CrossValidator, ParamGridBuilder, CrossValidatorModel from pyspark.ml.evaluation import BinaryClassificationEvaluator from pyspark.mllib.linalg import DenseVector def join(comments, label): # task 2 associated = comments.join(label, comments.id == label.Input_id, 'inner') return associated.select("id","body","labeldem","labelgop","labeldjt") def makeNgrams(text): ngrams = cleantext.sanitize(text) concat = ngrams[1]+' '+ngrams[2]+' '+ngrams[3] return concat.split(' ') def pLabel(raw): if(raw==1): return 1 else: return 0 def nLabel(raw): if(raw==-1): return 1 else: return 0 def getLinkid(text): if(len(text)>3): return text[3:] else: return text def posTh(p): if(p[1]>0.2): return 1 else: return 0 def negTh(p): if(p[1]>0.25): return 1 else: return 0 makeNgrams_udf = udf(makeNgrams, ArrayType(StringType())) pLabel_udf = udf(pLabel, IntegerType()) nLabel_udf = udf(nLabel, IntegerType()) getLinkid_udf = udf(getLinkid, StringType()) posTh_udf = udf(posTh, IntegerType()) negTh_udf = udf(negTh, IntegerType()) states = ['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California', 'Colorado', 'Connecticut', 'Delaware', 'District of Columbia', 'Florida', 'Georgia', 'Hawaii', 'Idaho', 'Illinois', 'Indiana', 'Iowa', 'Kansas', 'Kentucky', 'Louisiana', 'Maine', 'Maryland', 'Massachusetts', 'Michigan', 'Minnesota', 'Mississippi', 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'New Hampshire', 'New Jersey', 'New Mexico', 'New York', 'North Carolina', 'North Dakota', 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania', 'Rhode Island', 'South Carolina', 'South Dakota', 'Tennessee', 'Texas', 'Utah', 'Vermont', 'Virginia', 'Washington', 'West Virginia', 'Wisconsin', 'Wyoming'] def main(sqlContext): """Main function takes a Spark SQL context.""" # YOUR CODE HERE # YOU MAY ADD OTHER FUNCTIONS AS NEEDED # load files label = sqlContext.read.load("labeled_data.csv",format="csv", sep=",", inferSchema="true", header="true") if(flag): comments = sqlContext.read.json("comments-minimal.json.bz2") submissions = sqlContext.read.json("submissions.json.bz2") print("loading done") comments.write.parquet("comments_data") submissions.write.parquet("submissions_data") print("writing done") else: comments = sqlContext.read.parquet("comments_data") submissions = sqlContext.read.parquet("submissions_data") print("loading done") if(save): # task 7 starts here associated = join(comments, label) withngrams = associated.withColumn("ngrams", makeNgrams_udf(associated['body'])) withplabels = withngrams.withColumn("poslabel", pLabel_udf(withngrams['labeldjt'])) withpnlabels = withplabels.withColumn("neglabel", nLabel_udf(withplabels['labeldjt'])).select("id","ngrams","poslabel","neglabel") # withpnlabels.show() cv = CountVectorizer(binary=True, inputCol="ngrams", outputCol="features") model = cv.fit(withpnlabels) model.save("cv.model") # model.transform(withpnlabels).show() pos = model.transform(withpnlabels).select("id", col("poslabel").alias("label"), "features") neg = model.transform(withpnlabels).select("id", col("neglabel").alias("label"), "features") # pos.show() # neg.show() poslr = LogisticRegression(labelCol="label", featuresCol="features", maxIter=10) neglr = LogisticRegression(labelCol="label", featuresCol="features", maxIter=10) posEvaluator = BinaryClassificationEvaluator() negEvaluator = BinaryClassificationEvaluator() posParamGrid = ParamGridBuilder().addGrid(poslr.regParam, [1.0]).build() negParamGrid = ParamGridBuilder().addGrid(neglr.regParam, [1.0]).build() posCrossval = CrossValidator( estimator=poslr, evaluator=posEvaluator, estimatorParamMaps=posParamGrid, numFolds=2) # for test negCrossval = CrossValidator( estimator=neglr, evaluator=negEvaluator, estimatorParamMaps=negParamGrid, numFolds=2) # for test posTrain, posTest = pos.randomSplit([0.5, 0.5]) negTrain, negTest = neg.randomSplit([0.5, 0.5]) print("Training positive classifier...") posModel = posCrossval.fit(posTrain) print("Training negative classifier...") negModel = negCrossval.fit(negTrain) posModel.save("pos.model") negModel.save("neg.model") print("trained") else: # comments.show() # submissions.show() posModel = CrossValidatorModel.load("pos.model") negModel = CrossValidatorModel.load("neg.model") model = CountVectorizerModel.load("cv.model") # withngrams = comments.withColumn("ngrams", makeNgrams_udf(comments['body'])) # cv = CountVectorizer(binary=True, inputCol="ngrams", outputCol="features") # model = cv.fit(withngrams) print("model loaded") if(predict==0): # task 8 starts here temp_comments = comments.select("id", "link_id", "author_flair_text", "created_utc", "body") clean_comments = temp_comments.withColumn("true_id", getLinkid_udf(temp_comments['link_id'])) # print(clean_comments.count()) clean_submissions = submissions.select(col("id").alias("sub_id"), "title") # clean_comments.show() # clean_submissions.show() com_sub = clean_comments.join(clean_submissions, clean_comments.true_id==clean_submissions.sub_id, "inner") com_sub.write.parquet("com_sub") else: # task 9 starts here com_sub = sqlContext.read.parquet("com_sub") com_sub = com_sub.sample(False, 0.0001, None) filtered = com_sub.filter("body NOT LIKE '%/s%' and body NOT LIKE '&gt;%'") # print(filtered.count()) filtered_ngrams = filtered.withColumn("ngrams", makeNgrams_udf(filtered['body'])) # filtered_ngrams = filtered_ngrams.sample(False, 0.01, None) print("prepared") featuredata = model.transform(filtered_ngrams).select("id","author_flair_text","created_utc","sub_id","title","features") posResult = posModel.transform(featuredata) negResult = negModel.transform(featuredata) # posResult.show() # negResult.show() poslabel = posResult.withColumn("positive",posTh_udf(posResult['probability']))# .select("id", "author_flair_text", "created_utc", "title", "positive") neglabel = negResult.withColumn("negtive",negTh_udf(negResult['probability']))# .select(col("id").alias("nid"), "author_flair_text", "created_utc", "title", "negtive") print("predict done") # poslabel.show() # neglabel.show() # how to combine these 2 tables??? # task 10 starts here # c_all = poslabel.count() all_day = poslabel.withColumn("date",from_unixtime('created_utc').cast(DateType())).groupby("date").count() pos_posts = poslabel.filter("positive = 1") # c_pos_posts = pos_posts.count() # p_pos_posts = c_pos_posts/c_all # print(p_pos_posts) # neg_posts = neglabel.filter("negtive = 1") # c_neg_posts = neg_posts.count() # p_neg_posts = c_neg_posts/c_all # print(p_neg_posts) pos_day = pos_posts.withColumn("pos_date",from_unixtime('created_utc').cast(DateType())).groupby("pos_date").count().withColumnRenamed("count","pos_count") p_pos_day = all_day.join(pos_day, all_day.date==pos_day.pos_date, "left").withColumn("pos_per", pos_count/count).show() print("end") if __name__ == "__main__": conf = SparkConf().setAppName("CS143 Project 2B") conf = conf.setMaster("local[*]") sc = SparkContext(conf=conf) sqlContext = SQLContext(sc) sc.addPyFile("cleantext.py") import cleantext # load csv file main(sqlContext)
[ "kyxu95@gmail.com" ]
kyxu95@gmail.com
f427572dcc294f2f278b1dc156e4b0e0c130a115
a4c5a56ed6d3c4299213ff8fd0e4f37719e063ff
/tests/test_override.py
ec0ad1f2bfab03914d5df5c21408b1e52fcbb993
[ "BSD-3-Clause" ]
permissive
pyecore/motra
76add183cf2777bef5916b88e30dd2b3eef8cb06
c0b3e8e54b46572c3bc10bb2b719102e267c371b
refs/heads/main
2023-09-02T12:44:37.688979
2021-10-27T05:53:01
2021-10-27T05:53:01
395,357,398
5
1
null
null
null
null
UTF-8
Python
false
false
965
py
import pytest import inspect import pyecore.ecore as ecore from motra import m2m @pytest.fixture(scope='module') def t1(): # Define a transformation meta-data t = m2m.Transformation('t1', inputs=['in_model'], outputs=['in_model']) @t.mapping(when=lambda self: self.name.startswith('Egg')) def r1(self: ecore.EClass): self.name = self.name + '_egg' @t.mapping(when=lambda self: self.name.startswith('Spam')) def r1(self: ecore.EClass): self.name = self.name + '_spam' return t, r1 def test__override_with_when(t1): t, r1 = t1 # Fake main for the mapping execution result1 = None result2 = None def fake_main(in_model): nonlocal result1 nonlocal result2 result1 = r1(ecore.EClass('Spam')) result2 = r1(ecore.EClass('Egg')) t._main = fake_main t.run(in_model=ecore.EPackage()) assert result1.name == "Spam_spam" assert result2.name == "Egg_egg"
[ "vincent.aranega@gmail.com" ]
vincent.aranega@gmail.com
2eb64c8805a832356c2c1af85b8173d8303d1b14
09cb91bdfc1569f12f73648e390943602c3790c5
/voters/viewsets.py
df2daf53f9207631ddd90cd37d8e58afe475f2af
[]
no_license
Chukwunazaekpere/ceo-bincom-test
0a916bff6be82df47684550399ee77de285106e9
69dd413c20fe79ece0b732b8b161d951d598be56
refs/heads/master
2023-07-01T04:36:51.568102
2021-08-05T19:57:10
2021-08-05T19:57:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
from rest_framework import viewsets from .models import ( Voters ) from .serializers import ( VotersSerializer ) class VotersViewSet(viewsets.ModelViewSet): queryset = Voters.objects.all() serializer_class = VotersSerializer
[ "emmanuelchinaza5777@gmail.com" ]
emmanuelchinaza5777@gmail.com
1285ed4012292a12041f5aaf57a58b6db329bf76
aa06db0771f92f9c21a16ace4f91196b4b607e58
/store/store/migrations/0015_auto_20170913_1636.py
ea3064dc31e49639a8c8add2ea524d66fe32f85b
[]
no_license
cami-project/cami-project
7b51430b2e97565d58fbab98f3a68108821e5c6d
386b6ea158f3849dd302e9c15d3c7acc1ac2eac5
refs/heads/master
2020-04-12T03:05:38.970568
2018-09-21T14:04:00
2018-09-21T14:04:00
59,824,119
2
1
null
2018-03-09T13:18:37
2016-05-27T09:49:17
C
UTF-8
Python
false
false
505
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2017-09-13 13:36 from __future__ import unicode_literals from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('store', '0014_auto_20170825_1309'), ] operations = [ migrations.AlterField( model_name='device', name='device_identifier', field=models.CharField(default=uuid.uuid4, max_length=128, unique=True), ), ]
[ "alex.sorici@gmail.com" ]
alex.sorici@gmail.com
2d906722068461d7ff7b6331b9cc36ebbc8e6d9a
f2f362267e48662445eeac3bb309a61353b275b5
/leetcode/closest_binary_search_tree_value.py
410727a8b18cac3b64d2ea0bef91100999e47834
[]
no_license
karthikpalavalli/Puzzles
78dfe87edfaacc72782f6391e225841768e3638d
e4e02635d7b5cf001201b4ab05f70836beb1b8ff
refs/heads/master
2020-03-30T12:20:07.064549
2019-12-21T01:49:55
2019-12-21T01:49:55
151,219,634
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def closestValue(self, root: TreeNode, target: float) -> int: def dfs_inorder(root): if root is None: return nonlocal closest_value dfs_inorder(root.left) if (root.val - target) ** 2 < (closest_value - target) ** 2: closest_value = root.val dfs_inorder(root.right) closest_value = 10 ** 5 dfs_inorder(root) return closest_value
[ "karthik00p@gmail.com" ]
karthik00p@gmail.com
2332d5c21dfd47be0eab2e6439fbacef32c5aeb3
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p3BR/R1/benchmark/startPyquil199.py
b8ba1c63c355402f38a256e26772b3f9cb67ca75
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
1,775
py
# qubit number=2 # total number=33 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(0) # number=1 prog += RX(-0.09738937226128368,2) # number=2 prog += H(1) # number=30 prog += CZ(2,1) # number=31 prog += H(1) # number=32 prog += H(1) # number=3 prog += CNOT(1,0) # number=4 prog += Y(1) # number=15 prog += CNOT(1,0) # number=10 prog += H(1) # number=19 prog += CZ(0,1) # number=20 prog += RX(-0.6000441968356504,1) # number=28 prog += H(1) # number=21 prog += CNOT(0,1) # number=22 prog += X(1) # number=23 prog += H(2) # number=29 prog += CNOT(0,1) # number=24 prog += CNOT(0,1) # number=18 prog += Z(1) # number=11 prog += CNOT(1,0) # number=12 prog += CNOT(2,1) # number=26 prog += Y(1) # number=14 prog += CNOT(1,0) # number=5 prog += X(1) # number=6 prog += Z(1) # number=8 prog += X(1) # number=7 prog += RX(-2.42845112122491,1) # number=25 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('1q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil199.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
[ "wangjiyuan123@yeah.net" ]
wangjiyuan123@yeah.net
5b3e342ade56e396a3dfad0237f974e5082e1bc9
114b61513733083555924fc8ab347335e10471ae
/stackone/stackone/viewModel/MultipartPostHandler.py
df8c4aa526fbfe18ae6a303322624a6199dcffe3
[]
no_license
smarkm/ovm
6e3bea19816affdf919cbd0aa81688e6c56e7565
cd30ad5926f933e6723805d380e57c638ee46bac
refs/heads/master
2021-01-21T04:04:28.637901
2015-08-31T03:05:03
2015-08-31T03:05:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,033
py
#!/usr/bin/python #### # 02/2006 Will Holcomb <wholcomb@gmail.com> # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # 7/26/07 Slightly modified by Brian Schneider # in order to support unicode files ( multipart_encode function ) """ Usage: Enables the use of multipart/form-data for posting forms Inspirations: Upload files in python: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/146306 urllib2_file: Fabien Seisen: <fabien@seisen.org> Example: import MultipartPostHandler, urllib2, cookielib cookies = cookielib.CookieJar() opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookies), MultipartPostHandler.MultipartPostHandler) params = { "username" : "bob", "password" : "riviera", "file" : open("filename", "rb") } opener.open("http://wwww.bobsite.com/upload/", params) Further Example: The main function of this file is a sample which downloads a page and then uploads it to the W3C validator. """ import urllib import urllib2 import mimetools, mimetypes import os, stat from cStringIO import StringIO import sys class Callable: def __init__(self, anycallable): self.__call__ = anycallable # Controls how sequences are uncoded. If true, elements may be given multiple values by # assigning a sequence. doseq = 1 class MultipartPostHandler(urllib2.BaseHandler): handler_order = urllib2.HTTPHandler.handler_order - 10 # needs to run first def http_request(self, request): data = request.get_data() if data is not None and type(data) != str: v_files = [] v_vars = [] try: for(key, value) in data.items(): if type(value) == file: v_files.append((key, value)) else: v_vars.append((key, value)) except TypeError: systype, value, traceback = sys.exc_info() raise TypeError, "not a valid non-string sequence or mapping object", traceback if len(v_files) == 0: data = urllib.urlencode(v_vars, doseq) else: boundary, data = self.multipart_encode(v_vars, v_files) contenttype = 'multipart/form-data; boundary=%s' % boundary if(request.has_header('Content-Type') and request.get_header('Content-Type').find('multipart/form-data') != 0): print "Replacing %s with %s" % (request.get_header('content-type'), 'multipart/form-data') request.add_unredirected_header('Content-Type', contenttype) request.add_data(data) return request def multipart_encode(vars, files, boundary = None, buf = None): if boundary is None: boundary = mimetools.choose_boundary() if buf is None: buf = StringIO() for(key, value) in vars: buf.write('--%s\r\n' % boundary) buf.write('Content-Disposition: form-data; name="%s"' % key) buf.write('\r\n\r\n' + value + '\r\n') for(key, fd) in files: file_size = os.fstat(fd.fileno())[stat.ST_SIZE] filename = fd.name.split('/')[-1] contenttype = mimetypes.guess_type(filename)[0] or 'application/octet-stream' buf.write('--%s\r\n' % boundary) buf.write('Content-Disposition: form-data; name="%s"; filename="%s"\r\n' % (key, filename)) buf.write('Content-Type: %s\r\n' % contenttype) # buffer += 'Content-Length: %s\r\n' % file_size fd.seek(0) buf.write('\r\n' + fd.read() + '\r\n') buf.write('--' + boundary + '--\r\n\r\n') buf = buf.getvalue() return boundary, buf multipart_encode = Callable(multipart_encode) https_request = http_request def main(): import tempfile, sys validatorURL = "http://localhost" opener = urllib2.build_opener(MultipartPostHandler) def validateFile(url): temp = tempfile.mkstemp(suffix=".html") os.write(temp[0], opener.open(url).read()) params = { "ss" : "0", # show source "doctype" : "Inline", "uploaded_file" : open(temp[1], "rb") } print opener.open(validatorURL, params).read() os.remove(temp[1]) if len(sys.argv[1:]) > 0: for arg in sys.argv[1:]: validateFile(arg) else: validateFile("http://www.google.com") if __name__=="__main__": main()
[ "18614072558@163.com" ]
18614072558@163.com
2827c9aa71286f778f7010ddcf378a307b7e403f
1df8bb2fafac39dbea2f0c92831933a479508c0b
/defoe/nzpp/setup.py
9ae583e7449c74cc9844499d3372251b36cecb09
[ "MIT", "CC0-1.0", "CC-BY-4.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-public-domain" ]
permissive
alan-turing-institute/defoe
b816aee7de0510dbc71322dd156015fd429d4e8f
d7d2a22c8976fb0b0016cb0a231d4822424f8e88
refs/heads/master
2022-03-08T09:05:48.148085
2022-02-11T10:59:37
2022-02-11T10:59:37
165,081,527
16
6
MIT
2022-02-01T09:39:53
2019-01-10T15:14:53
Lex
UTF-8
Python
false
false
725
py
""" Given a filename create a defoe.nzpp.articles.Articles. """ from defoe.nzpp.articles import Articles def filename_to_object(filename): """ Given a filename create a defoe.nzpp.articles.Articles. If an error arises during its creation this is caught and returned as a string. :param filename: filename :type filename: str or unicode :return: tuple of form (Articles, None) or (filename, error message), if there was an error creating Articles :rtype: tuple(defoe.nzpp.articles.Articles | str or unicode, str or unicode) """ try: result = (Articles(filename), None) except Exception as exception: result = (filename, str(exception)) return result
[ "michaelj@epcc.ed.ac.uk" ]
michaelj@epcc.ed.ac.uk
5dcc386e96726fe2001888a8096c2940980aae92
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/aphidivor.py
488d7159a51c32e35a6a3d61bdf217023f68d3e4
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
63
py
ii = [('RennJIT.py', 2), ('WestJIT2.py', 3), ('WestJIT.py', 2)]
[ "prabhjyotsingh95@gmail.com" ]
prabhjyotsingh95@gmail.com
cacff14e0b1b2678353ba2d462a5de00a04555a7
55ab4d0aecc49078e7a0f47a05457c9602327ed7
/egs/madcat_arabic/v1/local/create_mask_from_page_image.py
b4147dcd3851a52f5a1a9319a6986519f66ac00b
[ "Apache-2.0" ]
permissive
aarora8/waldo
56a171f0b2048d980023173ab38f5248db936eeb
ad08a05fa9e9890ad986f11d4bca3c773b228d87
refs/heads/master
2020-03-14T04:43:47.513263
2018-06-07T05:09:47
2018-06-07T05:09:47
131,447,076
0
0
Apache-2.0
2018-04-28T22:00:19
2018-04-28T22:00:19
null
UTF-8
Python
false
false
5,535
py
#!/usr/bin/env python3 # Copyright 2018 Johns Hopkins University (author: Ashish Arora) # Apache 2.0 """ This module will be used for creating text localization mask on page image. Given the word segmentation (bounding box around a word) for every word, it will extract line segmentation. To extract line segmentation, it will take word bounding boxes of a line as input, will create a minimum area bounding box that will contain all corner points of word bounding boxes. The obtained bounding box (will not necessarily be vertically or horizontally aligned). """ import xml.dom.minidom as minidom from waldo.data_manipulation import * from waldo.core_config import CoreConfig from waldo.mar_utils import compute_hull from scipy.spatial import ConvexHull from waldo.data_transformation import scale_down_image_with_objects, \ make_square_image_with_padding def get_mask_from_page_image(madcat_file_path, image_file_name, max_size): """ Given a page image, extracts the page image mask from it. Input ----- image_file_name (string): complete path and name of the page image. madcat_file_path (string): complete path and name of the madcat xml file corresponding to the page image. """ objects = _get_bounding_box(madcat_file_path) img = Image.open(image_file_name).convert("RGB") im_arr = np.array(img) config = CoreConfig() config.num_colors = 3 image_with_objects = { 'img': im_arr, 'objects': objects } im_height = im_arr.shape[0] im_width = im_arr.shape[1] validated_objects = [] for original_object in image_with_objects['objects']: ordered_polygon_points = original_object['polygon'] object = {} resized_pp = [] for point in ordered_polygon_points: new_point = _validate_and_update_point(point, im_width, im_height) resized_pp.append(new_point) object['polygon'] = resized_pp validated_objects.append(object) validated_image_with_objects = { 'img': im_arr, 'objects': validated_objects } scaled_image_with_objects = scale_down_image_with_objects(validated_image_with_objects, config, max_size) img_padded = make_square_image_with_padding(scaled_image_with_objects['img'], 3, 255) padded_image_with_objects = { 'img': img_padded, 'objects': scaled_image_with_objects['objects'] } y = convert_to_mask(padded_image_with_objects, config) return y def _get_bounding_box(madcat_file_path): """ Given word boxes of each line, return bounding box for each line in sorted order Input ----- image_file_name (string): complete path and name of the page image. madcat_file_path (string): complete path and name of the madcat xml file corresponding to the page image. """ objects = [] doc = minidom.parse(madcat_file_path) zone = doc.getElementsByTagName('zone') for node in zone: object = {} token_image = node.getElementsByTagName('token-image') mbb_input = [] for token_node in token_image: word_point = token_node.getElementsByTagName('point') for word_node in word_point: word_coordinate = (int(word_node.getAttribute('x')), int(word_node.getAttribute('y'))) mbb_input.append(word_coordinate) points = get_minimum_bounding_box(mbb_input) points = tuple(points) points_ordered = [points[index] for index in ConvexHull(points).vertices] object['polygon'] = points_ordered objects.append(object) return objects def _validate_and_update_point(pt0, im_width, im_height, pt1=(0, 0)): new_point = pt0 if pt0[0] < 0: new_point = _get_pointx_inside_origin(pt0, pt1) if pt0[0] > im_width: new_point = _get_pointx_inside_width(pt0, pt1, im_width) if pt0[1] < 0: new_point = _get_pointy_inside_origin(pt0, pt1) if pt0[1] > im_height: new_point = _get_pointy_inside_height(pt0, pt1, im_height) return new_point def _get_pointx_inside_origin(pt0, pt1): """ Given a point pt0, return an updated point that is inside orgin. It finds line equation and uses it to get updated point x value inside origin Returns ------- (float, float): updated point """ return (0, pt0[1]) # TODO def _get_pointx_inside_width(pt0, pt1, im_width): """ Given a point pt0, return an updated point that is inside image width. It finds line equation and uses it to get updated point x value inside image width Returns ------- (float, float): updated point """ return (im_width, pt0[1]) # TODO def _get_pointy_inside_origin(pt0, pt1): """ Given a point pt0, return an updated point that is inside orgin. It finds line equation and uses it to get updated point y value inside origin Returns ------- (float, float): updated point """ return (pt0[0], 0) # TODO def _get_pointy_inside_height(pt0, pt1, im_height): """ Given a point pt0, return an updated point that is inside image height. It finds line equation and uses it to get updated point y value inside image height Returns ------- (float, float): updated point """ return (pt0[0], im_height) # TODO
[ "dpovey@gmail.com" ]
dpovey@gmail.com
afbe370c3f2219dd8bd99964dbbbedd97b09d9be
a65e0a3afebbd3c033f56d198103704d8f8092ff
/Text-Categorization/kfoldprep2.py
327532ab398312956c4f05c730b041ebe6335dfd
[]
no_license
layth79/ece467-NLP
a44087085b247f5279ec897f6b0c73ee543655ac
796195a67d5f9634d56dc53d946618818ba05948
refs/heads/main
2023-07-13T20:32:20.317460
2021-08-12T00:28:36
2021-08-12T00:28:36
395,126,850
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
import random testDoc = open("corpus2_train.labels") #Cross Validation testSet = open("corpus2_test.list", 'w') validation = open("corpus2_test.labels", 'w') trainSet = open("corpus3_train1.labels", 'w') #shuffle data lines = testDoc.readlines() random.shuffle(lines) open('corpus3_shuffled.labels', 'w').writelines(lines) shuffled = open('corpus3_shuffled.labels') i = 0 for line in shuffled: i+=1 if (i == 716): break trainSet.write(line) trainSet.close() for line in shuffled: x = line.split() testSet.write(x[0] + '\n') validation.write(line) validation.close() testSet.close()
[ "layth.yassin@cooper.edu" ]
layth.yassin@cooper.edu
dcf60d425a75a5583dc890529bb1f1fffe42a262
428ee863e50fecfaedbbf64f3da95e9acb746ae4
/src/tamsin/main.py
a9ea83fa097c8b5749742963afb74886d3b5d15a
[ "BSD-3-Clause", "Unlicense", "LicenseRef-scancode-public-domain" ]
permissive
catseye/Tamsin
ba53a0ee4ac882486a958e6ba7225f19eea763ef
1c9e7ade052d734fa1753d612f2426ac067d5252
refs/heads/master
2021-01-17T09:21:25.202969
2016-03-31T15:00:14
2016-03-31T15:00:14
19,212,331
12
1
null
null
null
null
UTF-8
Python
false
false
4,766
py
# encoding: UTF-8 # Copyright (c)2014 Chris Pressey, Cat's Eye Technologies. # Distributed under a BSD-style license; see LICENSE for more information. import os import subprocess import sys from tamsin.buffer import FileBuffer, StringBuffer from tamsin.event import DebugEventListener from tamsin.term import Atom from tamsin.scanner import ( Scanner, EOF, UTF8ScannerEngine, TamsinScannerEngine ) from tamsin.parser import Parser from tamsin.interpreter import Interpreter from tamsin.desugarer import Desugarer from tamsin.analyzer import Analyzer from tamsin.compiler import Compiler # to be replaced by... from tamsin.codegen import CodeGen from tamsin.backends.c import Emitter def parse(filename): with open(filename, 'r') as f: scanner = Scanner( FileBuffer(f, filename=filename), #StringBuffer(f.read(), filename=filename), engines=(TamsinScannerEngine(),) ) parser = Parser(scanner) ast = parser.grammar() desugarer = Desugarer(ast) ast = desugarer.desugar(ast) return ast def parse_and_check_args(args): ast = None for arg in args: next_ast = parse(arg) if ast is None: ast = next_ast else: ast.incorporate(next_ast) analyzer = Analyzer(ast) ast = analyzer.analyze(ast) return ast def run(ast, listeners=None): scanner = Scanner( FileBuffer(sys.stdin, filename='<stdin>'), #StringBuffer(sys.stdin.read(), filename='<stdin>'), engines=(UTF8ScannerEngine(),), listeners=listeners ) interpreter = Interpreter( ast, scanner, listeners=listeners ) (succeeded, result) = interpreter.interpret_program(ast) if not succeeded: sys.stderr.write(str(result) + "\n") sys.exit(1) print str(result) def main(args, tamsin_dir='.'): listeners = [] if args[0] == '--debug': listeners.append(DebugEventListener()) args = args[1:] if args[0] == 'scan': with open(args[1], 'r') as f: scanner = Scanner( FileBuffer(f, filename=args[1]), engines=(TamsinScannerEngine(),), listeners=listeners ) tok = None while tok is not EOF: tok = scanner.scan() if tok is not EOF: print Atom(tok).repr() print elif args[0] == 'parse': parser = Parser.for_file(args[1]) ast = parser.grammar() print str(ast) elif args[0] == 'desugar': parser = Parser.for_file(args[1]) ast = parser.grammar() desugarer = Desugarer(ast) ast = desugarer.desugar(ast) print str(ast) elif args[0] == 'analyze': ast = parse_and_check_args(args[1:]) print str(ast) elif args[0] == 'compile': ast = parse_and_check_args(args[1:]) compiler = Compiler(ast, sys.stdout) compiler.compile() elif args[0] == 'codegen': ast = parse_and_check_args(args[1:]) generator = CodeGen(ast) result = generator.generate() emitter = Emitter(result, sys.stdout) emitter.go() elif args[0] == 'doublecompile': # http://www.youtube.com/watch?v=6WxJECOFg8w ast = parse_and_check_args(args[1:]) c_filename = 'foo.c' exe_filename = './foo' with open(c_filename, 'w') as f: compiler = Compiler(ast, f) compiler.compile() c_src_dir = os.path.join(tamsin_dir, 'c_src') command = ("gcc", "-g", "-I%s" % c_src_dir, "-L%s" % c_src_dir, c_filename, "-o", exe_filename, "-ltamsin") try: subprocess.check_call(command) exit_code = 0 except subprocess.CalledProcessError: exit_code = 1 #subprocess.call(('rm', '-f', c_filename)) sys.exit(exit_code) elif args[0] == 'loadngo': ast = parse_and_check_args(args[1:]) c_filename = 'foo.c' exe_filename = './foo' with open(c_filename, 'w') as f: compiler = Compiler(ast, f) compiler.compile() c_src_dir = os.path.join(tamsin_dir, 'c_src') command = ("gcc", "-g", "-I%s" % c_src_dir, "-L%s" % c_src_dir, c_filename, "-o", exe_filename, "-ltamsin") try: subprocess.check_call(command) subprocess.check_call((exe_filename,)) exit_code = 0 except subprocess.CalledProcessError: exit_code = 1 subprocess.call(('rm', '-f', c_filename, exe_filename)) sys.exit(exit_code) else: ast = parse_and_check_args(args) run(ast, listeners=listeners)
[ "cpressey@catseye.tc" ]
cpressey@catseye.tc
4708a37bf64d1775f833ff0ec1f2ed6eef44407f
4c6927247a3a5fcc73d6101a3cb905f85f03c7a8
/Data/process_data.py
e646ea023c62ce4f62a93f0262a0836bc44cd355
[ "Unlicense" ]
permissive
PZebarth/Python-ML-Pipeline
2c0ca9ea4b44b388b0ba83f44a9653f5967fa32e
b12b32db850c95298b225638f7a32e54e5d1221f
refs/heads/main
2023-02-10T05:34:53.559108
2021-01-05T19:18:28
2021-01-05T19:18:28
325,661,300
0
0
null
null
null
null
UTF-8
Python
false
false
3,317
py
import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' Loads csv data from messages_filepath and categories_filepath filepaths and merges into a single dataframe. Input: messages_filepath - filepath string categories_filepath - filepath string Output: df - merged dataframe ''' # reading csv data into dataframes messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) # merging data frames on id key df = messages.merge(categories, on=['id']) return df def clean_data(df): ''' Inserts correct column names, cleans data of duplicate and Nan values Input: df - dataframe Output: df - dataframe ''' # splitting data in categories column categories = df.categories.str.split(pat =';', expand=True) # obtainging list of categories row = categories.iloc[0] # obatining clean list of categories category_colnames = row.apply(lambda x: x[:-2]).tolist() # renaming columns based on list of category names categories.columns = category_colnames # converting categories to numbers 0 and 1 for column in categories: # selects last digit categories[column] = categories[column].apply(lambda x: x[-1:]) # encodes data as integer categories[column] = categories[column].astype(int) # removes old categories column df = df.drop(columns = 'categories') # concatenates cleaned categories df = pd.concat([df,categories], axis=1) # drops duplicates df.drop_duplicates(inplace=True) # drops Nan values df.dropna(how = 'any', subset = category_colnames, inplace=True) # replaces 2.0 with 1.0 in related column df.related.replace(to_replace = 2.0, value = 1.0, inplace=True) # the child alone column only has zeros and can't train our model df = df.drop(['child_alone'],axis=1) return df def save_data(df, database_filename): ''' Saves dataframe in sql table Input: df - dataframe database_filename - filename string ''' # engine = create_engine('sqlite:///' + database_filename) df.to_sql('messages_disaster', engine, if_exists='replace', index=False) def main(): if len(sys.argv) == 4: messages_filepath, categories_filepath, database_filepath = sys.argv[1:] print('Loading data...\n MESSAGES: {}\n CATEGORIES: {}' .format(messages_filepath, categories_filepath)) df = load_data(messages_filepath, categories_filepath) print('Cleaning data...') df = clean_data(df) print('Saving data...\n DATABASE: {}'.format(database_filepath)) save_data(df, database_filepath) print('Cleaned data saved to database!') else: print('Please provide the filepaths of the messages and categories '\ 'datasets as the first and second argument respectively, as '\ 'well as the filepath of the database to save the cleaned data '\ 'to as the third argument. \n\nExample: python process_data.py '\ 'disaster_messages.csv disaster_categories.csv '\ 'DisasterResponse.db') if __name__ == '__main__': main()
[ "noreply@github.com" ]
PZebarth.noreply@github.com
ac09433b7ea92f104f6fa94e0dd0943bbfee0442
2d0f5d0e9b134dd43747f9a324c7c1a5d60d20da
/working_with_timestamps.py
8368b09f6ca896a81ca88ffccbf7d68ca5769a21
[]
no_license
sushrut7898/complete_python_mastery
4521254d5ea8d9f1c2a80a82239f977b4bf5eb3e
cd10c6fe3546893aa58b9a5fc41141cbe18e3293
refs/heads/master
2022-12-08T08:41:05.971723
2020-08-14T06:54:32
2020-08-14T06:54:32
285,747,101
0
1
null
null
null
null
UTF-8
Python
false
false
215
py
import time print(time.time()) # in seconds from win beg time def send_emails(): for i in range(10000): pass start = time.time() send_emails() end = time.time() duration = end - start print(duration)
[ "sushrut7898@gmail.com" ]
sushrut7898@gmail.com
861dff28f9a037a7efe6412727882352ecd7643e
adbc8062ea7620eae45a94b9882dfb2b6bb8d103
/server/trips/urls.py
8839aef735bdea7bc4375f5e56aac81570f83a20
[ "MIT" ]
permissive
el-Joft/taxi-app
d50063de5969f2cd07c97aa79b07693bd3862acd
570cc6879aaab2ec944e29f2f5f8e2a710a97716
refs/heads/develop
2023-02-04T17:41:28.977300
2020-12-30T15:13:18
2020-12-30T15:13:18
323,642,400
0
0
MIT
2020-12-30T15:13:19
2020-12-22T14:03:06
Python
UTF-8
Python
false
false
297
py
from django.contrib import admin from django.urls import path from trips.views import TripView app_name = 'trips' urlpatterns = [ path('', TripView.as_view({'get': 'list'}), name='trip_list'), path('<uuid:trip_id>/', TripView.as_view({'get': 'retrieve'}), name='trip_detail'), # new ]
[ "ottimothy@gmail.com" ]
ottimothy@gmail.com
8d1d223014ed6a6fd3dedf230f0818e8b775fd28
3c564b05a236f3ea3940f8354a85cffb8a502c5f
/run.py
6595710fc72673428344099ef7e59562672859ba
[]
no_license
shalevy1/tesseractDataGenerator
ee0b88c2e780bd2617cf7ac60fc413b87e660191
57d35646f9ac7b32394fbacf7a04a1124ad84596
refs/heads/master
2022-11-14T09:38:47.232596
2019-07-03T13:53:39
2019-07-03T13:53:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
from Utils import genData codesfile = 'codesKOR.txt' trainingAmt = 1000 trainTestSplit = 0.7 outputdir = 'data' # chars = getCharList('charsFixed2.txt') # genCodes(chars, 'codesKOR.txt', 10000) genData(trainingAmt,codesfile, trainTestSplit, outputdir)
[ "rafayk7@yahoo.com" ]
rafayk7@yahoo.com
4fe20784e210003df990201f226915a4f8702cd0
d7016f69993570a1c55974582cda899ff70907ec
/sdk/ml/azure-ai-ml/azure/ai/ml/_restclient/v2021_10_01_dataplanepreview/operations/_code_containers_operations.py
39304e6ffb704920562356f3609fa0b63f3eb4b9
[ "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-python-cwi", "LGPL-2.1-or-later", "PSF-2.0", "LGPL-2.0-or-later", "GPL-3.0-or-later", "GPL-1.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "Python-2.0", "MPL-2.0", "LicenseRef-scancode-other-copyleft", "HPND", "ODbL-1.0", "GPL-3.0-only", "ZPL-2.1", "MIT", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-free-unknown" ]
permissive
kurtzeborn/azure-sdk-for-python
51ca636ad26ca51bc0c9e6865332781787e6f882
b23e71b289c71f179b9cf9b8c75b1922833a542a
refs/heads/main
2023-03-21T14:19:50.299852
2023-02-15T13:30:47
2023-02-15T13:30:47
157,927,277
0
0
MIT
2022-07-19T08:05:23
2018-11-16T22:15:30
Python
UTF-8
Python
false
false
19,903
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_list_request( subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest skiptoken = kwargs.pop('skiptoken', None) # type: Optional[str] api_version = "2021-10-01-dataplanepreview" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') if skiptoken is not None: query_parameters['$skiptoken'] = _SERIALIZER.query("skiptoken", skiptoken, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_delete_request( name, # type: str subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = "2021-10-01-dataplanepreview" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{name}') path_format_arguments = { "name": _SERIALIZER.url("name", name, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="DELETE", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_request( name, # type: str subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = "2021-10-01-dataplanepreview" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{name}') path_format_arguments = { "name": _SERIALIZER.url("name", name, 'str'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_create_or_update_request( name, # type: str subscription_id, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] api_version = "2021-10-01-dataplanepreview" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{name}') path_format_arguments = { "name": _SERIALIZER.url("name", name, 'str', pattern=r'^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$'), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PUT", url=url, params=query_parameters, headers=header_parameters, **kwargs ) # fmt: on class CodeContainersOperations(object): """CodeContainersOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.machinelearningservices.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, resource_group_name, # type: str registry_name, # type: str skiptoken=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.CodeContainerResourceArmPaginatedResult"] """List containers. List containers. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :param skiptoken: Continuation token for pagination. :type skiptoken: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CodeContainerResourceArmPaginatedResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.CodeContainerResourceArmPaginatedResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CodeContainerResourceArmPaginatedResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, skiptoken=skiptoken, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, skiptoken=skiptoken, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("CodeContainerResourceArmPaginatedResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes'} # type: ignore @distributed_trace def delete( self, name, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> None """Delete container. Delete container. :param name: Container name. :type name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_request( name=name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, template_url=self.delete.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{name}'} # type: ignore @distributed_trace def get( self, name, # type: str resource_group_name, # type: str registry_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.CodeContainerData" """Get container. Get container. :param name: Container name. :type name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CodeContainerData, or the result of cls(response) :rtype: ~azure.mgmt.machinelearningservices.models.CodeContainerData :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CodeContainerData"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( name=name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('CodeContainerData', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{name}'} # type: ignore @distributed_trace def create_or_update( self, name, # type: str resource_group_name, # type: str registry_name, # type: str body, # type: "_models.CodeContainerData" **kwargs # type: Any ): # type: (...) -> "_models.CodeContainerData" """Create or update container. Create or update container. :param name: Container name. :type name: str :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param registry_name: Name of Azure Machine Learning registry. :type registry_name: str :param body: Container entity to create or update. :type body: ~azure.mgmt.machinelearningservices.models.CodeContainerData :keyword callable cls: A custom type or function that will be passed the direct response :return: CodeContainerData, or the result of cls(response) :rtype: ~azure.mgmt.machinelearningservices.models.CodeContainerData :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CodeContainerData"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(body, 'CodeContainerData') request = build_create_or_update_request( name=name, subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, content_type=content_type, json=_json, template_url=self.create_or_update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('CodeContainerData', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{name}'} # type: ignore
[ "noreply@github.com" ]
kurtzeborn.noreply@github.com
358e0825a1854b062e87d35611e52cd3c239266d
21540ab033e180a3d94b270b7faffac7fe4af68f
/wordshop2/Project_01_10_page62-63/Project_05.py
e45ba58fc5058ea1e533a49592edf98b0103a792
[]
no_license
tuan102081/wordshop1.2.3.5
eaa344bdb04f565d1354b9476b4d4ecafc5cc7f3
70e75b56f48a2e5b1622d956f33831f80e64d368
refs/heads/master
2023-07-14T23:26:31.089484
2021-08-30T18:53:24
2021-08-30T18:53:24
401,411,439
0
0
null
null
null
null
UTF-8
Python
false
false
607
py
""" Author: Nguyen Duy Tuan Date: 29/08/2021 Program: project_05_page_62.py Problem: An object’s momentum is its mass multiplied by its velocity. Write a program that accepts an object’s mass (in kilograms) and velocity (in meters per second) as inputs and then outputs its momentum. Solution: Display: Enter of mass(kg): 51 Enter of velocity(m/s): 60 Object’s momentum = 3060.0 (kgm/s) """ mass = float(input("Enter of mass(kg): ")) V = float(input("Enter of velocity(m/s): ")) M = mass * V print("\nObject’s momentum = " + str(round(M, 2)) + " (kgm/s)")
[ "you@example.com" ]
you@example.com
c536a4122ad57a3aa5fa4992da64a4835318a3c1
b5dcba412c6f84aed7eef05d18ba96faf997c311
/KdV-Python/MZKdV.py
9b5036d3571becc603abcffb984e5787b8c0f632
[ "MIT" ]
permissive
jrpriceUPS/Renormalized_Mori_Zwanzig
d2794d4c7c25a1b95ca73ab75fcab56a84845a9a
f818a63291497da88cf42e99408e2bb3a0452986
refs/heads/master
2023-04-15T03:12:30.294887
2021-05-03T16:05:34
2021-05-03T16:05:34
99,272,655
1
3
null
2021-02-01T19:39:03
2017-08-03T20:32:33
MATLAB
UTF-8
Python
false
false
116,988
py
# Author: Jake Price # Date: February 8, 2021 # Purpose: Collection of custom functions for running CMA simulations of KdV, # analysis functions, and renormalization scripts. Generates some images # from past papers, but not all (didn't want / need to duplicate everything) # Translation of code from UW PhD in Matlab. # import libraries import numpy as np import scipy as sp import matplotlib.pyplot as plt from matplotlib import animation import glob import re def fftnorm(u_full): """Computes normalized FFT (such that FFT and IFFT are symmetrically normalized) Parameters ---------- u_full : 1D Numpy Array (N,) The vector whose discrete FFT is to be computed Returns ------- normalizedFFT : 1D Numpy Array (N,) The transformed version of that vector """ N = u_full.shape[0] normalizedFFT = np.fft.fft(u_full)*1/N return normalizedFFT def ifftnorm(u_full): """Computes normalized IFFT (such that FFT and IFFT are symmetrically normalized) Parameters ---------- u_full : 1D Numpy Array (N,) The vector whose discrete IFFT is to be computed Returns ------- normalizedIFFT : 1D Numpy Array (N,) The transformed version of that vector """ N = u_full.shape[0] normalizedIFFT = np.real(np.fft.ifft(u_full)*N) return normalizedIFFT def convolutionSumKdV(u,v,alpha): """Computes convolution sum associated with RHS of KdV ODE C_k(u,v) = -(alpha * 1i * k) / 2 * sum_{i+j = k} u_i v_j Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- u : 1D Numpy Array (N,) One of the two vectors being convolved v : 1D Numpy Array (N,) One of the two vectors being convolved alpha : float Degree of nonlinearity in KdV Returns ------- convo : 1D Numpy Array (N,) Convolution of the two vectors """ # generate array of wavenumbers L = u.shape[0] k = np.concatenate([np.arange(0,L/2),np.arange(-L/2,0)]) if v.shape[0]!=L: raise NameError('u and v must be the same length.') # compute double sum in real space, then apply scalar multiplier convo = fftnorm(ifftnorm(u)*ifftnorm(v)) convo = -alpha/2*1j*k*convo return convo # RHS: Right hand side functions for CMA and non-renormalized KdV def markovKdV(u,M,alpha): """Computes nonlinear part of Markov term in KdV C_k(u,v) = -(alpha * 1i * k) / 2 * sum_{i+j = k} u_i v_j where the sum of i and j is over a "full" system with M positive modes (user specified) Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- u : 1D Numpy Array (N,) Positive modes of state vector whose RHS is being computed M : int Number of positive modes in "full" model for intermediary calculations alpha : float Degree of nonlinearity in KdV Returns ------- nonlin0 : 1D Numpy Array (2*M,) Nonlinear part of Markov term for given state vector u_full : 1D Numpy array (2*M,) "full" state vector for use in later computations """ # construct full Fourier vector from only the positive modes u_full = np.zeros(2*M) +1j*np.zeros(2*M) u_full[0:u.shape[0]] = u u_full[2*M-u.shape[0]+1:] = np.conj(np.flip(u[1:])) # compute the convolution sum nonlin0 = convolutionSumKdV(u_full,u_full,alpha) return nonlin0,u_full def tModelKdV(u_full,nonlin0,alpha,F_modes): """Computes t-model term in KdV C_k(u,v) = -(alpha * 1i * k) / 2 * sum_{i+j = k, i and j in F} u_i v_j where the sum of i and j is over a "full" system with M positive modes (user specified) Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- u_full : Numpy array (2M,1) Current state of u in full form nonlin0 : Numpy array (2M,1) Markov term (for convolving) alpha : float Degree of nonlinearity in KdV F_modes : Numpy array Set of resolved modes (and aliasing modes) to zero out Returns ------- nonlin1 : 1D Numpy Array (2*M,) t-model term uuStar : 1D Numpy array (2*M,) unresolved modes of state vector convolved with itself """ uuStar = np.copy(nonlin0) uuStar[F_modes] = 0 nonlin1 = 2*convolutionSumKdV(u_full, uuStar, alpha) return nonlin1,uuStar def t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon): """Computes second order ROM term in KdV *see paper / symbolic notebook for expression* Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- u_full : Numpy array (2M,1) Current state of u in full form nonlin0 : Numpy array (2M,1) Markov term (for convolving) uuStar : 1D Numpy array (2*M,) Unresolved modes of state vector convolved with itself alpha : float Degree of nonlinearity in KdV F_modes : Numpy array Set of resolved modes (and aliasing modes) to zero out G_modes : Numpy array Set of unresolved modes (and aliasing modes) to zero out k : Numpy array (2M,1) Array of wavenumbers epsilon : float Size of linear term (stiffness) Returns ------- nonlin2 : 1D Numpy Array (2*M,) t2-model term uk3 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^3 uu : 1D Numpy array (2*M,) Resolved modes of state vector convolved with itself A, AStar, B, BStar, C, CStar, D, DStar : 1D Numpy arrays (2*M,) Specific convolutions used as inner terms in future terms """ # compute inner convolutions uu = np.copy(nonlin0) uu[G_modes] = 0 uk3 = k**3*u_full A = k**3*uu AStar = k**3*uuStar B = convolutionSumKdV(1j*epsilon**2*uk3+uu,u_full,alpha) BStar = np.copy(B) B[G_modes] = 0 BStar[F_modes] = 0 C = convolutionSumKdV(uuStar,u_full,alpha) CStar = np.copy(C) C[G_modes] = 0 CStar[F_modes] = 0 D = convolutionSumKdV(uuStar,uuStar,alpha) DStar = np.copy(D) D[G_modes] = 0 DStar[F_modes] = 0 # compute actual term nonlin2 = -2*convolutionSumKdV(u_full,1j*epsilon**2*AStar - 2*BStar + 2*CStar,alpha) - 2*D return nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar def t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar): """Computes third order ROM term in KdV *see paper / symbolic notebook for expression* Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- alpha : float Degree of nonlinearity in KdV F_modes : Numpy array Set of resolved modes (and aliasing modes) to zero out G_modes : Numpy array Set of unresolved modes (and aliasing modes) to zero out k : Numpy array (2M,1) Array of wavenumbers epsilon : float Size of linear term (stiffness) u_full : Numpy array (2M,1) Current state of u in full form uu : 1D Numpy array (2*M,) Resolved modes of state vector convolved with itself uuStar : 1D Numpy array (2*M,) Unresolved modes of state vector convolved with itself uk3 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^3 A, AStar, B, BStar, C, CStar, DStar : 1D Numpy arrays (2*M,) Specific convolutions used as inner terms in future terms Returns ------- nonlin3 : 1D Numpy Array (2*M,) t3-model term uk6 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^6 nonlin3,uk6,E,EStar,F,FStar E, EStar, F, FStar : 1D Numpy arrays (2*M,) Specific convolutions used as inner terms in future terms """ # compute internal convolutions uk6 = k**3*uk3 E = convolutionSumKdV(1j*epsilon**2*uk3+uu,1j*epsilon**2*uk3+uu,alpha) EStar = np.copy(E) E[G_modes] = 0 EStar[F_modes] = 0 F = convolutionSumKdV(uuStar,1j*epsilon**2*uk3+uu,alpha) FStar = np.copy(F) F[G_modes] = 0 FStar[F_modes] = 0 int1 = -2*BStar+CStar int2 = (convolutionSumKdV(u_full, -epsilon**4*uk6 +1j*epsilon**2*(A+AStar) +2*(B-2*C) +2*(CStar-2*BStar), alpha)) int2[F_modes] = 0 int3 = EStar-FStar int4 = np.copy(DStar) int5 = CStar-BStar # compute actual 3rd order term nonlin3 = (2*convolutionSumKdV(u_full,-k**3*epsilon**4*AStar +2*1j*epsilon**2*k**3*int1 +2*int2+2*int3+2*int4,alpha) +6*convolutionSumKdV(uuStar,1j*epsilon**2*AStar + 2*int5,alpha)) return nonlin3,uk6,E,EStar,F,FStar def t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar): """Computes fourth order ROM term in KdV *see paper / symbolic notebook for expression* Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- alpha : float Degree of nonlinearity in KdV F_modes : Numpy array Set of resolved modes (and aliasing modes) to zero out G_modes : Numpy array Set of unresolved modes (and aliasing modes) to zero out k : Numpy array (2M,1) Array of wavenumbers epsilon : float Size of linear term (stiffness) u_full : Numpy array (2M,1) Current state of u in full form uu : 1D Numpy array (2*M,) Resolved modes of state vector convolved with itself uuStar : 1D Numpy array (2*M,) Unresolved modes of state vector convolved with itself uk3 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^3 uk6 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^6 A, AStar, B, BStar, C, CStar, DStar, E, EStar, F, FStar : 1D Numpy arrays (2*M,) Specific convolutions used as inner terms in future terms Returns ------- nonlin4 : 1D Numpy Array (2*M,) t4-model term """ # compute internal convolutions internal1 = (convolutionSumKdV(u_full,-epsilon**4*uk6+1j*epsilon**2*(A+AStar) +2*B-4*C-4*BStar+2*CStar,alpha)) internal1[F_modes] = 0 internal2 = (1j*epsilon**2*k**3*convolutionSumKdV(u_full,-3*epsilon**4*uk6 +1j*epsilon**2*(3*A+AStar) -2*(-3*B+5*C) +2*(-3*BStar+CStar),alpha)) internal2[F_modes] = 0 auxiliary1 = 2*convolutionSumKdV(u_full,epsilon**4*uk6-1j*epsilon**2*(A+3*AStar) +2*(3*C-B)+2*(5*BStar-3*CStar),alpha) auxiliary1[G_modes] = 0 auxiliary2 = 2*convolutionSumKdV(u_full,-3*epsilon**4*uk6+1j*epsilon**2*(3*A+AStar) +2*(3*B-5*C)+2*(-3*BStar+CStar),alpha) auxiliary2[F_modes] = 0 internal3 = convolutionSumKdV(u_full,1j*k**3*uk6*epsilon**6 +k**3*epsilon**4*(A-AStar) +2*1j*epsilon**2*k**3*(3*C-B) +2*1j*epsilon**2*k**3*(-3*BStar+CStar) +auxiliary1+auxiliary2 -2*(E-2*F) +2*(3*EStar-2*FStar) -6*D+2*DStar,alpha) internal3[F_modes]= 0 internal4 = convolutionSumKdV(1j*epsilon**2*uk3+uu,3*epsilon**4*uk6-1j*epsilon**2*(3*A+AStar) +2*(-3*B+5*C)+2*(3*BStar-CStar),alpha) internal4[F_modes] = 0 internal5 = convolutionSumKdV(uuStar,-epsilon**4*uk6+1j*epsilon**2*(A+3*AStar) +2*B-6*C-10*BStar+6*CStar,alpha) internal5[F_modes] = 0 # compute actual fourth order term nonlin4 = (2*convolutionSumKdV(u_full,-1j*epsilon**6*k**6*AStar +2*k**6*epsilon**4*(3*BStar-CStar) +2*internal2 +2*internal3 +2*internal4 -2*k**3*1j*epsilon**2*(2*FStar-3*EStar) +2*k**3*1j*epsilon**2*DStar +2*internal5,alpha) +8*convolutionSumKdV(uuStar,-k**3*epsilon**4*AStar +2*1j*epsilon**2*k**3*(-2*BStar+CStar) +2*internal1 +2*(EStar-FStar) +2*DStar,alpha) -48*convolutionSumKdV(BStar,1j*epsilon**2*AStar+2*CStar,alpha) +6*convolutionSumKdV(1j*epsilon**2*AStar+2*(BStar+CStar), 1j*epsilon**2*AStar+2*(BStar+CStar),alpha) ) nonlin4 = -nonlin4 return nonlin4 def RHSKdV(t,u,params): """ Computes the RHS for a full KdV or ROM simulation. For use in solver. Parameters ---------- t : float Current time u : Numpy array (N,) Current state vector params : Dictionary Dictionary of relevant parameters (see below) N : float, number of positive modes in simulation M : float, number of positive modes in "full" intermediate compuation alpha : float, degree of nonlinearity in KdV epsilon : float, size of linear term (stiffness) tau : float, time decay modifier coeffs : Numpy array, renormalization coefficients for ROM (None if no ROM) Returns ------- RHS : 1D Numpy array (N,) Derivative of each positive mode in state vector """ # extract parameters from dictionary N = params['N'] M = params['M'] alpha = params['alpha'] epsilon = params['epsilon'] tau = params['tau'] coeffs = params['coeffs'] # construct wavenumber array k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # Linear and Markov term nonlin0,u_full = markovKdV(u,M,alpha) RHS = 1j*k[0:N]**3*epsilon**2*u + nonlin0[0:N] if (np.any(coeffs == None)): order = 0 else: order = coeffs.shape[0] if (order >= 1): # compute t-model term # define which modes are resolved / unresolved in full array F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) G_modes = np.arange(N,2*M-N+1) # compute t-model term nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) RHS = RHS + coeffs[0]*nonlin1[0:N]*t**(1-tau) order = coeffs.shape[0] if (order >= 2): # compute t2-model term nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) RHS = RHS + coeffs[1]*nonlin2[0:N]*t**(2*(1-tau)) if (order >= 3): # compute t3-model term nonlin3,uk6,E,EStar,F,FStar = t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar) RHS = RHS + coeffs[2]*nonlin3[0:N]*t**(3*(1-tau)) if (order == 4): # compute t4-model term nonlin4 = t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar) RHS = RHS + coeffs[3]*nonlin4[0:N]*t**(4*(1-tau)) return RHS def getMass(u,N): """Computes mass in first N modes for all timesteps from solution array u Parameters ---------- u : 2D Numpy Array (M,tList) Positive modes of state vector for all timesteps N : int Number of positive modes to include in mass measurement Returns ------- mass : 1D Numpy Array (tList,) Energy in first N modes at all timesteps """ mass = np.sum(2*(abs(u[0:N,]))**2,0) return mass def runSim(params): """ Runs an actual ROM or non-ROM simulation of KdV Parameters ---------- params : Dictionary Dictionary of relevant parameters (see below) N : float, number of positive modes in simulation M : float, number of positive modes in "full" intermediate compuation alpha : float, degree of nonlinearity in KdV epsilon : float, size of linear term (stiffness) tau : float, time decay modifier coeffs : Numpy array, renormalization coefficients for ROM (None if no ROM) IC : function handle, initial condition of simulation endtime : float, final time to simulate to timesteps: Numpy array, specific timesteps for which to save solution Returns ------- uSim : ODE solver output Output solution from sp.integrate.solve_ivp (includes state vector at all timesteps, time vector, etc.) """ # unpack parameters from dictionary N = params['N'] IC = params['IC'] endtime = params['endtime'] timesteps = params['timesteps'] # generate initial condition x = np.linspace(0,2*np.pi-2*np.pi/(2*N),2*N) y = IC(x) uFull = fftnorm(y) u = uFull[0:N] # define RHS in form appropriate for solve_ivp def myRHS(t,y): out = RHSKdV(t,y,params) return out # solve the IVP uSim = sp.integrate.solve_ivp(fun = myRHS, t_span = [0,endtime], y0 = u,method = "BDF", t_eval = timesteps) return uSim def makeRealSpace(u,N): """Takes a completed simulation and finds the real space solution at all timesteps for a chosen subset of modes Parameters ---------- u : Numpy array (M,t) Output of simulation giving energy in first M positive modes for all timesteps t N : int Number of positive modes to use in real space Returns ------- x : Numpy vector (2xN,1) x-grid for plotting purposes uReal : Numpy array (2xN,t) Real space solution at all times """ # identify shapes of arrays uShape = u.shape numTimes = uShape[1] # drop modes we don't wish to keep uNew = u[0:N,:] # generate full vector (with negative modes) uFull = np.zeros((2*N,numTimes)) + 1j*0 uFull[0:N,:] = uNew uFull[2*N-N+1:,:] = np.conj(np.flip(uNew[1:,:],0)) # initialize output uReal = np.zeros(uFull.shape) # take inverse transform for each timestep # NOTE: is there a vectorized way to do this? for i in np.arange(0,numTimes): uReal[:,i] = ifftnorm(uFull[:,i]) return uReal def makeAnimations(uList,t,legendList): """ Creates an animation from a list of simulations Parameters ---------- uList : List of Numpy arrays of size (N,T) Set of state vector evolutions to animate t : Numpy array (T,) Timesteps associated with simulations (must all be the same) legendList : List of strings Labels for each simulation Returns ------- anim : animation object output from animation.FuncAnimation """ # identify the resolution to use for plots and generate x grid N = min([x.shape[0] for x in uList]) xgrid = np.linspace(0,2*np.pi*(2*N-1)/(2*N),2*N) # generate real space solutions realSols = [makeRealSpace(x,N) for x in uList] # initialize figure myFig = plt.figure() ax = plt.subplot() ax.axis(xmin = 0,xmax = 2*np.pi-np.pi/N,ymin = -2, ymax = 4) # create empty list of lines to populate each iteration lineList = [ax.plot([],[]) for i in range(len(uList))] # define function to draw each frame def makeFrame(n): for i in range(len(uList)): lineList[i][0].set_data(xgrid,realSols[i][:,n]) plt.title('t = '+str(round(t[n],1))) plt.legend(legendList, loc = "upper right") return lineList # generate animation anim = animation.FuncAnimation(fig = myFig,func = makeFrame,frames = t.shape[0]) return anim def renormalize(fullM, endtime, Nlist, Mlist, epsilon, alpha, tau, timesteps, IC = np.sin, plots = False): """ Finds renormalization coefficients based on a single simulation. If the simulation doesn't yet exist, it creates it Parameters ---------- fullM : int Size of full simulation to base fits on endtime : int Endtime of full simulation Nlist : list of ints List of resolutions for which to find coefficients Mlist : list of ints List of intermediary "full" simulations to use for ROMs epsilon : float size of linear term (stiffness) alpha : float degree of nonlinearity in KdV tau : float time decay modifier timesteps : Numpy array specific timesteps for which to save solution IC : function handle initial condition of simulation (default np.sin) plots : boolean Indicates whether to generate plots (default: False) Returns ------- coeeffsArray1 : Numpy array (length(Nlist),1) Renormalization coefficients for t-model only coeffsArray2 : Numpy array (length(Nlist),2) Renormalization coefficients for t-model and t2-model only coeffsArray3 : Numpy array (length(Nlist),3) Renormalization coefficients for t1-t3-models coeffsArray4 : Numpy array (length(Nlist),4) Renormalization coefficients for t1-t4-models coeffsArray2only : Numpy array (length(Nlist),1) Renormalization coefficients for t2-model only coeffsArray24only : Numpy array (length(Nlist),2) Renormalization coefficients for t2-model and t4-model only fitLines : Dict Contains scaling law fits for each ROM coefficients of form c = -b * N^a Terms given are a, b, and r (correlation coefficient of fit) err : Dict Contains least-squares error for each fit for each model and resolution """ # Check if full simulation has already been constructed # if so, load it, if not, generate it try: uFull = np.load("u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+".npy") tFull = np.load("t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+".npy") except: fullParams = { 'N': fullM, 'M': int(3/2*fullM), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': None, 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } uSimFull = runSim(fullParams) uFull = uSimFull.y tFull = uSimFull.t np.save( "u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p'),uFull) np.save( "t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p'),tFull) # initialize output arrays coeffsArray1 = np.zeros((Nlist.shape[0],1)) coeffsArray2 = np.zeros((Nlist.shape[0],2)) coeffsArray3 = np.zeros((Nlist.shape[0],3)) coeffsArray4 = np.zeros((Nlist.shape[0],4)) coeffsArray2only = np.zeros((Nlist.shape[0],1)) coeffsArray24only = np.zeros((Nlist.shape[0],2)) # recover number of timesteps numSteps = tFull.shape[0] # initialize least squares error output err = {"t-model" : np.zeros((Nlist.shape[0],1)), "t2-model" : np.zeros((Nlist.shape[0],1)), "t3-model" : np.zeros((Nlist.shape[0],1)), "t4-model" : np.zeros((Nlist.shape[0],1)), "t2-model only" : np.zeros((Nlist.shape[0],1)), "t2- and t4-models" : np.zeros((Nlist.shape[0],1))} # loop through all resolutions for j in np.arange(0,Nlist.shape[0]): # Find number of positive terms in ROM, in intermediate calculations, and wavenumber array N = Nlist[j] M = Mlist[j] k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # Gather first derivative data for fitting purposes exactEnergy = np.zeros((N,numSteps)) R0Energy = np.zeros((N,numSteps)) R1Energy = np.zeros((N,numSteps)) R2Energy = np.zeros((N,numSteps)) R3Energy = np.zeros((N,numSteps)) R4Energy = np.zeros((N,numSteps)) # plug exact solution into exact RHS and all ROM terms and find energy contribution of each for i in np.arange(0,numSteps): # exact RHS exactRHS,dummyU = markovKdV(uFull[:,i],int(fullM*3/2),alpha) exactEnergy[:,i] = np.real(exactRHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(exactRHS[0:N])*uFull[0:N,i]) # Markov RHS nonlin0,u_full = markovKdV(uFull[0:N,i],M,alpha) R0RHS = nonlin0 R0Energy[:,i] = np.real(R0RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R0RHS[0:N])*uFull[0:N,i]) # First order RHS term F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) G_modes = np.arange(N,2*M-N+1) nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) R1RHS = nonlin1*tFull[i]**(1-tau) R1Energy[:,i] = np.real(R1RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R1RHS[0:N])*uFull[0:N,i]) # Second order RHS term nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) R2RHS = nonlin2*tFull[i]**(2*(1-tau)) R2Energy[:,i] = np.real(R2RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R2RHS[0:N])*uFull[0:N,i]) # Third order RHS term nonlin3,uk6,E,EStar,F,FStar = t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar) R3RHS = nonlin3*tFull[i]**(3*(1-tau)) R3Energy[:,i] = np.real(R3RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R3RHS[0:N])*uFull[0:N,i]) # Fourth order RHS term nonlin4 = t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar) R4RHS = nonlin4*tFull[i]**(4*(1-tau)) R4Energy[:,i] = np.real(R4RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R4RHS[0:N])*uFull[0:N,i]) if j == 0: R0Energy0 = np.copy(R0Energy) R1Energy0 = np.copy(R1Energy) R2Energy0 = np.copy(R2Energy) R3Energy0 = np.copy(R3Energy) R4Energy0 = np.copy(R4Energy) ################################################## # Use least-squares fit to identify coefficients # ################################################## # t-model coefficient coeffsArray1[j,:] = np.sum((exactEnergy - R0Energy)*R1Energy)/np.sum(R1Energy*R1Energy) err["t-model"][j] = np.sum((exactEnergy - R0Energy - coeffsArray1[j,0]*R1Energy)**2) # t2-model coefficient LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy))])) coeffsArray2[j,:] = np.linalg.solve(LSMatrix,LSb) err["t2-model"][j] = np.sum((exactEnergy - R0Energy - coeffsArray2[j,0]*R1Energy - coeffsArray2[j,1]*R2Energy)**2) # t3-model coefficient LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy),np.sum(R1Energy*R3Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy),np.sum(R2Energy*R3Energy)], [np.sum(R3Energy*R1Energy),np.sum(R3Energy*R2Energy),np.sum(R3Energy*R3Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R3Energy*(exactEnergy-R0Energy))])) coeffsArray3[j,:] = np.linalg.solve(LSMatrix,LSb) err["t3-model"][j] = np.sum((exactEnergy - R0Energy - coeffsArray3[j,0]*R1Energy - coeffsArray3[j,1]*R2Energy - coeffsArray3[j,2]*R3Energy)**2) # t4-model coefficient LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy),np.sum(R1Energy*R3Energy),np.sum(R1Energy*R4Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy),np.sum(R2Energy*R3Energy),np.sum(R2Energy*R4Energy)], [np.sum(R3Energy*R1Energy),np.sum(R3Energy*R2Energy),np.sum(R3Energy*R3Energy),np.sum(R3Energy*R4Energy)], [np.sum(R4Energy*R1Energy),np.sum(R4Energy*R2Energy),np.sum(R4Energy*R3Energy),np.sum(R4Energy*R4Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R3Energy*(exactEnergy-R0Energy)),np.sum(R4Energy*(exactEnergy-R0Energy))])) coeffsArray4[j,:] = np.linalg.solve(LSMatrix,LSb) err["t4-model"][j] = np.sum((exactEnergy - R0Energy - coeffsArray4[j,0]*R1Energy - coeffsArray4[j,1]*R2Energy - coeffsArray4[j,2]*R3Energy - coeffsArray4[j,3]*R4Energy)**2) # t2-model with *no* t-model coeffsArray2only[j,:] = np.sum((exactEnergy - R0Energy)*R2Energy)/np.sum(R2Energy*R2Energy) err["t2-model only"][j] = np.sum((exactEnergy - R0Energy - coeffsArray2only[j,0]*R2Energy)**2) # t2-model and t4-model with *no* t-model or t3-model LSMatrix = (np.array([[np.sum(R2Energy*R2Energy),np.sum(R2Energy*R4Energy)], [np.sum(R4Energy*R2Energy),np.sum(R4Energy*R4Energy)]])) LSb = (np.array([np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R4Energy*(exactEnergy-R0Energy))])) coeffsArray24only[j,:] = np.linalg.solve(LSMatrix,LSb) err["t2- and t4-models"][j] = np.sum((exactEnergy - R0Energy - coeffsArray24only[j,0]*R2Energy - coeffsArray24only[j,1]*R4Energy)**2) # Generate plots if desired if plots: # Plot 1: Qualitative comparison of each term contributing to energy movement N = Nlist[0] fig1, ax1 = plt.subplots(3,2) ax1[0,0].plot(tFull,np.sum(exactEnergy[0:N,:],0)) ax1[0,0].set_title("Exact Energy Decay") ax1[0,1].plot(tFull,np.sum(R0Energy0[0:N,:],0)) ax1[0,1].set_title("Markov Energy Decay") ax1[1,0].plot(tFull,np.sum(R2Energy0[0:N,:],0)) ax1[1,0].set_title("R2 Energy Decay") ax1[1,1].plot(tFull,np.sum(R1Energy0[0:N,:],0)) ax1[1,1].set_title("R1 Energy Decay") ax1[2,0].plot(tFull,np.sum(R4Energy0[0:N,:],0)) ax1[2,0].set_title("R4 Energy Decay") ax1[2,1].plot(tFull,np.sum(R3Energy0[0:N,:],0)) ax1[2,1].set_title("R3 Energy Decay") fig1.suptitle("N = "+str(N)+" Energy Decays") plt.tight_layout() # remove axis labels to not crowd plots (since only qualitative comparisons desired) for i in range(0,3): for j in range(0,2): #ax1[i,j].tick_params(labelbottom=False,labelleft=False) ax1[i,j].tick_params(labelleft=False) # compute best fit lines for coefficients in log-log space fitLines = {"t-model" : np.zeros((1,3)), "t2-model" : np.zeros((2,3)), "t3-model" : np.zeros((3,3)), "t4-model" : np.zeros((4,3)), "t2-model only" : np.zeros((1,3)), "t2- and t4-models" : np.zeros((2,3))} fig2, ax2 = plt.subplots(2,2) # t-model ax2[0,0].scatter(np.log(Nlist),np.log(abs(coeffsArray1[:,0]))) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray1[:,0]))) ax2[0,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist)) fitLines["t-model"][:] = np.array([slope,np.exp(intercept),r_value]) # t2-model ax2[0,0].scatter(np.log(Nlist),np.log(abs(coeffsArray2[:,0])),color="red") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2[:,0]))) ax2[0,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "red") fitLines["t2-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray2[:,1])),color="red") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2[:,1]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "red") fitLines["t2-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) # t3-model ax2[0,0].scatter(np.log(Nlist),np.log(abs(coeffsArray3[:,0])),color="green") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,0]))) ax2[0,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "green") fitLines["t3-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray3[:,1])),color="green") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,1]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "green") fitLines["t3-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) ax2[1,0].scatter(np.log(Nlist),np.log(abs(coeffsArray3[:,2])),color="green") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,2]))) ax2[1,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "green") fitLines["t3-model"][2,:] = np.array([slope,np.exp(intercept),r_value]) # t4-model ax2[0,0].scatter(np.log(Nlist),np.log(abs(coeffsArray4[:,0])),color="purple") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,0]))) ax2[0,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "purple") fitLines["t4-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray4[:,1])),color="purple") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,1]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "purple") fitLines["t4-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) ax2[1,0].scatter(np.log(Nlist),np.log(abs(coeffsArray4[:,2])),color="purple") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,2]))) ax2[1,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "purple") fitLines["t4-model"][2,:] = np.array([slope,np.exp(intercept),r_value]) ax2[1,1].scatter(np.log(Nlist),np.log(abs(coeffsArray4[:,3])),color="purple") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,3]))) ax2[1,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "purple") fitLines["t4-model"][3,:] = np.array([slope,np.exp(intercept),r_value]) # t2-model alone ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray2only[:,0])),color="cyan") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2only[:,0]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "cyan") fitLines["t2-model only"][:] = np.array([slope,np.exp(intercept),r_value]) # t2- and t4-model alone ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray24only[:,0])),color="black") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray24only[:,0]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "black") fitLines["t2- and t4-models"][0,:] = np.array([slope,np.exp(intercept),r_value]) ax2[1,1].scatter(np.log(Nlist),np.log(abs(coeffsArray24only[:,1])),color="black") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray24only[:,1]))) ax2[1,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "black") fitLines["t2- and t4-models"][1,:] = np.array([slope,np.exp(intercept),r_value]) ax2[0,0].set_title("t-model") ax2[0,1].set_title("t2-model") ax2[1,0].set_title("t3-model") ax2[1,1].set_title("t4-model") customLines = [plt.Line2D([0],[0], color = "blue"), plt.Line2D([0],[0], color = "red"), plt.Line2D([0],[0], color = "green"), plt.Line2D([0],[0], color = "purple"), plt.Line2D([0],[0], color = "cyan"), plt.Line2D([0],[0], color = "black")] ax2[0,1].legend(customLines,["First Order Model","Second Order Model", "Third Order Model","Fourth Order Model", "Only Second Order","Second and Fourth Order"], prop = {"size":5}) fig2.suptitle("Renormalization Coefficients (log(a) vs log(N))") plt.subplots_adjust(right=0.7) plt.tight_layout() # calculate best fit lines if plotting didn't occur else: fitLines = {"t-model" : np.zeros((1,3)), "t2-model" : np.zeros((2,3)), "t3-model" : np.zeros((3,3)), "t4-model" : np.zeros((4,3)), "t2-model only" : np.zeros((1,3)), "t2- and t4-models" : np.zeros((2,3))} # t-model slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray1[:,0]))) fitLines["t-model"][:] = np.array([slope,np.exp(intercept),r_value]) # second order ROM slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2[:,0]))) fitLines["t2-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2[:,1]))) fitLines["t2-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) # third order ROM slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,0]))) fitLines["t3-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,1]))) fitLines["t3-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,2]))) fitLines["t3-model"][2,:] = np.array([slope,np.exp(intercept),r_value]) # fourth order ROM slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,0]))) fitLines["t4-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,1]))) fitLines["t4-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,2]))) fitLines["t4-model"][2,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,3]))) fitLines["t4-model"][3,:] = np.array([slope,np.exp(intercept),r_value]) # only t2-model slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2only[:,0]))) fitLines["t2-model only"][:] = np.array([slope,np.exp(intercept),r_value]) # only t2- and t4-models slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray24only[:,0]))) fitLines["t2- and t4-models"][0,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray24only[:,1]))) fitLines["t2- and t4-models"][1,:] = np.array([slope,np.exp(intercept),r_value]) return coeffsArray1,coeffsArray2,coeffsArray3,coeffsArray4,coeffsArray2only,coeffsArray24only,fitLines,err def scalingLaws(fullM, endtime, Nlist, Mlist, epsilonList, alpha, tau, timesteps, IC = np.sin, plots = False): """ Finds renormalization coefficients based on a simulations with a range of epsilon values. Parameters ---------- fullM : int Size of full simulation to base fits on endtime : int Endtime of full simulation Nlist : list of ints List of resolutions for which to find coefficients Mlist : list of ints List of intermediary "full" simulations to use for ROMs epsilonList : list of floats size of linear term (stiffness) alpha : float degree of nonlinearity in KdV tau : float time decay modifier timesteps : Numpy array specific timesteps for which to save solution IC : function handle initial condition of simulation (default np.sin) plots : boolean Indicates whether to generate plots (default: False) Returns ------- coeeffsArray1 : Numpy array (length(Nlist),1) Renormalization coefficients for t-model only coeffsArray2 : Numpy array (length(Nlist),2) Renormalization coefficients for t-model and t2-model only coeffsArray3 : Numpy array (length(Nlist),3) Renormalization coefficients for t1-t3-models coeffsArray4 : Numpy array (length(Nlist),4) Renormalization coefficients for t1-t4-models coeffsArray2only : Numpy array (length(Nlist),1) Renormalization coefficients for t2-model only coeffsArray24only : Numpy array (length(Nlist),2) Renormalization coefficients for t2-model and t4-model only fitLines : Dict Contains scaling law fits for each ROM coefficients of form c = -b * N^a Terms given are a, b, and r (correlation coefficient of fit) """ # initialize output arrays c1 = np.zeros((len(Nlist),1,len(epsilonList))) c2 = np.zeros((len(Nlist),2,len(epsilonList))) c3 = np.zeros((len(Nlist),3,len(epsilonList))) c4 = np.zeros((len(Nlist),4,len(epsilonList))) c2only = np.zeros((len(Nlist),1,len(epsilonList))) c24only = np.zeros((len(Nlist),2,len(epsilonList))) # loop through all epsilon values for i in np.arange(0,len(epsilonList)): # renormalize for given epsilon value and save results coeffsArray1,coeffsArray2,coeffsArray3,coeffsArray4,coeffsArray2only,coeffsArray24only,fitLines,err = renormalize(fullM = fullM, endtime = endtime, Nlist = Nlist, Mlist = Mlist, epsilon = epsilonList[i], alpha = alpha, tau = tau, timesteps = timesteps, IC = IC, plots = False) c1[:,:,i] = coeffsArray1 c2[:,:,i] = coeffsArray2 c3[:,:,i] = coeffsArray3 c4[:,:,i] = coeffsArray4 c2only[:,:,i] = coeffsArray2only c24only[:,:,i] = coeffsArray24only # pack results into dictionary for output coefficients = {"t-model" : c1, "t2-model" : c2, "t3-model" : c3, "t4-model" : c4, "t2-model only" : c2only, "t2- and t4-models" : c24only} # initialize output with best fit scaling laws fitLines = {"t-model" : np.zeros((1,3)), "t2-model" : np.zeros((2,3)), "t3-model" : np.zeros((3,3)), "t4-model" : np.zeros((4,3)), "t2-model only" : np.zeros((1,3)), "t2- and t4-models" : np.zeros((2,3))} # find the scaling laws for each coefficient # t-model coefficient fitLines["t-model"][0,:] = epsilonNscalingLaw(c1[:,0,:],Nlist,epsilonList) # Second order model coefficients fitLines["t2-model"][0,:] = epsilonNscalingLaw(c2[:,0,:],Nlist,epsilonList) fitLines["t2-model"][1,:] = epsilonNscalingLaw(c2[:,1,:],Nlist,epsilonList) # Third order model coefficients fitLines["t3-model"][0,:] = epsilonNscalingLaw(c3[:,0,:],Nlist,epsilonList) fitLines["t3-model"][1,:] = epsilonNscalingLaw(c3[:,1,:],Nlist,epsilonList) fitLines["t3-model"][2,:] = epsilonNscalingLaw(c3[:,2,:],Nlist,epsilonList) # Fourth order model coefficients fitLines["t4-model"][0,:] = epsilonNscalingLaw(c4[:,0,:],Nlist,epsilonList) fitLines["t4-model"][1,:] = epsilonNscalingLaw(c4[:,1,:],Nlist,epsilonList) fitLines["t4-model"][2,:] = epsilonNscalingLaw(c4[:,2,:],Nlist,epsilonList) fitLines["t4-model"][3,:] = epsilonNscalingLaw(c4[:,3,:],Nlist,epsilonList) # Only t2-model coefficient fitLines["t2-model only"][0,:] = epsilonNscalingLaw(c2only[:,0,:],Nlist,epsilonList) # Only t2- and t4-models coefficients fitLines["t2- and t4-models"][0,:] = epsilonNscalingLaw(c24only[:,0,:],Nlist,epsilonList) fitLines["t2- and t4-models"][1,:] = epsilonNscalingLaw(c24only[:,1,:],Nlist,epsilonList) # make plots fig1,ax1 = plt.subplots(1,2) fig2,ax2 = plt.subplots(2,2) fig3,ax3 = plt.subplots(3,2) fig4,ax4 = plt.subplots(4,2) fig5,ax5 = plt.subplots(1,2) fig6,ax6 = plt.subplots(2,2) # loop through epsilon values for i in np.arange(len(epsilonList)): # t-model coefficient ax1[0].scatter(np.log(Nlist),np.log(-c1[:,0,i])) # Second order model coefficients ax2[0,0].scatter(np.log(Nlist),np.log(-c2[:,0,i])) ax2[1,0].scatter(np.log(Nlist),np.log(-c2[:,1,i])) # Third order model coefficients ax3[0,0].scatter(np.log(Nlist),np.log(-c3[:,0,i])) ax3[1,0].scatter(np.log(Nlist),np.log(-c3[:,1,i])) ax3[2,0].scatter(np.log(Nlist),np.log(-c3[:,2,i])) # Fourth order model coefficients ax4[0,0].scatter(np.log(Nlist),np.log(-c4[:,0,i])) ax4[1,0].scatter(np.log(Nlist),np.log(-c4[:,1,i])) ax4[2,0].scatter(np.log(Nlist),np.log(-c4[:,2,i])) ax4[3,0].scatter(np.log(Nlist),np.log(-c4[:,3,i])) # Only t2-model ax5[0].scatter(np.log(Nlist),np.log(-c2only[:,0,i])) # Only t2- and t4-models ax6[0,0].scatter(np.log(Nlist),np.log(-c24only[:,0,i])) ax6[1,0].scatter(np.log(Nlist),np.log(-c24only[:,1,i])) # plot best fit lines myEps = epsilonList[i] myFit = fitLines["t-model"][0,:] ax1[0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2-model"][0,:] ax2[0,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2-model"][1,:] ax2[1,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t3-model"][0,:] ax3[0,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t3-model"][1,:] ax3[1,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t3-model"][2,:] ax3[2,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t4-model"][0,:] ax4[0,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t4-model"][1,:] ax4[1,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t4-model"][2,:] ax4[2,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t4-model"][3,:] ax4[3,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2-model only"][0,:] ax5[0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2- and t4-models"][0,:] ax6[0,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2- and t4-models"][1,:] ax6[1,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) # loop through epsilon values for j in np.arange(len(Nlist)): # t-model coefficient ax1[1].scatter(np.log(epsilonList),np.log(-c1[j,0,:])) # Second order model coefficients ax2[0,1].scatter(np.log(epsilonList),np.log(-c2[j,0,:])) ax2[1,1].scatter(np.log(epsilonList),np.log(-c2[j,1,:])) # Third order model coefficients ax3[0,1].scatter(np.log(epsilonList),np.log(-c3[j,0,:])) ax3[1,1].scatter(np.log(epsilonList),np.log(-c3[j,1,:])) ax3[2,1].scatter(np.log(epsilonList),np.log(-c3[j,2,:])) # Fourth order model coefficients ax4[0,1].scatter(np.log(epsilonList),np.log(-c4[j,0,:])) ax4[1,1].scatter(np.log(epsilonList),np.log(-c4[j,1,:])) ax4[2,1].scatter(np.log(epsilonList),np.log(-c4[j,2,:])) ax4[3,1].scatter(np.log(epsilonList),np.log(-c4[j,3,:])) # Only t2-model ax5[1].scatter(np.log(epsilonList),np.log(-c2only[j,0,:])) # Only t2- and t4-models ax6[0,1].scatter(np.log(epsilonList),np.log(-c24only[j,0,:])) ax6[1,1].scatter(np.log(epsilonList),np.log(-c24only[j,1,:])) # plot best fit lines myN = Nlist[j] myFit = fitLines["t-model"][0,:] ax1[1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2-model"][0,:] ax2[0,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2-model"][1,:] ax2[1,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t3-model"][0,:] ax3[0,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t3-model"][1,:] ax3[1,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t3-model"][2,:] ax3[2,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t4-model"][0,:] ax4[0,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t4-model"][1,:] ax4[1,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t4-model"][2,:] ax4[2,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t4-model"][3,:] ax4[3,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2-model only"][0,:] ax5[1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2- and t4-models"][0,:] ax6[0,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2- and t4-models"][1,:] ax6[1,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) # label all plots fig1.suptitle("t-model") ax1[0].set_title("log(a1) vs log(N)") ax1[0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax1[1].set_title("log(a1) vs log(epsilon)") ax1[1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig2.suptitle("Second Order Renormalization") ax2[0,0].set_title("log(a1) vs log(N)") ax2[1,0].set_title("log(a2) vs log(N)") ax2[0,0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax2[0,1].set_title("log(a1) vs log(epsilon)") ax2[1,1].set_title("log(a1) vs log(epsilon)") ax2[0,1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig3.suptitle("Third Order Renormalization") ax3[0,0].set_title("log(a1) vs log(N)") ax3[1,0].set_title("log(a2) vs log(N)") ax3[2,0].set_title("log(a3) vs log(N)") ax3[0,0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax3[0,1].set_title("log(a1) vs log(epsilon)") ax3[1,1].set_title("log(a2) vs log(epsilon)") ax3[2,1].set_title("log(a3) vs log(epsilon)") ax3[0,1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig4.suptitle("Fourth Order Renormalization") ax4[0,0].set_title("log(a1) vs log(N)") ax4[1,0].set_title("log(a2) vs log(N)") ax4[2,0].set_title("log(a3) vs log(N)") ax4[3,0].set_title("log(a4) vs log(N)") ax4[0,0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax4[0,1].set_title("log(a1) vs log(epsilon)") ax4[1,1].set_title("log(a2) vs log(epsilon)") ax4[2,1].set_title("log(a3) vs log(epsilon)") ax4[3,1].set_title("log(a4) vs log(epsilon)") ax4[0,1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig5.suptitle("Only t2-Model Renormalization") ax5[0].set_title("log(a2) vs log(N)") ax5[0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax5[1].set_title("log(a2) vs log(epsilon)") ax5[1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig6.suptitle("Second and Fourth Order Renormalization") ax6[0,0].set_title("log(a2) vs log(N)") ax6[1,0].set_title("log(a4) vs log(N)") ax6[0,0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax6[0,1].set_title("log(a2) vs log(epsilon)") ax6[1,1].set_title("log(a4) vs log(epsilon)") ax6[0,1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() return coefficients,fitLines def epsilonNscalingLaw(coeffArray,Nlist,epsilonList): numEps = len(epsilonList) numN = len(Nlist) epsilonTile = np.tile(epsilonList,(numN,1)) Ntile = np.transpose(np.tile(Nlist,(numEps,1))) LSMatrix = (np.array([[numEps*numN,np.sum(np.log(Ntile)),np.sum(np.log(epsilonTile))], [np.sum(np.log(Ntile)),np.sum(np.log(Ntile)**2),np.sum(np.log(Ntile)*np.log(epsilonTile))], [np.sum(np.log(epsilonTile)),np.sum(np.log(Ntile)*np.log(epsilonTile)),np.sum(np.log(epsilonTile)**2)]]) ) LSb = np.array([np.sum(np.log(np.abs(coeffArray))),np.sum(np.log(np.abs(coeffArray))*np.log(Ntile)),np.sum(np.log(np.abs(coeffArray))*np.log(epsilonTile))]) sol = np.linalg.solve(LSMatrix,LSb) sol[0] = -np.exp(sol[0]) return sol def findError(compareList,exact,t): """ Finds the two norm of the error between a list of ROMs and an exact solution. Parameters ---------- compareList : List of Numpy arrays of size (N,T) Set of state vector evolutions to find errors from exact : Numpy array of size (N,T) Exact solution for the same timesteps t : Numpy array (T,) Timesteps associated with simulations (must all be the same) Returns ------- errList : List of Numpy arrays of size (T,1) Arrays with the two-norm of the error at all timesteps for each ROM """ # find the ROM size N = compareList[0].shape[0] # generate real space solutions realSols = [makeRealSpace(x,N) for x in compareList] exactSol = makeRealSpace(exact,N) # compute two norm of error at all times errList =[np.sum((i - exactSol)**2,0) for i in realSols] return errList def renormalizeRobust(fullM, endtime, Nlist, Mlist, epsilon, alpha, tau, timesteps, IC = np.sin, plots = False): """ Finds renormalization coefficients based on a single simulation. If the simulation doesn't yet exist, it creates it Parameters ---------- fullM : int Size of full simulation to base fits on endtime : int Endtime of full simulation Nlist : list of ints List of resolutions for which to find coefficients Mlist : list of ints List of intermediary "full" simulations to use for ROMs epsilon : float size of linear term (stiffness) alpha : float degree of nonlinearity in KdV tau : float time decay modifier timesteps : Numpy array specific timesteps for which to save solution IC : function handle initial condition of simulation (default np.sin) plots : boolean Indicates whether to generate plots (default: False) Returns ------- coeeffsArray1 : Numpy array (length(Nlist),1) Renormalization coefficients for t-model only coeffsArray2 : Numpy array (length(Nlist),2) Renormalization coefficients for t-model and t2-model only coeffsArray3 : Numpy array (length(Nlist),3) Renormalization coefficients for t1-t3-models coeffsArray4 : Numpy array (length(Nlist),4) Renormalization coefficients for t1-t4-models coeffsArray2only : Numpy array (length(Nlist),1) Renormalization coefficients for t2-model only coeffsArray24only : Numpy array (length(Nlist),2) Renormalization coefficients for t2-model and t4-model only fitLines : Dict Contains scaling law fits for each ROM coefficients of form c = -b * N^a Terms given are a, b, and r (correlation coefficient of fit) """ # Check if full simulation has already been constructed # if so, load it, if not, generate it try: uFull = np.load("u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__+".npy") tFull = np.load("t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__+".npy") except: fullParams = { 'N': fullM, 'M': int(3/2*fullM), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': None, 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } uSimFull = runSim(fullParams) uFull = uSimFull.y tFull = uSimFull.t np.save( "u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__,uFull) np.save( "t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__,tFull) # recover number of timesteps numSteps = tFull.shape[0] # initialize output arrays coeffsArray1 = np.zeros((Nlist.shape[0],numSteps - 30,1)) coeffsArray2 = np.zeros((Nlist.shape[0],numSteps - 30,2)) coeffsArray3 = np.zeros((Nlist.shape[0],numSteps - 30,3)) coeffsArray4 = np.zeros((Nlist.shape[0],numSteps - 30,4)) coeffsArray2only = np.zeros((Nlist.shape[0],numSteps - 30,1)) coeffsArray24only = np.zeros((Nlist.shape[0],numSteps - 30,2)) # loop through all resolutions for j in np.arange(0,Nlist.shape[0]): # Find number of positive terms in ROM, in intermediate calculations, and wavenumber array N = Nlist[j] M = Mlist[j] k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # Gather first derivative data for fitting purposes exactEnergy = np.zeros((N,numSteps)) R0Energy = np.zeros((N,numSteps)) R1Energy = np.zeros((N,numSteps)) R2Energy = np.zeros((N,numSteps)) R3Energy = np.zeros((N,numSteps)) R4Energy = np.zeros((N,numSteps)) # plug exact solution into exact RHS and all ROM terms and find energy contribution of each for i in np.arange(0,numSteps): # exact RHS exactRHS,dummyU = markovKdV(uFull[:,i],int(fullM*3/2),alpha) exactEnergy[:,i] = np.real(exactRHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(exactRHS[0:N])*uFull[0:N,i]) # Markov RHS nonlin0,u_full = markovKdV(uFull[0:N,i],M,alpha) R0RHS = nonlin0 R0Energy[:,i] = np.real(R0RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R0RHS[0:N])*uFull[0:N,i]) # First order RHS term F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) G_modes = np.arange(N,2*M-N+1) nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) R1RHS = nonlin1*tFull[i]**(1-tau) R1Energy[:,i] = np.real(R1RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R1RHS[0:N])*uFull[0:N,i]) # Second order RHS term nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) R2RHS = nonlin2*tFull[i]**(2*(1-tau)) R2Energy[:,i] = np.real(R2RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R2RHS[0:N])*uFull[0:N,i]) # Third order RHS term nonlin3,uk6,E,EStar,F,FStar = t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar) R3RHS = nonlin3*tFull[i]**(3*(1-tau)) R3Energy[:,i] = np.real(R3RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R3RHS[0:N])*uFull[0:N,i]) # Fourth order RHS term nonlin4 = t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar) R4RHS = nonlin4*tFull[i]**(4*(1-tau)) R4Energy[:,i] = np.real(R4RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R4RHS[0:N])*uFull[0:N,i]) ################################################## # Use least-squares fit to identify coefficients # ################################################## for i in np.arange(30,numSteps): exactEnergySnip = exactEnergy[:,0:i] R0EnergySnip = R0Energy[:,0:i] R1EnergySnip = R1Energy[:,0:i] R2EnergySnip = R2Energy[:,0:i] R3EnergySnip = R3Energy[:,0:i] R4EnergySnip = R4Energy[:,0:i] # t-model coefficient coeffsArray1[j,i-30,:] = np.sum((exactEnergySnip - R0EnergySnip)*R1EnergySnip)/np.sum(R1EnergySnip*R1EnergySnip) # t2-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray2[j,i-30,:] = np.linalg.solve(LSMatrix,LSb) # t3-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip),np.sum(R1EnergySnip*R3EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R3EnergySnip)], [np.sum(R3EnergySnip*R1EnergySnip),np.sum(R3EnergySnip*R2EnergySnip),np.sum(R3EnergySnip*R3EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R3EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray3[j,i-30,:] = np.linalg.solve(LSMatrix,LSb) # t4-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip),np.sum(R1EnergySnip*R3EnergySnip),np.sum(R1EnergySnip*R4EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R3EnergySnip),np.sum(R2EnergySnip*R4EnergySnip)], [np.sum(R3EnergySnip*R1EnergySnip),np.sum(R3EnergySnip*R2EnergySnip),np.sum(R3EnergySnip*R3EnergySnip),np.sum(R3EnergySnip*R4EnergySnip)], [np.sum(R4EnergySnip*R1EnergySnip),np.sum(R4EnergySnip*R2EnergySnip),np.sum(R4EnergySnip*R3EnergySnip),np.sum(R4EnergySnip*R4EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R3EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R4EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray4[j,i-30,:] = np.linalg.solve(LSMatrix,LSb) # t2-model with *no* t-model coeffsArray2only[j,i-30,:] = np.sum((exactEnergySnip - R0EnergySnip)*R2EnergySnip)/np.sum(R2EnergySnip*R2EnergySnip) # t2-model and t4-model with *no* t-model or t3-model LSMatrix = (np.array([[np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R4EnergySnip)], [np.sum(R4EnergySnip*R2EnergySnip),np.sum(R4EnergySnip*R4EnergySnip)]])) LSb = (np.array([np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R4EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray24only[j,i-30,:] = np.linalg.solve(LSMatrix,LSb) for ind in np.arange(Nlist.shape[0]): fig1,ax1 = plt.subplots(2,2) fig1.suptitle("N = "+str(Nlist[ind])) ax1[0,0].plot(timesteps[30:],coeffsArray1[ind,:,0],color = "blue") ax1[0,0].plot(timesteps[30:],coeffsArray2[ind,:,0],color = "red") ax1[0,0].plot(timesteps[30:],coeffsArray3[ind,:,0],color = "green") ax1[0,0].plot(timesteps[30:],coeffsArray4[ind,:,0],color = "black") ax1[0,0].set_title("t-model") ax1[0,1].plot([],[],color = "blue") ax1[0,1].plot(timesteps[30:],coeffsArray2[ind,:,1], color = "red") ax1[0,1].plot(timesteps[30:],coeffsArray3[ind,:,1], color = "green") ax1[0,1].plot(timesteps[30:],coeffsArray4[ind,:,1], color = "black") ax1[0,1].plot(timesteps[30:],coeffsArray2only[ind,:,0],color = "cyan") ax1[0,1].plot(timesteps[30:],coeffsArray24only[ind,:,0], color = "magenta") ax1[0,1].set_title("t2-model") ax1[0,1].legend(["First order","Second order","Third order","Fourth order","Only t2","t2 and t4"],prop = {"size":5}) ax1[1,0].plot(timesteps[30:],coeffsArray3[ind,:,2], color = "green") ax1[1,0].plot(timesteps[30:],coeffsArray4[ind,:,2],color = "black") ax1[1,0].set_title("t3-model") ax1[1,1].plot(timesteps[30:],coeffsArray4[ind,:,3], color = "black") ax1[1,1].plot(timesteps[30:],coeffsArray24only[ind,:,1], color = "magenta") ax1[1,1].set_title("t4-model") plt.tight_layout() return coeffsArray1,coeffsArray2,coeffsArray3,coeffsArray4,coeffsArray2only,coeffsArray24only def renormalizeWindow(fullM, endtime, width, Nlist, Mlist, epsilon, alpha, tau, timesteps, IC = np.sin, plots = False): """ Finds renormalization coefficients using sliding window least squares. Parameters ---------- fullM : int Size of full simulation to base fits on endtime : int Endtime of full simulation width : float Size of sliding window to use in fitting Nlist : list of ints List of resolutions for which to find coefficients Mlist : list of ints List of intermediary "full" simulations to use for ROMs epsilon : float size of linear term (stiffness) alpha : float degree of nonlinearity in KdV tau : float time decay modifier timesteps : Numpy array specific timesteps for which to save solution IC : function handle initial condition of simulation (default np.sin) plots : boolean Indicates whether to generate plots (default: False) Returns ------- coeeffsArray1 : Numpy array (length(Nlist),1) Renormalization coefficients for t-model only coeffsArray2 : Numpy array (length(Nlist),2) Renormalization coefficients for t-model and t2-model only coeffsArray3 : Numpy array (length(Nlist),3) Renormalization coefficients for t1-t3-models coeffsArray4 : Numpy array (length(Nlist),4) Renormalization coefficients for t1-t4-models coeffsArray2only : Numpy array (length(Nlist),1) Renormalization coefficients for t2-model only coeffsArray24only : Numpy array (length(Nlist),2) Renormalization coefficients for t2-model and t4-model only fitLines : Dict Contains scaling law fits for each ROM coefficients of form c = -b * N^a Terms given are a, b, and r (correlation coefficient of fit) """ # Check if full simulation has already been constructed # if so, load it, if not, generate it try: uFull = np.load("u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__+".npy") tFull = np.load("t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__+".npy") except: fullParams = { 'N': fullM, 'M': int(3/2*fullM), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': None, 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } uSimFull = runSim(fullParams) uFull = uSimFull.y tFull = uSimFull.t np.save( "u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__,uFull) np.save( "t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__,tFull) # recover number of timesteps numSteps = tFull.shape[0] widthSteps = round(width/(tFull[1]-tFull[0])) # initialize output arrays coeffsArray1 = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,1)) coeffsArray2 = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,2)) coeffsArray3 = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,3)) coeffsArray4 = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,4)) coeffsArray2only = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,1)) coeffsArray24only = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,2)) exact1 = np.zeros((Nlist.shape[0],1)) exact2 = np.zeros((Nlist.shape[0],2)) exact3 = np.zeros((Nlist.shape[0],3)) exact4 = np.zeros((Nlist.shape[0],4)) exact2o = np.zeros((Nlist.shape[0],1)) exact24o = np.zeros((Nlist.shape[0],2)) # loop through all resolutions for j in np.arange(0,Nlist.shape[0]): # Find number of positive terms in ROM, in intermediate calculations, and wavenumber array N = Nlist[j] M = Mlist[j] k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # Gather first derivative data for fitting purposes exactEnergy = np.zeros((N,numSteps)) R0Energy = np.zeros((N,numSteps)) R1Energy = np.zeros((N,numSteps)) R2Energy = np.zeros((N,numSteps)) R3Energy = np.zeros((N,numSteps)) R4Energy = np.zeros((N,numSteps)) # plug exact solution into exact RHS and all ROM terms and find energy contribution of each for i in np.arange(0,numSteps): # exact RHS exactRHS,dummyU = markovKdV(uFull[:,i],int(fullM*3/2),alpha) exactEnergy[:,i] = np.real(exactRHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(exactRHS[0:N])*uFull[0:N,i]) # Markov RHS nonlin0,u_full = markovKdV(uFull[0:N,i],M,alpha) R0RHS = nonlin0 R0Energy[:,i] = np.real(R0RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R0RHS[0:N])*uFull[0:N,i]) # First order RHS term F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) G_modes = np.arange(N,2*M-N+1) nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) if tFull[i] == 0: R1RHS = nonlin1*0 else: R1RHS = nonlin1*tFull[i]**(1-tau) R1Energy[:,i] = np.real(R1RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R1RHS[0:N])*uFull[0:N,i]) # Second order RHS term nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) R2RHS = nonlin2*tFull[i]**(2*(1-tau)) R2Energy[:,i] = np.real(R2RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R2RHS[0:N])*uFull[0:N,i]) # Third order RHS term nonlin3,uk6,E,EStar,F,FStar = t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar) R3RHS = nonlin3*tFull[i]**(3*(1-tau)) R3Energy[:,i] = np.real(R3RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R3RHS[0:N])*uFull[0:N,i]) # Fourth order RHS term nonlin4 = t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar) R4RHS = nonlin4*tFull[i]**(4*(1-tau)) R4Energy[:,i] = np.real(R4RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R4RHS[0:N])*uFull[0:N,i]) exact1[j,:] = np.sum((exactEnergy - R0Energy)*R1Energy)/np.sum(R1Energy*R1Energy) LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy))])) exact2[j,:] = np.linalg.solve(LSMatrix,LSb) LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy),np.sum(R1Energy*R3Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy),np.sum(R2Energy*R3Energy)], [np.sum(R3Energy*R1Energy),np.sum(R3Energy*R2Energy),np.sum(R3Energy*R3Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R3Energy*(exactEnergy-R0Energy))])) exact3[j,:] = np.linalg.solve(LSMatrix,LSb) LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy),np.sum(R1Energy*R3Energy),np.sum(R1Energy*R4Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy),np.sum(R2Energy*R3Energy),np.sum(R2Energy*R4Energy)], [np.sum(R3Energy*R1Energy),np.sum(R3Energy*R2Energy),np.sum(R3Energy*R3Energy),np.sum(R3Energy*R4Energy)], [np.sum(R4Energy*R1Energy),np.sum(R4Energy*R2Energy),np.sum(R4Energy*R3Energy),np.sum(R4Energy*R4Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R3Energy*(exactEnergy-R0Energy)),np.sum(R4Energy*(exactEnergy-R0Energy))])) exact4[j,:] = np.linalg.solve(LSMatrix,LSb) exact2o[j,:] = np.sum((exactEnergy - R0Energy)*R2Energy)/np.sum(R2Energy*R2Energy) LSMatrix = (np.array([[np.sum(R2Energy*R2Energy),np.sum(R2Energy*R4Energy)], [np.sum(R4Energy*R2Energy),np.sum(R4Energy*R4Energy)]])) LSb = (np.array([np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R4Energy*(exactEnergy-R0Energy))])) exact24o[j,:] = np.linalg.solve(LSMatrix,LSb) ################################################## # Use least-squares fit to identify coefficients # ################################################## for i in np.arange(0,numSteps-widthSteps+1): exactEnergySnip = exactEnergy[:,i:i+widthSteps] R0EnergySnip = R0Energy[:,i:i+widthSteps] R1EnergySnip = R1Energy[:,i:i+widthSteps] R2EnergySnip = R2Energy[:,i:i+widthSteps] R3EnergySnip = R3Energy[:,i:i+widthSteps] R4EnergySnip = R4Energy[:,i:i+widthSteps] # t-model coefficient coeffsArray1[j,i,:] = np.sum((exactEnergySnip - R0EnergySnip)*R1EnergySnip)/np.sum(R1EnergySnip*R1EnergySnip) # t2-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray2[j,i,:] = np.linalg.solve(LSMatrix,LSb) # t3-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip),np.sum(R1EnergySnip*R3EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R3EnergySnip)], [np.sum(R3EnergySnip*R1EnergySnip),np.sum(R3EnergySnip*R2EnergySnip),np.sum(R3EnergySnip*R3EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R3EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray3[j,i,:] = np.linalg.solve(LSMatrix,LSb) # t4-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip),np.sum(R1EnergySnip*R3EnergySnip),np.sum(R1EnergySnip*R4EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R3EnergySnip),np.sum(R2EnergySnip*R4EnergySnip)], [np.sum(R3EnergySnip*R1EnergySnip),np.sum(R3EnergySnip*R2EnergySnip),np.sum(R3EnergySnip*R3EnergySnip),np.sum(R3EnergySnip*R4EnergySnip)], [np.sum(R4EnergySnip*R1EnergySnip),np.sum(R4EnergySnip*R2EnergySnip),np.sum(R4EnergySnip*R3EnergySnip),np.sum(R4EnergySnip*R4EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R3EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R4EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray4[j,i,:] = np.linalg.solve(LSMatrix,LSb) # t2-model with *no* t-model coeffsArray2only[j,i,:] = np.sum((exactEnergySnip - R0EnergySnip)*R2EnergySnip)/np.sum(R2EnergySnip*R2EnergySnip) # t2-model and t4-model with *no* t-model or t3-model LSMatrix = (np.array([[np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R4EnergySnip)], [np.sum(R4EnergySnip*R2EnergySnip),np.sum(R4EnergySnip*R4EnergySnip)]])) LSb = (np.array([np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R4EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray24only[j,i,:] = np.linalg.solve(LSMatrix,LSb) for ind in np.arange(Nlist.shape[0]): fig1,ax1 = plt.subplots(2,2) fig1.suptitle("N = "+str(Nlist[ind])) ax1[0,0].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray1[ind,:,0],color = "blue") ax1[0,0].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray2[ind,:,0],color = "red") ax1[0,0].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray3[ind,:,0],color = "green") ax1[0,0].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray4[ind,:,0],color = "black") ax1[0,0].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact1[ind,0],exact1[ind,0]],color="blue",linestyle=":") ax1[0,0].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact2[ind,0],exact2[ind,0]],color="red",linestyle=":") ax1[0,0].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact3[ind,0],exact3[ind,0]],color="green",linestyle=":") ax1[0,0].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact4[ind,0],exact4[ind,0]],color="black",linestyle=":") ax1[0,0].set_title("t-model") ax1[0,1].plot([],[],color = "blue") ax1[0,1].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray2[ind,:,1], color = "red") ax1[0,1].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray3[ind,:,1], color = "green") ax1[0,1].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray4[ind,:,1], color = "black") ax1[0,1].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray2only[ind,:,0],color = "cyan") ax1[0,1].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray24only[ind,:,0], color = "magenta") ax1[0,1].set_title("t2-model") ax1[0,1].legend(["First order","Second order","Third order","Fourth order","Only t2","t2 and t4"],prop = {"size":5}) ax1[0,1].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact2[ind,1],exact2[ind,1]],color="red",linestyle=":") ax1[0,1].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact3[ind,1],exact3[ind,1]],color="green",linestyle=":") ax1[0,1].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact4[ind,1],exact4[ind,1]],color="black",linestyle=":") ax1[0,1].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact2o[ind,0],exact2o[ind,0]],color="cyan",linestyle=":") ax1[0,1].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact24o[ind,0],exact24o[ind,0]],color="magenta",linestyle=":") ax1[1,0].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray3[ind,:,2], color = "green") ax1[1,0].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray4[ind,:,2],color = "black") ax1[1,0].set_title("t3-model") ax1[1,0].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact3[ind,2],exact3[ind,2]],color="green",linestyle=":") ax1[1,0].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact4[ind,2],exact4[ind,2]],color="black",linestyle=":") ax1[1,1].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray4[ind,:,3], color = "black") ax1[1,1].plot(timesteps[0:numSteps-widthSteps+1],coeffsArray24only[ind,:,1], color = "magenta") ax1[1,1].set_title("t4-model") ax1[1,1].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact4[ind,3],exact4[ind,3]],color="black",linestyle=":") ax1[1,1].plot([timesteps[0],timesteps[numSteps-widthSteps+1]],[exact24o[ind,1],exact24o[ind,1]],color="magenta",linestyle=":") plt.tight_layout() return coeffsArray1,coeffsArray2,coeffsArray3,coeffsArray4,coeffsArray2only,coeffsArray24only def renormalizeTau(fullM, endtime, Nlist, Mlist, epsilon, alpha, tauList, timesteps, IC = np.sin): """ Tests a range of tau values for fitting coefficients. Parameters ---------- fullM : int Resolution of full model to use for fitting endtime : float Final time to use for fitting epsilon : float size of linear term (stiffness) alpha : float degree of nonlinearity in KdV timesteps : Numpy array specific timesteps for which to save solution tauList : float Grid of tau values to test (default 0:0.05:1) IC : function handle initial condition of simulation (default np.sin) Returns ------- out : dict Contains optimal coefficients for each model for each value of tau. 't-model' is len(tauList) x len(Nlist) x 1, 't2-model' is len(tauList) x len(Nlist) x 2, etc. err : """ out = {"t-model" : np.zeros((tauList.shape[0],Nlist.shape[0],1)), "t2-model" : np.zeros((tauList.shape[0],Nlist.shape[0],2)), "t3-model" : np.zeros((tauList.shape[0],Nlist.shape[0],3)), "t4-model" : np.zeros((tauList.shape[0],Nlist.shape[0],4)), "t2-model only" : np.zeros((tauList.shape[0],Nlist.shape[0],1)), "t2- and t4-models" : np.zeros((tauList.shape[0],Nlist.shape[0],2)) } errList = [] for i in np.arange(tauList.shape[0]): result = renormalize(fullM, endtime, Nlist, Mlist, epsilon, alpha, tauList[i], timesteps, IC = IC, plots = False) out["t-model"][i,:,:] = result[0] out["t2-model"][i,:,:] = result[1] out["t3-model"][i,:,:] = result[2] out["t4-model"][i,:,:] = result[3] out["t2-model only"][i,:,:] = result[4] out["t2- and t4-models"][i,:,:] = result[5] errList.append(result[7]) return out,errList def automatedROM(N,alpha,epsilon,timesteps,fitTime = 10,tauTests = np.arange(0,1.05,0.05),IC = np.sin,tol = 1e-3): """ Automatically finds optimal tau and coefficients for an ROM and runs the ROM. Also produces reference exact solution Parameters ---------- N : int Resolution of ROM alpha : float degree of nonlinearity in KdV epsilon : float size of linear term (stiffness) timesteps : Numpy array specific timesteps for which to save solution fitTime : float Fits are made over window of exact solution from 0 to fitTime (default 10) tauTests : float Grid of tau values to test (default 0:0.05:1) IC : function handle initial condition of simulation (default np.sin) tol : float Tolerance for declaring full model "resolved" There must be less than this relative error in the first half of the full modes up to the end time (default 10^-3) Returns ------- simMarkov : SciPy integration object Simulation up to end time of Markov model sim2 : SciPy integration object Simulation up to end time of 2nd order model model sim4 : SciPy integration object Simulation up to end time of fourth order model coefficients : errors """ endtime = timesteps[-1] M = 16 unresolved = True #print("Constructing reference exact solution...") try: fileList = glob.glob("u" + '[0-9]*' + "t" + str(int(endtime))+"e"+str(round(epsilon,2)).replace('.','p')+".npy") myFile = fileList[0] uFull = np.load(myFile) fileList = glob.glob("t" + '[0-9]*' + "t" + str(int(endtime))+"e"+str(round(epsilon,2)).replace('.','p')+".npy") myFile = fileList[0] tFull = np.load(myFile) #print("Success! (it was already saved)\n") M = int(re.findall(r'\d+', fileList[0])[0]) except: # find resolved simulation while unresolved: M = 2*M #print("\nCurrently testing M = "+str(M)) fullParams = { 'N': M, 'M': int(3/2*M), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': None, 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } uSimFull = runSim(fullParams) uFull = uSimFull.y tFull = uSimFull.t energyCheck = getMass(uFull,int(M/2)) print("Maximum mass deviation in first "+str(M/2)+" modes: "+str(max(abs(energyCheck - energyCheck[0])))) if max(abs(energyCheck - energyCheck[0])) < tol: print("Success!\n") unresolved = False np.save("u" + str(M) + "t" + str(int(endtime))+"e"+str(round(epsilon,2)).replace('.','p')+".npy",uFull) np.save("t" + str(M) + "t" + str(int(endtime))+"e"+str(round(epsilon,2)).replace('.','p')+".npy",tFull) uFit = uFull[:,tFull<=fitTime] tFit = tFull[tFull<=fitTime] np.save("u" + str(M) + "t" + str(int(fitTime))+"e"+str(round(epsilon,2)).replace('.','p')+".npy",uFit) np.save("t" + str(M) + "t" + str(int(fitTime))+"e"+str(round(epsilon,2)).replace('.','p')+".npy",tFit) # Find specific fitting window #print("Finding coefficients for range of tau values...") coefficients,errors = renormalizeTau(fullM = M, endtime = fitTime, Nlist = np.array([N]), Mlist = np.array([N*3]), epsilon = epsilon, alpha = alpha, tauList = tauTests, timesteps = tFit, IC = IC) err2 = [fit["t2-model only"][0][0] for fit in errors] c2 = coefficients["t2-model only"][err2.index(min(err2))][0] err4 = [fit["t2- and t4-models"][0][0] for fit in errors] c4 = coefficients["t2- and t4-models"][err4.index(min(err4))][0] #print("Coefficients found!\n") paramsMarkov = { 'N': N, 'M': int(3*N), 'alpha': 1, 'epsilon': epsilon, 'tau': 0, 'coeffs': None, 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } params2 = { 'N': N, 'M': int(3*N), 'alpha': 1, 'epsilon': epsilon, 'tau': tauTests[err2.index(min(err2))], 'coeffs': np.array([0,c2[0]]), 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } params4 = { 'N': N, 'M': int(3*N), 'alpha': 1, 'epsilon': epsilon, 'tau': tauTests[err4.index(min(err4))], 'coeffs': np.array([0,c4[0],0,c4[1]]), 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } params2scaling = { 'N': N, 'M': int(3*N), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': np.array([0,-0.7615*N**-5.8081*epsilon**-3.7681]), # NOTE GET THE LATEST SCALING LAWS HERE 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } params4scaling = { 'N': N, 'M': int(3*N), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': np.array([0,-1.2473*N**-5.7356*epsilon**-3.6910,0,-0.3675*N**-11.4719*epsilon**-7.3881]), # NOTE GET THE LATEST SCALING LAWS HERE 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } #print("Running Markov simulation...\n") simMarkov = runSim(paramsMarkov) #print("Running second order simulation with tau = "+str(tauTests[err2.index(min(err2))])+"...\n") sim2 = runSim(params2) #print("Running fourth order simulation with tau = "+str(tauTests[err4.index(min(err4))])+"...") sim4 = runSim(params4) sim2scale = runSim(params2scaling) sim4scale = runSim(params4scaling) return simMarkov,sim2,sim4,sim2scale,sim4scale,coefficients,errors # coeffsArray1,coeffsArray2,coeffsArray3,coeffsArray4,coeffsArray2only,coeffsArray24only,fitLines # old functions that should be defunct # def RHSFullKdV(u,M,alpha,epsilon): # """Computes RHS of KdV with no reduced order model and dealiasing # Parameters # ---------- # u : 1D Numpy Array (M,) # Positive modes of state vector whose RHS is being computed # M : int # Number of positive modes in "full" model for intermediary calculations # alpha : float # Degree of nonlinearity in KdV # epsilon : float # Size of linear term (stiffness) # Returns # ------- # RHS : 1D Numpy Array (M,) # RHS of ODE for state vector u # """ # # compute nonlinear part of RHS using "full" model with M positive modes # # the factor of 3/2 is for dealiasing # a,b = markovKdV(u,int(3/2*M),alpha) # # compute the linear part of the RHS and add it to the nonlinear part # L = u.shape[0] # k = np.arange(0,L) # RHS = 1j*k**3*epsilon**2*u + a[0:L] # return RHS # def RHSMarkovKdV(u,N,M,alpha,epsilon): # """Computes RHS of KdV with no reduced order model and dealiasing # Parameters # ---------- # u : 1D Numpy Array (N,) # Positive modes of state vector whose RHS is being computed # N : int # Number of positive modes in ROM # M : int # Number of positive modes in "full" model for intermediary calculations # alpha : float # Degree of nonlinearity in KdV # epsilon : float # Size of linear term (stiffness) # Returns # ------- # RHS : 1D Numpy Array (N,) # RHS of ODE for state vector u # """ # # compute nonlinear part of RHS using "full" model with M positive modes # a,b = markovKdV(u,M,alpha) # # compute the linear part of the RHS and add it to the nonlinear part # L = u.shape[0] # k = np.arange(0,L) # RHS = 1j*k**3*epsilon**2*u + a[0:L] # return RHS # def RHStModelKdV(u,N,M,alpha,epsilon,t): # """Computes RHS of KdV for the t-model with coefficient one # Parameters # ---------- # u : 1D Numpy Array (N,) # Positive modes of state vector whose RHS is being computed # N : int # Number of positive modes in ROM # M : int # Number of positive modes in "full" model for intermediary calculations # alpha : float # Degree of nonlinearity in KdV # epsilon : float # Size of linear term (stiffness) # t : float # Current timestep # Returns # ------- # RHS : 1D Numpy Array (N,) # RHS of ODE for state vector u # """ # # compute nonlinear part of RHS using "full" model with M positive modes # nonlin0,u_full = markovKdV(u,M,alpha) # # define which modes are resolved in full array # F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) # # compute t-model term # nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) # # compute the linear part of the RHS and add it to the nonlinear part # L = u.shape[0] # k = np.arange(0,L) # # combine linear, Markov, and t-model terms # RHS = 1j*k**3*epsilon**2*u + nonlin0[0:L] + nonlin1[0:L]*t # return RHS # def RHSt2ModelKdV(u,N,M,alpha,epsilon,t,tau,coeffs): # """Computes RHS of KdV for the t2-model with variable coefficients # Parameters # ---------- # u : 1D Numpy Array (N,) # Positive modes of state vector whose RHS is being computed # N : int # Number of positive modes in ROM # M : int # Number of positive modes in "full" model for intermediary calculations # alpha : float # Degree of nonlinearity in KdV # epsilon : float # Size of linear term (stiffness) # t : float # Current timestep # tau : float # Time decay modifier (default 0 - time dependence of memory fully retained) # coeffs : 1D Numpy Array (2,1) # Renormalization coefficients for t-model and t2-model # Returns # ------- # RHS : 1D Numpy Array (N,) # RHS of ODE for state vector u # """ # # compute nonlinear part of RHS using "full" model with M positive modes # nonlin0,u_full = markovKdV(u,M,alpha) # # define which modes are resolved / unresolved in full array # F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) # G_modes = np.arange(N,2*M-N+1) # # compute t-model term # nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) # k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # # compute t2-model term # nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) # # combine linear, Markov, t-model, and t2-model terms # RHS = 1j*k[0:N]**3*epsilon**2*u + nonlin0[0:N] + coeffs[0]*nonlin1[0:N]*t**(1-tau) + coeffs[1]*nonlin2[0:N]*t**(2*(1-tau)) # return RHS # def RHSt4ModelKdV(u,N,M,alpha,epsilon,t,tau,coeffs): # """Computes RHS of KdV for the t4-model with variable coefficients # Parameters # ---------- # u : 1D Numpy Array (N,) # Positive modes of state vector whose RHS is being computed # N : int # Number of positive modes in ROM # M : int # Number of positive modes in "full" model for intermediary calculations # alpha : float # Degree of nonlinearity in KdV # epsilon : float # Size of linear term (stiffness) # t : float # Current timestep # tau : float # Time decay modifier (default 0 - time dependence of memory fully retained) # coeffs : 1D Numpy Array (2,1) # Renormalization coefficients for t-model and t2-model # Returns # ------- # RHS : 1D Numpy Array (N,) # RHS of ODE for state vector u # """ # # compute nonlinear part of RHS using "full" model with M positive modes # nonlin0,u_full = markovKdV(u,M,alpha) # # define which modes are resolved / unresolved in full array # F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) # G_modes = np.arange(N,2*M-N+1) # # compute t-model term # nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) # k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # # compute t2-model term # nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) # # compute t3-model term # nonlin3,uk6,E,EStar,F,FStar = t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar) # # compute t4-model term # nonlin4 = t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar) # # combine linear, Markov, t-model, and t2-model terms # RHS = (1j*k[0:N]**3*epsilon**2*u + nonlin0[0:N] + coeffs[0]*nonlin1[0:N]*t**(1-tau) # + coeffs[1]*nonlin2[0:N]*t**(2*(1-tau)) # + coeffs[2]*nonlin3[0:N]*t**(3*(1-tau)) # + coeffs[3]*nonlin4[0:N]*t**(4*(1-tau))) # return RHS # def nonRenormSim(N, endtime = 10, alpha = 1, epsilon = 0.1, IC = np.sin, timesteps = None): # """Runs a non-renormalized simulation of KdV - use large N so it is resolved # Parameters # ---------- # N : int # Number of positive modes in simulation # endtime : float # Final time to run simulation to (default 10) # alpha : float # Degree of nonlinearity in KdV (default 1) # epsilon : float # Size of linear term (stiffness) (default 0.1) # IC : function handle # Initial condition (default sin(x)) # Returns # ------- # uSim : ODE Solution object # Data from completed simulation # """ # # generate initial condition # x = np.linspace(0,2*np.pi-2*np.pi/(2*N),2*N) # y = IC(x) # uFull = fftnorm(y) # u = uFull[0:N] # # define RHS for integration # # (RHS FullKdV uses "full" size with 3/2*N positive modes to dealias results) # def myRHS(t,y): # out = RHSFullKdV(y,N,alpha,epsilon) # return out # # run simulation using stiff solver # uSim = sp.integrate.solve_ivp(fun = myRHS, t_span = [0,endtime], y0 = u,method = "BDF", t_eval = timesteps) # return uSim # def markovSim(N, M = None, endtime = 10, alpha = 1, epsilon = 0.1, IC = np.sin, timesteps = None): # """Runs a non-renormalized simulation of KdV - use large N so it is resolved # Parameters # ---------- # N : int # Number of positive modes in simulation # M : int # Number of positive modes in "full" model for intermediary calculations (default 2N) # endtime : float # Final time to run simulation to (default 10) # alpha : float # Degree of nonlinearity in KdV (default 1) # epsilon : float # Size of linear term (stiffness) (default 0.1) # IC : function handle # Initial condition (default sin(x)) # Returns # ------- # uSim : ODE Solution object # Data from completed simulation # """ # # default value of M is double N # if M is None: # M = 2*N # # generate initial condition # x = np.linspace(0,2*np.pi-2*np.pi/(2*N),2*N) # y = IC(x) # uFull = fftnorm(y) # u = uFull[0:N] # # define RHS for integration # # (RHS FullKdV uses "full" size with 3/2*N positive modes to dealias results) # def myRHS(t,y): # out = RHSMarkovKdV(y,N,M,alpha,epsilon) # return out # # run simulation using stiff solver # uSim = sp.integrate.solve_ivp(fun = myRHS, t_span = [0,endtime], y0 = u,method = "BDF", t_eval = timesteps) # return uSim # def tModelSim(N, M = None, endtime = 10, alpha = 1, epsilon = 0.1, IC = np.sin, timesteps = None): # """Runs a basic t-model simulation of KdV # Parameters # ---------- # N : int # Number of positive modes in simulation # M : int # Number of positive modes in "full" model for intermediary calculations (default 3N) # endtime : float # Final time to run simulation to (default 10) # alpha : float # Degree of nonlinearity in KdV (default 1) # epsilon : float # Size of linear term (stiffness) (default 0.1) # IC : function handle # Initial condition (default sin(x)) # timesteps : Numpy array (t,1) # Specific timesteps to save # Returns # ------- # uSim : ODE Solution object # Data from completed simulation # """ # # default value of M is triple N # if M is None: # M = 3*N # # generate initial condition # x = np.linspace(0,2*np.pi-2*np.pi/(2*N),2*N) # y = IC(x) # uFull = fftnorm(y) # u = uFull[0:N] # # define RHS for integration # # (RHS FullKdV uses "full" size with 3/2*N positive modes to dealias results) # def myRHS(t,y): # out = RHStModelKdV(y,N,M,alpha,epsilon,t) # return out # # run simulation using stiff solver # uSim = sp.integrate.solve_ivp(fun = myRHS, t_span = [0,endtime], y0 = u,method = "BDF", t_eval = timesteps) # return uSim # def t2ModelSim(N, M = None, endtime = 10, alpha = 1, epsilon = 0.1, tau = 0, IC = np.sin, timesteps = None, coeffs = np.array([1,-0.5])): # """Runs a t2-model simulation of KdV # Parameters # ---------- # N : int # Number of positive modes in simulation # M : int # Number of positive modes in "full" model for intermediary calculations (default 3N) # endtime : float # Final time to run simulation to (default 10) # alpha : float # Degree of nonlinearity in KdV (default 1) # epsilon : float # Size of linear term (stiffness) (default 0.1) # tau : float # Time decay modifier (default 0 - time dependence of memory fully retained) # IC : function handle # Initial condition (default sin(x)) # timesteps : Numpy array (t,1) # Specific timesteps to save # coeffs : Numpy array (2,1) # Renormalization coefficients on t-model and t2-model terms (default [1,-0.5]) # Returns # ------- # uSim : ODE Solution object # Data from completed simulation # """ # # default value of M is triple N # if M is None: # M = 3*N # # generate initial condition # x = np.linspace(0,2*np.pi-2*np.pi/(2*N),2*N) # y = IC(x) # uFull = fftnorm(y) # u = uFull[0:N] # # define RHS for integration # # (RHS FullKdV uses "full" size with 3/2*N positive modes to dealias results) # def myRHS(t,y): # out = RHSt2ModelKdV(y,N,M,alpha,epsilon,t,tau,coeffs) # return out # # run simulation using stiff solver # uSim = sp.integrate.solve_ivp(fun = myRHS, t_span = [0,endtime], y0 = u,method = "BDF", t_eval = timesteps) # return uSim # def t4ModelSim(N, M = None, endtime = 10, alpha = 1, epsilon = 0.1, tau = 0, IC = np.sin, timesteps = None, coeffs = np.array([1,-0.5,1/6,-1/24])): # """Runs a t2-model simulation of KdV # Parameters # ---------- # N : int # Number of positive modes in simulation # M : int # Number of positive modes in "full" model for intermediary calculations (default 3N) # endtime : float # Final time to run simulation to (default 10) # alpha : float # Degree of nonlinearity in KdV (default 1) # epsilon : float # Size of linear term (stiffness) (default 0.1) # tau : float # Time decay modifier (default 0 - time dependence of memory fully retained) # IC : function handle # Initial condition (default sin(x)) # timesteps : Numpy array (t,1) # Specific timesteps to save # coeffs : Numpy array (4,1) # Renormalization coefficients on ROM terms (default [1,-0.5,1/6,-1/24]) # Returns # ------- # uSim : ODE Solution object # Data from completed simulation # """ # # default value of M is triple N # if M is None: # M = 3*N # # generate initial condition # x = np.linspace(0,2*np.pi-2*np.pi/(2*N),2*N) # y = IC(x) # uFull = fftnorm(y) # u = uFull[0:N] # # define RHS for integration # # (RHS FullKdV uses "full" size with 3/2*N positive modes to dealias results) # def myRHS(t,y): # out = RHSt4ModelKdV(y,N,M,alpha,epsilon,t,tau,coeffs) # return out # # run simulation using stiff solver # uSim = sp.integrate.solve_ivp(fun = myRHS, t_span = [0,endtime], y0 = u,method = "BDF", t_eval = timesteps) # return uSim # def makeAnimation(u,t,N): # """Takes a completed simulation and creates a real space animation of a subset of modes # Parameters # ---------- # u : Numpy array (M,t) # Output of simulation giving energy in first M positive modes for all timesteps t # t : Numpy array (t,1) # Timesteps associated with the simulation # N : int # Number of positive modes to use in real space # Returns # ------- # anim : Animation object # Real space solution animated # """ # # generate real space solutions # xgrid,yarray = makeRealSpace(u,N) # # initialize figure # myFig = plt.figure() # ax = plt.subplot(111) # ax.axis(xmin = 0,xmax = 2*np.pi,ymin = -2, ymax = 3) # myLine, = ax.plot([],[], 'b') # # define function to draw each frame # def makeFrame(n): # myLine.set_data(xgrid,yarray[:,n]) # plt.title('t = '+str(round(t[n],1))) # return myLine # # generate animation # anim = animation.FuncAnimation(fig = myFig,func = makeFrame,frames = t.shape[0]) # return anim # def makeAnimationFullMarkov(uFull,uMarkov,t): # """Takes a completed full and Markov simulation and creates a real space animation comparing them # Parameters # ---------- # uFull : Numpy array (M,t) # Output of full simulation giving energy in first M positive modes for all timesteps t # uMarkov : Numpy array (M,t) # Output of Markov ROM simulation of size N for all timesteps t # t : Numpy array (t,1) # Timesteps associated with the simulation # Returns # ------- # anim : Animation object # Real space solution animated # """ # N = uMarkov.shape[0] # # generate real space solutions # xgrid,yarrayFull = makeRealSpace(uFull,N) # xgrid,yarrayMarkov = makeRealSpace(uMarkov,N) # # initialize figure # myFig = plt.figure() # ax = plt.subplot(111) # ax.axis(xmin = 0,xmax = 2*np.pi-np.pi/N,ymin = -2, ymax = 3) # myFullLine, = ax.plot([],[], 'b') # myMarkovLine, = ax.plot([],[], 'r') # # define function to draw each frame # def makeFrame(n): # myFullLine.set_data(xgrid,yarrayFull[:,n]) # myMarkovLine.set_data(xgrid,yarrayMarkov[:,n]) # plt.title('t = '+str(round(t[n],1))) # plt.legend((myFullLine,myMarkovLine),("Exact Solution","Markov Model")) # return myFullLine,myMarkovLine # # generate animation # anim = animation.FuncAnimation(fig = myFig,func = makeFrame,frames = t.shape[0]) # return anim # def makeAnimationtModel(uFull,uMarkov,utModel,t): # """Takes a completed full, Markov, and t-model simulation and creates a real space animation comparing them # Parameters # ---------- # uFull : Numpy array (M,t) # Output of full simulation giving energy in first M positive modes for all timesteps t # uMarkov : Numpy array (M,t) # Output of Markov ROM simulation of size N for all timesteps t # utmodel : Numpy array (M,t) # Output of t-model ROM simulation of size N for all timesteps t # t : Numpy array (t,1) # Timesteps associated with the simulation # Returns # ------- # anim : Animation object # Real space solution animated # """ # N = uMarkov.shape[0] # # generate real space solutions # xgrid,yarrayFull = makeRealSpace(uFull,N) # xgrid,yarrayMarkov = makeRealSpace(uMarkov,N) # xgrid,yarraytModel = makeRealSpace(utModel,N) # # initialize figure # myFig = plt.figure() # ax = plt.subplot(111) # ax.axis(xmin = 0,xmax = 2*np.pi-np.pi/N,ymin = -2, ymax = 3) # myFullLine, = ax.plot([],[], 'b') # myMarkovLine, = ax.plot([],[], 'r') # mytModelLine, = ax.plot([],[], 'g') # # define function to draw each frame # def makeFrame(n): # myFullLine.set_data(xgrid,yarrayFull[:,n]) # myMarkovLine.set_data(xgrid,yarrayMarkov[:,n]) # mytModelLine.set_data(xgrid,yarraytModel[:,n]) # plt.title('t = '+str(round(t[n],1))) # plt.legend((myFullLine,myMarkovLine,mytModelLine),("Exact Solution","Markov Model","t-Model")) # return myFullLine,myMarkovLine # # generate animation # anim = animation.FuncAnimation(fig = myFig,func = makeFrame,frames = t.shape[0]) # return anim # def makeAnimationROMS(uFull,uMarkov,utModel,ut2Model,ut4Model,t): # """ # """ # N = uMarkov.shape[0] # # generate real space solutions # xgrid,yarrayFull = makeRealSpace(uFull,N) # xgrid,yarrayMarkov = makeRealSpace(uMarkov,N) # xgrid,yarraytModel = makeRealSpace(utModel,N) # xgrid,yarrayt2Model = makeRealSpace(ut2Model,N) # xgrid,yarrayt4Model = makeRealSpace(ut4Model,N) # # initialize figure # myFig = plt.figure() # ax = plt.subplot(111) # ax.axis(xmin = 0,xmax = 2*np.pi-np.pi/N,ymin = -2, ymax = 3) # myFullLine, = ax.plot([],[], 'blue') # myMarkovLine, = ax.plot([],[], 'red') # mytModelLine, = ax.plot([],[], 'green') # myt2ModelLine, = ax.plot([],[], 'purple') # myt4ModelLine, = ax.plot([],[], 'black') # # define function to draw each frame # def makeFrame(n): # myFullLine.set_data(xgrid,yarrayFull[:,n]) # myMarkovLine.set_data(xgrid,yarrayMarkov[:,n]) # mytModelLine.set_data(xgrid,yarraytModel[:,n]) # myt2ModelLine.set_data(xgrid,yarrayt2Model[:,n]) # myt4ModelLine.set_data(xgrid,yarrayt4Model[:,n]) # plt.title('t = '+str(round(t[n],1))) # plt.legend((myFullLine,myMarkovLine,mytModelLine,myt2ModelLine,myt4ModelLine),("Exact Solution","Markov Model","t-Model","2nd Order CMA","4th Order CMA")) # return myFullLine,myMarkovLine # # generate animation # anim = animation.FuncAnimation(fig = myFig,func = makeFrame,frames = t.shape[0]) # return anim
[ "jrprice@pugetsound.edu" ]
jrprice@pugetsound.edu
b15cb12b89fe63134e1f752e00d8353aa705616b
82eff9bf5b66359786b83e9e63669bbed68135f7
/tools/read_yaml.py
d90210f36c111b41775f94942ad61003683135b0
[]
no_license
chunshan160/requests_pytest
a342cd8a9c26b6ef94a35dfce8838262a22727e5
2d94336c475e53bd9e652ea1b9223d398b4f20ec
refs/heads/master
2023-03-14T04:31:57.244132
2021-02-27T07:24:47
2021-02-27T07:24:47
327,075,031
0
0
null
null
null
null
UTF-8
Python
false
false
294
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Time :2020/9/10 13:55 # @Author :春衫 # @File :read_yaml.py import yaml def read_yaml(file_path): fs = open(file_path, encoding="utf-8") data = yaml.load(fs,Loader=yaml.FullLoader) return data if __name__ == '__main__': pass
[ "1605936478@qq.com" ]
1605936478@qq.com
31a4117bf7d5808eb49856299756dd6f40979207
a652341f459d51821135c898dbed74f235522d9b
/rc_hr_payroll/models/account_move.py
c4c3f0f4824c5523d9bf655d2946c887d5486aec
[]
no_license
cokotracy/Rack-Centre-Limited
4faacb786b7970ea6aae14784f1b8f2aa41ac089
d99ad07828c67165e6182def5c5288fc70c964ec
refs/heads/main
2023-08-18T23:58:18.035063
2021-10-08T09:19:00
2021-10-08T09:19:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
555
py
# -*- coding: utf-8 -*- from odoo import models, fields, api class AccountJournal(models.Model): _inherit = 'account.move' state = fields.Selection(selection=[ ('draft', 'Draft'), ('submit', 'Submitted'), ('approve', 'Approved'), ('posted', 'Posted'), ('cancel', 'Cancelled'), ], string='Status', required=True, readonly=True, copy=False, tracking=True, default='draft') def action_submit(self): self.state = "submit" def action_approve(self): self.state = "approve"
[ "padinality@yahoo.com" ]
padinality@yahoo.com
d1d4d820a0192a57ce3f08ff8119ef3b48143c2f
8b57fa887dd292ec65bd34de881d4f4cf6d88b61
/PY/longestword01.py
9d37a8172ec456931af005e4ee7f3c03275ac235
[]
no_license
ggerod/Code
f83b8d4f15f93d61f20c467bb9ed686ffd61805f
61108017191bce3e3ed93d954ec795fac3666cba
refs/heads/master
2020-06-27T10:47:05.925558
2019-12-12T21:43:25
2019-12-12T21:43:25
199,931,500
1
0
null
null
null
null
UTF-8
Python
false
false
544
py
#!/usr/local/bin/python3 filename = "/usr/share/dict/words" file = open(filename, "r") longestword='' longestwordlen=0 for line in file: word=(line.strip()).casefold() if (len(word) <= longestwordlen): continue norepeat = True for char in word: if (word.count(char) > 1): norepeat=False continue if (norepeat): longestword=word longestwordlen = len(word) print("new longest word =",word) print("The longest word with no repeated letters in ",filename, " is: ",longestword)
[ "glen_gerod@comcast.com" ]
glen_gerod@comcast.com
a6b1ec75c16eda1006d8b4afae13de3fc33f9b90
e378f1b2d57000d87ee58a981642192fe8101b1c
/tests/test_functional.py
9e59336a9639e1962bf1c3396c39d621050b2f9a
[ "MIT" ]
permissive
gjo/pyramid_services_autowire
267fbed3425d89687c8c9de0c7cc85252f17be5d
11eeb7afe1c207c077f9440a3b0b4ceacb6fbfef
refs/heads/master
2020-03-19T15:54:45.663611
2018-06-09T07:50:03
2018-06-09T07:50:03
136,691,404
1
0
null
null
null
null
UTF-8
Python
false
false
5,145
py
# -*- coding: utf-8 -*- import unittest from pyramid.config import Configurator from pyramid.request import Request from zope.interface import Interface, implementer class FunctionalTestCase(unittest.TestCase): def test_does_not_wired(self): from pyramid_services_autowire import Autowire, DoesNotWired class IDepSvc(Interface): pass class Svc(object): dep_svc = Autowire(IDepSvc) self.assertIsInstance(Svc.dep_svc, Autowire) svc = Svc() self.assertRaises(DoesNotWired, getattr, svc, 'dep_svc') def test_by_iface(self): from pyramid_services_autowire import Autowire class ISvc(Interface): pass class IDepSvc(Interface): pass class Svc(object): dep_svc = Autowire(IDepSvc) config = Configurator() config.include('pyramid_services_autowire') dep_svc = object() config.register_autowire(Svc, ISvc) config.register_service(dep_svc, IDepSvc) def aview(request): svc = request.find_service(ISvc) self.assertIsInstance(svc, Svc) self.assertIs(svc.dep_svc, dep_svc) return request.response config.add_route('root', pattern='/') config.add_view(aview, route_name='root') app = config.make_wsgi_app() resp = Request.blank('/').get_response(app) self.assertEqual(resp.status_code, 200) def test_by_contextual(self): from pyramid_services_autowire import Autowire class IRoot(Interface): pass class ISome(Interface): pass @implementer(ISome) class Some(object): def __init__(self, parent, name): self.__parent__ = parent self.__name__ = name @implementer(IRoot) class Root(dict): def __init__(self, request): super(Root, self).__init__() self['some'] = Some(self, 'some') class ISvc(Interface): pass class IDepSvc(Interface): pass class Svc(object): dep_svc = Autowire(IDepSvc, is_contextual=True) config = Configurator(root_factory=Root) config.include('pyramid_services_autowire') dep_svc_root = object() dep_svc_some = object() config.register_autowire(Svc, ISvc) config.register_service(dep_svc_root, IDepSvc, context=IRoot) config.register_service(dep_svc_some, IDepSvc, context=ISome) def root_view(request): svc = request.find_service(ISvc) self.assertIsInstance(svc, Svc) self.assertIs(svc.dep_svc, dep_svc_root) return request.response def some_view(request): svc = request.find_service(ISvc) self.assertIsInstance(svc, Svc) self.assertIs(svc.dep_svc, dep_svc_some) return request.response config.add_view(root_view, context=IRoot) config.add_view(some_view, context=ISome) app = config.make_wsgi_app() resp = Request.blank('/').get_response(app) self.assertEqual(resp.status_code, 200) resp = Request.blank('/some/').get_response(app) self.assertEqual(resp.status_code, 200) def test_by_name(self): from pyramid_services_autowire import Autowire class ISvc(Interface): pass class Svc(object): dep_svc = Autowire(name='foo') config = Configurator() config.include('pyramid_services_autowire') dep_svc = object() config.register_autowire(Svc, ISvc) config.register_service(dep_svc, name='foo') def aview(request): svc = request.find_service(ISvc) self.assertIsInstance(svc, Svc) self.assertIs(svc.dep_svc, dep_svc) return request.response config.add_route('root', pattern='/') config.add_view(aview, route_name='root') app = config.make_wsgi_app() resp = Request.blank('/').get_response(app) self.assertEqual(resp.status_code, 200) def test_by_name_property(self): from pyramid_services_autowire import Autowire class ISvc(Interface): pass class Svc(object): dep_svc = Autowire(name_property='foo') def __init__(self, foo=None): self.foo = foo config = Configurator() config.include('pyramid_services_autowire') dep_svc = object() config.register_autowire(Svc, ISvc, foo='foo') config.register_service(dep_svc, name='foo') def aview(request): svc = request.find_service(ISvc) self.assertIsInstance(svc, Svc) self.assertIs(svc.dep_svc, dep_svc) return request.response config.add_route('root', pattern='/') config.add_view(aview, route_name='root') app = config.make_wsgi_app() resp = Request.blank('/').get_response(app) self.assertEqual(resp.status_code, 200)
[ "gjo.ext@gmail.com" ]
gjo.ext@gmail.com
7d60b4ea277ff718ac71e522b814eb5897edeeef
265eb14569da3c97ff7d7f4ba8b73a39e41bf120
/atv.py
02c274466046a37323a7316674b7ccffd3a12e79
[]
no_license
skandamurthy/vehicle
1108d2330c930864325d8b477b2279340cc61cbb
be59e69a95e5caca7ed2e972f1a21d443e5a399c
refs/heads/master
2020-03-24T10:54:26.343589
2018-08-27T20:27:49
2018-08-27T20:27:49
142,670,839
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
from bike import Bike from car import Car class Atv(Bike,Car): fuel_used ='Petrol' def __init__(self,fuel_used,handle,is_gear,ac,steering_wheel,seat_belt,audio_player,no_of_wheels,speed,weight,milage,colour): self.fuel_used =fuel_used Bike.__init__(self,handle,is_gear,no_of_wheels,speed,weight,milage,colour) Car.__init__(self,ac,steering_wheel,seat_belt,audio_player,no_of_wheels,speed,weight,milage,colour) def features(): print("Its an hybrid of Car and Bike")
[ "skandasneha@gmail.com" ]
skandasneha@gmail.com
6350e7fa49e2ce61ba60225c83d5827aa6da7a6f
7703a8b5ebdcdf38ce296d84899392213c741236
/ush/hafs/ww3.py
ad9e7da05a45678e0037d4f5b80de4811ef8b363
[]
no_license
hafs-community/HAFS
b1add5a86b18e00e6a13830dfaa770a3560fd8ab
cba6b3649eb7a25bb8be392db1901f47d3287c93
refs/heads/develop
2023-08-16T21:25:31.668385
2023-07-28T20:24:05
2023-07-28T20:24:05
176,363,600
22
48
null
2023-08-31T22:06:20
2019-03-18T20:23:54
Fortran
UTF-8
Python
false
false
44,649
py
#! /usr/bin/env python3 """This module handles WW3 related scripts for HAFS system.""" __all__ = ['WW3Init', 'WW3Post'] import os, sys, re import produtil.datastore, produtil.fileop, produtil.cd, produtil.run, produtil.log import produtil.dbnalert import tcutil.numerics import hafs.hafstask, hafs.exceptions import hafs.namelist, hafs.input import hafs.launcher, hafs.config from produtil.datastore import FileProduct, RUNNING, COMPLETED, FAILED, UpstreamFile from produtil.fileop import make_symlink, deliver_file, wait_for_files from produtil.dbnalert import DBNAlert from produtil.cd import NamedDir, TempDir from produtil.run import mpi, mpirun, run, runstr, checkrun, exe, bigexe, alias from tcutil.numerics import to_datetime, to_datetime_rel, to_fraction, to_timedelta from hafs.exceptions import WW3InputError prodnames={ 'mod_def': ( './mod_def.ww3', '{intercom}/ww3/mod_def.ww3' ), 'ww3_mesh': ( './ww3_mesh.nc', '{intercom}/ww3/ww3_mesh.nc' ), 'wind': ( './wind.ww3', '{intercom}/ww3/wind.ww3' ), 'current': ( './current.ww3', '{intercom}/ww3/current.ww3' ), 'restart': ( './restart.ww3', '{intercom}/ww3/restart_init.ww3' ) } # 'ww3_shel': ( './ww3_shel.inp', '{intercom}/ww3/ww3_shel.inp' ) } ######################################################################## class WW3Init(hafs.hafstask.HAFSTask): def __init__(self,dstore,conf,section,taskname=None,fcstlen=126, outstep=21600, pntstep=21600, rststep=21600, **kwargs): """Creates a WW3Init dstore - the produtil.datastore.Datastore to use conf - the HAFSConfig to use section - the section name for this task taskname - the task name. Default: section fcstlen - the forecast length in hours outstep - the output step in seconds pntstep - the pntout step in seconds rststep - the restart output step in seconds Other keyword arguments are passed to the superclass constructor.""" super(WW3Init,self).__init__(dstore,conf,section,taskname=taskname,**kwargs) self._make_products() self.fcstlen=float(fcstlen) self.outstep=int(outstep) self.pntstep=int(pntstep) self.rststep=int(rststep) def _make_products(self): """Creates FileProduct objects for all output files. The outdir is the directory to which the WW3 package output its final files.""" self._products=dict() atime=tcutil.numerics.to_datetime(self.conf.cycle) ww3_bdy=self.confstr('ww3_bdy','no') if ww3_bdy == 'yes': prodnames['nest']=( './nest.ww3', '{intercom}/ww3/nest.ww3' ) with self.dstore.transaction(): for prodname,filepaths in prodnames.items(): (localpath,compath)=filepaths prod=produtil.datastore.FileProduct( self.dstore,prodname,self.taskname) prod.location=self.timestr(compath,atime,atime) prod['localpath'] = localpath self._products[prodname]=( prod,localpath ) def products(self,name=None,**kwargs): """Iterate over all products.""" for prodname,stuff in self._products.items(): (prod,localpath)=stuff if name is None or name==prod.prodname: yield prod def inputiter(self): atime=to_datetime(self.conf.cycle) etime=to_datetime_rel(3600*self.fcstlen,atime) interval=to_fraction(self.confint('input_step',6*3600)) dataset=self.confstr('gfs_dataset','gfs') item=self.confstr('gfs_item','gfs') epsilon=to_timedelta(interval/10) ende=to_datetime_rel(epsilon,etime) when=atime while when<ende: yield dict(self.taskvars,dataset=dataset,item=item,ftime=when,atime=atime) when=to_datetime_rel(interval,when) ww3_bdy=self.confstr('ww3_bdy','no') if ww3_bdy == 'yes': atime=to_datetime(self.conf.cycle) wtime=to_datetime_rel(-6*3600,atime) dataset=self.confstr('gfswave_dataset','gfswave') item=self.confstr('ww3bdy_item','ww3bdy_ibp') when=wtime yield dict(self.taskvars,dataset=dataset,item=item,ftime=when,atime=when,optional=True) ww3_rst=self.confstr('ww3_rst','no') print('ww3_rst=%s'%(ww3_rst)) if ww3_rst == 'yes' or ww3_rst == 'always': atime=to_datetime(self.conf.cycle) wtime=to_datetime_rel(-6*3600,atime) dataset=self.confstr('gdaswave_dataset','gdaswave') item=self.confstr('ww3rst_item','ww3rst_gnh_10m') when=wtime yield dict(self.taskvars,dataset=dataset,item=item,ftime=when,atime=when,optional=True) def gfsgrib2iter(self): logger=self.log() atime=to_datetime(self.conf.cycle) # sim start time etime=to_datetime_rel(self.fcstlen*3600,atime) # sim end time interval=to_fraction(self.confint('input_step',6*3600)) dataset=self.confstr('gfs_dataset','gfs') item=self.confstr('gfs_item','gfs') hd=self.confstr('catalog','hafsdata') dc=hafs.input.DataCatalog(self.conf,hd,atime) epsilon=to_timedelta(interval/10) ende=to_datetime_rel(epsilon,etime) when=atime fhour=0 maxwait=self.confint('max_grib_wait',900) sleeptime=self.confint('grib_sleep_time',20) min_size=self.confint('min_grib_size',1) min_mtime_age=self.confint('min_grib_age',30) while when<ende: thefile=dc.locate(dataset=dataset,item=item,ftime=when,atime=atime,**self.taskvars) waited=wait_for_files( [thefile],logger,maxwait=maxwait,sleeptime=sleeptime, min_size=min_size,min_mtime_age=min_mtime_age) if not waited: msg='FATAL ERROR: %s: did not exist or was too small after %d seconds'%( thefile,maxwait) self.log().error(msg) raise hafs.exceptions.WW3InputError(msg) sys.exit(2) yield thefile fhour=fhour+interval/3600 when=to_datetime_rel(interval,when) def deliver_products(self): logger=self.log() for prodname,stuff in self._products.items(): (prod,localpath)=stuff prod.deliver(frominfo=localpath,keep=True,logger=logger) def run(self): """Runs the WW3 initialization""" logger=self.log() dummycurr=True usegfswind=self.confstr('usegfswind','yes') if usegfswind == 'yes': dummywind=False elif usegfswind == 'no': dummywind=True else: # Wrong usegfswind value logger.warning('Wrong usegfswind value: %s. Assume usegfswind=yes.' 'Set dummywind to False.'%(usegfswind,)) usegfswind='yes' dummywind=False ww3_bdy=self.confstr('ww3_bdy','no') ww3_rst=self.confstr('ww3_rst','no') try: self.state=RUNNING redirect=self.confbool('redirect',True) with NamedDir(self.workdir,keep=not self.scrub,logger=logger,rm_first=True) as d: # Run ww3_grid def link(s,t): make_symlink(s,t,force=True,logger=logger) deliver_file(self.icstr('{grid_inp}'),'ww3_grid.inp',keep=True,logger=logger) link(self.icstr('{grid_bot}'),'.') if ww3_bdy == 'yes': link(self.icstr('{grid_msk2}'),self.icstr('./ww3_grid_{vit[basin1lc]}.msk')) else: link(self.icstr('{grid_msk}'),'.') link(self.icstr('{grid_obr}'),'.') link(self.getexe('ww3_grid'),'ww3_grid') #checkrun(exe(self.getexe('ww3_grid'))>='ww3_grid.log',logger=logger) cmd=exe('./ww3_grid') if redirect: cmd = cmd>='ww3_grid.log' checkrun(cmd,logger=logger) # Copy over the pre-generated grid mesh file deliver_file(self.icstr('{grid_mesh}'),'./ww3_mesh.nc') if usegfswind == 'yes': # Extract gfs wind from gfs grib2 data ncfile='gfs.uvgrd10m.nc' produtil.fileop.remove_file(ncfile,logger=logger) cmd=alias(bigexe(self.getexe('wgrib2','wgrib2'))) for f in self.gfsgrib2iter(): logger.info('Extracting wind at 10 m from %s'%(f)) subset='' for line in runstr(cmd[f],logger=logger).splitlines(True): if re.search(':[UV]GRD:10 m above ground:',line): subset+=line runme=cmd[f,'-i', '-append', '-netcdf', ncfile] << subset checkrun(runme, logger=logger) if produtil.fileop.isnonempty(ncfile): dummywind=False else: dummywind=True produtil.log.jlogger.warning( 'ww3init: will use dummy wind because %s is missing ' 'or empty.'%(ncfile,)) if dummywind: # Run ww3_prep for dummy wind deliver_file(self.icstr('{wind_inp}'),'ww3_prep.inp',keep=True,logger=logger) link(self.getexe('ww3_prep'),'ww3_prep') #checkrun(exe(self.getexe('ww3_prep'))>='ww3_prep_wind.log',logger=logger) cmd=exe('./ww3_prep') if redirect: cmd = cmd>='ww3_prep_wind.log' checkrun(cmd,logger=logger) else: # Run ww3_prnc for prep gfs wind deliver_file(self.icstr('{prnc_inp_gfswind}'),'ww3_prnc.inp',keep=True,logger=logger) link(self.getexe('ww3_prnc'),'ww3_prnc') cmd=exe('./ww3_prnc') if redirect: cmd = cmd>='ww3_prnc_wind.log' checkrun(cmd,logger=logger) if dummycurr: # Run ww3_prep for dummy current deliver_file(self.icstr('{curr_inp}'),'ww3_prep.inp',keep=True,logger=logger) # Prepare the curdummy.dat with open('./curdummy.dat','w') as of: for x in range(6): of.write('0. 0. 0.\n') link(self.getexe('ww3_prep'),'ww3_prep') #checkrun(exe(self.getexe('ww3_prep'))>='ww3_prep_curr.log') cmd=exe('./ww3_prep') if redirect: cmd = cmd>='ww3_prep_curr.log' checkrun(cmd,logger=logger) else: # Extract current from global ocean model logger.error('Not implemented yet') have_restart=False if os.environ.get('ww3_force_cold_start','no').lower() == 'yes': logger.warning('ww3_force_cold_start is yes and will generate restart.ww3.') else: oldrst='(unknown)' oldconffile=self.icstr('{oldcom}/{old_out_prefix}.{RUN}.conf') if produtil.fileop.isnonempty(oldconffile): logger.info('%s: prior cycle exists.'%(oldconffile,)) oldconf=hafs.launcher.HAFSLauncher() oldconf.read(oldconffile) oldrst=self.icstr('{oldcom}/{old_out_prefix}.{RUN}.ww3.restart.f006') if not oldconf.getbool('config','run_wave'): logger.info('restart.ww3: will generate restart.ww3 because prior cycle did not run wave.') elif not oldconf.getstr('config','wave_model').lower() == 'ww3': logger.info('restart.ww3: will generate restart.ww3 because prior cycle did not run WW3.') elif produtil.fileop.isnonempty(oldrst): produtil.fileop.deliver_file(oldrst,'restart.ww3',logger=logger) have_restart=True logger.info('%s: warm start from prior cycle 6-h output restart file.'%(oldrst,)) else: logger.critical('FATAL ERROR: exiting because piror cycle %s is missing or empty.'%(oldrst,)) logger.critical('FATAL ERROR: if desired, set force_cold_start or ww3_force_cold_start = yes can bypass this failure.') sys.exit(2) else: logger.info('restart.ww3: will generate restart.ww3 because prior cycle does not exist.') if (not have_restart and ww3_rst == 'yes') or ww3_rst == 'always': try: with NamedDir('ww3gint',keep=True,logger=logger) as nameddir: logger.info('ww3_grid: generating mod_def.ww3 for gnh_10m gridi from gdaswave') make_symlink('../mod_def.ww3','mod_def.hafs_ww3',force=True,logger=logger) make_symlink(self.getexe('ww3_grid'),'ww3_grid',force=True,logger=logger) deliver_file(self.icstr('{grid_gnh_10m_inp}'),'ww3_grid.inp',keep=True,logger=logger) cmd=exe('./ww3_grid') if redirect: cmd = cmd>='ww3_grid.log' checkrun(cmd,logger=logger) deliver_file('./mod_def.ww3','./mod_def.gnh_10m',keep=False,logger=logger) logger.info('ww3_gint: generating restart.ww3 by using ww3_gint with restart files from gdaswave') make_symlink(self.getexe('ww3_gint'),'ww3_gint',force=True,logger=logger) #Get restart.gnh_10m self.get_ww3rst_inputs() #Prepare the namelist self.make_gint_inp(logger) #run ww3_gint cmd=exe('./ww3_gint') if redirect: cmd = cmd>='ww3_gint.log' checkrun(cmd,logger=logger) deliver_file('./restart.hafs_ww3','../restart.ww3',keep=False,logger=logger) if produtil.fileop.isnonempty('restart.ww3'): have_restart=True except Exception as ee: produtil.log.jlogger.warning( 'restart.ww3: will generate dummy because ww3_gint ' 'did not run successfully.',exc_info=True) if not have_restart: logger.info('restart.ww3: generating dummy with ww3_strt') # Run ww3_strt deliver_file(self.icstr('{strt_inp}'),'ww3_strt.inp',keep=True,logger=logger) link(self.getexe('ww3_strt'),'ww3_strt') cmd=exe('./ww3_strt') if redirect: cmd = cmd>='ww3_strt.log' checkrun(cmd,logger=logger) if ww3_bdy == 'yes': try: logger.info('ww3_bound: generating ww3 boundary condition') self.get_ww3bdy_inputs() # Run ww3_bound deliver_file(self.icstr('{bound_inp}'),'ww3_bound.inp',keep=True,logger=logger) link(self.getexe('ww3_bound'),'ww3_bound') cmd=exe('./ww3_bound') if redirect: cmd = cmd>='ww3_bound.log' checkrun(cmd,logger=logger) except Exception as ee: self._products.pop('nest',None) prodnames.pop('nest',None) produtil.log.jlogger.warning( 'ww3_bound: will run without input boundary condition because ww3_bound ' 'did not run successfully.',exc_info=True) #if redirect: self._copy_log() ## Prepare ww3_shel.inp #ni=hafs.namelist.NamelistInserter(self.conf,self.section) #shel_inp=self.icstr('{shel_inp}') #atime=to_datetime(self.conf.cycle) # sim start time #etime=to_datetime_rel(self.fcstlen*3600,atime) # sim end time #flddt=int(self.outstep) #pntdt=int(self.pntstep) ##flddt=self.conf.getint('forecast_products','ww3_output_step',10800) ##pntdt=self.conf.getint('forecast_products','ww3_pntout_step',10800) #if pntdt > 0: # # Point output requested, need to provide buoy information # buoy_inp=self.icstr('{buoy_inp}') # with open(buoy_inp,'r') as bf: # #Read the file content and take out the eof character in the end. # buoyfile=bf.read()[:-1] #elif pntdt == 0: # # Point output no requested, no further info needed # buoyfile='$' #else: # # Wrong pntdt value # logger.warning('Wrong ww3_pntout_step value: %d. Set ww3_pntout_step = 0'%(pntdt,)) # pntdt=0 # self.pntout=0 # buoyfile='$' #ci=self.conf.getfloat('config','cycling_interval',6) #retime=to_datetime_rel(ci*3600*1,atime) # restart end time #invars=dict() #invars.update(RUN_BEG=atime.strftime('%Y%m%d %H%M%S'), # RUN_END=etime.strftime('%Y%m%d %H%M%S'), # FLD_BEG=atime.strftime('%Y%m%d %H%M%S'), # FLD_END=etime.strftime('%Y%m%d %H%M%S'), # FLD_DT=int(flddt), # PNT_BEG=atime.strftime('%Y%m%d %H%M%S'), # PNT_END=etime.strftime('%Y%m%d %H%M%S'), # PNT_DT=int(pntdt), # BUOY_FILE=buoyfile, # RST_BEG=atime.strftime('%Y%m%d %H%M%S'), # RST_END=retime.strftime('%Y%m%d %H%M%S'), # RST_DT=int(self.rststep) ) #with open(shel_inp,'rt') as nf: # with open('ww3_shel.inp','wt') as of: # of.write(ni.parse(nf,logger=logger,source=shel_inp, # raise_all=True,atime=self.conf.cycle,**invars)) self.deliver_products() self.state=COMPLETED except Exception as e: logger.error('Unhandled exception in wave init: %s' %(str(e),),exc_info=True) self.state=FAILED #self._copy_log() raise def _copy_log(self): logger=self.log() for lf in [ 'ww3_grid.log', 'ww3_prep_wind.log', 'ww3_prep_curr.log', 'ww3_strt.log', 'ww3_untarbdy.log', 'ww3_bound.log' ]: comloc=self.icstr('{com}/{out_prefix}.{RUN}.{lf}.ww3',lf=lf) if os.path.exists(lf): deliver_file(lf,comloc,keep=True,logger=logger) def get_ww3bdy_inputs(self): """!Obtains WW3 input boundary condition data, links or copies to ww3init dir. WW3 input boundary data comes from previous cycle's gfswave.""" logger=self.log() redirect=self.confbool('redirect',True) atime=to_datetime(self.conf.cycle) wtime=to_datetime_rel(-6*3600,atime) ww3catalog=self.confstr('catalog','hafsdata') ww3dc=hafs.input.DataCatalog(self.conf,ww3catalog,wtime) dataset=self.confstr('gfswave_dataset','gfswave') item=self.confstr('ww3bdy_item','ww3bdy_ibp') when=wtime for itry in range(3): when=to_datetime_rel(-6*3600*itry,wtime) ww3bdyfile=ww3dc.locate(dataset,item,atime=when,logger=logger) if not ww3bdyfile: logger.info('%s: cannot decide data location for this time.'%( when.strftime('%Y%m%d%H'),)) ok=True (L,S) = produtil.fileop.lstat_stat(ww3bdyfile) if S is None: logger.info('%s: does not exist'%(ww3bdyfile,)) ok=False if S.st_size<10000: logger.info('%s: too small (should be >=%d bytes)'%( ww3bdyfile,10000)) ok=False if not ok: continue # We get here if the ww3bdyfile exists and is big enough. ww3bdyspectar='gfs.t'+when.strftime('%H')+'z.ibp_tar' make_symlink(ww3bdyfile,ww3bdyspectar,force=True,logger=logger) ww3bdyfbase=self.icstr('./gfswave.HWRF{vit[basin1lc]}*') #cmd=exe('tar')['-zxvf', ww3bdyspectar, '--wildcards', ww3bdyfbase] cmd=exe('tar')['-xvf', ww3bdyspectar, '--wildcards', ww3bdyfbase] if redirect: cmd = cmd>='ww3_untarbdy.log' checkrun(cmd,logger=logger) return def get_ww3rst_inputs(self): """!Obtains global gdaswave restart file, links or copies to ww3init dir. WW3 input restart file comes from current cycle's gdaswave.""" logger=self.log() atime=to_datetime(self.conf.cycle) wtime=to_datetime_rel(-6*3600,atime) ww3catalog=self.confstr('catalog','hafsdata') ww3dc=hafs.input.DataCatalog(self.conf,ww3catalog,atime) dataset=self.confstr('gdaswave_dataset','gdaswave') item=self.confstr('ww3rst_item','ww3rst_gnh_10m') when=wtime ww3rstfile=ww3dc.locate(dataset,item,atime=when,logger=logger) if not ww3rstfile: logger.info('%s: cannot decide data location for this time.'%( when.strftime('%Y%m%d%H'),)) ok=True (L,S) = produtil.fileop.lstat_stat(ww3rstfile) if S is None: logger.info('%s: does not exist'%(ww3bdyfile,)) ok=False if S.st_size<10000: logger.info('%s: too small (should be >=%d bytes)'%( ww3rstfile,10000)) ok=False if not ok: logger.warning('%s: ww3rst file from gdaswave not ok for this time.'%( when.strftime('%Y%m%d%H'),)) # We get here if the ww3rstfile exists and is big enough. make_symlink(ww3rstfile,'restart.gnh_10m',force=True,logger=logger) return def make_gint_inp(self,logger): # Prepare ww3_gint.inp ni=hafs.namelist.NamelistInserter(self.conf,self.section) gint_inp=self.confstr('gint_inp','') if not gint_inp: gint_inp=self.icstr('{PARMww3}/ww3_gint.inp_tmpl') atime=to_datetime(self.conf.cycle) # sim start time invars=dict() invars.update(RUN_BEG=atime.strftime('%Y%m%d %H%M%S')) with open(gint_inp,'rt') as nf: with open('ww3_gint.inp','wt') as of: of.write(ni.parse(nf,logger=logger,source=gint_inp, raise_all=True,atime=self.conf.cycle,**invars)) ######################################################################## ww3postprodnames={ 'ww3outgrd': ( './out_grd.ww3', '{com}/{out_prefix}.{RUN}.out_grd.ww3' ), 'ww3grb2': ( './gribfile', '{com}/{out_prefix}.{RUN}.ww3.grb2' ), 'ww3grb2idx': ( './gribfile.idx', '{com}/{out_prefix}.{RUN}.ww3.grb2.idx' ), 'ww3ounf': ( './ww3.%Y.nc', '{com}/{out_prefix}.{RUN}.ww3_ounf.nc' ), 'ww3outpnt': ( './out_pnt.ww3', '{com}/{out_prefix}.{RUN}.out_pnt.ww3' ), 'ww3ounpspec': ( './ww3.%Y_spec.nc', '{com}/{out_prefix}.{RUN}.ww3_ounp_spec.nc' ), 'ww3outpbull': ( './ww3_bull.tar', '{com}/{out_prefix}.{RUN}.ww3_bull.tar' ), 'ww3outpcbull': ( './ww3_cbull.tar', '{com}/{out_prefix}.{RUN}.ww3_cbull.tar' ), 'ww3outpcsbull': ( './ww3_csbull.tar', '{com}/{out_prefix}.{RUN}.ww3_csbull.tar' ), 'ww3outpspec': ( './ww3_spec.tar', '{com}/{out_prefix}.{RUN}.ww3_spec.tar' ) } class WW3Post(hafs.hafstask.HAFSTask): """Run WW3 post-process.""" def __init__(self,dstore,conf,section,fcstlen=126,outstep=10800,pntstep=10800,**kwargs): super(WW3Post,self).__init__(dstore,conf,section,**kwargs) self.fcstlen=float(fcstlen) self.outstep=int(outstep) self.pntstep=int(pntstep) self._make_products() self._ncks_path=False def _make_products(self): """Creates FileProduct objects for all WW3Post output files. The outdir is the directory to which the WW3Post package output its final files.""" self._products=dict() atime=tcutil.numerics.to_datetime(self.conf.cycle) with self.dstore.transaction(): for prodname,filepaths in ww3postprodnames.items(): (localpath,compath)=filepaths localpath=self.conf.cycle.strftime(localpath) prod=produtil.datastore.FileProduct( self.dstore,prodname,self.taskname) prod.location=self.timestr(compath,atime,atime) prod['localpath'] = localpath self._products[prodname]=( prod,localpath ) def products(self,name=None): """Iterate over all products.""" for prodname,stuff in self._products.items(): (prod,localpath)=stuff if name is None or name==prod.prodname: yield prod def __copy_ncks(self,source,target,ignore): ncks=self.ncks_path logger=self.log() produtil.fileop.remove_file(target,logger=logger) checkrun(bigexe(ncks)['-4','-L','6',source,target]<'/dev/null', logger=logger) @property def ncks_path(self): """Returns the path to ncks. Returns None if ncks cannot be found. This function will only search for ncks once, and will cache the result. Set self._ncks_path=False to force a recheck.""" if self._ncks_path is False: ncks=self.getexe('ncks','') if not self._ncks_path: ncks=produtil.fileop.find_exe('ncks',raise_missing=False) assert(ncks is None or (isinstance(ncks,str) and ncks!='')) self._ncks_path=ncks return self._ncks_path def run(self): """Run the WW3 post.""" logger=self.log() redirect=self.confbool('redirect',True) self.state=RUNNING # The line below makes a DBNAlert object, which can be reused for the later alerts. alerter=produtil.dbnalert.DBNAlert(['MODEL','{type}','{job}','{location}']) modelrun=self.icstr('{RUN}').upper() try: with NamedDir(self.workdir,keep=True,logger=logger,rm_first=True) as d: # Prepare mod_def.ww3 ww3moddef=self.icstr('{intercom}/ww3/mod_def.ww3') if not os.path.exists(ww3moddef): logger.error('%s: mod_def.ww3 not yet available from forecast'%( ww3moddef,)) deliver_file(ww3moddef,'mod_def.ww3',force=True,logger=logger) # Prepare and deliver out_grd.ww3 if self.outstep>0: ww3out=self.icstr('{WORKhafs}/forecast/out_grd.ww3') if not os.path.exists(ww3out): logger.error('%s: out_grd.ww3 not yet available from forecast'%( ww3out,)) deliver_file(ww3out,'out_grd.ww3',force=True,logger=logger) (prod,localpath)=self._products['ww3outgrd'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=None) # Prepare and deliver out_pnt.ww3 if self.pntstep>0: ww3pnt=self.icstr('{WORKhafs}/forecast/out_pnt.ww3') if not os.path.exists(ww3pnt): logger.error('%s: out_pnt.ww3 not yet available from forecast'%( ww3pnt,)) deliver_file(ww3pnt,'out_pnt.ww3',force=True,logger=logger) (prod,localpath)=self._products['ww3outpnt'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=None) # For field output in grib2 format ww3_grib_post=self.confstr('ww3_grib_post','yes',section='ww3post') if ww3_grib_post == 'yes' and self.outstep>0: make_symlink(self.getexe('ww3_grib'),'ww3_grib',force=True,logger=logger) # Prepare the namelist self.make_grib_inp(logger) cmd=exe('./ww3_grib') if redirect: cmd = cmd>='ww3_grib.log' checkrun(cmd,logger=logger) indexfile='gribfile.idx' wgrib2=self.getexe('wgrib2') logger.info('ww3post: Generating grib idx file for gribfile') checkrun(bigexe(wgrib2)['-s','gribfile'] > indexfile,logger=logger) os.system('chmod -x '+indexfile) # Remove the -x permission (prod,localpath)=self._products['ww3grb2'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=None) alerter(location=prod.location, type=modelrun+'_WW3GB2') (prod,localpath)=self._products['ww3grb2idx'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=None) alerter(location=prod.location, type=modelrun+'_WW3GB2_WIDX') # For point output ww3_outp ww3_outp_bull_post=self.confstr('ww3_outp_bull_post','yes',section='ww3post') ww3_outp_spec_post=self.confstr('ww3_outp_spec_post','yes',section='ww3post') if self.pntstep>0: make_symlink(self.getexe('ww3_outp'),'ww3_outp',force=True,logger=logger) # Need to get information about the total number of buoys and their IDs self.make_outp_info_inp(logger) cmd=exe('./ww3_outp') cmd = cmd>='ww3_outp_info.log' checkrun(cmd,logger=logger) fname='ww3_outp_info.log' with open(fname) as f: ww3_outp_info = f.readlines() indices = [i for i, elem in enumerate(ww3_outp_info) if '----------' in elem] buoys=ww3_outp_info[indices[0]+1:indices[1]-2] # For point bullitin output if ww3_outp_bull_post == 'yes': filebull=[] filecbull=[] filecsbull=[] filelog=[] commands=list() for i, buoy in enumerate(buoys): ipnt=i+1 buoyid=buoy.split()[0] buoylon=buoy.split()[1] buoylat=buoy.split()[2] logger.info('ww3_outp_bull for buoy: %i, %s, %s, %s'%(ipnt,buoyid,buoylon,buoylat)) with NamedDir('ww3outpbull.%s'%(buoyid,),keep=True,logger=logger) as nameddir: self.make_outp_bull_inp(ipnt,logger) make_symlink('../mod_def.ww3','mod_def.ww3',force=True,logger=logger) make_symlink('../out_pnt.ww3','out_pnt.ww3',force=True,logger=logger) make_symlink(self.getexe('ww3_outp'),'ww3_outp',force=True,logger=logger) buoybull=buoyid+'.bull' buoycbull=buoyid+'.cbull' buoycsv=buoyid+'.csv' buoycsbull=buoyid+'.csbull' buoylog='ww3_outp_bull_'+buoyid+'.log' filebull.append(buoybull) filecbull.append(buoycbull) filecsbull.append(buoycsbull) filelog.append(buoylog) cmd=('cd '+nameddir.dirname+' && '+ './ww3_outp > ../'+buoylog+' && '+ 'mv '+buoybull+' ../ && '+ 'mv '+buoycbull+' ../ && '+ 'mv '+buoycsv+' ../'+buoycsbull+' && '+ 'cd ../') commands.append(cmd) cmdfname='command.file.ww3outpbull' with open(cmdfname,'wt') as cfpf: cfpf.write('\n'.join(commands)) threads=os.environ['TOTAL_TASKS'] logger.info('ww3_outp_bull total threads: %s ',threads) mpiserial_path=os.environ.get('MPISERIAL','*MISSING*') if mpiserial_path=='*MISSING*': mpiserial_path=self.getexe('mpiserial') cmd2=mpirun(mpi(mpiserial_path)['-m',cmdfname],allranks=True) checkrun(cmd2) # Tar the outputs and diliver to com dir cmd=exe('tar')['-cvf', 'ww3_bull.tar'][filebull] checkrun(cmd,logger=logger) cmd=exe('tar')['-cvf', 'ww3_cbull.tar'][filecbull] checkrun(cmd,logger=logger) cmd=exe('tar')['-cvf', 'ww3_csbull.tar'][filecsbull] checkrun(cmd,logger=logger) cmd=exe('cat')[filelog] >> 'ww3_outp_bull.log' checkrun(cmd,logger=logger) (prod,localpath)=self._products['ww3outpbull'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=None) alerter(location=prod.location, type=modelrun+'_WW3TAR') (prod,localpath)=self._products['ww3outpcbull'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=None) alerter(location=prod.location, type=modelrun+'_WW3TAR') (prod,localpath)=self._products['ww3outpcsbull'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=None) alerter(location=prod.location, type=modelrun+'_WW3TAR') # For point spec output if ww3_outp_spec_post == 'yes': fileout=[] filelog=[] commands=list() ww3tstr=self.conf.cycle.strftime('%y%m%d%H') for i, buoy in enumerate(buoys): ipnt=i+1 buoyid=buoy.split()[0] buoylon=buoy.split()[1] buoylat=buoy.split()[2] logger.info('ww3_outp_spec for buoy: %i, %s, %s, %s'%(ipnt,buoyid,buoylon,buoylat)) with NamedDir('ww3outpspec.%s'%(buoyid,),keep=True,logger=logger) as nameddir: self.make_outp_spec_inp(ipnt,logger) make_symlink('../mod_def.ww3','mod_def.ww3',force=True,logger=logger) make_symlink('../out_pnt.ww3','out_pnt.ww3',force=True,logger=logger) make_symlink(self.getexe('ww3_outp'),'ww3_outp',force=True,logger=logger) buoyspc='ww3.'+ww3tstr+'.spc' buoyout=buoyid+'.spc' buoylog='ww3_outp_spec_'+buoyid+'.log' fileout.append(buoyout) filelog.append(buoylog) cmd=('cd '+nameddir.dirname+' && '+ './ww3_outp > ../'+buoylog+' && '+ 'mv '+buoyspc+' ../'+buoyout+' && '+ 'cd ../') commands.append(cmd) cmdfname='command.file.ww3outpspec' with open(cmdfname,'wt') as cfpf: cfpf.write('\n'.join(commands)) threads=os.environ['TOTAL_TASKS'] logger.info('ww3_outp_spec total threads: %s ',threads) mpiserial_path=os.environ.get('MPISERIAL','*MISSING*') if mpiserial_path=='*MISSING*': mpiserial_path=self.getexe('mpiserial') cmd2=mpirun(mpi(mpiserial_path)['-m',cmdfname],allranks=True) checkrun(cmd2) # Tar the outputs and deliver to com dir cmd=exe('tar')['-cvf', 'ww3_spec.tar'][fileout] checkrun(cmd,logger=logger) cmd=exe('cat')[filelog] >> 'ww3_outp_spec.log' checkrun(cmd,logger=logger) (prod,localpath)=self._products['ww3outpspec'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=None) alerter(location=prod.location, type=modelrun+'_WW3TAR') # Additional ww3post products # For field output in netcdf format ww3_ounf_post=self.confstr('ww3_ounf_post','yes',section='ww3post') if ww3_ounf_post == 'yes' and self.outstep>0: make_symlink(self.getexe('ww3_ounf'),'ww3_ounf',force=True,logger=logger) # Prepare the namelist self.make_ounf_inp(logger) # Run ww3_ounf cmd=exe('./ww3_ounf') if redirect: cmd = cmd>='ww3_ounf.log' checkrun(cmd,logger=logger) (prod,localpath)=self._products['ww3ounf'] logger.info('Delivering ww3ounf from %s to %s'%(localpath,prod.location)) prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=self.__copy_ncks) # For point spec output in netcdf format ww3_ounp_spec_post=self.confstr('ww3_ounp_spec_post','yes',section='ww3post') if ww3_ounp_spec_post == 'yes' and self.pntstep>0: make_symlink(self.getexe('ww3_ounp'),'ww3_ounp',force=True,logger=logger) # Prepare the namelist self.make_ounp_spec_inp(logger) # Run ww3_ounp cmd=exe('./ww3_ounp') if redirect: cmd = cmd>='ww3_ounp.log' checkrun(cmd,logger=logger) (prod,localpath)=self._products['ww3ounpspec'] prod.deliver(frominfo=localpath,location=prod.location,logger=logger,copier=self.__copy_ncks) self.state=COMPLETED except Exception as e: self.state=FAILED logger.error("WW3 post failed: %s"%(str(e),),exc_info=True) raise def make_grib_inp(self,logger): # Prepare ww3_grib.inp ni=hafs.namelist.NamelistInserter(self.conf,self.section) grib_inp=self.confstr('grib_inp','') if not grib_inp: grib_inp=self.icstr('{PARMww3}/ww3_grib.inp_tmpl') atime=to_datetime(self.conf.cycle) # sim start time invars=dict() invars.update(FLD_BEG=atime.strftime('%Y%m%d %H%M%S'), FLD_DT=int(self.outstep), RUN_BEG=atime.strftime('%Y%m%d %H%M%S')) with open(grib_inp,'rt') as nf: with open('ww3_grib.inp','wt') as of: of.write(ni.parse(nf,logger=logger,source=grib_inp, raise_all=True,atime=self.conf.cycle,**invars)) def make_ounf_inp(self,logger): # Prepare ww3_ounf.inp ni=hafs.namelist.NamelistInserter(self.conf,self.section) ounf_inp=self.confstr('ounf_inp','') if not ounf_inp: ounf_inp=self.icstr('{PARMww3}/ww3_ounf.inp_tmpl') atime=to_datetime(self.conf.cycle) # sim start time invars=dict() invars.update(FLD_BEG=atime.strftime('%Y%m%d %H%M%S'), FLD_DT=int(self.outstep)) with open(ounf_inp,'rt') as nf: with open('ww3_ounf.inp','wt') as of: of.write(ni.parse(nf,logger=logger,source=ounf_inp, raise_all=True,atime=self.conf.cycle,**invars)) def make_ounp_spec_inp(self,logger): # Prepare ww3_ounp.inp ni=hafs.namelist.NamelistInserter(self.conf,self.section) ounp_spec_inp=self.confstr('ounp_spec_inp','') if not ounp_spec_inp: ounp_spec_inp=self.icstr('{PARMww3}/ww3_ounp_spec.inp_tmpl') atime=to_datetime(self.conf.cycle) # sim start time invars=dict() invars.update(PNT_BEG=atime.strftime('%Y%m%d %H%M%S'), PNT_DT=int(self.pntstep)) with open(ounp_spec_inp,'rt') as nf: with open('ww3_ounp.inp','wt') as of: of.write(ni.parse(nf,logger=logger,source=ounp_spec_inp, raise_all=True,atime=self.conf.cycle,**invars)) def make_outp_info_inp(self,logger): # Prepare ww3_outp.inp ni=hafs.namelist.NamelistInserter(self.conf,self.section) outp_info_inp=self.confstr('outp_info_inp','') if not outp_info_inp: outp_info_inp=self.icstr('{PARMww3}/ww3_outp_info.inp_tmpl') atime=to_datetime(self.conf.cycle) # sim start time invars=dict() invars.update(PNT_BEG=atime.strftime('%Y%m%d %H%M%S'), PNT_DT=int(self.pntstep)) with open(outp_info_inp,'rt') as nf: with open('ww3_outp.inp','wt') as of: of.write(ni.parse(nf,logger=logger,source=outp_info_inp, raise_all=True,atime=self.conf.cycle,**invars)) def make_outp_bull_inp(self,ipnt,logger): # Prepare ww3_outp.inp ni=hafs.namelist.NamelistInserter(self.conf,self.section) outp_bull_inp=self.confstr('outp_bull_inp','') if not outp_bull_inp: outp_bull_inp=self.icstr('{PARMww3}/ww3_outp_bull.inp_tmpl') atime=to_datetime(self.conf.cycle) # sim start time invars=dict() invars.update(PNT_BEG=atime.strftime('%Y%m%d %H%M%S'), PNT_DT=int(self.pntstep), PNT_NUM=int(ipnt), RUN_BEG=atime.strftime('%Y%m%d %H%M%S')) with open(outp_bull_inp,'rt') as nf: with open('ww3_outp.inp','wt') as of: of.write(ni.parse(nf,logger=logger,source=outp_bull_inp, raise_all=True,atime=self.conf.cycle,**invars)) def make_outp_spec_inp(self,ipnt,logger): # Prepare ww3_outp.inp ni=hafs.namelist.NamelistInserter(self.conf,self.section) outp_spec_inp=self.confstr('outp_spec_inp','') if not outp_spec_inp: outp_spec_inp=self.icstr('{PARMww3}/ww3_outp_spec.inp_tmpl') atime=to_datetime(self.conf.cycle) # sim start time invars=dict() invars.update(PNT_BEG=atime.strftime('%Y%m%d %H%M%S'), PNT_DT=int(self.pntstep), PNT_NUM=int(ipnt), RUN_BEG=atime.strftime('%Y%m%d %H%M%S')) with open(outp_spec_inp,'rt') as nf: with open('ww3_outp.inp','wt') as of: of.write(ni.parse(nf,logger=logger,source=outp_spec_inp, raise_all=True,atime=self.conf.cycle,**invars))
[ "Bin.Liu@noaa.gov" ]
Bin.Liu@noaa.gov
fa85f6349539cbce239586af29361b2e453947ec
3d8a2e25588dc4205aa5ebf02021ae055917cccd
/selexsubmitter.py
fb34291f2db38bbf19bd8d4333f1a385f7be8cbb
[ "MIT" ]
permissive
jctoledo/abselexsubmit-freebase-writer
af66613f745577af9781ed1962a8c81d74b9c95c
1601f8b57386f69fffc2a8a4a4cf43ac256cfdb3
refs/heads/master
2021-01-23T22:11:05.694811
2013-10-09T15:52:44
2013-10-09T15:52:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
43,987
py
# -*- coding: utf-8 -*- # Copyright (c) 2013 Jose Cruz-Toledo # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # Copyright (C) 2013 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command-line skeleton application for Freebase API. Usage: $ python selexsubmitter.py You can also get help on all the command-line flags the program understands by running: $ python selexsubmitter.py --help """ import argparse import pygame import httplib2 import os import sys import json import urllib import os.path import re import RNA import time from urllib import urlencode from apiclient import discovery from oauth2client import file from oauth2client import client from oauth2client import tools #a dict of target names to mids target_dict = {} #a reference dictionary doi, pmid, ref reference_dict = {} # Parser for command-line arguments. parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, parents=[tools.argparser]) parser.add_argument('-su', '--servlet_url', help='the URL of the servlet that parses the JSON files', required=True) parser.add_argument('-if', '--input_file', help='an input JSON file', required=True) parser.add_argument('-FW', '--write_to_freebase', help='write the topic to freebase.com not the SANDBOX', action='store_true') # CLIENT_SECRETS is name of a file containing the OAuth 2.0 information for this # application, including client_id and client_secret. You can see the Client ID # and Client secret on the APIs page in the Cloud Console: # <https://cloud.google.com/console#/project/1083819269171/apiui> CLIENT_SECRETS = os.path.join(os.path.dirname(__file__), 'client_secrets.json') # Set up a Flow object to be used for authentication. # Add one or more of the following scopes. PLEASE ONLY ADD THE SCOPES YOU # NEED. For more information on using scopes please see # <https://developers.google.com/+/best-practices>. FLOW = client.flow_from_clientsecrets(CLIENT_SECRETS, scope=[ 'https://www.googleapis.com/auth/freebase', ], message=tools.message_if_missing(CLIENT_SECRETS)) def main(argv): # Parse the command-line flags. flags = parser.parse_args(argv[1:]) #define some vars service_url_write = 'https://www.googleapis.com/freebase/v1sandbox/mqlwrite' inputFile = flags.input_file servlet_url = flags.servlet_url fw = flags.write_to_freebase if fw : service_url_write = 'https://www.googleapis.com/freebase/v1/mqlwrite' # If the credentials don't exist or are invalid run through the native client # flow. The Storage object will ensure that if successful the good # credentials will get written back to the file. storage = file.Storage('sample.dat') credentials = storage.get() if credentials is None or credentials.invalid: credentials = tools.run_flow(FLOW, storage, flags) # Create an httplib2.Http object to handle our HTTP requests and authorize it # with our good Credentials. http = httplib2.Http() http = credentials.authorize(http) # Construct the service object for the interacting with the Freebase API. service = discovery.build('freebase', 'v1', http=http) if inputFile: ifp = os.path.dirname(inputFile) ifn = os.path.basename(inputFile) start = time.time() cleanJson = getCleanJson(servlet_url, ifp ,ifn) if cleanJson: #now prepare a write query for the cleanJSON se_mid = writeToFreebase(cleanJson, service_url_write, http, credentials) print "created selex experiment topic with mid: "+se_mid["mid"] end = time.time() tt = end-start print "time elapsed in seconds: "+str(tt) def writeToFreebase(cleanJson, writeServiceUrl, anHttp, someCredentials): #create an empty selex experiment topic and get its mid mid_dict = createSelexExperimentTopic(writeServiceUrl, anHttp, someCredentials) #add the reference details from this experiment addReferenceDetails(mid_dict, cleanJson, writeServiceUrl, anHttp, someCredentials) addSelexDetails(mid_dict, cleanJson, writeServiceUrl, anHttp, someCredentials) addSelexConditions(mid_dict, cleanJson, writeServiceUrl, anHttp,someCredentials) addInteractions(mid_dict["mid"], cleanJson, writeServiceUrl, anHttp, someCredentials) return mid_dict #Creates a empty interaction topic including and returns the mid # and connects it to the given selex experiment mid def createInteractionTopic(aSelexExperimentMid, aServiceUrl, anHttp, someCredentials): q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/interaction", "b:type":"/base/aptamer/experimental_outcome", "/base/aptamer/experimental_outcome/is_outcome_of":{ "connect":"insert", "mid" : aSelexExperimentMid } } params = makeRequestBody(someCredentials, q) r = runWriteQuery(params, aServiceUrl, anHttp) if r == None: raise Exception ("Could not create interaction topic!") sys.exit() return r #creates an affinity conditions topic and its corresponding binding solution # and connects it to the given affinity experiment mid and returns a dictionary of the mids def createAffinityConditions(anAffinityExperimentMid, aServiceUrl, anHttp, someCredentials): rm = {} q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/affinity_conditions", "b:type":"/base/aptamer/experimental_conditions", "/base/aptamer/experimental_conditions/are_experimental_conditions_of":{ "connect":"insert", "mid":anAffinityExperimentMid } } params = makeRequestBody(someCredentials, q) aff_cond_mid = runWriteQuery(params, aServiceUrl, anHttp) if aff_cond_mid == None: raise Exception("could not create affinity conditions!") sys.exit() else: rm["mid"] = aff_cond_mid #create a binding solution and attach it q={ "create":"unconditional", "mid":None, "type":"/base/aptamer/binding_solution", "/base/aptamer/binding_solution/is_binding_solution_of":{ "connect":"insert", "mid": aff_cond_mid } } params = makeRequestBody(someCredentials, q) bs_mid = runWriteQuery(params, aServiceUrl, anHttp) rm["binding_solution"] = bs_mid if bs_mid == None: raise Exception("Could not create bidning solution topic!") sys.exit() else: return rm #creates an aptamer topic and connects it to the passed in interaction mid. #Uses the given aptamer type, mutational analysis and sequence def createAptamerTopic(anInteractionMid, aType, aSequence, aServiceUrl, anHttp, someCredentials): seq_len = len(aSequence) at = "" if aType.lower() == "dna": at = "/base/aptamer/dna" if aType.lower() == "rna": at = "/base/aptamer/rna" if len(at): q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/interactor", "b:type":"/base/aptamer/aptamer", "c:type":"/base/aptamer/linear_polymer", "d:type":"/chemistry/chemical_compound", "e:type":at, "f:type":"/base/aptamer/nucleic_acid", "/base/aptamer/interactor/is_participant_in":{ "connect":"insert", "mid":anInteractionMid }, "/base/aptamer/linear_polymer/sequence":{ "connect":"insert", "value": aSequence }, "/base/aptamer/linear_polymer/sequence_length":{ "connect":"insert", "value":int(seq_len) } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not create aptamer topic") sys.exit() else: return r else: raise Exception("Not a valid aptamer type was passed in") sys.exit() #creates an aptamer target topic and connects it to a passed in interaction mid. Uses the given name aswell def createAptamerTargetTopic(anInteractionMid, aTargetName,aTargetTypeMid,aServiceUrl,anHttp,someCredentials): #first check if there exists a chemical compound with the given name cc_mid = checkFreebaseForChemicalCompound(aTargetName, anHttp) if cc_mid == None: q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/interactor", "b:type":"/base/aptamer/aptamer_target", "c:type" :"/chemistry/chemical_compound", "/base/aptamer/interactor/is_participant_in":{ "connect":"insert", "mid":anInteractionMid }, "name":{ "connect":"insert", "value" : str(aTargetName), "lang":"/lang/en" }, "/base/aptamer/aptamer_target/has_type":{ "connect":"insert", "mid":aTargetTypeMid } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not create aptamer target topic") sys.exit() else: return r else: q = { "mid" : cc_mid, "type":{ "connect":"insert", "id" : "/base/aptamer/interactor" }, "b:type":{ "connect":"insert", "id":"/base/aptamer/aptamer_target" }, "/base/aptamer/aptamer_target/has_type":{ "connect":"insert", "mid":aTargetTypeMid }, "/base/aptamer/interactor/is_participant_in":{ "connect":"insert", "mid":anInteractionMid } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not create aptamer target topic 2") sys.exit() else: return r #This function returns the first mid of the chemical compound (/chemistry/chemical_compound) topic #that has as name aName. If none is found None is returned def checkFreebaseForChemicalCompound(aName, anHttp): if aName: q = [{ "mid":None, "name": str(aName), "type|=":[ "/chemistry/chemical_compound", "/medicine/drug_brand", "/biology/protein", "/medicine/drug", "/medicine/medical_treatment", "/medicine/drug_ingredient" ] }] r = runReadQuery(q, anHttp) if r == None : raise Exception("Could not search for a chemical compound!") sys.exit() else: if len(r) == 0: return None else: return r[0]["mid"] return None #Creates an empty affinityExperiment topic and returs its mid # attaches the created topic to the given interaction topic mid def createAffinityExperimentTopic(anInteractionMid, aServiceUrl, anHttp, someCredentials): q={ "create":"unconditional", "mid":None, "type":"/base/aptamer/affinity_experiment", "b:type":"/base/aptamer/experiment", "/base/aptamer/affinity_experiment/confirms":{ "connect":"insert", "mid":anInteractionMid } } params = makeRequestBody(someCredentials, q) afe_mid = runWriteQuery(params, aServiceUrl, anHttp) if afe_mid == None: raise Exception("Could not create affinity experiment!") sys.exit() else: return afe_mid #Create an empty floating point range topic def createFloatingPointRangeTopic(aKdMid, aServiceUrl, anHttp, someCredentials): q = { "create":"unconditional", "mid":None, "type":"/measurement_unit/floating_point_range" } p = makeRequestBody(someCredentials, q) fpr_mid = runWriteQuery(p, aServiceUrl, anHttp) if fpr_mid == None: raise Exception("Could not create floating point range!") sys.exit() else: return fpr_mid #creates a predicted secondary structure topic # adds the given dbn and mfe # assumes program used was RNAfold def createPredictedSecondaryStructureTopic(apt_mid, dbn, mfe, aServiceUrl, anHttp, someCredentials): q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/predicted_secondary_structure", "/base/aptamer/predicted_secondary_structure/software_used":{ "connect":"insert", "mid":"/m/0gkkmsx" }, "/base/aptamer/predicted_secondary_structure/dot_bracket_notation":{ "connect":"insert", "value":str(dbn), "lang":"/lang/en" }, "/base/aptamer/predicted_secondary_structure/minimum_free_energy":{ "connect":"insert", "value":float(mfe) }, "/base/aptamer/predicted_secondary_structure/is_predicted_secondary_structure_of":{ "connect":"insert", "mid":apt_mid } } p = makeRequestBody(someCredentials, q) pss_mid = runWriteQuery(p, aServiceUrl, anHttp) if pss_mid == None: raise Exception("Could not create predicted secondary structure topic!") sys.exit() else: return pss_mid #creates an empty dissociation constant topic and returns it # atttaches it to the given affinity experiment mid def createDissociationConstantTopic(aff_exp_mid, aServiceUrl, anHttp, someCredentials): q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/dissociation_constant", "b:type":"/base/aptamer/experimental_outcome", "/base/aptamer/experimental_outcome/is_outcome_of":{ "connect":"insert", "mid":aff_exp_mid } } params = makeRequestBody(someCredentials, q) kd_mid = runWriteQuery(params, aServiceUrl, anHttp) if kd_mid == None: raise Exception("Cannot create kd topic!") sys.exit() else: return kd_mid #Creates an empty selex experiment topic #creates the corresponding topics: # partitioning method, recovery methods and selex conditions #returns a dictionary with mids for all its parts def createSelexExperimentTopic(aServiceUrl, anHttp, someCredentials): rm = {} #1: create a selex experiment topic q = { "create" :"unconditional", "mid" : None, "type" : "/base/aptamer/selex_experiment", "b:type" : "/base/aptamer/experiment", "c:type" : "/base/aptamer/interaction_experiment", } params = makeRequestBody(someCredentials, q) se_mid = runWriteQuery(params, aServiceUrl, anHttp) if se_mid: rm["mid"]= se_mid #now create the partitioning and recovery methods and attach them #to the selex experiment topic created earlier #create a partitioning method topic q = { "create" :"unconditional", "mid":None, "type":"/base/aptamer/partitioning_method", "/base/aptamer/partitioning_method/is_partitioning_method_of":{"connect":"insert", "mid":se_mid} } params = makeRequestBody(someCredentials, q) pm_mid = runWriteQuery(params, aServiceUrl, anHttp) rm["partitioning_method"] = pm_mid #create a recovery method topic q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/recovery_method_se", "/base/aptamer/recovery_method_se/is_recovery_method_of":{"connect":"insert", "mid":se_mid} } params = makeRequestBody(someCredentials, q) rm_mid = runWriteQuery(params, aServiceUrl, anHttp) rm["recovery_method"] = rm_mid #create an empty selex condition topic q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/selex_conditions", "b:type": "/base/aptamer/experimental_conditions", "/base/aptamer/experimental_conditions/are_experimental_conditions_of":{"connect":"insert", "mid":se_mid} } params = makeRequestBody(someCredentials, q) sc_mid = runWriteQuery(params, aServiceUrl, anHttp) rm["selex_conditions"] = sc_mid if sc_mid: #create a selection solution and attach it to the selex conditions topic q = { "create":"unconditional", "mid":None, "type":"/base/aptamer/selection_solution", "/base/aptamer/selection_solution/is_selection_solution_of_sc":{"connect":"insert", "mid":sc_mid} } params = makeRequestBody(someCredentials, q) ss_mid = runWriteQuery(params, aServiceUrl, anHttp) rm["selection_solution"] = ss_mid if not ss_mid: raise Exception ("Could not create selection solution!") sys.exit() else: raise Exception("Could not create selex conditions!") sys.exit() return rm else: raise Exception("Could not create Selex experiment topic!") sys.exit() return None; def makeRequestBody(someCredentials, aQuery): p ={ 'oauth_token': someCredentials.access_token, 'query': json.dumps(aQuery) } return p def runReadQuery(aQuery, anHttp): s = 'https://www.googleapis.com/freebase/v1/mqlread' q = json.dumps(aQuery) url = s+'?query='+urllib.quote_plus(q) resp, content = anHttp.request(url) if resp["status"] == '200': r = json.loads(content) return r["result"] else: return None def runWriteQuery(someParams, aServiceUrl, anHttp, firstOnly=False): url = aServiceUrl+'?'+urllib.urlencode(someParams) resp, content = anHttp.request(url) if resp["status"] == '200': #everything worked r = json.loads(content) if not firstOnly: return r["result"]["mid"] else: if len(r["result"]) == 3: return r["result"]["mid"] else: return r["result"][0]["mid"] else: print someParams print resp print content raise Exception("Could not run query!! erno:234442") return None def addInteractions(aSelexExperimentMid,cleanJson, aServiceUrl, anHttp, someCredentials): #iterate over the interactions for ai in cleanJson["interactions"]: #create an empty interaction topic int_mid = createInteractionTopic(aSelexExperimentMid, aServiceUrl, anHttp, someCredentials) #now iterate over the affinity experiments in clean json for ae in ai["affinity_experiments"]: #create an empty affinity experiment topic aff_mid = createAffinityExperimentTopic(int_mid, aServiceUrl, anHttp, someCredentials) #add the reference details to the affinityExperimentTopic addAffinityExperimentReferenceDetails(aff_mid, aServiceUrl, anHttp, someCredentials) #create an empty kd topic kd_mid = createDissociationConstantTopic(aff_mid, aServiceUrl, anHttp, someCredentials) #add the value of the dissociation constant #(add the value to temporary value as well) try: kd = ae["kd"] q={ "mid":kd_mid, "/base/aptamer/dissociation_constant/has_value":{ "connect":"insert", "value":float(kd), }, "/base/aptamer/dissociation_constant/has_temporary_string_value":{ "connect":"insert", "value" :str(kd), "lang":"/lang/en" }, "/base/aptamer/dissociation_constant/is_dissociation_constant_of":{ "connect":"insert", "mid":int_mid } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not create kd topic!") sys.exit() except KeyError: pass #add the range of the dissociation constant try: kd_range_dirty = ae["kd_range"] #now split by " to " kd_range = kd_range_dirty.split(" to ") if len(kd_range) == 2: low = kd_range[0] high = kd_range[1] #create a floating_point_range topic pfr_mid = createFloatingPointRangeTopic(kd_mid, aServiceUrl, anHttp, someCredentials) #add the values q = { "mid":pfr_mid, "/measurement_unit/floating_point_range/low_value":{ "connect":"insert", "value":float(low) }, "/measurement_unit/floating_point_range/high_value":{ "connect":"insert", "value":float(high) } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not create range topic") sys.exit() else: #connect the floating point range back to the kd topic q = { "mid":kd_mid, "/base/aptamer/dissociation_constant/has_value_range":{ "connect":"insert", "mid":pfr_mid }, "/base/aptamer/dissociation_constant/has_temporary_string_value_range":{ "connect":"insert", "value":str(kd_range), "lang":"/lang/en" } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not connect kd to range value") sys.exit() except KeyError: pass #add the error of the dissociation constant try: error = ae["kd_error"] q = { "mid":kd_mid, "/base/aptamer/dissociation_constant/has_error":{ "connect":"insert", "value":float(error) }, "/base/aptamer/dissociation_constant/temporary_error_string":{ "connect":"insert", "value": error, "lang": "/lang/en" } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add kd error") sys.exit() except KeyError: pass #create an affinity conditions topic aff_cond_dict = createAffinityConditions(aff_mid, aServiceUrl, anHttp, someCredentials) #add the affinity experiment details #add the affinity method to the affinity experiment topic try: for afn in ae["affinity_methods_names"]: #affinity method q = { "mid": aff_mid, "/base/aptamer/affinity_experiment/affinity_method":{ "connect":"insert", "name": str(afn), "type":"/base/aptamer/affinity_method" } } params = makeRequestBody(someCredentials, q) r = runWriteQuery(params, aServiceUrl, anHttp) if r == None: raise Exception("Could not add affinity method "+ afn) sys.exit() except KeyError: pass #now add the affinity conditions for this experiment #first add the buffering agent for the binding solution of the affinity conditions try: for aba in ae["buffering_agent_names"]: q={ "mid": aff_cond_dict["binding_solution"], "/base/aptamer/binding_solution/has_buffering_agent":{ "connect":"insert", "name":str(aba), "type":"/base/aptamer/buffering_agent" } } params = makeRequestBody(someCredentials, q) r = runWriteQuery(params, aServiceUrl, anHttp) if r == None: raise Exception ("Could not add buffering agent to binding solution") sys.exit() except KeyError: q = { "mid": aff_cond_dict["binding_solution"], "/base/aptamer/binding_solution/has_buffering_agent":{ "connect":"insert", "mid":"/m/0g5m7lm" } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add buffering agent to binding solution! errono 99") sys.exit() #now add the metal cation concentrations to the binding solution try: for amcc in ae["ae_metal_cation_concs"]: q={ "mid":aff_cond_dict["binding_solution"], "/base/aptamer/binding_solution/ionic_strength":{ "connect":"insert", "value":str(amcc), "lang": "/lang/en" } } params = makeRequestBody(someCredentials, q) r = runWriteQuery(params, aServiceUrl, anHttp) if r == None: raise Exception ("Could not add ionic strength to binding solution!") sys.exit() except KeyError: pass #now add the ph to the binding solution try: ph = ae["ph"] q={ "mid":aff_cond_dict["binding_solution"], "/base/aptamer/binding_solution/ph":{ "connect":"insert", "value":float(ph) } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception ("Could not add ph") sys.exit() except KeyError: pass #now add the temperature try: temp = ae["temperature"] q = { "mid":aff_cond_dict["binding_solution"], "/base/aptamer/binding_solution/temperature":{ "connect":"insert", "value":float(temp) } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception ("Could not add temperature") sys.exit() except KeyError: pass #now find the aptamer target name from the input aptamer_target_name = ai["aptamer_target"]["name"] #ask the user to identify the type of the target target_type_mid = promptUserForTargetType(aptamer_target_name) #create an aptamer target topic and add the passed in name att_mid = createAptamerTargetTopic(int_mid, aptamer_target_name, target_type_mid, aServiceUrl, anHttp, someCredentials) #now add the aptamers to the interaction try: for anApt in ai["aptamers"]: apt_mid = createAptamerTopic(int_mid, anApt["polymer_type"], anApt["sequence"], aServiceUrl, anHttp, someCredentials) #now predict the secondary structure fold = RNA.fold(str(anApt["sequence"])) dbn = fold[0] mfe = fold[1] #create a predicted secondary structure topic pred_ss_mid = createPredictedSecondaryStructureTopic(apt_mid, dbn, mfe, aServiceUrl, anHttp, someCredentials) #now add the mutational analysis to the aptamer topic try: ma = True if anApt["mutational_analysis"].lower() == "no": ma = False q={ "mid":apt_mid, "/base/aptamer/aptamer/has_mutational_analysis":{ "connect":"insert", "value": ma } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add mutational_analysis ") sys.exit() except KeyError: pass #now add the secondary structures try: for ssn in anApt["secondary_structures_names"]: q={ "mid":apt_mid, "/base/aptamer/nucleic_acid/secondary_structure":{ "connect":"insert", "name": str(ssn), "type":"/base/aptamer/nucleic_acid_secondary_structure" } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add secondary strucutres") sys.exit() except KeyError: pass #now add the application try: q = { "mid":apt_mid, "/base/aptamer/aptamer/application":{ "connect":"insert", "value":str(anApt["application"]), "lang":"/lang/en" } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add application") sys.exit() except KeyError: pass #now add the sequence pattern try: q = { "mid":apt_mid, "/base/aptamer/linear_polymer/sequence_pattern":{ "connect":"insert", "value":str(anApt["sequence_pattern"]), "lang":"/lang/en" } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add sequence pattern") sys.exit() except KeyError: pass #now add the collective or pairwise interaction type int_type = "/base/aptamer/pairwise_interaction" if len(ai["aptamers"]) > 1: int_type = "/base/aptamer/collective_interaction" q={ "mid":int_mid, "type":{ "connect":"insert", "id":int_type } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add intercaction type") sys.exit() except KeyError: pass # add the follwing details: # number of rounds # template sequence # template bias # has template bias # selection solution def addSelexConditions(anMidDict, cleanJson, aServiceUrl, anHttp, someCredentials): #add the number of rounds try: nor = cleanJson["se"]["selex_conditions"]["numOfSelectionRounds"] q = { "mid": anMidDict["selex_conditions"], "/base/aptamer/selex_conditions/number_of_selection_rounds": { "connect":"insert", "value":int(nor) } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception ("Could not run query! 9984") sys.exit() except KeyError: pass #add the template sequence try: ts = cleanJson["se"]["selex_conditions"]["template_sequence"] var_region_summation = computeVariableRegionSummation(ts) if var_region_summation > 1: q ={ "mid" : anMidDict["selex_conditions"], "/base/aptamer/selex_conditions/has_template_sequence":{ "connect":"insert", "value":str(ts), }, "/base/aptamer/selex_conditions/template_variable_region_summation":{ "connect": "insert", "value": int(var_region_summation) } } else: q = { "mid" : anMidDict["selex_conditions"], "/base/aptamer/selex_conditions/has_template_sequence":{ "connect":"insert", "value":str(ts) } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception ("Could not run query! 99843234") sys.exit() except KeyError: pass #add the template bias try: tb = cleanJson["se"]["selex_conditions"]["template_bias"] tb_bool = False if tb.lower == "yes": tb_bool = True q = { "mid" : anMidDict["selex_conditions"], "/base/aptamer/selex_conditions/has_template_bias":{ "connect":"insert", "value": tb_bool } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception ("Could not run query! 4830943") sys.exit() except KeyError: pass #add the selection solution's ph try: ph = cleanJson["se"]["selex_conditions"]["ph"] q = { "mid":anMidDict["selection_solution"], "/base/aptamer/selection_solution/ph":{ "connect":"insert", "value": float(ph) } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception ("Could not run query! 4830943") sys.exit() except KeyError: pass #add the selection solution's temperature try: temp = cleanJson["se"]["selex_conditions"]["temperature"] q = { "mid":anMidDict["selection_solution"], "/base/aptamer/selection_solution/temperature":{ "connect":"insert", "value":float(temp) } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception ("Could not run query! 43543543") sys.exit() except KeyError: pass #add the selection solution's buffering agents try: ba = cleanJson["se"]["selex_conditions"]["buffering_agents"] for aba in ba: q = { "mid":anMidDict["selection_solution"], "/base/aptamer/selection_solution/has_buffering_agent":{ "connect":"insert", "name": aba, "type":"/base/aptamer/buffering_agent" } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception ("Could not run query! 98327492387423") sys.exit() except KeyError: q = { "mid": anMidDict["selection_solution"], "/base/aptamer/binding_solution/has_buffering_agent":{ "connect":"insert", "mid":"/m/0g5m7lm" } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add buffering agent to binding solution! errono 99") sys.exit() #add the selection solution's metal cation conc string try: mcc = cleanJson["se"]["selex_conditions"]["metal_cation_concentration"] for amcc in mcc: q = { "mid":anMidDict["selection_solution"], "/base/aptamer/selection_solution/ionic_strength":{ "connect":"insert", "value":str(amcc), "lang": "/lang/en" } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception ("Could not run query! 98327492387423") sys.exit() except KeyError: pass #add the following details: # partitioning method # recovery method # selex method def addSelexDetails(anMidDict, cleanJson, aServiceUrl, anHttp, someCredentials): #add the selex method try: sm = cleanJson["se"]["selex_methods"] for asm in sm: q = { "mid": anMidDict["mid"], "/base/aptamer/selex_experiment/has_selex_method":{ "connect":"insert", "name": str(asm), "type":"/base/aptamer/selex_method" } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception("Could not run query! 500-3") sys.exit() except KeyError: pass #now add the partitioning method try: pm_names = cleanJson["se"]["partitioning_methods"] for an in pm_names: q = { "mid": anMidDict["partitioning_method"], "/base/aptamer/partitioning_method/has_separation_method":{ "connect":"insert", "name": str(an), "type":"/base/aptamer/separation_methods" } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception("Could not run query! 113") sys.exit() except KeyError: q = { "mid": anMidDict["partitioning_method"], "/base/aptamer/partitioning_method/has_separation_method":{ "connect":"insert", "mid": "/m/0g5m7lm" } } p = makeRequestBody(someCredentials, q) if runWriteQuery(p, aServiceUrl, anHttp) == None: raise Exception ("Could not add default partitioning_method") sys.exit() pass #now add the recovery methods try: rm_names = cleanJson["se"]["recovery_methods"] for an in rm_names: q ={ "mid": anMidDict["recovery_method"], "/base/aptamer/recovery_method_se/has_recovery_method":{ "connect":"insert", "name":an, "type":"/base/aptamer/recovery_methods" } } p = makeRequestBody(someCredentials, q) if runWriteQuery(p, aServiceUrl, anHttp) == None: raise Exception("Could not run query! 324") sys.exit() except KeyError: q ={ "mid":anMidDict["recovery_method"], "/base/aptamer/recovery_method_se/has_recovery_method":{ "connect":"insert", "mid":"/m/0g5m7lm" } } p = makeRequestBody(someCredentials, q) if runWriteQuery(p, aServiceUrl, anHttp) == None: raise Exception("Could not add default recovery method!") sys.exit() #deal - # - def computeVariableRegionSummation(aTemplateSequence): #compute the variable region summation pat1 = '^NO\-TEMPLATE$' pat2 = '^[ACGTRUYKMSWBDHVNX-]+\s*-\s*(\d+)\s*-\s*[ACGTRUYKMSWBDHVNX-]+$' pat3 = '^[ACGTRUYKMSWBDHVNX-]+\s*-\s*(\d+)\s*-\s*[ACGTRUYKMSWBDHVNX-]+\s*-\s*(\d+)\s*-\s*[ACGTRUYKMSWBDHVNX-]+\s*$' m1 = re.match(pat1, aTemplateSequence) m2 = re.match(pat2, aTemplateSequence) m3 = re.match(pat3, aTemplateSequence) if m1: return -1 elif m2: return float(m2.group(1)) elif m3: r = float(m3.group(1)) + float(m3.group(2)) return r else: return -1 #add the referente details to the anAffinityExperimentMid topic # uses the same details as the selex expeirment def addAffinityExperimentReferenceDetails(anAffinityExperimentMid, aServiceUrl, anHttp, someCredentials): #pmid try: pmid = reference_dict["pmid"] q = { "mid":anAffinityExperimentMid, "/base/aptamer/experiment/pubmed_id":{ "connect":"insert", "value":str(pmid) } } p = makeRequestBody(someCredentials, q) r = runWriteQuery(p, aServiceUrl, anHttp) if r == None: raise Exception("Could not add pmid@") sys.exit() except KeyError: pass #doi try: doi = reference_dict["doi"] q = { "mid":anAffinityExperimentMid, "/base/aptamer/experiment/digital_object_identifier":{ "connect":"insert", "value":str(doi), "lang":"/lang/en" } } params = makeRequestBody(someCredentials, q) r = runWriteQuery(params, aServiceUrl, anHttp) if r == None: raise Exception("Could not run query! oi23442h") sys.exit() except KeyError: pass #reference try: reference = reference_dict["reference"] q = { "mid":anAffinityExperimentMid, "/base/aptamer/experiment/has_bibliographic_reference":{ "connect":"insert", "value":str(reference) } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception("Could not run query! #dslk33fj") sys.exit() except KeyError: pass #add the reference details to the anMid's selex experiment topic # details to be added here are: # pmid, doi or reference string def addReferenceDetails(anMidDict, cleanJson, aServiceUrl, anHttp, someCredentials): #first try the pmid try: pmid = cleanJson["se"]["pmid"] reference_dict["pmid"] = pmid q = { "mid":anMidDict["mid"], "/base/aptamer/experiment/pubmed_id":{ "connect":"insert", "value":str(pmid) } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception ("Could not run query! #2433211.3") sys.exit() except KeyError: pass #now try the doi try: doi = cleanJson["se"]["doi"] reference_dict["doi"] = doi q = { "mid":anMidDict["mid"], "/base/aptamer/experiment/digital_object_identifier":{ "connect":"insert", "value":str(doi), "lang":"/lang/en" } } params = makeRequestBody(someCredentials, q) r = runWriteQuery(params, aServiceUrl, anHttp) if r == None: raise Exception("Could not run query! oi42h") sys.exit() except KeyError: pass #now try the reference try: reference = cleanJson["se"]["reference"] reference_dict["reference"] = reference q = { "mid":anMidDict["mid"], "/base/aptamer/experiment/has_bibliographic_reference":{ "connect":"insert", "value":str(reference) } } params = makeRequestBody(someCredentials, q) if runWriteQuery(params, aServiceUrl, anHttp) == None: raise Exception("Could not run query! #dslkfj") sys.exit() except KeyError: pass #this method prompts the user to select the correct target type # for the passed in target name. The options are: 1. cell, 2. small molecule 3. protein # ask the user until they answer correctly # returns the Mid of the type the user picked def promptUserForTargetType(aTargetName): opts = "Please choose one of the following options that best describes the aptamer target : "+aTargetName+"\n" opts += "1 : cell\n2 : protein\n3 : small molecule\n" anMid = None if not aTargetName in target_dict: playsound() x = 0 while not x: try: choice = int(raw_input(opts)) if choice == 1: x =1 target_dict[aTargetName] = "/m/01cbd" return "/m/01cbd" elif choice == 2: x =1 target_dict[aTargetName] = "/m/05wvs" return "/m/05wvs" elif choice == 3: x= 1 target_dict[aTargetName] = "/m/043tvww" return "/m/043tvww" else: print "invalid option... try again" except ValueError, e: print ("'%s' is not a valid integer." % e.args[0].split(": ")[1]) else: return target_dict[aTargetName] #This function calls the java servlet that parses the output of selexsubmit form def getCleanJson(aServletUrl, aDirPath,aFileName): json_raw = open(aDirPath+'/'+aFileName, 'r') for aline in json_raw: fchar = aline[0] if fchar == '{': data = json.loads(aline) if data: print 'processing ' + aFileName + '...' #prepare the query params = { "se" : aline, "fn" : aDirPath+'/'+aFileName } #now call the servlet f = urllib.urlopen(aServletUrl, urlencode(params)) output = f.read().replace("\\\"", "") if output: try: json_raw.close() rm = json.loads(output) return rm except ValueError: print "Could not get data from servlet for this file: "+aFileName return None else: print "skipping file :"+aFileName json_raw.close() #raise Exception("Servlet found here: "+aServletUrl+" did not respond!") return None else: continue def playsound(): fn = os.getcwd()+'/b.mp3' pygame.init() pygame.mixer.init() pygame.mixer.music.load(fn) pygame.mixer.music.play() while pygame.mixer.music.get_busy(): pygame.time.Clock().tick(10) if __name__ == '__main__': main(sys.argv)
[ "josemiguelcruztoledo@gmail.com" ]
josemiguelcruztoledo@gmail.com
00a04631d405777d81b1263ac835474cf042b535
36118a688c058d04cc15b63c0e2e7e03a1ebf8a0
/custom_components/luxtronik/const.py
4e8579de4cb0d0539363222b592d4b455acc4a22
[ "MIT" ]
permissive
AlmAck/luxtronik
79535e08d2e1a47d11faea2e87ea3950a6592565
c6d590390911cbee13fee30bda4e3b9f777f1310
refs/heads/master
2023-01-13T18:54:00.115713
2020-11-23T06:17:13
2020-11-23T06:17:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,823
py
"""Constants for the Luxtronik integration.""" from homeassistant.const import ( DEVICE_CLASS_TEMPERATURE, DEVICE_CLASS_PRESSURE, DEVICE_CLASS_TIMESTAMP, ENERGY_KILO_WATT_HOUR, PRESSURE_BAR, TEMP_CELSIUS, ) ATTR_PARAMETER = "parameter" ATTR_VALUE = "value" CONF_INVERT_STATE = "invert" CONF_SAFE = "safe" CONF_GROUP = "group" CONF_PARAMETERS = "parameters" CONF_CALCULATIONS = "calculations" CONF_VISIBILITIES = "visibilities" CONF_CELSIUS = "celsius" CONF_SECONDS = "seconds" CONF_TIMESTAMP = "timestamp" CONF_KELVIN = "kelvin" CONF_BAR = "bar" CONF_PERCENT = "percent" CONF_ENERGY = "energy" CONF_VOLTAGE = "voltage" CONF_HOURS = "hours" CONF_FLOW = "flow" ICONS = { "celsius": "mdi:thermometer", "seconds": "mdi:timer-sand", "pulses": "mdi:pulse", "ipaddress": "mdi:ip-network-outline", "timestamp": "mdi:calendar-range", "errorcode": "mdi:alert-circle-outline", "kelvin": "mdi:thermometer", "bar": "mdi:arrow-collapse-all", "percent": "mdi:percent", "rpm": "mdi:rotate-right", "energy": "mdi:flash-circle", "voltage": "mdi:flash-outline", "hours": "mdi:clock-outline", "flow": "mdi:chart-bell-curve", "level": "mdi:format-list-numbered", "count": "mdi:counter", "version": "mdi:information-outline", } DEVICE_CLASSES = { CONF_CELSIUS: DEVICE_CLASS_TEMPERATURE, CONF_KELVIN: DEVICE_CLASS_TEMPERATURE, CONF_BAR: DEVICE_CLASS_PRESSURE, CONF_SECONDS: DEVICE_CLASS_TIMESTAMP, CONF_HOURS: DEVICE_CLASS_TIMESTAMP, CONF_TIMESTAMP: DEVICE_CLASS_TIMESTAMP, } UNITS = { CONF_CELSIUS: TEMP_CELSIUS, CONF_SECONDS: "s", CONF_KELVIN: "K", CONF_BAR: PRESSURE_BAR, CONF_PERCENT: "%", CONF_ENERGY: ENERGY_KILO_WATT_HOUR, CONF_VOLTAGE: "V", CONF_HOURS: "h", CONF_FLOW: "l/min", }
[ "bouni@owee.de" ]
bouni@owee.de
d003323768ea7f4519c90921a33b9eb198732852
69033ac834a34f10df535f102197d3af05e5ee69
/cmstack/codegen/tvmgen/tvm_translation.py
94d23726e2acc6b4c753f6d6f9920df4d7801b75
[ "Apache-2.0" ]
permissive
he-actlab/cdstack
126c3699074bf6ef30f9f9246704069d27e9e614
38f605cfa299bf97b5875a19f9fd811a2671d56f
refs/heads/master
2023-04-10T10:42:10.199207
2019-10-03T02:12:49
2019-10-03T02:12:49
354,713,812
0
0
null
null
null
null
UTF-8
Python
false
false
19,582
py
import tvm import numpy as np from hdfg import hdfgutils from hdfg import load_store from tvm.contrib import graph_runtime from tvm.relay import op as _op from hdfg.passes.flatten import flatten_graph, is_literal, is_number from hdfg.passes.node_mapping import map_nodes from codegen.codegen_utils import CMLANG_CAST_MAP from tvm import relay from tvm.relay.testing.init import Xavier import codegen as c from tvm.relay.testing import layers, init from hdfg.hdfg_pb2 import Component, Program from hdfg.visualize import * import inspect import json import importlib def benchmark_execution(mod, params, measure=True, data_shape=(1, 3, 224, 224), out_shape=(1, 1000), dtype='float32'): def get_tvm_output(mod, data, params, target, ctx, dtype='float32'): with relay.build_config(opt_level=3): graph, lib, params = relay.build(mod, target, params=params) m = graph_runtime.create(graph, lib, ctx) # set inputs m.set_input("data", data) m.set_input(**params) m.run() out = m.get_output(0, tvm.nd.empty(out_shape, dtype)) if measure: print("Evaluate graph runtime inference time cost...") ftimer = m.module.time_evaluator("run", ctx, number=1, repeat=20) # Measure in millisecond. prof_res = np.array(ftimer().results) *1000 print("Mean inference time (std dev): %.2f ms (%.2f ms)" % (np.mean(prof_res), np.std(prof_res))) return out.asnumpy() # random input data = np.random.uniform(size=data_shape).astype(dtype) target = "llvm" ctx = tvm.cpu(0) tvm_out = get_tvm_output(mod, tvm.nd.array(data.astype(dtype)), params, target, ctx, dtype) class TvmTranslation(object): def __init__(self, onnx_proto, run_async=False): self.input_proto = onnx_proto self.output_dir, self.output_file = os.path.split(self.input_proto) self.proto_name = self.output_file.split('.')[0] self.program = load_store.load_program(self.input_proto) self.graph = self.program.graph self.templates = self.program.templates self.components = {} self.includes = [] self.functions = [] self.structs = [] self.signature_map = {} self.initializer = None self.header = [] self.exec = [] self.run_async = run_async self.load_config() self.tvm_passes() self.create_tvm_graph() self.execute_graph() def load_config(self): config_path = os.path.dirname(os.path.realpath(__file__)) + "/tvm_config.json" with open(config_path, 'r') as config_file: config_data = config_file.read() self.translator_config = json.loads(config_data) def execute_graph(self): mod, params = init.create_workload(self.tvm_func) benchmark_execution(mod, params, data_shape=(1, 3, 416, 416), out_shape=(1, 125, 14, 14)) # benchmark_execution(mod, params) # print(f"Module: {mod}") # # # # for p in params.keys(): # # print(f"Key: {p}, shape: {params[p].shape}") def tvm_passes(self): self.tvm_graph = Component(name="tvm_graph_" + str(self.proto_name)) edge_node_ids = {'edges': {}, 'nodes': {}} self.tvm_graph.statement_graphs.extend([]) map_nodes(self.graph, self.templates, [], self.translator_config) # flatten_graph(self.tvm_graph, self.graph, self.templates, '', edge_node_ids, {}) flattened_graph_attr = hdfgutils.make_attribute('flattened', self.tvm_graph) self.program.attributes['flattened_graph'].CopyFrom(flattened_graph_attr) def create_tvm_graph(self): self.graph_variables = {} output_id = None assert len(self.tvm_graph.input) == 1 input_name = self.tvm_graph.input[0] input_shape = self.get_arg_attribute("shape", input_name) self.graph_variables[input_name] = self.get_func('tvm.relay.var')(input_name, shape=input_shape) for n in self.tvm_graph.sub_graph: op_cat = hdfgutils.get_attribute_value(n.attributes['op_cat']) if op_cat == 'mapped_node': op_context = str(n.name).rsplit("/", 1) if len(op_context) > 1 and op_context[0] != 'main': scope = op_context[0] + '/' else: scope = '' op_config = self.translator_config['ops'][n.op_type] op_func = self.get_func(op_config['op_name']) args, kwargs, output_id = self.create_op_args(n.op_type, n, self.templates[n.op_type], scope) if len(output_id) == 1: self.graph_variables[output_id[0]] = op_func(*args, **kwargs) if output_id[0] in list(self.tvm_graph.edge_info): iedge = self.tvm_graph.edge_info[output_id[0]] if iedge.name != output_id[0]: self.graph_variables[str(iedge.name)] = self.graph_variables[output_id[0]] else: temp = op_func(*args, **kwargs) if not hasattr(temp, '__len__'): logging.error(f"Size mismatch between output of {n.op_type} which has length 1 output" f"Supplied config outputs: {output_id}") exit(1) elif len(temp) != len(output_id): logging.error(f"Size mismatch between output of {n.op_type} which has length {len(temp)} output" f"Supplied config outputs: {output_id}") exit(1) for i in range(len(temp)): self.graph_variables[output_id[i]] = temp[i] if output_id[i] in list(self.tvm_graph.edge_info): iedge = self.tvm_graph.edge_info[output_id[i]] if iedge.name != output_id[i]: self.graph_variables[str(iedge.name)] = self.graph_variables[output_id[i]] if not output_id: logging.error(f"No nodes mapped for graph") exit(1) elif len(output_id) != 1: logging.error(f"More than one output supplied for graph: {output_id}") exit(1) self.tvm_func = relay.Function(relay.analysis.free_vars(self.graph_variables[output_id[0]]), self.graph_variables[output_id[0]]) def create_op_args(self, op_name, node, node_signature, scope): op_config = self.translator_config['ops'][op_name] instance_args = hdfgutils.get_attribute_value(node.attributes['ordered_args']) signature_args = hdfgutils.get_attribute_value(node_signature.attributes['ordered_args']) default_map = self.create_default_map(self.templates[op_name]) for i in range(len(instance_args)): instance_args[i] = scope + instance_args[i] args = self.get_ordered_args(op_config, signature_args, instance_args, default_map, op_name, scope) kwargs = self.get_kwargs(op_config, signature_args, instance_args,default_map, op_name, scope) output_keys = self.get_output_keys(op_config, signature_args, instance_args, op_name, scope) return args, kwargs, output_keys def get_ordered_args(self, op_config, signature_args, instance_args,default_map, op, scope): args = [] for a in op_config['positional_arguments']: if a not in op_config['arg_map'].keys(): logging.error(f"{a} not found in argument map for op {op}. Please check config") exit(1) arg = op_config['arg_map'][a]['key'] if arg not in signature_args: logging.error(f"Argument {arg} not found in signature list {signature_args} for op {op}") exit(1) idx = signature_args.index(arg) if idx >= len(instance_args): if default_map[signature_args[idx]] is None: logging.error(f"Error! No default argument for unspecified parameter {arg} in {op}, name: {signature_args[idx]}") exit(1) if op_config['arg_map'][a]['init_func']: var = self.init_var(op_config['arg_map'][a], default_map[signature_args[idx]], literal=True) elif op_config['arg_map'][a]['type'] in CMLANG_CAST_MAP.keys(): var = default_map[signature_args[idx]] else: logging.error(f"Unable to resolve argument {default_map[signature_args[idx]]} for keyword {a}={signature_args[arg]}") var = None exit(1) else: instance_arg = instance_args[idx] if instance_arg in list(self.tvm_graph.edge_info): edge = self.tvm_graph.edge_info[instance_arg] ename = edge.name else: ename = instance_arg if ename in self.graph_variables.keys() and instance_arg not in self.graph_variables.keys(): var = self.graph_variables[ename] elif instance_arg not in self.graph_variables.keys(): if op_config['arg_map'][a]['init_func']: var = self.init_var(op_config['arg_map'][a], instance_arg) if op_config['arg_map'][a]['arg_type'] != 'parameter': self.graph_variables[instance_arg] = var elif op_config['arg_map'][a]['type'] in CMLANG_CAST_MAP.keys(): var = CMLANG_CAST_MAP[op_config['arg_map'][a]['type']](instance_arg) else: logging.error(f"Unable to resolve argument {instance_arg} for keyword {a}={signature_args[arg]}") var = None exit(1) else: var = self.graph_variables[instance_arg] args.append(var) return args def get_kwargs(self, op_config, signature_args, instance_args,default_map, op, scope): kwargs = {} for k in op_config['keyword_arguments'].keys(): if op_config['keyword_arguments'][k] not in op_config['arg_map'].keys(): logging.error(f"Key id {k} with value {op_config['keyword_arguments'][k]} not found in argument map for op {op}." f" Please check config") exit(1) id = op_config['keyword_arguments'][k] arg = op_config['arg_map'][id]['key'] if arg not in signature_args: logging.error(f"Argument {arg} not found in signature list {signature_args} for op {op}") exit(1) idx = signature_args.index(arg) if idx >= len(instance_args): if default_map[signature_args[idx]] is None: logging.error(f"Error! No default argument for unspecified parameter {arg} in {op}, name: {signature_args[idx]}") exit(1) if op_config['arg_map'][id]['init_func']: var = self.init_var(op_config['arg_map'][id], default_map[signature_args[idx]], literal=True) elif op_config['arg_map'][id]['type'] in CMLANG_CAST_MAP.keys(): var = default_map[signature_args[idx]] else: logging.error(f"Unable to resolve argument {default_map[signature_args[idx]]} for keyword {id}={signature_args[arg]}") var = None exit(1) else: instance_arg = instance_args[idx] if instance_arg in list(self.tvm_graph.edge_info): edge = self.tvm_graph.edge_info[instance_arg] ename = edge.name else: ename = instance_arg if ename in self.graph_variables.keys() and instance_arg not in self.graph_variables.keys(): var = self.graph_variables[ename] elif instance_arg not in self.graph_variables.keys(): if op_config['arg_map'][id]['init_func']: var = self.init_var(op_config['arg_map'][id], instance_arg) if op_config['arg_map'][id]['arg_type'] != 'parameter': self.graph_variables[instance_arg] = var elif op_config['arg_map'][id]['type'] in CMLANG_CAST_MAP.keys(): var = CMLANG_CAST_MAP[op_config['arg_map'][id]['type']](instance_arg) else: logging.error(f"Unable to resolve argument {instance_arg} for keyword {id}={signature_args[arg]}") exit(1) else: var = self.graph_variables[instance_arg] kwargs[k] = var return kwargs def get_output_keys(self, op_config, signature_args, instance_args, op, scope): output_keys = [] for o in op_config['op_output']: if o not in op_config['arg_map'].keys(): logging.error(f"Key id {o} with value {op_config['keyword_arguments'][o]} not found in argument map for op {op}." f" Please check config") exit(1) arg = op_config['arg_map'][o]['key'] if arg not in signature_args: logging.error(f"Argument {arg} not found in signature list {signature_args} for op {op}") exit(1) idx = signature_args.index(arg) if idx >= len(instance_args): logging.error(f"Error! Cannot assign output {o} to unspecified parameter {signature_args[idx]}") exit(1) output_keys.append(instance_args[idx]) return output_keys def create_default_map(self, template): default_map = {} ordered_args = hdfgutils.get_attribute_value(template.attributes['ordered_args']) for a in ordered_args: if a not in list(template.edge_info): logging.error(f"Argument {a} not found in edges for {template.op_type}") edge = template.edge_info[a] if 'default' in list(edge.attributes): dtype = hdfgutils.get_attribute_value(edge.attributes['type']) default_map[a] = CMLANG_CAST_MAP[dtype](hdfgutils.get_attribute_value(edge.attributes['default'])) else: default_map[a] = None return default_map def init_var(self, var, instance_name, literal=False): args = [] kwargs = {} arg_type = var['arg_type'] if isinstance(instance_name, str): id = instance_name.rsplit('/', 1) if len(id) > 1: id = id[-1] else: id = id[0] else: id = str(instance_name).rsplit('/', 1) if len(id) > 1: id = id[-1] else: id = id[0] if arg_type == 'parameter' and not literal and not is_literal(id): if instance_name not in list(self.tvm_graph.edge_info): logging.error(f"Unable to get value for parameter {instance_name}") exit(1) edge = self.tvm_graph.edge_info[instance_name] if 'value' not in list(edge.attributes): logging.error(f"Could not find literal for parameter argument {instance_name}.\n" f"Possible attributes: {list(edge.attributes)}") exit(1) value = hdfgutils.get_attribute_value(edge.attributes['value']) elif is_literal(id) and isinstance(instance_name, str): if id in list(self.tvm_graph.edge_info): edge = self.tvm_graph.edge_info[id] value = hdfgutils.get_attribute_value(edge.attributes['value']) elif instance_name in list(self.tvm_graph.edge_info): edge = self.tvm_graph.edge_info[instance_name] value = hdfgutils.get_attribute_value(edge.attributes['value']) else: logging.error(f"Could not find literal for parameter argument {instance_name} with id {id}.\n" f"var: {var['key']}") exit(1) else: value = instance_name for a in var['init_func_args']: arg_result = self.get_arg_attribute(a, value, literal=literal) args.append(arg_result) for k in var['init_func_kw'].keys(): kwargs[k] = self.get_arg_attribute(var['init_func_kw'][k], value, literal=literal) if len(kwargs.keys()) == 0: var = self.get_func(var['init_func'])(*args) else: var = self.get_func(var['init_func'])(*args, **kwargs) return var def get_arg_attribute(self, key, instance_name, literal=False): if isinstance(key, list): arg = [] for k in key: arg.append(self.get_arg_attribute(k, instance_name, literal=literal)) return arg elif key == 'name': return instance_name elif key == 'shape': if literal: logging.error(f"Cannot get shape for literal value {instance_name} as attribute") exit(1) edge = self.tvm_graph.edge_info[instance_name] if 'dimensions' not in list(edge.attributes): logging.error(f"No dimensions for edge {instance_name}") tuple_dims = () else: dimensions = hdfgutils.get_attribute_value(edge.attributes['dimensions']) tuple_dims = tuple(int(d) if is_number(d) else d for d in dimensions) return tuple_dims elif key == 'type': if literal: return type(instance_name).__name__ edge = self.tvm_graph.edge_info[instance_name] if 'type' not in list(edge.attributes): logging.error(f"No type for edge {instance_name}") dtype = 'float32' else: dtype = hdfgutils.get_attribute_value(edge.attributes['type']) return dtype elif instance_name in self.graph_variables.keys(): return self.graph_variables[instance_name] else: logging.error(f"Could not create attribute for {instance_name} with key {key}.") exit(1) def get_args(self, names, vars): args = [] for n in names: if n not in vars.keys(): logging.error(f"Operation argument {n} not in created variables: {vars.keys()}") else: args.append(vars[n]) return args def arg_conversion(self, instance_arg, target_arg): if isinstance(target_arg, tuple): result = tuple(instance_arg for _ in range(len(target_arg))) return result else: return instance_arg def get_func(self, function_name): mod_id, func_id = function_name.rsplit('.', 1) mod = importlib.import_module(mod_id) func = getattr(mod, func_id) return func
[ "sean.kinzer@gmail.com" ]
sean.kinzer@gmail.com
1c0c27da1a5ffd2ada1e238f96d4179c01990331
2cb9d1bf6e674049dd03b04e5714d12a268425a4
/sariq_dev/darslar/10_dars_uy_ishi_5_.py
eb5ae2c36841e0c7e64652eb8400aa8e43b095c9
[]
no_license
RuzimovJavlonbek/anvar.nazrullayevning-mohirdev.uz-platformasidagi-dasturlash.asoslari.python-kursidagi-amaliyotlar
02885608c40e9dd9ae0d13013619ef787240bcf6
f999be39d0e3c7edb990f9c3c29edbeeb0e19c2d
refs/heads/main
2023-07-02T20:16:56.146956
2021-08-06T03:12:49
2021-08-06T03:12:49
390,466,668
2
0
null
null
null
null
UTF-8
Python
false
false
96
py
a = float(input("a=")) if a < 0: print(" Manfiy son") else: print(" Musbat son") input()
[ "ruzimov_javlonbek_1997@mail.ru" ]
ruzimov_javlonbek_1997@mail.ru
1d8b9e59de43646ea4b505eedff319fb9b974db2
4b449a67f2907638a563eee529073d23c346acc7
/Card/migrations/0001_initial.py
9ef256b4b11a0a383319b00003e6242222d1eb0d
[]
no_license
yuanjie101/Ecar
f3adced83e154d36f3ca3bfa1b829ca62471e8ad
24b0789469ca2715cc01038ec8d0fe7be3a6e350
refs/heads/master
2022-10-12T06:02:12.373394
2020-05-23T09:49:45
2020-05-23T09:49:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,069
py
# Generated by Django 3.0.4 on 2020-03-16 09:13 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('Login', '0001_initial'), ('Deck', '0001_initial'), ] operations = [ migrations.CreateModel( name='Card', fields=[ ('card_id', models.IntegerField(primary_key=True, serialize=False)), ('q_text', models.TextField(blank=True, null=True)), ('q_img', models.ImageField(blank=True, null=True, upload_to='question')), ('ans_text', models.TextField(blank=True, null=True)), ('ans_img', models.ImageField(blank=True, null=True, upload_to='answer')), ('recall_secs', models.IntegerField(default=10)), ('c_time', models.DateTimeField(auto_now_add=True)), ('deck', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='Deck.Deck')), ], ), migrations.CreateModel( name='MemoryInfo', fields=[ ('info_id', models.IntegerField(primary_key=True, serialize=False)), ('memory_integral', models.IntegerField(default=0)), ('last_memory_time', models.DateField(null=True)), ('review_time', models.DateField(null=True)), ('now_correct_times', models.IntegerField(default=0)), ('now_error_times', models.IntegerField(default=0)), ('need_correct_times', models.IntegerField(default=4)), ('is_memory_over', models.BooleanField(default=False)), ('memory_times', models.IntegerField(default=0)), ('card', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='InfoToCard', to='Card.Card')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='InfoToUser', to='Login.User')), ], ), ]
[ "re.masterzero@gmail.com" ]
re.masterzero@gmail.com
66e35dbb42b295345eba7f7c190fc3f63a6c00f8
67423cd76b549cea780059856f149c15207fc205
/run1.py
52ca277cd729722b5679e4bc8e92adda75ea00f4
[]
no_license
checkcheckzach/lunar-lander
e69435fc73fe6dd19e00422c5d9946f42e6d41e1
1a01acaab2106398e4043f2ff45ccec623467e0a
refs/heads/master
2020-06-16T23:48:53.399525
2019-07-08T04:25:37
2019-07-08T04:25:37
195,736,031
0
0
null
null
null
null
UTF-8
Python
false
false
1,842
py
import lunarlander import matplotlib.pyplot as plt PARAMS2 = [ {'l_rate': 0.0001, 'gamma': 0.9, 'epsilon_decay': 0.998, 'min_epsilon': 0, 'max_epsilon': 1, 'buffer_zize': 5000, 'batch_size': 32}, {'l_rate': 0.0001, 'gamma': 0.94, 'epsilon_decay': 0.998, 'min_epsilon': 0, 'max_epsilon': 1, 'buffer_zize': 5000, 'batch_size': 32}, {'l_rate': 0.0001, 'gamma': 0.99, 'epsilon_decay': 0.998, 'min_epsilon': 0, 'max_epsilon': 1, 'buffer_zize': 5000, 'batch_size': 32}, {'l_rate': 0.0001, 'gamma': 0.999, 'epsilon_decay': 0.998, 'min_epsilon': 0, 'max_epsilon': 1, 'buffer_zize': 5000, 'batch_size': 32} ] if __name__ == "__main__": scorega = {0.9: [], 0.94: [],0.99: [], 0.999: []} ga = [0.9, 0.94,0.99,0.999] ep = 1500 for para in PARAMS2: exp = lunarlander.Experiment(episode_num=ep, train_mode=True, para=para) exp.run() if para['gamma'] == 0.9: scorega[0.9]= exp.rep if para['gamma'] == 0.94: scorega[0.94]= exp.rep if para['gamma'] == 0.99: scorega[0.99]= exp.rep if para['gamma'] == 0.999: scorega[0.999]= exp.rep epsex = range(0, ep) for i in ga: if i == 0.9: plt.plot(epsex, scorega[i], 'r-', label='gamma = {}'.format(i)) if i == 0.94: plt.plot(epsex, scorega[i], 'b-', label='gamma= {}'.format(i)) if i == 0.99: plt.plot(epsex, scorega[i], 'g-', label='gamma = {}'.format(i)) if i == 0.999: plt.plot(epsex, scorega[i], 'k-', label='gamma = {}'.format(i)) #plt.xlim([0,ep+10]) plt.legend() plt.ylabel('Score',size=20) plt.xlabel('Episode',size=20) plt.title('Gamma Search with other parameters fixed',size=14) plt.show()
[ "noreply@github.com" ]
checkcheckzach.noreply@github.com
cf0a7901e1817c03cbed6cd2351cd3b0691188c2
109af9bb1315554acc2266f97f777049d1449520
/input.py
ffc0a5c42986684d13ac5f6a16a11b9705fb4d2e
[]
no_license
itsuttida/Python
c2ad326a58d50bea27dcd7f970cdde326f574896
2b034d028d292384e14e1f458ac68ed4c7ccc63e
refs/heads/master
2023-05-25T20:10:32.822410
2021-06-13T07:00:00
2021-06-13T07:00:00
345,884,013
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
# age_aew = input("Enter your age: ") # print("aew : " , age_aew , '123' , 1 , 2.34) # age_nick = input("Enter your age") # print("nick : " , age_nick) # f_name = input("Enter your name : ") # l_name = input("Enter your lastname : ") # full = f_name + l_name # print(full) #sum age = f age_aew = int(input("Enter your age : ")) age_nick = input("Enter your age : ") sum_age = age_aew + int(age_nick) print(sum_age)
[ "suttida.s@teohong.com" ]
suttida.s@teohong.com
ec662f925b59e24fde024e4243aba389f33e0432
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/benchmarks/sieve-14.py
52bce3a36228b57f2739edf857ed492498c0ab0c
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
2,587
py
# A resizable list of integers class Vector(object): items: [$ID] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 # Data v:Vector = None i:int = 0 # Crunch v = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
3195ba4e15a300cbdd468a885fafc5e2749eb25f
37a05e589e90e8a265eb849bdebf8f8739fb97ac
/img1.py
b0ddf657c966dfd475d4f658d045b6156ab4dcff
[]
no_license
Dust1N69/Jerry
06d1425b1495401f15f0e24b671dc06d13399e6b
75af9954e20f03857d2e5981c9414ae63dfbb4ed
refs/heads/master
2023-06-25T22:31:44.388203
2021-07-29T13:50:28
2021-07-29T13:50:28
389,825,418
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
import cv2 img1 = cv2.imread('./images/test1.jpg') print(img1.shape) print(img1[100,200]) print(img1.item(100,200,1)) # img1[200:400,300:700]=[255,0,0] roi = img1[400:600,300:700] roi[:,:,1]=255 # roi[:,:,2]=0 h,w,a =roi.shape img1[100:300,800:1200] = roi print(len(roi),len(roi[0])) img1[10:10+h,10:10+w] = roi print(img1.size) #秀圖 cv2.namedWindow('test',cv2.WINDOW_NORMAL) cv2.imshow('test',img1) cv2.waitKey(0) cv2.destroyAllWindows() cv2.imwrite('test.png',img1)
[ "noreply@github.com" ]
Dust1N69.noreply@github.com
51da6df9e40cee8f9c3da7d7716748f4d0cefe6a
eb6fdd2f3e0363bf18b5819f5032c0143b0fc540
/dashboard/decorators.py
ec745dde820cda3d2349ba324b57e817698065d6
[]
no_license
AnuraghSarkar/Halkhabar
61afaa9c8f884d51cdb9ebe69ea565c6fdab996d
f54e186fc083d5d75822756fdffae3784324bb48
refs/heads/master
2023-04-23T06:02:06.725189
2021-05-10T04:14:00
2021-05-10T04:14:00
361,974,054
1
1
null
null
null
null
UTF-8
Python
false
false
974
py
from django.shortcuts import redirect def unauthenticated_user(view_function): def wrapper_function(request, *args, **kwargs): if request.user.is_authenticated: if request.user.is_staff: return redirect('/myadmin') elif not request.user.is_staff: return redirect('/') else: return view_function(request, *args, **kwargs) return wrapper_function def admin_only(view_function): def wrapper_function(request, *args, **kwargs): if request.user.is_staff: return view_function(request, *args, **kwargs) else: return redirect('posts:feed') return wrapper_function def user_only(view_function): def wrapper_function(request, *args, **kwargs): if request.user.is_staff: return redirect('myadmin:admin-dashboard') else: return view_function(request, *args, **kwargs) return wrapper_function
[ "trithatimalsina@gmail.com" ]
trithatimalsina@gmail.com
a1e31fcbf4ad9e98d814b560160471a3f4c219ac
1d36cce83aa5fd4ef09fd80361a6ea5a30237226
/create_batch_info.py
21304d2721dc6db36ce1296826d27c37f4ded8b5
[]
no_license
HyunbinCho/cell_perturbation
3d994ba77fbe8e7a8ea8435d4ef069a9bf936d56
66686140c859383ca7d61f075e3b2649886e5e83
refs/heads/master
2022-07-23T06:33:10.448560
2019-08-28T14:28:15
2019-08-28T14:28:15
198,537,790
0
0
null
2022-06-21T22:25:08
2019-07-24T01:50:21
Jupyter Notebook
UTF-8
Python
false
false
2,927
py
import os import glob import cv2 import numpy as np import pandas as pd from collections import defaultdict from utils.load_dataset import * sys.path.append("/home/hyunbin/utils/rxrx1-utils") import rxrx.io as rio import yaml import numba @numba.jit(nopython=True, parallel=True) def calculate_subfunc(image_array): mean = np.mean(image_array) std = np.std(image_array) return mean, std def create_batch_info(datapath, outpath, metadata_path): """ calculates of mean and stddev per batch samples only using Negative Control Examples of batch_info_dict HEPG2-01: - mean: (0.5, 0.5, 0.5, 0.5, 0.5, 0.5) ------> 6-channel - std: (0.5, 0.5, 0.5, 0.5, 0.5, 0.5) HEPG2-02: - mean: (0.499, 0.323, 0.276, 0.301, 0.399, 0.501) - std:: (0.501, 0.333, 0.255, 0.532, 0.444, 0.333) ...(skip) U2OS-01: - mean: (0.375, 0.376, 0.377, 0.378, 0.379, 0.380) - std: (0.222, 0.223, 0.224, 0.225, 0.226, 0.227) ...(skip) """ #data_path = "/data2/cell_perturbation/" traindata = load_data_cell_perturbation(base_path=os.path.join(datapath, "train")) testdata = load_data_cell_perturbation(base_path=os.path.join(datapath, "test")) metadata = load_metadata(from_server=True, path=metadata_path) merged_data = merge_all_data_to_metadata([traindata, testdata], metadata) print(merged_data) temp_batchname_list = [i.split("_")[0] for i in merged_data.loc[:, 'id_code'].values.tolist()] batch_nameset = set(temp_batchname_list) batch_nameset = list(batch_nameset) batch_info_dict = defaultdict(dict) for batch_name in batch_nameset: print(batch_name) batch_info_dict[batch_name] = defaultdict(dict) batch_info_dict[batch_name]['mean'] = list() batch_info_dict[batch_name]['std'] = list() temp_df = merged_data[merged_data['id_code'].str.match(batch_name)] temp_df = temp_df[temp_df['well_type'] == 'negative_control'] #iterates channel 1 ~ 6 for channel in range(1, 7): temp_df_per_channel = temp_df.loc[:, 'c{}'.format(channel)] img_arr = np.array([cv2.imread(i) for i in temp_df_per_channel.values.tolist()]) #calculates mean, std each from all pixel values #TODO: make a subfunction with numba mean, std = calculate_subfunc(img_arr) batch_info_dict[batch_name]['mean'].append(mean) batch_info_dict[batch_name]['std'].append(std) with open(outpath, 'w', encoding="utf-8") as yaml_file: dump = yaml.dump(batch_info_dict, default_flow_style=False, allow_unicode=True, encoding=None) yaml_file.write(dump) if __name__ == "__main__": data_path = "/hdd/cell_perturbation" create_batch_info(data_path, "./batch_info.yaml")
[ "ehrm0rh@gmail.com" ]
ehrm0rh@gmail.com
ca15f8c807dc55a92e8237c20f88a21a73b45caa
c29dc8e9f73876df29e98203c562958cefafd5a9
/env/Scripts/django-admin.py
6c58a702ae126bb95f44adcb508f466e20872a95
[]
no_license
Rakshitha-masali/pro1234
594109f1d37b45b020d22507635811172dc2f5f6
d66cb43c0e0e887e802ee11b3d2e71ce0f8cb71d
refs/heads/main
2023-04-02T02:14:12.137713
2021-04-02T16:15:48
2021-04-02T16:15:48
354,068,119
0
0
null
null
null
null
UTF-8
Python
false
false
690
py
#!c:\users\hp\desktop\project100\env\scripts\python.exe # When the django-admin.py deprecation ends, remove this script. import warnings from django.core import management try: from django.utils.deprecation import RemovedInDjango40Warning except ImportError: raise ImportError( 'django-admin.py was deprecated in Django 3.1 and removed in Django ' '4.0. Please manually remove this script from your virtual environment ' 'and use django-admin instead.' ) if __name__ == "__main__": warnings.warn( 'django-admin.py is deprecated in favor of django-admin.', RemovedInDjango40Warning, ) management.execute_from_command_line()
[ "rakshithamasali@gmail.com" ]
rakshithamasali@gmail.com
8ae1fdf9ab7bd682171cd3f8dbcf5d308883094f
9a8f34fe61ec7ffe014ab7e1d2a52d300c5f354e
/python/multithread_multiprocess/venv/bin/f2py
7daa6293e960fdad2ef9741534b96e440de29a97
[]
no_license
PacYang/interview_prepare
d0995fd1a51793232d4b8348340c67a2ab2fb405
92e411cb9956fa4d20ac399d9bbfe4f64dae3769
refs/heads/master
2021-04-07T22:45:45.608083
2020-09-27T09:22:59
2020-09-27T09:22:59
248,714,077
0
1
null
null
null
null
UTF-8
Python
false
false
264
#!/Users/larry.yang/Documents/git/multithread/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from numpy.f2py.f2py2e import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "larry.yang@yingzt.com" ]
larry.yang@yingzt.com
dccc13354e31ce5cae3be0b081de0f4522049eea
be91d8ece2543ac8979519f54ca6ca2e2b156aaf
/filehandling_using_pandas.py
84fa5c5c197a9219e822dbd1df64d0c513590efb
[]
no_license
muhammadfaraz6640/pandas-work
70cb3023f62a236ccc7b514c1fcb18a74242a039
0861f173c0cc869703fdcbcaddd5bfb56b237f83
refs/heads/master
2020-09-14T16:51:31.657516
2019-11-21T14:24:10
2019-11-21T14:24:10
223,190,875
3
0
null
null
null
null
UTF-8
Python
false
false
2,539
py
# -*- coding: utf-8 -*- """ Created on Sun Nov 3 13:34:30 2019 @author: Haroon Traders """ '''names=['name','age','dept']''' #data loading storage and file formats import pandas as pd #sentinels={'2':['not found','nan']} #ab=pd.read_csv("C:/Users/Haroon Traders/source/repos/filing/filing/data.csv",skiprows=1,header=None,na_values=sentinels,nrows=3) #print(ab) #s2_df=pd.read_csv("C:/Users/Haroon Traders/source/repos/filing/filing/data.csv",index_col=['name','age']) #print(s2_df),nrows=3,na_values=sentinels #new=pd.read_csv("C:/Users/Haroon Traders/Anaconda3/pkgs/scikit-learn-0.20.3-py37h343c172_0/Lib/site-packages/sklearn/datasets/data/wine_data.csv",skiprows=1,header=None,chunksize=50) #print(type(new)) #print(new) #chunklist=[] #for chunk in new: # print(len(chunk)) #178 record 3 chunks of 50 4th chunk will be of 28 #print(chunk.head) # chunklist.append(chunk) #print(chunklist) #df=chunklist[2] #print(df.head()) #print(df) #ab=pd.read_csv("C:/Users/Haroon Traders/source/repos/filing/filing/data.csv",skiprows=1,header=None,na_values=sentinels,nrows=3) #ab.to_csv("C:/Users/Haroon Traders/Anaconda3/pkgs/scikit-learn-0.20.3-py37h343c172_0/Lib/site-packages/sklearn/datasets/data/wine_data.csv") #abc=pd.read_html("C:/Users\Haroon Traders/Downloads/[FreeTutorials.Us] Udemy - the-complete-web-developer-course-2/04 Javascript/108 Loops - Files.html") #print(len(abc)) import numpy as np ''' frame=pd.DataFrame({'a':np.random.randn(100),'b':np.random.randn(100)}) store=pd.HDFStore("mydata.h5") #print(store) #print(frame) store['obj1']=frame store['obj1_col']=frame['a'] print(store) x=store.obj1 print(x.head()) #print(x) y=store.obj1_col #print(y.head()) store.put('obj2',frame,format='table') store.select('obj2',where=['index>10']) # if table format i can condition here print(store.obj2.head()) ''' import requests import json ''' url="http://search.twitter.com/search.json?q=python%20pandas" resp=requests.get(url) print(resp) data=resp.json() print(data) res=json.load(resp) ''' import sqlite3 # rdbms #creating table query="""CREATE TABLE test (a VARCHAR(20),b VARCHAR(20),c REAL,d INTEGER);""" con=sqlite3.connect('mydata1.sqlite3') #con.execute(query) con.commit() data=[('atlanata','georgia',1.25,6)] smtp="INSERT INTO test Values(?,?,?,?)" con.executemany(smtp,data) cursor=con.execute("SELECT * FROM test") print(cursor.description) file=pd.read_csv("C:/Users/Haroon Traders/Desktop/Assignment-2/Euro_2012_stats_TEAM.csv") file
[ "noreply@github.com" ]
muhammadfaraz6640.noreply@github.com
6fd7363389f6b9bfc67823959049f44b95b6f19e
83aa59c568d0b84eee76226776da7f1d49384f10
/tccli/services/ape/ape_client.py
a2fa953563d4f64679515e3129265264be734748
[ "Apache-2.0" ]
permissive
jjandnn/tencentcloud-cli
c492f5f19cacaee85fc2e7b0de0d8aa8ef5dd009
ac3c697fb06acdd2e3e711b11069d33754889340
refs/heads/master
2023-05-05T00:27:54.406654
2021-05-27T00:40:52
2021-05-27T00:40:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,552
py
# -*- coding: utf-8 -*- import os import json import tccli.options_define as OptionsDefine import tccli.format_output as FormatOutput from tccli import __version__ from tccli.utils import Utils from tccli.exceptions import ConfigurationError from tencentcloud.common import credential from tencentcloud.common.profile.http_profile import HttpProfile from tencentcloud.common.profile.client_profile import ClientProfile from tencentcloud.ape.v20200513 import ape_client as ape_client_v20200513 from tencentcloud.ape.v20200513 import models as models_v20200513 def doDescribeAuthUsers(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ApeClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeAuthUsersRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeAuthUsers(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeDownloadInfos(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ApeClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeDownloadInfosRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeDownloadInfos(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doBatchDescribeOrderCertificate(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ApeClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.BatchDescribeOrderCertificateRequest() model.from_json_string(json.dumps(args)) rsp = client.BatchDescribeOrderCertificate(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeImages(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ApeClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeImagesRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeImages(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doCreateOrderAndDownloads(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ApeClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.CreateOrderAndDownloadsRequest() model.from_json_string(json.dumps(args)) rsp = client.CreateOrderAndDownloads(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeImage(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ApeClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeImageRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeImage(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doCreateOrderAndPay(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ApeClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.CreateOrderAndPayRequest() model.from_json_string(json.dumps(args)) rsp = client.CreateOrderAndPay(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doBatchDescribeOrderImage(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ApeClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.BatchDescribeOrderImageRequest() model.from_json_string(json.dumps(args)) rsp = client.BatchDescribeOrderImage(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) CLIENT_MAP = { "v20200513": ape_client_v20200513, } MODELS_MAP = { "v20200513": models_v20200513, } ACTION_MAP = { "DescribeAuthUsers": doDescribeAuthUsers, "DescribeDownloadInfos": doDescribeDownloadInfos, "BatchDescribeOrderCertificate": doBatchDescribeOrderCertificate, "DescribeImages": doDescribeImages, "CreateOrderAndDownloads": doCreateOrderAndDownloads, "DescribeImage": doDescribeImage, "CreateOrderAndPay": doCreateOrderAndPay, "BatchDescribeOrderImage": doBatchDescribeOrderImage, } AVAILABLE_VERSION_LIST = [ "v20200513", ] def action_caller(): return ACTION_MAP def parse_global_arg(parsed_globals): g_param = parsed_globals is_exist_profile = True if not parsed_globals["profile"]: is_exist_profile = False g_param["profile"] = "default" configure_path = os.path.join(os.path.expanduser("~"), ".tccli") is_conf_exist, conf_path = Utils.file_existed(configure_path, g_param["profile"] + ".configure") is_cred_exist, cred_path = Utils.file_existed(configure_path, g_param["profile"] + ".credential") conf = {} cred = {} if is_conf_exist: conf = Utils.load_json_msg(conf_path) if is_cred_exist: cred = Utils.load_json_msg(cred_path) if not (isinstance(conf, dict) and isinstance(cred, dict)): raise ConfigurationError( "file: %s or %s is not json format" % (g_param["profile"] + ".configure", g_param["profile"] + ".credential")) if OptionsDefine.Token not in cred: cred[OptionsDefine.Token] = None if not is_exist_profile: if os.environ.get(OptionsDefine.ENV_SECRET_ID) and os.environ.get(OptionsDefine.ENV_SECRET_KEY): cred[OptionsDefine.SecretId] = os.environ.get(OptionsDefine.ENV_SECRET_ID) cred[OptionsDefine.SecretKey] = os.environ.get(OptionsDefine.ENV_SECRET_KEY) cred[OptionsDefine.Token] = os.environ.get(OptionsDefine.ENV_TOKEN) if os.environ.get(OptionsDefine.ENV_REGION): conf[OptionsDefine.Region] = os.environ.get(OptionsDefine.ENV_REGION) for param in g_param.keys(): if g_param[param] is None: if param in [OptionsDefine.SecretKey, OptionsDefine.SecretId, OptionsDefine.Token]: if param in cred: g_param[param] = cred[param] else: raise ConfigurationError("%s is invalid" % param) elif param in [OptionsDefine.Region, OptionsDefine.Output]: if param in conf: g_param[param] = conf[param] else: raise ConfigurationError("%s is invalid" % param) try: if g_param[OptionsDefine.ServiceVersion]: g_param[OptionsDefine.Version] = "v" + g_param[OptionsDefine.ServiceVersion].replace('-', '') else: version = conf["ape"][OptionsDefine.Version] g_param[OptionsDefine.Version] = "v" + version.replace('-', '') if g_param[OptionsDefine.Endpoint] is None: g_param[OptionsDefine.Endpoint] = conf["ape"][OptionsDefine.Endpoint] except Exception as err: raise ConfigurationError("config file:%s error, %s" % (conf_path, str(err))) if g_param[OptionsDefine.Version] not in AVAILABLE_VERSION_LIST: raise Exception("available versions: %s" % " ".join(AVAILABLE_VERSION_LIST)) return g_param
[ "tencentcloudapi@tenent.com" ]
tencentcloudapi@tenent.com
25955ebc5f0917edaefe7116d2150d8499521ed9
0198b58c6450f1bbe5f9b0c5ff60b530bafb7518
/webgraph_factory/src/utils/datagen.py
66ea70a78d68cc5c613f20b8add34e6e62c2fadd
[]
no_license
andrei-ars/web_graph_emb
58d56b7ca98807a8b82d8f3a109556b77b9b65e2
8c2e7bf94f291130b82d746076c2f7f5e148bd4a
refs/heads/main
2023-08-16T03:24:41.310804
2021-09-19T23:16:17
2021-09-19T23:16:17
385,738,766
0
0
null
null
null
null
UTF-8
Python
false
false
4,338
py
import json import numpy as np import numpy.random as random import string class DataGenerator(): def __init__(self,datagen_path): with open(datagen_path) as fp: self.fields = json.load(fp)['fields'] self.bisect_idx = 0 def infer_random_like(self,value,range_str=None): to_type = type(value) rng = parse_range(value,range_str) if isinstance(value,int): start,stop,step = rng interval = np.arange(start,stop,step) elif isinstance(value,float): start,stop,step = rng interval = np.arange(start,stop,step) elif isinstance(value,str): interval = rng else: interval = ['0'] return to_type(random.choice(interval)) def infer_out_of_range(self,value,range_str=None): to_type = type(value) rng = parse_range(value,range_str) if isinstance(value,int): start,stop,_ = rng interval = np.arange(start-100,start).tolist() + np.arange(stop,stop+100).tolist() elif isinstance(value,float): start,stop,_ = rng interval = np.arange(start-100,start).tolist() + np.arange(stop,stop+100).tolist() elif isinstance(value,str): interval = [''.join(random.choice([c for c in (string.ascii_letters + string.digits)], size=10))] else: interval = ['0'] return to_type(random.choice(interval)) def infer_bisected(self,value,range_str=None): to_type = type(value) rng = parse_range(value,range_str) if isinstance(value,(int,float)): start,stop,_ = rng interval = get_bisected_range(start,stop) else: return None if self.bisect_idx >= len(interval): self.bisect_idx = 0 result = to_type(interval[self.bisect_idx]) self.bisect_idx +=1 return result def infer(self, driver, element): """ WebDriver element """ url = driver.get_current_url() data = self.filter_url(url) data = self.get_field_like_element(driver,data,element) if data: return data['value'] return data def get_field_like_element(self,driver,data,element): result = [d for d in data if element == driver.get_element('xpath',d['xpath'])] if len(result) == 1: return result[0] return None def filter_url(self,url): return [field for field in self.fields if field['url'] == url] def gen_uniform(start,stop): return random.randint(start,stop) def get_bisected_range(start,stop, n=9): result = [] mid = (start+stop) // 2 result.append(start) result.append(stop) result.append(mid) mid_l,mid_r = mid,mid for _ in range((n-2)//2): mid_l = (start+mid_l) // 2 mid_r = (mid_r+stop) // 2 result.append(mid_l) result.append(mid_r) return sorted(result) def parse_range(initial,range_str): if isinstance(initial,(int,float)): if range_str is None: return 0,100,None to_type = type(initial) splitted = range_str.split(',') assert len(splitted) == 2,f'Cannot parse range {range_str}' first,last = splitted if first[0] == '[': first = to_type(first[1:]) elif first[0] == '(': first = to_type(first[1:]) + 1 else: raise ValueError(f'Cannot parse range {range_str}') step = None last = last.split(':') if len(last) == 2: step = to_type(last[1][:-1]) last = last[0] + last[1][-1] else: last = last[0] if last[-1] == ']': last = to_type(last[:-1]) + 1 elif last[-1] == ')': last = to_type(last[:-1]) else: raise ValueError(f'Cannot parse range {range_str}') return first, last, step elif isinstance(initial,str): if range_str is None: return [''.join(random.choice([c for c in (string.ascii_letters + string.digits )], size=10))] strings = range_str[1:-1].split(',') return strings else: raise ValueError(f'Cannot parse range {range_str}')
[ "z@dell.sp" ]
z@dell.sp
8a5c13bc009949c7c42ef0a619409870a73c4a61
e421e7c4b4e40c921a027bb863bac08c729ae764
/blog/main_blog/models.py
b0162946f1538a5236f2eff24bf5992a4c2c639e
[]
no_license
abrhamgebremedhin/django
a97e30ee086eb5af0cf565dac4f4f1b88a11c9be
b19712b89d1012f19a102549134a47d06148ede0
refs/heads/master
2021-02-10T13:49:36.309877
2020-03-03T13:19:30
2020-03-03T13:19:30
244,387,190
1
0
null
null
null
null
UTF-8
Python
false
false
291
py
from django.db import models # Create your models here. class Article(models.Model): title =models.CharField(max_length=120) content =models.TextField(blank=False,null=False) date =models.DateField()#pub_date=date.today() publish =models.BooleanField(default=False,null=False)
[ "abrhamgebremedhin8@gmail.com" ]
abrhamgebremedhin8@gmail.com
20e10dee2476cb446eac70e4873787dc387fa6a6
c8b535407ddf3551ca16d21bd9f2c4f991028010
/assesment/settings.py
6b2f049d4a5c29ccaef367a74a85ed6c6e8fe050
[]
no_license
manish3135/pre-assesment
148355708a387ba456ce6a0c0a8a5bbfd79f1018
0ffc96a900e58ec06862333c7ab98d5f1cdcc049
refs/heads/master
2020-03-28T01:07:59.915836
2018-09-05T11:12:53
2018-09-05T11:12:53
147,479,279
0
0
null
null
null
null
UTF-8
Python
false
false
3,381
py
""" Django settings for assesment project. Generated by 'django-admin startproject' using Django 1.11.2. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR,'templates') STATIC_DIR = os.path.join(BASE_DIR,'static') MEDIA_DIR = os.path.join(BASE_DIR,'media') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'dvm7ar1a($q6g^j=k$3t65p!l_^5ajq1=3)c)c#8wni4=bd1l^' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'login', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'assesment.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR,], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'assesment.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [STATIC_DIR,] MEDIA_ROOT = MEDIA_DIR MEDIA_URL = '/media/' LOGIN_URL = '/login/user_login/'
[ "manishkumar@manishs-MacBook-Pro.local" ]
manishkumar@manishs-MacBook-Pro.local
06be6e8732d456b755862323cca79a311dc6998f
4307bbf68a7716bf276bab34cacffd519294d3f1
/taglie-parser/parser.py
62457c0a3e1e398129f964fe93e01c24c12dc972
[]
no_license
alessandro308/Aggregatore-Ordini-AGESCI
711b37b85436ac271b29a3ac3ab11c30e2ce24bb
4b4bfbc13044f93fb655ac7851f32f79203baf37
refs/heads/master
2021-01-12T22:13:17.985995
2017-04-16T15:44:57
2017-04-16T15:44:57
43,705,159
0
2
null
2016-01-02T10:09:08
2015-10-05T18:31:04
PHP
UTF-8
Python
false
false
2,300
py
#!/usr/bin/python3 # Script per l'importazione delle taglie # delle uniformi AGESCI su DB per Aggregatore Ordini AGESCI import sqlite3 import sys def printquery(name, price, size): query = "INSERT INTO " + db_table + " ( " query += db_name_field + " , " query += db_size_field + " , " query += db_price_field + " ) " query += " VALUES ('" query += name + "','" query += size + "','" query += price.replace(",", ".") + "');" print(query) return query def execquery(cursor, query): cursor.execute(query) def cleartable(cursor): execquery(cursor, "DELETE FROM " + db_table + ";") execquery(cursor, "VACUUM;") db_table = "prezzitaglie" db_name_field = "nomeOggetto" db_size_field = "taglia" db_price_field = "prezzo" if (len(sys.argv) != 3): print("Usage: ./parser.py SOURCE DATABASE") exit(1) print("Uniformi agesci parser") print("SOURCE FILE: " + sys.argv[1]) print("DATABASE FILE: " + sys.argv[2]) target = open(sys.argv[1], 'r') conn = sqlite3.connect(sys.argv[2]) c = conn.cursor() cleartable(c) for line in target: if line == "\n": continue tokens = line.split() foundtg = False send_name = "" send_price = tokens[-1] for tk in tokens: if (tk == "tg."): foundtg = True continue if (foundtg == False): send_name += tk + " " continue if (foundtg == True): if ("-" not in tk): # Taglia unica send_taglia = tk execquery(c, printquery(send_name[:-1], send_price, tk)) elif (tk.count("-") > 1): # Range semplice for taglies in tk.split("-"): execquery(c, printquery(send_name[:-1], send_price, taglies)) elif (tk.count("-") == 1): # Range da interpolare start = int(tk.split("-")[0]) stop = int(tk.split("-")[1]) step = 0 if (int(start) % 2 == 0): step = 2 else : step = 1 while (start <= stop): execquery(c, printquery(send_name[:-1], send_price, str(start))) start += step break
[ "corti.nico@gmail.com" ]
corti.nico@gmail.com
39015aa1bae7e4b6b0a20766f355a20b4604d309
5ce61d9fc575912bc6eff17716264d1325578972
/A2-1003092468/kmeans.py
e7bdb6926f8319dccf3e7314e869a71ffb5ac606
[]
no_license
jde10/CSC2515---Intro-to-ML
117530979df6a1eae3ca0ad7f7e154c70cc14ce5
eb57b57bf8953732774218738403e63c511132c8
refs/heads/master
2020-04-06T04:41:43.184579
2017-02-28T16:59:27
2017-02-28T16:59:27
82,753,409
0
0
null
null
null
null
UTF-8
Python
false
false
1,727
py
from util import * import matplotlib.pyplot as plt plt.ion() def distmat(p, q): """Computes pair-wise L2-distance between columns of p and q.""" d, pn = p.shape d, qn = q.shape pmag = np.sum(p**2, axis=0).reshape(1, -1) qmag = np.sum(q**2, axis=0).reshape(1, -1) dist = qmag + pmag.T - 2 * np.dot(p.T, q) dist = (dist >= 0) * dist # Avoid small negatives due to numerical errors. return np.sqrt(dist) def KMeans(x, K, iters): """Cluster x into K clusters using K-Means. Inputs: x: Data matrix, with one data vector per column. K: Number of clusters. iters: Number of iterations of K-Means to run. Outputs: means: Cluster centers, with one cluster center in each column. """ N = x.shape[1] perm = np.arange(N) np.random.shuffle(perm) means = x[:, perm[:K]] dist = np.zeros((K, N)) for ii in xrange(iters): print('Kmeans iteration = %04d' % (ii+1)) for k in xrange(K): dist[k, :] = distmat(means[:, k].reshape(-1, 1), x) assigned_class = np.argmin(dist, axis=0) for k in xrange(K): means[:, k] = np.mean(x[:, (assigned_class == k).nonzero()[0]], axis=1) return means def ShowMeans(means, number=0): """Show the cluster centers as images.""" plt.figure(number) plt.clf() for i in xrange(means.shape[1]): plt.subplot(1, means.shape[1], i+1) plt.imshow(means[:, i].reshape(48, 48), cmap=plt.cm.gray) plt.savefig('Graph %s' %(number)) plt.draw() raw_input('Press Enter.') def main(): K = 7 iters = 200 inputs_train, inputs_valid, inputs_test, target_train, target_valid, target_test = LoadData('../toronto_face.npz') means = KMeans(inputs_train, K, iters) ShowMeans(means, 0) if __name__ == '__main__': main()
[ "noreply@github.com" ]
jde10.noreply@github.com
1a0c04adcfd792bf56fda3703659c4610f36e3cf
e440f1e8136f79f59c472ecf450d6676395dbb05
/modules/tasks/led_task.py
d8a43e77d5acc43b68746fbc8291a3f336ac8b72
[]
no_license
henrynester/FlightComputer-sw
5e56a3a25d8986b625229254f8ea45ed9ca204d3
c9254e340e53022bfd9ebdaf783900124a17ebc0
refs/heads/master
2023-07-02T20:45:57.408041
2021-08-12T14:05:38
2021-08-12T14:05:38
376,691,813
0
0
null
null
null
null
UTF-8
Python
false
false
934
py
from modules.tasks.task import Task from modules.mcl.system_state import SystemState, State # import threading from modules.drivers.led import LEDDriver, LEDColor # class KeyboardThread(threading.Thread): # def __init__(self, input_cbk=None, name='keyboard-input-thread'): # self.input_cbk = input_cbk # super(KeyboardThread, self).__init__(name=name) # self.start() # def run(self): # while True: # try: # self.input_cbk(input()) # waits to get input + Return # except (EOFError): # return class LEDTask(Task): def __init__(self, state: SystemState): # self.next_phase: Phase = None self.driver = LEDDriver() super().__init__('LED', state) def actuate(self): # print(self.state.phase) self.driver.color = LEDColor.RED def deinitialize(self): self.driver.deinitialize()
[ "henrynester@gmail.com" ]
henrynester@gmail.com