blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
13fc2d742161aea7d1a51f351cac30e21bcd181e
172eb751b879d36d95b04d81db87a501cd18d8a1
/ImageNetGroundTruth/utils.py
ade17f70a1d804e602c97056b666102575e5f3e0
[]
no_license
byh1321/Pruning_Quantization_Estimation
447bd3d806fe17611d665e56d7796af4e05ee400
772969c5a58259e387c88829dd936274199212e8
refs/heads/master
2023-05-03T19:25:29.957732
2021-06-03T17:53:38
2021-06-03T17:53:38
289,804,307
0
0
null
null
null
null
UTF-8
Python
false
false
24,298
py
'''Some helper functions for PyTorch, including: - get_mean_and_std: calculate the mean and std value of dataset. - msr_init: net parameter initialization. - progress_bar: progress bar mimic xlua.progress. ''' import os import sys import time import math import torch import torch.nn as nn import torch.nn.init as init import scipy.misc from scipy import ndimage import numpy as np def get_mean_and_std(dataset): '''Compute the mean and std value of dataset.''' dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2) mean = torch.zeros(3) std = torch.zeros(3) print('==> Computing mean and std..') for inputs, targets in dataloader: for i in range(3): mean[i] += inputs[:,i,:,:].mean() std[i] += inputs[:,i,:,:].std() mean.div_(len(dataset)) std.div_(len(dataset)) return mean, std def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0) _, term_width = os.popen('stty size', 'r').read().split() term_width = int(term_width) TOTAL_BAR_LENGTH = 40. last_time = time.time() begin_time = last_time def progress_bar(current, total, msg=None): global last_time, begin_time if current == 0: begin_time = time.time() # Reset for new bar. cur_len = int(TOTAL_BAR_LENGTH*current/total) rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1 sys.stdout.write(' [') for i in range(cur_len): sys.stdout.write('=') sys.stdout.write('>') for i in range(rest_len): sys.stdout.write('.') sys.stdout.write(']') cur_time = time.time() step_time = cur_time - last_time last_time = cur_time tot_time = cur_time - begin_time L = [] L.append(' Step: %s' % format_time(step_time)) L.append(' | Tot: %s' % format_time(tot_time)) if msg: L.append(' | ' + msg) msg = ''.join(L) sys.stdout.write(msg) for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3): sys.stdout.write(' ') # Go back to the center of the bar. for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2): sys.stdout.write('\b') sys.stdout.write(' %d/%d ' % (current+1, total)) if current < total-1: sys.stdout.write('\r') else: sys.stdout.write('\n') sys.stdout.flush() def format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f ########################################################################## # Codes under this line is written by YH.Byun def print_4Dtensor_to_png(tensor, filename): npimg = np.array(tensor,dtype=float) npimg = npimg.squeeze(0) scipy.misc.toimage(npimg).save(filename+".png") def genblurkernel(sigma): order = 0 radius = int(4 * float(sigma) + 0.5) kernel = scipy.ndimage.filters._gaussian_kernel1d(sigma, order, radius) return kernel def setMask(net, area, val): mask = maskGen(net) for i in range(len(mask)): num_filter = mask[i].size()[0] depth = mask[i].size()[1] if len(mask[i].size()) == 2: if i == (len(mask)-1): mask[i][:,0:int(depth*area)] = val #print(mask[i].size()) #print('0, ',depth*area) else: mask[i][0:int(num_filter*area),0:int(depth*area)] = val #print(mask[i].size()) #print(num_filter*area,',',depth*area) elif len(mask[i].size()) == 4: if i == 0: mask[i][0:int(num_filter*area),:,:,:] = val #print(mask[i].size()) #print(num_filter*area,',0,0,0') else: mask[i][0:int(num_filter*area),0:int(depth*area),:,:] = val #print(mask[i].size()) #print(num_filter*area,',',depth*area,',0,0') return mask def saveInitialParameter(net, initparam): net_param = [] for m in net.modules(): if isinstance(m, nn.Conv2d): net_param.append(m.weight.data) elif isinstance(m, nn.Linear): net_param.append(m.weight.data) torch.save(net_param, initparam) print("saving initial parameters") def quantize(net, pprec): for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data = torch.round(m.weight.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.weight.data = torch.clamp(m.weight.data, -2, 2 - 2**(-pprec)) elif isinstance(m, nn.Linear): m.weight.data = torch.round(m.weight.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.weight.data = torch.clamp(m.weight.data, -2, 2 - 2**(-pprec)) return net def printLayers(net): for m in net.modules(): if isinstance(m, nn.Conv2d): print(m) elif isinstance(m, nn.Linear): print(m) def maskGen(net, isbias=0, isempty = 1): mask = [] if isempty: for m in net.modules(): if isinstance(m, nn.Conv2d): mask.append(torch.zeros(m.weight.data.size())) if isbias == 1: mask.append(torch.zeros(m.bias.data.size())) #print(torch.zeros(m.weight.data.size()).size()) elif isinstance(m, nn.Linear): mask.append(torch.zeros(m.weight.data.size())) if isbias == 1: mask.append(torch.zeros(m.bias.data.size())) #print(torch.zeros(m.weight.data.size()).size()) else: for m in net.modules(): if isinstance(m, nn.Conv2d): mask.append(torch.ones(m.weight.data.size())) if isbias == 1: mask.append(torch.ones(m.bias.data.size())) #print(torch.ones(m.weight.data.size()).size()) elif isinstance(m, nn.Linear): mask.append(torch.ones(m.weight.data.size())) if isbias == 1: mask.append(torch.zeros(m.bias.data.size())) #print(torch.ones(m.weight.data.size()).size()) return mask def pruneNetwork(net, mask): index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.grad.data = torch.mul(m.weight.grad.data,mask[index].cuda()) m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.weight.grad.data = torch.mul(m.weight.grad.data,mask[index].cuda()) m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 return net def paramsGet(net): index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): if index == 0: params = m.weight.view(-1,) index += 1 else: params = torch.cat((params,m.weight.view(-1,)),0) index += 1 elif isinstance(m, nn.Linear): params = torch.cat((params,m.weight.view(-1,)),0) index += 1 return params def findThreshold(params, pr): thres=0 while 1: tmp = (torch.abs(params.data)<thres).type(torch.FloatTensor) result = torch.sum(tmp)/params.size()[0] if (pr/100)<result: #print("threshold : {}".format(thres)) return thres else: thres += 0.0001 #def findThreshold(params, pr): # params_sorted, indice = torch.sort(params) # index = int(pr * params.size()[0] / 100) # print(params_sorted[13228760]) # print(params.size()) # print(index) # return params_sorted[index].item() def getPruningMask(net, thres): index = 0 mask = [] for m in net.modules(): if isinstance(m, nn.Conv2d): mask.append((torch.abs(m.weight.data)>thres).type(torch.FloatTensor)) index += 1 elif isinstance(m, nn.Linear): mask.append((torch.abs(m.weight.data)>thres).type(torch.FloatTensor)) index += 1 return mask def netMaskMul(net, mask, isbias=0, isbatch=0): index = 0 if isbatch: for m in net.modules(): if isinstance(m, nn.BatchNorm2d): m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 m.bias.data = torch.mul(m.bias.data,mask[index].cuda()) index += 1 else: for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 if isbias == 1: m.bias.data = torch.mul(m.bias.data,mask[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 if isbias == 1: m.bias.data = torch.mul(m.bias.data,mask[index].cuda()) index += 1 return net def addNetwork(net, net2, isbias=0): index = 0 mask = saveNetwork(net2, isbias) for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 if isbias: m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 if isbias: m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 return net def netMaskAdd(net, mask, isbias=0, isbatch=0): index = 0 if isbatch: for m in net.modules(): if isinstance(m, nn.BatchNorm2d): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 else: for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 if isbias == 1: m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 if isbias == 1: m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 return net def saveNetwork(net, isbias=0): mask = [] for m in net.modules(): if isinstance(m, nn.Conv2d): mask.append(m.weight.data) if isbias: mask.append(m.bias.data) elif isinstance(m, nn.Linear): mask.append(m.weight.data) if isbias: mask.append(m.bias.data) return mask def saveBatch(net, isempty=0): mask = [] for m in net.modules(): if isinstance(m, nn.BatchNorm2d): if isempty: mask.append(torch.zeros(m.weight.size())) mask.append(torch.zeros(m.bias.size())) else: mask.append(m.weight.data) mask.append(m.bias.data) return mask def printLayerName(net): index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): print(index, " : Conv2d layer, ", m.weight.size()) index += 1 elif isinstance(m, nn.Linear): print(index, " : FC layer, ", m.weight.size()) index += 1 elif isinstance(m, nn.BatchNorm2d): print(index, " : BatchNorm2d layer, ", m.weight.size()) index += 1 return net def freezeNetwork(net): for m in net.modules(): if isinstance(m, nn.Conv2d): for param in m.parameters(): param.requires_grad = False elif isinstance(m, nn.Linear): for param in m.parameters(): param.requires_grad = False elif isinstance(m, nn.BatchNorm2d): for param in m.parameters(): param.requires_grad = False return net def absorb_bn(module, bn_module): w = module.weight.data if module.bias is None: zeros = torch.Tensor(module.out_channels).zero_().type(w.type()) module.bias = nn.Parameter(zeros) b = module.bias.data invstd = bn_module.running_var.clone().add_(bn_module.eps).pow_(-0.5) w.mul_(invstd.view(w.size(0), 1, 1, 1).expand_as(w)) b.add_(-bn_module.running_mean).mul_(invstd) if bn_module.affine: w.mul_(bn_module.weight.data.view(w.size(0), 1, 1, 1).expand_as(w)) b.mul_(bn_module.weight.data).add_(bn_module.bias.data) bn_module.register_buffer('running_mean', torch.zeros(module.out_channels).cuda()) bn_module.register_buffer('running_var', torch.ones(module.out_channels).cuda()) bn_module.register_parameter('weight', None) bn_module.register_parameter('bias', None) bn_module.affine = False def is_bn(m): return isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d) def is_absorbing(m): return isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear) def search_absorbe_bn(model): prev = None for m in model.children(): if is_bn(m) and is_absorbing(prev): m.absorbed = True absorb_bn(prev, m) search_absorbe_bn(m) prev = m #swap bias in net with bias in net2 def swapBias(net, net2): mask_bias = saveBias(net2) mask_bias_null = saveBias(net2, isempty=1) index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) index += 1 return net def saveBias(net, isempty=0): mask = [] for m in net.modules(): if isinstance(m, nn.Conv2d): if isempty: mask.append(torch.zeros(m.bias.data.size())) else: mask.append(m.bias.data) elif isinstance(m, nn.Linear): if isempty: mask.append(torch.zeros(m.bias.data.size())) else: mask.append(m.bias.data) return mask def concatMask(mask1, mask2): index = 0 for i in range(len(mask1)): mask1[index] = ((mask1[index] + mask2[index]) != 0).type(torch.FloatTensor) index += 1 return mask1 def getExtendedMask(mask): index = torch.FloatTensor() for i in range(len(mask)): if mask[i].dim() == 4: mask_size = mask[i].size()[0] * mask[i].size()[1] * mask[i].size()[2] * mask[i].size()[3] if mask[i].size()[2] == 1: if mask[i].size()[1] % 3 == 1: index_for_print = torch.zeros(mask[i].size()[0], mask[i].size()[1]+2,1,1) index_for_print[:,:-2,:,:] = mask[i].data elif mask[i].size()[1] % 3 == 2: index_for_print = torch.zeros(mask[i].size()[0], mask[i].size()[1]+1,1,1) index_for_print[:,:-1,:,:] = mask[i].data else: index_for_print = mask[i].data index_for_print = index_for_print.view(-1,3) index_for_print = (torch.sum(index_for_print, dim=1) != 0).type(torch.FloatTensor) index = torch.cat((index, index_for_print),0) else: index_for_print = mask[i].data index_for_print = index_for_print.view(-1,3) index_for_print = (torch.sum(index_for_print, dim=1) != 0).type(torch.FloatTensor) index = torch.cat((index, index_for_print),0) else: mask_size = mask[i].size()[0] * mask[i].size()[1] index_for_print = torch.zeros(mask[i].size()[0], mask[i].size()[1] + 1) index_for_print[:,:-1] = mask[i].data index_for_print = index_for_print.view(-1,3) index_for_print = (torch.sum(index_for_print, dim=1) != 0).type(torch.FloatTensor) index = torch.cat((index, index_for_print),0) return index def quantBatch(net, intbit, pprec): for m in net.modules(): if isinstance(m, nn.BatchNorm2d): m.running_var.data = torch.round(m.running_var.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.running_var.data = torch.clamp(m.running_var.data, max=1, min=2**(-intbit)) m.weight.data = torch.round(m.weight.data / (2 ** -(15))) * (2 ** -(15)) m.weight.data = torch.clamp(m.weight.data,-(2) ** intbit, 2 ** intbit) m.bias.data = torch.round(m.bias.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.bias.data = torch.clamp(m.bias.data,-(2) ** intbit, 2 ** intbit) m.running_mean.data = torch.round(m.running_mean.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.running_mean.data = torch.clamp(m.running_mean.data,-(2) ** intbit, 2 ** intbit) return net def swapBiasandBatch(net, net2): mask_bias = saveBias(net2, isbatch=1) mask_bias_null = saveBias(net2, isempty=1, isbatch=1) index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) index += 1 elif isinstance(m, nn.BatchNorm2d): m.weight.data = torch.mul(m.weight.data,mask_weight_null[index].cuda()) m.weight.data = torch.add(m.weight.data,mask_weight[index].cuda()) m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) m.running_mean.data = torch.mul(m.running_mean.data,mask_running_mean_null[index].cuda()) m.running_mean.data = torch.add(m.running_mean.data,mask_running_mean[index].cuda()) m.running_var.data = torch.mul(m.running_var.data,mask_running_var_null[index].cuda()) m.running_var.data = torch.add(m.running_var.data,mask_running_var[index].cuda()) return net def swapBatch(net, net2): mask_batch = saveBatch(net2) mask_batch_null = saveBatch(net2, isempty=1) index = 0 for m in net.modules(): if isinstance(m, nn.BatchNorm2d): m.weight.data = torch.mul(m.weight.data,mask_batch_null[index].cuda()) m.weight.data = torch.add(m.weight.data,mask_batch[index].cuda()) index += 1 m.bias.data = torch.mul(m.bias.data,mask_batch_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_batch[index].cuda()) index += 1 m.running_mean.data = torch.mul(m.running_mean.data,mask_batch_null[index].cuda()) m.running_mean.data = torch.add(m.running_mean.data,mask_batch[index].cuda()) index += 1 m.running_var.data = torch.mul(m.running_var.data,mask_batch_null[index].cuda()) m.running_var.data = torch.add(m.running_var.data,mask_batch[index].cuda()) index += 1 return net def saveBatch(net, isempty=0): mask = [] for m in net.modules(): if isinstance(m, nn.BatchNorm2d): if isempty: mask.append(torch.zeros(m.weight.data.size())) mask.append(torch.zeros(m.bias.data.size())) mask.append(torch.zeros(m.running_mean.data.size())) mask.append(torch.zeros(m.running_var.data.size())) else: mask.append(m.weight.data) mask.append(m.bias.data) mask.append(m.running_mean.data) mask.append(m.running_var.data) return mask def printFeature(feature, filename): f = open(filename, 'w') for i in range(feature.data.size()[1]): for j in range(feature.data.size()[2]): for k in range(feature.data.size()[3]): print(feature.data[0,i,j,k].item(), file=f, end=',') print('',file=f) print('',file=f) f.close() return def printconv1_0(net): for m in net.modules(): if isinstance(m, nn.Conv2d): print(m.weight[0]) try: print(m.bias[0]) except: print("There is no bias") pass return def printbatch1(net): for m in net.modules(): if isinstance(m, nn.BatchNorm2d): print(m.weight) print(m.bias) print(m.running_mean) print(m.running_var) return def printlinear1_0(net): for m in net.modules(): if isinstance(m, nn.Linear): print(m.weight[0]) try: print(m.bias[0]) except: print("There is no bias") pass return def float_to_hex(float_): temp = float_ * 2**7 # Scale the number up. temp = torch.round(temp) # Turn it into an integer. temp = int(temp) temp = temp & 0xff return '{:02x}'.format(temp) def float_to_hex_16(float_): temp = float_ * 2**8 # Scale the number up. temp = torch.round(temp) # Turn it into an integer. temp = int(temp) temp = temp & 0xffff return '{:04x}'.format(temp) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res from math import cos, pi def adjust_learning_rate(optimizer, epoch, iteration, num_iter, ne, init_lr): lr = optimizer.param_groups[0]['lr'] warmup_epoch = 5 warmup_iter = warmup_epoch * num_iter current_iter = iteration + epoch * num_iter max_iter = ne * num_iter lr = init_lr * (1 + cos(pi * (current_iter - warmup_iter) / (max_iter - warmup_iter))) / 2 if epoch < warmup_epoch: lr = init_lr * current_iter / warmup_iter for param_group in optimizer.param_groups: param_group['lr'] = lr
[ "byh1321@naver.com" ]
byh1321@naver.com
df82e709433df0b153edd7d9aea14060851ad2cf
c31c8095ce4d4e9686e3e7ad6b004342e49671fa
/forum/classes/archives/CLASS_Lieu.py
c5b8db114583e2f045264fd8b45f2735706e116e
[]
no_license
Lionalisk/arrakambre
7bcc96dea2ca2a471572bfb1646256f1382ce25b
2caece9be5eebf21ddfa87a6c821c32b5d5019a2
refs/heads/master
2020-12-07T19:31:24.471090
2020-01-09T10:14:29
2020-01-09T10:14:29
232,782,172
0
0
null
null
null
null
UTF-8
Python
false
false
1,184
py
from django.db import models from forum.models import Maison from forum.classes.CLASS_Perso import * print('BBBB') class Lieu(models.Model): nom = models.CharField(max_length=100, unique=True) description = models.TextField(default='') image = models.CharField(max_length=40, default = 'lieu_none.jpg') maison = models.ForeignKey(Maison, verbose_name="Maison", null=True, on_delete=models.SET_NULL, blank=True) passages = models.ManyToManyField('self', blank=True) lieu_parent = models.ForeignKey('self', verbose_name="Lieu", null=True, on_delete=models.DO_NOTHING, blank=True) dissimulation = models.SmallIntegerField(default=0) defense_garde = models.SmallIntegerField(default=0) defense_assault = models.SmallIntegerField(default=0) defense_intrusion = models.SmallIntegerField(default=0) perso_autorise = models.ManyToManyField('Perso', blank=True, related_name = 'persos_autorises') # liste des personnes autorisees par le maitre des lieux a entrer secret = models.BooleanField(default=False) proprietaire = models.ForeignKey('Perso', null=True, on_delete=models.SET_NULL, blank=True, related_name = 'proprietaire') #action = def __str__(self): return self.nom
[ "lionel.varaire@free.fr" ]
lionel.varaire@free.fr
c04720b7f2c90ddef000767741021aff00156ee6
f05a08881b606d593bb76fa725d62187fb8e6cc0
/cache_ensembl/cache_ensembl_version.py
ddb8c6109f3c0db85deb10e5082eaa4b9b65cad7
[]
no_license
bunbun/cache-ensembl
6cf109dd0a9f6dad15744d4583ab701f7bda5a35
02ce50016321fecb5f9f784c63ce4f8e5066d74b
refs/heads/master
2021-01-23T13:58:36.493124
2011-12-06T21:45:04
2011-12-06T21:45:04
32,793,683
0
0
null
null
null
null
UTF-8
Python
false
false
1,355
py
#!/usr/bin/env python ################################################################################ # # version.py # # # Copyright (c) 11/3/2010 Leo Goodstadt # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ################################################################################# __version__ = "1.0"
[ "bunbun68@localhost" ]
bunbun68@localhost
ecbc2f6361f9a3096a212d2d31bb8b2868fa553e
bc29abf638643339025f2f9eebaec136f45deba6
/CMDB/Equipment/views.py
a4552ecb9baec83287f52cb574a3b596dfaf0be1
[]
no_license
enet01/CMDB
351642106996681064f8b40e3e699664d678d38c
e0cab4c38c28c5d92f5658cfe132167d5b64afdf
refs/heads/master
2021-05-08T12:04:20.605748
2018-02-07T12:24:51
2018-02-07T12:24:51
119,920,102
0
0
null
null
null
null
UTF-8
Python
false
false
6,741
py
#coding:utf-8 import chardet import paramiko from django.shortcuts import render from django.http import JsonResponse from django.views.decorators.csrf import csrf_protect,csrf_exempt from models import * from WhileCMDB.views import getpage from django.shortcuts import HttpResponseRedirect def eq_add(request): pass def eq_drop(request): pass def eq_alter(request): pass def eq_list(request): if request.method == "GET": requestData = request.GET page = requestData.get("page") num = requestData.get("num") sql = "select * from Equipment_equipment" if page and num: result = getpage(sql = sql,page = page,num = num) elif page : result = getpage(sql=sql, page=page) else: result = { "page_data": "", "page_range": "" } else: result = { "page_data": "", "page_range": "" } return JsonResponse(result) def eq_list_page(request): eq_List = Equipment.objects.all() return render(request,"equipmentList.html",locals()) def eq_connect(request): """ connect 方法实现 远程登录 connect 方法实现 脚本上传 connect 方法实现 脚本远程执行 :param request: :return: """ result = {"state":"error","data":""} if request.method == "POST": data = request.POST ip = data.get("ip") port = data.get("port") username = data.get("username") password = data.get("password") if ip and port and username and password: equpment = Equipment() equpment.IP = ip equpment.user = username equpment.Password = password try: trans = paramiko.Transport(ip,port) trans.connect(username = username,password = password) sftp = paramiko.SFTPClient.from_transport(trans) #用于文件的上传和下载的sftp服务 ssh = paramiko.SSHClient() #远程执行命令的服务 ssh._transport = trans #创建目录 stdin,stdout,stderr = ssh.exec_command("mkdir CMDBClient") #上传文件 sftp.put("sftpDir/getData.py","/root/CMDBClient/getData.py") sftp.put("sftpDir/sendData.py", "/root/CMDBClient/sendData.py") sftp.put("sftpDir/main.py", "/root/CMDBClient/main.py") #调用脚本 stdin, stdout, stderr = ssh.exec_command("python /root/CMDBClient/main.py") trans.close() equpment.Statue = "True" except: equpment.Statue = "False" finally: equpment.save() else: pass else: pass return JsonResponse(result) @csrf_exempt def eq_save(request): ip = request.META["REMOTE_ADDR"] if request.method == "POST": data = request.POST hostname = data.get("get_hostname") system = data.get("get_system") mac = data.get("get_mac") equpment = Equipment.objects.get(IP = ip) equpment.hostname = hostname equpment.System = system equpment.Mac = mac equpment.save() return JsonResponse({"state":"this only a test"}) terminal_dict = {} def shell(request): if request.method == "GET": id = request.GET["id"] if id: equipment = Equipment.objects.get(id = int(id)) ip = equipment.IP username = equipment.user password = equipment.Password if ip and username and password: try: result = {"status":"success","ip":ip,} trans = paramiko.Transport(sock = (ip,22)) trans.connect( username = username, password = password ) ssh = paramiko.SSHClient() ssh._transport = trans terminal = ssh.invoke_shell() terminal.settimeout(2) terminal.send("\n") login_data = "" while True: try: recv = terminal.recv(9999) if recv: login_data += recv else: continue except: break result["data"] = login_data.replace("\r\n","<br>") terminal_dict[ip] = terminal response = render(request, "shell.html", locals()) response.set_cookie("ip",ip) return response except Exception as e: print(e) return HttpResponseRedirect("/eq/") def command(request): ip = request.COOKIES.get("ip") if ip: if request.method == "GET": cmd = request.GET.get("command") if cmd: terminal = terminal_dict[ip] terminal.send(cmd+"\n") login_data = "" while True: try: recv = terminal.recv(9999) if recv: line_list = recv.split("\r\n") result_list= [] for line in line_list: l = line.replace(u"\u001B","").replace("[01;34m","").replace("[0m","").replace("[01;32m","") result_list.append(l) login_data = "<br>".join(result_list) else: continue except: break result = {"result":login_data} return JsonResponse(result) else: return HttpResponseRedirect("/eq/") else: return HttpResponseRedirect("/eq/") else: return HttpResponseRedirect("/eq/") # import random # def add_eq(request): # for i in range(100): # e = Equipment() # e.hostname = "localhost_%s"%i # e.IP = "192.168.1.%s"%(i+2) # e.System = random.choice(["win7_32","win7_64","centos.6_32","centos.7",]) # e.Statue = random.choice(["True","False"]) # e.Mac = random.choice(["00:0c:29:92:85:4e","00:0c:29:5b:2a:a1"]) # e.user = "root" # e.Password = "123" # e.save() # return JsonResponse({"statue":"ahh"}) # Create your views here.
[ "root@xuegod62.cn" ]
root@xuegod62.cn
6900fdaae92eb7e538bb2dc5b81957fb00c5b18e
b7449f1162b5fb8ea371b80ef0d99154fac35620
/Users/migrations/0001_initial.py
bf5f8dbe0ee72f9f6b0b3fab5414812eb9576641
[]
no_license
shimaa3434/SafeBook
93f69e5228adeae33adfb5a21d2c666b47d1a2b6
8ede2f9da4f6daf224fe203454525ff3d811ed51
refs/heads/master
2022-12-27T02:01:14.987227
2020-10-16T18:12:49
2020-10-16T18:12:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,143
py
# Generated by Django 2.2.5 on 2019-10-23 00:51 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Friend', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('current_user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='owner', to=settings.AUTH_USER_MODEL)), ('users', models.ManyToManyField(to=settings.AUTH_USER_MODEL)), ], ), ]
[ "30625967+Shreyansh7499@users.noreply.github.com" ]
30625967+Shreyansh7499@users.noreply.github.com
718c1a3aa265318be8f270943122a2fef285e6e9
59d48214613a195573b5a0a1f10b32c889172155
/alexa/reciPullLambda/ask_sdk_model/canfulfill/can_fulfill_intent_request.py
61ffc9fb00f47a05ab691639b45bca434c75fe2e
[ "MIT" ]
permissive
ReciPull/recipull.github.io
60861ebb7a6d77d39907c6332e346194ce4ad107
e6b800af02658bb7948297c4ddc1b7af6d978839
refs/heads/master
2023-01-08T19:03:11.864298
2019-06-13T05:07:39
2019-06-13T05:07:39
180,684,629
1
0
MIT
2022-12-09T22:33:18
2019-04-11T00:33:03
Python
UTF-8
Python
false
false
6,414
py
# coding: utf-8 # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum from ask_sdk_model.request import Request if typing.TYPE_CHECKING: from typing import Dict, List, Optional from datetime import datetime from ask_sdk_model.dialog_state import DialogState from ask_sdk_model.intent import Intent class CanFulfillIntentRequest(Request): """ An object that represents a request made to skill to query whether the skill can understand and fulfill the intent request with detected slots, before actually asking the skill to take action. Skill should be aware this is not to actually take action, skill should handle this request without causing side-effect, skill should not modify some state outside its scope or has an observable interaction with its calling functions or the outside world besides returning a value, such as playing sound,turning on/off lights, committing a transaction or a charge. :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param locale: A string indicating the user’s locale. For example: en-US. This value is only provided with certain request types. :type locale: (optional) str :param dialog_state: :type dialog_state: (optional) ask_sdk_model.dialog_state.DialogState :param intent: :type intent: (optional) ask_sdk_model.intent.Intent """ deserialized_types = { 'object_type': 'str', 'request_id': 'str', 'timestamp': 'datetime', 'locale': 'str', 'dialog_state': 'ask_sdk_model.dialog_state.DialogState', 'intent': 'ask_sdk_model.intent.Intent' } # type: Dict attribute_map = { 'object_type': 'type', 'request_id': 'requestId', 'timestamp': 'timestamp', 'locale': 'locale', 'dialog_state': 'dialogState', 'intent': 'intent' } # type: Dict def __init__(self, request_id=None, timestamp=None, locale=None, dialog_state=None, intent=None): # type: (Optional[str], Optional[datetime], Optional[str], Optional[DialogState], Optional[Intent]) -> None """An object that represents a request made to skill to query whether the skill can understand and fulfill the intent request with detected slots, before actually asking the skill to take action. Skill should be aware this is not to actually take action, skill should handle this request without causing side-effect, skill should not modify some state outside its scope or has an observable interaction with its calling functions or the outside world besides returning a value, such as playing sound,turning on/off lights, committing a transaction or a charge. :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param locale: A string indicating the user’s locale. For example: en-US. This value is only provided with certain request types. :type locale: (optional) str :param dialog_state: :type dialog_state: (optional) ask_sdk_model.dialog_state.DialogState :param intent: :type intent: (optional) ask_sdk_model.intent.Intent """ self.__discriminator_value = "CanFulfillIntentRequest" # type: str self.object_type = self.__discriminator_value super(CanFulfillIntentRequest, self).__init__(object_type=self.__discriminator_value, request_id=request_id, timestamp=timestamp, locale=locale) self.dialog_state = dialog_state self.intent = intent def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} # type: Dict for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, CanFulfillIntentRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
[ "alexiscole@umail.ucsb.edu" ]
alexiscole@umail.ucsb.edu
0179e7a8a04e4b16368086eadecffb7dd7768d15
d51010a7f51a9cb8bf307f7d6ebed8a9903cd7be
/backend/base/urls/product_urls.py
6bf8f12f47dc186906b94797e0489eb0facebea2
[]
no_license
seidiv/ecommerce
d435fed53187316baf944f54632e7579372ea075
b5c7de1f635ec2f12213dbbe6367f890465f2f7b
refs/heads/master
2023-07-13T19:30:14.831156
2021-08-24T06:25:01
2021-08-24T06:25:01
392,608,164
0
0
null
null
null
null
UTF-8
Python
false
false
617
py
from django.urls import path from base.views import product_views as views urlpatterns = [ path('', views.getProducts, name="products"), path('create/', views.createProduct, name="product-create"), path('upload/', views.uploadImage, name="image-upload"), path('<str:pk>/reviews/', views.createProductReview, name="create-review"), path('top/', views.getTopProducts, name='top-products'), path('<str:pk>/', views.getProduct, name="product"), path('update/<str:pk>/', views.updateProduct, name="product-update"), path('delete/<str:pk>/', views.deleteProduct, name="product-delete"), ]
[ "sajadeydi8@gmail.com" ]
sajadeydi8@gmail.com
855119d2ca75bde3daef04448842f58070657e77
63e1c4a67d5317d945b284877b57560ab2ee0a1a
/TextGame_main.py
2ae69326e45d0de6a04d60087357a93359d63d4a
[]
no_license
BugBiteSquared/pythonTextAdventure
5cca0c60e47858da1d901ca11fb828bf34869ad3
6b07f55b1076946bb4296502b7dcd30d8a5d7e90
refs/heads/master
2021-05-03T10:48:26.911437
2018-07-31T17:14:44
2018-07-31T17:14:44
69,376,854
0
0
null
null
null
null
UTF-8
Python
false
false
3,496
py
"""This is a work in progress. The game currently doesn't run.""" frontDoorOpen = False balconyDoorOpen = False class item(Object): name = None description = None class consumable(item): class roomState(Object): """There are 4 room states: kitchen, bedroom, living room, balcony""" class livingRoomState(roomState): """Every room is connected to the living room. None of the other rooms are directly connected to each other.""" def enter(self): balconyDoorState = 'open' if balconyDoorOpen else 'closed' frontDoorState = 'open' if frontDoorOpen else 'closed' print("You're in the living room. There's a couch and a TV. The kitchen area is behind you. The bedroom door is lone gone and it's doorway is clear.") print("The door to the balcony is" + balconyDoorState "The door to the apartment is" + frontDoorState +".") def exit(self): print("") class inventoryItem(Object): itemReference = None itemCopyCount = None def __init__(self): self.itemCopyCount = 0 class inventory(Object): items = None # items contains a dictionary with string keys and dictionary values maxNumItems = None numItemsHeld = None def __init__(): self.items = {} class playerInventory(inventory): def __init__(self): super(playerInventory, self).__init__(self) self.maxNumItems = 8 self.numItemsHeld = 0 def insert(self, itemToInsert): if(len(numItemsHeld < maxNumItems)) if(itemToInsert.name not in items): items[itemToInsert.name] = inventoryItem() items[itemToInset.name].itemReference = itemToInsert items[itemToInsert.name].itemCopyCount += 1 numItemsHeld += 1 else: print("Inventory's full, sorry.") def remove(self, nameOfItemToDelete): if(nameOfItemToDelete in items): if(items[nameOfItemToDelete].itemCopyCount < 2): del items[nameOfItemToDelete] else: items[nameOfItemToDelete].itemCopyCount -=1 numItemsHeld -= 1 else: print("Yeah, you don't have one of those in your inventory.") def getItemFromInv(self, nameOfItem): return items[nameOfItem].itemReference def checkInventory(self): print("This is what you have on you:") for item in self.items: print("Number of" + item + " : " + item.itemCopyCount) class gameActor(Object): health = None #methods: move,minusHealth,plusHealth class npc(gameActor): alignment = None #alignment = False -> enemy, True -> friend, None -> neutral attackDmg = None class evilRobot(npc): alignment = False attackDmg = 1 def __init__(self): self.health = 10 def minusHealth(self, healthUnits): self.health -= healthUnits def plusHealth(self, healthUnits): self.health += healthUnits def attack(self, gameActorToAttack): gameActorToAttack.minusHealth(self.attackDmg) class player(gameActor): equippedItemName = None playerHealth = None inventory = None locationState = None def __init__(self): self.playerHealth = 100 self.inventory = playerInventory() self.locationState = bedroomState() actionVocab = { #parse returns a parse tree which the execute function can use def parse(inputString): if def getInput(): lineRead = input('>>').split(" ") parsedActions = parse(lineRead) execute(parsedActions) if __name__ == '__main__': playerOne = player() while(True): getInput()
[ "blackboxhazard@gmail.com" ]
blackboxhazard@gmail.com
da6fa81c852b746e1fded343f4e04a7e146e335e
39b8aa964883b2bde4349e0c9c38e3233c310548
/src/Power of Four.py
96d2db9a48b59d6376e2dbcb8be1027d9d34085f
[]
no_license
orifake/leetcode-python
053b82491e0b8d6197dd12d92eec5883211285db
8e375ebebe0a0285efefc33ed61afb22f41d0c75
refs/heads/master
2023-03-09T14:32:17.833456
2021-02-26T16:09:31
2021-02-26T16:09:31
264,466,829
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
import math class Solution(object): def isPowerOfFour(self, num): """ :type num: int :rtype: bool """ return num > 0 and (num & (num - 1)) == 0 and \ ((num & 0b01010101010101010101010101010101) == num) class Solution2: def isPowerOfFour(self, num: int) -> bool: if num <= 0: return False return (math.log10(num) / math.log10(4)) % 1 == 0 t = Solution() print(t.isPowerOfFour(4))
[ "349758699@qq.com" ]
349758699@qq.com
07770f3574d74405c9660790d89873ae61cebd92
b2e2277208f22fdd1654e7a2a19d49a0bdcb0ef6
/twitterstream3.py
0e5a9245d51619a2176e62ef1002a82e392e7b3c
[]
no_license
13537875570/General-Urban-Evaluation
504d3fa3c32f69940c454f13ac401be12d3d03ea
513922d01d5b23ba9244f3704dab5d0793ecf165
refs/heads/master
2020-10-02T10:25:24.572538
2019-12-13T05:19:05
2019-12-13T05:19:05
227,756,183
0
0
null
null
null
null
UTF-8
Python
false
false
1,094
py
from tweepy import Stream from tweepy import OAuthHandler from tweepy.streaming import StreamListener import time consumerkey='qgEq1bQqaPBtE9MUe9iXjel5J' consumersecret='gZOzN5oQswfcfqkdTzLd49DgibiCKdVNY2hYuzQakwX4GYCnIR' accesstoken='2780294182-MvbzCoYYsdiCgr5I2tzT9FSbqObkQhaYfbNlSA9' accesssecret='kR7TQ3yNkCkArHVwrzxgNUUjGelDejEfJBocMB0gw2ke1' class listener(StreamListener): def on_data(self,data): try: if 'virginia' in data: print (data) saveFile=open('twitDB3.csv','a') saveFile.write(data) saveFile.write('\n') saveFile.close() return True except BaseException (e): print ('failed ondata,') ,str(e) time.sleep(5) def on_error(self,status): print (status) auth=OAuthHandler(consumerkey,consumersecret) auth.set_access_token(accesstoken,accesssecret) twitterstream=Stream(auth,listener()) twitterstream.filter(track=["car"])
[ "noreply@github.com" ]
13537875570.noreply@github.com
2da5ce9852293d22aeae8c7605f8082ca24e70ee
1ba58b17f33122abf4236e9e430a51d375e0eb53
/km73/Zeleniy_Dmytro/4/task9.py
8b6465f8fc2d6fdbe15585e505253054fa9dbeed
[]
no_license
igortereshchenko/amis_python
c4f8d86b88ab036d08ff0ce35c9b42ebeabecc42
c6f0f2a70c82d5f269b3078eb296f82271b5bb10
refs/heads/master
2021-10-22T16:21:19.990650
2017-11-01T07:26:54
2017-11-01T07:26:54
104,785,028
0
139
null
2020-04-21T21:27:09
2017-09-25T18:11:42
Python
UTF-8
Python
false
false
635
py
start_row = int(input("Enter start row: ")) start_column = int(input("Enter start column: ")) finish_row = int(input("Enter finish row: ")) finish_column = int(input("Enter finish column: ")) if (start_row > 0 and start_row <= 8 and start_column > 0 and start_column <= 8 and finish_row > 0 and finish_row <= 8 and finish_column > 0 and finish_column <= 8): if (abs(start_row - start_column) == abs(finish_row - finish_column) or (start_column + start_row) == (finish_column + finish_row)): answer = "Yes" else: answer = "No" else: answer = "NOT CORRET DATA!" print(answer)
[ "dzeleniy9@gmail.com" ]
dzeleniy9@gmail.com
3bdcee9dd0423ab3902eff3a04ab25cae6306da5
e49d91c15a95fb00e3b46f212237045c923a9035
/nothashtag-figsenti/src/small_features/ngrams_classes.py
8b4732558c90ca0cc08902ba252e4b8e4056b6e9
[]
no_license
samtmcg/semevel_t11_2015
dc1319c20836d4d5d2ec7d2d7260ebdcad04025b
394e778dcb597c2e01de12e6fd2017416d96a85d
refs/heads/master
2020-12-31T00:19:22.840011
2015-10-22T19:05:19
2015-10-22T19:05:19
44,766,771
0
0
null
null
null
null
UTF-8
Python
false
false
11,334
py
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import sys import argparse from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer from sklearn import linear_model from functools import partial from scipy.sparse import * import sklearn.metrics as metrics parser = argparse.ArgumentParser(description="""Creates baseline predictions using a BOW representation and a Classification Model.""") parser.add_argument('train') parser.add_argument('test') parser.add_argument("-t","--type", help="one of the next values: count (default), binary, tfidf", required=False, type=str, default="count") parser.add_argument("-rsw","--removeStopWords",help="remove stop words: True, False (default)", required=False, type=str, default="False") parser.add_argument("-rht","--removeHashTags",help="remove Hash Tags: True, False (default)", required=False, type=str, default="False") parser.add_argument("-ngrams","--useNgrams",help="the order of ngrams: two integers, an upper and a lower bound separated by a space. Default is 1 2 , unigrams and bigrams",required=False,type=str,default="1 2") parser.add_argument("-badvalues","--WhatBadValues",help="what to do with predicted values that go outside the value range of this experiment. 'cap' (default) which brings the value back to a suitable value in the range by setting it to max or min. 'rescale', which rescales the distribution of answers",required=False,type=str,default=None) parser.add_argument("-classification","--ClassificationMethod",help="the type of classification method used: DT (default), NB, NBM,KNN",required=False, type=str, default="DT") parser.add_argument("-testScore","--testScores",help="A boolean value that indicates if testScores are available",required=False,type=str,default="False") args = parser.parse_args() # given a list of scores assign them to class lables def to_class_lables(score_list,number_of_classes): lables = ['A','B','C','D','E','F','G','H','I','J','K'] matching_scores_to_lables = [[], [], [], [], [], [], [], [], [], [], []] rounded_score_list = [round(x) for x in score_list] class_labels=[] if number_of_classes == 11: all_possible_scores = range(-5,6) score_label_dict = dict() for i in range(number_of_classes): score_label_dict[all_possible_scores[i]] = lables[i] for i in range(len(score_list)): label = score_label_dict[rounded_score_list[i]] lab_index = lables.index(label) matching_scores_to_lables[lab_index].append(score_list[i]) class_labels.append(label) categories = lables else: start = 100/float(number_of_classes) edges = [start*i for i in range(1,number_of_classes+1)] percentiles = np.percentile(score_list,edges) categories = lables[:number_of_classes] print 'PERCENTILES,:::,',percentiles for i in range(len(score_list)): score = rounded_score_list[i] actual_values_score = score_list[i] for a in range(number_of_classes): if a == 0: if score < percentiles[a]: label = lables[a] matching_scores_to_lables[a].append(actual_values_score) #print "score/label: ", str(score) +"/" + str(label) elif a >0 and a < number_of_classes-1: b = a-1 if score >= percentiles[b] and score < percentiles[a]: label=lables[a] matching_scores_to_lables[a].append(actual_values_score) #print "score/label: ", str(score) +"/" + str(label) elif a == number_of_classes-1: b = a-1 if score>= percentiles[b] and score <= percentiles[a]: label = lables[a] matching_scores_to_lables[a].append(actual_values_score) #print "score/label: ", str(score) +"/" + str(label) class_labels.append(label) return class_labels,categories,matching_scores_to_lables def own_tokenizer(sent): # input comes in pre-tokenized, and tokens are sepparated by white space # this is used in the *Vectorizer functions return sent.split(' ') MIN = -5 MAX = 5 y_train_scores = [] train_ids = [] y_train = [] train_tweets = [] train_file = args.train test_file = args.test vectorizerChoice = args.type removeStops = args.removeStopWords removeHashTags = args.removeHashTags ngram_user_range = (int(args.useNgrams.split(' ')[0]), int(args.useNgrams.split(' ')[1])) bad_values_choice = args.WhatBadValues classification_type = args.ClassificationMethod testScores_available = args.testScores test_ids = [] test_tweets = [] def replace_user_tags(tweet): # removes references to other users, but replaces with a special token, # so does not remove the fact that they do reference others split_tweet = tweet.split(' ') nameless_tweet=[] for w in split_tweet: if w[0] == '@': nameless_tweet.append('referenceAnotherUser') else: nameless_tweet.append(w) fixed_tweet = (' ').join(nameless_tweet) return fixed_tweet def remove_user_tags(tweet): # removes references to other users split_tweet = tweet.split(' ') nameless_tweet=[] for w in split_tweet: if not w[0] == '@': nameless_tweet.append(w) fixed_tweet = (' ').join(nameless_tweet) return fixed_tweet # open train file and extract ids, scores, and tweets with open(train_file,'r') as f: for line in f: line = line.strip() id_tag,score,tweet = line.split('\t') ### want to remove references to other twitter users, without removing the fact that they references a user #tweet = replace_user_tags(tweet) tweet = remove_user_tags(tweet) # if Hash Tags are to be removed if removeHashTags == 'True': split_tweet = tweet.split(' ') wl = [w for w in split_tweet if not w[0] =='#'] tweet = (' ').join(wl) train_ids.append(id_tag) y_train_scores.append(float(score)) train_tweets.append(tweet) y_true = [] # open test file and extract ids, scores, and tweets with open(test_file,'r') as tst: for line in tst: line = line.strip() id_tag,score,tweet = line.split('\t') #tweet = replace_user_tags(tweet) tweet = remove_user_tags(tweet) if removeHashTags == 'True': split_tweet = tweet.split(' ') wl = [w for w in split_tweet if not w[0] =='#'] tweet = (' ').join(wl) test_ids.append(id_tag) test_tweets.append(tweet) if testScores_available: y_true.append(float(score)) #y_true_labels,_,_= to_class_lables(y_true,nclasses) #y_true_labels = np.array(y_true_labels) y_ture = np.array(y_true) # different possible BOW representations: # remove stopwords or not? Just using built in list of english stopwords if removeStops == 'True': removeStopwords = 'english' else: removeStopwords = None if vectorizerChoice == 'count': vect_model = CountVectorizer(tokenizer=own_tokenizer,lowercase=False,binary=False,stop_words=removeStopwords,ngram_range=ngram_user_range) elif vectorizerChoice == 'binary': vect_model = CountVectorizer(tokenizer=own_tokenizer,lowercase=False,binary=True,stop_words=removeStopwords,ngram_range=ngram_user_range) elif vectorizerChoice == 'tfidf': vect_model = TfidfVectorizer(tokenizer=own_tokenizer,lowercase=False,binary=False,stop_words=removeStopwords,ngram_range=ngram_user_range) # transform tweets to vector space representation X_train = vect_model.fit_transform(train_tweets) X_test = vect_model.transform(test_tweets) ### what classification model has been chosen: if classification_type.lower() == 'dt': from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() X_train = X_train.todense() X_test = X_test.todense() elif classification_type.lower() == 'nb': from sklearn.naive_bayes import GaussianNB clf = GaussianNB() X_train = X_train.todense() X_test = X_test.todense() elif classification_type.lower() == 'nbm': from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() X_train = X_train.todense() X_test = X_test.todense() elif classification_type.lower() == 'knn': from sklearn.neighbors import NearestNeighbors # automatically run a way to find the best value of k #clf = NearestNeighbors(n_neighbors=2) def back_to_numbers(class_scores,scores_to_lables_lists,numclass): from scipy.stats import mode back_to_values_mean = np.zeros(len(class_scores)) back_to_values_mode_small = np.zeros(len(class_scores)) back_to_values_mode_larger = np.zeros(len(class_scores)) back_to_values_median = np.zeros(len(class_scores)) back_to_values_max = np.zeros(len(class_scores)) back_to_values_min = np.zeros(len(class_scores)) lables = ['A','B','C','D','E','F','G','H','I','J','K'] numbers_lables_dict = dict() for j in range(0,11): numbers_lables_dict[lables[j]] = j for i in range(len(class_scores)): cs = class_scores[i] bin = numbers_lables_dict[cs] back_to_values_mean[i] = np.array(scores_to_lables_lists[bin]).mean() back_to_values_mode_small[i] = mode(scores_to_lables_lists[bin])[0][0] back_to_values_mode_larger[i] = mode(scores_to_lables_lists[bin])[1][0] back_to_values_median[i] = np.median(scores_to_lables_lists[bin]) back_to_values_max[i] = np.array(scores_to_lables_lists[bin]).max() back_to_values_min[i] = np.array(scores_to_lables_lists[bin]).min() return [back_to_values_mean,back_to_values_mode_small,back_to_values_mode_larger,back_to_values_median,back_to_values_max,back_to_values_min ] # loop through all possible number of classes upto 11 for i in range(2,12): nclasses = i y_train,categories,current_scores_to_lables = to_class_lables(y_train_scores,nclasses) y_train = np.array(y_train) clf.fit(X_train, y_train) predicted_scores = clf.predict(X_test) if testScores_available == 'True': systypes = ['mean','mode_smaller','mode_larger','meadian','max','min'] systemScores = back_to_numbers(predicted_scores,current_scores_to_lables,nclasses) for i in range(len(systemScores)): sysvalues = systemScores[i] ss = systypes[i] prediction_cosine = metrics.pairwise.cosine_similarity(y_true,sysvalues)[0][0] mse = metrics.mean_squared_error(y_true,sysvalues) print '%0.3f , %s , %0.8f,%0.4f' % (nclasses,ss,prediction_cosine,mse) """from sklearn import metrics f1score = metrics.f1_score(y_true_labels, predicted_scores) #print("f1-score: %0.3f" % f1score) accuracy = metrics.accuracy_score(y_true_labels, predicted_scores) #print("Accuracy: %0.3f" % accuracy) print "%0.3f \t %0.3f\n" % (accuracy,f1score) print("classification report:") print(metrics.classification_report(y_true_labels, predicted_scores,target_names=categories)) print("confusion matrix:") print(metrics.confusion_matrix(y_true_labels, predicted_scores,labels=categories))""" """ if not (len(test_ids) == len(predicted_scores)) and (len(test_ids)==len(test_tweets)): print "ERROR:: lost data in test\n" print 'Number of test_ids: \t', len(test_ids) print 'Number of predicted_scores: \t', len(predicted_scores) print 'Number of test tweets: \t', len(test_tweets) else: for i in range(len(test_ids)): print test_ids[i]+'\t'+str(predicted_scores[i])+'\t'+test_tweets[i] #print 'weights: ' #features = pd.Series(regr.coef_, index=vect_model.get_feature_names()) #importance_order = features.abs().order(ascending=False).index #for i in range(300): #s = features[importance_order].index[i] + ' ' + str(features[importance_order].ix[i]) + '\n' #sys.stdout.write(s.encode('utf-8')) """
[ "sarah.alice.mcgillion@gmail.com" ]
sarah.alice.mcgillion@gmail.com
fca24cecd75975e7ff41a3ea139467d5f9774921
7177a8a9eb2030fa871f19f36144b7d055d5c5b3
/main.py
e19f7da7cfa27a35074ea8d14b9b789db4f37925
[]
no_license
Ziyu98/YOLOv3
5efb2bc809917041093cf61bfb7d52acbacb9fd7
4dfe50cf4a83bf0dde83ec3de8f6995461d6ce12
refs/heads/master
2021-01-06T19:26:56.256263
2020-02-18T20:32:17
2020-02-18T20:32:17
241,459,201
0
0
null
null
null
null
UTF-8
Python
false
false
8,454
py
from __future__ import division, print_function import tensorflow as tf import numpy as np import argparse import cv2 import time import shapely.geometry as sg import shapely.ops as so import math import os from utils.misc_utils import parse_anchors, read_class_names from utils.nms_utils import gpu_nms from utils.plot_utils import get_color_table, plot_one_box from utils.data_aug import letterbox_resize from shapely.geometry import Polygon from model import yolov3 parser = argparse.ArgumentParser(description="YOLO-V3 video test procedure.") parser.add_argument("input_video", type=str, help="The path of the input video.") parser.add_argument("--anchor_path", type=str, default="./data/yolo_anchors.txt", help="The path of the anchor txt file.") parser.add_argument("--new_size", nargs='*', type=int, default=[416, 416], help="Resize the input image with `new_size`, size format: [width, height]") parser.add_argument("--letterbox_resize", type=lambda x: (str(x).lower() == 'true'), default=True, help="Whether to use the letterbox resize.") parser.add_argument("--class_name_path", type=str, default="./data/coco.names", help="The path of the class names.") parser.add_argument("--restore_path", type=str, default="./data/darknet_weights/yolov3.ckpt", help="The path of the weights to restore.") parser.add_argument("--save_video", type=lambda x: (str(x).lower() == 'true'), default=False, help="Whether to save the video detection results.") args = parser.parse_args() args.anchors = parse_anchors(args.anchor_path) args.classes = read_class_names(args.class_name_path) args.num_class = len(args.classes) color_table = get_color_table(args.num_class) vid = cv2.VideoCapture(args.input_video) video_frame_cnt = int(vid.get(7)) video_width = int(vid.get(3)) video_height = int(vid.get(4)) video_fps = int(vid.get(5)) if args.save_video: fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') videoWriter = cv2.VideoWriter('video_result.mp4', fourcc, video_fps, (video_width, video_height)) #if os.path.exists("percentage.txt"): # os.remove("percentage.txt") #if os.path.exists("info_black_width_100_v1.txt"): # os.remove("info_black_width_100_v1.txt") with tf.Session() as sess: input_data = tf.placeholder(tf.float32, [1, args.new_size[1], args.new_size[0], 3], name='input_data') yolo_model = yolov3(args.num_class, args.anchors) with tf.variable_scope('yolov3'): l1, l3, l5, l7, l9, l11, f_m_1, f_m_2, f_m_3 = yolo_model.forward(input_data, False) pred_feature_maps = f_m_1, f_m_2, f_m_3 pred_boxes, pred_confs, pred_probs = yolo_model.predict(pred_feature_maps) pred_scores = pred_confs * pred_probs boxes, scores, labels = gpu_nms(pred_boxes, pred_scores, args.num_class, max_boxes=200, score_thresh=0.3, nms_thresh=0.45) saver = tf.train.Saver() saver.restore(sess, args.restore_path) #fileper=open("percentage.txt","a") info_new=open("verify_file.txt","a") for i in range(video_frame_cnt): ret, img_ori = vid.read() height_ori, width_ori = img_ori.shape[:2] size=height_ori*width_ori if args.letterbox_resize: img, resize_ratio, dw, dh = letterbox_resize(img_ori, args.new_size[0], args.new_size[1]) else: height_ori, width_ori = img_ori.shape[:2] img = cv2.resize(img_ori, tuple(args.new_size)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.asarray(img, np.float32) img = img[np.newaxis, :] / 255. start_time = time.time() filen1=open('res_n1/n1_{}.txt'.format(i+1),'a') filen3=open('res_n3/n3_{}.txt'.format(i+1),'a') filen5=open('res_n5/n5_{}.txt'.format(i+1),'a') filer1=open('res_r1/r1_{}.txt'.format(i+1),'a') filer2=open('res_r2/r2_{}.txt'.format(i+1),'a') filer3=open('res_r3/r3_{}.txt'.format(i+1),'a') filef1=open('res_f1/f1_{}.txt'.format(i+1),'a') filef2=open('res_f2/f2_{}.txt'.format(i+1),'a') filef3=open('res_f3/f3_{}.txt'.format(i+1),'a') print("********",i,"-th frame") n1, n3, n5, r1, r2, r3, f1, f2, f3 = sess.run([l1, l3, l5, l7, l9, l11, f_m_1, f_m_2, f_m_3],feed_dict={input_data: img}) f_total = f1, f2, f3 data1=n1[0] filen1.write('# Array shape: {0}'.format(data1.shape)) for data_slice in data1: np.savetxt(filen1,data_slice,fmt='%.3f') filen1.write('# New slice') data3=n3[0] filen3.write('# Array shape: {0}'.format(data3.shape)) for data_slice in data3: np.savetxt(filen3,data_slice,fmt='%.3f') filen3.write('# New slice') data5=n5[0] filen5.write('# Array shape: {0}'.format(data5.shape)) for data_slice in data5: np.savetxt(filen5,data_slice,fmt='%.3f') filen5.write('# New slice') data7=r1[0] filer1.write('# Array shape: {0}'.format(data7.shape)) for data_slice in data7: np.savetxt(filer1,data_slice,fmt='%.3f') filer1.write('# New slice') data9=r2[0] filer2.write('# Array shape: {0}'.format(data9.shape)) for data_slice in data9: np.savetxt(filer2,data_slice,fmt='%.3f') filer2.write('# New slice') data11=r3[0] filer3.write('# Array shape: {0}'.format(data11.shape)) for data_slice in data11: np.savetxt(filer3,data_slice,fmt='%.3f') filer3.write('# New slice') data_f1=f1[0] filef1.write('# Array shape: {0}'.format(data_f1.shape)) for data_slice in data_f1: np.savetxt(filef1,data_slice,fmt='%.3f') filef1.write('# New slice') data_f2=f2[0] filef2.write('# Array shape: {0}'.format(data_f2.shape)) for data_slice in data_f2: np.savetxt(filef2,data_slice,fmt='%.3f') filef2.write('# New slice') data_f3=f3[0] filef3.write('# Array shape: {0}'.format(data_f3.shape)) for data_slice in data_f3: np.savetxt(filef3,data_slice,fmt='%.3f') filef3.write('# New slice') filen1.close() filen3.close() filen5.close() filer1.close() filer2.close() filer3.close() filef1.close() filef2.close() filef3.close() boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img}) #boxes_, scores_, labels_ = [], [] ,[] #sess.run([boxes, scores, labels], feed_dict={input_data: img}) end_time = time.time() # rescale the coordinates to the original image if args.letterbox_resize: boxes_[:, [0, 2]] = (boxes_[:, [0, 2]] - dw) / resize_ratio boxes_[:, [1, 3]] = (boxes_[:, [1, 3]] - dh) / resize_ratio else: boxes_[:, [0, 2]] *= (width_ori/float(args.new_size[0])) boxes_[:, [1, 3]] *= (height_ori/float(args.new_size[1])) boxes_[boxes_< 0] = 0 count=i+1 #get information on boxes res=np.arange(len(labels_)*7).reshape(len(labels_), 7) res=res.astype(np.float32) res[:,0]=np.around(np.ones(len(labels_))*count,decimals=0) res[:,1]=np.around(labels_,decimals=0) res[:,2]=np.around(scores_,decimals=3) res[:,3:7]=np.around(boxes_,decimals=3) #print(res) np.savetxt(info_new,res,fmt='%.3f') #height_ori, width_ori = img_ori.shape[:2] #print("Loop Time:", (end_time_loop - start_time_loop) * 1000) #print("scores:") #print(scores_) """print(r1)""" """for i in range(len(boxes_)): x0, y0, x1, y1 = boxes_[i] plot_one_box(img_ori, [x0, y0, x1, y1], label=args.classes[labels_[i]] + ', {:.2f}%'.format(scores_[i] * 100), color=color_table[labels_[i]]) cv2.putText(img_ori, '{:.2f}ms'.format((end_time - start_time) * 1000), (40, 40), 0, fontScale=1, color=(0, 255, 0), thickness=2) cv2.imshow('image', img_ori)""" if args.save_video: videoWriter.write(img_ori) if cv2.waitKey(1) & 0xFF == ord('q'): break #fileper.close() info_new.close() vid.release() if args.save_video: videoWriter.release()
[ "noreply@github.com" ]
Ziyu98.noreply@github.com
4a5a3b8daa86ac399ae0a0cc3604254a77635bbf
00cb405170a6a9572bef0ec8f373813eada08c03
/Agario/Window.py
bb5038b0e49d302d2ded8589eaacfcc9884a849c
[]
no_license
MarcPartensky/Python-Games
c0ad2857be5832d6029642bb0a96bc8e403a12e3
ebfcaaf4a028eddb36bbc99184eb3f7a86eb24ed
refs/heads/master
2022-09-03T00:04:16.402288
2022-08-12T17:10:22
2022-08-12T17:10:22
166,606,022
2
1
null
2021-03-07T16:20:15
2019-01-19T23:56:04
Python
UTF-8
Python
false
false
1,621
py
import pygame from pygame.locals import * class Window: made=0 def __init__(self,game=None,size=None,font="monospace",set=True): Window.made+=1 self.number=Window.made self.title=game.name self.font=font self.open=True pygame.init() self.setSize(size) self.font = pygame.font.SysFont(self.font, 65) self.screen=pygame.display.set_mode(self.size) pygame.display.set_caption(self.title) def setSize(self,size=None): if size is None: info = pygame.display.Info() self.size=(info.current_w/2,info.current_h/2) else: self.size=size def pop_up(self,message): pass def scale(self,picture,size): return pygame.transform.scale(picture,size) def check(self): for event in pygame.event.get(): if event.type == pygame.QUIT: self.open=False def select(self): while self.open: self.check() for event in pygame.event.get(): if event.type == MOUSEBUTTONDOWN and event.button == 1: return (event.pos[0],event.pos[1]) def point(self): for event in pygame.event.get(): return (event.pos[0],event.pos[1]) def flip(self): pygame.display.flip() def drawBackground(self,background): if type(background) is tuple: self.screen self.screen.blit(picture, position) def drawPicture(self,picture,position): self.screen.blit(picture, position) def display(page): pass
[ "marc.partensky@gmail.com" ]
marc.partensky@gmail.com
abc2fe52b390b7c640ccb2ff87cb1d20b07a358a
f4c39ea03255886185d72f4871f92cc9538b2ad3
/crm/admin.py
52199d99d740927aa64e82448255195775028a41
[]
no_license
lgkiemde/Maverick-Food-Service
359430b99588a2077736f81a50c4c663b7e65637
38a17e515941ae7471a5ca9cabd8cad9228e68d7
refs/heads/main
2023-08-30T15:12:23.512109
2021-10-23T01:27:59
2021-10-23T01:27:59
420,088,558
0
0
null
null
null
null
UTF-8
Python
false
false
859
py
from django.contrib import admin from .models import Customer, Service, Product class CustomerList(admin.ModelAdmin): list_display = ('cust_name', 'organization', 'phone_number') list_filter = ('cust_name', 'organization') search_fields = ('cust_name',) ordering = ['cust_name'] class ServiceList(admin.ModelAdmin): list_display = ( 'cust_name', 'service_category', 'setup_time') list_filter = ( 'cust_name', 'setup_time') search_fields = ('cust_name', ) ordering = ['cust_name'] class ProductList(admin.ModelAdmin): list_display = ( 'cust_name', 'product', 'pickup_time') list_filter = ( 'cust_name', 'pickup_time') search_fields = ('cust_name', ) ordering = ['cust_name'] admin.site.register(Customer, CustomerList) admin.site.register(Service, ServiceList) admin.site.register(Product, ProductList)
[ "74085491+lgkiemde@users.noreply.github.com" ]
74085491+lgkiemde@users.noreply.github.com
9ba8abccd4ecd06af19b8b0d1cb92d449e9cdbf9
c0b9b12e5a5dc3d143fe13a80d4fe52c3ac97355
/example_test/example_data_split.py
8401270e0a51b94e87a5b30ff93fbc45c455786d
[]
no_license
liufei0820/anheng
afccbe7221dc292f110122e3181a3cf2fdb0cbfc
27c33dde4d5f44f56b23ddb472b80817487e78ff
refs/heads/main
2023-07-22T03:59:51.616987
2021-09-12T08:58:06
2021-09-12T08:58:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,613
py
# !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/9/12 3:02 下午 # @Author : Alioth # @File : example_data_split.py # @Email : thxthx1999@gmail.com # @Software: PyCharm import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import json import requests if __name__ == '__main__': path_project = os.path.abspath('..') path_callbackurl = os.path.join(path_project, 'data', 'callbackurl' + '.json') print(path_callbackurl) with open(path_callbackurl, "r") as f: json_callbackurl = json.load(f) callBackUrl = json_callbackurl['callBackUrl'] print(callBackUrl) path_data = os.path.join(path_project, 'data', 'loan_data' + '.csv') data_set = pd.read_csv(path_data, header=0, index_col=0) # Initiate a list for categoricals categ_list = ['purpose'] # create new df with dummy variables data_set = pd.get_dummies(data_set, columns=categ_list, drop_first=True) # # print(data_set) percent = 0.8 random = 1234 test_data = data_set.sample(frac=(1 - percent), replace=False, random_state=random, axis=0) train_data = data_set[~data_set.index.isin(test_data.index)] print(test_data.head()) path_train = os.path.join(path_project, 'data', 'train_data' + '.csv') path_test = os.path.join(path_project, 'data', 'test_data' + '.csv') train_data.to_csv(path_train) test_data.to_csv(path_test) dict_path = { "path_train": path_train, "path_test": path_test } r = requests.post(callBackUrl, json=dict_path) # does json.dumps(your_json) automatically
[ "1094168447@qq.com" ]
1094168447@qq.com
be24fff7640880924ac1b8352d63c9ce128039bd
49beeee0d9aff3b776545cb553ef1bf15dd9f190
/example/example/views.py
6c06b12a01b8dad493049a74201b5a5b9af1ada9
[ "MIT" ]
permissive
bluedisk/django-korean-fields
238364cf4f766db824adec832aaa2d83619cded1
b655e23d9a73e61cb217e34719ee6a2509f8f475
refs/heads/master
2020-03-19T09:55:10.974426
2018-11-10T15:02:02
2018-11-10T15:02:02
136,327,803
5
0
null
null
null
null
UTF-8
Python
false
false
595
py
# -*- coding: utf-8 -*- from django.forms import forms, CharField from django.http import HttpResponse from django.shortcuts import render from korean.fields import JuminFormField class TestForm(forms.Form): jumin1 = JuminFormField() jumin2 = JuminFormField() def demo(request): if request.method == 'POST': form = TestForm(request.POST) if form.is_valid(): return HttpResponse('success : ' + form.cleaned_data['jumin']) else: form = TestForm(initial={'jumin1': '010203-4567890'}) return render(request, 'demo.html', {'form': form})
[ "bluedisk@gmail.com" ]
bluedisk@gmail.com
17eb256179da0f291fdd0e5d21d32169501672e1
e21ed71610f9d1004dfa21206300c0e9f3887e89
/modulo_2/Codewars/dev-junior/find_even_array.py
beb4a2bad5d9a8b39ec87d16249da6a0ba36113a
[]
no_license
hpfn/wttd-2017-exerc
c0c79ee0cb3b5b331932787d280deee679357bc1
b1bf1394d2e2adc29257b7c4273af21b8509335f
refs/heads/master
2020-12-30T11:29:13.218980
2017-10-03T19:04:03
2017-10-03T19:04:03
91,572,803
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
# coding=utf-8 def find_even_index(arr): tam_arr = len(arr) for x in range(tam_arr): if sum(arr[:x]) == sum(arr[x+1:]): return x return -1
[ "hpfn@debian.org" ]
hpfn@debian.org
42d9a5f7b77cd5d5e697db8aab5835e9505444fc
ce7e7085b6bc07abf5eab5d4345e045a16ee0d56
/*backup/backup.py
63630e15cc53af9d5c5dbd5bc1213fe4f7079b78
[]
no_license
WHjiangxiaolin/Python
bad4a5edc80f2dc96e6256ab2761437f93e666ab
2e6b4a02dba7d6016f846d6914eee9af61146860
refs/heads/master
2022-01-19T22:43:03.864235
2019-07-20T09:45:39
2019-07-20T09:45:39
197,872,898
0
0
null
null
null
null
UTF-8
Python
false
false
3,322
py
#-将/tmp/demo/security备份到/tmp/demo/backup中 #- 需要支持完全和增量备份 #- 周一执行完全备份 #- 其他时间执行增量备份 #分析: #- 完全备份需要执行备份目录、计算每个文件的md5值 #- 增量备份需要计算文件的md5值,把md5值与前一天的md5值比较,有变化的文件要备份;目录中新增的文件也要备份 #- 备份的文件名,应该体现出:备份的是哪个目录,是增量还是完全,哪一天备份的 import tarfile from time import strftime import os import hashlib import pickle def check_md5(fname): #生成文件MD5值,该函数下面给下面函数用 m = hashlib.md5() with open(fname, 'rb') as fobj: while True: data = fobj.read(4096) if not data: break m.update(data) return m.hexdigest() def full_backup(src, dst, md5file): #完全备份 # 将完全备份文件名组合起来,os.path.basename(src)可以取目录最后的目录名 fname = '%s_full_%s.tar.gz' % (os.path.basename(src), strftime('%Y%m%d')) fname = os.path.join(dst, fname) #将完全备份文件绝对路径组合起来 tar = tarfile.open(fname, 'w:gz') #打包备份文件 tar.add(src) tar.close() # 计算每个文件的md5值 md5dict = {} for path, folders, files in os.walk(src): #os.walk返回值由多个元祖构成,每个元祖有三项,第一项时路径字符串,第二项是该路径下的目录列表,第三项时该目录下的文件列表.path, folders, files对应此三项,由path和file组合成文件绝对路径 for file in files: key = os.path.join(path, file) md5dict[key] = check_md5(key) #生成文件MD5值,并保存为字典的值,字典的键为文件名 # 把md5值字典保存到文件 with open(md5file, 'wb') as fobj: pickle.dump(md5dict, fobj) def incr_backup(src, dst, md5file): #增量备份 #将增量备份文件名组合起来 fname = '%s_incr_%s.tar.gz' % (os.path.basename(src), strftime('%Y%m%d')) fname = os.path.join(dst, fname) #将增量备份文件绝对路径组合起来 # 取出前一天的文件md5值 with open(md5file, 'rb') as fobj: old_md5 = pickle.load(fobj) # 计算当前下文件的md5值 md5dict = {} for path, folders, files in os.walk(src): for file in files: key = os.path.join(path, file) md5dict[key] = check_md5(key) #生成文件MD5值,并保存为字典的值,字典的键为文件名 # 找出变化的文件和新增的文件,把它们压缩 tar = tarfile.open(fname, 'w:gz') for key in md5dict: # get 如果key不在字典中返回None则表示判断不成立,则之前的目录中没有这个文件 if old_md5.get(key) != md5dict[key]: tar.add(key) tar.close() # 把当前的md5字典写到文件中,以便下一次比较使用 with open(md5file, 'wb') as fobj: pickle.dump(md5dict, fobj) if __name__ == '__main__': src = '/tmp/demo/security' dst = '/tmp/demo/backup' md5file = '/tmp/demo/backup/md5.data' if strftime('%a') == 'Mon': #星期几时%a full_backup(src, dst, md5file) else: incr_backup(src, dst, md5file)
[ "jxl@163.com" ]
jxl@163.com
e3a72bd363e5d37a2c58181444706b9ab6a4d68f
6170d8451dffcbf0b0a3d5606b33ab4467070640
/Python/SCRIPTS/Python/UPDATA/host_seedfile.py
c6df67df9f72f0cd44fdc4e8b81b7ffb5d7cca35
[]
no_license
jb26444/lazynet
5ab848d998e0ddb23dc8362596ac06b47c0315cb
6a39ed09e36e5deeca21714ce133f938dec7bf3d
refs/heads/master
2021-05-01T16:18:25.804995
2018-03-17T21:39:24
2018-03-17T21:39:24
121,050,914
0
0
null
null
null
null
UTF-8
Python
false
false
347
py
# # # Add the host addresses you want to log into # #network_devices = ['x.x.x.1', 'x.x.x.2', 'x.x.x.3', 'x.x.x.4'] # #network_devices = ['10.205.205.1', '10.205.205.2', '10.205.205.3', '10.205.205.4', '10.205.205.5', '10.205.205.6','10.205.205.7','10.205.205.8', '10.205.205.9', '10.205.205.10'] network_devices = ['10.205.7.10', '10.205.7.11']
[ "jan.blahuta@gmail.com" ]
jan.blahuta@gmail.com
d380fe52b1c521e8ecdac7ec5218fc2ce599e77d
34188f655a121b6db7c029c5da93779411ee92bc
/7a.Stos i kolejka/czynawiasowaniepoprawne.py
2314d35fece5bdf050ca66135a6502608160bb6a
[]
no_license
aniagut/ASD-2020
3f0760f28888bdb0a6d689c357c8444bf09ff48b
f1a084d4f8175a76fd4274f270eab2ddc7a5e172
refs/heads/master
2023-03-08T07:51:05.351562
2021-02-28T17:30:24
2021-02-28T17:30:24
343,164,402
0
0
null
null
null
null
UTF-8
Python
false
false
1,116
py
#jesli wchodzi nawias otwierajacy, to wrzucamy na stos #jesli zmaykajacy to zdejmujemy ze stosu i sprawdzamy czy sie pokrywaja class Stack: def __init__(self): self.s=[] self.top=-1 self.size=0 def push(self,x): self.top+=1 self.size+=1 if self.top==len(self.s): self.s.append(x) else: self.s[self.top]=x def pop(self): self.size-=1 res=self.s[self.top] self.top-=1 return res def is_empty(self): return self.size==0 def funkcja(nawiasy): s=Stack() n=len(nawiasy) for i in range(n): if nawiasy[i]=="(" or nawiasy[i]=="[": s.push(nawiasy[i]) else: if s.is_empty(): return False res=s.pop() if nawiasy[i]==")": if res!="(": return False elif nawiasy[i]=="]": if res!="[": return False if not s.is_empty(): return False return True nawiasy="((([][])))" print(funkcja(nawiasy))
[ "noreply@github.com" ]
aniagut.noreply@github.com
c4fe3b1f9b8f103406a394b5030f956677734043
20ad94b7bc15dc76ad7a78133b52f75fd3381470
/C++ dasturlash asoslari/42. Tanlangan masalalar yechimi/f6.py
44a12fa412552d42633a6c1cc6aefce98442c657
[]
no_license
ilmfan/MohirdevAlgoritm
8de810879b660561dd3582e486d58e1a342ad655
d58ded8bc6aa3d348c27d26b3856ca223829800e
refs/heads/main
2023-07-14T17:42:26.698190
2021-08-25T11:06:39
2021-08-25T11:06:39
395,877,110
1
0
null
null
null
null
UTF-8
Python
false
false
542
py
""" author: Shodmonov Zafar date and time: 09:00 14.08.2021 information about the algorithm: InPut: n OutPut: prime numbers up to n """ def prime_numbers(n): output_list = [2] for num in range(3, n+1, 2): divided_into = [] does_not_divide = [] for i in range(2, num): if num % i == 0: divided_into.append(1) else: does_not_divide.append(1) if len(does_not_divide) == num - 2: output_list.append(num) return output_list
[ "dasturchi.uzbek@gmail.com" ]
dasturchi.uzbek@gmail.com
495d0a5cabcec1b443839fa4e8201c4e9afae6dd
eefbfe5a3f0d655177fd3c17335ae1100e8398bd
/Server/structure/ShellInterface.py
1fc7c51d327e3d4260d3c8a63c94a1262f4780f0
[]
no_license
mkmagic/BCI_API
bd3c92c6162a29f2bfd37322e35c60a9446e1551
aef94cc14d65e915dd97ce66d06542a4587d04f6
refs/heads/master
2020-06-21T22:24:13.059550
2020-03-12T11:21:46
2020-03-12T11:21:46
197,566,030
0
0
null
null
null
null
UTF-8
Python
false
false
31,587
py
""" The Shell Interface module, utilizes Python's argparse module to create shell-like programs. To create a shell-like program, copy the template Interface class provided in this file and follow the instructions marked by # comments. Auther: Hayun, Yoav E-mail: yoavhayun@gmail.com """ from __future__ import print_function, with_statement from abc import ABCMeta, abstractmethod import os, sys import xml.etree.ElementTree as ET import argparse import platform, traceback , shlex from datetime import datetime import threading, traceback import importlib import time import codecs from .Completer import Completer try: import builtins __builtin__ = builtins except: import __builtin__ # try: # try: # import readline # except: # import pyreadline as readline # except: # try: # from pip import main as pipmain # except: # from pip._internal import main as pipmain # error = pipmain(['install', "pyreadline"]) # if not error: # try: # import readline # except: # import pyreadline as readline # else: # sys.exit(error) class ShellCompleter(Completer): def __init__(self, controllerInterface): self.controller = controllerInterface super(ShellCompleter, self).__init__() def delegateControl(self, subparsers, id, interface): self.enterId = id parser = subparsers.add_parser(id, add_help=False) parser.set_defaults(delegate=interface) interface.completer.head.id = id interface.completer.head.keywords = [id] self.cur.addCommand(interface.completer.head) return self from structure.colors import colors from structure.keys import Keys class ShellInterface(): __metaclass__ = ABCMeta LAST_EXECUTER_NAME = ["Shell Interface"] END_CMDS = set(["q", "quit", "exit"]) READ_CMDS = set([".read", ".r"]) FILE_COMMENT = '#' FILE_COLORS = {code + '#': color for code, color in [i for i in vars(colors.fg).items() if not i[0].startswith('_')]} @abstractmethod def buildParser(self): """ Builds the Interface's argument parser """ pass def preprocessArguments(self): """ Prepocesses the arguments that were passed to the Interface @Return whether or not the preprocessing was successful """ return True def manageUnparsed(self, unparsed): """ Handles the arguments that couldn't be parsed by the Interface's arguments parser @unparsed List of unparsed arguments @Return whether or not the parsing was successful """ return len(unparsed) == 0 def __init__(self, name, version=None, description=None, logFile="ShellInterface.log", xmlConfiguration=None): """ Interface Constructor @name The name of the interface @version The current version of the interface @description A description of the interface @logFile The default log file of the interface @xmlConfiguration A path to an XML configuration file, content saved in self.CONF """ self.parent = [] self.FLAGS = argparse.Namespace() self.input = '' self.XMLParser = ShellInterface.XMLParser("value", "name", lambda v: ShellInterface.XMLParser.extractionCast(v, "type")) self.CONF = self.loadXmlConfiguration(xmlConfiguration, section=name) if xmlConfiguration else argparse.Namespace() self.isFile = False self.success = True self.logLocks = {} self.logFile = logFile self.initLog() self.keys = None self.name = name if name else os.path.basename(__file__).split(".")[0] self.version = version self.description = "{}{}{}".format(self.name, ' v' + self.version if self.version else '', ': ' + description if description else '') self.parser = argparse.ArgumentParser(description=self.description, add_help=False, formatter_class=argparse.RawTextHelpFormatter) self.parser.add_argument("-h", "--help", action='store_true') self.completer = ShellCompleter(self) self.buildParser() with self.completer.branch_out(".read"): self.completer.branch_out("path", type=self.completer.BranchType.PATH) self.completer.branch_out("--help") with self.completer.branch_out(self.FILE_COMMENT, complete=False): self.completer.branch_out("Line to print" , []) for colorCode in self.FILE_COLORS: with self.completer.branch_out(self.FILE_COMMENT + colorCode, hidden=True): self.completer.branch_out("Line to print", []) @abstractmethod def execute(self): """ The main method of the Interface. It's called whenever a shell command is entered or Interface.run() is called with argv. @Return whether or not the execution was successful """ return True def _close(self): """ This method is called whenever the interface closes """ self.close() @abstractmethod def close(self): """ This method is called whenever the interface closes """ pass def initLog(self, logFile=None): """ Create an empty a log file. If the file exists, this will overwrite it. @logFile If given, will init the given log file and not the default """ logFile = logFile if logFile is not None else self.logFile if logFile is not None: if(os.path.isfile(logFile)): os.remove(logFile) open(logFile, "a").close() def deleteLog(self, logFile=None): """ Deletes a logFile from the disk @logFile If given, will delete the given log file and not the default """ logFile = logFile if logFile is not None else self.logFile if(os.path.isfile(self.logFile)): os.remove(self.logFile) def showLog(self, logFiles=[], logLevel=0, lineNumber=0, online=False, inputHandler=None): """ Displays a log file on the screen @logFiles List of files, If given, will show the given files instead of the default log file @logLevel Show all log prints with (log level <= given log level) @lineNumber Display log from a given line number instead of the beginning @online Whether or not the keep displaying the log as it updates from an external source until a KeyboardInterrupt event @inputHandler a handler function to handle incoming input @Return the last printed line number """ logFiles = logFiles if len(logFiles) > 0 else [self.logFile] try: if inputHandler is not None: prompt = self.getPrompt() if len(logFiles) == 1: prompt = colors.bold prompt += os.path.split(logFiles[0])[-1].split('.')[0] prompt += "> " + colors.reset inputHandler = ShellInterface.InputHandler(prompt, inputHandler, self.keys) printers = {} for logFile in logFiles: if online: printers[logFile] = ShellInterface.LogPrinter(logFile, lineNumber) printers[logFile].start(logLevel) else: with open(logFile, 'r') as log: [log.readline() for i in range(self.lineNumber)] ShellInterface.LogPrinter.printLog(log, logLevel) while(True): if inputHandler is not None and not inputHandler.isWorking: break time.sleep(0) except KeyboardInterrupt: pass finally: if inputHandler is not None: inputHandler.stop() for printer in printers: printers[printer].stop() @staticmethod def tryExecution(task, maxTries, expecting=Exception): tries = 0 while(tries < maxTries): try: task() return True except expecting: tries += 1 return False @staticmethod def _logMsgTask(logFile, descriptor, message): with open(logFile, 'a') as log: log.write("{} {}\n".format(descriptor, message)) def log(self, message, logFile=None, logLevel=0, error=False, id=None, timestamp=None, maxTries=1): """ This method prints a message to the log file @message The message to log @logFile If given, will print to the given file instead of the default log file @logLevel The minimal logLevel needed to display this message @error Whether or not this message is an error message @id An id of what produced this message @timestamp Whether or not to include a timestamp in the log print """ logFile = logFile if logFile is not None else self.logFile if logFile is not None: if logFile not in self.logLocks: self.logLocks[logFile] = threading.Lock() message = "{}".format(message) if error else message descriptor = "{}::".format(logLevel) descriptor = "{}[{}]".format(descriptor, timestamp) if timestamp is not None else descriptor descriptor = "{}[{}]".format(descriptor, id) if id is not None else descriptor descriptor = "{} ERROR: ".format(descriptor) if error else descriptor with self.logLocks[logFile]: logTask = lambda : ShellInterface._logMsgTask(logFile, descriptor, message) if not ShellInterface.tryExecution(logTask, maxTries, PermissionError): self.log("Unable to log message in '{}': {}".format(logFile, message.strip()), error=True) def __str__(self): """ @Return a description of the interface """ return self.description def readCommands(self, file): """ Executes argument lines from a file @file Path to file containing argument lines to be executed by the interface @Return whether or not the execution was successful """ try: if os.path.isfile(file): lines = [] with open(file, mode='r') as f: lines = f.readlines() self.isFile = True self.__shell(inputLines=lines) self.isFile = False else: ShellInterface.printError("'{}' is not a file".format(file)) except: ShellInterface.printError("Could not read file '{}'".format(file)) self.isFile = False return False return self.success def __createFlags(self): """ Creates self.FLAGS for the Interface @Return whether or not the creation of flags was successful """ self.__unparsed = [] try: mem = {} if hasattr(self.FLAGS, "MEMORY"): for arg in self.FLAGS.MEMORY: if hasattr(self.FLAGS, arg): mem[arg] = getattr(self.FLAGS, arg) self.FLAGS, self.__unparsed = self.parser.parse_known_args(args=self.input, namespace=self.FLAGS) for arg in self.FLAGS.MEMORY: if not arg in mem: mem[arg] = self.FLAGS.MEMORY[arg] if arg in mem: if not hasattr(self.FLAGS, arg) or getattr(self.FLAGS, arg) is None: setattr(self.FLAGS, arg, mem[arg]) except SystemExit: if int(str(sys.exc_info()[1])) != 0: self.success = False return False return True def __processArgs(self): if not self.manageUnparsed(self.__unparsed): ShellInterface.printError("The arguments {} are unknown".format(self.__unparsed)) if self.isFile: self.success = False return False if not self.preprocessArguments(): ShellInterface.printError("Failed in preprocessing of '{}'.".format(self.inputLine.strip())) if self.isFile: self.success = False return False return True def __resetFlags(self): """ Resets self.FLAGS of the Interface """ for arg in self.FLAGS.__dict__: if arg == 'MEMORY': continue if hasattr(self.FLAGS, 'MEMORY') and arg not in self.FLAGS.MEMORY: setattr(self.FLAGS, arg, None) def runLine(self, line): """ Parse and execute a single argument line @line argument line to parse and execute @Return whether or not the execution was successful """ ShellInterface.LAST_EXECUTER_NAME.append(self.name) isLastLine = False self.__resetFlags() self.inputLine = line self.input = shlex.split(line, posix=(platform.system()!='Windows')) if self.inputLine.startswith(self.FILE_COMMENT): toPrint = self.inputLine[1:].strip() availableColors = [k for k in vars(colors.fg).items() if not k[0].startswith('_')] for code in self.FILE_COLORS: if toPrint.lower().startswith(code): toPrint = self.FILE_COLORS[code] + toPrint[len(code):].strip() + colors.reset break print(toPrint) elif len(self.input) > 0: if self.input[0] in ShellInterface.END_CMDS and not self.isFile: isLastLine = True elif self.input[0] in ShellInterface.READ_CMDS: expArgs = 2 if len(self.input) < expArgs: ShellInterface.printError("Read command accepts a path as an argument.") else: self.readCommands(' '.join(self.input[1:])) else: if self.__createFlags(): if hasattr(self.FLAGS, "delegate") and self.FLAGS.delegate: hasKeys = self.keys is not None if hasKeys: self.keys.close() self.callOtherInterface(self.FLAGS.delegate ,self.input[1:]) #if hasKeys: self.keys = Keys(self.name, intro=self.getUsage()) elif self.FLAGS.help: self.parser.print_help() else: if self.__processArgs(): self.success = self.execute() return isLastLine def getUsage(self): usage = '' usage += colors.fg.yellow + '\n' usage += self.description + '\n' usage += colors.reset usage += "\tTo exit, enter one of the following {}\n".format([cmd for cmd in ShellInterface.END_CMDS]) usage += "\tto read commands from a file, enter one of the following {}\n".format([cmd for cmd in ShellInterface.READ_CMDS]) usage += colors.bold + '\n' usage += "\tTip: At any time, add '-h' flag to the command for help.\n" usage += colors.reset return usage def printUsage(self): """ Prints the welcome usage information of the interface """ print(self.getUsage()) def setMarkerView(self): sys.stdout.write("\033[2A") sys.stdout.flush() def unsetMarkerView(self): sys.stdout.write("\033[2B") sys.stdout.flush() def getPrompt(self, parent=[]): shellPromptMsg = "{}> ".format('\\'.join(parent + [self.name])) return colors.bold + shellPromptMsg + colors.reset def __shell(self, inputLines=None): """ Runs the Interface as a shell program @parent the name of the parent Interface @inputLines a pre set list of input lines @Return whether or not the last input line was successful """ if not self.isFile: self.keys = Keys(self.name, intro=self.getUsage()) self.printUsage() try: shellPromptMsg = self.getPrompt(self.parent) while inputLines is None or len(inputLines) > 0: if inputLines is None: print() try: inputLine = inputLines.pop(0) if inputLines else self.keys.readInput(shellPromptMsg, self.completer) except EOFError: break try: lastLine = self.runLine(inputLine) if lastLine: break if not self.success: if self.isFile: ShellInterface.printError("Command Failed, Aborting execution from file") break else: ShellInterface.printError("Command Failed") self.success = True except SystemExit: if int(str(sys.exc_info()[1])) != 0: raise except: traceback.print_exc() sys.exit(1) finally: if not self.isFile: self.keys.close() return self.success def loadXmlConfiguration(self, xml, section=None): """ Loads an XML configuration file into the interface. @xml A path to an XML file @section Specify to load a specific section in the XML only @Return an argparse Namespace containing the values extracted from XML XML Structure: section : Groups arguments together name - name of the section [Content] - 'import', 'value' and 'group' elements import : Includes another section in the current section section - section name to import [Content] - None value : Holds a value for the interface to use name - Access name for the value type - A casting method to apply on the given string value [Content] - The value to store group : groups several values together name - Access name for the group [Content] - 'value' elements XML Example: <root> <section name="A"> <group name="A_Group1"> <value name="Arg1">value for A.A_Group1.Arg1</value> <value name="Arg2">value for A.A_Group1.Arg2</value> </group> </section> <section name="B"> <import section="A"/> <!--Access 'B.A.A_Group1.Arg1' and 'B.A.A_Group1.Arg2'--> <value name="Arg1">value for B.Arg1</value> </section> </root> """ return self.XMLParser.loadXml(xml, section) def run(self, argv=None, parent=[]): """ Runs the Interface @argv include argv list to be executed by the given Interface omit argv list to pass control to the given Interface # First arg is expected to be the call command @parent the name of the parent Interface @Return whether or not the parsing was successful """ try: self.parent = parent if argv and len(argv) > 1: self.runLine(' '.join(argv)) return self.success else: retValue = self.__shell() self._close() return retValue except SystemExit: self._close() if int(str(sys.exc_info()[1])) != 0: raise def callOtherInterface(self, other, argv=None): """ Calls another Interface @other An Interface instance @argv argv list as expected by the Interface's run method @Return whether or not the call returned success """ return other.run(argv, self.parent + [self.name]) @staticmethod def printError(error): """ Prints an error @argv error error message """ executer = ShellInterface.LAST_EXECUTER_NAME.pop() if len(ShellInterface.LAST_EXECUTER_NAME) > 0 else "Shell Interface" print(colors.fg.lightred + "\n[{}] Error: {}".format(executer, error) + colors.reset) class LogPrinter: def __init__(self, log, lineNumber): self.log = log self.lineNumber = lineNumber def start(self, logLevel=0): self.isWorking = True self.worker = threading.Thread(target=self.run, args=[logLevel]) self.worker.start() def stop(self): self.isWorking = False self.worker.join() def run(self, logLevel): with open(self.log, 'r') as log: [log.readline() for i in range(self.lineNumber)] while(self.isWorking): ShellInterface.LogPrinter.printLog(log, logLevel=logLevel) @staticmethod def printLog(logFile, logLevel=0): content = logFile.readline() if content: content = content.split("::") if len(content) == 2: level, content = content[0], content[1] if logLevel >= int(level): print(content, end='') class InputHandler: def __init__(self, prompt, handlerFunction, keys): self.prompt = prompt self.handlerFunction = handlerFunction self.keys = keys self.isWorking = True self.worker = threading.Thread(target=self.run, args=[]) self.worker.start() def stop(self): self.isWorking = False self.worker.join() def run(self): print() while(self.isWorking): inputline = self.keys.readInput(self.prompt, hideInputLine=True) if inputline.strip() in ShellInterface.END_CMDS: self.isWorking = False break self.handlerFunction(inputline) class XMLParser(): XML = argparse.Namespace( section = argparse.Namespace(tag="section", id="name"), include = argparse.Namespace(tag="import", id="section"), group = argparse.Namespace(tag="group", id="name") ) def __init__(self, valueTitle, valueId, valueExtractMethod=None): if valueExtractMethod is None: valueExtractMethod = lambda value: value.text self.value = argparse.Namespace(title=valueTitle, id=valueId, extractMethod=valueExtractMethod) @staticmethod def castValue(value, castDescription): module = __builtin__ if '.' in castDescription: modulePath = '.'.join(castDescription.split('.')[0:-1]) try: module = importlib.import_module(modulePath) except: modulePath = modulePath.split('.') for i in range(0, len(modulePath)): module = getattr(module, modulePath[i]) method = castDescription.split('.')[-1] return getattr(module, method)(value) @staticmethod def extractionCast(valueElement, castId): """ Casts a value in a given XML element to it's specified type @valueElement XML element that has a text value and a 'type' attribute @Return the casting of the text value to it's specified type """ if castId in valueElement.attrib: return ShellInterface.XMLParser.castValue(valueElement.text, valueElement.attrib[castId]) return valueElement.text def _appendNamespace(self, namespace, id, value): namespace._ORDER.append(id) setattr(namespace, id, value) return namespace def _createNamespaceFromXmlRoot(self, xml, root, history): """ Creates a new namespace containing values specified under a given XML root elemment @xml A path to an XML file @root The XML element containing values to parse out @history Holds already visited sections @Return an argparse Namespace containing the values extracted from XML """ namespace = argparse.Namespace(_ORDER=[]) for section in root.findall(self.XML.include.tag): id = section.attrib[self.XML.include.id] namespace = self._appendNamespace(namespace, id, self._loadXml(xml, id, history)) for value in root.findall(self.value.title): id = value.attrib[self.value.id] namespace = self._appendNamespace(namespace, id, self.value.extractMethod(value)) for group in root.findall(self.XML.group.tag): groupId = group.attrib[self.XML.group.id] namespace = self._appendNamespace(namespace, groupId, OrderedDict()) for value in group.findall(self.value.title): groupValues = getattr(namespace, groupId) groupValues[value.attrib[self.value.id]] = self.value.extractMethod(value) return namespace def _loadXml(self, xml, section=None, history=[]): """ Loads an XML configuration file into the interface. @xml A path to an XML file @section Specify to load a specific section in the XML only @history Holds already visited sections @Return an argparse Namespace containing the values extracted from XML """ tree = ET.parse(xml) root = tree.getroot() if section: if section not in history: history.append(section) for sec in root.findall(self.XML.section.tag): if sec.attrib[self.XML.section.id].upper() == section.upper(): return self._createNamespaceFromXmlRoot(xml, sec, history[:]) else: print("ERROR: Found a circular import in XML file: '{}'".format(xml)) return None else: return self._createNamespaceFromXmlRoot(xml, root, history) # We got a non existing section to read return argparse.Namespace() def loadXml(self, xml, section): """ Loads an XML file as an argparse.Namespace @xml A path to an XML file @section Specify to load a specific section in the XML only @Return an argparse Namespace containing the values extracted from XML XML Structure: section : Groups arguments together name - name of the section [Content] - 'import', 'value' and 'group' elements import : Includes another section in the current section section - section name to import [Content] - None value : Holds a value for the interface to use name - Access name for the value type - A casting method to apply on the given string value [Content] - The value to store group : groups several values together name - Access name for the group [Content] - 'value' elements XML Example: <root> <section name="A"> <group name="A_Group1"> <value name="Arg1">value for A.A_Group1.Arg1</value> <value name="Arg2">value for A.A_Group1.Arg2</value> </group> </section> <section name="B"> <import section="A"/> <!--Access 'B.A.A_Group1.Arg1' and 'B.A.A_Group1.Arg2'--> <value name="Arg1">value for B.Arg1</value> </section> </root> """ return self._loadXml(xml, section, history=[]) """ Interface Template Class """ ############################################################################### ### Copy the entire code found below to start a new Shell Interface program ### ############################################################################### import os, sys from structure.ShellInterface import ShellInterface class Interface(ShellInterface): NAME = os.path.basename(__file__).split(".")[0] # Default is current file's name VERSION = "1.0.0.0" DESCRIPTION = 'A template Interface class' # Interface Short Description def buildParser(self): """ Builds the Interface's argument parser """ # Add the arguments to self.parser (argparse.ArgumentParser type) # use to keep values of arguments saved between commands at runtime. self.parser.set_defaults(MEMORY={}) # dict: {[argument dest name] : [default value]}. def __init__(self): """ Interface Constructor """ super(Interface, self).__init__(self.NAME, self.VERSION, description=self.DESCRIPTION) def preprocessArguments(self): """ Prepocesses the arguments that were passed to the Interface @Return whether or not the preprocessing was successful """ # Preprocess received arguments, stored in self.FLAGS (argparse namespace) return super(Interface, self).preprocessArguments() # Return preprocessing result (bool) def manageUnparsed(self, unparsed): """ Handles the arguments that couldn't be parsed by the Interface's arguments parser @unparsed list of unparsed arguments @Return whether or not the parsing was successful """ # Handle unparsed arguments (str list) return super(Interface, self).manageUnparsed(unparsed) # Return parsing result (bool) # Main Method def execute(self): """ The main method of the Interface. It's called whenever a shell command is entered or Interface.run() is called with argv. @Return whether or not the execution was successful """ # Use self.FLAGS to access the parsed arguments (argparse namespace) # Use self.input to access the given arguments (str list) return True # Return execution result (bool) def close(self): """ This method is called whenever the interface closes @Return whether or not the execution was successful """ if __name__ == "__main__": Interface().run(sys.argv)
[ "michaelkanon1@gmail.com" ]
michaelkanon1@gmail.com
d47c3724879680967f10765f503c820e7982fb3f
714d4d2796e9b5771a1850a62c9ef818239f5e77
/components/metrics/DEPS
2f4d413d44817a460d2dc1304dd4027f1f530765
[ "BSD-3-Clause" ]
permissive
CapOM/ChromiumGStreamerBackend
6c772341f815d62d4b3c4802df3920ffa815d52a
1dde005bd5d807839b5d45271e9f2699df5c54c9
refs/heads/master
2020-12-28T19:34:06.165451
2015-10-21T15:42:34
2015-10-23T11:00:45
45,056,006
2
0
null
2015-10-27T16:58:16
2015-10-27T16:58:16
null
UTF-8
Python
false
false
243
# This component is shared with the Chrome OS build, so it's important to limit # dependencies to a minimal set. include_rules = [ "-components", "+components/compression", "+components/metrics", "+components/variations", "-net", ]
[ "j.isorce@samsung.com" ]
j.isorce@samsung.com
07e2550e41d1f8ee6112f46da821e1ab0852682c
01ab6c9aa8f877cef36160b65b959019cece62df
/FullCopy/src/utils.py
9612ea294f0921f8d8d9e06e5e2a96f012f57db2
[]
no_license
kiscsonti/DPwithTorches
40f693c77dd38860037d671a07f51c10ab9de185
3892c8fcf1436711691c65d23f63da5372349a92
refs/heads/master
2020-03-12T00:06:11.593266
2018-05-19T09:26:08
2018-05-19T09:26:08
130,341,301
0
0
null
null
null
null
UTF-8
Python
false
false
9,953
py
import os import json import string import wikiwords import unicodedata import numpy as np from collections import Counter from nltk.corpus import stopwords words = frozenset(stopwords.words('english')) punc = frozenset(string.punctuation) def is_stopword(w): return w.lower() in words def is_punc(c): return c in punc baseline = wikiwords.freq('the') def get_idf(w): return np.log(baseline / (wikiwords.freq(w.lower()) + 1e-10)) def load_data(path): from doc import Example data = [] for line in open(path, 'r', encoding='utf-8'): if path.find('race') < 0 or np.random.random() < 0.6: data.append(Example(json.loads(line))) print('Load %d examples from %s...' % (len(data), path)) return data class Dictionary(object): NULL = '<NULL>' UNK = '<UNK>' START = 2 @staticmethod def normalize(token): return unicodedata.normalize('NFD', token) def __init__(self): self.tok2ind = {self.NULL: 0, self.UNK: 1} self.ind2tok = {0: self.NULL, 1: self.UNK} def __len__(self): return len(self.tok2ind) def __iter__(self): return iter(self.tok2ind) def __contains__(self, key): if type(key) == int: return key in self.ind2tok elif type(key) == str: return self.normalize(key) in self.tok2ind def __getitem__(self, key): if type(key) == int: return self.ind2tok.get(key, self.UNK) if type(key) == str: return self.tok2ind.get(self.normalize(key), self.tok2ind.get(self.UNK)) def __setitem__(self, key, item): if type(key) == int and type(item) == str: self.ind2tok[key] = item elif type(key) == str and type(item) == int: self.tok2ind[key] = item else: raise RuntimeError('Invalid (key, item) types.') def add(self, token): token = self.normalize(token) if token not in self.tok2ind: index = len(self.tok2ind) self.tok2ind[token] = index self.ind2tok[index] = token def tokens(self): """Get dictionary tokens. Return all the words indexed by this dictionary, except for special tokens. """ tokens = [k for k in self.tok2ind.keys() if k not in {'<NULL>', '<UNK>'}] return tokens vocab, pos_vocab, ner_vocab, rel_vocab, char_vocab = Dictionary(), Dictionary(), Dictionary(), Dictionary(), Dictionary() def gen_race_vocab(data): race_vocab = Dictionary() build_vocab() cnt = Counter() for ex in data: cnt += Counter(ex.passage.split()) cnt += Counter(ex.question.split()) cnt += Counter(ex.choice.split()) for key, val in cnt.most_common(30000): if key not in vocab: race_vocab.add(key) print('Vocabulary size: %d' % len(race_vocab)) writer = open('./data/race_vocab', 'w', encoding='utf-8') writer.write('\n'.join(race_vocab.tokens())) writer.close() def build_vocab(data=None): global vocab, pos_vocab, ner_vocab, rel_vocab, char_vocab # build word vocabulary if os.path.exists('./data/vocab'): print('Load vocabulary from ../data/vocab...') for w in open('./data/vocab', encoding='utf-8'): vocab.add(w.strip()) print('Vocabulary size: %d' % len(vocab)) else: cnt = Counter() for ex in data: cnt += Counter(ex.passage.split()) cnt += Counter(ex.question.split()) cnt += Counter(ex.choice.split()) for key, val in cnt.most_common(): vocab.add(key) print('Vocabulary size: %d' % len(vocab)) writer = open('./data/vocab', 'w', encoding='utf-8') writer.write('\n'.join(vocab.tokens())) writer.close() # build part-of-speech vocabulary if os.path.exists('./data/pos_vocab'): print('Load pos vocabulary from ../data/pos_vocab...') for w in open('./data/pos_vocab', encoding='utf-8'): pos_vocab.add(w.strip()) print('POS vocabulary size: %d' % len(pos_vocab)) else: cnt = Counter() for ex in data: cnt += Counter(ex.d_pos) cnt += Counter(ex.q_pos) for key, val in cnt.most_common(): if key: pos_vocab.add(key) print('POS vocabulary size: %d' % len(pos_vocab)) writer = open('./data/pos_vocab', 'w', encoding='utf-8') writer.write('\n'.join(pos_vocab.tokens())) writer.close() # build named entity vocabulary if os.path.exists('./data/ner_vocab'): print('Load ner vocabulary from ../data/ner_vocab...') for w in open('./data/ner_vocab', encoding='utf-8'): ner_vocab.add(w.strip()) print('NER vocabulary size: %d' % len(ner_vocab)) else: cnt = Counter() for ex in data: cnt += Counter(ex.d_ner) for key, val in cnt.most_common(): if key: ner_vocab.add(key) print('NER vocabulary size: %d' % len(ner_vocab)) writer = open('./data/ner_vocab', 'w', encoding='utf-8') writer.write('\n'.join(ner_vocab.tokens())) writer.close() # Load conceptnet relation vocabulary assert os.path.exists('./data/rel_vocab') print('Load relation vocabulary from ../data/rel_vocab...') for w in open('./data/rel_vocab', encoding='utf-8'): rel_vocab.add(w.strip()) print('Rel vocabulary size: %d' % len(rel_vocab)) if os.path.exists('./data/char_vocab.txt'): print('Load character vocabulary from ../data/char_vocab...') with open("./data/char_vocab.txt", "r") as f: for line in f.readlines(): char_vocab.add(line[:1]) print('Character vocabulary size: %d' % len(char_vocab)) else: print("There is no character vocab file dudi, do something about it") def gen_submission(data, prediction): assert len(data) == len(prediction) writer = open('out-%d.txt' % np.random.randint(10**18), 'w', encoding='utf-8') for p, ex in zip(prediction, data): p_id, q_id, c_id = ex.id.split('_')[-3:] writer.write('%s,%s,%s,%f\n' % (p_id, q_id, c_id, p)) writer.close() def gen_debug_file(data, prediction): writer = open('./data/output.log', 'w', encoding='utf-8') cur_pred, cur_choices = [], [] for i, ex in enumerate(data): if i + 1 == len(data): cur_pred.append(prediction[i]) cur_choices.append(ex.choice) if (i > 0 and ex.id[:-1] != data[i - 1].id[:-1]) or (i + 1 == len(data)): writer.write('Passage: %s\n' % data[i - 1].passage) writer.write('Question: %s\n' % data[i - 1].question) for idx, choice in enumerate(cur_choices): writer.write('%s %f\n' % (choice, cur_pred[idx])) writer.write('\n') cur_pred, cur_choices = [], [] cur_pred.append(prediction[i]) cur_choices.append(ex.choice) writer.close() def gen_final_submission(data): import glob proba_list = [] for f in glob.glob('./out-*.txt'): print('Process %s...' % f) lines = open(f, 'r', encoding='utf-8').readlines() lines = map(lambda s: s.strip(), lines) lines = list(filter(lambda s: len(s) > 0, lines)) assert len(lines) == len(data) proba_list.append(lines) avg_proba, p_q_id = [], [] for i in range(len(data)): cur_avg_p = np.average([float(p[i].split(',')[-1]) for p in proba_list]) cur_p_q_id = ','.join(data[i].id.split('_')[-3:-1]) if i == 0 or cur_p_q_id != p_q_id[-1]: avg_proba.append([cur_avg_p]) p_q_id.append(cur_p_q_id) else: avg_proba[-1].append(cur_avg_p) gen_debug_file(data, [p for sublist in avg_proba for p in sublist]) writer = open('answer.txt', 'w', encoding='utf-8') assert len(avg_proba) == len(p_q_id) cnt = 0 for probas, cur_p_q_id in zip(avg_proba, p_q_id): cnt += 1 assert len(probas) > 1 pred_ans = np.argmax(probas) writer.write('%s,%d' % (cur_p_q_id, pred_ans)) if cnt < len(p_q_id): writer.write('\n') writer.close() os.system('zip final_output.zip answer.txt') print('Please submit final_output.zip to codalab.') def eval_based_on_outputs(path): dev_data = load_data('../data/dev-data-processed.json') label = [int(ex.label) for ex in dev_data] gold, cur_gold = [], [] for i, ex in enumerate(dev_data): if i + 1 == len(dev_data): cur_gold.append(label[i]) if (i > 0 and ex.id[:-1] != dev_data[i - 1].id[:-1]) or (i + 1 == len(dev_data)): gy = np.argmax(cur_gold) gold.append(gy) cur_gold = [] cur_gold.append(label[i]) prediction = [s.strip() for s in open(path, 'r', encoding='utf-8').readlines() if len(s.strip()) > 0] prediction = [int(s.split(',')[-1]) for s in prediction] assert len(prediction) == len(gold) acc = sum([int(p == g) for p, g in zip(prediction, gold)]) / len(gold) print('Accuracy on dev_data: %f' % acc) def text_to_char_index(text): indexed = [] for char in text: indexed.append(char_vocab[char]) return indexed def text_to_grams(text, length=5): partials = [] if len(text) < length: partials.append(text) else: for i in range(length, len(text)): partials.append(text[i-length:i]) return partials if __name__ == '__main__': # build_vocab() trial_data = load_data('./data/trial-data-processed.json') train_data = load_data('./data/train-data-processed.json') dev_data = load_data('./data/dev-data-processed.json') test_data = load_data('./data/test-data-processed.json') build_vocab(trial_data + train_data + dev_data + test_data)
[ "kiscsonti@vipmail.hu" ]
kiscsonti@vipmail.hu
8899018c3b57d2dc6e0f8fc1b71cb7428223e45c
b38abaa3b35f8c465be470d2240db515b460d469
/blog/admin.py
52f4623ff358530be5144a08ef1d4f2791309765
[]
no_license
ninestep/mysite
fc44d12f0f2f69c802e83c829128f2a9420944cb
57c9a9ef3401f80aa1c07ae81dc7cd64185ec544
refs/heads/master
2022-07-18T06:09:33.870245
2022-06-26T00:44:36
2022-06-26T00:44:36
59,069,332
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
from django.contrib import admin from . import models from markdownx.admin import MarkdownxModelAdmin # Register your models here. admin.site.register(models.articles,MarkdownxModelAdmin) admin.site.register(models.comments) admin.site.register(models.system)
[ "859696354@qq.com" ]
859696354@qq.com
881fdd4284165a6767a1d165b25cff1d89237f6f
469fc3043fc99969d16cee36d299f5944e21225d
/plugin.video.D17Replay/default.py
9d019f005f3994a8077d1205d57b10bc849a3f43
[]
no_license
quatsch/JUL1EN094-xbmc-addons
313371d5a37569fa7d6db4bd866fc9d9779640c1
907671229ee018962d3a7c291cf8afe3dc0d959c
refs/heads/master
2021-01-18T11:38:27.451256
2014-04-14T17:23:50
2014-04-14T17:23:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,346
py
# -*- coding: utf-8 -*- # xbmc modules import xbmc import xbmcplugin import xbmcgui import xbmcaddon # os and lib modules import os import sys import urllib import urllib2 import re # print_exc from traceback import print_exc # parseDOM import CommonFunctions common = CommonFunctions common.plugin = "plugin.video.D17Replay" __addonID__ = "plugin.video.D17Replay" __author__ = "JUL1EN094" __date__ = "01-02-2013" __version__ = "1.0.6" __credits__ = "Merci aux auteurs des autres addons replay du dépôt Passion-XBMC pour leur inspiration" __addon__ = xbmcaddon.Addon( __addonID__ ) __settings__ = __addon__ __language__ = __addon__.getLocalizedString __addonDir__ = __settings__.getAddonInfo( "path" ) # Global Variable ROOTDIR = __settings__.getAddonInfo('path') BASE_RESOURCE_PATH = os.path.join( ROOTDIR, "resources" ) MEDIA_PATH = os.path.join( BASE_RESOURCE_PATH, "media" ) ADDON_DATA = xbmc.translatePath( "special://profile/addon_data/%s/" % __addonID__ ) CACHEDIR = os.path.join( ADDON_DATA, "cache") THUMB_CACHE_PATH = os.path.join( xbmc.translatePath( "special://profile/" ), "Thumbnails", "Video" ) WEBROOT = "http://www.d17.tv" CANAL_VIDEOINFO_URL = "http://service.canal-plus.com/video/rest/getVideosLiees/" FANART_PATH = os.path.join( ROOTDIR, "fanart.jpg" ) # List of directories to check at startup dirCheckList = (CACHEDIR,) class D17Replay: """ main plugin class """ debug_mode = False # Debug mode def __init__( self, *args, **kwargs ): print "===============================" print " D17 Replay - Version: %s"%__version__ print "===============================" print self.set_debug_mode() if self.debug_mode: print "Python version:" print sys.version_info print "ROOTDIR: %s"%ROOTDIR print "ADDON_DATA: %s"%ADDON_DATA print "CACHEDIR: %s"%CACHEDIR params = self.get_params() url = None name = None mode = None iconimage = None try: url=urllib.unquote_plus(params["url"]) except: pass try: name=urllib.unquote_plus(params["name"]) except: pass try: mode=int(params["mode"]) except: pass try: iconimage=urllib.unquote_plus(params["iconimage"]) except: pass if self.debug_mode: print "Mode: "+str(mode) print "URL: "+str(url) print "Name: "+str(name) print "Iconimage: "+str(iconimage) # Check if directories in user data exist for i in range(len(dirCheckList)): self.checkfolder(dirCheckList[i]) if mode==None or url==None or len(url)<1: if self.debug_mode: print "GET_CATEGORIES("+WEBROOT+")" self.GET_CATEGORIES(WEBROOT) self.clean_thumbnail(str(url)) xbmcplugin.setPluginCategory(handle=int(sys.argv[1]),category=__language__(30000)) xbmcplugin.endOfDirectory(int(sys.argv[1])) elif mode==1: if self.debug_mode: print "GET_EMISSIONS_DIR : "+url self.GET_EMISSIONS_DIR(url) self.clean_thumbnail(str(url)) xbmcplugin.setPluginCategory(handle=int(sys.argv[1]),category=__language__(30000)) xbmcplugin.endOfDirectory(int(sys.argv[1])) elif mode==2: if self.debug_mode: print "GET_EPISODES("+url+")" self.GET_EPISODES(url,name) self.clean_thumbnail(str(url)) xbmcplugin.setPluginCategory(handle=int(sys.argv[1]),category=__language__(30000)) xbmcplugin.endOfDirectory(int(sys.argv[1])) elif mode==3: if self.debug_mode: print "PLAY_VIDEO" print "vid :"+str(url) video_url = self.GET_VIDEO_CANAL(str(url),'d17/') item = xbmcgui.ListItem(path=video_url) xbmcplugin.setResolvedUrl(handle=int(sys.argv[1]), succeeded=True, listitem=item) def GET_CATEGORIES(self,url): soup = self.get_soup(url) html = soup.decode("iso-8859-1") main_menu_s = common.parseDOM(html,"ul",attrs={"class":"main-menu"}) if main_menu_s : main_menu = main_menu_s[0] li_s = common.parseDOM(main_menu,"li") for li in li_s : links = re.findall(u"""<a href="(.*)">(.*)</a>""",li) if links: for anchor in links : if self.debug_mode: print "categorie : "+anchor[1].encode("utf-8") self.addDir(anchor[1].encode("utf-8"),WEBROOT+(anchor[0].encode("utf-8")),1,"") def GET_EMISSIONS_DIR(self,url,iconimage=''): # Olala mal de crâne!! soup = self.get_soup(url) html = soup.decode("iso-8859-1") main_s = common.parseDOM(html,"div",attrs={"id":"main"}) if main_s : main = main_s[0] block_videos_s = common.parseDOM (main,"div",attrs={"class":"block-videos"}) for block in block_videos_s : bvh_titles_s = common.parseDOM(block,"h3",attrs={"class":"bvh-title"}) for bvh in bvh_titles_s : self.addDir(bvh.encode("utf-8"),url,2,"") def GET_EPISODES(self,url,name): xbmcplugin.setContent(int(sys.argv[1]), 'tvshows') soup = self.get_soup(url) html = soup.decode("iso-8859-1") main_s = common.parseDOM(html,"div",attrs={"id":"main"}) if main_s : main = main_s[0] block_videos_s = common.parseDOM (main,"div",attrs={"class":"block-videos"}) for block in block_videos_s : bvh_titles_s = common.parseDOM(block,"h3",attrs={"class":"bvh-title"}) for bvh in bvh_titles_s : if bvh.encode("utf-8")==name : Mylist = common.parseDOM(block,"ul",attrs={"class":"bv-list MYlist"})[0] li_s = common.parseDOM(Mylist,"li") for li in li_s : episode_vid = common.parseDOM(li,"a",ret="href")[0] episode_vid = str(re.findall("""\?vid=(.*)""",episode_vid)[0]) episode_name = common.parseDOM(li,"h4")[0].encode("utf-8") episode_image = common.parseDOM(li,"img",ret="src")[0].encode("utf-8") self.addLink(episode_name,episode_vid,3,episode_image) def GET_VIDEO_CANAL(self,vid,canal): soup = self.get_soup(CANAL_VIDEOINFO_URL+canal+vid) xml = soup.decode("utf-8") video_s = common.parseDOM(xml,"VIDEO") for video in video_s : id = common.parseDOM(video,'ID') [0] if str(id) == str(vid) : video_url = common.parseDOM(video,"HD")[0] return video_url def set_debug_mode(self): debug =__settings__.getSetting('debug') if debug == 'true': self.debug_mode = True else: self.debug_mode = False print "D17 Replay: debug Mode:" print self.debug_mode def addLink(self,name,url,mode,iconimage,info={},fanart=FANART_PATH): u =sys.argv[0]+"?url="+urllib.quote_plus(url)+"&mode="+str(mode)+"&name="+urllib.quote_plus(name)+"&iconimage="+urllib.quote_plus(iconimage) ok =True liz=xbmcgui.ListItem(name, iconImage="DefaultVideo.png", thumbnailImage=iconimage) liz.setInfo( type="Video", infoLabels={ "Title": name } ) liz.setProperty('IsPlayable', 'true') liz.setProperty( "Fanart_Image", fanart) ok =xbmcplugin.addDirectoryItem(handle=int(sys.argv[1]),url=u,listitem=liz) return ok def addDir(self,name,url,mode,iconimage,info={},fanart=FANART_PATH): if info == {} : info = {"Title":name} u =sys.argv[0]+"?url="+urllib.quote_plus(url)+"&mode="+str(mode)+"&name="+urllib.quote_plus(name)+"&iconimage="+urllib.quote_plus(iconimage) ok =True liz=xbmcgui.ListItem(name, iconImage="DefaultFolder.png", thumbnailImage=iconimage) liz.setInfo( type="Video", infoLabels=info ) liz.setProperty( "Fanart_Image", fanart) ok =xbmcplugin.addDirectoryItem(handle=int(sys.argv[1]),url=u,listitem=liz,isFolder=True) return ok def get_params(self): param=[] paramstring=sys.argv[2] if len(paramstring)>=2: params=sys.argv[2] cleanedparams=params.replace('?','') if (params[len(params)-1]=='/'): params=params[0:len(params)-2] pairsofparams=cleanedparams.split('&') param={} for i in range(len(pairsofparams)): splitparams={} splitparams=pairsofparams[i].split('=') if (len(splitparams))==2: param[splitparams[0]]=splitparams[1] return param def get_soup(self,url): req = urllib2.Request(url) req.add_header('User-Agent','Mozilla/5.0 (Windows NT 5.1; rv:15.0) Gecko/20100101 Firefox/15.0.1') req.add_header('Referer',url) soup = urllib2.urlopen(req).read() if (self.debug_mode): print str(soup) return soup def checkfolder(self,folder): try: if not os.path.exists(folder): print "checkfolder Impossible to find the directory - trying to create the directory: "+folder os.makedirs(folder) except Exception, e: print "Exception while creating folder "+folder print str(e) def clean_thumbnail(self,video_url): try: filename = xbmc.getCacheThumbName(video_url) filepath = xbmc.translatePath(os.path.join(THUMB_CACHE_PATH,filename[0],filename)) if os.path.isfile(filepath): os.remove(filepath) if self.debug_mode: print "Deleted %s thumb matching to %s video"%(filepath,video_url) elif self.debug_mode: print "No thumb found %s thumb matching to %s video"%(filepath,video_url) return True except: print "Error: clean_thumbnail()" print_exc() return False ####################################################################################################################### # BEGIN ! ####################################################################################################################### if ( __name__ == "__main__" ): try: D17Replay() except: print_exc()
[ "jujul1en094@gmail.com" ]
jujul1en094@gmail.com
7fb4ea8ca62ee742cb03add25202bb3018bba0d6
8562adfbeb7cf901aeeaf004dc1e53c286a24d48
/beg86.py
ba49d5c28d0528682212047ecc0dd3986de5a4fc
[]
no_license
sarureddi/isogram
1d4f8a7566a1df0f4a7b42502be60a1fafaabc10
3aca7e1172977cd116c0902761d70ded84402310
refs/heads/master
2020-06-03T11:03:43.392152
2019-06-12T09:54:11
2019-06-12T09:54:11
191,544,013
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
si1=str(input()) l=len(si1) s=set(si1) if(l==len(s)): print("Yes") else: print("No")
[ "noreply@github.com" ]
sarureddi.noreply@github.com
466e2b548dafa31a902439b94559d4cce8d115ec
051a5b30752d60b2f40c28c8440c1d59ff8d6f53
/lab2/01_linear_regression.py
a78eff81a9fb58946fd4e6547b48db366f720184
[]
no_license
yungbyun/Study_Tensorflow
e20c0de76e820898600c28fec2da3a88502f8403
8e2bcd191fd670068aaabe9845146df90da88182
refs/heads/master
2021-01-17T08:44:13.813361
2017-03-18T06:37:23
2017-03-18T06:37:23
83,952,928
0
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
from __future__ import print_function import tensorflow as tf import matplotlib.pyplot as plot x_data = [1, 2, 3] y_data = [1, 2, 3] W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) hypothesis = W * x_data + b cost = tf.reduce_mean(tf.square(hypothesis - y_data)) a = tf.Variable(0.1) optimizer = tf.train.GradientDescentOptimizer(a) train = optimizer.minimize(cost) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) costs = [] weights = [] bs = [] for step in range(2001): sess.run(train) if step % 40 == 0: val_c = sess.run(cost) val_w = sess.run(W) val_b = sess.run(b) print(step, val_c, val_w, val_b) costs.append(val_c) weights.append(val_w) bs.append(val_b) print("Learning finished!") plot.plot(costs, 'o-') plot.xlabel('Step') plot.ylabel('Error') plot.show() plot.plot(weights, 'o-') plot.xlabel('Step') plot.ylabel('Weight') plot.show() plot.plot(bs, 'o-') plot.xlabel('Step') plot.ylabel('Bias') plot.show()
[ "byclink@gmail.com" ]
byclink@gmail.com
ee88edd0ac690cc450f39f6384e744c016c895de
92ca965a167316bb531671d8e28c58bc1decb7e8
/rbac/middlewares/rbac.py
bd4b4ab5038583dbb78a7d0266946e3dafcbafa7
[]
no_license
yaozhengjie/crm-1
b879a095af54d720ae6ab4b73efa7758b6760093
89d72631b6065cfb390a0d4fa0331c5da01a080e
refs/heads/master
2020-04-08T16:25:31.169742
2018-11-28T11:16:34
2018-11-28T11:16:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,567
py
#!/usr/bin/env python3 # -*- coding:utf-8 -*- from django.utils.deprecation import MiddlewareMixin from django.shortcuts import HttpResponse import re from django.conf import settings class RbacMiddleware(MiddlewareMixin): ''' 1.获取当前用户的url 2.获取当前用户在session中的url权限列表 3.权限信息进行匹配 ''' def process_request(self, request): ''' 当用户请求刚进入时执行 :param request: :return: ''' # 获取当前用户的url current_url = request.path_info # 如果当前用户访问的url在白名单内则可以访问 for valid in settings.VALID_URL_LIST: if re.match(valid, current_url): return None # print(current_url) # 获取当前用户session中的存放的url permission_list = request.session.get(settings.PERMISSION_SESSION_KEY) # print('permission', permission_list) # 如果没有session中不存在当前用户的信息则返回错误 if not permission_list: return HttpResponse('未获取到用户信息,请登陆') flag = False # 循环session中的url,判断url是否与当前用户访问的url匹配,如果匹配则可以访问,匹配不成功则返回错误信息 for url in permission_list: reg = '^%s$' % url if re.match(reg, current_url): flag = True break if not flag: return HttpResponse('无权访问')
[ "41354304+yjiu1990@users.noreply.github.com" ]
41354304+yjiu1990@users.noreply.github.com
191fb84e33cb5a9226de5e021a42e6bc6fb12eb0
48700c7222de631fc2ea4463abbb1b0b9aaebeec
/nodered-api-client-basic/get-json.py
b213550ee405012eb1ab0e95e123e110b401ad71
[]
no_license
kopikaki/python_examples
cf4daf6d1ccac53e5910872b93f994e0c99c3de4
3395e9fe176014d404aaa9797f75e5c445805e55
refs/heads/master
2021-01-05T05:36:06.682296
2020-03-28T04:16:35
2020-03-28T04:16:35
240,898,290
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
import json import requests #这里用 HTTPS End Point 代替 nodeUrl = 'https://nr02.d1.zetez.com/node' apiUrl = nodeUrl + '/data' resp = requests.get( apiUrl ) if resp.status_code != 200: # This means something went wrong. print('HTTP Error: ' + resp.status_code) else: respJson = resp.json() print('HTTP Response: '+json.dumps(respJson))
[ "jeffqu08@gmail.com" ]
jeffqu08@gmail.com
bdef4180111df6d6c82feab386dc5b173629453f
40ac650d3eeec0e4951dcc21d9da1f09a11de9ff
/test_leetcode05.py
0d2e19f28eaefa8e65f730685d048adc6ea12beb
[]
no_license
liuyufei-pia/BR
499a65ecd398cd259f5cb17d405d0b17c89a94e4
1861716f5dfca78a3c69ba56a827e225a4d9b800
refs/heads/master
2020-07-23T07:27:18.668754
2019-11-27T09:06:03
2019-11-27T09:06:03
207,485,295
1
0
null
null
null
null
UTF-8
Python
false
false
1,400
py
def longestPalindrome(s: str) -> str: # 马拉车算法 # 先在字符串中间加符号隔开,使得奇偶回文数的形式统一 # 然后用kmp的思想去优化中心扩散 if len(s) == 0: return "" s_new = '#' + '#'.join(s) + '#' print(s_new) # 已遍历的最大右边界 mx = 0 # 对应的中心点 mid = 0 l = len(s_new) # 扩散半径数组,初始值1或者0都可以,只是代表刚开始的时候扩散半径是多少而已 p = [1] * l for i in range(l): if i < mx: # 这个时候可以用已经计算过的值 # 不能超过已遍历的右边界 # i对应的镜像 = 2*mid - i # 由mx定义可知半径最长不会超过mx-i p[i] = min(mx - i, p[2 * mid - i]) # 主要的优化已经在上面节省了时间,接下来就是正常的扩散 while (i - p[i] >= 0 and i + p[i] < l and s_new[i - p[i]] == s_new[i + p[i]]): p[i] += 1 # 记录一下mx和mid if i + p[i] > mx: mx = i + p[i] mid = i maxr = max(p) ans = p.index(maxr) # 因为跳出循环的时候多加了1,所以实际上的扩散半径应该减1 maxr -= 1 return s_new[ans - maxr:ans + maxr + 1].replace('#', "") if __name__ == '__main__': s = 'abcba' print(longestPalindrome(s))
[ "q.we85273@163.com" ]
q.we85273@163.com
2023b3467ceed0986d27fb4c617037077678dc8d
7d58be2bbd4fed35a604b3732eecd1013e255bb8
/modules/exit.py
2289d2e1231c089ac8eeae575e642a45e7e8261d
[]
no_license
Tianchai/to-do-list
b02c645020a65a10e0b5d3716dd0fca32f8f6177
3485d1d7ce79226e78d78fc40f80b285db281640
refs/heads/master
2021-07-24T15:10:35.454499
2018-07-25T18:15:05
2018-07-25T18:15:05
142,311,191
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
from pyfiglet import Figlet import sys def exit(redis, style): exit_msg = Figlet(font='slant') print(exit_msg.renderText('Good Bye . . .')) sys.exit()
[ "tianchai.riengviwat@gmail.com" ]
tianchai.riengviwat@gmail.com
ef5014df5a01fb40ab483a448b2b532e3c791cd5
ca680d06086cef25a28bf7e5e7678b179bf99497
/14032020 1day 1commit.py
ed1a37ded5db15802c85235fb3da1fda7631d8d9
[]
no_license
kierenmihaly/worldwebproject
660f09471c44c8db59bb49b16d41180026633df7
34578ffbac29a115bb731065c469f930831d28bd
refs/heads/master
2020-09-29T23:17:23.300891
2020-08-31T01:46:51
2020-08-31T01:46:51
227,146,024
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
#14032020 #파트3 조건문 - 파이썬 if else SCISSOR = '가위' ROCK = '바위' PAPER = '보' WIN = "win" DRAW = 'draw' LOSE = 'lose...' mine = '가위' yours = '바위' if mine == yours: result = DRAW #짧은 if 와 else를 많이 쓰는방법 )) else: if mine == SICSSOR: #내가 낸게 가위 if yours == ROCK: result = LOSE else: #아니라면 이겼다 result = WIN else: #가위가 아닌경우 if mine == ROCK: if yours == PAPER: result = LOSE else: result = WIN else: if mine == PAPER: if yours == SCISSOR: result = LOSE else: result = WIN else: print('weird') print(result) #elif #else 와 if 블럭두개를 파이썬에서는 한개로 합칠 수 있다 #else 와 elif #if의 조건이 맞지 않을 때 실행하는 코드 # else는 조건이 맞지 않을 경우 항상 실행되는 경우 #elif 는 조건이 맞지 않을 경우 다른조건을 검사하게 해주는 코드
[ "noreply@github.com" ]
kierenmihaly.noreply@github.com
4868059941e7bf0fd7ddb81c0359474f6b1d0a89
4e522c82894fafbbd87997f39eff0e63b63df14c
/request.py
c2e4470b58b1a7f03f2ee0ebbb6e20513bc7bba2
[]
no_license
tejas198606/wine-new
9a6be88190ce752394e970287682b0e83d15ccd7
aa79ed820ac59cc3fd374322a2d076a25b11cbd3
refs/heads/master
2022-12-04T10:21:44.235146
2020-08-30T06:39:49
2020-08-30T06:39:49
291,415,161
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
import requests url = 'http://localhost:5000/predict_api' r = requests.post(url,json={'fixedacidity':2.0000,'volatileacidity':6.0000,'citricacid':2.00000,'residualsugar':9.00000,'chlorides':6.00000, 'freesulfurdioxide':9.00000,'totalsulfurdioxide':6.00000,'density':20000,'pH':900000, 'sulphates':60000,'alcohol':60000}) print(r.json())
[ "noreply@github.com" ]
tejas198606.noreply@github.com
d3b6e9f0e660a6ab3559ab5e2029a46b8e10bf27
255efb54075eb8cc2412bf1d5c936a97a003337e
/xt/environment/__init__.py
69338935f833cbdd1def7455667f8075e68b8eed
[ "MIT" ]
permissive
jinqiuzhao/xingtian
914a4d48c62fd8b3d4ddd0479e9bab54bbe5cba7
95953dc6109c96e68dcdeb9755b3679ff51742d4
refs/heads/master
2023-06-06T06:20:28.815549
2021-07-02T10:00:42
2021-07-02T10:00:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Build environment module. Do encapsulation for different simulations. Unify the single and multi-agents. """ from __future__ import division, print_function from xt.framework import Registers def env_builder(env_name, env_info, **kwargs): """ Build the interface func for creating environment. :param env_name:the name of environment :param env_info: the config info of environment :return:environment instance """ return Registers.env[env_name](env_info, **kwargs)
[ "hustqj@126.com" ]
hustqj@126.com
46e48392571cf7b50609181560a7a5b5cfd54d72
1d665f40197ba89f756e862c0e62a889c42cddfb
/commission/migrations/0007_auto_20150407_2034.py
2b1be1c3a9965aa2314ab05057b9179433f0c7eb
[ "MIT" ]
permissive
Ourinternet/website
8d9f9ddfe7d17fb0bb11b978cf3a7cd34af456ed
648203c0d0620da2d11b3b0e398ee218b5bef5df
refs/heads/master
2021-01-21T21:49:06.834576
2016-03-16T20:43:58
2016-03-16T20:43:58
15,683,988
1
0
null
null
null
null
UTF-8
Python
false
false
429
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('commission', '0006_auto_20150407_1825'), ] operations = [ migrations.AlterField( model_name='feature', name='link', field=models.CharField(max_length=1024, null=True, blank=True), ), ]
[ "csimpson@cigionline.org" ]
csimpson@cigionline.org
3b2e792a01d05f90502f8647222c52e55e4095ee
ffc5257d66a581ed18d3ed024e263c2430f27cf3
/noi/noi/settings.py
0e261bf7f8a22230dfc1cd1d843e349b23424edd
[]
no_license
ShadowLore/wow
e7456ff4702d94e522ff435c5893a4fa7b299e9a
d3e1a3d52d4ef2ae492910c2313e54fbfc37e54f
refs/heads/master
2023-08-20T02:56:14.059858
2021-10-22T13:44:57
2021-10-22T13:44:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,242
py
""" Django settings for noi project. Generated by 'django-admin startproject' using Django 3.2.8. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-m_$wkt$)!=2ism%()r62@r_&*4+4c@v_moyw5kz2yce&(ab_(w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'main', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'noi.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'noi.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "67012072+ShadowLore@users.noreply.github.com" ]
67012072+ShadowLore@users.noreply.github.com
a62cffaf25c5e7ee992b973d0e3635e1296188ff
fbcb3c05e34e21573fc926282c9dbae1c0a36021
/Level 1/prison-labor-dodgers/solution.py
174f16bfac9f70e585ff1b24281b40dba58458ac
[]
no_license
mattany/google-foobar
deb806f27505a98fed52c3eddf228dfa282ec0fa
33549bb6041fefcd0556de8583c5a7fca7d7508b
refs/heads/master
2023-01-03T19:57:46.159094
2020-11-01T00:03:22
2020-11-01T00:03:22
305,119,929
1
0
null
null
null
null
UTF-8
Python
false
false
274
py
def solution(x, y): sorted_x = sorted(x) sorted_y = sorted(y) for i in range(min(len(x), len(y))): if sorted_x[i] != sorted_y[i]: return min(sorted_x[i], sorted_y[i]) if len(x) > len(y): return x[-1] else: return y[-1]
[ "mattany@gmali.com" ]
mattany@gmali.com
bdc5fa0179d1b979bd63b233f5b2dcf76cf0b4a1
4676aae1f14170150782455b8c664a9fb462ba87
/lawbot/teledomain/util.py
3f5ba3e5d66c3fa8d541bb54717d1c8c7bd1c126
[]
no_license
alages97/contract_translation
488fdae9bc237a205f7840229943c6bd08c622de
adcf2bf91667a9c77912b7695f986731f1b95957
refs/heads/master
2021-01-16T17:32:49.834527
2020-03-12T14:18:37
2020-03-12T14:18:37
243,198,277
2
0
null
null
null
null
UTF-8
Python
false
false
4,204
py
import os import sys import time import logging #import win32api import subprocess import shutil from pathlib import Path import getpass PATH_DIR = os.path.dirname(os.path.realpath(__file__)) PATH_DIR = r"%s" % PATH_DIR OUTPUT_DIR = os.path.join(PATH_DIR, "./toTransfer/") LOG_DIR = os.path.join(PATH_DIR, "./teleLogs/") MOVE_DIR = os.path.join(PATH_DIR,"./testMoveDir/") # Generate directories if not found if not os.path.exists(MOVE_DIR): os.mkdir(MOVE_DIR) print("Made DIR %s" % MOVE_DIR) logging.info('util: Made DIR %s' % MOVE_DIR) if not os.path.exists(OUTPUT_DIR): os.mkdir(OUTPUT_DIR) print("Made DIR %s" % OUTPUT_DIR) logging.info('util: Made DIR %s' % OUTPUT_DIR) if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) print("Made DIR %s" % LOG_DIR) logging.info('util: Made DIR %s' % LOG_DIR) def replaceMultiple(mainString, toBeReplaced, newString): for elem in toBeReplaced: if elem in mainString: if elem in "<>-:": newString ="" mainString = mainString.replace(elem,newString) return mainString def moveFolder(source,destination): listsource = os.listdir(source) print("Moving files: " + str(listsource)) for name in listsource: if name == "System Volume Information": continue else : logging.info('util: Moving file: %s' % name + ' to '+ destination) #Use commandshell for windows, and moveFiles for linux #CommandShell(OUTPUT_DIR + name,destination) print(OUTPUT_DIR+name) moveFiles(OUTPUT_DIR+name,destination+"/"+name) def numOfDir(source): d = os.listdir(source) return len(d) def removeFilesFromFolder(): folder = OUTPUT_DIR for the_file in os.listdir(folder): file_path = os.path.join(folder, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) logging.info('util: Removing file: %s' % file_path) #elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print(e) def removeFiles(): files = glob.glob(OUTPUT_DIR) for f in files: logging.info('util: Removing file: %s' % f) os.remove(f) def CommandShell(folder,destination): folder = '"'+folder+'"' destination = '"'+destination+'"' subprocess.Popen( [ r"C:\WINDOWS\system32\WindowsPowerShell\v1.0\powershell.exe", "-ExecutionPolicy", "Unrestricted", ("Move-Item -Path %s -Destination %s"% (folder,destination)), ] ) def moveFiles(folder,destination): #os.rename(folder,destination) shutil.move(folder,destination) #os.replace(folder,destination) def SearchMasterDrive(): #following code for windows, comment out the below LINUX code when using windows #WINDOWS # drives = win32api.GetLogicalDriveStrings() # drives = drives.split('\000')[:-1] # for drive in drives: # driveDetails = win32api.GetVolumeInformation(drive) # driveName = driveDetails[0] # if "MASTER" not in driveName: # MOVE_DIR = os.path.join(PATH_DIR,"./testMoveDir/") # if not os.path.exists(MOVE_DIR): # os.makedirs(MOVE_DIR) # logging.info('main: Could not find Master drive, moving files here instead: ' + MOVE_DIR) # continue # else: # MOVE_DIR = drive # print("Master drive found at %s " % (drive)) # break # return MOVE_DIR #LINUX username = getpass.getuser() masterPath = '/media/'+username+'/MASTER' if not os.path.exists(masterPath): MOVE_DIR = os.path.join(PATH_DIR,"./testMoveDir/") if not os.path.exists(MOVE_DIR): os.makedirs(MOVE_DIR) logging.info('main: Could not find Master drive, moving files here instead: ' + MOVE_DIR) else : print("Master drive found at %s " % (masterPath)) MOVE_DIR = masterPath return MOVE_DIR
[ "noreply@github.com" ]
alages97.noreply@github.com
5913c16ac7eff4c10d1d7a3590760b8884e2bfc5
f857a029ca13d7bcfa957b75c9d73a39ef10703f
/Python Brasil/Estrutura sequencial/2.py
c10690064e6703b84eda9058318fc9cddd9c486a
[]
no_license
Matheus-Morais/Atividades_treino
c011989de9cb1dd74bfae873f191e6af546a740f
6fceb1c39a23f992e0845e65e8a76eb53b6ff30d
refs/heads/master
2023-02-24T00:09:58.064600
2021-01-27T14:13:05
2021-01-27T14:13:05
333,433,422
0
0
null
null
null
null
UTF-8
Python
false
false
55
py
numero = int(input('Digite um numero:')) print(numero)
[ "matheus2992morais@gmail.com" ]
matheus2992morais@gmail.com
447949c77b5e8715fdf2eafed6ecb92897e81cab
f75c0721ab885cec9d269bba798803197cc78787
/age_scraper.py
f6be723b7c0d9633c5a33100c38a1db7b697ddd3
[]
no_license
shravan-shandilya/game-of-death
b635a51f327e5bb45d183262bb315eb61aa12418
59d45e053031ab9023d7da3d1538212aaace64df
refs/heads/master
2022-02-11T17:18:14.074438
2016-06-22T13:51:41
2016-06-22T13:51:41
53,967,559
1
0
null
2022-01-13T00:48:38
2016-03-15T18:09:21
CSS
UTF-8
Python
false
false
542
py
#!/usr/bin/python from bs4 import BeautifulSoup import requests base_url = "http://gameofthrones.wikia.com/wiki/" char_file = open("char_data.txt","r") for char in char_file: char = char.split(",")[0].replace(" ","_") soup = BeautifulSoup(requests.get(base_url+char).content,"html.parser") results = soup.find_all("div",{"class":"pi-item pi-data pi-item-spacing pi-border-color"}) for res in results: try: if res.h3.contents[0] == "Age": print char,":",res.div.contents[0],"\n" except AttributeError: print char," missing"
[ "s.shravan95@gmail.com" ]
s.shravan95@gmail.com
c36195265104ac0d70f7475b9cbc3d7d62808045
8ed85fda69449832e6edc1ed44694eda8d953e98
/ml/GestureRecognizer.py
d977e678e5da6740d1f21955df1f58ccdee4c26a
[]
no_license
rajeevku02/exp
4bad7bb69c3c8a45a11a5136a55d0895349d2d23
518e8ddea9a0e0eed37065ce8d4304bd83ca282c
refs/heads/main
2023-09-04T16:56:02.083630
2021-11-24T09:20:47
2021-11-24T09:20:47
410,766,694
0
0
null
null
null
null
UTF-8
Python
false
false
2,324
py
import numpy as np from tensorflow import keras from Gestures import * from geometry import dist from Util import log, pt from drag_2_gesture import check_drag_2, deactivate_drag2 from drag_1_gesture import check_drag_1, deactivate_drag1 gestures_names = { 0: 'drag1', 1: 'drag2', 2: 'thumb', 3: 'pinch', 4: 'thumb_index', 5: 'open', 6: 'other' } class GestureRecognizer: def __init__(self): self.model = keras.models.load_model('models/trained_model') self.drag1_gesture = Drag1Gesture() self.drag2_gesture = Drag2Gesture() self.thumb_gesture = ThumGesture() self.pinch_gesture = PinchGesture() self.noop_gesture = Gesture('noop') def predict(self, landmarks): arr = [] for item in landmarks: arr.append(item.x) arr.append(item.y) arr.append(item.z) out = self.model.predict(np.array(arr).reshape([1, -1])) mx = np.argmax(out, axis=-1) idx = int(mx[0]) #print(gestures_names[idx]) return idx def get(self, landmarks): idx = self.predict(landmarks) pts = [pt(p) for p in landmarks] ges = self.check_drag2(idx, pts) if ges is not None: deactivate_drag1() return ges ges = self.check_drag1(idx, pts) if ges is not None: return ges ges = self.check_thumb(idx, pts) if ges is not None: return ges ges = self.check_pinch(idx, pts) if ges is not None: return ges return self.noop_gesture def check_pinch(self, idx, pts): if idx == 3: return self.pinch_gesture return None def check_thumb(self, idx, pts): if idx == 2: return self.thumb_gesture return None def check_drag1(self, idx, pts): if not (idx == 0 or idx == 4 or idx == 5): deactivate_drag1() return None if check_drag_1(pts): return self.drag1_gesture return None def check_drag2(self, idx, pts): if not (idx == 1 or idx == 2 or idx == 4): deactivate_drag2() return None if check_drag_2(pts): return self.drag2_gesture return None
[ "rajeevku02@gmail.com" ]
rajeevku02@gmail.com
92378b9d2b6ae21a09ab5425517a89f70af2e4f6
e8503af6e8c8b7c10b93a76dcf0cbb141074361e
/pswa_django/pswa_django/urls.py
2bcd250b9cffc4ca636ab62a350aadf613f498e5
[]
no_license
jjbyrne1/Project-Scheduler-Web-App
ea5e15ebe6627c1f619b6182bddd359362d7f67f
ef15fbb5853bda83dd2d11efeb6ae8625f5ba103
refs/heads/main
2023-04-21T02:36:16.726708
2021-05-13T18:09:25
2021-05-13T18:09:25
340,113,438
0
0
null
null
null
null
UTF-8
Python
false
false
1,067
py
"""pswa_django URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', include("mainForm.urls")), ] # Credit to https://stackoverflow.com/questions/5871730/how-to-upload-a-file-in-django urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "jjbyrne@ksu.edu" ]
jjbyrne@ksu.edu
044985b9b265586f2b071cc1296c5845a039b17d
56b7e5ed6941fc4b83148e00bd51421dc3ac993a
/Indeed/Expire Map.py
2b1778212c66da456e0bb6bd3e0defd2bbc1db77
[]
no_license
samir-0711/Leetcode-Python
f960e15015a3f2fd88f723d7f9237945a7133553
d75876ae96bcd85c67bbfbf91bbc0f0bc773e97c
refs/heads/master
2022-12-18T05:27:48.224001
2020-09-30T21:03:42
2020-09-30T21:03:42
300,061,318
0
0
null
2020-09-30T20:59:42
2020-09-30T20:59:42
null
UTF-8
Python
false
false
722
py
import time class Data: def __init__(self, value, duration): self.value = value self.duration = duration self.startTime = int(round(time.time())) class ExpireMap: def __init__(self): self.map = {} def get(self, key): data = self.map[key] if data == None: return None currTime = int(round(time.time())) if currTime - data.startTime <= data.duration: return data.value else: del data def set(self, key, value, duration): data = Data(value, duration) self.map[key] = data test1 = ExpireMap() test1.set(1, 5, 3) time.sleep(2) print test1.get(1) time.sleep(2) print test1.get(1)
[ "weng8916@gmail.com" ]
weng8916@gmail.com
ab88b8234f344ef4469f84313c26e2edc8cec90b
d56a3ebea066bdd10e8f554be13be7260118ddad
/Server Code/server.py
d7e4a81da83d92f9398b9e34de9e6672797d1183
[ "MIT" ]
permissive
Shanjiith-Pranov/AOGS-Code
20ce7d003f80521ff0d98c8c43a873539075a3c9
ed4c1b15a16fdb336da42eb838f83aaa16151b0d
refs/heads/main
2023-06-01T21:36:04.786653
2021-06-19T05:42:37
2021-06-19T05:42:37
378,325,337
0
0
null
null
null
null
UTF-8
Python
false
false
8,497
py
import unittest from datetime import datetime from math import log, sin, cos, atan2, asin, degrees, radians, sqrt import numpy earth_radius = 6371 # kilometers def haversine(point1, point2): """ Calculates the distance between two points on the earth. haversine((52.2296756, 21.0122287), (52.406374, 16.9251681)) 278.4581750754194 """ lat1, lat2 = radians(point1[0]), radians(point2[0]) lon1, lon2 = radians(point1[1]), radians(point2[1]) delta_lat = lat2 - lat1 delta_lon = lon2 - lon1 a = (sin(delta_lat/2)*2) + (cos(lat1)*cos(lat2)*sin(delta_lon/2)*2) c = 2*atan2(sqrt(a), sqrt(1-a)) distance = earth_radius * c return distance class SeismicStation: """ Class that creates the objects for a seismic station with a 'name', and a set of gps coordinates, lat and lon (degrees) """ def _init_(self, name, coords: tuple): self.name = name self.coords = coords self.latitude = coords[0] self.longitude = coords[1] self.events = list() def add_event(self, event): """ Adds a single event to the events list. """ self.events.append(event) return None def _str_(self): result = '{0.name} at {0.coords}'.format(self) return result def _repr_(self): result = '{0.name}'.format(self) return result class StationEvent: """ An object pertaining to a single seismic event at a single seismic recording station. """ def _init_(self, p_arrival_time, s_arrival_time, max_amplitude): p_time, s_time = self.parse_station_time(p_arrival_time, s_arrival_time) self.delta = s_time - p_time self.delta_sec = self.delta.seconds self.p_arrival_time = p_time self.s_arrival_time = s_time self.max_amplitude = max_amplitude self.Vsp = self.wave_velocity() self.dist_to_eq = self.calc_distance() self.magnitude = self.calc_magnitude() self.seismic_moment = self.calc_seismic_moment() self.energy = self.calc_seismic_energy() def _str_(self): message = "{} | Tsp(s): {}, Amp(mm): {}" return message.format(self.p_arrival_time, self.delta_sec, self.max_amplitude) def _repr_(self): message = "{} | Tsp(s): {}, Amp(mm): {}" return message.format(self.p_arrival_time, self.delta_sec, self.max_amplitude) def wave_velocity(self, VS=3.67, VP=6.34): """ Calculates the wave velocity based upon assumptions VS and VP. VS = avg velocity of s-waves in CA crustal rocks (km/sec) VP = avg velocity of p-waves in CA crustal rocks (km/sec) """ Vsp = (VS*VP) / (VP-VS) return Vsp def parse_station_time(self, p_time, s_time): """ parse_station_time("08:00:00", "08:00:49") """ p_time = datetime.strptime(p_time, "%H:%M:%S") s_time = datetime.strptime(s_time, "%H:%M:%S") return p_time, s_time def calc_distance(self): """ Calculates the distance from the epicenter of the earthquake from one seismic station. Using assumption of average velocity in California crustal rocks for Vsp. (adaptable for location of stations or earthquake) """ self.dist_to_eq = float(self.delta_sec * self.Vsp) return self.dist_to_eq def calc_magnitude(self): """ Calculates the magnitude of the Earthquake on the Richter Scale. source: http://crack.seismo.unr.edu/ftp/pub/louie/class/100/magnitude.html """ result = log(self.max_amplitude) + (3*log(8*self.delta_sec)-2.92) self.magnitude = result return self.magnitude def calc_seismic_moment(self): """ Calculates the seismic moment (dyne-cm) of the earthquake based upon relationship with Magnitude. source: https://goo.gl/lLpS9x """ result = 10 * ((3/2)(self.magnitude+16)) self.seismic_moment = result return self.seismic_moment def calc_seismic_energy(self, method='moment'): """ Calculates the amount of Energy (ergs) released by the earthquake, based on either the magnitude or the seismic moment. """ if method == 'magnitude': """ E = 10 ^ (11.8 + (1.5 * Magnitude)) """ result = 10 ** (11.8+(1.5*self.magnitude)) elif method == 'moment': """ E = Moment / 20,000 """ result = self.seismic_moment / 20000 else: print("Error, available methods are 'moment' or 'magnitude'.") result = None self.energy = result return self.energy def print_report(self): """ Prints out the results. :) """ message = 'The difference between p- and s-wave arrival times was: {} seconds.\ \nThe distance to the earthquake is {} kilometers.' print(message.format(self.delta_sec, self.dist_to_eq)) class Earthquake: """ Compiles data from at least three seismic station events to determine the epicenter of the earthquake. """ def _init_(self, *args): self.station1 = args[0] self.station2 = args[1] self.station3 = args[2] self.epicenter = Earthquake.calc_epicenter(self) def calc_epicenter(self): ''' Calculates the epicenter of the Earthquake with the following steps: 1. Gets the latitude (radians), longitude (radians), and radius (km) of each of the 3 seismic station events given 2. Converts the geodetic latitude and longitude to ECEF xyz coordinates. 3. Apply each X, Y, Z set of coordinates for each of the 3 points to it's own numpy array. 4. Individually calculate the X, Y, and Z coordinates of the epicenter. 5. Convert the ECEF xyz coordinates of the epicenter back to Geodetic Latitude and Longitude. returns the location of the epicenter as a tuple (latitude, longitude) ''' lat1 = radians(self.station1.coords[0]) lon1 = radians(self.station1.coords[1]) r1 = self.station1.events[0].dist_to_eq lat2 = radians(self.station2.coords[0]) lon2 = radians(self.station2.coords[1]) r2 = self.station2.events[0].dist_to_eq lat3 = radians(self.station3.coords[0]) lon3 = radians(self.station3.coords[1]) r3 = self.station3.events[0].dist_to_eq x1 = earth_radius * (cos(lat1) * cos(lon1)) y1 = earth_radius * (cos(lat1) * sin(lon1)) z1 = earth_radius * (sin(lat1)) x2 = earth_radius * (cos(lat2) * cos(lon2)) y2 = earth_radius * (cos(lat2) * sin(lon2)) z2 = earth_radius * (sin(lat2)) x3 = earth_radius * (cos(lat3) * cos(lon3)) y3 = earth_radius * (cos(lat3) * sin(lon3)) z3 = earth_radius * (sin(lat3)) P1 = numpy.array([x1, y1, z1]) P2 = numpy.array([x2, y2, z2]) P3 = numpy.array([x3, y3, z3]) ex = (P2 - P1)/(numpy.linalg.norm(P2 - P1)) i = numpy.dot(ex, P3 - P1) ey = (P3 - P1 - i*ex)/(numpy.linalg.norm(P3 - P1 - i*ex)) ez = numpy.cross(ex, ey) d = float(numpy.linalg.norm(P2 - P1)) j = numpy.dot(ey, P3 - P1) x = ((r1*2) - (r22) + (d*2)) / (2*d) y = (((r1*2) - (r32) + (i2) + (j*2))/(2*j)) - ((i/j)*x) z = sqrt(abs((r1*2) - (x2) - (y*2))) tri_point = P1 + (x*ex) + (y*ey) + (z*ez) lat = degrees(asin(tri_point[2] / earth_radius)) lon = degrees(atan2(tri_point[1], tri_point[0])) epicenter = (lat, lon) self.epicenter = epicenter return self.epicenter sensor1 = SeismicStation('sensor1', (40.8021, -124.1637)) sensor2 = SeismicStation('sensor2', (40.8324, -115.7631)) sensor3 = SeismicStation('sensor3', (36.1699, -115.1398)) event1 = StationEvent("00:00:00", "00:01:08", 250) event2 = StationEvent("00:00:00", "00:01:14", 50) event3 = StationEvent("00:00:00", "00:01:04", 100) sensor1.add_event(event1) sensor2.add_event(event2) sensor3.add_event(event3) eq=Earthquake(sensor1, sensor2, sensor3) print("The epicenter of the earthquake is: " + str(eq.calc_epicenter())) print("The magnitude of the eathquake is: " + str(eq.calc_magnitude()))
[ "62892238+Shanjiith-Pranov@users.noreply.github.com" ]
62892238+Shanjiith-Pranov@users.noreply.github.com
ab9de07f610e712458e834dd574d3d92370c62d3
70b176a173825ba46a3688bb1f7a98046093f201
/SongGrapher.py
4261c18adf32c72e831e4c889b4fb8d22cbac5f7
[]
no_license
ebovio/MusicMiner
b767871db4de47ff9e6411deecac1a5707ba68f5
8be7ceb9a31e24344b39b3c86ab03a84a4a9060d
refs/heads/master
2020-05-18T21:57:33.534620
2019-08-14T03:54:16
2019-08-14T03:54:16
184,677,947
0
0
null
null
null
null
UTF-8
Python
false
false
1,006
py
import pymongo import numpy as np import matplotlib.pyplot as plt dbPath = 'mongodb://localhost:27017/' #Direccion de la conexion dbName = 'canciones' # Nombre de la BD colName = 'lista_canciones' #Nombre de la coleccion myclient = pymongo.MongoClient(dbPath) mydb = myclient[dbName] mycol = mydb[colName] year = 1957 year_list = np.array([]) average_valence = np.array([]) valenceStats = { } while(year<=2018): for x in mycol.find( {'year': str(year)} ): if year not in valenceStats: valenceStats[year] = np.array([]) valenceStats[year] = np.append(valenceStats[year], x['valence']) else: valenceStats[year] = np.append(valenceStats[year], x['valence']) year_list = np.append(year_list,year) year +=1 for i in year_list: average_valence = np.append(average_valence, np.average(valenceStats[i])) print(average_valence) plt.plot(year_list,average_valence,'ro') plt.xlabel('Año') plt.ylabel('Valencia Promedio') plt.show()
[ "e.bovio08@gmail.com" ]
e.bovio08@gmail.com
4986a3100e08387b0cd05dec0ec98e374ed7f5c9
b3585d5d5379540a06b146c40dd50b424cc2aa6b
/leetCode/isSameTree.py
c899e335ee0dbf03fbfa752d2ad4d3ef741d4e58
[]
no_license
shivamkaushik12007/practice
402e839512099a42bd94426a863f71f3e8d4156c
6689bc725d3bc58741b9bcb48cada4c276c4853f
refs/heads/master
2021-07-10T07:25:42.966500
2020-09-26T18:00:23
2020-09-26T18:00:23
200,655,807
1
2
null
2019-08-05T13:25:04
2019-08-05T12:58:24
null
UTF-8
Python
false
false
504
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isSameTree(self, p: TreeNode, q: TreeNode) -> bool: if(p==None and q==None): return True; if(p==None or q==None or p.val!=q.val): return False return self.isSameTree(p.left,q.left) and self.isSameTree(p.right,q.right)
[ "noreply@github.com" ]
shivamkaushik12007.noreply@github.com
bee96e8e20e7141cc0a9bfd1c6a79a254632d4a3
92a1114f93ec0140fd9c60e93ecb39748dc5ac54
/Sample Preparation/gray2rgb.py
885e42beab92bb852002f4fefbb9de3ab70636e3
[ "Apache-2.0" ]
permissive
A-new/ResNet-Packed-Malware-Detection
527f92341591421e4cc103ac5157d80f00885b0e
b7f9760285246c2ba4e3e6ce8a3b39c3ffbda52f
refs/heads/main
2023-06-29T17:18:16.753863
2021-07-30T07:06:35
2021-07-30T07:06:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
import numpy as np import cv2 src = cv2.imread("目标路径与文件名", 0) src_RGB = cv2.cvtColor(src, cv2.COLOR_GRAY2RGB) cv2.imshow("2rgb", src_RGB) cv2.imwrite("写入的路径与文件名", src_RGB) cv2.waitKey(0)
[ "noreply@github.com" ]
A-new.noreply@github.com
f8f461746d356c6b4f3a0fdabc67b71a89a74e00
1fcd563548cc6c54f40a9a7a8b5629db480aef7d
/database_handler.py
9ae295caff7f1c18e87e783de23e9ab5ff4b7b4f
[]
no_license
benno0810/finance_data_scrapy
b350954f6e38033eb3a1be7b2114818ac0fdcca8
767d6231a382f5df241eaf58a1e51e7c1b696f82
refs/heads/main
2023-02-09T04:06:11.599816
2020-12-29T05:34:36
2020-12-29T05:34:36
319,832,871
1
0
null
null
null
null
UTF-8
Python
false
false
2,446
py
import pymongo import time class DB(): def __init__(self,db_type='MongoDB',db_address='mongodb://localhost:27017/',db_name='db_test',table_name='col_test'): self.db_address=db_address self.db_type=db_type self.db_name=db_name self.table_name=table_name def connect(self): pass def insert_one(self): pass def delete_one(self): pass def test_connection(self): pass class ProxyPool_DB(DB): def __init__(self,db_type='MongoDB',db_address='mongodb://localhost:27017/',db_name='proxy_pool',table_name='proxy_col'): super().__init__(db_type,db_address,db_name,table_name) self.client = pymongo.MongoClient(self.db_address) self.db=self.client[self.db_name] self.col=self.db[self.table_name] self.collist=self.db.list_collection_names() if self.table_name in self.collist: print('集合已存在,集合名{}'.format(self.table_name)) else: line={ 'ip_address':'127.0.0.1:30300', 'expires_time': time.time() } x=self.col.insert_one(line) print(x) def test_connection(self): return True def insert_one(self,line:dict): super().insert_one() if self.test_connection() and line.get('ip_address'): if not line.get('expires_time'): #若没有过期时间戳则设置过期时间戳为180秒+ line['expires_time']=time.time()+180 x=self.col.insert_one(line) print(x) def delete_many(self,myquery:dict): x = self.col.delete_many(myquery) print(x.deleted_count, "个文档已删除") def delete_one(self,myquery:dict): super().delete_one() def find_many(self,myquery:dict): x=self.col.find(myquery) return x def aggregate(self,myquery:list): x=self.col.aggregate(myquery) return x if __name__=='__main__': db_test = ProxyPool_DB() line_test={ 'ip_address':'127.0.0.1:30031', 'expires_time':time.time()-100 } #db_test.insert_one(line_test) myquery={ 'ip_address':'127.0.0.1:30031' } myquery2={} #=list(db_test.find_many(myquery2)) x=db_test.col.estimated_document_count() print(x)
[ "benno0810@gmail.com" ]
benno0810@gmail.com
d98e426c5ffa96200e49a63c91cbb1ac43216323
220e3fe31f00df908dc8d00c507400425f924cc3
/examples/multi_system/act6/unload.py
bf0fcc574b45c2f7fcf2d21c030c21e4aa89ff1f
[ "MIT" ]
permissive
danielmitterdorfer/Thespian
3ed700d9fc6da35becfe801d3ab3bb68c86bddbc
f59439df8a6147b90ec31b44924d6a1b620f09d9
refs/heads/master
2021-01-19T05:06:33.005708
2017-07-31T04:44:03
2017-07-31T04:44:03
65,544,862
0
0
null
2016-08-12T10:22:29
2016-08-12T10:22:29
null
UTF-8
Python
false
false
238
py
from thespian.actors import ActorSystem, Actor, ValidateSource, ValidatedSource import sys portnum = int(sys.argv[1]) srchash = sys.argv[2] asys = ActorSystem('multiprocTCPBase', {'Admin Port': portnum}) asys.unloadActorSource(srchash)
[ "kquick@godaddy.com" ]
kquick@godaddy.com
98da7301ee8877e6ff6c1b20ba1b0043c82e30e9
a2db2ed8f6e982b4d2d1a743e824964ffa386148
/accounts/migrations/0022_auto_20171029_1555.py
0956576e79cb70e5a12af42bc44a580d25b2ef54
[]
no_license
defydef/forum_board
ffae964dc9c877963dc1984a29fff15a9f424e53
41a46cb58fdc1757ed9329782aefa105849e9c32
refs/heads/master
2022-12-24T08:27:23.707497
2017-11-19T06:48:45
2017-11-19T06:48:45
111,266,814
0
0
null
2022-12-08T00:34:52
2017-11-19T05:20:05
Python
UTF-8
Python
false
false
760
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-10-29 04:55 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0021_auto_20171028_2111'), ] operations = [ migrations.RemoveField( model_name='newskill', name='category', ), migrations.RemoveField( model_name='profile', name='skillcategory', ), migrations.AddField( model_name='profile', name='skill', field=models.ManyToManyField(to='accounts.NewSkill'), ), migrations.DeleteModel( name='SkillCategory', ), ]
[ "devy.f.sihaloho@gmail.com" ]
devy.f.sihaloho@gmail.com
6d9a899cc5415e40329693b80d3cc1bbf9759db2
a257bf65a2a1ba2c6841dd25c89d98c5672e4e57
/BackEnd/Semana22/DjangoRestFramework/DjangoRestFramework/wsgi.py
424593130b609b9f268eda5e5d98d2c974645dad
[]
no_license
jorgegarba/CodiGo9
190cb67e3c7f9cbad271baf62657bda7ca03ec42
3b85c36a3ed8d2d5ee1d0fb6e8ca18599621fe47
refs/heads/master
2023-01-22T22:31:00.244982
2020-03-31T17:59:37
2020-03-31T17:59:37
211,982,487
6
5
null
2023-01-05T05:23:27
2019-10-01T00:21:25
JavaScript
UTF-8
Python
false
false
415
py
""" WSGI config for DjangoRestFramework project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'DjangoRestFramework.settings') application = get_wsgi_application()
[ "ederiveroman@gmail.com" ]
ederiveroman@gmail.com
6f9219124cdf28edd912b1cbde65e7ea17aece30
7b315bbe8c85ce05e6c51112e985ae1b392d83f5
/desafio_calcipv4/__init__.py
52688559769bae42e626eb8e42a779ae27f16e24
[]
no_license
Cica013/aprendendoPython
e9f993b1b144e294a338a53f2bc36673d3cd00a6
9c964f2322e3d52b39a811aceec64b169bab4e10
refs/heads/main
2023-08-10T20:12:47.640239
2021-10-06T21:01:19
2021-10-06T21:01:19
385,755,818
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
from classes.calcipv4 import CalcIpv4 calc_ipv4 = CalcIpv4(ip='192.168.0.1', mascara='255.255.255.0')
[ "61808853+Cica013@users.noreply.github.com" ]
61808853+Cica013@users.noreply.github.com
05b6a07425082a6af963320ba3ad7ce4ae2bf435
c885e60f9a86dc636b43bfd28e86162bd6d68806
/Students/xml与json数据之间的转换.py
f040c1ae36c13cd0a5c7c87322ba7c132fb33c45
[]
no_license
zhaopengtian/requesttest
4eaa235293447cac39964ab383e77436cd70f81c
df3ca7a4ad4bd8b5cf67efbc9aff4ee7ad8242f8
refs/heads/master
2023-09-05T12:30:39.077101
2021-11-08T10:27:55
2021-11-08T10:27:55
424,950,800
0
0
null
null
null
null
UTF-8
Python
false
false
1,064
py
#首先安装xmltodict,python3 -m pip install xmltodict import xmltodict import json #定义XML转Json的函数 def xmltojson(xmlstr): xmlparse = xmltodict.parse(xmlstr) #parse是XML解析器 jsonstr = json.dumps(xmlparse,indent=2,sort_keys=True) return jsonstr #定义Json转XML函数 def jsontoxml(jsonstr): xmlstr = xmltodict.unparse(jsonstr) return xmlstr if __name__ == '__main__': xmlinfo = """ <student> <bokeid>fighter006</bokeid> <bokeinfo> <cnbologsname>laolu</cnbologsname> <page>120</page> </bokeinfo> <data> <address>http://www.baidu.com</address> <title>python+dt+requests</title> </data> </student> """ aa = { "student": { "bokeid": "fighter006", "bokeinfo": { "cnbologsname": "laolu", "page": "120" }, "data": { "address": "http://www.baidu.com", "title": "python+dt+requests" } } } xtoj = xmltojson(xmlinfo) print('XML转json:',xtoj) jtox = jsontoxml(aa) print('json转XML',jtox)
[ "chinaume@163.com" ]
chinaume@163.com
a4df80ef0342700b0d72315bfaa9dafc12385988
87666a8920b134f2cd0815c9c127c4fa92e98b1b
/rover_project/test/test_reader_read_rover_starting_position.py
86d1b9dcfed5a8c3d37cd34b1327ffa5e5edf81b
[]
no_license
gacrta/backend-rover-challenge
7f6d617eaa3528f3151af8ffdfedb33eb71162d7
1d3c690c908e485faeffde912aa73227b0490da4
refs/heads/master
2020-04-21T05:30:06.572240
2019-02-11T09:15:19
2019-02-11T09:15:19
169,342,584
0
0
null
2019-02-06T01:54:44
2019-02-06T01:54:44
null
UTF-8
Python
false
false
1,679
py
from rover_project import reader import unittest class TestReaderReadRoverStartingPosition(unittest.TestCase): """ Test Class for Reader.read_rover_starting_position method at reader module. """ file_path = 'rover_project/tests/' def test_reader_read_x_coord(self): """ Test if reader gets correct x_coord from a file that contains 3 1 N information. """ filename = TestReaderReadRoverStartingPosition.file_path + "test_reader_rover_pos.txt" with reader.Reader(filename) as r: x_coord, y_coord, direction = r.read_rover_starting_position() self.assertEqual(x_coord, 3) def test_reader_read_y_coord(self): """ Test if reader gets correct y_coord from a file that contains 3 1 N information. """ filename = TestReaderReadRoverStartingPosition.file_path + "test_reader_rover_pos.txt" with reader.Reader(filename) as r: x_coord, y_coord, direction = r.read_rover_starting_position() self.assertEqual(y_coord, 1) def test_reader_read_direction(self): """ Test if reader gets correct direction from a file that contains 3 1 N information. """ filename = TestReaderReadRoverStartingPosition.file_path + "test_reader_rover_pos.txt" with reader.Reader(filename) as r: x_coord, y_coord, direction = r.read_rover_starting_position() self.assertEqual(direction, 'N') def test_reader_wrong_input(self): """ Test if reader avoids wrong input and don't crash. """ filename = TestReaderReadRoverStartingPosition.file_path + "test_reader_wrong_input.txt" with reader.Reader(filename) as r: self.assertRaises(ValueError, r.read_upper_right_coordinates) if __name__ == "__main__": unittest.main(exit=False)
[ "gabrielcrta@gmail.com" ]
gabrielcrta@gmail.com
00bde05cade22c41d0a35433fd6cb5452820be66
c8cf17465cfaf9858fe79de7d56841564226b67b
/Block.py
e4178e03c1e4acc98c64e32caf7b2e4c82c9f5db
[ "MIT" ]
permissive
bullgom/Network-Project
29ebeb6699486ecb3528a05f91592b947c3488bd
a5a0ffad006c67c9ddbb769bb1d3c557c15d344d
refs/heads/master
2020-03-07T21:30:40.895642
2018-07-08T09:15:05
2018-07-08T09:15:05
127,728,265
0
0
null
null
null
null
UTF-8
Python
false
false
567
py
import pygame as pyg from GUI.base import BaseWidget from Locals import * class Block(BaseWidget): def __init__(self, pos, size, name, id, imageDirectory, level, anchor=CENTER): super().__init__(pos,size,anchor=anchor) self.name = name self.id = id self.image = pyg.image.load(imageDirectory).convert_alpha() self.image = pyg.transform.scale(self.image,size) self.level = level #If level < 0 then lower than character def render(self, surface): surface.blit(self.image, self.as_rect())
[ "noreply@github.com" ]
bullgom.noreply@github.com
aa196ae79a573731a31b45d1c19f8134b2e2a7bc
effa594367e5760dd2800a0a9707c2f26c3d4bd4
/connection.py
b767752708bdf4a89b2cd7e67f3026ae08556210
[ "MIT" ]
permissive
diogocanut/blockchain-sniffer
5e2f5595e7e2f5e283c44c2cbcf4049996d5049d
8d14844ee2a508e1d5e931c515a27171832ae5cc
refs/heads/master
2023-03-28T17:10:53.027427
2021-04-03T18:11:02
2021-04-03T18:11:02
147,882,805
0
0
null
null
null
null
UTF-8
Python
false
false
5,694
py
# Bitcoin P2P network transactions analyser # # This file is based on https://github.com/sebicas/bitcoin-sniffer by @sebicas # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import asyncore import socket import struct import time from StringIO import StringIO from serializers import * from event import Event class Connection(asyncore.dispatcher): messagemap = { "version": msg_version, "verack": msg_verack, "addr": msg_addr, "alert": msg_alert, "inv": msg_inv, "getdata": msg_getdata, "getblocks": msg_getblocks, "tx": msg_tx, "block": msg_block, "getaddr": msg_getaddr, "ping": msg_ping } def __init__(self, host, database): asyncore.dispatcher.__init__(self) self.dstaddr = host[0] self.dstport = host[1] self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = "" self.recvbuf = "" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.event = Event(database) vt = msg_version() vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) print("\n Blockchain transactions analyzer") print("Connection to peer: ", self.dstaddr) try: self.connect((self.dstaddr, self.dstport)) except: self.handle_close() def handle_connect(self): print("Connection realized\n") self.state = "connected" def handle_close(self): print("Ending connection") self.state = "closed" self.recvbuf = "" self.sendbuf = "" try: self.close() except: pass self.__init__ def handle_read(self): try: t = self.recv(8192) except: self.handle_close() return if len(t) == 0: self.handle_close() return self.recvbuf += t self.got_data() def readable(self): return True def writable(self): return (len(self.sendbuf) > 0) def handle_write(self): try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != "\xf9\xbe\xb4\xd9": raise ValueError("Got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 20: return command = self.recvbuf[4:16].split("\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[16:20])[0] checksum = None if len(self.recvbuf) < 20 + msglen: return msg = self.recvbuf[20:20 + msglen] self.recvbuf = self.recvbuf[20 + msglen:] else: if len(self.recvbuf) < 24: return command = self.recvbuf[4:16].split("\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[16:20])[0] checksum = self.recvbuf[20:24] if len(self.recvbuf) < 24 + msglen: return msg = self.recvbuf[24:24 + msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("Bad checksum {}".format(repr(self.recvbuf))) self.recvbuf = self.recvbuf[24 + msglen:] if command in self.messagemap: f = StringIO(msg) t = self.messagemap[command]() t.deserialize(f) self.got_message(t) else: print("Unknown command {}".format(command)) def send_message(self, message, pushbuf=False): if self.state != "connected" and not pushbuf: return command = message.command data = message.serialize() tmsg = "\xf9\xbe\xb4\xd9" tmsg += command tmsg += "\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) if self.ver_send >= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if self.last_sent + 30 * 60 < time.time(): self.send_message(msg_ping()) if message.command == "version": if message.nVersion >= 209: self.send_message(msg_verack()) self.ver_send = min(MY_VERSION, message.nVersion) if message.nVersion < 209: self.ver_recv = self.ver_send elif message.command == "verack": self.ver_recv = self.ver_send elif message.command == "inv": want = msg_getdata() for i in message.inv: if i.type == 1: want.inv.append(i) elif i.type == 2: want.inv.append(i) if len(want.inv): self.send_message(want) elif message.command == "tx": self.event.new_transaction(message.tx) elif message.command == "block": self.event.new_block(message.block)
[ "diogocanut@hotmail.com" ]
diogocanut@hotmail.com
21aaffec3ed8892eaf0a660128ffde4513149715
5ae5026dcbaddf976fa925338fb07d498bcc7f11
/ncvoter/wsgi.py
f2d906e89e65828a66c8c05f414c5340e5a1110e
[ "MIT" ]
permissive
calebsmith/voters-ingestor
de947aa0aa6218b077f71fed8acfa2ccc68590ea
175a1195ec5b7402bf952ed28cff110e504982bb
refs/heads/master
2021-07-23T08:14:05.005640
2017-11-02T23:40:54
2017-11-02T23:40:54
109,330,315
0
0
null
2017-11-02T23:42:16
2017-11-02T23:42:16
null
UTF-8
Python
false
false
397
py
""" WSGI config for ncvoter project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ncvoter.prod_settings") application = get_wsgi_application()
[ "caleb.smithnc@gmail.com" ]
caleb.smithnc@gmail.com
b891a21e50fd7f9a52706f2b802ad343cca4ea72
c1bd12405d244c5924a4b069286cd9baf2c63895
/azure-mgmt-compute/azure/mgmt/compute/v2018_04_01/models/compute_management_client_enums.py
94796a92c7936618c37a51b7bf0ec2a9b37639ee
[ "MIT" ]
permissive
lmazuel/azure-sdk-for-python
972708ad5902778004680b142874582a284a8a7c
b40e0e36cc00a82b7f8ca2fa599b1928240c98b5
refs/heads/master
2022-08-16T02:32:14.070707
2018-03-29T17:16:15
2018-03-29T17:16:15
21,287,134
1
3
MIT
2019-10-25T15:56:00
2014-06-27T19:40:56
Python
UTF-8
Python
false
false
1,085
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from enum import Enum class StorageAccountTypes(str, Enum): standard_lrs = "Standard_LRS" premium_lrs = "Premium_LRS" class OperatingSystemTypes(str, Enum): windows = "Windows" linux = "Linux" class DiskCreateOption(str, Enum): empty = "Empty" attach = "Attach" from_image = "FromImage" import_enum = "Import" copy = "Copy" restore = "Restore" class SnapshotStorageAccountTypes(str, Enum): standard_lrs = "Standard_LRS" premium_lrs = "Premium_LRS" standard_zrs = "Standard_ZRS" class AccessLevel(str, Enum): none = "None" read = "Read"
[ "noreply@github.com" ]
lmazuel.noreply@github.com
8707c6732a08d5007fe5f72f81bc5b3ae3317802
2a27d1c04b86fc32afea72cb4df12848f4a39078
/VNOI/pnumber.py
f8ec7a2caefa926ccafeffb8080595d84b7963b4
[]
no_license
ngctnnnn/Competitive-Programming
9b68d3d30bdb8c0b258708b0c70005a037f2d01a
461d715720d4cdf88c0c79011c2aa873fb9e189c
refs/heads/main
2023-07-02T09:07:26.138500
2021-08-03T12:50:37
2021-08-03T12:50:37
321,263,350
4
0
null
2021-02-22T14:53:03
2020-12-14T07:11:07
C++
UTF-8
Python
false
false
394
py
def prime(x): if x == 2 or x == 3: return True elif x % 2 == 0 or x < 2: return False else: for i in range(3, x, 2): if i*i > x: break if x % i == 0: return False return True x, y = map(int, input().split()) for i in range(x, y + 1): if prime(i) is True: print(i)
[ "noreply@github.com" ]
ngctnnnn.noreply@github.com
0bebf2b16ff727c6ad6f1d7aca0f42970ec1dc48
bed559d18b0a9604e6d18879e1f3837d228d1440
/rx/backpressure/pausable.py
631ce64e952fd6f555f3e9866c6f605c96299a8e
[ "Apache-2.0" ]
permissive
jesonjn/RxPY
a80b7a8f0a3a8a6ddcb7f3ed678d2f8411cad84e
9dfb62979f2c54b93bbb8c0ee5fa18cfae4d73d0
refs/heads/master
2020-12-29T00:25:17.866220
2014-11-15T10:24:05
2014-11-15T10:24:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,932
py
from six import add_metaclass from rx import Observable from rx.internal import ExtensionMethod from rx.disposables import CompositeDisposable, Disposable from rx.subjects import Subject class PausableObservable(Observable): def __init__(self, source, subject=None): self.source = source self.subject = subject or Subject() self.is_paused = True super(PausableObservable, self).__init__(self.subscribe) def subscribe(self, observer): conn = self.source.publish() subscription = conn.subscribe(observer) connection = [Disposable.empty()] def on_next(b): if b: connection[0] = conn.connect() else: connection[0].dispose() connection[0] = Disposable.empty() pausable = self.subject.distinct_until_changed().subscribe(on_next) return CompositeDisposable(subscription, connection[0], pausable) def pause(self): if self.is_paused: return self.is_paused = True self.subject.on_next(False) def resume(self): if not self.is_paused: return self.is_paused = False self.subject.on_next(True) @add_metaclass(ExtensionMethod) class ObservablePausable(Observable): """Uses a meta class to extend Observable with the methods in this class""" def pausable(self, pauser): """Pauses the underlying observable sequence based upon the observable sequence which yields True/False. Example: pauser = rx.Subject() source = rx.Observable.interval(100).pausable(pauser) Keyword parameters: pauser -- {Observable} The observable sequence used to pause the underlying sequence. Returns the observable {Observable} sequence which is paused based upon the pauser.""" return PausableObservable(self, pauser)
[ "dag@brattli.net" ]
dag@brattli.net
eaff76abf8820739330402fe77b0aff5538045b0
cde14b5c9ed4fec317abfee4611af59b4967dbef
/team-separation/src/rooms.py
218974a62f6c80ca12b291093abf41c2617ff79d
[]
no_license
hackohio/judging
de949e582b500b0fb0c9989ad85cad4c80645a3a
2adba3e2c11daa356ba0f2b3caa73e06860950ea
refs/heads/master
2020-09-01T08:47:14.179356
2019-11-03T12:21:45
2019-11-03T12:21:45
218,923,626
0
0
null
null
null
null
UTF-8
Python
false
false
156
py
BALLROOM = 'Grand Ballroom (2nd floor)' SENATE = 'Senate Chamber (2nd floor)' TRADITIONS = 'Traditions Room(2nd Floor)' CARTOON = 'Cartoon Room(3rd Floor)'
[ "kelly.wu.98@gmail.com" ]
kelly.wu.98@gmail.com
5a00b73020577be86d6b7c9f68827501ec2be3eb
fafb5b817011892be9a824a4693bae58cebd5f04
/app/routes/auth/__init__.py
e3db8201ab12cfce7b750fd3cbb96e4e2952274a
[]
no_license
vincentscode/Data-Studio
4c3f94a9d8bdf10bf08136637cb6c8ba162eeb0a
65d6b665a7b6ceef2ef388c96f6b6f6661fee2ce
refs/heads/master
2020-07-28T09:43:49.805922
2019-12-01T15:06:16
2019-12-01T15:06:16
209,384,419
0
0
null
null
null
null
UTF-8
Python
false
false
25
py
from . import GoogleAuth
[ "vincentscode@gmail.com" ]
vincentscode@gmail.com
d7147c0137ee9e0ad4bd9852404b8af452a36406
191e0df0aa9f2bb7e5a9da214e2ca73fd9f277e9
/src/apps/myapp/views.py
45899d4020acf1ee1d7e7f9ee2029db2d08c96db
[ "MIT" ]
permissive
NewReStarter/Django_Form
720b76fd8bffacbf46ba96d31e0ea5f862658a7c
3a9c8b536f5750ed9490533cee64ca358020a265
refs/heads/master
2020-03-13T04:23:12.460130
2018-05-08T15:52:35
2018-05-08T15:52:35
130,961,952
0
0
null
null
null
null
UTF-8
Python
false
false
2,222
py
from django.shortcuts import render from django.views.generic.base import View from .models import * import json class FormView(View): def get(self, request): categories = Category.objects.filter(status=1) return render(request, "index.html", {'categories': categories}) def post(self, request): data = [] check_list = {} q_check_list = {} for k, v in request.POST.items(): category = Category.objects.get(id=k.split('_')[0]) question = Question.objects.get(id=k.split('_')[1]) if check_list.__contains__(category.id): if len(k.split('_')) == 3: c_index = check_list[category.id]['count'] q_index = check_list[category.id]['question'][question.id] data[c_index]['questions'][q_index]['answer'].append(v) else: data[check_list[category.id]['count']]['questions'].append({ 'answer': [v], 'id': question.id, 'text': question.title, 'addtion_info': question.describe, }) check_list[category.id]['question'][question.id] = len(check_list[category.id]['question']) else: data.append({ 'id': category.id, 'text': category.text, 'questions': [{ 'answer': [v], 'id': question.id, 'text': question.title, 'addtion_info': question.describe, }], }) check_list[category.id] = { 'count': len(data) - 1, 'question': { question.id: 0 } } form_data = Form_data() form_data.data = json.dumps(data) form_data.create_time = datetime.now() form_data.modify_time = datetime.now() form_data.save() categories = Category.objects.filter(status=1) return render(request, "index.html", {'categories': categories})
[ "ziliugao@gmail.com" ]
ziliugao@gmail.com
5db76e654df91d80b843b73dd410c5b47ee56eeb
57b6db85bd35ffa9c5ab8f38cf5bca5821b42d73
/reader_file_csv.py
72ee5a3064914def4e49534021923ec1bcff2107
[]
no_license
Suryana009/PythonTutorial
2adb880f20dbfed64e9f8e7b2f9aa18f18bac1ad
858a5fe146cf9c6b82d89c236ba6c4524f1782fd
refs/heads/master
2020-03-09T22:06:21.236164
2018-04-23T06:17:57
2018-04-23T06:17:57
129,026,610
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
import csv f = open('karyawan.csv', 'r') reader = csv.reader(f) for row in reader: print row f.close()
[ "suryana.ryan009@gmail.com" ]
suryana.ryan009@gmail.com
e2053a52894b2dba4c8f3b3e5598d763d3246c1e
809b59be1161be7cf19a483ff1154fe2c8eda794
/loss_from_log.py
687abcf780272687c083b35408390555e7da9ff6
[]
no_license
qzhao/train-CRF-RNN
d444bdc434424c20e98a68ca408a935cdb1b575c
9af2ce367e34f9d3d12df55701ad14757b908d58
refs/heads/master
2020-12-29T00:55:42.557635
2016-03-10T09:21:49
2016-03-10T09:21:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,642
py
#!/usr/bin/env python # Martin Kersner, 2016/01/13 from __future__ import print_function import sys import re import numpy as np import matplotlib.pyplot as plt from utils import strstr def main(): log_files = process_arguments(sys.argv) train_iteration = [] train_loss = [] test_iteration = [] test_loss = [] test_accuracy = [] pixel_accuracy = [] mean_accuracy = [] mean_IU = [] frequency_weighted_IU = [] base_test_iter = 0 base_train_iter = 0 for log_file in log_files: with open(log_file, 'rb') as f: if len(train_iteration) != 0: base_train_iter = train_iteration[-1] base_test_iter = test_iteration[-1] for line in f: # TRAIN NET if strstr(line, 'Iteration') and strstr(line, 'lr'): matched = match_iteration(line) train_iteration.append(int(matched.group(1))+base_train_iter) elif strstr(line, 'Train net output'): matched = match_loss(line) train_loss.append(float(matched.group(1))) elif strstr(line, 'pixel_accuracy'): matched = re.search(r'pixel_accuracy: (.*)', line) pixel_accuracy.append(float(matched.group(1))) elif strstr(line, 'mean_accuracy'): matched = re.search(r'mean_accuracy: (.*)', line) mean_accuracy.append(float(matched.group(1))) elif strstr(line, 'mean_IU'): matched = re.search(r'mean_IU: (.*)', line) mean_IU.append(float(matched.group(1))) elif strstr(line, 'frequency_weighted'): matched = re.search(r'frequency_weighted: (.*)', line) frequency_weighted_IU.append(float(matched.group(1))) # TEST NET elif strstr(line, 'Testing net'): matched = match_iteration(line) test_iteration.append(int(matched.group(1))+base_test_iter) elif strstr(line, 'Test net output'): matched = match_loss(line) if matched: test_loss.append(float(matched.group(1))) else: matched = match_accuracy(line) test_accuracy.append(float(matched.group(1))) print("TRAIN", train_iteration, train_loss) print("TEST", test_iteration, test_loss) print("ACCURACY", test_iteration, test_accuracy) # loss plt.plot(train_iteration, train_loss, 'k', label='Train loss') plt.plot(test_iteration, test_loss, 'r', label='Test loss') plt.legend() plt.ylabel('Loss') plt.xlabel('Number of iterations') plt.savefig('loss.png') # evaluation plt.clf() plt.plot(range(len(pixel_accuracy)), pixel_accuracy, 'k', label='pixel accuracy') plt.plot(range(len(mean_accuracy)), mean_accuracy, 'r', label='mean accuracy') plt.plot(range(len(mean_IU)), mean_IU, 'g', label='mean IU') plt.plot(range(len(frequency_weighted_IU)), frequency_weighted_IU, 'b', label='frequency weighted IU') plt.legend(loc=0) plt.savefig('evaluation.png') def match_iteration(line): return re.search(r'Iteration (.*),', line) def match_loss(line): return re.search(r'loss-ft = (.*) \(', line) def match_accuracy(line): return re.search(r'seg-accuracy = (.*)', line) def process_arguments(argv): print(argv) if len(argv) < 2: help() log_files = argv[1:] return log_files def help(): print('Usage: python loss_from_log.py [LOG_FILE]+\n' 'LOG_FILE is text file containing log produced by caffe.' 'At least one LOG_FILE has to be specified.' 'Files has to be given in correct order (the oldest logs as the first ones).' , file=sys.stderr) exit() if __name__ == '__main__': main()
[ "m.kersner@gmail.com" ]
m.kersner@gmail.com
cec8243c693159b82311f03b0f97f689b0252e68
8ed2700f29e669a05e324c23fc3cced361c25dd1
/cli/ceph/osd/crush.py
e2876d2eb9566dbd481491c580912e453ca9c57d
[ "MIT" ]
permissive
red-hat-storage/cephci
179cdc8cc01f20bb80cb171800f04123ae8d6651
0691fbaf8fca2a9cd051c5049c83758c65301654
refs/heads/master
2023-08-31T15:19:00.375389
2023-08-31T14:43:30
2023-08-31T14:43:30
171,728,354
28
87
MIT
2023-09-14T18:59:33
2019-02-20T18:36:22
Python
UTF-8
Python
false
false
4,811
py
from cli import Cli class Crush(Cli): """This module provides CLI interface to manage the Crush service.""" def __init__(self, nodes, base_cmd): super(Crush, self).__init__(nodes) self.base_cmd = f"{base_cmd} crush" def rule(self, *Kargs): """ To create rules Kargs: Supported args rule_type (str): create-simple | create-replicated |create-erasure rule_name (str): name of the rule root (str): root of the CRUSH hierarchy failure_domain_type (str): failure domain (host/rack) device_class (str): storage device class (hdd/sdd) replicated (bool): if the rule is replicated or not """ cmd = f"{self.base_cmd} rule" for arg in Kargs: cmd += f" {arg}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def set_device_class(self, device_class, osd_id): """ To set device class to osd Args: device_class (str): device class (hdd/ssd) osd_id (list): list of osd's """ cmd = f"{self.base_cmd} set-device-class {device_class}" for _osd in osd_id: cmd += f" {_osd}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def rm_device_class(self, device_class, osd_id): """ To remove device class to osd Args: device_class (str): device class (hdd/ssd) osd_id (list): list of osd's """ cmd = f"{self.base_cmd} rm-device-class {device_class}" for _osd in osd_id: cmd += f" {_osd}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def rename_device_class(self, old_name, new_name): """ To rename device class Args: old_name (str): old class name new_name (str): new class name """ cmd = f"{self.base_cmd} class rename {old_name} {new_name}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def ls_osd(self, device_class): """ To list all OSDs that belong to a particular class Args: device_class (str): device class (hdd/ssd) """ cmd = f"{self.base_cmd} class ls-osd {device_class}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def add_bucket(self, name, type): """ To add a bucket instance to CRUSH hierarchy Args: name (str): bucket name type (str): type of bucket """ cmd = f"{self.base_cmd} add-bucket {name} {type}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def move(self, name, type): """ To move a bucket instance to a particular location in CRUSH hierarchy Args: name (str): bucket name type (str): type of bucket """ cmd = f"{self.base_cmd} move {name} {type}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def add(self, osd, weight, bucket_details): """ To add an OSD to a CRUSH hierarchy Args: osd (str): osd id or name weight (str): weight to be assigned bucket_details (list): details of format {bucket-type}={bucket-name} """ cmd = f"{self.base_cmd} add {osd} {weight} " cmd += " ".join(bucket_details) out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def remove(self, item): """ To remove an OSD from the CRUSH map of a running cluster Args: item (str): osd id or bucket name to be removed """ cmd = f"{self.base_cmd} remove {item}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out def set(self, key, value): """ Set value to give key Args: key (str): Key to be updated value (str): Value to be set to the key """ cmd = f"{self.base_cmd} set {key} {value}" out = self.execute(sudo=True, cmd=cmd) if isinstance(out, tuple): return out[0].strip() return out
[ "pranavprakash20@gmail.com" ]
pranavprakash20@gmail.com
79a7f455388690fa7a0287ab242b104b0be5b488
6233dfe18e53b55aef0c5eef9d6b59730f96dccb
/adminNotification/views.py
4583d1d1789130bfe01feecf28960ae530ccfaf0
[]
no_license
omar74/HISIK_API2-master
6fe4f8380717f0a767409c62c1ffcfd060fddd4d
5d891bc9c7a31de8cdb0591a77d5fb1e0f759984
refs/heads/master
2020-12-15T15:38:33.103082
2020-01-20T18:48:18
2020-01-20T18:48:18
235,158,685
1
0
null
null
null
null
UTF-8
Python
false
false
954
py
from django.shortcuts import render from .models import NotificationAdmin from .serializer import NotificationAdminSerializer from rest_framework import generics class AdminNotificationListView(generics.ListCreateAPIView): permission_classes = [] authentication_classes = [] queryset = NotificationAdmin.objects.all() serializer_class = NotificationAdminSerializer def create(self, request, *args, **kwargs): ''' I wanted to do some stuff with serializer.data here ''' return super(AdminNotificationListView, self).create(request, *args, **kwargs) class AdminNotficationDetailedView(generics.RetrieveUpdateDestroyAPIView): permission_classes = [] authentication_classes = [] queryset = NotificationAdmin.objects.all() serializer_class = NotificationAdminSerializer lookup_field = 'type'
[ "omar.ashraf0597@gmail.com" ]
omar.ashraf0597@gmail.com
3c9a07fa27647dc38716eb782a3a4838a70b2d17
1e182038f280285fa6a833b5aaf49591c707ad53
/ycombinator/encodings.py
deb67e51fe3528a3081ec9107a5ac4be87b9b944
[]
no_license
turing-complet/samples
87e13e75ea1cb52503d0937cc32d02ad380909b9
87e1042cdf2d427def822a56a9701817b2f3fae8
refs/heads/master
2021-12-15T08:46:48.493475
2021-12-13T02:25:18
2021-12-13T02:25:18
235,974,764
0
0
null
2021-12-13T02:36:02
2020-01-24T09:36:55
Jupyter Notebook
UTF-8
Python
false
false
109
py
class Numeral: def __init__(self, n): pass class Bool: def __init__(self, b): pass
[ "jhagg314@gmail.com" ]
jhagg314@gmail.com
992d0d89d6bb0e793cbf80caa45bb759cd343dba
58674e0ea4f0faa70892db30627fda006c3dc478
/Beginner/1060_positive_numbers.py
8e603faa7151ff993363d4fcdc22e248597d36bf
[]
no_license
ShekhRaselMasrurAhmmadNissan/URI-Online-Judge
fe0f176987f63dc342d741de34c52b10edb3f6f6
1554d12a0338850ba1f07f401633390815e505b2
refs/heads/main
2023-02-23T10:36:42.935212
2021-01-25T14:21:26
2021-01-25T14:21:26
325,745,290
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
# Reading the Data... numbers = list() for serial_number in range(0, 6): numbers.append(float(input())) # Checking the conditions... positive_number_count = 0 for number in numbers: if (number >= 0): positive_number_count += 1 print(f'{positive_number_count} valores positivos')
[ "shekhraselmasrurahmmadnissan@gmail.com" ]
shekhraselmasrurahmmadnissan@gmail.com
79b21ab5c4ba6fadd6e18c4bc14248a109112bf2
e008b7ec16cbcffb5368bb1685d44b75c4019a44
/DeepVO/deepvo_net.py
bfb623602caa9d49fad86c837efe32080b09047b
[]
no_license
akhanian/VisualOdometry
df02d03c031901f3b746e8e77a574a0f319f9acd
03bd99fa2312687cd67b159a20afa72ae15ba4c4
refs/heads/master
2023-01-06T08:41:24.802547
2020-11-11T05:10:29
2020-11-11T05:10:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
820
py
# -*- coding: utf-8 -*- """ Created by etayupanta at 6/30/2020 - 21:10 __author__ = 'Eduardo Tayupanta' __email__ = 'eduardotayupanta@outlook.com' """ # Import Libraries: from tensorflow import keras from tensorflow.keras import layers class DeepVONet(keras.Model): def __init__(self): super(DeepVONet, self).__init__() self.reshape = keras.layers.Reshape((-1, 10 * 3 * 1024)) self.lstm1 = layers.LSTM(1000, dropout=0.5, return_sequences=True) self.lstm2 = layers.LSTM(1000, dropout=0.5) self.dropout = layers.Dropout(0.5) self.out = layers.Dense(6) def call(self, inputs, is_training=False): x = self.reshape(inputs) x = self.lstm1(x) x = self.lstm2(x) x = self.dropout(x, is_training) x = self.out(x) return x
[ "wetayupanta@gmail.com" ]
wetayupanta@gmail.com
1cf78c07b6bdc205a1bca76933f89a3c6e6c2fd3
83e472f89c48a2793fa244f573a032bae80ba6bb
/Dragomir Robert-Simion/camera_app/blueprints/main/routes.py
965401d01a0abb990fe0e376f4b7a57201dcecfd
[]
no_license
rodicadp/mobile-2020
992293d516a47cfe78a13b63fff7b1e9a4b475bd
9c3ceb82c1b4ec5b1e75af2a884c611990164e74
refs/heads/master
2020-12-27T19:47:27.515452
2020-02-03T19:13:21
2020-02-03T19:13:21
238,030,034
0
0
null
2020-02-03T18:12:56
2020-02-03T18:12:55
null
UTF-8
Python
false
false
2,700
py
import os from flask_login import login_required from flask import render_template, redirect, url_for, request, flash, Blueprint, session from sqlalchemy import exc from camera_app import db from camera_app.blueprints.main.forms import Form_Photo from camera_app.blueprints.main.models import Photo main = Blueprint('main', __name__, template_folder='templates', static_folder='static', static_url_path='/static') def iterate_pages(table): return table.iter_pages(left_edge=2, right_edge=2, left_current=2, right_current=2) def upload_photo(form_file): if type(form_file) == str: name = form_file else: name = form_file.filename file_path = os.path.join(main.root_path, 'static', name) form_file.save(file_path) return name @main.route("/edit_photo/<int:id>", methods=['GET', 'POST']) @main.route('/add_photo', methods=['GET', 'POST']) @login_required def add_photo(id=None): form = Form_Photo() if id is not None: photo = Photo.query.get_or_404(id) if request.method == 'GET': form.process(request.args) if id is not None: form.description.data = photo.description form.photo.data = photo.photo if form.validate_on_submit(): try: if id is not None: photo.description = form.description.data photo.photo = upload_photo(form.photo.data) db.session.commit() flash('Success!', 'success') return redirect(url_for('main.photo', id=photo.id)) else: row = Photo(description=form.description.data, photo=upload_photo(form.photo.data)) db.session.add(row) db.session.commit() return redirect(url_for('main.photos')) flash('Success!', 'success') except exc.IntegrityError as e: flash(f'Error: {e}', 'danger') return render_template('add_photo.html', title='Add a photo', form=form) @main.route("/photo/<int:id>") @login_required def photo(id): session['photo'] = id return render_template('photo.html', photo=Photo.query.get_or_404(id)) @main.route("/delete_photo/<int:id>") @login_required def delete_photo(id): db.session.delete(Photo.query.get_or_404(id)) db.session.commit() return redirect(url_for('main.photos')) @main.route('/', methods=['GET', 'POST']) @main.route("/photos") @login_required def photos(): page = request.args.get('page', 1, type=int) return render_template('photos.html', title='Photos', photos=Photo.query.paginate(per_page=5, page=page))
[ "noreply@github.com" ]
rodicadp.noreply@github.com
1b1488f2e5ebd9c410f0123465c4c7e05c7126e8
c097eb64ab0305fb653bba74c616161a64b42a29
/carspy/convol_fcn.py
884fb80ada4dd43c536d8a786c54b3e392fe101e
[ "BSD-3-Clause" ]
permissive
zhangxin19981016/carspy
f832a7a58dc1683506eefb6c4341c09cb5b95300
4c91138018b288635e1e608e7f8b0edd8950085b
refs/heads/main
2023-04-12T05:44:38.123167
2021-05-09T19:12:31
2021-05-09T19:12:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,439
py
"""Functions used in the convolution of CARS spectrum. - Laser lineshape - Impulse spectral response function (ISRF) for the spectrometer slit """ import numpy as np def gaussian_line(w, w0, sigma): """Generate a normalized Gaussian lineshape (integral equals to 1). Parameters ---------- w : sorted 1d array of floats Spectral positions in wavenumber cm^(-1). w0 : float Center of the Gaussian lineshape in wavenumber cm^(-1). sigma : float FWHM of the Gaussian lineshape wavenumber cm^(-1). Returns ------- 1d array of floats Intensities of the normalized Gaussian lineshape over w. """ _lineshape = 2/sigma*(np.log(2)/np.pi)**0.5*np.exp( -4*np.log(2)*((w-w0)/sigma)**2) return _lineshape def lorentz_line(w, w0, sigma): """Generate a normalized Lorentzian lineshape (integral equals to 1). Parameters ---------- w : sorted 1d array of floats Spectral positions in wavenumber cm^(-1). w0 : float Center of the Lorentzian lineshape in wavenumber cm^(-1). sigma : float FWHM of the Lorentzian lineshape wavenumber cm^(-1). Returns ------- 1d array of floats Intensities of the normalized Lorentzian lineshape over w. """ _lineshape = 1/np.pi*(sigma/2)/((w-w0)**2+sigma**2/4) return _lineshape def voigt_line(w, w0, sigma_V, sigma_L): """Generate an approximated Voigt lineshape following :cite:`Whiting:68`. Parameters ---------- w : 1d array of floats Spectral positions in wavenumber cm^(-1). w0 : float Center of the Lorentzian lineshape in wavenumber cm^(-1). sigma_V : float FWHM of the Voigt lineshape wavenumber cm^(-1). sigma_L : float FWHM of the Lorentzian lineshape wavenumber cm^(-1). Returns ------- 1d array Intensities of the Voigt lineshape over w. """ # Preparations _ratio = sigma_L/sigma_V I_g = 1/(sigma_V*(1.065 + 0.447*_ratio + 0.058*_ratio**2)) _w = abs(w-w0)/sigma_V # Building up the function _term_1 = I_g*(1-_ratio)*np.exp(-2.772*_w**2) + _ratio/(1 + 4*_w**2) _term_2 = 0.016*(1-_ratio)*_ratio*(np.exp(-0.4*_w**2.25) - 10/(10 + _w**2.25)) return _term_1 + _term_2 def asym_Gaussian(w, w0, sigma, k, a_sigma, a_k, offset): """Asymmetric super-Gaussian following :cite:`Beirle:17`. Parameters ---------- w : sorted 1d array of floats Spectral positions in wavenumber cm^(-1). w0 : float Center of the asymmetric Gaussian function in wavenumber cm^(-1). sigma : float FWHM of the Gaussian function in wavenumber cm^(-1). k : float Controls the skewing of the asymmetry. a_sigma, a_k : float Tuning factors for sigma and k. offset : float Background offset (from experimental spectrum). Returns ------- 1d array of floats Intensities of the peak-normalized asymmetric super-Gaussian over w. """ response_low = np.exp(-abs((w[w <= w0]-w0)/(sigma-a_sigma))**(k-a_k)) response_high = np.exp(-abs((w[w > w0]-w0)/(sigma+a_sigma))**(k+a_k)) response = np.append(response_low, response_high) + offset return response/response.max() def asym_Voigt(w, w0, sigma, k, a_sigma, a_k, sigma_L_l, sigma_L_h, offset): """Asymmetric super-Voigt. .. note:: This is based on the super-Gaussian from :cite:`Beirle:17`, with additional convolution with two Lorentzian profiles to better capture slow-decaying wings in some experimental slit function Parameters ---------- w : sorted 1d array of floats Spectral positions in wavenumber cm^(-1). w0 : float Center of the asymmetric Gaussian function in wavenumber cm^(-1). sigma : float FWHM of the Gaussian function in wavenumber cm^(-1). k : float Controls the skewing of the asymmetry. a_sigma, a_k : float Tuning factors for sigma and k. sigma_L_l : float FWHM of the Lorentzian function in wavenumber cm^(-1) for the lower half. sigma_L_h : float FWHM of the Lorentzian function in wavenumber cm^(-1) for the higher half. offset : float Background offset. Returns ------- 1d array of floats Intensities of the peak-normalized asymmetric super-Gaussian over w. """ response_low = np.exp(-abs((w-w0)/(sigma-a_sigma))**(k-a_k)) response_high = np.exp(-abs((w-w0)/(sigma+a_sigma))**(k+a_k)) response_low = np.convolve(response_low, lorentz_line(w, w0, sigma_L_l), 'same') response_high = np.convolve(response_high, lorentz_line(w, w0, sigma_L_h), 'same') response = np.append(response_low[np.where(w <= w0)], response_high[np.where(w > w0)]) + offset return response/response.max() def asym_Voigt_deprecated(w, w0, sigma_V_l, sigma_V_h, sigma_L_l, sigma_L_h, offset): """Asymmetric Voigt profile following NRC. .. admonition:: Deprecated :class: attention This profile cannot capture certain slit functions with broadened Gaussian profile. Parameters ---------- w : sorted 1d array of floats Spectral positions in wavenumber cm^(-1). w0 : float Center of the asymmetric Gaussian function in wavenumber cm^(-1). sigma_V_l : float FWHM of the Voigt function in wavenumber cm^(-1) for the lower half. sigma_V_h : float FWHM of the Voigt function in wavenumber cm^(-1) for the higher half. sigma_L_l : float FWHM of the Lorentzian function in wavenumber cm^(-1) for the lower half. sigma_L_h : float FWHM of the Lorentzian function in wavenumber cm^(-1) for the higher half. offset : float Background offset. Returns ------- 1d array of floats Intensities of the peak-normalized asymmetric super-Gaussian over w. """ response_low = voigt_line(w[w <= w0], w0, sigma_V_l, sigma_L_l) response_high = voigt_line(w[w > w0], w0, sigma_V_h, sigma_L_h) response = (np.append(response_low/response_low.max(), response_high/response_high.max()) + offset) return response/response.max() def slit_ISRF(w, w0, param_1, param_2, param_3, param_4, param_5, param_6, offset, mode='sGaussian'): """Impulse spectral response function (ISRF) as the slit function. Parameters ---------- w : sorted 1d array of floats Spectral positions in wavenumber cm^(-1). w0 : float Center of the asymmetric Gaussian function in wavenumber cm^(-1). param_1, param_2, param_3, param_4 : float Parameters needed for the asymmetric ISRF depending on the mode. - 'sGaussian': sigma : float FWHM of the Gaussian function in wavenumber cm^(-1). k : float Controls the skewing of the asymmetry. a_sigma, a_k : float Tuning factors for sigma and k. - 'Voigt': sigma_V_l : float FWHM of the Voigt function in wavenumber cm^(-1) for the lower half. sigma_L_l : float FWHM of the Lorentzian function in wavenumber cm^(-1) for the lower half. sigma_V_h : float FWHM of the Voigt function in wavenumber cm^(-1) for the higher half. sigma_L_h : float FWHM of the Lorentzian function in wavenumber cm^(-1) for the higher half. offset : float Background offset. mode : 'sGaussian', str, optional Two options for the ISRF: - Asymmetric super Gaussian: 'sGaussian'. - Asymmetric Voigt: 'Voigt'. Returns ------- 1d array of floats Intensities of the peak-normalized asymmetric ISRF. """ slit_fc = [] if mode == 'sGaussian': slit_fc = asym_Gaussian(w, w0, param_1, param_2, param_3, param_4, offset) elif mode == 'Voigt': slit_fc = asym_Voigt(w, w0, param_1, param_2, param_3, param_4, param_5, param_6, offset) return slit_fc
[ "43315257+chuckedfromspace@users.noreply.github.com" ]
43315257+chuckedfromspace@users.noreply.github.com
f075ed8bbec5b8e9a2aa280e5a35872d3244c077
f170a491f323a63665ccf39291ae2ad3fe8d626b
/privat_bank_test/wsgi.py
a1f6538b7d18f522fa3ec9e8b05ae0ac9fb13d3c
[]
no_license
DmitryFleur/PrivatBankTest
098f1829a3c031f619ae82b8e498b827640dde5b
0ac2d605966735575b3fe498b92d20c352fdf458
refs/heads/master
2020-03-27T00:49:30.499822
2018-08-22T05:33:43
2018-08-22T05:33:43
145,660,047
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" WSGI config for privat_bank_test project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'privat_bank_test.settings') application = get_wsgi_application()
[ "bDEFpm74!!" ]
bDEFpm74!!
747a7cb3b08db83515a6456c6b9e5af1e2d0e703
c818b186c3e76f6d3c5edb8e2e30a04c2a1b99a9
/early-bird-impl/early_bird/wc_gc.py
48f2ab50c70b1d0126a8320643a5e33f7ebb09b6
[]
no_license
imperialguy/algc
3048e31e16e19ea195797d4935111e8238244455
3d71210e6fd0e33249bfa461473da2fa79fff433
refs/heads/master
2021-03-24T09:32:59.492479
2017-05-05T21:52:25
2017-05-05T21:52:25
82,343,977
0
0
null
null
null
null
UTF-8
Python
false
false
29,901
py
# -*- coding: utf-8 -*- """ Created on Thu Nov 17 14:12:31 2016 @author: mcontrac """ import ConfigParser import math import numpy import pandas from helpers import setup_logging from helpers import get_discount_amount from helpers import get_dnb_scores from helpers import get_sic_major_group from helpers import round_down from model_builder import GLMModel # User inputs user_duns_number = 608201141 user_division = 21 user_is_uslh = False user_sic_code = '0111' user_effective_date = pandas.datetime(2016, 9, 1) user_total_projected_payroll = 10000000 user_estimated_clerical_payroll_ratio = 0.3 user_estimated_clerical_payroll = user_estimated_clerical_payroll_ratio * user_total_projected_payroll user_estimated_non_clerical_payroll = user_total_projected_payroll - user_estimated_clerical_payroll user_experience_mod = 0.97 input_data = pandas.DataFrame({'state': ['AK', 'CT', 'MD', 'KY', 'CA', 'CA', 'DE', 'AK'], 'class_code': ['6504', '4720', '2039', '6504', '8810', '6504', '0953', '9139'], 'payroll': [4000000, 500000, 1000000, 100000, 1000000, 200000, 200000, 0]}) input_history = pandas.DataFrame({'years_before': [1, 2, 3], 'ind_claim_count': [2, 2, 2], 'med_claim_count': [26, 19, 14]}) def read_rate_lookup(filename, is_uslh): """Reads the data from the rate_lookup.csv file into a pandas DataFrame The rate_lookup.csv file should contain the columns called ``state``, ``class_code``, ``final_rate``, ``final_rate_uslh`` and ``clerical_ind``. If the input division is 58-USLH, the ``final_rate`` column is dropped and the ``final_rate_uslh`` column is renamed to final_rate. Otherwise the ``final_rate_uslh`` column is dropped. Args: **is_uslh**: Boolean indicator whether the division is 58-USLH or not Return: A pandas DataFrame object with the state, class_code and final_rate columns """ rate_lookup = pandas.read_csv(filename, index_col='lookup_key') if is_uslh: rate_lookup.drop('final_rate', axis=1, inplace=True) rate_lookup.rename(columns={'final_rate_uslh': 'final_rate'}, inplace=True) else: rate_lookup.drop('final_rate_uslh', axis=1, inplace=True) return rate_lookup def read_discount_lookup(filename): """Reads the discount lookup data for the specifiec NCCI table number Args: **filename**: csv file from which to read the NCCI data Return: A pandas DataFrame containing the bucket as the index and the discount rates for each bucket """ return pandas.read_csv(filename) def read_state_rate_need_lookup(filename, division, effective_date, is_uslh): """Reads the fixed and variable rate need data for the input division and effective date The is_uslh indicator is only applicable to division 58. For all other divisions, the indicator is assumed to be False regardless of input. Args: **filename**: csv file containing the state rate need data\n **division**: The user input division\n **effective_date**: The user input effective date\n **is_uslh**: Boolean indicator for which division 58 rates to lookup Return: A pandas DataFrame with columns state, variable_rate_need, fix_rate_need and indicated_loss_ratio """ state_rate_need = pandas.read_csv(filename, parse_dates=['effective_date', 'expiration_date'], infer_datetime_format=True) def keep_row(index): return (state_rate_need['division'][index] == division and state_rate_need['effective_date'][index] <= effective_date <= state_rate_need['expiration_date'][index] and state_rate_need['uslh_ind'][index] == is_uslh) return state_rate_need.select(keep_row).drop(['division', 'uslh_ind', 'effective_date', 'expiration_date'], axis=1) def read_wcng_loss_ratio_lookup(filename, division, is_uslh): """Reads the WCNG average loss ratio for the division by state The is_uslh indicator is only applicable to division 58. For all other divisions, the indicator is assumed to be False regardless of input. Args: **filename**: csv file containing the WCNG loss ratio data\n **division**: The user input division\n **is_uslh**: Boolean indicator for which division 58 rates to lookup Return: A pandas DataFrame with columns state and avg_wcng_loss_ratio """ wcng_loss_ratio = pandas.read_csv(filename) def keep_row(index): return (wcng_loss_ratio['division'][index] == division) and (wcng_loss_ratio['uslh_ind'][index] == is_uslh) return wcng_loss_ratio.select(keep_row).drop(['division', 'uslh_ind'], axis=1) def read_cdf(filename, state): """Reads the CDFs for prior three years Args: **filename**: csv file containing the CDF data\n **state**: The state for which CDFs are to be read Return: A pandas DataFrame with columns ``prior_year`` and ``cdf``. Prior year refers to number of years prior to current year. """ cdf_data = pandas.read_csv(filename) cdf_data['inverse_cdf'] = 1 / cdf_data['cdf'] if state in cdf_data['state'].unique(): return cdf_data[cdf_data['state'] == state].drop('state', axis=1) else: return cdf_data[cdf_data['state'].isnull()].drop('state', axis=1) def get_monopolistic_states(): """Returns a list of state codes that are monopolistic states""" return ['ND', 'OH', 'WA', 'WY'] def get_t9_states(): """Returns a list of state codes that require T9 discount rates""" return ['AZ', 'FL', 'IA', 'ID', 'MA', 'NJ'] def merge_rate_lookup(input_data, rate_lookup_table): """Merges the ``clerical_ind`` and ``class_rate`` from the rate lookup to the input The function also calculates the class premium ,non-clerical and clerical payrolls for each input entry and also calculates the overall average clerical and non-clerical rates for the input provided. The function also adds the columns ``class_rate``, ``clerical_ind``, ``payroll_non_clerical`` and ``payroll_clerical`` columns to the input data. Args: **input_data**: The state, class code and payroll data input by the user as a DataFrame\n **rate_lookup_table**: The rates for calculating the class premium percents from payroll Return: A dictionary containing the average clerical rate (``avg_clerical_rate``) and the average non-clerical rate (``avg_non_clerical_rate``) """ input_data['class_rate'] = input_data.apply(lambda row: rate_lookup_table['final_rate'][row['lookup_key']], axis=1) input_data['clerical_ind'] = input_data.apply(lambda row: rate_lookup_table['clerical_ind'][row['lookup_key']], axis=1) input_data['class_premium'] = input_data['payroll'] * input_data['class_rate'] input_data['payroll_non_clerical'] = input_data['payroll'] * (1 - input_data['clerical_ind']) input_data['payroll_clerical'] = input_data['payroll'] * input_data['clerical_ind'] avg_clerical_rate = sum(input_data['payroll_clerical'] * input_data['class_rate']) / input_data['payroll_clerical'].sum() avg_non_clerical_rate = sum(input_data['payroll_non_clerical'] * input_data['class_rate']) / input_data['payroll_non_clerical'].sum() return {'avg_clerical_rate': avg_clerical_rate, 'avg_non_clerical_rate': avg_non_clerical_rate} def merge_wcng_lr_rate_need(payrolls, division, effective_date, is_uslh, rate_need_file, wcng_lr_file): """Merges the payrolls data to the WCNG loss ratio and rate need data Note that this function returns a separate DataFrame object instead of merging inplace Args: **payrolls**: DataFrame containing the allocation ratio of each state\n **division**: The user input division\n **effective_date**: The user input effective date\n **is_uslh**: Boolean indicator for which division 58 rates to lookup\n **rate_need_file**: csv file containing the state rate need data\n **wcng_lr_file**: csv file containing the WCNG loss ratio data Return: A pandas DataFrame with all columns from ``payrolls`` along with ``avg_wcng_loss_ratio``, ``variable_rate_need``, ``fix_rate_need`` and ``indicated_loss_ratio`` columns """ wcng_lr_data = read_wcng_loss_ratio_lookup(wcng_lr_file, division, is_uslh) rate_need_data = read_state_rate_need_lookup(rate_need_file, division, effective_date, is_uslh) return payrolls.merge(wcng_lr_data, how='left', on='state').merge(rate_need_data, how='left', on='state') def calc_payroll_ratio(input_data): """Calculates the non-clerical and clerical payrolls for each state The function modifies the input dataframe and calculates the non-clerical payroll and clerical payroll columns for each row. It then calculates the total non-clerical and clerical payroll for each state and returns that as a DataFrame. Args: **input_data**: DataFrame containing the class premium, net, clerical and non-clerical payrolls for each state and class code Return: A pandas DataFrame with total class premium, net, non-clerical and clerical payrolls by state, and the ratio of non-clerical payroll for each state where the clerical payroll is missing """ payrolls = input_data.groupby(by='state', as_index=False, sort=False).agg({'class_premium': 'sum', 'payroll': 'sum', 'payroll_non_clerical': 'sum', 'payroll_clerical': 'sum'}) payrolls['payroll_non_clerical_only'] = payrolls.apply(lambda row: row['payroll_non_clerical'] if row['payroll_clerical'] == 0 else 0, axis=1) total_non_clerical = payrolls['payroll_non_clerical_only'].sum() payrolls['state_non_clerical_ratio'] = payrolls['payroll_non_clerical_only'] / total_non_clerical payrolls.drop('payroll_non_clerical_only', axis=1, inplace=True) return payrolls def calc_allocate_clerical_payroll(payrolls, user_estimated_clerical_payroll): """Allocates the unentered clerical payroll to states based on non-clerical payroll ratio Uses the calculated non-clerical payroll ratio to allocate clerical payroll that was not entered by the user based on the user entered total estimated clerical payroll. The method modifies the payrolls DataFrame in place by adding the ``allocated_clerical_payroll`` column Args: **payrolls**: DataFrame containing the allocation ratio of each state\n **user_estimated_clerical_payroll**: User input total estimated clerical payroll """ entered_clerical_payroll = payrolls['payroll_clerical'].sum() clerical_payroll_to_be_allocated = max(0, user_estimated_clerical_payroll - entered_clerical_payroll) payrolls['allocated_clerical_payroll'] = payrolls['state_non_clerical_ratio'] * clerical_payroll_to_be_allocated def calc_clerical_class_premium(payrolls, rate_lookup_table): """Calculates the clerical class premium based on the allocated clerical payroll Determines the clerical rate to use from the rate table and calculates the class premium for clerical payroll based on the allocated clerical payroll. Modifies the payrolls DataFrame in place by adding the ``clerical_rate`` and ``allocated_clerical_class_premium`` columns Args: **payrolls**: DataFrame containing the allocated clerical payroll for each state\n **rate_lookup_table**: Table containing the rate for each state and class code, with an boolean indicator for clerical vs non-clerical rate """ clerical_rates = rate_lookup_table.loc[rate_lookup_table['clerical_ind'] == 1].set_index('state') payrolls['clerical_rate'] = payrolls['state'].map(clerical_rates['final_rate']) payrolls['allocated_clerical_class_premium'] = payrolls['clerical_rate'] * payrolls['allocated_clerical_payroll'] def calc_standard_premium(payrolls, user_experience_mod): """Calculates the standard premium for each state If a state is monopolistic, the experience mod is 1 else it is the user input experience mod. Monopolistic states are determined by the ``get_monopolistic_states()`` function. Modifies the payrolls DataFrame in place by adding the ``experience_mod``, ``standard_premium`` and ``standard_premium_ratio`` columns Args: **payrolls**: DataFrame containing the class premium by each state\n **user_experience_mod**: User input experience mod factor """ monopolistic_states = get_monopolistic_states() payrolls['experience_mod'] = payrolls.apply(lambda row: user_experience_mod if row['state'] not in monopolistic_states else 1, axis=1) payrolls['standard_premium'] = payrolls['experience_mod'] * payrolls['class_premium'] total_standard_premium = payrolls['standard_premium'].sum() payrolls['standard_premium_ratio'] = payrolls['standard_premium'] / total_standard_premium def calc_missing_standard_premium(payrolls, avg_rates, user_experience_mod): """Returns the missing standard premiums to be allocated across the states Args: **payrolls**: DataFrame containing the clerical and non-clerical payroll by state\n **avg_rates**: Dictionary containing the average clerical and non-clerical rates for input\n **user_experience_mod**: User input experience mod factor Return: The total standard premium that is missing based on the inputs """ missing_clerical_payroll = max(0, user_estimated_clerical_payroll - payrolls['payroll_clerical'].sum()) missing_non_clerical_payroll = max(0, user_estimated_non_clerical_payroll - payrolls['payroll_non_clerical'].sum()) allocated_clerical_class_premium = payrolls['allocated_clerical_class_premium'].sum() unknown_clerical_class_premium = (allocated_clerical_class_premium if allocated_clerical_class_premium > 0 else avg_rates['avg_clerical_rate'] * missing_clerical_payroll) unknown_non_clerical_class_premium = missing_non_clerical_payroll * avg_rates['avg_non_clerical_rate'] missing_clerical_standard_premium = unknown_clerical_class_premium * user_experience_mod missing_non_clerical_standard_premium = unknown_non_clerical_class_premium * user_experience_mod return missing_clerical_standard_premium + missing_non_clerical_standard_premium def calc_allocated_standard_premium(payrolls, standard_premium_to_allocate): """Calcualtes the allocated the standard premiums for each state Distributes the missing standard premium to each state based on the standard premium ratio, and adds the calculated standard premium for the state to get the final allocated standard premium for the state. The function modifies the payrolls DataFrame in place by adding a ``allocated_standard_premium`` column Args: **payrolls**: DataFrame containing the standard premium value and ratio for each state\n **standard_premium_to_allocate**: The missing standard premium that needs to be distributed among the states """ payrolls['allocated_standard_premium'] = (payrolls['standard_premium'] + (payrolls['standard_premium_ratio'] * standard_premium_to_allocate)) def calc_premium_discount(payrolls, other_loadings, ncci_tier_files): """Calculates the premium discount to be applied to each state Reads the discount tables for NCCI state groups (currently only 7 and 9) and calculates the discount for each bucket within that group, totals it and puts it as ``premium_discount`` column in the ``payrolls`` DataFrame. The function also calculates the manual rate for each state as ``manual_rate`` column in the payrolls DataFrame. Args: **payrolls**: DataFrame containing the allocated standard premium for each state\n **other_loadings**: Other loadings factor for the rate calculations\n **ncci_tier_files**: A dict containing the NCCI tier number as key, and the filename as the value """ ncci_table7 = read_discount_lookup(ncci_tier_files[7]) ncci_table9 = read_discount_lookup(ncci_tier_files[9]) t9_states = get_t9_states() def __discount_amount_helper(row): if row['state'] in t9_states: table = ncci_table9 else: table = ncci_table7 return get_discount_amount(row['allocated_standard_premium'], table) payrolls['premium_discount'] = payrolls.apply(__discount_amount_helper, axis=1) payrolls['manual_rate_pre_model'] = (1 + other_loadings) * (payrolls['allocated_standard_premium'] - payrolls['premium_discount']) payrolls['manual_rate'] = (1 + other_loadings) * (payrolls['standard_premium'] - payrolls['premium_discount']) def calc_normalized_claim_counts(input_history, predom_state, aqi_data, total_class_premium, cdf_file): """Calculates the normalized indemnity and medical claim counts and ratio Uses the user input claim count history and the reference CDFs to calculate the normalized claim counts for the last 3 years, and calculates the indemnity to medical claim count ratio using the credibilty and global average from AQI profitability studies. Claim counts are calculated as 2 * claim count in prior year + claim counts in two years before that. CDF adjusted premium is also calculated similarly. Normalized claim counts are calculated by dividing the claim counts by the CDF adjusted premium in millions. The indemnity to medical claim ratio is calculated by adding the average respective claim frequency times the credibility (as obtained from AQI profitability study) to the claim counts, and then taking the ratio. Args: **input_history**: User input claim count history DataFrame\n **predom_state**: State whose CDFs are used\n **aqi_data**: A dictionary containing the keys ``credibility``, ``avg_indemenity_frequency_3yrs`` and ``avg_medical_frequency_3yrs``\n **total_class_premium**: Class premium value to use to calculate CDF adjusted premium\n **cdf_file**: csv file containing the CDF data Return: A pandas DataFrame containing the ``indemnity_claim_count``, ``medical_claim_count``,``cdf_adjusted_premium``, ``norm_indemnity_claim_count``, ``norm_medical_claim_count`` and ``indemnity_medical_ratio`` as keys, with their corresponding values """ __calc_claim_count = lambda column: input_history[column].sum() + input_history[input_history['years_before'] == 1][column] __norm_claim_count = lambda value, premium: value / (premium / 1000000) credibility = aqi_data['credibility'] avg_indemnity_frequency_3yrs = aqi_data['avg_indemnity_frequency_3yrs'] avg_medical_frequency_3yrs = aqi_data['avg_medical_frequency_3yrs'] cdfs = read_cdf(cdf_file, predom_state) cdfs['cdf_premium'] = cdfs['inverse_cdf'] * total_class_premium cdf_premium_3yrs = cdfs['cdf_premium'].sum() + cdfs.loc[cdfs['prior_year'] == 1]['cdf_premium'].sum() indemnity_claim_count = __calc_claim_count('ind_claim_count') medical_claim_count = __calc_claim_count('med_claim_count') norm_indemnity_claim_count = __norm_claim_count(indemnity_claim_count, cdf_premium_3yrs) norm_medical_claim_count = __norm_claim_count(medical_claim_count, cdf_premium_3yrs) indemnity_medical_ratio = ((indemnity_claim_count + (credibility * avg_indemnity_frequency_3yrs)) / (medical_claim_count + (credibility * avg_medical_frequency_3yrs))) return pandas.DataFrame.from_dict(data={'indemnity_claim_count': indemnity_claim_count, 'medical_claim_count': medical_claim_count, 'cdf_adjusted_premium': cdf_premium_3yrs, 'norm_indemnity_claim_count': norm_indemnity_claim_count, 'norm_medical_claim_count': norm_medical_claim_count, 'indemnity_medical_ratio': indemnity_medical_ratio }, orient='columns') def calc_entered_payroll_ratios(input_data): """Calculates the entered clerical and non-clerical payroll ratios Entered clerical payroll ratio is defined as the clerical payroll entered divided by the total projected payroll. Max is 1. Entered non-clerical payroll ratio is defined as the non-clerical payroll entered divided the non-clerical payroll estimated. The estimated non-clerical payroll ratio is ``1 - max(entered_clerical_payroll_ratio, user_estimated_clerical_payroll_ratio)`` If this is 0, the entered non-clerical payroll ratio is 0. Otherwise, max is 1. Args: **input_data**: User input state, class code and payroll data after clerical and non-clerical payrolls have been calculated Return: A dictionary containing the entered ratios with keys as ``clerical`` and ``non_clerical`` """ entered_clerical_payroll_ratio = min(1, input_data['payroll_clerical'].sum() / user_total_projected_payroll) estimated_non_clerical_payroll_ratio = 1 - max(entered_clerical_payroll_ratio, user_estimated_clerical_payroll_ratio) if estimated_non_clerical_payroll_ratio > 0: estimated_total_non_clerical_payroll = estimated_non_clerical_payroll_ratio * user_total_projected_payroll entered_non_clerical_payroll_ratio = min(1, input_data['payroll_non_clerical'].sum() / estimated_total_non_clerical_payroll) else: entered_non_clerical_payroll_ratio = 0 return {'clerical': entered_clerical_payroll_ratio, 'non_clerical': entered_non_clerical_payroll_ratio} def calc_diamond_bound_ratios(entered_clerical_payroll_ratio, entered_non_clerical_payroll_ratio, bound_ratios_filename): """Calculates the upper and lower bound ratios for the diamond Args: **entered_clerical_payroll_ratio**: The ratio of clerical payroll to the total payroll entered\n **entered_non_clerical_payroll**: The ratio of non clerical payroll entered to the non clerical payroll estimated\n **bound_ratios_filename**: csv file containing the bound ratios for each division Return: A tuple whose 0th element is the lower bound ratio, and 1st element is the upper bound ratio. If ratios cannot be calculated, both are ``numpy.NaN`` """ if 0.5 < entered_non_clerical_payroll_ratio < 1: base_ratio = entered_non_clerical_payroll_ratio elif 0.5 < entered_clerical_payroll_ratio < 1 and user_estimated_clerical_payroll_ratio == 1: base_ratio = entered_clerical_payroll_ratio else: return (numpy.NaN, numpy.NaN) bounds_base = (base_ratio - round_down(base_ratio, 1)) * 10 bound_ratios = pandas.read_csv(bound_ratios_filename) bounds = bound_ratios.select(lambda ix: bound_ratios['ratio_lower_cap'][ix] < base_ratio <= bound_ratios['ratio_upper_cap'][ix] ).to_dict('records')[0] return ((bounds_base * bounds['lower_bound_delta']) + bounds['lower_bound_ratio'], (bounds_base * bounds['upper_bound_delta']) + bounds['upper_bound_ratio']) def check_inputs(input_data, entered_ratios): """Checks whether inputs can be used by model for scoring Args: **input_data**: User input state, class code and payroll data after clerical and non-clerical payrolls have been calculated\n **entered_ratios**: The entered ratios dictionary returned by ``calc_entered_payroll_ratios(input_data)`` Return: A tuple whose 0th element indicates whether inputs are usable or not, and if not, the 1st element provides the reason """ if input_data['payroll'].sum() > (user_total_projected_payroll + 100): return (False, 'Input payroll exceeds total projected payroll') if input_data['payroll_clerical'].sum() > (user_total_projected_payroll * (user_estimated_clerical_payroll_ratio + 0.01)): return (False, 'Clerical payroll entry exceeds total clerical payroll estimate') estimated_non_clerical_payroll_ratio = 1 - max(entered_ratios['clerical'], user_estimated_clerical_payroll_ratio) if input_data['payroll_non_clerical'].sum() > (user_total_projected_payroll * (estimated_non_clerical_payroll_ratio + 0.01)): return (False, 'Non-clerical payroll entry exceeds total non-clerical payroll estimate') if ((user_estimated_clerical_payroll_ratio == 1 and entered_ratios['clerical'] > 0.6) or (user_estimated_clerical_payroll_ratio < 1 and entered_ratios['non_clerical'] > 0.6)): return (True, '') return (False, 'Not enough payroll data entered') def run_model(model_inputs, model_coefficients_filename, rules_dict): """Runs the model based on the provided inputs Builds a GLMModel object from the external coefficients, loads the rules to convert apply the model coefficients based on the inputs and then runs the model based on the inputs provided. Args: **model_inputs**: A dictionary or DataFrame containing the variables required by the model as keys\n **model_coefficients_filename**: Path to file containing the model coefficients for the Worker's Comp GC model\n **rules_dict**: Dictionary with lambda functions to derive the features used by the model from the input variables Return: The predicted loss ratio for the account """ wc_gc_model = GLMModel(pandas.read_csv(model_coefficients_filename)) wc_gc_model.load_rules(rules_dict) return math.exp(wc_gc_model.prep_data_and_score(model_inputs.iloc[0])[0]) def main_wc_gc_model(): config = ConfigParser.ConfigParser() config.read('config/model_config.config') app_log = setup_logging('wc_gc_logger', config.get('logger', 'log_file_name')) app_log.info('Scoring DUNS number: %d' % user_duns_number) rate_lookup_table = read_rate_lookup(config.get('data_files', 'rate_lookup'), user_is_uslh) input_data['lookup_key'] = input_data['state'] + input_data['class_code'] avg_rates = merge_rate_lookup(input_data, rate_lookup_table) entered_ratios = calc_entered_payroll_ratios(input_data) inputs_valid, reason = check_inputs(input_data, entered_ratios) if not inputs_valid: return (numpy.NaN, numpy.NaN, numpy.NaN, reason) payrolls = calc_payroll_ratio(input_data) calc_allocate_clerical_payroll(payrolls, user_estimated_clerical_payroll) calc_clerical_class_premium(payrolls, rate_lookup_table) calc_standard_premium(payrolls, user_experience_mod) standard_premium_to_allocate = calc_missing_standard_premium(payrolls, avg_rates, user_experience_mod) calc_allocated_standard_premium(payrolls, standard_premium_to_allocate) calc_premium_discount(payrolls, config.getfloat('constants', 'other_loadings'), eval(config.get('data_files', 'ncci_tier_files'))) state_rate_data = merge_wcng_lr_rate_need(payrolls, user_division, user_effective_date, user_is_uslh, config.get('data_files', 'state_rate_need_lookup'), config.get('data_files', 'wcng_lr')) credit_scores = get_dnb_scores(user_duns_number, default_credit_score_pct=config.get('constants', 'default_duns_cs_pct'), default_financial_score_pct=config.get('constants', 'default_duns_fs_pct')) total_class_premium = input_data['class_premium'].sum() predom_state = input_data.groupby(by='state')['class_premium'].sum().idxmax(axis=1) model_inputs = calc_normalized_claim_counts(input_history, predom_state, eval(config.get('aqi', 'aqi_data')), total_class_premium, config.get('data_files', 'cdf_file')) model_inputs['credit_score_pct'] = credit_scores['credit_score_pct'] model_inputs['financial_score_pct'] = credit_scores['financial_score_pct'] model_inputs['payroll'] = user_total_projected_payroll model_inputs['major_group'] = get_sic_major_group(user_sic_code) predicted_lr = run_model(model_inputs, config.get('data_files', 'model_coefficients_file'), eval(config.get('model_rules', 'rules'))) state_rate_data['target_pricing_deviation_factor'] = (((predicted_lr / state_rate_data['avg_wcng_loss_ratio']) * state_rate_data['variable_rate_need']) + state_rate_data['fix_rate_need']) state_rate_data['estimated_premium'] = state_rate_data['target_pricing_deviation_factor'] * state_rate_data['manual_rate_pre_model'] output_midpoint = state_rate_data['estimated_premium'].sum() lower_ratio, upper_ratio = calc_diamond_bound_ratios(entered_ratios['clerical'], entered_ratios['non_clerical'], config.get('data_files', 'bound_ratios')) return (output_midpoint * lower_ratio, output_midpoint, output_midpoint * upper_ratio, '')
[ "ven.karri@aig.com" ]
ven.karri@aig.com
cddab9580d9af9da3a18d635c9717ed2acc1f201
4bc2d855558ccb962991f997e9779919031687dd
/capstone/causalmodel/migrations/0001_initial.py
d9fe267a7a9b8e4c5697913127b312847c7b2554
[]
no_license
jmblontoc/Likha-Capstone
80081e44b7ad6457eb776432e623c6db8b7a17e2
e1c32911b58cd1419c8e1a554ac32210456d201d
refs/heads/master
2022-12-10T03:26:32.946638
2018-12-09T04:33:10
2018-12-09T04:33:10
134,726,142
0
1
null
2022-11-25T23:52:42
2018-05-24T14:21:36
Python
UTF-8
Python
false
false
1,187
py
# Generated by Django 2.0.5 on 2018-06-27 15:33 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='DataMap', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('metric', models.CharField(max_length=255)), ('value', models.DecimalField(decimal_places=2, max_digits=10)), ('threshold', models.DecimalField(decimal_places=2, max_digits=10)), ], ), migrations.CreateModel( name='RootCause', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ], ), migrations.AddField( model_name='datamap', name='root_cause', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='causalmodel.RootCause'), ), ]
[ "37819032+jmblontoc@users.noreply.github.com" ]
37819032+jmblontoc@users.noreply.github.com
3ad629c37259ce486878f28cf6844c6bc01b524f
bdb781b295f2c4fe570ff2db39b9bfe38cab6476
/example/auth0login/urls.py
68805a4c05ba7da12313edc66b0c5a93f436d96a
[]
no_license
jangita/learn-django-auth0
c8386dc138e9706c9507c5472402b60cb119bc17
3cdf25a066409dd7acecf0308ed901fbc136fddb
refs/heads/master
2023-01-02T01:34:53.665904
2020-10-28T03:17:53
2020-10-28T03:17:53
308,088,482
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
urlpatterns = [ path('', views.index), path('dashboard', views.dashboard), path('logout', views.logout), path('', include('django.contrib.auth.urls')), path('', include('social_django.urls')), ]
[ "jangita.nyagudi@gmail.com" ]
jangita.nyagudi@gmail.com
7557f544a64fd0f4ff99c1cbdade203205fdfb81
279967844e5b35f5d926f75f34d2a3e926819a52
/covid-19-timelapse/dashapps/term_frequency/utils.py
9e1c38043f6edbf626ced82cf315979851293bb5
[ "Apache-2.0" ]
permissive
thehonduranjazzman/developer-platform
e22e62c27714e531fb87c77087aafb286221a797
ba3d8be69c78dc3ec189d0e1df045f5e7272341c
refs/heads/master
2022-05-23T18:27:27.935734
2020-04-22T08:54:13
2020-04-22T08:54:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,727
py
import collections import json import random import re from datetime import datetime import fastavro import nltk import pandas as pd import requests from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.util import ngrams from .config import TERMS_TO_REMOVE # nltk.download('stopwords') # nltk.download('punkt') def ngram_frequencies(n, articles, verbose=True, start_date=None, end_date=None): """ Generate NGram frequencies from an article dataframe Args: n (int): The size of the ngram articles (pandas.DataFrame): Articles to process verbose (bool): Whether or not to print some useful information while the process is running. Returns: Frequencies (dict): Dict containing ngram counts by day. """ if start_date: articles = articles[articles['publication_datetime'] >= start_date] if end_date: articles = articles[articles['publication_datetime'] < end_date] articles['publication_datetime'] = articles['publication_datetime'].dt.floor( 'D') grouped_by_pub_date = articles.sort_values( by='publication_datetime').groupby(['publication_datetime']) if verbose: print('Number of groups (days): {}'.format( len(grouped_by_pub_date.groups))) sw = set(stopwords.words('english')) frequencies = {} for i, group in enumerate(grouped_by_pub_date.groups): articles = grouped_by_pub_date.get_group(group) article_tokens = [word.lower() for text in articles['full_articles'] for word in word_tokenize(text) if (not word in sw) and word.isalnum()] ngrams_ = ngrams(article_tokens, n) counted = collections.Counter(ngrams_) most_common = {' '.join(list(k)): v for ( k, v) in counted.most_common(100)} pub_date_str = datetime.strftime(group, '%Y-%m-%d') #pub_date_str = datetime.strftime(group, '%#m/%d/%Y') if group in frequencies.keys(): frequencies[pub_date_str].update(most_common) else: frequencies[pub_date_str] = {} frequencies[pub_date_str].update(most_common) if verbose: if i > 0 and i % 5 == 0: print('Processed {} groups.'.format(i)) return frequencies def strip_split(value): return value.strip(',').split(',') def strip_commas(value): return value.strip(',') def clean_up_text(string): if string: return re.sub(r'[^A-Za-z0-9!?.,:;\' ]', ' ', string) return '' def process_datetimes(value): return datetime.utcfromtimestamp(value / 1000) def snapshot_files_to_dataframe(user_key, snapshot_id): ''' Retrieve the files from a completed extraction Args: user_key: Snapshots API user key. files: The file URI list retrieved from a completed snapshot job. ''' headers = { 'content-type': 'application/json', 'user-key': user_key } article_dataframes = [] job_url = 'https://api.dowjones.com/alpha/extractions/documents/{}'.format( snapshot_id) files = requests.get(job_url, headers=headers).json()[ 'data']['attributes']['files'] for f in files: uri = f['uri'] file_name = uri.split('/')[-1] if len(file_name) > 0: file_response = requests.get( uri, headers=headers, allow_redirects=True, stream=True) file_response.raw.decode_content = True records = fastavro.reader(file_response.raw) records_df = pd.DataFrame(records) article_dataframes.append(records_df) data = pd.concat(article_dataframes, ignore_index=True) return data def reformat_dataframe(source_df): """ Reformat dataframe to use in the graph. Args: source_df: DataFrame to reformat Returns: New dataframe: reformatted dataframe """ new_df = pd.DataFrame(columns=['day', 'term', 'count']) for i in range(len(source_df)): for j in source_df.iloc[i].index: new_df = new_df.append({ 'day': source_df.iloc[i].name, 'term': str(j), 'count': source_df.iloc[i][j] }, ignore_index=True) return new_df def generate_figure(source_df): """ Generate figure with a slider Args: source_df: Dataframe with data to use for the figure Returns: Figure dict containing necessary parameters to pass to go.Figure() """ # Define the figure fig_dict = { 'data': [], 'layout': {}, 'frames': [] } days = [] for day in source_df['day']: if day not in days: days.append(day) terms = [] for term in source_df['term']: if term not in terms: terms.append(term) fig_dict['layout']['xaxis'] = { 'range': [source_df['day'].min(), source_df['day'].max()], 'title': 'Publication Date' } fig_dict['layout']['yaxis'] = { 'range': [0, 4000], 'title': 'Term Frequency' } fig_dict['layout']['title'] = 'COVID-19 - Term Evolution' fig_dict['layout']['hovermode'] = 'x' fig_dict['layout']['sliders'] = { 'args': [ 'transition', { 'duration': 0, 'easing': 'linear' } ], 'initialValue': days[0], 'plotlycommand': 'animate', 'values': days, 'visible': True } sliders_dict = { 'active': 0, 'yanchor': 'top', 'xanchor': 'left', 'currentvalue': { 'font': { 'size': 12 }, 'visible': True, 'xanchor': 'right' }, 'transition': { 'duration': 0, 'easing': 'linear' }, 'pad': { 'b': 10, 't': 50 }, 'len': 1.0, 'steps': [] } # Generate the first point in the display day_1 = days[0] for term in terms: dataset_by_day = source_df[source_df['day'] == day_1] dataset_by_day_and_term = dataset_by_day[dataset_by_day['term'] == term] data_dict = { 'x': list(dataset_by_day_and_term['day']), 'y': list(dataset_by_day_and_term['count']), 'mode': 'lines', 'text': list(dataset_by_day_and_term['term']), 'name': term, 'line': { 'width': 3 }, 'showlegend': True } fig_dict['data'].append(data_dict) all_x = [] # Create frames for i, day in enumerate(days): all_x.append(day) frame = {'data': [], 'name': str(day)} for term in terms: dataset_by_day = source_df[source_df['day'] == day] dataset_by_day_and_term = dataset_by_day[dataset_by_day['term'] == term] all_counts = list(source_df[source_df['term'] == term]['count']) if i == 0: all_y = [all_counts[i]] else: all_y = all_counts[:i+1] data_dict = { 'x': all_x, 'y': all_y, 'mode': 'lines', 'text': list(dataset_by_day_and_term['term']), 'name': term, 'line': { # 'color': term_color_dict[term] 'width': 3 }, 'showlegend': True } frame['data'].append(data_dict) fig_dict['frames'].append(frame) slider_step = { 'args': [ [day], { 'frame': { 'duration': 0, 'redraw': False }, 'mode': 'immediate', 'transition': { 'duration': 0 } } ], 'label': day, 'method': 'animate' } sliders_dict['steps'].append(slider_step) fig_dict['layout']['sliders'] = [sliders_dict] return fig_dict def update_terms_figure(date, terms_df): """ Generate a figure frame using the date. Args: date: The date until to generate the frame. terms_df: Dataframe to use. """ filtered_df = terms_df[terms_df['day'] <= date] days = [day for day in filtered_df['day'].unique()] terms = [term for term in filtered_df['term'].unique()] traces = [] for term in terms: counts = list(filtered_df[filtered_df['term'] == term]['count']) data_dict = { 'x': days, 'y': counts, 'mode': 'lines', 'text': [term], 'name': term, 'line': { 'width': 3 } } traces.append(data_dict) return { 'data': traces, 'layout': dict( xaxis = { 'range': [terms_df['day'].min(), terms_df['day'].max()], 'title': 'Publication Date', 'showgrid': False }, yaxis = { 'range': [0, 3500], 'title': 'Term Frequency', 'showgrid': False }, hovermode = 'x', title = 'Bi-grams in the news', paper_bgcolor = '#39485A', plot_bgcolor = '#39485A', font = dict(color = 'white', family='SimplonRegular') ) } def ngram_dataframe_from_file(bigrams_or_path, read_from_file=False, start_date=None): """ Generate the ngram dataframe to use in charts from a file. Args: bigrams_or_path (str): Either the bigrams to use for dataframe, or file path to read bigrams from. read_from_file (bool): Whether or not to read bigrams from file. Returns: Dataframe containing dates, bigrams, counts to use in the charts. """ if read_from_file: bigrams = json.load(open(bigrams_or_path, 'rt', encoding='utf-8')) else: bigrams = bigrams_or_path bigram_df = pd.DataFrame.from_dict(bigrams).fillna(0) date_ind = bigram_df.swapaxes('index', 'columns', copy=True) date_ind = date_ind[date_ind.index >= '2020-03-06'] date_ind = date_ind[date_ind.index <= '2020-04-01'] to_remove = TERMS_TO_REMOVE top_ngrams = date_ind.sum().sort_values(ascending=False).head(100) top_ngrams = top_ngrams.keys().tolist() relevant_terms = set(top_ngrams) - set(to_remove) df_for_chart = date_ind[relevant_terms] return reformat_dataframe(df_for_chart)
[ "miballegh@outlook.com" ]
miballegh@outlook.com
bee21a100ddcbd04daa619398ab9c09790be2d86
106536a7448d4414fac079cb657044f1dc92a588
/framework/machine.py
6cb012ab17185fe4a33168086a06f249a3002025
[]
no_license
ChrisQiqiang/drlScheduler
0b9a10c8de4883cea2ada7565cdfb65185608dc4
2cd8b984bfed16687a7852baccb79742d1a35773
refs/heads/main
2023-08-03T17:55:17.654560
2021-09-14T15:17:56
2021-09-14T15:17:56
405,674,031
0
0
null
null
null
null
UTF-8
Python
false
false
4,161
py
from framework.instance import Instance class MachineConfig(object): # def __init__(self, machine_id, cpu_capacity, memory_capacity, disk_capacity):#, cpu=None, memory=None, disk=None): # self.id = machine_id # self.cpu_capacity = cpu_capacity # self.memory_capacity = memory_capacity # self.disk_capacity = disk_capacity # """self.cpu = cpu_capacity if cpu is None else cpu # self.memory = memory_capacity if memory is None else memory # self.disk = disk_capacity if disk is None else disk""" # self.to_schedule = False def __init__(self, machine_id, cpu_capacity): self.id = machine_id self.cpu_capacity = cpu_capacity self.to_schedule = False class Machine(object): # def __init__(self, machine_config): # self.id = machine_config.id # self.cpu_capacity = machine_config.cpu_capacity # self.memory_capacity = machine_config.memory_capacity # self.disk_capacity = machine_config.disk_capacity # """self.cpu = machine_config.cpu # self.memory = machine_config.memory # self.disk = machine_config.disk""" # self.cluster = None # self.instances = {} def __init__(self, machine_config): self.id = machine_config.id self.cpu_capacity = machine_config.cpu_capacity self.cluster = None self.instances = {} def attach(self, cluster): self.cluster = cluster def add_instance(self, instance_config): # assert instance_config.cpu <= self.cpu and instance_config.memory <= self.memory and instance_config.disk <= self.disk # print('instance_config.cpu = ', instance_config.cpu, ', self.cpu = ', self.cpu) # assert instance_config.cpu <= self.cpu instance = Instance(instance_config) self.instances[instance.id] = instance """self.cpu -= instance.cpu self.memory -= instance.memory self.disk -= instance.disk""" instance.attach(self) # def accommodate_w(self, instance, cpu_threshold=0.75, memory_threshold=0.75, disk_threshold=0.75): # return self.cpu - instance.cpu >= self.cpu_capacity * (1 - cpu_threshold) \ # and self.memory - instance.memory >= self.memory_capacity * (1 - memory_threshold) \ # and self.disk - instance.disk >= self.disk_capacity * (1 - disk_threshold) def accommodate_w(self, instance, cpu_threshold=0.75): return self.cpu - instance.cpu >= self.cpu_capacity * (1 - cpu_threshold) # def accommodate_wo(self, instance, cpu_threshold=0.75, memory_threshold=0.75, disk_threshold=0.75): # return self.cpu + instance.cpu >= self.cpu_capacity * (1 - cpu_threshold) \ # and self.memory + instance.memory >= self.memory_capacity * (1 - memory_threshold) \ # and self.disk + instance.disk >= self.disk_capacity * (1 - disk_threshold) def accommodate_wo(self, instance, cpu_threshold=0.75): return self.cpu + instance.cpu >= self.cpu_capacity * (1 - cpu_threshold) def pop(self, instance_id): instance = self.instances.pop(instance_id) """self.cpu += instance.cpu self.memory += instance.memory self.disk += instance.disk""" instance.machine = None return instance def push(self, instance): self.instances[instance.id] = instance """self.cpu -= instance.cpu self.memory -= instance.memory self.disk -= instance.disk""" instance.attach(self) @property def cpu(self): occupied = 0 for instance in self.instances.values(): occupied += instance.cpu return self.cpu_capacity - occupied # @property # def memory(self): # occupied = 0 # for instance in self.instances.values(): # occupied += instance.memory # return self.memory_capacity - occupied # @property # def disk(self): # occupied = 0 # for instance in self.instances.values(): # occupied += instance.disk # return self.disk_capacity - occupied
[ "2290142073@qq.com" ]
2290142073@qq.com
770781cf8434a6484eb3418aafba1bd504f0315d
1a819b4d69a7c455199b638b1609d3284ecbf255
/alttprbot_srl/racebot.py
c760ffc28d30de0301fd73fb1bf3fb04a1d6a28b
[]
no_license
Maxor14/sahasrahbot
5167355a23a4e9d91171b583fe8065acd0ab99a6
9183933869f87743d94867cf52c463179d0b687a
refs/heads/master
2021-05-22T21:30:54.015013
2020-04-01T01:01:47
2020-04-01T01:01:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,951
py
import asyncio import math import re import ircmessage from alttprbot.database import spoiler_races, srl_races from alttprbot.tournament import league from alttprbot.util.srl import srl_race_id from alttprbot_srl import alt_hunter, discord_integration from config import Config as c starting = re.compile( "\\x034\\x02The race will begin in 10 seconds!\\x03\\x02") go = re.compile("\\x034\\x02GO!\\x03\\x02") newroom = re.compile( "Race initiated for (.*)\. Join\\x034 (#srl-[a-z0-9]{5}) \\x03to participate\.") runnerdone = re.compile( "(.*) (has forfeited from the race\.|has finished in .* place with a time of [0-9][0-9]:[0-9][0-9]:[0-9][0-9]\.)") racedone = re.compile( "^Status: Complete \| Game: .*$" ) srl_game_whitelist = [ 'The Legend of Zelda: A Link to the Past Hacks', 'A Link to the Past & Super Metroid Combo Randomizer' ] async def topic_change_handler(target, source, message, client): if not (source == 'RaceBot' or source == 'synack'): return if target.startswith('#srl-') and racedone.search(message): await asyncio.sleep(5) await league.process_league_race_finish(target, client) async def handler(target, source, message, client): if not (source == 'RaceBot' or source == 'synack'): return srl_id = srl_race_id(target) if target == '#speedrunslive': result = newroom.search(message) if result and result.group(1) in srl_game_whitelist: if not c.DEBUG: await asyncio.sleep(1) await client.join(result.group(2)) await asyncio.sleep(60) await client.message(result.group(2), "Hi! I'm SahasrahBot, your friendly robotic elder and ALTTPR/SMZ3 seed roller. To see what I can do, visit https://sahasrahbot.synack.live") else: print(f'would have joined {result.group(2)}') if target.startswith('#srl-'): if starting.match(message) or message == 'test starting': race = await srl_races.get_srl_race_by_id(srl_id) if race: if not client.in_channel(target): await client.join(target) await client.message(target, f".setgoal {race['goal']}") if race['message'] is not None: await asyncio.sleep(15) await client.message(target, race['message']) await srl_races.delete_srl_race(srl_id) if go.match(message) or message == 'test go': # spoilers race = await spoiler_races.get_spoiler_race_by_id(srl_id) if race: await client.message(target, 'Sending spoiler log...') await client.message(target, '---------------') await client.message(target, f"This race\'s spoiler log: {race['spoiler_url']}") await client.message(target, '---------------') await client.message(target, 'GLHF! :mudora:') await countdown_timer( ircbot=client, duration_in_seconds=race['studytime'], srl_channel=target, beginmessage=True, ) await spoiler_races.delete_spoiler_race(srl_id) await discord_integration.discord_race_start(srl_id) await alt_hunter.check_race(srl_id) if message == 'test complete': await topic_change_handler(target, source, message, client) result = runnerdone.search(message) if result: await discord_integration.discord_race_finish(result.group(1), srl_id) async def countdown_timer(ircbot, duration_in_seconds, srl_channel, beginmessage=False): loop = asyncio.get_running_loop() reminders = [1800, 1500, 1200, 900, 600, 300, 120, 60, 30, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] start_time = loop.time() end_time = loop.time() + duration_in_seconds while True: # print(datetime.datetime.now()) timeleft = math.ceil(start_time - loop.time() + duration_in_seconds) # print(timeleft) if timeleft in reminders: minutes = math.floor(timeleft/60) seconds = math.ceil(timeleft % 60) if minutes == 0 and seconds > 10: msg = f'{seconds} second(s) remain!' elif minutes == 0 and seconds <= 10: msg = ircmessage.style( f"{seconds} second(s) remain!", fg='green', bold=True) else: msg = f'{minutes} minute(s), {seconds} seconds remain!' await ircbot.message(srl_channel, msg) reminders.remove(timeleft) if loop.time() >= end_time: if beginmessage: await ircbot.message(srl_channel, ircmessage.style('Log study has finished. Begin racing!', fg='red', bold=True)) break await asyncio.sleep(.5)
[ "tcprescott@gmail.com" ]
tcprescott@gmail.com
49af44e9d1dc28c1ec60101728e6a68fa331e058
9788bf7929da8a87d7dfab8b633601122df88bf2
/accounts/urls.py
920c688f52fbd6db80c3959580af4dc27ff733f8
[]
no_license
praneshsaminathan/dukaan
d0eab83d28625857a84c6f6ab1f44619326985b3
f4986966892fb7b3cede083b142bccf35174e068
refs/heads/main
2023-03-02T02:38:15.003309
2021-02-10T17:20:43
2021-02-10T17:20:43
337,749,463
0
0
null
null
null
null
UTF-8
Python
false
false
556
py
from django.urls import path, include from rest_framework.routers import DefaultRouter from accounts.views import LoginAPIView, GenerateOTPAPIView, StoreViewSet from dukaan.utils.apps import get_api_url router = DefaultRouter(trailing_slash=True) router.register(r'stores', StoreViewSet, 'api-stores') urlpatterns = [ path(get_api_url(), include(router.urls)), path(get_api_url(url_name='generate-otp'), GenerateOTPAPIView.as_view(), name='ap-generate-otp'), path(get_api_url(url_name='login'), LoginAPIView.as_view(), name='api-login') ]
[ "pranesh" ]
pranesh
4ddc52309634f93275931f026fe9acd394cf88e0
04d1c898b4fdd1b55785c48260f0b7efcd8d0060
/int.py
76537a32fd9ae97927370dbb376a91ce8b0d25a7
[]
no_license
protosscom/python-ch2.2
27799f8971839456333aa61ba249c2c67b04efa9
61e70008f4261068bb7c570b2f9eaa6a6940f87b
refs/heads/master
2020-04-10T16:03:52.606662
2018-12-10T07:04:40
2018-12-10T07:04:40
161,131,186
0
0
null
null
null
null
UTF-8
Python
false
false
293
py
# 2진, 8진, 10진, 16진 Literal a = 23 print(type(a)) b = 0b1101 o = 0o23 h = 0x23 print(b, o, h) # 3.x에서는 int와 long이 합쳐졌다. 표현범위가 무한대 e = 2**1024 print(type(e)) print(e) print(e.bit_length()) # 변환 함수 print(oct(38)) print(hex(38)) print(bin(38))
[ "protosscom@gmail.com" ]
protosscom@gmail.com
0a034e44b177bb293899d150df0f040bea24495c
8e35bffd191e2eec8b50370828ca954b5e249ae8
/flaskps/resources/api/ciclos_lectivos.py
ab6b587733294ca3a1e1d6c424845cb928fd9b7a
[]
no_license
jmsolar/proySoft2019
6a0e42af239f13f3a7e314f5cf740c2a6b6d7a51
bc607c3e0c9830d5a0b48d88e299df46b5b20c6f
refs/heads/master
2023-05-30T02:44:02.410680
2020-01-21T17:23:06
2020-01-21T17:23:06
235,398,209
0
0
null
2023-05-22T22:38:36
2020-01-21T17:16:12
HTML
UTF-8
Python
false
false
1,903
py
from flask_restful import Resource from flask_restful import request from flaskps.models.ciclo_lectivo import CicloLectivoModel from flaskps.models.configuracion import Configuracion class CicloLectivo(Resource): def get(self): datatables = False page = None if request.args.__len__() == 0: ciclos = CicloLectivoModel.all() else: datatables = True start = int(request.args['start']) page = 1 if start != 0: page = start / Configuracion.get_config().registros_por_pagina + 1 order = {'column': request.args['columns[' + request.args['order[0][column]'] + '][data]'], 'dir': request.args['order[0][dir]']} page = CicloLectivoModel.all_by_page(page, order) ciclos = page.items ciclos_lectivos = [] for ciclo in ciclos: semestre = "Primero" if (ciclo.semestre == 0) else "Segundo" c = { "id": ciclo.id, "fecha_ini": ciclo.fecha_ini.strftime("%d/%m/%Y"), "fecha_fin": ciclo.fecha_fin.strftime("%d/%m/%Y"), "semestre": semestre } ciclos_lectivos.append(c) if datatables: return { "draw": request.args['draw'], "recordsTotal": page.total, "recordsFiltered": page.total, "data": ciclos_lectivos } else: return ciclos_lectivos class CicloLectivoTalleres(Resource): def get(self, id): ciclo = CicloLectivoModel.find_by_id(id) talleres = [] for taller in ciclo.talleres: t = { "id": taller.id, "nombre": taller.nombre } talleres.append(t) return { "talleres": talleres }
[ "matias.solar@outlook.com" ]
matias.solar@outlook.com
0dc52145873acef997045ced74eebb0ce1aa6d7f
19b0fd18df23da2999d298ee9aa426451b4e5c12
/src/sonic_ax_impl/mibs/vendor/__init__.py
5514a7346795691dbb1528f20f694081290f58e4
[ "Apache-2.0" ]
permissive
qiluo-msft/sonic-snmpagent
ced0e2fd053bbed60ee5f22c1794040105ab5a4f
a5b2983be06fa51a711cded92cbc4f089a147233
refs/heads/master
2023-02-19T15:17:49.463707
2022-03-28T18:15:00
2022-03-28T18:15:00
79,850,509
0
0
NOASSERTION
2023-02-14T21:49:13
2017-01-23T21:33:48
Python
UTF-8
Python
false
false
2,146
py
import collections import time import psutil from ax_interface import MIBUpdater from sonic_ax_impl import logger class SystemUtilizationHandler(MIBUpdater): def __init__(self): super().__init__() # From the psutil documentation https://pythonhosted.org/psutil/#psutil.cpu_percent: # # Warning the first time this function is called # with interval = 0.0 or None it will return a # meaningless 0.0 value which you are supposed # to ignore. psutil.cpu_percent() # '...is recommended for accuracy that this function be called with at least 0.1 seconds between calls.' time.sleep(0.1) # a sliding window of 60 contiguous 5 sec utilization (up to five minutes) self.cpuutils = collections.deque([psutil.cpu_percent()], maxlen=60) self.system_virtual_memory = psutil.virtual_memory() logger.debug('System Utilization handler initialized.') def get_cpuutil_5sec(self): """ :return: Last polled CPU utilization. """ return int(self.cpuutils[-1]) def get_cpuutil_1min(self): """ :return: Up to one minute's worth of average CPU utilization. """ past_utilization = list(self.cpuutils)[-12:] return int(sum(past_utilization) / len(past_utilization)) def get_cpuutil_5min(self): """ :return: Up to five minute's worth of average CPU utilization. """ return int(sum(self.cpuutils) / len(self.cpuutils)) def get_memutil(self): """ :return: The current memory utilization (as a percent integer) """ return int(self.system_virtual_memory.percent) def update_data(self): """ Background task to add CPU Utilization sample / refresh memory utilization. """ cpu_util = psutil.cpu_percent() self.cpuutils.append(cpu_util) self.system_virtual_memory = psutil.virtual_memory() logger.debug('Updating CPU/Mem Utilization with: {}% / {}%'.format(cpu_util, self.get_memutil())) sys_util_h = SystemUtilizationHandler()
[ "noreply@github.com" ]
qiluo-msft.noreply@github.com
178a175dbfafdd590e2ff2248e27c5ae44eedd7d
1a6b18b8009f64006771b6da742742db45cedfe0
/Experiment 3/hyperparams.py
b800fe076219572bd4af833256e17f3c0ad8fcfe
[]
no_license
HibaShah/Chinese-English-Translation-Machine-Based-on-sequence-to-sequence-network-speech-synthesis-
a2776987b1d20f08c965f7b6f781fae5f66ab056
ce370129676052e1159c6e42e8ff6cb9be79a044
refs/heads/main
2023-08-17T16:24:46.735428
2021-09-29T07:44:55
2021-09-29T07:44:55
411,400,814
0
0
null
null
null
null
UTF-8
Python
false
false
1,230
py
class Hyperparams: '''Hyper parameters''' # pipeline prepro = False # if True, run `python prepro.py` first before running `python train.py`. vocab = "PE abcdefghijklmnopqrstuvwxyz'.?" # P: Padding E: End of Sentence # data data = "/data/private/voice/LJSpeech-1.0" # data = "/data/private/voice/nick" test_data = 'harvard_sentences.txt' max_duration = 10.0 # signal processing sr = 22050 # Sample rate. n_fft = 2048 # fft points (samples) frame_shift = 0.0125 # seconds frame_length = 0.05 # seconds hop_length = int(sr*frame_shift) # samples. win_length = int(sr*frame_length) # samples. n_mels = 80 # Number of Mel banks to generate power = 1.2 # Exponent for amplifying the predicted magnitude n_iter = 50 # Number of inversion iterations preemphasis = .97 # or None max_db = 100 ref_db = 20 # model embed_size = 256 # alias = E encoder_num_banks = 16 decoder_num_banks = 8 num_highwaynet_blocks = 4 r = 5 # Reduction factor. Paper => 2, 3, 5 dropout_rate = .5 # training scheme lr = 0.001 # Initial learning rate. logdir = "logdir/01" sampledir = 'samples' batch_size = 32
[ "noreply@github.com" ]
HibaShah.noreply@github.com
3eef37096a1b8dfa04f2d43d8a80e433d5771e3c
0d4966bb125abc0def9a48309e8353b05c242c4c
/Test1/diseases/migrations/0001_initial.py
5d68d0d3942a4853924bb3d73981ea9df6115ece
[]
no_license
ChanBong/Viral-De-cease
8b7b30c698883f45f26d2f9f2be7ab787399a484
b44c95cdbf87af76039ae32bbe3ac4502fe9045e
refs/heads/master
2023-02-12T20:49:11.879306
2021-01-11T16:37:20
2021-01-11T16:37:20
327,962,485
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
# Generated by Django 3.1.4 on 2021-01-09 09:05 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Diseas', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('about_s', models.TextField()), ('site', models.URLField()), ('symptoms', models.TextField()), ('about_l', models.TextField()), ], ), ]
[ "harsh_k@ch.iitr.ac.in" ]
harsh_k@ch.iitr.ac.in
07c821b253d8b2176af47cd42bb65e0f706db38a
3109e3a7f2f2dccc5a806695f0adbe0fed879112
/ecommerce/Loma/migrations/0022_auto_20190204_1200.py
4724c3c1c3f80c03fa75c1a13fc32a1f6bb13401
[]
no_license
Maheshwari2604/ecommercee
9ebbf18b4fbf933a0d9641009f7f17ce836de587
4411e7e10eccda907711200d2c0d873db3d7f803
refs/heads/master
2020-04-20T18:03:49.575124
2019-02-12T16:02:05
2019-02-12T16:02:05
169,007,411
1
1
null
null
null
null
UTF-8
Python
false
false
466
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2019-02-04 06:30 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Loma', '0021_auto_20190203_1829'), ] operations = [ migrations.AlterField( model_name='promocode_model', name='promocode_name', field=models.CharField(max_length=11), ), ]
[ "maheshwarishivam2604@gmail.com" ]
maheshwarishivam2604@gmail.com
404cc31ac2c1214b9ebd5d4d1ef590b04436a905
0e130ed05664c02888ed2f7305ddacc34192519f
/changecsv.py
590aea1330fe38d20bbd249578a1c18e515dd5a0
[]
no_license
victormm88/Click_Through_Rate_Prediction
86acd70784fc11d56bb113a9738ce1b549b6abd1
cc2df8724dc95776f3ec6974f13e61a34408ba8c
refs/heads/master
2021-01-21T07:38:57.697293
2015-02-13T05:16:16
2015-02-13T05:16:16
30,741,451
1
0
null
null
null
null
UTF-8
Python
false
false
622
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ''' __author__ = 'Wang Junq' import csv; pre=33563901./6865066; pre=1-pre/(pre+1); f_init=open('l1005.csv','rb'); f_result=open('l1005-change.csv','wb'); csv_init=csv.reader(f_init); csv_result=csv.writer(f_result); tittle=csv_init.next(); csv_result.writerow(tittle); for row in csv_init: # pre=float(row[1]); # if pre<0.25 and pre>0.11: # pre=0.1698; # elif pre>0.6: # pre=0.99; # elif pre>0.4: # pre=0.6; # elif pre>0.35: # pre=0.5; temp_list=[row[0],pre]; csv_result.writerow(temp_list); f_init.close(); f_result.close();
[ "351868656@qq.com" ]
351868656@qq.com
74a40fde608fbfe9129efe89a8eff85127fc7b21
2d8898337f9b16a084bec9c447af9a59d4a8c69c
/server_less/fargate/container-app/main.py
0b4ea91b8e7c73b62847457e7511aa1accc70e6b
[]
no_license
hayaosato/advent-calendar-2019
de22e780ea2a5131da5da5943b93a354dd2e21e9
eba09cf3abfbde2e05f7b0e9eb5ca47fab54cdc1
refs/heads/master
2022-12-28T23:04:32.755496
2019-12-20T03:20:18
2019-12-20T03:20:18
225,546,645
0
1
null
2022-12-08T04:03:50
2019-12-03T06:24:04
HCL
UTF-8
Python
false
false
132
py
""" hoge """ import sys def main(arg): """ hoge """ print(arg) if __name__ == "__main__": main(sys.argv[1])
[ "jake.bibikyary.880@gmail.com" ]
jake.bibikyary.880@gmail.com
1c07148d7ab0dac268d97289f85bcfd5323f3892
4c7ccea26d2a6f7197fcdd7b8413652cea199485
/IPython/SdA/StackeddAutoencoder.py
88ef597fa78dc3337214ffa36a0bb97d7a894564
[]
no_license
cgallego/Section3
77fc1c8e5f6dfa273775f165cfb54f28c05e0f52
1745cb018811541b6ece603f2762ef05cc263b3b
refs/heads/master
2021-01-19T06:41:31.153702
2016-08-08T16:45:43
2016-08-08T16:45:43
60,637,315
0
0
null
null
null
null
UTF-8
Python
false
false
14,074
py
""" Stacked denoising auto-encoders (SdA) using Theano. Denoising autoencoders are the building blocks for SdA. They are based on auto-encoders as the ones used in Bengio et al. 2007. An autoencoder takes an input x and first maps it to a hidden representation y = f_{\theta}(x) = s(Wx+b), parameterized by \theta={W,b}. The resulting latent representation y is then mapped back to a "reconstructed" vector z \in [0,1]^d in input space z = g_{\theta'}(y) = s(W'y + b'). The weight matrix W' can optionally be constrained such that W' = W^T, in which case the autoencoder is said to have tied weights. The network is trained such that to minimize the reconstruction error (the error between x and z). For the denosing autoencoder, during training, first x is corrupted into \tilde{x}, where \tilde{x} is a partially destroyed version of x by means of a stochastic mapping. Afterwards y is computed as before (using \tilde{x}), y = s(W\tilde{x} + b) and z as s(W'y + b'). The reconstruction error is now measured between z and the uncorrupted input x, which is computed as the cross-entropy : - \sum_{k=1}^d[ x_k \log z_k + (1-x_k) \log( 1-z_k)] References : - P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol: Extracting and Composing Robust Features with Denoising Autoencoders, ICML'08, 1096-1103, 2008 - Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19, 2007 """ import os import sys import timeit import matplotlib.pyplot as plt import numpy as np import theano import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams from MultilayerPerceptron import HiddenLayer from dAutoencoder import dA from LogisticRegression import LogisticRegression # start-snippet-1 class SdA(object): """Stacked denoising auto-encoder class (SdA) A stacked denoising autoencoder model is obtained by stacking several dAs. The hidden layer of the dA at layer `i` becomes the input of the dA at layer `i+1`. The first layer dA gets as input the input of the SdA, and the hidden layer of the last dA represents the output. Note that after pretraining, the SdA is dealt with as a normal MLP, the dAs are only used to initialize the weights. """ def __init__( self, numpy_rng, theano_rng=None, n_ins=None, hidden_layers_sizes=None, corruption_levels=None, n_outs=None ): """ This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the sdA :type n_layers_sizes: list of ints :param n_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network :type corruption_levels: list of float :param corruption_levels: amount of corruption to use for each layer """ self.sigmoid_layers = [] self.dA_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels # The SdA is an MLP, for which all weights of intermediate layers # are shared with a different denoising autoencoders # We will first construct the SdA as a deep multilayer perceptron, # and when constructing each sigmoidal layer we also construct a # denoising autoencoder that shares weights with that layer # During pretraining we will train these autoencoders (which will # lead to chainging the weights of the MLP as well) # During finetunining we will finish training the SdA by doing # stochastich gradient descent on the MLP for i in range(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden units of # the layer below or the input size if we are on the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first # layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... # but we are going to only declare that the parameters of the # sigmoid_layers are parameters of the StackedDAA # the visible biases in the dA are parameters of those # dA, but not the SdA self.params.extend(sigmoid_layer.params) # Construct a denoising autoencoder that shared weights with this # layer dA_layer = dA(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, bhid=sigmoid_layer.b) self.dA_layers.append(dA_layer) # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs ) self.params.extend(self.logLayer.params) # construct a function that implements one step of finetunining # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) def pretraining_functions(self, train_set_x, np_train_y, batch_size): ''' Generates a list of functions, each of them implementing one step in trainnig the dA corresponding to the layer with same index. The function will require as input the minibatch index, and to train a dA you just need to iterate, calling the corresponding function on all minibatch indexes. :type train_set_x: theano.tensor.TensorType :param train_set_x: Shared variable that contains all datapoints used for training the dA :type batch_size: int :param batch_size: size of a [mini]batch :type learning_rate: float :param learning_rate: learning rate used during training for any of the dA layers ''' # index to a [mini]batch index = T.lscalar('index') # index to a minibatch corruption_level = T.scalar('corruption') # % of corruption to use learning_rate = T.scalar('lr') # learning rate to use # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] for dAuto,kdA in zip(self.dA_layers, range(len(self.dA_layers))): print(kdA,dAuto) # get the cost and the updates list cost, updates = dAuto.get_cost_updates(corruption_level, learning_rate) # compile the theano function fn = theano.function( inputs=[ index, theano.In(corruption_level, value=0.2), theano.In(learning_rate, value=0.1) ], outputs=cost, updates=updates, givens={ self.x: train_set_x[batch_begin: batch_end] } ) # append `fn` to the list of functions pretrain_fns.append(fn) return pretrain_fns def build_finetune_functions(self, datasets, batch_size, learning_rate): '''Generates a function `train` that implements one step of finetuning, a function `validate` that computes the error on a batch from the validation set, and a function `test` that computes the error on a batch from the testing set :type datasets: list of pairs of theano.tensor.TensorType :param datasets: It is a list that contain all the datasets; the has to contain three pairs, `train`, `valid`, `test` in this order, where each pair is formed of two Theano variables, one for the datapoints, the other for the labels :type batch_size: int :param batch_size: size of a minibatch :type learning_rate: float :param learning_rate: learning rate used during finetune stage ''' (train_set_x, train_set_y) = datasets[0] (valid_set_x, valid_set_y) = datasets[1] (test_set_x, test_set_y) = datasets[2] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_valid_batches //= batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_test_batches //= batch_size # compute number of minibatches for training, validation and testing index = T.lscalar('index') # index to a [mini]batch # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # compute list of fine-tuning updates updates = [ (param, param - gparam * learning_rate) for param, gparam in zip(self.params, gparams) ] train_fn = theano.function( inputs=[index], outputs=self.finetune_cost, updates=updates, givens={ self.x: train_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: train_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='train' ) test_score_i = theano.function( [index], self.errors, givens={ self.x: test_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: test_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='test' ) valid_score_i = theano.function( [index], self.errors, givens={ self.x: valid_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: valid_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='valid' ) # Create a function that scans the entire validation set def valid_score(): return [valid_score_i(i) for i in range(n_valid_batches)] # Create a function that scans the entire test set def test_score(): return [test_score_i(i) for i in range(n_test_batches)] return train_fn, valid_score, test_score def sigmoid_activate(self, Xtest, W, b): # code and compute sigmoid_input = Xtest sigmoid_output = np.tanh(np.dot(sigmoid_input, W.get_value(borrow=True)) + b.get_value(borrow=True)) return sigmoid_output def softmax_activate(self, Xtest, logLayer): # code and compute softmax_input = Xtest v = np.exp( np.dot(softmax_input, logLayer.W.get_value(borrow=True)) + logLayer.b.get_value(borrow=True)) softmax_output = v/np.sum(v) return softmax_output def predict_functions(self, Xtest): ''' Given a set_x of examples produce a vector y' of predictions by the sDA. ''' tmp = Xtest for L in self.sigmoid_layers: tmp = self.sigmoid_activate( tmp, L.W, L.b ) # finalize with log layer tmp = self.softmax_activate( tmp, self.logLayer ) return tmp
[ "admin@webdsdesign.com" ]
admin@webdsdesign.com
1e92f6030603376b040c99b7ed7806971393cfca
a500d0a13e025a7e25376592188663f26c13385e
/lpthw/ex24.py
088c897cf7916cf73da44aba4071ebebfe6f2a79
[]
no_license
sraywall/GitTutorial
c6096cfa9dc5c89ebaedee10ee93fed69118f296
cd0de5db58e42fb4a5094504147ba804b0424247
refs/heads/master
2021-04-27T20:36:30.290444
2020-05-07T19:27:06
2020-05-07T19:27:06
122,381,399
0
0
null
null
null
null
UTF-8
Python
false
false
1,127
py
print("Let's practice everything.") print('You\'d need to know \'bout excapes with \\ that do:') print('\n newlines and \t tabs.') poem = """ \tThe lovely world with logic so firmly planted cannot discern \n the needs of love nor comprehend passion from intuition and requires an explanation \n\t\twhere there is none. """ print("--------------") print(poem) print("--------------") five = 10 - 2 + 3 - 6 print(f"This should be five: {five}") def secret_formula(started): jelly_beans = started * 500 jars = jelly_beans / 1000 crates = jars / 100 return jelly_beans, jars, crates start_point = 10000 beans, jars, crates = secret_formula(start_point) #remember that this is another way to format a string print("With a starting point of: {}".format(start_point)) # it's just like with an f"" string print(f"We'd have {beans} beans, {jars} jars, and {crates} crates.") start_point = start_point / 10 print("We can also do that this way:") formula = secret_formula(start_point) # this is an easy way to apply a list to a format string print("We'd have {} beans, {} jars, and {} crates.".format(*formula))
[ "sraywall@gmail.com" ]
sraywall@gmail.com
9c68ae44c857794289d718b86b9cf28781944546
d49f38323dc30a3cb4a581b451f7db7eec220324
/app.py
c50f59488d7cad0a63272dce103f97c62cf594dd
[]
no_license
bbiyongel/NaverAPI-telegram
0e67259ed2faa86860014f0a5ff1ee0528175b67
bfcffdb03c6c2cb2387aee461490c520542227bf
refs/heads/master
2022-01-15T19:50:28.409431
2019-07-12T09:00:15
2019-07-12T09:00:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,740
py
from pprint import pprint from flask import Flask, request import requests from decouple import config import random app = Flask(__name__) token = config('TELEGRAM_TOKEN') base_url = f"https://api.telegram.org/bot{token}" naver_client_id = config('NAVER_CLIENT_ID') naver_client_secret = config('NAVER_CLIENT_SECRET') @app.route(f'/{token}', methods=['POST']) # def telegram(): response = request.get_json() chat_id = response.get('message').get('chat').get('id') # 사진 파일이 온다면, if response.get('message').get('photo'): # 사진 파일의 id를 가져온다 file_id = response.get('message').get('photo')[-1].get('file_id') # 텔레그램 서버에 파일의 경로를 받아온다. file_response = requests.get( f'{base_url}/getFile?file_id={file_id}').json() # 파일 경로를 통해 URL을 만든다. file_path = file_response.get('result').get('file_path') file_url = f'https://api.telegram.org/file/bot{token}/{file_path}' # print(file_url) response = requests.get(file_url, stream=True) image = response.raw.read() # 2. URL 설정 naver_url = 'https://openapi.naver.com/v1/vision/celebrity' # 3. 요청보내기! POST headers = {'X-Naver-Client-Id': naver_client_id, 'X-Naver-Client-Secret': naver_client_secret } response = requests.post(naver_url, headers=headers, files={'image': image}).json() if response.get('faces'): best = response.get('faces')[0].get('celebrity') if best.get('confidence') > 0.2: text = f"{best.get('confidence')*100}%만큼 {best.get('value')}를 닮으셨네요" else: text = "연예인을 닮지 않음..." else: text = "사람 아닌듯" # print(text) api_url = f'{base_url}/sendMessage?chat_id={chat_id}&text={text}' requests.get(api_url) # text가 온다면 elif response.get('message').get('text'): # 사용자가 보낸 메시지를 text 변수에 저장, 사용자 정보는 chat_id에 저장 text = response.get('message').get('text') chat_id = response.get('message').get('chat').get('id') if '/번역 ' == text[0:4]: headers = {'X-Naver-Client-Id': naver_client_id, 'X-Naver-Client-Secret': naver_client_secret } data = { 'source': 'ko', 'target': 'en', 'text': text[4:] } # data = { # 'source': 'en', # 'target': 'ko', # 'text': 'War never again! Never again war!' # } response = requests.post(naver_url, headers=headers, data=data).json() text = response.get('message').get('result').get('translatedText') # if 인사말이 오면, 나만의 인사해주기 elif '안녕' in text or 'hi' in text: text = '간디' elif '로또' in text: text = sorted(random.sample(range(1,46), 6)) # 마지막 url 만들어서 메시지 보내기 if text=='호우': text = '장마임' if text=='패드립': text = '패드립 머신 가동' api_url = f'{base_url}/sendMessage?chat_id={chat_id}&text={text}' requests.get(api_url) return 'OK', 200 # 200 : 응답 상태 코드 if __name__ == '__main__': import os port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port)
[ "jjgk91@naver.com" ]
jjgk91@naver.com
e6a2a28a5d17ffa3424d45048710a8687df2c863
9256eeff108787245a1d9a8e27f80c04377ba10f
/src/datasets/mnist.py
49071693a70659a10514560cc67cff58309b79cf
[ "MIT" ]
permissive
martinhavlicek/meta-inference-public
99a22daef937921deb9f677f68aa1c954e456e55
3cad0b84acd407f3d790f3d75d3045f62bdbf250
refs/heads/master
2022-04-12T14:15:42.514426
2020-03-31T21:39:50
2020-03-31T21:39:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,748
py
import math import numpy as np from PIL import Image from torchvision import datasets from torchvision import transforms # ----- ROTATED MNIST ----- ROTATIONS = np.arange(-180, 180, 20) DEFAULT_ROTATIONS = ROTATIONS[0::2] UNSEEN_ROTATIONS = ROTATIONS[1::2] DEFAULT_ROTATIONS_SPARSE = np.array([-160, -80, 0, 80, 160]) UNSEEN_ROTATIONS_SPARSE = np.array([-180, -140, -120, -100, -60, -40, -20, 20, 40, 60, 100, 120, 140]) DEFAULT_ROTATIONS_DISJOINT = ROTATIONS[:len(ROTATIONS) // 2 + 1] UNSEEN_ROTATIONS_DISJOINT = ROTATIONS[len(ROTATIONS) // 2 + 1:] ALL_ROTATIONS = ROTATIONS DEFAULT_ROTATIONS_DICT = { 'standard': DEFAULT_ROTATIONS, 'sparse': DEFAULT_ROTATIONS_SPARSE, 'disjoint': DEFAULT_ROTATIONS_DISJOINT } UNSEEN_ROTATIONS_DICT = { 'standard': UNSEEN_ROTATIONS, 'sparse': UNSEEN_ROTATIONS_SPARSE, 'disjoint': UNSEEN_ROTATIONS_DISJOINT } def load_many_rotated_mnist(data_dir, image_size=32, train=True, rotations=DEFAULT_ROTATIONS): """ Load 10 different MNIST datasets where the image in each dataset has a particular rotation. """ return [ load_rotated_mnist( data_dir, image_size=image_size, train=train, rotation=rotation) for rotation in rotations ] def load_rotated_mnist(data_dir, image_size=32, train=True, rotation=0): """ Load a MNIST dataset where each image has a rotation. """ rotate_image = rotate_transform(rotation) image_transforms = [ transforms.Resize(image_size), transforms.CenterCrop(image_size), rotate_image, transforms.ToTensor(), ] image_transforms = transforms.Compose(image_transforms) dset = datasets.MNIST(data_dir, train=train, download=True, transform=image_transforms) return dset def rotate_transform(angle): def f(img): return transforms.functional.rotate(img, angle) return f # ----- SCALED MNIST ----- SCALES = np.arange(0.5, 2.0, 0.1) DEFAULT_SCALES = SCALES[0::2] UNSEEN_SCALES = SCALES[1::2] DEFAULT_SCALES_SPARSE = np.array([0.6, 1.0 ,1.4, 1.8]) UNSEEN_SCALES_SPARSE = np.array([0.5, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.5, 1.6, 1.7, 1.9]) DEFAULT_SCALES_DISJOINT = SCALES[:len(SCALES) // 2 + 1] UNSEEN_SCALES_DISJOINT = SCALES[len(SCALES) // 2 + 1:] ALL_SCALES = SCALES DEFAULT_SCALES_DICT = { 'standard': DEFAULT_SCALES, 'sparse': DEFAULT_SCALES_SPARSE, 'disjoint': DEFAULT_SCALES_DISJOINT } UNSEEN_SCALES_DICT = { 'standard': UNSEEN_SCALES, 'sparse': UNSEEN_SCALES_SPARSE, 'disjoint': UNSEEN_SCALES_DISJOINT } def load_many_scaled_mnist( data_dir, image_size=32, train=True, scales=DEFAULT_SCALES): """ Load 10 different MNIST datasets where the image in each dataset has a particular scale. """ return [ load_scaled_mnist( data_dir, image_size=image_size, train=train, scale=scale) for scale in scales ] def load_scaled_mnist(data_dir, image_size=32, train=True, scale=1): """ Load a MNIST dataset where each image has is scaled by a scale. """ scale_image = scale_transform(scale) image_transforms = [ transforms.Resize(image_size), transforms.CenterCrop(image_size), scale_image, transforms.ToTensor(), ] image_transforms = transforms.Compose(image_transforms) dset = datasets.MNIST(data_dir, train=train, download=True, transform=image_transforms) return dset def scale_transform(scale): def f(img): size = img.size i, j, h, w = get_crop_params(img, scale, ratio=1) return transforms.functional.resized_crop( img, i, j, h, w, size, Image.BILINEAR) return f def get_crop_params(img, scale, ratio=1): w = img.size[0] * scale h = img.size[1] * scale i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w # ----- SHEARED MNIST ----- SHEARS = np.arange(-180, 180, 20) DEFAULT_SHEARS = SHEARS[0::2] UNSEEN_SHEARS = SHEARS[1::2] DEFAULT_SHEARS_SPARSE = np.array([-160, -80, 0, 80, 160]) UNSEEN_SHEARS_SPARSE = np.array([-180, -140, -120, -100, -60, -40, -20, 20, 40, 60, 100, 120, 140]) DEFAULT_SHEARS_DISJOINT = SHEARS[:len(SHEARS) // 2 + 1] UNSEEN_SHEARS_DISJOINT = SHEARS[len(SHEARS) // 2 + 1:] ALL_SHEARS = SHEARS DEFAULT_SHEARS_DICT = { 'standard': DEFAULT_SHEARS, 'sparse': DEFAULT_SHEARS_SPARSE, 'disjoint': DEFAULT_SHEARS_DISJOINT } UNSEEN_SHEARS_DICT = { 'standard': UNSEEN_SHEARS, 'sparse': UNSEEN_SHEARS_SPARSE, 'disjoint': UNSEEN_SHEARS_DISJOINT } def load_many_sheared_mnist(data_dir, image_size=32, train=True, shears=DEFAULT_SHEARS): """ Load 10 different MNIST datasets where the image in each dataset has a particular shear. """ return [ load_sheared_mnist( data_dir, image_size=image_size, train=train, shear=shear) for shear in shears ] def load_sheared_mnist(data_dir, image_size=32, train=True, shear=0): """ Load a MNIST dataset where each image has a rotation. """ shear_image = shear_transform(shear) image_transforms = [ transforms.Resize(image_size), transforms.CenterCrop(image_size), shear_image, transforms.ToTensor(), ] image_transforms = transforms.Compose(image_transforms) dset = datasets.MNIST(data_dir, train=train, download=True, transform=image_transforms) return dset def shear_transform(shear): def f(img): return transforms.functional.affine(img, 0, (0, 0), 1, shear) return f
[ "me@mikewuis.me" ]
me@mikewuis.me
8c1b2c443b10f64ad81dbb48b78341c22ec527dc
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/discount_info_v3.py
3eeec1c5d49a77c443407f9193187e6c6e93816a
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,663
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class DiscountInfoV3: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'discount_id': 'str', 'discount_value': 'str', 'discount_type': 'int', 'orders': 'list[OrderV3]' } attribute_map = { 'discount_id': 'discount_id', 'discount_value': 'discount_value', 'discount_type': 'discount_type', 'orders': 'orders' } def __init__(self, discount_id=None, discount_value=None, discount_type=None, orders=None): """DiscountInfoV3 - a model defined in huaweicloud sdk""" self._discount_id = None self._discount_value = None self._discount_type = None self._orders = None self.discriminator = None self.discount_id = discount_id self.discount_value = discount_value self.discount_type = discount_type self.orders = orders @property def discount_id(self): """Gets the discount_id of this DiscountInfoV3. 订单的可用折扣ID。 支付订单时,输入该参数的值,即可使用折扣。 :return: The discount_id of this DiscountInfoV3. :rtype: str """ return self._discount_id @discount_id.setter def discount_id(self, discount_id): """Sets the discount_id of this DiscountInfoV3. 订单的可用折扣ID。 支付订单时,输入该参数的值,即可使用折扣。 :param discount_id: The discount_id of this DiscountInfoV3. :type: str """ self._discount_id = discount_id @property def discount_value(self): """Gets the discount_value of this DiscountInfoV3. 折扣率或者满减值,如果折扣模式是一口价,这个值为空。 :return: The discount_value of this DiscountInfoV3. :rtype: str """ return self._discount_value @discount_value.setter def discount_value(self, discount_value): """Sets the discount_value of this DiscountInfoV3. 折扣率或者满减值,如果折扣模式是一口价,这个值为空。 :param discount_value: The discount_value of this DiscountInfoV3. :type: str """ self._discount_value = discount_value @property def discount_type(self): """Gets the discount_type of this DiscountInfoV3. 折扣类型,取值为 0:促销折扣1:合同折扣2:商务优惠3:合作伙伴授予折扣609:订单调价折扣 :return: The discount_type of this DiscountInfoV3. :rtype: int """ return self._discount_type @discount_type.setter def discount_type(self, discount_type): """Sets the discount_type of this DiscountInfoV3. 折扣类型,取值为 0:促销折扣1:合同折扣2:商务优惠3:合作伙伴授予折扣609:订单调价折扣 :param discount_type: The discount_type of this DiscountInfoV3. :type: int """ self._discount_type = discount_type @property def orders(self): """Gets the orders of this DiscountInfoV3. 可使用折扣的订单列表。 具体请参见表3。 :return: The orders of this DiscountInfoV3. :rtype: list[OrderV3] """ return self._orders @orders.setter def orders(self, orders): """Sets the orders of this DiscountInfoV3. 可使用折扣的订单列表。 具体请参见表3。 :param orders: The orders of this DiscountInfoV3. :type: list[OrderV3] """ self._orders = orders def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DiscountInfoV3): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
7f19a3de1a2177407921827f9a30e9f957520c64
ace2dc6096eb0b7a540f28e57df8459adafad6ed
/Algorithmic Toolbox/week3_greedy_algorithms/MaxValueofLoot.py
d0556e46829682f74ac9c48922ded067c88a5f6e
[]
no_license
tdslivensky/AlgorithmsAndDataStructures
6ad2c28204600b1f8f72228c13d29d2c3c9437c9
e8b1011ab5210bc52854f911e2a7e41a83b36740
refs/heads/master
2023-01-11T16:32:49.399654
2020-11-13T13:49:18
2020-11-13T13:49:18
289,050,279
0
1
null
null
null
null
UTF-8
Python
false
false
1,156
py
def get_optimal_value(capacity, weights, values): TotalWeight = capacity value = 0 weightValueIndex = 0 arr = [0] * len(weights) # write your code here for i in range(len(weights)): WeightPerValue = values[i]/weights[i] arr[i] = [weights[i],values[i],WeightPerValue] a = sorted(arr, key=lambda x:float(x[2]), reverse=True) while(TotalWeight != 0): if(len(weights)==1): if(TotalWeight > a[weightValueIndex][0]): value = a[weightValueIndex][1] return value else: value += (TotalWeight * a[weightValueIndex][2]) return value elif(TotalWeight > a[weightValueIndex][0]): TotalWeight -= a[weightValueIndex][0] value += a[weightValueIndex][1] weightValueIndex += 1 else: value += (TotalWeight * a[weightValueIndex][2]) TotalWeight = 0 return value if __name__ == "__main__": capacity = 10 values = [500] weights = [30] opt_value = get_optimal_value(capacity, weights, values) print("{:.10f}".format(opt_value))
[ "tslivensky@emailatg.com" ]
tslivensky@emailatg.com
4e8fb660e0be3d0885aa9b36d0333165ee44736b
a33ee2ee3d67526fa353060b7efe48398d38e8db
/demovibes/webview/views.py
cc242832d23da2a871237f1c2cc6ad7ce9bc131c
[]
no_license
rj76/demovibes-cvgm
5666164f57a5458872f6add1eb18620aa0fd5072
8c0f5e011baec3c9b732165c9c74dd07c87c290f
refs/heads/master
2023-06-02T11:41:16.093070
2021-06-19T02:28:38
2021-06-19T02:28:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
86,960
py
from webview import models as m from webview import forms as f from webview import common from webview.decorators import atomic, cached_method from openid_provider.models import TrustedRoot from mybaseview import MyBaseView from tagging.models import TaggedItem import tagging.utils from forum import models as fm from django.template import Context, loader from django.utils.html import escape from django.utils.translation import ugettext as _ from django.http import HttpResponseRedirect, HttpResponseNotFound, HttpResponse from django.contrib.auth.decorators import login_required, permission_required from django.contrib.auth import logout from django.shortcuts import get_object_or_404, redirect from django.template import TemplateDoesNotExist from django.conf import settings from django.views.generic.simple import direct_to_template from django.core.urlresolvers import reverse from django.core.paginator import Paginator, EmptyPage, InvalidPage from django.core.cache import cache from django.contrib.contenttypes.models import ContentType from django.contrib.auth import authenticate, login from django.db.models import Count, Sum, Avg, Max from django.db.models import Q as DQ import logging import datetime import j2shim import hashlib import re import random L = logging.getLogger('webview.views') class WebView(MyBaseView): basetemplate = "webview/" class SongView(WebView): def initialize(self): songid = self.kwargs['song_id'] self.context['song'] = self.song = get_object_or_404(m.Song, id=songid) class SongAddScreenshot(SongView): def GET(self): return create_screenshot(self.request, self.song) class CompilationView(WebView): def initialize(self): compid = self.kwargs['compilation_id'] self.context['compilation'] = self.compilation = get_object_or_404(m.Compilation, id=compid) class CompilationAddScreenshot(CompilationView): def GET(self): return create_screenshot(self.request, self.compilation) class ProfileView(WebView): def initialize(self): username = self.kwargs['user'] self.user = get_object_or_404(m.User, username = username) self.profile = common.get_profile(self.user) def check_permissions(self): return self.profile.viewable_by(self.request.user) class ListByLetter(WebView): """ List a model by letter, if given. Model need to have "startswith" and letter var need to be "letter" """ model = None alphalist_cache_prefix = "ListByLetter-alphalist-" desc_function = None # Support for that should be included in the template list_title = "List" letter_url_name = "" all_url_name = "" def initialize (self): query_hexdigest = hashlib.md5 (str(self.get_objects ().query)).hexdigest() self.__alphalist_cache_key = self.alphalist_cache_prefix + query_hexdigest alphalist = self.get_alphalist () letter = self.kwargs.get ("letter", False) if letter and not letter in alphalist or letter == '-': letter = '#' self.letter = letter self.context ['letter'] = letter self.context ['al'] = alphalist def get_list_title (self): return self.list_title def get_objects (self): return self.model.objects.all() def get_alphalist (self): @cached_method (key = self.__alphalist_cache_key, timeout = 3) def get (): return map (lambda x: x['startswith'] == '#' and '-' or x['startswith'], self.get_objects ().distinct().values ('startswith').order_by('startswith')) return get () def set_context(self): if self.model: if self.letter: results = self.get_objects().filter (startswith = self.letter) else: results = self.get_objects() return {'object_list' : results, 'list_title' : self.get_list_title (), 'letter_url_name' : self.letter_url_name, 'all_url_name' : self.all_url_name, 'desc_function' : self.desc_function} return {} class AjaxifyView(WebView): redirect_to = "dv-root" def GET(self): if not self.request.is_ajax(): self.redirect(self.redirect_to) return HttpResponse("") def make_ajax_return(self): return HttpResponse("You forgot to define 'make_ajax_return', mate!") def POST(self): if not self.request.user.is_authenticated(): if self.request.is_ajax(): return HttpResponse("") return self.redirect("/account/signin/") songid = self.request.POST.get("songid") if songid: self.song = m.Song.objects.get(id = songid) self.handle_form(self.request.POST) if self.request.is_ajax(): return self.make_ajax_return() self.redirect(self.request.META.get('HTTP_REFERER') or self.redirect_to) def check_muted(request): profile = request.user.get_profile() muted = profile.is_muted() if muted: return j2shim.r2r('webview/muted.html', {'muted' : muted}, request) #------------------------------------------------------- class ListSmileys(WebView): template = "smileys.html" def set_context(self): return {'smileys': settings.SMILEYS} class PlaySong(SongView): template="playsong.html" def check_permissions(self): return self.song.downloadable_by(self.request.user) def set_context(self): limit = None if m.CHEROKEE_SECRET: key = "urlgenlimit_%s" % self.request.user.id number = m.get_cherokee_limit(self.request.user).get("number",0) limit = number - cache.get(key, 0) self.song.log(self.request.user, "Song preview / download") return {'song': self.song, 'limit': limit} class AddCompilation(WebView): template = "add_compilation.html" login_required = True forms = [ (f.CreateCompilationForm, "compform"), ] action = "created" def pre_view(self): self.context['songsinput']="" def save_compilation(self, compdata, songs): newcf = compdata.save(commit=False) if not newcf.id: newcf.created_by = self.request.user newcf.status = "U" newcf.last_updated = datetime.datetime.now() # Fixes bug of new compilations not appearing in Recent Updates newcf.save() compdata.save_m2m() artists = [] playtime = 0 newcf.reset_songs() for index, S in enumerate(songs): newcf.add_song(S, index) playtime = playtime + S.get_songlength() for a in S.get_metadata().artists.all(): if a not in artists: artists.append(a) newcf.running_time = playtime newcf.prod_artists.clear() for a in artists: newcf.prod_artists.add(a) newcf.save() newcf.log(self.request.user, "Compilation %s" % self.action) return newcf def POST(self): songstr = self.request.POST.get("songsinput", "").split(",") self.context['songsinput'] = self.request.POST.get("songsinput", "") songs = [] if songstr: for S in songstr: # By default songsinput is empty but in fact we have one entry in list (u'') # So the code will goes here ... but not valid S if S: songs.append(m.Song.objects.get(id=S)) if self.forms_valid and songs: newcf = self.save_compilation(self.context["compform"], songs) self.redirect(newcf) class EditCompilation(AddCompilation): staff_required = True action = "edited" def form_compform_init(self): ci = self.kwargs.get("comp_id") self.c = m.Compilation.objects.get(id=ci) return {'instance': self.c} def post_view(self): if not self.context['songsinput']: songs = self.c.get_songs() self.context['songsinput'] = ','.join([ str(s.id) for s in songs ]) def about_pages(request, page): try: return direct_to_template(request, template="about/%s.html" % page) except TemplateDoesNotExist: return HttpResponseNotFound() @login_required def inbox(request): pms = request.GET.get('type','') delete = request.GET.get('delete','') if delete: try: delpm = int(delete) pm = m.PrivateMessage.objects.get(pk = delpm, to = request.user) except: return HttpResponseNotFound() pm.visible = False pm.save() if pms == "sent": mails = m.PrivateMessage.objects.filter(sender = request.user, visible = True) else: pms = "received" #to remove injects mails = m.PrivateMessage.objects.filter(to = request.user, visible = True) return j2shim.r2r('webview/inbox.html', {'mails' : mails, 'pms': pms}, request=request) @login_required def read_pm(request, pm_id): pm = get_object_or_404(m.PrivateMessage, id = pm_id) if pm.to == request.user: pm.unread = False pm.save() return j2shim.r2r('webview/view_pm.html', {'pm' : pm}, request=request) if pm.sender == request.user: return j2shim.r2r('webview/view_pm.html', {'pm' : pm}, request=request) return HttpResponseRedirect(reverse('dv-inbox')) @login_required def send_pm(request): r = check_muted(request) if r: return r if request.method == 'POST': form = f.PmForm(request.POST) if form.is_valid(): F = form.save(commit=False) F.sender=request.user F.save() m.send_notification("%s sent you a <a href='%s'>message</a> with title '%s'" % (escape(F.sender.username), F.get_absolute_url(), escape(F.subject)), F.to) return HttpResponseRedirect(reverse('dv-inbox')) else: title = request.GET.get('title', "") to = request.GET.get('to', "") try: U = m.User.objects.get(username=to) except: U = None form = f.PmForm(initial= {'to': U, 'subject' : title}) return j2shim.r2r('webview/pm_send.html', {'form' : form}, request) class addComment(SongView): """ Add a comment to a song. """ login_required = True def pre_view(self): self.redirect(self.song) def POST(self): r = check_muted(self.request) if r: return r comment = self.request.POST.get("Comment", "").strip() if comment: m.SongComment.objects.create(comment = comment, song = self.song, user = self.request.user) if getattr(settings, "NOTIFY_NEW_SONG_COMMENT", False): m.send_notification("%s commented on the song <a href='%s'>%s</a>" % (escape(self.request.user.username), self.song.get_absolute_url(), escape(self.song.title)), None, 2) def site_about(request): """ Support for a generic 'About' function """ return j2shim.r2r('webview/site-about.html', { }, request) def chat(request): """ Support for a generic 'chat' page """ return j2shim.r2r('webview/chat.html', { }, request) class ListQueue(WebView): """ Display the current song, the next songs in queue, and the latest 20 songs in history. Also provides a way to view DJRandom mood. """ template = "queue_list.html" def set_context(self): # DJRandom status - - - - - - - -- djrandom_options = m.DJRandomOptions.snapshot () mood = djrandom_options.mood avoid_explicit = djrandom_options.avoid_explicit mood_form = f.DJRandomMoodForm (initial = {'mood' : mood}) mood_html = mood_form.get_mood_html (set_by = mood.comment) ae_form = f.DJRandomAvoidExplicitForm (initial = {'avoid_explicit' : avoid_explicit}) ae_html = ae_form.get_avoid_explicit_html (set_by = avoid_explicit.comment) return {'djrandom_mood_html' : mood_html, 'djrandom_mood_field_html' : mood_form.get_mood_field_html (), 'djrandom_avoid_explicit_html' : ae_html, 'djrandom_avoid_explicit_field_html' : ae_form.get_avoid_explicit_field_html (), 'now_playing' : "", 'history' : common.get_history(), 'queue' : common.get_queue(), } # Slightly modified template of list_songs, to show songs via year def list_year(request, year_id): songs = m.Song.active.filter (songmetadata__active = True, songmetadata__release_year = year_id).order_by('title') params = { 'object_list' : songs, 'year' : year_id, 'letter_url_name' : "dv-year" } return j2shim.r2r ('webview/year_list.html', params, request) def list_song(request, song_id): song = get_object_or_404 (m.Song, id = song_id) # Simple queries, it is expected that they are evaluated from inside the template only # .. otherwise cache is quite useless. Just try to keep it simple here comps = m.Compilation.objects.filter (songs__id = song.id) remixes = m.Song.active.filter (songmetadata__active = True, songmetadata__remix_of_id = song.id) def calc_tag_cloud (): tags = m.Tag.objects.filter (id__in = song.tags).annotate (count = Count ("items")) return tagging.utils.calculate_cloud (tags) params = { 'object' : song, 'vote_range': [1, 2, 3, 4, 5], 'comps' : comps, 'remixes' : remixes, 'related_f': (lambda: m.Song.tagged.related_to (song, num = 5)), 'tags_f': calc_tag_cloud } return j2shim.r2r ('webview/song_detail.html', params, request) # This can probbably be made a generic object def list_screenshot(request, screenshot_id): screenshot = get_object_or_404(m.Screenshot, id=screenshot_id) return j2shim.r2r('webview/screenshot_detail.html', { 'object' : screenshot }, request) class ViewUserFavs(ProfileView): """ List the favorites of a user """ template = "user_favorites.html" def set_context(self): favorites = m.Favorite.objects.filter(user = self.user) return {'favorites':favorites, 'favuser': self.user} class MyProfile(WebView): template = "my_profile.html" login_required = True forms = [(f.ProfileForm, "form")] def initialize(self): self.profile = common.get_profile(self.request.user) if self.profile.have_artist(): self.context['lic'] = f.LicenseForm() self.links = LinkCheck("U", object = self.profile) def pre_view(self): rootid = self.request.REQUEST.get("killroot", False) if rootid and rootid.isdigit(): root = TrustedRoot.objects.get(id=rootid) if root.openid.user == self.request.user: root.delete() return self.redirect("dv-my_profile") def handle_artistedit(self): L = f.LicenseForm(self.request.POST) if L.is_valid(): artist = self.request.user.artist lic = L.cleaned_data['license'] for song in artist.get_songs(): song.log(self.request.user, "License Mass Change to %s" % lic) song.license = lic song.save() self.redirect("dv-my_profile") def POST(self): if self.profile.have_artist() and self.request.POST.get("artistdata"): self.handle_artistedit() elif self.forms_valid and self.links.is_valid(self.request.POST): self.context['form'].save() self.links.save(self.profile) self.redirect("dv-my_profile") def form_form_init(self): return {'instance': self.profile} def set_context(self): return {'profile': self.profile, 'links': self.links} class ViewProfile(ProfileView): """ View a user's profile """ template = "view_profile.html" def set_context(self): return {'profile': self.profile} def search(request): """ Return the first 40 matches of songs, artists and groups. """ if request.method == 'POST' and "Search" in request.POST: searchterm = request.POST['Search'] result_limit = getattr(settings, 'SEARCH_LIMIT', 40) if settings.USE_FULLTEXT_SEARCH == True: users = m.User.objects.filter(username__search = searchterm)[:result_limit] songs = m.Song.objects.select_related(depth=1).filter(title__search = searchterm)[:result_limit] artists = m.Artist.objects.filter(handle__search = searchterm)|m.Artist.objects.filter(name__search = searchterm)[:result_limit] groups = m.Group.objects.filter(name__search = searchterm)[:result_limit] compilations = m.Compilation.objects.filter(name__search = searchterm)[:result_limit] labels = m.Label.objects.filter(name__search = searchterm)[:result_limit] else: users = m.User.objects.filter(username__icontains = searchterm)[:result_limit] songs = m.Song.objects.select_related(depth=1).filter(title__icontains = searchterm)[:result_limit] artists = m.Artist.objects.filter(handle__icontains = searchterm)|m.Artist.objects.filter(name__icontains = searchterm)[:result_limit] groups = m.Group.objects.filter(name__icontains = searchterm)[:result_limit] compilations = m.Compilation.objects.filter(name__icontains = searchterm)[:result_limit] labels = m.Label.objects.filter(name__icontains = searchterm)[:result_limit] return j2shim.r2r('webview/search.html', \ { 'songs' : songs, 'artists' : artists, 'groups' : groups, 'users' : users, 'compilations' : compilations, 'labels' : labels }, \ request=request) return j2shim.r2r('webview/search.html', {}, request=request) def show_approvals(request): """ Shows the most recently approved songs in it's own window """ result_limit = getattr(settings, 'UPLOADED_SONG_COUNT', 150) songs = m.SongApprovals.objects.order_by('-id')[:result_limit] return j2shim.r2r('webview/recent_approvals.html', { 'songs': songs , 'settings' : settings }, request=request) class ListArtists(ListByLetter): template = "artist_list.html" model = m.Artist list_title = "Complete Artist List" letter_url_name = "dv-artists_letter" all_url_name = "dv-artists" class ListGroups(ListByLetter): template = "group_list.html" model = m.Group class ListLabels(ListByLetter): template = "label_list.html" model = m.Label class ListComilations(ListByLetter): template = "compilation_list.html" model = m.Compilation list_title = "Complete Compilation / Album / Production List" letter_url_name = "dv-compilations_letter" all_url_name = "dv-compilations" class ListSongs(ListByLetter): template = "song_list.html" model = m.Song list_title = "List Of Songs" letter_url_name = "dv-songs_letter" all_url_name = "dv-songs" class ListScreenshots(ListByLetter): template = "screenshot_list.html" model = m.Screenshot list_title = "Gallery Of Images" letter_url_name = "dv-screenshots_letter" all_url_name = "dv-screenshots" def get_objects(self): return self.model.objects.filter(status="A") class ThemeClass(WebView): def initialize(self): themeid = self.kwargs['theme_id'] self.context['theme'] = self.theme = get_object_or_404(m.Theme, id=themeid) class ThemeInfo(ThemeClass): template = "theme_details.html" class ThemeEdit(ThemeClass): template = "theme_edit.html" forms = [(f.ThemeForm, "form")] login_required = True def form_form_init(self): return {'instance': self.theme} def POST(self): if self.forms_valid and self.request.user == self.theme.creator: self.context['form'].save() self.redirect(self.context['theme']) class ThemeAddImage(ThemeClass): def GET(self): if self.request.user == self.theme.creator: return create_screenshot(self.request, self.theme) self.redirect("/") class ThemeList(WebView): template = "themes_list.html" def get_objects(self): q = m.Theme.objects.filter (active=True) q = q.annotate (user_count = Count("userprofile")) # Add user who didn't care to select a theme themeless = m.Userprofile.objects.filter (theme = None).count () if themeless: default_theme = m.Theme.objects.all().order_by("-default") if default_theme: default_theme = default_theme[0] for t in q: if t.id == default_theme.id: t.user_count += themeless return q def POST(self): id = int(self.request.POST.get("theme_id")) theme = m.Theme.objects.get(id=id) if self.request.user.is_authenticated(): p = self.request.user.get_profile() p.theme = theme p.save() self.redirect("dv-themelist") def set_context(self): return {"themes": self.get_objects() } @login_required def log_out(request): """ Show a user a form, and then logs user out if a form is sent in to that address. """ if request.method == 'POST': logout(request) return HttpResponseRedirect("/") return j2shim.r2r('webview/logout.html', {}, request=request) class songHistory(SongView): """ List queue history of song """ template = "song_history.html" def set_context(self): return {'requests': self.song.queue_set.all()} class songVotes(SongView): """ List vote history of song """ template = "song_votes.html" def set_context(self): return {'votelist': self.song.songvote_set.all()} class songComments(SongView): """ List the comments belonging to a song """ template = "song_comments.html" def set_context(self): return {'commentlist': self.song.songcomment_set.all()} def view_compilation(request, comp_id): """ Try to view a compilation entry. """ permission = request.user.has_perm("webview.make_session") comp = get_object_or_404(m.Compilation, id=comp_id) # Find it, or return a 404 error if permission: sessionform = f.CreateSessionForm() else: sessionform = False if request.method == "POST" and permission: sessionform = f.CreateSessionForm(request.POST) if sessionform.is_valid(): desc = sessionform.cleaned_data['description'] playtime = sessionform.cleaned_data['time'] for song in comp.get_songs(): m.Queue.objects.create(song=song, played=False, playtime=playtime, requested_by = request.user, description = desc) common.get_queue(True) return redirect("dv-queue") return j2shim.r2r('webview/compilation.html', { 'comp' : comp, 'user' : request.user , 'sessionform': sessionform}, request=request) class OnelinerHistorySearch(WebView): template = "oneliner_search.html" forms = [(f.OnelinerHistory, "form")] results = [] staff_required = True def POST(self): if self.forms_valid: r = m.Oneliner.objects.all() data = self.context["form"].cleaned_data user = data["username"] if user: user = m.User.objects.get(username=user) r = r.filter(user=user) start = data["start"] num = data["results"] self.results = r[start:num+start] def set_context(self): return {"results": self.results} def oneliner(request): oneliner = m.Oneliner.objects.select_related(depth=1).order_by('-id')[:20] return j2shim.r2r('webview/oneliner.html', {'oneliner' : oneliner}, \ request=request) @login_required def oneliner_submit(request): """ Add a text line to the oneliner. Returns user to referrer position, or to / """ message = request.POST.get('Line').strip() common.add_oneliner(request.user, message) try: refer = request.META['HTTP_REFERER'] return HttpResponseRedirect(refer) except: return HttpResponseRedirect("/") @login_required def list_favorites(request): """ Display a user's favorites. """ user = request.user songs = m.Favorite.objects.filter(user=user) try: user_profile = m.Userprofile.objects.get(user = user) use_pages = user_profile.paginate_favorites except: # In the event it bails, revert to pages hehe use_pages = True if(use_pages): paginator = Paginator(songs, settings.PAGINATE) page = int(request.GET.get('page', '1')) try: songlist = paginator.page(page) except (EmptyPage, InvalidPage): songlist = paginator.page(paginator.num_pages) return j2shim.r2r('webview/favorites.html', \ {'songs': songlist.object_list, 'page' : page, 'page_range' : paginator.page_range}, \ request=request) return j2shim.r2r('webview/favorites.html', { 'songs': songs }, request=request) class QueueSong(AjaxifyView): redirect_to = "dv-queue" def handle_form(self, form): self.r = common.queue_song(self.song, self.request.user) def make_ajax_return(self): if self.r: return HttpResponse("""<span style="display:none">l</span> <img class="song_tail" src="%slock.png" title="Locked" alt="Locked"/>""" % settings.MEDIA_URL) return HttpResponse("") class ChangeFavorite(AjaxifyView): redirect_to = "dv-favorites" def handle_form(self, form): P = form.get if P("change") == "remove": Q = m.Favorite.objects.filter(user = self.request.user, song = self.song) for x in Q: x.delete() # For running Favorite.delete() logic m.send_notification("Song removed from your favorites", self.request.user) if P("change") == "add": try: m.Favorite.objects.create(user = self.request.user, song = self.song) m.send_notification("Song added to your favorites", self.request.user) except: pass def make_ajax_return(self): s = "{{ display.favorite(song, user) }}" c = {'song': self.song, 'user': self.request.user} return HttpResponse(j2shim.render_string(s, c)) class VoteSong(AjaxifyView): redirect_to = "dv-root" @atomic("vote") def handle_form(self, form): self.int_vote = int(form.get("vote", form.get("ajaxvote"))) if self.int_vote <= 5 and self.int_vote > 0: self.song.set_vote(self.int_vote, self.request.user) def make_ajax_return(self): s = "{{ display.song_vote(song, value) }}" c = {'song': self.song, 'value': self.int_vote} return HttpResponse(j2shim.render_string(s, c)) class LinkCheck(object): def __init__(self, linktype, object = None, status = 0, user = None, add=False): self.type = linktype self.add = add self.verified = [] self.user = user self.status = status self.object = object self.valid = False self.get_list() self.title = "External Resources" def get_link_for(self, o, generic): if not o or not generic: return None bla = ContentType.objects.get_for_model(o) r = m.GenericLink.objects.filter(content_type__pk=bla.id, object_id=o.id, link=generic) return r and r[0] or None def get_list(self): self.linklist = m.GenericBaseLink.objects.filter(linktype = self.type) r = [] for x in self.linklist: val = self.get_link_for(self.object, x) value=val and val.value or "" r.append({'link': x, 'value': value, "error": "", "comment": ""}) self.links = r return self.linklist def __unicode__(self): return self.as_table() def as_table(self): """ Print links form as table """ return j2shim.r2s('webview/t/linksform.html', \ {'links': self.links, 'title': self.title }) def is_valid(self, postdict): """ Check if given links are valid according to given regex """ self.valid = True for entry in self.links: l = entry['link'] # GenericBaseLink object key = "LL_%s" % l.id if postdict.has_key(key): val = postdict[key].strip() if val: ckey = key+"_comment" comment = postdict.has_key(ckey) and postdict[ckey].strip() or "" #Fill out dict in case it needs to be returned to user entry['value'] = val entry['comment'] = comment if re.match(l.regex + "$", val): self.verified.append((l, val, comment)) #Add to approved list else: self.valid = False entry['error'] = "The input did not match expected value" else: self.verified.append((l, "", "")) #No value for this link return self.valid def save(self, obj): """ Save links to database """ if self.verified and self.valid: for l, val, comment in self.verified: r = self.get_link_for(obj, l) if val: if r and not self.add: r.value = val r.save() else: m.GenericLink.objects.create( content_object=obj, value=val, link=l, status = self.status, comment = comment, user = self.user ) else: if r and not self.add: r.delete() obj.save() # For caching @permission_required('webview.change_songmetadata') def new_songinfo_list(request): alink = request.GET.get("alink", False) status = request.GET.get("status", False) if alink and status.isdigit(): link = get_object_or_404(m.GenericLink, id=alink) link.status = int(status) link.content_object.save() link.save() nusonginfo = m.SongMetaData.objects.filter(checked=False).order_by('added') # Oldest info events will be shown first nulinkinfo = m.GenericLink.objects.filter(status=1) c = {'metainfo': nusonginfo, 'linkinfo': nulinkinfo} return j2shim.r2r("webview/list_newsonginfo.html", c, request) @permission_required('webview.change_songmetadata') def list_songinfo_for_song(request, song_id): song = get_object_or_404(m.Song, id=song_id) metalist = m.SongMetaData.objects.filter(song=song) c = {'metalist':metalist, 'song': song} return j2shim.r2r("webview/list_songinfo.html", c, request) @login_required def add_songlinks(request, song_id): song = get_object_or_404(m.Song, id=song_id) links = LinkCheck("S", status=1, user = request.user, add = True) if request.method == "POST": if links.is_valid(request.POST): links.save(song) return redirect(song) c = {'song': song, 'links': links} return j2shim.r2r("webview/add_songlinks.html", c, request) @permission_required('webview.change_songmetadata') def view_songinfo(request, songinfo_id): meta = get_object_or_404(m.SongMetaData, id=songinfo_id) post_ok = getattr(settings, 'ADMIN_EMAIL_ON_INFO_APPROVE', False) # Do we send an email on info approve? if request.method == "POST": if request.POST.has_key("activate") and request.POST["activate"]: if post_ok : if not meta.checked and meta.user: meta.user.get_profile().send_message( subject="Song info approved", message="Your metadata for song [song]%s[/song] is now active :)" % meta.song.id, sender = request.user ) meta.song.log(request.user, "Approved song metadata") meta.set_active() if request.POST.has_key("deactivate") and request.POST["deactivate"]: if not meta.checked and meta.user: meta.user.get_profile().send_message( subject="Song info not approved", message="Your metadata for song [song]%s[/song] was not approved :(" % meta.song.id, sender = request.user ) meta.checked = True meta.song.log(request.user, "Rejected metadata %s" % meta.id) meta.save() c = {'meta': meta } return j2shim.r2r("webview/view_songinfo.html", c, request) #Not done class editSonginfo(SongView): template = "edit_songinfo.html" forms = [f.EditSongMetadataForm, "form"] login_required = True def form_form_init(self): if self.method == "POST": meta = m.SongMetaData(song=self.song, user=self.request.user) else: meta = self.song.get_metadata() meta.comment = "" return {'instance': meta} def POST(self): if self.forms_valid: self.context['form'].save() self.redirect(self.context['song']) @login_required def edit_songinfo(request, song_id): song = get_object_or_404(m.Song, id=song_id) meta = song.get_metadata() meta.comment = "" form2 = False if (request.user.get_profile().have_artist() and request.user.artist in meta.artists.all()) or (request.user.is_staff): form2 = f.SongLicenseForm(instance=song) if request.method == "POST": meta = m.SongMetaData(song=song, user=request.user) if form2 and request.POST.get("special") == "licchange": form2 = f.SongLicenseForm(request.POST, instance=song) if form2.is_valid(): s = form2.save() song.log(request.user, "Changed song license to %s" % s.license) return redirect(song) else: form = f.EditSongMetadataForm(request.POST, instance=meta) if form.is_valid(): form.save() return redirect(song) else: form = f.EditSongMetadataForm(instance=meta) c = {'form': form, 'song': song, 'form2': form2} return j2shim.r2r("webview/edit_songinfo.html", c, request) @login_required def upload_song(request, artist_id): # Check to see if Uploading is currently disabled DisableUploads = getattr(settings, 'DISABLE_UPLOADS', False) if DisableUploads: # Uploads are currently disabled in the system return HttpResponseRedirect(reverse('dv-queue')) artist = get_object_or_404(m.Artist, id=artist_id) auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_UPLOADS', 0) artist_auto_approve = getattr(settings, 'ARTIST_AUTO_APPROVE_UPLOADS', 1) links = LinkCheck("S", user = request.user) # Quick test to see if the artist is currently active. If not, bounce # To the current queue! if artist.status != 'A': return HttpResponseRedirect(reverse('dv-queue')) if request.method == 'POST': if artist_auto_approve and artist.link_to_user == request.user: # Auto Approved Song. Set Active, Add to Recent Uploads list status = 'A' else: status = 'U' # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' a = m.Song(uploader = request.user, status = status) form = f.UploadForm(request.POST, request.FILES, instance = a) infoform = f.SongMetadataForm(request.POST) if links.is_valid(request.POST) and form.is_valid() and infoform.is_valid(): new_song = form.save(commit=False) new_song.save() songinfo = infoform.save(commit=False) songinfo.user = request.user songinfo.song = new_song songinfo.checked = True songinfo.save() infoform.save_m2m() form.save_m2m() songinfo.artists.add(artist) songinfo.set_active() links.save(new_song) if(new_song.status == 'A'): # Auto Approved! try: # If the song entry exists, we shouldn't care exist = m.SongApprovals.objects.get(song = new_song) except: # Should throw when the song isn't found in the DB Q = m.SongApprovals(song = new_song, approved_by=request.user, uploaded_by=request.user) Q.save() return HttpResponseRedirect(new_song.get_absolute_url()) else: form = f.UploadForm() infoform = f.SongMetadataForm() return j2shim.r2r('webview/upload.html', \ {'form' : form, 'infoform': infoform, 'artist' : artist, 'links': links }, \ request=request) @permission_required('webview.change_song') def activate_upload(request): if "song" in request.GET and "status" in request.GET: songid = int(request.GET['song']) status = request.GET['status'] song = m.Song.objects.get(id=songid) url = m.Site.objects.get_current() if status == 'A': stat = "Accepted" song.status = "A" song.log(request.user, "Approved song") if status == 'R': stat = "Rejected" song.status = 'R' song.log(request.user, "Rejected song") # This used to be propriatary, it is now a template. AAK mail_tpl = loader.get_template('webview/email/song_approval.txt') c = Context({ 'songid' : songid, 'song' : song, 'site' : m.Site.objects.get_current(), 'stat' : stat, 'url' : url, }) song.save() # Only add if song is approved! Modified to check to see if song exists first! # There is probbably a better way of doing this crude check! AAK if(status == 'A'): try: # If the song entry exists, we shouldn't care exist = m.SongApprovals.objects.get(song = song) except: # Should throw when the song isn't found in the DB Q = m.SongApprovals(song=song, approved_by=request.user, uploaded_by=song.uploader) Q.save() if getattr(settings, "NOTIFY_NEW_SONG_APPROVED", False): m.send_notification("Song <a href='%s'>%s</a> was accepted and is now avaliable for queuing!" % ( song.get_absolute_url(), escape(song.title), ), None, 2) if song.uploader.get_profile().pm_accepted_upload and status == 'A' or status == 'R': song.uploader.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Song Upload Status Changed To: %s" % stat ) songs = m.Song.objects.filter(status = "U").order_by('added') return j2shim.r2r('webview/uploaded_songs.html', {'songs' : songs}, request=request) def showRecentChanges(request): # Get some default stat values artist_limit = getattr(settings, 'RECENT_ARTIST_VIEW_LIMIT', 20) song_limit = getattr(settings, 'RECENT_SONG_VIEW_LIMIT', 20) label_limit = getattr(settings, 'RECENT_LABEL_VIEW_LIMIT', 20) group_limit = getattr(settings, 'RECENT_GROUP_VIEW_LIMIT', 20) comp_limit = getattr(settings, 'RECENT_COMP_VIEW_LIMIT', 20) # Make a list of stuff needed for the stats page songlist = m.Song.objects.order_by('-songmetadata__added')[:song_limit] artistlist = m.Artist.objects.order_by('-last_updated')[:artist_limit] labellist = m.Label.objects.order_by('-last_updated')[:label_limit] grouplist = m.Group.objects.order_by('-last_updated')[:group_limit] complist = m.Compilation.objects.order_by('-last_updated')[:comp_limit] # And now return this as a template. default page cache is 5 minutes, which is ample enough # To show real changes, without stressing out the SQL loads return j2shim.r2r('webview/recent_changes.html', {'songs' : songlist, 'artists' : artistlist, 'groups' : grouplist, 'labels' : labellist, 'compilations' : complist}, request=request) class UsersOverview (WebView): template = "users_overview.html" def set_context (self): limit = 50 country_stats_q = m.User.objects.values ("userprofile__country") country_stats_q = country_stats_q.annotate (count = Count("pk")) country_stats_q = country_stats_q.order_by ('-count', "userprofile__country") by_votes_q = m.User.objects.values ("username", 'userprofile__country') by_votes_q = by_votes_q.annotate (count = Count("songvote"), avg = Avg('songvote__vote')) by_votes_q = by_votes_q.order_by ('-count') by_votes_q = by_votes_q [:limit] by_oneliner_q = m.User.objects.values ("username", 'userprofile__country') by_oneliner_q = by_oneliner_q.annotate (count = Count("oneliner")) by_oneliner_q = by_oneliner_q.order_by ('-count') by_oneliner_q = by_oneliner_q [:limit] by_uploads_q = m.SongApprovals.objects.values ("uploaded_by__username", 'uploaded_by__userprofile__country') by_uploads_q = by_uploads_q.annotate (count = Count("pk")) by_uploads_q = by_uploads_q.order_by ('-count') by_uploads_q = by_uploads_q [:limit] by_tagging_q = m.TagHistory.objects.values ("user__username", 'user__userprofile__country') by_tagging_q = by_tagging_q.annotate (count = Count("pk")) by_tagging_q = by_tagging_q.order_by ('-count') by_tagging_q = by_tagging_q [:limit] by_requester_q = m.Queue.objects.values ("requested_by__username", 'requested_by__userprofile__country') by_requester_q = by_requester_q.annotate (count = Count("pk"), avg = Avg ("song__rating")) by_requester_q = by_requester_q.order_by ('-count') by_requester_q = by_requester_q [:limit] by_comments_q = m.SongComment.objects.values ("user__username", 'user__userprofile__country') by_comments_q = by_comments_q.annotate (count = Count("pk")) by_comments_q = by_comments_q.order_by ('-count') by_comments_q = by_comments_q [:limit] by_posts_q = fm.Post.objects.values ("author__username", 'author__userprofile__country') by_posts_q = by_posts_q.annotate (count = Count("pk")) by_posts_q = by_posts_q.order_by ('-count') by_posts_q = by_posts_q [:limit] # We can return queries, since they are lazy. It is supposed that access is cached in html return {'by_votes_q' : by_votes_q, 'by_oneliner_q' : by_oneliner_q, 'by_requester_q' : by_requester_q, 'by_comments_q' : by_comments_q, 'by_posts_q' : by_posts_q, 'by_tagging_q' : by_tagging_q, 'by_uploads_q' : by_uploads_q, 'country_stats_q' : country_stats_q} class RadioOverview (WebView): # This is supposed to be cached both on HTML level (to avoid overheads on HTML rendering) # and on code level to avoid set_context method overheads template = "radio_overview.html" @cached_method (key = "RadioOverview-get_total_played_length", timeout = 60) def get_total_played (self): q = m.Song.active.extra ( select = {"total_played_length" : "sum(song_length * times_played)", "total_times_played" : "sum(times_played)"}) return list (q.values ("total_played_length", "total_times_played")) [0] @cached_method (key = "RadioOverview-stats_by_status", timeout = 60) def list_stats_by_status (self): return self.__list_grouped_by (m.Song.objects, 'status') @cached_method (key = "RadioOverview-votes_by_status", timeout = 60) def list_votes_stats (self): return self.__list_grouped_by (m.Song.active, 'rating_votes', limit = 6) @cached_method (key = "RadioOverview-source_stats", timeout = 60) def list_source_stats (self): type_by_id = {None : m.Struct (title = "----------------")} for type in m.SongType.objects.all(): type_by_id [type.id] = type stats = self.__list_grouped_by (m.Song.active.filter (songmetadata__active = True), 'songmetadata__type') for stat in stats: stat ['source'] = type_by_id [stat['songmetadata__type']].title return stats @cached_method (key = "RadioOverview-country_stats", timeout = 86400) def list_country_stats (self): return self.__list_grouped_by ( m.Song.active.filter (songmetadata__active = True), 'songmetadata__artists__home_country', order_by = ['-count', 'songmetadata__artists__home_country']) @cached_method (key = "RadioOverview-set_context", timeout = 60) def set_context (self): # Overview stats_by_status = self.list_stats_by_status () total_songs = 0 total_length = 0 unlocked_songs = 0 unlocked_length = 0 status_dict = dict (m.Song.STATUS_CHOICES) for stat in stats_by_status: stat ['status'] = status_dict [stat ['status']] total_songs += stat ['count'] total_length += stat ['total_playtime'] unlocked_songs += stat ['unlocked_count'] unlocked_length += stat ['unlocked_playtime'] # Result return {'vote_stats' : self.list_votes_stats (), "stats_by_status" : stats_by_status, "source_stats" : self.list_source_stats (), "country_stats" : self.list_country_stats (), 'total_length' : total_length, 'total_songs' : total_songs, 'unlocked_length' : unlocked_length, 'unlocked_songs' : unlocked_songs, 'total_played' : self.get_total_played ()} def __list_grouped_by (self, qmanager, field, limit = None, order_by = None): # It is hard or impossible to write that with current django without issuing two queries # because django doesn't support expressions in annotations... def qfiltered (f = None): q = qmanager if f: q = q.filter (f) q = q.values (field) q = q.annotate (count = Count("pk"), total_playtime = Sum('song_length')) if order_by: q = q.order_by (*order_by) else: q = q.order_by (field) if limit: return q [:limit] else: return q.all () # Get total by_field = {} stats = qfiltered () for stat in stats: by_field [stat[field]] = stat stat ['unlocked_count'] = 0 stat ['unlocked_playtime'] = 0 # Mix-in playable stats for pstat in qfiltered (m.Song.unlocked_condition()): fieldv = pstat [field] if fieldv in by_field: stat = by_field [fieldv] stat ['unlocked_count'] = pstat ['count'] stat ['unlocked_playtime'] = pstat ['total_playtime'] # Force evaluation, otherwise django's cache doesn't cache it at all! :E return list (stats) class RadioStatus(WebView): template = "stat_songs.html" def list_favorites(self): return m.Song.objects.order_by('-num_favorited') def list_voted(self): limit = getattr(settings, "RADIO_STATUS_VOTED_MIN_VOTES", 1) return m.Song.objects.filter(rating_votes__gt = limit - 1).order_by('-rating','-rating_votes') def list_leastvotes (self): return m.Song.objects.filter (m.Song.unlocked_condition ()).order_by ('rating_votes', '?')[:100] def list_forgotten (self): q = m.Song.active.filter (m.Song.unlocked_condition ()) q = q.annotate (last_requested = Max("queue__requested")) q = q.order_by ('last_requested') q = q[:100] return q def list_random(self): max_id = m.Song.objects.order_by('-id')[0].id max_songs = m.Song.objects.filter(status="A").count() num_songs = 100 num_songs = num_songs < max_songs and num_songs or max_songs songlist = [] r_done = [] r = random.randint(0, max_id+1) while len(songlist) < num_songs: r_list = [] curr_count = (num_songs - len(songlist) + 2) for x in range(curr_count): while r in r_done: r = random.randint(0, max_id+1) r_list.append(r) r_done.extend(r_list) songlist.extend([s for s in m.Song.objects.filter(id__in=r_list, status="A")]) return songlist def list_mostvotes(self): return m.Song.objects.order_by('-rating_votes') def list_queued2(self): return m.Song.objects.filter(m.Song.unlocked_condition()).order_by('times_played', 'locked_until') def list_queued(self): return m.Song.objects.filter(status="A").order_by('-times_played') def initialize(self): self.stats = { 'random': ("A selection of random songs from the database!", "rating_votes", "# Votes", self.list_random), 'leastvotes': ("Songs with the least number of votes in the database.", "rating_votes", "# Votes", self.list_leastvotes), 'forgotten': ("Songs which have not been played in a long time (or not al all).", "times_played", "# Plays", self.list_forgotten), 'favorites': ("Songs which appear on more users favourite lists.", "num_favorited", "# Faves", self.list_favorites), 'voted': ("The highest rated songs in the database.", "rating", "Rating", self.list_voted), 'queued': ("The most played songs in the database.", "times_played", "# Plays", self.list_queued), 'unplayed': ("The least played songs in the database.", "times_played", "# Plays", self.list_queued2), 'mostvotes': ("Songs with the highest number of votes cast.", "rating_votes", "# Votes", self.list_mostvotes), } self.stattype = self.kwargs.get("stattype", "") def set_context(self): if self.stattype in self.stats.keys(): title, stat, name, songs = self.stats[self.stattype] return {'songs': songs()[:100], 'title': title, 'numsongs': 100, 'stat': stat, 'name': name} self.template = "radio_status.html" return {'keys' : self.stats} class HelpusWithArtists (ListArtists): list_title = "Artists with incorrect/missing information" letter_url_name = "dv-helpus-artist_letter" all_url_name = "dv-helpus-artist" condition = ~DQ (home_country__in = m.country_codes2, status = 'A') condition |= DQ (artist_pic = '', status = 'A') def get_objects (self): return self.model.objects.filter (self.condition) def desc_function (self, artist): """Describe what is wrong with an artist.""" problems = [] if artist.status == 'A': country_lc = artist.home_country.lower() if country_lc == "": problems.append (_("no country")) elif country_lc not in m.country_codes2: problems.append (_("unknown country (" + artist.home_country + ")")) if artist.artist_pic == "": problems.append (_("no picture")) if problems: problems = ", ".join (problems) problems = problems[0].upper() + problems[1:] return " - " + problems + "." else: # WTF? why are we here then? return "" class HelpusWithSongs (ListSongs): list_title = "Songs with problems" letter_url_name = "dv-helpus-song_letter" all_url_name = "dv-helpus-song" # Kaput condition = DQ (status = 'K') # Active but no compilation condition |= DQ (status = 'A', compilationsonglist = None, songmetadata__active = True, songmetadata__type__compilation_expected = True) # No source (song type) condition |= DQ (status = 'A', songmetadata__type = None, songmetadata__active = True) def get_objects (self): q = self.model.objects.filter (self.condition) q = q.annotate (comps_count = Count("compilationsonglist__pk")) # I hate that but until it is not django 1.4 we can't do better q = q.extra (select = {'compilation_expected' : '`webview_songtype`.`compilation_expected`', 'songtype' : '`webview_songtype`.`id`'}) return q def desc_function (self, song): """Describe what is wrong with an artist.""" problems = [] if song.status == 'K': problems.append ("bad status") if song.compilation_expected and song.comps_count == 0 and song.status == 'A': problems.append ("no compilations") if song.status == 'A' and song.songtype == None: problems.append ("no source") if problems: problems = ", ".join (problems) problems = problems[0].upper() + problems[1:] return problems else: # WTF? why are we here then? return "" class HelpusWithComps (ListComilations): list_title = "Compilations with problems" letter_url_name = "dv-helpus-comp_letter" all_url_name = "dv-helpus-comp" def get_objects (self): # That is the only way.. ;( Django's contenttype magic inserts content_type_id=29 into where clause # making it impossible to filter screenshots=None, so we have to use inner join active_and_with_image_q = self.model.objects.filter (status = 'A', screenshots__image__status = 'A') # Active and without an image condition = DQ (status = 'A') & ~DQ (pk__in = active_and_with_image_q) # Active and no songs (messed up via admin interface or songs are deleted...) condition |= DQ (status = 'A', songs = None) q = self.model.objects.filter (condition) q = q.annotate (screenshots_count = Count("screenshots"), songs_count = Count ("songs")) return q def desc_function (self, comp): """Describe what is wrong with the compilation.""" problems = [] if comp.status == 'A': if comp.screenshots_count == 0: problems.append (_("no cover image")) if comp.songs_count == 0: problems.append (_("no songs")) if problems: problems = ", ".join (problems) problems = problems[0].upper() + problems[1:] return " - " + problems + "." else: # WTF? why are we here then? return "" class HelpusWithScreenshots (ListScreenshots): list_title = "Images with problems" letter_url_name = "dv-helpus-screenshot_letter" all_url_name = "dv-helpus-screenshot" # Connected to nothing condition = DQ (status = 'A', screenshotobjectlink = None) def get_objects (self): q = self.model.objects.filter (self.condition) q = q.annotate (slink_count = Count("screenshotobjectlink")) return q def desc_function (self, scr): """Describe what is wrong with the screenshot.""" problems = [] if scr.status == 'A': if scr.slink_count == 0: problems.append (_("connected to nothing")) if problems: problems = ", ".join (problems) problems = problems[0].upper() + problems[1:] return " - " + problems + "." else: # WTF? why are we here then? return "" class TagCloud(WebView): template = "tag_cloud.html" cache_key = "tag_cloud" cache_duration = 24*60*60 def get_cache_key(self): tag_id = cache.get("tagver", 0) key = "tag_cloud_%s" % tag_id return key def set_cached_context(self): min_count = getattr(settings, 'TAG_CLOUD_MIN_COUNT', 1) tags = m.Song.tags.cloud(min_count=min_count) return {'tags': tags} class MuteOneliner(WebView): template = "oneliner_mute.html" forms = [ (f.MuteOnelinerForm, "banform"), ] def check_permissions(self): return self.request.user.has_perm("webview.add_mute_oneliner") def POST(self): if self.forms_valid: data = self.context["banform"].cleaned_data user = data["username"] endtime = datetime.datetime.now() + datetime.timedelta(minutes=data["mute_minutes"]) entry = m.OnelinerMuted( user=user, muted_to=endtime, reason=data["reason"], added_by=self.request.user, details=data["details"], ) if data["ban_ip"]: profile = user.get_profile() if profile.last_ip: entry.ip_ban = profile.last_ip entry.save() if getattr(m.settings, "BAN_ANNOUNCE", False): m.send_notification("User '%s' have been silenced for %s minutes. Reason: %s" % (user.username,data["mute_minutes"], data["reason"]), None) user.get_profile().log(self.request.user, "Silenced for %s minutes. Reason: %s" % (data["mute_minutes"], data["reason"])) self.redirect("dv-muteoneliner") def set_context(self): active = m.OnelinerMuted.objects.filter(muted_to__gt=datetime.datetime.now()) history = m.OnelinerMuted.objects.filter(muted_to__lt=datetime.datetime.now())[:10] return {"active": active, "history": history} class TagDetail(WebView): template = "tag_detail.html" cache_duration = 24 * 60 * 60 def get_cache_key(self): tag_id = cache.get ("tagver", 0) key = "tagdetail_%s_%s" % (self.kwargs.get("tag", ""), tag_id) return hashlib.md5(key).hexdigest() def set_cached_context(self): tag = self.kwargs.get ("tag", "") songs = TaggedItem.objects.get_by_model (m.Song, tag) related = m.quickly_get_related_tags (songs, exclude_tags_str = tag, limit_to_model = m.Song, count = True) related = tagging.utils.calculate_cloud (related) return {'songs' : songs, 'related' : related, 'tag' : tag} class TagEdit(SongView): login_required=True template = "tag_edit.html" def POST(self): t = self.request.POST.get('tags', "") self.song.tags = re.sub(r'[^a-zA-Z0-9!_\-?& ]+', '', t) self.song.log(self.request.user, "Edited tags") self.song.save() # For updating the "last changed" value m.TagHistory.objects.create(user=self.request.user, song=self.song, tags = self.request.POST['tags']) try: cache.incr("tagver") except: cache.set("tagver", 1) return self.redirect(self.song) def set_context(self): tags = tagging.utils.edit_string_for_tags(self.song.tags) changes = m.TagHistory.objects.filter(song=self.song).order_by('-id')[:5] return {'tags': tags, 'changes': changes} @login_required def create_artist(request): """ Simple form to allow registereed users to create a new artist entry. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_ARTIST', 0) links = LinkCheck("A") if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'U' a = m.Artist(created_by = request.user, status = status) form = f.CreateArtistForm(request.POST, request.FILES, instance = a) if form.is_valid() and links.is_valid(request.POST): new_artist = form.save(commit=False) new_artist.save() form.save_m2m() links.save(new_artist) return HttpResponseRedirect(new_artist.get_absolute_url()) else: form = f.CreateArtistForm() return j2shim.r2r('webview/create_artist.html', \ {'form' : form, 'links': links }, \ request=request) @permission_required('webview.change_artist') def activate_artists(request): """ Shows the most recently added artists who have a 'U' status in their upload marker """ if "artist" in request.GET and "status" in request.GET: artistid = int(request.GET['artist']) status = request.GET['status'] artist = m.Artist.objects.get(id=artistid) url = m.Site.objects.get_current() # Pull this into a variable if status == 'A': stat = "Accepted" artist.log(request.user, "Activated artist") artist.status = "A" if status == 'R': stat = "Rejected" artist.log(request.user, "Rejected artist") artist.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/artist_approval.txt') c = Context({ 'artist' : artist, 'site' : m.Site.objects.get_current(), 'stat' : stat, 'url' : url, }) artist.save() # Send the email to inform the user of their request status if artist.created_by.get_profile().email_on_artist_add and status == 'A' or status == 'R': artist.created_by.get_profile().send_message(sender = request.user, message = mail_tpl.render(c), subject = u"Artist %s : %s" % (artist.handle, stat) ) artists = m.Artist.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_artists.html', { 'artists': artists }, request=request) @login_required def create_group(request): """ Simple form to allow registereed users to create a new group entry. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_GROUP', 0) links = LinkCheck("G") if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'U' if request.method == 'POST': g = m.Group(created_by = request.user, status = status) form = f.CreateGroupForm(request.POST, request.FILES, instance = g) if form.is_valid() and links.is_valid(request.POST): new_group = form.save(commit=False) new_group.save() form.save_m2m() links.save(new_group) return HttpResponseRedirect(new_group.get_absolute_url()) else: form = f.CreateGroupForm() return j2shim.r2r('webview/create_group.html', \ {'form' : form, 'links': links }, \ request=request) @permission_required('webview.change_group') def activate_groups(request): """ Shows the most recently added groups who have a 'U' status in their upload marker """ if "group" in request.GET and "status" in request.GET: groupid = int(request.GET['group']) status = request.GET['status'] group = m.Group.objects.get(id=groupid) if status == 'A': stat = "Accepted" group.status = "A" if status == 'R': stat = "Rejected" group.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/group_approval.txt') c = Context({ 'group' : group, 'site' : m.Site.objects.get_current(), 'stat' : stat, }) group.save() # Send the email to inform the user of their request status if group.created_by.get_profile().email_on_group_add and status == 'A' or status == 'R': group.created_by.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Group Request Status Changed To: %s" % stat ) groups = m.Group.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_groups.html', { 'groups': groups }, request=request) @permission_required('webview.change_compilation') def activate_compilations(request): """ Shows the most recently added compilations who have a 'U' status in their upload marker """ if "compilation" in request.GET and "status" in request.GET: compilationid = int(request.GET['compilation']) status = request.GET['status'] compilation = m.Compilation.objects.get(id=compilationid) if status == 'A': stat = "Accepted" compilation.status = "A" if status == 'R': stat = "Rejected" compilation.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/compilation_approval.txt') c = Context({ 'compilation' : compilation, 'site' : m.Site.objects.get_current(), 'stat' : stat, }) compilation.save() # Send the email to inform the user of their request status if compilation.created_by.get_profile().email_on_group_add and status == 'A' or status == 'R': compilation.created_by.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Compilation Request Status Changed To: %s" % stat ) compilations = m.Compilation.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_compilations.html', { 'compilations': compilations }, request=request) @login_required def create_label(request): """ Simple form to allow registereed users to create a new label entry. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_LABEL', 0) links = LinkCheck("L") if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'U' if request.method == 'POST': l = m.Label(created_by = request.user, status = status) form = f.CreateLabelForm(request.POST, request.FILES, instance = l) if form.is_valid() and links.is_valid(request.POST): new_label = form.save(commit=False) new_label.save() form.save_m2m() links.save(new_label) return HttpResponseRedirect(new_label.get_absolute_url()) else: form = f.CreateLabelForm() return j2shim.r2r('webview/create_label.html', \ {'form' : form, 'links': links }, \ request=request) @permission_required('webview.change_label') def activate_labels(request): """ Shows the most recently added labels who have a 'U' status in their upload marker """ if "label" in request.GET and "status" in request.GET: labelid = int(request.GET['label']) status = request.GET['status'] this_label = m.Label.objects.get(id=labelid) if status == 'A': stat = "Accepted" this_label.status = "A" if status == 'R': stat = "Rejected" this_label.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/label_approval.txt') c = Context({ 'label' : this_label, 'site' : m.Site.objects.get_current(), 'stat' : stat, }) this_label.save() # Send the email to inform the user of their request status if this_label.created_by.get_profile().email_on_group_add and status == 'A' or status == 'R': this_label.created_by.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Label Request Status Changed To: %s" % stat ) labels = m.Label.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_labels.html', { 'labels': labels }, request=request) @login_required def create_screenshot(request, obj=None): """ Simple form to allow registereed users to create a new screenshot entry. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_SCREENSHOT', 0) error="" if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'U' if request.method == 'POST': new_screenshot = None l = m.Screenshot(added_by = request.user, status = status) form = f.CreateScreenshotForm(request.POST, request.FILES, instance = l) form2 = f.GenericInfoForm(request.POST) if form2.is_valid(): connectval = request.POST.get("connectto") ct = form2.cleaned_data['content_type'] id = form2.cleaned_data['object_id'] # User links existing screenshot instead of creating new. if connectval: try: if connectval.isdigit(): new_screenshot = m.Screenshot.objects.get(id=connectval) else: new_screenshot = m.Screenshot.objects.get(name=connectval) if not new_screenshot.is_active(): error = "'{0}' is not active! Get an admin to approve it.".format(connectval) new_screenshot = None else: m.ScreenshotObjectLink.objects.create(content_type=ct, object_id=id, image=new_screenshot) new_screenshot.save() except: error = "Screenshot not found!" if not connectval and form.is_valid(): new_screenshot = form.save(commit=False) new_screenshot.save() form.save_m2m() m.ScreenshotObjectLink.objects.create(content_type=ct, object_id=id, image=new_screenshot) # Generate a request for the thumbnail new_screenshot.create_thumbnail() new_screenshot.save() # Leave this place :) if new_screenshot: return HttpResponseRedirect(new_screenshot.get_absolute_url()) else: if obj: ct = ContentType.objects.get_for_model(obj.__class__) i = {'content_type': ct, 'object_id': obj.id } else: i = {} form = f.CreateScreenshotForm() form2 = f.GenericInfoForm(initial=i) return j2shim.r2r('webview/create_screenshot.html', \ {'form' : form, 'form2': form2, "obj":obj, 'error':error }, \ request=request) @permission_required('webview.change_screenshot') def activate_screenshots(request): """ Shows the most recently added labels who have a 'U' status in their upload marker """ if "screenshot" in request.GET and "status" in request.GET: screenshotid = int(request.GET['screenshot']) status = request.GET['status'] this_screenshot = m.Screenshot.objects.get(id=screenshotid) url = m.Site.objects.get_current() if status == 'A': stat = "Accepted" this_screenshot.status = "A" if status == 'R': stat = "Rejected" this_screenshot.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/screenshot_approval.txt') c = Context({ 'screenshot' : this_screenshot, 'site' : m.Site.objects.get_current(), 'stat' : stat, 'url' : url, }) this_screenshot.save() # Send the email to inform the user of their request status if this_screenshot.added_by.get_profile().email_on_group_add and status == 'A' or status == 'R': this_screenshot.added_by.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Screenshot Request Status Changed To: %s" % stat ) screenshots = m.Screenshot.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_screenshots.html', { 'screenshots': screenshots }, request=request) @permission_required('webview.change_screenshot') def rebuild_thumb(request, screenshot_id): screenshot = get_object_or_404(m.Screenshot, id=screenshot_id) #m.Screenshot.objects.get(id=screenshot_id) #get_object_or_404(m.Screenshot, id=screenshot_id) screenshot.create_thumbnail() screenshot.save() return j2shim.r2r('webview/screenshot_detail.html', { 'object' : screenshot }, request) def users_online(request): timefrom = datetime.datetime.now() - datetime.timedelta(minutes=5) userlist = m.Userprofile.objects.filter(last_activity__gt=timefrom).order_by('user__username') return j2shim.r2r('webview/online_users.html', {'userlist' : userlist}, request=request) @login_required def set_rating_autovote(request, song_id, user_rating): """ Set a user's rating on a song. From 0 to 5 """ int_vote = int(user_rating) if int_vote <= 5 and int_vote > 0: S = m.Song.objects.get(id = song_id) S.set_vote(int_vote, request.user) #add_event(event="nowplaying") # Successful vote placed. try: refer = request.META['HTTP_REFERER'] return HttpResponseRedirect(refer) except: return HttpResponseRedirect("/") # If the user tries any funny business, we redirect to the queue. No messing! return HttpResponseRedirect(reverse("dv-queue")) @login_required def set_rating(request, song_id): """ Set a user's rating on a song. From 0 to 5 """ if request.method == 'POST': try: R = int(request.POST['Rating']) except: return HttpResponseRedirect(reverse('dv-song', args=[song_id])) if R <= 5 and R >= 1: S = m.Song.objects.get(id = song_id) S.set_vote(R, request.user) return HttpResponseRedirect(S.get_absolute_url()) def link_category(request, slug): """ View all links associated with a specific link category slug """ link_cat = get_object_or_404(m.LinkCategory, id_slug = slug) link_data_txt = m.Link.objects.filter(status="A").filter(link_type="T").filter(url_cat=link_cat) # See what linkage data we have return j2shim.r2r('webview/links_category.html', \ {'links_txt' : link_data_txt, 'cat' : link_cat}, \ request=request) @login_required def link_create(request): """ User submitted links appear using this form for moderators to approve. Once sent, they are directed to A generic 'Thanks' page. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_LINK', 0) if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'P' l = m.Link(submitted_by = request.user, status = status) form = f.CreateLinkForm(request.POST, request.FILES, instance = l) if form.is_valid(): new_link = form.save(commit=False) new_link.save() form.save_m2m() return j2shim.r2r('webview/link_added.html', request=request) # Redirect to 'Thanks!' screen! else: form = f.CreateLinkForm() return j2shim.r2r('webview/create_link.html', { 'form' : form }, request=request) @permission_required('webview.change_link') def activate_links(request): """ Show all currently pending links in the system. Only the l33t may access. """ if "link" in request.GET and "status" in request.GET: linkid = int(request.GET['link']) status = request.GET['status'] this_link = m.Link.objects.get(id=linkid) if status == 'A': this_link.status = "A" this_link.log(request.user, "Accepted link") this_link.approved_by = request.user if status == 'R': this_link.status = "R" this_link.log(request.user, "Rejected link") this_link.approved_by = request.user # Save this to the DB this_link.save() #links = Link.objects.filter(status = "P") links_txt = m.Link.objects.filter(status="P").filter(link_type="T") #links_but = Link.objects.filter(status="P").filter(link_type="U") #links_ban = Link.objects.filter(status="P").filter(link_type="B") return j2shim.r2r('webview/pending_links.html', { 'text_links' : links_txt }, request=request) def site_links(request): """ Show all active links for this site """ link_cats = m.LinkCategory.objects.all() # All categories in the system return j2shim.r2r('webview/site-links.html', { 'link_cats' : link_cats }, request=request) def memcached_status(request): try: import memcache except ImportError: return HttpResponseRedirect("/") if not (request.user.is_authenticated() and request.user.is_staff): return HttpResponseRedirect("/") # get first memcached URI match = re.match( "memcached://([.\w]+:\d+)", settings.CACHE_BACKEND ) if not match: return HttpResponseRedirect("/") host = memcache._Host(match.group(1)) host.connect() host.send_cmd("stats") class Stats: pass stats = Stats() while 1: line = host.readline().split(None, 2) if line[0] == "END": break stat, key, value = line try: # convert to native type, if possible value = int(value) if key == "uptime": value = datetime.timedelta(seconds=value) elif key == "time": value = datetime.datetime.fromtimestamp(value) except ValueError: pass setattr(stats, key, value) host.close_socket() return j2shim.r2r( 'webview/memcached_status.html', dict( stats=stats, hit_rate=100 * stats.get_hits / stats.cmd_get, time=datetime.datetime.now(), # server time ), request=request) class LicenseList(WebView): template = "licenselist.html" def set_context(self): licenses = m.SongLicense.objects.all() return {'licenses': licenses} class License(WebView): template = "license.html" def set_context(self): id = self.kwargs.get("id") license = m.SongLicense.objects.get(id=id) return {'license': license} class Login(MyBaseView): template="registration/login.html" MAX_FAILS_PER_HOUR = getattr(settings, "MAX_FAILED_LOGINS_PER_HOUR", 5) def pre_view(self): self.context['next'] = self.request.REQUEST.get("next", "") self.context['username'] = self.request.REQUEST.get("username", "") self.context['error'] = "" def check_limit(self, keys): for key in keys: if cache.get(key, 0) > self.MAX_FAILS_PER_HOUR: return True return False def add_to_limit(self, keys): for key in keys: if cache.get(key, None) == None: cache.set(key, 1, 60*60) else: cache.incr(key) def POST(self): ip = self.request.META.get("REMOTE_ADDR") username = self.request.POST.get('username', "") password = self.request.POST.get('password', "") key1 = hashlib.md5("loginfail" + username).hexdigest() key2 = hashlib.md5("loginfail" + ip).hexdigest() if self.check_limit((key1, key2)): self.context['error'] = _("Too many failed logins. Please wait an hour before trying again.") return False next = self.request.POST.get("next", False) if not username or not password: self.context['error'] = _(u"You need to supply a username and password") return user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(self.request, user) return self.redirect(next or 'dv-root') else: self.context['error'] = _(u"I'm sorry, your account have been disabled.") else: self.add_to_limit((key1, key2)) self.context['error'] = _(u"I'm sorry, the username or password seem to be wrong.") def play_stream(request): streamurl = getattr(settings, "FLASH_STREAM_URL", False) if not streamurl: surl = m.RadioStream.objects.filter(streamtype="M").order_by('?') if surl: streamurl = surl[0].url else: streamurl = "No MP3 Streams!" return j2shim.r2r( 'webview/radioplay.html', dict( streamurl=streamurl, ), request=request) def upload_progress(request): """ Return JSON object with information about the progress of an upload. """ progress_id = '' if 'X-Progress-ID' in request.GET: progress_id = request.GET['X-Progress-ID'] elif 'X-Progress-ID' in request.META: progress_id = request.META['X-Progress-ID'] if progress_id: from django.utils import simplejson cache_key = "%s_%s" % (request.META['REMOTE_ADDR'], progress_id) data = cache.get(cache_key) return HttpResponse(simplejson.dumps(data)) else: return HttpResponseServerError('Server Error: You must provide X-Progress-ID header or query param.')
[ "fishguy8765@gmail.com" ]
fishguy8765@gmail.com
f0338b1f24a90d5fbc5b99ebe5f32f64d18dd26f
34f1693e4bd6b85abc289725d535656b36fb5e72
/.file/hash/6.py
64c612f22b34aebed2e2831867886eeed92feae8
[]
no_license
mels595/termux-toolkit
f15aeeb8f673082e2ee6cde50f72f6d40481eb61
872b9220e9fe857b65502ff775073e26fedbc0b9
refs/heads/master
2022-11-17T18:35:09.892480
2020-07-11T18:46:29
2020-07-11T18:46:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
import hashlib text = raw_input("\033[00m[\033[1;31m+\033[00m] Text\033[1;31m: \033[0;36m") m = hashlib.new('sha384') m.update(text) md4 = m.hexdigest() print "\033[00m[\033[1;32m+\033[00m] SHA384 \033[1;31m: \033[0;33m"+md4
[ "bangaslanz@yahoo.com" ]
bangaslanz@yahoo.com
b5c1fff82ac0901d1ae985cd1826ca4b47c6f5af
5b93930ce8280b3cbc7d6b955df0bfc5504ee99c
/nodes/Bisong19Building/I_PartVIII/C_Chapter47/index.py
cce9e2225cec24eabc5302e3a2817b1a5b9cd72f
[]
no_license
nimra/module_gen
8749c8d29beb700cac57132232861eba4eb82331
2e0a4452548af4fefd4cb30ab9d08d7662122cf4
refs/heads/master
2022-03-04T09:35:12.443651
2019-10-26T04:40:49
2019-10-26T04:40:49
213,980,247
0
1
null
null
null
null
UTF-8
Python
false
false
4,830
py
# Lawrence McAfee # ~~~~~~~~ import ~~~~~~~~ from modules.node.HierNode import HierNode from modules.node.LeafNode import LeafNode from modules.node.Stage import Stage from modules.node.block.CodeBlock import CodeBlock as cbk from modules.node.block.ImageBlock import ImageBlock as ibk from modules.node.block.MarkdownBlock import MarkdownBlock as mbk from .A_Overviewof.index import Overviewof as A_Overviewof from .B_Createa.index import Createa as B_Createa from .C_BuildContainers.index import BuildContainers as C_BuildContainers from .D_Compilethe.index import Compilethe as D_Compilethe from .E_Uploadand.index import Uploadand as E_Uploadand # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # CHAPTER 47 # # # # Deploying # an End-to-­End Machine # Learning Solution # on Kubeflow Pipelines # A Kubeflow pipeline component is an implementation of a pipeline task. A component # is a step in the workflow. Each task takes one or more artifacts as input and may produce # one or more artifacts as output. # Each component usually includes two parts: # # • Client code: The code that talks to endpoints to submit jobs, for # example, code to connect with the Google Cloud Machine Learning # Engine. # # • Runtime code: The code that does the actual job and usually runs in # the cluster, for example, the code that prepares the model for training # on Cloud MLE. # A component consists of an interface (inputs/outputs), the implementation # (a Docker container image and command-line arguments), and metadata (name, # description). # # # # # 687 # © Ekaba Bisong 2019 # E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform, # https://doi.org/10.1007/978-1-4842-4470-8_47 # # Chapter 47 Deploying an End-to-­End Machine Learning Solution on Kubeflow Pipelines # # # Overview of a Simple End-to-End Solution Pipeline # In this simple example, we will implement a deep neural regressor network to predict the # closing prices of Bitcoin crypto-currency. The machine learning code itself is pretty basic # as it is not the focus of this article. The goal here is to orchestrate a machine learning # engineering solution using microservice architectures on Kubernetes with Kubeflow # Pipelines. The code for this chapter is in the book code repository. Clone the repository # from the GCP Cloud Shell. # The pipeline consists of the following components: # # 1. Move raw data hosted on GitHub to a storage bucket. # # 2. Transform the dataset using Google Dataflow. # # 3. Carry out hyper-parameter training on Cloud Machine # Learning Engine. # # 4. Train the model with the optimized hyper-parameters. # # 5. Deploy the model for serving on Cloud MLE. # # # # Create a Container Image for Each Component # First, we’ll package the client and runtime code into a Docker image. This image # also contains the secure service account key to authenticate against GCP. For example, # the component to transform the dataset using Dataflow has the following files built into # its image: # • __ Dockerfile: Dockerfile to build the Docker image. # # • __ build.sh: Script to initiate the container build and upload to # Google Container Registry. # # • __ dataflow_transform.py: Code to run the beam pipeline on # Cloud Dataflow. # # • __ service_account.json: Secure key to authenticate container # on GCP. # # • __ local_test.sh: Script to run the image pipeline component # locally. # # # 688 # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Content(LeafNode): def __init__(self): super().__init__( "Chapter 47: Deploying an End-to-­End Machine Learning Solution on Kubeflow Pipelines", # Stage.REMOVE_EXTRANEOUS, # Stage.ORIG_BLOCKS, # Stage.CUSTOM_BLOCKS, # Stage.ORIG_FIGURES, # Stage.CUSTOM_FIGURES, # Stage.CUSTOM_EXERCISES, ) self.add(mbk("# Chapter 47: Deploying an End-to-­End Machine Learning Solution on Kubeflow Pipelines")) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Chapter47(HierNode): def __init__(self): super().__init__("Chapter 47: Deploying an End-to-­End Machine Learning Solution on Kubeflow Pipelines") self.add(Content()) self.add(A_Overviewof()) self.add(B_Createa()) self.add(C_BuildContainers()) self.add(D_Compilethe()) self.add(E_Uploadand()) # eof
[ "lawrence.mcafee@gmail.com" ]
lawrence.mcafee@gmail.com
9ca3d949f4eba7c4f5c4434c364d62be9b136a99
aa4024b6a846d2f6032a9b79a89d2e29b67d0e49
/UMLRT2Kiltera_MM/graph_MT_post__Model.py
3f264f3c35aea6264d6efa85f991b713f54237a9
[ "MIT" ]
permissive
levilucio/SyVOLT
41311743d23fdb0b569300df464709c4954b8300
0f88827a653f2e9d3bb7b839a5253e74d48379dc
refs/heads/master
2023-08-11T22:14:01.998341
2023-07-21T13:33:36
2023-07-21T13:33:36
36,246,850
3
2
MIT
2023-07-21T13:33:39
2015-05-25T18:15:26
Python
UTF-8
Python
false
false
2,610
py
""" __graph_MT_post__Model.py___________________________________________________________ Automatically generated graphical appearance ---> MODIFY DIRECTLY WITH CAUTION ___________________________________________________________________________ """ import tkFont from graphEntity import * from GraphicalForm import * from ATOM3Constraint import * class graph_MT_post__Model(graphEntity): def __init__(self, x, y, semObject = None): self.semanticObject = semObject self.sizeX, self.sizeY = 172, 82 graphEntity.__init__(self, x, y) self.ChangesAtRunTime = 0 self.constraintList = [] if self.semanticObject: atribs = self.semanticObject.attributesToDraw() else: atribs = None self.graphForms = [] self.imageDict = self.getImageDict() def DrawObject(self, drawing, showGG = 0): self.dc = drawing if showGG and self.semanticObject: self.drawGGLabel(drawing) h = drawing.create_oval(self.translate([189.0, 62.0, 189.0, 62.0]), tags = (self.tag, 'connector'), outline = '', fill = '' ) self.connectors.append( h ) h = drawing.create_rectangle(self.translate([20.0, 20.0, 190.0, 100.0]), tags = self.tag, stipple = '', width = 1, outline = 'black', fill = 'moccasin') self.gf4 = GraphicalForm(drawing, h, "gf4") self.graphForms.append(self.gf4) font = tkFont.Font( family='Arial', size=12, weight='normal', slant='roman', underline=0) h = drawing.create_text(self.translate([110.0, 41.0, 110.0, 12.0])[:2], tags = self.tag, font=font, fill = 'black', anchor = 'center', text = 'MT_post__Model_S', width = '0', justify= 'left', stipple='' ) self.gf66 = GraphicalForm(drawing, h, 'gf66', fontObject=font) self.graphForms.append(self.gf66) helv12 = tkFont.Font ( family="Helvetica", size=12, weight="bold" ) h = drawing.create_text(self.translate([-3, -3]), font=helv12, tags = (self.tag, self.semanticObject.getClass()), fill = "black", text=self.semanticObject.MT_label__.toString()) self.attr_display["MT_label__"] = h self.gf_label = GraphicalForm(drawing, h, 'gf_label', fontObject=helv12) self.graphForms.append(self.gf_label) def postCondition( self, actionID, * params): return None def preCondition( self, actionID, * params): return None def getImageDict( self ): imageDict = dict() return imageDict new_class = graph_MT_post__Model
[ "levi" ]
levi