blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
d6f400c8e900cfa2adabecd58ef963c067396287
1abdbf49bf7c75ebf75f6d30e6c04747c84b927d
/models/pacient/profession_history.py
4619c59e2a40a8c1852547525dc9b78a032afd9a
[]
no_license
JoseMOrellana/neuro_app_api
160577a0de1efa20934c1ee150d34abb591295ee
46797375afc66392452a08f28ee6ebee716d8c14
refs/heads/master
2022-11-20T01:18:46.880451
2020-07-24T13:33:07
2020-07-24T13:33:07
262,230,151
0
0
null
null
null
null
UTF-8
Python
false
false
844
py
from db import Column, Integer, ForeignKey, String, Date from models.abstract_models import BaseModel from .profession_type import ProfessionTypeModel class ProfessionHistoryModel(BaseModel): __tablename__ = "profesion" profession_type_id = Column("tipo_profesiones_id", Integer, ForeignKey(ProfessionTypeModel.id)) pacient_id = Column("pacientes_id", Integer, ForeignKey('pacientes.id')) start = Column("inicio", Date) end = Column("fin", Date) def __init__(self, profession_type_id, pacient_id, start=None, end=None): self.profession_type_id = profession_type_id self.pacient_id = pacient_id self.start = start self.end = end @classmethod def find_by_pacient_id(cls, pacient_id: str) -> "ClinicalStoryModel": return cls.query.filter_by(pacient_id=pacient_id).all()
[ "jose.mom.1304@gmail.com" ]
jose.mom.1304@gmail.com
a57e3e77d893b00ed27294b3bfd85f27a0e37ff0
704fda0d0e05f66f0c4f3c17cc4b39e2b0bc6220
/homework5/task1.py
abca4dc5606ab449987bfe8f42e4a8d55ed56536
[]
no_license
humantom88/geekbrains-python-basics
71eae1be4f8b1d757db17200d64d2b14ea51d83f
ebde8e0a9b92386f2a5b994a880184adde8c7454
refs/heads/master
2021-05-17T10:48:56.788147
2020-04-23T09:51:10
2020-04-23T09:51:10
250,743,538
0
0
null
null
null
null
UTF-8
Python
false
false
567
py
# 1. Создать программно файл в текстовом формате, # записать в него построчно данные, вводимые пользователем. # Об окончании ввода данных свидетельствует пустая строка. print('Введите текст: ') with open('task1.txt', 'w') as f: is_input_over = False while not is_input_over: user_string = input() if len(user_string) == 0: is_input_over = True f.write(user_string + '\n')
[ "Belov.A.Andr@sberbank.ru" ]
Belov.A.Andr@sberbank.ru
aca8286bd93b871eb0b572ac027266f46511234a
7405aff080f8f9f915c1989dc7eb5a16d0e3c54c
/data_viz.py
1a9f146a9a1a844f9ab1678c4b80909a02920f11
[]
no_license
peter-haferl/reddit_hockey_sentiment_analysis
9dc3cbca3e7f05b0550fdcfda7bc30c733e7aa17
a341f8cdd623758fa3eedcb8dc9c4a3c3f9b3596
refs/heads/master
2022-03-30T18:43:45.113783
2020-01-30T21:32:30
2020-01-30T21:32:30
212,584,071
0
0
null
null
null
null
UTF-8
Python
false
false
18,092
py
''' Functions for visualizing data for EDA ''' import seaborn as sns import matplotlib.pyplot as plt import pandas as pd import numpy as np from IPython.display import display, Markdown from sklearn.preprocessing import MinMaxScaler # game_data = ['num_comments', 'num_fights', 'attendance', 'len_game', 'corsi_for%', # 'fenwick_for%', 'faceoff%', 'off_zone_start%', 'pdo', 'total_sog', # 'total_pp_goals', 'total_goals', 'total_pp_opportunity', 'total_sh_goals', # 'sog_diff', 'pp_goals_diff', 'goal_diff', 'pp_opportunity_diff', 'sh_goals_diff', # 'sog_norm_diff', 'pp_goals_norm_diff', 'goal_norm_diff', # 'pp_opportunity_norm_diff','sh_goals_norm_diff', 'ot/so', 'comeback?', 'win/loss'] game_data = ['num_comments', 'num_fights', 'attendance', 'len_game', 'corsi_for%', 'fenwick_for%', 'faceoff%', 'off_zone_start%', 'pdo', 'total_sog', 'total_pp_goals', 'total_goals', 'total_pp_opportunity', 'total_sh_goals', 'sog_diff', 'pp_goals_diff', 'goal_diff', 'pp_opportunity_diff', 'sh_goals_diff', 'ot/so', 'comeback?', 'win/loss'] def plot_team_effect_binary_data(data, statistic=None, game_venue='home'): '''Plot Means of binary data stats ('win/loss', 'comeback?') ''' if game_venue == 'home': home_data = data.groupby(by='home_team').mean()[statistic] plt.figure(figsize=(25,10)) sns.scatterplot(x='home_team', y=statistic, data=home_data.reset_index(drop=False), s=400, marker='s', color='darkblue') plt.hlines(y=home_data.mean(), xmin=-1, xmax=30.4, colors='red', label='Population Mean', linewidth=2) elif game_venue == 'away': away_data = data.groupby(by='away_team').mean()[statistic] plt.figure(figsize=(25,10)) sns.scatterplot(x='away_team', y=statistic, data=away_data.reset_index(drop=False), s=400, marker='s', color='darkblue') plt.hlines(y = away_data.mean(), xmin=-1, xmax=30.4, colors='red', label='Population Mean', linewidth=2) elif game_venue == 'all': home_data = data.groupby(by='home_team').mean()[statistic] away_data = data.groupby(by='away_team').mean()[statistic] if statistic == 'win/loss': away_data = away_data.map(lambda x: 1-x) all_data = (home_data + away_data)/2 all_data.rename_axis('team', inplace=True) plt.figure(figsize=(25,10)) sns.scatterplot(x='team', y=statistic, data=all_data.reset_index(drop=False), s=400, marker='s', color='darkblue') plt.hlines(y = all_data.mean(), xmin=-1, xmax=30.4, colors='red', label='Population Mean', linewidth=2) title_font = {'size':'22', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} axis_font = {'size':'20', 'weight': 'medium'} tick_font = {'size': '16', 'weight': 'medium'} statistic = statistic.replace('_', ' ').upper() plt.title(f'Team Effect on {statistic} in {game_venue.title()} Games', **title_font) plt.ylabel(f'{statistic}', **axis_font) plt.xlabel('Team', **axis_font) plt.xticks(**tick_font) plt.yticks(**tick_font); # def plot_team_effect_binary_data(data, statistic=None, game_venue='home'): # '''Plot Means of binary data stats ('win/loss', 'comeback?') # ''' # if game_venue == 'home': # home_data = data.groupby(by='home_team').mean()[statistic] # plt.figure(figsize=(25,10)) # sns.scatterplot(x='home_team', y=statistic, data=home_data.reset_index(drop=False), # s=400, marker='s', color='darkblue') # plt.hlines(y=home_data.mean(), xmin=-1, xmax=30.4, colors='red', # label='Population Mean', linewidth=2) # elif game_venue == 'away': # away_data = data.groupby(by='away_team').mean()[statistic] # plt.figure(figsize=(25,10)) # sns.scatterplot(x='away_team', y=statistic, data=away_data.reset_index(drop=False), # s=400, marker='s', color='darkblue') # plt.hlines(y = away_data.mean(), xmin=-1, xmax=30.4, colors='red', # label='Population Mean', linewidth=2) # title_font = {'size':'22', # 'color':'black', # 'weight':'medium', # 'verticalalignment':'bottom'} # axis_font = {'size':'20', # 'weight': 'medium'} # tick_font = {'size': '16', # 'weight': 'medium'} # statistic = statistic.replace('_', ' ').upper() # plt.title(f'Team Effect on {statistic} in {game_venue.title()} Games', **title_font) # plt.ylabel(f'{statistic}', **axis_font) # plt.xlabel('Team', **axis_font) # plt.xticks(**tick_font) # plt.yticks(**tick_font); def plot_team_effect(data, statistic=None, game_venue='all', kind='boxplot'): '''Plot distribution of game statistics in which a given team plays statistic = string of game statistic (e.g total_goals, sog_diff). Default = None. game_venue = 'home' or 'away' or 'all'. Selects venue to show game stats from (i.e. 'home' shows game stats for all home games of a given team) kind = 'boxplot' or 'violinplot' or 'stripplot'. Selects which type of distribution plot to display. ''' if game_venue == 'all': teams = sorted(list(data.home_team.unique())) team_data = dict() for team in teams: one_team_data = data.loc[(data.home_team == team) | (data.away_team == team)].reset_index(drop=True) team_data[team] = one_team_data[statistic] team_data = pd.DataFrame(team_data) if kind == 'boxplot': plt.figure(figsize=(25,10)) sns.boxplot(data=team_data) plt.hlines(y=data[statistic].median(), xmin=-1, xmax=30.4, colors='red', label='Population Median', linewidth=2) plt.legend(loc=(0,0.95), fontsize=16, edgecolor=None) elif kind == 'violinplot': plt.figure(figsize=(25,10)) sns.violinplot(data=team_data) plt.hlines(y=data[statistic].median(), xmin=-1, xmax=30.4, colors='red', label='Population Median', linewidth=2) plt.legend(loc=(0,0.95), fontsize=16, edgecolor=None) elif kind == 'stripplot': plt.figure(figsize=(25,10)) sns.stripplot(data=team_data, jitter=0.35) plt.hlines(y=data[statistic].median(), xmin=-1, xmax=30.4, colors='red', label='Population Median', linewidth=2) plt.legend(loc=(0,0.95), fontsize=16, edgecolor=None) else: return KeyError('Invalid Plot Kind') elif game_venue == 'home' or 'away': if kind == 'boxplot': plt.figure(figsize=(25,10)) sns.boxplot(x=f'{game_venue}_team', y=statistic, data=data.sort_values(by=f'{game_venue}_team')) plt.hlines(y=data[statistic].median(), xmin=-1, xmax=30.4, colors='red', label='Population Median', linewidth=2) plt.legend(loc=(0,0.95), fontsize=16, edgecolor=None) elif kind == 'violinplot': plt.figure(figsize=(25,10)) sns.violinplot(x=f'{game_venue}_team', y=statistic, data=data.sort_values(by=f'{game_venue}_team')) plt.hlines(y=data[statistic].mean(), xmin=-1, xmax=30.4, colors='red', label='Population Median', linewidth=2) plt.legend(loc=(0,0.95), fontsize=16, edgecolor=None) elif kind == 'stripplot': plt.figure(figsize=(25,10)) sns.stripplot(x=f'{game_venue}_team', y=statistic, jitter=0.35, data=data.sort_values(by=f'{game_venue}_team')) plt.hlines(y=data[statistic].median(), xmin=-1, xmax=30.4, colors='red', label='Population Median', linewidth=2) plt.legend(loc=(0,0.95), fontsize=16, edgecolor=None) else: return KeyError('Invalid Plot Kind') else: return KeyError('Invalid game_venue') title_font = {'size':'22', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} axis_font = {'size':'20', 'weight': 'medium'} tick_font = {'size': '16', 'weight': 'medium'} sns.despine(offset=0, trim=True) statistic = statistic.replace('_', ' ').upper() plt.title(f'Team Effect on {statistic} in {game_venue.title()} Games', **title_font) plt.ylabel(f'{statistic}', **axis_font, labelpad=5) plt.xlabel('Team', **axis_font, labelpad=5) plt.xticks(**tick_font) plt.yticks(**tick_font); def plot_team_specific_stats(data, statistic=None, against=False): '''Plot distribution of team-specific statistics statistic = string of statistic that is available for both home and away (e.g corsi, goals, sog, etc). Default = None. against = Boolean. False will show distribution of statistic for a given team, True will show distribution of statistic against a given team. Default = False. ''' teams = list(data.home_team.unique()) team_data = dict() for team in teams: if against == False: home_statistic = data.loc[(data.home_team == team)]['home_' + statistic] away_statistic = data.loc[(data.away_team == team)]['away_' + statistic] elif against == True: home_statistic = data.loc[(data.home_team == team)]['away_' + statistic] away_statistic = data.loc[(data.away_team == team)]['home_' + statistic] statistic_data = pd.concat([home_statistic, away_statistic], ignore_index=True) team_data[team] = statistic_data team_data = pd.DataFrame(team_data) plt.figure(figsize=(25,10)) sns.boxplot(data=team_data) population_stat_data = (list(data['home_' + statistic]) + (list(data['away_' + statistic]))) plt.hlines(y=np.median(population_stat_data), xmin=-1, xmax=30.4, colors='red', label='Population Median', linewidth=2) plt.legend(loc=(0,0.95), fontsize=16, edgecolor=None) title_font = {'size':'22', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} axis_font = {'size':'20', 'weight': 'medium'} tick_font = {'size': '16', 'weight': 'medium'} sns.despine(offset=0, trim=True) if against == False: statistic = statistic + '_for' elif against == True: statistic = statistic + '_against' statistic = statistic.replace('_', ' ').upper() plt.title(f'Team Effect on {statistic} in Games', **title_font) plt.ylabel(f'{statistic}', **axis_font, labelpad=5) plt.xlabel('Team', **axis_font, labelpad=5) plt.xticks(**tick_font) plt.yticks(**tick_font); def plot_numeric_features_dist(data, kind='boxplot', size=(12,8), normalize=True): ''' Plot distributions of numeric features within a DataFrame size = tuple with desired size of output figure (width, height) normalize = Boolean (Default = True). If True, numerical data is normalized using sklearn.preprocessing.MinMaxScaler(). If False, numerical data is not altered. ''' columns = [] for column in data.columns: if (data[column].dtype != 'O'): columns.append(column) if normalize == True: scaler = MinMaxScaler() scaled_data = scaler.fit_transform(data[columns]) data = pd.DataFrame(scaled_data, columns=columns) if kind == 'boxplot': plt.figure(figsize=(size)) sns.boxplot(data=data[columns]) elif kind == 'violinplot': plt.figure(figsize=(size)) sns.violinplot(data=data[columns], scale='count', cut=0) elif kind == 'stripplot': plt.figure(figsize=(size)) sns.stripplot(data=data[columns], jitter=0.25) title_font = {'size':'18', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} tick_font = {'size': '12', 'weight': 'medium'} if normalize == True: plt.title(f'Normalized Distribution of Numeric Features', **title_font) elif normalize == False: plt.title(f'Distribution of Numeric Features', **title_font) formatted_x_ticks = [x.replace('_', ' ').replace(' polarity', '').title() for x in columns] plt.yticks(**tick_font) plt.xticks(ticks=plt.xticks()[0], labels=formatted_x_ticks, rotation=60, ha='right', **tick_font); def plot_game_binary_data(data, size=(16, 5)): ''' Plot distributions of binary/ordinal game data ''' title_font = {'size':'16', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} axis_font = {'size':'14', 'weight': 'medium'} tick_font = {'size': '16', 'weight': 'medium'} fig, axs = plt.subplots(1, len(data.columns), figsize=size) for i, column in enumerate(data.columns): axs[i].hist(data[column]) column = column.upper() axs[i].set_title(column, **title_font) axs[0].set_ylabel('Frequency', **axis_font); def plot_team_effect_comment_fandom(comment_data, size=(12,6)): ''' Plots percentage of comments from a team fanbase that are in game threads that their respective team played in comment_data = output of clean_data.extract_comment_data() ''' nhl_abbreviations = ['CBJ', 'TBL', 'MTL', 'FLA', 'NSH', 'SJS', 'LAK', 'BOS', 'COL', 'OTT', 'DAL', 'CGY', 'MIN', 'NYI', 'NYR', 'BUF', 'WSH', 'PIT', 'WPG', 'VAN', 'PHI', 'CHI', 'CAR', 'ANA', 'EDM', 'STL', 'DET', 'TOR', 'NJD', 'ARI', 'VGK'] title_font = {'size':'20', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} axis_font = {'size':'16', 'weight': 'medium'} tick_font = {'size': '14', 'weight': 'medium'} plt.figure(figsize=size) comment_data.groupby('flair').mean().loc[nhl_abbreviations]['fan'].plot(kind='bar') plt.hlines(y=np.mean(comment_data.groupby('flair').mean().loc[nhl_abbreviations]['fan']), xmin=0, xmax=31, color='red') plt.title(label='Percentage of Fan Comments by Team', **title_font) plt.xlabel('Team', **axis_font) plt.ylabel('Percetage of Fan Comments', **axis_font) plt.xticks(**tick_font) plt.yticks(**tick_font); def plot_scoring_dist(comment_data, scoring=None, size=(10, 6)): ''' Plot distributions of binary/ordinal game data ''' perc_neutral = np.round(len(comment_data.loc[comment_data[scoring] == 0])/len(comment_data), decimals=3) title_font = {'size':'16', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} axis_font = {'size':'14', 'weight': 'medium'} tick_font = {'size': '12', 'weight': 'medium'} plt.figure(figsize=size) comment_data[scoring].plot(kind='hist', bins=100) plt.ylabel('Frequency', **axis_font) scoring = scoring.replace('_', ' ').title() plt.xlabel(f'{scoring}', **axis_font) plt.xticks(**tick_font) plt.yticks(**tick_font) plt.show(); print(f'Percentage of neutral comments: {perc_neutral}') def plot_nlp_heatmap(thread_data, size=(14,17)): ''' Plot heatmap showing correlation between sentiment scores and game features ''' nlp_data = ['fan%', 'vader_comment', 'socialsent_comment', 'vader_context', 'socialsent_context', 'positive_context', 'non-fan_context', 'no_ref_context'] corr_data = thread_data[game_data + nlp_data].corr().applymap(lambda x: np.round(x, 2)) corr_data = corr_data.drop(index=nlp_data)[nlp_data] color_bar = { 'shrink': 0.5, 'pad': 0.01 } title_font = {'size':'20', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} axis_font = {'size':'20', 'weight': 'medium'} tick_font = {'size': '12', 'weight': 'medium'} plt.figure(figsize=size) sns.heatmap(corr_data, annot=True, linewidths=0.1, square=False, cbar=True, cbar_kws=color_bar, vmin=-1, vmax=1, cmap="RdBu_r"); plt.xticks(rotation=30, ha='right', **tick_font) plt.yticks(rotation=0, ha='right', **tick_font) plt.title('Correlation of Game Features with Sentiment Scores', **title_font); def plot_game_feature_heatmap(total_data): ''' Plot showing correlation between game features ''' corr_data = total_data[game_data].corr().applymap(lambda x: np.round(x, 2)) mask = np.zeros_like(corr_data) mask[np.triu_indices_from(mask)] = True color_bar = { 'shrink': 0.5, 'pad': 0.01 } title_font = {'size':'20', 'color':'black', 'weight':'medium', 'verticalalignment':'bottom'} axis_font = {'size':'20', 'weight': 'medium'} tick_font = {'size': '12', 'weight': 'medium'} plt.figure(figsize=(17,17)) sns.heatmap(corr_data, annot=True, linewidths=0.1, square=False, cbar=True, cbar_kws=color_bar, vmin=-1, vmax=1, cmap="RdBu_r", mask=mask); plt.xticks(rotation=90, ha='right', **tick_font) plt.yticks(rotation=0, ha='right', **tick_font) plt.title('Correlation of Game Features', **title_font);
[ "peter.haferl@gmail.com" ]
peter.haferl@gmail.com
310e69fe2834a6bb85c8c684f7ddfd3ff3c07bea
ccd2851c8eec6c5b9175afc847bf300fe6a0d3d0
/ninfo_plugins_splunk_bro/bro_user_agents/bro_user_agents_plugin.py
b02bf1548eb075314bdd7e21ad2a9408af32e0e1
[]
no_license
JustinAzoff/ninfo_plugins_splunk_bro
fdeb6eda7fd7af4aa8208481aef2547af5461d86
526f6f3541ac87165f8c5d0c97019247569d03ae
refs/heads/master
2020-09-12T20:33:00.326776
2014-02-18T14:03:49
2014-02-18T14:03:49
14,694,629
1
1
null
null
null
null
UTF-8
Python
false
false
433
py
from ninfo.helpers.splunk import SplunkBase class useragents(SplunkBase): """This plugin returns recently seen user-agents as detected by Bro for this IP""" name = "bro_user_agents" title = "Recent User Agents" description = "Recently seen HTTP User Agents" types = ['ip','ip6'] TEMPLATE = "hoursago=48 source=*software.log* %s | dedup unparsed_version | fields unparsed_version" plugin_class = useragents
[ "justin.azoff@gmail.com" ]
justin.azoff@gmail.com
eecdec997a08d29cce86c2862764075dd2b29b75
591ee12e20e0ce1cdda1e33441d55ba6fce27566
/fermat.py
4c0d0614ad2bb64aa93255b13ec61f3a2b89c96f
[ "MIT" ]
permissive
Seaoftrees08/project479_python
1fa226f316c22208255aa75a4af297347d7ec9e7
464c246644e67bccb78b9ca25c02f3f98437ee4a
refs/heads/master
2020-05-23T11:09:30.258286
2019-05-15T03:35:34
2019-05-15T03:35:34
186,574,503
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
import time import time import sqrtlib #main 250,000 trials/sec try: n = int(input(">> ")) y = 1 start = time.time() if n%2!=0: x = sqrtlib.sqrtInt(n)+1 while not sqrtlib.isSqr(x*x-n): x += 1 y = sqrtlib.sqrtInt(x*x - n) print("result: " + str(x-y) + " " + str(x+y)) else: print("result: 2 " + str(n>>1)) print("time: " + str(time.time() - start)) print("Number of trials: " + str(y)) except ValueError: print("You can input only number.")
[ "tasuzuya@gmail.com" ]
tasuzuya@gmail.com
6eddd42a5519b03d2935288ced48109a65ebb949
e4868d19343a26e17896aa30246741d6e9b02797
/receive.py
93b67f5339b5b9ade23122941679b43734111d21
[]
no_license
georgeredinger/WiFly_SPI_UDP
68fd35fa549e494d6562022ff388491332a027a3
9b9c180968fbc956e39e971158254d2de4548dc3
refs/heads/master
2020-06-26T03:20:58.175217
2013-05-23T14:22:46
2013-05-23T14:22:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
import select, socket #port = 5005 # where do you expect to get a msg? port = 55555 # where do you expect to get a msg? bufferSize = 1024 # whatever you need s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.bind(('<broadcast>', port)) s.setblocking(0) while True: result = select.select([s],[],[]) msg = result[0][0].recv(bufferSize) print msg
[ "george@georgeredinger.com" ]
george@georgeredinger.com
baf42a120fbd7ad0269031a40b68a46cc11a055a
c6391327d2876f02c5277d9d058a11086f7dcf3d
/server/src/objects/__init__.py
9161de3c0b3471758ff087fd16cfbe093a7d573c
[]
no_license
strands-project/qrobot
680b8bb74587408aeb68500c997edd639a1bde67
59f7e96211ea7328ba334da261f0e62bfe8f1cc0
refs/heads/master
2021-03-29T18:23:12.280196
2016-07-01T13:50:23
2016-07-01T13:50:23
59,102,377
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
# from flask_classful import FlaskView # from app.objects.models import Object # from app.helpers import send_data, jsonify # class ObjectsView(FlaskView): # trailing_slash = False # def index(self): # return jsonify(Object.objects.exclude('pcd')) # def pcd(self, id): # obj = Object.get_by_id(id) # if obj: # return send_data(obj.pcd, 'application/pcd') # return 'Not found', 404
[ "alexandrov88@gmail.com" ]
alexandrov88@gmail.com
509fee19ac22160dda30942e1f3bc043af305a98
7584585becdb21bd13a64340fe484e9ff09b2661
/another_project.py
131ed5859423001ee7469c86014daacff81e8ea5
[]
no_license
LahavNanovel/hello-world-usage
cc55fa4e5c79a6aeed18af5ca95b8c06c91431b0
f0bb8124e021d133c7454f673f868bbb5e8e27dd
refs/heads/master
2023-03-09T11:57:21.252352
2021-02-22T12:42:44
2021-02-22T12:42:44
341,181,686
0
0
null
null
null
null
UTF-8
Python
false
false
49
py
from helloworld.main import print_hi print_hi()
[ "lahav@nanovel.co.il" ]
lahav@nanovel.co.il
5033788886ca0a031be15dcc3ead9afa0c97c340
22e37de74bbd859791dccb147284527ebd6674e3
/image_handler.py
05ccb9bc709d2e4bbcbc61b4e59867ebdab9528d
[]
no_license
fnrcum/pjing_client
719fd997beafb65d4490032a414124dad093c19f
b0dc51d7dd8da969544844b3c19773a816aff600
refs/heads/master
2020-07-26T12:30:06.307678
2016-11-15T12:40:58
2016-11-15T12:40:58
73,721,997
0
0
null
null
null
null
UTF-8
Python
false
false
1,959
py
import pygame class ImageHandler: def displayImage(self, screen, px, topleft, prior): # ensure that the rect always has positive width, height x, y = topleft width = pygame.mouse.get_pos()[0] - topleft[0] height = pygame.mouse.get_pos()[1] - topleft[1] if width < 0: x += width width = abs(width) if height < 0: y += height height = abs(height) # eliminate redundant drawing cycles (when mouse isn't moving) current = x, y, width, height if not (width and height): return current if current == prior: return current # draw transparent box and blit it onto canvas screen.blit(px, px.get_rect()) im = pygame.Surface((width, height)) im.fill((128, 128, 128)) pygame.draw.rect(im, (32, 32, 32), im.get_rect(), 1) im.set_alpha(128) screen.blit(im, (x, y)) pygame.display.flip() # return current box extents return x, y, width, height def setup(self, path): px = pygame.image.load(path) rect = px.get_rect() wg = rect[2] hg = rect[3] pygame.font.SysFont("Arial", 16) screen = pygame.display.set_mode([wg, hg], pygame.FULLSCREEN) screen.blit(px, px.get_rect()) pygame.display.flip() return screen, px def mainLoop(self, screen, px): topleft = bottomright = prior = None end = False while not end: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONUP: if not topleft: topleft = event.pos else: bottomright = event.pos end = True if topleft: prior = self.displayImage(screen, px, topleft, prior) return topleft + bottomright
[ "nicolae.farcas@softvision.ro" ]
nicolae.farcas@softvision.ro
7cad7992eeac85db66f3ce5104c3ea5578c661fc
892ff205c217f3ff0a0e3aef17aa037828b0383a
/IMDB Scraper/updateDB.py
e4b679138418d99bb44767cba1564febfab37519
[ "MIT" ]
permissive
MTashreeqWaggie/Video-Store-Management-System
f73cce2a268344511735d73ddb8fdb9da98db8cb
72ccccd9541780d0a416b73a65ad0158be58bd32
refs/heads/main
2023-04-29T01:42:33.834367
2021-05-23T19:24:14
2021-05-23T19:24:14
283,135,666
0
0
null
null
null
null
UTF-8
Python
false
false
459
py
from store.models import Product Product.objects.update(poster = "") f=open("forDownloads.tsv", "r") movies = f.read().splitlines() for i in range(0, len(movies)): if(i == 0): continue lst = movies[i].split("\t") id = lst[0] relativePath = "/store/static/images/"+id+".jpg" # dean to explain this part print(relativePath) p = Product.objects.get(ID = id) print(p) p.poster = relativePath p.save()
[ "TashreeqWaggiie@gmail.com" ]
TashreeqWaggiie@gmail.com
4c795c026fff52696fabaad9bcac64c4f44ed866
2ad59884af3eef1d1e691ce3619627d2770f3788
/website/theses/migrations/0009_auto_20170805_0851.py
e3adc63aaab0bb7a4b77e7ca88d4ce4f3f723b39
[]
no_license
ea-czech-republic/efektivnialtruismus.cz
ee9058021bc86cda2ab52c7988f9c85e9605865b
77e142e0689eab491493109c804c3bc9c0bf6d58
refs/heads/master
2022-03-22T21:47:53.383690
2022-02-22T13:02:02
2022-02-22T13:02:02
72,468,463
14
20
null
2022-01-24T22:35:25
2016-10-31T18:57:45
Python
UTF-8
Python
false
false
1,370
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-08-05 08:51 from __future__ import unicode_literals from django.db import migrations import wagtail.core.blocks import wagtail.core.fields import wagtail.embeds.blocks import wagtail.images.blocks class Migration(migrations.Migration): dependencies = [ ('theses', '0008_auto_20170717_2010'), ] operations = [ migrations.AddField( model_name='thesisindexpage', name='our_topics', field=wagtail.core.fields.StreamField((('rawHtml', wagtail.core.blocks.RawHTMLBlock()), ('heading', wagtail.core.blocks.CharBlock(classname='full title')), ('paragraph', wagtail.core.blocks.RichTextBlock()), ('image', wagtail.images.blocks.ImageChooserBlock()), ('embed', wagtail.embeds.blocks.EmbedBlock())), default=None), preserve_default=False, ), migrations.AddField( model_name='thesisindexpage', name='process', field=wagtail.core.fields.StreamField((('rawHtml', wagtail.core.blocks.RawHTMLBlock()), ('heading', wagtail.core.blocks.CharBlock(classname='full title')), ('paragraph', wagtail.core.blocks.RichTextBlock()), ('image', wagtail.images.blocks.ImageChooserBlock()), ('embed', wagtail.embeds.blocks.EmbedBlock())), default=None), preserve_default=False, ), ]
[ "hnykda@gmail.com" ]
hnykda@gmail.com
b1480d429e722377d42d9397f4d3dd57384079cc
0add471d82edab23894421dc17429da39b92cc73
/heaviside/ast.py
db8d24717141b5929f91b3a0e6c2f4d5e1c6f583
[ "Apache-2.0" ]
permissive
MHova/heaviside
fac09ae7608306665ee01a46baa2197dc81d649d
9ee9e69343c58124b8c7a119888a195794978cd6
refs/heads/master
2020-05-30T10:08:11.110234
2019-05-30T20:16:52
2019-05-30T20:16:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,872
py
# Copyright 2016 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from collections import OrderedDict from funcparserlib.parser import (some, a, skip) from .lexer import Token from .exceptions import CompileError from .utils import isstr ################################################# #### Load AWS Service Integration Definitions#### ################################################# import os import json cur_dir = os.path.dirname(__file__) definitions = os.path.join(cur_dir, 'aws_services.json') with open(definitions, 'r') as fh: AWS_SERVICES = json.load(fh) ################################################# ################################################# # AST Objects class ASTNode(object): def __init__(self, token=None): if token is not None: self.token = token else: self.token = None @property def lineno(self): return self.token.start[0] if self.token else 0 @property def pos(self): return self.token.start[1] if self.token else 0 @property def line(self): return self.token.line if self.token else '' def raise_error(self, msg): raise CompileError(self.lineno, self.pos, self.line, msg) class ASTValue(ASTNode): def __init__(self, value, token): super(ASTValue, self).__init__(token) self.value = value def __repr__(self): return "ASTValue({!r})".format(self.value) class ASTCompOp(ASTNode): def __init__(self, var, op, val): # Use the first token of the expression super(ASTCompOp, self).__init__(var.token) self.var = var self.op = op self.val = val def __repr__(self): return "ASTCompOp({!r} {!r} {!r})".format(self.var, self.op, self.val) class ASTCompNot(ASTNode): def __init__(self, not_, comp): super(ASTCompNot, self).__init__(not_.token) self.comp = comp def __repr__(self): return "ASTCompNot({!r})".format(self.comp) class ASTCompAndOr(ASTNode): op = None def __init__(self, comp, comps): super(ASTCompAndOr, self).__init__(comp.token) self.comps = [comp] for c in comps: self.comps.append(c) def __repr__(self): return "ASTComp{}({!r})".format(self.op, self.comps) class ASTCompAnd(ASTCompAndOr): op = 'And' class ASTCompOr(ASTCompAndOr): op = 'Or' class ASTModKV(ASTValue): def __init__(self, key, value): super(ASTModKV, self).__init__(value, key.token) def __repr__(self): return "<ASTModKV {}:{}>".format(self.name, self.value) class ASTModNext(ASTModKV): name = 'Next' class ASTModTimeout(ASTModKV): name = 'Timeout' class ASTModHeartbeat(ASTModKV): name = 'Heartbeat' class ASTModInput(ASTModKV): name = 'Input' class ASTModResult(ASTModKV): name = 'Result' class ASTModOutput(ASTModKV): name = 'Output' class ASTModData(ASTModKV): name = 'Data' class ASTModParameters(OrderedDict, ASTNode): name = 'Parameters' # NOTE: kpv stands for (key, path marker, value) # where `path marker` is the token for the `$` that denotes is the # value contains a JsonPath def __init__(self, parameters, kpv, kpvs): OrderedDict.__init__(self) ASTNode.__init__(self, parameters.token) self.add_parameter(kpv) for kpv in kpvs: self.add_parameter(kpv) def add_parameter(self, kpv): k,p,v = kpv if p is not None: k.value += '.$' # Parameters that use a JsonPath must have the key # end with `.$` self[k] = v class ASTModRetry(ASTNode): name = 'Retry' def __init__(self, retry, errors, interval, max, backoff): super(ASTModRetry, self).__init__(retry.token) self.errors = errors self.interval = interval self.max = max self.backoff = backoff class ASTModCatch(ASTNode): name = 'Catch' def __init__(self, catch, errors, path, block): super(ASTModCatch, self).__init__(catch.token) self.errors = errors self.path = path self.block = block class ASTModifiers(ASTNode): #??? Subclass dict as well? def __init__(self, mod, mods): super(ASTModifiers, self).__init__(mod.token) self.mods = {} self.add(mod) for m in mods: self.add(m) def add(self, mod): t = type(mod) if t not in self.mods: self.mods[t] = [] self.mods[t].append(mod) def update(self, other): for key in other.mods.keys(): if key not in self.mods: self.mods[key] = [] self.mods[key].extend(other.mods[key]) def __repr__(self): return "\n".join(repr(mod) for mod in self.mods.values()) class ASTState(ASTNode): state_type = '' valid_modifiers = [] multi_modifiers = [ASTModRetry, ASTModCatch] def __init__(self, state, block): super(ASTState, self).__init__(state.token) self.next = None self.end = False if block: comment, modifiers = block else: comment = None modifiers = None if comment: tmp = comment.value.split('\n', 1) if len(tmp) == 1: self.name = tmp[0].strip() self.comment = None else: name, comment = tmp self.name = name.strip() self.comment = '\n'.join([l.strip() for l in comment.split('\n')]) else: self.name = 'Line{}'.format(self.lineno) self.comment = None def get(type_): if modifiers is None: return None vals = modifiers.mods.get(type_) if vals is None: return None del modifiers.mods[type_] name = type_.name if hasattr(type_, 'name') else str(type_.__name__) if type_ not in self.valid_modifiers: vals[0].raise_error("{} state cannot contain a {} modifier".format(self.state_type, name)) if type_ not in self.multi_modifiers: if len(vals) > 1: vals[1].raise_error("{} state can only contain one {} modifier".format(self.state_type, name)) vals = vals[0] return vals self.next = get(ASTModNext) self.timeout = get(ASTModTimeout) self.heartbeat = get(ASTModHeartbeat) self.input = get(ASTModInput) self.result = get(ASTModResult) self.output = get(ASTModOutput) self.data = get(ASTModData) self.parameters = get(ASTModParameters) self.retry = get(ASTModRetry) self.catch = get(ASTModCatch) if modifiers is not None and len(modifiers.mods) > 0: type_ = list(modifiers.mods.keys())[0] modifiers.mods[type_][0].raise_error("Unknown state modifer '{}'".format(type_)) def __repr__(self): return "<ASTState {}:{}>".format(self.state_type, self.name) class ASTStatePass(ASTState): state_type = 'Pass' valid_modifiers = [ASTModInput, ASTModResult, ASTModOutput, ASTModData] class ASTStateGoto(ASTStatePass): """Custom version of Pass that exposes / sets the 'next' modifier""" valid_modifiers = [ASTModNext] def __init__(self, state, label): # Create the state_modifer block manually block = (None, ASTModifiers( ASTModNext(label, label.value), [] ) ) super(ASTStateGoto, self).__init__(state, block) class ASTStateSuccess(ASTState): state_type = 'Succeed' valid_modifiers = [ASTModInput, ASTModOutput] class ASTStateFail(ASTState): state_type = 'Fail' def __init__(self, state, error, cause, block): super(ASTStateFail, self).__init__(state, block) self.error = error self.cause = cause class ASTStateTask(ASTState): state_type = 'Task' valid_modifiers = [ASTModTimeout, ASTModHeartbeat, ASTModInput, ASTModResult, ASTModOutput, ASTModParameters, ASTModRetry, ASTModCatch] valid_services = ['Arn', 'Lambda', 'Activity'] def __init__(self, service, function, name, block): super(ASTStateTask, self).__init__(service, block) if service.value not in self.valid_services and \ service.value not in AWS_SERVICES.keys(): service.raise_error('Invalid Task service') if function is None: if service.value in ('Lambda', 'Activity', 'Arn'): if name is None: service.raise_error('{} task requires a function name argument'.format(service.value)) function = name name = None else: service.raise_error('{} task requires a function to call'.format(service.value)) else: if service.value in ('Lambda', 'Activity', 'Arn'): function.raise_error('Unexpected function name') else: try: function.lookup = function.value # Save value for looking up when checking kwargs function.value = AWS_SERVICES[service.value][function.value]['name'] except KeyError: function.raise_error('Invalid Task function') if name is not None: name.raise_error('Unexpected argument') if service.value == 'Arn' and not function.value.startswith('arn:aws:'): function.raise_error("ARN must start with 'arn:aws:'") if service.value in ('Lambda', 'Activity') and self.parameters is not None: tuple(self.parameters.keys())[0].raise_error('Unexpected keyword argument') if service.value not in ('Lambda', 'Activity', 'Arn'): required = AWS_SERVICES[service.value][function.lookup]['required_keys'] required = copy.copy(required) # will be mutating to determine missing required arguments optional = AWS_SERVICES[service.value][function.lookup]['optional_keys'] sync = AWS_SERVICES[service.value][function.lookup]['sync'] if self.parameters: # self.parameters can be None either if no `parameters:` block is provided # or if there is a syntax error in the `parameters:` block for key in self.parameters.keys(): k = key.value if k.endswith('.$'): k = k[:-2] # remove the `.$`, which donates that the key uses a JsonPath if k == 'sync': sync = self.parameters[key] if type(sync) != bool: key.raise_error("Synchronous value must be a boolean") del self.parameters[key] elif k in required: required.remove(k) elif k not in optional: key.raise_error("Invalid keyword argument") if sync == True: function.value += '.sync' if len(required) > 0: missing = ", ".join(required) function.raise_error("Missing required keyword arguments: {}".format(missing)) self.service = service self.function = function class ASTStateWait(ASTState): state_type = 'Wait' valid_modifiers = [ASTModInput, ASTModOutput] def __init__(self, state, wait_type, wait_val, block): super(ASTStateWait, self).__init__(state, block) self.type = wait_type self.val = wait_val class ASTStateChoice(ASTState): state_type = 'Choice' valid_modifiers = [ASTModInput, ASTModOutput] DEFAULT = None def __init__(self, state, comment, transform): super(ASTStateChoice, self).__init__(state, (comment, transform)) # Use an OrderedDict so that logic comparisons happen in the # same order as in the source file self.branches = OrderedDict() # DP ???: Should ASTStateChoice subclasses override the state_type value? class ASTStateWhile(ASTStateChoice): def __init__(self, state, comp, block, transform): comment, states = block super(ASTStateWhile, self).__init__(state, comment, transform) self.branches[comp] = states class ASTStateIfElse(ASTStateChoice): def __init__(self, state, comp, block, elif_, else_, transform): comment, states = block super(ASTStateIfElse, self).__init__(state, comment, transform) self.branches[comp] = states if elif_ is not None: for comp_, states_ in elif_: self.branches[comp_] = states_ if else_ is not None: self.branches[ASTStateChoice.DEFAULT] = else_ class ASTStateSwitch(ASTStateChoice): def __init__(self, state, var, comment, cases, default, transform): super(ASTStateSwitch, self).__init__(state, comment, transform) class EQToken(object): def __init__(self): self.value = '==' eq = EQToken() for case, val, states in cases: comp = ASTCompOp(var, eq, val) self.branches[comp] = states if default is not None: default, states = default self.branches[ASTStateChoice.DEFAULT] = states class ASTParallelBranch(ASTNode): def __init__(self, parallel, states): super(ASTParallelBranch, self).__init__(parallel.token) self.states = states class ASTStateParallel(ASTState): state_type = 'Parallel' valid_modifiers = [ASTModInput, ASTModResult, ASTModOutput, ASTModRetry, ASTModCatch] def __init__(self, state, block, parallels, transform, error): comment, states = block if transform is not None and error is not None: transform.update(error) elif transform is None and error is not None: transform = error super(ASTStateParallel, self).__init__(state, (comment, transform)) self.branches = [ASTParallelBranch(state, states)] if parallels is not None: for parallel, states_ in parallels: self.branches.append(ASTParallelBranch(parallel, states_)) class ASTModVersion(ASTModKV): pass class ASTStepFunction(ASTNode): def __init__(self, comment, version, timeout, states): super(ASTStepFunction, self).__init__() # ???: use the first states's token? self.comment = comment self.version = version self.timeout = timeout self.states = states def __repr__(self): return "\n".join(repr(state) for state in self.states) ############################## # AST Modification Functions # TERMINAL_STATES = ( ASTStateSuccess, ASTStateFail ) def link_branch(branch): """Helper method for link() that reassigns the results to the given branch""" if hasattr(branch, 'states'): branch.states = link(branch.states) else: branch.raise_error("Trying to link non-branch state") return branch def link(states, final=None): """AST Transform function that links together the states of a branch Performs the following actions: * Sets the next / end attributes for all encountered ASTState objects * If the final state is a ASTStateChoice and there is no default state one is created, as you cannot terminate on a Choice state * Makes the ASTStateWhile into a full loop * If there is a Catch modifier or the state is a Choice state the sub-states for each are recursivly linked and pulled up to the current level * The branches for all Parallel states are recursivly linked Args: states (list) : List of ASTState objects final (String) : Name of the next state to link the final state to or None to have the final state terminate Returns: list : List of ASTState objects with end/next set Note: This is a different list than the input list """ linked = [] total = len(states) for i in range(total): state = states[i] linked.append(state) next_ = states[i+1].name if i+1 < total else final if state.next is not None: pass # State has already been linked elif isinstance(state, TERMINAL_STATES): pass elif isinstance(state, ASTStateChoice): if ASTStateChoice.DEFAULT not in state.branches: next__ = next_ # prevent branches from using the new end state if next__ is None: # Choice cannot be terminal state, add a Success state to # terminate on next__ = ASTStateSuccess(state, None) next__.name = state.name + "Default" linked.append(next__) next__ = next__.name state.branches[ASTStateChoice.DEFAULT] = next__ # Point the last state of the loop to the conditional, completing the loop construct if isinstance(state, ASTStateWhile): key = list(state.branches.keys())[0] state_ = state.branches[key][-1] if not isinstance(state_, TERMINAL_STATES): state_ = ASTStatePass(state, None) state_.name = state.name + "Loop" state_.next = state.name state.branches[key].append(state_) else: state.end = next_ is None state.next = next_ if state.catch is not None: for catch in state.catch: states_ = catch.block linked_ = link(states_, final=next_) catch.next = linked_[0].name linked.extend(linked_) # Different states use the branches variable in different ways if isinstance(state, ASTStateChoice): for key in state.branches: states_ = state.branches[key] if isstr(states_): continue # already linked linked_ = link(state.branches[key], final=next_) # convert the branch from a list of states to the name of the next state # this is done because the branch states are moved to the appropriate # location for the step function state.branches[key] = linked_[0].name linked.extend(linked_) elif isinstance(state, ASTStateParallel): for branch in state.branches: link_branch(branch) return linked MAX_NAME_LENGTH = 128 def check_names(branch): """Recursivly checks all state names to ensure they are valid Checks performed: * Name is not greater than 128 characters * No duplicate state names Args: branch (list): List of ASTState objects Raises: CompileError : If any of the checks fail """ if not hasattr(branch, 'states'): branch.raise_error("Trying to check names for non-branch state") to_process = [branch.states] while len(to_process) > 0: states = to_process.pop(0) names = set() # State names are unique to the branch for state in states: if len(state.name) > MAX_NAME_LENGTH: state.raise_error("Name exceedes {} characters".format(MAX_NAME_LENGTH)) if state.name in names: state.raise_error("Duplicate state name '{}'".format(state.name)) names.add(state.name) if isinstance(state, ASTStateParallel): for branch in state.branches: to_process.append(branch.states) def resolve_arns(branch, region = '', account_id = ''): """AST Transform that sets the `arn` attribute for ASTStateTasks Args: branch (list): List of ASTState objects region (str): AWS Region where the Lambdas / Activities reside account_id (str): AWS Account ID where the Lambdas / Activities reside """ if not hasattr(branch, 'states'): branch.raise_error("Trying to resolve arns for non-branch state") for state in branch.states: if isinstance(state, ASTStateTask): if state.service.value == 'Arn': # ARN value already checked for 'arn:aws:' prefix in ASTStateTask constructor state.arn = state.function.value else: # arn:partition:service:region:account:task_type:name if state.service.value == 'Lambda': service = 'lambda' task_type = 'function' else: service = 'states' task_type = state.service.value.lower() if state.service.value not in ('Lambda', 'Activity'): region = '' account_id = '' parts = ['arn', 'aws', service, region, account_id, task_type, state.function.value] state.arn = ":".join(parts) elif isinstance(state, ASTStateParallel): for branch in state.branches: resolve_arns(branch, region, account_id) def verify_goto_targets(branch): """Recursivly checks that all Goto states target valid state names Valid state names are those states in the current branch. This means that a Goto cannot target states in another parallel branch or from a parallel branch to the main body of the Step Function Args: branch (list): List of ASTState objects Raises: CompileError : If a Goto state targets an invalid state """ if not hasattr(branch, 'states'): branch.raise_error("Trying to check goto targets for non-branch state") to_process = [branch.states] while len(to_process) > 0: states = to_process.pop(0) names = set() # Need to know all of the valid state names for the branch for state in states: names.add(state.name) if isinstance(state, ASTStateParallel): for branch in state.branches: to_process.append(branch.states) for state in states: if isinstance(state.next, ASTModNext): if state.next.value not in names: state.next.raise_error("Goto target '{}' doesn't exist".format(state.next.value)) class StateVisitor(object): """Generic base class for heaviside users to create a visitor that can modify ASTStateTasks """ def dispatch(self, state): """Dispatch the given state to the approprate handler function Args: state (ASTState): State to dispatch """ if isinstance(state, ASTStateTask): self.handle_task(state) else: raise ValueError('State type {} not supported'.format(type(state))) def visit(self, branch): """Visit all states in all branches of the state machine and dispatch them to be handled the subclass Args: branch (list): List of ASTState objects """ if not hasattr(branch, 'states'): raise ValueError("Trying to visit non-branch state: {}".format(branch)) for state in branch.states: self.dispatch(state) if isinstance(state, ASTStateParallel): for branch in state.branches: self.visit(branch) def handle_task(self, state): """ASTStateTask handler function placeholder Args: state (ASTStateTask): State to handle """ pass
[ "Derek.Pryor@jhuapl.edu" ]
Derek.Pryor@jhuapl.edu
7c9721087d190c93ec3d0570b7653a0bc525aae6
530596633f680ef842d594b58dd4b1016e2a86ff
/mapclient/controllers/proxy.py
a5bc06ca259b2097fbd227b3b33002a7c08048b8
[]
no_license
PublicaMundi/MapClient
5c770a124efdfe092228fc7a51c5485ef702734b
a526738e5b5a5e01ae3cd9c7275730e2cd6668b3
refs/heads/master
2016-09-06T08:30:15.528118
2015-12-02T11:09:16
2015-12-02T11:09:16
26,762,602
0
1
null
2016-02-23T16:51:47
2014-11-17T15:21:08
JavaScript
UTF-8
Python
false
false
5,501
py
import logging from pylons import config, request, response, session, tmpl_context as c from pylons.controllers.util import abort, redirect_to from pylons.decorators import jsonify from mapclient.lib.base import BaseController, render import urlparse import requests log = logging.getLogger(__name__) MAX_FILE_SIZE = 1024 * 1024 # 1MB CHUNK_SIZE = 512 class ProxyController(BaseController): def _validateUrl(self, parts): if not parts.scheme or not parts.netloc: abort(409, detail = 'Invalid URL.') if parts.port and not parts.port in [80, 8080]: log.warn('Port {port} in url {url} is not allowed.'.format(port = parts.port, url = urlparse.urlunparse(parts))) abort(409, detail = 'Invalid URL.') if not parts.query: log.warn('Missing query string in url {url}.'.format(url = urlparse.urlunparse(parts))) abort(409, detail = 'Invalid URL.') invalidQuery = False query = urlparse.parse_qs(parts.query) for prop in query: if not prop in ['service', 'request', 'map']: invalidQuery = True log.warn('Query string parameter [{parameter}] is not supported.'.format(parameter = prop)) if prop == 'service' and len(query[prop]) != 1: invalidQuery = True log.warn('Query string parameter [{parameter}] should have a single value.'.format(parameter = prop)) if prop == 'service' and query[prop][0].lower() != 'wms': invalidQuery = True log.warn('Value {value} for query string parameter [{parameter}] is not supported.'.format(parameter = prop, value = query[prop])) if prop == 'request' and len(query[prop]) != 1: invalidQuery = True log.warn('Query string parameter [{parameter}] should have a single value.'.format(parameter = prop)) if prop == 'request' and query[prop][0].lower() != 'getcapabilities': invalidQuery = True log.warn('Value {value} for query string parameter [{parameter}] is not supported.'.format(parameter = prop, value = query[prop])) if invalidQuery: abort(409, detail = 'Invalid URL.') def _isUrlInWhiteList(self, parts): prefix = urlparse.urlunparse((parts[0], parts[1], parts[2], None, None, None, )) if 'mapclient.proxy.white-list' in config and prefix in config['mapclient.proxy.white-list'].split(','): return True return False def proxy_resource(self): size_limit = MAX_FILE_SIZE if 'mapclient.proxy.limit.default' in config: size_limit = config['mapclient.proxy.limit.default'] timeout = 3 if not 'url' in request.params: abort(404, detail = 'Parameter url is required.') url = request.params['url'] url = url.split('#')[0] # remove potential fragment ''' Chunked proxy for resources. To make sure that the file is not too large, first, we try to get the content length from the headers. If the headers to not contain a content length (if it is a chinked response), we only transfer as long as the transferred data is less than the maximum file size. ''' parts = urlparse.urlsplit(url) allowed = self._isUrlInWhiteList(parts) if not allowed: self._validateUrl(parts) log.warn('Proxy resource - {url}'.format(url = url)) if allowed and 'mapclient.proxy.limit.white-list' in config: size_limit = config['mapclient.proxy.limit.white-list'] try: method = request.environ["REQUEST_METHOD"] if method == "POST": length = int(request.environ["CONTENT_LENGTH"]) headers = {"Content-Type": request.environ["CONTENT_TYPE"]} body = request.body r = requests.post(url, data=body, headers=headers, stream=True, timeout = timeout) else: r = requests.get(url, stream=True, timeout = timeout) cl = r.headers['content-length'] if cl and int(cl) > size_limit: abort(409, '''Content is too large to be proxied. Allowed file size: {allowed}, Content-Length: {actual}.'''.format( allowed=size_limit, actual=cl)) response.content_type = r.headers['content-type'] response.charset = r.encoding length = 0 for chunk in r.iter_content(chunk_size=CHUNK_SIZE): response.body_file.write(chunk) length += len(chunk) if length >= size_limit: abort(409, headers={'content-encoding': ''}, detail='Content is too large to be proxied.') except requests.exceptions.HTTPError, error: details = 'Could not proxy resource. Server responded with %s %s' % ( error.response.status_code, error.response.reason) abort(409, detail=details) except requests.exceptions.ConnectionError, error: details = '''Could not proxy resource because a connection error occurred. %s''' % error abort(502, detail=details) except requests.exceptions.Timeout, error: details = 'Could not proxy resource because the connection timed out.' abort(504, detail=details)
[ "yannis.kouvaras@kupa.gr" ]
yannis.kouvaras@kupa.gr
db24493564bfe520bdc8dd75ca9947696ec68c4b
8cf2d365516014d50e9149dea3fc96e4ef84e0d6
/old/sample_hw_code/onewiretemp.py
59dcaafcd5d21f0077027db1c2f850e7a4e32353
[ "MIT" ]
permissive
mikeschmidt69/fermonitor
242e343a47cccb94b6e9ba5e4753b6fdf2752055
1c1785f25cffc7d14bfca11fdc5e5ef6c20d59ce
refs/heads/master
2021-06-14T07:14:40.087467
2021-03-17T17:57:47
2021-03-17T17:57:47
170,920,399
11
1
null
null
null
null
UTF-8
Python
false
false
7,521
py
# # Copyright (c) 2019 Michael Schmidt # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import datetime import glob import time import os import threading import logging from setup_logger import logger import configparser logger = logging.getLogger('onewiretemp') logger.setLevel(logging.INFO) # Initialize the GPIO Pins os.system('modprobe w1-gpio') # Turns on the GPIO module os.system('modprobe w1-therm') # Truns on the Temperature module # Finds the correct device file that holds the temperature data base_dir = '/sys/bus/w1/devices/' device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/w1_slave' MINIMUM_INVERVAL = 10 # minimum update interval in seconds class OneWireTemp (threading.Thread): # Constructor for class def __init__(self, _configFile): threading.Thread.__init__(self) if os.path.isfile(_configFile) == False: raise IOError("OneWireTemp configuration file is not valid: "+_configFile) self.configFile = _configFile self.interval = MINIMUM_INVERVAL # interval in seconds the sensor should be read self.lastUpdateTime = datetime.datetime.now() - datetime.timedelta(seconds=self.interval) # last time the sensor was read self.temp = -273.15 # last read temperature from tilt self.validData = False self.useOneWireTemp = True self._readdata() self.stopThread = True # Starts background thread that updates the data from Tilt hydrometer (temp, specific gravity) on regular basis. # This is not a realtime operation so thread sleeps for 5s after each iteration def run(self): logger.info("Starting OneWireTemp monitoring.") self.stopThread = False while self.stopThread != True: self._readConf(self.configFile) self._update() # calls method that updates data from sensor if update time interval has lapsed time.sleep(MINIMUM_INVERVAL) logger.info("OneWireTemp Monitoring Stopped.") # Returns last read temperature reading from Tilt def getTemp(self): return self.temp # returns True/False if data is valid. Data is not valid until read from the actual Tilt device def isDataValid(self): return self.validData # returns time when date and specific gravity were updated from Tilt def timeOfData(self): return self.lastUpdateTime # stops the background thread updating data coming from configured Tilt def stop(self): self.stopThread = True def _readConf(self,configFile): if os.path.isfile(configFile) == False: logger.error("OneWireTemp configuration file is not valid: "+configFile) else: ini = configparser.ConfigParser() logger.debug("Reading OneWireTemp config: " + configFile) ini.read(configFile) if 'OneWireTemp' in ini: config = ini['OneWireTemp'] try: if config["UpdateIntervalSeconds"] != "" and int(config["UpdateIntervalSeconds"]) >= MINIMUM_INVERVAL: self.interval = int(config.get("UpdateIntervalSeconds")) else: self.interval = MINIMUM_INVERVAL except KeyError: self.interval = MINIMUM_INVERVAL try: if config["MessageLevel"] == "DEBUG": logger.setLevel(logging.DEBUG) elif config["MessageLevel"] == "WARNING": logger.setLevel(logging.ERROR) elif config["MessageLevel"] == "ERROR": logger.setLevel(logging.WARNING) elif config["MessageLevel"] == "INFO": logger.setLevel(logging.INFO) else: logger.setLevel(logging.INFO) except KeyError: logger.setLevel(logging.INFO) else: logger.error("[OneWireTemp] section not found in ini file: " + configFile) self.interval = MINIMUM_INVERVAL logger.debug("Done reading OneWireTemp config.") # Internal method for checking if the update time interval has lapsed and new data should be read from Tilt def _update(self): updateTime = self.lastUpdateTime + datetime.timedelta(seconds=self.interval) if datetime.datetime.now() > updateTime: logger.debug("Update data") self._readdata() else: logger.debug("Update interval not reached:"+datetime.datetime.now().strftime("%d.%m.%Y %H:%M:%S") +" / "+ updateTime.strftime("%d.%m.%Y %H:%M:%S")) # A function that reads the sensors data def _read_temp_raw(self): lines = "" try: f = open(device_file, 'r') # Opens the temperature device file lines = f.readlines() # Returns the text f.close() except: if self.validData: logger.warning("Error reading from OneWireTemp sensor.") self.validData = False lines = "" return lines # convert the value of the sensor into temperature def _readdata(self): lines = self._read_temp_raw() # read the temperature device file # while the first line does not contain 'YES', wait for 0.2s # and then read the device file again. retries = 50 while lines[0].strip()[-3:] != 'YES' and retries > 0: time.sleep(0.2) lines = self._read_temp_raw() retries = retries - 1 if retries <= 0: self.validData = False else: # Look for th eposition of the '=' in the second line of the # device file equals_pos = lines[1].find('t=') # If the '=' is found, convert the rest of th eline after the # '=' into degrees Celsius if equals_pos != -1: temp_string = lines[1][equals_pos+2:] self.temp = float(temp_string) / 1000.0 if self.validData == False: logger.info("OneWireTemp sensor reading active.") self.validData = True self.lastUpdateTime = datetime.datetime.now() logger.info("Updated OneWireTemp: "+str(self.temp) + "C")
[ "47675124+mikeschmidt69@users.noreply.github.com" ]
47675124+mikeschmidt69@users.noreply.github.com
13b8bba2ae72282e64c69a912f45a013a4f7650f
64b2a465c77f235bdbc35cce6286dc7c078e1438
/osgar/drivers/opencv.py
d7d8d7ef8e1e9019bae798e0697db6bd6848c99f
[ "MIT" ]
permissive
tajgr/osgar
217d59bfe65e04dc793e73ac308c0227b3525081
52b45366bc070957cc97612697b58c926f0188a9
refs/heads/master
2020-04-09T20:10:45.516355
2019-08-07T11:47:50
2019-08-07T14:29:16
93,401,109
0
0
null
2017-06-05T12:23:01
2017-06-05T12:23:01
null
UTF-8
Python
false
false
1,105
py
""" Log video stream provided by OpenCV camera """ import cv2 from threading import Thread from osgar.logger import LogWriter from osgar.bus import BusShutdownException class LogOpenCVCamera: def __init__(self, config, bus): self.input_thread = Thread(target=self.run_input, daemon=True) self.bus = bus port = config.get('port', 0) self.cap = cv2.VideoCapture(port) self.sleep = config.get('sleep') def start(self): self.input_thread.start() def join(self, timeout=None): self.input_thread.join(timeout=timeout) def run_input(self): while self.bus.is_alive(): # Capture frame-by-frame ret, frame = self.cap.read() if ret: retval, data = cv2.imencode('*.jpeg', frame) if len(data) > 0: self.bus.publish('raw', data.tobytes()) if self.sleep is not None: self.bus.sleep(self.sleep) self.cap.release() def request_stop(self): self.bus.shutdown() # vim: expandtab sw=4 ts=4
[ "md@robotika.cz" ]
md@robotika.cz
4e6f7728e1ccc0ee08f9eab26f26539c32f245f1
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02779/s326665097.py
af3b88d1cfb1a25941fa607ee97b983b715cf65f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
from collections import Counter n = int(input()) a = list(map(int, input().split())) c = Counter(a) new = c.values() for i in new: if i != 1: re = "NO" break else: re = "YES" print(re)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
4f0239fbe754bec4f62ac564b2eec8efa2ff6483
554999891c412bfb684e678db9237784b3e94e13
/model_image.py
4888a0a3c3104f09d24dda71346efcfa4bd3c29b
[]
no_license
alherondelle/Large_Satellite_Image_AutoEncoder
9c5ee37d6ebbc5b0566916859a03b8b6c07e9123
5e1321c2419cbefc13d0c9c5e5678420b69d8205
refs/heads/master
2023-01-18T21:16:15.233479
2020-11-27T16:57:07
2020-11-27T16:57:07
304,578,907
2
1
null
null
null
null
UTF-8
Python
false
false
6,189
py
# -*- coding: utf-8 -*- import glob import random import cv2 import os import torchvision.transforms as transforms import torch import random import pickle from tqdm import tqdm from torch.utils.data import Dataset from PIL import Image import numpy as np import torch.nn as nn import torchvision from torch.autograd import Variable from time import time from torchvision.utils import save_image import torch.nn.functional as F import multiprocessing import argparse # Argument parser # Training parameters parser = argparse.ArgumentParser() parser.add_argument('--batch_size', default=64, type=int, help='batch size') parser.add_argument('--learning_rate', default=1e-3, type=float, help='learning rate') parser.add_argument('--start_epoch', default=0, type=float, help='starting epoch') parser.add_argument('--end_epoch', default=150, type=float, help='ending epoch') parser.add_argument('--train_img', default='./METEOSAT_PCAtf/train', type=str, help ='Path to training dataset') parser.add_argument('--test_img', default='./METEOSAT_PCAtf/test', type=str, help='Path to the testing dataset') opt = parser.parse_args() # Image difference data loader class METEOSATDataset(Dataset): def __init__(self, path_): self.data=[] for folder in os.listdir(path_): list_of_file = os.listdir(os.path.join(path_, folder)) for files_ in list_of_file: self.data.append(os.path.join(folder,files_)) self.path = path_ def __len__(self): return len(self.data) def __getitem__(self, index): img_ = self.data[index] image = np.load(os.path.join(self.path,img_)) image = np.moveaxis(image, 2, 0) image = torch.from_numpy(image) return image # Data loader data_loader = torch.utils.data.DataLoader(dataset=METEOSATDataset(opt.train_img), batch_size=opt.batch_size, shuffle=True, num_workers=0) test_loader = torch.utils.data.DataLoader(dataset=METEOSATDataset(opt.test_img), batch_size=1, shuffle=True, num_workers=0) # Model architecture class Autoencoder(nn.Module): def __init__(self): super(Autoencoder, self).__init__() ## encoder layers ## # conv layer (depth from 1 --> 16), 3x3 kernels self.conv1 = nn.Conv2d(2, 16, 3, padding = 1) # conv layer (depth from 16 --> 4), 3x3 kernels self.conv2 = nn.Conv2d(16, 8, 3, padding=1) self.conv3 = nn.Conv2d(8, 4, 3, padding=1) # pooling layer to reduce x-y dims by two; kernel and stride of 2 self.pool = nn.MaxPool2d(2, 2) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.t_conv1 = nn.ConvTranspose2d(4, 8, 2, stride=2) self.t_conv2 = nn.ConvTranspose2d(8, 16, 2, stride=2) self.t_conv3 = nn.ConvTranspose2d(16, 2, 2, stride=2) def forward(self, x): ## encode ## # add hidden layers with relu activation function # and maxpooling after x = F.relu(self.conv1(x)) x = self.pool(x) # add second hidden layer x = F.relu(self.conv2(x)) x = self.pool(x) # add third hidden layer x = F.relu(self.conv3(x)) x = self.pool(x)# => compressed representation ## decode ## # add transpose conv layers, with relu activation function x = F.relu(self.t_conv1(x)) x = F.relu(self.t_conv2(x)) x = torch.tanh(self.t_conv3(x)) # output layer (with sigmoid for scaling from 0 to 1) return x # Model initialization and weights loading ae = Autoencoder().cuda() if opt.start_epoch != 0: ae.load_state_dict(torch.load("./conv_autoencoder_model_v2_%d.pth" % (opt.start_epoch))) criterion = nn.MSELoss() optimizer = torch.optim.Adam(ae.parameters(), lr=opt.learning_rate, weight_decay=1e-5) # Dataset info for metrics computing iter_per_epoch = len(data_loader) data_iter = iter(data_loader) # Training for epoch in range(opt.start_epoch, opt.end_epoch): t0 = time() for i, img in tqdm(enumerate(data_loader)): img_ = Variable(img[:,:,:608, :608]).cuda() # ===================forward===================== output = ae(img_.float()) loss = criterion(output, img_.float()) # ===================backward==================== optimizer.zero_grad() loss.backward() optimizer.step() # ===================log======================== print('epoch [{}/{}], loss:{:.4f}, time:{:.4f}' .format(epoch+1, opt.end_epoch, loss.item()*100, time() - t0)) if epoch % 5 == 0: count = 0 test_loss = 0 for i, img in tqdm(enumerate(test_loader)): count+= 1 img_ = Variable(img[:,:,:608, :608]).cuda() output = ae(img_.float()) test_loss += torch.mean((img_.detach().cpu() - output.detach().cpu())**2) print('TEST LOSS : ', test_loss.item()/count) if epoch % 10 == 0: torch.save(ae.state_dict(), './conv_autoencoder_model_v2_{}.pth'.format(epoch)) pic = output[0].cpu().detach() real_pic = img_[0].cpu().detach() save_image(pic, './image_model_v2_{}.png'.format(epoch)) save_image(real_pic, './image_real_model_v2_{}.png'.format(epoch)) # Saving trained model : Final torch.save(ae.state_dict(), './conv_autoencoder_model_v2_{}.pth'.format(epoch)) # Stopping train phase & Separating encoder / decoder ae.eval() ae_encoder_keys = ["conv1.weight", "conv1.bias", "conv2.weight", "conv2.bias", "conv3.weight", "conv3.bias", 'pool.weight', 'pool.biais'] ae_decoder_keys = ['t_conv1.weight', 't_conv2.weight', 't_conv3.weight', 't_conv1.bias', 't_conv2.bias', 't_conv3.bias'] ae_encoder_param = {k:v for k,v in ae.state_dict().items() if k in ae_encoder_keys} ae_decoder_param = {k:v for k,v in ae.state_dict().items() if k in ae_decoder_keys} torch.save(ae_encoder_param, "./conv_encoder_image_v2_%d.pth" % (epoch)) torch.save(ae_decoder_param, "./conv_decoder_image_v2_%d.pth" % (epoch))
[ "agathe.lherondelle@mines-paristech.fr" ]
agathe.lherondelle@mines-paristech.fr
bd48767328d1904968baef929946d37d9b971dcd
5e629210c351f369208155a11f395d47be9b837b
/conditionCompleteion/src/osd/objectService/unitTests/test_diskfile.py
9dd7b4b3b27b4b0cd4619e36e37b004d5c54ebc0
[]
no_license
confi-surya/pythonicPracto
028f2a50bc595b90bee95b235ec9218da3e45fe5
c366afd9ab54b8cacda767189f1a13efb5f961b2
refs/heads/master
2020-03-23T12:56:55.843408
2018-07-19T11:51:59
2018-07-19T14:37:13
141,572,623
0
0
null
null
null
null
UTF-8
Python
false
false
23,853
py
import cPickle as pickle import os import errno import mock import unittest import email import tempfile import uuid #import xattr from shutil import rmtree from time import time from tempfile import mkdtemp from hashlib import md5 from contextlib import closing, nested from gzip import GzipFile from eventlet import tpool from osd.objectService.unitTests import FakeLogger, temptree from osd.objectService.unitTests import mock as unit_mock from osd.objectService import diskfile from osd.common import utils #from osd.common.utils import hash_path, mkdirs, normalize_timestamp from osd.common.utils import mkdirs, normalize_timestamp from osd.common.ring.ring import hash_path from osd.common import ring from osd.common.exceptions import DiskFileNotExist, DiskFileQuarantined, \ DiskFileDeviceUnavailable, DiskFileDeleted, DiskFileNotOpen, \ DiskFileError, ReplicationLockTimeout, PathNotDir, DiskFileCollision, \ DiskFileExpired, SwiftException, DiskFileNoSpace import osd class TestDiskFileManager(unittest.TestCase): def setUp(self): self.tmpdir = mkdtemp() self.testdir = os.path.join(self.tmpdir,'test_object_server_disk_file_mgr') mkdirs(os.path.join(self.testdir,"export", "fs1")) mkdirs(os.path.join(self.testdir,"export", "fs1")) self.filesystems = os.path.join(os.path.join(self.testdir,"export")) self._orig_tpool_exc = tpool.execute tpool.execute = lambda f, *args, **kwargs: f(*args, **kwargs) self.conf = dict(filesystems=self.filesystems,mount_check='false', keep_cache_size=2 * 1024) self.df_mgr = diskfile.DiskFileManager(self.conf,FakeLogger()) def tearDown(self): rmtree(self.tmpdir, ignore_errors=1) def test_construct_filesystem_path(self): res_path = self.df_mgr.construct_filesystem_path("abc") self.assertEqual(os.path.join(self.filesystems,"abc"),res_path) def test_get_filesystem_path(self): res_path = self.df_mgr.get_filesystem_path("abc") self.assertEqual(os.path.join(self.filesystems,"abc"),res_path) class TestDiskFile(unittest.TestCase): def setUp(self): """ Setup the test""" self.tmpdir = mkdtemp() self.testdir = os.path.join(self.tmpdir,'test_object_server_disk_file') self.filesystems = os.path.join(os.path.join(self.testdir,"export")) self.filesystem = "fs1" mkdirs(os.path.join(self.filesystems,self.filesystem)) self._orig_tpool_exc = tpool.execute tpool.execute = lambda f, *args, **kwargs: f(*args, **kwargs) self.conf = dict(filesystems=self.filesystems, mount_check='false', keep_cache_size=2 * 1024, ) self.df_mgr = diskfile.DiskFileManager(self.conf, FakeLogger()) def tearDown(self): """tear down the test""" rmtree(self.tmpdir, ignore_errors=1) tpool.execute = self._orig_tpool_exc def _create_ondisk_file(self, df, data, timestamp, metadata=None): """ create the data amd meta data file""" if timestamp is None: timestamp = time() timestamp = normalize_timestamp(timestamp) if not metadata: metadata = {} if 'X-Timestamp' not in metadata: metadata['X-Timestamp'] = normalize_timestamp(timestamp) if 'ETag' not in metadata: etag = md5() etag.update(data) metadata['ETag'] = etag.hexdigest() if 'name' not in metadata: metadata['name'] = '/a/c/o' if 'Content-Length' not in metadata: metadata['Content-Length'] = str(len(data)) hash_name = df._name_hash mkdirs(df._datadir) mkdirs(df._metadir) data_file = os.path.join(df._datadir, df._name_hash + ".data") meta_file = os.path.join(df._metadir, df._name_hash + ".meta") with open(data_file, 'wb') as f: f.write(data) with open(meta_file,'wb') as f: f.write(pickle.dumps(metadata, diskfile.PICKLE_PROTOCOL)) f.write("EOF") def _simple_get_diskfile(self, acc_dir="a1", cont_dir='d1', obj_dir='o1', account='a', container='c', obj='o'): """create the DiskFile object""" return self.df_mgr.get_diskfile(self.filesystem, acc_dir, cont_dir, obj_dir, account, container, obj) def _create_test_file(self, data, timestamp=None, metadata=None, account='a', container='c', obj='o'): """ creates the test file and opens it""" if metadata is None: metadata = {} metadata.setdefault('name', '/%s/%s/%s' % (account, container, obj)) df = self._simple_get_diskfile(account=account, container=container, obj=obj) self._create_ondisk_file(df, data, timestamp, metadata) df = self._simple_get_diskfile(account=account, container=container, obj=obj) df.open() return df def test_open_not_exist(self): """ Test for DiskFileNotExist Exception""" df = self._simple_get_diskfile() self.assertRaises(DiskFileNotExist, df.open) def test_open_expired(self): """Test for DiskFileExpired Exception. although it will not be used in Hydra """ self.assertRaises(DiskFileExpired, self._create_test_file, '1234567890', metadata={'X-Delete-At': '0'}) def test_open_not_expired(self): """ DiskFileExpired exception should not be raised""" try: self._create_test_file( '1234567890', metadata={'X-Delete-At': str(2 * int(time()))}) except SwiftException as err: self.fail("Unexpected swift exception raised: %r" % err) def test_get_metadata(self): """get metadata """ df = self._create_test_file('1234567890', timestamp=42) md = df.get_metadata() self.assertEqual(md['X-Timestamp'], normalize_timestamp(42)) def test_read_metadata(self): """ read metadata """ self._create_test_file('1234567890', timestamp=42) df = self._simple_get_diskfile() md = df.read_metadata() self.assertEqual(md['X-Timestamp'], normalize_timestamp(42)) def test_get_metadata_not_opened(self): """ get metadata when the metadata field is not populated""" df = self._simple_get_diskfile() self.assertRaises(DiskFileNotOpen, df.get_metadata) def test_not_opened(self): """ test DiskFileNotOpen exception""" df = self._simple_get_diskfile() try: with df: pass except DiskFileNotOpen: pass else: self.fail("Expected DiskFileNotOpen exception") def _get_open_disk_file(self, invalid_type=None, obj_name='o', fsize=1024, csize=8, mark_deleted=False, prealloc=False, ts=None, mount_check=False, extra_metadata=None): '''returns a DiskFile''' df = self._simple_get_diskfile(obj=obj_name) data = '0' * fsize etag = md5() if ts is not None: timestamp = ts else: timestamp = normalize_timestamp(time()) with df.create() as writer: upload_size = writer.write(data) etag.update(data) etag = etag.hexdigest() metadata = { 'ETag': etag, 'X-Timestamp': timestamp, 'Content-Length': str(upload_size), } metadata.update(extra_metadata or {}) writer.put(metadata) if invalid_type == 'ETag': etag = md5() etag.update('1' + '0' * (fsize - 1)) etag = etag.hexdigest() metadata['ETag'] = etag diskfile.write_metadata(writer._fd_meta, metadata) elif invalid_type == 'Content-Length': metadata['Content-Length'] = fsize - 1 diskfile.write_metadata(writer._fd_meta, metadata) elif invalid_type == 'Bad-Content-Length': metadata['Content-Length'] = 'zero' diskfile.write_metadata(writer._fd_meta, metadata) elif invalid_type == 'Missing-Content-Length': del metadata['Content-Length'] diskfile.write_metadata(writer._fd_meta, metadata) elif invalid_type == 'Bad-X-Delete-At': metadata['X-Delete-At'] = 'bad integer' diskfile.write_metadata(writer._fd_meta, metadata) if mark_deleted: df.delete(timestamp) data_file = [os.path.join(df._datadir, fname) for fname in sorted(os.listdir(df._datadir), reverse=True) if fname.endswith('.data')] meta_file = [os.path.join(df._metadir, fname) for fname in sorted(os.listdir(df._metadir), reverse=True) if fname.endswith('.meta')] ''' if invalid_type == 'Corrupt-Xattrs': # We have to go below read_metadata/write_metadata to get proper # corruption. meta_xattr = open(meta_file,'rb').read() wrong_byte = 'X' if meta_xattr[0] != 'X' else 'Y' xattr.setxattr(data_files[0], "user.osd.metadata", wrong_byte + meta_xattr[1:]) elif invalid_type == 'Truncated-Xattrs': meta_xattr = xattr.getxattr(data_files[0], "user.osd.metadata") xattr.setxattr(data_files[0], "user.osd.metadata", meta_xattr[:-1]) ''' if invalid_type == 'Missing-Name': with open(meta_file,'r') as fd: md = diskfile.read_metadata(fd) del md['name'] fd = os.open(meta_file,os.O_WRONLY|os.O_TRUNC) diskfile.write_metadata(fd, md) elif invalid_type == 'Bad-Name': with open(meta_file,'r') as fd: md = diskfile.read_metadata(fd) md['name'] = md['name'] + 'garbage' fd = os.open(meta_file,os.O_WRONLY|os.O_TRUNC) diskfile.write_metadata(fd, md) self.conf['disk_chunk_size'] = csize self.conf['mount_check'] = mount_check self.df_mgr = diskfile.DiskFileManager(self.conf, FakeLogger()) df = self._simple_get_diskfile(obj=obj_name) df.open() if invalid_type == 'Zero-Byte': fp = open(df._data_file, 'w') fp.close() df.unit_test_len = fsize return df @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_delete(self, write): df = self._get_open_disk_file() ts = time() df.delete('data') data_file_name = df._name_hash + ".data" meta_file_name = df._name_hash + ".meta" dl = os.listdir(df._datadir) ml = os.listdir(df._metadir) self.assertTrue(data_file_name not in set(dl)) self.assertTrue(meta_file_name in set(ml)) df.delete('meta') dl = os.listdir(df._datadir) ml = os.listdir(df._metadir) self.assertTrue(meta_file_name not in set(ml)) @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_open_deleted(self, write): df = self._get_open_disk_file() df.delete('data') df.delete('meta') data_file_name = df._name_hash + ".data" meta_file_name = df._name_hash + ".meta" dl = os.listdir(df._datadir) ml = os.listdir(df._metadir) self.assertTrue(data_file_name not in set(dl)) self.assertTrue(meta_file_name not in set(ml)) df = self._simple_get_diskfile() self.assertRaises(DiskFileNotExist, df.open) def test_listdir_enoent(self): oserror = OSError() oserror.errno = errno.ENOENT self.df_mgr.logger.error = mock.MagicMock() with mock.patch('os.listdir', side_effect=oserror): self.assertEqual(self.df_mgr._listdir('path'), []) self.assertEqual(self.df_mgr.logger.error.mock_calls, []) def test_listdir_other_oserror(self): oserror = OSError() self.df_mgr.logger.error = mock.MagicMock() with mock.patch('os.listdir', side_effect=oserror): self.assertEqual(self.df_mgr._listdir('path'), []) self.df_mgr.logger.error.assert_called_once_with( 'ERROR: Skipping %r due to error with listdir attempt: %s', 'path', oserror) def test_listdir(self): self.df_mgr.logger.error = mock.MagicMock() with mock.patch('os.listdir', return_value=['abc', 'def']): self.assertEqual(self.df_mgr._listdir('path'), ['abc', 'def']) self.assertEqual(self.df_mgr.logger.error.mock_calls, []) def test_diskfile_names(self): df = self._simple_get_diskfile() self.assertEqual(df.account, 'a') self.assertEqual(df.container, 'c') self.assertEqual(df.obj, 'o') @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_diskfile_content_length_not_open(self, write): df = self._simple_get_diskfile() exc = None try: df.content_length except DiskFileNotOpen as err: exc = err self.assertEqual(str(exc), '') def test_diskfile_content_length(self): self._get_open_disk_file() df = self._simple_get_diskfile() with df.open(): self.assertEqual(df.content_length, 1024) @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_diskfile_timestamp_not_open(self, write): df = self._simple_get_diskfile() exc = None try: df.timestamp except DiskFileNotOpen as err: exc = err self.assertEqual(str(exc), '') def test_diskfile_timestamp(self): self._get_open_disk_file(ts='1383181759.12345') df = self._simple_get_diskfile() with df.open(): self.assertEqual(df.timestamp, '1383181759.12345') def test_write_metdata(self): df = self._create_test_file('1234567890') timestamp = normalize_timestamp(time()) metadata = {'X-Timestamp': timestamp, 'X-Object-Meta-test': 'data'} metadata['name'] = '/a/c/o' metadata['Content-Length'] = '10' df.write_metadata(metadata) metadata = df.read_metadata() self.assertEquals(metadata['X-Object-Meta-test'],'data') ''' def test_create_close_oserror(self): df = self.df_mgr.get_diskfile(self.filesystem, '0', 'abc', '123', 'xyz') with mock.patch("osd.obj.diskfile.os.close", mock.MagicMock(side_effect=OSError( errno.EACCES, os.strerror(errno.EACCES)))): try: with df.create(): pass except Exception as err: self.fail("Unexpected exception raised: %r" % err) else: pass ''' def test_disk_file_mkstemp_creates_dir(self): tmpdir = os.path.join(self.filesystems, self.filesystem) os.rmdir(tmpdir) df = self._simple_get_diskfile() with df.create(): self.assert_(os.path.exists(tmpdir)) def test_disk_file_create_tmp_file(self): tmpdir = os.path.join(self.filesystems, self.filesystem) os.rmdir(tmpdir) df = self._simple_get_diskfile() file_name = '_'.join([hash_path(df.account), hash_path(df.account, df.container), df._name_hash]) with df.create(): self.assert_(os.path.exists(df._tmpdir)) self.assert_(os.path.exists(os.path.join(df._tmpdir, file_name + ".data"))) self.assert_(os.path.exists(os.path.join(df._tmpdir, file_name + ".meta"))) def test_disk_file_finalize_put(self): tmpdir = os.path.join(self.filesystems, self.filesystem) os.rmdir(tmpdir) df = self._simple_get_diskfile() metadata = {'X-metadata-value':'data'} file_name = '_'.join([hash_path(df.account), hash_path(df.account, df.container), df._name_hash]) with df.create() as writer: self.assertTrue(os.path.exists(df._tmpdir)) self.assertTrue(os.path.exists(os.path.join(df._tmpdir, file_name + ".data"))) self.assertTrue(os.path.exists(os.path.join(df._tmpdir, file_name + ".meta"))) writer.put(metadata) self.assertTrue(os.path.exists(os.path.join(df._datadir, df._name_hash + ".data"))) self.assertTrue(os.path.exists(os.path.join(df._metadir, df._name_hash + ".meta"))) self.assertTrue(os.path.exists(df._tmpdir)) self.assertFalse(os.path.exists(os.path.join(df._tmpdir, df._name_hash + ".data"))) self.assertFalse(os.path.exists(os.path.join(df._tmpdir, df._name_hash + ".meta"))) def test_disk_file_reader_iter(self): df = self._create_test_file('1234567890') reader = df.reader() self.assertEqual(''.join(reader), '1234567890') def test_disk_file_reader_iter_w_quarantine(self): df = self._create_test_file('1234567890') reader = df.reader() reader._obj_size += 1 self.assertRaises(DiskFileQuarantined, ''.join, reader) def test_disk_file_app_iter_corners(self): df = self._create_test_file('1234567890') quarantine_msgs = [] reader = df.reader() self.assertEquals(''.join(reader.app_iter_range(0, None)), '1234567890') df = self._simple_get_diskfile() with df.open(): reader = df.reader() self.assertEqual(''.join(reader.app_iter_range(5, None)), '67890') def test_disk_file_app_iter_range_w_none(self): df = self._create_test_file('1234567890') reader = df.reader() self.assertEqual(''.join(reader.app_iter_range(None, None)), '1234567890') def test_disk_file_app_iter_partial_closes(self): df = self._create_test_file('1234567890') reader = df.reader() it = reader.app_iter_range(0, 5) self.assertEqual(''.join(it), '12345') self.assertTrue(reader._fp is None) @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_disk_file_app_iter_ranges(self, write): df = self._create_test_file('012345678911234567892123456789') reader = df.reader() it = reader.app_iter_ranges([(0, 10), (10, 20), (20, 30)], 'plain/text', '\r\n--someheader\r\n', 30) value = ''.join(it) self.assertTrue('0123456789' in value) self.assertTrue('1123456789' in value) self.assertTrue('2123456789' in value) """ def test_disk_file_app_iter_ranges_w_quarantine(self): df = self._create_test_file('012345678911234567892123456789') reader = df.reader() reader._obj_size += 1 try: it = reader.app_iter_ranges([(0, 30)], 'plain/text', '\r\n--someheader\r\n', 30) value = ''.join(it) except DiskFileQuarantined as e: err = e #self.assertEqual('DiskFileQuarantined',str(err)) self.assertTrue('0123456789' in value) self.assertTrue('1123456789' in value) self.assertTrue('2123456789' in value) """ def test_disk_file_app_iter_ranges_w_no_etag_quarantine(self): df = self._create_test_file('012345678911234567892123456789') reader = df.reader() it = reader.app_iter_ranges([(0, 10)], 'plain/text', '\r\n--someheader\r\n', 30) value = ''.join(it) self.assertTrue('0123456789' in value) def test_disk_file_app_iter_ranges_edges(self): df = self._create_test_file('012345678911234567892123456789') reader = df.reader() it = reader.app_iter_ranges([(3, 10), (0, 2)], 'application/whatever', '\r\n--someheader\r\n', 30) value = ''.join(it) self.assertTrue('3456789' in value) self.assertTrue('01' in value) def test_disk_file_large_app_iter_ranges(self): # This test case is to make sure that the disk file app_iter_ranges # method all the paths being tested. long_str = '01234567890' * 65536 target_strs = ['3456789', long_str[0:65590]] df = self._create_test_file(long_str) reader = df.reader() it = reader.app_iter_ranges([(3, 10), (0, 65590)], 'plain/text', '5e816ff8b8b8e9a5d355497e5d9e0301', 655360) # The produced string actually missing the MIME headers # need to add these headers to make it as real MIME message. # The body of the message is produced by method app_iter_ranges # off of DiskFile object. header = ''.join(['Content-Type: multipart/byteranges;', 'boundary=', '5e816ff8b8b8e9a5d355497e5d9e0301\r\n']) value = header + ''.join(it) parts = map(lambda p: p.get_payload(decode=True), email.message_from_string(value).walk())[1:3] self.assertEqual(parts, target_strs) def test_disk_file_app_iter_ranges_empty(self): # This test case tests when empty value passed into app_iter_ranges # When ranges passed into the method is either empty array or None, # this method will yield empty string df = self._create_test_file('012345678911234567892123456789') reader = df.reader() it = reader.app_iter_ranges([], 'application/whatever', '\r\n--someheader\r\n', 100) self.assertEqual(''.join(it), '') df = self._simple_get_diskfile() with df.open(): reader = df.reader() it = reader.app_iter_ranges(None, 'app/something', '\r\n--someheader\r\n', 150) self.assertEqual(''.join(it), '') @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_keep_cache(self, write): df = self._get_open_disk_file(fsize=65) with mock.patch("osd.objectService.diskfile.drop_buffer_cache") as foo: for _ in df.reader(): pass self.assertTrue(foo.called) df = self._get_open_disk_file(fsize=65) with mock.patch("osd.objectService.diskfile.drop_buffer_cache") as bar: for _ in df.reader(keep_cache=False): pass self.assertTrue(bar.called) df = self._get_open_disk_file(fsize=65) with mock.patch("osd.objectService.diskfile.drop_buffer_cache") as boo: for _ in df.reader(keep_cache=True): pass self.assertFalse(boo.called) df = self._get_open_disk_file(fsize=5 * 1024, csize=256) with mock.patch("osd.objectService.diskfile.drop_buffer_cache") as goo: for _ in df.reader(keep_cache=True): pass self.assertTrue(goo.called) if __name__ =="__main__": unittest.main()
[ "surya.singh@nectechnologies.in" ]
surya.singh@nectechnologies.in
3dd8d95954d8afc63d0f4d3db7a8c16611722f2d
eb2a6898e7860a5df49f6cd1fb8d45e36b429520
/fxinterview/urls.py
cdb2cb6d0e83aac454ed1318e2c84f9a9263fb70
[]
no_license
chenfeiyude/fxinterview
8abe0b077fa0535a38ce5f1bc547ae215f091773
3f35bbd7e800c06e8f756d817e4ea3600e3e6aa6
refs/heads/master
2021-07-13T01:04:35.097239
2020-08-14T13:59:10
2020-08-14T13:59:10
242,867,200
0
0
null
2021-03-25T23:25:28
2020-02-24T23:36:36
JavaScript
UTF-8
Python
false
false
1,187
py
"""fxinterview URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from django.contrib.auth import views as auth_views urlpatterns = [ # http://localhost:8000/admin/ url(r'^admin/', admin.site.urls), url(r'^application/', include('job_applications.urls')), url(r'^', include('main.urls')), url(r'^', include('registration.urls')), ] handler400 = 'main.views.error_400' handler401 = 'main.views.error_401' handler403 = 'main.views.error_403' handler404 = 'main.views.error_404' handler500 = 'main.views.error_500'
[ "chenfeiyu0402@gmail.com" ]
chenfeiyu0402@gmail.com
67aa07a8f93c0131c8362599c6407214f99ced5f
b485f081e215a98e2f1de2fb0af0b057c10325d1
/indigo_prod/controllers/__init__.py
1b8d1182901c2ba830c5f3fbcaadd5627d72c48d
[]
no_license
suningwz/gestion_rma-11
ae08eaf9b9b0785213eccd07e3046064afc4bc76
40089a1211376ed6211982ba1dbe0b9f52ceb233
refs/heads/master
2023-01-21T10:25:21.835163
2020-10-20T08:38:57
2020-10-20T08:38:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
# -*- coding: utf-8 -*- from . import sales_report_export from . import sales_report_by_invoice from . import stock_pick_item from . import sales_report_outstock_item
[ "odoo@ibasuite.com" ]
odoo@ibasuite.com
85f48c4129634010b6d34d68fcf2d5be232d965c
8315a79787fe8ccab90d8da9e6e3c47b4fd9ea2d
/desafio49.py
0402720616afcac79a497a2a417c139079a400a6
[]
no_license
lmdpadm/Python
371b51f4172ef2e7016e3c3ce1bbd13fc5ec5966
ab0f77c9bd35ea6933a4bf3c67ec5816f4195fc8
refs/heads/main
2023-08-07T13:13:39.785067
2021-09-23T00:34:28
2021-09-23T00:34:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
numero = int(input('Escolha um número e falaremos sua tabuada: ')) for c in range(1, 11): print('{} x {} = {}'.format(numero, c, numero * c))
[ "noreply@github.com" ]
lmdpadm.noreply@github.com
c1c766fca27a06c59babb1f5f5421cb0c6eb6bcf
73e8c699b64f94548adfb3a2b2761c9999859835
/witch_pay.py
3edc2a46c55bf4137fdadd132db59f11adf7ea4b
[]
no_license
IamJenver/mytasksPython
075e4d4d799cb46ebebaaee464530867aff07262
7e4db635884e962a5ff3ba33bc446077972acdc1
refs/heads/main
2023-03-15T17:13:13.411716
2021-03-08T15:22:31
2021-03-08T15:22:31
325,975,714
0
0
null
null
null
null
UTF-8
Python
false
false
717
py
# Всем известно, что ведьмак способен одолеть любых чудовищ, однако его услуги обойдутся недешево, # к тому же ведьмак не принимает купюры, он принимает только чеканные монеты. # В мире ведьмака существуют монеты с номиналами 1,5,10,25. price = int(input()) counter = 0 while price - 25 >= 0: counter += 1 price = price - 25 while price - 10 >= 0: counter += 1 price = price - 10 while price - 5 >= 0: counter += 1 price = price - 5 while price - 1 >= 0: counter += 1 price = price - 1 print(counter)
[ "jenver@yandex.ru" ]
jenver@yandex.ru
f5fa8e0a2925359dcd9fd458a986011562317b58
f824b00bebe8cd409ae3fe49be40ccc5df7d06a0
/WEB(BE)/firearm/apps.py
03f2827fb22ba338d93cc9acb1d1b53556cd13dd
[ "Apache-2.0" ]
permissive
hspark15429/CLOUD_WEB_Blo-my_Byzantium
a7d2a9318fa9aeb21ca2fe97230eefd3325cc0c7
38d9da16c79714d41988008dd2a71ada6f2df3f9
refs/heads/master
2023-08-18T07:43:40.266548
2021-10-20T23:02:32
2021-10-20T23:02:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
from django.apps import AppConfig class FirearmConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'firearm'
[ "noreply@github.com" ]
hspark15429.noreply@github.com
eedd37c21608b7c9d5ea2db1adf565b669952301
51492dcfd3398c5201e6428317b9b52ec4fd3259
/easy/246.py
4b5243aa347dbb9d5f21e8094484de9478a97b2c
[]
no_license
ntupenn/exercises
682f1a52c51278a929fa5adfdcb8e8404f6012dd
d0edb8b909f94c1e2dfaaa63f6a7c4e3e09236e4
refs/heads/master
2021-05-14T13:17:49.209577
2018-02-02T08:35:26
2018-02-02T08:35:26
116,435,432
0
0
null
null
null
null
UTF-8
Python
false
false
618
py
''' A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down). Write a function to determine if a number is strobogrammatic. The number is represented as a string. For example, the numbers "69", "88", and "818" are all strobogrammatic. ''' def isStrobogrammatic(num): if not num: return True start = 0 end = len(num) - 1 check = {'0':'0', '1':'1', '6':'9', '8':'8', '9':'6'} while start <= end: if num[start] not in check or check[num[start]] != num[end]: return False start += 1 end -= 1 return True
[ "xuanzhang1118@gmail.com" ]
xuanzhang1118@gmail.com
d091376ea903c1328ac580659f780419ba14131f
5f834f8aa0603f4f7adc56fdcd5e227538931f81
/diab_logisReg.py
2ce02d3f7c7d13896c4c7c0870cb4b25f1af7a59
[]
no_license
Kamal-prog-code/HealthCare
d9a613bcb315a04b14feead97bb4367034f91606
2d2fe464a5d25c1373634663dc1eaf07a9064a30
refs/heads/main
2023-01-20T22:17:55.157525
2020-12-05T20:50:03
2020-12-05T20:50:03
318,627,358
0
0
null
null
null
null
UTF-8
Python
false
false
1,462
py
from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession from pyspark.ml.feature import StandardScaler from pyspark.ml.classification import LogisticRegression from pyspark.mllib.evaluation import BinaryClassificationMetrics from pyspark.ml.classification import RandomForestClassifier import pickle import os spark = SparkSession.builder.appName('HSP').getOrCreate() df=spark.read.csv('hdfs://localhost:9000/user/BigDataProj/diab.csv',inferSchema=True,header=True) from pyspark.sql.functions import col from sklearn.linear_model import LogisticRegression new_data = df.select(*(col(c).cast("float").alias(c) for c in df.columns)) from pyspark.sql.functions import col,count,isnan,when from sklearn.preprocessing import StandardScaler new_data.select([count(when(col(c).isNull(),c)).alias(c) for c in new_data.columns]).show() cols=new_data.columns cols.remove("Outcome") assembler = VectorAssembler(inputCols=cols,outputCol="features") data=assembler.transform(new_data) # data.select("features",'Outcome').show(truncate=False) train, tesT = df.randomSplit([0.7, 0.3]) x_col = new_data.columns x_train = train.toPandas()[x_col[:-1]].values y_train = train.toPandas()['Outcome'].values sc = StandardScaler() x_train = sc.fit_transform(x_train) cls = LogisticRegression() cls.fit(x_train,y_train) save_path = 'prediction/' completeName = os.path.join(save_path, "dblogR.pkl") pickle.dump(cls, open(completeName, 'wb'))
[ "karrerajisyam123@gmail.com" ]
karrerajisyam123@gmail.com
0014b564e562601e559c862a93e27d19ae0a5e54
0a06bd445cb3d9a870dca9234c016f8c2dfabf80
/tcr
6422914050f5b1a08648bedd450e11efd3c42f0e
[]
no_license
abailly/greed-tcr
1f32c0e898fa3a8272686df3db4a58e63481a636
dcd1c94519f4f3b4ebfd78e1e3f3de12e0931df0
refs/heads/master
2021-04-10T15:44:32.899713
2020-03-21T09:26:46
2020-03-21T09:26:46
248,943,933
2
0
null
null
null
null
UTF-8
Python
false
false
1,625
#!/usr/bin/env python3 # -*- mode: python -*- import os import sys import argparse import select import shlex import subprocess import sys import signal import time def run_tests(): return os.system("stack install --fast --test") def tcr(): if run_tests() == 0: os.system("git commit -a -m \"working\"") else: os.system("git reset --hard HEAD") # When we receive ctrl-c, kill the watcher process = None done = False def signal_handler(sig, frame): done = True if process: process.kill() signal.signal(signal.SIGINT, signal_handler) osname = os.uname().sysname if osname == 'Darwin': cmd = "fswatch . --exclude '\.git' --exclude '\.#.*' --exclude 'TAGS' --exclude '.*~' --exclude '/\..+' --exclude '\.newenv.*' --exclude '\.stack-work'" else: cmd = "inotifywait -m -r -e modify -e create -e move -e delete . --exclude '\.#.*|.*~|/\..+|\.newenv.*|\.stack-work|TAGS'" tcr() while not done: # start the file watcher subprocess process = subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE) poll = select.poll() poll.register(process.stdout, select.POLLIN) # wait for output or subprocess exit while process.poll() is None: if poll.poll(1000): time.sleep(0.5) # debounce because we tend to save lots of files at once # When we have new output, print it and run the tests available = process.stdout.peek(1024) if len(available) > 0: print(process.stdout.read(len(available)).decode("utf-8")) tcr() if process.returncode != 0: sys.exit(0)
[ "arnaud.oqube@gmail.com" ]
arnaud.oqube@gmail.com
c666a6a03fd34d2025c018b75a0c275d8bbf4105
1b74a36d701985e37d4452a5daddbe617db237d8
/test.py
8e063c3f95d584cbf30b87796e9480ee6a8564f8
[]
no_license
kayo289/syaberu_eakon
0d5a184946356cf7611f1ddcd90298211e1f0006
c72e7157d0d5b370ebf8e3f89379866c7b40d612
refs/heads/master
2023-05-30T05:47:45.616115
2021-06-17T11:50:45
2021-06-17T11:50:45
377,072,776
0
0
null
null
null
null
UTF-8
Python
false
false
7,876
py
#!/usr/bin/env python3 import pandas as pd import numpy as np from datetime import datetime as dt from matplotlib import pyplot as plt from scipy import stats from mlxtend.evaluate import cochrans_q from mlxtend.evaluate import mcnemar_table from mlxtend.evaluate import mcnemar import itertools plt.rcParams['font.family'] = 'Hiragino Sans' ############################################## # Parameters ############################################## maxtime = 20 #アンケート回答時間の最大値 (分) ############################################## # Functions ############################################## def plotHist(df, colname): # dataframeと列名を与えるとヒストグラムを描画 plt.figure() plt.hist(df[colname], bins = 50) plt.xlim(0, 1000) plt.xlabel(colname) plt.ylabel('頻度') plt.savefig("plot/"+colname, dpi = 400, bbox_inches='tight') plt.close() def continuousParam(df, colname, displayname = ''): # 連続変数の要約 name = '## ' + colname if displayname != '': name = '{}: '.format(displayname) array = df[colname].values print(name, '平均 (標準偏差), {:.1f} ({:.1f}); 中央値 (Q1–Q3), {:.1f} ({:.1f}–{:.1f}); 最小値–最大値, {:.1f}–{:.1f}; S-W test p-value, {:.3f} '\ .format(np.mean(array), np.std(array), np.median(array), np.percentile(array, 25), np.percentile(array, 75), np.min(array), np.max(array), stats.shapiro(array)[1])) return array def FigureContinuousQuestionForMovie(df, colname, ylabel, indexlist = ['1', '2', '3','4'], height = [11, 11, 12, 13], sig0 = [1, 3, 1, 2], sig1 = [2, 4, 3, 4], ylim0 = 0, ylim1 = 14, yticks = True): # 論文に挿入するための画像描画 list_data_permovie = [] print('## ' + colname + ' ') for i, j in enumerate(indexlist): array = continuousParam(df, colname + j, i) list_data_permovie.append(array) plt.figure(figsize = (7, 3.5)) plt.boxplot(list_data_permovie) # boxplot plt.ylim(ylim0, ylim1) plt.xticks(range(1, 5), ['公益行動条件', '公益通知条件', '私益行動条件', '私益通知条件']) # plt.hlines(height, sig0, sig1, linewidth = 0.7, color = 'black') # if yticks: # plt.yticks(range(0, 11, 2), range(0, 11, 2)) plt.ylabel(ylabel) for i, j, k in zip(height, sig0, sig1): plt.text((j + k)/2, i - 0.3, '*', fontsize = 15, horizontalalignment = 'center') plt.plot([], [], ' ', label='$*: \it{p} < 0.05\,&\,\it{r} > 0.1$') plt.legend(frameon=False, bbox_to_anchor=(1.02, 0.96), loc='lower right') plt.savefig("plot/figure_"+ylabel, dpi = 400, bbox_inches='tight') print("保存した") ############################################## # Main ############################################## df = pd.read_excel('data/sumdata.xlsx') print(df.columns) df = df.dropna() # 回答時間を計算 starttime = pd.Series([dt.strptime(str(i), '%Y%m%d%H%M%S') for i in df['開始時刻(自動で入力されます。変更しないでください)']]) # 回答開始時刻 df['回答時間(秒)'] = (df['タイムスタンプ'] - starttime).dt.total_seconds() # 回答送信時刻から回答開始時刻を引いて回答にかかった時間を計算 # 回答に欠損のあるデータを除外 df_full = df.dropna() # 回答時間でデータを抽出 df_crop = df_full[np.logical_and(30 <= df_full['回答時間(秒)'], df_full['回答時間(秒)'] <= 60*maxtime)] # 37秒以下, maxtime以上を除外 plotHist(df_crop, '回答時間(秒)') # 各変数のまとめ print('# 回答者全ての人数:', len(df.index)) print('# 回答に欠損のない回答者の人数:', len(df_full.index)) print('\n# 解析対象の回答者の人数: {} (回答者全体の{:.1f}%)'.format(len(df_crop.index), 100*len(df_crop.index)/len(df.index))) # コクランのq検定 q,p_value = cochrans_q(np.array(["はい"]*len(df_crop.index)),df_crop["目の前には「エアコンの指示を承認する」ボタンがあります。このあとボタンを押しますか?1"].to_numpy(), df_crop["目の前には「エアコンの指示を承認する」ボタンがあります。このあとボタンを押しますか?2"].to_numpy(), df_crop["目の前には「エアコンの指示を承認する」ボタンがあります。このあとボタンを押しますか?3"].to_numpy(), df_crop["目の前には「エアコンの指示を承認する」ボタンがあります。このあとボタンを押しますか?4"].to_numpy()) print('Q: %.3f' % q) print('p-value: %.6f' % p_value) # mcnemar lis = [1,2,3,4] for pair in itertools.combinations(lis, 2): print(f"✅==動画{pair[0]}と{pair[1]}のmcnemar==") q,p_value = mcnemar(mcnemar_table(np.array(["はい"]*len(df_crop.index)),df_crop[f"目の前には「エアコンの指示を承認する」ボタンがあります。このあとボタンを押しますか?{pair[0]}"].to_numpy(), df_crop[f"目の前には「エアコンの指示を承認する」ボタンがあります。このあとボタンを押しますか?{pair[1]}"].to_numpy())) print('McNemar\'s Chi^2: %.3f' % q) print('McNemar\'s p-value: %.6f' % p_value) if p_value < 0.05: print(f"# 動画{pair[0]}") print(df_crop[f'目の前には「エアコンの指示を承認する」ボタンがあります。このあとボタンを押しますか?{pair[0]}'].value_counts(normalize=True) * 100) print(f"# 動画{pair[1]}") print(df_crop[f'目の前には「エアコンの指示を承認する」ボタンがあります。このあとボタンを押しますか?{pair[1]}'].value_counts(normalize=True) * 100) t_value, p_value = stats.ttest_ind(df_crop[f'動画内に登場した喋る家電の好感度を教えてください{pair[0]}'].to_numpy(), df_crop[f'動画内に登場した喋る家電の好感度を教えてください{pair[1]}'].to_numpy(), equal_var=True) print("👍==好感度について==") print("t_value:", t_value) print("p_value:", p_value) if p_value < 0.008: print(f"p = {p_value:.3f} のため、帰無仮説が棄却されました。AとBに差があります") else: print(f"{p_value:.3f} のため、帰無仮説が採択されました。AとBに差はありません") t_value, p_value = stats.ttest_ind(df_crop[f'動画内に登場した喋る家電の嫌悪感を教えてください{pair[0]}'].to_numpy(), df_crop[f'動画内に登場した喋る家電の嫌悪感を教えてください{pair[1]}'].to_numpy(), equal_var=True) print("👎==嫌悪感について==") print("t_value:", t_value) print("p_value:", p_value) if p_value < 0.025: print(f"p = {p_value:.3f} のため、帰無仮説が棄却されました。AとBに差があります") else: print(f"{p_value:.3f} のため、帰無仮説が採択されました。AとBに差はありません") # # 論文に挿入するための画像描画 # FigureContinuousQuestionForMovie(df_crop, 'この後、動画内にある喋る空気清浄機の電源をつけたいですか?つけたくないですか?', # ylabel = '受容度', indexlist = ['inverseアA', 'アB', 'inverseイA', 'イB']) FigureContinuousQuestionForMovie(df_crop, '動画内に登場した喋る家電の好感度を教えてください', ylabel = '好感度') FigureContinuousQuestionForMovie(df_crop, '動画内に登場した喋る家電の嫌悪感を教えてください', ylabel = '嫌悪感')
[ "kayokapi@icloud.com" ]
kayokapi@icloud.com
2bc1c55aa465d41767f5a4a17e88f2902fa650a2
115b5356242176b8873ae7e43cd313e41cbd0ee6
/webstuff/webscraper/tidytext.py
057e7c3a5a8d77e0574b55b38fb0fe5b7a3b444a
[]
no_license
squeakus/bitsandbytes
b71ec737431bc46b7d93969a7b84bc4514fd365b
218687d84db42c13bfd9296c476e54cf3d0b43d2
refs/heads/master
2023-08-26T19:37:15.190367
2023-07-18T21:41:58
2023-07-18T21:42:14
80,018,346
2
4
null
2022-06-22T04:08:35
2017-01-25T13:46:28
C
UTF-8
Python
false
false
976
py
from BeautifulSoup import BeautifulSoup import re page = open('out2.txt','r') for idx,line in enumerate(page): parts = line.split(';') for part in parts: #print part, '\n' if part.startswith('var point = new GLatLng'): print "\n", part.lstrip('var point = new GLatLng') m = re.search('table(.+?)table', line) if m: found = m.group(1) found = '<table' + found +'table>' found = found.replace('\\','') soup = BeautifulSoup(found) info = soup.findAll('tr',{'class':'wind_row'}) name = soup.findAll('a') print name[0].text for data in info: direction = str(data.find('img')) direction = direction.rstrip('.png" />') direction = direction.lstrip('<img src="images/wind/') print direction n = re.search('Wind:(.+?)km', str(data)) if n: speed = n.group(1) print speed
[ "jonathanbyrn@gmail.com" ]
jonathanbyrn@gmail.com
7df32f5bb38ea86305dd99079c299814ae898f32
fe625bc907b35a6c11b0884371b05d1e96cbc499
/second/utils/config_tool.py
962e66b1f9bcd0b9f1f4f5bcffd3eb1b617616cb
[ "MIT" ]
permissive
robin2002/second.pytorch-1
9425c2ccf5c522e70de8788f837f1406a09382ff
886f69a82445e914567b05e99dc9844d0091aee1
refs/heads/master
2020-09-26T12:45:24.095875
2019-11-21T07:35:05
2019-11-21T07:35:05
226,257,485
0
1
MIT
2019-12-06T06:03:43
2019-12-06T06:03:42
null
UTF-8
Python
false
false
2,509
py
# This file contains some config modification function. # some functions should be only used for KITTI dataset. from google.protobuf import text_format from second.protos import pipeline_pb2, second_pb2 from pathlib import Path import numpy as np def change_detection_range(model_config, new_range): assert len(new_range) == 4, "you must provide a list such as [-50, -50, 50, 50]" old_pc_range = list(model_config.voxel_generator.point_cloud_range) old_pc_range[:2] = new_range[:2] old_pc_range[3:5] = new_range[2:] model_config.voxel_generator.point_cloud_range[:] = old_pc_range for anchor_generator in model_config.target_assigner.anchor_generators: a_type = anchor_generator.WhichOneof('anchor_generator') if a_type == "anchor_generator_range": a_cfg = anchor_generator.anchor_generator_range old_a_range = list(a_cfg.anchor_ranges) old_a_range[:2] = new_range[:2] old_a_range[3:5] = new_range[2:] a_cfg.anchor_ranges[:] = old_a_range elif a_type == "anchor_generator_stride": a_cfg = anchor_generator.anchor_generator_stride old_offset = list(a_cfg.offsets) stride = list(a_cfg.strides) old_offset[0] = new_range[0] + stride[0] / 2 old_offset[1] = new_range[1] + stride[1] / 2 a_cfg.offsets[:] = old_offset else: raise ValueError("unknown") old_post_range = list(model_config.post_center_limit_range) old_post_range[:2] = new_range[:2] old_post_range[3:5] = new_range[2:] model_config.post_center_limit_range[:] = old_post_range def get_downsample_factor(model_config): downsample_factor = np.prod(model_config.rpn.layer_strides) if len(model_config.rpn.upsample_strides) > 0: downsample_factor /= model_config.rpn.upsample_strides[-1] downsample_factor *= model_config.middle_feature_extractor.downsample_factor downsample_factor = int(downsample_factor) assert downsample_factor > 0 return downsample_factor if __name__ == "__main__": config_path = "/home/yy/deeplearning/deeplearning/mypackages/second/configs/car.lite.1.config" config = pipeline_pb2.TrainEvalPipelineConfig() with open(config_path, "r") as f: proto_str = f.read() text_format.Merge(proto_str, config) change_detection_range(config, [-50, -50, 50, 50]) proto_str = text_format.MessageToString(config, indent=2) print(proto_str)
[ "scrin@foxmail.com" ]
scrin@foxmail.com
fa50dff68c05675c2c7debb98f9a5b3d75c46c85
24331f07b0848c0921142bb12c6d1fbb3cc240bb
/web/ndn_client.py
db6e092283b2f41ad36e55bb492e7c2241148791
[]
no_license
shockjiang/rms
3c79a66a7e87705c079b737aa52b4897a9e392b2
19a6278ba7a7628b958d538bd15e29d4f81786e8
refs/heads/master
2020-03-26T01:18:01.276178
2015-06-09T01:35:10
2015-06-09T01:35:10
37,102,868
0
0
null
null
null
null
UTF-8
Python
false
false
8,820
py
#! /usr/bin/env python # -*- coding=utf-8 -*- import Queue import thread import threading import json import urllib import time from binascii import hexlify, unhexlify import pyndn import common.security as security import common.statuscode from common.settings import get_host,log import webconfig class RMSAuthException(Exception): pass class QueueItem(object): STATUS_OK = 0 STATUS_UNVERIFIED = 1 STATUS_BAD = 2 STATUS_TIME_OUT = 3 def __init__(self, name, status, content = None): self.name = name self.status = status self.content = content class rmsClientInterface(pyndn.Closure): def __init__(self, recv_queue): self.handle = pyndn.NDN() self.recv_queue = recv_queue def send(self, interest, timeout, retries = webconfig.RETRY_MAX): self.retries = retries print "timeout=%s" %(timeout) self.doSend(interest, timeout) def retry(self, interest): if not self.retries: self.recv_queue.put_nowait(QueueItem(interest, QueueItem.STATUS_TIME_OUT)) return pyndn.RESULT_OK else: self.retries -= 1 log.info('interest timed out, retrying...') return pyndn.RESULT_REEXPRESS def doSend(self, interest, timeout): templ = pyndn.Interest() templ.answerOriginKind = 0 templ.childSelctor = 1 templ.interestLifetime = timeout self.handle.expressInterest(pyndn.Name(interest), self, templ) def start(self, timeout = -1): self.handle.run(timeout) def stop(self): self.handle.setRunTimeout(0) def upcall(self, kind, upcallInfo): if kind == pyndn.UPCALL_FINAL: return pyndn.RESULT_OK if kind == pyndn.UPCALL_INTEREST_TIMED_OUT: return self.retry(upcallInfo.Interest.name) # make sure we're getting sane responses if not kind in [pyndn.UPCALL_CONTENT, pyndn.UPCALL_CONTENT_UNVERIFIED, pyndn.UPCALL_CONTENT_BAD]: log.error("Received invalid kind type: %d" % kind) return pyndn.RESULT_OK response_name = upcallInfo.ContentObject.name s = QueueItem.STATUS_OK if kind == pyndn.UPCALL_CONTENT_UNVERIFIED: s = QueueItem.STATUS_UNVERIFIED if kind == pyndn.UPCALL_CONTENT_BAD: s = QueueItem.STATUS_BAD self.recv_queue.put_nowait(QueueItem(response_name, s, upcallInfo.ContentObject.content)) return pyndn.RESULT_OK STATE_NOT_RUN = -1 STATE_NOT_AUTH = 0 STATE_IDLE = 1 STATE_WAIT_RECV = 2 class rmsClientBase(object): """Base class of RMS client application""" def __init__(self, host, app, pemFile): self.recv_queue = Queue.Queue() self.result_queue = Queue.Queue() self.name_prefix = "/{}/rms/{}".format(host, app) self.session_id = '' self.seq = 0 self.pemFile = pemFile self.cipher = None self.state = STATE_NOT_RUN self.auth_cond = threading.Condition() thread.start_new_thread(self._recv_thread, tuple()) thread.start_new_thread(self._ndn_thread, tuple()) #wait for thread to start while self.state == STATE_NOT_RUN: time.sleep(0) def _ndn_thread(self): self.ndn_interface = rmsClientInterface(self.recv_queue) self.state = STATE_NOT_AUTH self.ndn_interface.start() def _encrypt(self, data): return self.cipher.encrypt(data) def _decrypt(self, data): return self.cipher.decrypt(data) def _decode_response(self, data): space1 = data.find(' ') if space1 == -1: raise ValueError space2 = data.find(' ', space1+1) if space2 == -1: raise ValueError return (int(data[0:space1]), int(data[space1+1:space2]), data[space2+1:]) def Connect(self, timeout): """Shake hand and authorize with server (may block)""" self.connect_timeout = timeout auth = security.Auth() if self.state != STATE_NOT_AUTH: raise ValueError log.debug('Connecting to %s' % self.name_prefix) self.auth_cond.acquire() self._auth_result = None self.ndn_interface.send(self.name_prefix + '/auth/{}'.format(hex(auth.getDHKey())), timeout, 0) self.auth_cond.wait(timeout) self.auth_cond.release() if not self._auth_result: raise RMSAuthException('Authorization timed out') try: data = json.loads(self._auth_result) auth.setOtherDHKey(long(data['randS'], 0)) auth.decryptPreMasterKey(unhexlify(data['preMaster']), self.pemFile) self.cipher = security.AESCipher(auth.genMasterKey()) self.session_id = data['session'] self.state = STATE_IDLE log.debug('Connected') except Exception, e: log.error(e) raise RMSAuthException('Illegal authorization response received') def ReConnect(self, timeout): log.debug('Reconnecting to %s' % self.name_prefix) self.state = STATE_NOT_AUTH self.session_id = '' self.seq = 0 self.cipher = None self.Connect(timeout) def _auth_timed_out(self): log.error('Authorization timed out') self.auth_cond.acquire() self._auth_result = None self.auth_cond.notify_all() self.auth_cond.release() def _auth_response(self, content): self.auth_cond.acquire() self._auth_result = content self.auth_cond.notify_all() self.auth_cond.release() def IsConnected(self): return self.state in [STATE_IDLE, STATE_WAIT_RECV] def Send(self, data, timeout): """Send data to server (may block)""" if self.state != STATE_IDLE: raise Exception('Not idle') data = self._encrypt(data) self.seq += 1 self.state = STATE_WAIT_RECV self.ndn_interface.send(self.name_prefix + '/{}/{}/'.format(self.session_id, self.seq) + data, timeout) def _recv_thread(self): while True: try: item = self.recv_queue.get() except Exception, e: log.error(e) continue if self.state == STATE_NOT_AUTH: #handle auth response if item.status == QueueItem.STATUS_TIME_OUT: self._auth_timed_out() else: self._auth_response(item.content) continue if item.status == QueueItem.STATUS_TIME_OUT: log.info("send timed out %s" % item.name) self.state = STATE_IDLE continue if self.state != STATE_WAIT_RECV: log.warn('content received in a wrong state %d'%self.state) continue if item.status in [QueueItem.STATUS_BAD, QueueItem.STATUS_UNVERIFIED]: log.warn('got bad content') self.state = STATE_IDLE elif item.status == QueueItem.STATUS_OK: log.debug('got content') try: (seq, status, content) = self._decode_response(item.content) if int(status) == common.statuscode.STATUS_AUTH_ERROR: log.warn("session expired") self.ReConnect(self.connect_timeout or 10.0) raise RMSAuthException #quit normal receiving procedure seq = int(seq) content = self._decrypt(content) log.debug("content: %s" %(content)) except RMSAuthException: pass except Exception, e: log.error("unable to decode content, %s" % e) except: pass else: if seq != self.seq: log.warn("sequence number error, {} expected, but {} received".format(self.seq, seq)) else: self.result_queue.put_nowait((status, content)) self.state = STATE_IDLE else: log.error('got unknown QueueItem') def Recv(self, timeout = None): """Receive data from server (may block)""" try: item = self.result_queue.get(True, timeout) return item except: return (None, None) def DiscardCurrentResult(self): if self.state != STATE_WAIT_RECV: log.warn('not waiting for result') else: self.state = STATE_IDLE def Stop(self): self.ndn_interface.stop()
[ "shock.jiang@gmail.com" ]
shock.jiang@gmail.com
bfb90c8755e3b83e9062e88376453a3cfeeee7ec
9c2edc273db48dcb6d31a937510476b7c0b0cc61
/pyopengl_sample/tutorial1.py
0fd92b98d815dd26d6457ba6f9ac33791867e7e0
[]
no_license
miyamotok0105/python_sample
4d397ac8a3a723c0789c4c3e568f3319dd754501
77101c981bf4f725acd20c9f4c4891b29fbaea61
refs/heads/master
2022-12-19T22:53:44.949782
2020-05-05T05:09:22
2020-05-05T05:09:22
81,720,469
1
0
null
2022-11-22T02:22:55
2017-02-12T11:15:08
Jupyter Notebook
UTF-8
Python
false
false
391
py
#!/usr/bin/python from OpenGL.GL import * from OpenGL.GLUT import * def draw(): glClearColor(1.0, 0.0, 0.0, 0.0) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glFlush() glutSwapBuffers() glutInit(sys.argv) glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH) glutInitWindowSize(320, 240) glutCreateWindow("PyOpenGL 1") glutDisplayFunc(draw) glutMainLoop()
[ "miyamotok0105@gmail.com" ]
miyamotok0105@gmail.com
59ccd0e1e483b1dae9d770a68bd9587c99f73706
4c4aad4539175e5cb8c988a3a03605547b9e4869
/fitnessClub/login_view.py
e0ea23a1e750c9c7aff06eb32b09f04fc7844744
[]
no_license
purplum/fitness-course-registration-system
4cdafe31ae9d21dbb2c5dee21d964a45c2303834
9ea00eca46ec19be20c9ca9689fbf948f0ae612f
refs/heads/master
2020-04-22T03:47:16.369027
2018-08-14T14:23:21
2018-08-14T14:23:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
# -*- coding: utf-8 -*- from django.shortcuts import render_to_response from django.http import HttpResponseRedirect from back_end import Login def login_view(request): return render_to_response("login.html") def log(request): if request.method == 'POST': user = request.POST conn = Login.login(user['user_account'], user['user_password'],user['user_type']) if conn == -1: return render_to_response("error_page.html", {"error": "failed!"}) else: response = HttpResponseRedirect('/home') response.set_cookie('user_account',user['user_account'],3600) response.set_cookie('user_password',user['user_password'],3600) response.set_cookie('user_type',user['user_type'],3600) return response
[ "shellystar11@outlook.com" ]
shellystar11@outlook.com
a81b7c82c7f94ef1f25c412191abe2385f31780f
b3f7b53a6c0f9abb4b5947f490abc962855eedd8
/problem/urls.py
4b76531205caa265418618e9acdabdf64469b85d
[]
no_license
17611165193/shiqing
e43dfd9640451e83fa4fc0d0c056a04746720766
e4f8949f9c8b8578d21106da647524d091827484
refs/heads/master
2022-12-12T18:12:26.312807
2018-09-18T06:44:20
2018-09-18T06:44:20
149,234,968
0
0
null
2022-12-08T02:48:14
2018-09-18T05:44:13
Python
UTF-8
Python
false
false
1,693
py
"""thing_app URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from problem import views urlpatterns = [ url(r'^set_problem/', views.set_problem), url(r'^recommend_list/', views.recommend_list), url(r'^comment/', views.comment), url(r'^comment_list/', views.comment_list), url(r'^hot_list/', views.hot_list), url(r'^collection/', views.collection), url(r'^collection_list/', views.collection_list), url(r'^follow_member/', views.follow_member), url(r'^my_follow/', views.my_follow), url(r'^private_letter/', views.private_letter), url(r'^set_private_letter/', views.set_private_letter), url(r'^message/', views.message), url(r'^recent_browse/', views.recent_browse), url(r'^fabulous/', views.fabulous), url(r'^follow_list/', views.follow_list), url(r'^set_answer/', views.set_answer), url(r'^dynamic_message/', views.dynamic_message), url(r'^details/', views.details), url(r'^search/', views.search), url(r'^delete_collection/', views.delete_collection), ]
[ "liuwei19990123@163.com" ]
liuwei19990123@163.com
2587d997b84fcb7ae2a6db87804428a88199fe81
3914c6b0a7913181cda205a60354e4f0cf2ec63e
/src/Voluntariado/asgi.py
50108c6ee85e036c734e095588d4141441f9ce77
[]
no_license
amado-developer/Voluntariado-API
74c8cf8452b2616a9ce5131fae473440d6745d08
ff7453ac53b0e1ae2988dc7a499731303e93755d
refs/heads/master
2023-01-13T16:08:03.895866
2020-11-12T18:13:05
2020-11-12T18:13:05
287,809,761
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" ASGI config for Voluntariado project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Voluntariado.settings') application = get_asgi_application()
[ "amado_developer@hotmail.com" ]
amado_developer@hotmail.com
1ab114a1176d26d3b841fc5fe2d183ecb240649b
e09f6fd52886e1d3be89b0552104d487ab78e0b7
/outliers/enron_outliers.py
18aec494f20e66f3d657bfd6a67b44e958e24889
[]
no_license
tompxu/udacity-introtomachinelearning
a80f4d67f8836f77e508968f5d10af89c9f06d93
f47df7f90e0718cd9d27b539eb79f268d1f49a79
refs/heads/master
2020-03-16T20:02:30.806512
2018-05-10T19:19:57
2018-05-10T19:19:57
132,943,763
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
#!/usr/bin/python import pickle import sys import matplotlib.pyplot sys.path.append("../tools/") from feature_format import featureFormat, targetFeatureSplit ### read in data dictionary, convert to numpy array data_dict = pickle.load( open("../final_project/final_project_dataset.pkl", "rb")fix_imports=True ) features = ["salary", "bonus"] data = featureFormat(data_dict, features) ### your code below
[ "pengxu.tom@gmail.com" ]
pengxu.tom@gmail.com
97c37aff4c9011d545041e6eae31ed60bd41ca37
11a278464db208eb7549b434a90d494b15d99af0
/utils/misc.py
5f66aeab52f0b0e7bd8b1f94f5d6c216b8352b06
[]
no_license
kuafu1994/quantized_training
65b503c0a2d54f9f4ab3dc3e963b13bcd1b1d424
9164d24834c897886f7543f687f521f76c67ed92
refs/heads/master
2021-02-14T20:49:06.271151
2020-03-24T18:26:02
2020-03-24T18:26:02
244,833,663
0
0
null
null
null
null
UTF-8
Python
false
false
1,314
py
import random import numpy as np import torch torch_dtypes = { 'float': torch.float, 'float32': torch.float32, 'float64': torch.float64, 'double': torch.double, 'float16': torch.float16, 'half': torch.half, 'uint8': torch.uint8, 'int8': torch.int8, 'int16': torch.int16, 'short': torch.short, 'int32': torch.int32, 'int': torch.int, 'int64': torch.int64, 'long': torch.long } def onehot(indexes, N=None, ignore_index=None): """ Creates a one-representation of indexes with N possible entries if N is not specified, it will suit the maximum index appearing. indexes is a long-tensor of indexes ignore_index will be zero in onehot representation """ if N is None: N = indexes.max() + 1 sz = list(indexes.size()) output = indexes.new().byte().resize_(*sz, N).zero_() output.scatter_(-1, indexes.unsqueeze(-1), 1) if ignore_index is not None and ignore_index >= 0: output.masked_fill_(indexes.eq(ignore_index).unsqueeze(-1), 0) return output def set_global_seeds(i): try: import torch except ImportError: pass else: torch.manual_seed(i) if torch.cuda.is_available(): torch.cuda.manual_seed_all(i) np.random.seed(i) random.seed(i)
[ "1534472093@qq.com" ]
1534472093@qq.com
b25f51bd9909f386f89f3058a2323e1d1b8c133f
6c2608bc87b522da77c792e20330989de17b3005
/Chap-7/ex179.py
43c10f227985eb4652d2196644fcc6bc8c504dfe
[]
no_license
AleByron/AleByron-The-Python-Workbook-second-edition
8a0b408c1bbd90c82e6b837fc898ee10341ca8fa
491b2fd394aa04e29a4b2dbe9a615c547e239028
refs/heads/main
2023-01-13T21:01:17.757669
2020-11-11T01:29:28
2020-11-11T01:29:28
306,487,964
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
def square(n,g): if 0<n-g**2<10**-12: return g else: g = square(n,(g+(n/g))/2) return g def main(): n = 32 g = 1 print(square(n,g)) main()
[ "noreply@github.com" ]
AleByron.noreply@github.com
0d918889f8d20d3a4695849eb65eab1ae2ad9c9d
edfd1db2b48d4d225bc58be32fbe372a43415112
/team-task/airflow2.0/dags/efirmant/lesson3.challenge2.py
ea755ca01b0b78617310f0d87c4b0b0748206373
[]
no_license
rwidjojo/airflow-training
ed83cb9e97ca85ef06de1426f2f41014881a1f22
ac82040d8ddc3859df5576eee08d397e824016f1
refs/heads/main
2023-08-12T21:01:17.672059
2021-01-04T09:17:48
2021-01-04T09:17:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
915
py
import logging from datetime import timedelta from airflow import DAG from airflow.utils.dates import days_ago from airflow.operators.bash_operator import BashOperator from airflow.operators.python_operator import PythonOperator from airflow.hooks.postgres_hook import PostgresHook owner = 'efirmant' # Replace with your short name default_args = { 'owner': owner, 'depends_on_past': False, 'start_date': days_ago(2), } dag = DAG( f'{owner}.lesson3.challenge2', default_args=default_args, description='Read data from postgresql', schedule_interval=None, ) def read_data(): db_conn = PostgresHook(postgres_conn_id='efirmant_posgres2') result = db_conn.get_records('SELECT order_date, count(order_id) from efirmant_orders GROUP BY order_date') for row in result: logging.info(row) read_task = PythonOperator( task_id="read", python_callable=read_data, dag=dag )
[ "nurcahyopujo@gmail.com" ]
nurcahyopujo@gmail.com
4c3ccf66b8fd7068c014cb41c62600b23d532d8f
af1004cc4cb93eab7fa55e7fc287e53490831a0d
/FirstScript.py
1b18c9076359a6e43fe4623d023efa8cbc5ad39e
[]
no_license
ljairaj/Python
11687230468a253570768fb0d275c9ca4b36541c
499c14e510cbd8826dc2aca50b6c5052501ad5b9
refs/heads/master
2020-03-15T15:17:48.489802
2018-05-05T02:55:51
2018-05-05T02:55:51
132,208,779
0
0
null
null
null
null
UTF-8
Python
false
false
3,574
py
import sys import random import os c = "LJR" x, a, b = 'foo', 10, 1000.0001 # sys.stdout.write(x+"\n"); # print("\n\n\n\n"); # print(c); # # Code to check prime number # iVal1 = 2 # iMax = 30 # while (iVal1 <= iMax): # # print("\nInput Value:"+str(iVal1)) # iVal2 = 2 # isPrime = 0 # while (iVal2 <= (iVal1 / 2)): # # print("Checking Value:"+str(iVal2)+" Output:"+str(iVal1%iVal2)) # if (iVal1 % iVal2 == 0): # isPrime = 1 # break # iVal2 += 1 # # if (isPrime == 1): print("The number " + str(iVal1) + " is not prime.") # # else: print("The number "+str(iVal1)+" is not prime.") # # iVal1 += 1 # # Code to generate Fibonacci series. # iVal1 = 0 # iVal2 = 1 # iSum = 1 # iMaxCnt = 10 # # for iNum in range(0,20): # print("Value:",iSum) # iSum = iVal1 + iVal2 # # if(iNum%2==0): # iVal1 = iSum # else: # iVal2 = iSum # super_villans = {'Fiddler' : 'Isaac Bowia', # 'Captain Cold' : 'Leonard Smart', # 'Weather Wizard' : 'Mark Mardon', # 'Mirror Master':'San Scudder', # 'Pied Piper':'Thomas Peterson'} # # fruit_list = ['apples','oranges','pineapples','watermelons','bananas'] # # num_list = [[1,2,3],[30,40],[70,80,90,100]] # # # i = 0 # while(i < len(num_list)): # j = 0 # print("Value1:", num_list[i]) # while(j < len(num_list[i])): # print("Value2:", num_list[i][j]) # j += 1 # i += 1 # Input_String = 'This message is to be delivered to [Jairaj,Amit,Mahesh] in regard to the recent projects [Proj1,Proj2].' def createList(sInpStr, cLookup, temp_list): iIndx = 0 while(iIndx<len(sInpStr)): iIndx = sInpStr.find(cLookup,iIndx) if(iIndx == -1): break temp_list.append(iIndx) iIndx += len(cLookup) def factorial(n): if(n==1): return 1 else: return n*factorial(n-1) # Text1 = 'This message is to be delivered to [Jairaj L,Amit Nanda,Mahesh Gopal] in regard to the recent project [Proj1,Proj2]. This will be communicated accordingly.' Text1 = 'This message is to be delivered to [Jairaj,Amit,Mahesh] in regard to the recent project.' opnBrk_loc_list = [] createList(Text1,"[",opnBrk_loc_list) print("Output: ",opnBrk_loc_list) cldBrk_loc_list = [] createList(Text1,"]",cldBrk_loc_list) print("Output: ",cldBrk_loc_list) if(len(opnBrk_loc_list) != len(cldBrk_loc_list)): print("The string format is not correct.") exit(1) Raw_Text1 = '' sText_val_list = [] sText_val_Map = {} iStart = 0 for iCnt1 in range(0,len(opnBrk_loc_list)): Raw_Text1 += (Text1[iStart:int(opnBrk_loc_list[iCnt1])]+"Temptxt"+str(iCnt1)) sText_val_list.append(Text1[int(opnBrk_loc_list[iCnt1]+1):int(cldBrk_loc_list[iCnt1])].split(',')) sText_val_Map["Temptxt"+str(iCnt1)]=Text1[int(opnBrk_loc_list[iCnt1]+1):int(cldBrk_loc_list[iCnt1])].split(',') iStart = cldBrk_loc_list[iCnt1]+1 if(iCnt1 == len(opnBrk_loc_list)-1): Raw_Text1 += Text1[iStart:len(Text1)] print("String Val: ",Raw_Text1) print("Output1: ",sText_val_list) print("Output2: ",sText_val_Map) # iTotalStr = 0 # for iCnt2 in range(0,len(sText_val_list)): # if(iCnt2 == 0): # iTotalStr = len(sText_val_list[iCnt2]) # else: # iTotalStr *= len(sText_val_list[iCnt2]) # # print("Total Size:",iTotalStr) # for iLp1 in range(len(sText_val_list[0])): # for iLp2 in range(len(sText_val_list[1])): # print("Output: ",sText_val_list[0][iLp1]+" , "+sText_val_list[1][iLp2])
[ "jairajl@yahoo.com" ]
jairajl@yahoo.com
7d972446eb1d879cf62519229177e8b1c0ec47c5
2733461324b1602373a5973846942952b77951d2
/Functions/Solution11.py
bb1ac36341c96635c80e29d53d876ac10e7d4588
[]
no_license
Suyen-Shrestha/Python-Assignment
a14ececd2fcdd600004774cb8267b02b6665eb0e
438cecb9d9e3f42e788743c87ebe830381061360
refs/heads/master
2022-11-12T10:25:32.517165
2020-06-28T05:31:47
2020-06-28T05:31:47
275,513,153
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
adder = lambda x: x + 15 multiplier = lambda x,y: x*y print(f'The result after addition of 15 to a number: {adder(5)}') print(f'The result after multiplication of x and y numbers: {multiplier(7,8)}')
[ "suyencrestha@gmail.com" ]
suyencrestha@gmail.com
736235745f10fb292372559ad9387d0047365fb5
b3f122622c041622d89af596c3a9862391331a9d
/cms/templatetags/cms_tags.py
ba2f8b88c64e7ff01707867eca8253f36f35d1e5
[]
no_license
noxan/django-mini-cms
b6b229f4add63582ef6d976e766a4102e3fa02c7
c833e62571fd232ca5c6bc8278a5629c2886e9f1
refs/heads/master
2016-09-09T17:50:03.314904
2012-09-09T22:05:38
2012-09-09T22:05:38
4,614,741
1
0
null
null
null
null
UTF-8
Python
false
false
761
py
from django import template from django.core.urlresolvers import reverse register = template.Library() class BreadcrumbsListNode(template.Node): def render(self, context): page = context['object'] builder = [] builder.append('<ul class="breadcrumb">') parent = page.parent while parent is not None: builder.append(u'<li><a href="%s">%s</a> <span class="divider">/</span></li>' % (reverse('cms:page', args=[parent.slug]), parent.headline)) parent = parent.parent builder.append(u'<li class="active">%s</li>' % (page.headline)) builder.append(u'</ul>') return u''.join(builder) @register.tag def render_breadcrumbs(parser, token): return BreadcrumbsListNode()
[ "noxan@redmoonstudios.de" ]
noxan@redmoonstudios.de
a56e63d9aeb1c1faec33a03654624c5820c1539b
17b7862ae66d7c4dacecd70e14fc80ccbb19c9f7
/System_Monitor.py
a3f2ee6c1024904513e737a8729b95ccc50e58e6
[]
no_license
zongxj/pyscript
1a4e188ee18a36a2b8d3fecd5f06790538de32d3
af82d004b27c72fa0ed8170f4415021e1263c03d
refs/heads/master
2021-07-15T06:06:37.725891
2020-06-17T10:27:32
2020-06-17T10:27:32
127,864,169
0
0
null
null
null
null
UTF-8
Python
false
false
2,083
py
# coding:utf-8 import psutil import time # 获取当前时间 now_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) print(now_time+'\n') ############################### # CPU信息 ############################### # 查看cpu所有信息 Cpu_Time_1 = psutil.cpu_times() print(Cpu_Time_1) # 显示cpu所有逻辑信息 Cpu_Time_2 = psutil.cpu_times(percpu=False) print(Cpu_Time_2) # 查看用户的cpu时间 Cpu_Time_3 = psutil.cpu_times().user print(Cpu_Time_3) # 查看cpu逻辑个数 Cpu_Count_1 = psutil.cpu_count() print(Cpu_Count_1) # 查看cpu物理个数 Cpu_Count_2 = psutil.cpu_count(logical=False) print(Cpu_Count_2) ############################### # 内存信息 ############################### # 查看系统内存 Mem = psutil.virtual_memory() print(Mem) # 获取swap内存信息 Mem = psutil.swap_memory() print(Mem) ############################### # 硬盘信息 ############################### # 磁盘I/O信息 Disk = psutil.disk_io_counters() print(Disk) # 获取单个分区I/O信息 Disk = psutil.disk_io_counters(perdisk=True) print(Disk) # 获取磁盘的完整信息 Disk = psutil.disk_partitions() print(Disk) # 获取分区使用信息 Disk = psutil.disk_usage('/') print(Disk) ############################### # 网络信息 ############################### # 获取网络总I/O信息 Net = psutil.net_io_counters() print(Net) # 输出网络每个接口信息 Net = psutil.net_io_counters(pernic=True) print(Net) # 获取网络连接信息 #netstat -anlt Net = psutil.net_connections() print(Net) # 获取本地网卡信息 #ifconfig Net = psutil.net_if_addrs() print(Net) # 获取本地网卡信息 Net = psutil.net_if_stats() print(Net) ############################### # 系统信息 ############################### # 获取当前系统用户登录信息 user = psutil.users() print(user) # 获取开机时间 boot_time = psutil.boot_time() started_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(boot_time)) print(started_time) # 查看系统全部进程 pid = psutil.pids() print(pid)
[ "zongxj_cn@foxmail.com" ]
zongxj_cn@foxmail.com
63cf4e7fc790f00047e1d1b4a59e089134a6a4ce
1113e8eec4ccbbcd00c6a9b5466c5239b6f0eb03
/cpos/foundation/_callable/core.py
d5bcbc5bd5bde2ddfb68fa7a980ecfe3e94c65cb
[]
no_license
yizhong120110/CPOS
a05858c84e04ce4aa48b3bfb43ee49264ffc5270
68ddf3df6d2cd731e6634b09d27aff4c22debd8e
refs/heads/master
2021-09-01T17:59:53.802095
2017-12-28T05:43:06
2017-12-28T05:43:06
106,247,188
0
0
null
null
null
null
UTF-8
Python
false
false
6,495
py
# -*- coding: utf-8 -*- import textwrap import sys import os from ..substrate.utils.logger import logger from ..substrate.interfaces import Clarified class Callable(object): def __init__(self, py_code, fragment_name=''): self.d = {'py_code':py_code,'fragment_name':fragment_name} def run(self, np,np_local): """ # 在np中注册py_code """ try: #logger.ods (str(self.d['py_code']) , lv = 'dev' , cat = 'foundation.callable') exec(self.d['py_code'],np,np_local) return True except: logger.oes("callable error:" , lv = 'error' , cat = 'foundation.callable') return False def get_name (self): return self.d['fragment_name'] class DynamicRuntime(Clarified): NAME = "DynamicRuntime" # np_init_code and udp_np should be deprecated , keeping it is just for the compatibility with old codes. # Runtime and Callable should be used like test cases showed below. def __init__ (self,np_init_code='',upd_np={}, np = {}, np_local = None): self.np = np self.np_local = np_local self.np_init_code = np_init_code self.prepare_environment() self.np.update(upd_np) def call(self,callable_object): return callable_object.run(self.np,self.np_local) def prepare_environment(self): ca = Callable(textwrap.dedent(self.np_init_code.replace('\r', ''))) self.call(ca) return True def last_result (self): # equel to the "_" variable in the py console. if '_' in (self.np.keys()): return self.np['_'] return None def var (self,var_name): # equel to the "_" variable in the py console. if var_name in (self.np.keys()): return self.np[var_name] return None def statement_dynamic_call (statement = '', runtime = None): # args like this : p1=value,p2=value,p3=value , in string. dr = runtime or DynamicRuntime() if statement != '': if not dr.call( Callable( statement ) ): return None return dr def direct_dynamic_call (module_name = '',func_name = '',args = '', runtime = None): # args like this : p1=value,p2=value,p3=value , in string. dr = runtime or DynamicRuntime() if dr.var('_') is None: dr = statement_dynamic_call('_ = None',dr) if module_name != '': statement = 'from %s import %s' % (module_name,'*' if func_name == '' else func_name) dr = statement_dynamic_call(statement,dr) if func_name != '' and func_name != '*': statement = '_ = %s(%s) or _'%(func_name, args) dr = statement_dynamic_call(statement,dr) if not dr: return None return dr def direct_dynamic_call_pyfile (pyfile='' , root='' ,func_name = '',args = '', runtime = None): # args like this : p1=value,p2=value,p3=value , in string. dr = runtime or DynamicRuntime() if dr.var('_') is None: dr = statement_dynamic_call('_ = None',dr) if pyfile != '': root = os.path.abspath(root) + os.sep pyfile = os.path.abspath(os.path.join(root, pyfile.strip('/\\'))) statement = open(pyfile,mode='rb').read() dr = statement_dynamic_call(statement,dr) if func_name != '': statement = '_ = %s(%s) or _'%(func_name, args) dr = statement_dynamic_call(statement,dr) if not dr: return None return dr scall = statement_dynamic_call dcall = direct_dynamic_call dcallpy = direct_dynamic_call_pyfile ####################################################################### #TEST a = 0 def __test_call (): global a a = 100 print ('__test_call') return 0 def _test1 (): # 使用globals()会对当前环境造成影响,导致open不能正常使用 #dr = DynamicRuntime(np=globals()) dr = DynamicRuntime(np=locals()) dr = dcall('os',runtime = dr) if dr: dr = dcall(func_name = 'times',args = '',runtime = dr) if dr: dr = dcall(func_name = 'print',args = '_',runtime = dr) if dr: dr = dcall(func_name = 'times',args = '',runtime = dr) if dr: dr = dcall(func_name = 'print',args = '_',runtime = dr) if dr: dr = scall('print(\' Hello \')',runtime = dr) if dr: dr = scall('__test_call()',runtime = dr) print(a) def _test2 (): b = 1 c = 1 dr = DynamicRuntime( np = locals()) scall('b = b + 1',dr) print(dr) print(b) ## note! we have to obtain the resualt manually. The 'b = b + 1' call will not touch the 'b' in this scope. # why? ???? #refer to python doc [exec]: #Note #The default locals act as described for function locals() below: # modifications to the default locals dictionary should not be attempted. Pass an explicit locals dictionary # if you need to see effects of the code on locals after function exec() returns. # print (dr.var('b')) def _test3 (): dr = scall('t3 = "this is t3" ') print(dr.var('t3')) dr = scall('t4 = t3 + " and t4" ',dr) print(dr.var('t4')) def _test4 (): # 如果下面这句执行报错,则说明本地环境被破坏,是np=globals()造成的 #print("++++++++++==========",help(open)) dr = dcallpy(os.path.abspath( __file__ ),'_test4_print') dr = dcallpy(func_name='_test4_print_2' ,args='1111' ,runtime=dr) dr = dcallpy(func_name='_test4_print_3' ,args='1111,2222' ,runtime=dr) def _test4_print(): print("===== my name is _test4_print") def _test4_print_2(aaaa): print("===== my name is _test4_print_2 %s"%(aaaa)) def _test4_print_3(aaaa,bbbbb): print("===== my name is _test4_print_3 %s %s"%(aaaa,bbbbb)) def _test5 (): dr = scall('') dr.np['aaaaa'] = 'test is aaaaa' dr = dcall(func_name = 'print',args = 'aaaaa',runtime = dr) if __name__ == '__main__': _test1() print('==========================================================') _test2() print('==========================================================') _test3() print('==========================================================') _test4() print('==========================================================') _test5()
[ "yizhong120110@gmail.com" ]
yizhong120110@gmail.com
3b97278167640c790740fbd6e9a435d1e87ce6e0
baaa8c9486e02f4232f4926cf4e1a2eeee1199b4
/accounts/admin.py
2395fb1f93dfca90cba93acc7edf2da53b6c172c
[]
no_license
bondarenkoav/helpdesk
b2be867605d484c34aaea4d8bea876c633947f14
866ea2dc6ee5182d6310d800b301270b38490fd2
refs/heads/master
2023-01-08T09:44:15.852016
2022-12-28T10:53:39
2022-12-28T10:53:39
93,615,791
0
0
null
null
null
null
UTF-8
Python
false
false
2,047
py
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User from accounts.models import Profile class ProfileInline(admin.StackedInline): model = Profile can_delete = False verbose_name = u'Профиль' verbose_name_plural = u'Профиль' fk_name = 'user' class CustomUserAdmin(UserAdmin): inlines = (ProfileInline, ) def get_inline_instances(self, request, obj=None): if not obj: return list() return super(CustomUserAdmin, self).get_inline_instances(request, obj) # class ProfileInline(admin.StackedInline): # model = Profile # can_delete = False # verbose_name = u'Профиль' # verbose_name_plural = u'Профиль' # fk_name = 'user' # # # # @admin.register(User) # class CustomUserAdmin(UserAdmin): # inlines = (ProfileInline, ) # list_display = ('username', 'last_name', 'first_name', 'is_active', # 'get_phone', 'get_birthday', 'get_groups', 'get_location') # list_filter = ('is_active', 'groups') # search_fields = ('username', 'first_name', 'last_name') # # list_select_related = True # # def get_groups(self, instance): # list_groups = '' # for group in instance.groups.all(): # if list_groups == '': # list_groups = group.name # else: # list_groups = list_groups + ', ' + group.name # return list_groups # get_groups.short_description = u'Группы' # # def get_location(self, instance): # return instance.profile.location # get_location.short_description = u'Город' # # def get_birthday(self, instance): # return instance.profile.birthday # get_birthday.short_description = u'Дата рождения' # # def get_phone(self, instance): # return instance.profile.phone # get_phone.short_description = u'Номер' admin.site.unregister(User) admin.site.register(User, CustomUserAdmin)
[ "printex.orsk@gmail.com" ]
printex.orsk@gmail.com
ac0b29e663018b4fc53d6e6982827e701c021ea5
5d0833882aba2278a587e7292e46b6367ff0b9ec
/leetcode/editor/cn/grpc_test/async_streaming/server.py
4a864b37b528baf4ceddbff78081083e82ffd395
[]
no_license
GitZW/LeetCode
d52bcfd2273e9dfdd3e8f66530db398257ed73c8
cb2cd758f6c8a0a38f10a6884f70a2413b2204c5
refs/heads/master
2023-04-11T05:21:24.318139
2021-04-30T10:22:47
2021-04-30T10:22:47
263,698,370
0
0
null
null
null
null
UTF-8
Python
false
false
3,423
py
# Copyright 2020 The gRPC Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import time from concurrent.futures import ThreadPoolExecutor from typing import Iterable import threading import grpc from google.protobuf.json_format import MessageToJson import phone_pb2 import phone_pb2_grpc def create_state_response(call_state: phone_pb2.CallState.State) -> phone_pb2.StreamCallResponse: response = phone_pb2.StreamCallResponse() response.call_state.state = call_state return response class Phone(phone_pb2_grpc.PhoneServicer): def __init__(self): self._id_counter = 0 self._lock = threading.RLock() def _create_call_session(self) -> phone_pb2.CallInfo: call_info = phone_pb2.CallInfo() with self._lock: call_info.session_id = str(self._id_counter) self._id_counter += 1 call_info.media = "https://link.to.audio.resources" logging.info("Created a call session [%s]", MessageToJson(call_info)) return call_info def _clean_call_session(self, call_info: phone_pb2.CallInfo) -> None: logging.info("Call session cleaned [%s]", MessageToJson(call_info)) def StreamCall( self, request_iterator: Iterable[phone_pb2.StreamCallRequest], context: grpc.ServicerContext ) -> Iterable[phone_pb2.StreamCallResponse]: try: request = next(request_iterator) logging.info("Received a phone call request for number [%s]", request.phone_number) except StopIteration: raise RuntimeError("Failed to receive call request") # Simulate the acceptance of call request time.sleep(1) yield create_state_response(phone_pb2.CallState.NEW) # Simulate the start of the call session time.sleep(1) call_info = self._create_call_session() context.add_callback(lambda: self._clean_call_session(call_info)) response = phone_pb2.StreamCallResponse() response.call_info.session_id = call_info.session_id response.call_info.media = call_info.media yield response yield create_state_response(phone_pb2.CallState.ACTIVE) # Simulate the end of the call time.sleep(2) yield create_state_response(phone_pb2.CallState.ENDED) logging.info("Call finished [%s]", request.phone_number) def serve(address: str) -> None: server = grpc.server(ThreadPoolExecutor()) phone_pb2_grpc.add_PhoneServicer_to_server(Phone(), server) server.add_insecure_port(address) server.start() logging.info("Server serving at %s", address) server.wait_for_termination() # wait_for_termination # Block current thread until the server stops. # This is an EXPERIMENTAL(实验性的) API. if __name__ == "__main__": logging.basicConfig(level=logging.INFO) serve("[::]:50051")
[ "474268013@qq.com" ]
474268013@qq.com
950b52d7c89a1d9123e575f28cbf268da0e15cca
5544c8f087646cc937aec6dd05f6ad9359347b13
/Python数据处理/Numpy学习/数组统计.py
68478e7aa4e7c04f6498f8043e13a7625692a185
[]
no_license
liuyangNB/shiyanlouPy
b74b98baa70f83536a0584ee6907de74a4c77845
0ba28dfeadf2ff34062dd5257aa296edfaa4bd36
refs/heads/master
2021-04-02T01:32:25.183156
2020-03-18T12:48:30
2020-03-18T12:48:30
248,229,861
0
0
null
null
null
null
UTF-8
Python
false
false
582
py
import numpy as np #统计数组中位数 a = np.array([[1,4,3], [6,2,9], [4,7,2]]) print("中位数:np.median(a,axis = 0)\n",np.median(a,axis=0))#axis = 0 是对列做处理,投影到x轴 ;axis = 1 反之 #统计平均数 print("平均数:np.mean(a,axis=1)\n",np.mean(a,axis=1)) #统计各个行的的加权平均 print('加权平均:np.average(a,axis=0)\n',np.average(a,axis=0)) #统计各行标准差 print("方差:np.var(a,axis=0)\n",np.var(a,axis=0)) #统计各行标准差 print("标准差:np.std(a,axis=0)\n",np.std(a,axis=0))
[ "liuyang.nb@outlook.com" ]
liuyang.nb@outlook.com
8e291920bc9258758fe57e54877cada173a13eef
63bf6161532eefa72aa3be8b01cde601b08507dc
/python-mapping-example/fhir_model_generator/tests/model/slot_tests.py
ad3cec096349f05c2c4414e7b0a4ae6fc7aac7a8
[ "Apache-2.0" ]
permissive
Healthedata1/mFHIR
4ef370b87e03e973918e5683977d32fe262655bc
1b4ea441cfa08b661416a3badedf7e90f2809163
refs/heads/master
2022-12-10T21:07:03.948406
2021-06-18T01:58:23
2021-06-18T01:58:23
129,964,251
9
5
null
2022-12-09T05:23:54
2018-04-17T20:57:15
HTML
UTF-8
Python
false
false
6,767
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 4.0.1-9346c8cc45 on 2020-02-10. # 2020, SMART Health IT. import os import io import unittest import json from model import slot from model.fhirdate import FHIRDate class SlotTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or \ os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'fhir-parser', 'downloads')) with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("Slot", js["resourceType"]) return slot.Slot(js) def testSlot1(self): inst = self.instantiate_from("slot-example-busy.json") self.assertIsNotNone(inst, "Must have instantiated a Slot instance") self.implSlot1(inst) js = inst.as_json() self.assertEqual("Slot", js["resourceType"]) inst2 = slot.Slot(js) self.implSlot1(inst2) def implSlot1(self, inst): self.assertEqual(inst.comment, "Assessments should be performed before requesting appointments in this slot.") self.assertEqual(inst.end.date, FHIRDate("2013-12-25T09:15:00Z").date) self.assertEqual(inst.end.as_json(), "2013-12-25T09:15:00Z") self.assertEqual(inst.id, "1") self.assertEqual(inst.identifier[0].system, "http://example.org/identifiers/slots") self.assertEqual(inst.identifier[0].value, "123132") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertTrue(inst.overbooked) self.assertEqual(inst.serviceCategory[0].coding[0].code, "17") self.assertEqual(inst.serviceCategory[0].coding[0].display, "General Practice") self.assertEqual(inst.start.date, FHIRDate("2013-12-25T09:00:00Z").date) self.assertEqual(inst.start.as_json(), "2013-12-25T09:00:00Z") self.assertEqual(inst.status, "busy") self.assertEqual(inst.text.status, "generated") def testSlot2(self): inst = self.instantiate_from("slot-example.json") self.assertIsNotNone(inst, "Must have instantiated a Slot instance") self.implSlot2(inst) js = inst.as_json() self.assertEqual("Slot", js["resourceType"]) inst2 = slot.Slot(js) self.implSlot2(inst2) def implSlot2(self, inst): self.assertEqual(inst.appointmentType.coding[0].code, "WALKIN") self.assertEqual(inst.appointmentType.coding[0].display, "A previously unscheduled walk-in visit") self.assertEqual(inst.appointmentType.coding[0].system, "http://terminology.hl7.org/CodeSystem/v2-0276") self.assertEqual(inst.comment, "Assessments should be performed before requesting appointments in this slot.") self.assertEqual(inst.end.date, FHIRDate("2013-12-25T09:30:00Z").date) self.assertEqual(inst.end.as_json(), "2013-12-25T09:30:00Z") self.assertEqual(inst.id, "example") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertEqual(inst.serviceCategory[0].coding[0].code, "17") self.assertEqual(inst.serviceCategory[0].coding[0].display, "General Practice") self.assertEqual(inst.serviceType[0].coding[0].code, "57") self.assertEqual(inst.serviceType[0].coding[0].display, "Immunization") self.assertEqual(inst.specialty[0].coding[0].code, "408480009") self.assertEqual(inst.specialty[0].coding[0].display, "Clinical immunology") self.assertEqual(inst.start.date, FHIRDate("2013-12-25T09:15:00Z").date) self.assertEqual(inst.start.as_json(), "2013-12-25T09:15:00Z") self.assertEqual(inst.status, "free") self.assertEqual(inst.text.status, "generated") def testSlot3(self): inst = self.instantiate_from("slot-example-unavailable.json") self.assertIsNotNone(inst, "Must have instantiated a Slot instance") self.implSlot3(inst) js = inst.as_json() self.assertEqual("Slot", js["resourceType"]) inst2 = slot.Slot(js) self.implSlot3(inst2) def implSlot3(self, inst): self.assertEqual(inst.comment, "Dr Careful is out of the office") self.assertEqual(inst.end.date, FHIRDate("2013-12-25T09:45:00Z").date) self.assertEqual(inst.end.as_json(), "2013-12-25T09:45:00Z") self.assertEqual(inst.id, "3") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertEqual(inst.serviceCategory[0].coding[0].code, "17") self.assertEqual(inst.serviceCategory[0].coding[0].display, "General Practice") self.assertEqual(inst.start.date, FHIRDate("2013-12-25T09:30:00Z").date) self.assertEqual(inst.start.as_json(), "2013-12-25T09:30:00Z") self.assertEqual(inst.status, "busy-unavailable") self.assertEqual(inst.text.status, "generated") def testSlot4(self): inst = self.instantiate_from("slot-example-tentative.json") self.assertIsNotNone(inst, "Must have instantiated a Slot instance") self.implSlot4(inst) js = inst.as_json() self.assertEqual("Slot", js["resourceType"]) inst2 = slot.Slot(js) self.implSlot4(inst2) def implSlot4(self, inst): self.assertEqual(inst.comment, "Dr Careful is out of the office") self.assertEqual(inst.end.date, FHIRDate("2013-12-25T10:00:00Z").date) self.assertEqual(inst.end.as_json(), "2013-12-25T10:00:00Z") self.assertEqual(inst.id, "2") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertEqual(inst.serviceCategory[0].coding[0].code, "17") self.assertEqual(inst.serviceCategory[0].coding[0].display, "General Practice") self.assertEqual(inst.start.date, FHIRDate("2013-12-25T09:45:00Z").date) self.assertEqual(inst.start.as_json(), "2013-12-25T09:45:00Z") self.assertEqual(inst.status, "busy-tentative") self.assertEqual(inst.text.status, "generated") if __name__ == '__main__': unittest.main()
[ "ehaas@healthedatainc.com" ]
ehaas@healthedatainc.com
8efffa090b5cb44f5c8c49eb3255299505942f0c
7920395f149cfdd5731946ea53526bb64d463660
/lgbCategoricalSelector_v3.py
fd75c16fcf6b0d2ec929ab04768c995ca45f1446
[]
no_license
mohsinkhn/Avito_kaggle_clean
f5229ea231e25cbf8d5b9cd53301ad6554298364
4a42493eb441d2956cc9e39aafdbfa02be7d2564
refs/heads/master
2020-03-20T13:11:05.583060
2018-06-24T16:08:51
2018-06-24T16:08:51
137,449,657
0
0
null
null
null
null
UTF-8
Python
false
false
7,811
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 16 13:32:23 2018 @author: mohsin """ import gc import os from copy import copy import pandas as pd import numpy as np np.random.seed(786) from utils import * from sklearn.model_selection import KFold, cross_val_predict import logging import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from tqdm import tqdm tqdm.pandas(tqdm) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) #%% def cv_oof_predictions(estimator, X, y, cvlist, est_kwargs, fit_params, predict_test=True, X_test=None, ): preds = np.zeros(len(y)) #Initialize empty array to hold prediction test_preds = [] for tr_index, val_index in cvlist: gc.collect() X_tr , X_val = X[tr_index], X[val_index] y_tr , y_val = y[tr_index], y[val_index] est = estimator.set_params(**est_kwargs) #print(X_tr.shape, X_val.shape, y_tr.shape, y_val.shape) est.fit(X_tr, y_tr, eval_set = [(X_tr, y_tr), (X_val, y_val)], eval_metric='rmse', early_stopping_rounds=50, verbose=0, **fit_params) #Might need to change this depending on estimator preds[val_index] = est.predict(X_val) #break if predict_test: tpreds = est.predict(X_test) test_preds.append(tpreds) if len(test_preds) >0: test_preds = np.mean(test_preds, axis=0) return est, preds, test_preds def eval_lgb_sets(X, y, cvlist, param_sets): model = lgb.LGBMRegressor(n_estimators=10000) y_preds_best = np.zeros(len(X)) best_rmse = 1.0 best_i = 0 for i, lgb_params in enumerate(param_sets): est, y_preds, _ = cv_oof_predictions(model, X, y, cvlist, predict_test=False, X_test=None, est_kwargs=lgb_params, fit_params={}) score = rmse(y, y_preds) logger.info("Score for {}th lgb parameter set is {}".format(i, score)) if score < best_rmse: best_rmse = score y_preds_best = y_preds best_i = i logger.info("Best score is {} with set {}".format(best_rmse, best_i)) return best_rmse, y_preds_best #%% if __name__ == "__main__": ############ Models to try ################################################ LOGGER_FILE = "lgbCategoricalSelector_v3_100k.log" CAT_COLS = ['user_id', 'region', 'city', 'parent_category_name', 'category_name', 'param_1', 'param_2', 'param_3', 'image_top_1', 'user_type'] BASE_FEATURES = ['user_id_lbenc_2', 'region_lbenc_2', 'city_lbenc_2', 'parent_category_name_lbenc_2', 'category_name_lbenc_2', 'param_1_lbenc_2', 'param_2_lbenc_2', 'param_3_lbenc_2', 'image_top_1_lbenc_2', 'user_type_lbenc_2', 'user_id_trenc_3', 'city_trenc_3', 'parent_category_name_trenc_3', 'param_1_trenc_3', 'param_2_trenc_3', 'param_3_trenc_3', 'image_top_1_trenc_3', 'region_parent_category_name_trenc_8', 'region_param_2_trenc_8', 'region_param_3_trenc_8', 'region_image_top_1_trenc_8', 'city_parent_category_name_trenc_8', 'city_category_name_trenc_8', 'city_param_1_trenc_8', 'city_param_3_trenc_8', 'parent_category_name_param_2_trenc_8', 'parent_category_name_param_3_trenc_8', 'parent_category_name_image_top_1_trenc_8', 'parent_category_name_user_type_trenc_8', 'category_name_param_1_trenc_8', 'category_name_image_top_1_trenc_8', 'param_1_image_top_1_trenc_8', 'param_2_image_top_1_trenc_8', 'user_type_region_category_name_param_1_trenc_8', 'user_type_city_category_name_param_1_trenc_8'] TARGET_ENC_BASE_THRESH = 3 LGB_PARAMS1 = { "n_estimators":5000, 'learning_rate': 0.02, "num_leaves":255, "colsample_bytree": 0.8, "subsample": 0.9, "reg_alpha": 1, "reg_lambda": 1, "min_data_in_leaf": 100, "max_bin": 255, "verbose":0 } LGB_PARAMS = [LGB_PARAMS1] ###################### Logger ######################################### handler = logging.FileHandler(LOGGER_FILE) handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) ###################### Read data ########################################## logger.info("Reading data") train = pd.read_csv("../input/train.csv", parse_dates=['activation_date'], nrows=100000) test = pd.read_csv("../input/test.csv", parse_dates=['activation_date'], nrows=100000) test['deal_probability'] = -1 #City correction for df in train, test: df['city'] = df['region'].astype(str) + "_" + df["city"].astype(str) df = df.fillna(-1) y = train['deal_probability'].values cvlist = list(KFold(5, random_state=123).split(y)) logger.info("Done. Read data with shape {} and {}".format(train.shape, test.shape)) del train, test ################### Greedy forward feature selection ###################### # final_feats = [] final_score = [] for (b_thresh, tenc_thresh, comb_thresh, tenc_comb_thresh) in [ (2, 3, 8, 8), ]: columns_to_try = [col+'_trencSD_'+str(tenc_thresh) for col in CAT_COLS] features = BASE_FEATURES[:] X = np.vstack([np.load("../utility/X_train_{}.npy".format(col), mmap_mode='r') for col in features]).T[:100000, :] print("Shape for base dataset is ", X.shape) best_rmse_lgb, y_preds_lgb = eval_lgb_sets(X, y, cvlist, LGB_PARAMS) logger.info("Best score for base cols in {}".format(best_rmse_lgb)) best_rmse = best_rmse_lgb y_preds_best = y_preds_lgb for col in columns_to_try: logger.info("#######################################") logger.info("Adding column {} and checking".format(col)) try: X_col = np.load("../utility/X_train_{}.npy".format(col)).reshape(-1,1)[:100000, :] #print(X_col[:5]) X = np.hstack((X, X_col)) print(X.shape) best_rmse_lgb, y_preds_lgb = eval_lgb_sets(X, y, cvlist, LGB_PARAMS) if best_rmse_lgb < best_rmse: best_rmse = best_rmse_lgb y_preds_best = y_preds_lgb features.append(col) else: X = X[:, :-1] logger.info("{} DID NOT result in improvement".format(col)) logger.info("") except: logger.info("Skipping {}".format(col)) continue logger.info("Current set of features are : {}".format(features)) final_feats.append(features) final_score.append(rmse(y, y_preds_best)) #for i, feats, score in enumerate(zip(final_feats, final_score)): logger.info("Score for combinations is {} with final features {}".format(final_score, final_feats)) logger.info("") handler.close() logger.removeHandler(handler)
[ "mohsinjackspiro@gmail.com" ]
mohsinjackspiro@gmail.com
a58699037dba96bd3c8ee980bfc1ecf6a13aa983
32d47968bf1801661b785a1d72d2e21fb9686aaf
/lane_det/lane_line.py
16c62a5f1dfc86e3097199b63707d0132ec217d1
[]
no_license
janardhan5455/lane-detection
b466f62e3770617d6ce3497c55e8f8a174d1db7d
483559b92b435759f6e74b6969fb69d1e15e8722
refs/heads/main
2023-03-26T18:25:35.445837
2021-03-28T05:03:57
2021-03-28T05:03:57
352,244,163
0
0
null
null
null
null
UTF-8
Python
false
false
3,103
py
import cv2 as cv import numpy as np import matplotlib.pyplot as plt car_cascade = cv.CascadeClassifier('cars.xml') def canny(img): grey=cv.cvtColor(img,cv.COLOR_BGR2GRAY) blur=cv.GaussianBlur(grey,(5,5),0) canny=cv.Canny(blur,50,150) return canny def lane(img): height=img.shape[0] polygons=np.array([[(200,height),(1000,height),(500,280)]]) mask=np.zeros_like(img) cv.fillPoly(mask,polygons,255) masked_img=cv.bitwise_and(img,mask) return masked_img def dis_lines(img,lines): line_img=np.zeros_like(img) if lines is not None: for x1,y1,x2,y2 in lines: cv.line(line_img,(x1,y1),(x2,y2),(255,0,0),10) return line_img def make_coord(img,line_para): try: slope,intercept=line_para except: slope,intercept=0.0001,0.0001 y1=img.shape[0] y2=int(y1*(3/5)) x1=int((y1-intercept)/slope) x2=int((y2-intercept)/slope) return np.array([x1,y1,x2,y2]) def avg_lines(img,lines): left_fit=[] right_fit=[] for line in lines: x1,y1,x2,y2=line.reshape(4) parameters=np.polyfit((x1,x2),(y1,y2),1) # print(parameters) slope=parameters[0] intercept=parameters[1] if slope <0: left_fit.append((slope,intercept)) else: right_fit.append((slope,intercept)) left_fit_avg=np.average(left_fit,axis=0) right_fit_avg=np.average(right_fit,axis=0) left_line=make_coord(img,left_fit_avg) right_line=make_coord(img,right_fit_avg) return np.array([left_line,right_line]) # img=cv.imread('lane_1.jpg') # lane_img=np.copy(img) # canny=canny(lane_img) # croped_img=lane(canny) # cv.imshow('canny',canny) # cv.imshow('croped',croped_img) # lines=cv.HoughLinesP(croped_img,2,np.pi/180,100,np.array([]),minLineLength=40,maxLineGap=5) # avged_lines=avg_lines(lane_img,lines) # line_img=dis_lines(lane_img,avged_lines) # cv.imshow('line',line_img) # combo_img=cv.addWeighted(lane_img,0.8,line_img,1,1) # cv.imshow('mask',combo_img) # cv.waitKey(0) cap=cv.VideoCapture('solidWhiteRight.mp4') while(True): # print(1) isTrue,frame=cap.read() gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) cars = car_cascade.detectMultiScale(gray, 1.05, 9) for (x,y,w,h) in cars: plate = frame[y:y + h, x:x + w] cv.rectangle(frame,(x,y),(x +w, y +h) ,(51 ,51,255),2) cv.rectangle(frame, (x, y - 40), (x + w, y), (51,51,255), -2) cv.putText(frame, 'Car', (x, y - 10), cv.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2) canny_img=canny(frame) croped_img=lane(canny_img) lines=cv.HoughLinesP(croped_img,2,np.pi/180,100,np.array([]),minLineLength=40,maxLineGap=5) avged_lines=avg_lines(frame,lines) line_img=dis_lines(frame,avged_lines) combo_img=cv.addWeighted(frame,0.8,line_img,1,1) # cv.imshow('car',plate) cv.imshow('lane_det',combo_img) if cv.waitKey(1) &0xff==ord('a'): break cap.release() cv.destroyAllWindows
[ "noreply@github.com" ]
janardhan5455.noreply@github.com
5eb992d258e71c062dad176eb8359025dccfd6c0
b93ec4b9d0a72c94544c873891b15cdf4c48f04c
/online-store/backend/migrations/0001_initial_online_store.py
30fdc6a232c93d3c0d7a1387174cd657aa482496
[]
no_license
TmLev/microservices
cef9a7a2f6d14cbe59988f03873e5a74a3b32353
ef31cba8656b66d8fdbdd6a947bcf00a3ad3f92a
refs/heads/master
2023-03-27T11:44:30.882769
2020-06-13T07:47:11
2020-06-13T07:47:11
245,378,240
1
1
null
2021-03-30T14:22:24
2020-03-06T09:25:18
Python
UTF-8
Python
false
false
217
py
# Generated by Django 3.0.4 on 2020-03-26 17:51 from django.db import migrations, models import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ ]
[ "leva.bugatti@gmail.com" ]
leva.bugatti@gmail.com
ad04b02073fbbefec4122752a9ebc0a119a99129
532285432469eb3b572f5d8c34bcb517a3b70c0f
/students/tfbanks/Lesson02/gridprinter.py
d2398c22d620023cfe504a298c6a31c45517a672
[]
no_license
toddlikesbeer/Self_Paced-Online
4e0d8099d4185e145e7aa2a95d7c8f269ee1c982
82ab4aa4900b7d3d3acabb1a4c3cf357ca7f5be7
refs/heads/master
2020-03-21T23:12:05.212294
2018-10-31T02:41:54
2018-10-31T02:41:54
139,172,267
0
0
null
2018-06-29T16:29:26
2018-06-29T16:29:26
null
UTF-8
Python
false
false
796
py
# This is the result of manual processes moved into function form. # I cleaned up during the process and deleted the old methods so the end result is just the function def grid (x,y): #Defines a function to print grid to specified dimensions p = '+ ' # This prints a + sign d = '- ' # This prints a dash b = '| ' # this prints a bar print ((p + d * x) * y + p) #Prints the first line consiting of p's, d's and b's; creating the box based on x dimension, and repeated y times for r in range (y): for i in range(x): print ((b + ' '*x) * y + b) #Prints the bar section to x dimension, repeated y times print ((p + d * x) * y + p) #completes the "squares" and repeats y times grid (3,4) #Prints a 4 x 4 matrix of 3x3 squares, + being the corners
[ "tfbanks@gmail.com" ]
tfbanks@gmail.com
8764d59d46a5444c80f139b86086313daedfab35
711756b796d68035dc6a39060515200d1d37a274
/output_cog/optimized_44595.py
4b502c0083653180de1a265b86c37f599c2c98b6
[]
no_license
batxes/exocyst_scripts
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
a6c487d5053b9b67db22c59865e4ef2417e53030
refs/heads/master
2020-06-16T20:16:24.840725
2016-11-30T16:23:16
2016-11-30T16:23:16
75,075,164
0
0
null
null
null
null
UTF-8
Python
false
false
10,838
py
import _surface import chimera try: import chimera.runCommand except: pass from VolumePath import markerset as ms try: from VolumePath import Marker_Set, Link new_marker_set=Marker_Set except: from VolumePath import volume_path_dialog d= volume_path_dialog(True) new_marker_set= d.new_marker_set marker_sets={} surf_sets={} if "Cog2_GFPN" not in marker_sets: s=new_marker_set('Cog2_GFPN') marker_sets["Cog2_GFPN"]=s s= marker_sets["Cog2_GFPN"] mark=s.place_marker((556.227, 579.162, 346.569), (0.89, 0.1, 0.1), 18.4716) if "Cog2_0" not in marker_sets: s=new_marker_set('Cog2_0') marker_sets["Cog2_0"]=s s= marker_sets["Cog2_0"] mark=s.place_marker((577.62, 567.506, 410.007), (0.89, 0.1, 0.1), 17.1475) if "Cog2_1" not in marker_sets: s=new_marker_set('Cog2_1') marker_sets["Cog2_1"]=s s= marker_sets["Cog2_1"] mark=s.place_marker((592.146, 544.952, 487.833), (0.89, 0.1, 0.1), 17.1475) if "Cog2_GFPC" not in marker_sets: s=new_marker_set('Cog2_GFPC') marker_sets["Cog2_GFPC"]=s s= marker_sets["Cog2_GFPC"] mark=s.place_marker((499.902, 472.089, 412.099), (0.89, 0.1, 0.1), 18.4716) if "Cog2_Anch" not in marker_sets: s=new_marker_set('Cog2_Anch') marker_sets["Cog2_Anch"]=s s= marker_sets["Cog2_Anch"] mark=s.place_marker((650.184, 533.797, 673.199), (0.89, 0.1, 0.1), 18.4716) if "Cog3_GFPN" not in marker_sets: s=new_marker_set('Cog3_GFPN') marker_sets["Cog3_GFPN"]=s s= marker_sets["Cog3_GFPN"] mark=s.place_marker((561.491, 577.074, 392.605), (1, 1, 0), 18.4716) if "Cog3_0" not in marker_sets: s=new_marker_set('Cog3_0') marker_sets["Cog3_0"]=s s= marker_sets["Cog3_0"] mark=s.place_marker((560.64, 577.701, 391.737), (1, 1, 0.2), 17.1475) if "Cog3_1" not in marker_sets: s=new_marker_set('Cog3_1') marker_sets["Cog3_1"]=s s= marker_sets["Cog3_1"] mark=s.place_marker((548.961, 593.488, 372.017), (1, 1, 0.2), 17.1475) if "Cog3_2" not in marker_sets: s=new_marker_set('Cog3_2') marker_sets["Cog3_2"]=s s= marker_sets["Cog3_2"] mark=s.place_marker((524.868, 604.785, 363.173), (1, 1, 0.2), 17.1475) if "Cog3_3" not in marker_sets: s=new_marker_set('Cog3_3') marker_sets["Cog3_3"]=s s= marker_sets["Cog3_3"] mark=s.place_marker((520.518, 631.661, 369.594), (1, 1, 0.2), 17.1475) if "Cog3_4" not in marker_sets: s=new_marker_set('Cog3_4') marker_sets["Cog3_4"]=s s= marker_sets["Cog3_4"] mark=s.place_marker((493.613, 634.177, 377.669), (1, 1, 0.2), 17.1475) if "Cog3_5" not in marker_sets: s=new_marker_set('Cog3_5') marker_sets["Cog3_5"]=s s= marker_sets["Cog3_5"] mark=s.place_marker((484.765, 629.11, 404.082), (1, 1, 0.2), 17.1475) if "Cog3_GFPC" not in marker_sets: s=new_marker_set('Cog3_GFPC') marker_sets["Cog3_GFPC"]=s s= marker_sets["Cog3_GFPC"] mark=s.place_marker((573.32, 581.782, 367.095), (1, 1, 0.4), 18.4716) if "Cog3_Anch" not in marker_sets: s=new_marker_set('Cog3_Anch') marker_sets["Cog3_Anch"]=s s= marker_sets["Cog3_Anch"] mark=s.place_marker((401.368, 681.202, 444.553), (1, 1, 0.4), 18.4716) if "Cog4_GFPN" not in marker_sets: s=new_marker_set('Cog4_GFPN') marker_sets["Cog4_GFPN"]=s s= marker_sets["Cog4_GFPN"] mark=s.place_marker((517.783, 644.929, 605.75), (0, 0, 0.8), 18.4716) if "Cog4_0" not in marker_sets: s=new_marker_set('Cog4_0') marker_sets["Cog4_0"]=s s= marker_sets["Cog4_0"] mark=s.place_marker((517.783, 644.929, 605.75), (0, 0, 0.8), 17.1475) if "Cog4_1" not in marker_sets: s=new_marker_set('Cog4_1') marker_sets["Cog4_1"]=s s= marker_sets["Cog4_1"] mark=s.place_marker((523.844, 630.733, 581.449), (0, 0, 0.8), 17.1475) if "Cog4_2" not in marker_sets: s=new_marker_set('Cog4_2') marker_sets["Cog4_2"]=s s= marker_sets["Cog4_2"] mark=s.place_marker((527.23, 614.474, 557.945), (0, 0, 0.8), 17.1475) if "Cog4_3" not in marker_sets: s=new_marker_set('Cog4_3') marker_sets["Cog4_3"]=s s= marker_sets["Cog4_3"] mark=s.place_marker((535.187, 601.124, 533.882), (0, 0, 0.8), 17.1475) if "Cog4_4" not in marker_sets: s=new_marker_set('Cog4_4') marker_sets["Cog4_4"]=s s= marker_sets["Cog4_4"] mark=s.place_marker((545.343, 599.826, 507.38), (0, 0, 0.8), 17.1475) if "Cog4_5" not in marker_sets: s=new_marker_set('Cog4_5') marker_sets["Cog4_5"]=s s= marker_sets["Cog4_5"] mark=s.place_marker((558.97, 603.517, 482.597), (0, 0, 0.8), 17.1475) if "Cog4_6" not in marker_sets: s=new_marker_set('Cog4_6') marker_sets["Cog4_6"]=s s= marker_sets["Cog4_6"] mark=s.place_marker((569.17, 602.239, 455.675), (0, 0, 0.8), 17.1475) if "Cog4_GFPC" not in marker_sets: s=new_marker_set('Cog4_GFPC') marker_sets["Cog4_GFPC"]=s s= marker_sets["Cog4_GFPC"] mark=s.place_marker((362.68, 662.516, 597.87), (0, 0, 0.8), 18.4716) if "Cog4_Anch" not in marker_sets: s=new_marker_set('Cog4_Anch') marker_sets["Cog4_Anch"]=s s= marker_sets["Cog4_Anch"] mark=s.place_marker((769.647, 538.552, 302.63), (0, 0, 0.8), 18.4716) if "Cog5_GFPN" not in marker_sets: s=new_marker_set('Cog5_GFPN') marker_sets["Cog5_GFPN"]=s s= marker_sets["Cog5_GFPN"] mark=s.place_marker((601.522, 590.816, 476.849), (0.3, 0.3, 0.3), 18.4716) if "Cog5_0" not in marker_sets: s=new_marker_set('Cog5_0') marker_sets["Cog5_0"]=s s= marker_sets["Cog5_0"] mark=s.place_marker((601.522, 590.816, 476.849), (0.3, 0.3, 0.3), 17.1475) if "Cog5_1" not in marker_sets: s=new_marker_set('Cog5_1') marker_sets["Cog5_1"]=s s= marker_sets["Cog5_1"] mark=s.place_marker((577.776, 574.478, 480.971), (0.3, 0.3, 0.3), 17.1475) if "Cog5_2" not in marker_sets: s=new_marker_set('Cog5_2') marker_sets["Cog5_2"]=s s= marker_sets["Cog5_2"] mark=s.place_marker((561.588, 550.307, 477.712), (0.3, 0.3, 0.3), 17.1475) if "Cog5_3" not in marker_sets: s=new_marker_set('Cog5_3') marker_sets["Cog5_3"]=s s= marker_sets["Cog5_3"] mark=s.place_marker((569.861, 522.146, 475.878), (0.3, 0.3, 0.3), 17.1475) if "Cog5_GFPC" not in marker_sets: s=new_marker_set('Cog5_GFPC') marker_sets["Cog5_GFPC"]=s s= marker_sets["Cog5_GFPC"] mark=s.place_marker((545.922, 522.059, 353.142), (0.3, 0.3, 0.3), 18.4716) if "Cog5_Anch" not in marker_sets: s=new_marker_set('Cog5_Anch') marker_sets["Cog5_Anch"]=s s= marker_sets["Cog5_Anch"] mark=s.place_marker((600.455, 513.149, 596.661), (0.3, 0.3, 0.3), 18.4716) if "Cog6_GFPN" not in marker_sets: s=new_marker_set('Cog6_GFPN') marker_sets["Cog6_GFPN"]=s s= marker_sets["Cog6_GFPN"] mark=s.place_marker((563.384, 545.507, 397.988), (0.21, 0.49, 0.72), 18.4716) if "Cog6_0" not in marker_sets: s=new_marker_set('Cog6_0') marker_sets["Cog6_0"]=s s= marker_sets["Cog6_0"] mark=s.place_marker((563.305, 545.338, 397.921), (0.21, 0.49, 0.72), 17.1475) if "Cog6_1" not in marker_sets: s=new_marker_set('Cog6_1') marker_sets["Cog6_1"]=s s= marker_sets["Cog6_1"] mark=s.place_marker((537.502, 535.552, 393.737), (0.21, 0.49, 0.72), 17.1475) if "Cog6_2" not in marker_sets: s=new_marker_set('Cog6_2') marker_sets["Cog6_2"]=s s= marker_sets["Cog6_2"] mark=s.place_marker((523.419, 556.314, 405.96), (0.21, 0.49, 0.72), 17.1475) if "Cog6_3" not in marker_sets: s=new_marker_set('Cog6_3') marker_sets["Cog6_3"]=s s= marker_sets["Cog6_3"] mark=s.place_marker((510.924, 572.397, 425.288), (0.21, 0.49, 0.72), 17.1475) if "Cog6_4" not in marker_sets: s=new_marker_set('Cog6_4') marker_sets["Cog6_4"]=s s= marker_sets["Cog6_4"] mark=s.place_marker((510.416, 600.039, 430.598), (0.21, 0.49, 0.72), 17.1475) if "Cog6_5" not in marker_sets: s=new_marker_set('Cog6_5') marker_sets["Cog6_5"]=s s= marker_sets["Cog6_5"] mark=s.place_marker((515.45, 624.916, 418.683), (0.21, 0.49, 0.72), 17.1475) if "Cog6_6" not in marker_sets: s=new_marker_set('Cog6_6') marker_sets["Cog6_6"]=s s= marker_sets["Cog6_6"] mark=s.place_marker((510.866, 649.168, 405.149), (0.21, 0.49, 0.72), 17.1475) if "Cog6_GFPC" not in marker_sets: s=new_marker_set('Cog6_GFPC') marker_sets["Cog6_GFPC"]=s s= marker_sets["Cog6_GFPC"] mark=s.place_marker((595.256, 639.773, 414.377), (0.21, 0.49, 0.72), 18.4716) if "Cog6_Anch" not in marker_sets: s=new_marker_set('Cog6_Anch') marker_sets["Cog6_Anch"]=s s= marker_sets["Cog6_Anch"] mark=s.place_marker((423.904, 655.559, 395.424), (0.21, 0.49, 0.72), 18.4716) if "Cog7_GFPN" not in marker_sets: s=new_marker_set('Cog7_GFPN') marker_sets["Cog7_GFPN"]=s s= marker_sets["Cog7_GFPN"] mark=s.place_marker((625.146, 604.894, 419.111), (0.7, 0.7, 0.7), 18.4716) if "Cog7_0" not in marker_sets: s=new_marker_set('Cog7_0') marker_sets["Cog7_0"]=s s= marker_sets["Cog7_0"] mark=s.place_marker((611.326, 582.726, 424.898), (0.7, 0.7, 0.7), 17.1475) if "Cog7_1" not in marker_sets: s=new_marker_set('Cog7_1') marker_sets["Cog7_1"]=s s= marker_sets["Cog7_1"] mark=s.place_marker((581.353, 535.47, 439.284), (0.7, 0.7, 0.7), 17.1475) if "Cog7_2" not in marker_sets: s=new_marker_set('Cog7_2') marker_sets["Cog7_2"]=s s= marker_sets["Cog7_2"] mark=s.place_marker((552.729, 488.233, 454.57), (0.7, 0.7, 0.7), 17.1475) if "Cog7_GFPC" not in marker_sets: s=new_marker_set('Cog7_GFPC') marker_sets["Cog7_GFPC"]=s s= marker_sets["Cog7_GFPC"] mark=s.place_marker((568.434, 467.24, 378.12), (0.7, 0.7, 0.7), 18.4716) if "Cog7_Anch" not in marker_sets: s=new_marker_set('Cog7_Anch') marker_sets["Cog7_Anch"]=s s= marker_sets["Cog7_Anch"] mark=s.place_marker((501.281, 441.109, 532.012), (0.7, 0.7, 0.7), 18.4716) if "Cog8_0" not in marker_sets: s=new_marker_set('Cog8_0') marker_sets["Cog8_0"]=s s= marker_sets["Cog8_0"] mark=s.place_marker((533.796, 590.685, 408.018), (1, 0.5, 0), 17.1475) if "Cog8_1" not in marker_sets: s=new_marker_set('Cog8_1') marker_sets["Cog8_1"]=s s= marker_sets["Cog8_1"] mark=s.place_marker((551.47, 584.314, 429.623), (1, 0.5, 0), 17.1475) if "Cog8_2" not in marker_sets: s=new_marker_set('Cog8_2') marker_sets["Cog8_2"]=s s= marker_sets["Cog8_2"] mark=s.place_marker((571.799, 570.297, 444.162), (1, 0.5, 0), 17.1475) if "Cog8_3" not in marker_sets: s=new_marker_set('Cog8_3') marker_sets["Cog8_3"]=s s= marker_sets["Cog8_3"] mark=s.place_marker((596.698, 560.943, 455.419), (1, 0.5, 0), 17.1475) if "Cog8_4" not in marker_sets: s=new_marker_set('Cog8_4') marker_sets["Cog8_4"]=s s= marker_sets["Cog8_4"] mark=s.place_marker((617.449, 542.988, 465.281), (1, 0.5, 0), 17.1475) if "Cog8_5" not in marker_sets: s=new_marker_set('Cog8_5') marker_sets["Cog8_5"]=s s= marker_sets["Cog8_5"] mark=s.place_marker((633.66, 525.076, 482.118), (1, 0.5, 0), 17.1475) if "Cog8_GFPC" not in marker_sets: s=new_marker_set('Cog8_GFPC') marker_sets["Cog8_GFPC"]=s s= marker_sets["Cog8_GFPC"] mark=s.place_marker((602.35, 559.943, 417.847), (1, 0.6, 0.1), 18.4716) if "Cog8_Anch" not in marker_sets: s=new_marker_set('Cog8_Anch') marker_sets["Cog8_Anch"]=s s= marker_sets["Cog8_Anch"] mark=s.place_marker((667.147, 487.057, 548.033), (1, 0.6, 0.1), 18.4716) for k in surf_sets.keys(): chimera.openModels.add([surf_sets[k]])
[ "batxes@gmail.com" ]
batxes@gmail.com
37a08b96698b20dd1fea9d7b61d6b4b83fbb7d5e
2672a2b664ed12f190b68deb51476b451a524561
/portal/config.py
e45d5065a743935fa64b17b3a1a2a8ea6266d98c
[]
no_license
LCBRU/genvasc_portal_web
9a2a27b4a2ba0fb2db402efc96eea8b2ed0a86e6
11eb562a5e92fd05fd5a902b7e062a2813e7b3f7
refs/heads/master
2023-01-09T09:59:07.301366
2023-01-07T14:44:07
2023-01-07T14:44:07
132,786,398
0
0
null
2022-01-11T13:17:30
2018-05-09T16:45:40
Python
UTF-8
Python
false
false
2,527
py
import os from dotenv import load_dotenv # Load environment variables from '.env' file. load_dotenv() class BaseConfig(object): REMEMBER_COOKIE_NAME = 'GENVASC Remember Me' REMEMBER_COOKIE_DURATION = 1 MAIL_SERVER = os.environ['MAIL_SERVER'] MAIL_DEBUG = os.environ['MAIL_DEBUG'] SECURITY_EMAIL_SENDER = os.environ['LCBRUIT_EMAIL_ADDRESS'] SECRET_KEY = os.environ['GGPP_FLASK_SECRET_KEY'] DEBUG = os.environ['GGPP_FLASK_DEBUG'] == 'True' SQLALCHEMY_DATABASE_URI = os.environ['SQLALCHEMY_DATABASE_URI'] SQLALCHEMY_TRACK_MODIFICATIONS = ( os.environ['GGPP_SQLALCHEMY_TRACK_MODIFICATIONS'] == 'True' ) SQLALCHEMY_ECHO = os.environ['GGPP_SQLALCHEMY_ECHO'] == 'True' SECURITY_PASSWORD_HASH = os.environ['GGPP_SECURITY_PASSWORD_HASH'] SECURITY_PASSWORD_SALT = os.environ['GGPP_SECURITY_PASSWORD_SALT'] SECURITY_TRACKABLE = os.environ['GGPP_SECURITY_TRACKABLE'] == 'True' SMTP_SERVER = 'localhost' APPLICATION_EMAIL_ADDRESS = os.environ['LCBRUIT_EMAIL_ADDRESS'] ERROR_EMAIL_SUBJECT = 'GENVASC Portal Error' SECURITY_CHANGEABLE = True SECURITY_RECOVERABLE = True MAIL_DEFAULT_SENDER = os.environ["LCBRUIT_EMAIL_ADDRESS"] # Admin user ADMIN_EMAIL_ADDRESS = os.environ['ADMIN_EMAIL_ADDRESS'] ADMIN_FIRST_NAME = os.environ['ADMIN_FIRST_NAME'] ADMIN_LAST_NAME = os.environ['ADMIN_LAST_NAME'] ADMIN_PASSWORD = os.environ['ADMIN_PASSWORD'] # Celery Settings broker_url=os.environ["BROKER_URL"] result_backend=os.environ["CELERY_RESULT_BACKEND"] CELERY_RATE_LIMIT=os.environ["CELERY_RATE_LIMIT"] CELERY_REDIRECT_STDOUTS_LEVEL=os.environ["CELERY_REDIRECT_STDOUTS_LEVEL"] CELERY_DEFAULT_QUEUE=os.environ["CELERY_DEFAULT_QUEUE"] # Celery Schedules PRACTICE_ETL_SCHEDULE_MINUTE=os.environ["PRACTICE_ETL_SCHEDULE_MINUTE"] PRACTICE_ETL_SCHEDULE_HOUR=os.environ["PRACTICE_ETL_SCHEDULE_HOUR"] # Databases PRACTICE_DATABASE_URI=os.environ["PRACTICE_DATABASE_URI"] RECRUIT_DATABASE_URI=os.environ["RECRUIT_DATABASE_URI"] IMPORT_DATABASE_URI=os.environ["IMPORT_DATABASE_URI"] class TestConfig(BaseConfig): """Configuration for automated testing""" TESTING = True SQLALCHEMY_DATABASE_URI="sqlite://" PRACTICE_DATABASE_URI="sqlite://" RECRUIT_DATABASE_URI="sqlite://" WTF_CSRF_ENABLED = False SMTP_SERVER = None SQLALCHEMY_ECHO = False broker_url=os.environ["BROKER_URL"] + '/test' class TestConfigCRSF(TestConfig): WTF_CSRF_ENABLED = True
[ "rabramley@gmail.com" ]
rabramley@gmail.com
5277e41c0d4047c015a72bf855ef4d2d4ac53a48
958f24d5ac8fac8187d7a30f4abbd6df15297595
/Facturacion/Facturacion/asgi.py
2270532c585a7393766e4e3f54dbb5ec11964c30
[]
no_license
daustariz18/Backend
0b0b421885d4a35b8f985e75f597c5e04b091a92
880c16a99db68e4cf7e312c04b9e8cb2b50cc2a2
refs/heads/master
2023-08-24T01:26:58.608075
2021-10-07T15:27:16
2021-10-07T15:27:16
414,657,517
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" ASGI config for Facturacion project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Facturacion.settings') application = get_asgi_application()
[ "diusme@gmail.com" ]
diusme@gmail.com
d9506c0977e5d9a1415e1c9fbc0b2a18b8bdbc3e
e1d3233af9a37e4f961acd571bd309e209e579ae
/manager/migrations/0003_auto_20190217_1939.py
a8a618c566cda2ea973cdf1181824c8c3ab532fe
[]
no_license
AkashUR/DesktopManager
1e11b510b474e7c8d819a6f7617919a0af42ff83
0458b01781c083e1889a1db5f85685e1d50edcd1
refs/heads/master
2020-05-24T02:27:12.849967
2019-05-16T15:39:36
2019-05-16T15:39:36
187,054,312
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
# Generated by Django 2.0.2 on 2019-02-17 14:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('manager', '0002_log_element'), ] operations = [ migrations.AlterField( model_name='log', name='log_key', field=models.IntegerField(default='1'), ), ]
[ "noreply@github.com" ]
AkashUR.noreply@github.com
6ad33022849320f6b516dc75f13b791033e727d1
5f5d081a34c938d438d81217e0adcc7aef1a8491
/ImplementationV1.0/process_image.py
21b66ada5bb3bf837577d81aef29cb3d1a40ccbd
[]
no_license
dilisharanasinghe/depslipts_code
e8f7992ad2ec2e99d78e37342de2611dfe19640a
d4bd9427f328adcc2ef44566cfb73d10cdfcd713
refs/heads/main
2023-04-04T07:07:22.900565
2020-10-26T13:02:33
2020-10-26T13:02:33
304,830,346
0
0
null
2020-10-26T13:02:34
2020-10-17T08:17:20
null
UTF-8
Python
false
false
8,167
py
import cv2 import numpy as np class ProcessImage: def __init__(self, image_file): self.__image_file = image_file self.__original_image = cv2.imread(self.__image_file) self.__total_image_area = self.__original_image.shape[1]*self.__original_image.shape[0] self.__resized_image = None def __resize_image(self): ratio_ = self.__original_image.shape[1] / float(self.__original_image.shape[0]) fixed_height = 500 width = int(float(fixed_height) / ratio_) self.__total_image_area = fixed_height * width self.__resized_image = cv2.resize(self.__original_image, (fixed_height, width)) def __get_contours(self): if self.__resized_image is not None: gray_image = cv2.cvtColor(self.__resized_image, cv2.COLOR_BGR2GRAY) smoothed_image = cv2.GaussianBlur(gray_image, (5, 5), sigmaX=0) edge_image = cv2.Canny(smoothed_image, 100, 200) contours, hierarchy = cv2.findContours(edge_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) return contours, hierarchy else: return None, None def __check_contours(self, contours): max_area = 0 max_area_cnt = None for cnt in contours: area = cv2.contourArea(cnt) # print(len(cnt), area) if area > max_area: max_area = area max_area_cnt = cnt # print(len(cnt), 'max area', area ) # print('Max contour area percentage {0}'.format(float(max_area / self.__total_image_area))) if max_area > self.__total_image_area * 0.5: return max_area_cnt else: return None def __perspective_correction(self, contour): # rect = cv2.minAreaRect(cnt) # box = cv2.boxPoints(rect) # box = np.int0(box) # rectImage = cv2.drawContours(resizedImage, [box], 0, (0, 0, 255), 2) epsilon = 0.1 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) # print(approx) # print(drawContourList) if len(approx) == 4: # contourImage = cv2.drawContours(self.__resized_image, approx, -1, (0, 255, 0), 4) # realPoints = approx * originalImage.shape[1]/float(fixed_height) real_points = approx real_points = np.reshape(real_points, (4, 2)) ordered_points_ = self.order_points(real_points) # print(orderedPoints) warped_image = self.four_point_transform(self.__resized_image, ordered_points_) # cv2.imshow('contour image', contourImage) # cv2.imshow('final image', warpedImage) # cv2.waitKey(0) # cv2.destroyAllWindows() # cv2.imwrite('output.jpg', warpedImage) else: warped_image = self.__resized_image return warped_image @staticmethod def order_points(pts): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype="float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect @staticmethod def four_point_transform(image, pts): # obtain a consistent order of the points and unpack them # individually rect = ProcessImage.order_points(pts) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # return the warped image return warped @staticmethod def threshold_image(image): """ This function take one argument as input. this function will convert input image to binary image :param image: image :return: thresholded image """ gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # gray_image = image # converting it to binary image # ret, threshold_img = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) # ret, threshold_img = cv2.threshold(gray_image, 150, 255, cv2.THRESH_BINARY) threshold_img = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 6) # saving image to view threshold image # kernel = np.ones((2, 2), np.uint8) # erosion = cv2.erode(img, kernel, iterations=1) # morphologicalTransfromedImage = cv2.dilate(threshold_img, kernel, iterations=1) # kernel = np.ones((3, 3), np.uint8) # morphologicalTransfromedImage = cv2.morphologyEx(morphologicalTransfromedImage, cv2.MORPH_CLOSE, kernel) # morphologicalTransfromedImage = cv2.morphologyEx(threshold_img, cv2.MORPH_OPEN, kernel, iterations=2) # cv2.imwrite('thresholded.png', threshold_img) # cv2.imshow('threshold image', threshold_img) # cv2.imshow('MT image', morphologicalTransfromedImage) # Maintain output window until # user presses a key # cv2.waitKey(0) # Destroying present windows on screen # cv2.destroyAllWindows() return 255 - threshold_img # return 255 - morphologicalTransfromedImage def get_processed_image(self): self.__resize_image() contours, hierarchy = self.__get_contours() if contours is not None: max_area_contour = self.__check_contours(contours=contours) if max_area_contour is not None: warped_image = self.__perspective_correction(contour=max_area_contour) else: warped_image = self.__resized_image thresholded_image = self.threshold_image(warped_image) else: thresholded_image = self.threshold_image(self.__resized_image) return thresholded_image if __name__ == '__main__': process_image = ProcessImage('test_data/1602139426.jpg') thresholded_image = process_image.get_processed_image() cv2.imshow('thresholded image', thresholded_image) cv2.waitKey(0) cv2.destroyWindow()
[ "dilisharanasinghe@gmail.com" ]
dilisharanasinghe@gmail.com
eaac79b7de8e57f814c859d5578d8f629cec856d
767cf0d423216279ecae831fe323530f0b0b1d51
/neuralbj.py
0efdb6b0f24f86468550982bd3cefa325c8fc9a4
[]
no_license
lowkeyluke/BlackjackAI
caa4df0992f659926675f4043ede8a60deba713a
e0d1edde2e655b017ed932ee6db1cc43c87e0fd2
refs/heads/master
2021-07-29T15:04:53.078149
2021-07-17T06:33:13
2021-07-17T06:33:13
106,197,640
0
0
null
null
null
null
UTF-8
Python
false
false
2,149
py
"""Neural net without game: Immutable data (non-updating). Used solely for testing""" import numpy as np # activation function: sigmoid def sigmoid(x, deriv=False): if deriv: return x*(1-x) return 1/(1+np.exp(-x)) # input data, X. Data is replaceable # [player total, dealer upcard] X = np.array([[10,10],[20,5],[20,10],[5,5]]) # a bigger array may need to be scaled: # X = X/np.amax(X, axis=0) # output data, Y. Data is replaceable # [stand/hit] (0/1) Y = np.array([[1],[0],[0],[1]]) # Y does not need to be scaled, already between 0-1 layer3error = np.random.random_integers(1,1,Y.__len__()) # initialize array same size as Y, fill with 1's for i in layer3error: while abs(layer3error[i]) > .5: # if any error is greater than .5, re-initialize & re-train # initialize weights weight1 = np.random.random((2, Y.__len__())) # (# of arrays, # of items in each array) weight2 = np.random.random((Y.__len__(), 1)) # try (2*random) - 1 # TRAIN, use for loop 1000s of times. number_of_training_iterations = 50000 for iteration in range(number_of_training_iterations): layer1 = X # input layer2 = sigmoid(np.dot(layer1, weight1)) # multiply input by weight. if > than threshold, activate. layer3 = sigmoid(np.dot(layer2, weight2)) # layer2 * weight2 # backpropagate layer3error = Y - layer3 layer3change = layer3error * sigmoid(layer3, deriv=True) layer2error = layer3change.dot(weight2.T) # layer3change * weight2 layer2change = layer2error * sigmoid(layer2, deriv=True) # update weights weight2 += layer2.T.dot(layer3change) # layer2 * layer3change weight1 += layer1.T.dot(layer2change) # layer1 * layer2change if iteration%10000 == 0: print("Error: ", layer3error) # prediction p = np.array([15,7]) layer1p = p layer2p = sigmoid(np.dot(layer1p, weight1)) layer3p = sigmoid(np.dot(layer2p, weight2)) print("Given: ", p) print("Prediction: ", layer3p)
[ "noreply@github.com" ]
lowkeyluke.noreply@github.com
5dcb61257b2836cf5cfd57455cb6d8fd50373f9d
05d232f50ee12a8a837f077d7e70b13e404e9031
/Amazon_web_scrapping.py
5ae6d15441c66b963ef9ff70c804031d2c017048
[]
no_license
Nidhig631/AmazonWebScrapping_Using_Python
6c020a96dad58997e4f107ee5fda608aa910d29c
4551196c50deede477e5f4beae8abf9a2288a88f
refs/heads/master
2023-07-18T18:52:41.028857
2021-09-03T12:49:46
2021-09-03T12:49:46
401,325,930
0
0
null
null
null
null
UTF-8
Python
false
false
3,308
py
from bs4 import BeautifulSoup import requests import smtplib import time import datetime import csv import pandas as pd # Connect to website URL = 'https://www.amazon.in/Designer-Unicorn-Engineer-Because-Official/dp/B08JFBP1ZF/ref=pd_rhf_dp_s_pop_multi_srecs_sabr_4/262-0019943-4855247?pd_rd_w=0rikd&pf_rd_p=217ae98b-13ca-4bb5-a513-ddb3654ce36a&pf_rd_r=17NNRFYFRZSFJJCJJRE5&pd_rd_r=49606991-8cf9-4c3a-a949-3ddce94bd2fd&pd_rd_wg=ZSr8v&pd_rd_i=B08JFBP1ZF&psc=1' # header from url:- httpbin.org/get headers = { "paste the header here from the url:- httpbin.org/get"} # Extracting data from Website reading HTML page = requests.get(URL, headers=headers) soup1 = BeautifulSoup(page.content, "html.parser") soup2 = BeautifulSoup(soup1.prettify(), "html.parser") title = soup2.find(id='productTitle').get_text() price = soup2.find(id='priceblock_ourprice').get_text() rating = soup2.find(id='acrPopover').get_text() # Printing data as per the requirements title = title.strip()[0:] print("Title = " + title) price = price.strip()[1:] print("Price = " + price) rating = rating.strip()[0:] print("Rating = " + rating) today = datetime.date.today() print(today) header = ['Title', 'Price', 'Date'] data = [title, price, today] with open('Amazon_Scrapper_Dataset.csv', 'w', newline='', encoding='UTF8') as f: writer = csv.writer(f) writer.writerow(header) writer.writerow(data) # Now appending data to the csv with open('Amazon_Scrapper_Dataset.csv', 'a+', newline='', encoding='UTF8') as f: writer = csv.writer(f) writer.writerow(data) df = pd.read_csv('path_name\Amazon_Scrapper_Dataset.csv') print(df) def check_price(): # Connect to website URL = 'https://www.amazon.in/Designer-Unicorn-Engineer-Because-Official/dp/B08JFBP1ZF/ref=pd_rhf_dp_s_pop_multi_srecs_sabr_4/262-0019943-4855247?pd_rd_w=0rikd&pf_rd_p=217ae98b-13ca-4bb5-a513-ddb3654ce36a&pf_rd_r=17NNRFYFRZSFJJCJJRE5&pd_rd_r=49606991-8cf9-4c3a-a949-3ddce94bd2fd&pd_rd_wg=ZSr8v&pd_rd_i=B08JFBP1ZF&psc=1' # header from url:- httpbin.org/get headers = { "paste the header here from the url:- httpbin.org/get"} # Extracting data from Website reading HTML page = requests.get(URL, headers=headers) soup1 = BeautifulSoup(page.content, "html.parser") soup2 = BeautifulSoup(soup1.prettify(), "html.parser") title = soup2.find(id='productTitle').get_text() price = soup2.find(id='priceblock_ourprice').get_text() rating = soup2.find(id='acrPopover').get_text() title = title.strip()[0:] print("Title = " + title) import datetime today = datetime.date.today() import csv header = ['Title', 'Price', 'Date'] data = [title, price, today] with open('Amazon_Scrapper_Dataset.csv', 'a+', newline='', encoding='UTF8') as f: writer = csv.writer(f) writer.writerow(data) # if(price < 14): # send_mail() while(True): check_price() time.sleep(1) # --In case use this code to snd email for up date if price goes up or down # def send_mail(): # server = smtplib.SMTP_SSL('smtp.gmail.com', 465) # server.ehlo() # server.login('mail_id', 'email_pwd') # subject = 'subject for the email' # body = 'matter for the email' # msg = f"Subject: {subject}\n\n{body}" # server.sendmail('emailid', msg)
[ "nidhig631@gmail.com" ]
nidhig631@gmail.com
42235200cd42835a18eff480fd8af3ec941c2501
2b115deaf8aec0f1478aac411a0973847a0b6148
/fetch.py
0737710c8fcb7355ea6e682830bde82f407adb54
[]
no_license
Tiquiero/zhihu-python
40d462a0396d083a6ae3345e5e7a8dff9f254a23
933c1ebc45f2385423ccc37a245428c5a3557ea7
refs/heads/master
2020-03-14T02:32:56.816000
2018-04-28T10:49:28
2018-04-28T10:49:28
131,401,172
0
0
null
null
null
null
UTF-8
Python
false
false
2,508
py
import os import re import requests def download(folder,url): if not os.path.exists(folder): os.makedirs(folder) req = requests.get(url) if req.status_code == requests.codes.ok: name = url.split('/')[-1] f = open("./"+folder+'/'+name,'wb') f.write(req.content) f.close() return True else: return False def init(url): ua = {'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36'} s = requests.Session() s.headers.update(ua) ret=s.get(url) s.headers.update({"authorization":"Bearer Mi4xaHNqWEFRQUFBQUFBSUt6am9hdzFEUmNBQUFCaEFsVk5uV1dDV3dDVUJSRm9jYVVXV2FiREZfWHZHMDM0b081Vzd3|1519720350|295ebdcd1530503e6caf61a5942fc1dba85ca363"}) return s def fetch_answer(s,qid,limit,offset): params={ 'sort_by':'default', 'include':'data[*].is_normal,is_collapsed,annotation_action,annotation_detail,collapse_reason,is_sticky,collapsed_by,suggest_edit,comment_count,can_comment,content,editable_content,voteup_count,reshipment_settings,comment_permission,mark_infos,created_time,updated_time,review_info,relationship.is_authorized,is_author,voting,is_thanked,is_nothelp,upvoted_followees;data[*].author.follower_count,badge[?(type=best_answerer)].topics', 'limit':limit, 'offset':offset } url ="https://www.zhihu.com/api/v4/questions/"+qid+"/answers" return s.get(url,params=params) def fetch_all_answers(url): session = init(url) q_id = url.split('/')[-1] offset = 0 limit=20 answers=[] is_end=False while not is_end: ret=fetch_answer(session,q_id,limit,offset) answers+=ret.json()['data'] is_end= ret.json()['paging']['is_end'] print("Offset: ",offset) print("is_end: ",is_end) offset+=limit return answers def grep_image_urls(text): jpg = re.compile(r'https://[^\s]*?_r\.jpg') jpeg = re.compile(r'https://[^\s]*?_r\.jpeg') gif = re.compile(r'https://[^\s]*?_r\.gif') png = re.compile(r'https://[^\s]*?_r\.png') imgs=[] imgs+=jpg.findall(text) imgs+=jpeg.findall(text) imgs+=gif.findall(text) imgs+=png.findall(text) imgs = list(set(imgs)) return imgs url = "https://www.zhihu.com/question/37787176" answers=fetch_all_answers(url) folder = '37787176' for ans in answers: imgs = grep_image_urls(ans['content']) for url in imgs: download(folder,url)
[ "tiquiero@163.com" ]
tiquiero@163.com
0fcbb9241779fdaf99e46611d4e1b9d0073cf95f
0bee19447c1a93a95cc59980e9a38ad3ea71ba49
/rnn_layers.py
8ef7e5f62c6619d7de7af83718e403242404911b
[]
no_license
weilai0980/HeteroRNN
de4f078365bfa997b885bf64c9b6a654a1907f5a
82421a2e2e5459752f5a5af416123ece551ce9b4
refs/heads/master
2020-04-25T12:44:31.891307
2019-04-19T20:56:06
2019-04-19T20:56:06
172,787,671
0
0
null
null
null
null
UTF-8
Python
false
false
10,391
py
import sys import collections import hashlib import numbers from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops.rnn_cell_impl import * # local from utils_libs import * #from mv_rnn_cell import * #from ts_mv_rnn import * # ---- residual and plain dense layers ---- def res_lstm(x, hidden_dim, n_layers, scope, dropout_keep_prob): #dropout #x = tf.nn.dropout(x, dropout_keep_prob) with tf.variable_scope(scope): #Deep lstm: residual or highway connections lstm_cell = tf.nn.rnn_cell.LSTMCell(hidden_dim, \ initializer= tf.contrib.keras.initializers.glorot_normal()) hiddens, state = tf.nn.dynamic_rnn(cell = lstm_cell, inputs = x, dtype = tf.float32) for i in range(1, n_layers): with tf.variable_scope(scope+str(i)): tmp_h = hiddens lstm_cell = tf.nn.rnn_cell.LSTMCell(hidden_dim, \ initializer= tf.contrib.keras.initializers.glorot_normal()) hiddens, state = tf.nn.dynamic_rnn(cell = lstm_cell, inputs = hiddens, dtype = tf.float32) hiddens = hiddens + tmp_h return hiddens, state def plain_lstm(x, dim_layers, scope, dropout_keep_prob): #dropout #x = tf.nn.dropout(x, dropout_keep_prob) with tf.variable_scope(scope): tmp_cell = tf.nn.rnn_cell.LSTMCell(dim_layers[0], \ initializer= tf.contrib.keras.initializers.glorot_normal()) # dropout lstm_cell = tf.nn.rnn_cell.DropoutWrapper(tmp_cell, state_keep_prob = dropout_keep_prob) hiddens, state = tf.nn.dynamic_rnn(cell = lstm_cell, inputs = x, dtype = tf.float32) for i in range(1,len(dim_layers)): with tf.variable_scope(scope+str(i)): tmp_cell = tf.nn.rnn_cell.LSTMCell(dim_layers[i], \ initializer= tf.contrib.keras.initializers.glorot_normal()) # dropout lstm_cell = tf.nn.rnn_cell.DropoutWrapper(tmp_cell, state_keep_prob = dropout_keep_prob) hiddens, state = tf.nn.dynamic_rnn(cell = lstm_cell, inputs = hiddens, dtype = tf.float32) return hiddens, state def res_dense(x, x_dim, hidden_dim, n_layers, scope, dropout_keep_prob): #dropout x = tf.nn.dropout(x, dropout_keep_prob) with tf.variable_scope(scope): # initilization w = tf.get_variable('w', [x_dim, hidden_dim], dtype = tf.float32, initializer = tf.contrib.layers.variance_scaling_initializer()) #initializer = tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.zeros([hidden_dim])) h = tf.nn.relu(tf.matmul(x, w) + b ) regularization = tf.nn.l2_loss(w) #dropout #h = tf.nn.dropout(h, dropout_keep_prob) for i in range(1, n_layers): with tf.variable_scope(scope+str(i)): w = tf.get_variable('w', [hidden_dim, hidden_dim], \ initializer = tf.contrib.layers.variance_scaling_initializer()) #initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.zeros( hidden_dim )) # residual connection tmp_h = h h = tf.nn.relu( tf.matmul(h, w) + b ) h = tmp_h + h regularization += tf.nn.l2_loss(w) return h, regularization def plain_dense(x, x_dim, dim_layers, scope, dropout_keep_prob, max_norm_regul): #dropout x = tf.nn.dropout(x, dropout_keep_prob) with tf.variable_scope(scope): # initilization w = tf.get_variable('w', [x_dim, dim_layers[0]], dtype=tf.float32,\ initializer = tf.contrib.layers.variance_scaling_initializer()) #initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.zeros([dim_layers[0]])) # max norm constraints if max_norm_regul > 0: clipped = tf.clip_by_norm(w, clip_norm = max_norm_regul, axes = 1) clip_w = tf.assign(w, clipped) h = tf.nn.relu( tf.matmul(x, clip_w) + b ) else: h = tf.nn.relu( tf.matmul(x, w) + b ) #? regularization = tf.nn.l2_loss(w) #regularization = tf.reduce_sum(tf.abs(w)) # dropout h = tf.nn.dropout(h, dropout_keep_prob) for i in range(1, len(dim_layers)): with tf.variable_scope(scope+str(i)): w = tf.get_variable('w', [dim_layers[i-1], dim_layers[i]], dtype=tf.float32,\ initializer = tf.contrib.layers.variance_scaling_initializer()) #initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.zeros( dim_layers[i] )) # max norm constraints if max_norm_regul > 0: clipped = tf.clip_by_norm(w, clip_norm = max_norm_regul, axes = 1) clip_w = tf.assign(w, clipped) h = tf.nn.relu( tf.matmul(h, clip_w) + b ) else: h = tf.nn.relu( tf.matmul(h, w) + b ) #? regularization += tf.nn.l2_loss(w) #regularization += tf.reduce_sum(tf.abs(w)) return h, regularization def multi_dense(x, x_dim, num_layers, scope, dropout_keep_prob, max_norm_regul, activation_type): in_dim = x_dim out_dim = int(in_dim/2) h = x regularization = 0.0 for i in range(num_layers): with tf.variable_scope(scope + str(i)): # dropout h = tf.nn.dropout(h, dropout_keep_prob) w = tf.get_variable('w', [in_dim, out_dim], dtype=tf.float32,\ initializer = tf.contrib.layers.xavier_initializer()) #tf.contrib.layers.variance_scaling_initializer()) #initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.zeros(out_dim)) # max norm constraints if max_norm_regul > 0: clipped = tf.clip_by_norm(w, clip_norm = max_norm_regul, axes = 1) clip_w = tf.assign(w, clipped) tmp_h = tf.matmul(h, clip_w) + b regularization += tf.nn.l2_loss(clip_w) #h = tf.nn.relu(tf.matmul(h, clip_w) + b) else: tmp_h = tf.matmul(h, w) + b regularization += tf.nn.l2_loss(w) # nonlinear activation if activation_type == 'relu': h = tf.nn.relu(tmp_h) elif activation_type == 'leaky_relu': # leaky relu h = tf.maximum(tmp_h, 0.3*tmp_h) else: print("\n [ERROR] activation type, multi-dense \n") #? # regularization += tf.nn.l2_loss(w) # regularization += tf.reduce_sum(tf.abs(w)) in_dim = out_dim out_dim = int(out_dim/2) return h, regularization, in_dim def dense(x, x_dim, out_dim, scope, dropout_keep_prob, max_norm_regul, activation_type): h = x regularization = 0.0 with tf.variable_scope(scope): # dropout on the input h = tf.nn.dropout(h, dropout_keep_prob) w = tf.get_variable('w', [x_dim, out_dim], dtype = tf.float32,\ initializer = tf.contrib.layers.xavier_initializer()) #variance_scaling_initializer()) #initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.zeros(out_dim)) # max norm constraints if max_norm_regul > 0: clipped = tf.clip_by_norm(w, clip_norm = max_norm_regul, axes = 1) clip_w = tf.assign(w, clipped) tmp_h = tf.matmul(h, clip_w) + b regularization = tf.nn.l2_loss(clip_w) else: tmp_h = tf.matmul(h, w) + b regularization = tf.nn.l2_loss(w) # activation if activation_type == 'relu': h = tf.nn.relu(tmp_h) elif activation_type == 'leaky_relu': # leaky relu h = tf.maximum(tmp_h, 0.3*tmp_h) elif activation_type == '': h = tmp_h else: print("\n [ERROR] activation type, dense \n") ''' if bool_no_activation == True: h = tmp_h else: h = tf.nn.relu(tmp_h) ''' #? #regularization = tf.nn.l2_loss(w) return h, regularization
[ "tian.guo0980@gmail.com" ]
tian.guo0980@gmail.com
3dd764efee547895b61b17074bef1e80ee82a562
9bb6795a12d6e042b962704dab9ec59d92d54e8f
/1_numpy/2_reshape.py
b5d60e8241460327f2b7b83d534050593e76005f
[]
no_license
kimsoosoo0928/Perfect_Guide
c5177037512cb06814f0bbfcb70a22d14c9ec1fb
9b615d320957babb1a918fb38282062998a1e5c4
refs/heads/main
2023-07-18T12:29:03.353274
2021-08-29T00:31:28
2021-08-29T00:31:28
396,668,104
1
0
null
null
null
null
UTF-8
Python
false
false
1,093
py
import numpy as np array1 = np.arange(10) print('array1 : \n', array1) array2 = array1.reshape(2,5) print('array2 : \n', array2) array3 = array1.reshape(5,2) print('array3 : \n', array3) ''' array1 : [0 1 2 3 4 5 6 7 8 9] array2 : [[0 1 2 3 4] [5 6 7 8 9]] array3 : [[0 1] [2 3] [4 5] [6 7] [8 9]] ''' array1 = np.arange(10) print(array1) array2 = array1.reshape(-1,5) print('array2 shape : ', array2.shape) array3 = array1.reshape(5,-1) print('array3 shape : ', array3.shape) ''' [0 1 2 3 4 5 6 7 8 9] array2 shape : (2, 5) array3 shape : (5, 2) ''' array1 = np.arange(8) array3d = array1.reshape((2,2,2)) print('array3d : \n', array3d.tolist()) array5 = array1.reshape((-1,1)) print('array5 : \n', array5.tolist()) print('array5 shape : \n', array5.shape) array6 = array1.reshape((-1,1)) print('array6 : \n', array6.tolist()) print('array6 shape : \n', array6.shape) ''' array3d : [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] array5 : [[0], [1], [2], [3], [4], [5], [6], [7]] array5 shape : (8, 1) array6 : [[0], [1], [2], [3], [4], [5], [6], [7]] array6 shape : (8, 1) '''
[ "kimsoosoo0928@gmail.com" ]
kimsoosoo0928@gmail.com
482245b45b2db988d4939f10948afa5fc56c5af9
e1fd9dcbdb7c63a9d72772202fd9462faf728b9d
/Comprehensions - Exercise/06. Matrix of Palindromes.py
88c292f825dd455576f5caa37696b131d5eca2c3
[]
no_license
AngelValAngelov/Python-Advanced-Exercises
be34c5903cce17100e9fa2f04bb2394b33fccb87
a206207a9a64051c962789b100a7a8945b1b6f80
refs/heads/main
2023-07-14T05:52:40.959381
2021-08-26T20:52:07
2021-08-26T20:52:07
373,634,393
0
0
null
null
null
null
UTF-8
Python
false
false
180
py
rows, cols = [int(x) for x in input().split(" ")] matrix = [print(' '.join([f"{chr(97 + x)}{chr(97 + y + x)}{chr(97 + x)}" for y in range(cols)])) for x in range(rows)]
[ "noreply@github.com" ]
AngelValAngelov.noreply@github.com
69acf6cb42853141e98f121c77a9d61f1f1a30cf
2c926b4847a44c7f831d47ed0160751d3248e8f4
/venv/lib/python3.8/site-packages/hubspot/automation/actions/models/single_field_dependency.py
f18ca6bf64e6504458c415ed11f6e4ab7e527d5a
[]
no_license
Women-in-Tech-Society/WITS_Site
c42cd2c9abe1b5515b80be82dc876a6c3842e42a
5dbf22f5ee5a36358f6f279af4c13d86d31653c5
refs/heads/main
2023-05-11T02:34:05.531902
2021-06-01T01:05:12
2021-06-01T01:05:12
278,658,100
0
5
null
2022-11-22T18:41:35
2020-07-10T14:43:28
Python
UTF-8
Python
false
false
6,688
py
# coding: utf-8 """ Custom Workflow Actions Create custom workflow actions # noqa: E501 The version of the OpenAPI document: v4 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.automation.actions.configuration import Configuration class SingleFieldDependency(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { "dependency_type": "str", "dependent_field_names": "list[str]", "controlling_field_name": "str", } attribute_map = { "dependency_type": "dependencyType", "dependent_field_names": "dependentFieldNames", "controlling_field_name": "controllingFieldName", } def __init__( self, dependency_type="SINGLE_FIELD", dependent_field_names=None, controlling_field_name=None, local_vars_configuration=None, ): # noqa: E501 """SingleFieldDependency - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._dependency_type = None self._dependent_field_names = None self._controlling_field_name = None self.discriminator = None self.dependency_type = dependency_type self.dependent_field_names = dependent_field_names self.controlling_field_name = controlling_field_name @property def dependency_type(self): """Gets the dependency_type of this SingleFieldDependency. # noqa: E501 :return: The dependency_type of this SingleFieldDependency. # noqa: E501 :rtype: str """ return self._dependency_type @dependency_type.setter def dependency_type(self, dependency_type): """Sets the dependency_type of this SingleFieldDependency. :param dependency_type: The dependency_type of this SingleFieldDependency. # noqa: E501 :type: str """ if ( self.local_vars_configuration.client_side_validation and dependency_type is None ): # noqa: E501 raise ValueError( "Invalid value for `dependency_type`, must not be `None`" ) # noqa: E501 allowed_values = ["SINGLE_FIELD"] # noqa: E501 if ( self.local_vars_configuration.client_side_validation and dependency_type not in allowed_values ): # noqa: E501 raise ValueError( "Invalid value for `dependency_type` ({0}), must be one of {1}".format( # noqa: E501 dependency_type, allowed_values ) ) self._dependency_type = dependency_type @property def dependent_field_names(self): """Gets the dependent_field_names of this SingleFieldDependency. # noqa: E501 :return: The dependent_field_names of this SingleFieldDependency. # noqa: E501 :rtype: list[str] """ return self._dependent_field_names @dependent_field_names.setter def dependent_field_names(self, dependent_field_names): """Sets the dependent_field_names of this SingleFieldDependency. :param dependent_field_names: The dependent_field_names of this SingleFieldDependency. # noqa: E501 :type: list[str] """ if ( self.local_vars_configuration.client_side_validation and dependent_field_names is None ): # noqa: E501 raise ValueError( "Invalid value for `dependent_field_names`, must not be `None`" ) # noqa: E501 self._dependent_field_names = dependent_field_names @property def controlling_field_name(self): """Gets the controlling_field_name of this SingleFieldDependency. # noqa: E501 :return: The controlling_field_name of this SingleFieldDependency. # noqa: E501 :rtype: str """ return self._controlling_field_name @controlling_field_name.setter def controlling_field_name(self, controlling_field_name): """Sets the controlling_field_name of this SingleFieldDependency. :param controlling_field_name: The controlling_field_name of this SingleFieldDependency. # noqa: E501 :type: str """ if ( self.local_vars_configuration.client_side_validation and controlling_field_name is None ): # noqa: E501 raise ValueError( "Invalid value for `controlling_field_name`, must not be `None`" ) # noqa: E501 self._controlling_field_name = controlling_field_name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SingleFieldDependency): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, SingleFieldDependency): return True return self.to_dict() != other.to_dict()
[ "mhuda@uwo.ca" ]
mhuda@uwo.ca
21996a6ac30b58a0c8b012f9581fe26cfbfda0c6
2fcd914869a4ae3d80bf1e18c7f9247537dee5e2
/exercicio 2.py
b73766e5bb953d7b9af48240ef8cf010add5c388
[]
no_license
vinicius48/exercicio-1
75ea541ebe2466fb00b95962986cf827d37c6951
ef1f9b3f81e554dbb80f0f6b1b2304fedea7afe2
refs/heads/main
2023-07-26T03:18:44.040604
2021-09-07T02:03:18
2021-09-07T02:03:18
401,657,201
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
matriz_a = [[1,2], [4,-1]] matriz_oposta_a = [[0,0], [0,0]] matriz_b = [[0,0], [0,0]] for l in range(2): for c in range(2): matriz_oposta_a[l][c] = matriz_a[l][c] - matriz_a[l][c] * 2 matriz_b[l][c] = matriz_a[l][c] * (1/9) print(matriz_b, '\n', matriz_oposta_a) assert matriz_b != matriz_oposta_a
[ "noreply@github.com" ]
vinicius48.noreply@github.com
707cbe0e861c502e1e391185502522c94bb8d7ad
5d3a26f35eb9c074c43b90db2d1ff78a6c9198c2
/Codes in book/PyLorenz.py
9ab67c463a9e63a3b11deecce9a9f4da5da7c7af
[]
no_license
asukaminato0721/PyOpenGL-Practise
3585364a4f99c2e6252d7e71864b6c12431289ed
d065fd1b6f8a4944c1eb5225f934eca6bee856a2
refs/heads/master
2023-09-04T11:17:31.003716
2020-07-04T17:20:50
2020-07-04T17:20:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,361
py
# PyLorenz.py from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * from random import * from numpy import * import sys # Globals for window width and height global width global height # Initial values of width and height width = 500 height = 500 def init(): # White background glClearColor(1.0, 1.0, 1.0, 0.0) # Set the projection matrix... our "view" glMatrixMode(GL_PROJECTION) glLoadIdentity() # Set the plot window range # This will coincide with the for... arange loops gluOrtho2D(-30.0, 30.0, -30.0, 30.0) # Set the matrix for the object we are drawing glMatrixMode(GL_MODELVIEW) glLoadIdentity() def plotlorenz(): glClear(GL_COLOR_BUFFER_BIT) # Enlarge the points for better visibility glPointSize(2.0) # The blue plot is the original plot # Note the values for x,y, and z x = 0.50000 y = 0.50000 z = 0.50000 dt = 0.0005 glColor3f(1.0, 0.0, 0.0) # the range is the horizontal width of the window for n in arange(-30, 30, 0.0005): # Lorenz’s equations x = x + (-10*x + 10*y)*dt y = y + (28*x - y - x*z)*dt z = z + (-2.66667*z + x*y)*dt glBegin(GL_POINTS) glVertex2f(x, z-20) glEnd() glFlush() # The second plot in red is the truncated plot # Note the small difference in starting x,y,z values! # x = 0.50000 # y = 0.50000 # z = 0.50000 # dt = 0.0005 # glColor3f(1.0, 0.0, 0.0) # for n in arange(-30, 30, 0.0005): # x = x + (-10*x + 10*y)*dt # y = y + (28*x - y - x*z)*dt # z = z + (-2.66667*z + x*y)*dt # glBegin(GL_POINTS) # glVertex2f(n, y) # glEnd() # glFlush() def keyboard(key, x, y): # Allows us to quit by pressing 'Esc' or 'q' if key == chr(27): sys.exit() if key == "q": sys.exit() def main(): global width global height glutInit(sys.argv) glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE) glutInitWindowPosition(100, 100) glutInitWindowSize(width, height) glutCreateWindow("Lorenz") glutDisplayFunc(plotlorenz) glutKeyboardFunc(keyboard) init() glutMainLoop() main() # End Program
[ "noreply@github.com" ]
asukaminato0721.noreply@github.com
2a62194338b909a52a0de4280e79ec646882d92a
de2a6c2d179cb6d0c583b54e09d1bf29c0892af1
/railway/package.py
d0795ea2e8ef57b18e40b531c0999900e45a9330
[]
no_license
yyww322/RailWay
af6bf4a960e191811d63aed894285cebd2ba61cb
00af82a3bf62341203956098ccac37972b9ab50f
refs/heads/master
2021-01-10T01:40:31.582879
2015-11-16T09:13:27
2015-11-16T09:13:27
46,093,179
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
# -*- coding: utf-8 -*- # __author__ = 'CoolYan' from distutils.core import setup import py2exe setup(console=['RailWay.py'])
[ "110161598@qq.com" ]
110161598@qq.com
9ad7ba4a5f420ba40e95879c3c0394387d39de2f
7274ce2b75d49a90c57e9220756bc9beb532c9e1
/preprocess/transfer_vector/generate_vector/__init__.py
b9ea07c910bd9fb6029e1c6cbbd7fe574314dda0
[]
no_license
chauncyzhu/textclassification
4eb03f2b11abd67680daab24f373971ce33d89cd
0b3960f748ba66278250132d8b16d189cabe4a3f
refs/heads/master
2021-01-19T08:59:13.889878
2018-03-10T05:38:19
2018-03-10T05:38:19
87,704,238
2
0
null
null
null
null
GB18030
Python
false
false
161
py
# coding=gbk """ 传入训练集和测试集,均为dataframe,如果训练集中有对应词则查找bdc值,如果测试集没有对应词,则为0 """
[ "chauncyzhu@163.com" ]
chauncyzhu@163.com
eee3c44ee37f4d9e37e7c411d908b2b1856e371d
c13686e36daaf1ba70c4999d152e179c108726fc
/clean_data.py
09f16f5ad94316da62dbe0304018b1de304b0409
[]
no_license
ravishrawal/nlp_sentiment_analysis
00b60a5bf09c64012edb0f18fda14bcae9f6cb9a
844729cf3f654bd8676c88475239f8d6b2b0c138
refs/heads/main
2023-07-05T02:10:49.372417
2021-08-04T13:49:42
2021-08-04T13:49:42
390,898,720
0
0
null
null
null
null
UTF-8
Python
false
false
1,865
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 29 20:14:06 2021 @author: ravishrawal """ from utils import * base_path = "/Users/ravishrawal/Desktop/Columbia MS/Summer B/QMSS NLP/final_project/" test = 'the work-life balance is great! Love teh culture here. a+, 5 stars' # convert to df & remove irrelevant columns reviews_df = csv_to_df(base_path + "employee_reviews.txt") # clean text & tokenize # -- summary column -- reviews_df["summary"] = reviews_df.summary.apply(to_lowercase) reviews_df["summary"] = reviews_df.summary.apply(rem_sp_char) reviews_df["summary"] = reviews_df.summary.apply(rem_non_eng) reviews_df["summary"] = reviews_df.summary.apply(rem_sw) reviews_df["summary_stemmed"] = reviews_df.summary.apply(stem_str) # -- pros column -- reviews_df["pros"] = reviews_df.pros.apply(to_lowercase) reviews_df["pros"] = reviews_df.pros.apply(rem_sp_char) reviews_df["pros"] = reviews_df.pros.apply(rem_non_eng) reviews_df["pros"] = reviews_df.pros.apply(rem_sw) reviews_df["pros_stemmed"] = reviews_df.pros.apply(stem_str) # -- cons column -- reviews_df["cons"] = reviews_df.cons.apply(to_lowercase) reviews_df["cons"] = reviews_df.cons.apply(rem_sp_char) reviews_df["cons"] = reviews_df.cons.apply(rem_non_eng) reviews_df["cons"] = reviews_df.cons.apply(rem_sw) reviews_df["cons_stemmed"] = reviews_df.cons.apply(stem_str) # -- advice_to_mgmt column -- reviews_df["advice_to_mgmt"] = reviews_df.advice_to_mgmt.apply(to_lowercase) reviews_df["advice_to_mgmt"] = reviews_df.advice_to_mgmt.apply(rem_sp_char) reviews_df["advice_to_mgmt"] = reviews_df.advice_to_mgmt.apply(rem_non_eng) reviews_df["advice_to_mgmt"] = reviews_df.advice_to_mgmt.apply(rem_sw) reviews_df["advice_to_mgmt_stemmed"] = reviews_df.advice_to_mgmt.apply(stem_str) # save output write_pickle(base_path, "reviews_data_cleaned_w_dates.pkl", reviews_df)
[ "noreply@github.com" ]
ravishrawal.noreply@github.com
ea8f3fefee0c524940d86a4601d4086cee9338d2
75db7f09ce965d89611ffd53201611ef427f65a7
/buddysuite/tests/test_databasebuddy/test_db_ui.py
c15a2839664ca924dd030dd2102e212d389cf0f2
[ "LicenseRef-scancode-public-domain" ]
permissive
ctSkennerton/BuddySuite
d217e645002dffa85ff09025536382b943d9917f
d920eec0d5a2e30dd896b0474c3ede79e29e0c13
refs/heads/master
2021-01-17T17:30:08.119258
2017-02-24T23:01:35
2017-02-24T23:01:35
82,962,634
0
0
null
2017-02-23T19:20:57
2017-02-23T19:20:57
null
UTF-8
Python
false
false
46,031
py
import pytest import os import re import sys import argparse from copy import deepcopy import buddy_resources as br import DatabaseBuddy as Db def fmt(prog): return br.CustomHelpFormatter(prog) parser = argparse.ArgumentParser(prog="DbBuddy.py", formatter_class=fmt, add_help=False, usage=argparse.SUPPRESS, description=''' \033[1mDatabaseBuddy\033[m Go forth to the servers of sequence, and discover. \033[1mUsage examples\033[m: DbBuddy.py -ls (launch empty live session) DbBuddy.py "<accn1,accn2,accn3,...>" -<cmd> DbBuddy.py "<search term1, search term2,...>" -<cmd> DbBuddy.py "<accn1,search term1>" -<cmd> DbBuddy.py "/path/to/file_of_accns" -<cmd> ''') br.db_modifiers["database"]["choices"] = Db.DATABASES br.flags(parser, ("user_input", "Specify accession numbers or search terms, " "either in a file or as a comma separated list"), br.db_flags, br.db_modifiers, Db.VERSION) # This is to allow py.test to work with its own flags in_args = parser.parse_args([]) def mock_cmdloop(*args): print(args) return True class MockUsage(object): def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def increment(self, *args, **kwargs): self.args = args self.kwargs = kwargs return "".join(self.args) def mock_filter(_, line, mode): print("'%s' filter mocked! %s" % (mode, line)) return class OpenPermissionError(object): def __init__(self, *args, **kwargs): pass @staticmethod def close(): raise PermissionError def mock_fileexistserror(*args, **kwargs): raise FileExistsError(args, kwargs) def mock_keyboardinterrupt(*args, **kwargs): raise KeyboardInterrupt(args, kwargs) def mock_guesserror(*args, **kwargs): raise br.GuessError("%s, %s" % (args, kwargs)) def mock_systemexit(*args, **kwargs): sys.exit("%s, %s" % (args, kwargs)) # A few real accession numbers to test things out with ACCNS = ["NP_001287575.1", "ADH10263.1", "XP_005165403.2", "A0A087WX72", "A0A096MTH0", "A0A0A9YFB0", "XM_003978475", "ENSAMEG00000011912", "ENSCJAG00000008732", "ENSMEUG00000000523"] # ###################### argparse_init() ###################### # def test_argparse_init(capsys, monkeypatch, hf): monkeypatch.setattr(sys, "argv", ['DatabaseBuddy.py', "Casp9"]) temp_in_args, dbbuddy = Db.argparse_init() assert hf.string2hash(str(dbbuddy)) == "b61a8e0e0a97f33ec1e85c09391ada64" monkeypatch.setattr(sys, "argv", ['DatabaseBuddy.py', "Casp9,Panx3", "Cx43"]) temp_in_args, dbbuddy = Db.argparse_init() assert hf.string2hash(str(dbbuddy)) == "c717f3c1636ab03f0c5f5e86d5e909cb" monkeypatch.setattr(sys, "argv", ['DatabaseBuddy.py', "-f"]) with pytest.raises(SystemExit): Db.argparse_init() out, err = capsys.readouterr() assert "DbBuddy.py: error: unrecognized arguments: -f" in err def test_liveshell_init(monkeypatch, capsys, hf): # Default instantiate monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) assert type(liveshell.tmpdir) == br.TempDir assert liveshell.terminal_default == "\033[m\033[40m\033[97m" assert liveshell.prompt == 'DbBuddy> ' assert hf.string2hash(liveshell.doc_leader) == "e71aa4976437bdb0c22eeaacfaea6f9f" assert hash(liveshell.dbbuddy) == hash(dbbuddy) assert liveshell.crash_file == crash_file assert os.path.split(liveshell.history_path)[-1] == "cmd_history" assert not liveshell.undo assert not liveshell.hash assert liveshell.shell_execs == [] assert type(liveshell.usage) == br.Usage out, err = capsys.readouterr() assert "Your session is currently unpopulated. Use 'search' to retrieve records." in out # Set cmd history path tmp_dir = br.TempDir() monkeypatch.setitem(Db.CONFIG, "data_dir", tmp_dir.path) liveshell = Db.LiveShell(dbbuddy, crash_file) assert liveshell.history_path == "%s%scmd_history" % (tmp_dir.path, os.sep) # Permission error os.chmod("%s%scmd_history" % (tmp_dir.path, os.sep), 0o333) liveshell = Db.LiveShell(dbbuddy, crash_file) # Windows does not actually change the permissions with os.chmod... if os.name != "nt": assert liveshell.history_path == "%s%scmd_history" % (liveshell.tmpdir.path, os.sep) # Run initial search monkeypatch.setattr(Db, "retrieve_summary", lambda _: True) dbbuddy = Db.DbBuddy("Inx15") Db.LiveShell(dbbuddy, crash_file) assert not dbbuddy.records Db.LiveShell(dbbuddy, crash_file) dbbuddy = Db.DbBuddy("ENSAMEG00000011912") assert len(dbbuddy.records) == 1 def test_liveshell_precmd(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) assert liveshell.precmd("foo bar line") == "foo bar line" def test_liveshell_postcmd(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) assert liveshell.postcmd("STOP!", "foo bar line") == "STOP!" assert liveshell.usage.stats['LiveShell'][Db.VERSION.short()]['foo'] == 1 def test_liveshell_dump_session(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy(_databases="uniprot") dbbuddy.server_clients["uniprot"] = Db.UniProtRestClient(dbbuddy) crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) pre_dump = liveshell.crash_file.read() liveshell.dump_session() assert pre_dump == liveshell.crash_file.read() liveshell.dbbuddy.search_terms.append("Blahh") liveshell.dump_session() assert pre_dump != liveshell.crash_file.read() assert liveshell.dbbuddy.server_clients['uniprot'].lock assert not liveshell.dbbuddy.server_clients['ensembl'] assert liveshell.undo def test_liveshell_default(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) liveshell.default("Dunno...") out, err = capsys.readouterr() assert '*** Unknown syntax: Dunno...\n\n' in out with pytest.raises(SystemExit): liveshell.default("exit") out, err = capsys.readouterr() assert "Goodbye" in out def test_liveshell_append_slash_if_dir(): tmp_dir = br.TempDir() tmp_dir.subfile("test.txt") assert Db.LiveShell._append_slash_if_dir(tmp_dir.path) == "%s%s" % (tmp_dir.path, os.sep) assert Db.LiveShell._append_slash_if_dir(tmp_dir.subfiles[0]) == tmp_dir.subfiles[0] def test_liveshell_get_headings(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db, "retrieve_summary", lambda _: True) dbbuddy = Db.DbBuddy(",".join(ACCNS)) crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) dbbuddy.records['XM_003978475'].summary = {'organism': 'velociraptor'} assert liveshell.get_headings() == ['ACCN', 'DB', 'Type', 'record', 'organism'] def test_liveshell_filter(monkeypatch, hf, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) load_file = "%s/mock_resources/test_databasebuddy_clients/dbbuddy_save.db" % hf.resource_path liveshell.do_load(load_file) # 'keep' (default) capsys.readouterr() liveshell.filter("(organism) Mouse") liveshell.dbbuddy.print() out, err = capsys.readouterr() assert hf.string2hash(out) == "9774790626857cd05298b4e9c5e09836" # 'restore' liveshell.filter("Phaethon", mode='restore') liveshell.dbbuddy.print() out, err = capsys.readouterr() assert hf.string2hash(out) == "836e1b6810b2e349634face7b19d4999" # 'remove' liveshell.filter("Fragment", mode='remove') liveshell.dbbuddy.print() out, err = capsys.readouterr() assert hf.string2hash(out) == "746d5e86ff1d3b23707977e0e41fd210" # Wrong mode with pytest.raises(ValueError) as err: liveshell.filter("Fragment", mode='Foo') assert "The 'mode' argument in filter() must be 'keep', 'remove', or 'restore', not Foo." in str(err) # No search string given at all monkeypatch.setattr("builtins.input", lambda _: False) liveshell.filter(None) out, err = capsys.readouterr() assert "Error: you must specify a search string.\n" in out # No search string given at first monkeypatch.setattr("builtins.input", lambda _: "Casein") liveshell.filter(None, mode="remove") liveshell.dbbuddy.print() out, err = capsys.readouterr() assert hf.string2hash(out) == "fdcfcc6d32d726cba592e5c9d0bfdf44" monkeypatch.setattr("builtins.input", lambda _: "Apoptosis") liveshell.filter(None, mode="restore") liveshell.dbbuddy.print() out, err = capsys.readouterr() assert hf.string2hash(out) == "a3249f5616e3ec863d911638e7f82ed8" # Multiple terms liveshell.filter('"Baculoviral" "Mitogen"', mode='remove') liveshell.dbbuddy.print() out, err = capsys.readouterr() assert hf.string2hash(out) == "ef0ef9f16687530cadea9a465ff92634" liveshell.filter("'partial' 'Q[0-9]'", mode='remove') liveshell.dbbuddy.print() out, err = capsys.readouterr() assert hf.string2hash(out) == "4aa2b9aaf54bbcb874e17621da1a43c5" # Wonkey quotes given as input error_msg = "Error: It appears that you are trying to mix quote types (\" and ') while specifying " \ "multiple filters. Please pick one or the other.\n\n" liveshell.filter("'Foo' \"Bar\"", mode='remove') out, err = capsys.readouterr() assert error_msg in out liveshell.filter('"Foo" \'Bar\'', mode='remove') out, err = capsys.readouterr() assert error_msg in out def test_liveshell_do_bash(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) capsys.readouterr() tmp_file = br.TempFile() liveshell.do_bash("echo 'hello from bash' > %s" % tmp_file.path) assert "hello from bash" in tmp_file.read() monkeypatch.setattr("builtins.input", lambda _: "echo 'Line from input' > %s" % tmp_file.path) liveshell.do_bash(None) assert "Line from input" in tmp_file.read() liveshell.do_bash("cd /this/path/doesnt/exist") out, err = capsys.readouterr() assert "-sh: cd: /this/path/doesnt/exist: No such file or directory\n" in out tmp_dir = br.TempDir() tmp_dir.subfile("foo.txt") cwd = os.getcwd() liveshell.do_bash("cd %s" % tmp_dir.path) out, err = capsys.readouterr() assert tmp_dir.path in out assert os.path.isfile("foo.txt") os.chdir(cwd) def test_liveshell_do_database(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) liveshell.do_database("'NcBi_nuc',\t \"ENSEMBl,uniprot") assert sorted(dbbuddy.databases) == ['ensembl', 'ncbi_nuc', 'uniprot'] liveshell.do_database("ensembl,all") assert sorted(dbbuddy.databases) == ["ensembl", "ncbi_nuc", "ncbi_prot", "uniprot"] capsys.readouterr() liveshell.do_database("Foo ensembl") out, err = capsys.readouterr() assert "Invalid database choice(s): foo." in out assert dbbuddy.databases == ['ensembl'] liveshell.do_database("Foo") out, err = capsys.readouterr() assert "Database search list not changed." in out assert dbbuddy.databases == ['ensembl'] monkeypatch.setattr("builtins.input", lambda _: "'ncbi_nuc', 'ensembl'") liveshell.do_database(None) assert sorted(dbbuddy.databases) == ['ensembl', 'ncbi_nuc'] def test_liveshell_do_delete(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) capsys.readouterr() liveshell.do_delete(None) out, err = capsys.readouterr() assert "The live session is already empty.\n\n" in out dbbuddy.records["Foo"] = "Bar" liveshell.do_delete("Foo") out, err = capsys.readouterr() assert "Sorry, I don't understand what you want to delete." in out # Delete failures liveshell.do_delete("fail") out, err = capsys.readouterr() assert "Failures list is already empty.\n\n" in out dbbuddy.failures["Foo"] = "Bar" monkeypatch.setattr(br, "ask", lambda _, **kwargs: False) liveshell.do_delete("fail") out, err = capsys.readouterr() assert "Aborted...\n" in out assert len(dbbuddy.failures) == 1 monkeypatch.setattr(br, "ask", lambda _, **kwargs: True) liveshell.do_delete("fail") out, err = capsys.readouterr() assert "List of failures removed.\n\n" in out assert not dbbuddy.failures # Delete searches liveshell.do_delete("search") out, err = capsys.readouterr() assert "Search terms list is already empty.\n\n" in out dbbuddy.search_terms.append("Bar") monkeypatch.setattr(br, "ask", lambda _, **kwargs: False) liveshell.do_delete("terms") out, err = capsys.readouterr() assert "Aborted...\n" in out assert len(dbbuddy.search_terms) == 1 monkeypatch.setattr(br, "ask", lambda _, **kwargs: True) liveshell.do_delete("st") out, err = capsys.readouterr() assert "Search terms removed.\n\n" in out assert not dbbuddy.search_terms # Delete trash bin liveshell.do_delete("trash") out, err = capsys.readouterr() assert "Trash bin is already empty.\n" in out dbbuddy.trash_bin["Foo"] = "Bar" monkeypatch.setattr(br, "ask", lambda _, **kwargs: False) liveshell.do_delete("trashbin") out, err = capsys.readouterr() assert "Aborted...\n" in out assert len(dbbuddy.trash_bin) == 1 monkeypatch.setattr(br, "ask", lambda _, **kwargs: True) liveshell.do_delete("tb") out, err = capsys.readouterr() assert "Trash bin emptied.\n\n" in out assert not dbbuddy.trash_bin # Delete records del dbbuddy.records["Foo"] dbbuddy.failures["Foo"] = "Bar" liveshell.do_delete("records") out, err = capsys.readouterr() assert "Records list is already empty.\n" in out dbbuddy.records["Foo"] = "Bar" monkeypatch.setattr(br, "ask", lambda _, **kwargs: False) liveshell.do_delete("main") out, err = capsys.readouterr() assert "Aborted...\n" in out assert len(dbbuddy.records) == 1 monkeypatch.setattr(br, "ask", lambda _, **kwargs: True) liveshell.do_delete("recs") out, err = capsys.readouterr() assert "All records removed from main list (trash bin is still intact).\n\n" in out assert not dbbuddy.records # Delete everything dbbuddy.search_terms.append("Bar") dbbuddy.trash_bin["Foo"] = "Bar" dbbuddy.records["Foo"] = "Bar" monkeypatch.setattr(br, "ask", lambda _, **kwargs: False) liveshell.do_delete("") out, err = capsys.readouterr() assert "Aborted...\n" in out assert len(dbbuddy.failures) == 1 assert len(dbbuddy.search_terms) == 1 assert len(dbbuddy.trash_bin) == 1 assert len(dbbuddy.records) == 1 monkeypatch.setattr(br, "ask", lambda _, **kwargs: True) liveshell.do_delete("all") out, err = capsys.readouterr() assert "Live session cleared of all data.\n\n" in out assert not dbbuddy.failures assert not dbbuddy.search_terms assert not dbbuddy.trash_bin assert not dbbuddy.records def test_liveshell_do_failures(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) liveshell.do_failures("Blahh") out, err = capsys.readouterr() assert "No failures to report\n\n" in out dbbuddy.failures["Foo"] = Db.Failure("Bar", "Fake failure") liveshell.do_failures() out, err = capsys.readouterr() assert "The following failures have occured\n" in out assert "Bar\nFake failure" in out def test_liveshell_do_fetch(monkeypatch, capsys): def mock_big_record_no_dl(_dbbuddy): _dbbuddy.records["NP_001287575.1"] = Db.Record("NP_001287575.1", _size=5000001) def mock_big_record_fetch(_dbbuddy): _dbbuddy.records["NP_001287575.1"].record = True monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) monkeypatch.setattr(Db, "retrieve_summary", lambda _: True) dbbuddy = Db.DbBuddy("NP_001287575.1") crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) monkeypatch.setattr(Db, "retrieve_summary", mock_big_record_no_dl) monkeypatch.setattr(br, "ask", lambda _, **kwargs: False) liveshell.do_fetch("Foo") assert dbbuddy.records["NP_001287575.1"].size == 5000001 out, err = capsys.readouterr() assert "Aborted...\n\n" in out monkeypatch.setattr(Db, "retrieve_sequences", mock_big_record_fetch) monkeypatch.setattr(br, "ask", lambda _, **kwargs: True) liveshell.do_fetch(None) out, err = capsys.readouterr() print(out) assert "Retrieved 5.0 M residues of sequence data\n\n" in out def test_liveshell_do_format(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) monkeypatch.setattr("builtins.input", lambda _: "Foo") liveshell.do_format(None) out, err = capsys.readouterr() assert "'Foo'" in out assert "is not a valid format" in out assert dbbuddy.out_format == "summary" for frmt in Db.FORMATS: liveshell.do_format(frmt) out, err = capsys.readouterr() assert "Output format changed to" in out assert frmt in out assert dbbuddy.out_format == frmt def test_liveshell_do_load(monkeypatch, capsys, hf): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) dbbuddy.server_clients["uniprot"] = Db.UniProtRestClient(dbbuddy) dbbuddy.server_clients["uniprot"].http_errors_file.write("Hello!") db_session = "%s/mock_resources/test_databasebuddy_clients/dbbuddy_save.db" % hf.resource_path monkeypatch.setattr("builtins.input", lambda _: db_session) liveshell.do_load(None) out, err = capsys.readouterr() assert "Session loaded from file.\n\n" in out assert dbbuddy.server_clients["uniprot"].http_errors_file.read() == "" headings = liveshell.get_headings() for heading in ['ACCN', 'DB', 'Type', 'record', 'entry_name', 'length', 'organism-id', 'organism', 'protein_names', 'comments', 'gi_num', 'TaxId', 'status', 'name', 'biotype', 'object_type', 'strand', 'assembly_name', 'name']: assert heading in headings for heading in headings: assert heading in ['ACCN', 'DB', 'Type', 'record', 'entry_name', 'length', 'organism-id', 'organism', 'protein_names', 'comments', 'gi_num', 'TaxId', 'status', 'name', 'biotype', 'object_type', 'strand', 'assembly_name', 'name'] monkeypatch.setattr("builtins.input", lambda _: "/no/file/here") liveshell.do_load(None) out, err = capsys.readouterr() assert "Error: Unable to read the provided file. Are you sure it's a saved DbBuddy live session?\n\n" in out def test_liveshell_do_keep(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) monkeypatch.setattr(Db.LiveShell, "filter", mock_filter) liveshell.do_keep(None) out, err = capsys.readouterr() assert "'keep' filter mocked! None" in out def test_liveshell_do_quit(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) dbbuddy.records["Foo"] = "Bar" monkeypatch.setattr(br, "ask", lambda _, **kwargs: False) liveshell.do_quit(None) out, err = capsys.readouterr() assert "Aborted...\n\n" in out with pytest.raises(SystemExit): monkeypatch.setattr(br, "ask", lambda _, **kwargs: True) liveshell.do_quit(None) out, err = capsys.readouterr() assert "Goodbye" in out def test_liveshell_do_trash(monkeypatch, capsys): def mock_show(_, line, mode): print("%s show mocked! %s" % (mode, line)) return monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) monkeypatch.setattr(Db.LiveShell, "do_show", mock_show) liveshell.do_trash(None) out, err = capsys.readouterr() assert "trash_bin show mocked! None" in out def test_liveshell_do_remove(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) monkeypatch.setattr(Db.LiveShell, "filter", mock_filter) liveshell.do_remove(None) out, err = capsys.readouterr() assert "'remove' filter mocked! None" in out def test_liveshell_do_restore(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) monkeypatch.setattr(Db.LiveShell, "filter", mock_filter) liveshell.do_restore(None) out, err = capsys.readouterr() assert "'restore' filter mocked! None" in out def test_liveshell_do_save(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) dbbuddy.records["foo"] = "bar" # Standard, no problems tmp_dir = br.TempDir() monkeypatch.setattr("builtins.input", lambda _: "%s/save_dir/save_file1" % tmp_dir.path) liveshell.do_save(None) out, err = capsys.readouterr() assert "Live session saved\n\n" in out assert os.path.isfile("%s/save_dir/save_file1.db" % tmp_dir.path) with open("%s/save_dir/save_file1.db" % tmp_dir.path, "rb") as ifile: assert len(ifile.read()) in [279, 281] # Different versions of python give different file sizes # File exists, abort monkeypatch.setattr(br, "ask", lambda _, **kwargs: False) liveshell.do_save("%s/save_dir/save_file1" % tmp_dir.path) out, err = capsys.readouterr() assert "Abort...\n\n" in out # PermissionError monkeypatch.setattr("builtins.open", OpenPermissionError) liveshell.do_save("%s/save_dir/save_file2" % tmp_dir.path) out, err = capsys.readouterr() assert "Error: You do not have write privileges to create a file in the specified directory.\n\n" in out assert not os.path.isfile("%s/save_dir/save_file2.db" % tmp_dir.path) def makedirs_permissionerror(*args, **kwargs): print("makedirs_permissionerror\nargs: %s\nkwargs: %s" % (args, kwargs)) raise PermissionError monkeypatch.setattr(os, "makedirs", makedirs_permissionerror) liveshell.do_save("%s/save_dir/deeper_dir/save_file2" % tmp_dir.path) out, err = capsys.readouterr() assert "Error: You do not have write privileges to create a directory in the specified path.\n\n" in out assert not os.path.isfile("%s/save_dir/deeper_dir/save_file2.db" % tmp_dir.path) def test_liveshell_do_search(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) dbbuddy.search_terms += ["Foo", "Bar"] monkeypatch.setattr("builtins.input", lambda _: "Panx1, Panx2") monkeypatch.setattr(Db, "retrieve_summary", lambda _: True) liveshell.do_search(None) assert dbbuddy.search_terms == ["Foo", "Bar", "Panx1", "Panx2"] assert not dbbuddy.records assert not dbbuddy.failures mock_buddy = Db.DbBuddy("Cx43, Cx32") mock_buddy.records["NewRec1"] = True mock_buddy.failures["NewFailure1"] = True monkeypatch.setattr(Db, "DbBuddy", lambda _: mock_buddy) liveshell.do_search("Blahh") assert dbbuddy.search_terms == ["Foo", "Bar", "Panx1", "Panx2", "Cx43", "Cx32"] assert "NewRec1" in dbbuddy.records assert "NewFailure1" in dbbuddy.failures def test_liveshell_do_show(monkeypatch, capsys, hf): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) load_file = "%s/mock_resources/test_databasebuddy_clients/dbbuddy_save.db" % hf.resource_path liveshell.do_load(load_file) capsys.readouterr() # Warning message if nothing to show liveshell.do_show(None, "trash_bin") out, err = capsys.readouterr() assert "Nothing in 'trash bin' to show.\n\n" in out # Specify columns and number of records liveshell.do_show("ACCN organism 3") out, err = capsys.readouterr() assert hf.string2hash(out) == "43f5edc18717e2f7df08818d2ed32b78" # Large group, say 'no' to display monkeypatch.setattr(br, "ask", lambda *_, **kwargs: False) liveshell.do_show(None) out, err = capsys.readouterr() assert "Include an integer value with 'show' to return a specific number of records.\n\n" in out # Large group, show it anyway monkeypatch.setattr(br, "ask", lambda *_, **kwargs: True) liveshell.do_show(None) out, err = capsys.readouterr() assert hf.string2hash(out) == "edc78c2e17543392933c87d833d8a2ea" # Try sequence format on LiveShell with only summary data dbbuddy.out_format = "fasta" liveshell.do_show(None) out, err = capsys.readouterr() assert "Warning: only summary data available; there is nothing to display in fasta format." in out # Only some records have full sequence data (patch print to true) dbbuddy.records["P00520"].record = True dbbuddy.records["Q5R454"].record = True monkeypatch.setattr(Db.DbBuddy, "print", lambda *_, **kwargs: True) liveshell.do_show(None) out, err = capsys.readouterr() assert "Warning: 1405 records are only summary data, so will not be displayed in fasta format. " \ "Use 'fetch' to retrieve all sequence data." in err # Raise errors def mock_length_error(*args, **kwargs): print("mock_length_error\nargs: %s\nkwargs: %s" % (args, kwargs)) raise ValueError("Sequences must all be the same length") dbbuddy.out_format = 'nexus' monkeypatch.setattr(Db.DbBuddy, "print", mock_length_error) liveshell.do_show(None) out, err = capsys.readouterr() assert "Error: 'nexus' format does not support sequences of different length." in out def mock_qual_score_error(*args, **kwargs): print("mock_qual_score_error\nargs: %s\nkwargs: %s" % (args, kwargs)) raise ValueError("No suitable quality scores found in letter_annotations of SeqRecord") dbbuddy.out_format = 'fastq' monkeypatch.setattr(Db.DbBuddy, "print", mock_qual_score_error) liveshell.do_show(None) out, err = capsys.readouterr() assert "Error: BioPython requires quality scores to output in 'fastq' format, and this data is not " \ "currently available to DatabaseBuddy." in out def mock_valueerror(*args, **kwargs): print("mock_valueerror\nargs: %s\nkwargs: %s" % (args, kwargs)) raise ValueError("Unknown ValueError") monkeypatch.setattr(Db.DbBuddy, "print", mock_valueerror) with pytest.raises(ValueError) as err: liveshell.do_show(None) assert "Unknown ValueError" in str(err) def test_liveshell_do_sort(monkeypatch, capsys, hf): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) load_file = "%s/mock_resources/test_databasebuddy_clients/dbbuddy_save.db" % hf.resource_path liveshell.do_load(load_file) capsys.readouterr() # Default sort on accession start_accns = [x for x in dbbuddy.records] liveshell.do_sort(None) accns = [x for x in dbbuddy.records] assert start_accns != accns assert sorted(start_accns) == accns # Default sort reversed liveshell.do_sort("rev") assert [x for x in dbbuddy.records] == sorted(start_accns, reverse=True) liveshell.do_sort(None) assert [x for x in dbbuddy.records] != sorted(start_accns, reverse=True) liveshell.do_sort("reverse") assert [x for x in dbbuddy.records] == sorted(start_accns, reverse=True) # Sort on column _type = [rec.type for accn, rec in dbbuddy.records.items()] liveshell.do_sort("Type") after_sort = [rec.type for accn, rec in dbbuddy.records.items()] assert after_sort != _type assert after_sort == sorted(_type) database = [rec.database for accn, rec in dbbuddy.records.items()] liveshell.do_sort("DB") after_sort = [rec.database for accn, rec in dbbuddy.records.items()] assert after_sort != database assert after_sort == sorted(database) organism = [rec.summary['organism'] for accn, rec in dbbuddy.records.items()] liveshell.do_sort("organism") after_sort = [rec.summary['organism'] for accn, rec in dbbuddy.records.items()] assert after_sort != organism assert after_sort == sorted(organism) length = [rec.summary['length'] for accn, rec in dbbuddy.records.items()] liveshell.do_sort("length") after_sort = [rec.summary['length'] for accn, rec in dbbuddy.records.items()] assert after_sort != length assert after_sort == sorted(length) protein_names = [rec.summary['protein_names'] for accn, rec in dbbuddy.records.items() if 'protein_names' in rec.summary] liveshell.do_sort("protein_names") after_sort = [rec.summary['protein_names'] for accn, rec in dbbuddy.records.items() if 'protein_names' in rec.summary] assert after_sort != protein_names assert after_sort == sorted(protein_names) gi_num = [rec.summary['gi_num'] for accn, rec in dbbuddy.records.items() if 'gi_num' in rec.summary] liveshell.do_sort("gi_num") after_sort = [rec.summary['gi_num'] for accn, rec in dbbuddy.records.items() if 'gi_num' in rec.summary] assert after_sort != gi_num assert after_sort == sorted(gi_num) # Sort on multi-column dbbuddy.records["A0A0N8ESW5"].record = True dbbuddy.records["XP_011997944.1"].record = True liveshell.do_sort("record organism gi_num") capsys.readouterr() liveshell.do_show("10") out, err = capsys.readouterr() assert hf.string2hash(out) == "c05f7a103d2b50d767407817f43a1828" def test_liveshell_do_status(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) capsys.readouterr() liveshell.do_status(None) out, err = capsys.readouterr() assert '''\ ############################ ### DatabaseBuddy object ### Databases: ncbi_nuc, ncbi_prot, uniprot, ensembl Out format: summary Searches: None Full Recs: 0 Summary Recs: 0 ACCN only: 0 Trash bin: 0 Failures: 0 ############################ ''' in out def test_liveshell_do_write(monkeypatch, capsys, hf): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) monkeypatch.setattr(Db.LiveShell, "dump_session", lambda _: True) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) load_file = "%s/mock_resources/test_databasebuddy_clients/dbbuddy_save.db" % hf.resource_path liveshell.do_load(load_file) capsys.readouterr() tmp_dir = br.TempDir() # write a summary monkeypatch.setattr("builtins.input", lambda _: "%s/save1" % tmp_dir.path) liveshell.do_write(None) assert os.path.isfile("%s/save1" % tmp_dir.path) with open("%s/save1" % tmp_dir.path, "r") as ifile: assert len(ifile.read()) == 249980 out, err = capsys.readouterr() assert re.search("1407 summary records.*written to.*save1", out) # write ids/accns dbbuddy.out_format = "ids" monkeypatch.setattr(br, "ask", lambda _: True) dbbuddy.records['O14727'].record = Db.Record('O14727', _record=True) liveshell.do_write("%s/save2" % tmp_dir.path) assert os.path.isfile("%s/save2" % tmp_dir.path) with open("%s/save2" % tmp_dir.path, "r") as ifile: assert len(ifile.read()) == 18661 out, err = capsys.readouterr() assert re.search("1407 accessions.*written to.*save2", out) # Abort summary monkeypatch.setattr(br, "ask", lambda _: False) liveshell.do_write("%s/save3" % tmp_dir.path) assert not os.path.isfile("%s/save3" % tmp_dir.path) out, err = capsys.readouterr() assert "Abort..." in out # Permission error dbbuddy.out_format = "fasta" monkeypatch.setattr("builtins.open", OpenPermissionError) liveshell.do_write("%s/save4" % tmp_dir.path) assert not os.path.isfile("%s/save4" % tmp_dir.path) out, err = capsys.readouterr() assert "Error: You do not have write privileges in the specified directory.\n\n" in out # File exists monkeypatch.setattr(br, "ask", lambda _: False) liveshell.do_write("%s/save2" % tmp_dir.path) out, err = capsys.readouterr() assert "Abort..." in out assert "written" not in out # Not a directory liveshell.do_write("%s/ghostdir/save5" % tmp_dir.path) out, err = capsys.readouterr() assert "The specified directory does not exist. Please create it before continuing" in out assert "written" not in out def test_liveshell_do_undo(monkeypatch, capsys, hf): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) liveshell.do_undo(None) out, err = capsys.readouterr() assert "There is currently no undo history (only a single undo is possible).\n\n" in out load_file = "%s/mock_resources/test_databasebuddy_clients/dbbuddy_save.db" % hf.resource_path liveshell.do_load(load_file) assert not dbbuddy.trash_bin liveshell.do_remove("P00520") assert dbbuddy.trash_bin liveshell.do_undo(None) assert not dbbuddy.trash_bin out, err = capsys.readouterr() assert "Most recent state reloaded\n\n" in out liveshell.do_undo(None) out, err = capsys.readouterr() assert "There is currently no undo history (only a single undo is possible).\n\n" in out def test_liveshell_complete_bash(monkeypatch): # Note, this doesn't work in Windows if os.name == "nt": return monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) programs = liveshell.complete_bash("wh") for program in ['wheel ', 'whereis ', 'whoami ', 'which ', 'who ']: assert program in programs def test_liveshell_complete_database(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) assert sorted(liveshell.complete_database("")) == ['ensembl', 'ncbi_nuc', 'ncbi_prot', 'uniprot'] def test_liveshell_complete_delete(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) assert liveshell.complete_delete("") == ["all", "failures", "search", "trash", "records"] def test_liveshell_complete_format(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) assert liveshell.complete_format("f") == ['full-summary', 'fasta', 'fastq', 'fastq-sanger', 'fastq-solexa', 'fastq-illumina'] def test_liveshell_complete_keep_remove_resort_trash_show_sort(monkeypatch, hf): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) load_file = "%s/mock_resources/test_databasebuddy_clients/dbbuddy_save.db" % hf.resource_path liveshell.do_load(load_file) # Keep assert liveshell.complete_keep("d") == ['(DB) '] assert liveshell.complete_keep("len") == ['(length) '] assert liveshell.complete_keep('ac') == ['(ACCN) '] # Remove assert liveshell.complete_remove("d") == ['(DB) '] assert liveshell.complete_remove("len") == ['(length) '] assert liveshell.complete_remove('ac') == ['(ACCN) '] # Restor liveshell.do_remove("Human") assert liveshell.complete_restore("d") == ['(DB) '] assert liveshell.complete_restore("len") == ['(length) '] assert liveshell.complete_restore('ac') == ['(ACCN) '] # Trash assert liveshell.complete_trash("d") == ['DB '] assert liveshell.complete_trash("len") == ['length '] assert liveshell.complete_trash('ac') == ['ACCN '] # Show assert liveshell.complete_show("d") == ['DB '] assert liveshell.complete_show("len") == ['length '] assert liveshell.complete_show('ac') == ['ACCN '] # sort assert liveshell.complete_sort("d") == ['DB '] assert liveshell.complete_sort("len") == ['length '] assert liveshell.complete_sort('ac') == ['ACCN '] assert liveshell.complete_sort('re') == ['record ', 'reverse '] def test_liveshell_complete_load_save_write(monkeypatch): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) tmpdir = br.TempDir() os.chdir(tmpdir.path) tmpdir.subfile("file.txt") tmpdir.subdir("extra_dir") # Load assert liveshell.complete_load("load fi ", "load fi ", 5, 7) == ['file.txt'] assert liveshell.complete_load("load ", "load ", 5, 5) == ['extra_dir%s' % os.path.sep, 'file.txt'] assert not liveshell.complete_load("load ", "load ", 4, 5) # Save assert liveshell.complete_save("save fi ", "save fi ", 5, 7) == ['file.txt'] assert liveshell.complete_save("save ", "save ", 5, 5) == ['extra_dir%s' % os.path.sep, 'file.txt'] assert not liveshell.complete_save("save ", "save ", 4, 5) # Save assert liveshell.complete_write("write fi ", "write fi ", 6, 8) == ['file.txt'] assert liveshell.complete_write("write ", "write ", 6, 6) == ['extra_dir%s' % os.path.sep, 'file.txt'] assert not liveshell.complete_write("write ", "write ", 4, 5) def test_helps(monkeypatch, capsys): monkeypatch.setattr(Db.LiveShell, "cmdloop", mock_cmdloop) dbbuddy = Db.DbBuddy() crash_file = br.TempFile(byte_mode=True) liveshell = Db.LiveShell(dbbuddy, crash_file) liveshell.help_bash() out, err = capsys.readouterr() assert "Run bash commands" in out liveshell.help_database() out, err = capsys.readouterr() assert "Reset the database" in out liveshell.help_delete() out, err = capsys.readouterr() assert "Remove records completely" in out liveshell.help_failures() out, err = capsys.readouterr() assert "Print the status of" in out liveshell.help_fetch() out, err = capsys.readouterr() assert "Retrieve full records for" in out liveshell.help_format() out, err = capsys.readouterr() assert "Set the output format" in out liveshell.help_keep() out, err = capsys.readouterr() assert "Further refine your results" in out liveshell.help_quit() out, err = capsys.readouterr() assert "End the live session" in out liveshell.help_load() out, err = capsys.readouterr() assert "Recover the contents of a " in out liveshell.help_trash() out, err = capsys.readouterr() assert "Output the records held in" in out liveshell.help_remove() out, err = capsys.readouterr() assert "Further refine your results" in out liveshell.help_restore() out, err = capsys.readouterr() assert "Return a subset of filtered" in out liveshell.help_save() out, err = capsys.readouterr() assert "Save your live session in DB" in out liveshell.help_search() out, err = capsys.readouterr() assert "Search databases (currently set to" in out liveshell.help_show() out, err = capsys.readouterr() assert "Output the records held in" in out liveshell.help_sort() out, err = capsys.readouterr() assert "Alter the order that records" in out liveshell.help_status() out, err = capsys.readouterr() assert "Display the current state of your Live" in out liveshell.help_undo() out, err = capsys.readouterr() assert "Revert the most recent change to your live session." in out liveshell.help_write() out, err = capsys.readouterr() assert "Send records to a file" in out # ###################### main() ###################### # def test_main(monkeypatch): monkeypatch.setattr(sys, "argv", ["DatabaseBuddy", "Casp9,Panx3", "-ls"]) monkeypatch.setattr(Db, "command_line_ui", lambda *_: True) assert Db.main() monkeypatch.setattr(Db, "command_line_ui", mock_keyboardinterrupt) assert not Db.main() monkeypatch.setattr(Db, "command_line_ui", mock_guesserror) assert not Db.main() monkeypatch.setattr(Db, "command_line_ui", mock_systemexit) assert not Db.main() monkeypatch.setattr(Db, "command_line_ui", mock_fileexistserror) monkeypatch.setattr(br, "send_traceback", lambda *_: True) assert not Db.main() # ###################### loose command line ui helpers ###################### # @pytest.mark.loose def test_exit(monkeypatch, capsys): class MockExitUsage(object): @staticmethod def increment(*args): print(args) return True @staticmethod def save(): return True monkeypatch.setattr(br, "Usage", MockExitUsage) monkeypatch.setattr(Db, "LiveShell", lambda *_: True) test_in_args = deepcopy(in_args) with pytest.raises(SystemExit): Db.command_line_ui(test_in_args, Db.DbBuddy()) out, err = capsys.readouterr() assert "('DatabaseBuddy', '%s', 'LiveShell', 0)" % Db.VERSION.short() in out @pytest.mark.loose def test_error(monkeypatch, capsys): monkeypatch.setattr(Db, "LiveShell", mock_systemexit) test_in_args = deepcopy(in_args) test_in_args.live_shell = True assert Db.command_line_ui(test_in_args, Db.DbBuddy(), skip_exit=True) is None test_in_args.live_shell = False monkeypatch.setattr(Db, "LiveShell", mock_keyboardinterrupt) assert Db.command_line_ui(test_in_args, Db.DbBuddy(), skip_exit=True) is None out, err = capsys.readouterr() assert "DbBuddy object" in out monkeypatch.setattr(Db, "LiveShell", mock_fileexistserror) monkeypatch.setattr(br.TempFile, "save", lambda *_: True) monkeypatch.setattr(br, "send_traceback", lambda *_: True) capsys.readouterr() assert Db.command_line_ui(test_in_args, Db.DbBuddy(), skip_exit=True) is None out, err = capsys.readouterr() assert "can be loaded by launching DatabaseBuddy and using the 'load' command." in err @pytest.mark.loose def test_guess_db(capsys, hf): test_in_args = deepcopy(in_args) test_in_args.guess_database = True with pytest.raises(SystemExit): Db.command_line_ui(test_in_args, Db.DbBuddy(), skip_exit=True) out, err = capsys.readouterr() assert 'Nothing to return' in out with pytest.raises(SystemExit): Db.command_line_ui(test_in_args, Db.DbBuddy(",".join(ACCNS) + ",Casp9"), skip_exit=True) out, err = capsys.readouterr() assert hf.string2hash(out) == "4b3edb0272b02d8e18ce591304fdea1d"
[ "biologyguy@gmail.com" ]
biologyguy@gmail.com
7b76d82117448e96980ae3f51aa746e12feeb50e
6a7a9d6201f2c4399aa8ebb5910a8d706b0a5111
/examples/Shape Example/shape_model/server.py
5f186ff1fd20885027bedf9aa904264d4e7fbb79
[ "Apache-2.0" ]
permissive
josepic99/mesas
5024177751d1c97fbc2dabd5e3fe230b23d5fb97
8453fe36b8536795ce5b80975fc9dbc604da42df
refs/heads/master
2023-03-13T19:19:00.769987
2021-03-09T00:44:39
2021-03-09T00:44:39
345,835,651
0
0
null
null
null
null
UTF-8
Python
false
false
1,416
py
import random from mesa.visualization.modules import CanvasGrid from mesa.visualization.ModularVisualization import ModularServer from shape_model.model import Walker, ShapesModel def agent_draw(agent): portrayal = None if agent is None: # Actually this if part is unnecessary, but still keeping it for # aesthetics pass elif isinstance(agent, Walker): print("Uid: {0}, Heading: {1}".format(agent.unique_id, agent.heading)) portrayal = {"Shape": "arrowHead", "Filled": "true", "Layer": 2, "Color": "green", "Filled": "true", "heading_x": agent.heading[0], "heading_y": agent.heading[1], "text": agent.unique_id, "text_color": "white", "scale": 0.8, } return portrayal def launch_shape_model(): width = 15 height = 10 num_agents = 2 pixel_ratio = 50 grid = CanvasGrid(agent_draw, width, height, width * pixel_ratio, height * pixel_ratio) server = ModularServer(ShapesModel, [grid], "Shape Model Example", num_agents, width, height) server.max_steps = 0 server.port = 8888 server.launch() if __name__ == "__main__": random.seed(3) launch_shape_model()
[ "jackiekazil@gmail.com" ]
jackiekazil@gmail.com
527ee2718e614521dae7fd5f0ad151d7657b6168
b161ad0cc14ab5b146bc28f65afd8d536ba789bf
/test/sample/test_sample.py
43820370b9e253d70b13bc584d25c996a6d70845
[]
no_license
jdechol/python-data-structures
2a48969a195930a0be1b472281e394348fcb9fab
3c64b7a9ff60b5a0b890c194af233a1af17b9a4d
refs/heads/master
2022-12-09T04:22:46.561654
2020-09-21T20:27:42
2020-09-21T20:27:42
295,358,061
0
0
null
null
null
null
UTF-8
Python
false
false
389
py
from src.sample import sample import random def test_quicksort(): numbers = random.sample(range(1000), 1000) actual = sample.quicksort(numbers) numbers.sort() assert actual == numbers def test_is_palindrome(): assert sample.is_palindrome("abcba") assert not sample.is_palindrome("ab") assert sample.is_palindrome("abba") assert sample.is_palindrome("a")
[ "jechols@mavenlink.com" ]
jechols@mavenlink.com
460d5b12c08e5d071fb4b61103902d08761bbfd6
7239d389894613ef132edb1198a4f47cb2b65f92
/packages/python/plotly/plotly/graph_objs/histogram/_hoverlabel.py
fbe525403ca58725c86a720504b77e42a4dc7ec7
[ "MIT" ]
permissive
fast3dd13sa/plotly.py
2169417b72481ff2937b5a9ce90d426cd1cccd80
e778c6b5e6ae9665d7a5e2ddb666f43806df3959
refs/heads/master
2022-04-26T01:11:46.345181
2020-04-27T19:49:56
2020-04-27T19:49:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,798
py
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Hoverlabel(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "histogram" _path_str = "histogram.hoverlabel" _valid_props = { "align", "alignsrc", "bgcolor", "bgcolorsrc", "bordercolor", "bordercolorsrc", "font", "namelength", "namelengthsrc", } # align # ----- @property def align(self): """ Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines The 'align' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'right', 'auto'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray """ return self["align"] @align.setter def align(self, val): self["align"] = val # alignsrc # -------- @property def alignsrc(self): """ Sets the source reference on Chart Studio Cloud for align . The 'alignsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["alignsrc"] @alignsrc.setter def alignsrc(self, val): self["alignsrc"] = val # bgcolor # ------- @property def bgcolor(self): """ Sets the background color of the hover labels for this trace The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["bgcolor"] @bgcolor.setter def bgcolor(self, val): self["bgcolor"] = val # bgcolorsrc # ---------- @property def bgcolorsrc(self): """ Sets the source reference on Chart Studio Cloud for bgcolor . The 'bgcolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bgcolorsrc"] @bgcolorsrc.setter def bgcolorsrc(self, val): self["bgcolorsrc"] = val # bordercolor # ----------- @property def bordercolor(self): """ Sets the border color of the hover labels for this trace. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["bordercolor"] @bordercolor.setter def bordercolor(self, val): self["bordercolor"] = val # bordercolorsrc # -------------- @property def bordercolorsrc(self): """ Sets the source reference on Chart Studio Cloud for bordercolor . The 'bordercolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bordercolorsrc"] @bordercolorsrc.setter def bordercolorsrc(self, val): self["bordercolorsrc"] = val # font # ---- @property def font(self): """ Sets the font used in hover labels. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.histogram.hoverlabel.Font` - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color colorsrc Sets the source reference on Chart Studio Cloud for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for family . size sizesrc Sets the source reference on Chart Studio Cloud for size . Returns ------- plotly.graph_objs.histogram.hoverlabel.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val # namelength # ---------- @property def namelength(self): """ Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. The 'namelength' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [-1, 9223372036854775807] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|numpy.ndarray """ return self["namelength"] @namelength.setter def namelength(self, val): self["namelength"] = val # namelengthsrc # ------------- @property def namelengthsrc(self): """ Sets the source reference on Chart Studio Cloud for namelength . The 'namelengthsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["namelengthsrc"] @namelengthsrc.setter def namelengthsrc(self, val): self["namelengthsrc"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . """ def __init__( self, arg=None, align=None, alignsrc=None, bgcolor=None, bgcolorsrc=None, bordercolor=None, bordercolorsrc=None, font=None, namelength=None, namelengthsrc=None, **kwargs ): """ Construct a new Hoverlabel object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.histogram.Hoverlabel` align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . Returns ------- Hoverlabel """ super(Hoverlabel, self).__init__("hoverlabel") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.histogram.Hoverlabel constructor must be a dict or an instance of :class:`plotly.graph_objs.histogram.Hoverlabel`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Populate data dict with properties # ---------------------------------- _v = arg.pop("align", None) _v = align if align is not None else _v if _v is not None: self["align"] = _v _v = arg.pop("alignsrc", None) _v = alignsrc if alignsrc is not None else _v if _v is not None: self["alignsrc"] = _v _v = arg.pop("bgcolor", None) _v = bgcolor if bgcolor is not None else _v if _v is not None: self["bgcolor"] = _v _v = arg.pop("bgcolorsrc", None) _v = bgcolorsrc if bgcolorsrc is not None else _v if _v is not None: self["bgcolorsrc"] = _v _v = arg.pop("bordercolor", None) _v = bordercolor if bordercolor is not None else _v if _v is not None: self["bordercolor"] = _v _v = arg.pop("bordercolorsrc", None) _v = bordercolorsrc if bordercolorsrc is not None else _v if _v is not None: self["bordercolorsrc"] = _v _v = arg.pop("font", None) _v = font if font is not None else _v if _v is not None: self["font"] = _v _v = arg.pop("namelength", None) _v = namelength if namelength is not None else _v if _v is not None: self["namelength"] = _v _v = arg.pop("namelengthsrc", None) _v = namelengthsrc if namelengthsrc is not None else _v if _v is not None: self["namelengthsrc"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
[ "noreply@github.com" ]
fast3dd13sa.noreply@github.com
3c533179afdb9f6b45b2c62b10cff66119de15bd
1a6b22f2ec35a41b2a63766c157e028c16593203
/tests/rules/test_compare.py
ff830a3f609b021b31cfc7dcba2d47c1fef1025d
[ "MIT" ]
permissive
WinterComes/arche
c4b442111276a824f9589c7ffd70e0cb99687bf1
6be3d7a4ec66f33f7af544aa7af4ea95c35bef2e
refs/heads/master
2020-08-19T02:06:22.518094
2019-10-07T14:37:45
2019-10-07T14:37:45
215,862,662
0
0
MIT
2019-10-17T18:44:42
2019-10-17T18:44:41
null
UTF-8
Python
false
false
3,833
py
import arche.rules.compare as compare from arche.rules.result import Level from conftest import * import pytest @pytest.mark.parametrize( ["source", "target", "fields", "normalize", "expected", "more_stats"], [ ( { "one": list(range(5)) + ["42"] * 5, "two": list(range(10)), "three": [np.nan] * 5 + list(range(5)), }, { "one": list(range(5, 10)) + [4] * 6, "two": list(range(11)), "three": [np.nan] * 10 + [1], }, ["one", "two", "three"], False, { Level.INFO: [ ("10 `non NaN ones` - 9 new, 1 same",), ("10 `non NaN twos` - 0 new, 10 same",), ("1 `twos` are missing", None, {"10 `twos` are missing": {10}}), ("5 `non NaN threes` - 4 new, 1 same",), ], Level.ERROR: [ ( "5 `ones` are missing", None, {"5, 6, 7, 8, 9 `ones` are missing": set(range(5))}, ) ], }, { "one": { "same": pd.Series([4], index=[4], dtype="object"), "new": pd.Series( [0, 1, 2, 3] + ["42"] * 5, index=[0, 1, 2, 3, 5, 6, 7, 8, 9] ), "missing": pd.Series(list(range(5, 10))), }, "two": { "same": pd.Series(list(range(10))), "new": pd.Series(dtype=np.int64), "missing": pd.Series([10], index=[10]), }, "three": { "same": pd.Series([1.0], index=[6]), "new": pd.Series([0.0, 2.0, 3.0, 4.0], index=[5, 7, 8, 9]), "missing": pd.Series(), }, }, ), ( { "four": [{i} for i in range(2)] + [{"K": {"k": i}} for i in range(2)] + ["l"] * 6 }, { "four": [{i} for i in range(4)] + [{"k": {"k": i}} for i in range(4)] + ["L"] * 20 }, ["four"], True, { Level.INFO: [ ("10 `non NaN fours` - 0 new, 10 same",), ( "4 `fours` are missing", None, { "{2}, {3}, {'k': {'k': 2}}, {'k': {'k': 3}} `fours` are missing": { 2, 3, 6, 7, } }, ), ] }, { "four": { "same": pd.Series( [str({i}) for i in range(2)] + [str({"k": {"k": i}}) for i in range(2)] + ["l"] * 6 ), "new": pd.Series(dtype=object), "missing": pd.Series( ["{2}", "{3}", "{'k': {'k': 2}}", "{'k': {'k': 3}}"], index={2, 3, 6, 7}, ), } }, ), ], ) def test_fields(source, target, fields, normalize, expected, more_stats): assert_results_equal( compare.fields(pd.DataFrame(source), pd.DataFrame(target), fields, normalize), create_result("Fields Difference", expected, more_stats=more_stats), check_index_type=False, )
[ "noreply@github.com" ]
WinterComes.noreply@github.com
71b4898b2f07742091ba582a11d90f4317314a77
3c5885d48435dec194144afffb8fd4930fcb2bcf
/escapeartist/server/callbacks.py
04aec18fa3ee814090402e7eaf7ff3b7a4f34603
[]
no_license
Mnsk44/pentti-the-escape-artist
6912e39dfe3fef23d1e5e7b0c76b82341a46baa2
bb7998e03ead1468e7ab16a08dac63699b26d77e
refs/heads/main
2023-07-03T05:43:15.993580
2021-08-09T04:02:47
2021-08-09T04:02:47
393,693,625
0
0
null
null
null
null
UTF-8
Python
false
false
4,091
py
""" Callbacks for dash app """ import base64 from io import BytesIO from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_html_components as html from character.bfspentti import BFSPentti from character.randompentti import RandomPentti from character.righthandpentti import RightHandPentti from map.map import Map from map.maptoimage import MapToImage from server.app import app from util.constants import VICTORY @app.callback( [Output("result-div-evil-text", "children"), Output("result-div-evil-png", "children")], [Input("evil-btn", "n_clicks")], [State("limit-input", "value"), State("map-dropdown", "value")], prevent_initial_call=True ) def evil_random_escape(click, limit, map_path): map = Map(map_path) pentti = RandomPentti(map) pentti.escape_maze(limit) if pentti._map[pentti.position()] == VICTORY: result = f"Pentti escaped in {len(pentti._history)} steps" else: result = f"Pentti was exhausted after {limit} steps, Pentti did not escape..." text = html.P( "You have chosen to not give Pentti any instructions :( he wanders randomly in the maze... " + result ) maptoimage = MapToImage() maptoimage.convert([pentti._map]) # This is adapted from # https://stackoverflow.com/questions/60712647/displaying-pil-images-in-dash-plotly buffer = BytesIO() maptoimage.save_last_png(buffer) encoded = base64.b64encode(buffer.getvalue()).decode("utf-8") im = html.Img( className="image", src="data:image/png;base64, " + encoded, style={"height":"35%", "width":"35%"} ) return text, im @app.callback( [Output("result-div-neutral-text", "children"), Output("result-div-neutral-png", "children")], [Input("neutral-btn", "n_clicks")], [State("limit-input", "value"), State("map-dropdown", "value")], prevent_initial_call=True ) def right_hand_escape(click, limit, map_path): map = Map(map_path) pentti = RightHandPentti(map) pentti.escape_maze(limit) if pentti._map[pentti.position()] == VICTORY: result = f"Pentti escaped in {len(pentti._history)} steps" else: result = f"Pentti was exhausted after {limit} steps, Pentti did not escape..." text = html.P( "You have chosen to instruct Pentti to keep his right hand touching a wall at all times... " + result ) maptoimage = MapToImage() maptoimage.convert([pentti._map]) # This is adapted from # https://stackoverflow.com/questions/60712647/displaying-pil-images-in-dash-plotly buffer = BytesIO() maptoimage.save_last_png(buffer) encoded = base64.b64encode(buffer.getvalue()).decode("utf-8") im = html.Img( className="image", src="data:image/png;base64, " + encoded, style={"height":"35%", "width":"35%"} ) return text, im @app.callback( [Output("result-div-good-text", "children"), Output("result-div-good-png", "children")], [Input("good-btn", "n_clicks")], [State("limit-input", "value"), State("map-dropdown", "value")], prevent_initial_call=True ) def bfs_escape(click, limit, map_path): map = Map(map_path) pentti = BFSPentti(map) pentti.escape_maze(limit) if pentti._count_path_length() < limit: result = f"Pentti escaped in {pentti._count_path_length()} steps" else: result = f"Pentti was exhausted after {limit} steps, Pentti did not escape..." text = html.P( "You have chosen to give a map to Pentti! Pentti will look for a good route to escape! " + result ) maptoimage = MapToImage() maptoimage.convert([pentti._map]) # This is adapted from # https://stackoverflow.com/questions/60712647/displaying-pil-images-in-dash-plotly buffer = BytesIO() maptoimage.save_last_png(buffer) encoded = base64.b64encode(buffer.getvalue()).decode("utf-8") im = html.Img( className="image", src="data:image/png;base64, " + encoded, style={"height":"35%", "width":"35%"} ) return text, im
[ "teemuj.mannikko@gmail.com" ]
teemuj.mannikko@gmail.com
ab6068f680ca8ac16e86b2e3a8d6e25bf09fbe95
2ac571cc2ef034254913523f5785c18a31656ad8
/feeds/serializers.py
9e5ae46fa42eab97d9a1ae1a08d43592cfc6c720
[]
no_license
Shivam1904/HTTP_200
1f17a69c432ba23c5dc23e183611a1e5134d9b20
3df6be2dcd2300968f039aae9de833b7c0e9e270
refs/heads/master
2020-12-31T03:16:45.023011
2016-05-18T21:09:55
2016-05-18T21:09:55
45,245,014
1
0
null
2015-10-30T10:37:11
2015-10-30T10:37:11
null
UTF-8
Python
false
false
12,153
py
from django.forms import widgets from rest_framework import serializers from feeds.models import * from django.contrib.auth.models import User from django.http import request class UserSerializer(serializers.ModelSerializer): username = serializers.ReadOnlyField() password = serializers.CharField(style={'input_type': 'password'}, default='password') class Meta: model = User fields = ('id', 'username', 'email', 'password', 'first_name', 'last_name', 'last_login') def create(self, validated_data): """ Create and return a new `Student` instance, given the validated data. """ user = User(email=validated_data['email'], username=validated_data['username'], first_name=validated_data['first_name'], last_name=validated_data['last_name']) user.set_password(validated_data['password']) user.save() return user def update(self, instance, validated_data): print validated_data instance.username = validated_data.get('username', instance.username) instance.first_name = validated_data.get('first_name', instance.first_name) instance.last_name = validated_data.get('last_name', instance.last_name) instance.email = validated_data.get('email', instance.email) instance.last_login = validated_data.get('last_login', instance.last_login) instance.set_password(validated_data.get('password', instance.password)) instance.save() return instance class StudentSerializer(serializers.HyperlinkedModelSerializer): ''' Serializer Class for Student Model ''' user_details = UserSerializer(source='user') relevent_count = serializers.ReadOnlyField(source='relevent') academics_count = serializers.ReadOnlyField(source='academics') administration_count = serializers.ReadOnlyField(source='administration') misc_count = serializers.ReadOnlyField(source='misc') tnp_count = serializers.ReadOnlyField(source='tnp') events_count = serializers.ReadOnlyField(source='events') class Meta: model = Student fields = ('user_details', 'id', 'univ_roll_no', 'ph_no', 'father_name', 'mother_name', 'address', 'course', 'relevent_count', 'academics_count', 'administration_count', 'tnp_count', 'events_count', 'misc_count', 'relevent_last_seen', 'administration_last_seen', 'academics_last_seen', 'misc_last_seen', 'tnp_last_seen', 'events_last_seen') def create(self, validated_data): """ Create and return a new `Student` instance, given the validated data. """ return Student.objects.create(**validated_data) def update(self, instance, validated_data): validated_user_data = validated_data['user'].items() user = User.objects.filter(username=validated_data['username']) user.update(email=validated_user_data[0][1], first_name=validated_user_data[ 2][1], last_name=validated_user_data[3][1]) user[0].set_password(validated_user_data[1][1]) instance.univ_roll_no = validated_data.get('univ_roll_no', instance.univ_roll_no) instance.ph_no = validated_data.get('ph_no', instance.ph_no) instance.father_name = validated_data.get('father_name', instance.father_name) instance.mother_name = validated_data.get('mother_name', instance.mother_name) instance.address = validated_data.get('address', instance.address) instance.course = validated_data.get('course', instance.course) instance.relevent_last_seen = validated_data.get('relevent_last_seen', instance.relevent_last_seen) instance.academics_last_seen = validated_data.get('academics_last_seen', instance.academics_last_seen) instance.administration_last_seen = validated_data.get( 'administration_last_seen', instance.administration_last_seen) instance.misc_last_seen = validated_data.get('misc_last_seen', instance.misc_last_seen) instance.tnp_last_seen = validated_data.get('tnp_last_seen', instance.tnp_last_seen) instance.events_last_seen = validated_data.get('events_last_seen', instance.events_last_seen) instance.save() return instance class FacultySerializer(serializers.HyperlinkedModelSerializer): ''' Serializer Class for Faculty Model ''' user_fields = UserSerializer(source='user') relevent_count = serializers.ReadOnlyField(source='relevent') academics_count = serializers.ReadOnlyField(source='academics') administration_count = serializers.ReadOnlyField(source='administration') misc_count = serializers.ReadOnlyField(source='misc') tnp_count = serializers.ReadOnlyField(source='tnp') events_count = serializers.ReadOnlyField(source='events') notices = serializers.HyperlinkedRelatedField(many=True, view_name='notice-detail', read_only=True) class Meta: model = Faculty fields = ('user_fields', 'notices', 'id', 'designation', 'department', 'ph_no', 'address', 'alternate_email', 'relevent_count', 'academics_count', 'administration_count', 'tnp_count', 'events_count', 'misc_count', 'relevent_last_seen', 'administration_last_seen', 'academics_last_seen', 'misc_last_seen', 'tnp_last_seen', 'events_last_seen') def create(self, validated_data): """ Create and return a new `Faculty` instance, given the validated data. """ return Faculty.objects.create(**validated_data) def update(self, instance, validated_data): validated_user_data = validated_data['user'].items() user = User.objects.filter(username=validated_data['username']) user.update(email=validated_user_data[0][1], first_name=validated_user_data[ 2][1], last_name=validated_user_data[3][1]) user[0].set_password(validated_user_data[1][1]) instance.designation = validated_data.get('designation', instance.designation) instance.department = validated_data.get('department', instance.department) instance.ph_no = validated_data.get('ph_no', instance.ph_no) instance.address = validated_data.get('address', instance.address) instance.alternate_email = validated_data.get('alternate_email', instance.alternate_email) instance.relevent_last_seen = validated_data.get('relevent_last_seen', instance.relevent_last_seen) instance.academics_last_seen = validated_data.get('academics_last_seen', instance.academics_last_seen) instance.administration_last_seen = validated_data.get( 'administration_last_seen', instance.administration_last_seen) instance.misc_last_seen = validated_data.get('misc_last_seen', instance.misc_last_seen) instance.tnp_last_seen = validated_data.get('tnp_last_seen', instance.tnp_last_seen) instance.events_last_seen = validated_data.get('events_last_seen', instance.events_last_seen) instance.save() return instance class NoticeSerializer(serializers.ModelSerializer): ''' Serializer Class for Notices Model ''' owner = serializers.ReadOnlyField(source='owner.user.username') bookmark_flag = serializers.SerializerMethodField('check_for_bookmark_flag') bookmark_id = serializers.SerializerMethodField('check_for_bookmark_id') def check_for_bookmark_flag(self, Notice): if BookmarkedNotice.objects.filter(notice__id=Notice.id, user__id=self.context['request'].user.id).count() == 1: return True else: return False def check_for_bookmark_id(self, Notice): if BookmarkedNotice.objects.filter(notice=Notice.id).count(): return BookmarkedNotice.objects.get(notice=Notice.id).id else: return None class Meta: model = Notice fields = ('owner', 'bookmark_flag', 'bookmark_id', 'id', 'scheduled_time', 'title', 'description', 'ce', 'cs', 'it', 'ee', 'ece', 'eee', 'me', 'mt', 'ic', 'first_year', 'second_year', 'third_year', 'fourth_year', 'btech', 'mtech', 'mba', 'mca', 'other_course', 'file_attached', 'created_at', 'updated_at', 'category', 'subject') def create(self, validated_data): """ Create and return a new `Notices` instance, given the validated data. """ return Notice.objects.create(**validated_data) def update(self, instance, validated_data): instance.scheduled_time = validated_data.get('scheduled_time', instance.scheduled_time) instance.title = validated_data.get('title', instance.title) instance.description = validated_data.get('description', instance.description) instance.file_attached = validated_data.get('file_attached', instance.file_attached) instance.created_at = validated_data.get('created_at', instance.created_at) instance.updated_at = validated_data.get('updated_at', instance.updated_at) instance.category = validated_data.get('category', instance.category) instance.subject = validated_data.get('subject', instance.subject) instance.cs = validated_data.get('cs', instance.cs) instance.ce = validated_data.get('ce', instance.ce) instance.ee = validated_data.get('ee', instance.ee) instance.ece = validated_data.get('ece', instance.ece) instance.eee = validated_data.get('eee', instance.eee) instance.it = validated_data.get('it', instance.it) instance.ic = validated_data.get('ic', instance.ic) instance.me = validated_data.get('me', instance.me) instance.mt = validated_data.get('mt', instance.mt) instance.first_year = validated_data.get('first_year', instance.first_year) instance.second_year = validated_data.get('second_year', instance.second_year) instance.third_year = validated_data.get('third_year', instance.third_year) instance.fourth_year = validated_data.get('fourth_year', instance.fourth_year) instance.btech = validated_data.get('btech', instance.btech) instance.mtech = validated_data.get('mtech', instance.mtech) instance.mba = validated_data.get('mba', instance.mba) instance.mca = validated_data.get('mca', instance.mca) instance.other_course = validated_data.get('other_course', instance.other_course) instance.save() return instance class NoticeListSerializer(serializers.HyperlinkedModelSerializer): ''' Serializer Class for Listing the notices only(not the details) that are available in Model ''' owner = serializers.ReadOnlyField(source='owner.username') attachment_flag = serializers.SerializerMethodField('check_for_attachment') bookmark_flag = serializers.SerializerMethodField('check_for_bookmark_flag') def check_for_bookmark_flag(self, Notice): if BookmarkedNotice.objects.filter(notice=Notice.id).count() == 1: return True else: return False def check_for_attachment(self, Notice): return Notice.file_attached != '' class Meta: model = Notice fields = ('bookmark_flag', 'id', 'title', 'owner', 'details', 'attachment_flag', 'created_at', 'category') class BookmarkSerializer(serializers.ModelSerializer): ''' Serializer class for Bookmarks Model ''' user = serializers.PrimaryKeyRelatedField(source='user.username', read_only=True) notice_id = serializers.SlugRelatedField(source='notice', slug_field='pk', queryset=Notice.objects.all()) class Meta: model = BookmarkedNotice fields = ('id', 'user', 'notice_id') def create(self, validated_data): """ Create and return a new `BookmarkedNotice` instance, given the validated data. """ return BookmarkedNotice.objects.create(**validated_data) def update(self, instance, validated_data): instance.id = validated_data.get('id', instance.id) instance.user = validated_data.get('user', instance.user) # instance.notice = validated_data.get('notice',instance.notice) instance.save() return instance
[ "deshrajdry@gmail.com" ]
deshrajdry@gmail.com
cdd399103ba43752763d8ad26be3a37a30b31469
c898fb981d3be036fd5a3de68641b07c3d10b171
/flask_jwt_router/testing/__init__.py
e2964b0155adcd52f7bfa5f095476bd6d8112dfb
[ "MIT" ]
permissive
joegasewicz/flask-jwt-router
669226adf9c82a00d783319cbc0790c6190ad518
17ad0e184e5692d48ed7fefd35c0d8a5b435c189
refs/heads/master
2023-03-08T16:49:42.515425
2022-06-22T17:20:46
2022-06-22T17:20:46
191,003,928
40
9
MIT
2023-02-16T04:08:37
2019-06-09T12:30:31
Python
UTF-8
Python
false
false
357
py
""" jwt_routes = JwtRoutes(app, strategies=[Google]) class BaseJwtRoutes: pass class JwtRoutes(BaseJwtRoutes): pass # Usage: if E2E_TESTS == True: class TestJwtRoutes(TestRouterMixin, BaseJwtRoutes): pass jwt_routes = TestJwtRoutes(app, strategies=[GoogleTest]) else: jwt_routes = JwtRoutes(app, strategies=[Google]) """
[ "noreply@github.com" ]
joegasewicz.noreply@github.com
35b3b957199ad587d7397bee4b61229411c935e9
6015d4b07ac1a1b7c784b7c643ecc9e83d4d5972
/python_lesson1/Part7_Control_Flow_Lecture.py
7605da12076a07948a43e8ef113cff72b056aeec
[]
no_license
smiledt/Full-Stack-Web-Developer-Bootcamp
38263bf779945aafb0b10dace169006f9fd2fa6d
5963711613a358162e85b260de9bf54828203337
refs/heads/master
2021-02-16T06:06:56.626763
2020-05-11T03:30:13
2020-05-11T03:30:13
244,974,238
0
0
null
null
null
null
UTF-8
Python
false
false
4,910
py
######################### #### CONTROL FLOW ####### ######################### # In this lecture we will cover Control Flow in Python, basically how to dictate # our code behaves in whatever manner we want. Let's start with basic comparison # Operators: ########################### ## COMPARISON OPERATORS ### ########################### # Greater than 1 > 2 # Less than 1 < 2 # Greater than or Equal to 1 >= 1 # Less than or Equal to 1 <= 4 # Equality 1 == 1 1 == "1" 'hi' == 'bye' # Inequality 1 != 2 ########################### ### LOGICAL OPERATORS ##### ########################### # AND (1 > 2) and (2 < 3) # OR (1 > 2) or (2 < 3) # Multiple logical operators (1 == 2) or (2 == 3) or (4 == 4) ################################## ### if,elif, else Statements ##### ################################## # Indentation is extremely important in Python and is basically Python's way of # getting rid of enclosing brackets like {} we've seen in the past and are common # with other languages. This adds to Python's readability and is huge part of the # "Zen of Python". It is also a big reason why its so popular for beginners. Any # text editor or IDE should be able to auto-indent for you, but always double check # this if you ever get errors in your code! Code blocks are then noted by a colon (:). # Now let's show some examples of if, elif, and else statements: if 1 < 2: print('Yep!') if 1 < 2: print('yep!') # If Else - Make sure to line up the else with the if statement to "connect" them if 1 < 2: print('first') else: print('last') ### ### if 1 > 2: print('first') else: print('last') # To add more conditions (like else if) you just use a single phrase "elif" if 1 == 2: print('first') elif 3 == 3: print('middle') else: print('Last') ################################################################################ ####################-----------------------------############################### ####################-----------LOOPS-------------############################### ####################-----------------------------############################### ################################################################################ # Time to review loops with Python, such as For Loops and While loops # Python is unique in that is discards parenthesis and brackets in favor of a # whitespace system that defines blocks of code through indentation, this forces # the user to write readable code, which is great for future you looking back at # your older code later on! ##################### ### FOR LOOPS ####### ##################### # Use For Loops for any sequence of elements. If you try to use a for loop with # a mapping like a dictionary, it will still work, but it won't loop with any # order. Let's walk through some examples of how a for loop behaves with the # various data structures we've learned about! # For Loop with a list # Perform an action with each element seq = [1, 2, 3, 4, 5] for item in seq: print(item) # Perform an action for every element but doesn't actually involve the elements for item in seq: print('Yep') # You can call the loop variable whatever you want: for jelly in seq: print(jelly + jelly) # For Loop with a Dictionary ages = {"Sam": 3, "Frank": 4, "Dan": 29} for key in ages: print("This is the key") print(key) print("This is the value") print(ages[key]) print("\n") # A list of tuple pairs is a very common format for functions to return data in # Because it is so common we can use tuple un-packing to deal with this, example: mypairs = [(1, 10), (3, 30), (5, 50)] # Normal for tup in mypairs: print(tup) # Tuple un-packing for item1, item2 in mypairs: print(item1) print(item2) ####################### ### WHILE LOOPS ####### ####################### # While loops allow us to continually perform and action until a condition # becomes true. For example: i = 1 while i < 5: print('i is: {}'.format(i)) i = i + 1 ##################### ### OTHER TOPICS #### ##################### # RANGE FUNCTION # range() can quickly generate integers for you, based on a starting and ending point # Note that its a generator: range(5) list(range(5)) for i in range(5): print(i) # Start and ending range(1, 10) # Third argument for step-size range(0, 10, 2) # List Comprehension # This technique allows you to quickly create lists with a single line of code. # You can think of this as deconstructing a for loop with an append(). For Example: # Starting with: x = [1, 2, 3, 4] # We could do this: out = [] for item in x: out.append(item**2) print(out) # Written in List Comprehension Form [item**2 for item in x] # List Comprehension is a great tool, but remember its not always approriate for # every situation, don't sacrafice readability for a list Comprehension. It's # speed is very comparable to the for loop.
[ "dereksmilees@gmail.com" ]
dereksmilees@gmail.com
90adc3801f23ed865f8ce3373066f9a2a5ee43e3
e2bd8debf59f71e2c7fabea03cc108618944b2b0
/el_pagination/paginators.py
6da5231fca53a0b0e1e586150ed4c8803e1d1b0e
[]
no_license
successar/Quizz
874c7c8656c33973d5d4f9563073b0434573a333
2244ff13568db92e3ff88156982ec44c83418199
refs/heads/master
2021-01-21T13:11:45.960397
2016-05-11T10:34:48
2016-05-11T10:34:48
53,747,315
1
1
null
2016-05-07T15:00:41
2016-03-12T18:36:34
Python
UTF-8
Python
false
false
4,359
py
"""Customized Django paginators.""" from __future__ import unicode_literals from math import ceil from django.core.paginator import ( EmptyPage, Page, PageNotAnInteger, Paginator, ) class CustomPage(Page): """Handle different number of items on the first page.""" def start_index(self): """Return the 1-based index of the first item on this page.""" paginator = self.paginator # Special case, return zero if no items. if paginator.count == 0: return 0 elif self.number == 1: return 1 return ( (self.number - 2) * paginator.per_page + paginator.first_page + 1) def end_index(self): """Return the 1-based index of the last item on this page.""" paginator = self.paginator # Special case for the last page because there can be orphans. if self.number == paginator.num_pages: return paginator.count return (self.number - 1) * paginator.per_page + paginator.first_page class BasePaginator(Paginator): """A base paginator class subclassed by the other real paginators. Handle different number of items on the first page. """ def __init__(self, object_list, per_page, **kwargs): if 'first_page' in kwargs: self.first_page = kwargs.pop('first_page') else: self.first_page = per_page super(BasePaginator, self).__init__(object_list, per_page, **kwargs) def get_current_per_page(self, number): return self.first_page if number == 1 else self.per_page class DefaultPaginator(BasePaginator): """The default paginator used by this application.""" def page(self, number): number = self.validate_number(number) if number == 1: bottom = 0 else: bottom = ((number - 2) * self.per_page + self.first_page) top = bottom + self.get_current_per_page(number) if top + self.orphans >= self.count: top = self.count return CustomPage(self.object_list[bottom:top], number, self) def _get_num_pages(self): if self._num_pages is None: if self.count == 0 and not self.allow_empty_first_page: self._num_pages = 0 else: hits = max(0, self.count - self.orphans - self.first_page) try: self._num_pages = int(ceil(hits / float(self.per_page))) + 1 except ZeroDivisionError: self._num_pages = 0 # fallback to a safe value return self._num_pages num_pages = property(_get_num_pages) class LazyPaginator(BasePaginator): """Implement lazy pagination.""" def validate_number(self, number): try: number = int(number) except ValueError: raise PageNotAnInteger('That page number is not an integer') if number < 1: raise EmptyPage('That page number is less than 1') return number def page(self, number): number = self.validate_number(number) current_per_page = self.get_current_per_page(number) if number == 1: bottom = 0 else: bottom = ((number - 2) * self.per_page + self.first_page) top = bottom + current_per_page # Retrieve more objects to check if there is a next page. objects = list(self.object_list[bottom:top + self.orphans + 1]) objects_count = len(objects) if objects_count > (current_per_page + self.orphans): # If another page is found, increase the total number of pages. self._num_pages = number + 1 # In any case, return only objects for this page. objects = objects[:current_per_page] elif (number != 1) and (objects_count <= self.orphans): raise EmptyPage('That page contains no results') else: # This is the last page. self._num_pages = number return CustomPage(objects, number, self) def _get_count(self): raise NotImplementedError count = property(_get_count) def _get_num_pages(self): return self._num_pages num_pages = property(_get_num_pages) def _get_page_range(self): raise NotImplementedError page_range = property(_get_page_range)
[ "successar@gmail.com" ]
successar@gmail.com
0e4438de1d5d50a311c87a31e465c1c6dfd3901c
84759a86f19a7a7eb8ccd618c3cf1a3ef3228b13
/examples/python/murach_python/book_apps/ch14/product_viewer/product_viewer.py
d2f7ab1e5d17fe51f51b963d8efcf0e37e4ea7c5
[]
permissive
mattgraham93/mattgraham93.github.io
50a77c4dd40398a631e5c026f95c33268c8cc67b
2b65735f87427c770187c21c873e5277019c3a5f
refs/heads/main
2023-07-07T09:07:56.085470
2023-06-30T03:51:24
2023-06-30T03:51:24
154,541,498
8
0
Apache-2.0
2020-08-08T16:53:18
2018-10-24T17:30:09
HTML
UTF-8
Python
false
false
1,297
py
from objects import Product def show_products(products): print("PRODUCTS") for i in range(len(products)): product = products[i] print(str(i+1) + ". " + product.name) print() def show_product(product): print("PRODUCT DATA") print("Name: {:s}".format(product.name)) print("Price: {:.2f}".format(product.price)) print("Discount percent: {:d}%".format(product.discountPercent)) print("Discount amount: {:.2f}".format(product.getDiscountAmount())) print("Discount price: {:.2f}".format(product.getDiscountPrice())) print() def main(): print("The Product Viewer program") print() # a tuple of Product objects products = (Product("Stanley 13 Ounce Wood Hammer", 12.99, 62), Product('National Hardware 3/4" Wire Nails', 5.06, 0), Product("Economy Duct Tape, 60 yds, Silver", 7.24, 0)) show_products(products) while True: number = int(input("Enter product number: ")) print() product = products[number-1] show_product(product) choice = input("View another product? (y/n): ") print() if choice != "y": print("Bye!") break if __name__ == "__main__": main()
[ "matt.graham@bellevuecollege.edu" ]
matt.graham@bellevuecollege.edu
2e61a6b407a11d07039c7a7032357e40376f6e6b
71fb04f723b46a1bf45295be239bcec25e07f98c
/examples/layers/preprocessing/classification/random_crop_demo.py
0538205cbc1fc4928a66c42bb9231dcb97e275ea
[ "Apache-2.0" ]
permissive
keras-team/keras-cv
9bca4479474e853ec3a1c541b8be20fea2447a1a
e83f229f1b7b847cd712d5cd4810097d3e06d14e
refs/heads/master
2023-08-31T10:22:08.406394
2023-08-30T20:24:57
2023-08-30T20:24:57
265,079,853
818
287
NOASSERTION
2023-09-12T16:49:01
2020-05-18T22:39:21
Python
UTF-8
Python
false
false
1,152
py
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """random_crop_demo.py.py shows how to use the RandomCrop preprocessing layer. Operates on an image of elephant. In this script the image is loaded, then are passed through the preprocessing layers. Finally, they are shown using matplotlib. """ import demo_utils from keras_cv.layers.preprocessing import RandomCrop def main(): many_elephants = demo_utils.load_elephant_tensor(output_size=(300, 300)) layer = RandomCrop(100, 200) augmented = layer(many_elephants) demo_utils.gallery_show(augmented.numpy()) if __name__ == "__main__": main()
[ "noreply@github.com" ]
keras-team.noreply@github.com
a214d38572ca60d8058ab74e572ca6b436b58734
773ad191e5b35af3b6248b8f43a3d50da6cfab94
/toolbox/randbn.py
61e4fe1af04f84214859207f461567810a32a1ce
[ "BSD-2-Clause" ]
permissive
lauralwatkins/toolbox
a792ab0a7123333a1c40fd1af8cec0dca17b6815
f4c2e7c62f83ec98872f62bc5df7d947cf387d56
refs/heads/master
2022-09-30T03:15:37.318914
2022-07-19T22:24:30
2022-07-19T22:24:30
37,667,498
1
1
null
null
null
null
UTF-8
Python
false
false
1,729
py
#!/usr/bin/env python # --------------------------------------------------------------------------- # # TOOLBOX.RANDBN # Laura L Watkins [lauralwatkins@gmail.com] # --------------------------------------------------------------------------- # from __future__ import division, print_function import numpy as np from scipy import integrate, interpolate def randbn(fn_name, params=None, num=1, vmin=0., vmax=1., ncdf=20): """ Draws numbers randomly from an input distribution in a given range. INPUTS fn_name : function name [*] OPTIONS params : parameters of the distribution [*][default None] num : number of random numbers to generate [default 1] vmin : lower limit of number range [default 0] vmax : upper limit of number range [default 1] ncdf : number of points at which to sample the CDF [**][default 20] NOTES [*] The function 'fn_name' should calculate the values x of the required function for a given parameter set p, that is fn_name(x,p). [**] Sampling the CDF at more points will increase the computation time as each point requires an integral, but it may be necessary for complex functions. """ values = np.linspace(vmin, vmax, ncdf) # normalised cumulative distribution function if params is None: f = lambda x: fn_name(x) else: f = lambda x: fn_name(x, params) cdf = np.cumsum([integrate.quad(f, values[max(0,i-1)], values[i])[0] \ for i in range(ncdf)]) cdf /= cdf[-1] # sample is drawn by calculating the value for randomly-generated CDFs sample = interpolate.interp1d(cdf, values)(np.random.rand(num)) return sample
[ "lauralwatkins@gmail.com" ]
lauralwatkins@gmail.com
84fd92823d3da86ca06d1ea1bef72787f0cfac2b
68d0032b178a00adca59929917ef83df28efa71f
/process_data.py
5e8177eecf2c5950ac5cb35683876feba12fa9bc
[]
no_license
AbhishekTaur/Elman_RNN
3243657406851eebd1487ba63b4446bce489cd01
6cc67b8130797d9869d82337590c66d6264520a3
refs/heads/master
2020-04-30T21:33:26.118837
2019-03-22T15:25:41
2019-03-22T15:26:10
177,096,242
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
import pandas as pd data = pd.read_csv("sample/blackscholes-small-4-8-cleaned.csv") keys = data.keys() print("Key\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tValues") for key in keys: print(key, "\t\t\t\t\t\t\t\t\t\t\t\t\t", data[key].values[0])
[ "abhishektaur123@gmail.com" ]
abhishektaur123@gmail.com
bd0535c661dbe01083d172e9b8c093b5dbd1bbfe
e4485d5a94a64b242be2e24b298d0e56f0b55027
/day13.py
1d2c5525247d5abf550c88038a75938876901e16
[]
no_license
13thZygrite/AdventOfCode2017
179158320c18819cc7124c05cf0daaf00833b720
0766bf4502cd0d15631423cbe7f1140e6fed07fd
refs/heads/master
2021-08-31T12:37:46.302253
2017-12-21T09:33:02
2017-12-21T09:33:02
112,941,154
0
0
null
null
null
null
UTF-8
Python
false
false
728
py
#!/usr/bin/env python with open("input_day13") as f: input = f.readlines() split = [map(int, line.split(": ")) for line in input] state = [[] for i in range(split[-1][0] + 1)] for line in split: state[line[0]] = [line[1], 1, 0] # Length, direction (1 down, -1 up), current pos # Part 1 severity = 0 for line in split: if line[0] % ((line[1] - 2)* 2 + 2) == 0: severity += line[0]* line[1] print "Part 1: ", severity # Part 2 delay = 0 while (1): severity = 0 failed = False for line in split: if (line[0] + delay) % ((line[1] - 2)* 2 + 2) == 0: failed = True if not failed: print "Part 2: ", delay break delay += 1
[ "themathsmassage@gmail.com" ]
themathsmassage@gmail.com
7fa50c182bf54b2fbf51441eefa0f324279633e7
1431b07074b96c7baa6a43a99717da2a658424af
/test/utils/Test_Zip_Folder.py
d6ecc3e784eaacfbffe1988284d8bf95e88f557b
[ "Apache-2.0" ]
permissive
almeidam/pbx-gs-python-utils
054a7334070627bc27f682ed78c2986230d1cfab
3f8987dd2d1fc27d1d262385280d7303009f5453
refs/heads/master
2020-04-30T10:44:46.179729
2019-03-20T13:59:01
2019-03-20T13:59:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
564
py
import json from unittest import TestCase from utils.Dev import Dev from utils.Files import Files from utils.Misc import Misc from utils.Zip_Folder import Zip_Folder class Test_Zip_Folder(TestCase): def test__using_with__no_params(self): with Zip_Folder() as (zip_file): assert zip_file is None def test__using_with_params(self): target_folder = Files.current_folder() with Zip_Folder(target_folder) as (zip_file): assert Files.exists(zip_file) is True assert Files.exists(zip_file) is False
[ "dinis.cruz@owasp.org" ]
dinis.cruz@owasp.org
9bf099e4570aab4e3c827aba4cfa379cb7ad7196
a86cb1d0cc2c01ccc5b7d03d25a1b98d4f8b66ca
/day_18/crawling_03.py
08ce38608a68158041385e8770f169492843e3ce
[]
no_license
yongseongCho/python_201911
020efd812df909f6d1150c6a15a9a4fa6ee946b6
f4696fac81a101d13a95ca0ca602e6478b4d2f58
refs/heads/master
2020-09-12T12:44:46.364259
2019-12-19T13:17:08
2019-12-19T13:17:08
222,429,853
0
0
null
null
null
null
UTF-8
Python
false
false
1,321
py
# -*- coding: utf-8 -*- from bs4 import BeautifulSoup as bs html = ''' <td class="title"> <div class="tit3"> <a href="/movie/bi/mi/basic.nhn?code=181710" title="포드 V 페라리">포드 V 페라리</a> </div> </td> ''' soup = bs(html, 'html.parser') # BeautifulSoup 객체의 find 메소드 # 태그의 이름과 속성의 정보를 조합하여 # 검색하는 경우 활용 # - find 메소드는 검색 결과를 하나만 반환 # - 최초에 발견된 첫 번째 태그를 반환 # 첫 번째로 검색된 td 태그의 객체를 반환 tag = soup.find(name='td') print(f'tag -> {tag}') # 첫 번째로 검색된 a 태그의 객체를 반환 tag = soup.find(name='a') print(f'tag -> {tag}') # 첫 번째로 검색된 # class 속성이 title인 객체를 반환 tag = soup.find(attrs={'class':'title'}) print(f'tag -> {tag}') # 첫 번째로 검색된 # class 속성이 tit3인 객체를 반환 tag = soup.find(attrs={'class':'tit3'}) print(f'tag -> {tag}') # 첫 번째로 검색된 # 태그의 이름이 td이고, # class 속성이 tit3인 객체를 반환 # - 존재하지 않는 경우 None 값이 반환 tag = soup.find(name='td', attrs={'class':'tit3'}) print(f'tag -> {tag}')
[ "noreply@github.com" ]
yongseongCho.noreply@github.com
5e991e4e3dc2696c8cfb6c76836a9bc9521137d2
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/nlp/Bert-text-classification_for_PyTorch/transformers/src/transformers/models/marian/modeling_flax_marian.py
9d8b44c5f9da84470baadab2b4eafaf3dfea6fd6
[ "GPL-1.0-or-later", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
63,778
py
# coding=utf-8 # Copyright 2021 The Marian Team Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax Marian model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import numpy as np import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from jax import lax from jax.random import PRNGKey from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import logging from .configuration_marian import MarianConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" _CONFIG_FOR_DOC = "MarianConfig" _TOKENIZER_FOR_DOC = "MarianTokenizer" MARIAN_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`MarianConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ MARIAN_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ MARIAN_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ MARIAN_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ def create_sinusoidal_positions(n_pos, dim): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) sentinel = dim // 2 + dim % 2 out = np.zeros_like(position_enc) out[:, 0:sentinel] = np.sin(position_enc[:, 0::2]) out[:, sentinel:] = np.cos(position_enc[:, 1::2]) return jnp.array(out) # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = np.zeros_like(input_ids) shifted_input_ids[:, 1:] = input_ids[:, :-1] shifted_input_ids[:, 0] = decoder_start_token_id shifted_input_ids = np.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Marian class FlaxMarianAttention(nn.Module): config: MarianConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->Marian class FlaxMarianEncoderLayer(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Marian class FlaxMarianEncoderLayerCollection(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxMarianEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->Marian class FlaxMarianDecoderLayer(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Marian class FlaxMarianDecoderLayerCollection(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxMarianDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxMarianEncoder(nn.Module): config: MarianConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxMarianEncoderLayerCollection(self.config, self.dtype) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale positions = jnp.take(self.embed_positions, position_ids, axis=0) # explictly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FlaxMarianDecoder(nn.Module): config: MarianConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxMarianDecoderLayerCollection(self.config, self.dtype) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = jnp.take(self.embed_positions, position_ids, axis=0) # explictly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class FlaxMarianModule(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.encoder = FlaxMarianEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxMarianDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxMarianPreTrainedModel(FlaxPreTrainedModel): config_class = MarianConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: MarianConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxMarianForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module(decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(MARIAN_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=MarianConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(MARIAN_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=MarianConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxMarianAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Marian Model transformer outputting raw hidden-states without any specific head on top.", MARIAN_START_DOCSTRING, ) class FlaxMarianModel(FlaxMarianPreTrainedModel): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxMarianModule append_call_sample_docstring( FlaxMarianModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC ) class FlaxMarianMTModule(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxMarianModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += self.final_logits_bias.astype(self.dtype) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The MARIAN Model with a language modeling head. Can be used for translation.", MARIAN_START_DOCSTRING ) class FlaxMarianMTModel(FlaxMarianPreTrainedModel): module_class = FlaxMarianMTModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(MARIAN_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=MarianConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxMarianAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def _adapt_logits_for_beam_search(self, logits): """This function enforces the padding token never to be generated.""" logits = logits.at[:, :, self.config.pad_token_id].set(float("-inf")) return logits def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None, decoder_attention_mask: Optional[jnp.DeviceArray] = None, encoder_outputs=None, **kwargs ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_MARIAN_MT_DOCSTRING = """ Returns: Example: ```python >>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> input_ids = tokenizer(text, max_length=64, return_tensors="jax").input_ids >>> sequences = model.generate(input_ids, max_length=64, num_beams=2).sequences >>> outputs = tokenizer.batch_decode(sequences, skip_special_tokens=True) >>> # should give *Meine Freunde sind cool, aber sie essen zu viele Kohlenhydrate.* ``` """ overwrite_call_docstring( FlaxMarianMTModel, MARIAN_INPUTS_DOCSTRING + FLAX_MARIAN_MT_DOCSTRING, ) append_replace_return_docstrings(FlaxMarianMTModel, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
[ "dongwenbo6@huawei.com" ]
dongwenbo6@huawei.com
81dba2963b823be8d1f748daa2d0969e48aeebcc
73dd708f0a69b573f49854fa9416773558df4733
/webApi_dotnet.py
0d98e6082cffccf45e414334ccc4900052439394
[]
no_license
jobFrancoNet/Shopper
9c333cf724410430d2f268dba4a970e1f92d5785
eb984e1cf18707f24466604ad8e30492e849fbc9
refs/heads/master
2022-09-23T11:08:22.480513
2020-06-05T18:58:10
2020-06-05T18:58:10
265,583,363
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
import requests indirizzo_webapi="http://localhost:57058/api/Values/1" richiesta=requests.get(indirizzo_webapi) jsondata=richiesta.json() print(jsondata)
[ "aiutocorsi@hotmail.it" ]
aiutocorsi@hotmail.it
d75ab97fb9184a24f45a05f01fc83903b2dc748e
6f8aec72f983715b1dcc1e067e980a440440423a
/bruteguard/patterns/singleton.py
a9f7c0f51adf9d2ce958d11132938a6d7c1b1ffb
[ "MIT" ]
permissive
dcopm999/django-brute-guard
41cef7c1f98b275c0ef2176424c8ef1e75002fdb
e4c629d81f1cc732ddae2a43042e92ea423884b8
refs/heads/master
2023-08-02T06:16:54.219332
2021-09-30T05:45:10
2021-09-30T05:45:10
409,435,237
0
0
MIT
2021-09-30T05:45:10
2021-09-23T03:32:47
Python
UTF-8
Python
false
false
1,076
py
from typing import Dict class SingletonMeta(type): """ В Python класс Одиночка можно реализовать по-разному. Возможные способы включают себя базовый класс, декоратор, метакласс. Мы воспользуемся метаклассом, поскольку он лучше всего подходит для этой цели. """ _instances: Dict[type, type] = {} def __call__(cls, *args, **kwargs): """ Данная реализация не учитывает возможное изменение передаваемых аргументов в `__init__`. """ if cls not in cls._instances: instance = super().__call__(*args, **kwargs) cls._instances[cls] = instance return cls._instances[cls] class Singleton(object): def __new__(cls): if not hasattr(cls, "instance"): cls.instance = super(Singleton, cls).__new__(cls) return cls.instance
[ "dcopm999@gmail.com" ]
dcopm999@gmail.com
0dd03e74709472bf5290b512b954f095a6b05aee
cccbe12d485747620a8409e660da1750c4f32701
/director/migrations/versions/30d6f6636351_initial_migration.py
2a603bfa87a78d580219061ab85f910ef91e76fe
[ "BSD-3-Clause" ]
permissive
keshabb/celery-director
1c958ac87c67e507ac220209c9236cf8f822c08f
95ece533ba2f4205932e1bb761f1acab977918c4
refs/heads/master
2021-01-05T10:09:25.908079
2020-02-07T18:16:30
2020-02-07T18:20:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,145
py
"""Initial migration Revision ID: 30d6f6636351 Revises: Create Date: 2020-02-07 18:34:41.680883 """ from alembic import op import sqlalchemy as sa from sqlalchemy_utils.types import UUIDType from director.models.utils import JSONBType # revision identifiers, used by Alembic. revision = '30d6f6636351' down_revision = None branch_labels = None depends_on = None def upgrade(): op.create_table('workflows', sa.Column('id', UUIDType(binary=False), nullable=False), sa.Column('created_at', sa.DateTime(timezone=True), nullable=False), sa.Column('updated_at', sa.DateTime(timezone=True), nullable=False), sa.Column('name', sa.String(), nullable=False), sa.Column('project', sa.String(), nullable=False), sa.Column('status', sa.Enum('pending', 'progress', 'success', 'error', 'canceled', name='statustype'), nullable=False), sa.Column('payload', JSONBType(), nullable=True), sa.Column('periodic', sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint('id', name=op.f('pk_workflows')) ) op.create_index(op.f('ix_workflows_created_at'), 'workflows', ['created_at'], unique=False) op.create_table('tasks', sa.Column('id', UUIDType(binary=False), nullable=False), sa.Column('created_at', sa.DateTime(timezone=True), nullable=False), sa.Column('updated_at', sa.DateTime(timezone=True), nullable=False), sa.Column('key', sa.String(), nullable=False), sa.Column('status', sa.Enum('pending', 'progress', 'success', 'error', 'canceled', name='statustype'), nullable=False), sa.Column('previous', JSONBType(), nullable=True), sa.Column('workflow_id', UUIDType(binary=False), nullable=False), sa.ForeignKeyConstraint(['workflow_id'], ['workflows.id'], name=op.f('fk_tasks_workflow_id_workflows')), sa.PrimaryKeyConstraint('id', name=op.f('pk_tasks')) ) op.create_index(op.f('ix_tasks_created_at'), 'tasks', ['created_at'], unique=False) def downgrade(): op.drop_index(op.f('ix_tasks_created_at'), table_name='tasks') op.drop_table('tasks') op.drop_index(op.f('ix_workflows_created_at'), table_name='workflows') op.drop_table('workflows')
[ "ncrocfer@gmail.com" ]
ncrocfer@gmail.com
7b896b4589bf69f36141e6756328de16f68c4a47
c98b6927dcea7fbab0d5d456a6530ade2d9c74a5
/refresh.py
5bedb43ab92f73e849c809c7aebc181dc7b4ced3
[]
no_license
nrtdemo/AT
a8d41cf919165c8d25d3c5577d61b986bcd6a2f6
06a14c09c6dac3ea65ee5743c0055e34c3be3692
refs/heads/master
2021-04-27T06:10:15.442508
2018-04-25T14:41:59
2018-04-25T14:41:59
122,608,112
0
1
null
null
null
null
UTF-8
Python
false
false
520
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import cgitb import cgi from link.FortyFiftyGbE import FF from link.PEbangkok import PE form = cgi.FieldStorage() cgitb.enable() if __name__ == "__main__": print "Content-type: application/json\n\n" print if 'link' in form: Link = form['link'].value if Link == "40G100G": ff = FF() ff.jsonlink() if Link == "PE": pe = PE() pe.jsonlink() else: ff = FF() ff.jsonlink()
[ "nrtdemo@hotmail.com" ]
nrtdemo@hotmail.com
2a739b751d27912b4ec246d9d6c54a4b4576bb53
441ee516fa509a66eb6a6132ed0fbafeae1a06ae
/uploadf/models.py
ecd3c53d7d6062ba60639a19f3c1636e76875306
[]
no_license
Shirhussain/FileUpload
3237627020ec322d4097e757b64f9f0c64feb4e7
19d2e848d7d05fd46838f9140c0a5658bbca281a
refs/heads/master
2022-08-26T13:26:23.859084
2020-05-27T22:02:36
2020-05-27T22:02:36
264,777,859
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
from django.db import models class Book(models.Model): title = models.CharField(max_length=100) author = models.CharField(max_length=50) pdf = models.FileField(upload_to="mag/") cover = models.ImageField(upload_to="mag/cover/", null=True, blank=True) def __str__(self): return self.title def delete(self,*args, **kwargs): self.pdf.delete() self.cover.delete() super().delete(*args, **kwargs)
[ "sh.danishyar@gmail.com" ]
sh.danishyar@gmail.com
01a0395d3c8609fa3ce667d63ab94888725a0929
5539827c951cdeda292bc660d7d825aa64f0cb76
/GuliEdu/wsgi.py
336349ebaa5ca1f825e0fb4f8b394ed97ebcd997
[]
no_license
dzapologize/GuliEdu
f5ed626003b49f6eb7f5590adb3487121cfda10e
4916486c4d548178ed50df906efbb08297477b08
refs/heads/master
2023-01-01T23:58:01.009774
2020-10-03T08:40:18
2020-10-03T08:40:18
299,006,299
0
0
null
2020-10-03T08:38:47
2020-09-27T10:23:15
Python
UTF-8
Python
false
false
391
py
""" WSGI config for GuliEdu project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'GuliEdu.settings') application = get_wsgi_application()
[ "diaozheng@yunbangshou.com" ]
diaozheng@yunbangshou.com
35ac429c2000eeba0d2ae7692c1779bd7d106feb
a61c6fece6fb5b8eef7ff9c68ec3315d9512ce1d
/History Maker/ultimate_history.py
02b8f4946f170fb949dbdd58d47543ec889e9221
[]
no_license
byte127x/random-things
cbd2cabf13e2e780b23843aaac949d4ce68019ff
d05f834e227f8a956bc7e88fbaf19a9040a3815a
refs/heads/main
2023-07-15T15:12:09.380001
2021-08-21T00:54:24
2021-08-21T00:54:24
398,433,509
0
0
null
null
null
null
UTF-8
Python
false
false
2,926
py
import random as rm print("Welcome To The Domination Controller\nThis program makes radical algorithms to decide which country should fade from existence!\n") countries = ['Austria', "Belgium", 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'The Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Andorra', 'Armenia', 'Belarus', 'Bosnia and Herzegovina', 'Faroe Isands', 'Georgia', 'Gibraltar', 'Iceland', 'Isle of Man', 'Liechtenstein', 'Macedonia', 'Moldova', 'Monaco', 'Montenegro', 'Norway', 'Russia', 'San Marino', 'Serbia', 'Switzerland', 'Turkey', 'Ukraine', 'United Kingdom'] input('Press Enter to Start!') fIO = open('Data.txt', 'a') while True: revolt_time = (rm.randint(0, 8) == 6) victim_state = rm.randint(0, len(countries)-1) swallow_by_neighbor_time = (rm.randint(0, 10) == 9) print('') if len(countries) == 1: print(f'{countries[0]} Won The Supreme Battle!') fIO.write(f'{countries[0]} Won The Supreme Battle!') break elif revolt_time: fIO.write("REVOLUTION TIME FOR ...") print("REVOLUTION TIME FOR ...") fIO.write(countries[victim_state] + '\n') print(countries[victim_state] + '\n') elif swallow_by_neighbor_time: print(f"{countries[victim_state]} Turns its neighbors into puppets!\nThey still exist but are dominated by their puppetmaster\n") fIO.write(f"{countries[victim_state]} Turns its neighbors into puppets!\nThey still exist but are dominated by their puppetmaster\n") else: fIO.write('Battle Time - Who Will Win???') print('Battle Time - Who Will Win???') countrybattle = rm.randint(0, len(countries)-1) if countrybattle == victim_state: fIO.write(f'It\'s The Same Country! ({countries[victim_state]}) Nothing Happens\n') print(f'It\'s The Same Country! ({countries[victim_state]}) Nothing Happens\n') else: battlers = [] battlers.append(countries[victim_state]) battlers.append(countries[countrybattle]) print(f'It\'s {battlers[1]} vs. {battlers[0]} ') fIO.write(f'It\'s {battlers[1]} vs. {battlers[0]} ') if bool(rm.getrandbits(1)): print(f'{battlers[0]} Wins and incorporates {battlers[1]}\n') fIO.write(f'{battlers[0]} Wins and incorporates {battlers[1]}\n') countries.remove(countries[countrybattle]) else: print(f'{battlers[1]} Wins and incorporates {battlers[0]}\n') fIO.write(f'{battlers[1]} Wins and incorporates {battlers[0]}\n') countries.remove(countries[victim_state]) fIO.close() input('>')
[ "noreply@github.com" ]
byte127x.noreply@github.com
174ab03d35f1b83c388a52575470a997450147eb
444a9480bce2035565332d4d4654244c0b5cd47b
/research/cv/centerface/dependency/centernet/src/lib/datasets/sample/multi_pose.py
5f4ff97eb3a893a418e55fcd8f149478108e8a22
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license", "MIT" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
9,604
py
""" MIT License Copyright (c) 2019 Xingyi Zhou All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import cv2 from dependency.centernet.src.lib.utils.image import color_aug from dependency.centernet.src.lib.utils.image import get_affine_transform, affine_transform from dependency.centernet.src.lib.utils.image import gaussian_radius, draw_umich_gaussian from dependency.extd.utils.augmentations import anchor_crop_image_sampling def get_border(border, size): """ Get border """ i = 1 while size - border // i <= border // i: # size > 2 * (border // i) i *= 2 return border // i def coco_box_to_bbox(box): """ (x1, y1, w, h) -> (x1, y1, x2, y2) """ bbox = np.array([box[0], box[1], box[0] + box[2], box[1] + box[3]], dtype=np.float32) return bbox def preprocess_train(image, target, config): """ Preprocess training data """ data_rng = np.random.RandomState(123) eig_val = np.array([0.2141788, 0.01817699, 0.00341571], dtype=np.float32) eig_vec = np.array([ [-0.58752847, -0.69563484, 0.41340352], [-0.5832747, 0.00994535, -0.81221408], [-0.56089297, 0.71832671, 0.41158938] ], dtype=np.float32) mean = np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32).reshape((1, 1, 3)) std = np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32).reshape((1, 1, 3)) num_objs = len(target) anns = [] for each in target: ann = {} ann['bbox'] = each[0:4] ann['keypoints'] = each[4:] anns.append(ann) cv2.setNumThreads(0) img, anns = anchor_crop_image_sampling(image, anns) _, width = img.shape[0], img.shape[1] c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32) s = max(img.shape[0], img.shape[1]) * 1.0 rot = 0 flipped = False if config.rand_crop: #s = s * np.random.choice(np.arange(0.8, 1.3, 0.05)) # for 768*768 or 800* 800 s = s * np.random.choice(np.arange(0.6, 1.0, 0.05)) # for 512 * 512 border = s * np.random.choice([0.1, 0.2, 0.25]) w_border = get_border(border, img.shape[1]) # w > 2 * w_border h_border = get_border(border, img.shape[0]) # h > 2 * h_border c[0] = np.random.randint(low=w_border, high=img.shape[1] - w_border) c[1] = np.random.randint(low=h_border, high=img.shape[0] - h_border) else: sf = config.scale cf = config.shift c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) if np.random.random() < config.rotate: rf = config.rotate rot = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if np.random.random() < config.flip: # opt.flip = 0.5 flipped = True img = img[:, ::-1, :] c[0] = width - c[0] - 1 trans_input = get_affine_transform(c, s, rot, [config.input_res, config.input_res]) inp = cv2.warpAffine(img, trans_input, (config.input_res, config.input_res), flags=cv2.INTER_LINEAR) inp = (inp.astype(np.float32) / 255.) if config.color_aug: color_aug(data_rng, inp, eig_val, eig_vec) inp = (inp - mean) / std inp = inp.transpose(2, 0, 1) output_res = config.output_res num_joints = config.num_joints max_objs = config.max_objs trans_output_rot = get_affine_transform(c, s, rot, [output_res, output_res]) trans_output = get_affine_transform(c, s, 0, [output_res, output_res]) # map hm = np.zeros((config.num_classes, output_res, output_res), dtype=np.float32) hm_hp = np.zeros((num_joints, output_res, output_res), dtype=np.float32) wh = np.zeros((output_res, output_res, 2), dtype=np.float32) reg = np.zeros((output_res, output_res, 2), dtype=np.float32) ind = np.zeros((output_res, output_res), dtype=np.float32) # as float32, need no data_type change later reg_mask = np.zeros((max_objs), dtype=np.uint8) wight_mask = np.zeros((output_res, output_res, 2), dtype=np.float32) kps = np.zeros((output_res, output_res, num_joints * 2), dtype=np.float32) kps_mask = np.zeros((output_res, output_res, num_joints * 2), dtype=np.float32) # hp_offset = np.zeros((max_objs * num_joints, 2), dtype=np.float32) hp_ind = np.zeros((max_objs * num_joints), dtype=np.int64) hp_mask = np.zeros((max_objs * num_joints), dtype=np.int64) draw_gaussian = draw_umich_gaussian gt_det = [] for k in range(num_objs): ann = anns[k] bbox = coco_box_to_bbox(ann['bbox']) # [x,y,w,h]--[x1,y1,x2,y2] cls_id = 0 #int(ann['category_id']) - 1 pts = np.array(ann['keypoints'], np.float32).reshape(num_joints, 3) # (x,y,0/1) if flipped: bbox[[0, 2]] = width - bbox[[2, 0]] - 1 pts[:, 0] = width - pts[:, 0] - 1 for e in config.flip_idx: # flip_idx = [[0, 1], [3, 4]] pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy() bbox[:2] = affine_transform(bbox[:2], trans_output) # [0, 1] -- (x1, y1) bbox[2:] = affine_transform(bbox[2:], trans_output) # [2, 3] -- (x2, y2) bbox = np.clip(bbox, 0, output_res - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] if (h > 0 and w > 0) or (rot != 0): radius = gaussian_radius((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) ct_int = ct.astype(np.int32) ind[ct_int[1], ct_int[0]] = 1.0 wh[ct_int[1], ct_int[0], :] = np.log(1. * w / 4), np.log(1. * h / 4) reg[ct_int[1], ct_int[0], :] = ct[0] - ct_int[0], ct[1] - ct_int[1] reg_mask[k] = 1.0 wight_mask[ct_int[1], ct_int[0], 0] = 1 wight_mask[ct_int[1], ct_int[0], 1] = 1 # if w*h <= 20: # can get what we want sometime, but unstable # wight_mask[k] = 15 if w*h <= 40: wight_mask[ct_int[1], ct_int[0], 0] = 5 wight_mask[ct_int[1], ct_int[0], 1] = 5 if w*h <= 20: wight_mask[ct_int[1], ct_int[0], 0] = 10 wight_mask[ct_int[1], ct_int[0], 1] = 10 if w*h <= 10: wight_mask[ct_int[1], ct_int[0], 0] = 15 wight_mask[ct_int[1], ct_int[0], 1] = 15 if w*h <= 4: wight_mask[ct_int[1], ct_int[0], 0] = 0.1 wight_mask[ct_int[1], ct_int[0], 1] = 0.1 num_kpts = pts[:, 2].sum() if num_kpts == 0: hm[cls_id, ct_int[1], ct_int[0]] = 0.9999 hp_radius = gaussian_radius((math.ceil(h), math.ceil(w))) hp_radius = max(0, int(hp_radius)) for j in range(num_joints): if pts[j, 2] > 0: pts[j, :2] = affine_transform(pts[j, :2], trans_output_rot) if pts[j, 0] >= 0 and pts[j, 0] < output_res and pts[j, 1] >= 0 and pts[j, 1] < output_res: kps[ct_int[1], ct_int[0], j * 2 : j * 2 + 2] = pts[j, :2] - ct_int kps[ct_int[1], ct_int[0], j * 2 : j * 2 + 1] = kps[ct_int[1], ct_int[0], j * 2 : j * 2 + 1] / w kps[ct_int[1], ct_int[0], j * 2 + 1: j * 2 + 2] = kps[ct_int[1], ct_int[0], j * 2 + 1 : j * 2 + 2] / h kps_mask[ct_int[1], ct_int[0], j * 2 : j * 2 + 2] = 1.0 pt_int = pts[j, :2].astype(np.int32) hp_offset[k * num_joints + j] = pts[j, :2] - pt_int hp_ind[k * num_joints + j] = pt_int[1] * output_res + pt_int[0] hp_mask[k * num_joints + j] = 1 draw_gaussian(hm_hp[j], pt_int, hp_radius) kps_mask[ct_int[1], ct_int[0], j * 2 : j * 2 + 2] = \ 0.0 if ann['bbox'][2] * ann['bbox'][3] <= 8.0 else 1.0 draw_gaussian(hm[cls_id], ct_int, radius) gt_det.append([ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2, 1] + pts[:, :2].reshape(num_joints * 2).tolist() + [cls_id]) return inp, hm, reg_mask, ind, wh, wight_mask, reg, kps_mask, kps
[ "chenhaozhe1@huawei.com" ]
chenhaozhe1@huawei.com
f2c83f4d0fc2e94589608d3b0b8b4d950151f83d
470d603645840c014d7c7f6da0727cf9b1b7f618
/googleanalytics/utils/string.py
a6a7c42a72e0a31d672c5b9656b708e86d48053c
[ "ISC" ]
permissive
ranksense/google-analytics
5f3982a625d3a4aced16503856e83a30a6d890be
a97f7750fa51320fb9f2917e56563ffff06ccdde
refs/heads/master
2022-12-15T15:54:17.519653
2020-09-19T17:05:59
2020-09-19T17:05:59
287,854,525
2
1
ISC
2020-08-16T01:46:25
2020-08-16T01:46:24
null
UTF-8
Python
false
false
1,065
py
import textwrap # Python 2 and 3 compatibility try: unicode = unicode except NameError: unicode = str def format(string, **kwargs): return textwrap.dedent(string).format(**kwargs).strip() def affix(prefix, base, suffix, connector='_'): if prefix: prefix = prefix + connector else: prefix = '' if suffix: suffix = connector + suffix else: suffix = '' return prefix + base + suffix # a supercharged `join` function, analogous to `paste` in the R language def paste(rows, *delimiters): delimiter = delimiters[-1] delimiters = delimiters[:-1] if len(delimiters): return paste([paste(row, *delimiters) for row in rows], delimiter) else: return delimiter.join(map(unicode, rows)) # a supercharged `split` function, the inverse of `paste` def cut(s, *delimiters): delimiter = delimiters[-1] delimiters = delimiters[:-1] if len(delimiters): return [cut(ss, *delimiters) for ss in cut(s, delimiter)] else: return s.split(delimiter)
[ "stijn@debrouwere.org" ]
stijn@debrouwere.org
c8fe58376e632a3abf6fabe21b845ea9bfca8392
493d5df9420ef94d9c5e82acb2d163e2a8c639b7
/memo_app/forms.py
f9a73ac5260ef3004567845ec9abe38b54032eea
[]
no_license
reina0207/django
0e3d6422c137be52978526128112ebf319e0f462
c42744935043efdcc4b9f3f14641105d082d691a
refs/heads/master
2023-08-13T14:10:59.979651
2021-10-17T01:48:48
2021-10-17T01:48:48
417,983,393
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
from django import forms from .models import Memo class PostForm(forms.ModelForm): class Meta: model = Memo fields = ['content'] widgets = { 'content':forms.Textarea }
[ "you@example.com" ]
you@example.com
34c0055b2c462a9631a4da5040691bbf2b848594
37b1734e625ef52d76bc32055c91943740a1ab64
/test.py
06ac45e8982057cf4d886cec21cfe7e70ed199ff
[]
no_license
coloz/ocr-py
83458071572e5212a22f87b1ea4aef1d321aebcd
0037a83e877dc81cfe82f57df3274e1811690162
refs/heads/master
2023-05-02T21:30:36.839077
2021-05-17T14:21:30
2021-05-17T14:21:30
368,213,153
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
import cv2 if __name__ == '__main__': video = cv2.imread() ok, frame = video.read() if ok: cv2.imshow("tracker", frame) while True: ok, frame = video.read() if ok: cv2.imshow("tracker",frame) k = cv2.waitKey(1) & 0xff if k == 27: break
[ "clz@clz.me" ]
clz@clz.me
5cbebc094716ebcd2abe250c57520dee3117a1d0
d7d25574246fd8585396a02ebd2ca8450e49b082
/leetcode-py/leetcode1041.py
44b0f6df2298740f5cbbebe712ae04d38cac1548
[]
no_license
cicihou/LearningProject
b6b1de2300e574835f253935d0c0ae693b194020
3a5649357e0f21cbbc5e238351300cd706d533b3
refs/heads/master
2022-12-04T06:18:14.856766
2022-11-29T08:54:16
2022-11-29T08:54:16
141,606,471
0
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
class Solution: def isRobotBounded(self, instructions: str) -> bool: ''' lc 657 的变种 这个问题比较 tricky,其实更接近数学问题 实际上只要判断机器人最后是否面朝北,就可以知道是不是回到了原点 关于为什么 instructions *= 4 是最小限度的解释: https://leetcode.com/problems/robot-bounded-in-circle/discuss/850437/Python-O(n)-solution-explained https://leetcode.com/problems/robot-bounded-in-circle/discuss/290915/Python-Concise-%2B-Explanation note: 这个 direc 的判断思想好好记一下,我自己写的时候直觉要用两个数组表达左右方向,其实左右方向只是周期不同 ''' direc = [(0, 1), (-1, 0), (0, -1), (1, 0)] d = 0 start = (0, 0) instructions *= 4 for ch in instructions: if ch == 'G': nx, ny = direc[d] start = start[0] + nx, start[1] + ny else: if ch == 'L': d = (d + 1) % 4 if ch == 'R': d = (d + 3) % 4 return start == (0, 0) ''' 更加 tricky 的数学解法:判断机器人是否朝北,不朝北就一定能走回来 https://leetcode.com/problems/robot-bounded-in-circle/discuss/291221/Python-O(N)-time-O(1)-space-beats-100-detailed-explanations ''' direc = [(0, 1), (-1, 0), (0, -1), (1, 0)] d = 0 start = (0, 0) for ch in instructions: if ch == 'L': d = (d+1) % 4 elif ch == 'R': d = (d+3) % 4 else: nx, ny = direc[d] start = start[0] + nx, start[1] + ny return start == (0, 0) or d != 0
[ "houxi_zuel@163.com" ]
houxi_zuel@163.com
fbf9ee05f41aa879f6e8efe0d638a2ad5f92c86f
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/53/usersdata/94/21421/submittedfiles/matriz2.py
0d65cb52f0ea2e9536be7e87278cf3364bd3fd2d
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,374
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np def soma_diagonal_principal(a): soma=0 for i in range(0,a.shape[0],1): soma=soma+a[i,i] return soma def soma_diagonal_secundaria(a): soma=0 for i in range(0,a.shape[0],1): soma=soma+a[i,a.shape[0]-i-1]: return soma def soma_linha(a): a=[] for i in range (0,a.shape[0],1): soma=0 for j in range (0,a.shape[1],1): soma=soma+a[i,j] a.append(soma) return c def soma_coluna(a): a=[] for j in range(0,a.shape[1],1): soma=0 for i in range(0,a.shape[0],1): soma=soma+a[i,j] a.append(soma) return d def magico(a): sdp=soma_diagonal_principal(a) sds=soma_diagonal_secundaria(a) sl=soma_linha(a) sc=soma_coluna(a) cont=0 for i in range(0,len(sl),1): if sdp==sds==sl[i]==sc[i]: cont=cont+1 if cont==len(sl): return True else: return False linhas=input('digite a quantidade de linhas') colunas=input('digite a quantidade de colunas') a=np.zeros((linhas,colunas)) for i in range (0,a.shape[0],1): for j in range(0,a.shape[1],1): a[i,j]=input('digite um elemento:') if magico(a): print ('S') else: print ('N')
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
50d80d14dd6348c83c9f92ad9073c1f1fdbf0848
ab204a9b476c82c2543debd5455864a619acfb3b
/Travelling/ckdproject1/wsgi.py
b76560a5ed5fdfa463f50ca05f19d504c4da5308
[]
no_license
chandan9074/Travelling-Web
ba05a77ed576a198ec53241b791d1f74ccaf3687
246f21a319b9afd7da45942cc936b2f32f7790d8
refs/heads/master
2022-12-02T07:23:32.672957
2020-08-02T07:36:32
2020-08-02T07:36:32
284,413,472
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for ckdproject1 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ckdproject1.settings') application = get_wsgi_application()
[ "chandan15-11611@diu.edu.bd" ]
chandan15-11611@diu.edu.bd