blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
368d3a8e796916e2e6cadcf0e634c978a7ef2699
ae7ba9c83692cfcb39e95483d84610715930fe9e
/martinkersner/train-CRF-RNN/crfasrnn.py
472a86f853e687aa057de49dcc8aa8957733f63d
[]
no_license
xenron/sandbox-github-clone
364721769ea0784fb82827b07196eaa32190126b
5eccdd8631f8bad78eb88bb89144972dbabc109c
refs/heads/master
2022-05-01T21:18:43.101664
2016-09-12T12:38:32
2016-09-12T12:38:32
65,951,766
5
7
null
null
null
null
UTF-8
Python
false
false
3,462
py
#!/usr/bin/env python # Martin Kersner, m.kersner@gmail.com # 2016/03/03 from __future__ import print_function caffe_root = '../caffe-crfrnn/' import sys sys.path.insert(0, caffe_root + 'python') import os import cPickle import logging import numpy as np import pandas as pd from PIL import Image as PILImage import cStringIO as StringIO import caffe import matplotlib.pyplot as plt from utils import palette_demo # TODO concatenate input and output image def main(): iteration, image_paths = process_arguments(sys.argv) if iteration: prototxt = 'TVG_CRFRNN_COCO_VOC_TEST_3_CLASSES.prototxt' model = 'models/train_iter_{}.caffemodel'.format(iteration) else: prototxt = 'TVG_CRFRNN_COCO_VOC.prototxt' model = 'TVG_CRFRNN_COCO_VOC.caffemodel' if not exist_model(model, prototxt): help() # default images (part of http://www.cs.berkeley.edu/~bharath2/codes/SBD/download.html) if not image_paths: image_paths.append('images/2007_005844.png') # chair image_paths.append('images/2008_007811.png') # bottle image_paths.append('images/2007_002094.png') # bird palette = palette_demo() net = caffe.Segmenter(prototxt, model, True) for path in image_paths: image, cur_h, cur_w = preprocess_image(path) if image == None: print(path + ' does not exist! Skipping.' , file=sys.stderr) continue print('Processing ' + path + '...', end='') segmentation = net.predict([image]) segm_post = postprocess_label(segmentation, cur_h, cur_w, palette) plt.imshow(segm_post) plt.savefig(create_label_name(path)) print('finished.') def preprocess_image(image_path): if not os.path.exists(image_path): return None, 0, 0 input_image = 255 * caffe.io.load_image(image_path) image = PILImage.fromarray(np.uint8(input_image)) image = np.array(image) mean_vec = np.array([103.939, 116.779, 123.68], dtype=np.float32) reshaped_mean_vec = mean_vec.reshape(1, 1, 3); im = image[:,:,::-1] im = im - reshaped_mean_vec # Pad as necessary cur_h, cur_w, cur_c = im.shape pad_h = 500 - cur_h pad_w = 500 - cur_w im = np.pad(im, pad_width=((0, pad_h), (0, pad_w), (0, 0)), mode = 'constant', constant_values = 0) return im, cur_h, cur_w def postprocess_label(segmentation, cur_h, cur_w, palette): segmentation2 = segmentation[0:cur_h, 0:cur_w] output_im = PILImage.fromarray(segmentation2) output_im.putpalette(palette) return output_im def create_label_name(orig_path): return 'label_' + os.path.splitext(os.path.basename(orig_path))[0] + '.png' def exist_model(model, prototxt): if not os.path.exists(model): print('Model ' + model + ' does not exist! Exiting.', file=sys.stderr) return False elif not os.path.exists(prototxt): print('Prototxt' + prototxt + ' does not exist! Exiting.', file=sys.stderr) return False return True def process_arguments(argv): num_args = len(argv) iteration = None image_paths = [] if num_args == 2: iteration = argv[1] elif num_args > 2: iteration = argv[1] for name in argv[2:]: image_paths.append(name) return iteration, image_paths def help(): print('Usage: python crfasrnn.py [ITERATION_NUM [IMAGE, IMAGE, ...]\n' 'ITERATION_NUM denotes iteration number of model which shall be run.\n' 'IMAGE one or more images can be passed as arguments.' , file=sys.stderr) exit() if __name__ == '__main__': main()
[ "xenron@outlook.com" ]
xenron@outlook.com
f0ee9e58c7029957af4366c984e9861db7dfc8e2
6ffed3351dd608ce311a7c04d813e4cbcc283d6f
/djongo_project/files/api/serializers.py
e0c2ca3d77901c61c0d12799e99a053ec5653fad
[]
no_license
navill/ai_2-1
bc2311dd5e8839c6bd4112965b7348252408785a
7dd782b93286b7a407c433aa55a3b8f3f626fe89
refs/heads/master
2023-01-06T19:09:26.051130
2020-10-07T02:08:15
2020-10-07T02:08:15
290,131,119
0
0
null
2020-10-08T14:45:37
2020-08-25T06:20:46
Python
UTF-8
Python
false
false
1,396
py
from typing import * from rest_framework import serializers from rest_framework.reverse import reverse from accounts.models import CommonUser from utilities.file_utils import EncryptHandler from files.models import CommonFile class FileManageSerializer(serializers.ModelSerializer): user = serializers.PrimaryKeyRelatedField(queryset=CommonUser.objects.all(), required=False) patient_name = serializers.CharField(required=True) file = serializers.FileField(use_url=False) created_at = serializers.DateTimeField(read_only=True) class Meta: model = CommonFile fields = ['user', 'patient_name', 'file', 'created_at'] read_only_fields = ['user'] def to_representation(self, instance: CommonFile) -> Dict: ret = super().to_representation(instance) encrypted_path = self._create_encrypted_path(str(instance.id)) encrypted_pull_url = reverse('files:download', args=[encrypted_path], request=self.context['request']) ret['url'] = encrypted_pull_url return ret def create(self, validated_data: dict) -> CommonFile: try: file_obj = CommonFile.objects.create(**validated_data) except Exception: raise return file_obj def _create_encrypted_path(self, instance_id: str) -> str: handler = EncryptHandler(instance_id) return handler.encrypt()
[ "blue_jihoon@naver.com" ]
blue_jihoon@naver.com
98648afb1168eb37ec156f7995980e16668f754b
276be25104b8dd68aa45fb6bb5d0ff289dcad539
/testing/Belinda/app2.py
9602db1abe2ffd2f7da83ed45f26ed450721f7d9
[]
no_license
CC196/Project-2
77ea2411607e84f9b75d55f1bfd0cd2b2240d553
fd3ca26703468443fec889e0e6e2d64dfd8214eb
refs/heads/main
2023-01-07T00:31:52.129842
2020-11-11T04:05:20
2020-11-11T04:05:20
302,524,477
0
0
null
null
null
null
UTF-8
Python
false
false
4,321
py
import numpy as np import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from flask import Flask, jsonify # from flask_cors import CORS ################################################# # Database Setup ################################################# engine = create_engine("sqlite:///D:/Course_work/Project2/Project-2/Resources/Spotify.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save reference to the table Top_fifty = Base.classes.top50_detail All_year_top = Base.classes.top50_2019 world = Base.classes.SpotifyTopSongsByCountry ################################################# # Flask Setup ################################################# app = Flask(__name__) # cors = CORS(app) ################################################# # Flask Routes ################################################# @app.route("/") def welcome(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/top_50_2020_May<br/>" f"/api/v1.0/top_50_2019<br>" f"/api/v1.0/top50_country_2020_May" ) @app.route("/api/v1.0/top_50_2020_May") def May(): session = Session(engine) results = session.query(Top_fifty.Title, Top_fifty.popularity,Top_fifty.acousticness,Top_fifty.danceability,Top_fifty.energy, Top_fifty.instrumentalness,Top_fifty.loudness,Top_fifty.speechiness,Top_fifty.valence, Top_fifty.tempo).all() session.close() all_song = [] count = 1 for Title,popularity,acousticness,danceability,energy,instrumentalness, loudness, speechiness, valence, tempo in results: if Title: song_detail = {} song_detail["Title"] = Title song_detail["popularity"] = popularity song_detail["acousticness"] = acousticness song_detail["danceability"] = danceability song_detail["energy"] = energy song_detail["instrumentalness"] = instrumentalness song_detail["loudness"] = loudness song_detail["speechiness"] = speechiness song_detail["valence"] = valence song_detail["tempo"] = tempo song_detail["rank_in_May"] = count count+=1 all_song.append(song_detail) return jsonify(all_song) @app.route("/api/v1.0/top_50_2019") def all_year(): session = Session(engine) result = session.query(All_year_top.Title, All_year_top.Popularity,All_year_top.Acousticness,All_year_top.Danceability,All_year_top.Energy, All_year_top.Liveness,All_year_top.Loudness,All_year_top.Speechiness,All_year_top.Valence, All_year_top.BPM, All_year_top.Rank).all() session.close() all_song = [] for Title,popularity,acousticness,danceability,energy,liveness, loudness, speechiness, valence, BPM, rank in result: if Title: song_detail = {} song_detail["Title"] = Title song_detail["popularity"] = popularity song_detail["acousticness"] = acousticness song_detail["danceability"] = danceability song_detail["energy"] = energy song_detail["liveness"] = liveness song_detail["loudness"] = loudness song_detail["speechiness"] = speechiness song_detail["valence"] = valence song_detail["BPM"] = BPM song_detail["Rank"] = rank all_song.append(song_detail) return jsonify(all_song) @app.route("/api/v1.0/top50_country_2020_May") def world_May(): session = Session(engine) world_top = session.query(world.Country, world.Rank, world.Title, world.Artists, world.Album).all() session.close() all_world = [] country_rank = {} for country, rank, title, artists, album in world_top: if country not in country_rank: country_rank[country] = [] song_detail = {} song_detail["Rank"] = rank song_detail["Title"] = title song_detail["Artists"] = artists song_detail["Album"] = album country_rank[country].append(song_detail) all_world.append(country_rank) return jsonify(all_world) if __name__ == '__main__': app.run(debug=True)
[ "qinqin.zha@gmail.com" ]
qinqin.zha@gmail.com
0ab766f09b072cf8494f45960dfbd183965b6d10
6b971e3401fba1498d8b4f3e1b4a46971ca6d0a9
/examples/scroll_area_dynamic_content_layouts.py
82af4fc9d3357c0a602b0d880ee3a28e95f86fec
[]
no_license
brent-stone/PySide6
1e41d76363343bfd238c60a93e11b4a9ac58d57c
2927ddbba51b677e4a0eb502b287b8a8d9e964ad
refs/heads/main
2023-08-14T23:09:29.669245
2021-09-05T00:50:41
2021-09-05T00:50:41
403,183,019
0
0
null
null
null
null
UTF-8
Python
false
false
1,731
py
from PySide6.QtWidgets import * import sys class MainWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self, None) self.setWindowTitle("My GUI") self.resize(300, 400) self.scroll = QScrollArea() self.scroll.setWidgetResizable(True) # CRITICAL self.inner = QFrame(self.scroll) self.inner.setLayout(QVBoxLayout()) self.scroll.setWidget(self.inner) # CRITICAL self.scroll_layout_dict = {} b = QPushButton(self.inner) b.setText("Populate") b.clicked.connect(self.populate) self.inner.layout().addWidget(b) # When creating MainWindow() from scratch like this, # it's necessary to tell PySide6 which widget is # the 'central' one for the MainWindow(). self.setCentralWidget(self.scroll) self.show() def populate(self): for i in range(10): b = QPushButton(self.inner) b.setText(str(i)) b.clicked.connect(self.del_button) checkbox = QCheckBox(f"Check {i}!", self.inner) new_layout = QHBoxLayout(self.inner) new_layout.addWidget(b) new_layout.addWidget(checkbox) n = self.inner.layout().count() self.inner.layout().insertLayout(n, new_layout) self.scroll_layout_dict[b] = new_layout def del_button(self): button: QPushButton = self.sender() layout: QVBoxLayout = self.scroll_layout_dict[button] while layout.count() > 0: layout.takeAt(0).widget().deleteLater() if __name__ == "__main__": app = QApplication(sys.argv) window = MainWindow() window.show() sys.exit(app.exec())
[ "brent.jk.stone@gmail.com" ]
brent.jk.stone@gmail.com
c7198b3709f26fddaf360a7db559d549f4583b89
a65e5dc54092a318fc469543c3b96f6699d0c60b
/Personel/Sandesh/Python/23feb/reverse_string.py
5666f30c06762d1e26e632121ba09969fd9dc1f1
[]
no_license
shankar7791/MI-10-DevOps
e15bfda460ffd0afce63274f2f430445d04261fe
f0b9e8c5be7b28298eb6d3fb6badf11cd033881d
refs/heads/main
2023-07-04T15:25:08.673757
2021-08-12T09:12:37
2021-08-12T09:12:37
339,016,230
1
0
null
2021-08-12T09:12:37
2021-02-15T08:50:08
JavaScript
UTF-8
Python
false
false
96
py
string = input("Plearse enter a string : ") print("Reverse of string is : ") print(string[::-1])
[ "sandeshpatekar20@gmail.com" ]
sandeshpatekar20@gmail.com
7b6b855791edd206f5db635b20e927ab22d10a3d
d670ceefd62a673d7f071ad8255ea1ced2d1be1f
/python/example/udp_client.py
424b47e0953f4aab5a8c34f7f73840dff577d7b1
[]
no_license
wang-jinfeng/bigdata
2bfaecefd4aaac83c81e1dbce44cd596da717673
b031a5fb2d06c7a2c2942a19d8c818f50ec9b8f6
refs/heads/master
2022-12-01T22:55:23.425409
2021-01-20T10:08:56
2021-01-20T10:08:56
199,104,425
0
0
null
2022-11-16T01:56:42
2019-07-27T02:18:29
Scala
UTF-8
Python
false
false
294
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) for data in [b'Michael', b'Tracy', b'Sarah']: # 发送数据: s.sendto(data, ('127.0.0.1', 9998)) # 接收数据: print(s.recv(1024).decode('utf-8')) s.close()
[ "jinfeng.wang@mobvista.com" ]
jinfeng.wang@mobvista.com
f5586a51b83a59377fbf0ba3e1c1f7cbfca452e3
0fd0495f194bc22f0322d02ebabe8add9bf5814c
/python_concept_references/excel.py
a0cd93b32a6802edc9ce767d467a37f6082774d4
[]
no_license
WorldPierce/Automate_the_Boring_Stuff_With_Python
bd6982bddefa712598dc5e6eb4cf2a2aa87b2c1f
a0bc6ba49d92b25f4fbe8d4fdd9385f294567e4c
refs/heads/master
2020-12-30T09:58:38.341981
2017-08-05T19:51:10
2017-08-05T19:51:10
99,248,638
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
# install openpyxl to open spreadsheets import openpyxl, os os.chdir('c:\\wffpi\\documents') workbook = openpyxl.load_workbook('example.xlsx') type(workbook) sheet = workbook.get_sheet_by_name('Sheet1') type(sheet) workbook.get_sheet_names() cell = sheet['A1'] # gets cell object for cell A 1 cell.value # gives you cell value str(sheet[A1].value) # prints string value of any cell sheet.cell(row=1, column=2) # returns cell object same as sheet['B1'] # useful for loops so you don't convert to A, B etc.. for i in range(1,8): print(i, sheet.cell(row=i, column=2).value)
[ "bildo316@gmail.com" ]
bildo316@gmail.com
6849e3aa107e6582238894eb5ace39b380d9102b
74ddb61b608bf47b1320a3a66a13c0896bff4444
/samples/openapi3/client/petstore/python-experimental/petstore_api/models/whale.py
f39c28174404f4f3c268c11125743f22f796eebc
[ "Apache-2.0" ]
permissive
ShakedH/openapi-generator
616f873dc29edf49e44c4685ebb7f46184ce62fd
07647b1a310410a28c95f8b4a9661c0ddeaf1db8
refs/heads/master
2022-09-08T07:40:44.550163
2020-05-28T13:43:38
2020-05-28T13:43:38
267,639,665
0
0
Apache-2.0
2020-05-28T16:26:44
2020-05-28T16:26:44
null
UTF-8
Python
false
false
6,430
py
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from petstore_api.model_utils import ( # noqa: F401 ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) class Whale(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None @cached_property def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'class_name': (str,), # noqa: E501 'has_baleen': (bool,), # noqa: E501 'has_teeth': (bool,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'class_name': 'className', # noqa: E501 'has_baleen': 'hasBaleen', # noqa: E501 'has_teeth': 'hasTeeth', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, class_name, _check_type=True, _spec_property_naming=False, _path_to_item=(), _configuration=None, _visited_composed_classes=(), **kwargs): # noqa: E501 """whale.Whale - a model defined in OpenAPI Args: class_name (str): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) has_baleen (bool): [optional] # noqa: E501 has_teeth (bool): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.class_name = class_name for var_name, var_value in six.iteritems(kwargs): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
[ "noreply@github.com" ]
ShakedH.noreply@github.com
8f948f5da2515448b700d72a799435448074270c
7eeb873b01b1da3401d5b8a802438bcc0e22de22
/61_Sets/main.py
447df8aecab79571c7d8207257ce7002d3b8894b
[]
no_license
Bhushan2581/Python-tuts
ed5f1606f23aa1d4370d4ed2e4171c25cfc1f206
4f2acc839874fcbc3407ba1e0dc6e2d44d6e6179
refs/heads/master
2022-07-29T22:38:17.831404
2020-05-17T03:48:24
2020-05-17T03:48:24
264,577,256
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
pythonlist = ["C", "Python", "Java"] print(pythonlist[1]) pythonlist = ["C", "Python", "Java"] print(pythonlist[-1]) pythonlist = ["java", "C", "C++", "PHP", "HTML", "Ruby", "C#"] print(pythonlist[2:5]) pythonlist = ["java", "C", "C++", "PHP", "HTML", "Ruby", "C#"] pythonlist[1] = "Laravel" print(pythonlist) pythonlist = ["Java", "C", "Python"] for x in tpythonlistislist: print(x)
[ "noreply@github.com" ]
Bhushan2581.noreply@github.com
3e2af68956ab395d7d6c3ee1a4238c837c4b51cc
b2472967910be9c12576f0f97d33bca0576a8667
/atcoder-old/2019/0901_abc139/d.py
0f4f619ee2e61c90c3c79b0e44b9d3a7b51c02c3
[]
no_license
ykmc/contest
85c3d1231e553d37d1235e1b0fd2c6c23f06c1e4
69a73da70f7f987eb3e85da503ea6da0744544bd
refs/heads/master
2020-09-01T22:56:10.444803
2020-07-14T11:36:43
2020-07-14T11:36:43
217,307,953
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
# Python3 (3.4.3) import sys input = sys.stdin.readline # ------------------------------------------------------------- # function # ------------------------------------------------------------- # ------------------------------------------------------------- # main # ------------------------------------------------------------- N = int(input()) # i % i+1 = i が最善, あまりは 1 〜 N-1 print(N*(N-1)//2)
[ "34961813+ykmc@users.noreply.github.com" ]
34961813+ykmc@users.noreply.github.com
12770caef27bc3fef998f1a1f8d9898aefccdd3f
aee126bb9fae134662e0ca2eab4c8d7483ab3ec6
/server/flaskApp/templates/app.py
ba8c62f877a5dff068fa88fd4b7552ad2099ed36
[]
no_license
collier-watkins/DeafDoorbell
3479cc5da661b10c53981a30775ec28cfcb1524e
c8d8601a159a1469ccec3c9884012dc5d0b872f7
refs/heads/master
2020-05-04T01:09:32.807947
2019-05-27T01:41:53
2019-05-27T01:41:53
178,899,075
0
0
null
null
null
null
UTF-8
Python
false
false
1,767
py
from flask import Flask, render_template, url_for, flash, request from forms import MessageForm from wtforms.widgets import html_params, HTMLString from flask_socketio import SocketIO #import subprocess app = Flask(__name__) app.config['SECRET_KEY'] = '3985723043u208uj23022039rue' socketio = SocketIO(app) client1IP = "192.168.0.16" #Home Page @app.route("/", methods=['GET', 'POST']) #Related to website locations def homePage(): #Returns data for the main home page, should be HTML data form = MessageForm() JoysRoom = False UpstairsBathroom = False if request.method == "POST": locations = request.form.getlist('location') if u'Upstairs Bathroom' in locations : UpstairsBathroom = True if u'Joys Room' in locations : JoysRoom = True if form.validate_on_submit(): #THIS IS WHAT HAPPENS WHEN THE SUBMIT BUTTON IS PRESSED message = request.form.get("LCDMessage") app.logger.warning('Submit happened!') app.logger.warning(message) app.logger.warning("Joy\'s Room: " + str(JoysRoom)) app.logger.warning("Upstairs Bathroom: " + str(UpstairsBathroom)) ######Send message to LCD and do GPIO stuff here ######### #subprocess.run() ##################### return render_template('home.html', title='Blog Posts', form=form) def messageReceived(methods=['GET', 'POST']): print('message was received!!!') @socketio.on('submitHit') def handle_submit_event(json, methods=['GET', 'POST']): print('received my event: ' + str(json)) socketio.emit('my response', json, callback=messageReceived) #About Page @app.route("/about") def aboutPage(): return "<h1>About Page</h1>" if __name__ == '__main__': #Run Flask Application socketio.run(app, debug=True, host='0.0.0.0', port=80)
[ "collier.watkins.chc@gmail.com" ]
collier.watkins.chc@gmail.com
71ca8542c4f7c61d9328341ec14b583e4d30c82d
e4920c4fe4290bde524e0c141189f80fddfe44b7
/info/migrations/0023_remove_message_recaptcha.py
85b4c72c01e9b2dc98df1f027f92d51e1b879720
[]
no_license
ShahadatShuvo/Django_portfolio
42af2b0aa686bff08730cdb105f95d6b63adb620
795ed7cbb6444245af08582ea63f57a0f32679a0
refs/heads/master
2023-05-30T01:43:50.409584
2021-06-14T08:29:18
2021-06-14T08:29:18
376,372,632
1
0
null
null
null
null
UTF-8
Python
false
false
330
py
# Generated by Django 2.2.16 on 2020-12-22 17:04 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('info', '0022_auto_20201222_1655'), ] operations = [ migrations.RemoveField( model_name='message', name='recaptcha', ), ]
[ "shahadat@baiust.edu.bd" ]
shahadat@baiust.edu.bd
d2d223dd5e9968b7af2c5e4232ccc82f887bf845
d3709ef033ddf881449c515936b448370a2625ee
/leetcode/058.Length of Last Word/common.py
58b6c30db0277230261076d8bd602b61eac1e818
[]
no_license
xjhuang1993/PythonExercise
e7d7b12497986798184fa78a4e44764961237a56
444db0876295ee2dca2bd2c6103eb5fca4d643be
refs/heads/master
2020-03-19T01:03:26.988279
2018-06-06T01:53:35
2018-06-06T01:53:35
135,518,973
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
""" Accepted """ def func(s): if not s: return 0 result_list = s.strip().split(" ") result = len(result_list[-1]) return result if __name__ == "__main__": s = "Hello World" print(func(s))
[ "398478432@qq.com" ]
398478432@qq.com
b483194ef410722c853543abfba98d1e36b2fa5b
1c2ae618653041b4dc739ad550f1749f2f5eeb81
/James-Script/Discovery/smtp-enum.py
cd88f4eb98a9ea6388fd0b7210f6882883b2a028
[]
no_license
ubriggsl/OSEC-PWK
b50a5b1c8902fafb217d6766a960de90008d0af4
64c2dc943fde87457b835c98c6d409689d20bf3c
refs/heads/master
2021-01-20T00:08:29.484029
2017-05-15T02:33:14
2017-05-15T02:33:14
89,084,644
2
1
null
null
null
null
UTF-8
Python
false
false
459
py
#!/usr/bin/python import argparse import socket import sys a = argparse.ArgumentParser() a.add_argument('user') a.add_argument('target') a.add_argument('-p',dest='port',default='25') args = a.parse_args() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: connect = s.connect((args.target,int(args.port))) banner = s.recv(1024) print banner s.send('VRFY '+ args.user + '\r\n') result = s.recv(1024) print result except: pass s.close()
[ "james@briggsconsulting.com" ]
james@briggsconsulting.com
4e99a7acd3bcf8e67dc4a408c2fc47b15569d91a
72f59717e1e878005e31281c0fd09a4cf0c2f69b
/github_2fa.py
d85ef49c971ea1ac160bd894b11286db624b60cc
[]
no_license
daguy666/api
7627daf8f195d97119277c9e3fb219f1e93aeda7
c2097813564b63d4034d2f64d0ae3aeea9a220b8
refs/heads/master
2020-04-21T11:55:46.153919
2014-11-06T19:34:04
2014-11-06T19:34:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
893
py
#!/usr/bin/env python # #github_2fa.py #This will detect users who are in a specified #org that have 2fa disabled ############################################ import json import urllib2 import getpass import sys pw = getpass.getpass("Please enter a token: ") org = raw_input("Org to search: ") org_url = "https://api.github.com/orgs/%s/members?&filter=2fa_disabled&access_token=%s" % (org, pw) try: request = urllib2.Request(org_url) result = urllib2.urlopen(request) except urllib2.HTTPError, e: if e.code == 400: print "Bad Request" elif e.code == 401: print "Invalid Password" elif e.code == 404: print "Invalid org" else: print "Call to API failed.", e sys.exit(1) twofa_json = json.load(result) print "Users in the %s Org that do not have two factor auth enabled: " % org for entry in twofa_json: print entry['login']
[ "jpistonejr@gmail.com" ]
jpistonejr@gmail.com
9e7202b2d72c068da23e38e2765dd64abbe128ce
52953b88fd65e64d13c0b8ebeae5d468305c01ea
/schema.py
cc90f9184c3d88b61fbb852d2641f19a86a0a955
[]
no_license
antdood/EmojiCounter
ed77a77d032bda93e4f4cffc1145a5f74d90d7d3
e3aace43cf7da57eb57f9603ab9c8d2c28762310
refs/heads/main
2023-03-28T16:26:11.846775
2021-04-10T23:59:08
2021-04-10T23:59:08
350,259,821
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
CREATE TABLE emoji_usages ( channel BIGINT UNSIGNED, user BIGINT UNSIGNED, emoji VARCHAR(255), type ENUM('original', 'custom'), time TIMESTAMP );
[ "antawck@gmail.com" ]
antawck@gmail.com
94bb8b2a0fb2fd8136b0743980291df09b163012
850001831b1fcdd4d27e328b356fc34909ca2917
/tests/test_map.py
77237924f7d6561097ffea685bfbe60e67c465bc
[ "BSD-3-Clause" ]
permissive
yidiq7/pathos
b337353ccfe447866c46a4a784a7908c2f3fe31e
7e4fef911dc0283e245189df4683eea65bfd90f0
refs/heads/master
2022-08-24T08:43:34.009115
2020-05-27T12:18:21
2020-05-27T12:18:21
267,310,390
0
0
NOASSERTION
2020-05-27T12:14:50
2020-05-27T12:14:47
null
UTF-8
Python
false
false
2,170
py
#!/usr/bin/env python # # Author: Mike McKerns (mmckerns @caltech and @uqfoundation) # Copyright (c) 1997-2016 California Institute of Technology. # Copyright (c) 2016-2020 The Uncertainty Quantification Foundation. # License: 3-clause BSD. The full license text is available at: # - https://github.com/uqfoundation/pathos/blob/master/LICENSE import time verbose = False delay = 0.01 items = 100 def busy_add(x,y, delay=0.01): import time for n in range(x): x += n for n in range(y): y -= n time.sleep(delay) return x + y def timed_pool(pool, items=100, delay=0.1, verbose=False): _x = range(-items//2,items//2,2) _y = range(len(_x)) _d = [delay]*len(_x) if verbose: print(pool) start = time.time() res = pool.map(busy_add, _x, _y, _d) _t = time.time() - start if verbose: print("time to queue: %s" % _t) start = time.time() _sol_ = list(res) t_ = time.time() - start if verbose: print("time to results: %s\n" % t_) return _sol_ class BuiltinPool(object): def map(self, *args): return list(map(*args)) std = timed_pool(BuiltinPool(), items, delay=0, verbose=False) def test_serial(): from pathos.pools import SerialPool as PS pool = PS() res = timed_pool(pool, items, delay, verbose) assert res == std def test_pp(): from pathos.pools import ParallelPool as PPP pool = PPP(servers=('localhost:5653','localhost:2414')) res = timed_pool(pool, items, delay, verbose) assert res == std def test_processing(): from pathos.pools import ProcessPool as MPP pool = MPP() res = timed_pool(pool, items, delay, verbose) assert res == std def test_threading(): from pathos.pools import ThreadPool as MTP pool = MTP() res = timed_pool(pool, items, delay, verbose) assert res == std if __name__ == '__main__': if verbose: print("CONFIG: delay = %s" % delay) print("CONFIG: items = %s" % items) print("") from pathos.helpers import freeze_support, shutdown freeze_support() test_serial() test_pp() test_processing() test_threading() shutdown()
[ "mmckerns@8bfda07e-5b16-0410-ab1d-fd04ec2748df" ]
mmckerns@8bfda07e-5b16-0410-ab1d-fd04ec2748df
f76b563996fa4bd26228b5de39272a5ff2b2f5bf
7407b5a2bfad54bc9767c70c47d205164ffa337f
/models/db1.py
28d949a5077a8f9c4c8eccedeebe92588ac8d9c0
[ "MIT", "LicenseRef-scancode-public-domain" ]
permissive
abdulhalim-cu/motor-control-system
9397bb191fa22fceb66e88ccdb4ea80de774eb33
70d276d63163269c378620a85d46db8374b1a836
refs/heads/master
2021-01-01T18:31:42.750124
2017-08-01T01:51:27
2017-08-01T01:51:27
98,357,630
0
0
null
null
null
null
UTF-8
Python
false
false
2,416
py
# -*- coding: utf-8 -*- db.define_table('Device', Field('device_id', 'string'), Field('device_name', 'string'), Field('model', 'string'), Field('location', 'string') ) db.Device.device_id.requires = [IS_NOT_EMPTY(),IS_NOT_IN_DB(db, 'Device.device_id')] db.Device.device_name.requires = IS_NOT_EMPTY() db.define_table('User_Device', Field('user_ref_id', 'reference auth_user'), Field('device_ref_id', 'reference Device')) db.define_table('Direction', Field('direction_type', label='Direction'), format="%(direction_type)s") db.define_table('Control_Instruction', Field('device_ref_id', 'reference Device'), Field('onoff_flag', 'boolean', notnull=True, label='Motor ON/OFF', comment='* Check for ON & Uncheck for OFF'), Field('volt_flag', 'string', label='Voltage'), Field('curr_flag', 'string', label='Current'), Field('rot_flag', 'string', label='Rotation', comment='* Insert only integer value [revolution per minute]'), Field('dir_flag', 'reference Direction', label='Direction', requires = IS_IN_DB(db, db.Direction.id,'%(direction_type)s')), Field('freq_flag', 'string', label='Frequency'), Field('off_flag', 'boolean', notnull=True, label='Off') ) db.define_table('Changes', Field('device_ref_id', 'reference Device'), Field('change_flag', 'string') ) db.define_table('Status', Field('device_ref_id', 'reference Device'), Field('created', 'datetime'), Field('last_ping','datetime', requires=IS_NOT_EMPTY()), Field('server_time','datetime', requires=IS_NOT_EMPTY())) db.define_table('Device_States', Field('device_ref_id', 'reference Device'), Field('on_or_off', 'boolean', notnull=True, label='ON/OFF'), Field('voltage', 'string'), Field('current', 'string'), Field('rotation', 'string'), Field('direction', 'reference Direction', requires = IS_IN_DB(db, db.Direction.id,'%(direction_type)s')), Field('frequency', 'string'), Field('off', 'boolean', notnull=True, label='OFF'))
[ "abdulhalim.cu10@gmail.com" ]
abdulhalim.cu10@gmail.com
413948050ddee82de99cfae896398e6cdd3de69b
b252c3b7a78b37f8da3d5edca023e2bc38b368d4
/python_spider/learn_urllib.py
f35177e5ca0fc7636e025d24da4b8e810ec17bae
[]
no_license
xianke5200/Python_spider_test
868447e48ae136314ba08a7c06440ba27951b201
7674ff2b4bcdc35248718d02245e968a5ca61add
refs/heads/master
2021-12-16T04:18:45.263926
2021-12-13T06:01:03
2021-12-13T06:01:03
234,503,928
2
0
null
null
null
null
UTF-8
Python
false
false
822
py
import urllib from urllib import request,parse import ssl #response = urllib.request.urlopen('http://192.168.1.153/bugfree/index.php/site/login') #print(response.read().decode('utf-8')) #context = ssl._create_unverified_context() url = 'http://192.168.1.153/bugfree/index.php/site/login' headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko', } dict = { #'return_url':'http://192.168.1.153/bugfree/index.php/bug/list/12', 'LoginForm[username]':'chenlue', 'LoginForm[password]':'chenlue', 'LoginForm[language]':'zh_cn', 'LoginForm[rememberMe]':'0' } data = bytes(parse.urlencode(dict),'utf-8') req = request.Request(url,data=data,headers=headers,method='POST') response = request.urlopen(req,data=data,timeout=1000) print(response.read().decode('utf-8'))
[ "1833907216@qq.com" ]
1833907216@qq.com
8c1baaf7bc0b2f574388dc5f64e36e1918a8a0b1
15b3d2c324748b2a9a96813fd7e0919cc4e249ae
/dashboard/dashboard/urls.py
3645e421490b14c597b18f35ad34efbc033bda4d
[]
no_license
pzjc/dashboard-django
c1fb6fd7e8fa56ec10d714c0ea1607544f31f5fa
bb0dc34fb76cc768c9ef0d5f651a4112ddea73ec
refs/heads/master
2021-07-01T12:09:53.631999
2017-09-22T20:29:34
2017-09-22T20:29:34
104,480,897
0
0
null
null
null
null
UTF-8
Python
false
false
766
py
"""dashboard URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), ]
[ "jz762@cornell.edu" ]
jz762@cornell.edu
039ddde1464386c3829683361c65b4dcf614072b
fe5eb98a1fa9a1bd194e7d859fddc9fc62ed842e
/modified_2/run_both_multi.py
a58183743d8e5d737bc79c5f36c4bae074557f77
[]
no_license
TaehoLi/Capstone
862d27a819c455fcfa8da598a976d3bf1e9c9570
9329d7910c24d32b04598f373899819694f856e4
refs/heads/master
2020-04-18T08:11:52.207623
2019-12-26T12:04:32
2019-12-26T12:04:32
167,387,971
0
0
null
null
null
null
UTF-8
Python
false
false
15,279
py
# -*- coding: utf-8 -*- import argparse import logging import time import cv2 import numpy as np import matplotlib.pyplot as plt #matplotlib auto from tf_pose.estimator import TfPoseEstimator from tf_pose.networks import get_graph_path, model_wh from datetime import datetime logger1 = logging.getLogger('TfPoseEstimator-WebCam') logger1.setLevel(logging.DEBUG) ch1 = logging.StreamHandler() ch1.setLevel(logging.DEBUG) formatter1 = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch1.setFormatter(formatter1) logger1.addHandler(ch1) logger2 = logging.getLogger('TfPoseEstimator-Video') logger2.setLevel(logging.DEBUG) ch2 = logging.StreamHandler() ch2.setLevel(logging.DEBUG) formatter2 = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch2.setFormatter(formatter2) logger2.addHandler(ch2) fps_time = 0 # codec fourcc = cv2.VideoWriter_fourcc(*'XVID') # VideoWriter object # video resolution should be 640x480(must be same) #out1 = cv2.VideoWriter('./data/output3.avi', fourcc, 20.0, (640,480)) #out2 = cv2.VideoWriter('./data/output4.avi', fourcc, 20.0, (640,480)) ### 1:Webcam / 2:Video if __name__ == '__main__': # 1 parser1 = argparse.ArgumentParser(description='tf-pose-estimation realtime webcam') parser1.add_argument('--camera', type=int, default=0) parser1.add_argument('--resize', type=str, default='432x368', help='if provided, resize images before they are processed. default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ') parser1.add_argument('--resize-out-ratio', type=float, default=4.0, help='if provided, resize heatmaps before they are post-processed. default=1.0') parser1.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small') parser1.add_argument('--show-process', type=bool, default=False, help='for debug purpose, if enabled, speed for inference is dropped.') parser1.add_argument('--video', type=str, default=None) # 2 parser2 = argparse.ArgumentParser(description='tf-pose-estimation Video') parser2.add_argument('--camera', type=int, default=None) parser2.add_argument('--video', type=str, default='') parser2.add_argument('--resize', type=str, default='432x368', help='if provided, resize images before they are processed. default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ') parser2.add_argument('--resize-out-ratio', type=float, default=4.0, help='if provided, resize heatmaps before they are post-processed. default=1.0') parser2.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small') parser2.add_argument('--show-process', type=bool, default=False, help='for debug purpose, if enabled, speed for inference is dropped.') parser2.add_argument('--showBG', type=bool, default=True, help='False to show skeleton only.') args1 = parser1.parse_args() args2 = parser2.parse_args() logger1.debug('initialization %s : %s' % (args1.model, get_graph_path(args1.model))) logger2.debug('initialization %s : %s' % (args2.model, get_graph_path(args2.model))) w1, h1 = model_wh(args1.resize) w2, h2 = model_wh(args2.resize) if w1 > 0 and h1 > 0: e1 = TfPoseEstimator(get_graph_path(args1.model), target_size=(w1, h1)) else: e1 = TfPoseEstimator(get_graph_path(args1.model), target_size=(432, 368)) if w2 > 0 and h2 > 0: e2 = TfPoseEstimator(get_graph_path(args2.model), target_size=(w2, h2)) else: e2 = TfPoseEstimator(get_graph_path(args2.model), target_size=(432, 368)) cap1 = cv2.VideoCapture(args1.camera) cap2 = cv2.VideoCapture(args2.video) if cap2.isOpened() is False: print("Error opening video stream or file") # data plotting lstX = [] lstY1 = [] lstY2 = [] threshold = 0.55 # have to change plt.ion() fig1 = plt.figure(num='real-time plotting1') sf1 = fig1.add_subplot(111) plt.title('Upper Body') plt.xticks([0, 1500000, 3000000, 4500000, 6000000]) plt.yticks([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) plt.axhline(y=threshold, color='r', linestyle='--', linewidth=2) line1, = sf1.plot([0, 6000000], [0,1], 'b-') fig2 = plt.figure(num='real-time plotting2') sf2 = fig2.add_subplot(111) plt.title('Lower Body') plt.xticks([0, 1500000, 3000000, 4500000, 6000000]) plt.yticks([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) plt.axhline(y=threshold, color='r', linestyle='--', linewidth=2) line2, = sf2.plot([0, 6000000], [0,1], 'b-') while cap2.isOpened(): # loop try: ret_val1, image1 = cap1.read() ret_val2, image2 = cap2.read() logger1.debug('image process+') humans1 = e1.inference(image1, resize_to_default=(w1 > 0 and h1 > 0), upsample_size=args1.resize_out_ratio) logger2.debug('image process+') humans2 = e2.inference(image2, resize_to_default=(w2 > 0 and h2 > 0), upsample_size=args2.resize_out_ratio) ### 2:Video) if(--showBG=False) print skeleton if not args2.showBG: image2 = np.zeros(image2.shape) ### logger1.debug('postprocess+') a = TfPoseEstimator.get_centers(image1, humans1, imgcopy=False) #all points image1 = TfPoseEstimator.draw_humans(image1, humans1, imgcopy=False) logger2.debug('postprocess+') b = TfPoseEstimator.get_centers(image2, humans2, imgcopy=False) #상체 points c = TfPoseEstimator.get_centers(image2, humans2, imgcopy=False) #하체 points image2 = TfPoseEstimator.draw_humans(image2, humans2, imgcopy=False) """ 1) 실시간으로 동영상의 점을 불러온다 (점의 좌표를 알아야함) 2) 실시간으로 웹캠의 점을 불러온다 (점의 좌표를 알아야함) 3) 점 간의 norm(거리)을 구한다 (scalar) 4) 예를 들어 점이 18개로 고정되어 있다면 각 pair점 간의 norm을 전부 구하고 5) sum 하여 그 값을 0과 1사이로 normalization 한다 ->result 6) result를 y축 time을 x축으로 실시간 데이터 plotting 7) result가 어떤 threshold를 넘어설때 마다 warning을 cv2.putText로 출력해준다. """ if 0 in b: del b[0] if 14 in b: del b[14] if 15 in b: del b[15] if 16 in b: del b[16] if 17 in b: del b[17] # 눈, 코, 귀 points 제외 if 0 in c: del c[0] if 14 in c: del c[14] if 15 in c: del c[15] if 16 in c: del c[16] if 17 in c: del c[17] # 눈, 코, 귀 points 제외 if 8 in b: del b[8] if 9 in b: del b[9] if 10 in b: del b[10] if 11 in b: del b[11] if 12 in b: del b[12] if 13 in b: del b[13] #하체 points 제외 if 1 in c: del c[1] if 2 in c: del c[2] if 3 in c: del c[3] if 4 in c: del c[4] if 5 in c: del c[5] if 6 in c: del c[6] if 7 in c: del c[7] #상체 points 제외 L2_norm1 = [] #상체 L2_norm2 = [] #하체 L2_nonzero1 = [] L2_nonzero2 = [] for i in range(18): try: L2_norm1.append(np.linalg.norm(np.array(a[i])-np.array(b[i]), ord=2)) except: L2_norm1.append(0.0) pass if L2_norm1[i] is not 0.0: L2_nonzero1.append(L2_norm1[i]) else: pass for i in range(18): try: L2_norm2.append(np.linalg.norm(np.array(a[i])-np.array(c[i]), ord=2)) except: L2_norm2.append(0.0) pass if L2_norm2[i] is not 0.0: L2_nonzero2.append(L2_norm2[i]) else: pass normalize1 = [] normalize2 = [] if len(L2_nonzero1) is 0: normalize1.append(0.0) elif len(L2_nonzero1) is 1: normalize1.append(0.0) elif len(L2_nonzero1) is 2: normalize1.append(0.0) else: for i in range(len(L2_nonzero1)): normalize1.append((L2_nonzero1[i]-min(L2_nonzero1))/(max(L2_nonzero1)-min(L2_nonzero1))) result1 = np.sum(normalize1)/len(normalize1) if len(L2_nonzero2) == 0: normalize2.append(0.0) elif len(L2_nonzero2) == 1: normalize2.append(0.0) elif len(L2_nonzero2) is 2: normalize2.append(0.0) else: for i in range(len(L2_nonzero2)): normalize2.append((L2_nonzero2[i]-min(L2_nonzero2))/(max(L2_nonzero2)-min(L2_nonzero2))) result2 = np.sum(normalize2)/len(normalize2) c = datetime.now() d = c.strftime('%S%f') d = np.float32(d) / 10.0 lstX.append(d) lstY1.append(result1) lstY2.append(result2) print("Data point:", result1, result2) if d > 5900000: # 1분마다 플롯 초기화 fig1.clf() fig1 = plt.figure(num='real-time plotting1') sf1 = fig1.add_subplot(111) plt.title('Upper Body') plt.xticks([0, 1500000, 3000000, 4500000, 6000000]) plt.yticks([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) plt.axhline(y=threshold, color='r', linestyle='--', linewidth=2) lstX=[] lstY1=[] line1, = sf1.plot([0, 6000000], [0,1], 'b-') line1.set_data(lstX, lstY1) fig2.clf() fig2 = plt.figure(num='real-time plotting2') sf2 = fig2.add_subplot(111) plt.title('Lower Body') plt.xticks([0, 1500000, 3000000, 4500000, 6000000]) plt.yticks([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) plt.axhline(y=threshold, color='r', linestyle='--', linewidth=2) lstY2=[] line2, = sf2.plot([0, 6000000], [0,1], 'b-') line2.set_data(lstX, lstY2) else: line1.set_data(lstX, lstY1) line2.set_data(lstX, lstY2) plt.show() plt.pause(0.0001) # 임계치 조정 if result1 > threshold and result2 > threshold: #logger1.debug('show+') #logger2.debug('show+') cv2.putText(image1, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image2, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image1, "Wrong Pose", (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 2.35, (0,0,255), 5) cv2.imshow('tf-pose-estimation Webcam', image1) cv2.imshow('tf-pose-estimation Video', image2) ## 이미지를 파일에 저장, VideoWriter 객체에 연속적으로 저장하면 동영상이 됨. #out1.write(image1) #out2.write(image2) fps_time = time.time() elif result1 > threshold: cv2.putText(image1, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image2, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image1, "Mind Upper", (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 2.35, (0,0,255), 5) cv2.imshow('tf-pose-estimation Webcam', image1) cv2.imshow('tf-pose-estimation Video', image2) ## 이미지를 파일에 저장, VideoWriter 객체에 연속적으로 저장하면 동영상이 됨. #out1.write(image1) #out2.write(image2) fps_time = time.time() elif result2 > threshold: cv2.putText(image1, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image2, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image1, "Mind Lower", (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 2.35, (0,0,255), 5) cv2.imshow('tf-pose-estimation Webcam', image1) cv2.imshow('tf-pose-estimation Video', image2) ## 이미지를 파일에 저장, VideoWriter 객체에 연속적으로 저장하면 동영상이 됨. #out1.write(image1) #out2.write(image2) fps_time = time.time() else: #logger1.debug('show+') #logger2.debug('show+') cv2.putText(image1, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image2, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.imshow('tf-pose-estimation Webcam', image1) cv2.imshow('tf-pose-estimation Video', image2) ## 이미지를 파일에 저장, VideoWriter 객체에 연속적으로 저장하면 동영상이 됨. #out1.write(image1) #out2.write(image2) fps_time = time.time() if cv2.waitKey(1) == 27: #ESC break #종료 except: print("video is over") break while True: if cv2.waitKey(1) & 0xFF == ord('q'): # press Q to destroy all windows cv2.destroyAllWindows() break #cv2.destroyAllWindows() logger1.debug('finished+') logger2.debug('finished+')
[ "noreply@github.com" ]
TaehoLi.noreply@github.com
1c81bdca5dc92eada6417d4615dab19cc148a555
1f61e06271f8e9582669686457c40336235d1eee
/Module 1/Chapter 9/edge_detector.py
a7221300b04f62e04e673c71daddfa906d6eaed5
[ "MIT" ]
permissive
PacktPublishing/Python-Real-World-Machine-Learning
f1747fdd73937544a243059ac7476bfbfac6d113
669e793cf80c35b6d2028f74bff2cd87b9458791
refs/heads/master
2023-04-13T11:48:13.459731
2023-01-30T09:21:10
2023-01-30T09:21:10
70,907,139
108
111
MIT
2023-04-04T14:38:41
2016-10-14T12:13:47
Jupyter Notebook
UTF-8
Python
false
false
598
py
import sys import cv2 import numpy as np # Load the input image -- 'chair.jpg' # Convert it to grayscale input_file = sys.argv[1] img = cv2.imread(input_file, cv2.IMREAD_GRAYSCALE) h, w = img.shape sobel_horizontal = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5) sobel_vertical = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5) laplacian = cv2.Laplacian(img, cv2.CV_64F) canny = cv2.Canny(img, 50, 240) cv2.imshow('Original', img) cv2.imshow('Sobel horizontal', sobel_horizontal) cv2.imshow('Sobel vertical', sobel_vertical) cv2.imshow('Laplacian', laplacian) cv2.imshow('Canny', canny) cv2.waitKey()
[ "eganl@packtpub.com" ]
eganl@packtpub.com
3e8640eb434a281e1b988d45b8387af02a0249b2
a3bdf69d3c5b8e422aae70eb21f3ae5f776e2ff9
/utils/excel_utils.py
5db791dbd899c620a96d16e483a8feaaa2a2cb18
[]
no_license
cyssxt/data-sym-scrapy
6ce9d8d60869f89dc5f892984c113fdfeb52aefb
5fd92a42ec8a59fead315e2c63fc4d750de24c68
refs/heads/master
2021-08-23T18:41:02.036963
2017-12-06T02:47:39
2017-12-06T02:47:39
111,883,444
0
0
null
2017-11-24T06:22:27
2017-11-24T06:22:27
null
UTF-8
Python
false
false
2,437
py
import xlrd from xlutils3.copy import copy class ExcelParse(object): """ path:excel路径 sheet:excel中的sheet下表 head_index:excel标题头所在的行数 callback:遍历每一行的回掉 offset:内容体遍历的起始位置 limit:遍历的总记录数 descName:最终生成的excel """ def __init__(self, path, sheet=0, head_index=0, callback=None, offset=0, limit=None, desc_name="aaa.xls"): data = xlrd.open_workbook(path) self.table = data.sheet_by_index(sheet) self.nrows = self.table.nrows self.callback = callback self.headIndex = head_index self.ncols = self.table.ncols self.headers = [] self.bodys = [] self.limit = limit self.descTable = copy(data) self.desc_name = desc_name self.offset = offset self.parse_header() def parse(self): for i in range(self.nrows): row = self.table.row_values(i) # data = self.callback and self.callback(self.table, row) self.callback and self.callback(self.table, row) def prase_body(self): start = self.offset or (self.headIndex + 1) end = (self.limit + start) if None is not self.limit else self.nrows for bodyIndex in range(start, end): self.callback and self.callback(self, self.table.row_values(bodyIndex), bodyIndex) def parse_header(self): head = self.table.row_values(self.headIndex) for i in range(self.ncols): self.headers.append(head[i]) """ 获取单元格的值 """ def get_cell_value(self, row_index, header): row = self.table.row_values(row_index) index = self.headers.index(header) return row[index] """ 设置excel的单元格的值 """ def set_cell_value(self, row_index, header, value, sheet=0): index = self.headers.index(header) table = self.descTable.get_sheet(sheet) table.write(row_index, index, value) """ 保存 """ def save(self): self.descTable.save(self.desc_name) # http://browser.ihtsdotools.org/api/v1/snomed/en-edition/v20170731/descriptions?query=Headaches&limit=50&searchMode=partialMatching&lang=english&statusFilter=activeOnly&skipTo=0&returnLimit=100&normalize=true # table, nRows = read_excel("../sym_about.xlsx") # print nRows
[ "cyssxt@163.com" ]
cyssxt@163.com
59f182eac7ff61fa54275583dd65186678b519c5
ef34e68712fb4aa9a1320c4e1e370a24de34fcb4
/nlu/utils/environment/authentication.py
31b46bde24d6ece7e8670f0fe028b52bcba4a11a
[ "Apache-2.0" ]
permissive
milyiyo/nlu
dd656e77eedf2c831482edfd4ec59490b25d3954
d209ed11c6a84639c268f08435552248391c5573
refs/heads/master
2023-08-16T00:03:10.326392
2021-10-16T03:05:49
2021-10-16T03:05:49
414,223,627
0
0
null
null
null
null
UTF-8
Python
false
false
2,823
py
from nlu.utils.environment.env_utils import * def install_and_import_healthcare(JSL_SECRET): """ Install Spark-NLP-Healthcare PyPI Package in current enviroment if it cannot be imported and liscense provided""" import importlib try: importlib.import_module('sparknlp_jsl') except ImportError: import pip print("Spark NLP Healthcare could not be imported. Installing latest spark-nlp-jsl PyPI package via pip...") hc_version = JSL_SECRET.split('-')[0] import pyspark pip_major_version = int(pip.__version__.split('.')[0]) if pip_major_version in [10, 18, 19, 20]: # for these versions pip module does not support installing, we install via OS command. os.system( f'pip install spark-nlp-jsl=={hc_version} --extra-index-url https://pypi.johnsnowlabs.com/{JSL_SECRET}') else: pip.main(['install', f'spark-nlp-jsl=={hc_version}', '--extra-index-url', f'https://pypi.johnsnowlabs.com/{JSL_SECRET}']) finally: import site from importlib import reload reload(site) globals()['sparknlp_jsl'] = importlib.import_module('sparknlp_jsl') def authenticate_enviroment(SPARK_NLP_LICENSE, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY): """Set Secret environ variables for Spark Context""" os.environ['SPARK_NLP_LICENSE'] = SPARK_NLP_LICENSE os.environ['AWS_ACCESS_KEY_ID'] = AWS_ACCESS_KEY_ID os.environ['AWS_SECRET_ACCESS_KEY'] = AWS_SECRET_ACCESS_KEY def get_authenticated_spark(SPARK_NLP_LICENSE, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, JSL_SECRET, gpu=False, ): """ Authenticates enviroment if not already done so and returns Spark Context with Healthcare Jar loaded 0. If no Spark-NLP-Healthcare, install it via PyPi 1. If not auth, run authenticate_enviroment() """ import sparknlp authenticate_enviroment(SPARK_NLP_LICENSE, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) install_and_import_healthcare(JSL_SECRET) import sparknlp_jsl if is_env_pyspark_2_3(): return sparknlp_jsl.start(JSL_SECRET, spark23=True, gpu=gpu) if is_env_pyspark_2_4(): return sparknlp_jsl.start(JSL_SECRET, spark24=True, gpu=gpu) if is_env_pyspark_3_0() or is_env_pyspark_3_1(): return sparknlp_jsl.start(JSL_SECRET, gpu=gpu, public=sparknlp.version()) print(f"Current Spark version {get_pyspark_version()} not supported!") raise ValueError def is_authorized_enviroment(): """Check if auth secrets are set in enviroment""" SPARK_NLP_LICENSE = os.getenv('SPARK_NLP_LICENSE') AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID') AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY') return None not in [SPARK_NLP_LICENSE, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY]
[ "christian.kasim.loan@gmail.com" ]
christian.kasim.loan@gmail.com
97a9d2f3330873200fc4325d845a1d95fc6e784d
6a1fad01f41de94587c03c3904eaf087610a7422
/train.py
7499035720d29fae46c0d72b467b0cdca3c9fc9f
[]
no_license
acids-ircam/ddsp_pytorch
1972c98f3d709d97df3606ef7f55cd724ac40c76
aaaf17d939ffbf7e6e4c848994204d07d62721a1
refs/heads/master
2021-12-12T00:48:31.743973
2021-09-07T07:46:51
2021-09-07T07:46:51
213,240,778
381
49
null
2021-11-26T21:18:46
2019-10-06T20:42:51
C
UTF-8
Python
false
false
3,338
py
import torch from torch.utils.tensorboard import SummaryWriter import yaml from ddsp.model import DDSP from effortless_config import Config from os import path from preprocess import Dataset from tqdm import tqdm from ddsp.core import multiscale_fft, safe_log, mean_std_loudness import soundfile as sf from einops import rearrange from ddsp.utils import get_scheduler import numpy as np class args(Config): CONFIG = "config.yaml" NAME = "debug" ROOT = "runs" STEPS = 500000 BATCH = 16 START_LR = 1e-3 STOP_LR = 1e-4 DECAY_OVER = 400000 args.parse_args() with open(args.CONFIG, "r") as config: config = yaml.safe_load(config) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = DDSP(**config["model"]).to(device) dataset = Dataset(config["preprocess"]["out_dir"]) dataloader = torch.utils.data.DataLoader( dataset, args.BATCH, True, drop_last=True, ) mean_loudness, std_loudness = mean_std_loudness(dataloader) config["data"]["mean_loudness"] = mean_loudness config["data"]["std_loudness"] = std_loudness writer = SummaryWriter(path.join(args.ROOT, args.NAME), flush_secs=20) with open(path.join(args.ROOT, args.NAME, "config.yaml"), "w") as out_config: yaml.safe_dump(config, out_config) opt = torch.optim.Adam(model.parameters(), lr=args.START_LR) schedule = get_scheduler( len(dataloader), args.START_LR, args.STOP_LR, args.DECAY_OVER, ) # scheduler = torch.optim.lr_scheduler.LambdaLR(opt, schedule) best_loss = float("inf") mean_loss = 0 n_element = 0 step = 0 epochs = int(np.ceil(args.STEPS / len(dataloader))) for e in tqdm(range(epochs)): for s, p, l in dataloader: s = s.to(device) p = p.unsqueeze(-1).to(device) l = l.unsqueeze(-1).to(device) l = (l - mean_loudness) / std_loudness y = model(p, l).squeeze(-1) ori_stft = multiscale_fft( s, config["train"]["scales"], config["train"]["overlap"], ) rec_stft = multiscale_fft( y, config["train"]["scales"], config["train"]["overlap"], ) loss = 0 for s_x, s_y in zip(ori_stft, rec_stft): lin_loss = (s_x - s_y).abs().mean() log_loss = (safe_log(s_x) - safe_log(s_y)).abs().mean() loss = loss + lin_loss + log_loss opt.zero_grad() loss.backward() opt.step() writer.add_scalar("loss", loss.item(), step) step += 1 n_element += 1 mean_loss += (loss.item() - mean_loss) / n_element if not e % 10: writer.add_scalar("lr", schedule(e), e) writer.add_scalar("reverb_decay", model.reverb.decay.item(), e) writer.add_scalar("reverb_wet", model.reverb.wet.item(), e) # scheduler.step() if mean_loss < best_loss: best_loss = mean_loss torch.save( model.state_dict(), path.join(args.ROOT, args.NAME, "state.pth"), ) mean_loss = 0 n_element = 0 audio = torch.cat([s, y], -1).reshape(-1).detach().cpu().numpy() sf.write( path.join(args.ROOT, args.NAME, f"eval_{e:06d}.wav"), audio, config["preprocess"]["sampling_rate"], )
[ "caillon@ircam.fr" ]
caillon@ircam.fr
e8720a42e2d433fa822311add8bf6a44faced378
bda32ee120fd07499fad1e5e973249ac15861200
/ValidSudoku.py
5996590c78e0207e3f98330665a34507963f42cf
[]
no_license
congyingTech/leetcode
5f76d11a283115e46fdf4f295cf0279f53e692a1
35ff5db1ee6abcb3cf1144a9bf5420758e31e6ec
refs/heads/master
2021-01-21T04:41:20.195451
2016-06-16T07:03:09
2016-06-16T07:03:09
54,643,108
0
0
null
null
null
null
UTF-8
Python
false
false
1,772
py
#-*- coding:utf-8 -*- ''' Created on Mar 30, 2016 @author: congyingw ''' #Sudoku的要求有三条:每行的数只出现一次,每列的数只出现一次,每个九宫格数只出现一次。 #所以我们要验证这三个条件逐个遍历一遍。 class Solution: def isValidSudoku(self, board): for i in range(0, 9): #第i行(固定的行)j列 or 第j行i列(固定的列) if not self.isValidList([board[i][j] for j in range(0,9)]) or not self.isValidList([board[j][i] for j in range(0, 9)]): return False #检查第三条:九宫格里面是否出现重复, for i in range(0, 3): for j in range(0, 3): if not self.isValidList([board[m][n] for m in range (3 * i, 3 * i + 3)for n in range(3 * j, 3*j + 3)]): return False return True #判断是否是有效的list,去掉. 之后,set可以过滤相同的元素,过滤之后,看len是否相等 def isValidList(self, xs): xs = list(filter(lambda x: x != '.', xs)) return len(set(xs)) == len(xs) if __name__ == "__main__": board = [[5, '.', '.', '.', '.', '.', '.', '.', '.'], [5, 2, '.', '.', '.', '.', '.', '.', '.'], ['.', '.', 3, '.', '.', '.', '.', '.', '.'], ['.', '.', '.', 4, '.', '.', '.', '.', '.'], ['.', '.', '.', '.', 5, '.', '.', '.', '.'], ['.', '.', '.', '.', '.', 6, '.', '.', '.'], ['.', '.', '.', '.', '.', '.', 7, '.', '.'], ['.', '.', '.', '.', '.', '.', '.', 8, '.'], ['.', '.', '.', '.', '.', '.', '.', '.', 9]] print(Solution().isValidSudoku(board))
[ "congyingTech@163.com" ]
congyingTech@163.com
e93d618ef2a5f5ad993261c09a6a1b7b73293570
0fa1d839550f4bfb1d9d0860915770071422f2cd
/parrot.py
51dd4bbc1ed740272deb7e105a164b4e9cb6f887
[]
no_license
crystalDf/Python-Crash-Course-2nd-Edition-Chapter-07-Input
b996d5b5bfbf20be039ac2e2314e51d6a51545a1
a8838fe405e4ce70e827a6ace98f3502b3a57f45
refs/heads/master
2023-06-10T08:12:07.675473
2021-06-20T14:45:01
2021-06-20T14:45:01
378,668,714
1
1
null
null
null
null
UTF-8
Python
false
false
460
py
message = input("Tell me something, and I will repeat it back to you: ") print(message) prompt = "\nTell me something, and I will repeat it back to you:" prompt += "\nEnter 'quit' to end the program. " message = "" while message != 'quit': message = input(prompt) if message != 'quit': print(message) active = True while active: message = input(prompt) if message == 'quit': active = False else: print(message)
[ "chendong333@gmail.com" ]
chendong333@gmail.com
fa459c1d43ee6d8f2cdbb69fcdada36ad5305039
ee239ee6ead1f612fde7bec99be27c02afd11dd4
/sentimentanalyzer.py
8993e1ccb851c52fd63098f05ac298bcc7c21c68
[]
no_license
vaitheeswarang/SentimentAnalyzer
fc5a597b6cf37e4b8726f4a559f46ce8fd4751e8
426b0e06a33a52b333a1631b66151bdde42eb715
refs/heads/master
2020-03-27T21:46:03.343604
2018-12-07T08:38:00
2018-12-07T08:38:00
147,174,131
0
0
null
null
null
null
UTF-8
Python
false
false
3,898
py
from nltk.corpus import stopwords from nltk.tokenize import word_tokenize print("*"*50) #textt="the touch is not bad. the product is not a bad. i love this mobile fisrt. the product is awesome. it is easy to use. cost is too high to buy. camera is not good. comparing with other the quality is very bad. bad mobile. not good to say." print("*"*50) textt=input("Enter the review here: ") text=[x.lower() for x in textt] print("*"*50) positive=['good','happy','love','awesome'] negative=['sad','bad','not','no','wont'] """ for line in text: sentence = line.split('.') for word in sentence: li=list(word.split(' ')) #print(li) """ #remove punctuations punc='''.,!#@''' no_punc="" for char in text: if char not in punc: no_punc+=char #print(no_punc) #remove stopwords #stop_words=set(stopwords.words('english')) word_tokens=word_tokenize(no_punc) stop_words={'on','a','the','is','was','i','it','to','with','other','this'} filtered_sentence=[] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) #filtered_sentence=list(no_punc.split(' ')) #print(filtered_sentence) ''' Calculating without Negation words ''' pos_count, neg_count, neutral_count=0,0,0 for i in range(len(filtered_sentence)): for j in range(len(positive)): if (filtered_sentence[i]==positive[j]): pos_count +=1 #print("Positive Word:", filtered_sentence[i]) for k in range(len(negative)): if (filtered_sentence[i]==negative[k]): neg_count+=-1 #print("Negative Word:", filtered_sentence[i]) break #else: # neutral_count+=neutral_count total_score = pos_count+neg_count print("Positive Count: ", +pos_count) print("Negative Count: ", +neg_count) print("Total Setiment Score without calculating Negated word: ", +total_score) print("*"*75) #print(stop_words) if total_score>0: print("The content is Positive") elif total_score<0: print("The content is Negative") else: print("The content is Neutral") print("*"*75) ''' Calculating with Negation words ''' score,nscore=0,0 negation_words=['not','never','ever','didnt','no','wont'] pos_count,neg_count,negated_word,nnegated_word=0,0,0,0 for i in range(len(filtered_sentence)): for k in range(len(negation_words)): for j in range(len(positive)): if(filtered_sentence[i]==negation_words[k]) and (filtered_sentence[i+1]==positive[j]): #print(negation_words[k]) score=1*-1 negated_word+=1 print(filtered_sentence[i]+'_'+filtered_sentence[i+1]) for m in range(len(negation_words)): for l in range(len(negative)): if(filtered_sentence[i]==negation_words[m]) and (filtered_sentence[i+1]==negative[l]): #print(negation_words[m]) nscore=1 nnegated_word+=1 print(filtered_sentence[i]+'_'+filtered_sentence[i+1]) print(filtered_sentence) print("Total number of Negated words: ", negated_word) print("The Total Score of Positive word with Negated_word is: ", score*negated_word) print('\n') print("Total number of Negative word with Negated words: ", nnegated_word) print("The Total Score of Negative word with Negated_word is: ", nscore*nnegated_word) print('\n') print("The Total Sentiment Score with Negation words only: ", (score*negated_word)+(nscore*nnegated_word)) print("*"*75) neg_total_score=(score*negated_word)+(nscore*nnegated_word) if neg_total_score>0: print("The content is Positive") elif neg_total_score<0: print("The content is Negative") else: print("The content is Neutral") print("*"*75)
[ "noreply@github.com" ]
vaitheeswarang.noreply@github.com
37ed82c45df03e22c5d1a9edd666017218ee89f1
c9500ad778b8521aaa85cb7fe3239989efaa4799
/plugins/zscaler/icon_zscaler/util/helpers.py
3a839a924b1fefd1411e0082e08af7540ce22557
[ "MIT" ]
permissive
rapid7/insightconnect-plugins
5a6465e720f114d71b1a82fe14e42e94db104a0b
718d15ca36c57231bb89df0aebc53d0210db400c
refs/heads/master
2023-09-01T09:21:27.143980
2023-08-31T10:25:36
2023-08-31T10:25:36
190,435,635
61
60
MIT
2023-09-14T08:47:37
2019-06-05T17:05:12
Python
UTF-8
Python
false
false
4,440
py
from insightconnect_plugin_runtime.exceptions import PluginException from re import sub, match, split from typing import Union, Any, Dict from icon_zscaler.util.constants import Assistance, Cause CAMEL_CASE_REGEX = r"\b[a-z0-9]+([A-Z][a-z]+[0-9]*)*\b" PASCAL_CASE_REGEX = r"\b[A-Z][a-z]+[0-9]*([A-Z][a-z]+[0-9]*)*\b" CAMEL_CASE_ACRONYM_REGEX = r"\b[a-z0-9]+([A-Z]+[0-9]*)*\b" def clean_dict(dictionary: Dict[str, Any]) -> Dict[str, Any]: cleaned_dict = dictionary.copy() for key, value in dictionary.items(): if isinstance(value, dict): cleaned_dict[key] = clean_dict(value) if cleaned_dict[key] == {}: del cleaned_dict[key] elif value in [None, "", 0, [], {}]: del cleaned_dict[key] return cleaned_dict def remove_password_from_result(dictionary: dict) -> dict: return {key: value for key, value in dictionary.copy().items() if key != "password"} def prepare_department(department_api_result: list, given_department_name: str) -> dict: for department in department_api_result: if department.get("name") == given_department_name: return department raise PluginException( cause=Cause.DEPARTMENT_NOT_FOUND, assistance=Assistance.VERIFY_INPUT, ) def prepare_groups(groups_api_result: list, given_groups_names: list) -> list: result_list = [] available_names = [item.get("name") for item in groups_api_result] for name in given_groups_names: if name not in available_names: raise PluginException( cause=Cause.GROUP_NOT_FOUND, assistance=Assistance.VERIFY_INPUT, ) for group in groups_api_result: for name in given_groups_names: if name == group.get("name"): result_list.append(group) return result_list def to_camel_case(provided_string: str) -> str: if match(CAMEL_CASE_REGEX, provided_string): return provided_string if match(PASCAL_CASE_REGEX, provided_string): return provided_string[0].lower() + provided_string[1:] if match(CAMEL_CASE_ACRONYM_REGEX, provided_string): words = split(r"(?<=[a-z0-9])(?=[A-Z])|(?<=[A-Z0-9])(?=[a-z])", provided_string) result = "".join([w.title() for w in words]) return result[0].lower() + result[1:] init, *temp = provided_string.split("_") result = "".join([init.lower(), *map(str.title, temp)]) return result def convert_dict_keys_to_camel_case(to_modify: Union[dict, list]) -> Union[dict, list]: if isinstance(to_modify, list): return [convert_dict_keys_to_camel_case(element) for element in to_modify] elif isinstance(to_modify, dict): output_dict = {} for key, value in to_modify.items(): output_dict[to_camel_case(key)] = convert_dict_keys_to_camel_case(value) return output_dict else: return to_modify def filter_dict_keys(dict_to_modify: dict, keys_to_keep: list) -> dict: if not isinstance(dict_to_modify, dict): return dict_to_modify return {key: dict_to_modify.get(key) for key in keys_to_keep if key in dict_to_modify} def find_custom_url_category_by_name(url_category_name: str, url_categories_list: list) -> dict: if not url_categories_list or not url_category_name: raise PluginException( cause=Cause.CATEGORY_NOT_FOUND, assistance=Assistance.VERIFY_INPUT, ) url_category = list( filter(lambda category: category.get("configuredName") == url_category_name, url_categories_list) ) if url_category and url_category[0].get("id"): return url_category[0] else: raise PluginException( cause=Cause.CATEGORY_NOT_FOUND, assistance=Assistance.VERIFY_INPUT, ) def find_url_category_by_id(url_category_id: str, url_categories_list: str) -> dict: if not url_categories_list or not url_category_id: raise PluginException( cause=Cause.CATEGORY_NOT_FOUND, assistance=Assistance.VERIFY_INPUT, ) url_category = list(filter(lambda category: category.get("id") == url_category_id, url_categories_list)) if url_category and url_category[0].get("id"): return url_category[0] else: raise PluginException( cause=Cause.CATEGORY_NOT_FOUND, assistance=Assistance.VERIFY_INPUT, )
[ "noreply@github.com" ]
rapid7.noreply@github.com
7bfbdeac3b9d9dcaf8e91951da6cda2e2c7d6ce8
7daf78ed6ddc52c46b7d83db865cb6bd57a451ac
/spi_test.py
bac96a76c0db60104f1b5eb8cbb731cffd3ffb3f
[]
no_license
bitbytebitco/radpc_ai
684b038fb14d117afec189e4871160fb021d2186
cacf80efa37acd6bf563ec27697b3fd594ed4720
refs/heads/master
2023-06-29T01:50:43.178256
2021-08-05T02:59:21
2021-08-05T02:59:21
365,015,332
0
0
null
null
null
null
UTF-8
Python
false
false
2,423
py
import os import spidev import time import RPi.GPIO as GPIO # GPIO init GPIO.setmode(GPIO.BCM) GPIO.setup(23,GPIO.IN, pull_up_down=GPIO.PUD_UP) # SPI init spi_bus =0 spi_device = 0 spi = spidev.SpiDev() spi.open(spi_bus, spi_device) #spi.max_speed_hz = 4000 #spi.max_speed_hz = 151000 spi.max_speed_hz = 145000 # NOTE: CLOCK STUFF IS WEIRD! spi.no_cs = False ACK = 0xEE BINARY = False # TODO: replace print statements with logging def send_receive(channel=None): try: print('') print('send_receive') print('SENDING: ACK(`{}`)'.format(hex(ACK))) print(hex(ACK)) ack_resp = spi.xfer([ACK]) # send 0xEE to MSP to start sequence command = spi.readbytes(1)[0] # byte a byte which will be the COMMAND FOR THE RPI if hex(command) == "0x22": print('Command: RESET') spi.writebytes([0x22]) # SEND CONFIRMATION (echo command) elif hex(command) == "0x25": print('Command: PACKET') if True: fake = [] for i in range(127): fake.append(0x00) spi.writebytes([0x25]) # SEND CONFIRMATION (echo command) packet = spi.xfer(fake) # read PACKET else: spi.writebytes([0x25]) packet = spi.readbytes(128) #print('packet data') #print(packet) #print([hex(i) for i in packet]) #print("".join([chr(i) for i in packet])) bytes_str = bytes(bytearray([i for i in packet])) #print(str(bytes_str)) packet_count = len(os.listdir(os.path.join(os.getcwd(), "packets"))) # count files for filename usage with open('packets/{}.txt'.format(int(packet_count)+1), 'w') as binary_file: if not(BINARY): binary_file.write(str(bytes_str)) # saving as a str else: binary_file.write(bytes_str) # saving as binary needs `wb` in open() print('packet {} saved'.format(packet_count)) else: print("ELSE!") print(hex(command)) except Exception as e: print(e) # SETUP Interrupt GPIO.add_event_detect(23, GPIO.RISING, callback=send_receive, bouncetime=500) # Main Loop while True: pass print('####') print('####')
[ "bitbytebitco@gmail.com" ]
bitbytebitco@gmail.com
74b1acca6c71d5a2a04373300690f2d2ca2e9bbd
1bd47bb8cffa81a8e7d578d3826a420e9750e161
/main.py
86049ea3a70e311a4e73e8ccc283d6a0a5982466
[]
no_license
Damir10165/TableAndTree
24d8a5ef0afa4938ee05d833351d74d624ebe7aa
94fb3933066570c0ded7db5670ca1cc8abf22428
refs/heads/main
2023-08-17T10:58:39.704553
2021-07-16T12:43:26
2021-07-16T12:43:26
386,104,128
0
0
null
null
null
null
UTF-8
Python
false
false
3,339
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- from PyQt5.QtWidgets import (QApplication, QWidget, QToolBar, QPushButton, QMainWindow, QAction, QTextEdit, QGridLayout, QTableView) from PyQt5 import QtSql import random import sys import os DATABASE_NAME = 'example.db' def Connect_DataBase(): if os.path.exists(DATABASE_NAME): return Open_DataBase() else: return Create_DataBase() def Open_DataBase(): con = QtSql.QSqlDatabase.addDatabase('QSQLITE') con.setDatabaseName(DATABASE_NAME) if con.open(): print("Open data base is success") return con else: print("Error open data base") return None def Create_DataBase(): con = Open_DataBase() if con is not None: if Create_DataBase_Table(con): print("Create data base is success") return con else: print("Error create table") return None else: print("Error open data base for create table") return None def Create_DataBase_Table(con): if con.exec("CREATE TABLE Numbers (a float, b float, c float)"): print("Create table is success") return True else: print("Error create table") return None class Table(QTableView): def __init__(self): super().__init__() self.con = Connect_DataBase() self.model = QtSql.QSqlTableModel(self, self.con) self.model.setTable('Numbers') self.model.setEditStrategy(QtSql.QSqlTableModel.OnFieldChange) self.model.select() self.setModel(self.model) def add_row(self): rec = QtSql.QSqlRecord() rec.append(QtSql.QSqlField('a')) rec.append(QtSql.QSqlField('b')) rec.append(QtSql.QSqlField('c')) rec.setValue('a', float('{:.2}'.format(random.uniform(0,1)))) rec.setValue('b', float('{:.2}'.format(random.uniform(0,1)))) rec.setValue('c', float('{:.2}'.format(random.uniform(0,1)))) self.model.insertRecord(-1, rec) class Window(QMainWindow): #главное окно def __init__(self): super().__init__() self.initUI() def initUI(self): #Таблица self.table1 = Table() #кнопки добавления строк и столбцов Action_1 = QAction('Добавить строку', self) Action_1.triggered.connect(self.table1.add_row) self.toolbar = self.addToolBar('Добавить строку') self.toolbar.addAction(Action_1) #таблица и дерево window = QWidget() Tree = QTextEdit() grid = QGridLayout() grid.setSpacing(5) grid.addWidget(self.table1, 1, 0) grid.addWidget(Tree, 1, 1) window.setLayout(grid) self.setCentralWidget(window) self.setCentralWidget(window) self.setGeometry(500, 500, 500, 500) self.setWindowTitle("Главное окно") self.show() if __name__ == '__main__': app = QApplication(sys.argv) ex = Window() sys.exit(app.exec_())
[ "noreply@github.com" ]
Damir10165.noreply@github.com
e3cb34e969e398b08d9c43935908f7b26d4014f0
000a4b227d970cdc6c8db192f4437698cb782721
/python/helpers/typeshed/stubs/stripe/stripe/api_resources/charge.pyi
2e3467e67bc5e6b90113fd9988cf281a375bde2c
[ "Apache-2.0", "MIT" ]
permissive
trinhanhngoc/intellij-community
2eb2f66a2a3a9456e7a0c5e7be1eaba03c38815d
1d4a962cfda308a73e0a7ef75186aaa4b15d1e17
refs/heads/master
2022-11-03T21:50:47.859675
2022-10-19T16:39:57
2022-10-19T23:25:35
205,765,945
1
0
Apache-2.0
2019-09-02T02:55:15
2019-09-02T02:55:15
null
UTF-8
Python
false
false
851
pyi
from typing import Any from stripe import api_requestor as api_requestor from stripe.api_resources.abstract import ( CreateableAPIResource as CreateableAPIResource, ListableAPIResource as ListableAPIResource, UpdateableAPIResource as UpdateableAPIResource, custom_method as custom_method, ) class Charge(CreateableAPIResource, ListableAPIResource, UpdateableAPIResource): OBJECT_NAME: str def capture(self, idempotency_key: Any | None = ..., **params): ... def refund(self, idempotency_key: Any | None = ..., **params): ... def update_dispute(self, idempotency_key: Any | None = ..., **params): ... def close_dispute(self, idempotency_key: Any | None = ..., **params): ... def mark_as_fraudulent(self, idempotency_key: Any | None = ...): ... def mark_as_safe(self, idempotency_key: Any | None = ...): ...
[ "intellij-monorepo-bot-no-reply@jetbrains.com" ]
intellij-monorepo-bot-no-reply@jetbrains.com
ecff5efbd76a2dde9d681d2784b800b6663f9127
b7c3511bf4293c12510f0eab72f6d2bffd05be19
/web_chat/chat/tests.py
4b658e6522c77c5c9eb85d331569b99c4f7bd68e
[]
no_license
vramos1/backend-arquitectura
ab7e8831f899a038902c83c3bef89b202c432abb
159bad5b1e454328df6981d8935c909a8204e36d
refs/heads/master
2023-01-29T21:14:50.188507
2020-11-23T21:04:13
2020-11-23T21:04:13
310,602,901
0
0
null
null
null
null
UTF-8
Python
false
false
1,265
py
from django.test import TestCase from web_chat.chat.models import Room, Chat, Apply from django.contrib.auth.models import User # Create your tests here. class ChatTest(TestCase): def setUp(self): self.user = User.objects.create( is_superuser=False, password="test", username="test" ) self.room = Room.objects.create( name="test room", private=True, creator=self.user ) self.room.users.add(self.user) self.room.save() self.message = Chat.objects.create( username=self.user.username, room=self.room, message="this is a test message", ) self.apply = Apply.objects.create(user=self.user, room=self.room) def test_get_creator(self): creator_username = self.room.get_creator() self.assertEqual(creator_username, self.user.username) def test_get_all_messages(self): chats = self.room.get_all_messages() self.assertEqual(chats[0].message, self.message.message) def test_get_user_and_room(self): username_string = self.apply.get_user_and_room() correct_string = f"{self.user.username} => {self.room.name}" self.assertEqual(username_string, correct_string)
[ "vramos1@uc.cl" ]
vramos1@uc.cl
5a42411bbb622d7b2f01c712aad314bdfc8d9c6f
953b15ef3ff7d2a1b12d86dbf13f15af7eb8aa4a
/a3c_training_thread.py
a050c771ade48fcefdb98c1de9d1693718ecc548
[ "Apache-2.0" ]
permissive
MightyChaos/async_transfer_rl
2fe213dda375f3df165dbe277aa656319997eb34
000601773d2e226848a49eb71cfc9d89cc6df9bb
refs/heads/master
2021-01-20T04:47:55.741247
2017-04-29T03:16:10
2017-04-29T03:16:10
89,735,265
0
0
null
2017-04-28T18:46:26
2017-04-28T18:46:26
null
UTF-8
Python
false
false
6,143
py
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import random import time import sys from game_state import GameState from game_state import ACTION_SIZE from game_ac_network import GameACFFNetwork, GameACLSTMNetwork from constants import GAMMA from constants import LOCAL_T_MAX from constants import ENTROPY_BETA from constants import USE_LSTM LOG_INTERVAL = 100 PERFORMANCE_LOG_INTERVAL = 1000 class A3CTrainingThread(object): def __init__(self, thread_index, global_network, initial_learning_rate, learning_rate_input, grad_applier, max_global_time_step, device): self.thread_index = thread_index self.learning_rate_input = learning_rate_input self.max_global_time_step = max_global_time_step if USE_LSTM: self.local_network = GameACLSTMNetwork(ACTION_SIZE, thread_index, device) else: self.local_network = GameACFFNetwork(ACTION_SIZE, thread_index, device) self.local_network.prepare_loss(ENTROPY_BETA) with tf.device(device): var_refs = [v._ref() for v in self.local_network.get_vars()] self.gradients = tf.gradients( self.local_network.total_loss, var_refs, gate_gradients=False, aggregation_method=None, colocate_gradients_with_ops=False) self.apply_gradients = grad_applier.apply_gradients( global_network.get_vars(), self.gradients ) self.sync = self.local_network.sync_from(global_network) self.game_state = GameState(113 * thread_index) self.local_t = 0 self.initial_learning_rate = initial_learning_rate self.episode_reward = 0 # variable controling log output self.prev_local_t = 0 def _anneal_learning_rate(self, global_time_step): learning_rate = self.initial_learning_rate * (self.max_global_time_step - global_time_step) / self.max_global_time_step if learning_rate < 0.0: learning_rate = 0.0 return learning_rate def choose_action(self, pi_values): return np.random.choice(range(len(pi_values)), p=pi_values) def _record_score(self, sess, summary_writer, summary_op, score_input, score, global_t): summary_str = sess.run(summary_op, feed_dict={ score_input: score }) summary_writer.add_summary(summary_str, global_t) summary_writer.flush() def set_start_time(self, start_time): self.start_time = start_time def process(self, sess, global_t, summary_writer, summary_op, score_input): states = [] actions = [] rewards = [] values = [] terminal_end = False # copy weights from shared to local sess.run( self.sync ) start_local_t = self.local_t if USE_LSTM: start_lstm_state = self.local_network.lstm_state_out # t_max times loop for i in range(LOCAL_T_MAX): pi_, value_ = self.local_network.run_policy_and_value(sess, self.game_state.s_t) action = self.choose_action(pi_) states.append(self.game_state.s_t) actions.append(action) values.append(value_) if (self.thread_index == 0) and (self.local_t % LOG_INTERVAL == 0): print("local_iter={0} pi={1} V={2}".format(i, pi_, value_)) #print(" V={}".format(value_)) # process game self.game_state.process(action) # receive game result reward = self.game_state.reward terminal = self.game_state.terminal self.episode_reward += reward # clip reward rewards.append( np.clip(reward, -1, 1) ) self.local_t += 1 # s_t1 -> s_t self.game_state.update() if terminal: terminal_end = True print("score={}".format(self.episode_reward)) self._record_score(sess, summary_writer, summary_op, score_input, self.episode_reward, global_t) self.episode_reward = 0 self.game_state.reset() if USE_LSTM: self.local_network.reset_state() break R = 0.0 if not terminal_end: R = self.local_network.run_value(sess, self.game_state.s_t) actions.reverse() states.reverse() rewards.reverse() values.reverse() batch_si = [] batch_a = [] batch_td = [] batch_R = [] # compute and accmulate gradients for(ai, ri, si, Vi) in zip(actions, rewards, states, values): R = ri + GAMMA * R td = R - Vi a = np.zeros([ACTION_SIZE]) a[ai] = 1 batch_si.append(si) batch_a.append(a) batch_td.append(td) batch_R.append(R) cur_learning_rate = self._anneal_learning_rate(global_t) if USE_LSTM: batch_si.reverse() batch_a.reverse() batch_td.reverse() batch_R.reverse() sess.run( self.apply_gradients, feed_dict = { self.local_network.s: batch_si, self.local_network.a: batch_a, self.local_network.td: batch_td, self.local_network.r: batch_R, self.local_network.initial_lstm_state: start_lstm_state, self.local_network.step_size : [len(batch_a)], self.learning_rate_input: cur_learning_rate } ) else: sess.run( self.apply_gradients, feed_dict = { self.local_network.s: batch_si, self.local_network.a: batch_a, self.local_network.td: batch_td, self.local_network.r: batch_R, self.learning_rate_input: cur_learning_rate} ) if (self.thread_index == 0) and (self.local_t - self.prev_local_t >= PERFORMANCE_LOG_INTERVAL): self.prev_local_t += PERFORMANCE_LOG_INTERVAL elapsed_time = time.time() - self.start_time steps_per_sec = global_t / elapsed_time print("### Performance : {} STEPS in {:.0f} sec. {:.0f} STEPS/sec. {:.2f}M STEPS/hour".format( global_t, elapsed_time, steps_per_sec, steps_per_sec * 3600 / 1000000.)) # return advanced local step size diff_local_t = self.local_t - start_local_t return diff_local_t
[ "yangluonaluna@gmail.com" ]
yangluonaluna@gmail.com
ca93607b79207cc78004efd8c339bc2ab7e9d567
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5670465267826688_0/Python/yagao0o/dijkstra.py
96ca68f0bdc39cf5943ae362656074c360209c95
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
2,207
py
# author: yagoa0o # date : 2015/04/11 class Solution(): multi_square = {'1': {'1': '1', 'i': 'i', 'j': 'j', 'k': 'k'}, 'i': {'1': 'i', 'i': '-1', 'j': 'k', 'k': '-j'}, 'j': {'1': 'j', 'i': '-k', 'j': '-1', 'k': 'i'}, 'k': {'1': 'k', 'i': 'j', 'j': '-i', 'k': '-1'}} def get_result(self, input_file_name, output_file_name): infile = open(input_file_name) outfile = open(output_file_name, "w+") total = int(infile.readline()) # main procedure for i in range(total): input_parms = infile.readline().split() l = int(input_parms[0]) x = int(input_parms[1]) characters = infile.readline() result = 'Yes' if x % 4 != 0 and l > 1: #count characters cal_result = '1' cal_string = characters[:l] * (x % 4 + 8) if x > 12 else characters[:l] * x got_i = False got_j = False for char in cal_string: cal_result = self.multiply(cal_result, char) if (not got_i) and cal_result == 'i': got_i = True if (not got_j) and got_i and cal_result == 'k': got_j = True if cal_result == '-1' and got_i and got_j: result = 'YES' else: result = 'NO' else: result = 'NO' outfile.write('Case #' + str(i + 1) + ': ' + result + '\n') infile.close() outfile.close() return False def multiply(self, a, b): is_negative = False is_negative = is_negative != (a[0] == '-') is_negative = is_negative != (b[0] == '-') result = self.multi_square[a[-1]][b[-1]] is_negative = is_negative != (result[0] == '-') if not is_negative: return result[-1] else: return '-' + result[-1] solu = Solution() file_name = 'C-small-attempt2' solu.get_result(file_name + '.in', file_name + '.out')
[ "eewestman@gmail.com" ]
eewestman@gmail.com
7f3bf8c6c37f51045aadb727540f9a198debe4ce
a08670c23f1a8fed994fb781df93ce87a1ffc422
/web/base/__init__.py
658f51a797e95a51bb9111273933bf7998f7c2a2
[]
no_license
roenfun/selenium-demo
962d53a459756716dea5bc81bdbc82105f619f61
7d5e46d8472cc22617d00df17f0fd272df19dff3
refs/heads/master
2023-03-21T13:27:49.707425
2021-03-15T03:23:37
2021-03-15T03:23:37
266,483,740
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
# @File : __init__.py.py # @Author : Chad # @Time : 2020-05-23 # coding:utf-8
[ "Chad.long@vipshop.com" ]
Chad.long@vipshop.com
0bea2a6533e2180f7d91076749f8da9dd71d235f
774df3c9bbb64889ae97b13363baf49709ad3f6c
/menwith/network.py
62d8a64f388a8a7199a6d71ab04d2a051c1d36ff
[]
no_license
gmr/menwith
39095b8730d7ae87cd3d679bb65f3c6f1e775635
e03f51ccfa8db4db036f2f6e0fa640c579f1e150
refs/heads/master
2020-04-26T22:21:24.168247
2011-11-28T04:03:21
2011-11-28T04:03:21
173,705
1
1
null
null
null
null
UTF-8
Python
false
false
8,961
py
""" Main PCAP interface for listening on the NIC for data """ import logging import pcap from socket import ntohs, IPPROTO_TCP, IPPROTO_UDP import struct from . import memcache # Ethernet constants _ETHERTYPE_IPV4 = '\x08\x00' # IPv4 Constants _IPV4_BASE_HEADER_SIZE = 20 # Default IPv4 header size _IPV4_OPTIONS_OFFSET = 20 # Bit 160 # TCP Constants _TCP_BASE_HEADER_SIZE = 24 # Port we want to use by default _MEMCACHED_PORT = 11211 # How many bytes to read _SNAPSHOT_LENGTH = 65535 # Doesn't do anything in Linux _TIMEOUT = 100 class TCPCapture(object): def __init__(self, queue, device, port=_MEMCACHED_PORT): """Create a new TCPCapture object for the given device and port. :param Queue queue: The cross-thread queue to create :param str device: The device name (eth0, en1, etc) :param int port: The port to listen on :raises: ValueError """ self._logger = logging.getLogger('menwith.network.TCPCapture') self._logger.debug('Setup with queue: %r', queue) self._queue = queue self._running = False # Create the PCAP object self._pcap = self._setup_libpcap(device, port) def _char_conversion(self, value): """Convert the bytes to a character returning the converted string. :param str value: The string to convert :returns: str """ return ''.join(['%c' % byte for byte in value]) def _ethernet_decode(self, packet_in): """Extract the ethernet header, returning the ethernet header and the remaining parts of the packet. :param str packet_in: The full packet :returns: tuple """ return (self._format_bytes(packet_in[0:6], ':'), self._format_bytes(packet_in[6:12], ':'), packet_in[12:14], packet_in[14:]) def _format_bytes(self, value, delimiter=''): """Format a byte string returning the formatted value with the specified delimiter. :param str value: The byte string :param str delimiter: The optional delimiter :returns: str """ return delimiter.join(['%0.2x' % ord(byte) for byte in value]) def _ipv4_decode(self, packet_in): """Extract the IP header and populate a dictionary of values, returning a the dictionary and the remaining data to extract. :param str packet_in: The IP packet data :returns: tuple """ out = {'version': struct.unpack('b', packet_in[0])[0] >> 4, 'ihl': (struct.unpack('b', packet_in[0])[0] & 0x0F) * 4, 'total_length': ntohs(struct.unpack('H', packet_in[2:4])[0]), 'identification': ntohs(struct.unpack('H', packet_in[4:6])[0]), 'flags': (ord(packet_in[6]) & 0xe0) >> 5, 'fragment_offset': (ntohs(struct.unpack('H', packet_in[6:8])[0]) & 0x1f), 'ttl': ord(packet_in[8]), 'protocol': ord(packet_in[9]), 'checksum': ntohs(struct.unpack('H', packet_in[10:12])[0]), 'source': pcap.ntoa(struct.unpack('i', packet_in[12:16])[0]), 'destination': pcap.ntoa(struct.unpack('i', packet_in[16:20])[0])} # If our header size is more than 5 bytes, we have options if out['ihl'] > _IPV4_BASE_HEADER_SIZE: out['options'] = packet_in[_IPV4_BASE_HEADER_SIZE:out['ihl']] else: out['options'] = None # Return the decoded packet return out, packet_in[out['ihl']:] def _process_packet(self, packet_length, packet_in, timestamp): """Called by libpcap's dispatch call, we receive raw data that needs to be decoded then appended to the tcp buffer. When a full IP packet is received, construct the TCP header dictionary. :param int packet_length: The length of the packet received :param str packet_in: The packet to be processed :param float timestamp: The timestamp the packet was received """ # Extract the parts of the packet dest, source, ethertype, payload = self._ethernet_decode(packet_in) self._logger.debug(('Destination MAC Address: %s ' 'Source MAC Address: %s'), dest, source) # If we have an IPv4 ethertype, process it if ethertype == _ETHERTYPE_IPV4: # Process the IPv4 Header ipv4_header, ipv4_payload = self._ipv4_decode(payload) # Log the IPv4 Header values self._logger.debug('IPv4 Header: %r', ipv4_header) # Determine how to decode if ipv4_header['protocol'] == IPPROTO_TCP: # Decode the TCP Header tcp_header, tcp_payload = self._tcp_decode(ipv4_payload) # Log the TCP Header values self._logger.debug('TCP Header: %r', tcp_header) # Add the TCP data to the Queue for decoding if tcp_payload: self._queue.put(tcp_payload) def _setup_libpcap(self, device, port): """Setup the pcap object and return the handle for it. :returns: pcap.pcapObject """ # Validate the device if not self._validate_device(device): raise ValueError('Can not validate the device: %s' % device) # Create the pcap object pcap_object = pcap.pcapObject() # Open the device in promiscuous mode try: pcap_object.open_live(device, _SNAPSHOT_LENGTH, True, _TIMEOUT) self._logger.info('Opened %s', device) except Exception as error: raise OSError('Permission error opening device %s' % error) # Set our filter up filter = 'dst port %i' % port # Create our pcap filter looking for ip packets for the memcached server pcap_object.setfilter(filter, 1, 0) self._logger.info('Filter set to: %s', filter) # Set our operation to non-blocking pcap_object.setnonblock(1) # Return the handle to the pcap object return pcap_object def _tcp_decode(self, packet_in): """Extract the TCP header and populate a dictionary of values, returning a the dictionary and the remaining data to extract. :param str packet_in: The TCP packet data :returns: tuple """ self._logger.debug('TCP Packet: %r', packet_in) out = {'source_port': ntohs(struct.unpack('H', packet_in[0:2])[0]), 'dest_port': ntohs(struct.unpack('H', packet_in[2:4])[0]), 'data_offset': struct.unpack('B', packet_in[12])[0] >> 4} return out, self._char_conversion(packet_in[(_TCP_BASE_HEADER_SIZE + out['data_offset']):]) def _validate_device(self, device_name): """Validate the given device name as being available to the application. While this is more hoops than just pcap.lookupdev, we can get a full list of ip addresses we're listening for from this method. :param str device_name: The device name to validate :returns: Bool """ # Get all the devices available devices = pcap.findalldevs() # Iterate through the devices looking for the one we care about for device in devices: # Is this the droid, err device we are looking for? if device[0] == device_name: self._logger.debug('Validated device %s', device_name) # Output ip addresses if there are any if device[2]: ip_addresses = list() for address_info in device[2]: ip_addresses.append(address_info[0]) self._logger.info('IP addresses to listen on: %r', ip_addresses) # Device validates return True # It was not found return False def process(self): """Start processing packets, dispatching received packets to the TCPCapture._process_raw_data method. Will loop as long as self._running is True """ # We want to process self._running = True # Iterate as long as we're processing while self._running: # Dispatch the reading of packets, as many as we can get self._pcap.dispatch(1, self._process_packet) def stop(self): """Causes the blocking listen call to stop.""" # Toggle the bool looped on in the listen method self._running = False # Log that the processing has been told to stop self._logger.info('Indicated that processing of packets should stop')
[ "gmr@myyearbook.com" ]
gmr@myyearbook.com
b1d967e610d4020d110343b3a61c6a12bb491305
709522eb6c9730f2095df3d0f89b02b658e93e18
/run.py
6d7679064d87dd38d491dcc181560356ff89813e
[]
no_license
haracewiat/MultiplayerGame
1bb549c4bae6655ece3f5c2386d33a2a042ac7d7
4896626da59c280a7a8ae22026cd33dd0818095f
refs/heads/master
2023-07-20T02:12:27.227911
2020-03-11T17:41:54
2020-03-11T17:41:54
246,146,985
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
from game import Game if __name__ == "__main__": print("run") g = game.Game() g.run()
[ "b.haracewiat@gmail.com" ]
b.haracewiat@gmail.com
d8827844e462a3b2f1b7a4bfea42cf1fa45b6f4e
a080b5cb90d0e274b5a7aec3adb9bfdf4d5b8cd5
/jpgtopng.py
c01fa5b2f05dab9aa03590a67748832f4389f50d
[]
no_license
nickcodes-py/JPGtoPNG-Converter
df2025855c87558c054de4dee7c73885d973b77a
c521cdba80008a2e0d3e0572b1bb7360020642b2
refs/heads/master
2020-12-04T20:55:37.693165
2020-01-05T10:18:14
2020-01-05T10:18:14
231,899,715
0
0
null
null
null
null
UTF-8
Python
false
false
502
py
import sys import os from PIL import Image, ImageFilter #Grab Current and New Folder image_folder = sys.argv[1] output_folder = sys.argv[2] #Check if New exist, or create if not os.path.exists(output_folder): os.makedirs(output_folder) #Loop through folder, convert images to PNG for filename in os.listdir(image_folder): img = Image.open(f'{image_folder}{filename}') clean_name = os.path.splitext(filename)[0] img.save(f'{output_folder}{clean_name}', 'png') #Save to new folder
[ "nikunj.dutt@outlook.com" ]
nikunj.dutt@outlook.com
224730f81d5c198b3bf51777919019a771f07a63
71c47b4c8f35279c1f875c499ecae3c2eaf65432
/Module_1/homework/100NSqrt.py
5976441d21bd1b5d6e2749fc5d97916fb9033217
[]
no_license
isemiguk/Python_Coursera
e53ead7ed966a0b11a9c43667caa00f9c4504328
ce7d5904a91dfadd57d9a2bb4fb413d4c23c7a3c
refs/heads/master
2022-11-06T13:56:50.926356
2020-07-01T19:12:22
2020-07-01T19:12:22
266,181,204
0
0
null
null
null
null
UTF-8
Python
false
false
36
py
a = input() print(int(a * 100)**2)
[ "igorsemiguk@gmail.com" ]
igorsemiguk@gmail.com
ce95dbf6fcaaaf9619bb3af852fd822f2f11193d
aa74d22568d80866488a321026c369a12346484f
/microblog/app/venv/bin/flask
ffb649ae118d9a9f02968aa474a905ff4e264b54
[]
no_license
nptravis/python-studies
0ca5e3d804beb2b9b7e3484606753324c9151bab
d649ac614bf9efdce1cc50e015f9252d1eba371c
refs/heads/master
2021-09-03T13:18:27.621292
2018-01-09T09:43:39
2018-01-09T09:43:39
114,952,074
0
0
null
null
null
null
UTF-8
Python
false
false
268
#!/Users/Nic/Documents/projects/cs50/python/microblog/app/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "nptravis@yahoo.com" ]
nptravis@yahoo.com
9148b220bb576626f27c0f2cfb3cb25ebbcd7139
ad13583673551857615498b9605d9dcab63bb2c3
/output/models/ms_data/datatypes/facets/byte/byte_max_inclusive001_xsd/__init__.py
0444a6966ba5abae09b921e38485930982799bb6
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
173
py
from output.models.ms_data.datatypes.facets.byte.byte_max_inclusive001_xsd.byte_max_inclusive001 import ( FooType, Test, ) __all__ = [ "FooType", "Test", ]
[ "tsoulloftas@gmail.com" ]
tsoulloftas@gmail.com
ec4b7992e11399e05868bd6cd613c86cd686efa1
bf02d48baebee89a95b2c637b6d017ca300039ef
/tictactoe/settings.py
f9e2d7ba7de9bf3f09d6d21562d2bce0679fe770
[]
no_license
maheshwars/Tic-Tac-Toe
c4014b9d0c833e4d0648066f319b42a60e6d589e
b2ea1c5f0b84f8fbd5e360e323d4030e8fc82589
refs/heads/master
2022-12-09T12:41:50.696273
2020-09-09T21:30:27
2020-09-09T21:30:27
294,225,777
0
0
null
null
null
null
UTF-8
Python
false
false
3,509
py
""" Django settings for tictactoe project. Generated by 'django-admin startproject' using Django 3.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve(strict=True).parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '%bx5#d_6-%-3#v(5p4t=n*svppv280hmaz^g3fdiuk95s--01p' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'gameplay', 'player', 'crispy_forms', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'tictactoe.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "templates")], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'tictactoe.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static") ] LOGIN_REDIRECT_URL = "player_home" LOGOUT_REDIRECT_URL = "tictactoe_welcome" LOGIN_URL = "player_login" CRISPY_TEMPLATE_PACK ='bootstrap3'
[ "noreply@github.com" ]
maheshwars.noreply@github.com
8c891499686c46192eb6e8fdbff3d1ff45edece6
d40b1042ab0c3506a35c65889f0df73405fb66b0
/namespaces.py
639b3bac194dbcc687399605a172bbb5c8b7d97f
[]
no_license
juanique/ucursos-rdf
18a7e92789eb5f035e798d12128458bd6133af57
93c6c78876b99ecb253e0e98144e11ec39d9903e
refs/heads/master
2020-05-31T06:24:25.110260
2012-05-03T03:01:52
2012-05-03T03:01:52
4,177,485
1
0
null
null
null
null
UTF-8
Python
false
false
588
py
from rdflib import Namespace NFO = Namespace('http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#') NIE = Namespace('http://www.semanticdesktop.org/ontologies/2007/01/19/nie#') RDFS = Namespace('http://www.w3.org/2000/01/rdf-schema#') RDF = Namespace('http://www.w3.org/1999/02/22-rdf-syntax-ns#') CLIP = Namespace('http://www.rdfclip.com/resource/') CLIPS = Namespace('http://www.rdfclip.com/schema#') XMLS = Namespace('http://www.w3.org/2001/XMLSchema#') UCHILE = Namespace('http://www.rdfclip.com/resources/uchile#') UCHILES = Namespace('http://www.rdfclip.com/schema/uchile#')
[ "juanique@ubuntu.(none)" ]
juanique@ubuntu.(none)
61c9e42c66d7a8db5e32e7b93993184e39839ae7
69310bc4a04d4f9cbbb27a4c322c5d7d8fb3d0c3
/Tests/test_PopulationSample.py
bd4a0e308ae4df676de830ec8d97e519ca0cd2d5
[]
no_license
jaylakhani14/statcalc
15ea52e787cb75cd767d6e3564fcefd7d06d7536
e28a233c06ff236b157494d2df31dea15c8dc328
refs/heads/master
2023-03-31T19:39:41.400843
2021-03-23T01:16:08
2021-03-23T01:16:08
344,951,449
1
3
null
null
null
null
UTF-8
Python
false
false
676
py
import unittest import numpy as np import scipy from PopulationSampling.simpleRandom import Sample from PopulationSampling.confidence import Confidence class MyTestCase(unittest.TestCase): def test_simple_random_sample(self): mylist = ["apple", "banana", "cherry"] Sample.sample(mylist, 2) def test_confidence_interval(self): sample = [1, 2, 3, 4, 5, 6, 7, 8, 9] c = 0.95 df = len(sample) - 1 sample_mean = np.mean(sample) sample_standard_error = scipy.stats.sem(sample) Confidence.mean_confidence_interval(c, df, sample_mean, sample_standard_error) if __name__ == '__main__': unittest.main()
[ "fjt7@njit.edu" ]
fjt7@njit.edu
9b3c43e2159eccae5ed0ba80f67a626831e04c62
722d8f2aa69095dbdbe32ecdeebb4bcf20e2ea3c
/tests/test_issue10_17.py
e54ddd56630de1e5e811d12e7ec3f3da0d804333
[]
permissive
clach04/pyqrcodeNG
1bad85bea9c2a5ca9bcda8849e35af51f8e394f3
8033a915eca1946537002b8b271ea2cddb4e004b
refs/heads/master
2022-04-23T00:18:36.478138
2020-01-21T22:28:44
2020-01-21T22:28:44
259,402,644
0
0
BSD-3-Clause
2020-04-27T17:24:36
2020-04-27T17:24:35
null
UTF-8
Python
false
false
424
py
# -*- coding: utf-8 -*- """\ Tests against <https://github.com/mnooner256/pyqrcode/issues/17> and <https://github.com/heuer/pyqrcode/issues/10> Unicode issues. """ from __future__ import unicode_literals import pyqrcodeng as pyqrcode def test_issue_10_17(): qr = pyqrcode.create('John’s Pizza') assert qr assert 'binary' == qr.mode if __name__ == '__main__': import pytest pytest.main([__file__])
[ "heuer@semagia.com" ]
heuer@semagia.com
a6db5964253e81c368fcf13b0b31ecd3de6e3376
4eeb7257a706967a049ea0e020bdd8d05f987c21
/working/kub-nginx.py
f5b3cb82ed777fedc2d42f605087d169d7903549
[]
no_license
monolive/airflow-dags
6e1451261f370ec9707a3226ad2ea4498d628faa
e1191d2193ca428f331c7ac0d09c89056893f891
refs/heads/master
2020-04-10T13:32:33.789760
2019-02-25T08:59:57
2019-02-25T08:59:57
161,053,387
0
0
null
null
null
null
UTF-8
Python
false
false
1,569
py
#from airflow.contrib.operators import KubernetesOperator from datetime import datetime, timedelta from airflow import DAG from airflow.operators.dummy_operator import DummyOperator from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator from airflow.contrib.kubernetes.secret import Secret seven_days_ago = datetime.combine(datetime.today() - timedelta(7), datetime.min.time()) default_args = { 'owner': 'airflow', 'depends_on_past': False, 'start_date': seven_days_ago, 'email': ['airflow@example.com'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(minutes=5), # 'queue': 'bash_queue', 'pool': 'kube', # 'priority_weight': 10, # 'end_date': datetime(2016, 1, 1), } dag = DAG( 'nginx', default_args=default_args, schedule_interval=timedelta(days=1), dagrun_timeout=timedelta(minutes=5),) start = DummyOperator(task_id='run_this_first', dag=dag) boom = KubernetesPodOperator(namespace='airflow', image="nginx:latest", image_pull_policy="Always", # cmds=["bash","-cx"], # arguments=["echo","10"], name="nginx", task_id="startNginx", is_delete_operator_pod=True, hostnetwork=False, dag=dag, in_cluster=False, ) boom.set_upstream(start)
[ "Olivier.Renault@vanquisbank.co.uk" ]
Olivier.Renault@vanquisbank.co.uk
ae28eeb606bc9e3c7a1b0a8586dd6305705295bb
add83856f85c4134a524671121212e32e9a0ade2
/aula4.py
6fb7f45e441fefbeecbb28f0bed9ee88a5a5bf73
[]
no_license
priscilasvn10/Estudando_Python
671e3842c7b4e4de29e86cd7abe23f307d4a2ab8
ffef655a9c3282ac158435b3263928cd6cb531bd
refs/heads/master
2022-11-06T20:57:46.375239
2020-06-11T11:54:16
2020-06-11T11:54:16
271,512,537
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
a = int(input('Digite o primeito valor: ')) b = int(input('Digite o primeito valor: ')) soma = a + b media = soma/2 print('O valor da soma é: {soma}'.format(soma=soma)) print('\n A média é {}'.format(media))
[ "noreply@github.com" ]
priscilasvn10.noreply@github.com
b9d57dfeaf96a51267c065beaf179dce02cef79a
d5905c424264e9376fb80871749865140fbd3fb1
/MPCNN-sentence-similarity-tensorflow/embedding.py
cdf6713bff57f004be2f5dcc433e2611a2f190a8
[]
no_license
eric-seekas/sentence_similarity
456e29ecb53e63a6f0ab804acfc6e919e1a1458c
647e90b1c43ab838fe857f87d3a2d5364112ff9b
refs/heads/master
2021-02-08T18:20:45.443720
2018-05-22T10:50:17
2018-05-22T10:50:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,310
py
""" A toolkit you may find useful for mapping sentences to embeddings. Download and unzip the standard GloVe embeddings to use this. Skip-thoughts use unigram/bigram information from the Children Book dataset. """ from __future__ import print_function import numpy as np class Embedder(object): """ Generic embedding interface. Required: * w: dict mapping tokens to indices * g: matrix with one row per token index * N: embedding dimensionality """ def map_tokens(self, tokens, ndim=2): """ for the given list of tokens, return a list of GloVe embeddings, or a single plain bag-of-words average embedding if ndim=1. Unseen words (that's actually *very* rare) are mapped to 0-vectors. """ gtokens = [self.g[self.w[t]] for t in tokens if t in self.w] if not gtokens: return np.zeros((1, self.N)) if ndim == 2 else np.zeros(self.N) gtokens = np.array(gtokens) if ndim == 2: return gtokens else: return gtokens.mean(axis=0) def map_set(self, ss, ndim=2): """ apply map_tokens on a whole set of sentences """ return [self.map_tokens(s, ndim=ndim) for s in ss] def map_jset(self, sj): """ for a set of sentence emb indices, get per-token embeddings """ return self.g[sj] def pad_set(self, ss, spad, N=None): """ Given a set of sentences transformed to per-word embeddings (using glove.map_set()), convert them to a 3D matrix with fixed sentence sizes - padded or trimmed to spad embeddings per sentence. Output is a tensor of shape (len(ss), spad, N). To determine spad, use something like np.sort([np.shape(s) for s in s0], axis=0)[-1000] so that typically everything fits, but you don't go to absurd lengths to accomodate outliers. """ ss2 = [] if N is None: N = self.N for s in ss: if spad > s.shape[0]: if s.ndim == 2: s = np.vstack((s, np.zeros((spad - s.shape[0], N)))) else: # pad non-embeddings (e.g. toklabels) too s = np.hstack((s, np.zeros(spad - s.shape[0]))) elif spad < s.shape[0]: s = s[:spad] ss2.append(s) return np.array(ss2) class GloVe(Embedder): """ A GloVe dictionary and the associated N-dimensional vector space """ def __init__(self, N=50, glovepath='/media/jlan/E/Projects/nlp/数据集/glove.6B/glove.6B.%dd.txt'): """ Load GloVe dictionary from the standard distributed text file. Glovepath should contain %d, which is substituted for the embedding dimension N. """ self.N = N self.w = dict() self.g = [] self.glovepath = glovepath % (N,) # [0] must be a zero vector self.g.append(np.zeros(self.N)) with open(self.glovepath, 'r') as f: for line in f: l = line.split() word = l[0] self.w[word] = len(self.g) self.g.append(np.array(l[1:]).astype(float)) self.w['UKNOW'] = len(self.g) self.g.append(np.zeros(self.N)) self.g = np.array(self.g, dtype='float32')
[ "cbj_love@126.com" ]
cbj_love@126.com
0292b72004bd85deca84805fc86f18693d557717
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/JFLADuABfkeoz8mqN_5.py
418dc4c327c7b6b0b704d40cb3c93aa5c599e590
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
class Person: def __init__(self, name, age): self.name = name self.age = age ​ def compare_age(self, other): modifier = '' if self.age < other.age: modifier = 'older than' elif self.age == other.age: modifier = 'the same age as' else: modifier = 'younger than' return '{n} is {m} me.'.format(n = other.name, m = modifier)
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
fbc8f567fc64ca0f8626efc764da3297fb9e5918
b5a9d42f7ea5e26cd82b3be2b26c324d5da79ba1
/tensorflow/contrib/tensor_forest/hybrid/python/models/stochastic_soft_decisions_to_data_then_nn.py
e916a8734c524c83772576e38418e6667fa6b0c9
[ "Apache-2.0" ]
permissive
uve/tensorflow
e48cb29f39ed24ee27e81afd1687960682e1fbef
e08079463bf43e5963acc41da1f57e95603f8080
refs/heads/master
2020-11-29T11:30:40.391232
2020-01-11T13:43:10
2020-01-11T13:43:10
230,088,347
0
0
Apache-2.0
2019-12-25T10:49:15
2019-12-25T10:49:14
null
UTF-8
Python
false
false
1,954
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A hybrid model that samples paths when training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.tensor_forest.hybrid.python.layers import decisions_to_data from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.contrib.tensor_forest.hybrid.python.models import hard_decisions_to_data_then_nn from tensorflow.python.training import adagrad class StochasticSoftDecisionsToDataThenNN( hard_decisions_to_data_then_nn.HardDecisionsToDataThenNN): """A hybrid model that samples paths when training.""" def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): super(StochasticSoftDecisionsToDataThenNN, self).__init__( params, device_assigner=device_assigner, optimizer_class=optimizer_class, **kwargs) self.layers = [decisions_to_data.StochasticSoftDecisionsToDataLayer( params, 0, device_assigner), fully_connected.FullyConnectedLayer( params, 1, device_assigner=device_assigner)]
[ "v-grniki@microsoft.com" ]
v-grniki@microsoft.com
46a326cd6ade0459a980a6bbdfafd899baf525e5
0208cbf2f0ea3c5405f2f8e3e74367df3916b999
/venv/bin/easy_install-3.6
cb43565f07cca22102c5e0b7d32db2c448086c7c
[ "MIT" ]
permissive
BHushanRathod/ecolibrium-assessment
aaa111ea7ba5e495f7deff5f2e59c2a7816dfd2e
b7a4f1ebb69094bcb0c2d39fc94df3cd93c73fb0
refs/heads/master
2022-05-02T14:45:36.088566
2021-07-12T10:20:51
2021-07-12T10:20:51
172,217,130
0
0
MIT
2022-04-22T21:01:35
2019-02-23T13:23:35
Python
UTF-8
Python
false
false
468
6
#!/Users/bhushan/Truso1.0/Experiment/ecolibrium_assessment/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.6' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.6')() )
[ "abhushanprathod@gmail.com" ]
abhushanprathod@gmail.com
25a420ee9e5512309aafd20ed676820b038209ea
b86608b6de44642ed29cd88bba4acbbdd31a0b04
/tools/agile-machine-learning-api/codes/trainer/launch_demo.py
8bd90b27237627cf0a348cdc757db624b062bda7
[ "Apache-2.0" ]
permissive
MCRen88/professional-services
a514a926dd23e3c4ac6dadb656faed22c3d91d5d
d7bc3b194159ffdb149c9507890bb1fbae7a8d88
refs/heads/master
2020-12-15T16:38:17.860940
2020-01-06T19:29:47
2020-01-06T19:29:47
235,181,173
1
0
Apache-2.0
2020-01-20T19:26:15
2020-01-20T19:26:14
null
UTF-8
Python
false
false
21,978
py
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """End to End script draft.""" import argparse import ast import os import time import numpy as np import six import tensorflow as tf from tensorflow.contrib.training.python.training import hparam from input_pipeline_dask import InputReader, BasicStats, DatasetInput from models import CannedModel, CustomModel from utils.metric_utils import mean_acc, mar, my_auc, rmse from utils.optimizer_utils import Optimizer class Config(object): """ Creates a run config object for training an estimator. Object to be initialized using default parameters or can be parsed by the user. """ def __init__( self, model_dir=None, tf_random_seed=None, save_summary_steps=100, save_checkpoints_steps=None, save_checkpoints_secs=120, session_config=None, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000, log_step_count_steps=100, train_distribute=None): """Initializes the config object. Arguments: model_dir : string, directory where the checkpoints are stored tf_random_seed : integer, seed to set for random initialization save_summary_steps : integer, number of global steps to save summaries save_checkpoints_steps ; integer, number of global steps to save checkpoints save_checkpoints_secs : integer, number of seconds to save checkpoints session_config : object, a config proto used to set session parameters keep_checkpoint_max : integer, maximum number of checkpoints to be stored keep_checkpoint_every_n_hours : integer, frequency of saving checkpoints log_step_count_steps : integer, frequency of steps to log information train_distribute : tf.distribute.Strategy object, distribution strategy for training """ self.model_dir = model_dir self.tf_random_seed = tf_random_seed self.save_summary_steps = save_summary_steps self.save_checkpoints_steps = save_checkpoints_steps self.save_checkpoints_secs = save_checkpoints_secs self.session_config = session_config self.keep_checkpoint_max = keep_checkpoint_max self.keep_checkpoint_every_n_hours = keep_checkpoint_every_n_hours self.log_step_count_steps = log_step_count_steps self.train_distribute = train_distribute def set_config(self): """ Sets the Run config object with the parameters parsed by the user """ self.RunConfig = tf.estimator.RunConfig( model_dir=self.model_dir, tf_random_seed=self.tf_random_seed, save_summary_steps=self.save_summary_steps, session_config=self.session_config, save_checkpoints_steps=self.save_checkpoints_steps, save_checkpoints_secs=self.save_checkpoints_secs, keep_checkpoint_max=self.keep_checkpoint_max, keep_checkpoint_every_n_hours=self.keep_checkpoint_every_n_hours, log_step_count_steps=self.log_step_count_steps, train_distribute=self.train_distribute) def get_config(self): """ Get Config object with parameters parsed by the user Returns: tf.estimator.RunConfig object for estimator training """ return self.RunConfig def get_is_chief(self): """ Get _is_chief boolean from RunConfig object Returns: tf.estimator.RunConfig object for estimator training """ return self.RunConfig._is_chief def prep_input( csv_path, task_type, target_var, na_values, column_names, to_drop, gcs_path, data_type, name): """ Preprocessing function for train and eval datasets. Arguments: csv_path : str, path of the csv file task_type : string, ML task at hand, following options are expected [classification, regression, clustering] target_var : string, Name of the dependent/target variable na_values : string, String by which the na values are represented in the data column_names : string, Names of the columns passed in a text file to_drop : list, Any redundant columns which can be dropped gcs_path : boolean, Whether the csv is stored on google cloud storage data_type : dict, dictionary containing the data type of all columns in format {'a': 'float', 'b': 'object', 'c': 'int' } name : str, name of the data being based [train, eval] Returns: df : dask.DataFrame object, dataframe containing cleaned data of the passed csv file cols : list, list containing column names of the data defaults : list, list containing defaults of the columns mapped : dict, dictionary containing vocabulary of the categorical columns mean : pandas.Series, pandas series containing mean values of continous columns std_dev : pandas.Series, pandas series containing standard deviation values of continous columns """ inp = InputReader( csv_path=csv_path, task_type=task_type, target_var=target_var, na_values=na_values, column_names=column_names, to_drop=to_drop, gcs_path=gcs_path, data_type=data_type) df, cols = inp.parse_csv_wrap() stats = BasicStats() df, mean, std_dev, defaults = stats.clean_data( df=df, target_var=inp.target_var, task_type=task_type, name=name) mapped = stats.find_vocab(df=df) mapped.pop(inp.target_var) return df, cols, defaults, mapped, mean, std_dev def create_deep_cols(feat_cols, name): """Creates embedding and indicator columns for canned DNNclassifier. Arguments: feat_cols : list, A list of feature column objects. name : string, name of the task in hand Returns: A list of feature column objects. """ deep_cols = None if name not in ['linearclassifier', 'linearregressor', 'polynomialclassifier', 'polynomialregressor']: deep_cols = list() for i in feat_cols: if i.dtype == 'string': i = tf.feature_column.indicator_column(i) deep_cols.append(i) return deep_cols def none_or_str(value): """ Creates a nonetype argument from command line. Arguments: value : The keyword argument from command line Returns: None if the string none is found """ if value == 'None': return None return value def convert_to_list(value): """ Creates a list argument from command line. Arguments: value : The keyword argument from command line Returns: None if the string none is found list if the string is space seperated values is found """ if value == 'None': return None return value.split(' ') def convert_to_dict(value): """ Creates a dict argument from command line. Arguments: value : The keyword argument from command line Returns: None if the string none is found dict if the string is space seperated values is found """ if value == 'None': return None return ast.literal_eval(value) def run_experiment(hparams): """ Arguments: hparams : tf.contrib.training.HParams object, contains all the arguments as a set of key value pairs Sets up the experiment to be launched on cloud machine learning engine """ a = time.time() _, csv_cols, csv_defaults, mapped, mean, std_dev = prep_input( csv_path=hparams.train_csv_path, task_type=hparams.task_type, target_var=hparams.target_var, na_values=hparams.na_values, column_names=hparams.column_names, to_drop=hparams.to_drop, gcs_path=hparams.gcs_path, data_type=hparams.data_type, name='train') _, _, _, _, _, _ = prep_input( csv_path=hparams.eval_csv_path, task_type=hparams.task_type, target_var=hparams.target_var, na_values=hparams.na_values, column_names=hparams.column_names, to_drop=hparams.to_drop, gcs_path=hparams.gcs_path, data_type=hparams.data_type, name='eval') data = DatasetInput( num_epochs=hparams.num_epochs, batch_size=hparams.batch_size, buffer_size=hparams.buffer_size, csv_defaults=csv_defaults, csv_cols=csv_cols, target_var=hparams.target_var, task_type=hparams.task_type, condition=hparams.condition) feature_cols = data.create_feature_columns_wrap( dictionary=mapped, mean=mean, std_dev=std_dev) b = time.time() tf.logging.info('Parse time is : %s', b - a) if hparams.name == 'kmeanscluster': def train_input(): return data.kmeans_input_fn('train') def eval_input(): return data.kmeans_input_fn('eval') else: def train_input(): return data.input_fn('train') def eval_input(): return data.input_fn('eval') def json_serving_input_fn(): """ Build the serving inputs. Returns: Serving input function for JSON data """ inputs = {} for feat in feature_cols: inputs[feat.name] = tf.placeholder( shape=[None], dtype=feat.dtype, name=feat.name) return tf.estimator.export.ServingInputReceiver(inputs, inputs) def parse_csv(rows_string_tensor): """ Takes the string input tensor and returns a dict of rank-2 tensors. Arguments: rows_string_tensor : tf.Tensor object, Tensor of the prediction datapoint Returns: features : tensor objects of features for inference """ columns = tf.decode_csv( rows_string_tensor, record_defaults=csv_defaults) features = dict(zip(csv_cols, columns)) for key, _ in six.iteritems(features): features[key] = tf.expand_dims(features[key], -1) return features def csv_serving_input_fn(): """ Build the serving inputs. Returns: Serving input function for CSV data """ csv_row = tf.placeholder( shape=[None], dtype=tf.string) features = parse_csv(rows_string_tensor=csv_row) return tf.estimator.export.ServingInputReceiver( features, {'csv_row': csv_row}) serving_functions = { 'JSON': json_serving_input_fn, 'CSV': csv_serving_input_fn } config_obj = Config( model_dir=hparams.job_dir, tf_random_seed=hparams.seed, save_summary_steps=hparams.save_summary_steps, session_config=None, save_checkpoints_secs=hparams.save_checkpoints_secs, save_checkpoints_steps=hparams.save_checkpoints_steps, keep_checkpoint_max=hparams.keep_checkpoint_max, keep_checkpoint_every_n_hours=hparams.keep_checkpoint_every_n_hours, log_step_count_steps=hparams.log_step_count_steps, train_distribute=hparams.distribute_strategy) config_obj.set_config() config = config_obj.get_config() opt = Optimizer() def linear_optimizer(): return opt.set_opt_wrap( hparams.lin_opt, hparams.learning_rate, hparams.lr_rate_decay) def deep_optimizer(): return opt.set_opt_wrap( hparams.deep_opt, hparams.learning_rate, hparams.lr_rate_decay) def poly_optimizer(): return opt.set_opt_wrap( hparams.poly_opt, hparams.learning_rate, hparams.lr_rate_decay) deep_cols = create_deep_cols(feature_cols, hparams.name) hidden_units = [hparams.hidden_units] feature_names = list(csv_cols) feature_names.remove(hparams.target_var) if hparams.name not in ['polynomialclassifier', 'polynomialregressor']: model = CannedModel( model_name=hparams.name, feature_columns=feature_cols, deep_columns=deep_cols, hidden_units=hidden_units, n_classes=hparams.n_classes, linear_optimizer=linear_optimizer, dnn_optimizer=deep_optimizer, activation_fn=hparams.activation_fn, dropout=hparams.dropout, batch_norm=hparams.batch_norm, config=config) else: model = CustomModel( model_name=hparams.name, batch_size=hparams.batch_size, optimizer=poly_optimizer, model_dir=hparams.job_dir, config=config, feature_names=feature_names, learning_rate=hparams.learning_rate) def mean_acc_metric(labels, predictions): """ Defining mean per class accuracy metric Arguments: labels : labels of the data predictions : prediction of the model Returns: function defining mean per class accuracy metric """ return mean_acc(labels, predictions, hparams.n_classes) estimator = model.build_model() if data.task_type == 'classification' and hparams.n_classes == 2: estimator = tf.contrib.estimator.add_metrics(estimator, my_auc) elif hparams.n_classes > 2: estimator = tf.contrib.estimator.add_metrics( estimator, mean_acc_metric) else: estimator = tf.contrib.estimator.add_metrics(estimator, rmse) estimator = tf.contrib.estimator.add_metrics(estimator, mar) if hparams.early_stopping: old_loss = np.inf for _ in range(hparams.eval_times): estimator.train(input_fn=train_input, steps=hparams.train_steps // hparams.eval_times) output = estimator.evaluate( input_fn=eval_input, steps=hparams.eval_steps) loss = output['loss'] if loss >= old_loss: tf.logging.info( 'EARLY STOPPING....... LOSS SATURATED AT : %s', loss) break else: old_loss = loss else: train_spec = tf.estimator.TrainSpec( train_input, hparams.train_steps) eval_spec = tf.estimator.EvalSpec( eval_input, hparams.eval_steps, throttle_secs=hparams.eval_freq) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) if config_obj.get_is_chief(): estimator.export_savedmodel( hparams.export_dir, serving_functions[hparams.export_format], assets_extra={ 'lime_explainer': '/tmp/lime_explainer'}, strip_default_attrs=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--train_csv_path', type=convert_to_list, help='CSV file path[s] either on local or GCS', required=True) parser.add_argument( '--eval_csv_path', help='CSV file path for model eval', required=True) parser.add_argument( '--task_type', help='Machine learning task at hand', required=True) parser.add_argument( '--target_var', help='Name of the target variable', required=True) parser.add_argument( '--data_type', help='schema of the input data', type=convert_to_dict, default=None) parser.add_argument( '--column_names', type=none_or_str, help='text file containing column names', default=None) parser.add_argument( '--num_clusters', type=int, help='number of clusters', default=3) parser.add_argument( '--to_drop', type=convert_to_list, help='list of columns that can be dropped', default=None) parser.add_argument( '--na_values', type=none_or_str, help='string by which na values are represented', default=None) parser.add_argument( '--condition', type=none_or_str, help='logic to turn the target variable into levels', default=None) parser.add_argument( '--gcs_path', help='Whether the csv is on GCS', default=True) parser.add_argument( '--num_epochs', help='number of epochs for dataset to repeat', type=int, default=50) parser.add_argument( '--batch_size', help='batch size to train and eval the model', type=int, default=64) parser.add_argument( '--buffer_size', help='buffer size for prefetch', type=int, default=64) parser.add_argument( '--n_classes', help='number of levels in target var', default=2, type=int) parser.add_argument( '--train_steps', help='number of steps to train the model', type=int, default=50000) parser.add_argument( '--eval_steps', help='number of eval batches to run', type=int, default=100) parser.add_argument( '--job-dir', help='directory to store model checkpoints', type=str, default='/temp') parser.add_argument( '--seed', help='seed to set for random initialization', default=None) parser.add_argument( '--save_summary_steps', help='number of global steps to save summaries', type=int, default=100) parser.add_argument( '--save_checkpoints_steps', help='number of global steps to save checkpoints', type=int, default=500) parser.add_argument( '--save_checkpoints_secs', help='number of seconds after which to save checkpoints', type=int, default=None) parser.add_argument( '--keep_checkpoint_max', help='max number of checkpoints to save', type=int, default=5) parser.add_argument( '--keep_checkpoint_every_n_hours', help='save checkpoint frequency', type=int, default=10000) parser.add_argument( '--log_step_count_steps', help='how frequently to log information', type=int, default=100) parser.add_argument( '--distribute_strategy', help='distribution strategy to use for training', type=none_or_str, default=None) # model params parser.add_argument( '--name', help='name of the model you want to use', required=True, choices=['linearclassifier', 'linearregressor', 'dnnclassifier', 'dnnregresssor', 'combinedclassifier', 'combinedregressor', 'kmeanscluster']) parser.add_argument( '--hidden_units', help='number of hidden units in each layer of dnn', type=int, default=64 ) parser.add_argument( '--num_layers', help='number of hidden layers', type=int, default=2) parser.add_argument( '--lin_opt', help='optimizer to use for linear models', type=str, default='ftrl') parser.add_argument( '--deep_opt', help='optimizer to use for NN models', type=str, default='adam') parser.add_argument( '--lr_rate_decay', help='whether to use learninf=g rate decay', type=bool, default=False) parser.add_argument( '--activation_fn', help='activation fn to use for hidden units', default=tf.nn.relu) parser.add_argument( '--dropout', help='dropout rate for hidden layers', default=None) parser.add_argument( '--batch_norm', help='whether to use batch norm for hidden layers', default=False) parser.add_argument( '--learning_rate', help='learning rate for model training', type=float, default=0.001) parser.add_argument( '--eval_freq', help='frequency in seconds to trigger evaluation run', type=int, default=30) parser.add_argument( '--eval_times', help='early stopping criteria', type=int, default=10) parser.add_argument( '--early_stopping', help='how to define when model training should end', type=bool, default=False) parser.add_argument( '--export_dir', help='Directory for storing the frozen graph', type=str, required=True) parser.add_argument( '--export_format', help='Format for the serving inputs', type=str, default='JSON') parser.add_argument( '--logging_level', help='Format for the serving inputs', type=str, default='INFO', choices=['INFO', 'DEBUG', 'ERROR', 'FATAL', 'WARN']) args = parser.parse_args() hparams = hparam.HParams(**args.__dict__) tf.logging.set_verbosity(hparams.logging_level) run_experiment(hparams) os.system('rm -r /tmp/*.csv')
[ "jferriero@google.com" ]
jferriero@google.com
90db28e0b00420ae8ba6a75d46a68285b150f3e2
bd7cbd805417429af1a6636eff86857b28162525
/encapsulation.py
c4a5fe1d25ea847720f29c90dc5c902265b1d92c
[]
no_license
Qannaf/Python
d92cb9bad34de2a6814520f6487d548e93bfb52c
b8d23cdda6f5901bd176a4274f1b8d389267dc85
refs/heads/main
2023-04-28T09:03:30.854096
2021-05-22T08:35:51
2021-05-22T08:35:51
356,817,981
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
#coding:utf-8 #voila mon 12émé code en python class Humain: """"Classe qui définit un humain""" def __init__(self,nom ,age): #constrecture self.nom = nom self._age = age def _getage(self): #print("Récupération interdite") if self._age<= 1: return "{} {}".format(self._age,"an") return "{} {}".format(self._age,"ans") def _setage(self,nouvel_age): if nouvel_age<0: self._age=0 else: self._age = nouvel_age #propreité <getter>,<setter>,<deleter>,<helper> age = property(_getage,_setage) #prgm principale h1 = Humain("Qannaf",27) print(h1.nom,"\t",h1.age) h1.nom = "ALSAHMI" h1.age = 1 print(h1.nom,"\t",h1.age) print("{} {}".format(h1.nom,h1.age))
[ "qannafalsahmi@gmail.com" ]
qannafalsahmi@gmail.com
f519f8ae0d7bee8960df8f6c8053f6c930b0db76
a98eab432108d65c8546c44cded7808463b844a4
/common/libs/UploadService.py
1855eb6afd457e0dd62cbeb931b35ad635c2e266
[]
no_license
RocketWill/Qamar
287ec3d5ad2ec7b3435c93def2d85bbe7d94d928
63e41d333559baf52a9010850bc4c2713ac0b93d
refs/heads/master
2020-04-21T23:55:59.459620
2019-03-19T12:00:02
2019-03-19T12:00:02
169,962,064
1
1
null
null
null
null
UTF-8
Python
false
false
1,359
py
# -*- coding: utf-8 -*- from werkzeug.utils import secure_filename from application import app, db import os, stat, uuid from common.libs.Helper import getCurrentDate from common.models.Image import Image class UploadService(): @staticmethod def uploadByFile(file): config_upload = app.config['UPLOAD'] resp = {'code': 200, 'msg': "操作成功", "data": {}} filename = secure_filename(file.filename) ext = filename.rsplit(".", 1)[1] if ext not in config_upload['ext']: resp['code'] = -1 resp['msg'] = "不允許的擴展類型文件" return resp root_path = app.root_path + config_upload['prefix_path'] file_dir = getCurrentDate("%Y%m%d") save_dir = root_path + file_dir if not os.path.exists(save_dir): os.mkdir(save_dir) os.chmod(save_dir, stat.S_IRWXU | stat.S_IRGRP | stat.S_IRWXO) filename = str(uuid.uuid4()).replace("-", "") + "." + ext file.save("{0}/{1}".format(save_dir, filename)) model_image = Image() model_image.file_key = file_dir + "/" + filename model_image.created_time = getCurrentDate() db.session.add(model_image) db.session.commit() resp['data'] = { "file_key": model_image.file_key } return resp
[ "willcy1006@163.com" ]
willcy1006@163.com
29ddf0ad878bb01613933dec9c0ea4d5d69f4d37
e88de870db4ed98a39a1e7661f4662ba9d465b84
/fixture/session.py
2ab29c2141001defd40b5ad6e7da6669a31fc3a5
[]
no_license
TatianaMoskvina/PainPoints
f11c371115e21da284e3375581ff4a485b38e495
291782aab76bc7b7b1cbdd493a0837b25c65a92c
refs/heads/master
2020-04-13T04:02:43.248112
2019-01-24T05:59:02
2019-01-24T05:59:02
162,949,377
0
0
null
null
null
null
UTF-8
Python
false
false
1,490
py
class SessionHelper: def __init__(self, app): self.app = app def log_out(self): # log out wd = self.app.wd wd.find_element_by_id("myProfile").click() wd.find_element_by_link_text("Log Out").click() def ensure_logout(self): wd = self.app.wd if self.is_logged_in(): self.log_out() def is_logged_in(self): wd = self.app.wd return len(wd.find_elemens_by_link_text("myProfile")) > 0 def ensure_log_in(self, username): wd = self.app.wd if self.is_logged_in(): if self.is_logged_in_as(username): return else: self.log_out() def as_logged_in_as(self): wd = self.app.wd username_login = wd.find_element_by_css_selector("div.name").text mass_of_username = username_login.split(' ') for i in mass_of_username: if i == 'CompanyOwner)': return i return i == "CompanyOwner)" def log_in(self, username, password): wd = self.app.wd self.app.open_home_page() wd.find_element_by_id("Email").clear() wd.find_element_by_id("Email").send_keys("%s" % username) wd.find_element_by_id("Password").clear() wd.find_element_by_id("Password").send_keys("%s" % password) wd.find_element_by_xpath( "(.//*[normalize-space(text()) and normalize-space(.)='Password'])[1]/following::input[2]").click()
[ "moskvina.tania.vit@gmail.com" ]
moskvina.tania.vit@gmail.com
50c51970784b45eb11a6e6b9407324632f40fbe4
5fc1bb8df5af751e855ccdb224a37a7afb473d6e
/setup.py
0af5652144881f9fac8ad445e1c7b171c6d9d2ed
[ "BSD-3-Clause" ]
permissive
areagle-stripe/SimpleML
c316ddaba7cac8dc709c4d9030e0de1897dc007a
10a2167a73570bc923c202930fa75ba56d46c504
refs/heads/master
2020-03-14T14:31:29.949925
2018-04-09T02:37:06
2018-04-09T02:37:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
647
py
from setuptools import setup, find_packages setup( name='simpleml', version='0.1', description='Simplified Machine Learning', author='Elisha Yadgaran', author_email='ElishaY@alum.mit.edu', license='BSD-3', url='https://github.com/eyadgaran/SimpleML', download_url='https://github.com/eyadgaran/SimpleML/archive/0.1.tar.gz', packages=find_packages(), keywords = ['machine-learning'], install_requires=[ 'sqlalchemy', 'sqlalchemy_mixins', 'psycopg2', 'scikit-learn', 'numpy' ], zip_safe=False, test_suite='nose.collector', tests_require=['nose'] )
[ "ElishaY@alum.mit.edu" ]
ElishaY@alum.mit.edu
b6d557a679a01d00df7d8e053588222bcee90375
4b100e0519f3362554bac7434baac61a1d08ddd2
/third_party/ros_aarch64/lib/python2.7/dist-packages/dynamic_reconfigure/cfg/TestConfig.py
8cb1e13bddbb1e0b79add5109e2837449bfbccae
[ "Apache-2.0" ]
permissive
YapingLiao/apollo1.0
17002fefaf01e0ee9f79713fd436c8c3386208b6
6e725e8dd5013b769efa18f43e5ae675f4847fbd
refs/heads/master
2020-06-18T13:04:52.019242
2018-01-29T01:50:43
2018-01-29T01:50:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,004
py
## ********************************************************* ## ## File autogenerated for the dynamic_reconfigure_test package ## by the dynamic_reconfigure package. ## Please do not edit. ## ## ********************************************************/ from dynamic_reconfigure.encoding import extract_params inf = float('inf') config_description = {'upper': 'DEFAULT', 'lower': 'groups', 'srcline': 246, 'name': 'Default', 'parent': 0, 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'cstate': 'true', 'parentname': 'Default', 'class': 'DEFAULT', 'field': 'default', 'state': True, 'parentclass': '', 'groups': [{'upper': 'GROUP_ONE', 'lower': 'group_one', 'srcline': 123, 'name': 'Group_One', 'parent': 0, 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'cstate': 'true', 'parentname': 'Default', 'class': 'DEFAULT::GROUP_ONE', 'field': 'DEFAULT::group_one', 'state': True, 'parentclass': 'DEFAULT', 'groups': [{'upper': 'GROUP2', 'lower': 'group2', 'srcline': 123, 'name': 'GROUP2', 'parent': 1, 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'cstate': 'false', 'parentname': 'Group_One', 'class': 'DEFAULT::GROUP_ONE::GROUP2', 'field': 'DEFAULT::GROUP_ONE::group2', 'state': False, 'parentclass': 'DEFAULT::GROUP_ONE', 'groups': [{'upper': 'GROUP3', 'lower': 'group3', 'srcline': 123, 'name': 'Group3', 'parent': 2, 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'cstate': 'true', 'parentname': 'GROUP2', 'class': 'DEFAULT::GROUP_ONE::GROUP2::GROUP3', 'field': 'DEFAULT::GROUP_ONE::GROUP2::group3', 'state': True, 'parentclass': 'DEFAULT::GROUP_ONE::GROUP2', 'groups': [], 'parameters': [{'srcline': 70, 'description': 'Were very far down now', 'max': 3, 'cconsttype': 'const int', 'ctype': 'int', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'deep_var_int', 'edit_method': "{'enum_description': 'An enum to set the size.', 'enum': [{'srcline': 45, 'description': 'A small constant', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'cconsttype': 'const int', 'value': 0, 'ctype': 'int', 'type': 'int', 'name': 'Small'}, {'srcline': 46, 'description': 'A medium value', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'cconsttype': 'const int', 'value': 1, 'ctype': 'int', 'type': 'int', 'name': 'Medium'}, {'srcline': 47, 'description': 'A large value', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'cconsttype': 'const int', 'value': 2, 'ctype': 'int', 'type': 'int', 'name': 'Large'}, {'srcline': 48, 'description': 'An extra large value', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'cconsttype': 'const int', 'value': 3, 'ctype': 'int', 'type': 'int', 'name': 'ExtraLarge'}]}", 'default': 0, 'level': 0, 'min': 0, 'type': 'int'}, {'srcline': 71, 'description': 'Were even farther down now!!', 'max': True, 'cconsttype': 'const bool', 'ctype': 'bool', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'deep_var_bool', 'edit_method': '', 'default': True, 'level': 0, 'min': False, 'type': 'bool'}, {'srcline': 72, 'description': 'Were super far down now!!', 'max': inf, 'cconsttype': 'const double', 'ctype': 'double', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'deep_var_double', 'edit_method': '', 'default': -1.0, 'level': 0, 'min': -inf, 'type': 'double'}], 'type': '', 'id': 3}], 'parameters': [{'srcline': 65, 'description': 'A third level group parameter', 'max': inf, 'cconsttype': 'const double', 'ctype': 'double', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'group2_double', 'edit_method': '', 'default': 3.333, 'level': 0, 'min': -inf, 'type': 'double'}, {'srcline': 66, 'description': 'A third level group parameter', 'max': '', 'cconsttype': 'const char * const', 'ctype': 'std::string', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'group2_string', 'edit_method': '', 'default': 'test string', 'level': 0, 'min': '', 'type': 'str'}, {'srcline': 67, 'description': 'Something', 'max': '', 'cconsttype': 'const char * const', 'ctype': 'std::string', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'some_other', 'edit_method': '', 'default': 'AAAAAAGGHH', 'level': 0, 'min': '', 'type': 'str'}, {'srcline': 68, 'description': 'A boolean', 'max': True, 'cconsttype': 'const bool', 'ctype': 'bool', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'variable', 'edit_method': '', 'default': True, 'level': 0, 'min': False, 'type': 'bool'}], 'type': 'collapse', 'id': 2}], 'parameters': [{'srcline': 63, 'description': 'A second level group parameter', 'max': 2147483647, 'cconsttype': 'const int', 'ctype': 'int', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'group1_int', 'edit_method': '', 'default': 2, 'level': 1, 'min': -2147483648, 'type': 'int'}], 'type': '', 'id': 1}, {'upper': 'UPPER_GROUP_2', 'lower': 'upper_group_2', 'srcline': 123, 'name': 'Upper_Group_2', 'parent': 0, 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'cstate': 'true', 'parentname': 'Default', 'class': 'DEFAULT::UPPER_GROUP_2', 'field': 'DEFAULT::upper_group_2', 'state': True, 'parentclass': 'DEFAULT', 'groups': [], 'parameters': [{'srcline': 75, 'description': 'Some param', 'max': 2147483647, 'cconsttype': 'const int', 'ctype': 'int', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'name': 'some_param', 'edit_method': '', 'default': 20, 'level': 0, 'min': -2147483648, 'type': 'int'}], 'type': '', 'id': 4}], 'parameters': [{'srcline': 293, 'description': 'Int enum', 'max': 3, 'cconsttype': 'const int', 'ctype': 'int', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'int_enum_', 'edit_method': "{'enum_description': 'An enum to set the size.', 'enum': [{'srcline': 45, 'description': 'A small constant', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'cconsttype': 'const int', 'value': 0, 'ctype': 'int', 'type': 'int', 'name': 'Small'}, {'srcline': 46, 'description': 'A medium value', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'cconsttype': 'const int', 'value': 1, 'ctype': 'int', 'type': 'int', 'name': 'Medium'}, {'srcline': 47, 'description': 'A large value', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'cconsttype': 'const int', 'value': 2, 'ctype': 'int', 'type': 'int', 'name': 'Large'}, {'srcline': 48, 'description': 'An extra large value', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/cfg/Test.cfg', 'cconsttype': 'const int', 'value': 3, 'ctype': 'int', 'type': 'int', 'name': 'ExtraLarge'}]}", 'default': 0, 'level': 1, 'min': 0, 'type': 'int'}, {'srcline': 293, 'description': 'Int parameter', 'max': 10, 'cconsttype': 'const int', 'ctype': 'int', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'int_', 'edit_method': '', 'default': 0, 'level': 1, 'min': -10, 'type': 'int'}, {'srcline': 293, 'description': 'double parameter', 'max': 10.0, 'cconsttype': 'const double', 'ctype': 'double', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'double_', 'edit_method': '', 'default': 0.0, 'level': 2, 'min': -2.0, 'type': 'double'}, {'srcline': 293, 'description': 'double parameter without boundaries', 'max': inf, 'cconsttype': 'const double', 'ctype': 'double', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'double_no_minmax', 'edit_method': '', 'default': 1.0, 'level': 2, 'min': -inf, 'type': 'double'}, {'srcline': 293, 'description': 'double parameter without max value', 'max': inf, 'cconsttype': 'const double', 'ctype': 'double', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'double_no_max', 'edit_method': '', 'default': 2.0, 'level': 2, 'min': 0.0, 'type': 'double'}, {'srcline': 293, 'description': 'String parameter', 'max': '', 'cconsttype': 'const char * const', 'ctype': 'std::string', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'str_', 'edit_method': '', 'default': 'foo', 'level': 4, 'min': '', 'type': 'str'}, {'srcline': 293, 'description': 'Multibyte String parameter', 'max': '', 'cconsttype': 'const char * const', 'ctype': 'std::string', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'mstr_', 'edit_method': '', 'default': 'bar', 'level': 4, 'min': '', 'type': 'str'}, {'srcline': 293, 'description': 'Boolean parameter', 'max': True, 'cconsttype': 'const bool', 'ctype': 'bool', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'bool_', 'edit_method': '', 'default': False, 'level': 8, 'min': False, 'type': 'bool'}, {'srcline': 293, 'description': 'Contains the level of the previous change', 'max': 2147483647, 'cconsttype': 'const int', 'ctype': 'int', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'level', 'edit_method': '', 'default': 0, 'level': 16, 'min': -2147483648, 'type': 'int'}, {'srcline': 293, 'description': 'Checks against regression of #4499', 'max': 2147483647, 'cconsttype': 'const int', 'ctype': 'int', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'int_nodefault', 'edit_method': '', 'default': 0, 'level': 0, 'min': -2147483648, 'type': 'int'}, {'srcline': 293, 'description': 'Checks against regression of https://github.com/ros/dynamic_reconfigure/issues/6', 'max': 2147483647, 'cconsttype': 'const int', 'ctype': 'int', 'srcfile': '/home/ubuntu/baidu/adu-lab/apollo/modules/ros/dynamic_reconfigure/src/dynamic_reconfigure/parameter_generator_catkin.py', 'name': 'i', 'edit_method': '', 'default': 0, 'level': 0, 'min': -2147483648, 'type': 'int'}], 'type': '', 'id': 0} min = {} max = {} defaults = {} level = {} type = {} all_level = 0 #def extract_params(config): # params = [] # params.extend(config['parameters']) # for group in config['groups']: # params.extend(extract_params(group)) # return params for param in extract_params(config_description): min[param['name']] = param['min'] max[param['name']] = param['max'] defaults[param['name']] = param['default'] level[param['name']] = param['level'] type[param['name']] = param['type'] all_level = all_level | param['level'] Test_int_const = 5 Test_double_const = 5.6 Test_str_const = 'foo' Test_bool_const = True Test_Small = 0 Test_Medium = 1 Test_Large = 2 Test_ExtraLarge = 3
[ "14552258@qq.com" ]
14552258@qq.com
52ff178dec4c0fecc3a4ec0097dbff7f0a46b8ed
0062da4c92b6a621343347a36ee32128838c09ec
/hw6/hw66.py
d53ded6c0933a977859a413ec67f23285fc1ca50
[]
no_license
Skotmak/Homeworks
d3bb39e1d6d960ec3ad1c5c74a0eb5508f1f1e15
071e3c3a9d1341b28dd3a4828788f422fd943367
refs/heads/master
2022-05-13T07:50:45.869093
2022-05-03T17:19:53
2022-05-03T17:19:53
226,465,012
0
0
null
null
null
null
UTF-8
Python
false
false
599
py
class First: color = "red" form = "circle" style = "cool" def changecolor(self,newcolor): self.color = newcolor def changeform(self,newform): self.form = newform def changestyle(self,newstyle): self.style = newstyle class Second: color = "red" def changecolor(self, newcolor): self.color = newcolor obj1 = First() obj2 = Second() print (obj1.color, obj1.form, obj1.style) print (obj2.color) a=input("enter color: ") obj1.changecolor(a) if obj1.color == "green" : obj2.changecolor("blue") print (obj1.color) print (obj2.color)
[ "belok9999@yandex.ru" ]
belok9999@yandex.ru
274befd704407b98b615b5efb59b5c392ba2d396
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/sql/outbound_firewall_rule.py
5a8309fc8ccaf95892a167a53395faad58b8bd6a
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
7,974
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['OutboundFirewallRuleArgs', 'OutboundFirewallRule'] @pulumi.input_type class OutboundFirewallRuleArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], server_name: pulumi.Input[str], outbound_rule_fqdn: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a OutboundFirewallRule resource. :param pulumi.Input[str] resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param pulumi.Input[str] server_name: The name of the server. """ pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "server_name", server_name) if outbound_rule_fqdn is not None: pulumi.set(__self__, "outbound_rule_fqdn", outbound_rule_fqdn) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="serverName") def server_name(self) -> pulumi.Input[str]: """ The name of the server. """ return pulumi.get(self, "server_name") @server_name.setter def server_name(self, value: pulumi.Input[str]): pulumi.set(self, "server_name", value) @property @pulumi.getter(name="outboundRuleFqdn") def outbound_rule_fqdn(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "outbound_rule_fqdn") @outbound_rule_fqdn.setter def outbound_rule_fqdn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "outbound_rule_fqdn", value) class OutboundFirewallRule(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, outbound_rule_fqdn: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, server_name: Optional[pulumi.Input[str]] = None, __props__=None): """ An Azure SQL DB Server Outbound Firewall Rule. API Version: 2021-02-01-preview. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param pulumi.Input[str] server_name: The name of the server. """ ... @overload def __init__(__self__, resource_name: str, args: OutboundFirewallRuleArgs, opts: Optional[pulumi.ResourceOptions] = None): """ An Azure SQL DB Server Outbound Firewall Rule. API Version: 2021-02-01-preview. :param str resource_name: The name of the resource. :param OutboundFirewallRuleArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(OutboundFirewallRuleArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, outbound_rule_fqdn: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, server_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = OutboundFirewallRuleArgs.__new__(OutboundFirewallRuleArgs) __props__.__dict__["outbound_rule_fqdn"] = outbound_rule_fqdn if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name if server_name is None and not opts.urn: raise TypeError("Missing required property 'server_name'") __props__.__dict__["server_name"] = server_name __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:sql:OutboundFirewallRule"), pulumi.Alias(type_="azure-native:sql/v20210201preview:OutboundFirewallRule"), pulumi.Alias(type_="azure-nextgen:sql/v20210201preview:OutboundFirewallRule")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(OutboundFirewallRule, __self__).__init__( 'azure-native:sql:OutboundFirewallRule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'OutboundFirewallRule': """ Get an existing OutboundFirewallRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = OutboundFirewallRuleArgs.__new__(OutboundFirewallRuleArgs) __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None return OutboundFirewallRule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The state of the outbound rule. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
[ "noreply@github.com" ]
morrell.noreply@github.com
94d8d69b957710067f870841aeea79b4d0747e2f
7dbe84760c95ee2ef15b28724bc73c173fab1f1a
/download2-8-1.py
c2c0a4db78e9230a650e421f354d1c8aceb7af0c
[]
no_license
seil3377/python_section2
f0af3342df24d2317f21081d59a4f5f42e4f0d32
eb5af490480cd53031e93d833ed74d20e7367933
refs/heads/master
2020-03-27T13:06:33.114567
2018-09-18T08:11:26
2018-09-18T08:11:26
146,586,648
0
0
null
null
null
null
UTF-8
Python
false
false
1,262
py
from bs4 import BeautifulSoup import urllib.request as req import urllib.parse as rep import sys import io import os sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding = 'utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding = 'utf-8') #403error : 헤더(Header)정보를 심어서 User-agent 정보를 같이 보내는 코드를 통해 해결 opener = req.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] req.install_opener(opener) # HTML 가져오기 base = "https://search.naver.com/search.naver?where=image&query=" quote = rep.quote_plus("사자") url = base + quote res = req.urlopen(url) savePath = "D:/Atom_Workspace/section2/img/" #폴더 생성 & 예외처리 try: if not(os.path.isdir(savePath)): os.makedirs(os.path.join(savePath)) except OSError as e: if e.errno != errno.EEXIST: print("폴더 만들기 실패!") raise soup = BeautifulSoup(res, "html.parser") img_list = soup.select("div.img_area > a.thumb._thumb > img") #print("test", img_list) for i, div in enumerate(img_list,1): print("div =", div['data-source']) fullfilename = os.path.join(savePath, savePath+str(i)+'.jpg') print(fullfilename) req.urlretrieve(div['data-source'],fullfilename) print(i)
[ "seil3377@naver.com" ]
seil3377@naver.com
5d7dcefc5473baa7b1829179e02b456b2dc7a467
1526f23c4a847768a5fc1c2ba596275d5d7ec0d5
/assgn2/pr7.py
16044b8670c8a1a1d63e463e2a9b0422df3600da
[]
no_license
gitank007/python-assignmnet
d07e7d222242f13dbfe7bd5d1f7a75ddb8be9aa7
7b7588927a17c46dfea2b141c7ccf91b4b5f3949
refs/heads/master
2023-02-28T17:02:45.217169
2021-02-11T08:03:57
2021-02-11T08:03:57
333,665,413
1
0
null
null
null
null
UTF-8
Python
false
false
561
py
''' nature of roots step 1: if d=b^2 -4ac =0 ==>real and equal roots step 2 if d>0 then they are rel roots step 3 if d<0 then it is imaginary rots ''' x,y,z=[int(x) for x in input("enter the space seprating values of cofficients of ax^2+bx+c values will be considered in repective manner: ").split()] print("a={} ,b={}, c={} ".format(z,y,z)) d=(y**2)-4*x*z print("the Value of discriminant for given equation is :",d) if d==0: print("The roots are real and equal ") elif d>0: print("The roots are real ") else: print("The rots are imaginary ")
[ "noreply@github.com" ]
gitank007.noreply@github.com
290d3ea467c81eb4adcf2a72c26529c2a9e07eb4
1a2ca64839723ede3134a0781128b0dc0b5f6ab8
/ExtractFeatures/Data/jsinix/Problem10.py
8f8dd302f291fb441406f1d44ec06aae2c72032e
[]
no_license
vivekaxl/LexisNexis
bc8ee0b92ae95a200c41bd077082212243ee248c
5fa3a818c3d41bd9c3eb25122e1d376c8910269c
refs/heads/master
2021-01-13T01:44:41.814348
2015-07-08T15:42:35
2015-07-08T15:42:35
29,705,371
9
3
null
null
null
null
UTF-8
Python
false
false
459
py
# Question: Summation of primes # Problem 10 # The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. # Find the sum of all the primes below two million. # Answer: 142913828922 #!/usr/bin/python def is_prime(num): for j in range(2,num): if (num % j) == 0: return False return True list1 = [] for i in range(3,2000000,2): if is_prime(i) == True: list1.append(i) sum1 = 0 for j in list1: sum1 = sum1+j print sum1
[ "vivekaxl@gmail.com" ]
vivekaxl@gmail.com
0ac33827a9a2da4ec675edc41ce481fc5157e0f5
a7f43722f91b6cc75b46924daa08d856e9c4793c
/env/bin/pip3
8ad698ab09c3dd8b9c007b1e05cada42de0aee9b
[]
no_license
bodevone/django-blog
b226b998d609dd6726053857fd38c5abc2c98734
ee4e5dbafa94b2fe18261cf229ace3c741c97203
refs/heads/master
2020-05-03T10:11:02.256327
2019-03-30T15:08:28
2019-03-30T15:08:28
178,573,157
1
0
null
null
null
null
UTF-8
Python
false
false
257
#!/home/bodevan/Documents/coding/django-blog/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "aliby.bbb@gmail.com" ]
aliby.bbb@gmail.com
da8b517d85a513db952f23fb60cba730404ee688
3c8cc407d7547f8702bfe06deb5f1c9087778ce3
/hiword/dataloader.py
4d6c1c1a4918a7d6da18e55b56ca7658f88ceae8
[ "Apache-2.0" ]
permissive
jadbin/hiword
accaebbdee899e8e3ed11e024d6c488bca36c445
7789412747a2b6b59ee974f2a2efd57e355e3282
refs/heads/master
2023-04-06T21:57:17.260338
2023-03-15T16:21:49
2023-03-15T16:21:49
166,003,998
6
1
null
null
null
null
UTF-8
Python
false
false
2,158
py
import os from collections import defaultdict from os import listdir from os.path import join, dirname, isdir class DictLoader: def __init__(self): self.dict = self._load_dict() def word_freq(self, word): return self.dict[word] @staticmethod def _load_dict(): res = defaultdict(lambda: 0) d = join(dirname(__file__), 'data', 'dicts') for name in os.listdir(d): if name.endswith('.txt'): dict_file = join(d, name) with open(dict_file) as f: for line in f: s = line.split() res[s[0]] = max(res[s[0]], int(s[1])) return res class IDFLoader: def __init__(self): self.idf = self._load_idf() self.median_idf = sorted(self.idf.values())[len(self.idf) // 2] def word_idf(self, word): return self.idf.get(word, self.median_idf) @staticmethod def _load_idf(): idf_file = join(dirname(__file__), 'data', 'idf.txt') res = {} with open(idf_file) as f: while True: line = f.readline() if not line: break s = line.split() res[s[0]] = float(s[1]) return res class StopwordsLoader: def __init__(self): self.stopwords = self._load_stopwords() def is_stopword(self, word): return word in self.stopwords def remove(self, word): self.stopwords.remove(word) @staticmethod def _load_stopwords(): file = join(dirname(__file__), 'data', 'stopwords') res = set() files = [] if isdir(file): for fname in listdir(file): if fname.endswith('.txt'): files.append(join(file, fname)) else: files.append(file) for fname in files: with open(fname) as f: while True: line = f.readline() if not line: break s = line.strip() res.add(s) return res
[ "jadbin.com@hotmail.com" ]
jadbin.com@hotmail.com
0335df4074ddc3d154d3724fb2fef2df225be97f
76f05bd66e0585d1f0ef9c6829be936332706f2a
/yibanApi/__init__.py
30d7de0a0830f48a6a09d044d0cf34b8149d0bad
[ "MIT" ]
permissive
vincijy/yibanApi
b48da529b962b176f08c9e4227727d0499836caa
57bf9b821fb5b5154e8df7a3f7f4bdb2245dfcbf
refs/heads/master
2020-03-13T20:03:36.363584
2018-05-02T10:29:24
2018-05-02T10:29:24
131,266,046
5
0
null
null
null
null
UTF-8
Python
false
false
39
py
from .yibanApi import AccessToken, api
[ "awefight@qq.com" ]
awefight@qq.com
8095b9c0a7bae6822334409e1ce923939046e30c
141b42d9d72636c869ff2ce7a2a9f7b9b24f508b
/myvenv/Lib/site-packages/cairosvg/colors.py
d77cb275f83cb564c24eb127821c4d38243acfbb
[ "BSD-3-Clause" ]
permissive
Fa67/saleor-shop
105e1147e60396ddab6f006337436dcbf18e8fe1
76110349162c54c8bfcae61983bb59ba8fb0f778
refs/heads/master
2021-06-08T23:51:12.251457
2018-07-24T08:14:33
2018-07-24T08:14:33
168,561,915
1
0
BSD-3-Clause
2021-04-18T07:59:12
2019-01-31T17:00:39
Python
UTF-8
Python
false
false
11,254
py
# This file is part of CairoSVG # Copyright © 2010-2015 Kozea # # This library is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # This library is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with CairoSVG. If not, see <http://www.gnu.org/licenses/>. """ SVG colors. """ import re COLORS = { 'aliceblue': (240 / 255, 248 / 255, 255 / 255, 1), 'antiquewhite': (250 / 255, 235 / 255, 215 / 255, 1), 'aqua': (0 / 255, 255 / 255, 255 / 255, 1), 'aquamarine': (127 / 255, 255 / 255, 212 / 255, 1), 'azure': (240 / 255, 255 / 255, 255 / 255, 1), 'beige': (245 / 255, 245 / 255, 220 / 255, 1), 'bisque': (255 / 255, 228 / 255, 196 / 255, 1), 'black': (0 / 255, 0 / 255, 0 / 255, 1), 'blanchedalmond': (255 / 255, 235 / 255, 205 / 255, 1), 'blue': (0 / 255, 0 / 255, 255 / 255, 1), 'blueviolet': (138 / 255, 43 / 255, 226 / 255, 1), 'brown': (165 / 255, 42 / 255, 42 / 255, 1), 'burlywood': (222 / 255, 184 / 255, 135 / 255, 1), 'cadetblue': (95 / 255, 158 / 255, 160 / 255, 1), 'chartreuse': (127 / 255, 255 / 255, 0 / 255, 1), 'chocolate': (210 / 255, 105 / 255, 30 / 255, 1), 'coral': (255 / 255, 127 / 255, 80 / 255, 1), 'cornflowerblue': (100 / 255, 149 / 255, 237 / 255, 1), 'cornsilk': (255 / 255, 248 / 255, 220 / 255, 1), 'crimson': (220 / 255, 20 / 255, 60 / 255, 1), 'cyan': (0 / 255, 255 / 255, 255 / 255, 1), 'darkblue': (0 / 255, 0 / 255, 139 / 255, 1), 'darkcyan': (0 / 255, 139 / 255, 139 / 255, 1), 'darkgoldenrod': (184 / 255, 134 / 255, 11 / 255, 1), 'darkgray': (169 / 255, 169 / 255, 169 / 255, 1), 'darkgreen': (0 / 255, 100 / 255, 0 / 255, 1), 'darkgrey': (169 / 255, 169 / 255, 169 / 255, 1), 'darkkhaki': (189 / 255, 183 / 255, 107 / 255, 1), 'darkmagenta': (139 / 255, 0 / 255, 139 / 255, 1), 'darkolivegreen': (85 / 255, 107 / 255, 47 / 255, 1), 'darkorange': (255 / 255, 140 / 255, 0 / 255, 1), 'darkorchid': (153 / 255, 50 / 255, 204 / 255, 1), 'darkred': (139 / 255, 0 / 255, 0 / 255, 1), 'darksalmon': (233 / 255, 150 / 255, 122 / 255, 1), 'darkseagreen': (143 / 255, 188 / 255, 143 / 255, 1), 'darkslateblue': (72 / 255, 61 / 255, 139 / 255, 1), 'darkslategray': (47 / 255, 79 / 255, 79 / 255, 1), 'darkslategrey': (47 / 255, 79 / 255, 79 / 255, 1), 'darkturquoise': (0 / 255, 206 / 255, 209 / 255, 1), 'darkviolet': (148 / 255, 0 / 255, 211 / 255, 1), 'deeppink': (255 / 255, 20 / 255, 147 / 255, 1), 'deepskyblue': (0 / 255, 191 / 255, 255 / 255, 1), 'dimgray': (105 / 255, 105 / 255, 105 / 255, 1), 'dimgrey': (105 / 255, 105 / 255, 105 / 255, 1), 'dodgerblue': (30 / 255, 144 / 255, 255 / 255, 1), 'firebrick': (178 / 255, 34 / 255, 34 / 255, 1), 'floralwhite': (255 / 255, 250 / 255, 240 / 255, 1), 'forestgreen': (34 / 255, 139 / 255, 34 / 255, 1), 'fuchsia': (255 / 255, 0 / 255, 255 / 255, 1), 'gainsboro': (220 / 255, 220 / 255, 220 / 255, 1), 'ghostwhite': (248 / 255, 248 / 255, 255 / 255, 1), 'gold': (255 / 255, 215 / 255, 0 / 255, 1), 'goldenrod': (218 / 255, 165 / 255, 32 / 255, 1), 'gray': (128 / 255, 128 / 255, 128 / 255, 1), 'grey': (128 / 255, 128 / 255, 128 / 255, 1), 'green': (0 / 255, 128 / 255, 0 / 255, 1), 'greenyellow': (173 / 255, 255 / 255, 47 / 255, 1), 'honeydew': (240 / 255, 255 / 255, 240 / 255, 1), 'hotpink': (255 / 255, 105 / 255, 180 / 255, 1), 'indianred': (205 / 255, 92 / 255, 92 / 255, 1), 'indigo': (75 / 255, 0 / 255, 130 / 255, 1), 'ivory': (255 / 255, 255 / 255, 240 / 255, 1), 'khaki': (240 / 255, 230 / 255, 140 / 255, 1), 'lavender': (230 / 255, 230 / 255, 250 / 255, 1), 'lavenderblush': (255 / 255, 240 / 255, 245 / 255, 1), 'lawngreen': (124 / 255, 252 / 255, 0 / 255, 1), 'lemonchiffon': (255 / 255, 250 / 255, 205 / 255, 1), 'lightblue': (173 / 255, 216 / 255, 230 / 255, 1), 'lightcoral': (240 / 255, 128 / 255, 128 / 255, 1), 'lightcyan': (224 / 255, 255 / 255, 255 / 255, 1), 'lightgoldenrodyellow': (250 / 255, 250 / 255, 210 / 255, 1), 'lightgray': (211 / 255, 211 / 255, 211 / 255, 1), 'lightgreen': (144 / 255, 238 / 255, 144 / 255, 1), 'lightgrey': (211 / 255, 211 / 255, 211 / 255, 1), 'lightpink': (255 / 255, 182 / 255, 193 / 255, 1), 'lightsalmon': (255 / 255, 160 / 255, 122 / 255, 1), 'lightseagreen': (32 / 255, 178 / 255, 170 / 255, 1), 'lightskyblue': (135 / 255, 206 / 255, 250 / 255, 1), 'lightslategray': (119 / 255, 136 / 255, 153 / 255, 1), 'lightslategrey': (119 / 255, 136 / 255, 153 / 255, 1), 'lightsteelblue': (176 / 255, 196 / 255, 222 / 255, 1), 'lightyellow': (255 / 255, 255 / 255, 224 / 255, 1), 'lime': (0 / 255, 255 / 255, 0 / 255, 1), 'limegreen': (50 / 255, 205 / 255, 50 / 255, 1), 'linen': (250 / 255, 240 / 255, 230 / 255, 1), 'magenta': (255 / 255, 0 / 255, 255 / 255, 1), 'maroon': (128 / 255, 0 / 255, 0 / 255, 1), 'mediumaquamarine': (102 / 255, 205 / 255, 170 / 255, 1), 'mediumblue': (0 / 255, 0 / 255, 205 / 255, 1), 'mediumorchid': (186 / 255, 85 / 255, 211 / 255, 1), 'mediumpurple': (147 / 255, 112 / 255, 219 / 255, 1), 'mediumseagreen': (60 / 255, 179 / 255, 113 / 255, 1), 'mediumslateblue': (123 / 255, 104 / 255, 238 / 255, 1), 'mediumspringgreen': (0 / 255, 250 / 255, 154 / 255, 1), 'mediumturquoise': (72 / 255, 209 / 255, 204 / 255, 1), 'mediumvioletred': (199 / 255, 21 / 255, 133 / 255, 1), 'midnightblue': (25 / 255, 25 / 255, 112 / 255, 1), 'mintcream': (245 / 255, 255 / 255, 250 / 255, 1), 'mistyrose': (255 / 255, 228 / 255, 225 / 255, 1), 'moccasin': (255 / 255, 228 / 255, 181 / 255, 1), 'navajowhite': (255 / 255, 222 / 255, 173 / 255, 1), 'navy': (0 / 255, 0 / 255, 128 / 255, 1), 'oldlace': (253 / 255, 245 / 255, 230 / 255, 1), 'olive': (128 / 255, 128 / 255, 0 / 255, 1), 'olivedrab': (107 / 255, 142 / 255, 35 / 255, 1), 'orange': (255 / 255, 165 / 255, 0 / 255, 1), 'orangered': (255 / 255, 69 / 255, 0 / 255, 1), 'orchid': (218 / 255, 112 / 255, 214 / 255, 1), 'palegoldenrod': (238 / 255, 232 / 255, 170 / 255, 1), 'palegreen': (152 / 255, 251 / 255, 152 / 255, 1), 'paleturquoise': (175 / 255, 238 / 255, 238 / 255, 1), 'palevioletred': (219 / 255, 112 / 255, 147 / 255, 1), 'papayawhip': (255 / 255, 239 / 255, 213 / 255, 1), 'peachpuff': (255 / 255, 218 / 255, 185 / 255, 1), 'peru': (205 / 255, 133 / 255, 63 / 255, 1), 'pink': (255 / 255, 192 / 255, 203 / 255, 1), 'plum': (221 / 255, 160 / 255, 221 / 255, 1), 'powderblue': (176 / 255, 224 / 255, 230 / 255, 1), 'purple': (128 / 255, 0 / 255, 128 / 255, 1), 'red': (255 / 255, 0 / 255, 0 / 255, 1), 'rosybrown': (188 / 255, 143 / 255, 143 / 255, 1), 'royalblue': (65 / 255, 105 / 255, 225 / 255, 1), 'saddlebrown': (139 / 255, 69 / 255, 19 / 255, 1), 'salmon': (250 / 255, 128 / 255, 114 / 255, 1), 'sandybrown': (244 / 255, 164 / 255, 96 / 255, 1), 'seagreen': (46 / 255, 139 / 255, 87 / 255, 1), 'seashell': (255 / 255, 245 / 255, 238 / 255, 1), 'sienna': (160 / 255, 82 / 255, 45 / 255, 1), 'silver': (192 / 255, 192 / 255, 192 / 255, 1), 'skyblue': (135 / 255, 206 / 255, 235 / 255, 1), 'slateblue': (106 / 255, 90 / 255, 205 / 255, 1), 'slategray': (112 / 255, 128 / 255, 144 / 255, 1), 'slategrey': (112 / 255, 128 / 255, 144 / 255, 1), 'snow': (255 / 255, 250 / 255, 250 / 255, 1), 'springgreen': (0 / 255, 255 / 255, 127 / 255, 1), 'steelblue': (70 / 255, 130 / 255, 180 / 255, 1), 'tan': (210 / 255, 180 / 255, 140 / 255, 1), 'teal': (0 / 255, 128 / 255, 128 / 255, 1), 'thistle': (216 / 255, 191 / 255, 216 / 255, 1), 'tomato': (255 / 255, 99 / 255, 71 / 255, 1), 'turquoise': (64 / 255, 224 / 255, 208 / 255, 1), 'violet': (238 / 255, 130 / 255, 238 / 255, 1), 'wheat': (245 / 255, 222 / 255, 179 / 255, 1), 'white': (255 / 255, 255 / 255, 255 / 255, 1), 'whitesmoke': (245 / 255, 245 / 255, 245 / 255, 1), 'yellow': (255 / 255, 255 / 255, 0 / 255, 1), 'yellowgreen': (154 / 255, 205 / 255, 50 / 255, 1), 'activeborder': (0, 0, 1, 1), 'activecaption': (0, 0, 1, 1), 'appworkspace': (1, 1, 1, 1), 'background': (1, 1, 1, 1), 'buttonface': (0, 0, 0, 1), 'buttonhighlight': (0.8, 0.8, 0.8, 1), 'buttonshadow': (0.2, 0.2, 0.2, 1), 'buttontext': (0, 0, 0, 1), 'captiontext': (0, 0, 0, 1), 'graytext': (0.2, 0.2, 0.2, 1), 'highlight': (0, 0, 1, 1), 'highlighttext': (0.8, 0.8, 0.8, 1), 'inactiveborder': (0.2, 0.2, 0.2, 1), 'inactivecaption': (0.8, 0.8, 0.8, 1), 'inactivecaptiontext': (0.2, 0.2, 0.2, 1), 'infobackground': (0.8, 0.8, 0.8, 1), 'infotext': (0, 0, 0, 1), 'menu': (0.8, 0.8, 0.8, 1), 'menutext': (0.2, 0.2, 0.2, 1), 'scrollbar': (0.8, 0.8, 0.8, 1), 'threeddarkshadow': (0.2, 0.2, 0.2, 1), 'threedface': (0.8, 0.8, 0.8, 1), 'threedhighlight': (1, 1, 1, 1), 'threedlightshadow': (0.2, 0.2, 0.2, 1), 'threedshadow': (0.2, 0.2, 0.2, 1), 'window': (0.8, 0.8, 0.8, 1), 'windowframe': (0.8, 0.8, 0.8, 1), 'windowtext': (0, 0, 0, 1), 'none': (0, 0, 0, 0), 'transparent': (0, 0, 0, 0), } RGBA = re.compile(r'rgba\([ \n\r\t]*(.+?)[ \n\r\t]*\)') RGB = re.compile(r'rgb\([ \n\r\t]*(.+?)[ \n\r\t]*\)') HEX_RRGGBB = re.compile('#[0-9a-f]{6}') HEX_RGB = re.compile('#[0-9a-f]{3}') def color(string, opacity=1): """Replace ``string`` representing a color by a RGBA tuple. See http://www.w3.org/TR/SVG/types.html#DataTypeColor """ if not string: return (0, 0, 0, 0) string = string.strip().lower() if string in COLORS: r, g, b, a = COLORS[string] return (r, g, b, a * opacity) match = RGBA.search(string) if match: r, g, b, a = tuple( float(i.strip(' %')) / 100 if '%' in i else float(i) / 255 for i in match.group(1).split(',')) return (r, g, b, a * 255 * opacity) match = RGB.search(string) if match: r, g, b = tuple( float(i.strip(' %')) / 100 if '%' in i else float(i) / 255 for i in match.group(1).split(',')) return (r, g, b, opacity) match = HEX_RRGGBB.search(string) if match: plain_color = tuple( int(value, 16) / 255 for value in ( string[1:3], string[3:5], string[5:7])) return plain_color + (opacity,) match = HEX_RGB.search(string) if match: plain_color = tuple( int(value, 16) / 15 for value in ( string[1], string[2], string[3])) return plain_color + (opacity,) return (0, 0, 0, 1)
[ "gruzdevasch@gmail.com" ]
gruzdevasch@gmail.com
1153e48fb209a9481fc4f3d804857ae10cbf9c27
21264264d3323c2d801042ffe3aeecb97c393251
/regimens/tests/test_forms.py
e3402a9f38a01eb7015a07c85eb153af54a1a05f
[ "MIT" ]
permissive
michael-xander/communique-webapp
a5dd45b3c1019d40ca02fea587ade35dbf16c0d0
85b450d7f6d0313c5e5ef53a262a850b7e93c3d6
refs/heads/master
2021-05-01T15:34:06.013729
2016-11-19T19:15:31
2016-11-19T19:15:31
63,105,520
0
0
null
null
null
null
UTF-8
Python
false
false
1,502
py
from django.test import TestCase import datetime from regimens.forms import RegimenForm from regimens.models import Drug from patients.models import Patient class RegimenFormTestCase(TestCase): """ Test cases for the regimen create form. """ def setUp(self): Patient.objects.create(other_names='Jon', last_name='Snow', sex=Patient.MALE, identifier='A001') Drug.objects.create(name='a Drug', description='A drug description') def test_date_validation(self): """ Tests that the form invalidates submissions where the start date is greater then the end date """ form = RegimenForm() self.assertFalse(form.is_bound) self.assertFalse(form.is_valid()) current_date = datetime.date.today() one_day = datetime.timedelta(days=1) tomorrow = current_date + one_day data = {} data['patient'] = 1 data['notes'] = 'Sample notes' data['drugs'] = (1,) data['date_started'] = current_date data['date_ended'] = tomorrow self.assertTrue(data['date_started'] < data['date_ended']) form = RegimenForm(data) self.assertTrue(form.is_bound) self.assertTrue(form.is_valid()) data['date_started'] = tomorrow data['date_ended'] = current_date self.assertFalse(data['date_started'] < data['date_ended']) form = RegimenForm(data) self.assertTrue(data) self.assertFalse(form.is_valid())
[ "michaelkyeyune01@gmail.com" ]
michaelkyeyune01@gmail.com
97c39494d2c4397abe0b8e90109bb32a2af8219e
6730a45a5dcf89b7e9868f0a88e47541a5f30dc6
/tests/task_stat/test.py
c7a34f168b428d9a9ce28b1724701f1d8398d95e
[ "BSD-2-Clause-Views", "BSD-2-Clause" ]
permissive
dontkme/rmats-turbo
def1ca43c88b9c22827ef9652420d71d12f0f11f
8a2ad659717a1ccd6dbecd593dc1370ba7c30621
refs/heads/master
2023-08-24T11:19:14.177599
2021-08-03T12:50:52
2021-08-03T12:50:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
35,997
py
import collections import os.path import shutil import subprocess import sys import unittest import tests.base_test import tests.output_parser as output_parser import tests.test_config import tests.util class Test(tests.base_test.BaseTest): def setUp(self): super().setUp() self._test_base_dir = tests.test_config.TEST_BASE_DIR self._test_dir = os.path.join(self._test_base_dir, 'task_stat') self._generated_input_dir = os.path.join(self._test_dir, 'generated_input') self._out_dir_all = os.path.join(self._test_dir, 'out_all') self._tmp_dir_all = os.path.join(self._test_dir, 'tmp_all') self._out_dir_select = os.path.join(self._test_dir, 'out_select') self._tmp_dir_select = os.path.join(self._test_dir, 'tmp_select') self._out_dir_just_se = os.path.join(self._test_dir, 'out_just_se') self._tmp_dir_just_se = os.path.join(self._test_dir, 'tmp_just_se') tests.util.recreate_dirs([ self._generated_input_dir, self._out_dir_all, self._tmp_dir_all, self._out_dir_select, self._tmp_dir_select, self._out_dir_just_se, self._tmp_dir_just_se, self._command_output_dir() ]) self._read_type = 'paired' self._read_length = 50 self._chromosome_length = 4000 self._sample_1_bams_path = os.path.join(self._generated_input_dir, 'b1.txt') self._sample_2_bams_path = os.path.join(self._generated_input_dir, 'b2.txt') sample_1_bam_replicate_template = os.path.join( self._generated_input_dir, 'sample_1_rep_{}.bam') sample_2_bam_replicate_template = os.path.join( self._generated_input_dir, 'sample_2_rep_{}.bam') self._sample_1_bams = self._create_sample_1_bams( self._sample_1_bams_path, sample_1_bam_replicate_template) self._sample_2_bams = self._create_sample_2_bams( self._sample_2_bams_path, sample_2_bam_replicate_template) self._gtf_path = os.path.join(self._generated_input_dir, 'test.gtf') self._gtf = self._create_gtf_from_transcripts( self._gtf_path, self._exons_by_transcript()) self._sub_steps = [ 'statoff', 'selected_stat', 'just_se', 'deferred_stat', ] self._sub_step = None def test(self): for sub_step in self._sub_steps: self._sub_step = sub_step self._setup_sub_step() self._run_test() def _command_output_dir(self): return os.path.join(self._test_dir, 'command_output') def _rmats_arguments(self): if self._sub_step == 'statoff': return [ '--gtf', self._gtf_path, '-t', self._read_type, '--readLength', str(self._read_length), '--od', self._out_dir_all, '--tmp', self._tmp_dir_all, '--b1', self._sample_1_bams_path, '--b2', self._sample_2_bams_path, '--task', 'both', '--statoff' ] if self._sub_step == 'selected_stat': return [ '--od', self._out_dir_select, '--tmp', self._tmp_dir_select, '--task', 'stat' ] if self._sub_step == 'just_se': return [ '--od', self._out_dir_just_se, '--tmp', self._tmp_dir_just_se, '--task', 'stat' ] if self._sub_step == 'deferred_stat': return [ '--od', self._out_dir_all, '--tmp', self._tmp_dir_all, '--task', 'stat' ] return None def _setup_sub_step(self): if self._sub_step == 'selected_stat': self._setup_selected_stat() if self._sub_step == 'just_se': self._setup_just_se() def _setup_selected_stat(self): self._prepare_stat_inputs(self._out_dir_select, self._out_dir_all, [1], [0, 3]) def _setup_just_se(self): orig_from_gtf = os.path.join(self._out_dir_all, 'fromGTF.SE.txt') new_from_gtf = os.path.join(self._out_dir_just_se, 'fromGTF.SE.txt') shutil.copy(orig_from_gtf, new_from_gtf) orig_raw = os.path.join(self._out_dir_all, 'JC.raw.input.SE.txt') new_raw = os.path.join(self._out_dir_just_se, 'JC.raw.input.SE.txt') shutil.copy(orig_raw, new_raw) def _create_sample_1_bams(self, sample_1_bams_path, sample_1_replicate_template): rep_1_bam_path = sample_1_replicate_template.format(1) rep_1_bam = self._create_bam_from_paired_read_coords( rep_1_bam_path, self._chromosome_length, self._read_length, self._paired_read_coords_1_1()) rep_2_bam_path = sample_1_replicate_template.format(2) rep_2_bam = self._create_bam_from_paired_read_coords( rep_2_bam_path, self._chromosome_length, self._read_length, self._paired_read_coords_1_2()) sample_1_bams = [rep_1_bam, rep_2_bam] self._write_bams(sample_1_bams, sample_1_bams_path) return sample_1_bams def _create_sample_2_bams(self, sample_2_bams_path, sample_2_replicate_template): rep_1_bam_path = sample_2_replicate_template.format(1) rep_1_bam = self._create_bam_from_paired_read_coords( rep_1_bam_path, self._chromosome_length, self._read_length, self._paired_read_coords_2_1()) rep_2_bam_path = sample_2_replicate_template.format(2) rep_2_bam = self._create_bam_from_paired_read_coords( rep_2_bam_path, self._chromosome_length, self._read_length, self._paired_read_coords_2_2()) sample_2_bams = [rep_1_bam, rep_2_bam] self._write_bams(sample_2_bams, sample_2_bams_path) return sample_2_bams def _exons_by_transcript(self): return [ [(1, 100), (201, 300), (401, 500)], # SE 1 [(601, 700), (801, 900), (1001, 1100)], # SE 2 [(1201, 1300), (1401, 1500), (1801, 1900)], # MXE [(1201, 1300), (1601, 1700), (1801, 1900)], # MXE [(2001, 2100), (2301, 2400)], # A5SS [(2001, 2200), (2301, 2400)], # A5SS [(2501, 2600), (2701, 2900)], # A3SS [(2501, 2600), (2801, 2900)], # A3SS [(3001, 3100), (3201, 3300)], # RI [(3001, 3300)], # RI ] def _include_read_SE_1(self): return ([[81, 100], [201, 300]], [[201, 300]]) def _skip_read_SE_1(self): return ([[81, 100], [401, 500]], [[401, 500]]) def _include_read_SE_2(self): return ([[681, 700], [801, 900]], [[801, 900]]) def _skip_read_SE_2(self): return ([[681, 700], [1001, 1100]], [[1001, 1100]]) def _se_reads_from_counts(self, i1, s1, i2, s2): return i1 * [self._include_read_SE_1()] + s1 * [ self._skip_read_SE_1() ] + i2 * [self._include_read_SE_2()] + s2 * [self._skip_read_SE_2()] def _mxe_read_1(self): return ([[1281, 1300], [1401, 1500]], [[1401, 1500]]) def _mxe_read_2(self): return ([[1281, 1300], [1601, 1700]], [[1601, 1700]]) def _a5ss_read_1(self): return ([[2081, 2100], [2301, 2400]], [[2301, 2400]]) def _a5ss_read_2(self): return ([[2181, 2200], [2301, 2400]], [[2301, 2400]]) def _a3ss_read_1(self): return ([[2581, 2600], [2701, 2900]], [[2701, 2900]]) def _a3ss_read_2(self): return ([[2581, 2600], [2801, 2900]], [[2801, 2900]]) def _ri_read_1(self): return ([[3081, 3100], [3201, 3300]], [[3201, 3300]]) def _ri_read_2(self): return ([[3081, 3300]], [[3001, 3220]]) def _other_reads(self): return [ self._mxe_read_1(), self._mxe_read_2(), self._a5ss_read_1(), self._a5ss_read_2(), self._a3ss_read_1(), self._a3ss_read_2(), self._ri_read_1(), self._ri_read_2() ] def _paired_read_coords_1_1(self): return self._se_reads_from_counts(10, 10, 10, 0) + self._other_reads() def _paired_read_coords_1_2(self): return self._se_reads_from_counts(15, 5, 10, 0) + self._other_reads() def _paired_read_coords_2_1(self): return self._se_reads_from_counts(10, 0, 10, 10) + self._other_reads() def _paired_read_coords_2_2(self): return self._se_reads_from_counts(10, 0, 15, 5) + self._other_reads() def _prepare_stat_inputs(self, new_out_dir, old_out_dir, group_1_indices, group_2_indices): command = [ sys.executable, tests.test_config.PREPARE_STAT_INPUTS, '--new-output-dir', new_out_dir, '--old-output-dir', old_out_dir, '--group-1-indices', ','.join([str(x) for x in group_1_indices]), '--group-2-indices', ','.join([str(x) for x in group_2_indices]) ] subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True) def _check_results(self): if self._sub_step == 'statoff': self._check_results_statoff() elif self._sub_step == 'selected_stat': self._check_results_selected_stat() elif self._sub_step == 'just_se': self._check_results_just_se() elif self._sub_step == 'deferred_stat': self._check_results_deferred_stat() else: self.fail('unexpected sub_step: {}'.format(self._sub_step)) def _read_floats(self, floats_str): float_strs = floats_str.split(',') floats = list() for float_str in float_strs: try: floats.append(float(float_str)) except ValueError as e: self.fail('could not parse {} as float from {}: {}'.format( float_str, floats_str, e)) return floats def _check_results_statoff(self): self._check_no_error_results() se_mats_jc_path = os.path.join(self._out_dir_all, 'SE.MATS.JC.txt') se_mats_jc_header, se_mats_jc_rows, error = output_parser.parse_mats_jc( se_mats_jc_path) self.assertFalse(error) self._check_se_mats_jc_header(se_mats_jc_header) self.assertEqual(len(se_mats_jc_rows), 2) for row in se_mats_jc_rows: self.assertIn(row['exonStart_0base'], ['200', '800']) if row['exonStart_0base'] == '200': self.assertEqual(row['IJC_SAMPLE_1'], '10,15') self.assertEqual(row['SJC_SAMPLE_1'], '10,5') self.assertEqual(row['IJC_SAMPLE_2'], '10,10') self.assertEqual(row['SJC_SAMPLE_2'], '0,0') self.assertEqual(row['PValue'], 'NA') self.assertEqual(row['FDR'], 'NA') self.assertEqual(self._read_floats(row['IncLevel1']), [0.333, 0.6]) self.assertEqual(self._read_floats(row['IncLevel2']), [1.0, 1.0]) self.assertEqual(float(row['IncLevelDifference']), -0.533) elif row['exonStart_0base'] == '800': self.assertEqual(row['IJC_SAMPLE_1'], '10,10') self.assertEqual(row['SJC_SAMPLE_1'], '0,0') self.assertEqual(row['IJC_SAMPLE_2'], '10,15') self.assertEqual(row['SJC_SAMPLE_2'], '10,5') self.assertEqual(row['PValue'], 'NA') self.assertEqual(row['FDR'], 'NA') self.assertEqual(self._read_floats(row['IncLevel1']), [1.0, 1.0]) self.assertEqual(self._read_floats(row['IncLevel2']), [0.333, 0.6]) self.assertEqual(float(row['IncLevelDifference']), 0.533) se_mats_jcec_path = os.path.join(self._out_dir_all, 'SE.MATS.JCEC.txt') se_mats_jcec_header, se_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(se_mats_jcec_path)) self.assertFalse(error) self._check_se_mats_jcec_header(se_mats_jcec_header) self.assertEqual(len(se_mats_jcec_rows), 2) for row in se_mats_jcec_rows: self.assertIn(row['exonStart_0base'], ['200', '800']) if row['exonStart_0base'] == '200': self.assertEqual(row['IJC_SAMPLE_1'], '20,30') self.assertEqual(row['SJC_SAMPLE_1'], '10,5') self.assertEqual(row['IJC_SAMPLE_2'], '20,20') self.assertEqual(row['SJC_SAMPLE_2'], '0,0') self.assertEqual(row['PValue'], 'NA') self.assertEqual(row['FDR'], 'NA') self.assertEqual(self._read_floats(row['IncLevel1']), [0.397, 0.664]) self.assertEqual(self._read_floats(row['IncLevel2']), [1.0, 1.0]) self.assertEqual(float(row['IncLevelDifference']), -0.47) mxe_mats_jc_path = os.path.join(self._out_dir_all, 'MXE.MATS.JC.txt') mxe_mats_jc_header, mxe_mats_jc_rows, error = ( output_parser.parse_mats_jc(mxe_mats_jc_path)) self.assertFalse(error) self._check_mxe_mats_jc_header(mxe_mats_jc_header) self.assertEqual(len(mxe_mats_jc_rows), 1) self.assertEqual(mxe_mats_jc_rows[0]['FDR'], 'NA') mxe_mats_jcec_path = os.path.join(self._out_dir_all, 'MXE.MATS.JCEC.txt') mxe_mats_jcec_header, mxe_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(mxe_mats_jcec_path)) self.assertFalse(error) self._check_mxe_mats_jcec_header(mxe_mats_jcec_header) self.assertEqual(len(mxe_mats_jcec_rows), 1) self.assertEqual(mxe_mats_jcec_rows[0]['FDR'], 'NA') a5ss_mats_jc_path = os.path.join(self._out_dir_all, 'A5SS.MATS.JC.txt') a5ss_mats_jc_header, a5ss_mats_jc_rows, error = ( output_parser.parse_mats_jc(a5ss_mats_jc_path)) self.assertFalse(error) self._check_a35ss_mats_jc_header(a5ss_mats_jc_header) self.assertEqual(len(a5ss_mats_jc_rows), 1) self.assertEqual(a5ss_mats_jc_rows[0]['FDR'], 'NA') a5ss_mats_jcec_path = os.path.join(self._out_dir_all, 'A5SS.MATS.JCEC.txt') a5ss_mats_jcec_header, a5ss_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(a5ss_mats_jcec_path)) self.assertFalse(error) self._check_a35ss_mats_jcec_header(a5ss_mats_jcec_header) self.assertEqual(len(a5ss_mats_jcec_rows), 1) self.assertEqual(a5ss_mats_jcec_rows[0]['FDR'], 'NA') a3ss_mats_jc_path = os.path.join(self._out_dir_all, 'A3SS.MATS.JC.txt') a3ss_mats_jc_header, a3ss_mats_jc_rows, error = ( output_parser.parse_mats_jc(a3ss_mats_jc_path)) self.assertFalse(error) self._check_a35ss_mats_jc_header(a3ss_mats_jc_header) self.assertEqual(len(a3ss_mats_jc_rows), 1) self.assertEqual(a3ss_mats_jc_rows[0]['FDR'], 'NA') a3ss_mats_jcec_path = os.path.join(self._out_dir_all, 'A3SS.MATS.JCEC.txt') a3ss_mats_jcec_header, a3ss_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(a3ss_mats_jcec_path)) self.assertFalse(error) self._check_a35ss_mats_jcec_header(a3ss_mats_jcec_header) self.assertEqual(len(a3ss_mats_jcec_rows), 1) self.assertEqual(a3ss_mats_jcec_rows[0]['FDR'], 'NA') ri_mats_jc_path = os.path.join(self._out_dir_all, 'RI.MATS.JC.txt') ri_mats_jc_header, ri_mats_jc_rows, error = output_parser.parse_mats_jc( ri_mats_jc_path) self.assertFalse(error) self._check_ri_mats_jc_header(ri_mats_jc_header) self.assertEqual(len(ri_mats_jc_rows), 1) self.assertEqual(ri_mats_jc_rows[0]['FDR'], 'NA') ri_mats_jcec_path = os.path.join(self._out_dir_all, 'RI.MATS.JCEC.txt') ri_mats_jcec_header, ri_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(ri_mats_jcec_path)) self.assertFalse(error) self._check_ri_mats_jcec_header(ri_mats_jcec_header) self.assertEqual(len(ri_mats_jcec_rows), 1) self.assertEqual(ri_mats_jcec_rows[0]['FDR'], 'NA') def _check_results_selected_stat(self): self._check_no_error_results() se_mats_jc_path = os.path.join(self._out_dir_select, 'SE.MATS.JC.txt') se_mats_jc_header, se_mats_jc_rows, error = output_parser.parse_mats_jc( se_mats_jc_path) self.assertFalse(error) self._check_se_mats_jc_header(se_mats_jc_header) self.assertEqual(len(se_mats_jc_rows), 2) for row in se_mats_jc_rows: self.assertIn(row['exonStart_0base'], ['200', '800']) if row['exonStart_0base'] == '200': self.assertEqual(row['IJC_SAMPLE_1'], '15') self.assertEqual(row['SJC_SAMPLE_1'], '5') self.assertEqual(row['IJC_SAMPLE_2'], '10,10') self.assertEqual(row['SJC_SAMPLE_2'], '10,0') tests.util.assert_within_bounds(self, float(row['PValue']), 0, 1) tests.util.assert_within_bounds(self, float(row['FDR']), 0, 1) self.assertEqual(self._read_floats(row['IncLevel1']), [0.6]) self.assertEqual(self._read_floats(row['IncLevel2']), [0.333, 1.0]) self.assertEqual(float(row['IncLevelDifference']), -0.067) elif row['exonStart_0base'] == '800': self.assertEqual(row['IJC_SAMPLE_1'], '10') self.assertEqual(row['SJC_SAMPLE_1'], '0') self.assertEqual(row['IJC_SAMPLE_2'], '10,15') self.assertEqual(row['SJC_SAMPLE_2'], '0,5') tests.util.assert_within_bounds(self, float(row['PValue']), 0, 1) tests.util.assert_within_bounds(self, float(row['FDR']), 0, 1) self.assertEqual(self._read_floats(row['IncLevel1']), [1.0]) self.assertEqual(self._read_floats(row['IncLevel2']), [1.0, 0.6]) self.assertEqual(float(row['IncLevelDifference']), 0.2) se_mats_jcec_path = os.path.join(self._out_dir_select, 'SE.MATS.JCEC.txt') se_mats_jcec_header, se_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(se_mats_jcec_path)) self.assertFalse(error) self._check_se_mats_jcec_header(se_mats_jcec_header) self.assertEqual(len(se_mats_jcec_rows), 2) for row in se_mats_jcec_rows: self.assertIn(row['exonStart_0base'], ['200', '800']) if row['exonStart_0base'] == '200': self.assertEqual(row['IJC_SAMPLE_1'], '30') self.assertEqual(row['SJC_SAMPLE_1'], '5') self.assertEqual(row['IJC_SAMPLE_2'], '20,20') self.assertEqual(row['SJC_SAMPLE_2'], '10,0') tests.util.assert_within_bounds(self, float(row['PValue']), 0, 1) tests.util.assert_within_bounds(self, float(row['FDR']), 0, 1) self.assertEqual(self._read_floats(row['IncLevel1']), [0.664]) self.assertEqual(self._read_floats(row['IncLevel2']), [0.397, 1.0]) self.assertEqual(float(row['IncLevelDifference']), -0.034) mxe_mats_jc_path = os.path.join(self._out_dir_select, 'MXE.MATS.JC.txt') mxe_mats_jc_header, mxe_mats_jc_rows, error = ( output_parser.parse_mats_jc(mxe_mats_jc_path)) self.assertFalse(error) self._check_mxe_mats_jc_header(mxe_mats_jc_header) self.assertEqual(len(mxe_mats_jc_rows), 1) tests.util.assert_within_bounds(self, float(mxe_mats_jc_rows[0]['FDR']), 0, 1) mxe_mats_jcec_path = os.path.join(self._out_dir_select, 'MXE.MATS.JCEC.txt') mxe_mats_jcec_header, mxe_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(mxe_mats_jcec_path)) self.assertFalse(error) self._check_mxe_mats_jcec_header(mxe_mats_jcec_header) self.assertEqual(len(mxe_mats_jcec_rows), 1) tests.util.assert_within_bounds(self, float(mxe_mats_jcec_rows[0]['FDR']), 0, 1) a5ss_mats_jc_path = os.path.join(self._out_dir_select, 'A5SS.MATS.JC.txt') a5ss_mats_jc_header, a5ss_mats_jc_rows, error = ( output_parser.parse_mats_jc(a5ss_mats_jc_path)) self.assertFalse(error) self._check_a35ss_mats_jc_header(a5ss_mats_jc_header) self.assertEqual(len(a5ss_mats_jc_rows), 1) tests.util.assert_within_bounds(self, float(a5ss_mats_jc_rows[0]['FDR']), 0, 1) a5ss_mats_jcec_path = os.path.join(self._out_dir_select, 'A5SS.MATS.JCEC.txt') a5ss_mats_jcec_header, a5ss_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(a5ss_mats_jcec_path)) self.assertFalse(error) self._check_a35ss_mats_jcec_header(a5ss_mats_jcec_header) self.assertEqual(len(a5ss_mats_jcec_rows), 1) tests.util.assert_within_bounds(self, float(a5ss_mats_jcec_rows[0]['FDR']), 0, 1) a3ss_mats_jc_path = os.path.join(self._out_dir_select, 'A3SS.MATS.JC.txt') a3ss_mats_jc_header, a3ss_mats_jc_rows, error = ( output_parser.parse_mats_jc(a3ss_mats_jc_path)) self.assertFalse(error) self._check_a35ss_mats_jc_header(a3ss_mats_jc_header) self.assertEqual(len(a3ss_mats_jc_rows), 1) tests.util.assert_within_bounds(self, float(a3ss_mats_jc_rows[0]['FDR']), 0, 1) a3ss_mats_jcec_path = os.path.join(self._out_dir_select, 'A3SS.MATS.JCEC.txt') a3ss_mats_jcec_header, a3ss_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(a3ss_mats_jcec_path)) self.assertFalse(error) self._check_a35ss_mats_jcec_header(a3ss_mats_jcec_header) self.assertEqual(len(a3ss_mats_jcec_rows), 1) tests.util.assert_within_bounds(self, float(a3ss_mats_jcec_rows[0]['FDR']), 0, 1) ri_mats_jc_path = os.path.join(self._out_dir_select, 'RI.MATS.JC.txt') ri_mats_jc_header, ri_mats_jc_rows, error = output_parser.parse_mats_jc( ri_mats_jc_path) self.assertFalse(error) self._check_ri_mats_jc_header(ri_mats_jc_header) self.assertEqual(len(ri_mats_jc_rows), 1) tests.util.assert_within_bounds(self, float(ri_mats_jc_rows[0]['FDR']), 0, 1) ri_mats_jcec_path = os.path.join(self._out_dir_select, 'RI.MATS.JCEC.txt') ri_mats_jcec_header, ri_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(ri_mats_jcec_path)) self.assertFalse(error) self._check_ri_mats_jcec_header(ri_mats_jcec_header) self.assertEqual(len(ri_mats_jcec_rows), 1) tests.util.assert_within_bounds(self, float(ri_mats_jcec_rows[0]['FDR']), 0, 1) def _check_results_just_se(self): self.assertEqual(self._rmats_return_code, 0) command_stderr_file_name = self._get_stderr_file_name() with open(command_stderr_file_name, 'rt') as err_f_h: err_lines = err_f_h.readlines() self.assertEqual(len(err_lines), 9) unable_to_produce_lines = collections.defaultdict(int) for err_line in err_lines: self.assertIn('Unable to produce final output files for', err_line) if ' SE ' in err_line: unable_to_produce_lines['SE'] += 1 if ' MXE ' in err_line: unable_to_produce_lines['MXE'] += 1 if ' A5SS ' in err_line: unable_to_produce_lines['A5SS'] += 1 if ' A3SS ' in err_line: unable_to_produce_lines['A3SS'] += 1 if ' RI ' in err_line: unable_to_produce_lines['RI'] += 1 self.assertEqual(unable_to_produce_lines, { 'SE': 1, 'MXE': 2, 'A5SS': 2, 'A3SS': 2, 'RI': 2 }) se_mats_jc_path = os.path.join(self._out_dir_just_se, 'SE.MATS.JC.txt') se_mats_jc_header, se_mats_jc_rows, error = output_parser.parse_mats_jc( se_mats_jc_path) self.assertFalse(error) self._check_se_mats_jc_header(se_mats_jc_header) self.assertEqual(len(se_mats_jc_rows), 2) for row in se_mats_jc_rows: self.assertIn(row['exonStart_0base'], ['200', '800']) if row['exonStart_0base'] == '200': self.assertEqual(row['IJC_SAMPLE_1'], '10,15') self.assertEqual(row['SJC_SAMPLE_1'], '10,5') self.assertEqual(row['IJC_SAMPLE_2'], '10,10') self.assertEqual(row['SJC_SAMPLE_2'], '0,0') tests.util.assert_within_bounds(self, float(row['PValue']), 0, 1) tests.util.assert_within_bounds(self, float(row['FDR']), 0, 1) self.assertEqual(self._read_floats(row['IncLevel1']), [0.333, 0.6]) self.assertEqual(self._read_floats(row['IncLevel2']), [1.0, 1.0]) self.assertEqual(float(row['IncLevelDifference']), -0.533) se_mats_jcec_path = os.path.join(self._out_dir_just_se, 'SE.MATS.JCEC.txt') self.assertFalse(os.path.exists(se_mats_jcec_path)) mxe_mats_jc_path = os.path.join(self._out_dir_just_se, 'MXE.MATS.JC.txt') self.assertFalse(os.path.exists(mxe_mats_jc_path)) mxe_mats_jcec_path = os.path.join(self._out_dir_just_se, 'MXE.MATS.JCEC.txt') self.assertFalse(os.path.exists(mxe_mats_jcec_path)) a5ss_mats_jc_path = os.path.join(self._out_dir_just_se, 'A5SS.MATS.JC.txt') self.assertFalse(os.path.exists(a5ss_mats_jc_path)) a5ss_mats_jcec_path = os.path.join(self._out_dir_just_se, 'A5SS.MATS.JCEC.txt') self.assertFalse(os.path.exists(a5ss_mats_jcec_path)) a3ss_mats_jc_path = os.path.join(self._out_dir_just_se, 'A3SS.MATS.JC.txt') self.assertFalse(os.path.exists(a3ss_mats_jc_path)) a3ss_mats_jcec_path = os.path.join(self._out_dir_just_se, 'A3SS.MATS.JCEC.txt') self.assertFalse(os.path.exists(a3ss_mats_jcec_path)) ri_mats_jc_path = os.path.join(self._out_dir_just_se, 'RI.MATS.JC.txt') self.assertFalse(os.path.exists(ri_mats_jc_path)) ri_mats_jcec_path = os.path.join(self._out_dir_just_se, 'RI.MATS.JCEC.txt') self.assertFalse(os.path.exists(ri_mats_jcec_path)) def _check_results_deferred_stat(self): self._check_no_error_results() se_mats_jc_path = os.path.join(self._out_dir_all, 'SE.MATS.JC.txt') se_mats_jc_header, se_mats_jc_rows, error = output_parser.parse_mats_jc( se_mats_jc_path) self.assertFalse(error) self._check_se_mats_jc_header(se_mats_jc_header) self.assertEqual(len(se_mats_jc_rows), 2) for row in se_mats_jc_rows: self.assertIn(row['exonStart_0base'], ['200', '800']) if row['exonStart_0base'] == '200': self.assertEqual(row['IJC_SAMPLE_1'], '10,15') self.assertEqual(row['SJC_SAMPLE_1'], '10,5') self.assertEqual(row['IJC_SAMPLE_2'], '10,10') self.assertEqual(row['SJC_SAMPLE_2'], '0,0') tests.util.assert_within_bounds(self, float(row['PValue']), 0, 1) tests.util.assert_within_bounds(self, float(row['FDR']), 0, 1) self.assertEqual(self._read_floats(row['IncLevel1']), [0.333, 0.6]) self.assertEqual(self._read_floats(row['IncLevel2']), [1.0, 1.0]) self.assertEqual(float(row['IncLevelDifference']), -0.533) elif row['exonStart_0base'] == '800': self.assertEqual(row['IJC_SAMPLE_1'], '10,10') self.assertEqual(row['SJC_SAMPLE_1'], '0,0') self.assertEqual(row['IJC_SAMPLE_2'], '10,15') self.assertEqual(row['SJC_SAMPLE_2'], '10,5') tests.util.assert_within_bounds(self, float(row['PValue']), 0, 1) tests.util.assert_within_bounds(self, float(row['FDR']), 0, 1) self.assertEqual(self._read_floats(row['IncLevel1']), [1.0, 1.0]) self.assertEqual(self._read_floats(row['IncLevel2']), [0.333, 0.6]) self.assertEqual(float(row['IncLevelDifference']), 0.533) se_mats_jcec_path = os.path.join(self._out_dir_all, 'SE.MATS.JCEC.txt') se_mats_jcec_header, se_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(se_mats_jcec_path)) self.assertFalse(error) self._check_se_mats_jcec_header(se_mats_jcec_header) self.assertEqual(len(se_mats_jcec_rows), 2) for row in se_mats_jcec_rows: self.assertIn(row['exonStart_0base'], ['200', '800']) if row['exonStart_0base'] == '200': self.assertEqual(row['IJC_SAMPLE_1'], '20,30') self.assertEqual(row['SJC_SAMPLE_1'], '10,5') self.assertEqual(row['IJC_SAMPLE_2'], '20,20') self.assertEqual(row['SJC_SAMPLE_2'], '0,0') tests.util.assert_within_bounds(self, float(row['PValue']), 0, 1) tests.util.assert_within_bounds(self, float(row['FDR']), 0, 1) self.assertEqual(self._read_floats(row['IncLevel1']), [0.397, 0.664]) self.assertEqual(self._read_floats(row['IncLevel2']), [1.0, 1.0]) self.assertEqual(float(row['IncLevelDifference']), -0.47) mxe_mats_jc_path = os.path.join(self._out_dir_all, 'MXE.MATS.JC.txt') mxe_mats_jc_header, mxe_mats_jc_rows, error = ( output_parser.parse_mats_jc(mxe_mats_jc_path)) self.assertFalse(error) self._check_mxe_mats_jc_header(mxe_mats_jc_header) self.assertEqual(len(mxe_mats_jc_rows), 1) tests.util.assert_within_bounds(self, float(mxe_mats_jc_rows[0]['FDR']), 0, 1) mxe_mats_jcec_path = os.path.join(self._out_dir_all, 'MXE.MATS.JCEC.txt') mxe_mats_jcec_header, mxe_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(mxe_mats_jcec_path)) self.assertFalse(error) self._check_mxe_mats_jcec_header(mxe_mats_jcec_header) self.assertEqual(len(mxe_mats_jcec_rows), 1) tests.util.assert_within_bounds(self, float(mxe_mats_jcec_rows[0]['FDR']), 0, 1) a5ss_mats_jc_path = os.path.join(self._out_dir_all, 'A5SS.MATS.JC.txt') a5ss_mats_jc_header, a5ss_mats_jc_rows, error = ( output_parser.parse_mats_jc(a5ss_mats_jc_path)) self.assertFalse(error) self._check_a35ss_mats_jc_header(a5ss_mats_jc_header) self.assertEqual(len(a5ss_mats_jc_rows), 1) tests.util.assert_within_bounds(self, float(a5ss_mats_jc_rows[0]['FDR']), 0, 1) a5ss_mats_jcec_path = os.path.join(self._out_dir_all, 'A5SS.MATS.JCEC.txt') a5ss_mats_jcec_header, a5ss_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(a5ss_mats_jcec_path)) self.assertFalse(error) self._check_a35ss_mats_jcec_header(a5ss_mats_jcec_header) self.assertEqual(len(a5ss_mats_jcec_rows), 1) tests.util.assert_within_bounds(self, float(a5ss_mats_jcec_rows[0]['FDR']), 0, 1) a3ss_mats_jc_path = os.path.join(self._out_dir_all, 'A3SS.MATS.JC.txt') a3ss_mats_jc_header, a3ss_mats_jc_rows, error = ( output_parser.parse_mats_jc(a3ss_mats_jc_path)) self.assertFalse(error) self._check_a35ss_mats_jc_header(a3ss_mats_jc_header) self.assertEqual(len(a3ss_mats_jc_rows), 1) tests.util.assert_within_bounds(self, float(a3ss_mats_jc_rows[0]['FDR']), 0, 1) a3ss_mats_jcec_path = os.path.join(self._out_dir_all, 'A3SS.MATS.JCEC.txt') a3ss_mats_jcec_header, a3ss_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(a3ss_mats_jcec_path)) self.assertFalse(error) self._check_a35ss_mats_jcec_header(a3ss_mats_jcec_header) self.assertEqual(len(a3ss_mats_jcec_rows), 1) tests.util.assert_within_bounds(self, float(a3ss_mats_jcec_rows[0]['FDR']), 0, 1) ri_mats_jc_path = os.path.join(self._out_dir_all, 'RI.MATS.JC.txt') ri_mats_jc_header, ri_mats_jc_rows, error = output_parser.parse_mats_jc( ri_mats_jc_path) self.assertFalse(error) self._check_ri_mats_jc_header(ri_mats_jc_header) self.assertEqual(len(ri_mats_jc_rows), 1) tests.util.assert_within_bounds(self, float(ri_mats_jc_rows[0]['FDR']), 0, 1) ri_mats_jcec_path = os.path.join(self._out_dir_all, 'RI.MATS.JCEC.txt') ri_mats_jcec_header, ri_mats_jcec_rows, error = ( output_parser.parse_mats_jcec(ri_mats_jcec_path)) self.assertFalse(error) self._check_ri_mats_jcec_header(ri_mats_jcec_header) self.assertEqual(len(ri_mats_jcec_rows), 1) tests.util.assert_within_bounds(self, float(ri_mats_jcec_rows[0]['FDR']), 0, 1) if __name__ == '__main__': unittest.main(verbosity=2)
[ "noreply@github.com" ]
dontkme.noreply@github.com
16bdf1311ec0dd7bb5b4d66680fad7469efdf356
2f4b95f4b17337f02c21f33f7aa2ce11476898ff
/superlists/lists/tests/test_models.py
17334b2a932fbd11564264621a19bfdffdf5f4b6
[]
no_license
Wowip/EjerciciosTDD
6c891d03250462408dbb25d5d36004c092d6dbe2
940c0fcae6a95998c1c013a35f92e659167de67b
refs/heads/master
2020-08-01T02:13:03.887136
2016-11-20T19:18:49
2016-11-20T19:18:49
73,586,488
0
0
null
2016-11-18T06:59:20
2016-11-13T00:21:46
Python
UTF-8
Python
false
false
1,914
py
from django.core.exceptions import ValidationError from django.test import TestCase from lists.models import Item, List class ItemModelTest(TestCase): def test_default_text(self): item = Item() self.assertEqual(item.text, '') def test_item_is_related_to_list(self): list_ = List.objects.create() item = Item() item.list = list_ item.save() self.assertIn(item, list_.item_set.all()) def test_cannot_save_empty_list_items(self): list_ = List.objects.create() item = Item(list=list_, text='') with self.assertRaises(ValidationError): item.save() item.full_clean() def test_duplicate_items_are_invalid(self): list_ = List.objects.create() Item.objects.create(list=list_, text='bla') with self.assertRaises(ValidationError): item = Item(list=list_, text='bla') item.full_clean() def test_CAN_save_same_item_to_different_lists(self): list1 = List.objects.create() list2 = List.objects.create() Item.objects.create(list=list1, text='bla') item = Item(list=list2, text='bla') item.full_clean() # should not raise def test_list_ordering(self): list1 = List.objects.create() item1 = Item.objects.create(list=list1, text='i1') item2 = Item.objects.create(list=list1, text='item 2') item3 = Item.objects.create(list=list1, text='3') self.assertEqual( list(Item.objects.all()), [item1, item2, item3] ) def test_string_representation(self): item = Item(text='some text') self.assertEqual(str(item), 'some text') class ListModelTest(TestCase): def test_get_absolute_url(self): list_ = List.objects.create() self.assertEqual(list_.get_absolute_url(), '/lists/%d/' % (list_.id,))
[ "arturoinosencio@gmail.com" ]
arturoinosencio@gmail.com
abdf25273170a0e464ee6c988a08c42a21bbd8b0
f3a1629a46f5c3cbf7314c54fc36be3156146517
/venv/bin/sqlformat
f01aa4e0e6285b25c7aec0571805920953267bed
[]
no_license
AlexsandroMO/qualiy_applications
ec4cdbcbacc9f403d7d34ca9573af44df9c9230a
08656c8368f10d54e5b9c8e4a758989239224dc6
refs/heads/main
2023-01-13T03:50:21.779274
2020-11-14T19:05:20
2020-11-14T19:05:20
305,471,783
0
0
null
null
null
null
UTF-8
Python
false
false
284
#!/Users/alexsandromonteiro/Desktop/Prog_Python/qualiy_applications/venv/bin/python3.8 # -*- coding: utf-8 -*- import re import sys from sqlparse.__main__ import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "sandrobass@hotmail.com" ]
sandrobass@hotmail.com
9193f6aad6ce7c106a99eac8bfc6eb8b4001266e
5f6fd8232989e9d033506c84083b909117d0086b
/thread/thread_listen_coding - 副本.py
bb7a3b4a7b13fe86e6a603f4739d428959d85913
[]
no_license
seryte/int_python_pro
a4a9fd085c21adf6161bc8173f77b6b4c191adb2
fc0a1bc8d64f01d07cc63690f4bad04c7a20b07f
refs/heads/master
2020-03-09T06:02:35.139890
2018-05-16T03:42:20
2018-05-16T03:42:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
996
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2018-04-17 20:04:07 # @Author : Your Name (you@example.org) # @Link : http://example.org # @Version : $Id$ import threading,time def listen(name,now): print("listening:%s %s" %(name,now)) time.sleep(2) print("listening 执行结束 %s"%time.strftime("%Y-%m-%d %H:%M:%S")) def coding(name,now): print("coding:%s %s"%(name,now)) time.sleep(5) print("coding 执行结束 %s"%time.strftime("%Y-%m-%d %H:%M:%S")) print("单线程调用:") listen("如果没有如果",time.strftime("%Y-%m-%d %H:%M:%S")) coding("python", time.strftime("%Y-%m-%d %H:%M:%S")) thread = [] t1 = threading.Thread(target=listen, args=("说散就散",time.strftime("%Y-%m-%d %H:%M:%S"))) t2 = threading.Thread(target=coding, args=("codename",time.strftime("%Y-%m-%d %H:%M:%S"))) thread.append(t1) thread.append(t2) # print(thread) print("\n多线程调用:") # t1.start() # t2.start() for i in thread: i.setDaemon(True) i.start() i.join()
[ "382643558@qq.com" ]
382643558@qq.com
5540e36a51a6dfcea256b55d35fa3fa736c86e2e
e96bab82cc398aec30b8969288def8403c033207
/36_Data types function.py
dcceb7b9db3682f5ce76e3d3a2bec556373faceb
[]
no_license
shiyanshirani/w3s-150-questions
125c7df920d6cc04e71232f0d994673aaa0d8d15
3d532ab7a70767d905f86423185e2abbee6d7c2b
refs/heads/master
2022-11-05T03:30:19.738858
2020-06-27T14:17:50
2020-06-27T14:17:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
165
py
def typesfunction(a, b): if type(a)==int and type(b)==int: print(a+b) else: print("Different types") typesfunction("google", 5) typesfunction(111,0)
[ "shiyan99@gmail.com" ]
shiyan99@gmail.com
db0ec3865a75078674e752309dad2296cd1bbd26
f305f84ea6f721c2391300f0a60e21d2ce14f2a5
/19_数学/计算几何/直线/practice/面试题 16.14. 最佳直线 copy.py
9a95efaf08f17ae51ca4cf2e9edb0dae3b4f6f05
[]
no_license
981377660LMT/algorithm-study
f2ada3e6959338ae1bc21934a84f7314a8ecff82
7e79e26bb8f641868561b186e34c1127ed63c9e0
refs/heads/master
2023-09-01T18:26:16.525579
2023-09-01T12:21:58
2023-09-01T12:21:58
385,861,235
225
24
null
null
null
null
UTF-8
Python
false
false
3,033
py
from typing import List from collections import defaultdict def gcd(a, b): return b if a == 0 else gcd(b % a, b) class Solution: def bestLine(self, points: List[List[int]]) -> List[int]: n = len(points) res = [] maxCount = 0 for i in range(n): x1, y1 = points[i] counter = defaultdict(int) firstpair = defaultdict(list) for j in range(i + 1, n): x2, y2 = points[j] A, B = (y2 - y1), (x2 - x1) if B == 0: key = (0, 0) else: gcd_ = gcd(A, B) key = (A / gcd_, B / gcd_) counter[key] += 1 firstpair.setdefault(key, [i, j]) if counter[key] > maxCount: # 只有更多,才更新 maxCount = counter[key] res = firstpair[key] return res print( Solution().bestLine( [ [-24272, -29606], [-37644, -4251], [2691, -22513], [-14592, -33765], [-21858, 28550], [-22264, 41303], [-6960, 12785], [-39133, -41833], [25151, -26643], [-19416, 28550], [-17420, 22270], [-8793, 16457], [-4303, -25680], [-14405, 26607], [-49083, -26336], [22629, 20544], [-23939, -25038], [-40441, -26962], [-29484, -30503], [-32927, -18287], [-13312, -22513], [15026, 12965], [-16361, -23282], [7296, -15750], [-11690, -21723], [-34850, -25928], [-14933, -16169], [23459, -9358], [-45719, -13202], [-26868, 28550], [4627, 16457], [-7296, -27760], [-32230, 8174], [-28233, -8627], [-26520, 28550], [5515, -26001], [-16766, 28550], [21888, -3740], [1251, 28550], [15333, -26322], [-27677, -19790], [20311, 7075], [-10751, 16457], [-47762, -44638], [20991, 24942], [-19056, -11105], [-26639, 28550], [-19862, 16457], [-27506, -4251], [-20172, -5440], [-33757, -24717], [-9411, -17379], [12493, 29906], [0, -21755], [-36885, -16192], [-38195, -40088], [-40079, 7667], [-29294, -34032], [-55968, 23947], [-22724, -22513], [20362, -11530], [-11817, -23957], [-33742, 5259], [-10350, -4251], [-11690, -22513], [-20241, -22513], ] ) )
[ "lmt2818088@gmail.com" ]
lmt2818088@gmail.com
f2d017f5816dc45eeaf51e3c46e9eea79e6f4cc8
56fd010ffa40a8496a61ca4974ab136c55add8f6
/Bruit_TrafficRoutier/Zone_bruit.py
3635ac3c5a55fd3a7bc5b31513c5c08989a2ec68
[]
no_license
BarAmina/Python_ArcPy
1f185894888acf1d8cab20d17b3cbd65b09a82e9
ffe5db519ddf60838096b27acb283c3fb44f1ac6
refs/heads/master
2020-08-04T22:25:03.955430
2019-10-11T21:34:23
2019-10-11T21:34:23
212,297,771
1
0
null
null
null
null
UTF-8
Python
false
false
2,602
py
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------- # Nom du script : Zone_bruit.py # Objet : Génération de zones d'exposition au bruit du traffic routier #------------------------------------------------------------------------------- # Import arcpy module import arcpy # Configuration de l'environnement de géotraitement arcpy.env.overwriteOutput = True # Paramétrage des données en entrée iris = arcpy.GetParameterAsText(0) rue = arcpy.GetParameterAsText(1) # Paramétrage des données intermédiaires rueBuffer = ur"{0}_buffer".format(rue) irisClip = ur"{0}_clip".format(iris) arcpy.AddMessage(u"Calcul du nombre d'habitants exposés au bruit...") # Ajout d'un champ "Surface_complète" à la classe d'entités des IRIS arcpy.AddField_management(iris, u"Surface_complète", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") # Renseignement du champ avec la surface de l'IRIS arcpy.CalculateField_management(iris, u"Surface_complète", "[Shape_Area]", "VB", "") arcpy.AddMessage(u"=> Calcul de la surface totale des IRIS OK") # Ajout d'un champ "Distance" à la classe d'entités des rues arcpy.AddField_management(rue, "Distance", "SHORT", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") # Renseignement du champ avec une portée du bruit, exprimée en mètres, variable suivant l'importance de la rue arcpy.CalculateField_management(rue, "Distance", "Calc_Imp( !IMPORTANCE! )", "PYTHON", "def Calc_Imp(imp):\\n if imp == '1':\\n return 100\\n elif imp == '2':\\n return 50\\n elif imp == '3':\\n return 20\\n else:\\n return 0") arcpy.AddMessage(u"=> Calcul de la portée du bruit de chaque rue OK") # Création de zones tampons autour des rues avec les distances calculées arcpy.Buffer_analysis(rue, rueBuffer, "Distance", "FULL", "ROUND", "ALL", "", "PLANAR") arcpy.AddMessage(u"=> Création des zones d'exposition au bruit OK") # Découpage des IRIS suivant les zones d'exposition au bruit arcpy.Clip_analysis(iris, rueBuffer, irisClip, "") arcpy.AddMessage(u"=> Découpage des IRIS suivant les zones d'exposition au bruit OK") # Ajout d'un champ Pop_bruit à la classe d'analyse arcpy.AddField_management(irisClip, "Pop_bruit", "SHORT", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") # Renseignement du champ avec la population des IRIS découpées arcpy.CalculateField_management(irisClip, "Pop_bruit", "[P07_POP] / [Surface_complète] * [Shape_Area]", "VB", "") arcpy.AddMessage(u"Calcul du nombre d'habitants exposés au bruit OK")
[ "noreply@github.com" ]
BarAmina.noreply@github.com
c4501bbe8f20b230b42ebcc48b2dc670340da586
573307ca913f2bc73bcc498efee67cf61fc29800
/lessThanList.py
dbe067a8601c65e27c6c6b186513e280875254e8
[]
no_license
JstD/PPL_FP
553d7af369f19a98e7c20d2a37216f253d01a2aa
e45e6d7412e60528d1faef9f9ccf09acdb57d30a
refs/heads/master
2023-03-29T20:12:34.713100
2021-04-03T07:00:39
2021-04-03T07:00:39
354,223,373
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
def lessThan(lst,num): return [x for x in lst if x<num] print(lessThan([1,2,3,4,5],4))
[ "dung.truong2000@hcmut.edu.vn" ]
dung.truong2000@hcmut.edu.vn
72f4df5dc0c06e943c09f1516ec2cc3850c46820
a6ceb9e0429f02275159d95142e515b01a6d47b5
/bmi3d/open_hdf_tables.py
ca29b86e76d62db2388d3ccfc665e2a6865cca1f
[]
no_license
m-nolan/aopy_dev
0e699236ea0b82deed1781cf8dcecbe9ecc56c27
794200222e0ac73dc98cf2adc28c63b8e4f18040
refs/heads/main
2023-04-02T13:15:21.098852
2021-03-30T20:01:39
2021-03-30T20:01:39
344,970,001
0
0
null
2021-03-25T23:11:58
2021-03-06T00:35:16
Python
UTF-8
Python
false
false
566
py
import tables import numpy import matplotlib.pyplot as plt #replace this with your hdf filename #fname = 'c:\\Users\\Si Jia\\AppData\\Local\\Temp\\tmp9fswwtwp.h5' fname = '/tmp/tmpdcbqn2zo.h5' hdffile = tables.open_file(fname,'r') #read-onl print(hdffile) #get table information # more methods refer to this # https://www.pytables.org/usersguide/libref/structured_storage.html#tables.Table table = hdffile.root.task print(table.description) #look at cursor trajectory cursor_coor = table.col('cursor') plt.plot(cursor_coor[:,0], cursor_coor[:,2]) plt.show()
[ "manolan@uw.edu" ]
manolan@uw.edu
fcc0647cba72938ea38d2263d8274cac61efb22f
e29713b4e094b17ee6e0fdc88624825cd649abc4
/Python Codes 2/phone_letters.py
48a727c375ee1bb9e2ec702d9ca9f5aa6f0cae22
[]
no_license
debolina-ca/my-projects
272fca1c961cc68b85e28226a2afc6d4929ba26e
b8c433d5a35645da8ad2fcb28238a40daa18bc9b
refs/heads/master
2020-12-27T18:42:06.248234
2020-02-03T19:31:31
2020-02-03T19:31:31
238,008,068
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
# Phone Letters phone_letters = [ "1 = ''", "2 = 'ABC'", "3 = 'DEF'", "4 = 'GHI'", "5 = 'JKL'", "6 = 'MNO'", "7 = 'PQRS'", "8 = 'TUV'", "9 = 'WXYZ'", "*", "0 = ' '", "#" ] print(phone_letters[0:3]) print(phone_letters[3:6]) print(phone_letters[6:9]) print(phone_letters[9:12])
[ "noreply@github.com" ]
debolina-ca.noreply@github.com
6831b0fbb7a6dadcaef55a6df4497df57ec91df1
2b45cbccd03fb09be78b2241d05beeae171a2e18
/字节跳动测试开发工程师面试准备/reverseList.py
58fa0f6880134d2ea79618baafedb614640d8d8f
[]
no_license
MaoningGuan/LeetCode
c90f78ce87a8116458a86c49dbe32e172036f7b4
62419b49000e79962bcdc99cd98afd2fb82ea345
refs/heads/master
2023-01-03T14:52:04.278708
2020-11-01T12:15:41
2020-11-01T12:15:41
282,859,997
3
0
null
null
null
null
UTF-8
Python
false
false
2,567
py
# -*- coding: utf-8 -*- """ 206. 反转链表 反转一个单链表。 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 进阶: 你可以迭代或递归地反转链表。你能否用两种方法解决这道题? """ # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None def generateList(l: list) -> ListNode: prenode = ListNode(0) lastnode = prenode for val in l: lastnode.next = ListNode(val) lastnode = lastnode.next return prenode.next def printList(l: ListNode): while l: print("%d, " % (l.val), end='') l = l.next print('') class Solution: def reverseList_recursive(self, head: ListNode) -> ListNode: """ 递归解法 :type head: ListNode :rtype: ListNode """ # 递归终止条件是当前为空,或者下一个节点为空 if (head == None or head.next == None): return head # 这里的cur就是最后一个节点 cur = self.reverseList_recursive(head.next) # 这里请配合动画演示理解 # 如果链表是 1->2->3->4->5,那么此时的cur就是5 # 而head是4,head的下一个是5,下下一个是空 # 所以head.next.next 就是5->4 head.next.next = head # 防止链表循环,需要将head.next设置为空(如:5 -> 4 -> 3 -> 2 <-> 1) # if head.val == 1: # head.next = None head.next = None # 每层递归函数都返回cur,也就是最后一个节点 return cur def reverseList_iterate(self, head: ListNode) -> ListNode: """ 迭代解法 :type head: ListNode :rtype: ListNode """ # 申请两个节点,pre和 cur,pre指向None pre = None cur = head # 遍历链表,while循环里面的内容其实可以写成一行 # 这里只做演示,就不搞那么骚气的写法了 while cur: # pre, cur.next, cur = cur, pre, cur.next # 记录当前节点的下一个节点 tmp = cur.next # 然后将当前节点指向pre cur.next = pre # pre和cur节点都前进一位 pre = cur cur = tmp return pre if __name__ == '__main__': solution = Solution() nodes = [1, 2, 3, 4, 5] linked_list = generateList(nodes) reversed_link = solution.reverseList_iterate(linked_list) printList(reversed_link)
[ "1812711281@qq.com" ]
1812711281@qq.com
935fa502303057323606ce4a66327440a1ef0018
f150f2dce61cdbaaa244e118c9e81e83a4886458
/eigenpro/training.py
5b296f7d919e0d707bb159e6248c2a240aa00f39
[ "MIT" ]
permissive
johannespitz/kernel-overfitting
e060ca00fef7f7e563616dcc68909737a4449b5a
a654aaa49afc302d4e96a99cafebed0f5bbbd825
refs/heads/master
2020-05-23T22:34:07.844753
2020-04-24T19:50:19
2020-04-24T19:50:19
186,976,752
0
0
null
null
null
null
UTF-8
Python
false
false
9,093
py
#!/usr/bin/env python # coding: utf-8 # In[28]: ''' Modified version of https://github.com/EigenPro/EigenPro-tensorflow in particular run_expr.py ''' from __future__ import print_function import keras import numpy as np import time import warnings from dataclasses import dataclass from scipy.stats import bernoulli from distutils.version import StrictVersion from keras.layers import Dense, Input from keras.models import Model from keras import backend as K from eigenpro import kernels from eigenpro import mnist from eigenpro import ciphar from eigenpro import synthetic from eigenpro import utils from eigenpro.backend_extra import hasGPU from eigenpro.layers import KernelEmbedding, RFF from eigenpro.optimizers import PSGD, SGD assert StrictVersion(keras.__version__) >= StrictVersion('2.0.8'), "Requires Keras (>=2.0.8)." if StrictVersion(keras.__version__) > StrictVersion('2.0.8'): warnings.warn('\n\nEigenPro-tensorflow has been tested with Keras 2.0.8. ' 'If the\ncurrent version (%s) fails, ' 'switch to 2.0.8 by command,\n\n' '\tpip install Keras==2.0.8\n\n' %(keras.__version__), Warning) assert keras.backend.backend() == u'tensorflow', "Requires Tensorflow (>=1.2.1)." assert hasGPU(), "Requires GPU." # In[29]: ''' Modified version of https://github.com/EigenPro/EigenPro-tensorflow in particular kernels.py ''' def D2(X, Y): XX = np.sum(np.square(X), axis = 1, keepdims=True) if X is Y: YY = XX else: YY = np.sum(np.square(Y), axis = 1, keepdims=True) XY = np.dot(X, np.transpose(Y)) d2 = np.reshape(XX, (np.shape(X)[0], 1)) + np.reshape(YY, (1, np.shape(Y)[0])) - 2 * XY return d2 def Gaussian(X, Y, s): assert s > 0 d2 = D2(X, Y) gamma = np.float32(1. / (2 * s ** 2)) G = np.exp(-gamma * np.clip(d2, 0, None)) return G def Laplace(X, Y, s): assert s > 0 d2 = np.clip(D2(X, Y), 0, None) d = np.sqrt(d2) G = np.exp(- d / s) return G # In[30]: def add_noise(y, noise): n, dim = y.shape y = np.argmax(y, axis=1) change = np.array(bernoulli.rvs(noise / 100, size=n)) change = change * np.random.randint(dim, size=n) y = np.mod(y + change, dim) if noise == 100: y = np.random.randint(dim, size=n) return keras.utils.to_categorical(y, dim) def my_norm(alpha, K): cross_norm = alpha.T.dot(K).dot(alpha) return np.sum(np.sqrt(np.diag(cross_norm))) # In[38]: def training(data_set_dict, kernel_dict, size_list, noise_list, MAXEPOCH=100): trainers = {} for dataset_name, ((x_train_full, y_train_full), (x_test_full, y_test_full)) in data_set_dict.items(): _, num_classes = y_train_full.shape for kernel_name, (kernel_sgd, kernel_inv) in kernel_dict.items(): for size in size_list: for noise in noise_list: name = 'D:' + dataset_name + ' K:' + kernel_name + ' S:' + str(size) + ' N:' + str(noise) print(name) trainer = {'dataset': dataset_name, 'kernel': kernel_name, 'size': size, 'noise': noise} x_train = x_train_full[0:size] x_test = x_test_full y_train = add_noise(y_train_full[0:size], noise) y_test = add_noise(y_test_full, noise) # Set the hyper-parameters. bs = 256 # size of the mini-batch M = min(size, 5000) # (EigenPro) subsample size k = min(size - 1, 160) # (EigenPro) top-k eigensystem n, D = x_train.shape # (n_sample, n_feature) # Calculate step size and (Primal) EigenPro preconditioner. kf, scale, s0 = utils.asm_eigenpro_f( x_train, kernel_sgd, M, k, 1, in_rkhs=True) eta = np.float32(1.5 / s0) # 1.5 / s0 eta = eta * num_classes # correction due to mse loss input_shape = (D+1,) # n_feature, (sample) index ix = Input(shape=input_shape, dtype='float32', name='indexed-feat-') x, index = utils.separate_index(ix) # features, sample_id kfeat = KernelEmbedding(kernel_sgd, x_train, input_shape=(D,))(x) # Assemble kernel EigenPro trainer. y = Dense(num_classes, input_shape=(n,), activation='linear', kernel_initializer='zeros', use_bias=False, name='trainable')(kfeat) model = Model(ix, y) model.compile(loss='mse', optimizer=PSGD(pred_t=y, index_t=index, eta=scale*eta, eigenpro_f=lambda g: kf(g, kfeat)), metrics=['accuracy']) model.summary(print_fn=print) print() initial_epoch=0 np.random.seed(1) # Keras uses numpy random number generator train_ts = 0 # training time in seconds print("Stochastic Gradient Descent") for epoch in range(1, MAXEPOCH + 1): start = time.time() model.fit( utils.add_index(x_train), y_train, batch_size=bs, epochs=epoch, verbose=0, validation_data=(utils.add_index(x_test), y_test), initial_epoch=initial_epoch) train_ts += time.time() - start tr_score = model.evaluate(utils.add_index(x_train), y_train, verbose=0) te_score = model.evaluate(utils.add_index(x_test), y_test, verbose=0) initial_epoch = epoch if tr_score[1] == 1.0: trainer['sgd_ce'] = 1 - te_score[1] trainer['iterations'] = epoch print("train error: %.2f%%\ttest error: %.2f%% (%d epochs, %.2f seconds)" % ((1 - tr_score[1]) * 100, (1 - te_score[1]) * 100, epoch, train_ts)) print("Zero Train Error") print() break if epoch == MAXEPOCH: trainer['sgd_ce'] = 1 - te_score[1] trainer['iterations'] = 999999 print("train error: %.2f%%\ttest error: %.2f%% (%d epochs, %.2f seconds)" % ((1 - tr_score[1]) * 100, (1 - te_score[1]) * 100, epoch, train_ts)) print("Did not reach Zero Train Error") print() break if epoch % 5 == 1: print("train error: %.2f%%\ttest error: %.2f%% (%d epochs, %.2f seconds)" % ((1 - tr_score[1]) * 100, (1 - te_score[1]) * 100, epoch, train_ts)) alpah_sgd = np.array(model.get_layer("trainable").get_weights()[0]) del model utils.reset() # linear system K_train = kernel_inv(x_train, x_train) if size <= 20000: alpha = np.linalg.solve(K_train, y_train) ## this was a test -> alpha and the trainable layer are interchangable # alpha = model.get_layer("trainable").get_weights()[0] K_test = kernel_inv(x_train, x_test) pred = K_test.T.dot(alpha) miss_count = np.count_nonzero(np.argmax(pred, axis=1) - np.argmax(y_test, axis=1)) miss_rate = miss_count / y_test.shape[0] trainer['inv_ce'] = miss_rate print("Linear Interpolation") print("Classification Error = " + str(miss_rate)) print() trainer['inv_norm'] = my_norm(alpha, K_train) trainer['sgd_norm'] = my_norm(alpah_sgd, K_train) trainers[name] = trainer K_train = None K_test = None utils.reset() print() print() print(trainers) print() print() print("Done") return trainers
[ "johannes.pitz@tum.de" ]
johannes.pitz@tum.de
3c8054330d2faa9eac755a30f468ca9a147bf06a
673f1a46e00cd3239e459138d9e592ce34dc5b26
/demo/migrations/0001_initial.py
90360a97867d16368e68e66a47ba3821b8256616
[]
no_license
jw1174184386/rolemanage
59db121dfc91fb557d036c8066f7328a9df3c87a
e0f844b6890c70702d3c4333741336570b6a384f
refs/heads/master
2020-04-15T12:13:19.330381
2019-01-08T14:24:08
2019-01-08T14:24:08
164,665,320
1
0
null
null
null
null
UTF-8
Python
false
false
4,849
py
# Generated by Django 2.1.2 on 2019-01-08 03:47 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Action', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, verbose_name='动作名')), ('action', models.CharField(max_length=50, verbose_name='具体动作')), ], options={ 'verbose_name': '动作表', 'verbose_name_plural': '动作表', }, ), migrations.CreateModel( name='Menu', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, verbose_name='菜单名')), ('parent', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='demo.Menu')), ], options={ 'verbose_name': '菜单表', 'verbose_name_plural': '菜单表', }, ), migrations.CreateModel( name='Permission', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, verbose_name='权限名称')), ('url', models.CharField(max_length=200, verbose_name='权限URL')), ('menu', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='demo.Menu')), ], options={ 'verbose_name': '权限表', 'verbose_name_plural': '权限表', }, ), migrations.CreateModel( name='PermissionAction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('action', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='demo.Action', verbose_name='动作')), ('permission', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='demo.Permission', verbose_name='权限')), ], options={ 'verbose_name': '权限动作中间表', 'verbose_name_plural': '权限动作中间表', }, ), migrations.CreateModel( name='Role', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, verbose_name='角色名称')), ], options={ 'verbose_name': '角色表', 'verbose_name_plural': '角色表', }, ), migrations.CreateModel( name='RolePermissionAction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('permission_action', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='demo.PermissionAction')), ('role', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='demo.Role')), ], options={ 'verbose_name': '角色和权限动作中间表', 'verbose_name_plural': '角色和权限动作中间表', }, ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=50, verbose_name='用户名')), ('password', models.CharField(max_length=32, verbose_name='密码')), ], options={ 'verbose_name': '用户表', 'verbose_name_plural': '用户表', }, ), migrations.CreateModel( name='UserRole', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('role', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='demo.Role')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='demo.User')), ], options={ 'verbose_name': '用户和角色之间的中间表', 'verbose_name_plural': '用户和角色之间的中间表', }, ), ]
[ "jw1174184386@163.com" ]
jw1174184386@163.com
29274b90fb731a1e2a67393d3e011a6ce556f727
965a462e251e705dee793cc2ab9ef2acaa1f2b1f
/SCons_zipit.py
752f39714f7581bb78d9b78fe6771c68640fcc24
[]
no_license
Embedded-Systems-Spring-2020/lab4
786e4dca964c6294b606ae136ce151ef26d64e6b
916539dbe90fd11e869fa20c6233359d20f640b9
refs/heads/master
2021-01-02T12:55:17.007775
2020-02-24T17:03:27
2020-02-24T17:03:27
239,633,582
0
1
null
2020-02-24T05:06:52
2020-02-10T23:15:58
C
UTF-8
Python
false
false
2,355
py
# .. "Copyright (c) 2008 Robert B. Reese, Bryan A. Jones, J. W. Bruce ("AUTHORS")" # All rights reserved. # (R. Reese, reese_AT_ece.msstate.edu, Mississippi State University) # (B. A. Jones, bjones_AT_ece.msstate.edu, Mississippi State University) # (J. W. Bruce, jwbruce_AT_ece.msstate.edu, Mississippi State University) # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose, without fee, and without written agreement is # hereby granted, provided that the above copyright notice, the following # two paragraphs and the authors appear in all copies of this software. # # IN NO EVENT SHALL THE "AUTHORS" BE LIABLE TO ANY PARTY FOR # DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT # OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE "AUTHORS" # HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # THE "AUTHORS" SPECIFICALLY DISCLAIMS ANY WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY # AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS # ON AN "AS IS" BASIS, AND THE "AUTHORS" HAS NO OBLIGATION TO # PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." # # Please maintain this header in its entirety when copying/modifying # these files. # # *************************************************************** # SCons_zipit.py - Build docs then create a .zip for distribution # *************************************************************** # Bring in path for SCons use. import os env = Environment(ENV = {'PATH' : os.environ['PATH']}) # Update docs. env.Execute('doxygen') # Copy updated CodeChat docs into Doxygen output. env.Execute('sphinx-build -d _build\\doctrees . _build\\html') env.Execute(Delete('docs/sphinx', must_exist = 0)) env.Execute(Copy('docs/sphinx', '_build/html')) # Define a single target to build the zip file. zip_file = '../pic24_code_examples.zip' env.Default(env.Zip(zip_file, [ 'readme.txt', 'standard_header.txt', 'bin', 'bootloader', 'docs', 'hex', 'chap03', 'chap04', 'chap06', 'chap07', 'chap08', 'chap09', 'chap10', 'chap11', 'chap12', 'chap13', 'BUILD_DIR', 'esos', 'lib/lkr', 'lib/src', 'lib/include', 'explorer16_100p', 'util' ]))
[ "49951619+ryan-shoemake@users.noreply.github.com" ]
49951619+ryan-shoemake@users.noreply.github.com
e5159573514325ddff9f0569957cbbf720a52f0e
a34ec07c3464369a88e68c9006fa1115f5b61e5f
/B_HashTable/Basic/L1_2593_Find_Score_of_an_Array_After_Marking_All_Elements.py
c21970e05cffcfd0aa4f1a71aaa041f071a3ed8a
[]
no_license
824zzy/Leetcode
9220f2fb13e03d601d2b471b5cfa0c2364dbdf41
93b7f4448a366a709214c271a570c3399f5fc4d3
refs/heads/master
2023-06-27T02:53:51.812177
2023-06-16T16:25:39
2023-06-16T16:25:39
69,733,624
14
3
null
2022-05-25T06:48:38
2016-10-01T10:56:07
Python
UTF-8
Python
false
false
493
py
""" https://leetcode.com/problems/find-score-of-an-array-after-marking-all-elements/ Implement the problem description using a seen array """ from header import * class Solution: def findScore(self, A: List[int]) -> int: seen = [0]*(len(A)+2) ans = 0 for i, x in sorted(enumerate(A), key=lambda x: x[1]): if not seen[i]: ans += x seen[i] = 1 seen[i-1] = 1 seen[i+1] = 1 return ans
[ "zhengyuan.zhu@mavs.uta.edu" ]
zhengyuan.zhu@mavs.uta.edu
574a978e3031c00ce0d37a59ee379800c4f2d854
a3b306df800059a5b74975793251a28b8a5f49c7
/Graphs/LX-2/molecule_otsu = False/BioImageXD-1.0/ITK/lib/InsightToolkit/WrapITK/Configuration/Languages/SwigInterface/pygccxml-1.0.0/pygccxml/parser/scanner.py
967c877a080cf5e421a7027aab7eb78b513ab7b5
[ "BSL-1.0" ]
permissive
giacomo21/Image-analysis
dc17ba2b6eb53f48963fad931568576fda4e1349
ea8bafa073de5090bd8f83fb4f5ca16669d0211f
refs/heads/master
2016-09-06T21:42:13.530256
2013-07-22T09:35:56
2013-07-22T09:35:56
11,384,784
1
1
null
null
null
null
UTF-8
Python
false
false
21,301
py
# Copyright 2004-2008 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import os import types import pprint import xml.sax import warnings import xml.sax.handler from pygccxml.declarations import * from pygccxml import utils ##convention #XML_NN - XML Node Name #XML_AN - XML Attribute Name #also those constants are sorted for easy searching. XML_AN_ABSTRACT = "abstract" XML_AN_ACCESS = "access" XML_AN_ALIGN = "align" XML_AN_ARTIFICIAL = "artificial" XML_AN_ATTRIBUTES = "attributes" XML_AN_BASE_TYPE = "basetype" XML_AN_BASES = "bases" XML_AN_BITS = "bits" XML_AN_CONST = "const" XML_AN_CONTEXT = "context" XML_AN_CVS_REVISION = "cvs_revision" XML_AN_DEFAULT = "default" XML_AN_DEMANGLED = "demangled" XML_AN_EXTERN = "extern" XML_AN_FILE = "file" XML_AN_ID = "id" XML_AN_INCOMPLETE = "incomplete" XML_AN_INIT = "init" XML_AN_LINE = "line" XML_AN_MANGLED = "mangled" XML_AN_MAX = "max" XML_AN_MEMBERS = "members" XML_AN_MUTABLE = "mutable" XML_AN_NAME = "name" XML_AN_OFFSET = "offset" XML_AN_PURE_VIRTUAL = "pure_virtual" XML_AN_RESTRICT = "restrict" XML_AN_RETURNS = "returns" XML_AN_SIZE = "size" XML_AN_STATIC = "static" XML_AN_THROW = "throw" XML_AN_TYPE = "type" XML_AN_VIRTUAL = "virtual" XML_AN_VOLATILE = "volatile" XML_NN_ARGUMENT = "Argument" XML_NN_ARRAY_TYPE = "ArrayType" XML_NN_CASTING_OPERATOR = "Converter" XML_NN_CLASS = "Class" XML_NN_CONSTRUCTOR = "Constructor" XML_NN_CV_QUALIFIED_TYPE = "CvQualifiedType" XML_NN_DESTRUCTOR = "Destructor" XML_NN_ELLIPSIS = "Ellipsis" XML_NN_ENUMERATION = "Enumeration" XML_NN_ENUMERATION_VALUE = "EnumValue" XML_NN_FIELD = "Field" XML_NN_FILE = "File" XML_NN_FUNCTION = "Function" XML_NN_FUNCTION_TYPE = "FunctionType" XML_NN_FUNDAMENTAL_TYPE = "FundamentalType" XML_NN_FREE_OPERATOR = "OperatorFunction" XML_NN_GCC_XML = "GCC_XML" XML_NN_MEMBER_OPERATOR = "OperatorMethod" XML_NN_METHOD = "Method" XML_NN_METHOD_TYPE = "MethodType" XML_NN_NAMESPACE = "Namespace" XML_NN_OFFSET_TYPE = "OffsetType" XML_NN_POINTER_TYPE = "PointerType" XML_NN_REFERENCE_TYPE = "ReferenceType" XML_NN_ROOT = "GCC_XML" XML_NN_STRUCT = "Struct" XML_NN_TYPEDEF = "Typedef" XML_NN_UNION = "Union" XML_NN_VARIABLE = "Variable" class scanner_t( xml.sax.handler.ContentHandler ): def __init__(self, gccxml_file, decl_factory, *args ): xml.sax.handler.ContentHandler.__init__(self, *args ) self.logger = utils.loggers.gccxml self.gccxml_file = gccxml_file #defining parsing tables self.__readers = { XML_NN_FILE : self.__read_file , XML_NN_NAMESPACE : self.__read_namespace , XML_NN_ENUMERATION : self.__read_enumeration , XML_NN_ENUMERATION_VALUE : self.__read_enumeration_value , XML_NN_ARRAY_TYPE : self.__read_array_type , XML_NN_CV_QUALIFIED_TYPE : self.__read_cv_qualified_type , XML_NN_POINTER_TYPE : self.__read_pointer_type , XML_NN_REFERENCE_TYPE : self.__read_reference_type , XML_NN_FUNDAMENTAL_TYPE : self.__read_fundamental_type , XML_NN_ARGUMENT : self.__read_argument , XML_NN_FUNCTION_TYPE : self.__read_function_type , XML_NN_METHOD_TYPE : self.__read_method_type , XML_NN_OFFSET_TYPE : self.__read_offset_type , XML_NN_TYPEDEF : self.__read_typedef , XML_NN_VARIABLE : self.__read_variable , XML_NN_CLASS : self.__read_class , XML_NN_STRUCT : self.__read_struct , XML_NN_UNION : self.__read_union , XML_NN_FIELD : self.__read_field , XML_NN_CASTING_OPERATOR : self.__read_casting_operator , XML_NN_CONSTRUCTOR : self.__read_constructor , XML_NN_DESTRUCTOR : self.__read_destructor , XML_NN_FUNCTION : self.__read_function , XML_NN_FREE_OPERATOR : self.__read_free_operator , XML_NN_MEMBER_OPERATOR : self.__read_member_operator , XML_NN_METHOD : self.__read_method , XML_NN_GCC_XML : self.__read_version , XML_NN_ELLIPSIS : self.__read_ellipsis } self.deep_declarations = [ XML_NN_CASTING_OPERATOR , XML_NN_CONSTRUCTOR , XML_NN_DESTRUCTOR , XML_NN_ENUMERATION , XML_NN_FILE , XML_NN_FUNCTION , XML_NN_FREE_OPERATOR , XML_NN_MEMBER_OPERATOR , XML_NN_METHOD , XML_NN_FUNCTION_TYPE , XML_NN_METHOD_TYPE ] assert isinstance( decl_factory, decl_factory_t ) self.__decl_factory = decl_factory #mapping from id -> decl self.__declarations = {} #list of all read declarations self.__calldefs = [] #list of enums I need later self.__enums = [] #mapping from id -> type self.__types = {} #mapping from id -> file self.__files = {} #mapping between decl id -> access self.__access = {} #current object under construction self.__inst = None #mapping from id to members self.__members = {} self.__compiler = None def read( self ): xml.sax.parse( self.gccxml_file, self ) def endDocument( self ): #updating membership members_mapping = {} for gccxml_id, members in self.__members.iteritems(): decl = self.__declarations.get( gccxml_id, None ) if not decl or not isinstance( decl, scopedef_t): continue members_mapping[ id( decl ) ] = members self.__members = members_mapping def declarations(self): return self.__declarations def calldefs( self ): return self.__calldefs def enums(self): return self.__enums def types(self): return self.__types def files(self): return self.__files def access(self): return self.__access def members(self): return self.__members def startElementNS(self, name, qname, attrs): return self.startElement( name[1], attrs ) def endElementNS(self, name, qname): return self.endElement( name[1] ) def startElement(self, name, attrs): try: if name not in self.__readers: return obj = self.__readers[name]( attrs ) if not obj: return #it means that we worked on internals #for example EnumValue of function argument if name in self.deep_declarations: self.__inst = obj self.__read_access( attrs ) element_id = attrs.get(XML_AN_ID, None) if isinstance( obj, declaration_t ): obj.compiler = self.__compiler self.__update_membership( attrs ) self.__declarations[ element_id ] = obj if not isinstance( obj, namespace_t ): self.__read_location( obj, attrs ) if isinstance( obj, class_t): self.__read_bases( obj, attrs ) self.__read_artificial(obj, attrs) self.__read_mangled( obj, attrs) self.__read_demangled( obj, attrs) self.__read_attributes(obj, attrs) elif isinstance( obj, type_t ): self.__types[ element_id ] = obj self.__read_byte_size(obj, attrs) self.__read_byte_align(obj, attrs) elif isinstance( obj, types.StringTypes ): self.__files[ element_id ] = obj else: self.logger.warning( 'Unknown object type has been found.' + ' Please report this bug to pygccxml development team.' ) except Exception, error: msg = 'error occured, while parsing element with name "%s" and attrs "%s".' msg = msg + os.linesep + 'Error: %s.' % str( error ) self.logger.error( msg % ( name, pprint.pformat( attrs.keys() ) ) ) raise def endElement(self, name): if name in self.deep_declarations: self.__inst = None def __read_location(self, decl, attrs): decl.location = location_t( file_name=attrs[XML_AN_FILE], line=int(attrs[XML_AN_LINE])) def __update_membership(self, attrs): parent = attrs.get( XML_AN_CONTEXT, None ) if not parent: return if not self.__members.has_key( parent ): self.__members[ parent ] = [] self.__members[parent].append( attrs[XML_AN_ID] ) def __read_members(self, decl, attrs ): decl.declarations = attrs.get(XML_AN_MEMBERS, "") def __read_bases(self, decl, attrs ): decl.bases = attrs.get( XML_AN_BASES, "" ) def __read_artificial( self, decl, attrs ): decl.is_artificial = attrs.get( XML_AN_ARTIFICIAL, False ) def __read_mangled( self, decl, attrs ): decl.mangled = attrs.get( XML_AN_MANGLED, None ) def __read_demangled( self, decl, attrs ): decl.demangled = attrs.get( XML_AN_DEMANGLED, None ) def __read_attributes( self, decl, attrs ): decl.attributes = attrs.get( XML_AN_ATTRIBUTES, None ) def __read_access( self, attrs ): self.__access[ attrs[XML_AN_ID] ] = attrs.get( XML_AN_ACCESS, ACCESS_TYPES.PUBLIC ) def __read_byte_size (self, decl, attrs): "Using duck typing to set the size instead of in constructor" size = attrs.get(XML_AN_SIZE, 0) decl.byte_size = int(size)/8 # Make sure the size is in bytes instead of bits def __read_byte_offset (self, decl, attrs): "Using duck typing to set the offset instead of in constructor" offset = attrs.get(XML_AN_OFFSET, 0) decl.byte_offset = int(offset)/8 # Make sure the size is in bytes instead of bits def __read_byte_align (self, decl, attrs): "Using duck typing to set the alignment" align = attrs.get(XML_AN_ALIGN, 0) decl.byte_align = int(align)/8 # Make sure the size is in bytes instead of bits def __read_root(self, attrs): pass def __read_file( self, attrs ): return attrs.get( XML_AN_NAME, '' ) def __read_namespace(self, attrs): ns_name = attrs.get( XML_AN_NAME, '' ) if '.' in ns_name: #if '.' in namespace then this is mangled namespace -> in c++ namespace{...} #that is almost true: gcc mangale name using top file name. #almost all files has '.' in name ns_name = '' return self.__decl_factory.create_namespace( name=ns_name ) def __read_enumeration(self, attrs): enum_name = attrs.get( XML_AN_NAME, '' ) if '$_' in enum_name or '._' in enum_name: #it means that this is unnamed enum. in c++ enum{ x }; enum_name = '' decl = self.__decl_factory.create_enumeration( name=enum_name ) self.__read_byte_size(decl, attrs) self.__read_byte_align(decl, attrs) self.__enums.append( decl ) return decl def __read_enumeration_value( self, attrs ): name = attrs.get( XML_AN_NAME, '' ) num = int(attrs[XML_AN_INIT]) self.__inst.append_value(name, num) def __guess_int_value( self, value_as_str ): #returns instance of int or None #if gcc compiled the code, than it is correct! numeric_suffix_letters = 'UuLlFf' for s in numeric_suffix_letters: value_as_str = value_as_str.replace( s, '' ) try: return int( value_as_str ) except ValueError: try: return int( value_as_str, 16 ) except ValueError: return None def __read_array_type( self, attrs ): type_ = attrs[ XML_AN_TYPE ] size = self.__guess_int_value( attrs.get(XML_AN_MAX, '' ) ) if size is None: size = array_t.SIZE_UNKNOWN msg = 'unable to find out array size from expression "%s"' % attrs[ XML_AN_MAX ] # warning is absolutely useless without much clue # warnings.warn( msg ) return array_t( type_, size + 1 ) def __read_cv_qualified_type( self, attrs ): if attrs.has_key( XML_AN_CONST ): return const_t( attrs[XML_AN_TYPE] ) elif attrs.has_key( XML_AN_VOLATILE ): return volatile_t( attrs[XML_AN_TYPE] ) elif attrs.has_key( XML_AN_RESTRICT ): return restrict_t( attrs[XML_AN_TYPE] ) else: assert 0 def __read_pointer_type( self, attrs ): return pointer_t( attrs[XML_AN_TYPE] ) def __read_reference_type( self, attrs ): return reference_t( attrs[XML_AN_TYPE] ) def __read_fundamental_type(self, attrs ): try: return FUNDAMENTAL_TYPES[ attrs.get( XML_AN_NAME, '' ) ] except KeyError: raise RuntimeError( "pygccxml error: unable to find fundamental type with name '%s'." % attrs.get( XML_AN_NAME, '' ) ) def __read_offset_type( self,attrs ): base = attrs[ XML_AN_BASE_TYPE ] type_ = attrs[ XML_AN_TYPE ] if '0.9' in self.__compiler: return pointer_t( member_variable_type_t( class_inst=base, variable_type=type_ ) ) else: return member_variable_type_t( class_inst=base, variable_type=type_ ) def __read_argument( self, attrs ): if isinstance( self.__inst, calldef_type_t ): self.__inst.arguments_types.append( attrs[XML_AN_TYPE] ) else: argument = argument_t() argument.name = attrs.get( XML_AN_NAME, 'arg%d' % len(self.__inst.arguments) ) argument.type = attrs[XML_AN_TYPE] argument.default_value = attrs.get( XML_AN_DEFAULT, None ) self.__read_attributes( argument, attrs ) if argument.default_value == '<gccxml-cast-expr>': argument.default_value = None self.__inst.arguments.append( argument ) def __read_ellipsis( self, attrs ): if isinstance( self.__inst, calldef_type_t ): self.__inst.arguments_types.append( '...' ) else: argument = argument_t( type='...' ) self.__inst.arguments.append( argument ) def __read_calldef( self, calldef, attrs, is_declaration ): #destructor for example doesn't have return type calldef.return_type = attrs.get( XML_AN_RETURNS, None ) if is_declaration: self.__calldefs.append( calldef ) calldef.name = attrs.get(XML_AN_NAME, '') calldef.has_extern = attrs.get( XML_AN_EXTERN, False ) throw_stmt = attrs.get( XML_AN_THROW, None ) if None is throw_stmt: calldef.does_throw = True calldef.exceptions = [] elif "" == throw_stmt: calldef.does_throw = False calldef.exceptions = [] else: calldef.does_throw = True calldef.exceptions = throw_stmt.split() def __read_member_function( self, calldef, attrs, is_declaration ): self.__read_calldef( calldef, attrs, is_declaration ) calldef.has_const = attrs.get( XML_AN_CONST, False ) if is_declaration: calldef.has_static = attrs.get( XML_AN_STATIC, False ) if attrs.has_key( XML_AN_PURE_VIRTUAL ): calldef.virtuality = VIRTUALITY_TYPES.PURE_VIRTUAL elif attrs.has_key( XML_AN_VIRTUAL ): calldef.virtuality = VIRTUALITY_TYPES.VIRTUAL else: calldef.virtuality = VIRTUALITY_TYPES.NOT_VIRTUAL else: calldef.class_inst = attrs[XML_AN_BASE_TYPE] def __read_function_type(self, attrs): answer = free_function_type_t() self.__read_calldef( answer, attrs, False ) return answer def __read_method_type(self, attrs): answer = member_function_type_t() self.__read_member_function( answer, attrs, False ) return answer def __read_typedef(self, attrs ): return self.__decl_factory.create_typedef( name=attrs.get( XML_AN_NAME, '' ), type=attrs[XML_AN_TYPE]) def __read_variable(self, attrs ): type_qualifiers = type_qualifiers_t() type_qualifiers.has_mutable = attrs.get(XML_AN_MUTABLE, False) type_qualifiers.has_static = attrs.get(XML_AN_EXTERN, False) bits = attrs.get( XML_AN_BITS, None ) if bits: bits = int( bits ) decl = self.__decl_factory.create_variable( name=attrs.get( XML_AN_NAME, '' ) , type=attrs[XML_AN_TYPE] , type_qualifiers=type_qualifiers , value=attrs.get( XML_AN_INIT, None ) , bits=bits) self.__read_byte_offset(decl, attrs) return decl __read_field = __read_variable #just a synonim def __read_class_impl(self, class_type, attrs): decl = None name = attrs.get(XML_AN_NAME, '') if '$' in name or '.' in name: name = '' if attrs.has_key( XML_AN_INCOMPLETE ): decl = self.__decl_factory.create_class_declaration(name=name) else: decl = self.__decl_factory.create_class( name=name, class_type=class_type ) if attrs.get( XML_AN_ABSTRACT, False ): decl.is_abstract = True else: decl.is_abstract = False self.__read_byte_size(decl, attrs) self.__read_byte_align(decl, attrs) return decl def __read_class( self, attrs ): return self.__read_class_impl( CLASS_TYPES.CLASS, attrs ) def __read_struct( self, attrs ): return self.__read_class_impl( CLASS_TYPES.STRUCT, attrs ) def __read_union( self, attrs ): return self.__read_class_impl( CLASS_TYPES.UNION, attrs ) def __read_casting_operator(self, attrs ): operator = self.__decl_factory.create_casting_operator() self.__read_member_function( operator, attrs, True ) return operator def __read_constructor( self, attrs ): constructor = self.__decl_factory.create_constructor() self.__read_member_function( constructor, attrs, True ) return constructor def __read_function(self, attrs): gfunction = self.__decl_factory.create_free_function() self.__read_calldef( gfunction, attrs, True ) return gfunction def __read_method(self, attrs): mfunction = self.__decl_factory.create_member_function() self.__read_member_function( mfunction, attrs, True ) return mfunction def __read_destructor(self, attrs): destructor = self.__decl_factory.create_destructor() self.__read_member_function( destructor, attrs, True ) destructor.name = '~' + destructor.name return destructor def __read_free_operator(self, attrs ): operator = self.__decl_factory.create_free_operator() self.__read_member_function( operator, attrs, True ) if 'new' in operator.name or 'delete' in operator.name: operator.name = 'operator ' + operator.name else: operator.name = 'operator' + operator.name return operator def __read_member_operator(self, attrs): operator = self.__decl_factory.create_member_operator() self.__read_member_function( operator, attrs, True ) if 'new' in operator.name or 'delete' in operator.name: operator.name = 'operator ' + operator.name else: operator.name = 'operator' + operator.name return operator def __read_version(self, attrs): logger = utils.loggers.cxx_parser version = float( attrs.get(XML_AN_CVS_REVISION, 0.6) ) if version is None: logger.info ( 'GCCXML version - 0.6' ) self.__compiler = compilers.GCC_XML_06 elif version <= 1.114: logger.info ( 'GCCXML version - 0.7' ) self.__compiler = compilers.GCC_XML_07 elif version in ( 1.115, 1.116, 1.117, 1.118, 1.119, 1.120, 1.121 ): logger.info ( 'GCCXML version - 0.9 BUGGY' ) self.__compiler = compilers.GCC_XML_09_BUGGY else: logger.info ( 'GCCXML version - 0.9' ) self.__compiler = compilers.GCC_XML_09
[ "fede.anne95@hotmail.it" ]
fede.anne95@hotmail.it
d1d2cb8fa62f4abf11d0f3c031e100adb3008d82
6ed01f4503fc9de234a561c945adff7cf4b1c81b
/ncar_lib/incites_authors/incites_people_reporter.py
24328f4c760673ff83a6c2cbdde1365ae3f9d3f8
[]
no_license
ostwald/python-lib
b851943c913a68424a05ce3c7b42878ff9519f68
9acd97ffaa2f57b3e9e632e1b75016549beb29e5
refs/heads/master
2021-10-28T06:33:34.156095
2021-10-21T23:54:49
2021-10-21T23:54:49
69,060,616
0
1
null
2018-06-21T16:05:30
2016-09-23T21:04:46
Roff
UTF-8
Python
false
false
5,465
py
""" """ import os, sys from UserList import UserList from find_person import PersonFinder, resolveFullName from data_filter import FilteredAuthorData from HyperText.HTML40 import * from html import HtmlDocument class InCitesAuthorInfo: def __init__ (self, id, finder, matches): """ names are derived from inCitesAuthor data matches come from peopleDB """ self.id = id # self.inCitesName = fullname for attr in ['fullname', 'firstName', 'middleName', 'lastName', 'note']: setattr (self, attr, getattr (finder, attr)) self.matches = matches self.numMatches = len(matches) class SimpleReporter (UserList): def __init__ (self): self.data = [] self.recordsToReport = 10 self.errors = [] self.notes = [] self.people = FilteredAuthorData().people # UniquePeople # self.report() self.getAuthorMatchInfo() def getAuthorMatchInfo (self): person_counter = 1 max_count = self.recordsToReport or len(self.people.keys()) for fullname in self.people.keys()[:max_count]: try: finder = PersonFinder (fullname) candidates = finder.candidates id = 'author-%d' % person_counter person_counter += 1 # print 'processing authorInfo for ' + fullname authorInfo = InCitesAuthorInfo (id, finder, candidates) self.append(authorInfo) except KeyError, e: print 'ERROR', e self.errors.append(fullname + ": " + str(e)) def report(self): for authorInfo in self: try: if authorInfo.numMatches == 1: continue if authorInfo.note: self.notes.append(authorInfo.note) ## print '\n%s (%d)' % (fullname, size) print "\n%d candidates found for '%s' (%s | %s)" % \ (len(authorInfo.matches), authorInfo.fullname, authorInfo.lastName, authorInfo.firstName) for person in authorInfo.matches: print '- ', person except Exception, e: self.errors.append(authorInfo.fullname + ": " + str(e)) def showErrors (self): if self.errors: print '\nNames that could not be parsed' for error in self.errors: print error else: print '\nAll names were parsed' def showNotes(self): if self.notes: print '\nNotes' for note in notes: print note else: print '\nNo notes generated' class HtmlReporter (SimpleReporter): results_columns = ['numMatches', 'inCitesName', 'peopleDBlink'] def __init__ (self): SimpleReporter.__init__ (self) self.htmlDoc = None print '%d authorInfo instances' % len(self.data) def asHtmlDoc (self): if self.htmlDoc is None: mockup_link = Href ("../reporter-mockup.html", 'to Mockup') reportTable = self.makeReportHtml() javascript = [ 'javascript/prototype.js', 'javascript/scriptaculous-js-1.9.0/scriptaculous.js', 'javascript/toggler.js', 'javascript/decorate_upids.js' ] self.htmlDoc = HtmlDocument(mockup_link, reportTable, title="inCites Author Reporter", stylesheet="styles.css", javascript=javascript) return self.htmlDoc def getInCitesAuthorInfo (self, authorInfo): """ make the html for a inCitesAuthor & its matches """ print 'getInCitesAuthorInfo with ' + authorInfo.fullname id = authorInfo.id togglerClass = authorInfo.matches and "toggler" or "" toggler = DIV (id=id, klass=togglerClass) if authorInfo.numMatches > 0: togglerLnkClass = "inCitesAuthor togglerClosed" else: togglerLnkClass = "inCitesAuthor noTogglerClosed" # print "%s %s" % (authorInfo.inCitesName, authorInfo.numMatches) togglerLnk = DIV(id='toggler-lnk-'+id, klass=togglerLnkClass) toggler.append(togglerLnk) authorTable = TABLE(klass="authorTable") togglerLnk.append(authorTable) matchesContent = '(%d matches)' % authorInfo.numMatches authorTable.append( TR( TD (authorInfo.fullname, klass="author"), TD (matchesContent, klass="matches") ) ) if authorInfo.numMatches > 0: togglerCon = DIV(id='toggler-con-'+id, style="display:none") toggler.append(togglerCon) matchTable = TABLE(klass="matchTable") togglerCon.append(matchTable) for match in authorInfo.matches: match_row = TR (klass="peopleDBmatch", id=match.upid) match_row.append ( TD (match.getName(), klass="match-name"), TD (match.upid, klass="match-upid")) matchTable.append(match_row); return toggler def makeReportHtml (self): report = DIV (id='reportTable') person_counter = 1 max_count = self.recordsToReport or len(self.people.keys()) for authorInfo in self: # print authorInfo.fullname, authorInfo.numMatches try: if authorInfo.numMatches == 1: continue if authorInfo.note: self.notes.append(authorInfo.note) # print 'processing authorInfo for ' + fullname report.append (HR (klass="divider")) report.append(self.getInCitesAuthorInfo (authorInfo)) except Exception, e: self.errors.append(authorInfo.fullname + ": " + str(e)) return report def writeHtmlDoc (self, path=None): path = path or "report_html/INCITES_REPORT.html" fp = open (path, 'w') fp.write (self.asHtmlDoc().__str__()) fp.close() print "wrote to " + path if __name__ == '__main__': # findPeople() if 0: reporter = SimpleReporter() reporter.report() if 1: reporter = HtmlReporter() print reporter.asHtmlDoc() # reporter.writeHtmlDoc() reporter.showErrors() reporter.showNotes() # print reporter.asHtmlDoc()
[ "ostwald@ucar.edu" ]
ostwald@ucar.edu
f6a2b705d388a7c343310c3da3e8ed2698926621
14e3ecd6a5bfc4cba3b990d561a3d6db70f43430
/UDA/main.py
37d29c6ca6da7c86a831b725c3200b77e446e89d
[]
no_license
zuiwufenghua/Multi-Cell_LSTM
61d487645e1c2d3f93f95bda2e8f46fabd8a3b3a
c4938222a559d93aa8377d4e1a46a27aff86457c
refs/heads/master
2023-01-23T06:20:56.883335
2020-12-02T09:41:32
2020-12-02T09:41:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,861
py
# -*- coding: utf-8 -*- from __future__ import print_function import time import sys import math import argparse import random import torch import gc import torch.nn as nn import torch.optim as optim import numpy as np from utils.metric import get_ner_fmeasure from model.seqlabel import SeqLabel from model.sentclassifier import SentClassifier from utils.data import Data import os try: import cPickle as pickle except ImportError: import pickle os.environ["CUDA_VISIBLE_DEVICES"] = "0" seed_num = 42 random.seed(seed_num) torch.manual_seed(seed_num) np.random.seed(seed_num) CAT = ['PER', 'ORG', 'LOC', 'MISC'] POSITION = ['I', 'B', 'E', 'S'] LABEL_INDEX = ['O'] + ["{}-{}".format(position, cat) for cat in CAT for position in POSITION] def data_initialization(data): data.initial_feature_alphabets() if data.task == 'NER': for tag in LABEL_INDEX: data.label_alphabet.add(tag) data.entity_type.append('O') for entity_name in CAT: data.entity_type.append(entity_name) for entity in data.entity_type: data.entity_alphabet.add(entity) for pos_name in POSITION: data.position_type.append(pos_name) data.build_alphabet(data.train_dir) data.build_alphabet(data.dev_dir) data.build_alphabet(data.test_dir) data.build_alphabet_raw(data.raw_data_dir) data.fix_alphabet() for i in range(data.label_alphabet.size()-1): print(data.label_alphabet.instances[i]) data.build_entity_dict(data.entity_dict_dir) def predict_check(pred_variable, gold_variable, mask_variable, sentence_classification=False): """ input: pred_variable (batch_size, sent_len): pred tag result, in numpy format gold_variable (batch_size, sent_len): gold result variable mask_variable (batch_size, sent_len): mask variable """ pred = pred_variable.cpu().data.numpy() gold = gold_variable.cpu().data.numpy() mask = mask_variable.cpu().data.numpy() overlaped = (pred == gold) if sentence_classification: # print(overlaped) # print(overlaped*pred) right_token = np.sum(overlaped) total_token = overlaped.shape[0] ## =batch_size else: right_token = np.sum(overlaped * mask) total_token = mask.sum() # print("right: %s, total: %s"%(right_token, total_token)) return right_token, total_token def recover_label(pred_variable, gold_variable, mask_variable, label_alphabet, word_recover, sentence_classification=False): """ input: pred_variable (batch_size, sent_len): pred tag result gold_variable (batch_size, sent_len): gold result variable mask_variable (batch_size, sent_len): mask variable """ pred_variable = pred_variable[word_recover] gold_variable = gold_variable[word_recover] mask_variable = mask_variable[word_recover] batch_size = gold_variable.size(0) if sentence_classification: pred_tag = pred_variable.cpu().data.numpy().tolist() gold_tag = gold_variable.cpu().data.numpy().tolist() pred_label = [label_alphabet.get_instance(pred) for pred in pred_tag] gold_label = [label_alphabet.get_instance(gold) for gold in gold_tag] else: seq_len = gold_variable.size(1) mask = mask_variable.cpu().data.numpy() pred_tag = pred_variable.cpu().data.numpy() gold_tag = gold_variable.cpu().data.numpy() batch_size = mask.shape[0] pred_label = [] gold_label = [] for idx in range(batch_size): pred = [label_alphabet.get_instance(pred_tag[idx][idy]) for idy in range(seq_len) if mask[idx][idy] != 0] gold = [label_alphabet.get_instance(gold_tag[idx][idy]) for idy in range(seq_len) if mask[idx][idy] != 0] assert(len(pred)==len(gold)) pred_label.append(pred) gold_label.append(gold) return pred_label, gold_label def recover_nbest_label(pred_variable, mask_variable, label_alphabet, word_recover): """ input: pred_variable (batch_size, sent_len, nbest): pred tag result mask_variable (batch_size, sent_len): mask variable word_recover (batch_size) output: nbest_pred_label list: [batch_size, nbest, each_seq_len] """ # exit(0) pred_variable = pred_variable[word_recover] mask_variable = mask_variable[word_recover] batch_size = pred_variable.size(0) seq_len = pred_variable.size(1) nbest = pred_variable.size(2) mask = mask_variable.cpu().data.numpy() pred_tag = pred_variable.cpu().data.numpy() batch_size = mask.shape[0] pred_label = [] for idx in range(batch_size): pred = [] for idz in range(nbest): each_pred = [label_alphabet.get_instance(pred_tag[idx][idy][idz]) for idy in range(seq_len) if mask[idx][idy] != 0] pred.append(each_pred) pred_label.append(pred) return pred_label def lr_decay(optimizer, epoch, decay_rate, init_lr): lr = init_lr/(1+decay_rate*epoch) print(" Learning rate is set as:", lr) for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer def evaluate(data, model, name, nbest=None): if name == "train": instances = data.train_Ids elif name == "dev": instances = data.dev_Ids elif name == 'test': instances = data.test_Ids elif name == 'raw': instances = data.raw_Ids else: print("Error: wrong evaluate name,", name) exit(1) right_token = 0 whole_token = 0 nbest_pred_results = [] pred_scores = [] pred_results = [] gold_results = [] gold_entity_results = [] pred_entity_results = [] gold_probs_results = [] pred_probs_results = [] ## set model in eval model model.eval() batch_size = data.HP_batch_size start_time = time.time() train_num = len(instances) total_batch = train_num//batch_size+1 for batch_id in range(total_batch): start = batch_id*batch_size end = (batch_id+1)*batch_size if end > train_num: end = train_num instance = instances[start:end] if not instance: continue original_words_batch, batch_word, batch_features, batch_wordlen, batch_wordrecover, batch_char, batch_charlen, batch_charrecover, batch_label, batch_entity, lm_seq_tensor, mask = batchify_with_label(instance, data.HP_gpu, False, data.sentence_classification) if nbest and not data.sentence_classification: scores, nbest_tag_seq, entity_seq, atten_probs_seq = model.decode_nbest(original_words_batch, batch_word, batch_features, batch_wordlen, batch_char, batch_charlen, batch_charrecover, mask, nbest) nbest_pred_result = recover_nbest_label(nbest_tag_seq, mask, data.label_alphabet, batch_wordrecover) nbest_pred_results += nbest_pred_result pred_scores += scores[batch_wordrecover].cpu().data.numpy().tolist() ## select the best sequence to evalurate tag_seq = nbest_tag_seq[:,:,0] else: tag_seq, entity_seq, atten_probs_seq = model(original_words_batch, batch_word, batch_features, batch_wordlen, batch_char, batch_charlen, batch_charrecover, mask) # print("tag:",tag_seq) pred_entity, gold_entity = recover_label(entity_seq, batch_entity, mask, data.entity_alphabet, batch_wordrecover, data.sentence_classification) pred_entity_results += pred_entity gold_entity_results += gold_entity pred_probs, gold_probs = recover_label(atten_probs_seq, batch_entity, mask, data.entity_alphabet, batch_wordrecover, data.sentence_classification) pred_probs_results += pred_probs gold_probs_results += gold_probs pred_label, gold_label = recover_label(tag_seq, batch_label, mask, data.label_alphabet, batch_wordrecover, data.sentence_classification) pred_results += pred_label gold_results += gold_label decode_time = time.time() - start_time speed = len(instances)/decode_time print("word acc:") acc, p, r, f = get_ner_fmeasure(gold_results, pred_results, data.tagScheme) print("entity acc:") entity_acc, _, _, _ = get_ner_fmeasure(gold_entity_results, pred_entity_results, "entity predict") print("probs acc:") probs_acc, _, _, _ = get_ner_fmeasure(gold_probs_results, pred_probs_results, "probs predict") if nbest and not data.sentence_classification: return speed, acc, p, r, f, nbest_pred_results, pred_scores return speed, acc, p, r, f, pred_results, pred_scores def batchify_with_label(input_batch_list, gpu, if_train=True, sentence_classification=False): if sentence_classification: return batchify_sentence_classification_with_label(input_batch_list, gpu, if_train) else: return batchify_sequence_labeling_with_label(input_batch_list, gpu, if_train) def batchify_sequence_labeling_with_label(input_batch_list, gpu, if_train=True): """ input: list of words, chars and labels, various length. [[words, features, chars, labels],[words, features, chars,labels],...] words: word ids for one sentence. (batch_size, sent_len) features: features ids for one sentence. (batch_size, sent_len, feature_num) chars: char ids for on sentences, various length. (batch_size, sent_len, each_word_length) labels: label ids for one sentence. (batch_size, sent_len) output: zero padding for word and char, with their batch length word_seq_tensor: (batch_size, max_sent_len) Variable feature_seq_tensors: [(batch_size, max_sent_len),...] list of Variable word_seq_lengths: (batch_size,1) Tensor char_seq_tensor: (batch_size*max_sent_len, max_word_len) Variable char_seq_lengths: (batch_size*max_sent_len,1) Tensor char_seq_recover: (batch_size*max_sent_len,1) recover char sequence order label_seq_tensor: (batch_size, max_sent_len) mask: (batch_size, max_sent_len) """ device = torch.device('cuda' if gpu and torch.cuda.is_available() else 'cpu') batch_size = len(input_batch_list) words = [sent[0] for sent in input_batch_list] features = [np.asarray(sent[1]) for sent in input_batch_list] feature_num = len(features[0][0]) chars = [sent[2] for sent in input_batch_list] labels = [sent[3] for sent in input_batch_list] entities = [sent[4] for sent in input_batch_list] original_words = [sent[5] for sent in input_batch_list] word_seq_lengths = torch.LongTensor(list(map(len, words))) max_seq_len = word_seq_lengths.max().item() word_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad=if_train).long() label_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad=if_train).long() entity_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad=if_train).long() lm_forward_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad=if_train).long() lm_backward_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad=if_train).long() feature_seq_tensors = [] for idx in range(feature_num): feature_seq_tensors.append(torch.zeros((batch_size, max_seq_len),requires_grad = if_train).long()) mask = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).byte() for idx, (seq, label, entity, seqlen) in enumerate(zip(words, labels, entities, word_seq_lengths)): seqlen = seqlen.item() word_seq_tensor[idx, :seqlen] = torch.LongTensor(seq) if seqlen > 1: lm_forward_seq_tensor[idx, 0: seqlen - 1] = word_seq_tensor[idx, 1: seqlen] lm_forward_seq_tensor[idx, seqlen - 1] = torch.LongTensor([1]) # unk word lm_backward_seq_tensor[idx, 1: seqlen] = word_seq_tensor[idx, 0: seqlen - 1] lm_backward_seq_tensor[idx, 0] = torch.LongTensor([1]) # unk word else: lm_forward_seq_tensor[idx, 0] = torch.LongTensor([1]) # unk word lm_backward_seq_tensor[idx, 0] = torch.LongTensor([1]) # unk word label_seq_tensor[idx, :seqlen] = torch.LongTensor(label) entity_seq_tensor[idx, :seqlen] = torch.LongTensor(entity) mask[idx, :seqlen] = torch.Tensor([1]*seqlen) for idy in range(feature_num): feature_seq_tensors[idy][idx,:seqlen] = torch.LongTensor(features[idx][:,idy]) word_seq_lengths, word_perm_idx = word_seq_lengths.sort(0, descending=True) word_seq_lengths = word_seq_lengths.to(device) word_seq_tensor = word_seq_tensor[word_perm_idx].to(device) # reorder sentence index new_original_words = [] # list[list[word]] for i in word_perm_idx: new_original_words.append(original_words[i]) for idx in range(feature_num): feature_seq_tensors[idx] = feature_seq_tensors[idx][word_perm_idx].to(device) lm_forward_seq_tensor = lm_forward_seq_tensor[word_perm_idx].to(device) lm_backward_seq_tensor = lm_backward_seq_tensor[word_perm_idx].to(device) label_seq_tensor = label_seq_tensor[word_perm_idx].to(device) entity_seq_tensor = entity_seq_tensor[word_perm_idx].to(device) mask = mask[word_perm_idx].to(device) ### deal with char # pad_chars (batch_size, max_seq_len) pad_chars = [chars[idx] + [[0]] * (max_seq_len-len(chars[idx])) for idx in range(len(chars))] length_list = [list(map(len, pad_char)) for pad_char in pad_chars] max_word_len = max(map(max, length_list)) char_seq_tensor = torch.zeros((batch_size, max_seq_len, max_word_len), requires_grad = if_train).long() char_seq_lengths = torch.LongTensor(length_list) for idx, (seq, seqlen) in enumerate(zip(pad_chars, char_seq_lengths)): for idy, (word, wordlen) in enumerate(zip(seq, seqlen)): # print len(word), wordlen char_seq_tensor[idx, idy, :wordlen] = torch.LongTensor(word) char_seq_tensor = char_seq_tensor[word_perm_idx].view(batch_size*max_seq_len,-1) char_seq_lengths = char_seq_lengths[word_perm_idx].view(batch_size*max_seq_len,) char_seq_lengths, char_perm_idx = char_seq_lengths.sort(0, descending=True) char_seq_tensor = char_seq_tensor[char_perm_idx].to(device) _, char_seq_recover = char_perm_idx.sort(0, descending=False) char_seq_recover = char_seq_recover.to(device) _, word_seq_recover = word_perm_idx.sort(0, descending=False) word_seq_recover = word_seq_recover.to(device) lm_seq_tensor = [lm_forward_seq_tensor, lm_backward_seq_tensor] return new_original_words, word_seq_tensor,feature_seq_tensors, word_seq_lengths, word_seq_recover, char_seq_tensor, char_seq_lengths, char_seq_recover, label_seq_tensor, entity_seq_tensor, lm_seq_tensor, mask def batchify_sentence_classification_with_label(input_batch_list, gpu, if_train=True): """ input: list of words, chars and labels, various length. [[words, features, chars, labels],[words, features, chars,labels],...] words: word ids for one sentence. (batch_size, sent_len) features: features ids for one sentence. (batch_size, feature_num), each sentence has one set of feature chars: char ids for on sentences, various length. (batch_size, sent_len, each_word_length) labels: label ids for one sentence. (batch_size,), each sentence has one set of feature output: zero padding for word and char, with their batch length word_seq_tensor: (batch_size, max_sent_len) Variable feature_seq_tensors: [(batch_size,), ... ] list of Variable word_seq_lengths: (batch_size,1) Tensor char_seq_tensor: (batch_size*max_sent_len, max_word_len) Variable char_seq_lengths: (batch_size*max_sent_len,1) Tensor char_seq_recover: (batch_size*max_sent_len,1) recover char sequence order label_seq_tensor: (batch_size, ) mask: (batch_size, max_sent_len) """ device = torch.device('cuda' if gpu and torch.cuda.is_available() else 'cpu') batch_size = len(input_batch_list) words = [sent[0] for sent in input_batch_list] features = [np.asarray(sent[1]) for sent in input_batch_list] feature_num = len(features[0]) chars = [sent[2] for sent in input_batch_list] labels = [sent[3] for sent in input_batch_list] word_seq_lengths = torch.LongTensor(list(map(len, words))) max_seq_len = word_seq_lengths.max().item() word_seq_tensor = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).long() label_seq_tensor = torch.zeros((batch_size, ), requires_grad = if_train).long() feature_seq_tensors = [] for idx in range(feature_num): feature_seq_tensors.append(torch.zeros((batch_size, max_seq_len),requires_grad = if_train).long()) mask = torch.zeros((batch_size, max_seq_len), requires_grad = if_train).byte() label_seq_tensor = torch.LongTensor(labels) # exit(0) for idx, (seq, seqlen) in enumerate(zip(words, word_seq_lengths)): seqlen = seqlen.item() word_seq_tensor[idx, :seqlen] = torch.LongTensor(seq) mask[idx, :seqlen] = torch.Tensor([1]*seqlen) for idy in range(feature_num): feature_seq_tensors[idy][idx,:seqlen] = torch.LongTensor(features[idx][:,idy]) word_seq_lengths, word_perm_idx = word_seq_lengths.sort(0, descending=True) word_seq_lengths = word_seq_lengths.to(device) word_seq_tensor = word_seq_tensor[word_perm_idx].to(device) for idx in range(feature_num): feature_seq_tensors[idx] = feature_seq_tensors[idx][word_perm_idx].to(device) label_seq_tensor = label_seq_tensor[word_perm_idx].to(device) mask = mask[word_perm_idx].to(device) ### deal with char # pad_chars (batch_size, max_seq_len) pad_chars = [chars[idx] + [[0]] * (max_seq_len-len(chars[idx])) for idx in range(len(chars))] length_list = [list(map(len, pad_char)) for pad_char in pad_chars] max_word_len = max(map(max, length_list)) char_seq_tensor = torch.zeros((batch_size, max_seq_len, max_word_len), requires_grad = if_train).long() char_seq_lengths = torch.LongTensor(length_list) for idx, (seq, seqlen) in enumerate(zip(pad_chars, char_seq_lengths)): for idy, (word, wordlen) in enumerate(zip(seq, seqlen)): # print len(word), wordlen char_seq_tensor[idx, idy, :wordlen] = torch.LongTensor(word) char_seq_tensor = char_seq_tensor[word_perm_idx].view(batch_size*max_seq_len,-1) char_seq_lengths = char_seq_lengths[word_perm_idx].view(batch_size*max_seq_len,) char_seq_lengths, char_perm_idx = char_seq_lengths.sort(0, descending=True) char_seq_tensor = char_seq_tensor[char_perm_idx].to(device) char_seq_tensor = char_seq_tensor.to(device) _, char_seq_recover = char_perm_idx.sort(0, descending=False) char_seq_recover = char_seq_recover.to(device) _, word_seq_recover = word_perm_idx.sort(0, descending=False) word_seq_recover = word_seq_recover.to(device) return word_seq_tensor, feature_seq_tensors, word_seq_lengths, word_seq_recover, char_seq_tensor, char_seq_lengths, char_seq_recover, label_seq_tensor, mask def train(data): print("Training model...") device = torch.device('cuda' if torch.cuda.is_available() and data.HP_gpu else 'cpu') data.show_data_summary() save_data_name = data.model_dir +".dset" data.save(save_data_name) if data.sentence_classification: model = SentClassifier(data).to(device) else: model = SeqLabel(data).to(device) for name, param in model.named_parameters(): if param.requires_grad: print(name) ## compute model parameter num n_all_param = sum([p.nelement() for p in model.parameters()]) n_emb_param = sum([p.nelement() for p in (model.word_hidden.wordrep.word_embedding.weight, model.word_hidden.wordrep.char_feature.char_embeddings.weight, model._LM_softmax.softmax_w, model._LM_softmax.softmax_b)]) print("all parameters=%s, emb parameters=%s, other parameters=%s" % (n_all_param, n_emb_param, n_all_param-n_emb_param)) ## not update the word embedding #model.word_hidden.wordrep.word_embedding.weight.requires_grad = False if data.optimizer.lower() == "sgd": optimizer = optim.SGD(model.parameters(), lr=data.HP_lr, momentum=data.HP_momentum,weight_decay=data.HP_l2) elif data.optimizer.lower() == "adagrad": optimizer = optim.Adagrad(model.parameters(), lr=data.HP_lr, weight_decay=data.HP_l2) elif data.optimizer.lower() == "adadelta": optimizer = optim.Adadelta(model.parameters(), lr=data.HP_lr, weight_decay=data.HP_l2) elif data.optimizer.lower() == "rmsprop": optimizer = optim.RMSprop(model.parameters(), lr=data.HP_lr, weight_decay=data.HP_l2) elif data.optimizer.lower() == "adam": optimizer = optim.Adam(model.parameters(), lr=data.HP_lr, weight_decay=data.HP_l2) else: print("Optimizer illegal: %s"%(data.optimizer)) exit(1) best_dev = -10 test_f = [] dev_f = [] best_epoch = 0 # data.HP_iteration = 1 ## start training for idx in range(data.HP_iteration): epoch_start = time.time() temp_start = epoch_start print("Epoch: %s/%s" %(idx,data.HP_iteration)) if data.optimizer == "SGD": optimizer = lr_decay(optimizer, idx, data.HP_lr_decay, data.HP_lr) instance_count = 0 sample_id = 0 sample_loss = 0 total_loss = 0 total_perplexity = 0 right_entity = 0 right_atten_probs = 0 right_token = 0 whole_token = 0 random.shuffle(data.train_Ids) random.shuffle(data.raw_data_Ids) print("Shuffle: first input word list:", data.train_Ids[0][0]) ## set model in train model model.train() model.zero_grad() batch_size = data.HP_batch_size batch_id = 0 train_num = len(data.train_Ids) raw_data_num = len(data.raw_data_Ids) total_batch = train_num//batch_size+1 raw_batch_size = raw_data_num//total_batch for batch_id in range(total_batch): start = batch_id*batch_size end = (batch_id+1)*batch_size if end > train_num: end = train_num instance = data.train_Ids[start:end] start_raw = batch_id * raw_batch_size end_raw = (batch_id+1) * raw_batch_size if end_raw > raw_data_num: end_raw = raw_data_num instance_raw = data.raw_data_Ids[start_raw:end_raw] if not instance: continue instance_count += 1 instances = [instance, instance_raw] loss_ = 0.0 for mode_idx, mode in enumerate(['train', 'raw']): if len(instance[mode_idx]) < 1: continue # print(instance[1]) original_words_batch, batch_word, batch_features, batch_wordlen, batch_wordrecover, batch_char, batch_charlen, batch_charrecover, batch_label, batch_entity, lm_seq_tensor, mask = batchify_with_label(instances[mode_idx], data.HP_gpu, True, data.sentence_classification) if mode == 'train': loss, tag_seq, entity_seq, atten_probs_seq = model.calculate_loss(original_words_batch, batch_word, batch_features, batch_wordlen, batch_char, batch_charlen, batch_charrecover, batch_label, batch_entity, mask) right, whole = predict_check(tag_seq, batch_label, mask, data.sentence_classification) entity_right, entity_whole = predict_check(entity_seq, batch_entity, mask, data.sentence_classification) atten_probs_right, atten_probs_whole = predict_check(atten_probs_seq, batch_entity, mask, data.sentence_classification) right_token += right whole_token += whole right_entity += entity_right right_atten_probs += atten_probs_right elif mode == 'raw': loss, perplexity, _,_ = model.raw_loss(original_words_batch, batch_word, batch_features, batch_wordlen, batch_char, batch_charlen, batch_charrecover, batch_label, batch_entity, lm_seq_tensor, mask) total_perplexity += perplexity.item() loss_ += loss sample_loss += loss_.item() total_loss += loss_.item() loss_.backward() optimizer.step() model.zero_grad() LM_perplex = math.exp(total_perplexity / total_batch) temp_time = time.time() temp_cost = temp_time - temp_start print(" Instance: %s; Time: %.2fs; loss: %.4f; acc: %s/%s=%.4f"%(end, temp_cost, sample_loss, right_token, whole_token, (right_token+0.)/whole_token)) print(" total perplexity: %.4f" % (LM_perplex)) print(" entity acc: %.4f"%((right_entity+0.)/whole_token)) print(" atten probs acc: %.4f" % ((right_atten_probs + 0.) / whole_token)) epoch_finish = time.time() epoch_cost = epoch_finish - epoch_start print("Epoch: %s training finished. Time: %.2fs, speed: %.2fst/s, total loss: %s"%(idx, epoch_cost, train_num/epoch_cost, total_loss)) print("totalloss:", total_loss) if total_loss > 1e8 or str(total_loss) == "nan": print("ERROR: LOSS EXPLOSION (>1e8) ! PLEASE SET PROPER PARAMETERS AND STRUCTURE! EXIT....") exit(1) # continue speed, acc, p, r, f, _,_ = evaluate(data, model, "dev") dev_finish = time.time() dev_cost = dev_finish - epoch_finish if data.seg: current_score = f print("Dev: time: %.2fs, speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"%(dev_cost, speed, acc, p, r, f)) else: current_score = acc print("Dev: time: %.2fs speed: %.2fst/s; acc: %.4f"%(dev_cost, speed, acc)) dev_f.append(current_score) if current_score > best_dev: best_epoch = idx if data.seg: print("Exceed previous best f score:", best_dev) else: print("Exceed previous best acc score:", best_dev) model_name = data.model_dir + ".model" print("Save current best model in file:", model_name) torch.save(model.state_dict(), model_name) best_dev = current_score # ## decode test speed, acc, p, r, f, _,_ = evaluate(data, model, "test") test_finish = time.time() test_cost = test_finish - dev_finish if data.seg: test_f.append(f) print("Test: time: %.2fs, speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"%(test_cost, speed, acc, p, r, f)) else: test_f.append(acc) print("Test: time: %.2fs, speed: %.2fst/s; acc: %.4f"%(test_cost, speed, acc)) gc.collect() print("The best f in eopch%s, dev:%.4f, test:%.4f" % (best_epoch, dev_f[best_epoch], test_f[best_epoch])) def load_model_decode(data, name): print("Load Model from file: ", data.model_dir) device = torch.device('cuda' if torch.cuda.is_available() and data.HP_gpu else 'cpu') if data.sentence_classification: model = SentClassifier(data).to(device) else: model = SeqLabel(data).to(device) # model = SeqModel(data) ## load model need consider if the model trained in GPU and load in CPU, or vice versa # if not gpu: # model.load_state_dict(torch.load(model_dir)) # # model.load_state_dict(torch.load(model_dir), map_location=lambda storage, loc: storage) # # model = torch.load(model_dir, map_location=lambda storage, loc: storage) # else: # model.load_state_dict(torch.load(model_dir)) # # model = torch.load(model_dir) model.load_state_dict(torch.load(data.load_model_dir)) ## compute model parameter num n_all_param = sum([p.nelement() for p in model.parameters()]) n_emb_param = sum([p.nelement() for p in (model.word_hidden.wordrep.word_embedding.weight, model.word_hidden.wordrep.char_feature.char_embeddings.weight, model._LM_softmax.softmax_w, model._LM_softmax.softmax_b)]) print("all parameters=%s, emb parameters=%s, other parameters=%s" % (n_all_param, n_emb_param, n_all_param-n_emb_param)) print("Decode %s data, nbest: %s ..."%(name, data.nbest)) start_time = time.time() speed, acc, p, r, f, pred_results, pred_scores = evaluate(data, model, name, data.nbest) end_time = time.time() time_cost = end_time - start_time if data.seg: print("%s: time:%.2fs, speed:%.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"%(name, time_cost, speed, acc, p, r, f)) else: print("%s: time:%.2fs, speed:%.2fst/s; acc: %.4f"%(name, time_cost, speed, acc)) return pred_results, pred_scores if __name__ == '__main__': parser = argparse.ArgumentParser(description='Tuning with NCRF++') # parser.add_argument('--status', choices=['train', 'decode'], help='update algorithm', default='train') parser.add_argument('--config', help='Configuration File', default='None') parser.add_argument('--wordemb', help='Embedding for words', default='None') parser.add_argument('--charemb', help='Embedding for chars', default='None') parser.add_argument('--status', choices=['train', 'decode'], help='update algorithm', default='train') parser.add_argument('--savemodel', default="data/model/saved_model.lstmcrf.") parser.add_argument('--savedset', help='Dir of saved data setting') parser.add_argument('--train', default="data/conll03/train.bmes") parser.add_argument('--dev', default="data/conll03/dev.bmes" ) parser.add_argument('--test', default="data/conll03/test.bmes") parser.add_argument('--seg', default="True") parser.add_argument('--raw') parser.add_argument('--loadmodel') parser.add_argument('--output') args = parser.parse_args() data = Data() if args.config == 'None': data.train_dir = args.train data.dev_dir = args.dev data.test_dir = args.test data.model_dir = args.savemodel data.dset_dir = args.savedset print("Save dset directory:",data.dset_dir) save_model_dir = args.savemodel data.word_emb_dir = args.wordemb data.char_emb_dir = args.charemb if args.seg.lower() == 'true': data.seg = True else: data.seg = False print("Seed num:",seed_num) else: data.read_config(args.config) # data.show_data_summary() status = data.status.lower() print("Seed num:",seed_num) if status == 'train': print("MODEL: train") data_initialization(data) data.generate_instance('train') data.generate_instance('dev') data.generate_instance('test') data.build_pretrain_emb() train(data) elif status == 'decode': print("MODEL: decode") data.load(data.dset_dir) data.read_config(args.config) print(data.raw_dir) # exit(0) data.show_data_summary() data.generate_instance('raw') print("nbest: %s"%(data.nbest)) decode_results, pred_scores = load_model_decode(data, 'raw') if data.nbest and not data.sentence_classification: data.write_nbest_decoded_results(decode_results, pred_scores, 'raw') else: data.write_decoded_results(decode_results, 'raw') else: print("Invalid argument! Please use valid arguments! (train/test/decode)")
[ "noreply@github.com" ]
zuiwufenghua.noreply@github.com
aba125b8f91634b95df90b074b7664738b3c06a0
7f74e34fedf47766fdb280404eed5336b03c1461
/MII/Sede/forms.py
25cc0808ceaa6031fca8e2d8956257d290b79a8c
[]
no_license
ExiledGod/Universidad
bcbdd6a11b6cbb134064792701380419ac290ca0
bb6cc13b83630b63b0ac594b3bee436a0a21eabe
refs/heads/master
2022-12-14T16:15:25.261425
2020-08-27T05:28:23
2020-08-27T05:28:23
290,684,166
0
0
null
null
null
null
UTF-8
Python
false
false
722
py
from Sede.models import Sede, DireccionSede from django import forms class Sede_form(forms.ModelForm): model = Sede fields = [ 'nombre', ] labels = { 'nombre': 'Nombre: ', } class DireccionForm(forms.ModelForm): class Meta: model = DireccionSede fields = [ 'region', 'provincia', 'comuna', 'direccion', ] labels = { 'region': 'Región', 'provincia': 'Provincia', 'comuna': 'Comuna', 'direccion': 'Dirección', } widgets = { 'region': forms.Select(attrs={'class':'form-control'}), 'provincia': forms.Select(attrs={'class':'form-control'}), 'comuna': forms.Select(attrs={'class':'form-control'}), 'direccion': forms.TextInput(attrs={'class':'form-control'}), }
[ "66937061+ExiledGod@users.noreply.github.com" ]
66937061+ExiledGod@users.noreply.github.com
2d11d716b8d9b87ddcac994061c1cbae63557549
b2599eaa38eb035555b1aebab1cb188fa4e01cbe
/whileloop.py
37e3b220880f685cb4263dcc38659e66243c34a4
[]
no_license
surut555/basicpython
c1f14c136480f4cda92eae1eeecdf407f974b6fb
7ae86bfb488c91243a802760646d1f3f0441435f
refs/heads/main
2023-01-04T02:42:20.987473
2020-11-01T02:33:46
2020-11-01T02:33:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
i = 1 while i <= 10: if i == 10: print(i) else: print(i, end=',') i = i+1 a = 1 while True: # infinity loop print(a) a = a+1
[ "63528254+surut555@users.noreply.github.com" ]
63528254+surut555@users.noreply.github.com
94ef4b15b8b61bb1acb9913ad5c3069aaed77362
e1b6cce87a76d967817cb979a9de8713abe66764
/forwards/pc_0.py
6a538d8b6afa2c7462bbdaed91bf2d20f0207c06
[]
no_license
MaxAndrewNZ/AutonomousNavigation
816c773461f96446c02df23c2dbaacfa2448a35c
b70474c4f1f315c4609482fa3156430c64be7003
refs/heads/main
2023-02-02T05:26:52.874174
2020-12-07T22:46:03
2020-12-07T22:46:03
317,351,128
0
0
null
null
null
null
UTF-8
Python
false
false
6,668
py
import sys sys.path.insert(1, '../side_camera_test/') import time,zmq,pickle import numpy as np import pyrealsense2 as rs import open3d as o3d import vehicle as veh import pointcloud as pc import visualise_pointclouds as visualise import display_information as display import cv2 import math import random import os def fit_line_to_points(points): X = points[:,0] Y = points[:,1] xbar = sum(X)/len(X) ybar = sum(Y)/len(Y) n = len(X) # or len(Y) numer = sum([xi*yi for xi,yi in zip(X, Y)]) - n * xbar * ybar denum = sum([xi**2 for xi in X]) - n * xbar**2 b = numer / denum a = ybar - b * xbar print('best fit line:\ny = {:.2f} + {:.2f}x'.format(a, b)) return a, b def get_test_pointcloud(moving, shift_x, shift_y, delay=0.3): # Use saved pointcloud file filename = "1.ply" pcd = o3d.io.read_point_cloud(filename) npCloud = np.asarray(pcd.points) # Flips points to align with those from the landrov offset = np.array([-1.8 + shift_x, 0, -0.5 - shift_y]) pcd = pc.npToPcd(npCloud * np.array([1, -1, -1]) + offset) # Simulate delays in recieving pointcloud time.sleep(delay) if moving: shift_x += 0.05 * random.randint(0, 3) shift_y += 0.05 * random.randint(0, 3) return pcd, shift_x, shift_y def flatten_cloud(cloud): np_cloud = np.asarray(cloud.pcd.points) removed_y = np.delete(np_cloud, 1, axis=1) removed_dups = np.unique(removed_y, axis=0) return removed_dups def main(): """ This method is the heart of the Landrov navigation. It handles controling the multi-step navigation. The navigation settings can be configured within this. """ ############ Configuration ################## testing = True plotting_error = True moving = True target_distance = 1.0 # Meters speed = 0 # 0 - 1 # Proportional and derivative constants linear_p_const = 0 angular_p_const = 1 # Data lists linear_errors = [] angular_errors = [] linear_velocities = [] angular_velocities = [] # Region of interest minX = -2.5 maxX = 0 minY = -1.5 maxY = -0.25 minZ = 0.01 maxZ = 2.0 region_min = [minX, minY, minZ] region_max = [maxX, maxY, maxZ] vehicle = veh.Vehicle("tcp://192.168.8.106", "5556", "5557") if testing == False: vehicle.connect_control() print('Connected to vehicle server') found_cloud = False updated_cloud = False time_start = time.time() shift_x = 0.1 shift_y = 0.1 try: while 1: time_start = time.time() if (testing): pcd, shift_x, shift_y = get_test_pointcloud(moving, shift_x, shift_y) time_start = time.time() found_cloud = True if not found_cloud: vehicle.connect_pointcloud() while not found_cloud: if len(zmq.select([vehicle.sensor_socket],[],[],0)[0]): topic,buf = vehicle.sensor_socket.recv_multipart() if topic == b'pointcloud': np_pcd = np.fromstring(buf, dtype=np.float32) num_points = np_pcd.size // 3 reshaped_pcd = np.resize(np_pcd, (num_points, 3)) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(reshaped_pcd) print("Time get cloud", round(time.time() - time_start, 2)) time_start = time.time() found_cloud = True vehicle.sensor_socket.close() else: downpcd = pcd.voxel_down_sample(voxel_size=0.1) cloud = pc.PointCloud(downpcd, [0, 0, 0], region_min, region_max) cloud.pcd, ind = cloud.pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) updated_cloud = True if len(cloud.pcd.points) == 0: break flat_cloud = flatten_cloud(cloud) # Print status print("*" * 64) template = "Points in cloud {}" print(template.format(len(cloud.pcd.points))) #TODO: Fit line to cloud. a, b = fit_line_to_points(flat_cloud) #TODO: Calculate angle error and distance error. angle = - (math.atan(b) + (math.pi / 2)) a_error = angle angular_p = angular_p_const * a_error distance = abs(a / (math.sqrt((b ** 2 + 1)))) d_error = distance - target_distance current_time = time.time() if len(linear_errors) == 0: linear_errors.append((current_time - 1, 0)) linear_p = linear_p_const * d_error linear_errors.append((current_time, d_error)) # Wall angle error angular_errors.append((current_time, a_error)) #TODO: Make a navigation adjustment from this information. angular_velocity = max(min(angular_p + linear_p, 2), -2) linear_velocity = speed print("Target Distance:", target_distance, "Distance:", round(distance, 2), "D error:", round(d_error, 2)) print("Angle Degrees:", round(math.degrees(angle), 2), "Angle Rad:", round(angle, 2), "A error:", round(a_error, 2)) print("Linear velocity:", round(linear_velocity, 2), "Angular velocity:", round(angular_velocity, 2)) linear_velocities.append((current_time, linear_velocity)) angular_velocities.append((current_time, angular_velocity)) # Plot this information if plotting_error: display.display_line_follow(flat_cloud, a, b, region_min, region_max, linear_errors, angular_errors, linear_velocities, angular_velocities) if updated_cloud: print("Time processing", round(time.time() - time_start, 2)) if updated_cloud and not testing: if moving: vehicle.velocity_to_motor_command(linear_velocity, angular_velocity) found_cloud = False updated_cloud = False except KeyboardInterrupt: print("Force Close") if not testing: vehicle.stop() display.display_errors(linear_errors, angular_errors) main()
[ "mla138@uclive.ac.nz" ]
mla138@uclive.ac.nz
9484689e364e1a12491127ddc0afa4929c215d8d
9f541271263dceb0b7b0134ab6cff5ed324c6444
/json/conf.py
cb6e2722d1f1194238a9bb9841615fcfe3adf803
[]
no_license
shannondec/bonaventureli.github.io
bd0fa5286ab4077b690f2621425ddd78f16e72dc
ab442ff704dc539b5c9da1d7cacb826256392c17
refs/heads/main
2023-06-04T10:34:40.224571
2021-06-29T08:38:53
2021-06-29T08:38:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,837
py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'JSON' copyright = '2021, bona' author = 'bona' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
[ "lfwendula@msn.cn" ]
lfwendula@msn.cn
60cda957b628771dede0236cb5bbb72670ae6f12
e95d6f6842e7d32a2933676e12d73cbe8cf9d7d4
/JSON_BOOK_Programs/1_Theano_example.py
505d5f01450e75013c437208ed149f090545f781
[]
no_license
MehreenTariq12/mehru
87acda07c564f37107aa8a3e2da247216c734d35
af5da763197696394dfe751d2c54e3caab7d3f62
refs/heads/master
2022-06-24T03:59:54.542892
2020-05-10T06:03:05
2020-05-10T06:03:05
256,930,770
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
import theano from theano import tensor a = tensor.dscalar() b = tensor.dscalar() c = a + b f = theano.function([a, b], c) result = f(1, 2) print(result)
[ "noreply@github.com" ]
MehreenTariq12.noreply@github.com
c137360796290d8e49d6e99af906017dcf7bd04d
8908ac4efbb943e05cda86d84b11264f4e31a59e
/addons/to_paypal_unsupported_currencies/models/account_payment.py
a39199982bd52ca42d5d1361dcf480db69ee07a3
[ "Unlicense" ]
permissive
kit9/vocal_v12
c38c17921a647c16a839110d3452dddcaf3f0036
480990e919c9410903e06e7813ee92800bd6a569
refs/heads/master
2023-02-01T15:55:13.461862
2020-12-15T12:06:06
2020-12-15T12:06:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
from odoo import models, fields class AccountPayment(models.Model): _inherit = 'account.payment' paypal_original_unsupported_currency_id = fields.Many2one('res.currency', string='Paypal Original Unsupported Currency', help="A technical field to store the original Paypal unsupported currency" " in case of payment with Paypal using a currency that is not supported by Paypal.") paypal_original_unsupported_currency_amount = fields.Monetary(string='Paypal Original Unsupported Currency Amount', currency_field='paypal_original_unsupported_currency_id', help="A technical field to store the original Paypal unsupported currency amount" " in case of payment with Paypal using a currency that is not supported by Paypal.")
[ "vijay+admin@wearme.me" ]
vijay+admin@wearme.me
e5349826b1bf5d97988e22e049ad10187fab4a4b
677869880e88f669a436c78cd77dc3eee2a66569
/pythonkatas/primefactors/main.py
6ec728df598d050073646ad580f72a03c1689277
[]
no_license
ErinLMoore/CodeKatas
36c6b5a860ee374497f1509b49adab4713e34de1
a6e77e0ecdc3c54e84901eabeff9270c65a96e1b
refs/heads/master
2020-04-06T07:02:12.463774
2016-09-29T02:23:26
2016-09-29T02:23:26
53,079,444
0
1
null
2016-07-06T15:56:13
2016-03-03T20:05:00
HTML
UTF-8
Python
false
false
196
py
import sys sys.path.append('~/workspace/CodeKatas/pythonkatas/src') from src.primefactors import primeFactors class main(): int_to_factor = int(sys.argv[1]) print (primeFactors(int_to_factor))
[ "emoore@pillartechnology.com" ]
emoore@pillartechnology.com
91a53658d1e9736bda6759fad4317665e4ce9a63
796654a4e4961a764b2d7e036971da049a3b3cae
/project_2/bayes.py
f92b6ac248af1dce8b40d01e11b6b5a9c33f129f
[]
no_license
nattip/CIS678
9cfe6ab6fbec855456140e98234b2ed358c20403
aceffe9144577727e10feb40a7e8ae9e2948e4a5
refs/heads/master
2022-07-09T11:12:45.863383
2020-04-02T15:15:25
2020-04-02T15:15:25
231,259,734
0
1
null
2022-06-22T01:15:18
2020-01-01T20:20:40
Python
UTF-8
Python
false
false
11,604
py
# Written by Natalie Tipton # February 2, 20202 # CIS 678 - Machine Learning # Dr. Greg Wolffe # Spam/Ham Classification of text messages using # the Naive Bayes algorithm from collections import Counter import string import math import heapq import matplotlib.pyplot as plt import numpy as np ################################################# # Function to clean incoming data: # Turn all letters lower case # Remove all punctuation # Remove all numeric-only strings def clean_words(all_words): cleaned_words = [] for word in all_words: word = word.lower() for character in word: if character in string.punctuation: word = word.replace(character, "") if not word.isnumeric() and word != "": cleaned_words.append(word) return cleaned_words ################################################# if __name__ == "__main__": # Raw text sorting ham_raw = [] spam_raw = [] # Unique words for ham or spam all_words = [] vocab = set() # Probabilities of words in each class prob_ham = {} prob_spam = {} prob_diff = {} # initial counts for number of ham/spam messages ham_count = 0 spam_count = 0 # read in file one line at a time with open("./train.data") as f: lines = f.readlines() # Read all of the lines and append them to their classification for line in lines: if line.startswith("ham"): # Get the whole string ham_count += 1 raw_text = "".join(line.split("ham"))[1:].rstrip() # split string by spaces and append each word appropriately for val in raw_text.split(" "): all_words.append(val) ham_raw.append(val) if line.startswith("spam"): spam_count += 1 raw_text = "".join(line.split("spam"))[1:].rstrip() for val in raw_text.split(" "): all_words.append(val) spam_raw.append(val) # clean words in all classifications cleaned_words = clean_words(all_words) cleaned_ham_words = clean_words(ham_raw) cleaned_spam_words = clean_words(spam_raw) # count up occurrences of each word in all places cleaned_words_counts = Counter(cleaned_words) cleaned_ham_word_counts = Counter(cleaned_ham_words) cleaned_spam_word_counts = Counter(cleaned_spam_words) # create vocabulary with no repeating words vocab = set(cleaned_words) # remove 5 most common words in all messages vocab.remove("to") vocab.remove("i") vocab.remove("you") vocab.remove("a") vocab.remove("the") # find sizes of all different sets of words vocab_size = len(vocab) spam_size = len(cleaned_spam_words) ham_size = len(cleaned_ham_words) # make dictionaries of spam and ham words with the probability # that each word will occur in either classification for word in vocab: prob_spam[word] = (cleaned_spam_word_counts[word] + 1) / ( spam_size + vocab_size ) prob_ham[word] = (cleaned_ham_word_counts[word] + 1) / ( ham_size + vocab_size ) # find the difference between spam and ham probabilities # for future analysis of most obvious classifications prob_diff[word] = prob_ham[word] - prob_spam[word] # Use this to find words that are common in everything # and maybe not count those for bayes # print(cleaned_words_counts.most_common(5)) # calculate overall percentage of spam and ham messages in training prob_of_ham_message = ham_count / (ham_count + spam_count) prob_of_spam_message = spam_count / (ham_count + spam_count) # lists of true and hypothesized classifications true_class = [] hyp_class = [] # open test data line by line with open("./test.data") as f: lines = f.readlines() # set counters for true and hypothesized classes to 0 test_ham_count = 0 test_spam_count = 0 hyp_ham_count = 0 hyp_spam_count = 0 # go through lines 1 at a time for line in lines: # reset the big product for naive bayes calculation back to 0 big_product_ham = 0 big_product_spam = 0 # pull the true classification off the message into a list true_class.append(line.split()[0]) # count up the true occurrences for percentage calculations if line.split()[0] == "ham": test_ham_count += 1 if line.split()[0] == "spam": test_spam_count += 1 # leave only the message w/o the classification remaining message = line.split()[1:] # for each word in the message for word in message: # do not count if word is not in vocabulary if word not in vocab: continue # naive bayes formula using log rules big_product_ham += math.log10(prob_ham[word]) big_product_spam += math.log10(prob_spam[word]) cnb_ham = math.log10(prob_of_ham_message) + big_product_ham cnb_spam = math.log10(prob_of_spam_message) + big_product_spam # classify message if cnb_ham > cnb_spam: hyp_class.append("ham") hyp_ham_count += 1 elif cnb_ham < cnb_spam: hyp_class.append("spam") hyp_spam_count += 1 else: hyp_class.append("ham") hyp_ham_count += 1 true_pos = 0 true_neg = 0 false_pos = 0 false_neg = 0 # count up true and false pos and negs for i in range(0, len(true_class)): if true_class[i] == "spam" and hyp_class[i] == "spam": true_pos += 1 elif true_class[i] == "ham" and hyp_class[i] == "ham": true_neg += 1 elif true_class[i] == "spam" and hyp_class[i] == "ham": false_neg += 1 elif true_class[i] == "ham" and hyp_class[i] == "spam": false_pos += 1 # calculate metrics for model correct = ( 100 * (true_pos + true_neg) / (true_pos + true_neg + false_pos + false_neg) ) recall = 100 * (true_pos / (true_pos + false_neg)) tnr = 100 * (true_neg / (true_neg + false_pos)) precision = 100 * (true_pos / (true_pos + false_pos)) ################################################# # Output # Printed metrics # Pie Charts # Bar Charts print("\ntrue positives =", true_pos) print("true negatives =", true_neg) print("false positives =", false_pos) print("false negatives =", false_neg) print("\nRecall =", recall) print("Precision =", precision) print("True Negative Rate =", tnr) print("correct classification =", correct, "\n") # determining what the most telling spam and ham words are # print(heapq.nlargest(5, prob_diff, key=prob_diff.get)) # print(heapq.nsmallest(5, prob_diff, key=prob_diff.get)) # create pie charts to show percentage of spam and ham # messages in training and testing and what the model # determined for the testing set labels = "Spam", "Ham" sizes = [prob_of_spam_message, prob_of_ham_message] explode = (0.1, 0) # only "explode" the 2nd slice (i.e. 'Hogs') fig1, ax1 = plt.subplots() ax1.pie( sizes, explode=explode, labels=labels, autopct="%1.1f%%", shadow=True, startangle=90, ) ax1.axis("equal") # Equal aspect ratio ensures that pie is drawn as a circle. plt.title("True Training Percentages") plt.show() labels = "Spam", "Ham" sizes = [ test_spam_count / (test_spam_count + test_ham_count), test_ham_count / (test_spam_count + test_ham_count), ] explode = (0.1, 0) # only "explode" the 2nd slice (i.e. 'Hogs') fig2, ax1 = plt.subplots() ax1.pie( sizes, explode=explode, labels=labels, autopct="%1.1f%%", shadow=True, startangle=90, ) ax1.axis("equal") # Equal aspect ratio ensures that pie is drawn as a circle. plt.title("True Testing Percentages") plt.show() labels = "Spam", "Ham" sizes = [ hyp_spam_count / (hyp_spam_count + hyp_ham_count), hyp_ham_count / (hyp_spam_count + hyp_ham_count), ] explode = (0.1, 0) # only "explode" the 2nd slice (i.e. 'Hogs') fig3, ax1 = plt.subplots() ax1.pie( sizes, explode=explode, labels=labels, autopct="%1.1f%%", shadow=True, startangle=90, ) ax1.axis("equal") # Equal aspect ratio ensures that pie is drawn as a circle. plt.title("Hypothesized Testing Percentages") plt.show() # create stacked bar charts to show the probability of spam or ham # for the most telling spam words and then the most telling ham words plt.figure(4) N = 5 # showing probability for the words determined to be most telling for spam top_spam_probs = ( prob_spam["call"], prob_spam["free"], prob_spam["txt"], prob_spam["claim"], prob_spam["your"], ) low_ham_probs = ( prob_ham["call"], prob_ham["free"], prob_ham["txt"], prob_ham["claim"], prob_ham["your"], ) ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence p1 = plt.bar(ind, low_ham_probs, width) p2 = plt.bar(ind, top_spam_probs, width, bottom=low_ham_probs) plt.ylabel("Probability of Word") plt.title("Probability of Spam or Ham\nFor Most Telling Spam Words") plt.xticks(ind, ("call", "free", "txt", "claim", "your")) plt.legend((p1[0], p2[0]), ("Ham", "Spam")) plt.show() plt.figure(5) N = 5 # showing probability for the words determined to be most telling for ham low_spam_probs = ( prob_spam["my"], prob_spam["me"], prob_spam["in"], prob_spam["it"], prob_spam["u"], ) top_ham_probs = ( prob_ham["my"], prob_ham["me"], prob_ham["in"], prob_ham["it"], prob_ham["u"], ) ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence p1 = plt.bar(ind, low_spam_probs, width) p2 = plt.bar(ind, top_ham_probs, width, bottom=low_spam_probs) plt.ylabel("Probability of Word") plt.title("Probability of Spam or Ham\nFor Most Telling Ham Words") plt.xticks(ind, ("my", "me", "in", "it", "u")) plt.legend((p1[0], p2[0]), ("Spam", "Ham")) plt.show()
[ "tiptonna@mail.gvsu.edu" ]
tiptonna@mail.gvsu.edu
26c93247ee4200baadf6355f694c14262a0ea35e
0d09e32620e2e82f243ba86e2cc7bec19e521b1b
/Exercises/01-Sequential-Structure/ex06.py
ac27e05e4d8dd83905a5665183e94f38cefa3c27
[]
no_license
hikarocarvalho/Python_Wiki
401f7466377f2053cda8bfa850afd0bd64cce047
01f755ecc18de13a9ded794ece9e7a8bd4ad7d9e
refs/heads/main
2023-06-14T08:37:10.728067
2021-07-12T20:24:41
2021-07-12T20:24:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
270
py
#the user gives the ray value #o usuário dá o valor do raio ray = float(input("Enter with the ray value: ")) #calculate the area of a circle #calcula a área do circulo area = ray**2 * 3.14 #Show the result #mostra o resultado print("The area of this circle is:",area)
[ "hikarofcarvalho@gmail.com" ]
hikarofcarvalho@gmail.com
a54d47e36ae5a6c355b6eeb86ee81846d8e817a5
206f9385bcb87bf59f5a577043c0abfed8ab0066
/Asynchronous_IO/event_loop_dif_thread.py
13ad2d93012b41d1f008674bf0294785baf6e367
[]
no_license
XiangSugar/Python
7bca1ea5a90d880f1ed4f0b3dd4fc3310caf7fdc
2356dc3342dbc9c474cf0d9f25b1dc7930bc8814
refs/heads/master
2021-04-12T01:51:26.751494
2018-09-04T01:25:48
2018-09-04T01:25:48
125,846,325
0
0
null
null
null
null
UTF-8
Python
false
false
890
py
# coding = utf-8 from threading import Thread, currentThread import asyncio import time now = lambda: time.time() def start_loop(loop): asyncio.set_event_loop(loop) loop.run_forever() def more_work(x): print('%s' % currentThread()) print('More work {}'.format(x)) time.sleep(x) print('Finished more work {}'.format(x)) start = now() new_loop = asyncio.new_event_loop() t = Thread(target=start_loop, args=(new_loop,)) t.start() print('TIME: {}'.format(time.time() - start)) print('%s' % currentThread()) new_loop.call_soon_threadsafe(more_work, 6) new_loop.call_soon_threadsafe(more_work, 3) # ''' # 启动上述代码之后,当前线程不会被 block,新线程中会按照顺序执行 # call_soon_threadsafe 方法注册的 more_work 方法,后者因为 # time.sleep 操作是同步阻塞的,因此运行完毕 more_work 需要大致 6 + 3 # '''
[ "suxiang@hust.edu.cn" ]
suxiang@hust.edu.cn
9c39ba0a267b3fb8b32d1167382688f2d07176a5
5950e578d3c6239987bc189951334cc87ca1a966
/198. House Robber.py
fc45a3e04b49703b17b6b5bbbecf92e6bf7d5771
[]
no_license
a5135324/leetcode
0aa5ddc42569f9a619394197afcd1b29e856687e
c3eb9000154859669ed18054eca04c44023ef496
refs/heads/master
2021-02-14T14:40:52.336373
2020-12-27T09:03:59
2020-12-27T09:03:59
244,812,348
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
''' Detail: Runtime: 20 ms, faster than 98.54% of Python3 online submissions for House Robber. Memory Usage: 12.8 MB, less than 100.00% of Python3 online submissions for House Robber. Submit time: 2020/03/06 13:37(UTC+8) ''' class Solution: def rob(self, nums: List[int]) -> int: n = len(nums) dp = [0,0,0] ans = 0 for i in range(3,n+3): dp.append(max(dp[i-3]+nums[i-3], dp[i-2]+nums[i-3])) if dp[i] > ans: ans = dp[i] return ans
[ "a5135324@gmail.com" ]
a5135324@gmail.com
dcebdc63fede722d67b16b2fb6757f67c3e20076
59f03c7528c9c806e3e25b9864db89f25dfa73c2
/tests/conftest.py
340ea85a5b213e3a629d9ba903138e93c3473583
[ "MIT" ]
permissive
OneGov/onegov-cloud
8d8cd6d0378991ebc2333b62337246719102e723
c706b38d5b67692b4146cdf14ef24d971a32c6b8
refs/heads/master
2023-08-24T15:37:52.536958
2023-08-24T14:15:54
2023-08-24T14:15:54
189,431,418
17
4
MIT
2023-09-14T20:39:37
2019-05-30T14:47:14
Python
UTF-8
Python
false
false
34
py
pytest_plugins = ['tests.shared']
[ "denis.krienbuehl@seantis.ch" ]
denis.krienbuehl@seantis.ch
9918758e1b829eee564875e4744dd8f4094f8f34
bbefc4e1252b984625bc5b94b244d2e9838e4100
/neuralnetwork/neuralNetwork.py
e8bd07d938d8993b0597b093db7adf1cad62f94b
[]
no_license
ckethan0429/Machine-Learning
5a8add0a8c56695b1d874c9f4bc44236b39dcd2d
d6d1b5fb2ceda866e8334a0a6d2a8bf5df864a3c
refs/heads/master
2020-05-03T13:36:22.147819
2019-04-02T11:54:33
2019-04-02T11:54:33
178,656,912
0
0
null
null
null
null
UTF-8
Python
false
false
3,641
py
import numpy from scipy.special import expit import pandas as pd class neuralNetwork: #신경망 초기화하기 def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate, path = None): #입력, 은닉, 출력 계층의 노드 개수 설정 self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes #학습률 self.lr = learningrate #가중치 행렬 if(path != None) : self.load_weight(path) else: self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes)) #활성화 함수로 시그모이드 함수 설정 self.activation_function = lambda x: expit(x) pass def load_weight(self, path): self.wih = pd.read_csv(path + "_wih.csv", header=None) self.who = pd.read_csv(path + "_who.csv", header=None) def save_weight(self, path): pd.DataFrame(self.wih).to_csv(path+ "_wih.csv", index = False, header= None) pd.DataFrame(self.who).to_csv(path+ "_who.csv", index = False, header= None) #신경망 학습시키기 def train(self, inputs_list, targets_list): #입력 리스트를 2차원 행렬로 변환 inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T #은닉계층으로 들어오는 신호를 계산 hidden_inputs = numpy.dot(self.wih, inputs) #은닉계층에서 나가는 신호를 계산 hidden_outputs = self.activation_function(hidden_inputs) #최종 출력 계층으로 들어오는 신호를 계산 final_inputs = numpy.dot(self.who, hidden_outputs) #최종 출력 계층으로 나가는 신호를 계산 final_outputs = self.activation_function(final_inputs) #2단계 가중치 업데이트 #출력계층의 오차(실제값 - 계산값) output_errors = targets - final_outputs #은닉계층의 오차는 가중치 값의 비례로 재조정 hidden_errors = numpy.dot(self.who.T, output_errors) #은닉계층과 출력계층간의 가중치 업데이트 self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) #신경망에 질의하기 def query(self, inputs_list): #입력 리스트를 2차원 행렬로 변환 inputs = numpy.array(inputs_list, ndmin=2).T #은닉계층으로 들어오는 신호를 계산 hidden_inputs = numpy.dot(self.wih, inputs) #은닉계층에서 나가는 신호를 계산 hidden_outputs = self.activation_function(hidden_inputs) #최종 출력 계층으로 들어오는 신호를 계산 final_inputs = numpy.dot(self.who, hidden_outputs) #최종 출력 계층으로 나가는 신호를 계산 final_outputs = self.activation_function(final_inputs) return final_outputs if __name__ == "__main__": #입력, 은닉, 출력 노드의 수 input_nodes = 3 hidden_nodes = 3 output_nodes = 3 #학습률은 0.3으로 정의 learning_rate = 0.3 #신경망의 인스턴스를 생성 n = neuralNetwork(input_nodes, hidden_nodes,output_nodes, learning_rate) print("n.query = ", n.query([1.0, 0.5, -1.5]))
[ "oops0429@gmail.com" ]
oops0429@gmail.com
65e75880a88ed030115589f4646788aa413fd91e
7f7213fe407f252b2323025c9b9e381a73474b7d
/drag_sheet/sds/check_files.py
077feba9a15d97280ae0c711e7c9b67f9866a925
[]
no_license
ahy3nz/graphene_build
0ce62c2123b8c39248048d2cafbd0aafdd06ff9a
44590b8db799136929fc06e490151f450ad30029
refs/heads/master
2021-06-20T07:28:20.958807
2019-07-03T19:48:24
2019-07-03T19:48:24
135,504,561
0
1
null
2018-08-06T21:47:17
2018-05-30T22:40:17
Python
UTF-8
Python
false
false
572
py
import os import itertools as it curr_dir = os.getcwd() sds_folders = ['10sds', '20sds', '30sds', '40sds', '50sds', '60sds', '70sds', '80sds', '90sds', '100sds'] k_folders = ['k50'] angle_folders = ['0'] trials = ['a', 'b', 'c'] for combo in it.product(sds_folders, k_folders, angle_folders,trials): sim_dir = os.path.join(curr_dir, '{0}/{1}_{2}_{3}'.format(*combo)) if os.path.isdir(sim_dir): os.chdir(sim_dir) if not os.path.isfile('pull.gro'): print(sim_dir) else: print("{} doesn't exist".format(sim_dir))
[ "alexander.h.yang@vanderbilt.edu" ]
alexander.h.yang@vanderbilt.edu