blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
2ed205c312b02dc19f7009c9b2b26de639d25969
dede18db20fd47c3059bcbf74562e8773096821e
/advent/2019/3/advent1.py
9e9514de476c5fa21130d1855c5b72d8f43406eb
[]
no_license
conradoboeira/CP
a70232d916c04d81c93f84de70afb2f252cff4ad
675b098a1c62c7d9bcfa5d8d9a2d7e359b24eef2
refs/heads/master
2020-03-31T19:55:21.417786
2020-02-18T03:56:40
2020-02-18T03:56:40
152,518,258
1
0
null
null
null
null
UTF-8
Python
false
false
2,794
py
line1 = input().split(',') line2 = input().split(',') pts_marked = [] pt= (0,0) for com in line1: direction = com[0] dist = int(com[1:]) if(direction == 'R'): end_point = (pt[0]+ dist, pt[1]) if(direction == 'L'): end_point = (pt[0]- dist, pt[1]) if(direction == 'U'): end_point = (pt[0], pt[1] + dist) if(direction == 'D'): end_point = (pt[0], pt[1]- dist) if(direction == 'R'): for i in range (pt[0], end_point[0]+1): pts_marked.append((i, pt[1])) elif(direction == 'L'): for i in range (pt[0], end_point[0]-1, -1): pts_marked.append((i, pt[1])) elif(direction == 'U'): for i in range (pt[1], end_point[1]+1): pts_marked.append((pt[0], i)) else: for i in range (pt[1], end_point[1]-1, -1): pts_marked.append((pt[0], i)) pt = end_point print(pts_marked) closer_pt = -1 pt = (0,0) for com in line2: direction = com[0] dist = int(com[1:]) if(direction == 'R'): end_point = (pt[0]+ dist, pt[1]) if(direction == 'L'): end_point = (pt[0]- dist, pt[1]) if(direction == 'U'): end_point = (pt[0], pt[1] + dist) if(direction == 'D'): end_point = (pt[0], pt[1]- dist) if(direction == 'R'): for i in range (pt[0], end_point[0]+1): point = (i, pt[1]) if point in pts_marked: #print(point) dist = abs(point[0]) + abs(point[1]) if(closer_pt == -1 or dist < closer_pt): if(pt == (0,0)): continue closer_pt = dist elif(direction == 'L'): for i in range (pt[0], end_point[0]-1, -1): point = (i, pt[1]) if point in pts_marked: #print(point) dist = abs(point[0]) + abs(point[1]) if(closer_pt == -1 or dist < closer_pt): if(pt == (0,0)): continue closer_pt = dist elif(direction == 'U'): for i in range (pt[1], end_point[1]+1): point = (pt[0], 1) if point in pts_marked: #print(point) dist = abs(point[0]) + abs(point[1]) if(closer_pt == -1 or dist < closer_pt): if(pt == (0,0)): continue closer_pt = dist else: for i in range (pt[1], end_point[1]-1, -1): point = (pt[0], 1) if point in pts_marked: #print(point) dist = abs(point[0]) + abs(point[1]) if(closer_pt == -1 or dist < closer_pt): if(pt == (0,0)): continue closer_pt = dist print(end_point) pt = end_point print(closer_pt)
[ "conrado.boeira@acad.pucrs.br" ]
conrado.boeira@acad.pucrs.br
e0c7dd836f868d77b664a7a7d8b6cb4c6b8ce3e2
2d33afa6c666d839828473c65c9800df7ff40bec
/resume/urls.py
2544270ce66dba35c78124edce5ccb3c212356b5
[]
no_license
raphaelmulenda/cv_template
5ee1d10a462b3694556bd3ecb07591557df7151a
b9fc98d246f1efb50fd2cc404d3511b7214109b2
refs/heads/main
2023-08-25T02:39:43.169105
2021-10-19T12:15:28
2021-10-19T12:15:28
418,229,601
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
from django.urls import path from . import views urlpatterns = [ path("", views.HomePage.as_view(), name="home-page") ]
[ "mulendaraphael@yahoo.fr" ]
mulendaraphael@yahoo.fr
59411623046d6332476124e04690091dcaed47f4
25864296fe1d059bba11e999541828ea5eadc5b9
/DarkSUSY_mH_125/mGammaD_0275/cT_10000/DarkSUSY_LHE_read.py
67e6e5eb47bd296666d7acc0323970e5aa374aa6
[]
no_license
bmichlin/MuJetAnalysis_DarkSusySamples_LHE_13TeV_01
17965f8eddf65d24a7c3c8ab81f92c3fc21f4f58
1de8d11f1a2e86874cd92b9819adbad4a6780b81
refs/heads/master
2020-06-14T12:54:38.920627
2015-03-18T14:00:07
2015-03-18T14:00:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
111,093
py
import ROOT, array, os, re, math, random, string from math import * from operator import itemgetter def getStringBetween(name, first, second): begOf1 = name.find(first) endOf1 = len(first) + begOf1 begOf2 = name.find(second) desiredString = name[endOf1:begOf2] return desiredString muonID = 13 higgsID = 25 n1ID = 3000002 nDID = 3000001 nExit = 80002 #nExit = 1000 gammaDID = 3000022 hMass = "125" n1Mass = "10" nDMass = "1" filename = "DarkSUSY_mH_125_mGammaD_0275_13TeV_cT_10000_madgraph452_bridge224_events80k.lhe" filename = "DarkSUSY_mH_125_mGammaD_0275_13TeV_cT_10000_madgraph452_bridge224_events80k.lhe" f = open(filename, 'r') if len(filename) >= 77: mass_GammaD = getStringBetween(filename, "mGammaD_","_13TeV_cT") lifetime_GammaD = getStringBetween(filename, "_cT_","_madgraph452") energy = getStringBetween(filename, mass_GammaD + "_","TeV_") mass_Higgs = getStringBetween(filename, "_mH_","_mGammaD_") lifetime_GammaD_Legend = lifetime_GammaD[0:-2] + "." + lifetime_GammaD[len(lifetime_GammaD)-2:len(lifetime_GammaD)] mass_GammaD_Legend = mass_GammaD[0:-3] + "." + mass_GammaD[len(mass_GammaD)-3:len(lifetime_GammaD)+1] #mass_GammaD = filename[24:-49] #lifetime_GammaD = filename[38:-36] #energy = filename[29:-46] #mass_Higgs = filename[12:-62] #lifetime_GammaD_Legend = filename[38:-38] + "." + filename[39:-36] #mass_GammaD_Legend = filename [24:-52] + "." + filename[25:-49] if mass_GammaD_Legend[len(mass_GammaD_Legend)-1] == "0": mass_GammaD_Legend = mass_GammaD_Legend[:-1] if mass_GammaD_Legend[len(mass_GammaD_Legend)-1] == "0": mass_GammaD_Legend = mass_GammaD_Legend[:-1] if mass_GammaD_Legend[len(mass_GammaD_Legend)-1] == "0": mass_GammaD_Legend = mass_GammaD_Legend[:-1] if mass_GammaD_Legend[len(mass_GammaD_Legend)-1] == "." and len(mass_GammaD_Legend) <= 3: mass_GammaD_Legend = mass_GammaD_Legend + "0" switch = 0 if lifetime_GammaD_Legend[len(lifetime_GammaD_Legend)-1] == "0": lifetime_GammaD_Legend = lifetime_GammaD_Legend[:-1] switch = 1 if lifetime_GammaD_Legend[len(lifetime_GammaD_Legend)-1] == "0" and switch == 1: lifetime_GammaD_Legend = lifetime_GammaD_Legend[:-1] else: lifetime_GammaD = "000" lifetime_GammaD_Legend = "0.00" mass_GammaD = getStringBetween(filename, "mGammaD_","_13TeV") energy = getStringBetween(filename, mass_GammaD + "_","TeV") mass_Higgs = getStringBetween(filename, "_mH_","_mGammaD_") mass_GammaD_Legend = mass_GammaD[0:-3] + "." + mass_GammaD[len(mass_GammaD)-3:len(lifetime_GammaD)+1] #mass_GammaD = filename[24:-42] #energy = filename[29:-39] #mass_Higgs = filename[12:-55] #mass_GammaD_Legend = filename[24:-45] + "." + filename[25:-42] #lifetime_GammaD = "000" #lifetime_GammaD_Legend = "0.00" print mass_GammaD print lifetime_GammaD print lifetime_GammaD_Legend print mass_GammaD_Legend BAM = ROOT.TFile("ValidationPlots_mGammaD_" + mass_GammaD + "_" + energy + "_TeV_cT_" + lifetime_GammaD + ".root" , "RECREATE") execfile("tdrStyle.py") cnv = ROOT.TCanvas("cnv", "cnv") txtHeader = ROOT.TLegend(.17,.935,0.97,1.) txtHeader.SetFillColor(ROOT.kWhite) txtHeader.SetFillStyle(0) txtHeader.SetBorderSize(0) txtHeader.SetTextFont(42) txtHeader.SetTextSize(0.045) txtHeader.SetTextAlign(22) #txtHeader.SetHeader("CMS Simulation") txtHeader.SetHeader("CMS Simulation (LHE) " + energy + " TeV") #txtHeader.SetHeader("CMS Prelim. 2011 #sqrt{s} = 7 TeV L_{int} = 5.3 fb^{-1}") #txtHeader.SetHeader("CMS 2011 #sqrt{s} = 7 TeV L_{int} = 5.3 fb^{-1}") #txtHeader.SetHeader("CMS Prelim. 2012 #sqrt{s} = 8 TeV L_{int} = 20.65 fb^{-1}") #txtHeader.SetHeader("CMS 2012 #sqrt{s} = 8 TeV L_{int} = 20.65 fb^{-1}") txtHeader.Draw() #info = ROOT.TLegend(0.33,0.8222222,0.9577778,0.9122222) info = ROOT.TLegend(0.4566667,0.82,0.7822222,0.9066667) info.SetFillColor(ROOT.kWhite) info.SetFillStyle(0) info.SetBorderSize(0) info.SetTextFont(42) info.SetTextSize(0.02777778) info.SetMargin(0.13) info.SetHeader("#splitline{pp #rightarrow h #rightarrow 2n_{1} #rightarrow 2n_{D} + 2 #gamma_{D} #rightarrow 2n_{D} + 4#mu}{#splitline{m_{h} = " + mass_Higgs + " GeV, m_{n_{1}} = 10 GeV, m_{n_{D}} = 1 GeV}{m_{#gamma_{D}} = " + mass_GammaD_Legend + " GeV, c#tau_{#gamma_{D}} = " + lifetime_GammaD_Legend + " mm}}" ) #info.SetHeader("#splitline{pp #rightarrow h #rightarrow 2n_{1} #rightarrow 2n_{D} + 2 #gamma_{D} #rightarrow 2n_{D} + 4#mu}{#splitline{#gamma_{D} c#tau = "+lifetime_GammaD_Legend + "mm, Mass = " + mass_GammaD_Legend + "GeV}{M of h = " + hMass + "GeV, M of n_{1} = " + n1Mass + "GeV, M of n_{D} = " + nDMass + "GeV}}" ) txtHeader2 = ROOT.TLegend(0.01333333,0.9311111,0.8133333,0.9955556) txtHeader2.SetFillColor(ROOT.kWhite) txtHeader2.SetFillStyle(0) txtHeader2.SetBorderSize(0) txtHeader2.SetTextFont(42) txtHeader2.SetTextSize(0.045) txtHeader2.SetTextAlign(22) txtHeader2.SetHeader("CMS Simulation #sqrt{s} = " + energy + " TeV") ################################################################################ # pT of muons ################################################################################ Etmiss_dummy = ROOT.TH1F("Etmiss_dummy","Etmiss_dummy", 100, 0, 100) Etmiss_dummy.SetTitleOffset(1.5, "Y") Etmiss_dummy.SetTitleOffset(1.4, "X") Etmiss_dummy.SetTitleSize(0.04,"X") Etmiss_dummy.SetXTitle("MET = #sum_{n_{D}}#vec{p_{T}} [GeV]") Etmiss_dummy.SetYTitle("Fraction of events / 1 GeV") Etmiss_dummy.SetMaximum( 0.1 ) Etmiss = ROOT.TH1F("Etmiss","Etmiss", 100, 0, 100) Etmiss.SetLineColor(ROOT.kBlue) Etmiss.SetLineWidth(2) Etmiss.SetLineStyle(1) nBins = 125 binMin = 0.0 binMax = 125.0 yMax = 0.25 cTlow = 0 if float(lifetime_GammaD_Legend) != 0: cTlim = float(lifetime_GammaD_Legend)*5 binwidth = float(lifetime_GammaD_Legend) numBins = int(cTlim/binwidth) binwidthRound = round(binwidth,3) else: cTlim = 10 binwidth = 1 numBins = int(cTlim/binwidth) binwidthRound = "1" formula = "exp(-x/"+ lifetime_GammaD_Legend +")/("+ lifetime_GammaD_Legend + "*(1 - exp(-" + str(cTlim) + "/" + lifetime_GammaD_Legend + ")))" print formula h_gammaD_cT_dummy = ROOT.TH1F("h_gammaD_cT_dummy", "h_gammaD_cT_dummy", numBins, 0, cTlim) #h_gammaD_cT_dummy.SetYTitle("Fraction of events") h_gammaD_cT_dummy.SetTitleOffset(1.3, "Y") h_gammaD_cT_dummy.SetXTitle("c#tau of #gamma_{D} [mm]") h_gammaD_cT_dummy.SetYTitle("Normalized Fraction of Events / " + str(binwidthRound) + " mm") h_gammaD_cT_dummy.SetTitleSize(0.05,"Y") h_gammaD_cT_dummy.SetMaximum( 10 ) h_gammaD_cT = ROOT.TH1F("h_gammaD_cT", "h_gammaD_cT", numBins, 0, cTlim) h_gammaD_cT.SetLineColor(ROOT.kBlue) h_gammaD_cT.SetLineWidth(2) h_gammaD_cT.SetLineStyle(1) h_gammaD_cT_lab_dummy = ROOT.TH1F("h_gammaD_cT_lab_dummy", "h_gammaD_cT_lab_dummy", numBins, 0, cTlim) #h_gammaD_cT_lab_dummy.SetYTitle("Fraction of events") h_gammaD_cT_lab_dummy.SetTitleOffset(1.3, "Y") h_gammaD_cT_lab_dummy.SetXTitle("L of #gamma_{D} [mm]") h_gammaD_cT_lab_dummy.SetYTitle("Normalized Fraction of Events / " + str(binwidthRound) + " mm") h_gammaD_cT_lab_dummy.SetTitleSize(0.05,"Y") h_gammaD_cT_lab_dummy.SetMaximum( 10 ) h_gammaD_cT_lab = ROOT.TH1F("h_gammaD_cT_lab", "h_gammaD_cT_lab", numBins, 0, cTlim) h_gammaD_cT_lab.SetLineColor(ROOT.kBlue) h_gammaD_cT_lab.SetLineWidth(2) h_gammaD_cT_lab.SetLineStyle(1) h_gammaD_cT_XY_lab_dummy = ROOT.TH1F("h_gammaD_cT_XY_lab_dummy", "h_gammaD_cT_XY_lab_dummy", numBins, 0, cTlim) #h_gammaD_cT_XY_lab_dummy.SetYTitle("Fraction of events") h_gammaD_cT_XY_lab_dummy.SetTitleOffset(1.3, "Y") h_gammaD_cT_XY_lab_dummy.SetXTitle("L_{XY} of #gamma_{D} [mm]") h_gammaD_cT_XY_lab_dummy.SetYTitle("Normalized Fraction of Events / " + str(binwidthRound) + " mm") h_gammaD_cT_XY_lab_dummy.SetTitleSize(0.05,"Y") h_gammaD_cT_XY_lab_dummy.SetMaximum( 10 ) h_gammaD_cT_XY_lab = ROOT.TH1F("h_gammaD_cT_XY_lab", "h_gammaD_cT_XY_lab", numBins, 0, cTlim) h_gammaD_cT_XY_lab.SetLineColor(ROOT.kBlue) h_gammaD_cT_XY_lab.SetLineWidth(2) h_gammaD_cT_XY_lab.SetLineStyle(1) h_gammaD_cT_Z_lab_dummy = ROOT.TH1F("h_gammaD_cT_Z_lab_dummy", "h_gammaD_cT_Z_lab_dummy", numBins, 0, cTlim) #h_gammaD_cT_Z_lab_dummy.SetYTitle("Fraction of events") h_gammaD_cT_Z_lab_dummy.SetTitleOffset(1.3, "Y") h_gammaD_cT_Z_lab_dummy.SetXTitle("L_{Z} of #gamma_{D} [mm]") h_gammaD_cT_Z_lab_dummy.SetYTitle("Normalized Fraction of events / " + str(binwidthRound) + " mm") h_gammaD_cT_Z_lab_dummy.SetTitleSize(0.05,"Y") h_gammaD_cT_Z_lab_dummy.SetMaximum( 10 ) h_gammaD_cT_Z_lab = ROOT.TH1F("h_gammaD_cT_Z_lab", "h_gammaD_cT_Z_lab", numBins, 0, cTlim) h_gammaD_cT_Z_lab.SetLineColor(ROOT.kBlue) h_gammaD_cT_Z_lab.SetLineWidth(2) h_gammaD_cT_Z_lab.SetLineStyle(1) h_gammaD_1_cT_dummy = ROOT.TH1F("h_gammaD_1_cT_dummy", "h_gammaD_1_cT_dummy", numBins, 0, cTlim) h_gammaD_1_cT_dummy.SetTitleOffset(1.3, "Y") h_gammaD_1_cT_dummy.SetXTitle("c#tau of #gamma_{D} [mm]") h_gammaD_1_cT_dummy.SetYTitle("Normalized Fraction of events / " + str(binwidthRound) + " mm") h_gammaD_1_cT_dummy.SetTitleSize(0.05,"Y") h_gammaD_1_cT_dummy.SetMaximum( 10 ) h_gammaD_1_cT = ROOT.TH1F("h_gammaD_1_cT", "h_gammaD_1_cT", numBins, 0, cTlim) h_gammaD_1_cT.SetLineColor(ROOT.kBlue) h_gammaD_1_cT.SetLineWidth(2) h_gammaD_1_cT.SetLineStyle(1) h_gammaD_1_cT_lab_dummy = ROOT.TH1F("h_gammaD_1_cT_lab_dummy", "h_gammaD_1_cT_lab_dummy", numBins, 0, cTlim) h_gammaD_1_cT_lab_dummy.SetTitleOffset(1.3, "Y") h_gammaD_1_cT_lab_dummy.SetXTitle("L of #gamma_{D} [mm]") h_gammaD_1_cT_lab_dummy.SetYTitle("Normalized Fraction of events / " + str(binwidthRound) + " mm") h_gammaD_1_cT_lab_dummy.SetTitleSize(0.05,"Y") h_gammaD_1_cT_lab_dummy.SetMaximum( 10 ) h_gammaD_1_cT_lab = ROOT.TH1F("h_gammaD_1_cT_lab", "h_gammaD_1_cT_lab", numBins, 0, cTlim) h_gammaD_1_cT_lab.SetLineColor(ROOT.kBlue) h_gammaD_1_cT_lab.SetLineWidth(2) h_gammaD_1_cT_lab.SetLineStyle(1) h_gammaD_1_cT_XY_lab_dummy = ROOT.TH1F("h_gammaD_1_cT_XY_lab_dummy", "h_gammaD_1_cT_XY_lab_dummy", numBins, 0, cTlim) h_gammaD_1_cT_XY_lab_dummy.SetTitleOffset(1.3, "Y") h_gammaD_1_cT_XY_lab_dummy.SetXTitle("L_{XY} of #gamma_{D} [mm]") h_gammaD_1_cT_XY_lab_dummy.SetYTitle("Normalized Fraction of events / " + str(binwidthRound) + " mm") h_gammaD_1_cT_XY_lab_dummy.SetTitleSize(0.05,"Y") h_gammaD_1_cT_XY_lab_dummy.SetMaximum( 10 ) h_gammaD_1_cT_XY_lab = ROOT.TH1F("h_gammaD_1_cT_XY_lab", "h_gammaD_1_cT_XY_lab", numBins, 0, cTlim) h_gammaD_1_cT_XY_lab.SetLineColor(ROOT.kBlue) h_gammaD_1_cT_XY_lab.SetLineWidth(2) h_gammaD_1_cT_XY_lab.SetLineStyle(1) h_gammaD_1_cT_Z_lab_dummy = ROOT.TH1F("h_gammaD_1_cT_Z_lab_dummy", "h_gammaD_1_cT_Z_lab_dummy", numBins, 0, cTlim) h_gammaD_1_cT_Z_lab_dummy.SetTitleOffset(1.3, "Y") h_gammaD_1_cT_Z_lab_dummy.SetXTitle("L_{Z} of #gamma_{D} [mm]") h_gammaD_1_cT_Z_lab_dummy.SetYTitle("Normalized Fraction of events / " + str(binwidthRound) + " mm") h_gammaD_1_cT_Z_lab_dummy.SetTitleSize(0.05,"Y") h_gammaD_1_cT_Z_lab_dummy.SetMaximum( 10 ) h_gammaD_1_cT_Z_lab = ROOT.TH1F("h_gammaD_1_cT_Z_lab", "h_gammaD_1_cT_Z_lab", numBins, 0, cTlim) h_gammaD_1_cT_Z_lab.SetLineColor(ROOT.kBlue) h_gammaD_1_cT_Z_lab.SetLineWidth(2) h_gammaD_1_cT_Z_lab.SetLineStyle(1) h_gammaD_2_cT = ROOT.TH1F("h_gammaD_2_cT", "h_gammaD_2_cT", numBins, 0, cTlim) h_gammaD_2_cT.SetLineColor(ROOT.kRed) h_gammaD_2_cT.SetLineWidth(2) h_gammaD_2_cT.SetLineStyle(1) h_gammaD_2_cT_lab = ROOT.TH1F("h_gammaD_2_cT_lab", "h_gammaD_2_cT_lab", numBins, 0, cTlim) h_gammaD_2_cT_lab.SetLineColor(ROOT.kRed) h_gammaD_2_cT_lab.SetLineWidth(2) h_gammaD_2_cT_lab.SetLineStyle(1) h_gammaD_2_cT_XY_lab = ROOT.TH1F("h_gammaD_2_cT_XY_lab", "h_gammaD_2_cT_XY_lab", numBins, 0, cTlim) h_gammaD_2_cT_XY_lab.SetLineColor(ROOT.kRed) h_gammaD_2_cT_XY_lab.SetLineWidth(2) h_gammaD_2_cT_XY_lab.SetLineStyle(1) h_gammaD_2_cT_Z_lab = ROOT.TH1F("h_gammaD_2_cT_Z_lab", "h_gammaD_2_cT_Z_lab", numBins, 0, cTlim) h_gammaD_2_cT_Z_lab.SetLineColor(ROOT.kRed) h_gammaD_2_cT_Z_lab.SetLineWidth(2) h_gammaD_2_cT_Z_lab.SetLineStyle(1) h_muon_pT_dummy = ROOT.TH1F("h_muon_pT_dummy", "h_muon_pT_dummy", nBins, binMin, binMax) h_muon_pT_dummy.SetYTitle("Fraction of events / 1 GeV") h_muon_pT_dummy.SetTitleOffset(1.35, "Y") h_muon_pT_dummy.SetXTitle("p_{T} of #mu [GeV]") h_muon_pT_dummy.SetMaximum( 0.2 ) h_higgs_pT_dummy = ROOT.TH1F("h_higgs_pT_dummy", "h_higgs_pT_dummy", 10, 0, 10) h_higgs_pT_dummy.SetYTitle("Fraction of events / 1 GeV") h_higgs_pT_dummy.SetTitleOffset(1.35, "Y") h_higgs_pT_dummy.SetXTitle("p_{T} of h [GeV]") h_higgs_pT_dummy.SetMaximum( 1.1 ) h_muon_pZ_dummy = ROOT.TH1F("h_muon_pZ_dummy", "h_muon_pZ_dummy", nBins, binMin, binMax) h_muon_pZ_dummy.SetYTitle("Fraction of events / 1 GeV") h_muon_pZ_dummy.SetTitleOffset(1.35, "Y") h_muon_pZ_dummy.SetXTitle("|p_{Z}| of #mu [GeV]") h_muon_pZ_dummy.SetMaximum( yMax ) h_higgs_pZ_dummy = ROOT.TH1F("h_higgs_pZ_dummy", "h_higgs_pZ_dummy", 50, 0, 500) h_higgs_pZ_dummy.SetYTitle("Fraction of events / 1 GeV") h_higgs_pZ_dummy.SetTitleOffset(1.35, "Y") h_higgs_pZ_dummy.SetXTitle("|p_{Z}| of h [GeV]") h_higgs_pZ_dummy.SetMaximum( 0.1 ) h_muon_Eta_dummy = ROOT.TH1F("h_muon_Eta_dummy", "h_muon_Eta_dummy", 100, -5, 5) h_muon_Eta_dummy.SetYTitle("Fraction of events / 0.1") h_muon_Eta_dummy.SetTitleOffset(1.35, "Y") h_muon_Eta_dummy.SetXTitle("#eta of #mu") h_muon_Eta_dummy.SetMaximum( 0.1 ) #h_higgs_Eta_dummy = ROOT.TH1F("h_higgs_Eta_dummy", "h_higgs_Eta_dummy", 100,-5,5) #h_higgs_Eta_dummy.SetYTitle("Fraction of events / 0.1 GeV") #h_higgs_Eta_dummy.SetTitleOffset(1.35, "Y") #h_higgs_Eta_dummy.SetXTitle("#eta of h [GeV]") #h_higgs_Eta_dummy.SetMaximum( 0.1 ) h_muon_Phi_dummy = ROOT.TH1F("h_muon_Phi_dummy", "h_muon_Phi_dummy", 80,-4,4) h_muon_Phi_dummy.SetYTitle("Fraction of events / 0.1 rad") h_muon_Phi_dummy.SetTitleOffset(1.35, "Y") h_muon_Phi_dummy.SetXTitle("#phi of #mu [rad]") h_muon_Phi_dummy.SetMaximum( 0.1 ) h_higgs_Phi_dummy = ROOT.TH1F("h_higgs_Phi_dummy", "h_higgs_Phi_dummy", 80,-4,4) h_higgs_Phi_dummy.SetYTitle("Fraction of events") h_higgs_Phi_dummy.SetTitleOffset(1.35, "Y") h_higgs_Phi_dummy.SetXTitle("#phi of h [rad]") h_higgs_Phi_dummy.SetMaximum( 1.4 ) h_higgs_p_dummy = ROOT.TH1F("h_higgs_p_dummy", "h_higgs_p_dummy", 50, 0, 500) h_higgs_p_dummy.SetYTitle("Fraction of events / 1 GeV") h_higgs_p_dummy.SetTitleOffset(1.35, "Y") h_higgs_p_dummy.SetXTitle("p of h [GeV]") h_higgs_p_dummy.SetMaximum( 0.1 ) h_higgs_M_dummy = ROOT.TH1F("h_higgs_M_dummy", "h_higgs_M_dummy", 220, 80.5, 300.5) h_higgs_M_dummy.SetYTitle("Fraction of events / 1 GeV") h_higgs_M_dummy.SetTitleOffset(1.35, "Y") h_higgs_M_dummy.SetXTitle("Mass of h [GeV]") h_higgs_M_dummy.SetLabelSize(0.03,"X") h_higgs_M_dummy.SetMaximum( 1.5 ) h_higgs_M_dummy.SetNdivisions(10) h_higgs_M_dummy.GetXaxis().SetMoreLogLabels() h_higgs_p = ROOT.TH1F("h_higgs_p", "h_higgs_p", 50, 0, 500) h_higgs_p.SetLineColor(ROOT.kBlue) h_higgs_p.SetLineWidth(2) h_higgs_p.SetLineStyle(1) h_higgs_M = ROOT.TH1F("h_higgs_M", "h_higgs_M", 10, 120.5, 130.5) h_higgs_M.SetLineColor(ROOT.kBlue) h_higgs_M.SetLineWidth(2) h_higgs_M.SetLineStyle(1) h_higgs_pT = ROOT.TH1F("h_higgs_pT", "h_higgs_pT", 10, 0, 10) h_higgs_pT.SetLineColor(ROOT.kBlue) h_higgs_pT.SetLineWidth(2) h_higgs_pT.SetLineStyle(1) h_n1_1_pT_dummy = ROOT.TH1F("h_n1_1_pT_dummy", "h_n1_1_pT_dummy", 70, 0, 70) h_n1_1_pT_dummy.SetYTitle("Fraction of events / 1 GeV") h_n1_1_pT_dummy.SetTitleOffset(1.35, "Y") h_n1_1_pT_dummy.SetXTitle("p_{T} of n_{1} [GeV]") h_n1_1_pT_dummy.SetMaximum( yMax ) h_higgs_pZ = ROOT.TH1F("h_higgs_pZ", "h_higgs_pZ", 50, 0, 500) h_higgs_pZ.SetLineColor(ROOT.kBlue) h_higgs_pZ.SetLineWidth(2) h_higgs_pZ.SetLineStyle(1) h_n1_1_pZ_dummy = ROOT.TH1F("h_n1_1_pZ_dummy", "h_n1_1_pZ_dummy", 300, 0, 300) h_n1_1_pZ_dummy.SetYTitle("Fraction of events / 1 GeV") h_n1_1_pZ_dummy.SetTitleOffset(1.35, "Y") h_n1_1_pZ_dummy.SetXTitle("|p_{Z}| of n_{1} [GeV]") h_n1_1_pZ_dummy.SetMaximum( 0.1 ) #h_higgs_Eta = ROOT.TH1F("h_higgs_Eta", "h_higgs_Eta", 50,0,5) #h_higgs_Eta.SetLineColor(ROOT.kBlue) #h_higgs_Eta.SetLineWidth(2) #h_higgs_Eta.SetLineStyle(1) h_n1_1_Eta_dummy = ROOT.TH1F("h_n1_1_Eta_dummy", "h_n1_1_Eta_dummy", 100,-5,5) h_n1_1_Eta_dummy.SetYTitle("Fraction of events / 0.1") h_n1_1_Eta_dummy.SetTitleOffset(1.35, "Y") h_n1_1_Eta_dummy.SetXTitle("#eta of n_{1}") h_n1_1_Eta_dummy.SetMaximum( 0.1 ) h_higgs_Phi = ROOT.TH1F("h_higgs_Phi", "h_higgs_Phi", 80,-4,4) h_higgs_Phi.SetLineColor(ROOT.kBlue) h_higgs_Phi.SetLineWidth(2) h_higgs_Phi.SetLineStyle(1) h_n1_1_Phi_dummy = ROOT.TH1F("h_n1_1_Phi_dummy", "h_n1_1_Phi_dummy", 80,-4,4) h_n1_1_Phi_dummy.SetYTitle("Fraction of events / 0.1 rad") h_n1_1_Phi_dummy.SetTitleOffset(1.35, "Y") h_n1_1_Phi_dummy.SetXTitle("#phi of n_{1} [rad]") h_n1_1_Phi_dummy.SetMaximum( 0.05 ) h_n1_1_p_dummy = ROOT.TH1F("h_n1_1_p_dummy", "h_n1_1_p_dummy", 300, 0, 300) h_n1_1_p_dummy.SetYTitle("Fraction of events / 1 GeV") h_n1_1_p_dummy.SetTitleOffset(1.35, "Y") h_n1_1_p_dummy.SetXTitle("p of n_{1} [GeV]") h_n1_1_p_dummy.SetMaximum( 0.1 ) h_n1_1_M_dummy = ROOT.TH1F("h_n1_1_M_dummy", "h_n1_1_M_dummy", 200, 0.05, 20.05) h_n1_1_M_dummy.SetYTitle("Fraction of events / 0.1 GeV") h_n1_1_M_dummy.SetTitleOffset(1.35, "Y") h_n1_1_M_dummy.SetXTitle("Mass of n_{1} [GeV]") h_n1_1_M_dummy.SetMaximum( 1.6 ) h_n1_1_p = ROOT.TH1F("h_n1_1_p", "h_n1_1_p", 300, 0, 300) h_n1_1_p.SetLineColor(ROOT.kBlue) h_n1_1_p.SetLineWidth(2) h_n1_1_p.SetLineStyle(1) h_n1_1_M = ROOT.TH1F("h_n1_1_M", "h_n1_1_M", 200, 0.05, 20.05) h_n1_1_M.SetLineColor(ROOT.kBlue) h_n1_1_M.SetLineWidth(2) h_n1_1_M.SetLineStyle(1) h_n1_1_pT = ROOT.TH1F("h_n1_1_pT", "h_n1_1_pT", 70, 0, 70) #this is the peak at 60 h_n1_1_pT.SetLineColor(ROOT.kBlue) h_n1_1_pT.SetLineWidth(2) h_n1_1_pT.SetLineStyle(1) h_n1_1_pZ = ROOT.TH1F("h_n1_1_pZ", "h_n1_1_pZ", 300, 0, 300) h_n1_1_pZ.SetLineColor(ROOT.kBlue) h_n1_1_pZ.SetLineWidth(2) h_n1_1_pZ.SetLineStyle(1) h_n1_1_Eta = ROOT.TH1F("h_n1_1_Eta", "h_n1_1_Eta", 100,-5,5) h_n1_1_Eta.SetLineColor(ROOT.kBlue) h_n1_1_Eta.SetLineWidth(2) h_n1_1_Eta.SetLineStyle(1) h_n1_1_Phi = ROOT.TH1F("h_n1_1_Phi", "h_n1_1_Phi", 80,-4,4) h_n1_1_Phi.SetLineColor(ROOT.kBlue) h_n1_1_Phi.SetLineWidth(2) h_n1_1_Phi.SetLineStyle(1) #h_n1_2_pT_dummy = ROOT.TH1F("h_n1_2_pT_dummy", "h_n1_2_pT_dummy", 700, 0, 70) #this is the peak at ~10GeV #h_n1_2_pT_dummy.SetYTitle("Fraction of events / 1 GeV") #h_n1_2_pT_dummy.SetTitleOffset(1.35, "Y") #h_n1_2_pT_dummy.SetXTitle("p_{T n_{1}} [GeV]") #h_n1_2_pT_dummy.SetMaximum( yMax ) # #h_n1_2_p_dummy = ROOT.TH1F("h_n1_2_p_dummy", "h_n1_2_p_dummy", 20, 50, 70) #h_n1_2_p_dummy.SetYTitle("Fraction of events / 1 GeV") #h_n1_2_p_dummy.SetTitleOffset(1.35, "Y") #h_n1_2_p_dummy.SetXTitle("p_{n_{1}} [GeV]") #h_n1_2_p_dummy.SetMaximum( 0.05 ) # #h_n1_2_M_dummy = ROOT.TH1F("h_n1_2_M_dummy", "h_n1_2_M_dummy", 200, 0, 20) #h_n1_2_M_dummy.SetYTitle("Fraction of events / 1 GeV") #h_n1_2_M_dummy.SetTitleOffset(1.35, "Y") #h_n1_2_M_dummy.SetXTitle("m_{n_{1}} [GeV]") #h_n1_2_M_dummy.SetMaximum( 1.2 ) h_n1_2_p = ROOT.TH1F("h_n1_2_p", "h_n1_2_p", 300, 0, 300) h_n1_2_p.SetLineColor(ROOT.kRed) h_n1_2_p.SetLineWidth(2) h_n1_2_p.SetLineStyle(1) #h_n1_2_M = ROOT.TH1F("h_n1_2_M", "h_n1_2_M", 200, 0.05, 20.05) #h_n1_2_M.SetLineColor(ROOT.kRed) #h_n1_2_M.SetLineWidth(2) #h_n1_2_M.SetLineStyle(1) h_n1_2_pT = ROOT.TH1F("h_n1_2_pT", "h_n1_2_pT", 70, 0, 70) h_n1_2_pT.SetLineColor(ROOT.kRed) h_n1_2_pT.SetLineWidth(2) h_n1_2_pT.SetLineStyle(1) h_nD_1_pT_dummy = ROOT.TH1F("h_nD_1_pT_dummy", "h_nD_1_pT_dummy", 130, 0, 130) h_nD_1_pT_dummy.SetYTitle("Fraction of events / 1 GeV") h_nD_1_pT_dummy.SetTitleOffset(1.35, "Y") h_nD_1_pT_dummy.SetXTitle("p_{T} of n_{D} [GeV]") h_nD_1_pT_dummy.SetMaximum( 0.1 ) h_n1_2_pZ = ROOT.TH1F("h_n1_2_pZ", "h_n1_2_pZ", 300, 0, 300) h_n1_2_pZ.SetLineColor(ROOT.kRed) h_n1_2_pZ.SetLineWidth(2) h_n1_2_pZ.SetLineStyle(1) h_nD_1_pZ_dummy = ROOT.TH1F("h_nD_1_pZ_dummy", "h_nD_1_pZ_dummy", 130, 0, 130) h_nD_1_pZ_dummy.SetYTitle("Fraction of events / 1 GeV") h_nD_1_pZ_dummy.SetTitleOffset(1.35, "Y") h_nD_1_pZ_dummy.SetXTitle("|p_{Z}| of n_{D} [GeV]") h_nD_1_pZ_dummy.SetMaximum( 0.1 ) h_n1_2_Eta = ROOT.TH1F("h_n1_2_Eta", "h_n1_2_Eta", 100,-5,5) h_n1_2_Eta.SetLineColor(ROOT.kRed) h_n1_2_Eta.SetLineWidth(2) h_n1_2_Eta.SetLineStyle(1) h_nD_1_Eta_dummy = ROOT.TH1F("h_nD_1_Eta_dummy", "h_nD_1_Eta_dummy", 100,-5,5) h_nD_1_Eta_dummy.SetYTitle("Fraction of events / 0.1") h_nD_1_Eta_dummy.SetTitleOffset(1.35, "Y") h_nD_1_Eta_dummy.SetXTitle("#eta of n_{D}") h_nD_1_Eta_dummy.SetMaximum( 0.1 ) h_n1_2_Phi = ROOT.TH1F("h_n1_2_Phi", "h_n1_2_Phi", 80,-4,4) h_n1_2_Phi.SetLineColor(ROOT.kRed) h_n1_2_Phi.SetLineWidth(2) h_n1_2_Phi.SetLineStyle(1) h_nD_1_Phi_dummy = ROOT.TH1F("h_nD_1_Phi_dummy", "h_nD_1_Phi_dummy", 80,-4,4) h_nD_1_Phi_dummy.SetYTitle("Fraction of events / 0.1 rad") h_nD_1_Phi_dummy.SetTitleOffset(1.35, "Y") h_nD_1_Phi_dummy.SetXTitle("#phi of n_{D} [rad]") h_nD_1_Phi_dummy.SetMaximum( 0.05 ) h_nD_1_p_dummy = ROOT.TH1F("h_nD_1_p_dummy", "h_nD_1_p_dummy", 130, 0, 130) h_nD_1_p_dummy.SetYTitle("Fraction of events / 1 GeV") h_nD_1_p_dummy.SetTitleOffset(1.35, "Y") h_nD_1_p_dummy.SetXTitle("p of n_{D} [GeV]") h_nD_1_p_dummy.SetMaximum( 0.1 ) h_nD_1_M_dummy = ROOT.TH1F("h_nD_1_M_dummy", "h_nD_1_M_dummy", 20, 0.05, 2.05) h_nD_1_M_dummy.SetYTitle("Fraction of events / 0.1 GeV") h_nD_1_M_dummy.SetTitleOffset(1.35, "Y") h_nD_1_M_dummy.SetXTitle("Mass of n_{D} [GeV]") h_nD_1_M_dummy.SetMaximum( 1.6 ) h_nD_1_p = ROOT.TH1F("h_nD_1_p", "h_nD_1_p", 130, 0, 130) h_nD_1_p.SetLineColor(ROOT.kBlue) h_nD_1_p.SetLineWidth(2) h_nD_1_p.SetLineStyle(1) h_nD_1_M = ROOT.TH1F("h_nD_1_M", "h_nD_1_M", 20, 0.05, 2.05) h_nD_1_M.SetLineColor(ROOT.kBlue) h_nD_1_M.SetLineWidth(2) h_nD_1_M.SetLineStyle(1) h_nD_1_pT = ROOT.TH1F("h_nD_1_pT", "h_nD_1_pT", 130, 0, 130) h_nD_1_pT.SetLineColor(ROOT.kBlue) h_nD_1_pT.SetLineWidth(2) h_nD_1_pT.SetLineStyle(1) h_nD_1_pZ = ROOT.TH1F("h_nD_1_pZ", "h_nD_1_pZ", 130, 0, 130) h_nD_1_pZ.SetLineColor(ROOT.kBlue) h_nD_1_pZ.SetLineWidth(2) h_nD_1_pZ.SetLineStyle(1) h_nD_1_Eta = ROOT.TH1F("h_nD_1_Eta", "h_nD_1_Eta", 100,-5,5) h_nD_1_Eta.SetLineColor(ROOT.kBlue) h_nD_1_Eta.SetLineWidth(2) h_nD_1_Eta.SetLineStyle(1) h_nD_1_Phi = ROOT.TH1F("h_nD_1_Phi", "h_nD_1_Phi", 80,-4,4) h_nD_1_Phi.SetLineColor(ROOT.kBlue) h_nD_1_Phi.SetLineWidth(2) h_nD_1_Phi.SetLineStyle(1) #h_nD_2_pT_dummy = ROOT.TH1F("h_nD_2_pT_dummy", "h_nD_2_pT_dummy", 100, 0, 100) #h_nD_2_pT_dummy.SetYTitle("Fraction of events / 1 GeV") #h_nD_2_pT_dummy.SetTitleOffset(1.35, "Y") #h_nD_2_pT_dummy.SetXTitle("p_{T nD_2} [GeV]") #h_nD_2_pT_dummy.SetMaximum( 0.01 ) # #h_nD_2_p_dummy = ROOT.TH1F("h_nD_2_p_dummy", "h_nD_2_p_dummy", 100, 0, 100) #h_nD_2_p_dummy.SetYTitle("Fraction of events / 1 GeV") #h_nD_2_p_dummy.SetTitleOffset(1.35, "Y") #h_nD_2_p_dummy.SetXTitle("p_{nD_2} [GeV]") #h_nD_2_p_dummy.SetMaximum( 0.01 ) # #h_nD_2_M_dummy = ROOT.TH1F("h_nD_2_M_dummy", "h_nD_2_M_dummy", 20, 0, 2) #h_nD_2_M_dummy.SetYTitle("Fraction of events / 1 GeV") #h_nD_2_M_dummy.SetTitleOffset(1.35, "Y") #h_nD_2_M_dummy.SetXTitle("m_{nD_2} [GeV]") #h_nD_2_M_dummy.SetMaximum( 1.2 ) h_nD_2_p = ROOT.TH1F("h_nD_2_p", "h_nD_2_p", 130, 0, 130) h_nD_2_p.SetLineColor(ROOT.kRed) h_nD_2_p.SetLineWidth(2) h_nD_2_p.SetLineStyle(1) #h_nD_2_M = ROOT.TH1F("h_nD_2_M", "h_nD_2_M", 20, 0.05, 2.05) #h_nD_2_M.SetLineColor(ROOT.kRed) #h_nD_2_M.SetLineWidth(2) #h_nD_2_M.SetLineStyle(1) h_nD_2_pT = ROOT.TH1F("h_nD_2_pT", "h_nD_2_pT", 130, 0, 130) h_nD_2_pT.SetLineColor(ROOT.kRed) h_nD_2_pT.SetLineWidth(2) h_nD_2_pT.SetLineStyle(1) h_gammaD_1_pT_dummy = ROOT.TH1F("h_gammaD_1_pT_dummy", "h_gammaD_1_pT_dummy", 100, 0, 100) h_gammaD_1_pT_dummy.SetYTitle("Fraction of events / 1 GeV") h_gammaD_1_pT_dummy.SetTitleOffset(1.35, "Y") h_gammaD_1_pT_dummy.SetXTitle("p_{T} of #gamma_{D} [GeV]") h_gammaD_1_pT_dummy.SetMaximum( 0.1 ) h_nD_2_pZ = ROOT.TH1F("h_nD_2_pZ", "h_nD_2_pZ", 130, 0, 130) h_nD_2_pZ.SetLineColor(ROOT.kRed) h_nD_2_pZ.SetLineWidth(2) h_nD_2_pZ.SetLineStyle(1) h_gammaD_1_pZ_dummy = ROOT.TH1F("h_gammaD_1_pZ_dummy", "h_gammaD_1_pZ_dummy", 100, 0, 100) h_gammaD_1_pZ_dummy.SetYTitle("Fraction of events / 1 GeV") h_gammaD_1_pZ_dummy.SetTitleOffset(1.35, "Y") h_gammaD_1_pZ_dummy.SetXTitle("|p_{Z}| of #gamma_{D} [GeV]") h_gammaD_1_pZ_dummy.SetMaximum( 0.1 ) h_nD_2_Eta = ROOT.TH1F("h_nD_2_Eta", "h_nD_2_Eta", 100,-5,5) h_nD_2_Eta.SetLineColor(ROOT.kRed) h_nD_2_Eta.SetLineWidth(2) h_nD_2_Eta.SetLineStyle(1) h_gammaD_1_Eta_dummy = ROOT.TH1F("h_gammaD_1_Eta_dummy", "h_gammaD_1_Eta_dummy",100,-5,5) h_gammaD_1_Eta_dummy.SetYTitle("Fraction of events / 0.1") h_gammaD_1_Eta_dummy.SetTitleOffset(1.35, "Y") h_gammaD_1_Eta_dummy.SetXTitle("#eta of #gamma_{D}") h_gammaD_1_Eta_dummy.SetMaximum( 0.1 ) h_nD_2_Phi = ROOT.TH1F("h_nD_2_Phi", "h_nD_2_Phi", 80,-4,4) h_nD_2_Phi.SetLineColor(ROOT.kRed) h_nD_2_Phi.SetLineWidth(2) h_nD_2_Phi.SetLineStyle(1) h_gammaD_1_Phi_dummy = ROOT.TH1F("h_gammaD_1_Phi_dummy", "h_gammaD_1_Phi_dummy",80,-4,4 ) h_gammaD_1_Phi_dummy.SetYTitle("Fraction of events / 0.1 rad") h_gammaD_1_Phi_dummy.SetTitleOffset(1.35, "Y") h_gammaD_1_Phi_dummy.SetXTitle("#phi of #gamma_{D} [rad]") h_gammaD_1_Phi_dummy.SetMaximum( 0.05 ) h_gammaD_1_p_dummy = ROOT.TH1F("h_gammaD_1_p_dummy", "h_gammaD_1_p_dummy", 100, 0, 100) h_gammaD_1_p_dummy.SetYTitle("Fraction of events / 1 GeV") h_gammaD_1_p_dummy.SetTitleOffset(1.35, "Y") h_gammaD_1_p_dummy.SetXTitle("p of #gamma_{D} [GeV]") h_gammaD_1_p_dummy.SetMaximum( 0.1 ) h_gammaD_1_M_dummy = ROOT.TH1F("h_gammaD_1_M_dummy", "h_gammaD_1_M_dummy", 101, 0.1, 10.1) h_gammaD_1_M_dummy.SetYTitle("Fraction of events / 0.1 GeV") h_gammaD_1_M_dummy.SetTitleOffset(1.35, "Y") h_gammaD_1_M_dummy.SetXTitle("Mass of #gamma_{D} [GeV]") h_gammaD_1_M_dummy.SetMaximum( 1.4 ) h_gammaD_1_p = ROOT.TH1F("h_gammaD_1_p", "h_gammaD_1_p", 100, 0, 100) h_gammaD_1_p.SetLineColor(ROOT.kBlue) h_gammaD_1_p.SetLineWidth(2) h_gammaD_1_p.SetLineStyle(1) h_gammaD_1_M = ROOT.TH1F("h_gammaD_1_M", "h_gammaD_1_M", 101, 0.1, 10.1) h_gammaD_1_M.SetLineColor(ROOT.kBlue) h_gammaD_1_M.SetLineWidth(2) h_gammaD_1_M.SetLineStyle(1) h_gammaD_1_pT = ROOT.TH1F("h_gammaD_1_pT", "h_gammaD_1_pT", 100, 0, 100) h_gammaD_1_pT.SetLineColor(ROOT.kBlue) h_gammaD_1_pT.SetLineWidth(2) h_gammaD_1_pT.SetLineStyle(1) h_gammaD_1_pZ = ROOT.TH1F("h_gammaD_1_pZ", "h_gammaD_1_pZ", 100, 0, 100) h_gammaD_1_pZ.SetLineColor(ROOT.kBlue) h_gammaD_1_pZ.SetLineWidth(2) h_gammaD_1_pZ.SetLineStyle(1) h_gammaD_1_Eta = ROOT.TH1F("h_gammaD_1_Eta", "h_gammaD_1_Eta",100,-5,5) h_gammaD_1_Eta.SetLineColor(ROOT.kBlue) h_gammaD_1_Eta.SetLineWidth(2) h_gammaD_1_Eta.SetLineStyle(1) h_gammaD_1_Phi = ROOT.TH1F("h_gammaD_1_Phi", "h_gammaD_1_Phi", 80,-4,4) h_gammaD_1_Phi.SetLineColor(ROOT.kBlue) h_gammaD_1_Phi.SetLineWidth(2) h_gammaD_1_Phi.SetLineStyle(1) #h_gammaD_2_pT_dummy = ROOT.TH1F("h_gammaD_2_pT_dummy", "h_gammaD_2_pT_dummy", 100, 0, 100) #h_gammaD_2_pT_dummy.SetYTitle("Fraction of events / 1 GeV") #h_gammaD_2_pT_dummy.SetTitleOffset(1.35, "Y") #h_gammaD_2_pT_dummy.SetXTitle("p_{T gammaD_2} [GeV]") #h_gammaD_2_pT_dummy.SetMaximum( 0.01 ) # #h_gammaD_2_p_dummy = ROOT.TH1F("h_gammaD_2_p_dummy", "h_gammaD_2_p_dummy", 100, 0, 100) #h_gammaD_2_p_dummy.SetYTitle("Fraction of events / 1 GeV") #h_gammaD_2_p_dummy.SetTitleOffset(1.35, "Y") #h_gammaD_2_p_dummy.SetXTitle("p_{gammaD_2} [GeV]") #h_gammaD_2_p_dummy.SetMaximum( 0.01 ) # #h_gammaD_2_M_dummy = ROOT.TH1F("h_gammaD_2_M_dummy", "h_gammaD_2_M_dummy", 300, 0, 3) #h_gammaD_2_M_dummy.SetYTitle("Fraction of events / 1 GeV") #h_gammaD_2_M_dummy.SetTitleOffset(1.35, "Y") #h_gammaD_2_M_dummy.SetXTitle("m_{gammaD_2} [GeV]") #h_gammaD_2_M_dummy.SetMaximum( 1.2 ) h_gammaD_2_p = ROOT.TH1F("h_gammaD_2_p", "h_gammaD_2_p", 100, 0, 100) h_gammaD_2_p.SetLineColor(ROOT.kRed) h_gammaD_2_p.SetLineWidth(2) h_gammaD_2_p.SetLineStyle(1) #h_gammaD_2_M = ROOT.TH1F("h_gammaD_2_M", "h_gammaD_2_M", 500, 0.005, 10.005) #h_gammaD_2_M.SetLineColor(ROOT.kRed) #h_gammaD_2_M.SetLineWidth(2) #h_gammaD_2_M.SetLineStyle(1) h_gammaD_2_pT = ROOT.TH1F("h_gammaD_2_pT", "h_gammaD_2_pT", 100, 0, 100) h_gammaD_2_pT.SetLineColor(ROOT.kRed) h_gammaD_2_pT.SetLineWidth(2) h_gammaD_2_pT.SetLineStyle(1) h_gammaD_2_pZ = ROOT.TH1F("h_gammaD_2_pZ", "h_gammaD_2_pZ", 100, 0, 100) h_gammaD_2_pZ.SetLineColor(ROOT.kRed) h_gammaD_2_pZ.SetLineWidth(2) h_gammaD_2_pZ.SetLineStyle(1) h_gammaD_2_Eta = ROOT.TH1F("h_gammaD_2_Eta", "h_gammaD_2_Eta", 100,-5,5) h_gammaD_2_Eta.SetLineColor(ROOT.kRed) h_gammaD_2_Eta.SetLineWidth(2) h_gammaD_2_Eta.SetLineStyle(1) h_gammaD_2_Phi = ROOT.TH1F("h_gammaD_2_Phi", "h_gammaD_2_Phi", 80,-4,4) h_gammaD_2_Phi.SetLineColor(ROOT.kRed) h_gammaD_2_Phi.SetLineWidth(2) h_gammaD_2_Phi.SetLineStyle(1) h_muon_pT_0 = ROOT.TH1F("h_muon_pT_0", "h_muon_pT_0", nBins, binMin, binMax) h_muon_pT_0.SetLineColor(ROOT.kBlue) h_muon_pT_0.SetLineWidth(2) h_muon_pT_0.SetLineStyle(1) h_muon_pT_1 = ROOT.TH1F("h_muon_pT_1", "h_muon_pT_1", nBins, binMin, binMax) h_muon_pT_1.SetLineColor(ROOT.kGreen) h_muon_pT_1.SetLineWidth(2) h_muon_pT_1.SetLineStyle(2) h_muon_pT_2 = ROOT.TH1F("h_muon_pT_2", "h_muon_pT_2", nBins, binMin, binMax) h_muon_pT_2.SetLineColor(ROOT.kRed) h_muon_pT_2.SetLineWidth(2) h_muon_pT_2.SetLineStyle(3) h_muon_pT_3 = ROOT.TH1F("h_muon_pT_3", "h_muon_pT_3", nBins, binMin, binMax) h_muon_pT_3.SetLineColor(ROOT.kBlack) h_muon_pT_3.SetLineWidth(2) h_muon_pT_3.SetLineStyle(4) h_muon_phi_dummy = ROOT.TH1F("h_muon_phi_dummy", "h_muon_phi_dummy", 80, -4, 4) h_muon_phi_dummy.SetYTitle("Fraction of events / 0.1 rad") h_muon_phi_dummy.SetTitleOffset(1.35, "Y") h_muon_phi_dummy.SetXTitle("#phi of #mu [rad]") h_muon_phi_dummy.SetMaximum( 0.1 ) h_muon_phi_0 = ROOT.TH1F("h_muon_phi_0", "h_muon_phi_0", 80, -4, 4) h_muon_phi_0.SetLineColor(ROOT.kBlue) h_muon_phi_0.SetLineWidth(2) h_muon_phi_0.SetLineStyle(1) h_muon_phi_1 = ROOT.TH1F("h_muon_phi_1", "h_muon_phi_1", 80, -4, 4) h_muon_phi_1.SetLineColor(ROOT.kGreen) h_muon_phi_1.SetLineWidth(2) h_muon_phi_1.SetLineStyle(2) h_muon_phi_2 = ROOT.TH1F("h_muon_phi_2", "h_muon_phi_2", 80, -4, 4) h_muon_phi_2.SetLineColor(ROOT.kRed) h_muon_phi_2.SetLineWidth(2) h_muon_phi_2.SetLineStyle(3) h_muon_phi_3 = ROOT.TH1F("h_muon_phi_3", "h_muon_phi_3", 80, -4, 4) h_muon_phi_3.SetLineColor(ROOT.kBlack) h_muon_phi_3.SetLineWidth(2) h_muon_phi_3.SetLineStyle(4) h_muon_p_dummy = ROOT.TH1F("h_muon_p_dummy", "h_muon_p_dummy", 125, 0, 125) h_muon_p_dummy.SetYTitle("Fraction of events / 1 GeV") h_muon_p_dummy.SetTitleOffset(1.35, "Y") h_muon_p_dummy.SetXTitle("p of #mu [GeV]") h_muon_p_dummy.SetMaximum( 0.2 ) h_muon_p_0 = ROOT.TH1F("h_muon_p_0", "h_muon_p_0", 125, 0, 125) h_muon_p_0.SetLineColor(ROOT.kBlue) h_muon_p_0.SetLineWidth(2) h_muon_p_0.SetLineStyle(1) h_muon_p_1 = ROOT.TH1F("h_muon_p_1", "h_muon_p_1", 125, 0, 125) h_muon_p_1.SetLineColor(ROOT.kGreen) h_muon_p_1.SetLineWidth(2) h_muon_p_1.SetLineStyle(2) h_muon_p_2 = ROOT.TH1F("h_muon_p_2", "h_muon_p_2", 125, 0, 125) h_muon_p_2.SetLineColor(ROOT.kRed) h_muon_p_2.SetLineWidth(2) h_muon_p_2.SetLineStyle(3) h_muon_p_3 = ROOT.TH1F("h_muon_p_3", "h_muon_p_3", 125, 0, 125) h_muon_p_3.SetLineColor(ROOT.kBlack) h_muon_p_3.SetLineWidth(2) h_muon_p_3.SetLineStyle(125) h_muon_pZ_0 = ROOT.TH1F("h_muon_pZ_0", "h_muon_pZ_0", 125, 0, 125) h_muon_pZ_0.SetLineColor(ROOT.kBlue) h_muon_pZ_0.SetLineWidth(2) h_muon_pZ_0.SetLineStyle(1) h_muon_pZ_1 = ROOT.TH1F("h_muon_pZ_1", "h_muon_pZ_1", 125, 0, 125) h_muon_pZ_1.SetLineColor(ROOT.kGreen) h_muon_pZ_1.SetLineWidth(2) h_muon_pZ_1.SetLineStyle(2) h_muon_pZ_2 = ROOT.TH1F("h_muon_pZ_2", "h_muon_pZ_2", 125, 0, 125) h_muon_pZ_2.SetLineColor(ROOT.kRed) h_muon_pZ_2.SetLineWidth(2) h_muon_pZ_2.SetLineStyle(3) h_muon_pZ_3 = ROOT.TH1F("h_muon_pZ_3", "h_muon_pZ_3", 125, 0, 125) h_muon_pZ_3.SetLineColor(ROOT.kBlack) h_muon_pZ_3.SetLineWidth(2) h_muon_pZ_3.SetLineStyle(125) ################################################################################ # eta of muons ################################################################################ nBins = 60 binMin = -3.0 binMax = 3.0 yMax = 0.045 h_muon_eta_dummy = ROOT.TH1F("h_muon_eta_dummy", "h_muon_eta_dummy", 100, -5, 5) h_muon_eta_dummy.SetYTitle("Fraction of events / 0.1") h_muon_eta_dummy.GetYaxis().SetNdivisions(508); h_muon_eta_dummy.SetTitleOffset(1.35, "Y") h_muon_eta_dummy.SetXTitle("#eta of #mu") h_muon_eta_dummy.SetMaximum( yMax ) h_muon_eta_0 = ROOT.TH1F("h_muon_eta_0", "h_muon_eta_0", 100,-5,5) h_muon_eta_0.SetLineColor(ROOT.kBlue) h_muon_eta_0.SetLineWidth(2) h_muon_eta_0.SetLineStyle(1) h_muon_eta_1 = ROOT.TH1F("h_muon_eta_1", "h_muon_eta_1", 100,-5,5) h_muon_eta_1.SetLineColor(ROOT.kGreen) h_muon_eta_1.SetLineWidth(2) h_muon_eta_1.SetLineStyle(2) h_muon_eta_2 = ROOT.TH1F("h_muon_eta_2", "h_muon_eta_2", 100,-5,5) h_muon_eta_2.SetLineColor(ROOT.kRed) h_muon_eta_2.SetLineWidth(2) h_muon_eta_2.SetLineStyle(3) h_muon_eta_3 = ROOT.TH1F("h_muon_eta_3", "h_muon_eta_3", 100,-5,5) h_muon_eta_3.SetLineColor(ROOT.kBlack) h_muon_eta_3.SetLineWidth(2) h_muon_eta_3.SetLineStyle(4) ################################################################################ # mass of dimuons ################################################################################ nBins = 125 binMin = 0.0 binMax = 125.0 yMax = 0.4 #h_dimuon_m_dummy = ROOT.TH1F("h_dimuon_m_dummy", "h_dimuon_m_dummy", nBins, binMin, binMax) #h_dimuon_m_dummy.SetYTitle("Fraction of events / 1 GeV") #h_dimuon_m_dummy.GetYaxis().SetNdivisions(508); #h_dimuon_m_dummy.SetTitleOffset(1.35, "Y") #h_dimuon_m_dummy.SetXTitle("m_{#mu#mu} [GeV]") #h_dimuon_m_dummy.SetMaximum( 1.2 ) # #h_dimuon_m_0 = ROOT.TH1F("h_dimuon_m_0", "h_dimuon_m_0", nBins, binMin, binMax) #h_dimuon_m_0.SetLineColor(ROOT.kBlue) #h_dimuon_m_0.SetLineWidth(2) #h_dimuon_m_0.SetLineStyle(1) # #h_dimuon_m_1 = ROOT.TH1F("h_dimuon_m_1", "h_dimuon_m_1", nBins, binMin, binMax) #h_dimuon_m_1.SetLineColor(ROOT.kGreen) #h_dimuon_m_1.SetLineWidth(2) #h_dimuon_m_1.SetLineStyle(2) # #h_dimuon_m_2 = ROOT.TH1F("h_dimuon_m_2", "h_dimuon_m_2", nBins, binMin, binMax) #h_dimuon_m_2.SetLineColor(ROOT.kRed) #h_dimuon_m_2.SetLineWidth(2) #h_dimuon_m_2.SetLineStyle(3) # #h_dimuon_m_3 = ROOT.TH1F("h_dimuon_m_3", "h_dimuon_m_3", nBins, binMin, binMax) #h_dimuon_m_3.SetLineColor(ROOT.kBlack) #h_dimuon_m_3.SetLineWidth(2) #h_dimuon_m_3.SetLineStyle(4) # #h_dimuon_m_log_dummy = ROOT.TH1F("h_dimuon_m_log_dummy", "h_dimuon_m_log_dummy", nBins, binMin, binMax) #h_dimuon_m_log_dummy.SetYTitle("Fraction of events / 1 GeV") #h_dimuon_m_log_dummy.GetYaxis().SetNdivisions(508); #h_dimuon_m_log_dummy.SetTitleOffset(1.35, "Y") #h_dimuon_m_log_dummy.SetXTitle("m_{#mu#mu} [GeV]") #h_dimuon_m_log_dummy.SetMaximum( 1.2 ) # #h_dimuon_m_log_0 = ROOT.TH1F("h_dimuon_m_log_0", "h_dimuon_m_log_0", nBins, binMin, binMax) #h_dimuon_m_log_0.SetLineColor(ROOT.kBlue) #h_dimuon_m_log_0.SetLineWidth(2) #h_dimuon_m_log_0.SetLineStyle(1) # #h_dimuon_m_log_1 = ROOT.TH1F("h_dimuon_m_log_1", "h_dimuon_m_log_1", nBins, binMin, binMax) #h_dimuon_m_log_1.SetLineColor(ROOT.kGreen) #h_dimuon_m_log_1.SetLineWidth(2) #h_dimuon_m_log_1.SetLineStyle(2) # #h_dimuon_m_log_2 = ROOT.TH1F("h_dimuon_m_log_2", "h_dimuon_m_log_2", nBins, binMin, binMax) #h_dimuon_m_log_2.SetLineColor(ROOT.kRed) #h_dimuon_m_log_2.SetLineWidth(2) #h_dimuon_m_log_2.SetLineStyle(3) # #h_dimuon_m_log_3 = ROOT.TH1F("h_dimuon_m_log_3", "h_dimuon_m_log_3", nBins, binMin, binMax) #h_dimuon_m_log_3.SetLineColor(ROOT.kBlack) #h_dimuon_m_log_3.SetLineWidth(2) #h_dimuon_m_log_3.SetLineStyle(4) # #h_dimuon_m_real_fake_dummy = ROOT.TH1F("h_dimuon_m_real_fake_dummy", "h_dimuon_m_real_fake_dummy", nBins, binMin, binMax) #h_dimuon_m_real_fake_dummy.SetYTitle("Fraction of events / 1 GeV") #h_dimuon_m_real_fake_dummy.GetYaxis().SetNdivisions(508); #h_dimuon_m_real_fake_dummy.SetTitleOffset(1.35, "Y") #h_dimuon_m_real_fake_dummy.SetXTitle("m_{#mu#mu} [GeV]") #h_dimuon_m_real_fake_dummy.SetMaximum( 1.2 ) # #h_dimuon_m_real_fake_0 = ROOT.TH1F("h_dimuon_m_real_fake_0", "h_dimuon_m_real_fake_0", nBins, binMin, binMax) #h_dimuon_m_real_fake_0.SetLineColor(ROOT.kRed) #h_dimuon_m_real_fake_0.SetLineWidth(2) #h_dimuon_m_real_fake_0.SetLineStyle(1) # #h_dimuon_m_real_fake_1 = ROOT.TH1F("h_dimuon_m_real_fake_1", "h_dimuon_m_real_fake_1", nBins, binMin, binMax) #h_dimuon_m_real_fake_1.SetLineColor(ROOT.kBlue) #h_dimuon_m_real_fake_1.SetLineWidth(2) #h_dimuon_m_real_fake_1.SetLineStyle(2) # #h_dimuon_m_real_fake_log_dummy = ROOT.TH1F("h_dimuon_m_real_fake_log_dummy", "h_dimuon_m_real_fake_log_dummy", nBins, binMin, binMax) #h_dimuon_m_real_fake_log_dummy.SetYTitle("Fraction of events / 1 GeV") #h_dimuon_m_real_fake_log_dummy.GetYaxis().SetNdivisions(508); #h_dimuon_m_real_fake_log_dummy.SetTitleOffset(1.35, "Y") #h_dimuon_m_real_fake_log_dummy.SetXTitle("m_{#mu#mu} [GeV]") #h_dimuon_m_real_fake_log_dummy.SetMaximum( 1.2 ) # #h_dimuon_m_real_fake_log_0 = ROOT.TH1F("h_dimuon_m_real_fake_log_0", "h_dimuon_m_real_fake_log_0", nBins, binMin, binMax) #h_dimuon_m_real_fake_log_0.SetLineColor(ROOT.kRed) #h_dimuon_m_real_fake_log_0.SetLineWidth(2) #h_dimuon_m_real_fake_log_0.SetLineStyle(1) # #h_dimuon_m_real_fake_log_1 = ROOT.TH1F("h_dimuon_m_real_fake_log_1", "h_dimuon_m_real_fake_log_1", nBins, binMin, binMax) #h_dimuon_m_real_fake_log_1.SetLineColor(ROOT.kBlue) #h_dimuon_m_real_fake_log_1.SetLineWidth(2) #h_dimuon_m_real_fake_log_1.SetLineStyle(2) ######################### h_dimuon_m_fake_log_dummy = ROOT.TH1F("h_dimuon_m_fake_log_dummy", "h_dimuon_m_fake_log_dummy", 1250, 0, 125) h_dimuon_m_fake_log_dummy.SetYTitle("Fraction of events / 0.1 GeV") h_dimuon_m_fake_log_dummy.GetYaxis().SetNdivisions(508); h_dimuon_m_fake_log_dummy.SetTitleOffset(1.4, "Y") h_dimuon_m_fake_log_dummy.SetXTitle("Mass of Fake #mu#mu [GeV]") h_dimuon_m_fake_log_dummy.SetMaximum( 1 ) h_dimuon_m_fake_log_0 = ROOT.TH1F("h_dimuon_m_fake_log_0", "h_dimuon_m_fake_log_0", 1250, 0, 125) h_dimuon_m_fake_log_0.SetLineColor(ROOT.kRed) h_dimuon_m_fake_log_0.SetLineWidth(2) h_dimuon_m_fake_log_0.SetLineStyle(1) h_dimuon_m_fake_dummy = ROOT.TH1F("h_dimuon_m_fake_dummy", "h_dimuon_m_fake_dummy", nBins, binMin, binMax) h_dimuon_m_fake_dummy.SetYTitle("Fraction of events / 1 GeV") h_dimuon_m_fake_dummy.GetYaxis().SetNdivisions(508); h_dimuon_m_fake_dummy.SetTitleOffset(1.35, "Y") h_dimuon_m_fake_dummy.SetXTitle("Mass of Fake #mu#mu [GeV]") h_dimuon_m_fake_dummy.SetMaximum( 1.2 ) h_dimuon_m_fake_0 = ROOT.TH1F("h_dimuon_m_fake_0", "h_dimuon_m_fake_0", nBins, binMin, binMax) h_dimuon_m_fake_0.SetLineColor(ROOT.kRed) h_dimuon_m_fake_0.SetLineWidth(2) h_dimuon_m_fake_0.SetLineStyle(1) ################################################################################ # mass of 2 selected dimuons ################################################################################ m_min = 0.2113 m_max = 3.5536 m_bins = 66 h_m1_vs_m2 = ROOT.TH2F("h_m1_vs_m2", "h_m1_vs_m2", m_bins, m_min, m_max, m_bins, m_min, m_max) h_m1_vs_m2.SetYTitle("m_{1#mu#mu} [GeV]") h_m1_vs_m2.SetTitleOffset(1.3, "Y") h_m1_vs_m2.SetXTitle("m_{2#mu#mu} [GeV]") h_m1 = ROOT.TH1F("h_m1", "h_m1", 101, 0.1, 10.1) h_m1.SetLineColor(ROOT.kRed) h_m1.SetLineWidth(2) h_m1.SetLineStyle(1) h_m2 = ROOT.TH1F("h_m2", "h_m2", 101, 0.1, 10.1) h_m2.SetYTitle("Events / 0.1 GeV") h_m2.SetXTitle("m_{#mu#mu} [GeV]") h_m2.SetTitleOffset(1.35, "Y") h_m2.SetLineColor(ROOT.kBlue) h_m2.SetLineWidth(2) h_m2.SetLineStyle(1) h_m2.SetMaximum(110000) h_dimuon_1_pT_dummy = ROOT.TH1F("h_dimuon_1_pT_dummy", "h_dimuon_1_pT_dummy", 100, 0, 100) h_dimuon_1_pT_dummy.SetYTitle("Fraction of events / 1 GeV") h_dimuon_1_pT_dummy.SetTitleOffset(1.35, "Y") h_dimuon_1_pT_dummy.SetXTitle("p_{T} of #mu#mu [GeV]") h_dimuon_1_pT_dummy.SetMaximum( 0.1 ) h_dimuon_1_pZ_dummy = ROOT.TH1F("h_dimuon_1_pZ_dummy", "h_dimuon_1_pZ_dummy", 100, 0, 100) h_dimuon_1_pZ_dummy.SetYTitle("Fraction of events / 1 GeV") h_dimuon_1_pZ_dummy.SetTitleOffset(1.35, "Y") h_dimuon_1_pZ_dummy.SetXTitle("|p_{Z}| of #mu#mu [GeV]") h_dimuon_1_pZ_dummy.SetMaximum( 0.1 ) h_dimuon_1_Eta_dummy = ROOT.TH1F("h_dimuon_1_Eta_dummy", "h_dimuon_1_Eta_dummy",100,-5,5) h_dimuon_1_Eta_dummy.SetYTitle("Fraction of events / 0.1") h_dimuon_1_Eta_dummy.SetTitleOffset(1.35, "Y") h_dimuon_1_Eta_dummy.SetXTitle("#eta of #mu#mu") h_dimuon_1_Eta_dummy.SetMaximum( 0.1 ) h_dimuon_1_Phi_dummy = ROOT.TH1F("h_dimuon_1_Phi_dummy", "h_dimuon_1_Phi_dummy",80,-4,4 ) h_dimuon_1_Phi_dummy.SetYTitle("Fraction of events / 0.1 rad") h_dimuon_1_Phi_dummy.SetTitleOffset(1.35, "Y") h_dimuon_1_Phi_dummy.SetXTitle("#phi of #mu#mu [rad]") h_dimuon_1_Phi_dummy.SetMaximum( 0.05 ) h_dimuon_1_p_dummy = ROOT.TH1F("h_dimuon_1_p_dummy", "h_dimuon_1_p_dummy", 100, 0, 100) h_dimuon_1_p_dummy.SetYTitle("Fraction of events / 1 GeV") h_dimuon_1_p_dummy.SetTitleOffset(1.35, "Y") h_dimuon_1_p_dummy.SetXTitle("p of #mu#mu [GeV]") h_dimuon_1_p_dummy.SetMaximum( 0.1 ) h_dimuon_1_M_dummy = ROOT.TH1F("h_dimuon_1_M_dummy", "h_dimuon_1_M_dummy", 50, 0.5, 10.005) h_dimuon_1_M_dummy.SetYTitle("Fraction of events / 0.2 GeV") h_dimuon_1_M_dummy.SetTitleOffset(1.35, "Y") h_dimuon_1_M_dummy.SetXTitle("Mass of #mu#mu [GeV]") h_dimuon_1_M_dummy.SetMaximum( 1.4 ) h_dimuon_1_p = ROOT.TH1F("h_dimuon_1_p", "h_dimuon_1_p", 100, 0, 100) h_dimuon_1_p.SetLineColor(ROOT.kBlue) h_dimuon_1_p.SetLineWidth(2) h_dimuon_1_p.SetLineStyle(1) h_dimuon_1_M = ROOT.TH1F("h_dimuon_1_M", "h_dimuon_1_M", 500, 0.005, 10.005) h_dimuon_1_M.SetLineColor(ROOT.kBlue) h_dimuon_1_M.SetLineWidth(2) h_dimuon_1_M.SetLineStyle(1) h_dimuon_1_pT = ROOT.TH1F("h_dimuon_1_pT", "h_dimuon_1_pT", 100, 0, 100) h_dimuon_1_pT.SetLineColor(ROOT.kBlue) h_dimuon_1_pT.SetLineWidth(2) h_dimuon_1_pT.SetLineStyle(1) h_dimuon_1_pZ = ROOT.TH1F("h_dimuon_1_pZ", "h_dimuon_1_pZ", 100, 0, 100) h_dimuon_1_pZ.SetLineColor(ROOT.kBlue) h_dimuon_1_pZ.SetLineWidth(2) h_dimuon_1_pZ.SetLineStyle(1) h_dimuon_1_Eta = ROOT.TH1F("h_dimuon_1_Eta", "h_dimuon_1_Eta",100,-5,5) h_dimuon_1_Eta.SetLineColor(ROOT.kBlue) h_dimuon_1_Eta.SetLineWidth(2) h_dimuon_1_Eta.SetLineStyle(1) h_dimuon_1_Phi = ROOT.TH1F("h_dimuon_1_Phi", "h_dimuon_1_Phi", 80,-4,4) h_dimuon_1_Phi.SetLineColor(ROOT.kBlue) h_dimuon_1_Phi.SetLineWidth(2) h_dimuon_1_Phi.SetLineStyle(1) h_dimuon_2_p = ROOT.TH1F("h_dimuon_2_p", "h_dimuon_2_p", 100, 0, 100) h_dimuon_2_p.SetLineColor(ROOT.kRed) h_dimuon_2_p.SetLineWidth(2) h_dimuon_2_p.SetLineStyle(1) h_dimuon_2_pT = ROOT.TH1F("h_dimuon_2_pT", "h_dimuon_2_pT", 100, 0, 100) h_dimuon_2_pT.SetLineColor(ROOT.kRed) h_dimuon_2_pT.SetLineWidth(2) h_dimuon_2_pT.SetLineStyle(1) h_dimuon_2_pZ = ROOT.TH1F("h_dimuon_2_pZ", "h_dimuon_2_pZ", 100, 0, 100) h_dimuon_2_pZ.SetLineColor(ROOT.kRed) h_dimuon_2_pZ.SetLineWidth(2) h_dimuon_2_pZ.SetLineStyle(1) h_dimuon_2_Eta = ROOT.TH1F("h_dimuon_2_Eta", "h_dimuon_2_Eta", 100,-5,5) h_dimuon_2_Eta.SetLineColor(ROOT.kRed) h_dimuon_2_Eta.SetLineWidth(2) h_dimuon_2_Eta.SetLineStyle(1) h_dimuon_2_Phi = ROOT.TH1F("h_dimuon_2_Phi", "h_dimuon_2_Phi", 80,-4,4) h_dimuon_2_Phi.SetLineColor(ROOT.kRed) h_dimuon_2_Phi.SetLineWidth(2) h_dimuon_2_Phi.SetLineStyle(1) ################################################################################ # BAM Functions ################################################################################ def plotOverflow(hist): name = hist.GetName() title = hist.GetTitle() nx = hist.GetNbinsX()+1 x1 = hist.GetBinLowEdge(1) bw = hist.GetBinWidth(nx) x2 = hist.GetBinLowEdge(nx)+bw htmp = ROOT.TH1F(name, title, nx, x1, x2) for i in range(1, nx): htmp.Fill(htmp.GetBinCenter(i), hist.GetBinContent(i)) htmp.Fill(hist.GetNbinsX()-1, hist.GetBinContent(0)) htmp.SetEntries(hist.GetEntries()) htmp.SetLineColor(hist.GetLineColor()) htmp.SetLineWidth(hist.GetLineWidth()) htmp.SetLineStyle(hist.GetLineStyle()) htmp.DrawNormalized("same") return def integral(hist): eachBinWidth = hist.GetBinWidth(hist.GetNbinsX()+1) #print "Begin Integral" #print eachBinWidth runningSum = 0 for i in range(0, hist.GetNbinsX()+1): area = eachBinWidth * hist.GetBinContent(i) runningSum = runningSum + area #print i #print area return runningSum def getEta(pz, p): output = atanh(pz/p) return output def scaleAxisY(hist, dummy): normFactor = hist.Integral() max = hist.GetBinContent(hist.GetMaximumBin()) / normFactor scale = 1.8 newMax = scale*max dummy.SetMaximum(newMax) def scaleAxisYcT(hist, dummy): normFactor = integral(hist) max = hist.GetBinContent(hist.GetMaximumBin()) / normFactor scale = 1.8 newMax = scale*max dummy.SetMaximum(newMax) ################################################################################ # Loop over events ################################################################################ nEvents = 0 isEvent = False nEventsOK = 0 for line in f: if line == '<event>\n': isEvent = True isEvent = True nEvents = nEvents + 1 nLinesInEvent = 0 nParticlesInEvent = 0 muons = [] dimuons = [] DimuonIndex1 = [] DimuonIndex2 = [] bamDimuons = [] FakeIndex1 = [] FakeIndex2 = [] FakeDimuons = [] lifetimes = [] higgs = [] neutralinos = [] darkNeutralinos = [] gammaDs = [] n1PlotCounter = 0 gammaDPlotCounter = 0 nDPlotCounter = 0 if nEvents > nExit: break continue if line == '</event>\n': isEvent = False continue if isEvent == True: nLinesInEvent = nLinesInEvent + 1 #*************************************************************************** # first line with common event information #*************************************************************************** if nLinesInEvent == 1: word_n = 0 # print "I", line for word in line.split(): word_n = word_n + 1 if word_n == 1: NUP = int(word) # number of particles in the event if word_n == 2: IDPRUP = int(word) # process type if word_n == 3: XWGTUP = float(word) # event weight if word_n == 4: SCALUP = float(word) # factorization scale Q if word_n == 5: AQEDUP = float(word) # the QED coupling alpha_em if word_n == 6: AQCDUP = float(word) # the QCD coupling alpha_s if word_n > 6: print "Warning! Wrong common event information", line #*************************************************************************** # line with particle information #*************************************************************************** if nLinesInEvent >= 2: nParticlesInEvent = nParticlesInEvent + 1 word_n = 0 # print "P", line for word in line.split(): word_n = word_n + 1 if word_n == 1: IDUP = int(word) # particle PDG identity code if word_n == 2: ISTUP = int(word) # status code if word_n == 3: MOTHUP1 = int(word) # position of the first mother of particle if word_n == 4: MOTHUP2 = int(word) # position of the last mother of particle if word_n == 5: ICOLUP1 = int(word) # tag for the colour flow info if word_n == 6: ICOLUP2 = int(word) # tag for the colour flow info if word_n == 7: PUP1 = float(word) # px in GeV if word_n == 8: PUP2 = float(word) # py in GeV if word_n == 9: PUP3 = float(word) # pz in GeV if word_n == 10: PUP4 = float(word) # E in GeV if word_n == 11: PUP5 = float(word) # m in GeV if word_n == 12: VTIMUP = float(word) # invariant lifetime ctau in mm if word_n == 13: SPINUP = float(word) # cosine of the angle between the spin vector of a particle and its three-momentum if word_n > 13: print "Warning! Wrong particle line", line if abs(IDUP) == muonID: if IDUP > 0: q = -1 if IDUP < 0: q = 1 v4 = ROOT.TLorentzVector(PUP1, PUP2, PUP3, PUP4) muons.append(( q, v4.Px(), v4.Py(), v4.Pz(), v4.E(), v4.M(), v4.Pt(), v4.Eta(), v4.Phi(), MOTHUP1 )) if abs(IDUP) == higgsID: if IDUP > 0: q = 0 if IDUP < 0: q = 0 vHiggs = ROOT.TLorentzVector(PUP1, PUP2, PUP3, PUP4) higgs.append((q, vHiggs.Px(), vHiggs.Py(), vHiggs.Pz(), vHiggs.E(), vHiggs.M(), vHiggs.Pt(), vHiggs.Eta(), vHiggs.Phi() )) h_higgs_pT.Fill( higgs[len(higgs)-1][6] ) h_higgs_M.Fill( higgs[len(higgs)-1][5] ) h_higgs_p.Fill( sqrt( higgs[len(higgs)-1][1]*higgs[len(higgs)-1][1] + higgs[len(higgs)-1][2]*higgs[len(higgs)-1][2] + higgs[len(higgs)-1][3]*higgs[len(higgs)-1][3] ) ) h_higgs_pZ.Fill( fabs(higgs[len(higgs)-1][3]) ) #h_higgs_Eta.Fill( higgs[len(higgs)-1][7] ) h_higgs_Phi.Fill( higgs[len(higgs)-1][8] ) if abs(IDUP) == n1ID: q = 0 vNeutralino = ROOT.TLorentzVector(PUP1, PUP2, PUP3, PUP4) neutralinos.append((q, vNeutralino.Px(), vNeutralino.Py(), vNeutralino.Pz(), vNeutralino.E(), vNeutralino.M(), vNeutralino.Pt(), vNeutralino.Eta(), vNeutralino.Phi() )) if len(neutralinos) == 2 and n1PlotCounter == 0: neutralinos_sorted_pT = sorted(neutralinos, key=itemgetter(6), reverse=True) neutralinos = neutralinos_sorted_pT h_n1_1_pT.Fill( neutralinos[0][6] ) h_n1_2_pT.Fill( neutralinos[1][6] ) h_n1_1_p.Fill( sqrt( neutralinos[0][1]*neutralinos[0][1] + neutralinos[0][2]*neutralinos[0][2] + neutralinos[0][3]*neutralinos[0][3] ) ) h_n1_2_p.Fill( sqrt( neutralinos[1][1]*neutralinos[1][1] + neutralinos[1][2]*neutralinos[1][2] + neutralinos[1][3]*neutralinos[1][3] ) ) h_n1_1_M.Fill( neutralinos[0][5] ) h_n1_1_M.Fill( neutralinos[1][5] ) h_n1_1_pZ.Fill( fabs(neutralinos[0][3]) ) h_n1_2_pZ.Fill( fabs(neutralinos[1][3]) ) h_n1_1_Eta.Fill( getEta(neutralinos[0][3],(sqrt( neutralinos[0][1]*neutralinos[0][1] + neutralinos[0][2]*neutralinos[0][2] + neutralinos[0][3]*neutralinos[0][3] ))) ) h_n1_1_Phi.Fill( neutralinos[0][8] ) h_n1_2_Eta.Fill( getEta(neutralinos[1][3], sqrt( neutralinos[1][1]*neutralinos[1][1] + neutralinos[1][2]*neutralinos[1][2] + neutralinos[1][3]*neutralinos[1][3] )) ) #print "PUP3, PZ, P, ETA:" #print neutralinos[0][7] #print neutralinos[0][3] #print (sqrt( neutralinos[0][1]*neutralinos[0][1] + neutralinos[0][2]*neutralinos[0][2] + neutralinos[0][3]*neutralinos[0][3] )) #print getEta(neutralinos[0][3],(sqrt( neutralinos[0][1]*neutralinos[0][1] + neutralinos[0][2]*neutralinos[0][2] + neutralinos[0][3]*neutralinos[0][3] ))) h_n1_2_Phi.Fill( neutralinos[1][8] ) n1PlotCounter = 1 if abs(IDUP) == nDID: q = 0 vDarkNeutralino = ROOT.TLorentzVector(PUP1, PUP2, PUP3, PUP4) darkNeutralinos.append((q, vDarkNeutralino.Px(), vDarkNeutralino.Py(), vDarkNeutralino.Pz(), vDarkNeutralino.E(), vDarkNeutralino.M(), vDarkNeutralino.Pt(), vDarkNeutralino.Eta(), vDarkNeutralino.Phi() )) if len(darkNeutralinos) == 2 and nDPlotCounter == 0: darkNeutralinos_sorted_pT = sorted(darkNeutralinos, key=itemgetter(6), reverse=True) darkNeutralinos = darkNeutralinos_sorted_pT h_nD_1_pT.Fill( darkNeutralinos[0][6] ) h_nD_2_pT.Fill( darkNeutralinos[1][6] ) h_nD_1_p.Fill( sqrt( darkNeutralinos[0][1]*darkNeutralinos[0][1] + darkNeutralinos[0][2]*darkNeutralinos[0][2] + darkNeutralinos[0][3]*darkNeutralinos[0][3] ) ) h_nD_2_p.Fill( sqrt( darkNeutralinos[1][1]*darkNeutralinos[1][1] + darkNeutralinos[1][2]*darkNeutralinos[1][2] + darkNeutralinos[1][3]*darkNeutralinos[1][3] ) ) h_nD_1_M.Fill( darkNeutralinos[0][5] ) h_nD_1_M.Fill( darkNeutralinos[1][5] ) h_nD_1_pZ.Fill( fabs(darkNeutralinos[0][3]) ) h_nD_2_pZ.Fill( fabs(darkNeutralinos[1][3]) ) h_nD_1_Eta.Fill( getEta(darkNeutralinos[0][3], sqrt( darkNeutralinos[0][1]*darkNeutralinos[0][1] + darkNeutralinos[0][2]*darkNeutralinos[0][2] + darkNeutralinos[0][3]*darkNeutralinos[0][3] )) ) h_nD_1_Phi.Fill( darkNeutralinos[0][8] ) h_nD_2_Eta.Fill( getEta(darkNeutralinos[1][3], sqrt( darkNeutralinos[1][1]*darkNeutralinos[1][1] + darkNeutralinos[1][2]*darkNeutralinos[1 ][2] + darkNeutralinos[1][3]*darkNeutralinos[1][3] )) ) h_nD_2_Phi.Fill( darkNeutralinos[1][8] ) vectorSum =( ( darkNeutralinos[0][1] + darkNeutralinos[1][1] )*( darkNeutralinos[0][1] + darkNeutralinos[1][1] ) ) + ( (darkNeutralinos[0][2] + darkNeutralinos[1][2])*(darkNeutralinos[0][2] + darkNeutralinos[1][2]) ) Etmiss.Fill(vectorSum) nDPlotCounter = 1 if abs(IDUP) == gammaDID: q = 0 vgammaDs = ROOT.TLorentzVector(PUP1, PUP2, PUP3, PUP4) gammaDs.append(( q, vgammaDs.Px(), vgammaDs.Py(), vgammaDs.Pz(), vgammaDs.E(), vgammaDs.M(), vgammaDs.Pt(), vgammaDs.Eta(), vgammaDs.Phi())) h_gammaD_cT.Fill( VTIMUP ) pmom = sqrt( vgammaDs.Px()*vgammaDs.Px() + vgammaDs.Py()*vgammaDs.Py() + vgammaDs.Pz()*vgammaDs.Pz() ) beta = pmom/(sqrt(vgammaDs.M()*vgammaDs.M() + pmom*pmom )) lorentz = 1/sqrt( 1 - beta*beta ) h_gammaD_cT_lab.Fill( lorentz*VTIMUP ) pmomxy = sqrt( vgammaDs.Px()*vgammaDs.Px() + vgammaDs.Py()*vgammaDs.Py() ) betaxy = pmomxy/sqrt( vgammaDs.M()*vgammaDs.M() + pmomxy*pmomxy ) lorentzxy = 1/sqrt(1- betaxy*betaxy) h_gammaD_cT_XY_lab.Fill( lorentzxy*VTIMUP ) pmomz = sqrt( vgammaDs.Pz()*vgammaDs.Pz() ) betaz = pmomz/sqrt( vgammaDs.M()*vgammaDs.M() + pmomz*pmomz ) lorentzZ = 1/sqrt(1 - betaz*betaz ) h_gammaD_cT_Z_lab.Fill( lorentzZ * VTIMUP ) lifetimes.append( (VTIMUP, vgammaDs.Px(), vgammaDs.Py(), vgammaDs.Pz(), vgammaDs.Pt(), vgammaDs.M() )) if len(gammaDs) == 2 and gammaDPlotCounter == 0: gammaDs_sorted_pT = sorted(gammaDs, key=itemgetter(6), reverse=True) gammaDs = gammaDs_sorted_pT lifetimes_sorted_pT = sorted(lifetimes, key=itemgetter(4), reverse=True) lifetimes = lifetimes_sorted_pT h_gammaD_1_cT.Fill( lifetimes[0][0] ) pmom = sqrt( lifetimes[0][1]*lifetimes[0][1] + lifetimes[0][2]*lifetimes[0][2] + lifetimes[0][3]*lifetimes[0][3] ) beta = pmom/(sqrt(lifetimes[0][5]*lifetimes[0][5] + pmom*pmom )) lorentz = 1/sqrt( 1 - beta*beta ) h_gammaD_1_cT_lab.Fill( lorentz*lifetimes[0][0] ) #print "pmom, beta, lorentz" #print pmom #print beta #print lorentz #print lorentz*lifetimes[0][0] pmomxy = sqrt( lifetimes[0][1]*lifetimes[0][1] + lifetimes[0][2]*lifetimes[0][2] ) betaxy = pmomxy/sqrt( lifetimes[0][5]*lifetimes[0][5] + pmomxy*pmomxy ) lorentzxy = 1/sqrt(1- betaxy*betaxy) h_gammaD_1_cT_XY_lab.Fill( lorentzxy*lifetimes[0][0] ) pmomz = sqrt( lifetimes[0][3]*lifetimes[0][3] ) betaz = pmomz/sqrt( lifetimes[0][5]*lifetimes[0][5] + pmomz*pmomz ) lorentzZ = 1/sqrt(1 - betaz*betaz ) h_gammaD_1_cT_Z_lab.Fill( lorentzZ * lifetimes[0][0] ) h_gammaD_2_cT.Fill( lifetimes[1][0] ) pmom = sqrt( lifetimes[1][1]*lifetimes[1][1] + lifetimes[1][2]*lifetimes[1][2] + lifetimes[1][3]*lifetimes[1][3] ) beta = pmom/(sqrt(lifetimes[1][5]*lifetimes[1][5] + pmom*pmom )) lorentz = 1/sqrt( 1 - beta*beta ) h_gammaD_2_cT_lab.Fill( lorentz*lifetimes[1][0] ) pmomxy = sqrt( lifetimes[1][1]*lifetimes[1][1] + lifetimes[1][2]*lifetimes[1][2] ) betaxy = pmomxy/sqrt( lifetimes[1][5]*lifetimes[1][5] + pmomxy*pmomxy ) lorentzxy = 1/sqrt(1- betaxy*betaxy) h_gammaD_2_cT_XY_lab.Fill( lorentzxy*lifetimes[1][0] ) pmomz = sqrt( lifetimes[1][3]*lifetimes[1][3] ) betaz = pmomz/sqrt( lifetimes[1][5]*lifetimes[1][5] + pmomz*pmomz ) lorentzZ = 1/sqrt(1 - betaz*betaz ) h_gammaD_2_cT_Z_lab.Fill( lorentzZ * lifetimes[1][0] ) h_gammaD_1_pT.Fill( gammaDs[0][6] ) h_gammaD_2_pT.Fill( gammaDs[1][6] ) h_gammaD_1_p.Fill( sqrt( gammaDs[0][1]*gammaDs[0][1] + gammaDs[0][2]*gammaDs[0][2] + gammaDs[0][3]*gammaDs[0][3] ) ) h_gammaD_2_p.Fill( sqrt( gammaDs[1][1]*gammaDs[1][1] + gammaDs[1][2]*gammaDs[1][2] + gammaDs[1][3]*gammaDs[1][3] ) ) h_gammaD_1_M.Fill( gammaDs[0][5] ) h_gammaD_1_M.Fill( gammaDs[1][5] ) h_gammaD_1_pZ.Fill( fabs(gammaDs[0][3]) ) h_gammaD_2_pZ.Fill( fabs(gammaDs[1][3]) ) h_gammaD_1_Eta.Fill( getEta(gammaDs[0][3], sqrt( gammaDs[0][1]*gammaDs[0][1] + gammaDs[0][2]*gammaDs[0][2] + gammaDs[0][3]*gammaDs[0][3] ) ) ) h_gammaD_1_Phi.Fill( gammaDs[0][8] ) h_gammaD_2_Eta.Fill( getEta(gammaDs[1][3], sqrt( gammaDs[1][1]*gammaDs[1][1] + gammaDs[1][2]*gammaDs[1][2] + gammaDs[1][3]*gammaDs[1][3] ) ) ) h_gammaD_2_Phi.Fill( gammaDs[1][8] ) gammaDPlotCounter = 1 if len(muons) == 4: muons_sorted_pT = sorted(muons, key=itemgetter(6), reverse=True) muons = muons_sorted_pT h_muon_pT_0.Fill( muons[0][6] ) h_muon_pT_1.Fill( muons[1][6] ) h_muon_pT_2.Fill( muons[2][6] ) h_muon_pT_3.Fill( muons[3][6] ) h_muon_eta_0.Fill( muons[0][7] ) h_muon_eta_1.Fill( muons[1][7] ) h_muon_eta_2.Fill( muons[2][7] ) h_muon_eta_3.Fill( muons[3][7] ) h_muon_phi_0.Fill( muons[0][8] ) h_muon_phi_1.Fill( muons[1][8] ) h_muon_phi_2.Fill( muons[2][8] ) h_muon_phi_3.Fill( muons[3][8] ) h_muon_p_0.Fill( sqrt( muons[0][1]*muons[0][1] + muons[0][2]*muons[0][2] + muons[0][3]*muons[0][3] ) ) h_muon_p_1.Fill( sqrt( muons[1][1]*muons[1][1] + muons[1][2]*muons[1][2] + muons[1][3]*muons[1][3] ) ) h_muon_p_2.Fill( sqrt( muons[2][1]*muons[2][1] + muons[2][2]*muons[2][2] + muons[2][3]*muons[2][3] ) ) h_muon_p_3.Fill( sqrt( muons[3][1]*muons[3][1] + muons[3][2]*muons[3][2] + muons[3][3]*muons[3][3] ) ) h_muon_pZ_0.Fill( muons[0][3] ) h_muon_pZ_1.Fill( muons[1][3] ) h_muon_pZ_2.Fill( muons[2][3] ) h_muon_pZ_3.Fill( muons[3][3] ) parent = muons[1][9] #this is an arbitrary choice to find real dimuons for i in range(0, len(muons) ): if parent == muons[i][9]: DimuonIndex1.append(i) else: DimuonIndex2.append(i) px1 = muons[DimuonIndex1[0]][1] + muons[DimuonIndex1[1]][1] py1 = muons[DimuonIndex1[0]][2] + muons[DimuonIndex1[1]][2] pz1 = muons[DimuonIndex1[0]][3] + muons[DimuonIndex1[1]][3] e1 = muons[DimuonIndex1[0]][4] + muons[DimuonIndex1[1]][4] px2 = muons[DimuonIndex2[0]][1] + muons[DimuonIndex2[1]][1] py2 = muons[DimuonIndex2[0]][2] + muons[DimuonIndex2[1]][2] pz2 = muons[DimuonIndex2[0]][3] + muons[DimuonIndex2[1]][3] e2 = muons[DimuonIndex2[0]][4] + muons[DimuonIndex2[1]][4] bamV4_1 = ROOT.TLorentzVector(px1, py1, pz1, e1) bamV4_2 = ROOT.TLorentzVector(px2, py2, pz2, e2) bamDimuons.append(( bamV4_1.Px(), bamV4_1.Py(), bamV4_1.Pz(), bamV4_1.E(), bamV4_1.M(), bamV4_1.Pt(), bamV4_1.Eta(), bamV4_1.Phi() )) bamDimuons.append(( bamV4_2.Px(), bamV4_2.Py(), bamV4_2.Pz(), bamV4_2.E(), bamV4_2.M(), bamV4_2.Pt(), bamV4_2.Eta(), bamV4_2.Phi() )) bamDimuons_Sorted_M = sorted(bamDimuons, key=itemgetter(4), reverse=True) bamDimuons = bamDimuons_Sorted_M h_m1_vs_m2.Fill(bamDimuons[0][4],bamDimuons[1][4]) h_m1.Fill(bamDimuons[0][4]) h_m2.Fill(bamDimuons[1][4]) bamDimuons_Sorted_pT = sorted(bamDimuons, key=itemgetter(5), reverse=True) bamDimuons = bamDimuons_Sorted_pT h_dimuon_1_pT.Fill(bamDimuons[0][5]) h_dimuon_2_pT.Fill(bamDimuons[1][5]) h_dimuon_1_pZ.Fill(bamDimuons[0][2]) h_dimuon_2_pZ.Fill(bamDimuons[1][2]) h_dimuon_1_p.Fill(sqrt( bamDimuons[0][0]*bamDimuons[0][0] + bamDimuons[0][1]*bamDimuons[0][1] + bamDimuons[0][2]*bamDimuons[0][2] )) h_dimuon_2_p.Fill(sqrt( bamDimuons[1][0]*bamDimuons[1][0] + bamDimuons[1][1]*bamDimuons[1][1] + bamDimuons[1][2]*bamDimuons[1][2] )) h_dimuon_1_Eta.Fill(bamDimuons[0][6]) h_dimuon_2_Eta.Fill(bamDimuons[1][6]) h_dimuon_1_Phi.Fill(bamDimuons[0][7]) h_dimuon_2_Phi.Fill(bamDimuons[1][7]) parent = muons[1][9] #this is an arbitrary choice to find the fake dimuons charge = muons[1][0] for i in range(0, len(muons) ): if parent != muons[i][9] and charge != muons[i][0]: FakeIndex1.append(i) FakeIndex1.append(1) for j in range(0, len(muons) ): if j != FakeIndex1[0] and j != FakeIndex1[1]: FakeIndex2.append(j) Fakepx1 = muons[FakeIndex1[0]][1] + muons[FakeIndex1[1]][1] Fakepy1 = muons[FakeIndex1[0]][2] + muons[FakeIndex1[1]][2] Fakepz1 = muons[FakeIndex1[0]][3] + muons[FakeIndex1[1]][3] Fakee1 = muons[FakeIndex1[0]][4] + muons[FakeIndex1[1]][4] Fakepx2 = muons[FakeIndex2[0]][1] + muons[FakeIndex2[1]][1] Fakepy2 = muons[FakeIndex2[0]][2] + muons[FakeIndex2[1]][2] Fakepz2 = muons[FakeIndex2[0]][3] + muons[FakeIndex2[1]][3] Fakee2 = muons[FakeIndex2[0]][4] + muons[FakeIndex2[1]][4] fakeV4_1 = ROOT.TLorentzVector(Fakepx1, Fakepy1, Fakepz1, Fakee1) fakeV4_2 = ROOT.TLorentzVector(Fakepx2, Fakepy2, Fakepz2, Fakee2) FakeDimuons.append(( fakeV4_1.Px(), fakeV4_1.Py(), fakeV4_1.Pz(), fakeV4_1.E(), fakeV4_1.M(), fakeV4_1.Pt(), fakeV4_1.Eta(), fakeV4_1.Phi() )) FakeDimuons.append(( fakeV4_2.Px(), fakeV4_2.Py(), fakeV4_2.Pz(), fakeV4_2.E(), fakeV4_2.M(), fakeV4_2.Pt(), fakeV4_2.Eta(), fakeV4_2.Phi() )) h_dimuon_m_fake_log_0.Fill(FakeDimuons[0][4]) h_dimuon_m_fake_log_0.Fill(FakeDimuons[1][4]) h_dimuon_m_fake_0.Fill(FakeDimuons[0][4]) h_dimuon_m_fake_0.Fill(FakeDimuons[1][4]) # is1SelMu17 = False # for i in range(0, len(muons) ): # if muons[i][6] >= 17. and abs(muons[i][7]) <= 0.9: is1SelMu17 = True # # is4SelMu8 = False # nSelMu8 = 0 # for i in range(0, len(muons) ): # if muons[i][6] >= 8. and abs(muons[i][7]) <= 2.4: nSelMu8 = nSelMu8 + 1 # if nSelMu8 == 4: is4SelMu8 = True # # if is1SelMu17 and is4SelMu8: # for i in range(0, len(muons) ): # for j in range(i+1, len(muons) ): # if muons[i][0] * muons[j][0] < 0: # px = muons[i][1] + muons[j][1] # py = muons[i][2] + muons[j][2] # pz = muons[i][3] + muons[j][3] # E = muons[i][4] + muons[j][4] # v4 = ROOT.TLorentzVector(px, py, pz, E) # dimuons.append(( i, j, v4.Px(), v4.Py(), v4.Pz(), v4.E(), v4.M(), v4.Pt(), v4.Eta(), v4.Phi() )) # dimuons_sorted_M = sorted(dimuons, key=itemgetter(6), reverse=True) # dimuons = dimuons_sorted_M # # print "Dimuons:", dimuons # h_dimuon_m_0.Fill( dimuons[0][6] ) # h_dimuon_m_1.Fill( dimuons[1][6] ) # h_dimuon_m_2.Fill( dimuons[2][6] ) # h_dimuon_m_3.Fill( dimuons[3][6] ) # # h_dimuon_m_log_0.Fill( dimuons[0][6] ) # h_dimuon_m_log_1.Fill( dimuons[1][6] ) # h_dimuon_m_log_2.Fill( dimuons[2][6] ) # h_dimuon_m_log_3.Fill( dimuons[3][6] ) # # #print dimuons[0][6] # #print float(mass_GammaD_Legend) # #if dimuons[0][6] > float(mass_GammaD_Legend): print "fake" # #if dimuons[0][6] <= float(mass_GammaD_Legend): print "real" # if dimuons[0][6] > float(mass_GammaD_Legend): h_dimuon_m_real_fake_1.Fill(dimuons[0][6]) # if dimuons[0][6] <= float(mass_GammaD_Legend): h_dimuon_m_real_fake_0.Fill(dimuons[0][6]) # if dimuons[1][6] > float(mass_GammaD_Legend): h_dimuon_m_real_fake_1.Fill(dimuons[1][6]) # if dimuons[1][6] <= float(mass_GammaD_Legend): h_dimuon_m_real_fake_0.Fill(dimuons[1][6]) # if dimuons[2][6] > float(mass_GammaD_Legend): h_dimuon_m_real_fake_1.Fill(dimuons[2][6]) # if dimuons[2][6] <= float(mass_GammaD_Legend): h_dimuon_m_real_fake_0.Fill(dimuons[2][6]) # if dimuons[3][6] > float(mass_GammaD_Legend): h_dimuon_m_real_fake_1.Fill(dimuons[3][6]) # if dimuons[3][6] <= float(mass_GammaD_Legend): h_dimuon_m_real_fake_0.Fill(dimuons[3][6]) # # if dimuons[0][6] > float(mass_GammaD_Legend): h_dimuon_m_real_fake_log_1.Fill(dimuons[0][6]) # if dimuons[0][6] <= float(mass_GammaD_Legend): h_dimuon_m_real_fake_log_0.Fill(dimuons[0][6]) # if dimuons[1][6] > float(mass_GammaD_Legend): h_dimuon_m_real_fake_log_1.Fill(dimuons[1][6]) # if dimuons[1][6] <= float(mass_GammaD_Legend): h_dimuon_m_real_fake_log_0.Fill(dimuons[1][6]) # if dimuons[2][6] > float(mass_GammaD_Legend): h_dimuon_m_real_fake_log_1.Fill(dimuons[2][6]) # if dimuons[2][6] <= float(mass_GammaD_Legend): h_dimuon_m_real_fake_log_0.Fill(dimuons[2][6]) # if dimuons[3][6] > float(mass_GammaD_Legend): h_dimuon_m_real_fake_log_1.Fill(dimuons[3][6]) # if dimuons[3][6] <= float(mass_GammaD_Legend): h_dimuon_m_real_fake_log_0.Fill(dimuons[3][6]) # dimuons5GeV = [] # for i in range(0, len(dimuons)): # # select only dimuons with invariant mass less than 5 GeV # if dimuons[i][6] < 5.0: dimuons5GeV.append( dimuons[i] ) # # nDimuons5GeV = len(dimuons5GeV) # # is2DiMuons = False # nMuJetsContainMu17 = 0 # m_threshold_Mu17_pT = 17.0 # m_threshold_Mu17_eta = 0.9 # m_randomSeed = 1234 # if nDimuons5GeV == 2: # # select only dimuons that do NOT share muons # if dimuons5GeV[0][0] != dimuons5GeV[1][0] and dimuons5GeV[0][0] != dimuons5GeV[1][1] and dimuons5GeV[0][1] != dimuons5GeV[1][1] and dimuons5GeV[0][1] != dimuons5GeV[1][0]: # isDimuon0ContainMu17 = False # if ( muons[ dimuons5GeV[0][0] ][6] > m_threshold_Mu17_pT and muons[ dimuons5GeV[0][0] ][7] < m_threshold_Mu17_eta ) or ( muons[ dimuons5GeV[0][1] ][6] > m_threshold_Mu17_pT and muons[ dimuons5GeV[0][1] ][7] < m_threshold_Mu17_eta ): # isDimuon0ContainMu17 = True # if ( muons[ dimuons5GeV[1][0] ][6] > m_threshold_Mu17_pT and muons[ dimuons5GeV[1][0] ][7] < m_threshold_Mu17_eta ) or ( muons[ dimuons5GeV[1][1] ][6] > m_threshold_Mu17_pT and muons[ dimuons5GeV[1][1] ][7] < m_threshold_Mu17_eta ): # isDimuon1ContainMu17 = True # if isDimuon0ContainMu17 == True and isDimuon1ContainMu17 == False: # is2DiMuons = True # muJetC = dimuons5GeV[0] # muJetF = dimuons5GeV[1] # elif isDimuon0ContainMu17 == False and isDimuon1ContainMu17 == True: # is2DiMuons = True # muJetC = dimuons5GeV[1] # muJetF = dimuons5GeV[0] # elif isDimuon0ContainMu17 == True and isDimuon1ContainMu17 == True: # is2DiMuons = True # if(ROOT.TRandom3(m_randomSeed).Integer(2) == 0): # muJetC = dimuons5GeV[0] # muJetF = dimuons5GeV[1] # else: # muJetC = dimuons5GeV[1] # muJetF = dimuons5GeV[0] # else: # is2DiMuons = False # # is2DiMuonsMassOK = False # if is2DiMuons: # massC = muJetC[6] # massF = muJetF[6] # h_m1_vs_m2.Fill(massC, massF) # h_m1.Fill( massC ) # h_m2.Fill( massF ) # if abs(massC-massF) < (0.13 + 0.065*(massC+massF)/2.0): # is2DiMuonsMassOK = True # # if is2DiMuonsMassOK == True: # nEventsOK = nEventsOK + 1 print "nEvents = ", nEvents print "nEventsOK = ", nEventsOK ################################################################################ # Draw histograms ################################################################################ Etmiss_dummy.Draw() Etmiss.DrawNormalized("same") scaleAxisY(Etmiss,Etmiss_dummy) info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_EtMiss.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_EtMiss.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_EtMiss.C") h_higgs_pT_dummy.Draw() h_higgs_pT.DrawNormalized("same") info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_pT.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_pT.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_pT.C") h_higgs_pZ_dummy.Draw() #h_higgs_pZ.DrawNormalized("same") plotOverflow(h_higgs_pZ) scaleAxisY(h_higgs_pZ,h_higgs_pZ_dummy) info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_pZ.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_pZ.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_pZ.C") #h_higgs_Eta_dummy.Draw() #h_higgs_Eta.DrawNormalized("same") #info.Draw() #txtHeader.Draw() #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_Eta.pdf") #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_Eta.png") #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_Eta.png") h_higgs_Phi_dummy.Draw() h_higgs_Phi.DrawNormalized("same") #scaleAxisY(h_higgs_Phi,h_higgs_Phi_dummy) info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_Phi.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_Phi.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_Phi.C") cnv.SetLogx() h_higgs_M_dummy.Draw() h_higgs_M_dummy.SetNdivisions(10) h_higgs_M_dummy.GetXaxis().SetMoreLogLabels() h_higgs_M_dummy.Draw("same") h_higgs_M.DrawNormalized("same") h_higgs_M.GetXaxis().SetMoreLogLabels() h_higgs_M.DrawNormalized("same") info.Draw() txtHeader.Draw() h_higgs_M_dummy.SetNdivisions(10) h_higgs_M_dummy.GetXaxis().SetMoreLogLabels() h_higgs_M_dummy.Draw("same") h_higgs_M.DrawNormalized("same") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_m.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_m.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_m.C") cnv.SetLogx(0) h_higgs_p_dummy.Draw() #h_higgs_p.DrawNormalized("same") plotOverflow(h_higgs_p) scaleAxisY(h_higgs_p,h_higgs_p_dummy) info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_p.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_p.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_Higgs_p.C") h_n1_1_pT_dummy.Draw() h_n1_1_pT.DrawNormalized("same") h_n1_2_pT.DrawNormalized("same") scaleAxisY(h_n1_1_pT, h_n1_1_pT_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_n1_1_pT,"1st neutralino","L") legend.AddEntry(h_n1_2_pT,"2nd neutralino","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_pT.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_pT.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_pT.C") h_n1_1_pZ_dummy.Draw() plotOverflow(h_n1_1_pZ) plotOverflow(h_n1_2_pZ) scaleAxisY(h_n1_1_pZ,h_n1_1_pZ_dummy) #h_n1_1_pZ.DrawNormalized("same") #h_n1_2_pZ.DrawNormalized("same") legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_n1_1_pZ,"1st neutralino","L") legend.AddEntry(h_n1_2_pZ,"2nd neutralino","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_pZ.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_pZ.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_pZ.C") h_n1_1_Eta_dummy.Draw() h_n1_1_Eta.DrawNormalized("same") h_n1_2_Eta.DrawNormalized("same") scaleAxisY(h_n1_1_Eta,h_n1_1_Eta_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_n1_1_Eta,"1st neutralino","L") legend.AddEntry(h_n1_2_Eta,"2nd neutralino","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_Eta.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_Eta.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_Eta.C") h_n1_1_Phi_dummy.Draw() h_n1_1_Phi.DrawNormalized("same") h_n1_2_Phi.DrawNormalized("same") scaleAxisY(h_n1_1_Phi,h_n1_1_Phi_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_n1_1_Phi,"1st neutralino","L") legend.AddEntry(h_n1_2_Phi,"2nd neutralino","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_Phi.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_Phi.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_Phi.C") h_n1_1_p_dummy.Draw() plotOverflow(h_n1_1_p) plotOverflow(h_n1_2_p) scaleAxisY(h_n1_1_p,h_n1_1_p_dummy) #h_n1_1_p.DrawNormalized("same") #h_n1_2_p.DrawNormalized("same") legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_n1_1_p,"1st neutralino","L") legend.AddEntry(h_n1_2_p,"2nd neutralino","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_p.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_p.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_p.C") h_n1_1_M_dummy.Draw() h_n1_1_M.DrawNormalized("same") #h_n1_2_M.DrawNormalized("same") #legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) #legend.SetFillColor(ROOT.kWhite) #legend.SetFillStyle(0) #legend.SetBorderSize(0) #legend.SetTextFont(42) #legend.SetTextSize(0.02777778) #legend.SetMargin(0.13) #legend.AddEntry(h_n1_1_M,"1st neutralino (leading p_{T})","L") #legend.AddEntry(h_n1_2_M,"2nd neutralino","L") #legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_M.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_M.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_n1_M.C") h_nD_1_pT_dummy.Draw() #h_nD_1_pT.DrawNormalized("same") #h_nD_2_pT.DrawNormalized("same") plotOverflow(h_nD_1_pT) plotOverflow(h_nD_2_pT) scaleAxisY(h_nD_2_pT,h_nD_1_pT) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_nD_1_pT,"1st n_{D} (leading p_{T})","L") legend.AddEntry(h_nD_2_pT,"2nd n_{D}","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_pT.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_pT.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_pT.C") h_nD_1_pZ_dummy.Draw() h_nD_1_pZ.DrawNormalized("same") h_nD_2_pZ.DrawNormalized("same") scaleAxisY(h_nD_2_pZ,h_nD_1_pZ_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_nD_1_pZ,"1st n_{D} (leading p_{T})","L") legend.AddEntry(h_nD_2_pZ,"2nd n_{D}","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_pZ.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_pZ.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_pZ.C") h_nD_1_Eta_dummy.Draw() h_nD_1_Eta.DrawNormalized("same") h_nD_2_Eta.DrawNormalized("same") scaleAxisY(h_nD_1_Eta,h_nD_1_Eta_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_nD_1_Eta,"1st n_{D} (leading p_{T})","L") legend.AddEntry(h_nD_2_Eta,"2nd n_{D}","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_Eta.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_Eta.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_Eta.C") h_nD_1_Phi_dummy.Draw() h_nD_1_Phi.DrawNormalized("same") h_nD_2_Phi.DrawNormalized("same") scaleAxisY(h_nD_1_Phi,h_nD_1_Phi_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_nD_1_Phi,"1st n_{D} (leading p_{T})","L") legend.AddEntry(h_nD_2_Phi,"2nd n_{D}","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_Phi.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_Phi.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_Phi.C") h_nD_1_p_dummy.Draw() h_nD_1_p.DrawNormalized("same") h_nD_2_p.DrawNormalized("same") scaleAxisY(h_nD_2_p,h_nD_1_p_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_nD_1_p,"1st n_{D} (leading p_{T})","L") legend.AddEntry(h_nD_2_p,"2nd n_{D}","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_p.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_p.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_p.C") h_nD_1_M_dummy.Draw() h_nD_1_M.DrawNormalized("same") #h_nD_2_M.DrawNormalized("same") #legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) #legend.SetFillColor(ROOT.kWhite) #legend.SetFillStyle(0) #legend.SetBorderSize(0) #legend.SetTextFont(42) #legend.SetTextSize(0.02777778) #legend.SetMargin(0.13) #legend.AddEntry(h_nD_1_M,"1st n_{D} (leading p_{T})","L") #legend.AddEntry(h_nD_2_M,"2nd n_{D}","L") #legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_M.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_M.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_nD_M.C") h_gammaD_cT_dummy.Draw() normConstant = integral(h_gammaD_cT) #print normConstant h_gammaD_cT.Scale(1/normConstant) h_gammaD_cT.Draw("same") scaleAxisYcT(h_gammaD_cT,h_gammaD_cT_dummy) funct = ROOT.TF1("funct","exp(-x/"+ lifetime_GammaD_Legend +")/("+ lifetime_GammaD_Legend + "*(1 - exp(-" + str(cTlim) + "/" + lifetime_GammaD_Legend + ")))",cTlow,cTlim) funct.SetNpx(10000) funct.Draw("same") h_gammaD_cT.SetTitleOffset(1.5, "Y") h_gammaD_cT.SetXTitle("c#tau of #gamma_{D} [mm]") h_gammaD_cT.SetYTitle("Normalized Fraction of events") h_gammaD_cT.SetTitleSize(0.05,"Y") info.Draw() txtHeader.Draw() eqn = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) eqn.SetFillColor(ROOT.kWhite) eqn.SetFillStyle(0) eqn.SetBorderSize(0) eqn.SetTextFont(42) eqn.SetTextSize(0.02777778) eqn.SetMargin(0.13) eqn.AddEntry(funct, "#frac{e^{-x/"+ lifetime_GammaD_Legend +"}}{"+ lifetime_GammaD_Legend + " (1 - e^{-" + str(cTlim) + "/" + lifetime_GammaD_Legend + "})}", "L") eqn.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_cT.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_cT.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_cT.C") h_gammaD_cT_lab_dummy.Draw() normConstant = integral(h_gammaD_cT_lab) h_gammaD_cT_lab.Scale(1/normConstant) h_gammaD_cT_lab.Draw("same") scaleAxisYcT(h_gammaD_cT_lab,h_gammaD_cT_lab_dummy) #h_gammaD_cT_lab.DrawNormalized("same") #myfit = ROOT.TF1("myfit", "[0]*exp(-x/[1])", 0, 10) #myfit.SetParName(0,"C") #myfit.SetParName(1,"L") #myfit.SetParameter(0,1) #myfit.SetParameter(1,1) #h_gammaD_cT_lab.Fit("myfit").Draw("same") h_gammaD_cT_lab.SetTitleOffset(1.5, "Y") h_gammaD_cT_lab.SetXTitle("L of #gamma_{D} [mm]") h_gammaD_cT_lab.SetYTitle("Events") info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L.C") h_gammaD_cT_XY_lab_dummy.Draw() normConstant = integral(h_gammaD_cT_XY_lab) h_gammaD_cT_XY_lab.Scale(1/normConstant) h_gammaD_cT_XY_lab.Draw("same") scaleAxisYcT(h_gammaD_cT_XY_lab,h_gammaD_cT_XY_lab_dummy) #h_gammaD_cT_XY_lab.DrawNormalized("same") #myfit = ROOT.TF1("myfit", "[0]*exp(-x/[1])", 0, 10) #myfit.SetParName(0,"C") #myfit.SetParName(1,"L_{xy}") #myfit.SetParameter(0,1) #myfit.SetParameter(1,1) #h_gammaD_cT_XY_lab.Fit("myfit").Draw("same") h_gammaD_cT_XY_lab.SetTitleOffset(1.5, "Y") h_gammaD_cT_XY_lab.SetXTitle("L_{xy} of #gamma_{D} [mm]") h_gammaD_cT_XY_lab.SetYTitle("Events") info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L_XY.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L_XY.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L_XY.C") h_gammaD_cT_Z_lab_dummy.Draw() normConstant = integral(h_gammaD_cT_Z_lab) h_gammaD_cT_Z_lab.Scale(1/normConstant) h_gammaD_cT_Z_lab.Draw("same") scaleAxisYcT(h_gammaD_cT_Z_lab,h_gammaD_cT_Z_lab_dummy) #h_gammaD_cT_Z_lab.DrawNormalized("same") #myfit = ROOT.TF1("myfit", "[0]*exp(-x/[1])", 0, 10) #myfit.SetParName(0,"C") #myfit.SetParName(1,"L_{z}") #myfit.SetParameter(0,1) #myfit.SetParameter(1,1) #h_gammaD_cT_Z_lab.Fit("myfit").Draw("same") h_gammaD_cT_Z_lab.SetTitleOffset(1.5, "Y") h_gammaD_cT_Z_lab.SetXTitle("L_{z} of #gamma_{D} [mm]") h_gammaD_cT_Z_lab.SetYTitle("Events") info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L_Z.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L_Z.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_L_Z.C") h_gammaD_1_cT_dummy.Draw() normConstant = integral(h_gammaD_1_cT) h_gammaD_1_cT.Scale(1/normConstant) h_gammaD_1_cT.Draw("same") normConstant2 = integral(h_gammaD_2_cT) h_gammaD_2_cT.Scale(1/normConstant2) h_gammaD_2_cT.Draw("same") scaleAxisYcT(h_gammaD_2_cT,h_gammaD_1_cT_dummy) #h_gammaD_1_cT.DrawNormalized("same") #h_gammaD_2_cT.DrawNormalized("same") legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_cT,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_cT,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT.C") h_gammaD_1_cT_lab_dummy.Draw() normConstant = integral(h_gammaD_1_cT_lab) h_gammaD_1_cT_lab.Scale(1/normConstant) h_gammaD_1_cT_lab.Draw("same") normConstant2 = integral(h_gammaD_2_cT_lab) h_gammaD_2_cT_lab.Scale(1/normConstant2) h_gammaD_2_cT_lab.Draw("same") scaleAxisYcT(h_gammaD_2_cT_lab,h_gammaD_1_cT_lab_dummy) #h_gammaD_1_cT_lab.DrawNormalized("same") #h_gammaD_2_cT_lab.DrawNormalized("same") legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_cT_lab,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_cT_lab,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_lab.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_lab.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_lab.C") h_gammaD_1_cT_XY_lab_dummy.Draw() normConstant = integral(h_gammaD_1_cT_XY_lab) h_gammaD_1_cT_XY_lab.Scale(1/normConstant) h_gammaD_1_cT_XY_lab.Draw("same") normConstant2 = integral(h_gammaD_2_cT_XY_lab) h_gammaD_2_cT_XY_lab.Scale(1/normConstant2) h_gammaD_2_cT_XY_lab.Draw("same") scaleAxisYcT(h_gammaD_2_cT_XY_lab,h_gammaD_1_cT_XY_lab_dummy) #h_gammaD_1_cT_XY_lab.DrawNormalized("same") #h_gammaD_2_cT_XY_lab.DrawNormalized("same") legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_cT_XY_lab,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_cT_XY_lab,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_XY_lab.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_XY_lab.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_XY_lab.C") h_gammaD_1_cT_Z_lab_dummy.Draw() normConstant = integral(h_gammaD_1_cT_Z_lab) h_gammaD_1_cT_Z_lab.Scale(1/normConstant) h_gammaD_1_cT_Z_lab.Draw("same") normConstant2 = integral(h_gammaD_2_cT_Z_lab) h_gammaD_2_cT_Z_lab.Scale(1/normConstant2) h_gammaD_2_cT_Z_lab.Draw("same") scaleAxisYcT(h_gammaD_2_cT_Z_lab,h_gammaD_1_cT_Z_lab_dummy) #h_gammaD_1_cT_Z_lab.DrawNormalized("same") #h_gammaD_2_cT_Z_lab.DrawNormalized("same") legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_cT_Z_lab,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_cT_Z_lab,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_Z_lab.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_Z_lab.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Sorted_cT_Z_lab.C") h_gammaD_1_pT_dummy.Draw() h_gammaD_1_pT.DrawNormalized("same") h_gammaD_2_pT.DrawNormalized("same") scaleAxisY(h_gammaD_2_pT,h_gammaD_1_pT_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_pT,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_pT,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_pT.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_pT.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_pT.C") h_gammaD_1_pZ_dummy.Draw() #plotOverflow(h_gammaD_1_pZ) #plotOverflow(h_gammaD_2_pZ) h_gammaD_1_pZ.DrawNormalized("same") h_gammaD_2_pZ.DrawNormalized("same") scaleAxisY(h_gammaD_2_pZ,h_gammaD_1_pZ_dummy) #htmp = ROOT.TH1F(h_gammaD_1_pZ.GetName(),h_gammaD_1_pZ.GetTitle(), h_gammaD_1_pZ.GetNbinsX()+1, h_gammaD_1_pZ.GetBinLowEdge(1), h_gammaD_1_pZ.GetBinLowEdge(h_gammaD_1_pZ.GetNbinsX()+1)+h_gammaD_1_pZ.GetBinWidth(h_gammaD_1_pZ.GetNbinsX()+1)) #for i in range(1, h_gammaD_1_pZ.GetNbinsX()+1 ): # htmp.Fill(htmp.GetBinCenter(i), h_gammaD_1_pZ.GetBinContent(i)) #htmp.Fill(h_gammaD_1_pZ.GetNbinsX()-1, h_gammaD_1_pZ.GetBinContent(0)) #htmp.SetEntries(h_gammaD_1_pZ.GetEntries()) #htmp.SetLineColor(ROOT.kRed) #htmp.DrawNormalized("same") #htmp2 = ROOT.TH1F(h_gammaD_2_pZ.GetName(), h_gammaD_2_pZ.GetTitle(), h_gammaD_2_pZ.GetNbinsX()+1, h_gammaD_2_pZ.GetBinLowEdge(1), h_gammaD_2_pZ.GetBinLowEdge(h_gammaD_2_pZ.GetNbinsX()+1)+h_gammaD_2_pZ.GetBinWidth(h_gammaD_2_pZ.GetNbinsX()+1)) #for i in range(1, h_gammaD_2_pZ.GetNbinsX()+1 ): # htmp2.Fill(htmp2.GetBinCenter(i), h_gammaD_2_pZ.GetBinContent(i)) #htmp2.Fill(h_gammaD_2_pZ.GetNbinsX()-1, h_gammaD_2_pZ.GetBinContent(0)) #htmp2.SetEntries(h_gammaD_2_pZ.GetEntries()) #htmp2.SetLineColor(ROOT.kBlue) #htmp2.DrawNormalized("same") #h_gammaD_1_pZ.DrawNormalized("same") #h_gammaD_2_pZ.DrawNormalized("same") legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_pZ,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_pZ,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_pZ.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_pZ.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_pZ.C") h_gammaD_1_Eta_dummy.Draw() h_gammaD_1_Eta.DrawNormalized("same") h_gammaD_2_Eta.DrawNormalized("same") scaleAxisY(h_gammaD_1_Eta,h_gammaD_1_Eta_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_Eta,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_Eta,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Eta.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Eta.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Eta.C") h_gammaD_1_Phi_dummy.Draw() h_gammaD_1_Phi.DrawNormalized("same") h_gammaD_2_Phi.DrawNormalized("same") scaleAxisY(h_gammaD_1_Phi,h_gammaD_1_Phi_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_Phi,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_Phi,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Phi.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Phi.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_Phi.C") h_gammaD_1_p_dummy.Draw() plotOverflow(h_gammaD_1_p) plotOverflow(h_gammaD_2_p) scaleAxisY(h_gammaD_2_p,h_gammaD_1_p_dummy) #h_gammaD_1_p.DrawNormalized("same") #h_gammaD_2_p.DrawNormalized("same") legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_gammaD_1_p,"1st dark photon (leading p_{T})","L") legend.AddEntry(h_gammaD_2_p,"2nd dark photon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_p.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_p.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_p.C") h_gammaD_1_M_dummy.Draw() cnv.SetLogx() h_gammaD_1_M.DrawNormalized("same") #h_gammaD_2_M.DrawNormalized("same") #legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) #legend.SetFillColor(ROOT.kWhite) #legend.SetFillStyle(0) #legend.SetBorderSize(0) #legend.SetTextFont(42) #legend.SetTextSize(0.02777778) #legend.SetMargin(0.13) #legend.AddEntry(h_gammaD_1_M,"1st dark photon (leading p_{T})","L") #legend.AddEntry(h_gammaD_2_M,"2nd dark photon","L") #legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_M.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_M.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_gammaD_M.C") cnv.SetLogx(0) h_muon_pT_dummy.Draw() h_muon_pT_0.DrawNormalized("same") h_muon_pT_1.DrawNormalized("same") h_muon_pT_2.DrawNormalized("same") h_muon_pT_3.DrawNormalized("same") scaleAxisY(h_muon_pT_3,h_muon_pT_dummy) legend = ROOT.TLegend(0.6175166,0.6730435,0.9429047,0.7626087) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_muon_pT_0,"1st muon (leading p_{T})","L") legend.AddEntry(h_muon_pT_1,"2nd muon","L") legend.AddEntry(h_muon_pT_2,"3rd muon","L") legend.AddEntry(h_muon_pT_3,"4th muon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_pT.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_pT.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_pT.C") h_muon_phi_dummy.Draw() h_muon_phi_0.DrawNormalized("same") h_muon_phi_1.DrawNormalized("same") h_muon_phi_2.DrawNormalized("same") h_muon_phi_3.DrawNormalized("same") scaleAxisY(h_muon_phi_0,h_muon_phi_dummy) legend = ROOT.TLegend(0.6175166,0.6730435,0.9429047,0.7626087) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_muon_phi_0,"1st muon (leading p_{T})","L") legend.AddEntry(h_muon_phi_1,"2nd muon","L") legend.AddEntry(h_muon_phi_2,"3rd muon","L") legend.AddEntry(h_muon_phi_3,"4th muon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_phi.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_phi.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_phi.C") h_muon_pZ_dummy.Draw() h_muon_pZ_0.DrawNormalized("same") h_muon_pZ_1.DrawNormalized("same") h_muon_pZ_2.DrawNormalized("same") h_muon_pZ_3.DrawNormalized("same") scaleAxisY(h_muon_pZ_3,h_muon_pZ_dummy) legend = ROOT.TLegend(0.6175166,0.6730435,0.9429047,0.7626087) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_muon_pZ_0,"1st muon (leading p_{T})","L") legend.AddEntry(h_muon_pZ_1,"2nd muon","L") legend.AddEntry(h_muon_pZ_2,"3rd muon","L") legend.AddEntry(h_muon_pZ_3,"4th muon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_pZ.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_pZ.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_pZ.C") h_muon_p_dummy.Draw() h_muon_p_0.DrawNormalized("same") h_muon_p_1.DrawNormalized("same") h_muon_p_2.DrawNormalized("same") h_muon_p_3.DrawNormalized("same") scaleAxisY(h_muon_p_3,h_muon_p_dummy) legend = ROOT.TLegend(0.6175166,0.6730435,0.9429047,0.7626087) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_muon_p_0,"1st muon (leading p_{T})","L") legend.AddEntry(h_muon_p_1,"2nd muon","L") legend.AddEntry(h_muon_p_2,"3rd muon","L") legend.AddEntry(h_muon_p_3,"4th muon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_p.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_p.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_p.C") h_muon_eta_dummy.Draw() h_muon_eta_0.DrawNormalized("same") h_muon_eta_1.DrawNormalized("same") h_muon_eta_2.DrawNormalized("same") h_muon_eta_3.DrawNormalized("same") scaleAxisY(h_muon_eta_0,h_muon_eta_dummy) legend = ROOT.TLegend(0.6175166,0.6730435,0.9429047,0.7626087) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_muon_eta_0,"1st muon (leading p_{T})","L") legend.AddEntry(h_muon_eta_1,"2nd muon","L") legend.AddEntry(h_muon_eta_2,"3rd muon","L") legend.AddEntry(h_muon_eta_3,"4th muon","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_eta.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_eta.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_muon_eta.C") #h_dimuon_m_dummy.Draw() #h_dimuon_m_0.DrawNormalized("same") #h_dimuon_m_1.DrawNormalized("same") #h_dimuon_m_2.DrawNormalized("same") #h_dimuon_m_3.DrawNormalized("same") # #legend = ROOT.TLegend(0.6175166,0.6730435,0.9429047,0.7626087) #legend.SetFillColor(ROOT.kWhite) #legend.SetFillStyle(0) #legend.SetBorderSize(0) #legend.SetTextFont(42) #legend.SetTextSize(0.02777778) #legend.SetMargin(0.13) #legend.AddEntry(h_dimuon_m_0,"1st dimuon (leading m_{#mu#mu})","L") #legend.AddEntry(h_dimuon_m_1,"2nd dimuon","L") #legend.AddEntry(h_dimuon_m_2,"3rd dimuon","L") #legend.AddEntry(h_dimuon_m_3,"4th dimuon","L") #legend.Draw() #info.Draw() #txtHeader.Draw() #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m.pdf") #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m.png") ## convert -define.pdf:use-cropbox=true -density 300 CSxBR_vs_mh.pdf -resize 900x900 CSxBR_vs_mh.png # #h_dimuon_m_log_dummy.Draw() #cnv.SetLogy() #h_dimuon_m_log_0.DrawNormalized("same") #h_dimuon_m_log_1.DrawNormalized("same") #h_dimuon_m_log_2.DrawNormalized("same") #h_dimuon_m_log_3.DrawNormalized("same") # #legend = ROOT.TLegend(0.6175166,0.6730435,0.9429047,0.7626087) #legend.SetFillColor(ROOT.kWhite) #legend.SetFillStyle(0) #legend.SetBorderSize(0) #legend.SetTextFont(42) #legend.SetTextSize(0.02777778) #legend.SetMargin(0.13) #legend.AddEntry(h_dimuon_m_log_0,"1st dimuon (leading m_{#mu#mu})","L") #legend.AddEntry(h_dimuon_m_log_1,"2nd dimuon","L") #legend.AddEntry(h_dimuon_m_log_2,"3rd dimuon","L") #legend.AddEntry(h_dimuon_m_log_3,"4th dimuon","L") #legend.Draw() #info.Draw() #txtHeader.Draw() # #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_log.pdf") #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_log.png") #cnv.SetLogy(0) # #h_dimuon_m_real_fake_dummy.Draw() #h_dimuon_m_real_fake_0.DrawNormalized("same") #h_dimuon_m_real_fake_1.DrawNormalized("same") # #legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) #legend.SetFillColor(ROOT.kWhite) #legend.SetFillStyle(0) #legend.SetBorderSize(0) #legend.SetTextFont(42) #legend.SetTextSize(0.02777778) #legend.SetMargin(0.13) #legend.AddEntry(h_dimuon_m_real_fake_0,"Real dimuons","L") #legend.AddEntry(h_dimuon_m_real_fake_1,"Fake dimuons","L") #legend.Draw() #info.Draw() #txtHeader.Draw() # #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_real_fake.pdf") #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_real_fake.png") # #h_dimuon_m_real_fake_log_dummy.Draw() #cnv.SetLogy() #h_dimuon_m_real_fake_log_0.DrawNormalized("same") #h_dimuon_m_real_fake_log_1.DrawNormalized("same") #legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) #legend.SetFillColor(ROOT.kWhite) #legend.SetFillStyle(0) #legend.SetBorderSize(0) #legend.SetTextFont(42) #legend.SetTextSize(0.02777778) #legend.SetMargin(0.13) #legend.AddEntry(h_dimuon_m_real_fake_log_0,"Real dimuons","L") #legend.AddEntry(h_dimuon_m_real_fake_log_1,"Fake dimuons","L") #legend.Draw() #info.Draw() #txtHeader.Draw() # #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_real_fake_log.pdf") #cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_real_fake_log.png") cnv.SetLogy(0) h_m1_vs_m2.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m1_vs_m2.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m1_vs_m2.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m1_vs_m2.C") cnv.SetLogx() h_m2.Draw() h_m1.Draw("same") info.Draw() txtHeader.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m.C") cnv.SetLogx(0) h_dimuon_m_fake_dummy.Draw() h_dimuon_m_fake_0.DrawNormalized("same") scaleAxisY(h_dimuon_m_fake_0,h_dimuon_m_fake_dummy) info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_fake.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_fake.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_fake.C") h_dimuon_m_fake_log_dummy.Draw() cnv.SetLogy() cnv.SetLogx() h_dimuon_m_fake_log_0.DrawNormalized("same") #scaleAxisY(h_dimuon_m_fake_log_0,h_dimuon_m_fake_log_dummy) info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_fake_log.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_fake_log.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_m_fake_log.C") cnv.SetLogy(0) cnv.SetLogx(0) h_dimuon_1_pT_dummy.Draw() h_dimuon_1_pT.DrawNormalized("same") h_dimuon_2_pT.DrawNormalized("same") scaleAxisY(h_dimuon_2_pT,h_dimuon_1_pT_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_dimuon_1_pT,"1st #mu#mu (leading p_{T})","L") legend.AddEntry(h_dimuon_2_pT,"2nd #mu#mu","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_pT.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_pT.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_pT.C") h_dimuon_1_pZ_dummy.Draw() #plotOverflow(h_dimuon_1_pZ) #plotOverflow(h_dimuon_2_pZ) h_dimuon_1_pZ.DrawNormalized("same") h_dimuon_2_pZ.DrawNormalized("same") scaleAxisY(h_dimuon_2_pZ,h_dimuon_1_pZ_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_dimuon_1_pZ,"1st #mu#mu (leading p_{T})","L") legend.AddEntry(h_dimuon_2_pZ,"2nd #mu#mu","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_pZ.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_pZ.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_pZ.C") h_dimuon_1_Eta_dummy.Draw() h_dimuon_1_Eta.DrawNormalized("same") h_dimuon_2_Eta.DrawNormalized("same") scaleAxisY(h_dimuon_1_Eta,h_dimuon_1_Eta_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_dimuon_1_Eta,"1st #mu#mu (leading p_{T})","L") legend.AddEntry(h_dimuon_2_Eta,"2nd #mu#mu","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_Eta.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_Eta.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_Eta.C") h_dimuon_1_Phi_dummy.Draw() h_dimuon_1_Phi.DrawNormalized("same") h_dimuon_2_Phi.DrawNormalized("same") scaleAxisY(h_dimuon_1_Phi,h_dimuon_1_Phi_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_dimuon_1_Phi,"1st #mu#mu (leading p_{T})","L") legend.AddEntry(h_dimuon_2_Phi,"2nd #mu#mu","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_Phi.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_Phi.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_Phi.C") h_dimuon_1_p_dummy.Draw() plotOverflow(h_dimuon_1_p) plotOverflow(h_dimuon_2_p) scaleAxisY(h_dimuon_2_p,h_dimuon_1_p_dummy) legend = ROOT.TLegend(0.46,0.6744444,0.6955556,0.7644444) legend.SetFillColor(ROOT.kWhite) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextFont(42) legend.SetTextSize(0.02777778) legend.SetMargin(0.13) legend.AddEntry(h_dimuon_1_p,"1st #mu#mu (leading p_{T})","L") legend.AddEntry(h_dimuon_2_p,"2nd #mu#mu","L") legend.Draw() info.Draw() txtHeader.Draw() cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_p.pdf") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_p.png") cnv.SaveAs("DarkSusy_mH_125_mGammaD_" + mass_GammaD + "_cT_"+ lifetime_GammaD + "_LHE_dimuon_p.C") BAM.Write() print "Made it to the end and closes" f.close()
[ "bmichlin@rice.edu" ]
bmichlin@rice.edu
71c99974459ee5974e36e755091f0d37914ff64c
87b55dd99e9828bed011fd7cf0a3cf059d70d391
/pythonPractice/ex26.py
9d6dc85354bd28fb93c4f707f95c16c35e6007d3
[]
no_license
David-GaTre/Python-the-hard-way
f2945a84b07a3c35d0d8d8f2b9e53b514043d9c9
558c7986b655b9f951181b73ac2de62a1e19d7dd
refs/heads/master
2022-01-18T09:43:28.303865
2019-08-04T07:21:53
2019-08-04T07:21:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,285
py
def break_words(stuff): """This function will break up words for us.""" words = stuff.split(' ') return words def sort_words(words): """Sorts the words.""" return sorted(words) def print_first_word(words): """Prints the first word after popping it off.""" word = words.pop(0) print word def print_last_word(words): """Prints the last word after popping it off.""" word = words.pop(-1) print word def sort_sentence(sentence): """Takes in a full sentence and returns the sorted words.""" words = break_words(sentence) return sort_words(words) def print_first_and_last(sentence): """Prints the first and last words of the sentence.""" words = break_words(sentence) print_first_word(words) print_last_word(words) def print_first_and_last_sorted(sentence): """Sorts the words then prints the first and last one.""" words = sort_sentence(sentence) print_first_word(words) print_last_word(words) print "Let's practice everything." print 'You\'d need to know \'bout escapes with \\ that do \n newlines and \t tabs.' poem = """ \tThe lovely world with logic so firmly planted cannot discern \n the needs of love nor comprehend passion from intuition and requires an explantion \n\t\twhere there is none. """ print "--------------" print poem print "--------------" five = 10 - 2 + 3 - 6 print "This should be five: %s" % five def secret_formula(started): jelly_beans = started * 500 jars = jelly_beans / 1000 crates = jars / 100 return jelly_beans, jars, crates start_point = 10000 beans, jars, crates = secret_formula(start_point) print "With a starting point of: %d" % start_point print "We'd have %d jeans, %d jars, and %d crates." % (beans, jars, crates) start_point = start_point / 10 print "We can also do that this way:" print "We'd have %d beans, %d jars, and %d crabapples." % secret_formula(start_point) sentence = "All good things come to those who weight." words = break_words(sentence) sorted_words = sort_words(words) print_first_word(words) print_last_word(words) print_first_word(sorted_words) print_last_word(sorted_words) sorted_words = sort_sentence(sentence) print sorted_words print_first_and_last(sentence) print_first_and_last_sorted(sentence)
[ "gtdavid2013@gmail.com" ]
gtdavid2013@gmail.com
5d89b263f903257da771dc932d0f1474a6cc84f2
ca16db75d99903e135589da7c737dbe88a12bb4b
/Scripts/plottingCodes/DescritiveData.py
ea9999121b77355c9c4285d8c8a3b3b0f5df42e8
[]
no_license
iphyer/CS760_Twitter_Demographics
7b413ae3753bb7487a8f89b8ba09e9876fabea56
3354fde862dbbab8965c0dd709a02643849e0668
refs/heads/master
2021-09-13T06:42:48.524495
2018-04-26T02:42:16
2018-04-26T02:42:16
111,339,780
2
0
null
null
null
null
UTF-8
Python
false
false
1,365
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Dec 5 20:44:28 2017 @author: mingrenshen """ # import libarary needed import pandas as pd # data processing import matplotlib.pyplot as plt ###################################################### # read in data ###################################################### ## user data allUsrFeatureData = pd.read_csv("../data/louis_users_all_features_label_1205_updated.csv") # plotting Data #grouped = allUsrFeatureData['freqWeekDay'].groupby('gender') print allUsrFeatureData['gender'].value_counts() # Font for figure font_axis_publish = { 'color': 'black', 'weight': 'normal', 'size': 15, } #ax = allUsrFeatureData.boxplot(column='freqWeekDay',by='gender') #plt.ylabel('RMSF ($\AA$)', fontdict=font_axis_publish) #plt.xlim(0,1000) #plt.set_title("") col_list = list(allUsrFeatureData.columns.values) starting_index = col_list.index("gender") for i in range(len(col_list)): if i > starting_index: curr_feature = col_list[i] allUsrFeatureData.boxplot(column=curr_feature,by='gender') plt.title(curr_feature, fontdict=font_axis_publish) plt.suptitle("") plt.xlabel('gender', fontdict=font_axis_publish) #plt.show() str_tmp = curr_feature + '.png' plt.savefig(str_tmp) plt.close()
[ "iphyer@163.com" ]
iphyer@163.com
e9155963542c0338f2e00c360ebb229b888acae0
439f1b3e2e7a454abd2cfac99d3074ba02405c09
/code.py
9c2f9842cf2aaa24cd16140cf0d7ad625a5414ae
[ "MIT" ]
permissive
saikrishnan255/extracting-business-insights
10c1286fafa41d59907b7b9afabf39fdd1300c56
b79922148bd1aa80bea9d3571456f2891f06c713
refs/heads/main
2023-02-04T16:03:35.220099
2020-12-22T11:30:22
2020-12-22T11:30:22
323,607,104
0
0
null
null
null
null
UTF-8
Python
false
false
6,061
py
# -------------- import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv(path) def visual_summary(type_, df, col): df[col].plot(kind = type_) plt.show() """Summarize the Data using Visual Method. This function accepts the type of visualization, the data frame and the column to be summarized. It displays the chart based on the given parameters. Keyword arguments: type_ -- visualization method to be used df -- the dataframe col -- the column in the dataframe to be summarized """ def central_tendency(type_, df, col): stats = {'mean': np.mean,'median': np.median, 'mode': st.mode} return stats[type_](df[col]) """Calculate the measure of central tendency. This function accepts the type of central tendency to be calculated, the data frame and the required column. It returns the calculated measure. Keyword arguments: type_ -- type of central tendency to be calculated df -- the dataframe col -- the column in the dataframe to do the calculations Returns: cent_tend -- the calculated measure of central tendency """ def ranger(df): return max(df) - min(df) def mad(df): return(np.mean(np.absolute(df - np.mean(df)))) def cv(df): return(((np.std(df)/np.mean(df)))*100) def iqr(df): return (np.percentile(df,75)- np.percentile(df,25)) def measure_of_dispersion(type_, df, col): stats = {'Standard Deviation':np.std,'Variance':np.var,'Range':ranger,'Covariance':np.cov,'MAD':mad,'CV':cv,'IQR':iqr} return stats[type_](df[col]) """Calculate the measure of dispersion. This function accepts the measure of dispersion to be calculated, the data frame and the required column(s). It returns the calculated measure. Keyword arguments: type_ -- type of central tendency to be calculated df -- the dataframe col -- the column(s) in the dataframe to do the calculations, this is a list with 2 elements if we want to calculate covariance Returns: disp -- the calculated measure of dispersion """ def calculate_correlation(type_, df, col1, col2): if type_ == 'Pearson': return (df.cov().loc[col1,col2])/(np.std(df[col1])*np.std(df[col2])) elif type_ == 'Spearman': d = df[[col1,col2]].rank(axis = 0) d['d^2'] = (d[col1] - d[col2])**2 d_square = d['d^2'].sum() l = len(df[col1]) spearman = 1-((6*d_square)/(l*(l**2-1))) return spearman """Calculate the defined correlation coefficient. This function accepts the type of correlation coefficient to be calculated, the data frame and the two column. It returns the calculated coefficient. Keyword arguments: type_ -- type of correlation coefficient to be calculated df -- the dataframe col1 -- first column col2 -- second column Returns: corr -- the calculated correlation coefficient """ def calculate_probability_discrete(data, event): crisis = df[event].value_counts() return(crisis.iloc[1]/(crisis.iloc[0] + crisis.iloc[1])) """Calculates the probability of an event from a discrete distribution. This function accepts the distribution of a variable and the event, and returns the probability of the event. Keyword arguments: data -- series that contains the distribution of the discrete variable event -- the event for which the probability is to be calculated Returns: prob -- calculated probability fo the event """ def event_independence_check(prob_event1, prob_event2, prob_event1_event2): pa_b = prob_event1_event2/prob_event2 if pa_b == prob_event1: return 'Independent' elif pa_b != prob_event1: return 'Dependent' """Checks if two events are independent. This function accepts the probability of 2 events and their joint probability. And prints if the events are independent or not. Keyword arguments: prob_event1 -- probability of event1 prob_event2 -- probability of event2 prob_event1_event2 -- probability of event1 and event2 """ # Checking if banking crisis is independent b_s = df[(df['systemic_crisis'] == 1) & (df['banking_crisis'] == 'crisis')] b_i = df[(df['inflation_crises'] == 1) & (df['banking_crisis'] == 'crisis')] b_c = df[(df['currency_crises'] == 1) & (df['banking_crisis'] == 'crisis')] p_bank_system = b_s['case'].count()/df['case'].count() p_bank_currency = b_c['case'].count()/df['case'].count() p_bank_inflation = b_i['case'].count()/df['case'].count() p_bank = calculate_probability_discrete(df,'banking_crisis') p_system = calculate_probability_discrete(df,'systemic_crisis') p_inflation = calculate_probability_discrete(df,'inflation_crises') p_currency = calculate_probability_discrete(df,'currency_crises') # System event_independence_check(p_bank, p_system, p_bank_system) # Currency event_independence_check(p_bank, p_currency, p_bank_currency) # Inflation event_independence_check(p_bank, p_inflation, p_bank_inflation) # Bank given system p_b_s = p_bank_system/p_system p_b_c = p_bank_currency/p_currency p_b_i = p_bank_inflation/p_inflation prob_ = [p_b_s,p_b_c,p_b_i] def bayes_theorem(df, col1, event1, col2, event2): """Calculates the conditional probability using Bayes Theorem. This function accepts the dataframe, two columns along with two conditions to calculate the probability, P(B|A). You can call the calculate_probability_discrete() to find the basic probabilities and then use them to find the conditional probability. Keyword arguments: df -- the dataframe col1 -- the first column where the first event is recorded event1 -- event to define the first condition col2 -- the second column where the second event is recorded event2 -- event to define the second condition Returns: prob -- calculated probability for the event1 given event2 has already occured """
[ "70769945+saikrishnan255@users.noreply.github.com" ]
70769945+saikrishnan255@users.noreply.github.com
0ad9fe4925f4b28b1e4d34b71d268ddf45ccb8a2
301e55ee3990b2daf135197eac81e1cc244e6cd3
/python/search-in-rotated-sorted-array.py
ac8d648b579b72e53fc06f4ec7a23090d95a213e
[ "MIT" ]
permissive
alirezaghey/leetcode-solutions
74b1b645c324ea7c1511d9ce3a97c8d622554417
c32b786e52dd25ff6e4f84242cec5ff1c5a869df
refs/heads/master
2022-08-22T16:28:05.459163
2022-08-18T12:02:51
2022-08-18T12:02:51
203,028,081
3
1
null
null
null
null
UTF-8
Python
false
false
996
py
from typing import List class Solution: # Time complexity: O(log n) where n is the length of nums # Space complexity: O(1) def search(self, nums: List[int], target: int) -> int: left, right = 0, len(nums)-1 while left <= right: mid = left + (right - left) // 2 if nums[mid] < target: if nums[mid] < nums[-1]: # right part if target > nums[-1]: right = mid-1 else: left = mid+1 else: # left part left = mid+1 elif nums[mid] > target: if nums[mid] < nums[-1]: # right part right = mid-1 else: # left part if target < nums[0]: left = mid+1 else: right = mid-1 else: return mid return -1
[ "alireza.q1357@gmail.com" ]
alireza.q1357@gmail.com
d9c783ad8abf89d55348ad7b4a292cdac5bbf359
91a0bfacb61ae681860c560ba52ac09df4910b8f
/Codes/visualize.py
6289ddbd090a1437bbe538404c0c01dd6a2e14a9
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
AayushKadam/brain_age
98609293827778b978215b9d681f521fdab6d948
8a768e29046d525fdef3d57a58c742b52ed6f8e7
refs/heads/master
2021-10-15T19:18:22.779808
2019-02-05T20:12:46
2019-02-05T20:12:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,366
py
import os import matplotlib.pyplot as plt import numpy as np import random #import scipy.ndimage def show_slices(slices): """ Function to display row of image slices """ fig, axes = plt.subplots(1, len(slices)) for i, slice in enumerate(slices): axes[i].imshow(slice.T, cmap="gray", origin="lower") def rot90(m, k=1, axis=2): """Rotate an array by 90 degrees in the counter-clockwise direction around the given axis""" m = np.swapaxes(m, 2, axis) m = np.rot90(m, k) m = np.swapaxes(m, 2, axis) return m #first = np.load('data2\\1#(65, 65, 55).npy') """ X_before = 5 npad = ((5, 5), (0, 0), (0, 0)) first = np.pad(first, pad_width=npad, mode='constant', constant_values=0) startz = 65//2-(55//2) first = first[0:65,0:65, startz:startz+55] """ first = np.load('data2\\85#(65, 65, 55).npy') #first = np.load('mean_img2.npy') second = np.load('shuffled2\\45#(65, 65, 55).npy') #first = rot90(first, 3, 0) #first = rot90(first, 1, 2) print(first.shape) show_slices([ first[int(first.shape[0]/2), :, :], first[:, int(first.shape[1]/2), :], first[:, :, int(first.shape[2]/2)]]) plt.show() show_slices([second[int(second.shape[0]/2), :, :], second[:, int(second.shape[1]/2), :], second[:, :, int(second.shape[2]/2)]]) plt.show()
[ "zach_lyu@berkeley.edu" ]
zach_lyu@berkeley.edu
5277a28915df23b9142e32432af44be09e017f3a
3add20877ed753be70402e97f40ad3737a265515
/lecture_advanced/Lecture1.HotFollowupQuestions/386. Longest Substring with At Most K Distinct Characters.py
93cfa12ae7c8ad41d8048f0341ca09073b900826
[]
no_license
zhuohuwu0603/interview-algothims
85f48b7de2e87129fd353528b114cb80c8877d7b
338d3bc2f2916c5c4936767b07b2fd22b4121049
refs/heads/master
2022-01-08T11:27:16.441367
2019-06-12T05:49:25
2019-06-12T05:49:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,347
py
''' Given a string s, find the length of the longest substring T that contains at most k distinct characters. Example For example, Given s = "eceba", k = 3, T is "eceb" which its length is 4. Challenge O(n), n is the size of the string s. ''' import collections class Solution: """ @param s: A string @param k: An integer @return: An integer """ def lengthOfLongestSubstringKDistinct(self, s, k): # write your code here if not s or k <= 0: return 0 start, end, ans = 0, 0, 0 myhash = collections.defaultdict(int) for start in range(len(s)): while end < len(s): myhash[s[end]] += 1 if len(myhash) <= k: end += 1 else: break ans = max(ans, end - start) myhash[s[start]] -= 1 if myhash[s[start]] == 0: del myhash[s[start]] return ans ''' 算法武器:前向型移窗口类动双指针 本题的题型是滑动窗口类型,使用模板写法: 定义start,end,ans三个变量 start做外层for循环 end做内层while循环 while条件为end的边界和题目的约束 更新答案部分必须要加条件判断 更新答案必须在更新end变量之前 对于hash表的处理都是放在while循环内进行,一般不需要在for层做任何特别处理 注意: 本题求解的是上界答案问题 我们的答案直接在内层while循环中更新,而不需要当while退出之后再根据条件更新答案,因为while循环的条件是end在边界内,同时满足题目条件,这意味着我们找到一组有效解,我们需要和全局解比较,不断更新上界的解 在更新答案的时候还是要确定一下条件,再更新 if len(hashmap) <= k: ans = max(ans, end - start + 1) 其他类求下界问题,比如sum类求下界问题,我们就需要在跳出while循环单独更新。因为while循环进行的条件是end在边界内,同时不满足条件的时候,我们继续扩大窗口边界,移动end指针。当循环跳出时,我们可能找到了一组有效解,所以我们还需要检查条件是否满足,满足时才将其和全局答案比较、更新 '''
[ "michaelz@squareup.com" ]
michaelz@squareup.com
9094d0aa7881214514389028e5649424dde7e59d
d180d7bea0db0aa65ee6d6112c14da903b1867b5
/run.py
58fee9cdd7064a02060da43ffe06f863a65d5852
[ "CC-BY-4.0" ]
permissive
willemsk/phdthesis-text
694eb21b0465b67f26291d0349c3fee821562311
43d0f0f68bb84e6305f6b430816f8585ce4e8112
refs/heads/main
2023-06-22T22:17:33.632485
2023-06-07T12:54:06
2023-06-07T12:54:06
345,727,833
1
0
null
null
null
null
UTF-8
Python
false
false
13,723
py
#!/usr/bin/env python3 # encoding: utf-8 # # Copyright (C), 2012-2014 by Wannes Meert, KU Leuven # # Very naive compilation script for the ADSPHD class. # # No file dependency checks are performed (use TeXnicCenter, Texmaker, latexmk, # rubber, SCons, or make if you want such a feature). # import glob import os import re import shlex import sys import argparse from collections import namedtuple from subprocess import * ## SETTINGS ## given_settings = { 'mainfile': 'thesis.tex', 'chaptersdir': 'chapters', 'makebibliography': True, 'makeindex': True, 'makeglossary': True, 'makenomenclature': True, 'usebiblatex': True, 'biblatexbackend': 'biber', # alternative: bibtex 'cleanext': ['.tdo','.fls','.toc','.aux','.log','.bbl','.blg','.log', '.lof','.lot','.ilg','.out','.glo','.gls','.nlo','.nls', '.brf','.ist','.glg','.synctexgz','.tgz','.idx','.ind', '-blx.bib','.fdb_latexmk','.synctex.gz','.run.xml', '.bcf','.glsdefs','.xdy'] } derived_settings = ['basename', 'chapters', 'cleanfiles', 'pdffile'] verbose = 0 dry = False ### INITIALISATION ### def initapplications(): """Initialize the application commands and arguments for the different platforms.""" global apps # Unix and linux are the default setup ## *NIX ## apps.pdflatex = App('pdflatex', '-interaction=nonstopmode -synctex=1 -shell-escape {basename}', verbose) apps.bibtex = App('bibtex', '--min-crossref=100 {basename}', verbose) apps.biber = App('biber', '{basename}', verbose) apps.glossary = App('makeindex', '{basename}.glo -s {basename}.ist -o {basename}.gls', verbose) apps.nomenclature = App('makeindex', '{basename}.nlo -s nomencl.ist -o {basename}.nls', verbose) apps.pdfviewer = App('acroread', '{pdffile}', verbose) apps.remove = App('rm', '-f {cleanfiles}', verbose) if sys.platform == 'darwin': ## Mac OS X ## apps.pdfviewer = App('open', '{pdffile}', verbose) elif sys.platform == 'win32' or sys.platform == 'cygwin': ## Windows ## ## TODO: does not yet work pass ## DERIVED SETTINGS ## def create(*args, **kwargs): class DictAsObj(): def __init__(self, *args, **kwargs): self.__dict__ = kwargs for arg in args: self.__dict__[arg] = None def __iter__(self): return self.__dict__.items().__iter__() def items(self): return dict(self.__dict__.items()) def copy(self): return DictAsObj(**self.__dict__) return DictAsObj(*args, **kwargs) settings = create(*derived_settings, **given_settings) settings.basename = os.path.splitext(settings.mainfile)[0] settings.chapters = [name.replace(".tex", "") for name in glob.glob('chapters/**/*.tex')] settings.cleanfiles = " ".join([base+ext for ext in settings.cleanext for base in [settings.basename]+settings.chapters]) settings.pdffile = settings.basename+'.pdf' apps = create('pdflatex', 'bibtex', 'biber', 'glossary', 'nomenclature', 'pdfviewer', 'remove') ## COMPILE ## knowntargets = dict() def target(targetname = None): def decorate(f): global knowntargets name = targetname if targetname else f.__name__ knowntargets[name] = f return f return decorate ## TARGETS ## @target() def test(): """Verify the settings in run.py""" allok = testSettings() if allok: print("Your settings appear to be consistent") if verbose > 0: for k,v in settings: if verbose > 1 or k not in ['cleanfiles']: print("{}: {}".format(k, v)) else: print("(use -v to inspect).") @target() def pdf(): """Alias for compile""" return compile() @target() def compile(): """Build thesis.pdf""" testSettings() latex() def latex(): global apps rerun = False print('#### LATEX ####') apps.pdflatex.run(settings, 'Latex failed') if settings.makebibliography: rerun = True if settings.usebiblatex and settings.biblatexbackend == 'biber': print('#### BIBER ####') apps.biber.run(settings, 'Biber failed') else: print('#### BIBTEX ####') apps.bibtex.run(settings, 'Bibtex failed') if settings.makeindex: rerun = True print('#### INDEX ####') if settings.makeglossary: # List of abbreviations rerun = True print('#### GLOSSARY ####') apps.glossary.run(settings, 'Creating glossary failed') if settings.makenomenclature: # List of symbols rerun = True print('#### NOMENCLATURE ####') apps.nomenclature.run(settings, 'Creating glossary failed') if rerun: print('#### LATEX ####') apps.pdflatex.run(settings, 'Rerunning (1) Latex failed') print('#### LATEX ####') apps.pdflatex.run(settings, 'Rerunning (2) Latex failed') @target() def clean(): """Remove the auxiliary files created by Latex.""" global apps apps.remove.run(settings, 'Removing auxiliary files failed') @target() def realclean(): """Remove all files created by Latex.""" global apps clean() newsettings = settings.copy() newsettings.cleanfiles += 'thesis.pdf thesis.dvi thesis.ps' apps.remove.run(newsettings, 'Removing pdf files failed.') @target() def cover(): """Generate a cover.tex file and produce a standalone cover.pdf""" usersettings = dict() doc_re = re.compile(r"^\\documentclass") settings_re = [ ('faculty', re.compile("faculty=([a-z]+)")), ('department', re.compile("department=([a-z]+)")), ('phddegree', re.compile("phddegree=([a-z]+)")) ] content = [] doadd = False with open(settings.mainfile,'r') as mf: for line in mf: if "documentclass" in line: if doc_re.match(line) is not None: for s, r in settings_re: result = r.search(line) if result is not None: usersettings[s] = result.group(1) if doadd: content.append(line) if "%%% COVER: Settings" in line: doadd = True elif "%%% COVER: End" in line: doadd = False if verbose > 0: print('Recovered settings: ') print(usersettings) extra_usersettings = ','.join(['']+['{}={}'.format(k,v) for k,v in usersettings.items()]) with open('cover.tex','w') as cf: cf.write("""% Cover.tex \\documentclass[cam,cover{}]{{adsphd}}""".format(extra_usersettings)) cf.write(""" \\usepackage{printlen} \\uselengthunit{mm} """) cf.write("".join(content)) cf.write(""" % Compute total page width \\newlength{\\fullpagewidth} \\setlength{\\fullpagewidth}{2\\adsphdpaperwidth} \\addtolength{\\fullpagewidth}{2\\defaultlbleed} \\addtolength{\\fullpagewidth}{2\\defaultrbleed} \\addtolength{\\fullpagewidth}{\\adsphdspinewidth} \\geometry{ paperwidth=\\fullpagewidth, paperheight=\\adsphdpaperheight, } \\pagestyle{empty} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \\begin{document} \\makefullcoverpage{\\adsphdspinewidth}{} \\newlength{\\testje} \\setlength{\\testje}{10mm} \\mbox{} \\newpage \\subsection*{Used settings:} \\begin{itemize} \\item Spine width: \\printlength{\\adsphdspinewidth} \\item Left bleed: \\printlength{\\lbleed} \\item Right bleed: \\printlength{\\rbleed} \\item Paper width: \\printlength{\\adsphdpaperwidth} \\item Paper height: \\printlength{\\adsphdpaperheight} \\item Text width: \\printlength{\\textwidth} \\item Text height: \\printlength{\\textheight} \\end{itemize} \\end{document} """) print("Written cover to cover.tex") newsettings = settings.copy() newsettings.basename = 'cover' apps.pdflatex.run(newsettings, 'Running Latex failed') @target() def newchapter(): """Create the necessary files for a new chapter.""" chaptername = "" validchaptername = re.compile(r'^[a-zA-Z0-9_.]+$') while validchaptername.match(chaptername) == None: chaptername = input("New chapter file name (only a-z, A-Z, 0-9 or _): ") newdirpath = os.path.join(settings.chaptersdir, chaptername) print("Creating new directory: "+newdirpath) if not os.path.exists(newdirpath): os.makedirs(newdirpath) newfilepath = os.path.join(newdirpath,chaptername+".tex") print("Creating new tex-file: "+newfilepath) newfile = open(newfilepath, 'w') print("% !TeX root = ../../"+settings.mainfile, file=newfile) print("\\chapter{This is "+chaptername+"}\\label{ch:"+chaptername+"}\n", file=newfile) print("\n\\ldots\n\n\n\n\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\ % Keep the following \\cleardoublepage at the end of this file, \n\ % otherwise \\includeonly includes empty pages.\n\ \\cleardoublepage\n", file=newfile) newfile.close() @target() def view(): """Open the generated pdf file in a pdf viewer.""" print("Opening "+settings.pdffile) apps.pdfviewer.run(settings, 'Opening pdf failed.') @target() def targets(): """Print overview of available targets.""" print("Targets:") targetdocs = [(target,f.__doc__) for (target,f) in knowntargets.items()] maxl = max((len(t) for (t,d) in targetdocs)) targetdocs.sort() for (target,doc) in targetdocs: s = "- {:<"+str(maxl)+"} {}" if doc == None: doc = '' print(s.format(target,doc)) ## AUXILIARY ## def testSettings(): """Verify whether run.py is using the expected settings based on thesis.tex. """ allok = True allok = allok and testBiblatex() allok = allok and testNomenclature() allok = allok and testGlossary() return allok def testBiblatex(): """Test whether the main tex file includes biblatex and if this is consistent with the settings in run.py """ global usebiblatex allok = True isusingbiblatex = False # pattern = re.compile(r'^\\documentclass.*biblatex*.*$') pattern = re.compile(r'^\s*[^%].*{biblatex}') with open(settings.mainfile, 'r') as f: for line in f: if pattern.search(line) != None: isusingbiblatex = True if not settings.usebiblatex: print("WARNING: It appears you are using biblatex while this setting in run.py is set to false.\n") allok = False # settings.usebiblatex = True return allok if not isusingbiblatex and settings.usebiblatex: print("WARNING: It appears you are not using biblatex while this setting in run.py is set to true.\n") # settings.usebiblatex = False allok = False return allok def testNomenclature(): """Check whether the nomenclature settings are consistent.""" allok = True texfile = open(settings.mainfile, 'r') pattern = re.compile(r'^\s*\\usepackage.*{nomencl}.*') found = False for line in texfile: if pattern.search(line) != None: found = True if not found and makenomenclature: print("\nWARNING: Trying to build the nomenclature but you have not include the nomencl Latex package.\n") allok = False if found and not settings.makenomenclature: print("\nWARNING: You have included the nomencl Latex package but in the run.py script this step is not activated.\n") allok = False return allok def testGlossary(): """Check whether the glossaries settings are consistent.""" allok = True texfile = open(settings.mainfile, 'r') pattern = re.compile(r'^\s*\\usepackage.*{glossaries.*') found = False for line in texfile: if pattern.search(line) != None: found = True if not found and settings.makeglossary: print("\nWARNING: Trying to build the glossary but you have not include the glossaries Latex package.\n") allok = False if found and not settings.makeglossary: print("\nWARNING: You have included the glossary Latex package but in the run.py script this step is not activated.\n") allok = False return allok ## APPLICATION ## class App: def __init__(self, b, o, v=0): self.binary = b self.options = o self.verbose = v def run(self, settings, errmsg): """ Run the command for the given settings. Required settings: - basename - cleanfiles :returns: Return code """ returncode = 1 try: cmd = self.options.format(**settings.items()) args = shlex.split(cmd) print("Running: "+self.binary+" "+" ".join(args)) if not dry: returncode = check_call([self.binary] + args) except CalledProcessError as err: print(err) print(sys.argv[0].split("/")[-1] + ": "+errmsg+" (exitcode "+str(err.returncode)+")", file=sys.stderr) sys.exit(1) return returncode ## COMMAND LINE INTERFACE ## class Usage(Exception): def __init__(self, msg): self.msg = msg def main(argv=None): global verbose global dry parser = argparse.ArgumentParser( description=''' Naive compilation script for the ADSPhD class. No file dependency checks are performed. Use TeXnicCenter, Texmaker, latexmk, rubber, SCons or make for such a feature.''', epilog=''' Settings: Open run.py with a text editor and change values in the settings definition ''') parser.add_argument('--verbose', '-v', action='count', help='Verbose output') parser.add_argument('--targets', '-T', action='store_true', help='Print available targets') parser.add_argument('--dry', '-d', action='store_true', help='Dry run to see commands without executing them') parser.add_argument('target', nargs='*', help='Targets') args = parser.parse_args(argv) if args.verbose is not None: verbose = args.verbose dry = args.dry if args.targets: targets() return initapplications() if len(args.target) == 0: print("No targets given, using default target: compile") compile() for target in args.target: print("Target: "+target) if target in knowntargets: knowntargets[target]() else: print("Unknown target") if __name__ == "__main__": sys.exit(main())
[ "kherim.willems@imec.be" ]
kherim.willems@imec.be
72fb24a240291a432d20c7b10d1f829948019281
ccf324383bce0a74ef3a4eca9f277e9db89800bb
/Chp8/8-3_exercises.py
0bba55f4dd698b068f18ad00a90cd7d1a4abef43
[]
no_license
tanktoptony/RealPython-Book1
825ef822cee8593bb80a95a840bda0a8214ea311
0c3cd79edf9e61236b0164e52d212d0bbd208c5a
refs/heads/master
2021-01-12T00:39:53.717091
2015-04-16T08:51:45
2015-04-16T08:51:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
522
py
# 1. Write a script that prompts the user to enter a word using the raw_input() function, # stores that input in a string object, and then displays whether the length of that string # is less than 5 characters, greater than 5 characters, or equal to 5 characters by using a # set of if, elif and else statements. #1 user_input = raw_input("Enter a word: ") if len(user_input) < 5: print 'less that 5 characters' elif len(user_input) > 5: print 'greater that 5 characters' else: print 'equal to 5 characters'
[ "michael@mlnorman.com" ]
michael@mlnorman.com
0dfb49a2afd192c3a3d067f55be0b096846c7d5a
8b8af2d3a8c04ab75d0b331771fa16e0bfe96301
/storage/csv_dictwrite.py
87f5899f076e23b15d8bfb31811c34902727a421
[]
no_license
RyukerLiu/introducing-python
6a44b6560e0f82b1886d3359cd0b4bc21e486430
f902a1fa7b31cd6c1978d176fec3b1bf6bb23718
refs/heads/master
2020-05-03T01:25:10.869550
2019-04-02T07:20:20
2019-04-02T07:20:20
178,336,744
0
0
null
2019-03-29T05:13:19
2019-03-29T05:13:19
null
UTF-8
Python
false
false
254
py
import csv villains = [{'first': 'Doctor', 'last': 'No'} , {'first': 'Rosa', 'last' : 'Klebb'}] with open('villians', 'wt', newline='') as fout: csvout = csv.DictWriter(fout, ['first', 'last']) csvout.writeheader() csvout.writerows(villains)
[ "alex03108861@yahoo.com.tw" ]
alex03108861@yahoo.com.tw
f15ea5350f91db08607111b1b3da17afdb7e9df0
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/compositional_rl/gwob/examples/web_environment_example.py
db65accda519a7ce01ec591613e7c7d0385b57be
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
6,400
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example execution of a rule-based optimal policy on gminiwob shopping.""" import time from absl import app from absl import flags from absl import logging from CoDE import test_websites from CoDE import utils from CoDE import vocabulary_node from CoDE import web_environment flags.DEFINE_string("data_dep_path", None, "Data dep path for local miniwob files.") flags.DEFINE_boolean( "run_headless_mode", False, "Run in headless mode. On borg, this should always be true.") flags.DEFINE_boolean( "use_conceptual", False, "If true, use abstract web navigation where it is assumed to known which profile field corresponds to which element." ) FLAGS = flags.FLAGS def run_policy_on_shopping_website(): """Run an optimal policy on the shopping website and visualize in browser.""" # Create a generic web environment to which we will add primitives and # transitions to create a shopping website. These parameters will work to # observe a simple policy running but they might be insufficient in a training # setting as observations will be converted into arrays and these parameters # are used to shape them. In this example, they don't have that effect. env = web_environment.GMiniWoBWebEnvironment( base_url="file://{}/".format(FLAGS.data_dep_path), subdomain="gminiwob.generic_website", profile_length=5, number_of_fields=5, use_only_profile_key=False, number_of_dom_elements=150, dom_attribute_sequence_length=5, keyboard_action_size=5, kwargs_dict={ "headless": FLAGS.run_headless_mode, "threading": False }, step_limit=25, global_vocabulary=vocabulary_node.LockedVocabulary(), use_conceptual=FLAGS.use_conceptual) # Create a shopping website design with difficulty = 3. website = test_websites.create_shopping_website(3) design = test_websites.generate_website_design_from_created_website( website) # Design the actual environment. env.design_environment( design, auto_num_pages=True) # Make sure raw_state=True as this will return raw observations not numpy # arrays. state = env.reset(raw_state=True) # Optimal sequences of elements to visit. Some might be redundant and will be # skipped. optimal_actions = [ "group_next_p0", "group_username", "group_password", "group_rememberme", "group_captcha", "group_stayloggedin", "group_next_p1", "group_next_p2", "group_name_first", "group_name_last", "group_address_line1", "group_address_line2", "group_city", "group_postal_code", "group_state", "group_submit_p2", ] # Corresponding pages of these elements: # [0, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3] reward = 0.0 logging.info("Utterance: %s", str(state.utterance)) logging.info("\n\n") logging.info("All available primitives: %s", str(env.get_all_actionable_primitives())) logging.info("\n\n") # Iterate over all optimal actions. For each action, iterate over all elements # in the current observation. If an element matches, execute the optimal # action and continue. # Iterate over optimal actions. for action in optimal_actions: logging.info("Element at focus: %s", str(action)) # Iterate over all elements in the current observation. # order_dom_elements returns an ordered list of DOM elements to make the # order and elements consistent. for i, element in enumerate( utils.order_dom_elements(state.dom_elements, html_id_prefix=None)): # If HTML if of the element matches the action, execute the action. if element.id == action.replace("group", "actionable"): logging.info("Acting on (%s)", str(element)) logging.info("\tAttributes of the element: %s", str(utils.dom_attributes(element, 5))) # Get the corresponding profile fields. profile_keys = env.raw_profile.keys # Execute the (element index, profile field index) action on the # website. Environment step function accepts a single scalar action. # We flatten the action from a tuple to a scalar which is deflattened # back to a tuple in the step function. if action[len("group") + 1:] in profile_keys and not FLAGS.use_conceptual: logging.info("Profile: %s, Element ID: %s", str(profile_keys.index(action[len("group") + 1:])), str(action[len("group") + 1:])) # action=element_index + profile_field_index * number_of_elements # This is converted back into a tuple using a simple modulo # arithmetic. state, r, _, _ = env.step( i + profile_keys.index(action[len("group") + 1:]) * env.number_of_dom_elements, True) else: # This is the case where we have abstract navigation problem. logging.info("Element ID: %s", str(action[len("group") + 1:])) # We don't need to convert a tuple into a scalar because in this case # the environment expects the index of the element. state, r, _, _ = env.step(i, True) logging.info("Current reward: %f", r) reward += r if not FLAGS.run_headless_mode: # wait 1 sec so that the action can be observed on the browser. time.sleep(1) break logging.info("Final reward: %f", reward) if not FLAGS.run_headless_mode: # wait 30 secs so that the users can inspect the html in the browser. time.sleep(30) def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") run_policy_on_shopping_website() if __name__ == "__main__": app.run(main)
[ "copybara-worker@google.com" ]
copybara-worker@google.com
174aec0b7bfde27c24cc6abccfd345e1ef6dced6
48ac4b8138b490a876a2530dad1bca29f1823de5
/first_tests/colecciones.py
5c290b80eb83d6767835a388a0a42d158bb60b7a
[ "MIT" ]
permissive
Gorwast/python-tests
dbb7222d6a3ccdc2de0d5ad90156f02a4ba69607
342605fdfa50d05c645e12c15b4db24d3f7cb7f0
refs/heads/master
2023-01-08T20:24:03.893124
2020-11-18T21:16:18
2020-11-18T21:16:18
272,347,586
0
0
null
null
null
null
UTF-8
Python
false
false
459
py
#Collections: List l1 = [22, True, "String", [4, 5]] l2 = [15, 30, 45, 60] var1 = l1[0] print("List: ") print(var1) print(l2[3]) print(l2[0:2]) for elemento in l2: print(elemento) ###Collections: Tupla t1 = (10, False, 3.2, (2, 3)) print(type(t1)) print(type(l1)) var2 = t1[1] print("Tuple: ") print(t1[2]) print(var2) ###Colecciones: Diccionario d1 = {'Name': 'Luis', 'Age': 21, 'Theme': 'Development'} var3 = d1{'Age'} print('Dictionary: ') print()
[ "lk23@live.com.mx" ]
lk23@live.com.mx
b235e47ceab2dde9ba3dcadac64258bc818f6667
0aa0c38985c11331b20e1d9bdeabfdcaf5dea90f
/ex10.py
c77558f62b5bebe437bd461e03d98e8d5357ebd7
[]
no_license
dongul11/lpthw
5dd92278a35166e2b465aafd3e171ebc60cd4340
35c973e65820601b6231d001d100c06f02558adc
refs/heads/master
2021-09-22T10:06:14.775565
2018-09-07T17:28:43
2018-09-07T17:28:43
114,300,461
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
tabby_cat = "\tI'm tabbed in." persian_cat = "I'm split\non a line." backslash_cat = "I'm \\ a \\ cat." fat_cat = ''' I'll do a list: \t* Cat food \t* Fishies \t* Catnip\n\t* Grass ''' print (tabby_cat) print (persian_cat) print(backslash_cat) print(fat_cat)
[ "donguljack11@gmail.com" ]
donguljack11@gmail.com
d7aac9af796fa2c15a1d847133e699fd19779ed9
63dc51b514faea7966d529440df80c4a6eab34b1
/src/test/TestLibSudoku.py
964c3f328a77ae5d348cff9cdca232b81d916c50
[]
no_license
caviedes93/PySudoku
af1368dac2f0c374552710cc75132f6799b049f1
d67e110684526fe188436884ec51ecc89ad6c388
refs/heads/master
2020-12-25T10:59:20.442887
2013-07-27T22:58:19
2013-07-27T22:58:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
962
py
''' Created on 26/07/2013 @author: dominik ''' import unittest from lib.libSudoku import get_new_board, is_board_valid class Test(unittest.TestCase): def testBoardCreationAndValidation(self): for i in range(1,100): newBoard = get_new_board() self.assertTrue(is_board_valid(newBoard), "newly created board is not valid") newBoard = get_new_board() newBoard[0][0] = newBoard[2][2] self.assertFalse(is_board_valid(newBoard), "invalid board deemed to be valid - group") newBoard= get_new_board() newBoard[0][8] = newBoard[0][0] self.assertFalse(is_board_valid(newBoard), "invalid board deemd te be valid - row") newBoard= get_new_board() newBoard[8][8] = newBoard[0][8] self.assertFalse(is_board_valid(newBoard), "invalid board deemd te be valid - col") if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
[ "dominik@foop.at" ]
dominik@foop.at
e0b15df612ba3b856357439a9d6586d0186b146e
c0c4fe8f9aff2e7684fcaf10329f963873753b2a
/src/biotite/sequence/sequence.py
1a6b8230a35cd5b6afd265692459ee224fe40473
[ "BSD-3-Clause" ]
permissive
thomasnevolianis/biotite
85e1b9d6a1fbb5d9f81501a8ebc617bc26388ab9
916371eb602cfcacb2d5356659298ef38fa01fcc
refs/heads/master
2022-11-30T19:40:53.017368
2020-08-04T07:00:59
2020-08-04T07:00:59
285,375,415
0
0
BSD-3-Clause
2020-08-05T18:41:48
2020-08-05T18:41:47
null
UTF-8
Python
false
false
11,010
py
# This source code is part of the Biotite package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. """ The module contains the :class:`Sequence` superclass and :class:`GeneralSequence`. """ __name__ = "biotite.sequence" __author__ = "Patrick Kunzmann" __all__ = ["Sequence"] import numbers import abc import numpy as np from .alphabet import Alphabet, LetterAlphabet from ..copyable import Copyable _size_uint8 = np.iinfo(np.uint8 ).max +1 _size_uint16 = np.iinfo(np.uint16).max +1 _size_uint32 = np.iinfo(np.uint32).max +1 class Sequence(Copyable, metaclass=abc.ABCMeta): """ The abstract base class for all sequence types. A :class:`Sequence` can be seen as a succession of symbols, that are elements in the allowed set of symbols, the :class:`Alphabet`. Internally, a :class:`Sequence` object uses a *NumPy* :class:`ndarray` of integers, where each integer represents a symbol. The :class:`Alphabet` of a :class:`Sequence` object is used to encode each symbol, that is used to create the :class:`Sequence`, into an integer. These integer values are called symbol code, the encoding of an entire sequence of symbols is called sequence code. The size of the symbol code type in the array is determined by the size of the :class:`Alphabet`: If the :class:`Alphabet` contains 256 symbols or less, one byte is used per array element; if the :class:`Alphabet` contains between 257 and 65536 symbols, two bytes are used, and so on. Two :class:`Sequence` objects are equal if they are instances of the same class, have the same :class:`Alphabet` and have equal sequence codes. Comparison with a string or list of symbols evaluates always to false. A :class:`Sequence` can be indexed by any 1-D index a :class:`ndarray` accepts. If the index is a single integer, the decoded symbol at that position is returned, otherwise a subsequence is returned. Individual symbols of the sequence can also be exchanged in indexed form: If the an integer is used as index, the item is treated as a symbol. Any other index (slice, index list, boolean mask) expects multiple symbols, either as list of symbols, as :class:`ndarray` containing a sequence code or another :class:`Sequence` instance. Concatenation of two sequences is achieved with the '+' operator. Each subclass of :class:`Sequence` needs to overwrite the abstract method :func:`get_alphabet()`, which specifies the alphabet the :class:`Sequence` uses. Parameters ---------- sequence : iterable object, optional The symbol sequence, the :class:`Sequence` is initialized with. For alphabets containing single letter strings, this parameter may also be a :class`str` object. By default the sequence is empty. Attributes ---------- code : ndarray The sequence code. symbols : list The list of symbols, represented by the sequence. The list is generated by decoding the sequence code, when this attribute is accessed. When this attribute is modified, the new list of symbols is encoded into the sequence code. alphabet : Alphabet The alphabet of this sequence. Cannot be set. Equal to `get_alphabet()`. Examples -------- Creating a DNA sequence from string and print the symbols and the code: >>> dna_seq = NucleotideSequence("ACGTA") >>> print(dna_seq) ACGTA >>> print(dna_seq.code) [0 1 2 3 0] >>> print(dna_seq.symbols) ['A' 'C' 'G' 'T' 'A'] >>> print(list(dna_seq)) ['A', 'C', 'G', 'T', 'A'] Sequence indexing: >>> print(dna_seq[1:3]) CG >>> print(dna_seq[[0,2,4]]) AGA >>> print(dna_seq[np.array([False,False,True,True,True])]) GTA Sequence manipulation: >>> dna_copy = dna_seq.copy() >>> dna_copy[2] = "C" >>> print(dna_copy) ACCTA >>> dna_copy = dna_seq.copy() >>> dna_copy[0:2] = dna_copy[3:5] >>> print(dna_copy) TAGTA >>> dna_copy = dna_seq.copy() >>> dna_copy[np.array([True,False,False,False,True])] = "T" >>> print(dna_copy) TCGTT >>> dna_copy = dna_seq.copy() >>> dna_copy[1:4] = np.array([0,1,2]) >>> print(dna_copy) AACGA Reverse sequence: >>> dna_seq_rev = dna_seq.reverse() >>> print(dna_seq_rev) ATGCA Concatenate the two sequences: >>> dna_seq_concat = dna_seq + dna_seq_rev >>> print(dna_seq_concat) ACGTAATGCA """ def __init__(self, sequence=()): self.symbols = sequence def copy(self, new_seq_code=None): """ Copy the object. Parameters ---------- new_seq_code : ndarray, optional If this parameter is set, the sequence code is set to this value, rather than the original sequence code. Returns ------- copy A copy of this object. """ # Override in order to achieve better performance, # in case only a subsequence is needed, # because not the entire sequence code is copied then clone = self.__copy_create__() if new_seq_code is None: clone.code = np.copy(self.code) else: clone.code = new_seq_code self.__copy_fill__(clone) return clone @property def symbols(self): return self.get_alphabet().decode_multiple(self.code) @symbols.setter def symbols(self, value): alph = self.get_alphabet() dtype = Sequence._dtype(len(alph)) self._seq_code = alph.encode_multiple(value, dtype) @property def code(self): return self._seq_code @code.setter def code(self, value): dtype = Sequence._dtype(len(self.get_alphabet())) if not isinstance(value, np.ndarray): raise TypeError("Sequence code must be an integer ndarray") self._seq_code = value.astype(dtype, copy=False) @property def alphabet(self): return self.get_alphabet() @abc.abstractmethod def get_alphabet(self): """ Get the :class:`Alphabet` of the :class:`Sequence`. This method must be overwritten, when subclassing :class:`Sequence`. Returns ------- alphabet : Alphabet :class:`Sequence` alphabet. """ pass def reverse(self): """ Reverse the :class:`Sequence`. Returns ------- reversed : Sequence The reversed :class:`Sequence`. Examples -------- >>> dna_seq = NucleotideSequence("ACGTA") >>> dna_seq_rev = dna_seq.reverse() >>> print(dna_seq_rev) ATGCA """ reversed_code = np.flip(np.copy(self._seq_code), axis=0) reversed = self.copy(reversed_code) return reversed def is_valid(self): """ Check, if the sequence contains a valid sequence code. A sequence code is valid, if at each sequence position the code is smaller than the size of the alphabet. Invalid code means that the code cannot be decoded into symbols. Furthermore invalid code can lead to serious errors in alignments, since the substitution matrix is indexed with an invalid index. Returns ------- valid : bool True, if the sequence is valid, false otherwise. """ return (self.code < len(self.get_alphabet())).all() def get_symbol_frequency(self): """ Get the number of occurences of each symbol in the sequence. If a symbol does not occur in the sequence, but it is in the alphabet, its number of occurences is 0. Returns ------- frequency : dict A dictionary containing the symbols as keys and the corresponding number of occurences in the sequence as values. """ frequencies = {} for code, symbol in enumerate(self.get_alphabet()): frequencies[symbol] = len(np.nonzero((self._seq_code == code))[0]) return frequencies def __getitem__(self, index): alph = self.get_alphabet() sub_seq = self._seq_code.__getitem__(index) if isinstance(sub_seq, np.ndarray): return self.copy(sub_seq) else: return alph.decode(sub_seq) def __setitem__(self, index, item): alph = self.get_alphabet() if isinstance(index, numbers.Integral): # Expect a single symbol code = alph.encode(item) else: # Expect multiple symbols if isinstance(item, Sequence): code = item.code elif isinstance(item, np.ndarray): code = item else: # Default: item is iterable object of symbols code = alph.encode_multiple(item) self._seq_code.__setitem__(index, code) def __len__(self): return len(self._seq_code) def __iter__(self): alph = self.get_alphabet() i = 0 while i < len(self): yield alph.decode(self._seq_code[i]) i += 1 def __eq__(self, item): if not isinstance(item, type(self)): return False if self.get_alphabet() != item.get_alphabet(): return False return np.array_equal(self._seq_code, item._seq_code) def __str__(self): alph = self.get_alphabet() if isinstance(alph, LetterAlphabet): return alph.decode_multiple(self._seq_code, as_bytes=True)\ .tobytes().decode("ASCII") else: return "".join(alph.decode_multiple(self._seq_code)) def __add__(self, sequence): if self.get_alphabet().extends(sequence.get_alphabet()): new_code = np.concatenate((self._seq_code, sequence._seq_code)) new_seq = self.copy(new_code) return new_seq elif sequence.get_alphabet().extends(self.get_alphabet()): new_code = np.concatenate((self._seq_code, sequence._seq_code)) new_seq = sequence.copy(new_code) return new_seq else: raise ValueError("The sequences alphabets are not compatible") @staticmethod def _dtype(alphabet_size): if alphabet_size <= _size_uint8: return np.uint8 elif alphabet_size <= _size_uint16: return np.uint16 elif alphabet_size <= _size_uint32: return np.uint32 else: return np.uint64
[ "patrick.kunzm@gmail.com" ]
patrick.kunzm@gmail.com
9bdfba61deccc4c6699bd54280a7728fb4b4069a
9612c53a9e666ba10510962a833a55fb7553be7b
/getDataSafir/jsonToCsv.py
6a2c199030293c790470a6ac6c375484ec09da6f
[]
no_license
raksmeyny/big-data
04098ed6fc6c51e9643c2dba0ee30f4c38d143ce
1222edd5ca59a3d04ad3ac4dd444bea4cfd727e6
refs/heads/master
2021-01-10T04:53:57.905212
2016-03-14T04:15:14
2016-03-14T04:15:14
52,132,443
2
0
null
null
null
null
UTF-8
Python
false
false
482
py
import csv import json with open('comment.json') as x: x = json.load(x) print x with open('data.csv','a') as f: csvfile=csv.writer(f) for item in x: csvfile.writerow([item["date"],item["comment"],item["link"],item["likes"]]); # f = csv.writer(open("comment.csv", "w+")) # f.writerow(["date", "comment", "link", "likes"]) # for x in x: # f.writerow([x["date"], # x["comment"], # x["link"], # x["likes"]])
[ "raksmey.ny" ]
raksmey.ny
8c5ffaaa66db4fcbb98cfd663e36037edaa8163a
abaa806550f6e6e7bcdf71b9ec23e09a85fe14fd
/data/global-configuration/packs/vmware/collectors/vmguestlib.py
eb9e2dabd67d95667afa30dc59ee76accdf5f3c7
[ "MIT" ]
permissive
naparuba/opsbro
02809ddfe22964cd5983c60c1325c965e8b02adf
98618a002cd47250d21e7b877a24448fc95fec80
refs/heads/master
2023-04-16T08:29:31.143781
2019-05-15T12:56:11
2019-05-15T12:56:11
31,333,676
34
7
null
null
null
null
UTF-8
Python
false
false
22,971
py
### This program is free software; you can redistribute it and/or ### modify it under the terms of the GNU General Public License ### as published by the Free Software Foundation; either version 2 ### of the License, or (at your option) any later version. ### ### This program is distributed in the hope that it will be useful, ### but WITHOUT ANY WARRANTY; without even the implied warranty of ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ### GNU General Public License for more details. ### ### You should have received a copy of the GNU General Public License ### along with this program; if not, write to the Free Software ### Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ### Copyright 2013-2014 Dag Wieers <dag@wieers.com> from ctypes import * from ctypes.util import find_library __author__ = 'Dag Wieers <dag@wieers.com>' __version__ = '0.1.2' __version_info__ = tuple([int(d) for d in __version__.split('.')]) __license__ = 'GNU General Public License (GPL)' # TODO: Implement support for Windows and MacOSX, improve Linux support ? if find_library('vmGuestLib'): vmGuestLib = CDLL(find_library('vmGuestLib')) elif find_library('guestlib'): vmGuestLib = CDLL(find_library('guestlib')) # elif os.path.exists('/usr/lib/vmware-tools/lib/libvmGuestLib.so/libvmGuestLib.so'): # vmGuestLib = CDLL('/usr/lib/vmware-tools/lib/libvmGuestLib.so/libvmGuestLib.so') # elif os.path.exists('%PROGRAMFILES%\\VMware\\VMware Tools\\Guest SDK\\vmStatsProvider\win32\\vmGuestLib.dll'): # vmGuestLib = CDLL('%PROGRAMFILES%\\VMware\\VMware Tools\\Guest SDK\\vmStatsProvider\win32\\vmGuestLib.dll') else: raise Exception, 'ERROR: Cannot find vmGuestLib library in LD_LIBRARY_PATH' VMGUESTLIB_ERROR_SUCCESS = 0 VMGUESTLIB_ERROR_OTHER = 1 VMGUESTLIB_ERROR_NOT_RUNNING_IN_VM = 2 VMGUESTLIB_ERROR_NOT_ENABLED = 3 VMGUESTLIB_ERROR_NOT_AVAILABLE = 4 VMGUESTLIB_ERROR_NO_INFO = 5 VMGUESTLIB_ERROR_MEMORY = 6 VMGUESTLIB_ERROR_BUFFER_TOO_SMALL = 7 VMGUESTLIB_ERROR_INVALID_HANDLE = 8 VMGUESTLIB_ERROR_INVALID_ARG = 9 VMGUESTLIB_ERROR_UNSUPPORTED_VERSION = 10 VMErrors = ( 'VMGUESTLIB_ERROR_SUCCESS', 'VMGUESTLIB_ERROR_OTHER', 'VMGUESTLIB_ERROR_NOT_RUNNING_IN_VM', 'VMGUESTLIB_ERROR_NOT_ENABLED', 'VMGUESTLIB_ERROR_NOT_AVAILABLE', 'VMGUESTLIB_ERROR_NO_INFO', 'VMGUESTLIB_ERROR_MEMORY', 'VMGUESTLIB_ERROR_BUFFER_TOO_SMALL', 'VMGUESTLIB_ERROR_INVALID_HANDLE', 'VMGUESTLIB_ERROR_INVALID_ARG', 'VMGUESTLIB_ERROR_UNSUPPORTED_VERSION', ) VMErrMsgs = ( 'The function has completed successfully.', 'An error has occurred. No additional information about the type of error is available.', 'The program making this call is not running on a VMware virtual machine.', 'The vSphere Guest API is not enabled on this host, so these functions cannot be used. For information about how to enable the library, see "Context Functions" on page 9.', 'The information requested is not available on this host.', 'The handle data structure does not contain any information. You must call VMGuestLib_UpdateInfo to update the data structure.', 'There is not enough memory available to complete the call.', 'The buffer is too small to accommodate the function call. For example, when you call VMGuestLib_GetResourcePoolPath, if the path buffer is too small for the resulting resource pool path, the function returns this error. To resolve this error, allocate a larger buffer.', 'The handle that you used is invalid. Make sure that you have the correct handle and that it is open. It might be necessary to create a new handle using VMGuestLib_OpenHandle.', 'One or more of the arguments passed to the function were invalid.', 'The host does not support the requested statistic.', ) class VMGuestLibException(Exception): '''Status code that indicates success orfailure. Each function returns a VMGuestLibError code. For information about specific error codes, see "vSphere Guest API Error Codes" on page 15. VMGuestLibError is an enumerated type defined in vmGuestLib.h.''' def __init__(self, errno): self.errno = errno self.GetErrorText = vmGuestLib.VMGuestLib_GetErrorText self.GetErrorText.restype = c_char_p self.message = self.GetErrorText(self.errno) self.strerr = VMErrMsgs[self.errno] def __str__(self): return '%s\n%s' % (self.message, self.strerr) class VMGuestLib(Structure): def __init__(self): # Reference to virtualmachinedata. VMGuestLibHandle is defined in vmGuestLib.h. self.handle = self.OpenHandle() self.UpdateInfo() # Unique identifier for a session. The session ID changes after a virtual machine is # migrated using VMotion, suspended and resumed, or reverted to a snapshot. Any of # these events is likely to render any information retrieved with this API invalid. You # can use the session ID to detect those events and react accordingly. For example, you # can refresh and reset any state that relies on the validity of previously retrieved # information. # Use VMGuestLib_GetSessionId to obtain a valid session ID. A session ID is # opaque. You cannot compare a virtual machine session ID with the session IDs from # any other virtual machines. You must always call VMGuestLib_GetSessionId after # calling VMGuestLib_UpdateInfo. # VMSessionID is defined in vmSessionId.h self.sid = self.GetSessionId() def OpenHandle(self): '''Gets a handle for use with other vSphere Guest API functions. The guest library handle provides a context for accessing information about the virtual machine. Virtual machine statistics and state data are associated with a particular guest library handle, so using one handle does not affect the data associated with another handle.''' if hasattr(self, 'handle'): return self.handle else: handle = c_void_p() ret = vmGuestLib.VMGuestLib_OpenHandle(byref(handle)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return handle def CloseHandle(self): '''Releases a handle acquired with VMGuestLib_OpenHandle''' if hasattr(self, 'handle'): ret = vmGuestLib.VMGuestLib_CloseHandle(self.handle.value) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) del (self.handle) def UpdateInfo(self): '''Updates information about the virtual machine. This information is associated with the VMGuestLibHandle. VMGuestLib_UpdateInfo requires similar CPU resources to a system call and therefore can affect performance. If you are concerned about performance, minimize the number of calls to VMGuestLib_UpdateInfo. If your program uses multiple threads, each thread must use a different handle. Otherwise, you must implement a locking scheme around update calls. The vSphere Guest API does not implement internal locking around access with a handle.''' ret = vmGuestLib.VMGuestLib_UpdateInfo(self.handle.value) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) def GetSessionId(self): '''Retrieves the VMSessionID for the current session. Call this function after calling VMGuestLib_UpdateInfo. If VMGuestLib_UpdateInfo has never been called, VMGuestLib_GetSessionId returns VMGUESTLIB_ERROR_NO_INFO.''' sid = c_void_p() ret = vmGuestLib.VMGuestLib_GetSessionId(self.handle.value, byref(sid)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return sid def GetCpuLimitMHz(self): '''Retrieves the upperlimit of processor use in MHz available to the virtual machine. For information about setting the CPU limit, see "Limits and Reservations" on page 14.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetCpuLimitMHz(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetCpuReservationMHz(self): '''Retrieves the minimum processing power in MHz reserved for the virtual machine. For information about setting a CPU reservation, see "Limits and Reservations" on page 14.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetCpuReservationMHz(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetCpuShares(self): '''Retrieves the number of CPU shares allocated to the virtual machine. For information about how an ESX server uses CPU shares to manage virtual machine priority, see the vSphere Resource Management Guide.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetCpuShares(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetCpuStolenMs(self): '''Retrieves the number of milliseconds that the virtual machine was in a ready state (able to transition to a run state), but was not scheduled to run.''' counter = c_uint64() ret = vmGuestLib.VMGuestLib_GetCpuStolenMs(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetCpuUsedMs(self): '''Retrieves the number of milliseconds during which the virtual machine has used the CPU. This value includes the time used by the guest operating system and the time used by virtualization code for tasks for this virtual machine. You can combine this value with the elapsed time (VMGuestLib_GetElapsedMs) to estimate the effective virtual machine CPU speed. This value is a subset of elapsedMs.''' counter = c_uint64() ret = vmGuestLib.VMGuestLib_GetCpuUsedMs(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetElapsedMs(self): '''Retrieves the number of milliseconds that have passed in the virtual machine since it last started running on the server. The count of elapsed time restarts each time the virtual machine is powered on, resumed, or migrated using VMotion. This value counts milliseconds, regardless of whether the virtual machine is using processing power during that time. You can combine this value with the CPU time used by the virtual machine (VMGuestLib_GetCpuUsedMs) to estimate the effective virtual machine CPU speed. cpuUsedMs is a subset of this value.''' counter = c_uint64() ret = vmGuestLib.VMGuestLib_GetElapsedMs(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostCpuUsedMs(self): '''Undocumented.''' counter = c_uint64() ret = vmGuestLib.VMGuestLib_GetHostCpuUsedMs(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostMemKernOvhdMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemKernOvhdMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostMemMappedMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemMappedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostMemPhysFreeMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemPhysFreeMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostMemPhysMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemPhysMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostMemSharedMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemSharedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostMemSwappedMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemSwappedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostMemUnmappedMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemUnmappedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostMemUsedMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemUsedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetHostNumCpuCores(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostNumCpuCores(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetHostProcessorSpeed(self): '''Retrieves the speed of the ESX system's physical CPU in MHz.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostProcessorSpeed(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemActiveMB(self): '''Retrieves the amount of memory the virtual machine is actively using its estimated working set size.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemActiveMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemBalloonedMB(self): '''Retrieves the amount of memory that has been reclaimed from this virtual machine by the vSphere memory balloon driver (also referred to as the "vmmemctl" driver).''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemBalloonedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetMemBalloonMaxMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemBalloonMaxMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetMemBalloonTargetMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemBalloonTargetMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemLimitMB(self): '''Retrieves the upper limit of memory that is available to the virtual machine. For information about setting a memory limit, see "Limits and Reservations" on page 14.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemLimitMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetMemLLSwappedMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemLLSwappedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemMappedMB(self): '''Retrieves the amount of memory that is allocated to the virtual machine. Memory that is ballooned, swapped, or has never been accessed is excluded.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemMappedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemOverheadMB(self): '''Retrieves the amount of "overhead" memory associated with this virtual machine that is currently consumed on the host system. Overhead memory is additional memory that is reserved for data structures required by the virtualization layer.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemOverheadMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemReservationMB(self): '''Retrieves the minimum amount of memory that is reserved for the virtual machine. For information about setting a memory reservation, see "Limits and Reservations" on page 14.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemReservationMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemSharedMB(self): '''Retrieves the amount of physical memory associated with this virtual machine that is copy-on-write (COW) shared on the host.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemSharedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemSharedSavedMB(self): '''Retrieves the estimated amount of physical memory on the host saved from copy-on-write (COW) shared guest physical memory.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemSharedSavedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemShares(self): '''Retrieves the number of memory shares allocated to the virtual machine. For information about how an ESX server uses memory shares to manage virtual machine priority, see the vSphere Resource Management Guide.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemShares(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemSwappedMB(self): '''Retrieves the amount of memory that has been reclaimed from this virtual machine by transparently swapping guest memory to disk.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemSwappedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetMemSwapTargetMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemSwapTargetMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemTargetSizeMB(self): '''Retrieves the size of the target memory allocation for this virtual machine.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemTargetSizeMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value def GetMemUsedMB(self): '''Retrieves the estimated amount of physical host memory currently consumed for this virtual machine's physical memory.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemUsedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetMemZippedMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemZippedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # TODO: Undocumented routine, needs testing def GetMemZipSavedMB(self): '''Undocumented.''' counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemZipSavedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value # vim:ts=4:sw=4:et
[ "naparuba@gmail.com" ]
naparuba@gmail.com
edde0aa8cdab82be21c8ef2341f0114662f4921c
2d89afd5ca29fc2735a00b0440ea7d5408c8e398
/Crash Course/chap07/cities.py
ca28aba1f3091b08eb1dc268634339b862f19435
[]
no_license
TrystanDames/Python
6b2c8721606e046d9ff0708569a97d7b78a0f88e
68b3f5f160b46fa4e876d58808ff78ac7f2d84df
refs/heads/main
2023-06-03T14:25:51.638345
2021-06-23T08:54:18
2021-06-23T08:54:18
357,112,394
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
prompt = "\nPlease enter the name of a city you have visited:" prompt += "\n(Enter 'quit' when you are finished.) " while True: city = input(prompt) if city == 'quit': break else: print(f"I'd love to go to {city.title()}!")
[ "trystandames08@gmail.com" ]
trystandames08@gmail.com
019278eb3581d9502a8dea534db2529d1d65b1bd
b52547e856f3dee82a332105f3b2553133c7e560
/ModelFreeRLPolicyLearning/policy_learning_sarsa.py
2c874536de7fef43e8b732237fb216c72c461639
[]
no_license
yuhsh24/RLlearning
0d3410b9254527e74dc932ccf502cd8972d0bb23
2a49ac9ea877cae27c0ce513b795c10a2266b166
refs/heads/master
2021-01-19T05:22:23.013144
2016-07-21T09:48:49
2016-07-21T09:48:49
63,664,017
0
0
null
null
null
null
UTF-8
Python
false
false
2,224
py
#!/usr/bin/python # -*- coding: UTF-8 -*- import grid_mdp import random random.seed(0) import matplotlib.pyplot as plt grid = grid_mdp.Grid_Mdp() states = grid.getStates() actions = grid.getActions() gamma = grid.getGamma() #epsilon greedy policy# def epsilon_greedy(qfunc, state, epsilon): amax = 0 key = "%d_%s"%(state, actions[0]) qmax = qfunc[key] for i in xrange(len(actions)): key = "%d_%s"%(state, actions[i]) q = qfunc[key] if qmax < q: qmax = q amax = i #probability pro = [0.0 for i in xrange(len(actions))] pro[amax] += 1 - epsilon for i in xrange(len(actions)): pro[i] += epsilon / len(actions) #choose r = random.random() s = 0.0 for i in xrange(len(actions)): s += pro[i] if s >= r: return actions[i] return actions[len(actions) - 1] best = dict() def read_best(): f = open("best_qfunc") for line in f: line = line.strip() if len(line) == 0: continue element = line.split(":") best[element[0]] = float(element[1]) def compute_error(qfunc): sum1 = 0.0 for key in qfunc: error = qfunc[key] - best[key] sum1 += error * error return sum1 def sarsa(num_iter1, alpha, epsilon): x = [] y = [] qfunc = dict() for s in states: for a in actions: key = "%d_%s"%(s, a) qfunc[key] = 0.0 for iter1 in xrange(num_iter1): x.append(iter1) y.append(compute_error(qfunc)) s = states[int(random.random() * len(states))] a = actions[int(random.random() * len(actions))] t = False count = 0 while False == t and count < 100: key = "%d_%s"%(s,a) t, s1, r = grid.transform(s,a) a1 = epsilon_greedy(qfunc, s1, epsilon) key1 = "%d_%s"%(s1,a1) qfunc[key] = qfunc[key] + alpha * (r + gamma * qfunc[key1] - qfunc[key]) s = s1 a = a1 count += 1 plt.plot(x,y,"--",label="sarsa alpha=%2.1f epsilon=%2.1f"%(alpha,epsilon)) plt.show(True) return qfunc; if __name__ == "__main__": read_best() sarsa(1000, 0.2, 0.2)
[ "yhshzju@163.com" ]
yhshzju@163.com
8484b482275e2ea081b24eac4c59213d8ff39e93
0889098368a18cc6ecfa442cfe86ed10a5ba32d6
/myblog/admin.py
300fd70c10c84a714d630170dbbed01102456364
[]
no_license
waaaaargh/myblog
9932ee5606497851f9ad99b4f1da1a9a604495f6
95cd823ea70bdc6e835f63590dfa36da5c4e6d25
refs/heads/master
2016-09-06T09:15:29.069543
2015-03-24T04:16:32
2015-03-24T04:16:32
9,065,605
0
0
null
2013-10-30T12:22:26
2013-03-27T23:02:40
Python
UTF-8
Python
false
false
662
py
from os.path import join from myblog import app, model, db, base_path from flask.ext.admin import Admin from flask.ext.admin.contrib.sqla import ModelView from flask.ext.admin.contrib.fileadmin import FileAdmin admin = Admin(app, name="MyBlog") class PostView(ModelView): form_excluded_columns = ['date', 'comments'] admin.add_view(PostView(model.post, db.session)) class CategoryView(ModelView): form_excluded_columns = ['posts'] admin.add_view(CategoryView(model.category, db.session)) class CommentView(ModelView): pass admin.add_view(CommentView(model.comment, db.session)) admin.add_view(FileAdmin(join(base_path, "static"), "/static/"))
[ "johannes@weltraumpflege.org" ]
johannes@weltraumpflege.org
c3ff962e9bc2259450ab129275683d0d23c67865
2411ee54802c71aa40895e827171f07289194990
/w78.py
798cb1329435e69c608c816bdb9724c582d3101e
[]
no_license
GoodJob567/eweb-exp
aeaf14a715279f07307c6761110cdd2dcdff946d
26911dbf26563684a40646220788be04e9532fab
refs/heads/master
2023-02-16T03:28:46.829739
2021-01-14T11:30:21
2021-01-14T11:30:21
329,593,467
0
0
null
null
null
null
UTF-8
Python
false
false
533
py
import requests key="cmd" requests.get("http://172.16.12.2/admin/ewebEditor/asp/upload.asp?action=save&type=image&style=popup&cusdir=hack.asp") # 要上传的文件 f = open('shell.gif', 'w') f.write('<%eval request("'+key+'")%>') f.close() f={'uploadfile':open('shell.gif','rb')} r=requests.post("http://172.16.12.2/admin/ewebEditor/asp/upload.asp?action=save&type=image&style=popup&cusdir=hack.asp",files=f).content i=r.find(b"d('") r=r[i+3:] i=r.find(b"'") print("URL: http://172.16.12.2"+r[:i].decode()) print("key is: "+key)
[ "52376699+GoodJob567@users.noreply.github.com" ]
52376699+GoodJob567@users.noreply.github.com
248d8b61cb8796e0a111657d391f2c4e4015226f
bb80ddf8324408705a30e8644a2d693252cf54e9
/products/migrations/0001_initial.py
d675a60a138b0ee81ea285f6556589b60a0cadad
[]
no_license
Code-Institute-Submissions/full_stack_stream_four_happy_box
483d4286b26825cf4428600b677147fd63201ff0
5c2fd5803bc8164d4028702b3859f5eb891d70e3
refs/heads/master
2020-03-27T19:57:01.538937
2018-09-01T18:37:26
2018-09-01T18:37:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,339
py
# Generated by Django 2.0.7 on 2018-07-11 12:06 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(db_index=True, default='', max_length=150)), ('slug', models.SlugField(max_length=150, unique=True)), ], options={ 'verbose_name': 'category', 'ordering': ('name',), 'verbose_name_plural': 'categories', }, ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=20)), ('image', models.ImageField(blank=True, upload_to='images')), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(db_index=True, default='', max_length=254)), ('slug', models.SlugField(max_length=100)), ('description', models.TextField(blank=True)), ('brand', models.CharField(default='', max_length=50)), ('price', models.DecimalField(decimal_places=2, max_digits=6)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='products', to='products.Category')), ], options={ 'ordering': ('name',), }, ), migrations.AddField( model_name='image', name='product', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, related_name='product_images', to='products.Product'), ), migrations.AlterIndexTogether( name='product', index_together={('id', 'slug')}, ), ]
[ "larkineva@gmail.com" ]
larkineva@gmail.com
f14053094b1246b3f7886581c70b392f158becb0
5b912db9e8bb7fa99d1e0932eb8a0dac7b1382f0
/t09_get_rid_of_it/rid.py
78d3728d97c74c9cb27f702750a297a07ef4ef65
[]
no_license
AwesomeCrystalCat/py_s00
3df7b285855ea276736d0a01d98df2d8465ad707
f4814a889b49d013b8285ab15992d0a309056ea6
refs/heads/main
2023-04-05T22:23:42.637972
2021-04-09T10:27:13
2021-04-09T10:27:13
356,228,064
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
my_number = 1 print(my_number) del(my_number) print(my_number)
[ "slavabusya@Selmarinels-MacBook-Pro.local" ]
slavabusya@Selmarinels-MacBook-Pro.local
f8dab2f0e3f3dfa5c4a51b8eadc87e0c3034cb09
fd3436480761c48535da13752ed7681abdbd535d
/delegate.py
4131f9203dd01d50b2ff11f5c38eedbc49f49024
[]
no_license
jayantjain100/nfa_computation_delegation
ea932047ec0e99ec3490e45d62e86f377596a799
9632d5489e6a9332474496fae4d3f82d876c1009
refs/heads/master
2020-07-24T09:10:49.844887
2019-12-02T05:18:01
2019-12-02T05:18:01
207,878,002
0
0
null
null
null
null
UTF-8
Python
false
false
1,680
py
from nfa import NFA import socket from socket_sending import receive_object from socket_sending import send_object import argparse def verify_yes_ans(given_label, final_labels): if(given_label in final_labels): return True else: return False parser = argparse.ArgumentParser(description='client that delegates NFA computation to prover and verifies') parser.add_argument('--ip', metavar='ip', type=str, default='127.0.0.1', help='the ip address of the server where the prover is running, default is localhost') parser.add_argument('--port', metavar = 'port', type = int, default = 12345, help='port number of server to connect to, default is 12345 ') args = parser.parse_args() def delegate(nfas, input_string, indexes): to_send = [] corresponding_final_labels = [] print('Creating garbled NFAs...') for ind in indexes: my_nfa = nfas[ind] (gnfa, final_labels) = my_nfa.garble(input_string) to_send.append(gnfa) corresponding_final_labels.append(final_labels) print('Sending garbled NFAs...') s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # port = 45000 s.connect((args.ip, args.port)) send_object(s, to_send) print('Waiting to receive result from prover...') received_ans = receive_object(s) print('Received the result.!') print() final_ans = [] for ind in range(len(received_ans)): ans = received_ans[ind] if(not ans[0]): # no, but unsure final_ans.append(False) elif(ans[0] and verify_yes_ans(ans[1], corresponding_final_labels[ind])): # yes, confirmed final_ans.append(True) else: # wrong proof given by prover final_ans.append(False) return final_ans
[ "ansh.sapra2233@gmail.com" ]
ansh.sapra2233@gmail.com
36c64c45720f28189ea436e39cd685e6744f24e4
7a37bd797ea067685c887328e3b447e008e8c170
/resourceserver/resourceserver/urls.py
e551621de72683b31896faeaa5739218174e3612
[]
no_license
Telmediq/hydrapoc
2e73f1b82d64d9f6b0e429e124923ede080c40a7
b22e0a22e97705ced2379e145c798ea2f66de25d
refs/heads/master
2020-07-14T23:32:30.147831
2019-09-17T21:10:04
2019-09-17T21:10:04
205,427,268
0
0
null
2019-12-05T00:10:34
2019-08-30T17:23:05
C#
UTF-8
Python
false
false
1,059
py
"""resourceserver URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from resourceserver import views urlpatterns = [ path('oauth2/init', views.oauth_start, name='oauth2-init'), path('oauth2/finish', views.oauth_finish, name='oauth2-finish'), path('login', views.login, name='login'), path('protected', views.protected), path('token/<identifier>', views.view_token), path('admin/', admin.site.urls), ]
[ "alex@telmediq.com" ]
alex@telmediq.com
530cc38befdec212750b6f4b4eefc95536c4852c
39a7bc82dc6b08dc347816859eddc1ebd590138c
/chapter02/06-bisect.insort.py
a2a6b85c83d4b643e534321cd93627e1c0eebb3c
[]
no_license
mgw2168/fluent_python
1a21568a70708b390e169e4126eebe76a0296d29
ab075e33290f75d690d455e42d3ff17f4d1e29ba
refs/heads/master
2020-07-04T22:46:12.695267
2019-12-05T08:05:56
2019-12-05T08:05:56
202,447,177
1
0
null
null
null
null
UTF-8
Python
false
false
290
py
import bisect import random SIZE = 7 random.seed(1729) my_list = [] # insort(seq, item)将变量item插入序列seq中,并能保证seq的升序 for i in range(SIZE): new_item = random.randrange(SIZE*2) bisect.insort(my_list, new_item) print('%2d ->' % new_item, my_list)
[ "mgw2168@163.com" ]
mgw2168@163.com
ae970afe343d32e40e8270515b8495c93e849c6a
bd34847cf9e0e7c57f86c709bd0ab375b3eef682
/spark/word_count.py
3e27f4a950058d786f358811bf6c98674d325add
[]
no_license
vshaveyko/learn_py
68ad17c1353859d32997989ae12de6a6ccd113da
2ceb5ed599ce59a611fb5ad366c9b45e2db29a82
refs/heads/master
2021-09-01T22:44:16.980240
2017-12-29T01:06:25
2017-12-29T01:06:25
115,279,253
0
0
null
null
null
null
UTF-8
Python
false
false
939
py
'''Print the words and their frequencies in this file''' import operator import pyspark def main(): '''Program entry point''' #Intialize a spark context with pyspark.SparkContext("local", "PySparkWordCount") as sc: #Get a RDD containing lines from this script file lines = sc.textFile(__file__) #Split each line into words and assign a frequency of 1 to each word words = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)) #count the frequency for words counts = words.reduceByKey(operator.add) #Sort the counts in descending order based on the word frequency sorted_counts = counts.sortBy(lambda x: x[1], False) #Get an iterator over the counts to print a word and its frequency for word,count in sorted_counts.toLocalIterator(): print(u"{} --> {}".format(word, count)) if __name__ == "__main__": main()
[ "vshaveyko@gmail.com" ]
vshaveyko@gmail.com
9518aed6232253576108cf492c812148ebcac253
90c9acae92fa0ccb63f796561aef10bb9a3a31c9
/python/analyze_db.py
37d1f04425e0e684e1da2427fa96e25906abe190
[]
no_license
chtlp/witness-mining
cc94f4d3249316e15eafa354ef513815fb919326
f27455bfab2d9557494e507665418db67fe7b43f
refs/heads/master
2021-01-19T20:27:48.079120
2012-08-08T09:41:54
2012-08-08T09:41:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,381
py
from collections import defaultdict, OrderedDict import csv, sqlite3, glob, sys, subprocess from pylab import * def analyze_columns(col_names, values): num = len(col_names) unique_values = [defaultdict(int) for _ in range(num)] for row in values: for k, c in enumerate(row): unique_values[k][c] += 1 col_values = [None] * num for k in range(num): tot = sum(unique_values[k].values()) items = sorted(unique_values[k].items(), key = lambda (v, c): -c)[:10] if sum(map(lambda (v, c): c, items)) >= 0.9 * tot: col_values[k] = map(lambda (v, c): v, items) return col_values def build_count_table(col_values, col_names, values, subj): i = col_names.index(subj) assert col_values[i] num = len(col_values) count_table = [None] * num for k in range(num): if col_values[k]: count_table[k] = zeros((len(col_values[k]), len(col_values[i]))) for row in values: u = row[i] for k, v in enumerate(row): if col_values[k] and v in col_values[k] and u in col_values[i]: count_table[k][ col_values[k].index(v), col_values[i].index(u) ] += 1 return count_table def compute_entropy(count_table, col_names, subj): ofile = open('analyze_db.log', 'w') for k, t in enumerate(count_table): if t is None: continue print 'cond_entropy( %s | %s ):\n' % (subj, col_names[k]) supp = t.sum() ent = 0.0 m, n = t.shape for i in range(m): lsum = t[i,:].sum() for j in range(n): if t[i,j]: ent += t[i,j] / supp * log( lsum / t[i,j] ) h_xy = 0.0 for i in range(m): for j in range(n): if t[i,j]: h_xy += (t[i,j] / supp) * log(supp / t[i,j]) h_x = 0.0 for i in range(m): s = t[i,:].sum() if s: h_x += (s / supp) * log(supp / s) h_y = 0.0 for j in range(n): s = t[:,j].sum() if s: h_y += (s / supp) * log(supp / s) assert h_x <= h_xy and h_y <= h_xy,'h_x = %.3f, h_y = %.3f, h_xy = %.3f' % (h_x, h_y, h_xy) print '\tsupport = %d, value = %.3f\n' % (supp, ent) if not h_x: continue mic = (h_x + h_y - h_xy) / min(h_x, h_y) print '\tmic = %.3f\n' % mic ofile.write('%s\t%.3f\n' % (col_names[k], mic)) ofile.close() def analyze_table(col_names, values, subj): col_values = analyze_columns(col_names, values) count_table = build_count_table(col_values, col_names, values, subj) compute_entropy(count_table, col_names, subj) def analyze_person_accident(conn, cur): cur.execute("PRAGMA table_info(PERSON)") c1 = cur.fetchall() cur.execute("PRAGMA table_info(ACCIDENT)") c2 = cur.fetchall() cur.execute('select * from PERSON JOIN ACCIDENT where PERSON.CASENUM == ACCIDENT.CASENUM') res = cur.fetchall() cols = map(lambda t: t[1], c1) + map(lambda t: t[1], c2) analyze_table(cols, res, 'INJ_SEV') if __name__ == '__main__': conn = sqlite3.connect('traffic.db') conn.text_factory = str cur = conn.cursor() analyze_person_accident(conn, cur) cur.close() conn.close()
[ "chnttlp@gmail.com" ]
chnttlp@gmail.com
edcede7c435a63d0e75eb252da4cc153f45acc02
68f04671ed3e2aeb2032a4fdecbede89cf9e1832
/ridge.py
de8b2783a7c235dd6d36114b04259136a70ee35a
[]
no_license
sushuang9210/machine_learning_algorithms
306c3fa086326cefd2c463f5d16cbe9829abc447
4aac5c664816612b1d4f078f5b7a548474bb9534
refs/heads/master
2020-03-18T17:07:35.444194
2018-06-11T04:18:25
2018-06-11T04:18:25
135,007,939
0
0
null
null
null
null
UTF-8
Python
false
false
835
py
import numpy as np from sklearn.linear_model import RidgeClassifier class Ridge: def __init__(self,data_1,data_2,model_parameters): self.clf = RidgeClassifier(tol=float(model_parameters[0]), solver=model_parameters[1]) num_data_1 = data_1.shape[0] num_data_2 = data_2.shape[0] data_1[:,-1] = np.ones((num_data_1)) data_2[:,-1] = np.zeros((num_data_2)) self.train_set = np.concatenate((data_1, data_2),axis=0) np.random.shuffle(self.train_set) self.X_train = self.train_set[:,0:-1] self.y_train = self.train_set[:,-1] def ridge_train(self): self.clf.fit(self.X_train,self.y_train) def ridge_predict(self,test): output_1 = self.clf.predict(test) output_2 = np.ones((test.shape[0])) - output_1 return output_1, output_2
[ "sushuang9210@gmail.com" ]
sushuang9210@gmail.com
fde0cdf4ea3b11cec022c1c518b01a1f0e60eabc
4559036e4b91f064c85214276a526ed566107f1f
/surname_rnn/surname/containers.py
0a8b4fc2b42148f674fa2146ee9800ea9e96f927
[ "Apache-2.0" ]
permissive
sudarshan85/nlpbook
f55017e5ec0d20f0bf5816438835322a8eff70e4
41e59d706fb31f5185a0133789639ccffbddb41f
refs/heads/master
2020-04-28T01:49:42.739340
2019-05-03T16:09:08
2019-05-03T16:09:08
174,873,977
0
0
null
null
null
null
UTF-8
Python
false
false
2,614
py
#!/usr/bin/env python import pandas as pd from pathlib import Path from torch.utils.data import DataLoader class ModelContainer(object): def __init__(self, model, optimizer, loss_fn, scheduler=None): self.model = model self.optimizer = optimizer self.loss_fn = loss_fn self.scheduler = scheduler class DataContainer(object): def __init__(self, df_with_split: pd.DataFrame, dataset_class, vectorizer_file: Path, batch_size: int, with_test=True, is_load: bool=True) -> None: self.train_df = df_with_split.loc[df_with_split['split'] == 'train'] self.val_df = df_with_split.loc[df_with_split['split'] == 'val'] self._bs = batch_size self.with_test = with_test self.is_load = is_load self._lengths = {'train_size': len(self.train_df), 'val_size': len(self.val_df)} self._n_batches = [self._lengths['train_size'] // self._bs, self._lengths['val_size'] // self._bs] if not self.is_load: print("Creating and saving vectorizer") train_ds = dataset_class.load_data_and_create_vectorizer(self.train_df) train_ds.save_vectorizer(vectorizer_file) self.train_ds = dataset_class.load_data_and_vectorizer_from_file(self.train_df, vectorizer_file) self.vectorizer = self.train_ds.vectorizer self.surname_vocab = self.vectorizer.surname_vocab self.nationality_vocab = self.vectorizer.nationality_vocab self.train_dl = DataLoader(self.train_ds, self._bs, shuffle=True, drop_last=True) self.val_ds = dataset_class.load_data_and_vectorizer(self.val_df, self.vectorizer) self.val_dl = DataLoader(self.val_ds, self._bs, shuffle=True, drop_last=True) if self.with_test: self.test_df = df_with_split.loc[df_with_split['split'] == 'test'] self._lengths['test_size'] = len(self.test_df) self._n_batches.append(self._lengths['test_size'] // self._bs) self.test_ds = dataset_class.load_data_and_vectorizer(self.test_df, self.vectorizer) self.test_dl = DataLoader(self.test_ds, self._bs, shuffle=True, drop_last=True) def get_loaders(self): return self.train_dl, self.val_dl, self.test_dl @property def train_batches(self): return self._n_batches[0] @property def val_batches(self): return self._n_batches[1] @property def test_batches(self): if not self.with_test: raise NameError("No test dataset was provided") return self._n_batches[2] @property def vocab_size(self): return len(self.surname_vocab) @property def n_classes(self): return len(self.nationality_vocab) @property def sizes(self): return self._lengths
[ "su0@ornl.gov" ]
su0@ornl.gov
adaa3bcc2f1130b6551be40f14ba5bf15c68f983
5117ae47abf2b1c72c5c808b39048ae2686be0f9
/listings/models.py
6b8b3acddd8045715c14f5018ba637bdbbdbed0d
[]
no_license
nayanpsharma/nayan_property_project
a7cc18bbedccf7f12b7bde16658898581ad02146
1ef766444696b3049f6e630e6c6a9b75d779c2b4
refs/heads/master
2022-12-18T21:57:47.426545
2020-09-18T21:16:26
2020-09-18T21:16:26
296,731,065
0
0
null
null
null
null
UTF-8
Python
false
false
1,445
py
from django.db import models from datetime import datetime from realtors.models import Realtor class Listing(models.Model): realtor = models.ForeignKey(Realtor, on_delete=models.DO_NOTHING) title = models.CharField(max_length=200) address = models.CharField(max_length=200) city = models.CharField(max_length=100) state = models.CharField(max_length=100) zipcode = models.CharField(max_length=20) description = models.TextField(blank=True) price = models.IntegerField() bedrooms = models.IntegerField() bathrooms = models.DecimalField(max_digits=2, decimal_places=1) garage = models.IntegerField(default=0) sqft = models.IntegerField() lot_size = models.DecimalField(max_digits=5, decimal_places=1) photo_main = models.ImageField(upload_to='photos/%Y%m/%d/') photo_1 = models.ImageField(upload_to='photos/%Y%m/%d/', blank = True) photo_2 = models.ImageField(upload_to='photos/%Y%m/%d/', blank = True) photo_3 = models.ImageField(upload_to='photos/%Y%m/%d/', blank = True) photo_4 = models.ImageField(upload_to='photos/%Y%m/%d/', blank = True) photo_5 = models.ImageField(upload_to='photos/%Y%m/%d/', blank = True) photo_6 = models.ImageField(upload_to='photos/%Y%m/%d/', blank = True) is_published = models.BooleanField(default=True) list_date = models.DateTimeField(default=datetime.now, blank=True) def __str__(self): return self.title
[ "nayansharma996@gmail.com" ]
nayansharma996@gmail.com
62ab32f13bfb48de1118f28c062ed0d2f5702325
6e5c83baa19e09bcc59300d764ce936f8cbe6b5b
/pybtex/style/names/plain.py
62c0c2ca311b0e086a1a078c4410d14d84d02f38
[ "MIT" ]
permissive
rybesh/pybtex
84e10b12f6c9ade0de2af638bfc23945109eff6d
18e0b5336f07ebc5dc97aa899362fb292ea7bb5a
refs/heads/master
2016-08-07T20:15:26.865726
2011-03-18T18:03:48
2011-03-18T18:03:48
1,246,178
0
0
null
null
null
null
UTF-8
Python
false
false
2,441
py
# Copyright (c) 2010, 2011 Andrey Golovizin # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from pybtex.style.template import join from pybtex.style.names import BaseNameStyle, name_part class NameStyle(BaseNameStyle): name = 'plain' def format(self, person, abbr=False): r""" Format names similarly to {ff~}{vv~}{ll}{, jj} in BibTeX. >>> from pybtex.core import Person >>> name = Person(string=r"Charles Louis Xavier Joseph de la Vall{\'e}e Poussin") >>> plain = NameStyle().format >>> print plain(name).format().plaintext() Charles Louis Xavier<nbsp>Joseph de<nbsp>la Vall{\'e}e<nbsp>Poussin >>> print plain(name, abbr=True).format().plaintext() C.<nbsp>L. X.<nbsp>J. de<nbsp>la Vall{\'e}e<nbsp>Poussin >>> name = Person(first='First', last='Last', middle='Middle') >>> print plain(name).format().plaintext() First<nbsp>Middle Last >>> print plain(name, abbr=True).format().plaintext() F.<nbsp>M. Last >>> print plain(Person('de Last, Jr., First Middle')).format().plaintext() First<nbsp>Middle de<nbsp>Last, Jr. """ return join [ name_part(tie=True) [person.first(abbr) + person.middle(abbr)], name_part(tie=True) [person.prelast()], name_part [person.last()], name_part(before=', ') [person.lineage()] ]
[ "ryanshaw@ischool.berkeley.edu" ]
ryanshaw@ischool.berkeley.edu
32b358403cf8563ce1aad3ed0d74d9abb0359e78
c5edd407319c80640ed4e2819838fec94ee7a345
/raterz/settings.py
31ebd662a31757c7cdfd225ed059c47ef34cb724
[ "MIT" ]
permissive
OwenMur21/raterz
41abece2ac878932a36367b3e12482a9c34ac68c
2e028e1fbb8832d90731fec10d5c3401b543384c
refs/heads/master
2020-04-01T01:31:08.865849
2018-10-17T04:48:41
2018-10-17T04:48:41
152,741,989
0
0
null
null
null
null
UTF-8
Python
false
false
3,577
py
import os import django_heroku import dj_database_url from decouple import config, Csv MODE=config("MODE", default="dev") SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) # development if config('MODE')=="dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), # 'HOST': config('DB_HOST'), # 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = ['*'] BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'pro.apps.ProConfig', 'bootstrap3', 'rest_framework', 'rest_framework.authtoken', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'raterz.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'raterz.wsgi.application' REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.TokenAuthentication', ) } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') django_heroku.settings(locals())
[ "owenmuriithi@gmail.com" ]
owenmuriithi@gmail.com
1dccfb0f90cf749916c6492d1e8a811a652e9e72
39b916e8969712a31195586ba6666744342b0fcf
/inheritance.py
b94276e67bcb37d6bdd1c591fbef51731a5cbdf0
[]
no_license
bhumphris/Inheritance
165391f1e4125d63d6fd7bb7447fb3860f52020a
e61a833c9b4eb49981fa91db31b53b7f450cfc03
refs/heads/master
2020-06-13T15:48:09.292442
2016-12-02T05:27:28
2016-12-02T05:27:28
75,363,130
0
0
null
null
null
null
UTF-8
Python
false
false
597
py
import officeFurniture def main(): desk = officeFurniture.Desk("Desk", "Metal", 48, 20, 36, 2, "Left", 3, 155.50) print("Product: " + desk.get_category()) print("Material: " + desk.get_material()) print("Length: " + str(desk.get_length())) print("Width: " + str(desk.get_width())) print("Height: " + str(desk.get_height())) print("Number of Drawers: " + str(desk.get_drawers())) print("Location of Drawers: " + desk.get_location()) print("Quantity: " + str(desk.get_quantity())) print("Price: ${:0,.2f}\n".format(desk.get_price())) print desk main()
[ "noreply@github.com" ]
bhumphris.noreply@github.com
df0a60238544af1eabcce7960d656b63097a4e40
d98b0d74639be1b7fdd737b4ddb6938d74157865
/mysite/settings.py
7e61b134ea0d195d268887d0a08fef0772a4b465
[]
no_license
sebastiansilbernagl/djangogirls-blog
e70d2d673be67145fc8cc12cde3d7dba5a9e5bf9
15df60e2af4dadf01165efe6817dea2f6a7e2c65
refs/heads/master
2020-05-23T10:14:35.840139
2017-01-30T12:52:44
2017-01-30T12:52:44
80,407,880
0
0
null
null
null
null
UTF-8
Python
false
false
3,232
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.10.5. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '4)r8d1vo+6v4a&940f7t53g9cozbz9)(^8cbi--m5qe5hju%2l' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', 'sebsilbernagl.pythonanywhere.com', 'localhost',] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Johannesburg' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
[ "sebastian.silbernagl@gmail.com" ]
sebastian.silbernagl@gmail.com
797ecbc116b4a0204337d20868dc1e94f0595a59
d74cf31046b9cf7d6ea77ab3e9ed1f293beabeb9
/charts_analyzer.py
b1f4b099e9a0a8ed64b168ca5700f71a0350beed
[]
no_license
sampurkiss/song_features
789c6ad01455528af3c7c667218301ee8d1312b2
6ab81b4059645c143c1be478e335146283e85c73
refs/heads/master
2020-05-06T20:00:00.832903
2019-06-02T03:59:50
2019-06-02T03:59:50
180,215,794
1
0
null
null
null
null
UTF-8
Python
false
false
4,847
py
# -*- coding: utf-8 -*- """ Created on Wed Apr 3 13:05:13 2019 @author: Sam Purkiss """ import os os.chdir('C:/Users/sam purkiss/Documents/Code/Music/') import pandas as pd import spotipy import re from spotipy.oauth2 import SpotifyClientCredentials from credentials import CLIENT_ID,CLIENT_SECRET #Need to create a credentials file with your spotify api keys client_credentials_manager = SpotifyClientCredentials(CLIENT_ID,CLIENT_SECRET) spotify = spotipy.Spotify(client_credentials_manager=client_credentials_manager) names_giving_probs = ['21 savage & metro boomin featuring future', '21 savage, offset metro boomin ring quavo', '21 savage, offset metro boomin ring travis scott', 'Dont Trust Me', 'Hit It Again', 'a r rahman & the pussycat dolls featuring nicole scherzinger', 'A Change Is Gonna Come', '\'N Sync'] def get_music_features(artist_name, song_name): """ Spotify API caller to pull features for individual tracks. Paramaters: artist_name: name of artist song_name: song by artist of interest Returns: Pandas dataframe with variables identified in the API documentation: https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/ Usage: client_credentials_manager = SpotifyClientCredentials(CLIENT_ID,CLIENT_SECRET) spotify = spotipy.Spotify(client_credentials_manager=client_credentials_manager) song_features = get_music_features('the cure','Friday im in love') """ #Use these lists to fix common problems in naming conventions words_to_remove = ['&.+', 'featuring.+',#the .+ is a regex expression that # will strip off words following the main word. #Eg "Alvin And The Chipmunks Featuring Chris Classic" #becomes just "Alvin And The Chipmunks." This is #necessary because Spotify search often has a hard time #finding songs with multiple featured artists. #This may cause an issue where songs that are have versions #with and without different artists aren't distinguished #between 'feat..+', 'feat.+', 'with.+', '(?<= )[\+](?= ).+', 'duet', '(?<= )[xX](?= )', #note that this will only strip the x away if there's #an x with spaces on both sides "'", '\*', "\(", "\)" ] words_to_remove_from_songs =["'", '[a-zA-Z]+(\*)+(?P<named_group>).+(?= )',#used for capturing #words that are censored eg N***s, '\([a-zA-Z]+.+\)' #remove any words in brackets ] artist = artist_name.lower() song = song_name for word in words_to_remove: artist = re.sub(word,'',artist) for word in words_to_remove_from_songs: song = re.sub(word,'', song) #Generate database used to hold returned items song_details= pd.DataFrame() try: query = 'track:%s artist:%s' %(song,artist) result = spotify.search(q=query) #Select the first item (assume spotify returns what I want on first result) first_result = result['tracks']['items'][0] #From first result, pull specific variables track_id = first_result['id'] album_id = first_result['album']['id'] artist_id = first_result['artists'][0]['id'] release_date = first_result['album']['release_date'] #Add variables to dataframe song_details['Performer'] = [artist_name] song_details['Song'] = [song_name] song_details['track_id'] = [track_id] song_details['artist_id'] = [artist_id] song_details['album_id'] = [album_id] song_details['release_date'] = [release_date] song_details['search_query'] = [query] track_features = spotify.audio_features(tracks=track_id) if len(track_features)>1: print('multiple songs are returned for some reason') track_features = track_features[0] for key, value in track_features.items(): song_details[key] = [value] except IndexError: #for few weird ones + cases where song isn't on spotify print("Search term \"%s\" is giving trouble" %(query)) pass return(song_details)
[ "samuelpurkiss@gmail.com" ]
samuelpurkiss@gmail.com
79db44dd6ae283d024b6f0487e48e369d2b2d272
83eadd220a58329ad7fdb6a223dcc02cb9e6dd81
/load_discussions.py
67d431ff934d2ae0fe8c1580dd8f0a00309eba1c
[]
no_license
LironRS/anyway
7d49a1d994d3685d62acf6e3435a38c9f58b0c35
813283a0c4fe966f1752d0e2e85aa30c6fad7693
refs/heads/master
2021-01-15T09:09:12.309208
2015-05-19T12:21:22
2015-05-19T12:21:22
35,944,465
0
0
null
2015-05-20T11:42:39
2015-05-20T11:42:39
null
UTF-8
Python
false
false
977
py
# -*- coding: utf-8 -*- from __future__ import print_function import argparse from models import DiscussionMarker import re from datetime import datetime from database import db_session def main(): parser = argparse.ArgumentParser() parser.add_argument('identifiers', type=str, nargs='+', help='Disqus identifiers to create markers for') args = parser.parse_args() for identifier in args.identifiers: m = re.match('\((\d+\.\d+),\s*(\d+\.\d+)\)', identifier) if not m: print("Failed processing: " + identifier) continue (latitude, longitude) = m.group(1, 2) marker = DiscussionMarker.parse({ 'latitude': latitude, 'longitude': longitude, 'title': identifier, 'identifier': identifier }) db_session.add(marker) db_session.commit() print("Added: " + identifier) if __name__ == "__main__": main()
[ "daniel.hershcovich@gmail.com" ]
daniel.hershcovich@gmail.com
d591cfa31e9c148bfac88be4aefee2acdd0a8266
fc39e431bcf4ead647b3c4a2b8fb8dc772928852
/Indoor_Webapp_B/Indoor_Webapp_B/Indoor_Webapp_B/manage.py
eec6c95947e4ab94a6f3118584215b324c299e0c
[ "BSD-3-Clause" ]
permissive
DavidTF85/IndooeAir-Webapp-B
c129414be094c39a00fa397e4eed16dc39f7bb14
579f7593116d743e566e16219370c98e2937844b
refs/heads/master
2020-09-12T08:32:24.099793
2019-11-18T05:24:55
2019-11-18T05:24:55
222,369,279
0
0
null
null
null
null
UTF-8
Python
false
false
656
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Indoor_Webapp_B.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "noreply@github.com" ]
DavidTF85.noreply@github.com
1da5693613af676b6218173be8e0870435f4b8b1
7b695f34ee8a45f7609064ec47e861825f2d96a8
/week4/multiplication.py
4b2154562589d72befaaa62da3ad7cee1620d82a
[]
no_license
deciduously/cmit135
de0c151c3642f25ecc6ef76d299d46b7810c753e
a74544f529a654e499ef34d6ca1a35c0b5cd71d2
refs/heads/master
2020-04-19T06:19:55.122853
2019-02-28T00:13:41
2019-02-28T00:13:41
168,014,573
0
0
null
null
null
null
UTF-8
Python
false
false
827
py
# multiplication.py pretty prints a multiplication table # Function to return the number of digits a number n has def num_digits(n): # Converts it to a string a counts the length - the math way would work too but this is easy return len(str(n)) def draw_table(n): # calculate this outside the loop so we dont run it every iteration total_size = n*n for i in range(1, n): for j in range(1, n): # Print the product of the indices current_cell = i*j # Use the size difference betwene the max value and the current value to determine current cell padding padding = ' ' * (1 + num_digits(total_size) - num_digits(current_cell)) print(padding + str(i*j), end="") print() # draw with 10 draw_table(10)
[ "ben@deciduously.com" ]
ben@deciduously.com
3523fe1ae052b3f169f7bc74db4e83be9b2377c2
40afc1f3790099d2d5270503d101f30c71a89f07
/usersys/views/user.py
d4c9af3172aaa675d041cfa02bcb920867dd7649
[]
no_license
fhydralisk/reviewing
a3d31af1e8fe8caf2e831b35816d638ac0cadcce
7a27f278f85f9fdbcc805b0290f6bbdbb7147609
refs/heads/master
2020-05-14T23:27:37.229343
2019-05-07T12:28:21
2019-05-07T12:28:21
181,997,119
0
2
null
2019-05-07T07:38:14
2019-04-18T01:49:53
Python
UTF-8
Python
false
false
431
py
from base.views import WLAPIGenericView from ..serializers import user as user_serializers from ..funcs import user as user_funcs class UserView(WLAPIGenericView): http_method_names = ['get', 'patch', 'options'] API_SERIALIZER = { 'patch': user_serializers.UserPartialUpdateSerializer } RESULT_SERIALIZER = { 'get': user_serializers.UserDetailSerializer } FUNC_CLASS = user_funcs.UserFunc
[ "fhy14@mails.tsinghua.edu.cn" ]
fhy14@mails.tsinghua.edu.cn
2690dfe618649e308a0dc47ef332ab5e56e29930
84c38b838ca74cf80fe276d272537b1b840bfe6d
/Battleship.py
6ff503cc58f958d7415b052af718a3ad315768e3
[]
no_license
Chruffman/Personal-Projects
9c385a145e02661cf0dddc76d6f2b5034a6a35f9
d271573b4e48c3026d0cc09d4483c218bc3dfa97
refs/heads/master
2021-01-21T05:17:07.536173
2018-07-24T13:37:50
2018-07-24T13:37:50
83,166,561
0
0
null
null
null
null
UTF-8
Python
false
false
1,247
py
# my attempt at the Battleship! assignment from codeacademy.com from random import randint board = [] for quadrant in range(6): board.append(['O'] * 6) def display_board(board): for row in board: print (" ".join(row)) print ("Let's play Battleship!") display_board(board) def new_row(board): return randint(0, len(board) - 1) def new_col(board): return randint(0, len(board) - 1) game_row = new_row(board) game_col = new_col(board) print (game_col) print (game_row) guess = 0 for guess in range(5): guess += 1 user_row = int(input("Guess row: ")) user_col = int(input("Guess column: ")) if user_row == game_row and user_col == game_col: print ("You sunk my battleship! Curses!!") print ("You win!") break else: if user_row not in range(6) or user_col not in range(6): print ("Your guess is not even in the ocean. Maybe improve your aim?") elif board[user_row][user_col] == 'X': print ("You have already unsuccessfully guessed that sector of the game board.") else: if guess == 5: print ("Game Over.") else: print ("You missed my battleship!") board[user_row][user_col] = 'X' print ("Guess", guess + 1) display_board(board)
[ "noreply@github.com" ]
Chruffman.noreply@github.com
4ec6a82a97d5f6196307fc39b56522e1fa8b4f01
a1e01939dfb63139271b137620f57a55420f8dbe
/utils/path_helper.py
85715b225a360b44fe77bf61e8fa0ca6a7f65723
[ "BSD-3-Clause" ]
permissive
KindRoach/NARRE-Pytorch
839becc7128a5875e6dbcab62eafea914b3b7c4f
14fec7e623e36350e43d24e2629297ab0d308170
refs/heads/master
2023-06-01T02:56:03.323533
2023-05-22T13:32:23
2023-05-22T13:32:23
270,171,507
8
3
null
null
null
null
UTF-8
Python
false
false
114
py
from pathlib import Path ROOT_DIR = Path(__file__).parent.parent if __name__ == "__main__": print(ROOT_DIR)
[ "kindroach@hotmail.com" ]
kindroach@hotmail.com
7e33879f634aa7e8d75988cebf28a1a0a95922cf
9918208c80a3c396d8a1e13783d501d60dbc2050
/digitalearthau/index.py
184f71b63443c944423a74ab43f21a32af6c40c5
[]
no_license
benjimin/digitalearthau
2d3010be76fad0d0b6b4854dbbad07e98254b239
5098bf3c88627cad78a8caa5ab703c586c17a6f7
refs/heads/develop
2022-02-27T07:36:16.009689
2017-09-14T05:51:27
2017-09-14T05:51:27
103,460,937
0
0
null
2017-09-13T23:10:15
2017-09-13T23:10:15
null
UTF-8
Python
false
false
7,353
py
import collections import uuid from datetime import datetime from typing import Iterable, Optional, Mapping, List from datacube.index import index_connect from datacube.index._api import Index from datacube.model import Dataset from datacube.scripts import dataset as dataset_script from datacube.utils import uri_to_local_path from digitalearthau.utils import simple_object_repr class DatasetLite: """ A small subset of datacube.model.Dataset. A "real" dataset needs a lot of initialisation: types etc, so this is easier to test with. We also, in this script, depend heavily on the __eq__ behaviour of this particular class (by id only), and subtle bugs could occur if the core framework made changes to it. """ def __init__(self, id_: uuid.UUID, archived_time: datetime = None) -> None: # Sanity check of the type, as our equality checks are quietly wrong if the types don't match, # and we've previously had problems with libraries accidentally switching string/uuid types... assert isinstance(id_, uuid.UUID) self.id = id_ self.archived_time = archived_time @property def is_archived(self): """ Is this dataset archived? (an archived dataset is one that is not intended to be used by users anymore: eg. it has been replaced by another dataset. It will not show up in search results, but still exists in the system via provenance chains or through id lookup.) :rtype: bool """ return self.archived_time is not None def __eq__(self, other): if not other: return False return self.id == other.id def __hash__(self): return hash(self.id) @classmethod def from_agdc(cls, dataset: Dataset): return DatasetLite(dataset.id, archived_time=dataset.archived_time) def __repr__(self): return simple_object_repr(self) class DatasetPathIndex: """ An index of datasets and their URIs. This is a slightly questionable attempt to make testing/mocking simpler. There's two implementations: One in-memory and one that uses a real datacube. (MemoryDatasetPathIndex and AgdcDatasetPathIndex) """ def iter_all_uris(self, query: dict) -> Iterable[str]: raise NotImplementedError def get_datasets_for_uri(self, uri: str) -> Iterable[DatasetLite]: raise NotImplementedError def get(self, dataset_id: uuid.UUID) -> Optional[DatasetLite]: raise NotImplementedError def add_location(self, dataset: DatasetLite, uri: str) -> bool: raise NotImplementedError def remove_location(self, dataset: DatasetLite, uri: str) -> bool: raise NotImplementedError def add_dataset(self, dataset: DatasetLite, uri: str): raise NotImplementedError def as_map(self) -> Mapping[DatasetLite, Iterable[str]]: """Map of all datasets to their uri list. Convenience method for tests""" raise NotImplementedError def close(self): """Do any clean-up as needed before forking.""" # Default implementation: no-op pass class AgdcDatasetPathIndex(DatasetPathIndex): def __init__(self, index: Index) -> None: super().__init__() self._index = index self._rules = dataset_script.load_rules_from_types(self._index) def iter_all_uris(self, query: dict) -> Iterable[str]: for uri, in self._index.datasets.search_returning(['uri'], **query): yield str(uri) @classmethod def connect(cls) -> 'AgdcDatasetPathIndex': return cls(index_connect(application_name='digitalearthau-pathsync')) def get_datasets_for_uri(self, uri: str) -> Iterable[DatasetLite]: for d in self._index.datasets.get_datasets_for_location(uri=uri): yield DatasetLite.from_agdc(d) def remove_location(self, dataset: DatasetLite, uri: str) -> bool: was_removed = self._index.datasets.remove_location(dataset.id, uri) return was_removed def get(self, dataset_id: uuid.UUID) -> Optional[DatasetLite]: agdc_dataset = self._index.datasets.get(dataset_id) return DatasetLite.from_agdc(agdc_dataset) if agdc_dataset else None def add_location(self, dataset: DatasetLite, uri: str) -> bool: was_removed = self._index.datasets.add_location(dataset.id, uri) return was_removed def add_dataset(self, dataset: DatasetLite, uri: str): path = uri_to_local_path(uri) for d in dataset_script.load_datasets([path], self._rules): if d.id == dataset.id: self._index.datasets.add(d, sources_policy='ensure') break else: raise RuntimeError('Dataset not found at path: %s, %s' % (dataset.id, uri)) def close(self): self._index.close() def as_map(self) -> Mapping[DatasetLite, Iterable[str]]: """ All contained (dataset, [location]) values, to check test results. """ return dict( ( DatasetLite(dataset.id), tuple(dataset.uris) ) for dataset in self._index.datasets.search() ) def __enter__(self): return self def __exit__(self, type_, value, traceback): self.close() class MemoryDatasetPathIndex(DatasetPathIndex): """ An in-memory implementation, so that we can test without using a real datacube index. """ def get(self, dataset_id: uuid.UUID) -> Optional[DatasetLite]: for d in self._records.keys(): if d.id == dataset_id: return d return None def __init__(self): super().__init__() # Map of dataset to locations. self._records = collections.defaultdict(list) # type: Mapping[DatasetLite, List[str]] def reset(self): self._records = collections.defaultdict(list) def iter_all_uris(self, query: dict) -> Iterable[str]: for uris in self._records.values(): yield from uris def add_location(self, dataset: DatasetLite, uri: str) -> bool: if dataset not in self._records: raise ValueError("Unknown dataset {} -> {}".format(dataset.id, uri)) return self._add(dataset, uri) def _add(self, dataset_id, uri): if uri in self._records[dataset_id]: # Not added return False self._records[dataset_id].append(uri) return True def remove_location(self, dataset: DatasetLite, uri: str) -> bool: if uri not in self._records[dataset]: # Not removed return False # We never remove the dataset key, only the uris. self._records[dataset].remove(uri) return True def get_datasets_for_uri(self, uri: str) -> Iterable[DatasetLite]: for dataset, uris in self._records.items(): if uri in uris: yield dataset def as_map(self) -> Mapping[DatasetLite, Iterable[str]]: """ All contained (dataset, [location]) values, to check test results. """ return {id_: tuple(uris) for id_, uris in self._records.items()} def add_dataset(self, dataset: DatasetLite, uri: str): # We're not actually storing datasets... return self._add(dataset, uri)
[ "jez@stulk.com" ]
jez@stulk.com
86e497f7d8b7f8e601d5bdf3d3d634b51fbc04bf
e82b761f53d6a3ae023ee65a219eea38e66946a0
/All_In_One/addons/hair_tool/curves_resample.py
bbf794543f831be09e4c96a6a4ed9485f74a8093
[]
no_license
2434325680/Learnbgame
f3a050c28df588cbb3b14e1067a58221252e2e40
7b796d30dfd22b7706a93e4419ed913d18d29a44
refs/heads/master
2023-08-22T23:59:55.711050
2021-10-17T07:26:07
2021-10-17T07:26:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,061
py
# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # Copyright (C) 2017 JOSECONSCO # Created by JOSECONSCO import bpy import math import numpy as np from bpy.props import EnumProperty, FloatProperty, BoolProperty, IntProperty, StringProperty from .resample2d import interpol_Catmull_Rom, get_strand_proportions class HT_OT_CurvesResample(bpy.types.Operator): bl_label = "Curve resample" bl_idname = "object.curve_resample" bl_description = "Change ammount of points on curve" bl_options = {"REGISTER", "UNDO"} hairType: bpy.props.EnumProperty(name="Output Curve Type", default="NURBS", items=(("BEZIER", "Bezier", ""), ("NURBS", "Nurbs", ""), ("POLY", "Poly", ""))) # bezierRes: IntProperty(name="Bezier resolution", default=3, min=1, max=12) t_in_y: IntProperty(name="Strand Segments", default=8, min=3, max=20) uniformPointSpacing: BoolProperty(name="Uniform spacing", description="Distribute stand points with uniform spacing", default=False) equalPointCount: BoolProperty(name="Equal point count", description="Give all cures same points count \n" "If disabled shorter curves will have less points", default=False) onlySelection: BoolProperty(name="Only Selected", description="Affect only selected points", default=False) def invoke(self, context, event): particleObj = context.active_object if particleObj.mode == 'EDIT': self.onlySelection = True elif particleObj.mode == 'OBJECT': self.onlySelection = False Curve = context.active_object if not Curve.type == 'CURVE': self.report({'INFO'}, 'Use operator on curve type object') return {"CANCELLED"} self.input_spline_type = Curve.data.splines[0].type self.hairType = self.input_spline_type # hair type - output spline if self.input_spline_type == 'NURBS': self.nurbs_order = Curve.data.splines[0].order_u if len(Curve.data.splines) > 0: # do get initnial value for resampling t polyline = Curve.data.splines[0] # take first spline len for resampling if polyline.type == 'NURBS' or polyline.type == 'POLY': self.t_in_y = len(polyline.points) else: self.t_in_y = len(polyline.bezier_points) self.bezierRes = Curve.data.resolution_u return self.execute(context) def execute(self, context): curveObj = context.active_object if curveObj.type != 'CURVE': self.report({'INFO'}, 'Works only on curves') return {"CANCELLED"} pointsList = [] pointsRadius = [] pointsTilt = [] selectedSplines = [] if self.onlySelection: for polyline in curveObj.data.splines: if polyline.type == 'NURBS' or polyline.type == 'POLY': if any(point.select == True for point in polyline.points): selectedSplines.append(polyline) else: if any(point.select_control_point == True for point in polyline.bezier_points): selectedSplines.append(polyline) if not selectedSplines: selectedSplines = curveObj.data.splines else: selectedSplines = curveObj.data.splines for polyline in selectedSplines: # for strand point if polyline.type == 'NURBS' or polyline.type == 'POLY': points = polyline.points else: points = polyline.bezier_points if len(points) > 1: # skip single points pointsList.append([point.co.to_3d() for point in points]) pointsRadius.append([point.radius for point in points]) pointsTilt.append([point.tilt for point in points]) backup_mat_indices = [spline.material_index for spline in selectedSplines] interpolRad = [] interpolTilt = [] splinePointsList = interpol_Catmull_Rom(pointsList, self.t_in_y, uniform_spacing = self.uniformPointSpacing, same_point_count=self.equalPointCount) if self.equalPointCount: # each output spline will have same point count t_ins_y = [i / (self.t_in_y - 1) for i in range(self.t_in_y)] for radii, tilts in zip(pointsRadius, pointsTilt): # per strand t_rad = [i / (len(radii) - 1) for i in range(len(radii))] interpolRad.append(np.interp(t_ins_y, t_rad, radii)) # first arg len() = out len interpolTilt.append(np.interp(t_ins_y, t_rad, tilts)) # first arg len() = out len else: # shorter output splines will have less points lens = [len(x) for x in splinePointsList] for radii, tilts, strandLen in zip(pointsRadius, pointsTilt, lens): # per strand t_ins_Normalized = [i / (strandLen - 1) for i in range(strandLen)] t_rad = [[i / (len(radii) - 1) for i in range(len(radii))]] interpolRad.append(np.interp(t_ins_Normalized, t_rad[0], radii)) # first arg len() = out len interpolTilt.append(np.interp(t_ins_Normalized, t_rad[0], tilts)) # first arg len() = out len curveData = curveObj.data # spline_type = if self.onlySelection: for spline in selectedSplines: curveData.splines.remove(spline) else: curveData.splines.clear() newSplines = [] for k, splinePoints in enumerate(splinePointsList): # for each strand/ring curveLenght = len(splinePoints) polyline = curveData.splines.new(self.hairType) newSplines.append(polyline) if self.hairType == 'BEZIER': polyline.bezier_points.add(curveLenght - 1) elif self.hairType == 'POLY' or self.hairType == 'NURBS': polyline.points.add(curveLenght - 1) if self.hairType == 'NURBS': polyline.order_u = self.nurbs_order if self.input_spline_type == 'NURBS' else 3 polyline.use_endpoint_u = True np_splinePointsOnes = np.ones((len(splinePoints), 4)) # 4 coord x,y,z ,1 np_splinePointsOnes[:, :3] = splinePoints if self.hairType == 'BEZIER': polyline.bezier_points.foreach_set('co', np_splinePointsOnes[:, :3]) polyline.bezier_points.foreach_set('radius', interpolRad[k]) polyline.bezier_points.foreach_set('tilt', interpolTilt[k]) polyline.bezier_points.foreach_set('handle_left_type', 'AUTO') polyline.bezier_points.foreach_set('handle_right_type', 'AUTO') else: polyline.points.foreach_set('co', np_splinePointsOnes.ravel()) polyline.points.foreach_set('radius', interpolRad[k]) polyline.points.foreach_set('tilt', interpolTilt[k]) curveData.resolution_u = self.bezierRes # bpy.ops.object.curve_uv_refresh() for backup_mat, newSpline in zip(backup_mat_indices, newSplines): newSpline.material_index = backup_mat return {"FINISHED"}
[ "root@localhost.localdomain" ]
root@localhost.localdomain
712c8911fb30a81f68341c8d02607fc01373169c
bc2effb57e82128b81371fb03547689255d5ef15
/백준/그래프/13549(숨바꼭질 3).py
3e27f94ac43b4efa403bf096775a59d3e8e538cd
[]
no_license
CharmingCheol/python-algorithm
393fa3a8921f76d25e0d3f02402eae529cc283ad
61c8cddb72ab3b1fba84171e03f3a36f8c672648
refs/heads/master
2023-03-01T11:00:52.801945
2021-01-31T13:38:29
2021-01-31T13:38:29
229,561,513
0
0
null
null
null
null
UTF-8
Python
false
false
738
py
import sys from collections import deque MAX_SIZE = 100001 start, end = map(int, sys.stdin.readline().split()) board = [float("inf")] * MAX_SIZE board[start] = 0 queue = deque() queue.append((start, 0)) while queue: now, value = queue.popleft() if now == end: print(board[now]) break if value != board[now]: continue if 0 <= now - 1 and value + 1 < board[now - 1]: board[now - 1] = value + 1 queue.append((now - 1, value + 1)) if now + 1 < MAX_SIZE and value + 1 < board[now + 1]: board[now + 1] = value + 1 queue.append((now + 1, value + 1)) if now * 2 < MAX_SIZE and value < board[now * 2]: board[now * 2] = value queue.append((now * 2, value))
[ "54410332+chamincheol@users.noreply.github.com" ]
54410332+chamincheol@users.noreply.github.com
b64dcfd8310e0a91a5674a0426a212d4e4014f18
b12875980121be80628e3204a5a62fbbd6190222
/seesion7/minihack5.py
7dba52421d756d3b660a75259e7d867a584fab55
[]
no_license
hoangstillalive/hoangstillalive
ef2eb9a173b346e75ac0a35c455cebacd1a9fe91
304e0087792857815090cb890e18086d1128df6f
refs/heads/master
2020-06-12T10:07:33.319139
2019-09-13T12:31:57
2019-09-13T12:31:57
194,267,120
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
side = int(input("Enter side of shape you like:")) angle = 360/side from turtle import* shape("turtle") for i in range(side): forward(100) left (angle) mainloop()
[ "minhhoangtruong.a1@gmail.com" ]
minhhoangtruong.a1@gmail.com
c0b608d437f149d8760c931ec9488e38f0fefb57
b7634e92ed147a34cdb017598c6d8dd41c0def96
/aula05/migrations/0002_categoria_comentario_post.py
3a636face480cf6e0fdc9a2f6b875eb3ce1d9fd2
[]
no_license
mayronceccon/olist-django-labs
a4e9805489f4c9ad782f5085188dee342d4ac051
fbe6f314554e65f0a47dddc7c2c21165ccc1d828
refs/heads/master
2021-09-28T14:21:44.385979
2020-06-06T00:25:54
2020-06-06T00:25:54
240,728,135
1
0
null
2021-09-22T18:44:59
2020-02-15T14:36:27
Python
UTF-8
Python
false
false
1,411
py
# Generated by Django 3.0.3 on 2020-02-29 17:15 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('aula05', '0001_initial'), ] operations = [ migrations.CreateModel( name='Categoria', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('titulo', models.CharField(max_length=254)), ('texto', models.TextField()), ('categorias', models.ManyToManyField(related_name='posts', to='aula05.Categoria')), ], ), migrations.CreateModel( name='Comentario', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('autor', models.CharField(max_length=30)), ('comentario', models.TextField()), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='aula05.Post')), ], ), ]
[ "mayron.ceccon@gmail.com" ]
mayron.ceccon@gmail.com
b04ee7d509224ea32bcdc2abd3aa726509802b36
253296050582fbe0a8605353295ab27daae4deff
/main.py
32884c43658bae739d1868be5e5ce5b322bef693
[]
no_license
qiita-scraper/qiita-scraper-rocket-chat
a44d95d125431670dda97b5614f92d0ee0d09098
86c1b6e0d4d889deb9a468cd85a1d0f93eb9cc20
refs/heads/master
2023-05-14T23:39:42.637110
2019-12-17T15:50:51
2019-12-17T15:50:51
228,154,303
4
0
null
2023-05-07T13:10:45
2019-12-15T08:43:31
Python
UTF-8
Python
false
false
1,461
py
import os from rocket_chat import rocket_chat from qiita import qiita import yaml def main(): url, user, password = __get_os_environ() room_name, organization = __get_config() q = qiita.Qiita() rc = rocket_chat.RocketChat(url, user, password) for user in q.fetch_organization_users(organization): articles = q.fetch_recent_user_articles(user) for yesterday_article in q.extract_yesterday_articles(articles): msg = rc.format_message(user=user, title=yesterday_article['title'], article_url=yesterday_article['url']) rc.send_message_to_rocket_chat(msg, room_name) def __get_config(): f = open("config.yml", "r") data = yaml.load(f) room_name = data.get('rocket_chat').get('room_name') organization = data.get('qiita').get('organization') return room_name, organization def __get_os_environ(): url = os.environ.get('ROCKET_CHAT_URL') user = os.environ.get('ROCKET_CHAT_USER') password = os.environ.get('ROCKET_CHAT_PASSWORD') if url is None or len(url) == 0: raise Exception('ROCKET_CHAT_URL is not set in environment variable') if user is None or len(user) == 0: raise Exception('ROCKET_CHAT_USER is not set in environment variable') if password is None or len(password) == 0: raise Exception('ROCKET_CHAT_PASSWORD is not set in environment variable') return url, user, password def handler(event, context): main()
[ "daisuke.awaji@i.softbank.jp" ]
daisuke.awaji@i.softbank.jp
bc54e1b48cf35f7afe4085bcfc57748031ff30b5
8ac0beeda7da3f6059f47dbd71f90a375589b8eb
/Ubiquiti/EdgeRouter-Lite.py
5c1e1a6a434fbfc723d8a192f78062264691d878
[]
no_license
evgenyzorin/Paramiko
f98dbabdb0954c4e55ecd88604de6ba81d421e6c
9deb3d6d0491717524117dfd2c1a9cb4c968d016
refs/heads/main
2023-09-02T16:43:13.279258
2021-11-11T08:34:49
2021-11-11T08:34:49
390,994,305
1
0
null
null
null
null
UTF-8
Python
false
false
1,628
py
from paramiko import SSHClient, AutoAddPolicy from datetime import datetime import re start_time = datetime.now() def send_show_command( devices, username, password, command, max_bytes=60000, delay=1, ): client = SSHClient() client.load_system_host_keys() client.set_missing_host_key_policy(AutoAddPolicy()) info = {} for device in devices: print(f'\n---------- Connecting device {device} ----------\n') client.connect( hostname=device, username=username, password=password, look_for_keys=False, allow_agent=False, ) stdin, stdout, sterr = client.exec_command(command) output = stdout.readlines() for line in output[3:]: data = [i.strip() for i in line.split(' ') if i] if re.search('[a-zA-Z]', data[0]): interface = data[0] info[interface] = { 'ip': [data[1]], 'state': data[2].split('/')[0], 'link': data[2].split('/')[1], 'description': data[3], } else: info[interface]['ip'].append(data[0]) print(info) if __name__ == '__main__': devices = ['192.168.1.1', '192.168.1.2'] command = '/opt/vyatta/bin/vyatta-op-cmd-wrapper show interfaces' send_show_command(devices, 'ubnt', 'ubnt', command) run_time = datetime.now() - start_time print(f'\n---------- Elapsed time: {run_time} ----------\n')
[ "noreply@github.com" ]
evgenyzorin.noreply@github.com
7eaa3fc42b530ce553df3f478e57dfcb78907226
335efc133db52ce3dcbb114f6be1e2e5c308ab35
/backend/myprofile.py
677b25332bc919433660284ec8608f4900feeaf6
[]
no_license
mrclauderandall/CS-Capstone-Project
12c9987713bf398fee838b6a1025fafbf3a8885d
cc599ac7d836360bfb78c80e4bbfb893bca39c2f
refs/heads/master
2023-06-29T13:16:56.207602
2021-08-09T02:51:34
2021-08-09T02:51:34
394,126,058
0
0
null
null
null
null
UTF-8
Python
false
false
1,353
py
import psycopg2 from flask import jsonify # # Should we migrate these functions to user.py? # def myprofile(username, conn): cur = conn.cursor() cur.execute( f"SELECT * FROM public.users WHERE email = '{username}'" ) result = cur.fetchall() conn.close() return(jsonify(result)) def editprofile(email, first_name, last_name, password, username, conn): cur = conn.cursor() cur.execute( f"UPDATE public.users SET first_name = '{first_name}', last_name = '{last_name}', password = '{password}', email = '{email}' WHERE email = '{username}'" ) conn.commit() conn.close() return(jsonify(200)) def setDP(image_url, username, conn): cur = conn.cursor() cur.execute( f"UPDATE public.users SET profile_pic = '{image_url}' WHERE email = '{username}'" ) conn.commit() conn.close() return(jsonify(200)) def getDP(username, conn): cur = conn.cursor() cur.execute( f"SELECT profile_pic FROM public.users WHERE email = '{username}'" ) result = cur.fetchone() conn.commit() conn.close() return (jsonify(result[0])) def removeDP(username, conn): cur = conn.cursor() cur.execute( f"UPDATE public.users SET profile_pic = NULL WHERE email = '{username}'" ) conn.commit() conn.close() return(jsonify(200))
[ "mrclauderandall@gmail.com" ]
mrclauderandall@gmail.com
a2f7ae216b410776277bf51f39352e0afd7a8354
cb892c75961eeae4e9c968403e823565d2b0056e
/periodic1D.py
ce67dcd6b4588f63f65e9a66e3aeef14fbdecd90
[]
no_license
victorstorchan/signal-processing
7deb60ed1e3f7ae09553cbe0faf6fce3fec97fc8
a51e9855cb8cb7a63ecbab9fac645fc4846b03a7
refs/heads/master
2021-01-19T03:02:07.791676
2016-07-16T12:32:27
2016-07-16T12:32:27
52,238,889
0
0
null
null
null
null
UTF-8
Python
false
false
1,917
py
import numpy as np import matplotlib.pyplot as plt from cmath import polar from math import sqrt #definition of the boxcars signals def boxcar(x,i): if x-i<-1 or x-i>1: return 0 else: return 1 x= np.arange(-2.,2.,0.05) n=len(x) print(n) True_signal=np.zeros(n) for i in range(n): True_signal[i]=boxcar(x[i],0) #plt.plot(x,True_signal) #plt.axis([-2,2,-1,2]) #plt.show() #definitions of the shifted signals y=np.zeros(n,dtype=complex) y2=np.zeros(n,dtype=complex) base=np.zeros(n,dtype=complex) vector_of_shift=[0,3,10,30]#shifts are integer in discrete version len_shift=len(vector_of_shift) #signal with shift: shifted_signals=np.zeros((len_shift,n),dtype=complex) shifted_signals_1=np.zeros((len_shift,n),dtype=complex) for k in range(n): base[k]=boxcar(x[k],0) max_shift=max(vector_of_shift) base_period=np.lib.pad(base, (max_shift, 0), 'wrap') for s in range(len_shift): for k in range(n): if k-vector_of_shift[s]<0: y[k]=base_period[max_shift-vector_of_shift[s]-1+k] y2[k]=base_period[max_shift-vector_of_shift[s]-1+k]*np.exp(2J*np.pi*k/n) else: y[k]=boxcar(x[k-vector_of_shift[s]],0) y2[k]=boxcar(x[k-vector_of_shift[s]],0)*np.exp(2J*np.pi*k/n) randvect=np.random.normal(0,0.1,n) shifted_signals[s] =y#+ randvect shifted_signals_1[s]=y2#+ randvect A=np.fft.fft(shifted_signals) A_1=np.fft.fft(shifted_signals_1).conjugate() A_star=np.zeros((len_shift,n),dtype=complex) for i in range(len_shift): A_star[i] = A[i]*A_1[i] A_star_matrix=np.matrix(A_star) A_star_transpose=A_star_matrix.getH() A_prod1=A_star_matrix*A_star_transpose A_prod=A_prod1/A_prod1[0,0] (V,sigma,V_star)=np.linalg.svd(A_prod,full_matrices=1) v1=V_star[0].getH() #the shifts are recovered: output=np.zeros(len_shift,dtype=complex) for i in range(len_shift): output[i]=-n*polar(-v1[i,0])[1]/(2*np.pi) output
[ "noreply@github.com" ]
victorstorchan.noreply@github.com
65e50e3080ce522797d0807c4a9ccf3ad3d59230
9cb4b1707c9cf2cb2d45849a32625ddcd5d2ce15
/data_structures/graph/graph.py
76c5509f826c0cf30c80e238bb6245540194a1f8
[]
no_license
paxzeno/CrackingTheCodingInterview
14b0a0bd8a8f9a0bf30defbd07c4e6d1c1b0a549
d082c704d8a2d4a4e61371091abb023a1dc5fa99
refs/heads/master
2020-04-26T17:24:55.098714
2019-03-16T17:35:03
2019-03-16T17:35:03
173,712,427
0
0
null
null
null
null
UTF-8
Python
false
false
4,397
py
import random import Queue from node import Node class RoadMap: def __init__(self, queue): self._queue = queue self._path = {} self._new_paths = set() def get_queue(self): return self._queue def set_path(self, node_name, parent_node_name): # think if there may be some bogus behavior, # because of several parents could share the same child node self._path[node_name] = parent_node_name def get_path(self): return self._path def set_new_paths(self, paths): self._new_paths = paths def get_new_paths(self): return self._new_paths class Graph: def __init__(self): self._nodes = [] def add_node(self, node): self._nodes.append(node) def get_nodes(self): return self._nodes def generate_graph(self, number_nodes, max_number_children=4): self._nodes = [None] * number_nodes for i in xrange(0, number_nodes): self._nodes[i] = Node(i) for node in self._nodes: # number of children this node will have from 1 to 4 Max number_children = random.randint(1, max_number_children) for j in xrange(0, number_children): child_node_name = -1 while child_node_name == -1 or child_node_name == node.get_name(): child_node_name = random.randint(0, number_nodes - 1) node.add_child(self._nodes[child_node_name]) def depth_first_search(self, node_name): # to be implemented return None def breath_first_search(self, root_name, end_name): node = self._nodes[root_name] queue = Queue.Queue() queue.put(node) # TODO no need to have checked and path, # TODO path can handle both functions checked = set() checked.add(node) path = {} while not queue.empty(): q_node = queue.get() self.print_node(q_node) for child_node in q_node.get_children(): if child_node.get_name() not in checked: path[child_node.get_name()] = q_node.get_name() checked.add(child_node.get_name()) if child_node.get_name() == end_name: return self.print_path(path, root_name, end_name) else: queue.put(child_node) return self.print_path(None) def bidirectional_bfs_search(self, root_name, end_name): root_node = self._nodes[root_name] end_node = self._nodes[end_name] root_queue = Queue.Queue() root_queue.put(root_node) root_road_map = RoadMap(root_queue) found = False while not root_road_map.get_queue().empty() and not found: root_road_map = self.iterated_bfs_search(root_road_map) if end_node in root_road_map.get_new_paths(): found = True if found: return self.print_path(root_road_map.get_path(), root_name, end_name) return self.print_path(None) def iterated_bfs_search(self, road_map): queue = road_map.get_queue() node = queue.get() self.print_node(node) children = node.get_children() road_map.set_new_paths(children) path = road_map.get_path() for child_node in children: if child_node.get_name() not in path: road_map.set_path(child_node.get_name(), node.get_name()) queue.put(child_node) return road_map @staticmethod def print_path(path, origin=None, end=None): if path is None: return 'No path found for the node' route = str(end) pointer = end while pointer != origin: route += ' -> ' + str(path[pointer]) pointer = path[pointer] return route @staticmethod def print_node(node): print_children = ', Child Nodes: [' for child_node in node.get_children(): print_children += str(child_node.get_name()) + ';' print_children += ']' print('Node:' + str(node.get_name()) + print_children) if __name__ == '__main__': graph = Graph() graph.generate_graph(20, 2) print(graph.breath_first_search(0, 2)) print(graph.bidirectional_bfs_search(0, 2))
[ "paxzeno@gmail.com" ]
paxzeno@gmail.com
15660f72a517e3b32ec05f1edde94a333241df3b
1a41addd7ca9486b5392158984f0e5c14d92edff
/tests.py
331c9c2324a88becd6a3d030e51f2608966da740
[ "MIT" ]
permissive
humin11/sixquant
32e94c2d1035c87a5cad816dd1286613c54174cd
bf3614c34cdbd4373dcbfc0cb24f58a1d7957d47
refs/heads/master
2021-08-26T08:37:33.808255
2017-11-22T16:10:36
2017-11-22T16:10:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
# coding=utf-8 import os import sys import unittest root = os.path.abspath(os.path.expanduser(__file__ + '/../tests')) sys.path.append(root) if __name__ == '__main__': suite = unittest.TestSuite() suite.addTest(unittest.defaultTestLoader.discover('tests')) unittest.TextTestRunner().run(suite)
[ "caviler@gmail.com" ]
caviler@gmail.com
bb7d789c7df59f3ef3d4b7d31cc5b89a64bbb3c6
51cbd904e17e45f6adb5303c3532a6ff0519ab42
/sdk/tables/azure-data-tables/tests/test_table_service_properties_cosmos.py
139f3c1973a4a4d8f57e5f7f63813ae8c7bfbeef
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
heaths/azure-sdk-for-python
203e9a6052d7dff5b5f2346bced86b9406be3419
77feaf14471eba6642f5c7ae2f3f06981ff361d7
refs/heads/master
2022-07-26T06:46:57.067502
2021-04-15T21:35:26
2021-04-15T21:35:26
239,629,447
0
0
MIT
2020-02-10T22:46:20
2020-02-10T22:46:19
null
UTF-8
Python
false
false
9,896
py
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import time import pytest from devtools_testutils import AzureTestCase from azure.core.exceptions import HttpResponseError from azure.data.tables import ( TableServiceClient, TableAnalyticsLogging, Metrics, RetentionPolicy, CorsRule ) from _shared.testcase import TableTestCase from preparers import CosmosPreparer # ------------------------------------------------------------------------------ class TableServicePropertiesTest(AzureTestCase, TableTestCase): # --Helpers----------------------------------------------------------------- def _assert_properties_default(self, prop): assert prop is not None self._assert_logging_equal(prop['analytics_logging'], TableAnalyticsLogging()) self._assert_metrics_equal(prop['hour_metrics'], Metrics()) self._assert_metrics_equal(prop['minute_metrics'], Metrics()) self._assert_cors_equal(prop['cors'], list()) def _assert_logging_equal(self, log1, log2): if log1 is None or log2 is None: assert log1 == log2 return assert log1.version == log2.version assert log1.read == log2.read assert log1.write == log2.write assert log1.delete == log2.delete self._assert_retention_equal(log1.retention_policy, log2.retention_policy) def _assert_delete_retention_policy_equal(self, policy1, policy2): if policy1 is None or policy2 is None: assert policy1 == policy2 return assert policy1.enabled == policy2.enabled assert policy1.days == policy2.days def _assert_static_website_equal(self, prop1, prop2): if prop1 is None or prop2 is None: assert prop1 == prop2 return assert prop1.enabled == prop2.enabled assert prop1.index_document == prop2.index_document assert prop1.error_document404_path == prop2.error_document404_path def _assert_delete_retention_policy_not_equal(self, policy1, policy2): if policy1 is None or policy2 is None: assert policy1 != policy2 return assert not (policy1.enabled == policy2.enabled and policy1.days == policy2.days) def _assert_metrics_equal(self, metrics1, metrics2): if metrics1 is None or metrics2 is None: assert metrics1 == metrics2 return assert metrics1.version == metrics2.version assert metrics1.enabled == metrics2.enabled assert metrics1.include_apis == metrics2.include_apis self._assert_retention_equal(metrics1.retention_policy, metrics2.retention_policy) def _assert_cors_equal(self, cors1, cors2): if cors1 is None or cors2 is None: assert cors1 == cors2 return assert len(cors1) == len(cors2) for i in range(0, len(cors1)): rule1 = cors1[i] rule2 = cors2[i] assert len(rule1.allowed_origins) == len(rule2.allowed_origins) assert len(rule1.allowed_methods) == len(rule2.allowed_methods) assert rule1.max_age_in_seconds == rule2.max_age_in_seconds assert len(rule1.exposed_headers) == len(rule2.exposed_headers) assert len(rule1.allowed_headers) == len(rule2.allowed_headers) def _assert_retention_equal(self, ret1, ret2): assert ret1.enabled == ret2.enabled assert ret1.days == ret2.days # --Test cases per service --------------------------------------- @pytest.mark.skip("Cosmos Tables does not yet support service properties") @CosmosPreparer() def test_table_service_properties(self, tables_cosmos_account_name, tables_primary_cosmos_account_key): # Arrange url = self.account_url(tables_cosmos_account_name, "cosmos") tsc = TableServiceClient(url, tables_primary_cosmos_account_key) # Act resp = tsc.set_service_properties( analytics_logging=TableAnalyticsLogging(), hour_metrics=Metrics(), minute_metrics=Metrics(), cors=list()) # Assert assert resp is None self._assert_properties_default(tsc.get_service_properties()) if self.is_live: sleep(SLEEP_DELAY) # --Test cases per feature --------------------------------------- @pytest.mark.skip("Cosmos Tables does not yet support service properties") @CosmosPreparer() def test_set_logging(self, tables_cosmos_account_name, tables_primary_cosmos_account_key): # Arrange url = self.account_url(tables_cosmos_account_name, "cosmos") tsc = TableServiceClient(url, tables_primary_cosmos_account_key) logging = TableAnalyticsLogging(read=True, write=True, delete=True, retention_policy=RetentionPolicy(enabled=True, days=5)) # Act tsc.set_service_properties(analytics_logging=logging) # Assert received_props = tsc.get_service_properties() self._assert_logging_equal(received_props['analytics_logging'], logging) if self.is_live: time.sleep(30) @pytest.mark.skip("Cosmos Tables does not yet support service properties") @CosmosPreparer() def test_set_hour_metrics(self, tables_cosmos_account_name, tables_primary_cosmos_account_key): # Arrange url = self.account_url(tables_cosmos_account_name, "cosmos") tsc = TableServiceClient(url, tables_primary_cosmos_account_key) hour_metrics = Metrics(enabled=True, include_apis=True, retention_policy=RetentionPolicy(enabled=True, days=5)) # Act tsc.set_service_properties(hour_metrics=hour_metrics) # Assert received_props = tsc.get_service_properties() self._assert_metrics_equal(received_props['hour_metrics'], hour_metrics) if self.is_live: sleep(SLEEP_DELAY) @pytest.mark.skip("Cosmos Tables does not yet support service properties") @CosmosPreparer() def test_set_minute_metrics(self, tables_cosmos_account_name, tables_primary_cosmos_account_key): # Arrange url = self.account_url(tables_cosmos_account_name, "cosmos") tsc = TableServiceClient(url, tables_primary_cosmos_account_key) minute_metrics = Metrics(enabled=True, include_apis=True, retention_policy=RetentionPolicy(enabled=True, days=5)) # Act tsc.set_service_properties(minute_metrics=minute_metrics) # Assert received_props = tsc.get_service_properties() self._assert_metrics_equal(received_props['minute_metrics'], minute_metrics) if self.is_live: sleep(SLEEP_DELAY) @pytest.mark.skip("Cosmos Tables does not yet support service properties") @CosmosPreparer() def test_set_cors(self, tables_cosmos_account_name, tables_primary_cosmos_account_key): # Arrange url = self.account_url(tables_cosmos_account_name, "cosmos") tsc = TableServiceClient(url, tables_primary_cosmos_account_key) cors_rule1 = CorsRule(['www.xyz.com'], ['GET']) allowed_origins = ['www.xyz.com', "www.ab.com", "www.bc.com"] allowed_methods = ['GET', 'PUT'] max_age_in_seconds = 500 exposed_headers = ["x-ms-meta-data*", "x-ms-meta-source*", "x-ms-meta-abc", "x-ms-meta-bcd"] allowed_headers = ["x-ms-meta-data*", "x-ms-meta-target*", "x-ms-meta-xyz", "x-ms-meta-foo"] cors_rule2 = CorsRule( allowed_origins, allowed_methods, max_age_in_seconds=max_age_in_seconds, exposed_headers=exposed_headers, allowed_headers=allowed_headers) cors = [cors_rule1, cors_rule2] # Act tsc.set_service_properties(cors=cors) # Assert received_props = tsc.get_service_properties() self._assert_cors_equal(received_props['cors'], cors) if self.is_live: sleep(SLEEP_DELAY) # --Test cases for errors --------------------------------------- @pytest.mark.skip("Cosmos Tables does not yet support service properties") @CosmosPreparer() def test_too_many_cors_rules(self, tables_cosmos_account_name, tables_primary_cosmos_account_key): # Arrange tsc = TableServiceClient(self.account_url(tables_cosmos_account_name, "cosmos"), tables_primary_cosmos_account_key) cors = [] for i in range(0, 6): cors.append(CorsRule(['www.xyz.com'], ['GET'])) # Assert pytest.raises(HttpResponseError, tsc.set_service_properties, None, None, None, cors) if self.is_live: sleep(SLEEP_DELAY) @pytest.mark.skip("Cosmos Tables does not yet support service properties") @CosmosPreparer() def test_retention_too_long(self, tables_cosmos_account_name, tables_primary_cosmos_account_key): # Arrange tsc = TableServiceClient(self.account_url(tables_cosmos_account_name, "cosmos"), tables_primary_cosmos_account_key) minute_metrics = Metrics(enabled=True, include_apis=True, retention_policy=RetentionPolicy(enabled=True, days=366)) # Assert pytest.raises(HttpResponseError, tsc.set_service_properties, None, None, minute_metrics) if self.is_live: sleep(SLEEP_DELAY) class TestTableUnitTest(TableTestCase): def test_retention_no_days(self): # Assert pytest.raises(ValueError, RetentionPolicy, True, None)
[ "noreply@github.com" ]
heaths.noreply@github.com
6b6eff5bda3cf3377e02463065468ac0476d1bf8
38ecc2e4d128f2770c105673fba2c480a96d688f
/Задание №1 по наследованию.py
a44643ebcea89a7b2241ab2fc0a27647c14c4a1a
[]
no_license
Valentin31121967/Class-
288c4b2cf430bcb1b6c3dd756d0040867125b2f9
078ab77356e9d6b7532622a2d32c5ea29fb7ffcb
refs/heads/master
2022-04-15T05:09:11.094751
2020-04-15T04:45:29
2020-04-15T04:45:29
255,808,474
0
0
null
null
null
null
UTF-8
Python
false
false
2,352
py
# Задание №1. Взять задание из предыдущей лекции и отделить функции сохранения и загрузки в отдельный класс import json # Создаем новый класс User class User: # Функция конструктор класса User def _init_(self): self.first_name = None self.middle_name = None self.last_name = None self.age = None # Функция ввода данных пользователя def input_info(self): self.first_name = input("Input First Name: ") self.middle_name = input("Input Middle Name: ") self.last_name = input("Input Last Name: ") self.age = input("Input Age: ") # Функция сериализации данных в удобный вид для чтения на экране def serialize(self): return "First name: {}\n" \ "Middle name: {}\n"\ "Last name: {}\n" \ "Age : {}\n"\ .format(self.first_name, self.middle_name, self.last_name, self.age) # Создаем дочерний класс Save_load_data (User) class Save_load_data(User): # Функция записи данных в отдельный файл def fail_save(self): fil = str(input("Введите с клавиатуры имя файла для записи на диск: ")) with open(fil, "w") as f: data = {"first_name": self.first_name, "middle_name": self.middle_name, "last_name": self.last_name, "age": self.age} json.dump(data, f) # Функция загрузки данных из отдельного файла def fail_load(self): fil = str(input("Введите с клавиатуры имя файла для загрузки с диска: ")) with open(fil, "r") as f: data = json.loads(f.read()) self.first_name = data["first_name"] self.last_name = data["last_name"] self.middle_name = data["middle_name"] self.age = data["age"] print(data) user = Save_load_data() user.input_info() print(user.serialize()) print(user.fail_save()) print(user.fail_load()) print(user)
[ "askshatriy@ukr.net" ]
askshatriy@ukr.net
61496518c7782cbc99ab59bb0f240368c572137d
6fda3d57556c381de407898710b02244561ffa4e
/load_datasets.py
c6bd1af889b12f860b070b4aeab2aaf412827bd7
[]
no_license
pachecobeto95/Quality_POPEX
46679f7319aff44675b3ec41be2a4551a611e3d4
e98987c5ff8836723ef227c685dcd7d10363522b
refs/heads/master
2023-03-31T04:11:29.868823
2021-04-03T19:17:35
2021-04-03T19:17:35
335,408,076
1
0
null
null
null
null
UTF-8
Python
false
false
3,288
py
import torch import torchvision.transforms as transforms from torchvision import datasets from torch.utils.data import Dataset, DataLoader, random_split, SubsetRandomSampler class LoadDataset(): def __init__(self, input_dim, batch_size_train, batch_size_test): self.input_dim = input_dim self.batch_size_train = batch_size_train self.batch_size_test = batch_size_test self.transformation_list = transforms.Compose([transforms.Resize(input_dim), transforms.CenterCrop(input_dim), transforms.ToTensor()]) def cifar_10(self): # Load Cifar-10 dataset root = "cifar_10" trainset = datasets.CIFAR10(root=root, train=True, download=True, transform=transforms.Compose(self.transformation_list)) trainLoader = torch.utils.data.DataLoader(trainset, batch_size=self.batch_size_train, num_workers=2, shuffle=True, drop_last=True) testset = datasets.CIFAR10(root=root, train=False, download=True, transform=transforms.Compose(self.transformation_list)) testLoader = torch.utils.data.DataLoader(testset, batch_size=self.batch_size_test, num_workers=2, shuffle=False) return trainLoader, testLoader def cifar_100(self): # Load Cifar-100 dataset root = "cifar_100" trainset = datasets.CIFAR100(root=root, train=True, download=True, transform=transforms.Compose(self.transformation_list)) trainLoader = torch.utils.data.DataLoader(trainset, batch_size=self.batch_size_train, num_workers=2, shuffle=True, drop_last=True) testset = datasets.CIFAR100(root=root, train=False, download=True, transform=transforms.Compose(self.transformation_list)) testLoader = torch.utils.data.DataLoader(testset, batch_size=self.batch_size_test, num_workers=2, shuffle=False) return trainLoader, testLoader def imageNet(self, root_path): # Load ImageNet Dataset test_dataset = datasets.ImageFolder(root = root_path, transform = self.transformation_list) _, val_dataset = random_split(test_dataset, (0, 50000)) val_loader = DataLoader(dataset=val_dataset, shuffle=False, batch_size=self.batch_size_test) return None, val_loader def caltech(self, root_path, split_train=0.8): dataset = datasets.ImageFolder(root = root_path, transform = self.transformation_list) train_size = int(split_train*len(dataset)) test_size = len(dataset) - train_size train_dataset, test_dataset = random_split(dataset, (train_size, test_size)) train_dataset, val_dataset = random_split(train_dataset, (int(split_train*len(train_dataset)), len(train_dataset) - int(split_train*len(train_dataset)))) train_loader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=self.batch_size_train) val_loader = DataLoader(dataset=val_dataset, shuffle=False, batch_size=self.batch_size_test) test_loader = DataLoader(dataset=test_dataset, shuffle=False, batch_size=self.batch_size_test) return train_loader, val_loader, test_loader
[ "robertopvc@gmail.com" ]
robertopvc@gmail.com
07668772edfbe22ce75606f7b2dbddeeadeb083a
efcd8ea3f5419cd7d6eb7406875b7f727291492f
/IRIS/width_wise_l2/8w_l2.py
46704866ad62a1cdd2b0e5d8b54f553a21f127d6
[ "MIT" ]
permissive
jrepifano/xai_is_fragile
936612c2ecf7b020ab1a75719d18bff9bed564d2
fd7e21355582543fa2d00bf9f48d3e12725c3fb6
refs/heads/main
2023-08-28T00:45:36.066073
2021-11-13T20:12:51
2021-11-13T20:12:51
346,057,518
1
0
null
null
null
null
UTF-8
Python
false
false
13,542
py
import os import time import torch import numpy as np from pyhessian import hessian from sklearn.datasets import load_iris from sklearn.metrics import accuracy_score from scipy.stats import pearsonr, spearmanr from sklearn.model_selection import LeaveOneOut from sklearn.preprocessing import StandardScaler os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID' os.environ["CUDA_VISIBLE_DEVICES"] = '3' # Random Seed - Negating the randomizing effect np.random.seed(6) # Seeds : 2, 5, 10, 13, 15, 20 # Random Seed for tensorflow torch.manual_seed(14) class Model(torch.nn.Module): def __init__(self, n_feats, n_nodes, n_classes): super(Model, self).__init__() self.lin1 = torch.nn.Linear(n_feats, n_nodes) self.lin_last = torch.nn.Linear(n_nodes, n_classes) self.relu = torch.nn.SELU() def forward(self, x): device = 'cuda:0' if next(self.parameters()).is_cuda else 'cpu' if not torch.is_tensor(x): x = torch.tensor(x, requires_grad=True, device=device, dtype=torch.float32) x = self.relu(self.lin1(x)) x = self.lin_last(x) return x def bottleneck(self, x): device = 'cuda:0' if next(self.parameters()).is_cuda else 'cpu' if not torch.is_tensor(x): x = torch.tensor(x, requires_grad=True, device=device, dtype=torch.float32) x = self.relu(self.lin1(x)) return x def fit(self, x, y, no_epochs=1000): device = 'cuda:0' if next(self.parameters()).is_cuda else 'cpu' if not torch.is_tensor(x): x, y = torch.from_numpy(x).float().to(device), torch.from_numpy(y).long().to(device) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(self.parameters(), lr=1e-3, weight_decay=0.005) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=100, verbose=False) for epoch in range(no_epochs): optimizer.zero_grad() logits = self.forward(x) loss = criterion(logits, y) loss.backward() optimizer.step() scheduler.step(loss.item()) def score(self, x, y): device = 'cuda:0' if next(self.parameters()).is_cuda else 'cpu' if not torch.is_tensor(x): x, y = torch.from_numpy(x).float().to(device), torch.from_numpy(y).long().to(device) logits = torch.nn.functional.softmax(self.forward(x), dim=1) score = torch.sum(torch.argmax(logits, dim=1) == y)/len(x) return score.cpu().numpy() def get_indiv_loss(self, x, y): device = 'cuda:0' if next(self.parameters()).is_cuda else 'cpu' if not torch.is_tensor(x): x, y = torch.from_numpy(x).float().to(device), torch.from_numpy(y).long().to(device) criterion = torch.nn.CrossEntropyLoss(reduction='none') logits = self.forward(x) loss = criterion(logits, y) return [l.item() for l in loss] if len(loss) > 1 else loss.item() class influence_wrapper: def __init__(self, model, x_train, y_train, x_test=None, y_test=None): self.x_train = x_train self.y_train = y_train self.x_test = x_test self.y_test = y_test self.model = model self.device = 'cuda:0' if next(self.model.parameters()).is_cuda else 'cpu' def get_loss(self, weights): criterion = torch.nn.CrossEntropyLoss() logits = self.model.bottleneck(self.x_train[self.pointer].reshape(1, -1)) logits = logits @ weights.T + self.model.lin_last.bias loss = criterion(logits, torch.tensor([self.y_train[self.pointer]], device=self.device)) return loss def get_train_loss(self, weights): criterion = torch.nn.CrossEntropyLoss() logits = self.model.bottleneck(self.x_train) logits = logits @ weights.T + self.model.lin_last.bias loss = criterion(logits, torch.tensor(self.y_train, device=self.device)) return loss def get_test_loss(self, weights): criterion = torch.nn.CrossEntropyLoss() logits = self.model.bottleneck(self.x_test.reshape(1, -1)) logits = logits @ weights.T + self.model.lin_last.bias loss = criterion(logits, torch.tensor(self.y_test, device=self.device)) return loss def get_hessian(self, weights): dim_1, dim_2 = weights.shape[0], weights.shape[1] H_i = torch.zeros((dim_1, dim_2, dim_1, dim_2), device=self.device) for i in range(len(self.x_train)): self.pointer = i H_i += torch.autograd.functional.hessian(self.get_loss, weights, vectorize=True) H = H_i / len(self.x_train) square_size = int(np.sqrt(torch.numel(H))) H = H.view(square_size, square_size) return H def LiSSA(self, v, weights): count = 0 cur_estimate = v damping = 0 scale = 10 num_samples = len(self.x_train) prev_norm = 1 diff = prev_norm ihvp = None for i in range(len(self.x_train)): self.pointer = i while diff > 0.00001 and count < 10000: hvp = torch.autograd.functional.hvp(self.get_train_loss, weights, cur_estimate)[1] cur_estimate = [a + (1 - damping) * b - c / scale for (a, b, c) in zip(v, cur_estimate, hvp)] cur_estimate = torch.squeeze(torch.stack(cur_estimate)) # .view(1, -1) numpy_est = cur_estimate.detach().cpu().numpy() numpy_est = numpy_est.reshape(1, -1) count += 1 diff = abs(np.linalg.norm(np.concatenate(numpy_est)) - prev_norm) prev_norm = np.linalg.norm(np.concatenate(numpy_est)) if ihvp is None: ihvp = [b/scale for b in cur_estimate] else: ihvp = [a + b/scale for (a, b) in zip(ihvp, cur_estimate)] ihvp = torch.squeeze(torch.stack(ihvp)) ihvp = [a / num_samples for a in ihvp] ihvp = torch.squeeze(torch.stack(ihvp)) return ihvp.detach() def i_up_params(self, weights, idx, estimate=False): i_up_params = list() if estimate: for i in idx: self.pointer = i grad = torch.autograd.grad(self.get_loss(weights), weights)[0] i_up_params.append(self.LiSSA(torch.autograd.functional.hvp(self.get_train_loss, weights, grad)[1], weights).detach().cpu().numpy()) else: H = self.get_hessian(self.model.lin_last.weight) H_inv = torch.inverse(H) for i in idx: self.pointer = i grad = torch.autograd.grad(self.get_loss(weights), weights)[0] orig_shape = grad.shape i_up_params.append((H_inv @ grad.float().view(-1, 1)).view(orig_shape).detach().cpu().numpy()) return i_up_params def i_up_loss(self, weights, idx, estimate=False): i_up_loss = list() test_grad = torch.autograd.grad(self.get_test_loss(weights), weights)[0] if estimate: for i in idx: self.pointer = i train_grad = torch.autograd.grad(self.get_loss(weights), weights)[0] i_up_loss.append((test_grad.view(1, -1) @ self.LiSSA(torch.autograd.functional.hvp(self.get_train_loss, weights, train_grad)[1], weights).view(-1, 1)).detach().cpu().numpy()[0][0]) else: H = self.get_hessian(weights) H_inv = torch.inverse(H) for i in idx: self.pointer = i train_grad = torch.autograd.grad(self.get_loss(weights), weights)[0] i_up_loss.append((test_grad.view(1, -1) @ (H_inv @ train_grad.float().view(-1, 1))).item()) return i_up_loss def get_hessian_info(model, x, y): device = 'cuda:0' if next(model.parameters()).is_cuda else 'cpu' if not torch.is_tensor(x): x, y = torch.from_numpy(x).float().to(device), torch.from_numpy(y).long().to(device) criterion = torch.nn.CrossEntropyLoss() hessian_comp = hessian(model, criterion, data=(x, y), cuda=True) top_eigenvalues, top_eigenvector = hessian_comp.eigenvalues() return top_eigenvalues[-1] def find_max_loss(): x, y = load_iris(return_X_y=True) loo = LeaveOneOut() train_acc, test_loss, y_pred = list(), list(), list() for train_index, test_index in loo.split(x): x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] scaler = StandardScaler().fit(x_train) x_train, x_test = scaler.transform(x_train), scaler.transform(x_test) model = Model(x.shape[1], 8, 3).to('cuda:0') model.fit(x_train, y_train) train_acc.append(model.score(x_train, y_train)) test_loss.append(model.get_indiv_loss(x_test, y_test)) y_pred.append(torch.argmax(torch.nn.functional.softmax(model(x_test), dim=1)).item()) train_acc = np.mean(train_acc) test_acc = accuracy_score(y, y_pred) max_loss = np.argmax(test_loss) return max_loss, train_acc, test_acc def find_top_train(max_loss=83): x, y = load_iris(return_X_y=True) train_index = np.hstack((np.arange(max_loss), np.arange(max_loss + 1, len(x)))) test_index = np.asarray([max_loss]) x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] scaler = StandardScaler().fit(x_train) x_train, x_test = scaler.transform(x_train), scaler.transform(x_test) model = Model(x.shape[1], 8, 3).to('cuda:0') model.fit(x_train, y_train, 60000) train_acc = model.score(x_train, y_train) train_loss = model.get_indiv_loss(x_train, y_train) to_look = int(1/6 * len(x-1)) top_train = np.argsort(train_loss)[::-1][:to_look] top_eig = get_hessian_info(model, x_train, y_train) torch.save(model.state_dict(), 'loo_params_8w.pt') return top_train, model, top_eig, train_acc def exact_difference(model, top_train, max_loss): exact_loss_diff = list() x, y = load_iris(return_X_y=True) train_index = np.hstack((np.arange(max_loss), np.arange(max_loss + 1, len(x)))) test_index = np.asarray([max_loss]) x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] scaler = StandardScaler().fit(x_train) x_train, x_test = scaler.transform(x_train), scaler.transform(x_test) true_loss = model.get_indiv_loss(x_test, y_test) for i in top_train: x, y = load_iris(return_X_y=True) train_index = np.hstack((np.arange(max_loss), np.arange(max_loss + 1, len(x)))) test_index = np.asarray([max_loss]) x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] scaler = StandardScaler().fit(x_train) x_train, x_test = scaler.transform(x_train), scaler.transform(x_test) x_train, y_train = np.delete(x_train, i, 0), np.delete(y_train, i, 0) model = Model(x.shape[1], 8, 3).to('cuda:0') model.load_state_dict(torch.load('loo_params_8w.pt')) model.fit(x_train, y_train, 7500) exact_loss_diff.append(model.get_indiv_loss(x_test, y_test) - true_loss) return exact_loss_diff def approx_difference(model, top_train, max_loss): model.load_state_dict(torch.load('loo_params_8w.pt')) x, y = load_iris(return_X_y=True) train_index = np.hstack((np.arange(max_loss), np.arange(max_loss + 1, len(x)))) test_index = np.asarray([max_loss]) x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] scaler = StandardScaler().fit(x_train) x_train, x_test = scaler.transform(x_train), scaler.transform(x_test) infl = influence_wrapper(model, x_train, y_train, x_test, y_test) approx_loss_diff = np.asarray(infl.i_up_loss(model.lin_last.weight, top_train, estimate=False)) return approx_loss_diff def main(): outer_start_time = time.time() train, eig, pearson, spearman = list(), list(), list(), list() for i in range(1): start_time = time.time() # max_loss, train_acc, test_acc = find_max_loss() # 83 is always the highest loss then 133, 70, 77 # print('Done max loss') max_loss = 83 top_train, model, top_eig, train_acc = find_top_train(max_loss) print('Done top train') exact_loss_diff = exact_difference(model, top_train, max_loss) print('Done Exact Diff') approx_loss_diff = approx_difference(model, top_train, max_loss) train.append(train_acc) eig.append(top_eig) pearson.append(pearsonr(exact_loss_diff, approx_loss_diff)[0]) spearman.append(spearmanr(exact_loss_diff, approx_loss_diff)[0]) print('Done {}/{} in {:.2f} minutes'.format(i+1, 10, (time.time()-start_time)/60)) if i % 10 == 0: np.save('figure1/det_8w_l2_train.npy', train) np.save('figure1/det_8w_l2_eig.npy', eig) np.save('figure1/det_8w_l2_pearson.npy', pearson) np.save('figure1/det_8w_l2_spearman.npy', spearman) np.save('figure1/det_8w_l2_train.npy', train) np.save('figure1/det_8w_l2_eig.npy', eig) np.save('figure1/det_8w_l2_pearson.npy', pearson) np.save('figure1/det_8w_l2_spearman.npy', spearman) print('Finished Iter in {:.2f} minutes'.format((time.time()-outer_start_time)/60)) pass if __name__ == '__main__': main()
[ "jrepifano@gmail.com" ]
jrepifano@gmail.com
43a1a88455943cde239ee14c15fa12fc73f1c4f9
3cf5638a12bb6a03a40aaffcab15b1789546948d
/ws4py/utf8validator.py
b457768a61646dc7cb6de895077c599b37bfe646
[]
no_license
GDur/LiveProcessingJs
8afeed64777d1df977967856f2c8b592ff671438
7b2c5a0e4cee0926a8c289e297cdb470a7fe48b2
refs/heads/master
2016-09-06T07:55:21.240721
2012-12-08T11:14:19
2012-12-08T11:14:19
6,513,730
1
0
null
null
null
null
UTF-8
Python
false
false
13,283
py
# coding=utf-8 ############################################################################### ## ## Copyright 2011 Tavendo GmbH ## ## Note: ## ## This code is a Python implementation of the algorithm ## ## "Flexible and Economical UTF-8 Decoder" ## ## by Bjoern Hoehrmann ## ## bjoern@hoehrmann.de ## http://bjoern.hoehrmann.de/utf-8/decoder/dfa/ ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ############################################################################### class Utf8Validator: """ Incremental UTF-8 validator with constant memory consumption (minimal state). Implements the algorithm "Flexible and Economical UTF-8 Decoder" by Bjoern Hoehrmann (http://bjoern.hoehrmann.de/utf-8/decoder/dfa/). """ ## DFA transitions UTF8VALIDATOR_DFA = [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, # 00..1f 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, # 20..3f 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, # 40..5f 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, # 60..7f 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, # 80..9f 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, # a0..bf 8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, # c0..df 0xa,0x3,0x3,0x3,0x3,0x3,0x3,0x3,0x3,0x3,0x3,0x3,0x3,0x4,0x3,0x3, # e0..ef 0xb,0x6,0x6,0x6,0x5,0x8,0x8,0x8,0x8,0x8,0x8,0x8,0x8,0x8,0x8,0x8, # f0..ff 0x0,0x1,0x2,0x3,0x5,0x8,0x7,0x1,0x1,0x1,0x4,0x6,0x1,0x1,0x1,0x1, # s0..s0 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,1,1, # s1..s2 1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1, # s3..s4 1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,1,1,1,1, # s5..s6 1,3,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1, # s7..s8 ] UTF8_ACCEPT = 0 UTF8_REJECT = 1 def __init__(self): self.reset() def decode(self, b): """ Eat one UTF-8 octet, and validate on the fly. Returns UTF8_ACCEPT when enough octets have been consumed, in which case self.codepoint contains the decoded Unicode code point. Returns UTF8_REJECT when invalid UTF-8 was encountered. Returns some other positive integer when more octets need to be eaten. """ type = Utf8Validator.UTF8VALIDATOR_DFA[b] if self.state != Utf8Validator.UTF8_ACCEPT: self.codepoint = (b & 0x3f) | (self.codepoint << 6) else: self.codepoint = (0xff >> type) & b self.state = Utf8Validator.UTF8VALIDATOR_DFA[256 + self.state * 16 + type] return self.state def reset(self): """ Reset validator to start new incremental UTF-8 decode/validation. """ self.state = Utf8Validator.UTF8_ACCEPT self.codepoint = 0 self.i = 0 def validate(self, ba): """ Incrementally validate a chunk of bytes provided as bytearray. Will return a quad (valid?, endsOnCodePoint?, currentIndex, totalIndex). As soon as an octet is encountered which renders the octet sequence invalid, a quad with valid? == False is returned. currentIndex returns the index within the currently consumed chunk, and totalIndex the index within the total consumed sequence that was the point of bail out. When valid? == True, currentIndex will be len(ba) and totalIndex the total amount of consumed bytes. """ l = len(ba) for i in xrange(0, l): ## optimized version of decode(), since we are not interested in actual code points self.state = Utf8Validator.UTF8VALIDATOR_DFA[256 + (self.state << 4) + Utf8Validator.UTF8VALIDATOR_DFA[ba[i]]] if self.state == Utf8Validator.UTF8_REJECT: self.i += i return False, False, i, self.i self.i += l return True, self.state == Utf8Validator.UTF8_ACCEPT, l, self.i UTF8_TEST_SEQUENCES = [] def setTestSequences(): """ Setup test sequences for UTF-8 decoder tests from http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt """ # 1 Some correct UTF-8 text vss = '\xce\xba\xe1\xbd\xb9\xcf\x83\xce\xbc\xce\xb5' vs = ["Some valid UTF-8 sequences", []] vs[1].append((True, vss)) UTF8_TEST_SEQUENCES.append(vs) # All prefixes of correct UTF-8 text vs = ["All prefixes of a valid UTF-8 string that contains multi-byte code points", []] v = Utf8Validator() for i in xrange(1, len(vss) + 1): v.reset() res = v.validate(bytearray(vss[:i])) vs[1].append((res[0] and res[1], vss[:i])) UTF8_TEST_SEQUENCES.append(vs) # 2.1 First possible sequence of a certain length vs = ["First possible sequence of a certain length", []] vs[1].append((True, '\x00')) vs[1].append((True, '\xc2\x80')) vs[1].append((True, '\xe0\xa0\x80')) vs[1].append((True, '\xf0\x90\x80\x80')) UTF8_TEST_SEQUENCES.append(vs) # the following conform to the UTF-8 integer encoding scheme, but # valid UTF-8 only allows for Unicode code points up to U+10FFFF vs = ["First possible sequence length 5/6 (invalid codepoints)", []] vs[1].append((False, '\xf8\x88\x80\x80\x80')) vs[1].append((False, '\xfc\x84\x80\x80\x80\x80')) UTF8_TEST_SEQUENCES.append(vs) # 2.2 Last possible sequence of a certain length vs = ["Last possible sequence of a certain length", []] vs[1].append((True, '\x7f')) vs[1].append((True, '\xdf\xbf')) vs[1].append((True, '\xef\xbf\xbf')) vs[1].append((True, '\xf4\x8f\xbf\xbf')) UTF8_TEST_SEQUENCES.append(vs) # the following conform to the UTF-8 integer encoding scheme, but # valid UTF-8 only allows for Unicode code points up to U+10FFFF vs = ["Last possible sequence length 4/5/6 (invalid codepoints)", []] vs[1].append((False, '\xf7\xbf\xbf\xbf')) vs[1].append((False, '\xfb\xbf\xbf\xbf\xbf')) vs[1].append((False, '\xfd\xbf\xbf\xbf\xbf\xbf')) UTF8_TEST_SEQUENCES.append(vs) # 2.3 Other boundary conditions vs = ["Other boundary conditions", []] vs[1].append((True, '\xed\x9f\xbf')) vs[1].append((True, '\xee\x80\x80')) vs[1].append((True, '\xef\xbf\xbd')) vs[1].append((True, '\xf4\x8f\xbf\xbf')) vs[1].append((False, '\xf4\x90\x80\x80')) UTF8_TEST_SEQUENCES.append(vs) # 3.1 Unexpected continuation bytes vs = ["Unexpected continuation bytes", []] vs[1].append((False, '\x80')) vs[1].append((False, '\xbf')) vs[1].append((False, '\x80\xbf')) vs[1].append((False, '\x80\xbf\x80')) vs[1].append((False, '\x80\xbf\x80\xbf')) vs[1].append((False, '\x80\xbf\x80\xbf\x80')) vs[1].append((False, '\x80\xbf\x80\xbf\x80\xbf')) s = "" for i in xrange(0x80, 0xbf): s += chr(i) vs[1].append((False, s)) UTF8_TEST_SEQUENCES.append(vs) # 3.2 Lonely start characters vs = ["Lonely start characters", []] m = [(0xc0, 0xdf), (0xe0, 0xef), (0xf0, 0xf7), (0xf8, 0xfb), (0xfc, 0xfd)] for mm in m: s = '' for i in xrange(mm[0], mm[1]): s += chr(i) s += chr(0x20) vs[1].append((False, s)) UTF8_TEST_SEQUENCES.append(vs) # 3.3 Sequences with last continuation byte missing vs = ["Sequences with last continuation byte missing", []] k = ['\xc0', '\xe0\x80', '\xf0\x80\x80', '\xf8\x80\x80\x80', '\xfc\x80\x80\x80\x80', '\xdf', '\xef\xbf', '\xf7\xbf\xbf', '\xfb\xbf\xbf\xbf', '\xfd\xbf\xbf\xbf\xbf'] for kk in k: vs[1].append((False, kk)) UTF8_TEST_SEQUENCES.append(vs) # 3.4 Concatenation of incomplete sequences vs = ["Concatenation of incomplete sequences", []] vs[1].append((False, ''.join(k))) UTF8_TEST_SEQUENCES.append(vs) # 3.5 Impossible bytes vs = ["Impossible bytes", []] vs[1].append((False, '\xfe')) vs[1].append((False, '\xff')) vs[1].append((False, '\xfe\xfe\xff\xff')) UTF8_TEST_SEQUENCES.append(vs) # 4.1 Examples of an overlong ASCII character vs = ["Examples of an overlong ASCII character", []] vs[1].append((False, '\xc0\xaf')) vs[1].append((False, '\xe0\x80\xaf')) vs[1].append((False, '\xf0\x80\x80\xaf')) vs[1].append((False, '\xf8\x80\x80\x80\xaf')) vs[1].append((False, '\xfc\x80\x80\x80\x80\xaf')) UTF8_TEST_SEQUENCES.append(vs) # 4.2 Maximum overlong sequences vs = ["Maximum overlong sequences", []] vs[1].append((False, '\xc1\xbf')) vs[1].append((False, '\xe0\x9f\xbf')) vs[1].append((False, '\xf0\x8f\xbf\xbf')) vs[1].append((False, '\xf8\x87\xbf\xbf\xbf')) vs[1].append((False, '\xfc\x83\xbf\xbf\xbf\xbf')) UTF8_TEST_SEQUENCES.append(vs) # 4.3 Overlong representation of the NUL character vs = ["Overlong representation of the NUL character", []] vs[1].append((False, '\xc0\x80')) vs[1].append((False, '\xe0\x80\x80')) vs[1].append((False, '\xf0\x80\x80\x80')) vs[1].append((False, '\xf8\x80\x80\x80\x80')) vs[1].append((False, '\xfc\x80\x80\x80\x80\x80')) UTF8_TEST_SEQUENCES.append(vs) # 5.1 Single UTF-16 surrogates vs = ["Single UTF-16 surrogates", []] vs[1].append((False, '\xed\xa0\x80')) vs[1].append((False, '\xed\xad\xbf')) vs[1].append((False, '\xed\xae\x80')) vs[1].append((False, '\xed\xaf\xbf')) vs[1].append((False, '\xed\xb0\x80')) vs[1].append((False, '\xed\xbe\x80')) vs[1].append((False, '\xed\xbf\xbf')) UTF8_TEST_SEQUENCES.append(vs) # 5.2 Paired UTF-16 surrogates vs = ["Paired UTF-16 surrogates", []] vs[1].append((False, '\xed\xa0\x80\xed\xb0\x80')) vs[1].append((False, '\xed\xa0\x80\xed\xbf\xbf')) vs[1].append((False, '\xed\xad\xbf\xed\xb0\x80')) vs[1].append((False, '\xed\xad\xbf\xed\xbf\xbf')) vs[1].append((False, '\xed\xae\x80\xed\xb0\x80')) vs[1].append((False, '\xed\xae\x80\xed\xbf\xbf')) vs[1].append((False, '\xed\xaf\xbf\xed\xb0\x80')) vs[1].append((False, '\xed\xaf\xbf\xed\xbf\xbf')) UTF8_TEST_SEQUENCES.append(vs) # 5.3 Other illegal code positions # Those are non-character code points and valid UTF-8 by RFC 3629 vs = ["Non-character code points (valid UTF-8)", []] vs[1].append((True, '\xef\xbf\xbe')) vs[1].append((True, '\xef\xbf\xbf')) UTF8_TEST_SEQUENCES.append(vs) # Unicode replacement character vs = ["Unicode replacement character", []] vs[1].append((True, '\xef\xbf\xbd')) UTF8_TEST_SEQUENCES.append(vs) setTestSequences() def test_utf8(): """ These tests verify the UTF-8 decoder/validator on the various test cases from http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt """ v = Utf8Validator() vs = [] for k in UTF8_TEST_SEQUENCES: vs.extend(k[1]) # All Unicode code points for i in xrange(0, 0xffff): # should by 0x10ffff, but non-wide Python build is limited to 16-bits if i < 0xD800 or i > 0xDFFF: # filter surrogate code points, which are disallowed to encode in UTF-8 vs.append((True, unichr(i).encode("utf-8"))) # 5.1 Single UTF-16 surrogates for i in xrange(0xD800, 0xDBFF): # high-surrogate ss = unichr(i).encode("utf-8") vs.append((False, ss)) for i in xrange(0xDC00, 0xDFFF): # low-surrogate ss = unichr(i).encode("utf-8") vs.append((False, ss)) # 5.2 Paired UTF-16 surrogates for i in xrange(0xD800, 0xDBFF): # high-surrogate for j in xrange(0xDC00, 0xDFFF): # low-surrogate ss1 = unichr(i).encode("utf-8") ss2 = unichr(j).encode("utf-8") vs.append((False, ss1 + ss2)) vs.append((False, ss2 + ss1)) # now test and assert .. for s in vs: v.reset() r = v.validate(bytearray(s[1])) res = r[0] and r[1] # no UTF-8 decode error and everything consumed assert res == s[0] def test_utf8_incremental(): """ These tests verify that the UTF-8 decoder/validator can operate incrementally. """ v = Utf8Validator() v.reset() assert (True, True, 15, 15) == v.validate(bytearray("µ@ßöäüàá")) v.reset() assert (False, False, 0, 0) == v.validate(bytearray([0xF5])) ## the following 3 all fail on eating byte 7 (0xA0) v.reset() assert (True, True, 6, 6) == v.validate(bytearray([0x65, 0x64, 0x69, 0x74, 0x65, 0x64])) assert (False, False, 1, 7) == v.validate(bytearray([0xED, 0xA0, 0x80])) v.reset() assert (True, True, 4, 4) == v.validate(bytearray([0x65, 0x64, 0x69, 0x74])) assert (False, False, 3, 7) == v.validate(bytearray([0x65, 0x64, 0xED, 0xA0, 0x80])) v.reset() assert (True, False, 7, 7) == v.validate(bytearray([0x65, 0x64, 0x69, 0x74, 0x65, 0x64, 0xED])) assert (False, False, 0, 7) == v.validate(bytearray([0xA0, 0x80])) if __name__ == '__main__': """ Run unit tests. """ test_utf8_incremental() test_utf8()
[ "gdur.mugen@googlemail.com" ]
gdur.mugen@googlemail.com
c0b9fba0df580154ea29be2dc724cbe802318450
b8120b9a99b1aab3fa423bc28173b10523084301
/app/views.py
3980e892431891877c72c44e2da6ae5298a24185
[]
no_license
Trailblazerr1/iiita-hacks-musify
e0cc22a95b164399462750e5667b886090ca17bb
d7ab39622306e48e280fb350b9f416b64dc95f37
refs/heads/master
2020-12-25T14:38:34.028923
2016-09-12T11:28:49
2016-09-12T11:28:49
67,906,279
0
0
null
null
null
null
UTF-8
Python
false
false
4,195
py
""" Definition of views. """ from django.shortcuts import render from django.http import HttpRequest from django.template import RequestContext from datetime import datetime from app.forms import PostForm from django.http import HttpResponseRedirect from clarifai.client import ClarifaiApi import requests import json import gensim import os.path BASE = os.path.dirname(os.path.abspath(__file__)) word_model = gensim.models.Word2Vec.load_word2vec_format(os.path.join(BASE, 'vectors.bin'),binary=True) genres = ['abstract', 'accordion', 'afrikaans', 'afrobeat', 'ambient', 'andean', 'anime', 'axe', 'balearic', 'banda', 'bangla', 'barbershop', 'baroque', 'bassline', 'bebop', 'bemani', 'bhangra', 'bluegrass', 'blues', 'bolero', 'boogaloo', 'bounce', 'breakbeat', 'breaks', 'britpop', 'broadway', 'byzantine', 'cabaret', 'cajun', 'calypso', 'cantopop', 'capoeira', 'carnatic', 'ccm', 'cello', 'celtic', 'chanson', 'choral', 'choro', 'christmas', 'clarinet', 'classical', 'comedy', 'comic', 'commons', 'consort', 'corrosion', 'country', 'dancehall', 'demoscene', 'desi', 'didgeridoo', 'disco', 'dixieland', 'downtempo', 'drama', 'drone', 'dub', 'ebm', 'edm', 'electro', 'electronic', 'electronica', 'emo', 'environmental', 'eurovision', 'exotica', 'experimental', 'fado', 'fake', 'filmi', 'flamenco', 'folk', 'footwork', 'freestyle', 'funk', 'gabba', 'galego', 'gamelan', 'glitch', 'gospel', 'grime', 'grindcore', 'grunge', 'guidance', 'hardcore', 'harp', 'hawaiian', 'healing', 'hollywood', 'house', 'idol', 'industrial', 'jazz', 'jerk', 'judaica', 'juggalo', 'jungle', 'klezmer', 'latin', 'lds', 'lilith', 'liturgical', 'lounge', 'lowercase', 'maghreb', 'magyar', 'mallet', 'mambo', 'medieval', 'meditation', 'melancholia', 'merengue', 'metal', 'metalcore', 'minimal', 'mizrahi', 'monastic', 'morna', 'motivation', 'motown', 'neoclassical', 'nepali', 'neurofunk', 'ninja', 'noise', 'nursery', 'oi', 'opera', 'oratory', 'orchestral', 'outsider'] def home(request): return render(request, 'app/home.html') def Developers(request): return render(request, 'app/Developers.html') def playlist(request): assert isinstance(request, HttpRequest) if request.method == 'GET': form = PostForm() else: form = PostForm(request.POST) # Bind data from request.POST into a PostForm if form.is_valid(): imgURL = form.cleaned_data['content'] app_id = "DbZ4NzfrPL-K_CHHf4y4srnvBUSgMo4Dz9BIbeXt" app_secret = "crjTy-8St_kiFkL0wZZCFyrcoWJyOdets8Fa1BNi" clarifai_api = ClarifaiApi(app_id,app_secret) tags = '' embedLink = '' try: result = clarifai_api.tag_image_urls(imgURL) except: #if url is invalid based on clarifai API call tags = 'invalid url' imgURL = '' if tags!='invalid url': tagList = result['results'][0]['result']['tag']['classes'] bestGenre = imgscore(tagList,genres) r = requests.get('https://api.spotify.com/v1/search?q=%22'+bestGenre+'%22&type=playlist') jsonStuff = r.json() uri = jsonStuff['playlists']['items'][0]['uri'] embedLink = "https://embed.spotify.com/?uri="+uri return render( request, 'app/playlist.html', { 'form': form, 'imgsrc': imgURL, 'debugText': tags, 'playlistURI': embedLink, 'year':datetime.now().year, } ) return render( request, 'app/playlist.html', { 'form': form, 'imgsrc': '', 'debugText': '', 'playlistURI': '', 'year':datetime.now().year, } ) def imgscore(words,genres): l = 0.0 summ = [] for genre in genres: for word in words: try: simScore = word_model.similarity(genre,word) l += simScore except: pass summ.append(l) l = 0 return(genres[summ.index(max(summ))])
[ "noreply@github.com" ]
Trailblazerr1.noreply@github.com
f1fb0b7965ea4496faa19f2a337c9563b82ab413
d12fe2658edc0db98b278aab507fc86efefd5541
/chat/forms.py
0d23f6da0892f36ce4d4af4442b0a0e72db168f1
[]
no_license
harumi-matsumoto/django-ai-chatbot
6190c1090e8aea877ff7573c45421e10158e4a64
90e2b8e8cec98c022892e8603eb090fc64197b3f
refs/heads/master
2020-08-05T16:10:09.162039
2019-10-12T03:10:54
2019-10-12T03:10:54
212,608,451
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
from django import forms class TestPredictForm(forms.Form): message = forms.CharField(widget=forms.Textarea, max_length=255)
[ "harumimatsumoto27@gmail.com" ]
harumimatsumoto27@gmail.com
a382122e088d085ebf613ab22954c0a051260e01
332e0fe0e109795a838ab75f91cacbd818eb8f26
/examples/tech_locator.py
430a9d69cc57fcef52eece431039f3d98c927476
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
yoyossy/open-city__dedupe
08fb505dda14992cd35fd41c0ff5c5fb98d54d68
187d0d6eeeba23046d7155fb9e593b36e21388fe
refs/heads/master
2021-01-15T19:22:36.191934
2012-07-23T14:48:39
2012-07-23T14:48:39
5,244,938
1
0
null
null
null
null
UTF-8
Python
false
false
4,104
py
import csv import re import os #dedupe modules from dedupe.training_sample import activeLearning, consoleLabel from dedupe.blocking import trainBlocking, blockingIndex, mergeBlocks from dedupe.predicates import * import dedupe.core import dedupe.clustering def techLocatorImport(filename) : data_d = {} duplicates_d = {} with open(filename) as f : reader = csv.reader(f, delimiter=',', quotechar='"') header = reader.next() for i, row in enumerate(reader) : instance = {} for j, col in enumerate(row) : col = re.sub(' +', ' ', col) col = re.sub('\n', ' ', col) instance[header[j]] = col.strip().strip('"').strip("'").lower() data_d[i] = dedupe.core.frozendict(instance) return(data_d, header) def dataModel() : return {'fields': { 'OrganizationName' : {'type': 'String', 'weight' : 0}, 'Address' : {'type': 'String', 'weight' : 0}, 'ZipCode' : {'type': 'String', 'weight' : 0}, 'OrgPhone' : {'type': 'String', 'weight' : 0} }, 'bias' : 0} def init(inputFile) : data_d, header = techLocatorImport(inputFile) data_model = dataModel() return (data_d, data_model, header) # user defined function to label pairs as duplicates or non-duplicates def dictSubset(d, keys) : return dict((k,d[k]) for k in keys if k in d) inputFile = "datasets/Tech Locator Master List.csv" num_training_dupes = 200 num_training_distinct = 16000 numIterations = 100 numTrainingPairs = 30 import time t0 = time.time() data_d, data_model, header = init(inputFile) print "importing data ..." if os.path.exists('learned_settings.json') : data_model, predicates = core.readSettings('learned_settings.json') else: #lets do some active learning here training_data, training_pairs, data_model = activeLearning(data_d, data_model, consoleLabel, numTrainingPairs) predicates = trainBlocking(training_pairs, (wholeFieldPredicate, tokenFieldPredicate, commonIntegerPredicate, sameThreeCharStartPredicate, sameFiveCharStartPredicate, sameSevenCharStartPredicate, nearIntegersPredicate, commonFourGram, commonSixGram), data_model, 1, 1) core.writeSettings('learned_settings.json', data_model, predicates) blocked_data = blockingIndex(data_d, predicates) candidates = mergeBlocks(blocked_data) print "" print "Blocking reduced the number of comparisons by", print int((1-len(candidates)/float(0.5*len(data_d)**2))*100), print "%" print "We'll make", print len(candidates), print "comparisons." print "Learned Weights" for k1, v1 in data_model.items() : try: for k2, v2 in v1.items() : print (k2, v2['weight']) except : print (k1, v1) print "" print "finding duplicates ..." print "" dupes = core.scoreDuplicates(candidates, data_d, data_model, .5) clustered_dupes = clustering.cluster(dupes, estimated_dupe_fraction = 0.4) print "# duplicate sets" print len(clustered_dupes) orig_data = {} with open(inputFile) as f : reader = csv.reader(f) reader.next() for row_id, row in enumerate(reader) : orig_data[row_id] = row with open("output/TL_dupes_list_" + str(time.time()) + ".csv","w") as f : writer = csv.writer(f) heading_row = header heading_row.insert(0, "Group_ID") writer.writerow(heading_row) dupe_id_list = [] for group_id, cluster in enumerate(clustered_dupes, 1) : for candidate in sorted(cluster) : dupe_id_list.append(candidate) row = orig_data[candidate] row.insert(0, group_id) writer.writerow(row) for id in orig_data : if not id in set(dupe_id_list) : row = orig_data[id] row.insert(0, 'x') writer.writerow(row) print "ran in ", time.time() - t0, "seconds"
[ "derek.eder@gmail.com" ]
derek.eder@gmail.com
37886a99293824da426248ef167d6469762d4331
48d17885eda6401cde7e4ef563727ad4b5a7e851
/ex43_classes.py
18549bd62a8d355389e39399f65761f4a307dcb6
[]
no_license
bowen0701/learn-python-the-hard-way
635680d711dca044e2584ffe7dc3b129998f59db
73540c462cf1561271664d2058e902d60907c200
refs/heads/master
2021-09-22T11:01:35.059384
2018-09-08T23:30:38
2018-09-08T23:30:38
94,005,892
0
0
null
null
null
null
UTF-8
Python
false
false
760
py
"""Basic Object-Oriented Anaysis and Design.""" class Scene(object): def enter(self): pass class Engine(object): def __init__(self, scene_map): pass def play(self): pass class Death(Scene): def enter(self): pass class CentralCorridor(Scene): def enter(self): pass class LaserWeaponArmory(Scene): def enter(self): pass class TheBridge(Scene): def enter(self): pass class EscapePod(Scene): def enter(self): pass class Map(object): def __init__(self, start_scene): pass def next_scene(self, scene_name): pass def opening_scene(self): pass a_map = Map('central_corridor') a_game = Engine(a_map) a_game.play()
[ "bowen0701@gmail.com" ]
bowen0701@gmail.com
de7ede51aae8aea701206a53f518f0d5ac082ce5
0090d4ab68de301b77c6c69a58464136fa04ba49
/trydjango/settings.py
a3933049574711d35e99e5e238ad8b94b8ac109f
[]
no_license
firdavsDev/Django_simple_blog
b70000194875d792838f916d035b89be59312cd9
f5999cf30091fce2246f44a5a55d55071aeb7a99
refs/heads/main
2023-08-23T04:10:52.570457
2021-09-23T10:19:18
2021-09-23T10:19:18
409,543,186
1
0
null
null
null
null
UTF-8
Python
false
false
3,905
py
""" Django settings for trydjango project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent #bu faylar qayerda turganligini saqlaydi # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-jod$glnf4*4&(_812i50)fb(9weaytnic1#!!*-5m42@jmbof*' #barcha djangoda uzizng maxsus maxfiy kaliti mavjud buladi # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True #ager saytda qandaydiz muamoga duj kelsa shu orqaali bizga xaabar yetqaziladi ALLOWED_HOSTS = [] # Application definition # sayt ichidagi ilovalar uchun (app) shu yerda ruyhatdan utish kk INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #yaratgan ilovalarimizni shu yerga kiritib ketamiz 'products', 'pages', 'blog', ] #Bizning kupgina request larimizni shu orqali maxfiy holatga keltirishimiz mumkin buldi MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] #bu yul a herf kabi ROOT_URLCONF = 'trydjango.urls' import os #Html faylarimiz shu yerdan ruyhatdan utkaziladi TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', #shu yerga html kodimizni berib utamiz 'DIRS': [os.path.join(BASE_DIR,"templates") ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'trydjango.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases #malumotlar bazasi asosan sqlite DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ #rasm va css va js faylar uchun STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "74819987+firdavsDev@users.noreply.github.com" ]
74819987+firdavsDev@users.noreply.github.com
f373e27e3ba576b9f7a22bbc7276a5e8c633bcb2
e65ac1ea21eee50e7b5b5d5f8e0d8ceea2cb1c9a
/import/its-behind-you/import.py
559133b57b5a5d8d7ca57d4823458c831c88daf3
[]
no_license
dracos/Theatricalia
539b42746dea86c0377db2593ba651e3563c1579
8cb417f5048a261329bc853bfcc6ba64c76daec8
refs/heads/master
2023-02-19T18:56:56.751263
2023-02-15T21:39:40
2023-02-15T22:13:42
1,178,517
5
2
null
2021-01-06T14:38:26
2010-12-17T23:02:50
Python
UTF-8
Python
false
false
2,718
py
#!/usr/bin/python import os, sys, re, time for i in range(3, 0, -1): sys.path.append('../' * i) os.environ['DJANGO_SETTINGS_MODULE'] = 'settings' from django.core.files.base import ContentFile from plays.models import Play from productions.models import Production, Part, ProductionCompany from productions.models import Place as ProductionPlace from people.models import Person from photos.models import Photo from functions import * from plays2009 import * real_run() for venue in theatres: if "," in venue: name, town = venue.rsplit(',', 1) location = add_theatre(name, town) else: location = add_theatre(venue) theatres[venue] = location for production in plays: title = production['title'] log("Production of %s" % title) play = add_play(title, force_insert=True) company = None producer = production['producer'] if producer: if dry_run(): company = ProductionCompany(name=producer) else: company, created = ProductionCompany.objects.get_or_create(name=producer) description = production['description'] source = '<a href="%s">its-behind-you.com</a>' % production['source'] production_obj = Production( play = play, company = company, description = description, source = source, ) if not dry_run(): production_obj.save() if production['titleImg']: add_photo(production['titleImg'], production_obj, 'Title') for p in production['pictures']: add_photo(p, production_obj, 'Handbill') dates = production['dates'] for d in dates: start_date, end_date = d[0] place = d[1] location = theatres[place] log(' %s %s %s' % (start_date, end_date, location)) if not dry_run(): ProductionPlace.objects.get_or_create(production=production_obj, place=location, start_date=start_date, end_date=end_date) cast = production['cast'] for name in cast: m = re.match('(.*) (.*?)$', name) if m: first_name, last_name = m.group(1), m.group(2) else: first_name, last_name = u'', name log(' Actor: ' + first_name + ' ' + last_name) if not dry_run(): try: person, created = Person.objects.get_or_create(first_name=first_name, last_name=last_name) except: person = Person(first_name=first_name, last_name=last_name) person.save() Part.objects.get_or_create(production=production_obj, person=person, cast=True) if name in castLinks: person.web = castLinks[name] person.save()
[ "matthew@theatricalia.com" ]
matthew@theatricalia.com
0733674fe504df151b23c469f99ef7d29df5489a
ac7828a5fb10daaba998a09b427de3076d3b06d8
/cnems/bbc/migrations/0011_comments.py
6f9bdeacd4e9f87e4b20563d4d02dab42fdb6293
[]
no_license
zkq123/django_1
950b1e8b4f94542e78e17de2744d212a7ac00ac9
9c5b498f7314ad9283da32b4a0e3793674bb7a7f
refs/heads/master
2022-11-07T02:12:33.318288
2018-12-08T02:26:19
2018-12-08T02:26:19
155,974,478
0
1
null
2022-10-07T22:55:44
2018-11-03T10:55:35
Python
UTF-8
Python
false
false
765
py
# Generated by Django 2.1.2 on 2018-12-04 12:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('bbc', '0010_remove_likes_sum'), ] operations = [ migrations.CreateModel( name='Comments', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment_center', models.CharField(max_length=200)), ('news', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bbc.News')), ('users', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bbc.Users')), ], ), ]
[ "qingyun@email.com" ]
qingyun@email.com
266486163cb2f2c144efffc3cfa02050697431de
d7de23e521d73096f173318423cf6b0e5d06c97f
/CMGTools/LEP3/python/kinfitters.py
2721d051ec15e98ffabeebf5f9689b3c2383578a
[]
no_license
HemantAHK/CMG
3cf6c047b193e463e3632aa728cd49067e9dde76
7bec46d27e491397c4e13a52b34cf414a692d867
refs/heads/master
2021-05-29T20:01:04.390627
2013-08-15T15:24:22
2013-08-15T15:24:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
from CMGTools.RootTools.RootTools import * from ROOT import gSystem gSystem.Load("libCMGToolsLEP3") from ROOT import FourJetEpKinFitter from ROOT import FourJetEpMKinFitter from ROOT import DiJetMKinFitter
[ "" ]
56bfee5ce1520cf5059f5913eee9d2238b793119
eda3d6974a60a42a1ee35cd2327218029490a654
/develop/sanic_aiozipkin_test.py
9433fc32d133111cb645f42c7070691073e2669f
[]
no_license
1260228859/EvanKao-ms
4a4159123bfd3f3b960c9b81ca920f599fffc6cc
ae0e9dbf2803c6bd67ea8b0be012b64c57db7bbc
refs/heads/master
2020-09-26T19:39:48.587556
2020-07-08T03:00:01
2020-07-08T03:00:01
226,328,706
0
0
null
null
null
null
UTF-8
Python
false
false
2,131
py
from sanic import Sanic, response from sanic.response import json import aiohttp import aiozipkin as az """ integrate aiohttp to Sanic app, doc(CHN): https://www.jianshu.com/p/17bc4518b243 """ host = '127.0.0.1' port = 8000 zipkin_address = 'http://127.0.0.1:9411/api/v2/spans' app = Sanic(__name__) endpoint = az.create_endpoint('sanic_app', ipv4=host, port=port) @app.listener('before_server_start') async def init(app, loop): tracer = await az.create(zipkin_address, endpoint, sample_rate=1.0) trace_config = az.make_trace_config(tracer) app.aiohttp_session = aiohttp.ClientSession(trace_configs=[trace_config], loop=loop) app.tracer = tracer @app.listener('after_server_stop') def finish(app, loop): loop.run_until_complete(app.aiohttp_session.close()) loop.close() @app.route("/") async def test(request): request['aiozipkin_span'] = request with app.tracer.new_trace() as span: span.name(f'HTTP {request.method} {request.path}') print(span) url = "https://www.163.com" with app.tracer.new_child(span.context) as span_producer: span_producer.kind(az.PRODUCER) span_producer.name('produce event click') return response.text('ok') def request_span(request): with app.tracer.new_trace() as span: span.name(f'HTTP {request.method} {request.path}') kwargs = { 'http.path':request.path, 'http.method':request.method, 'http.path':request.path, 'http.route':request.url, 'peer.ip':request.remote_addr or request.ip, 'peer.port':request.port, } [span.tag(k, v) for k,v in kwargs.items()] span.kind(az.SERVER) return span @app.route("/2") async def tes2(request): request['aiozipkin_span'] = request span = request_span(request) with app.tracer.new_child(span.context) as span_producer: span_producer.kind(az.PRODUCER) span_producer.name('produce event click') return response.text('ok') if __name__ == '__main__': app.run(host="0.0.0.0", port=port, debug=True)
[ "jiantao.gao@cityio.cn" ]
jiantao.gao@cityio.cn
b7a6cb5c45e46e496ff9ac7299b59ead5a70c670
6809cda579a7c1c88872f566d65f665c2dff20bb
/archive3/lib/prediction.py
43f01be6f1370c641d2afae4f8720168f3c9e38e
[]
no_license
hellojixian/stock-dummy
edb3e7447e26ec3e0481c938fcf8f72063d6c850
06b352ba3d78ac419e7672b0e6ec630f6f461ae8
refs/heads/master
2020-06-15T09:11:33.401689
2019-11-05T15:46:43
2019-11-05T15:46:43
195,256,649
0
0
null
null
null
null
UTF-8
Python
false
false
3,043
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import pandas as pd import sys,os,datetime,time import gc # 强制转换成整数 为了加速搜索 至少减少内存消耗了 def optimize_df(df): int_cols = df.columns[:-2] float_cols = ['future_profit','future_risk'] df_float = df[float_cols].copy() df = df.astype('b') df[float_cols] = df_float return df def predict(sample, kb): start_timestamp = time.time() future = ['future_profit','future_risk'] def _check_similarity_loss(v, sample): return np.abs(v-sample).sum() filters_setting = { 'prev0_change' :[ 0, 0], 'prev1_change' :[ 0, 0], 'prev2_change' :[ 0, 0], 'trend_5' :[ 0, 0], 'trend_10' :[ 0, 0], 'prev0_bar' :[-1, 1], 'trend_30' :[-1, 1], 'pos_5' :[-1, 1], 'pos_10' :[-1, 1], 'pos_30' :[-1, 1], 'prev4_change' :[-1, 1], 'trend_120' :[-1, 1], 'pos_120' :[-1, 1], 'amp_5' :[-2, 2], 'risk_10' :[-1, 1], 'risk_20' :[-2, 2], 'amp_30' :[-3, 3], 'prev0_open_c' :[-2, 2], 'prev1_open_c' :[-2, 2], 'prev1_bar' :[-2, 2], 'prev0_up_line' :[-2, 2], 'prev0_down_line' :[-2, 2], } filters = filters_setting.copy() filter_limit = 0 factors = list(filters.keys()) filter_limit=2 filter_offest=1 while filter_offest<filter_limit: _filter = "" for f in factors: offest = np.clip([-filter_offest, filter_offest], filters[f][0], filters[f][1]) _filter += "({}>={}) & ({}<={}) &".format( f,int(sample[f]+offest[0]), f,int(sample[f]+offest[1])) _filter = _filter[:-1] rs = kb[kb.eval(_filter)].copy() if len(rs)<=10: filter_offest +=1 else: break pred = pd.Series() kb_sample_count = rs.shape[0] reduced_sample_count = 0 if kb_sample_count >10: pred['result'] = True rs['similarity_loss'] = rs.apply(func=_check_similarity_loss, args=[sample], raw=True, axis=1) rs = rs.sort_values(by=['similarity_loss'],ascending=True) rs = rs[rs.similarity_loss<=15] rs = rs[:20] reduced_sample_count = rs.shape[0] if reduced_sample_count<=2: pred['result'] = False for f in future: pred['{}_mean'.format(f)] = rs[f].mean() settings = {'med':0.5} for k in settings: v = settings[k] pred['{}_{}'.format(f,k)] = rs[f].quantile(v) pred['similarity_loss'] = rs['similarity_loss'].max() else: pred['result'] = False pred['similarity_loss'] = float('nan') pred['samples_count'] = int(kb_sample_count) pred['reduced_count'] = int(reduced_sample_count) pred['durtion'] = np.round((time.time() - start_timestamp),2) return pred
[ "hellojixian@gmail.com" ]
hellojixian@gmail.com
61327de1c6f0afb604104a7376dc24faaed7a103
42c6e00741a37d02880f14d49fa6f7d2f484cd22
/market_place/article/migrations/0001_initial.py
198b81c5bc9d5b6665d8db75449a4c76974684d4
[ "MIT" ]
permissive
otherland8/market-place
023d34f92809ff61a3ee3e60007c27597b10047f
ebf21a77cf9b3998e270ebd2d4422d7ce997e472
refs/heads/master
2021-01-17T12:47:51.847532
2016-07-08T20:20:31
2016-07-08T20:20:31
59,594,948
0
0
null
null
null
null
UTF-8
Python
false
false
1,308
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-07-08 16:02 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('public', '0005_auto_20160708_1736'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='UserBid', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('current_bid', models.DecimalField(decimal_places=2, default=0, max_digits=9)), ('maximum_bid', models.DecimalField(decimal_places=2, default=0, max_digits=9, null=True)), ('created_date', models.DateTimeField(auto_now=True)), ('last_bid_date', models.DateTimeField()), ('is_smart_bid', models.BooleanField(default=True)), ('article', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='public.Article')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "otherland@abv.bg" ]
otherland@abv.bg
c9a09e5b6cfdc643895b716f62e61cddeaf1f9ac
fe90bf63c34511ec9a4d7cb5a90957fbbb03a504
/boundary_layer/builders/base.py
06573b22f26400966c3a38fb8464d794b797405d
[ "Apache-2.0" ]
permissive
etsy/boundary-layer
778b115f94efc5d50986a289daf3ad265b38926c
c29594957c1fb47e308fcc89f7edcefc0797fc89
refs/heads/master
2023-07-21T17:03:15.769537
2023-01-04T14:05:53
2023-01-04T14:05:53
142,857,095
263
67
Apache-2.0
2023-07-19T19:57:04
2018-07-30T09:51:52
Python
UTF-8
Python
false
false
8,829
py
# -*- coding: utf-8 -*- # Copyright 2018 Etsy Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc from six.moves import filter from jinja2 import Environment, PackageLoader from boundary_layer.builders import util from boundary_layer.logger import logger from boundary_layer.registry import NodeTypes from boundary_layer.util import sanitize_operator_name from boundary_layer.containers import WorkflowMetadata class DagBuilderBase(object): __metaclass__ = abc.ABCMeta @abc.abstractproperty def indent_operators(self): pass @abc.abstractmethod def preamble(self): pass @abc.abstractmethod def epilogue(self): pass @staticmethod def _build_jinja_env(): jenv = Environment( loader=PackageLoader('boundary_layer', 'builders/templates'), trim_blocks=True) jenv.filters['format_value'] = util.format_value jenv.filters['add_leading_spaces'] = util.add_leading_spaces jenv.filters['comment'] = util.comment jenv.filters['sanitize_operator_name'] = sanitize_operator_name jenv.filters['verbatim'] = util.verbatim return jenv def get_jinja_template(self, template_filename): return self._build_jinja_env().get_template(template_filename) def get_imports(self): all_nodes = self.specs.graphs.primary.ordered() + \ [node for graph in self.specs.graphs.secondary for node in graph.ordered()] all_imports = [self.dag.get('imports', {})] + \ [node.imports() for node in all_nodes] objects = {} modules = set() for node_imports in all_imports: modules |= set(node_imports.get('modules', [])) for item in node_imports.get('objects', []): objects.setdefault(item['module'], set()) objects[item['module']] |= set(item['objects']) return { 'modules': modules, 'objects': objects, } def __init__( self, dag, graph, reference_path, specs, metadata=None, referring_node=None, sub_dag_builder=None, generator_builder=None): self.dag = dag self.graph = graph self.reference_path = reference_path self.specs = specs self.metadata = metadata or WorkflowMetadata(None, None) self.referring_node = referring_node self.sub_dag_builder = sub_dag_builder self.generator_builder = generator_builder @property def default_task_args(self): return self.specs.parsed.primary.get('default_task_args', {}) def build_dag_id(self): return util.construct_dag_name(self.reference_path) def render_operator(self, node): template_filename = None if node.type == NodeTypes.GENERATOR: template_filename = 'generator_operator.j2' elif node.type == NodeTypes.SUBDAG: template_filename = 'subdag_operator.j2' else: template_filename = 'operator.j2' template = self.get_jinja_template(template_filename) # Do not set upstream/downstream dependencies that involve generator nodes # at this stage; those are all set within the generator nodes, and if they are # set here, there will be python errors due to references to operators that # do not exist (generators do not correspond to operators) generator_nodes = frozenset( gen.name for gen in self.graph.graph.nodes if gen.type == NodeTypes.GENERATOR) upstream_deps = frozenset( dep.name for dep in self.graph.upstream_dependency_set(node)) if generator_nodes & upstream_deps: logger.debug( 'Not passing upstream generator dependencies `%s` to ' 'operator template for node `%s`', generator_nodes & upstream_deps, node.name) downstream_deps = frozenset( dep.name for dep in self.graph.downstream_dependency_set(node)) if generator_nodes & downstream_deps: logger.debug( 'Not passing downstream generator dependencies `%s` to ' 'operator template for node `%s`', generator_nodes & downstream_deps, node.name) return template.render( node=node, args=node.operator_args, upstream_dependencies=list(upstream_deps - generator_nodes), downstream_dependencies=list(downstream_deps - generator_nodes), ) def get_secondary_dag(self, target): hits = [dag for dag in self.specs.parsed.secondary if dag['name'] == target] if not hits: raise ValueError('Secondary dag id {} not found'.format(target)) if len(hits) > 1: raise ValueError( 'Multiple hits for secondary dag id {}'.format(target)) return hits[0] def get_secondary_graph(self, target): """ Get the graph corresponding to the target. This is kind of ugly, a consequence of the way in which we currently store dags separately from graphs. Ideally there would be only one of the two methods, get_secondary_(dag|graph). """ self.get_secondary_dag(target) # does the checking for (idx, dag) in enumerate(self.specs.parsed.secondary): if dag['name'] == target: return self.specs.graphs.secondary[idx] raise Exception("should not be possible") def get_target_builder_cls(self, node_type): if node_type == NodeTypes.GENERATOR: if not self.generator_builder: raise Exception('No generator builder is defined!') return self.generator_builder elif node_type == NodeTypes.SUBDAG: if not self.sub_dag_builder: raise Exception('No sub_dag builder is defined!') return self.sub_dag_builder raise Exception( 'Node type `{}` has no known target builder'.format( node_type)) def render_target(self, node): builder = self.get_target_builder_cls(node.type)( dag=self.get_secondary_dag(node.target), graph=self.get_secondary_graph(node.target), reference_path=self.reference_path + [node.name], specs=self.specs, referring_node=node, sub_dag_builder=self.sub_dag_builder, generator_builder=self.generator_builder, ) return builder.build() def build(self): # Keep track of which subdag and generator targets have been rendered. # These targets can be reused by multiple referring nodes. rendered_targets = set() # We build the result by appending components to an array and then # joining together at the end components = [self.preamble()] # generators are rendered last, because they refer to both upstream and # downstream components when they express their dependencies generator_components = [] for node in self.graph.ordered(): operator = None if node.type in set([NodeTypes.GENERATOR, NodeTypes.SUBDAG]) \ and node.target not in rendered_targets: operator = '\n'.join([ self.render_target(node), self.render_operator(node)]) rendered_targets.add(node.target) elif node.type in NodeTypes: operator = self.render_operator(node) else: raise Exception( 'Unrecognized operator type: {}'.format(node.type)) # add the rendered operator to the appropriate components list (components if node.type != NodeTypes.GENERATOR else generator_components).append( util.add_leading_spaces( operator, 1 if self.indent_operators else 0)) components += generator_components components.append(self.epilogue()) return '\n'.join(filter(None, components))
[ "mchalek@gmail.com" ]
mchalek@gmail.com
9ac71ff258e15cccc153cde0ad3f3d89c6d93d2d
3850b80059dc5105504c56300dbbc5c70d3ac533
/models/__init__.py
a495e6c3da7339c6a90a4c7d428ad2be25088dba
[]
no_license
haohaom1/intrinsic-images
cea56f6991dbdde89dd26621716a08c5f51f7ac4
e3e0ddf85b843c3aa93bccf717f80364a15c38b0
refs/heads/master
2022-12-05T08:37:31.138944
2021-08-12T16:07:06
2021-08-12T16:07:06
193,809,832
0
3
null
2022-11-22T03:59:22
2019-06-26T01:45:51
Python
UTF-8
Python
false
false
34
py
# file to make this folder a model
[ "riallenma@gmail.com" ]
riallenma@gmail.com
7a883866c1dc23352c28cb30226f37e61c4eecf9
13884f547752c1f7d5b45d63a8e3aeebaea5a591
/newsproject/newsproject/settings.py
43da654da7fedf2f86c2779e0e66d4df147839d2
[]
no_license
azharashra05/newsapp_repo
5139a7d33767b43b83ebc255aa40f2ee6dc17efc
e487ae15f103aa3e0d7b4b405f1c6e2a729ffeb3
refs/heads/master
2022-12-10T21:07:49.371475
2020-09-05T07:57:28
2020-09-05T07:57:28
293,029,679
0
0
null
null
null
null
UTF-8
Python
false
false
3,253
py
""" Django settings for newsproject project. Generated by 'django-admin startproject' using Django 2.2.7. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR=os.path.join(BASE_DIR,'templates') STATIC_DIR=os.path.join(BASE_DIR,'static') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ak9*^19hq5aeh9+i=v4#3vm7_@tce4i#bf5d!hfw_camqsz0re' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'newsapp' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'newsproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'newsproject.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS=[ STATIC_DIR, ]
[ "azharashraf05@gmail.com" ]
azharashraf05@gmail.com
ec782cbc862fb7d8fded12eba2199a87bd70e120
b186f73f14b5e93e763bc284cc0ca5737ad40c4a
/blog/forms.py
aa355e8bb86cd10ec6099e3cf945812cc5097ee6
[]
no_license
basmaaitbelarbi/blog_django
ba667174ecd7209c49b00a48e7f42b4fdf92c96d
af763b2db0704c9d41c2d3355a30f29b30ef8bf5
refs/heads/master
2021-05-23T14:41:36.841520
2020-04-24T00:25:03
2020-04-24T00:25:03
253,344,995
0
0
null
null
null
null
UTF-8
Python
false
false
422
py
from django import forms from .models import Comment, Post #ntest cmass class NewComment(forms.ModelForm): class Meta: model = Comment fields = ('name', 'email', 'body') class PostCreateForm(forms.ModelForm): title = forms.CharField(label='title') content = forms.CharField(label='content', widget=forms.Textarea) class Meta: model = Post fields = ['title', 'content']
[ "basmaaitbelarbi@gmail.com" ]
basmaaitbelarbi@gmail.com
3ec32164666ac523827540b3380e72da6133f4c2
0d73e045f83f1765b9d598f9cebb2ec328353c99
/15A Reading the Program.py
89eeeace4a4fbac67b9fb6dd0f9013bfac0e2e2d
[]
no_license
Jalbanese1441/Waterloo-CS-Circles-Solutions
642553db986cf7d53af133eb79a9abc097107a91
0506e2f7f62ec9ff4a5fc412b0526995164844ab
refs/heads/master
2023-02-01T18:09:57.375959
2020-12-18T23:50:18
2020-12-18T23:50:18
277,946,727
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
def getBASIC(): holder=[] x="" while x.endswith("END")==False: x=input() holder.append(x) return holder
[ "67984785+Jalbanese1441@users.noreply.github.com" ]
67984785+Jalbanese1441@users.noreply.github.com
15b6ae2d70b9799cb8748159e727ba2aff01ca67
a7b4bd1db26f71ab941076691d894583e167a3fd
/tools/cli_auto_doc.py
3fa4e46f23cc9b1663fdece8826ea5510b80263b
[ "Apache-2.0" ]
permissive
Mirantis/stackalytics
c422ccb27baa3f1fd7e68b9732ba0203144a3657
96ec7c6c630a9f2532b808069e045d434bbac200
refs/heads/master
2021-01-18T21:58:38.904481
2017-01-25T11:14:12
2017-01-25T11:14:12
10,863,780
3
4
Apache-2.0
2020-02-26T11:45:53
2013-06-22T11:17:28
Python
UTF-8
Python
false
false
1,806
py
# Copyright (c) 2015 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys try: import ConfigParser as configparser except ImportError: import configparser def split_multiline(value): value = [element for element in (line.strip() for line in value.split('\n')) if element] return value def get_entry_points(config): if 'entry_points' not in config: return {} return dict((option, split_multiline(value)) for option, value in config['entry_points'].items()) def make(cfg, dest): parser = configparser.RawConfigParser() parser.read(cfg) config = {} for section in parser.sections(): config[section] = dict(parser.items(section)) entry_points = get_entry_points(config) console_scripts = entry_points.get('console_scripts') if console_scripts: for item in console_scripts: tool = item.split('=')[0].strip() print('Running %s' % tool) os.system('%(tool)s --help > %(dest)s/%(tool)s.txt' % dict(tool=tool, dest=dest)) if len(sys.argv) < 2: print('Usage: cli_auto_doc <dest folder>') sys.exit(1) print('Generating docs from help to console tools') make(cfg='setup.cfg', dest=sys.argv[1])
[ "ishakhat@mirantis.com" ]
ishakhat@mirantis.com
58893a54c197fb68eeb0d035302bf64d8d6e53e9
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/3/gD3.py
aa7152104068969fce4fab0f59d40adbf339df10
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'gD3': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
[ "juliettaylorswift@gmail.com" ]
juliettaylorswift@gmail.com
1a8b3763c8a94e48cf8da659c686babc72716600
80abe7427ca501da06a9507cefa52d5c290f2833
/Chapter04/topic_modeling.py
841891d56168915143ec57282aeab11713c75372
[]
no_license
CodedQuen/Raspberry-Pi-3-Cookbook-for-Python-Programmers
7910c9cf9ebaf6f42510bd531bf965fd03e6efe8
4a77452c4510fd9c7da62099a93fdbc95a86245a
refs/heads/master
2022-06-10T04:36:59.316284
2020-05-05T10:18:33
2020-05-05T10:18:33
261,421,883
0
0
null
null
null
null
UTF-8
Python
false
false
2,220
py
from nltk.tokenize import RegexpTokenizer from nltk.stem.snowball import SnowballStemmer from gensim import models, corpora from nltk.corpus import stopwords # Load input words def load_words(in_file): element = [] with open(in_file, 'r') as f: for line in f.readlines(): element.append(line[:-1]) return element # Class to preprocedure of text class Preprocedure(object): # Initialize various operators def __init__(self): # Create a regular expression tokenizer self.tokenizer = RegexpTokenizer(r'\w+') # get the list of stop words self.english_stop_words= stopwords.words('english') # Create a Snowball stemmer self.snowball_stemmer = SnowballStemmer('english') # Tokenizing, stop word removal, and stemming def procedure(self, in_data): # Tokenize the string token = self.tokenizer.tokenize(in_data.lower()) # Remove the stop words tokenized_stopwords = [x for x in token if not x in self.english_stop_words] # Perform stemming on the tokens token_stemming = [self.snowball_stemmer.stem(x) for x in tokenized_stopwords] return token_stemming if __name__=='__main__': # File containing linewise input data in_file = 'data_topic_modeling.txt' # Load words element = load_words(in_file) # Create a preprocedure object preprocedure = Preprocedure() # Create a list for processed documents processed_tokens = [preprocedure.procedure(x) for x in element] # Create a dictionary based on the tokenized documents dict_tokens = corpora.Dictionary(processed_tokens) corpus = [dict_tokens.doc2bow(text) for text in processed_tokens] # Generate the LDA model based on the corpus we just created num_of_topics = 2 num_of_words = 4 ldamodel = models.ldamodel.LdaModel(corpus, num_topics=num_of_topics, id2word=dict_tokens, passes=25) print "Most contributing words to the topics:" for item in ldamodel.print_topics(num_topics=num_of_topics, num_words=num_of_words): print "\nTopic", item[0], "==>", item[1]
[ "noreply@github.com" ]
CodedQuen.noreply@github.com
be1bf8bedb3397c20eaccb3b6536f27ed3bc8b82
aab904ff48ee50db955ec844e5663a64404a1042
/gemini.py
8d0795d7c7c3de2e37d8d6b183f5eaf3dfa8072f
[]
no_license
walazdev/GeminiChallenge
b5bd82aefe2768b949589793a5c526e3e78893d5
459d38385c84697f188893b8d5f8e07cec29b4d2
refs/heads/main
2023-04-01T17:19:21.405599
2021-03-22T17:37:19
2021-03-22T17:37:19
350,207,460
0
0
null
null
null
null
UTF-8
Python
false
false
2,733
py
import requests, json, sys, time, datetime def main(): userInput = sys.argv[1] try: userInputFloat = float(userInput) except ValueError: print("Usage: python3 gemini.py [% threshold]") print("[% threshold] has to be a number") sys.exit(1) if (len(sys.argv) != 2): print("Usage: python3 gemini.py [% threshold]") sys.exit(1) print("User % change threshold:", sys.argv[1]) # get tickers and sort by alphabetical order print(datetime.datetime.now(), "- INFO: Retrieving tickers") ticker_url = "https://api.gemini.com/v1/symbols" response = requests.get(ticker_url) tickers = sorted(response.json()) while True: for i in range (0, len(tickers)): # Get general information about specific ticker from list of tickers. # The information that will be of use is: open price (opening price 24hr ago), ask (current best offer) timestamp = datetime.datetime.now() specificTicker = tickers[i] tickerURL = "https://api.gemini.com/v2/ticker/" + specificTicker tickerInfo = requests.get(tickerURL).json() # On 3/22/2021, 7 more tickers were added, some of which had no information (or None) in certain keys # The code below is to account for these new tickers without information, as the code would throw errors if no information was present if tickerInfo['ask'] == None: continue print(timestamp, "- INFO: Fetched", specificTicker, "information") # uncomment line below to adhere to API rate limits # time.sleep(1.0) # Retrieve and compute price information openPrice = float(tickerInfo['open']) currentPrice = float(tickerInfo['ask']) percentPriceChange = get24hrPriceChange(currentPrice, openPrice) # Price change threshold exceeded if abs(percentPriceChange) > userInputFloat: print(timestamp, "- ERROR:", specificTicker, "***** PRICE CHANGE *****") # Price change threshold NOT exceeded (in either direction, +/-) else: print(timestamp, "- INFO:", specificTicker, "has not exceeded threshold") # Print general information on the ticker of interest, regardless of price change status print(timestamp, "|", specificTicker, "| Current price:", currentPrice, "| Open price:", openPrice, "| % change:", round(percentPriceChange, 2)) def get24hrPriceChange(finalPrice, startPrice): result = ((finalPrice - startPrice) / startPrice) * 100 return result if __name__ == "__main__": main()
[ "willzs@umich.edu" ]
willzs@umich.edu
8330dd686199cc1515e5595364a6d6fc22e245f6
5d9105fc2b36967ae99a09649021cdcaf71a72ed
/Project1_804587205_204617837_004589213_204587029/polynomial/plot_underfitting_overfitting.py
349f38db338997e934f086c19f6c5724fb38a987
[]
no_license
ishan793/EE239-Big-Data-Analysis
2a9e0a126f9054798f67b233f2fc50c5f7380225
310080a39f111705b2271a9c61b61b3f5b33e91e
refs/heads/master
2020-04-09T20:06:38.207491
2016-02-28T21:43:03
2016-02-28T21:43:03
50,261,455
1
2
null
null
null
null
UTF-8
Python
false
false
3,557
py
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ #print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation import pickle from sklearn.metrics import mean_squared_error np.random.seed(0) #data = pickle.load( open( "housing_data.pickle", "rb" ) ) data=pickle.load(open('network.pickle','rb')) X=np.array(data['x'],dtype='float') y=np.array(data['y'],dtype='float') print X.shape n_samples=X.shape[0] y=np.reshape(y,(n_samples,1)) print y.shape degrees = [1] avg_score=[] fixed_score=[] X_test=X[0:50,:] y_test=y[0:50,:] X_train=X[51:,:] y_train=y[51:,:] #plt.figure(figsize=(14, 5)) '''for i in range(len(degrees)): #ax = plt.subplot(1, len(degrees), i + 1) #plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i],interaction_only=True, include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) #pipeline.fit(X,y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X, y, scoring="mean_squared_error", cv=10) scores=np.average((abs(scores)**0.5)) avg_score.append(scores) #plt.plot(X_test, true_fun(X_test), label="True function") #plt.scatter(X, y, label="Samples") #plt.xlabel("x") #plt.ylabel("y") #plt.xlim((0, 1)) #plt.ylim((-2, 2)) #plt.legend(loc="best") #plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( #degrees[i], -scores.mean(), scores.std())) #plt.show()''' '''print avg_score plt.scatter(degrees,avg_score) plt.show()''' plt.figure(figsize=(14,5)) for i in range(len(degrees)): ax=plt.subplot(1,len(degrees),i+1) plt.setp(ax,xticks=(),yticks=()) poly=PolynomialFeatures(degree=degrees[i]) X_train_trans = poly.fit_transform(X_train) X_test_trans = poly.fit_transform(X_test) regr =LinearRegression() regr.fit(X_train_trans,y_train) y_pred = regr.predict(X_test_trans) fixed_score.append((mean_squared_error(y_test,y_pred)**0.5)) #plt.plot(range(len(y_test)),(y_test-pipeline.predict(X_test)),range(len(y_test)),[0]*len(y_test)) print fixed_score plt.scatter(degrees,fixed_score) plt.show()
[ "pulkitagrawal2311@gmail.com" ]
pulkitagrawal2311@gmail.com
25e2f3a9ceb559034509a531ca8eec0c56c15cdc
9fcf684509bf39dbd7fcf7999e847b88ffb27a44
/facebookbot/http_client.py
6ec1347131f9b4cf5b5e5e61f03e3e3dc1b1d139
[ "Apache-2.0" ]
permissive
tailin/python-messengerbot-sdk
916dd36279828ea76d21a5c90e26cf93c8ef1934
cbe04b1a6b94b7cd7c04d06348737c041643b242
refs/heads/master
2020-04-27T11:31:09.368708
2019-03-07T07:00:25
2019-03-07T07:00:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,280
py
from __future__ import unicode_literals from abc import ABCMeta, abstractmethod, abstractproperty import requests from future.utils import with_metaclass class HttpClient(with_metaclass(ABCMeta)): """Abstract Base Classes of HttpClient.""" DEFAULT_TIMEOUT = 5 def __init__(self, timeout=DEFAULT_TIMEOUT): """__init__ method. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`DEFAULT_TIMEOUT` :type timeout: float | tuple(float, float) :rtype: T <= :py:class:`HttpResponse` :return: HttpResponse instance """ self.timeout = timeout @abstractmethod def get(self, url, headers=None, params=None, stream=False, timeout=None): """GET request. :param str url: Request url :param dict headers: (optional) Request headers :param dict params: (optional) Request query parameter :param bool stream: (optional) get content as stream :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: T <= :py:class:`HttpResponse` :return: HttpResponse instance """ raise NotImplementedError @abstractmethod def post(self, url, headers=None, params=None, data=None, timeout=None): """POST request. :param str url: Request url :param dict headers: (optional) Request headers :param data: (optional) Dictionary, bytes, or file-like object to send in the body :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: T <= :py:class:`HttpResponse` :return: HttpResponse instance """ raise NotImplementedError @abstractmethod def delete(self, url, headers=None, data=None, timeout=None): """DELETE request. :param str url: Request url :param dict headers: (optional) Request headers :param data: (optional) Dictionary, bytes, or file-like object to send in the body :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: T <= :py:class:`HttpResponse` :return: HttpResponse instance """ raise NotImplementedError class RequestsHttpClient(HttpClient): """HttpClient implemented by requests.""" def __init__(self, timeout=HttpClient.DEFAULT_TIMEOUT): """__init__ method. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`DEFAULT_TIMEOUT` :type timeout: float | tuple(float, float) """ super(RequestsHttpClient, self).__init__(timeout) def get(self, url, headers=None, params=None, stream=False, timeout=None): """GET request. :param str url: Request url :param dict headers: (optional) Request headers :param dict params: (optional) Request query parameter :param bool stream: (optional) get content as stream :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: :py:class:`RequestsHttpResponse` :return: RequestsHttpResponse instance """ if timeout is None: timeout = self.timeout response = requests.get( url, headers=headers, params=params, stream=stream, timeout=timeout ) return RequestsHttpResponse(response) def post(self, url, headers=None, params=None, data=None, timeout=None): """POST request. :param str url: Request url :param dict headers: (optional) Request headers :param data: (optional) Dictionary, bytes, or file-like object to send in the body :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: :py:class:`RequestsHttpResponse` :return: RequestsHttpResponse instance """ if timeout is None: timeout = self.timeout response = requests.post( url, headers=headers, params=params, data=data, timeout=timeout ) return RequestsHttpResponse(response) def delete(self, url, headers=None, data=None, timeout=None): """DELETE request. :param str url: Request url :param dict headers: (optional) Request headers :param data: (optional) Dictionary, bytes, or file-like object to send in the body :param timeout: (optional), How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) float tuple. Default is :py:attr:`self.timeout` :type timeout: float | tuple(float, float) :rtype: :py:class:`RequestsHttpResponse` :return: RequestsHttpResponse instance """ if timeout is None: timeout = self.timeout response = requests.delete( url, headers=headers, data=data, timeout=timeout ) return RequestsHttpResponse(response) class HttpResponse(with_metaclass(ABCMeta)): """HttpResponse.""" @abstractproperty def status_code(self): """Get status code.""" raise NotImplementedError @abstractproperty def headers(self): """Get headers.""" raise NotImplementedError @abstractproperty def text(self): """Get request body as text-decoded.""" raise NotImplementedError @abstractproperty def content(self): """Get request body as binary.""" raise NotImplementedError @abstractproperty def json(self): """Get request body as json-decoded.""" raise NotImplementedError @abstractmethod def iter_content(self, chunk_size=1024, decode_unicode=False): """Get request body as iterator content (stream). :param int chunk_size: :param bool decode_unicode: """ raise NotImplementedError class RequestsHttpResponse(HttpResponse): """HttpResponse implemented by requests lib's response.""" def __init__(self, response): """__init__ method. :param response: requests lib's response """ self.response = response @property def status_code(self): """Get status code.""" return self.response.status_code @property def headers(self): """Get headers.""" return self.response.headers @property def text(self): """Get request body as text-decoded.""" return self.response.text @property def content(self): """Get request body as binary.""" return self.response.content @property def json(self): """Get request body as json-decoded.""" return self.response.json() def iter_content(self, chunk_size=1024, decode_unicode=False): """Get request body as iterator content (stream). :param int chunk_size: :param bool decode_unicode: """ return self.response.iter_content(chunk_size=chunk_size, decode_unicode=decode_unicode)
[ "t0915290092@gmail.com" ]
t0915290092@gmail.com
985dad9eac8bbe27fa5b3adfb04734809e871ce4
ae16f9dd815605e5f52f27dda77bd735abafb587
/parser/councilors/elections_config.py
1bf0e2a7db9c45f4024b1026e1cd6c38e1f368c0
[ "CC0-1.0" ]
permissive
travishen/councilor-voter-guide
aa4a1aa3b86db9ca40b291baf461ff0330a369c0
09d9365676335854b2d4d0981f5cb925adf4c958
refs/heads/master
2020-04-13T10:09:07.688276
2018-11-28T14:51:05
2018-11-28T14:51:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,827
py
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys sys.path.append('../') import re import json import psycopg2 import ast from sys import argv import gspread from oauth2client.service_account import ServiceAccountCredentials import db_settings conn = db_settings.con() c = conn.cursor() election_year = ast.literal_eval(argv[1])['election_year'] def parse_districts(county, districts): districts = re.sub(u'^(居住|【)', '', districts) category = re.search(u'(平地原住民|山地原住民)$', districts) districts = re.sub(u'(平地原住民|山地原住民)$', '', districts) if category: category = category.group() districts = re.sub(u'(】|之)', '', districts) l = [] if districts: for district in districts.split(u'、'): if len(district) == 2: l = districts.split(u'、') break if not re.search(re.sub(u'[縣市]$', '', county), district): district = re.sub(u'[鄉鎮市區]$', '', district) l.append(district) return l, category # update constituencies constituencies = json.load(open('../../voter_guide/static/json/dest/constituencies_%s.json' % election_year)) counties = {} for region in constituencies: if region['county'] not in counties.keys(): counties.update({ region['county']: { 'regions': [], 'duplicated': [] } }) districts_list, category = parse_districts(region['county'], region['district']) if category: if districts_list: district = u'%s(%s)' % (category, u'、'.join(districts_list)) else: district = u'%s(%s)' % (category, u'全%s' % region['county']) else: district = u'、'.join(districts_list) counties[region['county']]['regions'].append({ 'constituency': region['constituency'], 'districts_list': districts_list, 'district': district, 'category': category }) c.execute(''' update candidates_terms set district = %s where election_year = %s and county = %s and constituency = %s ''', (district, election_year, region['county'], region['constituency'])) scope = ['https://spreadsheets.google.com/feeds'] credentials = ServiceAccountCredentials.from_json_keyfile_name('credential.json', scope) gc = gspread.authorize(credentials) sh = gc.open_by_key('10zFDmMF9CJDXSIENXO8iJXKE5CLBY62i_mSeqe_qDug') worksheets = sh.worksheets() for wks in worksheets: rows = wks.get_all_records() if wks.title == u'議員': for row in rows: print row['county'], row['constituency'] if row['count_this']: counties[row['county']]['regions'][int(row['constituency'])-1]['elected_count_pre'] = row['count_pre'] counties[row['county']]['regions'][int(row['constituency'])-1]['elected_count'] = row['count_this'] counties[row['county']]['regions'][int(row['constituency'])-1]['reserved_seats'] = row['reserved_seats'] else: continue config = json.dumps({'constituencies': counties}) c.execute(''' INSERT INTO elections_elections(id, data) VALUES (%s, %s) ON CONFLICT (id) DO UPDATE SET data = (COALESCE(elections_elections.data, '{}'::jsonb) || %s::jsonb) ''', [election_year, config, config]) conn.commit() # update constituency_change district_versions = json.load(open('../district_versions.json')) config = json.dumps({'constituency_change': district_versions.get(election_year, {})}) c.execute(''' INSERT INTO elections_elections(id, data) VALUES (%s, %s) ON CONFLICT (id) DO UPDATE SET data = (COALESCE(elections_elections.data, '{}'::jsonb) || %s::jsonb) ''', [election_year, config, config]) conn.commit()
[ "twly.tw@gmail.com" ]
twly.tw@gmail.com
c47b2a335796c963552a994e83d36361618a343d
7073c53c421018bd1a2c8a14e55c61bcf7c8ed04
/ask_1.py
c1ef86a87a8fd62f35b2730de5a77d797f38205a
[]
no_license
AntonisEkatommatis/1o_Eksamino_PYTHON
0a0e075a2bff9705bca34ab3064ae58eab3305e1
d9c019d62bed1ed71f9c4a441c0fb814ffa3a730
refs/heads/master
2020-04-21T14:40:08.915040
2019-02-12T19:32:55
2019-02-12T19:32:55
169,642,646
0
0
null
null
null
null
UTF-8
Python
false
false
1,076
py
#Ergasia 1 #Antonis Ekatommatis #Eisagwgh sthn episthmh twn ypologistwn #1o Eksamino #Dimiourgia Synartisis def sumIntervals (L): a=[] b=[] asin=0 bsin=0 apot=0 #Eisagawgi sthn lista a oles tis arxes apo ta oria for i in range(len(L)): a.append(L[i][0]) #Eisagwgi sthn lista b ta teleutaia psifia kathe oriou for i in range(len(L)): b.append(L[i][1]) #Bubblesort N=len(a) for i in range(1,N,1): for j in range(N-1,i-1,-1): if a[j] < a[j-1]: a[j],a[j-1]=a[j-1],a[j] b[j],b[j-1]=b[j-1],b[j] #Elegxoi gia na vgei to athroisma for i in range(1,len(a)): while a[i] < b[i-1]: a[i]=a[i]+1 for i in range(len(a)): while a[i] > b[i]: b[i]=b[i]+1 for item in a: asin+=item for item in b: bsin+=item apot=bsin-asin return apot print sumIntervals([[1,2], [6, 10], [11, 15]]) print sumIntervals([[1,4], [7, 10], [3, 5]]) print sumIntervals([[1,5], [10, 20], [1, 6], [16, 19], [5, 11]])
[ "antonismatis@gmail.com" ]
antonismatis@gmail.com
447d86e8e9209462fd50b2b94da10ea4ce9f191d
582cf2295d4b4666421da511507858435912ea30
/Sample.py
0a4cf81985e2de9af19913e6e31e192aa913f273
[]
no_license
limjisooooooo/z
bfe71ba18fe186e02be5e7908d3068d86e9f63db
cf0dc6f3de63decd69ecd7f139740334807054bc
refs/heads/master
2020-04-27T04:13:53.611372
2019-03-28T08:46:28
2019-03-28T08:46:28
174,047,811
0
0
null
null
null
null
UTF-8
Python
false
false
838
py
import sys import base64 from PyQt5.QtWidgets import * #from PyQt5.QtGui import * class Form(QMainWindow): def __init__(self): super().__init__() self.browser = QTextBrowser(self) self.browser.setGeometry(0, 0, 471, 401) self.setGeometry(0, 0, 500, 500) self.btnFile = QPushButton(self) self.btnFile.setGeometry(2, 430, 25, 25) self.btnFile.clicked.connect(self.fopen) self.show() self.setWindowTitle('Sample') def fopen(self): FileName, Filter = QFileDialog.getOpenFileUrl() if FileName.path() != "": f = open(FileName.path()[1:], 'rb') data = base64.b64encode(f.read()) #print(data) self.browser.append("<img src='data:image/jpeg;base64, " + data.decode() + "' alt='Image Can't Load'/>") f.close() if __name__ == '__main__': app = QApplication(sys.argv) w = Form() sys.exit(app.exec())
[ "trefrasd@gmail.com" ]
trefrasd@gmail.com
25b980a0be5f061c6bdc488b9c6e51969e8a81c7
ceb5b7c3882b2bf3f53219356e914462c680f059
/azure-mgmt-compute/azure/mgmt/compute/containerservice/v2017_01_31/models/container_service_client_enums.py
279f5dcb9d3ff37bd26b6e9a9c88b555f28c3dff
[ "MIT" ]
permissive
codalab/azure-sdk-for-python
b712da2a377cfa526e0ffa4fa40408e6a81e48e3
f4c92d02d46fcdee9da430a18a394b108a2f8920
refs/heads/master
2021-01-19T14:40:23.567035
2017-04-11T22:49:13
2017-04-11T22:49:13
88,180,409
1
0
null
2017-04-13T15:36:45
2017-04-13T15:36:44
null
UTF-8
Python
false
false
2,291
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from enum import Enum class ContainerServiceOchestratorTypes(Enum): swarm = "Swarm" dcos = "DCOS" custom = "Custom" kubernetes = "Kubernetes" class ContainerServiceVMSizeTypes(Enum): standard_a0 = "Standard_A0" standard_a1 = "Standard_A1" standard_a2 = "Standard_A2" standard_a3 = "Standard_A3" standard_a4 = "Standard_A4" standard_a5 = "Standard_A5" standard_a6 = "Standard_A6" standard_a7 = "Standard_A7" standard_a8 = "Standard_A8" standard_a9 = "Standard_A9" standard_a10 = "Standard_A10" standard_a11 = "Standard_A11" standard_d1 = "Standard_D1" standard_d2 = "Standard_D2" standard_d3 = "Standard_D3" standard_d4 = "Standard_D4" standard_d11 = "Standard_D11" standard_d12 = "Standard_D12" standard_d13 = "Standard_D13" standard_d14 = "Standard_D14" standard_d1_v2 = "Standard_D1_v2" standard_d2_v2 = "Standard_D2_v2" standard_d3_v2 = "Standard_D3_v2" standard_d4_v2 = "Standard_D4_v2" standard_d5_v2 = "Standard_D5_v2" standard_d11_v2 = "Standard_D11_v2" standard_d12_v2 = "Standard_D12_v2" standard_d13_v2 = "Standard_D13_v2" standard_d14_v2 = "Standard_D14_v2" standard_g1 = "Standard_G1" standard_g2 = "Standard_G2" standard_g3 = "Standard_G3" standard_g4 = "Standard_G4" standard_g5 = "Standard_G5" standard_ds1 = "Standard_DS1" standard_ds2 = "Standard_DS2" standard_ds3 = "Standard_DS3" standard_ds4 = "Standard_DS4" standard_ds11 = "Standard_DS11" standard_ds12 = "Standard_DS12" standard_ds13 = "Standard_DS13" standard_ds14 = "Standard_DS14" standard_gs1 = "Standard_GS1" standard_gs2 = "Standard_GS2" standard_gs3 = "Standard_GS3" standard_gs4 = "Standard_GS4" standard_gs5 = "Standard_GS5"
[ "lmazuel@microsoft.com" ]
lmazuel@microsoft.com
825006c894ca28563ceb49ebb22caa4eb6aead20
4e0c1615c467c63524db9a33d0e769f1370f5a12
/python-ops/training/exercise/test/murthy/r30.py
ae1cc0288d7548781efef0cae97dc498836eb388
[]
no_license
infra-ops/cloud-ops
1afb44ed29000491aaa5420ebc6e0b8d740fc55c
4f676fde13f33c838f7f17affd705966a6d31da2
refs/heads/master
2023-08-27T03:00:32.867645
2023-08-23T14:27:59
2023-08-23T14:27:59
140,283,053
3
1
null
null
null
null
UTF-8
Python
false
false
64
py
values = [100,200,300,400] slice = values[1:3] print(slice)
[ "chakraborty.rock@gmail.com" ]
chakraborty.rock@gmail.com
14c97cc76c6333d459e2b615402d70304853e1d8
520a9b3d11f4a4ce93d0927a8fd5c575252b3559
/lib/python2.7/site-packages/sphinx/registry.py
cdae7722411e7bcd78f8a786996f665d8862a229
[ "Apache-2.0" ]
permissive
Larsende/F5_Agility_2018_Security_in_AWS
90c7404962313b13cec63321e6fc38bdc9516dd0
1bebcf9d441a3e3b7348757fcbc83844fbb0132e
refs/heads/master
2020-03-20T02:23:59.099742
2018-08-12T15:28:50
2018-08-12T15:28:50
137,111,587
0
2
Apache-2.0
2018-08-03T21:19:48
2018-06-12T18:21:58
Python
UTF-8
Python
false
false
15,315
py
# -*- coding: utf-8 -*- """ sphinx.registry ~~~~~~~~~~~~~~~ Sphinx component registry. :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ from __future__ import print_function import traceback from pkg_resources import iter_entry_points from six import iteritems, itervalues, string_types from sphinx.domains import ObjType from sphinx.domains.std import GenericObject, Target from sphinx.errors import ExtensionError, SphinxError, VersionRequirementError from sphinx.extension import Extension from sphinx.locale import __ from sphinx.parsers import Parser as SphinxParser from sphinx.roles import XRefRole from sphinx.util import import_object from sphinx.util import logging from sphinx.util.console import bold # type: ignore from sphinx.util.docutils import directive_helper if False: # For type annotation from typing import Any, Callable, Dict, Iterator, List, Type, Union # NOQA from docutils import nodes # NOQA from docutils.io import Input # NOQA from docutils.parsers import Parser # NOQA from docutils.transforms import Transform # NOQA from sphinx.application import Sphinx # NOQA from sphinx.builders import Builder # NOQA from sphinx.domains import Domain, Index # NOQA from sphinx.environment import BuildEnvironment # NOQA from sphinx.ext.autodoc import Documenter # NOQA from sphinx.util.typing import RoleFunction # NOQA logger = logging.getLogger(__name__) # list of deprecated extensions. Keys are extension name. # Values are Sphinx version that merge the extension. EXTENSION_BLACKLIST = { "sphinxjp.themecore": "1.2" } # type: Dict[unicode, unicode] class SphinxComponentRegistry(object): def __init__(self): self.autodoc_attrgettrs = {} # type: Dict[Type, Callable[[Any, unicode, Any], Any]] self.builders = {} # type: Dict[unicode, Type[Builder]] self.documenters = {} # type: Dict[unicode, Type[Documenter]] self.domains = {} # type: Dict[unicode, Type[Domain]] self.domain_directives = {} # type: Dict[unicode, Dict[unicode, Any]] self.domain_indices = {} # type: Dict[unicode, List[Type[Index]]] self.domain_object_types = {} # type: Dict[unicode, Dict[unicode, ObjType]] self.domain_roles = {} # type: Dict[unicode, Dict[unicode, Union[RoleFunction, XRefRole]]] # NOQA self.post_transforms = [] # type: List[Type[Transform]] self.source_parsers = {} # type: Dict[unicode, Parser] self.source_inputs = {} # type: Dict[unicode, Input] self.translators = {} # type: Dict[unicode, nodes.NodeVisitor] self.transforms = [] # type: List[Type[Transform]] def add_builder(self, builder): # type: (Type[Builder]) -> None logger.debug('[app] adding builder: %r', builder) if not hasattr(builder, 'name'): raise ExtensionError(__('Builder class %s has no "name" attribute') % builder) if builder.name in self.builders: raise ExtensionError(__('Builder %r already exists (in module %s)') % (builder.name, self.builders[builder.name].__module__)) self.builders[builder.name] = builder def preload_builder(self, app, name): # type: (Sphinx, unicode) -> None if name is None: return if name not in self.builders: entry_points = iter_entry_points('sphinx.builders', name) try: entry_point = next(entry_points) except StopIteration: raise SphinxError(__('Builder name %s not registered or available' ' through entry point') % name) self.load_extension(app, entry_point.module_name) def create_builder(self, app, name): # type: (Sphinx, unicode) -> Builder if name not in self.builders: raise SphinxError(__('Builder name %s not registered') % name) return self.builders[name](app) def add_domain(self, domain): # type: (Type[Domain]) -> None logger.debug('[app] adding domain: %r', domain) if domain.name in self.domains: raise ExtensionError(__('domain %s already registered') % domain.name) self.domains[domain.name] = domain def has_domain(self, domain): # type: (unicode) -> bool return domain in self.domains def create_domains(self, env): # type: (BuildEnvironment) -> Iterator[Domain] for DomainClass in itervalues(self.domains): domain = DomainClass(env) # transplant components added by extensions domain.directives.update(self.domain_directives.get(domain.name, {})) domain.roles.update(self.domain_roles.get(domain.name, {})) domain.indices.extend(self.domain_indices.get(domain.name, [])) for name, objtype in iteritems(self.domain_object_types.get(domain.name, {})): domain.add_object_type(name, objtype) yield domain def override_domain(self, domain): # type: (Type[Domain]) -> None logger.debug('[app] overriding domain: %r', domain) if domain.name not in self.domains: raise ExtensionError(__('domain %s not yet registered') % domain.name) if not issubclass(domain, self.domains[domain.name]): raise ExtensionError(__('new domain not a subclass of registered %s ' 'domain') % domain.name) self.domains[domain.name] = domain def add_directive_to_domain(self, domain, name, obj, has_content=None, argument_spec=None, **option_spec): # type: (unicode, unicode, Any, bool, Any, Any) -> None logger.debug('[app] adding directive to domain: %r', (domain, name, obj, has_content, argument_spec, option_spec)) if domain not in self.domains: raise ExtensionError(__('domain %s not yet registered') % domain) directives = self.domain_directives.setdefault(domain, {}) directives[name] = directive_helper(obj, has_content, argument_spec, **option_spec) def add_role_to_domain(self, domain, name, role): # type: (unicode, unicode, Union[RoleFunction, XRefRole]) -> None logger.debug('[app] adding role to domain: %r', (domain, name, role)) if domain not in self.domains: raise ExtensionError(__('domain %s not yet registered') % domain) roles = self.domain_roles.setdefault(domain, {}) roles[name] = role def add_index_to_domain(self, domain, index): # type: (unicode, Type[Index]) -> None logger.debug('[app] adding index to domain: %r', (domain, index)) if domain not in self.domains: raise ExtensionError(__('domain %s not yet registered') % domain) indices = self.domain_indices.setdefault(domain, []) indices.append(index) def add_object_type(self, directivename, rolename, indextemplate='', parse_node=None, ref_nodeclass=None, objname='', doc_field_types=[]): # type: (unicode, unicode, unicode, Callable, nodes.Node, unicode, List) -> None logger.debug('[app] adding object type: %r', (directivename, rolename, indextemplate, parse_node, ref_nodeclass, objname, doc_field_types)) # create a subclass of GenericObject as the new directive directive = type(directivename, # type: ignore (GenericObject, object), {'indextemplate': indextemplate, 'parse_node': staticmethod(parse_node), 'doc_field_types': doc_field_types}) self.add_directive_to_domain('std', directivename, directive) self.add_role_to_domain('std', rolename, XRefRole(innernodeclass=ref_nodeclass)) object_types = self.domain_object_types.setdefault('std', {}) object_types[directivename] = ObjType(objname or directivename, rolename) def add_crossref_type(self, directivename, rolename, indextemplate='', ref_nodeclass=None, objname=''): # type: (unicode, unicode, unicode, nodes.Node, unicode) -> None logger.debug('[app] adding crossref type: %r', (directivename, rolename, indextemplate, ref_nodeclass, objname)) # create a subclass of Target as the new directive directive = type(directivename, # type: ignore (Target, object), {'indextemplate': indextemplate}) self.add_directive_to_domain('std', directivename, directive) self.add_role_to_domain('std', rolename, XRefRole(innernodeclass=ref_nodeclass)) object_types = self.domain_object_types.setdefault('std', {}) object_types[directivename] = ObjType(objname or directivename, rolename) def add_source_parser(self, suffix, parser): # type: (unicode, Type[Parser]) -> None logger.debug('[app] adding search source_parser: %r, %r', suffix, parser) if suffix in self.source_parsers: raise ExtensionError(__('source_parser for %r is already registered') % suffix) self.source_parsers[suffix] = parser def get_source_parser(self, filename): # type: (unicode) -> Type[Parser] for suffix, parser_class in iteritems(self.source_parsers): if filename.endswith(suffix): break else: # use special parser for unknown file-extension '*' (if exists) parser_class = self.source_parsers.get('*') if parser_class is None: raise SphinxError(__('source_parser for %s not registered') % filename) else: if isinstance(parser_class, string_types): parser_class = import_object(parser_class, 'source parser') # type: ignore return parser_class def get_source_parsers(self): # type: () -> Dict[unicode, Parser] return self.source_parsers def create_source_parser(self, app, filename): # type: (Sphinx, unicode) -> Parser parser_class = self.get_source_parser(filename) parser = parser_class() if isinstance(parser, SphinxParser): parser.set_application(app) return parser def add_source_input(self, input_class): # type: (Type[Input]) -> None for filetype in input_class.supported: if filetype in self.source_inputs: raise ExtensionError(__('source_input for %r is already registered') % filetype) self.source_inputs[filetype] = input_class def get_source_input(self, filename): # type: (unicode) -> Type[Input] parser = self.get_source_parser(filename) for filetype in parser.supported: if filetype in self.source_inputs: input_class = self.source_inputs[filetype] break else: # use special source_input for unknown file-type '*' (if exists) input_class = self.source_inputs.get('*') if input_class is None: raise SphinxError(__('source_input for %s not registered') % filename) else: return input_class def add_translator(self, name, translator): # type: (unicode, Type[nodes.NodeVisitor]) -> None logger.info(bold(__('Change of translator for the %s builder.') % name)) self.translators[name] = translator def get_translator_class(self, builder): # type: (Builder) -> Type[nodes.NodeVisitor] return self.translators.get(builder.name, builder.default_translator_class) def create_translator(self, builder, document): # type: (Builder, nodes.Node) -> nodes.NodeVisitor translator_class = self.get_translator_class(builder) return translator_class(builder, document) def add_transform(self, transform): # type: (Type[Transform]) -> None logger.debug('[app] adding transform: %r', transform) self.transforms.append(transform) def get_transforms(self): # type: () -> List[Type[Transform]] return self.transforms def add_post_transform(self, transform): # type: (Type[Transform]) -> None logger.debug('[app] adding post transform: %r', transform) self.post_transforms.append(transform) def get_post_transforms(self): # type: () -> List[Type[Transform]] return self.post_transforms def add_documenter(self, objtype, documenter): # type: (unicode, Type[Documenter]) -> None self.documenters[objtype] = documenter def add_autodoc_attrgetter(self, typ, attrgetter): # type: (Type, Callable[[Any, unicode, Any], Any]) -> None self.autodoc_attrgettrs[typ] = attrgetter def load_extension(self, app, extname): # type: (Sphinx, unicode) -> None """Load a Sphinx extension.""" if extname in app.extensions: # alread loaded return if extname in EXTENSION_BLACKLIST: logger.warning(__('the extension %r was already merged with Sphinx since ' 'version %s; this extension is ignored.'), extname, EXTENSION_BLACKLIST[extname]) return # update loading context app._setting_up_extension.append(extname) try: mod = __import__(extname, None, None, ['setup']) except ImportError as err: logger.verbose(__('Original exception:\n') + traceback.format_exc()) raise ExtensionError(__('Could not import extension %s') % extname, err) if not hasattr(mod, 'setup'): logger.warning(__('extension %r has no setup() function; is it really ' 'a Sphinx extension module?'), extname) metadata = {} # type: Dict[unicode, Any] else: try: metadata = mod.setup(app) except VersionRequirementError as err: # add the extension name to the version required raise VersionRequirementError( __('The %s extension used by this project needs at least ' 'Sphinx v%s; it therefore cannot be built with this ' 'version.') % (extname, err) ) if metadata is None: metadata = {} if extname == 'rst2pdf.pdfbuilder': metadata['parallel_read_safe'] = True elif not isinstance(metadata, dict): logger.warning(__('extension %r returned an unsupported object from ' 'its setup() function; it should return None or a ' 'metadata dictionary'), extname) metadata = {} app.extensions[extname] = Extension(extname, mod, **metadata) app._setting_up_extension.pop()
[ "davidelarsen@live.com" ]
davidelarsen@live.com
3f37df8301b6e1dbb044c648cb837c0f03ffdbc6
a1582cec6239f627c6740b391d751f429675ee39
/test_todo.py
039a3c22c18438751c553f7c5c877b02e940182e
[]
no_license
SolbiatiAlessandro/todos
7cabfd35d6c7d3cdd3232051be4a96c667d55f21
b85e74c4fc220dccc5a0a05a288465b2da98f6d0
refs/heads/master
2020-03-28T18:56:09.847298
2018-10-15T15:07:01
2018-10-15T15:07:01
148,928,531
1
0
null
null
null
null
UTF-8
Python
false
false
638
py
import unittest import todo from os import path dir_path = path.dirname(path.realpath(__file__)) class testTODO( unittest.TestCase ): def test_readElems( self ): self.assertIsNotNone( todo.readElems() ) def test_todoDone( self ): with open(dir_path+'/todos','a') as f: f.write('"[test elem]" 0') #import pdb;pdb.set_trace() elems = todo.readElems() self.assertEqual( "[test elem]", elems[0][1] ) todo.todoDone() elems = todo.readElems() self.assertNotEqual( "[test elem]", elems[0][1] ) if __name__ == '__main__': unittest.main()
[ "alexsolbiati@hotmail.it" ]
alexsolbiati@hotmail.it
19ebe0e0280c2829c58678866cdc0eb3a1da7611
bbe6f37f7347cb83f08846d505ac4aa6bc0031e6
/purity_fb/purity_fb_1dot9/apis/arrays_api.py
7bd8335e17e2cf1d85d4d5361d2a51ff900af97e
[ "Apache-2.0" ]
permissive
bsamz-ps/purity_fb_python_client
02ff7213075cf1948e2db7b0835cc5fcc56f328a
11f27ef0c72d8aac1fc4e1ed036cca038b85dfa4
refs/heads/master
2021-02-19T08:11:04.042758
2020-02-12T23:56:08
2020-02-12T23:56:08
245,294,511
0
0
NOASSERTION
2020-03-06T00:14:27
2020-03-06T00:14:26
null
UTF-8
Python
false
false
43,419
py
# coding: utf-8 """ Pure Storage FlashBlade REST 1.9 Python SDK Pure Storage FlashBlade REST 1.9 Python SDK. Compatible with REST API versions 1.0 - 1.9. Developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.9 Contact: info@purestorage.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class ArraysApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def list_arrays(self, **kwargs): """ List arrays This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: ArrayResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_arrays_with_http_info(**kwargs) else: (data) = self.list_arrays_with_http_info(**kwargs) return data def list_arrays_with_http_info(self, **kwargs): """ List arrays This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: ArrayResponse If the method is called asynchronously, returns the request thread. """ all_params = [] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_arrays" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ArrayResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_arrays_http_specific_performance(self, **kwargs): """ List instant or historical http specific performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_http_specific_performance(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :return: ArrayHttpPerformanceResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_arrays_http_specific_performance_with_http_info(**kwargs) else: (data) = self.list_arrays_http_specific_performance_with_http_info(**kwargs) return data def list_arrays_http_specific_performance_with_http_info(self, **kwargs): """ List instant or historical http specific performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_http_specific_performance_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :return: ArrayHttpPerformanceResponse If the method is called asynchronously, returns the request thread. """ all_params = ['start_time', 'end_time', 'resolution'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_arrays_http_specific_performance" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'start_time' in params: query_params.append(('start_time', params['start_time'])) if 'end_time' in params: query_params.append(('end_time', params['end_time'])) if 'resolution' in params: query_params.append(('resolution', params['resolution'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays/http-specific-performance', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ArrayHttpPerformanceResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_arrays_nfs_specific_performance(self, **kwargs): """ List instant or historical nfs specific performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_nfs_specific_performance(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :return: ArrayNfsPerformanceResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_arrays_nfs_specific_performance_with_http_info(**kwargs) else: (data) = self.list_arrays_nfs_specific_performance_with_http_info(**kwargs) return data def list_arrays_nfs_specific_performance_with_http_info(self, **kwargs): """ List instant or historical nfs specific performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_nfs_specific_performance_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :return: ArrayNfsPerformanceResponse If the method is called asynchronously, returns the request thread. """ all_params = ['start_time', 'end_time', 'resolution'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_arrays_nfs_specific_performance" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'start_time' in params: query_params.append(('start_time', params['start_time'])) if 'end_time' in params: query_params.append(('end_time', params['end_time'])) if 'resolution' in params: query_params.append(('resolution', params['resolution'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays/nfs-specific-performance', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ArrayNfsPerformanceResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_arrays_performance(self, **kwargs): """ List instant or historical array performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_performance(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :param str protocol: to sample performance of a certain protocol :return: ArrayPerformanceResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_arrays_performance_with_http_info(**kwargs) else: (data) = self.list_arrays_performance_with_http_info(**kwargs) return data def list_arrays_performance_with_http_info(self, **kwargs): """ List instant or historical array performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_performance_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :param str protocol: to sample performance of a certain protocol :return: ArrayPerformanceResponse If the method is called asynchronously, returns the request thread. """ all_params = ['start_time', 'end_time', 'resolution', 'protocol'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_arrays_performance" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'start_time' in params: query_params.append(('start_time', params['start_time'])) if 'end_time' in params: query_params.append(('end_time', params['end_time'])) if 'resolution' in params: query_params.append(('resolution', params['resolution'])) if 'protocol' in params: query_params.append(('protocol', params['protocol'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays/performance', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ArrayPerformanceResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_arrays_performance_replication(self, **kwargs): """ List instant or historical array replication performance. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_performance_replication(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :param int start_time: Time to start sample in milliseconds since epoch. :param str type: to sample space of either file systems, object store, or all :return: ArrayPerformanceReplicationResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_arrays_performance_replication_with_http_info(**kwargs) else: (data) = self.list_arrays_performance_replication_with_http_info(**kwargs) return data def list_arrays_performance_replication_with_http_info(self, **kwargs): """ List instant or historical array replication performance. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_performance_replication_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :param int start_time: Time to start sample in milliseconds since epoch. :param str type: to sample space of either file systems, object store, or all :return: ArrayPerformanceReplicationResponse If the method is called asynchronously, returns the request thread. """ all_params = ['end_time', 'resolution', 'start_time', 'type'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_arrays_performance_replication" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'end_time' in params: query_params.append(('end_time', params['end_time'])) if 'resolution' in params: query_params.append(('resolution', params['resolution'])) if 'start_time' in params: query_params.append(('start_time', params['start_time'])) if 'type' in params: query_params.append(('type', params['type'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays/performance/replication', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ArrayPerformanceReplicationResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_arrays_s3_specific_performance(self, **kwargs): """ List instant or historical object store specific performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_s3_specific_performance(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :return: ArrayS3PerformanceResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_arrays_s3_specific_performance_with_http_info(**kwargs) else: (data) = self.list_arrays_s3_specific_performance_with_http_info(**kwargs) return data def list_arrays_s3_specific_performance_with_http_info(self, **kwargs): """ List instant or historical object store specific performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_s3_specific_performance_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :return: ArrayS3PerformanceResponse If the method is called asynchronously, returns the request thread. """ all_params = ['start_time', 'end_time', 'resolution'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_arrays_s3_specific_performance" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'start_time' in params: query_params.append(('start_time', params['start_time'])) if 'end_time' in params: query_params.append(('end_time', params['end_time'])) if 'resolution' in params: query_params.append(('resolution', params['resolution'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays/s3-specific-performance', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ArrayS3PerformanceResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_arrays_space(self, **kwargs): """ List instant or historical array space This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_space(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :param str type: to sample space of either file systems, object store, or all :return: ArraySpaceResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_arrays_space_with_http_info(**kwargs) else: (data) = self.list_arrays_space_with_http_info(**kwargs) return data def list_arrays_space_with_http_info(self, **kwargs): """ List instant or historical array space This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_arrays_space_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int start_time: Time to start sample in milliseconds since epoch. :param int end_time: Time to end sample in milliseconds since epoch. :param int resolution: sample frequency in milliseconds :param str type: to sample space of either file systems, object store, or all :return: ArraySpaceResponse If the method is called asynchronously, returns the request thread. """ all_params = ['start_time', 'end_time', 'resolution', 'type'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_arrays_space" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'start_time' in params: query_params.append(('start_time', params['start_time'])) if 'end_time' in params: query_params.append(('end_time', params['end_time'])) if 'resolution' in params: query_params.append(('resolution', params['resolution'])) if 'type' in params: query_params.append(('type', params['type'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays/space', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ArraySpaceResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_clients_performance(self, **kwargs): """ List client performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_clients_performance(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :param str filter: The filter to be used for query. :param str sort: The way to order the results. :param int limit: limit, should be >= 0 :return: ClientPerformanceResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_clients_performance_with_http_info(**kwargs) else: (data) = self.list_clients_performance_with_http_info(**kwargs) return data def list_clients_performance_with_http_info(self, **kwargs): """ List client performance This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_clients_performance_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :param str filter: The filter to be used for query. :param str sort: The way to order the results. :param int limit: limit, should be >= 0 :return: ClientPerformanceResponse If the method is called asynchronously, returns the request thread. """ all_params = ['names', 'filter', 'sort', 'limit'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_clients_performance" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' if 'filter' in params: query_params.append(('filter', params['filter'])) if 'sort' in params: query_params.append(('sort', params['sort'])) if 'limit' in params: query_params.append(('limit', params['limit'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays/clients/performance', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ClientPerformanceResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_arrays(self, array_settings, **kwargs): """ Update arrays This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_arrays(array_settings, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param PureArray array_settings: (required) :return: ArrayResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.update_arrays_with_http_info(array_settings, **kwargs) else: (data) = self.update_arrays_with_http_info(array_settings, **kwargs) return data def update_arrays_with_http_info(self, array_settings, **kwargs): """ Update arrays This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_arrays_with_http_info(array_settings, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param PureArray array_settings: (required) :return: ArrayResponse If the method is called asynchronously, returns the request thread. """ all_params = ['array_settings'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_arrays" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'array_settings' is set if ('array_settings' not in params) or (params['array_settings'] is None): raise ValueError("Missing the required parameter `array_settings` when calling `update_arrays`") collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'array_settings' in params: body_params = params['array_settings'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/arrays', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ArrayResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
[ "tlewis@purestorage.com" ]
tlewis@purestorage.com
d41c0a0dcfbff280e11e9fa43fbd1a64b889ce22
6444935a3e304e0d8f0fc4cf7fbb7153621cfc53
/technosphere_python_backend/homeworks/06_07/project/project/urls.py
6f1f921969039500acc29fa06730692f4e48846f
[]
no_license
SVasi1yev/other
d1032871dc36a22cc2b556d4cbf6c0dc0c968e87
1c31090e7b3e0ff04e00b4f5b0b7ac917fe83ed2
refs/heads/master
2023-08-04T16:28:05.163894
2023-07-17T14:32:09
2023-07-17T14:32:09
138,393,326
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
"""project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.contrib.auth import views as auth_views import sys sys.path.append('..') from forum import views urlpatterns = [ path('admin/', admin.site.urls), path('forum/', include('forum.urls')), path('login/', views.login, name='login'), path('logout/', auth_views.LogoutView.as_view(), name='logout'), path('social_auth/', include('social_django.urls', namespace='social')), path('', views.home, name='home') ]
[ "vsemenm@gmail.com" ]
vsemenm@gmail.com
d9b1642074ff790c14fedd3afa80bc618136166c
2191d0e0d9fbec3dcef93386ba6c691d222bfed4
/new_user/migrations/0015_auto_20170428_1826.py
5aed1ff9f421cb90cdfeb799f1cda59759a131cd
[]
no_license
AnkitaVikramShetty/airbnbNewUserPredictions
19e7a74bd39cc663c23e0a7c407d9a151a37a954
86338384d565fcd017f18944559165ee806b751f
refs/heads/master
2021-01-19T04:40:59.235835
2017-05-02T16:14:55
2017-05-02T16:14:55
87,385,734
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('new_user', '0014_auto_20170428_1119'), ] operations = [ migrations.AddField( model_name='age_gender_bkts', name='population_in_thousands', field=models.FloatField(null=True), ), migrations.AddField( model_name='age_gender_bkts', name='year', field=models.FloatField(null=True), ), ]
[ "smaaz015@gmail.com" ]
smaaz015@gmail.com
5893049dfab4f9e7702c5a3117f4468d5c72a98f
27bd7769798502bccbbc4b1bbc34e22d17f17d98
/regressao_linear.py
6dd8db7e2851e9a8717ad91bfc2f4b32d1eb00d7
[]
no_license
jcclark/regressao_linear
03f3bfd759de3e629788d7ba6891f081ae41a667
bcf27dd810eb3916809b3683098ae2c3bd4dc619
refs/heads/master
2020-08-01T09:29:57.254610
2019-10-05T22:35:14
2019-10-05T22:35:14
210,948,723
0
0
null
null
null
null
UTF-8
Python
false
false
2,757
py
import csv import math from random import randint import matplotlib.pyplot as plt def modelo( data, tipo, i): dados = dv_dados(data, tipo) b_treino, b_teste = dv_bases(dados, i) b_0, b_1 = regressao_linear(b_treino, tipo) x = [d[0] for d in dados] y = [(b_0 + (d[0] * b_1)) for d in dados] desvio = desvio_padrao(b_teste, b_0, b_1) print("Desvio padrão: " + str( round(desvio, 2) )) plt.title('Média Provas x ' + tipo ) plt.xlabel(tipo.title()) plt.ylabel('Média provas') plt.scatter(x, y) plt.plot(x, y) plt.show() def desvio_padrao( b_teste, b_0, b_1): desvio = 0 for d in b_teste: y = d[1] fx = (b_0 + (d[0] * b_1)) desvio += (y - fx) ** 2 return desvio def regressao_linear( b_treino, type): N = len(b_treino) x = somatorio(b_treino, 'x') y = somatorio(b_treino, 'y') xy = somatorio(b_treino, 'xy') x1 = somatorio(b_treino, 'x2') b_1 = ((x * y) - (N * xy)) / ((x ** 2) - (N * x1)) b_0 = (y - (b_1 * x))/ N return b_0, b_1 def somatorio( l_n, tipo): numeros = [] for t in l_n: if tipo == 'x': a = t[0] elif tipo == 'y': a = t[1] elif tipo == 'xy': a = t[0] * t[1] elif tipo == 'x2': a = t[0] ** 2 else: a = 1 print('Erro') numeros.append(a) return sum(numeros) def dv_dados( data, tipo): res = [] for item in data: if tipo == "Idade": x = item.get("Idade") elif tipo == "Tempo de Estudo": x = item.get("Tempo de Estudo") elif tipo == "Faltas": x = item.get("Faltas") y = item.get("MediaProvas") res.append((int(x), int(y))) return res def dv_bases(dados, i): p_treino = [] while (len(p_treino) < round(i * 0.7)): posicao = randint(0, i - 1) if posicao not in p_treino: p_treino.append(posicao) d_treino = [dados[p] for p in p_treino] d_treino = [dados[p] for p in range(len(dados)) if p not in p_treino] return d_treino, d_treino def excutar(): data = [] with open("AnaliseEstudo.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=";") for row in csv_reader: if row[0] != "Idade": media = (int(row[3]) + int(row[4]) + int(row[5])) / 3 aux = { "Idade": row[0], "Tempo de Estudo": row[1], "Faltas":row[2], "MediaProvas": media } data.append(aux) for tipo in ["Idade", "Tempo de Estudo", "Faltas"]: modelo(data, tipo, len(data)) excutar()
[ "juniorclark@gmail.com" ]
juniorclark@gmail.com
2ae5a8847cf48e47a874c90b02e69013112279ba
f9faa75c7a0608f5a03fde26fb494de9bfdaa895
/WEEK 1/part01-e05_two_dice/src/two_dice.py
a650e13f6172340c085080170522dc497bc76781
[]
no_license
LeguizamonLuciano/DataAnalysisHelsinkiUni
16a8bead739b35a75f9d72c5691eedee70efc4eb
84af79815a5bcd497f731c4c24a22bb569db0c7f
refs/heads/main
2023-01-15T20:18:01.487593
2020-11-09T23:11:19
2020-11-09T23:11:19
307,580,394
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
#!/usr/bin/env python3 def main(): for i in range(1,7): for j in range(1,7): if i+j == 5: print((i,j)) if __name__ == "__main__": main()
[ "lucianoleguizamon@outlook.com" ]
lucianoleguizamon@outlook.com
762b157f8689129dbb59a301f005e5c667ff34f1
9fe97e356baf38e92a46553a5eb21d6f0942ec14
/cluster/sdk/tests/e2e/conftest.py
534468ccc96285a9421e6e2bca799c442ed25e02
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
ezwiefel/feast-azure
1adbd9c3a12577c42164e7536d4afed6096a8e3c
ae94e7232439559205d5e1e84217d8274e3d2f3b
refs/heads/main
2023-08-27T00:43:26.233519
2021-11-04T10:53:01
2021-11-04T10:53:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,696
py
import os import pytest def pytest_addoption(parser): parser.addoption("--core-url", action="store", default="localhost:6565") parser.addoption("--serving-url", action="store", default="localhost:6566") parser.addoption("--job-service-url", action="store", default="localhost:6568") parser.addoption("--kafka-brokers", action="store", default="localhost:9092") parser.addoption( "--env", action="store", help="local|aws|gcloud|k8s|synapse", default="local" ) parser.addoption("--with-job-service", action="store_true") parser.addoption("--staging-path", action="store") parser.addoption("--dataproc-cluster-name", action="store") parser.addoption("--dataproc-region", action="store") parser.addoption("--emr-cluster-id", action="store") parser.addoption("--emr-region", action="store") parser.addoption("--dataproc-project", action="store") parser.addoption("--dataproc-executor-instances", action="store", default="2") parser.addoption("--dataproc-executor-cores", action="store", default="2") parser.addoption("--dataproc-executor-memory", action="store", default="2g") parser.addoption("--k8s-namespace", action="store", default="sparkop-e2e") parser.addoption("--azure-synapse-dev-url", action="store", default="") parser.addoption("--azure-synapse-pool-name", action="store", default="") parser.addoption("--azure-synapse-datalake-dir", action="store", default="") parser.addoption("--azure-blob-account-name", action="store", default="") parser.addoption("--azure-blob-account-access-key", action="store", default="") parser.addoption("--ingestion-jar", action="store") parser.addoption("--redis-url", action="store", default="localhost:6379") parser.addoption("--redis-cluster", action="store_true") parser.addoption("--feast-version", action="store") parser.addoption("--bq-project", action="store") parser.addoption("--feast-project", action="store", default="default") parser.addoption("--statsd-url", action="store", default="localhost:8125") parser.addoption("--prometheus-url", action="store", default="localhost:9102") parser.addoption("--enable-auth", action="store_true") parser.addoption( "--scheduled-streaming-job", action="store_true", help="When set tests won't manually start streaming jobs," " instead jobservice's loop is responsible for that", ) def pytest_runtest_setup(item): env_names = [mark.args[0] for mark in item.iter_markers(name="env")] if env_names: if item.config.getoption("env") not in env_names: pytest.skip(f"test requires env in {env_names}") from .fixtures.base import project_root, project_version # noqa from .fixtures.client import ( # noqa feast_client, feast_spark_client, global_staging_path, ingestion_job_jar, local_staging_path, tfrecord_feast_client, ) if not os.environ.get("DISABLE_SERVICE_FIXTURES"): from .fixtures.services import ( # noqa kafka_port, kafka_server, redis_server, statsd_server, zookeeper_server, ) else: from .fixtures.external_services import ( # type: ignore # noqa kafka_server, redis_server, statsd_server, ) if not os.environ.get("DISABLE_FEAST_SERVICE_FIXTURES"): from .fixtures.feast_services import * # type: ignore # noqa from .fixtures.services import postgres_server # noqa else: from .fixtures.external_services import ( # type: ignore # noqa feast_core, feast_serving, feast_jobservice, enable_auth, ) from .fixtures.data import * # noqa
[ "47040993+rramani@users.noreply.github.com" ]
47040993+rramani@users.noreply.github.com
fd6eff07502fb4045b9c9bea91c6e2e5360f0a6c
dfac09701ae836ca8ff682ac741535eb84fec3af
/Dasha/modules/info.py
e291873d2b028cd6961d07b17aaaa10885835902
[]
no_license
Srinath2006/Dasha
a166c2274e15e0b7a73a7216ae0a533843647f1d
54a2025c2cea0f89c322249578c271d132b90fd0
refs/heads/main
2023-08-23T02:23:26.245367
2021-11-02T14:28:39
2021-11-02T14:28:39
423,876,040
0
0
null
null
null
null
UTF-8
Python
false
false
2,235
py
from Dasha import ubot from Dasha.events import dasha from . import get_user from telethon.tl.functions.users import GetFullUserRequest @dasha(pattern="^/info ?(.*)") async def new(event): if not event.reply_to_msg_id and not event.pattern_match.group(1): user = await ubot.get_entity(event.sender_id) else: try: user, extra = await get_user(event) except TypeError as e: print(e) pass user_id = user.id first_name = user.first_name last_name = user.last_name username = user.username text = "╒═══「<b>User info</b>:\n" if first_name: text += f"<b>First Name:</b> {first_name}\n" if last_name: text += f"<b>Last Name:</b> {last_name}\n" ups = None if username: text += f"<b>Username:</b> @{username}\n" ups = await event.client(GetFullUserRequest(user.username)) text += f"<b>ID:</b> <code>{user_id}</code>\n" text += f'<b>User link:</b> <a href="tg://user?id={user_id}">{first_name}</a>' if ups: text += f"\n\n<b>Bio:</b> <code>{ups.about}</code>" text += f"\n\n<b>Gbanned: No</b>" text += f"\n\n╘══「 <b>Groups count:</b> {ups.common_chats_count} 」" await event.edit(text, parse_mode='html') @dasha(pattern="^/id ?(.*)") async def _t(event): if not event.reply_to_msg_id and not event.pattern_match.group(1): user = await ubot.get_entity(event.sender_id) else: try: user, extra = await get_user(event) except TypeError as e: print(e) pass user_id = user.id chat_id = event.chat_id msg_id = event.id event_id = event.id c_id = str(chat_id).replace('-100', '') if event.reply_to_msg_id: event_id = event.reply_to_msg_id text = f"**[Chat ID]**(http://t.me/{event.chat.username}) : `{chat_id}`\n" text += f"**[Message ID]**(http://t.me/c/{c_id}/{event_id}) : `{event_id}`\n" text += f"**[User ID]**(tg://user?id={user_id}) : `{user_id}`" if event.reply_to_msg_id: msg = await event.get_reply_message() if msg.sticker: type = "Sticker" elif msg.audio: type = "Audio" elif msg.gif: type = "Gif" elif msg.video: type = "Video" elif msg.media: type = "Media" if msg.media: file_id = msg.file.id text += f"\n\n**Media Type:** `{type}`\n" text += f"**Fid:** `{file_id}`" await event.edit(text)
[ "percy@railway.app" ]
percy@railway.app
ee8d4a24f7c6068b54efb883495622825593dcad
065694179b7a132d989c373573a0e89686cc2c8c
/untitled/venv/include/task1.py
9fcae00b5f7e63cef0d7248881b10293e65e6e5b
[]
no_license
vksychev/PythonPlayground
ff267b1173f43cae2d11634b70e75c0aa3f715aa
99c4c1471b4e3e5a528486a58bd92cfd42b33c0e
refs/heads/master
2020-03-21T06:11:23.144147
2018-12-27T14:56:07
2018-12-27T14:56:07
138,204,660
0
0
null
null
null
null
UTF-8
Python
false
false
719
py
import math def genA(n): a = [] for i in range(n): new_element = i a.append(math.sin(new_element)) return a def solution(A): direction = 0 cur_direction = 0 count = 0 for i in range(len(A) - 1): if A[i] < A[i + 1]: cur_direction = 1 if direction != cur_direction: direction = cur_direction count += 1 elif A[i] > A[i + 1]: cur_direction = -1 if direction != cur_direction: direction = cur_direction count += 1 return count + 1 def main(): A = [1, 2, 1, 2, 1, 2, 1, 2] print(solution(A)) if (__name__ == "__main__"): main()
[ "vksychev@yandex.ru" ]
vksychev@yandex.ru
bec5d5fbb09b6260d514209bc438f344d215832b
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-sblp/sblp_ut=3.5_rd=1_rw=0.04_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=30/sched.py
a85202e958d39e172c17afa700742b708255c6d6
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
-S 0 -X RUN -Q 0 -L 2 84 250 -S 1 -X RUN -Q 0 -L 2 80 250 -S 0 -X RUN -Q 0 -L 2 74 250 -S 0 -X RUN -Q 0 -L 2 59 250 -S 2 -X RUN -Q 1 -L 1 57 200 -S 2 -X RUN -Q 1 -L 1 48 175 -S 2 -X RUN -Q 1 -L 1 40 125 -S 2 -X RUN -Q 1 -L 1 33 300 -S 3 -X RUN -Q 2 -L 1 29 100 -S 3 -X RUN -Q 2 -L 1 27 125 -S 3 -X RUN -Q 2 -L 1 21 100 -S 3 -X RUN -Q 2 -L 1 19 150 -S 4 -X RUN -Q 3 -L 1 19 100 -S 4 -X RUN -Q 3 -L 1 15 100 -S 4 -X RUN -Q 3 -L 1 14 100
[ "ricardo.btxr@gmail.com" ]
ricardo.btxr@gmail.com
9dae9e1cb02e03ac83133c64c0010ed526601e15
bd9c74247381121f71f3dde6b55c67856f58e124
/编程题/第4章-6 输出前 n 个Fibonacci数 (15分).py
d9428ceda6a9128e079ff4764f63ec641e09169e
[]
no_license
Redomeliu/Python
302cd5abd89f7040911c8afb1db6faee6d43de64
9f5568ec59d30ce0f7d572d072b86088e933abc8
refs/heads/master
2023-01-05T19:51:00.795864
2020-10-29T02:42:36
2020-10-29T02:42:36
308,293,416
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
def Fibonacci(i): lis = [1,1] n = 1 while(i>n): lis.append(lis[n]+lis[n-1]) n +=1 return lis[i] x = int(input()) count = 0 for i in range(x): count +=1 print(f'{Fibonacci(i):>11d}',end="") if count == 5 or i==x-1: print('\n') count=0 if x < 1: print('Invalid.')
[ "1258995373@qq.com" ]
1258995373@qq.com
da11437adf2aba52e01ffabe242c48711dbfe401
d0a54183ad20c3e1bfb3d70d118b3a2ccf9256be
/pylearn2/pylearn2/training_algorithms/bgd.py
86cdd585642ea1c5ac01de3c8ab7785692360024
[ "BSD-3-Clause" ]
permissive
julius506/pylearn2
93973fafb80ccd724c9ec16d6f0dcab0544acbcb
9134a6438e954cf5d8a1684ef8f5e2767549d6bc
refs/heads/master
2020-05-18T08:52:43.499030
2014-12-03T05:26:25
2014-12-03T05:26:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,764
py
""" Module for performing batch gradient methods. Technically, SGD and BGD both work with any batch size, but SGD has no line search functionality and is thus best suited to small batches, while BGD supports line searches and thuse works best with large batches. """ __authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" import logging import warnings import numpy as np from theano import config from pylearn2.compat import OrderedDict from pylearn2.monitor import Monitor from pylearn2.optimization.batch_gradient_descent import BatchGradientDescent from pylearn2.utils.iteration import is_stochastic from pylearn2.training_algorithms.training_algorithm import TrainingAlgorithm from pylearn2.utils import safe_zip from pylearn2.train_extensions import TrainExtension from pylearn2.termination_criteria import TerminationCriterion from pylearn2.utils import sharedX from pylearn2.space import CompositeSpace, NullSpace from pylearn2.utils.data_specs import DataSpecsMapping from pylearn2.utils.rng import make_np_rng logger = logging.getLogger(__name__) class BGD(TrainingAlgorithm): """ Batch Gradient Descent training algorithm class Parameters ---------- cost : pylearn2.costs.Cost, optional A pylearn2 Cost, or None, in which case model.get_default_cost() will be used batch_size : int, optional Like the SGD TrainingAlgorithm, this TrainingAlgorithm still iterates over minibatches of data. The difference is that this class uses partial line searches to choose the step size along each gradient direction, and can do repeated updates on the same batch. The assumption is that you use big enough minibatches with this algorithm that a large step size will generalize reasonably well to other minibatches. To implement true Batch Gradient Descent, set the batch_size to the total number of examples available. If batch_size is None, it will revert to the model's force_batch_size attribute. batches_per_iter : int, optional WRITEME updates_per_batch : int, optional Passed through to the optimization.BatchGradientDescent's `max_iters parameter` monitoring_batch_size : int Size of monitoring batches. monitoring_batches : WRITEME monitoring_dataset : Dataset or dict, optional A Dataset or a dictionary mapping string dataset names to Datasets termination_criterion : WRITEME set_batch_size : bool, optional If True, BGD will attempt to override the model's `force_batch_size` attribute by calling set_batch_size on it. reset_alpha : bool, optional Passed through to the optimization.BatchGradientDescent's `reset_alpha` parameter conjugate : bool, optional Passed through to the optimization.BatchGradientDescent's `conjugate` parameter min_init_alpha : float, optional WRITEME reset_conjugate : bool, optional Passed through to the optimization.BatchGradientDescent's `reset_conjugate` parameter line_search_mode : WRITEME verbose_optimization : bool, optional WRITEME scale_step : float, optional WRITEME theano_function_mode : WRITEME init_alpha : WRITEME seed : WRITEME """ def __init__(self, cost=None, batch_size=None, batches_per_iter=None, updates_per_batch=10, monitoring_batch_size=None, monitoring_batches=None, monitoring_dataset=None, termination_criterion=None, set_batch_size=False, reset_alpha=True, conjugate=False, min_init_alpha=.001, reset_conjugate=True, line_search_mode=None, verbose_optimization=False, scale_step=1., theano_function_mode=None, init_alpha=None, seed=None): self.__dict__.update(locals()) del self.self if monitoring_dataset is None: assert monitoring_batches is None assert monitoring_batch_size is None self._set_monitoring_dataset(monitoring_dataset) self.bSetup = False self.termination_criterion = termination_criterion self.rng = make_np_rng(seed, [2012, 10, 16], which_method=["randn", "randint"]) def setup(self, model, dataset): """ Allows the training algorithm to do some preliminary configuration *before* we actually start training the model. The dataset is provided in case other derived training algorithms need to modify model based on the dataset. Parameters ---------- model : object A Python object representing the model to train. Loosely implementing the interface of models.model.Model. dataset : pylearn2.datasets.dataset.Dataset Dataset object used to draw training data """ self.model = model if self.cost is None: self.cost = model.get_default_cost() try: if self.cost.is_stochastic(): raise TypeError("BGD is not compatible with stochastic " "costs.") except NotImplementedError: warnings.warn("BGD is not compatible with stochastic costs " "and cannot determine whether the current cost is " "stochastic.") if self.batch_size is None: self.batch_size = model.force_batch_size else: batch_size = self.batch_size if self.set_batch_size: model.set_batch_size(batch_size) elif hasattr(model, 'force_batch_size'): if not (model.force_batch_size <= 0 or batch_size == model.force_batch_size): raise ValueError("batch_size is %d but " + "model.force_batch_size is %d" % (batch_size, model.force_batch_size)) self.monitor = Monitor.get_monitor(model) self.monitor.set_theano_function_mode(self.theano_function_mode) data_specs = self.cost.get_data_specs(model) mapping = DataSpecsMapping(data_specs) space_tuple = mapping.flatten(data_specs[0], return_tuple=True) source_tuple = mapping.flatten(data_specs[1], return_tuple=True) # Build a flat tuple of Theano Variables, one for each space, # named according to the sources. theano_args = [] for space, source in safe_zip(space_tuple, source_tuple): name = 'BGD_[%s]' % source arg = space.make_theano_batch(name=name) theano_args.append(arg) theano_args = tuple(theano_args) # Methods of `self.cost` need args to be passed in a format compatible # with their data_specs nested_args = mapping.nest(theano_args) fixed_var_descr = self.cost.get_fixed_var_descr(model, nested_args) self.on_load_batch = fixed_var_descr.on_load_batch cost_value = self.cost.expr(model, nested_args, ** fixed_var_descr.fixed_vars) grads, grad_updates = self.cost.get_gradients( model, nested_args, ** fixed_var_descr.fixed_vars) assert isinstance(grads, OrderedDict) assert isinstance(grad_updates, OrderedDict) if cost_value is None: raise ValueError("BGD is incompatible with " + str(self.cost) + " because it is intractable, but BGD uses the " + "cost function value to do line searches.") # obj_prereqs has to be a list of function f called with f(*data), # where data is a data tuple coming from the iterator. # this function enables capturing "mapping" and "f", while # enabling the "*data" syntax def capture(f, mapping=mapping): new_f = lambda *args: f(mapping.flatten(args, return_tuple=True)) return new_f obj_prereqs = [capture(f) for f in fixed_var_descr.on_load_batch] if self.monitoring_dataset is not None: if (self.monitoring_batch_size is None and self.monitoring_batches is None): self.monitoring_batch_size = self.batch_size self.monitoring_batches = self.batches_per_iter self.monitor.setup( dataset=self.monitoring_dataset, cost=self.cost, batch_size=self.monitoring_batch_size, num_batches=self.monitoring_batches, obj_prereqs=obj_prereqs, cost_monitoring_args=fixed_var_descr.fixed_vars) params = model.get_params() self.optimizer = BatchGradientDescent( objective=cost_value, gradients=grads, gradient_updates=grad_updates, params=params, param_constrainers=[model.modify_updates], lr_scalers=model.get_lr_scalers(), inputs=theano_args, verbose=self.verbose_optimization, max_iter=self.updates_per_batch, reset_alpha=self.reset_alpha, conjugate=self.conjugate, reset_conjugate=self.reset_conjugate, min_init_alpha=self.min_init_alpha, line_search_mode=self.line_search_mode, theano_function_mode=self.theano_function_mode, init_alpha=self.init_alpha) # These monitoring channels keep track of shared variables, # which do not need inputs nor data. if self.monitoring_dataset is not None: self.monitor.add_channel( name='ave_step_size', ipt=None, val=self.optimizer.ave_step_size, data_specs=(NullSpace(), ''), dataset=self.monitoring_dataset.values()[0]) self.monitor.add_channel( name='ave_grad_size', ipt=None, val=self.optimizer.ave_grad_size, data_specs=(NullSpace(), ''), dataset=self.monitoring_dataset.values()[0]) self.monitor.add_channel( name='ave_grad_mult', ipt=None, val=self.optimizer.ave_grad_mult, data_specs=(NullSpace(), ''), dataset=self.monitoring_dataset.values()[0]) self.first = True self.bSetup = True def train(self, dataset): """ .. todo:: WRITEME """ assert self.bSetup model = self.model rng = self.rng train_iteration_mode = 'shuffled_sequential' if not is_stochastic(train_iteration_mode): rng = None data_specs = self.cost.get_data_specs(self.model) # The iterator should be built from flat data specs, so it returns # flat, non-redundent tuples of data. mapping = DataSpecsMapping(data_specs) space_tuple = mapping.flatten(data_specs[0], return_tuple=True) source_tuple = mapping.flatten(data_specs[1], return_tuple=True) if len(space_tuple) == 0: # No data will be returned by the iterator, and it is impossible # to know the size of the actual batch. # It is not decided yet what the right thing to do should be. raise NotImplementedError("Unable to train with BGD, because " "the cost does not actually use data " "from the data set. " "data_specs: %s" % str(data_specs)) flat_data_specs = (CompositeSpace(space_tuple), source_tuple) iterator = dataset.iterator(mode=train_iteration_mode, batch_size=self.batch_size, num_batches=self.batches_per_iter, data_specs=flat_data_specs, return_tuple=True, rng=rng) mode = self.theano_function_mode for data in iterator: if ('targets' in source_tuple and mode is not None and hasattr(mode, 'record')): Y = data[source_tuple.index('targets')] stry = str(Y).replace('\n', ' ') mode.record.handle_line('data Y ' + stry + '\n') for on_load_batch in self.on_load_batch: on_load_batch(mapping.nest(data)) self.before_step(model) self.optimizer.minimize(*data) self.after_step(model) actual_batch_size = flat_data_specs[0].np_batch_size(data) model.monitor.report_batch(actual_batch_size) def continue_learning(self, model): """ .. todo:: WRITEME """ if self.termination_criterion is None: return True else: rval = self.termination_criterion.continue_learning(self.model) assert rval in [True, False, 0, 1] return rval def before_step(self, model): """ .. todo:: WRITEME """ if self.scale_step != 1.: self.params = list(model.get_params()) self.value = [param.get_value() for param in self.params] def after_step(self, model): """ .. todo:: WRITEME """ if self.scale_step != 1: for param, value in safe_zip(self.params, self.value): value = (1. - self.scale_step) * value + self.scale_step \ * param.get_value() param.set_value(value) class StepShrinker(TrainExtension, TerminationCriterion): """ .. todo:: WRITEME """ def __init__(self, channel, scale, giveup_after, scale_up=1., max_scale=1.): self.__dict__.update(locals()) del self.self self.continue_learning = True self.first = True self.prev = np.inf def on_monitor(self, model, dataset, algorithm): """ .. todo:: WRITEME """ monitor = model.monitor if self.first: self.first = False self.monitor_channel = sharedX(algorithm.scale_step) # TODO: make monitor accept channels not associated with any # dataset, # so this hack won't be necessary hack = monitor.channels.values()[0] monitor.add_channel('scale_step', hack.graph_input, self.monitor_channel, dataset=hack.dataset, data_specs=hack.data_specs) channel = monitor.channels[self.channel] v = channel.val_record if len(v) == 1: return latest = v[-1] logger.info("Latest {0}: {1}".format(self.channel, latest)) # Only compare to the previous step, not the best step so far # Another extension can be in charge of saving the best parameters ever # seen.We want to keep learning as long as we're making progress. We # don't want to give up on a step size just because it failed to undo # the damage of the bigger one that preceded it in a single epoch logger.info("Previous is {0}".format(self.prev)) cur = algorithm.scale_step if latest >= self.prev: logger.info("Looks like using {0} " "isn't working out so great for us.".format(cur)) cur *= self.scale if cur < self.giveup_after: logger.info("Guess we just have to give up.") self.continue_learning = False cur = self.giveup_after logger.info("Let's see how {0} does.".format(cur)) elif latest <= self.prev and self.scale_up != 1.: logger.info("Looks like we're making progress " "on the validation set, let's try speeding up") cur *= self.scale_up if cur > self.max_scale: cur = self.max_scale logger.info("New scale is {0}".format(cur)) algorithm.scale_step = cur self.monitor_channel.set_value(np.cast[config.floatX](cur)) self.prev = latest def __call__(self, model): """ .. todo:: WRITEME """ return self.continue_learning class ScaleStep(TrainExtension): """ .. todo:: WRITEME """ def __init__(self, scale, min_value): self.scale = scale self.min_value = min_value self.first = True def on_monitor(self, model, dataset, algorithm): """ .. todo:: WRITEME """ if self.first: monitor = model.monitor self.first = False self.monitor_channel = sharedX(algorithm.scale_step) # TODO: make monitor accept channels not associated with any # dataset, # so this hack won't be necessary hack = monitor.channels.values()[0] monitor.add_channel('scale_step', hack.graph_input, self.monitor_channel, dataset=hack.dataset) cur = algorithm.scale_step cur *= self.scale cur = max(cur, self.min_value) algorithm.scale_step = cur self.monitor_channel.set_value(np.cast[config.floatX](cur)) class BacktrackingStepShrinker(TrainExtension, TerminationCriterion): """ .. todo:: WRITEME """ def __init__(self, channel, scale, giveup_after, scale_up=1., max_scale=1.): self.__dict__.update(locals()) del self.self self.continue_learning = True self.first = True self.prev = np.inf def on_monitor(self, model, dataset, algorithm): """ .. todo:: WRITEME """ monitor = model.monitor if self.first: self.first = False self.monitor_channel = sharedX(algorithm.scale_step) # TODO: make monitor accept channels not associated with any # dataset, # so this hack won't be necessary hack = monitor.channels.values()[0] monitor.add_channel('scale_step', hack.graph_input, self.monitor_channel, dataset=hack.dataset) channel = monitor.channels[self.channel] v = channel.val_record if len(v) == 1: return latest = v[-1] logger.info("Latest {0}: {1}".format(self.channel, latest)) # Only compare to the previous step, not the best step so far # Another extension can be in charge of saving the best parameters ever # seen.We want to keep learning as long as we're making progress. We # don't want to give up on a step size just because it failed to undo # the damage of the bigger one that preceded it in a single epoch logger.info("Previous is {0}".format(self.prev)) cur = algorithm.scale_step if latest >= self.prev: logger.info("Looks like using {0} " "isn't working out so great for us.".format(cur)) cur *= self.scale if cur < self.giveup_after: logger.info("Guess we just have to give up.") self.continue_learning = False cur = self.giveup_after logger.info("Let's see how {0} does.".format(cur)) logger.info("Reloading saved params from last call") for p, v in safe_zip(model.get_params(), self.stored_values): p.set_value(v) latest = self.prev elif latest <= self.prev and self.scale_up != 1.: logger.info("Looks like we're making progress " "on the validation set, let's try speeding up") cur *= self.scale_up if cur > self.max_scale: cur = self.max_scale logger.info("New scale is {0}".format(cur)) algorithm.scale_step = cur self.monitor_channel.set_value(np.cast[config.floatX](cur)) self.prev = latest self.stored_values = [param.get_value() for param in model.get_params()] def __call__(self, model): """ .. todo:: WRITEME """ return self.continue_learning
[ "julius506@gmail.com" ]
julius506@gmail.com