blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
9581235950edd78c5dcad76402bc11c604e1611f
447db789b432b2f665f0ab1a0ee75abc02151b1a
/01_python_fundamentals/01_03_yeehaw.py
ea8eabaffaae8ffc0c726039fbfd31807f2ae612
[]
no_license
jesusdmartinez/python-labs
cfcf69964409a3284208d8fb52c637ffd6bda535
4d314985480b8db482d49e445a671c535fbcb88c
refs/heads/master
2020-07-09T23:38:40.935626
2019-09-20T00:18:42
2019-09-20T00:18:42
204,110,492
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
''' Write the necessary code to display the follow message to the console I'm a programmer now. Yeehaw! Coding here I come! ''' print("I'm a programmer now.") print("Yeehaw!") print("Coding here I come")
[ "jesusd.martinez@Jesuss-MBP.home" ]
jesusd.martinez@Jesuss-MBP.home
cf894f9e2b9e9e3cfa72915ce476c80f7b86f700
aa6260a66bdedee64882663f831de869eb5ef193
/Repository/Points.py
1c1a09bfd7540675eb6480251fa50c247b675ea2
[]
no_license
BrunoICardoso/GEO4ALL
dc1076ea0241440b52120483a2d505a6cae99099
889cd305ca97f64b75a482ccfcea82c856a4dc33
refs/heads/master
2022-11-10T03:12:28.334437
2019-07-07T19:05:57
2019-07-07T19:05:57
195,507,889
0
2
null
2022-10-23T20:28:09
2019-07-06T06:50:42
Python
UTF-8
Python
false
false
1,306
py
from DAO.DataBase import DataBase from datetime import datetime # Esse Repositorio da tabela Points tem a função de ter todo qualquer comando que tem como função direta da tabela class Points(DataBase): def __init__(self): DataBase.__init__(self) def CheckExistingPoint(self, latitude, longitude) -> None or int: # Essa função faz a verificação se o registgro exsite no banco dados se existe ele retorna o ID IDPoints = self.Query("SELECT IDPoints FROM Points WHERE Latitude = ? AND Logintude = ?", (latitude, longitude)) if not IDPoints: return None return IDPoints[0] def Save(self, Latitude, Logintude, Distance, Bearing, IDFile, id=False) -> int: # id => Tem a resposabilidade de retornar o ID quando é TRUE ou apenas salva o registro if id: IDPoints = self.Insert( "INSERT INTO Points (Latitude,Logintude,Distance,Bearing,IDFile) OUTPUT inserted.IDPoints VALUES(?,?,?,?,?)", (Latitude, Logintude, Distance, Bearing, IDFile), getID=True) return IDPoints else: self.Insert("INSERT INTO Points (Latitude,Logintude,Distance,Bearing,IDFile)VALUES(?,?,?,?,?)", (Latitude, Logintude, Distance, Bearing, IDFile))
[ "bruno.inacio88@gmail.com" ]
bruno.inacio88@gmail.com
0a74bf17d9386a48de39f608db074336cda8a1b9
5354ce5fd5836047f019f614d2490085d44b06f0
/Project2/reinforcement/analysis.py
638e3e909065a2fdc7cca98cc6c9ae95177955cf
[]
no_license
jshartar/cs3600
8f8be7bb7c2034e67f61d6b98ff64037ca933758
45bf4b30bd3232e6bc63ec9bdac527b360aab81b
refs/heads/master
2020-03-28T21:47:45.026848
2018-09-17T20:20:26
2018-09-17T20:20:26
149,182,235
0
0
null
null
null
null
UTF-8
Python
false
false
2,385
py
# analysis.py # ----------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). ###################### # ANALYSIS QUESTIONS # ###################### # Set the given parameters to obtain the specified policies through # value iteration. def question2(): answerDiscount = 0.9 #change from 0.2 to 0.0 answerNoise = 0.0 return answerDiscount, answerNoise def question3a(): answerDiscount = 0.3 answerNoise = 0.0 answerLivingReward = 0.0 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question3b(): answerDiscount = 0.3 answerNoise = 0.1 answerLivingReward = 0.1 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question3c(): answerDiscount = 0.9 answerNoise = 0.1 answerLivingReward = -0.3 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question3d(): answerDiscount = 0.9 answerNoise = 0.3 answerLivingReward = 0.2 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question3e(): answerDiscount = 0.5 answerNoise = 0.5 answerLivingReward = 5 return answerDiscount, answerNoise, answerLivingReward # If not possible, return 'NOT POSSIBLE' def question6(): answerEpsilon = None answerLearningRate = None #return answerEpsilon, answerLearningRate # If not possible, return 'NOT POSSIBLE' return 'NOT POSSIBLE' if __name__ == '__main__': print 'Answers to analysis questions:' import analysis for q in [q for q in dir(analysis) if q.startswith('question')]: response = getattr(analysis, q)() print ' Question %s:\t%s' % (q, str(response))
[ "jordan.shartar@gmail.com" ]
jordan.shartar@gmail.com
5deac943862d22111f394e515c2f8ae54d238c37
2657d7cdc745e38cfddec1c04fce9e367937b393
/pricing_1a.py
f4c5b78e0df97d7235b4a7cf099f8f656141a5a6
[]
no_license
amasl2048/pricing
ab0f1d4c49dec3ed3ad646b08e1bbc9ea2bc5545
ff5ede99f98c49f18e87e23cd65115b3f7b665c4
refs/heads/master
2021-01-17T09:16:20.649084
2017-08-11T14:22:17
2017-08-11T14:22:17
28,592,031
1
0
null
null
null
null
UTF-8
Python
false
false
1,749
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Выборка по заданному списку с part.num. соответствующих строк из общего файла с ценами 1 аргумент - текстовой файл с нужными именами (part.num.) в одну колонку 2 аргумент - исходный csv файл c ценами msrp ref trans 3 аргумент - имя выходного csv файла 2014 Dec ''' import csv import sys from numpy import loadtxt, size desccol = 2 # колонка с описаниями catalog = 3 msrpcol = 4 # колонка с ценой msrp grpcol = 7 # колонка ценовой группой a = loadtxt(sys.argv[1], dtype=str) n = size(a) ifile = open(sys.argv[2], 'rb') reader = csv.reader(ifile, delimiter=';', quotechar='"') ofile = open(sys.argv[3], 'wb') writer = csv.writer(ofile, delimiter=';', quotechar='"', quoting=csv.QUOTE_ALL) rownum = 0 for row in reader: # Save header row. if rownum == 0: header = row writer.writerow(header) else: colnum = 0 findit = False for col in row: if (colnum == 0): # ищем в первой колонке нужный part.num. if (n == 1): partnum = a.item() if (col == partnum.strip()): writer.writerow(row) else: for partnum in a: if (col == partnum.strip()): writer.writerow(row) #findit = True colnum += 1 rownum += 1 ifile.close() ofile.close()
[ "amasl2048@gmail.com" ]
amasl2048@gmail.com
c1b5a0723dfe2275003edde27ad695f06d4f896f
61a43dbd5ee615bf5e5f8f52e739efdfe5b57443
/open_cv/cv10.py
8c39449a4eba0296754c7f38f0025a019ee21aae
[]
no_license
tianqibucuohao/MyPython
6edef8fa2635862914af26f96b3fb630a0198403
12b9689882dc197128d1a27b68c9a2840a57d0fc
refs/heads/master
2020-04-07T15:04:09.838646
2020-01-09T09:03:48
2020-01-09T09:03:48
158,471,961
0
0
null
null
null
null
UTF-8
Python
false
false
680
py
import cv2 import numpy as np cap = cv2.VideoCapture(0) while(1): # Take each frame frame = cap.read() # Convert BGR to HSV hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # define range of blue color in HSV lower_blue = np.array([110,50,50]) upper_blue = np.array([130,255,255]) # Threshold the HSV image to get only blue colors mask = cv2.inRange(hsv, lower_blue, upper_blue) # Bitwise-AND mask and original image res = cv2.bitwise_and(frame,frame, mask= mask) cv2.imshow('frame',frame) cv2.imshow('mask',mask) cv2.imshow('res',res) k = cv2.waitKey(5) & 0xFF if k == 27: break cv2.destroyAllWindows()
[ "lichzhenglz@gmail.com" ]
lichzhenglz@gmail.com
71129ddfbf63fd4d1bcd4996ef697cfe339d0644
81ebceaea5d26dd1c20a596430d274eb31c7234c
/hw3_code/scripts/concat_feats.py
80addc0a01cb4c43096b6834530c63e41629779d
[]
no_license
richcode6/Multimedia-Event-Detection
d22f3aca9b7e770e91315978cb8b5f3baee218c2
c9f9b9c2117785e13d7b482ad460d78822ecf275
refs/heads/master
2020-04-21T19:32:59.644781
2019-03-21T04:51:34
2019-03-21T04:51:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,403
py
#!/bin/python import numpy as np import os import pickle from sklearn.cluster.k_means_ import KMeans import sys if __name__ == '__main__': print(sys.argv) if len(sys.argv) < 2: print("Usage: {0} feat_combination_type".format(sys.argv[0])) print("feat_dict_n -- dictionary of video id to feature vector stored as pickle file") print("output_feat_dict -- name of pickle file to store concatenated features (feat_1; feat_2;...;feat_n)") print("Note - Minimum 2 feature dictionaries have to be provided !!!") exit(1) feat_combo = sys.argv[1] output_file = "features/{}.pkl".format(feat_combo) input_files = list() for feat in feat_combo.split("."): input_files.append("features/{}.pkl".format(feat)) feats = len(input_files) M = [pickle.load(open(input_files[i], 'rb')) for i in range(len(input_files))] dim = [len(M[i][list(M[i])[i]]) for i in range(feats)] total = sum(dim) print(total) keys = set().union(*M) X = {} for key in keys: a = [np.zeros(dim[i]) for i in range(feats)] for j in range(feats): if key in M[j]: a[j] = M[j][key] X[key] = np.concatenate(a) with open(output_file, 'wb') as w: pickle.dump(X, w) print("Features concatenated successfully! -> {}".format(output_file))
[ "rrnigam@compute-0-30.local" ]
rrnigam@compute-0-30.local
49f674bbf8deb4d9b188a03d297bbea60bbade52
06159808f6e2976aef5a48cffa998d84ad0a7653
/Algorithmic Toolbox/week3_greedy_algorithms/1_money_change/change.py
63faa89d2d4eab2c731b1ec447c7fbc4cc6ca34d
[]
no_license
sreeragrnandan/Data-Structures-and-Algorithms-Specialisation
60f5c7845ec738bfc116947c81c4476211176dd6
f47188942a1a12994730a09af1b094106dcc4b95
refs/heads/master
2023-01-30T00:51:44.282135
2020-12-14T11:14:06
2020-12-14T11:14:06
288,779,959
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
# Uses python3 import sys def get_change(m): #write your code here coin = [4, 3, 1] i = 0 n = 0 while m != 0: if coin[i] <= m: m -= coin[i] n += 1 else: i += 1 return n # if __name__ == '__main__': # m = int(sys.stdin.read()) # print(get_change(m)) m = int(input()) print(get_change(m))
[ "sreeragraghunandan@gmail.com" ]
sreeragraghunandan@gmail.com
f8cbc044b1234674be65d031fd31641997b778f9
78dd211bf471c5b472ad3bf6b753c0b0d9210551
/hardening/tests/test_sudo.py
aaefef69af66bfbf88f21380f99440b4fd980f45
[]
no_license
Junowa/hardening-roles
be227685fd302bc9e583db3707009ecbcf1d47b2
14f546c50ecfbf23312136c8bbe58e58d4d9504d
refs/heads/master
2020-03-19T00:37:27.140874
2018-05-30T20:28:55
2018-05-30T20:28:55
135,493,941
0
0
null
null
null
null
UTF-8
Python
false
false
798
py
import time """ hardening sudo module """ def test_log_sudo_actions (host): """ run the privileged command \'sudo hostname'\ and test if a log exists with \'sudo journalctl -f\' """ with host.sudo(): action = host.run("hostname") time.sleep(3) action_log = host.run("journalctl --since \"1 minute ago\" -t sudo | grep /bin/hostname") assert action_log.stdout def test_log_auth_failure (host): """ run the privileged command \'sudo hostname'\ with a wrong password and test if a failure log exists with \'sudo journalctl -f\' """ auth = host.run("echo \"wrong_password\" | sudo -S hostname") with host.sudo(): time.sleep(3) authfailure_log = host.run("journalctl --since \"10 seconds ago\" | grep \"incorrect password attempt\"") assert authfailure_log.stdout
[ "julien.nowalczyk@thalesgroup.com" ]
julien.nowalczyk@thalesgroup.com
4d15eb1750b1d7b7d4d335a60c966aa2110ea6b7
89f19fbb1f59c14b3f48f779dd80fe4d223fde4a
/tools/caffe/python/caffe/proto/caffe_pb2.py
8eb4838ed85977bd632bd8709f5297d28569c618
[ "LicenseRef-scancode-generic-cla", "BSD-2-Clause", "LicenseRef-scancode-public-domain", "BSD-3-Clause", "MIT" ]
permissive
lixiaoxing0426/PixelNet_vessel
7ff72e387ec9bf11d0d7fed69448128c5d053984
992c6365a4121e75310c4ca3cc1b8cb73c5fc6ef
refs/heads/master
2022-04-10T00:49:21.080399
2020-03-14T06:17:28
2020-03-14T06:17:28
246,781,028
0
0
null
null
null
null
UTF-8
Python
false
true
277,745
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: caffe.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='caffe.proto', package='caffe', syntax='proto2', serialized_options=None, serialized_pb=_b('\n\x0b\x63\x61\x66\x66\x65.proto\x12\x05\x63\x61\x66\x66\x65\"\x1c\n\tBlobShape\x12\x0f\n\x03\x64im\x18\x01 \x03(\x03\x42\x02\x10\x01\"\xcc\x01\n\tBlobProto\x12\x1f\n\x05shape\x18\x07 \x01(\x0b\x32\x10.caffe.BlobShape\x12\x10\n\x04\x64\x61ta\x18\x05 \x03(\x02\x42\x02\x10\x01\x12\x10\n\x04\x64iff\x18\x06 \x03(\x02\x42\x02\x10\x01\x12\x17\n\x0b\x64ouble_data\x18\x08 \x03(\x01\x42\x02\x10\x01\x12\x17\n\x0b\x64ouble_diff\x18\t \x03(\x01\x42\x02\x10\x01\x12\x0e\n\x03num\x18\x01 \x01(\x05:\x01\x30\x12\x13\n\x08\x63hannels\x18\x02 \x01(\x05:\x01\x30\x12\x11\n\x06height\x18\x03 \x01(\x05:\x01\x30\x12\x10\n\x05width\x18\x04 \x01(\x05:\x01\x30\"2\n\x0f\x42lobProtoVector\x12\x1f\n\x05\x62lobs\x18\x01 \x03(\x0b\x32\x10.caffe.BlobProto\"\x81\x01\n\x05\x44\x61tum\x12\x10\n\x08\x63hannels\x18\x01 \x01(\x05\x12\x0e\n\x06height\x18\x02 \x01(\x05\x12\r\n\x05width\x18\x03 \x01(\x05\x12\x0c\n\x04\x64\x61ta\x18\x04 \x01(\x0c\x12\r\n\x05label\x18\x05 \x01(\x05\x12\x12\n\nfloat_data\x18\x06 \x03(\x02\x12\x16\n\x07\x65ncoded\x18\x07 \x01(\x08:\x05\x66\x61lse\"\x8a\x02\n\x0f\x46illerParameter\x12\x16\n\x04type\x18\x01 \x01(\t:\x08\x63onstant\x12\x10\n\x05value\x18\x02 \x01(\x02:\x01\x30\x12\x0e\n\x03min\x18\x03 \x01(\x02:\x01\x30\x12\x0e\n\x03max\x18\x04 \x01(\x02:\x01\x31\x12\x0f\n\x04mean\x18\x05 \x01(\x02:\x01\x30\x12\x0e\n\x03std\x18\x06 \x01(\x02:\x01\x31\x12\x12\n\x06sparse\x18\x07 \x01(\x05:\x02-1\x12\x42\n\rvariance_norm\x18\x08 \x01(\x0e\x32#.caffe.FillerParameter.VarianceNorm:\x06\x46\x41N_IN\"4\n\x0cVarianceNorm\x12\n\n\x06\x46\x41N_IN\x10\x00\x12\x0b\n\x07\x46\x41N_OUT\x10\x01\x12\x0b\n\x07\x41VERAGE\x10\x02\"\x8e\x02\n\x0cNetParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05input\x18\x03 \x03(\t\x12%\n\x0binput_shape\x18\x08 \x03(\x0b\x32\x10.caffe.BlobShape\x12\x11\n\tinput_dim\x18\x04 \x03(\x05\x12\x1d\n\x0e\x66orce_backward\x18\x05 \x01(\x08:\x05\x66\x61lse\x12\x1e\n\x05state\x18\x06 \x01(\x0b\x32\x0f.caffe.NetState\x12\x19\n\ndebug_info\x18\x07 \x01(\x08:\x05\x66\x61lse\x12$\n\x05layer\x18\x64 \x03(\x0b\x32\x15.caffe.LayerParameter\x12\'\n\x06layers\x18\x02 \x03(\x0b\x32\x17.caffe.V1LayerParameter\"\x9c\n\n\x0fSolverParameter\x12\x0b\n\x03net\x18\x18 \x01(\t\x12&\n\tnet_param\x18\x19 \x01(\x0b\x32\x13.caffe.NetParameter\x12\x11\n\ttrain_net\x18\x01 \x01(\t\x12\x10\n\x08test_net\x18\x02 \x03(\t\x12,\n\x0ftrain_net_param\x18\x15 \x01(\x0b\x32\x13.caffe.NetParameter\x12+\n\x0etest_net_param\x18\x16 \x03(\x0b\x32\x13.caffe.NetParameter\x12$\n\x0btrain_state\x18\x1a \x01(\x0b\x32\x0f.caffe.NetState\x12#\n\ntest_state\x18\x1b \x03(\x0b\x32\x0f.caffe.NetState\x12\x11\n\ttest_iter\x18\x03 \x03(\x05\x12\x18\n\rtest_interval\x18\x04 \x01(\x05:\x01\x30\x12 \n\x11test_compute_loss\x18\x13 \x01(\x08:\x05\x66\x61lse\x12!\n\x13test_initialization\x18 \x01(\x08:\x04true\x12\x0f\n\x07\x62\x61se_lr\x18\x05 \x01(\x02\x12\x0f\n\x07\x64isplay\x18\x06 \x01(\x05\x12\x17\n\x0c\x61verage_loss\x18! \x01(\x05:\x01\x31\x12\x10\n\x08max_iter\x18\x07 \x01(\x05\x12\x14\n\titer_size\x18$ \x01(\x05:\x01\x31\x12\x11\n\tlr_policy\x18\x08 \x01(\t\x12\r\n\x05gamma\x18\t \x01(\x02\x12\r\n\x05power\x18\n \x01(\x02\x12\x10\n\x08momentum\x18\x0b \x01(\x02\x12\x14\n\x0cweight_decay\x18\x0c \x01(\x02\x12\x1f\n\x13regularization_type\x18\x1d \x01(\t:\x02L2\x12\x10\n\x08stepsize\x18\r \x01(\x05\x12\x11\n\tstepvalue\x18\" \x03(\x05\x12\x1a\n\x0e\x63lip_gradients\x18# \x01(\x02:\x02-1\x12\x13\n\x08snapshot\x18\x0e \x01(\x05:\x01\x30\x12\x17\n\x0fsnapshot_prefix\x18\x0f \x01(\t\x12\x1c\n\rsnapshot_diff\x18\x10 \x01(\x08:\x05\x66\x61lse\x12K\n\x0fsnapshot_format\x18% \x01(\x0e\x32%.caffe.SolverParameter.SnapshotFormat:\x0b\x42INARYPROTO\x12;\n\x0bsolver_mode\x18\x11 \x01(\x0e\x32!.caffe.SolverParameter.SolverMode:\x03GPU\x12\x14\n\tdevice_id\x18\x12 \x01(\x05:\x01\x30\x12\x17\n\x0brandom_seed\x18\x14 \x01(\x03:\x02-1\x12\x11\n\x04type\x18( \x01(\t:\x03SGD\x12\x14\n\x05\x64\x65lta\x18\x1f \x01(\x02:\x05\x31\x65-08\x12\x18\n\tmomentum2\x18\' \x01(\x02:\x05\x30.999\x12\x11\n\trms_decay\x18& \x01(\x02\x12\x19\n\ndebug_info\x18\x17 \x01(\x08:\x05\x66\x61lse\x12\"\n\x14snapshot_after_train\x18\x1c \x01(\x08:\x04true\x12;\n\x0bsolver_type\x18\x1e \x01(\x0e\x32!.caffe.SolverParameter.SolverType:\x03SGD\"+\n\x0eSnapshotFormat\x12\x08\n\x04HDF5\x10\x00\x12\x0f\n\x0b\x42INARYPROTO\x10\x01\"\x1e\n\nSolverMode\x12\x07\n\x03\x43PU\x10\x00\x12\x07\n\x03GPU\x10\x01\"U\n\nSolverType\x12\x07\n\x03SGD\x10\x00\x12\x0c\n\x08NESTEROV\x10\x01\x12\x0b\n\x07\x41\x44\x41GRAD\x10\x02\x12\x0b\n\x07RMSPROP\x10\x03\x12\x0c\n\x08\x41\x44\x41\x44\x45LTA\x10\x04\x12\x08\n\x04\x41\x44\x41M\x10\x05\"l\n\x0bSolverState\x12\x0c\n\x04iter\x18\x01 \x01(\x05\x12\x13\n\x0blearned_net\x18\x02 \x01(\t\x12!\n\x07history\x18\x03 \x03(\x0b\x32\x10.caffe.BlobProto\x12\x17\n\x0c\x63urrent_step\x18\x04 \x01(\x05:\x01\x30\"N\n\x08NetState\x12!\n\x05phase\x18\x01 \x01(\x0e\x32\x0c.caffe.Phase:\x04TEST\x12\x10\n\x05level\x18\x02 \x01(\x05:\x01\x30\x12\r\n\x05stage\x18\x03 \x03(\t\"s\n\x0cNetStateRule\x12\x1b\n\x05phase\x18\x01 \x01(\x0e\x32\x0c.caffe.Phase\x12\x11\n\tmin_level\x18\x02 \x01(\x05\x12\x11\n\tmax_level\x18\x03 \x01(\x05\x12\r\n\x05stage\x18\x04 \x03(\t\x12\x11\n\tnot_stage\x18\x05 \x03(\t\"\xa3\x01\n\tParamSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x31\n\nshare_mode\x18\x02 \x01(\x0e\x32\x1d.caffe.ParamSpec.DimCheckMode\x12\x12\n\x07lr_mult\x18\x03 \x01(\x02:\x01\x31\x12\x15\n\ndecay_mult\x18\x04 \x01(\x02:\x01\x31\"*\n\x0c\x44imCheckMode\x12\n\n\x06STRICT\x10\x00\x12\x0e\n\nPERMISSIVE\x10\x01\"\xd3\x15\n\x0eLayerParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0c\n\x04type\x18\x02 \x01(\t\x12\x0e\n\x06\x62ottom\x18\x03 \x03(\t\x12\x0b\n\x03top\x18\x04 \x03(\t\x12\x1b\n\x05phase\x18\n \x01(\x0e\x32\x0c.caffe.Phase\x12\x13\n\x0bloss_weight\x18\x05 \x03(\x02\x12\x1f\n\x05param\x18\x06 \x03(\x0b\x32\x10.caffe.ParamSpec\x12\x1f\n\x05\x62lobs\x18\x07 \x03(\x0b\x32\x10.caffe.BlobProto\x12\x16\n\x0epropagate_down\x18\x0b \x03(\x08\x12$\n\x07include\x18\x08 \x03(\x0b\x32\x13.caffe.NetStateRule\x12$\n\x07\x65xclude\x18\t \x03(\x0b\x32\x13.caffe.NetStateRule\x12\x37\n\x0ftransform_param\x18\x64 \x01(\x0b\x32\x1e.caffe.TransformationParameter\x12(\n\nloss_param\x18\x65 \x01(\x0b\x32\x14.caffe.LossParameter\x12\x30\n\x0e\x61\x63\x63uracy_param\x18\x66 \x01(\x0b\x32\x18.caffe.AccuracyParameter\x12,\n\x0c\x61rgmax_param\x18g \x01(\x0b\x32\x16.caffe.ArgMaxParameter\x12\x34\n\x10\x62\x61tch_norm_param\x18\x8b\x01 \x01(\x0b\x32\x19.caffe.BatchNormParameter\x12)\n\nbias_param\x18\x8d\x01 \x01(\x0b\x32\x14.caffe.BiasParameter\x12,\n\x0c\x63oncat_param\x18h \x01(\x0b\x32\x16.caffe.ConcatParameter\x12?\n\x16\x63ontrastive_loss_param\x18i \x01(\x0b\x32\x1f.caffe.ContrastiveLossParameter\x12\x36\n\x11\x63onvolution_param\x18j \x01(\x0b\x32\x1b.caffe.ConvolutionParameter\x12)\n\ncrop_param\x18\x90\x01 \x01(\x0b\x32\x14.caffe.CropParameter\x12(\n\ndata_param\x18k \x01(\x0b\x32\x14.caffe.DataParameter\x12.\n\rdropout_param\x18l \x01(\x0b\x32\x17.caffe.DropoutParameter\x12\x33\n\x10\x64ummy_data_param\x18m \x01(\x0b\x32\x19.caffe.DummyDataParameter\x12.\n\reltwise_param\x18n \x01(\x0b\x32\x17.caffe.EltwiseParameter\x12\'\n\telu_param\x18\x8c\x01 \x01(\x0b\x32\x13.caffe.ELUParameter\x12+\n\x0b\x65mbed_param\x18\x89\x01 \x01(\x0b\x32\x15.caffe.EmbedParameter\x12&\n\texp_param\x18o \x01(\x0b\x32\x13.caffe.ExpParameter\x12/\n\rflatten_param\x18\x87\x01 \x01(\x0b\x32\x17.caffe.FlattenParameter\x12\x31\n\x0fhdf5_data_param\x18p \x01(\x0b\x32\x18.caffe.HDF5DataParameter\x12\x35\n\x11hdf5_output_param\x18q \x01(\x0b\x32\x1a.caffe.HDF5OutputParameter\x12\x33\n\x10hinge_loss_param\x18r \x01(\x0b\x32\x19.caffe.HingeLossParameter\x12\x33\n\x10image_data_param\x18s \x01(\x0b\x32\x19.caffe.ImageDataParameter\x12\x39\n\x13infogain_loss_param\x18t \x01(\x0b\x32\x1c.caffe.InfogainLossParameter\x12\x39\n\x13inner_product_param\x18u \x01(\x0b\x32\x1c.caffe.InnerProductParameter\x12+\n\x0binput_param\x18\x8f\x01 \x01(\x0b\x32\x15.caffe.InputParameter\x12\'\n\tlog_param\x18\x86\x01 \x01(\x0b\x32\x13.caffe.LogParameter\x12&\n\tlrn_param\x18v \x01(\x0b\x32\x13.caffe.LRNParameter\x12\x35\n\x11memory_data_param\x18w \x01(\x0b\x32\x1a.caffe.MemoryDataParameter\x12&\n\tmvn_param\x18x \x01(\x0b\x32\x13.caffe.MVNParameter\x12.\n\nnorm_param\x18\x95\x01 \x01(\x0b\x32\x19.caffe.NormalizeParameter\x12\x33\n\x0fparameter_param\x18\x91\x01 \x01(\x0b\x32\x19.caffe.ParameterParameter\x12.\n\rpooling_param\x18y \x01(\x0b\x32\x17.caffe.PoolingParameter\x12*\n\x0bpower_param\x18z \x01(\x0b\x32\x15.caffe.PowerParameter\x12+\n\x0bprelu_param\x18\x83\x01 \x01(\x0b\x32\x15.caffe.PReLUParameter\x12-\n\x0cpython_param\x18\x82\x01 \x01(\x0b\x32\x16.caffe.PythonParameter\x12\x39\n\x13rand_cat_conv_param\x18\x93\x01 \x01(\x0b\x32\x1b.caffe.RandCatConvParameter\x12\x30\n\x0erand_cat_param\x18\x94\x01 \x01(\x0b\x32\x17.caffe.RandCatParameter\x12\x32\n\x0frand_comp_param\x18\x96\x01 \x01(\x0b\x32\x18.caffe.RandCompParameter\x12\x33\n\x0frecurrent_param\x18\x92\x01 \x01(\x0b\x32\x19.caffe.RecurrentParameter\x12\x33\n\x0freduction_param\x18\x88\x01 \x01(\x0b\x32\x19.caffe.ReductionParameter\x12(\n\nrelu_param\x18{ \x01(\x0b\x32\x14.caffe.ReLUParameter\x12/\n\rreshape_param\x18\x85\x01 \x01(\x0b\x32\x17.caffe.ReshapeParameter\x12+\n\x0bscale_param\x18\x8e\x01 \x01(\x0b\x32\x15.caffe.ScaleParameter\x12.\n\rsigmoid_param\x18| \x01(\x0b\x32\x17.caffe.SigmoidParameter\x12.\n\rsoftmax_param\x18} \x01(\x0b\x32\x17.caffe.SoftmaxParameter\x12\'\n\tspp_param\x18\x84\x01 \x01(\x0b\x32\x13.caffe.SPPParameter\x12*\n\x0bslice_param\x18~ \x01(\x0b\x32\x15.caffe.SliceParameter\x12(\n\ntanh_param\x18\x7f \x01(\x0b\x32\x14.caffe.TanHParameter\x12\x33\n\x0fthreshold_param\x18\x80\x01 \x01(\x0b\x32\x19.caffe.ThresholdParameter\x12)\n\ntile_param\x18\x8a\x01 \x01(\x0b\x32\x14.caffe.TileParameter\x12\x36\n\x11window_data_param\x18\x81\x01 \x01(\x0b\x32\x1a.caffe.WindowDataParameter\"\xb6\x01\n\x17TransformationParameter\x12\x10\n\x05scale\x18\x01 \x01(\x02:\x01\x31\x12\x15\n\x06mirror\x18\x02 \x01(\x08:\x05\x66\x61lse\x12\x14\n\tcrop_size\x18\x03 \x01(\r:\x01\x30\x12\x11\n\tmean_file\x18\x04 \x01(\t\x12\x12\n\nmean_value\x18\x05 \x03(\x02\x12\x1a\n\x0b\x66orce_color\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\x19\n\nforce_gray\x18\x07 \x01(\x08:\x05\x66\x61lse\"\xc2\x01\n\rLossParameter\x12\x14\n\x0cignore_label\x18\x01 \x01(\x05\x12\x44\n\rnormalization\x18\x03 \x01(\x0e\x32&.caffe.LossParameter.NormalizationMode:\x05VALID\x12\x11\n\tnormalize\x18\x02 \x01(\x08\"B\n\x11NormalizationMode\x12\x08\n\x04\x46ULL\x10\x00\x12\t\n\x05VALID\x10\x01\x12\x0e\n\nBATCH_SIZE\x10\x02\x12\x08\n\x04NONE\x10\x03\"L\n\x11\x41\x63\x63uracyParameter\x12\x10\n\x05top_k\x18\x01 \x01(\r:\x01\x31\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x31\x12\x14\n\x0cignore_label\x18\x03 \x01(\x05\"M\n\x0f\x41rgMaxParameter\x12\x1a\n\x0bout_max_val\x18\x01 \x01(\x08:\x05\x66\x61lse\x12\x10\n\x05top_k\x18\x02 \x01(\r:\x01\x31\x12\x0c\n\x04\x61xis\x18\x03 \x01(\x05\"9\n\x0f\x43oncatParameter\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x31\x12\x15\n\nconcat_dim\x18\x01 \x01(\r:\x01\x31\"j\n\x12\x42\x61tchNormParameter\x12\x18\n\x10use_global_stats\x18\x01 \x01(\x08\x12&\n\x17moving_average_fraction\x18\x02 \x01(\x02:\x05\x30.999\x12\x12\n\x03\x65ps\x18\x03 \x01(\x02:\x05\x31\x65-05\"]\n\rBiasParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x31\x12\x13\n\x08num_axes\x18\x02 \x01(\x05:\x01\x31\x12&\n\x06\x66iller\x18\x03 \x01(\x0b\x32\x16.caffe.FillerParameter\"L\n\x18\x43ontrastiveLossParameter\x12\x11\n\x06margin\x18\x01 \x01(\x02:\x01\x31\x12\x1d\n\x0elegacy_version\x18\x02 \x01(\x08:\x05\x66\x61lse\"\xfc\x03\n\x14\x43onvolutionParameter\x12\x12\n\nnum_output\x18\x01 \x01(\r\x12\x17\n\tbias_term\x18\x02 \x01(\x08:\x04true\x12\x0b\n\x03pad\x18\x03 \x03(\r\x12\x13\n\x0bkernel_size\x18\x04 \x03(\r\x12\x0e\n\x06stride\x18\x06 \x03(\r\x12\x10\n\x08\x64ilation\x18\x12 \x03(\r\x12\x10\n\x05pad_h\x18\t \x01(\r:\x01\x30\x12\x10\n\x05pad_w\x18\n \x01(\r:\x01\x30\x12\x10\n\x08kernel_h\x18\x0b \x01(\r\x12\x10\n\x08kernel_w\x18\x0c \x01(\r\x12\x10\n\x08stride_h\x18\r \x01(\r\x12\x10\n\x08stride_w\x18\x0e \x01(\r\x12\x10\n\x05group\x18\x05 \x01(\r:\x01\x31\x12-\n\rweight_filler\x18\x07 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x08 \x01(\x0b\x32\x16.caffe.FillerParameter\x12;\n\x06\x65ngine\x18\x0f \x01(\x0e\x32\".caffe.ConvolutionParameter.Engine:\x07\x44\x45\x46\x41ULT\x12\x0f\n\x04\x61xis\x18\x10 \x01(\x05:\x01\x31\x12\x1e\n\x0f\x66orce_nd_im2col\x18\x11 \x01(\x08:\x05\x66\x61lse\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"0\n\rCropParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x32\x12\x0e\n\x06offset\x18\x02 \x03(\r\"\xa4\x02\n\rDataParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x12\n\nbatch_size\x18\x04 \x01(\r\x12\x14\n\trand_skip\x18\x07 \x01(\r:\x01\x30\x12\x31\n\x07\x62\x61\x63kend\x18\x08 \x01(\x0e\x32\x17.caffe.DataParameter.DB:\x07LEVELDB\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x11\n\tmean_file\x18\x03 \x01(\t\x12\x14\n\tcrop_size\x18\x05 \x01(\r:\x01\x30\x12\x15\n\x06mirror\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\"\n\x13\x66orce_encoded_color\x18\t \x01(\x08:\x05\x66\x61lse\x12\x13\n\x08prefetch\x18\n \x01(\r:\x01\x34\"\x1b\n\x02\x44\x42\x12\x0b\n\x07LEVELDB\x10\x00\x12\x08\n\x04LMDB\x10\x01\".\n\x10\x44ropoutParameter\x12\x1a\n\rdropout_ratio\x18\x01 \x01(\x02:\x03\x30.5\"\xa0\x01\n\x12\x44ummyDataParameter\x12+\n\x0b\x64\x61ta_filler\x18\x01 \x03(\x0b\x32\x16.caffe.FillerParameter\x12\x1f\n\x05shape\x18\x06 \x03(\x0b\x32\x10.caffe.BlobShape\x12\x0b\n\x03num\x18\x02 \x03(\r\x12\x10\n\x08\x63hannels\x18\x03 \x03(\r\x12\x0e\n\x06height\x18\x04 \x03(\r\x12\r\n\x05width\x18\x05 \x03(\r\"\xa5\x01\n\x10\x45ltwiseParameter\x12\x39\n\toperation\x18\x01 \x01(\x0e\x32!.caffe.EltwiseParameter.EltwiseOp:\x03SUM\x12\r\n\x05\x63oeff\x18\x02 \x03(\x02\x12\x1e\n\x10stable_prod_grad\x18\x03 \x01(\x08:\x04true\"\'\n\tEltwiseOp\x12\x08\n\x04PROD\x10\x00\x12\x07\n\x03SUM\x10\x01\x12\x07\n\x03MAX\x10\x02\" \n\x0c\x45LUParameter\x12\x10\n\x05\x61lpha\x18\x01 \x01(\x02:\x01\x31\"\xac\x01\n\x0e\x45mbedParameter\x12\x12\n\nnum_output\x18\x01 \x01(\r\x12\x11\n\tinput_dim\x18\x02 \x01(\r\x12\x17\n\tbias_term\x18\x03 \x01(\x08:\x04true\x12-\n\rweight_filler\x18\x04 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x05 \x01(\x0b\x32\x16.caffe.FillerParameter\"D\n\x0c\x45xpParameter\x12\x10\n\x04\x62\x61se\x18\x01 \x01(\x02:\x02-1\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x10\n\x05shift\x18\x03 \x01(\x02:\x01\x30\"9\n\x10\x46lattenParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x31\x12\x14\n\x08\x65nd_axis\x18\x02 \x01(\x05:\x02-1\"O\n\x11HDF5DataParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x12\n\nbatch_size\x18\x02 \x01(\r\x12\x16\n\x07shuffle\x18\x03 \x01(\x08:\x05\x66\x61lse\"(\n\x13HDF5OutputParameter\x12\x11\n\tfile_name\x18\x01 \x01(\t\"^\n\x12HingeLossParameter\x12\x30\n\x04norm\x18\x01 \x01(\x0e\x32\x1e.caffe.HingeLossParameter.Norm:\x02L1\"\x16\n\x04Norm\x12\x06\n\x02L1\x10\x01\x12\x06\n\x02L2\x10\x02\"\x97\x02\n\x12ImageDataParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x15\n\nbatch_size\x18\x04 \x01(\r:\x01\x31\x12\x14\n\trand_skip\x18\x07 \x01(\r:\x01\x30\x12\x16\n\x07shuffle\x18\x08 \x01(\x08:\x05\x66\x61lse\x12\x15\n\nnew_height\x18\t \x01(\r:\x01\x30\x12\x14\n\tnew_width\x18\n \x01(\r:\x01\x30\x12\x16\n\x08is_color\x18\x0b \x01(\x08:\x04true\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x11\n\tmean_file\x18\x03 \x01(\t\x12\x14\n\tcrop_size\x18\x05 \x01(\r:\x01\x30\x12\x15\n\x06mirror\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\x15\n\x0broot_folder\x18\x0c \x01(\t:\x00\"\'\n\x15InfogainLossParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\"\xcb\x01\n\x15InnerProductParameter\x12\x12\n\nnum_output\x18\x01 \x01(\r\x12\x17\n\tbias_term\x18\x02 \x01(\x08:\x04true\x12-\n\rweight_filler\x18\x03 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x04 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x0f\n\x04\x61xis\x18\x05 \x01(\x05:\x01\x31\x12\x18\n\ttranspose\x18\x06 \x01(\x08:\x05\x66\x61lse\"1\n\x0eInputParameter\x12\x1f\n\x05shape\x18\x01 \x03(\x0b\x32\x10.caffe.BlobShape\"D\n\x0cLogParameter\x12\x10\n\x04\x62\x61se\x18\x01 \x01(\x02:\x02-1\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x10\n\x05shift\x18\x03 \x01(\x02:\x01\x30\"\xb8\x02\n\x0cLRNParameter\x12\x15\n\nlocal_size\x18\x01 \x01(\r:\x01\x35\x12\x10\n\x05\x61lpha\x18\x02 \x01(\x02:\x01\x31\x12\x12\n\x04\x62\x65ta\x18\x03 \x01(\x02:\x04\x30.75\x12\x44\n\x0bnorm_region\x18\x04 \x01(\x0e\x32\x1e.caffe.LRNParameter.NormRegion:\x0f\x41\x43ROSS_CHANNELS\x12\x0c\n\x01k\x18\x05 \x01(\x02:\x01\x31\x12\x33\n\x06\x65ngine\x18\x06 \x01(\x0e\x32\x1a.caffe.LRNParameter.Engine:\x07\x44\x45\x46\x41ULT\"5\n\nNormRegion\x12\x13\n\x0f\x41\x43ROSS_CHANNELS\x10\x00\x12\x12\n\x0eWITHIN_CHANNEL\x10\x01\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"Z\n\x13MemoryDataParameter\x12\x12\n\nbatch_size\x18\x01 \x01(\r\x12\x10\n\x08\x63hannels\x18\x02 \x01(\r\x12\x0e\n\x06height\x18\x03 \x01(\r\x12\r\n\x05width\x18\x04 \x01(\r\"d\n\x0cMVNParameter\x12 \n\x12normalize_variance\x18\x01 \x01(\x08:\x04true\x12\x1e\n\x0f\x61\x63ross_channels\x18\x02 \x01(\x08:\x05\x66\x61lse\x12\x12\n\x03\x65ps\x18\x03 \x01(\x02:\x05\x31\x65-09\"\xab\x01\n\x12NormalizeParameter\x12\x1c\n\x0e\x61\x63ross_spatial\x18\x01 \x01(\x08:\x04true\x12,\n\x0cscale_filler\x18\x02 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x1c\n\x0e\x63hannel_shared\x18\x03 \x01(\x08:\x04true\x12\x17\n\tfix_scale\x18\x04 \x01(\x08:\x04true\x12\x12\n\x03\x65ps\x18\x05 \x01(\x02:\x05\x31\x65-10\"5\n\x12ParameterParameter\x12\x1f\n\x05shape\x18\x01 \x01(\x0b\x32\x10.caffe.BlobShape\"\xa2\x03\n\x10PoolingParameter\x12\x35\n\x04pool\x18\x01 \x01(\x0e\x32\".caffe.PoolingParameter.PoolMethod:\x03MAX\x12\x0e\n\x03pad\x18\x04 \x01(\r:\x01\x30\x12\x10\n\x05pad_h\x18\t \x01(\r:\x01\x30\x12\x10\n\x05pad_w\x18\n \x01(\r:\x01\x30\x12\x13\n\x0bkernel_size\x18\x02 \x01(\r\x12\x10\n\x08kernel_h\x18\x05 \x01(\r\x12\x10\n\x08kernel_w\x18\x06 \x01(\r\x12\x11\n\x06stride\x18\x03 \x01(\r:\x01\x31\x12\x10\n\x08stride_h\x18\x07 \x01(\r\x12\x10\n\x08stride_w\x18\x08 \x01(\r\x12\x37\n\x06\x65ngine\x18\x0b \x01(\x0e\x32\x1e.caffe.PoolingParameter.Engine:\x07\x44\x45\x46\x41ULT\x12\x1d\n\x0eglobal_pooling\x18\x0c \x01(\x08:\x05\x66\x61lse\".\n\nPoolMethod\x12\x07\n\x03MAX\x10\x00\x12\x07\n\x03\x41VE\x10\x01\x12\x0e\n\nSTOCHASTIC\x10\x02\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"F\n\x0ePowerParameter\x12\x10\n\x05power\x18\x01 \x01(\x02:\x01\x31\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x10\n\x05shift\x18\x03 \x01(\x02:\x01\x30\"g\n\x0fPythonParameter\x12\x0e\n\x06module\x18\x01 \x01(\t\x12\r\n\x05layer\x18\x02 \x01(\t\x12\x13\n\tparam_str\x18\x03 \x01(\t:\x00\x12 \n\x11share_in_parallel\x18\x04 \x01(\x08:\x05\x66\x61lse\"J\n\x10RandCatParameter\x12\x1c\n\x0erand_selection\x18\x01 \x01(\x08:\x04true\x12\x18\n\nnum_output\x18\x02 \x01(\r:\x04\x31\x30\x30\x30\"}\n\x14RandCatConvParameter\x12\x1c\n\x0erand_selection\x18\x01 \x01(\x08:\x04true\x12\x18\n\nnum_output\x18\x02 \x01(\r:\x04\x31\x30\x30\x30\x12\x16\n\x0epooling_factor\x18\x03 \x03(\x05\x12\x15\n\npad_factor\x18\x04 \x01(\r:\x01\x30\"A\n\x11RandCompParameter\x12\x18\n\x10\x63ompression_rate\x18\x01 \x03(\x05\x12\x12\n\x03pad\x18\x02 \x01(\x08:\x05\x66\x61lse\"\xc0\x01\n\x12RecurrentParameter\x12\x15\n\nnum_output\x18\x01 \x01(\r:\x01\x30\x12-\n\rweight_filler\x18\x02 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x03 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x19\n\ndebug_info\x18\x04 \x01(\x08:\x05\x66\x61lse\x12\x1c\n\rexpose_hidden\x18\x05 \x01(\x08:\x05\x66\x61lse\"\xad\x01\n\x12ReductionParameter\x12=\n\toperation\x18\x01 \x01(\x0e\x32%.caffe.ReductionParameter.ReductionOp:\x03SUM\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x30\x12\x10\n\x05\x63oeff\x18\x03 \x01(\x02:\x01\x31\"5\n\x0bReductionOp\x12\x07\n\x03SUM\x10\x01\x12\x08\n\x04\x41SUM\x10\x02\x12\t\n\x05SUMSQ\x10\x03\x12\x08\n\x04MEAN\x10\x04\"\x8d\x01\n\rReLUParameter\x12\x19\n\x0enegative_slope\x18\x01 \x01(\x02:\x01\x30\x12\x34\n\x06\x65ngine\x18\x02 \x01(\x0e\x32\x1b.caffe.ReLUParameter.Engine:\x07\x44\x45\x46\x41ULT\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"Z\n\x10ReshapeParameter\x12\x1f\n\x05shape\x18\x01 \x01(\x0b\x32\x10.caffe.BlobShape\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x30\x12\x14\n\x08num_axes\x18\x03 \x01(\x05:\x02-1\"\xa5\x01\n\x0eScaleParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x31\x12\x13\n\x08num_axes\x18\x02 \x01(\x05:\x01\x31\x12&\n\x06\x66iller\x18\x03 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x18\n\tbias_term\x18\x04 \x01(\x08:\x05\x66\x61lse\x12+\n\x0b\x62ias_filler\x18\x05 \x01(\x0b\x32\x16.caffe.FillerParameter\"x\n\x10SigmoidParameter\x12\x37\n\x06\x65ngine\x18\x01 \x01(\x0e\x32\x1e.caffe.SigmoidParameter.Engine:\x07\x44\x45\x46\x41ULT\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"L\n\x0eSliceParameter\x12\x0f\n\x04\x61xis\x18\x03 \x01(\x05:\x01\x31\x12\x13\n\x0bslice_point\x18\x02 \x03(\r\x12\x14\n\tslice_dim\x18\x01 \x01(\r:\x01\x31\"\x89\x01\n\x10SoftmaxParameter\x12\x37\n\x06\x65ngine\x18\x01 \x01(\x0e\x32\x1e.caffe.SoftmaxParameter.Engine:\x07\x44\x45\x46\x41ULT\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x31\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"r\n\rTanHParameter\x12\x34\n\x06\x65ngine\x18\x01 \x01(\x0e\x32\x1b.caffe.TanHParameter.Engine:\x07\x44\x45\x46\x41ULT\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"/\n\rTileParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x31\x12\r\n\x05tiles\x18\x02 \x01(\x05\"*\n\x12ThresholdParameter\x12\x14\n\tthreshold\x18\x01 \x01(\x02:\x01\x30\"\xc1\x02\n\x13WindowDataParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x11\n\tmean_file\x18\x03 \x01(\t\x12\x12\n\nbatch_size\x18\x04 \x01(\r\x12\x14\n\tcrop_size\x18\x05 \x01(\r:\x01\x30\x12\x15\n\x06mirror\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\x19\n\x0c\x66g_threshold\x18\x07 \x01(\x02:\x03\x30.5\x12\x19\n\x0c\x62g_threshold\x18\x08 \x01(\x02:\x03\x30.5\x12\x19\n\x0b\x66g_fraction\x18\t \x01(\x02:\x04\x30.25\x12\x16\n\x0b\x63ontext_pad\x18\n \x01(\r:\x01\x30\x12\x17\n\tcrop_mode\x18\x0b \x01(\t:\x04warp\x12\x1b\n\x0c\x63\x61\x63he_images\x18\x0c \x01(\x08:\x05\x66\x61lse\x12\x15\n\x0broot_folder\x18\r \x01(\t:\x00\"\xeb\x01\n\x0cSPPParameter\x12\x16\n\x0epyramid_height\x18\x01 \x01(\r\x12\x31\n\x04pool\x18\x02 \x01(\x0e\x32\x1e.caffe.SPPParameter.PoolMethod:\x03MAX\x12\x33\n\x06\x65ngine\x18\x06 \x01(\x0e\x32\x1a.caffe.SPPParameter.Engine:\x07\x44\x45\x46\x41ULT\".\n\nPoolMethod\x12\x07\n\x03MAX\x10\x00\x12\x07\n\x03\x41VE\x10\x01\x12\x0e\n\nSTOCHASTIC\x10\x02\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"\xaa\x15\n\x10V1LayerParameter\x12\x0e\n\x06\x62ottom\x18\x02 \x03(\t\x12\x0b\n\x03top\x18\x03 \x03(\t\x12\x0c\n\x04name\x18\x04 \x01(\t\x12$\n\x07include\x18 \x03(\x0b\x32\x13.caffe.NetStateRule\x12$\n\x07\x65xclude\x18! \x03(\x0b\x32\x13.caffe.NetStateRule\x12/\n\x04type\x18\x05 \x01(\x0e\x32!.caffe.V1LayerParameter.LayerType\x12\x1f\n\x05\x62lobs\x18\x06 \x03(\x0b\x32\x10.caffe.BlobProto\x12\x0e\n\x05param\x18\xe9\x07 \x03(\t\x12>\n\x0f\x62lob_share_mode\x18\xea\x07 \x03(\x0e\x32$.caffe.V1LayerParameter.DimCheckMode\x12\x10\n\x08\x62lobs_lr\x18\x07 \x03(\x02\x12\x14\n\x0cweight_decay\x18\x08 \x03(\x02\x12\x13\n\x0bloss_weight\x18# \x03(\x02\x12\x30\n\x0e\x61\x63\x63uracy_param\x18\x1b \x01(\x0b\x32\x18.caffe.AccuracyParameter\x12,\n\x0c\x61rgmax_param\x18\x17 \x01(\x0b\x32\x16.caffe.ArgMaxParameter\x12,\n\x0c\x63oncat_param\x18\t \x01(\x0b\x32\x16.caffe.ConcatParameter\x12?\n\x16\x63ontrastive_loss_param\x18( \x01(\x0b\x32\x1f.caffe.ContrastiveLossParameter\x12\x36\n\x11\x63onvolution_param\x18\n \x01(\x0b\x32\x1b.caffe.ConvolutionParameter\x12(\n\ndata_param\x18\x0b \x01(\x0b\x32\x14.caffe.DataParameter\x12.\n\rdropout_param\x18\x0c \x01(\x0b\x32\x17.caffe.DropoutParameter\x12\x33\n\x10\x64ummy_data_param\x18\x1a \x01(\x0b\x32\x19.caffe.DummyDataParameter\x12.\n\reltwise_param\x18\x18 \x01(\x0b\x32\x17.caffe.EltwiseParameter\x12&\n\texp_param\x18) \x01(\x0b\x32\x13.caffe.ExpParameter\x12\x31\n\x0fhdf5_data_param\x18\r \x01(\x0b\x32\x18.caffe.HDF5DataParameter\x12\x35\n\x11hdf5_output_param\x18\x0e \x01(\x0b\x32\x1a.caffe.HDF5OutputParameter\x12\x33\n\x10hinge_loss_param\x18\x1d \x01(\x0b\x32\x19.caffe.HingeLossParameter\x12\x33\n\x10image_data_param\x18\x0f \x01(\x0b\x32\x19.caffe.ImageDataParameter\x12\x39\n\x13infogain_loss_param\x18\x10 \x01(\x0b\x32\x1c.caffe.InfogainLossParameter\x12\x39\n\x13inner_product_param\x18\x11 \x01(\x0b\x32\x1c.caffe.InnerProductParameter\x12&\n\tlrn_param\x18\x12 \x01(\x0b\x32\x13.caffe.LRNParameter\x12\x35\n\x11memory_data_param\x18\x16 \x01(\x0b\x32\x1a.caffe.MemoryDataParameter\x12&\n\tmvn_param\x18\" \x01(\x0b\x32\x13.caffe.MVNParameter\x12-\n\nnorm_param\x18- \x01(\x0b\x32\x19.caffe.NormalizeParameter\x12.\n\rpooling_param\x18\x13 \x01(\x0b\x32\x17.caffe.PoolingParameter\x12*\n\x0bpower_param\x18\x15 \x01(\x0b\x32\x15.caffe.PowerParameter\x12\x38\n\x13rand_cat_conv_param\x18, \x01(\x0b\x32\x1b.caffe.RandCatConvParameter\x12/\n\x0erand_cat_param\x18+ \x01(\x0b\x32\x17.caffe.RandCatParameter\x12(\n\nrelu_param\x18\x1e \x01(\x0b\x32\x14.caffe.ReLUParameter\x12.\n\rsigmoid_param\x18& \x01(\x0b\x32\x17.caffe.SigmoidParameter\x12.\n\rsoftmax_param\x18\' \x01(\x0b\x32\x17.caffe.SoftmaxParameter\x12*\n\x0bslice_param\x18\x1f \x01(\x0b\x32\x15.caffe.SliceParameter\x12(\n\ntanh_param\x18% \x01(\x0b\x32\x14.caffe.TanHParameter\x12\x32\n\x0fthreshold_param\x18\x19 \x01(\x0b\x32\x19.caffe.ThresholdParameter\x12\x35\n\x11window_data_param\x18\x14 \x01(\x0b\x32\x1a.caffe.WindowDataParameter\x12\x37\n\x0ftransform_param\x18$ \x01(\x0b\x32\x1e.caffe.TransformationParameter\x12(\n\nloss_param\x18* \x01(\x0b\x32\x14.caffe.LossParameter\x12&\n\x05layer\x18\x01 \x01(\x0b\x32\x17.caffe.V0LayerParameter\"\x88\x05\n\tLayerType\x12\x08\n\x04NONE\x10\x00\x12\n\n\x06\x41\x42SVAL\x10#\x12\x0c\n\x08\x41\x43\x43URACY\x10\x01\x12\n\n\x06\x41RGMAX\x10\x1e\x12\x08\n\x04\x42NLL\x10\x02\x12\n\n\x06\x43ONCAT\x10\x03\x12\x14\n\x10\x43ONTRASTIVE_LOSS\x10%\x12\x0f\n\x0b\x43ONVOLUTION\x10\x04\x12\x08\n\x04\x44\x41TA\x10\x05\x12\x11\n\rDECONVOLUTION\x10\'\x12\x0b\n\x07\x44ROPOUT\x10\x06\x12\x0e\n\nDUMMY_DATA\x10 \x12\x12\n\x0e\x45UCLIDEAN_LOSS\x10\x07\x12\x0b\n\x07\x45LTWISE\x10\x19\x12\x07\n\x03\x45XP\x10&\x12\x0b\n\x07\x46LATTEN\x10\x08\x12\r\n\tHDF5_DATA\x10\t\x12\x0f\n\x0bHDF5_OUTPUT\x10\n\x12\x0e\n\nHINGE_LOSS\x10\x1c\x12\n\n\x06IM2COL\x10\x0b\x12\x0e\n\nIMAGE_DATA\x10\x0c\x12\x11\n\rINFOGAIN_LOSS\x10\r\x12\x11\n\rINNER_PRODUCT\x10\x0e\x12\x07\n\x03LRN\x10\x0f\x12\x0f\n\x0bMEMORY_DATA\x10\x1d\x12\x1d\n\x19MULTINOMIAL_LOGISTIC_LOSS\x10\x10\x12\x07\n\x03MVN\x10\"\x12\r\n\tNORMALIZE\x10*\x12\x0b\n\x07POOLING\x10\x11\x12\t\n\x05POWER\x10\x1a\x12\x11\n\rRAND_CAT_CONV\x10)\x12\x0c\n\x08RAND_CAT\x10(\x12\x08\n\x04RELU\x10\x12\x12\x0b\n\x07SIGMOID\x10\x13\x12\x1e\n\x1aSIGMOID_CROSS_ENTROPY_LOSS\x10\x1b\x12\x0b\n\x07SILENCE\x10$\x12\x0b\n\x07SOFTMAX\x10\x14\x12\x10\n\x0cSOFTMAX_LOSS\x10\x15\x12\t\n\x05SPLIT\x10\x16\x12\t\n\x05SLICE\x10!\x12\x08\n\x04TANH\x10\x17\x12\x0f\n\x0bWINDOW_DATA\x10\x18\x12\r\n\tTHRESHOLD\x10\x1f\"*\n\x0c\x44imCheckMode\x12\n\n\x06STRICT\x10\x00\x12\x0e\n\nPERMISSIVE\x10\x01\"\xfd\x07\n\x10V0LayerParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0c\n\x04type\x18\x02 \x01(\t\x12\x12\n\nnum_output\x18\x03 \x01(\r\x12\x16\n\x08\x62iasterm\x18\x04 \x01(\x08:\x04true\x12-\n\rweight_filler\x18\x05 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x06 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x0e\n\x03pad\x18\x07 \x01(\r:\x01\x30\x12\x12\n\nkernelsize\x18\x08 \x01(\r\x12\x10\n\x05group\x18\t \x01(\r:\x01\x31\x12\x11\n\x06stride\x18\n \x01(\r:\x01\x31\x12\x35\n\x04pool\x18\x0b \x01(\x0e\x32\".caffe.V0LayerParameter.PoolMethod:\x03MAX\x12\x1a\n\rdropout_ratio\x18\x0c \x01(\x02:\x03\x30.5\x12\x15\n\nlocal_size\x18\r \x01(\r:\x01\x35\x12\x10\n\x05\x61lpha\x18\x0e \x01(\x02:\x01\x31\x12\x12\n\x04\x62\x65ta\x18\x0f \x01(\x02:\x04\x30.75\x12\x0c\n\x01k\x18\x16 \x01(\x02:\x01\x31\x12\x0e\n\x06source\x18\x10 \x01(\t\x12\x10\n\x05scale\x18\x11 \x01(\x02:\x01\x31\x12\x10\n\x08meanfile\x18\x12 \x01(\t\x12\x11\n\tbatchsize\x18\x13 \x01(\r\x12\x13\n\x08\x63ropsize\x18\x14 \x01(\r:\x01\x30\x12\x15\n\x06mirror\x18\x15 \x01(\x08:\x05\x66\x61lse\x12\x1f\n\x05\x62lobs\x18\x32 \x03(\x0b\x32\x10.caffe.BlobProto\x12\x10\n\x08\x62lobs_lr\x18\x33 \x03(\x02\x12\x14\n\x0cweight_decay\x18\x34 \x03(\x02\x12\x14\n\trand_skip\x18\x35 \x01(\r:\x01\x30\x12\x1d\n\x10\x64\x65t_fg_threshold\x18\x36 \x01(\x02:\x03\x30.5\x12\x1d\n\x10\x64\x65t_bg_threshold\x18\x37 \x01(\x02:\x03\x30.5\x12\x1d\n\x0f\x64\x65t_fg_fraction\x18\x38 \x01(\x02:\x04\x30.25\x12\x1a\n\x0f\x64\x65t_context_pad\x18: \x01(\r:\x01\x30\x12\x1b\n\rdet_crop_mode\x18; \x01(\t:\x04warp\x12\x12\n\x07new_num\x18< \x01(\x05:\x01\x30\x12\x17\n\x0cnew_channels\x18= \x01(\x05:\x01\x30\x12\x15\n\nnew_height\x18> \x01(\x05:\x01\x30\x12\x14\n\tnew_width\x18? \x01(\x05:\x01\x30\x12\x1d\n\x0eshuffle_images\x18@ \x01(\x08:\x05\x66\x61lse\x12\x15\n\nconcat_dim\x18\x41 \x01(\r:\x01\x31\x12\x36\n\x11hdf5_output_param\x18\xe9\x07 \x01(\x0b\x32\x1a.caffe.HDF5OutputParameter\".\n\nPoolMethod\x12\x07\n\x03MAX\x10\x00\x12\x07\n\x03\x41VE\x10\x01\x12\x0e\n\nSTOCHASTIC\x10\x02\"W\n\x0ePReLUParameter\x12&\n\x06\x66iller\x18\x01 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x1d\n\x0e\x63hannel_shared\x18\x02 \x01(\x08:\x05\x66\x61lse*\x1c\n\x05Phase\x12\t\n\x05TRAIN\x10\x00\x12\x08\n\x04TEST\x10\x01') ) _PHASE = _descriptor.EnumDescriptor( name='Phase', full_name='caffe.Phase', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='TRAIN', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TEST', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=16202, serialized_end=16230, ) _sym_db.RegisterEnumDescriptor(_PHASE) Phase = enum_type_wrapper.EnumTypeWrapper(_PHASE) TRAIN = 0 TEST = 1 _FILLERPARAMETER_VARIANCENORM = _descriptor.EnumDescriptor( name='VarianceNorm', full_name='caffe.FillerParameter.VarianceNorm', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='FAN_IN', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FAN_OUT', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AVERAGE', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=658, serialized_end=710, ) _sym_db.RegisterEnumDescriptor(_FILLERPARAMETER_VARIANCENORM) _SOLVERPARAMETER_SNAPSHOTFORMAT = _descriptor.EnumDescriptor( name='SnapshotFormat', full_name='caffe.SolverParameter.SnapshotFormat', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='HDF5', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BINARYPROTO', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=2132, serialized_end=2175, ) _sym_db.RegisterEnumDescriptor(_SOLVERPARAMETER_SNAPSHOTFORMAT) _SOLVERPARAMETER_SOLVERMODE = _descriptor.EnumDescriptor( name='SolverMode', full_name='caffe.SolverParameter.SolverMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='CPU', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='GPU', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=2177, serialized_end=2207, ) _sym_db.RegisterEnumDescriptor(_SOLVERPARAMETER_SOLVERMODE) _SOLVERPARAMETER_SOLVERTYPE = _descriptor.EnumDescriptor( name='SolverType', full_name='caffe.SolverParameter.SolverType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SGD', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='NESTEROV', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ADAGRAD', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RMSPROP', index=3, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ADADELTA', index=4, number=4, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ADAM', index=5, number=5, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=2209, serialized_end=2294, ) _sym_db.RegisterEnumDescriptor(_SOLVERPARAMETER_SOLVERTYPE) _PARAMSPEC_DIMCHECKMODE = _descriptor.EnumDescriptor( name='DimCheckMode', full_name='caffe.ParamSpec.DimCheckMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STRICT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PERMISSIVE', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=2725, serialized_end=2767, ) _sym_db.RegisterEnumDescriptor(_PARAMSPEC_DIMCHECKMODE) _LOSSPARAMETER_NORMALIZATIONMODE = _descriptor.EnumDescriptor( name='NormalizationMode', full_name='caffe.LossParameter.NormalizationMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='FULL', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='VALID', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BATCH_SIZE', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='NONE', index=3, number=3, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=5857, serialized_end=5923, ) _sym_db.RegisterEnumDescriptor(_LOSSPARAMETER_NORMALIZATIONMODE) _CONVOLUTIONPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.ConvolutionParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=6888, serialized_end=6931, ) _sym_db.RegisterEnumDescriptor(_CONVOLUTIONPARAMETER_ENGINE) _DATAPARAMETER_DB = _descriptor.EnumDescriptor( name='DB', full_name='caffe.DataParameter.DB', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='LEVELDB', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LMDB', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=7249, serialized_end=7276, ) _sym_db.RegisterEnumDescriptor(_DATAPARAMETER_DB) _ELTWISEPARAMETER_ELTWISEOP = _descriptor.EnumDescriptor( name='EltwiseOp', full_name='caffe.EltwiseParameter.EltwiseOp', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='PROD', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SUM', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MAX', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=7616, serialized_end=7655, ) _sym_db.RegisterEnumDescriptor(_ELTWISEPARAMETER_ELTWISEOP) _HINGELOSSPARAMETER_NORM = _descriptor.EnumDescriptor( name='Norm', full_name='caffe.HingeLossParameter.Norm', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='L1', index=0, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='L2', index=1, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=8190, serialized_end=8212, ) _sym_db.RegisterEnumDescriptor(_HINGELOSSPARAMETER_NORM) _LRNPARAMETER_NORMREGION = _descriptor.EnumDescriptor( name='NormRegion', full_name='caffe.LRNParameter.NormRegion', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='ACROSS_CHANNELS', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WITHIN_CHANNEL', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=9079, serialized_end=9132, ) _sym_db.RegisterEnumDescriptor(_LRNPARAMETER_NORMREGION) _LRNPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.LRNParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=6888, serialized_end=6931, ) _sym_db.RegisterEnumDescriptor(_LRNPARAMETER_ENGINE) _POOLINGPARAMETER_POOLMETHOD = _descriptor.EnumDescriptor( name='PoolMethod', full_name='caffe.PoolingParameter.PoolMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MAX', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AVE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='STOCHASTIC', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=9930, serialized_end=9976, ) _sym_db.RegisterEnumDescriptor(_POOLINGPARAMETER_POOLMETHOD) _POOLINGPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.PoolingParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=6888, serialized_end=6931, ) _sym_db.RegisterEnumDescriptor(_POOLINGPARAMETER_ENGINE) _REDUCTIONPARAMETER_REDUCTIONOP = _descriptor.EnumDescriptor( name='ReductionOp', full_name='caffe.ReductionParameter.ReductionOp', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SUM', index=0, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ASUM', index=1, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SUMSQ', index=2, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MEAN', index=3, number=4, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=10786, serialized_end=10839, ) _sym_db.RegisterEnumDescriptor(_REDUCTIONPARAMETER_REDUCTIONOP) _RELUPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.ReLUParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=6888, serialized_end=6931, ) _sym_db.RegisterEnumDescriptor(_RELUPARAMETER_ENGINE) _SIGMOIDPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.SigmoidParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=6888, serialized_end=6931, ) _sym_db.RegisterEnumDescriptor(_SIGMOIDPARAMETER_ENGINE) _SOFTMAXPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.SoftmaxParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=6888, serialized_end=6931, ) _sym_db.RegisterEnumDescriptor(_SOFTMAXPARAMETER_ENGINE) _TANHPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.TanHParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=6888, serialized_end=6931, ) _sym_db.RegisterEnumDescriptor(_TANHPARAMETER_ENGINE) _SPPPARAMETER_POOLMETHOD = _descriptor.EnumDescriptor( name='PoolMethod', full_name='caffe.SPPParameter.PoolMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MAX', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AVE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='STOCHASTIC', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=9930, serialized_end=9976, ) _sym_db.RegisterEnumDescriptor(_SPPPARAMETER_POOLMETHOD) _SPPPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.SPPParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=6888, serialized_end=6931, ) _sym_db.RegisterEnumDescriptor(_SPPPARAMETER_ENGINE) _V1LAYERPARAMETER_LAYERTYPE = _descriptor.EnumDescriptor( name='LayerType', full_name='caffe.V1LayerParameter.LayerType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NONE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ABSVAL', index=1, number=35, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ACCURACY', index=2, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ARGMAX', index=3, number=30, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BNLL', index=4, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONCAT', index=5, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONTRASTIVE_LOSS', index=6, number=37, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONVOLUTION', index=7, number=4, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA', index=8, number=5, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DECONVOLUTION', index=9, number=39, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DROPOUT', index=10, number=6, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DUMMY_DATA', index=11, number=32, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EUCLIDEAN_LOSS', index=12, number=7, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ELTWISE', index=13, number=25, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EXP', index=14, number=38, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FLATTEN', index=15, number=8, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HDF5_DATA', index=16, number=9, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HDF5_OUTPUT', index=17, number=10, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HINGE_LOSS', index=18, number=28, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IM2COL', index=19, number=11, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IMAGE_DATA', index=20, number=12, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INFOGAIN_LOSS', index=21, number=13, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INNER_PRODUCT', index=22, number=14, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LRN', index=23, number=15, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MEMORY_DATA', index=24, number=29, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MULTINOMIAL_LOGISTIC_LOSS', index=25, number=16, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MVN', index=26, number=34, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='NORMALIZE', index=27, number=42, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='POOLING', index=28, number=17, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='POWER', index=29, number=26, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RAND_CAT_CONV', index=30, number=41, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RAND_CAT', index=31, number=40, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RELU', index=32, number=18, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SIGMOID', index=33, number=19, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SIGMOID_CROSS_ENTROPY_LOSS', index=34, number=27, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SILENCE', index=35, number=36, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SOFTMAX', index=36, number=20, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SOFTMAX_LOSS', index=37, number=21, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SPLIT', index=38, number=22, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SLICE', index=39, number=33, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TANH', index=40, number=23, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WINDOW_DATA', index=41, number=24, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='THRESHOLD', index=42, number=31, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=14395, serialized_end=15043, ) _sym_db.RegisterEnumDescriptor(_V1LAYERPARAMETER_LAYERTYPE) _V1LAYERPARAMETER_DIMCHECKMODE = _descriptor.EnumDescriptor( name='DimCheckMode', full_name='caffe.V1LayerParameter.DimCheckMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STRICT', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PERMISSIVE', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=2725, serialized_end=2767, ) _sym_db.RegisterEnumDescriptor(_V1LAYERPARAMETER_DIMCHECKMODE) _V0LAYERPARAMETER_POOLMETHOD = _descriptor.EnumDescriptor( name='PoolMethod', full_name='caffe.V0LayerParameter.PoolMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MAX', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AVE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='STOCHASTIC', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=9930, serialized_end=9976, ) _sym_db.RegisterEnumDescriptor(_V0LAYERPARAMETER_POOLMETHOD) _BLOBSHAPE = _descriptor.Descriptor( name='BlobShape', full_name='caffe.BlobShape', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dim', full_name='caffe.BlobShape.dim', index=0, number=1, type=3, cpp_type=2, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\020\001'), file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=22, serialized_end=50, ) _BLOBPROTO = _descriptor.Descriptor( name='BlobProto', full_name='caffe.BlobProto', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='shape', full_name='caffe.BlobProto.shape', index=0, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='caffe.BlobProto.data', index=1, number=5, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\020\001'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='diff', full_name='caffe.BlobProto.diff', index=2, number=6, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\020\001'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='double_data', full_name='caffe.BlobProto.double_data', index=3, number=8, type=1, cpp_type=5, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\020\001'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='double_diff', full_name='caffe.BlobProto.double_diff', index=4, number=9, type=1, cpp_type=5, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\020\001'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num', full_name='caffe.BlobProto.num', index=5, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='channels', full_name='caffe.BlobProto.channels', index=6, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='height', full_name='caffe.BlobProto.height', index=7, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='width', full_name='caffe.BlobProto.width', index=8, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=53, serialized_end=257, ) _BLOBPROTOVECTOR = _descriptor.Descriptor( name='BlobProtoVector', full_name='caffe.BlobProtoVector', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='blobs', full_name='caffe.BlobProtoVector.blobs', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=259, serialized_end=309, ) _DATUM = _descriptor.Descriptor( name='Datum', full_name='caffe.Datum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='channels', full_name='caffe.Datum.channels', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='height', full_name='caffe.Datum.height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='width', full_name='caffe.Datum.width', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='caffe.Datum.data', index=3, number=4, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='label', full_name='caffe.Datum.label', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='float_data', full_name='caffe.Datum.float_data', index=5, number=6, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='encoded', full_name='caffe.Datum.encoded', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=312, serialized_end=441, ) _FILLERPARAMETER = _descriptor.Descriptor( name='FillerParameter', full_name='caffe.FillerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='caffe.FillerParameter.type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("constant").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='caffe.FillerParameter.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min', full_name='caffe.FillerParameter.min', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max', full_name='caffe.FillerParameter.max', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mean', full_name='caffe.FillerParameter.mean', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='std', full_name='caffe.FillerParameter.std', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sparse', full_name='caffe.FillerParameter.sparse', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='variance_norm', full_name='caffe.FillerParameter.variance_norm', index=7, number=8, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _FILLERPARAMETER_VARIANCENORM, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=444, serialized_end=710, ) _NETPARAMETER = _descriptor.Descriptor( name='NetParameter', full_name='caffe.NetParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.NetParameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input', full_name='caffe.NetParameter.input', index=1, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_shape', full_name='caffe.NetParameter.input_shape', index=2, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_dim', full_name='caffe.NetParameter.input_dim', index=3, number=4, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='force_backward', full_name='caffe.NetParameter.force_backward', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='state', full_name='caffe.NetParameter.state', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='debug_info', full_name='caffe.NetParameter.debug_info', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='layer', full_name='caffe.NetParameter.layer', index=7, number=100, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='layers', full_name='caffe.NetParameter.layers', index=8, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=713, serialized_end=983, ) _SOLVERPARAMETER = _descriptor.Descriptor( name='SolverParameter', full_name='caffe.SolverParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='net', full_name='caffe.SolverParameter.net', index=0, number=24, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='net_param', full_name='caffe.SolverParameter.net_param', index=1, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_net', full_name='caffe.SolverParameter.train_net', index=2, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_net', full_name='caffe.SolverParameter.test_net', index=3, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_net_param', full_name='caffe.SolverParameter.train_net_param', index=4, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_net_param', full_name='caffe.SolverParameter.test_net_param', index=5, number=22, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_state', full_name='caffe.SolverParameter.train_state', index=6, number=26, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_state', full_name='caffe.SolverParameter.test_state', index=7, number=27, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_iter', full_name='caffe.SolverParameter.test_iter', index=8, number=3, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_interval', full_name='caffe.SolverParameter.test_interval', index=9, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_compute_loss', full_name='caffe.SolverParameter.test_compute_loss', index=10, number=19, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_initialization', full_name='caffe.SolverParameter.test_initialization', index=11, number=32, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='base_lr', full_name='caffe.SolverParameter.base_lr', index=12, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='display', full_name='caffe.SolverParameter.display', index=13, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_loss', full_name='caffe.SolverParameter.average_loss', index=14, number=33, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_iter', full_name='caffe.SolverParameter.max_iter', index=15, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='iter_size', full_name='caffe.SolverParameter.iter_size', index=16, number=36, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lr_policy', full_name='caffe.SolverParameter.lr_policy', index=17, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gamma', full_name='caffe.SolverParameter.gamma', index=18, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='power', full_name='caffe.SolverParameter.power', index=19, number=10, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='momentum', full_name='caffe.SolverParameter.momentum', index=20, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_decay', full_name='caffe.SolverParameter.weight_decay', index=21, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='regularization_type', full_name='caffe.SolverParameter.regularization_type', index=22, number=29, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("L2").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stepsize', full_name='caffe.SolverParameter.stepsize', index=23, number=13, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stepvalue', full_name='caffe.SolverParameter.stepvalue', index=24, number=34, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clip_gradients', full_name='caffe.SolverParameter.clip_gradients', index=25, number=35, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(-1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='snapshot', full_name='caffe.SolverParameter.snapshot', index=26, number=14, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='snapshot_prefix', full_name='caffe.SolverParameter.snapshot_prefix', index=27, number=15, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='snapshot_diff', full_name='caffe.SolverParameter.snapshot_diff', index=28, number=16, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='snapshot_format', full_name='caffe.SolverParameter.snapshot_format', index=29, number=37, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='solver_mode', full_name='caffe.SolverParameter.solver_mode', index=30, number=17, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='device_id', full_name='caffe.SolverParameter.device_id', index=31, number=18, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_seed', full_name='caffe.SolverParameter.random_seed', index=32, number=20, type=3, cpp_type=2, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='caffe.SolverParameter.type', index=33, number=40, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("SGD").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='delta', full_name='caffe.SolverParameter.delta', index=34, number=31, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1e-08), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='momentum2', full_name='caffe.SolverParameter.momentum2', index=35, number=39, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.999), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rms_decay', full_name='caffe.SolverParameter.rms_decay', index=36, number=38, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='debug_info', full_name='caffe.SolverParameter.debug_info', index=37, number=23, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='snapshot_after_train', full_name='caffe.SolverParameter.snapshot_after_train', index=38, number=28, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='solver_type', full_name='caffe.SolverParameter.solver_type', index=39, number=30, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _SOLVERPARAMETER_SNAPSHOTFORMAT, _SOLVERPARAMETER_SOLVERMODE, _SOLVERPARAMETER_SOLVERTYPE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=986, serialized_end=2294, ) _SOLVERSTATE = _descriptor.Descriptor( name='SolverState', full_name='caffe.SolverState', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='iter', full_name='caffe.SolverState.iter', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learned_net', full_name='caffe.SolverState.learned_net', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='history', full_name='caffe.SolverState.history', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='current_step', full_name='caffe.SolverState.current_step', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2296, serialized_end=2404, ) _NETSTATE = _descriptor.Descriptor( name='NetState', full_name='caffe.NetState', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phase', full_name='caffe.NetState.phase', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='level', full_name='caffe.NetState.level', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stage', full_name='caffe.NetState.stage', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2406, serialized_end=2484, ) _NETSTATERULE = _descriptor.Descriptor( name='NetStateRule', full_name='caffe.NetStateRule', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phase', full_name='caffe.NetStateRule.phase', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_level', full_name='caffe.NetStateRule.min_level', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_level', full_name='caffe.NetStateRule.max_level', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stage', full_name='caffe.NetStateRule.stage', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='not_stage', full_name='caffe.NetStateRule.not_stage', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2486, serialized_end=2601, ) _PARAMSPEC = _descriptor.Descriptor( name='ParamSpec', full_name='caffe.ParamSpec', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.ParamSpec.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='share_mode', full_name='caffe.ParamSpec.share_mode', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lr_mult', full_name='caffe.ParamSpec.lr_mult', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay_mult', full_name='caffe.ParamSpec.decay_mult', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _PARAMSPEC_DIMCHECKMODE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2604, serialized_end=2767, ) _LAYERPARAMETER = _descriptor.Descriptor( name='LayerParameter', full_name='caffe.LayerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.LayerParameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='caffe.LayerParameter.type', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bottom', full_name='caffe.LayerParameter.bottom', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='top', full_name='caffe.LayerParameter.top', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='phase', full_name='caffe.LayerParameter.phase', index=4, number=10, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_weight', full_name='caffe.LayerParameter.loss_weight', index=5, number=5, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='param', full_name='caffe.LayerParameter.param', index=6, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='blobs', full_name='caffe.LayerParameter.blobs', index=7, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='propagate_down', full_name='caffe.LayerParameter.propagate_down', index=8, number=11, type=8, cpp_type=7, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='include', full_name='caffe.LayerParameter.include', index=9, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exclude', full_name='caffe.LayerParameter.exclude', index=10, number=9, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='transform_param', full_name='caffe.LayerParameter.transform_param', index=11, number=100, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_param', full_name='caffe.LayerParameter.loss_param', index=12, number=101, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='accuracy_param', full_name='caffe.LayerParameter.accuracy_param', index=13, number=102, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='argmax_param', full_name='caffe.LayerParameter.argmax_param', index=14, number=103, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_norm_param', full_name='caffe.LayerParameter.batch_norm_param', index=15, number=139, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_param', full_name='caffe.LayerParameter.bias_param', index=16, number=141, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='concat_param', full_name='caffe.LayerParameter.concat_param', index=17, number=104, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='contrastive_loss_param', full_name='caffe.LayerParameter.contrastive_loss_param', index=18, number=105, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='convolution_param', full_name='caffe.LayerParameter.convolution_param', index=19, number=106, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_param', full_name='caffe.LayerParameter.crop_param', index=20, number=144, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data_param', full_name='caffe.LayerParameter.data_param', index=21, number=107, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout_param', full_name='caffe.LayerParameter.dropout_param', index=22, number=108, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dummy_data_param', full_name='caffe.LayerParameter.dummy_data_param', index=23, number=109, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eltwise_param', full_name='caffe.LayerParameter.eltwise_param', index=24, number=110, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='elu_param', full_name='caffe.LayerParameter.elu_param', index=25, number=140, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='embed_param', full_name='caffe.LayerParameter.embed_param', index=26, number=137, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exp_param', full_name='caffe.LayerParameter.exp_param', index=27, number=111, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='flatten_param', full_name='caffe.LayerParameter.flatten_param', index=28, number=135, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hdf5_data_param', full_name='caffe.LayerParameter.hdf5_data_param', index=29, number=112, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hdf5_output_param', full_name='caffe.LayerParameter.hdf5_output_param', index=30, number=113, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hinge_loss_param', full_name='caffe.LayerParameter.hinge_loss_param', index=31, number=114, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_data_param', full_name='caffe.LayerParameter.image_data_param', index=32, number=115, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='infogain_loss_param', full_name='caffe.LayerParameter.infogain_loss_param', index=33, number=116, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inner_product_param', full_name='caffe.LayerParameter.inner_product_param', index=34, number=117, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_param', full_name='caffe.LayerParameter.input_param', index=35, number=143, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='log_param', full_name='caffe.LayerParameter.log_param', index=36, number=134, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lrn_param', full_name='caffe.LayerParameter.lrn_param', index=37, number=118, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='memory_data_param', full_name='caffe.LayerParameter.memory_data_param', index=38, number=119, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mvn_param', full_name='caffe.LayerParameter.mvn_param', index=39, number=120, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='norm_param', full_name='caffe.LayerParameter.norm_param', index=40, number=149, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='parameter_param', full_name='caffe.LayerParameter.parameter_param', index=41, number=145, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pooling_param', full_name='caffe.LayerParameter.pooling_param', index=42, number=121, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='power_param', full_name='caffe.LayerParameter.power_param', index=43, number=122, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='prelu_param', full_name='caffe.LayerParameter.prelu_param', index=44, number=131, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='python_param', full_name='caffe.LayerParameter.python_param', index=45, number=130, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rand_cat_conv_param', full_name='caffe.LayerParameter.rand_cat_conv_param', index=46, number=147, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rand_cat_param', full_name='caffe.LayerParameter.rand_cat_param', index=47, number=148, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rand_comp_param', full_name='caffe.LayerParameter.rand_comp_param', index=48, number=150, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='recurrent_param', full_name='caffe.LayerParameter.recurrent_param', index=49, number=146, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reduction_param', full_name='caffe.LayerParameter.reduction_param', index=50, number=136, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='relu_param', full_name='caffe.LayerParameter.relu_param', index=51, number=123, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reshape_param', full_name='caffe.LayerParameter.reshape_param', index=52, number=133, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale_param', full_name='caffe.LayerParameter.scale_param', index=53, number=142, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sigmoid_param', full_name='caffe.LayerParameter.sigmoid_param', index=54, number=124, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='softmax_param', full_name='caffe.LayerParameter.softmax_param', index=55, number=125, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='spp_param', full_name='caffe.LayerParameter.spp_param', index=56, number=132, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='slice_param', full_name='caffe.LayerParameter.slice_param', index=57, number=126, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tanh_param', full_name='caffe.LayerParameter.tanh_param', index=58, number=127, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='threshold_param', full_name='caffe.LayerParameter.threshold_param', index=59, number=128, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tile_param', full_name='caffe.LayerParameter.tile_param', index=60, number=138, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='window_data_param', full_name='caffe.LayerParameter.window_data_param', index=61, number=129, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2770, serialized_end=5541, ) _TRANSFORMATIONPARAMETER = _descriptor.Descriptor( name='TransformationParameter', full_name='caffe.TransformationParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='scale', full_name='caffe.TransformationParameter.scale', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.TransformationParameter.mirror', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_size', full_name='caffe.TransformationParameter.crop_size', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mean_file', full_name='caffe.TransformationParameter.mean_file', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mean_value', full_name='caffe.TransformationParameter.mean_value', index=4, number=5, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='force_color', full_name='caffe.TransformationParameter.force_color', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='force_gray', full_name='caffe.TransformationParameter.force_gray', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=5544, serialized_end=5726, ) _LOSSPARAMETER = _descriptor.Descriptor( name='LossParameter', full_name='caffe.LossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='ignore_label', full_name='caffe.LossParameter.ignore_label', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='normalization', full_name='caffe.LossParameter.normalization', index=1, number=3, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='normalize', full_name='caffe.LossParameter.normalize', index=2, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _LOSSPARAMETER_NORMALIZATIONMODE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=5729, serialized_end=5923, ) _ACCURACYPARAMETER = _descriptor.Descriptor( name='AccuracyParameter', full_name='caffe.AccuracyParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='top_k', full_name='caffe.AccuracyParameter.top_k', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='axis', full_name='caffe.AccuracyParameter.axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ignore_label', full_name='caffe.AccuracyParameter.ignore_label', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=5925, serialized_end=6001, ) _ARGMAXPARAMETER = _descriptor.Descriptor( name='ArgMaxParameter', full_name='caffe.ArgMaxParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='out_max_val', full_name='caffe.ArgMaxParameter.out_max_val', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='top_k', full_name='caffe.ArgMaxParameter.top_k', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='axis', full_name='caffe.ArgMaxParameter.axis', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=6003, serialized_end=6080, ) _CONCATPARAMETER = _descriptor.Descriptor( name='ConcatParameter', full_name='caffe.ConcatParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.ConcatParameter.axis', index=0, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='concat_dim', full_name='caffe.ConcatParameter.concat_dim', index=1, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=6082, serialized_end=6139, ) _BATCHNORMPARAMETER = _descriptor.Descriptor( name='BatchNormParameter', full_name='caffe.BatchNormParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='use_global_stats', full_name='caffe.BatchNormParameter.use_global_stats', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='moving_average_fraction', full_name='caffe.BatchNormParameter.moving_average_fraction', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.999), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eps', full_name='caffe.BatchNormParameter.eps', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1e-05), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=6141, serialized_end=6247, ) _BIASPARAMETER = _descriptor.Descriptor( name='BiasParameter', full_name='caffe.BiasParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.BiasParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_axes', full_name='caffe.BiasParameter.num_axes', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='filler', full_name='caffe.BiasParameter.filler', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=6249, serialized_end=6342, ) _CONTRASTIVELOSSPARAMETER = _descriptor.Descriptor( name='ContrastiveLossParameter', full_name='caffe.ContrastiveLossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='margin', full_name='caffe.ContrastiveLossParameter.margin', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='legacy_version', full_name='caffe.ContrastiveLossParameter.legacy_version', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=6344, serialized_end=6420, ) _CONVOLUTIONPARAMETER = _descriptor.Descriptor( name='ConvolutionParameter', full_name='caffe.ConvolutionParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_output', full_name='caffe.ConvolutionParameter.num_output', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_term', full_name='caffe.ConvolutionParameter.bias_term', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad', full_name='caffe.ConvolutionParameter.pad', index=2, number=3, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kernel_size', full_name='caffe.ConvolutionParameter.kernel_size', index=3, number=4, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stride', full_name='caffe.ConvolutionParameter.stride', index=4, number=6, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dilation', full_name='caffe.ConvolutionParameter.dilation', index=5, number=18, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad_h', full_name='caffe.ConvolutionParameter.pad_h', index=6, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad_w', full_name='caffe.ConvolutionParameter.pad_w', index=7, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kernel_h', full_name='caffe.ConvolutionParameter.kernel_h', index=8, number=11, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kernel_w', full_name='caffe.ConvolutionParameter.kernel_w', index=9, number=12, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stride_h', full_name='caffe.ConvolutionParameter.stride_h', index=10, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stride_w', full_name='caffe.ConvolutionParameter.stride_w', index=11, number=14, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='group', full_name='caffe.ConvolutionParameter.group', index=12, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.ConvolutionParameter.weight_filler', index=13, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.ConvolutionParameter.bias_filler', index=14, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='engine', full_name='caffe.ConvolutionParameter.engine', index=15, number=15, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='axis', full_name='caffe.ConvolutionParameter.axis', index=16, number=16, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='force_nd_im2col', full_name='caffe.ConvolutionParameter.force_nd_im2col', index=17, number=17, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _CONVOLUTIONPARAMETER_ENGINE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=6423, serialized_end=6931, ) _CROPPARAMETER = _descriptor.Descriptor( name='CropParameter', full_name='caffe.CropParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.CropParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=2, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='offset', full_name='caffe.CropParameter.offset', index=1, number=2, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=6933, serialized_end=6981, ) _DATAPARAMETER = _descriptor.Descriptor( name='DataParameter', full_name='caffe.DataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.DataParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.DataParameter.batch_size', index=1, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rand_skip', full_name='caffe.DataParameter.rand_skip', index=2, number=7, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='backend', full_name='caffe.DataParameter.backend', index=3, number=8, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale', full_name='caffe.DataParameter.scale', index=4, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mean_file', full_name='caffe.DataParameter.mean_file', index=5, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_size', full_name='caffe.DataParameter.crop_size', index=6, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.DataParameter.mirror', index=7, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='force_encoded_color', full_name='caffe.DataParameter.force_encoded_color', index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='prefetch', full_name='caffe.DataParameter.prefetch', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=4, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _DATAPARAMETER_DB, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=6984, serialized_end=7276, ) _DROPOUTPARAMETER = _descriptor.Descriptor( name='DropoutParameter', full_name='caffe.DropoutParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dropout_ratio', full_name='caffe.DropoutParameter.dropout_ratio', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.5), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=7278, serialized_end=7324, ) _DUMMYDATAPARAMETER = _descriptor.Descriptor( name='DummyDataParameter', full_name='caffe.DummyDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_filler', full_name='caffe.DummyDataParameter.data_filler', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shape', full_name='caffe.DummyDataParameter.shape', index=1, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num', full_name='caffe.DummyDataParameter.num', index=2, number=2, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='channels', full_name='caffe.DummyDataParameter.channels', index=3, number=3, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='height', full_name='caffe.DummyDataParameter.height', index=4, number=4, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='width', full_name='caffe.DummyDataParameter.width', index=5, number=5, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=7327, serialized_end=7487, ) _ELTWISEPARAMETER = _descriptor.Descriptor( name='EltwiseParameter', full_name='caffe.EltwiseParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='operation', full_name='caffe.EltwiseParameter.operation', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='coeff', full_name='caffe.EltwiseParameter.coeff', index=1, number=2, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stable_prod_grad', full_name='caffe.EltwiseParameter.stable_prod_grad', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _ELTWISEPARAMETER_ELTWISEOP, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=7490, serialized_end=7655, ) _ELUPARAMETER = _descriptor.Descriptor( name='ELUParameter', full_name='caffe.ELUParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='alpha', full_name='caffe.ELUParameter.alpha', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=7657, serialized_end=7689, ) _EMBEDPARAMETER = _descriptor.Descriptor( name='EmbedParameter', full_name='caffe.EmbedParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_output', full_name='caffe.EmbedParameter.num_output', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_dim', full_name='caffe.EmbedParameter.input_dim', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_term', full_name='caffe.EmbedParameter.bias_term', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.EmbedParameter.weight_filler', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.EmbedParameter.bias_filler', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=7692, serialized_end=7864, ) _EXPPARAMETER = _descriptor.Descriptor( name='ExpParameter', full_name='caffe.ExpParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='base', full_name='caffe.ExpParameter.base', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(-1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale', full_name='caffe.ExpParameter.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shift', full_name='caffe.ExpParameter.shift', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=7866, serialized_end=7934, ) _FLATTENPARAMETER = _descriptor.Descriptor( name='FlattenParameter', full_name='caffe.FlattenParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.FlattenParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='end_axis', full_name='caffe.FlattenParameter.end_axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=7936, serialized_end=7993, ) _HDF5DATAPARAMETER = _descriptor.Descriptor( name='HDF5DataParameter', full_name='caffe.HDF5DataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.HDF5DataParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.HDF5DataParameter.batch_size', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shuffle', full_name='caffe.HDF5DataParameter.shuffle', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=7995, serialized_end=8074, ) _HDF5OUTPUTPARAMETER = _descriptor.Descriptor( name='HDF5OutputParameter', full_name='caffe.HDF5OutputParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='file_name', full_name='caffe.HDF5OutputParameter.file_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=8076, serialized_end=8116, ) _HINGELOSSPARAMETER = _descriptor.Descriptor( name='HingeLossParameter', full_name='caffe.HingeLossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='norm', full_name='caffe.HingeLossParameter.norm', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _HINGELOSSPARAMETER_NORM, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=8118, serialized_end=8212, ) _IMAGEDATAPARAMETER = _descriptor.Descriptor( name='ImageDataParameter', full_name='caffe.ImageDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.ImageDataParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.ImageDataParameter.batch_size', index=1, number=4, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rand_skip', full_name='caffe.ImageDataParameter.rand_skip', index=2, number=7, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shuffle', full_name='caffe.ImageDataParameter.shuffle', index=3, number=8, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='new_height', full_name='caffe.ImageDataParameter.new_height', index=4, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='new_width', full_name='caffe.ImageDataParameter.new_width', index=5, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='is_color', full_name='caffe.ImageDataParameter.is_color', index=6, number=11, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale', full_name='caffe.ImageDataParameter.scale', index=7, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mean_file', full_name='caffe.ImageDataParameter.mean_file', index=8, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_size', full_name='caffe.ImageDataParameter.crop_size', index=9, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.ImageDataParameter.mirror', index=10, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='root_folder', full_name='caffe.ImageDataParameter.root_folder', index=11, number=12, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=8215, serialized_end=8494, ) _INFOGAINLOSSPARAMETER = _descriptor.Descriptor( name='InfogainLossParameter', full_name='caffe.InfogainLossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.InfogainLossParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=8496, serialized_end=8535, ) _INNERPRODUCTPARAMETER = _descriptor.Descriptor( name='InnerProductParameter', full_name='caffe.InnerProductParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_output', full_name='caffe.InnerProductParameter.num_output', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_term', full_name='caffe.InnerProductParameter.bias_term', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.InnerProductParameter.weight_filler', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.InnerProductParameter.bias_filler', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='axis', full_name='caffe.InnerProductParameter.axis', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='transpose', full_name='caffe.InnerProductParameter.transpose', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=8538, serialized_end=8741, ) _INPUTPARAMETER = _descriptor.Descriptor( name='InputParameter', full_name='caffe.InputParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='shape', full_name='caffe.InputParameter.shape', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=8743, serialized_end=8792, ) _LOGPARAMETER = _descriptor.Descriptor( name='LogParameter', full_name='caffe.LogParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='base', full_name='caffe.LogParameter.base', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(-1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale', full_name='caffe.LogParameter.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shift', full_name='caffe.LogParameter.shift', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=8794, serialized_end=8862, ) _LRNPARAMETER = _descriptor.Descriptor( name='LRNParameter', full_name='caffe.LRNParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='local_size', full_name='caffe.LRNParameter.local_size', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alpha', full_name='caffe.LRNParameter.alpha', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta', full_name='caffe.LRNParameter.beta', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.75), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='norm_region', full_name='caffe.LRNParameter.norm_region', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='k', full_name='caffe.LRNParameter.k', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='engine', full_name='caffe.LRNParameter.engine', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _LRNPARAMETER_NORMREGION, _LRNPARAMETER_ENGINE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=8865, serialized_end=9177, ) _MEMORYDATAPARAMETER = _descriptor.Descriptor( name='MemoryDataParameter', full_name='caffe.MemoryDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.MemoryDataParameter.batch_size', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='channels', full_name='caffe.MemoryDataParameter.channels', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='height', full_name='caffe.MemoryDataParameter.height', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='width', full_name='caffe.MemoryDataParameter.width', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=9179, serialized_end=9269, ) _MVNPARAMETER = _descriptor.Descriptor( name='MVNParameter', full_name='caffe.MVNParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='normalize_variance', full_name='caffe.MVNParameter.normalize_variance', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='across_channels', full_name='caffe.MVNParameter.across_channels', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eps', full_name='caffe.MVNParameter.eps', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1e-09), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=9271, serialized_end=9371, ) _NORMALIZEPARAMETER = _descriptor.Descriptor( name='NormalizeParameter', full_name='caffe.NormalizeParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='across_spatial', full_name='caffe.NormalizeParameter.across_spatial', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale_filler', full_name='caffe.NormalizeParameter.scale_filler', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='channel_shared', full_name='caffe.NormalizeParameter.channel_shared', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fix_scale', full_name='caffe.NormalizeParameter.fix_scale', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eps', full_name='caffe.NormalizeParameter.eps', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1e-10), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=9374, serialized_end=9545, ) _PARAMETERPARAMETER = _descriptor.Descriptor( name='ParameterParameter', full_name='caffe.ParameterParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='shape', full_name='caffe.ParameterParameter.shape', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=9547, serialized_end=9600, ) _POOLINGPARAMETER = _descriptor.Descriptor( name='PoolingParameter', full_name='caffe.PoolingParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pool', full_name='caffe.PoolingParameter.pool', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad', full_name='caffe.PoolingParameter.pad', index=1, number=4, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad_h', full_name='caffe.PoolingParameter.pad_h', index=2, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad_w', full_name='caffe.PoolingParameter.pad_w', index=3, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kernel_size', full_name='caffe.PoolingParameter.kernel_size', index=4, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kernel_h', full_name='caffe.PoolingParameter.kernel_h', index=5, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kernel_w', full_name='caffe.PoolingParameter.kernel_w', index=6, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stride', full_name='caffe.PoolingParameter.stride', index=7, number=3, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stride_h', full_name='caffe.PoolingParameter.stride_h', index=8, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stride_w', full_name='caffe.PoolingParameter.stride_w', index=9, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='engine', full_name='caffe.PoolingParameter.engine', index=10, number=11, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='global_pooling', full_name='caffe.PoolingParameter.global_pooling', index=11, number=12, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _POOLINGPARAMETER_POOLMETHOD, _POOLINGPARAMETER_ENGINE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=9603, serialized_end=10021, ) _POWERPARAMETER = _descriptor.Descriptor( name='PowerParameter', full_name='caffe.PowerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='power', full_name='caffe.PowerParameter.power', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale', full_name='caffe.PowerParameter.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shift', full_name='caffe.PowerParameter.shift', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10023, serialized_end=10093, ) _PYTHONPARAMETER = _descriptor.Descriptor( name='PythonParameter', full_name='caffe.PythonParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='module', full_name='caffe.PythonParameter.module', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='layer', full_name='caffe.PythonParameter.layer', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='param_str', full_name='caffe.PythonParameter.param_str', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='share_in_parallel', full_name='caffe.PythonParameter.share_in_parallel', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10095, serialized_end=10198, ) _RANDCATPARAMETER = _descriptor.Descriptor( name='RandCatParameter', full_name='caffe.RandCatParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='rand_selection', full_name='caffe.RandCatParameter.rand_selection', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_output', full_name='caffe.RandCatParameter.num_output', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1000, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10200, serialized_end=10274, ) _RANDCATCONVPARAMETER = _descriptor.Descriptor( name='RandCatConvParameter', full_name='caffe.RandCatConvParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='rand_selection', full_name='caffe.RandCatConvParameter.rand_selection', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_output', full_name='caffe.RandCatConvParameter.num_output', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1000, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pooling_factor', full_name='caffe.RandCatConvParameter.pooling_factor', index=2, number=3, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad_factor', full_name='caffe.RandCatConvParameter.pad_factor', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10276, serialized_end=10401, ) _RANDCOMPPARAMETER = _descriptor.Descriptor( name='RandCompParameter', full_name='caffe.RandCompParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='compression_rate', full_name='caffe.RandCompParameter.compression_rate', index=0, number=1, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad', full_name='caffe.RandCompParameter.pad', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10403, serialized_end=10468, ) _RECURRENTPARAMETER = _descriptor.Descriptor( name='RecurrentParameter', full_name='caffe.RecurrentParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_output', full_name='caffe.RecurrentParameter.num_output', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.RecurrentParameter.weight_filler', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.RecurrentParameter.bias_filler', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='debug_info', full_name='caffe.RecurrentParameter.debug_info', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='expose_hidden', full_name='caffe.RecurrentParameter.expose_hidden', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10471, serialized_end=10663, ) _REDUCTIONPARAMETER = _descriptor.Descriptor( name='ReductionParameter', full_name='caffe.ReductionParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='operation', full_name='caffe.ReductionParameter.operation', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='axis', full_name='caffe.ReductionParameter.axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='coeff', full_name='caffe.ReductionParameter.coeff', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _REDUCTIONPARAMETER_REDUCTIONOP, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10666, serialized_end=10839, ) _RELUPARAMETER = _descriptor.Descriptor( name='ReLUParameter', full_name='caffe.ReLUParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='negative_slope', full_name='caffe.ReLUParameter.negative_slope', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='engine', full_name='caffe.ReLUParameter.engine', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _RELUPARAMETER_ENGINE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10842, serialized_end=10983, ) _RESHAPEPARAMETER = _descriptor.Descriptor( name='ReshapeParameter', full_name='caffe.ReshapeParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='shape', full_name='caffe.ReshapeParameter.shape', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='axis', full_name='caffe.ReshapeParameter.axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_axes', full_name='caffe.ReshapeParameter.num_axes', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=10985, serialized_end=11075, ) _SCALEPARAMETER = _descriptor.Descriptor( name='ScaleParameter', full_name='caffe.ScaleParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.ScaleParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_axes', full_name='caffe.ScaleParameter.num_axes', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='filler', full_name='caffe.ScaleParameter.filler', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_term', full_name='caffe.ScaleParameter.bias_term', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.ScaleParameter.bias_filler', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=11078, serialized_end=11243, ) _SIGMOIDPARAMETER = _descriptor.Descriptor( name='SigmoidParameter', full_name='caffe.SigmoidParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='engine', full_name='caffe.SigmoidParameter.engine', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _SIGMOIDPARAMETER_ENGINE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=11245, serialized_end=11365, ) _SLICEPARAMETER = _descriptor.Descriptor( name='SliceParameter', full_name='caffe.SliceParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.SliceParameter.axis', index=0, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='slice_point', full_name='caffe.SliceParameter.slice_point', index=1, number=2, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='slice_dim', full_name='caffe.SliceParameter.slice_dim', index=2, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=11367, serialized_end=11443, ) _SOFTMAXPARAMETER = _descriptor.Descriptor( name='SoftmaxParameter', full_name='caffe.SoftmaxParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='engine', full_name='caffe.SoftmaxParameter.engine', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='axis', full_name='caffe.SoftmaxParameter.axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _SOFTMAXPARAMETER_ENGINE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=11446, serialized_end=11583, ) _TANHPARAMETER = _descriptor.Descriptor( name='TanHParameter', full_name='caffe.TanHParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='engine', full_name='caffe.TanHParameter.engine', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _TANHPARAMETER_ENGINE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=11585, serialized_end=11699, ) _TILEPARAMETER = _descriptor.Descriptor( name='TileParameter', full_name='caffe.TileParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.TileParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tiles', full_name='caffe.TileParameter.tiles', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=11701, serialized_end=11748, ) _THRESHOLDPARAMETER = _descriptor.Descriptor( name='ThresholdParameter', full_name='caffe.ThresholdParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='threshold', full_name='caffe.ThresholdParameter.threshold', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=11750, serialized_end=11792, ) _WINDOWDATAPARAMETER = _descriptor.Descriptor( name='WindowDataParameter', full_name='caffe.WindowDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.WindowDataParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale', full_name='caffe.WindowDataParameter.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mean_file', full_name='caffe.WindowDataParameter.mean_file', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.WindowDataParameter.batch_size', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_size', full_name='caffe.WindowDataParameter.crop_size', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.WindowDataParameter.mirror', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fg_threshold', full_name='caffe.WindowDataParameter.fg_threshold', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.5), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bg_threshold', full_name='caffe.WindowDataParameter.bg_threshold', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.5), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fg_fraction', full_name='caffe.WindowDataParameter.fg_fraction', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.25), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='context_pad', full_name='caffe.WindowDataParameter.context_pad', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_mode', full_name='caffe.WindowDataParameter.crop_mode', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("warp").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cache_images', full_name='caffe.WindowDataParameter.cache_images', index=11, number=12, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='root_folder', full_name='caffe.WindowDataParameter.root_folder', index=12, number=13, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=11795, serialized_end=12116, ) _SPPPARAMETER = _descriptor.Descriptor( name='SPPParameter', full_name='caffe.SPPParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pyramid_height', full_name='caffe.SPPParameter.pyramid_height', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pool', full_name='caffe.SPPParameter.pool', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='engine', full_name='caffe.SPPParameter.engine', index=2, number=6, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _SPPPARAMETER_POOLMETHOD, _SPPPARAMETER_ENGINE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=12119, serialized_end=12354, ) _V1LAYERPARAMETER = _descriptor.Descriptor( name='V1LayerParameter', full_name='caffe.V1LayerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='bottom', full_name='caffe.V1LayerParameter.bottom', index=0, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='top', full_name='caffe.V1LayerParameter.top', index=1, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='caffe.V1LayerParameter.name', index=2, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='include', full_name='caffe.V1LayerParameter.include', index=3, number=32, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exclude', full_name='caffe.V1LayerParameter.exclude', index=4, number=33, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='caffe.V1LayerParameter.type', index=5, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='blobs', full_name='caffe.V1LayerParameter.blobs', index=6, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='param', full_name='caffe.V1LayerParameter.param', index=7, number=1001, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='blob_share_mode', full_name='caffe.V1LayerParameter.blob_share_mode', index=8, number=1002, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='blobs_lr', full_name='caffe.V1LayerParameter.blobs_lr', index=9, number=7, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_decay', full_name='caffe.V1LayerParameter.weight_decay', index=10, number=8, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_weight', full_name='caffe.V1LayerParameter.loss_weight', index=11, number=35, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='accuracy_param', full_name='caffe.V1LayerParameter.accuracy_param', index=12, number=27, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='argmax_param', full_name='caffe.V1LayerParameter.argmax_param', index=13, number=23, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='concat_param', full_name='caffe.V1LayerParameter.concat_param', index=14, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='contrastive_loss_param', full_name='caffe.V1LayerParameter.contrastive_loss_param', index=15, number=40, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='convolution_param', full_name='caffe.V1LayerParameter.convolution_param', index=16, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data_param', full_name='caffe.V1LayerParameter.data_param', index=17, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout_param', full_name='caffe.V1LayerParameter.dropout_param', index=18, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dummy_data_param', full_name='caffe.V1LayerParameter.dummy_data_param', index=19, number=26, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eltwise_param', full_name='caffe.V1LayerParameter.eltwise_param', index=20, number=24, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exp_param', full_name='caffe.V1LayerParameter.exp_param', index=21, number=41, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hdf5_data_param', full_name='caffe.V1LayerParameter.hdf5_data_param', index=22, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hdf5_output_param', full_name='caffe.V1LayerParameter.hdf5_output_param', index=23, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hinge_loss_param', full_name='caffe.V1LayerParameter.hinge_loss_param', index=24, number=29, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_data_param', full_name='caffe.V1LayerParameter.image_data_param', index=25, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='infogain_loss_param', full_name='caffe.V1LayerParameter.infogain_loss_param', index=26, number=16, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inner_product_param', full_name='caffe.V1LayerParameter.inner_product_param', index=27, number=17, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lrn_param', full_name='caffe.V1LayerParameter.lrn_param', index=28, number=18, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='memory_data_param', full_name='caffe.V1LayerParameter.memory_data_param', index=29, number=22, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mvn_param', full_name='caffe.V1LayerParameter.mvn_param', index=30, number=34, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='norm_param', full_name='caffe.V1LayerParameter.norm_param', index=31, number=45, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pooling_param', full_name='caffe.V1LayerParameter.pooling_param', index=32, number=19, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='power_param', full_name='caffe.V1LayerParameter.power_param', index=33, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rand_cat_conv_param', full_name='caffe.V1LayerParameter.rand_cat_conv_param', index=34, number=44, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rand_cat_param', full_name='caffe.V1LayerParameter.rand_cat_param', index=35, number=43, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='relu_param', full_name='caffe.V1LayerParameter.relu_param', index=36, number=30, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sigmoid_param', full_name='caffe.V1LayerParameter.sigmoid_param', index=37, number=38, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='softmax_param', full_name='caffe.V1LayerParameter.softmax_param', index=38, number=39, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='slice_param', full_name='caffe.V1LayerParameter.slice_param', index=39, number=31, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tanh_param', full_name='caffe.V1LayerParameter.tanh_param', index=40, number=37, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='threshold_param', full_name='caffe.V1LayerParameter.threshold_param', index=41, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='window_data_param', full_name='caffe.V1LayerParameter.window_data_param', index=42, number=20, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='transform_param', full_name='caffe.V1LayerParameter.transform_param', index=43, number=36, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_param', full_name='caffe.V1LayerParameter.loss_param', index=44, number=42, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='layer', full_name='caffe.V1LayerParameter.layer', index=45, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _V1LAYERPARAMETER_LAYERTYPE, _V1LAYERPARAMETER_DIMCHECKMODE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=12357, serialized_end=15087, ) _V0LAYERPARAMETER = _descriptor.Descriptor( name='V0LayerParameter', full_name='caffe.V0LayerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.V0LayerParameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='caffe.V0LayerParameter.type', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_output', full_name='caffe.V0LayerParameter.num_output', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='biasterm', full_name='caffe.V0LayerParameter.biasterm', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.V0LayerParameter.weight_filler', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.V0LayerParameter.bias_filler', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pad', full_name='caffe.V0LayerParameter.pad', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kernelsize', full_name='caffe.V0LayerParameter.kernelsize', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='group', full_name='caffe.V0LayerParameter.group', index=8, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stride', full_name='caffe.V0LayerParameter.stride', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pool', full_name='caffe.V0LayerParameter.pool', index=10, number=11, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout_ratio', full_name='caffe.V0LayerParameter.dropout_ratio', index=11, number=12, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.5), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='local_size', full_name='caffe.V0LayerParameter.local_size', index=12, number=13, type=13, cpp_type=3, label=1, has_default_value=True, default_value=5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='alpha', full_name='caffe.V0LayerParameter.alpha', index=13, number=14, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta', full_name='caffe.V0LayerParameter.beta', index=14, number=15, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.75), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='k', full_name='caffe.V0LayerParameter.k', index=15, number=22, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source', full_name='caffe.V0LayerParameter.source', index=16, number=16, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale', full_name='caffe.V0LayerParameter.scale', index=17, number=17, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='meanfile', full_name='caffe.V0LayerParameter.meanfile', index=18, number=18, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batchsize', full_name='caffe.V0LayerParameter.batchsize', index=19, number=19, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cropsize', full_name='caffe.V0LayerParameter.cropsize', index=20, number=20, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.V0LayerParameter.mirror', index=21, number=21, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='blobs', full_name='caffe.V0LayerParameter.blobs', index=22, number=50, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='blobs_lr', full_name='caffe.V0LayerParameter.blobs_lr', index=23, number=51, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_decay', full_name='caffe.V0LayerParameter.weight_decay', index=24, number=52, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rand_skip', full_name='caffe.V0LayerParameter.rand_skip', index=25, number=53, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='det_fg_threshold', full_name='caffe.V0LayerParameter.det_fg_threshold', index=26, number=54, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.5), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='det_bg_threshold', full_name='caffe.V0LayerParameter.det_bg_threshold', index=27, number=55, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.5), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='det_fg_fraction', full_name='caffe.V0LayerParameter.det_fg_fraction', index=28, number=56, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.25), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='det_context_pad', full_name='caffe.V0LayerParameter.det_context_pad', index=29, number=58, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='det_crop_mode', full_name='caffe.V0LayerParameter.det_crop_mode', index=30, number=59, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("warp").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='new_num', full_name='caffe.V0LayerParameter.new_num', index=31, number=60, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='new_channels', full_name='caffe.V0LayerParameter.new_channels', index=32, number=61, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='new_height', full_name='caffe.V0LayerParameter.new_height', index=33, number=62, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='new_width', full_name='caffe.V0LayerParameter.new_width', index=34, number=63, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shuffle_images', full_name='caffe.V0LayerParameter.shuffle_images', index=35, number=64, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='concat_dim', full_name='caffe.V0LayerParameter.concat_dim', index=36, number=65, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='hdf5_output_param', full_name='caffe.V0LayerParameter.hdf5_output_param', index=37, number=1001, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _V0LAYERPARAMETER_POOLMETHOD, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=15090, serialized_end=16111, ) _PRELUPARAMETER = _descriptor.Descriptor( name='PReLUParameter', full_name='caffe.PReLUParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='filler', full_name='caffe.PReLUParameter.filler', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='channel_shared', full_name='caffe.PReLUParameter.channel_shared', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=16113, serialized_end=16200, ) _BLOBPROTO.fields_by_name['shape'].message_type = _BLOBSHAPE _BLOBPROTOVECTOR.fields_by_name['blobs'].message_type = _BLOBPROTO _FILLERPARAMETER.fields_by_name['variance_norm'].enum_type = _FILLERPARAMETER_VARIANCENORM _FILLERPARAMETER_VARIANCENORM.containing_type = _FILLERPARAMETER _NETPARAMETER.fields_by_name['input_shape'].message_type = _BLOBSHAPE _NETPARAMETER.fields_by_name['state'].message_type = _NETSTATE _NETPARAMETER.fields_by_name['layer'].message_type = _LAYERPARAMETER _NETPARAMETER.fields_by_name['layers'].message_type = _V1LAYERPARAMETER _SOLVERPARAMETER.fields_by_name['net_param'].message_type = _NETPARAMETER _SOLVERPARAMETER.fields_by_name['train_net_param'].message_type = _NETPARAMETER _SOLVERPARAMETER.fields_by_name['test_net_param'].message_type = _NETPARAMETER _SOLVERPARAMETER.fields_by_name['train_state'].message_type = _NETSTATE _SOLVERPARAMETER.fields_by_name['test_state'].message_type = _NETSTATE _SOLVERPARAMETER.fields_by_name['snapshot_format'].enum_type = _SOLVERPARAMETER_SNAPSHOTFORMAT _SOLVERPARAMETER.fields_by_name['solver_mode'].enum_type = _SOLVERPARAMETER_SOLVERMODE _SOLVERPARAMETER.fields_by_name['solver_type'].enum_type = _SOLVERPARAMETER_SOLVERTYPE _SOLVERPARAMETER_SNAPSHOTFORMAT.containing_type = _SOLVERPARAMETER _SOLVERPARAMETER_SOLVERMODE.containing_type = _SOLVERPARAMETER _SOLVERPARAMETER_SOLVERTYPE.containing_type = _SOLVERPARAMETER _SOLVERSTATE.fields_by_name['history'].message_type = _BLOBPROTO _NETSTATE.fields_by_name['phase'].enum_type = _PHASE _NETSTATERULE.fields_by_name['phase'].enum_type = _PHASE _PARAMSPEC.fields_by_name['share_mode'].enum_type = _PARAMSPEC_DIMCHECKMODE _PARAMSPEC_DIMCHECKMODE.containing_type = _PARAMSPEC _LAYERPARAMETER.fields_by_name['phase'].enum_type = _PHASE _LAYERPARAMETER.fields_by_name['param'].message_type = _PARAMSPEC _LAYERPARAMETER.fields_by_name['blobs'].message_type = _BLOBPROTO _LAYERPARAMETER.fields_by_name['include'].message_type = _NETSTATERULE _LAYERPARAMETER.fields_by_name['exclude'].message_type = _NETSTATERULE _LAYERPARAMETER.fields_by_name['transform_param'].message_type = _TRANSFORMATIONPARAMETER _LAYERPARAMETER.fields_by_name['loss_param'].message_type = _LOSSPARAMETER _LAYERPARAMETER.fields_by_name['accuracy_param'].message_type = _ACCURACYPARAMETER _LAYERPARAMETER.fields_by_name['argmax_param'].message_type = _ARGMAXPARAMETER _LAYERPARAMETER.fields_by_name['batch_norm_param'].message_type = _BATCHNORMPARAMETER _LAYERPARAMETER.fields_by_name['bias_param'].message_type = _BIASPARAMETER _LAYERPARAMETER.fields_by_name['concat_param'].message_type = _CONCATPARAMETER _LAYERPARAMETER.fields_by_name['contrastive_loss_param'].message_type = _CONTRASTIVELOSSPARAMETER _LAYERPARAMETER.fields_by_name['convolution_param'].message_type = _CONVOLUTIONPARAMETER _LAYERPARAMETER.fields_by_name['crop_param'].message_type = _CROPPARAMETER _LAYERPARAMETER.fields_by_name['data_param'].message_type = _DATAPARAMETER _LAYERPARAMETER.fields_by_name['dropout_param'].message_type = _DROPOUTPARAMETER _LAYERPARAMETER.fields_by_name['dummy_data_param'].message_type = _DUMMYDATAPARAMETER _LAYERPARAMETER.fields_by_name['eltwise_param'].message_type = _ELTWISEPARAMETER _LAYERPARAMETER.fields_by_name['elu_param'].message_type = _ELUPARAMETER _LAYERPARAMETER.fields_by_name['embed_param'].message_type = _EMBEDPARAMETER _LAYERPARAMETER.fields_by_name['exp_param'].message_type = _EXPPARAMETER _LAYERPARAMETER.fields_by_name['flatten_param'].message_type = _FLATTENPARAMETER _LAYERPARAMETER.fields_by_name['hdf5_data_param'].message_type = _HDF5DATAPARAMETER _LAYERPARAMETER.fields_by_name['hdf5_output_param'].message_type = _HDF5OUTPUTPARAMETER _LAYERPARAMETER.fields_by_name['hinge_loss_param'].message_type = _HINGELOSSPARAMETER _LAYERPARAMETER.fields_by_name['image_data_param'].message_type = _IMAGEDATAPARAMETER _LAYERPARAMETER.fields_by_name['infogain_loss_param'].message_type = _INFOGAINLOSSPARAMETER _LAYERPARAMETER.fields_by_name['inner_product_param'].message_type = _INNERPRODUCTPARAMETER _LAYERPARAMETER.fields_by_name['input_param'].message_type = _INPUTPARAMETER _LAYERPARAMETER.fields_by_name['log_param'].message_type = _LOGPARAMETER _LAYERPARAMETER.fields_by_name['lrn_param'].message_type = _LRNPARAMETER _LAYERPARAMETER.fields_by_name['memory_data_param'].message_type = _MEMORYDATAPARAMETER _LAYERPARAMETER.fields_by_name['mvn_param'].message_type = _MVNPARAMETER _LAYERPARAMETER.fields_by_name['norm_param'].message_type = _NORMALIZEPARAMETER _LAYERPARAMETER.fields_by_name['parameter_param'].message_type = _PARAMETERPARAMETER _LAYERPARAMETER.fields_by_name['pooling_param'].message_type = _POOLINGPARAMETER _LAYERPARAMETER.fields_by_name['power_param'].message_type = _POWERPARAMETER _LAYERPARAMETER.fields_by_name['prelu_param'].message_type = _PRELUPARAMETER _LAYERPARAMETER.fields_by_name['python_param'].message_type = _PYTHONPARAMETER _LAYERPARAMETER.fields_by_name['rand_cat_conv_param'].message_type = _RANDCATCONVPARAMETER _LAYERPARAMETER.fields_by_name['rand_cat_param'].message_type = _RANDCATPARAMETER _LAYERPARAMETER.fields_by_name['rand_comp_param'].message_type = _RANDCOMPPARAMETER _LAYERPARAMETER.fields_by_name['recurrent_param'].message_type = _RECURRENTPARAMETER _LAYERPARAMETER.fields_by_name['reduction_param'].message_type = _REDUCTIONPARAMETER _LAYERPARAMETER.fields_by_name['relu_param'].message_type = _RELUPARAMETER _LAYERPARAMETER.fields_by_name['reshape_param'].message_type = _RESHAPEPARAMETER _LAYERPARAMETER.fields_by_name['scale_param'].message_type = _SCALEPARAMETER _LAYERPARAMETER.fields_by_name['sigmoid_param'].message_type = _SIGMOIDPARAMETER _LAYERPARAMETER.fields_by_name['softmax_param'].message_type = _SOFTMAXPARAMETER _LAYERPARAMETER.fields_by_name['spp_param'].message_type = _SPPPARAMETER _LAYERPARAMETER.fields_by_name['slice_param'].message_type = _SLICEPARAMETER _LAYERPARAMETER.fields_by_name['tanh_param'].message_type = _TANHPARAMETER _LAYERPARAMETER.fields_by_name['threshold_param'].message_type = _THRESHOLDPARAMETER _LAYERPARAMETER.fields_by_name['tile_param'].message_type = _TILEPARAMETER _LAYERPARAMETER.fields_by_name['window_data_param'].message_type = _WINDOWDATAPARAMETER _LOSSPARAMETER.fields_by_name['normalization'].enum_type = _LOSSPARAMETER_NORMALIZATIONMODE _LOSSPARAMETER_NORMALIZATIONMODE.containing_type = _LOSSPARAMETER _BIASPARAMETER.fields_by_name['filler'].message_type = _FILLERPARAMETER _CONVOLUTIONPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _CONVOLUTIONPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _CONVOLUTIONPARAMETER.fields_by_name['engine'].enum_type = _CONVOLUTIONPARAMETER_ENGINE _CONVOLUTIONPARAMETER_ENGINE.containing_type = _CONVOLUTIONPARAMETER _DATAPARAMETER.fields_by_name['backend'].enum_type = _DATAPARAMETER_DB _DATAPARAMETER_DB.containing_type = _DATAPARAMETER _DUMMYDATAPARAMETER.fields_by_name['data_filler'].message_type = _FILLERPARAMETER _DUMMYDATAPARAMETER.fields_by_name['shape'].message_type = _BLOBSHAPE _ELTWISEPARAMETER.fields_by_name['operation'].enum_type = _ELTWISEPARAMETER_ELTWISEOP _ELTWISEPARAMETER_ELTWISEOP.containing_type = _ELTWISEPARAMETER _EMBEDPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _EMBEDPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _HINGELOSSPARAMETER.fields_by_name['norm'].enum_type = _HINGELOSSPARAMETER_NORM _HINGELOSSPARAMETER_NORM.containing_type = _HINGELOSSPARAMETER _INNERPRODUCTPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _INNERPRODUCTPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _INPUTPARAMETER.fields_by_name['shape'].message_type = _BLOBSHAPE _LRNPARAMETER.fields_by_name['norm_region'].enum_type = _LRNPARAMETER_NORMREGION _LRNPARAMETER.fields_by_name['engine'].enum_type = _LRNPARAMETER_ENGINE _LRNPARAMETER_NORMREGION.containing_type = _LRNPARAMETER _LRNPARAMETER_ENGINE.containing_type = _LRNPARAMETER _NORMALIZEPARAMETER.fields_by_name['scale_filler'].message_type = _FILLERPARAMETER _PARAMETERPARAMETER.fields_by_name['shape'].message_type = _BLOBSHAPE _POOLINGPARAMETER.fields_by_name['pool'].enum_type = _POOLINGPARAMETER_POOLMETHOD _POOLINGPARAMETER.fields_by_name['engine'].enum_type = _POOLINGPARAMETER_ENGINE _POOLINGPARAMETER_POOLMETHOD.containing_type = _POOLINGPARAMETER _POOLINGPARAMETER_ENGINE.containing_type = _POOLINGPARAMETER _RECURRENTPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _RECURRENTPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _REDUCTIONPARAMETER.fields_by_name['operation'].enum_type = _REDUCTIONPARAMETER_REDUCTIONOP _REDUCTIONPARAMETER_REDUCTIONOP.containing_type = _REDUCTIONPARAMETER _RELUPARAMETER.fields_by_name['engine'].enum_type = _RELUPARAMETER_ENGINE _RELUPARAMETER_ENGINE.containing_type = _RELUPARAMETER _RESHAPEPARAMETER.fields_by_name['shape'].message_type = _BLOBSHAPE _SCALEPARAMETER.fields_by_name['filler'].message_type = _FILLERPARAMETER _SCALEPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _SIGMOIDPARAMETER.fields_by_name['engine'].enum_type = _SIGMOIDPARAMETER_ENGINE _SIGMOIDPARAMETER_ENGINE.containing_type = _SIGMOIDPARAMETER _SOFTMAXPARAMETER.fields_by_name['engine'].enum_type = _SOFTMAXPARAMETER_ENGINE _SOFTMAXPARAMETER_ENGINE.containing_type = _SOFTMAXPARAMETER _TANHPARAMETER.fields_by_name['engine'].enum_type = _TANHPARAMETER_ENGINE _TANHPARAMETER_ENGINE.containing_type = _TANHPARAMETER _SPPPARAMETER.fields_by_name['pool'].enum_type = _SPPPARAMETER_POOLMETHOD _SPPPARAMETER.fields_by_name['engine'].enum_type = _SPPPARAMETER_ENGINE _SPPPARAMETER_POOLMETHOD.containing_type = _SPPPARAMETER _SPPPARAMETER_ENGINE.containing_type = _SPPPARAMETER _V1LAYERPARAMETER.fields_by_name['include'].message_type = _NETSTATERULE _V1LAYERPARAMETER.fields_by_name['exclude'].message_type = _NETSTATERULE _V1LAYERPARAMETER.fields_by_name['type'].enum_type = _V1LAYERPARAMETER_LAYERTYPE _V1LAYERPARAMETER.fields_by_name['blobs'].message_type = _BLOBPROTO _V1LAYERPARAMETER.fields_by_name['blob_share_mode'].enum_type = _V1LAYERPARAMETER_DIMCHECKMODE _V1LAYERPARAMETER.fields_by_name['accuracy_param'].message_type = _ACCURACYPARAMETER _V1LAYERPARAMETER.fields_by_name['argmax_param'].message_type = _ARGMAXPARAMETER _V1LAYERPARAMETER.fields_by_name['concat_param'].message_type = _CONCATPARAMETER _V1LAYERPARAMETER.fields_by_name['contrastive_loss_param'].message_type = _CONTRASTIVELOSSPARAMETER _V1LAYERPARAMETER.fields_by_name['convolution_param'].message_type = _CONVOLUTIONPARAMETER _V1LAYERPARAMETER.fields_by_name['data_param'].message_type = _DATAPARAMETER _V1LAYERPARAMETER.fields_by_name['dropout_param'].message_type = _DROPOUTPARAMETER _V1LAYERPARAMETER.fields_by_name['dummy_data_param'].message_type = _DUMMYDATAPARAMETER _V1LAYERPARAMETER.fields_by_name['eltwise_param'].message_type = _ELTWISEPARAMETER _V1LAYERPARAMETER.fields_by_name['exp_param'].message_type = _EXPPARAMETER _V1LAYERPARAMETER.fields_by_name['hdf5_data_param'].message_type = _HDF5DATAPARAMETER _V1LAYERPARAMETER.fields_by_name['hdf5_output_param'].message_type = _HDF5OUTPUTPARAMETER _V1LAYERPARAMETER.fields_by_name['hinge_loss_param'].message_type = _HINGELOSSPARAMETER _V1LAYERPARAMETER.fields_by_name['image_data_param'].message_type = _IMAGEDATAPARAMETER _V1LAYERPARAMETER.fields_by_name['infogain_loss_param'].message_type = _INFOGAINLOSSPARAMETER _V1LAYERPARAMETER.fields_by_name['inner_product_param'].message_type = _INNERPRODUCTPARAMETER _V1LAYERPARAMETER.fields_by_name['lrn_param'].message_type = _LRNPARAMETER _V1LAYERPARAMETER.fields_by_name['memory_data_param'].message_type = _MEMORYDATAPARAMETER _V1LAYERPARAMETER.fields_by_name['mvn_param'].message_type = _MVNPARAMETER _V1LAYERPARAMETER.fields_by_name['norm_param'].message_type = _NORMALIZEPARAMETER _V1LAYERPARAMETER.fields_by_name['pooling_param'].message_type = _POOLINGPARAMETER _V1LAYERPARAMETER.fields_by_name['power_param'].message_type = _POWERPARAMETER _V1LAYERPARAMETER.fields_by_name['rand_cat_conv_param'].message_type = _RANDCATCONVPARAMETER _V1LAYERPARAMETER.fields_by_name['rand_cat_param'].message_type = _RANDCATPARAMETER _V1LAYERPARAMETER.fields_by_name['relu_param'].message_type = _RELUPARAMETER _V1LAYERPARAMETER.fields_by_name['sigmoid_param'].message_type = _SIGMOIDPARAMETER _V1LAYERPARAMETER.fields_by_name['softmax_param'].message_type = _SOFTMAXPARAMETER _V1LAYERPARAMETER.fields_by_name['slice_param'].message_type = _SLICEPARAMETER _V1LAYERPARAMETER.fields_by_name['tanh_param'].message_type = _TANHPARAMETER _V1LAYERPARAMETER.fields_by_name['threshold_param'].message_type = _THRESHOLDPARAMETER _V1LAYERPARAMETER.fields_by_name['window_data_param'].message_type = _WINDOWDATAPARAMETER _V1LAYERPARAMETER.fields_by_name['transform_param'].message_type = _TRANSFORMATIONPARAMETER _V1LAYERPARAMETER.fields_by_name['loss_param'].message_type = _LOSSPARAMETER _V1LAYERPARAMETER.fields_by_name['layer'].message_type = _V0LAYERPARAMETER _V1LAYERPARAMETER_LAYERTYPE.containing_type = _V1LAYERPARAMETER _V1LAYERPARAMETER_DIMCHECKMODE.containing_type = _V1LAYERPARAMETER _V0LAYERPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _V0LAYERPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _V0LAYERPARAMETER.fields_by_name['pool'].enum_type = _V0LAYERPARAMETER_POOLMETHOD _V0LAYERPARAMETER.fields_by_name['blobs'].message_type = _BLOBPROTO _V0LAYERPARAMETER.fields_by_name['hdf5_output_param'].message_type = _HDF5OUTPUTPARAMETER _V0LAYERPARAMETER_POOLMETHOD.containing_type = _V0LAYERPARAMETER _PRELUPARAMETER.fields_by_name['filler'].message_type = _FILLERPARAMETER DESCRIPTOR.message_types_by_name['BlobShape'] = _BLOBSHAPE DESCRIPTOR.message_types_by_name['BlobProto'] = _BLOBPROTO DESCRIPTOR.message_types_by_name['BlobProtoVector'] = _BLOBPROTOVECTOR DESCRIPTOR.message_types_by_name['Datum'] = _DATUM DESCRIPTOR.message_types_by_name['FillerParameter'] = _FILLERPARAMETER DESCRIPTOR.message_types_by_name['NetParameter'] = _NETPARAMETER DESCRIPTOR.message_types_by_name['SolverParameter'] = _SOLVERPARAMETER DESCRIPTOR.message_types_by_name['SolverState'] = _SOLVERSTATE DESCRIPTOR.message_types_by_name['NetState'] = _NETSTATE DESCRIPTOR.message_types_by_name['NetStateRule'] = _NETSTATERULE DESCRIPTOR.message_types_by_name['ParamSpec'] = _PARAMSPEC DESCRIPTOR.message_types_by_name['LayerParameter'] = _LAYERPARAMETER DESCRIPTOR.message_types_by_name['TransformationParameter'] = _TRANSFORMATIONPARAMETER DESCRIPTOR.message_types_by_name['LossParameter'] = _LOSSPARAMETER DESCRIPTOR.message_types_by_name['AccuracyParameter'] = _ACCURACYPARAMETER DESCRIPTOR.message_types_by_name['ArgMaxParameter'] = _ARGMAXPARAMETER DESCRIPTOR.message_types_by_name['ConcatParameter'] = _CONCATPARAMETER DESCRIPTOR.message_types_by_name['BatchNormParameter'] = _BATCHNORMPARAMETER DESCRIPTOR.message_types_by_name['BiasParameter'] = _BIASPARAMETER DESCRIPTOR.message_types_by_name['ContrastiveLossParameter'] = _CONTRASTIVELOSSPARAMETER DESCRIPTOR.message_types_by_name['ConvolutionParameter'] = _CONVOLUTIONPARAMETER DESCRIPTOR.message_types_by_name['CropParameter'] = _CROPPARAMETER DESCRIPTOR.message_types_by_name['DataParameter'] = _DATAPARAMETER DESCRIPTOR.message_types_by_name['DropoutParameter'] = _DROPOUTPARAMETER DESCRIPTOR.message_types_by_name['DummyDataParameter'] = _DUMMYDATAPARAMETER DESCRIPTOR.message_types_by_name['EltwiseParameter'] = _ELTWISEPARAMETER DESCRIPTOR.message_types_by_name['ELUParameter'] = _ELUPARAMETER DESCRIPTOR.message_types_by_name['EmbedParameter'] = _EMBEDPARAMETER DESCRIPTOR.message_types_by_name['ExpParameter'] = _EXPPARAMETER DESCRIPTOR.message_types_by_name['FlattenParameter'] = _FLATTENPARAMETER DESCRIPTOR.message_types_by_name['HDF5DataParameter'] = _HDF5DATAPARAMETER DESCRIPTOR.message_types_by_name['HDF5OutputParameter'] = _HDF5OUTPUTPARAMETER DESCRIPTOR.message_types_by_name['HingeLossParameter'] = _HINGELOSSPARAMETER DESCRIPTOR.message_types_by_name['ImageDataParameter'] = _IMAGEDATAPARAMETER DESCRIPTOR.message_types_by_name['InfogainLossParameter'] = _INFOGAINLOSSPARAMETER DESCRIPTOR.message_types_by_name['InnerProductParameter'] = _INNERPRODUCTPARAMETER DESCRIPTOR.message_types_by_name['InputParameter'] = _INPUTPARAMETER DESCRIPTOR.message_types_by_name['LogParameter'] = _LOGPARAMETER DESCRIPTOR.message_types_by_name['LRNParameter'] = _LRNPARAMETER DESCRIPTOR.message_types_by_name['MemoryDataParameter'] = _MEMORYDATAPARAMETER DESCRIPTOR.message_types_by_name['MVNParameter'] = _MVNPARAMETER DESCRIPTOR.message_types_by_name['NormalizeParameter'] = _NORMALIZEPARAMETER DESCRIPTOR.message_types_by_name['ParameterParameter'] = _PARAMETERPARAMETER DESCRIPTOR.message_types_by_name['PoolingParameter'] = _POOLINGPARAMETER DESCRIPTOR.message_types_by_name['PowerParameter'] = _POWERPARAMETER DESCRIPTOR.message_types_by_name['PythonParameter'] = _PYTHONPARAMETER DESCRIPTOR.message_types_by_name['RandCatParameter'] = _RANDCATPARAMETER DESCRIPTOR.message_types_by_name['RandCatConvParameter'] = _RANDCATCONVPARAMETER DESCRIPTOR.message_types_by_name['RandCompParameter'] = _RANDCOMPPARAMETER DESCRIPTOR.message_types_by_name['RecurrentParameter'] = _RECURRENTPARAMETER DESCRIPTOR.message_types_by_name['ReductionParameter'] = _REDUCTIONPARAMETER DESCRIPTOR.message_types_by_name['ReLUParameter'] = _RELUPARAMETER DESCRIPTOR.message_types_by_name['ReshapeParameter'] = _RESHAPEPARAMETER DESCRIPTOR.message_types_by_name['ScaleParameter'] = _SCALEPARAMETER DESCRIPTOR.message_types_by_name['SigmoidParameter'] = _SIGMOIDPARAMETER DESCRIPTOR.message_types_by_name['SliceParameter'] = _SLICEPARAMETER DESCRIPTOR.message_types_by_name['SoftmaxParameter'] = _SOFTMAXPARAMETER DESCRIPTOR.message_types_by_name['TanHParameter'] = _TANHPARAMETER DESCRIPTOR.message_types_by_name['TileParameter'] = _TILEPARAMETER DESCRIPTOR.message_types_by_name['ThresholdParameter'] = _THRESHOLDPARAMETER DESCRIPTOR.message_types_by_name['WindowDataParameter'] = _WINDOWDATAPARAMETER DESCRIPTOR.message_types_by_name['SPPParameter'] = _SPPPARAMETER DESCRIPTOR.message_types_by_name['V1LayerParameter'] = _V1LAYERPARAMETER DESCRIPTOR.message_types_by_name['V0LayerParameter'] = _V0LAYERPARAMETER DESCRIPTOR.message_types_by_name['PReLUParameter'] = _PRELUPARAMETER DESCRIPTOR.enum_types_by_name['Phase'] = _PHASE _sym_db.RegisterFileDescriptor(DESCRIPTOR) BlobShape = _reflection.GeneratedProtocolMessageType('BlobShape', (_message.Message,), dict( DESCRIPTOR = _BLOBSHAPE, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BlobShape) )) _sym_db.RegisterMessage(BlobShape) BlobProto = _reflection.GeneratedProtocolMessageType('BlobProto', (_message.Message,), dict( DESCRIPTOR = _BLOBPROTO, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BlobProto) )) _sym_db.RegisterMessage(BlobProto) BlobProtoVector = _reflection.GeneratedProtocolMessageType('BlobProtoVector', (_message.Message,), dict( DESCRIPTOR = _BLOBPROTOVECTOR, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BlobProtoVector) )) _sym_db.RegisterMessage(BlobProtoVector) Datum = _reflection.GeneratedProtocolMessageType('Datum', (_message.Message,), dict( DESCRIPTOR = _DATUM, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.Datum) )) _sym_db.RegisterMessage(Datum) FillerParameter = _reflection.GeneratedProtocolMessageType('FillerParameter', (_message.Message,), dict( DESCRIPTOR = _FILLERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.FillerParameter) )) _sym_db.RegisterMessage(FillerParameter) NetParameter = _reflection.GeneratedProtocolMessageType('NetParameter', (_message.Message,), dict( DESCRIPTOR = _NETPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NetParameter) )) _sym_db.RegisterMessage(NetParameter) SolverParameter = _reflection.GeneratedProtocolMessageType('SolverParameter', (_message.Message,), dict( DESCRIPTOR = _SOLVERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SolverParameter) )) _sym_db.RegisterMessage(SolverParameter) SolverState = _reflection.GeneratedProtocolMessageType('SolverState', (_message.Message,), dict( DESCRIPTOR = _SOLVERSTATE, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SolverState) )) _sym_db.RegisterMessage(SolverState) NetState = _reflection.GeneratedProtocolMessageType('NetState', (_message.Message,), dict( DESCRIPTOR = _NETSTATE, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NetState) )) _sym_db.RegisterMessage(NetState) NetStateRule = _reflection.GeneratedProtocolMessageType('NetStateRule', (_message.Message,), dict( DESCRIPTOR = _NETSTATERULE, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NetStateRule) )) _sym_db.RegisterMessage(NetStateRule) ParamSpec = _reflection.GeneratedProtocolMessageType('ParamSpec', (_message.Message,), dict( DESCRIPTOR = _PARAMSPEC, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ParamSpec) )) _sym_db.RegisterMessage(ParamSpec) LayerParameter = _reflection.GeneratedProtocolMessageType('LayerParameter', (_message.Message,), dict( DESCRIPTOR = _LAYERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LayerParameter) )) _sym_db.RegisterMessage(LayerParameter) TransformationParameter = _reflection.GeneratedProtocolMessageType('TransformationParameter', (_message.Message,), dict( DESCRIPTOR = _TRANSFORMATIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.TransformationParameter) )) _sym_db.RegisterMessage(TransformationParameter) LossParameter = _reflection.GeneratedProtocolMessageType('LossParameter', (_message.Message,), dict( DESCRIPTOR = _LOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LossParameter) )) _sym_db.RegisterMessage(LossParameter) AccuracyParameter = _reflection.GeneratedProtocolMessageType('AccuracyParameter', (_message.Message,), dict( DESCRIPTOR = _ACCURACYPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.AccuracyParameter) )) _sym_db.RegisterMessage(AccuracyParameter) ArgMaxParameter = _reflection.GeneratedProtocolMessageType('ArgMaxParameter', (_message.Message,), dict( DESCRIPTOR = _ARGMAXPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ArgMaxParameter) )) _sym_db.RegisterMessage(ArgMaxParameter) ConcatParameter = _reflection.GeneratedProtocolMessageType('ConcatParameter', (_message.Message,), dict( DESCRIPTOR = _CONCATPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ConcatParameter) )) _sym_db.RegisterMessage(ConcatParameter) BatchNormParameter = _reflection.GeneratedProtocolMessageType('BatchNormParameter', (_message.Message,), dict( DESCRIPTOR = _BATCHNORMPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BatchNormParameter) )) _sym_db.RegisterMessage(BatchNormParameter) BiasParameter = _reflection.GeneratedProtocolMessageType('BiasParameter', (_message.Message,), dict( DESCRIPTOR = _BIASPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BiasParameter) )) _sym_db.RegisterMessage(BiasParameter) ContrastiveLossParameter = _reflection.GeneratedProtocolMessageType('ContrastiveLossParameter', (_message.Message,), dict( DESCRIPTOR = _CONTRASTIVELOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ContrastiveLossParameter) )) _sym_db.RegisterMessage(ContrastiveLossParameter) ConvolutionParameter = _reflection.GeneratedProtocolMessageType('ConvolutionParameter', (_message.Message,), dict( DESCRIPTOR = _CONVOLUTIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ConvolutionParameter) )) _sym_db.RegisterMessage(ConvolutionParameter) CropParameter = _reflection.GeneratedProtocolMessageType('CropParameter', (_message.Message,), dict( DESCRIPTOR = _CROPPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.CropParameter) )) _sym_db.RegisterMessage(CropParameter) DataParameter = _reflection.GeneratedProtocolMessageType('DataParameter', (_message.Message,), dict( DESCRIPTOR = _DATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DataParameter) )) _sym_db.RegisterMessage(DataParameter) DropoutParameter = _reflection.GeneratedProtocolMessageType('DropoutParameter', (_message.Message,), dict( DESCRIPTOR = _DROPOUTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DropoutParameter) )) _sym_db.RegisterMessage(DropoutParameter) DummyDataParameter = _reflection.GeneratedProtocolMessageType('DummyDataParameter', (_message.Message,), dict( DESCRIPTOR = _DUMMYDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DummyDataParameter) )) _sym_db.RegisterMessage(DummyDataParameter) EltwiseParameter = _reflection.GeneratedProtocolMessageType('EltwiseParameter', (_message.Message,), dict( DESCRIPTOR = _ELTWISEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.EltwiseParameter) )) _sym_db.RegisterMessage(EltwiseParameter) ELUParameter = _reflection.GeneratedProtocolMessageType('ELUParameter', (_message.Message,), dict( DESCRIPTOR = _ELUPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ELUParameter) )) _sym_db.RegisterMessage(ELUParameter) EmbedParameter = _reflection.GeneratedProtocolMessageType('EmbedParameter', (_message.Message,), dict( DESCRIPTOR = _EMBEDPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.EmbedParameter) )) _sym_db.RegisterMessage(EmbedParameter) ExpParameter = _reflection.GeneratedProtocolMessageType('ExpParameter', (_message.Message,), dict( DESCRIPTOR = _EXPPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ExpParameter) )) _sym_db.RegisterMessage(ExpParameter) FlattenParameter = _reflection.GeneratedProtocolMessageType('FlattenParameter', (_message.Message,), dict( DESCRIPTOR = _FLATTENPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.FlattenParameter) )) _sym_db.RegisterMessage(FlattenParameter) HDF5DataParameter = _reflection.GeneratedProtocolMessageType('HDF5DataParameter', (_message.Message,), dict( DESCRIPTOR = _HDF5DATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.HDF5DataParameter) )) _sym_db.RegisterMessage(HDF5DataParameter) HDF5OutputParameter = _reflection.GeneratedProtocolMessageType('HDF5OutputParameter', (_message.Message,), dict( DESCRIPTOR = _HDF5OUTPUTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.HDF5OutputParameter) )) _sym_db.RegisterMessage(HDF5OutputParameter) HingeLossParameter = _reflection.GeneratedProtocolMessageType('HingeLossParameter', (_message.Message,), dict( DESCRIPTOR = _HINGELOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.HingeLossParameter) )) _sym_db.RegisterMessage(HingeLossParameter) ImageDataParameter = _reflection.GeneratedProtocolMessageType('ImageDataParameter', (_message.Message,), dict( DESCRIPTOR = _IMAGEDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ImageDataParameter) )) _sym_db.RegisterMessage(ImageDataParameter) InfogainLossParameter = _reflection.GeneratedProtocolMessageType('InfogainLossParameter', (_message.Message,), dict( DESCRIPTOR = _INFOGAINLOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.InfogainLossParameter) )) _sym_db.RegisterMessage(InfogainLossParameter) InnerProductParameter = _reflection.GeneratedProtocolMessageType('InnerProductParameter', (_message.Message,), dict( DESCRIPTOR = _INNERPRODUCTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.InnerProductParameter) )) _sym_db.RegisterMessage(InnerProductParameter) InputParameter = _reflection.GeneratedProtocolMessageType('InputParameter', (_message.Message,), dict( DESCRIPTOR = _INPUTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.InputParameter) )) _sym_db.RegisterMessage(InputParameter) LogParameter = _reflection.GeneratedProtocolMessageType('LogParameter', (_message.Message,), dict( DESCRIPTOR = _LOGPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LogParameter) )) _sym_db.RegisterMessage(LogParameter) LRNParameter = _reflection.GeneratedProtocolMessageType('LRNParameter', (_message.Message,), dict( DESCRIPTOR = _LRNPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LRNParameter) )) _sym_db.RegisterMessage(LRNParameter) MemoryDataParameter = _reflection.GeneratedProtocolMessageType('MemoryDataParameter', (_message.Message,), dict( DESCRIPTOR = _MEMORYDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.MemoryDataParameter) )) _sym_db.RegisterMessage(MemoryDataParameter) MVNParameter = _reflection.GeneratedProtocolMessageType('MVNParameter', (_message.Message,), dict( DESCRIPTOR = _MVNPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.MVNParameter) )) _sym_db.RegisterMessage(MVNParameter) NormalizeParameter = _reflection.GeneratedProtocolMessageType('NormalizeParameter', (_message.Message,), dict( DESCRIPTOR = _NORMALIZEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NormalizeParameter) )) _sym_db.RegisterMessage(NormalizeParameter) ParameterParameter = _reflection.GeneratedProtocolMessageType('ParameterParameter', (_message.Message,), dict( DESCRIPTOR = _PARAMETERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ParameterParameter) )) _sym_db.RegisterMessage(ParameterParameter) PoolingParameter = _reflection.GeneratedProtocolMessageType('PoolingParameter', (_message.Message,), dict( DESCRIPTOR = _POOLINGPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PoolingParameter) )) _sym_db.RegisterMessage(PoolingParameter) PowerParameter = _reflection.GeneratedProtocolMessageType('PowerParameter', (_message.Message,), dict( DESCRIPTOR = _POWERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PowerParameter) )) _sym_db.RegisterMessage(PowerParameter) PythonParameter = _reflection.GeneratedProtocolMessageType('PythonParameter', (_message.Message,), dict( DESCRIPTOR = _PYTHONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PythonParameter) )) _sym_db.RegisterMessage(PythonParameter) RandCatParameter = _reflection.GeneratedProtocolMessageType('RandCatParameter', (_message.Message,), dict( DESCRIPTOR = _RANDCATPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.RandCatParameter) )) _sym_db.RegisterMessage(RandCatParameter) RandCatConvParameter = _reflection.GeneratedProtocolMessageType('RandCatConvParameter', (_message.Message,), dict( DESCRIPTOR = _RANDCATCONVPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.RandCatConvParameter) )) _sym_db.RegisterMessage(RandCatConvParameter) RandCompParameter = _reflection.GeneratedProtocolMessageType('RandCompParameter', (_message.Message,), dict( DESCRIPTOR = _RANDCOMPPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.RandCompParameter) )) _sym_db.RegisterMessage(RandCompParameter) RecurrentParameter = _reflection.GeneratedProtocolMessageType('RecurrentParameter', (_message.Message,), dict( DESCRIPTOR = _RECURRENTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.RecurrentParameter) )) _sym_db.RegisterMessage(RecurrentParameter) ReductionParameter = _reflection.GeneratedProtocolMessageType('ReductionParameter', (_message.Message,), dict( DESCRIPTOR = _REDUCTIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ReductionParameter) )) _sym_db.RegisterMessage(ReductionParameter) ReLUParameter = _reflection.GeneratedProtocolMessageType('ReLUParameter', (_message.Message,), dict( DESCRIPTOR = _RELUPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ReLUParameter) )) _sym_db.RegisterMessage(ReLUParameter) ReshapeParameter = _reflection.GeneratedProtocolMessageType('ReshapeParameter', (_message.Message,), dict( DESCRIPTOR = _RESHAPEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ReshapeParameter) )) _sym_db.RegisterMessage(ReshapeParameter) ScaleParameter = _reflection.GeneratedProtocolMessageType('ScaleParameter', (_message.Message,), dict( DESCRIPTOR = _SCALEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ScaleParameter) )) _sym_db.RegisterMessage(ScaleParameter) SigmoidParameter = _reflection.GeneratedProtocolMessageType('SigmoidParameter', (_message.Message,), dict( DESCRIPTOR = _SIGMOIDPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SigmoidParameter) )) _sym_db.RegisterMessage(SigmoidParameter) SliceParameter = _reflection.GeneratedProtocolMessageType('SliceParameter', (_message.Message,), dict( DESCRIPTOR = _SLICEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SliceParameter) )) _sym_db.RegisterMessage(SliceParameter) SoftmaxParameter = _reflection.GeneratedProtocolMessageType('SoftmaxParameter', (_message.Message,), dict( DESCRIPTOR = _SOFTMAXPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SoftmaxParameter) )) _sym_db.RegisterMessage(SoftmaxParameter) TanHParameter = _reflection.GeneratedProtocolMessageType('TanHParameter', (_message.Message,), dict( DESCRIPTOR = _TANHPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.TanHParameter) )) _sym_db.RegisterMessage(TanHParameter) TileParameter = _reflection.GeneratedProtocolMessageType('TileParameter', (_message.Message,), dict( DESCRIPTOR = _TILEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.TileParameter) )) _sym_db.RegisterMessage(TileParameter) ThresholdParameter = _reflection.GeneratedProtocolMessageType('ThresholdParameter', (_message.Message,), dict( DESCRIPTOR = _THRESHOLDPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ThresholdParameter) )) _sym_db.RegisterMessage(ThresholdParameter) WindowDataParameter = _reflection.GeneratedProtocolMessageType('WindowDataParameter', (_message.Message,), dict( DESCRIPTOR = _WINDOWDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.WindowDataParameter) )) _sym_db.RegisterMessage(WindowDataParameter) SPPParameter = _reflection.GeneratedProtocolMessageType('SPPParameter', (_message.Message,), dict( DESCRIPTOR = _SPPPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SPPParameter) )) _sym_db.RegisterMessage(SPPParameter) V1LayerParameter = _reflection.GeneratedProtocolMessageType('V1LayerParameter', (_message.Message,), dict( DESCRIPTOR = _V1LAYERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.V1LayerParameter) )) _sym_db.RegisterMessage(V1LayerParameter) V0LayerParameter = _reflection.GeneratedProtocolMessageType('V0LayerParameter', (_message.Message,), dict( DESCRIPTOR = _V0LAYERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.V0LayerParameter) )) _sym_db.RegisterMessage(V0LayerParameter) PReLUParameter = _reflection.GeneratedProtocolMessageType('PReLUParameter', (_message.Message,), dict( DESCRIPTOR = _PRELUPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PReLUParameter) )) _sym_db.RegisterMessage(PReLUParameter) _BLOBSHAPE.fields_by_name['dim']._options = None _BLOBPROTO.fields_by_name['data']._options = None _BLOBPROTO.fields_by_name['diff']._options = None _BLOBPROTO.fields_by_name['double_data']._options = None _BLOBPROTO.fields_by_name['double_diff']._options = None # @@protoc_insertion_point(module_scope)
[ "1317695730@qq.com" ]
1317695730@qq.com
e6df2385a6326287632d959c1ff2c0c2e9cd841a
919452e2272a7b3a0a8483c69bcd39d9e4c2c736
/excepti.py
5f190dce616fbb301f05ae73a045e21bb0ef7ac1
[]
no_license
preetam-patel/flask_programs
0c1fd82a30e896edbd5411b3e1a3f154b5974066
15a5220a9a009ce3f4d6662ea3452686dfe94ad3
refs/heads/master
2023-04-20T13:11:53.598997
2021-05-24T11:18:27
2021-05-24T11:18:27
351,060,092
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
class Error(Exception): pass class Valuetosmall(Error): pass class Valuetolarge(Error): pass class Zeronotdivisable(Error): pass
[ "preetampatel22699@gmail.com" ]
preetampatel22699@gmail.com
cdee1160e9d5c6c4b3d2a2c4144253246dc2ff23
b896be9c0e136ff88a823333f20be150470f9e8d
/Week 6/DatabaseApp.wsgi
29854fbf69d4a1ebb5a37eea9475946e86028fc2
[]
no_license
JoonasKulmala/Linux-Server-course
180e94e5ebb6d09c58fa3c94c3ef6598300a6d20
5fcb626def68f59ab66971b18c55bfd6c9be940f
refs/heads/main
2023-03-18T01:03:14.516917
2021-03-16T07:06:38
2021-03-16T07:06:38
332,947,430
0
0
null
null
null
null
UTF-8
Python
false
false
198
wsgi
def application(env, startResponse): startResponse("200 OK", [("Content-type", "text/plain")]) return [b"See you at TeroKarvinen.com\n"]from DatabaseApp.py import app as application
[ "joonas.kulmala@protonmail.com" ]
joonas.kulmala@protonmail.com
a4aaf49f16be1e0de36211c0a275da59240fabeb
6096e044b5ca95591de83695a4325d046597b713
/Final_code/read_lidar_lite.py
26ec4fab1b57ed7a2ca039f067d1c9a7353f02a5
[]
no_license
flossielau/ARoD
b9fd9f876533836935384ceb9e7cace675671400
0afc2f519a668a2c5ec3333a1acdad8d2449f22d
refs/heads/main
2023-07-16T03:41:59.319177
2021-09-04T07:27:29
2021-09-04T07:27:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
import serial, time arduino = serial.Serial('/dev/ttyACM0', 115200, timeout=1) arduino.flush() def lidar_lite(): while True: distance = arduino.readline().decode('utf-8').rstrip() #print(distance) with open("/home/pi/Desktop/lidar_lite_info.txt", "w") as output: output.write(distance)
[ "noreply@github.com" ]
flossielau.noreply@github.com
0a53ab68989d286f013da079bf2fa922a9c6acde
8dd000d05a29cece1460fd48c4f6b12c56281ca1
/ugly/default_settings.py
e3dea2571f19db51dc2da821e5e99b015d7ad1a8
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
imclab/ugly
3e2717982b6e999c99d3e884d7f4d48d08fc7609
bc09834849184552619ee926d7563ed37630accb
refs/heads/master
2021-01-15T19:35:38.835572
2014-01-08T20:24:56
2014-01-08T20:24:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
# Flask stuff. DEBUG = False TESTING = False SECRET_KEY = "development key" # App stuff. ADMIN_EMAIL = "Ugly Reader <ugly@dfm.io>" BASE_MAILBOX = "[Ugly Reader]" AES_KEY = b"test AES key... change this in production" MAX_FEEDS = 100 # Database stuff. SQLALCHEMY_DATABASE_URI = "postgresql://localhost/ugly" # Google OAuth stuff. GOOGLE_OAUTH2_CLIENT_ID = None GOOGLE_OAUTH2_CLIENT_SECRET = None
[ "danfm@nyu.edu" ]
danfm@nyu.edu
8e4d97f37da8f8810b76dc4891344d88eb65c183
292f0c2a5985fb1bcdcfc9ac3a4acbfc9b528643
/MLB the Show 2019 V2/classesv2.py
dc9d2b20ccd5a70b7a6dbc0d98489c3c19695675
[]
no_license
AtBatMac/19_The_Show
626c917b653d9840df757a650df42b26fc8a3017
d7b332f06b1adce363880581178a75fbef7e1cfa
refs/heads/master
2020-07-10T08:13:42.084410
2019-08-24T21:52:58
2019-08-24T21:52:58
204,215,166
0
0
null
2019-08-24T21:48:15
2019-08-24T21:34:19
null
UTF-8
Python
false
false
12,108
py
import random import pandas as pd import datetime as dt class GlobalSwitch: DEBUG = False class Utilities: def Pause(): if GlobalSwitch.DEBUG == True: input('Press any key to continue...') class Base: def __init__(self, name): self.Name = name self.PlayerHere = None class Stat: def __init__(self, name, range): self.Name = name self.Value = range class Pitcher: def __init__(self, name, myTeam, bid, avgouts, SingleR, DoubleR, TripleR, HomeRunR, WalkR, SOR, FlyGrR, DPR, source): # general stats self.Name = name self.MyTeam = myTeam self.BID = bid self.Avgouts = avgouts # base stats self.SingleR = SingleR self.DoubleR = DoubleR self.TripleR = TripleR self.HomeRunR = HomeRunR self.WalkR = WalkR self.SOR = SOR self.FlyGrR = FlyGrR self.DPR = DPR self.Source = source class Team: def __init__(self, name): self.Name = name self.Score = 0 self.Players = None self.AccumulatedOuts = 0 self.OutCount = 0 self.CurrentPlayer = None self.CurrentIndex = 0 self.Pitcher = None self.OpposingTeam = None self.Pitchers = None def GetPlayer(self): if (self.CurrentIndex > len(self.Players) - 1): self.CurrentIndex = 0 return self.Players[self.CurrentIndex] def HalfInning(self, bases): teamIsIn = True while (teamIsIn): OpposingPitcherTeam = self.OpposingTeam # Activeplayer = self.GetPlayer() Activeplayer.swing(bases, OpposingPitcherTeam) # Activeplayer.PrintBasesStatus(bases) self.CurrentIndex += 1 # self.PrintScore() Utilities.Pause() if (self.OutCount >= 3): ResetBases(bases) teamIsIn = False return # def PrintScore(self): # print('DEBUG: Stats for ' + self.Name + # ' Score: ' + str(self.Score) + # ' Outs: ' + str(self.OutCount) + # ' Total Outs: ' + str(self.AccumulatedOuts)) class Player: def __init__(self, name, myTeam, bid, SingleR, DoubleR, TripleR, HomeRunR, WalkR, SOR, FlyGrR, DPR, source): # general stats self.Name = name self.MyTeam = myTeam self.BID = bid # base stats self.SingleR = SingleR self.DoubleR = DoubleR self.TripleR = TripleR self.HomeRunR = HomeRunR self.WalkR = WalkR self.SOR = SOR self.FlyGrR = FlyGrR self.DPR = DPR self.Source = source def swing(self, allBases, Opposingteam): if self.MyTeam.AccumulatedOuts < Opposingteam.Pitcher.Avgouts: #print(Opposingteam.Pitcher.Name) swingResult = self.getSwingResult(Opposingteam.Pitcher); #print(self.MyTeam.AccumulatedOuts) #print(self.Name + ' gets swingResult = ' + str(swingResult)) if (swingResult > 0 and swingResult < 4): self.AdjustBases(swingResult, allBases) allBases[swingResult].PlayerHere = self elif (swingResult == 4): self.AdjustBases(swingResult, allBases) self.MyTeam.Score += 1 elif (swingResult == 0): self.MyTeam.OutCount += 1 self.MyTeam.AccumulatedOuts += 1 else: Opposingteam.Pitcher = Opposingteam.Pitchers[1] #print(Opposingteam.Pitcher.Name) #print('\n' + Opposingteam.Pitcher.Name + ' is now pitching' + '\n') swingResult = self.getSwingResult(Opposingteam.Pitcher); #print(self.MyTeam.AccumulatedOuts) #print(self.Name + ' gets swingResult = ' + str(swingResult)) if (swingResult > 0 and swingResult < 4): self.AdjustBases(swingResult, allBases) allBases[swingResult].PlayerHere = self elif (swingResult == 4): self.AdjustBases(swingResult, allBases) self.MyTeam.Score += 1 elif (swingResult == 0): self.MyTeam.OutCount += 1 self.MyTeam.AccumulatedOuts += 1 def getSwingResult(self, OpposingPitcher): #print(OpposingPitcher.Name + ' pitched to ' + self.Name + '\n') result = -1 p = OpposingPitcher # print(tempOBP) ball = random.randint(1, 1000) if p.TripleR == None: p.TripleR = 0 else: p.TripleR = p.TripleR if self.TripleR == None: self.TripleR = 0 else: self.TripleR = self.TripleR singleC = int(round((p.SingleR + self.SingleR) / 2)) doubleC = int(round((p.DoubleR + self.DoubleR) / 2)) tripleC = int(round((p.TripleR + self.TripleR) / 2)) homerunC = int(round((p.HomeRunR + self.HomeRunR) / 2)) walkC = int(round((p.WalkR + self.WalkR) / 2)) soC = int(round((p.SOR + self.SOR) / 2)) FlyGrC = int(round((p.FlyGrR + self.FlyGrR) / 2)) DPC = int(round((p.DPR + self.DPR) / 2)) total_range = 1001 if tripleC == None: tripleC = 0 else: tripleC = tripleC single = int(round(total_range - singleC)) double = int(round(single - doubleC)) triple = int(round(double - tripleC)) homerun = int(round(triple - homerunC)) walk = int(round(homerun - walkC)) strikeout = int(round(walk - soC)) field_out = int(round(strikeout - FlyGrC)) double_play = int(round(field_out - DPC)) if double == None: double = 0 else: double = double # Converts range values to ranges per at bat result DPR = range(0, field_out) FlyGrR = range(field_out, strikeout) SOR = range(strikeout, walk) walkR = range(walk, homerun) homerunR = range(homerun, triple) tripleR = range(triple, double) doubleR = range(double, single) singleR = range(single, total_range) # assigns result of ab depending on where ball is in range if ball in DPR: result = 0 elif ball in FlyGrR: result = 0 elif ball in SOR: result = 0 elif ball in walkR: result = 1 elif ball in homerunR: result = 4 elif ball in tripleR: result = 3 elif ball in doubleR: result = 2 elif ball in singleR: result = 1 else: print('error') print(ball) print(self.Name) #def PrintBasesStatus(self, allBases): #for base in allBases: #if (base.PlayerHere != None): #print('Name: ' + base.Name + '\t Player: ' + base.PlayerHere.Name) #else: #print('Name: ' + base.Name + '\t Player: None') return result def AdjustBases(self, swingResult, allBases): count = 4 for base in reversed(allBases): if (base.PlayerHere != None and count == 4 and swingResult >= 1): count -= 1 # player is on Base 4 and swingResult is at least 1 # remove player from bases list and add 1 to teams score base.PlayerHere = None self.MyTeam.Score += 1 elif (base.PlayerHere != None and count == 3 and swingResult >= 2): count -= 1 # player is on Base 3 and swingResult is at least 2 # remove player from bases list and add 1 to teams score base.PlayerHere = None self.MyTeam.Score += 1 elif (base.PlayerHere != None and count == 2 and swingResult >= 3): count -= 1 # player is on Base 2 and swingResult is at least 3 # remove player from bases list and add 1 to teams score base.PlayerHere = None self.MyTeam.Score += 1 elif (base.PlayerHere != None and count == 1 and swingResult >= 4): count -= 1 # player is on Base 1 and swingResult is at least 4 # remove player from bases list and add 1 to teams score base.PlayerHere = None self.MyTeam.Score += 1 elif (base.PlayerHere != None): count -= 1 tempPlayer = base.PlayerHere allBases[count + swingResult].PlayerHere = tempPlayer base.PlayerHere = None else: count -= 1 class Game: def __init__(self, team1, team2): self.Team1 = team1 self.Team2 = team2 self.CurrentInning = 0 self.Team1wins = 0 self.Team2wins = 0 def PlayBall(self, bases): for i in range(1, 10): self.CurrentInning = i self.Team1.HalfInning(bases) self.Team1.OutCount = 0 self.Team2.HalfInning(bases) self.Team2.OutCount = 0 #self.PrintCurrentResults() # self.Team1.OpposingTeam = (Team2) # self.Team2.OpposingTeam = (Team1) Utilities.Pause() def PlayRepeat(self, iterations, bases): for i in range(0, iterations): self.PlayBall(bases) if self.Team1.Score > self.Team2.Score: self.Team1wins += 1 elif self.Team2.Score > self.Team1.Score: self.Team2wins += 1 else: pass # for draw scenario self.CurrentInning = 0 self.Team1.OutCount = 0 self.Team2.OutCount = 0 self.Team1.Score = 0 self.Team2.Score = 0 self.Team1.AccumulatedOuts = 0 self.Team2.AccumulatedOuts = 0 self.Team1.Pitcher = self.Team1.Pitchers[0] self.Team2.Pitcher = self.Team2.Pitchers[0] #print(self.Team1wins) #print(self.Team2wins) #print(self.Team1.Name) #print(self.Team2.Name) t1wins = self.Team1wins t2wins = self.Team2wins todays_date = dt.datetime.today().strftime("%d/%m/%Y") totalgamewins = t1wins + t2wins t1_win_percent = round(t1wins / totalgamewins, 2) t2_win_percent = round(t2wins / totalgamewins, 2) df = pd.read_csv('game_result_new.csv') df.drop(['Unnamed: 0'], axis=1, inplace=True) df.to_csv('game_result_old.csv') game_series = [todays_date, self.Team1.Name, self.Team1.Pitcher.Name, t1_win_percent, self.Team2.Name, self.Team2.Pitcher.Name, t2_win_percent] print(game_series) df1 = pd.DataFrame([game_series]) df1.columns = ['Date', 'away_team', 'away_pitcher', 'away_win_percent', 'home_team', 'home_pitcher', 'home_win_percent'] df2 = df.append(df1, sort=False) df2.to_csv('game_result_new.csv') #def PrintCurrentResults(self): #print('Inning ' + str(self.CurrentInning) + ': ' #+ self.Team1.Name + " " + str(self.Team1.Score) #+ self.Team2.Name + " " + str(self.Team2.Score)) # general utility function # general utility function def ResetBases(bases): for base in bases: base.PlayerHere = None
[ "noreply@github.com" ]
AtBatMac.noreply@github.com
fcd60992320670938ad1008e770d883589962908
8a35a12c48bfaaf7c7d36bb3dd13bb1a3e3189a2
/home/urls.py
5de6e595883ab1ea0f268eeb047f42dda1169531
[]
no_license
Aurelian-Nkonde/Django-login-system-authentication-
e91eebf8e160aa29fb4544cd5008fb966dd06454
9a1178e7fc3ab54c1530bc928ab8c2cda1f17d29
refs/heads/master
2022-09-01T18:46:45.855765
2020-05-09T00:05:23
2020-05-09T00:05:23
262,452,784
1
0
null
null
null
null
UTF-8
Python
false
false
114
py
from django.urls import path from .views import Home urlpatterns = [ path('', Home.as_view(), name="home") ]
[ "aurelianrobot@gmail.com" ]
aurelianrobot@gmail.com
7c8e6b5117040ebbb9607cd4947cdba6e45e554d
25b5f5a6c9c95ef9a1264eef12384003f037cb58
/solve_captchas.py
862ca107b30f7b716ad90a58011ea7509c054c67
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
RobTwoThree/Monocle-Level30
7dbe76ead87e489faff6ef68d267fbc3610d953e
94ed6e121ad41b437083bf207954c34ff8f312f9
refs/heads/master
2022-11-22T06:17:51.203216
2017-12-07T22:11:52
2017-12-07T22:11:52
113,503,725
1
1
MIT
2020-07-22T03:56:03
2017-12-07T22:12:23
Python
UTF-8
Python
false
false
7,691
py
#!/usr/bin/env python3 from asyncio import get_event_loop, sleep from multiprocessing.managers import BaseManager from time import time from queue import Empty, Full from aiopogo import PGoApi, close_sessions, activate_hash_server, exceptions as ex from aiopogo.auth_ptc import AuthPtc from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from monocle import altitudes, sanitized as conf from monocle.utils import get_device_info, get_address, randomize_point from monocle.bounds import center async def solve_captcha(url, api, driver, timestamp): driver.get(url) WebDriverWait(driver, 86400).until(EC.text_to_be_present_in_element_value((By.NAME, "g-recaptcha-response"), "")) driver.switch_to.frame(driver.find_element_by_xpath("//*/iframe[@title='recaptcha challenge']")) token = driver.find_element_by_id("recaptcha-token").get_attribute("value") request = api.create_request() request.verify_challenge(token=token) request.get_hatched_eggs() request.get_inventory(last_timestamp_ms=timestamp) request.check_awarded_badges() request.get_buddy_walked() request.check_challenge() for attempt in range(-1, conf.MAX_RETRIES): try: responses = await request.call() return responses['VERIFY_CHALLENGE'].success except (ex.HashServerException, ex.MalformedResponseException, ex.ServerBusyOrOfflineException) as e: if attempt == conf.MAX_RETRIES - 1: raise else: print('{}, trying again soon.'.format(e)) await sleep(4) except (KeyError, TypeError): return False async def main(): try: class AccountManager(BaseManager): pass AccountManager.register('captcha_queue') AccountManager.register('extra_queue') AccountManager.register('lv30_captcha_queue') AccountManager.register('lv30_account_queue') manager = AccountManager(address=get_address(), authkey=conf.AUTHKEY) manager.connect() captcha_queue = manager.captcha_queue() extra_queue = manager.extra_queue() lv30_captcha_queue = manager.lv30_captcha_queue() lv30_account_queue = manager.lv30_account_queue() def put_account_queue(account): if account.get('level', 0) < 30: extra_queue.put(account) else: lv30_account_queue.put(account) def put_captcha_queue(account): if account.get('leve', 0) < 30: captcha_queue.put(account) else: lv30_captcha_queue.put(account) if conf.GO_HASH: hashkey = conf.GO_HASH_KEY else: hashkey = conf.HASH_KEY activate_hash_server(hashkey, go_hash=conf.GO_HASH, hash_endpoint=conf.HASH_ENDPOINT, gohash_endpoint=conf.GOHASH_ENDPOINT) driver = webdriver.Chrome() driver.set_window_size(803, 807) while not captcha_queue.empty() or not lv30_captcha_queue.empty(): try: account = captcha_queue.get() except Empty: try: account = lv30_captcha_queue.get() except Empty: break username = account.get('username') location = account.get('location') if location and location != (0,0,0): lat = location[0] lon = location[1] else: lat, lon = randomize_point(center, 0.0001) try: alt = altitudes.get((lat, lon)) except KeyError: alt = await altitudes.fetch((lat, lon)) try: device_info = get_device_info(account) api = PGoApi(device_info=device_info) api.set_position(lat, lon, alt) authenticated = False try: if account['provider'] == 'ptc': api.auth_provider = AuthPtc() api.auth_provider._access_token = account['auth'] api.auth_provider._access_token_expiry = account['expiry'] if api.auth_provider.check_access_token(): api.auth_provider.authenticated = True authenticated = True except KeyError: pass if not authenticated: await api.set_authentication(username=username, password=account['password'], provider=account.get('provider', 'ptc')) request = api.create_request() await request.call() await sleep(.6) request.download_remote_config_version(platform=1, app_version=8300) request.check_challenge() request.get_hatched_eggs() request.get_inventory(last_timestamp_ms=account.get('inventory_timestamp', 0)) request.check_awarded_badges() request.download_settings() responses = await request.call() account['time'] = time() challenge_url = responses['CHECK_CHALLENGE'].challenge_url timestamp = responses['GET_INVENTORY'].inventory_delta.new_timestamp_ms account['location'] = lat, lon account['inventory_timestamp'] = timestamp if challenge_url == ' ': account['captcha'] = False print('No CAPTCHA was pending on {}.'.format(username)) put_account_queue(account) else: print('Trying to solve {}.'.format(username)) if await solve_captcha(challenge_url, api, driver, timestamp): account['time'] = time() account['captcha'] = False print('Solved CAPTCHA for {}, putting back in rotation.'.format(username)) put_account_queue(account) else: account['time'] = time() print('Failed to solve for {}'.format(username)) put_captcha_queue(account) except KeyboardInterrupt: put_captcha_queue(account) break except KeyError: print('Unexpected or empty response for {}, putting back on queue.'.format(username)) put_captcha_queue(account) try: print(response) except Exception: pass await sleep(3) except (ex.AuthException, ex.AuthTokenExpiredException) as e: print('Authentication error on {}: {}'.format(username, e)) put_captcha_queue(account) await sleep(3) except ex.AiopogoError as e: print('aiopogo error on {}: {}'.format(username, e)) put_captcha_queue(account) await sleep(3) except Exception: put_captcha_queue(account) raise finally: try: driver.close() close_sessions() except Exception: pass if __name__ == '__main__': loop = get_event_loop() loop.run_until_complete(main())
[ "rsayson31@gmail.com" ]
rsayson31@gmail.com
7eb6478f752ca6bb7866a7e1f80dbd03688794f0
e01389a37561a0eff13eaab40e12acea6935fe32
/app/main.py
46702cb928707337e19f711c90360a3715c2f2d9
[]
no_license
fabianbrash/py-fastapi-01
7f777ea29f72e7b6803c87bf750fabc21153e2d7
3c6f0cf10de8505d408b759aa216f13640d9e6f4
refs/heads/main
2023-03-14T22:19:23.589554
2021-03-25T17:00:45
2021-03-25T17:00:45
351,512,011
0
0
null
null
null
null
UTF-8
Python
false
false
604
py
from fastapi import FastAPI from typing import Optional from fastapi.middleware.cors import CORSMiddleware app = FastAPI() origins = [ "http://localhost", "https://localhost", "http://localhost:3000", "https://localhost:3000" ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["GET"], allow_headers=["*"], ) @app.get("/") async def read_root(): return {"message": "Hello World"} @app.get("/items/{item_id}") async def read_item(item_id: int, q: Optional[str] = None): return {"item_id" : item_id, "q" : q}
[ "fabianbrash@gmail.com" ]
fabianbrash@gmail.com
1856c7c864ac34d62c6c9bc7de93fbbd76a236f0
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/tags/2009.1/x11/terminal/xterm/actions.py
0bc996b345bff3ffad1468eeeffc1e93bc0c3d83
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,072
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2009 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/copyleft/gpl.txt. from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import shelltools from pisi.actionsapi import get def setup(): shelltools.export("CC", get.CC()) autotools.configure(" \ --disable-full-tgetent \ --with-app-defaults=/usr/share/X11/app-defaults \ --disable-desktop \ --with-utempter \ --with-tty-group=tty \ --enable-256-color \ --enable-exec-xterm \ --enable-freetype \ --enable-luit \ --enable-wide-chars \ --enable-warnings \ ") def build(): autotools.make() def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) pisitools.removeDir("/usr/share/pixmaps") pisitools.dodoc("README.i18n", "xterm.log.html", "ctlseqs.txt", "16colors.txt")
[ "yusuf.aydemir@istanbul.com" ]
yusuf.aydemir@istanbul.com
60a2a263c9e08bdab0158b8361014feb52d55f62
816226d25e4a70fd29c7761f87c11a2d748e5a3f
/L7_Stacks and Queues/7.2_Fish.py
4090247ff189f1b667f611c34350766a3e234730
[]
no_license
yuelan313/Codility-Lessons-By-Python3
6e1595af58c3af2c9cb638aefbfffb4c2f916714
ccd0aae6af0fd9d68f080c468cad207f34c36b12
refs/heads/master
2023-03-16T13:29:22.270786
2019-03-25T05:56:25
2019-03-25T05:56:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
811
py
# -*- coding:utf-8 -*- # &Author AnFany # Lesson 7:Stacks and Queues # P 7.2 Fish def solution(A, B): """ 相遇的鱼大鱼吃小鱼 :param A: A表示鱼的大小 :param B: 表示鱼游的方向 :return: 活鱼的数目 """ alive_fish = 0 fish_down = [] # 存储向下游的鱼 for index, value in enumerate(B): if value == 0: if len(fish_down) == 0: alive_fish += 1 else: # 开始判断吃鱼 try: while fish_down[-1] < A[index]: fish_down.pop(-1) except IndexError: alive_fish += 1 else: fish_down.append(A[index]) return alive_fish + len(fish_down)
[ "noreply@github.com" ]
yuelan313.noreply@github.com
57fec9d9d6b9b4b108b47c61da6a3c3f9a922f9f
42cd876257807de1c851543cabcad9101b6d8170
/cogs/events/TwitterLike.py
8482388dc93006012444e1177e8585518edda9a2
[ "MIT" ]
permissive
RuCybernetic/CyberTyanBot
3e6b7a340b3b2e7ba01a780a97ad42117a38b677
b2eee274d20833073cceb9bff31c713b2116ffd2
refs/heads/master
2022-04-06T04:10:50.474026
2020-02-02T07:50:53
2020-02-02T07:50:53
236,075,801
1
0
null
null
null
null
UTF-8
Python
false
false
472
py
from discord.ext import commands import discord class TwitCog(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_message(self, message): if message.content.startswith('https://twitter.com/'): await message.add_reaction('<:like:656406179471294465>') await message.add_reaction('<:dislike:656406199490576384>') def setup(bot): bot.add_cog(TwitCog(bot))
[ "noreply@github.com" ]
RuCybernetic.noreply@github.com
f700a0aaf43c7cb416ac0aacb1ffd9172706fe7c
822f463760c085503bb5bb77b467fea7c050bd7a
/main.py
58358fc68ec2af633f388f484b2a38db9e29ac05
[]
no_license
andreYoo/AutoCrwaler_fixed
c3969aa2805d0adcfabf2026fec4b692d8339714
9317c69ef7132afa7fd023b8ab2c2660971384d5
refs/heads/master
2021-01-02T15:37:28.648044
2020-02-11T05:45:11
2020-02-11T05:45:11
239,685,403
1
0
null
null
null
null
UTF-8
Python
false
false
11,392
py
""" Copyright 2018 YoongiKim Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import requests import shutil from multiprocessing import Pool import argparse from collect_links import CollectLinks import imghdr class Sites: GOOGLE = 1 NAVER = 2 GOOGLE_FULL = 3 NAVER_FULL = 4 @staticmethod def get_text(code): if code == Sites.GOOGLE: return 'google' elif code == Sites.NAVER: return 'naver' elif code == Sites.GOOGLE_FULL: return 'google' elif code == Sites.NAVER_FULL: return 'naver' @staticmethod def get_face_url(code): if code == Sites.GOOGLE or Sites.GOOGLE_FULL: return "&tbs=itp:face" if code == Sites.NAVER or Sites.NAVER_FULL: return "&face=1" class AutoCrawler: def __init__(self, skip_already_exist=True, n_threads=4, do_google=True, do_naver=True, download_path='download', full_resolution=False, face=False): """ :param skip_already_exist: Skips keyword already downloaded before. This is needed when re-downloading. :param n_threads: Number of threads to download. :param do_google: Download from google.com (boolean) :param do_naver: Download from naver.com (boolean) :param download_path: Download folder path :param full_resolution: Download full resolution image instead of thumbnails (slow) :param face: Face search mode """ self.skip = skip_already_exist self.n_threads = n_threads self.do_google = do_google self.do_naver = do_naver self.download_path = download_path self.full_resolution = full_resolution self.face = face os.makedirs('./{}'.format(self.download_path), exist_ok=True) @staticmethod def all_dirs(path): paths = [] for dir in os.listdir(path): if os.path.isdir(path + '/' + dir): paths.append(path + '/' + dir) return paths @staticmethod def all_files(path): paths = [] for root, dirs, files in os.walk(path): for file in files: if os.path.isfile(path + '/' + file): paths.append(path + '/' + file) return paths @staticmethod def get_extension_from_link(link, default='jpg'): splits = str(link).split('.') if len(splits) == 0: return default ext = splits[-1].lower() if ext == 'jpg' or ext == 'jpeg': return 'jpg' elif ext == 'gif': return 'gif' elif ext == 'png': return 'png' else: return default @staticmethod def validate_image(path): ext = imghdr.what(path) if ext == 'jpeg': ext = 'jpg' return ext # returns None if not valid @staticmethod def make_dir(dirname): current_path = os.getcwd() path = os.path.join(current_path, dirname) if not os.path.exists(path): os.makedirs(path) @staticmethod def get_keywords(keywords_file='keywords.txt'): # read search keywords from file with open(keywords_file, 'r', encoding='utf-8-sig') as f: text = f.read() lines = text.split('\n') lines = filter(lambda x: x != '' and x is not None, lines) keywords = sorted(set(lines)) print('{} keywords found: {}'.format(len(keywords), keywords)) # re-save sorted keywords with open(keywords_file, 'w+', encoding='utf-8') as f: for keyword in keywords: f.write('{}\n'.format(keyword)) return keywords @staticmethod def save_object_to_file(object, file_path): try: with open('{}'.format(file_path), 'wb') as file: shutil.copyfileobj(object.raw, file) except Exception as e: print('Save failed - {}'.format(e)) def download_images(self, keyword, links, site_name): self.make_dir('{}/{}'.format(self.download_path, keyword)) total = len(links) print(total) for index, link in enumerate(links): try: print('Downloading {} from {}: {} / {}'.format(keyword, site_name, index + 1, total)) response = requests.get(link, stream=True) ext = self.get_extension_from_link(link) no_ext_path = '{}/{}/{}_{}'.format(self.download_path, keyword, site_name, str(index).zfill(4)) path = no_ext_path + '.' + ext self.save_object_to_file(response, path) del response ext2 = self.validate_image(path) if ext2 is None: print('Unreadable file - {}'.format(link)) os.remove(path) else: if ext != ext2: path2 = no_ext_path + '.' + ext2 os.rename(path, path2) print('Renamed extension {} -> {}'.format(ext, ext2)) except Exception as e: print('Download failed - ', e) continue def download_from_site(self, keyword, site_code): site_name = Sites.get_text(site_code) add_url = Sites.get_face_url(site_code) if self.face else "" try: collect = CollectLinks() # initialize chrome driver except Exception as e: print('Error occurred while initializing chromedriver - {}'.format(e)) return try: print('Collecting links... {} from {}'.format(keyword, site_name)) if site_code == Sites.GOOGLE: links = collect.google(keyword, add_url) elif site_code == Sites.NAVER: links = collect.naver(keyword, add_url) elif site_code == Sites.GOOGLE_FULL: links = collect.google_full(keyword, add_url) elif site_code == Sites.NAVER_FULL: links = collect.naver_full(keyword, add_url) else: print('Invalid Site Code') links = [] print('Downloading images from collected links... {} from {}'.format(keyword, site_name)) print(links) self.download_images(keyword, links, site_name) print('Done {} : {}'.format(site_name, keyword)) except Exception as e: print('Exception {}:{} - {}'.format(site_name, keyword, e)) def download(self, args): self.download_from_site(keyword=args[0], site_code=args[1]) def do_crawling(self): keywords = self.get_keywords() tasks = [] for keyword in keywords: dir_name = '{}/{}'.format(self.download_path, keyword) ''' if os.path.exists(os.path.join(os.getcwd(), dir_name)) and self.skip: print('Skipping already existing directory {}'.format(dir_name)) continue ''' if self.do_google: if self.full_resolution: tasks.append([keyword, Sites.GOOGLE_FULL]) else: tasks.append([keyword, Sites.GOOGLE]) if self.do_naver: if self.full_resolution: tasks.append([keyword, Sites.NAVER_FULL]) else: tasks.append([keyword, Sites.NAVER]) pool = Pool(self.n_threads) pool.map_async(self.download, tasks) pool.close() pool.join() print('Task ended. Pool join.') self.imbalance_check() print('End Program') def imbalance_check(self): print('Data imbalance checking...') dict_num_files = {} for dir in self.all_dirs(self.download_path): n_files = len(self.all_files(dir)) dict_num_files[dir] = n_files avg = 0 for dir, n_files in dict_num_files.items(): avg += n_files / len(dict_num_files) print('dir: {}, file_count: {}'.format(dir, n_files)) dict_too_small = {} for dir, n_files in dict_num_files.items(): if n_files < avg * 0.5: dict_too_small[dir] = n_files if len(dict_too_small) >= 1: print('Data imbalance detected.') print('Below keywords have smaller than 50% of average file count.') print('I recommend you to remove these directories and re-download for that keyword.') print('_________________________________') print('Too small file count directories:') for dir, n_files in dict_too_small.items(): print('dir: {}, file_count: {}'.format(dir, n_files)) print("Remove directories above? (y/n)") answer = input() if answer == 'y': # removing directories too small files print("Removing too small file count directories...") for dir, n_files in dict_too_small.items(): shutil.rmtree(dir) print('Removed {}'.format(dir)) print('Now re-run this program to re-download removed files. (with skip_already_exist=True)') else: print('Data imbalance not detected.') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--skip', type=str, default='false', help='Skips keyword already downloaded before. This is needed when re-downloading.') parser.add_argument('--threads', type=int, default=3, help='Number of threads to download.') parser.add_argument('--google', type=str, default='true', help='Download from google.com (boolean)') parser.add_argument('--naver', type=str, default='true', help='Download from naver.com (boolean)') parser.add_argument('--full', type=str, default='true', help='Download full resolution image instead of thumbnails (slow)') parser.add_argument('--face', type=str, default='false', help='Face search mode') args = parser.parse_args() _skip = False if str(args.skip).lower() == 'false' else True _threads = args.threads _google = False if str(args.google).lower() == 'false' else True _naver = False if str(args.naver).lower() == 'false' else True _full = False if str(args.full).lower() == 'false' else True _face = False if str(args.face).lower() == 'false' else True print('Options - skip:{}, threads:{}, google:{}, naver:{}, full_resolution:{}, face:{}'.format(_skip, _threads, _google, _naver, _full, _face)) crawler = AutoCrawler(skip_already_exist=_skip, n_threads=_threads, do_google=_google, do_naver=_naver, full_resolution=_full, face=_face) crawler.do_crawling()
[ "jm.andrew.yu@gmail.com" ]
jm.andrew.yu@gmail.com
4464ee352e6953270b9b98f495b875594be09a66
5a81a8e9710298e4639b0f3fd9e22d9bb9d35560
/Servo_Driver/__init__.py
6393a3de99093c117c66de3fe708a246ea4a51e0
[]
no_license
Limbotics/linux_dev
debf5b01eb1b5041b83987fb0fd1d0aac395a8ab
2879c9a361bf0f05cb90e76d736a479196e98130
refs/heads/main
2023-08-05T07:22:47.543617
2021-09-03T03:50:41
2021-09-03T03:50:41
366,222,696
0
0
null
null
null
null
UTF-8
Python
false
false
36
py
# __init__.py #from .servo import *
[ "jeredtbell@gmail.com" ]
jeredtbell@gmail.com
187f7fe3a660bd7d1b2b24c4caec7670cda6b6d0
c4adf55f32a885ca73af9cc37a5276cd86f637ac
/gcj2010QRA.py
de09181308bacfae3c0d6115d3a2e7dfcf45837f
[]
no_license
jasy/gcj
6f2c6a3df1535737ce0bea0937ba56de3a5500c9
0fa244f6d28f3486abd4cdc8e44fd4efc841dbca
refs/heads/master
2021-01-19T02:01:44.797406
2020-04-12T05:54:23
2020-04-12T05:54:23
3,659,840
1
0
null
null
null
null
UTF-8
Python
false
false
242
py
#!/usr/bin/env python import sys def solve(): N,K = map(int,sys.stdin.readline().split()) b = (1<<N)-1 return "ON" if (K&b)==b else "OFF" for x in range(int(sys.stdin.readline())): print("Case #"+str(x+1)+": "+str(solve()))
[ "st@step.skr.jp" ]
st@step.skr.jp
19a5eb94d0a3c8ccb52b085d6825e08f5a8062ca
51f2492a5c207e3664de8f6b2d54bb93e313ca63
/atcoder/soundhound2018-summer-qual/c.py
93091c2550ea9792540a7ddf7fe97eb7d9c2060f
[ "WTFPL", "LicenseRef-scancode-unknown-license-reference" ]
permissive
abeaumont/competitive-programming
23c5aabd587d7bb15a61efd3428838cb934233dd
a24c9b89941a59d344b51dc1010de66522b1a0dd
refs/heads/master
2023-09-01T09:50:58.267361
2023-07-31T18:00:10
2023-07-31T18:00:10
117,589,708
618
262
WTFPL
2023-07-12T17:36:20
2018-01-15T20:00:56
C++
UTF-8
Python
false
false
296
py
#!/usr/bin/env python3 # https://soundhound2018-summer-qual.contest.atcoder.jp/tasks/soundhound2018_summer_qual_c n, m, d = map(int, input().split()) if d == 0: print('{:.10f}'.format((m - 1) / n)) else: t = n * (n - 1) // 2 print('{:.10f}'.format((m - 1) * (n - 1) * (n - d) / (t * n)))
[ "alfredo.beaumont@gmail.com" ]
alfredo.beaumont@gmail.com
950d053477144b65b625fcd8933469df6ad5558c
80a0f0352ce0938fd34f697d7af65ad6305ff796
/chapter2 variables and datatypes/05pr01add.py
16767d190cf0a392dac0f783d3c225e0528a5196
[]
no_license
ramyashah27/chapter-2-and-3-strings-and-variables
76975d00dfe7b5d9a577b74caef96b27c00b26ef
e1b772672d6a575c7a18719a1b08939debe4c7f1
refs/heads/main
2023-02-10T19:23:37.863244
2021-01-04T16:05:01
2021-01-04T16:05:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
# a=34 # b=45 # print('the sum of two integer is' , a+b) # c=4000 # d=5 # print("the division of 2 numbers is", c/d)l a=45 b=50 a>b
[ "noreply@github.com" ]
ramyashah27.noreply@github.com
8a2eb862ad50edda68a729d3dc9f11fc97df64e8
ec85250addb7357dfe7bb3e0680d53fc7b0fd8fb
/examples/docs_snippets/docs_snippets_tests/concepts_tests/resources_tests/test_resources.py
5e07b899452a7f25971b2a9d834e8dd7bb8a8a0f
[ "Apache-2.0" ]
permissive
dagster-io/dagster
6adb5deee8bcf3ea1866a6a64f2ed81e1db5e73a
fe21995e0402878437a828c6a4244025eac8c43b
refs/heads/master
2023-09-05T20:46:08.203794
2023-09-05T19:54:52
2023-09-05T19:54:52
131,619,646
8,565
1,154
Apache-2.0
2023-09-14T21:57:37
2018-04-30T16:30:04
Python
UTF-8
Python
false
false
1,581
py
from dagster import build_init_resource_context, build_op_context from docs_snippets.concepts.resources.resources import ( cereal_fetcher, connect, db_connection, db_resource, do_database_stuff_dev, do_database_stuff_job, do_database_stuff_prod, op_requires_resources, test_cm_resource, test_my_resource, test_my_resource_with_context, use_db_connection, uses_db_connection, ) def test_cereal_fetcher(): assert cereal_fetcher(None) def test_database_resource(): class BasicDatabase: def execute_query(self, query): pass op_requires_resources(build_op_context(resources={"database": BasicDatabase()})) def test_resource_testing_examples(): test_my_resource() test_my_resource_with_context() test_cm_resource() def test_resource_deps_job(): result = connect.execute_in_process() assert result.success def test_resource_config_example(): dbconn = db_resource(build_init_resource_context(config={"connection": "foo"})) assert dbconn.connection == "foo" def test_jobs(): assert do_database_stuff_job.execute_in_process().success assert do_database_stuff_dev.execute_in_process().success assert do_database_stuff_prod.execute_in_process().success def test_cm_resource_example(): with db_connection() as db_conn: assert db_conn def test_cm_resource_op(): with build_op_context(resources={"db_connection": db_connection}) as context: use_db_connection(context) def test_build_resources_example(): uses_db_connection()
[ "noreply@github.com" ]
dagster-io.noreply@github.com
4fc6e71150033e7e6982368eb672194ded2582d3
64cdb9e8fdcde8a71a16ce17cd822441d9533936
/_programmers/불량사용자.py
ef6e00fbff213c4501137c5169fd2ee1345645d2
[]
no_license
heecheol1508/algorithm-problem
fa42769f0f2f2300e4e463c5731e0246d7b7643c
6849b355e15f8a538c9a071b0783d1789316d29d
refs/heads/main
2023-07-20T23:46:07.037975
2021-08-31T12:47:33
2021-08-31T12:47:33
302,830,420
0
0
null
null
null
null
UTF-8
Python
false
false
954
py
import re def solution(user_id, banned_id): user_number = {} for i in range(len(user_id)): user_number[user_id[i]] = str(i) banned_list = ['' for _ in range(len(banned_id))] for i in range(len(banned_id)): ban = banned_id[i].replace('*', '.') pat = re.compile(ban) for j in range(len(user_id)): if pat.match(user_id[j]) and len(ban) == len(user_id[j]): banned_list[i] += str(j) banned_list.sort(key=lambda x: len(x)) result = set() def recursion(arr, k): if k == len(banned_list): temp = sorted(arr) result.add(''.join(temp)) return else: for n in banned_list[k]: if n not in arr: recursion(arr+[n], k+1) recursion([], 0) answer = len(result) return answer print(solution(["frodo", "fradi", "crodo", "abc123", "frodoc"], ["fr*d*", "abc1**"]))
[ "52685275+heecheol1508@users.noreply.github.com" ]
52685275+heecheol1508@users.noreply.github.com
922425380433ba1c7dffa8e22f154dd349c86484
0ffc74454f804f8b317dea202961c2bef5193085
/contrib/seeds/makeseeds.py
a6c40bae8266b05a8ad7834632aa3d92f774a0a2
[ "MIT" ]
permissive
cryptobot123/learnium
1bc1b2e69215dab59ed9fee63a8bd9da2ed06121
2ce4867c5b80acd4fe1be9cd29b9cddfab9dea0a
refs/heads/main
2023-01-03T19:50:44.217685
2020-10-30T21:08:32
2020-10-30T21:08:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,518
py
#!/usr/bin/env python3 # Copyright (c) 2013-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Generate seeds.txt from Pieter's DNS seeder # NSEEDS=512 MAX_SEEDS_PER_ASN=2 MIN_BLOCKS = 615801 # These are hosts that have been observed to be behaving strangely (e.g. # aggressively connecting to every node). SUSPICIOUS_HOSTS = { "" } import re import sys import dns.resolver import collections PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$") PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$") PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$") PATTERN_AGENT = re.compile(r"^(/LearniumCore:2.2.(0|1|99)/)$") def parseline(line): sline = line.split() if len(sline) < 11: return None m = PATTERN_IPV4.match(sline[0]) sortkey = None ip = None if m is None: m = PATTERN_IPV6.match(sline[0]) if m is None: m = PATTERN_ONION.match(sline[0]) if m is None: return None else: net = 'onion' ipstr = sortkey = m.group(1) port = int(m.group(2)) else: net = 'ipv6' if m.group(1) in ['::']: # Not interested in localhost return None ipstr = m.group(1) sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds port = int(m.group(2)) else: # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None net = 'ipv4' sortkey = ip ipstr = m.group(1) port = int(m.group(6)) # Skip bad results. if sline[1] == 0: return None # Extract uptime %. uptime30 = float(sline[7][:-1]) # Extract Unix timestamp of last success. lastsuccess = int(sline[2]) # Extract protocol version. version = int(sline[10]) # Extract user agent. if len(sline) > 11: agent = sline[11][1:] + sline[12][:-1] else: agent = sline[11][1:-1] # Extract service flags. service = int(sline[9], 16) # Extract blocks. blocks = int(sline[8]) # Construct result. return { 'net': net, 'ip': ipstr, 'port': port, 'ipnum': ip, 'uptime': uptime30, 'lastsuccess': lastsuccess, 'version': version, 'agent': agent, 'service': service, 'blocks': blocks, 'sortkey': sortkey, } def filtermultiport(ips): '''Filter out hosts with more nodes per IP''' hist = collections.defaultdict(list) for ip in ips: hist[ip['sortkey']].append(ip) return [value[0] for (key,value) in list(hist.items()) if len(value)==1] # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_total): # Sift out ips by type ips_ipv4 = [ip for ip in ips if ip['net'] == 'ipv4'] ips_ipv6 = [ip for ip in ips if ip['net'] == 'ipv6'] ips_onion = [ip for ip in ips if ip['net'] == 'onion'] # Filter IPv4 by ASN result = [] asn_count = {} for ip in ips_ipv4: if len(result) == max_total: break try: asn = int([x.to_text() for x in dns.resolver.query('.'.join(reversed(ip['ip'].split('.'))) + '.origin.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) if asn not in asn_count: asn_count[asn] = 0 if asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 result.append(ip) except: sys.stderr.write('ERR: Could not resolve ASN for "' + ip['ip'] + '"\n') # TODO: filter IPv6 by ASN # Add back non-IPv4 result.extend(ips_ipv6) result.extend(ips_onion) return result def main(): lines = sys.stdin.readlines() ips = [parseline(line) for line in lines] # Skip entries with valid address. ips = [ip for ip in ips if ip is not None] # Skip entries from suspicious hosts. ips = [ip for ip in ips if ip['ip'] not in SUSPICIOUS_HOSTS] # Enforce minimal number of blocks. ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS] # Require service bit 1. ips = [ip for ip in ips if (ip['service'] & 1) == 1] # Require at least 50% 30-day uptime. ips = [ip for ip in ips if ip['uptime'] > 50] # Require a known and recent user agent. ips = [ip for ip in ips if PATTERN_AGENT.match(re.sub(' ', '-', ip['agent']))] # Sort by availability (and use last success as tie breaker) ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True) # Filter out hosts with multiple bitcoin ports, these are likely abusive ips = filtermultiport(ips) # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['net'], x['sortkey'])) for ip in ips: if ip['net'] == 'ipv6': print('[%s]:%i' % (ip['ip'], ip['port'])) else: print('%s:%i' % (ip['ip'], ip['port'])) if __name__ == '__main__': main()
[ "72593731+learniumcoin@users.noreply.github.com" ]
72593731+learniumcoin@users.noreply.github.com
d788fe2d0c7ace0bb7b8435095741e0a107647bd
8d8a354bf5fff4f7b0eca70c23b63dd494a90f74
/dev/services/wms/ows/wms_cfg.py
46eb0aa716b4fc1b0a016ab30d4e2ea95516956e
[ "Apache-2.0" ]
permissive
omad/dea-config
0df4d5a715957f4e6b26a07c77690889904eb5ef
5767601584a1f2aec1ffea8983c3a226e32013b0
refs/heads/master
2020-03-26T12:08:35.979717
2018-08-09T01:51:31
2018-08-09T01:51:31
144,877,682
0
0
null
2018-08-15T16:34:41
2018-08-15T16:34:41
null
UTF-8
Python
false
false
60,688
py
# Static config for the wms metadata. response_cfg = { "Access-Control-Allow-Origin": "*", # CORS header } service_cfg = { ## Which web service(s) should be supported by this instance "wcs": False, "wms": True, ## Required config for WMS and/or WCS # Service title - appears e.g. in Terria catalog "title": "WMS server for Australian NBART Datacube products", # Service URL. Should a fully qualified URL "url": "https://ows.wms.gadevs.ga", # Supported co-ordinate reference systems "published_CRSs": { "EPSG:3857": { # Web Mercator "geographic": False, "horizontal_coord": "x", "vertical_coord": "y", }, "EPSG:4326": { # WGS-84 "geographic": True, "vertical_coord_first": True }, "EPSG:3577": { # GDA-94, internal representation "geographic": False, "horizontal_coord": "x", "vertical_coord": "y", }, }, ## Required config for WCS # Must be a geographic CRS in the published_CRSs list. EPSG:4326 is recommended, but any geographic CRS should work. "default_geographic_CRS": "EPSG:4326", # Supported WCS formats "wcs_formats": { # Key is the format name, as used in DescribeCoverage XML "GeoTIFF": { # Renderer is the FQN of a Python function that takes: # * A WCS Request object # * Some ODC data to be rendered. "renderer": "datacube_wms.wcs_utils.get_tiff", # The MIME type of the image, as used in the Http Response. "mime": "image/geotiff", # The file extension to add to the filename. "extension": "tif", # Whether or not the file format supports multiple time slices. "multi-time": False }, "netCDF": { "renderer": "datacube_wms.wcs_utils.get_netcdf", "mime": "application/x-netcdf", "extension": "nc", "multi-time": True, } }, # The native wcs format must be declared in wcs_formats above. "native_wcs_format": "GeoTIFF", ## Optional config for instances supporting WMS # Max tile height/width. If not specified, default to 256x256 "max_width": 512, "max_height": 512, # Optional config for all services (WMS and/or WCS) - may be set to blank/empty, no defaults "abstract": """Historic Landsat imagery for Australia.""", "keywords": [ "geomedian", "WOfS", "mangrove", "landsat", "australia", "time-series", ], "contact_info": { "person": "Digital Earth Australia", "organisation": "Geoscience Australia", "position": "", "address": { "type": "postal", "address": "GPO Box 378", "city": "Canberra", "state": "ACT", "postcode": "2609", "country": "Australia", }, "telephone": "+61 2 6249 9111", "fax": "", "email": "earth.observation@ga.gov.au", }, "fees": "", "access_constraints": "", } layer_cfg = [ # Layer Config is a list of platform configs { "name": "fractional cover", "title": "Fractional Cover", "abstract": "Fractional Cover", "products": [ { # Included as a keyword for the layer "label": "FC", # Included as a keyword for the layer "type": "fractional cover", # Included as a keyword for the layer "variant": "terrain corrected", # The WMS name for the layer "name": "ls8_fc_albers", # The Datacube name for the associated data product "product_name": "ls8_fc_albers", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product "pq_dataset": "wofs_albers", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) "pq_band": "water", # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: (data[band] != data[band].attrs['nodata']), # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "styles": [ { "name": "simple_fc", "title": "Fractional Cover", "abstract": "Fractional cover representation, with green vegetation in green, dead vegetation in blue, and bare soil in red", "components": { "red": { "BS": 1.0 }, "green": { "PV": 1.0 }, "blue": { "NPV": 1.0 } }, # Used to clip off very bright areas. "scale_factor": 0.39, "pq_masks": [ { "flags": { 'dry': True }, }, { "flags": { "terrain_or_low_angle": False, "high_slope": False, "cloud_shadow": False, "cloud": False, "sea": False } }, ] } ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "simple_fc", } ] }, { # Name and title of the platform layer. # Platform layers are not mappable. The name is for internal server use only. "name": "Geomedian_AU_NBART", "title": "Geomedian_au_nbart_surface_reflectance", "abstract": "Images from the Geomedian Surface Reflectance on Level2 Products", # Products available for this platform. # For each product, the "name" is the Datacube name, and the label is used # to describe the label to end-users. "products": [ { # Included as a keyword for the layer "label": "LANDSAT_8", # Included as a keyword for the layer "type": "SR", # Included as a keyword for the layer "variant": "Level 2", # The WMS name for the layer "name": "ls8_nbart_geomedian_annual", # The Datacube name for the associated data product "product_name": "ls8_nbart_geomedian_annual", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product # "pq_dataset": "ls8_level1_usgs", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) # "pq_manual_data_merge": True, # "data_manual_merge": True, # "pq_band": "quality", # "always_fetch_bands": [ "quality" ], # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: data[band] != data[band].attrs['nodata'], # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "data_manual_merge": True, "always_fetch_bands": [ ], "apply_solar_corrections": False, # A function that extracts the "sub-product" id (e.g. path number) from a dataset. Function should return a (small) integer # If None or not specified, the product has no sub-layers. # "sub_product_extractor": lambda ds: int(s3_path_pattern.search(ds.uris[0]).group("path")), # A prefix used to describe the sub-layer in the GetCapabilities response. # E.g. sub-layer 109 will be described as "Landsat Path 109" # "sub_product_label": "Landsat Path", # Bands to include in time-dimension "pixel drill". # Don't activate in production unless you really know what you're doing. # "band_drill": ["nir", "red", "green", "blue"], # Styles. # # See band_mapper.py # # The various available spectral bands, and ways to combine them # into a single rgb image. # The examples here are ad hoc # "styles": [ # Examples of styles which are linear combinations of the available spectral bands. # { "name": "simple_rgb", "title": "Simple RGB", "abstract": "Simple true-colour image, using the red, green and blue bands", "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, # The raw band value range to be compressed to an 8 bit range for the output image tiles. # Band values outside this range are clipped to 0 or 255 as appropriate. "scale_range": [0.0, 3000.0] }, { "name": "infra_red", "title": "False colour multi-band infra-red", "abstract": "Simple false-colour image, using the near and short-wave infra-red bands", "components": { "red": { "swir1": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "infrared_green", "title": "False colour SWIR, NIR and green", "abstract": "False Colour image with SWIR1->Red, NIR->Green, and Green->Blue", "components": { "red": { "swir1": 1.0 }, "green": { "nir": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "blue", "title": "Spectral band 2 - Blue", "abstract": "Blue band, approximately 453nm to 511nm", "components": { "red": { "blue": 1.0 }, "green": { "blue": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "green", "title": "Spectral band 3 - Green", "abstract": "Green band, approximately 534nm to 588nm", "components": { "red": { "green": 1.0 }, "green": { "green": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "red", "title": "Spectral band 4 - Red", "abstract": "Red band, roughly 637nm to 672nm", "components": { "red": { "red": 1.0 }, "green": { "red": 1.0 }, "blue": { "red": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "nir", "title": "Spectral band 5 - Near infra-red", "abstract": "Near infra-red band, roughly 853nm to 876nm", "components": { "red": { "nir": 1.0 }, "green": { "nir": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir1", "title": "Spectral band 6 - Short wave infra-red 1", "abstract": "Short wave infra-red band 1, roughly 1575nm to 1647nm", "components": { "red": { "swir1": 1.0 }, "green": { "swir1": 1.0 }, "blue": { "swir1": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir2", "title": "Spectral band 7 - Short wave infra-red 2", "abstract": "Short wave infra-red band 2, roughly 2117nm to 2285nm", "components": { "red": { "swir2": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "swir2": 1.0 } }, "scale_range": [0.0, 3000.0] }, # # Examples of non-linear heat-mapped styles. { "name": "ndvi", "title": "NDVI", "abstract": "Normalised Difference Vegetation Index - a derived index that correlates well with the existence of vegetation", "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], }, { "name": "ndwi", "title": "NDWI", "abstract": "Normalised Difference Water Index - a derived index that correlates well with the existence of water", "heat_mapped": True, "index_function": lambda data: (data["green"] - data["nir"]) / (data["nir"] + data["green"]), "needed_bands": ["green", "nir"], "range": [0.0, 1.0], }, { "name": "ndbi", "title": "NDBI", "abstract": "Normalised Difference Buildup Index - a derived index that correlates with the existence of urbanisation", "heat_mapped": True, "index_function": lambda data: (data["swir2"] - data["nir"]) / (data["swir2"] + data["nir"]), "needed_bands": ["swir2", "nir"], "range": [0.0, 1.0], }, { "name": "rgb_ndvi", "title": "NDVI plus RGB", "abstract": "Normalised Difference Vegetation Index (blended with RGB) - a derived index that correlates well with the existence of vegetation", "component_ratio": 0.6, "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "simple_rgb", }, { # Included as a keyword for the layer "label": "LANDSAT_7", # Included as a keyword for the layer "type": "SR", # Included as a keyword for the layer "variant": "Level 2", # The WMS name for the layer "name": "ls7_nbart_geomedian_annual", # The Datacube name for the associated data product "product_name": "ls7_nbart_geomedian_annual", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product # "pq_dataset": "ls8_level1_usgs", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) # "pq_manual_data_merge": True, # "data_manual_merge": True, # "pq_band": "quality", # "always_fetch_bands": [ "quality" ], # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: data[band] != data[band].attrs['nodata'], # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "data_manual_merge": True, "always_fetch_bands": [], "apply_solar_corrections": False, # A function that extracts the "sub-product" id (e.g. path number) from a dataset. Function should return a (small) integer # If None or not specified, the product has no sub-layers. # "sub_product_extractor": lambda ds: int(s3_path_pattern.search(ds.uris[0]).group("path")), # A prefix used to describe the sub-layer in the GetCapabilities response. # E.g. sub-layer 109 will be described as "Landsat Path 109" # "sub_product_label": "Landsat Path", # Bands to include in time-dimension "pixel drill". # Don't activate in production unless you really know what you're doing. # "band_drill": ["nir", "red", "green", "blue"], # Styles. # # See band_mapper.py # # The various available spectral bands, and ways to combine them # into a single rgb image. # The examples here are ad hoc # "styles": [ # Examples of styles which are linear combinations of the available spectral bands. # { "name": "simple_rgb", "title": "Simple RGB", "abstract": "Simple true-colour image, using the red, green and blue bands", "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, # The raw band value range to be compressed to an 8 bit range for the output image tiles. # Band values outside this range are clipped to 0 or 255 as appropriate. "scale_range": [0.0, 3000.0] }, { "name": "infra_red", "title": "False colour multi-band infra-red", "abstract": "Simple false-colour image, using the near and short-wave infra-red bands", "components": { "red": { "swir1": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "infrared_green", "title": "False colour SWIR, NIR and green", "abstract": "False Colour image with SWIR1->Red, NIR->Green, and Green->Blue", "components": { "red": { "swir1": 1.0 }, "green": { "nir": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "blue", "title": "Spectral band 2 - Blue", "abstract": "Blue band, approximately 453nm to 511nm", "components": { "red": { "blue": 1.0 }, "green": { "blue": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "green", "title": "Spectral band 3 - Green", "abstract": "Green band, approximately 534nm to 588nm", "components": { "red": { "green": 1.0 }, "green": { "green": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "red", "title": "Spectral band 4 - Red", "abstract": "Red band, roughly 637nm to 672nm", "components": { "red": { "red": 1.0 }, "green": { "red": 1.0 }, "blue": { "red": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "nir", "title": "Spectral band 5 - Near infra-red", "abstract": "Near infra-red band, roughly 853nm to 876nm", "components": { "red": { "nir": 1.0 }, "green": { "nir": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir1", "title": "Spectral band 6 - Short wave infra-red 1", "abstract": "Short wave infra-red band 1, roughly 1575nm to 1647nm", "components": { "red": { "swir1": 1.0 }, "green": { "swir1": 1.0 }, "blue": { "swir1": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir2", "title": "Spectral band 7 - Short wave infra-red 2", "abstract": "Short wave infra-red band 2, roughly 2117nm to 2285nm", "components": { "red": { "swir2": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "swir2": 1.0 } }, "scale_range": [0.0, 3000.0] }, # # Examples of non-linear heat-mapped styles. { "name": "ndvi", "title": "NDVI", "abstract": "Normalised Difference Vegetation Index - a derived index that correlates well with the existence of vegetation", "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], }, { "name": "ndwi", "title": "NDWI", "abstract": "Normalised Difference Water Index - a derived index that correlates well with the existence of water", "heat_mapped": True, "index_function": lambda data: (data["green"] - data["nir"]) / (data["nir"] + data["green"]), "needed_bands": ["green", "nir"], "range": [0.0, 1.0], }, { "name": "ndbi", "title": "NDBI", "abstract": "Normalised Difference Buildup Index - a derived index that correlates with the existence of urbanisation", "heat_mapped": True, "index_function": lambda data: (data["swir2"] - data["nir"]) / (data["swir2"] + data["nir"]), "needed_bands": ["swir2", "nir"], "range": [0.0, 1.0], }, { "name": "rgb_ndvi", "title": "NDVI plus RGB", "abstract": "Normalised Difference Vegetation Index (blended with RGB) - a derived index that correlates well with the existence of vegetation", "component_ratio": 0.6, "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "simple_rgb", }, { # Included as a keyword for the layer "label": "LANDSAT_5", # Included as a keyword for the layer "type": "SR", # Included as a keyword for the layer "variant": "Level 2", # The WMS name for the layer "name": "ls5_nbart_geomedian_annual", # The Datacube name for the associated data product "product_name": "ls5_nbart_geomedian_annual", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product # "pq_dataset": "ls8_level1_usgs", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) # "pq_manual_data_merge": True, # "data_manual_merge": True, # "pq_band": "quality", # "always_fetch_bands": [ "quality" ], # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: data[band] != data[band].attrs['nodata'], # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "data_manual_merge": True, "always_fetch_bands": [], "apply_solar_corrections": False, # A function that extracts the "sub-product" id (e.g. path number) from a dataset. Function should return a (small) integer # If None or not specified, the product has no sub-layers. # "sub_product_extractor": lambda ds: int(s3_path_pattern.search(ds.uris[0]).group("path")), # A prefix used to describe the sub-layer in the GetCapabilities response. # E.g. sub-layer 109 will be described as "Landsat Path 109" # "sub_product_label": "Landsat Path", # Bands to include in time-dimension "pixel drill". # Don't activate in production unless you really know what you're doing. # "band_drill": ["nir", "red", "green", "blue"], # Styles. # # See band_mapper.py # # The various available spectral bands, and ways to combine them # into a single rgb image. # The examples here are ad hoc # "styles": [ # Examples of styles which are linear combinations of the available spectral bands. # { "name": "simple_rgb", "title": "Simple RGB", "abstract": "Simple true-colour image, using the red, green and blue bands", "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, # The raw band value range to be compressed to an 8 bit range for the output image tiles. # Band values outside this range are clipped to 0 or 255 as appropriate. "scale_range": [0.0, 3000.0] }, { "name": "infra_red", "title": "False colour multi-band infra-red", "abstract": "Simple false-colour image, using the near and short-wave infra-red bands", "components": { "red": { "swir1": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "infrared_green", "title": "False colour SWIR, NIR and green", "abstract": "False Colour image with SWIR1->Red, NIR->Green, and Green->Blue", "components": { "red": { "swir1": 1.0 }, "green": { "nir": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "blue", "title": "Spectral band 2 - Blue", "abstract": "Blue band, approximately 453nm to 511nm", "components": { "red": { "blue": 1.0 }, "green": { "blue": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "green", "title": "Spectral band 3 - Green", "abstract": "Green band, approximately 534nm to 588nm", "components": { "red": { "green": 1.0 }, "green": { "green": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "red", "title": "Spectral band 4 - Red", "abstract": "Red band, roughly 637nm to 672nm", "components": { "red": { "red": 1.0 }, "green": { "red": 1.0 }, "blue": { "red": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "nir", "title": "Spectral band 5 - Near infra-red", "abstract": "Near infra-red band, roughly 853nm to 876nm", "components": { "red": { "nir": 1.0 }, "green": { "nir": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir1", "title": "Spectral band 6 - Short wave infra-red 1", "abstract": "Short wave infra-red band 1, roughly 1575nm to 1647nm", "components": { "red": { "swir1": 1.0 }, "green": { "swir1": 1.0 }, "blue": { "swir1": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir2", "title": "Spectral band 7 - Short wave infra-red 2", "abstract": "Short wave infra-red band 2, roughly 2117nm to 2285nm", "components": { "red": { "swir2": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "swir2": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "rgb_ndvi", "title": "NDVI plus RGB", "abstract": "Normalised Difference Vegetation Index (blended with RGB) - a derived index that correlates well with the existence of vegetation", "component_ratio": 0.6, "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "simple_rgb", } ] }, { "name": "mangrove_cover", "title": "Mangrove Cover", "abstract": "Mangrove Cover", "products": [ { "label": "Mangrove Cover", "type": "Level3", "variant": "Level 3", "name": "mangrove_cover", "product_name": "mangrove_cover", "min_zoom_factor": 500.0, "zoomed_out_fill_colour": [150, 180, 200, 160], "time_zone": 9, "extent_mask_func": lambda data, band: data["extent"] == 1, "ignore_info_flags": [], "data_manual_merge": False, "always_fetch_bands": ["extent"], "apply_solar_corrections": False, "styles": [ { "name": "mangrove", "title": "Mangrove Cover", "abstract": "Mangrove Cover", "value_map": { "canopy_cover_class": [ { "flags": { "woodland": True }, "values": { "red": 159, "green": 255, "blue": 76 } }, { "flags": { "open_forest": True }, "values": { "red": 94, "green": 204, "blue": 0 } }, { "flags": { "closed_forest": True }, "values": { "red": 59, "green": 127, "blue": 0 } }, ] } } ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "mangrove", }, ] }, { # Name and title of the platform layer. # Platform layers are not mappable. The name is for internal server use only. "name": "WOfS", "title": "Water_Observation_from_Space", "abstract": "WOfS", # Products available for this platform. # For each product, the "name" is the Datacube name, and the label is used # to describe the label to end-users. "products": [ { # Included as a keyword for the layer "label": "WOFLs", # Included as a keyword for the layer "type": "albers", # Included as a keyword for the layer "variant": "wofs", # The WMS name for the layer "name": "wofs_albers", # The Datacube name for the associated data product "product_name": "wofs_albers", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product # "pq_dataset": "ls8_level1_usgs", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) # "pq_manual_data_merge": True, # "data_manual_merge": True, # "pq_band": "quality", "pq_band": "water", # "always_fetch_bands": [ "quality" ], # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [200, 180, 180, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: data[band] != data[band].attrs['nodata'], "pq_manual_merge": True, # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [ "nodata", "noncontiguous", ], "data_manual_merge": False, "always_fetch_bands": [ ], "apply_solar_corrections": False, # A function that extracts the "sub-product" id (e.g. path number) from a dataset. Function should return a (small) integer # If None or not specified, the product has no sub-layers. # "sub_product_extractor": lambda ds: int(s3_path_pattern.search(ds.uris[0]).group("path")), # A prefix used to describe the sub-layer in the GetCapabilities response. # E.g. sub-layer 109 will be described as "Landsat Path 109" # "sub_product_label": "Landsat Path", # Bands to include in time-dimension "pixel drill". # Don't activate in production unless you really know what you're doing. # "band_drill": ["nir", "red", "green", "blue"], # Styles. # # See band_mapper.py # # The various available spectral bands, and ways to combine them # into a single rgb image. # The examples here are ad hoc # "styles": [ # Examples of styles which are linear combinations of the available spectral bands. # { "name": "water", "title": "Water", "abstract": "Water", "value_map": { "water": [ { "flags": { "wet": True, }, "values": { "red": 79, "green": 129, "blue": 189 } }, { "flags": { "sea": True, }, "values": { "red": 79, "green": 129, "blue": 189 } }, { "flags": { "dry": True, }, "values": { "red": 217, "green": 150, "blue": 148 } }, { "flags": { "terrain_or_low_angle": True, }, "values": { "red": 112, "green": 112, "blue": 112 } }, { "flags": { "high_slope": True, }, "values": { "red": 112, "green": 112, "blue": 112 } }, { "flags": { "cloud_shadow": True, }, "values": { "red": 112, "green": 112, "blue": 112 } }, { "flags": { "cloud": True }, "values": { "red": 112, "green": 112, "blue": 112 } } ] } }, { "name": "water_masked", "title": "Water (Masked)", "abstract": "Water Data, Masked", # Invert True: Show if no flags match "value_map": { "water": [ { "flags": { "wet": True }, "values": { "red": 79, "green": 129, "blue": 189 } }, ] }, "pq_masks": [ { "flags": { 'wet': True, }, }, ], } ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "water", }, { # Included as a keyword for the layer "label": "WOfS_Summary", # Included as a keyword for the layer "type": "WOfS_Summary", # Included as a keyword for the layer "variant": "Summary", # The WMS name for the layer "name": "wofs_summary", # The Datacube name for the associated data product "product_name": "wofs_summary", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product #"pq_dataset": "wofs_albers", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) #"pq_band": "water", # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: (data[band] != data[band].attrs['nodata']), # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "styles": [ { "name": "WOfS_frequency", "title": " Wet and Dry Count", "abstract": "WOfS summary determinig the count_wet and count_clear for WOfS product", "heat_mapped": True, "index_function": lambda data: data["frequency"] * 0.0 + 0.25, "needed_bands": ["frequency"], "range": [0.0, 1.0], "components": { "red": { "frequency": 0.0 }, "green": { "frequency": 0.0 }, "blue": { "frequency": 1.0 } }, "scale_range": [0, 3] } ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "WOfS_frequency", } ], }, ]
[ "harshu.rampur@ga.gov.au" ]
harshu.rampur@ga.gov.au
dfea14f587580d86c76f3dbc73c65587e1154af8
faaf12ab18978082233c09628b815a69e73868e4
/leetcode/algorithms/easy/keep_multiplying_found_values_by_two.py
9d03b8b29a25813877514664235bcbeb70bc846b
[ "WTFPL" ]
permissive
ferhatelmas/algo
6826bcf0be782cb102c1ee20dce8d4345e1fd6d2
7b867f6d2c8a9fb896f464168b50dfc115617e56
refs/heads/master
2023-08-18T19:59:58.435696
2023-08-14T10:16:00
2023-08-14T10:16:00
3,813,734
27
16
WTFPL
2020-10-25T23:00:16
2012-03-23T23:43:31
Java
UTF-8
Python
false
false
212
py
from typing import List class Solution: def findFinalValue(self, nums: List[int], original: int) -> int: s = set(nums) o = original while o in s: o *= 2 return o
[ "elmas.ferhat@gmail.com" ]
elmas.ferhat@gmail.com
174901bbd58c43f7d01e0a887c3716d5e02f9196
1df7840dd8bbf64c44dee6c7040046913deb22f3
/Video_42_GeneratingHTMLTestRunner_Reports.py
3ef167432d5cf07baacb364563f230ea386efd03
[]
no_license
manojgupta3051994/Selenium-Python
68c39a3a0c7a39fc0e039183c22c6a4c71fee8b8
4391b506fda8542106c596a5735a2989a5c3862f
refs/heads/main
2023-01-09T05:32:46.520988
2020-11-11T07:02:35
2020-11-11T07:02:35
306,115,567
0
0
null
null
null
null
UTF-8
Python
false
false
1,195
py
from selenium import webdriver import unittest import HtmlTestRunner class OrangeHrmTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.driver = webdriver.Chrome(executable_path=r"C:\Users\Manoj\Desktop\Python - Selenium Practice\Drivers\chromedriver.exe") cls.driver.maximize_window() def test_HomePageTitle(self): self.driver.get('https://opensource-demo.orangehrmlive.com/') self.assertEqual("OrangeHRM",self.driver.title,"Webpage Title is not same") def test_login(self): self.driver.get('https://opensource-demo.orangehrmlive.com/') self.driver.find_element_by_id('txtUsername').send_keys('Admin') self.driver.find_element_by_id('txtPassword').send_keys('admin123') self.driver.find_element_by_id('btnLogin').click() self.assertEqual("OrangeHRM",self.driver.title,"Webpage Title is not same") @classmethod def tearDownClass(cls): cls.driver.close() print("Test Completed") if __name__ == '__main__': unittest.main(testRunner= HtmlTestRunner.HTMLTestRunner(output='C:\\Users\Manoj\Desktop\Python - Selenium Practice\Reports'))
[ "noreply@github.com" ]
manojgupta3051994.noreply@github.com
5a437fe980aa92a4f6d79f902a3eb02ad1419f90
28261a54a5e1feab2c7f739f3f0d82f9fe71f662
/Problem 4/Support Vector Machines.py
ec277648ab676ff437b741417a5c685c7a0225df
[]
no_license
Wang-Yujue/Statistical-Machine-Learning
bd324a8c004d23f32af7912da57b4e8168b7cd06
5fa29e2ac918813641cf35bb82e3d52962d6b3b6
refs/heads/master
2021-04-27T07:47:28.426861
2018-02-23T18:41:59
2018-02-23T18:41:59
122,639,452
1
0
null
null
null
null
UTF-8
Python
false
false
940
py
import numpy as np import matplotlib.pyplot as plt from sklearn import svm # read data def read_dataset(path): data = [] txt = open(path) for line in txt: a,b,c = map(float,line.split()) data.append([a,b,c]) return np.asarray(data) def gaussianKernel(x1, x2, sigma): x1 = x1[:] x2 = x2[:] sim = np.exp(-sum((x1 - x2) ^ 2) / (2 * sigma ^ 2)) return sim data = read_dataset('dataSets/iris-pca.txt') label = data[:,2] feature = data[:,[0,1]] setosa_x1 = [] setosa_x2 = [] virginica_x1 = [] virginica_x2 = [] j = -1 for i in label: i = int(i) j = j + 1 if i == 0: x1 = data[j,0] x2 = data[j,1] setosa_x1.append(x1) setosa_x2.append(x2) if i == 2: x1 = data[j, 0] x2 = data[j, 1] virginica_x1.append(x1) virginica_x2.append(x2) plt.plot(setosa_x1,setosa_x2,'+') plt.plot(virginica_x1,virginica_x2,'o') plt.show()
[ "noreply@github.com" ]
Wang-Yujue.noreply@github.com
a376ce5d3b46de8bb03f21b1ea3b28ec2fbc2536
17551b554f801789849878484778ec95b3aaf838
/softlearning/environments/gym/wrappers/__init__.py
4a31b62c5d1800a565b4caefc2706dfedca80a34
[ "MIT" ]
permissive
anyboby/ConstrainedMBPO
679894c0c647d0e8cd7178571e602509d3d8d262
036f4ffefc464e676a287c35c92cc5c0b8925fcf
refs/heads/master
2022-12-14T05:14:57.913927
2021-02-28T21:20:38
2021-02-28T21:20:38
237,805,512
5
2
MIT
2022-12-08T03:46:46
2020-02-02T17:08:07
Python
UTF-8
Python
false
false
53
py
from .normalize_action import NormalizeActionWrapper
[ "janner@berkeley.edu" ]
janner@berkeley.edu
a6d5bafda9ea9794e31e91f34db93a74533ee4b1
c722d4741988066a244af5df44e288e51bb8a342
/analysis.py
029ba1cd63cf51c577b7896894806168fd5264c2
[]
no_license
laranea/KE-Census
6ae67ccd2d32ab6095a83005712ea12f92dfe407
cd8882f07effc5b464ba7948bb909673e2c87bb2
refs/heads/master
2022-04-09T13:32:29.592157
2020-03-15T11:51:04
2020-03-15T11:51:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,215
py
import pandas as pd import streamlit as st @st.cache() def population_voter_analysis(): df = pd.read_csv('county_list.csv').set_index('COUNTY').drop(['code', 'MALE', 'FEMALE', 'INTERSEX'], axis=1) percentage_of_voters = df['VOTERS'] / df["TOTAL"] * 100 df.insert(0, "% Voters", percentage_of_voters) highest_voters_percentage = df.sort_values(by=['% Voters'], ascending=False).rename( columns={'TOTAL': 'TOTAL POPULATION', 'VOTERS': 'REGISTERED VOTERS'}).head(10) lowest_voters_percentage = df.sort_values(by=['% Voters'], ascending=True).rename( columns={'TOTAL': 'TOTAL POPULATION', 'VOTERS': 'REGISTERED VOTERS'}).head(10) return highest_voters_percentage, lowest_voters_percentage @st.cache() def gender_ratios(): df = pd.read_csv('county_list.csv') male_to_female = df['MALE'] / df['FEMALE'] df.insert(1, "Male To Female Ratio", male_to_female) m_f = df.sort_values(by=['Male To Female Ratio'], ascending=False).drop(['code', 'VOTERS', 'INTERSEX' ], axis=1).set_index('COUNTY').head(10) female_to_male = df['FEMALE'] / df['MALE'] df.insert(1, "Female To Male Ratio", female_to_male) f_m = df.sort_values(by=['Female To Male Ratio'], ascending=False).drop(['code', 'VOTERS', 'INTERSEX', 'Male To Female Ratio'], axis=1).set_index( 'COUNTY').head(10) top_population = df.sort_values(by=['TOTAL'], ascending=False).drop(['code', 'VOTERS', 'Female To Male Ratio', 'Male To Female Ratio'], axis=1).set_index( 'COUNTY').head(10) least_population = df.sort_values(by=['TOTAL'], ascending=False).drop(['code', 'VOTERS', 'Female To Male Ratio', 'Male To Female Ratio'], axis=1).set_index( 'COUNTY').tail(10) return m_f, f_m, top_population, least_population
[ "pythonantole@gmail.com" ]
pythonantole@gmail.com
41d3a3bb2bac87e3c68884b00f9224dfa4e75290
594055d2cf0ad9dbe9e06a219a7ddb07c4410459
/Amazon/LinkedList/138-Copy_List_with_Random_Pointer.py
162ab64857e6668274b22a682e3a4ee18489becd
[]
no_license
ankurgokhale05/LeetCode
975ed3a496e039607773b5e94f1ff517fc01644d
0f3aacf35a28e8b85db1be0a7f945f2d7ece0bfc
refs/heads/master
2023-07-04T01:46:12.035053
2021-08-15T02:14:15
2021-08-15T02:14:15
275,960,404
0
2
null
2020-10-01T01:49:48
2020-06-30T00:55:13
Python
UTF-8
Python
false
false
1,356
py
""" # Definition for a Node. class Node: def __init__(self, val, next, random): self.val = val self.next = next self.random = random """ class Solution(object): def copyRandomList(self, head): dic, prev, node = {}, None, head while node: if node not in dic: # Use a dictionary to map the original node to its copy dic[node] = Node(node.val, node.next, node.random) if prev: # Make the previous node point to the copy instead of the original. prev.next = dic[node] else: # If there is no prev, then we are at the head. Store it to return later. head = dic[node] if node.random: if node.random not in dic: # If node.random points to a node that we have not yet encountered, store it in the dictionary. dic[node.random] = Node(node.random.val, node.random.next, node.random.random) # Make the copy's random property point to the copy instead of the original. dic[node].random = dic[node.random] # Store prev and advance to the next node. prev, node = dic[node], node.next return head
[ "ankurgokhale@Ankurs-MBP.home" ]
ankurgokhale@Ankurs-MBP.home
9dbc7ad450e959dc92b891102266be38ccadcf7b
8b6885ab324047048b4745a76fc8b9058e3e60ef
/mypkg/transform/audio.py
4f526cd13fe7454a038883aa3ce442908296e8e7
[]
no_license
danielgg-coding/simple-python-package-demo
25973eee019433717988036f61ca18ecbda4843f
a6b6018296361dc07d5f171264e3eaf8b6d106ab
refs/heads/master
2022-04-09T01:15:33.357824
2020-03-14T11:17:15
2020-03-14T11:17:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
def transform(): return "squeeze"
[ "b03705013@ntu.edu.tw" ]
b03705013@ntu.edu.tw
8f55e7fc73404cd650b20ca669fd313db96f1b3c
4c67112b8e4c1ed7fd2f636a0dcee4972eeb79e6
/deployment/GPT2/encoder.py
f6508e866e80f4de9aaa34474e404aae72cbb3bd
[ "MIT" ]
permissive
t04glovern/gpt2-k8s-cloud-run
700cc8da97e8b42ca39fb0aed9a26f7edebb090b
687a20f76c3e53f917ea9553e569be52deb323d6
refs/heads/master
2023-06-04T14:07:50.532901
2022-09-03T12:58:48
2022-09-03T12:58:48
180,802,919
8
1
MIT
2023-05-22T21:56:35
2019-04-11T13:53:44
Python
UTF-8
Python
false
false
4,156
py
"""Byte pair encoding utilities""" import os import json import regex as re from functools import lru_cache @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class Encoder: def __init__(self, encoder, bpe_merges, errors='replace'): self.encoder = encoder self.decoder = {v:k for k,v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v:k for k, v in self.byte_encoder.items()} self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) return text def get_encoder(): with open('./GPT2/encoder.json', 'r') as f: encoder = json.load(f) with open('./GPT2/vocab.bpe', 'r', encoding="utf-8") as f: bpe_data = f.read() bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]] return Encoder( encoder=encoder, bpe_merges=bpe_merges, )
[ "nathan@glovers.id.au" ]
nathan@glovers.id.au
648d19e1b5a5954f3467144178d13589f2879178
72583c48f2a9aae5a78989acc6634f03d2bfd897
/core/stats/uptime.py
bdaca056fa9e245f676f18d4aeb86dd411317267
[ "MIT" ]
permissive
sustainable-computing/ODToolkit
4b914fb1722641146f1bd341fe6f5c82cff5bf0a
9328b930f7e522a89d82011e8ab91286a20bf66f
refs/heads/master
2023-05-06T05:39:00.514901
2021-05-17T20:55:48
2021-05-17T20:55:48
162,171,971
1
1
null
null
null
null
UTF-8
Python
false
false
1,797
py
# Parameters: # dataset: core.data.dataset.Dataset() # threshold: maximum different second between two consecutive value # gaps: All gaps detected by core.stats.gap_detect # Return: # {room_name: sensors} where sensors = {sensor_name: (uptime in string, uptime in seconds, uptime ratio)} def uptime(dataset, threshold, gaps=None): """ Compute the uptime in the given dataset. Uptime is the length of time a sensor reported value :parameter dataset: Dataset object that want to compute the uptime :type dataset: core.data.dataset.Dataset :parameter threshold: the maximum time differences in seconds between two consecutive timestamp to not mark them as a gap :type threshold: int :parameter gaps: a dictionary result from the core.stats.gap_detect :type gaps: dict(str, list(str)) or dict(str, dict(str, list(str))) :rtype: dict(str, tuple(str)) or dict(str, dict(str, tuple(str))) :return: the room name corresponds to the name of sensor with its corresponding uptime """ from .gap_detect import gap_detect from datetime import timedelta if gaps is None: gaps = gap_detect(dataset, threshold, sensor_level=True) result = {} time_col = dataset.time_column_index for room in gaps.keys(): data = dataset[room][0][:, time_col] total_uptime = data[-1] - data[0] result[room] = {} for sensor in gaps[room].keys(): for gap in gaps[room][sensor]: result[room][sensor] = result[room].get(sensor, 0) + gap[2] sensor_uptime = total_uptime - result[room].get(sensor, 0) result[room][sensor] = (str(timedelta(0, sensor_uptime)), sensor_uptime, sensor_uptime / total_uptime) return result
[ "skyu0221@gmail.com" ]
skyu0221@gmail.com
c8564ccfba2c2734dff0999edd6fdfc7baedc87d
7b4393b00a8e603c1ea6d08fcb13501ba4825def
/mrjob_example.py
fd6bf872fecbe5b24af1e6b66a857b72f3fa719e
[]
no_license
isash30/Play-with-python
9f634d6f1a7eac793c2bcfe9f03264ed732d0fa5
a37cfbaa310342296a6b17c1130741641069de43
refs/heads/master
2021-05-27T18:00:06.989422
2014-05-04T04:22:20
2014-05-04T04:22:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,437
py
#!/usr/bin/python3 """Counts the frequencies of words in a document, and doubles the count just for kicks. Works with Python 2.7 and Python 3.2+. Usage: python -m mrjob.launch wfc.py -r local <input files> """ from __future__ import print_function import argparse import itertools import json import re import sys WORD_RE = re.compile(r"[\w']+") # Output lines should be written in the same way. def _write(stdout, key, value): stdout.write('%s\t%s\n' % (key, value)) def _group_by_key(in_file, sep='\t'): """Turn this: ['x\ta', 'x\tb', 'y\tc'] into this: [('x', ['a', 'b']), ('y', ['c'])] """ group_key = lambda line: line.split(sep, 1)[0] return itertools.groupby(in_file, key=group_key) def lines_to_word_occurrences(in_file, stdout): """For each line of input, output (word, 1) for each word in the line""" for line in in_file: for word in WORD_RE.findall(line): _write(stdout, word, 1) def sum_word_occurrences(in_file, stdout): """Group input lines by key and output (key, sum(values))""" for word, lines in _group_by_key(in_file): value = sum(int(line.split('\t', 1)[1]) for line in lines) _write(stdout, word, value) def multiply_value_by_2(in_file, stdout): """Emit (key, 2*value) for each line in in_file""" for line in in_file: key, value = line.split('\t', 1) _write(stdout, key, 2 * int(value)) def _run_task(task, paths, stdin, stdout): """Run *task* for each file in *paths*. Use stdin if '-' is an arg or there are no args. """ for path in (paths or ['-']): if path == '-': task(stdin, stdout) else: with open(path, 'r') as f: task(f, stdout) def main(argv, stdin, stdout, stderr): p = argparse.ArgumentParser() p.add_argument('--steps', default=False, action='store_true') p.add_argument('--mapper', default=False, action='store_true') p.add_argument('--reducer', default=False, action='store_true') p.add_argument('--step-num', default=None, type=int) p.add_argument('files', nargs='*') opts = p.parse_args(argv) args = opts.files # --steps behavior. This job has 2 steps, the first with a mapper and # reducer and the second with only a mapper. They are all 'script' steps, # meaning that they are run by invoking this file with --step-num=X and # [--mapper|--reducer]. # The output of --steps tells mrjob what steps the job has. if opts.steps: if any((opts.mapper, opts.reducer, opts.step_num)): print('--steps is mutually exclusive with all other options.', file=stderr) print( json.dumps([ {'type': 'streaming', 'mapper': {'type': 'script'}, 'reducer': {'type': 'script'}}, {'type': 'streaming', 'mapper': {'type': 'script'}}]), file=stdout) return 0 # --step-num is required if --steps not present if opts.step_num is None: print('You must specify --step-num if not using --steps.', file=stderr) return 1 # likewise for [--mapper|--reducer] if ((opts.mapper and opts.reducer) or (not opts.mapper and not opts.reducer)): print ( 'You must specify exactly one of either --mapper or --reducer' ' if not using --steps.', file=stderr) return 1 # decide which mapper to run based on --step-num if opts.mapper: if opts.step_num == 0: _run_task(lines_to_word_occurrences, args, stdin, stdout) return 0 elif opts.step_num == 1: _run_task(multiply_value_by_2, args, stdin, stdout) return 0 else: print('There is no step %d mapper!' % opts.step_num, file=stderr) return 1 # run reducer if --step-num is correct if opts.reducer: if opts.step_num == 0: _run_task(sum_word_occurrences, args, stdin, stdout) return 0 else: print('There is no step %d reducer!' % opts.step_num, file=stderr) return 1 raise Exception("How did we get here???") if __name__ == '__main__': # invoke with sys.argv, etc. Test cases might use different values. sys.exit(main(None, sys.stdin, sys.stdout, sys.stderr))
[ "sas.2106@gmail.com" ]
sas.2106@gmail.com
5a43f55a19e3c63e780c242dc3f5a1013c94a070
a951ccc03e99ae61178ab85f6db0fd5968709280
/prefix_sums/genomic_range.py
04f8f6028e9ab8f7e8919e44da513188dc5cd481
[]
no_license
mmanishh/codilitysolution
37142e66c25f786ef7bedaebbe0b164e50ff7804
d3487be50e52861cc59d3651e996d4d23cb32613
refs/heads/master
2021-07-07T12:58:07.651699
2020-08-07T10:00:21
2020-08-07T10:00:21
163,286,608
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
def genomic_range(S,P,Q): S = list(S) new_s = [] result = [] impact = {'A':1,'C':2,'G':3,'T':4} for s in S: new_s.append(impact[s]) for i in range(len(P)): l ,r = P[i] , Q[i] sliced = new_s[l:r+1] result.append(min(sliced)) return result if __name__ == '__main__': S = 'CAGCCTA' P = [2,5,0] Q = [4,5,6] print(genomic_range(S,P,Q))
[ "dfrozenthrone@gmail.com" ]
dfrozenthrone@gmail.com
16788fb6c4d87a3d199099337d60a972ac10c1d0
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5631989306621952_1/Python/gvalli/2016-1A-A-lastword.py
becda986965852bb63622f5a8164983cb9663cf1
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
444
py
#! /#!/usr/bin/env python # -*- coding: utf-8 -*- import sys fh = open(sys.argv[1], 'r') T = int(fh.readline()) # number of test cases for t in range(T): S = fh.readline().split()[0] # string of letters res = '' oldval = -1 for c in S: val = ord(c) if val >= oldval: res = c + res oldval = ord(c) else: res = res + c print('Case #{:d}: {}'.format(t + 1, res))
[ "alexandra1.back@gmail.com" ]
alexandra1.back@gmail.com
e76321e70430d42255d94ec46ee794f6038d4b5d
99236a47562f2d63afb4559dc5bd44b358ea00aa
/accountDisable_AD.py
0be6491c574781e7fc7c7bdbc6f4b7fda5521977
[ "MIT" ]
permissive
strohmy86/Scripts
3af7bf82abe6396a8d675b34f11a1a6c43083101
30f1eb1ff3a70ed16a674a1cf086a403fe0ecd49
refs/heads/master
2023-07-12T20:09:07.989313
2023-06-26T11:44:10
2023-06-26T11:44:10
97,958,183
1
0
MIT
2018-03-14T15:20:16
2017-07-21T14:45:45
Python
UTF-8
Python
false
false
14,072
py
#!/usr/bin/env python3 # MIT License # Copyright (c) 2020 Luke Strohm # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import argparse import datetime import os import time import paramiko from ldap3 import ALL, MODIFY_DELETE, MODIFY_REPLACE, Connection, Server, Tls class Color: PURPLE = "\033[95m" CYAN = "\033[96m" DARKCYAN = "\033[36m" BLUE = "\033[94m" GREEN = "\033[92m" YELLOW = "\033[93m" RED = "\033[91m" BOLD = "\033[1m" UNDERLINE = "\033[4m" END = "\033[0m" def cred(): print( Color.DARKCYAN + "\n" + "**********************************\n" + "* Python 3 Script For Disabling *\n" + "* Accounts in Active Directory *\n" + "* Moving Them to the Disabled OU *\n" + "* *\n" + "* Written and maintained by *\n" + "* Luke Strohm *\n" + "* strohm.luke@gmail.com *\n" + "* https://github.com/strohmy86 *\n" + "**********************************\n" + "\n" + Color.END ) # Connects and binds to LDAP server f = open("/home/lstrohm/Scripts/ADcreds.txt", "r") lines = f.readlines() username = lines[0] password = lines[1] f.close() tls = Tls( local_private_key_file=None, local_certificate_file=None, ) s = Server("madhs01dc3.mlsd.local", use_ssl=True, get_info=ALL, tls=tls) c = Connection(s, user=username.strip(), password=password.strip()) c.bind() # Global Variables disabled_ou = ",ou=Disabled,ou=Madison,dc=mlsd,dc=local" today = str(datetime.datetime.now()) today2 = datetime.datetime.strptime(today, "%Y-%m-%d %H:%M:%S.%f") now = today2.strftime("%m-%d-%Y at %H:%M") # Specify private key file k = paramiko.RSAKey.from_private_key_file("/home/lstrohm/.ssh/id_rsa") # Connects to gcds server via SSH gcds = paramiko.SSHClient() gcds.set_missing_host_key_policy(paramiko.AutoAddPolicy()) gcds.connect("madhs01gcds.mlsd.local", username="mlsd\\administrator", pkey=k) def single(c, usr, disabled_ou, now, gcds): # Search for user. Lists all usernames matching string provided. try: c.search( "ou=Madison,dc=mlsd,dc=local", "(&(objectclass=person)(cn=*" + usr + "*))", attributes=[ "mail", "title", "displayName", "lastLogon", "userAccountControl", "cn", "description", "memberOf", ], ) users = c.entries if len(users) <= 0: raise IndexError ent = 0 # Start of result list print( Color.BOLD + Color.CYAN + "I found the following user(s):\n" + Color.END ) for i in users: if "514" in str( users[ent].userAccountControl.value ) or "546" in str(users[ent].userAccountControl.value): status = "Disabled" elif "512" in str( users[ent].userAccountControl.value ) or "544" in str(users[ent].userAccountControl.value): status = "Active" else: status = "Unknown" print( str(ent) + ") Name: " + Color.GREEN + str(users[ent].displayName.value) + Color.END + ", AD Location: " + Color.GREEN + str(users[ent].entry_dn) + Color.END + ", Title: " + Color.GREEN + str(users[ent].title) + Color.END + ", Status: " + Color.GREEN + status + Color.END ) ent = ent + 1 # Moves to next in results list # Prompts to select user from search results usn = int(input(Color.BOLD + "\nPlease select a user: " + Color.END)) user = c.entries[usn] print( Color.YELLOW + "Disabling account " + Color.BOLD + user.cn.value + Color.END + Color.YELLOW + " and moving it " + "to the disabled OU." + Color.END ) if isinstance(user.memberOf.value, list) is True: c.modify( str(user.entry_dn), { "description": [(MODIFY_DELETE, [])], }, ) c.modify( str(user.entry_dn), { "memberOf": [(MODIFY_DELETE, [])], }, ) time.sleep(0.500) for i in user.memberOf.value: c.modify( str(i), { "member": [(MODIFY_DELETE, [str(user.entry_dn)])], }, ) time.sleep(0.300) elif isinstance(user.memberOf.value, str) is True: c.modify( str(user.entry_dn), { "description": [(MODIFY_DELETE, [])], }, ) c.modify( str(user.entry_dn), { "memberOf": [(MODIFY_DELETE, [])], }, ) time.sleep(0.500) c.modify( user.memberOf.value, {"member": [(MODIFY_DELETE, [str(user.entry_dn)])]}, ) time.sleep(0.500) c.modify( str(user.entry_dn), { "userAccountControl": [(MODIFY_REPLACE, ["514"])], }, ) c.modify( str(user.entry_dn), { "description": [(MODIFY_REPLACE, ["Disabled - " + str(now)])], }, ) time.sleep(0.500) if "@madisonrams.net" in str(user.mail.value): disabled_ou = ( "ou=" + str(datetime.date.today().year) + ",ou=Disabled," + "ou=Student,ou=Madison,dc=mlsd,dc=local" ) else: disabled_ou = "ou=Staff" + disabled_ou c.modify_dn( str(user.entry_dn), "cn=" + str(user.cn.value), new_superior=disabled_ou, ) cmd = ( "/home/lstrohm/bin/gamadv-xtd3/gam user " + str(user.cn.value) + " deprov" ) os.system(cmd) print( Color.CYAN + Color.BOLD + "Running GCDS. Please wait....." + Color.END ) # Connects to madhs01gcds server via SSH and runs a Google Sync stdin, stdout, stderr = gcds.exec_command("C:\Tools\gcds.cmd") for line in stdout: print(Color.YELLOW + line.strip("\n") + Color.END) print(Color.GREEN + "\nDone!\n" + Color.END) except IndexError: # Error received if empty search result print(Color.RED + "No username found! Try again.\n" + Color.END) except KeyboardInterrupt: # User exited script with CTRL + C print(Color.CYAN + "\nExiting..." + Color.END) exit() def batch(c, file, disabled_ou, now, gcds): try: with open(file, "r") as f: for i in f: dis_ou = disabled_ou i = str(i)[0:-1] # i = i[2:-2] c.search( "ou=Madison,dc=mlsd,dc=local", "(" + i + ")", attributes=[ "mail", "title", "displayName", "lastLogon", "userAccountControl", "cn", "description", "memberOf", ], ) user = c.entries if len(user) <= 0: raise IndexError user = user[0] print( Color.YELLOW + "Disabling account " + Color.BOLD + user.cn.value + Color.END + Color.YELLOW + " and moving it " + "to the disabled OU." + Color.END ) if isinstance(user.memberOf.value, list) is True: c.modify( str(user.entry_dn), { "description": [(MODIFY_DELETE, [])], }, ) c.modify( str(user.entry_dn), { "memberOf": [(MODIFY_DELETE, [])], }, ) time.sleep(0.500) for i in user.memberOf.value: c.modify( str(i), { "member": [ (MODIFY_DELETE, [str(user.entry_dn)]) ], }, ) time.sleep(0.300) elif isinstance(user.memberOf.value, str) is True: c.modify( str(user.entry_dn), { "description": [(MODIFY_DELETE, [])], }, ) c.modify( str(user.entry_dn), { "memberOf": [(MODIFY_DELETE, [])], }, ) time.sleep(0.500) c.modify( user.memberOf.value, {"member": [(MODIFY_DELETE, [str(user.entry_dn)])]}, ) time.sleep(0.500) c.modify( str(user.entry_dn), { "userAccountControl": [(MODIFY_REPLACE, ["514"])], }, ) c.modify( str(user.entry_dn), { "description": [ (MODIFY_REPLACE, ["Disabled - " + str(now)]) ], }, ) time.sleep(0.500) if "@madisonrams.net" in str(user.mail.value): disabled_ou = ( "ou=" + str(datetime.date.today().year) + ",ou=Disabled," + "ou=Student,ou=Madison,dc=mlsd,dc=local" ) else: dis_ou = "ou=Staff" + disabled_ou c.modify_dn( str(user.entry_dn), "cn=" + str(user.cn.value), new_superior=dis_ou, ) print(c.result) time.sleep(0.500) cmd = ( "/home/lstrohm/bin/gamadv-xtd3/gam user " + str(user.cn.value) + " deprov" ) os.system(cmd) print( Color.CYAN + Color.BOLD + "Running GCDS. Please wait....." + Color.END ) # Connects to madhs01gcds server via SSH and runs a Google Sync stdin, stdout, stderr = gcds.exec_command("C:\Tools\gcds.cmd") for line in stdout: print(Color.YELLOW + line.strip("\n") + Color.END) f.close() print(Color.GREEN + "\nDone!\n" + Color.END) except IndexError: # Error received if empty search result print( Color.RED + "Error in file! User not found. Check your file" + "and try again.\n" + Color.END ) # Sets up parser and adds arguement parser = argparse.ArgumentParser( description="Script to disable user accounts." ) parser.add_argument( "usr", metavar="Username", default="", type=str, help="Username or last name of user to disable.", nargs="?", ) parser.add_argument( "-b", "--batch", metavar="Filename", default="", type=str, help="Batch mode with a text file. File must contain full cn\ (one per line). EX: cn=some_user", ) args = parser.parse_args() usr = args.usr file = args.batch cred() if file == "" and usr != "": single(c, usr, disabled_ou, now, gcds) c.unbind() gcds.close() elif file != "" and usr == "": batch(c, file, disabled_ou, now, gcds) c.unbind() gcds.close() else: c.unbind() gcds.close() parser.print_help() parser.exit(1)
[ "strohm.luke@gmail.com" ]
strohm.luke@gmail.com
fac948d696d4a82b62dca8ce6557a6b4e27a4e6e
0ecb1763b4cab08a1fb80234639e46afc8921e2f
/further/routing_1.py
882cf1231be2c220621e4dd32a8a4aea3cdd9566
[]
no_license
mach8686devops/pyside6-demo
4eed3713288ec21b0ec4b8561290f87925693b89
848302ff9c1536034cf5f225fa953944d011c2a4
refs/heads/main
2023-05-05T11:12:20.711846
2021-05-28T13:44:41
2021-05-28T13:44:41
371,714,201
0
0
null
null
null
null
UTF-8
Python
false
false
1,491
py
import sys from PySide6.QtCore import QSize, Qt from PySide6.QtWidgets import QApplication, QLabel, QMainWindow class MainWindow(QMainWindow): def __init__(self): super().__init__() self.label = QLabel("Click in this window") self.status = self.statusBar() self.setFixedSize(QSize(200, 100)) self.setCentralWidget(self.label) def mouseMoveEvent(self, e): self.label.setText("mouseMoveEvent") def mousePressEvent(self, e): button = e.button() if button == Qt.LeftButton: self.label.setText("mousePressEvent LEFT") if e.x() < 100: self.status.showMessage("Left click on left") self.move(self.x() - 10, self.y()) else: self.status.showMessage("Left click on right") self.move(self.x() + 10, self.y()) elif button == Qt.MiddleButton: self.label.setText("mousePressEvent MIDDLE") elif button == Qt.RightButton: self.label.setText("mousePressEvent RIGHT") if e.x() < 100: self.status.showMessage("Right click on left") print("Something else here.") self.move(10, 10) else: self.status.showMessage("Right click on right") self.move(400, 400) app = QApplication(sys.argv) window = MainWindow() window.show() app.exec_()
[ "zhangjohn202@gmail.com" ]
zhangjohn202@gmail.com
1ef4318bf988f6d48cc10b92c99d71e098603a54
027c5f1cdbc292e24695edc69421e65cb68608da
/speech_to_text.py
b139b58ad7dbe84114cbf0557a1dc25e46c68f54
[]
no_license
kmitd/secklow-sounds-project
e3713656acea33097dacf04ef01dac27d740fff6
56559ae1420457edcd665a809cee845a83de9c3b
refs/heads/master
2021-01-21T08:32:44.215386
2016-09-15T16:27:45
2016-09-15T16:27:45
68,304,299
0
0
null
null
null
null
UTF-8
Python
false
false
4,140
py
"""Google Cloud Speech API sample application using the REST API for batch processing.""" import argparse import base64 import json import io,os from googleapiclient import discovery import httplib2 from oauth2client.client import GoogleCredentials from read_phrases import wards import time import logging DISCOVERY_URL = ('https://{api}.googleapis.com/$discovery/rest?' 'version={apiVersion}') def get_speech_service(): credentials = GoogleCredentials.get_application_default().create_scoped( ['https://www.googleapis.com/auth/cloud-platform']) http = httplib2.Http() credentials.authorize(http) return discovery.build('speech', 'v1beta1', http=http, discoveryServiceUrl=DISCOVERY_URL) def write_output(in_file, response): file_dir = "data/transcripts/"+in_file.split("/")[2] print file_dir try: os.mkdir(file_dir) except OSError : # then it exists pass with io.open(file_dir+'/'+in_file.split("/")[-1][:-4]+".json", 'w', encoding='utf-8') as f: f.write(unicode(json.dumps(response, ensure_ascii=False, indent=2))) def is_cached(speech_file): file_path = "data/transcripts/"+speech_file.split("/")[2]+"/"+speech_file.split("/")[-1][:-4]+".json" if os.path.exists(file_path): # with open(file_path) as data_file: # print "Trascript exists." # print json.load(data_file) return True else : # print "Trascript does not exist. Calling Google Speech API..." return False def asynch_request(speech_remote_file): service = get_speech_service() service_request = service.speech().asyncrecognize( body={ 'config': { 'encoding': 'LINEAR16', # raw 16-bit signed LE samples 'sampleRate': 16000, # 16 khz 'languageCode': 'en-GB', # a BCP-47 language tag, "speech_context": {"phrases": wards } }, 'audio' : { 'uri': speech_remote_file } }) response = service_request.execute() name = response['name'] # Construct a GetOperation request. service_request = service.operations().get(name=name) while True: # Give the server a few seconds to process. logging.debug('Waiting for Google Speech API processing...') time.sleep(1) # Get the long running operation with response. response = service_request.execute() if 'done' in response and response['done']: break # logging.info(json.dumps(response['response']['results'])) return response def synch_request(speech_file): with open(speech_file, 'rb') as speech: speech_content = base64.b64encode(speech.read()) service = get_speech_service() service_request = service.speech().syncrecognize( body={ 'config': { 'encoding': 'LINEAR16', # raw 16-bit signed LE samples 'sampleRate': 16000, # 16 khz 'languageCode': 'en-GB' , # a BCP-47 language tag, "speech_context": {"phrases": wards } }, 'audio': { 'content': speech_content.decode('UTF-8') } }) response = service_request.execute() # logging.info(json.dumps(response)) return response def main(speech_file): """Transcribe the given audio file. Args: speech_file: the name of the audio file. """ # do not run it again if we have already the trascript # if (is_cached(speech_file)) : # return response = synch_request(speech_content) print(json.dumps(response)) write_output(speech_file,response) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( 'speech_file', help='Full path of audio file to be recognized') args = parser.parse_args() main(args.speech_file)
[ "ilaria.tiddi@open.ac.uk" ]
ilaria.tiddi@open.ac.uk
b30480679c1e40bda865c6b29f644fd3bf852376
097b5839f33bfd7826ad51731b93349f5cb24056
/venv/Lib/site-packages/aliyun_python_sdk_core_v3-2.11.2-py3.6.egg/aliyunsdkcore/client.py
a42cdb2f19e4e28d0e67c0023c005c52545c0c34
[]
no_license
P79N6A/xfz
eb2099051e13e2ea4f2a4862f77555630e4fc449
066607292c4e4107ae6425e1a889f014f0e731bc
refs/heads/master
2021-07-22T10:57:00.551292
2018-12-28T10:30:31
2018-12-28T10:30:31
163,398,844
2
2
null
2020-05-26T03:39:11
2018-12-28T10:39:52
Python
UTF-8
Python
false
false
10,306
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding=utf-8 import warnings import aliyunsdkcore from aliyunsdkcore.vendored.six.moves.urllib.parse import urlencode from aliyunsdkcore.vendored.six.moves import http_client from aliyunsdkcore.acs_exception.exceptions import ClientException from aliyunsdkcore.acs_exception.exceptions import ServerException from aliyunsdkcore.acs_exception import error_code, error_msg from aliyunsdkcore.http.http_response import HttpResponse from aliyunsdkcore.request import AcsRequest from aliyunsdkcore.http import format_type from aliyunsdkcore.auth.signers.signer_factory import SignerFactory from aliyunsdkcore.request import CommonRequest from aliyunsdkcore.endpoint.resolver_endpoint_request import ResolveEndpointRequest from aliyunsdkcore.endpoint.default_endpoint_resolver import DefaultEndpointResolver from aliyunsdkcore.compat import json """ Acs default client module. Created on 6/15/2015 @author: alex jiang """ DEFAULT_SDK_CONNECTION_TIMEOUT_IN_SECONDS = 10 class AcsClient: def __init__( self, ak=None, secret=None, region_id="cn-hangzhou", auto_retry=True, max_retry_time=3, user_agent=None, port=80, timeout=DEFAULT_SDK_CONNECTION_TIMEOUT_IN_SECONDS, public_key_id=None, private_key=None, session_period=3600, credential=None, debug=False): """ constructor for AcsClient :param ak: String, access key id :param secret: String, access key secret :param region_id: String, region id :param auto_retry: Boolean :param max_retry_time: Number :return: """ self.__max_retry_num = max_retry_time self.__auto_retry = auto_retry self.__ak = ak self.__secret = secret self.__region_id = region_id self.__user_agent = user_agent self._port = port self._timeout = timeout # if true, do_action() will throw a ClientException that contains URL self._url_test_flag = False credential = { 'ak': ak, 'secret': secret, 'public_key_id': public_key_id, 'private_key': private_key, 'session_period': session_period, 'credential': credential, } self._signer = SignerFactory.get_signer(credential, region_id, self.implementation_of_do_action, debug) self._endpoint_resolver = DefaultEndpointResolver(self) def get_region_id(self): """ :return: String """ return self.__region_id def get_access_key(self): """ :return: String """ return self.__ak def get_access_secret(self): """ :return: String """ return self.__secret def is_auto_retry(self): """ :return:Boolean """ return self.__auto_retry def get_max_retry_num(self): """ :return: Number """ return self.__max_retry_num def get_user_agent(self): return self.__user_agent def set_region_id(self, region): self.__region_id = region def set_max_retry_num(self, num): """ set auto retry number :param num: Numbers :return: None """ self.__max_retry_num = num def set_auto_retry(self, flag): """ set whether or not the client perform auto-retry :param flag: Booleans :return: None """ self.__auto_retry = flag def set_user_agent(self, agent): """ User agent set to client will overwrite the request setting. :param agent: :return: """ self.__user_agent = agent def get_port(self): return self._port def get_location_service(self): return None def _make_http_response(self, endpoint, request, specific_signer=None): body_params = request.get_body_params() if body_params: body = urlencode(body_params) request.set_content(body) request.set_content_type(format_type.APPLICATION_FORM) elif request.get_content() and "Content-Type" not in request.get_headers(): request.set_content_type(format_type.APPLICATION_OCTET_STREAM) method = request.get_method() signer = self._signer if specific_signer is None else specific_signer header, url = signer.sign(self.__region_id, request) if self.get_user_agent() is not None: header['User-Agent'] = self.get_user_agent() if header is None: header = {} header['x-sdk-client'] = 'python/2.0.0' protocol = request.get_protocol_type() response = HttpResponse( endpoint, url, method, header, protocol, request.get_content(), self._port, timeout=self._timeout) if body_params: body = urlencode(request.get_body_params()) response.set_content(body, "utf-8", format_type.APPLICATION_FORM) return response def implementation_of_do_action(self, request, signer=None): if not isinstance(request, AcsRequest): raise ClientException( error_code.SDK_INVALID_REQUEST, error_msg.get_msg('SDK_INVALID_REQUEST')) # add core version core_version = __import__('aliyunsdkcore').__version__ request.add_header('x-sdk-core-version', core_version) if isinstance(request, CommonRequest): request.trans_to_acs_request() if request.endpoint: endpoint = request.endpoint else: endpoint = self._resolve_endpoint(request) http_response = self._make_http_response(endpoint, request, signer) if self._url_test_flag: raise ClientException("URLTestFlagIsSet", http_response.get_url()) # Do the actual network thing try: status, headers, body = http_response.get_response_object() return status, headers, body except IOError as e: error_message = str(e) error_message += "\nEndpoint: " + endpoint error_message += "\nProduct: " + str(request.get_product()) error_message += "\nSdkCoreVersion: " + aliyunsdkcore.__version__ error_message += "\nHttpUrl: " + str(http_response.get_url()) error_message += "\nHttpHeaders: " + str(http_response.get_headers()) raise ClientException(error_code.SDK_HTTP_ERROR, error_message) @staticmethod def _parse_error_info_from_response_body(response_body): try: body_obj = json.loads(response_body) if 'Code' in body_obj and 'Message' in body_obj: return body_obj['Code'], body_obj['Message'] except ValueError: pass finally: # failed to parse body as json format # TODO handle if response_body is too big error_message = "ServerResponseBody: " + str(response_body) return error_code.SDK_UNKNOWN_SERVER_ERROR, error_message def do_action_with_exception(self, acs_request): # set server response format as json, because thie function will # parse the response so which format doesn't matter acs_request.set_accept_format('JSON') status, headers, body = self.implementation_of_do_action(acs_request) request_id = None try: body_obj = json.loads(body.decode('utf-8')) request_id = body_obj.get('RequestId') except (ValueError, TypeError, AttributeError): # in case the response body is not a json string, return the raw # data instead pass if status < http_client.OK or status >= http_client.MULTIPLE_CHOICES: server_error_code, server_error_message = self._parse_error_info_from_response_body( body) raise ServerException( server_error_code, server_error_message, http_status=status, request_id=request_id) return body def _resolve_endpoint(self, request): resolve_request = ResolveEndpointRequest( self.__region_id, request.get_product(), request.get_location_service_code(), request.get_location_endpoint_type(), ) endpoint = self._endpoint_resolver.resolve(resolve_request) if endpoint.endswith("endpoint-test.exception.com"): # For endpoint testability, if the endpoint is xxxx.endpoint-test.special.com # throw a client exception with this endpoint raise ClientException(error_code.SDK_ENDPOINT_TESTABILITY, endpoint) return endpoint def do_action(self, acs_request): warnings.warn( "do_action() method is deprecated, please use do_action_with_exception() instead.", DeprecationWarning) status, headers, body = self.implementation_of_do_action(acs_request) return body def get_response(self, acs_request): return self.implementation_of_do_action(acs_request) def add_endpoint(self, region_id, product_code, endpoint): self._endpoint_resolver.put_endpoint_entry(region_id, product_code, endpoint)
[ "281528675@qq.com" ]
281528675@qq.com
0c3685cd9f60cf9fab17887921f148cea4932610
acd41dc7e684eb2e58b6bef2b3e86950b8064945
/res/packages/scripts/scripts/client/gui/Scaleform/daapi/view/lobby/fortifications/FortCalendarWindow.py
96f439b6351f27ea524c3190daac96e5559db5f9
[]
no_license
webiumsk/WoT-0.9.18.0
e07acd08b33bfe7c73c910f5cb2a054a58a9beea
89979c1ad547f1a1bbb2189f5ee3b10685e9a216
refs/heads/master
2021-01-20T09:37:10.323406
2017-05-04T13:51:43
2017-05-04T13:51:43
90,268,530
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
11,877
py
# 2017.05.04 15:23:16 Střední Evropa (letní čas) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/fortifications/FortCalendarWindow.py import BigWorld from collections import defaultdict from helpers import time_utils from helpers.i18n import makeString as _ms from gui import makeHtmlString from gui.Scaleform.daapi.settings.views import VIEW_ALIAS from gui.Scaleform.daapi.view.lobby.fortifications.fort_utils.FortViewHelper import FortViewHelper from gui.Scaleform.daapi.view.meta.FortCalendarWindowMeta import FortCalendarWindowMeta from gui.Scaleform.genConsts.FORTIFICATION_ALIASES import FORTIFICATION_ALIASES from gui.Scaleform.locale.FORTIFICATIONS import FORTIFICATIONS from gui.Scaleform.locale.MENU import MENU from gui.Scaleform.locale.RES_ICONS import RES_ICONS from gui.shared.utils import toLower from gui.shared.fortifications.fort_seqs import BATTLE_ITEM_TYPE from gui.Scaleform.daapi.view.lobby.fortifications.fort_utils.fort_formatters import getDivisionIcon class FortCalendarWindow(FortViewHelper, FortCalendarWindowMeta): class TIME_LIMITS: LOW = FORTIFICATION_ALIASES.ACTIVE_EVENTS_PAST_LIMIT * time_utils.ONE_DAY HIGH = FORTIFICATION_ALIASES.ACTIVE_EVENTS_FUTURE_LIMIT * time_utils.ONE_DAY def __init__(self, ctx): super(FortCalendarWindow, self).__init__() self.__selectedDate = ctx.get('dateSelected') or time_utils.getCurrentTimestamp() def getCalendar(self): return self.components.get(VIEW_ALIAS.CALENDAR) def startCalendarListening(self): calendar = self.getCalendar() if calendar is not None: calendar.onMonthChangedEvent += self.onMonthChanged calendar.onDateSelectedEvent += self.onDateSelected return def stopCalendarListening(self): calendar = self.getCalendar() if calendar is not None: calendar.onMonthChangedEvent -= self.onMonthChanged calendar.onDateSelectedEvent -= self.onDateSelected return def onMonthChanged(self, timestamp): self.__selectedDate = timestamp self._populateMonthEvents() self._populateCalendarMessage() def onDateSelected(self, timestamp): self.__selectedDate = timestamp self._populatePreviewBlock() def onWindowClose(self): self.destroy() def onFortBattleChanged(self, cache, item, battleItem): self._update() def onFortBattleRemoved(self, cache, battleID): self._update() def _populateMonthEvents(self): calendar = self.getCalendar() if calendar is not None: result = [] for dayStartTimestamp, battles in self._getBattlesByDay().iteritems(): if time_utils.isFuture(dayStartTimestamp): tooltipHead = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_CALENDAR_DAYTOOLTIP_FUTURE_HEADER, count=len(battles)) tooltipBody = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_CALENDAR_DAYTOOLTIP_FUTURE_BODY) iconSource = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_DEFENCEFUTUREBG elif time_utils.isToday(dayStartTimestamp): finishedBattles = [ b for b in battles if b.isEnded() ] upcomingBattles = [ b for b in battles if b.isPlanned() ] if not upcomingBattles: tooltipHead = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_CALENDAR_DAYTOOLTIP_PAST_HEADER, count=len(finishedBattles)) tooltipBody = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_CALENDAR_DAYTOOLTIP_PAST_BODY) iconSource = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_DEFENCEPASTBG else: tooltipHead = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_CALENDAR_DAYTOOLTIP_FUTURE_HEADER, count=len(upcomingBattles)) tooltipBody = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_CALENDAR_DAYTOOLTIP_FUTURE_BODY) iconSource = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_DEFENCEFUTUREBG else: tooltipHead = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_CALENDAR_DAYTOOLTIP_PAST_HEADER, count=len(battles)) tooltipBody = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_CALENDAR_DAYTOOLTIP_PAST_BODY) iconSource = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_DEFENCEPASTBG result.append({'tooltipHeader': tooltipHead, 'tooltipBody': tooltipBody, 'iconSource': iconSource, 'rawDate': dayStartTimestamp}) calendar.as_updateMonthEventsS(result) return def _populatePreviewBlock(self): fort = self.fortCtrl.getFort() localDateTime = time_utils.getDateTimeInLocal(self.__selectedDate) targetDayStartTimestamp, _ = time_utils.getDayTimeBoundsForLocal(self.__selectedDate) eventItems, dateInfo, noEventsText = [], None, None dateString = _ms(MENU.DATETIME_SHORTDATEFORMATWITHOUTYEAR, weekDay=_ms('#menu:dateTime/weekDays/full/%d' % localDateTime.isoweekday()), monthDay=localDateTime.day, month=toLower(_ms('#menu:dateTime/months/full/%d' % localDateTime.month))) if not self._isValidTime(self.__selectedDate): noEventsText = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_EVENTSLIST_EMPTY_NOTAVAILABLE) else: for dayStartTimestamp, battles in self._getBattlesByDay().iteritems(): if dayStartTimestamp == targetDayStartTimestamp: for battle in sorted(battles): startTimestamp = battle.getStartTime() battleHasEnded = battle.isEnded() opponentsClanInfo = battle.getOpponentClanInfo() if battle.getType() == BATTLE_ITEM_TYPE.ATTACK: if battleHasEnded: icon = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_OFFENCEPAST else: icon = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_OFFENCEFUTURE titleTpl = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_EVENTSLIST_ITEM_TITLE_OFFENCE) else: if battleHasEnded: icon = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_DEFENCEPAST else: icon = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_DEFENCEFUTURE titleTpl = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_EVENTSLIST_ITEM_TITLE_DEFENCE) tankIconVO = getDivisionIcon(battle.defenderFortLevel, battle.attackerFortLevel, determineAlert=battle.getType() == BATTLE_ITEM_TYPE.ATTACK) if battle.isWin(): background = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_BATTLEFORTVICTORY resultLabel = 'win' elif battle.isLose(): background = RES_ICONS.MAPS_ICONS_LIBRARY_FORTIFICATION_BATTLEFORTDEFEAT resultLabel = 'lose' else: background, resultLabel = (None, None) eventItem = {'icon': icon, 'title': titleTpl % {'clanName': '[%s]' % opponentsClanInfo[1]}, 'clanID': opponentsClanInfo[0], 'direction': _ms(FORTIFICATIONS.GENERAL_DIRECTION, value=_ms('#fortifications:General/directionName%d' % battle.getDirection())), 'timeInfo': _ms(FORTIFICATIONS.FORTCALENDARWINDOW_EVENTSLIST_ITEM_TIMEINFO) % {'startTime': BigWorld.wg_getShortTimeFormat(startTimestamp), 'endTime': BigWorld.wg_getShortTimeFormat(startTimestamp + time_utils.ONE_HOUR)}, 'background': background, 'tankIconVO': tankIconVO, 'showTankIcon': not battleHasEnded} if battleHasEnded and resultLabel: resultText = makeHtmlString('html_templates:lobby/fortifications', 'battleResult', {'result': _ms(MENU.finalstatistic_commonstats_resultlabel(resultLabel))}) eventItem.update({'result': resultText}) eventItems.append(eventItem) if not len(eventItems): if fort.isOnVacationAt(self.__selectedDate): noEventsText = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_EVENTSLIST_EMPTY_VACATION, date=fort.getVacationDateStr()) else: noEventsText = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_EVENTSLIST_EMPTY_NOEVENTS) if len(eventItems) > 0: dateInfo = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_EVENTSLIST_INFO_BATTLESCOUNT, eventsCount=len(eventItems)) self.as_updatePreviewDataS({'dateString': dateString, 'dateInfo': dateInfo, 'noEventsText': noEventsText, 'events': eventItems}) return def _populateCalendarMessage(self): calendar = self.getCalendar() if calendar is not None: fort, message = self.fortCtrl.getFort(), '' vacationStart, vacationEnd = fort.getVacationDate() if self._isValidTime(vacationStart, self.__selectedDate) or self._isValidTime(vacationEnd, self.__selectedDate): message = _ms(FORTIFICATIONS.FORTCALENDARWINDOW_MESSAGE_VACATION, date=fort.getVacationDateStr()) calendar.as_setCalendarMessageS(message) return def _populate(self): super(FortCalendarWindow, self)._populate() self.startFortListening() self.startCalendarListening() self._update() def _dispose(self): self.stopFortListening() self.stopCalendarListening() super(FortCalendarWindow, self)._dispose() def _update(self): calendar = self.getCalendar() if calendar is not None: lowerTimeBound = time_utils.getCurrentLocalServerTimestamp() - self.TIME_LIMITS.LOW higherTimeBound = time_utils.getCurrentLocalServerTimestamp() + self.TIME_LIMITS.HIGH calendar.as_setMinAvailableDateS(lowerTimeBound) calendar.as_setMaxAvailableDateS(higherTimeBound) calendar.as_openMonthS(self.__selectedDate) calendar.as_selectDateS(self.__selectedDate) self._populateMonthEvents() self._populatePreviewBlock() self._populateCalendarMessage() return @classmethod def _isValidTime(cls, timestampToCheck, rootTimestamp = None): rootTimestamp = rootTimestamp or time_utils.getCurrentTimestamp() minLimit = rootTimestamp - cls.TIME_LIMITS.LOW dayStart, _ = time_utils.getDayTimeBoundsForLocal(minLimit) minLimit = dayStart maxLimit = rootTimestamp + cls.TIME_LIMITS.HIGH _, dayEnd = time_utils.getDayTimeBoundsForLocal(maxLimit) maxLimit = dayEnd return minLimit < timestampToCheck < maxLimit def _getBattlesByDay(self): result, fort = defaultdict(list), self.fortCtrl.getFort() for battle in fort.getAttacks() + fort.getDefences(): startTimestamp = battle.getStartTime() if self._isValidTime(startTimestamp): dayStartTimestamp, _ = time_utils.getDayTimeBoundsForLocal(startTimestamp) result[dayStartTimestamp].append(battle) return result # okay decompyling C:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\client\gui\Scaleform\daapi\view\lobby\fortifications\FortCalendarWindow.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.05.04 15:23:17 Střední Evropa (letní čas)
[ "info@webium.sk" ]
info@webium.sk
2000039431e4cd0505c1aa8c3ae0e29f734712d9
195b4a1d9c5aa632f46c993d1ec4db45f6130b91
/question-094.py
a757ae3bdcec335ade4ff81ab63597c1988756dd
[]
no_license
superzarin/lessons-1-2-3-4
54e5594a120577e410cebbccc6f9397bc78b5a72
64d7a27d8c1f2ea42f8a63c6fc036ba80ddb0d01
refs/heads/master
2022-11-07T22:48:35.906934
2020-06-26T04:37:35
2020-06-26T04:37:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
from array import * givenArray = array('i', [7, 3, 12, 1, 8]) while True: selectedValue = int(input('Select one of a number from the array: ')) if(selectedValue in givenArray): print(givenArray.index(selectedValue)) break else: print("Try again")
[ "exemptionhunters@gmail.com" ]
exemptionhunters@gmail.com
f9a3bff56e5ed0ba4f874a6571ecf9e908e79f95
de1f9d660cfb738afdb66e4a2d63a4577c07d9c6
/xcube/webapi/defaults.py
e2f0580e213aeaa838812aab943976b33b2c918e
[ "MIT" ]
permissive
rabaneda/xcube
db47eb416db85df891a924063482a7943cae9d4f
0d38ca513987184dbc4a37da1616e4076964d0f1
refs/heads/master
2020-11-24T00:11:17.107630
2020-02-11T10:11:34
2020-02-11T10:11:34
227,877,138
0
0
MIT
2019-12-13T16:14:51
2019-12-13T16:14:50
null
UTF-8
Python
false
false
1,831
py
# The MIT License (MIT) # Copyright (c) 2019 by the xcube development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. SERVER_NAME = 'xcube Server' SERVER_DESCRIPTION = f'WMTS, catalogue, data access, tile, feature, time-series services for' \ ' xarray-enabled data cubes' DEFAULT_ADDRESS = 'localhost' DEFAULT_PORT = 8080 DEFAULT_TILE_CACHE_SIZE = "512M" DEFAULT_UPDATE_PERIOD = 2. DEFAULT_LOG_PREFIX = 'xcube-serve.log' DEFAULT_TILE_COMP_MODE = 0 DEFAULT_TRACE_PERF = False DEFAULT_CMAP_NAME = 'viridis' DEFAULT_CMAP_VMIN = 0. DEFAULT_CMAP_VMAX = 1. DEFAULT_CMAP_WIDTH = 1 DEFAULT_CMAP_HEIGHT = 5 _GIGAS = 1000 * 1000 * 1000 FILE_TILE_CACHE_CAPACITY = 20 * _GIGAS FILE_TILE_CACHE_ENABLED = False FILE_TILE_CACHE_PATH = './image-cache' MEM_TILE_CACHE_CAPACITY = 2 * _GIGAS
[ "norman.fomferra@gmail.com" ]
norman.fomferra@gmail.com
408cbad0d506e1bd58f09db1ea6c6e52da7dad9b
6d9af7eade7ddc239ee6839a3766cb40c27f619d
/src/SimpleNN/utils/__init__.py
87538fa722eaeb1a1e91e46f7a4876a7b07fd807
[]
no_license
lmj1029123/SingleNN
24dfe40c8d920e2a777742c885907c27484976f4
701752c3378e537387fa0dc2b410aec44577b7a3
refs/heads/master
2021-11-27T04:42:46.229290
2021-11-09T00:40:10
2021-11-09T00:40:10
246,651,678
7
2
null
null
null
null
UTF-8
Python
false
false
290
py
def _gen_2Darray_for_ffi(arr, ffi, cdata="double"): # Function to generate 2D pointer for cffi shape = arr.shape arr_p = ffi.new(cdata + " *[%d]" % shape[0]) for i in range(shape[0]): arr_p[i] = ffi.cast(cdata + " *", arr[i].ctypes.data) return arr_p
[ "mingjie1@andrew.cmu.edu" ]
mingjie1@andrew.cmu.edu
84579276ee1fb2606f7bcec64999a267eb075557
5802a63c9144cc4d6177de49a2187156899add4e
/count_coin.py
414378ffa8e83e7ececc30d3668de9ce06c7d019
[ "MIT" ]
permissive
kyh980909/keras-yolo4
b82cb053f1f11092273db633b73e82d2ddcd7acd
da9fb99e5ef10ffd6301dd16f35cb888ee121d15
refs/heads/master
2022-12-29T16:31:23.428770
2020-10-15T10:08:03
2020-10-15T10:08:03
291,690,546
2
0
MIT
2020-08-31T10:57:49
2020-08-31T10:57:48
null
UTF-8
Python
false
false
6,940
py
import os import colorsys import collections import io import numpy as np from keras import backend as K from keras.models import load_model from keras.layers import Input from yolo4.model import yolo_eval, yolo4_body from yolo4.utils import letterbox_image from PIL import Image, ImageFont, ImageDraw from timeit import default_timer as timer from PIL import Image import cv2 import base64 import matplotlib.pyplot as plt from decode_np import Decode def get_class(classes_path): classes_path = os.path.expanduser(classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): anchors_path = os.path.expanduser(anchors_path) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def init(): # if (country == 'KRW'): model_path = 'KRW_weight.h5' anchors_path = 'model_data/yolo4_anchors.txt' classes_path = 'model_data/KRW_classes.txt' class_names = get_class(classes_path) anchors = get_anchors(anchors_path) num_anchors = len(anchors) num_classes = len(class_names) model_image_size = (416, 416) # 分数阈值和nms_iou阈值 conf_thresh = 0.2 nms_thresh = 0.45 yolo4_model = yolo4_body(Input(shape=model_image_size + (3,)), num_anchors // 3, num_classes) model_path = os.path.expanduser(model_path) yolo4_model.load_weights(model_path) _decode = Decode(conf_thresh, nms_thresh, model_image_size, yolo4_model, class_names) # 위 과정의 시간이 오래걸림 # else: # model_path = 'JPY_weight.h5' # anchors_path = 'model_data/yolo4_anchors.txt' # classes_path = 'model_data/JPY_classes.txt' return _decode def jpy_count_coin(img): # img : str model_path = 'JPY_weight.h5' anchors_path = 'model_data/yolo4_anchors.txt' classes_path = 'model_data/JPY_classes.txt' jpy_classes = ['JPY_500', 'JPY_100', 'JPY_50', 'JPY_10', 'JPY_1', 'JPY_5'] count = {} result = {} total = 0 class_names = get_class(classes_path) anchors = get_anchors(anchors_path) num_anchors = len(anchors) num_classes = len(class_names) model_image_size = (416, 416) # 分数阈值和nms_iou阈值 conf_thresh = 0.2 nms_thresh = 0.8 yolo4_model = yolo4_body(Input(shape=model_image_size + (3,)), num_anchors // 3, num_classes) model_path = os.path.expanduser(model_path) yolo4_model.load_weights(model_path) _decode = Decode(conf_thresh, nms_thresh, model_image_size, yolo4_model, class_names) try: encoded_img = np.fromstring(base64.b64decode(img), dtype = np.uint8) img = cv2.imdecode(encoded_img, cv2.IMREAD_COLOR) except: print('Open Error! Try again!') else: image, boxes, scores, classes = _decode.detect_image(img, True) cv2.imwrite('predict.png',image) with open('predict.png', 'rb') as img: base64_string = base64.b64encode(img.read()).decode('utf-8') count = collections.Counter(classes) for key in tuple(count.keys()): # 딕셔너리 키 이름 변경 count[jpy_classes[key]] = count.pop(key) for key, value in count.items(): total += int(key[str(key).find('_') + 1:]) * value result['result'] = count result['total'] = total result['image'] = base64_string # yolo4_model.close_session() return result def krw_count_coin(img, _decode): # img : str # model_path = 'KRW_weight.h5' # anchors_path = 'model_data/yolo4_anchors.txt' # classes_path = 'model_data/KRW_classes.txt' krw_classes = ['KRW_500', 'KRW_100', 'KRW_50', 'KRW_10'] count = {} result = {} total = 0 # class_names = get_class(classes_path) # anchors = get_anchors(anchors_path) # num_anchors = len(anchors) # num_classes = len(class_names) # model_image_size = (416, 416) # conf_thresh = 0.2 # nms_thresh = 0.45 # yolo4_model = yolo4_body(Input(shape=model_image_size + (3,)), num_anchors // 3, num_classes) # model_path = os.path.expanduser(model_path) # yolo4_model.load_weights(model_path) # _decode = Decode(conf_thresh, nms_thresh, model_image_size, yolo4_model, class_names) # 위 과정의 시간이 오래걸림 print(_decode) try: encoded_img = np.fromstring(base64.b64decode(img), dtype = np.uint8) img = cv2.imdecode(encoded_img, cv2.IMREAD_COLOR) except: print('Open Error! Try again!') else: image, boxes, scores, classes = _decode.detect_image(img, True) # predict 부분 cv2.imwrite('predict.png',image) with open('predict.png', 'rb') as img: base64_string = base64.b64encode(img.read()).decode('utf-8') count = collections.Counter(classes) for key in tuple(count.keys()): # 딕셔너리 키 이름 변경 count[krw_classes[key]] = count.pop(key) for key, value in count.items(): total += int(key[str(key).find('_') + 1:]) * value result['result'] = count result['total'] = total result['image'] = base64_string # yolo4_model.close_session() return result if __name__ == '__main__': model_path = 'JPY_weight.h5' anchors_path = 'model_data/yolo4_anchors.txt' classes_path = 'model_data/JPY_classes.txt' jpy_classes = ['JPY_500', 'JPY_100', 'JPY_50', 'JPY_10', 'JPY_1', 'JPY_5'] count = {} result = {} total = 0 class_names = get_class(classes_path) anchors = get_anchors(anchors_path) num_anchors = len(anchors) num_classes = len(class_names) model_image_size = (416, 416) # 分数阈值和nms_iou阈值 conf_thresh = 0.2 nms_thresh = 0.45 yolo4_model = yolo4_body(Input(shape=model_image_size + (3,)), num_anchors // 3, num_classes) model_path = os.path.expanduser(model_path) assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' yolo4_model.load_weights(model_path) _decode = Decode(conf_thresh, nms_thresh, model_image_size, yolo4_model, class_names) img = input('Input image filename:') try: image = cv2.imread(img) except: print('Open Error! Try again!') else: image, boxes, scores, classes = _decode.detect_image(image, True) count = collections.Counter(classes) for key in tuple(count.keys()): # 딕셔너리 키 이름 변경 count[jpy_classes[key]] = count.pop(key) for key, value in count.items(): total += int(key[str(key).find('_') + 1:]) * value result['result'] = count result['total'] = total result['image'] = image cv2.imwrite('result.png', image) yolo4_model.close_session()
[ "kyh980909@gmail.com" ]
kyh980909@gmail.com
45c06cf8191f1ab31422d1f210f7aeab0d004174
30adaebf1b0c1aa9fabc071de3e0ddc8904d6def
/curdpro/curdapp/models.py
ca76cf2baa1bebef37d63a7c4497b8492cb725ee
[]
no_license
ashvani98/RemaoteRepo
74920d832a4dda1754ded60e8052732962208476
b60a99b12146a67563bc3a23cfadf03eafa8b187
refs/heads/master
2020-07-13T18:54:15.941855
2019-08-29T10:55:42
2019-08-29T10:55:42
205,134,674
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
from django.db import models class ProductData(models.Model): product_id=models.IntegerField() product_name=models.CharField(max_length=100) product_cost=models.IntegerField() product_color=models.CharField(max_length=100) product_class=models.CharField(max_length=100)
[ "ashvani151998@gmail.com" ]
ashvani151998@gmail.com
578defba3d381285781d5f20e54fc89d5560e111
6787ba6d82efe5152726799f073b291bf25d7846
/12 Ticketing Teatrale.py
90303f71401fd0ae5dbc0fe94887ef96ebbcc10c
[]
no_license
stefanin/Python
0cfc4b484ac21bf3c2ddc4841e0a6070a422ded3
b10772fdece4d26d10c1a9fd804e3d56bcf3a98a
refs/heads/master
2021-06-14T10:01:01.076015
2021-01-18T20:59:57
2021-01-18T20:59:57
73,856,077
1
0
null
null
null
null
UTF-8
Python
false
false
1,963
py
''' Sistema di ticketing diversi Spettacoli min 3 max 5 Ticket c'è un Bottegnino la Mascherina controlla l'acceso e da il via allo spettacolo simulare nel Main le istanze degli oggetti in loco con acquisti di diversi spettacoli ''' #Ticket class Ticket: stato="Valido" NomeSpettacolo="" def __init__(self, Spettacolo): self.NomeSpettacolo=Spettacolo.Nome def convalida(self): self.stato="Strappato" def nullo(self): self.stato="Nullo" def __str__(self): return str(self.stato) #Spettacolo class Spettacolo: Nome="" Partecipanti_min=0 Partecipanti_max=0 nTicket=[] def __init__(self,Nome,Partecipanti_min,Partecipanti_max): '''idSpettacolo,Nome,Partecipanti_min,Partecipanti_max''' self.Nome=Nome self.Partecipanti_min=Partecipanti_min self.Partecipanti_max=Partecipanti_max def __str__(self): #return "Nome Spettacolo :",str(self.Nome), " Partecipanti : ",str(self.Partecipanti)," Capienza sala : ",str(self.Partecipanti_max) con le virgole restituisce una TUPLA !!!!!!! return "Nome Spettacolo :"+str(self.Nome)+" Partecipanti : "+str(len(self.nTicket))+" Capienza sala : "+str(self.Partecipanti_max) def addTicket(self,Ticket): self.nTicket.append(Ticket) def verifica(self): if len(self.nTicket) <= self.Partecipanti_max: return True else: return False #Botteghino class Botteghino: def vendeTicket(self,Spettacolo): TK=Ticket(Spettacolo) if Spettacolo.verifica(): Spettacolo.addTicket(TK) return TK else: TK.nullo() return TK #Mascherina SP1=Spettacolo("primo Spettacolo",3,5) SP2=Spettacolo("secondo Spettacolo",3,5) Bott=Botteghino() print(SP1) print(SP2) print("vendo primo biglietto SP1") tk1=Bott.vendeTicket(SP1) print(tk1) print(SP1)
[ "stefano.cornelli@gmail.com" ]
stefano.cornelli@gmail.com
e86d1bf7639d80fb97b5fcf5f7062d7aafd28c43
c0fb3a3cd5a04377c7777c569732d24baed610c5
/Source/400hzSine.py
f3754344da930c4060d5f5f842d984d7f4568ae5
[]
no_license
city028/AD9833
6391b434fc58a792ea24d41bc8a24f893aac42a8
587afabe2467f2292ba2865965e85a5b5ddf18da
refs/heads/master
2023-03-02T23:47:54.500167
2021-02-09T07:58:16
2021-02-09T07:58:16
299,289,985
1
0
null
null
null
null
UTF-8
Python
false
false
449
py
import spidev spi=spidev.SpiDev() spi.open(0,0) #bus 0, device 0 spi.max_speed_hz=500000 def send_data(input): tx_msb=input>>8 tx_lsb=input & 0xFF spi.xfer([tx_msb,tx_lsb]) print(input) send_data(0x0100) # Send a reset send_data(0x1000) #MSB send_data(0x4000) #Freq 0 reg for 400hz and 1400hz send_data(0x0000) #LSB send_data(0x5100) #Freq 0 reg = 400Hz send_data(0x0008) # Sine #send_data(0x0028) # Block #send_data(0x000A) # Sawtooth
[ "noreply@github.com" ]
city028.noreply@github.com
15abe32223879f445b92f406dc47cd0d5b9c1336
92ac28cb6c7f152acce172b99fecbfab5f33406f
/setup.py
fac3b612dce2b7c35f1574c0907cf8a37876c7bf
[ "MIT" ]
permissive
UCSC-nanopore-cgl/NaRLE
d208cd0354d30716e72ea1b637ff6a804fc32ef7
d6676437044966cb1cf91dfa88b83a877f6e17d3
refs/heads/master
2020-03-30T17:58:44.652474
2019-08-02T17:59:43
2019-08-02T17:59:43
151,477,744
0
0
null
null
null
null
UTF-8
Python
false
false
601
py
from version import version, required_versions from setuptools import find_packages, setup kwargs = dict( name='toil-narle', version=version, description="UCSC CGL Nanopore Toil pipeiline", author='UCSC Computational Genomics Lab', author_email='tpesout@ucsc.edu', url="https://github.com/", install_requires=[x + y for x, y in required_versions.iteritems()], tests_require=['pytest==2.8.3'], package_dir={'': 'src'}, packages=find_packages('src'), entry_points={ 'console_scripts': ['toil-narle = narle.narle_pipeline:main']}) setup(**kwargs)
[ "tpesout@ucsc.edu" ]
tpesout@ucsc.edu
bdbeeade7f8afe21aa4b98c1a0ede56b66180ff8
b751a7bd94a3c834c7385ac02abfc82d24813abb
/tg_bot/ugc/management/commands/bot.py
5c4014df28cfe79b47d012c7964f4ae743983281
[]
no_license
Dreik2001/Telegram-bot
5f7d8ed6976d41e128a4b399d86ab189341e2b4e
18e14747f3f8e735248d0cfee1e07dc45818a4d8
refs/heads/master
2023-07-22T06:16:52.113158
2021-08-18T13:54:28
2021-08-18T13:54:28
341,983,918
0
0
null
null
null
null
UTF-8
Python
false
false
2,564
py
from django.core.management.base import BaseCommand from django.conf import settings from telegram import Bot from telegram import Update from telegram.ext import CallbackContext from telegram.ext import Filters from telegram.ext import MessageHandler from telegram.ext import Updater from telegram.ext import CommandHandler from telegram.utils.request import Request from django.db import migrations, transaction from django.db import models from ugc.models import Message from ugc.models import Profile from ugc.models import* def log_errors(f): def inner(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: error_message = f"Error : {e}" raise e return inner @log_errors def do_echo(update: Update, context: CallbackContext): chat_id = update.message.chat_id text = update.message.text name = update.message.from_user update_id = update.update_id message_id = update.message.message_id date = update.message.date user_name = update.message.from_user.name print(update_id) p, created = Profile.objects.get_or_create( external_id=chat_id, defaults={ 'name': update.message.from_user.username, } ) p.save() m = Message( profile=p, text=text, ) m.save() reply_text = """ "update_id": "{}"\n"message": \n\t"message_id": "{}",\n\t"from":\t {}\n\t"chat": \n\t"id": "{}",\n\t"first_name": "{}",\n\t"type": "{}" \n\t\t"date": "{}",\n\t\t"text": "{}" \n \t""".format(update_id, message_id, name, chat_id, user_name, chat_id, date, text) update.message.reply_text( text=reply_text, ) @log_errors def do_count(update: Update, context: CallbackContext): chat_id = update.message.chat_id p, created = Profile.objects.get_or_create( external_id=chat_id, defaults={ 'name': update.message.from_user.username, }) p.save() count = Message.objects.filter(profile=p).count() update.message.reply_text( text=f'You have {count} messages', ) class Command(BaseCommand): help = 'Telegram-bot' def handle(self, *args, **options): request = Request( connect_timeout=0.5, read_timeout=1.0, ) bot = Bot( request=request, token=settings.TOKEN, base_url=settings.PROXY_URL, ) print(bot.get_me()) updater = Updater( bot=bot, use_context=True, ) message_handler = MessageHandler(Filters.text, do_echo) updater.dispatcher.add_handler(message_handler) message_handler2 = CommandHandler('count', do_count) updater.dispatcher.add_handler(message_handler2) updater.start_polling() updater.idle()
[ "59831615+Dreik2001@users.noreply.github.com" ]
59831615+Dreik2001@users.noreply.github.com
f645a1274b73ae88aa32ba6e11a861d4572d1d9e
1d0a223b743b005cd2ecd904337178e322e63534
/Project 1/ship.py
dc9ece1ccc021393510afbd14d201033e54678b0
[]
no_license
Stefanroets180/all-my-Python-work
285607ce1ef50aac4897e0721ead4daca01fa6e0
d7937b51a309ebd051bef90e78154447b6e9a8ea
refs/heads/main
2023-03-27T10:15:54.793489
2021-03-18T12:26:20
2021-03-18T12:26:20
349,063,278
0
0
null
null
null
null
UTF-8
Python
false
false
1,554
py
import pygame from pygame.sprite import Sprite class Ship(Sprite): def __init__(self, ai_settings, screen): """Initialise the ship and set it's initial position""" super().__init__() self.screen = screen self.ai_settings = ai_settings self.speed_up_scale = 1.1 # Load ship's image & get a rectangle self.image = pygame.image.load('images/ships.png') self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() # Every ship should appear at bottom of screen self.rect.centerx = self.screen_rect.centerx self.rect.bottom = self.screen_rect.bottom # Save center ship coordinates self.center = float(self.rect.centerx) # Move flag self.moving_right = False self.moving_left = False def update(self): """Update ship position considering the flag""" # update center attribute not rect if self.moving_right and self.rect.right < self.screen_rect.right: self.center += self.ai_settings.ship_speed_factor if self.moving_left and self.rect.left > 0: self.center -= self.ai_settings.ship_speed_factor # Update rect attribute based on self.center self.rect.centerx = self.center def blitme(self): """Draw the ship in current position""" self.screen.blit(self.image, self.rect) def center_ship(self): """Place the ship at the center of bottom side""" self.center = self.screen_rect.centerx
[ "61413955+Stefanroets180@users.noreply.github.com" ]
61413955+Stefanroets180@users.noreply.github.com
07103324f226a2fd634420711359e4642804f32a
f5812c5cc411780c98a26179b105d6e35e9e5dbc
/abstract_syntax_tree_implementation/mypy/cases/special/9.py
eb53e97b9ff1130994ad0e866a1e637b6a4a3331
[]
no_license
simeonbabatunde/python2-interpreter
157751aa18e5106f0e11b8cbf65fa2202a5c82b9
8f70ce8860b55cbd209c7a6f77ccbdb3abf1a5b7
refs/heads/master
2020-04-08T02:53:49.120509
2019-07-21T22:54:31
2019-07-21T22:54:31
158,952,902
1
0
null
null
null
null
UTF-8
Python
false
false
187
py
a=-2 b=3 a**=b+(4/2)-----4+(+4) print a x=3+2 z=x**-2 l=x*(z+.5*4)**0.5 l//=a+x*z d=9 k=4+d d**=k---10.7*(d//(k-2.3)) k+=-19%2.6-(+d) a%=b*-d z/=l**2 print z x-= a+z-----l*(x**0.9)
[ "babatunde.simeon@gmail.com" ]
babatunde.simeon@gmail.com
def6c18b46463b5c3cd481ceefdafb7b8c4e49d6
98a936d5372294ed892a9bf9cf98646c72af515c
/usage/lab/explorer_usage.py
fd4a3b0be9636dbe6d5abd61ffe6a45858e3c81c
[ "MIT" ]
permissive
edublancas/pipeline
f6d22ad07b134be98c139d1de6ca7d8321072ba8
5bef04d77fdadc1dc4ec22b9b346f0a062cca1ce
refs/heads/master
2021-05-15T01:09:50.072378
2016-12-29T05:45:48
2016-12-29T05:45:48
59,692,708
0
0
null
null
null
null
UTF-8
Python
false
false
1,169
py
from pipeline import ExperimentExplorer # load everything explorer = ExperimentExplorer() # just load results from my_experiment_a explorer = ExperimentExplorer('my_experiment_a') # load results from my_experiment_a and my_experiment_b explorer = ExperimentExplorer(['my_experiment_a', 'my_experiment_b']) # compute new metric for every model explorer.apply(lambda m: m.compute_new_metric) # store this new metric for every model affected explorer.save() # after plotting, analyzing results, I want to get the # trained model model = explorer.get('some_id') metric = model.compute_metric() print 'metric is {}'.format(metric) # the problem is: should I pickle models? I should NOT pickle everything # buf it logger is smart enoigh I may be able to just pickle the top models # another option is to just re-train the model... # independent of the options the API should be transparent for the user # since he does not need to know and just be able to recover the object # - problem with re-training: I need the data. Assuming the data is still the # same I can do that, but if the numbers have changed and the columns # are named the same I'm gonna have a baaad time
[ "edu.blancas@gmail.com" ]
edu.blancas@gmail.com
2b74c60edf0de797825dd1369704f2e7b7152f70
12e93d6308a5b90e5ef3d23bf85dcc5e05a5f160
/Automatic summarization/keyword2_summary.py
6075d37ef52dc94fcbd20ab766e6a52ca58f1733
[]
no_license
787264137/ks
b7795df1e6d85a0bc68318c112cab151032a2ed2
0a8613fdc220eeaa8c1bca2bf029b33971acceb9
refs/heads/master
2020-03-25T02:05:09.710199
2018-08-09T09:24:49
2018-08-09T09:24:49
143,273,369
0
0
null
null
null
null
UTF-8
Python
false
false
1,840
py
import jieba from heapq import nlargest from collections import defaultdict import re from jieba.analyse import textrank def is_chinese(uchar): if uchar >= u'\u4e00' and uchar <= u'\u9fa5': return True else: return False def get_sentences(doc): line_break = re.compile('[\r\n]') delimiter = re.compile('[。?!]') sentences = [] for line in line_break.split(doc): line = line.strip() if not line: continue for sent in delimiter.split(line): sent = sent.strip() if not sent: continue sentences.append(sent) return sentences def get_ch_stopwords(filepath): with open(filepath, 'r', encoding='utf-8') as f: chinese_stopwords = f.read().split() return chinese_stopwords def summarize(text, n): freq = dict(textrank(text, topK=15, withWeight=True)) print(freq) sents = get_sentences(text) assert n <= len(sents) word_sent = [jieba.lcut(s) for s in sents] ranking = defaultdict(int) for i, word in enumerate(word_sent): for w in word: if w in freq: ranking[i] += freq[w] sents_idx = rank(ranking, n) return [sents[j] for j in sents_idx] def rank(ranking, n): return nlargest(n, ranking, key=ranking.get) if __name__ == '__main__': with open("data/news3.txt", "r", encoding='utf-8') as myFile: text = myFile.read().replace('\n', '') stopwords = get_ch_stopwords('data/chinese_stopwords') res = summarize(text, 2) f = open("data/keyword2_summary3.txt", "w", encoding='utf-8') print('Extracted key sentences:\n') for i in range(len(res)): print(res[i]) f.write(res[i] + '\n') f.close()
[ "787264137@qq.com" ]
787264137@qq.com
b53210f45388c5820faf0c133ad6ef73039b955b
9a034b12c845d01f36aff2e5fdbf8486a9e8a642
/faketrudy/trudy_api/migrations/0005_child_tweets.py
58e5ce1a352b4425e107065b667d213e62e02fbe
[]
no_license
piyush6191996/Django-Rest-Framework
2d1cd89de700e7aa68f93f9104418c05c70e800a
3950a72bed52fd4bcbec3de439fe9f1130df10f9
refs/heads/master
2020-03-15T06:00:31.362680
2018-05-07T19:09:17
2018-05-07T19:09:17
131,998,569
0
0
null
null
null
null
UTF-8
Python
false
false
1,464
py
# Generated by Django 2.0.2 on 2018-04-10 08:05 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('trudy_api', '0004_auto_20180410_1229'), ] operations = [ migrations.CreateModel( name='Child', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=40)), ('age', models.IntegerField()), ('gender', models.CharField(choices=[('M', 'Male'), ('F', 'Female')], max_length=1)), ('twitter_token', models.CharField(blank=True, max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Tweets', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('tweets', models.TextField()), ('sentiment', models.CharField(max_length=255)), ('child', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='trudy_api.Child')), ], ), ]
[ "you@example.com" ]
you@example.com
ce4cba3c23046221904b82fbb36ea24824d9a0fa
ddd7553bb79d76c461af7ba51a538803f1faf987
/google-cloud-media_translation/synth.py
da47dee2a67bc54b775fbeca1bbaa7c54879f51c
[ "Apache-2.0" ]
permissive
Mukesh23singh/google-cloud-ruby
af160add68337f84f9aa65c2eacc2cd16fea359f
b3c69da0654de3a4b87a35c1f010d74c7e26415b
refs/heads/master
2021-11-05T01:20:53.088104
2021-10-21T22:03:22
2021-10-21T22:03:22
86,056,707
1
0
Apache-2.0
2021-10-22T01:41:21
2017-03-24T10:34:10
Ruby
UTF-8
Python
false
false
1,883
py
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script is used to synthesize generated parts of this library.""" import synthtool as s import synthtool.gcp as gcp import synthtool.languages.ruby as ruby import logging logging.basicConfig(level=logging.DEBUG) gapic = gcp.GAPICMicrogenerator() library = gapic.ruby_library( "mediatranslation", "v1beta1", generator_args={ "ruby-cloud-gem-name": "google-cloud-media_translation", "ruby-cloud-title": "Media Translation", "ruby-cloud-description": "Media Translation API delivers real-time speech translation to your content and applications directly from your audio data. Leveraging Google’s machine learning technologies, the API offers enhanced accuracy and simplified integration while equipping you with a comprehensive set of features to further refine your translation results. Improve user experience with low-latency streaming translation and scale quickly with straightforward internationalization.", "ruby-cloud-env-prefix": "MEDIA_TRANSLATION", "ruby-cloud-wrapper-of": "v1beta1:0.0", "ruby-cloud-product-url": "https://cloud.google.com/media-translation/", "ruby-cloud-api-id": "mediatranslation.googleapis.com", "ruby-cloud-api-shortname": "mediatranslation", } ) s.copy(library, merge=ruby.global_merge)
[ "noreply@github.com" ]
Mukesh23singh.noreply@github.com
dfd0bf57dfb3c58a777557d9cfebea1f99a530e9
03d416a5c425d044db2b308f2af8f91be46bf78e
/src/tests/pipelines/data_science/test_pipeline.py
0c92effde1409f4880a043de0fa78c4fd4737676
[]
no_license
stroblme/partiqleDTR
13a854c9a3577535f3e8311b1b87a539c64b3994
d87e5652085bcb1848f30aadde848fd530e984c2
refs/heads/main
2023-05-12T10:24:36.614872
2023-03-24T09:23:21
2023-03-24T09:23:21
468,662,837
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
""" This is a boilerplate test file for pipeline 'data_science' generated using Kedro 0.17.7. Please add your pipeline tests here. Kedro recommends using `pytest` framework, more info about it can be found in the official documentation: https://docs.pytest.org/en/latest/getting-started.html """
[ "melvin.strobl@kit.edu" ]
melvin.strobl@kit.edu
819b55755f8fcd9e90785574f832d92631a04d84
3cc431d1ac836bfa0363d51a1c1198dec3e82b5c
/jnt/matching/classifier.py
8561aa10c9426594cea9767d82aa71e3b5746435
[ "Apache-2.0" ]
permissive
tudarmstadt-lt/vec2synset
6a1a19e39210b96799fee8f36b859c65c6d0f967
ea99ea80d258127a0cd6c7688d6b277eed22104d
refs/heads/master
2021-01-18T02:00:51.004042
2016-05-26T22:05:00
2016-05-26T22:05:00
44,816,882
11
2
null
null
null
null
UTF-8
Python
false
false
8,174
py
import xml.etree.ElementTree as et from jnt.common import load_voc from jnt.wn import sense2offset import codecs from pandas import read_csv, merge, Series import argparse from os.path import splitext from os.path import join from jnt.common import exists from subprocess import Popen, PIPE import os from os.path import splitext from jnt.morph import get_stoplist from jnt.patterns import re_number ADAGRAM_VOC = "/Users/alex/tmp/adagram/HugeModel-voc.csv" DEFAULT_MAPPING = "/Users/alex/work/joint/src/data/best-matching-out.csv" DYLD_LIBRARY = "/Users/alex/tmp/adagram/AdaGram.jl/lib/" ADAGRAM_SCRIPTS_DIR = "/Users/alex/work/joint/src/jnt/adagram/" _adagram_voc = load_voc(ADAGRAM_VOC, silent=True) _stoplist = get_stoplist() def filter_voc(text): text_adagram = [w.lower() for w in text.split(" ") if w in _adagram_voc] return " ".join(text_adagram) TARGET_BEG = "(((" TARGET_END = ")))" def filter_context(context, target, remove_target, context_size): context = [w for w in context.split(" ") if w.strip() != "" and w not in _stoplist and not re_number.match(w)] if remove_target: context = [w for w in context if w != target] context = list(set(context)) context = ' '.join(context[-context_size:]) return context def get_context(context, remove_target, context_size): x = context.split(TARGET_BEG) if len(x) == 2: left = x[0] y = x[1].split(TARGET_END) if len(y) == 2: target = y[0].strip() right = y[1] left = filter_context(left, target, remove_target, context_size) right = filter_context(right, target, remove_target, context_size) res = left + " " + right return res else: return context else: return context def semeval_xml2csv(train_fpath, output_fpath, remove_target=True, context_size=100): tree = et.parse(train_fpath) root = tree.getroot() with codecs.open(output_fpath, "w", "utf-8") as out: for child in root: if child.tag == "lexelt": if child.attrib["pos"] != "n": continue word = child.attrib["item"][:-2] for gchild in child: if gchild.tag != "instance": continue context = {"word": word} for ggchild in gchild: if ggchild.tag == "context": context["context"] = filter_voc(get_context(ggchild.text, remove_target, context_size)) elif ggchild.tag == "answer": context["wn_ids"] = sense2offset(word, ggchild.attrib["wn"]).strip() if len(context["wn_ids"]) == 0: continue out.write("%(word)s\t%(wn_ids)s\t%(context)s\n" % context) print "Output:", output_fpath def evaluate_disambiguated(mapping_fpath, disambiguated_fpath, output_fpath): # Merge predictions and golden standard data mapping_df = read_csv(mapping_fpath, encoding='utf-8', delimiter="\t", error_bad_lines=False) disambiguated_df = read_csv(disambiguated_fpath, encoding='utf-8', delimiter="\t", error_bad_lines=False) res_df = merge(disambiguated_df, mapping_df, how='inner', on=["word","adagram_id"]) # Calculate performance metrics res_df = res_df.fillna("") res_df["gold_wn_match"] = Series("", res_df.index) res_df["gold_bn_match"] = Series("", res_df.index) for i, row in res_df.iterrows(): golden_ids = row.golden_id.split(",") res_df.loc[i, "gold_wn_match"] = row.wordnet_id in golden_ids res_df.loc[i, "gold_bn_match"] = row.babelnet_id in golden_ids print "# input texts:", len(disambiguated_df) print "# babelnet mappings: %d, %.2f%%" % ((i+1), 100*(float(i+1)/ len(disambiguated_df))) print "Accuracy (wordnet all babelnet): %.3f" % (float(sum(res_df.gold_wn_match)) / (i+1)) print "# wordnet mappings: %d, %.2f%%" % (sum(res_df.wordnet_id != ""), 100.* sum(res_df.wordnet_id != "") / len(disambiguated_df)) print "Accuracy (wordnet): %.3f, %d" % (float(sum(res_df.gold_wn_match))/sum(res_df.wordnet_id != ""), sum(res_df.gold_wn_match)) print "Accuracy (babelnet): %.3f, %d" % (float(sum(res_df.gold_bn_match))/sum(res_df.babelnet_id != ""), sum(res_df.gold_bn_match)) print sum(res_df.golden_id == res_df.babelnet_id), len(res_df) # Save results res_df.to_csv(output_fpath, sep="\t", encoding="utf-8", float_format='%.3f', index=False) print "Output:", output_fpath return res_df def groupby_evaluation(res_df, output_fpath): with codecs.open(output_fpath, "w", "utf-8") as out: out.write("word\tgolden_id\tadagram_id\tcontext\tadagram_prob\tbabelnet_id\twordnet_id\tbabelnet_match\twordnet_match\n") babelnet_match_num = 0. wordnet_match_num = 0. text_num = 0. for key, rows in res_df.groupby(["word","golden_id","adagram_id","context","adagram_prob"]): text_num += 1 babelnet_ids = set() wordnet_ids = set() for i, row in rows.iterrows(): if row.babelnet_id != "": babelnet_ids.add(row.babelnet_id) if row.wordnet_id != "": wordnet_ids.add(row.wordnet_id) golden_ids = set(key[1].split(",")) babelnet_match = int(len(golden_ids.intersection(babelnet_ids)) > 0) if babelnet_match: babelnet_match_num += 1 wordnet_match = int(len(golden_ids.intersection(wordnet_ids)) > 0) if wordnet_match: wordnet_match_num += 1 if len(wordnet_ids) == 0: continue out.write("%s\t%s\t%s\t%s\t%.3f\t%s\t%s\t%d\t%d\n" % (key[0], ",".join(golden_ids), key[2], key[3], key[4], ",".join(babelnet_ids), ",".join(wordnet_ids), babelnet_match, wordnet_match)) print "Accuracy (babelnet): %.2f" % (babelnet_match_num/text_num) print "Accuracy (wordnet): %.2f" % (wordnet_match_num/text_num) print "Output:", output_fpath def adagram_disambiguate(contexts_fpath, model_fpath, output_fpath, nearest_neighbors="false"): env = dict(os.environ) env["DYLD_LIBRARY_PATH"] = DYLD_LIBRARY p = Popen(["julia", join(ADAGRAM_SCRIPTS_DIR, "matching.jl"), contexts_fpath, model_fpath, output_fpath, nearest_neighbors], stdin=PIPE, stdout=PIPE, stderr=PIPE, env=env) stdout, err = p.communicate(b"") rc = p.returncode print stdout print err print "Output:", output_fpath print "Output exits:", exists(output_fpath) def classify(contexts_fpath, model_fpath, mapping_fpath, output_fpath=""): """ Performs WSD of the contexts provided in the format 'word<TAB>sense_id<TAB>context' """ base_name = splitext(contexts_fpath)[0] if output_fpath == "" else output_fpath ag_fpath = base_name + "-ag.csv" adagram_disambiguate(contexts_fpath, model_fpath, ag_fpath) print "Disambiguated:", ag_fpath ag_wn_bn_fpath = base_name + "-ag-bn-wn.csv" res_df = evaluate_disambiguated(mapping_fpath, ag_fpath, ag_wn_bn_fpath) print "Disambiguated with mappings:", ag_wn_bn_fpath ag_wn_bn_group_fpath = base_name + "-ag-bn-wn-group.csv" groupby_evaluation(res_df, ag_wn_bn_group_fpath) print "Disambiguated with mapping, grouped:", ag_wn_bn_group_fpath return ag_wn_bn_group_fpath def main(): parser = argparse.ArgumentParser(description='Perform disambiguation with BabelNet/WordNet sense labels.') parser.add_argument('input', help='Path to a file with input file "word<TAB>golden-sense-ids<TAB>context".') parser.add_argument('-o', help='Output file. Default -- next to input file.', default="") args = parser.parse_args() output_fpath = splitext(args.input)[0] + "-disambiguated.csv" if args.o == "" else args.o print "Input: ", args.input print "Output: ", output_fpath print "Mapping:", DEFAULT_MAPPING classify(args.input, DEFAULT_MAPPING, output_fpath) if __name__ == '__main__': main()
[ "panchenko.alexander@gmail.com" ]
panchenko.alexander@gmail.com
16be4290b3fdfd3f6eb08c72a466b2c6d6190bc4
81d24bba8ebf75cbc2d3ec0739785f7a878f9943
/pythonServer/Env/bin/python-config
d90237bfd7a840a1990ee24b2bd6183aa1491ada
[]
no_license
jrunzer26/DS-Project
7524c5b42440d89a705fbe9f312845c1e97bf01d
11b9ca96bd8ca42e1f203a73299006555adb1909
refs/heads/master
2021-05-01T18:49:22.418868
2016-12-02T17:04:24
2016-12-02T17:04:24
71,805,504
0
0
null
null
null
null
UTF-8
Python
false
false
2,361
#!/home/jason/git-projects/todoist-python/Env/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
[ "jason.runzer@uoit.net" ]
jason.runzer@uoit.net
a5fe3ba649ac6b4571630741be2938955695f3ce
d9a1364eb329a13baa46256474d50beeb8213803
/os_moudle/os_moudle.py
116b11f667167e070c90fcc62c40f43669beea90
[]
no_license
fengchenzi/python_script
c650adb65583f9daae6fb706b6d7937bc806aa49
dad02682df0f5d5622958336b1e02441ef579d5d
refs/heads/master
2021-08-24T07:25:43.952158
2017-12-08T16:30:46
2017-12-08T16:30:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,235
py
#--**coding:utf-8**-- import os #获取当前工作目录 path = os.getcwd() #获取目录下所有文件名 all_text = os.listdir(path) #检验某路径指向的是否是个文件,可以用于检验某路径是下否存在该文件 file_name = "2.txt" split_sign = "/" last_path = path + split_sign + file_name another_name = "4.txt" def write_file(filepath,filename,gradle_content): ''' :param filepath: 文件路径 判断路径下是否存在该文件,若存在,则写入信息 若不存在,则新建文件,再写入信息 ''' if os.path.isfile(filepath): file = open(filename,"w") file.write(gradle_content) file.close() else: file = open(filename, "w") file.write(gradle_content) if len(file.write(gradle_content)) > 0: print "" file.close() else: print "" file.close() file.close() def remove_file(filepath,filename): ''' :param filepath:路径 :param filename:文件名 判断路径下是否存在该文件,若存在,则删除文件 ''' if os.path.isfile(filepath): os.remove(filepath) print "成功删除文件" else: print "该路径为空" def is_dir(filepath): ''' 判断该路径是否是一个目录 ''' dir_path = os.path.isdir(filepath) if dir_path: print "该路径是目录" else: print "该目录是不是目录" os.listdir(filepath) def return_dir_and_filename(path): ''' 调用该方法,返回一个路径下对文件夹及所有文件名 ''' dir_name = os.path.split(path) return dir_name def excute_shell(path): dir_name = os.path.split(path) dir_name = dir_name[1] dd = os.system() print dir_name def printdd(): JDB = {'name': 'jDB', 'path': 'PATH_CODE'+'/jDB', 'srcdir': 'src:adp:toolkit'} PROJECT_MAIN = [JDB] PATH_MANIFEST = PROJECT_MAIN[0]['path'] + '/src/main/AndroidManifest.xml' if __name__ == '__main__': #write_file(last_path,"2.txt","gradle2.14.1-all") #remove_file(last_path,file_name) #is_dir(last_path) dir_name =return_dir_and_filename(path) excute_shell(path)
[ "hemq@jiedaibao.com" ]
hemq@jiedaibao.com
1366aa1de8129754f664f4f8f93049b9743d4ae2
0242ad0d80fb96664efef2a60d22a7792f0a31b6
/better_game_images/make_labels.py
0752dd72fbfa036023a2635ca8a07ececa7d2824
[]
no_license
jlwatson/game-SET-match
fbc7e6b957bdb3ef8afaa55effb36d522c084bb4
61520495359d56a0a227cf456bdc2fc22f104856
refs/heads/master
2021-03-27T20:15:24.484540
2017-06-10T06:11:56
2017-06-10T06:11:56
90,781,176
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
from os import walk for (dirpath, dirnames, filenames) in walk('./'): for filename in filenames: if filename.endswith(".JPG"): first_part = filename.split('.')[0] f= open(first_part + '_labels.txt',"w+")
[ "kmblake@stanford.edu" ]
kmblake@stanford.edu
219448833a4b9ad9f26eaf0f891f257abf72202a
8360669dfe430c74a1f3c60f1e4bc9e8c41837bc
/arduino_project/api/models.py
198d56dd91044290c5abe126af5fbf9636442009
[]
no_license
BaptistG/object_connect
9ae47e42173cf866019cd4b3bf3d430ca2ad8069
f633c7caa39e93dab0ea9c3747de1e051e458bb9
refs/heads/master
2021-02-03T21:28:53.624573
2020-03-02T14:22:28
2020-03-02T14:22:28
243,544,211
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
from django.db import models # Create your models here. class Alerts(models.Model): id = models.AutoField(primary_key=True) user_id = models.TextField() created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return 'id: {}, user: {}'.format(self.id, self.user_id) class Users(models.Model): id = models.AutoField(primary_key=True) username = models.TextField() address = models.TextField() created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return 'id: {}, username: {}'.format(self.id, self.username)
[ "baptist.guerin@gmail.com" ]
baptist.guerin@gmail.com
c7eb9200f3645abd0e6d3d2dc3a84af2b4d742d6
937c0d7c0ed0224fed676fe630b78d8c6cdc1cfe
/usr/share/dh-python/dhpython/pydist.py
7a98f0c242099edaae612380e294c69aee2c3624
[]
no_license
Sayardiss/filesystem-rpi-projet2su
5ec5aad1704dbe37d18b50ba83ab67a87199af16
b7b7a1d93dec4f96673ecf11cd290e1db0657d59
refs/heads/master
2022-11-25T14:20:35.867296
2018-02-07T13:24:37
2018-02-07T13:24:37
118,009,115
2
1
null
2022-11-21T04:32:49
2018-01-18T16:36:17
Python
UTF-8
Python
false
false
13,315
py
# Copyright © 2010-2013 Piotr Ożarowski <piotr@debian.org> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import logging import os import re from functools import partial from os.path import exists, isdir, join from subprocess import PIPE, Popen from dhpython import PKG_PREFIX_MAP, PUBLIC_DIR_RE,\ PYDIST_DIRS, PYDIST_OVERRIDES_FNAMES, PYDIST_DPKG_SEARCH_TPLS from dhpython.version import get_requested_versions, Version from dhpython.tools import memoize log = logging.getLogger('dhpython') PYDIST_RE = re.compile(r""" (?P<name>[A-Za-z][A-Za-z0-9_.\-]*) # Python distribution name \s* (?P<vrange>(?:-?\d\.\d+(?:-(?:\d\.\d+)?)?)?) # version range \s* (?P<dependency>(?:[a-z][^;]*)?) # Debian dependency (?: # optional upstream version -> Debian version translator ;\s* (?P<standard>PEP386)? # PEP-386 mode \s* (?P<rules>(?:s|tr|y).*)? # translator rules )? """, re.VERBOSE) REQUIRES_RE = re.compile(r''' (?P<name>[A-Za-z][A-Za-z0-9_.]*) # Python distribution name \s* (?P<enabled_extras>(?:\[[^\]]*\])?) # ignored for now \s* \(? # optional parenthesis (?: # optional minimum/maximum version (?P<operator><=?|>=?|==|!=) \s* (?P<version>(\w|[-.])+) (?: # optional interval minimum/maximum version \s* , \s* (?P<operator2><=?|>=?|==|!=) \s* (?P<version2>(\w|[-.])+) )? )? \)? # optional closing parenthesis ''', re.VERBOSE) DEB_VERS_OPS = { '==': '=', '<': '<<', '>': '>>', } def validate(fpath): """Check if pydist file looks good.""" with open(fpath, encoding='utf-8') as fp: for line in fp: line = line.strip('\r\n') if line.startswith('#') or not line: continue if not PYDIST_RE.match(line): log.error('invalid pydist data in file %s: %s', fpath.rsplit('/', 1)[-1], line) return False return True @memoize def load(impl): """Load iformation about installed Python distributions. :param impl: interpreter implementation, f.e. cpython2, cpython3, pypy :type impl: str """ fname = PYDIST_OVERRIDES_FNAMES.get(impl) if exists(fname): to_check = [fname] # first one! else: to_check = [] dname = PYDIST_DIRS.get(impl) if isdir(dname): to_check.extend(join(dname, i) for i in os.listdir(dname)) fbname = '/usr/share/dh-python/dist/{}_fallback'.format(impl) if exists(fbname): # fall back generated at dh-python build time to_check.append(fbname) # last one! result = {} for fpath in to_check: with open(fpath, encoding='utf-8') as fp: for line in fp: line = line.strip('\r\n') if line.startswith('#') or not line: continue dist = PYDIST_RE.search(line) if not dist: raise Exception('invalid pydist line: %s (in %s)' % (line, fpath)) dist = dist.groupdict() name = safe_name(dist['name']) dist['versions'] = get_requested_versions(impl, dist['vrange']) dist['dependency'] = dist['dependency'].strip() if dist['rules']: dist['rules'] = dist['rules'].split(';') else: dist['rules'] = [] result.setdefault(name, []).append(dist) return result def guess_dependency(impl, req, version=None, bdep=None, accept_upstream_versions=False): bdep = bdep or {} log.debug('trying to find dependency for %s (python=%s)', req, version) if isinstance(version, str): version = Version(version) # some upstreams have weird ideas for distribution name... name, rest = re.compile('([^!><= \(\)\[]+)(.*)').match(req).groups() # TODO: check stdlib and dist-packaged for name.py and name.so files req = safe_name(name) + rest data = load(impl) req_d = REQUIRES_RE.match(req) if not req_d: log.info('please ask dh_python3 author to fix REQUIRES_RE ' 'or your upstream author to fix requires.txt') raise Exception('requirement is not valid: %s' % req) req_d = req_d.groupdict() name = req_d['name'] details = data.get(name.lower()) if details: for item in details: if version and version not in item.get('versions', version): # rule doesn't match version, try next one continue if not item['dependency']: return # this requirement should be ignored if item['dependency'].endswith(')'): # no need to translate versions if version is hardcoded in # Debian dependency return item['dependency'] if req_d['version'] and (item['standard'] or item['rules']) and\ req_d['operator'] not in (None, '!='): o = _translate_op(req_d['operator']) v = _translate(req_d['version'], item['rules'], item['standard']) d = "%s (%s %s)" % (item['dependency'], o, v) if req_d['version2'] and req_d['operator2'] not in (None,'!='): o2 = _translate_op(req_d['operator2']) v2 = _translate(req_d['version2'], item['rules'], item['standard']) d += ", %s (%s %s)" % (item['dependency'], o2, v2) return d elif accept_upstream_versions and req_d['version'] and \ req_d['operator'] not in (None,'!='): o = _translate_op(req_d['operator']) d = "%s (%s %s)" % (item['dependency'], o, req_d['version']) if req_d['version2'] and req_d['operator2'] not in (None,'!='): o2 = _translate_op(req_d['operator2']) d += ", %s (%s %s)" % (item['dependency'], o2, req_d['version2']) return d else: if item['dependency'] in bdep: if None in bdep[item['dependency']] and bdep[item['dependency']][None]: return "{} ({})".format(item['dependency'], bdep[item['dependency']][None]) # if arch in bdep[item['dependency']]: # TODO: handle architecture specific dependencies from build depends # (current architecture is needed here) return item['dependency'] # search for Egg metadata file or directory (using dpkg -S) query = PYDIST_DPKG_SEARCH_TPLS[impl].format(ci_regexp(safe_name(name))) log.debug("invoking dpkg -S %s", query) process = Popen("/usr/bin/dpkg -S %s" % query, shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = process.communicate() if process.returncode == 0: result = set() stdout = str(stdout, 'utf-8') for line in stdout.split('\n'): if not line.strip(): continue result.add(line.split(':')[0]) if len(result) > 1: log.error('more than one package name found for %s dist', name) else: return result.pop() else: log.debug('dpkg -S did not find package for %s: %s', name, stderr) pname = sensible_pname(impl, name) log.info('Cannot find package that provides %s. ' 'Please add package that provides it to Build-Depends or ' 'add "%s %s" line to %s or add proper ' ' dependency to Depends by hand and ignore this info.', name, safe_name(name), pname, PYDIST_OVERRIDES_FNAMES[impl]) # return pname def parse_pydep(impl, fname, bdep=None, options=None, depends_sec=None, recommends_sec=None, suggests_sec=None): depends_sec = depends_sec or [] recommends_sec = recommends_sec or [] suggests_sec = suggests_sec or [] public_dir = PUBLIC_DIR_RE[impl].match(fname) ver = None if public_dir and public_dir.groups() and len(public_dir.group(1)) != 1: ver = public_dir.group(1) guess_deps = partial(guess_dependency, impl=impl, version=ver, bdep=bdep, accept_upstream_versions=getattr( options, 'accept_upstream_versions', False)) result = {'depends': [], 'recommends': [], 'suggests': []} modified = section = False processed = [] with open(fname, 'r', encoding='utf-8') as fp: for line in fp: line = line.strip() if not line or line.startswith('#'): processed.append(line) continue if line.startswith('['): section = line[1:-1].strip() processed.append(line) continue if section: if section in depends_sec: result_key = 'depends' elif section in recommends_sec: result_key = 'recommends' elif section in suggests_sec: result_key = 'suggests' else: processed.append(line) continue else: result_key = 'depends' dependency = guess_deps(req=line) if dependency: result[result_key].append(dependency) modified = True else: processed.append(line) if modified and public_dir: with open(fname, 'w', encoding='utf-8') as fp: fp.writelines(i + '\n' for i in processed) return result def safe_name(name): """Emulate distribute's safe_name.""" return re.compile('[^A-Za-z0-9.]+').sub('_', name).lower() def sensible_pname(impl, egg_name): """Guess Debian package name from Egg name.""" egg_name = safe_name(egg_name).replace('_', '-') if egg_name.startswith('python-'): egg_name = egg_name[7:] return '{}-{}'.format(PKG_PREFIX_MAP[impl], egg_name.lower()) def ci_regexp(name): """Return case insensitive dpkg -S regexp.""" return ''.join("[%s%s]" % (i.upper(), i) if i.isalpha() else i for i in name.lower()) PRE_VER_RE = re.compile(r'[-.]?(alpha|beta|rc|dev|a|b|c)') GROUP_RE = re.compile(r'\$(\d+)') def _pl2py(pattern): """Convert Perl RE patterns used in uscan to Python's >>> print(_pl2py('foo$3')) foo\g<3> """ return GROUP_RE.sub(r'\\g<\1>', pattern) def _translate(version, rules, standard): """Translate Python version into Debian one. >>> _translate('1.C2betac', ['s/c//gi'], None) '1.2beta' >>> _translate('5-fooa1.2beta3-fooD', ... ['s/^/1:/', 's/-foo//g', 's:([A-Z]):+$1:'], 'PEP386') '1:5~a1.2~beta3+D' >>> _translate('x.y.x.z', ['tr/xy/ab/', 'y,z,Z,'], None) 'a.b.a.Z' """ for rule in rules: # uscan supports s, tr and y operations if rule.startswith(('tr', 'y')): # Note: no support for escaped separator in the pattern pos = 1 if rule.startswith('y') else 2 tmp = rule[pos + 1:].split(rule[pos]) version = version.translate(str.maketrans(tmp[0], tmp[1])) elif rule.startswith('s'): # uscan supports: g, u and x flags tmp = rule[2:].split(rule[1]) pattern = re.compile(tmp[0]) count = 1 if tmp[2:]: flags = tmp[2] if 'g' in flags: count = 0 if 'i' in flags: pattern = re.compile(tmp[0], re.I) version = pattern.sub(_pl2py(tmp[1]), version, count) else: log.warn('unknown rule ignored: %s', rule) if standard == 'PEP386': version = PRE_VER_RE.sub(r'~\g<1>', version) return version def _translate_op(operator): """Translate Python version operator into Debian one. >>> _translate_op('==') '=' >>> _translate_op('<') '<<' >>> _translate_op('<=') '<=' """ return DEB_VERS_OPS.get(operator, operator)
[ "sayardiss@gmail.com" ]
sayardiss@gmail.com
4237fae63bb4894a098e704c02963bb2bbb19c3b
535e7dee7621ea71aeb2aae6c564b1ab6e090445
/fin project/dist/Student DB.app/Contents/Resources/gui_search.py
4e5acd3dbe7ab00b84840f519810c14f250ecf23
[]
no_license
tunguyen17/CSC271Final
29eca736a996ac6739ee79a3386047711fa4503b
32bb77177177d701e1e5ae10325ba366b94bc666
refs/heads/master
2021-01-11T04:18:08.802878
2017-03-15T04:45:28
2017-03-15T04:45:28
71,211,090
0
2
null
2016-12-09T05:46:58
2016-10-18T05:09:17
Python
UTF-8
Python
false
false
5,600
py
import Tkinter as tk import Database as DB import Widgets as wd import gui_list as gl import NewStudent as ns import EditTopics as et import Export_CSV as EC import tkFileDialog class gui_search: 'App for creating searching window' ################# CONSTRUCTOR ################# def __init__(self, db): ''' Initialize a gui for the insertion of students infomation' INPUT: db - the databse ''' #create a root container self.root = tk.Tk() self.root.title("CSC-271 Database Concept App") #Labels: to the left of the window search_label = wd.LabelWidget(self.root, 0, 0, "Search Past Records or Add New") search_label.grid(columnspan=4) search_label.config(width=30) #Entries: to the right of the window name_label = wd.LabelWidget(self.root, 0, 1, "Name") name_bar = wd.EntryWidget(self.root, 1, 1, "") name_bar.grid(columnspan=3) name_bar.config(width=20) #Topic topic_label = wd.LabelWidget(self.root, 0, 2, "Topic") OPTIONS = [i[0] for i in db.getTopics()] topic_bar = wd.OptionsWidget(self.root, OPTIONS ,1, 2) topic_bar.grid(columnspan=3) topic_bar.config(width=20) #Date date_label = wd.LabelWidget(self.root, 0, 3, "Date (YMD)") mm_bar = wd.EntryWidget(self.root, 2, 3, "") dd_bar = wd.EntryWidget(self.root, 3, 3, "") yy_bar = wd.EntryWidget(self.root, 1, 3, "") # dd_bar.grid(columnspan=1) # mm_bar.grid(columnspan=1) # yy_bard.grid(columnspan=1) mm_bar.config(width=4) dd_bar.config(width=4) yy_bar.config(width=7) show_var = tk.StringVar() show_checkbox = tk.Checkbutton(self.root, variable=show_var, \ onvalue="yes", offvalue = "no", text="No show") show_checkbox.deselect() #set the check button to offvalue show_checkbox.grid(column = 2, row=4) show_checkbox.grid(columnspan=2) # no_show_label = wd.LabelWidget(self.root, 0, 4, "No show") # no_show_label.grid(columnspan=3) show_checkbox.config(state = tk.DISABLED) showpref_var = tk.StringVar() def prefchange(): if showpref_var.get() == 'yes': show_checkbox.config(state = tk.ACTIVE) else: show_checkbox.config(state = tk.DISABLED) #check button for the show preference showpref_checkbox = tk.Checkbutton(self.root, variable=showpref_var, \ onvalue="yes", offvalue = "no", text="Show preference", command=prefchange) showpref_checkbox.deselect() #set the check button to offvalue showpref_checkbox.grid(column = 0, row=4) showpref_checkbox.grid(columnspan=2) #Log display to the gui log = wd.LabelWidget(self.root, 0, 7, "Status") log.config(width = 30) #having the log display to span 2 columns log.grid(columnspan = 4) ## todo: reimplement def search_fn(): 'method to call for the search button' name_text = name_bar.getVal() topic_text = topic_bar.getVal() dd_text = dd_bar.getVal() mm_text = mm_bar.getVal() yy_text = yy_bar.getVal() if showpref_var.get() == 'yes': noshow_val = show_var.get() else: noshow_val = 'maybe' try: if (yy_text == '' and (mm_text + dd_text) != '') or \ (mm_text == '' and dd_text != ''): raise ValueError('not a valid date!') #interaction with the Database object gl.GuiList(self.root).draw_table(db, \ db.search_general(name_text, topic_text, dd_text,\ mm_text, yy_text, noshow_val)) #report that the insertion is success log.set("Success") except Exception as err: #If insertion fail, report to the Log display print 'ERROR!', err # raise err log.set(str(err)) def add_fn(): 'method to call for the add button' ns.NewStudent(self.root, db) def edit_tp_fn(): 'method to call for the add button' et.EditTopics(self.root, db, topic_bar) def export_csv(): 'method to call for the add button' EC.Export_CSV(self.root, db) #A Submit button search_button = tk.Button(self.root, text="Search", command = search_fn) search_button.grid(column = 0, row=5, columnspan=2) add_button = tk.Button(self.root, text="Add Student", command = add_fn) add_button.grid(column = 2, row=5, columnspan=2) add_button = tk.Button(self.root, text="Edit Topics", command = edit_tp_fn) add_button.grid(column = 0, row=6, columnspan=2) add_button = tk.Button(self.root, text="Export/Reset DB", command = export_csv) add_button.grid(column = 2, row=6, columnspan=2) self.root.grab_set() # self.root.lift() #make the window appears screen_width = self.root.winfo_screenwidth() screen_height = self.root.winfo_screenheight() self.root.geometry("290x230+%d+%d" % (screen_width/2-285, screen_height/2-230)) self.root.lift () self.root.mainloop() if __name__ == "__main__": #connecting with the database db = DB.Database('database/cup.db') new = gui_search(db)
[ "tanguyen17@wabash.edu" ]
tanguyen17@wabash.edu
45d362a2454044a2fdcb122385e78d244e3206c1
a9d4dcc11c909fbf57432c8236c9ae293c38e3c7
/search/binary_search_rotation_point.py
1a970e1452286449a1dc2a205a132defec60788f
[]
no_license
shuaib88/algorithms_review
8a375c81c1f3e3813da7429e4b26bdb4b44b13c8
fb8274fdfa6894c5be02b1233169b3a7c01b7fa9
refs/heads/master
2021-01-20T03:04:29.448197
2017-08-31T01:02:55
2017-08-31T01:02:55
101,346,164
0
0
null
null
null
null
UTF-8
Python
false
false
1,059
py
def rotation_point_of(word_array, left_index=0, right_index=None): if not right_index: right_index = len(word_array) - 1 midpoint = (right_index + left_index)/2 if right_index - left_index == 0: return midpoint if word_array[midpoint]>word_array[midpoint+1]: return midpoint else: if word_array[midpoint] > word_array[right_index]: return rotation_point_of(word_array,midpoint,right_index) else: return rotation_point_of(word_array,left_index,midpoint) # test array # word_array = [ # 'ptolemaic', # 'retrograde', # 'supplant', # 'undulate', # 'xenoepist', # 'asymptote', # <-- rotates here! # 'babka', # 'banoffee', # 'engender', # 'karpatka', # 'othellolagkage', # ] word_array = [ 'xenoepist', 'asymptote', # <-- rotates here! ] #execute # word_dict = known_word_dict(word_array) # word_dict.rotation_point_of(word_array) # print len(word_array) print rotation_point_of(word_array,right_index=len(word_array)-1)
[ "shuaib.sva@gmail.com" ]
shuaib.sva@gmail.com
c1671d32787dc01342e8a26cc279a71bb969e491
f6a83325e44b59f74ea5783f4ee605bad877f771
/mqc/models/mqc_dialysis.py
bbf5b85ae96ee10516437f1c431530e1bd9b380f
[]
no_license
js-superion/addons-custom
4a4e4fd19790122568dba72ed184f6e327db51c1
53c36a586ecbbc37484bda1fe6aac0c4db5ab740
refs/heads/master
2020-06-14T13:58:00.732334
2017-11-06T03:44:18
2017-11-06T03:44:18
75,174,024
1
1
null
null
null
null
UTF-8
Python
false
false
4,508
py
# -*- coding: utf-8 -*- from odoo import models, fields,api class Dialysis(models.Model): _name = "mqc.dialysis" #dialysis 透析 _description = u"肾病学质控" _inherits = {'mqc.mqc': 'mqc_id'} mqc_id = fields.Many2one('mqc.mqc', u'报表id', required=True, ondelete='cascade') _rec_name = 'year_month' year_month = fields.Char(u'年月', default=lambda self: self.env['utils'].get_zero_time().strftime('%Y-%m')) dept_doc_num = fields.Integer(u'肾内科专科医师人数') dept_nur_num = fields.Integer(u'专科护士人数') #肾小球疾病(非CKD5期) out_case = fields.Integer(u'出院病人数') avg_charge = fields.Float(u'出院者平均医疗费用') avg_days = fields.Integer(u'出院者平均住院日') accord_diag_case = fields.Integer(u'入出院诊断符合数') kidney_exam_case = fields.Integer(u'肾活检患者数') exam_complications = fields.Integer(u'肾活检术后并发症例数') pressure_control_case = fields.Integer(u'目标血压控制例数') iga_rate = fields.Float(u'初治IgA肾病患者进入肾活检临床路径百分率(%)') ln_rate = fields.Float(u'初治狼疮性肾炎进入肾活检临床路径百分率(%)') #狼疮性肾炎lupus nephritis #急性肾衰竭 out_case1 = fields.Integer(u'出院病人数') cured_case = fields.Integer(u'治愈好转例数') avg_charge1 = fields.Float(u'出院者平均医疗费用') avg_days1 = fields.Float(u'出院者平均住院日') kidney_exam_case1 = fields.Integer(u'肾活检患者数') exam_complications1 = fields.Integer(u'肾活检术后并发症例数') finish_cp_case = fields.Integer(u'开展完成临床路径例数')#cp clinic pathway acpt_dialysis_case = fields.Float(u'接受血液净化治疗患者百分率(%)') #慢性肾衰竭CKD5期 out_case2 = fields.Integer(u'出院病人数') avg_charge2 = fields.Float(u'出院者平均医疗费用') avg_days2 = fields.Float(u'出院者平均住院日') acpt_pd_case = fields.Integer(u'接受腹透管置入术患者数') acpt_iaf_case = fields.Integer(u'接受动静脉内瘘成形术患者数')#Internal arteriovenous fistula acpt_dvt_case = fields.Integer(u'接受血透长期深静脉导管置入患者数')#cp acpt accept缩写 dvt 深静脉置入 #非住院维持性血液透析 mohc Minister of Health of the People's Republic of China 中国卫生部 hd_num = fields.Integer(u'HD台数', ) hdf_num = fields.Integer(u'HDF台', ) crrt_num = fields.Integer(u'CRRT台', ) dialysis_doc_num= fields.Integer(u'血液净化专职医生总数', ) dialysis_nurse_num= fields.Integer(u'血液净化护士总数', ) dialysis_pat_num = fields.Integer(u'长期血透患者数', ) new_pat_num = fields.Integer(u'新增患者数', ) dead_pat = fields.Integer(u'死亡患者数', ) total_case = fields.Integer(u'血透总例次', ) mohc_newpats= fields.Integer(u'新报患者数', ) mohc_uppats = fields.Integer(u'更新患者数', ) mohc_val_rate = fields.Float(u'填报合格率(%)', ) #validate rate dialyzer_reuse_rate = fields.Float(u'透析器复用患者百分率(%)', ) week_excess12h_rate = fields.Float(u'血透时间>12h/周患者百分率(%)', ) weight_val_rate = fields.Float(u'千体重达标率(%)', ) weight_excess3kg_rate = fields.Integer(u'透析间期体重增加>3公斤患者数', ) #非住院长期腹膜透析 #pd 缩写 Peritoneal dialysis create_type = fields.Selection([('1', u'是'), ('0', u'否')], u'是否开展腹膜透析') long_pd_case = fields.Integer(u'长期腹膜透析患者数', ) pd_newpats = fields.Integer(u'新增患者数', ) pd_cured_case = fields.Integer(u'退出患者数(不含死亡)', ) pd_death_case = fields.Integer(u'死亡患者数', ) pd_mohc_newpats = fields.Integer(u'新报患者数', ) pd_mohc_uppats = fields.Integer(u'更新患者数', ) pd_mohc_rate = fields.Float(u'填报合格率(%)', ) peritonitis_case = fields.Integer(u'腹透相关腹膜炎发生例数', ) #peritonitis 腹膜炎 @api.multi def unlink(self): for dialysis in self: dialysis.mqc_id.unlink() return super(Dialysis, self).unlink() # _sql_constraints = [ # ('year_month_uniq', # 'UNIQUE (year_month)', # u'本月只能上报一次数据') # ]
[ "zhixiao.jiang1984@gmail.com" ]
zhixiao.jiang1984@gmail.com
1d6940ef1927469941d56d4883b2b0b4d2c2da54
fcf704aaa4ec7827aa826c341c89f7d5fcb9477e
/lang/programming/python/深入理解神经网络:从逻辑回归到CNN/neural_network-neural_network_code-master/neural_network_code/画图脚本/6-15.py
5f3b4eae99092bd5c51caa217cbf698fd9eb1f23
[ "MIT" ]
permissive
dlxj/doc
afe470f465617bd239b5b4dc8b546eb82cf115c6
b4a9ddcc2820fd0e3c9bbd81c26a8fa35f348c23
refs/heads/master
2023-08-05T06:20:05.573100
2023-08-05T03:48:29
2023-08-05T03:48:29
203,584,726
10
0
null
2022-12-15T08:14:58
2019-08-21T12:58:20
Jupyter Notebook
UTF-8
Python
false
false
1,144
py
# -*- coding: utf-8 -*- """ Created on Sun Dec 9 20:34:43 2018 @author: chaos """ from book_draw_util import * leaky_alpha=0.1 def leaky_relu(x): if x >= 0: result = x else: result = leaky_alpha * x return result def leaky_relu_d(x): return 1 if x >= 0 else leaky_alpha fun = np.vectorize(leaky_relu) derivative = np.vectorize(leaky_relu_d) xrange = [-1, 1.01] yrange = [-0.1, 1.01] fig = plt.figure(figsize=SQUARE_FIG_SIZE) ax = axisartist.Subplot(fig, 111) fig.add_axes(ax) ax.axis[:].set_visible(False) ax.axis["x"] = ax.new_floating_axis(0,0) ax.axis["x"].set_axisline_style("-|>", size = 1.0) ax.axis["y"] = ax.new_floating_axis(1,0) ax.axis["y"].set_axisline_style("-|>", size = 1.0) ax.axis["x"].set_axis_direction("bottom") ax.axis["y"].set_axis_direction("right") x = np.arange(xrange[0], xrange[1], 0.0001) ax.plot(x, fun(x), "k") ax.plot(x, derivative(x), "k--") ax.legend([r"$f\left(x\right)$", r"$f^{'}\left(x\right)$"], fontsize=LEGEND_FONT_SIZE) ax.grid(True) ax.set_ylim(xrange) ax.set_ylim(yrange) ax.margins(0) plt.savefig(os.path.join(all_pic_path, '6-15.png'), format='png')
[ "123435@qq.com" ]
123435@qq.com
4e89f39175e02454086fc58f75665f0d3696b569
422f6d1af9473ead5e4e2d1bae6c07799c7b8350
/hw9/reps.py
b0923fa950177a20db9f4d51af6449c57c30f6b4
[ "MIT" ]
permissive
jenyu7/hw9
467c2f9e748ff624c72d61bd317981db6c405a38
cadb2ae1b31e3608d9ad1d977fbc697390004884
refs/heads/main
2023-01-28T19:34:37.926463
2020-12-10T01:31:41
2020-12-10T01:31:41
320,022,322
0
0
null
null
null
null
UTF-8
Python
false
false
1,411
py
import numpy as np from tqdm import tqdm #Set up Numpy random generator rg = np.random.default_rng() def draw_parametric_bs_reps_mle( mle_fun, gen_fun, data, args=(), size=1, progress_bar=False ): """Draw parametric bootstrap replicates of maximum likelihood estimator. Parameters ---------- mle_fun : function Function with call signature mle_fun(data, *args) that computes a MLE for the parameters gen_fun : function Function to randomly draw a new data set out of the model distribution parametrized by the MLE. Must have call signature `gen_fun(*params, size)`. data : one-dimemsional Numpy array Array of measurements args : tuple, default () Arguments to be passed to `mle_fun()`. size : int, default 1 Number of bootstrap replicates to draw. progress_bar : bool, default False Whether or not to display progress bar. Returns ------- output : numpy array Bootstrap replicates of MLEs. """ params = mle_fun(data, *args) if progress_bar: iterator = tqdm(range(size)) else: iterator = range(size) return np.array( [mle_fun(gen_fun(*params, size=len(data), *args)) for _ in iterator] ) #Generates samples from the model distribution. def sp_gamma(beta, alpha, size): return rg.gamma(alpha, 1/beta, size=size)
[ "jenyu@caltech.edu" ]
jenyu@caltech.edu
4242a0c891ffa7bfd2f82e35dca78d0aafa55245
0dd17de11c792ff64c4582595cee786b80ab4fcd
/ml/pred.py
40b00a04eb6aa546ccd9f3c8f52e881f52a613b3
[ "Apache-2.0" ]
permissive
birenbaruah/FakeBananas
12861272b6911acc447c28d7ba8cc1f010d9a882
ac8a95c37f495045f074ae20a768a465bd990da0
refs/heads/master
2021-03-02T10:58:57.466215
2020-03-08T21:17:43
2020-03-08T21:17:43
245,863,260
0
0
null
2020-03-08T18:05:35
2020-03-08T18:05:34
null
UTF-8
Python
false
false
4,956
py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Import relevant packages and modules from ml.util import * # ex: from test.add import add import random import tensorflow as tf def mlPred(): # Prompt for mode mode = input('mode (load / train)? ') # Set file names file_train_instances = "ml/train_stances.csv" file_train_bodies = "ml/train_bodies.csv" file_test_instances = "ml/test_stances_unlabeled.csv" file_test_bodies = "ml/test_bodies.csv" file_predictions = 'ml/predictions_test.csv' # Initialise hyperparameters r = random.Random() lim_unigram = 5000 target_size = 4 hidden_size = 100 train_keep_prob = 0.6 l2_alpha = 0.00001 learn_rate = 0.01 clip_ratio = 5 batch_size_train = 500 epochs = 90 # Load data sets raw_train = FNCData(file_train_instances, file_train_bodies) raw_test = FNCData(file_test_instances, file_test_bodies) n_train = len(raw_train.instances) # Process data sets train_set, train_stances, bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer = \ pipeline_train(raw_train, raw_test, lim_unigram=lim_unigram) feature_size = len(train_set[0]) test_set = pipeline_test(raw_test, bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer) # Define model # Create placeholders features_pl = tf.placeholder(tf.float32, [None, feature_size], 'features') stances_pl = tf.placeholder(tf.int64, [None], 'stances') keep_prob_pl = tf.placeholder(tf.float32) # Infer batch size batch_size = tf.shape(features_pl)[0] # Define multi-layer perceptron hidden_layer = tf.nn.dropout(tf.nn.relu(tf.contrib.layers.linear(features_pl, hidden_size)), keep_prob=keep_prob_pl) logits_flat = tf.nn.dropout(tf.contrib.layers.linear(hidden_layer, target_size), keep_prob=keep_prob_pl) logits = tf.reshape(logits_flat, [batch_size, target_size]) # Define L2 loss tf_vars = tf.trainable_variables() l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in tf_vars if 'bias' not in v.name]) * l2_alpha # Define overall loss loss = tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits, stances_pl) + l2_loss) # Define prediction softmaxed_logits = tf.nn.softmax(logits) predict = tf.arg_max(softmaxed_logits, 1) # Load model if mode == 'load': with tf.Session() as sess: load_model(sess) print("Model loaded.") print("Now running predictions...") # Predict test_feed_dict = {features_pl: test_set, keep_prob_pl: 1.0} # run predictions test_pred = sess.run(predict, feed_dict=test_feed_dict) print("Test_pred:", test_pred) print("Preditions complete.") # Train model if mode == 'train': # Define optimiser opt_func = tf.train.AdamOptimizer(learn_rate) grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tf_vars), clip_ratio) opt_op = opt_func.apply_gradients(zip(grads, tf_vars)) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Perform training with tf.Session() as sess: sess.run(tf.initialize_all_variables()) # sess.run(tf.global_variables_initializer()) for epoch in range(epochs): total_loss = 0 indices = list(range(n_train)) r.shuffle(indices) for i in range(n_train // batch_size_train): batch_indices = indices[i * batch_size_train: (i + 1) * batch_size_train] batch_features = [train_set[i] for i in batch_indices] batch_stances = [train_stances[i] for i in batch_indices] batch_feed_dict = {features_pl: batch_features, stances_pl: batch_stances, keep_prob_pl: train_keep_prob} _, current_loss = sess.run([opt_op, loss], feed_dict=batch_feed_dict) total_loss += current_loss # save model to disk save_path = saver.save(sess, "ml/teamB/model.ckpt") print("Model saved in file: %s" % save_path) # Predict test_feed_dict = {features_pl: test_set, keep_prob_pl: 1.0} test_pred = sess.run(predict, feed_dict=test_feed_dict) # Save predictions save_predictions(test_pred, file_predictions) return test_pred
[ "kastanvday@gmail.com" ]
kastanvday@gmail.com
b1299976449f3acc5b3b422a4394e675d89a1d16
ddc67279fee4305cddb663b2d76e5a82b0f35ba4
/ftp_server.py
85c98ff980fcd5b9fd09f196f4a24357d34e4f33
[]
no_license
whisperscan/ftpv2.0
6b6fa331a7b8d9e65931de15f4ce56c8227afc4b
734491e76b153e6beb88bd09e42e63498e0a170c
refs/heads/master
2021-01-22T06:02:30.510709
2015-04-30T15:44:54
2015-04-30T15:44:54
34,862,760
0
0
null
null
null
null
UTF-8
Python
false
false
5,980
py
# # writed by caramel # import SocketServer import os import sys import stat import time import MySQLdb #-- send error -- def send_err(sock_handler,err_info): #{ try: #{ sock_handler.request.sendall(err_info) #} except Exception,e: #{ print e #} #} #-- list process -- # data struct # __________________________ # | R | request data | # -------------------------- # ______ request data struct _______ # | | # | option | S | # |----------------------------------| # | filename | value | # |__________________________________| # ______ request data struct _______ # | | # | option | begin | # |----------------------------------| # | filename | value | # |__________________________________| # _____ transport data struct ______ # | | # | option | value | # |----------------------------------| # | filename | value | # |----------------------------------| # | path | value | # |__________________________________| # _______ acking data struct _______ # | | # | option | value | # |----------------------------------| # | result | value | # |__________________________________| def list_process(data_list): #{ ret_data = {} print data_list for i in range(1,len(data_list),2): #{ ret_data[data_list[i]] = data_list[i + 1] #} return(ret_data) #} #-- ret_value -- def ret_value(sock_handler,r_value): #{ value_for_return = "A,option,A,result," + str(r_value) sock_handler.request.sendall(value_for_return) #} #-- is exists file -- def is_exist_file(filename): #{ if(filename): #{ isExists = os.path.exists(filename) return(isExists) #} else: #{ return(0) #} #} #-- cmd list -- def cmd_list(sock_handler,cmd_string): #{ list_string = os.popen(cmd_string) if(list_string): #{ send_string = list_string.read() #} else: #{ send_string = 'no items' #} print send_string sock_handler.request.sendall(send_string) #} #-- get file from client -- def get_file_from_client(sock_handler,filename): #{ if(filename): #{ sock_handler.request.sendall('begin') with open(filename,'wb') as t_file_fd: #{ while True: # rcv_buff = sock_handler.request.recv(65535) if(rcv_buff == 'EOF'): #{ print 'put < %s > success' %(filename) break; #} t_file_fd.write(rcv_buff) #} #} #} else: #{ sock_handler.request.sendall('null') #} #} #-- begin transport file -- def send_file_to_client(sock_handler,filename): #{ if(filename): #{ with open(filename,'rb') as t_file_fd: #{ read_buff = t_file_fd.read() sock_handler.request.sendall(read_buff) #} time.sleep(1) sock_handler.request.sendall('EOF') print 'send ' + filename #} else: #{ sock_handler.request.sendall('null') #} #} #-- create a directory -- def mk_dir(sock_handler,dir_name): #{ print is_exist_file(dir_name) if(not is_exist_file(dir_name)): #{ os.mkdir(dir_name) os.chdir(dir_name) #create welcome file if not exists with open('Welcome','wa'): #{ os.utime('Welcome',None) #} path = os.path.abspath('.') os.chdir(os.path.dirname(path)) ret_value(sock_handler,1) #} else: #{ ret_value(sock_handler,0) #} #} #-- enter the directory -- def cd_dir(sock_handler,dir_name): #{ if(is_exist_file(dir_name)): #{ if(dir_name == '..'): #{ path = os.path.abspath('.') par_path = os.path.dirname(path) base_name = os.path.dirname(par_path) os.chdir(par_path) if(os.path.basename(par_path) == base_name): #{ ret_value(sock_handler,1) #} else: #{ ret_value(sock_handler,0) #} #} else: #{ os.chdir(dir_name) path = os.path.abspath('.') print path if(os.path.basename(path) == dir_name): #{ ret_value(sock_handler,1) #} else: #{ ret_value(sock_handler,0) #} #} #} else: #{ ret_value(sock_handler,0) #} #} #-- request_func -- def request_func(sock_handler,dict_data): #{ if(dict_data['option'] == 'ls'): #{ cmd_list(sock_handler,dict_data['cmd']) #} elif(dict_data['option'] == 'S'): #{ ret_value(sock_handler,is_exist_file(dict_data['filename'])) #} elif(dict_data['option'] == 'begin'): #{ send_file_to_client(sock_handler,dict_data['filename']) #} elif(dict_data['option'] == 'put'): #{ get_file_from_client(sock_handler,dict_data['filename']) #} elif(dict_data['option'] == 'mkdir'): #{ mk_dir(sock_handler,dict_data['dir_name']) #} elif(dict_data['option'] == 'cd'): #{ print 'enter' cd_dir(sock_handler,dict_data['dir_name']) #} else: # send_err(sock_handler,'error option') return(0) #} #} #-- SocketServer class -- class MyTCPHandler(SocketServer.BaseRequestHandler): #{ def handle(self): #{ while True: #{ self.data = self.request.recv(65535).strip() if not self.data: break print self.client_address data_list = self.data.split(',') dict_data = list_process(data_list) print dict_data if(data_list[0] == 'R'): request_func(self,dict_data) else: return(0) #} #} #} #-- listening_func -- def listening_func(): #{ print 'waiting a connecting' ADDR,PORT = '',50001 sockfd = SocketServer.ThreadingTCPServer((ADDR,PORT),MyTCPHandler) sockfd.serve_forever() #} #-- main function -- # begin main() if __name__ == '__main__': #{ #judge ftp path isExists = os.path.exists('/tmp/ftp') if(not isExists): #{ os.makedirs('/tmp/ftp') os.chmod('/tmp/ftp',stat.S_IRWXU + stat.S_IRWXG + stat.S_IRWXO) #} os.chdir('/tmp/ftp') #create welcome file if not exists isExists = os.path.exists('/tmp/ftp/Welcome') if(not isExists): #{ with open('/tmp/ftp/Welcome','wa'): os.utime('/tmp/ftp/Welcome',None) #} #listening listening_func() #} # end main()
[ "skynets@yeah.net" ]
skynets@yeah.net
e5d9f30b7435e9196bc3d0df1cdc962e0012a99c
e6f1e23409bfcba563dcfc9dbf6d19c5c99fc0d5
/binary classification.py
666e40eb2fd9dd8d43b579935fd778cfc3d6c99d
[]
no_license
AmiraHmd/gdML
4378fae056f5ff88cdd1a7d86c68c28f5d16e80d
a4e6c3f495d02c2b0c43700843290c89c30f2fc1
refs/heads/master
2022-10-24T01:13:48.355828
2020-06-24T10:12:35
2020-06-24T10:12:35
272,714,651
0
3
null
null
null
null
UTF-8
Python
false
false
1,442
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.linear_model import SGDClassifier # In[4]: # Génération de données aléatoires: 100 exemples, 2 classes, 2 features x0 et x1 np.random.seed(1) x, y = make_classification(n_samples=100,n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) # In[5]: # Visualisation des données plt.figure(num=None, figsize=(8, 6)) plt.scatter(x[:,0], x[:, 1], marker = 'o', c=y, edgecolors='k') plt.xlabel('X0') plt.ylabel('X1') x.shape # In[6]: # Génération d'un modele en utilisant la fonction cout 'log' pour Logistic Regression model = SGDClassifier(max_iter=1000, eta0=0.001, loss='log') # In[7]: model.fit(X, y) print('score:', model.score(x, y)) # In[8]: # Visualisation des données h = .02 colors = "bry" x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # In[9]: Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # In[10]: for i, color in zip(model.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired, edgecolor='black', s=20) # In[ ]:
[ "hamadiamira2@gmail.com" ]
hamadiamira2@gmail.com
e99b6fff29c79ce050c083f47a26f60657b1e4de
55a947cddcac5188c557e175aec98df19485f623
/tests/integration/test_customer.py
811fcaa2b0bc6edf8f9dbe8c3288e900ea02b3db
[ "MIT" ]
permissive
pfrantz/braintree_python
d02c1691049df68d87f7738e53d489682db94a7e
055e7400dd70a79ec18e5a30476dc77827bc465d
refs/heads/master
2021-01-16T20:07:31.664653
2013-10-30T00:19:16
2013-10-30T00:19:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,730
py
from tests.test_helper import * import braintree.test.venmo_sdk as venmo_sdk class TestCustomer(unittest.TestCase): def test_all(self): collection = Customer.all() self.assertTrue(collection.maximum_size > 100) customer_ids = [c.id for c in collection.items] self.assertEquals(collection.maximum_size, len(TestHelper.unique(customer_ids))) self.assertEquals(Customer, type(collection.first)) def test_create(self): result = Customer.create({ "first_name": "Bill", "last_name": "Gates", "company": "Microsoft", "email": "bill@microsoft.com", "phone": "312.555.1234", "fax": "614.555.5678", "website": "www.microsoft.com" }) self.assertTrue(result.is_success) customer = result.customer self.assertEqual("Bill", customer.first_name) self.assertEqual("Gates", customer.last_name) self.assertEqual("Microsoft", customer.company) self.assertEqual("bill@microsoft.com", customer.email) self.assertEqual("312.555.1234", customer.phone) self.assertEqual("614.555.5678", customer.fax) self.assertEqual("www.microsoft.com", customer.website) self.assertNotEqual(None, customer.id) self.assertNotEqual(None, re.search("\A\d{6,7}\Z", customer.id)) def test_create_with_device_session_id(self): result = Customer.create({ "first_name": "Bill", "last_name": "Gates", "company": "Microsoft", "email": "bill@microsoft.com", "phone": "312.555.1234", "fax": "614.555.5678", "website": "www.microsoft.com", "credit_card": { "number": "4111111111111111", "expiration_date": "05/2010", "cvv": "100", "device_session_id": "abc123" } }) self.assertTrue(result.is_success) def test_create_with_unicode(self): result = Customer.create({ "first_name": u"Bill<&>", "last_name": u"G\u1F00t\u1F18s", "company": "Microsoft", "email": "bill@microsoft.com", "phone": "312.555.1234", "fax": "614.555.5678", "website": "www.microsoft.com" }) self.assertTrue(result.is_success) customer = result.customer self.assertEqual(u"Bill<&>", customer.first_name) self.assertEqual(u"G\u1f00t\u1F18s", customer.last_name) self.assertEqual("Microsoft", customer.company) self.assertEqual("bill@microsoft.com", customer.email) self.assertEqual("312.555.1234", customer.phone) self.assertEqual("614.555.5678", customer.fax) self.assertEqual("www.microsoft.com", customer.website) self.assertNotEqual(None, customer.id) self.assertNotEqual(None, re.search("\A\d{6,7}\Z", customer.id)) found_customer = Customer.find(customer.id) self.assertEqual(u"G\u1f00t\u1F18s", found_customer.last_name) def test_create_with_no_attributes(self): result = Customer.create() self.assertTrue(result.is_success) self.assertNotEqual(None, result.customer.id) def test_create_with_special_chars(self): result = Customer.create({"first_name": "XML Chars <>&'\""}) self.assertTrue(result.is_success) self.assertEqual("XML Chars <>&'\"", result.customer.first_name) def test_create_returns_an_error_response_if_invalid(self): result = Customer.create({ "email": "@invalid.com", "credit_card": { "number": "4111111111111111", "expiration_date": "05/2010", "billing_address": { "country_code_alpha2": "MX", "country_code_alpha3": "USA" } } }) self.assertFalse(result.is_success) self.assertEquals(2, result.errors.size) self.assertEquals(ErrorCodes.Customer.EmailIsInvalid, result.errors.for_object("customer").on("email")[0].code) self.assertEquals( ErrorCodes.Address.InconsistentCountry, result.errors.for_object("customer").for_object("credit_card").for_object("billing_address").on("base")[0].code ) def test_create_customer_and_payment_method_at_the_same_time(self): result = Customer.create({ "first_name": "Mike", "last_name": "Jones", "credit_card": { "number": "4111111111111111", "expiration_date": "05/2010", "cvv": "100" } }) self.assertTrue(result.is_success) customer = result.customer self.assertEqual("Mike", customer.first_name) self.assertEqual("Jones", customer.last_name) credit_card = customer.credit_cards[0] self.assertEqual("411111", credit_card.bin) self.assertEqual("1111", credit_card.last_4) self.assertEqual("05/2010", credit_card.expiration_date) def test_create_customer_and_verify_payment_method(self): result = Customer.create({ "first_name": "Mike", "last_name": "Jones", "credit_card": { "number": "4000111111111115", "expiration_date": "05/2010", "cvv": "100", "options": {"verify_card": True} } }) self.assertFalse(result.is_success) self.assertEquals(CreditCardVerification.Status.ProcessorDeclined, result.credit_card_verification.status) def test_create_customer_with_check_duplicate_payment_method(self): attributes = { "first_name": "Mike", "last_name": "Jones", "credit_card": { "number": "4000111111111115", "expiration_date": "05/2010", "cvv": "100", "options": {"fail_on_duplicate_payment_method": True} } } Customer.create(attributes) result = Customer.create(attributes) self.assertFalse(result.is_success) self.assertEquals(ErrorCodes.CreditCard.DuplicateCardExists, result.errors.for_object("customer").for_object("credit_card").on("number")[0].code) self.assertEquals("Duplicate card exists in the vault.", result.message) def test_create_customer_with_payment_method_and_billing_address(self): result = Customer.create({ "first_name": "Mike", "last_name": "Jones", "credit_card": { "number": "4111111111111111", "expiration_date": "05/2010", "cvv": "100", "billing_address": { "street_address": "123 Abc Way", "locality": "Chicago", "region": "Illinois", "postal_code": "60622", "country_code_alpha2": "US", "country_code_alpha3": "USA", "country_code_numeric": "840", "country_name": "United States of America" } } }) self.assertTrue(result.is_success) customer = result.customer self.assertEqual("Mike", customer.first_name) self.assertEqual("Jones", customer.last_name) address = customer.credit_cards[0].billing_address self.assertEqual("123 Abc Way", address.street_address) self.assertEqual("Chicago", address.locality) self.assertEqual("Illinois", address.region) self.assertEqual("60622", address.postal_code) self.assertEqual("US", address.country_code_alpha2) self.assertEqual("USA", address.country_code_alpha3) self.assertEqual("840", address.country_code_numeric) self.assertEqual("United States of America", address.country_name) def test_create_with_customer_fields(self): result = Customer.create({ "first_name": "Mike", "last_name": "Jones", "custom_fields": { "store_me": "custom value" } }) self.assertTrue(result.is_success) self.assertEquals("custom value", result.customer.custom_fields["store_me"]) def test_create_returns_nested_errors(self): result = Customer.create({ "email": "invalid", "credit_card": { "number": "invalid", "billing_address": { "country_name": "invalid" } } }) self.assertFalse(result.is_success) self.assertEquals( ErrorCodes.Customer.EmailIsInvalid, result.errors.for_object("customer").on("email")[0].code ) self.assertEquals( ErrorCodes.CreditCard.NumberHasInvalidLength, result.errors.for_object("customer").for_object("credit_card").on("number")[0].code ) self.assertEquals( ErrorCodes.Address.CountryNameIsNotAccepted, result.errors.for_object("customer").for_object("credit_card").for_object("billing_address").on("country_name")[0].code ) def test_create_returns_errors_if_custom_fields_are_not_registered(self): result = Customer.create({ "first_name": "Jack", "last_name": "Kennedy", "custom_fields": { "spouse_name": "Jacqueline" } }) self.assertFalse(result.is_success) self.assertEquals(ErrorCodes.Customer.CustomFieldIsInvalid, result.errors.for_object("customer").on("custom_fields")[0].code) def test_create_with_venmo_sdk_session(self): result = Customer.create({ "first_name": "Jack", "last_name": "Kennedy", "credit_card": { "number": "4111111111111111", "expiration_date": "05/2010", "options": { "venmo_sdk_session": venmo_sdk.Session } } }) self.assertTrue(result.is_success) self.assertTrue(result.customer.credit_cards[0].venmo_sdk) def test_create_with_venmo_sdk_payment_method_code(self): result = Customer.create({ "first_name": "Jack", "last_name": "Kennedy", "credit_card": { "venmo_sdk_payment_method_code": venmo_sdk.generate_test_payment_method_code("4111111111111111") } }) self.assertTrue(result.is_success) self.assertEquals("411111", result.customer.credit_cards[0].bin) def test_delete_with_valid_customer(self): customer = Customer.create().customer result = Customer.delete(customer.id) self.assertTrue(result.is_success) @raises(NotFoundError) def test_delete_with_invalid_customer(self): customer = Customer.create().customer Customer.delete(customer.id) Customer.delete(customer.id) def test_find_with_valid_customer(self): customer = Customer.create({ "first_name": "Joe", "last_name": "Cool" }).customer found_customer = Customer.find(customer.id) self.assertEquals(customer.id, found_customer.id) self.assertEquals(customer.first_name, found_customer.first_name) self.assertEquals(customer.last_name, found_customer.last_name) def test_find_with_invalid_customer(self): try: Customer.find("badid") self.assertTrue(False) except NotFoundError, e: self.assertEquals("customer with id badid not found", str(e)) def test_update_with_valid_options(self): customer = Customer.create({ "first_name": "Steve", "last_name": "Jobs", "company": "Apple", "email": "steve@apple.com", "phone": "312.555.5555", "fax": "614.555.5555", "website": "www.apple.com" }).customer result = Customer.update(customer.id, { "first_name": "Bill", "last_name": "Gates", "company": "Microsoft", "email": "bill@microsoft.com", "phone": "312.555.1234", "fax": "614.555.5678", "website": "www.microsoft.com" }) self.assertTrue(result.is_success) customer = result.customer self.assertEqual("Bill", customer.first_name) self.assertEqual("Gates", customer.last_name) self.assertEqual("Microsoft", customer.company) self.assertEqual("bill@microsoft.com", customer.email) self.assertEqual("312.555.1234", customer.phone) self.assertEqual("614.555.5678", customer.fax) self.assertEqual("www.microsoft.com", customer.website) self.assertNotEqual(None, customer.id) self.assertNotEqual(None, re.search("\A\d{6,7}\Z", customer.id)) def test_update_with_nested_values(self): customer = Customer.create({ "first_name": "Steve", "last_name": "Jobs", "credit_card": { "number": "4111111111111111", "expiration_date": "10/10", "billing_address": { "postal_code": "11111" } } }).customer credit_card = customer.credit_cards[0] address = credit_card.billing_address updated_customer = Customer.update(customer.id, { "first_name": "Bill", "last_name": "Gates", "credit_card": { "expiration_date": "12/12", "options": { "update_existing_token": credit_card.token }, "billing_address": { "postal_code": "44444", "country_code_alpha2": "US", "country_code_alpha3": "USA", "country_code_numeric": "840", "country_name": "United States of America", "options": { "update_existing": True } } } }).customer updated_credit_card = CreditCard.find(credit_card.token) updated_address = Address.find(customer.id, address.id) self.assertEqual("Bill", updated_customer.first_name) self.assertEqual("Gates", updated_customer.last_name) self.assertEqual("12/2012", updated_credit_card.expiration_date) self.assertEqual("44444", updated_address.postal_code) self.assertEqual("US", updated_address.country_code_alpha2) self.assertEqual("USA", updated_address.country_code_alpha3) self.assertEqual("840", updated_address.country_code_numeric) self.assertEqual("United States of America", updated_address.country_name) def test_update_with_nested_billing_address_id(self): customer = Customer.create().customer address = Address.create({ "customer_id": customer.id, "postal_code": "11111" }).address updated_customer = Customer.update(customer.id, { "credit_card": { "number": "4111111111111111", "expiration_date": "12/12", "billing_address_id": address.id } }).customer credit_card = updated_customer.credit_cards[0] self.assertEqual(address.id, credit_card.billing_address.id) self.assertEqual("11111", credit_card.billing_address.postal_code) def test_update_with_invalid_options(self): customer = Customer.create({ "first_name": "Steve", "last_name": "Jobs", "company": "Apple", "email": "steve@apple.com", "phone": "312.555.5555", "fax": "614.555.5555", "website": "www.apple.com" }).customer result = Customer.update(customer.id, { "email": "@microsoft.com", }) self.assertFalse(result.is_success) self.assertEquals( ErrorCodes.Customer.EmailIsInvalid, result.errors.for_object("customer").on("email")[0].code ) def test_create_from_transparent_redirect_with_successful_result(self): tr_data = { "customer": { "first_name": "John", "last_name": "Doe", "company": "Doe Co", } } post_params = { "tr_data": Customer.tr_data_for_create(tr_data, "http://example.com/path"), "customer[email]": "john@doe.com", "customer[phone]": "312.555.2323", "customer[fax]": "614.555.5656", "customer[website]": "www.johndoe.com", "customer[credit_card][number]": "4111111111111111", "customer[credit_card][expiration_date]": "05/2012", "customer[credit_card][billing_address][country_code_alpha2]": "MX", "customer[credit_card][billing_address][country_code_alpha3]": "MEX", "customer[credit_card][billing_address][country_code_numeric]": "484", "customer[credit_card][billing_address][country_name]": "Mexico", } query_string = TestHelper.simulate_tr_form_post(post_params, Customer.transparent_redirect_create_url()) result = Customer.confirm_transparent_redirect(query_string) self.assertTrue(result.is_success) customer = result.customer self.assertEquals("John", customer.first_name) self.assertEquals("Doe", customer.last_name) self.assertEquals("Doe Co", customer.company) self.assertEquals("john@doe.com", customer.email) self.assertEquals("312.555.2323", customer.phone) self.assertEquals("614.555.5656", customer.fax) self.assertEquals("www.johndoe.com", customer.website) self.assertEquals("05/2012", customer.credit_cards[0].expiration_date) self.assertEquals("MX", customer.credit_cards[0].billing_address.country_code_alpha2) self.assertEquals("MEX", customer.credit_cards[0].billing_address.country_code_alpha3) self.assertEquals("484", customer.credit_cards[0].billing_address.country_code_numeric) self.assertEquals("Mexico", customer.credit_cards[0].billing_address.country_name) def test_create_from_transparent_redirect_with_error_result(self): tr_data = { "customer": { "company": "Doe Co", } } post_params = { "tr_data": Customer.tr_data_for_create(tr_data, "http://example.com/path"), "customer[email]": "john#doe.com", } query_string = TestHelper.simulate_tr_form_post(post_params, Customer.transparent_redirect_create_url()) result = Customer.confirm_transparent_redirect(query_string) self.assertFalse(result.is_success) self.assertEquals(ErrorCodes.Customer.EmailIsInvalid, result.errors.for_object("customer").on("email")[0].code) def test_update_from_transparent_redirect_with_successful_result(self): customer = Customer.create({ "first_name": "Jane", }).customer tr_data = { "customer_id": customer.id, "customer": { "first_name": "John", } } post_params = { "tr_data": Customer.tr_data_for_update(tr_data, "http://example.com/path"), "customer[email]": "john@doe.com", } query_string = TestHelper.simulate_tr_form_post(post_params, Customer.transparent_redirect_update_url()) result = Customer.confirm_transparent_redirect(query_string) self.assertTrue(result.is_success) customer = result.customer self.assertEquals("John", customer.first_name) self.assertEquals("john@doe.com", customer.email) def test_update_with_nested_values_via_transparent_redirect(self): customer = Customer.create({ "first_name": "Steve", "last_name": "Jobs", "credit_card": { "number": "4111111111111111", "expiration_date": "10/10", "billing_address": { "postal_code": "11111" } } }).customer credit_card = customer.credit_cards[0] address = credit_card.billing_address tr_data = { "customer_id": customer.id, "customer": { "first_name": "Bill", "last_name": "Gates", "credit_card": { "expiration_date": "12/12", "options": { "update_existing_token": credit_card.token }, "billing_address": { "postal_code": "44444", "options": { "update_existing": True } } } } } post_params = { "tr_data": Customer.tr_data_for_update(tr_data, "http://example.com/path"), } query_string = TestHelper.simulate_tr_form_post(post_params, Customer.transparent_redirect_update_url()) updated_customer = Customer.confirm_transparent_redirect(query_string).customer updated_credit_card = CreditCard.find(credit_card.token) updated_address = Address.find(customer.id, address.id) self.assertEqual("Bill", updated_customer.first_name) self.assertEqual("Gates", updated_customer.last_name) self.assertEqual("12/2012", updated_credit_card.expiration_date) self.assertEqual("44444", updated_address.postal_code) def test_update_from_transparent_redirect_with_error_result(self): customer = Customer.create({ "first_name": "Jane", }).customer tr_data = { "customer_id": customer.id, "customer": { "first_name": "John", } } post_params = { "tr_data": Customer.tr_data_for_update(tr_data, "http://example.com/path"), "customer[email]": "john#doe.com", } query_string = TestHelper.simulate_tr_form_post(post_params, Customer.transparent_redirect_update_url()) result = Customer.confirm_transparent_redirect(query_string) self.assertFalse(result.is_success) self.assertEquals(ErrorCodes.Customer.EmailIsInvalid, result.errors.for_object("customer").on("email")[0].code)
[ "code@getbraintree.com" ]
code@getbraintree.com
9cd4aaea9c9d50f79dd06603c2a9f6541239a683
fd770a37044ebbf116857650d0ee8957066fe57a
/14-Python/Demos/Day-02/file_handle.py
3f7ec6f310781ad10d2d59523a4208b9a3406794
[ "MIT", "LicenseRef-scancode-free-unknown" ]
permissive
helghareeb/OSTrack2019
1c5a8214e9cc7662bfe7be256f1168ef02c5fffe
3ef5af0f56f8640e92c1f3c3b3d76b8df2783f48
refs/heads/master
2020-06-28T22:20:35.496173
2020-01-04T17:05:58
2020-01-04T17:05:58
200,356,515
6
14
MIT
2019-08-24T07:45:51
2019-08-03T09:22:30
HTML
UTF-8
Python
false
false
292
py
# بسم الله الرحمن الرحيم f = open('output','w') f.write('This is new content') f.seek(8) f.write('old') # f.write('This is line-01 \n') # f.write('This is line-02 \n') # f.write('This is line-03 \n') # f.write('This is line-04 \n') # for i in f.readlines(): # print(i)
[ "helghareeb@gmail.com" ]
helghareeb@gmail.com
b5580f165cc9ba88e6ed7815a4cc90b627cea69d
8d292cad82e85e58e98f673aef549027ab247668
/notebooks/Golden_Pass_1/18_Spine_Allen/Spine_classifier.py
3a7b614dccc6c6f2baba145d29377d15f597eb96
[]
no_license
celiibrendan/Complete_Pinky100_Pipeline
56ba1133469f9ea9f80525253f6e7318ea980de4
51bf305ec87139059ce8bf5c42d33c54c24a0991
refs/heads/master
2021-07-21T18:11:01.592799
2020-05-18T22:32:03
2020-05-18T22:32:03
170,215,381
0
0
null
null
null
null
UTF-8
Python
false
false
83,685
py
import bpy #This one will pull down some of the larger segments from the datajoint #table and then apply the automatic segmentation to them #######Steps############## '''1) Get the neuron the person wants to look at 2) Import the neuron and generate edges 3) Get the compartment_type person wants 4) Find the component_index that corresponds to the biggest one because that is the one we want 5) Delete all the edges, faces and vertices that do not correspond to these labels 6) Generate an OFF file for the current segment 7) Run the OFF file through the CGAL segmentation algorithm using the INPUT PARAMETERS 8) Run the auto spine labeler using the CGAL segmentation list 9) Label the colors of the auto labeled spines and show the final product 10) Output stats to a csv so they can be analyzed''' ####How to import from the segment table import datajoint as dj import numpy as np import datetime import math from mathutils import Vector dj.config['database.host'] = '10.28.0.34' dj.config['database.user'] = 'celiib' dj.config['database.password'] = 'newceliipass' #will state whether words are shown or not dj.config['safemode']=True print(dj.conn(reset=True)) def select_Neuron(ob_name): # deselect all bpy.ops.object.select_all(action='DESELECT') bpy.context.scene.objects.active = None # selection obj = bpy.data.objects[ob_name] bpy.context.scene.objects.active = obj """for obj in bpy.data.objects: if "neuron" in obj.name: obj.select = True bpy.context.scene.objects.active = obj print("object was found and active") break""" #1) Get the neuron the person wants to look at #2) Import the neuron and generate edges def filter_verts_and_faces(key,verts,faces): #go and get the triangles and the vertices from the database """compartment_type decimation_ratio segmentation segment_id""" component_key = dict(segmentation=key["segmentation"], segment_id=key["segment_id"], decimation_ratio=float(key["decimation_ratio"]), compartment_type=key["compartment_type"], component_index=key["component_index"]) verts_label, triangles_label = (ta3p100.CompartmentFinal.ComponentFinal & component_key).fetch('vertex_indices','triangle_indices') verts_label = verts_label.tolist()[0] triangles_label = triangles_label.tolist()[0] verts_keep = [] faces_keep = [] verts_lookup = {} for i,ver in enumerate(verts_label): verts_keep.append(verts[ver]) verts_lookup[ver] = i #generate the new face labels for fac in triangles_label: faces_with_verts = faces[fac] new_tuple = [] for v in faces_with_verts: new_tuple.append(verts_lookup[v]) faces_keep.append(new_tuple) #check that the new verts and faces to return are same length as the indices """if len(triangles_label) != len(faces_keep) or len(verts_label) != len(verts_keep): print("ERROR THE FILTERED LABELS ARE NOT THE SAME SIZE AS THE INDICES LISTS!")""" return verts_keep,faces_keep whole_neuron_dicts = dict() def load_Neuron_automatic_spine(key): ID = key['segment_id'] compartment_type = key['compartment_type'] compartment_index = key['component_index'] print("inside load Neuron") #neuron_data = ((mesh_Table & "segment_ID="+ID).fetch(as_dict=True))[0] if ID not in whole_neuron_dicts: whole_neuron_dicts[ID] = (ta3p100.CleansedMesh & 'decimation_ratio=0.35' & dict(segment_id=ID)).fetch1() verts = whole_neuron_dicts[ID]['vertices'].astype(dtype=np.uint32).tolist() faces = whole_neuron_dicts[ID]['triangles'].astype(dtype=np.uint32).tolist() #could filter the verts and the faces here for just the ones we want verts,faces = filter_verts_and_faces(key,verts,faces) mymesh = bpy.data.meshes.new("neuron-"+str(ID)) mymesh.from_pydata(verts, [], faces) mymesh.update(calc_edges=True) mymesh.calc_normals() object = bpy.data.objects.new("neuron-"+str(ID), mymesh) #object.location = bpy.context.scene.cursor_location object.location = Vector((0,0,0)) bpy.context.scene.objects.link(object) object.lock_location[0] = True object.lock_location[1] = True object.lock_location[2] = True object.lock_scale[0] = True object.lock_scale[1] = True object.lock_scale[2] = True object.rotation_euler[0] = 1.5708 object.rotation_euler[1] = 0 object.rotation_euler[2] = 0 object.lock_rotation[0] = True object.lock_rotation[1] = True object.lock_rotation[2] = True #set view back to normal: #set_View() #run the setup color command #bpy.ops.object.select_all(action='TOGGLE') #create_local_colors(object) #make sure in solid mode for area in bpy.context.screen.areas: # iterate through areas in current screen if area.type == 'VIEW_3D': for space in area.spaces: # iterate through spaces in current VIEW_3D area if space.type == 'VIEW_3D': # check if space is a 3D view space.viewport_shade = 'SOLID' # set the viewport shading to rendered return object.name ##write the OFF file for the neuron def write_Part_Neuron_Off_file(verts_for_off,faces_for_off,faces_indexes_for_off,segment_id,compartment_type_name,found_component_index,file_loc): print('inside write_Part_neuron') num_vertices = (len(verts_for_off)) num_faces = len(faces_indexes_for_off) file_location = file_loc filename = "neuron_" + str(segment_id) + "_" + str(compartment_type_name) + "_" + str(found_component_index) f = open(file_location + filename + ".off", "w") f.write("OFF\n") f.write(str(num_vertices) + " " + str(num_faces) + " 0\n" ) ob = bpy.context.object verts_raw = ob.data.vertices #iterate through and write all of the vertices in the file verts_lookup = {} counter = 0 for vert_num in verts_for_off: f.write(str(verts_raw[vert_num].co[0]) + " " + str(verts_raw[vert_num].co[1]) + " " + str(verts_raw[vert_num].co[2])+"\n") verts_lookup[vert_num] = counter counter += 1 faces_lookup_reverse = [] counter = 0 print("finished writing verts") for i in range(0,len(faces_indexes_for_off)): face_indices = faces_indexes_for_off[i] f.write("3 " + str(verts_lookup[face_indices[0]]) + " " + str(verts_lookup[face_indices[1]]) + " " + str(verts_lookup[face_indices[2]])+"\n") faces_lookup_reverse.append(faces_for_off[i]) counter += 1 print("finished writing faces") print("done_writing_off_file") #f.write("end") return filename,faces_lookup_reverse import random def get_cgal_data_and_label(key,ob_name): #store the group_segmentation in the traingle labels from datajoint component_data = (ta3p100.ComponentAutoSegmentFinal() & key).fetch(as_dict=True) if component_data == []: return [], [] else: component_data = component_data[0] triangles_labels = component_data["seg_group"].tolist() #activate the current object select_Neuron(ob_name) ob = bpy.context.object me = ob.data #print("starting to hide everything") #iterate through all of the vertices verts_raw = ob.data.vertices #print(len(active_verts_raw)) edges_raw = ob.data.edges #print(len(active_edges_raw)) faces_raw = ob.data.polygons #gets a list of the unique labels unique_segments = list(Counter(triangles_labels).keys()) segmentation_length = len(unique_segments) # equals to list(set(words)) #print(segmentation_length) #makes a dictionary that maps the unique segments to a number from range(0,len(unique_seg)) unique_index_dict = {unique_segments[x]:x for x in range(0,segmentation_length)} #print("unique_index_dict = " + str(len(unique_index_dict))) #print("triangle_labels = " + str(len(triangles_labels))) #adds all of the labels to the faces max_length = len(triangles_labels) #just iterate and add them to the faces #here is where need to get stats for sdf numbers labels_list = [] for tri in triangles_labels: #assembles the label list that represents all of the faces labels_list.append(str(unique_index_dict[tri])) select_Neuron(ob_name) #make sure in solid mode for area in bpy.context.screen.areas: # iterate through areas in current screen if area.type == 'VIEW_3D': for space in area.spaces: # iterate through spaces in current VIEW_3D area if space.type == 'VIEW_3D': # check if space is a 3D view space.viewport_shade = 'SOLID' # set the viewport shading to rendered bpy.ops.object.mode_set(mode='OBJECT') #these variables are set in order to keep the functions the same as FINAL_importing_auto_seg.py newname = ob.name print("done with cgal_segmentation") #----------------------now return a dictionary of the sdf values like in the older function get_sdf_dictionary #get the sdf values and store in sdf_labels sdf_labels = component_data["sdf"].tolist() sdf_temp_dict = {} labels_seen = [] #iterate through the labels_list for i,label in enumerate(labels_list): if label not in labels_seen: labels_seen.append(label) sdf_temp_dict[label] = [] sdf_temp_dict[label].append(sdf_labels[i]) #print(sdf_temp_dict) #now calculate the stats on the sdf values for each label sdf_final_dict = {} for dict_key,value in sdf_temp_dict.items(): """ #calculate the average mean = np.mean(value) #calculate the median median = np.median(value) #calculate the max max = np.amax(value) #calculate minimum min = np.amin(value) temp_dict = {"mean":mean,"median":median,"max":max,"min":min} #assign them sdf_final_dict[key] = temp_dict.copy() """ #just want to store the median sdf_final_dict[dict_key] = np.median(value) return sdf_final_dict, labels_list import sys import numpy as np #import matplotlib.pyplot as plt import networkx as nx import time def find_neighbors(labels_list,current_label,verts_to_Face,faces_raw,verts_raw): """will return the number of neighbors that border the segment""" #iterate over each face with that label # get the vertices of that face # get all the faces that have that vertice associated with that # get the labels of all of the neighbor faces, for each of these labels, add it to the neighbors #list if it is not already there and doesn't match the label you are currently checking # return the list #get the indexes of all of the faces with that label that you want to find the neighbors for index_list = [] for i,x in enumerate(labels_list): if x == current_label: index_list.append(i) verts_checked = [] faces_checked = [] neighbors_list = [] neighbors_shared_vert = {} for index in index_list: current_face = faces_raw[index] #get the vertices associates with face vertices = current_face.vertices #get the faces associated with the vertices of that specific face for vert in vertices: #will only check each vertex once if vert not in verts_checked: verts_checked.append(vert) faces_associated_vert = verts_to_Face[vert] for fac in faces_associated_vert: #make sure it is not a fellow face with the label who we are looking for the neighbors of if (fac not in index_list): #check to see if checked the the face already if (fac not in faces_checked): if(labels_list[fac] not in neighbors_list): #add the vertex to the count of shared vertices neighbors_shared_vert[labels_list[fac]] = 0 #only store the faces that are different neighbors_list.append(labels_list[fac]) #faces_to_check.append(fac) #faces_to_check.insert(0, fac) #increment the number of times we have seen that label face neighbors_shared_vert[labels_list[fac]] = neighbors_shared_vert[labels_list[fac]] + 1 #now add the face to the checked list faces_checked.append(fac) #have all of the faces to check """for facey in faces_to_check: if labels_list[facey] != current_label and labels_list[facey] not in neighbors_list: neighbors_list.append(labels_list[facey] )""" number_of_faces = len(index_list) #can filter out the neighbors that do not have 3 or more vertices #print("neighbors_list = " + str(neighbors_list)) #print("neighbors_shared_vert = " + str(neighbors_shared_vert)) """final_neighbors_shared_vert = {} for key,value in neighbors_shared_vert.items(): if value >= neighbors_min or key == "backbone": #add them to the final list if more than 3 neighbors: final_neighbors_shared_vert[key]= value final_neighbors_list = final_neighbors_shared_vert.keys() if final_neighbors_list: complete_Flag = True""" return neighbors_list,neighbors_shared_vert,number_of_faces ##Functins from the auto_spine_labeler def smooth_backbone_vp3(labels_list,sdf_final_dict,backbone_width_threshold = 0.35,max_backbone_threshold = 400,backbone_threshold=300,secondary_threshold=100,shared_vert_threshold=25,number_Flag = False, seg_numbers=1,smooth_Flag=True): print("at beginning of smooth backbone vp3") #things that could hint to backbone #1) larger size #2) touching 2 or more larger size #have to go into object mode to do some editing currentMode = bpy.context.object.mode bpy.ops.object.mode_set(mode='OBJECT') ob = bpy.context.object ob.update_from_editmode() #print("object_name = " + bpy.context.object.name) me = ob.data #print("about to get faces_verts raw") faces_raw = me.polygons verts_raw = me.vertices #print("DONE about to get faces_verts raw") #print("don't need to generate labels_list anymore") #print("about to generate labels_list") ####!!!! This takes a good bit of time##### #labels_list = generate_labels_list(faces_raw) #print("DONE about to generate labels_list") #need to assemble a dictionary that relates vertices to faces #*****making into a list if the speed is too slow*******# #print("about to generate verts_to_Face") verts_to_Face = generate_verts_to_face_dictionary(faces_raw,verts_raw) #print("DONE about to generate verts_to_Face") #add new color and reassign all of the labels with those colors as the backbone label #create a list of all the labels and which ones are the biggest ones from collections import Counter myCounter = Counter(labels_list) spine_labels = [] backbone_labels = [] #print(" about to get counter list") #may not want to relabel until the end in order to preserve the labels in case label a big one wrong #may not want to relabel until the end in order to preserve the labels in case label a big one wrong for label,times in myCounter.items(): if(times >= max_backbone_threshold): #print(str(label) + ":" + str(times)) backbone_labels.append(label) for label in myCounter.keys(): if( sdf_final_dict[label] >= backbone_width_threshold): #print(str(label) + ":" + str(times)) if(myCounter[label] > backbone_threshold) and (label not in backbone_labels): backbone_labels.append(label) #print(" DONE about to get counter list") """for lb in sdf_final_dict: if( sdf_final_dict[lb] >= backbone_width_threshold): backbone_labels.append(lb) """ #print("backbone_labels = " + str(backbone_labels)) #print("hello") #need ot get rid of labels that don't border other backbone_labels to_remove = [] for i in range(0,5): print("smoothing round " + str(i+1)) printout_counter = 0 counter = 0 for bkbone in backbone_labels: if bkbone not in to_remove: neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,bkbone,verts_to_Face,faces_raw,verts_raw) #if(bkbone == "170"): # print("70 nbrs = " + str(nbrs)) #counts up the number of shared vertices with backbone neighbors backbone_count_flag = False neighbor_counter = 0 total_backbone_shared_verts = 0 for n in neighbors_list: if (n in backbone_labels) and (n not in to_remove): neighbor_counter += 1 total_backbone_shared_verts = total_backbone_shared_verts + neighbors_shared_vert[n] #if meets requirement of shared verts then activates flag if (total_backbone_shared_verts > shared_vert_threshold): backbone_count_flag = True '''#prevent against the split heads with 2 or 3 backbone_neighbor_list = neighbors_list.copy() backbone_neighbor_list.append(bkbone) other_backbone_flag = 0 appendFlag = False if(backbone_count_flag == True and neighbor_counter < 4): #check the other neighbor and see if the only other backbone is the current label, if so then just a split head other_backbone_flag = 0 for n in neighbors_list: if (n in backbone_labels) and (n not in to_remove): neighbors_list_of_n,neighbors_shared_vert_of_n,number_of_faces_of_n = find_neighbors(labels_list,n,verts_to_Face,faces_raw,verts_raw) for nb in neighbors_list_of_n: if (nb in backbone_labels) and (nb not in to_remove) and (nb not in backbone_neighbor_list): backbone_neighbor_list.append(nb) other_backbone_flag += 1 if other_backbone_flag == 0: """if printout_counter < 5: #print("For backbone = " + str( bkbone)) #print("neighbors_list = " + str(neighbors_list)) #print("backbone_neighbor_list = " + str(backbone_neighbor_list)) #print("other_backbone_flag = " + str(other_backbone_flag)) appendFlag = True #printout_counter +=1""" if (backbone_count_flag == True and neighbor_counter < 4) and (other_backbone_flag == 0): #len(split_head_backbone_list) >= len(backbone_neighbor_list): for bk in backbone_neighbor_list: to_remove.append(bk) counter += 1 #if not backbone neighbors and/or didn't have enought shared verts then not part of the backbone else: if neighbor_counter <= 0 or backbone_count_flag == False: to_remove.append(bkbone) counter += 1''' #compute the number of shared vertices and see if fits: if neighbor_counter <= 0 or backbone_count_flag == False: to_remove.append(bkbone) counter += 1 print("counter = " + str(counter)) if counter == 0: print("counter caused the break") break #print("to remove = " + str(to_remove)) print("done Analyzing big and small segments") #go through and switch the label of hte #may not want to relabel until the end in order to preserve the labels in case label a big one wrong print("about to rewrite the labels") for i in range(0,len(labels_list)): if labels_list[i] in backbone_labels and labels_list[i] not in to_remove: labels_list[i] = "backbone" #faces_raw[i].material_index = num_colors print("DONE about to rewrite the labels") return labels_list, verts_to_Face #generates the stats: connections on who it is connected to), shared_verts (how many vertices it shares between it's neighbor), mesh_number (number of face for that label) def export_connection(labels_list,label_name, verts_to_Face,outputFlag="False",file_name="None"): #print("hello from export_connection with label_name = " + str(label_name) ) #find all the neighbors of the label currentMode = bpy.context.object.mode bpy.ops.object.mode_set(mode='OBJECT') ob = bpy.context.object ob.update_from_editmode() #print("object_name = " + bpy.context.object.name) me = ob.data faces_raw = me.polygons verts_raw = me.vertices #print("generating list in export connections") #labels_list = generate_labels_list(faces_raw) #print("done generating list in export connections") #need to assemble a dictionary that relates vertices to faces #*****making into a list if the speed is too slow*******# #print("about to making verts_to_Face") #verts_to_Face = generate_verts_to_face_dictionary(faces_raw,verts_raw) #print("DONE about to making verts_to_Face") total_labels_list = [] faces_checked = [] faces_to_check = [label_name] still_checking_faces = True connections = {} shared_vertices = {} mesh_number = {} #print("about to start checking faces") #will iterate through all of the labels with the label name until find all of the neighbors (until hitting the backbone) of the label while still_checking_faces: #will exit if no more faces to check if not faces_to_check: still_checking_faces = False break for facey in faces_to_check: if facey != "backbone": neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,facey,verts_to_Face,faces_raw,verts_raw) #reduce the shared vertices with a face and the backbone to 0 so doesn't mess up the shared vertices percentage pairs = list(neighbors_shared_vert.items()) pre_connections = [k for k,i in pairs] pre_shared_vertices = [i for k,i in pairs] if ("backbone" in pre_connections): back_index = pre_connections.index("backbone") pre_shared_vertices[back_index] = 0 connections[facey] = pre_connections shared_vertices[facey] = pre_shared_vertices mesh_number[facey] = number_of_faces for neighbors in neighbors_list: if (neighbors != "backbone") and (neighbors not in faces_to_check) and (neighbors not in faces_checked): faces_to_check.append(neighbors) faces_to_check.remove(facey) faces_checked.append(facey) #append the backbone to the graph structure mesh_number["backbone"] = 0 #print("faces_checked = " + str(faces_checked)) #print("DONE about to start checking faces") #save off the file to an npz file if(outputFlag == True): complete_path = str("/Users/brendancelii/Google Drive/Xaq Lab/Datajoint Project/Automatic_Labelers/spine_graphs/"+file_name) #package up the data that would go to the database and save it locally name of the file will look something like this "4_bcelii_2018-10-01_12-12-34" # np.savez("/Users/brendancelii/Google Drive/Xaq Lab/Datajoint Project/local_neurons_saved/"+segment_ID+"_"+author+"_"+ # date_time[0:9]+"_"+date_time[11:].replace(":","-")+".npz",segment_ID=segment_ID,author=author, # date_time=date_time,vertices=vertices,triangles=triangles,edges=edges,status=status) np.savez(complete_path,connections=connections,shared_vertices=shared_vertices,mesh_number=mesh_number ) return connections,shared_vertices,mesh_number def classify_spine_vp2(connections,shared_vertices,mesh_number,sdf_final_dict): #print("inside classify_spine") #head_threshold = 0.15 absolute_head_threshold = 30 stub_threshold = 40 path_threshold = 40 #make a new dictionary to hold the final labels of the spine end_labels = {k:"none" for k in mesh_number.keys()} #only one segment so label it as a spine if len(connections.keys()) <= 1: end_labels[list(connections.keys())[0]] = "spine_one_seg" total_mesh_faces_outer = sum([k for i,k in mesh_number.items()]) #print("total_mesh_faces = " + str( total_mesh_faces_outer)) #create the graph from these G=nx.Graph(connections) endpoint_labels,shortest_paths = find_endpoints(G,mesh_number) if endpoint_labels == []: for jk in end_labels.keys(): end_labels[jk] = "backbone" return end_labels #print("endpoint_labels = "+str(endpoint_labels)) #print("shortest_paths = "+str(shortest_paths)) #make a new dictionary to hold the final labels of the spine end_labels = {k:"none" for k in mesh_number.keys()} end_labels["backbone"] = "backbone" #print("end_labels at beginning") #print(end_labels) for endpoint in endpoint_labels: #print("at beginning of endpoint loop with label = "+ str(endpoint)) #get the shortest path lists endpoint_short_paths = shortest_paths[endpoint] for path in endpoint_short_paths: path.remove("backbone") path_total_mesh_faces = sum([k for i,k in mesh_number.items() if i in path]) #print("path_total_mesh_faces = "+str(path_total_mesh_faces)) #print("at beginning of path loop with path = "+ str(path)) travel_index = 0 head_found = False label_everything_above_as_head = False while (head_found == False ) and travel_index < len(path): current_face = path[travel_index] sdf_guess = sdf_likely_category(current_face,travel_index,path,False,sdf_final_dict,connections,mesh_number,absolute_head_threshold) if sdf_guess != "head" or mesh_number[current_face] < absolute_head_threshold: #then not of any significance BUT ONLY REASSIGN IF NOT HAVE ASSIGNMENT*** if end_labels[current_face] == "none": end_labels[current_face] = "no_significance" travel_index = travel_index + 1 else: #end_labels[current_face] = "head_reg" WAIT TO ASSIGN TILL LATER if "neck" != end_labels[current_face][0:4] and "spine" != end_labels[current_face][0:5] : #if not already labeled as neck or spine head_found = True label_everything_above_as_head = True else: travel_index = travel_index + 1 #print("end of first while loop, travel_index = "+ str(travel_index) + " head_found = "+ str(head_found)) ############Added new threshold that makes it so path length can't be really small if travel_index < len(path): travel_face = path[travel_index] else: travel_face = path[travel_index-1] travel_index = travel_index-1 if (path[travel_index] == "backbone") or ("backbone" in connections[path[travel_index]]): head_found = False label_everything_above_as_head = True if path_total_mesh_faces<path_threshold: head_found = False label_everything_above_as_head = True ####do the head splitting#### #see if there are any labels that border it that also share a high percentage of faces if head_found == True: ##will return the names of the faces that have unusually high verts sharing split_head_labels = get_split_heads_vp2(path[travel_index],travel_index,path,connections,shared_vertices,mesh_number,sdf_final_dict,absolute_head_threshold) #print("split_head_labels = " + str(split_head_labels)) if len(split_head_labels) >= 2: #print("adding the split head labels") for split_label in split_head_labels: #######may need to add in CHECK FOR ALREADY LABELED if ("head" == end_labels[split_label][0:4] or end_labels[split_label] == "none"): end_labels[split_label] = "head_split" #else: THINK LABELING IT AS SPINE IS NOT WHAT WE WANT # end_labels[split_label] = "spine_head_disagree_split_head" label_everything_above_as_head = True ###if no head was found if head_found == False: #print("no head found so labeling as neck") #######WILL NOT OVERWRITE UNLESS LABELED AS NO SIGNIFICANCE for i in path: if end_labels[i] == "no_significance" or end_labels[i] == "none" or end_labels[i][0:4] == "head": end_labels[i] = "neck_no_head_on_path_head_false" label_everything_above_as_head = False #print("label_everything_above_as_head = " + str(label_everything_above_as_head)) #need to label any of those above it in the chain labeled as insignificant to heads if label_everything_above_as_head == True and head_found == True: if end_labels[travel_face] == "none": #print("labeled as head reg") end_labels[travel_face] = "head_reg" #else: ########don't need this because don't want to overwrite already written spine neck #if "head" not in end_labels[travel_index]: #end_labels[travel_index] = "spine_head_disagree" #will label everything above it as a head and then everything below it as neck #####need to account for special case where not overwrite the head_split#### if "head" == end_labels[travel_face][0:4]: #print('labeling all no_significance above as head hats') for i in range(0,travel_index): current_label = path[i] if end_labels[current_label] == "no_significance": end_labels[current_label] = "head_hat" else: if "head" != end_labels[current_label][0:4]: end_labels[current_label] = "spine_head_disagree_above_head" #print('labeling all below head as necks') for i in range(travel_index+1,len(path)): current_label = path[i] if current_label not in split_head_labels and end_labels[current_label] != "head_split": end_labels[current_label] = "neck_under_head" else: ###not sure when this will be activated but maybe? #print("head not present so labeling everything above as neck_hat") for i in range(0,travel_index): current_label = path[i] #####need to account for special case where not overwrite the head_split#### if end_labels[current_label] == "no_significance": end_labels[current_label] == "neck_hats_no_head" #print("at end of one cycle of big loop") #print("end_labels = " + str(end_labels)) #what about a head being accidentally written under another head? #####you should not write a head to a spine that has already been labeled as under a head #####you should overwrite all labels under a head as spine_under_head #print("outside of big loop") #print("end_labels = " + str(end_labels)) #if no heads present at all label as spines spine_flag_no_head = False for face,label in end_labels.items(): if "head" == label[0:4]: spine_flag_no_head = True if spine_flag_no_head == False: #print("no face detected in all of spine") for label_name in end_labels.keys(): end_labels[label_name] = "spine_no_head_at_all" ###### TO DO: can put in a piece of logic that seekss and labels the ones we know are necks for sure based on width #once done all of the paths go through and label things as stubs if total_mesh_faces_outer < stub_threshold: #print("stub threshold triggered") for label_name in end_labels.keys(): if "head" == end_labels[label_name][0:4]: end_labels[label_name] = "stub_head" elif "neck" == end_labels[label_name][0:4]: end_labels[label_name] = "stub_neck" else: end_labels[label_name] = "stub_spine" end_labels["backbone"] = "backbone" ###To Do: replace where look only in 1st four indexes return end_labels def relabel_segments(labels_list,current_label,new_label): for i,x in enumerate(labels_list): if x == current_label: labels_list[i] = new_label return labels_list def generate_verts_to_face_dictionary(faces_raw,verts_raw): verts_to_Face = {} #initialize the lookup dictionary as empty lists for pre_vertex in verts_raw: verts_to_Face[pre_vertex.index] = [] #print(len(verts_raw)) #print(len(verts_to_Face)) #print(verts_to_Face[1]) for face in faces_raw: #get the vertices verts = face.vertices #add the index to the list for each of the vertices for vertex in verts: verts_to_Face[vertex].append(face.index) return verts_to_Face def automatic_spine_classification_vp3(labels_list,verts_to_Face,sdf_final_dict): #process of labeling """1) Get a list of all of the labels 2) Iterate through the labels and for each: a. Get the connections, verts_shared and mesh_sizes for all labels connected to said label b. Run the automatic spine classification to get the categories for each label c. Create a new list that stores the categories for each label processed d. repeat until all labels have been processed 3) Delete all the old colors and then setup the global colors with the regular labels 4) Change the material index for all labels based on the categorical classification""" currentMode = bpy.context.object.mode bpy.ops.object.mode_set(mode='OBJECT') ob = bpy.context.object ob.update_from_editmode() #print("object_name = " + bpy.context.object.name) me = ob.data faces_raw = me.polygons verts_raw = me.vertices #labels_list = generate_labels_list(faces_raw) final_spine_labels = labels_list.copy() processed_labels = [] myCounter = Counter(labels_list) complete_labels = [label for label,times in myCounter.items()] head_counter = 0 spine_counter = 0 neck_counter = 0 stub_counter = 0 for i in range(0,len(complete_labels)): if complete_labels[i] != "backbone" and complete_labels[i] not in processed_labels: #print("at beginning of spine labeling loop: about to enter export connection") #get the conenections, shared vertices and mesh sizes for the whole spine segment in which label is connected to connections,shared_vertices,mesh_number = export_connection(labels_list,complete_labels[i], verts_to_Face,outputFlag="False",file_name="None") #print("about to send to classify spine") #send that graph data to the spine classifier to get labels for that final_labels = classify_spine_vp2(connections,shared_vertices,mesh_number,sdf_final_dict) #print("done classify spines") head_Flag = False spine_Flag = False stub_Flag = False neck_Flag = False #relabel the list accordingly ############could speed this up where they return the number of types of labels instead of having to search for them############ #print("about to find number of heads/spines/stubs/necks PLUS RELABEL AND append them to list") for key,value in final_labels.items(): if value[0:4] == "head": head_Flag = True if value[0:4] == "spin": spine_Flag = True if value[0:4] == "stub": stub_Flag = True if value[0:4] == "neck": neck_Flag = True relabel_segments(final_spine_labels,key,value) #add them to the list of processed labels processed_labels.append(key) #print("about to find number of heads/spines/stubs/necks PLUS RELABEL AND append them to list") if head_Flag == True: head_counter += 1 if spine_Flag == True: spine_counter += 1 if stub_Flag == True: stub_counter += 1 if neck_Flag == True: neck_counter += 1 #get the indexes for the labeling from the datajoint table label_data = ta3.LabelKey().fetch("numeric","description") #print(label_data) label_names = label_data[1].tolist() label_indexes = label_data[0].tolist() #print(label_names) spine_head_index = label_indexes[label_names.index("Spine Head")] spine_neck_index = label_indexes[label_names.index("Spine Neck")] spine_reg_index = label_indexes[label_names.index("Spine")] final_faces_labels_list = np.zeros(len(faces_raw)) final_verts_labels_list = np.zeros(len(verts_raw)) #assign the colors to the faces: for i,fi in enumerate(final_spine_labels): if fi[0:4] == "head": #fac.material_index = 2 final_faces_labels_list[i] = spine_head_index elif fi[0:4] == "neck": #fac.material_index = 3 final_faces_labels_list[i] = spine_neck_index elif fi[0:4] == "spin": #fac.material_index = 4 final_faces_labels_list[i] = spine_reg_index else: #fac.material_index = 0 final_faces_labels_list[i] = 0 #assign the vertices an index for vert in faces_raw[i].vertices: if final_verts_labels_list[vert] == 0: final_verts_labels_list[vert] = final_faces_labels_list[i] #create the list of labels for the vertices #print("DONE about to color heads") return head_counter,neck_counter, spine_counter, stub_counter, final_verts_labels_list, final_faces_labels_list ####For automatic spine labeling def find_endpoints(G,mesh_number): #will first calculate all the shortest paths for each of the nodes node_list = list(G.nodes) if("backbone" in node_list): node_list.remove("backbone") else: return [],[] shortest_paths = {} for node in node_list: shortest_paths[node] = [k for k in nx.all_shortest_paths(G,node,"backbone")] endpoints = [] #identify the nodes that are not a subset of other nodes for node in node_list: other_nodes = [k for k in node_list if k != node ] not_unique = 0 for path in shortest_paths[node]: not_unique_Flag = False for o_node in other_nodes: for o_shortest_path in shortest_paths[o_node]: if set(path) <= set(o_shortest_path): not_unique_Flag = True if not_unique_Flag == True: not_unique = not_unique + 1 #decide if unique endpoint if not_unique < len(shortest_paths[node]): # this means there is a unique path #if not_unique != 0: #print(node + "-some unique and some non-unique paths for endpoint") endpoints.append(node) ##print(endpoints) longest_paths_list = [] for end_node in endpoints: longest_path = 0 for path in shortest_paths[end_node]: path_length = 0 for point in path: path_length = path_length + mesh_number[point] if path_length > longest_path: longest_path = path_length longest_paths_list.append((end_node,longest_path)) #print(longest_paths_list) longest_paths_list.sort(key=lambda pair: pair[1], reverse=True) #print(longest_paths_list) ranked_endpoints = [x for x,i in longest_paths_list] endpoint_paths_lengths = [i for x,i in longest_paths_list] enpoint_path_list = {} for endpt in ranked_endpoints: enpoint_path_list[endpt] = shortest_paths[endpt] #ranked_endpoints, longest_paths_list = (list(t) for t in zip(*sorted(zip(endpoints, longest_paths_list)))) return ranked_endpoints, enpoint_path_list def sdf_likely_category(current_label,current_index,path,head_flag,sdf_final_dict,connections,mesh_number,absolute_head_threshold): #width thresholding constants width_thresholds = {"base":0.04, "item_top_threshold":1.5} #if size is smaller than the max threshold for a head then return neck if mesh_number[current_label] < absolute_head_threshold: return "neck" #get the mean, max, and median median_width = sdf_final_dict[current_label] #if the median is above a certain size and the total number of traingles is above a threshold then return as head """sdf_head_threshold = 50 over_median_threshold = 0.12 if label_mesh_number > sdf_head_threshold and median > over_median_threshold: return "head" """ neck_near_base_threshold = 0.16 close_neck_call_threshold = 0.09 #common characteristics of neck: #1) median width Less than neck_cuttoff_threshold #2) if larger item on top and that item is not a head #3) if larger item on top with more then 50% heads but less width #4) connected to backbone #1) median width Less than neck_cuttoff_threshold, return as neck if median_width < width_thresholds["base"]: return "neck" #2) if larger item on top and that item is not a head or #3) if larger item on top with more then 50% heads but less width #width_on_top = [] #face_number_on_top = [] for i in range(0,current_index): face_number_on_top = mesh_number[path[i]] width_on_top = sdf_final_dict[path[i]] if face_number_on_top > mesh_number[current_label]: if head_flag == False: return "neck" if median_width > width_thresholds["item_top_threshold"]*width_on_top: return "neck" #4) connected to backbone if "backbone" in connections[current_label]: return "neck" ######check for head based on if there is significantly smaller neck underneath it (because can be very close to 0.04 cuttoff sometimes #get the mean, median and max #will return head or neck return "head" def get_split_heads_vp2(current_label,current_index, path,connections,shared_vertices,mesh_number,sdf_final_dict,absolute_head_threshold): final_split_heads = [current_label] split_head_threshold = 0.35 #underneath_threshold = 0.20 #the only solid number threshold split_head_absolute_threshold = 8 heads_to_check = True while heads_to_check: #1) go to the next label below it if(current_index < (len(path)-1)): next_index = current_index + 1 next_label = path[next_index] if(next_label == "backbone"): #no_more_split_head_Flag = True break #ask if this next satisfies 1) enough shared verts? 2) SDF head possible? verts_sharing_index = connections[current_label].index(next_label) verts_sharing = shared_vertices[current_label][verts_sharing_index] #print("split share for faces " + str(current_label) + " " +str(next_label) + "="+str(verts_sharing/mesh_number[current_label])) sdf_guess = sdf_likely_category(next_label,next_index,path,True,sdf_final_dict,connections,mesh_number,absolute_head_threshold) if verts_sharing/mesh_number[current_label] > split_head_threshold and sdf_guess == "head" and mesh_number[next_label] > split_head_absolute_threshold: #add next label to the list final_split_heads.append(next_label) current_index = next_index current_label = next_label else: heads_to_check = False return final_split_heads ##Functins from the auto_spine_labeler def smooth_backbone_vp5(labels_list,sdf_final_dict,backbone_width_threshold = 0.35,max_backbone_threshold = 400,backbone_threshold=300,secondary_threshold=100,shared_vert_threshold=25,backbone_neighbor_min=20,number_Flag = False, seg_numbers=1,smooth_Flag=True): print("at beginning of smooth backbone vp4") #things that could hint to backbone #1) larger size #2) touching 2 or more larger size #have to go into object mode to do some editing currentMode = bpy.context.object.mode bpy.ops.object.mode_set(mode='OBJECT') ob = bpy.context.object ob.update_from_editmode() #print("object_name = " + bpy.context.object.name) me = ob.data #print("about to get faces_verts raw") faces_raw = me.polygons verts_raw = me.vertices #print("DONE about to get faces_verts raw") #print("don't need to generate labels_list anymore") #print("about to generate labels_list") ####!!!! This takes a good bit of time##### #labels_list = generate_labels_list(faces_raw) #print("DONE about to generate labels_list") #need to assemble a dictionary that relates vertices to faces #*****making into a list if the speed is too slow*******# #print("about to generate verts_to_Face") verts_to_Face = generate_verts_to_face_dictionary(faces_raw,verts_raw) #print("DONE about to generate verts_to_Face") #add new color and reassign all of the labels with those colors as the backbone label #create a list of all the labels and which ones are the biggest ones from collections import Counter myCounter = Counter(labels_list) spine_labels = [] backbone_labels = [] #print(" about to get counter list") #may not want to relabel until the end in order to preserve the labels in case label a big one wrong #may not want to relabel until the end in order to preserve the labels in case label a big one wrong for label,times in myCounter.items(): if(times >= max_backbone_threshold): #print(str(label) + ":" + str(times)) backbone_labels.append(label) for label in myCounter.keys(): if( sdf_final_dict[label] >= backbone_width_threshold): #print(str(label) + ":" + str(times)) if(myCounter[label] > backbone_threshold) and (label not in backbone_labels): backbone_labels.append(label) #print(" DONE about to get counter list") """for lb in sdf_final_dict: if( sdf_final_dict[lb] >= backbone_width_threshold): backbone_labels.append(lb) """ #print("backbone_labels = " + str(backbone_labels)) #print("hello") #need ot get rid of labels that don't border other backbone_labels to_remove = [] backbone_neighbors_dict = {} for i in range(0,5): print("smoothing round " + str(i+1)) printout_counter = 0 counter = 0 for bkbone in backbone_labels: if bkbone not in to_remove: #neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,bkbone,verts_to_Face,faces_raw,verts_raw) if bkbone not in backbone_neighbors_dict.keys(): neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,bkbone,verts_to_Face,faces_raw,verts_raw) backbone_neighbors_dict[bkbone] = dict(neighbors_list=neighbors_list,neighbors_shared_vert=neighbors_shared_vert, number_of_faces=number_of_faces) else: neighbors_list = backbone_neighbors_dict[bkbone]["neighbors_list"] neighbors_shared_vert = backbone_neighbors_dict[bkbone]["neighbors_shared_vert"] number_of_faces = backbone_neighbors_dict[bkbone]["number_of_faces"] #if(bkbone == "170"): # print("70 nbrs = " + str(nbrs)) #counts up the number of shared vertices with backbone neighbors backbone_count_flag = False neighbor_counter = 0 total_backbone_shared_verts = 0 for n in neighbors_list: if (n in backbone_labels) and (n not in to_remove): neighbor_counter += 1 total_backbone_shared_verts = total_backbone_shared_verts + neighbors_shared_vert[n] #if meets requirement of shared verts then activates flag #not doing shared verts as a criteria if (total_backbone_shared_verts > shared_vert_threshold): backbone_count_flag = True '''#prevent against the split heads with 2 or 3 backbone_neighbor_list = neighbors_list.copy() backbone_neighbor_list.append(bkbone) other_backbone_flag = 0 appendFlag = False if(backbone_count_flag == True and neighbor_counter < 4): #check the other neighbor and see if the only other backbone is the current label, if so then just a split head other_backbone_flag = 0 for n in neighbors_list: if (n in backbone_labels) and (n not in to_remove): neighbors_list_of_n,neighbors_shared_vert_of_n,number_of_faces_of_n = find_neighbors(labels_list,n,verts_to_Face,faces_raw,verts_raw) for nb in neighbors_list_of_n: if (nb in backbone_labels) and (nb not in to_remove) and (nb not in backbone_neighbor_list): backbone_neighbor_list.append(nb) other_backbone_flag += 1 if other_backbone_flag == 0: """if printout_counter < 5: #print("For backbone = " + str( bkbone)) #print("neighbors_list = " + str(neighbors_list)) #print("backbone_neighbor_list = " + str(backbone_neighbor_list)) #print("other_backbone_flag = " + str(other_backbone_flag)) appendFlag = True #printout_counter +=1""" if (backbone_count_flag == True and neighbor_counter < 4) and (other_backbone_flag == 0): #len(split_head_backbone_list) >= len(backbone_neighbor_list): for bk in backbone_neighbor_list: to_remove.append(bk) counter += 1 #if not backbone neighbors and/or didn't have enought shared verts then not part of the backbone else: if neighbor_counter <= 0 or backbone_count_flag == False: to_remove.append(bkbone) counter += 1''' #compute the number of shared vertices and see if fits: if neighbor_counter <= 0 or backbone_count_flag == False: to_remove.append(bkbone) counter += 1 print("counter = " + str(counter)) if counter <= 3: print("counter caused the break") break #now go through and make sure no unconnected backbone segments """Pseudo-code for filtering algorithm 1) iterate through all of the backbone labels 2) Go get the neighbors of the backbone 3) Add all of the neighbors who are too part of the backbone to the backbones to check list 4) While backbone neighbor counter is less than the threshold or until list to check is empty 5) Pop the next neighbor off the list and add it to the neighbors check list 6) Get the neighbors of this guy 7) for each of neighbors that is also on the backbone BUT HASN'T BEEN CHECKED YET append them to the list to be check and update counter 8) continue at beginning of loop -- once loop breaks 9) if the counter is below the threshold: Add all of values in the neighbros already checked list to the new_to_remove 10) Use the new_backbone_labels and new_to_remove to rewrite the labels_list """ new_backbone_labels = [bkbone for bkbone in backbone_labels if bkbone not in to_remove] new_to_remove = [] for bkbonz in new_backbone_labels: checked_backbone_neighbors = [] backbone_neighbors_to_check = [] new_backbone_neighbor_counter = 0 shared_vert_threshold = 5 if bkbonz not in backbone_neighbors_dict.keys(): neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,bkbonz,verts_to_Face,faces_raw,verts_raw) backbone_neighbors_dict[bkbonz] = dict(neighbors_list=neighbors_list,neighbors_shared_vert=neighbors_shared_vert, number_of_faces=number_of_faces) else: neighbors_list = backbone_neighbors_dict[bkbonz]["neighbors_list"] neighbors_shared_vert = backbone_neighbors_dict[bkbonz]["neighbors_shared_vert"] number_of_faces = backbone_neighbors_dict[bkbonz]["number_of_faces"] for bb in neighbors_list: if (bb in new_backbone_labels) and (bb not in checked_backbone_neighbors) and (bb not in new_to_remove) and neighbors_shared_vert[bb] > shared_vert_threshold: backbone_neighbors_to_check.append(bb) new_backbone_neighbor_counter += 1 #backbone_neighbors_to_check = [nb for nb in neighbors_list if nb in new_backbone_labels] checked_backbone_neighbors = [nb for nb in backbone_neighbors_to_check] #new_backbone_neighbor_counter = len(backbone_neighbors_to_check) #checked_backbone_neighbors = [] #4) While backbone neighbor counter is less than the threshold or until list to check is empty while new_backbone_neighbor_counter < backbone_neighbor_min and backbone_neighbors_to_check != []: #5) Pop the next neighbor off the list and add it to the neighbors check list current_backbone = backbone_neighbors_to_check.pop(0) if current_backbone not in checked_backbone_neighbors: checked_backbone_neighbors.append(current_backbone) #6) Get the neighbors of this guy if current_backbone not in backbone_neighbors_dict.keys(): neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,current_backbone,verts_to_Face,faces_raw,verts_raw) backbone_neighbors_dict[current_backbone] = dict(neighbors_list=neighbors_list,neighbors_shared_vert=neighbors_shared_vert, number_of_faces=number_of_faces) else: neighbors_list = backbone_neighbors_dict[current_backbone]["neighbors_list"] neighbors_shared_vert = backbone_neighbors_dict[current_backbone]["neighbors_shared_vert"] number_of_faces = backbone_neighbors_dict[current_backbone]["number_of_faces"] neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,current_backbone,verts_to_Face,faces_raw,verts_raw) #7) for each of neighbors that is also on the backbone BUT HASN'T BEEN CHECKED YET append them to the list to be check and update counter for bb in neighbors_list: if (bb in new_backbone_labels) and (bb not in checked_backbone_neighbors) and (bb not in new_to_remove) and neighbors_shared_vert[bb] > shared_vert_threshold: backbone_neighbors_to_check.append(bb) new_backbone_neighbor_counter += 1 #9) if the counter is below the threshold --> Add all of values in the neighbros already checked list to the new_to_remove if new_backbone_neighbor_counter < backbone_neighbor_min: for bz in checked_backbone_neighbors: if bz not in new_to_remove: new_to_remove.append(bz) #print("to remove = " + str(to_remove)) print("done Analyzing big and small segments") #go through and switch the label of hte #may not want to relabel until the end in order to preserve the labels in case label a big one wrong print("about to rewrite the labels") for i in range(0,len(labels_list)): if labels_list[i] in new_backbone_labels and labels_list[i] not in new_to_remove: labels_list[i] = "backbone" #faces_raw[i].material_index = num_colors print("DONE about to rewrite the labels") return labels_list, verts_to_Face ##Functins from the auto_spine_labeler def smooth_backbone_vp4(labels_list,sdf_final_dict,backbone_width_threshold = 0.35,max_backbone_threshold = 400,backbone_threshold=300,secondary_threshold=100,shared_vert_threshold=25,backbone_neighbor_min=10,number_Flag = False, seg_numbers=1,smooth_Flag=True): print("at beginning of smooth backbone vp4") #things that could hint to backbone #1) larger size #2) touching 2 or more larger size #have to go into object mode to do some editing currentMode = bpy.context.object.mode bpy.ops.object.mode_set(mode='OBJECT') ob = bpy.context.object ob.update_from_editmode() #print("object_name = " + bpy.context.object.name) me = ob.data #print("about to get faces_verts raw") faces_raw = me.polygons verts_raw = me.vertices #print("DONE about to get faces_verts raw") #print("don't need to generate labels_list anymore") #print("about to generate labels_list") ####!!!! This takes a good bit of time##### #labels_list = generate_labels_list(faces_raw) #print("DONE about to generate labels_list") #need to assemble a dictionary that relates vertices to faces #*****making into a list if the speed is too slow*******# #print("about to generate verts_to_Face") verts_to_Face = generate_verts_to_face_dictionary(faces_raw,verts_raw) #print("DONE about to generate verts_to_Face") #add new color and reassign all of the labels with those colors as the backbone label #create a list of all the labels and which ones are the biggest ones from collections import Counter myCounter = Counter(labels_list) spine_labels = [] backbone_labels = [] #print(" about to get counter list") #may not want to relabel until the end in order to preserve the labels in case label a big one wrong #may not want to relabel until the end in order to preserve the labels in case label a big one wrong for label,times in myCounter.items(): if(times >= max_backbone_threshold): #print(str(label) + ":" + str(times)) backbone_labels.append(label) for label in myCounter.keys(): if( sdf_final_dict[label] >= backbone_width_threshold): #print(str(label) + ":" + str(times)) if(myCounter[label] > backbone_threshold) and (label not in backbone_labels): backbone_labels.append(label) #print(" DONE about to get counter list") """for lb in sdf_final_dict: if( sdf_final_dict[lb] >= backbone_width_threshold): backbone_labels.append(lb) """ #print("backbone_labels = " + str(backbone_labels)) #print("hello") #need ot get rid of labels that don't border other backbone_labels to_remove = [] backbone_neighbors_dict = {} for i in range(0,5): print("smoothing round " + str(i+1)) printout_counter = 0 counter = 0 for bkbone in backbone_labels: if bkbone not in to_remove: if bkbone not in backbone_neighbors_dict.keys(): neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,bkbone,verts_to_Face,faces_raw,verts_raw) backbone_neighbors_dict[bkbone] = dict(neighbors_list=neighbors_list,neighbors_shared_vert=neighbors_shared_vert, number_of_faces=number_of_faces) else: neighbors_list = backbone_neighbors_dict[bkbone]["neighbors_list"] neighbors_shared_vert = backbone_neighbors_dict[bkbone]["neighbors_shared_vert"] number_of_faces = backbone_neighbors_dict[bkbone]["number_of_faces"] #if(bkbone == "170"): # print("70 nbrs = " + str(nbrs)) #counts up the number of shared vertices with backbone neighbors backbone_count_flag = False neighbor_counter = 0 total_backbone_shared_verts = 0 for n in neighbors_list: if (n in backbone_labels) and (n not in to_remove): neighbor_counter += 1 total_backbone_shared_verts = total_backbone_shared_verts + neighbors_shared_vert[n] #if meets requirement of shared verts then activates flag #not doing shared verts as a criteria if (total_backbone_shared_verts > shared_vert_threshold): backbone_count_flag = True '''#prevent against the split heads with 2 or 3 backbone_neighbor_list = neighbors_list.copy() backbone_neighbor_list.append(bkbone) other_backbone_flag = 0 appendFlag = False if(backbone_count_flag == True and neighbor_counter < 4): #check the other neighbor and see if the only other backbone is the current label, if so then just a split head other_backbone_flag = 0 for n in neighbors_list: if (n in backbone_labels) and (n not in to_remove): neighbors_list_of_n,neighbors_shared_vert_of_n,number_of_faces_of_n = find_neighbors(labels_list,n,verts_to_Face,faces_raw,verts_raw) for nb in neighbors_list_of_n: if (nb in backbone_labels) and (nb not in to_remove) and (nb not in backbone_neighbor_list): backbone_neighbor_list.append(nb) other_backbone_flag += 1 if other_backbone_flag == 0: """if printout_counter < 5: #print("For backbone = " + str( bkbone)) #print("neighbors_list = " + str(neighbors_list)) #print("backbone_neighbor_list = " + str(backbone_neighbor_list)) #print("other_backbone_flag = " + str(other_backbone_flag)) appendFlag = True #printout_counter +=1""" if (backbone_count_flag == True and neighbor_counter < 4) and (other_backbone_flag == 0): #len(split_head_backbone_list) >= len(backbone_neighbor_list): for bk in backbone_neighbor_list: to_remove.append(bk) counter += 1 #if not backbone neighbors and/or didn't have enought shared verts then not part of the backbone else: if neighbor_counter <= 0 or backbone_count_flag == False: to_remove.append(bkbone) counter += 1''' #compute the number of shared vertices and see if fits: if neighbor_counter <= 0 or backbone_count_flag == False: to_remove.append(bkbone) counter += 1 print("counter = " + str(counter)) if counter <= 3: print("counter caused the break") break #now go through and make sure no unconnected backbone segments """Pseudo-code for filtering algorithm 1) iterate through all of the backbone labels 2) Go get the neighbors of the backbone 3) Add all of the neighbors who are too part of the backbone to the backbones to check list 4) While backbone neighbor counter is less than the threshold or until list to check is empty 5) Pop the next neighbor off the list and add it to the neighbors check list 6) Get the neighbors of this guy 7) for each of neighbors that is also on the backbone BUT HASN'T BEEN CHECKED YET append them to the list to be check and update counter 8) continue at beginning of loop -- once loop breaks 9) if the counter is below the threshold: Add all of values in the neighbros already checked list to the new_to_remove 10) Use the new_backbone_labels and new_to_remove to rewrite the labels_list """ print("just broke out of the loop") new_backbone_labels = [bkbone for bkbone in backbone_labels if bkbone not in to_remove] new_to_remove = [] skip_labels = [] print("new_backbone_labels lenght = " + str(len(new_backbone_labels))) for bkbonz in new_backbone_labels: if bkbonz not in skip_labels: print("working on backbone = " + str(bkbonz)) checked_backbone_neighbors = [] backbone_neighbors_to_check = [] new_backbone_neighbor_counter = 0 shared_vert_threshold = 5 if bkbonz not in backbone_neighbors_dict.keys(): neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,bkbonz,verts_to_Face,faces_raw,verts_raw) backbone_neighbors_dict[bkbonz] = dict(neighbors_list=neighbors_list,neighbors_shared_vert=neighbors_shared_vert, number_of_faces=number_of_faces) else: neighbors_list = backbone_neighbors_dict[bkbonz]["neighbors_list"] neighbors_shared_vert = backbone_neighbors_dict[bkbonz]["neighbors_shared_vert"] number_of_faces = backbone_neighbors_dict[bkbonz]["number_of_faces"] for bb in neighbors_list: if (bb in new_backbone_labels) and (bb not in checked_backbone_neighbors) and (bb not in new_to_remove) and neighbors_shared_vert[bb] > shared_vert_threshold: backbone_neighbors_to_check.append(bb) new_backbone_neighbor_counter += 1 #backbone_neighbors_to_check = [nb for nb in neighbors_list if nb in new_backbone_labels] checked_backbone_neighbors = [nb for nb in backbone_neighbors_to_check] #new_backbone_neighbor_counter = len(backbone_neighbors_to_check) #checked_backbone_neighbors = [] #4) While backbone neighbor counter is less than the threshold or until list to check is empty while new_backbone_neighbor_counter < backbone_neighbor_min and backbone_neighbors_to_check != []: #5) Pop the next neighbor off the list and add it to the neighbors check list current_backbone = backbone_neighbors_to_check.pop(0) if current_backbone not in checked_backbone_neighbors: checked_backbone_neighbors.append(current_backbone) #6) Get the neighbors of this guy if current_backbone not in backbone_neighbors_dict.keys(): neighbors_list,neighbors_shared_vert,number_of_faces = find_neighbors(labels_list,current_backbone,verts_to_Face,faces_raw,verts_raw) backbone_neighbors_dict[current_backbone] = dict(neighbors_list=neighbors_list,neighbors_shared_vert=neighbors_shared_vert, number_of_faces=number_of_faces) else: neighbors_list = backbone_neighbors_dict[current_backbone]["neighbors_list"] neighbors_shared_vert = backbone_neighbors_dict[current_backbone]["neighbors_shared_vert"] number_of_faces = backbone_neighbors_dict[current_backbone]["number_of_faces"] #7) for each of neighbors that is also on the backbone BUT HASN'T BEEN CHECKED YET append them to the list to be check and update counter for bb in neighbors_list: if (bb in new_backbone_labels) and (bb not in checked_backbone_neighbors) and (bb not in new_to_remove) and neighbors_shared_vert[bb] > shared_vert_threshold: backbone_neighbors_to_check.append(bb) new_backbone_neighbor_counter += 1 #9) if the counter is below the threshold --> Add all of values in the neighbros already checked list to the new_to_remove if new_backbone_neighbor_counter < backbone_neighbor_min: for bz in checked_backbone_neighbors: if bz not in new_to_remove: new_to_remove.append(bz) print("removed " + str(checked_backbone_neighbors)) else: skip_labels = skip_labels + checked_backbone_neighbors #print("to remove = " + str(to_remove)) print("done Analyzing big and small segments") #go through and switch the label of hte #may not want to relabel until the end in order to preserve the labels in case label a big one wrong print("about to rewrite the labels") for i in range(0,len(labels_list)): if labels_list[i] in new_backbone_labels and labels_list[i] not in new_to_remove: labels_list[i] = "backbone" #faces_raw[i].material_index = num_colors print("DONE about to rewrite the labels") return labels_list, verts_to_Face import csv from collections import Counter import time #Unused function that was previously used to distribute the computational work #but now is already accounted for by the populate method in the computed datajoint # Create a function called "chunks" with two arguments, l and n: """def get_neurons_assignment(parts,index): #get the list of neurons from datajoint l = list(set(ta3.Compartment.Component().fetch("segment_id"))) print("len(l) = " + str(len(l))) print(l) # For item i in a range that is a length of l, n = int(len(l)/parts) if len(l)/parts > n: n = n + 1 print("n = "+str(n)) storage = [] for i in range(0, len(l), n): # Create an index range for l of n items: #print("l[i:i+n] = " + str(l[i:i+n])) storage.append( l[i:i+n] ) #print(storage) return(storage[index])""" ta3 = dj.create_virtual_module('ta3', 'microns_ta3') ta3p100 = dj.create_virtual_module('ta3p100', 'microns_ta3p100') schema = dj.schema('microns_ta3p100') @schema class ComponentLabelFinal(dj.Computed): definition = """ # creates the labels for the mesh table -> ta3p100.ComponentAutoSegmentFinal time_updated :timestamp # the time at which the component labels were updated --- n_vertices :int unsigned #number of vertices in component n_triangles :int unsigned #number of faces in component labeled_vertices :longblob #indicate which vertices are spine,spine_head,spine_neck otherwise 0 labeled_triangles :longblob #indicate which faces are spine,spine_head,spine_neck otherwise 0 n_heads :int unsigned #totals the number of heads after classification, helps for optimization used_version :tinyint #whether this component is used in the final labels or not, 0 no, 1 yes """ #key_source = ta3.ComponentAutoSegment #& 'n_triangle_indices>100' & [dict(compartment_type=comp) for comp in ['Basal', 'Apical', 'Oblique', 'Dendrite']] def make(self, key): original_start_time = time.time() start_time = time.time() #neuron_ID = 579228 #compartment_type = "Basal" #component_index = 2 #clusters = 12 #smoothness = 0.04 #Apical_Basal_Oblique_default = [12,16] #basal_big = [16,18] neuron_ID = str(key["segment_id"]) #component = (ta3.Compartment.Component & key).fetch1() component_index = key["component_index"] compartment_type = key["compartment_type"] #print("component_size = " + str(component_size)) """if (compartment_type == "Basal") & (component_size > 160000): cluster_list = basal_big else: cluster_list = Apical_Basal_Oblique_default""" #for clusters in cluster_list: print("starting on cluster took--- %s seconds ---" % (time.time() - start_time)) start_time = time.time() print(str(key["segment_id"]) + " type:" + str(key["compartment_type"]) + " index:" + str(key["component_index"]) + " cluster:" + str(key["clusters"]) + " smoothness:" + str(key["smoothness"])) for obj in bpy.data.objects: if "neuron" in obj.name: obj.select = True ob_name = load_Neuron_automatic_spine(key) object_counter = 0 for obj in bpy.data.objects: if "neuron" in obj.name: object_counter += 1 if object_counter>1: raise ValueError("THE NUMBER OF OBJECTS ARE MORE THAN 1") print("loading object and box--- %s seconds ---" % (time.time() - start_time)) start_time = time.time() #what I will need to get from datajoint acces 1) sdf_final_dict 2) labels_list, might need to make the object active sdf_final_dict, labels_list = get_cgal_data_and_label(key,ob_name) if(sdf_final_dict == [] and labels_list == []): print("NO CGAL DATA FOR " + str(neuron_ID)) # deselect all bpy.ops.object.select_all(action='DESELECT') # selection #for ob in bpy.data.objects #bpy.data.objects[ob_name].select = True for obj in bpy.data.objects: if "neuron" in obj.name: obj.select = True # remove it bpy.ops.object.delete() ##########should this be a return??######### return print("getting cgal data--- %s seconds ---" % (time.time() - start_time)) start_time = time.time() #complete_path = "/Users/brendancelii/Google Drive/Xaq Lab/Final_Blender/saved_sdf/sdf_saved_off.npz" #np.savez(complete_path,labels_list=labels_list,sdf_final_dict=sdf_final_dict) max_backbone_threshold = 200 #the absolute size if it is greater than this then labeled as a possible backbone backbone_threshold=40 #if the label meets the width requirements, these are the size requirements as well in order to be considered possible backbone secondary_threshold=20 shared_vert_threshold=20 backbone_width_threshold = 0.10 #the median sdf/width value the segment has to have in order to be considered a possible backbone #labels_list,verts_to_Face = smooth_backbone_vp3(labels_list,sdf_final_dict,backbone_width_threshold,max_backbone_threshold = max_backbone_threshold,backbone_threshold=backbone_threshold # ,secondary_threshold=secondary_threshold,shared_vert_threshold=shared_vert_threshold,number_Flag = False, seg_numbers=1,smooth_Flag=True) backbone_neighbor_min=20 labels_list,verts_to_Face = smooth_backbone_vp4(labels_list,sdf_final_dict,backbone_width_threshold,max_backbone_threshold = max_backbone_threshold,backbone_threshold=backbone_threshold ,secondary_threshold=secondary_threshold,shared_vert_threshold=shared_vert_threshold,backbone_neighbor_min=backbone_neighbor_min, number_Flag = False, seg_numbers=1,smooth_Flag=True) print("smoothing backbone--- %s seconds ---" % (time.time() - start_time)) start_time = time.time() #save off the sdf value for testing: #save off the faces_raw as an npz file #complete_path = "/Users/brendancelii/Google Drive/Xaq Lab/Final_Blender/saved_sdf/sdf_saved_off.npz" #np.savez(complete_path,labels_list=labels_list,sdf_final_dict=sdf_final_dict) object_counter = 0 for obj in bpy.data.objects: if "neuron" in obj.name: object_counter += 1 if object_counter>1: raise ValueError("THE NUMBER OF OBJECTS ARE MORE THAN 1") head_counter,neck_counter, spine_counter, stub_counter,final_verts_labels_list, final_faces_labels_list = automatic_spine_classification_vp3(labels_list,verts_to_Face,sdf_final_dict) print("classifying spine--- %s seconds ---" % (time.time() - start_time)) start_time = time.time() print("head_counter = " + str(head_counter)) print("neck_counter = " + str(neck_counter)) print("spine_counter = " + str(spine_counter)) print("stub_counter = " + str(stub_counter)) #now send out the labels to the table #now write them to the datajoint table comp_dict = dict(key, time_updated = str(datetime.datetime.now())[0:19], n_vertices = len(final_verts_labels_list), n_triangles = len(final_faces_labels_list), labeled_vertices = final_verts_labels_list, labeled_triangles = final_faces_labels_list, n_heads = head_counter, used_version = 1) self.insert1(comp_dict) print("writing label data to datajoint--- %s seconds ---" % (time.time() - start_time)) start_time = time.time() #delete the object after this #delete the object # deselect all bpy.ops.object.select_all(action='DESELECT') # selection #for ob in bpy.data.objects #bpy.data.objects[ob_name].select = True for obj in bpy.data.objects: if "neuron" in obj.name: obj.select = True # remove it bpy.ops.object.delete() print("deleting object--- %s seconds ---" % (time.time() - start_time)) start_time = time.time() # deselect all bpy.ops.object.select_all(action='DESELECT') # selection #for ob in bpy.data.objects #bpy.data.objects[ob_name].select = True object_counter = 0 for obj in bpy.data.objects: if "neuron" in obj.name: object_counter += 1 if object_counter>1: raise ValueError("THE NUMBER OF OBJECTS ARE MORE THAN 1") print("finished") print("--- %s seconds ---" % (time.time() - original_start_time)) populate_start = time.time() ComponentLabelFinal.populate(reserve_jobs=True) print("\npopulate:", time.time() - populate_start)
[ "42202912+celiibrendan@users.noreply.github.com" ]
42202912+celiibrendan@users.noreply.github.com
544e3c52beebc09d4aa6f0d60a20bde9143251e9
365af79b0eb6f45fcdd92f7164f0291ffe6b7f4a
/3.py
25025be6358e17fe2fa893abe8c64351af78436f
[]
no_license
darthkenobi5319/Python-Lab-8
7895b06165dfb52cb0691290fdb3f4cf19115139
0f2e1d87c5b453b7d5a7f6cc669e789fd65b0810
refs/heads/master
2020-03-28T12:27:18.236228
2018-09-11T10:22:31
2018-09-11T10:22:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
969
py
# -*- coding: utf-8 -*- """ Created on Thu Oct 5 11:03:26 2017 @author: ZHENGHAN ZHANG """ #first load the file #f=open('C:\Users\ZHENGHAN ZHANG\Desktop\Python\2017.10.5\board.txt','r') f=open('board.txt','r') ls1=[] while True: c=f.readline().strip() if c == '': break ls2 = list(c) ls1.append(ls2) f.close() #put the matrix on a board for i in range(len(ls1)-1): m='' for j in ls1[i]: m+=j m+='|' print(m[:-1]) l='-+'*len(ls1[i]) print(l[:-1]) m='' for j in ls1[-1]: m+=j m+='|' print(m[:-1]) #user interaction while True: x=input('Please enter two coordinates (row,col): (enter "stop" to end) ').split(',') if x[0]=='stop': break y=input('Please enter a letter: ') row=int(x[0]) column=int(x[1]) ls1[row][column]=y m='' for i in range(len(ls1)): for j in range(len(ls1[i])): m+=ls1[i][j] m+='\n' f=open('board.txt','w') f.write(m) f.close()
[ "43033983+darthkenobi5319@users.noreply.github.com" ]
43033983+darthkenobi5319@users.noreply.github.com
8325e8bfb6c511e224f3aac8f88afc68acd879ea
46e35bb8e400c09381b467ff0ae3e7100fa9c737
/venv/Scripts/pip-script.py
8683d9c7918f6879cc0769b490f13fecd9434030
[]
no_license
goastsj/interface_autoframe
54e8c9fce95ef33ec3d10296084cf24c6be2b691
514e79fd3a489e48163881c512c089971a6c4e4c
refs/heads/master
2020-04-26T12:44:22.408801
2019-03-10T14:04:03
2019-03-10T14:04:03
173,559,231
0
0
null
null
null
null
GB18030
Python
false
false
464
py
#!D:\学习资料\接口自动化\接口自动化-视频\interfaceauto\interface_autoframe\venv\Scripts\python.exe -x # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
[ "1037905204@qq.com" ]
1037905204@qq.com
85723fbe5a2fd93ee074528b9234f24cb86ed9e2
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/6/n7e.py
33f3429b1e2c4c1ad76ee80ffc4f1c7f76064da3
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'n7E': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
[ "juliettaylorswift@gmail.com" ]
juliettaylorswift@gmail.com
6819e9f732af27b2ad4095c2cf77489ae7040c70
d1a32ab42cf1db8c45244cc9fa087c29163c360a
/Online Module/recommender/accounts/urls.py
17718e6a964dca952ddafa7e85c8e3da021f0b3e
[]
no_license
AnjithPaul/Online-Course-Recommendation-System
0a834522c6570996618735027e575a828feff5c2
e160167e99286e8d705da518618cec750f9405ad
refs/heads/main
2023-06-07T22:21:51.940781
2021-06-16T07:37:08
2021-06-16T07:37:08
353,596,738
0
3
null
null
null
null
UTF-8
Python
false
false
886
py
"""recommender URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('register', views.register, name="register"), path('login', views.login, name="login"), path('logout', views.logout, name="logout"), ]
[ "65152866+AnjithPaul@users.noreply.github.com" ]
65152866+AnjithPaul@users.noreply.github.com
c5a4840e2abacff143dd7d855e796d90b83c83fe
d9eef8dd3489682c8db41f2311e3058d1f369780
/.history/abel-network-files/metis_transf_20180709124830.py
42a9fae8f327a0df02f62926b8ffe1d5dacf3f19
[]
no_license
McKenzie-Lamb/Gerrymandering
93fe4a49fe39a0b307ed341e46ba8620ea1225be
b7a7c4129d6b0fcd760ba8952de51eafa701eac3
refs/heads/master
2021-01-25T06:06:43.824339
2018-10-16T14:27:01
2018-10-16T14:27:01
93,526,515
0
0
null
2018-07-12T19:07:35
2017-06-06T14:17:47
Python
UTF-8
Python
false
false
2,331
py
# Author: Abel Gonzalez # Date: 06/26/18 # # Description: # This program uses the .shp file to create a network graph where each node # represents a census tract and the edge represents adjacency between each # tract, usign graph-tool instead of networkx import graph_tool.all as gt import metis from pathlib import Path # Paths main_folder = Path("abel-network-files/") data_folder = Path("abel-network-files/data/") images_folder = Path("abel-network-files/images/") # Loading the previous created Graph and creating the prop maps graph = gt.load_graph(str(data_folder / "tmp_graph100.gt")) name = graph.new_vertex_property('string') color = graph.new_vertex_property('string') adjlist_pop = [] nodew_pop = [] for i in graph.vertices(): neighbors = tuple([j for j in i.all_neighbors()]) adjlist_pop.append(neighbors) #print(graph.vp.data[i]['PERSONS']) weights = (graph.vp.data[i]['PERSONS'], graph.vp.data[i][int('CONREP14']/graph.vp.data[i]['CONDEM14'])) nodew_pop.append(weights) metis_graph = metis.adjlist_to_metis(adjlist_pop, nodew=nodew_pop) objval, parts = metis.part_graph(metis_graph, nparts=4) for i in range(len(parts)): name[graph.vertex(i)] = parts[i] if graph.vp.data[graph.vertex(i)]['CONREP14'] > graph.vp.data[graph.vertex(i)]['CONDEM14']: color[graph.vertex(i)] = 'red' else: color[graph.vertex(i)] = 'blue' gt.graph_draw(graph, pos=graph.vp.pos, vertex_text=name, output=str(main_folder / 'tmp_metis_init.png')) adjlist = [] nodew = [] for i in graph.vertices(): neighbors = tuple([j for j in i.all_neighbors()]) adjlist.append(neighbors) #print(graph.vp.data[i]['PERSONS']) weights = (graph.vp.data[i]['PERSONS'], int(graph.vp.data[i]['CONREP14']/graph.vp.data[i]['CONDEM14'])) nodew.append(weights) metis_graph = metis.adjlist_to_metis(adjlist, nodew=nodew) objval, parts = metis.part_graph(metis_graph, nparts=4, tpwgts=[(0.25,0.50),(0.25,0.10),(0.25, 0.30),(0.25, 0.10)]) for i in range(len(parts)): name[graph.vertex(i)] = parts[i] if graph.vp.data[graph.vertex(i)]['CONREP14'] > graph.vp.data[graph.vertex(i)]['CONDEM14']: color[graph.vertex(i)] = 'red' else: color[graph.vertex(i)] = 'blue' gt.graph_draw(graph, pos=graph.vp.pos, vertex_text=name, output=str(main_folder / 'tmp_metis_fin.png'))
[ "gonzaleza@ripon.edu" ]
gonzaleza@ripon.edu
66c01cbc8829d45abdad4bbf37d41345a0a5bee9
dc2e5e4b63b632b69f154f7ad30d9c8aed3692e5
/world/api.py
c73410e97c95105da8f3e35f5563de8760be943c
[]
no_license
jayArnel/geodjango
fad21a66afcf6ada4ca1366205ccb10eed282a87
3fb8f6c431e4ae8894f4bd885d426ef0b342b3af
refs/heads/master
2021-01-10T10:37:23.676218
2016-03-30T14:36:07
2016-03-30T14:36:07
53,738,339
0
0
null
2016-03-13T16:44:46
2016-03-12T15:24:09
Python
UTF-8
Python
false
false
390
py
from tastypie.resources import ModelResource from models import WorldBorder from tastypie import fields class WorldBorderResource(ModelResource): geojson = fields.CharField(attribute='geojson', readonly=True) class Meta: queryset = WorldBorder.objects.all() resource_name = 'worldborder' def dehydrate_geom(self, bundle): return bundle.obj.geom.json
[ "jay.arnel@gmail.com" ]
jay.arnel@gmail.com
b2369b62199eee97be83fc60d97c7e11261bf934
0d8f06405e28f954a240132ad0f58ed79396f32a
/simpleProject/articles/urls.py
97872cf8409bd344284e759c3fabc5371c8ddc3d
[]
no_license
szalik-m/djangoTutorial
f565e975a0346484a1334c4806830b818dd75820
f7fe0acc71d40e4482c18b91291dc48305e73a19
refs/heads/master
2022-10-04T15:15:36.644769
2020-06-05T11:27:50
2020-06-05T11:27:50
267,392,190
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
from django.urls import path from . import views urlpatterns = [ path('', views.article_list), ]
[ "szalik.mat@gmail.com" ]
szalik.mat@gmail.com
ca60dfeb903c62d9617eb6584ac2ae23d593ea90
24be2965c613549f62407ecc4272fb6e96185497
/raw/project1-nn/nn/__init__.py
b0eedbf3ad78f1e5011dd80ecd44e1570202348d
[]
no_license
falgunee/AI101-DeepLearning
8905551a146ec6502abf21c4f67dbaef7113673e
e478dcd2a8532a46eb0a2f98cd399ce1fc1d5383
refs/heads/master
2020-04-28T00:59:34.768625
2019-03-07T09:21:37
2019-03-07T09:21:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
84
py
# -*- coding: utf-8 -*- """ Created on Fri Dec 7 16:26:25 2018 @author: jaley """
[ "jaley.dholakiya@gmail.com" ]
jaley.dholakiya@gmail.com
1de0e4cd109d4b91f7b44a82e52d59983b730d6c
e3414d2d22912bba8dc0d91140e3c5ca7ede4c99
/pages/base_page.py
53f1cba9ef68cdbf77068e18526c882ea717196e
[]
no_license
Chovhan/Slenium-QAA-final-task
47cb8d3f87d25d17e9b4fdfd765db0c8535ebede
70374074af5f9d1ae8b76e00d846943581e50c64
refs/heads/main
2023-04-12T22:45:21.012452
2021-04-21T21:09:04
2021-04-21T21:09:04
360,078,200
0
0
null
null
null
null
UTF-8
Python
false
false
2,347
py
from selenium.common.exceptions import NoSuchElementException, TimeoutException from selenium.common.exceptions import NoAlertPresentException import math from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from .locators import BasePageLocators class BasePage(): def __init__(self, browser, url, timeout=10): self.browser = browser self.url = url self.browser.implicitly_wait(timeout) def open(self): self.browser.get(self.url) def is_element_present(self, how, what): try: self.browser.find_element(how, what) except NoSuchElementException: return False return True def is_not_element_present(self, how, what, timeout=4): try: WebDriverWait(self.browser, timeout).until(EC.presence_of_element_located((how, what))) except TimeoutException: return True return False def is_disappeared(self, how, what, timeout=4): try: WebDriverWait(self.browser, timeout, 1, TimeoutException). \ until_not(EC.presence_of_element_located((how, what))) except TimeoutException: return False return True def solve_quiz_and_get_code(self): alert = self.browser.switch_to.alert x = alert.text.split(" ")[2] answer = str(math.log(abs((12 * math.sin(float(x)))))) alert.send_keys(answer) alert.accept() try: alert = self.browser.switch_to.alert alert_text = alert.text print(f"Your code: {alert_text}") alert.accept() except NoAlertPresentException: print("No second alert presented") def go_to_login_page(self): link = self.browser.find_element(*BasePageLocators.LOGIN_LINK) link.click() def should_be_login_link(self): assert self.is_element_present(*BasePageLocators.LOGIN_LINK), "Login link is not presented" def go_to_basket_page(self): basket_link = self.browser.find_element(*BasePageLocators.BASKET_LINK) basket_link.click() def should_be_authorized_user(self): assert self.is_element_present(*BasePageLocators.USER_ICON), "User icon is not presented, probably unauthorised user"
[ "dema200043@gmail.com" ]
dema200043@gmail.com
de5d7a80fe1c6c4e82c57b745a268c0ed520bed0
da38ce93c6a807a3877fb40d7cb890a1bdd27015
/convert/views.py
10f0e09a0b45956bdea40a2df8ee433cb42ffcdd
[]
no_license
kanandachristian/final_Project-
902fc4afa03943624cf062c7fb38b46d0aa36b0e
17e9b5ddfa63f0aab09e804e0ae6df10b4aa29f5
refs/heads/master
2023-02-10T22:35:03.074722
2021-01-10T17:38:27
2021-01-10T17:38:27
323,913,889
1
0
null
2021-01-10T17:38:28
2020-12-23T13:47:42
JavaScript
UTF-8
Python
false
false
6,037
py
from django.shortcuts import render, redirect, get_object_or_404 from django.http import HttpResponse, JsonResponse from django.core.paginator import Paginator, EmptyPage from django.contrib import messages from rental.models import* from convert.models import Rate from django.db.models import Q # Create your views here. def events(request, category_slug=None): category = None categories = Category.objects.all() properties = Propertie.objects.filter(available=True, vaccant=True) if category_slug: category = get_object_or_404( Category, slug=category_slug) properties = Propertie.objects.filter( category=category, available=True, vaccant=True) currencies = ['RWF', 'USD', 'FC'] currencie = ['USD', 'FC', 'RWF'] # return render(request,'converter.html',{'currencies':currencies,'currencie':currencie}) return render(request, 'converter.html', {'category': category, 'categories': categories, 'properties': properties}) def actionconv(request, category_slug=None): category = None categories = Category.objects.all() properties = Propertie.objects.filter(available=True, vaccant=True) if category_slug: category = get_object_or_404( Category, slug=category_slug) properties = Propertie.objects.filter( category=category, available=True, vaccant=True) if request.method == 'GET': amount = float(request.GET['montant']) currence1 = int(request.GET['selection1']) currence2 = int(request.GET['selection2']) rwf = 'RWF' usd = 'USD' fc = 'FC' tauxA = 980 tauxV = 2000 value = 0.0 if currence1 != currence2: try: if currence1 == 1 and currence2 == 2: value = amount * tauxA x = 1 * tauxA y = 1 / tauxA tot = {"am": amount, "tauxA": tauxA, "tauxV": tauxV, "value": value, "usd": usd, "rwf": rwf, "fc": fc, "x": x, "y": y} return render(request, 'converter2.html', {'total': tot, 'category': category, 'categories': categories, 'properties': properties}) if currence1 == 2 and currence2 == 1: value = amount / tauxA x = 1 * tauxA y = 1 / tauxA tot = {"am": amount, "tauxA": tauxA, "tauxV": tauxV, "value": value, "usd": usd, "rwf": rwf, "fc": fc, "x": x, "y": y} return render(request, 'converter3.html', {'total': tot, 'category': category, 'categories': categories, 'properties': properties}) ############################# USD RWF #################################################### if currence1 == 1 and currence2 == 3: value = amount * tauxV x = 1 * tauxV y = 1 / tauxV tot = {"am": amount, "tauxA": tauxA, "tauxV": tauxV, "value": value, "usd": usd, "rwf": rwf, "fc": fc, "x": x, "y": y} return render(request, 'converter4.html', {'total': tot, 'category': category, 'categories': categories, 'properties': properties}) if currence1 == 3 and currence2 == 1: value = amount / tauxV x = 1 * tauxV y = 1 / tauxV tot = {"am": amount, "tauxA": tauxA, "tauxV": tauxV, "value": value, "usd": usd, "rwf": rwf, "fc": fc, "x": x, "y": y} return render(request, 'converter5.html', {'total': tot, 'category': category, 'categories': categories, 'properties': properties}) ############################ USD FC #################################################### if currence1 == 2 and currence2 == 3: value = amount * 2 x = 1 * 2 y = 1 / 2 tot = {"am": amount, "tauxA": tauxA, "tauxV": tauxV, "value": value, "usd": usd, "rwf": rwf, "fc": fc, "x": x, "y": y} return render(request, 'converter6.html', {'total': tot, 'category': category, 'categories': categories, 'properties': properties}) if currence1 == 3 and currence2 == 2: value = amount / 2 x = 1 * 2 y = 1 / 2 tot = {"am": amount, "tauxA": tauxA, "tauxV": tauxV, "value": value, "usd": usd, "rwf": rwf, "fc": fc, "x": x, "y": y} return render(request, 'converter7.html', {'total': tot, 'category': category, 'categories': categories, 'properties': properties}) else: return redirect('conversion:Error') ############################ RWF FC #################################################### except TypeError: return HttpResponse('Type Value Error') else: return redirect('conversion:Error') else: return render(request, 'converter1.html', {'total': tot, 'category': category, 'categories': categories, 'properties': properties}) # if currence0 and currence1: # t = 992 # amountConverted = am * t # amof1D = 1 # amof1R = 1*992 # amofR2 = 1 # amofD2 = 1/992 # {"USD":'USD'} # {"RWF":'RWF'} # # tot={'amountConverted': amountConverted ,'amof1D':amof1D,'amof1R': amof1R, # # 'amofR2':amofR2,'amofD2':amofD2,'cur1':cur1,'cur2':cur2,'am':am} # tot={'amount':am} # # return render(request,'converter2.html',{'tot':tot}) # else: # return redirect('conversion:conv2') # # else: # return render(request,"converter.html")
[ "kanandachristian@gmail.com" ]
kanandachristian@gmail.com
997757f5a351977385d38e25a9b8faa727157099
b997f959941208dc6a54e311527abbbd40e45517
/week3/91_numDecodings.py
ac68f5c33cfd53a53a467829d4123e754bc0bf79
[]
no_license
Richard9784/geekbang_homework
dc7b2a2c481e60c231806f1ddf17ef6af112ab57
79d60e100bf5ee26d750f6d93d83fffb77ef60b9
refs/heads/main
2023-04-05T05:23:04.139410
2021-04-16T12:18:43
2021-04-16T12:18:43
347,631,941
0
0
null
null
null
null
UTF-8
Python
false
false
616
py
class Solution: def numDecodings(self, s: str) -> int: if s[0] == '0': return 0 n = len(s) dp = [1] * (n+1) for i in range(2, n+1): if s[i-1] == '0' and s[i-2] not in '12': return 0 if s[i-2:i] in ['10', '20']: dp[i] = dp[i-2] elif '10' < s[i-2:i] <= '26': dp[i] = dp[i-1] + dp[i-2] else: dp[i] = dp[i-1] return dp[n] if __name__ == "__main__": test = Solution() s = "12" print(test.numDecodings(s))
[ "jianxiaochen84@163.com" ]
jianxiaochen84@163.com
3fbbc2905cbd2486769a535857eb8440454dffa6
36567aa5e17c697a4b9b27977953a21638d25e53
/7/02-flask-intro/cheng_leon/app.py
050b6fc08ca0c156d7898b28889ab9d05b991e80
[]
no_license
stuycs-softdev/submissions
83f609fb5dc796a79c5c4dc956e2504f040a0f17
2011a519f710060ab30e5d63fdfde0ee84feda44
refs/heads/master
2021-01-21T22:26:00.587669
2016-02-03T17:07:20
2016-02-03T17:07:20
42,660,106
4
4
null
null
null
null
UTF-8
Python
false
false
2,770
py
from flask import Flask, render_template, request, redirect, url_for, session app = Flask(__name__) @app.route("/home") def home(): return render_template("home.html") @app.route("/p1") def p1(): return render_template("p1.html") @app.route("/p2") def p2(): return render_template("p2.html") @app.route("/hidden") def hidden(): import random n1 = random.randrange(1,100) n2 = random.randrange(1,100) ret = "<h1>Awesome! You are the %dth visitor!</h1>" % n1 ret += "Just kidding...you are really the %dth visitor" % n2 return ret @app.route("/login", methods=["GET", "POST"]) def login(): if request.method=="GET": return render_template("login.html") @app.route("/login2",methods=["GET","POST"]) def login2(): if request.method == "GET": return render_template("login2.html") else: name = request.form['name'] email = request.form['email'] button = request.form["button"] print request.__doc__ print request.args print request.__dict__ print request.__dir__ print request.args.get("email") #works with GET print request.form["email"] #works with POST s = "name: " + request.form["name"] s += "<hr>" s += "email: " + request.form["email"] return s; @app.route("/profile/<name>/<email>") def profile(name="", email=""): # dict = {"name": name, "email": email} dict = {} dict["name"]=name dict["email"]=email return render_template("profile.html", d = dict) @app.route("/inc") def inc(): if "n" not in session: session["n"]=0 session["n"] = session["n"]+1 return render_template("counter.html", n = session["n"]) @app.route("/") @app.route("/start") def start(): return render_template("start.html") @app.route("/login3", methods=["GET","POST"]) def login3(): if request.method == "GET": return render_template("login3.html") else: uname = request.form["username"] pword = request.form["password"] if uname == "Leon" and pword == "pass": # return "You have logged in!" # return redirect(url_for("user")) return redirect("/userpage") else: return "You have entered an incorrect username or password <br> <br> <a href> Click Here to go back to login page </a>" @app.route("/userpage") def userpage(): #TODO: add a way to log out return render_template("userpage.html") @app.route("/reset") def reset(): return redirect(url_for("start")) if __name__ == "__main__": app.debug=True app.secret_key = "Don't store this on github" #used for cookies, session app.run(host='0.0.0.0',port=8000)
[ "57leonardo@gmail.com" ]
57leonardo@gmail.com
cde74c8664798c8237fa5329c575a705974c6f41
34c5a03855ab0aca39acea941be520157f7d0b74
/lib/ansible/modules/cloud/alicloud/ali_slb_vsg_info.py
72e35f09e490e814c2cd95556da2fa6bd18f6359
[ "Apache-2.0" ]
permissive
lixue323/ansible-provider
1260d1bc17a2fa7bf4c0f387a33dd942059850ed
aae2658532afcbcdf471609fae0e2108fb57af3b
refs/heads/master
2020-08-11T21:44:37.685788
2019-12-13T03:11:23
2019-12-13T04:00:45
214,633,323
0
1
Apache-2.0
2019-10-12T11:12:07
2019-10-12T11:12:07
null
UTF-8
Python
false
false
6,239
py
#!/usr/bin/python # Copyright (c) 2017-present Alibaba Group Holding Limited. He Guimin <heguimin36@163.com.com> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see http://www.gnu.org/licenses/. __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: ali_slb_vsg_info version_added: "2.8" short_description: Gather facts on virtual server group of Alibaba Cloud SLB. description: - This module fetches virtual server groups data from the Open API in Alibaba Cloud. options: load_balancer_id: description: - ID of server load balancer. required: true aliases: ["lb_id"] vserver_group_ids: description: - A list of SLB vserver group ids. required: false aliases: ["group_ids", "ids"] name_prefix: description: - Use a vritual server group name prefix to filter vserver groups. author: - "He Guimin (@xiaozhu36)" requirements: - "python >= 2.6" - "footmark >= 1.9.0" extends_documentation_fragment: - alicloud ''' EXAMPLES = ''' # Note: These examples do not set authentication details, see the Alibaba Cloud Guide for details. - name: Retrieving vsgs using slb id ali_slb_vsg_info: lb_id: '{{item}}' with_items: '{{slbs.ids}}' - name: Filter vsg using name_regex ali_slb_vsg_info: name_prefix: 'ansible-foo' lb_id: 'lb-cn3cn34' ''' RETURN = ''' ids: description: List ids of being fetched virtual server group. returned: when success type: list sample: ["rsp-2zehblhcv", "rsp-f22c4lhcv"] names: description: List name of being fetched virtual server group. returned: when success type: list sample: ["ansible-1", "ansible-2"] vserver_groups: description: - info about the virtual server group that was created or deleted. returned: on present type: complex contains: address: description: The IP address of the loal balancer returned: always type: string sample: "47.94.26.126" backend_servers: description: The load balancer's backend servers returned: always type: complex contains: port: description: The backend server port returned: always type: int sample: 22 server_id: description: The backend server id returned: always type: string sample: "i-vqunci342" type: description: The backend server type, ecs or eni returned: always type: string sample: "ecs" weight: description: The backend server weight returned: always type: int sample: 100 id: description: The ID of the virtual server group was created. Same as vserver_group_id. returned: always type: string sample: "rsp-2zehblhcv" vserver_group_id: description: The ID of the virtual server group was created. returned: always type: string sample: "rsp-2zehblhcv" vserver_group_name: description: The name of the virtual server group was created. returned: always type: string sample: "ansible-ali_slb_vsg" name: description: The name of the virtual server group was created. returned: always type: string sample: "ansible-ali_slb_vsg" tags: description: The load balancer tags returned: always type: complex sample: {} ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.alicloud_ecs import ecs_argument_spec, slb_connect HAS_FOOTMARK = False try: from footmark.exception import SLBResponseError HAS_FOOTMARK = True except ImportError: HAS_FOOTMARK = False def main(): argument_spec = ecs_argument_spec() argument_spec.update(dict( load_balancer_id=dict(type='str', aliases=['lb_id'], required=True), vserver_group_ids=dict(type='list', aliases=['group_ids', 'ids']), name_prefix=dict(type='str') )) module = AnsibleModule(argument_spec=argument_spec) if HAS_FOOTMARK is False: module.fail_json(msg="Package 'footmark' required for this module.") vsg_ids = module.params['vserver_group_ids'] name_prefix = module.params['name_prefix'] ids = [] vsgs = [] names = [] try: slb = slb_connect(module) groups = slb.describe_vserver_groups(**{'load_balancer_id': module.params['load_balancer_id']}) if groups: for group in groups: if vsg_ids and group.id not in vsg_ids: continue if name_prefix and not str(group.name).startswith(name_prefix): continue vsgs.append(group.read()) ids.append(group.id) names.append(group.name) module.exit_json(changed=False, vserver_groups=vsgs, ids=ids, names=names) except Exception as e: module.fail_json(msg=str("Unable to describe slb vserver groups, error:{0}".format(e))) if __name__ == '__main__': main()
[ "guimin.hgm@alibaba-inc.com" ]
guimin.hgm@alibaba-inc.com
4067eaa4a5851aa47554afb318aa9f0825522d89
c9490d7bb9c3add1a5e71b06c9180260ffc1fff5
/web_dynamic/2-hbnb.py
2eadee48a25ba93f32aa643310baf9dfb56b7b2c
[ "MIT" ]
permissive
PierreBeaujuge/AirBnB_clone_v4
54a255023587e6e291f41410f124da8089f2a5b7
f93bb1f22660f4497fb942abe120a5e69815affc
refs/heads/master
2021-01-04T15:00:01.541582
2020-10-08T09:04:29
2020-10-08T09:04:29
240,601,631
0
1
MIT
2020-02-18T02:25:15
2020-02-14T21:28:36
HTML
UTF-8
Python
false
false
1,351
py
#!/usr/bin/python3 """ Flask App that integrates with AirBnB static HTML Template """ from flask import Flask, render_template, url_for from models import storage import uuid # flask setup app = Flask(__name__) app.url_map.strict_slashes = False port = 5000 host = '0.0.0.0' # begin flask page rendering @app.teardown_appcontext def teardown_db(exception): """ after each request, this method calls .close() (i.e. .remove()) on the current SQLAlchemy Session """ storage.close() @app.route('/2-hbnb/') def hbnb_filters(the_id=None): """ handles request to custom template with states, cities & amentities """ state_objs = storage.all('State').values() states = dict([state.name, state] for state in state_objs) amens = storage.all('Amenity').values() places = storage.all('Place').values() users = dict([user.id, "{} {}".format(user.first_name, user.last_name)] for user in storage.all('User').values()) cache_id = uuid.uuid4() return render_template('2-hbnb.html', states=states, amens=amens, places=places, users=users, cache_id=cache_id) if __name__ == "__main__": """ MAIN Flask App""" app.run(host=host, port=port)
[ "pierre.beaujuge@gmail.com" ]
pierre.beaujuge@gmail.com
31db0a2b0eec44a444ec11cbde5ae8a6dc007f0a
60a352cddeab022d643b61b8e8965c296cc815cc
/src/main.py
435097cb3b84386bcddbfb042cfdf0614e95089c
[]
no_license
tessied/blackjack
f24b0433614528696b61c5f00c81f6186bf0e1c5
b588c86423b0646fac0662872a9cd46c47d72db3
refs/heads/main
2023-07-12T11:23:09.425372
2021-08-23T02:07:09
2021-08-23T02:07:09
398,940,068
0
0
null
null
null
null
UTF-8
Python
false
false
3,689
py
#This is a simplified version of the Blackjack game. #Inspired by the Udemy Course 100 Days of Code import random logo = """ .------. _ _ _ _ _ |A_ _ |. | | | | | | (_) | | |( \/ ).-----. | |__ | | __ _ ___| | ___ __ _ ___| | __ | \ /|K /\ | | '_ \| |/ _` |/ __| |/ / |/ _` |/ __| |/ / | \/ | / \ | | |_) | | (_| | (__| <| | (_| | (__| < `-----| \ / | |_.__/|_|\__,_|\___|_|\_\ |\__,_|\___|_|\_\\ | \/ K| _/ | `------' |__/ """ #Returns a random card from the deck def deal_card(): cards = [11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10] return random.choice(cards) #Takes a list of cards as input and returns the score def calculate_score(card_list): score = sum(card_list) #Checks for a blackjack - returns 0 instead of the actual score if score == 21 and len(card_list) == 2: return 0 #Checks for an ace - if the score is over 21, replace it with a 1 if 11 in card_list and score > 21: card_list.remove(11) card_list.append(1) return sum(card_list) #Compares the user score to the computer score #Takes in the user score and computer score #Returns the result of the game def compare(user, computer): if user == computer: return "Draw!" elif computer == 0: return "Lose, opponent has blackjack!" elif user == 0: return "You win with a blackjack!" elif user > 21: return "You went over. You lose!" elif computer > 21: return "Computer went over. You win!" elif user > computer: return "You win!" else: return "You lose!" #Plays a single game def play_game(): print(logo) computer_cards = [] user_cards = [] end_of_game = False #Deal the user and computer two cards at the beginning of each game for _ in range(2): user_cards.append(deal_card()) computer_cards.append(deal_card()) #Repeatedly calculates the score until the user has finished while not end_of_game: computer_score = calculate_score(computer_cards) user_score = calculate_score(user_cards) print(f"\tYour cards: {user_cards}, current score: {user_score}") print(f"\tcomputer's first card: {computer_cards[0]}") #If the computer or the user has a blackjack or if the user's score is over 21, then the game ends already if computer_score == 0 or user_score == 0 or user_score > 21: end_of_game = True #If the game is not over, ask the user if they want another card else: another = input("Type 'y' to get another card, type 'n' to pass: ") if another == "y": user_cards.append(deal_card()) else: end_of_game = True #Repeatedly deals card to computer and calculates score until it reaches the minumum score of 17 while computer_score != 0 and computer_score < 17: computer_cards.append(deal_card()) computer_score = calculate_score(computer_cards) print(f"\tYour final hand: {user_cards}, final score: {user_score}") print(f"\tComputer's final hand: {computer_cards}, final score: {computer_score}") print("-------------------------------------------------------------") print(compare(user_score, computer_score)) print("-------------------------------------------------------------") #Asks if the user wants to play again while input("Do you want to play a game of Blackjack? Type 'y' or 'n': ") == "y": play_game()
[ "tessiedong@tessies-mbp.myfiosgateway.com" ]
tessiedong@tessies-mbp.myfiosgateway.com
b8d8a4bc6f9d4d07e8b654e61ebe35cb2e5b3c8f
d0de9a88220c85bbb0f8678630f3a35dd6718466
/posts/migrations/0007_post_board.py
c24b90fa51e784e2ff21eea4fb9b5421c2f96193
[]
no_license
devrockstar928/django-pris
f690e545c56238b4c6f88586737aae8984e3327d
5b23a5cae445316245adecd35c6b3d18bd599f6a
refs/heads/master
2020-03-17T13:00:39.348414
2018-07-13T05:03:22
2018-07-13T05:03:22
133,613,458
1
0
null
null
null
null
UTF-8
Python
false
false
528
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('boards', '0002_auto_20150323_0436'), ('posts', '0006_postlike'), ] operations = [ migrations.AddField( model_name='post', name='board', field=models.ManyToManyField(related_name=b'post_board', null=True, to='boards.Board', blank=True), preserve_default=True, ), ]
[ "devrockstar928@gmail.com" ]
devrockstar928@gmail.com
4c20e6b6769d1680490e49efd35daee18df732f1
010279e2ba272d09e9d2c4e903722e5faba2cf7a
/contrib/python/plotly/py2/plotly/graph_objs/sankey/__init__.py
951083a2bed5804da50a572a9104aeb1dea14990
[ "MIT", "Apache-2.0" ]
permissive
catboost/catboost
854c1a1f439a96f1ae6b48e16644be20aa04dba2
f5042e35b945aded77b23470ead62d7eacefde92
refs/heads/master
2023-09-01T12:14:14.174108
2023-09-01T10:01:01
2023-09-01T10:22:12
97,556,265
8,012
1,425
Apache-2.0
2023-09-11T03:32:32
2017-07-18T05:29:04
Python
UTF-8
Python
false
false
95,548
py
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Textfont(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "sankey" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Textfont object Sets the font for node labels Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sankey.Textfont` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Textfont """ super(Textfont, self).__init__("textfont") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.sankey.Textfont constructor must be a dict or an instance of :class:`plotly.graph_objs.sankey.Textfont`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.sankey import textfont as v_textfont # Initialize validators # --------------------- self._validators["color"] = v_textfont.ColorValidator() self._validators["family"] = v_textfont.FamilyValidator() self._validators["size"] = v_textfont.SizeValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) self["color"] = color if color is not None else _v _v = arg.pop("family", None) self["family"] = family if family is not None else _v _v = arg.pop("size", None) self["size"] = size if size is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Stream(_BaseTraceHierarchyType): # maxpoints # --------- @property def maxpoints(self): """ Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float """ return self["maxpoints"] @maxpoints.setter def maxpoints(self, val): self["maxpoints"] = val # token # ----- @property def token(self): """ The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["token"] @token.setter def token(self, val): self["token"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "sankey" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. """ def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): """ Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sankey.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. Returns ------- Stream """ super(Stream, self).__init__("stream") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.sankey.Stream constructor must be a dict or an instance of :class:`plotly.graph_objs.sankey.Stream`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.sankey import stream as v_stream # Initialize validators # --------------------- self._validators["maxpoints"] = v_stream.MaxpointsValidator() self._validators["token"] = v_stream.TokenValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("maxpoints", None) self["maxpoints"] = maxpoints if maxpoints is not None else _v _v = arg.pop("token", None) self["token"] = token if token is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Node(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ Sets the `node` color. It can be a single value, or an array for specifying color for each `node`. If `node.color` is omitted, then the default `Plotly` color palette will be cycled through to have a variety of colors. These defaults are not fully opaque, to allow some visibility of what is beneath the node. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on Chart Studio Cloud for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val # customdata # ---------- @property def customdata(self): """ Assigns extra data to each node. The 'customdata' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["customdata"] @customdata.setter def customdata(self, val): self["customdata"] = val # customdatasrc # ------------- @property def customdatasrc(self): """ Sets the source reference on Chart Studio Cloud for customdata . The 'customdatasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["customdatasrc"] @customdatasrc.setter def customdatasrc(self, val): self["customdatasrc"] = val # groups # ------ @property def groups(self): """ Groups of nodes. Each group is defined by an array with the indices of the nodes it contains. Multiple groups can be specified. The 'groups' property is an info array that may be specified as: * a 2D list where: The 'groups[i][j]' property is a number and may be specified as: - An int or float Returns ------- list """ return self["groups"] @groups.setter def groups(self, val): self["groups"] = val # hoverinfo # --------- @property def hoverinfo(self): """ Determines which trace information appear when hovering nodes. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. The 'hoverinfo' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'none', 'skip'] Returns ------- Any """ return self["hoverinfo"] @hoverinfo.setter def hoverinfo(self, val): self["hoverinfo"] = val # hoverlabel # ---------- @property def hoverlabel(self): """ The 'hoverlabel' property is an instance of Hoverlabel that may be specified as: - An instance of :class:`plotly.graph_objs.sankey.node.Hoverlabel` - A dict of string/value properties that will be passed to the Hoverlabel constructor Supported dict properties: align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . Returns ------- plotly.graph_objs.sankey.node.Hoverlabel """ return self["hoverlabel"] @hoverlabel.setter def hoverlabel(self, val): self["hoverlabel"] = val # hovertemplate # ------------- @property def hovertemplate(self): """ Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time- format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per- point (the ones that are `arrayOk: true`) are available. variables `value` and `label`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. The 'hovertemplate' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["hovertemplate"] @hovertemplate.setter def hovertemplate(self, val): self["hovertemplate"] = val # hovertemplatesrc # ---------------- @property def hovertemplatesrc(self): """ Sets the source reference on Chart Studio Cloud for hovertemplate . The 'hovertemplatesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertemplatesrc"] @hovertemplatesrc.setter def hovertemplatesrc(self, val): self["hovertemplatesrc"] = val # label # ----- @property def label(self): """ The shown name of the node. The 'label' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["label"] @label.setter def label(self, val): self["label"] = val # labelsrc # -------- @property def labelsrc(self): """ Sets the source reference on Chart Studio Cloud for label . The 'labelsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["labelsrc"] @labelsrc.setter def labelsrc(self, val): self["labelsrc"] = val # line # ---- @property def line(self): """ The 'line' property is an instance of Line that may be specified as: - An instance of :class:`plotly.graph_objs.sankey.node.Line` - A dict of string/value properties that will be passed to the Line constructor Supported dict properties: color Sets the color of the `line` around each `node`. colorsrc Sets the source reference on Chart Studio Cloud for color . width Sets the width (in px) of the `line` around each `node`. widthsrc Sets the source reference on Chart Studio Cloud for width . Returns ------- plotly.graph_objs.sankey.node.Line """ return self["line"] @line.setter def line(self, val): self["line"] = val # pad # --- @property def pad(self): """ Sets the padding (in px) between the `nodes`. The 'pad' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["pad"] @pad.setter def pad(self, val): self["pad"] = val # thickness # --------- @property def thickness(self): """ Sets the thickness (in px) of the `nodes`. The 'thickness' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["thickness"] @thickness.setter def thickness(self, val): self["thickness"] = val # x # - @property def x(self): """ The normalized horizontal position of the node. The 'x' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["x"] @x.setter def x(self, val): self["x"] = val # xsrc # ---- @property def xsrc(self): """ Sets the source reference on Chart Studio Cloud for x . The 'xsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["xsrc"] @xsrc.setter def xsrc(self, val): self["xsrc"] = val # y # - @property def y(self): """ The normalized vertical position of the node. The 'y' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["y"] @y.setter def y(self, val): self["y"] = val # ysrc # ---- @property def ysrc(self): """ Sets the source reference on Chart Studio Cloud for y . The 'ysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["ysrc"] @ysrc.setter def ysrc(self, val): self["ysrc"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "sankey" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the `node` color. It can be a single value, or an array for specifying color for each `node`. If `node.color` is omitted, then the default `Plotly` color palette will be cycled through to have a variety of colors. These defaults are not fully opaque, to allow some visibility of what is beneath the node. colorsrc Sets the source reference on Chart Studio Cloud for color . customdata Assigns extra data to each node. customdatasrc Sets the source reference on Chart Studio Cloud for customdata . groups Groups of nodes. Each group is defined by an array with the indices of the nodes it contains. Multiple groups can be specified. hoverinfo Determines which trace information appear when hovering nodes. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverlabel :class:`plotly.graph_objects.sankey.node.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `value` and `label`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . label The shown name of the node. labelsrc Sets the source reference on Chart Studio Cloud for label . line :class:`plotly.graph_objects.sankey.node.Line` instance or dict with compatible properties pad Sets the padding (in px) between the `nodes`. thickness Sets the thickness (in px) of the `nodes`. x The normalized horizontal position of the node. xsrc Sets the source reference on Chart Studio Cloud for x . y The normalized vertical position of the node. ysrc Sets the source reference on Chart Studio Cloud for y . """ def __init__( self, arg=None, color=None, colorsrc=None, customdata=None, customdatasrc=None, groups=None, hoverinfo=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, label=None, labelsrc=None, line=None, pad=None, thickness=None, x=None, xsrc=None, y=None, ysrc=None, **kwargs ): """ Construct a new Node object The nodes of the Sankey plot. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sankey.Node` color Sets the `node` color. It can be a single value, or an array for specifying color for each `node`. If `node.color` is omitted, then the default `Plotly` color palette will be cycled through to have a variety of colors. These defaults are not fully opaque, to allow some visibility of what is beneath the node. colorsrc Sets the source reference on Chart Studio Cloud for color . customdata Assigns extra data to each node. customdatasrc Sets the source reference on Chart Studio Cloud for customdata . groups Groups of nodes. Each group is defined by an array with the indices of the nodes it contains. Multiple groups can be specified. hoverinfo Determines which trace information appear when hovering nodes. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverlabel :class:`plotly.graph_objects.sankey.node.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `value` and `label`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . label The shown name of the node. labelsrc Sets the source reference on Chart Studio Cloud for label . line :class:`plotly.graph_objects.sankey.node.Line` instance or dict with compatible properties pad Sets the padding (in px) between the `nodes`. thickness Sets the thickness (in px) of the `nodes`. x The normalized horizontal position of the node. xsrc Sets the source reference on Chart Studio Cloud for x . y The normalized vertical position of the node. ysrc Sets the source reference on Chart Studio Cloud for y . Returns ------- Node """ super(Node, self).__init__("node") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.sankey.Node constructor must be a dict or an instance of :class:`plotly.graph_objs.sankey.Node`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.sankey import node as v_node # Initialize validators # --------------------- self._validators["color"] = v_node.ColorValidator() self._validators["colorsrc"] = v_node.ColorsrcValidator() self._validators["customdata"] = v_node.CustomdataValidator() self._validators["customdatasrc"] = v_node.CustomdatasrcValidator() self._validators["groups"] = v_node.GroupsValidator() self._validators["hoverinfo"] = v_node.HoverinfoValidator() self._validators["hoverlabel"] = v_node.HoverlabelValidator() self._validators["hovertemplate"] = v_node.HovertemplateValidator() self._validators["hovertemplatesrc"] = v_node.HovertemplatesrcValidator() self._validators["label"] = v_node.LabelValidator() self._validators["labelsrc"] = v_node.LabelsrcValidator() self._validators["line"] = v_node.LineValidator() self._validators["pad"] = v_node.PadValidator() self._validators["thickness"] = v_node.ThicknessValidator() self._validators["x"] = v_node.XValidator() self._validators["xsrc"] = v_node.XsrcValidator() self._validators["y"] = v_node.YValidator() self._validators["ysrc"] = v_node.YsrcValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) self["color"] = color if color is not None else _v _v = arg.pop("colorsrc", None) self["colorsrc"] = colorsrc if colorsrc is not None else _v _v = arg.pop("customdata", None) self["customdata"] = customdata if customdata is not None else _v _v = arg.pop("customdatasrc", None) self["customdatasrc"] = customdatasrc if customdatasrc is not None else _v _v = arg.pop("groups", None) self["groups"] = groups if groups is not None else _v _v = arg.pop("hoverinfo", None) self["hoverinfo"] = hoverinfo if hoverinfo is not None else _v _v = arg.pop("hoverlabel", None) self["hoverlabel"] = hoverlabel if hoverlabel is not None else _v _v = arg.pop("hovertemplate", None) self["hovertemplate"] = hovertemplate if hovertemplate is not None else _v _v = arg.pop("hovertemplatesrc", None) self["hovertemplatesrc"] = ( hovertemplatesrc if hovertemplatesrc is not None else _v ) _v = arg.pop("label", None) self["label"] = label if label is not None else _v _v = arg.pop("labelsrc", None) self["labelsrc"] = labelsrc if labelsrc is not None else _v _v = arg.pop("line", None) self["line"] = line if line is not None else _v _v = arg.pop("pad", None) self["pad"] = pad if pad is not None else _v _v = arg.pop("thickness", None) self["thickness"] = thickness if thickness is not None else _v _v = arg.pop("x", None) self["x"] = x if x is not None else _v _v = arg.pop("xsrc", None) self["xsrc"] = xsrc if xsrc is not None else _v _v = arg.pop("y", None) self["y"] = y if y is not None else _v _v = arg.pop("ysrc", None) self["ysrc"] = ysrc if ysrc is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Link(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ Sets the `link` color. It can be a single value, or an array for specifying color for each `link`. If `link.color` is omitted, then by default, a translucent grey link will be used. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val # colorscales # ----------- @property def colorscales(self): """ The 'colorscales' property is a tuple of instances of Colorscale that may be specified as: - A list or tuple of instances of plotly.graph_objs.sankey.link.Colorscale - A list or tuple of dicts of string/value properties that will be passed to the Colorscale constructor Supported dict properties: cmax Sets the upper bound of the color domain. cmin Sets the lower bound of the color domain. colorscale Sets the colorscale. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`cmin` and `cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Grey s,YlGnBu,Greens,YlOrRd,Bluered,RdBu,Reds,Blues, Picnic,Rainbow,Portland,Jet,Hot,Blackbody,Earth ,Electric,Viridis,Cividis. label The label of the links to color based on their concentration within a flow. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. Returns ------- tuple[plotly.graph_objs.sankey.link.Colorscale] """ return self["colorscales"] @colorscales.setter def colorscales(self, val): self["colorscales"] = val # colorscaledefaults # ------------------ @property def colorscaledefaults(self): """ When used in a template (as layout.template.data.sankey.link.colorscaledefaults), sets the default property values to use for elements of sankey.link.colorscales The 'colorscaledefaults' property is an instance of Colorscale that may be specified as: - An instance of :class:`plotly.graph_objs.sankey.link.Colorscale` - A dict of string/value properties that will be passed to the Colorscale constructor Supported dict properties: Returns ------- plotly.graph_objs.sankey.link.Colorscale """ return self["colorscaledefaults"] @colorscaledefaults.setter def colorscaledefaults(self, val): self["colorscaledefaults"] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on Chart Studio Cloud for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val # customdata # ---------- @property def customdata(self): """ Assigns extra data to each link. The 'customdata' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["customdata"] @customdata.setter def customdata(self, val): self["customdata"] = val # customdatasrc # ------------- @property def customdatasrc(self): """ Sets the source reference on Chart Studio Cloud for customdata . The 'customdatasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["customdatasrc"] @customdatasrc.setter def customdatasrc(self, val): self["customdatasrc"] = val # hoverinfo # --------- @property def hoverinfo(self): """ Determines which trace information appear when hovering links. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. The 'hoverinfo' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'none', 'skip'] Returns ------- Any """ return self["hoverinfo"] @hoverinfo.setter def hoverinfo(self, val): self["hoverinfo"] = val # hoverlabel # ---------- @property def hoverlabel(self): """ The 'hoverlabel' property is an instance of Hoverlabel that may be specified as: - An instance of :class:`plotly.graph_objs.sankey.link.Hoverlabel` - A dict of string/value properties that will be passed to the Hoverlabel constructor Supported dict properties: align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . Returns ------- plotly.graph_objs.sankey.link.Hoverlabel """ return self["hoverlabel"] @hoverlabel.setter def hoverlabel(self, val): self["hoverlabel"] = val # hovertemplate # ------------- @property def hovertemplate(self): """ Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time- format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per- point (the ones that are `arrayOk: true`) are available. variables `value` and `label`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. The 'hovertemplate' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["hovertemplate"] @hovertemplate.setter def hovertemplate(self, val): self["hovertemplate"] = val # hovertemplatesrc # ---------------- @property def hovertemplatesrc(self): """ Sets the source reference on Chart Studio Cloud for hovertemplate . The 'hovertemplatesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertemplatesrc"] @hovertemplatesrc.setter def hovertemplatesrc(self, val): self["hovertemplatesrc"] = val # label # ----- @property def label(self): """ The shown name of the link. The 'label' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["label"] @label.setter def label(self, val): self["label"] = val # labelsrc # -------- @property def labelsrc(self): """ Sets the source reference on Chart Studio Cloud for label . The 'labelsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["labelsrc"] @labelsrc.setter def labelsrc(self, val): self["labelsrc"] = val # line # ---- @property def line(self): """ The 'line' property is an instance of Line that may be specified as: - An instance of :class:`plotly.graph_objs.sankey.link.Line` - A dict of string/value properties that will be passed to the Line constructor Supported dict properties: color Sets the color of the `line` around each `link`. colorsrc Sets the source reference on Chart Studio Cloud for color . width Sets the width (in px) of the `line` around each `link`. widthsrc Sets the source reference on Chart Studio Cloud for width . Returns ------- plotly.graph_objs.sankey.link.Line """ return self["line"] @line.setter def line(self, val): self["line"] = val # source # ------ @property def source(self): """ An integer number `[0..nodes.length - 1]` that represents the source node. The 'source' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["source"] @source.setter def source(self, val): self["source"] = val # sourcesrc # --------- @property def sourcesrc(self): """ Sets the source reference on Chart Studio Cloud for source . The 'sourcesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["sourcesrc"] @sourcesrc.setter def sourcesrc(self, val): self["sourcesrc"] = val # target # ------ @property def target(self): """ An integer number `[0..nodes.length - 1]` that represents the target node. The 'target' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["target"] @target.setter def target(self, val): self["target"] = val # targetsrc # --------- @property def targetsrc(self): """ Sets the source reference on Chart Studio Cloud for target . The 'targetsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["targetsrc"] @targetsrc.setter def targetsrc(self, val): self["targetsrc"] = val # value # ----- @property def value(self): """ A numeric value representing the flow volume value. The 'value' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["value"] @value.setter def value(self, val): self["value"] = val # valuesrc # -------- @property def valuesrc(self): """ Sets the source reference on Chart Studio Cloud for value . The 'valuesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["valuesrc"] @valuesrc.setter def valuesrc(self, val): self["valuesrc"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "sankey" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the `link` color. It can be a single value, or an array for specifying color for each `link`. If `link.color` is omitted, then by default, a translucent grey link will be used. colorscales A tuple of :class:`plotly.graph_objects.sankey.link.Colorscale` instances or dicts with compatible properties colorscaledefaults When used in a template (as layout.template.data.sankey.link.colorscaledefaults), sets the default property values to use for elements of sankey.link.colorscales colorsrc Sets the source reference on Chart Studio Cloud for color . customdata Assigns extra data to each link. customdatasrc Sets the source reference on Chart Studio Cloud for customdata . hoverinfo Determines which trace information appear when hovering links. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverlabel :class:`plotly.graph_objects.sankey.link.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `value` and `label`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . label The shown name of the link. labelsrc Sets the source reference on Chart Studio Cloud for label . line :class:`plotly.graph_objects.sankey.link.Line` instance or dict with compatible properties source An integer number `[0..nodes.length - 1]` that represents the source node. sourcesrc Sets the source reference on Chart Studio Cloud for source . target An integer number `[0..nodes.length - 1]` that represents the target node. targetsrc Sets the source reference on Chart Studio Cloud for target . value A numeric value representing the flow volume value. valuesrc Sets the source reference on Chart Studio Cloud for value . """ def __init__( self, arg=None, color=None, colorscales=None, colorscaledefaults=None, colorsrc=None, customdata=None, customdatasrc=None, hoverinfo=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, label=None, labelsrc=None, line=None, source=None, sourcesrc=None, target=None, targetsrc=None, value=None, valuesrc=None, **kwargs ): """ Construct a new Link object The links of the Sankey plot. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sankey.Link` color Sets the `link` color. It can be a single value, or an array for specifying color for each `link`. If `link.color` is omitted, then by default, a translucent grey link will be used. colorscales A tuple of :class:`plotly.graph_objects.sankey.link.Colorscale` instances or dicts with compatible properties colorscaledefaults When used in a template (as layout.template.data.sankey.link.colorscaledefaults), sets the default property values to use for elements of sankey.link.colorscales colorsrc Sets the source reference on Chart Studio Cloud for color . customdata Assigns extra data to each link. customdatasrc Sets the source reference on Chart Studio Cloud for customdata . hoverinfo Determines which trace information appear when hovering links. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverlabel :class:`plotly.graph_objects.sankey.link.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `value` and `label`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . label The shown name of the link. labelsrc Sets the source reference on Chart Studio Cloud for label . line :class:`plotly.graph_objects.sankey.link.Line` instance or dict with compatible properties source An integer number `[0..nodes.length - 1]` that represents the source node. sourcesrc Sets the source reference on Chart Studio Cloud for source . target An integer number `[0..nodes.length - 1]` that represents the target node. targetsrc Sets the source reference on Chart Studio Cloud for target . value A numeric value representing the flow volume value. valuesrc Sets the source reference on Chart Studio Cloud for value . Returns ------- Link """ super(Link, self).__init__("link") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.sankey.Link constructor must be a dict or an instance of :class:`plotly.graph_objs.sankey.Link`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.sankey import link as v_link # Initialize validators # --------------------- self._validators["color"] = v_link.ColorValidator() self._validators["colorscales"] = v_link.ColorscalesValidator() self._validators["colorscaledefaults"] = v_link.ColorscaleValidator() self._validators["colorsrc"] = v_link.ColorsrcValidator() self._validators["customdata"] = v_link.CustomdataValidator() self._validators["customdatasrc"] = v_link.CustomdatasrcValidator() self._validators["hoverinfo"] = v_link.HoverinfoValidator() self._validators["hoverlabel"] = v_link.HoverlabelValidator() self._validators["hovertemplate"] = v_link.HovertemplateValidator() self._validators["hovertemplatesrc"] = v_link.HovertemplatesrcValidator() self._validators["label"] = v_link.LabelValidator() self._validators["labelsrc"] = v_link.LabelsrcValidator() self._validators["line"] = v_link.LineValidator() self._validators["source"] = v_link.SourceValidator() self._validators["sourcesrc"] = v_link.SourcesrcValidator() self._validators["target"] = v_link.TargetValidator() self._validators["targetsrc"] = v_link.TargetsrcValidator() self._validators["value"] = v_link.ValueValidator() self._validators["valuesrc"] = v_link.ValuesrcValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) self["color"] = color if color is not None else _v _v = arg.pop("colorscales", None) self["colorscales"] = colorscales if colorscales is not None else _v _v = arg.pop("colorscaledefaults", None) self["colorscaledefaults"] = ( colorscaledefaults if colorscaledefaults is not None else _v ) _v = arg.pop("colorsrc", None) self["colorsrc"] = colorsrc if colorsrc is not None else _v _v = arg.pop("customdata", None) self["customdata"] = customdata if customdata is not None else _v _v = arg.pop("customdatasrc", None) self["customdatasrc"] = customdatasrc if customdatasrc is not None else _v _v = arg.pop("hoverinfo", None) self["hoverinfo"] = hoverinfo if hoverinfo is not None else _v _v = arg.pop("hoverlabel", None) self["hoverlabel"] = hoverlabel if hoverlabel is not None else _v _v = arg.pop("hovertemplate", None) self["hovertemplate"] = hovertemplate if hovertemplate is not None else _v _v = arg.pop("hovertemplatesrc", None) self["hovertemplatesrc"] = ( hovertemplatesrc if hovertemplatesrc is not None else _v ) _v = arg.pop("label", None) self["label"] = label if label is not None else _v _v = arg.pop("labelsrc", None) self["labelsrc"] = labelsrc if labelsrc is not None else _v _v = arg.pop("line", None) self["line"] = line if line is not None else _v _v = arg.pop("source", None) self["source"] = source if source is not None else _v _v = arg.pop("sourcesrc", None) self["sourcesrc"] = sourcesrc if sourcesrc is not None else _v _v = arg.pop("target", None) self["target"] = target if target is not None else _v _v = arg.pop("targetsrc", None) self["targetsrc"] = targetsrc if targetsrc is not None else _v _v = arg.pop("value", None) self["value"] = value if value is not None else _v _v = arg.pop("valuesrc", None) self["valuesrc"] = valuesrc if valuesrc is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Hoverlabel(_BaseTraceHierarchyType): # align # ----- @property def align(self): """ Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines The 'align' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'right', 'auto'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray """ return self["align"] @align.setter def align(self, val): self["align"] = val # alignsrc # -------- @property def alignsrc(self): """ Sets the source reference on Chart Studio Cloud for align . The 'alignsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["alignsrc"] @alignsrc.setter def alignsrc(self, val): self["alignsrc"] = val # bgcolor # ------- @property def bgcolor(self): """ Sets the background color of the hover labels for this trace The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["bgcolor"] @bgcolor.setter def bgcolor(self, val): self["bgcolor"] = val # bgcolorsrc # ---------- @property def bgcolorsrc(self): """ Sets the source reference on Chart Studio Cloud for bgcolor . The 'bgcolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bgcolorsrc"] @bgcolorsrc.setter def bgcolorsrc(self, val): self["bgcolorsrc"] = val # bordercolor # ----------- @property def bordercolor(self): """ Sets the border color of the hover labels for this trace. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["bordercolor"] @bordercolor.setter def bordercolor(self, val): self["bordercolor"] = val # bordercolorsrc # -------------- @property def bordercolorsrc(self): """ Sets the source reference on Chart Studio Cloud for bordercolor . The 'bordercolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bordercolorsrc"] @bordercolorsrc.setter def bordercolorsrc(self, val): self["bordercolorsrc"] = val # font # ---- @property def font(self): """ Sets the font used in hover labels. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.sankey.hoverlabel.Font` - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color colorsrc Sets the source reference on Chart Studio Cloud for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for family . size sizesrc Sets the source reference on Chart Studio Cloud for size . Returns ------- plotly.graph_objs.sankey.hoverlabel.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val # namelength # ---------- @property def namelength(self): """ Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. The 'namelength' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [-1, 9223372036854775807] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|numpy.ndarray """ return self["namelength"] @namelength.setter def namelength(self, val): self["namelength"] = val # namelengthsrc # ------------- @property def namelengthsrc(self): """ Sets the source reference on Chart Studio Cloud for namelength . The 'namelengthsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["namelengthsrc"] @namelengthsrc.setter def namelengthsrc(self, val): self["namelengthsrc"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "sankey" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . """ def __init__( self, arg=None, align=None, alignsrc=None, bgcolor=None, bgcolorsrc=None, bordercolor=None, bordercolorsrc=None, font=None, namelength=None, namelengthsrc=None, **kwargs ): """ Construct a new Hoverlabel object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sankey.Hoverlabel` align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . Returns ------- Hoverlabel """ super(Hoverlabel, self).__init__("hoverlabel") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.sankey.Hoverlabel constructor must be a dict or an instance of :class:`plotly.graph_objs.sankey.Hoverlabel`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.sankey import hoverlabel as v_hoverlabel # Initialize validators # --------------------- self._validators["align"] = v_hoverlabel.AlignValidator() self._validators["alignsrc"] = v_hoverlabel.AlignsrcValidator() self._validators["bgcolor"] = v_hoverlabel.BgcolorValidator() self._validators["bgcolorsrc"] = v_hoverlabel.BgcolorsrcValidator() self._validators["bordercolor"] = v_hoverlabel.BordercolorValidator() self._validators["bordercolorsrc"] = v_hoverlabel.BordercolorsrcValidator() self._validators["font"] = v_hoverlabel.FontValidator() self._validators["namelength"] = v_hoverlabel.NamelengthValidator() self._validators["namelengthsrc"] = v_hoverlabel.NamelengthsrcValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("align", None) self["align"] = align if align is not None else _v _v = arg.pop("alignsrc", None) self["alignsrc"] = alignsrc if alignsrc is not None else _v _v = arg.pop("bgcolor", None) self["bgcolor"] = bgcolor if bgcolor is not None else _v _v = arg.pop("bgcolorsrc", None) self["bgcolorsrc"] = bgcolorsrc if bgcolorsrc is not None else _v _v = arg.pop("bordercolor", None) self["bordercolor"] = bordercolor if bordercolor is not None else _v _v = arg.pop("bordercolorsrc", None) self["bordercolorsrc"] = bordercolorsrc if bordercolorsrc is not None else _v _v = arg.pop("font", None) self["font"] = font if font is not None else _v _v = arg.pop("namelength", None) self["namelength"] = namelength if namelength is not None else _v _v = arg.pop("namelengthsrc", None) self["namelengthsrc"] = namelengthsrc if namelengthsrc is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Domain(_BaseTraceHierarchyType): # column # ------ @property def column(self): """ If there is a layout grid, use the domain for this column in the grid for this sankey trace . The 'column' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self["column"] @column.setter def column(self, val): self["column"] = val # row # --- @property def row(self): """ If there is a layout grid, use the domain for this row in the grid for this sankey trace . The 'row' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self["row"] @row.setter def row(self, val): self["row"] = val # x # - @property def x(self): """ Sets the horizontal domain of this sankey trace (in plot fraction). The 'x' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'x[0]' property is a number and may be specified as: - An int or float in the interval [0, 1] (1) The 'x[1]' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- list """ return self["x"] @x.setter def x(self, val): self["x"] = val # y # - @property def y(self): """ Sets the vertical domain of this sankey trace (in plot fraction). The 'y' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'y[0]' property is a number and may be specified as: - An int or float in the interval [0, 1] (1) The 'y[1]' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- list """ return self["y"] @y.setter def y(self, val): self["y"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "sankey" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ column If there is a layout grid, use the domain for this column in the grid for this sankey trace . row If there is a layout grid, use the domain for this row in the grid for this sankey trace . x Sets the horizontal domain of this sankey trace (in plot fraction). y Sets the vertical domain of this sankey trace (in plot fraction). """ def __init__(self, arg=None, column=None, row=None, x=None, y=None, **kwargs): """ Construct a new Domain object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sankey.Domain` column If there is a layout grid, use the domain for this column in the grid for this sankey trace . row If there is a layout grid, use the domain for this row in the grid for this sankey trace . x Sets the horizontal domain of this sankey trace (in plot fraction). y Sets the vertical domain of this sankey trace (in plot fraction). Returns ------- Domain """ super(Domain, self).__init__("domain") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.sankey.Domain constructor must be a dict or an instance of :class:`plotly.graph_objs.sankey.Domain`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.sankey import domain as v_domain # Initialize validators # --------------------- self._validators["column"] = v_domain.ColumnValidator() self._validators["row"] = v_domain.RowValidator() self._validators["x"] = v_domain.XValidator() self._validators["y"] = v_domain.YValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("column", None) self["column"] = column if column is not None else _v _v = arg.pop("row", None) self["row"] = row if row is not None else _v _v = arg.pop("x", None) self["x"] = x if x is not None else _v _v = arg.pop("y", None) self["y"] = y if y is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False __all__ = [ "Domain", "Hoverlabel", "Link", "Node", "Stream", "Textfont", "hoverlabel", "link", "node", ] from plotly.graph_objs.sankey import node from plotly.graph_objs.sankey import link from plotly.graph_objs.sankey import hoverlabel
[ "robot-piglet@yandex-team.com" ]
robot-piglet@yandex-team.com
f1937d73d5ca59f1d3d284eae6aad9c8138f6512
c1287fe2f9292a77bf544070f665137d267cc814
/task3/log_generator.py
431860fdba2f463fe75be42402038bbf7407a6aa
[]
no_license
ovgolovin/cli_tasks
08bf9ccc972c075259f56662be08aea9ae4c8d95
18a791f53480caae769e73d91e55d27cd69bac82
refs/heads/master
2016-09-10T13:53:05.664801
2013-07-03T12:50:15
2013-07-03T12:50:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,430
py
#!/usr/bin/python # -*- coding: UTF-8 -*- from __future__ import division import random import time from datetime import datetime, timedelta period_expectation = 10000 def generate_url_and_code(): def resume(): ps = ['id={}'.format(random.randrange(0,100)), 'rss={}'.format(random.choice((0,1)))] random.shuffle(ps) return '/resume?{}'.format('&'.join(ps)), '200' def vacancyerror(): return '/vacancyerror', '500' def user(): return '/user', '200' return random.choice((resume,vacancyerror,user))() with open('log.txt','w') as f: time = datetime(year=2013, month=1, day=20, hour=12, minute=00) + timedelta(minutes=-1) timeend = time + timedelta(hours=1, minutes=2) while(True): time = time + timedelta(milliseconds = random.normalvariate(period_expectation, 2000)) url, code = generate_url_and_code() out = '\t'.join([time.strftime('%Y-%m-%d\t%H:%M:%S') + ',' + '{:03.0f}'.format(time.microsecond / 1000), random.choice(('info', 'warn', 'error')), random.choice(('GET', 'POST')), '{}'.format(random.randrange(10000, 15000)), url, code, '{:0.2f}ms'.format(random.normalvariate(400, 60)) ]) f.write('{}\n'.format(out)) if time >= timeend: break
[ "ovgolovin@gmail.com" ]
ovgolovin@gmail.com
36164f7ee97dba594be61b1f5bc709171535d893
e43eed4a7af5dad43f6377cb270949dab16d6ab7
/Python/new_prop.py
92cf119b26007c02115c450edf7fb442e2d032b5
[]
no_license
hossamabdullah/Hacker_Rank
d49df52c6182fc75365d3e9fb2b657d8553cb9ad
75f0fb5b3a5f0db5891d684905c576bc1d133275
refs/heads/master
2022-09-21T05:47:48.230184
2022-09-04T12:27:09
2022-09-04T12:27:09
139,197,041
2
0
null
null
null
null
UTF-8
Python
false
false
535
py
import sys link = sys.argv[1] temp = link start_index = 38 link = link[start_index:] end_index = link.find('/') link = link[:end_index] print(link) import os if not os.path.exists(link): os.makedirs(link) file = open(link+'/README.md','w') file.write('this is the link for the problem \n') file.write(temp) file.close() file = open(link+'/'+link+'.py','w') file.write('') file.close() from subprocess import call call(["git", "add", "."]) call(["git", "commit", "-m", "initial directory for "+link])
[ "hossamabdalh@gmail.com" ]
hossamabdalh@gmail.com
eddf9f5f7a2a6c7585655da5f7ccb69a9ca882d2
1ee920e0f7a05b0b50776ed7874ba2e76bbba7de
/简简/机器学习初步/part1_course4_Minist2TFRecord.py
760c4c72a3466271acafbcf951ff571c0f48f9b8
[]
no_license
wangqingbaidu/LearningML
cb4066ed616d3914b85fa559bc1cba1ed18954bc
9c970f9e6c4052fef444bcf518cf5b1b7c6adfdc
refs/heads/master
2020-07-31T10:13:06.377235
2019-11-15T02:03:39
2019-11-15T02:03:39
210,571,009
0
4
null
2019-10-10T06:10:14
2019-09-24T10:03:24
Jupyter Notebook
UTF-8
Python
false
false
2,671
py
# -*- coding: UTF-8 -*- # @Time : 2019/10/20 19:41 # @Author : Janeasefor # @Site : # @File : test2.py # @Software: PyCharm import tensorflow as tf import os import traceback from utils import process_image, ImageCoder # 避免低版本下不必要警告 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 如果输入的数据不是list类型的,例如是一个标量,需要先转化成list类型。 def int64_feature (value): # Int类型的数据转化。 if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def bytes_feature (value): # Byte类型数据转化,一般存放语音或者视频的原始二进制文件流。 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def float_feature (value): # Float类型数据转化。 if not isinstance(value, list): value = [value] return tf.train.Feature(float_list=tf.train.FloatList(value=value)) # 手写字符数据存放的位置,文件格式:label.index.jpg。 # file_dir = sys.argv[1] file_dir = 'C:/Users/ysl-pc/Desktop/机器学习入门/part1_course4/hand_writing_storage' # 输出TF record的位置,如果位置不存在,那么创建。 # output_dir = sys.argv[2] output_dir = 'C:/Users/ysl-pc/Desktop/机器学习入门/part1_course4/TF_record' if not os.path.exists(output_dir): os.makedirs(output_dir) # 特征映射定义两个字段,`label`存放数据的标签,`data`存放的是数据。 feature = {'label': None, 'data': None} # 定义Coder coder = ImageCoder() if os.path.exists(file_dir): # 创建一个TF record的writer。 writer = tf.python_io.TFRecordWriter(os.path.join(output_dir, 'mnist_byte.tfreocrd')) for file_name in os.listdir(file_dir): # 过滤掉该目录下面非`.jpg`结尾的文件。 if file_name.endswith('.jpg'): try: label, index, _ = file_name.split('.') # 把读入的图像转化成灰度图。 image_encoded, _, _ = process_image(os.path.join(file_dir, file_name), coder) # 构造此样本的特征映射。 feature['label'] = int64_feature(int(label)) feature['data'] = bytes_feature(image_encoded) # 序列化之后写入对应的TF record。 example = tf.train.Example(features=tf.train.Features(feature=feature)) writer.write(example.SerializeToString()) except: traceback.print_exc() print('Error while serializing %s.' % file_name) else: print('File dir %s not exist!' % file_dir)
[ "noreply@github.com" ]
wangqingbaidu.noreply@github.com
a71575c3f5fb41e8566027db9fecf817bb9fcd5e
7c63011cc895542cdf8aead2d90517985c1f9bed
/v2.py
91dd60eabe526c3256d49ff5e41f420aeb3508bc
[]
no_license
npinnaka/py_example
e1af6d2e75e97591ee0fe3d74b25ea1ec5630df8
b7f75648e3eb442e88620ce8d4f28bcd870ace76
refs/heads/master
2020-08-28T14:39:13.289810
2019-10-26T15:26:13
2019-10-26T15:26:13
217,728,576
0
0
null
null
null
null
UTF-8
Python
false
false
1,571
py
from pyspark.sql import functions as F from pyspark.sql.window import Window from pyspark.sql import Row from pyspark.sql.types import * def f(x): gi = 0 previous_row = 0 previous_gi = float(0) output = [] for r in x[1]: d = r.asDict() marks = int(d["Marks"]) if previous_row == 0: d["Growth"] = 0 else: c = int(previous_row) d["Growth"] = int(marks - c / c) if previous_row <= 0 or previous_gi <= 0: d["ExpectedScore"] = float(marks) else: d["ExpectedScore"] = round(float(marks + round((marks * previous_gi) / 100, 2)),2) gi = d["Growth"] - gi d["Growth_Increase"] = gi # =IF(F2<0,D3,D3+((D3*F2)/100) previous_row = marks previous_gi = d["Growth_Increase"] output.append(Row(**d)) return output df = spark.read.option("header", "true").csv("indatas.csv") outrdd = df.rdd.groupBy(lambda r: r[0] + r[1]).map(lambda av: (av[0], list(av[1]))).map(f).flatMap(lambda x: x) schema = StructType([StructField("Name", StringType(), True), StructField("Subject", StringType(), True), StructField("Dateon", StringType(), True), StructField("Marks", StringType(), True), StructField("Growth", IntegerType(), True), StructField("Growth_Increase", IntegerType(), True), StructField("ExpectedScore", DoubleType(), True)]) ds = spark.createDataFrame(outrdd, schema) ds.show()
[ "npinnaka@yahoo.com" ]
npinnaka@yahoo.com