blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
b7eb0a6c17571f95eecb2d8d0106738004e2c7d0
18e9bbc8747f4edca0c96e522bbd6dde48a60966
/lang/py/detail/simphttp.py
09b6e116f9042b84864db836a4576b3fee95fbb5
[]
no_license
leizton/inote
6290be44b0fcb4d182c4b031ed95de6bdc736de8
c8114b3d46cb14a1bf9d431a765e203685cc3882
refs/heads/master
2023-08-31T04:22:43.517404
2023-08-17T09:37:22
2023-08-17T09:37:22
111,563,245
0
0
null
null
null
null
UTF-8
Python
false
false
8,867
py
"""Simple HTTP Server. This module builds on BaseHTTPServer by implementing the standard GET and HEAD requests in a fairly straightforward manner. """ import os import posixpath import BaseHTTPServer import SocketServer import urllib import cgi import sys import shutil import mimetypes try: from cStringIO import StringIO except ImportError: from StringIO import StringIO __version__ = "0.6" class SimpHttpRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler): """Simple HTTP request handler with GET and HEAD commands. This serves files from the current directory and any of its subdirectories. The MIME type for files is determined by calling the .guess_type() method. The GET and HEAD requests are identical except that the HEAD request omits the actual contents of the file. """ server_version = "SimpleHTTP/" + __version__ def do_PUT(self): # open try: path = self.translate_path(self.path) out = open(path, 'wb') except: out = None if not out: self.send_result(500, "open exception") return # write try: remain = int(self.headers['content-length']) while remain > 0: buf = self.rfile.read(min(remain, 1024)) remain -= len(buf) out.write(buf) except: self.send_result(500, "write exception") return # close try: out.close() self.send_result(200, "ok") except: self.send_result(500, "close exception") def send_result(self, code, info): f = StringIO() f.write(info) self.send_response(code) self.send_header("Content-type", "text/html") self.send_header("Content-Length", f.tell()) self.end_headers() f.seek(0) self.copyfile(f, self.wfile) f.close() def do_GET(self): """Serve a GET request.""" f = self.send_head() if f: try: self.copyfile(f, self.wfile) finally: f.close() def do_HEAD(self): """Serve a HEAD request.""" f = self.send_head() if f: f.close() def send_head(self): """Common code for GET and HEAD commands. This sends the response code and MIME headers. Return value is either a file object (which has to be copied to the outputfile by the caller unless the command was HEAD, and must be closed by the caller under all circumstances), or None, in which case the caller has nothing further to do. """ path = self.translate_path(self.path) f = None if os.path.isdir(path): if not self.path.endswith('/'): # redirect browser - doing basically what apache does self.send_response(301) self.send_header("Location", self.path + "/") self.end_headers() return None for index in "index.html", "index.htm": index = os.path.join(path, index) if os.path.exists(index): path = index break else: return self.list_directory(path) ctype = self.guess_type(path) try: # Always read in binary mode. Opening files in text mode may cause # newline translations, making the actual size of the content # transmitted *less* than the content-length! f = open(path, 'rb') except IOError: self.send_error(404, "File not found") return None try: self.send_response(200) self.send_header("Content-type", ctype) fs = os.fstat(f.fileno()) self.send_header("Content-Length", str(fs[6])) self.send_header("Last-Modified", self.date_time_string(fs.st_mtime)) self.end_headers() return f except: f.close() raise def list_directory(self, path): """Helper to produce a directory listing (absent index.html). Return value is either a file object, or None (indicating an error). In either case, the headers are sent, making the interface the same as for send_head(). """ try: list = os.listdir(path) except os.error: self.send_error(404, "No permission to list directory") return None list.sort(key=lambda a: a.lower()) f = StringIO() displaypath = cgi.escape(urllib.unquote(self.path)) f.write('<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">') f.write("<html>\n<title>Directory listing for %s</title>\n" % displaypath) f.write("<body>\n<h2>Directory listing for %s</h2>\n" % displaypath) f.write("<hr>\n<ul>\n") for name in list: fullname = os.path.join(path, name) displayname = linkname = name # Append / for directories or @ for symbolic links if os.path.isdir(fullname): displayname = name + "/" linkname = name + "/" if os.path.islink(fullname): displayname = name + "@" # Note: a link to a directory displays with @ and links with / f.write('<li><a href="%s">%s</a>\n' % (urllib.quote(linkname), cgi.escape(displayname))) f.write("</ul>\n<hr>\n</body>\n</html>\n") length = f.tell() f.seek(0) self.send_response(200) encoding = sys.getfilesystemencoding() self.send_header("Content-type", "text/html; charset=%s" % encoding) self.send_header("Content-Length", str(length)) self.end_headers() return f def translate_path(self, path): """Translate a /-separated PATH to the local filename syntax. Components that mean special things to the local file system (e.g. drive or directory names) are ignored. (XXX They should probably be diagnosed.) """ # abandon query parameters path = path.split('?',1)[0] path = path.split('#',1)[0] # Don't forget explicit trailing slash when normalizing. Issue17324 trailing_slash = path.rstrip().endswith('/') path = posixpath.normpath(urllib.unquote(path)) words = path.split('/') words = filter(None, words) path = os.getcwd() for word in words: drive, word = os.path.splitdrive(word) head, word = os.path.split(word) if word in (os.curdir, os.pardir): continue path = os.path.join(path, word) if trailing_slash: path += '/' return path def copyfile(self, source, outputfile): """Copy all data between two file objects. The SOURCE argument is a file object open for reading (or anything with a read() method) and the DESTINATION argument is a file object open for writing (or anything with a write() method). The only reason for overriding this would be to change the block size or perhaps to replace newlines by CRLF -- note however that this the default server uses this to copy binary data as well. """ shutil.copyfileobj(source, outputfile) def guess_type(self, path): """Guess the type of a file. Argument is a PATH (a filename). Return value is a string of the form type/subtype, usable for a MIME Content-type header. The default implementation looks the file's extension up in the table self.extensions_map, using application/octet-stream as a default; however it would be permissible (if slow) to look inside the data to make a better guess. """ base, ext = posixpath.splitext(path) if ext in self.extensions_map: return self.extensions_map[ext] ext = ext.lower() if ext in self.extensions_map: return self.extensions_map[ext] else: return self.extensions_map[''] if not mimetypes.inited: mimetypes.init() # try to read system mime.types extensions_map = mimetypes.types_map.copy() extensions_map.update({ '': 'application/octet-stream', # Default '.py': 'text/plain', '.c': 'text/plain', '.h': 'text/plain', }) # nohup python simphttp.py 8000 & if __name__ == '__main__': port = 10000 if len(sys.argv) > 1: port = int(sys.argv[1]) httpd = SocketServer.TCPServer(("", port), SimpHttpRequestHandler) print "serving at port:", port httpd.serve_forever()
[ "leizton@126.com" ]
leizton@126.com
fe7d9893fb76b7eb624d74e9a5ceebe38ecee595
3b0657e8edd9390518e5c14d15878e25683bfe91
/FORTRAN/DMMulti/scripts/param_red.py
8bb8fb9ca8fab4363d6ec2e5d5466491a37be1dc
[]
no_license
lmpizarro/atomistic_simulation
d3038ff4b1d106662904207099c42b4bccee9f0b
d526b1bda6d258e3ab4e4a8619331849b7a0c2bf
refs/heads/master
2021-01-10T08:17:00.947930
2018-11-29T22:06:58
2018-11-29T22:06:58
46,139,007
3
0
null
null
null
null
UTF-8
Python
false
false
827
py
#!/usr/bin/python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt axis_font = { 'size':'20'} plt.figure(1,figsize=(8,6)) x = [5.0 , 5.3 , 5.5 , 5.6 , 5.7 , 5.8 , 5.9 , 5.95, 6.0 , 6.1 , 6.2 , 6.3 , 6.4 , 6.5 , 6.6 , 6.7 ] y = [ 16.8 , 0.388 , -4.03 , -5.2 , -5.92 , -6.32 , -6.488, -6.5 , -6.483, -6.37 , -6.17 , -5.92 , -5.54 , -5.34 , -5.72 , -5.59 ] x = np.asarray(x) / 4.0 y = np.asarray(y) plt.plot(x,y,'k.',markersize=10) plt.title(u'Energía potencial a $T^*=0$') plt.xlabel('$a^*$',**axis_font) plt.ylabel(u'$U^*$',**axis_font) plt.ylim(-6.6,-5.1) plt.xlim(1.35,1.7) plt.grid(True) plt.show()
[ "pbellino@gmail.com" ]
pbellino@gmail.com
401caa772c709306a860945e1a837247a57746a2
cd38e69551eb8c205690aa29e21be414d32613b6
/manage.py
009fcccf4ca0e26a657de5b0ba0ef3ef39e8e1ef
[]
no_license
fj-fj-fj/weather-api
d779c6b2e5ef917be843cf6aba4d514eb84399d1
b364e50e031c3740f9c16139e408d82ac45754df
refs/heads/main
2023-04-14T03:00:38.418507
2021-04-25T11:32:06
2021-04-25T11:32:06
355,349,080
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
from main import * # noqa: F403, F401 from weather.app import manager if __name__ == '__main__': manager.run()
[ "berendeyzhiv@gmail.com" ]
berendeyzhiv@gmail.com
e0a8665cf9424448e8382bfa43878fee2adaea9c
893f8236a63752f3f5ec8222fc334c73c0a05208
/AC-IPSyn/source/Patterns_IPSyn.py
3120dd2f8cc76c77000f15df008e06bc093c0db6
[]
no_license
haewon-mit/Syntax-Analysis
0567e901fd61d244442779362f78ee9c391101d8
75f766e7817f6be3ff700d31946ace8c6e8c38af
refs/heads/master
2021-01-20T20:10:48.952924
2016-06-08T16:17:57
2016-06-08T16:17:57
60,710,511
0
0
null
null
null
null
UTF-8
Python
false
false
13,181
py
#Purpose: This contains the regular expression patterns that will be used for # extracting the constructs for the IPSyn structure. Patterns={ #Proper,Mass or Count Noun 'N1':r'(\((NNS|NNPS|NN|NNP) ([^)]*)\))', #Pronoun or prolocative excluding modifiers 'N2':r'(\((((PRP|WP) ([^)]*))|([W]?RB ([hH]ere|[Tt]here|[Ww]here|[Tt]hereafter|[Hh]ereafter|[Th]ereupon|[Hh]ereabouts|[Ww]hereabouts|[Ww]hereupon|[Tt]hereabouts|[Ss]omewhere|[Ee]verywhere)))\))', #Modifier including adjectives, possessives and quantifiers 'N3':r'(\((DT|PRP\$|WP\$|JJ|JJR|JJS|CD|POS) ((?![Aa]\))(?![Aa]n\))(?![Tt]he\))[^)]+)\))', #Two word NP: nominal preceded by article or modifier 'N4':r'(\((DT|RP|PRP\$|WP\$|JJ|JJR|JJS|CD|POS) ([^)]*)\) \((NNS|NNPS|NN|NNP) ([^)]*)\))', #Article used before a noun 'N5':r'(\((DT) (([Aa])|([Aa]n)|([Tt]he))\) \((NNS|NNPS|NN|NNP) ([^)]*)\))', #Two word NP(as in N4) after verb or preposition 'N6':r'(\((AUX|VB|VBD|VBG|VBN|VBP|VBZ|MD|(?<=\(PP \()IN|TO) ([^)]*)\)[ )]*(\((NP|ADJP) )+\((DT|RP|PRP\$|WP\$|JJ|JJR|JJS|CD|POS) ([^)]*)\) \((NNS|NNPS|NN|NNP) ([^)]*)\))', #Plural Suffix (should end with s) - not looking for irregular plurals 'N7':r'(\((NNS|NNPS) ([^)]+s)\))', #Two-word NP(as in N4) before verb 'N8':r'(\((DT|RP|PRP\$|WP\$|JJ|JJR|JJS|CD|POS) ([^)]*)\) \((NNS|NNPS|NN|NNP) ([^)]*)\))([ )]*)\((VP)? \((AUX|VB|VBD|VBG|VBN|VBP|VBZ|MD) ([^)]*)\)', #Three word NP (Det-Mod-N or Mod-Mod-N) 'N9':r'(\(((PRP\$)|(WP\$)|(JJ)|(JJR)|(JJS)|(CD)|(POS)|(DT)) ([^)]*)\) \(((PRP\$)|(WP\$)|(JJ)|(JJR)|(JJS)|(CD)|(POS)) ([^)]*)\) \(((NNS)|(NNPS)|(NN)|(NNP)) ([^)]*)\))', #Adverb modifying adjective or nominal 'N10':r'(((\(RB (?![Nn]ot\))(?![Nn]\'t\))([^)]+)\))([ )]*)(\(((NP)|(ADJP)) )?\((NN|NNS|NNP|NNPS|JJ|JJR|JJS|PRP|CD|DT|WP) ([^()]+)\))|(\((NN|NNS|NNP|NNPS|JJ|JJR|JJS|PRP|CD|WP) [^()]+\) \(RB ([^()]+)\))|(\(NP \(PDT ([^()]+)\)))', #Other bound morphemes on Nouns or adjectives(not stored as a lexical unit) 'N11':r'(\((JJR|JJS|JJ) ((?!([Bb]etter)|([Oo]ther)|([Ss]uper)|([Bb]est)|([Ss]ister)|([Oo]ver)|([Uu]nder))(([Uu]n)?[^()]+((er)|(est)|(ies)|(ish)))|(([Uu]n)[^()]+((er)|(est)|(ies)|(ish))?))\))', #Other not used 'N12':'', #Verb 'V1':r'(\((AUX|VB|VBD|VBG|VBN|VBP|VBZ) ([^)]*)\))', #Particle or preposition #((?<=\(PP \()IN(?= [^)]+\) \(S))| 'V2':r'(\(((RP)|((?<=\(PP \()((IN)|(TO))(?= [^)]+\) \())|((?<=\(PP \()((IN)|(TO))(?! ([^)]+)\) \(S))) ([^)]*)\))', #Prepositional Phrase (Prep + NP) 'V3':r'(\PP \(((IN)|(TO)) ([^)]*)([ )]*)\(NP( \(([A-Z$]+) ([^)]*)\))+)', #Copula linking two nominals #NP VP NP or NP VP ADJP 'V4':r'((( [Ii\']s\))|( [Aa]re\))|( [Aa]m\))|( [Bb]e\))|( [Ww]ere\))|( [Bb]een\))|( [Bb]eing\))|( [Ww]as\))|( [Bb]ec[oa]me)|( [Bb]ecoming\))|( [Ss]eem))|(\(((NP)|(WHNP))( (\([A-Z$]+ ([^()]+)\))+)\) (\(VP ([A-Z]+ [^()]+)+? )?\((VP|SQ) \((AUX|VB|VBZ|VBG|VBN|VBD|VBP) ([^()]+)\) (\(RB [^()]+\) )?\(ADJP( \([A-Z$]+ ([^()]+)\))+\)))', #Catenative(pseudo-auxiliary) preceeding a verb 'V5':r'((gonna)|(hafta)|(wann?t?a)|(s\'pposedt?a))\)+ +\(VP \(((VB)|(AUX)) [^()]+\)', #Auxilary do,is,have in VP 'V6':r'(\(AUX (([dD](o|id|oing|ne))|([Bb]i(een|e|eing))|([Ii\']s)|([Aa\'](m|re))|([Ww](as|ere))|([Hh]a(d|s|ve|ving))))', #Progressive suffix 'V7':r'(\(VP \((VBG) ([^()]+ing)\))', #Adverb 'V8':r'(\(((RB)|(WRB|NP \(PDT)) ([^)]*)\))', #Modal preceeding verb 'V9':r'((\(VP \(MD ([^()]+)\) (\(RB [^()]+\) )?\(VP( \((\w+) ([^)]+)\))+\))|(\(SQ \(MD ([^ ()]+)\)( \(RB [^()]+\))?( \((\w+) ([^)]*)\))+\) \(VP( \((\w+) ([^)]*)\))+\)))', #Third person singular present tense suffix 'V10':r'((\(VBZ ([^)]*)\))|(\(AUX (?![\']?s\))([^)]*s)\)))', #Past tense modal #Check for the list of all the modals in the PENN Tree bank 'V11':r'(\(MD ((?i)((could)|(would)|(should)|(might)|(must)|(need)|(ought)|(dared)|(\'ll)))\))', #Regular past tense prefix 'V12':r'(\(VP \(VB[DN] ([^)]+ed)\))', #Past tense auxiliary - only looking for Did, Was, Had #Check the PENN Tree bank for the entire list #Regular past tense ends with ed except for the irregular verbs #Need to get a list of the irregular verbs 'V13':r'(\(AUX ((([Dd]id)|([Ww]as)|([Ww]ere)|([Hh]ad)|(\'d))|([^)]*[^e]ed))\))', #Medial adverb 'V14':r'\n?.*?(\([A-Z$]+ [^()]+\).*?(W?RB|\(NP \(PDT) (?!not)([^()]+)(.*?\([A-Z$]+ [^()]+\)).*\n?)', #Copula,Modula or Auxiliary for emphasis or ellipsis #Look at this later #Common - Yes - positive forms of the modal (no not present after modal) # No - negative form of the modal present(not or n't present after modal/aux) #Need to look at Copula verbs for ellipsis 'V15':r'(((\(RB [Yy]es\)) |(\((DT [Nn]o)\))).*?(\((MD|AUX) ([^)]*)\)))', #Past tense copula #Check for past tense auxiliaries? 'V16':r'((( [Ww]ere\))|( [Bb]een\))|( [Ww]as\))|( [Bb]ecame)|( [Ss]eemed))|(\(((NP)|(WHNP))( (\([A-Z$]+ ([^()]+)\))+)\) (\(VP ([A-Z]+ [^()]+)+? )?\((VP|SQ) \((VBD) ([^()]+)\) (\(RB [^()]+\) )?\(ADJP( \([A-Z$]+ ([^()]+)\))+\)))', #r'(\((NP|WHNP)( (\((\w+) ([^)]+)\))+)\) \((VP|SQ) \(((AUX (([Dd]id)|([Ww]as)|([Hh]ad)|(\'d))|([^)]*[^e]ed))|(VBD ([^)]+)))\) \((ADJP|NP)( \((\w+) ([^)]+)\))+\))', #Bound morpheme on a verb or adjective(to make an adverb) #Need to get all the possible rules that go with this 'V17':r'\(((VB[^G]?)|(RB)) ((((?![Rr]emember)(?![Ii]nside)(?![Rr]ecord)(([Rr]e)|([Ii]n)|([Ee]n)|([uU]n)|([Mm]is)|([Tt]rans)|([eE]x)|([Dd]is))([^ ()]+))|((?![Oo]nly)([^ ()]+)(ly))))\)', #r'\((VB|RB|VBZ|VBG|VBD|VBN|VBP|AUX|RB) (((un|re)(\w+)(ly)?)|((\w+)(ly))\))', #Intonationally marked question 'Q1':r'((\(S. \((FRAG|NP|(S \(VP)).*(\. \?))+?)', # Routine do/go or existence name question or wh-pronoun alone. 'Q2':r'((\(S. .*\(((WP(\$)?)|WHNP|WHADP|WHAVP|WHPP) [^)]+\).*(\. \?))+?)', #(Simple Negation +X ) neg=no(t), can't don't X=NP,PP,VP,Adj, Adv etc 'Q3':r'((\(S..*\((RB|DT) ([Nn](o|ot|\'t|ever))\).*\(\. [?.!]\))+?)', #Initial Wh-pronoun followed by verb 'Q4':r'((\(S. (\(([A-Z$]+ ))+(\(WP(\$)? ([^)]+)\))[ )]*(\(([A-Z$]+ ))*\((AUX|VB|VBD|VBP|VBN|VBG|VBZ|MD).*(\. \?))+?)', #Negative Morpheme between subject and verb 'Q5':r'((\(S. (\(S \(NP.*(\(VP(\)| )+((\(((AUX)|(MD)) [^)]+\))? \(RB ((\'nt)|(not)|(n\'t))\) \(VP).*))\(\. [!.?]\))+?)', #Wh-question with inverted modal, copula or auxillary 'Q6':r'((\(S. \(SBARQ.*\(SQ.*(\. \?))+?)', #Negation of copula, modal or auxiliary 'Q7':r'(\(S1.*(\(VP \(((AUX)|(MD)) [^)]+\) (\(ADVP )?\(RB ((not)|(n\'t)|(\'nt)|(never))\)(.*))\(\. [.!?]\))+?', #r'((\(S. .*\(((AUX)|(MD)) [^)]+\) \(RB ((not)|(n\'t)).*(\. \?))+?)', #Yes/no question with inverted modal, copula or auxiliary 'Q8':r'((\(S. \(SQ.*(\. \?))+?)', #Why, When, Which, Whose 'Q9':r'((\(S. (\(([A-Z$]+ ))+([Ww](hy|hen|hich|hose)).*(\. \?))+?)', # Tag Question 'Q10':r'(\(S1((?!( \(S((Q)|(BARQ)))).*) \(, ,\) (.*)\(\. \?\))+?', #Other: e.g questions with negation and inverted cop/aux/modal 'Q11':r'((\(S. .*\(((SBARQ)|((SQ)?)|(S)|(SINV)) (?!\(NP).*\((SQ ).*(\(((AUX)|(MD)) [^)]+\) \(RB ((not)|(n\'t))).*(\. \?\)))+?)', # Two word combination 'S1':r'((\(S..*\(\. [.!?]\))+?)', # Subject verb sequence 'S2':r'(\n?.*?\(S ((\(NP [^\n]*\(VP.*\n?)))', # Verb object sequence 'S3':r'(\n?.*?(\(VP.*?\(NP.*\n?))', # Subject Verb Object Sequence 'S4':r'(\n?.*?\(S ((\(NP [^\n]*\(VP.*?\(NP.*\n?)))', # Conjunction(any) #'S5':r'(S. .*((\(CC)|((?<!\(PP )\(IN(?= ([^)]+)\) \(S))) ([^)]+)\).*\(\. [!?.]\))+?', 'S5':r'(S. .*((((\(CC)|((?<!\(PP )\(IN(?= ([^)]+)\) \(S))) ([^)]+)\))|(\(CONJP( \([A-Z$1-9]+ [^)]+\))+\))).*\(\. [!?.]\))+?', # Sentence with two VP's 'S6':r'((\(S. .*(.*(\((VB|VBZ|VBP|VBN|VBD) ([^)]+)\).*?){2,}.*)\(\. [.!?]\))+?)', # Conjoined phrases 'S7':r'((\(S. .*?\([A-Z]+ (\((?P<i>[A-Z]{2,})[A-Z$]? [^)(]+\)(( \(CC [^)]+\) \((?P=i).{,2} [^()]+\)))+)\)?.*\(\. [.!?]\))+?)', # Infinitive without catenative marked with to 'S8':r'((S. .*(\(VP.*?(?=\((VB[GPNZD]?)|(AUX) ).*?\(VP.*?TO.*(?=\(VP.*?\(((VB)|(AUX)) ).*\(\. [!?.]\)))+?)', # Let/Make/Help/Watch introducer 'S9':r'((\(S. (\([A-Z$1-9]+ )+(\(((RB)|(UH)) [^()]+\)+ )?\(VP \(VB (([Ll]et)|([Hh]elp)|([Mm]ake))\).*\((VB|VBD|VBZ|VBN|VBP|VBG|AUX).*\(\. [.?!]\))+?)', # Adverbial Conjunction 'S10':r'(S. .*((((\(CC)|((?<!\(PP )\(IN(?= ([^()]+)\) \(S))) ([^()]+)\))|(\(CONJP( \([A-Z$1-9]+ [^()]+\))+\))).*\(\. [!?.]\))+?', # Propositional Complement # Need to get a list of words 'S11':r'(\(S1.*\(VP \(VB.? ((mean)|(forget)|(forgot)|(say)|(said)|(tell)|(told)|(guess)|(know)|(knew)|(remember)|(wonder)|(judj)|(use)|(using)|(show)|(think)|(thought))[^()]*\) (\(SBAR ((\([A-Z]+ )+\([A-Z$]+ [^()]+\)\) )?\(S \(NP.*)\(\. [.!?]\))+?', # Conjoined sentences (Except for imperatives, will usually have subj + predicate in each clause) #Left to consider Wh conjunctives - right now have considered CC and IN conjunctives 'S12':r'(S. (((?=\(((S)|(SBAR)|(SBARQ)|(SINV)|(SQ)|(VP)) )(.*)(((?<=\){2} )\(CC)|((?<!\(PP )\(((S)|(SBAR)|(SBARQ)|(SINV)|(SQ)|(VP)) IN(?= ([^)]+)\) \(S))) [^)]+\) (\((S|SBAR|SBARQ|SINV|VP) .*))+)\(\. [.!?]\))+?', # Wh-clause 'S13':r'((\(S. .*\(((SBAR(Q)?)|SINV|SQ|S) \(((WHNP)|(WHADJP)|(WHADVP)|(WHPP)).*\(\. [.!?]\))+?)', # Bitransitive predicate 'S14':r'(\(S1.*(\(VP (\(VB[GDPNZ]? [^()]+\))+\)* *\(NP (\([A-Z]+ [^()]+\))+\) *?(\(PP \(((IN)|(TO)) ((to)|(for))]+\) )?\(NP \((?!RB)[A-Z]+ (?!(tonight)|(tomorrow)|(today))[^()]+\)( \([A-Z]+ [^()]+\))*\)* *?.*)\(\. [.!?]\))+?', # Sentence with three or more VPs 'S15':r'((\(S..*(.*(\((VB|VBZ|VBP|VBN|VBD|AUX) ([^)]+)\).*){3,}.*)\(\. [.!?]\))+?)', # Relative clause marked or unmarked 'S16':r'(\(S1 .*?(\(NP .*?(\(SBAR (?!\(IN ).*?\(S .*))+\(\. [?.!]\)+)+?', # Infinitive clause new subject 'S17':r'(\(S1.*\(VP( \((?!VBG)[A-Z]+ [^()]+\))+( (\(S )\(NP( \([A-Z$]+ [^()]+\))+\)+ *\(VP \(TO to\) \(VP \(((VB)|(AUX)) [^()]+\).*)\(\. [?!.]\))+?', # Gerund 'S18':r'((\(.*\(VBG.*\(\. [.!?]\))+?)', # Fronted or center-embedded subordinate clause 'S19':r'((\(.*?(\(SBAR (\(IN [^)]+\) )?\(S.*)\(\. [?.!]\)+)+?)', # Other: e.g passive constructions e.g tag comments/intrusions 'S20':r'' } Nouns=["N1","N2","N3","N4","N5","N6","N7","N8","N9","N10","N11","N12"] Verbs=["V1","V2","V3","V4","V5","V6","V7","V8","V9","V10","V11","V12","V13","V14","V15","V16","V17"] Questions=["Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10","Q11"] Sentences=["S1","S2","S3","S4","S5","S6","S7","S8","S9","S10","S11","S12","S13","S14","S15","S16","S17","S18","S19","S20"] Description={ 'N1':"Proper Mass or Count Noun", 'N2':"Pronoun,Prolocative excluding modifiers", 'N3':"Modifier including adjectives, possessives and quantifiers", 'N4':"Two word NP preceded by article or modifier", 'N5':"Article used before a noun", 'N6':"Two word NP(as in N4) after verb or preposition", 'N7':"Plural suffix", 'N8':"Two word NP (as in N4 before verb)", 'N9':"Three word NP (Det-Mod-N or Mod-Mod-N)", 'N10':"Adverb modifying adjective or nominal", 'N11':"Any other bound morpheme on N or adjective(if judged not to be stored as lexical unit", 'N12':"Others", 'V1':"Verb", 'V2':"Particle or preposition", 'V3':"Prepositional Phrase (Prep+NP)", 'V4':"Copula linking two nominals (nominal + copula + nominal, copula)", 'V5':"Catenative (pseudo-auxiliary) preceeding a verb (catenative,verb)", 'V6':"Auxiliary be, do, have in VP", 'V7':"Progressive Suffix", 'V8':"Adverb", 'V9':"Modal preceeding verb", 'V10':"Third person singular present tense suffix", 'V11':"Past tense modal", 'V12':"Regular past tense suffix", 'V13':"Past tense auxiliary", 'V14':"Medial adverb", 'V15':"Copula, Modal or Auxiliary used for emphasis or ellipsis(uncontractible context)", 'V16':"Past tense copula", 'V17':"Bound morpheme on a verb or an adjective(to make an adverb)", 'Q1':"Intonationally marked question", 'Q2':"Routine do/go existence name question or wh-pronoun alone", 'Q3':"Simple Negation +X ) neg=no(t), can't don't X=NP,PP,VP,Adj, Adv etc", 'Q4':"Initial Wh-pronoun followed by verb", 'Q5':"Negative Morpheme between subject and verb", 'Q6':"Wh-question with inverted modal, copula or auxillary", 'Q7':"Negation of copula, modal or auxiliary", 'Q8':"Yes/no question with inverted modal, copula or auxiliary", 'Q9':"Why, When, Which, Whose", 'Q10':"Tag Question", 'Q11':"Other: e.g questions with negation and inverted cop/aux/modal", 'S1':"Two word combination", 'S2':"Subject verb sequence", 'S3':"Verb object sequence", 'S4':"Subject Verb Object Sequence", 'S5':"Conjunction (any)", 'S6':"Sentence with two VP's", 'S7':"Conjoined phrases", 'S8':"Infinitive without catenative, marked with to", 'S9':"Let/Make/Help/Watch introducer", 'S10':"Adverbial Conjunction", 'S11':"Propositional Complement", 'S12':"Conjoined sentences (Except for imperatives, will usually have subj + predicate in each clause)", 'S13':"Wh-clause", 'S14':"Bitransitive predicate", 'S15':"Sentence with three or more VPs", 'S16':"Relative clause marked or unmarked", 'S17':"Infinitive clause new subject", 'S18':"Gerund", 'S19':"Fronted or center-embedded subordinate clause", 'S20':"Other: e.g passive constructions e.g tag comments/intrusions" }
[ "personalrobots@personals-mbp-2.media.mit.edu" ]
personalrobots@personals-mbp-2.media.mit.edu
50e8e04c4deab7182142c61d85c30d3bfdd2d297
e5478c3d51ab4a2e1408264f13531659c6ccd56e
/resnet.py
1b7d5061eb6313023fc2717ec04923875e7795d1
[]
no_license
qy734504548/cloud-and-cloud-shadow
e4b21b0d106183ebd2e58183302a9aa3ee8f83ad
79698b661ec14bbf6596d2a0e8ad699fe085504e
refs/heads/master
2023-01-13T04:52:37.230604
2020-11-07T07:59:47
2020-11-07T07:59:47
310,792,842
1
0
null
null
null
null
UTF-8
Python
false
false
8,597
py
import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class SPBlock(nn.Module): def __init__(self, inplanes, outplanes): super(SPBlock, self).__init__() midplanes = outplanes self.conv1 = nn.Conv2d(inplanes, midplanes, kernel_size=(3, 1), padding=(1, 0), bias=False) self.bn1 = nn.BatchNorm2d(midplanes) self.conv2 = nn.Conv2d(inplanes, midplanes, kernel_size=(1, 3), padding=(0, 1), bias=False) self.bn2 = nn.BatchNorm2d(midplanes) self.conv3 = nn.Conv2d(midplanes*2, outplanes, kernel_size=1, bias=True) self.pool1 = nn.AdaptiveAvgPool2d((None, 1)) self.pool2 = nn.AdaptiveAvgPool2d((1, None)) self.relu = nn.ReLU(inplace=False) def forward(self, x): _, _, h, w = x.size() x1 = self.pool1(x) x1 = self.conv1(x1) x1 = self.bn1(x1) x1 = x1.expand(-1, -1, h, w) x2 = self.pool2(x) x2 = self.conv2(x2) x2 = self.bn2(x2) x2 = x2.expand(-1, -1, h, w) x = torch.cat([x1,x2],dim=1) x = self.relu(x) x = self.conv3(x).sigmoid() return x class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None,spm_on=False): super(Bottleneck, self).__init__() self.conv1 = conv1x1(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.spm = None if spm_on: self.spm = SPBlock(planes, planes) def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) if self.spm is not None: out = out * self.spm(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,spm_on=False): super(ResNet, self).__init__() self.spm_on = spm_on self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) spm_on = False if planes == 512: spm_on = self.spm_on layers = [] layers.append(block(self.inplanes, planes, stride, downsample,spm_on=spm_on)) self.inplanes = planes * block.expansion for i in range(1, blocks): if i >= blocks - 1 or planes == 512: spm_on = self.spm_on layers.append(block(self.inplanes, planes,spm_on=spm_on)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model
[ "734504548@qq.com" ]
734504548@qq.com
cff3e9148fe021dbca2f36fd24270a1aace86027
d9aa525b6a359378572fa7e48bd4fb8529b9ce23
/monitoring/services/tests.py
2e6a0fa69ed320fbbe1fcc4f7506227fdb4949ab
[ "Apache-2.0" ]
permissive
naanal/monasca-ui
cb5b7c279836d31809392d5b4572536fbea3634e
37d8926015e35f8949606183469d532924ab58c2
refs/heads/master
2020-02-26T13:04:25.471867
2016-08-16T05:39:24
2016-08-16T05:39:24
64,387,546
0
0
null
2016-07-28T10:46:54
2016-07-28T10:46:53
null
UTF-8
Python
false
false
1,595
py
# coding=utf-8 from django.core import urlresolvers from django.test import RequestFactory from mock import patch, call # noqa from monitoring.test import helpers from monitoring.services import constants from monitoring.services import views INDEX_URL = urlresolvers.reverse( constants.URL_PREFIX + 'index') class ServicesTest(helpers.TestCase): def test_index_get(self): res = self.client.get(INDEX_URL) self.assertTemplateUsed( res, 'monitoring/services/index.html') self.assertTemplateUsed(res, 'monitoring/services/monitor.html') class KibanaProxyViewTest(helpers.TestCase): def setUp(self): super(KibanaProxyViewTest, self).setUp() self.view = views.KibanaProxyView() self.request_factory = RequestFactory() def test_get_relative_url_with_unicode(self): """Tests if it properly converts multibyte characters""" import urlparse self.view.request = self.request_factory.get( '/', data={'a': 1, 'b': 2} ) expected_path = ('/elasticsearch/.kibana/search' '/New-Saved-Search%E3%81%82') expected_qs = {'a': ['1'], 'b': ['2']} url = self.view.get_relative_url( u'/elasticsearch/.kibana/search/New-Saved-Searchあ' ) # order of query params may change parsed_url = urlparse.urlparse(url) actual_path = parsed_url.path actual_qs = urlparse.parse_qs(parsed_url.query) self.assertEqual(actual_path, expected_path) self.assertEqual(actual_qs, expected_qs)
[ "rajagopalx@gmail.com" ]
rajagopalx@gmail.com
eb3b55eedce28c1c02e8152a77bbdf359143ea51
d73f54a99e833701917fdf86024e08f071411627
/sudoku.py
ae8b12d008abac544ee88ac758806dc24b68836b
[]
no_license
MrBenC88/Simple-Sudoku-Solver-Python
a86e5b5ffaf40b33a8b00f708f0190f5c50bd8d9
248bea2cad645d4d32802baa670f3caa3967e519
refs/heads/master
2020-11-27T13:24:21.904710
2019-12-21T17:16:57
2019-12-21T17:16:57
229,459,525
1
0
null
null
null
null
UTF-8
Python
false
false
3,711
py
#sudoku.py ''' Backtracking Sudoku Puzzle Solver 1. Parse through board and find empty space 2. Place digits 1-9 in space. 3. Check if digit is valid in spot and if board is valud. 4. If digit valid, fill next spot in board. If not valid, reset the square to empty (bd[row][col] = 0 ) using backtracking and try different value 5. Once board is full, it is solved. ''' board = [ [7,8,0,4,0,0,1,2,0], [6,0,0,0,7,5,0,0,9], [0,0,0,6,0,1,0,7,8], [0,0,7,0,4,0,2,6,0], [0,0,1,0,5,0,9,3,0], [9,0,4,0,6,0,0,0,5], [0,7,0,3,0,0,0,1,2], [1,2,0,0,0,7,4,0,0], [0,4,9,2,0,6,0,0,7] ] board2 = [ [0,0,0,4,0,0,1,0,0], [6,0,0,0,0,5,0,0,9], [0,0,0,6,0,1,0,7,0], [0,0,0,0,0,0,2,6,0], [0,0,1,0,0,0,0,3,0], [9,0,0,0,6,0,0,0,5], [0,7,0,3,0,0,0,1,2], [1,0,0,0,0,7,0,0,0], [0,4,0,2,0,0,0,0,7] ] def printbd(bd): #Param: Board #Prints the Sudoku Board State for i in range (len(bd)): if i % 3 ==0 and i !=0: print("- - - - - - - - - - - -") for j in range (len(bd[0])): #Length of each row if j != 0 and j % 3 == 0: print(" | ", end="") if j == 8: print(bd[i][j]) else: print(str(bd[i][j]) + " ", end="") def solve(bd): #Assume that Board is filled. #Base case find = findEmptySquare(bd) if not find: return True else: row, col = find for i in range(1,10): #Check values 1-9 and see if they are valid after adding them in solution if valid(bd, i, (row,col)): bd[row][col] = i if solve(bd): # Solve helper function return True bd[row][col] = 0 #Backtracking. Reset last element and try diff value return False def findEmptySquare(bd): # Given board, finds empty square and returns its position # Empty is denoted by integer 0 for i in range (len(bd)): for j in range (len (bd[0])): if bd[i][j] == 0: return (i, j) # row, col return None # if no blank squares , then return none. def valid(bd, num, pos): #Checks if Board is valid #Check row for i in range (len(bd[0])): if bd[pos[0]][i] == num and pos[1] != i: #Check through each element in the row #If matches the number that we added in, return false. #If it is the position we inserted then ignore that position return False #Check columns for i in range (len(bd)): if bd[i][pos[1]] == num and pos[0] != i: #Check column value return False #Check Box of 9 (3x3 grids) ''' We use integer division to get the specific locations of each grid of 3. The 9 boxes thus would be. (0,0) | (0,1) | (0,2) - - - - - - - - - - - - (1,0) | (1,1) | (1,2) - - - - - - - - - - - - (2,0) | (2,1) | (2,2) ''' gridx = pos[1] // 3 gridy = pos[0] // 3 for i in range(gridy*3, gridy*3 + 3): # from the gridx, gridy, we only get 0, 1, 2. # Note that to check elements within each box, # We have to take the gridx, gridy values and multiple by 3, and add 3 #ie. if we have box at y =2, we will be in lower right-hand box # Multiply 3 and then add 3 to get to index (for index 6, 7, 8, etc.) for j in range(gridx*3, gridx*3 + 3): if bd[i][j] == num and (i,j) != pos: return False return True solve(board) printbd(board) print("---------------------------------------") solve(board2) printbd(board2)
[ "chessben88@gmail.com" ]
chessben88@gmail.com
464fd32e21826eb900ab44421bba05a56e8c869a
6935f8334f17e59f0691695e1404ce2fa3c18b98
/src/signali_notification/migrations/0001_initial.py
f541895c83cd237322504219131944b4e337173d
[]
no_license
obshtestvo/signali
a7b74746cba487ea3dacedbd2eda4876b972056e
f0c64bea9e151023612e33e476d0723819924e19
refs/heads/master
2016-08-05T17:13:55.793165
2016-01-20T16:39:36
2016-01-20T16:39:36
34,040,168
0
3
null
null
null
null
UTF-8
Python
false
false
1,159
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('signali_contact', '0004_auto_20150903_0029'), ] operations = [ migrations.CreateModel( name='Subscriber', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('email', models.EmailField(max_length=250, verbose_name='email')), ('last_notified_at', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Last notified at')), ('created_at', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Added at')), ('contactpoint', models.ForeignKey(related_name='subscribers', to='signali_contact.ContactPoint')), ], options={ 'abstract': False, 'verbose_name_plural': 'subscriber', 'verbose_name': 'subscriber', }, bases=(models.Model,), ), ]
[ "antitoxic@gmail.com" ]
antitoxic@gmail.com
7771948bcd169782ab2c13192c605d49d242b9ed
70bf561fb6b77577eebd3f14500cb457da25bdd2
/backend/api/features/users/schemas.py
2ad0cf8983ef8ee9e7401fa479039b75832e4bdb
[ "MIT" ]
permissive
mmvo91/recipe-manager
cdfeb066e5f5343a9fc4aa5b7bcf4b6d815c09e1
522804f2ef49ddd4bcd9f073a8d0beaf893ed8c0
refs/heads/master
2023-02-05T22:52:46.227482
2020-12-30T09:37:21
2020-12-30T09:37:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
from api.utils.schema import JSONModel class UserBase(JSONModel): username: str email: str class UserCreate(UserBase): password: str class User(UserBase): id: int active: bool class Config: orm_mode = True class UserLogin(JSONModel): username: str password: str
[ "michaelmvo91@gmail.com" ]
michaelmvo91@gmail.com
170ccd24c50321c37c6335c0652314406ed7802a
22a7161361089b84a09457b46d79ce2bd87f5b2c
/tests/urls.py
bb83d09b1ab5c7ac9d1103f51acf97588d336b6b
[]
no_license
matthew-a-dunlap/django-inspectional-registration
56fb9b9945d41de069034fd066e3b92b388b8498
d6dd945718e5f7ac09966763c83104c4966cb775
refs/heads/master
2020-09-09T17:33:18.128626
2016-05-23T19:57:19
2016-05-23T19:57:19
221,512,520
0
0
null
2019-11-13T17:13:08
2019-11-13T17:13:07
null
UTF-8
Python
false
false
399
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals try: from django.conf.urls import url, patterns, include except ImportError: from django.conf.urls.defaults import url, patterns, include from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^admin/', include(admin.site.urls)), url(r'^registration/', include('registration.urls')), )
[ "lambdalisue@hashnote.net" ]
lambdalisue@hashnote.net
c150cb2b3d525912e69339d0c70b0420d9e05cc5
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02577/s522201630.py
dee13346a32585c238531954da820bc0241080a6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
x = input() if sum([int(i) for i in x]) % 9 == 0: print("Yes") else: print("No")
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
4523042c199bfcef8e6db6475c59c6e2502fe508
037cf499131b335c8721c75620d835cdcbca63d7
/makemigrations.py
278ac19d6b905743aa51d89cf6c96df6e8138f14
[]
no_license
mihai-dobre/homework
35e38028785b485e06e7da704fca4a91563a63f6
a550d7044c664e1c56c092f4de3bf0539d069cd3
refs/heads/master
2021-01-23T04:53:23.602698
2017-09-05T17:17:45
2017-09-05T17:17:45
102,453,665
0
0
null
null
null
null
UTF-8
Python
false
false
879
py
#!/home/mido/.virtualenvs/homework/bin/python import imp from migrate.versioning import api from app import db from config import SQLALCHEMY_DATABASE_URI from config import SQLALCHEMY_MIGRATE_REPO v = api.db_version(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO) migration = SQLALCHEMY_MIGRATE_REPO + ('/versions/%03d_migration.py' % (v+1)) tmp_module = imp.new_module('old_model') old_model = api.create_model(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO) exec(old_model, tmp_module.__dict__) script = api.make_update_script_for_model(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO, tmp_module.meta, db.metadata) open(migration, "wt").write(script) api.upgrade(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO) v = api.db_version(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO) print('New migration saved as ' + migration) print('Current database version: ' + str(v))
[ "mihai.dobre@cegeka.com" ]
mihai.dobre@cegeka.com
7c3d454eab4479bf2d1ee619b4491847e62b46a7
990be294e69d48676a0f8176c37110328956e71a
/setup.py
0f4229bd5622ea158ea444f05713573247bda4b3
[]
no_license
akshaypermunda/datascience
09898d9dd660e7ca441e22beed9d409174a46031
e06703b336d706131a708640c15567065d469f88
refs/heads/master
2022-12-15T08:28:03.846168
2020-09-13T16:25:45
2020-09-13T16:25:45
295,188,700
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='A dashboard which provides an interactive visualization of COVID-19 Data which can be customized accroding to local interests.', author='Akshay Permunda', license='', )
[ "noreply@github.com" ]
akshaypermunda.noreply@github.com
87d4b4ebc24eaadfa59d9ccf86df148e535339ef
b7fa0b3198ced1e775cacff7c091dd13024f4b33
/kmeans_bluewarning_analysis.py
24458c222996fc4e3b511a6ec89b27f9cc14df0d
[]
no_license
Dechuan/BlueWarning_clusters
9052b23f56fd72fab414a86d3d057efd382833a9
2c5b2c4f7c7cb3b7ee5dde9cf99540e1c73859f2
refs/heads/master
2020-07-12T12:27:29.346655
2019-08-28T01:23:26
2019-08-28T01:23:26
204,819,731
0
0
null
null
null
null
UTF-8
Python
false
false
2,370
py
from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer from sklearn.cluster import KMeans import jieba from sklearn import metrics import pandas as pd #import os def kmeans_blue_warning(in_df): n_clusters=10 abs_score_list = [] ScoreList = [] CountDict = dict() TrainData = in_df['summary'].tolist() TrainIndex= in_df['id'].tolist() TrainTime=in_df['timestamp'].tolist() TrainKey=in_df['key'].tolist() vectorizer = CountVectorizer() X = vectorizer.fit_transform([" ".join([b for b in jieba.lcut(a,cut_all=True)]) for a in TrainData]) word = vectorizer.get_feature_names() print('word:',word) transformer = TfidfTransformer() tfidf = transformer.fit_transform(X.toarray()) km=KMeans(10) km.fit(tfidf.toarray()) for i in tfidf.toarray(): score = km.score(i.reshape(1, -1)) ScoreList.append(score) abs_score_list.append(abs(score)) sort_score_list = sorted(abs_score_list) scorelen = len(sort_score_list) for i in sort_score_list: count = 0 for j in sort_score_list: if j <= i: count = count + 1 CountDict[i] = count / scorelen bin_start=0 ModelDict = {} Risk = [] Summary = [] Category = [] Variance = [] i=0 while bin_start < len(km.labels_): scores = ScoreList[bin_start] cdfscore = CountDict[abs(scores)] Risk.append(round(1 / (1.0001 - cdfscore), 0)) #Summary.append(TrainData[bin_start]) Category.append(km.labels_[bin_start]) #Variance.append(scores) bin_start = bin_start+ 1 while i<len(Risk): if Risk[i]>=1000: Risk[i]='1000+' elif (Risk[i]<1000)&(Risk[i]>=100): Risk[i]='100+' elif (Risk[i]<100)&(Risk[i]>=10): Risk[i]='10+' elif Risk[i]<10: Risk[i]='1+' i=i+1 ModelDict = {'id': TrainIndex,'risk': Risk,'category':Category,'summary':TrainData,'timestamp':TrainTime,'key':TrainKey} out_df= pd.DataFrame(ModelDict, columns=['id', 'risk','category','summary','timestamp','key']) return out_df #dataFile = 'data/OUTPUT.csv' dataFile='data/alert2.csv' data = pd.read_csv(dataFile,encoding="gb2312") print(data) result = kmeans_blue_warning(data) result.to_csv("result/keys_TFIDF.csv",index=False)
[ "songciting@163.com" ]
songciting@163.com
b39d75d312bbf42e01d04bc586a80ba6c93b0ed2
e0330ee0cdc9521692595df137180fa0d00864e8
/ENV/bin/wsdump.py
516407141b978a7bdf49300d9872a925f8b2aba5
[]
no_license
lesps/Jeeves.Witherspoon
ce8fb4fc13b0824ffbf19a2a95c4df5b21f1b4c6
4012bb5f2bef1a61d7af849668740f6f156511fd
refs/heads/master
2020-05-27T10:34:12.492532
2013-07-27T20:20:15
2013-07-27T20:20:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,132
py
#!/home/spencer/python/Jeeves/ENV/bin/python import argparse import code import sys import threading import websocket try: import readline except: pass OPCODE_DATA = (websocket.ABNF.OPCODE_TEXT, websocket.ABNF.OPCODE_BINARY) ENCODING = getattr(sys.stdin, "encoding", "").lower() class VAction(argparse.Action): def __call__(self, parser, args, values, option_string=None): if values==None: values = "1" try: values = int(values) except ValueError: values = values.count("v")+1 setattr(args, self.dest, values) def parse_args(): parser = argparse.ArgumentParser(description="WebSocket Simple Dump Tool") parser.add_argument("url", metavar="ws_url", help="websocket url. ex. ws://echo.websocket.org/") parser.add_argument("-v", "--verbose", default=0, nargs='?', action=VAction, dest="verbose", help="set verbose mode. If set to 1, show opcode. " "If set to 2, enable to trace websocket module") return parser.parse_args() class InteractiveConsole(code.InteractiveConsole): def write(self, data): sys.stdout.write("\033[2K\033[E") # sys.stdout.write("\n") sys.stdout.write("\033[34m" + data + "\033[39m") sys.stdout.write("\n> ") sys.stdout.flush() def raw_input(self, prompt): line = raw_input(prompt) if ENCODING and ENCODING != "utf-8" and not isinstance(line, unicode): line = line.decode(ENCODING).encode("utf-8") elif isinstance(line, unicode): line = encode("utf-8") return line def main(): args = parse_args() console = InteractiveConsole() if args.verbose > 1: websocket.enableTrace(True) ws = websocket.create_connection(args.url) print("Press Ctrl+C to quit") def recv(): frame = ws.recv_frame() if not frame: raise websocket.WebSocketException("Not a valid frame %s" % frame) elif frame.opcode in OPCODE_DATA: return (frame.opcode, frame.data) elif frame.opcode == websocket.ABNF.OPCODE_CLOSE: ws.send_close() return (frame.opcode, None) elif frame.opcode == websocket.ABNF.OPCODE_PING: ws.pong("Hi!") return None, None def recv_ws(): while True: opcode, data = recv() msg = None if not args.verbose and opcode in OPCODE_DATA: msg = "< %s" % data elif args.verbose: msg = "< %s: %s" % (websocket.ABNF.OPCODE_MAP.get(opcode), data) if msg: console.write(msg) thread = threading.Thread(target=recv_ws) thread.daemon = True thread.start() while True: try: message = console.raw_input("> ") ws.send(message) except KeyboardInterrupt: return except EOFError: return if __name__ == "__main__": try: main() except Exception as e: print(e)
[ "lesp@seas.upenn.edu" ]
lesp@seas.upenn.edu
1e44f68b4293ce9210579097294860acfc7ebac2
f8f2536fa873afa43dafe0217faa9134e57c8a1e
/aliyun-python-sdk-ons/aliyunsdkons/request/v20190214/UntagResourcesRequest.py
3e59f17cdafd0c517f61e6e5a9daaacecfc58d26
[ "Apache-2.0" ]
permissive
Sunnywillow/aliyun-openapi-python-sdk
40b1b17ca39467e9f8405cb2ca08a85b9befd533
6855864a1d46f818d73f5870da0efec2b820baf5
refs/heads/master
2022-12-04T02:22:27.550198
2020-08-20T04:11:34
2020-08-20T04:11:34
288,944,896
1
0
NOASSERTION
2020-08-20T08:04:01
2020-08-20T08:04:01
null
UTF-8
Python
false
false
2,302
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkons.endpoint import endpoint_data class UntagResourcesRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ons', '2019-02-14', 'UntagResources','ons') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_All(self): return self.get_query_params().get('All') def set_All(self,All): self.add_query_param('All',All) def get_ResourceIds(self): return self.get_query_params().get('ResourceIds') def set_ResourceIds(self, ResourceIds): for depth1 in range(len(ResourceIds)): if ResourceIds[depth1] is not None: self.add_query_param('ResourceId.' + str(depth1 + 1) , ResourceIds[depth1]) def get_ResourceType(self): return self.get_query_params().get('ResourceType') def set_ResourceType(self,ResourceType): self.add_query_param('ResourceType',ResourceType) def get_InstanceId(self): return self.get_query_params().get('InstanceId') def set_InstanceId(self,InstanceId): self.add_query_param('InstanceId',InstanceId) def get_TagKeys(self): return self.get_query_params().get('TagKeys') def set_TagKeys(self, TagKeys): for depth1 in range(len(TagKeys)): if TagKeys[depth1] is not None: self.add_query_param('TagKey.' + str(depth1 + 1) , TagKeys[depth1])
[ "sdk-team@alibabacloud.com" ]
sdk-team@alibabacloud.com
eb254cada685f3a07b8214c37d6b93437b6240bd
cca32ed9fa8ee69550b46b42a689bad6ca03b256
/wizards/generate_commission.py
f0ff3b468a994e75af5c8d5ee53ffe38c4940392
[]
no_license
mohamedabuemira/courier
724dba8d4a734046c1085ffad97948869f069f38
d0574b157a1fb62fb0be11a68afa444c1d77dd5f
refs/heads/main
2023-09-01T07:03:08.412409
2021-10-29T23:33:23
2021-10-29T23:33:23
422,737,366
0
0
null
null
null
null
UTF-8
Python
false
false
7,685
py
from odoo import api, fields, models, _ from odoo.exceptions import ValidationError from datetime import date class SalesCommissionWizard(models.TransientModel): _name = 'sales.commission.wizard' date_from = fields.Date(string='Date From') date_to = fields.Date(string='Date To') user_ids = fields.Many2many('hr.employee', string="Sales Drivers", domain = '[("driver", "=", "Ture")]') ignore_late_payments = fields.Boolean('Ignore Sales with late payments') late_payments_exceed = fields.Integer('Late payments exceeds to') @api.constrains('date_from', 'date_to') def dates_constrains(self): for rec in self: if rec.date_from > rec.date_to: raise ValidationError('Date To Must Be Greater Than Date From.') def ignore_unpaid_orders(self, sales_orders): eligible_sale_orders = self.env['account.move'] for order in sales_orders: paid_invoices = order.invoice_ids.filtered(lambda x:x.invoice_payment_state == 'paid' and x.type == 'out_invoice') if paid_invoices: paid_amount = sum(paid_invoices.mapped('amount_total')) needs_to_pay = order.amount_total if paid_amount >= needs_to_pay: last_paid_invoice_date = max(paid_invoices.mapped('invoice_date')) if last_paid_invoice_date and last_paid_invoice_date >= self.date_from and last_paid_invoice_date <= self.date_to: if self.ignore_late_payments: payment_due_days = (last_paid_invoice_date - order.date_order.date()).days if payment_due_days >= self.late_payments_exceed: continue eligible_sale_orders += order return eligible_sale_orders def action_generate_commissions(self): if not self.user_ids: self.user_ids = self.env['hr.employee'].search([]) user_id_list = self.user_ids and self.user_ids.ids or [] sales_orders = self.env['account.move'].search([('is_commission_created', '=', False),('driver', 'in', user_id_list)]) sale_orders = sales_orders user_wise_so = {} for user in sale_orders.mapped('driver'): so_of_this_user = sale_orders.filtered(lambda x:x.driver == user) user_wise_so.update({user:so_of_this_user}) commission_obj = self.env['sale.order.commission'] commission_fix = self.env['fixed.commission.line'] special_comm_line = self.env['special.commission.line'] for user,sale_orders in user_wise_so.items(): re_calculate_sales = False existing = self.env['sale.order.commission'].search([('salesperson', '=', user.id),('state','=','draft')], limit=1) if existing and sale_orders: re_calculate_sales = existing.mapped('invoice_line_ids') existing.unlink() sale_orders = sale_orders + re_calculate_sales if re_calculate_sales else sale_orders vals = {} structure_id = user.commission_structure_id if not structure_id: continue order_lines = sale_orders.mapped('invoice_line_ids') exclude_products = structure_id.exclude_line_ids.mapped('product_id') special_lines = order_lines.filtered(lambda x: x.product_id in exclude_products) special_sales = sum(special_lines.mapped('price_subtotal')) general_lines = order_lines.filtered(lambda x: x.product_id not in exclude_products) general_sales = sum(general_lines.mapped('price_subtotal')) net_sales = general_sales + special_sales if structure_id.deduction_type: if structure_id.deduction_type == 'fixed': deduct_sales = general_sales - structure_id.deduction_amount deduct_amount = str(structure_id.deduction_amount) + '/-' else: deduct_sales = (general_sales * structure_id.deduction_amount) / 100 deduct_amount = str(structure_id.deduction_amount) + '%' else: deduct_sales = (net_sales) sale_ids = [(6, 0, sale_orders.ids)] vals.update({ 'commission_structure_id':structure_id.id, 'salesperson':user.id, 'general_amount':general_sales, 'special_amount':special_sales, 'net_amount':net_sales, 'sale_order_ids':sale_ids, 'deduct_amount':deduct_amount }) for line in structure_id.commission_line_ids: if general_sales >= line.amount_above and general_sales < line.amount_less_than: general_cal = str(line.commission_percent) + '%' general_commission = (deduct_sales * line.commission_percent) / 100 vals.update({ 'general_cal':general_cal, 'general_commission':general_commission }) commission_id = commission_obj.create(vals) for line in structure_id.fixed_line_ids: general_fix = str(line.fix_qty) + '%' commissionfixed =( deduct_sales * line.fix_qty) / 100 fix_vals = { 'sales_commission_id_fixed': commission_id.id, 'general_fixed': general_fix, 'fixed_commission': commissionfixed, 'general_amount_fixed': general_sales, 'deduct_amount_fixed': deduct_amount } commission_fix.create(fix_vals) fixed_commission = sum(commission_id.mapped('fixed_commission_line_ids').mapped('fixed_commission')) for line in structure_id.exclude_line_ids: order_line = special_lines.filtered(lambda x : x.product_id == line.product_id) total_price = sum(order_line.mapped('price_subtotal')) total_qty = sum(order_line.mapped('quantity')) if line.compute_type == 'percentage': cal = str(line.commission_per_drum) + '%' commission = (total_price * line.commission_per_drum) / 100 else: cal = str(line.commission_per_drum) + '/-' commission = total_qty * line.commission_per_drum special_vals = { 'sales_commission_id':commission_id.id, 'product_id':line.product_id.id, 'qty_sold':total_qty, 'amount':total_price, 'cal':cal, 'commission':commission } special_comm_line.create(special_vals) special_commission = sum(commission_id.mapped('special_commission_line_ids').mapped('commission')) net_commission = commission_id.general_commission + fixed_commission + special_commission commission_id.write({ 'special_commission':special_commission, 'fixed_commission': fixed_commission, 'net_commission':net_commission }) [order.write({'is_commission_created':True}) for order in sale_orders] return {'effect': {'fadeout': 'slow', 'message': "Yeah %s, It's Done." % self.env.user.name, 'img_url': '/web/static/src/img/smile.svg', 'type': 'rainbow_man'}}
[ "mohamed.abuemira@gmial.com" ]
mohamed.abuemira@gmial.com
7687d9795fd4f458ba5d860228bb5c67c20fb1f1
5851ed4f3398b3e96cb0f5c09b10289cadd89d6a
/digits/model/tasks/__init__.py
f8aaa77608973c67dd4c4885bef7604e12eba769
[ "LicenseRef-scancode-generic-cla" ]
no_license
wills2133/digits-distributed
953060830dde0c96957accfb621f4f00cc74837a
addf2fda32291a02a7c602b9d58d37ca71afe79d
refs/heads/master
2021-09-13T00:05:42.812330
2018-01-31T14:16:25
2018-01-31T14:16:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
686
py
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import from .caffe_train import CaffeTrainTask ########################################## from .distrib_caffe_train import DistributedTrainTask ########################################## from .torch_train import TorchTrainTask from .train import TrainTask import ssd_pascal __all__ = [ 'CaffeTrainTask', 'DistributedTrainTask', ########## 'TorchTrainTask', 'TrainTask', ] from digits.config import config_value # noqa if config_value('tensorflow')['enabled']: from .tensorflow_train import TensorflowTrainTask # noqa __all__.append('TensorflowTrainTask')
[ "wills2133@hotmail.com" ]
wills2133@hotmail.com
31ca9b836c834e4a4bf5e8b867b7bc82bcc0f319
e2d069bc194216a5235a20d6075932ab6e146866
/03_递归.py
5648ae31ce082eb55b447efece54a74f77fd06b6
[]
no_license
ruoduan-hub/algorithm_py
e1642c62614024dbb3c4b724863a523524c9b359
600b20fad179a88ac2c1694154115de3b0a6359f
refs/heads/master
2023-07-23T15:05:46.490345
2021-09-06T11:50:19
2021-09-06T11:50:19
211,216,812
2
0
null
null
null
null
UTF-8
Python
false
false
362
py
# coding=UTF-8 """ 编写涉及数组的递归时,基线条件通常是数组为空或者是只包含一个元素。陷入困境时,请检查基线条件是不是这样的。 """ def count_down(i): print(i) if i <= 1: # 基线条件 (base case) return else: # 递归条件 (recursive csae) count_down(i - 1) count_down(100)
[ "chad97@126.com" ]
chad97@126.com
45620672ed607a3171dae6cf19a63dea278a32ce
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/templates/_algorithms_challenges/edabit/_Edabit-Solutions-master/Odd Up, Even Down/solution.py
280dd4e50c5e27743667091935a4280519266904
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
149
py
___ transform(lst output # list ___ i __ lst: __ i % 2 __ 0: ?.a.. i-1) ____ ?.a.. i+1) r.. ?
[ "sergejyurskyj@yahoo.com" ]
sergejyurskyj@yahoo.com
bfaeee67905c14d2f409f6f49ffa39866004282a
69974e2912b95495b23b9912001ddf3a1f71cbe9
/Learn_Args&Kwargs.py
66cf3cbb717d12770636a9b4ad0863e70fd31691
[]
no_license
AbhinavNmdo/Python
84fe7b7512defa210742f2384925d4e16cb79579
8a66592478111487df9af7f16ca0b127935dad22
refs/heads/master
2023-07-16T15:17:24.122926
2021-08-31T05:59:25
2021-08-31T05:59:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
def name(*args, **kwargs): # Always follow this ==> (normal statement, args statement, kwargs statement) print("This is args statement") for item in args: print(item) print("This is kwargs statement") for i, j in kwargs.items(): print(f"{i} is a {j}") names = ["Abhay", "Ashu", "PapaJi", "MummyJi"] # Add krte jao isme koi error nhi aaiega print(name(*names)) names2 = {"Abhay": "Programmer", "Ashu": "CA", "PapaJi": "WebDeveloper", "MummyJi": "HouseWife"} print(name(**names2))
[ "abhaynam22@gmail.com" ]
abhaynam22@gmail.com
7a410cee59ce745aece00045c89256e91bdcc0c3
e53220dfff20c05516aa3e1b605758aae5344136
/test/python/transpiler/test_optimize_1q_decomposition.py
86e9d379aaa1de75d7ddd0add9c944eb07377461
[ "Apache-2.0" ]
permissive
Arihant-Joshi/qiskit-terra
67bf0a2f03f5abdb324bdedcfb710c65d772c0d9
3a402a3b4726e16c26f7235dc15bfb7e29617efe
refs/heads/main
2023-06-27T02:10:07.191096
2021-08-03T09:01:37
2021-08-03T09:01:37
363,187,722
0
0
Apache-2.0
2021-07-29T14:57:09
2021-04-30T15:46:41
Python
UTF-8
Python
false
false
18,598
py
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=no-member """Test the optimize-1q-gate pass""" import unittest import ddt import numpy as np from qiskit.circuit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit.circuit.library.standard_gates import UGate, SXGate, PhaseGate from qiskit.circuit.library.standard_gates import U3Gate, U2Gate, U1Gate from qiskit.circuit.random import random_circuit from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Optimize1qGatesDecomposition from qiskit.transpiler.passes import BasisTranslator from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel from qiskit.quantum_info import Operator from qiskit.test import QiskitTestCase from qiskit.circuit import Parameter @ddt.ddt class TestOptimize1qGatesDecomposition(QiskitTestCase): """Test for 1q gate optimizations.""" @ddt.data( ["cx", "u3"], ["cz", "u3"], ["cx", "u"], ["p", "sx", "u", "cx"], ["cz", "rx", "rz"], ["rxx", "rx", "ry"], ["iswap", "rx", "rz"], ["u1", "rx"], ["rz", "sx"], ["p", "sx"], ["r"], ) def test_optimize_h_gates_pass_manager(self, basis): """Transpile: qr:--[H]-[H]-[H]--""" qr = QuantumRegister(1, "qr") circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.h(qr[0]) circuit.h(qr[0]) expected = QuantumCircuit(qr) expected.u(np.pi / 2, 0, np.pi, qr) # U2(0, pi) passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertTrue(Operator(circuit).equiv(Operator(result))) @ddt.data( ["cx", "u3"], ["cz", "u3"], ["cx", "u"], ["p", "sx", "u", "cx"], ["cz", "rx", "rz"], ["rxx", "rx", "ry"], ["iswap", "rx", "rz"], ["u1", "rx"], ["rz", "sx"], ["p", "sx"], ["r"], ) def test_ignores_conditional_rotations(self, basis): """Conditional rotations should not be considered in the chain.""" qr = QuantumRegister(1, "qr") cr = ClassicalRegister(2, "cr") circuit = QuantumCircuit(qr, cr) circuit.p(0.1, qr).c_if(cr, 1) circuit.p(0.2, qr).c_if(cr, 3) circuit.p(0.3, qr) circuit.p(0.4, qr) passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertTrue(Operator(circuit).equiv(Operator(result))) @ddt.data( ["cx", "u3"], ["cz", "u3"], ["cx", "u"], ["p", "sx", "u", "cx"], ["cz", "rx", "rz"], ["rxx", "rx", "ry"], ["iswap", "rx", "rz"], ["u1", "rx"], ["rz", "sx"], ["p", "sx"], ["r"], ) def test_in_the_back(self, basis): """Optimizations can be in the back of the circuit. See https://github.com/Qiskit/qiskit-terra/issues/2004. qr0:--[U1]-[U1]-[H]-- """ qr = QuantumRegister(1, "qr") circuit = QuantumCircuit(qr) circuit.p(0.3, qr) circuit.p(0.4, qr) circuit.h(qr) expected = QuantumCircuit(qr) expected.p(0.7, qr) expected.h(qr) passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertTrue(Operator(circuit).equiv(Operator(result))) @ddt.data( ["cx", "u3"], ["cz", "u3"], ["cx", "u"], ["p", "sx", "u", "cx"], ["cz", "rx", "rz"], ["rxx", "rx", "ry"], ["iswap", "rx", "rz"], ["rz", "sx"], ["u1", "rx"], ["p", "sx"], ) def test_single_parameterized_circuit(self, basis): """Parameters should be treated as opaque gates.""" qr = QuantumRegister(1) qc = QuantumCircuit(qr) theta = Parameter("theta") qc.p(0.3, qr) qc.p(0.4, qr) qc.p(theta, qr) qc.p(0.1, qr) qc.p(0.2, qr) passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(qc) self.assertTrue( Operator(qc.bind_parameters({theta: 3.14})).equiv( Operator(result.bind_parameters({theta: 3.14})) ) ) @ddt.data( ["cx", "u3"], ["cz", "u3"], ["cx", "u"], ["p", "sx", "u", "cx"], ["cz", "rx", "rz"], ["rxx", "rx", "ry"], ["iswap", "rx", "rz"], ["u1", "rx"], ["rz", "sx"], ["p", "sx"], ) def test_parameterized_circuits(self, basis): """Parameters should be treated as opaque gates.""" qr = QuantumRegister(1) qc = QuantumCircuit(qr) theta = Parameter("theta") qc.p(0.3, qr) qc.p(0.4, qr) qc.p(theta, qr) qc.p(0.1, qr) qc.p(0.2, qr) qc.p(theta, qr) qc.p(0.3, qr) qc.p(0.2, qr) passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(qc) self.assertTrue( Operator(qc.bind_parameters({theta: 3.14})).equiv( Operator(result.bind_parameters({theta: 3.14})) ) ) @ddt.data( ["cx", "u3"], ["cz", "u3"], ["cx", "u"], ["p", "sx", "u", "cx"], ["cz", "rx", "rz"], ["rxx", "rx", "ry"], ["iswap", "rx", "rz"], ["u1", "rx"], ["rz", "sx"], ["p", "sx"], ) def test_parameterized_expressions_in_circuits(self, basis): """Expressions of Parameters should be treated as opaque gates.""" qr = QuantumRegister(1) qc = QuantumCircuit(qr) theta = Parameter("theta") phi = Parameter("phi") sum_ = theta + phi product_ = theta * phi qc.p(0.3, qr) qc.p(0.4, qr) qc.p(theta, qr) qc.p(phi, qr) qc.p(sum_, qr) qc.p(product_, qr) qc.p(0.3, qr) qc.p(0.2, qr) passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(qc) self.assertTrue( Operator(qc.bind_parameters({theta: 3.14, phi: 10})).equiv( Operator(result.bind_parameters({theta: 3.14, phi: 10})) ) ) def test_identity_xyx(self): """Test lone identity gates in rx ry basis are removed.""" circuit = QuantumCircuit(2) circuit.rx(0, 1) circuit.ry(0, 0) basis = ["rxx", "rx", "ry"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual([], result.data) def test_identity_zxz(self): """Test lone identity gates in rx rz basis are removed.""" circuit = QuantumCircuit(2) circuit.rx(0, 1) circuit.rz(0, 0) basis = ["cz", "rx", "rz"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual([], result.data) def test_identity_psx(self): """Test lone identity gates in p sx basis are removed.""" circuit = QuantumCircuit(1) circuit.p(0, 0) basis = ["cx", "p", "sx"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual([], result.data) def test_identity_u(self): """Test lone identity gates in u basis are removed.""" circuit = QuantumCircuit(1) circuit.u(0, 0, 0, 0) basis = ["cx", "u"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual([], result.data) def test_identity_u3(self): """Test lone identity gates in u3 basis are removed.""" circuit = QuantumCircuit(1) circuit.append(U3Gate(0, 0, 0), [0]) basis = ["cx", "u3"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual([], result.data) def test_identity_r(self): """Test lone identity gates in r basis are removed.""" circuit = QuantumCircuit(1) circuit.r(0, 0, 0) basis = ["r"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual([], result.data) def test_identity_u1x(self): """Test lone identity gates in u1 rx basis are removed.""" circuit = QuantumCircuit(2) circuit.u1(0, 0) circuit.rx(0, 1) basis = ["cx", "u1", "rx"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual([], result.data) def test_overcomplete_basis(self): """Test optimization with an overcomplete basis.""" circuit = random_circuit(3, 3, seed=42) basis = ["rz", "rxx", "rx", "ry", "p", "sx", "u", "cx"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) basis_translated = passmanager.run(circuit) passmanager = PassManager() passmanager.append(Optimize1qGatesDecomposition(basis)) result_full = passmanager.run(basis_translated) self.assertTrue(Operator(circuit).equiv(Operator(result_full))) self.assertGreater(basis_translated.depth(), result_full.depth()) def test_euler_decomposition_worse(self): """Ensure we don't decompose to a deeper circuit.""" circuit = QuantumCircuit(1) circuit.rx(-np.pi / 2, 0) circuit.rz(-np.pi / 2, 0) basis = ["rx", "rz"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) # decomposition of circuit will result in 3 gates instead of 2 # assert optimization pass doesn't use it. self.assertEqual(circuit, result, f"Circuit:\n{circuit}\nResult:\n{result}") def test_euler_decomposition_worse_2(self): """Ensure we don't decompose to a deeper circuit in an edge case.""" circuit = QuantumCircuit(1) circuit.rz(0.13, 0) circuit.ry(-0.14, 0) basis = ["ry", "rz"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual(circuit, result, f"Circuit:\n{circuit}\nResult:\n{result}") def test_euler_decomposition_zsx(self): """Ensure we don't decompose to a deeper circuit in the ZSX basis.""" circuit = QuantumCircuit(1) circuit.rz(0.3, 0) circuit.sx(0) circuit.rz(0.2, 0) circuit.sx(0) basis = ["sx", "rz"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual(circuit, result, f"Circuit:\n{circuit}\nResult:\n{result}") def test_euler_decomposition_zsx_2(self): """Ensure we don't decompose to a deeper circuit in the ZSX basis.""" circuit = QuantumCircuit(1) circuit.sx(0) circuit.rz(0.2, 0) circuit.sx(0) circuit.rz(0.3, 0) basis = ["sx", "rz"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual(circuit, result, f"Circuit:\n{circuit}\nResult:\n{result}") def test_optimize_u_to_phase_gate(self): """U(0, 0, pi/4) -> p(pi/4). Basis [p, sx].""" qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.append(UGate(0, 0, np.pi / 4), [qr[0]]) expected = QuantumCircuit(qr) expected.append(PhaseGate(np.pi / 4), [qr[0]]) basis = ["p", "sx"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) msg = f"expected:\n{expected}\nresult:\n{result}" self.assertEqual(expected, result, msg=msg) def test_optimize_u_to_p_sx_p(self): """U(pi/2, 0, pi/4) -> p(-pi/4)-sx-p(p/2). Basis [p, sx].""" qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.append(UGate(np.pi / 2, 0, np.pi / 4), [qr[0]]) expected = QuantumCircuit(qr, global_phase=-np.pi / 4) expected.append(PhaseGate(-np.pi / 4), [qr[0]]) expected.append(SXGate(), [qr[0]]) expected.append(PhaseGate(np.pi / 2), [qr[0]]) basis = ["p", "sx"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) msg = f"expected:\n{expected}\nresult:\n{result}" self.assertEqual(expected, result, msg=msg) def test_optimize_u3_to_u1(self): """U3(0, 0, pi/4) -> U1(pi/4). Basis [u1, u2, u3].""" qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.append(U3Gate(0, 0, np.pi / 4), [qr[0]]) expected = QuantumCircuit(qr) expected.append(U1Gate(np.pi / 4), [qr[0]]) basis = ["u1", "u2", "u3"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) msg = f"expected:\n{expected}\nresult:\n{result}" self.assertEqual(expected, result, msg=msg) def test_optimize_u3_to_u2(self): """U3(pi/2, 0, pi/4) -> U2(0, pi/4). Basis [u1, u2, u3].""" qr = QuantumRegister(2, "qr") circuit = QuantumCircuit(qr) circuit.append(U3Gate(np.pi / 2, 0, np.pi / 4), [qr[0]]) expected = QuantumCircuit(qr) expected.append(U2Gate(0, np.pi / 4), [qr[0]]) basis = ["u1", "u2", "u3"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(circuit) self.assertEqual(expected, result) msg = f"expected:\n{expected}\nresult:\n{result}" self.assertEqual(expected, result, msg=msg) def test_y_simplification_rz_sx_x(self): """Test that a y gate gets decomposed to x-zx with ibmq basis.""" qc = QuantumCircuit(1) qc.y(0) basis = ["id", "rz", "sx", "x", "cx"] passmanager = PassManager() passmanager.append(BasisTranslator(sel, basis)) passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(qc) expected = QuantumCircuit(1) expected.rz(-np.pi, 0) expected.x(0) msg = f"expected:\n{expected}\nresult:\n{result}" self.assertEqual(expected, result, msg=msg) def test_short_string(self): """Test that a shorter-than-universal string is still rewritten.""" qc = QuantumCircuit(1) qc.h(0) qc.ry(np.pi / 2, 0) basis = ["sx", "rz"] passmanager = PassManager() passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(qc) expected = QuantumCircuit(1) expected.sx(0) expected.sx(0) msg = f"expected:\n{expected}\nresult:\n{result}" self.assertEqual(expected, result, msg=msg) def test_u_rewrites_to_rz(self): """Test that a phase-like U-gate gets rewritten into an RZ gate.""" qc = QuantumCircuit(1) qc.u(0, 0, np.pi / 6, 0) basis = ["sx", "rz"] passmanager = PassManager() passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(qc) expected = QuantumCircuit(1, global_phase=np.pi / 12) expected.rz(np.pi / 6, 0) msg = f"expected:\n{expected}\nresult:\n{result}" self.assertEqual(expected, result, msg=msg) def test_u_rewrites_to_phase(self): """Test that a phase-like U-gate gets rewritten into an RZ gate.""" qc = QuantumCircuit(1) qc.u(0, 0, np.pi / 6, 0) basis = ["sx", "p"] passmanager = PassManager() passmanager.append(Optimize1qGatesDecomposition(basis)) result = passmanager.run(qc) expected = QuantumCircuit(1) expected.p(np.pi / 6, 0) msg = f"expected:\n{expected}\nresult:\n{result}" self.assertEqual(expected, result, msg=msg) if __name__ == "__main__": unittest.main()
[ "noreply@github.com" ]
Arihant-Joshi.noreply@github.com
405ac1f07f1a750299e9f7a772a78a0b4ac771b0
3c64db21529ebcd9d5612c49d71852df5f794043
/classifier.py
9bcc9db015e4ba09bf4456db797884b22c059073
[]
no_license
theerawatramchuen/AutoX_Kaggle_Rasnet50
265fdc17950e8304ac62554aaf7f49802401489b
b9dd0e891bfe15a9b0f79ea82a98bc630230d9e3
refs/heads/master
2020-06-11T05:58:28.369710
2019-07-07T23:06:10
2019-07-07T23:06:10
193,869,489
0
0
null
null
null
null
UTF-8
Python
false
false
3,338
py
# coding: utf-8 # ### Global Constants # Fixed for our Cats & Dogs classes NUM_CLASSES = 2 # Fixed for Cats & Dogs color images CHANNELS = 3 IMAGE_RESIZE = 224 RESNET50_POOLING_AVERAGE = 'avg' DENSE_LAYER_ACTIVATION = 'softmax' OBJECTIVE_FUNCTION = 'categorical_crossentropy' ## Common accuracy metric for all outputs, but can use different metrics for different output LOSS_METRICS = ['accuracy'] # Using 1 to easily manage mapping between test_generator & prediction for submission preparation BATCH_SIZE_TESTING = 1 import numpy as np import pandas as pd from tensorflow.python.keras.applications import ResNet50 from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Dense # ### ResNet50 resnet_weights_path = 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' # ### Define Our Transfer Learning Network Model Consisting of 2 Layers model = Sequential() # 1st layer as the lumpsum weights from resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 # NOTE that this layer will be set below as NOT TRAINABLE, i.e., use it as is model.add(ResNet50(include_top = False, pooling = RESNET50_POOLING_AVERAGE, weights = resnet_weights_path)) # 2nd layer as Dense for 2-class classification, i.e., dog or cat using SoftMax activation model.add(Dense(NUM_CLASSES, activation = DENSE_LAYER_ACTIVATION)) # Say not to train first layer (ResNet) model as it is already trained model.layers[0].trainable = False model.summary() # ### Compile Our Transfer Learning Model from tensorflow.python.keras import optimizers sgd = optimizers.SGD(lr = 0.01, decay = 1e-6, momentum = 0.9, nesterov = True) model.compile(optimizer = 'sgd', loss = OBJECTIVE_FUNCTION, metrics = LOSS_METRICS) # Load saved weight file model.load_weights("working/best.hdf5") # ### Prepare Keras Data Generators from keras.applications.resnet50 import preprocess_input from keras.preprocessing.image import ImageDataGenerator image_size = IMAGE_RESIZE # preprocessing_function is applied on each image but only after re-sizing & augmentation (resize => augment => pre-process) # Each of the keras.application.resnet* preprocess_input MOSTLY mean BATCH NORMALIZATION (applied on each batch) stabilize the inputs to nonlinear activation functions # Batch Normalization helps in faster convergence data_generator = ImageDataGenerator(preprocessing_function=preprocess_input) test_generator = data_generator.flow_from_directory( directory = 'blind/', target_size = (image_size, image_size), batch_size = BATCH_SIZE_TESTING, class_mode = None, shuffle = False, seed = 123 ) ## Reset before each call to predict test_generator.reset() pred = model.predict_generator(test_generator, steps = len(test_generator), verbose = 1) predicted_class_indices = np.argmax(pred, axis = 1) results_df = pd.DataFrame( { 'id': pd.Series(test_generator.filenames), 'label': pd.Series(predicted_class_indices) }) #results_df['id'] = results_df.id.str.extract('(\d+)') #results_df['id'] = pd.to_numeric(results_df['id'], errors = 'coerce') results_df.sort_values(by='id', inplace = True) ## Save Result to csv file results_df.to_csv('submission.csv', index=False) results_df.head() # ### References # # 1. [Transfer Learning by Dan B](https://www.kaggle.com/dansbecker/transfer-learning)
[ "noreply@github.com" ]
theerawatramchuen.noreply@github.com
230fd3f583cf4b11ae9b08638c18199189fa8127
e1e101c278d6bba461e3782325d834ca199d7ce4
/hosts/migrations/0004_auto_20201109_2011.py
2567de45c317ce450e1d24a08d75ba0e4d7723c4
[ "MIT" ]
permissive
mateuslimax22/djangorest
6efeeff6a7282ca2d9ebda9c62eb3f165222d4ac
6d9a0cfa72c5e287218e53eaf708b7175bca475b
refs/heads/master
2023-01-11T01:08:02.234544
2020-11-10T23:24:15
2020-11-10T23:24:15
311,785,687
0
0
null
2020-11-10T23:24:17
2020-11-10T21:11:24
null
UTF-8
Python
false
false
508
py
# Generated by Django 3.1.3 on 2020-11-09 23:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('vulnerabilities', '0005_remove_vulnerability_affected_host'), ('hosts', '0003_host_host'), ] operations = [ migrations.AlterField( model_name='host', name='host', field=models.ManyToManyField(blank=True, related_name='book_list', to='vulnerabilities.Vulnerability'), ), ]
[ "mateuslimax8@gmail.com" ]
mateuslimax8@gmail.com
b74fd5349fcc910ed9dcad8717e15620b73eb4be
c516df2118000e3abaa61527de7badb94680081e
/utilities/common.py
b3a2eae746c77898ae21aed1623a0194a141bbd9
[ "MIT" ]
permissive
xod442/paw
82c8d54af052edaea05ed36a0846fe9722f047f3
f55df04dd7af7a1b25844c809187a99cfb24b813
refs/heads/main
2023-04-16T12:19:50.849945
2021-04-26T20:06:51
2021-04-26T20:06:51
360,992,530
0
1
null
null
null
null
UTF-8
Python
false
false
1,345
py
import time import boto3 from flask import current_app import datetime import arrow import bleach def utc_now_ts(): return int(time.time()) def utc_now_ts_ms(): return lambda: int(round(time.time() * 1000)) def ms_stamp_humanize(ts): ts = datetime.datetime.fromtimestamp(ts/1000.0) return arrow.get(ts).humanize() def linkify(text): text = bleach.clean(text, tags=[], attributes={}, styles=[], strip=True) return bleach.linkify(text) def email(to_email, subject, body_html, body_text): # don't run this if we're running a test or setting is False if current_app.config.get('TESTING') or not current_app.config.get('AWS_SEND_MAIL'): return False client = boto3.client('ses') return client.send_email( Source='webmaster@rickkauffman.com', Destination={ 'ToAddresses': [ to_email, ] }, Message={ 'Subject': { 'Data': subject, 'Charset': 'UTF-8' }, 'Body': { 'Text': { 'Data': body_text, 'Charset': 'UTF-8' }, 'Html': { 'Data': body_html, 'Charset': 'UTF-8' }, } } )
[ "rick@rickkauffman.com" ]
rick@rickkauffman.com
0b684c99ea79b5699e5e6d3ae3e126bcb13269bb
cd829aa60c3716b7509d028437b78f953e86da34
/myapp.py
3596b6c79bd649d94b224f84cf94ca4373faf036
[]
no_license
raghavkgarg/pytutorial
fc893e7945c137e94a3aeef085ec175530434476
5971bd3b5cb4f5a459b17d02ea59830f167f2c75
refs/heads/master
2020-07-08T11:03:31.793145
2016-08-23T18:20:26
2016-08-23T18:20:26
66,391,869
0
0
null
null
null
null
UTF-8
Python
false
false
1,122
py
import numpy as np from bokeh.models import Button from bokeh.palettes import RdYlBu3 from bokeh.plotting import figure, curdoc, vplot # create a plot and style its properties p = figure(x_range=(0, 100), y_range=(0, 100), toolbar_location=None) p.border_fill_color = 'black' p.background_fill_color = 'black' p.outline_line_color = None p.grid.grid_line_color = None # add a text renderer to out plot (no data yet) r = p.text(x=[], y=[], text=[], text_color=[], text_font_size="20pt", text_baseline="middle", text_align="center") i = 0 ds = r.data_source # create a callback that will add a number in a random location def callback(): global i ds.data['x'].append(np.random.random()*70 + 15) ds.data['y'].append(np.random.random()*70 + 15) ds.data['text_color'].append(RdYlBu3[i%3]) ds.data['text'].append(str(i)) ds.trigger('data', ds.data, ds.data) i = i + 1 # add a button widget and configure with the call back button = Button(label="Press Me") button.on_click(callback) # put the button and plot in a layout and add to the document curdoc().add_root(vplot(button, p))
[ "raghav.garg21@gmail.com" ]
raghav.garg21@gmail.com
58ea7cf638432fef55e251a1f9aa71b69ef8417b
590aab339221662f547f8dbd45dfed336821a8cb
/cally.py
18097070d37bf5cfbb7d8c5ce7a092071a23a84d
[ "Apache-2.0" ]
permissive
krish2487/cally
d4fdea1d80903d697af292acabd5e994567b3346
f043437f122b5b71179fc178f24180b8ee679270
refs/heads/master
2022-01-14T14:03:41.090612
2018-04-06T09:31:01
2018-04-06T09:31:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,708
py
#!/usr/bin/python # # Copyright 2018, Eelco Chaudron # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Files name: # mkcg.py # # Description: # Make callgraph .dot file from GCC's rtl data # # Author: # Eelco Chaudron # # Initial Created: # 29 March 2018 # # Notes: # # # Imports # import argparse import fileinput import os import re import sys import time # # Unit tests for the dump_path() function. # Invoke as: cally.py --unit-test dummy # # - Add --unit-test option # # # Main -> A --> B --> C --> D # A |_ [E] # |_ F # |_ G --> B # \_ H --> I --> J --> D # # # # unit_test_full_dump_output = [ 'strict digraph callgraph {', '"A" -> "A";', '"A" -> "B";', '"B" -> "C";', '"B" -> "E";', '"E" [style=dashed]', '"B" -> "F";', '"B" -> "G";', '"B" -> "H";', '"C" -> "D";', '"D"', '"F"', '"G" -> "B";', '"H" -> "I";', '"I" -> "J";', '"J" -> "D";', '"main" -> "A";', '}' ] unit_test_full_caller_output = [ '"A" -> "A";', '"A" -> "B" -> "H" -> "I" -> "J" -> "D";', '"A" -> "B" -> "C" -> "D";', '"A" -> "B" -> "E";\n"E" [style=dashed];', '"A" -> "B" -> "G" -> "B";', '"A" -> "B" -> "F";' ] unit_test_noexterns_caller_output = [ '"A" -> "A";', '"A" -> "B" -> "H" -> "I" -> "J" -> "D";', '"A" -> "B" -> "C" -> "D";', '"B" [color=red];', '"A" -> "B" -> "G" -> "B";', '"A" -> "B" -> "F";' ] unit_test_maxdepth2_caller_output = [ '"A" -> "A";', '"A" -> "B";\n"B" [color=red];', '"A" -> "B";\n"B" [color=red];', '"B" [color=red];', '"A" -> "B";\n"B" [color=red];', '"A" -> "B";\n"B" [color=red];' ] unit_test_maxdepth3_caller_output = [ '"A" -> "A";', '"A" -> "B" -> "H";\n"H" [color=red];', '"A" -> "B" -> "C";\n"C" [color=red];', '"A" -> "B" -> "E";\n"E" [style=dashed];', '"A" -> "B" -> "G";\n"G" [color=red];', '"A" -> "B" -> "F";' ] unit_test_regex_caller_output = [ '"A" -> "A";', '"A" -> "B" -> "H" -> "I" -> "J" -> "D";', '"A" -> "B";\n"B" [color=red];', '"B" [color=red];', '"A" -> "B";\n"B" [color=red];', '"A" -> "B" -> "F";'] unit_test_full_callee_output = [ '"A" -> "A" -> "B";', '"main" -> "A" -> "B";', '"B" -> "G" -> "B";' ] unit_test_maxdepth4_callee_output = [ '"A" -> "A" -> "B" -> "C" -> "D";', '"A" -> "B" -> "C" -> "D";\n"A" [color=red];', '"G" -> "B" -> "C" -> "D";\n"G" [color=red];', '"H" -> "I" -> "J" -> "D";\n"H" [color=red];' ] unit_test_maxdepth5_callee_output = [ '"A" -> "A" -> "B" -> "C" -> "D";', '"main" -> "A" -> "B" -> "C" -> "D";', '"B" -> "G" -> "B" -> "C" -> "D";', '"B" -> "H" -> "I" -> "J" -> "D";' ] # # Actual unit test # def unit_test(): # # Built test functions dictionary # functions = dict() unit_test_add_call(functions, "main", ["A"]) unit_test_add_call(functions, "A", ["A", "B"]) unit_test_add_call(functions, "B", ["C", "E", "F", "G", "H"]) unit_test_add_call(functions, "C", ["D"]) unit_test_add_call(functions, "D", []) # "E" does not exists, it's an external function unit_test_add_call(functions, "F", []) unit_test_add_call(functions, "G", ["B"]) unit_test_add_call(functions, "H", ["I"]) unit_test_add_call(functions, "I", ["J"]) unit_test_add_call(functions, "J", ["D"]) build_callee_info(functions) # # Execute unit tests # print_dbg("UNIT TEST START") print_dbg("---------------") total = 0 failures = 0 # # Full graph dump # print_dbg("") print_dbg("FULL GRAPH") print_dbg("============") total += 1 buffer = list() full_call_graph(functions, stdio_buffer=buffer) failures += unit_test_check_error("FULL GRAPH", unit_test_full_dump_output, buffer) # # Full caller dump # print_dbg("") print_dbg("FULL CALLER") print_dbg("===========") total += 1 buffer = list() dump_path([], functions, "A", max_depth=0, exclude=None, no_externs=False, stdio_buffer=buffer) failures += unit_test_check_error("FULL CALLER", unit_test_full_caller_output, buffer) # # Full caller dump with no exters # print_dbg("") print_dbg("CALLER NO EXTERNS") print_dbg("=================") total += 1 buffer = list() dump_path([], functions, "A", max_depth=0, exclude=None, no_externs=True, stdio_buffer=buffer) failures += unit_test_check_error("CALLER, NO_EXTERNS", unit_test_noexterns_caller_output, buffer) # # Caller with limit depth # print_dbg("") print_dbg("CALLER LIMITED DEPTH (2)") print_dbg("========================") total += 1 buffer = list() dump_path([], functions, "A", max_depth=2, exclude=None, no_externs=False, stdio_buffer=buffer) failures += unit_test_check_error("CALLER, MAX DEPTH 2", unit_test_maxdepth2_caller_output, buffer) print_dbg("") print_dbg("CALLER LIMITED DEPTH (3)") print_dbg("========================") total += 1 buffer = list() dump_path([], functions, "A", max_depth=3, exclude=None, no_externs=False, stdio_buffer=buffer) failures += unit_test_check_error("CALLER, MAX DEPTH 3", unit_test_maxdepth3_caller_output, buffer) # # Caller with limited by regex # print_dbg("") print_dbg("CALLER REGEX MATCH") print_dbg("==================") total += 1 buffer = list() dump_path([], functions, "A", max_depth=0, exclude="C|E|G", no_externs=False, stdio_buffer=buffer) failures += unit_test_check_error("CALLER, REGEX", unit_test_regex_caller_output, buffer) # # Full callee # print_dbg("") print_dbg("CALLEE FULL") print_dbg("===========") total += 1 buffer = list() dump_path([], functions, "B", max_depth=0, reverse_path=True, exclude=None, call_index="callee_calls", stdio_buffer=buffer) failures += unit_test_check_error("CALLEE, FULL", unit_test_full_callee_output, buffer) # # Max depth callee # print_dbg("") print_dbg("CALLEE MAX DEPTH 4") print_dbg("==================") total += 1 buffer = list() dump_path([], functions, "D", max_depth=4, reverse_path=True, exclude=None, call_index="callee_calls", stdio_buffer=buffer) failures += unit_test_check_error("CALLEE, MAX DEPTH 4", unit_test_maxdepth4_callee_output, buffer) print_dbg("") print_dbg("CALLEE MAX DEPTH 5") print_dbg("==================") total += 1 buffer = list() dump_path([], functions, "D", max_depth=5, reverse_path=True, exclude=None, call_index="callee_calls", stdio_buffer=buffer) failures += unit_test_check_error("CALLEE, MAX DEPTH 5", unit_test_maxdepth5_callee_output, buffer) # # Show results # print_dbg("") print_dbg("UNIT TEST END, RESULTS") print_dbg("----------------------") print_dbg("Total tests run: {}".format(total)) print_dbg("Total errors : {}".format(failures)) if failures > 0: print_err("!!! ERRORS WHERE FOUND !!!") return 0 # # unit_test_check_error() # def unit_test_check_error(test, ref, results): if len(results) == len(ref): for i in range(0, len(results)): if results[i] != ref[i]: print_err("[FAIL] \"{}\" @line {}, \"{}\" vs \"{}\"". format(test, i, results[i], ref[i])) return 1 else: print_err("[FAIL] {}".format(test)) return 1 return 0 # # unit_test_add_call # def unit_test_add_call(functions, function_name, calls): if function_name in functions: print("ERROR: Function already defined!!") functions[function_name] = dict() functions[function_name]["files"] = ["unit_test.c"] functions[function_name]["calls"] = dict() for call in calls: functions[function_name]["calls"][call] = True functions[function_name]["refs"] = dict() functions[function_name]["callee_calls"] = dict() functions[function_name]["callee_refs"] = dict() # # Add callee to database # def build_callee_info(function_db): for call, value in function_db.items(): for callee in value["calls"]: if callee in function_db and \ call not in function_db[callee]["callee_calls"]: function_db[callee]["callee_calls"][call] = 1 for callee in value["refs"]: if callee in function_db and \ call not in function_db[callee]["callee_refs"]: function_db[callee]["callee_refs"][call] = 1 # # dump_path_ascii() # def dump_path_ascii(path, reverse, **kwargs): externs = kwargs.get("externs", False) truncated = kwargs.get("truncated", False) std_buf = kwargs.get("stdio_buffer", None) if len(path) == 0: return ascii_path = "" for function in reversed(path) if reverse else path: if ascii_path != "": ascii_path += " -> " ascii_path += '"' + function + '"' if truncated or externs: ascii_path += ';\n"{}"{}{}'. \ format(function if not reverse else path[-1], " [style=dashed]" if externs else "", " [color=red]" if truncated else "") print_buf(std_buf, ascii_path + ";") # # Dump path as ASCII to stdout # def dump_path(path, functions, function_name, **kwargs): max_depth = kwargs.get("max_depth", 0) reverse_path = kwargs.get("reverse_path", False) exclude = kwargs.get("exclude", None) call_index = kwargs.get("call_index", "calls") no_externs = kwargs.get("no_externs", False) std_buf = kwargs.get("stdio_buffer", None) # # Pass on __seen_in_path as a way to determine if a node in the graph # was already processed # if "__seen_in_path" in kwargs: seen_in_path = kwargs["__seen_in_path"] else: seen_in_path = dict() kwargs["__seen_in_path"] = seen_in_path # # If reached the max depth or need to stop due to exclusion, recursion # display the path up till the previous entry. # if (exclude is not None and re.match(exclude, function_name) is not None) \ or (max_depth > 0 and len(path) >= max_depth): dump_path_ascii(path, reverse_path, stdio_buffer=std_buf, truncated=True) return # # If already seen, we need to terminate the path here... # if function_name in seen_in_path: if (max_depth <= 0 or (len(path) + 1) <= max_depth): dump_path_ascii(path + [function_name], reverse_path, stdio_buffer=std_buf) return seen_in_path[function_name] = True # # Now walk the path for each child # children = 0 for caller in functions[function_name][call_index]: # # The child is a known function, handle this trough recursion # if caller in functions: children += 1 if function_name != caller: dump_path(path + [function_name], functions, caller, **kwargs) else: # # This is a recurrence for this function, add it once # dump_path_ascii(path + [function_name, caller], reverse_path, stdio_buffer=std_buf) # # This is a external child, so we can not handle this recursive. # However as there are no more children, we can handle it here # (if it can be included). # elif (exclude is None or re.match(exclude, caller) is None) and \ (max_depth <= 0 or (len(path) + 2) <= max_depth) and \ not no_externs: children += 1 dump_path_ascii(path + [function_name, caller], reverse_path, externs=True, stdio_buffer=std_buf) else: print_buf(std_buf, '"{}" [color=red];'. format(function_name)) # # If there where no children, the path ends here, so dump it. # if children == 0: dump_path_ascii(path + [function_name], reverse_path, stdio_buffer=std_buf) # # print_err() # def print_err(text): sys.stderr.write(text + "\n") # # print_dbg() # def print_dbg(text): sys.stderr.write("DBG: " + text + "\n") # # print_buf() # def print_buf(buf, text): if buf is not None: buf.append(text) print(text) # # Dump function details: # def dump_function_info(functions, function, details): finfo = functions[function] print(" {}() {}".format(function, finfo["files"] if details else "")) if details: for caller in sorted(finfo["calls"].keys()): print(" --> {}".format(caller)) if len(finfo["calls"]) > 0 and len(finfo["callee_calls"]) > 0: print(" ===") for caller in sorted(finfo["callee_calls"].keys()): print(" <-- {}".format(caller)) print("\n") # # Build full call graph # def full_call_graph(functions, **kwargs): exclude = kwargs.get("exclude", None) no_externs = kwargs.get("no_externs", False) std_buf = kwargs.get("stdio_buffer", None) print_buf(std_buf, "strict digraph callgraph {") # # Simply walk all nodes and print the callers # for func in sorted(functions.keys()): printed_functions = 0 if exclude is None or \ re.match(exclude, func) is None: for caller in sorted(functions[func]["calls"].keys()): if (not no_externs or caller in functions) and \ (exclude is None or re.match(exclude, caller) is None): print_buf(std_buf, '"{}" -> "{}";'.format(func, caller)) if caller not in functions: print_buf(std_buf, '"{}" [style=dashed]'. format(caller)) printed_functions += 1 if printed_functions == 0: print_buf(std_buf, '"{}"'.format(func)) print_buf(std_buf, "}") # # Main() # def main(): # # Data sets # functions = dict() # # Command line argument parsing # parser = argparse.ArgumentParser() parser.add_argument("-d", "--debug", help="Enable debugging", action="store_true") parser.add_argument("-f", "--functions", metavar="FUNCTION", help="Dump functions name(s)", type=str, default="&None", const="&all", action='store', nargs='?') parser.add_argument("--callee", help="Callgraph for the function being called", type=str, metavar="FUNCTION") parser.add_argument("--caller", help="Callgraph for functions being called by", type=str, metavar="FUNCTION") parser.add_argument("-e", "--exclude", help="RegEx for functions to exclude", type=str, metavar="REGEX") parser.add_argument("--no-externs", help="Do not show external functions", action="store_true") parser.add_argument("--no-warnings", help="Do not show warnings on the console", action="store_true") parser.add_argument("--max-depth", metavar="DEPTH", help="Maximum tree depth traversal, default no depth", type=int, default=0) parser.add_argument("--unit-test", help=argparse.SUPPRESS, action="store_true") parser.add_argument("RTLFILE", help="GCCs RTL .expand file", nargs="+") parser.parse_args() config = parser.parse_args() # # If the unit test option is specified jump straight into it... # if config.unit_test: return unit_test() # # Additional option checks # if config.caller and config.callee: print_err("ERROR: Either --caller or --callee option should be given, " "not both!".format(config.callee)) return 1 if config.exclude is not None: try: exclude_regex = re.compile(config.exclude) except Exception as e: print_err("ERROR: Invalid --exclude regular expression, " "\"{}\" -> \"{}\"!". format(config.exclude, e)) return 1 else: exclude_regex = None if not config.caller and not config.callee and config.max_depth: print_err("ERROR: The --max_depth option is only valid with " "--caller or --callee!") return 1 # # Check if all files exist # for file in config.RTLFILE: if not os.path.isfile(file) or not os.access(file, os.R_OK): print_err("ERROR: Can't open rtl file, \"{}\"!".format(file)) return 1 # # Regex to extract functions # function = re.compile( "^;; Function (?P<mangle>.*)\s+\((?P<function>\S+)(,.*)?\).*$") call = re.compile( "^.*\(call.*\"(?P<target>.*)\".*$") symbol_ref = re.compile("^.*\(symbol_ref.*\"(?P<target>.*)\".*$") # # Parse each line in each file given # function_name = "" start_time = time.time() for line in fileinput.input(config.RTLFILE): # # Find function entry point # match = re.match(function, line) if match is not None: function_name = match.group("function") if function_name in functions: if not config.no_warnings: print_err("WARNING: Function {} defined in multiple" "files \"{}\"!". format(function_name, ', '.join(map( str, functions[function_name]["files"] + [fileinput.filename()])))) else: functions[function_name] = dict() functions[function_name]["files"] = list() functions[function_name]["calls"] = dict() functions[function_name]["refs"] = dict() functions[function_name]["callee_calls"] = dict() functions[function_name]["callee_refs"] = dict() functions[function_name]["files"].append(fileinput.filename()) # # # Find direct function calls else: match = re.match(call, line) if match is not None: target = match.group("target") if target not in functions[function_name]["calls"]: functions[function_name]["calls"][target] = True else: match = re.match(symbol_ref, line) if match is not None: target = match.group("target") if target not in functions[function_name]["refs"]: functions[function_name]["refs"][target] = True if config.debug: print_dbg("[PERF] Processing {} RTL files took {:.9f} seconds".format( len(config.RTLFILE), time.time() - start_time)) print_dbg("[PERF] Found {} functions".format(len(functions))) # # Build callee data # start_time = time.time() build_callee_info(functions) if config.debug: print_dbg("[PERF] Building callee info took {:.9f} seconds".format( time.time() - start_time)) # # Dump functions if requested # if config.functions != "&None": print("\nFunction dump") print("-------------") if config.functions == "&all": for func in sorted(functions.keys()): dump_function_info(functions, func, config.debug) else: if config.functions in functions: dump_function_info(functions, config.functions, config.debug) else: print_err("ERROR: Can't find callee, \"{}\" in RTL data!". format(config.callee)) return 1 return 0 start_time = time.time() # # Dump full call graph # if not config.caller and not config.callee: full_call_graph(functions, exclude=config.exclude, no_externs=config.no_externs) # # Build callgraph for callee function # if config.callee is not None: if config.callee in functions: print("strict digraph callgraph {") print('"{}" [color=blue, style=filled];'.format(config.callee)) dump_path([], functions, config.callee, max_depth=config.max_depth, reverse_path=True, exclude=exclude_regex, call_index="callee_calls") print("}") else: print_err("ERROR: Can't find callee, \"{}\" in RTL data!". format(config.callee)) return 1 # # Build callgraph for caller function # elif config.caller is not None: if config.caller in functions: print("strict digraph callgraph {") print('"{}" [color=blue, style=filled];'.format(config.caller)) dump_path([], functions, config.caller, max_depth=config.max_depth, exclude=exclude_regex, no_externs=config.no_externs) print("}") else: print_err("ERROR: Can't find caller \"{}\" in RTL data!". format(config.caller)) return 1 if config.debug: print_dbg("[PERF] Generating .dot file took {:.9f} seconds".format( time.time() - start_time)) return 0 # # Start main() as default entry point... # if __name__ == '__main__': exit(main())
[ "echaudro@redhat.com" ]
echaudro@redhat.com
f9472b9609eb5b6bde651f529d644276ff63fe2c
ab73f80a80d77d826ae347bdea7f74f93cf71c3c
/python/tests/test_array_reverse.py
a3a26d9c1a0ae1b83ad77df70505d167f5c22695
[]
no_license
moh-ash96/data-structures-and-algorithms
4c7f7b7598d50bfc0fc96f20751598aa412a26d6
bc42163393aa835c9e763e6848335c8a14cc2832
refs/heads/master
2023-06-03T21:37:14.740791
2021-06-29T14:48:12
2021-06-29T14:48:12
348,101,936
0
3
null
2021-06-29T14:27:49
2021-03-15T19:44:23
JavaScript
UTF-8
Python
false
false
265
py
from code_challenges.array_reverse.array_reverse import reverseArray def test_array (): assert reverseArray([1, 2, 3, 4, 5, 6]) == [6, 5, 4, 3, 2, 1] assert reverseArray([89, 2354, 3546, 23, 10, -923, 823, -12]) == [-12, 823, -923, 10, 23, 3546, 2354, 89]
[ "moh.ash96@gmail.com" ]
moh.ash96@gmail.com
ca7862cad14001a86cfc5966a988df66ea996a7f
ce4913de9832a5e67b234ba911f4a5cd0bfa82f3
/envs/airsim/airsimcarenv.py
425b669390cb3cf42e49ea775fffd91ee4ea5159
[]
no_license
Arlen0615/DRL-AutonomousVehicles
6c31fe7f154af6ac43298f814edd13cbf0d35cf8
96d698896edccfab693558181924b8b411aae7a4
refs/heads/master
2021-08-11T22:28:39.778934
2017-11-14T06:04:32
2017-11-14T06:04:32
110,491,854
0
0
null
2017-11-13T02:46:11
2017-11-13T02:46:11
null
UTF-8
Python
false
false
4,560
py
import logging import math import numpy as np import random import gym from gym import spaces from gym.utils import seeding from gym.spaces import Tuple, Box, Discrete, MultiDiscrete, Dict from gym.spaces.box import Box from envs.airsim.myAirSimCarClient import * logger = logging.getLogger(__name__) class AirSimCarEnv(gym.Env): airsimClient = None def __init__(self): # left depth, center depth, right depth, steering self.low = np.array([0.0, 0.0, 0.0, 0]) self.high = np.array([100.0, 100.0, 100.0, 21]) self.observation_space = spaces.Box(self.low, self.high) self.action_space = spaces.Discrete(21) self.state = (100, 100, 100, random.uniform(-1.0, 1.0)) self.episodeN = 0 self.stepN = 0 self.allLogs = { 'speed':[0] } self._seed() self.stallCount = 0 global airsimClient airsimClient = myAirSimCarClient() def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def computeReward(self, mode='roam'): speed = self.car_state.speed steer = self.steer dSpeed = 0 if mode == 'roam' or mode == 'smooth': # reward for speed reward = speed/60 # penalize sharp steering, to discourage going in a circle if abs(steer) >= 1.0 and speed > 100: reward -= abs(steer) * 2 # penalize collision if len(self.allLogs['speed']) > 0: dSpeed = speed - self.allLogs['speed'][-2] else: dSpeed = 0 reward += dSpeed # penalize for going in a loop forever #reward -= abs(self.steerAverage) * 10 else: reward = 1 # Placehoder. To be filled if mode == 'smooth': # also penalize on jerky motion, based on a fake G-sensor steerLog = self.allLogs['steer'] g = abs(steerLog[-1] - steerLog[-2]) * 5 reward -= g return [reward, dSpeed] def _step(self, action): assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action)) self.stepN += 1 steer = (action - 10)/5.0 gas = 0.45555 airsimClient.setCarControls(gas, steer) car_state = airsimClient.getCarState() self.car_state = car_state self.steer = steer speed = car_state.speed if speed < 5: self.stallCount += 1 else: self.stallCount = 0 if self.stallCount > 13: done = True else: done = False self.sensors = airsimClient.getSensorStates() cdepth = self.sensors[1] self.state = self.sensors self.state.append(action) self.addToLog('speed', speed) self.addToLog('steer', steer) steerLookback = 17 steerAverage = np.average(self.allLogs['steer'][-steerLookback:]) self.steerAverage = steerAverage # Training using the Roaming mode reward, dSpeed = self.computeReward('roam') self.addToLog('reward', reward) rewardSum = np.sum(self.allLogs['reward']) # Terminate the episode on large cumulative amount penalties, # since car probably got into an unexpected loop of some sort if rewardSum < -1000: done = True sys.stdout.write("\r\x1b[K{}/{}==>reward/depth/steer/speed: {:.0f}/{:.0f} \t({:.1f}/{:.1f}/{:.1f}) \t{:.1f}/{:.1f} \t{:.2f}/{:.2f} ".format(self.episodeN, self.stepN, reward, rewardSum, self.state[0], self.state[1], self.state[2], steer, steerAverage, speed, dSpeed)) sys.stdout.flush() # placeholder for additional logic if done: pass return np.array(self.state), reward, done, {} def addToLog (self, key, value): if key not in self.allLogs: self.allLogs[key] = [] self.allLogs[key].append(value) def _reset(self): airsimClient.reset() self.stepN = 0 self.stallCount = 0 self.episodeN += 1 print("") self.allLogs = { 'speed': [0] } # Randomize the initial steering to broaden learning self.state = (100, 100, 100, random.uniform(0.0, 21.0)) return np.array(self.state)
[ "kaihu@smesh.net" ]
kaihu@smesh.net
fd11361d5c3dec153900e545c8908017550eba3e
eaf921d22d1d42d70b5f49d8f97f42e27ad5c16f
/Chap03/use_regex.py
31c3dfff2b10eb17e284911ebc69fc852daa7927
[]
no_license
atastet/Python_openclassroom
0f3ff87c44527edde4722a311bf3bbece123edfd
37992f3eb8937b7480aedbbd83152451eaa8c6b8
refs/heads/master
2020-03-19T13:48:26.439159
2019-01-30T20:25:30
2019-01-30T20:25:30
136,595,991
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
# -*-coding:Utf-8 -* import re chaine = "" exp = r"^0[0-9]([ .-]?[0-9]{2}){4}$" while re.search(exp, chaine) is None: raw_input("Numero")
[ "Anthony@macbook-pro-de-anthony.home" ]
Anthony@macbook-pro-de-anthony.home
b057a3a5c3f3098da54c67a78d50a565061a32c3
0dfa97730b9ad9c077868a045d89cc0d4b09f433
/tests/integration/goldens/credentials/samples/generated_samples/iamcredentials_generated_credentials_v1_iam_credentials_sign_blob_sync.py
ff60375d5635f5825a6f29c36bb0c61572147d95
[ "Apache-2.0" ]
permissive
anukaal/gapic-generator-python
546c303aaf2e722956133b07abb0fb1fe581962f
e3b06895fa179a2038ee2b28e43054e1df617975
refs/heads/master
2023-08-24T23:16:32.305652
2021-10-09T15:12:14
2021-10-09T15:12:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,567
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for SignBlob # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-iam-credentials # [START iamcredentials_generated_credentials_v1_IAMCredentials_SignBlob_sync] from google.iam import credentials_v1 def sample_sign_blob(): """Snippet for sign_blob""" # Create a client client = credentials_v1.IAMCredentialsClient() # Initialize request argument(s) request = credentials_v1.SignBlobRequest( name="projects/{project}/serviceAccounts/{service_account}", payload=b'payload_blob', ) # Make the request response = client.sign_blob(request=request) # Handle response print(response) # [END iamcredentials_generated_credentials_v1_IAMCredentials_SignBlob_sync]
[ "noreply@github.com" ]
anukaal.noreply@github.com
af132b52a2a42c7eb350dd3fad4e62461d23f6d3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03548/s330099741.py
473abd697eb7a23e0c786ec6a00b442861d84293
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
#!/usr/bin/python # -*- Coding: utf-8 -*- x, y, z = (int(i) for i in input().split()) n = int((x-z)/(y+z)) print(n)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
e63e563efcb703fca24d599bdd39bad1a435a2e9
261830843d9474eff5ad951eb75e273e2ecfd2b1
/ginger/app/api/v1/gift.py
b05b7333fd567547817376a010ad138a10d54962
[]
no_license
shuaibikong/RESTful
1d1c21ac77ccd0d6928a5a9170b4b3f931f13d7e
e0dfd73b79537b1cfc232f7cb3b724c935225a4b
refs/heads/master
2022-12-13T02:16:00.567817
2018-11-08T10:25:41
2018-11-08T10:25:41
147,464,952
0
0
null
2021-05-06T19:24:45
2018-09-05T05:34:19
Python
UTF-8
Python
false
false
675
py
from flask import g from app.libs.error_code import Success from app.libs.redprint import Redprint from app.libs.token_auth import auth from app.models.base import db from app.models.book import Book from app.models.gift import Gift api = Redprint('gift') @api.route('/<isbn>', methods=['POST']) @auth.login_required def create(isbn): uid = g.user.uid with db.auto_commit(): Book.query.filter_by(isbn=isbn).first_or_404() gift = Gift.query.filter_by(isbn=isbn, uid=uid).first() if gift: raise DuplicateGift() gift = Gift() gift.isbn = isbn gift.uid = uid db.session.add(gift) return Success()
[ "40583736+shuaibikong@users.noreply.github.com" ]
40583736+shuaibikong@users.noreply.github.com
96b72c3e8d75f73087aa5d785f9d688d43fba4a9
920b9cb23d3883dcc93b1682adfee83099fee826
/iam/meta.py
1c14641c524eaf4af143f55b16491ad41f993154
[ "MIT", "LGPL-2.1-or-later", "LGPL-3.0-only" ]
permissive
TencentBlueKing/bk-itsm
f817fb166248d3059857b57d03e8b5ec1b78ff5b
2d708bd0d869d391456e0fb8d644af3b9f031acf
refs/heads/master
2023-08-31T23:42:32.275836
2023-08-22T08:17:54
2023-08-22T08:17:54
391,839,825
100
86
MIT
2023-09-14T08:24:54
2021-08-02T06:35:16
Python
UTF-8
Python
false
false
1,689
py
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2020 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ _SYSTEM = "system" _RESOURCES = "resources" _ACTIONS = "actions" __meta_info__ = {_SYSTEM: {}, _RESOURCES: {}, _ACTIONS: {}} def setup_system(system_id, system_name): __meta_info__[_SYSTEM].setdefault(system_id, {})["name"] = system_name def get_system_name(system_id): return __meta_info__[_SYSTEM].get(system_id, {}).get("name") def setup_resource(system_id, resource_id, resource_name): __meta_info__[_RESOURCES].setdefault(system_id, {}).setdefault(resource_id, {})["name"] = resource_name def get_resource_name(system_id, resource_id): return __meta_info__[_RESOURCES].get(system_id, {}).get(resource_id, {}).get("name") def setup_action(system_id, action_id, action_name): __meta_info__[_ACTIONS].setdefault(system_id, {}).setdefault(action_id, {})["name"] = action_name def get_action_name(system_id, action_id): return __meta_info__[_ACTIONS].get(system_id, {}).get(action_id, {}).get("name")
[ "1758504262@qq.com" ]
1758504262@qq.com
8fa4de3bff6962cb85451b714b9b0e03e4eec89b
fb47e95101efd3b3a40ac73dcf58ed0440dec928
/find missing number in the series.py
fedd41ede866e30cd091191227488c8fe132df98
[ "MIT" ]
permissive
sundar369/coding
5a474f471041061b859795b6190793f19a1bcbc1
d5e99623f055a39604351752d494c1c8817d6d91
refs/heads/main
2022-12-19T15:55:11.584832
2020-10-21T06:43:27
2020-10-21T06:43:27
305,928,000
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
n = int(input()) arr = list(map(int,input().split())) dif = int((arr[-1] - arr[0])/n) inc = 1 ele = arr[0] while True: ele += dif if ele != arr[inc]: print(ele) break inc += 1
[ "noreply@github.com" ]
sundar369.noreply@github.com
23e1c139d1f5d6d1538a825da39ce84355784a5c
eaf993358c740e2e86df4a0cd06beed51786c045
/credictcard/model.py
8ba3b4dfe8ab95e8cc3914d77a335152733a44e1
[]
no_license
mzjdy/credict
de6bc7c7ae72e7e1a49fc3407a124bdb34b2fd77
901dced9d6455c314839bcfb5334c1d8702a5f99
refs/heads/master
2020-04-18T00:56:41.462673
2018-05-01T09:10:38
2018-05-01T09:10:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,421
py
from sklearn.cross_validation import train_test_split import pandas as pd import matplotlib.pyplot as plt import matplotlib #%matplotlib inline import seaborn as sns from numpy import log from sklearn.linear_model import LogisticRegression import math data = pd.read_csv('cs_training.csv') data.columns = ['Unnamed: 0', 'Y','x1','x2','x3','x4','x5','x6','x7','x8','x9','x10'] data = data[data.x2>20] data = data[data.x2<91] data = data[data.x3<50] data = data[data.x7<50] index1 = data[data['x5'].isnull()].index ageList = data['x2'].unique() fillDict = {} for age in ageList: fillDict[age] = data[data.x2==age]['x5'].median() def fill_monthIncome(data,index1): for i in index1: age = data.loc[i,'x2'] fill_value = fillDict[age] data.loc[i,'x5'] = fill_value fill_monthIncome(data.index1) data.to_csv('clean_data.csv') data = pd.read_csv('clean_data.csv') names = ['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10'] X = data.loc[:,['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10']] Y = data['Y'] list1 = list(data.x2.unique()) list1 = sorted(list1) IncomeMedian = [] for i in list1: result = data[data.x2==i]['x5'].median() IncomeMedian.append(result) def get_value(data,feature): test1 = list(data[feature].unique()) test1 = sorted(test1) return test1 total_good = len(data)-data['Y'].sum() total_bad = data['Y'].sum() total_ratio = data['Y'].sum()/(len(data)-data['Y'].sum()) def compute_woe1(data,feature,n): woe_dict ={} iv = 0 total_list = data[feature].value_counts() index1 = get_value(data,feature) for i in index1: if i <= n: bad = data[data[feature]==i]['Y'].sum() good = total_list[i] - bad result = bad/good woe = log(result/total_ratio) woe_dict[i] = woe iv_test = (bad/total_bad - good/total_good)*woe iv = iv+iv_test else: bad = data[data[feature]>=i]['Y'].sum() good = len(data[data[feature]>=i]['Y']) - bad result = bad/good woe = log(result/total_ratio) woe_dict[i] = woe iv_test = (bad/total_bad - good/total_good)*woe iv = iv+iv_test break return woe_dict,iv data.x1 = pd.qcut(data.x1,10,labels=[0,1,2,3,4,5,6,7,8,9]) data.x2 = pd.cut(data.x2,bins=[20,25,30,35,40,50,60,70,90],labels=[0,1,2,3,4,5,6,7]) data.x4 = pd.qcut(data.x4,20,labels=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]) data.x5 = pd.qcut(data.x5,20,labels=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]) woe_x1,IV1 = compute_woe1(data,'x1',100) woe_x2,IV2 = compute_woe1(data,'x2',100) woe_x3,IV3 = compute_woe1(data,'x3',6) woe_x4,IV4 = compute_woe1(data,'x4',100) woe_x5,IV5 = compute_woe1(data,'x5',100) woe_x6,IV6 = compute_woe1(data,'x6',20) woe_x7,IV7 = compute_woe1(data,'x7',5) woe_x8,IV8 = compute_woe1(data,'x8',7) woe_x9,IV9 = compute_woe1(data,'x9',4) woe_x10,IV10 = compute_woe1(data,'x10',5) index1 = data[data.x3>=4].index data.loc[index1,'x3'] = 4 index2 = data[data.x7>=4].index data.loc[index2,'x7'] = 4 index3 = data[data.x9>=4].index data.loc[index3,'x9'] = 4 IVList = [IV1, IV2, IV3, IV4, IV5, IV6, IV7, IV8, IV9, IV10] index=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10'] fig1 = plt.figure(1) ax1 = fig1.add_subplot(1, 1, 1) x = np.arange(len(index))+1 ax1.bar(x, IVList, width=0.4) ax1.set_xticks(x) ax1.set_xticklabels(index, rotation=0, fontsize=12) ax1.set_ylabel('IV(Information Value)', fontsize=14) for a, b in zip(x, IVList): plt.text(a, b + 0.01, '%.4f' % b, ha='center', va='bottom', fontsize=10) plt.show() def convert_woe(feature,woe): list1 = [] for i in data[feature]: if i in woe.keys(): list1.append(woe[i]) else: list1.append(woe[(len(woe)-1)]) return list1 data.x1 = convert_woe('x1',woe_x1) data.x2 = convert_woe('x2', woe_x2) data.x3 = convert_woe('x3', woe_x3) data.x7 = convert_woe('x7', woe_x7) data.x9 = convert_woe('x9', woe_x9) data = data.drop(['x4','x5','x6','x8','x10'],axis=1) data = data.loc[:,['Y','x1','x2','x3','x7','x9']] Y = data.Y X = data.loc[:,['x1','x2','x3','x7','x9']] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=0) lr = LogisticRegression(C=0.1) lr.fit(X_train,Y_train) #lr.coef_ y_pred = lr.predict(X_test) fpr, tpr, thresholds = roc_curve(Y_test,y_pred) roc_auc = auc(fpr,tpr) # Plot ROC plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b',label='AUC = %0.2f'% roc_auc) plt.legend(loc='lower right') plt.plot([0,1],[0,1],'r--') plt.xlim([-0.1,1.0]) plt.ylim([-0.1,1.01]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() coe=[9.738849,0.638002,0.505995,1.032246,1.790041,1.131956] p = 20 / math.log(2) q = 600 - 20 * math.log(20) / math.log(2) baseScore = round(q + p * coe[0], 0) data.x1 = convert_woe('x1',woe_x1) data.x2 = convert_woe('x2', woe_x2) data.x3 = convert_woe('x3', woe_x3) data.x7 = convert_woe('x7', woe_x7) data.x9 = convert_woe('x9', woe_x9) data.x1 = round(data.x1*p*coe[1]) data.x2 = round(data.x2*p*coe[2]) data.x3 = round(data.x3*p*coe[3]) data.x7 = round(data.x7*p*coe[7])
[ "noreply@github.com" ]
mzjdy.noreply@github.com
7e3e293ac3834b01926d52d452d737a1aaa352ae
c836d305745c0d024c75f053f619f4e3193ce978
/gelin_group.py
a071017c051f2bfaf844c2b8bfb4f873cd949500
[]
no_license
eguinosa/minimax-hex
5fc87421528eb5929994f329629edfa58b80d3a7
9adaed2afe857deb517dbeeb5ffd97da5ca83bb6
refs/heads/master
2023-06-04T15:59:51.065212
2021-05-21T02:10:56
2021-05-21T02:10:56
379,028,278
0
0
null
null
null
null
UTF-8
Python
false
false
4,776
py
# Gelin Eguinosa Rosique # C-511 class Group: """Class to represent a group of stone with the same color""" def __init__(self, game, player, positions): """ Save the location of the stones of the group, the board and the player. Look how many rows or columns covers, to see how close to winning is the player. """ self.positions = positions self.game = game self.player = player # Checking the length of the group min_pos, max_pos, group_length = self.__length() self.min_pos = min_pos self.max_pos = max_pos self.length = group_length def empty_neighbours(self): """Look for all the empty cells that are next to the stones of the group""" result_neighbours = [] search_map = [[False] * self.game.size for _ in range(self.game.size)] for position in self.positions: x = position[0] y = position[1] search_map[x][y] = True for nx, ny in self.game.neighbour(x, y): if search_map[nx][ny]: continue search_map[nx][ny] = True if self.game[nx, ny] == '.': result_neighbours.append((nx, ny)) # Sort the neighbours depending on how much they get closer the player to the edges result_neighbours.sort(key=lambda pos: self.__pos_advantage(pos)) return result_neighbours def __pos_advantage(self, pos): """ Gives a value determining how good would it be to play in this position of the board for the player. -1: if it expands the group one step 0: if it is in the edge of the group positive number: if it is inside the edges of the group """ if self.player == 'W': y = pos[1] min_y = self.min_pos[1] max_y = self.max_pos[1] if y < min_y or y > max_y: return -1 if y == min_y or y == max_y: return 0 distance_to_edge = max(y-min_y, max_y - y) return distance_to_edge # self.player == 'B' x = pos[0] min_x = self.min_pos[0] max_x = self.max_pos[0] if x < min_x or x > max_x: return -1 if x == min_x or x == max_x: return 0 distance_to_edge = max(x - min_x, max_x - x) return distance_to_edge def __length(self): """ Look for how many of the rows ('B' player) or columns ('A' player) does this group covers, so to know how close is the player to win the game. If the player has covered all the rows or columns in a connected group, the player wins the game. :return: the number of columns or rows the group covers. """ if self.player == 'W': y_min = min(self.positions, key=lambda pos: pos[1]) y_max = max(self.positions, key=lambda pos: pos[1]) y_length = y_max[1] - y_min[1] + 1 return y_min, y_max, y_length # self.player == 'B' x_min = min(self.positions, key=lambda pos: pos[0]) x_max = max(self.positions, key=lambda pos: pos[0]) x_length = x_max[0] - x_min[0] + 1 return x_min, x_max, x_length def connected_group(game, player, visited_area): """Search for all the connected stones of the same player""" positions = [] neighbours = [] # Flag to stop the double for stop = False for x in range(game.size): for y in range(game.size): if visited_area[x][y]: continue elif game[x, y] != player: visited_area[x][y] = True continue else: # game[x, y] == player and not visited_area[x][y]: visited_area[x][y] = True positions.append((x, y)) neighbours += list(game.neighbour(x, y)) stop = True if stop: break if stop: break # No player found on the board if not positions: found_group = False return found_group, None # Search for all the positions of the player connected to the one in group while neighbours: x, y = neighbours.pop(0) if visited_area[x][y]: continue elif game[x, y] != player: visited_area[x][y] = True continue # game[x, y] == player and not visited_area[x][y]: visited_area[x][y] = True positions.append((x, y)) neighbours += list(game.neighbour(x, y)) found_group = True result_group = Group(game, player, positions) return found_group, result_group
[ "eguinosa@gmail.com" ]
eguinosa@gmail.com
1fe26b687dbd81149de336083512b6e7129e88d1
2eb779146daa0ba6b71344ecfeaeaec56200e890
/python/oneflow/compatible/single_client/test/ops/test_transpose.py
02117e32289d49fe2caa7a1e4f230115958caf6e
[ "Apache-2.0" ]
permissive
hxfxjun/oneflow
ee226676cb86f3d36710c79cb66c2b049c46589b
2427c20f05543543026ac9a4020e479b9ec0aeb8
refs/heads/master
2023-08-17T19:30:59.791766
2021-10-09T06:58:33
2021-10-09T06:58:33
414,906,649
0
0
Apache-2.0
2021-10-09T06:15:30
2021-10-08T08:29:45
C++
UTF-8
Python
false
false
4,027
py
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import unittest from collections import OrderedDict import numpy as np import tensorflow as tf import test_global_storage from test_util import GenArgList import oneflow.compatible.single_client.unittest from oneflow.compatible import single_client as flow from oneflow.compatible.single_client import typing as tp gpus = tf.config.experimental.list_physical_devices("GPU") for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) def compare_with_tensorflow(device_type, input_shape, perm): assert device_type in ["gpu", "cpu"] flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) @flow.global_function(type="train", function_config=func_config) def TransposeJob(): with flow.scope.placement(device_type, "0:0"): x = flow.get_variable( "input", shape=input_shape, dtype=flow.float, initializer=flow.random_uniform_initializer(minval=2, maxval=5), trainable=True, ) loss = flow.transpose(x, perm) flow.optimizer.SGD( flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0 ).minimize(loss) flow.watch(x, test_global_storage.Setter("x")) flow.watch_diff(x, test_global_storage.Setter("x_diff")) flow.watch(loss, test_global_storage.Setter("loss")) flow.watch_diff(loss, test_global_storage.Setter("loss_diff")) return loss of_out = TransposeJob().get() with tf.GradientTape(persistent=True) as tape: x = tf.Variable(test_global_storage.Get("x")) tf_out = tf.transpose(x, perm) loss_diff = test_global_storage.Get("loss_diff") tf_x_diff = tape.gradient(tf_out, x, loss_diff) assert np.allclose(of_out.numpy(), tf_out.numpy(), rtol=1e-05, atol=1e-05) assert np.allclose( test_global_storage.Get("x_diff"), tf_x_diff.numpy(), rtol=1e-05, atol=1e-05 ) @flow.unittest.skip_unless_1n1d() class TestTranspose(flow.unittest.TestCase): def test_transpose(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["input_shape"] = [(10, 11, 12, 13)] arg_dict["perm"] = [(2, 0, 1, 3), (1, 0, 2, 3), (3, 2, 1, 0), (3, 1, 2, 0)] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_transpose2(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["input_shape"] = [(10, 11, 12)] arg_dict["perm"] = [(2, 0, 1), (1, 0, 2), (2, 1, 0), (1, 2, 0)] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_transpose3(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["input_shape"] = [(10, 11)] arg_dict["perm"] = [(1, 0), (0, 1)] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_transpose_dim6(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["input_shape"] = [(2, 3, 4, 5, 6, 7)] arg_dict["perm"] = [(2, 0, 1, 3, 5, 4)] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) if __name__ == "__main__": unittest.main()
[ "noreply@github.com" ]
hxfxjun.noreply@github.com
b9fabd9eff824bc52f679ea4a021f6c1c82aac47
21363a3e7ca2cd9be81730fdd52b2c7cc0b06d4b
/codebase/Analysis.py
e6231222c936e1a75148c926d230da74ab72a1f8
[]
no_license
AkshatParmar/InfoAndNetw
1ed9c86c09977fae9af16a4e5035acbf9aa12224
52723355638abd76e0f1a1057dd0644f6668081f
refs/heads/main
2023-01-24T11:17:32.871990
2020-12-08T21:34:30
2020-12-08T21:34:30
314,391,766
3
1
null
null
null
null
UTF-8
Python
false
false
1,104
py
from matplotlib import pyplot as plt from server import vote_tally as vt def plot(): presidents, senators = vt() ##Senators plt.figure() ax = plt.subplot() s_keys= list(senators.keys()) s_votes = list(senators.values()) cmap = plt.cm.get_cmap('hsv', 10) sen_n = len(s_keys) for i in range(sen_n): plt.bar(s_keys[i], s_votes[i], color=cmap(i), edgecolor='black') ax.get_yaxis().set_ticks([]) ax.set_xticklabels(s_votes) plt.title('Vote Tally') ax.legend(labels=s_keys, title='Candidates') plt.savefig('senators.png') ###Presidents plt.figure() ax = plt.subplot() p_keys = list(presidents.keys()) p_votes = list(presidents.values()) cmap = plt.cm.get_cmap('hsv', 10) sen_n = len(p_keys) for i in range(sen_n): plt.bar(p_keys[i], p_votes[i], color=cmap(i), edgecolor='black') ax.get_yaxis().set_ticks([]) ax.set_xticklabels(p_votes) plt.title('Vote Tally') ax.legend(labels=p_keys, title = 'Candidates') plt.savefig('presidents.png') if __name__ == "__main__": plot()
[ "ranisayed16@gmail.com" ]
ranisayed16@gmail.com
60e077f3f23f697b0b33bdeca4b24594f3478247
626b14ce13986b6d5e03143e151004247659625a
/Day01-15/code/Day08/student.py
7d753978b63ee1f015b2f6a12f70198e93ff89bc
[]
no_license
Focavn/Python-100-Days
c7586ecf7ae3f1fd42f024558bb998be23ee9df8
d8de6307aeff9fe31fd752bd7725b9cc3fbc084b
refs/heads/master
2021-08-08T17:57:02.025178
2020-09-17T11:58:04
2020-09-17T11:58:04
220,427,144
0
0
null
2019-11-08T08:59:43
2019-11-08T08:59:41
null
UTF-8
Python
false
false
1,108
py
""" 定义和使用学生类 Version: 0.1 Author: 骆昊 Date: 2018-03-08 """ def _foo(): print('test') class Student(object): # __init__是一个特殊方法用于在创建对象时进行初始化操作 # 通过这个方法我们可以为学生对象绑定name和age两个属性 def __init__(self, name, age): self.name = name self.age = age def study(self, course_name): print('%s正在学习%s.' % (self.name, course_name)) # PEP 8要求标识符的名字用全小写多个单词用下划线连接 # 但是很多程序员和公司更倾向于使用驼峰命名法(驼峰标识) def watch_av(self): if self.age < 18: print('%s只能观看《熊出没》.' % self.name) else: print('%s正在观看岛国大电影.' % self.name) def main(): stu1 = Student('骆昊', 38) stu1.study('Python程序设计') stu1.watch_av() stu2 = Student('王大锤', 15) stu2.study('思想品德') stu2.watch_av() if __name__ == '__main__': main()
[ "Focavn@users.github.com" ]
Focavn@users.github.com
b017ea97681e78e573ef2263673d410c3b1bbfb0
ed04425041ff7c18eb60d27dda5353ba3b65974b
/src/dbscan.py
e6518e7dd770950a047e138a2a618b82847123bb
[]
no_license
alexmi256/colordiff
36e927b5acb72f61bc50a17cbfed4221e42c8e61
db91e0a10a0d8b1d1e3f734ca4c67635344f2b55
refs/heads/main
2023-03-15T09:32:23.209377
2021-03-08T02:19:47
2021-03-08T02:19:47
345,106,384
0
0
null
null
null
null
UTF-8
Python
false
false
677
py
from sklearn.cluster import DBSCAN from src.example import make_matrix, print_clusters # Try out DBScan colors, distance_matrix = make_matrix() # Compute DBSCAN # The results are pretty bad db = DBSCAN(eps=17, metric="precomputed", min_samples=1).fit(distance_matrix) labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) n_noise_ = list(labels).count(-1) print("Estimated number of clusters: %d" % n_clusters_) print("Estimated number of noise points: %d" % n_noise_) if -1 in labels: print("There were no clusters found") else: print_clusters(colors, labels, distance_matrix)
[ "alexmi3.14@gmail.com" ]
alexmi3.14@gmail.com
7b6b378236a2bc362d4690f63b090adb2c04b502
ee2bf52e37e23ea3030da212beb484319a35ed80
/2015-2016 Nivel Basico/13_ejercicio13/ejer13.py
0b89a0858602cd945032f63ee17fb4405c586e74
[]
no_license
Trietptm-on-Coding-Algorithms/CLS-Exploits
318fde8c3817fc6cf7e81ddf392f5eeac1f5c898
94ea56cf51fcd89330c0d93e62d5f3d905e5e602
refs/heads/master
2020-03-20T19:15:58.696676
2016-08-28T11:02:32
2016-08-28T11:02:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,286
py
import struct,subprocess, win32api p = lambda x : struct.pack("<I", x) shellcode = "\x66\x81\xE4\xFC\xFF\x31\xD2\x52\x68\x63\x61\x6C\x63\x89\xE6\x52" shellcode += "\x56\x64\x8B\x72\x30\x8B\x76\x0C\x8B\x76\x0C\xAD\x8B\x30\x8B\x7E" shellcode += "\x18\x8B\x5F\x3C\x8B\x5C\x1F\x78\x8B\x74\x1F\x20\x01\xFE\x8B\x4C" shellcode += "\x1F\x24\x01\xF9\x42\xAD\x81\x3C\x07\x57\x69\x6E\x45\x75\xF5\x0F" shellcode += "\xB7\x54\x51\xFE\x8B\x74\x1F\x1C\x01\xFE\x03\x3C\x96\xFF\xD7\x90" ''' shellcode .code start: and sp,0xfffc xor edx,edx push edx push 0x636c6163 mov esi,esp push edx push esi mov esi,DWORD PTR fs:[edx+0x30] mov esi,DWORD PTR [esi+0xc] mov esi,DWORD PTR [esi+0xc] lods eax,DWORD PTR ds:[esi] mov esi,DWORD PTR [eax] mov edi,DWORD PTR [esi+0x18] mov ebx,DWORD PTR [edi+0x3c] mov ebx,DWORD PTR [edi+ebx*1+0x78] mov esi,DWORD PTR [edi+ebx*1+0x20] add esi,edi mov ecx,DWORD PTR [edi+ebx*1+0x24] add ecx,edi iter: inc edx lods eax,DWORD PTR ds:[esi] cmp DWORD PTR [edi+eax*1],0x456e6957 jne iter movzx edx,WORD PTR [ecx+edx*2-0x2] mov esi,DWORD PTR [edi+ebx*1+0x1c] add esi,edi add edi,DWORD PTR [esi+edx*4] call edi nop ''' payload = "\xff" + p(0x45464748) + p(0xdeadbeef) + p(0xff) # bypassing checks payload += p(0x1010179b) # pop esi <---------------------= payload += p(0x10103000+0x74) # virtualloc + 74h | payload += p(0x10101b00) # jump [esi + 74h] | payload += p(0x1010103a) # | ret | payload += p(0x0012af80) # | addr | payload += p(0x00001000) # | size | payload += p(0x00001000) # | allocation type | payload += p(0x00000040) # |- Protection | payload += p(0x0012af8a) # jmp to nop sled ----------------------= | payload += p(0x10103000) # virtualAlloc to be poped in shellcode | | payload += p(0xdeadbeef) * 10 # nop sled <------------------------------= | payload += p(0x10101CA3) # pop pop pop ret | payload += p(0x10101039) # stack pivot pop ret -----------------------= payload += p(0x90909090) * 7 payload += shellcode fDat = open('fichero.dat', 'wb') fDat.write(payload) subprocess.Popen(['ejercicio13.exe'])
[ "kalianon2816@gmail.com" ]
kalianon2816@gmail.com
18ec3d099574b4d49f99ed32f6cf549f4d0278bb
a9efc041fa75d447b26f7a57fc8673f48360acec
/pe015.py
52a33de20c1caad00896b0cdd18f40ee58e87e57
[]
no_license
stepheniota/euler
9b497073c49f764a4e1140ef18851f6a0bfafdb0
6f71440ebdc34b1e077c9cf145e456648a35f474
refs/heads/main
2023-08-27T01:15:56.915553
2021-11-14T10:54:51
2021-11-14T10:54:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
""" pe 15 - power digit sum What is the sum of the digits of the number 2^{1000}? """ ans = sum(int(n) for n in str(2**1000)) print(ans)
[ "iota@usc.edu" ]
iota@usc.edu
e39ec3b82e0551f31532345f993df0e4da0ee93f
459185e0e12d486e91fcfff3e6d6174afbdf70db
/JEX-V4/Exploits/wpinstall.py
84eb5f88c61670e0b117e32045f691f557ac28bc
[]
no_license
Hdiaktoros/laravel-dorks
e42a1be938b0fdbbf17e6689d50c7f8bcf30c464
a9ae0af4a27b522f939b5c1627db3b98f18bb5c3
refs/heads/main
2023-07-05T02:59:17.032717
2021-08-21T16:30:42
2021-08-21T16:30:42
398,522,099
2
1
null
null
null
null
UTF-8
Python
false
false
3,456
py
# coding=utf-8 from Exploits import printModule import requests from random import sample from BruteForce import Wordpress # ----------------==---- MY USER AGent ----==---------------- Headers = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:72.0) Gecko/20100101 Firefox/72.0'} # -------------------- MYSQl SERVER INFO -------------------- HOST = '31.210.78.238' USER = 'francesco_res' PASS = 'L30zDTZDTP'[::-1] DB = 'francesco_reservex' # ----------------==---- WpInstall Info ----==---------------- username = 'u1337' password = 'uAdmin@123' # ------------------------------------------------------------ def RandomGenerator(lenth): return ''.join(sample('abcdefghijklmnopqrstuvwxyz', lenth)) def WpInstall(site, Email): session = requests.Session() RandomStringForPREFIX = str('wp_' + str(RandomGenerator(8)) + '_') try: DATA = { 'dbname': DB, 'uname': USER, 'pwd': PASS, 'dbhost': HOST, 'prefix': RandomStringForPREFIX, 'language': 'en_US', 'submit': 'Submit' } A = session.post('http://' + site + '/wp-admin/setup-config.php?step=2', data=DATA, headers=Headers, timeout=10) if 'install.php' in str(A.content): POSTDATA_Install = { 'weblog_title': 'installed|jex', 'user_name': username, 'admin_password': password, 'pass1-text': password, 'admin_password2': password, 'pw_weak': 'on', 'admin_email': Email, 'Submit': 'Install+WordPress', 'language': 'en_US' } session.post('http://' + site + '/wp-admin/install.php?step=2', data=POSTDATA_Install, headers=Headers, timeout=25) except: pass try: source = session.get('http://' + site + '/wp-login.php', timeout=10, headers=Headers).content if 'installed|jex' in str(source): with open('result/Wp-Installed.txt', 'a') as writer: writer.write(site + '/wp-login.php\n Username: {}\n' ' Password: {}\n------------------------------------------\n' .format(username, password)) Login = Wordpress.Wordpress() Login.BruteForce(site, password, username) return printModule.returnYes(site, 'N/A', 'Wp-Install', 'Wordpress') else: with open('result/Wp-SetupFound.txt', 'a') as writer: writer.write('{}/wp-admin/setup-config.php\n'.format(site)) return printModule.returnNo(site, 'N/A', 'Wp-Install', 'Wordpress') except: return printModule.returnNo(site, 'N/A', 'Wp-Install', 'Wordpress') def Check(site, email): try: PATHz = [ '', '/wordpress', '/wp', '/blog', '/test', '/site' ] x = 0 for path in PATHz: C = requests.get('http://' + site + path + '/wp-admin/setup-config.php?step=0') if 'setup-config.php?step=1' in str(C.content): x += 1 return WpInstall(site + path, email) if x == 0: return printModule.returnNo(site, 'N/A', 'Wp-Install', 'Wordpress') except: return printModule.returnNo(site, 'N/A', 'Wp-Install', 'Wordpress')
[ "frimpongasante50@gmail.com" ]
frimpongasante50@gmail.com
dc65124f1049308aad58600a95ccf125c9d4d3b1
b84305736a16279a7e3eb94b597e0a59df15676c
/src/BCD.py
a4141aaa844b1ea137f62cad07b148485872790d
[]
no_license
ellenmdai/BiasedConstraintDemotion
cefcacf9f468f3fef316b352990f8cdee3bc2c33
ebd39f2d4a6fdf4009f56265e60cf8dae4cd078f
refs/heads/master
2022-04-26T08:37:52.234488
2020-05-01T21:15:57
2020-05-01T21:15:57
260,560,460
0
0
null
null
null
null
UTF-8
Python
false
false
15,028
py
import numpy as np from pandas import DataFrame, read_csv from collections import Counter from itertools import combinations class BCD(object): """A class that performs Biased Constraint Demotion on given data. Attributes: vt (DataFrame): violation tableau of data (optional); ct (DataFrame): constraint tableau of data; markednessConstraints (set): constraint names of all constraints denoted by a 'm:' prefix (or at least not 'f:'); strata (list of sets): list of each stratum of constraints in order, with more dominant strata coming first; """ def __init__(self, vtPath = None, ctPath = None): """ Parameters: ---------- vtPath : str, optional Path to a .csv containing a violation tableau. If both this and ctPath are given, ctPath will be ignored. Default is None. ctPath : str, optional Path to a .csv containing a constraint tableau. Default is None. If ctPath is None here, then it must be initialized with either loadCt() or generateCtFromVt(). """ self.vt = None self.ct = None self.markednessConstraints = None self.strata = [] if (vtPath): self.vt = read_csv(vtPath) elif (ctPath): self.ct = read_csv(ctPath) self.markednessConstraints = set([con for con in self.ct.columns.values[3:] if not con.startswith('f:')]) def loadVt(self, vtPath): self.vt = read_csv(vtPath) def loadCt(self, ctPath): self.ct = read_csv(ctPath) # from constraint names, consider it a markedness constraint if not marked as faithfulness (i.e. does not start with "f:") self.markednessConstraints = set([con for con in self.ct.columns.values[3:] if not con.startswith('f:')]) def generateCtFromVt(self): """ Uses self.vt to generate a constraint tableau stored in self.ct, and the set of markedness constraints stored in self.markednessConstraints. Raises ------ Exception: If for an input, any number other than exactly one row marked as the optimal output. """ vt = self.vt.sort_values(by=['Input', 'Optimal']) # for every input, the optimal output will appear first. self.ct = DataFrame(columns=['Input', 'Winner', 'Loser'] + list(vt.columns.values[3:])) optimalRow = None for i, row in vt.iterrows(): if (optimalRow is not None and row['Input'] == optimalRow['Input']): # the optimal for this group if (not np.isnan(row['Optimal'])): raise Exception("cannot have multiple optimal outputs for singe input:", row['Input']) mdpData = optimalRow.values[3:] - row.values[3:] mdpData = ['L' if v > 0 else 'W' if v < 0 else '' for v in mdpData] self.ct.loc[i] = [row['Input'], optimalRow['Output'], row['Output']] + mdpData elif (row['Optimal'] == np.nan): raise Exception("must have some optimal output info for:", row['Input']) else: optimalRow = row self.markednessConstraints = set([con for con in self.ct.columns.values[3:] if not con.startswith('f:')]) def saveCt(self, path): self.ct.to_csv(path, index=False) def saveOrganizedTableau(self, path): self.organizeTableau(self.ct, self.strata).to_csv(path, index=False) def doBCD(self): """ Runs the overall BCD algorithm, filling self.strata. """ ct = self.ct.copy() self.strata = [] faithSets = [] # stack for when determining which set of faithfulness constraints should be ranked # while we're there are still constraints not yet placed while (faithSets or len(ct.columns) > 3): # if we have multiple f-sets to choose from based on the last iteration, continue BCD for each option and # retain the strata of the optimal one. if (faithSets): bestFaithSet = self.findMinFaithSubset(faithSets) self.strata += bestFaithSet[0] ct = bestFaithSet[1] continue iterationResult = self.findNextStratum(ct) if (type(iterationResult) == set ): # we got back a single set of constraints to be the next stratum self.strata.append(iterationResult) # removed resolved data from considerion in future iterations self.removeResolvedRowsAndCols(ct, iterationResult) else: # we got back a list of possible sets. Store the sets to find which frees up the most m-constraints in the next iteration. for faithSet in iterationResult: workingCt = ct.copy() self.removeResolvedRowsAndCols(workingCt, faithSet) faithSets.append(([faithSet], workingCt, 0)) # (potential strata, working ct, # freed markedness constraints) def findNextStratum(self, workingCt): """ Determines the best set(s) of constraints for the next stratum. Parameters: ---------- workingCt (DataFrame): a constraint tableau containing only unranked constraints and unresolved mark-data pairs. Returns: ---------- rankNext (list of sets): the potential sets of constraints for the next stratum, either of m-constraints, f-constraits, or multiple sets of f-constraints if multiple would free up m-constraints later. """ fuseAll = workingCt.iloc[:, 3:].apply(lambda col: self.fusion(col)) # don't fuse winner, loser, input info noL = fuseAll[fuseAll != 'L'] # all constraints that prefer no losers noLMarkedness = self.markednessConstraints.intersection(set([constraintName[0] for constraintName in noL.iteritems()])) if (noLMarkedness): # if at least of of NoL is a markedness constraint rankNext = noLMarkedness # otherwise, no markedness constraint can be placed right now, so... # if there are still some constraints that prefer losers and if at least one of NoL prefers a winner elif (len(noL) < len(fuseAll) and (len(noL[noL == 'W']) > 0)) : freeingFaithSets = self.findPotentialMinFaithSubsets(noL, workingCt) if (len(freeingFaithSets) == 1): rankNext = freeingFaithSets[0] else: return freeingFaithSets else: rankNext = set(noL.index) return rankNext def findPotentialMinFaithSubsets(self, noL, ct): """ Finds the smallest sized subsets of f-constraints that frees up an m-constraint for the next iteration. Parameters: ---------- noL (Series): Series where the indices are constraints that prefer no losers for the given ct and the values are either 'W' or 'e'. ct: A constraint tableau containing only unranked constraints and unresolved mark-data pairs. Returns: ---------- freeingFaithSets (list): All subsets of a certain size that free at least one m-constraint for the next iteraton. This may contain just one or multiple sets. """ activeFaith = noL[noL == 'W'] fSetSize = 0 freeingFaithSets = [] # starting with size 1, test all combinations of constraints of that size until at least one combination frees an m-constraint while (fSetSize < len(activeFaith) and len(freeingFaithSets) == 0): fSetSize += 1 faithSets = combinations(activeFaith.index, fSetSize) # for each possible set, see if placing them as a stratum would free an m-constraint for f in faithSets: ctFreedomTest = ct.copy() self.removeResolvedRowsAndCols(ctFreedomTest, f) testFuseAll = ctFreedomTest.iloc[:, 3:].apply(lambda col: self.fusion(col)) freedMConstraints = self.markednessConstraints.intersection(set( \ [constraintName[0] for constraintName in testFuseAll[testFuseAll != 'L'].iteritems()])) # if f frees up a markedness constraint, add to freeingfaithsets if (len(freedMConstraints) > 0): freeingFaithSets.append(set(f)) if (len(freeingFaithSets) == 0): # if no such subset exists, return all f-constraints that preferred a winner return [set(activeFaith.index)] return freeingFaithSets def findMinFaithSubset(self, faithSets): """ From multiple potential f-constraint subsets, picks out the one that frees the most m-constraints before having to place another f-constraint, which is assumed to be the optimal choice. If multiple sets free the same number of m-constraints, this returns the first one encountered. Parameters: ---------- faithSets (list): A list (treated as a Stack) of tuples in the form (workingStrata, workingCt, numFreedMConstraints) where: workingStrata (list): stratified hierachy of constraints, starting with the initial f-set in question, and any other m-constraint sets placed after. workingCt (DataFrame): a constraint tableau containing only columns not yet ranked either in self.strata or workingStrata and the mark-data pairs not yet resolved by them. numFreedMConstraints: The number of markedness constraints able to be ranked by placing workingStrata's initial f-constraint set. Returns: ---------- bestFaithSet (tuple): A tuple in the form (workingStrata, workingCt, numFreedMConstraints) of the f-set that frees the most m-constraints. """ bestFaithSet = ([], None, -1) # any real faithSet will beat this placeholder while (faithSets): # while we're still choosing between faithSets (workingStrata, workingCt, numFreedMConstraints) = faithSets.pop() iterationResult = self.findNextStratum(workingCt) # if we get back a single stratum of only markedness constraints, add to numFreedMConstraints and continue iterating if (type(iterationResult) == set and self.markednessConstraints.intersection(iterationResult) == iterationResult): self.removeResolvedRowsAndCols(workingCt, iterationResult) workingStrata.append(iterationResult) faithSets.append((workingStrata, workingCt, numFreedMConstraints + len(iterationResult))) # if we'd have to place a faithfulness constraint, we've reached the end of our testing for the original faithSet # candidate, so update the best faithSet if this one's better elif (numFreedMConstraints > bestFaithSet[2]): bestFaithSet = (workingStrata, workingCt, numFreedMConstraints) return bestFaithSet def printStrata(self): print("STRATA:") for ranking, stratum in enumerate(self.strata, start=1): print('Rank', ranking, stratum) def calculateRMeasure(self): """ Calculates the R-Measure of this particular ranking, which is the sum of the number of m-constraints that dominates each f-constraint. Returns: ---------- r (int): R-Measure of self.strata """ self.r = 0 dominatingMCount = 0 for stratum in self.strata: mCount = 0 for constraint in stratum: if constraint in self.markednessConstraints: mCount += 1 else: self.r += dominatingMCount dominatingMCount += mCount return self.r @staticmethod def fusion(constraint): # constraint = a column and its values """ logical operation combining ERCs of multiple data points, as described in RCD the Movie by Alan Prince (2009). Parameters: ---------- constraint (series): a column from a constraint tableau where the header is the constraint name and each value comes from a row, where 'W' means the winner is preferred by this constraint and 'L' means the loser is preferred. Returns: ---------- 'L' if a loser is preferred by any row; 'e' if neither is prefered by any row; 'W' if at least one winner and no losers are preferred. """ count = Counter(constraint) if 'L' in count: return 'L' if 'W' not in count: return 'e' return 'W' @staticmethod def removeResolvedRowsAndCols(ct, resolvedConstraints): """ Gets rid of data resolved by a certain stratum in a constraint tableau. So that it won't be considered in future steps. Parameters: ---------- ct (DataFrame): the working constraint tableau. resolvedConstraints (set): Names of constraints whose columns and resolved rows are to be eliminated. """ for constraint in resolvedConstraints: winnerPreferredIndices = ct[ct[constraint] == 'W'].index ct.drop(winnerPreferredIndices, inplace=True) ct.drop(constraint, axis=1, inplace=True) @staticmethod def organizeTableau(originalCt, strata): """ Reorders a constraint tableau to make following the BCD algorithm manually easier. Constraints are sorted left to right from most to least dominant, and mark-data pairs are sorted top to bottom by the stratum number that resolves it (i.e. rows resolved by more dominant strata are placed towards the top). An additonal 'Rank' column is also added indicating which stratum resolves that row. Parameters: ---------- originalCt (DataFrame): the constraint tableau that contains all data. This will remain untouched; a copy will be edited. strata (list): The stratified hierarchy, where each stratum is a set, whose order will be used to sort the constraint tableau. Returns: ---------- ct (DataFrame): A sorted version of originalCt with an additional 'Rank' column. """ ct = originalCt.copy() ct['Rank'] = 0 columnOrder = list(ct.columns)[:3] for ranking, stratum in enumerate(strata, start=1): columnOrder += list(stratum) for constraint in stratum: winnerPreferredIndices = ct[(ct[constraint] == 'W') & (ct['Rank'] == 0)].index for i in winnerPreferredIndices: ct.loc[i, 'Rank'] = ranking ct = ct.sort_values('Rank') columnOrder.append('Rank') ct = ct.reindex(columns=columnOrder) return ct.fillna('')
[ "12478985+ellenmdai@users.noreply.github.com" ]
12478985+ellenmdai@users.noreply.github.com
94d7d573288eb90d05e576a11a91c7c3562fa982
231c81317b3ae93237cc3a6f55f924c8bc3cadf3
/loca_test_v2_lang.py
dc314e071e5a1e97f82a8912ca306e6c2a1aaf53
[]
no_license
qianpeisheng/indo
2acd394051ee0f18dc01a8577d4a60507888a8a1
2abe017c61eb33d466d382d92614e56e2605a663
refs/heads/main
2023-03-24T07:52:43.350718
2021-03-20T18:56:48
2021-03-20T18:56:48
348,845,962
0
0
null
null
null
null
UTF-8
Python
false
false
15,986
py
import os import torch from datasets import load_dataset from torch import nn import torch.nn.functional as F from transformers import (AutoModel, BertTokenizer, AutoConfig, DataCollatorForLanguageModeling) # AutoModelForMaskedLM from torch.utils.data import DataLoader, random_split # AutoTokenizer from torchvision import transforms import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint import gzip import csv from sklearn.metrics import accuracy_score from tokenizers import Tokenizer from tokenizers.models import BPE from tokenizers.trainers import BpeTrainer from tokenizers.pre_tokenizers import Whitespace import pandas as pd import datetime # Configs model_name = 'indobenchmark/indobert-lite-base-p1' max_seq_length = 167 # for train and test preprocessing_num_workers = 4 batch_size=2048 # depend on gpu memory # utils def get_pos(index1, index2, embedding, cls_): val1, pos1 = torch.max(embedding[:,:,index1], dim=1) val2, pos2 = torch.max(embedding[:,:,index2], dim=1) for i, v in enumerate(cls_): if index2 < 2: # poi if v == 0 or v == 2: pos1[i] = 0 pos2[i] = 0 else: # street if v == 0 or v == 1: pos1[i] = 0 pos2[i] = 0 return pos1, pos2 # out[0] **is** out.last_hidden_state class IndBert(nn.Module): def __init__(self): super(IndBert, self).__init__() model = AutoModel.from_pretrained(model_name) model.resize_token_embeddings(30521) # https://github.com/huggingface/transformers/issues/4153 self.bert = model self.linear = nn.Linear(in_features=768, out_features=4, bias=True) # 4 for poi start and end, street start and end self.linear_cls = nn.Linear(in_features=768, out_features=4, bias=True) def forward(self, input_ids, attention_mask, token_type_ids): out = self.bert(input_ids, attention_mask, token_type_ids)# (hidden_state, pooled_out) out_sentence = out.last_hidden_state[:,1:,:] out_cls = out.last_hidden_state[:,0,:] out_cls = self.linear_cls(out_cls) out_sentence = self.linear(out_sentence) return out_cls, out_sentence class My_lm(pl.LightningModule): def __init__(self): super().__init__() # self.save_hyperparameters() # config = AutoConfig.from_pretrained( # model_name_or_path=model_name, return_dict=True) self.model = IndBert() def forward(self, input_ids, attention_mask, token_type_ids): # in lightning, forward defines the prediction/inference actions out_cls, embedding = self.model(input_ids, attention_mask, token_type_ids) return out_cls, embedding def reshape_(self, x): _x = torch.stack(x,dim=0) _x = torch.transpose(_x , 0, 1) return _x def training_step(self, batch, batch_idx): # training_step defined the train loop. It is independent of forward # barch input_ids = batch['input_ids'] input_ids = self.reshape_(input_ids) attention_mask = batch['attention_mask'] attention_mask = self.reshape_(attention_mask) token_type_ids = batch['token_type_ids'] token_type_ids = self.reshape_(token_type_ids) poi_start = batch['POI'][0] poi_end = batch['POI'][1] street_start = batch['street'][0] street_end = batch['street'][1] out_cls, embedding = self(input_ids, attention_mask, token_type_ids) # loss cls_loss = F.cross_entropy(out_cls, batch['cls_label']) # compute poi loss, where cls label =1 or 3 poi_mask = batch['cls_label'] %2 == 1 poi_loss = 0 for index, poi in enumerate(poi_mask): if poi: poi_loss += F.cross_entropy(embedding[index,:,0].unsqueeze(dim=0), poi_start[index].unsqueeze(dim=0)) poi_loss += F.cross_entropy(embedding[index,:,1].unsqueeze(dim=0), poi_end[index].unsqueeze(dim=0)) # compute street loss, where cls label =2 or 3 (3 is calculated above) street_mask = batch['cls_label'] == 2 street_loss = 0 for index, street in enumerate(street_mask): if street: street_loss += F.cross_entropy(embedding[index,:,2].unsqueeze(dim=0), street_start[index].unsqueeze(dim=0)) street_loss += F.cross_entropy(embedding[index,:,3].unsqueeze(dim=0), street_end[index].unsqueeze(dim=0)) total_loss = (cls_loss + poi_loss + street_loss)/3 # consider scale cls_loss larger, as found in Squad 2.0 paper self.log('train_loss', total_loss, on_step=True, prog_bar=True) self.log('cls_loss', cls_loss, on_step=True) self.log('poi_loss', poi_loss, on_step=True) self.log('street_loss', street_loss, on_step=True) return {'loss': total_loss, 'cls': cls_loss, 'poi': poi_loss, 'street': street_loss} # must contrain key loss # https://github.com/PyTorchLightning/pytorch-lightning/issues/2783#issuecomment-710615867 def training_epoch_end(self, train_step_outs): epoch_train_loss = 0 epoch_cls_loss = 0 epoch_poi_loss = 0 epoch_street_loss = 0 for d in train_step_outs: epoch_train_loss += d['loss'] epoch_cls_loss += d['cls'] epoch_poi_loss += d['poi'] epoch_street_loss += d['street'] self.log('loss', epoch_train_loss/len(train_step_outs), on_epoch=True, prog_bar=True) self.log('poi_start', epoch_cls_loss/len(train_step_outs), on_epoch=True, prog_bar=True) self.log('poi_end', epoch_poi_loss/len(train_step_outs), on_epoch=True, prog_bar=True) self.log('street_start', epoch_street_loss/len(train_step_outs), on_epoch=True, prog_bar=True) def validation_step(self, batch, index): # batch input_ids = batch['input_ids'] input_ids = self.reshape_(input_ids) attention_mask = batch['attention_mask'] attention_mask = self.reshape_(attention_mask) token_type_ids = batch['token_type_ids'] token_type_ids = self.reshape_(token_type_ids) poi_start = batch['POI'][0] poi_end = batch['POI'][1] street_start = batch['street'][0] street_end = batch['street'][1] out_cls, embedding = self(input_ids, attention_mask, token_type_ids) # loss cls_loss = F.cross_entropy(out_cls, batch['cls_label']) # compute poi loss, where cls label =1 or 3 poi_mask = batch['cls_label'] %2 == 1 poi_loss = 0 for index, poi in enumerate(poi_mask): if poi: poi_loss += F.cross_entropy(embedding[index,:,0].unsqueeze(dim=0), poi_start[index].unsqueeze(dim=0)) poi_loss += F.cross_entropy(embedding[index,:,1].unsqueeze(dim=0), poi_end[index].unsqueeze(dim=0)) # compute street loss, where cls label =2 or 3 (3 is calculated above) street_mask = batch['cls_label'] == 2 street_loss = 0 for index, street in enumerate(street_mask): if street: street_loss += F.cross_entropy(embedding[index,:,2].unsqueeze(dim=0), street_start[index].unsqueeze(dim=0)) street_loss += F.cross_entropy(embedding[index,:,3].unsqueeze(dim=0), street_end[index].unsqueeze(dim=0)) total_loss = (cls_loss + poi_loss + street_loss)/3 # acc _, cls_ = torch.max(out_cls, dim=1) pred_poi_start, pred_poi_end = get_pos(0,1, embedding, cls_) pred_street_start, pred_street_end = get_pos(2,3, embedding, cls_) def get_acc(pred, gt): return torch.tensor(accuracy_score(pred.cpu(), gt.cpu())) val_accs = [get_acc(pred_poi_start, poi_start), get_acc(pred_poi_end, poi_end), get_acc(pred_street_start, street_start), get_acc(pred_street_end, street_end)] self.log('val_loss', total_loss, on_step=True) self.log('poi_start', val_accs[0], on_step=True) self.log('poi_end', val_accs[1], on_step=True) self.log('street_start', val_accs[2], on_step=True) self.log('street_end', val_accs[3], on_step=True) return {'val_loss': total_loss, 'poi_start': val_accs[0], 'poi_end': val_accs[1], 'street_start': val_accs[2], 'street_end': val_accs[3]} # may use F1 to measure the performance def validation_epoch_end(self, valid_step_outs): epoch_val_loss = 0 epoch_accs = [0,0,0,0] for d in valid_step_outs: epoch_val_loss += d['val_loss'] epoch_accs[0] += d['poi_start'] epoch_accs[1] += d['poi_end'] epoch_accs[2] += d['street_start'] epoch_accs[3] += d['street_end'] self.log('val_loss', epoch_val_loss/len(valid_step_outs), on_epoch=True, prog_bar=True) self.log('poi_start', epoch_accs[0]/len(valid_step_outs), on_epoch=True, prog_bar=True) self.log('poi_end', epoch_accs[1]/len(valid_step_outs), on_epoch=True, prog_bar=True) self.log('street_start', epoch_accs[2]/len(valid_step_outs), on_epoch=True, prog_bar=True) self.log('street_end', epoch_accs[3]/len(valid_step_outs), on_epoch=True, prog_bar=True) def test_step(self, batch, batch_idx): # batch input_ids = batch['input_ids'] input_ids = self.reshape_(input_ids) attention_mask = batch['attention_mask'] attention_mask = self.reshape_(attention_mask) token_type_ids = batch['token_type_ids'] token_type_ids = self.reshape_(token_type_ids) out_cls, embedding = self(input_ids, attention_mask, token_type_ids) # map ids to tokens _, cls_ = torch.max(out_cls, dim=1) pred_poi_start, pred_poi_end = get_pos(0,1, embedding, cls_) pred_street_start, pred_street_end = get_pos(2,3, embedding, cls_) tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-base-p1") # make this global def decode_(pred_start, pred_end): rets = [] for index, (start, end) in enumerate(zip(pred_start, pred_end)): if start == 0 and end == 0: current_ret = '' else: # limit end to the length of the input, to avoid [SEP] and [PAD] # Note that decoder skips special tokens, so end may > len(input_ids) current_input_ids = input_ids[index] end = min(len(current_input_ids), end) current_ret = tokenizer.decode(current_input_ids[start+1:end+1], skip_special_tokens=True) rets.append(current_ret) return rets pois = decode_(pred_poi_start, pred_poi_end) streets = decode_(pred_street_start, pred_street_end) return (pois, streets) def test_epoch_end(self, test_outs): # save file answers = [] for pois, streets in test_outs: for poi, street in zip(pois, streets): answers.append(poi+'/'+street) df_answer = pd.DataFrame({'id': range(len(answers)), 'POI/street': answers}) filename1 = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") df_answer.to_csv(filename1+'.csv', index=False) return filename1 def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=3e-05, eps=1e-08) # check requires grad # 3e-5 class Dm(pl.LightningDataModule): def __init__(self, batch_size=batch_size): super().__init__() self.train_file = 'train.csv' self.valid_file = 'train.csv' self.test_file = 'test.csv' self.batch_size = batch_size # When doing distributed training, Datamodules have two optional arguments for # granular control over download/prepare/splitting data: # OPTIONAL, called for every GPU/machine (assigning state is OK) def setup(self, stage=None): # step is either 'fit', 'validate', 'test', or 'predict'. 90% of the time not relevant # load dataset # datasets = load_dataset('csv', data_files='train.csv', split=['train[:80%]', 'train[80%:]']) # column_names = ['id', 'raw_address', 'POI/street'] tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-base-p1") #pad 0 https://huggingface.co/transformers/model_doc/bert.html def tokenize_fn(entry): encoded = tokenizer.encode(entry['raw_address']) # also handle the labels here def find_sublist(lst1, lst2): lst1 = lst1[1:len(lst1)-1] lst2 = lst2[1:len(lst2)-1] if len(lst1) == 0 or len(lst2) == 0: return (0, 0) for i in range(len(lst2)-len(lst1)+1): if lst2[i:i+len(lst1)] == lst1: # return i+1, i+len(lst1)+1 return i, i+len(lst1) # [TODO] debug on this plus 1 due to splitting [CLS] at start of sequence else: return (0, 0) # -1 triggers index out of bound error labels = entry['POI/street'].split('/') encoded_poi = tokenizer.encode(labels[0]) entry_poi_pos = find_sublist(encoded_poi, encoded) encoded_street = tokenizer.encode(labels[1]) entry_street_pos = find_sublist(encoded_street, encoded) cls_label = 0 if labels[0]: cls_label += 1 if labels[1]: cls_label += 2 return {'POI':entry_poi_pos, 'street': entry_street_pos, 'cls_label': cls_label} # datasets = [dataset.map(lambda entries: tokenizer(entries['raw_address'], padding=True), batched=True, batch_size=batch_size, num_proc=1) for dataset in datasets] # tokenized_d_train, tokenized_d_valid = [dataset.map(tokenize_fn, num_proc=preprocessing_num_workers) for dataset in datasets] # attempts to avoid size mismatch # self.train_dataset = tokenized_d_train # self.valid_dataset = tokenized_d_valid # test dataset # see how it performs on train test_d = load_dataset('csv', data_files='test.csv', split='train[:100%]') # adjust the ratio for debugging tokenized_d_test = test_d.map(lambda entries: tokenizer(entries['raw_address'], padding=True), batched=True, batch_size=batch_size, num_proc=1) self.test_dataset = tokenized_d_test# ['train'] # named by the dataset module def train_dataloader(self): return DataLoader(self.train_dataset, batch_size=self.batch_size, num_workers=1, drop_last=True) def val_dataloader(self): return DataLoader(self.valid_dataset, batch_size=self.batch_size, num_workers=1, drop_last=True) def test_dataloader(self): return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=1) checkpoint_callback = ModelCheckpoint( monitor='val_loss', dirpath='.', filename='bert-ind-{epoch:02d}-{val_loss:.2f}', save_top_k=10, mode='min', ) dm = Dm() lm = My_lm() # # debug # trainer = pl.Trainer(gpus=1, overfit_batches=1) # trainer = pl.Trainer(gpus=1, fast_dev_run=True)# , profiler='simple') # trainer = pl.Trainer(gpus=1, max_epochs=1, callbacks=[checkpoint_callback]) # trainer = pl.Trainer(gpus=1, max_epochs=10, limit_train_batches=10, limit_val_batches=3, callbacks=[checkpoint_callback]) # standard train, validation and test # trainer = pl.Trainer(gpus=1, max_epochs=50, callbacks=[checkpoint_callback]) # trainer.fit(lm,dm) # result = trainer.test() # # testing only # # use larger batch size to speed up testing dm.setup() model = lm.load_from_checkpoint('legend/bert-ind-epoch=039-val_loss=0.40.ckpt') trainer = pl.Trainer(gpus=1) result = trainer.test(model, test_dataloaders=dm.test_dataloader())
[ "qpeisheng@gmail.com" ]
qpeisheng@gmail.com
ceab0fc7fa5ef71ff7b8ddb2c812ea071ed34b3a
3d468777900a94f5ed2acd859b5c8fb3961072fa
/imtools.py
e99ee1460753e4a6d48b35c2c71f195ac559dbe4
[]
no_license
lgguzman/CVisionexample
ae7b571524648bb9dd3045df1fa73eef9338c906
c64b7c95afd035f51125c94708ee429ec2b86a60
refs/heads/master
2020-03-08T21:08:21.817328
2018-04-06T13:49:53
2018-04-06T13:49:53
128,400,291
1
0
null
null
null
null
UTF-8
Python
false
false
1,160
py
import os from numpy import * from scipy.ndimage import filters def get_imlist(path): return [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.jpg') or f.endswith('.jpeg')] def histeq(im, nbr_bins =256): imhist, bins = histogram(im.flatten(), nbr_bins, normed=True) cdf = imhist.cumsum() cdf = 255 * cdf / cdf[-1] im2 = interp(im.flatten(), bins[:-1], cdf) return im2.reshape(im.shape), cdf def sobel_filter_ix(im): imx = zeros(im.shape) filters.sobel(im, 1, imx) return imx def sobel_filter_iy(im): imy = zeros(im.shape) filters.sobel(im, 0, imy) return imy def sobel_filter_magnitud(im): return sqrt(sobel_filter_ix(im)**2+sobel_filter_iy(im)**2) def gaussian_filter_ix(im, sigma = 5): imx = zeros(im.shape) filters.gaussian_filter(im,(sigma, sigma), (0, 1), imx) return imx def gaussian_filter_iy(im, sigma = 5): imy = zeros(im.shape) filters.gaussian_filter(im, (sigma, sigma), (1, 0), imy) return imy def gaussian_filter_magnitud(im , sigma = 5): return sqrt(gaussian_filter_ix(im, sigma)**2, gaussian_filter_iy(im, sigma)**2)
[ "ing.luis.guzman.reyes@gmail.com" ]
ing.luis.guzman.reyes@gmail.com
e843bc323ab895070d72d3d47f9812b5ecceddc9
120e2282a264a784a1fa3897f86ed5c318035b0c
/single_agent_game_20x10/constant.py
fec2348f3ae5f699530ab662d50a3c770f15a67e
[]
no_license
macwiatrak/CPR_game_RL
5ac1021f4d9d03ba9978964c06e23def28d19d8b
297140bfc624f0fd84a7150fdb00aad9a904d7b2
refs/heads/master
2020-04-16T04:24:50.034200
2019-03-27T01:54:30
2019-03-27T01:54:30
165,266,095
0
0
null
2019-03-27T01:54:31
2019-01-11T15:32:27
Python
UTF-8
Python
false
false
694
py
foodList = [(2,0), (2,1), (2,2), (1,1), (7,0), (7,1), (7,2),(6,1), (3,1), (8,1), (12,0), (12,1), (12,2), (11,1), (13,1), (17,0), (17,1), (17,2), (16,1), (18,1), (4,9), (3,8), (4,8), (4,7), (5,8), (9,9), (9,8), (9,7), (8,8), (10,8), (14,9), (14,8), (14,7), (13,8), (15,8), (19,9), (19,8), (19,7), (18,8)] foodList_1 = [(2,0), (2,1), (2,2), (1,1), (7,0), (7,1), (7,2),(6,1), (3,1), (8,1), (12,0), (12,1), (12,2), (11,1), (13,1), (17,0), (17,1), (17,2), (16,1), (18,1), (4,9), (3,8), (4,8), (4,7), (5,8), (9,9), (9,8), (9,7), (8,8), (10,8), (14,9), (14,8), (14,7), (13,8), (15,8), (19,9), (19,8), (19,7), (18,8)]
[ "maciej.wiatrak.16@ucl.ac.uk" ]
maciej.wiatrak.16@ucl.ac.uk
19102a19834c96bbcc0fad460eac549a8e9a3f99
495d05bf59a650da83119e3e796f1978fc0d5081
/第九章/9.3.py
b6ece6eb0e8895913ba67c7d3152770ac3094773
[]
no_license
jaredchin/Core-Python-Programming
776e69764656cee8ffe3257dd953166a761099c1
a081560e78685634f29c89d109efd99b3100eb73
refs/heads/master
2021-09-10T17:56:50.288037
2018-03-30T15:09:04
2018-03-30T15:09:04
111,692,170
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
import os fobj = open('test.txt', 'w') while True: aLine = input("Enter a line ('.' to quit): ") if aLine != ".": fobj.write('%s\n' % aLine) else: break fobj.close()
[ "1007707989@qq.com" ]
1007707989@qq.com
3aee936d5111a837b9237d8b38ceb76fc98be8fe
e44cf49719aa36ee4fc7314ca624cd37d04efc88
/442-find-all-duplicates-in-an-array.py
592d200f353d2ae15fb28e535a7312ad5f08e508
[]
no_license
tiaotiao/leetcode
3115d8a64353aa236c25a6af266ee54bfab7d44b
88afef5388e308e6da5703b66e07324fb1723731
refs/heads/master
2020-05-21T13:47:20.264552
2018-09-19T22:52:28
2018-09-19T22:52:28
65,435,630
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
class Solution: def findDuplicates(self, nums): """ :type nums: List[int] :rtype: List[int] """ res = [] for i in range(len(nums)): idx = abs(nums[i]) - 1 if nums[idx] > 0: nums[idx] = -nums[idx] else: res.append(idx + 1) return res def main(): s = Solution() nums = [4,3,2,7,8,2,3,1] print(s.findDuplicates(nums)) if __name__ == '__main__': main()
[ "tiaotiaoyly@gmail.com" ]
tiaotiaoyly@gmail.com
0d45e78b19f4d813d68e96f4df32cedd410ce71d
8a80bb000cda51cc3e6d2057455dd36e665ee236
/django_server/scale/settings.py
2ccccd04c674f8bf73a55d0d82092bfd3eda50ef
[]
no_license
johncohn/SmartAmericaServer
16dbef7d8643294abbb8c5314f71c351adfb65b1
98f0d719340fd8e33ff55166d227da280f4efd3b
refs/heads/master
2021-01-21T17:53:52.419511
2014-05-15T01:21:58
2014-05-15T01:21:58
19,803,308
1
0
null
null
null
null
UTF-8
Python
false
false
6,268
py
import os, yaml DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( ('Kyle Benson', 'kyle.edward.benson@gmail.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'test_db', # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: 'USER': 'vagrant', 'PASSWORD': '', 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. 'PORT': '', # Set to empty string for default. } } # extract necessary information from environment to run our services on BlueMix env = os.environ try: for k,v in yaml.load(env['VCAP_SERVICES']).items(): if k.startswith('postgresql'): creds = v[0]['credentials'] DATABASES['default']['HOST'] = creds['host'] DATABASES['default']['PORT'] = creds['port'] DATABASES['default']['USER'] = creds['user'] DATABASES['default']['PASSWORD'] = creds['password'] DATABASES['default']['NAME'] = creds['name'] if k.startswith('user-provided'): for info in v: if info['name'] == 'Twilio': TWILIO_ACCOUNT_SID = info['credentials']['accountSID'] TWILIO_AUTH_TOKEN = info['credentials']['authToken'] except KeyError: #not on BlueMix pass # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = [] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Los_Angeles' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_ROOT = '/var/www/app/static/' # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'vw7__ve*_3j^edw+@9k9(24_efqjnul-k=84yis*ew$xstr&*!' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'scale.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'scale.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: 'django.contrib.admin', 'django_twilio', 'django_extensions', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
[ "kyle.edward.benson@gmail.com" ]
kyle.edward.benson@gmail.com
20a9aad0196588ee85844a524186b9c74f485d9b
63862669b6b428ef23e2733e50b47ef7a11ceb60
/basic info/varia.py
ce978e8d87db873269e2593e3bcd2404f720095d
[]
no_license
CyborgVillager/Learning_py_info
961fde2cdba7ec0b7e1aacd437aeba99083cd192
a1504ab4610f88ae2de738a49ac6513c3358a177
refs/heads/master
2020-11-25T22:17:33.966387
2020-02-11T04:34:29
2020-02-11T04:34:29
228,869,781
0
0
null
null
null
null
UTF-8
Python
false
false
620
py
#variables def story_example(): name = "John" age = 25 para0 = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. In interdum, odio et feugiat auctor, ante leo t" \ "incidunt tortor, sed lacinia leo augue vel lorem. In rutrum est libero" para1 = "Nunc euismod magna in diam finibus sollicitudin. Aliquam commodo tortor lorem, in tincidunt quam dapibus " \ "fringilla. Duis vitae sem ut ligula efficitur varius." print(name, 'is age', str(age), para0, '\n', name, para1) def story_start(): story_example() story_start()
[ "almawijonathan@gmail.com" ]
almawijonathan@gmail.com
da0a868e0dc20cb2ab7909a7a40490865620d82e
2a409a3f43fdbad202e9827e4fffd615a734c78b
/spotifylyrics/config.py
56ac99332601cb8675a52a1bf3468090829627c8
[ "MIT" ]
permissive
Turreted/Spotify-Lyrics
db2c9e4f3de2441ce5874a9a5932866464451d86
6bbbf6c29f6183536668e557e8aebe70a0d2f5e3
refs/heads/master
2021-06-19T03:10:58.723203
2021-06-13T14:31:05
2021-06-13T14:31:05
176,770,294
24
1
null
null
null
null
UTF-8
Python
false
false
493
py
import os import pathlib """ Defines application constants """ # Spotify application constants # the unique id for the Spotify application used to read data CLIENT_ID = "cabed21db9c54f13b906e562bc864c26" REDIRECT_URI = "http://localhost:8080/callback/" # directory constants, not meant to be used directly by program __dir_path = os.path.dirname(os.path.realpath(__file__)) __project_root = pathlib.Path(__dir_path).parent SECRETS_CACHE = os.path.join(__dir_path, "cache/secrets.json")
[ "gideonmitchell01@gmail.com" ]
gideonmitchell01@gmail.com
431602925b46ace497c918040418d87142253df9
f87dab371a20e6144935e549b7e87aed36623e9c
/data/reinforcement_learning/utility_function_7_with_state_probs/base_scripts/plotting_functions.py
985cbfe884ec2f87f232556b81482a39af860176
[ "MIT" ]
permissive
MichalisPanayides/AmbulanceDecisionGame
7d6aa1a61932671c288550335c192e40fcf7da9f
1fbf7a8321395e2908fa6b1f537b3d1e5f1bb979
refs/heads/master
2023-04-17T19:14:53.229221
2022-12-20T15:43:12
2022-12-20T15:43:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,083
py
"""Plotting functions""" import csv import itertools import numpy as np import matplotlib.pyplot as plt import ambulance_game as abg def team_expertise_priority(srv, ind): # pylint: disable=unused-argument """ Servers priority based on expertise """ if srv.id_number == 1: return 0 if srv.id_number == 4: return 1 return np.random.random() def get_filepath(parameters, e_parameter): """ Get the filepath for the output file. """ key_params = [ "lambda_1", "lambda_2", "num_of_servers", "threshold", "system_capacity", "buffer_capacity", ] filename_parameters = {key: parameters[key] for key in key_params} filepath = ( "base_scripts/results/e=" + str(e_parameter) + "," + str(filename_parameters) .replace(" ", "") .replace("'", "") .replace(":", "=") .replace("{", "") .replace("}", "") + ",mu=" + str(parameters["mu"]) ) return filepath def read_utilities_from_file(filename): """ Read the utilities from the file. """ my_list = [] with open(filename, "r", encoding="utf8") as file: reader = csv.reader(file) for row in reader: my_list.append([float(i[1:-1]) for i in row]) return my_list def read_rates_from_file(filename): """ Read the rates from the file. Note that this function is specific to 4 servers """ server_1_rates = [] server_2_rates = [] server_3_rates = [] server_4_rates = [] with open(filename, "r", encoding="utf8") as file: reader = csv.reader(file) for row in reader: num_of_states = len(row) / 4 if int(num_of_states) == num_of_states: num_of_states = int(num_of_states) else: raise Exception("Number of states is not an integer") server_1_rates.append( [ float(i.replace("[", "").replace("]", "")) for i in row[:num_of_states] ] ) server_2_rates.append( [ float(i.replace("[", "").replace("]", "")) for i in row[num_of_states : (2 * num_of_states)] ] ) server_3_rates.append( [ float(i.replace("[", "").replace("]", "")) for i in row[(2 * num_of_states) : (3 * num_of_states)] ] ) server_4_rates.append( [ float(i.replace("[", "").replace("]", "")) for i in row[(3 * num_of_states) :] ] ) return server_1_rates, server_2_rates, server_3_rates, server_4_rates def read_states_from_file(filename): """ Read the states from the file """ state_probs = [] with open(filename, "r", encoding="utf8") as file: reader = csv.reader(file) for row in reader: state_probs.append( [float(i.replace("[", "").replace("]", "")) for i in row] ) return state_probs def reconstruct_rates(rates_from_file, system_capacity, buffer_capacity, threshold): """ Reconstruct rates dictionary where it will be of the form: rates = dict{ iteration : dict{ server_id: dict{ state: rate } } } I changed main.py after the first two experiments and the results are now saved in two different ways. That's why I needed to ude the two if statements. The two if statements are: - If num_of_states == len(all_states) means that there is one entry for every valid rate for each server - Elif num_of_states == (system_capacity + 1) * (buffer_capacity + 1) means that there is one entry for all possible combinations of (u,v) where some are not valid e.g. T=3, N=4, M=2 => state (1,1) does not exist in the first case while it is on the second (stupid Mike) """ num_of_servers = len(rates_from_file) num_of_iterations = len(rates_from_file[0]) num_of_states = len(rates_from_file[0][0]) all_states = abg.markov.build_states( threshold=threshold, system_capacity=system_capacity, buffer_capacity=buffer_capacity, ) if num_of_states == len(all_states): rates = {} for iteration in range(num_of_iterations): rates[iteration] = {} for server_id in range(1, num_of_servers + 1): rates[iteration][server_id] = {} for index, (u, v) in enumerate(sorted(all_states)): # if v >= threshold or u == 0: rates[iteration][server_id][(u, v)] = rates_from_file[ server_id - 1 ][iteration][index] elif num_of_states == (system_capacity + 1) * (buffer_capacity + 1): rates = {} for iteration in range(num_of_iterations): rates[iteration] = {} for server_id in range(1, num_of_servers + 1): rates[iteration][server_id] = {} for index, (u, v) in enumerate( itertools.product( range(buffer_capacity + 1), range(system_capacity + 1) ) ): if v >= threshold or u == 0: rates[iteration][server_id][(u, v)] = rates_from_file[ server_id - 1 ][iteration][index] else: raise Exception("Dunno what you on about mate") return rates def reconstruct_rates_matrix_from_dictionary( rates_dict, system_capacity, buffer_capacity ): """ Reconstruct rates matrix from dictionary. """ rates_array = np.empty((buffer_capacity + 1, system_capacity + 1)) * np.nan for (u, v), rate in rates_dict.items(): rates_array[(u, v)] = rate return rates_array def reconstruct_state_probabilities(states_from_file, system_capacity, buffer_capacity): """ Reconstruct state probabilities dictionary where it will be of the form: state_probs = dict{ iteration : dict{ state: probability } } } """ num_of_iterations = len(states_from_file) num_of_states = len(states_from_file[0]) if num_of_states == (system_capacity + 1) * (buffer_capacity + 1): state_probs = {} for iteration in range(num_of_iterations): state_probs[iteration] = ( np.zeros((buffer_capacity + 1, system_capacity + 1)) * np.NaN ) for index, (u, v) in enumerate( itertools.product( range(buffer_capacity + 1), range(system_capacity + 1) ) ): current_state_prob = states_from_file[iteration][index] if not np.isnan(current_state_prob): state_probs[iteration][u, v] = current_state_prob else: raise Exception("Invalid number of states") return state_probs def get_plots(utilities, all_rates, all_state_probs, num_of_servers): """ Plot the utilities and the weighte mean rates of all servers over all iterations. Weighted rate = Rate at state (u,v) * Probability of state (u,v) """ _, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 7)) for srv in range(num_of_servers): ax1.plot([util[srv] for util in utilities]) for srv in range(1, num_of_servers + 1): server_mean_weighted_rates = [] for itr, _ in enumerate(all_rates): current_iteration_mean_weighted_rate = 0 for state, current_rate in all_rates[itr][srv].items(): current_state_prob = all_state_probs[itr][state] if not np.isnan(current_state_prob) and state != (0, 0): current_iteration_mean_weighted_rate += ( current_rate * current_state_prob ) server_mean_weighted_rates.append(current_iteration_mean_weighted_rate) ax2.plot(server_mean_weighted_rates) ax1.legend([f"Server {srv}" for srv in range(1, num_of_servers + 1)]) ax1.set_title("Utilities of all servers over all iterations") ax2.legend([f"Server {srv}" for srv in range(1, num_of_servers + 1)]) ax2.set_title("Weighted mean rates of all servers over all iterations") def get_utilities_rates_and_state_probs( filepath, threshold, system_capacity, buffer_capacity ): """ Construct the utilities, rates and state probabilities from file. """ utilities = read_utilities_from_file(filepath + "/utilities.csv") raw_rates = read_rates_from_file(filepath + "/rates.csv") raw_state_probs = read_states_from_file(filepath + "/state_probs.csv") reconstructed_rates = reconstruct_rates( raw_rates, system_capacity=system_capacity, buffer_capacity=buffer_capacity, threshold=threshold, ) reconstructed_state_probs = reconstruct_state_probabilities( states_from_file=raw_state_probs, system_capacity=system_capacity, buffer_capacity=buffer_capacity, ) return utilities, reconstructed_rates, reconstructed_state_probs def plot_utilities_and_weighted_rates( filepath, num_of_servers, threshold, system_capacity, buffer_capacity ): """ Calculate the utilities, rates and state probabilities from file and plot them. """ utils, rates, state_probs = get_utilities_rates_and_state_probs( filepath=filepath, threshold=threshold, system_capacity=system_capacity, buffer_capacity=buffer_capacity, ) get_plots( utilities=utils, all_rates=rates, all_state_probs=state_probs, num_of_servers=num_of_servers, )
[ "noreply@github.com" ]
MichalisPanayides.noreply@github.com
0870115ce996bd2ba821fa63ddbc96a6a15f12d1
badaf185bf21ab3318ef340d2c5b428f1f83f43f
/snmp/ex4_week2.py
fde07320ad5d75e856a29e4065542052833d47a1
[ "Apache-2.0" ]
permissive
cfalco73/python_class
48259956f047c8fc32430b16a0335bc782b2d7e3
a2a0628c6f3480d502816d34b7ba05d974feca0a
refs/heads/master
2021-04-12T08:08:49.424416
2018-04-13T21:23:48
2018-04-13T21:23:48
126,092,245
0
0
null
null
null
null
UTF-8
Python
false
false
580
py
#!/usr/bin/env python from __future__ import print_function, unicode_literals from snmp_helper import snmp_get_oid,snmp_extract COMMUNITY_STRING = 'galileo' SNMP_PORT = 161 MIB_DESC = '1.3.6.1.2.1.1.1.0' MIB_NAME = '1.3.6.1.2.1.1.5.0' router_1 = ("184.105.247.70", COMMUNITY_STRING, SNMP_PORT) router_2 = ("184.105.247.71", COMMUNITY_STRING, SNMP_PORT) for router_device in (router_1, router_2): for oid_info in (MIB_DESC, MIB_NAME): snmp_info = snmp_get_oid(router_device, oid=oid_info) output = snmp_extract(snmp_info) print (output) print()
[ "carlo_falco@hotmail.com" ]
carlo_falco@hotmail.com
b1561a5a09375df8219b095e33b192ffafb03de1
eb755b42aa2ec9e6ab63001a6293d5e225837086
/Other_web_spider/Phantomjs/Phantomjs_id_location.py
f4b494cfe8dbfb44c591643255e8da05cbfcbc6d
[]
no_license
paramedick/python-web-crawlers
7c493cbc51c4189d0dabaeae6cfba84123f7401d
5deea2073583bbb8d229c6404680e543ebcdbc5b
refs/heads/master
2022-01-19T21:25:29.058709
2019-08-13T14:43:22
2019-08-13T14:43:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
209
py
# coding=utf-8 from selenium import webdriver browser = webdriver.Firefox() browser.get("http://www.baidu.com/") browser.find_element_by_id("kw").send_keys("python") browser.implicitly_wait(60) browser.quit()
[ "429095816@qq.com" ]
429095816@qq.com
249c8be8faca60c67ed1827c6122bee07e1fa8ac
a5a4cee972e487512275c34f308251e6cc38c2fa
/tests_old/tests_openmpi/test_hello_world/test_hello_world.py
b5a6b03915a4a452b63bb6efdf8838d172ecddf7
[ "MIT" ]
permissive
eragasa/pypospack
4f54983b33dcd2dce5b602bc243ea8ef22fee86b
21cdecaf3b05c87acc532d992be2c04d85bfbc22
refs/heads/master
2021-06-16T09:24:11.633693
2019-12-06T16:54:02
2019-12-06T16:54:02
99,282,824
4
1
null
null
null
null
UTF-8
Python
false
false
706
py
from subprocess import call import os # possibly the greatest hack of a test to ever be written def test_hello_world(): call(["sbatch", "runjob_hipergator.sh"]) while True: r0 = os.path.exists("rank_0") r1 = os.path.exists("rank_1") r2 = os.path.exists("rank_2") r3 = os.path.exists("rank_3") err = os.path.exists("job.err") if all([r0, r1, r2, r3]): os.remove("rank_0") os.remove("rank_1") os.remove("rank_2") os.remove("rank_3") assert True return if err: os.remove("job.err") os.remove("job.out") assert False return
[ "seatonullberg@gmail.com" ]
seatonullberg@gmail.com
6c6313683fedb59ebf2b417b4e225337fbb854d1
42550b48b3fbb23f2ea95183eddbe29d23370db9
/3. Control Flow/2_perulangan.py
93f0123c91804b41c5294bb0f0dcd266641d16c8
[]
no_license
all4yandaru/Python
ad4beafe1e83591c6383dae149f29f492e8e1015
b47c66f37c3e9cd35c28942eac64efdb53abe70f
refs/heads/master
2023-04-26T05:05:55.472699
2021-05-27T03:00:59
2021-05-27T03:00:59
371,228,665
0
0
null
null
null
null
UTF-8
Python
false
false
562
py
# for for huruf in "Dicoding": print("Huruf {}".format(huruf)) print("=========") flowers = ['mawar', 'melati', 'anggrek'] for bunga in flowers: print("flower : {}".format(bunga)) print("=========") for index in range(len(flowers)): print('Flowers [{}]: {}'.format(index, flowers[index])) for i in range(3, 1, -1): # dari 3 sampai 2, step -1 print(i) for i in range(5, -1, -1): for j in range(i): print("*", end="") print() # while count = 0 while count < 7: print('Hitungannya adalah: {}'.format(count)) count += 2
[ "all4yandaru@gmail.com" ]
all4yandaru@gmail.com
f39918fe446e14b7afba346efa267b6e087a3fe4
ad784ca84b36073cd6abc3c29b696ffc08d3851f
/practice2.py
018468b2acb9a777bfe9263503094aa8e2ef3441
[]
no_license
YogeshwaranaPachiyappan/Python
356f0114e03cb017cc15e842815177fe3e18f1bb
01d7383c0691f57eb8640bad668c563998946671
refs/heads/master
2020-12-04T05:31:51.343612
2020-07-28T04:51:03
2020-07-28T04:51:03
231,633,361
0
0
null
2020-04-08T03:22:11
2020-01-03T17:23:04
Python
UTF-8
Python
false
false
59
py
s=input() a=s.split() print(len(a)) print(a.upper(:1))
[ "noreply@github.com" ]
YogeshwaranaPachiyappan.noreply@github.com
2752c83cd011675845e421f06b6105a534c335c1
0b490626a19dae9d2b9da68cebad27ee43c3dec5
/python/seqdiff/__main__.py
3b756498b413ec01837a11212d0b346101f4a8cd
[ "Apache-2.0" ]
permissive
tamuhey/seqdiff
1c8e4bb8bafaad069472282835a245a7d2b94ffa
4bd79979fbce25989d55644d6e3ca2efbc15edd8
refs/heads/master
2023-06-15T19:23:41.763124
2021-07-13T05:08:16
2021-07-13T05:08:16
273,475,966
5
0
null
2021-07-13T05:07:25
2020-06-19T11:19:56
Rust
UTF-8
Python
false
false
96
py
from seqdiff import print_diff if __name__ == "__main__": print_diff([1, 2, 3], [1, 3, 4])
[ "tamuhey@gmail.com" ]
tamuhey@gmail.com
b3cdcb8ef497d5e18564d7b7f47262c537e111e3
b89ec2839b4a6bd4e2d774f64be9138f4b71a97e
/dataent/website/doctype/website_settings/website_settings.py
4fc4412d550622749995427444bce0dbc835241c
[ "MIT" ]
permissive
dataent/dataent
ec0e9a21d864bc0f7413ea39670584109c971855
c41bd5942ffe5513f4d921c4c0595c84bbc422b4
refs/heads/master
2022-12-14T08:33:48.008587
2019-07-09T18:49:21
2019-07-09T18:49:21
195,729,981
0
0
MIT
2022-12-09T17:23:49
2019-07-08T03:26:28
Python
UTF-8
Python
false
false
4,869
py
# Copyright (c) 2015, Dataent Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import dataent from dataent import _ from dataent.utils import get_request_site_address, encode from dataent.model.document import Document from six.moves.urllib.parse import quote from dataent.website.router import resolve_route from dataent.website.doctype.website_theme.website_theme import add_website_theme class WebsiteSettings(Document): def validate(self): self.validate_top_bar_items() self.validate_footer_items() self.validate_home_page() def validate_home_page(self): if dataent.flags.in_install: return if self.home_page and not resolve_route(self.home_page): dataent.msgprint(_("Invalid Home Page") + " (Standard pages - index, login, products, blog, about, contact)") self.home_page = '' def validate_top_bar_items(self): """validate url in top bar items""" for top_bar_item in self.get("top_bar_items"): if top_bar_item.parent_label: parent_label_item = self.get("top_bar_items", {"label": top_bar_item.parent_label}) if not parent_label_item: # invalid item dataent.throw(_("{0} does not exist in row {1}").format(top_bar_item.parent_label, top_bar_item.idx)) elif not parent_label_item[0] or parent_label_item[0].url: # parent cannot have url dataent.throw(_("{0} in row {1} cannot have both URL and child items").format(top_bar_item.parent_label, top_bar_item.idx)) def validate_footer_items(self): """validate url in top bar items""" for footer_item in self.get("footer_items"): if footer_item.parent_label: parent_label_item = self.get("footer_items", {"label": footer_item.parent_label}) if not parent_label_item: # invalid item dataent.throw(_("{0} does not exist in row {1}").format(footer_item.parent_label, footer_item.idx)) elif not parent_label_item[0] or parent_label_item[0].url: # parent cannot have url dataent.throw(_("{0} in row {1} cannot have both URL and child items").format(footer_item.parent_label, footer_item.idx)) def on_update(self): self.clear_cache() def clear_cache(self): # make js and css # clear web cache (for menus!) dataent.clear_cache(user = 'Guest') from dataent.website.render import clear_cache clear_cache() # clears role based home pages dataent.clear_cache() def get_website_settings(): hooks = dataent.get_hooks() context = dataent._dict({ 'top_bar_items': get_items('top_bar_items'), 'footer_items': get_items('footer_items'), "post_login": [ {"label": _("My Account"), "url": "/me"}, # {"class": "divider"}, {"label": _("Logout"), "url": "/?cmd=web_logout"} ] }) settings = dataent.get_single("Website Settings") for k in ["banner_html", "brand_html", "copyright", "twitter_share_via", "facebook_share", "google_plus_one", "twitter_share", "linked_in_share", "disable_signup", "hide_footer_signup", "head_html", "title_prefix", "navbar_search"]: if hasattr(settings, k): context[k] = settings.get(k) if settings.address: context["footer_address"] = settings.address for k in ["facebook_share", "google_plus_one", "twitter_share", "linked_in_share", "disable_signup"]: context[k] = int(context.get(k) or 0) if dataent.request: context.url = quote(str(get_request_site_address(full_address=True)), safe="/:") context.encoded_title = quote(encode(context.title or ""), str("")) for update_website_context in hooks.update_website_context or []: dataent.get_attr(update_website_context)(context) context.web_include_js = hooks.web_include_js or [] context.web_include_css = hooks.web_include_css or [] via_hooks = dataent.get_hooks("website_context") for key in via_hooks: context[key] = via_hooks[key] if key not in ("top_bar_items", "footer_items", "post_login") \ and isinstance(context[key], (list, tuple)): context[key] = context[key][-1] add_website_theme(context) if not context.get("favicon"): context["favicon"] = "/assets/dataent/images/favicon.png" if settings.favicon and settings.favicon != "attach_files:": context["favicon"] = settings.favicon return context def get_items(parentfield): all_top_items = dataent.db.sql("""\ select * from `tabTop Bar Item` where parent='Website Settings' and parentfield= %s order by idx asc""", parentfield, as_dict=1) top_items = [d for d in all_top_items if not d['parent_label']] # attach child items to top bar for d in all_top_items: if d['parent_label']: for t in top_items: if t['label']==d['parent_label']: if not 'child_items' in t: t['child_items'] = [] t['child_items'].append(d) break return top_items @dataent.whitelist(allow_guest=True) def is_chat_enabled(): return bool(dataent.db.get_single_value('Website Settings', 'chat_enable'))
[ "38303879+dataent@users.noreply.github.com" ]
38303879+dataent@users.noreply.github.com
df9e7c03601392167c361181c786ab8f9bbea75f
9a0b070f3f3501c6ac49b77008af6386ba6876a4
/2021/Oct/1012/4012_요리사/s1.py
1790bfaecded6f96b64791633700289227062390
[ "MIT" ]
permissive
Jin-RHC/daily_algo
9f865e1733748465d069f8b484ed061e61fd7f40
7985a69bf62621ef88319a035af00b52831fc105
refs/heads/main
2023-08-26T00:10:21.128812
2021-10-25T16:14:26
2021-10-25T16:14:26
415,309,428
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
import sys sys.stdin = open('input.txt') from itertools import combinations T = int(input()) for tc in range(1, T + 1): N = int(input()) lst = [list(map(int, input().split())) for _ in range(N)] target = N // 2 comb = combinations(range(N), target) answer = 100000000000000 for i in comb: temp_set = set(range(N)) - set(i) temp_a = sum([lst[r][c] for r in i for c in i]) temp_b = sum([lst[r][c] for r in temp_set for c in temp_set]) if abs(temp_a - temp_b) < answer: answer = abs(temp_a - temp_b) print('#{} {}'.format(tc, answer))
[ "gksrnrdmlsk@gmail.com" ]
gksrnrdmlsk@gmail.com
2baeb00b87da6023b8316c4f129c32db3694b122
397dd04f8c7b55575c7c147261957adfa45b0fa9
/LF/LF1.py
2776a33b6d88c21518bd0ea15dbae50e2a65b3bb
[]
no_license
ArminJZ/Dining-Suggestion-Chatbot
6556c0f052f2241a5d18afdbe1a8694bc3bf08bb
7616e959a78c58bbf1d8b7c92ea5f7148f9629f0
refs/heads/master
2021-03-30T08:57:13.187622
2020-03-17T17:42:59
2020-03-17T17:42:59
248,034,810
0
0
null
null
null
null
UTF-8
Python
false
false
7,935
py
from botocore.vendored import requests import json import os import time import dateutil.parser import logging import datetime import urllib import sys import boto3 try: # For Python 3.0 and later from urllib.error import HTTPError from urllib.parse import quote from urllib.parse import urlencode except ImportError: # Fall back to Python 2's urllib2 and urllib from urllib2 import HTTPError from urllib import quote from urllib import urlencode logger = logging.getLogger() logger.setLevel(logging.DEBUG) def isvalid_city(city): valid_cities = ['new york', 'manhattan', 'brooklyn', ] return city.lower() in valid_cities def isvalid_date(date): try: dateutil.parser.parse(date) return True except ValueError: return False def isvalid_cuisine_type(cuisine_type): cuisines = ["indian", "italian", "mediterranean", "french", "japanese", "chinese", "spanish", "american", "mexican"] return cuisine_type.lower() in cuisines def build_validation_result(isvalid, violated_slot, message_content): return { 'isValid': isvalid, 'violatedSlot': violated_slot, 'message': {'contentType': 'PlainText', 'content': message_content} } def validate_suggest_place(slots): v_city = slots['Location'] v_date = slots['Date'] v_time = slots['Time'] v_peoplecount = safe_int(slots['NumberOfPeople']) v_cuisine_type = slots['Cuisine'] if v_city and not isvalid_city(v_city): return build_validation_result( False, 'Location', 'We currently do not support {} as a valid destination. Can you try a different city?'.format(v_city) ) if v_date: if not isvalid_date(v_date): return build_validation_result(False, 'Date', 'I did not understand the data you provided. Can you please tell me what date are you planning to go?') if datetime.datetime.strptime(v_date, '%Y-%m-%d').date() < datetime.date.today(): return build_validation_result(False, 'Date', 'Suggestions cannot be made for date earlier than today. Can you try a different date?') if v_peoplecount is not None: num_people = int(v_peoplecount) if num_people > 20 or num_people < 0: return build_validation_result(False, 'NumberOfPeople', 'Please add people betweek 0 to 20') if v_cuisine_type and not isvalid_cuisine_type(v_cuisine_type): return build_validation_result( False, 'Cuisine', 'I did not recognize that cuisine. What cuisine would you like to try? ' 'Popular cuisines are Japanese, Indian, or Italian') return {'isValid': True} def close(session_attributes, fulfillment_state, message): response = { 'sessionAttributes': session_attributes, 'dialogAction': { 'type': 'Close', 'fulfillmentState': fulfillment_state, 'message': {'contentType': 'PlainText', 'content': message} } } return response def elicit_slot(session_attributes, intent_name, slots, slot_to_elicit, message): return { 'sessionAttributes': session_attributes, 'dialogAction': { 'type': 'ElicitSlot', 'intentName': intent_name, 'slots': slots, 'slotToElicit': slot_to_elicit, 'message': message } } def delegate(session_attributes, slots): return { 'sessionAttributes': session_attributes, 'dialogAction': { 'type': 'Delegate', 'slots': slots } } def safe_int(n): if n is not None: return int(n) return n def diningSuggestions(intent_request): location = intent_request['currentIntent']['slots']['Location'] cuisine = intent_request['currentIntent']['slots']['Cuisine'] peopleNum = intent_request['currentIntent']['slots']['NumberOfPeople'] date = intent_request['currentIntent']['slots']['Date'] time_open = intent_request['currentIntent']['slots']['Time'] phone = str(intent_request['currentIntent']['slots']['Phone']) # cuisine = "chinese" # phone_num = "+16263285824" # location = "brooklyn" # date = "2019-10-17" # dining_time = "13:00" # peopleNum = "2" if phone[:2] != '+1': phone = '+1' + phone session_attributes = intent_request['sessionAttributes'] if intent_request['sessionAttributes'] is not None else {} if intent_request['invocationSource'] == 'DialogCodeHook': validation_result = validate_suggest_place(intent_request['currentIntent']['slots']) if not validation_result['isValid']: intent_request['currentIntent']['slots'][validation_result['violatedSlot']] = None # print(validation_result['message']) return elicit_slot( session_attributes, intent_request['currentIntent']['name'], intent_request['currentIntent']['slots'], validation_result['violatedSlot'], validation_result['message'] ) return delegate(session_attributes, intent_request['currentIntent']['slots']) sqsmessage = cuisine + ' ' + str(phone) # SQS service sqs = boto3.client('sqs') queue_url = 'https://sqs.us-east-1.amazonaws.com/584092006642/LF1-to-LF2' response = sqs.send_message( QueueUrl=queue_url, MessageAttributes={ 'cuisine': { 'DataType': 'String', 'StringValue': cuisine }, 'phone': { 'DataType': 'String', 'StringValue': phone }, 'location': { 'DataType': 'String', 'StringValue': location }, 'peoplenum': { 'DataType': 'String', 'StringValue': peopleNum }, 'date': { 'DataType': 'String', 'StringValue': date }, 'time': { 'DataType': 'String', 'StringValue': time_open } }, MessageBody=( sqsmessage ) ) logger.debug(sqsmessage) return close( session_attributes, 'Fulfilled', 'I have sent my suggestions to the following phone number: \n' + phone ) def greeting(intent_request): response = { 'dialogAction': { "type": "ElicitIntent", 'message': { 'contentType': 'PlainText', 'content': 'Yo, how can I help?'} } } return response def thankyou(intent_request): response = { 'dialogAction': { "type": "ElicitIntent", 'message': { 'contentType': 'PlainText', 'content': 'You\'re welcome!'} } } return response def dispatch(intent_request): logger.debug( 'dispatch userId={}, intentName={}'.format(intent_request['userId'], intent_request['currentIntent']['name'])) intent_name = intent_request['currentIntent']['name'] # Dispatch to your bot's intent handlers if intent_name == 'GreetingIntent': return greeting(intent_request) elif intent_name == 'ThankYouIntent': return thankyou(intent_request) elif intent_name == 'DiningSuggestionsIntent': return diningSuggestions(intent_request) raise Exception('Intent with name ' + intent_name + ' not supported') def lambda_handler(event, context): os.environ['TZ'] = 'America/New_York' time.tzset() logger.debug('event.bot.name={}'.format(event['bot']['name'])) return dispatch(event)
[ "woodenrubberzhang@gmail.com" ]
woodenrubberzhang@gmail.com
bbb3f58b7effacb2400ce12ff121834858bb00af
5ff85cb7c0f447b6cd35bd521fde6b0e3fe76443
/webcopy1.py
1f140b91561f65d4049380294bef59a520cd2eba
[]
no_license
priyanshusankhala/Research-paper
17d9e72cca31439818631f236d37c9f29319f71e
a97bec6239abd8acef6cc8fbbae23706b082b993
refs/heads/main
2023-07-15T21:02:27.533836
2021-08-27T10:21:32
2021-08-27T10:21:32
366,608,391
0
0
null
2021-05-12T06:08:25
2021-05-12T05:59:03
null
UTF-8
Python
false
false
12,205
py
import urllib import json as m_json from urllib import request from urllib.parse import urlparse import sys import enchant from numpy import array from requests_html import HTMLSession from collections import Counter from urllib.parse import urlparse from bs4 import BeautifulSoup from urllib.request import urlopen import numpy as np from selenium import webdriver import ssl import requests # ''' This code will crawl web to create features for ml model # Import the above mentioned libraries and then run the class called FeatureCreation # Class FeatureCreation creates features using different features and extract those features value to # store it in a list called features # ''' class FeatureCreation: def __init__(self): # self.url = url # ''' q stand for query here which will the name of company, we store # that query in self.c_name to be used in where ever company name is required # ''' q =[] q = 'abbott' self.c_name = q def getURLForQuery(self): # ''' This function crawls web to fetch the url, title, meta contents # It uses selenium web crawler, incase it does not work please inspect if containers mentioned find_element_by_xpath might have changed # title will store the title contents # link will store the link contents # detail will store the meta contents # driver.close() will close selenium web crawler # ''' # q = self.c_name # driver = webdriver.Chrome() # driver.get('https://www.google.com/search?q='+q) # title = driver.find_element_by_xpath('//div[@class="g"]').find_element_by_xpath('.//h3').text # link = driver.find_element_by_xpath('//div[@class="g"]').find_element_by_xpath('.//div[@class ="yuRUbf"]/a').get_attribute('href') # detail = driver.find_element_by_xpath('//div[@class="g"]').find_element_by_xpath('.//div[@class="VwiC3b yXK7lf MUxGbd yDYNvb lyLwlc"]') # self.title = title # self.url = link # self.meta = detail.text # driver.close() # print(self.title, self.url) # return[self.title, self.url, self.meta] arr1 = [] arr2 = [] arr3 = [] q =[] q = self.c_name driver = webdriver.Chrome() driver.get('https://www.google.com/search?q='+q+'%20WEBSITE&num=4') #+'%20WEBSITE&num=4' for element in driver.find_elements_by_xpath('//div[@class="g"]'): ##title = element.find_element_by_xpath('.//h3').find_element_by_xpath('.//h3[@class = "LC20lb DKV0Md"]').text title = element.find_element_by_xpath('.//h3[@class = "LC20lb DKV0Md"]').text link = element.find_element_by_xpath('.//div[@class ="yuRUbf"]/a').get_attribute('href') # link = element.find_element_by_xpath('.//div[@class ="yuRUbf"]').find_element_by_xpath('.//div[@class = "TbwUpd NJjxre"]').text ##.find_element_by_xpath('.//cite[@class = "iUh30 Zu0yb qLRx3b tjvcx"]') ##detail = element.find_element_by_xpath('.//div[@class="VwiC3b yXK7lf MUxGbd yDYNvb lyLwlc"]').text detail = element.find_element_by_xpath('.//div[@class="IsZvec"]').text #print(detail) #print(link) # print(title) arr1.append(title) arr2.append(link) arr3.append(detail) arr2 = list(filter(None, arr2)) arr1 = list(filter(None, arr1)) arr3 = list(filter(None, arr3)) self.title = arr1 self.url = arr2 self.meta = arr3 #print(arr1, arr2, arr3) # Test #return self.title return[self.meta,self.url, self.title] # driver.close() # def getURLForQuery(q): # URLS = [] # for result in q: # title = result['title'] # meta = result['meta'] # url = result['url'] # was URL in the original and that threw a name error exception # URLS.append(url) # return title # return meta # return url # def getURLForQuery(q, query2URLS): # # query = urllib3.urlencode ( { 'q' : q } ) # # response = urllib3.urlopen ( 'http://googleapis.com/ajax/services/search/web?v=1.0&' + query ).read() # # json = m_json.loads ( response ) # results = json [ 'responseData' ] [ 'results' ] # URLS = [] # for result in results: # title = result['title'] # meta = result['meta'] # url = result['url'] # was URL in the original and that threw a name error exception # URLS.append(url) # return title # return meta # return url # query2URLS[q] = URLS # def getRankedURLSLst(urls): # # store the rank of each url # rankedURLSDict = {} # min_url_rank = sys.maxint # max_url_rank = -sys.maxint # for i, url in enumerate(urls): # return sorted([(k, float(rankedURLSDict[k] - min_url_rank) def appeared_in_title(self): # '''This function counts the number of times company name has appeared in title tag of url # we store title retrieved from web in string and query in substring # then make both lower to count appeareance # ''' arr = [] string = self.title substring = self.c_name for i in string: res = i.lower().count(substring.lower()) arr.append(res) #self.count self.count = arr #print(self.count) # Test return self.count def appeared_in_meta(self): # '''This function counts the number of times company name has appeared in meta tag of url # ''' arr = [] string1 = self.meta substring1 = self.c_name for i in string1: res1 = i.lower().count(substring1.lower()) arr.append(res1) self.count1 = arr #print(self.count1) # Test return self.count1 def title_normalized(self): arr = [] # ''' This function divides the appeared in title value to no. of words in company name. # we split the company name to count the number of words in it and then # divide that number to title appeared # ''' a_string = self.c_name word_list = a_string.split() #Split `a_string` by whitespace number_of_words = len(word_list) for i in self.count: Count = i TN = Count/number_of_words arr.append(TN) #print(arr) #Test TN = arr return TN def meta_normalized(self): # ''' This function divides the appeared in meta value to no. of words in company name. # we split the company name to count the number of words in it and then # divide that number to meta appeared # ''' arr = [] a_string = self.c_name word_list = a_string.split() #Split `a_string` by whitespace number_of_words = len(word_list) #Count = appeared_in_meta(count1) for i in self.count1: Count = i MN = Count/number_of_words arr.append(MN) #print(arr) #Test MN = arr return MN def lvtn(self): arr = [] for i in self.title: s1 = i s2 = self.c_name arr.append(enchant.utils.levenshtein(s1, s2)) #print(arr) #Test return arr def lvdn(self): # ''' To obtain the levenshtein distance between domain and query submitted # it uses enchant library # ''' #s11 = getURLForQuery(url) arr1 = [] for i in self.url: s11 = i s22 = self.c_name arr1.append(enchant.utils.levenshtein(s11, s22)) #print(arr1) # Test return arr1 def no_of_links(self): arr = [] session = HTMLSession() for i in self.url: try: r = session.get(i,verify=False) # "http://www.abbott.com" unique_netlocs = Counter(urlparse(link).netloc for link in r.html.absolute_links) summ = 0 for link in unique_netlocs: try: summ += unique_netlocs[link]#print(link, unique_netlocs[link] except Exception as e: summ =0 arr.append(summ) except requests.exceptions.ProxyError: arr.append(0) self.summ = arr #print(self.summ) #Test return self.summ #print(arr) def word_count(self): # ''' To obtain the total word count in html of a link # ''' arr = [] for i in self.url: url = i #"https://aig.com" context = ssl._create_unverified_context() #urllib.urlopen("https://no-valid-cert", context=context) try: html = urlopen(url, context=context) soup = BeautifulSoup(html, "html.parser") type(soup) all_links = soup.findAll('html') str_cells = str(all_links) cleartext = BeautifulSoup(str_cells, "html.parser").get_text() #print(cleartext) a_string = cleartext word_list = a_string.split() no_of_words = len(word_list) arr.append(no_of_words) except urllib.error.HTTPError as e: #print('0') arr.append(0) self.no_of_words = arr #print(self.no_of_words)#Test return self.no_of_words #print(arr) #return self.no_of_words def ratio_word_link(self): no_of_words = self.no_of_words summ = self.summ c=[x / y if y else 0 for x, y in zip(no_of_words, summ)] #print(str(c)) # Test return c def cname_in_html(self): arr =[] l1 = self.count # float(input("appeared in title ")) l2 = self.count1 #float(input("appeared in meta: ")) for x, y in zip(l1, l2): if x<=0 and y<=0: #print(0) v = 0 #return False else: #print(1) v = 1 arr.append(v) #print(arr) #Test return arr def rank_of_page(self): names = self.url numbers = [] num =1 for item in range(len(names)): if item == len(names) - 1: break elif names[item] == names[item+1]: numbers.append(num) else: numbers.append(num) num = num + 1 numbers.append(num) return numbers #print(numbers) # Test def feature_extract(self): arr= [] geturl = self.getURLForQuery() Title = self.appeared_in_title() TN = self.title_normalized() Meta = self.appeared_in_meta() MN = self.meta_normalized() LVTN = self.lvtn() LVDN = self.lvdn() Links = self.no_of_links() Word = self.word_count() DCNAIH = self.cname_in_html() RatioWL = self.ratio_word_link() ROP = self.rank_of_page() #v = [ROP, Title, TN, Meta, MN, LVTN, LVDN, Links, Word, DCNAIH, RatioWL] #mapped = zip(ROP, Title, TN, Meta, MN, LVTN, LVDN, Links, Word, DCNAIH, RatioWL) #mapped = set(mapped) #print(mapped) for v in zip(ROP, Title, TN, Meta, MN, LVTN, LVDN, Links, Word, DCNAIH, RatioWL): # print([v]) #res = [ v[i] for i in () ] #res = v[::] #print(str(res)) #mat1 = np.array(v) #print(mat1) #print(mat1[[0]]) #print(v) arr.append(v) self.v = arr return self.v def get_url(self): #geturl = self.getURLForQuery() z = self.url #print(z) return z #return geturl[1] peag = FeatureCreation() features = peag.feature_extract() displayurl = peag.get_url()
[ "noreply@github.com" ]
priyanshusankhala.noreply@github.com
cb5db349433375952b79438f4586f8e8eb237a43
e9ff9715adbf6ed11d5073c966ae9ab586ff5942
/Desktop/code/app.py
0f596818aba02088fa0db725d761289e00b9b84b
[]
no_license
nischal-sudo/Flask-repo
f6dd42234f39dd524fab9f8955002b89e6b27bc9
c50ceb7b118935e9eb7e82e66f216b5b1066f41f
refs/heads/master
2022-12-12T20:52:41.191398
2020-09-07T15:14:00
2020-09-07T15:14:00
292,005,598
2
0
null
null
null
null
UTF-8
Python
false
false
1,257
py
import os from flask import Flask,request from flask_restful import Api#An(API) is a set of routines, protocols, and tools for building software applications. # Basically, an API specifies how software components should interact from flask_jwt import JWT #security purpose 1 from resources.item import Item,ItemList from security import authenticate,identity #inheriting from resources.user import UserRegister from resources.store import Store,StoreList app=Flask(__name__)#"creating" a flask app app.config["SQLALCHEMY_DATABASE_URI"] = os.environ.get("DATABASE_URL","sqlite:///data.db")#2#where to find "data.db" file app.config["SQLALCHEMY_TRACK_MODIFICATIONS"]=False#SQLAlchemy has its own track modification app.secret_key = "jose"#security purpose 2 api = Api(app)#a set of functions and procedures "allowing" the creation of applications,creating Api app jwt = JWT(app,authenticate,identity)#/auth api.add_resource(Store,"/store/<string:name>") api.add_resource(Item,"/item/<string:name>") api.add_resource(StoreList,"/stores") api.add_resource(ItemList,"/items") api.add_resource(UserRegister,"/register") if __name__ == "__main__": #only the file we run is the main from db import db db.init_app(app) app.run(port=5000,debug=True)
[ "nischalhp98@gmail.com" ]
nischalhp98@gmail.com
30a66d64f31cafc94958091c752359386e6a4311
224bbfdc32d0863f2c01dc8df5d22f99d8ba8a59
/Django-Angular-Ionic-Env/Scripts/django-admin.py
c1c7b58459de83af3b060986cd7ea54a45f133fb
[ "MIT" ]
permissive
ricardoBento/Django-Angular-Ionic
f070d4a43e0a8fd5a99aeb55976f17a4937bf081
fea23986deb613603a150d11787b609971c7152f
refs/heads/master
2022-11-10T02:46:17.808929
2020-06-29T13:21:37
2020-06-29T13:21:37
269,649,736
0
0
MIT
2020-06-05T13:41:41
2020-06-05T13:41:39
null
UTF-8
Python
false
false
206
py
#!c:\users\rbento\documents\github\django-angular-ionic\django-angular-ionic-env\scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "ricardo@flowhospitalitytraining.co.uk" ]
ricardo@flowhospitalitytraining.co.uk
2b12e572e60b666f33fddfbc79c028ad4366a179
9c33da70a0197addfa7fc53786a64ad0eaa06cbb
/bubbleSort.py
f33e617519563e098bf003936265825e18b844a5
[]
no_license
manuellara/dataStructuresPython
03e8e554055605dbf47532f4e2085f3ac9e69528
f59014b90e2c9260e5bd3ebeefb3780ee54d1df3
refs/heads/master
2020-03-27T01:57:49.908183
2018-08-22T20:26:59
2018-08-22T20:26:59
145,757,070
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
#Bubble Sort #Runtime :: O( n ) #Space Complexity :: O( 1 ) #good for small lists def bubbleSort( list ): for i in range( 0 , len( list )-1 ): for j in range( 0 , len( list ) - 1 - i ): if list[ j ] > list[ j+1 ]: list[ j ] , list[ j+1 ] = list[ j+1 ] , list[ j ] return list
[ "manuellaraa@gmail.com" ]
manuellaraa@gmail.com
7ac53b30a3b57016edf0f73d53b71a70649b08bc
410a0fac2282d867aa7e531c40c7289e4484510c
/venv/bin/django-admin.py
61ab7e2731c49b3611f2427a7932908cf764ede8
[]
no_license
NickVazovsky/parser_go
922a46ecca1c3def1adcfe3e029c82641247804b
a8dc3c082d246e4325d13e7ef1863df7238694cc
refs/heads/master
2020-07-29T12:50:55.579542
2019-09-20T14:31:02
2019-09-20T14:31:02
209,806,760
0
0
null
2019-09-20T14:26:48
2019-09-20T14:13:45
Python
UTF-8
Python
false
false
164
py
#!/home/nick/PycharmProjects/new_project/venv/bin/python3 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "nvazovsky@gmail.com" ]
nvazovsky@gmail.com
ecfcb71ce402310d3b32ca4dcfac0fb352addc47
d5c8ca88c643492b95ca57e972b76bcc56aac251
/tests/fr.py
04c4b5cd0876d96bfc25cd944cadcaa63294945c
[ "MIT" ]
permissive
olopost/l18n
b8462e6cd5eed0293e9e18cde23c850bc8553514
c6ef71a94f32537d5c072b493b94d35ee06d9bf4
refs/heads/master
2020-03-19T16:14:17.737843
2018-06-09T09:12:34
2018-06-09T09:12:34
136,706,924
0
0
null
null
null
null
UTF-8
Python
false
false
648
py
# -*- coding: utf-8 -*- import l18n from ._base import TestCase from ._compat import unicode class FrTests(TestCase): language = 'fr' def test_tz_city_translated(self): self.assertEqual( unicode(l18n.tz_cities['America/North_Dakota/New_Salem']), u'New Salem (Dakota du Nord)' ) def test_tz_fullname_translated(self): self.assertEqual( unicode(l18n.tz_fullnames['America/North_Dakota/New_Salem']), u'Amérique/Dakota du Nord/New Salem' ) def test_territory_translated(self): self.assertEqual(unicode(l18n.territories['ES']), u'Espagne')
[ "samuel@meyn.fr" ]
samuel@meyn.fr
3da690d33b022de40070de3907852084abdc8e90
6badd56b2360979c1c4a22cfe719de9c6d5d56d7
/Flask/migrations/versions/8aaa54384776_.py
27e8343759c655f46575b7f6ad673423ef8c60f8
[]
no_license
ferrufino/t247
e78afff820816a2db39fbba95d2da94ce635e4ef
6247983295c448c987bef5eff40be99c61e43bcf
refs/heads/master
2021-09-03T15:15:23.945909
2016-12-26T23:06:37
2016-12-26T23:06:37
23,481,514
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
"""empty message Revision ID: 8aaa54384776 Revises: 839b2982db1f Create Date: 2016-11-29 18:06:51.782267 """ # revision identifiers, used by Alembic. revision = '8aaa54384776' down_revision = '839b2982db1f' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('submission', sa.Column('no_of_attempt', sa.Integer(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('submission', 'no_of_attempt') ### end Alembic commands ###
[ "msf1013@gmail.com" ]
msf1013@gmail.com
c064a3df67c9e1823f33effe6f863832443c9cf3
7f8660729c81b3401147d813ec30fc86e2642c30
/python/funkcjee.py
fbac1675e083cbae3132c34d3d5d1b20141d4c4c
[]
no_license
Patrycja13/gitrepo
881e0451933919ef007bf649ea41af3014edb254
ea9f9fdce484c477b26cbb25f28261747657261a
refs/heads/master
2021-07-10T00:01:41.796938
2019-03-25T08:29:54
2019-03-25T08:29:54
103,923,098
0
0
null
null
null
null
UTF-8
Python
false
false
902
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # funkcjee.py # # import random def wypelnij(lista, ile, maks): for i in range(ile): lista.append(random.randint(0, maks)) return lista def drukuj(lista): licznik = 0 for liczba in lista: if not liczba % 2: licznik += 1 print("Liczb parzystych ", licznik) def suma_nieparzyste(lista): """ Funkcja sumuje wszystkie liczby nieparzyste i z przekazanej listy i wyświetla tę sumę""" licznik = 0 for liczba in lista: if not liczba % 2: licznik += 2 print("Liczb nieparzystych ", licznik) def main(args): lista = [] ile = 75 maks = 100 wypelnij(lista, ile, maks) print(lista ) drukuj(lista) suma_nieparzyste(lista) return 0 if __name__ == '__main__': import sys sys.exit(main(sys.argv))
[ "patrycja.gawel13@onet.pl" ]
patrycja.gawel13@onet.pl
1f51647eba384115a71102ac36198438a8261671
55b78bafd8a396907ec669236206d1ea74a36610
/manage.py
b44e526b9dca86c886ab3a6c199470a05d761f59
[]
no_license
LorroWijn/eHealth
8dd6d171e6c4ab085c3d372f3ef404577de66afb
b963a3b92d774ca1e8cd63d7ec3736d4579ebbac
refs/heads/master
2023-02-11T01:54:46.658539
2021-01-12T10:46:09
2021-01-12T10:46:09
301,711,008
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'eHealth.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "33690232+LorroWijn@users.noreply.github.com" ]
33690232+LorroWijn@users.noreply.github.com
9b065ad3bc64f06b7fcaff92d27fb2ee90ecfe6e
fc58366ed416de97380df7040453c9990deb7faa
/tools/dockerize/webportal/usr/lib/python2.7/site-packages/oslo_db/tests/old_import_api/utils.py
44eb1aeb24eb802ae554e3fcfda13866332912a7
[ "Apache-2.0" ]
permissive
foruy/openflow-multiopenstack
eb51e37b2892074234ebdd5b501b24aa1f72fb86
74140b041ac25ed83898ff3998e8dcbed35572bb
refs/heads/master
2016-09-13T08:24:09.713883
2016-05-19T01:16:58
2016-05-19T01:16:58
58,977,485
1
0
null
null
null
null
UTF-8
Python
false
false
1,310
py
# Copyright 2010-2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib from oslo.config import cfg from oslotest import base as test_base from oslotest import moxstubout import six if six.PY3: @contextlib.contextmanager def nested(*contexts): with contextlib.ExitStack() as stack: yield [stack.enter_context(c) for c in contexts] else: nested = contextlib.nested class BaseTestCase(test_base.BaseTestCase): def setUp(self, conf=cfg.CONF): super(BaseTestCase, self).setUp() moxfixture = self.useFixture(moxstubout.MoxStubout()) self.mox = moxfixture.mox self.stubs = moxfixture.stubs self.conf = conf self.addCleanup(self.conf.reset)
[ "wenxiang.wang1204@gmail.com" ]
wenxiang.wang1204@gmail.com
38e66487b8f3e6080d36fa5c19b8a95bc793311f
0e9f73d2ef1239b22e049ef6338362da7dbfb122
/source/web/Django/FatQuantsDjango/FatQuantsDjango/ticker/migrations/0065_auto_20190209_2232.py
da99dbc20030cad9a96f28f1f13228b4442183bd
[]
no_license
Andy-Mason/FatQuants
3c4bfafc29834af76b0be40e93b0e210e0ef5056
edd0e98f4599ef91adbdf4179164769ddd66c62a
refs/heads/master
2023-01-11T10:57:50.563742
2021-08-11T19:04:59
2021-08-11T19:04:59
73,127,295
0
0
null
null
null
null
UTF-8
Python
false
false
661
py
# Generated by Django 2.1.3 on 2019-02-09 22:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ticker', '0064_auto_20190209_2231'), ] operations = [ migrations.AddField( model_name='tickereoddata', name='close_value', field=models.FloatField(blank=True, db_column='close_value', null=True, verbose_name='Close'), ), migrations.AddField( model_name='tickereoddata', name='volume', field=models.FloatField(blank=True, db_column='volume', null=True, verbose_name='Volume'), ), ]
[ "Andy-Mason@users.noreply.github.com" ]
Andy-Mason@users.noreply.github.com
789f531277e300cc7635ee1540d92eaf1537f0b8
a962e861619672524f8601ec721bf22dee9af0e9
/webapp/views/views.py
18d3d258bdff686fa2bffcbeaa7dfa41c1db92d5
[]
no_license
GELIFT/backend
679fdfd663c62153c0bf18ea1e450e12991e66e0
a39bf74d04dc4b2731da370860f0c49064b49868
refs/heads/master
2020-03-30T20:51:44.048039
2018-10-04T18:34:59
2018-10-04T18:34:59
151,607,239
0
0
null
null
null
null
UTF-8
Python
false
false
710
py
from django.contrib.auth.decorators import login_required from django.shortcuts import render from webapp.models import Event, User @login_required def admin_dashboard(request): events = Event.objects.all().order_by('-start_date')[:5] users = User.objects.exclude(is_superuser=True).order_by('last_name')[:5] return render(request, 'webapp/admin/admin_dashboard.html', {'events': events, 'users': users}) def index(request): # Get active event event = Event.objects.filter(is_active=True) if event: event = Event.objects.get(is_active=True) return render(request, 'webapp/index.html', {'event': event}) else: return render(request, 'webapp/index.html')
[ "g.a.f.derks@student.tue.nl" ]
g.a.f.derks@student.tue.nl
7a6558293f2b26ecc4cad8e89e91cbb1ffb1a202
c028e15a5287ad9ca5cf58ccacccaaa9c32f40a4
/apps/ex08query_explorer/migrations/0001_initial.py
c2fc147748f476bb8079f055679d77dfb272a6be
[]
no_license
huyx/django-exercise
0f6363c7ae7b0bb5409fa673118e50db221cb9be
6d81c8a5c94ee0820dfc56f817be3144c9636c30
refs/heads/master
2021-07-09T11:15:00.819385
2017-10-04T12:33:41
2017-10-04T12:33:41
105,282,358
0
0
null
null
null
null
UTF-8
Python
false
false
791
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-04 03:01 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Query', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=160, verbose_name='标题')), ('description', models.TextField(blank=True, null=True, verbose_name='描述')), ('query', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ], ), ]
[ "ycyuxin@qq.com" ]
ycyuxin@qq.com
503cdbd13ac9e95d89d2847aabb527de1c810769
369b7f114f9bd9b45dd5fef77a070cb73abb68d1
/handle/itl/h20180123/insertFundInvestLog.py
0754801c39b9a7088aaa3f77d47ee88123974bf7
[]
no_license
lyjloveabc/thor_handle
d790ee25317f724825c94a6b346a034ec0ae6e3d
8b9eda97ec873f3bf1732a428898a04d6a55c0af
refs/heads/master
2021-12-27T10:15:16.668264
2021-08-16T13:45:34
2021-08-16T13:45:34
84,824,162
0
0
null
null
null
null
UTF-8
Python
false
false
571
py
import json import requests class InsertFundInvestLog: def __init__(self): # self.ENV = 'http://127.0.0.1:7001' self.ENV = 'http://127.0.0.1:7001' self.ENV_PROD = 'http://121.43.166.200:7001' def handle(self): with open('fundInvestLog_20180301.json', 'r') as f: data = json.load(f) for row in data: response = requests.post(self.ENV_PROD + '/fundInvestLog/fundInvestLog', data=row) print(response.text) if __name__ == '__main__': ifil = InsertFundInvestLog() ifil.handle()
[ "546223592@qq.com" ]
546223592@qq.com
92a00f87e97ffb33bc7cf6bcb4ca4102f87306bb
0d05a57a20f482c1435a6945a908cf28efbf15ba
/perceptrons/classical/tinyYolo/pyjawns/dailybatcher_1.py
a84adee72ed0587e901cdc57af714621d85b26e6
[]
no_license
vinceparis95/zoo
67950d35585111bcd3f377f93f4de7b09dc45bb4
12d44327fc8bec5da2f5ea286dfeb24a5183194c
refs/heads/master
2020-09-10T22:03:39.231942
2019-11-21T02:05:54
2019-11-21T02:05:54
221,846,140
0
0
null
null
null
null
UTF-8
Python
false
false
2,796
py
import pandas as pd import numpy as np import datetime import glob import re ''' this program takes a daily batch of classifications for an environment, and creates a matrix, containing 'id', 'age', and 'feature sum' columns. These matrices are sent to output folders, one for each environment. ''' # create 'file' column from yolo json dataFrame = [] for image in glob.iglob('/Users/vinceparis/dev/dfyb/GrowLogs/ei/_images/out/*.json'): file = re.findall(r'\d+', image) dataFrame.append(file) fileColumn = np.c_[dataFrame] dataFrame = pd.DataFrame(fileColumn) # create feature column from the sum of features dataFrameB = pd.DataFrame() dataFrameC = pd.DataFrame() for image in glob.iglob('/Users/vinceparis/dev/dfyb/GrowLogs/ei/_images/out/*.json'): df = pd.read_json(image) dfFiltered = df.filter(items=['label', '0']) dfFiltered = dfFiltered.replace('yellowing', -45.0) dataFrameB = dataFrameB.append(dfFiltered) dfSum = dfFiltered.sum(axis=0) dataFrameC = dataFrameC.append(dfSum, ignore_index=True) # dataFrameB.label[dataFrameB.label == 'yellowing'] = -100.0 # concatenate id and feature, sort by feature dfF = pd.concat([dataFrame, dataFrameC], axis=1) dfSorted = dfF.sort_values(by=['label'], ascending=False) dfSorted = dfSorted.dropna() dfSorted = dfSorted.rename(columns={0:'id'}) dfSorted = dfSorted.rename(columns={'label': 'featureSum'}) dfOutput = dfSorted.to_csv('/Users/vinceparis/dev/dfyb/utils/test.csv') naturans = pd.read_csv('/Users/vinceparis/dev/dfyb/utils/test.csv') # to the id and feature columns, we will add an 'age' column. # first, create a 'planted time' column; time = [] planted = pd.Timestamp('2019-04-16 00:06:33.346275') col = dfSorted.__len__() for x in range(0, col): time.append(planted) plantedColumn = np.c_[time] plantedColumn = pd.DataFrame(plantedColumn) output = naturans.join(plantedColumn) output = output.rename(columns={0: "planted"}) output = output.filter(items=('id', 'featureSum', 'planted')) # print(output) # second, create 'current time' column. time2 = [] for x in range (0, col): time2.append(pd.Timestamp.now()) currentColumn = np.c_[time2] output2 = pd.DataFrame(currentColumn) output2 = output.join(output2) output2 = output2.rename(columns={0: "current time"}) # print(output2) # derive 'age' by subtracting 'planted time' from 'current time' output2['age'] = output2['current time'] - output2['planted'] output2 = output2.filter(items=('id', 'age', 'featureSum')) output2['age'] = output2['age'].astype(str).str[0:2] output2['age'] = output2['age'].astype(float) print(output2) # send to environment folders (with a datetime) now = datetime.datetime.now() now = now.strftime("%m-%d") output = output2.to_csv('/Users/vinceparis/dev/dfyb/GrowLogs/ei/eidailyData/e2gL'+str(now)+'.csv')
[ "vinceparis19@gmail.com" ]
vinceparis19@gmail.com
f44c79dba52af15a4c324b94646a2e32d5a6143e
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf/gsn-edf_ut=2.5_rd=0.65_rw=0.04_rn=4_u=0.075-0.35_p=harmonic-2/sched=RUN_trial=90/sched.py
73271d93d6d30c676753279395b2f3b6ba2f57c3
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
-X FMLP -Q 0 -L 3 93 400 -X FMLP -Q 0 -L 3 80 400 -X FMLP -Q 1 -L 2 79 250 -X FMLP -Q 1 -L 2 57 175 -X FMLP -Q 2 -L 1 54 200 -X FMLP -Q 2 -L 1 39 400 -X FMLP -Q 3 -L 1 37 125 -X FMLP -Q 3 -L 1 33 200 29 150 18 150 16 150 11 125 11 125
[ "ricardo.btxr@gmail.com" ]
ricardo.btxr@gmail.com
c81a79a1e9e75fd4a88e801d5f26317e03ca49a3
e9c293194c317f4b4771074291e50a3f6545b279
/xmltxt.py
c8df80cec34f6cc7a927b9f3c09936d6a6fe325a
[]
no_license
XLSAAA/yolov5
5928a3b1c2b08d1a56d6de8f0720d17dfee5b42f
ad6a745341167e1d96c79d86eb5557b5ae6e352e
refs/heads/main
2023-07-07T22:40:37.477448
2021-09-05T03:17:07
2021-09-05T03:17:07
403,201,570
0
0
null
null
null
null
UTF-8
Python
false
false
1,371
py
import os import xml.etree.ElementTree as ET dirpath = 'F:/yhzkpoj/yolov5-master/imagetxt' # 原来存放xml文件的目录 newdir = 'F:/yhzkpoj/yolov5-master/fenglangjuxu' # 修改label后形成的txt目录 if not os.path.exists(newdir): os.makedirs(newdir) for fp in os.listdir(dirpath): root = ET.parse(os.path.join(dirpath, fp)).getroot() xmin, ymin, xmax, ymax = 0, 0, 0, 0 sz = root.find('size') width = float(sz[0].text) height = float(sz[1].text) filename = root.find('filename').text for child in root.findall('object'): # 找到图片中的所有框 sub = child.find('bndbox') # 找到框的标注值并进行读取 xmin = float(sub[0].text) ymin = float(sub[1].text) xmax = float(sub[2].text) ymax = float(sub[3].text) try: # 转换成yolov3的标签格式,需要归一化到(0-1)的范围内 x_center = (xmin + xmax) / (2 * width) y_center = (ymin + ymax) / (2 * height) w = (xmax - xmin) / width h = (ymax - ymin) / height except ZeroDivisionError: print(filename, '的 width有问题') with open(os.path.join(newdir, fp.split('.')[0] + '.txt'), 'a+') as f: f.write(' '.join([str(2), str(x_center), str(y_center), str(w), str(h) + '\n']))
[ "noreply@github.com" ]
XLSAAA.noreply@github.com
2433ea1d0965c169a7c6fd0e959543ad462f83d3
7dcb8b52d2c7bd223a86fa93e40c0153b0959206
/Scapy/scapy_sniff.py
6d99313a30ebd36be3fce903987e728c285c233e
[]
no_license
gast04/CTF_ToolBox
2e36f81f083a1f4518a817e5fcaf8dfaa44e0b31
a1d74448a936e3b8ba1288edc099794776582fbd
refs/heads/master
2021-10-25T18:50:03.154094
2021-10-24T13:08:39
2021-10-24T13:08:39
94,090,071
15
1
null
null
null
null
UTF-8
Python
false
false
295
py
from scapy.all import * def pkt_callback(pkt): if TCP in pkt: print "TCP pkt" elif UDP in pkt: print "UDP pkt" # call without filter to get all packets sniff(iface="enp0s25", prn=pkt_callback, store=0) #sniff(iface="enp0s25", prn=pkt_callback, filter="tcp", store=0)
[ "kurt.nistelberger@student.tugraz.at" ]
kurt.nistelberger@student.tugraz.at
23ad3618568496efcd28687742ed0ff95e48fa3b
ad29d032cc11757584629d221dc4748cd5d8c5eb
/optimizer.py
e14ba389c1a30a92099b2e03553d99a932b71a44
[]
no_license
joalmei/Img2Mesh
58b26354f36081e474d20b88f2ec0d0d47ee2add
7299c069ac0f88e9ff9d29ece939ca4df1c05016
refs/heads/master
2022-03-24T11:21:36.882254
2019-12-05T13:56:17
2019-12-05T13:56:17
222,305,444
3
0
null
null
null
null
UTF-8
Python
false
false
4,503
py
import tensorflow as tf from tensorflow import keras import tensorflow.keras.backend as K import time import random import matplotlib.pyplot as plt from operator import itemgetter from losses import chamfer_loss from tools.optim_tools import shuffle_tensors # ============================================================================== # custom optimizer for chamfer_loss # using Adam optimization algorithm class Optimizer: def __init__ (self, model, learning_rate=0.001): self.model = model self.optimizer = keras.optimizers.Adam(learning_rate=learning_rate) # ========================================================================== def loss (self, xs, ys): out = [] ys_ = self.model(xs) for y, y_ in zip(ys, ys_): out.append(chamfer_loss(y, y_)) return tf.stack(out) # ========================================================================= def predict (self, X): return self.model(X) # ========================================================================= def test (self, X, Y): return self.loss(X, Y) # ========================================================================= def grad (self, xs, ys): with tf.GradientTape() as tape: loss_value = self.loss(xs, ys) return loss_value, tape.gradient(loss_value, self.model.trainable_variables) # ========================================================================= # trains the network for num_epochs epochs or until min_step is achieved def train_epochs (self, X, Y, batches, num_epochs=2000, min_error=1e-3, min_step=1e-9, checkpoint_callback=None, check_step=1): train_loss_results = [] for epoch in range(num_epochs): loss_value, nbatch, prevbatch, start_time = 0, 0, 0, time.time() X, Y = shuffle_tensors(X, Y) print("batches: ", end='') for batch in batches: nbatch = nbatch + 1 if (int(10*nbatch/len(batches)) > prevbatch): prevbatch = int(10*nbatch/len(batches)) print('.', end='') # optimize the model lossv, grads = self.grad(X[batch], Y[batch]) self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables)) # end epoch loss_value = K.mean(lossv) + loss_value loss_value = loss_value / len(batches) train_loss_results.append(loss_value) print(' ', end=' ') if (epoch % check_step == 0): print("epoch : ", epoch, " ; loss = ", float(loss_value), " (", time.time() - start_time ,"secs)") if (checkpoint_callback != None): checkpoint_callback(self.model) if (epoch % check_step == 0 and epoch > 1 and loss_value < min_error): print('min_error achieved at ', float(loss_value)) return train_loss_results, True return train_loss_results, False # ========================================================================= # trains the network max_repet times for num_epochs def train (self, X, Y, batches, min_error=1e-3, min_step=1e-3, plot=False, checkpoint_callback=None, num_epochs=10, max_repets=10): losses = [] interrupt = False repet = 0 while (not interrupt): repet = repet + 1 if (repet > max_repets): break print("========================================================================") loss, interrupt = self.train_epochs(X, Y, batches, num_epochs=num_epochs, min_error=min_error, min_step=min_step, checkpoint_callback=checkpoint_callback) losses.extend(loss) if (plot == True): plt.plot(losses) plt.plot(loss, label=str(repet)) plt.show() print("Trainning finished!") if (plot == True): plt.plot(losses) plt.show() return losses
[ "jv.aaguiar@gmail.com" ]
jv.aaguiar@gmail.com
13e2272bb18ea159a1d979995232168771b64045
3b930f60a7bea984c309f2a5572af2a586a6ca9a
/mango-python/bdgenomics/mango/utils.py
3c047972f51c6ab90e95a6ad5a0c0d2d26fafe11
[ "Apache-2.0", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
shaneknapp/mango
00a2231c410a917747e66e8d520ae5c4a071d1ea
6eba24abd2387bd2c52ad319b34c8a82a904ec50
refs/heads/master
2020-06-10T03:48:46.360379
2019-06-24T19:16:01
2019-06-24T19:16:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
796
py
# # Licensed to Big Data Genomics (BDG) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The BDG licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # CHR_PREFIX = 'chr'
[ "akmorrow@berkeley.edu" ]
akmorrow@berkeley.edu
d15d0f7899b5d69e37ae286c5bc3ca8972755234
05fbca423d3704c4c2f75ad0677811bbd2bc8ec3
/sawa/urls.py
333b5d28c62c0d15f9407b7e940e5524041cc760
[]
no_license
stilgeki/SAWA
653add93da5a5263bdf7c720bb5344a9e4689192
4f3534a705ab1bae13f96b7e770f934f2a0550c2
refs/heads/master
2016-09-14T11:07:47.182117
2016-04-28T00:42:14
2016-04-28T00:42:14
57,258,358
0
0
null
null
null
null
UTF-8
Python
false
false
339
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.upload, name = 'upload'), url(r'^execute/$', views.execute, name = 'execute'), url(r'^help/$', views.help, name = 'help'), url(r'^results/$', views.results, name = 'results'), url(r'^loading/$', views.loading, name = 'loading'), ]
[ "stilgeki@miamioh.edu" ]
stilgeki@miamioh.edu
e20e7f340b0e719fa019c02d2a227a6589f4cc4f
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_baccalaureates.py
b6b3d264696b8bd5b102cbd3f2ddde23ad54b79c
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
from xai.brain.wordbase.nouns._baccalaureate import _BACCALAUREATE #calss header class _BACCALAUREATES(_BACCALAUREATE, ): def __init__(self,): _BACCALAUREATE.__init__(self) self.name = "BACCALAUREATES" self.specie = 'nouns' self.basic = "baccalaureate" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
ad8ca63c444d4bf8b98831272e3fa7df41cd671d
331635a7ffc237ebc34722d6eb2ae69e0b82c3a2
/20170818-threes-and-twos/threes-and-twos.py
b79b054b5eab3683bc35f973d3a6c7f9fcda2414
[]
no_license
brmcdonnell/riddlers
22192dd07288be99f5fcd659d68be9a65a32f3f7
674cb31637ed88f29f37078de1945d367895a2ca
refs/heads/master
2022-04-20T08:36:00.402698
2020-03-28T20:44:54
2020-03-28T20:44:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
import numpy as np import pandas as pd sq = [3, 3, 3, 2] ITER = int(1e4) for i in range(1, ITER): sq = sq + [3] * sq[i] + [2] print('\nTable of 3s and 2s:') print(pd.Series(sq).value_counts()) print('\nProportion of 3s and 2s:') print(pd.Series(sq).value_counts() / len(sq))
[ "tim.book@summit.local" ]
tim.book@summit.local
38986d4a704fb788926d73c8dcd2ed3bad07d847
45de3aa97525713e3a452c18dcabe61ac9cf0877
/src/primaires/objet/types/indefini.py
72fd243688f6d99b9e1d5c92bccd62e605901e8d
[ "BSD-3-Clause" ]
permissive
stormi/tsunami
95a6da188eadea3620c70f7028f32806ee2ec0d1
bdc853229834b52b2ee8ed54a3161a1a3133d926
refs/heads/master
2020-12-26T04:27:13.578652
2015-11-17T21:32:38
2015-11-17T21:32:38
25,606,146
0
0
null
null
null
null
UTF-8
Python
false
false
1,744
py
# -*-coding:Utf-8 -* # Copyright (c) 2010 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant le type Indefini.""" from .base import BaseType class Indefini(BaseType): """Type d'objet: indéfini. """ nom_type = "indéfini"
[ "kredh@free.fr" ]
kredh@free.fr
d50d43cea20a3bde861eedd107d12122e4ea223d
18936a3058a0f130676535a3ee6408239fd7cdbc
/tests/path_helper.py
ed60538c773ea3cff382d9b7f778c6548d9ddf3d
[ "BSD-2-Clause" ]
permissive
thxo/cabrillo
4b7b5446087897f1a5a57a1aaca93348f4b37b99
fbfc047c42f877ff139de367b359de0af1e20441
refs/heads/master
2023-04-07T08:56:00.674525
2023-04-02T08:40:03
2023-04-02T08:41:48
161,945,220
12
7
BSD-2-Clause
2023-04-02T08:32:49
2018-12-15T21:28:06
Python
UTF-8
Python
false
false
239
py
import sys import os.path """Make the cabrillo module importable from the tests' point of view.""" project_root_dir = os.path.dirname(os.path.dirname(__file__)) if not project_root_dir in sys.path: sys.path.append(project_root_dir)
[ "21995564+thxo@users.noreply.github.com" ]
21995564+thxo@users.noreply.github.com
8de09eab1d45109af504b4a4e86309ad1f917a0d
eeccdfd79556fa3b867733132c9e4182389b3380
/InstanceHealth/flask/lib/python2.7/encodings/iso8859_9.py
1e9881a9bbe9cac0aed38804d7f58850314df9f8
[]
no_license
gokula1995/saveTime
ce44c5c4b48e1e3d9bc8af8c26b8e4f379937911
82f5554932cbdb870595298a6c93a3a1cd97d95a
refs/heads/master
2020-07-05T17:09:08.012468
2019-10-20T15:04:47
2019-10-20T15:04:47
202,707,399
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
/usr/local/Cellar/python@2/2.7.15_3/Frameworks/Python.framework/Versions/2.7/lib/python2.7/encodings/iso8859_9.py
[ "gokula.adabala@gmail.com" ]
gokula.adabala@gmail.com
b7209cadc13f45308b995e0899d72fa860e99a50
30f654d2feea989ed36756a3beab302c4fa51a94
/DjangoDockerDemo/wsgi.py
b0d95077b72daa9b3cdd65ac27ebaad0416049bd
[]
no_license
cbalkig/DjangoDockerDemo
a3d061f0ab50bfd8151246d59b8cf80eef61b125
384ac5806399d01f5597db3a9e0c5203b285ee85
refs/heads/master
2022-04-20T07:04:55.984324
2020-04-22T12:14:58
2020-04-22T12:14:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" WSGI config for DjangoDockerDemo project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'DjangoDockerDemo.settings') application = get_wsgi_application()
[ "balki1985@gmail.com" ]
balki1985@gmail.com
82d72696650cdd9a2724152e1d3ba36d60cf2985
683289aa4b0c9788b0f3d11dcd8b6cabaefbf17f
/solid/2. open_close_principle/__init__.py
dc82f5e9024073acaeec7d2fac505c84d9bd85e4
[]
no_license
Mort4lis/design-patterns
59f8387031da138416e73dbb2175001f67656639
2a6e3a46c877df94f5681798f8bea3a6a506fd59
refs/heads/master
2022-04-23T16:25:35.878979
2020-04-25T13:03:41
2020-04-25T13:03:41
258,315,417
0
0
null
null
null
null
UTF-8
Python
false
false
930
py
# Принцип открытости / закрытости # Расширяйте классы, но не изменяйте их первоначальный код! # Нужно стремиться к тому, чтобы классы были открыты для расширения, # и закрыты для изменения. # Открытый класс - класс, который доступен для расширения (путем создания подкласса) # Закрытый (законченный) класс - класс, у которого интерфейс окончательно определен и не будет # меняться в будущем, то есть он готов для использования другими классами # Цель - не ломать существующий код при внесении изменений в программу.
[ "mortalis94@gmail.com" ]
mortalis94@gmail.com
1bdf3386a5b0d8cfbe5b707f75b6b7a97e05548a
2a713ff21aba33bcbe54ea1448a0509d3ee1a5fd
/environments/CartPole-v1/discount_factor.py
54c5062d23b82605982b0a1083e6ceb304960052
[ "Apache-2.0" ]
permissive
ShreyanshDarshan/PyTorch-NEAT
b1b8a3e62d029b6db02459510a6a7d6c2f0f7d06
062efa487da3f7e9b444af7babd7868028bbb5f3
refs/heads/master
2022-10-23T17:49:20.757644
2020-06-07T19:37:18
2020-06-07T14:20:56
270,021,251
0
0
Apache-2.0
2020-06-06T20:04:36
2020-06-06T15:24:33
Python
UTF-8
Python
false
false
2,249
py
# Copyright (c) 2018 Archit Rungta # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import click import gym import neat from pytorch_neat.discount_factor_eval import DiscountEnvEvalator from pytorch_neat.neat_reporter import TensorBoardReporter from pytorch_neat.recurrent_net import RecurrentNet max_env_steps = 200 env_name = "CartPole-v1" def make_env(): return gym.make(env_name) def make_net(genome, config, bs): return RecurrentNet.create(genome, config, bs) def activate_net(net, states): outputs = net.activate(states).numpy() return outputs[:, 0] > 0.5 @click.command() @click.option("--n_generations", type=int, default=100) def run(n_generations): # Load the config file, which is assumed to live in # the same directory as this script. config_path = os.path.join(os.path.dirname(__file__), "neat.cfg") config = neat.Config( neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path, ) evaluator = DiscountEnvEvalator( make_net, activate_net, 0.95, make_env=make_env, max_env_steps=max_env_steps ) def eval_genomes(genomes, config): for _, genome in genomes: genome.fitness = evaluator.eval_genome(genome, config) pop = neat.Population(config) stats = neat.StatisticsReporter() pop.add_reporter(stats) reporter = neat.StdOutReporter(True) pop.add_reporter(reporter) logger = TensorBoardReporter("%s-discount" % env_name, "neat.log", evaluator.eval_genome) pop.add_reporter(logger) pop.run(eval_genomes, n_generations) if __name__ == "__main__": run() # pylint: disable=no-value-for-parameter
[ "architrungta120@gmail.com" ]
architrungta120@gmail.com
527e23b43539f94bb5c055d96fa9cee41d724973
889949036343859dba198e2640f4d5cbed396673
/insta_project/insta_project/urls.py
c6dc4921aed5fc7c69771c533c7c81f4f54e3772
[]
no_license
RiyazUlHaque/s3Django
8d7f096d6a560db2e6ee37328e4848dcc8128a7d
2e8b52330c04345c6e7e0edc3e180a540f5dd630
refs/heads/master
2023-01-24T22:02:32.129575
2020-12-01T20:48:52
2020-12-01T20:48:52
290,001,212
0
1
null
null
null
null
UTF-8
Python
false
false
1,036
py
"""insta_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf import settings # new from django.urls import path, include # new from django.conf.urls.static import static # new urlpatterns = [ path('admin/', admin.site.urls), path('', include('posts.urls')), # new ] if settings.DEBUG: # new urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "riyazulhaque922@gmail.com" ]
riyazulhaque922@gmail.com
2e512f27daf59d99f6040b185763a00b8e07ea3a
8a84375dac5e6b33215d20e12e0c197aeaa6e83d
/docs/conf.py
9ff817f5b2af6580eaed06b752ba69a80d83d411
[ "Apache-2.0" ]
permissive
michaeljoseph/pymoji
5579af089cabf1784c656e7fddf9d20f9e6f5d6a
4bf26babc7b968d9a753907d4db5402cfd5c6d63
refs/heads/master
2021-01-01T18:12:37.805141
2013-12-09T10:42:24
2013-12-09T10:42:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,403
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # complexity documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os import sphinx_bootstrap_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import pymoji # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pymoji' copyright = u', ' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = pymoji.__version__ # The full version, including alpha/beta/rc tags. release = pymoji.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'pymojidoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pymoji.tex', u'pymoji Documentation', u'', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pymoji', u'pymoji Documentation', [u''], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'pymoji', u'pymoji Documentation', u'', 'pymoji', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False html_theme = 'bootstrap' html_theme_path = sphinx_bootstrap_theme.get_html_theme_path()
[ "michaeljoseph+github@gmail.com" ]
michaeljoseph+github@gmail.com
f778fe4cf71a8dc151b39915e39e96516fc62612
00b20ac164caeea7eda33334b514741323034ab1
/Parsivel/RawParsivel.py
ad4cc877c2989e73a6388ad00ac7d1b7655494c8
[]
no_license
joejoezz/PyOLYMPEX
1a081eac1ab8be54d06c02e8b3fabcb71ac33bc1
1ce7f51808ae6c0ff2a49c1ac636819793e3d417
refs/heads/master
2021-01-10T09:53:44.119668
2018-01-29T03:03:27
2018-01-29T03:03:27
48,900,617
0
0
null
null
null
null
UTF-8
Python
false
false
8,093
py
import numpy as np import pdb import datetime def read_parsivel(filenames): ''' Takes an APU Parsivel file, returns a RawParsivel object ''' # initialize class: raw_parsivel = RawParsivel() # read parsivel file # takes array of filenames raw_parsivel.read_parsivel_file(filenames) raw_parsivel.convert_to_arrays() # this creates an object called "raw_parsivel" that contains the disdrometer # data for 1 hr at 10 s intervals (length 360 or 360x1024 for matrix # variables can be accessed by "self.variable" within class or # raw_parsivel.variable if feeding to a different class return raw_parsivel class RawParsivel(object): ''' read_parsivel class takes a list of APU files (.dat) generated by the NASA OLYMPEX Parsivels. It returns an object with the data from the Parsivel file, in 10 second increments. Note that this class only reads the Parsivel data, it doesn't apply any filtering filenames: [apuxx_yyyymmddhh.dat] apu: apuxx (apu01-apu11, apu12, apu30, hridge) Filenames must be in correct order (use glob.glob) ''' def __init__(self): #self.filename = filename #filename self.apu = [] #apu number self.pytime = [] #time in datatime self.error_code = [] #error code (0,1,2,3) self.temperature = [] #Parsivel temperature self.dbz = [] #Parsivel dBZ self.rain = [] #Parsivel rain self.ndrops = [] #Parsivel # particles (use this one) self.visibility = [] #Parsivel visibility self.wxcode = [] #Parsivel wx code self.matrix = [] #Parsivel drop matrix def read_parsivel_file(self,filenames): #Figure out length of files (needed for np.matrix) #8640 lines = full day matrixdim = 0 x = [] for filename in filenames: with open(filename) as f: for line in f: matrixdim += 1 self.matrix = np.zeros((matrixdim,1024)) dim = 0 #read through files again, this time filling lists and matrix for filename in filenames: with open(filename) as f: for line in f: data = line.split(',') time = data[0].split(';')[0] apu = str(data[0].split(';')[1]) self.pytime.append(datetime.datetime(int(time[0:4]),int(time[4:6]),\ int(time[6:8]),int(time[8:10]),int(time[10:12]),\ int(time[12:14]))) self.error_code.append(int(data[1])) self.temperature.append(int(data[2])) self.ndrops.append(int(data[3])) self.visibility.append(int(data[6])) self.rain.append(float(data[4])) self.dbz.append(float(data[5])) self.wxcode.append(int(data[8])) try: matrix_temp = np.array([int(i) for i in data[9:-1]]) self.matrix[dim,:] = matrix_temp dim += 1 except: #leaves bad line all zeros... print 'bad line at: '+str(self.pytime[-1]) dim += 1 def convert_to_arrays(self): self.pytime= np.array(self.pytime) self.error_code = np.array(self.error_code) self.temperature = np.array(self.temperature) self.ndrops = np.array(self.ndrops) self.visibility = np.array(self.visibility) self.rain = np.array(self.rain) self.dbz = np.array(self.dbz) self.wxcode = np.array(self.wxcode) def info(self): print 'Raw Parsivel: ' print 'Pytime length: '+str(len(self.pytime)) diameter = [ 0.06, 0.19, 0.32, 0.45, 0.58, 0.71, 0.84, 0.96, 1.09, 1.22, 1.42, 1.67, 1.93, 2.19, 2.45, 2.83, 3.35, 3.86, 4.38, 4.89, 5.66, 6.7, 7.72, 8.76, 9.78, 11.33, 13.39, 15.45, 17.51, 19.57, 22.15, 25.24] spread = [ 0.129, 0.129, 0.129, 0.129, 0.129, 0.129, 0.129, 0.129, 0.129, 0.129, 0.257, 0.257, 0.257, 0.257, 0.257, 0.515, 0.515, 0.515, 0.515, 0.515, 1.030, 1.030, 1.030, 1.030, 1.030, 2.060, 2.060, 2.060, 2.060, 2.060, 3.090, 3.090] v = [ 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.1, 1.3, 1.5, 1.7, 1.9, 2.2, 2.6, 3, 3.4, 3.8, 4.4, 5.2, 6.0, 6.8, 7.6, 8.8, 10.4, 12.0, 13.6, 15.2, 17.6, 20.8] v_spread = [.1, .1, .1, .1, .1, .1, .1, .1, .1, .1, .2, .2, .2, .2, .2, .4, .4, .4, .4, .4, .8, .8, .8, .8, .8, 1.6, 1.6, 1.6, 1.6, 1.6, 3.2, 3.2] liquid_matrix = [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ "joejoezz@gmail.com" ]
joejoezz@gmail.com
e73cfc2cdec009c867b3c766a6a035d38f33dfd6
b3ab2979dd8638b244abdb2dcf8da26d45d7b730
/cloudcheckr_cmx_client/models/azure_csp_authorization_request_model.py
e76c907e4fd2a4a72db3231108f61a129ace91ae
[]
no_license
CU-CommunityApps/ct-cloudcheckr-cmx-client
4b3d9b82c5dfdaf24f8f443526868e971d8d1b15
18ac9fd4d6c4ae799c0d21745eaecd783da68c0c
refs/heads/main
2023-03-03T19:53:57.685925
2021-02-09T13:05:07
2021-02-09T13:05:07
329,308,757
0
1
null
null
null
null
UTF-8
Python
false
false
5,134
py
# coding: utf-8 """ CloudCheckr API CloudCheckr API # noqa: E501 OpenAPI spec version: v1 Contact: support@cloudcheckr.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class AzureCspAuthorizationRequestModel(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'purchase_model': 'str', 'region_group': 'str' } attribute_map = { 'purchase_model': 'purchaseModel', 'region_group': 'regionGroup' } def __init__(self, purchase_model=None, region_group=None): # noqa: E501 """AzureCspAuthorizationRequestModel - a model defined in Swagger""" # noqa: E501 self._purchase_model = None self._region_group = None self.discriminator = None if purchase_model is not None: self.purchase_model = purchase_model if region_group is not None: self.region_group = region_group @property def purchase_model(self): """Gets the purchase_model of this AzureCspAuthorizationRequestModel. # noqa: E501 The account's purchase model. # noqa: E501 :return: The purchase_model of this AzureCspAuthorizationRequestModel. # noqa: E501 :rtype: str """ return self._purchase_model @purchase_model.setter def purchase_model(self, purchase_model): """Sets the purchase_model of this AzureCspAuthorizationRequestModel. The account's purchase model. # noqa: E501 :param purchase_model: The purchase_model of this AzureCspAuthorizationRequestModel. # noqa: E501 :type: str """ allowed_values = ["AzurePlan", "Classic"] # noqa: E501 if purchase_model not in allowed_values: raise ValueError( "Invalid value for `purchase_model` ({0}), must be one of {1}" # noqa: E501 .format(purchase_model, allowed_values) ) self._purchase_model = purchase_model @property def region_group(self): """Gets the region_group of this AzureCspAuthorizationRequestModel. # noqa: E501 The account's region group (i.e. the unique data center group that is being used, e.g. commercial, gov, etc). # noqa: E501 :return: The region_group of this AzureCspAuthorizationRequestModel. # noqa: E501 :rtype: str """ return self._region_group @region_group.setter def region_group(self, region_group): """Sets the region_group of this AzureCspAuthorizationRequestModel. The account's region group (i.e. the unique data center group that is being used, e.g. commercial, gov, etc). # noqa: E501 :param region_group: The region_group of this AzureCspAuthorizationRequestModel. # noqa: E501 :type: str """ allowed_values = ["Commercial", "UsGov", "Germany"] # noqa: E501 if region_group not in allowed_values: raise ValueError( "Invalid value for `region_group` ({0}), must be one of {1}" # noqa: E501 .format(region_group, allowed_values) ) self._region_group = region_group def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(AzureCspAuthorizationRequestModel, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AzureCspAuthorizationRequestModel): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "pea1@cornell.edu" ]
pea1@cornell.edu
63614eb49f87cdce16a2e82cd6cee95f4393abff
a2a772b2026c907a46da986d4a074255c79fc40c
/ResourceLib/BelowGround/Individual/OGS/helpers/__init__.py
170e9d41cde78b9c2dc06059452eeaa92cd54b0c
[ "MIT" ]
permissive
mcwimm/pyMANGA
537663dc24b91a5555e1c379917aa19229a9ed1f
b17cff097114bc444a3e5bb3d11f756e0c09fb59
refs/heads/master
2023-08-09T14:06:40.721064
2023-08-04T10:32:37
2023-08-04T10:32:37
223,939,358
0
0
MIT
2019-11-25T12:05:53
2019-11-25T12:05:52
null
UTF-8
Python
false
false
156
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 8 15:25:03 2018 @author: bathmann """ from .CellInformation import CellInformation
[ "jasper.bathmann@ufz.de" ]
jasper.bathmann@ufz.de
5e01983cc6cc3c38d23b976ff0411fc7a18fe497
9ecee1c42c264d7fb26e56e9bb88ab969ff9e3c2
/ip.py
74b0b40cbcc69f3de03b0a965fe1db1d501dfab2
[ "Apache-2.0" ]
permissive
kkirsche/whatismyip
a508dcba7bd428119367390704877cabac3e0971
b53bfb0a0dbc26b3d83bca4bfc893cb5f2afc803
refs/heads/master
2021-06-04T20:33:39.354527
2021-03-22T23:23:40
2021-03-22T23:23:40
66,574,312
1
2
Apache-2.0
2021-03-22T23:23:41
2016-08-25T16:19:43
CSS
UTF-8
Python
false
false
328
py
import socket from flask import Flask, request, render_template app = Flask(__name__) app.config.from_object(__name__) app.config.from_envvar('VZIP_SETTINGS', silent=True) @app.route('/') def what_is_my_ip(): return render_template('index.html', request=request) if __name__ == "__main__": app.run(host='0.0.0.0')
[ "kev.kirsche@gmail.com" ]
kev.kirsche@gmail.com
b3e4d56fe678942121ac590ac0eb21f54c0a1b1d
ae2907b2b1cc11ea6a991f7cf5dfc22bf6dca8f0
/DBpedia/RefineEntropy.py
699763e0c3863030695d98acd05d46239062db27
[]
no_license
jxulie/ExtractInfoboxFromWikipedia
4cf6a8f3b51409633ba1cae84eeed3bbddf88c0a
0bc747ed73caa9d57f5240f0aa4f6f4bb1e3394c
refs/heads/master
2021-01-20T10:10:37.150290
2014-03-14T01:53:44
2014-03-14T01:53:44
15,223,866
1
1
null
null
null
null
UTF-8
Python
false
false
726
py
#-*- coding:UTF-8 -*- ''' Created on 2014年3月13日 @author: Bo Xu <mailto:bolang1988@gmail.com> @version: 1.0 @summary: ''' menu_path = "D:\\xubo\\dbpedia\\" entropy_file = open(menu_path + "filter_entropy.txt", 'r') entropy_lines = entropy_file.readlines() refined_file = open(menu_path + "refine_entropy.txt", 'w') for line in entropy_lines: try: line = line.rstrip() words = line.split("\t") category = words[0] attribute = words[2] value = words[4] if value in category: value = category.replace(value, "jxulie") refined_file.write("%s\t%s\t%s\n" %(category, attribute, value)) except: print "error", line refined_file.close()
[ "bolang1988@gmail.com" ]
bolang1988@gmail.com
05cc3ba1a5dd1f89efd2bab642e7f3ce8dc47824
2c0bc2b556fc0ca1d275ca683acdb677e07c1d22
/app/CC/migrations/0007_auto_20200512_1809.py
3a8433a89d251c2ba050acac3197a473ea303749
[]
no_license
KolbeinnIn/Verklegt-namskeid-II
99b8cfe6c829693e06e8fa2af6404d4f1287ae21
56afe071ca6d92a48cca7126c31a5c189378ce3f
refs/heads/master
2022-07-17T08:52:06.005997
2020-05-16T11:04:08
2020-05-16T11:04:08
259,033,039
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
# Generated by Django 3.0.6 on 2020-05-12 18:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('CC', '0006_category_children'), ] operations = [ migrations.AlterField( model_name='category', name='children', field=models.ManyToManyField(related_name='_category_children_+', to='CC.Category'), ), ]
[ "bjarkithorjonsson@gmail.com" ]
bjarkithorjonsson@gmail.com