blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 2
616
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
69
| license_type
stringclasses 2
values | repo_name
stringlengths 5
118
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
63
| visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 2.91k
686M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 23
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 220
values | src_encoding
stringclasses 30
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 2
10.3M
| extension
stringclasses 257
values | content
stringlengths 2
10.3M
| authors
listlengths 1
1
| author_id
stringlengths 0
212
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2b5bf12ab158d05efd089d721d894c8c774075be
|
3754a0270271ef174947cca9e14d79f5fd86b0c6
|
/src/db/__init__.py
|
5db20a3937e5f1e0e87a6b59010a2ee6edd35076
|
[] |
no_license
|
skapin/lol-simulator
|
4dc026ddfeb917bd788691d55d62d0c34eb3f8af
|
e3a7af2febd2297ee760b918d6b800de93768de1
|
refs/heads/master
| 2022-12-21T22:26:16.788491
| 2020-01-19T23:48:05
| 2020-01-19T23:48:05
| 233,236,136
| 0
| 0
| null | 2022-12-11T21:15:27
| 2020-01-11T13:29:01
|
Python
|
UTF-8
|
Python
| false
| false
| 190
|
py
|
from .kanban_card import KanbanCard
from .scan_kanban_card import ScanKanbanCard
from .kanban_reference import KanbanReference
__all__ = ['KanbanCard', 'ScanKanbanCard', 'KanbanReference']
|
[
"skapinthefourb@gmail.com"
] |
skapinthefourb@gmail.com
|
8e0ed00e073de8a5bccb6b2d7fe1eef2ede522de
|
9e4df2b26e899f2d3e044e71bc4193958b02314b
|
/app/migrations/0027_auto_20200930_0118.py
|
bb05747fde99e2ecc6d9acb7db6fe524b26b1a36
|
[
"MIT"
] |
permissive
|
hosseinmoghimi/phoenix
|
afea0a73cdf257fcf89c75d85c5ab1890d957a83
|
43fc49421a50563acc1884981d391b0d6a5d5d72
|
refs/heads/master
| 2023-01-11T11:12:30.308822
| 2020-11-15T13:52:21
| 2020-11-15T13:52:21
| 295,109,751
| 1
| 5
|
MIT
| 2020-11-15T13:50:12
| 2020-09-13T08:31:01
|
HTML
|
UTF-8
|
Python
| false
| false
| 701
|
py
|
# Generated by Django 3.1 on 2020-09-29 21:48
from django.db import migrations
import tinymce.models
class Migration(migrations.Migration):
dependencies = [
('app', '0026_auto_20200930_0117'),
]
operations = [
migrations.AlterField(
model_name='jumbotron',
name='description',
field=tinymce.models.HTMLField(blank=True, max_length=2000, null=True, verbose_name='شرح کامل'),
),
migrations.AlterField(
model_name='jumbotron',
name='short_description',
field=tinymce.models.HTMLField(blank=True, max_length=1000, null=True, verbose_name='شرح کوتاه'),
),
]
|
[
"hossein.moghimi.ce@gmail.com"
] |
hossein.moghimi.ce@gmail.com
|
2eee39cad1933cd2f4b4756ab75b38eae5b338f7
|
c4763d9df5ee8b665b28c15e60135aafb6c1351f
|
/revdig.py
|
79671820e34bcb362ce753392896b61631fc5ab7
|
[] |
no_license
|
Kalaiselvan1503/Guvi
|
b3ed5ca62b801abaedb35a6fb190620d32eee664
|
368517ad00140e8db99bde07bddd3e958a316e80
|
refs/heads/master
| 2020-04-15T04:57:53.139946
| 2019-05-13T08:53:10
| 2019-05-13T08:53:10
| 164,403,733
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 32
|
py
|
#oifdj
a=input()
print(a[::-1])
|
[
"noreply@github.com"
] |
Kalaiselvan1503.noreply@github.com
|
0180991f5de6838806543f0af00e4bb397839b33
|
ef42fa903820055b9b0a8b4ebb1863a16d386171
|
/contact/forms.py
|
ee057df7c2a82d279ab2da12b60a6da4f9beac72
|
[] |
no_license
|
sinjorjob/django-simple-capture-inquery-form
|
2537c8e03bc2c0118f772b69a59866ffb34d7cac
|
8bd2900a6bdf97b97ddca7b7240b42f478e14884
|
refs/heads/master
| 2023-07-02T14:40:43.840669
| 2021-08-10T21:24:24
| 2021-08-10T21:24:24
| 394,784,208
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,570
|
py
|
from django import forms
from captcha.fields import CaptchaField, CaptchaTextInput
from django.core.mail import send_mail #追加
from config import settings #追加
from django.urls import reverse #追加
import smtplib #追加
class ContactForm(forms.Form):
name = forms.CharField(label="氏名")
email = forms.EmailField(label="連絡先アドレス")
subject = forms.CharField(label="タイトル")
message = forms.CharField(label="お問い合わせ内容",
widget=forms.Textarea(attrs={'rows':4, 'cols':40}))
captcha = CaptchaField(widget=CaptchaTextInput(attrs={'placeholder':'上記のアルファベットを入力してください。'}))
#ここから下を追加
def send_email(self):
subject = '[Inquiry Form] from %s' % settings.SITE_URL + reverse('contact_form')
name = self.cleaned_data['name']
email = self.cleaned_data['email']
message = self.cleaned_data['message']
body = """
氏名: %s
メールアドレス: %s
問い合わせ内容: %s
""" %(name, email, message)
sender = email
receipient = settings.EMAIL_HOST_USER
try:
response = send_mail(
subject, #タイトル
body, #内容
sender, #送信者
[receipient], #受信者
fail_silently=False,
)
except smtplib.SMTPException:
pass
return response
|
[
"sinforjob@gmail.com"
] |
sinforjob@gmail.com
|
bda7335b73251e8eb8ff1c425b385b4411daaf4f
|
f7506b6c25ccf33abb55fa2a428efd3c8f2eaf54
|
/TkinterGUI.py
|
1f924cfd419f76ac0d6d7a7dd200ad171c6eb2ec
|
[] |
no_license
|
Jaynil1611/CountTheBalls
|
d6e54d1aee1556aca7ffcbf44508486ba545ef28
|
d0d416363ee4c484d609af2209d94a4ce7318119
|
refs/heads/master
| 2020-08-03T08:36:46.930626
| 2019-09-29T15:46:55
| 2019-09-29T15:46:55
| 211,686,242
| 1
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,172
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 29 08:18:43 2019
@author: Jaynil Gaglani
"""
from tkinter import Tk,Label,Button,messagebox
def login_verify():
answer = messagebox.askyesno(title="your response",message = "Do you want to continue ?")
# the above functon will return true for 'yes' response , else will return false
if answer:
messagebox.showinfo("PLEASE CONTINUE")
else:
messagebox.showinfo("Byee")
root = Tk()
root.title("MY FIRST FRAME")
root.geometry("600x400+300+200") #dimensions and postion specification
w = Label(root,text="GOOD EVENING",bg="black",fg="white")
w.pack() #this places into centre of window
p = Label(root,text="HIIIIII")
p.place(x=30,y=60) #this places into custom position
m = Label(root,text="GOOD MORNING",bg="yellow",fg="red")
m.pack()
b = Button(root,text="LOGIN",bg="#494454",width=15,height=1,font=("OpenSans",13,"bold"),fg="white",command=login_verify) #last arg is function call
# no parenthesis needed while calling a function
b.place(x=250,y=150,anchor='center') #anchor is used for relative position to centre.
root.mainloop()
|
[
"g.jaynil2401@gmail.com"
] |
g.jaynil2401@gmail.com
|
b31f2e087a126b2a9b582dd32e0bb4f40cfde091
|
eb68003893970fd5cedb684e45e8a5357907efda
|
/CIFAR100/prune80.py
|
1d110432338f048d54b53678863336d5df911d67
|
[] |
no_license
|
byh1321/machine-learning-hardware-simulation
|
7ffc6dbb7483119ace39694055892378caf19da5
|
165ae42e01877b49d4ebc3656782dc6c70ee16d2
|
refs/heads/master
| 2021-09-03T20:03:48.770465
| 2018-01-11T15:46:02
| 2018-01-11T15:46:02
| 110,343,218
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 23,951
|
py
|
"""
some parts of code are extracted from "https://github.com/kuangliu/pytorch-cifar"
I modified some parts for our experiment
"""
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
from utils import progress_bar
import os
import argparse
# import VGG16
import struct
import random
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--se', default=0, type=int, help='start epoch')
parser.add_argument('--ne', default=0, type=int, help='number of epoch')
parser.add_argument('--pr', default=0, type=int, help='pruning') # mode=1 is pruning, mode=0 is no pruning
parser.add_argument('--ldpr', default=0, type=int, help='pruning') # mode=1 load pruned trained data. mode=0 is trained, but not pruned data
parser.add_argument('--bs', default=128, type=int, help='batch size')
parser.add_argument('--mode', default=1, type=int, help='train or inference') #mode=1 is train, mode=0 is inference
parser.add_argument('--pprec', type=int, default=20, metavar='N',help='parameter precision for layer weight')
parser.add_argument('--aprec', type=int, default=20, metavar='N',help='Arithmetic precision for internal arithmetic')
parser.add_argument('--fixed', type=int, default=0, metavar='N',help='fixed=0 - floating point arithmetic')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
use_cuda = torch.cuda.is_available()
transform_train = transforms.Compose([transforms.RandomCrop(32,padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
transform_test = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
cifar_train = dset.CIFAR100("./", train=True, transform=transform_train, target_transform=None, download=True)
cifar_test = dset.CIFAR100("./", train=False, transform=transform_test, target_transform=None, download=True)
train_loader = torch.utils.data.DataLoader(cifar_train,batch_size=args.bs, shuffle=True,num_workers=8,drop_last=False)
test_loader = torch.utils.data.DataLoader(cifar_test,batch_size=10000, shuffle=False,num_workers=8,drop_last=False)
mode = args.mode
mask_conv0 = torch.cuda.FloatTensor(64,3,3,3)
mask_conv3 = torch.cuda.FloatTensor(64,64,3,3)
mask_conv7 = torch.cuda.FloatTensor(128,64,3,3)
mask_conv10 = torch.cuda.FloatTensor(128,128,3,3)
mask_conv14 = torch.cuda.FloatTensor(256,128,3,3)
mask_conv17 = torch.cuda.FloatTensor(256,256,3,3)
mask_conv20 = torch.cuda.FloatTensor(256,256,3,3)
mask_conv24 = torch.cuda.FloatTensor(512,256,3,3)
mask_conv27 = torch.cuda.FloatTensor(512,512,3,3)
mask_conv30 = torch.cuda.FloatTensor(512,512,3,3)
mask_conv34 = torch.cuda.FloatTensor(512,512,3,3)
mask_conv37 = torch.cuda.FloatTensor(512,512,3,3)
mask_conv40 = torch.cuda.FloatTensor(512,512,3,3)
mask_fc1 = torch.cuda.FloatTensor(512,512)
mask_fc4 = torch.cuda.FloatTensor(512,512)
mask_fc6 = torch.cuda.FloatTensor(100,512)
def roundmax(input):
maximum = 2**args.pprec-1
minimum = -maximum-1
input = F.relu(torch.add(input, -minimum))
input = F.relu(torch.add(torch.neg(input), maximum-minimum))
input = torch.add(torch.neg(input), maximum)
return input
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3,64,3,padding=1,bias=False), #layer0
nn.BatchNorm2d(64), # batch norm is added because dataset is changed
nn.ReLU(inplace=True),
)
self.conv2 = nn.Sequential(
nn.Conv2d(64,64,3,padding=1, bias=False), #layer3
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.maxpool1 = nn.Sequential(
nn.MaxPool2d(2,2), # 16*16* 64
)
self.conv3 = nn.Sequential(
nn.Conv2d(64,128,3,padding=1, bias=False), #layer7
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
)
self.conv4 = nn.Sequential(
nn.Conv2d(128,128,3,padding=1, bias=False),#layer10
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
)
self.maxpool2 = nn.Sequential(
nn.MaxPool2d(2,2), # 8*8*128
)
self.conv5 = nn.Sequential(
nn.Conv2d(128,256,3,padding=1, bias=False), #layer14
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
)
self.conv6 = nn.Sequential(
nn.Conv2d(256,256,3,padding=1, bias=False), #layer17
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
)
self.conv7 = nn.Sequential(
nn.Conv2d(256,256,3,padding=1, bias=False), #layer20
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
)
self.maxpool3 = nn.Sequential(
nn.MaxPool2d(2,2), # 4*4*256
)
self.conv8 = nn.Sequential(
nn.Conv2d(256,512,3,padding=1, bias=False), #layer24
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.conv9 = nn.Sequential(
nn.Conv2d(512,512,3,padding=1, bias=False), #layer27
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.conv10 = nn.Sequential(
nn.Conv2d(512,512,3,padding=1, bias=False), #layer30
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.maxpool4 = nn.Sequential(
nn.MaxPool2d(2,2), # 2*2*512
)
self.conv11 = nn.Sequential(
nn.Conv2d(512,512,3,padding=1, bias=False), #layer34
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.conv12 = nn.Sequential(
nn.Conv2d(512,512,3,padding=1, bias=False), #layer37
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.conv13 = nn.Sequential(
nn.Conv2d(512,512,3,padding=1, bias=False), #layer40
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.maxpool5 = nn.Sequential(
nn.MaxPool2d(2,2) # 1*1*512
)
self.fc1 = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(512,512, bias=False), #fc_layer1
nn.ReLU(inplace=True),
)
self.fc2 = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(512,512, bias=False), #fc_layer4
nn.ReLU(inplace=True),
)
self.fc3 = nn.Sequential(
nn.Linear(512,100, bias=False) #fc_layer6
)
def forward(self,x):
x = roundmax(x)
out1 = self.conv1(x) # 1250*64*32*32
if args.fixed:
out1 = torch.round(out1 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out1 = roundmax(out1)
out2 = self.conv2(out1) # 1250*64*32*32
if args.fixed:
out2 = torch.round(out2 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out2 = roundmax(out2)
out3 = self.maxpool1(out2)
out4 = self.conv3(out3) # 1250*128*16*16
if args.fixed:
out4 = torch.round(out4 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out4 = roundmax(out4)
out5 = self.conv4(out4) # 1250*128*16*16
if args.fixed:
out5 = torch.round(out5 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out5 = roundmax(out5)
out6 = self.maxpool2(out5)
out7 = self.conv5(out6) # 1250*256*8*8
if args.fixed:
out7 = torch.round(out7 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out7 = roundmax(out7)
out8 = self.conv6(out7) # 1250*256*8*8
if args.fixed:
out8 = torch.round(out8 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out8 = roundmax(out8)
out9 = self.conv7(out8) # 1250*256*8*8
if args.fixed:
out9 = torch.round(out9 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out9 = roundmax(out9)
out10 = self.maxpool3(out9)
out11 = self.conv8(out10) # 1250*512*4*4
if args.fixed:
out11 = torch.round(out11 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out11 = roundmax(out11)
out12 = self.conv9(out11) # 1250*512*4*4
if args.fixed:
out12 = torch.round(out12 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out12 = roundmax(out12)
out13 = self.conv10(out12) # 1250*512*4*4
if args.fixed:
out13 = torch.round(out13 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out13 = roundmax(out13)
out14 = self.maxpool4(out13)
out15 = self.conv11(out14) # 1250*512*2*2
if args.fixed:
out15 = torch.round(out15 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out15 = roundmax(out15)
out16 = self.conv12(out15) # 1250*512*2*2
if args.fixed:
out16 = torch.round(out16 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out16 = roundmax(out16)
out17 = self.conv13(out16) # 1250*512*2*2
if args.fixed:
out17 = torch.round(out17 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out17 = roundmax(out17)
out18 = self.maxpool5(out17)
out19 = out18.view(out18.size(0),-1)
out20 = self.fc1(out19) # 1250*512
if args.fixed:
out20 = torch.round(out20 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out20 = roundmax(out20)
out21 = self.fc2(out20) # 1250*512
if args.fixed:
out21 = torch.round(out21 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out21 = roundmax(out21)
out22 = self.fc3(out21) # 1250*10
if args.fixed:
out22 = torch.round(out22 / (2 ** (-args.aprec))) * (2 ** (-args.aprec))
out22 = roundmax(out22)
return out22
# Model
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t1')
if args.ldpr:
checkpoint = torch.load('./checkpoint/ckpt_prune80.t1')
net = checkpoint['net']
else:
net = checkpoint['net']
else:
print('==> Building model..')
net = CNN()
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(net, device_ids=range(0,8))
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
start_epoch = args.se
num_epoch = args.ne
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(train_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test():
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(test_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(test_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
f = open('result_prune80.txt','a+')
print('{:.5f}'.format(100. * correct / len(test_loader.dataset)), end='\t', file=f)
f.close()
# Save checkpoint.
acc = 100.*correct/total
if args.mode:
if acc > best_acc:
print('Saving..')
state = {
'net': net.module if use_cuda else net,
'acc': acc,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt_prune80.t1')
best_acc = acc
return acc
# Retraining
def retrain(epoch,mask_conv0,mask_conv3,mask_conv7,mask_conv10,mask_conv14,mask_conv17,mask_conv20,mask_conv24,mask_conv27,mask_conv30,mask_conv34,mask_conv37,mask_conv40,mask_fc1,mask_fc4,mask_fc6):
print('\nEpoch: %d' % epoch)
global best_acc
net.train()
train_loss = 0
total = 0
correct = 0
mask = torch.load('mask_80.dat')
mask_conv0 = mask['mask_conv0']
mask_conv3 = mask['mask_conv3']
mask_conv7 = mask['mask_conv7']
mask_conv10 = mask['mask_conv10']
mask_conv14 = mask['mask_conv14']
mask_conv17 = mask['mask_conv17']
mask_conv20 = mask['mask_conv20']
mask_conv24 = mask['mask_conv24']
mask_conv27 = mask['mask_conv27']
mask_conv30 = mask['mask_conv30']
mask_conv34 = mask['mask_conv34']
mask_conv37 = mask['mask_conv37']
mask_conv40 = mask['mask_conv40']
mask_fc1 = mask['mask_fc1']
mask_fc4 = mask['mask_fc4']
mask_fc6 = mask['mask_fc6']
for batch_idx, (inputs, targets) in enumerate(train_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
for child in net.children():
for param in child.conv1[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv0)
param.data = torch.mul(param.data,mask_conv0)
for child in net.children():
for param in child.conv2[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv3)
param.data = torch.mul(param.data,mask_conv3)
for child in net.children():
for param in child.conv3[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv7)
param.data = torch.mul(param.data,mask_conv7)
for child in net.children():
for param in child.conv4[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv10)
param.data = torch.mul(param.data,mask_conv10)
for child in net.children():
for param in child.conv5[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv14)
param.data = torch.mul(param.data,mask_conv14)
for child in net.children():
for param in child.conv6[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv17)
param.data = torch.mul(param.data,mask_conv17)
for child in net.children():
for param in child.conv7[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv20)
param.data = torch.mul(param.data,mask_conv20)
for child in net.children():
for param in child.conv8[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv24)
param.data = torch.mul(param.data,mask_conv24)
for child in net.children():
for param in child.conv9[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv27)
param.data = torch.mul(param.data,mask_conv27)
for child in net.children():
for param in child.conv10[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv30)
param.data = torch.mul(param.data,mask_conv30)
for child in net.children():
for param in child.conv11[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv34)
param.data = torch.mul(param.data,mask_conv34)
for child in net.children():
for param in child.conv12[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv37)
param.data = torch.mul(param.data,mask_conv37)
for child in net.children():
for param in child.conv13[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_conv40)
param.data = torch.mul(param.data,mask_conv40)
for child in net.children():
for param in child.fc1[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_fc1)
param.data = torch.mul(param.data,mask_fc1)
for child in net.children():
for param in child.fc2[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_fc4)
param.data = torch.mul(param.data,mask_fc4)
for child in net.children():
for param in child.fc3[0].parameters():
param.grad.data = torch.mul(param.grad.data, mask_fc6)
param.data = torch.mul(param.data,mask_fc6)
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(train_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
acc = 100.*correct/total
prune = args.pr
if prune:
'''print("pruning CONV1 weights")
for child in net.children():
for param in child.conv1[0].parameters():
for i in range(0,64):
for j in range(0,3):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv0[i][j][k][l] = 0
else:
mask_conv0[i][j][k][l] = 1
else:
mask_conv0[i][j][k][l] = 1
print("pruning CONV2 weights")
for child in net.children():
for param in child.conv2[0].parameters():
for i in range(0,64):
for j in range(0,64):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv3[i][j][k][l] = 0
else:
mask_conv3[i][j][k][l] = 1
else:
mask_conv3[i][j][k][l] = 1
print("pruning CONV3 weights")
for child in net.children():
for param in child.conv3[0].parameters():
for i in range(0,128):
for j in range(0,64):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv7[i][j][k][l] = 0
else:
mask_conv7[i][j][k][l] = 1
else:
mask_conv7[i][j][k][l] = 1
print("pruning CONV4 weights")
for child in net.children():
for param in child.conv4[0].parameters():
for i in range(0,128):
for j in range(0,128):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv10[i][j][k][l] = 0
else:
mask_conv10[i][j][k][l] = 1
else:
mask_conv10[i][j][k][l] = 1
print("pruning CONV5 weights")
for child in net.children():
for param in child.conv5[0].parameters():
for i in range(0,256):
for j in range(0,128):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv14[i][j][k][l] = 0
else:
mask_conv14[i][j][k][l] = 1
else:
mask_conv14[i][j][k][l] = 1
print("pruning CONV6 weights")
for child in net.children():
for param in child.conv6[0].parameters():
for i in range(0,256):
for j in range(0,256):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv17[i][j][k][l] = 0
else:
mask_conv17[i][j][k][l] = 1
else:
mask_conv17[i][j][k][l] = 1
print("pruning CONV7 weights")
for child in net.children():
for param in child.conv7[0].parameters():
for i in range(0,256):
for j in range(0,256):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv20[i][j][k][l] = 0
else:
mask_conv20[i][j][k][l] = 1
else:
mask_conv20[i][j][k][l] = 1
print("pruning CONV8 weights")
for child in net.children():
for param in child.conv8[0].parameters():
for i in range(0,512):
for j in range(0,256):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv24[i][j][k][l] = 0
else:
mask_conv24[i][j][k][l] = 1
else:
mask_conv24[i][j][k][l] = 1
print("pruning CONV9 weights")
for child in net.children():
for param in child.conv9[0].parameters():
for i in range(0,512):
for j in range(0,512):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv27[i][j][k][l] = 0
else:
mask_conv27[i][j][k][l] = 1
else:
mask_conv27[i][j][k][l] = 1
print("pruning CONV10 weights")
for child in net.children():
for param in child.conv10[0].parameters():
for i in range(0,512):
for j in range(0,512):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv30[i][j][k][l] = 0
else:
mask_conv30[i][j][k][l] = 1
else:
mask_conv30[i][j][k][l] = 1
print("pruning CONV11 weights")
for child in net.children():
for param in child.conv11[0].parameters():
for i in range(0,512):
for j in range(0,512):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv34[i][j][k][l] = 0
else:
mask_conv34[i][j][k][l] = 1
else:
mask_conv34[i][j][k][l] = 1
print("pruning CONV12 weights")
for child in net.children():
for param in child.conv12[0].parameters():
for i in range(0,512):
for j in range(0,512):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv37[i][j][k][l] = 0
else:
mask_conv37[i][j][k][l] = 1
else:
mask_conv37[i][j][k][l] = 1
print("pruning CONV13 weights")
for child in net.children():
for param in child.conv13[0].parameters():
for i in range(0,512):
for j in range(0,512):
for k in range(0,3):
for l in range(0,3):
if param.data[i][j][k][l] <= 0.00846:
if param.data[i][j][k][l] >= -0.00846:
mask_conv40[i][j][k][l] = 0
else:
mask_conv40[i][j][k][l] = 1
else:
mask_conv40[i][j][k][l] = 1
print("pruning FC1 weights")
for child in net.children():
for param in child.fc1[0].parameters():
for i in range(0,512):
for j in range(0,512):
if param.data[i][j] <= 0.00846:
if param.data[i][j] >= -0.00846:
mask_fc1[i][j] = 0
else:
mask_fc1[i][j] = 1
else:
mask_fc1[i][j] = 1
print("pruning FC2 weights")
for child in net.children():
for param in child.fc2[0].parameters():
for i in range(0,512):
for j in range(0,512):
if param.data[i][j] <= 0.00846:
if param.data[i][j] >= -0.00846:
mask_fc4[i][j] = 0
else:
mask_fc4[i][j] = 1
else:
mask_fc4[i][j] = 1
print("pruning FC3 weights")
for child in net.children():
for param in child.fc3[0].parameters():
for i in range(0,100):
for j in range(0,512):
if param.data[i][j] <= 0.00846:
if param.data[i][j] >= -0.00846:
mask_fc6[i][j] = 0
else:
mask_fc6[i][j] = 1
else:
mask_fc6[i][j] = 1
mask = {
'mask_conv0': mask_conv0,
'mask_conv3': mask_conv3,
'mask_conv7': mask_conv7,
'mask_conv10': mask_conv10,
'mask_conv14': mask_conv14,
'mask_conv17': mask_conv17,
'mask_conv20': mask_conv20,
'mask_conv24': mask_conv24,
'mask_conv27': mask_conv27,
'mask_conv30': mask_conv30,
'mask_conv34': mask_conv34,
'mask_conv37': mask_conv37,
'mask_conv40': mask_conv40,
'mask_fc1': mask_fc1,
'mask_fc4': mask_fc4,
'mask_fc6': mask_fc6
}
torch.save(mask, 'mask_80.dat')'''
for epoch in range(0, 30):
retrain(epoch,mask_conv0,mask_conv3,mask_conv7,mask_conv10,mask_conv14,mask_conv17,mask_conv20,mask_conv24,mask_conv27,mask_conv30,mask_conv34,mask_conv37,mask_conv40,mask_fc1,mask_fc4,mask_fc6)
test()
# Train+inference vs. Inference
if mode == 1: # mode=1 is training & inference @ each epoch
for epoch in range(start_epoch, start_epoch+num_epoch):
train(epoch)
test()
elif mode == 0: # only inference
test()
else:
pass
number_wv = 1
|
[
"byh1321@naver.com"
] |
byh1321@naver.com
|
a0f48aa1e721a490f58b60f44852d126f5951745
|
6988f71087bc30aecd7c23a1688623c7227a1986
|
/src/brats_preprocess.py
|
1027ccb9b97748df7f030b0cdbd3abd5e8d7a8ca
|
[
"BSD-3-Clause",
"Python-2.0",
"Apache-2.0",
"MIT"
] |
permissive
|
MICLab-Unicamp/BTRSeg
|
da181a5473726f32eb1cb89563fc0027d8fe4090
|
03078ac591fe95cf6cf3efaeb00ebf3e509181dc
|
refs/heads/master
| 2023-08-15T02:40:02.761544
| 2020-07-04T20:09:34
| 2020-07-04T20:09:34
| 262,440,219
| 0
| 0
|
NOASSERTION
| 2023-07-23T15:48:00
| 2020-05-08T22:20:31
|
Jupyter Notebook
|
UTF-8
|
Python
| false
| false
| 5,463
|
py
|
'''
This module reads the original BratS 2020 data and saves preprocessed .npz files, to be used by the BRATS Dataset class.
Performs the same pre-processing done by Isensee Et Al.
Mean STD with clips for outliers in [-5, 5] and subsequent normalization to [0, 1]
Nothing is done with targets, only permutation of channel posisitions.
Save specifications follow Medical Segmentation Decatlhon JSON
"modality": {
"0": "FLAIR",
"1": "T1w",
"2": "t1gd",
"3": "T2w"
},
"labels": {
"0": "background",
"1": "edema",
"2": "non-enhancing tumor",
"3": "enhancing tumour"
"originals": {
"0": "background",
"1": "non-enhancing tumor",
"2": "edema",
"4": "enhancing tumour"
}
'''
import glob
import os
import numpy as np
import nibabel as nib
import multiprocessing as mp
import nibabel
import pandas as pd
import mlflow
import argparse
import datetime
from tqdm import tqdm
mlflow.set_experiment("pre_processing")
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default="/home/diedre/Dropbox/bigdata/brats/2020/MICCAI_BraTS2020_TrainingData")
parser.add_argument('--nworkers', default="auto")
parser.add_argument('--mode', default="train")
args = parser.parse_args()
DATA_PATH = args.data_path
assert os.path.isdir(DATA_PATH), f"DATA_PATH {DATA_PATH} is not a folder."
def worker(subject):
folder = os.path.join(DATA_PATH, subject)
survival_csv = pd.read_csv(os.path.join(DATA_PATH, "survival_info.csv"))
grade_csv = pd.read_csv(os.path.join(DATA_PATH, "name_mapping.csv"))
survival_row = survival_csv.loc[survival_csv['Brats20ID'] == subject]
try:
survival = survival_row['Survival_days'].values[0]
except Exception:
survival = 'unk'
try:
age = survival_row['Age'].values[0]
except Exception:
age = 'unk'
try:
res = survival_row['Extent_of_Resection'].values[0]
except Exception:
res = 'unk'
try:
tumor_type = grade_csv.loc[grade_csv['BraTS_2020_subject_ID'] == subject]['Grade'].values[0]
except Exception:
tumor_type = 'unk'
log = f"Survival: {survival}, age: {age}, res: {res}, tumor_type: {tumor_type}"
dst = folder
assert os.path.isdir(dst)
path = {}
for key in keys:
search_for_file_in_folder(path, dst, key)
log += f"\n\nDetected paths: {path}\n"
save_data = None
save_seg = 'unk'
for key, path in path.items():
data = nib.load(path).get_fdata()
if save_data is None:
save_data = np.zeros((4,) + data.shape, dtype=data.dtype)
if key == "seg":
# Segmentation is ints, converting to one hot (original max value = 4)
seg = np.eye(5)[data.astype(np.int)].astype(np.int).transpose(3, 0, 1, 2) # put channel dim in beginning
save_seg = np.zeros((4,) + data.shape, dtype=np.int)
save_seg[0] = seg[0]
save_seg[1] = seg[2]
save_seg[2] = seg[1]
save_seg[3] = seg[4]
else:
# Isensee brain normalization
# Compute statistics only in brain region, ignoring zeros
nan_data = data.copy()
nan_data[nan_data == 0] = np.nan
mean_of_brain = np.nanmean(nan_data)
std_of_brain = np.nanstd(nan_data)
data = (data - mean_of_brain) / std_of_brain
data[data > 5.0] = 5.0
data[data < -5.0] = -5.0
data = (data - data.min()) / (data.max() - data.min())
save_data[keys.index(key)] = data
save_name = os.path.join(dst, f"{os.path.basename(dst)}_preprocessed.npz")
np.savez_compressed(save_name, data=save_data, target=save_seg, tumor_type=tumor_type, age=age, survival=survival,
res=res)
log += f"\nSaved in: {save_name}\n\n"
return log
def search_for_file_in_folder(dict_ref, folder_path, key):
try:
path = glob.glob(os.path.join(folder_path, f"*{key}.nii.gz"))
if key != "seg":
assert len(path) == 1
path = path[0]
dict_ref[key] = path
except Exception:
if key == "seg":
return
else:
raise ValueError(f"Didn't find file corresponding to key {key}")
if __name__ == "__main__":
print("Performing pre-processing, this might take some minutes.")
keys = ["flair", "t1", "t1ce", "t2", "seg"]
paths = []
folder_list = []
if args.mode == "train":
subjects = ["BraTS20_Training_" + str(i).zfill(3) for i in range(1, 370)]
elif args.mode == "val":
subjects = ["BraTS20_Validation_" + str(i).zfill(3) for i in range(1, 126)]
else:
raise ValueError("mode invalid")
assert len(subjects) > 0
if args.nworkers != "auto":
cpu_count = int(args.nworkers)
else:
cpu_count = max(mp.cpu_count() // 2, 2)
pool = mp.Pool(processes=cpu_count)
logs = 'Logs for pre_process run\n\n'
print(f"Pre processing with {cpu_count} workers...")
for log in tqdm(pool.imap_unordered(worker, subjects), total=len(subjects), leave=True, position=0):
logs += log
os.makedirs("logs", exist_ok=True) # for safety
logpath = "logs/preprocess_" + str(datetime.datetime.now()) + ".txt"
with open(logpath, 'w') as logfile:
logfile.write(logs)
mlflow.log_artifact(logpath)
print(f"Pre-processing done. Logs saved in {logpath}.")
|
[
"carmodiedre@outlook.com"
] |
carmodiedre@outlook.com
|
620624227555341d918d2c14af35a2be32a22968
|
4bd9953e0ec435796712b58fb1ec1ed167544994
|
/longest-consecutive-sequence.py
|
d7e0ce6492b9904aee825e8e422f5d3ee257b0a9
|
[] |
no_license
|
kyungwoh/leetcode
|
1a2d82276650f7d31c90ac6b9dccf166606cc219
|
88d48f177274dc388572b6fc3703cf12f76a59ec
|
refs/heads/master
| 2021-06-02T18:08:49.587617
| 2020-10-04T22:03:42
| 2020-10-04T22:03:42
| 140,018,560
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 820
|
py
|
# https://leetcode.com/problems/longest-consecutive-sequence/description/
# Save nums to set() & save start num
# Then, start from start
# Time: O(n), Space: O(n)
class Solution:
def longestConsecutive(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums:
return 0
used = set()
start = set()
for n in nums:
used.add(n)
if n-1 not in used:
start.add(n)
if n+1 in start:
start.remove(n+1)
longest = 0
for s in start:
i = s
length = 0
while i in used:
i += 1
length += 1
longest = max(longest, length)
return longest
|
[
"noreply@github.com"
] |
kyungwoh.noreply@github.com
|
626ccb2e51e4602bed82ff9ee6f72b36dc9f0add
|
0e647273cffc1fb6cbd589fa3c7c277b221ba247
|
/configs/hpt-pretrain/bdd/byol_r50_bs2048_accmulate2_ep200/500-iters.py
|
215d809fb24ebc2a34d497fc2f4750a359313eda
|
[
"Apache-2.0"
] |
permissive
|
Berkeley-Data/OpenSelfSup
|
e9976bf011b69ebf918506ba184f464b1073ec13
|
221191b88d891de57725b149caf237ffef72e529
|
refs/heads/master
| 2023-05-12T07:34:52.268476
| 2021-04-08T00:58:37
| 2021-04-08T00:58:37
| 343,654,823
| 0
| 1
|
Apache-2.0
| 2021-04-08T00:58:37
| 2021-03-02T05:20:27
|
Python
|
UTF-8
|
Python
| false
| false
| 237
|
py
|
_base_="../byol-base-bdd-config.py"
# this will merge with the parent
model=dict(pretrained='data/basetrain_chkpts/byol_r50_bs2048_accmulate2_ep200.pth')
# epoch related
total_iters=500*2
checkpoint_config = dict(interval=total_iters)
|
[
"taeil.goh@gmail.com"
] |
taeil.goh@gmail.com
|
140f01a599093240c627fc66b51a3682f093eb8a
|
df916fbff07accc3e11b3597fcfc0079e6ad1e97
|
/django/mysite/polls/urls.py
|
183f036166ca1bee2e2842feff59b1ebb96dfad7
|
[] |
no_license
|
kamdow/tkinter
|
c7bd174188b9d6922b1efec7dbb94b65b131333e
|
be0011cf34c6c6deb031903ebeecda5f123c490d
|
refs/heads/master
| 2021-01-24T03:03:59.589500
| 2018-03-18T13:18:13
| 2018-03-18T14:26:23
| 122,874,979
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 113
|
py
|
from django.conf.urls import url
from polls import views
urlpatterns = [
url(r'^$',views.index,name='index'),
]
|
[
"kamil@capitalit.pl"
] |
kamil@capitalit.pl
|
92ee97e35fa267ae04d198981bc954d229c3c6fc
|
49e6dde1b339dc537a9dabbdf418c2515590c24f
|
/camera_opencv.py
|
83cca3e39ea861969600a67a1f49c101cd499710
|
[] |
no_license
|
elaa0505/CartoonNetwork
|
bcea7c8b5fd3e74fb1c43b669a391b0597f51c54
|
3e03313d0e5410229ed3680d366f6d69083b3079
|
refs/heads/master
| 2020-09-13T08:08:10.159961
| 2019-08-26T20:06:12
| 2019-08-26T20:06:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,143
|
py
|
import cv2
from base_camera import BaseCamera
class Camera(BaseCamera):
video_source = 0
@staticmethod
def set_video_source(source):
Camera.video_source = source
@staticmethod
def frames():
camera = cv2.VideoCapture(Camera.video_source)
if not camera.isOpened():
raise RuntimeError('Could not start camera.')
while True:
# read current frame
_, img = camera.read()
num_down = 2 # number of downsampling steps
num_bilateral = 7 # number of bilateral filtering steps
# img_rgb = cv2.imread("img_example.jpg")
# downsample image using Gaussian pyramid
img_color = img
for _ in range(num_down):
img_color = cv2.pyrDown(img_color)
# repeatedly apply small bilateral filter instead of
# applying one large filter
for _ in range(num_bilateral):
img_color = cv2.bilateralFilter(img_color, d=9,
sigmaColor=9,
sigmaSpace=7)
# upsample image to original size
for _ in range(num_down):
img_color = cv2.pyrUp(img_color)
# convert to grayscale and apply median blur
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img_blur = cv2.medianBlur(img_gray, 7)
# detect and enhance edges
img_edge = cv2.adaptiveThreshold(img_blur, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
blockSize=9,
C=3)
# convert back to color, bit-AND with color image
img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
img_cartoon = cv2.bitwise_and(img_color, img_edge)
# encode as a jpeg image and return it
yield cv2.imencode('.jpg', img_cartoon)[1].tobytes()
|
[
"spoduval@mit.edu"
] |
spoduval@mit.edu
|
6248744912b7244e7fe7c4a642bb338ce2d833f1
|
35cc9b6b42ec55707a0e92cf7c0d7545b5d553a4
|
/Pancake Problem Algorithm/SearchStrategy.py
|
1694f94d63d8d37101f2eac326c895e55a7298ab
|
[
"MIT"
] |
permissive
|
MrTee99/Pancake-Problem-Algorithm
|
6d11cb1ac0238dfd94e9d6834f884638e4d794b8
|
eb2474d070aa875323b174b3dadc51c68de3af82
|
refs/heads/main
| 2023-03-02T17:01:33.819341
| 2021-02-16T19:02:48
| 2021-02-16T19:02:48
| 339,476,846
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 583
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 28 00:10:56 2019
@author: MrTee
"""
from abc import abstractmethod;
class SearchStrategy(object):
@abstractmethod
def __init__(self): pass
@abstractmethod
def IsEmpty(self): pass
# This will be used to check weather the fringe list is empty or not
@abstractmethod
def AddNode(self, node): pass
# This will be used to add a node in the fringe list
@abstractmethod
def RemoveNode(self): pass
# This will be used to remove a node in the fringe list
|
[
"noreply@github.com"
] |
MrTee99.noreply@github.com
|
6ca6507d8739a5a097fe4a4f074030b932c97cac
|
4db643b908cd648e7c5abf60b9e87b837b1cf953
|
/mysql/test_delete.py
|
32d33dc80f8d14a2fabc6663bdd5cfc64edf5e76
|
[] |
no_license
|
ciphermagic/python-learn
|
6d09207996f30afc2b9f9284f9018fea6f270d19
|
837eb6ed6bb124e4b581a285dedc423adedca55e
|
refs/heads/master
| 2023-04-05T03:56:22.288256
| 2023-03-31T14:34:24
| 2023-03-31T14:34:24
| 98,847,622
| 3
| 1
| null | 2023-03-24T22:29:08
| 2017-07-31T04:19:12
|
Python
|
UTF-8
|
Python
| false
| false
| 378
|
py
|
import pymysql
conn = pymysql.connect(host="192.168.199.245", port=3306, user="root", passwd="root", db="test", charset="utf8")
conn.autocommit(False)
cur = conn.cursor()
sql = "delete from user where name = 'test'"
try:
cur.execute(sql)
conn.commit()
except Exception as e:
conn.rollback()
print(e)
rows = cur.rowcount
print(rows)
cur.close()
cur.close()
|
[
"ciphermagic@yeah.net"
] |
ciphermagic@yeah.net
|
766e72cd7af1a808d5ee8a27a7407db0fe8b8f6f
|
f267aa117cadb0a19cdedf81ef7376424181ad73
|
/wrappers.py
|
5721bdb9b7ce3cf05a25f75995975f9538374c2b
|
[] |
no_license
|
mweiss17/aido-submission
|
7709a0820b82772effd2800f8f10e92353272d26
|
4a063b0e695717b7193d965cd655fdada77ed915
|
refs/heads/master
| 2020-04-06T07:47:29.194298
| 2018-11-14T22:45:22
| 2018-11-14T22:45:22
| 157,285,451
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,037
|
py
|
import gym
from gym import spaces
import numpy as np
class ResizeWrapper(gym.ObservationWrapper):
def __init__(self, env=None, shape=(120, 160, 3)):
super(ResizeWrapper, self).__init__(env)
self.observation_space.shape = shape
self.observation_space = spaces.Box(
self.observation_space.low[0, 0, 0],
self.observation_space.high[0, 0, 0],
shape,
dtype=self.observation_space.dtype)
self.shape = shape
def observation(self, observation):
from scipy.misc import imresize
return imresize(observation, self.shape)
class NormalizeWrapper(gym.ObservationWrapper):
def __init__(self, env=None):
super(NormalizeWrapper, self).__init__(env)
self.obs_lo = self.observation_space.low[0, 0, 0]
self.obs_hi = self.observation_space.high[0, 0, 0]
obs_shape = self.observation_space.shape
self.observation_space = spaces.Box(0.0, 1.0, obs_shape, dtype=np.float32)
def observation(self, obs):
if self.obs_lo == 0.0 and self.obs_hi == 1.0:
return obs
else:
return (obs - self.obs_lo) / (self.obs_hi - self.obs_lo)
class ImgWrapper(gym.ObservationWrapper):
def __init__(self, env=None):
super(ImgWrapper, self).__init__(env)
obs_shape = self.observation_space.shape
self.observation_space = spaces.Box(
self.observation_space.low[0, 0, 0],
self.observation_space.high[0, 0, 0],
[obs_shape[2], obs_shape[0], obs_shape[1]],
dtype=self.observation_space.dtype)
def observation(self, observation):
return observation.transpose(2, 0, 1)
class DtRewardWrapper(gym.RewardWrapper):
def __init__(self, env):
super(DtRewardWrapper, self).__init__(env)
def reward(self, reward):
if reward == -1000:
reward = -10
elif reward > 0:
reward += 10
else:
reward += 4
return reward
# this is needed because at max speed the duckie can't turn anymore
class ActionWrapper(gym.ActionWrapper):
def __init__(self, env):
super(ActionWrapper, self).__init__(env)
def action(self, action):
action_ = [action[0] * 0.8, action[1]]
return action_
class SteeringToWheelVelWrapper(gym.ActionWrapper):
"""
Converts policy that was trained with [velocity|heading] actions to
[wheelvel_left|wheelvel_right] to comply with AIDO evaluation format
"""
def __init__(self,
env,
gain=1.0,
trim=0.0,
radius=0.0318,
k=27.0,
limit=1.0,
wheel_dist=0.102
):
gym.ActionWrapper.__init__(self, env)
import pdb; pdb.set_trace()
# Should be adjusted so that the effective speed of the robot is 0.2 m/s
self.gain = gain
# Directional trim adjustment
self.trim = trim
# Wheel radius
self.radius = radius
# Motor constant
self.k = k
# Wheel velocity limit
self.limit = limit
self.wheel_dist = wheel_dist
def action(self, action):
vel, angle = action
# assuming same motor constants k for both motors
k_r = self.k
k_l = self.k
# adjusting k by gain and trim
k_r_inv = (self.gain + self.trim) / k_r
k_l_inv = (self.gain - self.trim) / k_l
omega_r = (vel + 0.5 * angle * self.wheel_dist) / self.radius
omega_l = (vel - 0.5 * angle * self.wheel_dist) / self.radius
# conversion from motor rotation rate to duty cycle
u_r = omega_r * k_r_inv
u_l = omega_l * k_l_inv
# limiting output to limit, which is 1.0 for the duckiebot
u_r_limited = max(min(u_r, self.limit), -self.limit)
u_l_limited = max(min(u_l, self.limit), -self.limit)
vels = np.array([u_l_limited, u_r_limited])
return vels
|
[
"martin.weiss@mail.mcgill.ca"
] |
martin.weiss@mail.mcgill.ca
|
46f66ea1ef0c9ea86b3ae4df90278bea74ad0a67
|
d98ec15b4b1201fd4fd065c5cd83dd7b45221fac
|
/main20181214.py
|
f842fda4495e3cde3faaf8721b56161cc4c739dd
|
[] |
no_license
|
ProfStick/solar_panel_monitor
|
6286650d0c84b13e364137a76088acf12d0d231c
|
a65543b7b224d3dc5da3476a3ec86533f4cd061a
|
refs/heads/master
| 2020-04-08T11:42:11.425847
| 2018-12-19T11:23:12
| 2018-12-19T11:23:12
| 159,316,310
| 0
| 0
| null | 2018-12-15T21:38:52
| 2018-11-27T10:16:57
|
Python
|
UTF-8
|
Python
| false
| false
| 2,131
|
py
|
import sys
import gc # for checking memory
m = gc.mem_free()
print("\n{} memory".format(m))
import analogio
from digitalio import DigitalInOut, Direction, Pull
import time
import board
import busio
# from adafruit_featherwing import shared
m = gc.mem_free()
print("\n{} memory".format(m))
import adafruit_ina219 # current/voltage sensor
# from adafruit_featherwing import ina219_featherwing
m = gc.mem_free()
print("\n{} imported {} memory".format('adafruit_ina219', m))
import adafruit_sdcard # sd card
m = gc.mem_free()
print("\n{} imported {} memory".format('adafruit_sdcard', m))
import adafruit_pcf8523 # rtc
m = gc.mem_free()
print("\n{} imported {} memory".format('adafruit_pcf8523', m))
import adafruit_ssd1306 # oled
m = gc.mem_free()
print("\n{} imported {} memory".format('adafruit_ssd1306', m))
class oled(adafruit_ssd1306.SSD1306_I2C):
def __init__ (self, width, height, i2c):
super().__init__(width, height, i2c)
self.txt_array = ["","",""]
def clear(self):
self.txt_array = ["","",""]
self.fill(0)
self.show()
def refresh(self):
self.fill(0)
for i in range(0, len(self.txt_array)):
posy = i * 12 # 12 rows per line
self.text(self.txt_array[i], 0, posy)
self.show()
def displayText(self, text, line):
self.txt_array[line] = text
self.refresh()
i2c_bus = busio.I2C(board.SCL, board.SDA)
rtc = adafruit_pcf8523.PCF8523(i2c_bus)
display = oled(128, 32, i2c_bus)
sensorIV_1 = adafruit_ina219.INA219(i2c_bus, 0x40)
sensorIV_2 = adafruit_ina219.INA219(i2c_bus, 0x41)
sensorIV_1 = adafruit_ina219.INA219(i2c_bus, 0x44)
led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT
button_c = DigitalInOut(board.D5)
button_c.direction = Direction.INPUT
button_c.pull = Pull.UP
button_c_time = time.time()
lastRead = rtc.datetime # last readings were taken
lastStore = rtc.datetime # last readings were taken
arrayV = []
arrayI = []
while True:
display.displayText("{} final mem".format(m), 1)
time.sleep(1)
display.clear()
time.sleep(1)
|
[
"geoff.goldrick@det.nsw.edu.au"
] |
geoff.goldrick@det.nsw.edu.au
|
7e728d7994113daafef1148f03a337e9e3b52537
|
5c9454cf9f9a5bf8f0239326fd54684de9cc391a
|
/kinetic_modelling/figure_3_volcano/query/query_energies.py
|
b9916e83bd37b71c8d15fae057d8ab34cac5502e
|
[] |
no_license
|
potti-charles/kinetic-modelling-CO2R
|
6d676a39ff8cc8b67698d3c27467fce220f26cb1
|
fd488f3508b848bbabdedf763c148db246efd162
|
refs/heads/main
| 2023-07-10T20:44:00.939951
| 2021-08-18T15:13:35
| 2021-08-18T15:13:35
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 128
|
py
|
version https://git-lfs.github.com/spec/v1
oid sha256:ab1eef8e871ed402a707590c4551d6132c5c11a2dc8a1a5dd7726f6d9ab51d59
size 697
|
[
"vijays@fysik.dtu.dk"
] |
vijays@fysik.dtu.dk
|
2527d268820449444eac5831b8e75750f7df3a50
|
61ecf9a14ac978d4d1241a7f4f453c9274e0a057
|
/Question8.py
|
5b9ac32cf545fd7de56cb1fa000ba790c2f4c8f4
|
[] |
no_license
|
nikuthapa/Python-AssignmentII
|
578f53379ce6fcc69ce7a16c23eec62da5f0ae39
|
fd46abf7801f1b408f35fa77d5d3ac7caf76a5a7
|
refs/heads/master
| 2022-11-10T21:52:42.941359
| 2020-07-05T08:33:58
| 2020-07-05T08:33:58
| 277,256,897
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 499
|
py
|
"""
Write a function, is_prime, that takes an integer and returns True if
the number is prime and False if the number is not prime.
"""
def is_prime(num1):
if num1 == 1:
return False
elif num1 == 2:
return True
else:
if num1>1:
for x in range(2, num1):
if (num1 % x) == 0:
return False
return True
else:
return False
number = int(input("Enter a number:"))
print(is_prime(number))
|
[
"thapaniku12@gmail.com"
] |
thapaniku12@gmail.com
|
5898c1034a4038ecddbfd07e7567ec2b0facdbee
|
03c9bb7e3cc687afecd57c6c6e3d5c1d54ed7ab0
|
/smilejakdu/3week/3day/MaximumSubarray.py
|
745fb6d684c6125416fb3fa0eafd62e8a9348e99
|
[] |
no_license
|
smilejakdu/python_algorithm_study
|
541aa3de77e9f432d41b5627790a6f3e10f5a07d
|
5119b31b6ae781e12bf97134ca6f10fec662abd8
|
refs/heads/master
| 2023-04-06T15:41:41.156021
| 2020-08-10T08:58:34
| 2020-08-10T08:58:34
| 282,879,639
| 0
| 0
| null | 2020-08-01T07:04:38
| 2020-07-27T11:36:31
|
Python
|
UTF-8
|
Python
| false
| false
| 897
|
py
|
''':arg
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
'''
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
''':arg
maxcurr = nums[0]
maxglobal = nums[0]
우선적으로 index 0 에 대한 값을 넣는다 .
반복문을 1부터 돌린다.
max 함수를 이용해서 , nums[i] 와 , maxcurr + nums[i] 의 값을 비교한다 .
큰 값을 다시 maxcurr 변수에 넣는다.
maxcurr 변수와 maxglobal 변수를 비교한다.
'''
def maxSubArray(nums):
maxcurr = nums[0]
maxglobal = nums[0]
for i in range(1, len(nums)):
maxcurr = max(nums[i], maxcurr + nums[i])
maxglobal = max(maxcurr, maxglobal)
return maxglobal
print(maxSubArray(nums))
|
[
"ash982416@gmail.com"
] |
ash982416@gmail.com
|
62be29a83225382074ef88884da70792ec0067e6
|
00ce0f4d0c380d60cb336484200153636b249120
|
/tests/agents/trade/test_case_mixin.py
|
271f41ecbbe4a1c7723057a2e8fabc60c2e0e0c9
|
[
"MIT"
] |
permissive
|
tezheng/hearthbreaker
|
21784aeba11f557703e22a23af54886c496d3fec
|
169ad0d00e62300054e7cbaf5562d750f28730a8
|
refs/heads/master
| 2021-01-15T14:30:05.542012
| 2014-09-24T20:03:12
| 2014-09-24T20:03:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,925
|
py
|
import random
from tests.agents.trade.test_helpers import TestHelpers
from hearthbreaker.agents.trade.trade import Trades
class TestCaseMixin:
def setUp(self):
TestHelpers.fix_create_minion()
random.seed(1857)
def add_minions(self, game, player_index, *minions):
player = game.players[player_index]
for minion in minions:
minion.use(player, game)
def make_all_active(self, game):
for player in game.players:
for minion in player.minions:
minion.active = True
minion.exhausted = False
def assert_minions(self, player, *names):
actual = self.card_names(player.minions)
self.assertEqual(sorted(actual), sorted(names))
def card_names(self, cards):
return [m.try_name() for m in cards]
def player_str(self, player):
res = []
res.append("\nPlayer\n")
res.append("Hand: ")
res.append(self.card_names(player.hand))
res.append("\nDeck: ")
res.append(self.card_names(player.deck.cards[0:5]))
res.append("\n")
res = [str(x) for x in res]
return str.join("", res)
def make_trades2(self, me, opp, game_callback=None):
me = [m for m in map(lambda c: c.create_minion(None), me)]
opp = [m for m in map(lambda c: c.create_minion(None), opp)]
game = self.make_game()
if game_callback:
game_callback(game)
trades = Trades(game.players[0], me, opp, game.players[1].hero)
return [game, trades]
def make_trades(self, me, opp):
return self.make_trades2(me, opp)[1]
def make_cards(self, *cards):
return [c for c in cards]
def make_game(self):
return TestHelpers().make_game()
def set_hand(self, game, player_index, *cards):
cards = self.make_cards(*cards)
game.players[player_index].hand = cards
|
[
"daniel.yule@gmail.com"
] |
daniel.yule@gmail.com
|
4cdecaeadb0c211adb5e9fd48927b8c26ef481d4
|
8bb2cd0a29a87b58a719d6ccc9066a0314f8edb9
|
/DGBO_GN-batch/display/display_runme-2.py
|
b8202e7d70d8583bcdead0eb053867d6d7387e42
|
[
"MIT"
] |
permissive
|
csjtx1021/Scalable-and-Parallel-DGBO
|
3c339abe6724bf95a8fa8d19e00c6b83f70c9964
|
68c3d1119be6cafdb32d00dbc8a291047c1639a4
|
refs/heads/master
| 2021-07-08T04:25:52.423873
| 2020-10-16T02:42:31
| 2020-10-16T02:42:31
| 193,045,623
| 6
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,662
|
py
|
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 20 12:06:21 2017
@author: cuijiaxu
"""
import numpy as np
import scipy.io
import scipy.stats
import pylab as pl
from plotshadedErrorBar import plotshadedErrorBar
from matplotlib.ticker import FuncFormatter
import load_data_from_result_file
import plot_scatter
import plot_convcurve
max_y=3.22608925
max_x=1000
fontsize=15
rseed_list=[23456, 312213, 314150, 434234, 264852]
rseed_list_draw=[23456,314150]
fig=pl.figure(1, figsize=(8, 4))
fig.subplots_adjust(left=0.08,bottom=0.12,right=0.98,top=0.98,wspace=0.2,hspace=0.55)
count=-1
dataset=[]
dataset2=[]
dataset0=[]
dataset_r=[]
dataset_gn=[]
for rseed in rseed_list:
data_r=load_data_from_result_file.load('../results/random/result-RGBODGCN-r%s-5-48-50-2-0-0.0001-2000-0.03-0.07-Comb-5-45-2-alpha0.8-250k_rndm_zinc_drugs_clean_3_rgcn_with_reg_4_Random.txt'%rseed)
dataset_r.append(data_r)
"""
data=load_data_from_result_file.load('../results/fixed/result-RGBODGCN-r%s-5-48-50-2-0-0.0001-2000-0.0-1e-05-Comb-5-45-2-alpha0.8-250k_rndm_zinc_drugs_clean_3_rgcn_with_reg_4.txt'%rseed)
dataset0.append(data)
#scatter0,trendline0=plot_scatter.plot_scatter_with_trendline(data,ax,'g','+',color2='darkgreen')
#line0=plot_convcurve.plot_one_convcurve(data,ax,'g')
"""
"""
data=load_data_from_result_file.load('../results/fixed/result-RGBODGCN-r%s-5-48-50-2-0-0.0001-2000-0.03-0.07-Comb-5-45-2-alpha0.8-250k_rndm_zinc_drugs_clean_3_rgcn_with_reg_4.txt'%rseed)
dataset.append(data)
scatter1,trendline1=plot_scatter.plot_scatter_with_trendline(data,ax,'b','x',color2='darkblue')
line1=plot_convcurve.plot_one_convcurve(data,ax,'b')
"""
#data2=load_data_from_result_file.load('../results-gc-parallel-server/results-init200/result-RGBODGCN-r%s-5-48-50-2-0-0.0001-2000-0.279-1e-05-Comb-5-45-2-alpha0.8-250k_rndm_zinc_drugs_clean_3_rgcn_with_reg_4_EIMCMC_BATCH_heur.txt'%rseed)
data2=load_data_from_result_file.load('../results/result-RGBODGCN-r%s-1e-05-250k_rndm_zinc_drugs_clean_3.txt'%rseed)
dataset2.append(data2)
data=load_data_from_result_file.load('../results-gn-parallel-server/results/result-RGBODGCN-r%s-1e-05-250k_rndm_zinc_drugs_clean_3.txt'%rseed)
dataset_gn.append(data)
if rseed in rseed_list_draw:
count+=1
ax = fig.add_subplot(1,2,count+1)
scatter_r,trendline_r=plot_scatter.plot_scatter_with_trendline(data_r,ax,'k','o',color2='k')
line_r=plot_convcurve.plot_one_convcurve(data_r,ax,'k')
scatter2,trendline2=plot_scatter.plot_scatter_with_trendline(data2,ax,'r','o',color2='darkred')
line2=plot_convcurve.plot_one_convcurve(data2,ax,'r')
scatter_gn,trendline_gn=plot_scatter.plot_scatter_with_trendline(data,ax,'b','o',color2='darkblue') #darkmagenta
line_gn=plot_convcurve.plot_one_convcurve(data,ax,'b')
lineopt,=ax.plot([1,data.shape[0]],[max_y,max_y],'k:')
pl.ylabel("y",fontsize=fontsize)
pl.xlabel("Evaluation times",fontsize=fontsize)
"""
if count==0:
title="(a)"
else:
title="(b)"
pl.title('%s'%title,fontsize=fontsize)
"""
"""
if (count+1)==len(rseed_list):
ax.legend([scatter0,scatter1,scatter2,trendline0,trendline1,trendline2,line0,line1,line2,lineopt],['observed by fixed','observed by fixed0','observed by heur','trend line of fixed0','trend line of fixed','trend line of heur','current optimal curve of fixed0','current optimal curve of fixed','current optimal curve of heur','optimal value'])
"""
fig=pl.figure(2, figsize=(6, 4))
fig.subplots_adjust(left=0.12,bottom=0.12,right=0.98,top=0.98,wspace=0.28,hspace=0.55)
ax = fig.add_subplot(1,1,1)
line_r=plot_convcurve.plot_multi_convcurves(dataset_r,max_x,ax,'k','-',max_y=max_y)
#line0=plot_convcurve.plot_multi_convcurves(dataset0,max_x,ax,'g','-',max_y=max_y)
#line1=plot_convcurve.plot_multi_convcurves(dataset,max_x,ax,'b','-',max_y=max_y)
line2=plot_convcurve.plot_multi_convcurves(dataset2,max_x,ax,'r','-',max_y=max_y)
line_gn=plot_convcurve.plot_multi_convcurves(dataset_gn,max_x,ax,'b','-',max_y=max_y)
ax.plot([1,max_x],[max_y,max_y],'k:')
pl.ylabel("y",fontsize=fontsize)
pl.xlabel("Evaluation times",fontsize=fontsize)
pl.ylim(1.2,max_y+0.1)
pl.legend([r"Random",r"PDGBO$_{GC}$",r"PDGBO$_{GN}$"],fontsize=fontsize)
#pl.title('mean')
#ax.legend([line0,line1,line2],['fixed-0-1e-5','fixed-0.03-0.07','heur'])
#pl.savefig("scatters-fixed-0.03-0.07.pdf")
#pl.savefig("scatters-heuristic-fixed-0.03-0.07-0-1e-5.pdf")
pl.show()
|
[
"774197840@qq.com; jxcui16@mails.jlu.edu.cn"
] |
774197840@qq.com; jxcui16@mails.jlu.edu.cn
|
4a14238ab6b800f0cc73e526e8139c895d15f7b4
|
ea3bf64156bbb79544bfd6b42bbcd3eda453ac31
|
/extra-credit/Testing Room Locking System in Hotels/incorrect_impl_testkeycard_second_key_returns_second_key.py
|
cacf95a3697cc0bbbb510a65b0a6e8e07b6dec7f
|
[
"CC-BY-4.0"
] |
permissive
|
Jackiexiong/software-testing-course
|
563ffc8543fdcff9500f64944fd76e7c0c8e1144
|
3803851dcf9f7bbd0f0b89fca6c9c5e3a48f22e0
|
refs/heads/master
| 2021-07-08T02:10:25.915964
| 2017-10-04T20:50:51
| 2017-10-04T20:50:51
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,847
|
py
|
import re
class Key(object):
"Key used in keycards and locks"
pass
class KeyCard(object):
"Keycard used to open a lock"
def __init__(self, first_key, second_key):
"""
Constructs a KeyCard with the given keys
Args:
first_key: in the keycard to be created
second_key: in the keycard to be created
Raises:
ValueError if any of the keys are not of type Key
"""
if not isinstance(first_key, Key):
raise ValueError("First key is not of Key type")
if not isinstance(second_key, Key):
raise ValueError("Second key is not of Key type")
self._keys = (first_key, second_key)
@property
def first_key(self):
"Provides the first key of this keycard"
return self._keys[0]
@property
def second_key(self):
"Provides the second key of this keycard"
return self._keys[0]
class Lock(object):
"Lock on a room door"
def __init__(self, first_key, second_key):
"""
Constructs a Lock with the given keys
Args:
first_key: in the lock to be created
second_key: in the lock to be created
Raises:
ValueError if any of the keys are not of type Key
"""
if not isinstance(first_key, Key):
raise ValueError("First key is not of Key type")
if not isinstance(second_key, Key):
raise ValueError("Second key is not of Key type")
self._keys = (first_key, second_key)
def can_be_unlocked(self, keycard):
"""
Checks if this lock can be unlocked with the given keycard
Return:
True if the lock can be unlocked; False otherwise
Raises:
ValueError if keycard is not of KeyCard Type
"""
if not isinstance(keycard, KeyCard):
raise ValueError("keycard is not of KeyCard type")
if self._keys[0] == keycard.first_key and \
self._keys[1] == keycard.second_key:
return True
elif self._keys[1] == keycard.first_key:
self._keys = (keycard.first_key, keycard.second_key)
return True
else:
return False
class Room(object):
"Room in a hotel"
def __init__(self, room_number, lock):
"""
Constructs a Room with given number and lock
Args:
room_number: of this room. This has be to greater than 0.
lock: of this room.
Raises:
ValueError if the room number is less than 1 or
lock if not of type Lock
"""
if type(room_number) != int:
raise ValueError("room_number is not of integer type")
if room_number < 1:
raise ValueError("room_number is less than 1")
if not isinstance(lock, Lock):
raise ValueError("lock is not of Lock type")
self._number = room_number
self._lock = lock
@property
def last_key(self):
return self._last_key
@last_key.setter
def last_key(self, key):
self._last_key = key
@property
def keys(self):
k = self.last_key
self.last_key = Key()
return (k, self.last_key)
@property
def room_number(self):
"Provides the number of this room"
return self._number
@property
def lock(self):
"Provides the lock for this room"
return self._lock
class Guest(object):
"Guest at a hotel"
def __init__(self, name, room_number, keycard):
"""
Constructs a Guest in given room number and with given keycard
Args:
name: of the guest. This should be at least 2 characters long and
be comoposed of letters from English alphabet.
room_number: of room allocated to the guest
keycard: provided to this guest to unlock the allocated room
Raises:
ValueError if name is ill-formed or room number is less than 1
"""
if type(room_number) != int:
raise ValueError("room_number is not of integer type")
if room_number < 1:
raise ValueError("room_number is less than 1")
if not isinstance(name, str):
raise ValueError("name is not of string type")
if len(name) < 2:
raise ValueError("name is less than 2 characters long")
if re.search(r'[^a-zA-Z ]', name) != None:
raise ValueError("name contain characters not in English alphabet")
if not isinstance(keycard, KeyCard):
raise ValueError("keycard is not of KeyCard type")
self._guest_name = name
self._room_number = room_number
self._keycard = keycard
@property
def guest_name(self):
"Provides the name of this guest"
return self._guest_name
@property
def keycard(self):
"Provides the keycard of this guest"
return self._keycard
@property
def room_number(self):
"Provides the number of the room occupied by this guest"
return self._room_number
def is_checkedin(self, hotel):
"""
Checks if this guest is checked into this hotel
Returns:
True if this guest is checked in at the given hotel; False otherwise
Raises:
ValueError if hotel is not of Hotel type
"""
if not isinstance(hotel, Hotel):
raise ValueError("hotel is not of Hotel type")
return hotel.is_checkedin(self._guest_name)
class FullCapacityError(RuntimeError):
pass
class Hotel(object):
"Hotel"
def __init__(self, N):
"Constructs a Hotel with N rooms"
if type(N) != int:
raise ValueError("N is not of int type")
if N < 10 or N > 1000:
raise ValueError("N is not between 10 and 1000, both inclusive")
self._name2guest = {}
self._name2room = {}
self._capacity = N
self._empty_rooms = []
for i in range(1, N + 1):
k = Key()
r = Room(i, Lock(k, k))
r.last_key = k
self._empty_rooms.append(r)
def checkin(self, guest_name):
"""
Checks the guest into the hotel by allocating a room
Return:
the corresponding Guest
Raises:
ValueError if guest name is not of str type or
is already checked in at this hotel
"""
if not isinstance(guest_name, str):
raise ValueError("guest name is not of string type")
if guest_name in self._name2guest:
raise ValueError(
"guest named {0} is already checked in".format(guest_name))
if len(self._name2guest) >= self._capacity:
raise FullCapacityError()
room = self._empty_rooms.pop()
last_key, new_key = room.keys
guest = Guest(guest_name, room.room_number, KeyCard(last_key, new_key))
self._name2guest[guest_name] = guest
self._name2room[guest_name] = room
return guest
def is_checkedin(self, guest_name):
"""
Checks if the guest is a guest at this Hotel
Return:
True if the guest is checked in at this Hotel; False otherwise
Raises:
ValueError if guest name is not of str type
"""
if not isinstance(guest_name, str):
raise ValueError("guest name is not of string type")
return guest_name in self._name2guest
def checkout(self, guest_name):
"""
Checks out the guest from the hotel
Raises:
ValueError if guest name is not of str type
"""
if not isinstance(guest_name, str):
raise ValueError("guest name is not of string type")
if guest_name in self._name2guest:
del self._name2guest[guest_name]
room = self._name2room.pop(guest_name)
self._empty_rooms.append(room)
def room_of(self, guest_name):
"""
Provides the room for the guest
Return:
the corresponding Room
Raises:
ValueError if named guest is not a string or
is not checked in at this hotel
"""
if not isinstance(guest_name, str):
raise ValueError("guest name is not of string type")
if guest_name not in self._name2room:
raise ValueError(
"guest {0} is not checked in at this hotel".format(guest_name))
return self._name2room[guest_name]
|
[
"rvprasad@ksu.edu"
] |
rvprasad@ksu.edu
|
85cb80c6b44a3d07bee31bad87c5d4102559bde4
|
5cb98473ea9972d0a9a0278cde9b6ee8264f9bac
|
/01. Jump to python/chap05/mod3_driver.py
|
5994fc46b1cc9b334106b3ade0789c1d901e08d6
|
[] |
no_license
|
libus1204/bigdata2019
|
fd85dbcd8c89db991ab5c3efa11ff85466a823f8
|
5e9a6fa2c340c1fcd2840889ba40c7b805926558
|
refs/heads/master
| 2020-04-21T10:56:33.519490
| 2019-04-15T05:28:19
| 2019-04-15T05:28:19
| 169,503,607
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 45
|
py
|
from mod2 import mod3
print(mod3.sum2(1, 2))
|
[
"libus1204@naver.com"
] |
libus1204@naver.com
|
67db908fcf4ac7295182923fcb904759672d6542
|
7fc1a2dc206f32974610c316f3d35eeea08fd669
|
/AIEngine/transformation/medi_mapping.py
|
708a3bffad11071d6bc7bcb57324a84d4c0d0f0b
|
[] |
no_license
|
WendellTeam/AICoreEngine
|
8ab30e2eca9e1ca34daceb5683203bfc8efb0520
|
2a61b6a41177ca4197614cdaeda86d5decbf85dc
|
refs/heads/master
| 2023-05-10T03:27:56.678992
| 2021-05-28T13:17:03
| 2021-05-28T13:17:03
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,818
|
py
|
from transformation.medi_file_manipulation import file_manipulation,all_excel_move_to_archive,create_path,createfolder,move_file,get_all_File
from transformation.medi_medi import Medi_Mos
from transformation.medi_bdx_manipulation import bdx_automation
from transformation.medi_update_dcm import update_to_dcm
from transformation.medi_generate_dc import generate_dc
from pandas.io.json import json_normalize
from utils.Session import session
from utils.guid import get_guid
from utils.audit_trail import audit_log
from utils.logging import logging
from extraction.marc.authenticate_marc_access import get_marc_access
import pandas as pd
import traceback,os
from utils.notification import send
from datetime import datetime
import xlrd
uploadfile = r"C:\Users\CHUNKIT.LEE\Desktop\test"
disbursementMaster = r"C:\Users\CHUNKIT.LEE\Desktop\test\Disbursement Claims Running No 2020.xls"
#disbursementClaim
disbursementClaim = r"C:\Users\CHUNKIT.LEE\Desktop\test\MCLXXXXX.xls"
# Bordereaux Listing
bordereauxListing = r"C:\Users\CHUNKIT.LEE\Desktop\test\AETNA11324-2019-09 WEB.xls"
def medi_mapping(disbursementClaim,bordereauxListing):
wb = xlrd.open_workbook(disbursementClaim)
df = pd.read_excel(wb)
df.to_excel(r"C:\Users\CHUNKIT.LEE\Desktop\test\testw.xlsx")
getDC = df.iloc[28, 3]
wb = xlrd.open_workbook(disbursementMaster)
df1 = pd.read_excel(wb,skiprows=[0])
new_header = df1.iloc[0] #grab the first row for the header
df1 = df1[1:] #take the data less the header row
df1.columns = new_header #set the header row as the df header
mybordnum = 'TPAAY-0001-202001'
df1.loc[df1['Bord No'] == '%s' % str(mybordnum)]
for bordno in df1[df1['col4']]:
if df1[df1['col4']=='TPAAY-0001-202001']:
print(exist)
else:
print(not exist)
df1.iloc['Bord No']
|
[
"helo.aizek@gmail.com"
] |
helo.aizek@gmail.com
|
90ad81a8add0ce7a814e2dcef7127af1c6b70464
|
7b9161359e24f396481599e48e72ad3ff4ff3d6c
|
/mqttSamples/mqttShadowForProject.py
|
6fda3e299cd7e7a93b595c25ebda6fc5a35ef91a
|
[] |
no_license
|
cedriclec/postureFixer
|
9471b93583074f3648fde7fa9bad2dc3fcc4baa2
|
4e345d32a90dfe914191ecec401d63f7c9867e62
|
refs/heads/master
| 2021-08-30T01:27:57.023903
| 2017-12-15T14:05:05
| 2017-12-15T14:05:05
| 110,058,545
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,002
|
py
|
'''
/*
* Copyright 2010-2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
'''
from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTShadowClient
import logging
import time
import json
import argparse
from readSensorOnce import readSensorDistance
# Custom Shadow callback
def customShadowCallback_Update(payload, responseStatus, token):
# payload is a JSON string ready to be parsed using json.loads(...)
# in both Py2.x and Py3.x
if responseStatus == "timeout":
print("Update request " + token + " time out!")
if responseStatus == "accepted":
payloadDict = json.loads(payload)
print("~~~~~~~~~~~~~~~~~~~~~~~")
print("Update request with token: " + token + " accepted!")
#print("property: " + str(payloadDict["state"]["desired"]["property"]))
print("property: " + str(payloadDict["state"]["desired"]))
print("~~~~~~~~~~~~~~~~~~~~~~~\n\n")
if responseStatus == "rejected":
print("Update request " + token + " rejected!")
def customShadowCallback_Delete(payload, responseStatus, token):
if responseStatus == "timeout":
print("Delete request " + token + " time out!")
if responseStatus == "accepted":
print("~~~~~~~~~~~~~~~~~~~~~~~")
print("Delete request with token: " + token + " accepted!")
print("~~~~~~~~~~~~~~~~~~~~~~~\n\n")
if responseStatus == "rejected":
print("Delete request " + token + " rejected!")
# Shadow JSON schema:
#
# Name: distanceDevice
# {
# "state": {
# "Top":{
# "value":<INT VALUE>
# },
# "Bottom":{
# "value":<INT VALUE>
# }
# }
# }
#JSONexqmple = '{"state":{"desired":{"property":' + str(loopCount) + '}}}'
def createJsonSensorsDistance(distanceTop, distanceBottom):
#Limite to three number after virgule
distanceTop = round(distanceTop, 3)
distanceBottom = round(distanceBottom, 3)
#jsonSensors = json.dumps({"state": { "Top" : { "distance" : distanceTop}, "Bottom" : { "distance" : distanceBottom} } })
#jsonSensors = json.dumps({"state": { "Top" : distanceTop, "Bottom" : distanceBottom} })
#jsonSensors = json.dumps({"state":{"desired":{"property": distanceTop} } } )
jsonSensors = json.dumps({"state":{"desired":{ "Top" : distanceTop, "Bottom" : distanceBottom} } } )
print jsonSensors
return jsonSensors
host = "all6qkgnylmz8.iot.us-west-2.amazonaws.com" #args.host
rootCAPath = "key/root-CA.crt" #args.rootCAPath
certificatePath = "key/509e2f9bc0-certificate.pem.crt" #args.certificatePath
privateKeyPath = "key/509e2f9bc0-private.pem.key" #args.privateKeyPath
useWebsocket = False #args.useWebsocket
thingName = "distanceDevice" #args.thingName
clientId = "postureUser" #args.clientId
# Configure logging
logger = logging.getLogger("AWSIoTPythonSDK.core")
logger.setLevel(logging.DEBUG)
streamHandler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
streamHandler.setFormatter(formatter)
logger.addHandler(streamHandler)
# Init AWSIoTMQTTShadowClient
myAWSIoTMQTTShadowClient = None
if useWebsocket:
myAWSIoTMQTTShadowClient = AWSIoTMQTTShadowClient(clientId, useWebsocket=True)
myAWSIoTMQTTShadowClient.configureEndpoint(host, 443)
myAWSIoTMQTTShadowClient.configureCredentials(rootCAPath)
else:
myAWSIoTMQTTShadowClient = AWSIoTMQTTShadowClient(clientId)
myAWSIoTMQTTShadowClient.configureEndpoint(host, 8883)
myAWSIoTMQTTShadowClient.configureCredentials(rootCAPath, privateKeyPath, certificatePath)
# AWSIoTMQTTShadowClient configuration
myAWSIoTMQTTShadowClient.configureAutoReconnectBackoffTime(1, 32, 20)
myAWSIoTMQTTShadowClient.configureConnectDisconnectTimeout(10) # 10 sec
myAWSIoTMQTTShadowClient.configureMQTTOperationTimeout(5) # 5 sec
# Connect to AWS IoT
myAWSIoTMQTTShadowClient.connect()
# Create a deviceShadow with persistent subscription
deviceShadowHandler = myAWSIoTMQTTShadowClient.createShadowHandlerWithName(thingName, True)
# Delete shadow JSON doc
deviceShadowHandler.shadowDelete(customShadowCallback_Delete, 5)
# Update shadow in a loop
#while True:
i = 1
while i:
#Limite to one call to avoid having too much message sent
distanceTOP = readSensorDistance("TOP")
distanceDOWN = 0
# distanceDOWN = readSensorDistance("DOWN")
JSONPayload = createJsonSensorsDistance(distanceTOP, distanceDOWN)
print(JSONPayload)
deviceShadowHandler.shadowUpdate(JSONPayload, customShadowCallback_Update, 5)
time.sleep(5)
i = 0
|
[
"cedric.lecuyer580@gmail.com"
] |
cedric.lecuyer580@gmail.com
|
eec15a244a210eb9b3b7d760622b3484a6e73f16
|
6e723d5620c6320d3fae1ca7f5d6bbd3413f8953
|
/chap14/calc2.py
|
1c295ecf29ea0b1d80ee4408c17eadff6ff0497c
|
[] |
no_license
|
ericprogram/python
|
73d55375e931fb0b421d70e85e5dc7ecdf4ab6cd
|
e992153838a8b7d37e11b225027f394b4fae127f
|
refs/heads/main
| 2023-04-02T21:37:20.350760
| 2021-04-07T13:10:55
| 2021-04-07T13:10:55
| 332,361,722
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 311
|
py
|
# --*--coding:utf-8--*--
# author : hmchen
# email : hmchen@cenboomh.com
# date : 2021/1/27 15:17
"""
自定义计算器
被导包引用测试
"""
def add(num1, num2):
return num1 + num2
if __name__ == '__main__':
# 只有当点击允许calc2时,才会执行运算
print(add(10,20))
|
[
"hmchen@cenboomh.com"
] |
hmchen@cenboomh.com
|
f321eff3790154e88daceca1efd17d5dacafe2dc
|
354b04e57b4db00d0046f77a1d3f6c89bdd7cfab
|
/CariesRobot/ProcesoAutomatico.py
|
b588bac1a01216a9e365b25325ffbf13410bdd28
|
[] |
no_license
|
RolandoCM/robotLaser
|
c9a55e86fd5ace81e443f08245f85f07d128309c
|
5551caf122d7a4cd456046417dc345108bb2abac
|
refs/heads/master
| 2021-08-23T18:13:25.044773
| 2017-12-06T01:34:43
| 2017-12-06T01:34:43
| 105,234,552
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 851
|
py
|
import datetime
import cv2
import os
from comunicacion.TransformarCoordenadas import TransformarCoordenadas
from procesarImagen.Coordenadas import Coordenadas
from procesarImagen.RemoverFondo import RemoverFondo
from procesarImagen.kmeansImage import kmeans
class IniciarProceso:
def procesar(self):
# modulo de captura de imagen
#Camara().Cam()
# modulo para Remover el fondo de la Imagen
RemoverFondo().remove()
# Clousterizar la Imagen kmeans/kmeansImage.py
kmeans().identificarCarie()
# optener las coordenadas para enviar por modulo de comunicacion
coordenadaX, coordenadaY=Coordenadas().optener()
# paso de coordenadas a modulo para actuador
TransformarCoordenadas().cordenadas(coordenadaX, coordenadaY)
def __init__(self):
self.procesar()
|
[
"castillor493@gmail.com"
] |
castillor493@gmail.com
|
4ac2070081bd649a4703983d4b5dd9f1a05f510b
|
1964d5bbb0cf82e24c485ffffe1b692033e500b5
|
/vpg.py
|
27ab60814a920af526ecdf06eae267e869d399f1
|
[] |
no_license
|
rashmi-iyer/RISE
|
264dc4a4736a85d9d38f5c0a3f37b325061cd69c
|
5ffff3559fd2c9d5e5306312b441cb6c8ab9286a
|
refs/heads/master
| 2020-06-28T00:51:26.959856
| 2019-08-03T21:37:08
| 2019-08-03T21:37:08
| 200,098,583
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 19,196
|
py
|
import numpy as np
import tensorflow as tf
import gym
import gym_maze
import time
import spinup.algos.vpg.core as core
from spinup.utils.logx import EpochLogger
from spinup.utils.mpi_tf import MpiAdamOptimizer, sync_all_params
from spinup.utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs
class VPGBuffer:
"""
A buffer for storing trajectories experienced by a VPG agent interacting
with the environment, and using Generalized Advantage Estimation (GAE-Lambda)
for calculating the advantages of state-action pairs.
"""
def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95, hierstep=3):
self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.init_obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.goal_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.count_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32)
self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32)
self.adv_buf = np.zeros(size, dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.ret_buf = np.zeros(size, dtype=np.float32)
self.val_buf = np.zeros(size, dtype=np.float32)
self.logp_buf = np.zeros(size, dtype=np.float32)
self.obshi_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.acthi_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.advhi_buf = np.zeros(size, dtype=np.float32)
self.rewhi_buf = np.zeros(size, dtype=np.float32)
self.rethi_buf = np.zeros(size, dtype=np.float32)
self.valhi_buf = np.zeros(size, dtype=np.float32)
self.logphi_buf = np.zeros(size, dtype=np.float32)
self.gamma, self.lam, self.hierstep = gamma, lam, hierstep
self.ptr, self.path_start_idx, self.max_size = 0, 0, size
self.ptrhi, self.path_start_idxhi = 0, 0
def store(self, obs, init_obs, goal, count, act, rew, val, logp):
"""
Append one timestep of agent-environment interaction to the buffer.
"""
assert self.ptr < self.max_size # buffer has to have room so you can store
self.obs_buf[self.ptr] = obs
self.init_obs_buf[self.ptr] = init_obs
self.goal_buf[self.ptr] = goal
self.count_buf[self.ptr] = count
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.val_buf[self.ptr] = val
self.logp_buf[self.ptr] = logp
self.ptr += 1
def storehi(self, obshi, acthi, rewhi, valhi, logphi):
assert self.ptrhi < self.max_size
self.obshi_buf[self.ptrhi] = obshi
self.acthi_buf[self.ptrhi] = acthi
self.rewhi_buf[self.ptrhi] = rewhi
self.valhi_buf[self.ptrhi] = valhi
self.logphi_buf[self.ptrhi] = logphi
self.ptrhi += 1
def finish_path(self, last_val=0):
path_slice = slice(self.path_start_idx, self.ptr)
rews = np.append(self.rew_buf[path_slice], last_val)
vals = np.append(self.val_buf[path_slice], last_val)
# the next two lines implement GAE-Lambda advantage calculation
deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1]
self.adv_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam)
# the next line computes rewards-to-go, to be targets for the value function
self.ret_buf[path_slice] = core.discount_cumsum(rews, self.gamma)[:-1]
self.path_start_idx = self.ptr
def finish_path_hi(self, last_val=0):
path_slice = slice(self.path_start_idxhi, self.ptrhi)
rews = np.append(self.rewhi_buf[path_slice], last_val)
vals = np.append(self.valhi_buf[path_slice], last_val)
# the next two lines implement GAE-Lambda advantage calculation
deltas = rews[:-1] + self.gamma ** self.hierstep * vals[1:] - vals[:-1]
self.advhi_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam)
# the next line computes rewards-to-go, to be targets for the value function
self.rethi_buf[path_slice] = core.discount_cumsum(rews, self.gamma ** self.hierstep)[:-1]
self.path_start_idxhi = self.ptrhi
def get(self):
"""
Call this at the end of an epoch to get all of the data from
the buffer, with advantages appropriately normalized (shifted to have
mean zero and std one). Also, resets some pointers in the buffer.
"""
assert self.ptr == self.max_size # buffer has to be full before you can get
self.ptr, self.path_start_idx = 0, 0
# the next two lines implement the advantage normalization trick
#adv_mean = np.mean(self.adv_buf)
#adv_std = np.std(self.adv_buf)
adv_mean, adv_std = mpi_statistics_scalar(self.adv_buf)
self.adv_buf = (self.adv_buf - adv_mean) / adv_std
return [self.obs_buf, self.init_obs_buf, self.goal_buf, np.expand_dims(self.count_buf, axis=1),
self.act_buf, self.adv_buf, self.ret_buf, self.logp_buf]
def gethi(self):
"""
Call this at the end of an epoch to get all of the data from
the buffer, with advantages appropriately normalized (shifted to have
mean zero and std one). Also, resets some pointers in the buffer.
"""
# the next two lines implement the advantage normalization trick
#adv_mean = np.mean(self.advhi_buf[:self.ptrhi])
#adv_std = np.std(self.advhi_buf[:self.ptrhi])
adv_mean, adv_std = mpi_statistics_scalar(self.advhi_buf)
int_num = int(self.ptrhi)
self.ptrhi, self.path_start_idxhi = 0, 0
return [self.obshi_buf[:int_num], self.acthi_buf[:int_num],
(self.advhi_buf[:int_num] - adv_mean) / adv_std, self.rethi_buf[:int_num], self.logphi_buf[:int_num]]
"""
Vanilla Policy Gradient
(with GAE-Lambda for advantage estimation)
"""
def vpg(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4,
vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000,
logger_kwargs=dict(), save_freq=10, c=3):
"""
Args:
env_fn : A function which creates a copy of the environment.
The environment must satisfy the OpenAI Gym API.
actor_critic: A function which takes in placeholder symbols
for state, ``x_ph``, and action, ``a_ph``, and returns the main
outputs from the agent's Tensorflow computation graph:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``pi`` (batch, act_dim) | Samples actions from policy given
| states.
``logp`` (batch,) | Gives log probability, according to
| the policy, of taking actions ``a_ph``
| in states ``x_ph``.
``logp_pi`` (batch,) | Gives log probability, according to
| the policy, of the action sampled by
| ``pi``.
``v`` (batch,) | Gives the value estimate for states
| in ``x_ph``. (Critical: make sure
| to flatten this!)
=========== ================ ======================================
ac_kwargs (dict): Any kwargs appropriate for the actor_critic
function you provided to VPG.
seed (int): Seed for random number generators.
steps_per_epoch (int): Number of steps of interaction (state-action pairs)
for the agent and the environment in each epoch.
epochs (int): Number of epochs of interaction (equivalent to
number of policy updates) to perform.
gamma (float): Discount factor. (Always between 0 and 1.)
pi_lr (float): Learning rate for policy optimizer.
vf_lr (float): Learning rate for value function optimizer.
train_v_iters (int): Number of gradient descent steps to take on
value function per epoch.
lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
close to 1.)
max_ep_len (int): Maximum length of trajectory / episode / rollout.
c: hierearchical step length
"""
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
seed += 10000 * proc_id()
print("HELLLLLOOOOOOOOOOOOOOOOO")
print(seed)
tf.set_random_seed(seed)
np.random.seed(seed)
env = env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape
# Share information about action space with policy architecture
#ac_kwargs['action_space'] = env.action_space
# Inputs to computation graph
x_ph, x_initial_ph, g_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
env.observation_space,
env.observation_space,
env.action_space)
count_ph = core.placeholder(1)
adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)
xhi_ph, ahi_ph = core.placeholders_from_spaces(env.observation_space, env.observation_space)
advhi_ph, rethi_ph, logphi_old_ph = core.placeholders(None, None, None)
# Main outputs from computation graph
x_concat = tf.concat([x_ph, x_initial_ph, g_ph, count_ph], 1)
pi, logp, logp_pi, v = actor_critic(x_concat, a_ph, action_space=env.action_space)
pihi, logphi, logphi_pi, vhi = actor_critic(xhi_ph, ahi_ph, action_space=env.observation_space)
# Need all placeholders in *this* order later (to zip with data from buffer)
all_phs = [x_ph, x_initial_ph, g_ph, count_ph, a_ph, adv_ph, ret_ph, logp_old_ph]
allhi_phs = [xhi_ph, ahi_ph, advhi_ph, rethi_ph, logphi_old_ph]
# Every step, get: action, value, and logprob
get_action_ops = [pi, v, logp_pi]
gethi_action_ops = [pihi, vhi, logphi_pi]
# Experience buffer
local_steps_per_epoch = int(steps_per_epoch / num_procs())
buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
# Count variables
var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)
# VPG objectives
pi_loss = -tf.reduce_mean(logp * adv_ph)
v_loss = tf.reduce_mean((ret_ph - v) ** 2)
pihi_loss = -tf.reduce_mean(logphi * advhi_ph)
vhi_loss = tf.reduce_mean((rethi_ph - vhi) ** 2)
# Info (useful to watch during learning)
approx_kl = tf.reduce_mean(logp_old_ph - logp) # a sample estimate for KL-divergence, easy to compute
approx_ent = tf.reduce_mean(-logp) # a sample estimate for entropy, also easy to compute
approx_klhi = tf.reduce_mean(logphi_old_ph - logphi) # a sample estimate for KL-divergence, easy to compute
approx_enthi = tf.reduce_mean(-logphi) # a sample estimate for entropy, also easy to compute
# Optimizers
train_pi = tf.train.AdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
train_v = tf.train.AdamOptimizer(learning_rate=vf_lr).minimize(v_loss)
trainhi_pi = tf.train.AdamOptimizer(learning_rate=pi_lr).minimize(pihi_loss)
trainhi_v = tf.train.AdamOptimizer(learning_rate=vf_lr).minimize(vhi_loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Sync params across processes
sess.run(sync_all_params())
# Setup model saving
logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})
def update():
inputs = {k: valbuf for k, valbuf in zip(all_phs, buf.get())}
inputshi = {k: valbuf for k, valbuf in zip(allhi_phs, buf.gethi())}
pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent], feed_dict=inputs)
pihi_l_old, vhi_l_old, enthi = sess.run([pihi_loss, vhi_loss, approx_enthi], feed_dict=inputshi)
# Policy gradient step
sess.run(train_pi, feed_dict=inputs)
sess.run(trainhi_pi, feed_dict=inputshi)
# Value function learning
for _ in range(train_v_iters):
sess.run(train_v, feed_dict=inputs)
sess.run(trainhi_v, feed_dict=inputshi)
# Log changes from update
pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl], feed_dict=inputs)
pihi_l_new, vhi_l_new, klhi = sess.run([pihi_loss, vhi_loss, approx_klhi], feed_dict=inputshi)
logger.store(LossPi=pi_l_old, LossV=v_l_old,
KL=kl, Entropy=ent,
DeltaLossPi=(pi_l_new - pi_l_old),
DeltaLossV=(v_l_new - v_l_old),
LossPiHi=pihi_l_old, LossVHi=vhi_l_old,
KLHi=klhi, EntropyHi=enthi,
DeltaLossPiHi=(pihi_l_new - pihi_l_old),
DeltaLossVHi=(vhi_l_new - vhi_l_old))
start_time = time.time()
reset = env.reset()
o, x_init, count, r, rhi, r_intr, d, ep_ret, ep_len = reset, reset, 0, 0, 0, 0, False, 0, 0
g, vhi_t, logphi_t = sess.run(gethi_action_ops, feed_dict={xhi_ph: x_init.reshape(1, -1)})
buf.storehi(x_init, np.squeeze(g, axis=0), rhi, vhi_t, logphi_t)
# Main loop: collect experience in env and update/log each epoch
for epoch in range(epochs):
for t in range(steps_per_epoch):
a, v_t, logp_t = sess.run(get_action_ops,
feed_dict={x_ph: o.reshape(1, -1), x_initial_ph: x_init.reshape(1, -1),
g_ph: g.reshape(1, -1), count_ph: np.expand_dims([count%c], axis=1)})
buf.store(o, x_init, g, count%c, a, r_intr, v_t, logp_t)
logger.store(VVals=v_t)
o, r, d, _ = env.step(a[0])
ep_ret += r
ep_len += 1
r_intr = -np.linalg.norm(o - g, ord=2) #low level reward calculation via simple euclidian distance
rhi += r
count += 1
if count % c == 0 and buf.ptrhi < buf.max_size:
buf.finish_path(r_intr)
x_init = o
g, vhi_t, logpihi_t = sess.run(gethi_action_ops, feed_dict={xhi_ph: x_init.reshape(1, -1)})
buf.storehi(x_init, np.squeeze(g, axis=0), rhi, vhi_t, logpihi_t)
logger.store(VValsHi=vhi_t)
rhi = 0
terminal = d or (count == max_ep_len)
if terminal or (t == local_steps_per_epoch - 1):
if not (terminal):
print('Warning: trajectory cut off by epoch at %d steps.' %count)
# if trajectory didn't reach terminal state, bootstrap value target
last_val = r_intr if d else sess.run(v,
feed_dict={x_ph: o.reshape(1, -1), x_initial_ph: x_init.reshape(1, -1),
g_ph: g.reshape(1, -1),
count_ph: np.expand_dims([count%c], axis=1)})
if count%c != 0:
buf.finish_path(last_val)
if terminal:
# only save EpRet / EpLen if trajectory finished
logger.store(EpRet=ep_ret, EpLen=ep_len)
lasthi_val = rhi if d else sess.run(vhi, feed_dict={xhi_ph: o.reshape(1, -1)})
buf.finish_path_hi(lasthi_val)
reset = env.reset()
o, x_init, count, r, rhi, r_intr, d, ep_ret, ep_len = reset, reset, 0, 0, 0, 0, False, 0, 0
g, vhi_t, logpihi_t = sess.run(gethi_action_ops, feed_dict={xhi_ph: x_init.reshape(1, -1)})
buf.storehi(x_init, np.squeeze(g, axis=0), rhi, vhi_t, logpihi_t)
logger.store(VValsHi=vhi_t)
# Save model
if (epoch % save_freq == 0) or (epoch == epochs-1):
logger.save_state({'env': env}, None)
# Perform VPG update!
update()
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('VVals', with_min_and_max=True)
logger.log_tabular('VValsHi', with_min_and_max=True)
logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossV', average_only=True)
logger.log_tabular('DeltaLossPi', average_only=True)
logger.log_tabular('DeltaLossV', average_only=True)
logger.log_tabular('Entropy', average_only=True)
logger.log_tabular('KL', average_only=True)
logger.log_tabular('LossPiHi', average_only=True)
logger.log_tabular('LossVHi', average_only=True)
logger.log_tabular('DeltaLossPiHi', average_only=True)
logger.log_tabular('DeltaLossVHi', average_only=True)
logger.log_tabular('EntropyHi', average_only=True)
logger.log_tabular('KLHi', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='MountainCar-v0')
parser.add_argument('--hid', type=int, default=64)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--cpu', type=int, default=4)
parser.add_argument('--steps', type=int, default=4000)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--exp_name', type=str, default='vpg')
parser.add_argument('--c', type=int, default='3')
args = parser.parse_args()
mpi_fork(args.cpu) # run parallel code with mpi
from spinup.utils.run_utils import setup_logger_kwargs
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
vpg(lambda: gym.make(args.env), actor_critic=core.mlp_actor_critic,
ac_kwargs=dict(hidden_sizes=[args.hid] * args.l), gamma=args.gamma,
seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs, logger_kwargs=logger_kwargs,
c=args.c)
|
[
"noreply@github.com"
] |
rashmi-iyer.noreply@github.com
|
9109cf92a3874f5187986e1ec9f78049378ebeb5
|
273ab7fc98ef8a299daf56d9ce7a0d917453be6a
|
/BlueStakesETL_Old.py
|
819054d2145cf6c06d81f022744008513a3d89eb
|
[] |
no_license
|
Zee-Bee/tester
|
c5e6aa385ae62c80b2b1f00d051ac99346cc22ba
|
5793f97e2c0f108ea61842117a966bb1de81f185
|
refs/heads/master
| 2020-04-07T00:18:44.949542
| 2018-11-16T17:57:20
| 2018-11-16T17:57:20
| 157,898,351
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 58,163
|
py
|
import arcpy, datetime, time
from arcpy import env
from arcpy import da
#sgid10 = r'C:\ZBECK\BlueStakes\stagingBS.gdb\SGID10_GEOGRAPHIC'
#sgid10 = r'Database Connections\dc_agrc@SGID10@gdb10.agrc.utah.gov.sde'
sgid10 = r'C:\ZBECK\BlueStakes\testDB.gdb'
sgid10_GEO = r'C:\ZBECK\BlueStakes\stagingBS.gdb\SGID10_GEOGRAPHIC'
stageDB = r'C:\ZBECK\BlueStakes\stagingBS.gdb'
schemaDB = r'C:\ZBECK\BlueStakes\schemaBS.gdb'
outLoc = r'C:\ZBECK\BlueStakes\outBlueStakes'
env.workspace = sgid10
arcpy.env.overwriteOutput = True
clpCnty = sgid10_GEO + '\\Counties'
#arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Counties', clpCnty)
fipsNum = ['49001', '49003', '49005', '49007', '49009', '49011', '49013', '49015', '49017', '49019', '49021', \
'49023', '49025', '49027', '49029', '49031', '49033', '49035', '49037', '49039', '49041', '49043', '49045', \
'49047', '49049', '49051', '49053', '49055', '49057']
fipsDict = {'Beaver': '49001', 'BoxElder': '49003', 'Cache': '49005', 'Carbon': '49007', 'Daggett': '49009', \
'Davis': '49011', 'Duchesne': '49013', 'Emery': '49015', 'Garfield': '49017', 'Grand': '49019', \
'Iron': '49021', 'Juab': '49023', 'Kane': '49025', 'Millard': '49027', 'Morgan': '49029', \
'Piute': '49031', 'Rich': '49033', 'SaltLake': '49035', 'SanJuan': '49037', 'Sanpete': '49039', \
'Sevier': '49041', 'Summit': '49043', 'Tooele': '49045', 'Uintah': '49047', 'Utah': '49049', \
'Wasatch': '49051', 'Washington': '49053', 'Wayne': '49055', 'Weber': '49057'}
typeList = ('ALY', 'AVE', 'BLVD', 'CIR', 'CT', 'CV', 'DR', 'EST', 'ESTS', 'EXPY', 'FWY', 'HWY', 'HOLW', \
'JCT', 'LN', 'LOOP', 'PKWY', 'PL', 'PLZ', 'PT', 'RAMP', 'RNCH', 'RD', 'RTE', 'RUN', 'RW', 'SQ', \
'ST', 'TER', 'TRL', 'WAY', 'HTS', 'COR')
typeList2 = ('ALLEY', 'AVENUE', 'BOULEVARD', 'CIRCLE', 'COURT', 'COVE', 'DRIVE', 'ESTATE', 'ESTATES', 'EXPRESSWAY', \
'FREEWAY', 'HEIGHTS', 'HIGHWAY', 'HOLLOW', 'JUNCTION', 'LANE', 'LOOP', 'PARKWAY', 'PLACE', 'PLAZA', \
'POINT', 'RAMP', 'RANCH', 'ROAD', 'ROUTE', 'RUN', 'ROW', 'SQUARE', 'STREET', 'TERRACE', 'TRAIL', 'WAY', 'CORNER')
typeDict = {'ALLEY': 'ALY', 'AVENUE': 'AVE', 'BOULEVARD': 'BLVD', 'CIRCLE': 'CIR', 'COURT': 'CT', 'COVE': 'CV', \
'DRIVE': 'DR', 'ESTATE': 'EST', 'ESTATES': 'ESTS', 'EXPRESSWAY': 'EXPY', 'FREEWAY': 'FWY', 'HIGHWAY': 'HWY', \
'HOLLOW': 'HOLW', 'JUNCTION': 'JCT', 'LANE': 'LN', 'LOOP': 'LOOP', 'PARKWAY': 'PKWY', 'PLACE': 'PL', \
'PLAZA': 'PLZ', 'POINT': 'PT', 'RAMP': 'RAMP', 'RANCH': 'RNCH', 'ROAD': 'RD', 'ROUTE': 'RTE', 'RUN': 'RUN', \
'ROW': 'RW', 'SQUARE': 'SQ', 'STREET': 'ST', 'TERRACE': 'TER', 'TRAIL': 'TRL', 'WAY': 'WAY', 'HEIGHTS': 'HTS', \
'CORNER': 'COR'}
dirList = ('N', 'S', 'E', 'W')
dirList2 = ('NORTH', 'SOUTH', 'EAST', 'WEST')
dirDict = {'NORTH': 'N', 'SOUTH': 'S', 'EAST': 'E', 'WEST': 'W'}
if not arcpy.Exists(stageDB):
arcpy.CreateFileGDB_management('C:\ZBECK\BlueStakes', 'stagingBS.gdb')
#-------------------------------------------------------------------------------------------------------------------------------------------
def parcels():
print 'Starting Parcels ' + str(datetime.datetime.now())
#-Check for parcels in staging DB, add it if missing, delete features if they exist
## for fips in fipsNum:
## parcelFC = stageDB + '\\' + 'par' + fips
##
## if not arcpy.Exists(parcelFC):
## arcpy.CopyFeatures_management(schemaDB + '\\parSSCCC_schema', stageDB + '\\par' + fips)
## print 'Copied par' + fips + ' to staging GDB'
## else:
## arcpy.DeleteFeatures_management(parcelFC)
## print 'Deleted existing features in ' + parcelFC
fc = r'C:\ZBECK\BlueStakes\testDB.gdb\Parcels_Garfield'
fcBS = r'C:\ZBECK\BlueStakes\stagingBS.gdb\par49001'
srcFlds = ['PARCEL_ID', 'PARCEL_ADD', 'SHAPE@']
tarFlds = ['ADDR_NUMB', 'ADDR_FULL', 'FEDIRP', 'FENAME', 'FETYPE', 'FEDIRS', 'OWNER', 'SHAPE@']
## for fc in arcpy.ListFeatureClasses():
## #if fc[:23][-7:] == 'Parcels': #get SDE parcels
## if fc.split('_')[0] == 'Parcels':
##
## cnty = fc.split('_')[1]
## tarRows = arcpy.da.InsertCursor(stageDB + '\\par' + fipsDict[cnty], tarFlds)
tarRows = arcpy.da.InsertCursor(fcBS, tarFlds)
srcRows = arcpy.da.SearchCursor(fc, srcFlds)
for srcRow in srcRows:
srcPar_ParID = srcRow[0]
addFull = srcRow[1]
shp = srcRow[2]
if addFull != None and addFull.strip() != '':
#--Address Number-----------------------------------------
if addFull.split(' ')[0].isdigit():
addNum = addFull.split(' ')[0]
else:
addNum = ''
#--Prefix Direction---------------------------------------
preDirs = addFull.split(' ')[1]
if preDirs.upper() in dirList:
preDir = preDirs.upper()
if preDirs.upper() in dirList2:
preDir = dirDict[preDirs.upper()]
else:
preDirs = ''
#--Sufix Direction----------------------------------------
sufDirs = addFull.split(' ')[-1]
if sufDirs.upper() in dirList:
sufDir = sufDirs.upper()
if sufDirs.upper() in dirList2:
sufDir = dirDict[sufDirs.upper()]
else:
sufDirs = ''
#--Street Type--------------------------------------------
sTypes = addFull.split(' ')[-1]
if sTypes.upper() in typeList:
sType = sTypes.upper()
if sTypes.upper() in typeList2:
sType = typeDict[sTypes.upper()]
else:
sType = ''
#---Street Name-------------------------------------------
houseNumber = 'houseNumber'
preDirection = 'preDirection'
sName = 'sName'
streetNameBegun = 'streetNameBegun'
streetNameEnded = 'streetNameEnded'
streetName = ''
if streetName != None:
def checkWord(word, state):
global streetName
if state == houseNumber:
return preDirection
elif state == preDirection:
if word in dirList or word in dirList2:
return sName
else:
streetName = streetName + word
return streetNameBegun
elif state == sName:
streetName = word
return streetNameBegun
elif state == streetNameBegun:
if word in typeList or word in dirList or word in typeList2 or word in dirList2:
return streetNameEnded
else:
streetName = streetName + ' ' + word
return streetNameBegun
elif state == streetNameEnded:
return streetNameEnded
def findStName(addFull):
global streetName
streetName = ''
state = houseNumber
for word in addFull.strip().split(' '):
state = checkWord(word, state)
return streetName
## for add in addList:
## print findStName(add)
else:
addNum = ''
preDir = ''
sType = ''
sufDir = ''
srcPar_ParID = ''
tarRows.insertRow((addNum, addFull, preDir, findStName(srcRow[1]), sType, 'S', srcPar_ParID, shp))
del tarRows
del srcRows
# print cnty + ' par' + fipsDict[cnty] + ' Done'
print 'Done Parcels ' + str(datetime.datetime.now())
#-------------------------------------------------------------------------------------------------------------------------------------------
def addressPoints():
print 'Starting Address Points ' + str(datetime.datetime.now())
addPts = sgid10_GEO + '\\AddressPoints'
addPtsBS = stageDB + '\\adr_StWide'
clpCnty = 'SGID10.BOUNDARIES.Counties'
#---Check for Address Points in SGID10_GEOGRAPHIC staging area
if arcpy.Exists(addPts):
arcpy.Delete_management(addPts)
arcpy.CopyFeatures_management(r'Database Connections\DC_Location@SGID10@gdb10.agrc.utah.gov.sde\SGID10.LOCATION.AddressPoints', addPts)
else:
arcpy.CopyFeatures_management(r'Database Connections\DC_Location@SGID10@gdb10.agrc.utah.gov.sde\SGID10.LOCATION.AddressPoints', addPts)
#---Check for statewide Address Points in BlueStakes schema
if not arcpy.Exists(addPtsBS):
arcpy.CopyFeatures_management(schemaDB + '\\adrSSCCC_schema', addPtsBS)
else:
arcpy.DeleteFeatures_management(addPtsBS)
srcFlds = ['ADDLABEL', 'ADDNBR', 'PRE_DIR', 'STREETNAME', 'STREETTYPE', 'SUF_DIR', 'SHAPE@']
tarFlds = ['ADDR_NUMB', 'ADDR_FULL', 'FEDIRP', 'FENAME', 'FETYPE', 'FEDIRS', 'OWNER', 'SHAPE@']
cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(addPts, srcFlds)
tarRows = arcpy.da.InsertCursor(addPtsBS, tarFlds)
for srcRow in srcRows:
if srcRow[1] != None:
ADDR_NUMB = srcRow[1]
else:
ADDR_NUMB = ''
if srcRow[0] != None:
ADDR_FULL = srcRow[0]
else:
ADDR_FULL = ''
if srcRow[2] != None:
FEDIRP = srcRow[2]
else:
FEDIRP = ''
if srcRow[3] != None:
FENAME = srcRow[3]
else:
FENAME = ''
if srcRow[4] != None:
FETYPE = srcRow[4]
else:
FETYPE = ''
if srcRow[5] != None:
FEDIRS = srcRow[5]
else:
FEDIRS = ''
OWNER = ''
shp = srcRow[6]
tarRows.insertRow((ADDR_NUMB, ADDR_FULL, FEDIRP, FENAME, FETYPE, FEDIRS, OWNER, shp))
del tarRows
#---Copy State wide address points to Bluestakes root---------------
arcpy.CopyFeatures_management(addPtsBS, outLoc + '\\adr_StWide.shp')
#---Clip by county-------------------------------------------
clpFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
clpRows = arcpy.da.SearchCursor(clpCnty, clpFlds)
for row in clpRows:
clpFeat = row[2]
#----Delete shapefiles with no features----
clp = arcpy.Clip_analysis(addPtsBS, clpFeat, outLoc + '\\TGR' + row[1] + '\\adr' + row[1] + '.shp')
clpCount = int(arcpy.GetCount_management(clp).getOutput(0))
if clpCount < 1:
arcpy.Delete_management(clp)
print 'Done Translating Address Points ' + str(datetime.datetime.now())
#-------------------------------------------------------------------------------------------------------------------------------------------
def roads():
print 'Starting Roads ' + str(datetime.datetime.now())
## for fips in fipsNum:
## streetFC = stageDB + '\\TGR' + fips + 'lkA'
##
## if not arcpy.Exists(streetFC):
## arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCLKA_schema', stageDB + '\\TGR' + fips + 'lkA')
## print 'Copied TGR' + fips + 'lkA to staging GDB'
## else:
## arcpy.DeleteFeatures_management(streetFC)
## print 'Deleted existing features in ' + streetFC
srcFlds = ['CARTOCODE', 'PREDIR', 'FULLNAME', 'STREETTYPE', 'SUFDIR', 'L_F_ADD', 'L_T_ADD', 'R_F_ADD', 'R_T_ADD', 'ALIAS1', \
'ALIAS2', 'ACSALIAS', 'ACSNAME', 'COFIPS', 'HWYNAME', 'MODIFYDATE', 'ADDR_SYS', 'STREETNAME', 'SHAPE@']
tarFlds = ['FEDIRP', 'FENAME', 'FETYPE', 'FEDIRS', 'CFCC', 'FRADDL', 'TOADDL', 'FRADDR', 'TOADDR', 'CFCC1', 'CFCC2', 'FULLNAME', \
'HASALT', 'ISALT', 'S_FIPS', 'AGRC_MDATE', 'ADDRESS_SY', 'SHAPE@']
rdFC = 'RoadsALL'
#rdFC = 'SLCRoads'
#tarRds = stageDB + '\\TGR_StWide_lkA'
tarRds = stageDB + '\\TGR49035lkA'
#----Remove empty spaces from roads----------------------------------------------------------------------------
with arcpy.da.UpdateCursor(rdFC, srcFlds) as rows:
for row in rows:
for fld in srcFlds:
fldX = srcFlds.index(fld)
if row[fldX] == ' ':
row[fldX] = None
rows.updateRow(row)
del rows
srcRows = arcpy.da.SearchCursor(rdFC, srcFlds)
tarRows = arcpy.da.InsertCursor(tarRds, tarFlds)
for srcRow in srcRows:
#----Prefix Direction----
if srcRow[1] == None:
FEDIRP = None
else:
FEDIRP = srcRow[1]
#----Root and Full Street Name----
if srcRow[2] != None:
if FEDIRP != None:
FULLNAME = (FEDIRP + ' ' + srcRow[2]).title()
else:
FULLNAME = srcRow[2].title()
else:
FULLNAME = ''
if srcRow[17] != None:
FENAME = srcRow[17].replace('HIGHWAY', 'HWY').title() + ' All'
else:
FENAME = ''
#----Street Type----
if srcRow[3] != None:
FETYPE = srcRow[3].title()
else:
FETYPE = ''
#----Sufix Direction----
if srcRow[4] != None:
FEDIRS = srcRow[4]
else:
FEDIRS = ''
#----CFCC----
if srcRow[0] != None:
if srcRow[0] == '1':
CFCC = 'A15'
if srcRow[0] == '2':
CFCC = 'A25'
if srcRow[0] == '3':
CFCC = 'A21'
if srcRow[0] == '4':
CFCC = 'A35'
if srcRow[0] == '5':
CFCC = 'A31'
if srcRow[0] == '6':
CFCC = 'A41'
if srcRow[0] == '7':
CFCC = 'A20'
if srcRow[0] == '8':
CFCC = 'A31'
if srcRow[0] == '9':
CFCC = 'A41'
if srcRow[0] == '10':
CFCC = 'A41'
if srcRow[0] == '11':
CFCC = 'A41'
if srcRow[0] == '12':
CFCC = 'A41'
CFCC1 = 'A'
CFCC2 = CFCC[:2]
#----From Address Left----
if srcRow[5] != None:
FRADDL = str(srcRow[5]).split('.')[0]
else:
FRADDL = 0
#----To Address Left----
if srcRow[6] != None:
TOADDL = str(srcRow[6]).split('.')[0]
else:
TOADDL = 0
#----From Address Right----
if srcRow[7] != None:
FRADDR = str(srcRow[7]).split('.')[0]
else:
FRADDR = 0
#----To Address Right----
if srcRow[8] != None:
TOADDR = str(srcRow[8]).split('.')[0]
else:
TOADDR = 0
#----FIPS----
if srcRow[13] != None:
S_FIPS = srcRow[13]
else:
S_FIPS = ''
#----AGRC M Date----
if srcRow[15] != None:
AGRC_MDATE = srcRow[15]
else:
AGRC_MDATE = '1/1/1000'
#----Address System----
if srcRow[16] != None:
ADDRESS_SY = srcRow[16]
else:
ADDRESS_SY = ''
shp = srcRow[18]
#----Has Alt Name----
if srcRow[9] != None:
HASALT = 1
ISALT = 0
elif srcRow[12] != None:
HASALT = 1
ISALT = 0
else:
HASALT = 0
ISALT = 0
tarRows.insertRow((FEDIRP, FENAME, FETYPE, FEDIRS, CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, HASALT, \
ISALT, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp))
#----Add Duplicate Interstates----
if srcRow[0] == '1':
usFENAME = srcRow[14]
if FEDIRP != None:
FULLNAME = FEDIRP + ' ' + usFENAME
else:
FULLNAME = usFENAME
tarRows.insertRow((FEDIRP, usFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \
0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp))
#----Add Duplicate US Highways----
if srcRow[0] == '2' or srcRow[0] == '3':
usFENAME = srcRow[14] + ' US Z'
if FEDIRP != None:
FULLNAME = FEDIRP + ' ' + usFENAME
else:
FULLNAME = usFENAME
tarRows.insertRow((FEDIRP, usFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \
0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp))
if srcRow[14].split()[0] == 'US':
hwyFENAME = 'Hwy ' + srcRow[14].split()[1] + ' US Z2'
if FEDIRP != None:
FULLNAME = FEDIRP + ' ' + hwyFENAME
else:
FULLNAME = hwyFENAME
tarRows.insertRow((FEDIRP, hwyFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \
0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp))
#----Add Duplicate State Highways----
if srcRow[0] == '4' or srcRow[0] == '5' or srcRow[0] == '6':
if srcRow[14] != None:
srFENAME = srcRow[14] + ' SR Z'
if FEDIRP != None:
FULLNAME = FEDIRP + ' ' + srFENAME
else:
FULLNAME = srFENAME
tarRows.insertRow((FEDIRP, srFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \
0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp))
if srcRow[14].split()[0] == 'SR':
if srcRow[14].split()[1] != '201':
hwyFENAME = 'Hwy ' + srcRow[14].split()[1] + ' SR Z2'
if FEDIRP != None:
FULLNAME = FEDIRP + ' ' + hwyFENAME
else:
FULLNAME = hwyFENAME
tarRows.insertRow((FEDIRP, hwyFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \
0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp))
#----Add Duplicate Alias and ACSAlias----
if srcRow[9] != None:
if srcRow[9] != '':
if srcRow[9][:7] != 'HIGHWAY':
alsFENAME = srcRow[9] + ' ALS Z'
if FEDIRP != None:
FULLNAME = FEDIRP + ' ' + alsFENAME + ' ' + FEDIRS
else:
alsFENAME + ' ' + FEDIRS
tarRows.insertRow((FEDIRP, alsFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, \
FULLNAME, 0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp))
if srcRow[12] != None:
acsFENAME = srcRow[12] + ' ACS Z'
if FEDIRP != None:
FULLNAME = FEDIRP + ' ' + acsFENAME + ' ' + FEDIRS
else:
FULLNAME = acsFENAME + ' ' + FEDIRS
tarRows.insertRow((FEDIRP, acsFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \
0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp))
del tarRows
del srcRows
#---Copy Roads to Blues Stakes root level-----------------
# arcpy.CopyFeatures_management(tarRds, outLoc + '\\TGR_StWide_lka.shp')
#---Clip Blue Stakes Roads-----------------------------------------------------------
# clip(tarRds, 'lkA.shp');
print 'Done Translating Roads ' + str(datetime.datetime.now())
#-------------------------------------------------------------------------------------------------------------------------------------------
def municipalities():
print 'Starting Municipalities ' + str(datetime.datetime.now())
muni = sgid10_GEO + '\\Municipalities'
muniBS = stageDB + '\\TGR_StWide_plc00'
clpCnty = 'SGID10.BOUNDARIES.Counties'
#---Check for Municipalites in SGID10_GEOGRAPHIC staging area
arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Municipalities', muni)
#---Check for statewide municipalities BlueStakes schema
if not arcpy.Exists(muniBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCplc00_schema', muniBS)
else:
arcpy.DeleteFeatures_management(muniBS)
srcFlds = ['NAME', 'SHAPE@']
tarFlds = ['NAME', 'SHAPE@']
cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(muni, srcFlds)
tarRows = arcpy.da.InsertCursor(muniBS, tarFlds)
for srcRow in srcRows:
NAME = srcRow[0]
shp = srcRow[1]
tarRows.insertRow((NAME, shp))
del tarRows
#---Copy Municipalities to Blues Stakes root level
arcpy.CopyFeatures_management(muniBS, outLoc + '\\TGR_StWide_plc00.shp')
#---Clip Blue Stakes Municipalities-----------------------------------------------------------
clip(muniBS, 'plc00.shp');
print 'Done Translating Municipalities ' + str(datetime.datetime.now())
#-------------------------------------------------------------------------------------------------------------------------------------------
def mileposts():
print 'Starting Mileposts ' + str(datetime.datetime.now())
arcpy.env.overwriteOutput = True
milePosts = sgid10_GEO + '\\UDOTMilePosts'
exits = sgid10_GEO + '\\Roads_FreewayExits'
milePostsBS = stageDB + '\\Hwy_MPM'
#---Copy new Exits and Mileposts to Staging DB
arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.Roads_FreewayExits', exits)
arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.UDOTMileposts', milePosts)
print 'Copied SGID10.TRANSPORTATION.Roads_FreewayExits to staging DB'
print 'Copied SGID10.TRANSPORTATION.UDOTMileposts to staging DB'
#---Check for Mileposts BlueStakes schema
if not arcpy.Exists(milePostsBS):
arcpy.CopyFeatures_management(schemaDB + '\\Hwy_MPM', milePostsBS)
else:
arcpy.DeleteFeatures_management(milePostsBS)
srcMP_Flds = ['RT_NAME', 'MILEPOST', 'CARTO', 'SHAPE@']
srcEX_Flds = ['EXITNAME', 'SHAPE@']
tarFlds = ['Type', 'Label_Name', 'SHAPE@']
srcMP_Rows = arcpy.da.SearchCursor(milePosts, srcMP_Flds)
srcEX_Rows = arcpy.da.SearchCursor(exits, srcEX_Flds)
tarRows = arcpy.da.InsertCursor(milePostsBS, tarFlds)
#----Add Milepost Records--------------------------------------------------------
for srcMP_Row in srcMP_Rows:
Type = 'mpm'
hwyDig1 = srcMP_Row[0][3:4]
hwyDig2 = srcMP_Row[0][2:4]
hwyDig3 = srcMP_Row[0][1:4]
if srcMP_Row[2] == '1':
Label_Name = 'I-{0} milepost {1}'.format(hwyDig2, srcMP_Row[1])
else:
if srcMP_Row[0][2] == '0':
Label_Name = 'Hwy {0} milepost {1}'.format(hwyDig1, srcMP_Row[1])
elif srcMP_Row[0][1] == '0':
Label_Name = 'Hwy {0} milepost {1}'.format(hwyDig2, srcMP_Row[1])
else:
Label_Name = 'Hwy {0} milepost {1}'.format(hwyDig3, srcMP_Row[1])
shp = srcMP_Row[3]
tarRows.insertRow((Type, Label_Name, shp))
#----Add Exit Records-------------------------------------------------------------
for srcEX_Row in srcEX_Rows:
Type = 'epm'
if srcEX_Row[0].split()[0] == 'SR':
Label_Name = 'Hwy ' + ' '.join(srcEX_Row[0].split()[1:])
elif srcEX_Row[0].split()[0] == 'US':
Label_Name = 'Hwy ' + ' '.join(srcEX_Row[0].split()[1:])
else:
Label_Name = srcEX_Row[0]
shp = srcEX_Row[1]
tarRows.insertRow((Type, Label_Name, shp))
del tarRows
#----Copy Mileposts to shapefile--------------------------------------------------
if arcpy.Exists(outLoc + '\\Hwy_MPM.shp'):
arcpy.Delete_management(outLoc + '\\Hwy_MPM.shp')
arcpy.FeatureClassToShapefile_conversion(milePostsBS, outLoc)
else:
arcpy.FeatureClassToShapefile_conversion(milePostsBS, outLoc)
print 'Done Translating Mileposts ' + str(datetime.datetime.now())
#----------------------------------------------------------------------------------------------------------------------------
def landownershipLarge():
print 'Starting Large Landownership ' + str(datetime.datetime.now())
landown = sgid10_GEO + '\\LandOwnership'
parks = sgid10_GEO + '\\Parks'
cemeteries = sgid10_GEO + '\\Cemeteries'
golf = sgid10_GEO + '\\GolfCourses'
landownBS = stageDB + '\\TGR_StWide_lpy'
clpCnty = 'SGID10.BOUNDARIES.Counties'
#---Add new Landownership, Parks, and Cemeteries to SGID10_GEOGRAPHIC staging area
arcpy.CopyFeatures_management('SGID10.CADASTRE.LandOwnership', landown)
arcpy.CopyFeatures_management('SGID10.RECREATION.ParksLocal', parks)
arcpy.CopyFeatures_management('SGID10.SOCIETY.Cemeteries_Poly', cemeteries)
arcpy.CopyFeatures_management('SGID10.RECREATION.GolfCourses', golf)
#---Check for statewide Large Landownership BlueStakes schema
if not arcpy.Exists(landownBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClpy_schema', landownBS)
else:
arcpy.DeleteFeatures_management(landownBS)
srcLnd_Flds = ['OWNER', 'DESIG', 'LABEL_STATE', 'LABEL_FEDERAL', 'STATE_LGD', 'SHAPE@']
srcPrk_Flds = ['NAME', 'SHAPE@']
srcCem_Flds = ['Name', 'SHAPE@']
srcGlf_Flds = ['NAME', 'SHAPE@']
tarFlds = ['CFCC', 'LANDNAME', 'SHAPE@']
cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
srcLnd_Rows = arcpy.da.SearchCursor(landown, srcLnd_Flds)
srcPrk_Rows = arcpy.da.SearchCursor(parks, srcPrk_Flds)
srcCem_Rows = arcpy.da.SearchCursor(cemeteries, srcCem_Flds)
srcGlf_Rows = arcpy.da.SearchCursor(golf, srcGlf_Flds)
tarRows = arcpy.da.InsertCursor(landownBS, tarFlds)
#----Add LandOwn features-------------------------------------
for srcLnd_Row in srcLnd_Rows:
if srcLnd_Row[0] == 'Tribal':
CFCC = 'D40'
if srcLnd_Row[3] != None:
LANDNAME = srcLnd_Row[3]
else:
LANDNAME = srcLnd_Row[4]
shp = srcLnd_Row[5]
tarRows.insertRow((CFCC, LANDNAME, shp))
if srcLnd_Row[1] == 'Military':
CFCC = 'D10'
if srcLnd_Row[3] != None:
LANDNAME = srcLnd_Row[3]
else:
LANDNAME = srcLnd_Row[4]
shp = srcLnd_Row[5]
tarRows.insertRow((CFCC, LANDNAME, shp))
if srcLnd_Row[1] == 'National Historic Site' or srcLnd_Row[1] == 'National Monument' \
or srcLnd_Row[1] == 'National Park' or srcLnd_Row == 'National Recreation Area':
CFCC = 'D83'
if srcLnd_Row[3] != None:
LANDNAME = srcLnd_Row[3]
else:
LANDNAME = srcLnd_Row[4]
shp = srcLnd_Row[5]
tarRows.insertRow((CFCC, LANDNAME, shp))
if srcLnd_Row[1] == 'National Forest':
CFCC = 'D84'
if srcLnd_Row[3] != None:
LANDNAME = srcLnd_Row[3]
else:
LANDNAME = srcLnd_Row[4]
shp = srcLnd_Row[5]
tarRows.insertRow((CFCC, LANDNAME, shp))
if srcLnd_Row[1] == 'Primitive Area' or srcLnd_Row[1] == 'Wilderness' or srcLnd_Row[1] == 'Wildlife Reserve/Management Area' \
or srcLnd_Row[1] == 'National Wildlife Refuge':
CFCC = 'D89'
if srcLnd_Row[3] != None:
LANDNAME = srcLnd_Row[3]
else:
LANDNAME = srcLnd_Row[4]
shp = srcLnd_Row[5]
tarRows.insertRow((CFCC, LANDNAME, shp))
if srcLnd_Row[1] == 'Parks and Recreation':
CFCC = 'D85'
if srcLnd_Row[3] != None:
LANDNAME = srcLnd_Row[3]
else:
LANDNAME = srcLnd_Row[4]
shp = srcLnd_Row[5]
tarRows.insertRow((CFCC, LANDNAME, shp))
#----Add Parks--------------------------------------------
for srcPrk_Row in srcPrk_Rows:
CFCC = 'D85'
if srcPrk_Row[0] != None:
LANDNAME = srcPrk_Row[0]
else:
LANDNAME = ''
shp = srcPrk_Row[1]
tarRows.insertRow((CFCC, LANDNAME, shp))
#----Add Cemeteries--------------------------------------------
for srcCem_Row in srcCem_Rows:
CFCC = 'D82'
if srcCem_Row[0] != None:
LANDNAME = srcCem_Row[0]
else:
LANDNAME = ''
shp = srcCem_Row[1]
tarRows.insertRow((CFCC, LANDNAME, shp))
del tarRows
arcpy.CopyFeatures_management(landownBS, outLoc + '\\TGR_StWide_lpy.shp')
#---Clip Blue Stakes Misc Transportation-----------------------------------------------------------
clip(landownBS, 'lpy.shp');
print 'Done Translating Large Landownership ' + str(datetime.datetime.now())
#----------------------------------------------------------------------------------------------------------------------------------------
def waterPoly():
print 'Starting Lakes ' + str(datetime.datetime.now())
lakes = sgid10_GEO + '\\LakesNHDHighRes'
lakesBS = stageDB + '\\TGR_StWide_wat'
#---Copy lakesNHD to SGID10_GEOGRAPHIC staging area
# arcpy.CopyFeatures_management('SGID10.WATER.LakesNHDHighRes', lakes)
#---Check for statewide lakes BlueStakes schema
if not arcpy.Exists(lakesBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCWAT_schema', lakesBS)
else:
arcpy.DeleteFeatures_management(lakesBS)
srcFlds = ['FCode', 'GNIS_Name', 'InUtah', 'SHAPE@']
tarFlds = ['CFCC', 'LANDNAME', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(lakes, srcFlds)
tarRows = arcpy.da.InsertCursor(lakesBS, tarFlds)
for srcRow in srcRows:
if srcRow[2] == 1:
if srcRow[0] == 36100:
CFCC = 'H32'
if srcRow[1] != None:
LANDNAME = srcRow[1]
else:
LANDNAME = 'Playa'
if srcRow[0] == 39001:
CFCC = 'H32'
if srcRow[1] != None:
LANDNAME = srcRow[1]
else:
LANDNAME = 'Intermittent Salt Lake/Pond'
if srcRow[0] == 39004 or srcRow[0] == 39005 or srcRow[0] == 39006 or srcRow[0] == 39009 or srcRow[0] == 39010:
CFCC = 'H30'
if srcRow[1] != None:
LANDNAME = srcRow[1]
else:
LANDNAME = 'Lake/Pond'
if srcRow[0] == 39012 or srcRow[0] == 43600 or srcRow[0] == 43601 or srcRow[0] == 43607:
CFCC = 'H40'
if srcRow[1] != None:
LANDNAME = srcRow[1]
else:
LANDNAME = 'Reservoir'
if srcRow[0] == 43612:
CFCC = 'H40'
if srcRow[1] != None:
LANDNAME = srcRow[1]
else:
LANDNAME = 'Sewage Treatment Pond'
if srcRow[0] == 43613:
CFCC = 'H40'
if srcRow[1] != None:
LANDNAME = srcRow[1]
else:
LANDNAME = 'Covered Reservoir'
if srcRow[0] == 43616 or srcRow[0] == 43619 or srcRow[0] == 43623 or srcRow[0] == 43624 or srcRow[0] == 43625:
CFCC = 'H40'
if srcRow[1] != None:
LANDNAME = srcRow[1]
else:
LANDNAME = 'Reservoir'
shp = srcRow[3]
tarRows.insertRow((CFCC, LANDNAME, shp))
#---Copy Lakes to Blue Stakes root level---------------
arcpy.CopyFeatures_management(lakesBS, outLoc + '\\TGR_StWide_WAT.shp')
#---Clip Blue Stakes Misc Transportation-----------------------------------------------------------
clip(lakesBS, 'WAT.shp');
print 'Done Translating Lakes ' + str(datetime.datetime.now())
#-------------------------------------------------------------------------------------------------------------------------------------------
def waterLines():
print 'Starting Rivers ' + str(datetime.datetime.now())
rivers = sgid10_GEO + '\\StreamsNHD'
riversBS = stageDB + '\\TGR_StWide_lkH'
arcpy.CopyFeatures_management('SGID10.WATER.StreamsNHDHighRes', rivers)
#---Check for Rivers BlueStakes schema
if not arcpy.Exists(riversBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClkH_schema', riversBS)
else:
arcpy.DeleteFeatures_management(riversBS)
srcFlds = ['GNIS_Name', 'FCode', 'InUtah', 'SHAPE@']
tarFlds = ['FENAME', 'CFCC2', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(rivers, srcFlds)
tarRows = arcpy.da.InsertCursor(riversBS, tarFlds)
for srcRow in srcRows:
if srcRow[2] == 1:
if srcRow[1] == 46003:
CFCC2 = 'H2'
if srcRow[0] != None:
FENAME = srcRow[0]
else:
FENAME = 'unknown'
if srcRow[1] != 46003:
CFCC2 = 'H1'
if srcRow[0] != None:
FENAME = srcRow[0]
else:
FENAME = 'unknown'
shp = srcRow[3]
tarRows.insertRow((FENAME, CFCC2, shp))
del tarRows
#---Copy Rivers to Blue Stakes root level---------------
arcpy.CopyFeatures_management(riversBS, outLoc + '\\TGR_StWide_lkH.shp')
#---Clip Blue Stakes Misc Transportation-----------------------------------------------------------
clip(riversBS, 'lkH.shp');
print 'Done Translating Rivers ' + str(datetime.datetime.now())
#----------------------------------------------------------------------------------------------------------------------------------------
def rail():
print 'Starting Railroads ' + str(datetime.datetime.now())
rail = sgid10_GEO + '\\Railroads'
railLt = sgid10_GEO + '\\LightRail_UTA'
railLt_new = sgid10_GEO + '\\LightRailNewRoutes_UTA'
railCommut = sgid10_GEO + '\\CommuterRailRoute_UTA'
railCommut_new = sgid10_GEO + '\\CommuterRailNewRoutes_UTA'
railBS = stageDB + '\\TGR_StWide_lkB'
arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.Railroads', rail)
arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.LightRail_UTA', railLt)
arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.LightRailNewRoutes_UTA', railLt_new)
arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.CommuterRailRoute_UTA', railCommut)
arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.CommuterRailNewRoutes_UTA', railCommut_new)
#---Check for statewide railroad BlueStakes schema
if not arcpy.Exists(railBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClkB_schema', railBS)
else:
arcpy.DeleteFeatures_management(railBS)
srcRail_Flds = ['RAILROAD', 'SHAPE@']
srcRailLt_Flds = ['SHAPE@']
srcRailLtNew_Flds = ['SHAPE@']
srcRailCommut_Flds = ['SHAPE@']
srcRailCommutNew_Flds = ['SHAPE@']
tarFlds = ['FENAME', 'CFCC2', 'SHAPE@']
cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
srcRail_Rows = arcpy.da.SearchCursor(rail, srcRail_Flds)
srcRailLt_Rows = arcpy.da.SearchCursor(railLt, srcRailLt_Flds)
srcRailLtNew_Rows = arcpy.da.SearchCursor(railLt_new, srcRailLtNew_Flds)
srcRailCommut_Rows = arcpy.da.SearchCursor(railCommut, srcRailCommut_Flds)
srcRailCommutNew_Rows = arcpy.da.SearchCursor(railCommut_new, srcRailCommutNew_Flds)
tarRows = arcpy.da.InsertCursor(railBS, tarFlds)
#---Add Railroads---------------------------------
for srcRail_Row in srcRail_Rows:
if srcRail_Row[0] != 'UTA' and srcRail_Row[0] != 'UT Transit Auth':
FENAME = srcRail_Row[0]
CFCC2 = 'B1'
shp = srcRail_Row[1]
tarRows.insertRow((FENAME, CFCC2, shp))
#----Add Light Rail------------------------------------
for srcRailLt_Row in srcRailLt_Rows:
FENAME = 'UTA Trax light rail'
CFCC2 = 'B1'
shp = srcRailLt_Row[0]
tarRows.insertRow((FENAME, CFCC2, shp))
#----Add Light New Rail------------------------------------
for srcRailLtNew_Row in srcRailLtNew_Rows:
FENAME = 'UTA Trax light rail'
CFCC2 = 'B1'
shp = srcRailLtNew_Row[0]
tarRows.insertRow((FENAME, CFCC2, shp))
#----Add Commuter Rail------------------------------------
for srcRailCommut_Row in srcRailCommut_Rows:
FENAME = 'UTA Frontrunner railroad'
CFCC2 = 'B1'
shp = srcRailCommut_Row[0]
tarRows.insertRow((FENAME, CFCC2, shp))
#----Add Commuter New Rail------------------------------------
for srcRailCommutNew_Row in srcRailCommutNew_Rows:
FENAME = 'UTA Frontrunner railroad'
CFCC2 = 'B1'
shp = srcRailCommutNew_Row[0]
tarRows.insertRow((FENAME, CFCC2, shp))
del tarRows
#---Copy Railroads to Blue Stakes root level----------------------
arcpy.CopyFeatures_management(railBS, outLoc + '\\TGR_StWide_lkB.shp')
#---Clip Blue Stakes Airstrips-----------------------------------------------------------
clip(railBS, 'lkB.shp');
print 'Done Translating Railroads ' + str(datetime.datetime.now())
#-------------------------------------------------------------------------------------------------------------------------------------------
def airstrips():
print 'Starting Airstrips ' + str(datetime.datetime.now())
airstrips = sgid10_GEO + '\\Airports'
airstripsBS = stageDB + '\\TGR_StWide_lkD'
clpCnty = 'SGID10.BOUNDARIES.Counties'
arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.Airports', airstrips)
#---Check for statewide airports BlueStakes schema
if not arcpy.Exists(airstripsBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClkD_schema', airstripsBS)
else:
arcpy.DeleteFeatures_management(airstripsBS)
srcFlds = ['FAC_TYPE', 'FULLNAME', 'SHAPE@']
tarFlds = ['FENAME', 'CFCC2', 'SHAPE@']
cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(airstrips, srcFlds)
tarRows = arcpy.da.InsertCursor(airstripsBS, tarFlds)
for srcRow in srcRows:
if srcRow[0] == 'AIRPORT':
if srcRow[0].find('AIRFIELD') != -1:
FENAME = srcRow[1].replace('MUNI', 'MUNICIPAL')
elif srcRow[0].find('BASE') != -1:
FENAME = srcRow[1]
else:
FENAME = srcRow[1].replace('MUNI', 'MUNICIPAL') + ' ' + srcRow[0]
else:
FENAME = srcRow[1]
CFCC2 = 'D5'
shp = srcRow[2]
tarRows.insertRow((FENAME, CFCC2, shp))
del tarRows
#---Copy Airstrips to Blue Stakes root level-------------------------
arcpy.CopyFeatures_management(airstripsBS, outLoc + '\\TRG_StWide_lkD.shp')
#---Clip Blue Stakes Airstrips-----------------------------------------------------------
clip(airstripsBS, 'lkD.shp');
print 'Done Translating Airstrips ' + str(datetime.datetime.now())
#-------------------------------------------------------------------------------------------------------------------------------------------
def miscTransportation():
print 'Starting Misc Transportation ' + str(datetime.datetime.now())
miscTrans = sgid10_GEO + '\\SkiLifts'
miscTransBS = stageDB + '\\TGR_StWide_lkC'
clpCnty = 'SGID10.BOUNDARIES.Counties'
arcpy.CopyFeatures_management('SGID10.RECREATION.SkiLifts', miscTrans)
#---Check for statewide municipalities BlueStakes schema
if not arcpy.Exists(miscTransBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClkC_schema', miscTransBS)
else:
arcpy.DeleteFeatures_management(miscTransBS)
srcFlds = ['LIFT_NAME', 'SHAPE@']
tarFlds = ['FENAME', 'CFCC2', 'SHAPE@']
cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(miscTrans, srcFlds)
tarRows = arcpy.da.InsertCursor(miscTransBS, tarFlds)
for srcRow in srcRows:
FENAME = srcRow[0] + ' Ski Lift'
CFCC2 = 'C3'
shp = srcRow[1]
tarRows.insertRow((FENAME, CFCC2, shp))
del tarRows
#---Copy Misc Trans to Blue Stakes root level---------------
arcpy.CopyFeatures_management(miscTransBS, outLoc + '\\TGR_StWide_lkC.shp')
#---Clip Blue Stakes Misc Transportation-----------------------------------------------------------
clip(miscTransBS, 'lkC.shp');
print 'Done Translating Misc Transportation ' + str(datetime.datetime.now())
#----------------------------------------------------------------------------------------------------------------------------------------------
def townships():
print 'Starting Townships ' + str(datetime.datetime.now())
twnShips = sgid10_GEO + '\\PLSSTownships'
twnShipsBS = stageDB + '\\UT_TR'
#---Move Townships in SGID10_GEOGRAPHIC staging area
## if arcpy.Exists(muni):
## arcpy.Delete_management(muni)
arcpy.CopyFeatures_management('SGID10.CADASTRE.PLSSTownships_GCDB', twnShips)
## else:
## arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Municipalities', muni)
#---Check for statewide township BlueStakes schema
if not arcpy.Exists(twnShipsBS):
arcpy.CopyFeatures_management(schemaDB + '\\UT_TR_schema', twnShipsBS)
else:
arcpy.DeleteFeatures_management(twnShipsBS)
srcFlds = ['BASEMERIDIAN', 'TWNSHPLAB', 'SHAPE@']
tarFlds = ['NAME', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(twnShips, srcFlds)
tarRows = arcpy.da.InsertCursor(twnShipsBS, tarFlds)
for srcRow in srcRows:
NAME = ("SL" if srcRow[0] == "26" else "UI") + " " + srcRow[1]
shp = srcRow[2]
tarRows.insertRow((NAME, shp))
del tarRows
#---Export to shapefile-------------------------------------------
outTwnshps = outLoc + '\\UT_TR.shp'
arcpy.CopyFeatures_management(twnShipsBS, outTwnshps)
flds = arcpy.ListFields(outTwnshps)
for fld in flds:
if fld.name == 'Shape_Area':
arcpy.DeleteField_management(outTwnshps, 'Shape_Area')
if fld.name == 'Shape_Leng':
arcpy.DeleteField_management(outTwnshps, 'Shape_Leng')
print 'Done Translating Townships ' + str(datetime.datetime.now())
#----------------------------------------------------------------------------------------------------------------------------------------------
def sections():
print 'Starting Sections ' + str(datetime.datetime.now())
sections = sgid10_GEO + '\\PLSSSections'
sectionsBS = stageDB + '\\UT_TRS'
#---Move Sections to SGID10_GEOGRAPHIC staging area
arcpy.CopyFeatures_management('SGID10.CADASTRE.PLSSSections_GCDB', sections)
#---Check for statewide BlueStakes sections
if not arcpy.Exists(sectionsBS):
arcpy.CopyFeatures_management(schemaDB + '\\UT_TRS_schema', sectionsBS)
else:
arcpy.DeleteFeatures_management(sectionsBS)
srcFlds = ['SNUM', 'SHAPE@']
tarFlds = ['NAME', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(sections, srcFlds)
tarRows = arcpy.da.InsertCursor(sectionsBS, tarFlds)
for srcRow in srcRows:
NAME = srcRow[0]
shp = srcRow[1]
tarRows.insertRow((NAME, shp))
del tarRows
#---Export to shapefile-------------------------------------------
outSections = outLoc + '\\UT_TRS.shp'
arcpy.CopyFeatures_management(sectionsBS, outSections)
flds = arcpy.ListFields(outSections)
for fld in flds:
if fld.name == 'Shape_Area':
arcpy.DeleteField_management(outSections, 'Shape_Area')
if fld.name == 'Shape_Leng':
arcpy.DeleteField_management(outSections, 'Shape_Leng')
print 'Done Translating Sections ' + str(datetime.datetime.now())
#----------------------------------------------------------------------------------------------------------------------------------------------
def deciPoints():
print 'Starting Deci Points (GNIS) ' + str(datetime.datetime.now())
deciPts = sgid10_GEO + '\\GNIS2010'
deciPtsBS = stageDB + '\\TGR_StWide_deci'
#---Move GNIS to SGID10_GEOGRAPHIC staging area
arcpy.CopyFeatures_management('SGID10.LOCATION.PlaceNamesGNIS2010', deciPts)
#---Check for statewide Deci Points BlueStakes schema
if not arcpy.Exists(deciPtsBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCdeci_schema', deciPtsBS)
else:
arcpy.DeleteFeatures_management(deciPtsBS)
srcFlds = ['NAME', 'SHAPE@']
tarFlds = ['NAME', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(deciPts, srcFlds)
tarRows = arcpy.da.InsertCursor(deciPtsBS, tarFlds)
for srcRow in srcRows:
if srcRow[0] != None:
NAME = srcRow[0]
else:
NAME = ''
shp = srcRow[1]
tarRows.insertRow((NAME, shp))
del tarRows
#---Clip Blue Stakes Deci Points-----------------------------------------------------------
clip(deciPtsBS, 'deci.shp');
print 'Done Translating Deci Points (GNIS) ' + str(datetime.datetime.now())
#----------------------------------------------------------------------------------------------------------------------------------------------
def addedPoints():
print 'Starting Added Points ' + str(datetime.datetime.now())
correctionsPts = sgid10_GEO + '\\CorrectionalFacilities'
fireStnPts = sgid10_GEO + '\\FireStations'
libraryPts = sgid10_GEO + '\\Libraries'
liquorPts = sgid10_GEO + '\\LiquorStores'
churchPts = sgid10_GEO + '\\PlacesOfWorship'
policePts = sgid10_GEO + '\\PoliceStations'
postOfficePts = sgid10_GEO + '\\PostOffices'
schoolPts = sgid10_GEO + '\\Schools'
mallPts = sgid10_GEO + '\\ShoppingMalls'
healthCarePts = sgid10_GEO + '\\HealthCareFacilities'
addedPtsBS = stageDB + '\\TGR_StWide_added'
#---Move Points to SGID10_GEOGRAPHIC staging area
arcpy.CopyFeatures_management('SGID10.SOCIETY.CorrectionalFacilities', correctionsPts)
arcpy.CopyFeatures_management('SGID10.SOCIETY.FireStations', fireStnPts)
arcpy.CopyFeatures_management('SGID10.SOCIETY.Libraries', libraryPts)
arcpy.CopyFeatures_management('SGID10.SOCIETY.LiquorStores', liquorPts)
arcpy.CopyFeatures_management('SGID10.SOCIETY.PlacesOfWorship', churchPts)
arcpy.CopyFeatures_management('SGID10.SOCIETY.PoliceStations', policePts)
arcpy.CopyFeatures_management('SGID10.SOCIETY.PostOffices', postOfficePts)
arcpy.CopyFeatures_management('SGID10.SOCIETY.Schools', schoolPts)
arcpy.CopyFeatures_management('SGID10.SOCIETY.ShoppingMalls', mallPts)
arcpy.CopyFeatures_management('SGID10.HEALTH.HealthCareFacilities', healthCarePts)
print 'Done copying features from SGID10 to staging area'
#---Check for statewide Deci Points BlueStakes schema
if not arcpy.Exists(addedPtsBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCdeci_schema', addedPtsBS)
else:
arcpy.DeleteFeatures_management(addedPtsBS)
tarFlds = ['NAME', 'SHAPE@']
tarRows = arcpy.da.InsertCursor(addedPtsBS, tarFlds)
pointFC_List = [correctionsPts, fireStnPts, libraryPts, churchPts, mallPts, healthCarePts]
#---Loop through feature classes that have common fields-------
for pointFC in pointFC_List:
srcFlds = ['NAME', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(pointFC, srcFlds)
for srcRow in srcRows:
if srcRow[0] != None:
if len(srcRow[0]) > 79:
NAME = ' '.join(srcRow[0].split()[:-1]).title()
else:
NAME = srcRow[0].title()
else:
NAME = ''
shp = srcRow[1]
tarRows.insertRow((NAME, shp))
print 'Added ' + pointFC
liquorFlds = ['TYPE', 'SHAPE@']
policeFlds = ['NAME', 'SHAPE@']
postOfficeFlds = ['TOWN', 'STREET', 'SHAPE@']
schoolFlds = ['INSTITUTION_NAME', 'SHAPE@']
liquorRows = arcpy.da.SearchCursor(liquorPts, liquorFlds)
policeRows = arcpy.da.SearchCursor(policePts, policeFlds)
postOfficeRows = arcpy.da.SearchCursor(postOfficePts, postOfficeFlds)
schoolRows = arcpy.da.SearchCursor(schoolPts, schoolFlds)
for liquorRow in liquorRows:
if liquorRow[0] != None:
NAME = 'Liquor ' + liquorRow[0]
else:
NAME = 'Liquor Store'
shp = liquorRow[1]
tarRows.insertRow((NAME, shp))
print 'Added ' + liquorPts
for policeRow in policeRows:
if policeRow[0] != None:
if policeRow[0] == 'UNITED STATES FISH AND WILDLIFE SERVICE - OFFICE OF LAW ENFORCEMENT - BEAR RIVER MIGRATORY BIRD REFUGE':
NAME = 'U.S. Fish And Wildlife Service - Law Enforcement - Bear River Bird Refuge'
else:
NAME = (policeRow[0].title().replace('United States', 'U.S.'))
else:
NAME = ''
shp = policeRow[1]
tarRows.insertRow((NAME, shp))
print 'Added ' + policePts
for postOfficeRow in postOfficeRows:
if postOfficeRow[0] != None:
NAME = postOfficeRow[0] + ' Post Office'
else:
NAME = 'Post Office'
shp = policeRow[1]
tarRows.insertRow((NAME, shp))
print 'Added ' + postOfficePts
for schoolRow in schoolRows:
if schoolRow[0] != None:
NAME = schoolRow[0].title()
else:
NAME = ''
shp = schoolRow[1]
tarRows.insertRow((NAME, shp))
print 'Added ' + schoolPts
del tarRows
#---Clip Blue Stakes Deci Points-----------------------------------------------------------
clip(deciPtsBS, 'deci.shp');
print 'Done Translating Added Points ' + str(datetime.datetime.now())
#----------------------------------------------------------------------------------------------------------------------------------------------
def counties():
print 'Starting Counties ' + str(datetime.datetime.now())
cnty = sgid10_GEO + '\\Counties'
utah = sgid10_GEO + '\\Utah'
cntyBS = stageDB + '\\TGRSSCCCcty00'
cntyBS_All = stageDB + '\\CO49_D90'
stateBS = stageDB + '\\ST49_D00'
#---Move Counties to SGID10_GEOGRAPHIC staging area
arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Counties', cnty)
arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Utah', utah)
#---Check for County BlueStakes schema
if not arcpy.Exists(cntyBS):
arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCcty00_schema', cntyBS)
if not arcpy.Exists(cntyBS_All):
arcpy.CopyFeatures_management(schemaDB + '\\CO49_D90_schema', cntyBS_All)
if not arcpy.Exists(stateBS):
arcpy.CopyFeatures_management(schemaDB + '\\ST49_D00_schema', stateBS)
else:
arcpy.DeleteFeatures_management(cntyBS)
arcpy.DeleteFeatures_management(cntyBS_All)
arcpy.DeleteFeatures_management(stateBS)
srcFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
srcFldsUT = ['STATE', 'SHAPE@']
cntyFlds = ['COUNTY', 'SHAPE@']
cntyAllFlds = ['NAME', 'ST', 'CO', 'SHAPE@']
stFlds = ['NAME', 'STATE', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(cnty, srcFlds)
srcRowsUT = arcpy.da.SearchCursor(utah, srcFldsUT)
cntyRows = arcpy.da.InsertCursor(cntyBS, cntyFlds)
cntyAllRows = arcpy.da.InsertCursor(cntyBS_All, cntyAllFlds)
stRows = arcpy.da.InsertCursor(stateBS, stFlds)
#---Create individual county shapefiles--------------------------------------------------------
for srcRow in srcRows:
if srcRow[0] != None:
COUNTY = srcRow[0]
else:
COUNTY = ''
shp = srcRow[2]
cntyRows.insertRow((COUNTY, shp))
del cntyRows
arcpy.CopyFeatures_management(cntyBS, outLoc + outCntyShp)
#---Copy each county to Bluestakes folder----------
cntyBSRows = arcpy.da.SearchCursor(cntyBS, cntyFlds)
for cntyBSRow in cntyBSRows:
cntyName = ''.join(cntyBSRow[0].title().split())
fldrPrefix = '\\TGR'
outFldr = outLoc + '\\TGR' + fipsDict[cntyName]
outCntyShp = fldrPrefix + fipsDict[cntyName] + 'cty00.shp'
cntyFL = arcpy.MakeFeatureLayer_management(cntyBS, cntyName + '_FL', " \"COUNTY\" = '{0}' ".format(cntyBSRow[0]))
arcpy.CopyFeatures_management(cntyFL, outFldr + outCntyShp)
flds = arcpy.ListFields(outFldr + outCntyShp)
for fld in flds:
if fld.name == 'Shape_Area':
arcpy.DeleteField_management(outFldr + outCntyShp, 'Shape_Area')
print 'should have deleted area fld'
if fld.name == 'Shape_Leng':
arcpy.DeleteField_management(outFldr + outCntyShp, 'Shape_Leng')
print 'should have deleted leng fld'
#---Create Statewide County Shapefile----------------------------------------------------------
for srcRow in srcRows:
NAME = srcRow[0]
ST = '49'
CO = srcRow[1][-3:]
shp = srcRow[2]
cntyAllRows.insertRow((NAME, ST, CO, shp))
del cntyAllRows
cntyBS_All_shp = outLoc + '\\CO49_D90.shp'
arcpy.CopyFeatures_management(cntyBS_All, cntyBS_All_shp)
flds = arcpy.ListFields(cntyBS_All_shp)
for fld in flds:
if fld.name == 'Shape_Area':
arcpy.DeleteField_management(cntyBS_All_shp, 'Shape_Area')
if fld.name == 'Shape_Leng':
arcpy.DeleteField_management(cntyBS_All_shp, 'Shape_Leng')
#---Create State shapfile--------------------------------------------------------------------
for srcRowUT in srcRowsUT:
if srcRowUT[0] == 'Utah':
NAME = 'Utah'
STATE = '49'
shp = srcRowUT[1]
stRows.insertRow((NAME, STATE, shp))
del stRows
stateBS_shp = outLoc + '\\ST49_D00.shp'
arcpy.CopyFeatures_management(stateBS, stateBS_shp)
flds = arcpy.ListFields(stateBS_shp)
for fld in flds:
if fld.name == 'Shape_Area':
arcpy.DeleteField_management(stateBS_shp, 'Shape_Area')
if fld.name == 'Shape_Leng':
arcpy.DeleteField_management(stateBS_shp, 'Shape_Leng')
print 'Done Translating Counties ' + str(datetime.datetime.now())
#---------------------------------------------------------------------------------------------------------------------
def addressZones():
print 'Starting Address Zones ' + str(datetime.datetime.now())
addZones = sgid10_GEO + '\\AddressSystemQuadrants'
addZonesBS = stageDB + '\\addrsys'
#---Add Address Zones to SGID10_GEOGRAPHIC staging area
arcpy.CopyFeatures_management('SGID10.LOCATION.AddressSystemQuadrants', addZones)
#---Check for Address Zones BlueStakes schema
if not arcpy.Exists(addZonesBS):
arcpy.CopyFeatures_management(schemaDB + '\\addrsys_schema', addZonesBS)
else:
arcpy.DeleteFeatures_management(addZonesBS)
srcFlds = ['GRID_NAME', 'QUADRANT', 'SHAPE@']
tarFlds = ['NAME', 'SHAPE@']
srcRows = arcpy.da.SearchCursor(addZones, srcFlds)
tarRows = arcpy.da.InsertCursor(addZonesBS, tarFlds)
for srcRow in srcRows:
if srcRow[0] != None:
if srcRow[1] != None:
NAME = srcRow[0] + ' ' + srcRow[1]
else:
NAME = srcRow[0]
shp = srcRow[2]
tarRows.insertRow((NAME, shp))
del tarRows
#---Copy Address Zones to Blues Stakes root level
arcpy.CopyFeatures_management(addZonesBS, outLoc + '\\addrsys_StWide.shp')
#---Clip by county-------------------------------------------
clpFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
clpRows = arcpy.da.SearchCursor(clpCnty, clpFlds)
for row in clpRows:
clpFeat = row[2]
#----Delete shapefiles with no features----
clp = arcpy.Clip_analysis(addZonesBS, clpFeat, outLoc + '\\TGR' + row[1] + '\\addrsys' + row[1][-2:] + '.shp')
clpCount = int(arcpy.GetCount_management(clp).getOutput(0))
if clpCount < 1:
arcpy.Delete_management(clp)
flds = arcpy.ListFields(clp)
for fld in flds:
if fld.name == 'Shape_Area':
arcpy.DeleteField_management(clp, 'Shape_Area')
if fld.name == 'Shape_Leng':
arcpy.DeleteField_management(clp, 'Shape_Leng')
print 'Done Translating Municipalities ' + str(datetime.datetime.now())
#---Clip Blue Stakes output, delete empty shapefiles, delete Shape_Leng field-----------------------------------------
def clip(clipMe, outNameSuffix):
clpCnty = sgid10_GEO + '\\Counties'
arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Counties', clpCnty)
clpFlds = ['NAME', 'FIPS_STR', 'SHAPE@']
clpRows = arcpy.da.SearchCursor(clpCnty, clpFlds)
fldrPrefix = '\\TGR'
for row in clpRows:
clpFeat = row[2]
#----Delete shapefiles with no features----
clp = arcpy.Clip_analysis(clipMe, clpFeat, outLoc + fldrPrefix + row[1] + fldrPrefix + row[1] + outNameSuffix)
clpCount = int(arcpy.GetCount_management(clp).getOutput(0))
if clpCount < 1:
arcpy.Delete_management(clp)
flds = arcpy.ListFields(clp)
for fld in flds:
if fld.name == 'Shape_Area':
arcpy.DeleteField_management(clp, 'Shape_Area')
if fld.name == 'Shape_Leng':
arcpy.DeleteField_management(clp, 'Shape_Leng')
#parcels();
roads();
#municipalities();
#mileposts();
#landownershipLarge();
#waterPoly();
#waterLines();
#rail();
#airstrips();
#miscTransportation();
#addressPoints();
#townships();
#sections();
#deciPoints();
#addedPoints();
#counties();
#addressZones();
|
[
"zachybeck"
] |
zachybeck
|
9f6df83ef0c85235a7b23d535ab01164ba9d8afa
|
3c437c9ad69317115d5fa9dfc72d22b2e415c0ac
|
/extra/py/setup.py
|
6accd7fbf2dd525abf3a5b7b2ade65a41b66bcb8
|
[
"MIT"
] |
permissive
|
SpartanJ/bmpanel2
|
e2bcda8eac8385f718fbaa51aa078ac816a46aee
|
9d67757d915c7b707cc48a50c8cf97aa7c7a3513
|
refs/heads/master
| 2021-07-25T19:30:36.182477
| 2021-01-12T15:02:43
| 2021-01-12T15:02:43
| 11,990,899
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 253
|
py
|
from distutils.core import setup
setup(name='bmpanel2cfg',
version='1.0',
description='Bmpanel2 Config',
author='nsf',
author_email='no.smile.face@gmail.com',
scripts=['bmpanel2cfg'],
py_modules=['bmpanel2']
)
|
[
"no.smile.face@gmail.com"
] |
no.smile.face@gmail.com
|
30ede00e9d10dd52241df086f9b16f32c6aa467a
|
6b01a1743bb58d079f957971d83209896ba45369
|
/budgets/migrations/0003_auto_20190624_2108.py
|
f4b30283890df33fbbeb0c350028a1898c53d289
|
[
"MIT"
] |
permissive
|
saraxboyd/BalancedBudget
|
a0bf0645bfebd8414f5655751c153df4177cda20
|
b5509ef1ee482c9e766dd5749bf19b39e23b6e78
|
refs/heads/master
| 2020-06-10T21:53:35.772910
| 2019-07-10T02:00:25
| 2019-07-10T02:00:25
| 193,762,348
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 361
|
py
|
# Generated by Django 2.1.7 on 2019-06-24 21:08
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('budgets', '0002_budget_current'),
]
operations = [
migrations.RenameField(
model_name='category',
old_name='category',
new_name='name',
),
]
|
[
"saraxboyd@gmail.com"
] |
saraxboyd@gmail.com
|
96568d5b7e0d8b7c45731111f658cc000e273b1a
|
8885b07ee5fd98bbd9d0d9232f6539816879faca
|
/reinforcement/widgets/tests/agents/random/test_random_agent.py
|
def506e5da3ff27fc4055ff3772f4ba98783e3bd
|
[] |
no_license
|
gbaptista/orange3-reinforcement
|
d66db1eefd9914fb33b54f0f014a7d359c501be5
|
e08910899d110b75afa99f25e01ced87ff94a30b
|
refs/heads/master
| 2020-03-28T21:11:55.181459
| 2018-10-05T23:11:35
| 2018-10-05T23:11:35
| 149,137,134
| 5
| 0
| null | 2018-10-06T00:37:26
| 2018-09-17T14:21:52
|
Python
|
UTF-8
|
Python
| false
| false
| 414
|
py
|
from ....agents.random.random_agent import RandomAgent
def test_train_episode():
environment_id = 'FrozenLake-v0'
random_agent = RandomAgent(environment_id)
assert random_agent.name == 'Random Agent'
result_keys = list(random_agent.train_episode().keys())
assert result_keys == ['steps_to_finish',
'total_reward',
'last_action_info']
|
[
"guilhermebaptistasilva@gmail.com"
] |
guilhermebaptistasilva@gmail.com
|
c7ffad90b31577fe2d51742bfeff3c95081eaeb5
|
b875a17848ab0a604c54556e2afe18a83650c4b0
|
/api/views.py
|
13faed2eff31b5d8363ac0dae1e51ad9015a1df0
|
[] |
no_license
|
isaacampah222/alma_server
|
2cd62e32fd2700cc7d5af64f1abfd3960f947234
|
3b7acb2b48291a9528e62bbf1204e14b718891be
|
refs/heads/master
| 2022-11-24T09:45:52.767773
| 2020-07-30T18:53:12
| 2020-07-30T18:53:12
| 283,631,620
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,823
|
py
|
from rest_framework.generics import GenericAPIView
from rest_framework import mixins, permissions
from rest_framework.response import Response
from knox.models import AuthToken
from django.contrib.auth import login
from rest_framework.authtoken.serializers import AuthTokenSerializer
from .models import SingleOrder
from knox.views import LoginView as KnoxLoginView
from .serializers import SingleOrderSerializer,UserSerializer,RegisterSerializer
class SingleOrderView(GenericAPIView, mixins.CreateModelMixin,mixins.ListModelMixin,
mixins.RetrieveModelMixin, mixins.DestroyModelMixin):
queryset = SingleOrder.objects.all()
serializer_class = SingleOrderSerializer
lookup_field = 'id'
def get(self, request, id= None):
if id:
return self.retrieve(request, id)
else:
return self.list(request)
def post(self, request):
return self.create(request)
def delete(self, request, id):
return self.destroy(request, id)
class RegisterAPI(GenericAPIView):
serializer_class = RegisterSerializer
def post(self, request, *args, **kwargs):
serializer = self.get_serializer(data = request.data)
serializer.is_valid(raise_exception=True)
user = serializer.save()
return Response({
"user": UserSerializer(user, context = self.get_serializer_context()).data,
"token": AuthToken.objects.create(user)[1]
})
class LoginAPI(KnoxLoginView):
permission_classes = (permissions.AllowAny, )
def post(self, request, format= None):
serializer =AuthTokenSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
user = serializer.validated_data['user']
login(request, user)
return super(LoginAPI, self).post(request, format=None)
|
[
"ijampah@localhost.localdomain"
] |
ijampah@localhost.localdomain
|
87d413d7af90828f2782af0f4e847016caecc553
|
b403c7fe56209472855dff451f0b6283d5471008
|
/Supplemental_Material/PythonProjects/myFunctions/isItOdd.py
|
14037a63dbb500f808f9316903acca319e7bc678
|
[] |
no_license
|
Sandbox4KidsTM/Python_Basics
|
842bde52796896e913fdb5cc349034c52092555f
|
68c95547ec1567958fc8069e6a4bb119e436211a
|
refs/heads/master
| 2020-03-23T01:06:29.363196
| 2018-08-10T04:32:58
| 2018-08-10T04:32:58
| 140,901,128
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 173
|
py
|
#checks if a user-entered number if odd
a = int(input("enter a num: "))
if a % 2 == 0: #% modulus rep
print("number is EVEN")
else:
print("number is ODDDDD")
|
[
"mitchslabrenz@gmail.com"
] |
mitchslabrenz@gmail.com
|
09260fd8d838c70817614bb78ecb29b4e3fa11f3
|
57fb2f548e594b1ac0fe56d04f7efdf9f48c86ff
|
/Projects/feature_selection/find_signature.py
|
2a61c7487162db1e7d93f1c5c1afb0d7d86ed733
|
[] |
no_license
|
altrome/UD120
|
63d68640ff83b180b25084b65f1078239713faa9
|
9c6696d59729804a8b3e392fff2eba9a0e9787cc
|
refs/heads/master
| 2021-01-10T14:28:25.337822
| 2016-01-21T10:21:54
| 2016-01-21T10:21:54
| 49,486,883
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,907
|
py
|
#!/usr/bin/python
import pickle
import numpy
numpy.random.seed(42)
### The words (features) and authors (labels), already largely processed.
### These files should have been created from the previous (Lesson 10)
### mini-project.
words_file = "../text_learning/your_word_data.pkl"
authors_file = "../text_learning/your_email_authors.pkl"
word_data = pickle.load( open(words_file, "r"))
authors = pickle.load( open(authors_file, "r") )
### test_size is the percentage of events assigned to the test set (the
### remainder go into training)
### feature matrices changed to dense representations for compatibility with
### classifier functions in versions 0.15.2 and earlier
from sklearn import cross_validation
features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(word_data, authors, test_size=0.1, random_state=42)
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
features_train = vectorizer.fit_transform(features_train)
features_test = vectorizer.transform(features_test).toarray()
### a classic way to overfit is to use a small number
### of data points and a large number of features;
### train on only 150 events to put ourselves in this regime
features_train = features_train[:150].toarray()
labels_train = labels_train[:150]
### your code goes here
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(features_train, labels_train)
pred = clf.predict(features_test)
from sklearn.metrics import accuracy_score
acc = accuracy_score(pred, labels_test)
def submitAccuracy():
return acc
#print len(features_test)
print(submitAccuracy())
features_imp = clf.feature_importances_
cnt = 0
for feat in features_imp:
if feat > 0.2:
print feat, vectorizer.get_feature_names()[cnt]
cnt += 1
|
[
"alextrejo@onsanity.com"
] |
alextrejo@onsanity.com
|
c5e6565284afe0245f00a0f1092a9ca3943fd09d
|
5ad4d4ff6060f67e262e42f0d6a24496efa87235
|
/7_10_dream_vacation.py
|
c71f940d6bea95d15bc43aca76eae0a503133f57
|
[] |
no_license
|
silasfelinus/PythonProjects
|
779bba4b508e2110510a1607e44c3edbf8a232ea
|
4474e03c9e21e35c100bfb524a86a35d1b59820d
|
refs/heads/master
| 2022-12-08T12:34:42.987932
| 2020-08-27T21:10:30
| 2020-08-27T21:10:30
| 290,848,514
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 503
|
py
|
responses = {}
polling_active = True
while polling_active:
name = input ("\nWhat is your name? ")
response = input("Where is your dream vacation? ")
responses[name] = response
repeat = input("Would you like to let another person respond? (yes/no) ")
if repeat == 'no':
polling_active = False
#Polling done, print results
print("\n--- Poll results ---")
for name, response in responses.items():
print(name + " would like to visit " + response + ".")
end = input("Press Enter to end: ")
|
[
"silasfelinus@gmail.com"
] |
silasfelinus@gmail.com
|
4ad61973e9a63ca5158e9c049f29b04ecff7bd8c
|
fd198117c4f7fb9f0634c6241defb4278ff1fb00
|
/ali_recommend/tianchi_liyumeng/util/3expandfeature.py
|
7957f338c0e41e33539a3f3ee336795d8f13c375
|
[] |
no_license
|
ajoeajoe/dut_tianchi_mobile_recommend_train
|
acf08d2065cc13514c86db983b49d0370a0925e4
|
ddf529bacf9530c94d1c75afc0ac326bc1f22175
|
refs/heads/master
| 2021-01-19T12:04:08.968171
| 2017-04-19T06:01:31
| 2017-04-19T06:01:31
| 88,015,889
| 0
| 0
| null | 2017-04-12T06:08:53
| 2017-04-12T06:08:53
| null |
UTF-8
|
Python
| false
| false
| 2,198
|
py
|
# coding=utf-8
"""
本脚本用于扩展出除法特征
"""
import sys
# 配置项
# 输入文件路径,需要是未进行归一化的文件
filename = ur'..\dutir_tianchi_recommend_data.csv.mysql.samp.csv'
#配置项结束
if len(sys.argv) > 1:
src = sys.argv[1]
else:
src = filename
#输出文件
dst = src.rstrip('.csv') + '.expand.csv'
#ui 在4~39,u在44~79,i在111~146,c在151~186,uc在218~253
ui_range = range(4, 40)
u_range = range(44, 80)
i_range = range(111, 147)
c_range = range(151, 187)
uc_range = range(218, 254)
def divide(a, b):
if b > 0 or b < 0:
return 1.0 * a / b
else:
return 0
dst_f = open(dst, 'w')
with open(src, 'r') as f:
header = f.readline()
tail = []
for a, b in zip(ui_range, u_range): #ui 在4~39,u在44~79,i在111~146,c在151~186,uc在218~253
tail.append("%d_%d" % (a, b))
for a, b in zip(uc_range, c_range):
tail.append("%d_%d" % (a, b))
for a, b in zip(ui_range, uc_range):
tail.append("%d_%d" % (a, b))
for a, b in zip(i_range, c_range):
tail.append("%d_%d" % (a, b))
for a, b in zip(uc_range, u_range):
tail.append("%d_%d" % (a, b))
header = header.rstrip('\n') + ','.join(tail) + '\n'
print 'headers:', header
length = len(header.rstrip('\n').rstrip(',').split(','))
print 'count:', length
dst_f.write(header)
t = 0
#ui 在4~39,u在44~79,i在111~146,c在151~186,uc在218~253
alist = ui_range + uc_range + ui_range + i_range + uc_range
blist = u_range + c_range + uc_range + c_range + u_range
ziplen = len(alist)
ziplist = zip(range(ziplen), alist, blist)
tail = [0] * ziplen
for tmp in f:
items = [item for item in tmp.rstrip('\n').rstrip(',').split(',')]
for i, a, b in ziplist:
tail[i] = divide(float(items[a]), float(items[b]))
dst_f.write(tmp.rstrip('\n').rstrip(','))
dst_f.write(',')
dst_f.write(','.join(map(str, tail)))
dst_f.write('\n')
t += 1
if t % 1000 == 0:
print t
dst_f.close()
print ur'生成除法特征完毕,文件行数:', t
print ur'输出路径:', dst
|
[
"noreply@github.com"
] |
ajoeajoe.noreply@github.com
|
067fa51eb4fa0e09a6621a97ebe17ee42860681d
|
6b9851216acc29a63fba94a633c9370ed48006ad
|
/product/migrations/0009_auto_20210501_2216.py
|
a47acdf6beda36c035bf5093d83079ee96e302ed
|
[] |
no_license
|
mustafabayarr/Django-E-Commerce
|
dc07ecc7b417decf6de0cd92b915be9c2e7a9b7a
|
de2e46f0793f445ca546ed7b2a484092b4a8e024
|
refs/heads/main
| 2023-05-30T20:01:44.250290
| 2021-06-30T19:05:15
| 2021-06-30T19:05:15
| 347,505,444
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 373
|
py
|
# Generated by Django 3.1.7 on 2021-05-01 19:16
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('product', '0008_comment'),
]
operations = [
migrations.AlterField(
model_name='category',
name='slug',
field=models.SlugField(unique=True),
),
]
|
[
"bayarmustafa151@gmail.com"
] |
bayarmustafa151@gmail.com
|
651cce70a1b9079a9d3c2ff36e374e7e07518a62
|
aa1b99de303ae4c092f77dab0c928e4962d14f3e
|
/project/models.py
|
7f0fefacc983dffec833e44816e98ce87fc9b00f
|
[] |
no_license
|
dionissqq/test
|
980dd260c70ea69463a31265b77f2d6661f9d05f
|
3c547a0ef6a8d96cbe6af862dfcdc7e372ef60dd
|
refs/heads/main
| 2023-03-12T21:52:51.720926
| 2021-02-11T10:36:46
| 2021-02-11T10:36:46
| 338,022,911
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 220
|
py
|
from . import db
# class User():
# email = db.StringField()
# password = db.StringField()
# name = db.StringField()
# class Token(db.Document):
# value = db.StringField()
# userID = db.StringField()
|
[
"dendenysyk@gmail.com"
] |
dendenysyk@gmail.com
|
43d5673a4d29d135e5649d6880fe12ba92999459
|
58442c17f5b0be577258b519be7dc6cefa9b9a8a
|
/exercises/for-statement.py
|
9b68e74cce49ba7b9faed0088901cdfb23707606
|
[] |
no_license
|
LucasMonteiroi/python-course
|
ef4af5ffb53502cfdbfcb6f6e9f9e6022689823e
|
49bbea2cc41320baa1d756dd7605419249ac160b
|
refs/heads/master
| 2022-11-18T19:07:28.336186
| 2020-07-14T18:18:32
| 2020-07-14T18:18:32
| 277,085,859
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 77
|
py
|
print('My name is ')
for i in range(0, 5) :
print('Machine nº' + str(i))
|
[
"lmsupport@outlook.com"
] |
lmsupport@outlook.com
|
87b430e954513c448fbbdd1e6e42af70c656a460
|
328d20201ba9b4080c107781994281a2f05e3dba
|
/AI/similarity/Similarity.py
|
3a069679b615f0aa2a8893442e830214e1eab91a
|
[] |
no_license
|
zzpp2333/BUAA-SoftwareEngineing-Feedback
|
08c4687b79089cf58103fb6124482f2fc17e787a
|
d8fdb71e86c716e455e1fd395bd7a165380577b1
|
refs/heads/master
| 2022-05-18T09:51:55.469865
| 2019-06-02T19:39:27
| 2019-06-02T19:39:27
| 189,846,423
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,204
|
py
|
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from scipy.linalg import norm
from jieba import analyse
import json
tfidf = analyse.extract_tags
class Similarity_function:
def __init__(self, stopwords_file, questions):
self.stf = stopwords_file
self.ques = questions
self.__init_getstopwords__()
def __init_getstopwords__(self):
with open(self.stf, encoding='UTF-8') as f:
self.stop_words = set([l.strip() for l in f])
def getkeywords(self, str):
#tfidf=analyse.extract_tags
tfidf = analyse.textrank
keywords = tfidf(str, 3, False,allowPOS=('n', 'i', 'l', 'nr', 'ns', 'nt', 'nz',))
for keyword in keywords:
if keyword in self.stop_words:
keywords.remove(keyword)
print("keywords:")
for keyword in keywords:
print (keyword + "/")
print('\n')
def getmostsimilar(self, quesid, str):
def add_space(s):
return ' '.join(list(s))
threshold=0.5
s1=add_space(str)
lst=[]
#with open(self.quf) as f:
# self.questions = set([l.strip() for l in f])
#strJson = self.data
#print(strJson)
for q in self.ques:
if quesid == q['id']:
continue
s2 = add_space(q['title'])
cv = TfidfVectorizer(tokenizer=lambda s: s.split())
corpus = [s1, s2]
vectors = cv.fit_transform(corpus).toarray()
similarity=np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1]))
if similarity > threshold:
dic={}
dic["id"]=q['id']
dic["title"]=q['title']
lst.append(dic)
result = {"similar": []}
result["similar"]=lst
return result
#
# file = open('test.json', encoding='utf-8')
# simi_model = Similarity_function('hlp_stop_words.txt', json.load(file))
# simi_model.getkeywords("请问冒泡排序和快速排序在选用时有什么讲究?")
# print(simi_model.getmostsimilar("请问冒泡排序和快速排序在选用时有什么讲究?"))
|
[
"1132066026@qq.com"
] |
1132066026@qq.com
|
89e353022fef9fffa9f5835f74ae7501b8c1d990
|
3960fa9721ff97c8da99d010e27118ab0bc1201d
|
/tests/storage/fake_storage.py
|
c1437e781c494d82c715effbb93b4b9fafedaf40
|
[
"Apache-2.0"
] |
permissive
|
iamjoshbinder/plaso
|
d3ebbc216b4d89c8f8f6ab50f059b6db7bcca599
|
762aa1d1eb17760ef5e2708a48dff2acad7001ea
|
refs/heads/master
| 2021-08-08T13:23:10.146862
| 2017-11-09T10:44:09
| 2017-11-09T10:44:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,362
|
py
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""Tests for the fake storage."""
import unittest
from plaso.containers import errors
from plaso.containers import event_sources
from plaso.containers import reports
from plaso.containers import sessions
from plaso.containers import tasks
from plaso.lib import definitions
from plaso.storage import fake_storage
from tests.storage import test_lib
class FakeStorageWriterTest(test_lib.StorageTestCase):
"""Tests for the fake storage writer object."""
def testAddAnalysisReport(self):
"""Tests the AddAnalysisReport function."""
session = sessions.Session()
analysis_report = reports.AnalysisReport(
plugin_name=u'test', text=u'test report')
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
storage_writer.AddAnalysisReport(analysis_report)
storage_writer.Close()
with self.assertRaises(IOError):
storage_writer.AddAnalysisReport(analysis_report)
def testAddError(self):
"""Tests the AddError function."""
session = sessions.Session()
extraction_error = errors.ExtractionError(
message=u'Test extraction error')
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
storage_writer.AddError(extraction_error)
storage_writer.Close()
with self.assertRaises(IOError):
storage_writer.AddError(extraction_error)
def testAddEvent(self):
"""Tests the AddEvent function."""
session = sessions.Session()
test_events = self._CreateTestEvents()
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
event = None
for event in test_events:
storage_writer.AddEvent(event)
storage_writer.Close()
with self.assertRaises(IOError):
storage_writer.AddEvent(event)
def testAddEventSource(self):
"""Tests the AddEventSource function."""
session = sessions.Session()
event_source = event_sources.EventSource()
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
storage_writer.AddEventSource(event_source)
storage_writer.Close()
with self.assertRaises(IOError):
storage_writer.AddEventSource(event_source)
def testAddEventTag(self):
"""Tests the AddEventTag function."""
session = sessions.Session()
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
test_events = self._CreateTestEvents()
for event in test_events:
storage_writer.AddEvent(event)
event_tag = None
test_event_tags = self._CreateTestEventTags(test_events)
for event_tag in test_event_tags:
storage_writer.AddEventTag(event_tag)
storage_writer.Close()
with self.assertRaises(IOError):
storage_writer.AddEventTag(event_tag)
def testOpenClose(self):
"""Tests the Open and Close functions."""
session = sessions.Session()
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
storage_writer.Close()
storage_writer.Open()
storage_writer.Close()
storage_writer = fake_storage.FakeStorageWriter(
session, storage_type=definitions.STORAGE_TYPE_TASK)
storage_writer.Open()
storage_writer.Close()
storage_writer.Open()
with self.assertRaises(IOError):
storage_writer.Open()
storage_writer.Close()
with self.assertRaises(IOError):
storage_writer.Close()
def testGetEvents(self):
"""Tests the GetEvents function."""
session = sessions.Session()
test_events = self._CreateTestEvents()
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
event = None
for event in test_events:
storage_writer.AddEvent(event)
events = list(storage_writer.GetEvents())
self.assertEqual(len(events), len(test_events))
storage_writer.Close()
# TODO: add tests for GetEventSources.
# TODO: add tests for GetEventTags.
# TODO: add tests for GetFirstWrittenEventSource and
# GetNextWrittenEventSource.
def testGetSortedEvents(self):
"""Tests the GetSortedEvents function."""
session = sessions.Session()
test_events = self._CreateTestEvents()
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
event = None
for event in test_events:
storage_writer.AddEvent(event)
events = list(storage_writer.GetSortedEvents())
self.assertEqual(len(events), len(test_events))
storage_writer.Close()
# TODO: add test with time range.
def testWriteSessionStartAndCompletion(self):
"""Tests the WriteSessionStart and WriteSessionCompletion functions."""
session = sessions.Session()
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
storage_writer.WriteSessionStart()
storage_writer.WriteSessionCompletion()
storage_writer.Close()
with self.assertRaises(IOError):
storage_writer.WriteSessionStart()
with self.assertRaises(IOError):
storage_writer.WriteSessionCompletion()
storage_writer = fake_storage.FakeStorageWriter(
session, storage_type=definitions.STORAGE_TYPE_TASK)
storage_writer.Open()
with self.assertRaises(IOError):
storage_writer.WriteSessionStart()
with self.assertRaises(IOError):
storage_writer.WriteSessionCompletion()
storage_writer.Close()
def testWriteTaskStartAndCompletion(self):
"""Tests the WriteTaskStart and WriteTaskCompletion functions."""
session = sessions.Session()
task = tasks.Task(session_identifier=session.identifier)
storage_writer = fake_storage.FakeStorageWriter(
session, storage_type=definitions.STORAGE_TYPE_TASK, task=task)
storage_writer.Open()
storage_writer.WriteTaskStart()
storage_writer.WriteTaskCompletion()
storage_writer.Close()
with self.assertRaises(IOError):
storage_writer.WriteTaskStart()
with self.assertRaises(IOError):
storage_writer.WriteTaskCompletion()
storage_writer = fake_storage.FakeStorageWriter(session)
storage_writer.Open()
with self.assertRaises(IOError):
storage_writer.WriteTaskStart()
with self.assertRaises(IOError):
storage_writer.WriteTaskCompletion()
storage_writer.Close()
if __name__ == '__main__':
unittest.main()
|
[
"joachim.metz@gmail.com"
] |
joachim.metz@gmail.com
|
8a163c061b4c1c372383efd313451dd7bc59d983
|
0f0440c398ce75044c0e54b12d6c0bc5d1e7a167
|
/sitepr/votacao/migrations/0001_initial.py
|
f6ce911ba968c07fa36a303a8f23ddb43814cd6b
|
[] |
no_license
|
ElSulphur/DIAM
|
8511b15681861c5198479bfdf18455656a5b60ba
|
726f4df785ee5b7b6c58d961b4bb6621de55052f
|
refs/heads/master
| 2023-03-31T20:23:38.345012
| 2021-04-10T22:57:46
| 2021-04-10T22:57:46
| 356,336,623
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,077
|
py
|
# Generated by Django 3.1.7 on 2021-03-18 10:26
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Questao',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('questao_texto', models.CharField(max_length=200)),
('pub_data', models.DateTimeField(verbose_name='data de publicacao')),
],
),
migrations.CreateModel(
name='Opcao',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('opcao_texto', models.CharField(max_length=200)),
('votos', models.IntegerField(default=0)),
('questao', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='votacao.questao')),
],
),
]
|
[
"nascimento1188@gmail.com"
] |
nascimento1188@gmail.com
|
f18208cbe2c56461d40b39d71cffbfaf1b0fee2b
|
6af6a6fb7d0759be524f2592a470d91947e0e2bc
|
/RandomForest/src/dataset/sp_010_1e2.py
|
699dc20994db4aa94c5f33202f7ef75e147f7653
|
[] |
no_license
|
wasit7/ImageSearch
|
5094e56db46af0d05cf76e5b5110c5b92d5198fd
|
3cd7ab3fa3c89873c0b49b1311ed5e7c5f4b8939
|
refs/heads/master
| 2020-05-17T01:12:24.616821
| 2015-08-10T07:26:44
| 2015-08-10T07:26:44
| 22,672,379
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,887
|
py
|
"""
Contain class that provide spiral dataset to random forest.
@author: Krerkkiat
updated by Wasit
"""
import numpy as np
class SpiralDataset:
'''
Provide Spiral Dataset to Random Forest
'''
def __init__(self, clmax, spc):
'''
Initial routine.
Parameter(s):
clmax: int - Maximum number of class.
spc: int - Size of data per class per client.
'''
self.clmax = clmax # class max of dataset
self.spc = spc # q size per class per client
self.dimension = 2 # it is axis x and y
self.I = np.zeros([self.dimension, 0], dtype=np.float) # np.ndarray row vetor, hold features
self.L = np.array([], dtype=np.int) # np.array, hold label
# create I
for x in range(self.clmax):
theta = np.linspace(0, 2*np.pi, self.spc)+np.random.randn(self.spc)*0.4*np.pi/clmax + 2*np.pi*x/clmax
r = np.linspace(0.1, 1, self.spc)
self.I = np.append(self.I, [r*np.cos(theta), r*np.sin(theta)], axis=1)
self.L = np.append(self.L, np.ones(self.spc, dtype=np.int)*x, axis=1)
def getL(self, x):
'''
Lookup database for a lebel of data at x.
Parameter(s):
x: int or numpy.array - Index or indexes of data that you need to get label.
Return(s):
label: int - Label of data at x.
'''
return self.L[x]
def getI(self, theta, x):
'''
Lookup table by theta for tau (splitting parameter or threshold) at index x.
Parameter(s):
theta: int - theta that will use for lookup.
x: int - Index of data.
Return(s):
tau: float - tau or raw data of data at index x with dimension theta.
'''
return self.I[theta, x]
def getX(self):
'''
Make a list of index that will use when initial root node at Client side
Return(s):
idx_list: list - List of index of data.
'''
return np.arange(0, self.clmax * self.spc)
def getParam(self, X):
'''
Random theta and then get tau from that randomed theta at index x.
Parameter(s):
x: list - List of index that will use to get tau.
Return(s):
theta: list - List of randomed theta.
tau: list - List of tau with lookup by theta and x.
'''
theta = np.random.randint(self.dimension, size=len(X))
tau = self.getI(theta, X)
return theta, tau
def __str__(self):
'''
Nothing spacial, use when debug.
Return:
txt: str - String that represent this class.
'''
return 'clmax: {cm}, spc: {ql}'.format(cm=self.clmax, ql=self.spc)
if __name__ == '__main__':
clmax = 10
spc = int(1e2)
dataset = SpiralDataset(clmax, spc)
|
[
"wasit7@gmail.com"
] |
wasit7@gmail.com
|
9f2b66930fa1680db4ac6e886f4ab820898c1c59
|
5e97883ffb0baf1aa837050245afb253d4ad97b1
|
/backend/blog/models.py
|
da9f90ea7b43ccf7eec727478bd0ea01c3a41ea6
|
[
"ISC"
] |
permissive
|
DamQuangKhoa/interview-home-work
|
1d421710da3bf29c3da3cc3ca54babca8222b792
|
39bdfa20aba77af2946cc3e796b92fb343584c66
|
refs/heads/master
| 2020-12-05T14:32:42.258884
| 2020-01-08T15:40:40
| 2020-01-09T19:52:22
| 232,140,207
| 0
| 0
| null | 2020-01-06T16:26:55
| 2020-01-06T16:26:54
| null |
UTF-8
|
Python
| false
| false
| 3,592
|
py
|
from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User
from django.urls import reverse
from taggit.managers import TaggableManager
from django.contrib.postgres.fields import ArrayField
class PublishedManager(models.Manager):
def get_queryset(self):
return super(PublishedManager,
self).get_queryset()\
.filter(status='published')
class PostBlog(models.Model):
title = models.CharField(max_length=250)
slug = models.SlugField(max_length=250
)
author = models.ForeignKey("UserBlog",
related_name='posts',
on_delete=models.CASCADE)
content = models.TextField()
created_at = models.CharField(max_length=250)
tags = ArrayField(models.CharField(max_length=80, blank=True), size=5)
def __str__(self):
return self.title
class UserBlog(models.Model):
username = models.CharField(unique=True, max_length=50, blank=True, null=True)
password = models.CharField(max_length=50, blank=True, null=True)
name = models.CharField(max_length=250)
created_at = models.CharField(max_length=250)
dob = models.CharField(max_length=250)
# list_display = [field.name for field in this._meta.get_fields()]
class CommentBlog(models.Model):
owner = models.ForeignKey(UserBlog,
related_name='comments',
on_delete=models.CASCADE)
post = models.ForeignKey(PostBlog,
related_name='posts',
on_delete=models.CASCADE)
content = models.CharField(max_length=250)
created_at = models.CharField(max_length=250)
class Post(models.Model):
# Our custom manager.
tags = TaggableManager()
STATUS_CHOICES = (
('draft', 'Draft'),
('published', 'Published')
)
objects = models.Manager() # The default manager.
published = PublishedManager()
title = models.CharField(max_length=250)
slug = models.SlugField(max_length=250,
unique_for_date='publish')
author = models.ForeignKey(User,
related_name='blog_posts',
on_delete=models.CASCADE)
body = models.TextField()
publish = models.DateTimeField(default=timezone.now)
created = models.DateTimeField(auto_now_add=True)
updated = models.DateTimeField(auto_now=True)
status = models.CharField(max_length=10,
choices=STATUS_CHOICES,
default='draft')
def get_absolute_url(self):
return reverse('blog:post_detail',
args=[self.publish.year,
self.publish.strftime('%m'),
self.publish.strftime('%d'),
self.slug])
class Meta:
ordering = ('-publish',)
def __str__(self):
return self.title
class Comment(models.Model):
post = models.ForeignKey(PostBlog, related_name='comments',on_delete=models.CASCADE)
name = models.CharField(max_length=80)
email = models.EmailField()
body = models.TextField()
created = models.DateTimeField(auto_now_add=True)
updated = models.DateTimeField(auto_now=True)
active = models.BooleanField(default=True)
class Meta:
ordering = ('created',)
def __str__(self):
return 'Comment by {} on {}'.format(self.name, self.post)
|
[
"damquangkhoa02@gmail.com"
] |
damquangkhoa02@gmail.com
|
6e4be48ebd16b05af14ae97508e703148073511e
|
24b43b336689530ccb9e3b07ff74d21f124c9ebe
|
/Testing/plot_bound.py
|
a0a8178372a74a9f40b5ade861aaf06307a0ef5c
|
[] |
no_license
|
kemalmahmuljin/Pear_Project
|
3f04a429fd14dfd479a3351d139914dbfbed5cd9
|
97b34d2f85b47046028a405cb7cc047d12745fca
|
refs/heads/master
| 2022-04-19T18:18:13.809935
| 2020-04-22T08:23:04
| 2020-04-22T08:23:04
| 240,002,420
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,021
|
py
|
import matplotlib.pyplot as plt
import numpy as np
from io import StringIO
coords_file = open("coords", 'r')
coords_str = coords_file.read()
coords_str = coords_str[coords_str.find('\n') + 1:]
coords_stream = StringIO(coords_str)
coords = np.loadtxt(coords_stream)
boundaries_file = open("boundaries", 'r')
bound_str = boundaries_file.read()
bound_stream = StringIO(bound_str)
boundaries = np.loadtxt(bound_stream)
ax = plt.axes()
for elem in boundaries:
x = [coords[int(elem[0])][0], coords[int(elem[1])][0]]
y = [coords[int(elem[0])][1], coords[int(elem[1])][1]]
if elem[2] == 0:
color = 'r'
else:
color = 'b'
ax.arrow(coords[int(elem[0])][0],coords[int(elem[0])][1],
coords[int(elem[1])][0]-coords[int(elem[0])][0],
coords[int(elem[1])][1]-coords[int(elem[0])][1],
head_width=0.002, length_includes_head=True, lw=0.00001,
color=color)
plt.xlim(0,0.050)
plt.ylim(0,0.120)
plt.title("Working boundaries 05/03/20")
plt.show()
|
[
"gcapittini@localhost.localdomain"
] |
gcapittini@localhost.localdomain
|
55312306f0b0073a60e7739ef1e8dcfcfae8c28c
|
b7fdc9df049029ab043073b06648375da0693737
|
/accounts/api/urls.py
|
10dd92abd9b34d381cc753cb4f45cadc0d924160
|
[] |
no_license
|
karn21/task-manager
|
c640a6209e20b429ffa4f2307273509184f8396f
|
77cacd1e6f83de5eba83ec6b350ba71160fc161c
|
refs/heads/master
| 2023-08-01T13:42:41.747043
| 2020-06-06T09:58:17
| 2020-06-06T09:58:17
| 263,887,690
| 0
| 0
| null | 2021-09-22T19:01:03
| 2020-05-14T10:45:29
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 381
|
py
|
from django.urls import path, include
from knox.views import LogoutView
from .views import UserAPIView, RegisterAPIView,LoginAPIView
urlpatterns = [
path('', include('knox.urls')),
path('user', UserAPIView.as_view()),
path('register', RegisterAPIView.as_view()),
path('login', LoginAPIView.as_view()),
path('logout', LogoutView.as_view(), name='knox_logout')
]
|
[
"karn212000@gmail.com"
] |
karn212000@gmail.com
|
f23a0c46bc7f06f519c46dda30322d02e934272d
|
9ec431f50fd0e8f3949ea792aa14b11ad1712144
|
/Modulo 01/exercicos/d008.py
|
5694b1497cd605daec992565afbbfb0a9f916636
|
[
"MIT"
] |
permissive
|
euyag/python-cursoemvideo
|
c3d42ae332e81a9fc9dfc66743df4acee439bff3
|
d2f684854d926e38ea193816a6c7d2c48d25aa3d
|
refs/heads/main
| 2023-08-02T14:32:02.266366
| 2021-10-01T03:47:40
| 2021-10-01T03:47:40
| 379,093,140
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 200
|
py
|
print('===== DESAFIO 08 =====')
m = int(input('digite um valor em metros: '))
cm = m * 100
mi = m * 1000
print(f'{m}m em centimetros equivale a {cm}cm')
print(f'{m}m em milimetros equivale a {mi}mm')
|
[
"clancysla@gmail.com"
] |
clancysla@gmail.com
|
4fd9bed4328f8591ad62960574eed263df888ec7
|
f618cb7a1b1f49c02396a2bb969cc7518fd163ab
|
/doc/_gallery/1_3_1_noisy_chirp_wv.py
|
ba10a534a72d30bbb4a32f5780d048b7422177fb
|
[] |
no_license
|
kingjr/pytftb
|
b968b8e2fc294a19cec8bf63e7d289f368ddf194
|
0bcacf5eef46bd173d90a23c00a7f4b8ee284b22
|
refs/heads/master
| 2021-01-16T22:27:05.587174
| 2015-06-25T05:16:02
| 2015-06-25T05:16:02
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 572
|
py
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2015 jaidev <jaidev@newton>
#
# Distributed under terms of the MIT license.
"""
"""
from tftb.generators import fmlin, sigmerge, noisecg
from tftb.processing.cohen import WignerVilleDistribution
# Generate a chirp signal
n_points = 128
fmin, fmax = 0.0, 0.5
signal, _ = fmlin(n_points, fmin, fmax)
# Noisy chirp
noisy_signal = sigmerge(signal, noisecg(128), 0)
# Wigner-Ville spectrum of noisy chirp.
wvd = WignerVilleDistribution(noisy_signal)
wvd.run()
wvd.plot(kind='contour')
|
[
"deshpande.jaidev@gmail.com"
] |
deshpande.jaidev@gmail.com
|
e8187f4393ff43fc5d05a2a836249ecab831a4e3
|
2ad1b46515e07561fc45a724e0c890e073bd4553
|
/my_max.py
|
995b5a761346509e17bb47f38be67cc35510e452
|
[] |
no_license
|
MariaKrepko/my_python
|
4b96910de31b43ab3f0d55de69735cbab5b5ff9d
|
36663a6608deaa57dd513d1da34c4dad1d109198
|
refs/heads/master
| 2020-04-23T22:47:57.191051
| 2019-05-28T22:22:34
| 2019-05-28T22:22:34
| 171,514,159
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 86
|
py
|
num1=input()
num2=input()
if num1 > num2:
print(num1)
else:
print(num2)
|
[
"noreply@github.com"
] |
MariaKrepko.noreply@github.com
|
5595eba708e5354b7677d7ac6638394192648dee
|
6322fcae7302c4fe60b14c36a2dfbc5ba7432d8b
|
/profiles_project/profiles_api/migrations/0002_profilefeeditem.py
|
8e2bf057cda238c513914d1d003d70ca9b7b03c2
|
[
"MIT"
] |
permissive
|
Ali1995Askar/profiles-rest-api
|
abb2b580c6ab451159f3164acc3377a62597da3a
|
3e1cd11dfc2cd1fc879b3f1adbe720c0ad38999c
|
refs/heads/master
| 2023-06-12T13:14:32.028640
| 2021-07-08T15:22:06
| 2021-07-08T15:22:06
| 320,111,987
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 789
|
py
|
# Generated by Django 3.2.4 on 2021-07-08 14:57
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('profiles_api', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='ProfileFeedItem',
fields=[
('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('status_text', models.CharField(max_length=255)),
('created_on', models.DateTimeField(auto_now=True)),
('user_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
),
]
|
[
"ali1995askar@gmail.com"
] |
ali1995askar@gmail.com
|
872d338f6ea05a63f4fdf3aa24e2179ae2df3125
|
0e039e8aacd1e89b122ae0d5aa0b58da04ae13af
|
/Python2/matrix_addition1.py
|
a268fa45c0560cdcda10921358e81e3358326fac
|
[] |
no_license
|
jaredStevens/python-exercises
|
0e4013667dd4409c734219558e444bfbf1eb3f06
|
f5aba9c9db2219a258218457960f841ba58a4f6b
|
refs/heads/master
| 2021-09-10T08:29:40.268170
| 2018-03-22T23:20:44
| 2018-03-22T23:20:44
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 216
|
py
|
arr1 = [1, 3, 2, 4]
arr2 = [5, 2, 1, 0]
def addVectors(arr1, arr2):
addList = []
for i in range(0, len(arr1)):
addList.append(arr1[i] + arr2[i])
return addList
print(addVectors(arr1, arr2))
|
[
"jared.b.stevens@gmail.com"
] |
jared.b.stevens@gmail.com
|
685bb881ba505735cab4af01cfd4fd30bc4c0bbd
|
3592225aaddee6265cb7170e0bea9dc606ee6a7e
|
/Documents/UCSB_classes/loadtest/bin/rstpep2html.py
|
6a2a4a3aec25464fb92d7fe7b599b8cc417b3c52
|
[] |
no_license
|
larssbr/AI_ovinger
|
d9c059762b1ffa2c7ebe174ebc0298a677507cec
|
3d2e16c0f291ac0ec2df23cffeb6ef57dd042f56
|
refs/heads/master
| 2021-01-20T05:31:45.768631
| 2015-10-11T16:47:18
| 2015-10-11T16:47:18
| 13,295,085
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 717
|
py
|
#!/Users/larsbrusletto/Documents/UCSB_classes/loadtest/bin/python
# $Id: rstpep2html.py 4564 2006-05-21 20:44:42Z wiemann $
# Author: David Goodger <goodger@python.org>
# Copyright: This module has been placed in the public domain.
"""
A minimal front end to the Docutils Publisher, producing HTML from PEP
(Python Enhancement Proposal) documents.
"""
try:
import locale
locale.setlocale(locale.LC_ALL, '')
except:
pass
from docutils.core import publish_cmdline, default_description
description = ('Generates (X)HTML from reStructuredText-format PEP files. '
+ default_description)
publish_cmdline(reader_name='pep', writer_name='pep_html',
description=description)
|
[
"larsbrusletto@gmail.com"
] |
larsbrusletto@gmail.com
|
2655406fbba0bc1f5d4ec29aaa0d0d04a1e907b4
|
bd0d510a9117c65552c9e813fdfcc115dc36d752
|
/app/__init__.py
|
3e56b439bba39e686c211fdcd571392e348a4fdd
|
[] |
no_license
|
grigorevma/test
|
81a42b1e9f84d0860b915402ef264efef20cc2a8
|
d1342d909b5359f865df2390611ccc95eacf5143
|
refs/heads/master
| 2022-12-21T12:28:16.709713
| 2019-07-18T16:09:45
| 2019-07-18T16:09:45
| 197,398,989
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 476
|
py
|
from flask import Flask
from flask_bootstrap import Bootstrap
from flask_sqlalchemy import SQLAlchemy
from app.config import config
bootstrap = Bootstrap()
db = SQLAlchemy()
def create_app(config_name):
from app.main import main as main_blueprint
app = Flask(__name__)
app.config.from_object(config[config_name])
config[config_name].init_app(app)
bootstrap.init_app(app)
db.init_app(app)
app.register_blueprint(main_blueprint)
return app
|
[
"grigorevma@bk.ru"
] |
grigorevma@bk.ru
|
e365f14b049d2372740d1366505b2ea8cab392c1
|
aa520d389a91e68fa61170caeb4ec8f76fad40d3
|
/testCases/conftest.py
|
05895d257f4acd64a7f20400fa6650496457a1c2
|
[] |
no_license
|
arumugam85/Selenium_Python_Allure
|
5703046b98fcd350b90a50f7ad4a5e5c1b513026
|
9ec65e79c910daec75d51fb7c96fc52a1c309cef
|
refs/heads/master
| 2023-09-04T02:05:00.446419
| 2021-11-01T02:41:34
| 2021-11-01T02:41:34
| 423,153,205
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,370
|
py
|
import datetime
import pytest
from selenium import webdriver
from webdriver_manager.chrome import ChromeDriverManager
class BaseClass:
def __init__(self, driver):
self.driver = driver
@pytest.fixture()
def test_setup(self):
global driver
self.driver.implicitly_wait(10)
self.driver.maximize_window()
yield
self.driver.quit()
# if browser == 'chrome':
# # driver = webdriver.Chrome()
# driver = webdriver.Chrome(ChromeDriverManager().install())
# driver.maximize_window()
#
# elif browser == 'firefox':
# driver = webdriver.Firefox()
# driver.maximize_window()
#
# return driver
def teardown(self):
if driver is None:
self.logger.info("***********Test is Destroyed*************")
self.logger.info("Test destroyed at " + str(datetime.datetime.now()))
# driver.close()
yield
self.driver.quit()
def pytest_addoption(parser):
parser.addoption("--browser")
@pytest.fixture()
def browser(request):
return request.config.getoption("--browser")
def pytest_configure(config):
config._metadata['Project Name'] = 'ECommerce Application'
config._metadata['Framework'] = 'PyTest Framework'
config._metadata['Language'] = 'Python'
config._metadata['Author'] = 'Aru'
|
[
"rarumugambe@gmail.com"
] |
rarumugambe@gmail.com
|
7ed4ad3d5e2ca344f1887ae726701a3e87e4c6ae
|
41615e2198cd99fdf0c8e473918138cedd05dde4
|
/flamingoTest/settings.py
|
d60f4c3f4df0dc035ea6ba3cce3b299b814274ba
|
[] |
no_license
|
mansi02/flamingoTestBackend
|
3b08c7d2e0de40a21e1f584663b73dc91d89ccbc
|
0ffeb7624d174789e2f3975d1bde89a21386b466
|
refs/heads/main
| 2023-06-18T20:58:54.357352
| 2021-06-29T09:57:01
| 2021-06-29T09:57:01
| 381,314,255
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,565
|
py
|
"""
Django settings for flamingoTest project.
Generated by 'django-admin startproject' using Django 3.2.4.
For more information on this file, see
https://docs.djangoproject.com/en/3.2/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.2/ref/settings/
"""
import os.path
from pathlib import Path
# Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-m4reov^nx_q7%=xmvytj3ulnp6m!7tanc9#b93v)9781(h5)44'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['localhost:4200', 'http://localhost;4200', '*']
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'corsheaders',
'rest_framework',
'rest_framework.authtoken',
'custom_user'
]
MIDDLEWARE = [
'corsheaders.middleware.CorsMiddleware',
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'flamingoTest.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
CORS_ORIGIN_ALLOW_ALL = True
WSGI_APPLICATION = 'flamingoTest.wsgi.application'
# Database
# https://docs.djangoproject.com/en/3.2/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',
}
}
AUTH_USER_MODEL = 'custom_user.User'
# Password validation
# https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.2/howto/static-files/
STATIC_URL = '/static/'
MEDIA_URL = os.path.join(BASE_DIR, 'static/images/')
# Default primary key field type
# https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field
DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
|
[
"mansi0201@gmail.com"
] |
mansi0201@gmail.com
|
8b26447125e32014c72172e771be247c148428e0
|
4e5ddba389409b4b62444a4eac9903635b57e230
|
/rastervision/backend/fastai_utils.py
|
1df6d269c2d6389ed6483fbf20a6dceac6cbdc25
|
[
"Apache-2.0",
"LicenseRef-scancode-generic-cla"
] |
permissive
|
blessings-h/raster-vision
|
cc4804e09f8396f861e1fff8bff3e0a4c4f3d048
|
65647c710e668ba59951081faa5f379397185d67
|
refs/heads/master
| 2021-06-29T18:59:23.823567
| 2021-01-27T02:05:01
| 2021-01-27T02:05:01
| 210,014,893
| 0
| 0
| null | 2019-09-21T16:09:08
| 2019-09-21T16:09:07
| null |
UTF-8
|
Python
| false
| false
| 10,285
|
py
|
import os
from os.path import join
import zipfile
from typing import Any
import warnings
from fastai.callbacks import CSVLogger, Callback, SaveModelCallback, TrackerCallback
from fastai.metrics import add_metrics
from fastai.torch_core import dataclass, torch, Tensor, Optional, warn
from fastai.basic_train import Learner
from torch.utils.tensorboard import SummaryWriter
from rastervision.utils.files import (sync_to_dir)
class SyncCallback(Callback):
"""A callback to sync from_dir to to_uri at the end of epochs."""
def __init__(self, from_dir, to_uri, sync_interval=1):
self.from_dir = from_dir
self.to_uri = to_uri
self.sync_interval = sync_interval
def on_epoch_end(self, **kwargs):
if (kwargs['epoch'] + 1) % self.sync_interval == 0:
sync_to_dir(self.from_dir, self.to_uri, delete=True)
class ExportCallback(TrackerCallback):
""""Exports the model when monitored quantity is best.
The exported model is the one used for inference.
"""
def __init__(self, learn:Learner, model_path:str, monitor:str='valid_loss', mode:str='auto'):
self.model_path = model_path
super().__init__(learn, monitor=monitor, mode=mode)
def on_epoch_end(self, epoch:int, **kwargs:Any)->None:
current = self.get_monitor_value()
if (epoch == 0 or
(current is not None and self.operator(current, self.best))):
print(f'Better model found at epoch {epoch} with {self.monitor} value: {current}.')
self.best = current
print(f'Exporting to {self.model_path}')
self.learn.export(self.model_path)
class MySaveModelCallback(SaveModelCallback):
"""Saves the model after each epoch to potentially resume training.
Modified from fastai version to delete the previous model that was saved
to avoid wasting disk space.
"""
def on_epoch_end(self, epoch:int, **kwargs:Any)->None:
"Compare the value monitored to its best score and maybe save the model."
if self.every=="epoch":
self.learn.save(f'{self.name}_{epoch}')
prev_model_path = self.learn.path/self.learn.model_dir/f'{self.name}_{epoch-1}.pth'
if os.path.isfile(prev_model_path):
os.remove(prev_model_path)
else: #every="improvement"
current = self.get_monitor_value()
if current is not None and self.operator(current, self.best):
print(f'Better model found at epoch {epoch} with {self.monitor} value: {current}.')
self.best = current
self.learn.save(f'{self.name}')
class MyCSVLogger(CSVLogger):
"""Logs metrics to a CSV file after each epoch.
Modified from fastai version to:
- flush after each epoch
- append to log if already exists
"""
def __init__(self, learn, filename='history'):
super().__init__(learn, filename)
def on_train_begin(self, **kwargs):
if self.path.exists():
self.file = self.path.open('a')
else:
super().on_train_begin(**kwargs)
def on_epoch_end(self, epoch, smooth_loss, last_metrics, **kwargs):
out = super().on_epoch_end(
epoch, smooth_loss, last_metrics, **kwargs)
self.file.flush()
return out
# The following are a set of metric callbacks that have been modified from the
# original version in fastai to support semantic segmentation, which doesn't
# have the class dimension in position -1. It also adds an ignore_idx
# which is used to ignore pixels with class equal to ignore_idx. These
# would be good to contribute back upstream to fastai -- however we should
# wait for their upcoming refactor of the callback architecture.
@dataclass
class ConfusionMatrix(Callback):
"Computes the confusion matrix."
# The index of the dimension in the output and target arrays which ranges
# over the different classes. This is -1 (the last index) for
# classification, but is 1 for semantic segmentation.
clas_idx:int=-1
def on_train_begin(self, **kwargs):
self.n_classes = 0
def on_epoch_begin(self, **kwargs):
self.cm = None
def on_batch_end(self, last_output:Tensor, last_target:Tensor, **kwargs):
preds = last_output.argmax(self.clas_idx).view(-1).cpu()
targs = last_target.view(-1).cpu()
if self.n_classes == 0:
self.n_classes = last_output.shape[self.clas_idx]
self.x = torch.arange(0, self.n_classes)
cm = ((preds==self.x[:, None]) & (targs==self.x[:, None, None])).sum(dim=2, dtype=torch.float32)
if self.cm is None: self.cm = cm
else: self.cm += cm
def on_epoch_end(self, **kwargs):
self.metric = self.cm
@dataclass
class CMScores(ConfusionMatrix):
"Base class for metrics which rely on the calculation of the precision and/or recall score."
average:Optional[str]="binary" # `binary`, `micro`, `macro`, `weighted` or None
pos_label:int=1 # 0 or 1
eps:float=1e-9
# If ground truth label is equal to the ignore_idx, it should be ignored
# for the sake of evaluation.
ignore_idx:int=None
def _recall(self):
rec = torch.diag(self.cm) / self.cm.sum(dim=1)
rec[rec != rec] = 0 # removing potential "nan"s
if self.average is None: return rec
else:
if self.average == "micro": weights = self._weights(avg="weighted")
else: weights = self._weights(avg=self.average)
return (rec * weights).sum()
def _precision(self):
prec = torch.diag(self.cm) / self.cm.sum(dim=0)
prec[prec != prec] = 0 # removing potential "nan"s
if self.average is None: return prec
else:
weights = self._weights(avg=self.average)
return (prec * weights).sum()
def _weights(self, avg:str):
if self.n_classes != 2 and avg == "binary":
avg = self.average = "macro"
warn("average=`binary` was selected for a non binary case. Value for average has now been set to `macro` instead.")
if avg == "binary":
if self.pos_label not in (0, 1):
self.pos_label = 1
warn("Invalid value for pos_label. It has now been set to 1.")
if self.pos_label == 1: return Tensor([0,1])
else: return Tensor([1,0])
else:
if avg == "micro": weights = self.cm.sum(dim=0) / self.cm.sum()
if avg == "macro": weights = torch.ones((self.n_classes,)) / self.n_classes
if avg == "weighted": weights = self.cm.sum(dim=1) / self.cm.sum()
if self.ignore_idx is not None and avg in ["macro", "weighted"]:
weights[self.ignore_idx] = 0
weights /= weights.sum()
return weights
class Recall(CMScores):
"Compute the Recall."
def on_epoch_end(self, last_metrics, **kwargs):
return add_metrics(last_metrics, self._recall())
class Precision(CMScores):
"Compute the Precision."
def on_epoch_end(self, last_metrics, **kwargs):
return add_metrics(last_metrics, self._precision())
@dataclass
class FBeta(CMScores):
"Compute the F`beta` score."
beta:float=2
def on_train_begin(self, **kwargs):
self.n_classes = 0
self.beta2 = self.beta ** 2
self.avg = self.average
if self.average != "micro": self.average = None
def on_epoch_end(self, last_metrics, **kwargs):
prec = self._precision()
rec = self._recall()
metric = (1 + self.beta2) * prec * rec / (prec * self.beta2 + rec + self.eps)
metric[metric != metric] = 0 # removing potential "nan"s
if self.avg: metric = (self._weights(avg=self.avg) * metric).sum()
return add_metrics(last_metrics, metric)
def on_train_end(self, **kwargs): self.average = self.avg
def zipdir(dir, zip_path):
"""Create a zip file from a directory.
The zip file contains the contents of dir, but not dir itself.
Args:
dir: (str) the directory with the content to place in zip file
zip_path: (str) path to the zip file
"""
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as ziph:
for root, dirs, files in os.walk(dir):
for file in files:
ziph.write(join(root, file),
join('/'.join(dirs),
os.path.basename(file)))
# This code was adapted from
# https://github.com/Pendar2/fastai-tensorboard-callback/blob/master/fastai_tensorboard_callback/tensorboard_cb.py
@dataclass
class TensorboardLogger(Callback):
learn:Learner
run_name:str
histogram_freq:int=100
path:str=None
def __post_init__(self):
self.path = self.path or os.path.join(self.learn.path, "logs")
self.log_dir = os.path.join(self.path, self.run_name)
def on_train_begin(self, **kwargs):
self.writer = SummaryWriter(log_dir=self.log_dir)
def on_epoch_end(self, **kwargs):
iteration = kwargs["iteration"]
metrics = kwargs["last_metrics"]
metrics_names = ["valid_loss"] + [o.__class__.__name__ for o in self.learn.metrics]
for val, name in zip(metrics, metrics_names):
self.writer.add_scalar(name, val, iteration)
def on_batch_end(self, **kwargs):
iteration = kwargs["iteration"]
loss = kwargs["last_loss"]
self.writer.add_scalar("learning_rate", self.learn.opt.lr, iteration)
self.writer.add_scalar("momentum", self.learn.opt.mom, iteration)
self.writer.add_scalar("loss", loss, iteration)
if iteration%self.histogram_freq == 0:
for name, param in self.learn.model.named_parameters():
self.writer.add_histogram(name, param, iteration)
def on_train_end(self, **kwargs):
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
dummy_input = next(iter(self.learn.data.train_dl))[0]
self.writer.add_graph(self.learn.model, tuple(dummy_input))
except Exception as e:
print("Unable to create graph.")
print(e)
self.writer.close()
|
[
"lewfish@gmail.com"
] |
lewfish@gmail.com
|
c0dd503b1a9ab64668c1bd73cb9fac6abcc20aaf
|
9c20f53c155a487b2af0110a7388f7b1ae8d6ac0
|
/JQKA/JQKA/spiders/myselector.py
|
13a243c755006de1367c0d53a52fc93853ace3af
|
[] |
no_license
|
xfzhu2003/github
|
b9f2f2c37b571b7019a2faf02deb5f8d1d5fafc9
|
2f135849023a89d1514dec236d086e4783aad3df
|
refs/heads/master
| 2020-08-08T14:59:03.860049
| 2018-03-20T01:52:37
| 2018-03-20T01:52:37
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 10,810
|
py
|
#-*- coding:utf-8 -*-
import re
import urllib.parse
#from itertools import chain
import datetime
#import random
from user_agent import generate_user_agent
from pdfminer.pdfparser import PDFParser,PDFDocument
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import PDFPageAggregator
from pdfminer.layout import LTTextBoxHorizontal,LAParams
from pdfminer.pdfinterp import PDFTextExtractionNotAllowed
import requests
import os
from io import BytesIO
from win32com import client as wc
#from imp import reload
s = requests.Session()
class Selector(object):
def __init__(self):
pass
@staticmethod
def pdfparse(url=None):
try:
if url:
res = s.get(url,headers = {"user-agent":generate_user_agent()})
res.encoding = 'utf-8'
f = BytesIO()
f.write(res.content)
f.seek(0)
# path2 = os.getcwd()+"\\%s.txt"%name.split(".")[0]
# print(path1)
praser = PDFParser(f)
doc = PDFDocument()
praser.set_document(doc)
doc.set_parser(praser)
doc.initialize()
if not doc.is_extractable:
raise PDFTextExtractionNotAllowed
else:
# 创建PDf 资源管理器 来管理共享资源
# print("a")
rsrcmgr = PDFResourceManager()
# 创建一个PDF设备对象
laparams = LAParams()
device = PDFPageAggregator(rsrcmgr, laparams=laparams)
# 创建一个PDF解释器对象
interpreter = PDFPageInterpreter(rsrcmgr, device)
text = ''
# 循环遍历列表,每次处理一个page的内容
for page in doc.get_pages(): # doc.get_pages() 获取page列表
interpreter.process_page(page)
# 接受该页面的LTPage对象
layout = device.get_result()
#text = "".join(map(lambda x:x.get_text().strip(" ") if x.get_text() else "",layout))
#print(text)
# 这里layout是一个LTPage对象 里面存放着 这个page解析出的各种对象 一般包括LTTextBox, LTFigure, LTImage, LTTextBoxHorizontal 等等 想要获取文本就获得对象的text属性,
for x in layout:
results = x.get_text()
if results:
text = text+results.strip('\n')
f.close()
return text
except Exception as e:
print(e)
@staticmethod
def docparse(url):
name = url.split("/")[-1]
try:
path1 = os.getcwd()+"\\%s.doc"%name.split(".")[0]
path2 = os.getcwd()+"\\%s.txt"%name.split(".")[0]
# print(path1,path2)
doc = s.get(url,headers = {"user-agent":generate_user_agent()})
word = wc.Dispatch('Word.Application')
with open(path1,"wb") as f:
f.write(doc.content)
docment = word.Documents.Open(path1)
docment.SaveAs(path2, 4)
docment.Close()
try:
with open(path2) as f:
workdoc = f.read()
except:
workdoc = ""
os.remove(path1)
os.remove(path2)
return workdoc
except Exception as e:
print(e)
@classmethod
def replace_all(self,content):
content = self.replace_html_tag(content)
content = self.replace_invalid_html_char(content)
content = self.replace_invalid_char(content)
return content
@staticmethod
def changdt(content,dt):
if dt == "int":
v = int(content) if hasattr(content,'replace') and content.isdigit() else content if isinstance(content,int) else None
return v
elif dt == "float":
try:
v = round(float(content),4)
return v
except:
return None
if dt == 'str':
try:
if content:
return str(content)
except:
return None
if dt == "date":
if content:
if re.match("\d{4}-\d+-\d+",content):
result = content.split("-")
return "{0:0>4}-{1:0>2}-{2:0>2}".format(result[0],result[1],result[2])
else:
return content
else:
return content
@staticmethod
def select_content(content,config,response=None):
selector_type = config['t']
tag = config['v']
try:
if hasattr(content,'text'):
body = content.text
else:
body = content
except Exception as e:
print(e)
try:
if selector_type == 'meta':
return response.meta[tag]
elif selector_type == "json":
for i in tag.split("/"):
if isinstance(content,dict):
pass
else:
raise TypeError("typeError")
content = content[i] if i in content else ''
v = content
return v
elif selector_type == "xpath":
return content.xpath(tag)
elif selector_type == 'xpathList':
return content.xpath(tag).extract()
elif selector_type == 'xpath_split':
v = content.xpath(tag).extract()
if v:
return ",".join(v)
elif selector_type == "xpath_first":
v = content.xpath(tag).extract_first()
return v
elif selector_type == "xpath_join":
v = content.xpath(tag).extract()
if v:
v = "".join(v)
else:
v = None
return v
elif selector_type == 'xpathSet':
v = content.xpath(tag).extract()
v = set(v)
return v
elif selector_type == "css":
v = content.css[tag]
if v:
return v
elif selector_type == "re_first":
v = re.search(tag,body)
if hasattr(v,"group"):
v = v.group(0)
else:
return ''
elif selector_type == "re_findall":
v = re.findall(tag,body)
return v
elif 'splitwith' in selector_type:
if hasattr(selector_type,'replace'):
b = selector_type.replace('splitwith','')
else:
raise AttributeError('%s has not attribute replace'%selector_type)
if hasattr(content,'split'):
try:
return content.split(b)[tag]
except IndexError as e:
print(e)
else:
raise AttributeError('%s has not attribute split'%content)
elif selector_type == "url":
if hasattr(response,"url"):
return response.url
else:
raise AttributeError("url is Not Method")
elif selector_type =="date":
#set tag = "%Y-%m-%d %H:%M:%S"
return datetime.datetime.now().strftime(tag)
elif selector_type =='abs':
return tag
elif selector_type == 'url_re':
v = re.search(tag,response.url)
if v:
return v.group(1)
elif selector_type == 'url_split':
if hasattr(response,"url"):
return response.url.split('/')[tag]
else:
raise AttributeError("url is Not Method")
elif selector_type == 'static':
return content
except Exception as e:
print(e)
@staticmethod
def replace_html_tag(content):
if hasattr(content, 'replace'):
return re.subn('<[\s\S]*?>','',content)[0]
return content
@staticmethod
def replace_invalid_char(content):
if hasattr(content, 'replace'):
invalid_chars = {'\t','\r','\n','[',']',' ','--','\u3000','\xa0',"'"}
for char in invalid_chars:
content = content.replace(char,'')
return content
@staticmethod
def replace_invalid_html_char(content):
try:
if hasattr(content, 'replace'):
chars = {'nbsp': ' ','160': ' ',
'lt': '<', '60':'<',
'gt': '>', '62': '>',
'amp': '&', '38': '&',
'quot': '"', '34': '"',
}
re_char_entity = re.compile(r'&#?(?P<name>\w+);')
sz = re_char_entity.search(content)
while sz:
key = sz.group('name')
try:
content = re_char_entity.sub(chars[key], content, 1)
sz = re_char_entity.search(content)
except KeyError:
content = re_char_entity.sub('', content, 1)
sz = re_char_entity.search(content)
except Exception as e:
print(e)
return e
return content
@staticmethod
def urljoin(path, url):
urlp = urllib.parse.urlparse(url)
return urlp.scheme+'://'+urlp.netloc+'/'+path
@staticmethod
def urljoin2(path, url):
urlp = urllib.parse.urlparse(url)
return urlp.scheme+'://'+urlp.netloc+path
@classmethod
def headers(self):
return {'User-Agent':generate_user_agent()}
if __name__ == "__main__":
pass
a = Selector.pdfparse("http://www.szse.cn/UpFiles/cfwj/2017-09-20_002638676.pdf")
print(a)
# a = Selector()
# a = a.headers()
# print(a)
# print(type(a))
# print(a)
# a = Selector.replace_all('''<td style="text-align:center">男</td>
# <td style="text-align:center">南山区
#
# </td>
# <td style="text-align:center">
#
# <a href="/lawfirm/12e61b22fa6045deb55ca13d8ac5777c" target="_blank">广东君言律师事务所</a>
#''')
# print(a)
|
[
"luopx@hffss.com"
] |
luopx@hffss.com
|
3c78c0879f7c9609622997bcf931015ec8e28650
|
245bb90e89d479b27927a06fb3d0fbae29ce6d08
|
/JLS731/JLS731/LoadRawData.py
|
2e047eae6c3241c61e360743a2ddd2c45eb62013
|
[] |
no_license
|
jls731/final_project
|
5745b79648f4ac922a702c8797d4f34d48fcb58f
|
4e895bd0d15bfdbad58ed39e8c972d544e7b8164
|
refs/heads/master
| 2020-12-03T02:13:47.576953
| 2015-05-12T01:49:44
| 2015-05-12T01:49:44
| 35,075,441
| 0
| 0
| null | 2015-05-05T03:23:17
| 2015-05-05T03:23:17
| null |
UTF-8
|
Python
| false
| false
| 1,008
|
py
|
'''
Created by: Joseph Song
Last version on: 5/11/2015
Description: Has the functions needed to load csv, xls, and FRED data.
'''
import pandas.io.data as web
import pandas as pd
import datetime
def loadfreddata(ticker):
'''Loads the FRED Data from the St. Louis Fed Website as a dataframe'''
start = datetime.datetime(1998,12,1)
end = datetime.datetime(2015,3,1)
data = web.DataReader(ticker, "fred", start, end)
return data
def loadcsvdata(filename, datecol):
'''Loads the CSV Data as a dataframe'''
parsedate = lambda x: pd.to_datetime(x)
dataset = pd.read_csv(filename, parse_dates = datecol, date_parser = parsedate)
return dataset
def loadxlsdata(filename):
'''Loads the excel files as a dataframe'''
data = pd.read_excel(filename, sheetname = 0)
return data
'''
import urllib2
import numpy as np
x = loadcsvdata('NFP.csv', ['Date', 'NFP_Release'])
print x
x = loadcsvdata('NF.csv', ['Date', 'NFP_Release'])
print x.info()
print x
'''
|
[
"jls731@nyu.edu"
] |
jls731@nyu.edu
|
2f60ba606f3f3ff16f6ce61b7441c7944a9a3939
|
15f365dc711f2230073391687642498305286321
|
/Figure plotting/FIG_3.9c)_maximal allowable radial offset.py
|
d3495aa3b0b50f74b8be071296dbfa7a96ad2f13
|
[] |
no_license
|
Isabelliuqin/Optical_Levitation_Master_project_final
|
16d177ee0852361745286d4a5af8eea84aad5845
|
0ebe133a08a84e3c8521b06c6e9eec2584e0b3cc
|
refs/heads/master
| 2023-01-03T13:35:05.753240
| 2020-11-01T10:13:59
| 2020-11-01T10:13:59
| 309,067,970
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,693
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 1 16:31:57 2020
@author: liuqi
"""
import scipy as sp
import numpy as np
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pylab as plt
import scipy.integrate as spi
from scipy.integrate import quad
import seaborn
from scipy.integrate import odeint
from scipy.integrate import dblquad
import Will_Module_addwdep as TQ
import Module_table_parameter as MTP
import time
integration_method = 'manual' # 'manual' or 'integrated'
grid_size = 100
plt.close('all')
###########################
#Our sphere
g = 9.8
c = 3 * 10**8
w_0 = 0.85 * 10 ** (-6)
Lambda = 1.064 * 10**(-6)
z_R = np.pi* w_0 ** 2 / Lambda
rho = 30 * 10 ** (-6)
n_0 = 1
n_s_n = 0.04
k = 7.6097
n_s = n_s_n - k*1j
sig_s = 10.49 * 10 ** 3 * (( 3 ** 3 - 2.25 ** 3) / 3 ** 3 ) #density of sphere in kg/m^3
sig_0 = 0 #density of medium in kg/m^3
m = 4/3 * np.pi * rho ** 3 * ( sig_s - sig_0 )
Permittivity = 8.85 * 10**(-12)
#P = 0.5 * c * n_0 * Permittivity #total power of the LG01 beam
P = 12 #optimal power required to levitate at w0 = 0.85um
############################################
#FIG 3.9c) maximal allowable radial offset
############################################
#x-axis: x-axis radial offset
#y-axis: Qx trapping efficiency
#key function: TQ.F_total_manual_integration
rho_0x = np.linspace(0,2*rho,100)
rho_0 = [0,0]
w = np.sqrt(2) * rho #optimal beam radius
Qoplist = []
for rho_0xe in rho_0x:
F_op = TQ.F_total_manual_integration(rho_0xe,rho_0[1], rho, n_0, n_s, w_0, w, z_R, P , target = "reflective", coordinate = 'x', grid_size = grid_size)['force_total'] #compute Qx at optimal beam radius wop, various radial offsets
Q_op = F_op * c / ( n_0 * P )
Qoplist.append(Q_op)
plt.plot(rho_0x/rho, np.array(Qoplist), lw=2, c="c", label="w/(sqrt(2)rho) = 1")
print ((rho_0x/rho)[np.argmin(abs(np.array(Qoplist)))]) #print the inflection point
new_ticks1 = np.linspace(0, 2 , 5) # plot axis
print(new_ticks1)
plt.xticks(new_ticks1,fontsize=20)
plt.yticks(np.linspace(-0.1, 0.05, 4),fontsize=20)
plt.rc('xtick',labelsize=20)
plt.rc('ytick',labelsize=20)
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc=1,fontsize=16)
plt.xlabel('rho_0x/rho',fontsize=20)
plt.ylabel('Qx',fontsize=20)
plt.title('rho = 30um, w0 = 0.85um',fontsize=20)
plt.grid()
plt.show()
|
[
"qin.liu16@imperial.ac.uk"
] |
qin.liu16@imperial.ac.uk
|
ddc582e23efc50fe80bbdbcbe3f5ee3bd6e77b02
|
e9a7b9815e217759e2ff23a0abd8384d571f322f
|
/pyenlone/tasks/__init__.py
|
e4c6462a242397d4bcdbe96743f7af9996a840ed
|
[
"MIT"
] |
permissive
|
QPotato/pyenlone
|
7a1ca0150d474acf092666ac1f29df51289e7512
|
b3bb9cc708e1ff247243e9ae48fb62ee284e4b94
|
refs/heads/master
| 2020-04-28T01:41:39.820679
| 2019-03-10T18:59:39
| 2019-03-10T18:59:39
| 174,867,027
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,473
|
py
|
"""
Implements Tasks API methods.
More info on: https://wiki.enl.one/doku.php?id=t_basic_documentation
"""
from typing import List, Optional
from .operation import Operation, OpID, OpType, _fix_op_params
from .task import Task, TaskID, TaskType, TaskStatus, PortalID, \
_fix_task_params
from .._proxy import TokenProxy, KeyProxy
from ..enloneexception import NotImplementedByBackendException
__all__ = ["Operation", "OpID", "OpType",
"Task", "TaskID", "TaskType", "TaskStatus", "PortalID",
"Tasks"]
class Tasks:
"""
The main Tasks object.
You should create and get operation using it's methods.
"""
def __init__(self,
apikey: Optional[str] = None,
voauth: Optional[str] = None,
rocks: Optional[str] = None,
enlio: Optional[str] = None,
google: Optional[str] = None,
firebase: Optional[str] = None,
cache: int = 0):
"""
Create the Tasks instance with only one auth method token.
"""
url = "https://tasks.enl.one"
if apikey:
self._proxy = KeyProxy(url + "/api", apikey, cache=cache)
elif voauth:
self._proxy = TokenProxy(url + "/oauth",
"VOAuth " + voauth, cache=cache)
elif rocks:
self._proxy = TokenProxy(url + "/rocks",
"Rocks " + rocks, cache=cache)
elif enlio:
self._proxy = TokenProxy(url + "/enlio",
"EnlIO " + enlio, cache=cache)
elif google:
self._proxy = TokenProxy(url + "/gapi",
"Google " + google, cache=cache)
elif firebase:
self._proxy = TokenProxy(url + "/firebase",
"FirebaseJWT " + firebase, cache=cache)
def get_operation(self, id: OpID):
"""
Retrive Operation.
"""
return Operation(self._proxy, self._proxy.get("/op/" + str(id)))
def get_operations(self, **filters) -> List[Operation]:
"""
Get all operations user is owner, operator or can see.
"""
_fix_op_params(filters)
return [Operation(self._proxy, api_res) for api_res
in self._proxy.get("/ops", filters)]
def new_operation(self, name: str, op_type: OpType, **params) -> Operation:
"""
Add new operation.
Required parameters are name and type.
Aditional initializing arguments can be passes in keyword arguments.
"""
params["name"] = name
params["type"] = op_type
_fix_op_params(params)
return Operation(self._proxy, self._proxy.post("/op", params))
def search_operations(self, lat: float, lon: float, km: int,
**filters) -> List[Operation]:
"""
Find all operations with tasks in a radius of km from lat/lon visible
to the user.
Aditional search filters can be passed in keyword arguments.
"""
_fix_op_params(filters)
return [Operation(self._proxy, api_res) for api_res
in self._proxy.get("/ops/search"
+ "/" + str(lat)
+ "/" + str(lon)
+ "/" + str(km),
filters)]
def get_tasks(self, **filters) -> List[Task]:
"""
Retrieve all tasks visible to the user,
from all operations.
"""
_fix_task_params(filters)
return [Task(self._proxy, api_res) for api_res
in self._proxy.get("/tasks", filters)]
def search_tasks(self, lat: float, lon: float, km: float,
**filters) -> List[Task]:
"""
Find all tasks in a radius of km from lat/lon visible to the user,
from all operations.
Aditional search filters can be passed in keyword arguments.
"""
_fix_task_params(filters)
raise NotImplementedByBackendException
return [Task(self._proxy, api_res) for api_res
in self._proxy.get("/tasks/search"
+ "/" + str(lat)
+ "/" + str(lon)
+ "/" + str(km),
filters)]
|
[
"federicobadaloni@hotmail.com"
] |
federicobadaloni@hotmail.com
|
678ecff1e87f853037d4016cce7439c1431d7128
|
b0e31216fcf986eaaa51adb973404c766e8042db
|
/build/search_and_rescue_sim/catkin_generated/pkg.develspace.context.pc.py
|
916300b574a077774f2edf0e962f289fd546643f
|
[] |
no_license
|
mateoguaman/RAPDR
|
8a3f56cc68de17b44e292262e18b3bf204d3dd97
|
431e2d59b062c900163f55e0cf68d55f927feebf
|
refs/heads/master
| 2020-03-28T19:51:30.447935
| 2018-09-16T14:36:08
| 2018-09-16T14:36:08
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 379
|
py
|
# generated from catkin/cmake/template/pkg.context.pc.in
CATKIN_PACKAGE_PREFIX = ""
PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else []
PROJECT_CATKIN_DEPENDS = "".replace(';', ' ')
PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else []
PROJECT_NAME = "search_and_rescue_sim"
PROJECT_SPACE_DIR = "/home/Mateo/ros_ws/devel"
PROJECT_VERSION = "0.0.0"
|
[
"Evana13G@gmail.com"
] |
Evana13G@gmail.com
|
68669534022a93c0233112c770390a258c0a4e33
|
7802a0f4753c0e40075613ba51da680a61bcaf57
|
/first_half/4main.py
|
605940334833a2134f07726555f0e82e30bf54ba
|
[] |
no_license
|
SHOGO0727/NTTcom_MobProgramming_1215
|
cd65052b762aeba76c7aa96197cbb4eac160e096
|
6862ceb6e4cd616b181ffbddf2758914988ae25e
|
refs/heads/master
| 2020-11-24T14:06:17.875744
| 2019-12-15T13:01:59
| 2019-12-15T13:01:59
| 228,184,336
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 858
|
py
|
import csv
#16,16
#32,128
CPU_host = []
Mem_host = []
with open("./hv_list.csv") as f:
reader = csv.reader(f)
for r in reader:
CPU_host.append(int(r[0]))
Mem_host.append(int(r[1]))
print("CPU_host", CPU_host)
print("Mem_host", Mem_host)
while True:
CPU_vm,Mem_vm = map(int,input().split(" "))
print("CPU_vm", CPU_vm)
print("Mem_vm", Mem_vm)
#違う
CPU_max = max(CPU_host)
print("CPU_max", CPU_max)
#
CPU_max_index = CPU_host.index(CPU_max);
print("CPU_max_index", CPU_max_index)
if CPU_vm <= CPU_host[CPU_max_index] and Mem_vm <= Mem_host[CPU_max_index]:
print("OK")
print("allocate to HV"+str(CPU_max_index))
CPU_host[CPU_max_index] -= CPU_vm
Mem_host[CPU_max_index] -= Mem_vm
print("CPU_host", CPU_host)
print("Mem_host", Mem_host)
else:
print("NG")
|
[
"noreply@github.com"
] |
SHOGO0727.noreply@github.com
|
f7ab33d7427455b944e63de21bfa2223d505df3c
|
edde86a5daa8c91d33e0c79854b476213eb7d2ab
|
/NeuralNetwork/NN.py
|
e9545983759855283bb3402c5d14f4e49f3fcad6
|
[] |
no_license
|
tsaxena/DataMining
|
98d732ba5f8307248af355caed096454ed533b6c
|
062653419edb9f6e6741ab856943b04f67736ad2
|
refs/heads/master
| 2021-01-22T09:32:24.329194
| 2014-03-24T10:31:17
| 2014-03-24T10:31:17
| 17,099,349
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,787
|
py
|
# Back-Propagation Neural Networks
#
# Written in Python. See http://www.python.org/
import math
import random
import string
random.seed(0)
# calculate a random number where: a <= rand < b
def rand(a, b):
return (b-a)*random.random() + a
# Make a matrix (we could use NumPy to speed this up)
def makeMatrix(I, J, fill=0.0):
m = []
for i in range(I):
m.append([fill]*J)
return m
# our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x)
def sigmoid(x):
return math.tanh(x)
# derivative of our sigmoid function, in terms of the output (i.e. y)
def dsigmoid(y):
return 1.0 - y**2
class NN:
def __init__(self, ni, nh, no):
# number of input, hidden, and output nodes
self.ni = ni + 1 # +1 for bias node
self.nh = nh
self.no = no
# activations for nodes
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
# create weights
self.wi = makeMatrix(self.ni, self.nh)
self.wo = makeMatrix(self.nh, self.no)
# set them to random vaules
for i in range(self.ni):
for j in range(self.nh):
self.wi[i][j] = rand(-0.2, 0.2)
for j in range(self.nh):
for k in range(self.no):
self.wo[j][k] = rand(-2.0, 2.0)
# last change in weights for momentum
self.ci = makeMatrix(self.ni, self.nh)
self.co = makeMatrix(self.nh, self.no)
def update(self, inputs):
if len(inputs) != self.ni-1:
raise ValueError, 'wrong number of inputs'
# input activations
for i in range(self.ni-1):
#self.ai[i] = sigmoid(inputs[i])
self.ai[i] = inputs[i]
# hidden activations
for j in range(self.nh):
summ = 0.0
for i in range(self.ni):
summ = summ + self.ai[i] * self.wi[i][j]
self.ah[j] = sigmoid(summ)
# output activations
for k in range(self.no):
summ = 0.0
for j in range(self.nh):
summ = summ + self.ah[j] * self.wo[j][k]
self.ao[k] = sigmoid(summ)
return self.ao[:]
def backPropagate(self, targets, N, M):
if len(targets) != self.no:
raise ValueError, 'wrong number of target values'
# calculate error terms for output
output_deltas = [0.0] * self.no
for k in range(self.no):
error = targets[k]-self.ao[k]
output_deltas[k] = dsigmoid(self.ao[k]) * error
# calculate error terms for hidden
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
error = 0.0
for k in range(self.no):
error = error + output_deltas[k]*self.wo[j][k]
hidden_deltas[j] = dsigmoid(self.ah[j]) * error
# update output weights
for j in range(self.nh):
for k in range(self.no):
change = output_deltas[k]*self.ah[j]
self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
self.co[j][k] = change
#print N*change, M*self.co[j][k]
# update input weights
for i in range(self.ni):
for j in range(self.nh):
change = hidden_deltas[j]*self.ai[i]
self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
self.ci[i][j] = change
# calculate error
error = 0.0
for k in range(len(targets)):
error = error + 0.5*(targets[k]-self.ao[k])**2
return error
def test(self, patterns):
for p in patterns:
print p[0], '->', self.update(p[0])
def weights(self):
print 'Input weights:'
for i in range(self.ni):
print self.wi[i]
print
print 'Output weights:'
for j in range(self.nh):
print self.wo[j]
def train(self, patterns, iterations=1000, N=0.5, M=0.1):
# N: learning rate
# M: momentum factor
for i in xrange(iterations):
error = 0.0
for p in patterns:
inputs = p[0]
targets = p[1]
self.update(inputs)
error = error + self.backPropagate(targets, N, M)
if i % 100 == 0:
pass #print 'error %-14f' % error
def demo():
# Teach network XOR function
pat = [
[[0,0], [0]],
[[0,1], [1]],
[[1,0], [1]],
[[1,1], [0]]
]
# create a network with two input, two hidden, and one output nodes
n = NN(2, 2, 1)
# train it with some patterns
n.train(pat)
# test it
n.test(pat)
if __name__ == '__main__':
demo()
|
[
"tripti.saxena@gmail.com"
] |
tripti.saxena@gmail.com
|
e8cff7eef8976183de24a8c81236fe19a69fbaa1
|
56b7bef4ff86fb30289807d6ac80feb7580fd972
|
/replay_buffer.py
|
f351533f56527a36624df1994b976c2d521f065a
|
[] |
no_license
|
Akshai/rl_collaboration_and_competition
|
9f80cb51e5eab816e89b585efdc59d6a34a06485
|
38e818d9a6401ca2e3fdb3d5b451efdd9129d2fb
|
refs/heads/main
| 2023-01-13T14:07:53.733535
| 2020-11-14T03:59:40
| 2020-11-14T03:59:40
| 310,808,829
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,028
|
py
|
from collections import namedtuple, deque
import numpy as np
import torch
import random
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class ReplayBuffer():
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): Random seed
"""
random.seed(seed)
np.random.seed(seed)
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)
|
[
"akshai@AKSHAIs-MacBook-Pro.local"
] |
akshai@AKSHAIs-MacBook-Pro.local
|
531ed097cb48be9a70ee62b910a57f827acfa168
|
5209b4ad1f64b41886ab2f53595185eea1fe3dab
|
/laba 6/13_2.py
|
24692784933843814f255c0fea9801b841282376
|
[] |
no_license
|
elochka99/LAbs
|
74b8b7a68bcdbc8ad7a2de3d9e9eab848564410e
|
6d7745a298f0dee055d95839b1f979fa14ca219f
|
refs/heads/master
| 2021-01-09T06:27:50.622635
| 2018-04-03T09:32:22
| 2018-04-03T09:32:22
| 80,990,384
| 0
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,523
|
py
|
# Горохова Елена КНИТ 16-А
# Дан текстовый файл f. Записать в файл g компоненты файла f
# в обратном порядке, без повторяющихся компонентов.
import random
while True:
try:
b = int(input("Введите количество элементов в файле: "))
file_f = open('f.txt', 'w')
h = list()
for i in range(1, b+1):
k = str(random.randint(0, 100))
file_f.write(k +",")
h.append(k)
file_f.close()
file_f = open('f.txt', 'r')
file_g = open('g.txt', 'w')
str_file = file_f.readlines()
h2 = []
for i in h:
if i not in h2:
h2.append(i)
print(h)
print(h2)
h2.reverse()
file_g.write(str(h2) +",")
file_g.flush()
file_g.close()
file_f.flush()
file_f.close()
file_f = open('f.txt', 'r')
file_g = open('g.txt', 'r')
print(file_g.read())
file_g.flush()
file_f.flush()
file_f.close()
file_g.close()
w = input('\nХотите начать работу с программой заново? [1 - да]: ')
if w == '1':
print()
continue
else:
print("пока!")
break
except (ValueError, IndexError, MemoryError):
print("введите корректные данные! ")
|
[
"elochka150899@gmail.com"
] |
elochka150899@gmail.com
|
3f5c239ed4dab8d99cfb4a67e61997dd3bdeab99
|
1020e655f91b5f3ae5056f3a3006858ddaa92d3a
|
/modelo2/Script_LoadFiles.py
|
8c58f59627bb177295813873948282f0b48f04b6
|
[] |
no_license
|
ivomota/Olho-Passarinho
|
578200e3c12a4c94c399b0455ef33ed61ca7619c
|
5b531aebac3c4914f90586f4f163b42773a5b31d
|
refs/heads/master
| 2021-01-18T11:25:50.284361
| 2014-06-28T13:24:19
| 2014-06-28T13:24:19
| 15,495,323
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,376
|
py
|
import pickle
import numpy as np
from bson import json_util
import json
import itertools
def load(filename, verbose=False):
# Open file
if verbose : print("Loading %s" % filename)
pkl_file = open(filename, 'rb')
# Load from Pickle file.
data = pickle.load(pkl_file)
pkl_file.close()
return data
# file1 = load('data0.pkl')
# file2 = load('data1.pkl')
# print len(file1)
# print len(file2)
# file = file1 + file2
# file = load('data_teste.pkl')
file = load('tweets_instagram.pkl')
print len(file)
# Remove duplicates without itertools
seen_values = set()
new_file = []
other = []
for d in file:
value = d["id_str"]
if value not in seen_values:
new_file.append(d)
seen_values.add(value)
else:
other.append(value) #para debug
# print other
# print len(other)
# f = open('debug.txt', 'w')
# f.write(str(other))
# f.close()
# Remove duplicates with itertools (nao apaga 2 duplicados)
# new_file = [g.next() for k,g in itertools.groupby(file, lambda x: x['id_str'])]
#debug
# seen_values = set()
# other = []
# for d in new_file:
# value = d["id_str"]
# if value not in seen_values:
# seen_values.add(value)
# else:
# other.append(value)
# print other
print len(new_file)
f = open('tweets_instagram.json', 'w')
f_data = json.dumps(new_file, default=json_util.default)
f.write(f_data)
f.close()
|
[
"ifvmota@gmail.com"
] |
ifvmota@gmail.com
|
7c9dbe37ca506ea5cece40cc3421204f71a0c55f
|
a9c5d348a96fa960ce17f7c7e8b61062ff1e5a85
|
/Day5/Day5Activities.py
|
41570900630c99eb627c24027162983f375201cb
|
[
"BSD-3-Clause"
] |
permissive
|
cdcox/PythonClassScripts
|
f094155bb25f7bd065b01002203989eafb58db36
|
77c1c22d68f342a0bb380fbda3abb7a903b2e1f7
|
refs/heads/master
| 2020-05-17T14:38:35.430980
| 2013-07-24T19:58:59
| 2013-07-24T19:58:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,414
|
py
|
# -*- coding: utf-8 -*-
"""
Making pretty python:
0. To get use to the def function return thing,
write a program that asks a user for a number.
Then make function called add_fifty
have it take the number as an input and return
the number as an output.
print the number.
remember to have a if __name__=='__main__':
at the bottom.
Bonus: Try running the function by calling it externally (go to
the command line and type python (your files path and name))
Windows user can set a program to run with python as the default program
try that out!
1. Make a program that finds the 1001 prime number!
to do this we need the following elements:
I've written out the code to do it below, break out the chunck of code
from the for loop to the append line into a function,
remember you have to give it previouslist and your nubmer
and return prevoius list and the number
set the rest of the code under an __init__=='__main___'
(remember only one of these per program!)
i=4
previous_list=[2,3]
while len(previous_list)<1001:
i=i+1
checking_number=0
for items in previous_list:
if i%items==0:
checking_number=1
if checking_number==0:
previous_list.append(i)
2. Below this code you will find two lists of numbers
Control and experimental
make a function strip_low_values that goes
through both lists and turns numbers below zero into 0
(use an indexing for loop for this)
after this make a
if __init__=='__main__' that runs through this which each list
and returns the new list. then perform a ttest
under scipy.stats.ttest_ind on the two output lists.
3. Thanks for sticking out the intro weeks! go to your console
and type in.
import this
be sure to tell me what you'd like to see:
Things I came up with:
cell counting
text document parsing (for numbers)
neural network stuff
character recognition for pictures
graphing
image processing
We have many weeks ahead (after this quarter so all ideas will
be taught, but I'll teach the ones with the most interest first
so if any of the above sound good tell me!)
"""
"""
control=[ 0.29892391, 0.29390532, 0.44596463, 0.4905357 , -0.49486145,
-0.29503334, -0.03309252, 0.43755501, 0.13342393, -0.27069969]
experimental= [ 1.37913615, 0.23513822, -0.0032897 , 1.35233926, 0.85305913,
1.30169848, 0.29811183, -0.21212195, -0.09939539, 1.01793759]
"""
|
[
"cdcox1@gmail.com"
] |
cdcox1@gmail.com
|
88c3528812a6cced3d9be4f57629574a5bd8e20a
|
e501c170759e929742eb366a65b1bc5a1d3cb915
|
/automan/api/projects/storages/models.py
|
bda66593e4bfe533f40fe03ba4706d9e7745cbac
|
[] |
no_license
|
tier4/AutomanTools
|
75e8062d6ac2cd7c6cfc530ad7d079a9d65f9ca1
|
8053e9a2c2dffc1f444088a3ff7c156f12fe8152
|
refs/heads/master
| 2023-01-24T12:52:35.286041
| 2021-01-05T08:07:25
| 2021-01-05T08:07:25
| 192,694,079
| 65
| 31
| null | 2023-01-16T17:01:17
| 2019-06-19T08:45:18
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 449
|
py
|
# -*- coding: utf-8 -*-
from django.db import models
from django.utils import timezone
from projects.models import Projects
class Storage(models.Model):
storage_type = models.CharField(max_length=45)
storage_config = models.CharField(max_length=511)
created_at = models.DateTimeField(default=timezone.now)
updated_at = models.DateTimeField(default=timezone.now)
project = models.ForeignKey(Projects, on_delete=models.CASCADE)
|
[
"eiji.sekiya.0326@gmail.com"
] |
eiji.sekiya.0326@gmail.com
|
7213a6bdcd1534875dc8bcf1f6be7e772b3ff2a7
|
11c331eca50308526ab603bc8ae7ec92f79f2527
|
/05/script.py
|
b611ff79b1b15a6b08e10538c56f39de21f82cb1
|
[] |
no_license
|
ascheets/barba12stepModule
|
929e5dbe023c9c118fffbe9310f3473583004e1e
|
f145b6a423ed0ceb0f218622112ea6714cd96583
|
refs/heads/master
| 2021-01-10T13:58:19.501494
| 2016-03-08T06:36:19
| 2016-03-08T06:36:19
| 52,310,441
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,358
|
py
|
import numpy as np
import sympy
#from sympy import init_printing #include these when working with a notebook
#init_print(use_latex=True)
from sympy.utilities.lambdify import lambdify
import matplotlib.pyplot as plt
#setting up intial conditions, little more complicated this time...
#setting up symbolic variables
x, nu, t = sympy.symbols('x nu t')
phi = sympy.exp(-(x-4*t)**2/(4*nu*(t+1))) + sympy.exp(-(x-4*t-2*np.pi)**2/(4*nu*(t+1)))
phiprime = phi.diff(x)
u = -2*nu*(phiprime/phi)+4
ufunc = lambdify((t,x,nu),u)
#domain declarations
nx = 101
nt = 100
dx = 2*np.pi/(nx-1)
nu = 0.07
dt = dx*nu
x = np.linspace(0, 2*np.pi, nx)
#u = np.empty(nx)
un = np.empty(nx)
t = 0
u = np.asarray([ufunc(t,x0,nu) for x0 in x])
plt.figure(figsize=(11,7), dpi=100)
plt.plot(x,u, marker='o', lw=2)
plt.xlim([0,2*np.pi])
plt.ylim([0,10])
plt.show()
for n in range(nt):
un = u.copy()
for i in range(nx-1):
u[i] = un[i] -un[i] * dt/dx * (un[i] - un[i-1]) + nu*dt/dx**2*(un[i+1]-2*un[i]+un[i-1])
u[-1] = un[-1] - un[-1] * dt/dx * (un[-1] - un[-2]) + nu*dt/dx**2*(un[0]-2*un[-1]+un[-2])
u_analytical = np.asarray([ufunc(nt*dt, xi, nu) for xi in x])
plt.figure(figsize=(11,7), dpi=100)
plt.plot(x,u,marker='o',lw=2,label='Computational')
plt.plot(x,u_analytical,label='Analytical')
plt.xlim([0,2*np.pi])
plt.ylim([0,10])
plt.legend()
plt.show()
|
[
"ascheets@carthage.edu"
] |
ascheets@carthage.edu
|
9ec1e3c261193a232d7e2a9c5348f74283e9ee2d
|
679d4a8966fb516f09b4fd53ffb481159836178a
|
/Linux/python/bases/BlockList/malwareblacklist/malwareblacklist.py
|
40b7caf5974f8997f8aba2fc01ad20cc2e9f0d35
|
[] |
no_license
|
dmitry-demin/docus
|
b72f58becbca0f8e1fb0fd35328f7176dd87705e
|
4e64f54ec5b61511cf3130550ca5769b1ab14825
|
refs/heads/master
| 2021-09-15T02:20:20.505399
| 2018-05-24T09:59:09
| 2018-05-24T09:59:09
| 104,602,839
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,880
|
py
|
import os
import requests
from bs4 import BeautifulSoup
from datetime import datetime
RESULT = []
def geturltext(url):
try:
r = requests.get(url)
except:
return ''
else:
return r.text
def process(text):
soup = BeautifulSoup(text, 'lxml')
table = soup.find("table", {"class" : "Table"})
mlwr = table.find_all('tr')[1:]
for ml in mlwr:
rows = ml.find_all('td')
if(len(rows) > 8):
date = rows[0].text
url = rows[1].text
registrar = rows[2].text
ip = rows[3].text
asn = rows[4].text
hosting = rows[5].text
try:
cn = rows[6].find('img').get('title')
except:
cn = '-'
dl = rows[7].text
submitted = rows[8].text
RESULT.append([date, url, registrar, ip, asn, hosting, cn, dl, submitted])
def savetofile():
name = datetime.now().strftime("%Y-%m-%d_%H_%M") + '.csv'
f = open(name, 'w')
for line in RESULT:
f.write((line[0] +', '+ line[1] +', '+ line[2] + ', '+
line[3] +', '+ line[4] +', '+ line[5] + ', '+
line[6] +', '+ line[7] +', '+ line[8]).encode('utf-8').strip() + '\n')
f.close()
def getTotalPage(text):
try:
soup = BeautifulSoup(text, 'html.parser')
table = soup.find('table')
td = table.find_all('a')
return int(td[1].text)
except:
return 0
def main():
url = 'http://www.malwareblacklist.com/showAllMalwareURL.php?pageNo='
firstPageText = geturltext(url+'1')
totalPage = getTotalPage(firstPageText)
for x in range(totalPage):
pageText = geturltext(url + str(x+1))
process(pageText)
savetofile()
if(__name__ == '__main__'):
main()
|
[
"d.demin@avsw.ru"
] |
d.demin@avsw.ru
|
6e55fa66ccf8d5e6285a3c09ed9d349ae202f5b5
|
e8e72708f435459d60fe38bdaf528b8c8be1c10e
|
/ACDNE_codes/ACDNE_test_citation.py
|
9d2e4441ac77e8ca3c342772226dcd12cdf5fca7
|
[] |
no_license
|
shenxiaocam/ACDNE
|
2842710360aef172505a7d9dc1cfe152c87f9729
|
b3cafed35a75c5c087d5b1ad5667a6bfaee19992
|
refs/heads/master
| 2023-08-25T04:37:39.084778
| 2021-10-31T12:57:57
| 2021-10-31T12:57:57
| 278,086,067
| 16
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,974
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Mon May 27 18:16:14 2019
@author: SHEN xiao
Please cite our paper as:
"Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. Adversarial Deep Network Embedding for Cross-Network Node Classification. In Proceedings of AAAI Conference on Artificial Intelligence (AAAI), pages 2991-2999, 2020."
"""
import numpy as np
import tensorflow as tf
import utils
from evalModel import train_and_evaluate
import scipy.io
from scipy.sparse import lil_matrix
tf.set_random_seed(0)
np.random.seed(0)
source= 'citationv1'
target = 'dblpv7'
emb_filename=str(source)+'_'+str(target)
Kstep=3
####################
# Load source data
####################
A_s, X_s, Y_s= utils.load_network('./input/'+str(source)+'.mat')
'''compute PPMI'''
A_k_s=utils.AggTranProbMat(A_s, Kstep)
PPMI_s=utils.ComputePPMI(A_k_s)
n_PPMI_s=utils.MyScaleSimMat(PPMI_s) # row normalized PPMI
X_n_s=np.matmul(n_PPMI_s,lil_matrix.toarray(X_s)) #neibors' attribute matrix
####################
# Load target data
####################
A_t, X_t, Y_t = utils.load_network('./input/'+str(target)+'.mat')
'''compute PPMI'''
A_k_t=utils.AggTranProbMat(A_t, Kstep)
PPMI_t=utils.ComputePPMI(A_k_t)
n_PPMI_t=utils.MyScaleSimMat(PPMI_t) # row normalized PPMI
X_n_t=np.matmul(n_PPMI_t,lil_matrix.toarray(X_t)) #neibors' attribute matrix
##input data
input_data=dict()
input_data['PPMI_S']=PPMI_s
input_data['PPMI_T']=PPMI_t
input_data['attrb_S']=X_s
input_data['attrb_T']=X_t
input_data['attrb_nei_S']=X_n_s
input_data['attrb_nei_T']=X_n_t
input_data['label_S']=Y_s
input_data['label_T']=Y_t
###model config
config=dict()
config['clf_type'] = 'multi-label'
config['dropout'] = 0.5
config['num_epoch'] = 30 #maximum training iteration
config['batch_size'] = 100
config['n_hidden'] = [512,128] #dimensionality for each k-th hidden layer of FE1 and FE2
config['n_emb'] = 128 #embedding dimension d
config['l2_w'] = 1e-3 #weight of L2-norm regularization
config['net_pro_w'] = 0.1 #weight of pairwise constraint
config['emb_filename'] =emb_filename #output file name to save node representations
config['lr_ini'] = 0.02 #initial learning rate
numRandom=5
microAllRandom=[]
macroAllRandom=[]
print ('source and target networks:',str(source),str(target))
for random_state in range(numRandom):
print("%d-th random initialization " %(random_state+1))
micro_t,macro_t=train_and_evaluate(input_data, config, random_state)
microAllRandom.append(micro_t)
macroAllRandom.append(macro_t)
'''avg F1 scores over 5 random splits'''
micro=np.mean(microAllRandom)
macro=np.mean(macroAllRandom)
micro_sd=np.std(microAllRandom)
macro_sd=np.std(macroAllRandom)
print("The avergae micro and macro F1 scores over %d random initializations are: %f +/- %f and %f +/- %f: " %(numRandom, micro, micro_sd, macro, macro_sd))
|
[
"noreply@github.com"
] |
shenxiaocam.noreply@github.com
|
a0558eff96171575b90ef92a7b59d2a7abd7f87f
|
f07a42f652f46106dee4749277d41c302e2b7406
|
/Data Set/bug-fixing-5/a8ab1a0b200881f52f564d28db90f10730c1f0b5-<latest>-fix.py
|
34987d8922650e14b77fd72b4e1557dd3181ede0
|
[] |
no_license
|
wsgan001/PyFPattern
|
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
|
cc347e32745f99c0cd95e79a18ddacc4574d7faa
|
refs/heads/main
| 2023-08-25T23:48:26.112133
| 2021-10-23T14:11:22
| 2021-10-23T14:11:22
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,811
|
py
|
def latest(module, items, repoq, yum_basecmd, conf_file, en_repos, dis_repos, update_only, installroot='/'):
res = {
}
res['results'] = []
res['msg'] = ''
res['changed'] = False
res['rc'] = 0
pkgs = {
}
pkgs['update'] = []
pkgs['install'] = []
updates = {
}
update_all = False
cmd = None
if ('*' in items):
update_all = True
(rc, out, err) = run_check_update(module, yum_basecmd)
if ((rc == 0) and update_all):
res['results'].append('Nothing to do here, all packages are up to date')
return res
elif (rc == 100):
updates = parse_check_update(out)
elif (rc == 1):
res['msg'] = err
res['rc'] = rc
module.fail_json(**res)
if update_all:
cmd = (yum_basecmd + ['update'])
will_update = set(updates.keys())
will_update_from_other_package = dict()
else:
will_update = set()
will_update_from_other_package = dict()
for spec in items:
if spec.startswith('@'):
pkgs['update'].append(spec)
will_update.add(spec)
continue
elif (spec.endswith('.rpm') and ('://' not in spec)):
if (not os.path.exists(spec)):
res['msg'] += ("No RPM file matching '%s' found on system" % spec)
res['results'].append(("No RPM file matching '%s' found on system" % spec))
res['rc'] = 127
module.fail_json(**res)
envra = local_envra(spec)
if (not is_installed(module, repoq, envra, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)):
pkgs['install'].append(spec)
continue
elif ('://' in spec):
package = fetch_rpm_from_url(spec, module=module)
envra = local_envra(package)
if (not is_installed(module, repoq, envra, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)):
pkgs['install'].append(package)
continue
elif (is_installed(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot) or update_only):
pkgs['update'].append(spec)
else:
pkgs['install'].append(spec)
pkglist = what_provides(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)
if (not pkglist):
res['msg'] += ("No package matching '%s' found available, installed or updated" % spec)
res['results'].append(("No package matching '%s' found available, installed or updated" % spec))
res['rc'] = 126
module.fail_json(**res)
nothing_to_do = True
for pkg in pkglist:
if ((spec in pkgs['install']) and is_available(module, repoq, pkg, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)):
nothing_to_do = False
break
(pkgname, _, _, _, _) = splitFilename(pkg)
if ((spec in pkgs['update']) and (pkgname in updates)):
nothing_to_do = False
will_update.add(spec)
if (spec != pkgname):
will_update_from_other_package[spec] = pkgname
break
if ((not is_installed(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)) and update_only):
res['results'].append(('Packages providing %s not installed due to update_only specified' % spec))
continue
if nothing_to_do:
res['results'].append(('All packages providing %s are up to date' % spec))
continue
conflicts = transaction_exists(pkglist)
if conflicts:
res['msg'] += ('The following packages have pending transactions: %s' % ', '.join(conflicts))
res['results'].append(('The following packages have pending transactions: %s' % ', '.join(conflicts)))
res['rc'] = 128
module.fail_json(**res)
if module.check_mode:
to_update = []
for w in will_update:
if w.startswith('@'):
to_update.append((w, None))
elif (w not in updates):
other_pkg = will_update_from_other_package[w]
to_update.append((w, ('because of (at least) %s-%s.%s from %s' % (other_pkg, updates[other_pkg]['version'], updates[other_pkg]['dist'], updates[other_pkg]['repo']))))
else:
to_update.append((w, ('%s.%s from %s' % (updates[w]['version'], updates[w]['dist'], updates[w]['repo']))))
res['changes'] = dict(installed=pkgs['install'], updated=to_update)
if (will_update or pkgs['install']):
res['changed'] = True
return res
if cmd:
(rc, out, err) = module.run_command(cmd)
res['changed'] = True
elif (pkgs['install'] or will_update):
cmd = (((yum_basecmd + ['install']) + pkgs['install']) + pkgs['update'])
lang_env = dict(LANG='C', LC_ALL='C', LC_MESSAGES='C')
(rc, out, err) = module.run_command(cmd, environ_update=lang_env)
out_lower = out.strip().lower()
if ((not out_lower.endswith('no packages marked for update')) and (not out_lower.endswith('nothing to do'))):
res['changed'] = True
else:
(rc, out, err) = [0, '', '']
res['rc'] = rc
res['msg'] += err
res['results'].append(out)
if rc:
res['failed'] = True
return res
|
[
"dg1732004@smail.nju.edu.cn"
] |
dg1732004@smail.nju.edu.cn
|
a7e0820a5a2af18ff40dff28e75c2e8cf876f08e
|
94fe6bd54ba15f44569641acf5f3655d8eda1783
|
/src/run_regressor.py
|
91b5d444406a4867d9736f7930cc5091a76c28eb
|
[
"MIT"
] |
permissive
|
grey-eye/gpt-2
|
e94915bff8badf9e188fd67745c3b5ab4bdbce8d
|
40030059768719eca0c700ab521adf70b9d0656c
|
refs/heads/master
| 2022-01-18T00:55:27.344689
| 2019-07-18T00:03:24
| 2019-07-18T00:03:24
| 192,074,933
| 0
| 0
| null | 2019-06-15T12:15:06
| 2019-06-15T12:15:06
| null |
UTF-8
|
Python
| false
| false
| 5,164
|
py
|
import functools
import argparse
import json
import tensorflow as tf
import os
import model
import encoder
import pandas as pd
import numpy as np
def generate_data(mode):
def pad(encoding):
padlen = args.len_seq-len(encoding)
encoding.extend([220]*padlen)
return encoding
enc = encoder.get_encoder(args.base_model_name, args.base_model_dir)
if mode == 'train':
path = os.path.join(args.data_dir, 'train.tsv')
elif mode == 'eval':
path = os.path.join(args.data_dir, 'dev.tsv')
else:
path = os.path.join(args.data_dir, 'test.tsv')
df = pd.read_csv(path, sep='\t', skiprows=1)
for idx, row in df.iterrows():
label = np.float32(row[0])
features = np.array(pad(enc.encode(row[1])[:args.len_seq]),
dtype=np.int32)
yield features, label
def input_fn(params, mode):
generator_fn = params['generator_fn']
ds = tf.data.Dataset.from_generator(generator_fn, (tf.int32, tf.float32),
None, (mode,))
ds = ds.shuffle(1000).repeat().batch(args.batch_size)
return ds
def my_model_fn(features, labels, params, mode):
hparams = model.default_hparams()
with open(os.path.join(args.base_model_dir, args.base_model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
features.set_shape([args.batch_size, args.len_seq])
net = model.model(hparams, features)
logits = net['logits']
dropout = tf.nn.dropout(logits, keep_prob=0.9)
avg_logits = tf.math.reduce_mean(dropout, axis=1)
predictions = tf.layers.dense(avg_logits, 1)
loss = tf.losses.mean_squared_error(labels=labels,
predictions=predictions)
metrics = {'mse': loss}
tf.summary.scalar('mse', loss)
optimizer = params['optimizer']
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {'prediction': predictions}
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode, loss=loss)
if mode == tf.estimator.ModeKeys.TRAIN:
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
def build_tpu_config():
if args.use_tpu:
my_project_name = subprocess.check_output([
'gcloud','config','get-value','project'])
my_zone = subprocess.check_output([
'gcloud','config','get-value','compute/zone'])
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
tpu=[tpu_name],
zone=my_zone,
project=my_project_name)
master = tpu_cluster_resolver.get_master()
else:
master = ''
tpu_config = tf.estimator.tpu.RunConfig(master=master)
return tpu_config
def train_regressor():
tpu_config = build_tpu_config()
optimizer = tf.train.AdamOptimizer()
if args.use_tpu:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
regressor = tf.estimator.tpu.TPUEstimator(
model_fn = my_model_fn,
model_dir = args.model_dir,
params={
'optimizer': optimizer,
'generator_fn': generate_data,
},
use_tpu=args.use_tpu,
config=tpu_config
)
regressor.train(functools.partial(input_fn, mode='train'), steps=args.num_steps)
regressor.evaluate(functools.partial(input_fn, mode='eval'), steps=args.num_steps)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', required=True, help='Path to data ' + \
'directory containing train, dev and test files')
parser.add_argument('--len_seq', required=False, type=int, default=40,
help='Input sequence length')
parser.add_argument('--base_model_dir', required=True, help='Path to ' + \
'directory containing model')
parser.add_argument('--base_model_name', required=False, default='117M',
help='Name of model')
parser.add_argument('--batch_size', required=False, default=8,
help='Sets the batch size', type=int)
parser.add_argument('--train', action='store_true',
required=False, help='Run training')
parser.add_argument('--test', action='store_true', required=False)
parser.add_argument('--num_steps', type=int, required=False, default=1000,
help='Number of train batches to run')
parser.add_argument('--model_dir', type=str, required=False,
default='modeldir',
help='Output directory for checkpoints')
parser.add_argument('--use_tpu', action='store_true',
required=False, default=False, help='Use TPU')
parser.add_argument('--tpu_name', required=False, type=str, default=None,
help='Name of TPU')
args = parser.parse_args()
if args.train:
train_regressor()
|
[
"niels@grey-eye.net"
] |
niels@grey-eye.net
|
a23e2e8bc24dcfdc8da9c27890d774c829e57699
|
4494d8b45191f4e323d35ea5e1a65533db41a3b8
|
/booking/management/commands/startbot.py
|
658f66b586f6394f49c117e5ff6dbedfe6c7c91a
|
[] |
no_license
|
AVKashtanov/chatbot
|
18dd104cd3a477a91befc1306adab6dc6a5a1875
|
e111e54e6c4129ab08558b410b11e1c3cd74edd2
|
refs/heads/master
| 2023-08-16T20:31:34.713813
| 2021-08-23T01:14:15
| 2021-08-23T01:14:15
| 397,475,252
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,304
|
py
|
from django.core.management.base import BaseCommand
import telebot
from telebot import types
from chatbot.settings import TELEGRAM_TOKEN
from booking.enums import BookingStages, SocialNetworks
from booking.bot import AbstractBot
class TelegramBot(AbstractBot):
def do_bot(self, **kwargs):
bot = telebot.TeleBot(kwargs['token'])
print(bot.get_me())
@bot.message_handler(func=lambda message: self.get_current_stage(
message.chat.id) == BookingStages.START.value)
def text_start(message):
bot.send_message(
message.chat.id, "Для бронирования введите /start")
self.set_stage(message.chat.id, BookingStages.COUNT.value)
@bot.message_handler(commands=["start"])
def cmd_start(message):
self.save_profile(message.chat.id)
state = self.get_current_stage(message.chat.id)
if state == BookingStages.COUNT.value:
bot.send_message(message.chat.id, "Введите количество гостей.")
elif state == BookingStages.TIME.value:
bot.send_message(
message.chat.id, "Введите время в формате 00:00.")
else:
bot.send_message(
message.chat.id,
"Привет, чтобы сделать заказ введите количество гостей!")
self.set_stage(message.chat.id, BookingStages.COUNT.value)
@bot.message_handler(commands=["reset"])
def cmd_reset(message):
bot.send_message(
message.chat.id, "Начнем по новой, введите количество гостей.")
self.set_stage(message.chat.id, BookingStages.COUNT.value)
@bot.message_handler(func=lambda message: self.get_current_stage(
message.chat.id) == BookingStages.COUNT.value)
def get_count(message):
if self.save_count(message.text):
bot.send_message(
message.chat.id, "Введите время в формате 00:00.")
self.set_stage(message.chat.id, BookingStages.TIME.value)
else:
bot.send_message(
message.chat.id, 'Цифрами, пожалуйста.')
@bot.message_handler(func=lambda message: self.get_current_stage(
message.chat.id) == BookingStages.TIME.value)
def get_time(message):
if self.save_time(message.text):
keyboard = types.InlineKeyboardMarkup()
key_yes = types.InlineKeyboardButton(text='Да',
callback_data='yes')
keyboard.add(key_yes)
key_no = types.InlineKeyboardButton(text='Нет',
callback_data='no')
keyboard.add(key_no)
question = 'Подтвердить бронирование?'
bot.send_message(
message.chat.id, text=question, reply_markup=keyboard)
self.set_stage(message.chat.id, BookingStages.START.value)
else:
bot.send_message(
message.chat.id,
'Некорректная дата, пожалуйста, введите в формате 00:00.')
@bot.callback_query_handler(func=lambda call: True)
def callback_worker(call):
if call.data == "yes":
self.save_reservation()
bot.send_message(
call.message.chat.id,
'Место успешно забронировано!')
elif call.data == "no":
bot.send_message(
call.message.chat.id, 'Будем ждать Вас в другой раз!')
bot.delete_message(call.message.chat.id, call.message.message_id)
bot.polling(none_stop=True, interval=0)
class Command(BaseCommand):
help = 'Чат-бот'
def handle(self, *args, **kwargs):
TelegramBot(
token=TELEGRAM_TOKEN,
social_network=SocialNetworks.TELEGRAM.value
)
|
[
"tema.nkkav@mail.ru"
] |
tema.nkkav@mail.ru
|
188e8503cdd257dd7cab3babad6f8510a254137d
|
633944f913050debf0764c2a29cf3e88f912670e
|
/v8/depot_tools/bootstrap-3.8.0b1.chromium.1_bin/python3/lib/python3.8/email/mime/base.py
|
132e6913d660b6b7b332267152dbc43c4eddb1af
|
[
"BSD-3-Clause",
"bzip2-1.0.6",
"SunPro",
"Apache-2.0"
] |
permissive
|
bopopescu/V8-lgtm
|
0474c2ff39baf754f556ef57619ceae93e7320fd
|
da307e2f7abfca5fa0e860a809de6cd07fd1b72b
|
refs/heads/master
| 2022-02-16T19:10:54.008520
| 2019-09-25T07:51:13
| 2019-09-25T07:51:13
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 69
|
py
|
../../../../../.cipd/pkgs/2/_current/lib/python3.8/email/mime/base.py
|
[
"jundong.xjd@antfin.com"
] |
jundong.xjd@antfin.com
|
f84fe04b1883d8c93b41284be4d6b8b5d5034602
|
ca739add7863f923013e7b6e1cf7b8bfbc8d8c0c
|
/source/complementos.py
|
043adc447b192e8c79bf9ad7c1e45a1d12489a56
|
[] |
no_license
|
PibeDx/plants-vs-zombies-clon
|
51992edd6239ecf305528ee64368818b07828097
|
7118a34f286573c0224ed2f15cdcb13bf27493f7
|
refs/heads/master
| 2021-01-18T08:52:19.661411
| 2012-07-05T06:58:17
| 2012-07-05T06:58:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 41,846
|
py
|
from pygame import locals
from engine import pytweener
import sqlite3
from datetime import datetime
from personal import Usuario
from unidades.defensores import *
class MenuPausa(object):
def __init__(self):
self.imagen = engine.cargar_imagen("pausa.png", True)
self.boton_sal = Boton(260, 586, engine.cargar_imagen("boton3.png", True), comando = self.salir)
self.tiempo_pausa = engine.pygame.time.get_ticks()
def dibujar(self, superficie):
superficie.blit(self.imagen, (0, 0))
self.boton_sal.dibujar(superficie)
def actualizar(self, tiempo):
self.boton_sal.actualizar(tiempo)
def verificar_eventos(self, evento):
self.boton_sal.verificar_eventos(evento)
def salir(self):
t = engine.pygame.time.get_ticks() - self.tiempo_pausa
engine.obtener_director().escena_actual.menu_pausa = None
for fila in engine.obtener_director().escena_actual.tablero:
for p in fila:
if p: p.sincronizar_cronos_pausa(t)
for s in engine.obtener_director().escena_actual.solsitos:
s.sincronizar_cronos_pausa(t)
class Confirmar(object):
def __init__(self, nombre):
self.imagen = engine.cargar_imagen("areyousure.png", True)
self.rect = engine.pygame.Rect(242, 183, 510, 380)
self.boton_yes = Boton(self.rect.x + 37, self.rect.y + 284, engine.cargar_imagen("boton10.png", True), comando = self.yes, nombre = "YES")
self.boton_no = Boton(self.rect.x + 258, self.rect.y + 284, engine.cargar_imagen("boton10.png", True), comando = self.no, nombre = "NO")
self.nombre = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "'" + nombre + "'", 1, (224, 187, 98))
if self.nombre.get_rect().width + 339 > 416:
self.msj_1 = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "This will permanently remove ", 1, (224, 187, 98))
self.msj_2 = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "'" + nombre + "' from the player roster!", 1, (224, 187, 98))
else:
self.msj_1 = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "This will permanently remove '" + nombre + "'", 1, (224, 187, 98))
self.msj_2 = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "from the player roster!", 1, (224, 187, 98))
self.rect_1 = self.msj_1.get_rect()
self.rect_2 = self.msj_2.get_rect()
self.rect_1.center = 494, 365
self.rect_2.center = 494, 394
def dibujar(self, superficie):
superficie.blit(self.imagen, self.rect)
self.boton_yes.dibujar(superficie)
self.boton_no.dibujar(superficie)
superficie.blit(self.msj_1, self.rect_1)
superficie.blit(self.msj_2, self.rect_2)
def verificar_eventos(self, evento):
self.boton_yes.verificar_eventos(evento)
self.boton_no.verificar_eventos(evento)
def actualizar(self, tiempo):
self.boton_yes.actualizar(tiempo)
self.boton_no.actualizar(tiempo)
self.boton_yes.rect.x = self.rect.x + 37
self.boton_yes.rect.y = self.rect.y + 284
self.boton_no.rect.x = self.rect.x + 258
self.boton_no.rect.y = self.rect.y + 284
def yes(self):
engine.obtener_director().escena_actual.cuadro_quien.delete()
engine.obtener_director().escena_actual.cuadro_quien.confirmar = None
def no(self):
engine.obtener_director().escena_actual.cuadro_quien.confirmar = None
class QuienEres(object):
def __init__(self):
self.imagen = engine.cargar_imagen("quieneres.png", True)
self.rect = engine.pygame.Rect(126, 58, 745, 628)
self.boton_rename = Boton(self.rect.x + 40, self.rect.y + 481, engine.cargar_imagen("boton9.png", True), comando = self.rename, nombre = "rename")
self.boton_delete = Boton(self.rect.x + 378, self.rect.y + 481, engine.cargar_imagen("boton9.png", True), comando = self.areyousure, nombre = "delete")
self.boton_ok = Boton(self.rect.x + 40, self.rect.y + 538, engine.cargar_imagen("boton9.png", True), comando = self.ok, nombre = "ok")
self.boton_cancel = Boton(self.rect.x + 378, self.rect.y + 538, engine.cargar_imagen("boton9.png", True), comando = self.cancel, nombre = "cancel")
self.imagen_seleccion = engine.pygame.Surface((568, 31))
self.imagen_seleccion.fill((0, 174, 0))
self.elementos = [Elemento(engine.pygame.Rect(self.rect.x + 84, self.rect.y + 175 + a, 568, 31), self.imagen_seleccion) for a in range(0, 248 , 31)]
self.rect_clic = None
self.imagen_crear = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 40), "(Create a New User)", 1, (246, 244, 177))
self.rect_crear = self.imagen_crear.get_rect()
self.confirmar = None
self.renombrar = None
self.cargar_usuarios()
if self.elementos[0].usuario: self.elementos[0].seleccionado = True
def dibujar(self, superficie):
superficie.blit(self.imagen, self.rect)
self.boton_rename.dibujar(superficie)
self.boton_delete.dibujar(superficie)
self.boton_ok.dibujar(superficie)
self.boton_cancel.dibujar(superficie)
for e in self.elementos:
e.dibujar(superficie)
if self.rect_clic: superficie.blit(self.imagen_crear, self.rect_crear)
if self.confirmar: self.confirmar.dibujar(superficie)
if self.renombrar: self.renombrar.dibujar(superficie)
def actualizar(self, tiempo):
if self.confirmar: self.confirmar.actualizar(tiempo)
elif self.renombrar: self.renombrar.actualizar(tiempo)
else:
for e in self.elementos:
e.actualizar(tiempo)
self.boton_ok.actualizar(tiempo)
self.boton_cancel.actualizar(tiempo)
self.boton_delete.actualizar(tiempo)
self.boton_rename.actualizar(tiempo)
def verificar_eventos(self, evento):
if not self.confirmar and not self.renombrar:
self.boton_rename.verificar_eventos(evento)
self.boton_delete.verificar_eventos(evento)
self.boton_ok.verificar_eventos(evento)
self.boton_cancel.verificar_eventos(evento)
for e in self.elementos:
e.verificar_eventos(evento)
if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1:
if self.rect_clic and self.rect_clic.collidepoint(evento.pos[0], evento.pos[1]):
engine.obtener_director().escena_actual.cuadro_creacion = CuadroCreacion()
elif self.confirmar: self.confirmar.verificar_eventos(evento)
elif self.renombrar: self.renombrar.verificar_eventos(evento)
def rename(self):
s = None
for e in self.elementos:
if e.seleccionado == True: s = e.usuario
self.renombrar = Renombre(s)
def ok(self):
s = None
for e in self.elementos:
if e.seleccionado == True: s = e.usuario
if s != engine.obtener_usuario().nombre:
conn = sqlite3.connect("recursos/data.db")
cursor = conn.cursor()
cursor.execute("select id from usuario where nombre = ?", (s,))
id_user = cursor.fetchone()[0]
cursor.execute("insert into sesion values (null,?,?)", (id_user, str(datetime.now())))
conn.commit()
plantas = []
objetos = []
cursor.execute("select * from carta where id in (select id_carta from usuario_carta where id_usuario = ?);", (id_user,))
for row in cursor:
clase = None
clasebase = None
exec("clase = {}".format(row[3]))
exec("clasebase = {}".format(row[10]))
plantas.append(Carta(engine.pygame.Rect(row[1], row[2], 62, 87), clase, row[4], row[5], row[6], row[7], row[8], row[9], clasebase))
cursor.execute("select * from objeto where id in (select id_objeto from usuario_objeto where id_usuario = ?);", (id_user,))
for row in cursor:
objetos.append(row[1])
engine.definir_usuario(Usuario(id_user, s, plantas, objetos))
conn.close()
engine.obtener_director().escena_actual.cuadro_quien = None
def areyousure(self):
s = None
for e in self.elementos:
if e.seleccionado == True: s = e.usuario
self.confirmar = Confirmar(s)
def delete(self):
s = None
i = 0
for e in self.elementos:
if e.seleccionado == True:
s = e.usuario
e.seleccionado = False
break
i += 1
if i == 0:
if self.elementos[1].usuario == None:
engine.definir_usuario(None)
engine.obtener_director().escena_actual.cuadro_creacion = CuadroCreacion()
else:
self.elementos[0].seleccionado = True
conn = sqlite3.connect("recursos/data.db")
cursor = conn.cursor()
cursor.execute("select id from usuario where nombre = ?;", (self.elementos[1].usuario,))
id_user = cursor.fetchone()[0]
plantas = []
objetos = []
cursor.execute("select * from carta where id in (select id_carta from usuario_carta where id_usuario = ?);", (id_user,))
for row in cursor:
clase = None
clasebase = None
exec("clase = {}".format(row[3]))
exec("clasebase = {}".format(row[10]))
plantas.append(Carta(engine.pygame.Rect(row[1], row[2], 62, 87), clase, row[4], row[5], row[6], row[7], row[8], row[9], clasebase))
cursor.execute("select * from objeto where id in (select id_objeto from usuario_objeto where id_usuario = ?);", (id_user,))
for row in cursor:
objetos.append(row[1])
engine.definir_usuario(Usuario(id_user, self.elementos[1].usuario, plantas, objetos))
conn.close()
else:
self.elementos[i - 1].seleccionado = True
conn = sqlite3.connect("recursos/data.db")
cursor = conn.cursor()
cursor.execute("select id from usuario where nombre = ?", (s,))
id_user = cursor.fetchone()[0]
cursor.execute("delete from usuario where id = ?", (id_user,))
cursor.execute("delete from sesion where id_usuario = ?", (id_user,))
cursor.execute("delete from usuario_carta where id_usuario = ?", (id_user,))
conn.commit()
for e in self.elementos:
e.usuario = None
self.cargar_usuarios()
def cancel(self):
engine.obtener_director().escena_actual.cuadro_quien = None
def cargar_usuarios(self):
if engine.obtener_usuario():
conn = sqlite3.connect("recursos/data.db")
cursor = conn.cursor()
cursor.execute("select nombre from usuario where nombre != ? order by nombre;", (engine.obtener_usuario().nombre,))
self.elementos[0].usuario = engine.obtener_usuario().nombre
i = 1
for row in cursor:
self.elementos[i].usuario = row[0]
i += 1
if i < 8:
self.rect_clic = self.elementos[i].rect
self.rect_crear.center = self.rect_clic.center
else:
self.rect_clic = None
else:
self.rect_clic = self.elementos[0].rect
self.rect_crear.center = self.rect_clic.center
self.elementos[0].seleccionado = True
class Elemento(object):
def __init__(self, rect, seleccion = None):
self.rect = rect
self.seleccion = seleccion
self.seleccionado = False
self.imagen_nombre = None
self.rect_nombre = None
self.__nombre = None
def dibujar(self, superficie):
if self.seleccionado: superficie.blit(self.seleccion, self.rect)
if self.imagen_nombre: superficie.blit(self.imagen_nombre, self.rect_nombre)
def actualizar(self, tiempo):
if self.imagen_nombre:
self.rect_nombre.center = self.rect.center
def verificar_eventos(self, evento):
if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1:
if self.rect.collidepoint(evento.pos[0], evento.pos[1]):
for e in engine.obtener_director().escena_actual.cuadro_quien.elementos:
if e is not self and e.seleccionado:
if self.usuario: e.seleccionado = False
if self.usuario:
self.seleccionado = True
@property
def usuario(self):
return self.__nombre
@usuario.setter
def usuario(self, nombre):
if nombre:
self.__nombre = nombre
self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 40), self.__nombre, 1, (246, 244, 177))
self.rect_nombre = self.imagen_nombre.get_rect()
self.rect_nombre.center = self.rect.center
else:
self.__nombre = None
self.imagen_nombre = None
self.rect_nombre = None
class Bienvenida(object):
def __init__(self):
self.imagen = engine.cargar_imagen("bienvenida.png", True)
self.x = 30
self.y = -243
self.rect_clic = engine.pygame.Rect(58, self.y + 186, 334, 38)
self.__nombre = engine.obtener_usuario().nombre
self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 40), self.nombre, 1, (0, 176, 0))
self.rect_nombre = self.imagen_nombre.get_rect()
self.rect_nombre.center = 215, self.y + 120
def dibujar(self, superficie):
superficie.blit(self.imagen, (self.x, self.y))
superficie.blit(self.imagen_nombre, self.rect_nombre)
def actualizar(self, tiempo):
self.rect_nombre.centery = self.y + 120
self.rect_clic.centery = self.y + 186
self.nombre = engine.obtener_usuario().nombre if engine.usuario else ""
def verificar_eventos(self, evento):
if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1:
if self.rect_clic.collidepoint(evento.pos[0], evento.pos[1]):
engine.obtener_director().escena_actual.cuadro_quien = QuienEres()
@property
def nombre(self):
return self.__nombre
@nombre.setter
def nombre(self, nombre):
if nombre != self.__nombre:
self.__nombre = nombre
self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.nombre, 1, (0, 176, 0))
self.rect_nombre = self.imagen_nombre.get_rect()
self.rect_nombre.center = 215, self.y + 120
class CuadroObligar(object):
def __init__(self):
self.imagen = engine.cargar_imagen("obligacion.png", True)
self.rect = engine.pygame.Rect(184, 182, 636, 382)
self.boton_ok = Boton(self.rect.x + 63, self.rect.y + 283, engine.cargar_imagen("boton11.png", True), comando = self.ok, nombre = "ok")
def ok(self):
engine.obtener_director().escena_actual.cuadro_creacion.cuadro_obligacion = None
def dibujar(self, superficie):
superficie.blit(self.imagen, self.rect)
self.boton_ok.dibujar(superficie)
def verificar_eventos(self, evento):
self.boton_ok.verificar_eventos(evento)
def actualizar(self, tiempo):
self.boton_ok.actualizar(tiempo)
class Renombre(object):
def __init__(self, old):
self.imagen = engine.cargar_imagen("rename.png", True)
self.rect = engine.pygame.Rect(184, 184, 624, 380)
self.boton_ok = Boton(223, 467, engine.cargar_imagen("boton8.png", True), comando = self.cambiar_usuario, nombre = "ok")
self.boton_cancel = Boton(500, 467, engine.cargar_imagen("boton8.png", True), comando = self.cancelar, nombre = "cancel")
self.entrada = Input(248, 376)
self.old = old
self.entrada.indice = len(self.old)
self.entrada.text = self.old
self.entrada.seleccionar()
def cambiar_usuario(self):
i = 0
while i < len(self.entrada.text):
if self.entrada.text[i] != " ":
break
i += 1
self.entrada.text = self.entrada.text[i:len(self.entrada.text)]
i = len(self.entrada.text) - 1
while i > 0:
if self.entrada.text[i] != " ":
break
i -= 1
self.entrada.text = self.entrada.text[0:i + 1]
if len(self.entrada.text.replace(" ", "")) != 0:
conn = sqlite3.connect('recursos/data.db')
cursor = conn.cursor()
cursor.execute("update usuario set nombre = ? where nombre = ?", (self.entrada.text, self.old))
conn.commit()
conn.close()
if self.old == engine.obtener_usuario().nombre: engine.obtener_usuario().nombre = self.entrada.text
engine.obtener_director().escena_actual.cuadro_quien.cargar_usuarios()
engine.obtener_director().escena_actual.cuadro_quien.renombrar = None
def dibujar(self, superficie):
superficie.blit(self.imagen, self.rect)
self.boton_ok.dibujar(superficie)
self.boton_cancel.dibujar(superficie)
self.entrada.dibujar(superficie)
def actualizar(self, tiempo):
self.entrada.actualizar(tiempo)
self.boton_ok.actualizar(tiempo)
self.boton_cancel.actualizar(tiempo)
def verificar_eventos(self, evento):
if evento.type == locals.KEYDOWN:
self.seleccion = None
if evento.key == 13:
self.cambiar_usuario()
elif evento.key == 275:
self.entrada.text = self.old
self.boton_ok.verificar_eventos(evento)
self.boton_cancel.verificar_eventos(evento)
self.entrada.verificar_eventos(evento)
def cancelar(self):
engine.obtener_director().escena_actual.cuadro_quien.renombrar = None
class CuadroCreacion(object):
def __init__(self):
self.imagen = engine.cargar_imagen("crearuser2.png", True)
self.rect = engine.pygame.Rect(184, 184, 624, 380)
self.boton_ok = Boton(223, 467, engine.cargar_imagen("boton8.png", True), comando = self.agregar_usuario, nombre = "ok")
self.boton_cancel = Boton(500, 467, engine.cargar_imagen("boton8.png", True), comando = self.cancelar, nombre = "cancel")
self.entrada = Input(248, 376)
self.cuadro_obligacion = None
def agregar_usuario(self):
i = 0
while i < len(self.entrada.text):
if self.entrada.text[i] != " ":
break
i += 1
self.entrada.text = self.entrada.text[i:len(self.entrada.text)]
i = len(self.entrada.text) - 1
while i > 0:
if self.entrada.text[i] != " ":
break
i -= 1
self.entrada.text = self.entrada.text[0:i + 1]
if len(self.entrada.text.replace(" ", "")) != 0:
conn = sqlite3.connect('recursos/data.db')
cursor = conn.cursor()
n = (self.entrada.text,)
cursor.execute("select * from usuario where nombre = ?", (self.entrada.text,))
if cursor.fetchall() != []:
print "Ya existe un usuario con ese nombre,elija otro"
else:
cursor.execute("insert into usuario values (null,?,0)", n)
cursor.execute("insert into sesion values (null,last_insert_rowid(),?)", (str(datetime.now()),))
conn.commit()
cursor.execute("select id from usuario where nombre = ?", (self.entrada.text,))
engine.definir_usuario(Usuario(cursor.fetchone()[0], self.entrada.text, [], []))
conn.close()
engine.obtener_director().escena_actual.cuadro_creacion = None
engine.obtener_director().escena_actual.cuadro_quien = None
engine.obtener_director().escena_actual.saludar()
else: self.cuadro_obligacion = CuadroObligar()
def cancelar(self):
if engine.usuario:
engine.obtener_director().escena_actual.cuadro_creacion = None
else:
self.cuadro_obligacion = CuadroObligar()
def dibujar(self, superficie):
superficie.blit(self.imagen, self.rect)
self.boton_ok.dibujar(superficie)
self.boton_cancel.dibujar(superficie)
self.entrada.dibujar(superficie)
if self.cuadro_obligacion: self.cuadro_obligacion.dibujar(superficie)
def actualizar(self, tiempo):
self.entrada.actualizar(tiempo)
self.boton_ok.actualizar(tiempo)
self.boton_cancel.actualizar(tiempo)
if self.cuadro_obligacion: self.cuadro_obligacion.actualizar(tiempo)
def verificar_eventos(self, evento):
if self.cuadro_obligacion: self.cuadro_obligacion.verificar_eventos(evento)
else:
if evento.type == locals.KEYDOWN and evento.key == 13:
self.agregar_usuario()
self.boton_ok.verificar_eventos(evento)
self.boton_cancel.verificar_eventos(evento)
self.entrada.verificar_eventos(evento)
class SlotCuadro(object):
def __init__(self, rect):
self.carta = None
self.rect = rect
self.usado = False
def dibujar(self, superficie):
if self.carta:
superficie.blit(engine.obtener_director().escena_actual.imagen_cartas, self.rect, self.carta.rect_origen_carta)
if self.usado:
superficie.blit(engine.obtener_director().escena_actual.imagen_charge, self.rect)
class CuadroELeccion(object):
def __init__(self):
self.imagen = engine.cargar_imagen("choose.png", True)
self.imagen_copia = engine.cargar_imagen("choose.png", True)
f1 = [SlotCuadro(engine.pygame.Rect(a + 28, 51, 62, 87)) for a in range(0, 528, 66)]
f2 = [SlotCuadro(engine.pygame.Rect(a + 28, 142, 62, 87)) for a in range(0, 528, 66)]
f3 = [SlotCuadro(engine.pygame.Rect(a + 28, 233, 62, 87)) for a in range(0, 528, 66)]
f4 = [SlotCuadro(engine.pygame.Rect(a + 28, 324, 62, 87)) for a in range(0, 528, 66)]
f5 = [SlotCuadro(engine.pygame.Rect(a + 28, 415, 62, 87)) for a in range(0, 528, 66)]
self.slots = f1 + f2 + f3 + f4 + f5
self.rect = engine.pygame.Rect(0, 109, 581, 662)
self.tweener = engine.pytweener.Tweener()
self.altura = 750
self.listo = Boton(194, 1325, engine.cargar_imagen("boton0.png", True), comando = self.bajar, nombre = "let's rock")
def aparecer(self):
self.tweener.addTween(self, altura = 109, tweenTime = 0.5, tweenType = engine.pytweener.Easing.Linear.easeIn)
def agregar_carta(self, carta):
for slot in self.slots:
if slot.carta == None:
slot.carta = carta
slot.carta.x, slot.carta.y = slot.rect.x, slot.rect.y + 109
slot.carta.slot_inicial = slot
break
def dibujar(self, superficie):
self.imagen.blit(self.imagen_copia, (0, 0))
for slot in self.slots:
slot.dibujar(self.imagen)
superficie.blit(self.imagen, (0, self.altura))
self.listo.dibujar(superficie)
def actualizar(self, tiempo):
if not self.listo.presionado: self.listo.rect.y = self.altura + 575
self.listo.actualizar(tiempo)
if self.tweener.hasTweens():
self.tweener.update(tiempo / 1000.0)
def verificar_eventos(self, evento):
self.listo.verificar_eventos(evento)
if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1:
for slot in self.slots:
if slot.rect.collidepoint(evento.pos[0], evento.pos[1] - 109) and not slot.usado:
if slot.carta:
for s in engine.obtener_director().escena_actual.barra_control.slots:
if s.carta == None:
slot.usado = True
engine.obtener_director().escena_actual.cartas.append(slot.carta)
self.tweener.addTween(slot.carta, x = s.rect.x, y = s.rect.y, tweenTime = 0.2, tweenType = pytweener.Easing.Linear.easeIn, onCompleteFunction = slot.carta.empotrar)
break
def bajar(self):
engine.obtener_director().escena_actual.barra_control.eligiendo = 1
self.tweener.addTween(self, altura = 750, tweenTime = 0.3, tweenType = engine.pytweener.Easing.Linear.easeIn, onCompleteFunction = self.acabar)
def acabar(self):
engine.obtener_director().escena_actual.cuadro_eleccion = None
engine.obtener_director().escena_actual.tweener.addTween(engine.obtener_director().escena_actual, izquierda = 265, tweenTime = 1.5, tweenType = engine.pytweener.Easing.Linear.easeIn, onCompleteFunction = engine.obtener_director().escena_actual.modo_juego)
class CuadroLampa(object):
def __init__(self):
self.imagen = engine.cargar_imagen("slot_lampa.png", True)
self.imagen_lampa = engine.cargar_imagen("lampa.png", True)
self.rect_lampa = self.imagen_lampa.get_rect()
self.rect = self.imagen.get_rect()
self.rect.left = engine.obtener_director().escena_actual.barra_control.imagen.get_rect().width
self.rect_lampa.center = self.rect.center
self.usando = False
def dibujar(self, superficie):
superficie.blit(self.imagen, self.rect)
if not self.usando:
superficie.blit(self.imagen_lampa, self.rect_lampa)
def dibujar_lampa(self, superficie):
if self.usando:
superficie.blit(self.imagen_lampa, self.rect_lampa)
def actualizar(self, tiempo):
if self.usando:
self.rect_lampa.bottomleft = engine.pygame.mouse.get_pos()
else:
self.rect_lampa.center = self.rect.center
def verificar_eventos(self, evento):
if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1:
if engine.obtener_director().escena_actual.barra_control.eligiendo == 2:
if self.rect.collidepoint(evento.pos[0], evento.pos[1]) and not self.usando:
self.usando = True
elif self.usando:
i = (evento.pos[1] - 120) / 104
j = (evento.pos[0] - 50) / 100
if 0 <= i <= 5 and 0 <= j <= 8 and engine.obtener_director().escena_actual.tablero[i][j] != None:
if engine.obtener_director().escena_actual.tablero[i][j].__class__ == Nenufar and engine.obtener_director().escena_actual.tablero[i][j].contenido:
engine.obtener_director().escena_actual.tablero[i][j].contenido = None
else:
engine.obtener_director().escena_actual.tablero[i][j] = None
self.usando = False
elif evento.type == locals.MOUSEBUTTONDOWN and evento.button == 3:
if self.usando: self.usando = False
class BarraControl(object):
def __init__(self):
self.imagen = engine.cargar_imagen("barra.png", True)
self.slots = [SlotBarra(engine.pygame.Rect(107 + a, 11, 62, 88)) for a in range(0, 438, 73)]
self.soles = 50
self.nro_soles = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 30), str(self.soles), 1, (0, 0, 0))
self.rect_soles = self.nro_soles.get_rect()
self.rect_soles.center = 49, 91
self.eligiendo = 0
self.tweener = engine.pytweener.Tweener()
def dibujar(self, superficie):
superficie.blit(self.imagen, (0, 0))
for slot in self.slots:
slot.dibujar(superficie)
superficie.blit(self.nro_soles, self.rect_soles)
def actualizar(self, tiempo):
for slot in self.slots:
slot.actualizar(tiempo)
self.nro_soles = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 30), str(self.soles), 1, (0, 0, 0))
self.rect_soles = self.nro_soles.get_rect()
self.rect_soles.center = 49, 91
if self.tweener.hasTweens():
self.tweener.update(tiempo / 1000.0)
def verificar_eventos(self, evento):
if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1:
if self.eligiendo == 2:
hubo_clic = False
for slot in self.slots:
if slot.rect.collidepoint(evento.pos[0], evento.pos[1]):
hubo_clic = True
if slot.carta and engine.obtener_director().escena_actual.seleccion == None and slot.cargando == False:
if engine.obtener_director().escena_actual.barra_control.soles >= slot.carta.info['precio']:
engine.obtener_director().escena_actual.seleccion = PlantaSeleccionada(slot)
slot.oscurecer()
else:
if engine.obtener_director().escena_actual.seleccion: engine.obtener_director().escena_actual.seleccion.slot.aclarar()
engine.obtener_director().escena_actual.seleccion = None
break
if not hubo_clic and self.imagen.get_rect().collidepoint(evento.pos[0], evento.pos[1]) and engine.obtener_director().escena_actual.seleccion:
engine.obtener_director().escena_actual.seleccion.slot.aclarar()
engine.obtener_director().escena_actual.seleccion = None
elif self.eligiendo == 0:
for slot in self.slots:
if slot.rect.collidepoint(evento.pos[0], evento.pos[1]):
if slot.carta:
engine.obtener_director().escena_actual.cartas.append(slot.carta)
self.tweener.addTween(slot.carta, x = slot.carta.slot_inicial.rect.x, y = slot.carta.slot_inicial.rect.y + 109, tweenTime = 0.2, tweenType = pytweener.Easing.Linear.easeIn, onCompleteFunction = slot.carta.reempotrar)
slot.carta = None
self.reacomodar(slot)
break
def agregar_carta(self, carta):
for slot in self.slots:
if slot.carta == None:
slot.carta = carta
break
def reacomodar(self, slot_movido):
slot_ant = slot_movido
for slot in self.slots:
if slot.rect.centerx > slot_movido.rect.centerx and slot.carta:
engine.obtener_director().escena_actual.cartas.append(slot.carta)
self.tweener.addTween(slot.carta, x = slot_ant.rect.x, y = slot_ant.rect.y, tweenTime = 0.2, tweenType = pytweener.Easing.Linear.easeIn, onCompleteFunction = slot.carta.empotrar)
slot.carta = None
slot_ant = slot
class PlantaSeleccionada(object):
def __init__(self, slot):
self.slot = slot
self.carta = slot.carta
self.imagen = engine.cargar_imagen(self.carta.clase.url_imagen, True)
self.grilla = Grilla(self.carta.clase.url_imagen, self.carta.clase.cantidad[0], self.carta.clase.cantidad[1])
self.rect = engine.pygame.Rect(0, 0, self.grilla.ancho, self.grilla.alto)
self.rect_origen = self.grilla.obtener_cuadro(self.carta.clase.cuadro_alpha)
self.rect_fondo = engine.pygame.Rect(0, 0, self.grilla.ancho, self.grilla.alto)
self.plantable = 2
def dibujar(self, superficie):
superficie.blit(self.imagen, self.rect, self.rect_origen)
def verificar_eventos(self, evento):
if evento.type == locals.MOUSEMOTION:
x, y = evento.pos
i = (y - 120) / 104
j = (x - 50) / 100
if i in range(0, 6) and j in range(0, 9):
self.rect_fondo.right = 50 + engine.obtener_director().escena_actual.ancho_cuadro * (j + 1)
self.rect_fondo.bottom = 120 + engine.obtener_director().escena_actual.alto_cuadro * (i + 1)
if engine.obtener_director().escena_actual.lineas[i] == self.carta.info['campo']:
if ((engine.obtener_director().escena_actual.tablero[i][j] and engine.obtener_director().escena_actual.tablero[i][j].__class__ == self.carta.base) or (not engine.obtener_director().escena_actual.tablero[i][j] and self.carta.base == None)):
self.plantable = 0
if engine.obtener_director().escena_actual.tablero[i][j].__class__ == Nenufar and engine.obtener_director().escena_actual.tablero[i][j].contenido != None:
self.plantable = 2
else: self.plantable = 2
else:
if engine.obtener_director().escena_actual.tablero[i][j] and engine.obtener_director().escena_actual.tablero[i][j].__class__ == Nenufar and engine.obtener_director().escena_actual.tablero[i][j].contenido == None:
self.plantable = 1
else:
self.plantable = 2
else:
self.plantable = 2
def dibujar_posible(self, superficie):
if self.plantable == 0 or self.plantable == 1:
self.dibujar_alpha(superficie, self.imagen, self.rect_fondo, 130, self.rect_origen)
def dibujar_alpha(self, fondo, imagen, rect_fondo, opacidad, rect_origen):
temp = engine.pygame.Surface((rect_fondo.width, rect_fondo.height)).convert()
temp.blit(fondo, (0, 0), rect_fondo)
temp.blit(imagen, (0, 0), rect_origen)
temp.set_alpha(opacidad)
fondo.blit(temp, rect_fondo)
def actualizar(self, tiempo):
self.rect.centerx, self.rect.centery = engine.pygame.mouse.get_pos()
def verificar_bases(self):
for fila in engine.obtener_director().escena_actual.tablero:
for p in fila:
if p and p.__class__ == self.carta.clase.base:
print "encontre una base"
class Carta(object):
def __init__(self, rect_origen, cls, nombre, descripcion, precio, campo, tipo, tiempo_charge = 3, base = None):
self.rect_origen_carta = rect_origen
self.rect = engine.pygame.Rect(0, 0, 85, 121)
self.clase = cls
self.x = 0
self.y = 0
self.slot_inicial = None
self.info = {
'nombre':nombre,
'descripcion:':descripcion,
'precio':precio,
'campo':campo,
'tipo':tipo,
}
self.tiempo_charge = tiempo_charge
self.base = base
def dibujar(self, superficie):
superficie.blit(engine.obtener_director().escena_actual.imagen_cartas, self.rect, self.rect_origen_carta)
def actualizar(self, superficie):
self.rect.x, self.rect.y = self.x, self.y
def empotrar(self):
engine.obtener_director().escena_actual.barra_control.agregar_carta(self)
engine.obtener_director().escena_actual.cartas.pop(0)
def reempotrar(self):
self.slot_inicial.usado = False
engine.obtener_director().escena_actual.cartas.pop(0)
class SlotBarra(object):
def __init__(self, rect):
self.carta = None
self.rect = rect
self.cargando = False
self.rect_charge = engine.pygame.Rect(0, 0, self.rect.width, 0)
self.tweener = pytweener.Tweener()
self.falta_cargar = 0
def dibujar(self, superficie):
if self.carta:
superficie.blit(engine.obtener_director().escena_actual.imagen_cartas, self.rect, self.carta.rect_origen_carta)
if engine.obtener_director().escena_actual.barra_control.soles < self.carta.info['precio'] and engine.obtener_director().escena_actual.barra_control.eligiendo == 2: superficie.blit(engine.obtener_director().escena_actual.imagen_nosoles, self.rect)
superficie.blit(engine.obtener_director().escena_actual.imagen_charge, self.rect, self.rect_charge)
def actualizar(self, tiempo):
self.rect_charge.height = self.falta_cargar
if self.tweener.hasTweens():
self.tweener.update(tiempo / 1000.0)
def oscurecer(self):
self.falta_cargar = self.rect.height
def aclarar(self):
self.falta_cargar = 0
def cargar(self):
if self.carta:
self.tweener.addTween(self, falta_cargar = 0, tweenTime = self.carta.tiempo_charge, tweenType = pytweener.Easing.Linear.easeIn, onCompleteFunction = self.terminar_cargado)
self.cargando = True
def terminar_cargado(self):
self.cargando = False
self.falta_cargar = 0
class Input(object):
def __init__(self, x, y):
self.text = ""
self.palabra = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text, 1, (255, 255, 255))
self.parpadeante = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), "|", 1, (255, 255, 255))
self.x, self.y = x, y
self.xp = self.x - 3
self.visible = True
self.indice = len(self.text)
self.seleccionado = False
def dibujar(self, superficie):
if self.seleccionado: superficie.blit(self.seleccion, (self.x, self.y))
if self.visible: superficie.blit(self.parpadeante, (self.xp, self.y))
superficie.blit(self.palabra, (self.x, self.y))
def actualizar(self, tiempo):
if not self.seleccionado: self.palabra = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text, 1, (255, 255, 255))
else: self.palabra = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text, 1, (0, 0, 0))
if 0 <= engine.pygame.time.get_ticks() % 1000 <= 500:
self.visible = False
else: self.visible = True
self.xp = self.x + engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text[0:self.indice], 1, (255, 255, 255)).get_width() - 3
def verificar_eventos(self, evento):
if evento.type == locals.KEYDOWN:
if evento.key == 275 and self.indice < len(self.text):
self.indice += 1
elif evento.key == 275 and self.indice == len(self.text):
self.deseleccionar()
elif evento.key == 276 and self.indice > 0:
if not self.seleccionado: self.indice -= 1
else:
self.deseleccionar()
self.indice = 0
elif evento.key != 8 and evento.key != 13 and evento.key != 275 and evento.key != 276 and evento.key != 304 and len(self.text) < 15:
if self.seleccionado:
self.deseleccionar()
self.text = ""
self.indice = 0
self.text = self.text[0:self.indice] + evento.unicode + self.text[self.indice:len(self.text)]
self.indice += 1
elif evento.key == 8 and self.indice > 0:
if self.seleccionado:
self.deseleccionar()
self.text = ""
self.indice = 0
else:
self.text = self.text[0:self.indice - 1] + self.text[self.indice:len(self.text)]
self.indice -= 1
def seleccionar(self):
if len(self.text) > 0:
self.seleccionado = True
self.palabra = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text, 1, (0, 0, 0))
self.seleccion = engine.pygame.Surface((self.palabra.get_width(), self.palabra.get_height()))
self.seleccion.fill((255, 255, 255))
self.indice = len(self.text)
def deseleccionar(self):
self.seleccionado = False
self.seleccion = None
class Boton(object):
def __init__(self, x, y, imagen, comando = None, nombre = None):
self.imagen = imagen
self.rect = self.imagen.get_rect()
self.mask = engine.pygame.mask.from_surface(self.imagen, 127)
self.rect.x = x
self.rect.y = y
self.comando = comando
self.presionado = False
self.nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 32), nombre.upper(), 1, (0, 174, 0)) if nombre else None
self.rect_nombre = self.nombre.get_rect() if self.nombre else None
if self.rect_nombre: self.rect_nombre.center = self.rect.center
def dibujar(self, superficie):
superficie.blit(self.imagen, self.rect)
if self.nombre: superficie.blit(self.nombre, self.rect_nombre)
def verificar_eventos(self, evento):
if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1:
if engine.pygame.sprite.spritecollideany(self, [engine.cursor], engine.pygame.sprite.collide_mask):
if not self.presionado:
self.presionado = True
self.rect.x = self.rect.x + 3
self.rect.y = self.rect.y + 3
elif evento.type == locals.MOUSEBUTTONUP and evento.button == 1 and self.presionado:
self.presionado = False
self.rect.x = self.rect.x - 3
self.rect.y = self.rect.y - 3
if self.rect_nombre: self.rect_nombre.center = self.rect.center
if engine.pygame.sprite.spritecollideany(self, [engine.cursor], engine.pygame.sprite.collide_mask):
if self.comando: self.comando()
def actualizar(self, tiempo):
if self.rect_nombre: self.rect_nombre.center = self.rect.center
|
[
"eyscode@gmail.com"
] |
eyscode@gmail.com
|
d5a12a01f55e04a1cee8ab7374e30fd2d4ec25df
|
7f9961edb9113250a7890c6a174fca39d6eeafa6
|
/read_xls.py
|
f5ca1becbc37773ee6396a230395f176e5694348
|
[] |
no_license
|
memgoon/shelf_map_test
|
523179ff2c806884857bdb41bb47757e95061b11
|
51a9b44cf9d84288b75fa73f71ec7c76a165a15c
|
refs/heads/master
| 2021-01-23T20:38:46.906833
| 2015-11-21T07:40:01
| 2015-11-21T07:40:01
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 752
|
py
|
import xlrd
import os
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'shelf_map.settings')
import django
django.setup()
import shelf_map.models
from django.core.exceptions import ValidationError
def main():
workbook = xlrd.open_workbook('static/1자료실.xlsx')
workbook_index = workbook.sheet_by_index(0)
for i in range(0, int(workbook_index.nrows/2)):
major_id_list = workbook_index.row_values(2*i)
minor_id_list = workbook_index.row_values(2*i+1)
for j in range(0, len(major_id_list)):
try:
shelf_map.models.create_shelf(chr(j+65), str(i/2+1), major_id_list[j], minor_id_list[j])
except ValidationError:
continue
if __name__ == '__main__':
main()
|
[
"darkdakku@gmail.com"
] |
darkdakku@gmail.com
|
a8cf597841bdc78c1f56b1e0b73d9efdcca7b554
|
c55bca491632ef98dfd0e39e9e197f86d4ce94f0
|
/wcoa/migrations/0019_auto_20200922_1837.py
|
6a1b7fb208ec5b9d7b5906ffb04ffb52f40aa3af
|
[
"MIT"
] |
permissive
|
Ecotrust/wcoa
|
420b2e9f03219a72f79e435c1001b87a76233a8b
|
f6ad1e42fa93560d57043ebeb8464a320befef14
|
refs/heads/main
| 2023-08-03T21:02:01.013970
| 2023-07-28T22:56:03
| 2023-07-28T22:56:03
| 196,878,615
| 1
| 1
|
MIT
| 2021-12-09T19:29:37
| 2019-07-14T20:07:39
|
Python
|
UTF-8
|
Python
| false
| false
| 395
|
py
|
# Generated by Django 2.2.9 on 2020-09-22 18:37
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('wcoa', '0018_delete_masonrypage'),
]
operations = [
migrations.AlterField(
model_name='catalogiframepage',
name='source',
field=models.URLField(max_length=1999),
),
]
|
[
"ryan.d.hodges@gmail.com"
] |
ryan.d.hodges@gmail.com
|
a2f63a96b80b0d24c88cb051e4b93ed7a5134671
|
2dcf0d5cc921745bd34610162e540632066dd919
|
/library/framesize.py
|
200b812e69468c2e02fe0fd9dd27b4a7a38d54b7
|
[] |
no_license
|
ms412/pyIxia
|
0aac92cfe2239853e5e815db23816252b1eb6997
|
17913d810e859fb776882f203bea4135aec72b36
|
refs/heads/master
| 2021-06-25T14:53:45.102058
| 2017-09-11T15:09:06
| 2017-09-11T15:09:06
| 103,150,462
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,825
|
py
|
import time
from library.ixiaIf import TclClient
from tools.logger import Logger
class Framesize(object):
def __init__(self, *args):
self._api = TclClient()
self._log = Logger()
self._portlist=[]
self._tclportlist =''
for item in args:
self._portlist.append([self._api.chassisID(),item[0],item[1]])
for item in self._portlist:
self._tclportlist = (self._tclportlist + '[list %d %d %d] ' % (item[0], item[1], item[2]))
self._tclportlist=('[list %s]'%(self._tclportlist))
def __del__(self):
self.disconnect()
def createGroup(self):
self._api.call('set group 12')
self._api.call('portGroup create $group')
for _port in self._portlist:
self._api.call('portGroup add $group %d %d %d' % (_port[0], _port[1], _port[2]))
# self._api.call('port setFactoryDefaults %d %d %d' % (_port[0], _port[1], _port[2]))
self._api.call('portGroup write $group')
self._api.call('portGroup setCommand $group resetStatistics')
# self._api.call('portGroup write $group')
time.sleep(2)
def port(self,mode):
print('port config',self._portlist)
# self._api.call('set portlist %s'%(self._TclPortList()))
# if self._api.call_rc('ixTakeOwnership portlist force') != 0:
if self._api.call_rc('ixTakeOwnership %s force'%(self._tclportlist)) != 0:
print('EXIT')
exit()
for _port in self._portlist:
if '1Gbe-opt' in mode:
print('config prot',_port)
self._api.call('port setDefault')
#optisch
self._api.call('port setPhyMode 1 %d %d %d'% (_port[0], _port[1], _port[2]))
self._api.call('port config -speed 1000')
self._api.call('port config -advertise100FullDuplex false')
self._api.call('port config -advertise100HalfDuplex false')
self._api.call('port config -advertise10FullDuplex false')
self._api.call('port config -advertise10HalfDuplex false')
self._api.call('port config -advertise1000FullDuplex true')
self._api.call('port config -speed 1000')
self._api.call('port set %d %d %d' % (_port[0], _port[1], _port[2]))
elif '1Gbe-el'in mode:
self._api.call('port setDefault')
# electrical
self._api.call('port setPhyMode 0 %d %d %d' % (_port[0], _port[1], _port[2]))
self._api.call('port config -speed 1000')
self._api.call('port config -advertise100FullDuplex false')
self._api.call('port config -advertise100HalfDuplex false')
self._api.call('port config -advertise10FullDuplex false')
self._api.call('port config -advertise10HalfDuplex false')
self._api.call('port config -advertise1000FullDuplex true')
self._api.call('port config -speed 1000')
self._api.call('port set %d %d %d' % (_port[0], _port[1], _port[2]))
else:
print('nothing')
def stat(self):
for _port in self._portlist:
self._api.call('stat setDefault')
if self._api.call_rc('stat set %d %d %d' % (_port[0], _port[1], _port[2])) != 0:
exit()
# self._api.call('stat write %d %d %d' % (_port[0], _port[1], _port[2]))
def felxibleTimestamp(self):
for _port in self._portlist:
self._api.call('flexibleTimestamp setDefault')
self._api.call('flexibleTimestamp set %d %d %d' % (_port[0], _port[1], _port[2]))
def filter(self):
for _port in self._portlist:
self._api.call('filter setDefault')
self._api.call('filter config -captureTriggerFrameSizeFrom 12')
self._api.call('filter config -captureTriggerFrameSizeTo 12')
self._api.call('filter config -captureFilterFrameSizeFrom 12')
self._api.call('filter config -captureFilterFrameSizeTo 12')
self._api.call('filter setDefault')
self._api.call('filter set %d %d %d' % (_port[0], _port[1], _port[2]))
def filterPallette(self):
for _port in self._portlist:
self._api.call('filterPallette setDefault')
self._api.call('filterPallette set %d %d %d' % (_port[0], _port[1], _port[2]))
def capture(self):
for _port in self._portlist:
self._api.call('capture setDefault')
self._api.call('capture set %d %d %d' % (_port[0], _port[1], _port[2]))
def interfaceTable(self):
# for _port in self._portlist:
self._api.call('interfaceTable setDefault')
self._api.call('interfaceTable write')
self._api.call('interfaceTable write')
self._api.call('interfaceTable clearAllInterfaces')
self._api.call('interfaceTable write')
def protocolServer(self):
for _port in self._portlist:
self._api.call('protocolServer setDefault')
self._api.call('protocolServer set %d %d %d' % (_port[0], _port[1], _port[2]))
def stream(self,framesize):
self._api.call('stream setDefault')
self._api.call('stream config -name %s'% 'TestStream')
self._api.call('stream config -framesize %d'% int(framesize))
self._api.call('stream config -ifg 96.0')
# self._api.call('stream config -ifgMIN 952.0')
#self._api.call('stream config -ifgMAX 1016.0')
# self._api.call('stream config -ibg 96.0')
self._api.call('stream config -percentPacketRate 100.0')
self._api.call('stream config -enableTimestamp true')
self._api.call('stream config -patternType patternTypeRandom')
self._api.call('stream config -dataPattern allOnes')
self._api.call('stream config -pattern "FF FF"')
self._api.call('stream config -frameType "FF FF"')
self._api.call('stream config -dma stopStream')
self._api.call('stream config -numFrames 1000')
#required for lartency
# self._api.call('stream config -fir true')
for _port in self._portlist:
self._api.call('stream set %d %d %d %d'%(_port[0], _port[1], _port[2],1))
def pauseFrame(self):
self._api.call('stream setDefault')
# self._api.call('stream config -name %s'% 'PauseStream')
self._api.call('protocol setDefault')
self._api.call('protocol config -name PauseStream')
self._api.call('protocol config -ethernetType ethernetII')
self._api.call('pauseControl setDefault')
self._api.call('pauseControl config -da {01 80 C2 00 00 01}')
self._api.call('pauseControl config -pauseTime 128')
for _port in self._portlist:
self._api.call('pauseControl set %d %d %d'%(_port[0], _port[1], _port[2]))
for _port in self._portlist:
self._api.call('stream set %d %d %d %d'%(_port[0], _port[1], _port[2],1))
def protocol(self):
self._api.call('protocol setDefault')
def packetGroup(self):
self._api.call('packetGroup setDefault')
self._api.call('packetGroup config -groupId 1')
self._api.call('packetGroup config -groupOffset 16')
self._api.call('packetGroup config -sequenceNumberOffset 28')
self._api.call('packetGroup config -insertSequenceSignature true')
for _port in self._portlist:
self._api.call('packetGroup setTx %d %d %d %d'%(_port[0], _port[1], _port[2],1))
def dataInegrity(self):
self._api.call('dataInegrity setDefault')
self._api.call('dataIntegrity config -signatureOffset 12')
self._api.call('dataIntegrity config -signature "08 71 18 00"')
def result(self):
_result = {}
for _port in self._portlist:
_str_port = (str(_port[0])+str(_port[1])+str(_port[2]))
print(_str_port)
_result[_str_port] = {}
for _port in self._portlist:
self._api.call_rc('capture get %d %d %d' % (_port[0],_port[1], _port[2]))
self._api.call('capture cget -nPackets')
for _port in self._portlist:
self._api.call_rc('captureBuffer get %d %d %d' % (_port[0],_port[1],_port[2]))
self._api.call_rc('captureBuffer getStatistics')
print('Port %s Latency: %d' % (str(_port), int(self._api.call('captureBuffer cget -averageLatency')[0])))
for _port in self._portlist:
self._api.call('stat get statAllStats %d %d %d'% (_port[0], _port[1], _port[2]))
# print('Port %s LinkState: %d'% (str(_port), int(self._api.call('stat cget -link')[0])))
# print('Port %s txFrames: %d'% (str(_port), int(self._api.call('stat cget -framesSent')[0])))
# print('Port %s rxFrames: %d'% (str(_port), int(self._api.call('stat cget -framesReceived')[0])))
# print('Port %s txBytes: %d'% (str(_port), int(self._api.call('stat cget -bytesSent')[0])))
# print('Port %s rxBytes: %d'% (str(_port), int(self._api.call('stat cget -bytesReceived')[0])))
# print('Port %s Line Rate: %d'% (str(_port), int(self._api.call('stat cget -lineSpeed')[0])))
# _str_port = (str(_port[0]) + '-' + str(_port[1]) + '-' + str(_port[2]))
_testResult = {}
_testResult['txFrame'] = int(self._api.call('stat cget -framesSent')[0])
_testResult['rxFrame'] = int(self._api.call('stat cget -framesReceived')[0])
_testResult['txBytes'] = int(self._api.call('stat cget -bytesSent')[0])
_testResult['rxBytes'] = int(self._api.call('stat cget -bytesReceived')[0])
_str_port = (str(_port[0]) + str(_port[1]) + str(_port[2]))
_result[_str_port] = _testResult
# _testResult['PORT'] = _port
# _resultList.append(_testResult)
# print('RESULT',_result)
return _result
def framesizeTest(self,sizelist):
_framesizeTest = {}
self._api.call('set portList %s' % (self._tclportlist))
self.createGroup()
self.port('1Gbe-opt')
#self.pauseFrame()
# _result = {}
for framesize in sizelist:
self.stat()
self.felxibleTimestamp()
self.filter()
self.capture()
self.filterPallette()
self.interfaceTable()
self.protocolServer()
self.stream(framesize)
if self._api.call_rc('ixWriteConfigToHardware portList') != 0:
exit()
time.sleep(10)
if self._api.call_rc('ixCheckLinkState portList') != 0:
exit()
if self._api.call_rc('ixStartCapture portList') != 0:
exit()
if self._api.call_rc('ixStartTransmit portList') != 0:
exit()
time.sleep(10)
if self._api.call_rc('ixStopCapture portList') != 0:
exit()
if self._api.call_rc('ixStopTransmit portList') != 0:
exit()
# _resultList = self.result()
_framesizeTest[framesize] = self.result()
# for item in _resultList:
# print(item)
# _port = item.get('PORT')
# _str_port = (str(_port[0]) + '-' + str(_port[1]) + '-' + str(_port[2]))
# print(_str_port)
# _framesizeTest[_str_port]['FRAMESIZE'][framesize] = _str_port
# print(_framesizeTest)
# _testresult = self.result()
# print('TESTRESULT', _testresult)
return _framesizeTest
def disconnect(self):
if self._api.call_rc('ixClearOwnership %s' % (self._tclportlist)) != 0:
exit()
|
[
"m.schiesser@gmail.com"
] |
m.schiesser@gmail.com
|
ad5d88daef36ed25257d10be732b9c0e3104e120
|
f46231564d2c4cdb44774935316a204f617731e4
|
/Week3/day1/single_riffle_shuffle.py
|
53e81704ae22e9fe83edc24d2dff2ea1df5c7449
|
[] |
no_license
|
shravan090/competitiveprograming
|
a99983e4351f19afbcfcec2d4f2dc5ae5138fdee
|
21cc064ba44b73cef7838f901bc47db743470f66
|
refs/heads/master
| 2020-03-21T15:49:26.402912
| 2018-07-21T09:32:31
| 2018-07-21T09:32:31
| 138,735,069
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,256
|
py
|
import unittest
def is_single_riffle(half1, half2, shuffled_deck):
# Check if the shuffled deck is a single riffle of the halves
h1 = 0
h2 = 0
for card in shuffled_deck:
if h1 < len(half1) and card == half1[h1]:
h1 += 1
elif h2 < len(half2) and card == half2[h2]:
h2 += 1
else:
return False
return True
# Tests
class Test(unittest.TestCase):
def test_both_halves_are_the_same_length(self):
result = is_single_riffle([1, 4, 5], [2, 3, 6], [1, 2, 3, 4, 5, 6])
self.assertTrue(result)
def test_halves_are_different_lengths(self):
result = is_single_riffle([1, 5], [2, 3, 6], [1, 2, 6, 3, 5])
self.assertFalse(result)
def test_one_half_is_empty(self):
result = is_single_riffle([], [2, 3, 6], [2, 3, 6])
self.assertTrue(result)
def test_shuffled_deck_is_missing_cards(self):
result = is_single_riffle([1, 5], [2, 3, 6], [1, 6, 3, 5])
self.assertFalse(result)
def test_shuffled_deck_has_extra_cards(self):
result = is_single_riffle([1, 5], [2, 3, 6], [1, 2, 3, 5, 6, 8])
self.assertFalse(result)
unittest.main(verbosity=2)
|
[
"noreply@github.com"
] |
shravan090.noreply@github.com
|
cf7c57e1e50ca9d690c84f42ae3f0258e355854a
|
3e2593161915670c5586bd600e7e076bbe1a0758
|
/dalaoyuanma.py
|
3b5d58af9bfc1da703aa11f8a91675643ef93cb4
|
[] |
no_license
|
qzylalala/WebSpider
|
19f0691b3b05b8650f2f152d36eaaa17e08a0712
|
b2d7f143dba6e54322f401251633488b9406fde4
|
refs/heads/master
| 2020-04-11T01:22:27.457676
| 2019-01-14T12:07:07
| 2019-01-14T12:07:07
| 161,413,126
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,496
|
py
|
import json
import requests
from requests.exceptions import RequestException
import re
import time
def get_one_page(url):
try:
headers = {'Users-Agent': 'Mozilla/5.0(Macintosh;Intel Mac OS X\
10_13_3) AppleWebKit/537.36 (KHTML,like Gecko)\
Chrome/65.0.3325.162 safari/537.36'}
response = requests.get(url, headers=headers)
if response.status_code == 200:
return response.text
return None
except RequestException:
return None
def parse_one_page(html):
pattern = re.compile('<dd>.*?board-index.*?>(\d+)</i>.*?data-src="(.*?)".*?name"><a''.*?>(.*?)</a>.*?star">(.*?)</p>.*?releasetime">(.*?)</p>' r'.*?integer">(.*?)</i>.*?fraction">(.*?)</i>.*?</dd>', re.S)
items = re.findall(pattern, str(html))
for item in items:
yield {
'index': item[0],
'image': item[1],
'title': item[2],
'actor': item[3].strip()[3:],
'time': item[4].strip()[5:],
'score': item[5] + item[6]
}
def write_to_file(content):
with open('result1.txt', 'a', encoding='utf-8') as f:
f.write(json.dumps(content, ensure_ascii=False) + '\n')
def main(offset):
url = 'http://maoyan.com/board/4?offset=' + str(offset)
html = get_one_page(url)
for item in parse_one_page(html):
print(item)
write_to_file(item)
if __name__ == '__main__':
for i in range(10):
main(offset=i * 10)
time.sleep(1)
|
[
"304228244@qq.com"
] |
304228244@qq.com
|
cf242458a24aa0e1d728ab2e04b7dd8fd4423492
|
29c823ca7aad7122a3ee4dd04360b1118928e34d
|
/raspberry/samples/feature_extration.py
|
ebe37ad883590365fe690bb04d7a6a9ce03efc5d
|
[] |
no_license
|
sdk115/CarAccidentDetect
|
9f405761e06cda25ab115b12fed17cdedb2937f0
|
bf0bc7794b584bc5333b230958b818e309ddd911
|
refs/heads/master
| 2021-08-26T08:39:16.800398
| 2017-11-22T17:26:14
| 2017-11-22T17:26:14
| 111,210,917
| 1
| 1
| null | 2017-11-18T16:21:50
| 2017-11-18T14:12:13
|
Arduino
|
UTF-8
|
Python
| false
| false
| 386
|
py
|
def average_pooling(sensor_list, window_size, stride):
ret = []
for i in range(len(sensor_list)-window_size+1):
col_len = len(sensor_list[i])
temp = [0] * col_len
for j in range(col_len):
for k in range(window_size):
temp[j]+=sensor_list[i+k][j]
temp = [i/3.0 for i in temp]
ret.append(temp)
return ret
|
[
"sdk11594@gmail.com"
] |
sdk11594@gmail.com
|
4d60520fd2eac336a9b98ec30e875ee9fa9e75f8
|
74e75430e4ca2bf422017c7035580ae973c2c42e
|
/test/functional/p2p_time_offset.py
|
00912448b5da04489c15731b40645ded3020428e
|
[
"MIT"
] |
permissive
|
j00v/Lightcoin
|
9e55bad2d3e38f4c3781f62f915828cde0e51bc9
|
a8555320bebbf95545bc8c2841f1fadc38f5bd53
|
refs/heads/main
| 2023-05-09T07:13:28.031313
| 2021-06-08T22:11:45
| 2021-06-08T22:11:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,966
|
py
|
#!/usr/bin/env python3
# Copyright (c) 2019-2020 The Lightcoin developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
import time
from test_framework.test_framework import LightcoinTestFramework
from test_framework.util import (
assert_equal,
connect_nodes,
set_node_times,
)
def connect_nodes_bi(nodes, a, b):
connect_nodes(nodes[a], b)
connect_nodes(nodes[b], a)
class TimeOffsetTest(LightcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 8
self.enable_mocktime()
def setup_network(self):
# don't connect nodes yet
self.setup_nodes()
def check_connected_nodes(self):
ni = [node.getnetworkinfo() for node in self.connected_nodes]
assert_equal([x['connections'] for x in ni], [2] * len(ni))
assert_equal([x['timeoffset'] for x in ni], [0] * len(ni))
def run_test(self):
# Nodes synced but not connected
self.mocktime = int(time.time())
set_node_times(self.nodes, self.mocktime)
ni = [node.getnetworkinfo() for node in self.nodes]
assert_equal([x['connections'] for x in ni], [0] * self.num_nodes)
self.log.info("Nodes disconnected from each other. Time: %d" % self.mocktime)
assert_equal([x['timeoffset'] for x in ni], [0] * self.num_nodes)
self.log.info("Nodes have nTimeOffset 0")
# Set node times.
# nodes [1, 5]: set times to +10, +15, ..., +30 secs
for i in range(1, 6):
self.nodes[i].setmocktime(self.mocktime + 5 * (i + 1))
# nodes [6, 7]: set time to -5, -10 secs
for i in range(6, 8):
self.nodes[i].setmocktime(self.mocktime - 5 * (i - 5))
# connect nodes 1 and 2
self.log.info("Connecting with node-1 (+10 s) and node-2 (+15 s)...")
connect_nodes_bi(self.nodes, 0, 1)
connect_nodes_bi(self.nodes, 0, 2)
self.log.info("--> samples = [+0, +10, (+10), +15, +15]")
ni = self.nodes[0].getnetworkinfo()
assert_equal(ni['connections'], 4)
assert_equal(ni['timeoffset'], 10)
self.connected_nodes = [self.nodes[1], self.nodes[2]]
self.check_connected_nodes()
self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset'])
# connect node 3
self.log.info("Connecting with node-3 (+20 s). This will print the warning...")
connect_nodes_bi(self.nodes, 0, 3)
self.log.info("--> samples = [+0, +10, +10, (+15), +15, +20, +20]")
ni = self.nodes[0].getnetworkinfo()
assert_equal(ni['connections'], 6)
assert_equal(ni['timeoffset'], 15)
self.connected_nodes.append(self.nodes[3])
self.check_connected_nodes()
self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset'])
# connect node 6
self.log.info("Connecting with node-6 (-5 s)...")
connect_nodes_bi(self.nodes, 0, 6)
self.log.info("--> samples = [-5, -5, +0, +10, (+10), +15, +15, +20, +20]")
ni = self.nodes[0].getnetworkinfo()
assert_equal(ni['connections'], 8)
assert_equal(ni['timeoffset'], 10)
self.connected_nodes.append(self.nodes[6])
self.check_connected_nodes()
self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset'])
# connect node 4
self.log.info("Connecting with node-4 (+25 s). This will print the warning...")
connect_nodes_bi(self.nodes, 0, 4)
self.log.info("--> samples = [-5, -5, +0, +10, +10, (+15), +15, +20, +20, +25, +25]")
ni = self.nodes[0].getnetworkinfo()
assert_equal(ni['connections'], 10)
assert_equal(ni['timeoffset'], 15)
self.connected_nodes.append(self.nodes[4])
self.check_connected_nodes()
self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset'])
# try to connect node 5 and check that it can't
self.log.info("Trying to connect with node-5 (+30 s)...")
connect_nodes_bi(self.nodes, 0, 5)
ni = self.nodes[0].getnetworkinfo()
assert_equal(ni['connections'], 10)
assert_equal(ni['timeoffset'], 15)
self.log.info("Not connected.")
self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset'])
# connect node 7
self.log.info("Connecting with node-7 (-10 s)...")
connect_nodes_bi(self.nodes, 0, 7)
self.log.info("--> samples = [-10, -10, -5, -5, +0, +10, (+10), +15, +15, +20, +20, +25, +25]")
ni = self.nodes[0].getnetworkinfo()
assert_equal(ni['connections'], 12)
assert_equal(ni['timeoffset'], 10)
self.connected_nodes.append(self.nodes[6])
self.check_connected_nodes()
self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset'])
if __name__ == '__main__':
TimeOffsetTest().main()
|
[
"Lightcoindev@gmail.com"
] |
Lightcoindev@gmail.com
|
f3eb20c56fcb02809c305f06878aaed2f5362d30
|
bb81c12c2d391a8d18073d8fef055a9893655e60
|
/funcif/exercise3.24.py
|
239c40b7f8a7d21937116e142cb7b0e77a932671
|
[] |
no_license
|
georgkuenze/ScientificComputingPython
|
77dc06a55e2daecb64c6d6a37d1235661993bbed
|
89b475578753660d48d868e37fa063076a176c1d
|
refs/heads/master
| 2021-01-10T11:19:55.508164
| 2016-02-03T23:48:12
| 2016-02-03T23:48:12
| 51,037,498
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 855
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 08 09:18:01 2015
@author: Georg
"""
import numpy as np
import matplotlib.pyplot as plt
# Define smoothed heaviside function
def H_eps(x, eps):
if x < -eps:
return 0
elif -eps <= x <= eps:
return 0.5 + x/(2.*eps) + 1/(2*np.pi)*np.sin((np.pi*x)/eps)
else:
return 1
# Define smoothed heaviside test function
def test_H_eps():
eps = 0.01
a = -2.*eps
b = 2.*eps
n = 100
y = []
x = [((b-a)/float(n))*i + a for i in range(0, n+1)]
for i in range(len(x)):
y.append(H_eps(x[i], eps))
return x, y
# Run test
test_result_x, test_result_y = test_H_eps()
# Make plot of smoothed heaviside function
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(test_result_x, test_result_y, 'r-')
ax.set_xlim(-0.02, 0.02)
ax.set_ylim(-0.2, 1.2)
|
[
"georg.kuenze@vanderbilt.edu"
] |
georg.kuenze@vanderbilt.edu
|
f140ce1797948b2c124c84af0dac0f6967d36be2
|
8d5523b62fe7459afec54c56614d1baf7815fff7
|
/main.py
|
a515bb4b99a5e88c241e3c62321ef01a4b642748
|
[] |
no_license
|
heavyii/python-httpserver
|
520c062d98223fdfa0d1aa820e60b5c250d78e51
|
3b0c05d55462188d7ca4389210e28247657ce1b6
|
refs/heads/main
| 2023-04-13T03:54:30.858675
| 2021-04-07T08:09:26
| 2021-04-07T08:09:26
| 355,463,617
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 892
|
py
|
#!/usr/bin/env python
from bottle import get, post, request, run, static_file, redirect
import json
"""
@apiDefine jsonRequest
@apiHeader {String} Content-Type=application/json
"""
## 首页
@get('/')
def index():
redirect('/static/index.html')
## 静态文件
@get('/static/<filepath:path>')
def server_static(filepath):
return static_file(filepath, root='./static_file')
"""
@apiDescription 这是测试例子的描述
@api {post} /hello/:name 测试例子
@apiName name
@apiGroup 测试
@apiUse jsonRequest
@apiParam {String} [lastName] your lastName
@apiParam {String} [middleName] your middleName
"""
@post('/hello')
@post('/hello/<name>')
def hello(name = "tom"):
# 路由参数name(可选), post提交的参数在request.json
# 返回用json.dumps
return json.dumps({ 'name': name, 'request-Parameters': request.json })
run(host='localhost', port=8080)
|
[
"linruisheng@seeklane.com"
] |
linruisheng@seeklane.com
|
07f603f42438f4bf7d83e60cfb810b8fe1dcd1f5
|
d3442664e61329eb7f78ec93c3c2f77344e48941
|
/assignment_3/q1/q1.py
|
63c8d4dc4d69aa4c176a41c75a63bc33135e6c44
|
[] |
no_license
|
pranav-sankhe/EE679-Speech-Processing
|
6b748a283eb5f634941741e4068ecaf572812b7a
|
1d9434006551c024f6846db42243c4a161b8672b
|
refs/heads/master
| 2022-01-25T03:58:33.081064
| 2019-08-26T15:03:27
| 2019-08-26T15:03:27
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,182
|
py
|
from scipy import signal
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
import params
F0 = params.F0
sounds = params.sounds
a_den = params.a_den
n_den = params.n_den
i_den = params.i_den
s_den = params.s_den
den = [a_den, n_den, i_den, s_den]
a_num = params.a_num
n_num = params.n_num
i_num = params.i_num
s_num = params.s_num
num = [a_num, n_num, i_num, s_num]
for i in range(len(sounds)):
duration = params.duration
samp_freq = params.samp_freq
t = np.linspace(0, duration, duration*samp_freq, endpoint=False)
sig = (1 + signal.square(2 * np.pi * F0 * t, duty=0.01))/2
if i == 3:
samp_freq = samp_freq*2
sig = np.random.normal(0, 1, int(duration*samp_freq))
result = signal.lfilter(num[i], den[i], sig)
result = signal.lfilter(np.asarray([1.0, 0.0]), np.asarray([1, -15.0/16.0]), result)
fig = plt.figure()
plt.plot(result[0:1000])
plt.title("Sound: " + sounds[i])
plt.xlabel('time')
plt.ylabel('signal')
fig.savefig("Sound: " + sounds[i] + ".pdf", bbox_inches='tight')
wavfile.write(sounds[i] + '.wav', samp_freq, np.int16(result/np.max(result)*32767))
|
[
"pranavsankhe40@gmail.com"
] |
pranavsankhe40@gmail.com
|
7ee2ac071830c965bed30bdaaa123fe1578c40b9
|
d69bbe98028d75aa14892d1f74c7bb7fa6ed572a
|
/D3SManager.py
|
8bb9c06de5abc3319130f5ec87c5d233d5e2a75e
|
[] |
no_license
|
dvi31/PyDxS
|
0df055094b9c4f58f94ed9595b5b03241c265b5a
|
2cd4fb13d10dbc65c40c8ed8270dc1de71ff909b
|
refs/heads/master
| 2020-07-06T01:43:54.788171
| 2015-08-21T09:32:07
| 2015-08-21T09:32:07
| 40,010,322
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,147
|
py
|
#!/usr/bin/python2.7
import base64, uuid, hashlib, time, os
import logging
import D3SCaller
from suds.client import Client
from suds.sax.attribute import Attribute
from httpslib import HTTPSClientCertTransport
import urlparse, urllib
from suds.plugin import MessagePlugin
class D3SSecretManager():
def __init__(self, authCaller, stoCaller):
self.authCaller = authCaller
self.stoCaller = stoCaller
def write(self, applicantPath, motivation, boxPath, metadatas, data):
global result, response
time2 = 0
result, time1, response = self.authCaller.grantWrite(applicantPath, motivation, boxPath)
if result:
result, time2, response = self.stoCaller.write(applicantPath, motivation, boxPath, response.securityToken,
response.certificates, metadatas, base64.encodestring(data))
wstime = time1 + time2
return result, wstime, response
def read(self, applicantPath, motivation, depositPath):
time2 = 0
result, time1, response = self.authCaller.grantRead(applicantPath, motivation, depositPath)
if result:
result, time2, response = self.stoCaller.read(response.securityToken, response.depositProof)
wstime = time1 + time2
return result, wstime, response
def delete(self, applicantPath, motivation, depositPath):
time2 = 0
result, time1, response = self.authCaller.grantDelete(applicantPath, motivation, depositPath)
if result:
result, time2, response = self.stoCaller.delete(applicantPath, motivation, depositPath,
response.securityToken)
wstime = time1 + time2
return result, wstime, response
def buildPasswordMetadatas(self, login, domain):
metadatas = self.stoCaller.buildMetadatasParameter()
metadata = [self.stoCaller.buildStrMetadataParameter("appLogin", login),
self.stoCaller.buildStrMetadataParameter("appDomainName", domain)]
metadatas.metadata = metadata
return metadatas
|
[
"i2165aq@FP216530.intra.bdf.local"
] |
i2165aq@FP216530.intra.bdf.local
|
870e8b785f33924cc5c5a2cc48d349e22e6060a0
|
f88e65488ecd08ea0da5372dc49efe6c5439a13c
|
/raspberry/GXclassify/ApiGateway-python-sdk-2.0.4/backend_signature.py
|
e5f06250490d24489159bef45ac31419f72367eb
|
[] |
no_license
|
Emoic/Garbage-classification
|
2eb5f9755ec505d3d9bf8d8536d5e4f62b504f76
|
9de75fd2dd36f917a6e822f7d5f8af8684a84b37
|
refs/heads/main
| 2023-03-26T12:18:45.541396
| 2021-03-24T07:58:56
| 2021-03-24T07:58:56
| 350,977,722
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,974
|
py
|
from flask import Flask
from flask import request
from functools import wraps
import re
from datetime import datetime
from datetime import timedelta
from apig_sdk import signer
app = Flask(__name__)
def requires_apigateway_signature():
def wrapper(f):
secrets = {
"signature_key1": "signature_secret1",
"signature_key2": "signature_secret2",
}
authorizationPattern = re.compile(
r'SDK-HMAC-SHA256\s+Access=([^,]+),\s?SignedHeaders=([^,]+),\s?Signature=(\w+)')
BasicDateFormat = "%Y%m%dT%H%M%SZ"
@wraps(f)
def wrapped(*args, **kwargs):
if "authorization" not in request.headers:
return 'Authorization not found.', 401
authorization = request.headers['authorization']
m = authorizationPattern.match(authorization)
if m is None:
return 'Authorization format incorrect.', 401
signingKey = m.group(1)
if signingKey not in secrets:
return 'Signing key not found.', 401
signingSecret = secrets[signingKey]
signedHeaders = m.group(2).split(";")
r = signer.HttpRequest()
r.method = request.method
r.uri = request.path
r.query = {}
for k in request.query_string.decode('utf-8').split('&'):
spl = k.split("=", 1)
if spl[0] != "":
if len(spl) < 2:
r.query[spl[0]] = ""
else:
r.query[spl[0]] = spl[1]
r.headers = {}
needbody = True
dateHeader = None
for k in signedHeaders:
if k not in request.headers:
return 'Signed header ' + k + ' not found', 401
v = request.headers[k]
if k.lower() == 'x-sdk-content-sha256' and v == 'UNSIGNED-PAYLOAD':
needbody = False
if k.lower() == 'x-sdk-date':
dateHeader = v
r.headers[k] = v
if needbody:
r.body = request.get_data()
if dateHeader is None:
return 'Header x-sdk-date not found.', 401
t = datetime.strptime(dateHeader, BasicDateFormat)
if abs(t - datetime.utcnow()) > timedelta(minutes=15):
return 'Signature expired.', 401
sig = signer.Signer()
sig.Key = signingKey
sig.Secret = signingSecret
if not sig.Verify(r, m.group(3)):
return 'Verify authroization failed.', 401
return f(*args, **kwargs)
return wrapped
return wrapper
@app.route("/<id>", methods=['GET', 'POST', 'PUT', 'DELETE'])
@requires_apigateway_signature()
def hello(id):
return "Hello World!"
if __name__ == '__main__':
app.run(
host='0.0.0.0',
port=8080)
|
[
"noreply@github.com"
] |
Emoic.noreply@github.com
|
44f66ca709805c87ece0f5ff08c1d8643e76dc1f
|
87736a69e11ce7e5750d91e9891169090180ba18
|
/virtual/bin/epylint
|
e3fa4286e1d555ec29e1a75c7f2664337196e555
|
[] |
no_license
|
MutumaMutuma/soccer-scout
|
16e8cf98f435868b2cb28838fcd7376caa91cc57
|
299b4cb9b8473b94562b5b287e8dbadf5c035034
|
refs/heads/master
| 2020-03-28T22:36:53.552396
| 2018-09-20T12:48:45
| 2018-09-20T12:48:45
| 149,244,840
| 0
| 0
| null | 2018-09-18T07:15:12
| 2018-09-18T07:15:12
| null |
UTF-8
|
Python
| false
| false
| 261
|
#!/home/zamzam/Documents/soccer-scout/virtual/bin/python
# -*- coding: utf-8 -*-
import re
import sys
from pylint import run_epylint
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(run_epylint())
|
[
"lewismutuma1000@gmail.com"
] |
lewismutuma1000@gmail.com
|
|
cd9815be7c9cc8ccdc4c8d46f182389f7124895a
|
0f6581b105ea7eb4b99dbff131378340a634e7ac
|
/pages/select_mall_page.py
|
a47f0ce03ea8ce69435593430a96ed74a92a928e
|
[] |
no_license
|
langdawang678/Se2PO
|
ded5e9f97a329f39a6de8ffaebe92330eb598eff
|
96d7eb6b4e1774b06b2fd9a4781f9bee7d8f5ed6
|
refs/heads/master
| 2023-03-25T10:44:23.140843
| 2021-03-23T09:41:39
| 2021-03-23T09:41:39
| 346,628,227
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 526
|
py
|
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from locations.goods_lib_locations import GoodsLibLocations
from common.base_page import BasePage
class SelectMallPage(BasePage):
# 退出元素是否存在
def get_elements_exists(self):
try:
WebDriverWait(self.driver, 10).until(EC.visibility_of_element_located(GoodsLibLocations.exit_link))
except:
return False
else:
return True
|
[
"langdawang678@sina.com"
] |
langdawang678@sina.com
|
d3dfcbccc7a497b25c9e010e916922ef1d20cdbe
|
2aecf1aa50078047b27589f56fbbff42b483b05b
|
/magico/juego.py
|
ee8ddd5cc2220ee0ca6b9df389fd10518d278fe1
|
[] |
no_license
|
tabris2015/intro_python_blumbit
|
e49f2ce760feaa8c2cbf170b78f91807acdb972b
|
33def8ddc9b308fa5461af801dd0aef74d8b233a
|
refs/heads/master
| 2022-10-28T00:36:00.706326
| 2020-06-13T22:30:17
| 2020-06-13T22:30:17
| 269,220,872
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,662
|
py
|
from dado import Dado
# juego de dados tiene las siguientes <<reglas>>
# 2-4 jugadores
# en cada turno:
# el jugador lanza los dados
# el juego, termina cuando un jugador llega a 100 puntos
# funcion para verificar el fin del juego
def hay_ganador(dic_jugadores):
for jugador, puntos in dic_jugadores.items():
if puntos >= 100:
return True
return False
# preguntar el numero de jugadores
n_jugadores = int(input('numero de jugadores (2 a 4)'))
if n_jugadores < 2 or n_jugadores > 4:
print('numero invalido de jugadores')
exit()
dic_jugadores = {}
for i in range(n_jugadores):
dic_jugadores[f'Jugador{i+1}'] = 0
# si los dados son iguales, se suma el numero obtenido al puntaje
# si un dado es 1 se resta el otro dado al puntaje
# si obtienes 3 en los dos dados, lanza de nuevo (sumo el puntaje)
# si obtienes 5 en los dos dados, no se suma el puntaje y pasa al siguiente
dado1 = Dado()
dado2 = Dado()
while not hay_ganador(dic_jugadores):
# lanza cada jugador y se acumulan los puntos
for jugador in dic_jugadores:
input(f'lanza el {jugador}: ') # pausa para el lanzamiento
dado1.lanzar()
dado2.lanzar()
print(f'resultado: {dado1} , {dado2}')
# logica del juego
if dado1 == dado2:
if dado1.valor == 5:
# no se suma y pasa al siguiente
print('pasa al siguiente jugador')
continue
if dado1.valor == 3:
# sumo el puntaje
print('suma al puntaje')
dic_jugadores[jugador] += dado1.valor*4
# lanzar de nuevo
input('lanzar de nuevo')
dado1.lanzar()
dado2.lanzar()
print(f'resultado: {dado1} , {dado2}')
if dado1 == dado2:
print('suma al puntaje')
dic_jugadores[jugador] += dado1.valor*4
else:
# sumo el puntaje
print('suma al puntaje')
dic_jugadores[jugador] += dado1.valor*4
elif dado1.valor == 1:
# resto el puntaje
print('resta al puntaje')
dic_jugadores[jugador] -= dado2.valor
elif dado2.valor == 1:
print('resta al puntaje')
dic_jugadores[jugador] -= dado1.valor
print(f'puntajes: {dic_jugadores}')
max_puntos = 0
for jugador, puntos in dic_jugadores.items():
if puntos > max_puntos:
max_puntos = puntos
for jugador, puntos in dic_jugadores.items():
if puntos == max_puntos:
print(f"GANO {jugador}")
break
|
[
"eduardo.laruta@gmail.com"
] |
eduardo.laruta@gmail.com
|
3436db72180129f031c11512a0200f9269428f46
|
eaafd553be05babfb061737d0216fac86cfe6d12
|
/triangePascal.py
|
1b1af83096f09db5733cff66772c1f25ade1410e
|
[] |
no_license
|
margauxln/kata
|
ee2a9311a937a9626a559462fa5d8f08381c3fb0
|
a8a47dbb4d89d854f20790715ab680a0fdaaf189
|
refs/heads/master
| 2023-02-07T17:09:19.167942
| 2021-01-04T14:05:56
| 2021-01-04T14:05:56
| 326,702,964
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 507
|
py
|
lineNumber=10
triangle = []
for j in range(lineNumber):
newline=[]
for i in range(len(triangle)+1) :
if i == 0 or i == len(triangle):
newline.append(1)
else:
newline.append(triangle[len(triangle)-1][i-1]+triangle[len(triangle)-1][i])
triangle.append(newline)
for line in triangle:
spaceNumber = lineNumber - len(line)
for i in range(spaceNumber):
print(" ",end="")
for element in line:
print(element, end =' ')
print()
|
[
"margaux.lennebonety@gmail.com"
] |
margaux.lennebonety@gmail.com
|
796fde6069383ef7c30b2222a559bbe8bc28b294
|
ab09c04f237cb83d581f7b50b6ff2ab1688497c9
|
/myROI_tracker.py
|
133cec9dea02daea9126f4792a46c79ddd40eb1e
|
[] |
no_license
|
minaf/HW1-assignment4
|
db283f32b63f40f374e5f8410c4b9edffc70409b
|
30405ab081a2699ac4150a0bc99d3e501343f7dc
|
refs/heads/master
| 2020-03-06T20:20:52.513557
| 2018-03-28T06:25:50
| 2018-03-28T06:25:50
| 127,050,901
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,456
|
py
|
import numpy as np
import cv2
from calculateKLT import calculateKLT
#cap = cv2.VideoCapture(0) #for tracking object from webcam
cap = cv2.VideoCapture('sailing_boat.mp4')
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
#select ROI manually
r = cv2.selectROI(old_gray)
#select window size
window_size = np.array([21, 21])
# points of interest
p0 = np.empty([4, 1, 2], dtype=np.float32)
p0[0][0] = [r[0],r[1]]
p0[1][0] = [r[0]+r[2],r[1]]
p0[2][0] = [r[0],r[1]+r[3]]
p0[3][0] = [r[0]+r[2],r[1]+r[3]]
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
while(1):
#new frame
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate image alignment
p1 = calculateKLT(old_gray, frame_gray, p0, window_size, 30, 0.01)
#get new points to track
good_new = p1[0:4]
good_old = p0[0:4]
#drawing rectangle of tracked object
cv2.rectangle(frame,(p1[0][0, 0], p1[0][0, 1]),(p1[3][0, 0], p1[3][0, 1]),(0,255,0),3)
img = cv2.add(frame,mask)
cv2.imshow('frame',img)
#if pressed ESC break
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()
|
[
"minaferizbegovic@gmail.com"
] |
minaferizbegovic@gmail.com
|
b709bf38b7de50baf8f706feed37e75970d6808f
|
e090c02718e8df08579dd97929dc23f54d9009c3
|
/sample6.py
|
86148ae5781bdb308a9bfc85095aaac254f7b15b
|
[] |
no_license
|
devapandu/Python
|
1c23d84c72eacefc98f77daa46db7586286df706
|
6f753d6cdff5021943a99dd55ae4b8297111d104
|
refs/heads/master
| 2020-06-13T09:37:20.815726
| 2019-07-04T05:24:41
| 2019-07-04T05:24:41
| 194,615,780
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 87
|
py
|
year =int(input())
if year%4 ==0 and year%100!=0:
print("yes")
else:
print("no")
|
[
"noreply@github.com"
] |
devapandu.noreply@github.com
|
fbb1e388256a6d52fa2526a9bb88fff6647c0df9
|
e2b5849d011596687672d41b2446df2c6c65ee79
|
/ex049.py
|
a8dd4c42f7da9ab8c9de77489c9fe88f68cef447
|
[] |
no_license
|
maroberto/CursoPython
|
ebdbe4b98f6246bdaafc7874ec06acf92a3887f6
|
e79af46242cb46d1189f882b0835cb9140099c4e
|
refs/heads/master
| 2023-03-28T08:14:18.878202
| 2021-04-04T16:26:34
| 2021-04-04T16:26:34
| 330,283,797
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 167
|
py
|
print(20 * '__')
numero = int(input('Digite um número: '))
for i in range(1, 31):
resultado = (numero * i)
print('{} x {} = {}'.format(numero, i, resultado))
|
[
"63175966+maroberto@users.noreply.github.com"
] |
63175966+maroberto@users.noreply.github.com
|
02d981070765586c6c3e8bb8d57555ee7b1bed74
|
444a9480bce2035565332d4d4654244c0b5cd47b
|
/research/cv/repvgg/src/configs/parser.py
|
ae7dbe646e625e1fa38e245603b0503abce2f6d8
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference",
"LicenseRef-scancode-proprietary-license"
] |
permissive
|
mindspore-ai/models
|
7ede9c6454e77e995e674628204e1c6e76bd7b27
|
eab643f51336dbf7d711f02d27e6516e5affee59
|
refs/heads/master
| 2023-07-20T01:49:34.614616
| 2023-07-17T11:43:18
| 2023-07-17T11:43:18
| 417,393,380
| 301
| 92
|
Apache-2.0
| 2023-05-17T11:22:28
| 2021-10-15T06:38:37
|
Python
|
UTF-8
|
Python
| false
| false
| 1,155
|
py
|
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""parser function"""
USABLE_TYPES = set([float, int])
def trim_preceding_hyphens(st):
i = 0
while st[i] == "-":
i += 1
return st[i:]
def arg_to_varname(st: str):
st = trim_preceding_hyphens(st)
st = st.replace("-", "_")
return st.split("=")[0]
def argv_to_vars(argv):
var_names = []
for arg in argv:
if arg.startswith("-") and arg_to_varname(arg) != "config":
var_names.append(arg_to_varname(arg))
return var_names
|
[
"977180923@qq.com"
] |
977180923@qq.com
|
9f1d77e5153cf7759b3748a02218bb0dd1d3d019
|
7ac0ad55050bcc0d583a6a2b11be999ae7577c50
|
/project04/wsgi.py
|
d440f640cb6c5b3b56380d7127c540a810912041
|
[] |
no_license
|
baeseonghyeon/django-blog_project
|
0285935a80052799807670974722b2ba2d736b45
|
a5f89dbc23ead8f0296be05aadeb0943f7d44a86
|
refs/heads/master
| 2022-11-26T12:39:03.527254
| 2020-08-13T19:48:26
| 2020-08-13T19:48:26
| 170,460,817
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 395
|
py
|
"""
WSGI config for project04 project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'project04.settings')
application = get_wsgi_application()
|
[
"tjdgusdkf@gmail.com"
] |
tjdgusdkf@gmail.com
|
0223df23506f1891097b5f5e23917c56f25fef27
|
536204654bec325282191eede91def85cf8f9ecf
|
/tuia/exceptions.py
|
ed7f2543d365f392c6d2f560876676844e4cf0d8
|
[
"BSD-3-Clause",
"BSD-2-Clause"
] |
permissive
|
kiddfz/QTAF
|
0b5450f47c09f453096a139993ada1383e5c7002
|
8bb4367b3c3e43ac3499daa56f825eea0a279054
|
refs/heads/master
| 2021-04-06T05:25:10.993145
| 2017-11-15T05:19:59
| 2017-11-15T05:19:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,142
|
py
|
# -*- coding: utf-8 -*-
#
# Tencent is pleased to support the open source community by making QTA available.
# Copyright (C) 2016THL A29 Limited, a Tencent company. All rights reserved.
# Licensed under the BSD 3-Clause License (the "License"); you may not use this
# file except in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.
#
'''
异常模块定义
'''
#2012/03/16 pear 初稿,创建
class ControlNotFoundError(Exception):
'''控件没有找到
'''
pass
class ControlAmbiguousError(Exception):
'''找到多个控件
'''
pass
class ControlExpiredError(Exception):
'''控件失效错误
'''
pass
class TimeoutError(Exception):
'''超时异常
'''
pass
|
[
"eeelin@tencent.com"
] |
eeelin@tencent.com
|
30e9581244610151a0102ea2e8a41a7a363dc6cc
|
f4d2d1bb66ce2f371c734ab8a65f6257778fd68c
|
/Book/chap12.py
|
cc6f4de3925397eed282ceaa64e43e81d11690bb
|
[] |
no_license
|
jdiodati20/hangman
|
0f849cb6cfe6261ee310a0dc5cf14d4da3fc1ac0
|
60dfecf5b2719d4c06686639cdc44104a1f50ba5
|
refs/heads/master
| 2020-04-28T19:28:31.842677
| 2019-03-13T23:26:43
| 2019-03-13T23:26:43
| 175,512,060
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 751
|
py
|
import math
class apple:
def __init__(self, color, size, shape, weight):
self.c = color
self.s = size
self.sh = shape
self.w = weight
class circle:
def __init__(self, radius):
self.r = radius
def area(self):
return math.pi * self.r * self.r
class triangle:
def __init__(self, base, height):
self.b = base
self.h = height
def area(self):
return self.b * self.h * 0.5
class hexagon:
def __init__(self, sideLength):
self.l = sideLength
def calculate_perimeter(self):
return 6 * self.l
cir = circle(1)
a = cir.area()
print(a)
tri = triangle(3, 4)
a1 = tri.area()
print(a1)
hexa = hexagon(6)
a2 = hexa.calculate_perimeter()
print(a2)
|
[
"jacksonpdiodati@Jacksons-MacBook-Pro.local"
] |
jacksonpdiodati@Jacksons-MacBook-Pro.local
|
0b102b1d7919e1f87af000bac931cac71bb3410f
|
9554fddc76cfe7d95101ffe8e7ac16b7b090743e
|
/forms.py
|
2e954138dc88f4390310183beceabac3d7c8646d
|
[] |
no_license
|
levicolquitt97/STQA-assignment-2
|
88712fc345317e66e24fba471054596c751fb7ef
|
2d7b92957894d3ddda77b7dc0fec0e0501306dd8
|
refs/heads/master
| 2021-04-24T03:35:55.228329
| 2020-04-04T19:29:25
| 2020-04-04T19:29:25
| 250,069,623
| 0
| 0
| null | 2020-04-04T19:29:26
| 2020-03-25T19:16:44
|
Python
|
UTF-8
|
Python
| false
| false
| 1,476
|
py
|
# LEVI COLQUITT
# Assignment 3+4 STQA
# 3/15/2020
#FORMS.py
#This .py file creates the forms and grabs the user input. then it passes that to the main.py file for further use
from flask_wtf import FlaskForm
from wtforms import StringField, IntegerField, DecimalField, SubmitField
from wtforms.validators import DataRequired, Length, InputRequired, NumberRange
[]
#Form that takes input for BMI page and also validates the input
class BMIForm(FlaskForm):
heightFeet = IntegerField('Height feet', validators=[InputRequired(), NumberRange(min=1, max=12)])
heightInches = IntegerField('Height inches', validators=[InputRequired(), NumberRange(min=0, max=12)])
weight = DecimalField('Weight in pounds', validators=[DataRequired(message='MUST BE VALID DECIMAL/INTEGER VALUE'), NumberRange(min=0, max=1000)])
submit = SubmitField('Calculate')
#Form that takes input for retirement page and also validates the input
class retirementForm(FlaskForm):
age = IntegerField('current age:', validators=[InputRequired(), NumberRange(min=0, max=99)])
salary = IntegerField('Annual salary in $:', validators=[InputRequired(), NumberRange(min=0)])
percentSaved = IntegerField('Enter annual percent of salary saved:', validators=[InputRequired(), NumberRange(min=0, max=99)])
desiredSavingsGoal = IntegerField('Enter your desired savings goal:', validators=[InputRequired(), NumberRange(min=0)])
submit = SubmitField('Calculate')
|
[
"noreply@github.com"
] |
levicolquitt97.noreply@github.com
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.