blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
220 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
257 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
a34d40955607245d7cd5152f6173d3ba1d85f7cd
0e867a76d0263d40f78a643d466ebfc10b0ac4f0
/activities/nmz/nmz_setup.py
bd9401b72f5fcf89e245c9ae516efefd4d687f25
[ "MIT" ]
permissive
anordin95/replay_mouse
b49d29b0ce0c72ed347e178b982c96b93af678b9
569abe771cac3b639317b1ca97c98b0c486a4714
refs/heads/master
2022-07-04T18:28:57.299865
2020-05-16T14:33:41
2020-05-16T14:33:41
259,782,742
0
0
null
null
null
null
UTF-8
Python
false
false
1,379
py
from pathlib import Path from primitives.potion_tracker import setup_potions_tracker from primitives.get_quick_pray_location import get_quick_pray_location from primitives.record import record PICKLE_FOLDER = Path('pickled_objects') PRAYER_POTS_FILENAME = PICKLE_FOLDER / 'prayer_pots.pkl' RANGE_POTS_FILENAME = PICKLE_FOLDER / 'ranging_pots.pkl' ABSORPTION_POTS_FILENAME = PICKLE_FOLDER / 'absorption_pots.pkl' QUICK_PRAY_LOC_FILE = PICKLE_FOLDER / 'quick_pray_loc.pkl' ROCK_CAKE_ACTION_LIST_FILE = PICKLE_FOLDER / 'rock_cake_action_list.pkl' import logging log_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' log_level = logging.INFO logging.basicConfig(level=log_level, format=log_format) # for use with prayer pots # def setup(): # setup_potions_tracker(filename=RANGE_POTS_FILENAME, potion_type='range') # setup_potions_tracker(filename=PRAYER_POTS_FILENAME, potion_type='prayer') # for use with absorption pots logger = logging.getLogger('__name__') def setup(): logger.info("Record guzzling a rock cake. When done, press esc.") record(use_potions=False, filename=ROCK_CAKE_ACTION_LIST_FILE) get_quick_pray_location(filename=QUICK_PRAY_LOC_FILE) setup_potions_tracker(filename=RANGE_POTS_FILENAME, potion_type='range') setup_potions_tracker(filename=ABSORPTION_POTS_FILENAME, potion_type='absorption') if __name__ == '__main__': setup()
[ "anordin@butterflynetinc.com" ]
anordin@butterflynetinc.com
6a27868511bae2d8a9d10a768aa6fea1b3b93397
7e246c308597762dccb129883706fb5f827b1f05
/examples/cli_debug.py
7cf1bec440e4396e14220a1389a6e98210f17e55
[]
no_license
NGnius/casl
b54bdd26003e582d77bb04b4e80e13c34074b4ad
db5bc4fbf6819ba89d0258e4c24a7fa85273d145
refs/heads/master
2023-03-01T08:52:31.681391
2021-02-05T03:12:43
2021-02-05T03:12:43
330,711,583
1
0
null
null
null
null
UTF-8
Python
false
false
179
py
#!/usr/bin/python3 import sys import json data = input() payload = json.loads(data) response = json.dumps({"error": "debug error", "action": {"type": "Custom"}}) print(response)
[ "ngniusness@gmail.com" ]
ngniusness@gmail.com
1d539066706ca4f69d3130d49688deb922c477b3
98311c7b2b2257f14f0f4a0657363e893872798e
/project/src/python/practicum.py
e3f1dfcf9ef76f4b71a4dd1106d26832dc48802f
[ "MIT" ]
permissive
aslupin/Yak-Ngaen-Project
fed9a264a863e1174c00ec8ad360f1c03422f393
c91b3cc83d2eda22b62fe877276bdd1a8a1b24fd
refs/heads/master
2022-01-28T02:44:39.385903
2019-05-09T13:36:04
2019-05-09T13:36:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,616
py
import usb # RQ_SET_LED = 0 # RQ_SET_LED_VALUE = 1 # RQ_GET_SWITCH = 2 # RQ_GET_LIGHT = 3 RQ_GET_SOUND_PLAYER_I = 1 RQ_GET_SOUND_PLAYER_II = 2 #################################### def find_mcu_boards(): ''' Find all Practicum MCU boards attached to the machine, then return a list of USB device handles for all the boards >>> devices = find_mcu_boards() >>> first_board = McuBoard(devices[0]) ''' boards = [dev for bus in usb.busses() for dev in bus.devices if (dev.idVendor,dev.idProduct) == (0x16c0,0x05dc)] return boards #################################### class McuBoard: ''' Generic class for accessing Practicum MCU board via USB connection. ''' ################################ def __init__(self, dev): self.device = dev self.handle = dev.open() ################################ def usb_write(self, request, data=[], index=0, value=0): ''' Send data output to the USB device (i.e., MCU board) request: request number to appear as bRequest field on the USB device index: 16-bit value to appear as wIndex field on the USB device value: 16-bit value to appear as wValue field on the USB device ''' reqType = usb.TYPE_VENDOR | usb.RECIP_DEVICE | usb.ENDPOINT_OUT self.handle.controlMsg( reqType, request, data, value=value, index=index) ################################ def usb_read(self, request, length=1, index=0, value=0): ''' Request data input from the USB device (i.e., MCU board) request: request number to appear as bRequest field on the USB device length: number of bytes to read from the USB device index: 16-bit value to appear as wIndex field on the USB device value: 16-bit value to appear as wValue field on the USB device If successful, the method returns a tuple of length specified containing data returned from the MCU board. ''' reqType = usb.TYPE_VENDOR | usb.RECIP_DEVICE | usb.ENDPOINT_IN buf = self.handle.controlMsg( reqType, request, length, value=value, index=index) return buf #################################### class PeriBoard: ################################ def __init__(self, mcu): self.mcu = mcu ################################ # def get_sound_playeri(self): # sound = self.mcu.usb_read(request=RQ_GET_SOUND_PLAYER_I, length=2) # return sound[0] # def get_sound_playerii(self): # sound = self.mcu.usb_read(request=RQ_GET_SOUND_PLAYER_II, length=2) # return sound[0] def get_sound(self, player): ''' Return the current reading of light sensor on peripheral board ''' if(player == RQ_GET_SOUND_PLAYER_I): sound = self.mcu.usb_read(request=RQ_GET_SOUND_PLAYER_I, length=2) return sound[0] # return sound[0] elif(player == RQ_GET_SOUND_PLAYER_II): sound = self.mcu.usb_read(request=RQ_GET_SOUND_PLAYER_II, length=2) # return sound[0] return sound[0] # light[1] *= 256 # result = light[1] + light[0] # return (sound[1] * 256 ) + sound[0] # ################################ # def set_led(self, led_no, led_state): # ''' # Set status of LED led_no on peripheral board to led_state # (0 => off, 1 => on) # ''' # self.mcu.usb_write(request=RQ_SET_LED, index=led_no, value=led_state) # # return # ################################ # def set_led_value(self, value): # ''' # Display right 3 bits of value on peripheral board's LEDs # ''' # self.mcu.usb_write(request=RQ_SET_LED_VALUE, value=value) # # return # ################################ # def get_switch(self): # ''' # Return a boolean value indicating whether the switch on the peripheral # board is currently pressed # ''' # state = self.mcu.usb_read(request=RQ_GET_SWITCH, length=1) # return state[0] == 1 # ################################ # def get_light(self): # ''' # Return the current reading of light sensor on peripheral board # ''' # light = self.mcu.usb_read(request=RQ_GET_LIGHT, length=2) # # light[1] *= 256 # # result = light[1] + light[0] # return ( light[1] * 256 ) + light[0]
[ "poon_arsene_lupin@hotmail.com" ]
poon_arsene_lupin@hotmail.com
5dcf1531f3266b5a1c867bd6a62ba36a36b2bbc2
7b08ceb8c901a09e41d4a67804e2adf94142cb17
/description2process/__init__.py
2f99a8019b7c0dace78658a646cc5d28bfb7d318
[]
no_license
simrit1/Description2Process
1e7cfcc4dc6bb762d69f27bbe1eedd4e0cef6a38
223372f3588f7ac67537eae3012667951b5543e0
refs/heads/master
2023-08-25T23:12:50.838804
2019-05-16T16:51:51
2019-05-16T16:51:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,370
py
import tensorflow as tf # We need to enable eager execution for inference at the end of this notebook. tfe = tf.contrib.eager tfe.enable_eager_execution() TFVERSION='1.13' import os os.environ['TFVERSION'] = TFVERSION # Import library from description2process import data_generation from description2process import contraction_expansion from description2process import coreference_resolution from description2process import clause_extraction from description2process import activity_recognition from description2process import activity_extraction from description2process import structured_description from description2process import xml_model from description2process import visualization from description2process import evaluation # Returns the visualisation of a process description # INPUT: process description in string format def description2model(description, png = False): # step1 : contraction expansion description = contraction_expansion.expand_contractions(description) print("Step 1/8 DONE: contraction expansion") # step2 : coreference resolution description = coreference_resolution.resolve_coreferences(description) print("Step 2/8 DONE: coreference resolution") # step3 : clause extraction subsentences = clause_extraction.get_clauses(description) print("Step 3/8 DONE: extracted clauses ") # step4: label clauses labeled_clauses_df = activity_recognition.contains_activity_list(subsentences) print("Step 4/8 DONE: labeled clauses ") # step5: activity extraction df_activities = activity_extraction.get_activity_df(labeled_clauses_df) print("Step 5/8 DONE: extracted activities ") # step6: get a structured_descriptions str_descr = structured_description.get_structured_description(description, df_activities) print("Step 6/8 DONE: semi-structured descriptions") # step7: get XML format of models xml = xml_model.structured2xml(str_descr) print("Step 7/8 DONE: model in XML") # step8: Visualize the model in xml model = visualization.xml2model(xml, png) print("Step 8/8 DONE: Visualize model") return model # Returns the xml format of the process description # INPUT: process description in string format def description2xml(description): # step1 : contraction expansion description = contraction_expansion.expand_contractions(description) print("Step 1/7 DONE: contraction expansion") # step2 : coreference resolution description = coreference_resolution.resolve_coreferences(description) print("Step 2/7 DONE: coreference resolution") # step3 : clause extraction subsentences = clause_extraction.get_clauses(description) print("Step 3/7 DONE: extracted clauses ") # step4: label clauses labeled_clauses_df = activity_recognition.contains_activity_list(subsentences) print("Step 4/7 DONE: labeled clauses ") # step5: activity extraction df_activities = activity_extraction.get_activity_df(labeled_clauses_df) print("Step 5/7 DONE: extracted activities ") # step6: get a structured_descriptions str_descr = structured_description.get_structured_description(description, df_activities) print("Step 6/7 DONE: semi-structured descriptions") # step7: get XML format of models xml = xml_model.structured2xml(str_descr) print("Step 7/7 DONE: model in XML") return xml # returns the structured description of raw process descriptions # Input: pandas dataframe of process descriptions def description2structured_df(description_df): # step1 : contraction expansion description_df = contraction_expansion.expand_contractions_df(description_df) print("Step 1/6 DONE: contraction expansion") # step2 : coreference resolution description_df = coreference_resolution.resolve_coreferences_df(description_df) print("Step 2/6 DONE: coreference resolution") # step3 : clause extraction description_df = clause_extraction.get_clauses_df(description_df) print("Step 3/6 DONE: extracted clauses ") # step4: label clauses labeled_clauses = activity_recognition.contains_activity_df(description_df) print("Step 4/6 DONE: labeled clauses ") # step5: activity extraction df_activities = activity_extraction.get_activity_df(labeled_clauses) print("Step 5/6 DONE: extracted activities ") # step6: get a structured_descriptions str_descr = structured_description.get_structured_description_df(description_df, df_activities) print("Step 6/6 DONE: returned structured descriptions") return str_descr # return the descripition after contraction expansion and coreference resolution. # This type of description can be seen as a cleaned version of the original one. # Input: pandas dataframe of process descriptions def description2referenceresolved_df(description_df): # step1 : contraction expansion description_df = contraction_expansion.expand_contractions_df(description_df) # step2 : coreference resolution description_df = coreference_resolution.resolve_coreferences_df(description_df) return description_df # Return the description with a list containing the description's extracted clauses # Input: pandas dataframe of process description def description2clauses_df(description_df): # step1 : contraction expansion description_df = contraction_expansion.expand_contractions_df(description_df) # step2 : coreference resolution description_df = coreference_resolution.resolve_coreferences_df(description_df) # step3 : clause extraction description_df = clause_extraction.get_clauses_df(description_df) return description_df # Return the description with a list containg the descriptions's extracted clauses # + an extra dataframe with all its labeled clauses # Input: pandas dataframe of process descriptions def description2labeledclauses_df(description_df): # step1 : contraction expansion description_df = contraction_expansion.expand_contractions_df(description_df) # step2 : coreference resolution description_df = coreference_resolution.resolve_coreferences_df(description_df) # step3 : clause extraction description_df = clause_extraction.get_clauses_df(description_df) # step4: label clauses labeled_clauses = activity_recognition.contains_activity_df(description_df) return labeled_clauses, description_df
[ "noreply@github.com" ]
simrit1.noreply@github.com
c77f59e3b90ce19c50bd0a77c092b148f74acab0
9d30a8c8620640b5e18c6aa5aa4bca6c01a60182
/Code/utils/inference1.py
13954a3246b767b1a5ad098f07456a4cfcff6c9b
[ "MIT" ]
permissive
zhouzhiyuan1/RADANet
00ed5e2380007b53f918788d9e44fcec26c9ce21
f0db67e5b16b5b566efd40402b7b2b2a5342d5ad
refs/heads/main
2023-08-31T18:50:05.560253
2021-11-02T11:37:59
2021-11-02T11:37:59
423,765,661
4
0
null
null
null
null
UTF-8
Python
false
false
6,803
py
#!/usr/bin/env python3 # coding: utf-8 __author__ = 'cleardusk' import numpy as np from math import sqrt import scipy.io as sio import matplotlib.pyplot as plt from .ddfa import reconstruct_vertex def get_suffix(filename): """a.jpg -> jpg""" pos = filename.rfind('.') if pos == -1: return '' return filename[pos:] def crop_img(img, roi_box): h, w = img.shape[:2] sx, sy, ex, ey = [int(round(_)) for _ in roi_box] dh, dw = ey - sy, ex - sx if len(img.shape) == 3: res = np.zeros((dh, dw, 3), dtype=np.uint8) else: res = np.zeros((dh, dw), dtype=np.uint8) if sx < 0: sx, dsx = 0, -sx else: dsx = 0 if ex > w: ex, dex = w, dw - (ex - w) else: dex = dw if sy < 0: sy, dsy = 0, -sy else: dsy = 0 if ey > h: ey, dey = h, dh - (ey - h) else: dey = dh res[dsy:dey, dsx:dex] = img[sy:ey, sx:ex] return res def calc_hypotenuse(pts): bbox = [min(pts[0, :]), min(pts[1, :]), max(pts[0, :]), max(pts[1, :])] center = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2] radius = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 bbox = [center[0] - radius, center[1] - radius, center[0] + radius, center[1] + radius] llength = sqrt((bbox[2] - bbox[0]) ** 2 + (bbox[3] - bbox[1]) ** 2) return llength / 3 def parse_roi_box_from_landmark(pts): """calc roi box from landmark""" bbox = [min(pts[0, :]), min(pts[1, :]), max(pts[0, :]), max(pts[1, :])] center = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2] radius = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 bbox = [center[0] - radius, center[1] - radius, center[0] + radius, center[1] + radius] llength = sqrt((bbox[2] - bbox[0]) ** 2 + (bbox[3] - bbox[1]) ** 2) center_x = (bbox[2] + bbox[0]) / 2 center_y = (bbox[3] + bbox[1]) / 2 roi_box = [0] * 4 roi_box[0] = center_x - llength / 2 roi_box[1] = center_y - llength / 2 roi_box[2] = roi_box[0] + llength roi_box[3] = roi_box[1] + llength return roi_box def parse_roi_box_from_bbox(bbox): left, top, right, bottom = bbox old_size = (right - left + bottom - top) / 2 center_x = right - (right - left) / 2.0 center_y = bottom - (bottom - top) / 2.0 + old_size * 0.14 size = int(old_size * 1.58) roi_box = [0] * 4 roi_box[0] = center_x - size / 2 roi_box[1] = center_y - size / 2 roi_box[2] = roi_box[0] + size roi_box[3] = roi_box[1] + size return roi_box def dump_to_ply(vertex, tri, wfp): header = """ply format ascii 1.0 element vertex {} property float x property float y property float z element face {} property list uchar int vertex_indices end_header""" n_vertex = vertex.shape[1] n_face = tri.shape[1] header = header.format(n_vertex, n_face) with open(wfp, 'w') as f: f.write(header + '\n') for i in range(n_vertex): x, y, z = vertex[:, i] f.write('{:.4f} {:.4f} {:.4f}\n'.format(x, y, z)) for i in range(n_face): idx1, idx2, idx3 = tri[:, i] f.write('3 {} {} {}\n'.format(idx1 - 1, idx2 - 1, idx3 - 1)) print('Dump tp {}'.format(wfp)) def dump_vertex(vertex, wfp): sio.savemat(wfp, {'vertex': vertex}) print('Dump to {}'.format(wfp)) def _predict_vertices(param, roi_bbox, dense, transform=True): vertex = reconstruct_vertex(param, dense=dense) sx, sy, ex, ey = roi_bbox scale_x = (ex - sx) / 120 scale_y = (ey - sy) / 120 vertex[0, :] = vertex[0, :] * scale_x + sx vertex[1, :] = vertex[1, :] * scale_y + sy s = (scale_x + scale_y) / 2 vertex[2, :] *= s return vertex def predict_68pts(param, roi_box): return _predict_vertices(param, roi_box, dense=False) def predict_dense(param, roi_box): return _predict_vertices(param, roi_box, dense=True) def draw_landmarks(img, pts, style='fancy', wfp=None, show_flg=False, **kwargs): """Draw landmarks using matplotlib""" height, width = img.shape[:2] plt.figure(figsize=(12, height / width * 12)) plt.imshow(img[:, :, ::-1]) plt.subplots_adjust(left=0, right=1, top=1, bottom=0) plt.axis('off') if not type(pts) in [tuple, list]: pts = [pts] for i in range(len(pts)): if style == 'simple': plt.plot(pts[i][0, :], pts[i][1, :], 'o', markersize=4, color='g') elif style == 'fancy': alpha = 0.8 markersize = 10 lw = 1.5 color = kwargs.get('color', 'r') markeredgecolor = kwargs.get('markeredgecolor', 'red') nums = [0, 17, 22, 27, 31, 36, 42, 48, 60, 68] # close eyes and mouths plot_close = lambda i1, i2: plt.plot([pts[i][0, i1], pts[i][0, i2]], [pts[i][1, i1], pts[i][1, i2]], color=color, lw=lw, alpha=alpha - 0.1) plot_close(41, 36) plot_close(47, 42) plot_close(59, 48) plot_close(67, 60) for ind in range(len(nums) - 1): l, r = nums[ind], nums[ind + 1] plt.plot(pts[i][0, l:r], pts[i][1, l:r], color=color, lw=lw, alpha=alpha - 0.1) plt.plot(pts[i][0, l:r], pts[i][1, l:r], marker='o', linestyle='None', markersize=markersize, color=color, markeredgecolor=markeredgecolor, alpha=alpha) if wfp is not None: plt.savefig(wfp, dpi=200) print('Save visualization result to {}'.format(wfp)) if show_flg: plt.show() def get_colors(image, vertices): [h, w, _] = image.shape vertices[0, :] = np.minimum(np.maximum(vertices[0, :], 0), w - 1) # x vertices[1, :] = np.minimum(np.maximum(vertices[1, :], 0), h - 1) # y ind = np.round(vertices).astype(np.int32) colors = image[ind[1, :], ind[0, :], :] # n x 3 return colors def write_obj_with_colors(obj_name, vertices, triangles, colors): triangles = triangles.copy() # meshlab start with 1 if obj_name.split('.')[-1] != 'obj': obj_name = obj_name + '.obj' # write obj with open(obj_name, 'w') as f: # write vertices & colors for i in range(vertices.shape[1]): s = 'v {:.4f} {:.4f} {:.4f} {} {} {}\n'.format(vertices[1, i], vertices[0, i], vertices[2, i], colors[i, 2], colors[i, 1], colors[i, 0]) f.write(s) # write f: ver ind/ uv ind for i in range(triangles.shape[1]): s = 'f {} {} {}\n'.format(triangles[0, i], triangles[1, i], triangles[2, i]) f.write(s) def main(): pass if __name__ == '__main__': main()
[ "zy980203123@163.com" ]
zy980203123@163.com
d008e616c943f18e5f7f5c090bc112e713db99cf
c4b7b5a9c56a9b6394a14704d2faf76754175473
/rooms/templatetags/is_booked.py
da615b5d82465d9cb146e16beb8eeaefaf53bbc4
[]
no_license
seungjinhan/airbnb_clone_django
71a15e5242bad28fd96d5f47652a049a77f12f61
4c38780746409ea1ed9b4f5b02abca60326752c2
refs/heads/master
2022-12-02T15:14:39.341441
2020-08-23T13:50:42
2020-08-23T13:50:42
280,878,495
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
import datetime from django import template from reservations import models as reservation_model register = template.Library() @register.simple_tag def is_booked(room, day): if day.number == 0: return False try: date = datetime.datetime( year=day.year, month=day.month, day=day.number) reservation_model.BookedDay.objects.get( day=date, reservation__room=room) print(date) print(room) return True except reservation_model.BookedDay.DoesNotExist: return False
[ "hanblues@gmail.com" ]
hanblues@gmail.com
e5f7852757d20d9217562defb3d22da0c1893cb6
5e809acc62b080f1adad2c34e647241cdc5ad297
/myenv/bin/markdown_py
fa2c63491a1647ccda5e1725538898c521cfc6a8
[ "MIT" ]
permissive
RootenberG/My-blog-project
f520af79a2f3eb416b3dadee46813a812ce9d53d
7ef4670cfa9d54d9345d52ca008aae5fed5605bc
refs/heads/master
2020-08-15T20:04:29.478049
2020-02-08T21:57:46
2020-02-08T21:57:46
215,400,930
0
0
MIT
2019-10-30T20:54:38
2019-10-15T21:34:30
Python
UTF-8
Python
false
false
255
#!/home/den/devspace/My-blog-project/myenv/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from markdown.__main__ import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
[ "savichevdenis244@gmail.com" ]
savichevdenis244@gmail.com
ac65b404dace4784df733dfdfafadcc28eb379aa
c135da511684bfb267a8bac5a84b3f032b2d7b26
/algorithms/delete-columns-to-make-sorted/DeleteColumnsToMakeSorted.py
b25bbcf217bb13ce0ca196ee9f751ee7ef66193b
[]
no_license
hieudtrinh/coursera_python
0bc9841a8be7ea38b5fdf9bf1d2bcd6e40387e60
6bd01f898eca617ec3c6ad215f47f7f41265dd4f
refs/heads/main
2023-02-16T20:59:46.617531
2021-01-19T19:05:35
2021-01-19T19:05:35
319,189,486
0
0
null
null
null
null
UTF-8
Python
false
false
1,249
py
import sys from typing import List class DeleteColumnsToMakeSorted: def minDeletionSize(self, A: List[str]) -> int: return sum(col != tuple(sorted(col)) for col in zip(*A)) def minDeletionSize1(self, A: List[str]) -> int: res = 0 for pos in range(len(A[0])): for word in range(len(A)-1): if A[word][pos] > A[word+1][pos]: res += 1 break return res def minDeletionSize2(self, A: List[str]) -> int: strings = [] for i in range(0,len(A[0])): temp = "".join([item[i] for item in A]) if "".join(sorted(temp)) == temp: pass else: strings.append(1) return len(strings) def minDeletionSize3(self, A: List[str]) -> int: l=[] k=[] for i in range(len(A[0])): for j in range(len(A)): l.append((A[j][i])) if l != sorted(l): k.append(i) l=[] return len(k) def main(argv, arc): A = ["cba", "daf", "ghi"] solution = DeleteColumnsToMakeSorted() solution.minDeletionSize(A) if __name__ == '__main__': main(sys.argv, len(sys.argv))
[ "user.namecd" ]
user.namecd
98ae73f5af580dce3fc708af8516af5e1c67bbf3
50e03dae243af6bfab19f8cf42494284ff70fbd3
/BIG-BIRD/RelGAN.py
05e0634536e46c4d7140e7c904e0f5d7773baeb5
[]
no_license
BritneyMuller/Summarization-Lab
bf2d79abe724e999e4017d4ffe6220863fe7f162
4b40f5ac7a629f509c323bf426d3058268628186
refs/heads/master
2021-01-25T23:13:13.669487
2019-09-30T14:38:13
2019-09-30T14:38:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,010
py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import math, copy, time from torch.autograd import Variable import matplotlib.pyplot as plt import os import torch.autograd as autograd from RelationalMemory import * from Transformer import * class BigBird(): #generator is translator here def __init__(self, generator, discriminator, reconstructor, dictionary, gamma = 0.99, clip_value = 0.1, lr_G = 5e-5, lr_D = 5e-5, lr_R = 1e-4, LAMBDA = 10, TEMP_END = 0.5, vq_coef =0.8, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")): super(BigBird, self).__init__() self.device = device self.dictionary = dictionary self.generator = generator.to(self.device) self.reconstructor = reconstructor.to(self.device) self.discriminator = discriminator.to(self.device) self.gamma = gamma self.eps = np.finfo(np.float32).eps.item() self.optimizer_R = torch.optim.Adam(list(self.generator.parameters()) + list(self.reconstructor.parameters()), lr=lr_R) #normal WGAN self.optimizer_G = torch.optim.RMSprop(self.generator.parameters(), lr=lr_G) self.optimizer_D = torch.optim.RMSprop(self.discriminator.parameters(), lr=lr_D) #WGAN GP #self.LAMBDA = LAMBDA # Gradient penalty lambda hyperparameter #self.optimizer_G = torch.optim.Adam(self.generator.parameters(), lr=lr_G, betas=(0.0, 0.9)) #self.optimizer_D = torch.optim.Adam(self.discriminator.parameters(), lr=lr_D, betas=(0.0, 0.9)) self.clip_value = clip_value self.TEMP_END = TEMP_END self.lr_G = lr_G self.lr_D = lr_D self.lr_R = lr_R self.total_steps = 0 self.vq_coef = 0.8 self.epoch = 0 def calc_gradient_penalty(self, netD, real_data, fake_data): #print real_data.size() BATCH_SIZE = real_data.shape[0] dim_1 = real_data.shape[1] dim_2 = real_data.shape[2] alpha = torch.rand(BATCH_SIZE, dim_1) alpha = alpha.view(-1,1).expand(dim_1 * BATCH_SIZE, dim_2).view(BATCH_SIZE, dim_1, dim_2) alpha = alpha.to(self.device) #print(real_data.shape) #[BATCH_SIZE, 19, vocab_sz] #print(fake_data.shape) #[BATCH_SIZE, 19, vocab_sz] interpolates_data = ( alpha * real_data.float() + ((1 - alpha) * fake_data.float()) ) interpolates = interpolates_data.to(self.device) #interpolates = netD.disguised_embed(interpolates_data) interpolates = autograd.Variable(interpolates, requires_grad=True) src_mask = (interpolates_data.argmax(-1) != netD.padding_index).type_as(interpolates_data).unsqueeze(-2) disc_interpolates = netD.transformer_encoder( interpolates, src_mask ) gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size()).to(self.device), create_graph=True, retain_graph=True, only_inputs=True)[0] gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA return gradient_penalty def _to_one_hot(self, y, n_dims): scatter_dim = len(y.size()) y_tensor = y.to(self.device).long().view(*y.size(), -1) zeros = torch.zeros(*y.size(), n_dims).to(self.device) return zeros.scatter(scatter_dim, y_tensor, 1) def train_D(self, fake_datas, real_datas): ## train discriminator # print("real") # print(real_datas[:10]) real_score = torch.mean(self.discriminator(real_datas)) # print("fake") # print(fake_datas[:10]) fake_score = torch.mean(self.discriminator(fake_datas)) batch_d_loss = -real_score + fake_score #+ self.calc_gradient_penalty(self.discriminator, real_datas, fake_datas) return batch_d_loss, real_score.item(), fake_score.item() def train_G(self, fake_datas): self.optimizer_G.zero_grad() batch_g_loss = -torch.mean(self.discriminator(fake_datas)) batch_g_loss.backward(retain_graph=True) self.optimizer_G.step() return batch_g_loss.item() def indicies2string(self, indices): inv_map = {v: k for k, v in self.dictionary.items()} return ' '.join([inv_map[i.item()] for i in indices]) def train(self): self.generator.train() self.reconstructor.train() self.discriminator.train() def eval(self): self.generator.eval() self.reconstructor.eval() self.discriminator.eval() def load(self, load_path): print('load Bird from', load_path) loader = torch.load(load_path) self.generator.load_state_dict(loader['generator']) self.discriminator.load_state_dict(loader['discriminator']) self.reconstructor.load_state_dict(loader['reconstructor']) self.total_steps = loader['total_steps'] self.epoch = loader['epoch'] self.gumbel_temperature = loader['gumbel_temperature'] def save(self, save_path): print('lay egg to ./Nest ... save as', save_path) torch.save({'generator':self.generator.state_dict(), 'reconstructor':self.reconstructor.state_dict(), 'discriminator':self.discriminator.state_dict(), 'total_steps':self.total_steps, 'epoch':self.epoch, 'gumbel_temperature':self.gumbel_temperature },save_path) def eval_iter(self, src, src_mask, max_len, real_data, ct, verbose = 1): with torch.no_grad(): batch_size = src.shape[0] memory = self.generator.initial_state(batch_size, trainable=True).to(self.device) summary_sample, summary_log_values, summary_probs, gumbel_one_hot = self.generator(src, max_len, memory, self.dictionary['[CLS]'], temperature = self.gumbel_temperature) memory = self.reconstructor.initial_state(batch_size, trainable=True).to(self.device) CE_loss, acc, out = self.reconstructor.reconstruct_forward(gumbel_one_hot, src, memory, self.dictionary['[CLS]']) if verbose == 1 and ct % 1 == 0: print("origin:") print(self.indicies2string(src[0])) print("summary:") print(self.indicies2string(summary_sample[0])) print("real summary:") print(self.indicies2string(real_data[0])) print("reconsturct out:") print(self.indicies2string(out[0])) print("") return acc, CE_loss.item() def pretrainGAN_run_iter(self, src, src_mask, max_len, real_data, D_iters = 5, D_toggle = 'On', verbose = 1): batch_size = src.shape[0] memory = self.generator.initial_state(batch_size, trainable=True).to(self.device) self.gumbel_temperature = max(self.TEMP_END, math.exp(-1e-4*self.total_steps)) summary_sample, summary_log_values, summary_probs, gumbel_one_hot = self.generator(src, max_len, memory, self.dictionary['[CLS]'], temperature = self.gumbel_temperature) batch_G_loss = 0 NNcriterion = nn.NLLLoss().to(self.device) batch_G_loss = NNcriterion(summary_probs.log().contiguous().view(batch_size * max_len, -1), real_data.contiguous().view(-1)) self.optimizer_G.zero_grad() batch_G_loss.backward() self.optimizer_G.step() self.total_steps += 1 if self.total_steps % 500 == 0: if not os.path.exists("./Nest"): os.makedirs("./Nest") self.save("./Nest/Pretrain_RelGAN") if verbose == 1 and self.total_steps % 1000 == 0: print("origin:") print(self.indicies2string(src[0])) print("summary:") print(self.indicies2string(summary_sample[0])) print("real summary:") print(self.indicies2string(real_data[0])) print("") distrib = summary_probs[0,0, :100].cpu().detach().numpy() one_hot_out = gumbel_one_hot[0,0, :100].cpu().detach().numpy() return [batch_G_loss, 0], [0], [0, 0, 0], [self.indicies2string(src[0]), self.indicies2string(summary_sample[0]), 0], distrib, one_hot_out def run_iter(self, src, src_mask, max_len, real_data, D_iters = 5, D_toggle = 'On', verbose = 1, writer = None): #summary_logits have some problem #summary = self.generator(src, src_mask, max_len, self.dictionary['[CLS]']) batch_size = src.shape[0] memory = self.generator.initial_state(batch_size, trainable=True).to(self.device) self.gumbel_temperature = max(self.TEMP_END, math.exp(-1e-4*self.total_steps)) summary_sample, summary_log_values, summary_probs, gumbel_one_hot = self.generator(src, max_len, memory, self.dictionary['[CLS]'], temperature = self.gumbel_temperature) batch_D_loss = 0 if(D_toggle == 'On'): for i in range(D_iters): self.optimizer_D.zero_grad() batch_d_loss, real_score, fake_score = self.train_D(gumbel_one_hot, self._to_one_hot(real_data, len(self.dictionary))) batch_D_loss += batch_d_loss batch_d_loss.backward(retain_graph=True); #Clip critic weights for p in self.discriminator.parameters(): p.data.clamp_(-self.clip_value, self.clip_value) self.optimizer_D.step(); batch_D_loss = batch_D_loss.item()/D_iters batch_G_loss = 0 if(D_toggle == 'On'): #print(gumbel_one_hot.shape) batch_G_loss = self.train_G(gumbel_one_hot) self.gumbel_temperature = max(self.TEMP_END, math.exp(-1e-4*self.total_steps)) memory = self.reconstructor.initial_state(batch_size, trainable=True).to(self.device) CE_loss, acc, out = self.reconstructor.reconstruct_forward(gumbel_one_hot, src, memory, self.dictionary['[CLS]']) rec_loss = CE_loss #+ self.vq_coef * vq_loss + 0.25 * self.vq_coef * commit_loss self.optimizer_R.zero_grad() rec_loss.backward() nn.utils.clip_grad_norm_(list(self.generator.parameters()) + list(self.reconstructor.parameters()), 0.1) self.optimizer_R.step() self.total_steps += 1 if self.total_steps % 500 == 0: if not os.path.exists("./Nest"): os.makedirs("./Nest") self.save("./Nest/DoubleRelationMEM_GAN") #for i in range(5): #plt.plot(range(1000),summary_probs.cpu().detach().numpy()[0,i,:1000] ) # wandb.log({"prob {}".format(i): wandb.Histogram(summary_probs.cpu().detach().numpy()[0,i,:1000])},step=step) if verbose == 1 and self.total_steps % 100 == 0: print("origin:") print(self.indicies2string(src[0])) print("summary:") print(self.indicies2string(summary_sample[0])) print("real summary:") print(self.indicies2string(real_data[0])) print("reconsturct out:") print(self.indicies2string(out[0])) # print("sentiment:",label[0].item()) # print("y:",sentiment_label[0].item()) # print("reward:",rewards[0].item()) print("") # for name, param in self.generator.named_parameters(): # writer.add_histogram(name, param.clone().cpu().data.numpy(), self.total_steps) # for name, param in self.reconstructor.named_parameters(): # writer.add_histogram(name, param.clone().cpu().data.numpy(), self.total_steps) distrib = summary_probs.cpu().detach().numpy()[0,0, :100] one_hot_out = gumbel_one_hot.cpu().detach().numpy()[0,0, :100] return [batch_G_loss, batch_D_loss], [CE_loss.item()], [real_score, fake_score, acc], [self.indicies2string(src[0]), self.indicies2string(summary_sample[0]), self.indicies2string(out[0])], distrib, one_hot_out class LSTMEncoder(nn.Module): def __init__(self, vocab_sz, hidden_dim, padding_index): super().__init__() self.src_embed = nn.Embedding(vocab_sz, hidden_dim) self.rnn_cell = nn.LSTM(hidden_dim, hidden_dim, num_layers=1, batch_first=True, bidirectional=True) self.padding_index = padding_index self.outsize = hidden_dim*2 def forward(self, x): #src_mask = (x != self.padding_index).type_as(x).unsqueeze(-2) out, (h,c) = self.rnn_cell( self.src_embed(x)) return out # class LSTM_Gumbel_Encoder_Decoder(nn.Module): # def __init__(self, hidden_dim, emb_dim, input_len, output_len, voc_size, device, eps=1e-8, num_layers = 2): # super().__init__() # self.hidden_dim = hidden_dim # self.emb_dim = emb_dim # #self.input_len = input_len # #self.output_len = output_len # #self.voc_size = voc_size # #self.teacher_prob = 1. # #self.epsilon = eps # self.emb_layer = nn.Embedding(voc_size, emb_dim) # self.num_layers = num_layers # self.encoder = nn.LSTM(emb_dim, hidden_dim, num_layers=num_layers, batch_first=True, bidirectional=True) # self.decoder = nn.LSTM(emb_dim, hidden_dim*2, num_layers=num_layers, batch_first=True) # self.device = device # self.attention_softmax = nn.Softmax(dim=1) # # self.pro_layer = nn.Sequential( # # nn.Linear(hidden_dim*4, voc_size, bias=True) # # ) # self.adaptive_softmax = torch.nn.AdaptiveLogSoftmaxWithLoss(hidden_dim*4, voc_size, [100, 1000, 10000], div_value=4.0, head_bias=False) # def forward(self, x, src_mask, max_len, start_symbol, mode = 'argmax', temp = 2.0): # batch_size = x.shape[0] # input_len = x.shape[1] # device = x.device # # encoder # x_emb = self.emb_layer(x) # memory, (h, c) = self.encoder(x_emb) # h = h.transpose(0, 1).contiguous() # c = c.transpose(0, 1).contiguous() # h = h.view(batch_size, self.num_layers, h.shape[-1]*2) # c = c.view(batch_size, self.num_layers, c.shape[-1]*2) # h = h.transpose(0, 1).contiguous() # c = c.transpose(0, 1).contiguous() # ## decoder # out_h, out_c = (h, c) # ys = torch.ones(batch_size, 1).fill_(start_symbol).type_as(x.data) # values = [] # all_probs = [] # gumbel_one_hots = [] # for i in range(max_len-1): # ans_emb = self.emb_layer(ys[:,-1]).view(batch_size, 1, self.emb_dim) # out, (out_h, out_c) = self.decoder(ans_emb, (out_h, out_c)) # attention = torch.bmm(memory, out.transpose(1, 2)).view(batch_size, input_len) # attention = self.attention_softmax(attention) # context_vector = torch.bmm(attention.view(batch_size, 1, input_len), memory) # logits = torch.cat((out, context_vector), -1).view(batch_size, -1) # one_hot, next_words, value, prob = self.gumbel_softmax(logits, temp) # # print(feature.shape) # # print(one_hot.shape) # # print(next_words.shape) # # print(values.shape) # # print(log_probs.shape) # # input("") # ys = torch.cat((ys, next_words.view(batch_size, 1)), dim=1) # values.append(value) # all_probs.append(prob) # gumbel_one_hots.append(one_hot) # values = torch.stack(values,1) # all_probs = torch.stack(all_probs,1) # gumbel_one_hots = torch.stack(gumbel_one_hots, 1) # return ys, values, all_probs, gumbel_one_hots # def sample_gumbel(self, shape, eps=1e-20): # U = torch.rand(shape).to(self.device) # return -Variable(torch.log(-torch.log(U + eps) + eps)) # def gumbel_softmax_sample(self, logits, temperature): # y = logits + self.sample_gumbel(logits.size()) # #the formula should be prob not logprob, I guess it still works # return self.adaptive_softmax.log_prob(logits).exp() # #return F.softmax(y / temperature, dim=-1) # def gumbel_softmax(self, logits, temperature): # """ # ST-gumple-softmax # input: [*, n_class] # return: flatten --> [*, n_class] an one-hot vector # """ # y = self.gumbel_softmax_sample(logits, temperature) # shape = y.size() # values, ind = y.max(dim=-1) # y_hard = torch.zeros_like(y).view(-1, shape[-1]) # y_hard.scatter_(1, ind.view(-1, 1), 1) # y_hard = y_hard.view(*shape) # y_hard = (y_hard - y).detach() + y # return y_hard.view(logits.shape[0], -1), ind, values, y # class LSTM_Normal_Encoder_Decoder(nn.Module): # def __init__(self, hidden_dim, emb_dim, input_len, output_len, voc_size, pad_index, device, eps=1e-8, num_layers = 2): # super().__init__() # self.hidden_dim = hidden_dim # self.emb_dim = emb_dim # self.device = device # #self.input_len = input_len # #self.output_len = output_len # #self.voc_size = voc_size # #self.teacher_prob = 1. # #self.epsilon = eps # self.num_layers = num_layers # #self.emb_layer = nn.Embedding(voc_size, emb_dim) # self.disguise_embed = nn.Linear(voc_size, emb_dim) # self.encoder = nn.LSTM(emb_dim, hidden_dim, num_layers=num_layers, batch_first=True, bidirectional=True) # self.decoder = nn.LSTM(emb_dim, hidden_dim*2, num_layers=num_layers, batch_first=True) # self.attention_softmax = nn.Softmax(dim=1) # self.vocab_sz = voc_size # self.criterion = torch.nn.AdaptiveLogSoftmaxWithLoss(hidden_dim*4, voc_size, [1000, 5000, 20000], div_value=4.0, head_bias=False) # def forward(self, x, src_mask, max_len, start_symbol, y, mode = 'argmax', temp = 2.0): # batch_size = x.shape[0] # input_len = x.shape[1] # device = x.device # # encoder # x_emb = self.disguise_embed(x) # memory, (h, c) = self.encoder(x_emb) # h = h.transpose(0, 1).contiguous() # c = c.transpose(0, 1).contiguous() # h = h.view(batch_size, self.num_layers, h.shape[-1]*2) # c = c.view(batch_size, self.num_layers, c.shape[-1]*2) # h = h.transpose(0, 1).contiguous() # c = c.transpose(0, 1).contiguous() # ## decoder # out_h, out_c = (h, c) # logits = [] # for i in range(max_len): # ans_emb = self.disguise_embed(self._to_one_hot(y[:,i], self.vocab_sz)).view(batch_size, 1, self.emb_dim) # out, (out_h, out_c) = self.decoder(ans_emb, (out_h, out_c)) # attention = torch.bmm(memory, out.transpose(1, 2)).view(batch_size, input_len) # attention = self.attention_softmax(attention) # context_vector = torch.bmm(attention.view(batch_size, 1, input_len), memory) # logit = torch.cat((out, context_vector), -1).view(batch_size, -1) # # if mode == 'argmax': # # values, next_words = torch.max(log_probs, dim=-1, keepdim=True) # # if mode == 'sample': # # m = torch.distributions.Categorical(logits=log_probs) # # next_words = m.sample() # # values = m.log_prob(next_words) # logits.append(logit) # logits = torch.stack(logits, 1) # _ ,loss = self.criterion(logits[:,:-1].contiguous().view(batch_size * (max_len - 1), -1), y[:,1:].contiguous().view(batch_size * (max_len-1))) # #y from one to get rid of [CLS] # log_argmaxs = self.criterion.predict(logits[:,:-1].contiguous().view(batch_size * (max_len - 1), -1)).view(batch_size, max_len-1) # acc = ( log_argmaxs== y[:,1:]).float().mean() # return loss, acc, log_argmaxs # def _to_one_hot(self, y, n_dims): # scatter_dim = len(y.size()) # y_tensor = y.to(self.device).long().view(*y.size(), -1) # zeros = torch.zeros(*y.size(), n_dims).to(self.device) # return zeros.scatter(scatter_dim, y_tensor, 1) class Discriminator(nn.Module): def __init__(self, transformer_encoder, hidden_dim, vocab_sz, padding_index): super(Discriminator, self).__init__() self.padding_index = padding_index self.disguise_embed = nn.Linear(vocab_sz, hidden_dim) self.transformer_encoder = transformer_encoder self.linear = nn.Linear(self.transformer_encoder.layers[-1].size, 1) #self.sigmoid = nn.Sigmoid() def forward(self, x): src_mask = (x.argmax(-1) != self.padding_index).type_as(x).unsqueeze(-2) x = self.transformer_encoder(self.disguise_embed(x), src_mask) score = self.linear(x) return score
[ "you@example.com" ]
you@example.com
d1716fb4ec493d1b89f08262b63cd4a0ccee5a05
af8cb7ec280573b58a16ae6e92a938828ffc052d
/Recurrent_network/Recurrent_network2.py
d0ec9b7584d15643b4ca53b345c7e20dda0a2df4
[]
no_license
ninetailskim/Tensorflow_Tutorial
65e44ecce976fdd469fc8c34b0d1ed975e5b9989
cb7d8fcd12e57de80f5cded091e014b425e3467f
refs/heads/master
2021-07-02T22:46:55.503318
2017-09-23T08:31:03
2017-09-23T08:31:03
104,552,409
0
0
null
null
null
null
UTF-8
Python
false
false
2,383
py
''' static_rnn input :A length T list of inputs, each a Tensor of shape [batch_size, input_size], or a nested tuple of such elements. x = tf.unstack(x, timesteps, 1) output : A list of outputs (one for each input), or a nested tuple of such elements. output[-1] ''' import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/tmp/data', one_hot=True) learning_rate = 0.001 training_steps = 10000 batch_size = 128 display_step = 200 num_input = 28 timesteps = 28 num_hidden = 128 num_classes = 10 X = tf.placeholder(tf.float32, [None, timesteps, num_input]) Y = tf.placeholder(tf.float32, [None, num_classes]) weights={ 'out':tf.get_variable('weight_out', [num_hidden, num_classes], tf.float32) } biases = { 'out':tf.get_variable('biases_out', [num_classes], tf.float32) } def RNN(x, weight, biases): x = tf.unstack(x, timesteps, 1) lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0) #h0 = lstm_cell.zero_state(batch_size, tf.float32) output, state = rnn.static_rnn(lstm_cell, x, dtype=tf.float32) out = tf.nn.bias_add(tf.matmul(output[-1], weight['out']), biases['out']) return out logits = RNN(X, weights, biases) prediction = tf.nn.softmax(logits) loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y)) correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss_op) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for step in range(1, training_steps + 1): batch_x, batch_y = mnist.train.next_batch(batch_size) batch_x = batch_x.reshape((-1, timesteps, num_input)) _, loss, acc = sess.run([train_op, loss_op, accuracy],feed_dict={X:batch_x, Y:batch_y}) if step % display_step == 0: print("Step:", step, "loss:", loss, "Accuracy:", acc) print("Training finished!") test_len = 128 test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input)) test_label = mnist.test.labels[:test_len] print("Test:", sess.run(accuracy, feed_dict={X:test_data, Y:test_label}))
[ "ninetailsyeon@163.com" ]
ninetailsyeon@163.com
8bb434118d8a33e713f63403eaff1c739d22dc81
144c0ec2098c1a79f277729550262ab953a34aed
/logisticka.py
32ff6f38f03be4fd21104c731494fc99743dc6be
[]
no_license
mkonjikovac/logistickaRegresija
ad7142d38824c70e992213ae8d4f6bb6ab2d74c7
37e58a40526a3679aeeaacbe49d5ad0e06d8881c
refs/heads/master
2022-03-07T03:30:00.813775
2019-11-08T13:57:02
2019-11-08T13:57:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,989
py
# logisticka import pandas as pd import numpy as np import math import matplotlib.pyplot as plt import seaborn as sn def standardization(x): xs = np.copy(x) for i in range(1, n): xa = np.average(xs[:, i]) std = np.std(xs[:, i]) for j in range(m): xs[j, i] = (xs[j, i] - xa) / std return xs def h(theta, x): return 1 / (1 + math.exp(-theta.T.dot(x))) # sarzni gradijentni spust, maksimizacija verodostojnosti def gradient(x, y, theta): gl = np.zeros((n, 1)) for i in range(m): h_theta = h(theta, x[i].T) for j in range(n): gl[j] = gl[j] + (y[i] - h_theta) * x[i, j] return gl def gradient_loss(x, y): alpha_l, alpha, alpha_h = 0.01, 0.02, 0.04 theta_l, J_l = gradient_descent_j(x, y, alpha_l, 1) theta, J = gradient_descent_j(x, y, alpha, 1) theta_h, J_h = gradient_descent_j(x, y, alpha_h, 1) plt.plot(range(len(J_l)), J_l) plt.plot(range(len(J)), J) plt.plot(range(len(J_h)), J_h) plt.legend(['alpha = 0.01', 'alpha = 0.02', 'alpha = 0.04'], loc='upper right') plt.xlabel('iter') plt.ylabel('J') plt.show() def gradient_descent_j(x, y, alpha=0.02, flag=0): theta = np.zeros((n, 1)) bound = 2e-2 J = [] dl = gradient(x, y, theta) while np.linalg.norm(dl) > bound: theta = theta + alpha * dl dl = gradient(x, y, theta) if flag: dJ = 0 for i in range(m): ht = h(theta, xs[i].T) dJ = dJ + y[i] * math.log(ht) + (1 - y[i]) * math.log(1 - ht) J.append(-dJ) return theta, J def gradient_descent(x, y): theta, J = gradient_descent_j(x, y) return theta # softmax def delta(x, y, theta): m = x.shape[0] deltaJ = np.zeros((k, n)) for r in range(k - 1): for i in range(m): s = 0 for j in range(k): s = s + math.exp(theta[j].dot(x[i].T)) deltaJ[r] = deltaJ[r] + ((y[i] == r) - math.exp(theta[r].dot(x[i].T)) / s) * x[i] return deltaJ def gauss(x, my, sigma): sigma2 = math.pow(sigma, 2) return 1 / math.sqrt(2 * math.pi * sigma2) * math.exp(-math.pow((x - my), 2) / 2 * sigma2) def gnb(x, my1, sigma1, my0, sigma0): invS1, invS0 = np.linalg.inv(sigma1), np.linalg.inv(sigma0) return math.exp(0.5 * x.T.dot(invS1).dot(x) - my1.T.dot(invS1).dot(x) + 0.5 * my1.T.dot(invS1).dot(my1) - 0.5 * x.T.dot(invS0).dot(x) + my0.T.dot(invS0).dot(x) - 0.5 * my0.T.dot(invS0).dot(my0)) def plot_conf(conf, reg, train): if train == 1: print(reg) print('conf_train:') else: print('conf_test:') print(conf) df_cm = pd.DataFrame(conf, range(k), range(k)) hm = sn.heatmap(df_cm, annot=True, annot_kws={"size": 12}) bottom, top = hm.get_ylim() hm.set_ylim(bottom + 0.5, top - 0.5) plt.show() df = pd.read_csv('multiclass_data.csv', header=None) df.columns = ['x1', 'x2', 'x3', 'x4', 'x5', 'y'] df.insert(0, 'one', 1) boundary_index = round(df.shape[0] * 0.8) df = df.sample(frac=1) y = df['y'].to_numpy() x = df.iloc[:, 0:6].to_numpy() m, n, k = x.shape[0], x.shape[1], len(np.unique(y)) # n ukljucuje kolonu sa 1 xs = standardization(x) # logisticka regresija y0, y1, y2 = np.copy(y), np.copy(y), np.copy(y) y0[y0 >= 1], y0[y0 == 0], y0[y0 > 1] = 2, 1, 0 y1[y1 != 1] = 0 y2[y2 <= 1], y2[y2 == 2] = 0, 1 theta0, theta1, theta2 = gradient_descent(xs, y0), gradient_descent(xs, y1), gradient_descent(xs, y2) conf_train, conf_test = np.zeros((k, k)), np.zeros((k, k)) y_guess = np.zeros((m, 1), int) for i in range(m): h0, h1, h2 = h(theta0, xs[i].T), h(theta1, xs[i].T), h(theta2, xs[i].T) if h0 > h1 and h0 > h2: y_guess[i] = 0 elif h1 > h0 and h1 > h2: y_guess[i] = 1 else: y_guess[i] = 2 if i < boundary_index: conf_train[y[i], y_guess[i]] = conf_train[y[i], y_guess[i]] + 1 else: conf_test[y[i], y_guess[i]] = conf_test[y[i], y_guess[i]] + 1 plot_conf(conf_train, 'LOGISTIČKA:', 1) plot_conf(conf_test, 'LOGISTIČKA:', 0) gradient_loss(xs, y1) # funkcija gubitka u zavisnosti od stope ucenja # softmax shuffle = np.arange(m) row_num = [5, 10, 20] row_size = row_num[1] for row in row_num: alpha, step, cnt = 0.02, 0, 1000 theta_row, J = np.zeros((k, n)), [] for i in range(cnt): theta_row = theta_row + alpha * delta(xs[step:min(m, step + row)], y[step:min(m, step + row)], theta_row) dJ = 0 for i in range(m): y_guess = 0 for j in range(k): y_guess = y_guess + math.exp(theta_row[j].dot(xs[i].T)) dJ = dJ + (theta_row[y[i]].dot(xs[i].T) - math.log(y_guess)) J.append(-dJ) step = (step + row) % m if step < row: step = 0 np.random.shuffle(shuffle) xs, y = xs[shuffle], y[shuffle] if row == row_size: theta = theta_row plt.plot(range(len(J)), J) plt.legend(['šarža = 5', 'šarža = 10', 'šarža = 20'], loc='upper right') plt.xlabel('iter') plt.ylabel('J') plt.show() conf_train, conf_test = np.zeros((k, k)), np.zeros((k, k)) for i in range(m): phi, s = np.zeros((k, 1)), 0 for r in range(k): phi[r] = math.exp(theta[r].dot(xs[i].T)) s = s + math.exp(theta[r].dot(xs[i].T)) phi = phi / s phi_max_index = np.argmax(phi) if i < boundary_index: conf_train[y[i], phi_max_index] = conf_train[y[i], phi_max_index] + 1 else: conf_test[y[i], phi_max_index] = conf_test[y[i], phi_max_index] + 1 plot_conf(conf_train, 'SOFTMAX:', 1) plot_conf(conf_test, 'SOFTMAX:', 0) # GDA - Gausovska diskriminantna analiza xs = xs[:, 1:] xs = np.c_[xs, y] n = n - 1 # nema potrebe vise za kolonom sa 1 xs0, xs1, xs2 = xs[np.where(xs[:, n] == 0)], xs[np.where(xs[:, n] == 1)], xs[np.where(xs[:, n] == 2)] xs0, xs1, xs2 = xs0[:, :-1], xs1[:, :-1], xs2[:, :-1] x_sep = [xs0, xs1, xs2] my, sigma = np.zeros((k, n)), np.zeros((k, n)) # racunanje my-matematicko ocekivanje, sigma-standardna devijansa for i in range(k): for j in range(n): my[i, j] = np.mean(x_sep[i][:, j]) sigma[i, j] = np.std(x_sep[i][:, j]) conf_train, conf_test = np.zeros((k, k)), np.zeros((k, k)) for i in range(m): gm, p = np.zeros((k, n)), np.zeros(k) # gauss matrix total = 0 for l in range(k): for j in range(n): gm[l, j] = gauss(xs[i, j], my[l, j], sigma[l, j]) p[l] = np.prod(gm[l]) total = total + p[l] p = p / total if i < boundary_index: conf_train[y[i], np.argmax(p)] = conf_train[y[i], np.argmax(p)] + 1 else: conf_test[y[i], np.argmax(p)] = conf_test[y[i], np.argmax(p)] + 1 plot_conf(conf_train, 'GDA:', 1) plot_conf(conf_test, 'GDA:', 0) # GNB - Naivni Bayes MY0 = np.ones((5, xs0.shape[0])) MY1 = np.ones((5, xs1.shape[0])) MY2 = np.ones((5, xs2.shape[0])) for j in range(n): MY0[j] = my[0, j] MY1[j] = my[1, j] MY2[j] = my[2, j] print(xs0, my) SIGMA0 = 1 / (xs0.shape[0] - 1) * (xs0.T - MY0).dot((xs0.T - MY0).T) SIGMA1 = 1 / (xs1.shape[0] - 1) * (xs1.T - MY1).dot((xs1.T - MY1).T) SIGMA2 = 1 / (xs2.shape[0] - 1) * (xs2.T - MY2).dot((xs2.T - MY2).T) conf_train, conf_test = np.zeros((k, k)), np.zeros((k, k)) xs = xs[:, :-1] # izbacivanje kolone sa 1 for i in range(m): p = np.zeros(k) p[0] = 1 / (1 + gnb(xs[i].T, my[1].T, SIGMA1, my[0].T, SIGMA0) + gnb(xs[i].T, my[2].T, SIGMA2, my[0].T, SIGMA0)) p[1] = 1 / (1 + gnb(xs[i].T, my[0].T, SIGMA0, my[1].T, SIGMA1) + gnb(xs[i].T, my[2].T, SIGMA2, my[1].T, SIGMA1)) p[2] = 1 / (1 + gnb(xs[i].T, my[0].T, SIGMA0, my[2].T, SIGMA2) + gnb(xs[i].T, my[1].T, SIGMA1, my[2].T, SIGMA2)) if i < boundary_index: conf_train[y[i], np.argmax(p)] = conf_train[y[i], np.argmax(p)] + 1 else: conf_test[y[i], np.argmax(p)] = conf_test[y[i], np.argmax(p)] + 1 plot_conf(conf_train, 'GNB:', 1) plot_conf(conf_test, 'GNB:', 0)
[ "mkonjikovac12@gmail.com" ]
mkonjikovac12@gmail.com
c35a45aa07d805a1a36b6c9ba503f843f82fe68e
3554cedeca0e21a015534290a95d0a3930ff1cc1
/spider/spideOnDelegation.py
f6be5c0879481f57b3fb6d95aa692fb56bf285b8
[]
no_license
baolintian/EZTrade
27d2329468f44bbedc610e0f8ab75be05ccfb247
72ee63fdcbfd37574a7734bd0991cff114481f79
refs/heads/main
2023-09-01T04:08:20.086976
2021-09-23T08:47:32
2021-09-23T08:47:32
390,328,602
0
0
null
null
null
null
UTF-8
Python
false
false
15,650
py
import requests import json import time import datetime def get_token(): url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/app/login?password=31c15919&userName=admin" payload = {} headers = { 'accept': '*/*', 'Authorization': 'eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJhZG1pbiIsImV4cCI6MTYyNTY3NTgyNH0.LkYBQnKfeDoEYJAMs4HOZae_Gq9nyu8kqOVP3T_qkkdmHb9pgRJbw4dlbxjEO69tFh7NQ3-vT-EHLTYo6b8Nyw' } response = requests.request("GET", url, headers=headers, data=payload) return json.loads(response.text)["data"] def get_delegation_info(): url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/omf/entities/DelegateInfo/objects" payload = json.dumps({ "condition": "and 1=1", "pageSize": 10, "startIndex": 0 }) token = get_token() headers = { 'accept': '*/*', 'Authorization': token, 'Content-Type': 'application/json', 'Cookie': 'JSESSIONID=8BC976CB994C3656F9AE0E913A2521C9' } response = requests.request("POST", url, headers=headers, data=payload) response = json.loads(response.text) return response def get_coin_info(class_name, condition): url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/omf/entities/"+class_name+"/objects" payload = json.dumps({ "condition": condition, "pageSize": 100, "startIndex": 0 }) token = get_token() headers = { 'accept': '*/*', 'Authorization': token, 'Content-Type': 'application/json', 'Cookie': 'JSESSIONID=8BC976CB994C3656F9AE0E913A2521C9' } response = requests.request("POST", url, headers=headers, data=payload) response = json.loads(response.text) return response def delete_delegation_by_oid(class_name, oid): url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/omf/entities/"+class_name+"/objects-delete" payload = json.dumps([ oid ]) token = get_token() headers = { 'accept': '*/*', 'Authorization': token, 'Content-Type': 'application/json', 'Cookie': 'JSESSIONID=8BC976CB994C3656F9AE0E913A2521C9' } requests.request("POST", url, headers=headers, data=payload) def create_transaction(class_name, message): import requests import json url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/omf/entities/"+class_name+"/objects-create" payload = json.dumps([ message ]) token = get_token() headers = { 'accept': '*/*', 'Authorization': token, 'Content-Type': 'application/json', 'Cookie': 'JSESSIONID=8BC976CB994C3656F9AE0E913A2521C9' } response = requests.request("POST", url, headers=headers, data=payload) if response.status_code == 200: return True else: return False def get_instance_by_oid(class_name, oid): import requests import json url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/omf/entities/"+class_name+"/objects/oids" payload = json.dumps([ oid ]) token = get_token() headers = { 'accept': '*/*', 'Authorization': token, 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) return json.loads(response.text) def edit_VirtualAccount_by_oid(class_name, obj): url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/omf/entities/"+class_name+"/objects-update?forceUpdate=false" payload = json.dumps([ obj ]) token = get_token() headers = { 'accept': '*/*', 'Authorization': token, 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) def get_single_coin_info(class_name, condition): url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/omf/entities/"+class_name+"/objects" payload = json.dumps({ "condition": condition, "pageSize": 100 }) token = get_token() headers = { 'accept': '*/*', 'Authorization': token, 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) return json.loads(response.text) def edit_single_coin_hold(class_name, obj): url = "http://i-2o0wkhxv.cloud.nelbds.org.cn:8180/api/app//dwf/v1/omf/entities/" + class_name + "/objects-update?forceUpdate=false" payload = json.dumps([ obj ]) token = get_token() headers = { 'accept': '*/*', 'Authorization': token, 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) while(True): delegation_info = get_delegation_info() # print(delegation_info) # print(len(delegation_info["data"])) delegation_info = delegation_info["data"] # 获取各个币种的价格信息 coin_info = get_coin_info("CoinInfo", "and 1=1") coin_info = coin_info["data"] # print(coin_info) coin_dict = {} for i in range(len(coin_info)): coin_name = coin_info[i]["coinName"] coin_price = coin_info[i]["coinPrice"] coin_dict[coin_name] = coin_price # 对所有的委托进行处理 for i in range(len(delegation_info)): print(delegation_info[i]) delegate_coin_name = delegation_info[i]["delegateCoinName"] delegate_price = delegation_info[i]["delegatePrice"] delegate_action = delegation_info[i]["delegateAction"] delegate_number = delegation_info[i]["delegateAmount"] delegate_oid = delegation_info[i]["oid"] delegator_oid = delegation_info[i]["delegatorOID"] # delegate_type = delegation_info[i]["delegateType"] # 异常处理 if delegate_action != "BUY" and delegate_action != "SELL": delete_delegation_by_oid("DelegateInfo", delegate_oid) if delegate_coin_name in coin_dict.keys(): if delegate_action == "BUY" and delegate_price < coin_dict[delegate_coin_name]: continue if delegate_action == "SELL" and delegate_price > coin_dict[delegate_coin_name]: continue if delegate_action == "BUY": transaction_message = { "transactionCoinName": delegate_coin_name, "transactionAmount": delegate_number, "transactionPrice": delegate_price, "transactionPersonOID": delegator_oid, "transactionAction": delegate_action, "transactionTime": str(int(time.mktime(datetime.datetime.now().timetuple()))*1000) } print("BUY") print(transaction_message) result = create_transaction("TransactionHistory", transaction_message) if result: # 增加或者修改持仓信息 user = get_instance_by_oid("VirtualAccount", delegator_oid)["data"][0] user_oid = user["oid"] user_tot = user["asset"] user_coin_asset = user["coinAsset"] user_cash = user["cash"] user_frozenAsset = user["frozenAsset"] user_usableAsset = user["usableAsset"] user_frozenAsset = user_frozenAsset - delegate_number*delegate_price*(1+0.001) user_coin_asset = user_coin_asset + delegate_number*coin_dict[delegate_coin_name] user_cash = user_frozenAsset+user_usableAsset user_tot = user_cash+user_coin_asset # TODO: 更新收益率 obj = { "oid": user_oid, "asset": user_tot, "coinAsset": user_coin_asset, "cash": user_cash, "frozenAsset": user_frozenAsset, "usableAsset": user_usableAsset # "delegatorOID": delegator_oid } edit_VirtualAccount_by_oid("VirtualAccount", obj) # 增加或者修改持仓信息 hold_info = get_single_coin_info(r"SingleCoinInfo", "and obj.coinHolderOID = '"+str(user_oid)+r"'") hold_info = hold_info["data"] hold_coin_dict = {} flag = False for j in range(len(hold_info)): if hold_info[j]["coinName"] == delegate_coin_name: print("real update") flag = True coin_number = hold_info[j]["coinAmount"] hold_price = hold_info[j]["coinHoldPrice"] avg_price = hold_info[j]["coinAveragePrice"] transaction_time = hold_info[j]["coinTime"] usable_amount = hold_info[j]["coinUsableAmount"] hold_price = (hold_price * coin_number + delegate_number * delegate_price) / ( coin_number + delegate_number) avg_price = (hold_price*transaction_time+delegate_price)/(1+transaction_time) transaction_time = transaction_time+1 coin_number = coin_number+delegate_number usable_amount = usable_amount+delegate_number obj = { "oid": hold_info[j]["oid"], "coinAmount": coin_number, "coinHoldPrice": hold_price, "coinAveragePrice": avg_price, "coinTime": transaction_time, "coinUsableAmount": usable_amount } edit_single_coin_hold("SingleCoinInfo", obj) break if flag == False: obj = { "coinAmount": delegate_number, "coinHoldPrice": delegate_price, "coinAveragePrice": delegate_price, "coinTime": 1, "coinName": delegate_coin_name, "coinHolderOID": delegator_oid, "coinUsableAmount": delegate_number } create_transaction("SingleCoinInfo", obj) # 删除委托信息 delete_delegation_by_oid("DelegateInfo", delegate_oid) if delegate_action == "SELL": # 更改用户的资金 # 更改/删除用户持仓信息 # 创建交易记录 # 删除委托信息 transaction_message = { # 包含SELL 和 AUTO SELL "transactionAction": delegate_action, "transactionCoinName": delegate_coin_name, "transactionAmount": delegate_number, "transactionPrice": delegate_price, "transactionPersonOID": delegator_oid, "transactionTime": str(int(time.mktime(datetime.datetime.now().timetuple())) * 1000) } print("SELL") print(transaction_message) result = create_transaction("TransactionHistory", transaction_message) if result: # 增加或者修改持仓信息 user = get_instance_by_oid("VirtualAccount", delegator_oid)["data"][0] user_oid = user["oid"] user_tot = user["asset"] user_coin_asset = user["coinAsset"] user_cash = user["cash"] user_frozenAsset = user["frozenAsset"] user_usableAsset = user["usableAsset"] user_coin_asset = user_coin_asset - delegate_number * coin_dict[delegate_coin_name] user_usableAsset = user_usableAsset+delegate_number * delegate_price*(1-0.001) user_cash = user_frozenAsset + user_usableAsset user_tot = user_cash + user_coin_asset # TODO: 更新收益率 obj = { "oid": user_oid, "asset": user_tot, "coinAsset": user_coin_asset, "cash": user_cash, "frozenAsset": user_frozenAsset, "usableAsset": user_usableAsset } edit_VirtualAccount_by_oid("VirtualAccount", obj) # 增加或者修改持仓信息 hold_info = get_single_coin_info(r"SingleCoinInfo", "and obj.coinHolderOID = '" + str(user_oid) + r"'") hold_info = hold_info["data"] hold_coin_dict = {} for j in range(len(hold_info)): if hold_info[j]["coinName"] == delegate_coin_name: print("real update") # flag = True coin_number = hold_info[j]["coinAmount"] hold_price = hold_info[j]["coinHoldPrice"] avg_price = hold_info[j]["coinAveragePrice"] transaction_time = hold_info[j]["coinTime"] usable_amount = hold_info[j]["coinUsableAmount"] if(coin_number - delegate_number != 0): hold_price = (hold_price * coin_number - delegate_number * delegate_price) / ( coin_number - delegate_number) else: hold_price = 0 avg_price = (hold_price * transaction_time + delegate_price) / (1 + transaction_time) transaction_time = transaction_time+1 coin_number = coin_number - delegate_number print("剩余币种") print(coin_number) if(coin_number <= 0.0001): # 直接删除持仓记录 delete_delegation_by_oid("SingleCoinInfo", hold_info[j]["oid"]) else: usable_amount = usable_amount obj = { "oid": hold_info[j]["oid"], "coinAmount": coin_number, "coinHoldPrice": hold_price, "coinAveragePrice": avg_price, "coinTime": transaction_time, "coinUsableAmount": usable_amount } edit_single_coin_hold("SingleCoinInfo", obj) break # 删除委托信息 delete_delegation_by_oid("DelegateInfo", delegate_oid) time.sleep(2)
[ "tianbaolin1@gmail.com" ]
tianbaolin1@gmail.com
50317930bb9698c10a56bf2f5e1c9bf9b3f6f36b
38f619c6210d77d156c6a9ae2850b30b1d96fd79
/gen_winning_paths.py
3a4c2ee73521727270a7dd6a1f62200d8b43fc07
[]
no_license
ofraam/GTTT
3c2d0fc55e17c794b9e4f7078640e86d73b780fc
83e4c4f0d4c667bc719239d79daa1ab9417e7d1e
refs/heads/master
2021-01-20T04:46:15.095923
2019-08-08T15:57:04
2019-08-08T15:57:04
89,724,782
0
0
null
null
null
null
UTF-8
Python
false
false
1,938
py
if __name__ == "__main__": dimension = 10 streak = 5 filename = "examples/board_"+str(dimension)+"_"+str(streak)+".txt" row = 1 col = 1 winning_paths = [] #check horizontal for row in range(1,dimension+1): for col in range(1, dimension + 1): i = (row-1)*dimension+col if (i+(streak-1))<=(dimension*row): #horizontal paths path = [] for s in range(0,streak): path.append(i+s) winning_paths.append(path) if (i+(streak-1)*dimension)<=dimension*(dimension-1)+col: #vertical paths path = [] for s in range(0,streak): path.append(i+(s)*dimension) winning_paths.append(path) if (i+(streak-1)*(dimension+1))<=dimension*dimension: #diagonal right paths if (i + (streak - 1) * (dimension + 1)) <= (row + (streak - 1)) * dimension: # diagonal right paths path = [] for s in range(0,streak): path.append(i+(s)*(dimension+1)) winning_paths.append(path) if (i+(streak-1)*(dimension-1))<=dimension*dimension: #diagonal right paths if (i + (streak - 1) * (dimension - 1)) > ((row-1) + (streak - 1)) * dimension: # diagonal right paths path = [] for s in range(0,streak): path.append(i+(s)*(dimension-1)) winning_paths.append(path) with open(filename, "w") as text_file: text_file.write(str(dimension*dimension)) text_file.write("\n") for path in winning_paths: for i in range(len(path)): text_file.write(str(path[i])) if i<len(path)-1: text_file.write(" ") text_file.write("\n") print winning_paths
[ "oamir@seas.harvard.edu" ]
oamir@seas.harvard.edu
cb87f2390f4328b284144e4fa1564341cb8bdcf7
c27c51f5c33e0431dbe7db6e18c21b249d476cfa
/OpenSource_Python_Code/nova-2013.2/nova/tests/api/ec2/test_faults.py
36cee0663bf4ff4b4c640f0b081a869d016d26a6
[ "Apache-2.0" ]
permissive
bopopescu/Python_Stuff
9bef74e0db17bb5e3ba2d908ced01ee744820d80
9aa94a0fa5e4e802090c7b29ec88b840e304d9e5
refs/heads/master
2022-11-20T06:54:36.581623
2017-12-04T18:56:02
2017-12-04T18:56:02
282,171,169
0
0
null
2020-07-24T08:54:37
2020-07-24T08:54:36
null
UTF-8
Python
false
false
1,914
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mox import webob from nova.api.ec2 import faults from nova import test from nova import wsgi class TestFaults(test.NoDBTestCase): """Tests covering ec2 Fault class.""" def test_fault_exception(self): # Ensure the status_int is set correctly on faults. fault = faults.Fault(webob.exc.HTTPBadRequest( explanation='test')) self.assertTrue(isinstance(fault.wrapped_exc, webob.exc.HTTPBadRequest)) def test_fault_exception_status_int(self): # Ensure the status_int is set correctly on faults. fault = faults.Fault(webob.exc.HTTPNotFound(explanation='test')) self.assertEquals(fault.wrapped_exc.status_int, 404) def test_fault_call(self): # Ensure proper EC2 response on faults. message = 'test message' ex = webob.exc.HTTPNotFound(explanation=message) fault = faults.Fault(ex) req = wsgi.Request.blank('/test') req.GET['AWSAccessKeyId'] = "test_user_id:test_project_id" self.mox.StubOutWithMock(faults, 'ec2_error_response') faults.ec2_error_response(mox.IgnoreArg(), 'HTTPNotFound', message=message, status=ex.status_int) self.mox.ReplayAll() fault(req)
[ "thelma1944@gmail.com" ]
thelma1944@gmail.com
fecb95f2df1a15ec0d1133aa0f186e37532e7f1c
357ce8dbb7e2ebab438ae90a8f598ba625ee74a1
/perticks/api/models.py
b2bf85e2e850ce59d32e170e83561f33d1a78fcd
[]
no_license
HealthHackAu2016/per-ticks
899870f0c3915bb8d0aed9fcfe609674934b1a76
03eeaf57ea7e8c1efc07a8ff48c59edc058f7b4d
refs/heads/master
2021-01-11T02:50:00.246122
2016-10-16T07:07:42
2016-10-16T07:07:42
70,917,456
0
0
null
null
null
null
UTF-8
Python
false
false
1,645
py
from django.db import models from django.contrib import admin from django.core.validators import RegexValidator, EmailValidator class BiteReport(models.Model): # Validators alphanumeric = RegexValidator(r'^[0-9]*$', 'Only numeric characters are allowed.') validate_email = EmailValidator() # Fields id = models.AutoField(primary_key=True) auth_id = models.CharField(max_length=20) auth_code = models.CharField(max_length=20) email = models.CharField(max_length=200, blank=True, validators=[validate_email]) phone = models.CharField(max_length=11, blank=True, validators=[alphanumeric]) allows_follow_up = models.BooleanField(default=False) wants_reminder = models.BooleanField(default=False) symptom_comments = models.TextField() submission_date = models.DateField(auto_now_add=True) bite_date = models.DateField() lat = models.FloatField() lon = models.FloatField() bitten_before = models.BooleanField(default=False) number_of_bites = models.IntegerField(default=1) # travel admin.site.register(BiteReport) class HospitalData(models.Model): numeric = RegexValidator(r'^[0-9]*$', 'Only numeric characters are allowed.') hospital_name = models.CharField(max_length=128) hospital_address = models.CharField(max_length=512) hospital_telephone = models.CharField(max_length=11, blank=True, validators=[numeric]) admin.site.register(HospitalData) class Reminders(models.Model): report = models.ForeignKey(BiteReport) reminder_date = models.DateField() reminder_sent = models.BooleanField(default=False) admin.site.register(Reminders)
[ "mail@trisreed.com" ]
mail@trisreed.com
dfab9c98e6e8c2274dad941069669ae7f05d9833
15f438d029528a978383f24f85035c911e314b72
/scripts/tile.py
4265e245943caf8bebb807cdee81181b01d0187c
[ "MIT" ]
permissive
rg314/autoballs
91d11315a61d4c088b099744301b3f1b68eecc93
21fab5c810f18c0d50c23051928d3bb86fbc6941
refs/heads/main
2023-05-30T11:48:52.901933
2021-06-23T14:48:27
2021-06-23T14:48:27
341,683,921
1
0
MIT
2021-03-18T23:28:23
2021-02-23T20:39:55
Python
UTF-8
Python
false
false
2,397
py
import os import glob import cv2 import matplotlib.pyplot as plt import numpy as np import math size = 512 tile_size = (size, size) offset = (size, size) image_types = 'data' origin_path = os.path.abspath(os.path.join(f'train_data/{image_types}/*', os.pardir)) images = glob.glob(origin_path+'/imgs/*.tif') masks = [x.replace(f'imgs/img_', 'masks/img_') for x in images] data = [(x, y) for (x, y) in list(zip(images, masks)) if os.path.exists(x) and os.path.exists(y)] images, masks = zip(*data) x = [] y = [] idx = 0 non_zero = 0 for img_n, mask_n in list(zip(images, masks)): mask = cv2.imread(mask_n) mask = (mask > 255//2) * 255 img = cv2.imread(img_n) mask = np.asarray(mask).astype('uint8') mask = mask[:,:,0] img_shape = img.shape # cv2.imwrite('test.tif', mask) # print(mask) if mask.shape[:2] == img.shape[:2]: for i in range(int(math.ceil(img_shape[0]/(offset[1] * 1.0)))): for j in range(int(math.ceil(img_shape[1]/(offset[0] * 1.0)))): cropped_img = img[offset[1]*i:min(offset[1]*i+tile_size[1], img_shape[0]), offset[0]*j:min(offset[0]*j+tile_size[0], img_shape[1])] cropped_mask = mask[offset[1]*i:min(offset[1]*i+tile_size[1], img_shape[0]), offset[0]*j:min(offset[0]*j+tile_size[0], img_shape[1])] # path = os.getcwd() + f'/train_data/data_tile_{size}/imgs' if not os.path.exists(path): os.makedirs(path) imtgt = 'img_'+str(idx).zfill(5)+'.tif' img_target = os.path.join(path, imtgt) path = os.getcwd() + f'/train_data/data_tile_{size}/masks' if not os.path.exists(path): os.makedirs(path) mskgt = imtgt mask_target = os.path.join(path, mskgt) # # print(cropped_img.shape, img_target) # # print(cropped_mask.shape, mask_target) cv2.imwrite(img_target, cropped_img) cv2.imwrite(mask_target, ~cropped_mask) if np.sum(cropped_mask) > 0: non_zero += 1 idx += 1 print(f'Total {non_zero} out of {idx} which is {(non_zero*100/idx):.2f} %')
[ "ryan.greenhalgh@hotmail.co.uk" ]
ryan.greenhalgh@hotmail.co.uk
886183df918841571dc3a1914dbf86b3af70ee3d
9ce345af50e58596564a942471c19b17fec5b1b7
/venv/Scripts/pip-script.py
8ff319223bd8fc27e410ac0fa90fd31b50f27fd7
[]
no_license
ArsenTrynko/Python_lab10
2f6a4379a53c66f365a85f9db6c818128690d17f
8da5281ef60e40e43b31e7a38e1d3739d926b552
refs/heads/master
2020-05-31T00:47:41.813171
2019-06-03T16:26:38
2019-06-03T16:26:38
190,041,659
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
#!C:\Users\MI\PycharmProjects\Lab10\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip')() )
[ "jarkodara@gmail.com" ]
jarkodara@gmail.com
ff06d12c1f57c1abcc60e770b2ba9375591bfd04
7ba5e9e271f1199582500bc40334ce4dfff03698
/manage.py
e1e56792c1b390bb6ae5ff85c7019e487c5a3838
[]
no_license
R1Ng0-1488/four-a-docker
9ffc0cd2004b06ea9b9871eb2aad778854083bf5
2b66ed5baa6df777391343f82c5512b90689b981
refs/heads/master
2023-04-13T05:04:34.600023
2021-04-27T09:23:25
2021-04-27T09:23:25
357,534,439
0
0
null
null
null
null
UTF-8
Python
false
false
629
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'fourArest.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "57253219+R1Ng0-1488@users.noreply.github.com" ]
57253219+R1Ng0-1488@users.noreply.github.com
af319737ac47b4c0bdc71afb813cb1635135868b
8e8f09667b7aae2e8e35e6c130e426aedbe3d565
/apps/destination/migrations/0005_auto_20170719_1338.py
251620743aee30278a95641ae10effdf2bac21ae
[]
no_license
TripHub/_API
c33e8b08f43cc45b5d7ed788aaaaed714fdcf802
dad85e34e826d951a971088bc77c8e63b403f01f
refs/heads/master
2021-06-24T05:50:28.964085
2017-08-06T11:01:50
2017-08-06T11:01:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
883
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-07-19 13:38 from __future__ import unicode_literals import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('destination', '0004_auto_20170705_1325'), ] operations = [ migrations.RemoveField( model_name='destination', name='address', ), migrations.RemoveField( model_name='destination', name='latitude', ), migrations.RemoveField( model_name='destination', name='longitude', ), migrations.AddField( model_name='destination', name='data', field=django.contrib.postgres.fields.jsonb.JSONField(default={}), preserve_default=False, ), ]
[ "Ben@hadfieldfamily.co.uk" ]
Ben@hadfieldfamily.co.uk
955bb168de6e1ab256033fbf68a95eb968b92146
180d93304e80e485be81dd06dbbc8a3be0c34365
/exporter/opentelemetry-exporter-opencensus/tests/test_otcollector_trace_exporter.py
222a94d60b3b85e025d4607da7ff392a7c43b338
[ "Apache-2.0" ]
permissive
marcosflobo/opentelemetry-python
dbb26b04dbbc813696dbc3f8b3db4543af8cf68c
81d80aab5d4fd23d0d75b223d482d491ac86f006
refs/heads/main
2023-05-04T21:51:24.754989
2021-05-06T01:51:26
2021-05-06T01:51:26
365,263,246
1
0
Apache-2.0
2021-05-07T14:40:16
2021-05-07T14:40:15
null
UTF-8
Python
false
false
11,824
py
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest import mock import grpc from google.protobuf.timestamp_pb2 import Timestamp from opencensus.proto.trace.v1 import trace_pb2 import opentelemetry.exporter.opencensus.util as utils from opentelemetry import trace as trace_api from opentelemetry.exporter.opencensus.trace_exporter import ( OpenCensusSpanExporter, translate_to_collector, ) from opentelemetry.sdk import trace from opentelemetry.sdk.resources import SERVICE_NAME, Resource from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import SpanExportResult from opentelemetry.trace import TraceFlags # pylint: disable=no-member class TestCollectorSpanExporter(unittest.TestCase): def test_constructor(self): mock_get_node = mock.Mock() patch = mock.patch( "opentelemetry.exporter.opencensus.util.get_node", side_effect=mock_get_node, ) trace_api.set_tracer_provider( TracerProvider( resource=Resource.create({SERVICE_NAME: "testServiceName"}) ) ) host_name = "testHostName" client = grpc.insecure_channel("") endpoint = "testEndpoint" with patch: exporter = OpenCensusSpanExporter( host_name=host_name, endpoint=endpoint, client=client, ) self.assertIs(exporter.client, client) self.assertEqual(exporter.endpoint, endpoint) mock_get_node.assert_called_with("testServiceName", host_name) def test_get_collector_span_kind(self): result = utils.get_collector_span_kind(trace_api.SpanKind.SERVER) self.assertIs(result, trace_pb2.Span.SpanKind.SERVER) result = utils.get_collector_span_kind(trace_api.SpanKind.CLIENT) self.assertIs(result, trace_pb2.Span.SpanKind.CLIENT) result = utils.get_collector_span_kind(trace_api.SpanKind.CONSUMER) self.assertIs(result, trace_pb2.Span.SpanKind.SPAN_KIND_UNSPECIFIED) result = utils.get_collector_span_kind(trace_api.SpanKind.PRODUCER) self.assertIs(result, trace_pb2.Span.SpanKind.SPAN_KIND_UNSPECIFIED) result = utils.get_collector_span_kind(trace_api.SpanKind.INTERNAL) self.assertIs(result, trace_pb2.Span.SpanKind.SPAN_KIND_UNSPECIFIED) def test_proto_timestamp_from_time_ns(self): result = utils.proto_timestamp_from_time_ns(12345) self.assertIsInstance(result, Timestamp) self.assertEqual(result.nanos, 12345) # pylint: disable=too-many-locals # pylint: disable=too-many-statements def test_translate_to_collector(self): trace_id = 0x6E0C63257DE34C926F9EFCD03927272E span_id = 0x34BF92DEEFC58C92 parent_id = 0x1111111111111111 base_time = 683647322 * 10 ** 9 # in ns start_times = ( base_time, base_time + 150 * 10 ** 6, base_time + 300 * 10 ** 6, ) durations = (50 * 10 ** 6, 100 * 10 ** 6, 200 * 10 ** 6) end_times = ( start_times[0] + durations[0], start_times[1] + durations[1], start_times[2] + durations[2], ) span_context = trace_api.SpanContext( trace_id, span_id, is_remote=False, trace_flags=TraceFlags(TraceFlags.SAMPLED), trace_state=trace_api.TraceState([("testkey", "testvalue")]), ) parent_span_context = trace_api.SpanContext( trace_id, parent_id, is_remote=False ) other_context = trace_api.SpanContext( trace_id, span_id, is_remote=False ) event_attributes = { "annotation_bool": True, "annotation_string": "annotation_test", "key_float": 0.3, } event_timestamp = base_time + 50 * 10 ** 6 event = trace.Event( name="event0", timestamp=event_timestamp, attributes=event_attributes, ) link_attributes = {"key_bool": True} link_1 = trace_api.Link( context=other_context, attributes=link_attributes ) link_2 = trace_api.Link( context=parent_span_context, attributes=link_attributes ) span_1 = trace._Span( name="test1", context=span_context, parent=parent_span_context, events=(event,), links=(link_1,), kind=trace_api.SpanKind.CLIENT, ) span_2 = trace._Span( name="test2", context=parent_span_context, parent=None, kind=trace_api.SpanKind.SERVER, ) span_3 = trace._Span( name="test3", context=other_context, links=(link_2,), parent=span_2.get_span_context(), ) otel_spans = [span_1, span_2, span_3] otel_spans[0].start(start_time=start_times[0]) otel_spans[0].set_attribute("key_bool", False) otel_spans[0].set_attribute("key_string", "hello_world") otel_spans[0].set_attribute("key_float", 111.22) otel_spans[0].set_attribute("key_int", 333) otel_spans[0].set_status(trace_api.Status(trace_api.StatusCode.OK)) otel_spans[0].end(end_time=end_times[0]) otel_spans[1].start(start_time=start_times[1]) otel_spans[1].set_status( trace_api.Status( trace_api.StatusCode.ERROR, {"test", "val"}, ) ) otel_spans[1].end(end_time=end_times[1]) otel_spans[2].start(start_time=start_times[2]) otel_spans[2].end(end_time=end_times[2]) output_spans = translate_to_collector(otel_spans) self.assertEqual(len(output_spans), 3) self.assertEqual( output_spans[0].trace_id, b"n\x0cc%}\xe3L\x92o\x9e\xfc\xd09''." ) self.assertEqual( output_spans[0].span_id, b"4\xbf\x92\xde\xef\xc5\x8c\x92" ) self.assertEqual( output_spans[0].name, trace_pb2.TruncatableString(value="test1") ) self.assertEqual( output_spans[1].name, trace_pb2.TruncatableString(value="test2") ) self.assertEqual( output_spans[2].name, trace_pb2.TruncatableString(value="test3") ) self.assertEqual( output_spans[0].start_time.seconds, int(start_times[0] / 1000000000), ) self.assertEqual( output_spans[0].end_time.seconds, int(end_times[0] / 1000000000) ) self.assertEqual(output_spans[0].kind, trace_api.SpanKind.CLIENT.value) self.assertEqual(output_spans[1].kind, trace_api.SpanKind.SERVER.value) self.assertEqual( output_spans[0].parent_span_id, b"\x11\x11\x11\x11\x11\x11\x11\x11" ) self.assertEqual( output_spans[2].parent_span_id, b"\x11\x11\x11\x11\x11\x11\x11\x11" ) self.assertEqual( output_spans[0].status.code, trace_api.StatusCode.OK.value, ) self.assertEqual(len(output_spans[0].tracestate.entries), 1) self.assertEqual(output_spans[0].tracestate.entries[0].key, "testkey") self.assertEqual( output_spans[0].tracestate.entries[0].value, "testvalue" ) self.assertEqual( output_spans[0].attributes.attribute_map["key_bool"].bool_value, False, ) self.assertEqual( output_spans[0] .attributes.attribute_map["key_string"] .string_value.value, "hello_world", ) self.assertEqual( output_spans[0].attributes.attribute_map["key_float"].double_value, 111.22, ) self.assertEqual( output_spans[0].attributes.attribute_map["key_int"].int_value, 333 ) self.assertEqual( output_spans[0].time_events.time_event[0].time.seconds, 683647322 ) self.assertEqual( output_spans[0] .time_events.time_event[0] .annotation.description.value, "event0", ) self.assertEqual( output_spans[0] .time_events.time_event[0] .annotation.attributes.attribute_map["annotation_bool"] .bool_value, True, ) self.assertEqual( output_spans[0] .time_events.time_event[0] .annotation.attributes.attribute_map["annotation_string"] .string_value.value, "annotation_test", ) self.assertEqual( output_spans[0] .time_events.time_event[0] .annotation.attributes.attribute_map["key_float"] .double_value, 0.3, ) self.assertEqual( output_spans[0].links.link[0].trace_id, b"n\x0cc%}\xe3L\x92o\x9e\xfc\xd09''.", ) self.assertEqual( output_spans[0].links.link[0].span_id, b"4\xbf\x92\xde\xef\xc5\x8c\x92", ) self.assertEqual( output_spans[0].links.link[0].type, trace_pb2.Span.Link.Type.TYPE_UNSPECIFIED, ) self.assertEqual( output_spans[1].status.code, trace_api.StatusCode.ERROR.value, ) self.assertEqual( output_spans[2].links.link[0].type, trace_pb2.Span.Link.Type.PARENT_LINKED_SPAN, ) self.assertEqual( output_spans[0] .links.link[0] .attributes.attribute_map["key_bool"] .bool_value, True, ) def test_export(self): mock_client = mock.MagicMock() mock_export = mock.MagicMock() mock_client.Export = mock_export host_name = "testHostName" collector_exporter = OpenCensusSpanExporter( client=mock_client, host_name=host_name ) trace_id = 0x6E0C63257DE34C926F9EFCD03927272E span_id = 0x34BF92DEEFC58C92 span_context = trace_api.SpanContext( trace_id, span_id, is_remote=False, trace_flags=TraceFlags(TraceFlags.SAMPLED), ) otel_spans = [ trace._Span( name="test1", context=span_context, kind=trace_api.SpanKind.CLIENT, ) ] result_status = collector_exporter.export(otel_spans) self.assertEqual(SpanExportResult.SUCCESS, result_status) # pylint: disable=unsubscriptable-object export_arg = mock_export.call_args[0] service_request = next(export_arg[0]) output_spans = getattr(service_request, "spans") output_node = getattr(service_request, "node") self.assertEqual(len(output_spans), 1) self.assertIsNotNone(getattr(output_node, "library_info")) self.assertIsNotNone(getattr(output_node, "service_info")) output_identifier = getattr(output_node, "identifier") self.assertEqual( getattr(output_identifier, "host_name"), "testHostName" )
[ "noreply@github.com" ]
marcosflobo.noreply@github.com
bcaf5aa98c8edf969dc67d07dbc2b241654d3d1d
fb7f04ffbdcdf4f5aa7c0e6ccf83f7671ef10770
/server.py
cadfd74d1f7a4b805332831f5238f54f81f48b2d
[]
no_license
Bthelisma/LandingPage
8ce348ece186c57e98d00cb5fdde8149587accae
87fdf0bed1ad0e7a978095c47d9ba3ea860b74b7
refs/heads/master
2020-03-22T18:59:26.266574
2018-07-10T23:14:03
2018-07-10T23:14:03
140,496,511
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
from flask import Flask, render_template app = Flask(__name__) @app.route('/') def index(): return render_template("index.html") @app.route('/ninjas') def ninjas(): return render_template("ninjas.html") @app.route('/dojos') def dojos(): return render_template("dojos.html") app.run(debug=True)
[ "contactjerseysure@gmail.com" ]
contactjerseysure@gmail.com
1af07f337196fda10e15701549e6243804b7e233
9467b65606bdeb2ff1417267728f95aac96e2bd9
/p24.py
ab13db0c38f7d99139ac1511ae52bfb7916bcb43
[]
no_license
prince3453/python
a7d1e46f0669f50ac4ca74aa11a393a3f69c9471
ca31d46dd885b619e4d7cefbf83b813684afad93
refs/heads/master
2020-12-06T13:31:13.314451
2020-05-16T05:53:00
2020-05-16T05:53:00
232,474,854
0
0
null
null
null
null
UTF-8
Python
false
false
901
py
class Bank: def __init__(self, balance): self.balance = balance self.methods = [self.printBalance,self.deposite,self.withdraw] def printBalance(self): print("Current Balance:",self.balance) def inputAmount(self): return float(input("Enter Amount:")) def deposite(self): amount = self.inputAmount() self.balance += amount self.printBalance() def withdraw(self): amount = self.inputAmount() if self.balance - amount <= 500: print("The Account Does Not Has Sufficient Balance.") else: self.balance -= amount self.printBalance() var = Bank(10000) while True: choice = int(input("select \n1. for checking balance.\n2. for deposite.\n3. for withdrawal.\n4. for exit.")) if choice == 4: break else: var.methods[choice-1]()
[ "noreply@github.com" ]
prince3453.noreply@github.com
68e6812af340c1592f989fbc771b1033a152cf91
582660ae9d3c21010042bd6262e421a2a6e94e61
/python/introduction/python_if-else/python_if_else.py
a8c09703dd210c9a51a596580200c33614db93c6
[]
no_license
tim-mccabe/hacker-rank
5e12bcd9baabb94c98bca8ef906063092279f4a2
61480d2f7b4d567ac48d526417afd7dbc5a2329e
refs/heads/master
2023-01-30T11:57:23.041756
2020-12-10T20:50:52
2020-12-10T20:50:52
320,064,591
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
#!/bin/python3 import math import os import random import re import sys if __name__ == '__main__': n = int(input().strip()) if int(n) % 2 == 1: print('Weird') if 2 <= int(n) <= 5 and int(n) % 2 == 0: print('Not Weird') if 6 <= int(n) <= 20 and int(n) % 2 == 0: print('Weird') if int(n) > 20 and int(n) % 2 == 0: print('Not Weird')
[ "timmccabe44@gmail.com" ]
timmccabe44@gmail.com
79dbeaf0b944d391662e5119f73dae9367fe504f
bd26284c804ded76f21d25b9c7a355304428e4d7
/2/2-4. Cartpole.py
e5c1e31c1bf0433c30db2eb054cf87b7c840057f
[ "Apache-2.0" ]
permissive
Wonjuseo/Project101
0c93171bbd6ab86dfbc32f474e12e7b7229db4da
8c49601e34f56035acd198a09428fa71f6606ca7
refs/heads/master
2021-01-19T23:25:40.658736
2018-07-02T13:45:03
2018-07-02T13:45:03
88,979,764
8
1
null
null
null
null
UTF-8
Python
false
false
633
py
# Cart Pole example import gym # Environment env = gym.make('CartPole-v0') env.reset() # Parameters random_episodes = 0 reward_sum = 0 while random_episodes < 10: # Rendering env.render() # Get action action = env.action_space.sample() # Update state, reward, done observation, reward, done, _ = env.step(action) print(observation,reward,done) # Add reward reward_sum += reward # if it fails, the results were shown if done: random_episodes += 1 print("Reward for this episode was:", reward_sum) reward_sum = 0 env.reset()
[ "noreply@github.com" ]
Wonjuseo.noreply@github.com
9800c7757cdf7213dc56c1006e976f8cfdd3b3f5
19e84b3ea7944811b6fd113309b8a7c7b5ae33ba
/oec/db_data/views.py
cf69e179543b30faae5c5f12887affeaeba22e82
[]
no_license
fxcebx/oec
cf9c4cfaa3b4d92d4cbd3539ff94b7f910209167
cbba5d7513f63cdb5dc761146db784f2a9879ea7
refs/heads/master
2020-12-06T20:41:17.105920
2015-10-10T03:01:56
2015-10-10T03:01:56
44,028,188
0
0
null
2015-10-25T22:06:13
2015-10-10T21:01:46
CSS
UTF-8
Python
false
false
5,007
py
from flask import Blueprint, request, jsonify, make_response, g from oec import db from oec.utils import make_query from oec.db_attr.models import Yo as Attr_yo from oec.db_data import hs92_models from oec.db_data import hs96_models from oec.db_data import hs02_models from oec.db_data import hs07_models from oec.db_data import sitc_models from oec.decorators import crossdomain mod = Blueprint('data', __name__, url_prefix='/<any("sitc","hs","hs92","hs96","hs02","hs07"):classification>') @mod.url_value_preprocessor def get_product_classification_models(endpoint, values): g.locale="en" classification = values.pop('classification') g.prod_classification = classification if classification == "hs" or classification == "hs92": g.prod_models = hs92_models elif classification == "hs96": g.prod_models = hs96_models elif classification == "hs02": g.prod_models = hs02_models elif classification == "hs07": g.prod_models = hs07_models elif classification == "sitc": g.prod_models = sitc_models g.output_depth = request.args.get("output_depth") ############################################################ # ---------------------------------------------------------- # 2 variable views # ############################################################ @mod.route('/<trade_flow>/all/<origin_id>/all/all/') @mod.route('/<trade_flow>/<year>/<origin_id>/all/all/') @mod.route('/<trade_flow>/<year>/show/all/all/') @crossdomain(origin='*') def yo(**kwargs): q = db.session.query(Attr_yo, getattr(g.prod_models, "Yo")) \ .filter(Attr_yo.origin_id == getattr(g.prod_models, "Yo").origin_id) \ .filter(Attr_yo.year == getattr(g.prod_models, "Yo").year) return make_response(make_query(q, request.args, g.locale, getattr(g.prod_models, "Yo"), **kwargs)) @mod.route('/<trade_flow>/all/all/<dest_id>/all/') @mod.route('/<trade_flow>/<year>/all/<dest_id>/all/') @mod.route('/<trade_flow>/<year>/all/show/all/') @crossdomain(origin='*') def yd(**kwargs): return make_response(make_query(getattr(g.prod_models, "Yd"), request.args, g.locale, **kwargs)) @mod.route('/<trade_flow>/all/all/all/<prod_id>/') @mod.route('/<trade_flow>/<year>/all/all/<prod_id>/') @mod.route('/<trade_flow>/<year>/all/all/show/') @crossdomain(origin='*') def yp(**kwargs): return make_response(make_query(getattr(g.prod_models, "Yp"), \ request.args, g.locale, classification=g.prod_classification, \ output_depth=g.output_depth, **kwargs)) ############################################################ # ---------------------------------------------------------- # 3 variable views # ############################################################ @mod.route('/<trade_flow>/all/<origin_id>/show/all/') @mod.route('/<trade_flow>/<year>/<origin_id>/show/all/') @crossdomain(origin='*') def yod(**kwargs): return make_response(make_query(getattr(g.prod_models, "Yod"), request.args, g.locale, **kwargs)) @mod.route('/<trade_flow>/all/<origin_id>/all/show/') @mod.route('/<trade_flow>/<year>/<origin_id>/all/show/') @crossdomain(origin='*') def yop(**kwargs): return make_response(make_query(getattr(g.prod_models, "Yop"), \ request.args, g.locale, classification=g.prod_classification, \ output_depth=g.output_depth, **kwargs)) @mod.route('/<trade_flow>/all/show/all/<prod_id>/') @mod.route('/<trade_flow>/<year>/show/all/<prod_id>/') @crossdomain(origin='*') def yop_dest(**kwargs): return make_response(make_query(getattr(g.prod_models, "Yop"), \ request.args, g.locale, classification=g.prod_classification, **kwargs)) @mod.route('/<trade_flow>/all/all/<dest_id>/show/') @mod.route('/<trade_flow>/<year>/all/<dest_id>/show/') @crossdomain(origin='*') def ydp(**kwargs): return make_response(make_query(getattr(g.prod_models, "Ydp"), \ request.args, g.locale, classification=g.prod_classification, \ output_depth=g.output_depth, **kwargs)) ############################################################ # ---------------------------------------------------------- # 4 variable views # ############################################################ @mod.route('/<trade_flow>/all/<origin_id>/<dest_id>/all/') @mod.route('/<trade_flow>/<year>/<origin_id>/<dest_id>/all/') @mod.route('/<trade_flow>/all/<origin_id>/<dest_id>/show/') @mod.route('/<trade_flow>/<year>/<origin_id>/<dest_id>/show/') @crossdomain(origin='*') def yodp(**kwargs): return make_response(make_query(getattr(g.prod_models, "Yodp"), \ request.args, g.locale, classification=g.prod_classification, \ output_depth=g.output_depth, **kwargs)) @mod.route('/<trade_flow>/all/<origin_id>/show/<prod_id>/') @mod.route('/<trade_flow>/<year>/<origin_id>/show/<prod_id>/') @crossdomain(origin='*') def yodp_dest(**kwargs): return make_response(make_query(getattr(g.prod_models, "Yodp"), \ request.args, g.locale, classification=g.prod_classification, **kwargs))
[ "alexandersimoes@gmail.com" ]
alexandersimoes@gmail.com
49ef89ed9847f6370bab12ee14d5b37c98c4382f
8cf211cabe8c5169b2c9c3c6b38f69ac6c93b93e
/flask_bootcamp/section_6/venv/lib/python3.6/os.py
ac0bdb84664fdfc380e6a61aeee8932f5167c92b
[]
no_license
bopopescu/Python_Personal_Projects
020256cb6835438b1b776eacb1a39d4cb5bc2efc
025145130da5ac846b8aa14764783739ff68f64c
refs/heads/master
2022-11-21T04:47:17.253558
2018-10-25T22:12:07
2018-10-25T22:12:07
281,146,690
0
0
null
2020-07-20T14:57:05
2020-07-20T14:57:04
null
UTF-8
Python
false
false
44
py
/home/vinicius/anaconda3/lib/python3.6/os.py
[ "vinicius.yosiura@live.com" ]
vinicius.yosiura@live.com
a3832a608ada34da7f6cc1b6ee7f96711396596b
00b2e5b0e600dccf0857e00b5710005062df92e3
/Fatima/fatima_raman.py
3abb8f47a90baebde4c4833d5c9befe4a28ee767
[]
no_license
NMI-BMNT/auswertung
bf933046df3db729a3769fc50ce8c047d8a86177
b9017ac6745764fc4ddf63c9d982a21e30777885
refs/heads/master
2022-01-10T12:41:10.416401
2018-05-23T11:48:55
2018-05-23T11:48:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,036
py
import os import numpy as np import scipy.ndimage as ndimage import scipy.ndimage.filters as filters import scipy.optimize as opt from scipy.optimize import curve_fit, basinhopping import scipy.sparse as sparse from scipy.special import * from plotsettings import * import matplotlib.pyplot as plt from matplotlib.patches import Polygon import seaborn as sns from skimage.feature import peak_local_max from skimage.morphology import watershed from skimage.filters import threshold_otsu import re import scipy.signal as signal import peakutils as pu def lorentz(x, amplitude, x0, sigma): g = (amplitude*2/(np.pi*sigma))/(1+4*np.square((x-x0)/sigma)) return g.ravel() def gauss(x, amplitude, x0, sigma): g = amplitude/sigma * np.sqrt(4*np.log(2)/np.pi)*np.exp(-4*np.log(2)*np.square((x-x0)/sigma)) return g.ravel() # https://www.webpages.uidaho.edu/brauns/vibspect1.pdf def asymvoigt(x, amplitude, x0, sigma, a , f): sigma = 2 * sigma/(1 + np.exp(a*(x-x0)) ) g = f*lorentz(x,amplitude,x0,sigma)+(1-f)*gauss(x,amplitude,x0,sigma) return g.ravel() def fit_fun(x, amp, x0, sigma,a,f): return asymvoigt(x, amp, x0, sigma,a,f) path = '/home/sei/Raman/Fatima3/' savedir = path + 'plots/' peak_pos = [1085,1590] search_width = 100 # cm^-1 try: os.mkdir(savedir) except: pass files = [] for file in os.listdir(path): if re.search(r"\.(txt)$", file) is not None: files.append(file) print(files) #file = files[0] k_max = np.zeros((len(files),len(peak_pos))) c_max = np.zeros((len(files),len(peak_pos))) labels = np.array([]) for i,file in enumerate(files): print(file) k, counts = np.loadtxt(path + file, unpack=True) counts = signal.savgol_filter(counts, 31, 1, mode='interp') base = pu.baseline(counts, 11, max_it=10000, tol=0.00001) counts -= base #newfig(0.9) plt.plot(k, counts, linewidth=1) # plt.plot(k, bl, linewidth=1) # plt.plot(wl[mask], filtered[mask], color="black", linewidth=0.6) plt.ylabel(r'$I_{\nu}\, /\, counts$') plt.xlabel(r'$wavenumber\, /\, cm^{-1}$') # plt.xlim((minwl, maxwl)) # plt.plot(wl, counts) plt.tight_layout() #plt.show() plt.savefig(savedir + file[:-4] + ".pdf", dpi=300) plt.close() for j,peak in enumerate(peak_pos): mask = (k <= peak + search_width) & (k >= peak - search_width) c1 = counts[mask] k1 = k[mask] max_ind = np.argmax(c1) k_max[i,j] = k1[max_ind] c_max[i,j] = c1[max_ind] labels = np.append(labels,file[:-6]) print(c_max) sort = np.argsort(labels) labels = labels[sort] k_max = k_max[sort,:] c_max = c_max[sort,:] print(labels) label = np.unique(labels) print(label) for l in label: mask = labels == l plt.scatter(k_max[mask], c_max[mask]) plt.savefig(path + "scatter.pdf", dpi=300) plt.close() mean = np.zeros((len(label),len(peak_pos))) err = np.zeros((len(label),len(peak_pos))) for i,l in enumerate(label): mask = labels == l for j in range(len(peak_pos)): mean[i,j] = np.mean(c_max[mask,j]) err[i,j] = np.std(c_max[mask,j]) print(mean) print(mean[:,0].ravel()) print(np.arange(0,mean.shape[0],1)) for i in range(mean.shape[1]): plt.bar(np.arange(0,mean.shape[0],1)*mean.shape[1]+(i+1),mean[:,i].ravel(),yerr=err[:,i].ravel()) plt.xticks((np.arange(0,mean.shape[0],1)*mean.shape[1]+(mean.shape[1]+1)/2), label) plt.savefig(path + "bar.pdf", dpi=300) plt.close() print('-> Writing measured values to file') with open(path + "raman.csv", 'w') as f: f.write("label,") for j in range(mean.shape[1]): f.write("mean"+str(peak_pos[j])+",err"+str(peak_pos[j])+",") f.write("\r\n") for i in range(len(label)): f.write( label[i] + ",") for j in range(mean.shape[1]): f.write( str(mean[i,j])+ "," + str(err[i,j])+"," ) f.write("\r\n") mean = np.zeros((len(label),len(counts))) err = np.zeros((len(label),len(counts))) for i, l in enumerate(label): buf = [] for j,file in enumerate(files): if file[:-6] == l: k, counts = np.loadtxt(path + file, unpack=True) #counts = signal.savgol_filter(counts, 31, 1, mode='interp') #base = pu.baseline(counts, 11, max_it=10000, tol=0.00001) #counts -= base buf.append(counts) buf = np.array(buf) print(buf.shape) mean[i, :] = np.mean(buf,axis=0) err[i, :] = np.std(buf,axis=0) fig, ax = newfig(0.9) colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] legend = ["A: 30 min","B: 30 min","C: 90 min","D: 90 min"] print(label) print(legend) for i, l in enumerate(label): poly = np.array((k,mean[i,:]+err[i,:]+1000*i)) poly = np.hstack((poly,np.fliplr(np.array((k, mean[i,:] - err[i,:]+1000*i))))) poly = poly.T ax.add_patch(Polygon(poly, closed=True,fill=True,alpha = 0.3,facecolor=colors[i])) #plt.plot(wl, mean_spec, linewidth=0.8) plt.plot(k,mean[i,:]+1000*i, linewidth=0.8) plt.ylabel(r'$I_{\nu}\, /\, counts$') plt.xlabel(r'$\Delta\widetilde{\nu}\, /\, cm^{-1}$') plt.legend(legend) plt.tight_layout() plt.savefig(path + "overview.pdf", dpi=300) plt.close() # width = 100 # max_ind = np.argmax(counts) # indices = np.arange(0, len(k), 1) # mask = (indices <= max_ind + width) & (indices >= max_ind - width) # # inds = np.arange(max_ind-width,max_ind+width,1) # k1 = k[mask] # counts1 = counts[mask] # def err_fun(p): # fit = fit_fun(k1, *p) # diff = np.abs(counts1 - fit) # return np.sum(diff) # # #def fit_fun(x, amp, x0, sigma,a,f,b,c): # b = 0# ( np.mean(counts1[20:])-np.mean(counts1[:-20]) )/( np.mean(k1[20:])-np.mean(k1[:-20]) ) # c = 0#np.mean(k1[20:]) # start = [counts[max_ind]*3,k[max_ind],150,0.01,0.1] # upper = [counts[max_ind]*10, k[max_ind]+width, 500, 1,1] # lower = [ 0, k[max_ind]-width, 10, 0,0] # bnds = [] # for i in range(len(upper)): # bnds.append((lower[i], upper[i])) # # #minimizer_kwargs = {"method": "SLSQP","bounds": bnds,"tol":1e-10} # #res = basinhopping(err_fun, start, minimizer_kwargs=minimizer_kwargs, niter=1000,disp=False) # res = opt.minimize(err_fun, start, method='SLSQP', options={'disp': True, 'maxiter': 10000},tol=1e-10) # #res = opt.minimize(err_fun, start, method='L-BFGS-B', options={'disp': True, 'maxiter': 5000}) # #res = opt.minimize(err_fun, start, method='Nelder-Mead', options={'disp': True, 'maxiter': 5000}) # # popt = res.x # # print(popt) # plt.plot(k1, counts1, linewidth=1) # plt.plot(k1, fit_fun(k1,popt[0],popt[1],popt[2],popt[3],popt[4]), linewidth=1) # #plt.plot(k1, popt[5]*k1+popt[6]) # plt.ylabel(r'$I_{\nu}\, /\, counts$') # plt.xlabel(r'$wavenumber\, /\, cm^{-1}$') # plt.savefig(savedir + file[:-4] + "fit.pdf", dpi=300) # #plt.show() # plt.close() # # fit = fit_fun(k1,popt[0],popt[1],popt[2],popt[3],popt[4]) # print(np.max(fit))
[ "Simon.Dickreuter@uni-tuebingen.de" ]
Simon.Dickreuter@uni-tuebingen.de
9ae24c0c1c39be6cfa372b401d1b1ebdd5bd2035
d15be7017a8d28ad351d2872fdf36b8638a60abd
/Solutions/week01/word_counter.py
a35bc79b42b58ad6bf3ccc3b99120b527f4f46df
[]
no_license
shadydealer/Python-101
60ebdd098d38de45bede35905a378e8311e6891a
9ec2dccd61f54f4ff8f86fe6dd26cd7dd06f570d
refs/heads/master
2021-04-15T11:42:57.712723
2018-06-04T10:32:30
2018-06-04T10:32:30
126,197,141
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
word = input() rows, cols = map(int, input().split()) def get_input(): """get_input() -> 2D array""" matrix = [] for i in range(rows): matrix.append(input().split()) # for subset in matrix: # print(subset) return matrix move_x =[-1,0,1] move_y =[-1,0,1] def is_valid_index(x,y): """is_valid_index(int, int) -> bool""" if x >= 0 and y >= 0 and x < cols and y < rows: return True return False def count_occurance(matrix, x,y, str_ind): """count_occurance(2D array, string) -> unsigned int""" for y in range(matrix): for x in range(matrix[i]): #matrix_char for k in range(word): #word_char if matrix[y][x] == word[k]: y+=move_y[j] x+=move_x[i] else: y-=move_y[j]*k x-=move_x[i]*k matrix = get_input()
[ "shady" ]
shady
e62a576701748974d99d413ad69f0fa9b0b33e9b
21c77c2ff4d5fbb982943a22abd46a18a804621c
/flow_control/your_name.py
68fec85da56a05006fdeaef5eb410d09972eb812
[]
no_license
foleymd/boring-stuff
56592f576da19238de5c742b78c34d86688b6319
d81f10f801a512c38a713344a2fe1d8b5b7e5a09
refs/heads/main
2023-01-05T19:21:31.248420
2020-10-22T20:24:10
2020-10-22T20:24:10
302,201,760
0
0
null
null
null
null
UTF-8
Python
false
false
294
py
# break example name = '' while True: print('Please type your name.') name = input() if name == 'your name': break print('Thank you!') # continue example spam = 0 while spam < 5: spam = spam + 1 if spam == 3: continue print('spam is ' + str(spam))
[ "foleymd@gmail.com" ]
foleymd@gmail.com
8de31727528745859574b0a71d4d7f4265c46740
2718b6f68a717b24cd6238a20d4116b3dea3201b
/BlogTemplate/mysite_env/mysite/apps/blog/views.py
39b584eea388bcf248d6a6d595bae4840b4bf60b
[]
no_license
tminlun/BlogTemplate
e94654e01e170f27c97c197c898c102518ad13ab
d475587fdd9e111961bbfa56666255d38cfdc056
refs/heads/master
2022-12-11T00:51:53.019391
2018-12-05T14:54:04
2018-12-05T14:54:04
138,825,320
0
0
null
2022-12-08T02:25:29
2018-06-27T03:30:20
Python
UTF-8
Python
false
false
4,519
py
from django.shortcuts import render,get_object_or_404 from django.core.paginator import Paginator from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.db.models.aggregates import Count from read_statistics.utils import read_statistics_once_read from comment.models import Comment from .models import Blog,BlogType #获取博客列表共同的数据,设置参数blog_all_list全部博客,因为每个方法都有不同的获取方法 def get_blog_list_common_data(request, blog_all_list): paginator = Paginator(blog_all_list, settings.EACH_PAGE_BLOG_NUMBER) # 每一页10篇博客 page_num = request.GET.get('page', 1) # 获取页码参数,get请求 page_of_blogs = paginator.get_page(page_num) # 获取当前页码 current_page_num = page_of_blogs.number # 获取当前页码 # current_page_num - 2 , 1 只是拿1和currentr_page_num - 2比,range范围还是 # current_page_num - 2, currentr_page_num page_range = list(range(max(current_page_num - 2, 1), current_page_num)) + \ list(range(current_page_num, min(current_page_num + 2, paginator.num_pages) + 1)) # 添加省略 if page_range[0] - 1 >= 2: page_range.insert(0, '...') # 如果总页 - 最后一页 大于等于2 if paginator.num_pages - page_range[-1] >= 2: page_range.append('...') # 添加第一页和最后一页 if page_range[0] != 1: page_range.insert(0, 1) # 将第一个页码变成1(insert在第一个插入) if page_range[-1] != paginator.num_pages: page_range.append(paginator.num_pages) # 添加总页码到最后显示页码(append在尾部添加) blog_dates = Blog.objects.dates('created_time','month',order="DESC") blog_dates_dict = {} for blog_date in blog_dates: date_count = Blog.objects.filter(created_time__year=blog_date.year,created_time__month=blog_date.month).count() blog_dates_dict[blog_date] = date_count context = {} context['page_of_blogs'] = page_of_blogs # 当前页码 context['page_range'] = page_range # 返回所有页码给模板 context['blogs'] = page_of_blogs.object_list # 获取所有博客 # annotate自动返回BlogType的所有数据 context['blog_types']=BlogType.objects.annotate(type_count = Count('blog')).filter(type_count__gt=0) # 获取到全部的年和月 context['blog_dates'] = blog_dates_dict # 这里是一个坑,记住把日期和数量给对象 return context #返回给模板 render(request,'?.html',context) def blog_list(request): blog_all_list = Blog.objects.all()#全部的博客列表 context = get_blog_list_common_data(request,blog_all_list) #传递给context return render(request, 'blog/blog_list.html', context) def blogs_with_type(request,blog_with_type_pk): blog_type = get_object_or_404(BlogType,pk = blog_with_type_pk)#获取分类 blog_all_list = Blog.objects.filter(blog_type=blog_type)#获取所有筛选类型博客 context = get_blog_list_common_data(request, blog_all_list) context['blog_type'] = blog_type # 分类名 return render(request, 'blog/blogs_with_type.html', context) def blogs_with_date(request,year,month): #获取到对应年和月的博客 blog_all_list = Blog.objects.filter(created_time__year=year, created_time__month=month) context = get_blog_list_common_data(request, blog_all_list) context['blog_with_date'] = "%s年%s月" %(year,month) #当前的年月 return render(request, 'blog/blogs_with_date.html', context) #博客细节 def blog_detail(request,blog_pk): context = {} blog = get_object_or_404(Blog, pk = blog_pk) #判断浏览器是否有cookie记录,有不加数,没有加数;get获取字典的key read_cookie_key = read_statistics_once_read(request, blog) blog_content_type = ContentType.objects.get_for_model(blog) comments = Comment.objects.filter(content_type=blog_content_type,object_id=blog.pk) context['blog'] = blog #前一篇博客,大于:__gt= context['previous_blog'] = Blog.objects.filter(created_time__gt=blog.created_time).last() #后一篇博客,小于:__lt= context['next_blog'] = Blog.objects.filter(created_time__lt=blog.created_time).first() context['user'] = request.user context['comments'] = comments response=render(request, 'blog/blog_detail.html', context) response.set_cookie(read_cookie_key, 'ture') #坑,值 记得填写 return response
[ "1272443075@qq.com" ]
1272443075@qq.com
31c16a62d12f6538275dc374ce02c654b07ba690
582b93ca3747f7ec4ce8c00464c26698b0b8b229
/DevExa/settings.py
658b53ef61b015873d139dc62dd14ca2e8e29f93
[]
no_license
BeToOxX/Final
7615e0e37c4ca8858687f0293b5058dc75d79a9c
f4371207836b4f7cd856c7237ada3cd60a597bce
refs/heads/master
2023-08-23T18:06:00.585583
2021-10-07T06:01:50
2021-10-07T06:01:50
414,474,675
0
0
null
null
null
null
UTF-8
Python
false
false
3,325
py
""" Django settings for DevExa project. Generated by 'django-admin startproject' using Django 2.0.6. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=g8j_n6d=)gf_b*vn4hlt%!v5#njdwz_x_u80roi@51qcfze52' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'apps.web' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'DevExa.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['template'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'DevExa.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases import dj_database_url from decouple import config DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } """ DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } """ # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
[ "rubengza.98@gmail.com" ]
rubengza.98@gmail.com
ed3e3d70a1fd13a1e41fa4985818c02092340a95
413fb29b62fe9ba07362d614ba49e7200482216d
/fraud_detection/src/com/mr/data_analysis_python/sampleFraudData.py
4a77df03d96dbcfeca3f64da411e6f1ddb5ee5a5
[]
no_license
cash2one/fraud_detection
ff2cc0a151b16cd3151c584839a227a384716ca7
6097e47800394f8659c5d14ab6a6538b2af8d444
refs/heads/master
2021-01-19T04:46:32.710395
2016-07-09T11:58:05
2016-07-09T11:58:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
911
py
__author__ = 'TakiyaHideto' import sys import random class SampleFraudData: def __init__(self, input, output): self.input = input self.output = output self.sampleRatio = float(sys.argv[3])/float(sys.argv[4]) def __sample(self): with open(self.output, "w") as fileOut: with open(self.input, "r") as fileIn: for line in fileIn: if line.startswith("0"): if random.random() < self.sampleRatio: fileOut.write(line) elif line.startswith("1"): fileOut.write(line) def runMe(self): self.__sample() if __name__ == "__main__": if len(sys.argv) != 5: print "<inputFile> <outputSampledFile> <fraudDataQuant> <normalDataQuant>" exit(1) job = SampleFraudData(sys.argv[1], sys.argv[2]) job.runMe()
[ "TakiyaHideto@iekoumatoMacBook-Pro.local" ]
TakiyaHideto@iekoumatoMacBook-Pro.local
b391859b94fd32af4b40bd699c1b6acde8391faf
edb884e3f639261f36bbb8f444e2200bb879a9a2
/diagfi_compare_singlemonth.py
baa02ec94263fd6a9e083e4dbd41e800d3960a62
[]
no_license
draelsaid/MGCM-python
7df36a783829fadb1d89ec9e54f92470d54c0493
9ee1491f009bed5f092c21a9235d61e9612f32f0
refs/heads/master
2020-06-21T22:41:09.556055
2017-05-31T12:22:45
2017-05-31T12:22:45
74,768,319
0
0
null
null
null
null
UTF-8
Python
false
false
40,806
py
# Compares NetCDF data from the Mars GCM for Full Mars Year by combining monthly output of diagfi.nc files # Adam El-Said 08/2016 import matplotlib as mpl #mpl.use('Agg') # removes need for X-Server (graphics in linux). For qsub only. import numpy as np import pylab as py import matplotlib.colors as colors import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from mars_time import MarsTime from scipy.io import * from matplotlib import cm,ticker from plt_timeseries import * from matplotlib.ticker import FormatStrFormatter from MidPointNorm import * # Prints EVERYTHING inside a variable without holding back (intended for diagnostic) np.set_printoptions(threshold=np.inf) # Abbreviate sol_ls conversion function sol_Ls=MarsTime().sol_ls # Moving average def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n # Initialise dictionaries - due to data size Ls_m = {} psa, psb = {}, {} presa, presb = {}, {} tempa, tempb = {}, {} tsurfa, tsurfb = {}, {} ua, ub = {}, {} va, vb = {}, {} dustqa, dustqb = {}, {} dustNa, dustNb = {}, {} rhoa, rhob = {}, {} fluxsurflwa, fluxsurflwb = {}, {} fluxsurfswa, fluxsurfswb = {}, {} fluxtoplwa, fluxtoplwb = {}, {} fluxtopswa, fluxtopswb = {}, {} taua, taub = {}, {} rdusta, rdustb = {}, {} lw_htrta, lw_htrtb = {}, {} sw_htrta, sw_htrtb = {}, {} dqsseda, dqssedb = {}, {} dqsdeva, dqsdevb = {}, {} # Grab topography from surface.nc or mola32.nc file ml = netcdf.netcdf_file('/padata/mars/users/aes442/mgcm_data/surface.nc','r') mola = {} mola[0] = ml.variables['latitude'][:] mola[1] = ml.variables['longitude'][:] mola[2] = ml.variables['zMOL'][:] # Import data from Luca's TES dust files for comparison a = netcdf.netcdf_file('/padata/mars/users/aes442/mgcm_data/dust_MY28.nc','r') d_lat_s = a.variables['latitude'][:] d_lon_s = a.variables['longitude'][:] d_t = a.variables['Time'][:] d_d = a.variables['dustop'][:] d_lat = np.linspace(-90,90,d_lat_s.shape[0]) d_lon = np.linspace(-180,180,d_lon_s.shape[0]) # Number of months in comparison (always add 1 because of Python indexing) Months = 2 # No. of months amth = 1 # Actual month # This loop assigns the data in both directories to variables here. This is done for each month. The result is a dictionary of dictionaries. One dictionary containing a dictionary for every month. for i in xrange(1,Months): mgcm = "MGCM_v5-1" rundira = "a_ds8" rundirb = "a_ref4" month = ("m%s" % (amth)) # CHANGE filename = "diagfi.nc" a = netcdf.netcdf_file("/padata/alpha/users/aes442/RUNS/R-%s/%s/%s/%s" % (mgcm,rundira,month,filename),'r') b = netcdf.netcdf_file("/padata/alpha/users/aes442/RUNS/R-%s/%s/%s/%s" % (mgcm,rundirb,month,filename),'r') lat = a.variables['lat'][:] lon = a.variables['lon'][:] sigma = a.variables['sigma'][:] t_m = a.variables['time'][:] Ls_m[i] = a.variables['Ls'][:] psa[i] = a.variables['ps'][:] presa[i] = a.variables['pressure'][:] tempa[i] = a.variables['temp'][:] tsurfa[i] = a.variables['tsurf'][:] ua[i] = a.variables['u'][:] va[i] = a.variables['v'][:] dustqa[i] = a.variables['dustq'][:] dustNa[i] = a.variables['dustN'][:] rhoa[i] = a.variables['rho'][:] fluxsurflwa[i] = a.variables['fluxsurf_lw'][:] fluxsurfswa[i] = a.variables['fluxsurf_sw'][:] fluxtoplwa[i] = a.variables['fluxtop_lw'][:] fluxtopswa[i] = a.variables['fluxtop_sw'][:] taua[i] = a.variables['taudustvis'][:] rdusta[i] = a.variables['reffdust'][:] lw_htrta[i] = a.variables['lw_htrt'][:] sw_htrta[i] = a.variables['sw_htrt'][:] dqsseda[i] = a.variables['dqssed'][:] dqsdeva[i] = a.variables['dqsdev'][:] psb[i] = b.variables['ps'][:] presb[i] = b.variables['pressure'][:] tempb[i] = b.variables['temp'][:] tsurfb[i] = b.variables['tsurf'][:] ub[i] = b.variables['u'][:] vb[i] = b.variables['v'][:] dustqb[i] = b.variables['dustq'][:] dustNb[i] = b.variables['dustN'][:] rhob[i] = b.variables['rho'][:] fluxsurflwb[i] = b.variables['fluxsurf_lw'][:] fluxsurfswb[i] = b.variables['fluxsurf_sw'][:] fluxtoplwb[i] = b.variables['fluxtop_lw'][:] fluxtopswb[i] = b.variables['fluxtop_sw'][:] taub[i] = b.variables['taudustvis'][:] rdustb[i] = b.variables['reffdust'][:] lw_htrtb[i] = b.variables['lw_htrt'][:] sw_htrtb[i] = b.variables['sw_htrt'][:] dqssedb[i] = b.variables['dqssed'][:] dqsdevb[i] = b.variables['dqsdev'][:] # Calculate approximate HEIGHT from sigma (km) alt = np.zeros((sigma.shape[0])) for i in xrange(len(sigma)): alt[i] = -10.8*np.log(sigma[i]) print "Latitude: %i || Longitude: %i || Model levels: %i => Alt Min:%.3f | Alt Max:%.3f | Alt half: %.3f " % (lat.shape[0],lon.shape[0],sigma.shape[0],alt[0],alt[-1],alt[18]) alt_half=18 # 47.8km # Get time dimension length n = 0 for i in xrange(1,len(psa)+1,1): # len(psa) gives the number of months n = n + len(dustqa[i]) # len(dustqa[i]) gives the number of time steps in each month. print ("Total time steps: %i" % (n)) ## Ls vector Ls_s = (Months-1)*30 # Number of solar longitudes for time vector for comparison Ls = np.zeros((n)) # Method 2 grabs Ls's from model (has bugs, but can be ironed out) p=0 for i in xrange(1,len(Ls_m)+1,1): gg = Ls_m[i] for j in xrange(gg.shape[0]): Ls[p] = gg[j] p = p + 1 Ls = np.roll(Ls,5) Ls[-1] = np.ceil(Ls[-2]) Ls[:6] = np.linspace(np.floor(Ls[5]),Ls[5],6) print Ls[:8], Ls[-8:] ## Create all other variables, with altitude dimension removed ps_a, ps_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) temp_a, temp_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) tsurf_a, tsurf_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) u_a, u_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) v_a, v_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) dustq_a, dustq_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) dustN_a, dustN_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) rho_a, rho_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) fslwa, fslwb = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) fsswa, fsswb = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) ftlwa, ftlwb = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) ftswa, ftswb = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) tau_a, tau_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) rdust_a, rdust_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) lw_htrt_a, lw_htrt_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) sw_htrt_a, sw_htrt_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) pres_a, pres_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) dqssed_a, dqssed_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) dqsdev_a, dqsdev_b = np.zeros((n,lat.shape[0],lon.shape[0])), np.zeros((n,lat.shape[0],lon.shape[0])) # 3D Vars ps_a, ps_b = psa[1][:,:,:], psb[1][:,:,:] fslwa, fslwb = fluxsurflwa[1][:,:,:], fluxsurflwb[1][:,:,:] fsswa, fsswb = fluxsurfswa[1][:,:,:], fluxsurfswb[1][:,:,:] ftlwa, ftlwb = fluxtoplwa[1][:,:,:], fluxtoplwb[1][:,:,:] ftswa, ftswb = fluxtopswa[1][:,:,:], fluxtopswb[1][:,:,:] tau_a, tau_b = taua[1][:,:,:], taub[1][:,:,:] tsurf_a, tsurf_b = tsurfa[1][:,:,:], tsurfb[1][:,:,:] dqssed_a, dqssed_b = dqsseda[1][:,:,:], dqssedb[1][:,:,:] dqsdev_a, dqsdev_b = dqsdeva[1][:,:,:], dqsdevb[1][:,:,:] # 4D Vars temp_a, temp_b = tempa[1][:,1,:,:], tempb[1][:,1,:,:] u_a, u_b = ua[1][:,1,:,:], ub[1][:,1,:,:] v_a, v_b = va[1][:,1,:,:], vb[1][:,1,:,:] dustq_a, dustq_b = dustqa[1][:,1,:,:], dustqb[1][:,1,:,:] dustN_a, dustN_b = dustNa[1][:,1,:,:], dustNb[1][:,1,:,:] rho_a, rho_b = rhoa[1][:,1,:,:], rhob[1][:,1,:,:] rdust_a, rdust_b = rdusta[1][:,1,:,:], rdustb[1][:,1,:,:] lw_htrt_a, lw_htrt_b = lw_htrta[1][:,1,:,:], lw_htrtb[1][:,1,:,:] sw_htrt_a, sw_htrt_b = sw_htrta[1][:,1,:,:], sw_htrtb[1][:,1,:,:] pres_a, pres_b = presa[1][:,1,:,:], presb[1][:,1,:,:] # Longitudal averaging # Variables without longitude temp_aa, temp_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) tsurf_aa, tsurf_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) u_aa, u_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) dustq_aa, dustq_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) dustN_aa, dustN_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) rho_aa, rho_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) rdust_aa, rdust_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) lw_htrt_aa, lw_htrt_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) sw_htrt_aa, sw_htrt_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) pres_aa, pres_bb = np.zeros((n,sigma.shape[0],lat.shape[0])), np.zeros((n,sigma.shape[0],lat.shape[0])) # 4D Vars temp_aa, temp_bb = np.sum(tempa[1],axis=3)/tempa[1].shape[3], np.sum(tempb[1],axis=3)/tempb[1].shape[3] u_aa, u_bb = np.sum(ua[1],axis=3)/ua[1].shape[3], np.sum(ub[1],axis=3)/ub[1].shape[3] dustq_aa, dustq_bb = np.sum(dustqa[1],axis=3)/dustqa[1].shape[3], np.sum(dustqb[1],axis=3)/dustqb[1].shape[3] dustN_aa, dustN_bb = np.sum(dustNa[1],axis=3)/dustNa[1].shape[3], np.sum(dustNb[1],axis=3)/dustNb[1].shape[3] rho_aa, rho_bb = np.sum(rhoa[1],axis=3)/rhoa[1].shape[3], np.sum(rhob[1],axis=3)/rhob[1].shape[3] rdust_aa, rdust_bb = np.sum(rdusta[1],axis=3)/rdusta[1].shape[3], np.sum(rdustb[1],axis=3)/rdustb[1].shape[3] lw_htrt_aa, lw_htrt_bb = np.sum(lw_htrta[1],axis=3)/lw_htrta[1].shape[3], np.sum(lw_htrtb[1],axis=3)/lw_htrtb[1].shape[3] sw_htrt_aa, sw_htrt_bb = np.sum(sw_htrta[1],axis=3)/sw_htrta[1].shape[3], np.sum(sw_htrtb[1],axis=3)/sw_htrtb[1].shape[3] pres_aa, pres_bb = np.sum(presa[1],axis=3)/presa[1].shape[3], np.sum(presb[1],axis=3)/presb[1].shape[3] # Calculate differences dustq_diff = dustq_a - dustq_b dustN_diff = dustN_a - dustN_b temp_diff = temp_a - temp_b tsurf_diff = tsurf_a - tsurf_b ps_diff = ps_a - ps_b rho_diff = rho_a - rho_b u_diff = u_a - u_b v_diff = v_a - v_b rdust_diff = rdust_a - rdust_b lw_htrt_diff = lw_htrt_a - lw_htrt_b sw_htrt_diff = sw_htrt_a - sw_htrt_b pres_diff = pres_a - pres_b dqssed_diff = dqssed_a - dqssed_b dqsdev_diff = dqsdev_a - dqsdev_b fslw_diff = fslwa - fslwb fssw_diff = fsswa - fsswb ftlw_diff = ftlwa - ftlwb ftsw_diff = ftswa - ftswb t_d = temp_aa - temp_bb pres_d = pres_aa - pres_bb ts_d = tsurf_aa - tsurf_bb dq_d = dustq_aa - dustq_bb dN_d = dustN_aa - dustN_bb rho_d = rho_aa - rho_bb u_d = u_aa - u_bb rdust_d = rdust_aa - rdust_bb lw_htrt_d = lw_htrt_aa - lw_htrt_bb sw_htrt_d = sw_htrt_aa - sw_htrt_bb # Zonal averaging (time,lat) temp_avg = np.sum(temp_a,axis=2)/temp_a.shape[2] - np.sum(temp_b,axis=2)/temp_b.shape[2] tsurf_avg = np.sum(tsurf_a,axis=2)/tsurf_a.shape[2] - np.sum(tsurf_b,axis=2)/tsurf_b.shape[2] ps_avg = np.sum(ps_a,axis=2)/ps_a.shape[2] - np.sum(ps_b,axis=2)/ps_b.shape[2] pres_avg = np.sum(pres_a,axis=2)/pres_a.shape[2] - np.sum(pres_b,axis=2)/pres_b.shape[2] u_avg = np.sum(u_a,axis=2)/u_a.shape[2] - np.sum(u_b,axis=2)/u_b.shape[2] rho_avg = np.sum(rho_a,axis=2)/rho_a.shape[2] - np.sum(rho_b,axis=2)/rho_b.shape[2] fssw_avg = np.sum(fsswa,axis=2)/fsswa.shape[2] - np.sum(fsswb,axis=2)/fsswb.shape[2] fslw_avg = np.sum(fslwa,axis=2)/fslwa.shape[2] - np.sum(fslwb,axis=2)/fslwb.shape[2] ftsw_avg = np.sum(ftswa,axis=2)/ftswa.shape[2] - np.sum(ftswb,axis=2)/ftswb.shape[2] ftlw_avg = np.sum(ftlwa,axis=2)/ftlwa.shape[2] - np.sum(ftlwb,axis=2)/ftlwb.shape[2] tau_a_avg = np.sum(tau_a,axis=2)/tau_a.shape[2] tau_b_avg = np.sum(tau_b,axis=2)/tau_b.shape[2] rdust_avg = np.sum(rdust_a,axis=2)/rdust_a.shape[2] - np.sum(rdust_b,axis=2)/rdust_b.shape[2] lw_htrt_avg = np.sum(lw_htrt_a,axis=2)/lw_htrt_a.shape[2] - np.sum(lw_htrt_b,axis=2)/lw_htrt_b.shape[2] sw_htrt_avg = np.sum(sw_htrt_a,axis=2)/sw_htrt_a.shape[2] - np.sum(sw_htrt_b,axis=2)/sw_htrt_b.shape[2] temp_avg_ = np.sum(temp_b,axis=2)/temp_b.shape[2] pres_avg_ = np.sum(pres_b,axis=2)/pres_b.shape[2] tsurf_avg_ = np.sum(tsurf_b,axis=2)/tsurf_b.shape[2] ps_avg_ = np.sum(ps_b,axis=2)/ps_b.shape[2] u_avg_ = np.sum(u_b,axis=2)/u_b.shape[2] rho_avg_ = np.sum(rho_b,axis=2)/rho_b.shape[2] fssw_avg_ = np.sum(fsswb,axis=2)/fsswb.shape[2] fslw_avg_ = np.sum(fslwb,axis=2)/fslwb.shape[2] ftsw_avg_ = np.sum(ftswb,axis=2)/ftswb.shape[2] ftlw_avg_ = np.sum(ftlwb,axis=2)/ftlwb.shape[2] # from 35N to 55N Lat #tmp_ = np.sum(np.sum(temp_avg_[:,7:11],axis=0)/n,axis=0)/4 #tmps_ = np.sum(np.sum(tsurf_avg_[:,7:11],axis=0)/n,axis=0)/4 #ps_ = np.sum(np.sum(ps_avg_[:,7:11],axis=0)/n,axis=0)/4 #pres_ = np.sum(np.sum(pres_avg_[:,7:11],axis=0)/n,axis=0)/4 #rho_ = np.sum(np.sum(rho_avg_[:,7:11],axis=0)/n,axis=0)/4 #u_ = np.sum(np.sum(np.absolute(u_avg_[:,7:11]),axis=0)/n,axis=0)/4 #fslw_ = np.sum(np.sum(fslw_avg_[:,7:11],axis=0)/n,axis=0)/4 #fssw_ = np.sum(np.sum(fssw_avg_[:,7:11],axis=0)/n,axis=0)/4 #ftlw_ = np.sum(np.sum(ftlw_avg_[:,7:11],axis=0)/n,axis=0)/4 #ftsw_ = np.sum(np.sum(ftsw_avg_[:,7:11],axis=0)/n,axis=0)/4 #tmp_1 = np.sum(np.sum(temp_avg[:,7:11],axis=0)/n,axis=0)/4 #tmps_1 = np.sum(np.sum(tsurf_avg[:,7:11],axis=0)/n,axis=0)/4 #ps_1 = np.sum(np.sum(ps_avg[:,7:11],axis=0)/n,axis=0)/4 #pres_1 = np.sum(np.sum(pres_avg[:,7:11],axis=0)/n,axis=0)/4 #rho_1 = np.sum(np.sum(rho_avg[:,7:11],axis=0)/n,axis=0)/4 #u_1 = np.sum(np.sum(u_avg[:,7:11],axis=0)/n,axis=0)/4 #fslw_1 = np.sum(np.sum(fslw_avg[:,7:11],axis=0)/n,axis=0)/4 #fssw_1 = np.sum(np.sum(fssw_avg[:,7:11],axis=0)/n,axis=0)/4 #ftlw_1 = np.sum(np.sum(ftlw_avg[:,7:11],axis=0)/n,axis=0)/4 #ftsw_1 = np.sum(np.sum(ftsw_avg[:,7:11],axis=0)/n,axis=0)/4 #print "AVERAGES: tmp: %.2f || surf tmp: %.2f || press: %.2f || surf press: %.2f || dens: %.2f || zon wind: #%.2f || fluxes (inLW: %.2f, outLW: %.2f, inSW: %.2f, outSW: %.2f). " % (tmp_, tmps_, pres_, ps_, rho_, u_, #fslw_, ftlw_, fssw_, ftsw_) #print tmp_1/tmp_, tmps_1/tmps_, pres_1/pres_, ps_1/ps_, rho_1/rho_, u_1/u_, fslw_1/fslw_, fssw_1/fssw_, ftlw_1/ftlw_, ftsw_1/ftsw_ # Time moving-point average of zonal average nn=2 # Number of points to average over t_avg = Ls[:-(nn-1)] temp_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) pres_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) tsurf_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) ps_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) u_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) rho_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) fssw_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) fslw_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) ftsw_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) ftlw_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) rdust_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) lw_htrt_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) sw_htrt_avg_t = np.zeros((t_avg.shape[0],lat.shape[0])) for i in xrange(0,lat.shape[0]): temp_avg_t[:,i] = moving_average(temp_avg[:,i],n=nn) pres_avg_t[:,i] = moving_average(pres_avg[:,i],n=nn) tsurf_avg_t[:,i] = moving_average(tsurf_avg[:,i],n=nn) ps_avg_t[:,i] = moving_average(ps_avg[:,i],n=nn) u_avg_t[:,i] = moving_average(u_avg[:,i],n=nn) rho_avg_t[:,i] = moving_average(rho_avg[:,i],n=nn) fssw_avg_t[:,i] = moving_average(fssw_avg[:,i],n=nn) fslw_avg_t[:,i] = moving_average(fslw_avg[:,i],n=nn) ftsw_avg_t[:,i] = moving_average(ftsw_avg[:,i],n=nn) ftlw_avg_t[:,i] = moving_average(ftlw_avg[:,i],n=nn) rdust_avg_t[:,i] = moving_average(rdust_avg[:,i],n=nn) lw_htrt_avg_t[:,i] = moving_average(lw_htrt_avg[:,i],n=nn) sw_htrt_avg_t[:,i] = moving_average(sw_htrt_avg[:,i],n=nn) ############ TIME AVERAGE of differences ################### nnn=nn t_av = Ls[:-(nnn-1)] td_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) pres_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) tds_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) dqd_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) dNd_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) rhod_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) ud_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) rd_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) lwhr_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) swhr_avg = np.zeros((t_av.shape[0],sigma.shape[0],lat.shape[0])) for j in xrange(0,lat.shape[0],1): for i in xrange(0,sigma.shape[0],1): td_avg[:,i,j] = moving_average(t_d[:,i,j],n=nnn) pres_avg[:,i,j] = moving_average(pres_d[:,i,j],n=nnn) tds_avg[:,i,j] = moving_average(ts_d[:,i,j],n=nnn) dqd_avg[:,i,j] = moving_average(dq_d[:,i,j],n=nnn) dNd_avg[:,i,j] = moving_average(dN_d[:,i,j],n=nnn) rhod_avg[:,i,j] = moving_average(rho_d[:,i,j],n=nnn) ud_avg[:,i,j] = moving_average(u_d[:,i,j],n=nnn) rd_avg[:,i,j] = moving_average(rdust_d[:,i,j],n=nnn) lwhr_avg[:,i,j] = moving_average(lw_htrt_d[:,i,j],n=nnn) swhr_avg[:,i,j] = moving_average(sw_htrt_d[:,i,j],n=nnn) # Save destination fpath = "/home/physastro/aes442/results/Dustruns/m%i/" % (amth) ## Plot settings (MUST CHANGE FROM MONTH TO MONTH) ###################################################################################### # Which Ls do you want to focus on? Ls_ee= 4. Ls_e = 5.5 l_1 = np.where(Ls - Ls_ee > 0.001)[0][0] l_2 = np.where(Ls - Ls_e > 0.001)[0][0] Ls = Ls[l_1:l_2] n = l_2 - l_1 ## Dust storm insertion points (Ls - tstep_start - centre [lat,lon]) # m1 = 3.95 - 96 - [45, -135] # m26 = 45.66 - 408 - [45, -90] # m30 = 153.95 - 84 - [ 0, 0] # m33 = 244.28 - 84 - [-2, -6] # m34 = 273.52 - 60 - [-45, 90] c = np.matrix('4. 45.') # Dust storm mid-points [Ls Lat] ######################################################################################### ######## TES dust files # Zonal averaging tau_d_z = d_d.sum(axis=2)/d_d.shape[2] # Time averaging nnnn=2 tau_d_avg=np.zeros((tau_d_z.shape[0]-(nnnn-1),tau_d_z.shape[1])) for i in xrange(0,d_lat_s.shape[0]): tau_d_avg[:,i] = moving_average(tau_d_z[:,i],nnnn) # first and last sols sol_a = int(np.round(669*(Ls_ee/360.))) sol_s = int(np.round(669*(Ls_e/360.))) tau_d_avg = tau_d_avg[sol_a:sol_s,:] d_Ls_avg = np.linspace(Ls_ee,Ls_e,tau_d_avg.shape[0]) ######### ## PLOTS # Common settings (ticks) t_t = np.linspace(Ls_ee,Ls_e,n) t_tau = np.linspace(Ls_ee,Ls_e,n) lat_t = np.linspace(90,-90,lat.shape[0]) lon_t = np.linspace(-180,180,lon.shape[0]) # Solar longitude i_mj=0.2 i_mn=0.05 major_ticksx = np.arange(Ls_ee, Ls_e+i_mj, i_mj) minor_ticksx = np.arange(Ls_ee, Ls_e, i_mn) # Latitude major_ticksy = np.arange(-90, 91, 30) minor_ticksy = np.arange(-90, 91, 10) ## tau_ref, tau_ds, tau_tes PLOT tau_ds = np.matrix.transpose(tau_a_avg) tau_ds = tau_ds[:,l_1:l_2] tau_ref = np.matrix.transpose(tau_b_avg) tau_ref = tau_ref[:,l_1:l_2] tau_TES = np.matrix.transpose(tau_d_avg) f, axarr = plt.subplots(2, 1, sharex=True, sharey=True, figsize=(12,12), dpi=100) x = t_tau y = lat_t xx = d_Ls_avg yy = np.linspace(-90,90,d_lat_s.shape[0]) xlabel = 'Solar longitude / degrees' ylabel = 'Latitude / degrees' cb_label = 'Dust optical depth / SI' # Common axis labels f.text(0.5, 0.04, '%s' % (xlabel), fontsize=18, ha='center') f.text(0.06, 0.5, '%s' % (ylabel), fontsize=18, va='center', rotation='vertical') ax1 = axarr[0].pcolormesh(x, y, tau_ds, cmap='gist_rainbow_r', vmin=np.min((np.min(tau_ds),np.min(tau_ref),np.min(tau_TES))), vmax=np.max((np.max(tau_ds),np.max(tau_ref),np.max(tau_TES)))) axarr[0].axis('tight') axarr[0].plot(c[0,0],c[0,1],'o',color='y',markersize=10) axarr[0].set_xticks(major_ticksx) axarr[0].set_xticks(minor_ticksx, minor=True) axarr[0].set_yticks(major_ticksy) axarr[0].set_yticks(minor_ticksy, minor=True) axarr[0].set_title('(a) Dust storm run', fontsize=14) axarr[0].tick_params(axis='both', labelsize=11, pad=10) ax2 = axarr[1].pcolormesh(x, y, tau_ref, cmap='gist_rainbow_r', vmin=np.min((np.min(tau_ds),np.min(tau_ref),np.min(tau_TES))), vmax=np.max((np.max(tau_ds),np.max(tau_ref),np.max(tau_TES)))) axarr[1].set_title('(b) Reference run', fontsize=14) # Colorbar creation and placement f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.85, 0.1, 0.04, 0.8]) # [h_placement, v_placement, h_size, v_size] cb = f.colorbar(ax1, cax=cbar_ax, format='%.1f', extend='both') # double-edged colorbar cb.set_label('%s' % (cb_label), fontsize=16) # colorbar label #f.subplots_adjust(right=0.8) #cbar_ax = f.add_axes([0.85, 0.665, 0.04, 0.235]) # [h_placement, v_placement, h_size, v_size] #cb = f.colorbar(ax1, cax=cbar_ax, format='%.1f', extend='both') # double-edged colorbar #cb.set_label('%s' % (cb_label), fontsize=16) # colorbar label #f.subplots_adjust(right=0.8) #cbar_ax2 = f.add_axes([0.85, 0.38, 0.04, 0.235]) # [h_placement, v_placement, h_size, v_size] #cb = f.colorbar(ax2, cax=cbar_ax2, format='%.1f', extend='both') # double-edged colorbar #cb.set_label('%s' % (cb_label), fontsize=16) # colorbar label #f.subplots_adjust(right=0.8) #cbar_ax3 = f.add_axes([0.85, 0.095, 0.04, 0.235]) # [h_placement, v_placement, h_size, v_size] #cb = f.colorbar(ax3, cax=cbar_ax3, format='%.1f', extend='both') # double-edged colorbar #cb.set_label('%s' % (cb_label), fontsize=16) # colorbar label plt.savefig("%sCDOD_latvsLs_dsrunvsrefrun.png" % (fpath), bbox_inches='tight') ## TEMP/WIND/TOPG map # DATA day = 1 hr = 96 # this is actually the tstep (t=96 is storm start) lvl = 0 # variable[day][hour, elevation, lat, lon] ut = ua[day][hr,lvl,:,:] - ub[day][hr,lvl,:,:] vt = va[day][hr,lvl,:,:] - vb[day][hr,lvl,:,:] #data = tempa[day][hr,lvl,:,:] - tempb[day][hr,lvl,:,:] data = tsurfa[day][hr,:,:] - tsurfb[day][hr,:,:] data2= presa[day][hr,:,:] - presb[day][hr,:,:] # Longitude major_ticksx = np.arange(np.floor(lon_t[0]), np.ceil(lon_t[-1]), 30) minor_ticksx = np.arange(np.floor(lon_t[0]), np.ceil(lon_t[-1]), 10) # Latitude major_ticksy = np.arange(np.floor(lat_t[-1]), np.ceil(lat_t[0]), 30) minor_ticksy = np.arange(np.floor(lat_t[-1]), np.ceil(lat_t[0]), 10) ## PLOT temperature/winds/topography f, axarr = plt.subplots(1, 1, sharex=True, sharey=True, figsize=(10,10), dpi=100) x = lon_t y = lat_t xlabel = 'Longitude / degrees' ylabel = 'Latitude / degrees' cblabel= 'Temperature difference / K' plt.xlabel(xlabel, fontsize=14, labelpad=10) plt.ylabel(ylabel, fontsize=14, labelpad=10) # Main plot ax = axarr.pcolormesh(x, y, data, cmap='RdBu_r', norm=MidPointNorm(midpoint=0.)) # Secondary plot ax2 = axarr.quiver(x, y, ut, vt, scale=2**2, units='y', width=0.1) aq = axarr.quiverkey(ax2, 0.815, 0.9, 1, r'$1 \frac{m}{s}$', labelpos='E', coordinates='figure') # Topography lvls = [-5,0,5,10,15] ax3 = axarr.contour(mola[1], mola[0], mola[2], lvls, colors='k') # Ticks axarr.set_xticks(major_ticksx) axarr.set_xticks(minor_ticksx, minor=True) axarr.set_yticks(major_ticksy) axarr.set_yticks(minor_ticksy, minor=True) axarr.tick_params(axis='both', labelsize=12, pad=10) axarr.axis('tight') # Colour bar f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.85, 0.1, 0.04, 0.8]) # [h_place, v_place, h_size, v_size] cb = f.colorbar(ax, cax=cbar_ax, format='%.1f', extend='both') # double-edged colorbar cb.set_label('%s' % (cblabel), fontsize=16) # colorbar label plt.axis('tight') plt.savefig("%stemp_uvwind_mola_latvslon.png" % (fpath), bbox_inches='tight') plt.close('all') ## Temperature PLOT temp_t = tsurf_avg_t.T temp_t = temp_t[:,l_1:l_2] fig = plt.figure(figsize=(10,10), dpi=100) ax = fig.add_subplot(1,1,1) plt.pcolormesh(t_t,lat_t,temp_t, norm=MidPointNorm(midpoint=0.), cmap='RdBu_r') plt.xlabel('Solar longitude / degrees', fontsize=14, labelpad=10) plt.ylabel('Latitude / degrees', fontsize=14, labelpad=10) # Extra Markers ax.plot(c[0,0],c[0,1],'o',color='y',markersize=10) # Ticks ax.set_xticks(major_ticksx) ax.set_xticks(minor_ticksx, minor=True) ax.set_yticks(major_ticksy) ax.set_yticks(minor_ticksy, minor=True) ax.tick_params(axis='both', labelsize=12, pad=10) # Colour bar cb = plt.colorbar(format='%.2f', extend='both') cb.set_label('Temperature difference / K') tick_locator = ticker.MaxNLocator(nbins=16) cb.locator = tick_locator plt.axis('tight') plt.savefig("%sSurfTempDiff_LatvsTime_FY_uavg_tavg.png" % (fpath), bbox_inches='tight') ## Surface pressure and Atmospheric density at surface PLOT ps_t = np.matrix.transpose(pres_avg_t) ps_t = ps_t[:,l_1:l_2] rho_t = np.matrix.transpose(rho_avg_t) rho_t = rho_t[:,l_1:l_2] f, axarr = plt.subplots(2, 1, sharex=True, sharey=True, figsize=(12,12), dpi=100) x = t_t y = lat_t xlabel = 'Solar longitude / degrees' ylabel = 'Latitude / degrees' cb_label = 'Atmospheric pressure difference / Pa' cb_label2 = 'Atmospheric density difference / kg / $m^3$' # Common axis labels f.text(0.5, 0.04, '%s' % (xlabel), fontsize=18, ha='center') f.text(0.06, 0.5, '%s' % (ylabel), fontsize=18, va='center', rotation='vertical') ax1 = axarr[0].pcolormesh(x, y, ps_t, norm=MidPointNorm(midpoint=0.), cmap='RdBu_r') axarr[0].axis('tight') axarr[0].plot(c[0,0],c[0,1],'o',color='y',markersize=10) axarr[0].set_xticks(major_ticksx) axarr[0].set_xticks(minor_ticksx, minor=True) axarr[0].set_yticks(major_ticksy) axarr[0].set_yticks(minor_ticksy, minor=True) axarr[0].set_title('(a)', fontsize=18) axarr[0].tick_params(axis='both', labelsize=14) ax2 = axarr[1].pcolormesh(x, y, rho_t, norm=MidPointNorm(midpoint=0.), cmap='RdBu_r') axarr[1].plot(c[0,0],c[0,1],'o',color='y',markersize=10) axarr[1].set_title('(b)', fontsize=18) # Colorbar creation and placement f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.85, 0.54, 0.04, 0.36]) # [h_placement, v_placement, h_size, v_size] cb = f.colorbar(ax1, cax=cbar_ax, format='%.1f', extend='both') # double-edged colorbar cb.set_label('%s' % (cb_label), fontsize=14) # colorbar label cbar_ax2 = f.add_axes([0.85, 0.1, 0.04, 0.36]) # [h_placement, v_placement, h_size, v_size] cb2 = f.colorbar(ax2, cax=cbar_ax2, format='%.1e', extend='both') # double-edged colorbar cb2.set_label('%s' % (cb_label2), fontsize=14) # colorbar label plt.savefig("%sPresDensDiff_LatvsLs_zonavg_tavg.png" % (fpath), bbox_inches='tight') # Zonal wind PLOT u_t = np.matrix.transpose(u_avg_t) u_t = u_t[:,l_1:l_2] fig = plt.figure( figsize=(10,10), dpi=100) ax = fig.add_subplot(1,1,1) plt.pcolormesh(t_t,lat_t,u_t,norm=MidPointNorm(midpoint=0.), cmap='RdBu_r') plt.xlabel('Solar longitude / degrees',fontsize=16) plt.ylabel('Latitude / degrees',fontsize=16) ax.plot(c[0,0],c[0,1],'o',color='y',markersize=10) ax.set_xticks(major_ticksx) ax.set_xticks(minor_ticksx, minor=True) ax.set_yticks(major_ticksy) ax.set_yticks(minor_ticksy, minor=True) cb = plt.colorbar(format='%.1f', extend='both') cb.set_label('Zonal wind velocity difference / m / s') tick_locator = ticker.MaxNLocator(nbins=7) cb.locator = tick_locator cb.update_ticks() plt.axis('tight') plt.savefig("%sZonalWindDiff_LatvsTime_FY_uavg_tavg.png" % (fpath), bbox_inches='tight') # ALL FLUXES on one plot fslw_t = np.matrix.transpose(fslw_avg_t[l_1:l_2,:]) # Incoming (surf) long wave (IR) radiation ftlw_t = np.matrix.transpose(ftlw_avg_t[l_1:l_2,:]) # Outgoing (top) long wave (IR) radiation fssw_t = np.matrix.transpose(fssw_avg_t[l_1:l_2,:]) # Incoming (surf) short wave (VL) radiation ftsw_t = np.matrix.transpose(ftsw_avg_t[l_1:l_2,:]) # Outgoing (top) short wave (VL) radiation f, axarr = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(12,12), dpi=100) x = t_t y = lat_t xlabel = 'Solar longitude / degrees' ylabel = 'Latitude / degrees' cb_label = 'Radiative flux difference / W / $m^2$' # Common axis labels f.text(0.5, 0.04, '%s' % (xlabel), fontsize=18, ha='center') f.text(0.06, 0.5, '%s' % (ylabel), fontsize=18, va='center', rotation='vertical') ax1 = axarr[0,0].pcolormesh(x, y, fslw_t, norm=MidPointNorm(midpoint=0.), cmap='RdBu_r') axarr[0,0].axis('tight') axarr[0,0].plot(c[0,0],c[0,1],'o',color='y',markersize=10) axarr[0,0].set_xticks(major_ticksx) axarr[0,0].set_xticks(minor_ticksx, minor=True) axarr[0,0].set_yticks(major_ticksy) axarr[0,0].set_yticks(minor_ticksy, minor=True) axarr[0,0].set_title('Incident flux at surface (LW) (a)', fontsize=10) axarr[0,0].tick_params(axis='both', labelsize=10) dv1 = make_axes_locatable(axarr[0,0]) cax1 = dv1.append_axes("right",size="5%",pad=0.05) cb = f.colorbar(ax1,cax=cax1, format='%.1f', extend='both') cb.set_label('%s' % (cb_label), fontsize=10) ax2 = axarr[0,1].pcolormesh(x, y, ftlw_t, norm=MidPointNorm(midpoint=0.), cmap='RdBu_r') axarr[0,1].plot(c[0,0],c[0,1],'o',color='y',markersize=10) axarr[0,1].set_title('Outgoing flux at top (LW) (b)', fontsize=10) axarr[0,1].tick_params(axis='both', labelsize=10) dv2 = make_axes_locatable(axarr[0,1]) cax2 = dv2.append_axes("right",size="5%",pad=0.05) cb2 = f.colorbar(ax2,cax=cax2, format='%.1f', extend='both') cb2.set_label('%s' % (cb_label), fontsize=10) ax3 = axarr[1,0].pcolormesh(x, y, fssw_t, norm=MidPointNorm(midpoint=0.), cmap='RdBu_r') axarr[1,0].plot(c[0,0],c[0,1],'o',color='y',markersize=10) axarr[1,0].set_title('Incident flux at surface (SW) (c)', fontsize=10) axarr[1,0].tick_params(axis='both', labelsize=10) dv3 = make_axes_locatable(axarr[1,0]) cax3 = dv3.append_axes("right",size="5%",pad=0.05) cb3 = f.colorbar(ax3,cax=cax3, format='%.1f', extend='both') cb3.set_label('%s' % (cb_label), fontsize=10) ax4 = axarr[1,1].pcolormesh(x, y, ftsw_t, norm=MidPointNorm(midpoint=0.), cmap='RdBu_r') axarr[1,1].plot(c[0,0],c[0,1],'o',color='y',markersize=10) axarr[1,1].set_title('Outgoing flux at top (SW) (d)', fontsize=10) axarr[1,1].tick_params(axis='both', labelsize=10) dv4 = make_axes_locatable(axarr[1,1]) cax4 = dv4.append_axes("right",size="5%",pad=0.05) cb4 = f.colorbar(ax4,cax=cax4, format='%.1f', extend='both') cb4.set_label('%s' % (cb_label), fontsize=10) # Colorbar creation and placement #f.subplots_adjust(right=0.8) #cbar_ax = f.add_axes([0.85, 0.1, 0.04, 0.8]) # [h_placement, v_placement, h_size, v_size] #cb = f.colorbar(ax3, cax=cbar_ax, format='%.1f', extend='both') # double-edged colorbar #cb.set_label('%s' % (cb_label), fontsize=14) # colorbar label plt.savefig("%sfluxes_latvsLs_zonavg_tavg.png" % (fpath), bbox_inches='tight') ### Short-term Temperature and Heating rates at exact location vs Altitude (put in particle size or mmr) # lat = 87.49999, 82.49999, 77.5, 72.5, 67.5, 62.5, 57.5, 52.5, 47.5, 42.5, # 37.5, 32.5, 27.5, 22.5, 17.5, 12.5, 7.500001, 2.500001, -2.500001, # -7.500003, -12.5, -17.5, -22.5, -27.5, -32.5, -37.5, -42.5, -47.5, -52.5, # -57.5, -62.5, -67.5, -72.5, -77.5, -82.49999, -87.49999 ; # lon = -180, -175, -170, -165, -160, -155, -150, -145, -140, -135, -130, # -125, -120, -115, -110, -105, -100, -95, -90, -84.99999, -80, -75, -70, # -65, -60, -55, -50, -45, -40, -35, -30, -25, -20, -15, -10, -5, 0, 5, 10, # 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 84.99999, 90, 95, # 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, # 170, 175 ; ## Dust storm insertion points (Ls - tstep_start - [lat,lon]) # m26 = 45.66 - 408 - [45, -90] # m30 = 153.95 - 84 - [ 0, 0] # m33 = 244.28 - 84 - [-2, -6] # m34 = 273.52 - 60 - [-45, 90] ### Plot explaination # Storm starts at tstep=96, which is midnight of sol 8 relative to (0,0). However the storm is at 135W (midpoint). # So 360/24 = 15deg for each hour, meaning local time at 135W is 135/15=9hrs behind (0,0) local time, so at dust storm time insertion it is 15:00 locally. # We want the plot to start 1 day before the storm, which will be at tstep=84, since each tstep accounts for 2 hours. # From tstep=84 we push forward 10 hours for approximate midnight plot start ### In reality the plot starts at 01:00 the night before the storm, local time 135W. f, axarr = plt.subplots(3, 1, sharex=True, sharey=True, figsize=(12,12), dpi=100) tl1, tl2 =89, 125 al=15 latl, lonl=6, 9 d1 = tempa[1][tl1:tl2,:al,latl,lonl] d2 = tempb[1][tl1:tl2,:al,latl,lonl] d3 = (88800/24.)*(sw_htrta[1][tl1:tl2,:al,latl,lonl] + lw_htrta[1][tl1:tl2,:al,latl,lonl]) # NET heat rate (SW cooling, LW heating) changed from K/s to K/hr d4 = rdusta[1][tl1:tl2,:al,latl,lonl] d5 = dustqa[1][tl1:tl2,:al,latl,lonl] data = np.matrix.transpose(d2) data2 = np.matrix.transpose(d1) data3 = np.matrix.transpose(d3) data4 = np.matrix.transpose(d4) data5 = np.matrix.transpose(d5) y = alt[:al] x = np.linspace(0,72,data.shape[1]) xlabel = 'Local time / hr' ylabel = 'Altitude above surface / km' cb_label = 'Temperature / K' cb_label2 = 'Net heating rate / K / hr' major_ticksx = np.arange(0,np.max(x)+1,6) minor_ticksx = np.arange(0,np.max(x),2) major_ticksy = np.arange(0,np.max(y)+1,10) minor_ticksy = np.arange(0,np.max(y),2) # Common axis labels f.text(0.5, 0.04, '%s' % (xlabel), fontsize=16, ha='center') f.text(0.06, 0.5, '%s' % (ylabel), fontsize=16, va='center', rotation='vertical') ax1 = axarr[0].pcolormesh(x, y, data, cmap='jet') axarr[0].axis('tight') axarr[0].set_xticks(major_ticksx) axarr[0].set_yticks(major_ticksy) axarr[0].set_xticks(minor_ticksx, minor=True) axarr[0].set_yticks(minor_ticksy, minor=True) axarr[0].set_title('Reference run (a)', fontsize=10) axarr[0].tick_params(axis='both', labelsize=14) ax2 = axarr[1].pcolormesh(x, y, data2, cmap='jet') axarr[1].set_title('Dust storm run (b)', fontsize=10) axarr[1].tick_params(axis='both', labelsize=14) axarr[1].add_patch(mpl.patches.Rectangle((14, 0), 24, 9, facecolor="none", linestyle='dashed')) ax3 = axarr[2].pcolormesh(x, y, data3, cmap='RdBu_r', vmax=10, vmin=-10) axarr[2].set_title('Dust storm run (c)', fontsize=10) axarr[2].tick_params(axis='both', labelsize=14) axarr[2].add_patch(mpl.patches.Rectangle((14, 0), 24, 9, facecolor="none", linestyle='dashed')) lvl = np.array([10**-6,10**-5,1*10**-4,10**-3]) # Contour levels ax = axarr[2].contour(x,y,data5,lvl,colors='k',linewidth=3,locator=ticker.LogLocator()) plt.clabel(ax, fontsize=9, inline=1,fmt='%2.0e') f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.85, 0.38, 0.02, 0.52]) # [h_placement, v_placement, h_size, v_size] cb = f.colorbar(ax1, cax=cbar_ax, format='%.0f', extend='both') # double-edged colorbar cb.set_label('%s' % (cb_label), fontsize=16) # colorbar label f.subplots_adjust(right=0.8) cbar_ax2 = f.add_axes([0.85, 0.095, 0.02, 0.235]) # [h_placement, v_placement, h_size, v_size] cb = f.colorbar(ax3, cax=cbar_ax2, format='%.0f', extend='both') # double-edged colorbar cb.set_label('%s' % (cb_label2), fontsize=16) # colorbar label #locs,labels = py.xticks() #py.xticks(locs, map(lambda x: "%02d" % x, locs*1e9)) plt.savefig("%sheating.png" % (fpath), bbox_inches='tight') plt.close('all') ### Time series plots # settings s_l = [-2.05, -6.12, 242.7] # landing site marking on plot (actually for 244.7, Ls is messed up) ticky_latlon = [60,10,30,10] # tick settings [xmajor,xminor,ymajor,yminor] ticks ticky_latalt = [60,10,20,10] int_Ls = int(np.ceil(Ls.shape[0]/(12*Months))) # Dust particle size contours rd_ds1 = {} rd_ds1[0] = alt[:alt_half] rd_ds1[1] = lat_t rd_ds1[2] = rd_avg[:,:alt_half,:] # dust mmr average difference contours dqd_ds = {} dqd_ds[0] = alt[:alt_half] dqd_ds[1] = lat_t dqd_ds[2] = dqd_avg[:,:alt_half,:] wind = {} wind[0] = u_diff wind[1] = v_diff ## Dust storm 1 Time series dustq (mmr) (time, lat, lon) plt_timeseries(dustq_diff[l_1:,:,:], lon_t, lat_t, Ls_m[1][l_1:], 4,4, ticky_latlon, 'Longitude / degrees', 'Latitude / degrees', 'Ls: ', 'Dust MMR difference / kg / kg', 3, '%sDustqdiff_latlon_tseries_ds1.png' % (fpath), mola) alt_t = alt # Height of 20.9km latll = 26 dustq_diff_altlon = dustqa[1][l_1:,:,latll,:] - dustqb[1][l_1:,:,latll,:] temp_diff_altlon = tempa[1][l_1:,:,latll,:] - tempb[1][l_1:,:,latll,:] plt_timeseries(temp_diff_altlon, lon_t, alt_t, Ls, 4,4, ticky_latalt, 'Longitude / degrees', 'Altitude / km', 'Ls: ', 'Temperature difference / K', int_Ls, '%stemp_altlon_tseries_ds1.png' % (fpath)) a plt_timeseries(dustq_diff_altlon, lon_t, alt_t, Ls_m[1][l_1:], 4, 4, ticky_latalt, 'Longitude / degrees', 'Altitude / km', 'Ls: ', 'Dust MMR difference / kg / kg', 3, '%sdustq_altlon_tseries_ds1.png' % (fpath)) plt.close('all') ## IMPACT CALCULATIONS ## Dust storm insertion points (Ls - tstep_start - [lat,lon]) ### DS1 m1 = 3.95 - (96-120, 2 sol) - [45, -135] (ORIGINAL DS) llat1, llat2 = 22.5, 67.5 llon1, llon2 = -155., -115. lalt1, lalt2 = 0., 8. ts1, ts2 = 120, 132 ### DS2 m26 = 45.66 - 408 - [45, -90] #llat1, llat2 = 22.5, 67.5 #llon1, llon2 = -110., -70. #lalt1, lalt2 = 0., 8. #ts1, ts2 = 420, 432 ### DS3 m30 = 153.95 - 84 - [ 0, 0] #llat1, llat2 = -22.5, 22.5 #llon1, llon2 = -20., 20. #lalt1, lalt2 = 0., 8. #ts1, ts2 = 96, 108 ### DS4 m33 = 244.28 - 84 - [-2, -6] (EXOMARS) #llat1, llat2 = -22.5, 22.5 #llon1, llon2 = -20., 20. #lalt1, lalt2 = 0., 8. #ts1, ts2 = 96, 108 ### DS5 m34 = 273.52 - 60 - [-45, 90] #llat1, llat2 = -67.5, -22.5 #llon1, llon2 = 70., 110. #lalt1, lalt2 = 0., 8. #ts1, ts2 = 72, 84 lat_1, lat_2 = np.where(lat - llat2 >= 0.001)[0][-1]+1, np.where(lat - llat1 >= 0.001)[0][-1]+1 lon_1, lon_2 = np.where(lon - llon1 >= 0.001)[0][0]-1, np.where(lon - llon2 >= 0.001)[0][0]-1 alt_1, alt_2 = 0., np.where(alt - lalt2 >= 0.001)[0][0] # Loop to compute impact re_err, avg_t = {}, {} re, avg = {}, {} day = 1 var_da = [dustqa[1], dustNa[1], tempa[1], tsurfa[1], presa[1], psa[1], ua[1], va[1], rhoa[1], fluxsurflwa[1], fluxsurfswa[1], fluxtoplwa[1], fluxtopswa[1]] var_db = [dustqb[1], dustNb[1], tempb[1], tsurfb[1], presb[1], psb[1], ub[1], vb[1], rhob[1], fluxsurflwb[1], fluxsurfswb[1], fluxtoplwb[1], fluxtopswb[1]] re[day] = np.zeros([len(var_da), (ts2-ts1)+1]) avg[day] = np.zeros([len(var_da), (ts2-ts1)+1]) re_err[day] = np.zeros(len(var_da)) avg_t[day] = np.zeros(len(var_da)) for n in xrange(0, len(var_da)): data_a = var_da[n] data_b = var_db[n] if len(data_a.shape)==4: m=0 for j in xrange(ts1, ts2+1): aa = data_a[j,alt_1:alt_2,lat_1:lat_2,lon_1:lon_2].flatten() - data_b[j,alt_1:alt_2,lat_1:lat_2,lon_1:lon_2].flatten() a_ref = data_b[j,alt_1:alt_2,lat_1:lat_2,lon_1:lon_2].flatten() avg[day][n,m] = sum(a_ref)/a_ref.shape[0] re[day][n,m] = np.linalg.norm(aa) / np.linalg.norm(a_ref) m=m+1 else: m=0 for j in xrange(ts1, ts2+1): aa = data_a[j,lat_1:lat_2,lon_1:lon_2].flatten() - data_b[j,lat_1:lat_2,lon_1:lon_2].flatten() a_ref = data_b[j,lat_1:lat_2,lon_1:lon_2].flatten() avg[day][n,m] = sum(a_ref)/a_ref.shape[0] re[day][n,m] = np.linalg.norm(aa) / np.linalg.norm(a_ref) m=m+1 re[day][(np.isnan(re[day])==True)] = 0. re_err[day][n] = sum(re[day][n,:]) / re[day][n,:].shape[0] avg_t[day][n] = sum(avg[day][n,:]) / avg[day][n,:].shape[0] np.savetxt("%srelative_errors_t.txt" % (fpath), re[1], fmt='%.2e') np.savetxt("%srelative_errors.txt" % (fpath), re_err[1], fmt='%.2e') np.savetxt("%saverages.txt" % (fpath), avg[1], fmt='%.2e') np.savetxt("%saverages_t.txt" % (fpath), avg_t[1], fmt='%.2e')
[ "adam.el-said@open.ac.uk" ]
adam.el-said@open.ac.uk
bf4f8be8ccdd998f8098cbf3f6605a7b524c9816
f92722620b74644ee0f2e1a7461d4330ea3374da
/blog/migrations/0001_initial.py
7ade040810ee75b4aa619f2bb513df02743ad060
[]
no_license
designwithabhishek/mywebsite
c01e2784b733a681f215cac1c449a98554ca8cb0
4aa0593cb750330921de4367e2a389c4918845a1
refs/heads/master
2023-05-11T10:12:24.617089
2019-06-25T17:36:08
2019-06-25T17:36:08
200,085,766
0
0
null
2023-04-21T20:35:26
2019-08-01T16:37:09
HTML
UTF-8
Python
false
false
835
py
# Generated by Django 2.2.2 on 2019-06-23 04:53 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ('author', models.CharField(max_length=50)), ('created', models.DateTimeField(verbose_name=datetime.datetime(2019, 6, 23, 4, 53, 36, 984687, tzinfo=utc))), ('content', models.TextField()), ('image', models.ImageField(upload_to='')), ], ), ]
[ "designwithabhishek1996.com" ]
designwithabhishek1996.com
4da9c1e6ca004b93d1f275e2bd86ea3be8e69b31
52bb1d25a8c146b81b876343f861025e034fa964
/roglick/dungeon/utils.py
fcf6a2a864c5ae7cc6c50f2c302b33b63529bf23
[ "MIT" ]
permissive
Kromey/roglick
b3fc7a6bce7e60a150c9a9ed1cc825ef3988cf8a
b76202af71df0c30be0bd5f06a3428c990476e0e
refs/heads/master
2020-12-14T15:49:53.163385
2016-05-24T16:29:06
2016-05-24T16:29:06
21,549,421
6
0
null
null
null
null
UTF-8
Python
false
false
2,519
py
from roglick.engine import random from roglick.utils import clamp def smoothstep(a, b, x): """Basic S-curve interpolation function. Based on reference implementation available at https://en.wikipedia.org/wiki/Smoothstep """ x = clamp((x - a)/(b - a), 0.0, 1.0) return x*x*(3 - 2*x) def smootherstep(a, b, x): """Improved S-curve interpolation function. Based on reference implementation of the improved algorithm proposed by Ken Perlin that is available at https://en.wikipedia.org/wiki/Smoothstep """ x = clamp((x - a)/(b - a), 0.0, 1.0) return x*x*x*(x*(x*6 - 15) + 10); def lerp(a, b, x): """Linear interpolation function.""" return a + x * (b - a) class PerlinNoise2D(object): def __init__(self, seed=None): self.p = [x for x in range(256)] if seed is None: seed = random.get_int() rand = random.Random(seed) rand.shuffle(self.p) def octave(self, x, y, octaves=5, persistence=0.5): total = 0 frequency = 1 amplitude = 1 max_val = 0 for i in range(octaves): total += self.noise(x*frequency, y*frequency) * amplitude max_val += amplitude amplitude *= persistence frequency *= 2 return total / max_val def noise(self, x, y): xi = int(x) yi = int(y) xf = x - xi yf = y - yi u = self.fade(xf) v = self.fade(yf) aa = self.p_hash(self.p_hash( xi )+ yi ) ab = self.p_hash(self.p_hash( xi )+ yi+1) ba = self.p_hash(self.p_hash(xi+1)+ yi ) bb = self.p_hash(self.p_hash(xi+1)+ yi+1) x1 = lerp(self.grad(aa, xf , yf), self.grad(ba, xf-1, yf), u) x2 = lerp(self.grad(ab, xf , yf-1), self.grad(bb, xf-1, yf-1), u) return (lerp(x1, x2, v) + 1) / 2 # Constrain to [0,1] rather than [-1,1] def fade(self, t): return smootherstep(0.0, 1.0, t) def p_hash(self, i): i = i & 255 return self.p[i] def grad(self, h, x, y): """This gradient function is based on Riven's optimization Source: http://riven8192.blogspot.com/2010/08/calculate-perlinnoise-twice-as-fast.html """ h = h % 4 if h == 0: return x + y elif h == 1: return -x + y elif h == 2: return x - y elif h == 3: return -x - y else: # Never happens return 0
[ "travisvz@gmail.com" ]
travisvz@gmail.com
019e5dd75cb9ff5d93826aea9822c1224063626a
3a7b0262d408c8faad77d0710d0bee91e27643b9
/Major_Requirements.py
a91f9661064cb93b0d8670f6a5c2951172039976
[]
no_license
fmixson/testfulldegree
c1a13eb89001b017e7800304a3197d042a7e234b
de013a7f2171d66ab6a9fd4ed6a1604b53ef79d5
refs/heads/main
2023-06-27T23:08:22.016373
2021-08-08T20:07:37
2021-08-08T20:07:37
394,053,091
0
0
null
null
null
null
UTF-8
Python
false
false
6,400
py
import pandas as pd class MajorRequirements: # major_requirements_dataframe = pd.read_csv("C:/Users/family/Desktop/Programming/English_PlanA_GE.csv") # major_requirements_dataframe = pd.read_csv("C:/Users/family/Desktop/Programming/Copy of COMM_AA.csv") # major_requirements_dict = {} def __init__(self, revised_course_list, completed_ge_courses, major_requirements): self.major_requirements = major_requirements self.revised_course_list = revised_course_list self.completed_ge_courses = completed_ge_courses self.major_course_dict = {} self.major_courses_list = [] self.major_courses_list2 = [] self.major_units_list = [] self.major_units_dict = {} self.area_units_dict = {} self.major_requirements_dict = {} self.major_no_courses_requirement_dict = {} # self.discipline_list = [] # self.discipline_set = set() def _two_disciplines(self, course_key, total_area_units, total_units): discipline = course_key.split() discipline = discipline[0] disc = False # print('area units', total_area_units, 'total units', total_units - 3) if total_area_units == (total_units - 3): unique_disciplines = set(self.discipline_list) # print(len(unique_disciplines)) # print('unique', unique_disciplines) if len(unique_disciplines) < 2: if discipline in unique_disciplines: disc = True else: self.discipline_list.append(discipline) else: self.discipline_list.append(discipline) # print('discipline list', self.discipline_list) return disc def _three_disciplines(self, course_key, total_area_units, total_units): discipline = course_key.split() discipline = discipline[0] disc = False # print('area units', total_area_units, 'total units', total_units - 6) if total_area_units >= (total_units - 6): unique_disciplines = set(self.discipline_list) # print(len(unique_disciplines)) # print('unique', unique_disciplines) if len(unique_disciplines) < 3: if len(unique_disciplines) == 2: self.discipline_list.append(discipline) elif unique_disciplines == 1: if discipline in unique_disciplines: disc = True else: self.discipline_list.append(discipline) else: self.discipline_list.append(discipline) return disc def major_courses_completed(self, area_name, total_units, number_of_disciplines=1): proficiency_list = ['Writing_Proficiency', 'Math_Proficiency', 'Health_Proficiency', 'Reading_Proficiency'] major_requirements_dataframe = pd.read_csv(self.major_requirements) self.major_courses_list2 = [] total_area_units = 0 area_units_list = [] ge_course_list = [] self.major_requirements_dict[area_name] = total_units print('total units', total_units) if total_units == '': pass else: if total_units < 3: self.major_no_courses_requirement_dict[area_name] = 1 else: self.major_no_courses_requirement_dict[area_name] = total_units / 3 disc = False self.discipline_list = [] self.discipline_set = set() # print('maj course no', self.major_no_courses_requirement_dict) # print('maj req dict', self.major_requirements_dict) for key in self.completed_ge_courses: if key not in proficiency_list: ge_course_list.append(self.completed_ge_courses[key]) for i in range(len(major_requirements_dataframe[area_name])): ge_course = False major_course = False if total_area_units < total_units: for course_key in self.revised_course_list: if course_key == major_requirements_dataframe.loc[i, area_name]: if course_key in ge_course_list: ge_course = True if course_key in self.major_courses_list: major_course = True if not major_course: if number_of_disciplines > 1: if number_of_disciplines == 2: disc = MajorRequirements._two_disciplines(self, course_key=course_key, total_area_units=total_area_units, total_units=total_units) elif number_of_disciplines == 3: disc = MajorRequirements._three_disciplines(self, course_key=course_key, total_area_units=total_area_units, total_units=total_units) if not disc: self.area_units_dict[area_name] = self.revised_course_list[course_key] self.major_courses_list.append(course_key) self.major_courses_list2.append(course_key) self.major_course_dict[area_name] = self.major_courses_list2 # print('dict under',self.major_course_dict) area_units_list.append(self.revised_course_list[course_key]) if not ge_course: self.major_units_list.append(self.revised_course_list[course_key]) total_area_units = sum(area_units_list) self.area_units_dict[area_name] = total_area_units # print('maj course dict', self.major_course_dict) return self.major_requirements_dict, self.major_course_dict, self.major_no_courses_requirement_dict
[ "noreply@github.com" ]
fmixson.noreply@github.com
d3d6757ce1df376dff4c92caaad8942329c824b0
801e30ca6313e09ae19c2109604325556edf7e11
/validate_hcp_release.py
295ec2b714eeaf5286237d8780121fdcfc0be382
[]
no_license
MHouse/validate_hcp_release
5335dbb531564e52e38b10bf538cced6bc2b1265
0c9f98fcd51b5c7e7c64f962c6393019b67790ec
refs/heads/master
2021-01-16T18:18:22.110563
2013-02-22T21:17:38
2013-02-22T21:17:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,747
py
#! /usr/bin/env python __author__ = 'mhouse01' import requests import json import os import csv from lxml import etree from sys import exit from operator import itemgetter, attrgetter import argparse import ConfigParser from seriesDetails import seriesDetails, csvOrder, seriesLabels, scanIsPackage # Declare the XNAT Namespace for use in XML parsing xnatNS = "{http://nrg.wustl.edu/xnat}" xmlFormat = {'format': 'xml'} jsonFormat = {'format': 'json'} # PARSE INPUT parser = argparse.ArgumentParser(description="Alpha program to pull Subject session parameters from XNAT for verification") parser.add_argument("-c", "--config", dest="configFile", default="validate_hcp_release.cfg", type=str, help="config file must be specified") parser.add_argument("-P", "--project", dest="Project", default="HCP_Phase2", type=str, help="specify project") parser.add_argument("-S", "--subject", dest="Subject", type=str, help="specify subject of interest") parser.add_argument("-D", "--destination_dir", dest="destDir", default='/tmp', type=str, help="specify the directory for output") parser.add_argument("-M", "--output_map", dest="outputMap", default='all', type=str, help="specify the output mapping: all, public, package") parser.add_argument("-v", "--verbose", dest="verbose", default=False, action="store_true", help="show more verbose output") parser.add_argument('--version', action='version', version='%(prog)s: v0.1') args = parser.parse_args() args.destDir = os.path.normpath( args.destDir ) # Read the config file config = ConfigParser.ConfigParser() try: config.read( args.configFile ) username = config.get('Credentials', 'username') password = config.get('Credentials', 'password') restServerName = config.get('Server', 'server') restSecurity = config.getboolean('Server', 'security') except ConfigParser.Error as e: print "Error reading configuration file:" print " " + str( e ) exit(1) if restSecurity: print "Using only secure connections" restRoot = "https://" + restServerName else: print "Security turned off for all connections" restRoot = "http://" + restServerName + ":8080" # If we find an OS certificate bundle, use it instead of the built-in bundle if requests.utils.get_os_ca_bundle_path() and restSecurity: os.environ['REQUESTS_CA_BUNDLE'] = requests.utils.get_os_ca_bundle_path() print "Using CA Bundle: %s" % requests.utils.DEFAULT_CA_BUNDLE_PATH # Establish a Session ID try: r = requests.get( restRoot + "/data/JSESSION", auth=(username, password) ) # If we don't get an OK; code: requests.codes.ok r.raise_for_status() # Check if the REST Request fails except (requests.ConnectionError, requests.exceptions.RequestException) as e: print "Failed to retrieve REST Session ID:" print " " + str( e ) exit(1) restSessionID = r.content print "Rest Session ID: %s " % (restSessionID) restSessionHeader = {"Cookie": "JSESSIONID=" + restSessionID} mrSessions = {"xsiType": "xnat:mrSessionData"} # Get the list of MR Sessions for each Experiment # Create a URL pointing to the Experiments for this Subject restExperimentsURL = restRoot + "/data/archive/projects/" + args.Project + "/subjects/" + args.Subject + "/experiments/" # Get the list of MR Sessions for the Subject in JSON format try: # Create a dictionary of parameters for the rest call restParams = mrSessions.copy() restParams.update(jsonFormat) # Make the rest call r = requests.get( restExperimentsURL, params=restParams, headers=restSessionHeader) # If we don't get an OK; code: requests.codes.ok r.raise_for_status() # Check if the REST Request fails except (requests.ConnectionError, requests.exceptions.RequestException) as e: print "Failed to retrieve MR Session list: %s" % e exit(1) # Parse the JSON from the GET experimentJSON = json.loads( r.content ) # Strip off the trash that comes back with it and store it as a list of name/value pairs experimentResultsJSON = experimentJSON.get('ResultSet').get('Result') # List Comprehensions Rock! http://docs.python.org/tutorial/datastructures.html # Create a stripped down version of the results with a new field for seriesList; Store it in the experimentResults object experimentResults = [ {'label': experimentItem.get('label').encode('ascii', 'ignore'), 'date': experimentItem.get('date').encode('ascii', 'ignore'), 'subjectSessionNum': None, 'seriesList': None } for experimentItem in experimentResultsJSON ] # Loop over the MR Experiment Results for experiment in experimentResults: print "Gathering results for " + experiment['label'] # Compose a rest URL for this Experiment restSingleExperimentURL = restExperimentsURL + experiment['label'] # Make a rest request to get the complete XNAT Session XML try: r = requests.get( restSingleExperimentURL, params=xmlFormat, headers=restSessionHeader, timeout=10.0 ) # If we don't get an OK; code: requests.codes.ok r.raise_for_status() # Check if the REST Request fails except requests.Timeout as e: print "Timed out while attempting to retrieve XML:" print " " + str( e ) if not args.restSecurity: print "Note that insecure connections are only allowed locally" exit(1) # Check if the REST Request fails except (requests.ConnectionError, requests.exceptions.RequestException) as e: print "Failed to retrieve XML: %s" % e exit(1) # Parse the XML result into an Element Tree root = etree.fromstring(r.text.encode(r.encoding)) # Extract the Study Date for the session if experiment['date'] == "": experiment['date'] = "2013-01-01" print "Assuming study date of " + experiment['date'] # Start with an empty series list seriesList = list() # Iterate over 'scan' records that contain an 'ID' element for element in root.iterfind(".//" + xnatNS + "scan[@ID]"): # Create an empty seriesDetails record currentSeries = seriesDetails() #Record some basic experiment level info in each scan currentSeries.subjectName = args.Subject currentSeries.sessionLabel = experiment['label'] currentSeries.sessionDate = experiment['date'] currentSeries.fromScanXML( element ) # Add the current series to the end of the list seriesList.append( currentSeries ) # Sort the series list by DateTime seriesList.sort( key=attrgetter('DateTime') ) # Store the subjectSessionNum extracted from the first item (first acquired scan) in the sorted list experiment['subjectSessionNum'] = iter(seriesList).next().subjectSessionNum # Store the series list along with the experiment label experiment['seriesList'] = seriesList # Sort the Experiment Results list by the Subject Session Number experimentResults.sort( key=itemgetter('subjectSessionNum') ) # Name the CSV file by the Subject name csvFile = args.destDir + os.sep + args.Subject + "_" + args.outputMap + ".csv" # Create an empty Series Notes object. This can be populated with field specific notes for each Experiment seriesNotes = seriesDetails() # Open the CSV file for write/binary with open( csvFile, 'wb' ) as f: # Create a CSV Writer for dictionary formatted objects. Give it the Dictionary order for output. csvWriter = csv.DictWriter( f, csvOrder( args.outputMap ) ) # Write out the series labels as a Header if args.outputMap != "package": csvWriter.writerow( seriesLabels(args.outputMap) ) # Loop over all experiment results for experiment in experimentResults: # Populate the Series Notes for this Experiment with the Experiment Date and Label seriesNotes.scan_ID = experiment['label'] seriesNotes.startTime = experiment['date'] # Write out the notes only on 'all' maps if args.outputMap == "all": csvWriter.writerow( seriesNotes.asDictionary(args.outputMap) ) # Loop over all scans in each experiment for scan in experiment['seriesList']: # Write each scan by converting it to a Dictionary and pulling the relevant Mapping subset nextRow = scan.asDictionary(args.outputMap) # But only if this row should be included if args.outputMap == "all" or \ (args.outputMap == "release" and scan.targetForRelease == "1") or \ (args.outputMap == "release" and restServerName == "hcpx-demo.humanconnectome.org") or \ (args.outputMap == "package" and scanIsPackage(scan.dbDesc)): csvWriter.writerow( nextRow ) print "Subject details written to: " + csvFile
[ "mdhouse@gmail.com" ]
mdhouse@gmail.com
94885939895e110e0050528f9b92b238256a9c00
39efbd67fa02ef628bd86051781145b77b8244d9
/PLXs/086-01173-00 ok/CSVReader.py
2965cac991750f4034087c8861c66e11bd242ba1
[]
no_license
hbenr/ProjectBender
9df2326df01ec04db93d2311e0107a5ac2706802
c0432ae0a9ceaf6442f92f59805bdfbdddc2fd14
refs/heads/master
2021-05-29T19:36:07.437213
2015-09-17T20:02:07
2015-09-17T20:02:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,343
py
#------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: MAT.TE # # Created: 20/08/2015 # Copyright: (c) MAT.TE 2015 # Licence: <your licence> #------------------------------------------------------------------------------- import csv from UtilitiesHB import * def cadFetch(BOARD_ORIGIN, CAD_FILENAME): startSaving = False with open(CAD_FILENAME + '.csv', 'rb') as cadFile: reader = csv.reader(cadFile) fiducials = [] devices = [] for row in reader: if row[0] == 'Name': startSaving = True continue if startSaving and (row[0] != '' and not 'H' in row[0] and not 'TP' in row[0] and not 'F' in row[0] and not 'N' in row[0] and not 'P' in row[0] and not 'K' in row[0] and not 'LED' in row[0] and not 'MOV' in row[0]): devices.append(['d', unitsConverter(int(row[2]), False, BOARD_ORIGIN, False), unitsConverter(int(row[1]), False, BOARD_ORIGIN, True), row[0].lower(), 'n0000', row[3], 'partNo', 'f-1', row[0].lower(), 'SHAPE']) elif startSaving and 'F' in row[0]: fiducials.append(['f', unitsConverter(int(row[2]), False, BOARD_ORIGIN, False), unitsConverter(int(row[1]), False, BOARD_ORIGIN, True)]) elif startSaving and (row[0] == ''): break return fiducials, devices def bomFetch(devices, BOM_FILENAME): startSaving = False with open(BOM_FILENAME + '.csv', 'rb') as bomFile: reader = csv.reader(bomFile) for row in reader: currentDevices = [] for elem in row[8].split(','): currentDevices.extend(deviceEnumerator(elem)) if row[0] == 'Part No': startSaving = True continue if startSaving and row[8] != '': for elem in currentDevices: for component in devices: if elem.lower() == component[3]: component[6] = row[4] return sorted(devices, key= lambda x: int(x[2])) def main(): raw_input("Wrong file! Use plxHelper ") if __name__ == '__main__': main()
[ "MAT.TE@CTLMAT0301D.Robertshaw.com" ]
MAT.TE@CTLMAT0301D.Robertshaw.com
4e303dd29190aa0d67c81ae34f62c8efeeaa0d0a
b17af89152a7305efb915da7c856c744e7dbd4f0
/Dict_Project01_NumericIntegrasjon/F6_SendData.py
da51e5ba8dbeb3ed8133bee03f93e93dbcebc84e
[]
no_license
EspenEig/Bachelor2021-vedlegg
6bb8e9efa84710500855f6129ce8f706b16bd690
2893f41e9e92f757360fe7d85dc03fd51d497f39
refs/heads/main
2023-05-01T12:34:45.403503
2021-05-12T16:31:59
2021-05-12T16:31:59
358,355,290
1
0
null
null
null
null
UTF-8
Python
false
false
529
py
import json def SendData(robot, measurements, online): data = {} for key in measurements: if key == "zeroTime" or key == "ts": continue data[key] = (measurements[key][-1]) if online: msg = json.dumps(data) robot["connection"].send(msg) if not robot["connection"].recv(3) == b"ack": print("No data ack") robot["out_file"].write("{},{},{},{}\n".format( data["light"], data["time"], data["flow"], data["volume"]))
[ "54357741+EspenEig@users.noreply.github.com" ]
54357741+EspenEig@users.noreply.github.com
341fc6379af0b753834833efa91503520488d7fa
a3aaf7bb73471c67d4adc40aee159e60e7fc964b
/face_pic.py
f2573255284ef455f037aef1a2398b61799bfee2
[]
no_license
muskaankularia/Gaze-tracker
29360516efbe94a8ef19aeefa8805db7224b15df
dcae52f85d486ce0f8ec1566814be7136c97df38
refs/heads/master
2021-08-22T05:53:12.770849
2017-11-29T12:09:06
2017-11-29T12:09:06
112,461,356
1
0
null
null
null
null
UTF-8
Python
false
false
5,519
py
import numpy as np import cv2 import sys import os import shutil import timm if os.path.exists('./data'): shutil.rmtree('./data') dirname = 'data' os.mkdir(dirname) face_cascade = cv2.CascadeClassifier('/usr/local/Cellar/opencv/3.3.0_3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('//usr/local/Cellar/opencv/3.3.0_3/share/OpenCV/haarcascades/haarcascade_eye.xml') # mouth_cascade = cv2.CascadeClassifier('/usr/local/Cellar/opencv/3.3.0_3/share/OpenCV/haarcascades/haarcascade_mcs_mouth.xml') mouth_cascade = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml') # if len(sys.argv) < 2: # sys.exit('Wrong Usage') # image_name = sys.argv[1] # img = cv2.imread(image_name) camera = cv2.VideoCapture(0) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('sample.avi',fourcc, 3, (1280,720)) counter = 0 kernel = np.ones((3,3),np.uint8) while 1: retval, img = camera.read() # print img.shape gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # print 'y' faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: # print 'face found' cv2.rectangle(img, (x,y), (x+w, y+h), 0, 2) roi_face = gray[y:y+h, x:x+w] roi_face_color = img[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_face, 1.3, 5) for (ex, ey, ew, eh) in eyes: counter += 1 cv2.rectangle(roi_face_color, (ex,ey), (ex+ew, ey+eh), (0,255,0), 2) # print "eye " + str(ex) + " " + str(ey) # roi_eye = roi_face[int(1.2*ey):int(0.8*(ey+eh)), int(1.2*ex):int(0.8*(ex+ew))] roi_eye = roi_face[ey:ey+eh, ex:ex+ew] center = 0 roi_eye = cv2.GaussianBlur(roi_eye,(3,3),0) roi_eye = cv2.addWeighted(roi_eye,1.5,roi_eye,-0.5,0) roi_eye_canny = cv2.Canny(roi_eye,100,200) cv2.imwrite('./data/canny' + str(counter) + '.png', roi_eye_canny) laplacian = cv2.Laplacian(roi_eye,cv2.CV_64F) cv2.imwrite('./data/lapla' + str(counter) + '.png', laplacian) # res = cv2.resize(roi_eye,(int(ew/2), int(eh/2)), interpolation = cv2.INTER_AREA) roi_eyex = cv2.Sobel(roi_eye, cv2.CV_64F, 1, 0, ksize=3) roi_eyey = cv2.Sobel(roi_eye, cv2.CV_64F, 0, 1, ksize=3) roi_eyex = np.absolute(roi_eyex) roi_eyey = np.absolute(roi_eyey) roi_eyex = np.uint8(roi_eyex) roi_eyey = np.uint8(roi_eyey) # sobelx64f = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5) # abs_sobel64f = np.absolute(sobelx64f) # sobel_8u = np.uint8(abs_sobel64f) cv2.imwrite('./data/zsobely' + str(counter) + '.png', roi_eyey) cv2.imwrite('./data/zsobelx' + str(counter) + '.png', roi_eyex) ret, tmp = cv2.threshold(roi_eyex, 0, 255, cv2.THRESH_OTSU) tmp = cv2.erode(tmp, kernel, iterations=1) cv2.imwrite('./data/zsobelxt' + str(counter) + '.png', tmp) mag = np.hypot(roi_eyex, roi_eyey) # magnitude mag *= 255.0 / np.max(mag) # normalize (Q&D) roi_eye_sobel = mag.astype(np.uint8) # roi_eye_sobel = cv2.morphologyEx(roi_eye_sobel, cv2.MORPH_OPEN, kernel) cv2.imwrite('./data/xy' + str(counter) + '.png', roi_eye_sobel) # roi_eye_sobel = cv2.morphologyEx(roi_eye_sobel, cv2.MORPH_OPEN, kernel) # roi_eye_sobel = cv2.erode(roi_eye_sobel, kernel, iterations = 1) # roi_eye_sobel = cv2.morphologyEx(roi_eye_sobel, cv2.MORPH_CLOSE, kernel) ret, roi_eye_sobel = cv2.threshold(roi_eye_sobel, 0, 255, cv2.THRESH_OTSU) roi_eye_sobel = cv2.erode(roi_eye_sobel, kernel, iterations=1) cv2.imwrite('./data/tempthresh' + str(counter) + '.png', roi_eye_sobel) roi_eye_color = roi_face_color[ey:ey+eh, ex:ex+ew] # center = timm.findEyeCenter(roi_eye_color, (0,0)) # cv2.circle(roi_eye_color, center, 5, (255, 255, 255), 2) pupils = cv2.HoughCircles(roi_eye_sobel, cv2.HOUGH_GRADIENT, 1, 100, param1 = 100, param2 = 10, minRadius=int(ew/11), maxRadius=int(ew/3)) if pupils is not None: # print 'not none' pupils = np.round(pupils[0,:]).astype("int") for (x,y,r) in pupils: print str(x) + " " + str(y) + " " + str(r) + " --- " + str(counter) + " " + str(int(ew/11)) + "-" + str(int(ew/3)) # cv2.circle(roi_eye_color, (x, y), r, (255, 165, 0), 2) cv2.circle(roi_eye_color, (x, y), 2, (255, 165, 0), 3) # cv2.imshow('eye' + str(x), roi_eye_color) # print roi_eye_sobel.shape # print roi_eye_color.shape comb = np.zeros(shape=(roi_eye_color.shape[0], roi_eye_color.shape[1]*2, roi_eye_color.shape[2]), dtype=np.uint8) comb[:roi_eye_color.shape[0], :roi_eye_color.shape[1]] = roi_eye_color comb[:roi_eye_sobel.shape[0], roi_eye_sobel.shape[1]:] = roi_eye_sobel[:, :, None] # cat = np.concatenate([roi_eye_sobel, roi_eye_color]) cv2.imwrite('./data/eye' + str(counter) + '.png', comb) # cv2.moveWindow('eye' + str(x), 1000, 100) # cv2.resizeWindow('eye' + str(x), eh*2, ew*2) # mouths = mouth_cascade.detectMultiScale(roi_face, 1.7, 11) # for (mx, my, mw, mh) in mouths: # cv2.rectangle(roi_face_color, (mx, my), (mx+mw, my+mh), (0, 0, 0), 2) # roi_mouth = roi_face[my:my+mh, mx:mx+mw] # roi_mouth_color = roi_face_color[my:my+mh, mx:mx+mw] # roi_mouth = cv2.cornerHarris(roi_mouth, 2, 3, 0.04) # roi_mouth = cv2.dilate(roi_mouth, None) # roi_mouth_color[roi_mouth>0.01*roi_mouth.max()]=[0,0,255] out.write(img) cv2.imshow('test', img) # cv2.imshow('bhawsar', gray) # cv2.moveWindow('bhawsar', 800,100) k = cv2.waitKey(30) & 0xff if k == 27: break camera.release() out.release() # cv2.waitKey(0) cv2.destroyAllWindows()
[ "noreply@github.com" ]
muskaankularia.noreply@github.com
beff39c0b7dcb6bdf841867e852ac3a4d5057438
42dc79035b8488b59374a44ee87136d9fd56bdb3
/30-Day-Challange/Day-7/count_negative_sorted-2.py
1903e4b1dc070af2101c398bcd4be981714a4312
[ "Apache-2.0" ]
permissive
EashanKaushik/LeetCode
f8e655b8a52fa01ef5def44b18b2352875bb7ab8
8ee2a61cefa42b332b6252fafff4a2772d25aa31
refs/heads/main
2023-06-06T17:15:54.218097
2021-07-06T11:46:35
2021-07-06T11:46:35
371,109,481
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
class Solution: def countNegatives(self, grid): m = len(grid) n = len(grid[0]) current = 0 row = 0 col = n - 1 while row < m and col >= 0: curr = grid[row][col] if curr < 0: current += m - row col -= 1 else: row += 1 return current s = Solution() print(s.countNegatives([[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]]))
[ "EashanK16@gmail.com" ]
EashanK16@gmail.com
113b1426d9036aee80c7202882206d1f33646a46
fa1e90dedb7f9b84cd210420215ff6a9bf7e6f2d
/airmozilla/suggest/forms.py
605254a63fff168bd1e667a2ed8a5f5f55e9866b
[]
no_license
sara-mansouri/airmozilla
f7bdf6aeafa9a7a299fc69c506e186ba47be7ccb
8f93162be46044798df1e6d0ce80c8407fc41995
refs/heads/master
2021-01-16T18:28:35.569244
2014-03-28T02:59:31
2014-03-28T02:59:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,080
py
from django import forms from django.conf import settings from django.template.defaultfilters import filesizeformat from django.utils.timesince import timesince from django.utils.safestring import mark_safe from django.db.models import Q from slugify import slugify import requests from funfactory.urlresolvers import reverse from airmozilla.base.forms import BaseModelForm from airmozilla.main.models import ( SuggestedEvent, Event, Tag, Channel, SuggestedEventComment ) from airmozilla.comments.models import SuggestedDiscussion from airmozilla.uploads.models import Upload from . import utils class StartForm(BaseModelForm): event_type = forms.ChoiceField( label='', choices=[ ('upcoming', 'Upcoming'), ('pre-recorded', 'Pre-recorded'), ('popcorn', 'Popcorn') ], widget=forms.widgets.RadioSelect() ) class Meta: model = SuggestedEvent fields = ('title',) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') super(StartForm, self).__init__(*args, **kwargs) # self.fields['upcoming'].label = '' # self.fields['upcoming'].widget = forms.widgets.RadioSelect( # choices=[(True, 'Upcoming'), (False, 'Pre-recorded')] # ) def clean_title(self): value = self.cleaned_data['title'] if Event.objects.filter(title__iexact=value): raise forms.ValidationError("Event title already used") if SuggestedEvent.objects.filter(title__iexact=value, user=self.user): raise forms.ValidationError( "You already have a suggest event with this title" ) return value class TitleForm(BaseModelForm): class Meta: model = SuggestedEvent fields = ('title', 'slug') def clean_slug(self): value = self.cleaned_data['slug'] if value: if Event.objects.filter(slug__iexact=value): raise forms.ValidationError('Already taken') return value def clean_title(self): value = self.cleaned_data['title'] if Event.objects.filter(title__iexact=value): raise forms.ValidationError("Event title already used") return value def clean(self): cleaned_data = super(TitleForm, self).clean() if 'slug' in cleaned_data and 'title' in cleaned_data: if not cleaned_data['slug']: cleaned_data['slug'] = slugify(cleaned_data['title']).lower() if Event.objects.filter(slug=cleaned_data['slug']): raise forms.ValidationError('Slug already taken') return cleaned_data class ChooseFileForm(BaseModelForm): class Meta: model = SuggestedEvent fields = ('upload',) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') super(ChooseFileForm, self).__init__(*args, **kwargs) this_or_nothing = ( Q(suggested_event__isnull=True) | Q(suggested_event=self.instance) ) uploads = ( Upload.objects .filter(user=self.user) .filter(this_or_nothing) .order_by('created') ) self.fields['upload'].widget = forms.widgets.RadioSelect( choices=[(x.pk, self.describe_upload(x)) for x in uploads] ) @staticmethod def describe_upload(upload): html = ( '%s <br><span class="metadata">(%s) uploaded %s ago</span>' % ( upload.file_name, filesizeformat(upload.size), timesince(upload.created) ) ) return mark_safe(html) class PopcornForm(BaseModelForm): class Meta: model = SuggestedEvent fields = ('popcorn_url',) def __init__(self, *args, **kwargs): super(PopcornForm, self).__init__(*args, **kwargs) self.fields['popcorn_url'].label = 'Popcorn URL' def clean_popcorn_url(self): url = self.cleaned_data['popcorn_url'] if '://' not in url: url = 'http://' + url response = requests.get(url) if response.status_code != 200: raise forms.ValidationError('URL can not be found') return url class DescriptionForm(BaseModelForm): class Meta: model = SuggestedEvent fields = ('description', 'short_description') def __init__(self, *args, **kwargs): super(DescriptionForm, self).__init__(*args, **kwargs) self.fields['description'].help_text = ( "Write a description of your event that will entice viewers to " "watch.&lt;br&gt;" "An interesting description improves the chances of your " "presentation being picked up by bloggers and other websites." "&lt;br&gt;" "Please phrase your description in the present tense. " ) self.fields['short_description'].help_text = ( "This Short Description is used in public feeds and tweets. " "&lt;br&gt;If your event is non-public be careful " "&lt;b&gt;not to " "disclose sensitive information here&lt;/b&gt;." "&lt;br&gt;If left blank the system will use the first few " "words of the description above." ) class DetailsForm(BaseModelForm): tags = forms.CharField(required=False) enable_discussion = forms.BooleanField(required=False) class Meta: model = SuggestedEvent fields = ( 'location', 'start_time', 'privacy', 'category', 'tags', 'channels', 'additional_links', 'remote_presenters', ) def __init__(self, *args, **kwargs): super(DetailsForm, self).__init__(*args, **kwargs) self.fields['channels'].required = False if not self.instance.upcoming: del self.fields['location'] del self.fields['start_time'] del self.fields['remote_presenters'] else: self.fields['location'].required = True self.fields['start_time'].required = True self.fields['location'].help_text = ( "Choose an Air Mozilla origination point. &lt;br&gt;" "If the location of your event isn't on the list, " "choose Live Remote. &lt;br&gt;" "Note that live remote dates and times are UTC." ) self.fields['remote_presenters'].help_text = ( "If there will be presenters who present remotely, please " "enter email addresses, names and locations about these " "presenters." ) self.fields['remote_presenters'].widget.attrs['rows'] = 3 if 'instance' in kwargs: event = kwargs['instance'] if event.pk: tag_format = lambda objects: ','.join(map(unicode, objects)) tags_formatted = tag_format(event.tags.all()) self.initial['tags'] = tags_formatted self.fields['tags'].help_text = ( "Enter some keywords to help viewers find the recording of your " "event. &lt;br&gt;Press return between keywords" ) self.fields['channels'].help_text = ( "Should your event appear in one or more particular " "Air Mozilla Channels? &lt;br&gt;If in doubt, select Main." ) self.fields['additional_links'].help_text = ( "If you have links to slides, the presenter's blog, or other " "relevant links, list them here and they will appear on " "the event page." ) self.fields['additional_links'].widget.attrs['rows'] = 3 def clean_tags(self): tags = self.cleaned_data['tags'] split_tags = [t.strip() for t in tags.split(',') if t.strip()] final_tags = [] for tag_name in split_tags: t, __ = Tag.objects.get_or_create(name=tag_name) final_tags.append(t) return final_tags def clean_channels(self): channels = self.cleaned_data['channels'] if not channels: return Channel.objects.filter(slug=settings.DEFAULT_CHANNEL_SLUG) return channels class DiscussionForm(BaseModelForm): emails = forms.CharField(required=False, label="Moderators") class Meta: model = SuggestedDiscussion fields = ('enabled', 'moderate_all') def __init__(self, *args, **kwargs): super(DiscussionForm, self).__init__(*args, **kwargs) event = self.instance.event self.fields['moderate_all'].help_text = ( 'That every comment has to be approved before being shown ' 'publically. ' ) self.fields['emails'].widget.attrs.update({ 'data-autocomplete-url': reverse('suggest:autocomplete_emails') }) if event.privacy != Event.PRIVACY_COMPANY: self.fields['moderate_all'].widget.attrs.update( {'disabled': 'disabled'} ) self.fields['moderate_all'].help_text += ( '<br>If the event is not MoCo private you have to have ' 'full moderation on ' 'all the time.' ) def clean_emails(self): value = self.cleaned_data['emails'] emails = list(set([ x.lower().strip() for x in value.split(',') if x.strip() ])) for email in emails: if not utils.is_valid_email(email): raise forms.ValidationError( '%s is not a valid email address' % (email,) ) return emails class PlaceholderForm(BaseModelForm): class Meta: model = SuggestedEvent fields = ('placeholder_img',) def __init__(self, *args, **kwargs): super(PlaceholderForm, self).__init__(*args, **kwargs) self.fields['placeholder_img'].help_text = ( "We need a placeholder image for your event. &lt;br&gt;" "A recent head-shot of the speaker is preferred. &lt;br&gt;" "Placeholder images should be 200 x 200 px or larger." ) #class ParticipantsForm(BaseModelForm): # # participants = forms.CharField(required=False) # # class Meta: # model = SuggestedEvent # fields = ('participants',) # # def clean_participants(self): # participants = self.cleaned_data['participants'] # split_participants = [p.strip() for p in participants.split(',') # if p.strip()] # final_participants = [] # for participant_name in split_participants: # p = Participant.objects.get(name=participant_name) # final_participants.append(p) # return final_participants # class SuggestedEventCommentForm(BaseModelForm): class Meta: model = SuggestedEventComment fields = ('comment',)
[ "mail@peterbe.com" ]
mail@peterbe.com
ee56c5923d4e412ecef2b0e9a6abc6e9db42e260
1f60222696b27d1a0f93282c73f72f6870c0c7d6
/alpha_transform/AlphaTransformUtility.py
6c4cbca2cb07bcccddf7a558df7b93567d90c79c
[ "MIT" ]
permissive
dedale-fet/alpha-transform
7ff3d5859ccf4924170894a9eb030fa8ac4da099
41b4fb0b28b908391f9ddf17cdcde8b956d3d064
refs/heads/master
2021-01-13T14:28:57.702914
2020-08-04T15:40:22
2020-08-04T15:40:22
72,874,669
14
7
null
2020-07-19T18:47:18
2016-11-04T18:26:33
Python
UTF-8
Python
false
false
11,097
py
r""" This module contains several utility functions which can be used e.g. for thresholding the alpha-shearlet coefficients or for using the alpha-shearlet transform for denoising. Finally, it also contains the functions :func:`my_ravel` and :func:`my_unravel` which can be used to convert the alpha-shearlet coefficients into a 1-dimensional vector and back. This is in particular convenient for the subsampled transform, where this conversion is not entirely trivial, since the different "coefficient images" have varying dimensions. """ import os.path import math import numpy as np import numexpr as ne import scipy.ndimage def find_free_file(file_template): r""" This function finds the first nonexistent ("free") file obtained by "counting upwards" using the passed template/pattern. **Required Parameter** :param string file_template: This should be a string whose ``format()`` method can be called using only an integer argument, e.g. ``'/home/test_{0:0>2d}.txt'``, which would result in ``find_free_file`` consecutively checking the following files for existence: `/home/test_00.txt,` `/home/test_01.txt, ...` **Return value** :return: ``file_template.format(i)`` for the first value of ``i`` for which the corresponding file does not yet exist. """ i = 0 while os.path.isfile(file_template.format(i)): i += 1 return file_template.format(i) def threshold(coeffs, thresh_value, mode): r""" Given a set of coefficients, this function performs a thresholding procedure, i.e., either soft or hard thresholding. **Required parameters** :param coeffs: The coefficients to be thresholded. Either a three-dimensional :class:`numpy.ndarray` or a generator producing two dimensional :class:`numpy.ndarray` objects. :param float thresh_value: The thresholding cutoff :math:`c` for the coefficients, see also ``mode`` for more details. :param string mode: Either ``'hard'`` or ``'soft'``. This parameter determines whether the hard thresholding operator .. math:: \Lambda_cx =\begin{cases} x, & \text{if }|x|\geq c,\\ 0, & \text{if }|x|<c, \end{cases} or the soft thresholding operator .. math:: \Lambda_cx =\begin{cases} x\cdot \frac{|x|-c}{|x|}, & \text{if }|x|\geq c,\\ 0, & \text{if }|x|<c \end{cases} is applied to each entry of the coefficients. **Return value** :return: A generator producing the thresholded coefficients. Each thresholded "coefficient image", i.e., each thresholded 2-dimensional array, is produced in turn. """ if mode == 'hard': for coeff in coeffs: ev_string = 'coeff * (real(abs(coeff)) >= thresh_value)' yield ne.evaluate(ev_string) # yield coeff * (np.abs(coeff) >= thresh_value) elif mode == 'soft': for coeff in coeffs: ev_string = ('(real(abs(coeff)) - thresh_value) * ' '(real(abs(coeff)) >= thresh_value)') large_values = ne.evaluate(ev_string) # large_values = np.maximum(np.abs(coeff) - thresh_value, 0) ev_str_2 = 'coeff * large_values / (large_values + thresh_value)' yield ne.evaluate(ev_str_2) # yield coeff * large_values / (large_values + thresh_value) else: raise ValueError("'mode' must be 'hard' or 'soft'") def scale_gen(trafo): r""" **Required parameter** :param trafo: An object of class :class:`AlphaTransform.AlphaShearletTransform`. **Return value** :return: A generator producing integers. The i-th produced integer is the *scale* (starting from -1 for the low-pass part) of the i-th alpha-shearlet associated to ``trafo``. Hence, if ``coeff = trafo.transform(im)``, then the following iteration produces the associated scale to each "coefficient image":: for scale, c in zip(scale_gen(trafo), coeff): ... """ indices_gen = iter(trafo.indices) next(indices_gen) yield -1 for index in indices_gen: yield index[0] def denoise(img, trafo, noise_lvl, multipliers=None): r""" Given a noisy image :math:`\tilde f`, this function performs a denoising procedure based on shearlet thresholding. More precisely: #. A scale dependent threshold parameter :math:`c=(c_j)_j` is calculated according to :math:`c_j=m_j\cdot \lambda / \sqrt{N_1\cdot N_2}`, where :math:`m_j` is a multiplier for the jth scale, :math:`\lambda` is the noise level present in the image :math:`\tilde f` and :math:`N_1\times N_2` are its dimensions. #. The alpha-shearlet transform of :math:`\tilde f` is calculated using ``trafo``. #. Hard thesholding with threshold parameter (cutoff) :math:`c` is performed on alpha-shearlet coefficients, i.e., for each scale ``j``, each of the coefficients belonging to the jth scale is set to zero if its absolute value is smaller than :math:`c_j` and otherwise it is left unchanged. #. The (pseudo)-inverse of the alpha-shearlet transform is applied to the thresholded coefficients and this reconstruction is the return value of the function. **Required parameters** :param numpy.ndarray img: The “image” (2 dimensional array) that should be denoised. :param trafo: An object of class :class:`AlphaTransform.AlphaShearletTransform`. This object is used to calculate the (inverse) alpha-shearlet transform during the denoising procedure. The dimension of the transform and of ``img`` need to coincide. :param float noise_lvl: The (presumed) noise level present in ``img``. If ``img = img_clean + noise``, then ``noise_lvl`` should be approximately equal to the :math:`\ell^2` norm of ``noise``. In particular, if ``im`` is obtained by adding Gaussian noise with standard deviation :math:`\sigma` (in each entry) to a noise free image :math:`f`, then the noise level :math:`\lambda` is given by :math:`\lambda= \sigma\cdot \sqrt{N_1\cdot N_2}`; see also :func:`AdaptiveAlpha.optimize_denoising`. **Keyword parameter** :param list multipliers: A list of multipliers (floats) for each scale. ``multipliers[j]`` determines the value of :math:`m_j` and thus of the cutoff :math:`c_j = m_j \cdot \lambda / \sqrt{N_1 \cdot N_2}` for scale ``j``. In particular, ``len(multipliers)`` needs to be equal to the number of the scales of ``trafo``. **Return value** :return: The denoised image, i.e., the result of the denoising procedure described above. """ coeff_gen = trafo.transform_generator(img, do_norm=True) if multipliers is None: # multipliers = [1] + ([2.5] * (trafo.num_scales - 1)) + [5] multipliers = [3] * trafo.num_scales + [4] width = trafo.width height = trafo.height thresh_lvls = [multi * noise_lvl / math.sqrt(width * height) for multi in multipliers] thresh_coeff = (coeff * (np.abs(coeff) >= thresh_lvls[scale + 1]) for (coeff, scale) in zip(coeff_gen, scale_gen(trafo))) recon = trafo.inverse_transform(thresh_coeff, real=True, do_norm=True) return recon def image_load(path): r""" Given a '.npy' or '.png' file, this function loads the file and returns its content as a two-dimensional :class:`numpy.ndarray` of :class:`float` values. For '.png' images, the pixel values are normalized to be between 0 and 1 (instead of between 0 and 255) and color images are converted to grey-scale. **Required parameter** :param string path: Path to the image to be converted, either of a '.png' or '.npy' file. **Return value** :return: The loaded image as a two-dimensional :class:`numpy.ndarray`. """ image_extension = path[path.rfind('.'):] if image_extension == '.npy': return np.array(np.load(path), dtype='float64') elif image_extension == '.png': return np.array(scipy.ndimage.imread(path, flatten=True) / 255.0, dtype='float64') else: raise ValueError("This function can only load .png or .npy files.") def _print_listlist(listlist): for front, back, l in zip(['['] + ([' '] * (len(listlist) - 1)), ([''] * (len(listlist) - 1)) + [']'], listlist): print(front + str(l) + back) def my_ravel(coeff): r""" The subsampled alpha-shearlet transform returns a list of differently sized(!) two-dimensional arrays. Likewise, the fully sampled transform yields a three dimensional numpy array containing the coefficients. The present function can be used (in both cases) to convert this list into a single *one-dimensional* numpy array. .. note:: In order to invert this conversion to a one-dimensional array, use the associated function :func:`my_unravel`. Precisely, :func:`my_unravel` satisfies ``my_unravel(my_trafo, my_ravel(coeff)) == coeff``, if coeff is obtained from calling ``my_trafo.transform(im)`` for some image ``im``. The preceding equality holds at least up to (negligible) differences (the left-hand side is a generator while the right-hand side could also be a list). **Required parameter** :param list coeff: A list (or a generator) containing/producing two-dimensional numpy arrays. **Return value** :return: A one-dimensional :class:`numpy.ndarray` from which **coeff** can be reconstructed. """ return np.concatenate([c.ravel() for c in coeff]) def my_unravel(trafo, coeff): r""" This method is a companion method to :func:`my_ravel`. See the documentation of that function for more details. **Required parameters** :param trafo: An object of class :class:`AlphaTransform.AlphaShearletTransform`. :param numpy.ndarray coeff: A one-dimensional numpy array, obtained via ``my_ravel(coeff_unrav)``, where ``coeff_unrav`` is of the same dimensions as the output of ``trafo.transform(im)``, where ``im`` is an image. **Return value** :return: A generator producing the same values as ``coeff_unrav``, i.e., an "unravelled" version of ``coeff``. """ coeff_sizes = [spec.shape for spec in trafo.spectrograms] split_points = np.cumsum([spec.size for spec in trafo.spectrograms]) return (c.reshape(size) for size, c in zip(coeff_sizes, np.split(coeff, split_points)))
[ "felix.voigtlaender@gmail.com" ]
felix.voigtlaender@gmail.com
18c4b876571211b4d59ba56578c12df35106481c
5f08d36d8cf92bff8c778eb4fa04e0df4b5768b1
/Week10/CurveFitting.py
f1719852ab0bba0e27a75c1874c86a835d44f949
[]
no_license
npilgram/PHYS202-S13
ae22e5ced93fdedfe757187c8a364a9c3cb359a9
8ed9162d820e61aae624f5e646b894e83ce5faca
refs/heads/master
2021-01-02T23:13:38.342579
2013-06-15T02:47:14
2013-06-15T02:47:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
924
py
import numpy as np def LinearLeastSquaresFit(x,y): """Take in arrays representing (x,y) values for set of linearly varying data and perform a linear least squares regression. Return the resulting slope and intercept parameters of the best fit line with their uncertainties.""" x_ave = np.sum(x)/len(x) y_ave = np.sum(y)/len(y) xsqr_ave = np.sum((x*x))/len((x*x)) xy_ave = np.sum((x*y))/len((x*y)) m = (xy_ave - (x_ave*y_ave))/(xsqr_ave - (x_ave**2)) b = ((xsqr_ave*y_ave)-(x_ave*xy_ave))/(xsqr_ave - (x_ave**2)) uncer = np.zeros(len(x)) for i in range(len(x)): uncer[i]=y[i]-((m*x[i])+b) uncer_sqr_ave = np.sum((uncer*uncer))/len((uncer*uncer)) m_err = np.sqrt((1/(len(x)-2.))*(uncer_sqr_ave/(xsqr_ave -(x_ave**2)))) b_err = np.sqrt((1/(len(x)-2.))*((uncer_sqr_ave*xsqr_ave)/(xsqr_ave -(x_ave**2)))) return (m,b,m_err,b_err)
[ "npilgram@calpoly.edu" ]
npilgram@calpoly.edu
bc48ed3a69d6249ded7e941d7d465964d67fa3dc
4d946b12fa07bb4375b687e74bbc785d35c5175b
/DIO-intro-python.py
1e8c1c1014ebc5344d98c14d8f69b35db3e45730
[]
no_license
Thalitachargel/100daysofCode
c4994bdc48870fc6b702387fe9ec004148ac73b0
0333a3f0358d1309368a4f93fec6759e307d7dba
refs/heads/main
2023-07-05T02:14:00.105793
2021-08-18T22:28:21
2021-08-18T22:28:21
363,527,384
0
1
null
null
null
null
UTF-8
Python
false
false
12,648
py
#!/usr/bin/env python # coding: utf-8 # # Introdução a programação em Python 🐱‍💻 # ## Digital Inovation One # ## Modulo 6 # 🐍 Organizando conjuntos e subconjuntos de elementos em Python # # In[3]: # O que é conjunto: conjunto = {1, 2, 3, 4} print(type(conjunto)) # In[4]: # Conjunto não permite duplicidade conjunto_Duplo = {1, 2, 3, 4, 4, 2} print(conjunto_Duplo) # In[5]: # adincionando elementos ao conjunto conjunto.add(5) conjunto # In[7]: # removento elemento conjunto.discard(2) conjunto # ### Operações com conjuntos # In[11]: # União entre conjuntos conj1 = {1, 2, 3, 4, 5} conj2 = {5, 6, 7, 8} print( f'conjunto 1 ={ conj1} e conjunto 1 = {conj2}') conj_uniao = conj1.union(conj2) conj_uniao # In[12]: # Intersecção entre conjuntos conj_interseccao = conj1.intersection(conj2) conj_interseccao # In[16]: # Diferença conj_diferencaA = conj1.difference(conj2) conj_diferencaB = conj2.difference(conj1) print(f"conj1 ≠ conj2 = {conj_diferencaA} e conj2 ≠ conj1 = {conj_diferencaB}") # In[20]: # diferença simétrica (o não tem nos dos conjuntos, ou seja, # todos os elementos que não são compartilhados entre os conjuntos) conj_dif_simetrico = conj1.symmetric_difference(conj2) conj_dif_simetrico # ### Pertinencia # In[33]: # Is subset - Se um conjunto é um subconjunto de outro conjA = {1, 2, 3} conjB = {1, 2, 3, 4, 5} conj_subset = conjA.issubset(conjB) conj_subset2 = conjB.issubset(conjA) conj_subset2 if conj_subset == True: print("Conjunto A é subset do Conjunto B") else: print("Conjunto B é subset do Conjunto A") if conj_subset2 == True: print("Conjunto A é subset do Conjunto B") else: print("Conjunto B é subset do Conjunto A") # In[36]: # Super conjunto conj_superset = conjA.issuperset(conjB) conj_superset1 = conjB.issuperset(conjA) if conj_superset == True: print("Conjunto A é superconjunto do Conjunto B") else: print("Conjunto B é superconjunto do Conjunto A") if conj_superset1 == True: print("Conjunto A é superconjunto do Conjunto B") else: print("Conjunto B é superconjunto do Conjunto A") # In[46]: # convertendo uma lista em conjunto lista = ['cachorro', 'gato', 'gato', 'elefante'] conj_animais = set(lista) print(conj_animais, type(lista), type(conj_animais)) # In[51]: # converter de volta a lista #lista_animais = list(conj_animais) #print(lista_animais, type(lista_animais)) # ## Módulo 7 - Construindo Métodos, Funções e Classes em Python # In[56]: # condicional IF, else a = int(input("Primeiro Valor: ")) b = int(input("Segundo valor: ")) if a > b: print(f'O primeiro valor, {a}, é maior que o segundo valor, {b}.') else: print(f'O segundo valor, {b}, é maior que o primeiro valor, {a}.') # In[58]: # E Elif a = int(input("Primeiro Valor: ")) b = int(input("Segundo valor: ")) c = int(input("Terceiro Valor: ")) if a > b and a > c: print(f'O maior numero é o primerio, {a}.') elif b > a and b > c: print(f'O maior numero é o segundo, {b}.') else: print(f'O maior numero é o terceiro, {c}.') # In[62]: # Exercício # saber se o numero digitado é par n = int(input("Digite um número:")) if n == 0: print("Digite um número diferente de zero!") elif n % 2 == 0: print(f'O número {n} é par.') else: print(f'O número {n} é impar') # In[63]: # função é tudo aquilo que retorna valor # Método é Definição e não retorna valor def soma(a, b): return a + b # como tem retorno, vira uma função print(soma(1, 2)) print(soma(3, 4)) # In[64]: def subtracao(a, b): return a - b print(subtracao(10, 2)) # In[76]: # Classe def multiplicacao(a, b): return a * b def divisao(a, b): return (a / b) print(multiplicacao(10, 2)) print(divisao(50, 5)) # Transformando em classe class Calculadora: def __init__(self, num1, num2): self.a = num1 self.b = num2 def soma(self): return self.a + self.b def subtracao(self): return self.a - self.b def multiplicacao(self): return self.a * self.b def divisao(self): return self.a / self.b calculadora = Calculadora(10, 2) print(calculadora.a, calculadora.b) print(calculadora.soma()) print(calculadora.subtracao()) print(calculadora.multiplicacao()) print(calculadora.divisao()) # In[79]: # Calculadora 2 class Calculadora2: def __init__(self): pass def soma(self, a, b): return a + b def subtracao(self, a, b): return a - b def multiplicacao(self, a, b): return a * b def divisao(self, a, b): return a / b calculadora2 = Calculadora2() print(calculadora2.soma(10,2)) print(calculadora2.subtracao(5,3)) print(calculadora2.multiplicacao(100,2)) print(calculadora2.divisao(10,5)) # In[95]: # criar uma televisão usando Class class Televisao: def __init__(self): self.ligada = False self.canal = 5 def power(self): if self.ligada: self.ligada = False else: self.ligada = True def aumenta_canal(self): if self.ligada: self.canal += 1 else: print("A tv está desligada") def diminui_canal(self): if self.ligada: self.canal -= 1 else: print("A tv está desligada") televisao = Televisao() print(f'A televisão está ligada: {televisao.ligada}') televisao.power() print(f'A televisão está ligada: {televisao.ligada}') televisao.power() print(f'A televisão está ligada: {televisao.ligada}') print(f'Canal {televisao.canal}') televisao.aumenta_canal() televisao.power() televisao.aumenta_canal() televisao.aumenta_canal() print(f'Canal {televisao.canal}') televisao.diminui_canal() print(f'Canal {televisao.canal}') # ### Módulo 8 - Lidando com módulos, importação de classes, métodos e lambdas # In[100]: #modulo - são os arquivos py #import ClasseTelevisao #O exercicio proposto só funciona no PY;. # In[108]: def contador_de_letras(lista_palavras): contador = [] for x in lista_palavras: quantidade = len(x) contador.append(quantidade) return contador if __name__ == '__main__': lista = ['cachorro', 'gato'] print(contador_de_letras(lista)) list1=['cachorro', 'gato', 'elefante'] total_de_letras_lista = contador_de_letras(list1) print(f'Total letras da lista {list1} é {total_de_letras_lista}') # In[107]: list1=['cachorro', 'gato', 'elefante'] total_de_letras_lista = contador_de_letras(list1) print(total_de_letras_lista) # In[110]: #Função anonima # convertendo o contador em uma função anonima lista_animais = ['cachorro', 'gato', 'elefante'] #contador_letras = lambda lista # paramentro : [Len (x) for x in lista] #devolução #passe o for de x pela lista, e retorne o len de x em forma de lista contador_letras = lambda lista : [len(x) for x in lista] contador_letras(lista_animais) # In[115]: soma2 = lambda a, b: a + b soma2(2, 3) # In[127]: #criando um dicionario de lambdas calculadora3 ={ 'soma': lambda a, b: a + b, 'subtracao': lambda a, b : a - b, 'multiplicacao': lambda a, b: a * b, 'divisao': lambda a, b : a / b} type(calculadora3) # In[128]: cal3 = calculadora3['soma'] # In[129]: cal3(2,3) # ### Modulo 9 - Gere, copie, mova e escreva # ### Módulo 10 Aprenda a utilizar data e hora # # In[183]: #Importanto a biblioteca from datetime import date, time, datetime, timedelta # In[135]: data_atual = date.today() data_atual # In[137]: #Formatando data atual data_atual.strftime('%d/%m/%y') # In[138]: data_atual.strftime('%d/%m/%Y') # In[139]: data_atual.strftime('%d * %m * %y') # In[140]: data_atual.strftime('%d ~%m~%y') # In[143]: data_atual_str = data_atual.strftime('%A/%B/%Y') data_atual_str # In[145]: type(data_atual) #datetime.date type (data_atual_str) #string # In[186]: # time def trabalhando_com_date(): data_atual = date.today() data_atual_str = data_atual.strftime('%A %B %Y') dia1 = data_atual.day print(data_atual_str, dia1) def trabalhando_com_time(): horario = time(hour=15, minute=18, second=30) print(horario.strftime('%H:%M:%S')) def trabalhando_com_datetime(): data_atual = datetime.now() dia = data_atual.strftime('%d %m %y') hora = data_atual.strftime('%H, %M %S') completa = data_atual.strftime('%c') print(data_atual, dia, hora, completa) print(data_atual.weekday()) tupla = ('Segunda', 'Terça', 'Quarta', 'Quinta', 'Sexta', 'Sábado', 'Domingo') print(tupla[data_atual.weekday()]) data_criada = datetime(2008, 5, 25, 20, 15, 30, 20) print(data_criada) print(data_criada.strftime('%c')) data_str = '21/03/1985 12:20:22' data_con = datetime.strptime(data_str, '%d/%m/%Y %H:%M:%S') print(data_str) #subtração de data e hora nova_data = data_con - timedelta(days = 365, hours = 2) print(nova_data.strftime('%d - %m - %Y')) if __name__ == '__main__': trabalhando_com_date() trabalhando_com_time() trabalhando_com_datetime() # ### Módulo 11 Gerenciando e criando excessões # In[187]: # forçando um erro divisao = 10 / 0 # In[189]: try: divisao = 10 / 0 except ZeroDivisionError: print('Não é possivel dividir por zero') # In[191]: # forçar erro lista = [1, 10] numero = lista[3] # In[198]: try: lista = [1, 2] numero = lista[3] except IndexError: print("Erro ao acessar indice inesistente") except: print('Erro desconhecido') # In[204]: try: x = alma print(alma) except BaseException as ex: print(f'Erro desconhecido. Erro tipo: {ex}.') # In[211]: #else arquivo = open('teste.txt', 'w') try: texto = arquivo.read() print('fechar arquivo') arquivo.close() except ZeroDivisionError: print("não é possivel dividr por zero") except ArithmeticError: print("Erro de op aritmetica") except IndexError: print("Erro ao acessar indice inesistente") except BaseException as ex: print(f'Erro desconhecido. Erro tipo: {ex}.') else: print('Executa quando não ocorre exceção') # In[213]: arquivo = open('teste.txt', 'w') try: texto = arquivo.read() print('fechar arquivo') except ZeroDivisionError: print("não é possivel dividr por zero") except ArithmeticError: print("Erro de op aritmetica") except IndexError: print("Erro ao acessar indice inesistente") except BaseException as ex: print(f'Erro desconhecido. Erro tipo: {ex}.') else: print('Executa quando não ocorre exceção') arquivo.close() # In[223]: #Exercicio while True: try: nota = int(input("Digite uma nota entre 0 e 10: ")) print(nota) if x > 10: break except ValueError: print("Valor inválido. Deve-se digitar apenas Numeros.") # In[222]: #criando classe de excessão class Error(Exception): pass class InputError(Error): def __init__(self, message): self.message = message # In[ ]: while True: try: nota = int(input("Digite uma nota entre 0 e 10: ")) print(nota) if nota > 10: raise InputError('O valor não pode ser maior que 10') elif nota < 0: raise InputError('O valor não pode ser negativo') break except ValueError: print("Valor inválido. Deve-se digitar apenas Numeros.") except InputError as ex: print(ex) # ### Modulo 12 e final: Instalando pacotes e request # In[230]: pip list # In[235]: #bibliotecas ou pacotes get_ipython().system('pip install requests') # In[236]: pip freeze # In[240]: import requests # In[250]: #testando o requests response = requests.get('https://viacep.com.br/ws/70165900/json/') print(response.status_code) # sucesso = 200 print(response.text) print(response.json()) #em formato de dicionário print(type(response.text)) # In[252]: dado_cep = response.json() print(dado_cep['logradouro']) print(dado_cep['complemento']) # In[256]: def pokemon(nome_pokemon): response = requests.get(f'https://pokeapi.co/api/v2/pokemon/{nome_pokemon}') dados_pokemon = response.json() return dados_pokemon pokemon('ditto') # In[257]: #request de sites comuns def retorna_response(url): response = requests.get(url) return response.txt # In[262]: print(retorna_response('https://recruit.navercorp.com/global/recruitMain')) # In[ ]:
[ "noreply@github.com" ]
Thalitachargel.noreply@github.com
ce9628165675f68be35472bfb365504846ce6053
9f078f64c86af7425d32c5e498b0af4458543a8b
/bin/owl
084c37efcdf13305ac24c9f84df33c20cb7572e6
[]
no_license
lucassmagal/Owl
7252ba86f7b4a1deea1be10d1f1a715476585712
40272bdc03415d6073ea62da39399e5a2ace1344
refs/heads/master
2021-01-01T20:17:36.396245
2013-05-12T14:43:09
2013-05-12T14:43:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys from owl.cli import run run(sys.argv[1:])
[ "magal.lucas@gmail.com" ]
magal.lucas@gmail.com
07a5041034955e430ae5f1723511345940c3a5b6
1f4e6b4045df3a0313880da83e69f10d44c8bab4
/4 Data types 3listpy.py
15a8f1cd8c2ab2129144c106420c4f510286c828
[]
no_license
AhmedAliGhanem/PythonForNetowrk-Cisco
daee76b17cc271b56516d559a8fb4184656a15b0
f71b2325db69cb5eb9c6a9fe0c6f04a217468875
refs/heads/master
2022-01-12T09:26:25.338980
2019-06-22T16:18:23
2019-06-22T16:18:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,129
py
#List years = [2000, 2001, 2002] print(years) Repeatable = [2000, 2001, 2000] print(Repeatable) mix = [2000, "yasser", 2002] print(mix) x = ["A", "B", "C"] y = ["D", "E"] z = x + y print(z) z = x * 3 print(z) z = "A" in y print(z) fastethernet_speed=['auto', '10', '100'] print(fastethernet_speed) print(fastethernet_speed[0]) portList = [] portList.append(21) portList.append(80) portList.append(443) portList.append(25) print(portList) portList.sort() print(portList) pos = portList.index(80) print ("[+] There are "+str(pos)+" ports to scan before 80.") portList.remove(443) print(portList) test = 'CCIE CCNP CCNA and CCNT' print(test.split()) fastethernet_duplex = 'auto half full' fastethernet_duplex_list = fastethernet_duplex.split() print(fastethernet_duplex_list) fastethernet_duplex_list[0] = 'Auto' fastethernet_duplex_list[1] = 'Half' fastethernet_duplex_list[2] = 'Full' print(fastethernet_duplex_list) print(fastethernet_duplex_list[0]) del fastethernet_duplex_list[0] print(fastethernet_duplex_list) print('Auto' in fastethernet_duplex_list)
[ "noreply@github.com" ]
AhmedAliGhanem.noreply@github.com
c10ea4aaf707b2472d05f5082eeeb2cded2d7235
e69aa8050bced4e625928e3e18e14e892ba860dc
/Partial_Permutations.py
5886fbe97a1612b6882017146363daf371f01eae
[ "MIT" ]
permissive
Esprit-Nobel/ROSALIND
e65cf85f1fbe0660cda547926d91be3f109edce9
ec964f6d9cc5d97339106c89df865fb105251928
refs/heads/master
2021-01-12T18:16:19.768656
2016-11-02T14:06:50
2016-11-02T14:06:50
71,357,591
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Oct 18 18:18:43 2016 @author: yannick """ import sys import math with open(sys.argv[1], "r") as fichier_lu: CONTENU = fichier_lu.readlines() NUM = CONTENU[0].strip("\n\r\t ").split() TOT = ( math.factorial( long(NUM[0]) ) / \ math.factorial( long(NUM[0])-long(NUM[1]) ) ) \ % 1000000 print TOT
[ "esprit.nobel@orange.fr" ]
esprit.nobel@orange.fr
b29d6c67789222e938357e11fa5b9b8b77863402
6bbe91ea2ebc098b7b7ea5179761f7852875b3f6
/pugbot.py
12aea378d489f64a42a51b0e33ce7a3006854f7e
[]
no_license
dpyro/pugbot
531c1c83ceac8d8ae937247af2d1221752c35f13
1e8f1b30de11f98be9ee53c2128104758f997799
refs/heads/master
2021-01-20T13:49:58.008215
2010-08-27T19:33:28
2010-08-27T19:33:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,453
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # vim: enc=utf-8 from __future__ import print_function from sys import stderr import logging import re from twisted.words.protocols import irc from twisted.internet import reactor, protocol, task from pugdata import * from pugserver import public_ip def connectSSL(irc_server, irc_port, app): f = PugBotFactory(app) reactor.connectSSL(irc_server, irc_port, f, ssl.ClientContextFactory()) def connectTCP(irc_server, irc_port, app): f = PugBotFactory(app) reactor.connectTCP(irc_server, irc_port, f) # needed for @command decorator _commands = {} class PugBot(irc.IRCClient): _re_stripper = re.compile("""[\x0f\x02\x1f\x16\x1d\x11] | # formatting \x03(?:\d{1,2}(?:,\d{1,2})?)? | # mIRC colors \x04[0-9a-fA-F]{0,6} # rgb colors """, re.UNICODE | re.VERBOSE) @staticmethod def _strip_all(str): return PugBot._re_stripper.sub('', str) @staticmethod def _has_color(str): str_strip = PugBot._strip_all(str) return str != str_strip MSG_INFO = 0x1 MSG_CONFIRM = 0x2 MSG_ERROR = 0x3 def __init__(self, app): self.app = app self.nickname = app.irc_nick self.password = app.irc_pass self.color = app.irc_color self.lineRate = .75 self.versionName = 'PugBot' self.keep_alive = task.LoopingCall(self._ping) self.nickmodes = {} self.users = {} # (nick, PugUser) self.logger = logging.getLogger("PugApp.PugBot") def _colorize(self, str, type): color_dict = { self.MSG_ERROR : '\x02\x035,01', self.MSG_INFO : '\x02\x030,01', self.MSG_CONFIRM : '\x02\x033,01' } color_reset = '\x0f' if self.color: # only automatically color if no (custom) color formatting is already present str = color_dict.get(type, '') + str + color_reset if not self._has_color(str) else str + color_reset else: str = self._strip_all(str) return str # overrides def msg(self, user, message, type=None): message_stripped = self._strip_all(message) log_message = u"{0} (msg) ← {1}".format(user, message_stripped) self.logger.info(log_message) if user != self.app.irc_server else self.logger.debug(log_message) if type is not None: message = self._colorize(message, type) nick = PugBot._get_nick(user) irc.IRCClient.msg(self, nick, message) def notice(self, user, message, type=None): message_stripped = self._strip_all(message) self.logger.info(u"{0} (notice) ← {1}".format(user, message_stripped)) if type is not None: message = self._colorize(message, type) nick = PugBot._get_nick(user) irc.IRCClient.notice(self, nick, message) def describe(self, channel, action): self.logger.info("{0} (action) ← {1}".format(channel, action)) irc.IRCClient.describe(self, channel, action) def whois(self, nickname, server=None): self.logger.debug(u"Requested WHOIS {0}".format(nickname)) irc.IRCClient.whois(self, nickname, server) # callbacks def signedOn(self): self.logger.info(u"Signed onto IRC network {0}:{1}".format(self.app.irc_server, self.app.irc_port)) self._nickserv_login() self.join(self.app.irc_channel) self.keep_alive.start(100) def joined(self, channel): self.app.print_irc("* joined channel {0}".format(channel)) self.logger.info(u"Joined channel {0}".format(channel)) self._who(channel) self.whois(self.app.irc_nick) def left(self, channel): self.app.print_irc("* left channel {0}".format(channel)) self.logger.info(u"Left channel {0}".format(channel)) self.nickmodes.clear() self.users.clear() def kickedFrom(self, channel, kicker, message): self.logger.warning(u"Kicked from {0} by {1} ({2})".format(channel, kicker, message)) self.nickmodes.clear() self.users.clear() task.deferLater(reactor, 5.0, self.join, self.app.irc_channel) def nickChanged(self, nick): self.logger.warning(u"Nick changed to: {0}".format(nick)) def privmsg(self, user, channel, msg): msg = self._strip_all(msg) self.logger.info(u":{0} (msg) → {1}: {2}".format(user, channel, msg)) cmd = msg.split(' ', 1)[0].lower() nick = PugBot._get_nick(user) if cmd in _commands: cmd_f, cmd_access = _commands[cmd] if cmd_access is None: cmd_f(self, user, channel, msg) elif nick not in self.users: self.whois(nick) self.notice(user, "Refreshing access list, please try again shortly.", self.MSG_ERROR) elif self.users[nick].irc_access >= cmd_access: cmd_f(self, user, channel, msg) else: self.notice(user, "You don't have access to this command!", self.MSG_ERROR) def noticed(self, user, channel, msg): self.logger.info(u"{0} (notice) → {1}: {2}".format(user, channel, msg)) def action(self, user, channel, data): self.logger.info(u"{0} (action) → {1}: {2}".format(user, channel, msg)) def _purge_user(self, user, reason): self.logger.info(u"{0}: {1}".format(user, reason)) nick = PugBot._get_nick(user) if nick in self.users: p_user = self.users[nick] if p_user in self.app.players: self.app.remove(p_user) self.logger.debug(u"Removed user {0} from game ({1})".format(nick, reason)) self._list_players(channel) del self.users[nick] def userLeft(self, user, channel): reason = u"left {0}".format(channel) if channel.lower() == self.app.irc_channel: self._purge_user(user, reason) def userQuit(self, user, quitMessage): reason = u"quit ({0})".format(quitMessage) self._purge_user(user, reason) def userKicked(self, kickee, channel, kicker, message): reason = u"kicked by {0} in {1} ({2})".format(kicker, channel, message) if channel.lower() == self.app.irc_channel: self._purge_user(kickee, reason) def userRenamed(self, oldname, newname): if oldname in self.users: p_user = self.users[oldname] p_user.irc_name = newname self.db_session.add(p_user) self.db_session.commit() self.users[newname] = p_user del self.users[oldname] self.logger.info(u"User renamed: {0} → {1}".format(oldname, newname)) def modeChanged(self, user, channel, set, modes, args): if channel.lower() == self.app.irc_channel: self._who(channel) mode_prefix = '+' if set else '-' for mode, arg in zip(modes, args): self.logger.debug(u"{0} → {1} mode change: {2}{3} {4}".format( user, channel, mode_prefix, mode, arg)) def pong(self, user, secs): self.logger.debug(u"{0} (pong) ← {1}".format(user, secs)) def irc_RPL_WHOREPLY(self, prefix, args): me, chan, uname, host, server, nick, modes, name = args log_msg = u"Recieved WHOREPLY: chan: {0}, uname: {1}, host: {2}, server: {3}, nick: {4}, modes: {5}, name: {6}".format( chan, uname, host, server, nick, modes, name) self.logger.debug(log_msg) if chan.lower() == self.app.irc_channel: access = PugBot._get_access(modes) self.nickmodes[nick] = access self.logger.debug(u"Set {0} to access level {1}".format(nick, access)) def irc_RPL_ENDOFWHO(self, prefix, args): self.logger.debug(u"Recieved WHO list: {0}".format(args)) def irc_RPL_WHOISUSER(self, prefix, args): self.logger.debug(u"WHOIS list: {0}".format(args)) def irc_RPL_WHOISACCOUNT(self, prefix, args): me, nick, account, msg = args self.logger.debug(u"WHOIS account: nick: {0}, account {1}".format(nick, account)) if nick in self.users: self.users[nick].irc_account = account else: p_user = PugUser(nick, account) self.users[nick] = p_user def irc_RPL_ENDOFWHOIS(self, prefix, args): self.logger.debug(u"Recieved WHOIS: {0}".format(args)) @staticmethod def _get_nick(user): return user.split('!', 1)[0] @staticmethod def _get_access(modes): mode_dict = { '@': PugUser.IRC_OP, '+': PugUser.IRC_VOICED } for key, val in mode_dict.iteritems(): if key in modes: return val return PugUser.IRC_USER def _who(self, channel): msg = 'WHO {0}'.format(channel.lower()) self.logger.debug(u"Requested {0}".format(msg)) self.sendLine(msg) def _ping(self): self.ping(self.app.irc_server) def _nickserv_login(self): self.msg('NickServ@services.', 'IDENTIFY {0} {1}'.format(self.nickname, self.password)) def _authserv_login(self): self.msg('AuthServ@services.', 'AUTH {0} {1}'.format(self.nickname, self.password)) def _list_players(self, channel): players = self.app.players if len(players) == 0: self.msg(channel, "No players are currently signed up.", self.MSG_INFO) else: player_list = ', '.join((p.irc_nick for p in self.app.players)) suffix = 's' if len(self.app.players) != 1 else '' self.msg(channel, "{0} player{1}: {2}".format(len(players), suffix, player_list), self.MSG_INFO) def _teams(self, channel): team1, team2 = self.app.teams() team1 = ', '.join((p.irc_nick for p in team1)) team2 = ', '.join((p.irc_nick for p in team2)) self.msg(channel, "10,01BLU Team: {0}".format(team1)) self.msg(channel, "05,01RED Team: {0}".format(team2)) msg_red = "You have been assigned to RED team. Connect as soon as possible to {0}:{1}".format( self.app.rcon_server, self.app.rcon_port) msg_blu = "You have been assigned to BLU team. Connect as soon as possible to {0}:{1}".format( self.app.rcon_server, self.app.rcon_port) [self.msg(p.irc_nick, msg_red, MSG_INFO) for p in team1] [self.msg(p.irc_nick, msg_blu, MSG_INFO) for p in team2] class command(object): def __init__(self, name, access=None): self.name = name self.access = access def __call__(self, f): global _commands if not isinstance(self.name, str): for name in self.name: name = name.lower() _commands[name] = (f, self.access) else: name = self.name.lower() _commands[name] = (f, self.access) def exec_cmd(*args): try: f(args) except Exception as e: print(Fore.RED + e, file=stderr) self.logger.exception(e) return exec_cmd # commands @command('!startgame', PugUser.IRC_OP) def cmd_startgame(self, user, channel, msg): self.app.startgame() self.msg(channel, "Game started. Type !add to join the game.", self.MSG_INFO) @command([ '!add', '!a' ], PugUser.IRC_USER) def cmd_join(self, user, channel, msg): nick = PugBot._get_nick(user) p_user = self.users[nick] if self.app.game is not None: if p_user not in self.app.players: self.app.add(p_user) self.notice(user, "You successfully added to the game.", self.MSG_CONFIRM) if len(self.app.players) >= 12: self._teams(channel) else: self._list_players(channel) else: self.notice(user, "You have already signed up for the game!", self.MSG_ERROR) else: self.notice(user, "There is no active game to sign up for!", self.MSG_ERROR) @command('!join') def cmd_add(self, user, channel, msg): self.notice(user, "Please use !add instead.", self.MSG_ERROR) @command([ '!remove', '!r' ], PugUser.IRC_USER) def cmd_remove(self, user, channel, msg): nick = PugBot._get_nick(user) p_user = self.users[nick] if p_user in self.app.players: self.app.remove(p_user) self.notice(user, "You successfully removed from the game.", self.MSG_CONFIRM) self._list_players(channel) else: self.notice(user, "You are not in the game!", self.MSG_ERROR) @command(('!players', '!p')) def cmd_list(self, user, channel, msg): if self.app.game is None: self.msg(channel, "There is no game running currently.", self.MSG_INFO) else: self._list_players(channel) @command('!endgame', PugUser.IRC_OP) def cmd_endgame(self, user, channel, msg): if self.app.game is not None: self.app.endgame() self.msg(channel, "Game ended.", self.MSG_INFO) else: self.notice(user, "There is no game to be ended!", self.MSG_ERROR) @command('!server') def cmd_server(self, user, channel, msg): info = self.app.serverinfo() self.msg(channel, "connect {0}:{1};".format(self.app.rcon_server, info['port']), self.MSG_INFO) #TODO: Why does it give key errors when using format()? self.msg(channel, "%(map)s | %(numplayers)s / %(maxplayers)s | stv: %(specport)s" % (info), self.MSG_INFO) @command('!mumble') def cmd_mumble(self, user, channel, msg): self.msg(channel, ("Mumble is the shiniest new voice server/client used by players to communicate with each other.\n" "It's not laggy as hell like Ventrilo and has a sweet ingame overlay. Unfortunately, Europeans use it.\n" "Mumble IP: {0} port: {1}").format(self.app.mumble_server, self.app.mumble_port), self.MSG_INFO) @command('!version') def cmd_version(self, user, channel, msg): self.msg(channel, "PugBot: 3alpha", self.MSG_INFO) @command('!bear') def cmd_bear(self, user, channel, msg): self.describe(channel, "goes 4rawr!", self.MSG_INFO) @command('!magnets') def cmd_magnets(self, user, channl, msg): self.msg(channel, "What am I, a scientist?", self.MSG_INFO) @command('!rtd') def cmd_rtd(self, user, channel, msg): nick = PugBot._get_nick(user) self.msg(channel, "Don't be a noob, {0}.".format(nick), self.MSG_INFO) @command('!whattimeisit') def cmd_whattimeisit(self, user, channel, msg): nick = PugBot._get_nick(user) self.msg(channel, "Go back to #tf2.pug.na, {0}.".format(nick)) class PugBotFactory(protocol.ReconnectingClientFactory): protocol = PugBot def __init__(self, app): self.app = app self.logger = logging.getLogger("PugApp.PugBot") def buildProtocol(self, addr): self.resetDelay() p = PugBot(self.app) p.factory = self return p def clientConnectionLost(self, connector, reason): msg = "connection lost, reconnecting: {0}".format(reason) self.app.print_irc(msg) self.logger.error(msg) protocol.ReconnectingClientFactory.clientConnectionLost(self, connector, reason) def clientConnectionFailed(self, connector, reason): msg = "connection failed: {0}".format(reason) self.app.print_irc(msg) self.logger.error(msg) protocol.ReconnectingClientFactory.clientConnectionLost(self, connector, reason)
[ "darkpyro@gmail.com" ]
darkpyro@gmail.com
791732e7600f99bd887cc9a3ffddbe99e5bf9c14
fe7feafddd2b03814046039411afbaafd1cdcd43
/b7/b7.py
7b38e13986d44c3e30b1ada5028f64862afafad0
[]
no_license
vamsikrishna2421/Scripting-Languages
d87e668eb8d0d9002cd32bed301a7795d4477908
89fc94ff6d0e77a4e75bbee3a127ac0b3e16cb51
refs/heads/master
2020-06-25T20:14:41.082900
2017-12-26T21:09:37
2017-12-26T21:09:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,054
py
import pandas as pd import matplotlib.pyplot as plt fname=raw_input("Enter filename: ") df=pd.read_csv(fname) print "Headers of the Dataset are :-" #print df.columns.values print df.head(0) print "**Dataset Description**" print df.info() print df.describe() df=df.drop(["Pclass","PassengerId","Parch","Name"],axis=1) print "\n\nAfter Dropping Unwanted Columns:-\n",df.head(0) print "\nWith Empty Column Values:-\n",df df['Cabin']=df["Cabin"].fillna("CC55") print "\n\nWithout Empty Column Values:-\n",df print "\n\nNumber of Entries: ",len(df) print "\nNumber of Columns: ",len(df.columns) print "\n\nAttributes and Their Datatypes:-\n" df.info() print "\nMinimum Age: ",df['Age'].min() print "\nMaximum Age: ",df['Age'].max() print "\nMean Age: ",round(df['Age'].mean(),2) gp=df['Age'].plot.hist() gp.set_ylabel("Number of People") gp.set_xlabel("Age") gp.set_title("Age vs No. of People") plt.show() dgp=df.Age.plot() dgp.set_ylabel("Age") dgp.set_xlabel("Number of People") dgp.set_title("Age vs No. of People") plt.show()
[ "noreply@github.com" ]
vamsikrishna2421.noreply@github.com
99aaac368b5a91c9ccdea2dd36758013b517c21f
03db4adc692a989a0dbc90d1175bdabaaa5341b3
/Lab-9-hhu14.py
2af4c479900e134d179c8572e04c55d197cc93ab
[]
no_license
MeloHu/CS128
e70d18668238533cd0e8b42588e5d7b0e88c8766
e2595aea14f150efce25816b1215f35ef319b751
refs/heads/master
2021-05-05T10:06:35.993342
2017-09-19T04:24:44
2017-09-19T04:24:44
104,021,607
0
0
null
null
null
null
UTF-8
Python
false
false
1,745
py
# coding: utf-8 # In[ ]: ## Honglie Hu,hhu14@earlham.edu,Saturday&8:00 at 66.5486,-18.0233,Lab9-M&M # In[1]: ## Part A def main(): filename = input("file_name:") file = open(filename,"r") text = file.read() length = text.split() count=len(length) print("Count:",count) TheNumber =[float(i) for i in length] file.close() ## to get "mode" mNumber = [TheNumber.count(i) for i in TheNumber] position = max(mNumber) positionArray = mNumber.index(position) Mode = TheNumber[positionArray] ## -------------------------------------- print("Total:",sum(TheNumber)) print("Smallest:",min(TheNumber)) print("Largest:",max(TheNumber)) average=sum(TheNumber)/count print("Mode:",Mode) print("Average:",average) main() # In[2]: ## Part B def main(): import math filename = input("file_name:") file = open(filename,"r") text = file.read() length = text.split() count = len(length) print("Count:",count) TheNumber =[float(i) for i in length] file.close() ## to get "mode" mNumber = [TheNumber.count(i) for i in TheNumber] position = max(mNumber) positionArray = mNumber.index(position) Mode = TheNumber[positionArray] ## --------------------------------- print("Total:",sum(TheNumber)) print("Smallest:",min(TheNumber)) print("Largest:",max(TheNumber)) average=sum(TheNumber)/count print("Mode:",Mode) ## to get "median" TheNumber.sort() medianNumber = len(TheNumber) Median =(TheNumber[math.floor(medianNumber/2)]) print("Median:",Median) ## ---------------------------------- print("Average:",average) main() # In[ ]:
[ "noreply@github.com" ]
MeloHu.noreply@github.com
d1c81821046b2be4b5a8b0c06ec25dac7c3a6841
cc33d6045e08be160dcae36dc9e9e24d190878d8
/visualization/visualizer2d.py
84f60383c873dd67276d11a3c1b07c0329de4ffb
[ "Apache-2.0" ]
permissive
StanfordVL/visualization
66ca20a2d7d435b1fc950dfbed4e205488418e3a
06a179c550a608a548f3cad70f06dd0c8610fa66
refs/heads/master
2021-06-23T01:54:16.414594
2017-08-30T01:05:43
2017-08-30T01:05:43
105,830,187
0
0
null
2017-10-04T23:35:12
2017-10-04T23:35:12
null
UTF-8
Python
false
false
5,636
py
""" Common 2D visualizations using pyplot Author: Jeff Mahler """ import numpy as np import IPython import matplotlib.pyplot as plt import matplotlib.tri as mtri from autolab_core import Box, Contour from perception import BinaryImage, ColorImage, DepthImage, GrayscaleImage, RgbdImage, GdImage, SegmentationImage class Visualizer2D: @staticmethod def figure(size=(8,8), *args, **kwargs): """ Creates a figure. Parameters ---------- size : 2-tuple size of the view window in inches args : list args of mayavi figure kwargs : list keyword args of mayavi figure Returns ------- pyplot figure the current figure """ return plt.figure(figsize=size, *args, **kwargs) @staticmethod def show(*args, **kwargs): """ Show the current figure """ plt.show(*args, **kwargs) @staticmethod def clf(*args, **kwargs): """ Clear the current figure """ plt.clf(*args, **kwargs) @staticmethod def xlim(*args, **kwargs): """ Set the x limits of the current figure """ plt.xlim(*args, **kwargs) @staticmethod def ylim(*args, **kwargs): """ Set the y limits the current figure """ plt.ylim(*args, **kwargs) @staticmethod def savefig(*args, **kwargs): """ Save the current figure """ plt.savefig(*args, **kwargs) @staticmethod def colorbar(*args, **kwargs): """ Adds a colorbar to the current figure """ plt.colorbar(*args, **kwargs) @staticmethod def subplot(*args, **kwargs): """ Creates a subplot in the current figure """ plt.subplot(*args, **kwargs) @staticmethod def title(*args, **kwargs): """ Creates a title in the current figure """ plt.title(*args, **kwargs) @staticmethod def xlabel(*args, **kwargs): """ Creates an x axis label in the current figure """ plt.xlabel(*args, **kwargs) @staticmethod def ylabel(*args, **kwargs): """ Creates an y axis label in the current figure """ plt.ylabel(*args, **kwargs) @staticmethod def legend(*args, **kwargs): """ Creates a legend for the current figure """ plt.legend(*args, **kwargs) @staticmethod def scatter(*args, **kwargs): """ Scatters points """ plt.scatter(*args, **kwargs) @staticmethod def plot(*args, **kwargs): """ Plots lines """ plt.plot(*args, **kwargs) @staticmethod def imshow(image, **kwargs): """ Displays an image. Parameters ---------- image : :obj:`perception.Image` image to display """ if isinstance(image, BinaryImage) or isinstance(image, GrayscaleImage): plt.imshow(image.data, cmap=plt.cm.gray, **kwargs) elif isinstance(image, ColorImage) or isinstance(image, SegmentationImage): plt.imshow(image.data, **kwargs) elif isinstance(image, DepthImage): plt.imshow(image.data, cmap=plt.cm.gray_r, **kwargs) elif isinstance(image, RgbdImage): # default to showing color only, for now... plt.imshow(image.color.data, **kwargs) elif isinstance(image, GdImage): # default to showing gray only, for now... plt.imshow(image.gray.data, cmap=plt.cm.gray, **kwargs) plt.axis('off') @staticmethod def box(b, line_width=2, color='g', style='-'): """ Draws a box on the current plot. Parameters ---------- b : :obj:`autolab_core.Box` box to draw line_width : int width of lines on side of box color : :obj:`str` color of box style : :obj:`str` style of lines to draw """ if not isinstance(b, Box): raise ValueError('Input must be of type Box') # get min pixels min_i = b.min_pt[1] min_j = b.min_pt[0] max_i = b.max_pt[1] max_j = b.max_pt[0] top_left = np.array([min_i, min_j]) top_right = np.array([max_i, min_j]) bottom_left = np.array([min_i, max_j]) bottom_right = np.array([max_i, max_j]) # create lines left = np.c_[top_left, bottom_left].T right = np.c_[top_right, bottom_right].T top = np.c_[top_left, top_right].T bottom = np.c_[bottom_left, bottom_right].T # plot lines plt.plot(left[:,0], left[:,1], linewidth=line_width, color=color, linestyle=style) plt.plot(right[:,0], right[:,1], linewidth=line_width, color=color, linestyle=style) plt.plot(top[:,0], top[:,1], linewidth=line_width, color=color, linestyle=style) plt.plot(bottom[:,0], bottom[:,1], linewidth=line_width, color=color, linestyle=style) @staticmethod def contour(c, subsample=1, size=10, color='g'): """ Draws a contour on the current plot by scattering points. Parameters ---------- c : :obj:`autolab_core.Contour` contour to draw subsample : int subsample rate for boundary pixels size : int size of scattered points color : :obj:`str` color of box """ if not isinstance(c, Contour): raise ValueError('Input must be of type Contour') for i in range(c.num_pixels)[0::subsample]: plt.scatter(c.boundary_pixels[i,1], c.boundary_pixels[i,0], s=size, c=color)
[ "jmahler@berkeley.edu" ]
jmahler@berkeley.edu
4ceac2bc4f9946d9f2573cc41ecd8880bc8d7375
d200aee203cb0d384213747d5fd3934c80c9728a
/Python/First Exercise.py
5632cb72b27aebec64b0d76abd7f701832a9d8de
[]
no_license
Dmiller2599/BFOR206
1ab1b43e38423926080f15f2b7d50c44612906f3
a8cae7cc8fe60f63175e3abc6ed4b4f7a68ac247
refs/heads/main
2023-03-20T19:17:18.063724
2021-03-21T03:29:53
2021-03-21T03:29:53
335,765,737
0
0
null
null
null
null
UTF-8
Python
false
false
1,525
py
# -*- coding: utf-8 -*- """ Spyder Editor This is a block comment. I can type whatever I desire here. This script will demonstarte basic variables, if statements, and for loops with Python. """ # this is a normal comment. """ The comment below defines a chunck that spyder can use to separate parts of code into small blocks. This makes it easy to run just a small part of your code. The syntax is #%% If you want to name a chunk #%% chunk name """ #%% define vars # To run a single line press, f9 my_str = "this is a string" print(my_str) my_num = 123.456789 my_int = 123 print(my_num, my_int) # to run entire chunk # Ctrl + Enter (Cmd + Enter on Mac) # to run the entire chunk and go to the next chunk # Shift + Enter #%% if statements a = 0 b = 1 print("the value of a is:", a) if a > b: # Everything indented is part of the if statement print("a is greater than b. Wow!") elif a < b: print("a is less than b. Weak!") else: print("a and b are the same, eh?") print("Done with if statements.") #%% for loops for i in range(10): print("the number i is", i) #%% nested statements for i in range(5, 10): print("i is ", i) # indents are important! for j in range(3): print("j is ", j) print("done with nested loops") #%% lab """ Fix this code below to complete the lab """ my_list = ['Hello', 'BFOR', 206, None, 'Bye!'] for item in my_list: if item is None: print("Found item with value of None!") else: print("The item is", item)
[ "david.miller2599@gmail.com" ]
david.miller2599@gmail.com
c2a6d24f20bb1c2478b4feea8182623aca53bac4
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_14413.py
5e67c83692878ae8becbb59fe8019e05781959d1
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
140
py
# changing type of a entry in dictionary throws error d = {'today': datetime.today()} d['today'] = d['today'].strftime(&lt;your format&gt;)
[ "ubuntu@ip-172-31-7-228.us-west-2.compute.internal" ]
ubuntu@ip-172-31-7-228.us-west-2.compute.internal
1e65771ae50c232198a15764de8fa56266b68719
646c30e512e7ead3de33974e856f1a0ef242fec8
/Educational Codeforces Round 73/C. Perfect Team.py
b972a3b41cc05690f80a2878cd9c667420188aad
[]
no_license
Hybrid-Skills/Codeforces
2194f6d78186b8f6af5389ae6eccdd45c724ee23
68f281ba3d14ee039aa89238f3545bf06b90bc74
refs/heads/master
2020-06-03T02:38:24.502731
2019-11-16T16:30:25
2019-11-16T16:30:25
191,399,681
0
0
null
null
null
null
UTF-8
Python
false
false
292
py
for _ in range(int(input())): c, m, x = map(int, input().split()) maxi = (c + m + x)//3 if c >= m: if m <= maxi: print(m) elif m > maxi: print(maxi) else: if c <= maxi: print(c) else: print(maxi)
[ "ankurgoyal616@gmail.com" ]
ankurgoyal616@gmail.com
9cff0f2a316ca7bb8e9daefe0127a1a8ef5609ea
90177443dddd57dc7a8ad2cfb0758b0abb2a10f2
/currency_converter.py
d786177fbbec6974fdfcfcaa260732194b7bc02b
[]
no_license
Tengtiantian/data-analytics
18181d6d17d4077f503f505500f50b1fdb6efe44
ac63bde80a4355c2d0911f60fd8f55683ae026bf
refs/heads/main
2023-07-10T15:53:32.334067
2021-08-17T09:19:25
2021-08-17T09:19:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
""" 作者:梁斌 功能:汇率兑换 版本:1.0 日期:01/08/2017 """ # 汇率 USD_VS_RMB = 6.77 # 人民币的输入 rmb_str_value = input('请输入人民币(CNY)金额:') # 将字符串转换为数字 rmb_value = eval(rmb_str_value) # 汇率计算 usd_value = rmb_value / USD_VS_RMB # 输出结果 print('美元(USD)金额是:', usd_value)
[ "wangsiyuan_id@126.com" ]
wangsiyuan_id@126.com
0239f50106a25909870229a9b49d17ca773a5c68
d125a7467b815ea3027567b0a6976c8ad730beb9
/src/itsmservice/itsmservice/conf/product.py
82ef0f132d7f11c4ceea13a01500a1df5a454f0f
[]
no_license
sunyaxiong/itsmservice
06a1cb38b7314695613e2432f2e1d56c86aad815
e50fccae9ae536ac520337ec79b1d1c985e49aa4
refs/heads/master
2022-12-12T11:14:03.838601
2018-10-31T06:17:25
2018-10-31T06:17:25
137,029,391
0
0
null
2022-12-08T00:58:47
2018-06-12T06:50:01
JavaScript
UTF-8
Python
false
false
1,765
py
# cas conf SUCC_REDIRECT_URL = "itsm.ecscloud.com" CAS_SERVER_URL = "http://cas.ecscloud.com/cas/" CMP_URL = "http://cmp.ecscloud.com" # CAS_REDIRECT_URL = "http://www.baidu.com" # databases conf DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'itsm', 'USER': 'root', 'PASSWORD': 'Itsm@vstecs.com', 'HOST': '127.0.0.1', 'PORT': '3306', 'OPTIONS': { 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'", 'charset': 'utf8mb4', }, }, 'cas_db': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'cas', 'USER': 'root', 'PASSWORD': 'Db@vstecs.com', "HOST": "172.31.31.255", "PORT": "3306", }, } # use multi-database in django DATABASE_ROUTERS = ['itsmservice.database_router.DatabaseAppsRouter'] DATABASE_APPS_MAPPING = { # example: # 'app_name':'database_name', 'cas_sync': 'cas_db', } # fit2cloud api conf INTERNET_HOST = "cmp.ecscloud.com" CLOUD_HOST = "172.16.13.155" CMDB_HOST = "172.16.13.155" access_key = "My00ZjRkMzVkZA==" cloud_secret_key = "228e1f50-3b39-4213-a8d8-17e8bf2aeb1e" CMDB_CONF = { "access_key": access_key, "version": "v1", "signature_method": "HmacSHA256", "signature_version": "v1" } CLOUD_CONF = { "access_key": access_key, "version": "v1", "signature_method": "HmacSHA256", "signature_version": "v1", "user": "sunyaxiong@vstecs.com", } secret_key = cloud_secret_key # cloud_secret_key = '228e1f50-3b39-4213-a8d8-17e8bf2aeb1e' # mail EMAIL_HOST = 'smtp.163.com' EMAIL_PORT = 25 EMAIL_HOST_USER = 'sunyaxiongnn@163.com' EMAIL_HOST_PASSWORD = 'Sun880519' EMAIL_SUBJECT_PREFIX = u'[vstecs.com]' EMAIL_USE_TLS = True
[ "sunyaxiong" ]
sunyaxiong
479f083fa79fc3fdc8c1cf6c85a8c0a00641158c
a62b70e3eed1bee2b2214f1f78be131d9485f370
/codes/app.py
3794515aeaaa27242abe484bc055afe523041a2a
[]
no_license
nileshvarshney/restful_database
53a12a68f40d142021c30d155d9b67bc3fab99aa
2a16b74c2ab99804158d9eeb23fec0ada33292aa
refs/heads/master
2020-12-03T07:50:35.017918
2020-01-03T07:30:52
2020-01-03T07:30:52
231,248,830
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
from flask import Flask from flask_restful import Api from flask_jwt import JWT from security import authenticate, identity from resources.user import RegisterUser from resources.item import ItemList, Items app = Flask(__name__) api = Api(app) app.secret_key='sanjose' jwt = JWT(app, authentication_handler=authenticate, identity_handler=identity) # /auth api.add_resource(Items,'/item/<string:name>') api.add_resource(ItemList,'/items') api.add_resource(RegisterUser,'/registerUser') app.run(port=5000,debug=True)
[ "nilvarshney@stubhub.com" ]
nilvarshney@stubhub.com
d9b3198dc97ae3d100c2537f1a374cc313ba3383
0e22ce0913d3f0f7a7404a3add796533df10ffd2
/code_exam_student_grade.py
db18cc99d9d2ae1c6cf6534b6d0b6f0c95625ef4
[]
no_license
Bhuvan1696/PythoN
714e98717d277c81d8a6d0a83873af0ff6f45df3
685eddd9cb7132867519f9dff71ed3a55502cca6
refs/heads/master
2020-12-09T18:05:57.724508
2020-02-22T17:51:06
2020-02-22T17:51:06
233,379,464
0
0
null
null
null
null
UTF-8
Python
false
false
1,248
py
""" Student Mark Statement """ def grade(percentage, eng, sci, mat): if ( eng >= 25 and sci >= 35 and mat >= 35): if (percentage > 90): print ("Grade A") elif (percentage > 75 and percentage <= 90): print ("Grafe B") else: print ("Average") else: print("Fail..!") def total_marks(eng, theory, practical, mat): if (eng <= 75 and theory <= 75 and practical <= 25 and mat <= 100): tot_sci = theory + practical total = eng + tot_sci + mat percent = total/3 print ("Over all percentage :", percent) grade(percent, eng, tot_sci, mat) else: print(" Out of Marks..") def get_marks(): eng = input("Enter English out of 75 :") eng = int(eng) sci_thoery = input("Enter Science_Thoery out of 75 :") sci_thoery = int(sci_thoery) sci_practical = input("Enter Science_Pracical out of 25 :") sci_practical = int(sci_practical) mat = input("Enter Maths out of 100 :") mat = int(mat) return eng, sci_thoery, sci_practical, mat def main(): english, thoery, practical, maths = get_marks() total_marks(english, thoery, practical, maths) #Main starts from here main()
[ "noreply@github.com" ]
Bhuvan1696.noreply@github.com
eeb85c0763b4b58838c030ceccd1de9ec42a82e6
5cea11c9373d997430b523227ce81b61972ad1e3
/tests/test_client_events.py
bd3bc8ac4bf3a96cd62673408ee09427626646ff
[ "BSD-3-Clause" ]
permissive
tinylambda/grpclib
fcc0d4f5723fe36359ceb9655764e9a37c87ebc1
948e32a29a4ad82ebbfdbb681f7a797f6233bff3
refs/heads/master
2023-07-15T16:19:59.776603
2021-08-25T19:56:10
2021-08-25T19:56:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,234
py
import pytest from multidict import MultiDict from google.rpc.error_details_pb2 import ResourceInfo from grpclib.const import Status from grpclib.events import listen, SendRequest, SendMessage, RecvMessage from grpclib.events import RecvInitialMetadata, RecvTrailingMetadata from grpclib.testing import ChannelFor from grpclib._compat import nullcontext from grpclib.exceptions import GRPCError from dummy_pb2 import DummyRequest, DummyReply from dummy_grpc import DummyServiceStub, DummyServiceBase class DummyService(DummyServiceBase): def __init__(self, fail=False): self.fail = fail async def UnaryUnary(self, stream): await stream.recv_message() await stream.send_initial_metadata(metadata={'initial': 'true'}) await stream.send_message(DummyReply(value='pong')) if self.fail: await stream.send_trailing_metadata( status=Status.NOT_FOUND, status_message="Everything is not OK", status_details=[ResourceInfo()], metadata={'trailing': 'true'}, ) else: await stream.send_trailing_metadata(metadata={'trailing': 'true'}) async def UnaryStream(self, stream): raise GRPCError(Status.UNIMPLEMENTED) async def StreamUnary(self, stream): raise GRPCError(Status.UNIMPLEMENTED) async def StreamStream(self, stream): raise GRPCError(Status.UNIMPLEMENTED) async def _test(event_type, *, fail=False): service = DummyService(fail) events = [] async def callback(event_): events.append(event_) async with ChannelFor([service]) as channel: listen(channel, event_type, callback) stub = DummyServiceStub(channel) ctx = pytest.raises(GRPCError) if fail else nullcontext() with ctx: reply = await stub.UnaryUnary(DummyRequest(value='ping'), timeout=1, metadata={'request': 'true'}) assert reply == DummyReply(value='pong') event, = events return event @pytest.mark.asyncio async def test_send_request(): event = await _test(SendRequest) assert event.metadata == MultiDict({'request': 'true'}) assert event.method_name == '/dummy.DummyService/UnaryUnary' assert event.deadline.time_remaining() > 0 assert event.content_type == 'application/grpc' @pytest.mark.asyncio async def test_send_message(): event = await _test(SendMessage) assert event.message == DummyRequest(value='ping') @pytest.mark.asyncio async def test_recv_message(): event = await _test(RecvMessage) assert event.message == DummyReply(value='pong') @pytest.mark.asyncio async def test_recv_initial_metadata(): event = await _test(RecvInitialMetadata) assert event.metadata == MultiDict({'initial': 'true'}) @pytest.mark.asyncio async def test_recv_trailing_metadata(): event = await _test(RecvTrailingMetadata, fail=True) assert event.metadata == MultiDict({'trailing': 'true'}) assert event.status is Status.NOT_FOUND assert event.status_message == "Everything is not OK" assert isinstance(event.status_details[0], ResourceInfo)
[ "vladimir@magamedov.com" ]
vladimir@magamedov.com
31dd5fd0705bfebccf299f10eb6ba594038b885d
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/5ejvPTQeiioTTA9xZ_0.py
9b5d0b04aa8e5dca2af5037100305f74b9f4c108
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" Create a function that checks if the argument is an integer or a string. Return `"int"` if it's an integer and `"str"` if it's a string. ### Examples int_or_string(8) ➞ "int" int_or_string("Hello") ➞ "str" int_or_string(9843532) ➞ "int" ### Notes Input will either be an integer or a string. """ def int_or_string(var): return var.__class__.__name__
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
7b288b67b9fa3473f2fb3c72085b6de7ea893109
6cecdc007a3aafe0c0d0160053811a1197aca519
/apps/receiver/management/commands/generate_submissions.py
ae672ba20a318c1fc46d7ecce22a17363b20c062
[]
no_license
commtrack/temp-aquatest
91d678c927cc4b2dce6f709afe7faf2768b58157
3b10d179552b1e9d6a0e4ad5e91a92a05dba19c7
refs/heads/master
2016-08-04T18:06:47.582196
2010-09-29T13:20:13
2010-09-29T13:20:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,172
py
""" This script generates all the necessary data to synchronize with a remote CommCareHQ server on that server. This is only really useful if you intend to manually scp/rsync data to your local server, which requires a login to the remote server. So this is not the standard synchronization workflow (but is necessary for low-connectivity settings) """ import bz2 import sys import urllib2 import httplib import cStringIO from urlparse import urlparse from optparse import make_option from django.core.management.base import LabelCommand, CommandError from django_rest_interface import util as rest_util from receiver.models import Submission class Command(LabelCommand): option_list = LabelCommand.option_list + ( make_option('-a','--all', action='store_true', dest='all', \ default=False, help='Generate all files'), make_option('-?','--debug', action='store_true', dest='debug', \ default=False, help='Generate some files'), make_option('-d','--download', action='store_true', dest='download', \ default=False, help='Download files.'), ) help = "Generate synchronization files on a CommCareHQ remote server." args = "<remote_url username password>" label = 'IP address of the remote server (including port), username, and password' def handle(self, *args, **options): if len(args) != 3: raise CommandError('Please specify %s.' % self.label) remote_url = args[0] username = args[1] password = args[2] print "Generating synchronization data from %s" % remote_url all = options.get('all', False) debug = options.get('debug', False) download = options.get('download', False) generate_submissions(remote_url, username, password, not all, debug, download) def __del__(self): pass def generate_submissions(remote_url, username, password, latest=True, debug=False, download=False, to='submissions.tar'): """ Generate sync data from remote server remote_url: url of remote server (ip:port) username, password: credentials for logging in """ status = rest_util.login(remote_url, username, password) if not status: print "Sorry. Your credentials were not accepted." sys.exit() url = 'http://%s/api/submissions/' % remote_url if latest: MD5_buffer = rest_util.get_field_as_bz2(Submission, 'checksum', debug) response = rest_util.request(url, username, password, MD5_buffer) print "Generated latest remote submissions" else: response = urllib2.urlopen(url) print "Generated all remote submissions archive" if download: fout = open(to, 'w+b') fout.write(response.read()) fout.close() print "Submissions downloaded to %s" % to else: # Check for status messages # (i think tar payloads always begin 'BZ'...) response = response.read(255) if response[:2] != "BZ": print response return response
[ "allen.machary@gmail.com" ]
allen.machary@gmail.com
5a5a5583911ddb9db5402f6b3d6030070b115f57
1e50f1643376039ca988d909e79f528e01fa1371
/leetcode/editor/cn/292.nim-游戏.py
174da887a6b080c9b99b41e140bf445662a9f611
[]
no_license
mahatmaWM/leetcode
482a249e56e2121f4896e34c58d9fa44d6d0034b
4f41dad6a38d3cac1c32bc1f157e20aa14eab9be
refs/heads/master
2022-09-04T17:53:54.832210
2022-08-06T07:29:46
2022-08-06T07:29:46
224,415,259
0
0
null
null
null
null
UTF-8
Python
false
false
981
py
# # @lc app=leetcode.cn id=292 lang=python3 # # [292] Nim 游戏 # # https://leetcode-cn.com/problems/nim-game/description/ # # algorithms # Easy (69.45%) # Likes: 326 # Dislikes: 0 # Total Accepted: 50K # Total Submissions: 71.9K # Testcase Example: '4' # # 你和你的朋友,两个人一起玩 Nim 游戏:桌子上有一堆石头,每次你们轮流拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。你作为先手。 # # 你们是聪明人,每一步都是最优解。 编写一个函数,来判断你是否可以在给定石头数量的情况下赢得游戏。 # # 示例: # # 输入: 4 # 输出: false # 解释: 如果堆中有 4 块石头,那么你永远不会赢得比赛; # 因为无论你拿走 1 块、2 块 还是 3 块石头,最后一块石头总是会被你的朋友拿走。 # # # # @lc code=start class Solution: def canWinNim(self, n: int) -> bool: return False if n % 4 == 0 else True # @lc code=end
[ "chrismwang@tencent.com" ]
chrismwang@tencent.com
22f4ffa79f304c929e6c0680c0a2228d0e15dd2b
dbf2d3f8eb11d04123894e398446b56ca791c9f6
/examples/02.py
c9847666ba51a1574e379280d847d651e7982b21
[]
no_license
podhmo/nendo
ed8d9a62ab23f7409a8ce519f28deff7d3642942
841ec7a990019596c769a2f581a1190aeb8cbd56
refs/heads/master
2021-01-22T17:47:58.964323
2015-06-28T11:37:38
2015-06-28T11:37:38
37,828,656
1
0
null
null
null
null
UTF-8
Python
false
false
550
py
# -*- coding:utf-8 -*- import logging logger = logging.getLogger(__name__) """ -- select explicitly SELECT open_emp_id, product_cd FROM account ORDER BY open_emp_id, product_cd; """ from nendo import Query, make_record, render from nendo.value import List Account = make_record("account", "account_id product_cd open_date avail_balance open_emp_id") query = (Query() .from_(Account) .order_by(List([Account.open_emp_id, Account.product_cd]).desc()) .select(Account.open_emp_id, Account.product_cd)) print(render(query))
[ "podhmo+altair@beproud.jp" ]
podhmo+altair@beproud.jp
ee39967cfee84345c3f981e0d983d21bfa8dc82f
dbe86e522bf7c0fa58531e13bed3dd97051e1b79
/cognitoLogin.py
4ab85e5d4802764ca7ab75cbd00e13fa51ba772e
[]
no_license
Asteriw/CMPT473-AWSApp
e214281bbae59f9319efe423f55745e0a10dddb1
9d30543439913259a5e88fdf5b8913d3cac5acb4
refs/heads/master
2023-04-25T05:39:35.352531
2021-04-09T05:57:31
2021-04-09T05:57:31
369,430,240
0
0
null
null
null
null
UTF-8
Python
false
false
2,570
py
import boto3 import botocore.exceptions import hmac import hashlib import base64 import json USER_POOL_ID = 'us-east-1_b6HnaK2eM' CLIENT_ID = '4tnka15q9dfg2si6rd9d44mncc' CLIENT_SECRET = '1i3e81c7nqnjqkl9dcnd48ebmn629ieivs3umi37ib3lv9907n8r' def get_secret_hash(username): msg = username + CLIENT_ID dig = hmac.new(str(CLIENT_SECRET).encode('utf-8'), msg = str(msg).encode('utf-8'), digestmod=hashlib.sha256).digest() d2 = base64.b64encode(dig).decode() return d2 def initiate_auth(client, username, password): secret_hash = get_secret_hash(username) try: resp = client.admin_initiate_auth( UserPoolId=USER_POOL_ID, ClientId=CLIENT_ID, AuthFlow='ADMIN_NO_SRP_AUTH', AuthParameters={ 'USERNAME': username, 'SECRET_HASH': secret_hash, 'PASSWORD': password, }, ClientMetadata={ 'name': username, 'password': password, }) except client.exceptions.NotAuthorizedException: return None, "The username or password is incorrect" except client.exceptions.UserNotConfirmedException: return resp, None except Exception as e: return None, e.__str__() return resp, None def lambda_handler(event, context): client = boto3.client('cognito-idp') for field in ["username", "password"]: if event.get(field) is None: return {"error": True, "success": False, "message": f"{field} is required", "data": None} resp, msg = initiate_auth(client, event.get("username"), event.get("password")) print(resp) print(msg) if msg != None: return {'message': msg, "error": True, "success": False, "data": None} if resp.get("AuthenticationResult"): return {'message': "success", "error": False, "success": True, "data": { "id_token": resp["AuthenticationResult"]["IdToken"], "refresh_token": resp["AuthenticationResult"]["RefreshToken"], "access_token": resp["AuthenticationResult"]["AccessToken"], "expires_in": resp["AuthenticationResult"]["ExpiresIn"], "token_type": resp["AuthenticationResult"]["TokenType"] }} else: #this code block is relevant only when MFA is enabled return {"error": True, "success": False, "data": None, "message": None}
[ "zhiqi_qiao@sfu.ca" ]
zhiqi_qiao@sfu.ca
d4a33c08e35fe6ddedc4fee59d98a62a0b60cb31
1493997bb11718d3c18c6632b6dd010535f742f5
/particles/particles_point_sprites.py
34a1996efb93c10ffe497379fab53cf8acfd7ca9
[]
no_license
kovrov/scrap
cd0cf2c98a62d5af6e4206a2cab7bb8e4560b168
b0f38d95dd4acd89c832188265dece4d91383bbb
refs/heads/master
2021-01-20T12:21:34.742007
2010-01-12T19:53:23
2010-01-12T19:53:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,964
py
from pyglet.gl import gl_info assert gl_info.have_extension("GL_ARB_point_sprite"), "ARB_point_sprite not available" from pyglet.gl import * import random # see: # http://www.opengl.org/registry/specs/ARB/point_sprite.txt # http://www.opengl.org/registry/specs/ARB/point_parameters.txt g_slowdown = 2.0 # Query for the max point size supported by the hardware g_maxSize = c_float(0.0) glGetFloatv(GL_POINT_SIZE_MAX_ARB, pointer(g_maxSize)) # Clamp size to 100.0f or the sprites could get a little too big on some of the # newer graphic cards. My ATI card at home supports a max point size of 1024.0! if (g_maxSize.value > 100.0): g_maxSize.value = 100.0 def draw_task(texture_id): particles = [{ 'life': 1.0, 'fade': random.uniform(0.1, 0.004), #'r': 1.0, 'g': 1.0, 'b': 1.0, 'r': 0.32, 'g': 0.32, 'b': 0.32, 'x': 0.0, 'y': 0.0, 'z': 0.0, 'xi': float(random.randint(-250, 250)), 'yi': float(random.randint(-250, 250)), 'zi': float(random.randint(-250, 250)), 'xg': 0.0, 'yg': -0.8, 'zg': 0.0, } for i in xrange(1000)] glDisable(GL_DEPTH_TEST) # TODO: see if this integrates well with rest of render... glEnable(GL_POINT_SPRITE_ARB) # affects global state glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE) # This is how will our point sprite's size will be modified by # distance from the viewer glPointParameterfvARB(GL_POINT_DISTANCE_ATTENUATION_ARB, (c_float*3)(1.0, 0.0, 0.01)) glPointSize(g_maxSize) # The alpha of a point is calculated to allow the fading of points instead # of shrinking them past a defined threshold size. The threshold is defined # by GL_POINT_FADE_THRESHOLD_SIZE_ARB and is not clamped to the minimum and # maximum point sizes. # glPointParameterfARB(GL_POINT_FADE_THRESHOLD_SIZE_ARB, 60.0) # glPointParameterfARB(GL_POINT_SIZE_MIN_ARB, 1.0) # glPointParameterfARB(GL_POINT_SIZE_MAX_ARB, g_maxSize) # Specify point sprite texture coordinate replacement mode for each # texture unit (see ARB_point_sprite specs) glTexEnvi(GL_POINT_SPRITE_ARB, GL_COORD_REPLACE_ARB, GL_TRUE) # per-texture unit while True: yield glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) glBindTexture(GL_TEXTURE_2D, texture_id) glBegin(GL_POINTS) for p in particles: # draw glColor4f(p['r'], p['g'], p['b'], p['life']) glVertex3f(p['x'], p['y'], p['z']) # update p['life'] -= p['fade'] p['x'] += p['xi'] / (g_slowdown * 1000) p['y'] += p['yi'] / (g_slowdown * 1000) p['z'] += p['zi'] / (g_slowdown * 1000) p['xi'] += p['xg'] p['yi'] += p['yg'] p['zi'] += p['zg'] if p['life'] < 0.0: p['life'] = 1.0 p['fade'] = random.uniform(0.1, 0.004) p['x'] = 0.0; p['y'] = 0.0; p['z'] = 0.0 p['xi'] = random.uniform(-32.0, 32.0) p['yi'] = random.uniform(-32.0, 32.0) p['zi'] = random.uniform(-32.0, 32.0) glEnd() glEnable(GL_BLEND) glDisable(GL_POINT_SPRITE_ARB)
[ "kovrov@gmail.com" ]
kovrov@gmail.com
e5ae86739f26139d2a56b19277ea7832e21d41bd
f74dd098c3e665d8f605af5ebe7e2874ac31dd2f
/aiogithubapi/namespaces/user.py
1d1bd8b8cab4928b70f10f1d9836568e6cc2db64
[ "MIT" ]
permissive
ludeeus/aiogithubapi
ce87382698827939aaa127b378b9a11998f13c06
90f3fc98e5096300269763c9a5857481b2dec4d2
refs/heads/main
2023-08-20T19:30:05.309844
2023-08-14T20:24:21
2023-08-14T20:24:21
198,505,021
21
20
MIT
2023-09-11T06:12:10
2019-07-23T20:39:53
Python
UTF-8
Python
false
false
2,993
py
""" Methods for the authenticated user namespace https://docs.github.com/en/rest/reference/users#get-the-authenticated-user """ from __future__ import annotations from typing import Any, Dict from ..const import GitHubRequestKwarg from ..models.organization import GitHubOrganizationMinimalModel from ..models.repository import GitHubRepositoryModel from ..models.response import GitHubResponseModel from ..models.user import GitHubAuthenticatedUserModel from .base import BaseNamespace from .projects import GitHubUserProjectsNamespace class GitHubUserNamespace(BaseNamespace): """Methods for the user namespace""" def __post_init__(self) -> None: self._projects = GitHubUserProjectsNamespace(self._client) @property def projects(self) -> GitHubUserProjectsNamespace: """Property to access the users projects namespace""" return self._projects async def get( self, **kwargs: Dict[GitHubRequestKwarg, Any], ) -> GitHubResponseModel[GitHubAuthenticatedUserModel]: """ Get the authenticated user https://docs.github.com/en/rest/reference/users#get-a-user """ response = await self._client.async_call_api( endpoint="/user", **kwargs, ) response.data = GitHubAuthenticatedUserModel(response.data) return response async def starred( self, **kwargs: Dict[GitHubRequestKwarg, Any], ) -> GitHubResponseModel[list[GitHubRepositoryModel]]: """ Get the authenticated user starred repositories https://docs.github.com/en/rest/reference/users#get-a-user """ response = await self._client.async_call_api( endpoint="/user/starred", **kwargs, ) response.data = [GitHubRepositoryModel(data) for data in response.data] return response async def repos( self, **kwargs: Dict[GitHubRequestKwarg, Any], ) -> GitHubResponseModel[list[GitHubRepositoryModel]]: """ Get the repositories for the authenticated user https://docs.github.com/en/rest/reference/repos#list-repositories-for-a-user """ response = await self._client.async_call_api( endpoint="/user/repos", **kwargs, ) response.data = [GitHubRepositoryModel(data) for data in response.data] return response async def orgs( self, **kwargs: Dict[GitHubRequestKwarg, Any], ) -> GitHubResponseModel[list[GitHubOrganizationMinimalModel]]: """ List public organization memberships for the specified user. https://docs.github.com/en/rest/reference/orgs#list-organizations-for-the-authenticated-user """ response = await self._client.async_call_api(endpoint="/user/orgs", **kwargs) response.data = [GitHubOrganizationMinimalModel(data) for data in response.data or []] return response
[ "noreply@github.com" ]
ludeeus.noreply@github.com
adf625842636ccc75d545aa5f1e107a48d4ec5cb
f8d753a822047a68e417ba58d17f754789e2af93
/migrations/versions/ad4acce05428_.py
182a439446f9e08a2fd3cbe43752625d82ba13eb
[]
no_license
daronjp/travel_blog
113eba826ccabcc18c51fc169e3b2ae359365b77
2a016ec840ebb468112a79c52605404d2ac1aa72
refs/heads/master
2023-05-10T19:39:34.713528
2022-09-13T03:47:57
2022-09-13T03:47:57
211,604,162
0
0
null
2023-05-01T22:49:07
2019-09-29T04:39:32
Python
UTF-8
Python
false
false
798
py
"""empty message Revision ID: ad4acce05428 Revises: 07c5566941d1 Create Date: 2019-09-30 14:09:13.551393 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'ad4acce05428' down_revision = '07c5566941d1' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_name', sa.String(), nullable=True), sa.Column('password_hash', sa.String(), nullable=True), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('users') # ### end Alembic commands ###
[ "daronjp@gmail.com" ]
daronjp@gmail.com
d556f5c5b3363e7fc2bbc713413256455f6f53d3
7b6e3c5e6b963c749da9f946275661ae0e67dbd2
/src/model/test/yolo_v2_test.py
f12f453a1da9ecff535acc2209d498da9c687322
[]
no_license
WeiZongqi/yolo-tensorflow
c8237295b41beb61943207d8511c80a0f33507f2
53eaa2ad779918ced2ded2834e09abf2e0ed7202
refs/heads/master
2021-01-25T14:26:58.371334
2017-12-28T08:18:59
2017-12-28T08:18:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,688
py
# -*- coding: utf8 -*- # author: ronniecao from __future__ import print_function import sys import os import time import numpy import matplotlib.pyplot as plt import tensorflow as tf from src.data.image import ImageProcessor from src.model.yolo_v2 import TinyYolo class TinyYoloTestor: def test_calculate_loss(self): self.batch_size = 1 self.cell_size = 2 self.n_boxes = 2 self.max_objects = 3 self.n_classes = 5 coord_pred = numpy.zeros((1, 2, 2, 2, 4)) coord_pred[0,0,0,0,:] = [0.4, 0.4, 0.1, 0.1] coord_pred[0,0,0,1,:] = [0.1, 0.1, 0.1, 0.1] coord_pred[0,0,1,0,:] = [0.75, 0.25, 0.1, 0.1] coord_pred[0,0,1,1,:] = [0.7, 0.2, 0.1, 0.1] coord_pred[0,1,0,0,:] = [0.3, 0.8, 0.1, 0.1] coord_pred[0,1,0,1,:] = [0.25, 0.75, 0.1, 0.1] coord_pred[0,1,1,0,:] = [0.75, 0.75, 0.1, 0.1] coord_pred[0,1,1,1,:] = [0.7, 0.8, 0.1, 0.1] conf_pred = numpy.zeros((1, 2, 2, 2, 1)) conf_pred[0,0,0,0,0] = 1.0 conf_pred[0,0,0,1,0] = 1.0 conf_pred[0,0,1,0,0] = 1.0 conf_pred[0,0,1,1,0] = 0.2 conf_pred[0,1,0,0,0] = 0.1 conf_pred[0,1,0,1,0] = 0.9 conf_pred[0,1,1,0,0] = 1.0 class_pred = numpy.zeros((1, 2, 2, 2, 5)) class_pred[0,0,0,0,0] = 0.9 class_pred[0,0,0,0,1] = 0.1 class_pred[0,0,0,1,1] = 1.0 class_pred[0,0,1,0,4] = 0.8 class_pred[0,0,1,0,3] = 0.1 class_pred[0,0,1,0,2] = 0.1 class_pred[0,1,0,1,2] = 1.0 class_pred[0,1,1,0,3] = 0.8 class_pred[0,1,1,0,0] = 0.05 class_pred[0,1,1,0,1] = 0.05 class_pred[0,1,1,0,2] = 0.05 class_pred[0,1,1,0,4] = 0.05 coord_true = numpy.zeros((1, 2, 2, 3, 4)) coord_true[0,0,0,0,:] = [0.1, 0.1, 0.1, 0.1] coord_true[0,0,0,1,:] = [0.4, 0.4, 0.1, 0.1] coord_true[0,0,1,0,:] = [0.75, 0.25, 0.1, 0.1] coord_true[0,1,0,0,:] = [0.25, 0.75, 0.1, 0.1] coord_true[0,1,1,0,:] = [0.75, 0.75, 0.1, 0.1] class_true = numpy.zeros((1, 2, 2, 3, 5)) class_true[0,0,0,0,1] = 1.0 class_true[0,0,0,1,0] = 1.0 class_true[0,0,1,0,4] = 1.0 class_true[0,1,0,0,2] = 1.0 class_true[0,1,1,0,3] = 1.0 object_mask = numpy.zeros((1, 2, 2, 3)) object_mask[0,0,0,0] = 1 object_mask[0,0,0,1] = 1 object_mask[0,0,1,0] = 1 object_mask[0,1,0,0] = 1 object_mask[0,1,1,0] = 1 coord_true_tf = tf.placeholder( dtype=tf.float32, shape=[1, 2, 2, 3, 4], name='coord_true_tf') coord_pred_tf = tf.placeholder( dtype=tf.float32, shape=[1, 2, 2, 2, 4], name='coord_pred_tf') conf_pred_tf = tf.placeholder( dtype=tf.float32, shape=[1, 2, 2, 2, 1], name='conf_pred_tf') class_true_tf = tf.placeholder( dtype=tf.float32, shape=[1, 2, 2, 3, 5], name='class_true_tf') class_pred_tf = tf.placeholder( dtype=tf.float32, shape=[1, 2, 2, 2, 5], name='class_pred_tf') object_mask_tf = tf.placeholder( dtype=tf.float32, shape=[1, 2, 2, 3], name='object_mask_tf') coord_pred_iter = tf.tile( tf.reshape(coord_pred_tf, shape=[ self.batch_size, self.cell_size, self.cell_size, self.n_boxes, 1, 4]), [1, 1, 1, 1, self.max_objects, 1]) coord_true_iter = tf.reshape(coord_true_tf, shape=[ self.batch_size, self.cell_size, self.cell_size, 1, self.max_objects, 4]) coord_true_iter = tf.tile(coord_true_iter, [1, 1, 1, self.n_boxes, 1, 1]) iou_tensor = self.calculate_iou_tf(coord_pred_iter, coord_true_iter) iou_tensor_max = tf.reduce_max(iou_tensor, 3, keep_dims=True) iou_tensor_mask = tf.cast( (iou_tensor >= iou_tensor_max), dtype=tf.float32) * tf.reshape( object_mask_tf, shape=( self.batch_size, self.cell_size, self.cell_size, 1, self.max_objects, 1)) iou_tensor_pred_mask = tf.reduce_sum(iou_tensor_mask, axis=4) coord_label = tf.reduce_max(iou_tensor_mask * coord_true_iter, axis=4) coord_loss = tf.nn.l2_loss((coord_pred_tf - coord_label) * iou_tensor_pred_mask) / ( tf.reduce_sum(object_mask_tf, axis=[0,1,2,3])) iou_value = tf.reduce_sum( tf.reduce_max(iou_tensor, axis=4) * iou_tensor_pred_mask, axis=[0,1,2,3]) / ( tf.reduce_sum(object_mask_tf, axis=[0,1,2,3])) conf_label = tf.reduce_max(iou_tensor_mask * tf.ones(shape=( self.batch_size, self.cell_size, self.cell_size, self.n_boxes, self.max_objects, 1)), axis=4) object_loss = tf.nn.l2_loss( (conf_pred_tf - conf_label) * iou_tensor_pred_mask) / ( tf.reduce_sum(object_mask_tf, axis=[0,1,2,3])) object_value = tf.reduce_sum( conf_pred_tf * iou_tensor_pred_mask, axis=[0,1,2,3]) / ( tf.reduce_sum(object_mask_tf, axis=[0,1,2,3])) inv_iou_tensor_pred_mask = tf.ones(shape=( self.batch_size, self.cell_size, self.cell_size, self.n_boxes, 1)) - iou_tensor_pred_mask noobject_loss = tf.nn.l2_loss( (conf_pred_tf - conf_label) * inv_iou_tensor_pred_mask) / ( tf.reduce_sum(object_mask_tf, axis=[0,1,2,3])) noobject_value = tf.reduce_sum( conf_pred_tf * inv_iou_tensor_pred_mask, axis=[0,1,2,3]) / ( tf.reduce_sum(inv_iou_tensor_pred_mask, axis=[0,1,2,3])) class_true_iter = tf.reshape(class_true_tf, shape=[ self.batch_size, self.cell_size, self.cell_size, 1, self.max_objects, self.n_classes]) class_true_iter = tf.tile(class_true_iter, [1, 1, 1, self.n_boxes, 1, 1]) class_label = tf.reduce_max(iou_tensor_mask * class_true_iter, axis=4) class_loss = tf.nn.l2_loss( (class_pred_tf - class_label) * iou_tensor_pred_mask) / ( tf.reduce_sum(object_mask_tf, axis=[0,1,2,3])) class_value = tf.reduce_sum( class_pred_tf * class_label * iou_tensor_pred_mask, axis=[0,1,2,3,4]) / ( tf.reduce_sum(object_mask_tf, axis=[0,1,2,3])) sess = tf.Session() [output] = sess.run( fetches=[class_value], feed_dict={coord_true_tf: coord_true, coord_pred_tf: coord_pred, conf_pred_tf: conf_pred, class_true_tf: class_true, class_pred_tf: class_pred, object_mask_tf: object_mask}) print(output) def calculate_iou_tf(self, box_pred, box_true): box1 = tf.stack([ box_pred[:,:,:,:,:,0] - box_pred[:,:,:,:,:,2] / 2.0, box_pred[:,:,:,:,:,1] - box_pred[:,:,:,:,:,3] / 2.0, box_pred[:,:,:,:,:,0] + box_pred[:,:,:,:,:,2] / 2.0, box_pred[:,:,:,:,:,1] + box_pred[:,:,:,:,:,3] / 2.0]) box1 = tf.transpose(box1, perm=[1, 2, 3, 4, 5, 0]) box2 = tf.stack([ box_true[:,:,:,:,:,0] - box_true[:,:,:,:,:,2] / 2.0, box_true[:,:,:,:,:,1] - box_true[:,:,:,:,:,3] / 2.0, box_true[:,:,:,:,:,0] + box_true[:,:,:,:,:,2] / 2.0, box_true[:,:,:,:,:,1] + box_true[:,:,:,:,:,3] / 2.0]) box2 = tf.transpose(box2, perm=[1, 2, 3, 4, 5, 0]) left_top = tf.maximum(box1[:,:,:,:,:,0:2], box2[:,:,:,:,:,0:2]) right_bottom = tf.minimum(box1[:,:,:,:,:,2:4], box2[:,:,:,:,:,2:4]) intersection = right_bottom - left_top inter_area = intersection[:,:,:,:,:,0] * intersection[:,:,:,:,:,1] mask = tf.cast(intersection[:,:,:,:,:,0] > 0, tf.float32) * \ tf.cast(intersection[:,:,:,:,:,1] > 0, tf.float32) inter_area = inter_area * mask box1_area = (box1[:,:,:,:,:,2]-box1[:,:,:,:,:,0]) * (box1[:,:,:,:,:,3]-box1[:,:,:,:,:,1]) box2_area = (box2[:,:,:,:,:,2]-box2[:,:,:,:,:,0]) * (box2[:,:,:,:,:,3]-box2[:,:,:,:,:,1]) iou = inter_area / (box1_area + box2_area - inter_area + 1e-6) return tf.reshape(iou, shape=[ self.batch_size, self.cell_size, self.cell_size, self.n_boxes, self.max_objects, 1]) def test_get_box_pred(self): label = [[0, 0, 0, 0, 0]] * 5 label[0] = [0.5, 0.15, 0.8, 0.2, 1] label[1] = [0.5, 0.7, 0.1, 0.2, 1] label[2] = [0.5, 0.9, 0.6, 0.1, 1] pred = numpy.zeros(shape=(3,3,6,5)) pred[0,1,4,:] = [-1.6, -1.73, 0.09, -0.09, 1.0] # pred[1,0,4,:] = [0.0, 0.0, 0.0, 0.0, 1.0] image_processor = ImageProcessor( 'Z:', image_size=96, max_objects_per_image=5, cell_size=3, n_classes=1) class_label, class_mask, box_label, object_num = \ image_processor.process_label(label) tiny_yolo = TinyYolo( n_channel=3, n_classes=1, image_size=96, max_objects_per_image=5, box_per_cell=6, object_scala=10, nobject_scala=5, coord_scala=10, class_scala=1, batch_size=1) box_pred = tf.placeholder( dtype=tf.float32, shape=[3, 3, 6, 4], name='box_pred') box_truth = tf.placeholder( dtype=tf.float32, shape=[3, 3, 1, 4], name='box_truth') iou_matrix = tiny_yolo.get_box_pred(box_pred) sess = tf.Session() [output] = sess.run( fetches=[iou_matrix], feed_dict={box_pred: pred[:,:,:,0:4]}) sess.close() print(output, output.shape) # 画图 image = numpy.zeros(shape=(256, 256, 3), dtype='uint8') + 255 cv2.line(image, (0, int(256/3.0)), (256, int(256/3.0)), (100, 149, 237), 1) cv2.line(image, (0, int(256*2.0/3.0)), (256, int(256*2.0/3.0)), (100, 149, 237), 1) cv2.line(image, (int(256/3.0), 0), (int(256/3.0), 256), (100, 149, 237), 1) cv2.line(image, (int(256*2.0/3.0), 0), (int(256*2.0/3.0), 256), (100, 149, 237), 1) for center_x, center_y, w, h, prob in label: if prob != 1.0: continue # 画中心点 cv2.circle(image, (int(center_x*256), int(center_y*256)), 2, (255, 99, 71), 0) # 画真实框 xmin = int((center_x - w / 2.0) * 256) xmax = int((center_x + w / 2.0) * 256) ymin = int((center_y - h / 2.0) * 256) ymax = int((center_y + h / 2.0) * 256) cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (255, 99, 71), 0) for x in range(3): for y in range(3): for n in range(2): [center_x, center_y, w, h, prob] = pred[x, y, n, :] # 画中心点 cv2.circle(image, (int(center_x*256), int(center_y*256)), 2, (238, 130, 238), 0) # 画预测框 xmin = int((center_x - w / 2.0) * 256) xmax = int((center_x + w / 2.0) * 256) ymin = int((center_y - h / 2.0) * 256) ymax = int((center_y + h / 2.0) * 256) cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (238, 130, 238), 0) plt.imshow(image) plt.show()
[ "caocao7066@outlook.com" ]
caocao7066@outlook.com
25758d4020776fdb429b99cd383fb2251ca42ea7
cbbc0c95e367932e962f8d9e6175a5150d0c6570
/coursera/algorithmic_toolbox/Greedy Algorithms/Maximum Salary/maximum_salary.py
2ebcd8633f3620ee15e42cef0dfecc8f14bbe780
[]
no_license
chobostar/education_and_training
1369ab98f28b93651bb861a40c1fa0603973519e
fcec324a1b92916401ba8de5c61f6d7b1ee69c68
refs/heads/master
2023-08-04T04:36:16.217908
2023-07-22T08:09:54
2023-07-22T08:09:54
216,988,123
0
1
null
null
null
null
UTF-8
Python
false
false
1,107
py
# python3 from itertools import permutations import random def if_greater(x, y: str) -> bool: return (x + y) > (y + x) def sort(items): less = [] equal = [] greater = [] if len(items) > 1: pivot = random.choice(items) for x in items: if not if_greater(x, pivot) and x != pivot: less.append(x) elif x == pivot: equal.append(x) elif if_greater(x, pivot): greater.append(x) return sort(greater)+equal+sort(less) else: return items def largest_number_naive(numbers): numbers = list(map(str, numbers)) largest = 0 for permutation in permutations(numbers): largest = max(largest, int("".join(permutation))) return largest def largest_number(numbers): sorted_numbers = sort([str(number) for number in numbers]) result = ''.join(sorted_numbers) return int(result) if __name__ == '__main__': n = int(input()) input_numbers = input().split() assert len(input_numbers) == n print(largest_number(input_numbers))
[ "yakutskkirill@mail.ru" ]
yakutskkirill@mail.ru
d4eb0b65a8e727748c9d78004d51c636bf799cf0
6aea393423a0f840c5d28e903726c1fc82dd0544
/System_class.py
4b9ee2d8eebe3fa193ecc2a20d2e3af9fc762a77
[]
no_license
markrsteiner/markosim_reloaded
7ea4e9ed6d3403a2e560e055f89ab359c69519be
96ce8d534c9e59feb79ed1e80a52ef55e88a7749
refs/heads/master
2020-04-10T18:09:24.717592
2019-02-28T16:28:55
2019-02-28T16:28:55
161,195,604
0
0
null
null
null
null
UTF-8
Python
false
false
10,260
py
import math import numpy as np import format__output class System: def __init__(self, user_input_file: dict, simulation_instance) -> None: # should take simulator instance or something self.input_bus_voltage = float(user_input_file['Vcc [V]']) self.input_ic_peak = float(user_input_file['Io [Apk]']) self.input_mod_depth = float(user_input_file['Mod. Depth']) self.input_output_freq = float(user_input_file['fo [Hz]']) self.input_t_sink = float(user_input_file['Ts [\u00B0C]']) self.input_modulation_type = simulation_instance.get__modulation_type() self.input_freq_carrier = float(user_input_file['fc [kHz]']) self.is_three_level = simulation_instance.get__three_level_flag() if self.is_three_level: self.input_bus_voltage /= 2 self.input_rg_on_inside = float(user_input_file['Inside rg on [\u03A9]']) self.input_rg_off_inside = float(user_input_file['Inside rg off [\u03A9]']) self.input_rg_on_outside = float(user_input_file['Outside rg on [\u03A9]']) self.input_rg_off_outside = float(user_input_file['Outside rg off [\u03A9]']) else: self.input_rg_on = float(user_input_file['rg on [\u03A9]']) self.input_rg_off = float(user_input_file['rg off [\u03A9]']) self.rg_output_flag = True self.input_power_factor = float(user_input_file['PF [cos(\u03D5)]']) self.step_size = simulation_instance.get__step_size() self.time_division = 1 / self.input_output_freq / 360.0 * self.step_size self.switches_per_degree = self.input_freq_carrier * self.time_division self.power_factor_phase_shift = math.acos(float(user_input_file['PF [cos(\u03D5)]'])) self.output_current = [] self.system_output_view = {} self.cycle_angle__degree = None self.system_output_voltage = np.arange(0) self.duty_cycle__p = [] self.duty_cycle__n = [] self.calculate__system_output() def calculate__system_output(self): self.cycle_angle__degree = np.array([val * math.pi / 180 * self.step_size for val in range(int(360 / self.step_size))]) #todo there is probably a smarter way to do this with numpy arange if self.input_modulation_type == "Sinusoidal": self.calculate__sinusoidal_output() if self.input_modulation_type == "SVPWM": # add later maybe self.calculate__svpwm_output() if self.input_modulation_type == 'Two Phase I': self.calculate__two_phase1_output() if self.is_three_level: self.duty_cycle__p = np.clip(self.system_output_voltage / self.input_bus_voltage, 0, 1) self.duty_cycle__n = np.clip(-self.system_output_voltage / self.input_bus_voltage, 0, 1) else: self.duty_cycle__p = np.clip(np.divide(self.system_output_voltage, self.input_bus_voltage), 0, 1) self.duty_cycle__n = 1 - self.duty_cycle__p def create__output_view(self, inside_module, outside_module=None, diode_module=None): is_three_level = outside_module is not None and diode_module is not None if is_three_level: self.system_output_view = format__output.build__output_view_dict(self, inside_module, outside_module, diode_module) self.system_output_view.update({'Modulation': self.input_modulation_type}) if not self.rg_output_flag: self.system_output_view.update({ 'Outside rg on [\u03A9]': "STOCK", 'Outside rg off [\u03A9]': "STOCK", 'Inside rg on [\u03A9]': "STOCK", 'Inside rg off [\u03A9]': "STOCK" }) else: self.system_output_view = format__output.build__output_view_dict(self, inside_module) self.system_output_view.update({'Modulation': self.input_modulation_type}) if self.rg_output_flag: self.system_output_view.update({'rg on [\u03A9]': self.input_rg_on, 'rg off [\u03A9]': self.input_rg_off}) else: self.system_output_view.update({'rg on [\u03A9]': "STOCK", 'rg off [\u03A9]': "STOCK"}) def calculate__sinusoidal_output(self): if self.is_three_level: self.system_output_voltage = self.input_bus_voltage * self.input_mod_depth * np.sin(self.cycle_angle__degree) else: self.system_output_voltage = self.input_bus_voltage * (1 + self.input_mod_depth * np.sin(self.cycle_angle__degree)) / 2 self.output_current = self.input_ic_peak * np.sin(self.cycle_angle__degree - self.power_factor_phase_shift) def calculate__svpwm_output(self): sector = np.floor(self.cycle_angle__degree * 3 / math.pi) duty_cycle = np.array([self.svpwm_helper(_sector, _degree) for _sector, _degree in zip(sector, self.cycle_angle__degree)]) self.system_output_voltage = self.input_bus_voltage * duty_cycle self.output_current = self.input_ic_peak * np.cos(self.cycle_angle__degree - self.power_factor_phase_shift) def svpwm_helper(self, sector, degree): modified_input_mod_depth = self.input_mod_depth * math.sqrt(3) / 2 duty_cycle_results = { 0: modified_input_mod_depth * math.cos(degree - math.pi / 6) + (1.0 - modified_input_mod_depth * math.cos(degree - math.pi / 6)) / 2.0, 1: modified_input_mod_depth * math.sin(2 * math.pi / 3 - degree) + (1.0 - modified_input_mod_depth * math.cos(degree - math.pi / 2)) / 2.0, 2: (1.0 - modified_input_mod_depth * math.cos(degree - 5 * math.pi / 6)) / 2.0, 3: (1.0 - modified_input_mod_depth * math.cos(degree - 7 * math.pi / 6)) / 2.0, 4: modified_input_mod_depth * math.sin(degree - 4 * math.pi / 3) + (1.0 - modified_input_mod_depth * math.cos(degree - 3 * math.pi / 2)) / 2.0, 5: modified_input_mod_depth * math.cos(degree - 11 * math.pi / 6) + (1.0 - modified_input_mod_depth * math.cos(degree - 11 * math.pi / 6)) / 2.0 } return duty_cycle_results[sector] def calculate__two_phase1_output(self): sector = np.floor(self.cycle_angle__degree * 3 / math.pi) duty_cycle = np.array([self.two_phase1_helper(_sector, _degree) for _sector, _degree in zip(sector, self.cycle_angle__degree)]) self.system_output_voltage = self.input_bus_voltage * duty_cycle self.output_current = self.input_ic_peak * np.cos(self.cycle_angle__degree - self.power_factor_phase_shift) def two_phase1_helper(self, sector, degree): modified_input_mod_depth = self.input_mod_depth * math.sqrt(3) / 2 duty_cycle_results = { 0: modified_input_mod_depth * math.sin(degree + math.pi / 6), 1: 1.0, 2: -modified_input_mod_depth * math.sin(degree - 7 * math.pi / 6), 3: 1.0 + modified_input_mod_depth * math.sin(degree + math.pi / 6), 4: 0.0, 5: 1.0 - modified_input_mod_depth * math.sin(degree - 7 * math.pi / 6) } return duty_cycle_results[sector] def calculate__two_phase2_output(self): sector = np.floor(self.cycle_angle__degree * 1.5 * math.pi) duty_cycle = np.array([self.two_phase2_helper(_sector, _degree) for _sector, _degree in zip(sector, self.cycle_angle__degree)]) self.system_output_voltage = self.input_bus_voltage * duty_cycle self.output_current = self.input_ic_peak * np.cos(self.cycle_angle__degree - self.power_factor_phase_shift - math.pi / 6) def two_phase2_helper(self, sector, degree): modified_input_mod_depth = self.input_mod_depth * math.sqrt(3) / 2 duty_cycle_results = { 0: modified_input_mod_depth * math.sin(degree), 1: modified_input_mod_depth * math.sin(degree - math.pi / 3), 2: 0 } return duty_cycle_results[sector] # Getters and setters # # def set__step_size(self, step_size): # self.step_size = step_size # self.time_division = 1 / self.input_output_freq / 360.0 * self.step_size # self.switches_per_degree = self.input_freq_carrier * self.time_division # # def set__three_level(self, is_three_level): # self.is_three_level = is_three_level # self.input_bus_voltage /= 2 # # def set__modulation(self, input__modulation_type): # self.input_modulation_type = input__modulation_type def set__input_current(self, input_current): self.input_ic_peak = input_current def set__rg_flag(self, flag): self.rg_output_flag = flag def get__input_current(self): return self.input_ic_peak def get__input_bus_voltage(self): return self.input_bus_voltage def get__switches_per_degree(self): return self.switches_per_degree def get__input_output_freq(self): return self.input_output_freq def get__input_mod_depth(self): return self.input_mod_depth def get__input_freq_carrier(self): return self.input_freq_carrier def get__input_power_factor(self): return self.input_power_factor def get__duty_cycle__p(self): return self.duty_cycle__p def get__duty_cycle__n(self): return self.duty_cycle__n def get__step_size(self): return self.step_size def get__time_division(self): return self.time_division def get__input_t_sink(self): return self.input_t_sink def get__system_output_current(self): return self.output_current def get__system_output_voltage(self): return self.system_output_voltage def get__system_output_view(self): return self.system_output_view def get__input_rg_on(self): return self.input_rg_on def get__input_rg_off(self): return self.input_rg_off def get__input_rg_on_inside(self): return self.input_rg_on_inside def get__input_rg_off_inside(self): return self.input_rg_off_inside def get__input_rg_on_outside(self): return self.input_rg_on_outside def get__input_rg_off_outside(self): return self.input_rg_off_outside def get__three_level(self): return self.is_three_level
[ "calarmy1" ]
calarmy1
282e63fed4ef69cb10987c6e83a4b406b3ef4bf6
f0316e656767cf505b32c83eef4df13bb9f6b60c
/Kattis/cups.py
4789de27f116b754ca591f250e6577a087e0b6a9
[]
no_license
AkshdeepSharma/Classroom
70ec46b35fab5fc4a9d2eac430659d7dafba93da
4e55799466c101c736de6c7e07d716ff147deb83
refs/heads/master
2022-06-13T18:14:03.236503
2022-05-17T20:16:28
2022-05-17T20:16:28
94,828,359
1
0
null
null
null
null
UTF-8
Python
false
false
257
py
N = int(input()) cups = [] for i in range(N): a, b = input().split() try: cups.append([int(b), a]) except: cups.append([int(a) // 2, b]) cups = sorted(cups, key=lambda x: x[0]) for k in range(len(cups)): print(cups[k][1])
[ "akshdeep.s@live.com" ]
akshdeep.s@live.com
4f7ae60a8596d2b441a4ff0da86b405f6c80aba6
ad5d38fce4785037c108186f17eb1c64380355ef
/sddsd/google-cloud-sdk.staging/lib/googlecloudsdk/calliope/arg_parsers.py
106bfe82ce32e1f5504ba759ff9f2da633c36cc4
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
saranraju90/multik8s
75864b605a139ddb7947ed4de4ae8466bdd49acb
428576dedef7bb9cd6516e2c1ab2714581e1137c
refs/heads/master
2023-03-03T21:56:14.383571
2021-02-20T14:56:42
2021-02-20T14:56:42
339,665,231
0
0
null
null
null
null
UTF-8
Python
false
false
53,962
py
# -*- coding: utf-8 -*- # # Copyright 2013 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module that provides parsing utilities for argparse. For details of how argparse argument pasers work, see: http://docs.python.org/dev/library/argparse.html#type Example usage: import argparse import arg_parsers parser = argparse.ArgumentParser() parser.add_argument( '--metadata', type=arg_parsers.ArgDict()) parser.add_argument( '--delay', default='5s', type=arg_parsers.Duration(lower_bound='1s', upper_bound='10s') parser.add_argument( '--disk-size', default='10GB', type=arg_parsers.BinarySize(lower_bound='1GB', upper_bound='10TB') res = parser.parse_args( '--names --metadata x=y,a=b,c=d --delay 1s --disk-size 10gb'.split()) assert res.metadata == {'a': 'b', 'c': 'd', 'x': 'y'} assert res.delay == 1 assert res.disk_size == 10737418240 """ from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import argparse import collections import copy import re from dateutil import tz from googlecloudsdk.calliope import parser_errors from googlecloudsdk.core import log from googlecloudsdk.core import yaml from googlecloudsdk.core.console import console_attr from googlecloudsdk.core.console import console_io from googlecloudsdk.core.util import files from googlecloudsdk.core.util import times import six from six.moves import zip # pylint: disable=redefined-builtin __all__ = ['Duration', 'BinarySize'] class Error(Exception): """Exceptions that are defined by this module.""" class ArgumentTypeError(Error, argparse.ArgumentTypeError): """Exceptions for parsers that are used as argparse types.""" class ArgumentParsingError(Error, argparse.ArgumentError): """Raised when there is a problem with user input. argparse.ArgumentError takes both the action and a message as constructor parameters. """ def _GenerateErrorMessage(error, user_input=None, error_idx=None): """Constructs an error message for an exception. Args: error: str, The error message that should be displayed. This message should not end with any punctuation--the full error message is constructed by appending more information to error. user_input: str, The user input that caused the error. error_idx: int, The index at which the error occurred. If None, the index will not be printed in the error message. Returns: str: The message to use for the exception. """ if user_input is None: return error elif not user_input: # Is input empty? return error + '; received empty string' elif error_idx is None: return error + '; received: ' + user_input return ('{error_message} at index {error_idx}: {user_input}' .format(error_message=error, user_input=user_input, error_idx=error_idx)) _VALUE_PATTERN = r""" ^ # Beginning of input marker. (?P<amount>\d+) # Amount. ((?P<suffix>[-/a-zA-Z]+))? # Optional scale and type abbr. $ # End of input marker. """ _RANGE_PATTERN = r'^(?P<start>[0-9]+)(-(?P<end>[0-9]+))?$' _SECOND = 1 _MINUTE = 60 * _SECOND _HOUR = 60 * _MINUTE _DAY = 24 * _HOUR # The units are adopted from sleep(1): # http://linux.die.net/man/1/sleep _DURATION_SCALES = { 's': _SECOND, 'm': _MINUTE, 'h': _HOUR, 'd': _DAY, } _BINARY_SIZE_SCALES = { '': 1, 'K': 1 << 10, 'M': 1 << 20, 'G': 1 << 30, 'T': 1 << 40, 'P': 1 << 50, 'Ki': 1 << 10, 'Mi': 1 << 20, 'Gi': 1 << 30, 'Ti': 1 << 40, 'Pi': 1 << 50, } def GetMultiCompleter(individual_completer): """Create a completer to handle completion for comma separated lists. Args: individual_completer: A function that completes an individual element. Returns: A function that completes the last element of the list. """ def MultiCompleter(prefix, parsed_args, **kwargs): start = '' lst = prefix.rsplit(',', 1) if len(lst) > 1: start = lst[0] + ',' prefix = lst[1] matches = individual_completer(prefix, parsed_args, **kwargs) return [start + match for match in matches] return MultiCompleter def _DeleteTypeAbbr(suffix, type_abbr='B'): """Returns suffix with trailing type abbreviation deleted.""" if not suffix: return suffix s = suffix.upper() i = len(s) for c in reversed(type_abbr.upper()): if not i: break if s[i - 1] == c: i -= 1 return suffix[:i] def GetBinarySizePerUnit(suffix, type_abbr='B'): """Returns the binary size per unit for binary suffix string. Args: suffix: str, A case insensitive unit suffix string with optional type abbreviation. type_abbr: str, The optional case insensitive type abbreviation following the suffix. Raises: ValueError for unknown units. Returns: The binary size per unit for a unit+type_abbr suffix. """ unit = _DeleteTypeAbbr(suffix.upper(), type_abbr) return _BINARY_SIZE_SCALES.get(unit) def _ValueParser(scales, default_unit, lower_bound=None, upper_bound=None, strict_case=True, type_abbr='B', suggested_binary_size_scales=None): """A helper that returns a function that can parse values with units. Casing for all units matters. Args: scales: {str: int}, A dictionary mapping units to their magnitudes in relation to the lowest magnitude unit in the dict. default_unit: str, The default unit to use if the user's input is missing unit. lower_bound: str, An inclusive lower bound. upper_bound: str, An inclusive upper bound. strict_case: bool, whether to be strict on case-checking type_abbr: str, the type suffix abbreviation, e.g., B for bytes, b/s for bits/sec. suggested_binary_size_scales: list, A list of strings with units that will be recommended to user. Returns: A function that can parse values. """ def UnitsByMagnitude(suggested_binary_size_scales=None): """Returns a list of the units in scales sorted by magnitude.""" scale_items = sorted(six.iteritems(scales), key=lambda value: (value[1], value[0])) if suggested_binary_size_scales is None: return [key + type_abbr for key, _ in scale_items] return [key + type_abbr for key, _ in scale_items if key + type_abbr in suggested_binary_size_scales] def Parse(value): """Parses value that can contain a unit and type avvreviation.""" match = re.match(_VALUE_PATTERN, value, re.VERBOSE) if not match: raise ArgumentTypeError(_GenerateErrorMessage( 'given value must be of the form INTEGER[UNIT] where units ' 'can be one of {0}' .format(', '.join(UnitsByMagnitude(suggested_binary_size_scales))), user_input=value)) amount = int(match.group('amount')) suffix = match.group('suffix') or '' unit = _DeleteTypeAbbr(suffix, type_abbr) if strict_case: unit_case = unit default_unit_case = _DeleteTypeAbbr(default_unit, type_abbr) scales_case = scales else: unit_case = unit.upper() default_unit_case = _DeleteTypeAbbr(default_unit.upper(), type_abbr) scales_case = dict([(k.upper(), v) for k, v in scales.items()]) if not unit and unit == suffix: return amount * scales_case[default_unit_case] elif unit_case in scales_case: return amount * scales_case[unit_case] else: raise ArgumentTypeError(_GenerateErrorMessage( 'unit must be one of {0}'.format(', '.join(UnitsByMagnitude())), user_input=unit)) if lower_bound is None: parsed_lower_bound = None else: parsed_lower_bound = Parse(lower_bound) if upper_bound is None: parsed_upper_bound = None else: parsed_upper_bound = Parse(upper_bound) def ParseWithBoundsChecking(value): """Same as Parse except bound checking is performed.""" if value is None: return None else: parsed_value = Parse(value) if parsed_lower_bound is not None and parsed_value < parsed_lower_bound: raise ArgumentTypeError(_GenerateErrorMessage( 'value must be greater than or equal to {0}'.format(lower_bound), user_input=value)) elif parsed_upper_bound is not None and parsed_value > parsed_upper_bound: raise ArgumentTypeError(_GenerateErrorMessage( 'value must be less than or equal to {0}'.format(upper_bound), user_input=value)) else: return parsed_value return ParseWithBoundsChecking def RegexpValidator(pattern, description): """Returns a function that validates a string against a regular expression. For example: >>> alphanumeric_type = RegexpValidator( ... r'[a-zA-Z0-9]+', ... 'must contain one or more alphanumeric characters') >>> parser.add_argument('--foo', type=alphanumeric_type) >>> parser.parse_args(['--foo', '?']) >>> # SystemExit raised and the error "error: argument foo: Bad value [?]: >>> # must contain one or more alphanumeric characters" is displayed Args: pattern: str, the pattern to compile into a regular expression to check description: an error message to show if the argument doesn't match Returns: function: str -> str, usable as an argparse type """ def Parse(value): if not re.match(pattern + '$', value): raise ArgumentTypeError('Bad value [{0}]: {1}'.format(value, description)) return value return Parse def CustomFunctionValidator(fn, description, parser=None): """Returns a function that validates the input by running it through fn. For example: >>> def isEven(val): ... return val % 2 == 0 >>> even_number_parser = arg_parsers.CustomFunctionValidator( isEven, 'This is not even!', parser=arg_parsers.BoundedInt(0)) >>> parser.add_argument('--foo', type=even_number_parser) >>> parser.parse_args(['--foo', '3']) >>> # SystemExit raised and the error "error: argument foo: Bad value [3]: >>> # This is not even!" is displayed Args: fn: str -> boolean description: an error message to show if boolean function returns False parser: an arg_parser that is applied to to value before validation. The value is also returned by this parser. Returns: function: str -> str, usable as an argparse type """ def Parse(value): """Validates and returns a custom object from an argument string value.""" try: parsed_value = parser(value) if parser else value except ArgumentTypeError: pass else: if fn(parsed_value): return parsed_value encoded_value = console_attr.SafeText(value) formatted_err = 'Bad value [{0}]: {1}'.format(encoded_value, description) raise ArgumentTypeError(formatted_err) return Parse def Duration(default_unit='s', lower_bound='0', upper_bound=None, parsed_unit='s'): """Returns a function that can parse time durations. See times.ParseDuration() for details. If the unit is omitted, seconds is assumed. The parsed unit is assumed to be seconds, but can be specified as ms or us. For example: parser = Duration() assert parser('10s') == 10 parser = Duration(parsed_unit='ms') assert parser('10s') == 10000 parser = Duration(parsed_unit='us') assert parser('10s') == 10000000 Args: default_unit: str, The default duration unit. lower_bound: str, An inclusive lower bound for values. upper_bound: str, An inclusive upper bound for values. parsed_unit: str, The unit that the result should be returned as. Can be 's', 'ms', or 'us'. Raises: ArgumentTypeError: If either the lower_bound or upper_bound cannot be parsed. The returned function will also raise this error if it cannot parse its input. This exception is also raised if the returned function receives an out-of-bounds input. Returns: A function that accepts a single time duration as input to be parsed. """ def Parse(value): """Parses a duration from value and returns integer of the parsed_unit.""" if parsed_unit == 'ms': multiplier = 1000 elif parsed_unit == 'us': multiplier = 1000000 elif parsed_unit == 's': multiplier = 1 else: raise ArgumentTypeError( _GenerateErrorMessage('parsed_unit must be one of s, ms, us.')) try: duration = times.ParseDuration(value, default_suffix=default_unit) return int(duration.total_seconds * multiplier) except times.Error as e: message = six.text_type(e).rstrip('.') raise ArgumentTypeError(_GenerateErrorMessage( 'Failed to parse duration: {0}'.format(message, user_input=value))) parsed_lower_bound = Parse(lower_bound) if upper_bound is None: parsed_upper_bound = None else: parsed_upper_bound = Parse(upper_bound) def ParseWithBoundsChecking(value): """Same as Parse except bound checking is performed.""" if value is None: return None parsed_value = Parse(value) if parsed_lower_bound is not None and parsed_value < parsed_lower_bound: raise ArgumentTypeError(_GenerateErrorMessage( 'value must be greater than or equal to {0}'.format(lower_bound), user_input=value)) if parsed_upper_bound is not None and parsed_value > parsed_upper_bound: raise ArgumentTypeError(_GenerateErrorMessage( 'value must be less than or equal to {0}'.format(upper_bound), user_input=value)) return parsed_value return ParseWithBoundsChecking def BinarySize(lower_bound=None, upper_bound=None, suggested_binary_size_scales=None, default_unit='G', type_abbr='B'): """Returns a function that can parse binary sizes. Binary sizes are defined as base-2 values representing number of bytes. Input to the parsing function must be a string of the form: INTEGER[UNIT] The integer must be non-negative. Valid units are "B", "KB", "MB", "GB", "TB", "KiB", "MiB", "GiB", "TiB", "PiB". If the unit is omitted then default_unit is assumed. The result is parsed in bytes. For example: parser = BinarySize() assert parser('10GB') == 1073741824 Args: lower_bound: str, An inclusive lower bound for values. upper_bound: str, An inclusive upper bound for values. suggested_binary_size_scales: list, A list of strings with units that will be recommended to user. default_unit: str, unit used when user did not specify unit. type_abbr: str, the type suffix abbreviation, e.g., B for bytes, b/s for bits/sec. Raises: ArgumentTypeError: If either the lower_bound or upper_bound cannot be parsed. The returned function will also raise this error if it cannot parse its input. This exception is also raised if the returned function receives an out-of-bounds input. Returns: A function that accepts a single binary size as input to be parsed. """ return _ValueParser( _BINARY_SIZE_SCALES, default_unit=default_unit, lower_bound=lower_bound, upper_bound=upper_bound, strict_case=False, type_abbr=type_abbr, suggested_binary_size_scales=suggested_binary_size_scales) _KV_PAIR_DELIMITER = '=' class Range(object): """Range of integer values.""" def __init__(self, start, end): self.start = start self.end = end @staticmethod def Parse(string_value): """Creates Range object out of given string value.""" match = re.match(_RANGE_PATTERN, string_value) if not match: raise ArgumentTypeError('Expected a non-negative integer value or a ' 'range of such values instead of "{0}"' .format(string_value)) start = int(match.group('start')) end = match.group('end') if end is None: end = start else: end = int(end) if end < start: raise ArgumentTypeError('Expected range start {0} smaller or equal to ' 'range end {1} in "{2}"'.format( start, end, string_value)) return Range(start, end) def Combine(self, other): """Combines two overlapping or adjacent ranges, raises otherwise.""" if self.end + 1 < other.start or self.start > other.end + 1: raise Error('Cannot combine non-overlapping or non-adjacent ranges ' '{0} and {1}'.format(self, other)) return Range(min(self.start, other.start), max(self.end, other.end)) def __eq__(self, other): if isinstance(other, Range): return self.start == other.start and self.end == other.end return False def __lt__(self, other): if self.start == other.start: return self.end < other.end return self.start < other.start def __str__(self): if self.start == self.end: return six.text_type(self.start) return '{0}-{1}'.format(self.start, self.end) class HostPort(object): """A class for holding host and port information.""" IPV4_OR_HOST_PATTERN = r'^(?P<address>[\w\d\.-]+)?(:|:(?P<port>[\d]+))?$' # includes hostnames IPV6_PATTERN = r'^(\[(?P<address>[\w\d:]+)\])(:|:(?P<port>[\d]+))?$' def __init__(self, host, port): self.host = host self.port = port @staticmethod def Parse(s, ipv6_enabled=False): """Parse the given string into a HostPort object. This can be used as an argparse type. Args: s: str, The string to parse. If ipv6_enabled and host is an IPv6 address, it should be placed in square brackets: e.g. [2001:db8:0:0:0:ff00:42:8329] or [2001:db8:0:0:0:ff00:42:8329]:8080 ipv6_enabled: boolean, If True then accept IPv6 addresses. Raises: ArgumentTypeError: If the string is not valid. Returns: HostPort, The parsed object. """ if not s: return HostPort(None, None) match = re.match(HostPort.IPV4_OR_HOST_PATTERN, s, re.UNICODE) if ipv6_enabled and not match: match = re.match(HostPort.IPV6_PATTERN, s, re.UNICODE) if not match: raise ArgumentTypeError(_GenerateErrorMessage( 'Failed to parse host and port. Expected format \n\n' ' IPv4_ADDRESS_OR_HOSTNAME:PORT\n\n' 'or\n\n' ' [IPv6_ADDRESS]:PORT\n\n' '(where :PORT is optional).', user_input=s)) elif not match: raise ArgumentTypeError(_GenerateErrorMessage( 'Failed to parse host and port. Expected format \n\n' ' IPv4_ADDRESS_OR_HOSTNAME:PORT\n\n' '(where :PORT is optional).', user_input=s)) return HostPort(match.group('address'), match.group('port')) class Day(object): """A class for parsing a datetime object for a specific day.""" @staticmethod def Parse(s): if not s: return None try: return times.ParseDateTime(s, '%Y-%m-%d').date() except times.Error as e: raise ArgumentTypeError( _GenerateErrorMessage( 'Failed to parse date: {0}'.format(six.text_type(e)), user_input=s)) class Datetime(object): """A class for parsing a datetime object.""" @staticmethod def Parse(s): """Parses a string value into a Datetime object in local timezone.""" if not s: return None try: return times.ParseDateTime(s) except times.Error as e: raise ArgumentTypeError( _GenerateErrorMessage( 'Failed to parse date/time: {0}'.format(six.text_type(e)), user_input=s)) @staticmethod def ParseUtcTime(s): """Parses a string representing a time in UTC into a Datetime object.""" if not s: return None try: return times.ParseDateTime(s, tzinfo=tz.tzutc()) except times.Error as e: raise ArgumentTypeError( _GenerateErrorMessage( 'Failed to parse UTC time: {0}'.format(six.text_type(e)), user_input=s)) class DayOfWeek(object): """A class for parsing a day of the week.""" DAYS = ['SUN', 'MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT'] @staticmethod def Parse(s): """Validates and normalizes a string as a day of the week.""" if not s: return None fixed = s.upper()[:3] if fixed not in DayOfWeek.DAYS: raise ArgumentTypeError( _GenerateErrorMessage( 'Failed to parse day of week. Value should be one of {0}'.format( ', '.join(DayOfWeek.DAYS)), user_input=s)) return fixed def _BoundedType(type_builder, type_description, lower_bound=None, upper_bound=None, unlimited=False): """Returns a function that can parse given type within some bound. Args: type_builder: A callable for building the requested type from the value string. type_description: str, Description of the requested type (for verbose messages). lower_bound: of type compatible with type_builder, The value must be >= lower_bound. upper_bound: of type compatible with type_builder, The value must be <= upper_bound. unlimited: bool, If True then a value of 'unlimited' means no limit. Returns: A function that can parse given type within some bound. """ def Parse(value): """Parses value as a type constructed by type_builder. Args: value: str, Value to be converted to the requested type. Raises: ArgumentTypeError: If the provided value is out of bounds or unparsable. Returns: Value converted to the requested type. """ if unlimited and value == 'unlimited': return None try: v = type_builder(value) except ValueError: raise ArgumentTypeError( _GenerateErrorMessage('Value must be {0}'.format(type_description), user_input=value)) if lower_bound is not None and v < lower_bound: raise ArgumentTypeError( _GenerateErrorMessage( 'Value must be greater than or equal to {0}'.format(lower_bound), user_input=value)) if upper_bound is not None and upper_bound < v: raise ArgumentTypeError( _GenerateErrorMessage( 'Value must be less than or equal to {0}'.format(upper_bound), user_input=value)) return v return Parse def BoundedInt(*args, **kwargs): return _BoundedType(int, 'an integer', *args, **kwargs) def BoundedFloat(*args, **kwargs): return _BoundedType(float, 'a floating point number', *args, **kwargs) def _TokenizeQuotedList(arg_value, delim=','): """Tokenize an argument into a list. Args: arg_value: str, The raw argument. delim: str, The delimiter on which to split the argument string. Returns: [str], The tokenized list. """ if arg_value: if not arg_value.endswith(delim): arg_value += delim return arg_value.split(delim)[:-1] return [] class ArgType(object): """Base class for arg types.""" class ArgBoolean(ArgType): """Interpret an argument value as a bool.""" def __init__( self, truthy_strings=None, falsey_strings=None, case_sensitive=False): self._case_sensitive = case_sensitive if truthy_strings: self._truthy_strings = truthy_strings else: self._truthy_strings = ['true', 'yes'] if falsey_strings: self._falsey_strings = falsey_strings else: self._falsey_strings = ['false', 'no'] def __call__(self, arg_value): if not self._case_sensitive: normalized_arg_value = arg_value.lower() else: normalized_arg_value = arg_value if normalized_arg_value in self._truthy_strings: return True if normalized_arg_value in self._falsey_strings: return False raise ArgumentTypeError( 'Invalid flag value [{0}], expected one of [{1}]'.format( arg_value, ', '.join(self._truthy_strings + self._falsey_strings) ) ) class ArgList(ArgType): """Interpret an argument value as a list. Intended to be used as the type= for a flag argument. Splits the string on commas or another delimiter and returns a list. By default, splits on commas: 'a,b,c' -> ['a', 'b', 'c'] There is an available syntax for using an alternate delimiter: '^:^a,b:c' -> ['a,b', 'c'] '^::^a:b::c' -> ['a:b', 'c'] '^,^^a^,b,c' -> ['^a^', ',b', 'c'] """ DEFAULT_DELIM_CHAR = ',' ALT_DELIM_CHAR = '^' def __init__(self, element_type=None, min_length=0, max_length=None, choices=None, custom_delim_char=None, visible_choices=None): """Initialize an ArgList. Args: element_type: (str)->str, A function to apply to each of the list items. min_length: int, The minimum size of the list. max_length: int, The maximum size of the list. choices: [element_type], a list of valid possibilities for elements. If None, then no constraints are imposed. custom_delim_char: char, A customized delimiter character. visible_choices: [element_type], a list of valid possibilities for elements to be shown to the user. If None, defaults to choices. Returns: (str)->[str], A function to parse the list of values in the argument. Raises: ArgumentTypeError: If the list is malformed. """ self.element_type = element_type self.choices = choices self.visible_choices = ( visible_choices if visible_choices is not None else choices) if self.visible_choices: def ChoiceType(raw_value): if element_type: typed_value = element_type(raw_value) else: typed_value = raw_value if typed_value not in choices: raise ArgumentTypeError('{value} must be one of [{choices}]'.format( value=typed_value, choices=', '.join( [six.text_type(choice) for choice in self.visible_choices]))) return typed_value self.element_type = ChoiceType self.min_length = min_length self.max_length = max_length self.custom_delim_char = custom_delim_char def __call__(self, arg_value): # pylint:disable=missing-docstring if isinstance(arg_value, list): arg_list = arg_value elif not isinstance(arg_value, six.string_types): raise ArgumentTypeError('Invalid type [{}] for flag value [{}]'.format( type(arg_value).__name__, arg_value)) else: delim = self.custom_delim_char or self.DEFAULT_DELIM_CHAR if (arg_value.startswith(self.ALT_DELIM_CHAR) and self.ALT_DELIM_CHAR in arg_value[1:]): delim, arg_value = arg_value[1:].split(self.ALT_DELIM_CHAR, 1) if not delim: raise ArgumentTypeError( 'Invalid delimeter. Please see `gcloud topic flags-file` or ' '`gcloud topic escaping` for information on providing list or ' 'dictionary flag values with special characters.') arg_list = _TokenizeQuotedList(arg_value, delim=delim) # TODO(b/35944028): These exceptions won't present well to the user. if len(arg_list) < self.min_length: raise ArgumentTypeError('not enough args') if self.max_length is not None and len(arg_list) > self.max_length: raise ArgumentTypeError('too many args') if self.element_type: arg_list = [self.element_type(arg) for arg in arg_list] return arg_list _MAX_METAVAR_LENGTH = 30 # arbitrary, but this is pretty long def GetUsageMsg(self, is_custom_metavar, metavar): """Get a specially-formatted metavar for the ArgList to use in help. An example is worth 1,000 words: >>> ArgList().GetUsageMetavar('FOO') '[FOO,...]' >>> ArgList(min_length=1).GetUsageMetavar('FOO') 'FOO,[FOO,...]' >>> ArgList(max_length=2).GetUsageMetavar('FOO') 'FOO,[FOO]' >>> ArgList(max_length=3).GetUsageMetavar('FOO') # One, two, many... 'FOO,[FOO,...]' >>> ArgList(min_length=2, max_length=2).GetUsageMetavar('FOO') 'FOO,FOO' >>> ArgList().GetUsageMetavar('REALLY_VERY_QUITE_LONG_METAVAR') 'REALLY_VERY_QUITE_LONG_METAVAR,[...]' Args: is_custom_metavar: unused in GetUsageMsg metavar: string, the base metavar to turn into an ArgList metavar Returns: string, the ArgList usage metavar """ del is_custom_metavar # Unused in GetUsageMsg delim_char = self.custom_delim_char or self.DEFAULT_DELIM_CHAR required = delim_char.join([metavar] * self.min_length) if self.max_length: num_optional = self.max_length - self.min_length else: num_optional = None # Use the "1, 2, many" approach to counting if num_optional == 0: optional = '' elif num_optional == 1: optional = '[{}]'.format(metavar) elif num_optional == 2: optional = '[{0}{1}[{0}]]'.format(metavar, delim_char) else: optional = '[{}{}...]'.format(metavar, delim_char) msg = delim_char.join([x for x in [required, optional] if x]) if len(msg) < self._MAX_METAVAR_LENGTH: return msg # With long metavars, only put it in once. if self.min_length == 0: return '[{}{}...]'.format(metavar, delim_char) if self.min_length == 1: return '{}{}[...]'.format(metavar, delim_char) else: return '{0}{1}...{1}[...]'.format(metavar, delim_char) class ArgDict(ArgList): """Interpret an argument value as a dict. Intended to be used as the type= for a flag argument. Splits the string on commas to get a list, and then splits the items on equals to get a set of key-value pairs to get a dict. """ def __init__(self, key_type=None, value_type=None, spec=None, min_length=0, max_length=None, allow_key_only=False, required_keys=None, operators=None): """Initialize an ArgDict. Args: key_type: (str)->str, A function to apply to each of the dict keys. value_type: (str)->str, A function to apply to each of the dict values. spec: {str: (str)->str}, A mapping of expected keys to functions. The functions are applied to the values. If None, an arbitrary set of keys will be accepted. If not None, it is an error for the user to supply a key that is not in the spec. If the function specified is None, then accept a key only without '=value'. min_length: int, The minimum number of keys in the dict. max_length: int, The maximum number of keys in the dict. allow_key_only: bool, Allow empty values. required_keys: [str], Required keys in the dict. operators: operator_char -> value_type, Define multiple single character operators, each with its own value_type converter. Use value_type==None for no conversion. The default value is {'=': value_type} Returns: (str)->{str:str}, A function to parse the dict in the argument. Raises: ArgumentTypeError: If the list is malformed. ValueError: If both value_type and spec are provided. """ super(ArgDict, self).__init__(min_length=min_length, max_length=max_length) if spec and value_type: raise ValueError('cannot have both spec and sub_type') self.key_type = key_type self.spec = spec self.allow_key_only = allow_key_only self.required_keys = required_keys or [] if not operators: operators = {'=': value_type} for op in operators.keys(): if len(op) != 1: raise ArgumentTypeError( 'Operator [{}] must be one character.'.format(op)) ops = ''.join(six.iterkeys(operators)) key_op_value_pattern = '([^{ops}]+)([{ops}]?)(.*)'.format( ops=re.escape(ops)) self.key_op_value = re.compile(key_op_value_pattern, re.DOTALL) self.operators = operators def _ApplySpec(self, key, value): if key in self.spec: if self.spec[key] is None: if value: raise ArgumentTypeError('Key [{0}] does not take a value'.format(key)) return None return self.spec[key](value) else: raise ArgumentTypeError( _GenerateErrorMessage( 'valid keys are [{0}]'.format( ', '.join(sorted(self.spec.keys()))), user_input=key)) def _ValidateKeyValue(self, key, value, op='='): """Converts and validates <key,value> and returns (key,value).""" if (not op or value is None) and not self.allow_key_only: raise ArgumentTypeError( 'Bad syntax for dict arg: [{0}]. Please see ' '`gcloud topic flags-file` or `gcloud topic escaping` for ' 'information on providing list or dictionary flag values with ' 'special characters.'.format(key)) if self.key_type: try: key = self.key_type(key) except ValueError: raise ArgumentTypeError('Invalid key [{0}]'.format(key)) convert_value = self.operators.get(op, None) if convert_value: try: value = convert_value(value) except ValueError: raise ArgumentTypeError('Invalid value [{0}]'.format(value)) if self.spec: value = self._ApplySpec(key, value) return key, value def __call__(self, arg_value): # pylint:disable=missing-docstring if isinstance(arg_value, dict): raw_dict = arg_value arg_dict = collections.OrderedDict() for key, value in six.iteritems(raw_dict): key, value = self._ValidateKeyValue(key, value) arg_dict[key] = value elif not isinstance(arg_value, six.string_types): raise ArgumentTypeError('Invalid type [{}] for flag value [{}]'.format( type(arg_value).__name__, arg_value)) else: arg_list = super(ArgDict, self).__call__(arg_value) arg_dict = collections.OrderedDict() for arg in arg_list: match = self.key_op_value.match(arg) # TODO(b/35944028): These exceptions won't present well to the user. if not match: raise ArgumentTypeError('Invalid flag value [{0}]'.format(arg)) key, op, value = match.group(1), match.group(2), match.group(3) key, value = self._ValidateKeyValue(key, value, op=op) arg_dict[key] = value for required_key in self.required_keys: if required_key not in arg_dict: raise ArgumentTypeError( 'Key [{0}] required in dict arg but not provided'.format( required_key)) return arg_dict def GetUsageMsg(self, is_custom_metavar, metavar): # If we're not using a spec to limit the key values or if metavar # has been overridden, then use the normal ArgList formatting if not self.spec or is_custom_metavar: return super(ArgDict, self).GetUsageMsg(is_custom_metavar, metavar) msg_list = [] spec_list = sorted(six.iteritems(self.spec)) # First put the spec keys with no value followed by those that expect a # value for spec_key, spec_function in spec_list: if spec_function is None: if not self.allow_key_only: raise ArgumentTypeError( 'Key [{0}] specified in spec without a function but ' 'allow_key_only is set to False'.format(spec_key)) msg_list.append(spec_key) for spec_key, spec_function in spec_list: if spec_function is not None: msg_list.append('{0}={1}'.format(spec_key, spec_key.upper())) msg = '[' + '],['.join(msg_list) + ']' return msg class UpdateAction(argparse.Action): r"""Create a single dict value from delimited or repeated flags. This class is intended to be a more flexible version of argparse._AppendAction. For example, with the following flag definition: parser.add_argument( '--inputs', type=arg_parsers.ArgDict(), action='append') a caller can specify on the command line flags such as: --inputs k1=v1,k2=v2 and the result will be a list of one dict: [{ 'k1': 'v1', 'k2': 'v2' }] Specifying two separate command line flags such as: --inputs k1=v1 \ --inputs k2=v2 will produce a list of dicts: [{ 'k1': 'v1'}, { 'k2': 'v2' }] The UpdateAction class allows for both of the above user inputs to result in the same: a single dictionary: { 'k1': 'v1', 'k2': 'v2' } This gives end-users a lot more flexibility in constructing their command lines, especially when scripting calls. Note that this class will raise an exception if a key value is specified more than once. To allow for a key value to be specified multiple times, use UpdateActionWithAppend. """ def OnDuplicateKeyRaiseError(self, key, existing_value=None, new_value=None): if existing_value is None: user_input = None else: user_input = ', '.join([existing_value, new_value]) raise argparse.ArgumentError(self, _GenerateErrorMessage( '"{0}" cannot be specified multiple times'.format(key), user_input=user_input)) def __init__(self, option_strings, dest, nargs=None, const=None, default=None, type=None, # pylint:disable=redefined-builtin choices=None, required=False, help=None, # pylint:disable=redefined-builtin metavar=None, onduplicatekey_handler=OnDuplicateKeyRaiseError): if nargs == 0: raise ValueError('nargs for append actions must be > 0; if arg ' 'strings are not supplying the value to append, ' 'the append const action may be more appropriate') if const is not None and nargs != argparse.OPTIONAL: raise ValueError('nargs must be %r to supply const' % argparse.OPTIONAL) self.choices = choices if isinstance(choices, dict): choices = sorted(choices.keys()) super(UpdateAction, self).__init__( option_strings=option_strings, dest=dest, nargs=nargs, const=const, default=default, type=type, choices=choices, required=required, help=help, metavar=metavar) self.onduplicatekey_handler = onduplicatekey_handler def _EnsureValue(self, namespace, name, value): if getattr(namespace, name, None) is None: setattr(namespace, name, value) return getattr(namespace, name) # pylint: disable=protected-access def __call__(self, parser, namespace, values, option_string=None): if isinstance(values, dict): # Get the existing arg value (if any) items = copy.copy(self._EnsureValue( namespace, self.dest, collections.OrderedDict())) # Merge the new key/value pair(s) in for k, v in six.iteritems(values): if k in items: v = self.onduplicatekey_handler(self, k, items[k], v) items[k] = v else: # Get the existing arg value (if any) items = copy.copy(self._EnsureValue(namespace, self.dest, [])) # Merge the new key/value pair(s) in for k in values: if k in items: self.onduplicatekey_handler(self, k) else: items.append(k) # Saved the merged dictionary setattr(namespace, self.dest, items) class UpdateActionWithAppend(UpdateAction): """Create a single dict value from delimited or repeated flags. This class provides a variant of UpdateAction, which allows for users to append, rather than reject, duplicate key values. For example, the user can specify: --inputs k1=v1a --inputs k1=v1b --inputs k2=v2 and the result will be: { 'k1': ['v1a', 'v1b'], 'k2': 'v2' } """ def OnDuplicateKeyAppend(self, key, existing_value=None, new_value=None): if existing_value is None: return key elif isinstance(existing_value, list): return existing_value + [new_value] else: return [existing_value, new_value] def __init__(self, option_strings, dest, nargs=None, const=None, default=None, type=None, # pylint:disable=redefined-builtin choices=None, required=False, help=None, # pylint:disable=redefined-builtin metavar=None, onduplicatekey_handler=OnDuplicateKeyAppend): super(UpdateActionWithAppend, self).__init__( option_strings=option_strings, dest=dest, nargs=nargs, const=const, default=default, type=type, choices=choices, required=required, help=help, metavar=metavar, onduplicatekey_handler=onduplicatekey_handler) class RemainderAction(argparse._StoreAction): # pylint: disable=protected-access """An action with a couple of helpers to better handle --. argparse on its own does not properly handle -- implementation args. argparse.REMAINDER greedily steals valid flags before a --, and nargs='*' will bind to [] and not parse args after --. This Action represents arguments to be passed through to a subcommand after --. Primarily, this Action provides two utility parsers to help a modified ArgumentParser parse -- properly. There is one additional property kwarg: example: A usage statement used to construct nice additional help. """ def __init__(self, *args, **kwargs): if kwargs['nargs'] is not argparse.REMAINDER: raise ValueError( 'The RemainderAction should only be used when ' 'nargs=argparse.REMAINDER.') # Create detailed help. self.explanation = ( "The '--' argument must be specified between gcloud specific args on " 'the left and {metavar} on the right.' ).format(metavar=kwargs['metavar']) if 'help' in kwargs: kwargs['help'] += '\n+\n' + self.explanation if 'example' in kwargs: kwargs['help'] += ' Example:\n\n' + kwargs['example'] del kwargs['example'] super(RemainderAction, self).__init__(*args, **kwargs) def _SplitOnDash(self, args): split_index = args.index('--') # Remove -- before passing through return args[:split_index], args[split_index + 1:] def ParseKnownArgs(self, args, namespace): """Binds all args after -- to the namespace.""" # Not [], so that we can distinguish between empty remainder args and # absent remainder args. remainder_args = None if '--' in args: args, remainder_args = self._SplitOnDash(args) self(None, namespace, remainder_args) return namespace, args def ParseRemainingArgs(self, remaining_args, namespace, original_args): """Parses the unrecognized args from the end of the remaining_args. This method identifies all unrecognized arguments after the last argument recognized by a parser (but before --). It then either logs a warning and binds them to the namespace or raises an error, depending on strictness. Args: remaining_args: A list of arguments that the parsers did not recognize. namespace: The Namespace to bind to. original_args: The full list of arguments given to the top parser, Raises: ArgumentError: If there were remaining arguments after the last recognized argument and this action is strict. Returns: A tuple of the updated namespace and unrecognized arguments (before the last recognized argument). """ # Only parse consecutive unknown args from the end of the original args. # Strip out everything after '--' if '--' in original_args: original_args, _ = self._SplitOnDash(original_args) # Find common suffix between remaining_args and original_args split_index = 0 for i, (arg1, arg2) in enumerate( zip(reversed(remaining_args), reversed(original_args))): if arg1 != arg2: split_index = len(remaining_args) - i break pass_through_args = remaining_args[split_index:] remaining_args = remaining_args[:split_index] if pass_through_args: msg = ('unrecognized args: {args}\n' + self.explanation).format( args=' '.join(pass_through_args)) raise parser_errors.UnrecognizedArgumentsError(msg) self(None, namespace, pass_through_args) return namespace, remaining_args class StoreOnceAction(argparse.Action): r"""Create a single dict value from delimited flags. For example, with the following flag definition: parser.add_argument( '--inputs', type=arg_parsers.ArgDict(), action=StoreOnceAction) a caller can specify on the command line flags such as: --inputs k1=v1,k2=v2 and the result will be a list of one dict: [{ 'k1': 'v1', 'k2': 'v2' }] Specifying two separate command line flags such as: --inputs k1=v1 \ --inputs k2=v2 will raise an exception. Note that this class will raise an exception if a key value is specified more than once. To allow for a key value to be specified multiple times, use UpdateActionWithAppend. """ def OnSecondArgumentRaiseError(self): raise argparse.ArgumentError(self, _GenerateErrorMessage( '"{0}" argument cannot be specified multiple times'.format(self.dest))) def __init__(self, *args, **kwargs): self.dest_is_populated = False super(StoreOnceAction, self).__init__(*args, **kwargs) # pylint: disable=protected-access def __call__(self, parser, namespace, values, option_string=None): # Make sure no existing arg value exist if self.dest_is_populated: self.OnSecondArgumentRaiseError() self.dest_is_populated = True setattr(namespace, self.dest, values) class _HandleNoArgAction(argparse.Action): """This class should not be used directly, use HandleNoArgAction instead.""" def __init__(self, none_arg, deprecation_message, **kwargs): super(_HandleNoArgAction, self).__init__(**kwargs) self.none_arg = none_arg self.deprecation_message = deprecation_message def __call__(self, parser, namespace, value, option_string=None): if value is None: log.warning(self.deprecation_message) if self.none_arg: setattr(namespace, self.none_arg, True) setattr(namespace, self.dest, value) def HandleNoArgAction(none_arg, deprecation_message): """Creates an argparse.Action that warns when called with no arguments. This function creates an argparse action which can be used to gracefully deprecate a flag using nargs=?. When a flag is created with this action, it simply log.warning()s the given deprecation_message and then sets the value of the none_arg to True. This means if you use the none_arg no_foo and attach this action to foo, `--foo` (no argument), it will have the same effect as `--no-foo`. Args: none_arg: a boolean argument to write to. For --no-foo use "no_foo" deprecation_message: msg to tell user to stop using with no arguments. Returns: An argparse action. """ def HandleNoArgActionInit(**kwargs): return _HandleNoArgAction(none_arg, deprecation_message, **kwargs) return HandleNoArgActionInit class FileContents(object): """Creates an argparse type that reads the contents of a file or stdin. This is similar to argparse.FileType, but unlike FileType it does not leave a dangling file handle open. The argument stored in the argparse Namespace is the file's contents. Attributes: binary: bool, If True, the contents of the file will be returned as bytes. Returns: A function that accepts a filename, or "-" representing that stdin should be used as input. """ def __init__(self, binary=False): self.binary = binary def __call__(self, name): """Return the contents of the file with the specified name. If name is "-", stdin is read until EOF. Otherwise, the named file is read. Args: name: str, The file name, or '-' to indicate stdin. Returns: The contents of the file. Raises: ArgumentTypeError: If the file cannot be read or is too large. """ try: return console_io.ReadFromFileOrStdin(name, binary=self.binary) except files.Error as e: raise ArgumentTypeError(e) class YAMLFileContents(object): """Creates an argparse type that reads the contents of a YAML or JSON file. This is similar to argparse.FileType, but unlike FileType it does not leave a dangling file handle open. The argument stored in the argparse Namespace is the file's contents parsed as a YAML object. Attributes: validator: function, Function that will validate the provided input file contents. Returns: A function that accepts a filename that should be parsed as a YAML or JSON file. """ def __init__(self, validator=None): if validator and not callable(validator): raise ArgumentTypeError('Validator must be callable') self.validator = validator def _AssertJsonLike(self, yaml_data): if not (yaml.dict_like(yaml_data) or yaml.list_like(yaml_data)): raise ArgumentTypeError('Invalid YAML/JSON Data [{}]'.format(yaml_data)) def _LoadSingleYamlDocument(self, name): """Returns the yaml data for a file or from stdin for a single document. YAML allows multiple documents in a single file by using `---` as a separator between documents. See https://yaml.org/spec/1.1/#id857577. However, some YAML-generating tools generate a single document followed by this separator before ending the file. This method supports the case of a single document in a file that contains superfluous document separators, but still throws if multiple documents are actually found. Args: name: str, The file path to the file or "-" to read from stdin. Returns: The contents of the file parsed as a YAML data object. """ if name == '-': stdin = console_io.ReadStdin() # Save to potentially reuse below yaml_data = yaml.load_all(stdin) else: yaml_data = yaml.load_all_path(name) yaml_data = [d for d in yaml_data if d is not None] # Remove empty docs # Return the single document if only 1 is found. if len(yaml_data) == 1: return yaml_data[0] # Multiple (or 0) documents found. Try to parse again with single-document # loader so its error is propagated rather than creating our own. if name == '-': return yaml.load(stdin) else: return yaml.load_path(name) def __call__(self, name): """Load YAML data from file path (name) or stdin. If name is "-", stdin is read until EOF. Otherwise, the named file is read. If self.validator is set, call it on the yaml data once it is loaded. Args: name: str, The file path to the file. Returns: The contents of the file parsed as a YAML data object. Raises: ArgumentTypeError: If the file cannot be read or is not a JSON/YAML like object. ValueError: If file content fails validation. """ try: yaml_data = self._LoadSingleYamlDocument(name) self._AssertJsonLike(yaml_data) if self.validator: if not self.validator(yaml_data): raise ValueError('Invalid YAML/JSON content [{}]'.format(yaml_data)) return yaml_data except (yaml.YAMLParseError, yaml.FileLoadError) as e: raise ArgumentTypeError(e) class StoreTrueFalseAction(argparse._StoreTrueAction): # pylint: disable=protected-access """Argparse action that acts as a combination of store_true and store_false. Calliope already gives any bool-type arguments the standard and `--no-` variants. In most cases we only want to document the option that does something---if we have `default=False`, we don't want to show `--no-foo`, since it won't do anything. But in some cases we *do* want to show both variants: one example is when `--foo` means "enable," `--no-foo` means "disable," and neither means "do nothing." The obvious way to represent this is `default=None`; however, (1) the default value of `default` is already None, so most boolean actions would have this setting by default (not what we want), and (2) we still want an option to have this True/False/None behavior *without* the flag documentation. To get around this, we have an opt-in version of the same thing that documents both the flag and its inverse. """ def __init__(self, *args, **kwargs): super(StoreTrueFalseAction, self).__init__(*args, default=None, **kwargs) def StoreFilePathAndContentsAction(binary=False): """Returns Action that stores both file content and file path. Args: binary: boolean, whether or not this is a binary file. Returns: An argparse action. """ class Action(argparse.Action): """Stores both file content and file path. Stores file contents under original flag DEST and stores file path under DEST_path. """ def __init__(self, *args, **kwargs): super(Action, self).__init__(*args, **kwargs) def __call__(self, parser, namespace, value, option_string=None): """Stores the contents of the file and the file name in namespace.""" try: content = console_io.ReadFromFileOrStdin(value, binary=binary) except files.Error as e: raise ArgumentTypeError(e) setattr(namespace, self.dest, content) new_dest = '{}_path'.format(self.dest) setattr(namespace, new_dest, value) return Action
[ "saranraju90@gmail.com" ]
saranraju90@gmail.com
88c38efa8ff0a8056b6fc309011e034888426fa0
26acc7e23024098661a42da37e2cb4ed56c21b44
/dgp/genera/load/loader.py
daf5ca8acee012f9dd328fd48ef0fb2baf85a38a
[ "MIT" ]
permissive
dataspot/dgp
80536c0e296570c109511de3dae6e0297bb8b0fd
e86d604c8af5534985f9b788ba809facbc325152
refs/heads/master
2023-03-16T05:15:38.362702
2023-03-09T07:07:28
2023-03-09T07:07:28
169,378,970
1
0
null
null
null
null
UTF-8
Python
false
false
2,879
py
import os import json import requests from hashlib import md5 from dataflows import Flow, load, dump_to_path from dataflows.base.schema_validator import ignore from ...core import BaseDataGenusProcessor, Required, Validator, ConfigurableDGP from .analyzers import FileFormatDGP, StructureDGP from ...config.consts import CONFIG_URL, CONFIG_PUBLISH_ALLOWED, RESOURCE_NAME from ...config.log import logger class LoaderDGP(BaseDataGenusProcessor): PRE_CHECKS = Validator( Required(CONFIG_URL, 'Source data URL or path') ) def init(self): self.steps = self.init_classes([ FileFormatDGP, StructureDGP, ]) def hash_key(self, *args): data = json.dumps(args, sort_keys=True, ensure_ascii=False) return md5(data.encode('utf8')).hexdigest() def flow(self): if len(self.errors) == 0: config = self.config._unflatten() source = config['source'] ref_hash = self.hash_key(source, config['structure'], config.get('publish')) cache_path = os.path.join('.cache', ref_hash) datapackage_path = os.path.join(cache_path, 'datapackage.json') structure_params = self.context._structure_params() http_session = self.context.http_session() loader = load(source.pop('path'), validate=False, name=RESOURCE_NAME, **source, **structure_params, http_session=http_session, http_timeout=120, infer_strategy=load.INFER_PYTHON_TYPES, cast_strategy=load.CAST_DO_NOTHING, limit_rows=( None if self.config.get(CONFIG_PUBLISH_ALLOWED) else 5000 )) if self.config.get(CONFIG_PUBLISH_ALLOWED): return Flow( loader, ) else: if not os.path.exists(datapackage_path): logger.info('Caching source data into %s', cache_path) Flow( loader, dump_to_path(cache_path, validator_options=dict(on_error=ignore)), # printer(), ).process() logger.info('Using cached source data from %s', cache_path) return Flow( load(datapackage_path, resources=RESOURCE_NAME), ) class PostLoaderDGP(ConfigurableDGP): def init(self): super().init('loading', per_taxonomy=False) self._flows = None class PreLoaderDGP(ConfigurableDGP): def init(self): super().init('preloading', per_taxonomy=False) self._flows = None
[ "adam.kariv@gmail.com" ]
adam.kariv@gmail.com
6dadb8446146a85cfb8ae39894b3b97d9a46708d
24108066b4b5b6ecd02c7fb499d970eab1877380
/codeforces/queueatschool.py
b500a8dde8579bfc2827cd50ca3f5685bf164946
[]
no_license
vishu1994/Datastructures-And-Algorithms
93fc7e1d1f5fac775b6c50cb8cafd1a4f3060544
35bfc28edd8ebf1c1724be41402b1befd478aed4
refs/heads/master
2020-03-30T19:26:36.413735
2019-07-27T10:31:47
2019-07-27T10:31:47
151,542,840
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
nt=list(map(int,input().split())) n=nt[0] t=nt[1] myqueue=list(input()) for i in range(t): j=0 while j<len(myqueue)-1: if myqueue[j]=="B" and myqueue[j+1]=="G": myqueue[j],myqueue[j+1]="G","B" j=j+2 else: j=j+1 for i in myqueue: print(i,end="")
[ "vishalpandey801@gmail.com" ]
vishalpandey801@gmail.com
449a5b4d464ce12c138b35ee87635fe1817540fc
13d3a44447f6a7d8b0d61c2fb445fa6aa76c2f95
/stackdio/core/viewsets.py
3708da69f32348e2a5e6effb26d7be236dfe77f5
[ "Apache-2.0" ]
permissive
stackdio/stackdio
6ba4ad6c2ef10a323cbd955e6d6d5bd7917c17c2
84be621705031d147e104369399b872d5093ef64
refs/heads/master
2021-04-09T16:36:38.220557
2018-08-13T18:25:29
2018-08-13T18:25:29
17,679,603
9
11
Apache-2.0
2020-03-19T17:21:45
2014-03-12T19:02:06
Python
UTF-8
Python
false
false
13,461
py
# -*- coding: utf-8 -*- # Copyright 2017, Digital Reasoning # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import unicode_literals import logging from django.conf import settings from django.contrib.auth.models import Group from django.http import Http404 from guardian.shortcuts import get_groups_with_perms, get_users_with_perms, remove_perm from rest_framework import viewsets from rest_framework.serializers import ListField, SlugRelatedField, ValidationError from stackdio.api.users.models import get_user_queryset from stackdio.core import fields, mixins, serializers from stackdio.core.config import StackdioConfigException from stackdio.core.permissions import StackdioPermissionsModelPermissions from stackdio.core.shortcuts import get_groups_with_model_perms, get_users_with_model_perms try: from django_auth_ldap.backend import LDAPBackend except ImportError: LDAPBackend = None logger = logging.getLogger(__name__) def _filter_perms(available_perms, perms): ret = [] for perm in perms: if perm in available_perms: ret.append(perm) return ret class UserSlugRelatedField(SlugRelatedField): def to_internal_value(self, data): try: return super(UserSlugRelatedField, self).to_internal_value(data) except ValidationError: if settings.LDAP_ENABLED: if LDAPBackend is None: raise StackdioConfigException('LDAP is enabled, but django_auth_ldap isn\'t ' 'installed. Please install django_auth_ldap') # Grab the ldap user and try again user = LDAPBackend().populate_user(data) if user is not None: return super(UserSlugRelatedField, self).to_internal_value(data) # Nothing worked, just re-raise the exception raise class StackdioBasePermissionsViewSet(mixins.BulkUpdateModelMixin, viewsets.ModelViewSet): """ Viewset for creating permissions endpoints """ user_or_group = None model_or_object = None lookup_value_regex = r'[\w.@+-]+' parent_lookup_field = 'pk' parent_lookup_url_kwarg = None def get_model_name(self): raise NotImplementedError('`get_model_name()` must be implemented.') def get_app_label(self): raise NotImplementedError('`get_app_label()` must be implemented.') def get_serializer_class(self): user_or_group = self.get_user_or_group() model_or_object = self.get_model_or_object() model_name = self.get_model_name() app_label = self.get_app_label() super_cls = self.switch_model_object(serializers.StackdioModelPermissionsSerializer, serializers.StackdioObjectPermissionsSerializer) default_parent_lookup_url_kwarg = 'parent_{}'.format(self.parent_lookup_field) url_field_kwargs = { 'view_name': 'api:{0}:{1}-{2}-{3}-permissions-detail'.format( app_label, model_name, model_or_object, user_or_group ), 'permission_lookup_field': self.lookup_field, 'permission_lookup_url_kwarg': self.lookup_url_kwarg or self.lookup_field, 'lookup_field': self.parent_lookup_field, 'lookup_url_kwarg': self.parent_lookup_url_kwarg or default_parent_lookup_url_kwarg, } url_field_cls = self.switch_model_object( fields.HyperlinkedModelPermissionsField, fields.HyperlinkedObjectPermissionsField, ) # Create a class class StackdioUserPermissionsSerializer(super_cls): user = UserSlugRelatedField(slug_field='username', queryset=get_user_queryset()) url = url_field_cls(**url_field_kwargs) permissions = ListField() class Meta(super_cls.Meta): update_lookup_field = 'user' class StackdioGroupPermissionsSerializer(super_cls): group = SlugRelatedField(slug_field='name', queryset=Group.objects.all()) url = url_field_cls(**url_field_kwargs) permissions = ListField() class Meta(super_cls.Meta): update_lookup_field = 'group' return self.switch_user_group(StackdioUserPermissionsSerializer, StackdioGroupPermissionsSerializer) def get_user_or_group(self): assert self.user_or_group in ('user', 'group'), ( "'%s' should include a `user_or_group` attribute that is one of 'user' or 'group'." % self.__class__.__name__ ) return self.user_or_group def switch_user_group(self, if_user, if_group): return { 'user': if_user, 'group': if_group, }.get(self.get_user_or_group()) def get_model_or_object(self): assert self.model_or_object in ('model', 'object'), ( "'%s' should include a `model_or_object` attribute that is one of 'model' or 'object'." % self.__class__.__name__ ) return self.model_or_object def switch_model_object(self, if_model, if_object): return { 'model': if_model, 'object': if_object, }.get(self.get_model_or_object()) def _transform_perm(self, model_name): def do_tranform(item): # pylint: disable=unused-variable perm, sep, empty = item.partition('_' + model_name) return perm return do_tranform def get_object(self): queryset = self.get_queryset() url_kwarg = self.lookup_url_kwarg or self.lookup_field name_attr = self.switch_user_group('username', 'name') for obj in queryset: auth_obj = obj[self.get_user_or_group()] if self.kwargs[url_kwarg] == getattr(auth_obj, name_attr): return obj raise Http404('No permissions found for %s' % self.kwargs[url_kwarg]) class StackdioModelPermissionsViewSet(StackdioBasePermissionsViewSet): model_cls = None model_or_object = 'model' permission_classes = (StackdioPermissionsModelPermissions,) def get_model_cls(self): assert self.model_cls, ( "'%s' should include a `model_cls` attribute or override the `get_model_cls()` method." % self.__class__.__name__ ) return self.model_cls def get_model_name(self): return self.get_model_cls()._meta.model_name def get_app_label(self): ret = self.get_model_cls()._meta.app_label if ret == 'auth': # one-off thing, since users/groups are in the `users` app, not `auth` return 'users' return ret def get_model_permissions(self): return getattr(self.get_model_cls(), 'model_permissions', getattr(self, 'model_permissions', ())) def get_permissions(self): """ Instantiates and returns the list of permissions that this view requires. """ ret = [] for permission_cls in self.permission_classes: permission = permission_cls() # Inject our model_cls into the permission if isinstance(permission, StackdioPermissionsModelPermissions) \ and permission.model_cls is None: permission.model_cls = self.model_cls ret.append(permission) return ret def get_queryset(self): # pylint: disable=method-hidden model_cls = self.get_model_cls() model_name = model_cls._meta.model_name model_perms = self.get_model_permissions() # Grab the perms for either the users or groups perm_map_func = self.switch_user_group( lambda: get_users_with_model_perms(model_cls, attach_perms=True, with_group_users=False), lambda: get_groups_with_model_perms(model_cls, attach_perms=True), ) # Do this as a function so we don't fetch both the user AND group permissions on each # request perm_map = perm_map_func() ret = [] sorted_perms = sorted(perm_map.items(), key=lambda x: getattr(x[0], self.lookup_field)) for auth_obj, perms in sorted_perms: new_perms = [self._transform_perm(model_name)(perm) for perm in perms] ret.append({ self.get_user_or_group(): auth_obj, 'permissions': _filter_perms(model_perms, new_perms), }) return ret def list(self, request, *args, **kwargs): response = super(StackdioModelPermissionsViewSet, self).list(request, *args, **kwargs) # add available permissions to the response response.data['available_permissions'] = sorted(self.get_model_permissions()) return response def perform_create(self, serializer): serializer.save(model_cls=self.get_model_cls()) def perform_update(self, serializer): serializer.save(model_cls=self.get_model_cls()) def perform_destroy(self, instance): model_cls = self.get_model_cls() app_label = model_cls._meta.app_label model_name = model_cls._meta.model_name for perm in instance['permissions']: remove_perm('%s.%s_%s' % (app_label, perm, model_name), instance[self.get_user_or_group()]) class StackdioModelUserPermissionsViewSet(StackdioModelPermissionsViewSet): user_or_group = 'user' lookup_field = 'username' lookup_url_kwarg = 'username' class StackdioModelGroupPermissionsViewSet(StackdioModelPermissionsViewSet): user_or_group = 'group' lookup_field = 'name' lookup_url_kwarg = 'groupname' class StackdioObjectPermissionsViewSet(StackdioBasePermissionsViewSet): """ Viewset for creating permissions endpoints """ model_or_object = 'object' def get_permissioned_object(self): raise NotImplementedError('`get_permissioned_object()` must be implemented.') def get_model_name(self): return self.get_permissioned_object()._meta.model_name def get_app_label(self): ret = self.get_permissioned_object()._meta.app_label if ret == 'auth': # one-off thing, since users/groups are in the `users` app, not `auth` return 'users' return ret def get_object_permissions(self): return getattr(self.get_permissioned_object(), 'object_permissions', getattr(self, 'object_permissions', ())) def get_queryset(self): # pylint: disable=method-hidden obj = self.get_permissioned_object() model_name = obj._meta.model_name object_perms = self.get_object_permissions() # Grab the perms for either the users or groups perm_map_func = self.switch_user_group( lambda: get_users_with_perms(obj, attach_perms=True, with_superusers=False, with_group_users=False), lambda: get_groups_with_perms(obj, attach_perms=True), ) perm_map = perm_map_func() ret = [] sorted_perms = sorted(perm_map.items(), key=lambda x: getattr(x[0], self.lookup_field)) for auth_obj, perms in sorted_perms: new_perms = [self._transform_perm(model_name)(perm) for perm in perms] ret.append({ self.get_user_or_group(): auth_obj, 'permissions': _filter_perms(object_perms, new_perms), }) return ret def list(self, request, *args, **kwargs): response = super(StackdioObjectPermissionsViewSet, self).list(request, *args, **kwargs) # add available permissions to the response response.data['available_permissions'] = sorted(self.get_object_permissions()) return response def perform_create(self, serializer): serializer.save(object=self.get_permissioned_object()) def perform_update(self, serializer): serializer.save(object=self.get_permissioned_object()) def perform_destroy(self, instance): obj = self.get_permissioned_object() app_label = obj._meta.app_label model_name = obj._meta.model_name for perm in instance['permissions']: remove_perm('%s.%s_%s' % (app_label, perm, model_name), instance[self.get_user_or_group()], obj) # pylint: disable=abstract-method class StackdioObjectUserPermissionsViewSet(StackdioObjectPermissionsViewSet): user_or_group = 'user' lookup_field = 'username' lookup_url_kwarg = 'username' class StackdioObjectGroupPermissionsViewSet(StackdioObjectPermissionsViewSet): user_or_group = 'group' lookup_field = 'name' lookup_url_kwarg = 'groupname'
[ "clark.perkins@digitalreasoning.com" ]
clark.perkins@digitalreasoning.com
56441abdcb0c3e4c4bc9e6e51c066f53b4474751
d09fd96bbc931fbb8522e5c991973f064a4ded50
/baxter/devel/lib/python2.7/dist-packages/baxter_core_msgs/msg/_AssemblyStates.py
e02cc99b32b08bd3ff9a2b09c7d226c451abe8d2
[]
no_license
rymonyu/EE4-Robotics
b3827ba0dff5bdfdd1e47fe07a40e955c5226f38
6cf9272abd7fe8a074dc74a032f6e0b35edb8548
refs/heads/master
2020-08-22T15:09:39.706809
2019-12-15T23:35:45
2019-12-15T23:35:45
216,420,098
6
0
null
null
null
null
UTF-8
Python
false
false
116
py
/home/rob/baxter/devel/.private/baxter_core_msgs/lib/python2.7/dist-packages/baxter_core_msgs/msg/_AssemblyStates.py
[ "rymonyu@gmail.com" ]
rymonyu@gmail.com
107fd2eb3a81f9b2607eb4a1121d912182da8ca1
a120911eb088a02694e87baeaa996ded22704aab
/bookstore/migrations/0003_auto_20170315_2142.py
8d1bd6efe973c4c4978227435b76ae79eb6bad6f
[]
no_license
muhilvarnan/django-bookstore
684acb534ca68b7651bedefae1b15622e2454208
812913626350a27846b6c1546a202ec538d40c5f
refs/heads/master
2021-01-22T18:51:03.877940
2017-03-15T22:10:35
2017-03-15T22:10:35
85,125,673
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-15 21:42 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('bookstore', '0002_remove_books_isbn_number'), ] operations = [ migrations.RemoveField( model_name='books', name='publication_year', ), migrations.RemoveField( model_name='orders', name='purchase_items', ), migrations.AddField( model_name='orders', name='book', field=models.ManyToManyField(to='bookstore.Books'), ), migrations.AlterField( model_name='orders', name='customer', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bookstore.Customers'), ), ]
[ "muhilvarnan.v@gmail.com" ]
muhilvarnan.v@gmail.com
16e33a5a72cc6d87ecf6a25897cdc01209c3cf9c
cd3e72bad360d7426b6504e2e74321f47bc23eeb
/levelupreports/views/users/gamesbyuser.py
6d2e6130d8838c693d6079219540a0198f4e0765
[]
no_license
SLLittrell/Levelup-server
e2eb662bf16ee9f2f53603820b03f17cb5bde1a2
2b582469f5888c7dcc2a1d506b4d1c7c140b3bb8
refs/heads/main
2023-05-14T18:07:41.513042
2021-05-27T15:50:10
2021-05-27T15:50:10
364,028,553
0
0
null
2021-05-27T15:50:11
2021-05-03T18:46:24
Python
UTF-8
Python
false
false
3,316
py
"""Module for generating games by user report""" import sqlite3 from django.shortcuts import render from levelupapi.models import Game from levelupreports.views import Connection def usergame_list(request): """Function to build an HTML report of games by user""" if request.method == 'GET': # Connect to project database with sqlite3.connect(Connection.db_path) as conn: conn.row_factory = sqlite3.Row db_cursor = conn.cursor() # Query for all games, with related user info. db_cursor.execute(""" SELECT g.id, g.title, g.maker, g.game_category_id, g.number_of_players, g.skill_level, u.id user_id, u.first_name || ' ' || u.last_name AS full_name FROM levelupapi_game g JOIN levelupapi_gamer gr ON g.gamer_id = gr.id JOIN auth_user u ON gr.user_id = u.id """) dataset = db_cursor.fetchall() # Take the flat data from the database, and build the # following data structure for each gamer. # # { # 1: { # "id": 1, # "full_name": "Admina Straytor", # "games": [ # { # "id": 1, # "title": "Foo", # "maker": "Bar Games", # "skill_level": 3, # "number_of_players": 4, # "gametype_id": 2 # } # ] # } # } games_by_user = {} for row in dataset: # Crete a Game instance and set its properties game = Game() game.title = row["title"] game.maker = row["maker"] game.skill_level = row["skill_level"] game.number_of_players = row["number_of_players"] game.game_category_id = row["game_category_id"] # Store the user's id uid = row["user_id"] # If the user's id is already a key in the dictionary... if uid in games_by_user: # Add the current game to the `games` list for it games_by_user[uid]['games'].append(game) else: # Otherwise, create the key and dictionary value games_by_user[uid] = {} games_by_user[uid]["id"] = uid games_by_user[uid]["full_name"] = row["full_name"] games_by_user[uid]["games"] = [game] # Get only the values from the dictionary and create a list from them list_of_users_with_games = games_by_user.values() # Specify the Django template and provide data context template = 'users/list_with_games.html' context = { 'usergame_list': list_of_users_with_games } return render(request, template, context)
[ "stacey.littrell@gmail.com" ]
stacey.littrell@gmail.com
205d88ba56174f27a86af32366448306598b91ae
5839955687eefea132172ef47f76963ff219e6ef
/DeviceManagement/migrations/0001_initial.py
086039bc932336985973f00381bd8ab71fb43522
[]
no_license
echo6120/DeviceManagement
2724bc3d849a898f2d17e290194dfca39c737a88
7b67f8d567620b102914e38f7f41bf23f2adbfda
refs/heads/master
2020-12-22T20:30:04.790143
2020-01-29T07:17:22
2020-01-29T07:17:22
236,923,453
2
0
null
null
null
null
UTF-8
Python
false
false
559
py
# Generated by Django 2.0 on 2020-01-26 09:14 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ArticleColumn', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('System', models.CharField(max_length=200)), ('created', models.DateField(auto_now_add=True)), ], ), ]
[ "jingyu@rd.netease.com" ]
jingyu@rd.netease.com
504975487133379c5ad90d41e592ecc7584e58ac
f69af7fb96d29edc5d7bd7424acfa9078ba5047d
/models/networks.py
95fbfab2f1a59fdeb3945ea0396ea30a6b8e80dc
[ "MIT", "BSD-3-Clause", "BSD-2-Clause" ]
permissive
TrendingTechnology/PeeledHuman
ece77dcf3eef81990be720fd4a8e72db2cb5f6d9
ab7bff2c03b22774ecea4bc4ec3ae214da654dd5
refs/heads/master
2023-05-08T09:53:23.413879
2021-05-21T12:22:20
2021-05-21T12:22:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,561
py
import torch import torch.nn as nn from torch.nn import init import functools import copy from torch.optim import lr_scheduler ############################################################################### # Helper Functions ############################################################################### class Identity(nn.Module): def forward(self, x): return x def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': norm_layer = lambda x: Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first <opt.niter> epochs and linearly decay the rate to zero over the next <opt.niter_decay> epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) # apply the initialization function <init_func> def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs net = convert_model(net) net.cuda() init_weights(net, init_type, init_gain=init_gain) return net def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | resnet_18blocks norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator The generator has been initialized by <init_net>. It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) elif netG == 'resnet_6blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) elif netG == 'resnet_18blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=18) else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the first conv layer netD (str) -- the architecture's name: basic | n_layers | pixel n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm (str) -- the type of normalization layers used in the network. init_type (str) -- the name of the initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70x70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you cna specify the number of conv layers in the discriminator with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer) elif netD == 'pixel': # classify if each pixel is real or fake net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD) return init_net(net, init_type, init_gain, gpu_ids) ############################################################################## # Classes ############################################################################## class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1, device=device) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] model_depth = [] model_rgb = [] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model_depth += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model_rgb += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model_depth += [nn.ReflectionPad2d(3)] model_depth += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model_depth += [nn.Sigmoid()] model_rgb += [nn.ReflectionPad2d(3)] model_rgb += [nn.Conv2d(ngf, 3*(output_nc-1), kernel_size=7, padding=0)] # model_rgb += [nn.Conv2d(ngf, 3*output_nc, kernel_size=7, padding=0)] model_rgb += [nn.Tanh()] self.model = nn.Sequential(*model) self.model_depth = nn.Sequential(*model_depth) self.model_rgb = nn.Sequential(*model_rgb) def forward(self, input): """Standard forward""" downsample = self.model(input) return self.model_rgb(downsample), self.model_depth(downsample) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) class PixelDiscriminator(nn.Module): """Defines a 1x1 PatchGAN discriminator (pixelGAN)""" def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net) def forward(self, input): """Standard forward.""" return self.net(input)
[ "rohanchacko007@gmail.com" ]
rohanchacko007@gmail.com
56b0c048589ed3ef8f13303160de9e5ae6e672df
9701287f1cc7734d31c898708581b15a41916e36
/backend/app/crud/inventory.py
5dc66359f2914fdfc5f4b7ef88503d0e6e4b1ba9
[]
no_license
cedric0306/fastERP
a40c6d3bd3f07f65d2d8c1a440d8930f20bf4aee
d87824e945b01bc1969c9e2fdea3f243f6240a2f
refs/heads/main
2023-07-27T07:44:58.711211
2021-08-27T15:14:08
2021-08-27T15:14:08
564,331,443
1
0
null
2022-11-10T13:44:17
2022-11-10T13:44:16
null
UTF-8
Python
false
false
1,833
py
from sqlalchemy.orm import Session from fastapi import Depends from ..models import Inventory as InventoryModel, User from ..schemas.inventory import InventoryCreate, InventoryDelete, InventoryUpdate from ..dependencies import get_current_user # CASH def get_inventory(db: Session, inventory_id: int): return db.query(InventoryModel).filter(InventoryModel.id == inventory_id).first() def get_inventoryes(db: Session, skip: int = 0, limit: int = 100): return db.query(InventoryModel).offset(skip).limit(limit).all() def create_inventory(db: Session, inventory: InventoryCreate, current_user: User): db_inventory = InventoryModel(date=inventory.date, description=inventory.description, created_on=inventory.created_on, user_id=current_user.id, status=inventory.status) db.add(db_inventory) db.commit() return db_inventory def update_inventory(db: Session, inventory: InventoryUpdate, current_user: User): inventory_data = db.query(InventoryModel).filter( InventoryModel.id == inventory.id).first() inventory_data.date = inventory.date inventory_data.description = inventory.description inventory_data.user_id = current_user.id, inventory_data.status = inventory.status db.commit() db.refresh(inventory_data) return inventory_data def delete_inventory(db: Session, inventory: InventoryDelete): inventory_data = db.query(InventoryModel).filter( InventoryModel.id == inventory.id).first() if inventory_data is None: return None else: db.delete(inventory_data) db.commit() return inventory_data
[ "wasuaje@shorecg.com" ]
wasuaje@shorecg.com
33e88efe4e627f6559fbe2ae3e666d6cd80bb96a
25db8b32ecda47a22a8a1ae4551e2378e4d576cf
/rest/serializers.py
48d3eeebe7c5ac11184608c3cbe7c1f91bd0730c
[]
no_license
viperfx/ng-forum
4754ca69d699ad466e836b28bda68d9d84e0cd34
5a55692122b91876104c209a73bab05f7318c3ff
refs/heads/master
2021-01-01T19:42:18.879573
2013-11-08T15:27:32
2013-11-08T15:27:32
13,254,263
4
0
null
null
null
null
UTF-8
Python
false
false
902
py
from django.contrib.auth.models import User, Group from rest_framework import serializers from rest.models import Forum, Thread, Post class UserSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = User fields = ('url', 'username', 'email', 'groups') class GroupSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Group fields = ('url', 'name') class ForumSerializer(serializers.ModelSerializer): class Meta: model = Forum depth=1 fields = ('id','title', 'threads',) class ThreadSerializer(serializers.ModelSerializer): class Meta: model = Thread depth=2 fields = ('id','title', 'forum', 'body', 'creator','created', 'posts') class PostSerializer(serializers.ModelSerializer): class Meta: model = Post fields = ('thread', 'body', 'creator')
[ "tharshan09@gmail.com" ]
tharshan09@gmail.com
282cc009f6f0e3ea9db0caeb7c910203e582bc4d
13df9ce30c3b6999f38ccf46ea9a85f3fa9f44a9
/reports/forms.py
75e02c96731b1abb0eb6f31b575fa2e133c1e6a8
[]
no_license
PavelM87/tf_idf_app
37b5598f7f46af308f24733a145b8308610a0797
6b36e516b2daefd89b52765f1244857d16a4efcd
refs/heads/master
2023-07-26T16:03:33.165133
2021-09-13T16:04:20
2021-09-13T16:04:20
405,765,698
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
from django import forms from .models import File class FileForm(forms.ModelForm): class Meta: model = File fields = 'file',
[ "mospv87@gmail.com" ]
mospv87@gmail.com
7dbe960a1c9a8e1e356ad75deab3f1df4abc7aac
4a0c3f5f697ab694067f5fc59486707440593856
/python/20_Slots.py
b95795f1ef5714b1713849c16c00279e4745897a
[]
no_license
shweb360/Python
4cfe5e1e12d0bad02217ccd1bded7815a1c192e9
dd589674ed22ebd835efb21954ed0a96430002f8
refs/heads/master
2021-06-24T17:04:22.378895
2019-12-01T06:06:51
2019-12-01T06:06:51
102,442,763
0
0
null
null
null
null
UTF-8
Python
false
false
744
py
#1.1创建一个类: class Student(object): pass #1.2给实例绑定一个属性: s=Student() s.name="Wushuang" print(s.name); #1.3给实例绑定一个方法 def set_age(self,age): self.age=age from types import MethodType #给实例绑定一个方法 s.set_age=MethodType(set_age,s) #调用实例方法 s.set_age(25) print(s.age) #2.0使用__slots_ #但是,如果我们想要限制实例的属性怎么办? #比如,只允许对Student实例添加name和age属性。 #为了达到限制的目的,Python允许在定义class的时候, #定义一个特殊的__slots__变量,来限制该class实例能添加的属性: class Student2(object): __slots__=('name','age') s2=Student2() s2.name="Michael" s2.age=24 print(s2)
[ "785132826@qq.com" ]
785132826@qq.com
648100aedd647315dd5b9631cec11785d7b6a4b0
ad3da434e91d28d5062089070b2c3b6915a775ae
/Django-Scraping/news/migrations/0002_weather.py
a74bcd94da2f22d109807b57d7689578344a6043
[ "Apache-2.0" ]
permissive
mitus1212/Django-Scraping
f241a97481feef69aee9b159fe833a3bff6154da
00d503b004cc7c4a23de154bbca55351b7f3546d
refs/heads/master
2023-01-01T23:11:49.375542
2020-06-10T17:57:56
2020-06-10T17:57:56
180,415,060
0
0
null
2022-11-22T03:39:21
2019-04-09T17:13:27
JavaScript
UTF-8
Python
false
false
552
py
# Generated by Django 2.1.7 on 2019-04-11 14:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('news', '0001_initial'), ] operations = [ migrations.CreateModel( name='Weather', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('weather', models.TextField()), ('degree', models.CharField(max_length=200)), ], ), ]
[ "mitus11112@gmail.com" ]
mitus11112@gmail.com
26435cad8b4f6e3701b33caaa53babbe68372fcd
122db49900adae3d25bf6a17db54699086593f94
/klimplot_fetch.py
7bbb62ddb847248ee839f7ceb18b007e5ac29816
[]
no_license
geoenvo/klimplot
77a63296ad85b5e1e2a2fa391ab3904d289860ea
0c70b350c5dca155211f2e4089b7765f34ef7101
refs/heads/master
2021-01-10T11:19:06.675854
2016-02-16T03:41:42
2016-02-16T03:41:42
51,801,455
0
0
null
null
null
null
UTF-8
Python
false
false
1,725
py
# Klimplot # Fetch Script # (c) 2015 Mohammad Fadli # Geo Enviro Omega, PT # KlimPlot digunakan untuk memvisualisasikan dan mempublikasikan data Iklim menjadi bentuk Map Services. # Script ini digunakan untuk me #HOWTO # Jalankan di background: python klimplot.py & # Taruh di cron, atau jalankan sebagai services berkala # Struktur folder hasil akan menyesuaikan import os.path import wget import subprocess #define variable #Sumber Data (Server PIKAM via http) spath="http://202.90.199.147/ec_prob/results_mat/" #sfolder="2015.01.01/" #sfile="control.2015.02_ver_2015.01.01.csv" #surl=spath+sfolder+sfile #cpath=os.getcwd()+"/" #nama folder direktori datadir="data/" #path di mana folder data yg difetch akan di simpan datapath="/home/klimplot/"+datadir #datapath=cpath+datadir #filepath=datapath+sfile #Check Folder data if not os.path.exists(datapath): os.makedirs(datapath) else: print "\n Directory already exist." """ #Check File if not os.path.exists(filepath): #Get File wget.download(surl,datapath) else: print "\n File already exist. Download Aborted." """ subprocess.call("wget -r -np -nc --cut-dirs=2 -A '*.csv' --ignore-case -nH -P "+datapath+" "+spath, shell=True) """ -r recursive download folder -np no parents directory, tidak mendownload isi dari parent directory -nH would download all files to the directory d in the current directory -P you will save to specific directory -nc, --no-clobber: skip downloads that would download to existing files. --cut-dirs tidak melihat struktur direktori yang ada di sub folder sebelumnya. -A '*.csv' hanya download csv file """ print "\n Alhamdulillah."
[ "mf4dl1@gmail.com" ]
mf4dl1@gmail.com
fabcbe720fa7f9586321ad3d1884bd8c89a35a95
fa701904e59a94510a5c4fa3e1e64a8fe4135fd6
/mysite/mysite/settings.py
887b16718fbb0754f36a99c8116988166e0bd302
[]
no_license
pr0mila/django_practice
6c4c29987d94d7d838fe6f5378862f266203d97f
64ab8181f053d158ed1c5d47d459e8771cc4681a
refs/heads/master
2020-08-18T09:27:01.351518
2019-10-18T21:04:18
2019-10-18T21:04:18
215,774,432
1
0
null
null
null
null
UTF-8
Python
false
false
3,112
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 3.1. For more information on this file, see https://docs.djangoproject.com/en/dev/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/dev/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/dev/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '&x^9hen^vm3#thtq8(ijj3ld=yj^=l%)hy4tp7e4kt!v8=9-^7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'polls.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/dev/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/dev/howto/static-files/ STATIC_URL = '/static/'
[ "me@promila.info" ]
me@promila.info
d52cdaf5f45af5761f3c5ee1d52779036a589402
5ed1fa554c97c8d8b6aa3c72ccf6f107edad9969
/Q3 length.py
c6acb534975c6d447cf0a2b1c7cfec6c7b3929e5
[]
no_license
rufinavgurukul24/Listpy
f0cd9119755468fdaf91d7929c3d36d4c6d01335
59a6ae91793fbd7bef08a19b73cd8157f02a6ea8
refs/heads/main
2023-08-11T03:22:15.004725
2021-10-01T05:21:04
2021-10-01T05:21:04
412,337,277
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
number_1= [50, 40, 23, 70, 56, 12, 5, 10, 7] print(number_1) count=0 for i in number_1: count=count+1 print("lenth of the list is",count)
[ "noreply@github.com" ]
rufinavgurukul24.noreply@github.com
6d440df45f5272e972930a42b1a331ba016a59be
c38ad398d5909eade726fa1c2849b0cd124ef9b7
/rltime/env_wrappers/switching_env_wrapper.py
f34a2bed13d750ddcd9154f6f00f40a58290fdd5
[ "Apache-2.0" ]
permissive
frederikschubert/rltime
612318e9ff8702e6775193b6261ea6a83b1d38fd
d1722ffd4cf7b4599655b8d9c64abc243919afc9
refs/heads/master
2020-09-11T02:30:51.074875
2019-12-16T10:44:23
2019-12-16T10:44:23
221,911,500
0
0
Apache-2.0
2019-11-15T11:34:33
2019-11-15T11:34:33
null
UTF-8
Python
false
false
547
py
from typing import List import gym import numpy as np from gym import spaces class SwitchingWrapper(gym.Wrapper): def __init__(self, env: gym.Env, env_index: int): super().__init__(env) self.env_index = env_index def reset(self, **kwargs): return self.env.reset(**kwargs) def step(self, action): observation, reward, done, info = self.env.step(action) return ( observation, reward, done, {**info, **{"env_index": self.env_index}}, )
[ "frederik.schubert@mailbox.org" ]
frederik.schubert@mailbox.org
21199e34f98bf0e139f0ff9d121b283d51ab5daf
ddd80f5cff588f6dcd72da90e90dccac3e545397
/projects/cam/camloop.py
eb953eab4d56292c11cc71f04143c27bcf81b902
[]
no_license
HTaylor7486/projects
cd5ade1919f71f5e6f1e48d016505364dc919af5
8717c8a12237c095f6b9709242f7be27ac4132d1
refs/heads/master
2020-05-12T16:36:43.137135
2014-12-17T13:13:50
2014-12-17T13:13:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,496
py
import picamera,time def getpic(name="null"): try: with picamera.PiCamera() as camera: q = "n" while q == "n": camera.start_preview() time.sleep(3) camera.capture("{0}.jpeg".format (name)) camera.stop_preview() q = input("is the image okay? (y/n) ") filename = ("{0}.jepg".format (name)) print("Your file is called {0}.jpeg".format (name)) return filename except picamera.exc.PicameraMMALError: print("Your camera is not working please connect and restart the program") def getchar(): name = "" while name == "": name = input("what is your name?") hair = "" while not hair in ["blonde","brown","ginger","no hair"]: hair = input ("what hair colour do you have? (blonde/brown/ginger/no hair)") hat = "" while not hat in ["y","n"]: hat = input("do you have a hat? (y/n)") eye = "" while not eye in ["green","brown","blue"] : eye = input("what is your eye colour") gender = "" while not gender in ["m","f"] : gender = input("what is your gender?(m/f)") fhair = "" while not fhair in ["y","n"]: fhair = input("do you have facial hair?(y/n)") glass = "" while not glass in ["y","n"]: glass = input("do you have glasses?(y/n)") charprof = [name,hair,hat,eye,gender,fhair,glass] getpic(name) return charprof
[ "htaylor7486@sohamcollege.org.uk" ]
htaylor7486@sohamcollege.org.uk
1be87f33c8660ad3c54efa5eb9f2ada26d9a1e6b
8afb5afd38548c631f6f9536846039ef6cb297b9
/_PYTHON/DATA_STRUC_PYTHON_NOTES/python-prac/mini-scripts/python_NumPy_Products_1.txt.py
d720b0dffc122f94e2aecfe055e2ab67998d23f1
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
77
py
import numpy as np arr = np.array([1, 2, 3, 4]) x = np.prod(arr) print(x)
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
67b04f877b89acc6dfc9c7553fba773c72403679
5fcefc2dff07daa503c95553ee2273403a57a2e2
/catkin_ws/build/my_turtle_whitcomb/catkin_generated/pkg.develspace.context.pc.py
a59f8f82da051a204e8bbeeee1c1ea927f6fcba9
[]
no_license
StephenWhit/TurtleBot
a5d5d6bb3fb082e2afff90b3fe7df005ef650bb8
61640d480f69b9f3656fc1cba257a073ed8ef3e5
refs/heads/master
2020-04-01T02:52:51.074586
2018-10-12T19:45:15
2018-10-12T19:45:15
152,799,392
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/viki/catkin_ws/devel/include;/home/viki/catkin_ws/src/my_turtle_whitcomb/include".split(';') if "/home/viki/catkin_ws/devel/include;/home/viki/catkin_ws/src/my_turtle_whitcomb/include" != "" else [] PROJECT_CATKIN_DEPENDS = "message_runtime;roscpp;rospy;std_msgs".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lmy_turtle_whitcomb".split(';') if "-lmy_turtle_whitcomb" != "" else [] PROJECT_NAME = "my_turtle_whitcomb" PROJECT_SPACE_DIR = "/home/viki/catkin_ws/devel" PROJECT_VERSION = "0.0.0"
[ "stephenwhit897@gmail.com" ]
stephenwhit897@gmail.com
0855f982056b6cfbc3bce6a7b99b54ca6eddc19d
3e367ddabaecca6b3b932c09a933f1f1c3a42190
/Province_data/deal_lasa_data.py
8244f9ad0088e2b128acd9d04dba7b2c490400b8
[]
no_license
13033266796/Air
03c8c231f412888aa72c56a06ae588c675ac57f4
d1c1fbe4ea86280cf33d12ce07b5b387699c7a11
refs/heads/master
2022-12-15T05:28:48.027159
2020-05-20T03:51:25
2020-05-20T03:51:25
248,926,154
0
0
null
2022-12-08T04:28:45
2020-03-21T07:16:57
HTML
UTF-8
Python
false
false
854
py
import os import re with open(r"F:\Python\pyCollect\Air_predict\Provice_data/original/ShangHai_2_year_data.txt","r",encoding="utf-8") as f: data = f.readline() line = 0 text = "" while data: line += 1 if line == 4: res = re.findall(r"\S+", text) with open(r"./original/上海_2year_data.csv","a",encoding="utf-8") as t: t.write("上海,"+",".join(res)+"\n") # print("***", text, "***") text = "" line = 1 data = data.strip() text += " " + data data = f.readline() # data = data.strip() # print(data) # data = f.readline() # data = data.strip() # print(data) # data = f.readline() # data = data.strip() # print(data) # print(text) # res = re.findall(r"\S+",text) # print(res)
[ "jiechen@webot.co" ]
jiechen@webot.co
94b7cafb4bb13b099c3d093549c75e172d5d9a29
6df6c9ff29fe7aed0972f935cd53337d95f6ad40
/ecommerce/migrations/0025_auto_20210520_1832.py
bf1785363566bde6081088d96b406dd367b45628
[]
no_license
brijesh681/rentel_website
46acae1ceb586c2bfcc795a519061a52ffad58a2
ef205304c6f5f9f6ff981a8244f4237c59bc52bb
refs/heads/master
2023-06-11T21:39:24.715466
2021-07-05T11:44:20
2021-07-05T11:44:20
383,115,482
0
0
null
null
null
null
UTF-8
Python
false
false
967
py
# Generated by Django 3.1.4 on 2021-05-20 13:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ecommerce', '0024_dealsofday'), ] operations = [ migrations.RenameField( model_name='offer', old_name='today_selling_mrp', new_name='discount_percent', ), migrations.RemoveField( model_name='offer', name='today_discount_percent', ), migrations.AlterField( model_name='offer', name='offer_type', field=models.CharField(choices=[('Deals Of The Day', 'Deals Of The Day'), ('Festive Special', 'Festive Special'), ('Summer Collection', 'Summer Collection'), ('Winter Collection', 'Winter Collection'), ('As Seen Your Favourite', 'As Seen Your Favourite')], max_length=25), ), migrations.DeleteModel( name='DealsOfDay', ), ]
[ "80308508+brijesh681@users.noreply.github.com" ]
80308508+brijesh681@users.noreply.github.com
e5121a53283e18ff7eca054f670b9368256d0405
d9684e7c80f0bab12497e3a14889ffb45e9a41e0
/mlshim/_version.py
a4f2e2fa66d2fc39b64d70bc046071977bf62b08
[ "MIT" ]
permissive
dapperfu/mlshim
df9206daa592e01b50c16ddf7a6a92bd1771a802
4a1eea0c5ce8d973ada5609c48a4942033b2fbdc
refs/heads/master
2022-06-22T03:49:46.436570
2022-05-18T15:42:39
2022-05-18T15:42:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,580
py
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.18 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys from typing import Dict def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "None" cfg.parentdir_prefix = "None" cfg.versionfile_source = "mlshim/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY: Dict[str, str] = {} HANDLERS: Dict[str, Dict[str, str]] = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command( commands, args, cwd=None, verbose=False, hide_stderr=False, env=None ): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen( [c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None), ) break except OSError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print(f"unable to find command, tried {commands}") return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return { "version": dirname[len(parentdir_prefix) :], "full-revisionid": None, "dirty": False, "error": None, "date": None, } else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print( "Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix) ) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except OSError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = {r.strip() for r in refnames.strip("()").split(",")} # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = {r[len(TAG) :] for r in refs if r.startswith(TAG)} if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = {r for r in refs if re.search(r"\d", r)} if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix) :] if verbose: print("picking %s" % r) return { "version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date, } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return { "version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None, } @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command( GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True ) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command( GITS, [ "describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix, ], cwd=root, ) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[: git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r"^(.+)-(\d+)-g([0-9a-f]+)$", git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ( "unable to parse git-describe output: '%s'" % describe_out ) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = "tag '{}' doesn't start with prefix '{}'".format( full_tag, tag_prefix ) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix) :] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command( GITS, ["rev-list", "HEAD", "--count"], cwd=root ) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[ 0 ].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return { "version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None, } if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return { "version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date"), } def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords( get_keywords(), cfg.tag_prefix, verbose ) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split("/"): root = os.path.dirname(root) except NameError: return { "version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None, } try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return { "version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None, }
[ "engineer@example.org" ]
engineer@example.org
a0bcf1146515c5da0c64441490de32599b91f02e
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/CodeJamData/12/01/14.py
fd0cb48a6c9d059526138c98e8ba82d309f6802b
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
1,517
py
#!/usr/bin/python2 ### Google Code Jam template # Futures from __future__ import division from __future__ import with_statement from __future__ import print_function ## Library # @memoized def memoized(func): mem = {} def wrapped(*args): if args not in mem: mem[args] = func(*args) return mem[args] return wrapped ## Setup from os.path import basename, splitext # Task letter TASK=splitext(basename(__file__))[0] print("Task {}".format(TASK)) ## Input templates # Line as int #int(infile.readline()) # Line as many ints #(int(s) for s in infile.readline().split()) ## Precalculation print("Precalculation...") from string import maketrans src = """aozq ejp mysljylc kd kxveddknmc re jsicpdrysi rbcpc ypc rtcsra dkh wyfrepkym veddknkmkrkcd de kr kd eoya kw aej tysr re ujdr lkgc jv""" dst = """yeqz our language is impossible to understand there are twenty six factorial possibilities so it is okay if you want to just give up""" table = maketrans(src, dst) print("Precalculation done.") ## Calculation print("Calculation...") with open(TASK+".in") as infile: with open(TASK+".out",mode="wt") as outfile: cases = int(infile.readline()) for ncase in range(cases): print("Case #{nc}".format(nc=ncase+1)) # Perform all nessesary calculation text = infile.readline().strip() data = text.translate(table) outfile.write("Case #{nc}: {data}\n".format(nc=ncase+1,data=data)) print("Calculation done.")
[ "kwnafi@yahoo.com" ]
kwnafi@yahoo.com
a11539354e10e7fa486f5db387c8ccfbc7df1177
9ae4e7db77c3437331aeb95bfb58e6ab7762b3bd
/reside/wsgi.py
a957ccf1c84796bfbddab75e8747d1f4dce9e934
[]
no_license
ShijuKAbraham/RESIDE
7ff190a5110f18a18805a2a636b30d7999309624
b67024aab94c3f218dc9bc03f727db8fde68fa9e
refs/heads/master
2022-01-23T13:12:38.499092
2019-07-18T17:07:44
2019-07-18T17:07:44
197,243,928
1
0
null
null
null
null
UTF-8
Python
false
false
389
py
""" WSGI config for reside project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'reside.settings') application = get_wsgi_application()
[ "k.ashiju10@gmail.com" ]
k.ashiju10@gmail.com
9e656061375e6a5225c6de0e83fae8c1cdc6db7f
b3e0d941ac23992e3a80edb1df5bd53e856ce5d5
/docs/source/conf.py
46b7f0f9c95cd64808e625b4e341ff0415384b63
[ "MIT" ]
permissive
tjryankeogh/phytophotoutils
6f5c33b4dda06c66f07bd45d5c27336c6304e9b0
48c1747bca837f1d4c73ff48d7c232840eca8352
refs/heads/master
2023-04-18T00:00:50.236233
2021-04-12T13:51:58
2021-04-12T13:51:58
364,512,652
0
1
null
null
null
null
UTF-8
Python
false
false
3,271
py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys #import sphinx_rtd_theme #sys.path.insert(0, os.path.abspath('../../phyto_photo_utils/')) sys.path.insert(0, os.path.realpath('../..')) # -- Project information ----------------------------------------------------- project = 'PhytoPhotoUtils' copyright = '2019, Thomas Ryan-Keogh, Charlotte Robinson' author = 'Thomas Ryan-Keogh, Charlotte Robinson' # The short X.Y version version = '1.0' # The full version, including alpha/beta/rc tags release = '01-10-2019' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.coverage', 'sphinx.ext.napoleon', 'sphinx.ext.autodoc'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {}
[ "tjryankeogh@googlemail.com" ]
tjryankeogh@googlemail.com
5efd766bb70d94a197cb80cb858d7211c005cb27
4de2b914e4607dd0ca7eec60b21026af6b6c4797
/Old_work/valdambrini_cheli_papallo_tarmati/catkin_ws/build/navigation/clear_costmap_recovery/catkin_generated/pkg.develspace.context.pc.py
cb8deb76dfb119ed5c90cb0df8ac2a426a6fc434
[]
no_license
ABiondi12/project_sgn
5203d21f2753dcdf7c53b153324dc75bc1221549
570b7be0b01e7c83cb927945e532d6a2213ebf65
refs/heads/main
2023-06-18T12:59:18.337096
2021-07-21T10:27:08
2021-07-21T10:27:08
307,121,028
0
0
null
null
null
null
UTF-8
Python
false
false
551
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/robot/catkin_ws/src/navigation/map_server/include".split(';') if "/home/robot/catkin_ws/src/navigation/map_server/include" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;nav_msgs;tf2".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lmap_server_image_loader".split(';') if "-lmap_server_image_loader" != "" else [] PROJECT_NAME = "map_server" PROJECT_SPACE_DIR = "/home/robot/catkin_ws/devel" PROJECT_VERSION = "1.16.2"
[ "petracci.francesco@gmail.com" ]
petracci.francesco@gmail.com