blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
220 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
257 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
973a8b519d0ecebd2d6d553f93b4dd06ffde7f56
f1a38db672ee3051fd96dd3bb923e9d7be3036c6
/tests/test_load.py
ce4bfa2c01ad1f67111dac78bdd4936e5f006211
[ "Apache-2.0" ]
permissive
zhangxinxf/dwml
47e16ba6067ff3dee2d8b02096d7da2819453515
406130cff0e158687246e20ea289190260e4329f
refs/heads/master
2021-01-21T23:54:32.907129
2016-06-17T01:58:53
2016-06-17T01:58:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,551
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import unittest from base import PROJECT_ROOT from dwml import omml class TestLoad(unittest.TestCase): def test_load_ml(self): latex_results = [ r'\sin(\sqrt[3]{x})^{x^{11}}/_{b}x_{m}^{n}', r'\tilde{a}\begin{array}{c}a=b+c\\d+e=f\end{array}\\\underline{cdef}'] i = 0 for omath in omml.load(PROJECT_ROOT+'/tests/simple.xml'): self.assertEqual(omath.latex,latex_results[i]) i=i+1 def test_load_group(self): latex_results = [ r'A\overbrace{123}\underbrace{456}=\left\{a+b\right.' ] i=0 for omath in omml.load(PROJECT_ROOT+'/tests/group.xml'): self.assertEqual(omath.latex,latex_results[i]) i=i+1 def test_load_lim(self): latex_results = [ r'A=log_{x}y\max_{0\leq x\leq 1}xe^{−x^{2}}\lim_{1\to \infty }a\overset{def}{=}x' ] i=0 for omath in omml.load(PROJECT_ROOT+'/tests/lim.xml'): self.assertEqual(omath.latex,latex_results[i]) i=i+1 def test_load_m(self): latex_results = [ r'A=\left(\begin{matrix}1&2&3\\4&5&6\end{matrix}\right)\sum_{1}^{20}x' ] i=0 for omath in omml.load(PROJECT_ROOT+'/tests/m.xml'): self.assertEqual(omath.latex,latex_results[i]) i=i+1 def test_load_d(self): latex_results = [ r'\left\{\begin{array}{c}m+1\leq 2m-1\\m+1>5\end{array}\right.' ] i=0 for omath in omml.load(PROJECT_ROOT+'/tests/d.xml'): self.assertEqual(omath.latex,latex_results[i]) i=i+1 def test_escape(self): self.assertEqual(omml.escape_latex(r'\\\\\\'),'\\\\\\') if __name__ == '__main__': unittest.main()
[ "xilei125@163.com" ]
xilei125@163.com
9833b1ae185ddf9c36ccb4d70694a5f5430e2cc9
4750dec849243686bdfaf26bb448946134780599
/CNN-UNet/Training/convert_to_tiffs.py
162a4c4995d344ab2aa21568e8834c65c8594463
[]
no_license
yxu233/Myelin
319b847db9de280564acf9146b5a46a0e8eae7f4
669dea7c4d77b27b75b6f9e6be4bdfe6d94aed04
refs/heads/master
2021-09-28T16:24:23.661366
2021-09-27T01:55:49
2021-09-27T01:55:49
143,020,497
2
0
null
null
null
null
UTF-8
Python
false
false
2,995
py
# -*- coding: utf-8 -*- """ Created on Sunday Dec. 24th ============================================================ Converts pickled data to tiffs @author: Tiger """ import tensorflow as tf from matplotlib import * import numpy as np from PIL import Image from os import listdir from os.path import isfile, join import matplotlib.pyplot as plt from natsort import natsort_keygen, ns from skimage import measure import pickle as pickle import os import zipfile import scipy from plot_functions import * from data_functions import * #from post_process_functions import * from UNet import * import nibabel as nib import tkinter from tkinter import filedialog import os """ Currently assumes: R ==> G ==> Nanofibers B ==> dot ==> DAPI mask """ scale = 0.6904 minDAPIsize = 15 / (scale * scale) # um ^ 2 root = tkinter.Tk() input_path = filedialog.askdirectory(parent=root, initialdir="/Users/Neuroimmunology Unit/Anaconda3/AI stuff/MyelinUNet/Checkpoints/", title='Please select checkpoint directory') input_path = input_path + '/' sav_dir = filedialog.askdirectory(parent=root, initialdir="/Users/Neuroimmunology Unit/Anaconda3/AI stuff/MyelinUNet/Source/", title='Please select saving directory') sav_dir = sav_dir + '/' """ Load filenames from zip """ myzip, onlyfiles_mask, counter = read_zip_names(input_path, 'new_DATA_11_13.zip') counter = list(range(len(onlyfiles_mask))) # create a counter, so can randomize it counter = np.array(counter) cleaned = 0 uncleaned = 0 for i in range(len(onlyfiles_mask)): filename = onlyfiles_mask[counter[i]] input_im, truth_im = load_training_ZIP(myzip, filename) filename = filename.split('/')[-1] pos = '_neg' if truth_im[:, :, 1].any(): pos = '_pos' print(i) # if has nanofibers if input_im.shape[-1] > 3: slice_num = 3 else: slice_num = 1 # Clean small body sizes if np.count_nonzero(input_im[:, :, slice_num]) < minDAPIsize: cleaned = cleaned + 1 print('Cleaned: ' + str(cleaned)) continue # deal with the fiber channe; if slice_num == 3 and input_im[:, :, 1].any(): nanofibers = input_im[:, :, 1] nanofibers = Image.fromarray(input_im[:, :, 1].astype('uint8')) nanofibers.save(sav_dir + 'myelin_' + filename + '_' + "%07d" % (uncleaned,) + pos + '_NANOFIBERS.tiff') input_im[:, :, 1] = input_im[:, :, 3] input_im = input_im[:, :, 0:3] input_im = Image.fromarray(input_im.astype('uint8')) truth_im = Image.fromarray((truth_im[:,:,1] * 255).astype('uint8')) input_im.save(sav_dir + 'myelin_' + filename + '_' + "%07d" % (uncleaned,) + pos + '_input.tiff') truth_im.save(sav_dir + 'myelin_' + filename + '_' + "%07d" % (uncleaned,) + pos + '_truth.tiff') uncleaned = uncleaned + 1
[ "tigerxu96@hotmail.com" ]
tigerxu96@hotmail.com
3a4dcd69f4f38418bd714df065790230b8476157
7546742a3131fa90cc9466a08ec521e232f09da2
/mousse_rocket_genetics.py
27e17bb326a439cc5dfca7b8608e9488c088d589
[]
no_license
gabrielandm/genetic_mousses
f504ec5c7480d651c15961fbad7d32709e310209
13a9a540e1332aca4a4ea22e150539ca6c471fa7
refs/heads/main
2023-05-05T07:22:03.268686
2021-05-24T12:55:38
2021-05-24T12:55:38
365,259,630
0
0
null
null
null
null
UTF-8
Python
false
false
3,029
py
''' Angle Thrust limit Engine flow rate (between 100% and 70% or stuck at 0%) Fitness -> Height and Speed Rule: Fuel limit ''' from math import sqrt, pi, atan, sin, cos from random import random from collections import namedtuple Rocket = namedtuple('Rocket', ['m', 'vy', 'vx', 'h']) # m -> Rocket's mass # vy -> Rocket's Vertical velocity # vx -> Rocket's orbital velocity # h -> Orbital height cd = 0.4 mo = 1.3*10^4 # Initial rocket mass [kg] # UwU D = 1.2 # Rocket diameter [meters] Mf = 1.25*10^4 # Fuel mass [kg] dmdt = 650 # Engine fuel flow rate [kg] dt = 0.3 # Iteration time [s] gimble_limit = 7 # Gimble limit [degree] orbital_height = 10^6 # Final height [meters] G = 6.67*10^-11 M = 5.97223*10^24 R = 6.3781*10^6 thrust = 2.25*10^5 # Max thrust [NEWtown] def newton_gravity(h): global G global M global R return (G * M) / (R + h)^2 def atm_pressure(h, g): Po = 1 a = 1 / 25 To = 298 M = 29 R = 0.082 # in atm return Po * ((a * h + To) / To) ^ (-M * g / a * R) def air_density(P, h): M = 29 R = 0.082 T = 298 if h > 8.5*10^6: return 0 else: return (P * M) / (R * T) def s_big_calculator(): # cross_sectional_area global D return (pi * D ^ 2) / 4 def air_drag(V, h): air_density = air_density(atm_pressure(h, newton_gravity(h)), h) global cd S = s_big_calculator() F = (S * V^2 * cd) * 0.5 return F def orbital_velocity(): global orbital_height global G global M global R return sqrt(G * M / (R + orbital_height)) def rocket_weight(g, m): return (m * g) def rocket_aceleration(F, m): # | ax | ay | return F / m def rocket_velocity_variation(a): global dt # | dvdt | return dt * a def rocket_mass_variation(throtle): global dt global dmdt return -dmdt * dt * throtle def things_calculator(rocket_stuff): global thrust # getting current rocket info m = rocket_stuff.m vy = rocket_stuff.vy vx = rocket_stuff.vx h = rocket_stuff.h # escolher o angulo gimble = random() * 14 - 7 # força do motor throtle = random() * 0.3 + 0.7 # calcular massa do foguete mf = m + rocket_mass_variation() if vx == 0: téta = pi / 2 else: téta = atan(vy / vx) # Força do engine Fmx = thrust * throtle * cos(téta + gimble) Fmy = thrust * throtle * sin(téta + gimble) Fx = Fmx - air_drag(vx, h) Fy = Fmy - air_drag(vy, h) - rocket_weight(newton_gravity(h), mf) afx = rocket_aceleration(Fx, mf) afy = rocket_aceleration(Fy, mf) vfx = vx + rocket_velocity_variation(afx) vfy = vy + rocket_velocity_variation(afy) # atitude hf = h + vfy * dt return mf, afx, afy, vfx, vfy, hf ''' Limits things_calculator() until: m <= mo - Mf h >= orbital_height vx > orbital_velocity vx == orbital_velocity && vy != 0 ''' ''' Fitness vx == orbital_velocity h == orbital_height vy == 0 '''
[ "gabriel.paoli@kumulus.com.br" ]
gabriel.paoli@kumulus.com.br
6fc9d8032c359a5d145d139b99cdd20fc1f2f83f
78f5e27e8048d71351d6228ff826e3ffc2c2891b
/test_shared_string.py
416832811fcf763b1e9685f815f5b7b8bc6043e5
[]
no_license
ksato-dev/multiprocessing_exercises
c89ed1818dfc487f57f7d41f59ed6a4fe10f445d
0d16a7ee1923b2d21c5953fd1576c2dade734bc6
refs/heads/master
2023-01-14T14:48:44.099272
2020-11-14T14:15:43
2020-11-14T14:15:43
312,815,161
0
0
null
null
null
null
UTF-8
Python
false
false
1,225
py
# -*- coding: utf-8 -*- from multiprocessing import Process, Manager, Lock import time from ctypes import c_char_p def hoge(shared_string, lock): while True: string = shared_string.value if (string != ""): lock.acquire() print(shared_string.value) shared_string.value = "" lock.release() print("**************************") print("**************************") print("**************************") print("update shared_string") print("**************************") print("**************************") print("**************************") time.sleep(0.3) else: print("hoge") def main(): print("Start main()") lock = Lock() manager = Manager() shared_string = manager.Value(c_char_p, "Hoge") hoge_subprocess = Process(target=hoge, args=(shared_string, lock)) hoge_subprocess.start() while True: lock.acquire() print("main") shared_string.value = "Time:" + str(time.time()) + ", main() to hoge()." lock.release() time.sleep(2) if __name__ == "__main__": main()
[ "satokazu.general@gmail.com" ]
satokazu.general@gmail.com
d7420989469dab17d9f1146e6f856d16c343fb1e
054eefaa17157b32869ea986347b3e539d2bf06b
/big_o_coding/Green_06/midterm1.py
bbd16356c363c790e981dd3ec7c049cf0c48699b
[]
no_license
baocogn/self-learning
f2cb2f45f05575b6d195fc3c407daf4edcfe7d0e
f50a3946966354c793cac6b28d09cb5dba2ec57a
refs/heads/master
2021-07-12T23:32:14.728163
2019-02-10T14:24:46
2019-02-10T14:24:46
143,170,276
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
n = int(input()) result = 1 if n == 1: result = 1 * 15000 elif 2 <= n <= 5: result = 1 * 15000 + (n - 1) * 13500 elif 6 <= n <= 11: result = 1 * 15000 + 4 * 13500 + (n - 5) * 11000 elif n >= 12: result = int((1 * 15000 + 4 * 13500 + (n - 5) * 11000) * (1 - 0.1)) print(result )
[ "baocogn123@gmail.com" ]
baocogn123@gmail.com
addce9e9601f6db6495755d3b9f0ef59ec7bae2b
ac6a1789722de5e37be54b39b964beef005d111d
/rest_registration/utils/validation.py
d23aac4f20409a39eba749fbb9ac6225315dc012
[ "MIT" ]
permissive
sunbeamer/django-rest-registration
cd194ccf152c62802ca6f7d7a048764da8aadf8a
dd25b84d0151630659da4c2c17ed48d26238e006
refs/heads/master
2023-03-29T10:39:06.225559
2021-03-25T23:21:46
2021-03-25T23:21:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,971
py
import functools from collections import OrderedDict from collections.abc import Mapping from typing import Any, Callable, Dict, Iterable, List from django.contrib.auth.password_validation import validate_password from django.core.exceptions import ValidationError as DjangoValidationError from django.utils.translation import gettext as _ from rest_framework.exceptions import ErrorDetail, ValidationError from rest_framework.settings import api_settings from rest_registration.utils.users import ( build_initial_user, get_user_by_verification_id ) Validator = Callable[[Any], None] def wrap_validation_error_with_field(field_name: str): def decorator(func: Validator): @functools.wraps(func) def wrapper(value: Any) -> None: try: func(value) except ValidationError as exc: raise ValidationError({field_name: exc.detail}) from None return wrapper return decorator @wrap_validation_error_with_field('password_confirm') def validate_user_password_confirm(user_data: Dict[str, Any]) -> None: if user_data['password'] != user_data['password_confirm']: raise ValidationError(ErrorDetail( _("Passwords don't match"), code='passwords-do-not-match'), ) @wrap_validation_error_with_field('password') def validate_user_password(user_data: Dict[str, Any]) -> None: password = user_data['password'] user = build_initial_user(user_data) return _validate_user_password(password, user) @wrap_validation_error_with_field('password') def validate_password_with_user_id(user_data: Dict[str, Any]) -> None: password = user_data['password'] user_id = user_data['user_id'] user = get_user_by_verification_id(user_id, require_verified=False) return _validate_user_password(password, user) def _validate_user_password(password, user) -> None: try: validate_password(password, user=user) except DjangoValidationError as exc: raise ValidationError(list(exc.messages)) from None def run_validators(validators: Iterable[Validator], value: Any) -> None: fields_errors = OrderedDict() # type: Dict[str, Any] non_field_errors = [] # type: List[Any] for validator in validators: try: validator(value) except ValidationError as exc: if isinstance(exc.detail, Mapping): for field_name, field_errors in exc.detail.items(): fields_errors.setdefault(field_name, []).extend( field_errors) elif isinstance(exc.detail, list): non_field_errors.extend(exc.detail) if fields_errors: errors = {} errors.update(fields_errors) errors.setdefault( api_settings.NON_FIELD_ERRORS_KEY, []).extend(non_field_errors) raise ValidationError(errors) if non_field_errors: raise ValidationError(non_field_errors)
[ "apragacz@o2.pl" ]
apragacz@o2.pl
4fcd7f02528a475c4a5e347b44c26c46a151141f
c37d94976f42118b392637f0c3a0ed23f13cb522
/5/week4/circuit_design/circuit_design.py
05bfaadf737317fe3647d636882f092bbd42ce19
[]
no_license
mcgaw/psychic-garbanzo
e992eec01efd471a720c5f2dddaf38ff467d77c0
48b43069928c36ba09dcdcec78ff49a9f050ae33
refs/heads/master
2021-09-17T14:03:03.778301
2017-11-07T11:30:25
2017-11-07T11:30:25
109,826,813
0
0
null
null
null
null
UTF-8
Python
false
false
9,841
py
# python3 import sys import threading import collections sys.setrecursionlimit(10**6) # max depth of recursion threading.stack_size(2**26) # new thread will get stack of such size import itertools def conn_comp(edges): """ Tarjan's algorithm for connected components. """ vertices = set(v for v in itertools.chain(*edges)) indices = dict((v, -1) for v in vertices) lowlinks = indices.copy() ccs = [] index = 0 stack = [] for v in vertices: if indices[v] < 0: strong_connect(v, edges, indices, lowlinks, ccs, index, stack) return ccs def strong_connect(vertex, edges, indices, lowlinks, ccs, index, stack): indices[vertex] = index lowlinks[vertex] = index index += 1 stack.append(vertex) for v, w in [e for e in edges if e[0] == vertex]: if indices[w] < 0: strong_connect(w, edges, indices, lowlinks, ccs, index, stack) lowlinks[v] = min(lowlinks[v], lowlinks[w]) elif w in stack: lowlinks[v] = min(lowlinks[v], indices[w]) if indices[vertex] == lowlinks[vertex]: ccs.append([]) while stack[-1] != vertex: ccs[-1].append(stack.pop()) ccs[-1].append(stack.pop()) class OrderedSet(collections.MutableSet): def __init__(self, iterable=None): self.end = end = [] end += [None, end, end] # sentinel node for doubly linked list self.map = {} # key --> [key, prev, next] if iterable is not None: self |= iterable def __len__(self): return len(self.map) def __contains__(self, key): return key in self.map def add(self, key): if key not in self.map: end = self.end curr = end[1] curr[2] = end[1] = self.map[key] = [key, curr, end] def discard(self, key): if key in self.map: key, prev, next = self.map.pop(key) prev[2] = next next[1] = prev def __iter__(self): end = self.end curr = end[2] while curr is not end: yield curr[0] curr = curr[2] def __reversed__(self): end = self.end curr = end[1] while curr is not end: yield curr[0] curr = curr[1] def pop(self, last=True): if not self: raise KeyError('set is empty') key = self.end[1][0] if last else self.end[2][0] self.discard(key) return key def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self)) def __eq__(self, other): if isinstance(other, OrderedSet): return len(self) == len(other) and list(self) == list(other) return set(self) == set(other) def post_orders(adjacents): """ Order the nodes of the graph according to their post order. Uses (possibly repeated) Depth First Search on the graph. """ vertices = set([node for node in range(len(adjacents))]) def dfs(node, order, traversed): q = collections.deque([node]) while len(q) > 0: node = q.pop() traversed.add(node) moving_up = True to_add = [] for adj in adjacents[node]: if adj in traversed: continue moving_up = False to_add.append(adj) if moving_up: order.add(node) if node in vertices: vertices.remove(node) else: q.append(node) for n in to_add: q.append(n) post_order = OrderedSet([]) traversed = set([]) vertices = set([node for node in range(len(adjacents))]) while True: dfs(vertices.pop(), post_order, traversed) if len(post_order) == len(adjacents): break assert len(post_order) == len(adjacents) return list(post_order) def post_orders_(adjacents): """ Order the nodes of the graph according to their post order. Uses (possibly repeated) Depth First Search on the graph. """ def dfs(node, order, traversed): traversed.add(node) for adj in adjacents[node]: if adj in traversed: continue dfs(adj, order, traversed) if node in vertices: vertices.remove(node) order.add(node) post_order = OrderedSet([]) traversed = set([]) vertices = set([node for node in range(len(adjacents))]) while True: dfs(vertices.pop(), post_order, traversed) if len(post_order) == len(adjacents): break assert len(post_order) == len(adjacents) return list(post_order) def connected_component_(adjacents, node, found): """ Explore the graph starting at node stopping at dead ends and avoiding both cycles and nodes in the ignore list. """ connected = set([]) def dfs(node, connected): connected.add(node) found.add(node) for adj in adjacents[node]: if adj in found or adj in connected: continue dfs(adj, connected) dfs(node, connected) return connected def connected_component(adjacents, node, found): """ Explore the graph starting at node stopping at dead ends and avoiding both cycles and nodes in the ignore list. While exploring build up the part of the solution belonging to this connected component while also checking that there is no duplicates of any litteral, indicating no solution. """ connected = set([]) q = collections.deque([node]) found_litterals = set([]) while len(q) > 0: node = q.pop() # Possible a node is added twice before # having a chance to be processed. if node in connected: continue connected.add(node) found.add(node) for adj in adjacents[node]: if adj in found or adj in connected: continue q.append(adj) return connected def analyse_connected_components_(n, adjacents, reverse, var_map): # Ensure topological ordering. order = post_orders_(reverse) #print('orders: {0}'.format(orders)) order_pointer = len(order) - 1 found = set([]) ccs = [] while order_pointer >= 0: if order[order_pointer] in found: order_pointer -= 1 continue ccs.append(connected_component_(adjacents, order[order_pointer], found)) assert len(found) == len(adjacents), 'found {0} nodes, but {1} were specified'.format(len(found), n) return ccs def analyse_connected_components(n, adjacents, reverse, var_map): # Ensure topological ordering. order = post_orders_(reverse) #print('orders: {0}'.format(orders)) order_pointer = len(order) - 1 found = set([]) ccs = [] while order_pointer >= 0: if order[order_pointer] in found: order_pointer -= 1 continue ccs.append(connected_component(adjacents, order[order_pointer], found)) assert len(found) == len(adjacents), 'found {0} nodes, but {1} were specified'.format(len(found), n) return ccs def build_implication_graph(n, clauses): edges = [] var_dict = {} node_dict = {} node_num = 0 adjacents = [[] for _ in range(2*n)] reversed_adjs = [[] for _ in range(2*n)] for clause in clauses: #if len(clause) == 1: # assert False, 'should be two terms in the clause' left = clause[0] right = clause[1] for term in [left, right]: if not term in node_dict: var_dict[node_num] = term node_dict[term] = node_num node_num += 1 if not -term in node_dict: var_dict[node_num] = -term node_dict[-term] = node_num node_num += 1 adjacents[node_dict[-left]].append(node_dict[right]) reversed_adjs[node_dict[right]].append(node_dict[-left]) #edges.append((node_dict[-left], node_dict[right])) adjacents[node_dict[-right]].append(node_dict[left]) reversed_adjs[node_dict[left]].append(node_dict[-right]) #edges.append((node_dict[-right], node_dict[left])) return edges, adjacents[:node_num], reversed_adjs[:node_num], node_dict, var_dict def is_satisfiable(n, m, clauses): edges, implication_g, reversed_imp_g, node_map, var_map = build_implication_graph(n, clauses) ccs = analyse_connected_components_(n, implication_g, reversed_imp_g, var_map) #ccs = analyse_connected_components(n, implication_g, reversed_imp_g, var_map) print(ccs) result = collections.defaultdict(lambda: None) for cc in ccs: cc_vars = set([]) for node in cc: # Check valid solution. litteral = var_map[node] if abs(litteral) in cc_vars: return None else: cc_vars.add(abs(litteral)) if result[abs(litteral)] is None: if litteral < 0: result[abs(litteral)] = 0 else: result[abs(litteral)] = 1 return result def circuit_design(): n, m = map(int, input().split()) clauses = [ list(map(int, input().split())) for i in range(m) ] result = is_satisfiable(n, m, clauses) if result is None: print("UNSATISFIABLE") else: print("SATISFIABLE"); print(" ".join(str(i if result[i] else -i) for i in range(1, n+1))) if __name__ == '__main__': threading.Thread(target=circuit_design).start()
[ "mcgaw@gmx.com" ]
mcgaw@gmx.com
b3c3d93049b1e2066eff628df1956bdd155fdca1
570e773112f03048fc4080a066f1ab8bdd87f288
/hour_minute.py
77c0438a20bb8540f6c676bc0c35eff89a386352
[]
no_license
shuvendra4228/learn-python
c0da1e0ea7188a80d97b39b933e4278f8321db10
c61368db0064455104b13f1d6d23df24a64e8b61
refs/heads/master
2021-09-04T02:25:47.969362
2018-01-14T16:43:42
2018-01-14T16:43:42
115,523,186
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
def hour_min(hr,min): total_mins = hr*60 + min return 0.5*total_mins hour = int(input("enter hour: ")) minute = int(input("enter minute: ")) watch = hour_min(hour,minute) print(f'hour hand moves {watch} degrees in {hour} hr and {minute} minutes')
[ "shuvendra4227@gmail.com" ]
shuvendra4227@gmail.com
02ad55d12b0c96af333d4519f4dea9b94f3645e8
6e1f3f64d36ad7dfdd930f2d33bdc5af7fd3b6b7
/飞机大战/plane_main.py
ca3a39dfa59692b6c03b38e16e55a4d13d812d61
[]
no_license
barrylee9527/python-games
7f02d7883f45a24a19c29c507e94bd87070d7a39
61d4feadcccdfab78e41eb14b8c7f9390634d4b2
refs/heads/master
2020-08-09T10:05:53.743539
2019-10-10T02:14:04
2019-10-10T02:14:04
214,065,007
0
0
null
null
null
null
UTF-8
Python
false
false
2,919
py
from 飞机大战.plane_sprites import * class PlaneGame(object): def __init__(self): # 游戏的初始化 print("游戏场景初始化") self.screen = pygame.display.set_mode(SCREEN_RECT.size) # 初始化屏幕大小 self.clock = pygame.time.Clock() # 游戏时钟帧数检测 self.__create__sprites() # 创建精灵组 pygame.time.set_timer(CREATE_ENEMY_EVENT, 1000) # 设置时间间隔来出现敌机,毫秒为单位 pygame.time.set_timer(HERO_FRIE_EVENT, 200) # 设置发射子弹的时间间隔 def __create__sprites(self): # 创建游戏精灵和精灵组 bg1 = Background() bg2 = Background(True) self.back_group = pygame.sprite.Group(bg1, bg2) # 创建敌机的精灵组 self.enemy_group = pygame.sprite.Group() # 创建英雄的精灵和精灵组 self.hero = Hero() # 定义英雄属性 self.hero_group = pygame.sprite.Group(self.hero) def start_game(self): print("开始游戏") while True: self.clock.tick(TIME_SEC) self.__event_hander() self.__check_collide() self.__update_sprites() pygame.display.update() def __event_hander(self): # 时间监听 for event in pygame.event.get(): if event.type == pygame.QUIT: PlaneGame.__game_over() elif event.type == CREATE_ENEMY_EVENT: print("敌机出场") enemy = Enemy() self.enemy_group.add(enemy) elif event.type == HERO_FRIE_EVENT: self.hero.fire() key_pressed = pygame.key.get_pressed() # 捕获键盘按键事件 if key_pressed[pygame.K_RIGHT] or key_pressed[pygame.K_DOWN]: self.hero.speed = 3 elif key_pressed[pygame.K_LEFT] or key_pressed[pygame.K_UP]: self.hero.speed = -3 else: self.hero.speed = 0 def __check_collide(self): # 碰撞检测 pygame.sprite.groupcollide(self.hero.bullets, self.enemy_group, True, True) # 敌机撞毁英雄 enemys = pygame.sprite.spritecollide(self.hero, self.enemy_group, True) if len(enemys) > 0: self.hero.kill() PlaneGame.__game_over() def __update_sprites(self): # 更新精灵和精灵组的位置 self.back_group.update() self.back_group.draw(self.screen) self.enemy_group.update() self.enemy_group.draw(self.screen) self.hero_group.update() self.hero_group.draw(self.screen) self.hero.bullets.update() self.hero.bullets.draw(self.screen) @staticmethod def __game_over(): pygame.quit() print('游戏结束') exit(0) # 游戏运行 if __name__ == '__main__': game = PlaneGame() game.start_game()
[ "1763272870@qq.com" ]
1763272870@qq.com
97115a5d5c194dc49f8fff0887fb410dffe587cd
a91ee43d466f765e8a2cc2ed5be7881ba2a18783
/profiles_api/admin.py
5f4f2f6ac0fe5e52909ddc1c15c5cd4b7fb22458
[ "MIT" ]
permissive
divyajpodar/profile_rest_api
4e664e0aa3499d1e0b80f696b17af83e5f0091bc
8c8335373f0b13834965f23a8757a9807afda23d
refs/heads/master
2022-05-02T22:14:21.609300
2020-01-06T03:43:05
2020-01-06T03:43:05
231,166,744
0
0
MIT
2022-04-22T23:04:00
2020-01-01T02:18:47
Python
UTF-8
Python
false
false
125
py
from django.contrib import admin from . import models # Register your models here. admin.site.register(models.UserProfile)
[ "divpodar@gmail.com" ]
divpodar@gmail.com
6af2e5be03f5004ba0e7cf3c2b61a359794bb422
3c3fc1a15f06771ea4d8ffd8144694a952759cb7
/UI/app/test_camera.py
11133065aa47fd4b786258b080266fccc926cace
[ "MIT" ]
permissive
JeremYnov/Faice
57492159247267277631787ebcdf24e00df54fb5
de2f42c5b885831b0da02e2f7116c9eca013369a
refs/heads/main
2023-04-14T12:41:00.049826
2021-04-27T15:21:51
2021-04-27T15:21:51
305,392,547
0
0
null
null
null
null
UTF-8
Python
false
false
1,416
py
''' Camera Example ============== This example demonstrates a simple use of the camera. It shows a window with a buttoned labelled 'play' to turn the camera on and off. Note that not finding a camera, perhaps because gstreamer is not installed, will throw an exception during the kv language processing. ''' # Uncomment these lines to see all the messages #from kivy.logger import Logger #import logging #Logger.setLevel(logging.TRACE) from kivy.app import App from kivy.lang import Builder from kivy.uix.boxlayout import BoxLayout import time Builder.load_string(''' <CameraClick>: orientation: 'vertical' Camera: id: camera resolution: (640, 480) play: False ToggleButton: text: 'Play' on_press: camera.play = not camera.play size_hint_y: None height: '48dp' Button: text: 'Capture' size_hint_y: None height: '48dp' on_press: root.capture() ''') class CameraClick(BoxLayout): def capture(self): ''' Function to capture the images and give them the names according to their captured time and date. ''' camera = self.ids['camera'] timestr = time.strftime("%Y%m%d_%H%M%S") camera.export_to_png("IMG_{}.png".format(timestr)) print("Captured") class TestCamera(App): def build(self): return CameraClick() TestCamera().run()
[ "ow.charlon@gmail.com" ]
ow.charlon@gmail.com
34f3f9198a19dce963a0fbaf29dc652cf2e4b47b
a35e38a12247660e4c9c9e430aa00ca69319aba9
/swaggerAPIClient/swagger_client/api/mapping_api.py
ae3b4bf94a785ca276bdd2cad5e4d1f0025302d5
[]
no_license
tf-msdev/htm_cli
5106768753346b3c34ac509a342c0f6b2a34f229
cbd0f0d9f6c2eb7ad469ce0d22422ede405b4d0a
refs/heads/master
2020-06-22T16:26:04.356802
2019-09-26T18:50:54
2019-09-26T18:50:54
197,745,183
0
0
null
null
null
null
UTF-8
Python
false
false
71,251
py
# coding: utf-8 """ HOT Tasking Manager API API endpoints for the HOT tasking manager # noqa: E501 OpenAPI spec version: 0.0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from swagger_client.api_client import ApiClient class MappingApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def api_v1_project_project_id_aoi_get(self, project_id, **kwargs): # noqa: E501 """Get AOI of Project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_aoi_get(project_id, async_req=True) >>> result = thread.get() :param async_req bool :param int project_id: The unique project ID (required) :param bool as_file: Set to false if file download not preferred :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_aoi_get_with_http_info(project_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_aoi_get_with_http_info(project_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_aoi_get_with_http_info(self, project_id, **kwargs): # noqa: E501 """Get AOI of Project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_aoi_get_with_http_info(project_id, async_req=True) >>> result = thread.get() :param async_req bool :param int project_id: The unique project ID (required) :param bool as_file: Set to false if file download not preferred :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['project_id', 'as_file'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_aoi_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_aoi_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 query_params = [] if 'as_file' in params: query_params.append(('as_file', params['as_file'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/aoi', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_get(self, accept_language, project_id, **kwargs): # noqa: E501 """Get HOT Project for mapping # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_get(accept_language, project_id, async_req=True) >>> result = thread.get() :param async_req bool :param str accept_language: Language user is requesting (required) :param int project_id: The unique project ID (required) :param bool as_file: Set to true if file download is preferred :param bool abbreviated: Set to true if only state information is desired :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_get_with_http_info(accept_language, project_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_get_with_http_info(accept_language, project_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_get_with_http_info(self, accept_language, project_id, **kwargs): # noqa: E501 """Get HOT Project for mapping # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_get_with_http_info(accept_language, project_id, async_req=True) >>> result = thread.get() :param async_req bool :param str accept_language: Language user is requesting (required) :param int project_id: The unique project ID (required) :param bool as_file: Set to true if file download is preferred :param bool abbreviated: Set to true if only state information is desired :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['accept_language', 'project_id', 'as_file', 'abbreviated'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'accept_language' is set if ('accept_language' not in params or params['accept_language'] is None): raise ValueError("Missing the required parameter `accept_language` when calling `api_v1_project_project_id_get`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 query_params = [] if 'as_file' in params: query_params.append(('as_file', params['as_file'])) # noqa: E501 if 'abbreviated' in params: query_params.append(('abbreviated', params['abbreviated'])) # noqa: E501 header_params = {} if 'accept_language' in params: header_params['Accept-Language'] = params['accept_language'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_has_user_locked_tasks_details_get(self, authorization, accept_language, project_id, **kwargs): # noqa: E501 """Gets details of any locked task on the project from logged in user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_has_user_locked_tasks_details_get(authorization, accept_language, project_id, async_req=True) >>> result = thread.get() :param async_req bool :param str authorization: Base64 encoded session token (required) :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_has_user_locked_tasks_details_get_with_http_info(authorization, accept_language, project_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_has_user_locked_tasks_details_get_with_http_info(authorization, accept_language, project_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_has_user_locked_tasks_details_get_with_http_info(self, authorization, accept_language, project_id, **kwargs): # noqa: E501 """Gets details of any locked task on the project from logged in user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_has_user_locked_tasks_details_get_with_http_info(authorization, accept_language, project_id, async_req=True) >>> result = thread.get() :param async_req bool :param str authorization: Base64 encoded session token (required) :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['authorization', 'accept_language', 'project_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_has_user_locked_tasks_details_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'authorization' is set if ('authorization' not in params or params['authorization'] is None): raise ValueError("Missing the required parameter `authorization` when calling `api_v1_project_project_id_has_user_locked_tasks_details_get`") # noqa: E501 # verify the required parameter 'accept_language' is set if ('accept_language' not in params or params['accept_language'] is None): raise ValueError("Missing the required parameter `accept_language` when calling `api_v1_project_project_id_has_user_locked_tasks_details_get`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_has_user_locked_tasks_details_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 query_params = [] header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] # noqa: E501 if 'accept_language' in params: header_params['Accept-Language'] = params['accept_language'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/has-user-locked-tasks/details', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_has_user_locked_tasks_get(self, authorization, project_id, **kwargs): # noqa: E501 """Gets any locked task on the project from logged in user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_has_user_locked_tasks_get(authorization, project_id, async_req=True) >>> result = thread.get() :param async_req bool :param str authorization: Base64 encoded session token (required) :param int project_id: The ID of the project the task is associated with (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_has_user_locked_tasks_get_with_http_info(authorization, project_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_has_user_locked_tasks_get_with_http_info(authorization, project_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_has_user_locked_tasks_get_with_http_info(self, authorization, project_id, **kwargs): # noqa: E501 """Gets any locked task on the project from logged in user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_has_user_locked_tasks_get_with_http_info(authorization, project_id, async_req=True) >>> result = thread.get() :param async_req bool :param str authorization: Base64 encoded session token (required) :param int project_id: The ID of the project the task is associated with (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['authorization', 'project_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_has_user_locked_tasks_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'authorization' is set if ('authorization' not in params or params['authorization'] is None): raise ValueError("Missing the required parameter `authorization` when calling `api_v1_project_project_id_has_user_locked_tasks_get`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_has_user_locked_tasks_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 query_params = [] header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/has-user-locked-tasks', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_summary_get(self, accept_language, project_id, **kwargs): # noqa: E501 """Gets project summary # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_summary_get(accept_language, project_id, async_req=True) >>> result = thread.get() :param async_req bool :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_summary_get_with_http_info(accept_language, project_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_summary_get_with_http_info(accept_language, project_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_summary_get_with_http_info(self, accept_language, project_id, **kwargs): # noqa: E501 """Gets project summary # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_summary_get_with_http_info(accept_language, project_id, async_req=True) >>> result = thread.get() :param async_req bool :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['accept_language', 'project_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_summary_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'accept_language' is set if ('accept_language' not in params or params['accept_language'] is None): raise ValueError("Missing the required parameter `accept_language` when calling `api_v1_project_project_id_summary_get`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_summary_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 query_params = [] header_params = {} if 'accept_language' in params: header_params['Accept-Language'] = params['accept_language'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/summary', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_task_task_id_comment_post(self, body, authorization, project_id, task_id, **kwargs): # noqa: E501 """Adds a comment to the task outside of mapping/validation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_comment_post(body, authorization, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param TaskComment body: JSON object representing the comment (required) :param str authorization: Base64 encoded session token (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_task_task_id_comment_post_with_http_info(body, authorization, project_id, task_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_task_task_id_comment_post_with_http_info(body, authorization, project_id, task_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_task_task_id_comment_post_with_http_info(self, body, authorization, project_id, task_id, **kwargs): # noqa: E501 """Adds a comment to the task outside of mapping/validation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_comment_post_with_http_info(body, authorization, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param TaskComment body: JSON object representing the comment (required) :param str authorization: Base64 encoded session token (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['body', 'authorization', 'project_id', 'task_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_task_task_id_comment_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `api_v1_project_project_id_task_task_id_comment_post`") # noqa: E501 # verify the required parameter 'authorization' is set if ('authorization' not in params or params['authorization'] is None): raise ValueError("Missing the required parameter `authorization` when calling `api_v1_project_project_id_task_task_id_comment_post`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_task_task_id_comment_post`") # noqa: E501 # verify the required parameter 'task_id' is set if ('task_id' not in params or params['task_id'] is None): raise ValueError("Missing the required parameter `task_id` when calling `api_v1_project_project_id_task_task_id_comment_post`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 if 'task_id' in params: path_params['task_id'] = params['task_id'] # noqa: E501 query_params = [] header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['*/*']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/task/{task_id}/comment', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_task_task_id_get(self, accept_language, project_id, task_id, **kwargs): # noqa: E501 """Get task for mapping # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_get(accept_language, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :param str authorization: Base64 encoded session token :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_task_task_id_get_with_http_info(accept_language, project_id, task_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_task_task_id_get_with_http_info(accept_language, project_id, task_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_task_task_id_get_with_http_info(self, accept_language, project_id, task_id, **kwargs): # noqa: E501 """Get task for mapping # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_get_with_http_info(accept_language, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :param str authorization: Base64 encoded session token :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['accept_language', 'project_id', 'task_id', 'authorization'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_task_task_id_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'accept_language' is set if ('accept_language' not in params or params['accept_language'] is None): raise ValueError("Missing the required parameter `accept_language` when calling `api_v1_project_project_id_task_task_id_get`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_task_task_id_get`") # noqa: E501 # verify the required parameter 'task_id' is set if ('task_id' not in params or params['task_id'] is None): raise ValueError("Missing the required parameter `task_id` when calling `api_v1_project_project_id_task_task_id_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 if 'task_id' in params: path_params['task_id'] = params['task_id'] # noqa: E501 query_params = [] header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] # noqa: E501 if 'accept_language' in params: header_params['Accept-Language'] = params['accept_language'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/task/{task_id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_task_task_id_lock_for_mapping_post(self, authorization, accept_language, project_id, task_id, **kwargs): # noqa: E501 """Locks the task for mapping # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_lock_for_mapping_post(authorization, accept_language, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param str authorization: Base64 encoded session token (required) :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_task_task_id_lock_for_mapping_post_with_http_info(authorization, accept_language, project_id, task_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_task_task_id_lock_for_mapping_post_with_http_info(authorization, accept_language, project_id, task_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_task_task_id_lock_for_mapping_post_with_http_info(self, authorization, accept_language, project_id, task_id, **kwargs): # noqa: E501 """Locks the task for mapping # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_lock_for_mapping_post_with_http_info(authorization, accept_language, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param str authorization: Base64 encoded session token (required) :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['authorization', 'accept_language', 'project_id', 'task_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_task_task_id_lock_for_mapping_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'authorization' is set if ('authorization' not in params or params['authorization'] is None): raise ValueError("Missing the required parameter `authorization` when calling `api_v1_project_project_id_task_task_id_lock_for_mapping_post`") # noqa: E501 # verify the required parameter 'accept_language' is set if ('accept_language' not in params or params['accept_language'] is None): raise ValueError("Missing the required parameter `accept_language` when calling `api_v1_project_project_id_task_task_id_lock_for_mapping_post`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_task_task_id_lock_for_mapping_post`") # noqa: E501 # verify the required parameter 'task_id' is set if ('task_id' not in params or params['task_id'] is None): raise ValueError("Missing the required parameter `task_id` when calling `api_v1_project_project_id_task_task_id_lock_for_mapping_post`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 if 'task_id' in params: path_params['task_id'] = params['task_id'] # noqa: E501 query_params = [] header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] # noqa: E501 if 'accept_language' in params: header_params['Accept-Language'] = params['accept_language'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/task/{task_id}/lock-for-mapping', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_task_task_id_stop_mapping_post(self, body, authorization, accept_language, project_id, task_id, **kwargs): # noqa: E501 """Unlock task that is locked for mapping resetting it to it's last status # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_stop_mapping_post(body, authorization, accept_language, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param TaskUpdateStop body: JSON object for unlocking a task (required) :param str authorization: Base64 encoded session token (required) :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_task_task_id_stop_mapping_post_with_http_info(body, authorization, accept_language, project_id, task_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_task_task_id_stop_mapping_post_with_http_info(body, authorization, accept_language, project_id, task_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_task_task_id_stop_mapping_post_with_http_info(self, body, authorization, accept_language, project_id, task_id, **kwargs): # noqa: E501 """Unlock task that is locked for mapping resetting it to it's last status # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_stop_mapping_post_with_http_info(body, authorization, accept_language, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param TaskUpdateStop body: JSON object for unlocking a task (required) :param str authorization: Base64 encoded session token (required) :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['body', 'authorization', 'accept_language', 'project_id', 'task_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_task_task_id_stop_mapping_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `api_v1_project_project_id_task_task_id_stop_mapping_post`") # noqa: E501 # verify the required parameter 'authorization' is set if ('authorization' not in params or params['authorization'] is None): raise ValueError("Missing the required parameter `authorization` when calling `api_v1_project_project_id_task_task_id_stop_mapping_post`") # noqa: E501 # verify the required parameter 'accept_language' is set if ('accept_language' not in params or params['accept_language'] is None): raise ValueError("Missing the required parameter `accept_language` when calling `api_v1_project_project_id_task_task_id_stop_mapping_post`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_task_task_id_stop_mapping_post`") # noqa: E501 # verify the required parameter 'task_id' is set if ('task_id' not in params or params['task_id'] is None): raise ValueError("Missing the required parameter `task_id` when calling `api_v1_project_project_id_task_task_id_stop_mapping_post`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 if 'task_id' in params: path_params['task_id'] = params['task_id'] # noqa: E501 query_params = [] header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] # noqa: E501 if 'accept_language' in params: header_params['Accept-Language'] = params['accept_language'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['*/*']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/task/{task_id}/stop-mapping', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_task_task_id_undo_mapping_post(self, authorization, accept_language, project_id, task_id, **kwargs): # noqa: E501 """Get task for mapping # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_undo_mapping_post(authorization, accept_language, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param str authorization: Base64 encoded session token (required) :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_task_task_id_undo_mapping_post_with_http_info(authorization, accept_language, project_id, task_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_task_task_id_undo_mapping_post_with_http_info(authorization, accept_language, project_id, task_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_task_task_id_undo_mapping_post_with_http_info(self, authorization, accept_language, project_id, task_id, **kwargs): # noqa: E501 """Get task for mapping # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_undo_mapping_post_with_http_info(authorization, accept_language, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param str authorization: Base64 encoded session token (required) :param str accept_language: Language user is requesting (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['authorization', 'accept_language', 'project_id', 'task_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_task_task_id_undo_mapping_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'authorization' is set if ('authorization' not in params or params['authorization'] is None): raise ValueError("Missing the required parameter `authorization` when calling `api_v1_project_project_id_task_task_id_undo_mapping_post`") # noqa: E501 # verify the required parameter 'accept_language' is set if ('accept_language' not in params or params['accept_language'] is None): raise ValueError("Missing the required parameter `accept_language` when calling `api_v1_project_project_id_task_task_id_undo_mapping_post`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_task_task_id_undo_mapping_post`") # noqa: E501 # verify the required parameter 'task_id' is set if ('task_id' not in params or params['task_id'] is None): raise ValueError("Missing the required parameter `task_id` when calling `api_v1_project_project_id_task_task_id_undo_mapping_post`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 if 'task_id' in params: path_params['task_id'] = params['task_id'] # noqa: E501 query_params = [] header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] # noqa: E501 if 'accept_language' in params: header_params['Accept-Language'] = params['accept_language'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/task/{task_id}/undo-mapping', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_task_task_id_unlock_after_mapping_post(self, body, authorization, project_id, task_id, **kwargs): # noqa: E501 """Unlocks the task after mapping completed # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_unlock_after_mapping_post(body, authorization, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param TaskUpdateUnlock body: JSON object for unlocking a task (required) :param str authorization: Base64 encoded session token (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_task_task_id_unlock_after_mapping_post_with_http_info(body, authorization, project_id, task_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_task_task_id_unlock_after_mapping_post_with_http_info(body, authorization, project_id, task_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_task_task_id_unlock_after_mapping_post_with_http_info(self, body, authorization, project_id, task_id, **kwargs): # noqa: E501 """Unlocks the task after mapping completed # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_task_task_id_unlock_after_mapping_post_with_http_info(body, authorization, project_id, task_id, async_req=True) >>> result = thread.get() :param async_req bool :param TaskUpdateUnlock body: JSON object for unlocking a task (required) :param str authorization: Base64 encoded session token (required) :param int project_id: The ID of the project the task is associated with (required) :param int task_id: The unique task ID (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['body', 'authorization', 'project_id', 'task_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_task_task_id_unlock_after_mapping_post" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `api_v1_project_project_id_task_task_id_unlock_after_mapping_post`") # noqa: E501 # verify the required parameter 'authorization' is set if ('authorization' not in params or params['authorization'] is None): raise ValueError("Missing the required parameter `authorization` when calling `api_v1_project_project_id_task_task_id_unlock_after_mapping_post`") # noqa: E501 # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_task_task_id_unlock_after_mapping_post`") # noqa: E501 # verify the required parameter 'task_id' is set if ('task_id' not in params or params['task_id'] is None): raise ValueError("Missing the required parameter `task_id` when calling `api_v1_project_project_id_task_task_id_unlock_after_mapping_post`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 if 'task_id' in params: path_params['task_id'] = params['task_id'] # noqa: E501 query_params = [] header_params = {} if 'authorization' in params: header_params['Authorization'] = params['authorization'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['*/*']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/task/{task_id}/unlock-after-mapping', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_tasks_as_gpx_get(self, project_id, **kwargs): # noqa: E501 """Get tasks as GPX # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_tasks_as_gpx_get(project_id, async_req=True) >>> result = thread.get() :param async_req bool :param int project_id: The ID of the project the task is associated with (required) :param str tasks: List of tasks; leave blank for all :param bool as_file: Set to true if file download preferred :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_tasks_as_gpx_get_with_http_info(project_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_tasks_as_gpx_get_with_http_info(project_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_tasks_as_gpx_get_with_http_info(self, project_id, **kwargs): # noqa: E501 """Get tasks as GPX # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_tasks_as_gpx_get_with_http_info(project_id, async_req=True) >>> result = thread.get() :param async_req bool :param int project_id: The ID of the project the task is associated with (required) :param str tasks: List of tasks; leave blank for all :param bool as_file: Set to true if file download preferred :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['project_id', 'tasks', 'as_file'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_tasks_as_gpx_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_tasks_as_gpx_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 query_params = [] if 'tasks' in params: query_params.append(('tasks', params['tasks'])) # noqa: E501 if 'as_file' in params: query_params.append(('as_file', params['as_file'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/tasks_as_gpx', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_tasks_as_osm_xml_get(self, project_id, **kwargs): # noqa: E501 """Get tasks as OSM XML # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_tasks_as_osm_xml_get(project_id, async_req=True) >>> result = thread.get() :param async_req bool :param int project_id: The ID of the project the task is associated with (required) :param str tasks: List of tasks; leave blank to retrieve all :param bool as_file: Set to true if file download preferred :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_tasks_as_osm_xml_get_with_http_info(project_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_tasks_as_osm_xml_get_with_http_info(project_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_tasks_as_osm_xml_get_with_http_info(self, project_id, **kwargs): # noqa: E501 """Get tasks as OSM XML # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_tasks_as_osm_xml_get_with_http_info(project_id, async_req=True) >>> result = thread.get() :param async_req bool :param int project_id: The ID of the project the task is associated with (required) :param str tasks: List of tasks; leave blank to retrieve all :param bool as_file: Set to true if file download preferred :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['project_id', 'tasks', 'as_file'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_tasks_as_osm_xml_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_tasks_as_osm_xml_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 query_params = [] if 'tasks' in params: query_params.append(('tasks', params['tasks'])) # noqa: E501 if 'as_file' in params: query_params.append(('as_file', params['as_file'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/tasks-as-osm-xml', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def api_v1_project_project_id_tasks_get(self, project_id, **kwargs): # noqa: E501 """Get tasks as JSON # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_tasks_get(project_id, async_req=True) >>> result = thread.get() :param async_req bool :param int project_id: The ID of the project the task is associated with (required) :param bool as_file: Set to true if file download preferred :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.api_v1_project_project_id_tasks_get_with_http_info(project_id, **kwargs) # noqa: E501 else: (data) = self.api_v1_project_project_id_tasks_get_with_http_info(project_id, **kwargs) # noqa: E501 return data def api_v1_project_project_id_tasks_get_with_http_info(self, project_id, **kwargs): # noqa: E501 """Get tasks as JSON # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api_v1_project_project_id_tasks_get_with_http_info(project_id, async_req=True) >>> result = thread.get() :param async_req bool :param int project_id: The ID of the project the task is associated with (required) :param bool as_file: Set to true if file download preferred :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['project_id', 'as_file'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method api_v1_project_project_id_tasks_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'project_id' is set if ('project_id' not in params or params['project_id'] is None): raise ValueError("Missing the required parameter `project_id` when calling `api_v1_project_project_id_tasks_get`") # noqa: E501 collection_formats = {} path_params = {} if 'project_id' in params: path_params['project_id'] = params['project_id'] # noqa: E501 query_params = [] if 'as_file' in params: query_params.append(('as_file', params['as_file'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/project/{project_id}/tasks', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
[ "v-fita@microsoft.com" ]
v-fita@microsoft.com
caadde480ede3737af17ac7035a2844eaffa7880
0a2f838d253ebf2a5f8b9a1ec41f011b19ebc05e
/cifrado/escritorio/codigo/playfair-Python/reglas/regla4/Regla4.py
50928ec5a31a787a23538fee629a9cb3bae312e5
[]
no_license
HernandezGarciaDavid/disor
75774c21e54e338a5eb44632b7a1fbaf3dc73685
009d8743d2b6b22103e8e1dc95b6e448e6378d21
refs/heads/master
2020-04-11T17:32:36.533058
2018-12-16T05:51:58
2018-12-16T05:51:58
161,964,894
0
0
null
null
null
null
UTF-8
Python
false
false
944
py
from posicion.Posicion import Posicion class Regla4(): def aplicar(self,mensaje,matriz,resultado): if Posicion().devolverPosicion(mensaje[0],matriz,0)[1]-1 >= 0:# len(matriz[Posicion().devolverPosicion(mensaje[0],matriz,0)[0]]): resultado+=matriz[Posicion().devolverPosicion(mensaje[0],matriz,0)[0]][Posicion().devolverPosicion(mensaje[0],matriz,0)[1]-1] else: resultado+=matriz[Posicion().devolverPosicion(mensaje[0],matriz,0)[0]][len(matriz[Posicion().devolverPosicion(mensaje[0],matriz,0)[0]])-1] if Posicion().devolverPosicion(mensaje[1],matriz,0)[1]-1 >= 0:#< len(matriz[Posicion().devolverPosicion(mensaje[1],matriz,0)[0]]): resultado+=matriz[Posicion().devolverPosicion(mensaje[1],matriz,0)[0]][Posicion().devolverPosicion(mensaje[1],matriz,0)[1]-1] else: resultado+=matriz[Posicion().devolverPosicion(mensaje[1],matriz,0)[0]][len(matriz[Posicion().devolverPosicion(mensaje[1],matriz,0)[0]])-1] return resultado
[ "David.Hernandez@Glicware" ]
David.Hernandez@Glicware
247fe090f43fd0a83855df1f9f2e432ddd933952
050d969572da4168df2184c43177b555db9f4391
/Pandata_Python/Pandata_Python/TwitterManager.py
ee297531d004c7b61a916d216c3c21d9cc9744be
[ "MIT" ]
permissive
adrienyou/Pandata_Python
588145890537aeaac6dadd16655a5cc59b5b3c0f
fe871706a476ca3432f242c6ae585f241321275a
refs/heads/master
2021-03-27T10:14:45.793423
2015-03-21T18:12:25
2015-03-21T18:12:25
28,859,401
0
0
null
null
null
null
UTF-8
Python
false
false
5,072
py
""" @authors: YOU """ from twython import TwythonStreamer import json import pymongo import Constants import Variables import MongoManager import TextAnalysis class TweetStreamer(TwythonStreamer): """ Method on_success will be called when tweets are received """ def on_success(self, data): # Connect to the default host and port. Can be specified : MongoClient('localhost', 27017) client = pymongo.MongoClient() # Create the tweet under the format we want tweet = dataWorker(data) # Call the text analysis worker and get the response (dictPosWords, dictNegWords, emotion) response = TextAnalysis.getTextEmotion(tweet) # Add new field to tweet tweet[Constants.ResearchField.EMOTION] = response[Constants.ResearchField.EMOTION] # Insert the tweet ine the research collection we want MongoManager.insertTweetInCollection(tweet, Variables.Database.COLL_NAME, Variables.Database.DB_NAME, client) # Modify the macro data with the response from emotion analysis MongoManager.modifyMacroInCollection(response, Variables.Database.COLL_NAME, Variables.Database.DB_NAME, client) def on_error(self, status_code, data): print(status_code) # Want to stop trying to get data because of the error? # Uncomment the next line! # self.disconnect() """ Worker applied to the data from the stream """ def dataWorker(data): tweet = createTweet(created_atWorker(data[Constants.TwitterField.CREATED].encode('utf-8')), entitiesWorker(data[Constants.TwitterField.ENTITIES][Constants.TwitterField.HASHTAGS], data[Constants.TwitterField.ENTITIES][Constants.TwitterField.SYMBOLS]), data[Constants.TwitterField.FAVORITED], data[Constants.TwitterField.LANG], placeWorker(data[Constants.TwitterField.PLACE]), data[Constants.TwitterField.RETWEET], data[Constants.TwitterField.TEXT].encode('utf-8'), userWorker(data[Constants.TwitterField.USER]) ) return tweet """ Return the month number """ def getMonth(strMonth): if strMonth == 'Jan': return "01" elif strMonth == 'Feb': return "02" elif strMonth == 'Mar': return "03" elif strMonth == 'Apr': return "04" elif strMonth == 'May': return "05" elif strMonth == 'Jun': return "06" elif strMonth == 'Jul': return "07" elif strMonth == 'Aug': return "08" elif strMonth == 'Sep': return "09" elif strMonth == 'Oct': return "10" elif strMonth == 'Nov': return "11" else: return "12" """ Worker applied to the 'created_at' field from the data from the stream """ def created_atWorker(field): #"created_at":"Wed Aug 27 13:08:45 +0000 2008" strField = str(field, encoding='utf-8') arrField = strField.split(' ') date = {} date['hour'] = arrField[3].split(':')[0] date['day'] = arrField[2] date['month'] = getMonth(arrField[1]) date['year'] = arrField[5] return date """ Worker applied to the 'entites' field from the data from the stream """ def entitiesWorker(hashtagsField, symbolsField): hashList = [] symbList = [] for hash in hashtagsField: if hash['text']: hashList.append(hash['text']) for symb in symbolsField: if symb['text']: symbList.append(symb['text']) entities = {} entities['hashtags'] = hashList entities['symbols'] = symbList return entities """ Worker applied to the place field from the data from the stream """ def placeWorker(place): if place: if place['country']: return place['country'] elif place['country_code']: return place['country_code'] else: return 'null' else: return 'null' """ Worker applied to the user field from the data from the stream """ def userWorker(user): userV = {} if user: if user['name']: userV['name'] = user['name'] else: userV['name'] = 'null' if user['followers_count']: userV['followers_count'] = user['followers_count'] else: userV['followers_count'] = 'null' if user['time_zone']: userV['time_zone'] = user['time_zone'] else: userV['time_zone'] = 'null' return userV def createTweet(v_created_at, v_entities, v_favorited, v_lang, v_place, v_retweet, v_text, v_user): tweet = {} tweet['created_at'] = v_created_at tweet['entities'] = v_entities tweet['favorited'] = v_favorited tweet['lang'] = v_lang tweet['place'] = v_place tweet['retweet'] = v_retweet tweet['text'] = str(v_text, encoding='utf-8') tweet['user'] = v_user return tweet """ Return obj with a JSON format """ def to_JSON(obj): return json.dumps(obj, sort_keys=True, indent=4)
[ "adrien.you@student.ecp.fr" ]
adrien.you@student.ecp.fr
64cbfec3f3acc0e1d61883835c5f39fc1e73c1c0
9845815f0ff30819d6504adcac96b45deb865697
/forestConfigs/runForest_PbPb_MIX_75X_JECv4_localVoronoi.py
0ba7b44a0af6b2ba9e08c237c363a9fe1e412f27
[]
no_license
dgulhan/forestConfigs
8efc4dc5f2341e877ae46dca8d9ae3dbe2d5895d
743178fa48457f6b6bdd49c9337931a4299b3994
refs/heads/master
2021-01-19T11:22:51.780050
2015-12-04T17:50:36
2015-12-04T17:50:36
22,839,818
0
0
null
null
null
null
UTF-8
Python
false
false
18,648
py
import FWCore.ParameterSet.Config as cms process = cms.Process('HiForest') process.options = cms.untracked.PSet( # wantSummary = cms.untracked.bool(True) #SkipEvent = cms.untracked.vstring('ProductNotFound') ) ##################################################################################### # HiForest labelling info ##################################################################################### process.load("HeavyIonsAnalysis.JetAnalysis.HiForest_cff") process.HiForest.inputLines = cms.vstring("HiForest V3",) import subprocess version = subprocess.Popen(["(cd $CMSSW_BASE/src && git describe --tags)"], stdout=subprocess.PIPE, shell=True).stdout.read() if version == '': version = 'no git info' process.HiForest.HiForestVersion = cms.untracked.string(version) ##################################################################################### # Input source ##################################################################################### process.source = cms.Source("PoolSource", duplicateCheckMode = cms.untracked.string("noDuplicateCheck"), fileNames = cms.untracked.vstring( "file:step3_10.root" )) # Number of events we want to process, -1 = all events process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(10)) ##################################################################################### # Load Global Tag, Geometry, etc. ##################################################################################### process.load('Configuration.StandardSequences.Services_cff') process.load('Configuration.Geometry.GeometryDB_cff') process.load('Configuration.StandardSequences.MagneticField_38T_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.load('Configuration.StandardSequences.Digi_cff') process.load('Configuration.StandardSequences.SimL1Emulator_cff') process.load('Configuration.StandardSequences.DigiToRaw_cff') process.load('Configuration.StandardSequences.RawToDigi_cff') process.load('Configuration.StandardSequences.ReconstructionHeavyIons_cff') process.load('FWCore.MessageService.MessageLogger_cfi') # PbPb 53X MC from Configuration.AlCa.GlobalTag_condDBv2 import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, 'auto:run2_mc_HIon', '') ################ ###Centrality### ################ process.load("RecoHI.HiCentralityAlgos.CentralityBin_cfi") process.centralityBin.Centrality = cms.InputTag("hiCentrality") process.centralityBin.centralityVariable = cms.string("HFtowers") # process.centralityBin.nonDefaultGlauberModel = cms.string("HydjetDrum5") # process.centralityBin.nonDefaultGlauberModel = cms.string("HydjetDrum5") process.GlobalTag.toGet.extend([ cms.PSet(record = cms.string("HeavyIonRcd"), tag = cms.string("CentralityTable_HFtowers200_HydjetDrum5_v750x02_mc"), connect = cms.string("frontier://FrontierProd/CMS_CONDITIONS"), label = cms.untracked.string("HFtowers") ), ]) ########## ###JEC#### ########## process.load("CondCore.DBCommon.CondDBCommon_cfi") from CondCore.DBCommon.CondDBSetup_cfi import * process.jec = cms.ESSource("PoolDBESSource", DBParameters = cms.PSet( messageLevel = cms.untracked.int32(0) ), timetype = cms.string('runnumber'), toGet = cms.VPSet( cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK1Calo_offline'), label = cms.untracked.string('AK1Calo_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK2Calo_offline'), label = cms.untracked.string('AK2Calo_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK3Calo_offline'), label = cms.untracked.string('AK3Calo_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK4Calo_offline'), label = cms.untracked.string('AK4Calo_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK5Calo_offline'), label = cms.untracked.string('AK5Calo_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK6Calo_offline'), label = cms.untracked.string('AK6Calo_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK1PF_offline'), label = cms.untracked.string('AK1PF_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK2PF_offline'), label = cms.untracked.string('AK2PF_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK3PF_offline'), label = cms.untracked.string('AK3PF_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK4PF_offline'), label = cms.untracked.string('AK4PF_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK5PF_offline'), label = cms.untracked.string('AK5PF_offline') ), cms.PSet( record = cms.string('JetCorrectionsRecord'), tag = cms.string('JetCorrectorParametersCollection_HI_PythiaCUETP8M1_5020GeV_753p1_v4_AK6PF_offline'), label = cms.untracked.string('AK6PF_offline') ), ## here you add as many jet types as you need ## note that the tag name is specific for the particular sqlite file ), connect = cms.string('sqlite:HI_PythiaCUETP8M1_5020GeV_753p1_v4.db') # uncomment above tag lines and this comment to use MC JEC # connect = cms.string('sqlite:Summer12_V7_MC.db') ) ## add an es_prefer statement to resolve a possible conflict from simultaneous connection to a global tag process.es_prefer_jec = cms.ESPrefer('PoolDBESSource','jec') ############## ###Gen jets### ############## process.load('RecoHI.HiJetAlgos.HiGenJets_cff') process.load('RecoJets.Configuration.GenJetParticles_cff') process.akHiGenJets = cms.Sequence( process.genParticlesForJets + process.ak1HiGenJets + process.ak2HiGenJets + process.ak3HiGenJets + process.ak4HiGenJets + process.ak5HiGenJets + process.ak6HiGenJets) ################# ###Voronoi####### ################# process.load("CondCore.DBCommon.CondDBCommon_cfi") from CondCore.DBCommon.CondDBSetup_cfi import * process.uetable = cms.ESSource("PoolDBESSource", DBParameters = cms.PSet( messageLevel = cms.untracked.int32(0) ), timetype = cms.string('runnumber'), toGet = cms.VPSet( cms.PSet(record = cms.string("JetCorrectionsRecord"), tag = cms.string("UETable_PF_v00_mc"), #label = cms.untracked.string("UETable_PF") label = cms.untracked.string("UETable_PFMarta") ), cms.PSet(record = cms.string("JetCorrectionsRecord"), tag = cms.string("UETable_Calo_v00_mc"), #label = cms.untracked.string("UETable_PF") label = cms.untracked.string("UETable_CaloMarta") ) ), connect = cms.string('sqlite:output.db') # uncomment above tag lines and this comment to use MC JEC # connect = cms.string('sqlite:Summer12_V7_MC.db') ) ## add an es_prefer statement to resolve a possible conflict from simultaneous connection to a global tag process.es_prefer_uetable = cms.ESPrefer('PoolDBESSource','uetable') process.load('HeavyIonsAnalysis.JetAnalysis.jets.HiReRecoJets_HI_cff') process.voronoiBackgroundPF.tableLabel = cms.string("UETable_PFMarta") process.voronoiBackgroundCalo.tableLabel = cms.string("UETable_CaloMarta") ##################################################################################### # Define tree output ##################################################################################### process.TFileService = cms.Service("TFileService", fileName=cms.string("HiForest.root")) ##################################################################################### # Additional Reconstruction and Analysis: Main Body ##################################################################################### process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu1CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs1CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs1PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu1PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu2CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs2CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs2PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu2PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu3CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs3CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs3PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu3PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu4CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs4CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs4PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu4PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu5CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs5CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs5PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu5PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu6CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs6CaloJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akVs6PFJetSequence_PbPb_mc_cff') process.load('HeavyIonsAnalysis.JetAnalysis.jets.akPu6PFJetSequence_PbPb_mc_cff') process.jetSequences = cms.Sequence(process.voronoiBackgroundPF+ process.voronoiBackgroundCalo+ process.akPu1CaloJetSequence + process.akVs1CaloJetSequence + process.akVs1PFJetSequence + process.akPu1PFJetSequence + process.akPu2CaloJetSequence + process.akVs2CaloJetSequence + process.akVs2PFJetSequence + process.akPu2PFJetSequence + process.akPu3CaloJetSequence + process.akVs3CaloJetSequence + process.akVs3PFJetSequence + process.akPu3PFJetSequence + process.akPu4CaloJetSequence + process.akVs4CaloJetSequence + process.akVs4PFJetSequence + process.akPu4PFJetSequence + process.akPu5CaloJetSequence + process.akVs5CaloJetSequence + process.akVs5PFJetSequence + process.akPu5PFJetSequence + process.akPu6CaloJetSequence + process.akVs6CaloJetSequence + process.akVs6PFJetSequence + process.akPu6PFJetSequence ) process.load('HeavyIonsAnalysis.EventAnalysis.hievtanalyzer_mc_cfi') process.hiEvtAnalyzer.doMC = cms.bool(False) #the gen info dataformat has changed in 73X, we need to update hiEvtAnalyzer code process.load('HeavyIonsAnalysis.EventAnalysis.hltanalysis_cff') process.load('HeavyIonsAnalysis.JetAnalysis.HiGenAnalyzer_cfi') ##################################################################################### # To be cleaned process.load('HeavyIonsAnalysis.JetAnalysis.ExtraTrackReco_cff') process.load('HeavyIonsAnalysis.JetAnalysis.TrkAnalyzers_MC_cff') process.load("HeavyIonsAnalysis.TrackAnalysis.METAnalyzer_cff") process.load("HeavyIonsAnalysis.JetAnalysis.pfcandAnalyzer_cfi") process.load('HeavyIonsAnalysis.JetAnalysis.rechitanalyzer_cfi') process.rechitAna = cms.Sequence(process.rechitanalyzer+process.pfTowers) process.pfcandAnalyzer.skipCharged = False process.pfcandAnalyzer.pfPtMin = 0 ##################################################################################### ######################### # Track Analyzer ######################### process.anaTrack.qualityStrings = cms.untracked.vstring(['highPurity','tight','loose']) process.pixelTrack.qualityStrings = cms.untracked.vstring('highPurity') process.hiTracks.cut = cms.string('quality("highPurity")') # set track collection to iterative tracking process.anaTrack.trackSrc = cms.InputTag("hiGeneralTracks") # clusters missing in recodebug - to be resolved process.anaTrack.doPFMatching = True process.anaTrack.pfCandSrc = cms.InputTag("particleFlowTmp") process.anaTrack.doSimVertex = True process.anaTrack.doSimTrack = True # process.ppTrack.fillSimTrack = True process.load("SimTracker.TrackAssociation.trackingParticleRecoTrackAsssociation_cff") process.tpRecoAssocGeneralTracks = process.trackingParticleRecoTrackAsssociation.clone() process.tpRecoAssocGeneralTracks.label_tr = cms.InputTag("hiGeneralTracks") process.quickTrackAssociatorByHits.ComponentName = cms.string('quickTrackAssociatorByHits') process.quickTrackAssociatorByHits.SimToRecoDenominator = cms.string('reco') process.quickTrackAssociatorByHits.Cut_RecoToSim = cms.double(0.5) process.quickTrackAssociatorByHits.Quality_SimToReco = cms.double(0.0) ##################### # Photons ##################### process.load('HeavyIonsAnalysis.PhotonAnalysis.ggHiNtuplizer_cfi') process.ggHiNtuplizer.genParticleSrc = cms.InputTag("genParticles") process.ggHiNtuplizerGED = process.ggHiNtuplizer.clone(recoPhotonSrc = cms.InputTag('gedPhotonsTmp'), recoPhotonHiIsolationMap = cms.InputTag('photonIsolationHIProducerGED') ) ##################### # HYDJET RECO file didn't have ak2GenJets and ak6GenJets as input, so removed them # and ran our own hiGenJets sequence # from RecoHI.HiJetAlgos.HiGenJets_cff import ak3HiGenJets, ak4HiGenJets # from RecoJets.Configuration.GenJetParticles_cff import genParticlesForJets # genParticlesForJets.ignoreParticleIDs += cms.vuint32( 12,14,16) # process.hiSelectGenJets = cms.Sequence( # genParticlesForJets + # ak3HiGenJets + # ak4HiGenJets # ) process.HiGenParticleAna.genParticleSrc = cms.untracked.InputTag("genParticles") process.load("GeneratorInterface.HiGenCommon.HeavyIon_cff") process.ana_step = cms.Path(process.heavyIon* process.hltanalysis * #temp process.hltobject * process.centralityBin * process.hiEvtAnalyzer* process.HiGenParticleAna* process.quickTrackAssociatorByHits* process.tpRecoAssocGeneralTracks + #used in HiPFJetAnalyzer process.akHiGenJets + process.hiReRecoCaloJets + process.hiReRecoPFJets + process.jetSequences + process.ggHiNtuplizer + process.ggHiNtuplizerGED + process.pfcandAnalyzer + process.rechitAna + process.HiForest + # process.cutsTPForFak + # process.cutsTPForEff + process.anaTrack #process.pixelTrack ) process.load('HeavyIonsAnalysis.JetAnalysis.EventSelection_cff') process.phltJetHI = cms.Path( process.hltJetHI ) process.pcollisionEventSelection = cms.Path(process.collisionEventSelection) process.load('CommonTools.RecoAlgos.HBHENoiseFilterResultProducer_cfi') process.pHBHENoiseFilterResultProducer = cms.Path( process.HBHENoiseFilterResultProducer ) process.phfCoincFilter = cms.Path(process.hfCoincFilter ) process.phfCoincFilter3 = cms.Path(process.hfCoincFilter3 ) process.pprimaryVertexFilter = cms.Path(process.primaryVertexFilter ) process.phltPixelClusterShapeFilter = cms.Path(process.siPixelRecHits*process.hltPixelClusterShapeFilter ) process.phiEcalRecHitSpikeFilter = cms.Path(process.hiEcalRecHitSpikeFilter ) process.pAna = cms.EndPath(process.skimanalysis) # Customization
[ "dgulhan@cern.ch" ]
dgulhan@cern.ch
f3852d63cf9e096a53290bd0506fa35bb2c56415
be7b0c496920e634bfbcb5a19ed4598289f533f8
/Chapter 7/parrot.py
3c47cc463d3833ed7f2636f36cecc48a0fdbd720
[]
no_license
AlbertRipak/PythonLearining
2e411ece542e98dbaf0cc5f67bb8ed4e93b0c770
7c1c37ccac6cc22186c7e6845aabc6e695b22669
refs/heads/main
2023-07-13T03:15:07.969555
2021-08-24T16:03:12
2021-08-24T16:03:12
393,701,936
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
#message = input("Tell me something, and I will repeat it back to you: ") #print(message) prompt = "\nTell me something, and I will repeat it back to you: " prompt2 = "\nEnter 'quit' to end the program. " active = True while active: message = input(prompt) if message == 'quit': active = False else: print(message) print(prompt2)
[ "arspak107@gmail.com" ]
arspak107@gmail.com
ab07b3c7457ca63c2c580c147a7f05ebaff5b274
36ed4043a3d60089e556beea6a2c889aa99082cd
/qiskit/quantum_info/operators/dihedral/dihedral_circuits.py
a27fa4699f4ef47a844bef2e69c5e828572408cd
[ "Apache-2.0" ]
permissive
sethmerkel/qiskit-terra
ad5b7380f257033e200325892732b4f89d938dea
c13cf5e3a160cada884e99cb083645201792de4e
refs/heads/master
2023-04-12T15:07:12.816572
2022-06-24T14:18:21
2022-06-24T14:18:21
185,865,440
0
0
Apache-2.0
2023-03-27T10:07:00
2019-05-09T20:16:36
Python
UTF-8
Python
false
false
6,363
py
# This code is part of Qiskit. # # (C) Copyright IBM 2019, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Circuit simulation for the CNOTDihedral class """ import numpy as np from qiskit.exceptions import QiskitError from qiskit.circuit import QuantumCircuit from qiskit.circuit.barrier import Barrier from qiskit.circuit.delay import Delay def _append_circuit(elem, circuit, qargs=None): """Update a CNOTDihedral element inplace by applying a CNOTDihedral circuit. Args: elem (CNOTDihedral): the CNOTDihedral element to update. circuit (QuantumCircuit or Instruction): the gate or composite gate to apply. qargs (list or None): The qubits to apply gates to. Returns: CNOTDihedral: the updated CNOTDihedral. Raises: QiskitError: if input gates cannot be decomposed into CNOTDihedral gates. """ if qargs is None: qargs = list(range(elem.num_qubits)) if isinstance(circuit, (Barrier, Delay)): return elem if isinstance(circuit, QuantumCircuit): gate = circuit.to_instruction() else: gate = circuit # Handle cx, cz and id since they are basic gates, and cannot be decomposed, if gate.name == "cx": if len(qargs) != 2: raise QiskitError("Invalid qubits for 2-qubit gate cx.") elem._append_cx(qargs[0], qargs[1]) return elem elif gate.name == "cz": if len(qargs) != 2: raise QiskitError("Invalid qubits for 2-qubit gate cz.") elem._append_phase(7, qargs[1]) elem._append_phase(7, qargs[0]) elem._append_cx(qargs[1], qargs[0]) elem._append_phase(2, qargs[0]) elem._append_cx(qargs[1], qargs[0]) elem._append_phase(7, qargs[1]) elem._append_phase(7, qargs[0]) return elem if gate.name == "id": if len(qargs) != 1: raise QiskitError("Invalid qubits for 1-qubit gate id.") return elem if gate.definition is None: raise QiskitError(f"Cannot apply Instruction: {gate.name}") if not isinstance(gate.definition, QuantumCircuit): raise QiskitError( "{} instruction definition is {}; expected QuantumCircuit".format( gate.name, type(gate.definition) ) ) flat_instr = gate.definition bit_indices = { bit: index for bits in [flat_instr.qubits, flat_instr.clbits] for index, bit in enumerate(bits) } for instruction in gate.definition: if isinstance(instruction.operation, (Barrier, Delay)): continue # Get the integer position of the flat register new_qubits = [qargs[bit_indices[tup]] for tup in instruction.qubits] if instruction.operation.name == "x" or gate.name == "x": if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate x.") elem._append_x(new_qubits[0]) elif instruction.operation.name == "z" or gate.name == "z": if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate z.") elem._append_phase(4, new_qubits[0]) elif instruction.operation.name == "y" or gate.name == "y": if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate y.") elem._append_x(new_qubits[0]) elem._append_phase(4, new_qubits[0]) elif instruction.operation.name == "p" or gate.name == "p": if len(new_qubits) != 1 or len(instruction.operation.params) != 1: raise QiskitError("Invalid qubits or params for 1-qubit gate p.") elem._append_phase(int(4 * instruction.operation.params[0] / np.pi), new_qubits[0]) elif instruction.operation.name == "t" or gate.name == "t": if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate t.") elem._append_phase(1, new_qubits[0]) elif instruction.operation.name == "tdg" or gate.name == "tdg": if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate tdg.") elem._append_phase(7, new_qubits[0]) elif instruction.operation.name == "s" or gate.name == "s": if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate s.") elem._append_phase(2, new_qubits[0]) elif instruction.operation.name == "sdg" or gate.name == "sdg": if len(new_qubits) != 1: raise QiskitError("Invalid qubits for 1-qubit gate sdg.") elem._append_phase(6, new_qubits[0]) elif instruction.operation.name == "cx": if len(new_qubits) != 2: raise QiskitError("Invalid qubits for 2-qubit gate cx.") elem._append_cx(new_qubits[0], new_qubits[1]) elif instruction.operation.name == "cz": if len(new_qubits) != 2: raise QiskitError("Invalid qubits for 2-qubit gate cz.") elem._append_phase(7, new_qubits[1]) elem._append_phase(7, new_qubits[0]) elem._append_cx(new_qubits[1], new_qubits[0]) elem._append_phase(2, new_qubits[0]) elem._append_cx(new_qubits[1], new_qubits[0]) elem._append_phase(7, new_qubits[1]) elem._append_phase(7, new_qubits[0]) elif instruction.operation.name == "swap" or gate.name == "swap": if len(new_qubits) != 2: raise QiskitError("Invalid qubits for 2-qubit gate swap.") elem._append_cx(new_qubits[0], new_qubits[1]) elem._append_cx(new_qubits[1], new_qubits[0]) elem._append_cx(new_qubits[0], new_qubits[1]) elif instruction.operation.name == "id": pass else: raise QiskitError(f"Not a CNOT-Dihedral gate: {instruction.operation.name}") return elem
[ "noreply@github.com" ]
sethmerkel.noreply@github.com
bbf0609a21b500bf3da4fb281afcfc2156eac9b3
c3d6e2bc2391733f1eb0f8c5e811990fdef00952
/dogs/migrations/0002_auto_20181206_1624.py
0f5acb206048e627a1b27e3e4597d952d346c38e
[]
no_license
svich/k9
a753655aa9279b68f24f15f58c93203a77424676
1fab7b65ce43138cabff4674a5d26407f2663548
refs/heads/master
2020-04-09T19:53:40.626438
2018-12-07T09:39:47
2018-12-07T09:39:47
160,556,790
0
2
null
null
null
null
UTF-8
Python
false
false
976
py
# Generated by Django 2.1.4 on 2018-12-06 16:24 from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): dependencies = [ ('breeds', '0002_auto_20181206_1139'), ('dogs', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='dog', name='id', ), migrations.AddField( model_name='dog', name='breed', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to='breeds.Breed'), ), migrations.AddField( model_name='dog', name='name', field=models.CharField(default='', max_length=100), ), migrations.AddField( model_name='dog', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False), ), ]
[ "a.svidchenkov@gmail.com" ]
a.svidchenkov@gmail.com
92e0b430076045d277db8c855447dd0eaf5328a7
000642ddd1bb9ec993ff880c143f3b1fd905f880
/week8/PythonExercises/second_max.py
6527e9cc5d1a86ac8909158c95fb2dcceafffbc4
[]
no_license
luikaaa27/Web_Development
f4de99733133f9958e0b17e05c889c91f0e5da2f
a2e1b595edee06c18dd952ba7ccd39ec0311eceb
refs/heads/master
2023-01-13T18:46:36.030482
2020-04-17T21:46:50
2020-04-17T21:46:50
237,271,297
0
0
null
2023-01-07T17:12:34
2020-01-30T17:52:59
Python
UTF-8
Python
false
false
176
py
if __name__ == '__main__': n = int(raw_input()) arr = map(int, raw_input().split()) new_arr = set(arr) new_arr.remove(max(new_arr)) print(max(new_arr))
[ "noreply@github.com" ]
luikaaa27.noreply@github.com
c8275c0263fa17dd5c699419bd33e02aa94828bc
384813261c9e8d9ee03e141ba7270c48592064e9
/new_project/fastsklearnfeature/interactiveAutoML/new_bench/multiobjective/metalearning/openml_data/private_models/randomforest/sam_node.py
8fbb83881a619090a269f8cb2979875d31f3c78e
[]
no_license
pratyushagnihotri/DFS
b99d87c085e67888b81c19629c338dae92272a3b
3b60e574905e93c24a2b883cc251ecc286cb2263
refs/heads/master
2023-04-18T22:17:36.816581
2021-04-20T13:41:29
2021-04-20T13:41:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,128
py
''' A class defining the nodes in our Differentially Private Random Decision Forest ''' from collections import defaultdict import random import numpy as np import math from scipy import stats # for Exponential Mechanism class node: def __init__(self, parent_node, split_value_from_parent, splitting_attribute, tree_level, id, children, svfp_numer=None): self._parent_node = parent_node self._split_value_from_parent = split_value_from_parent self._svfp_numer = svfp_numer self._splitting_attribute = splitting_attribute # self._level = tree_level # comment out unless needed. saves memory. # self._id = id # comment out unless needed. saves memory. self._children = children self._class_counts = defaultdict(int) self._noisy_majority = None self._empty = 0 # 1 if leaf and has no records self._sensitivity = -1.0 def add_child(self, child_node): self._children.append(child_node) def increment_class_count(self, class_value): self._class_counts[class_value] += 1 def set_noisy_majority(self, epsilon, class_values): if not self._noisy_majority and not self._children: # to make sure this code is only run once per leaf for val in class_values: if val not in self._class_counts: self._class_counts[val] = 0 if max([v for k, v in self._class_counts.items()]) < 1: self._empty = 1 self._noisy_majority = random.choice([k for k, v in self._class_counts.items()]) return 0 # we dont want to count purely random flips else: all_counts = sorted([v for k, v in self._class_counts.items()], reverse=True) count_difference = all_counts[0] - all_counts[1] self._sensitivity = math.exp(-1 * count_difference * epsilon) self._sens_of_sens = 1. self._noisy_sensitivity = 1. self._noisy_majority = self.expo_mech(epsilon, self._sensitivity, self._class_counts) if self._noisy_majority != int( max(self._class_counts.keys(), key=(lambda key: self._class_counts[key]))): # print('majority: '+str(self._noisy_majority)+' vs. max_count: '+str( max(self._class_counts.keys(), key=(lambda key: self._class_counts[key])))) return 1 # we're summing the flipped majorities else: return 0 else: return 0 def laplace(self, e, counts): noisy_counts = {} for label, count in counts.items(): noisy_counts[label] = max(0, int(count + np.random.laplace(scale=float(1. / e)))) return int(max(noisy_counts.keys(), key=(lambda key: noisy_counts[key]))) def expo_mech(self, e, s, counts): ''' For this implementation of the Exponetial Mechanism, we use a piecewise linear scoring function, where the element with the maximum count has a score of 1, and all other elements have a score of 0. ''' weighted = [] max_count = max([v for k, v in counts.items()]) for label, count in counts.items(): ''' if the score is non-monotonic, s needs to be multiplied by 2 ''' if count == max_count: if s < 1.0e-10: power = 50 # e^50 is already astronomical. sizes beyond that dont matter else: power = min(50, (e * 1) / (2 * s)) # score = 1 else: power = 0 # score = 0 weighted.append([label, math.exp(power)]) sum = 0. for label, count in weighted: sum += count for i in range(len(weighted)): weighted[i][1] /= sum customDist = stats.rv_discrete(name='customDist', values=([lab for lab, cou in weighted], [cou for lab, cou in weighted])) best = customDist.rvs() # print("best_att examples = "+str(customDist.rvs(size=20))) return int(best)
[ "neutatz@googlemail.com" ]
neutatz@googlemail.com
c5e7e86446a2042faffeab8a1537027b1f2e519c
c4223fa1db8324af96797240b3e156f9f697b547
/agent_code/agent_task1/train.py
c5040fbdee545b213041da50c29463ae446b66d2
[]
no_license
Philipp-g/ifml-project
74b18933ab55a6402aa70d567ea961a641498f8c
34c8fc56b0cf635509921290a1e70b6a812146d6
refs/heads/master
2023-03-25T06:38:54.566525
2021-03-29T12:18:14
2021-03-29T12:18:14
338,555,714
0
0
null
null
null
null
UTF-8
Python
false
false
6,696
py
import pickle import random from collections import namedtuple, deque import datetime from typing import List, Tuple import events as e from .callbacks import state_to_features from . import config import torch from collections import defaultdict import numpy as np # This is only an example! Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) def setup_training(self): """ Initialise self for training purpose. This is called after `setup` in callbacks.py. :param self: This object is passed to all callbacks and you can set arbitrary values. """ # Example: Setup an array that will note transition tuples # (s, a, r, s') self.transitions = deque(maxlen=config.TRANSITION_MEM_SIZE) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.0025) self.loss_fn = torch.nn.SmoothL1Loss() self.loss = defaultdict(list) def game_events_occurred(self, old_game_state: dict, self_action: str, new_game_state: dict, events: List[str]): """ Called once per step to allow intermediate rewards based on game events. When this method is called, self.events will contain a list of all game events relevant to your agent that occurred during the previous step. Consult settings.py to see what events are tracked. You can hand out rewards to your agent based on these events and your knowledge of the (new) game state. This is *one* of the places where you could update your agent. :param self: This object is passed to all callbacks and you can set arbitrary values. :param old_game_state: The state that was passed to the last call of `act`. :param self_action: The action that you took. :param new_game_state: The state the agent is in now. :param events: The events that occurred when going from `old_game_state` to `new_game_state` """ self.logger.debug(f'Encountered game event(s) {", ".join(map(repr, events))} in step {new_game_state["step"]}') # Idea: Add your own events to hand out rewards # if ...: # events.append(PLACEHOLDER_EVENT) # state_to_features is defined in callbacks.py if old_game_state is None: return if new_game_state is None: return step = old_game_state["step"] round = old_game_state["round"] self.transitions.append( Transition(state_to_features(old_game_state), self_action, state_to_features(new_game_state), reward_from_events(self, events))) if len(self.transitions) < config.MINIMAL_TRANSITION_LEN: return # Update target model every x steps # if step % config.UPDATE_TARGET_STEPS == 0: # update_target(self) state, next_state, action, reward = sample_from_transitions(self, config.BATCH_SIZE) td_est = td_estimate(self, state, action) td_targ = td_target(self, reward, next_state) loss = update_online(self, td_est, td_targ) self.loss[round].append(loss) def td_estimate(self, state, action): current_Q = self.model(state, model="online") current_Q_indexed = current_Q[torch.arange(0, config.BATCH_SIZE, dtype=torch.long), action] # .squeeze(1)] return current_Q_indexed def update_online(self, td_estimate, td_target): loss = self.loss_fn(td_estimate, td_target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.item() def update_target(self): online = self.model.online.state_dict() self.model.target.load_state_dict(online) @torch.no_grad() def td_target(self, reward, next_state): next_state_Q = self.model(next_state, model="online") best_action = torch.argmax(next_state_Q, axis=1) next_Q = self.model(next_state, model="target") next_Q_indexed = next_Q[torch.arange(0, config.BATCH_SIZE, dtype=torch.long), best_action] return (reward + config.GAMMA * next_Q_indexed).float() def end_of_round(self, last_game_state: dict, last_action: str, events: List[str]): """ Called at the end of each game or when the agent died to hand out final rewards. This is similar to reward_update. self.events will contain all events that occurred during your agent's final step. This is *one* of the places where you could update your agent. This is also a good place to store an agent that you updated. :param self: The same object that is passed to all of your callbacks. """ # update target model update_target(self) steps = last_game_state["step"] round = last_game_state["round"] self.logger.debug(f'Encountered event(s) {", ".join(map(repr, events))} in final step') print(f"Round: {last_game_state['round']}, Steps: {last_game_state['step']}") print(f"Mean Loss: {np.mean(self.loss[round])}") print(f"Points: {last_game_state['self'][1]}") #self.transitions.append( # Transition(state_to_features(last_game_state), last_action, None, reward_from_events(self, events))) # Store the model save_path = config.SAVE_PATH + str(datetime.datetime.now())[:-7] torch.save(self.model, save_path) def sample_from_transitions(self, batch_size: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: batch = random.sample(self.transitions, batch_size) states = [] next_states = [] actions = [] rewards = [] for transition in batch: states.append(transition.state) next_states.append(transition.next_state) actions.append(config.ACTIONS.index(transition.action)) rewards.append(transition.reward) state = torch.stack(tuple(states)) next_state = torch.stack(tuple(next_states)) action = torch.Tensor(actions).long() # .unsqueeze(1) reward = torch.Tensor(rewards) # .unsqueeze(1) if torch.cuda.is_available(): return state.cuda(), next_state.cuda(), action.cuda(), reward.cuda() else: return state, next_state, action, reward def reward_from_events(self, events: List[str]) -> int: """ *This is not a required function, but an idea to structure your code.* Here you can modify the rewards your agent get so as to en/discourage certain behavior. """ game_rewards = { e.COIN_COLLECTED: 100, e.SURVIVED_ROUND: 2000, e.WAITED: -10, e.INVALID_ACTION: -100, # e.KILLED_OPPONENT: 5, # PLACEHOLDER_EVENT: -.1 # idea: the custom event is bad } # punish steps without events reward_sum = -1 for event in events: if event in game_rewards: reward_sum += game_rewards[event] self.logger.info(f"Awarded {reward_sum} for events {', '.join(events)}") return reward_sum
[ "philipp.goeldner@gmail.com" ]
philipp.goeldner@gmail.com
ab3912c4caa084bcab151c48ecec4d4569bd8d24
5ba6e51fa7745fae4c66eb3fc4b27c36b682f68f
/app.py
b74fa5c1f55903d2acc829b17709bc80983a2628
[]
no_license
Dishi30/Book-Manager
9b15c3b2a9d47dfcd760ec0fd5837cbc7c02e240
de879c67ffbce1ece2368f06db14174ccf91dc47
refs/heads/main
2023-08-16T20:05:14.548017
2021-09-26T16:13:48
2021-09-26T16:13:48
410,599,720
0
0
null
null
null
null
UTF-8
Python
false
false
1,175
py
from utils import database user_choice = """ Enter: -'a' to ADD new book -'l' to LIST all book -'r' to mark a book as READ -'d' to DELETE a book -'q' to QUIT Your choice: """ def menu(): database.create_book_table() a = input(user_choice) while a != 'q': if a == 'a': add() elif a == 'l': list_book() elif a == 'r': read_book() elif a == 'd': del_book() else: print("UNKNOWN COMMAND, please try again") a = input(user_choice) def add(): name = input("Enter the new book name: ") author = input("Enter the new book author: ") database.add_book(name, author) def list_book(): books = database.get_books() for book in books: read = 'YES' if book['read'] == '1' else 'NO' print(f"{book['name']} by {book['author']}, read : {read}") def read_book(): name = input("Enter the name of book you just finished reading: ") database.readed(name) def del_book(): name = input("Enter the book you want to delete: ") database.delete(name) menu()
[ "noreply@github.com" ]
Dishi30.noreply@github.com
a2b8a33ac784568eaef815d0402ff1feaea3322e
daa84286da8b250adfed6a95e3cac73986c769cf
/CeasarCipher.py
0d36ec0770fa394dc4dfb35a0ca38c0492ff3648
[]
no_license
Neojin629/CeasarCipher
3c38d8ead0c84a4b0713571e746c437f030e76a2
4c6b7c1b6eb37c6324248b9d55459e12f3df2957
refs/heads/main
2023-07-24T12:07:53.249646
2021-08-31T15:43:28
2021-08-31T15:43:28
401,757,907
0
0
null
null
null
null
UTF-8
Python
false
false
2,173
py
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] def caesar(start_text, shift_amount, cipher_direction): end_text = "" if cipher_direction == "decode": shift_amount *= -1 for char in start_text: #TODO-3: What happens if the user enters a number/symbol/space? #Can you fix the code to keep the number/symbol/space when the text is encoded/decoded? #e.g. start_text = "meet me at 3" #end_text = "•••• •• •• 3" if char in alphabet: position = alphabet.index(char) new_position = position + shift_amount end_text += alphabet[new_position] else: end_text += char print(f"Here's the {cipher_direction}d result: {end_text}") #TODO-1: Import and print the logo from art.py when the program starts. from art import logo print(logo) #TODO-4: Can you figure out a way to ask the user if they want to restart the cipher program? #e.g. Type 'yes' if you want to go again. Otherwise type 'no'. #If they type 'yes' then ask them for the direction/text/shift again and call the caesar() function again? #Hint: Try creating a while loop that continues to execute the program if the user types 'yes'. should_end = False while not should_end: direction = input("Type 'encode' to encrypt, type 'decode' to decrypt:\n") text = input("Type your message:\n").lower() shift = int(input("Type the shift number:\n")) #TODO-2: What if the user enters a shift that is greater than the number of letters in the alphabet? #Try running the program and entering a shift number of 45. #Add some code so that the program continues to work even if the user enters a shift number greater than 26. #Hint: Think about how you can use the modulus (%). shift = shift % 26 caesar(start_text=text, shift_amount=shift, cipher_direction=direction) restart = input("Type 'yes' if you want to go again. Otherwise type 'no'.\n") if restart == "no": should_end = True print("Goodbye")
[ "noreply@github.com" ]
Neojin629.noreply@github.com
3b08686f4e2a71c8bf371a520051eda1f14a2bf7
ac025f20b0c72321b6f051b40c7e946b8121ebaf
/tests/test_hand.py
ee0ec76803a3f44190dc84cef70ece935f8f40c4
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Simon-Lee-UK/blackjack-game
7c797aefab63724afbbecadc43c1510d977cfe4b
a3a09573621898ef70d2ea9e18d92d1f0ed16e47
refs/heads/master
2022-12-05T19:51:38.059391
2020-08-26T19:53:31
2020-08-26T19:53:31
273,967,918
1
0
null
null
null
null
UTF-8
Python
false
false
1,034
py
"""Tests for hand objects. Run using: python -m pytest.""" def test_hand_value_three_ten(hand_13_fixture): assert hand_13_fixture.hand_value() == [13] def test_hand_value_single_ace(hand_1ace_fixture): assert hand_1ace_fixture.hand_value() == [11, 21] def test_hand_value_double_ace(hand_2ace_fixture): assert hand_2ace_fixture.hand_value() == [2, 12, 22] def test_hand_value_quad_ace(hand_4ace_fixture): assert hand_4ace_fixture.hand_value() == [4, 14, 24, 34, 44] def test_facedown_hand_value(hand_facedown_fixture): assert hand_facedown_fixture.hand_value() == ["3 + *-*"] def test_iter_method(hand_4ace_fixture): for idx, _ in enumerate(hand_4ace_fixture): None assert idx == 3 def test_len_method(hand_4ace_fixture): assert len(hand_4ace_fixture) == 4 def test_best_hand_value_multiple_values(hand_4ace_fixture): assert hand_4ace_fixture.best_hand_value() == 14 def test_best_hand_value_bust(hand_bust_fixture): assert hand_bust_fixture.best_hand_value() is None
[ "[simonalee96@gmail.com]" ]
[simonalee96@gmail.com]
890df7bc7ac818f73e723fd60e31348000e90d75
2c763b37baff67006bc8612868b2af4214e26a9d
/news_blog/views.py
853114b524d7b453f4c804c4e8a485956b868b0b
[]
no_license
Nikkeborn/news_blog_release
b4f95ad9e5534e562a3571ab7ab305317f51f5f0
2edbbba6bc4d904d027e3b5ea467fb4126a0f06f
refs/heads/master
2021-09-25T19:41:54.221678
2020-04-16T14:53:11
2020-04-16T14:53:11
244,409,782
0
0
null
2021-09-22T18:40:29
2020-03-02T15:46:48
Python
UTF-8
Python
false
false
1,176
py
from django.shortcuts import render, redirect, reverse from django.views.generic import View from django.contrib.auth.views import LoginView from django.contrib.auth.models import User from .forms import UserForm class Login_(LoginView): def get_success_url(self): user_name = self.request.POST.get('username') user_object = User.objects.get(username=user_name) user_id = user_object.pk return reverse('blog:author_details', kwargs={'pk': user_id}) class UserRegistration(View): form = UserForm template_name = 'registration/user_form.html' def get(self, request): return render(request, self.template_name, context={'form': self.form}) def post(self, request): bound_form = self.form(request.POST) if bound_form.is_valid(): new_user = bound_form.save(commit=False) user_pass = new_user.password new_user.set_password(user_pass) new_user.save() user_id = new_user.pk return redirect(reverse('blog:author_details', kwargs={'pk': user_id})) return render(request, self.template_name, context={'form': self.form})
[ "loomvolum@gmail.com" ]
loomvolum@gmail.com
a25334656cde1cf3ae95a292a3c4a80cbc70ed9f
56fa9e3f5cd63fe8b521feb9765aefc37e46f573
/flask-aws/bin/pycolor
5ed9c95581a74fa300a7eaea3e7a79752ae29eea
[ "MIT" ]
permissive
Roshin29/notejam
7b4c65df2972b9efe1e8edfd9688e6760d134e3e
a6baf1bc5e9f898fa4001867410968bd16489306
refs/heads/master
2022-11-15T15:18:20.443453
2020-07-07T18:00:34
2020-07-07T18:00:34
272,704,845
0
0
NOASSERTION
2020-06-16T12:41:28
2020-06-16T12:41:28
null
UTF-8
Python
false
false
249
#!/home/ubuntu/notejam/flask-aws/bin/python2 # -*- coding: utf-8 -*- import re import sys from IPython.utils.PyColorize import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "root@ip-172-31-24-171.eu-west-2.compute.internal" ]
root@ip-172-31-24-171.eu-west-2.compute.internal
44ed7aab029125950b6f5f506929e89f4de0dcdf
6968c7f9d2b20b5296663829f99a27d184a59fc1
/autodisc/autodisc/gui/jupyter/imagelistwidget.py
b6152e78a221de869f622b5b6696836db4ed377e
[ "MIT", "Apache-2.0" ]
permissive
flowersteam/automated_discovery_of_lenia_patterns
d42dff37323d51732571b33845c0562d844f498f
97cc7cde2120fa95225d1e470e00b8aa8c034e97
refs/heads/master
2020-06-29T07:08:58.404541
2020-05-14T07:37:10
2020-05-14T07:37:10
200,470,902
13
2
null
null
null
null
UTF-8
Python
false
false
6,855
py
import autodisc as ad import ipywidgets import numpy as np import IPython.display class ImageListWidget(ipywidgets.VBox): @staticmethod def get_default_gui_config(): default_config = ad.Config() default_config.elements_per_page = 100 default_config.output_layout = ad.Config() # default_config.output_layout.border='3px solid black' default_config.box_layout = ad.Config() default_config.box_layout.overflow_y = 'scroll' default_config.box_layout.width = '100%' default_config.box_layout.height = '500px' default_config.box_layout.flex_flow = 'row wrap' default_config.box_layout.display = 'flex' default_config.content_ouput = ad.Config() default_config.page_label = ad.Config() default_config.page_selection = ad.Config() default_config.page_selection.description = 'Page: ' default_config.previous_page_button = ad.Config() default_config.previous_page_button.description = '<' default_config.previous_page_button.layout = ad.Config() default_config.previous_page_button.layout.width = '20px' default_config.next_page_button = ad.Config() default_config.next_page_button.description = '>' default_config.next_page_button.layout = ad.Config() default_config.next_page_button.layout.width = '20px' default_config.button_box = ad.Config() default_config.button_box.layout = ad.Config() default_config.button_box.layout.flex_flow = 'row' default_config.button_box.layout.display = 'flex' default_config.button_box.layout.align_items = 'center' default_config.button_box.layout['justify-content'] = 'flex-end' default_config.button_box.layout.width = '100%' default_config.image_items = ad.Config() default_config.image_items.layout = ad.Config() default_config.image_items.layout.height = '200px' default_config.image_items.layout.width = '200px' default_config.image_items.layout.border = '2px solid white' default_config.image_captions = ad.Config() return default_config def __init__(self, images=None, config=None, **kwargs): self.config = ad.config.set_default_config(kwargs, config, ImageListWidget.get_default_gui_config()) self.images = None self.main_box = None self.content_ouput_widget = ipywidgets.Output(**self.config.content_ouput) self.page_label_widget = ipywidgets.Label(**self.config.page_label, value='of 0') self.previous_page_button_widget = ipywidgets.Button(**self.config.previous_page_button) self.previous_page_button_widget.on_click(self.on_prev_page_button_click) self.page_selection_widget = ipywidgets.Dropdown(**self.config.page_selection) self.page_selection_widget.observe(self.on_page_selection_change) self.next_page_button_widget = ipywidgets.Button(**self.config.next_page_button) self.next_page_button_widget.on_click(self.on_next_page_button_click) self.page_selection_widget_ignore_next_value_change = False self.button_box_widget = ipywidgets.Box( [self.page_selection_widget, self.page_label_widget, self.previous_page_button_widget, self.next_page_button_widget], **self.config.button_box ) super().__init__([self.content_ouput_widget, self.button_box_widget], layout=self.config.output_layout) self.cur_page_idx = 0 if images is not None: self.update(images) def update(self, images, captions=None): self.images = images self.captions = captions if self.images is not None and self.images: # update page selection widget n_pages = int(np.ceil(len(self.images) / self.config.elements_per_page)) opts = [page_idx + 1 for page_idx in range(n_pages)] self.page_selection_widget.options = opts # update number of pages self.page_label_widget.value = 'of {}'.format(n_pages) self.update_page_items(0, force_update=True) else: self.page_selection_widget.options = [] self.page_label_widget.value = 'of 0' self.content_ouput_widget.clear_output() def update_page_items(self, page_idx, force_update=False): if self.images is not None and self.images: n_pages = int(np.ceil(len(self.images) / self.config.elements_per_page)) if n_pages == 0: self.content_ouput_widget.clear_output() elif page_idx >= 0 and page_idx < n_pages and (self.cur_page_idx != page_idx or force_update): items = [] self.cur_page_idx = page_idx start_idx = self.config.elements_per_page * self.cur_page_idx end_idx = min(self.config.elements_per_page * (self.cur_page_idx + 1), len(self.images)) for image_idx in range(start_idx, end_idx): image = self.images[image_idx] item_elems = [] if self.captions is not None: if image_idx < len(self.captions): caption_text = self.captions[image_idx] else: caption_text = '' caption_widget = ipywidgets.Label( value=caption_text, **self.config.image_captions ) item_elems.append(caption_widget) img_widget = ipywidgets.Image( value=image, format='png', **self.config.image_items ) item_elems.append(img_widget) items.append(ipywidgets.VBox(item_elems)) self.main_box = ipywidgets.Box(items, layout=self.config.box_layout) self.content_ouput_widget.clear_output(wait=True) with self.content_ouput_widget: IPython.display.display(self.main_box) self.page_selection_widget.value = page_idx + 1 else: self.content_ouput_widget.clear_output() def on_prev_page_button_click(self, button): self.update_page_items(self.cur_page_idx - 1) def on_next_page_button_click(self, button): self.update_page_items(self.cur_page_idx + 1) def on_page_selection_change(self, change): if change['type'] == 'change' and change['name'] == 'value': if self.page_selection_widget.value is not None: self.update_page_items(self.page_selection_widget.value - 1)
[ "chris.reinke@inria.fr" ]
chris.reinke@inria.fr
2ac952f31d08278c866ed2990a35fd7f970f3e15
fdf3aff5344271ef69ac7441c5dbca9cbf832cd1
/car_location/location/models/__init__.py
1219e9aa74d0d07e37129adcf33bba5812ee7ee2
[]
no_license
lffsantos/DesafioPython
6069b3277780326611e34ae024f7506f3d56c5b4
fbc451b77c0310630fd95cbd23c339e194af88d1
refs/heads/master
2021-01-17T07:42:12.181187
2016-01-19T03:39:20
2016-01-19T03:39:20
49,730,610
0
0
null
2016-01-19T03:39:22
2016-01-15T16:25:30
JavaScript
UTF-8
Python
false
false
277
py
__author__ = 'lucas' from car_location.location.models import categoriaveiculo from car_location.location.models import veiculo from car_location.location.models import cliente from car_location.location.models import locacao from car_location.location.models import devolucao
[ "lffsantos@gmail.com" ]
lffsantos@gmail.com
9b86763b34bce30afdb20d256f2e76972cc7a3ed
06919b9fd117fce042375fbd51d7de6bb9ae14fc
/py/tests/problems/hashtable/sparse_matrix.py
6ffec84f318bf38c68b1a11b7e3818d670628f49
[ "MIT" ]
permissive
bmoretz/Daily-Coding-Problem
0caf2465579e81996869ee3d2c13c9ad5f87aa8f
f79e062e9f6e7b18b7e95c071fbe71ad104affcb
refs/heads/master
2022-12-07T15:41:06.498049
2021-11-18T19:45:19
2021-11-18T19:45:19
226,376,236
1
0
MIT
2022-11-22T09:20:23
2019-12-06T17:17:00
C++
UTF-8
Python
false
false
1,219
py
import unittest from dcp.problems.hashtable.sparse_matrix import SparseMatrix class Test_SparseMatrix(unittest.TestCase): def setUp(self): pass def test_case1(self): mat = [[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1], \ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1], \ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1], \ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1], \ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1]] n, m = 100, 100 sm = SparseMatrix(mat, n, m) non_zero = [[5, 13, 19, 28], \ [5, 13, 19, 28], \ [5, 13, 19, 28], \ [5, 13, 19, 28], \ [5, 13, 19, 28]] for n, row in enumerate(mat): for m, _ in enumerate(row): if m in non_zero[n]: assert sm.get(n, m) != 0 else: assert sm.get(n, m) == 0
[ "bmoretz82@gmail.com" ]
bmoretz82@gmail.com
e187b8c37156b8dcca7888e92b0a8c5bbcc7dfff
818edca070b068345b23bd80f76ab95238d6fb43
/yiaygenerator/settings.py
2907bacf0e8cc98deea121255babcdf07bee8562
[ "MIT" ]
permissive
PaperBag42/yiaygenerator
39f4595d252c55074edb2e9ff36d08f25ef5746e
2aacff5624676d8df6b9544309f33a8f9ab32799
refs/heads/master
2020-03-29T00:32:58.361790
2019-04-27T16:44:31
2019-04-27T16:44:31
149,344,832
0
1
null
2019-02-06T21:06:51
2018-09-18T19:58:46
Python
UTF-8
Python
false
false
2,555
py
""" Django settings for yiaygenerator project. Generated by 'django-admin startproject' using Django 2.1.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os from os import path # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = path.dirname(path.dirname(path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ['DJANGO_SECRET'] # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'channels', 'yiaygenerator', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'yiaygenerator.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'yiaygenerator.wsgi.application' ASGI_APPLICATION = 'yiaygenerator.routing.application' # LOGGING = { # 'version': 1, # 'disable_existing_loggers': False, # # 'formatters': { # 'clip': { # 'format': '{levelname}:{name}:YIAY#{se', # 'style': '{', # }, # }, # 'loggers': { # '': { # # }, # }, # } # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
[ "ben.zichri@gmail.com" ]
ben.zichri@gmail.com
4404d9fc262775f54d590079477f8a1ba5b93179
e65ae5bd9ae1c93e7117e630f7340bc73aa71212
/lib/gevent/greentest/test__semaphore.py
480ec0e930466916a152bfe75550bf85470a4e0e
[ "MIT" ]
permissive
nadirhamid/oneline
e98ff1ed81da0536f9602ecdde2fb2a4fe80d256
833ebef0e26ae8e0cc452756381227746d830b23
refs/heads/master
2021-01-21T04:27:41.715047
2016-05-30T03:50:34
2016-05-30T03:50:34
23,320,578
1
2
NOASSERTION
2020-03-12T17:22:24
2014-08-25T16:29:36
Python
UTF-8
Python
false
false
640
py
import greentest import gevent from gevent.lock import Semaphore class TestTimeoutAcquire(greentest.TestCase): # issue 39 def test_acquire_returns_false_after_timeout(self): s = Semaphore(value=0) result = s.acquire(timeout=0.01) assert result is False, repr(result) def test_release_twice(self): s = Semaphore() result = [] s.rawlink(lambda s: result.append('a')) s.release() s.rawlink(lambda s: result.append('b')) s.release() gevent.sleep(0.001) self.assertEqual(result, ['a', 'b']) if __name__ == '__main__': greentest.main()
[ "matrix.nad@gmail.com" ]
matrix.nad@gmail.com
58c7af9907e90657db990a4e460eb35ea902d102
f3693916a8b118bf139364604dac3f51235ed613
/functional/Components/Authorization_System/Authorization_System_generateToken_POST/test_TC_43372_Authorizationsystems_POST_Pastdate_For_Not_Before_Time.py
fbedd554265220c2b614fc0c146a20e9c5d9bc1c
[]
no_license
muktabehera/QE
e7d62284889d8241d22506f6ee20547f1cfe6db1
3fedde591568e35f7b80c5bf6cd6732f8eeab4f8
refs/heads/master
2021-03-31T02:19:15.369562
2018-03-13T02:45:10
2018-03-13T02:45:10
124,984,177
0
0
null
null
null
null
UTF-8
Python
false
false
5,941
py
# -*- coding: UTF-8 -*- """PFE Component Tests - Authorization_Systems. * TC-43372 - Authorization_Systems POST: Verify that user is unable to generate Token on providing time before expiration time for 'notBeforeTime' field using request POST /authorizationSystems/{id}/generateToken ". Equivalent test CURL command: curl -H "Host: <client_host>" -H "Authorization: Bearer <valid_token>" -X POST -d @<JSON_data_file> -H "Content-Type: application/json" "<PF_host>://<client_host>/authorizationSystems/<data_ID1_under_test>/generateToken" Same, with test data: curl -H "Host: <client_host>" -H "Authorization: Bearer <valid_token>" -X POST -d @<JSON_data_file> -H "Content-Type: application/json" "<PF_host>://<client_host>/authorizationSystems/ab.qumu.com/generateToken" JSON data sent to PathFinder in this test: {'audience': 'qed:a1', 'expirationTime': '2017-09-30T06:10:50.714Z', 'generatedToken': 'string', 'issueTime': '2016-01-29T06:10:50.714Z', 'macKey': '123456789012345678901234567890121', 'notBeforeTime': '2017-09-20T06:10:50.714Z', 'permissions': ['MANAGE_SYSTEM', 'MANAGE_CONFIGURATION'], 'qeda': {}, 'qedp': {}, 'subject': 'sub1', 'url': '', 'useCompactPermissions': True} """ import pytest from qe_common import * logger = init_logger() @pytest.mark.draft # remove this after script passed unit tests successfuly @pytest.mark.components @pytest.allure.story('Authorization_Systems') @pytest.allure.feature('POST') class Test_PFE_Components(object): """PFE Authorization_Systems test cases.""" @pytest.allure.link('https://jira.qumu.com/browse/TC-43372') @pytest.mark.Authorization_Systems @pytest.mark.POST def test_TC_43372_POST_Authorization_Systems_Pastdate_For_Not_Before_Time(self, context): """TC-43372 - Authorization_Systems-POST Verify that user is unable to generate Token on providing time before expiration time for 'notBeforeTime' field using request POST /authorizationSystems/{id}/generateToken ".""" # Define a test step with pytest.allure.step("""Verify that user is unable to generate Token on providing time before expiration time for 'notBeforeTime' field using request POST /authorizationSystems/{id}/generateToken "."""): ### Positive test example # Test case configuration tokenGenerationDetails = context.sc.TokenGenerationDetails( audience='qed:a1', expirationTime='2017-09-30T06:10:50.714Z', generatedToken='string', issueTime='2016-01-29T06:10:50.714Z', jwtId=None, macKey='123456789012345678901234567890121', notBeforeTime='2017-09-20T06:10:50.714Z', permissions=['MANAGE_SYSTEM', 'MANAGE_CONFIGURATION'], qeda={}, qedp={}, referrer=None, subject='sub1', url='', useCompactPermissions=True) # generateToken the Authorization_Systems. # The `check` call validates return code # and some of the swagger schema. # Most schema checks are disabled. response = check( context.cl.Authorization_Systems.generateToken( id='generateToken', body=tokenGenerationDetails ) ) ### Can add tests here to validate the response content with pytest.allure.step("""Verify that user is unable to generate Token on providing time before expiration time for 'notBeforeTime' field using request POST /authorizationSystems/{id}/generateToken "."""): ### Negative test example # Test case configuration tokenGenerationDetails = context.sc.TokenGenerationDetails( audience='qed:a1', expirationTime='2017-09-30T06:10:50.714Z', generatedToken='string', issueTime='2016-01-29T06:10:50.714Z', jwtId=None, macKey='123456789012345678901234567890121', notBeforeTime='2017-09-20T06:10:50.714Z', permissions=['MANAGE_SYSTEM', 'MANAGE_CONFIGURATION'], qeda={}, qedp={}, referrer=None, subject='sub1', url='', useCompactPermissions=True) # prepare the request, so we can modify it request = context.cl.Authorization_Systems.generateToken( id='generateToken', body=tokenGenerationDetails ) ### Invalid JSON Error injection example ### Errors that result in valid JSON can be configured above. ### Otherwise, uncomment the code below (request.future....) # Get the generated payload and corrupt the metric # request.future.request.data = request.future.request.data.replace( # '"metric": 1,', '"metric":,' # ) # generateToken the Authorization_Systems, and check we got the error we expect try: client, response = check( request, quiet=True, returnResponse=True ) except (HTTPBadRequest, HTTPForbidden) as e: # 400, 403 error get_error_message(e) | expect.any( should.start_with('may not be empty'), should.start_with('Invalid page parameter specified'), should.contain('Invalid Authorization Token') ) else: raise Exception( "Expected error message, got {} status code instead.".format( response.status_code))
[ "mbehera@qumu.com" ]
mbehera@qumu.com
b73222ef2351dbea7ab1c2b6235bf83274de39e7
f3c98241adce87b9fb480647fe35318d979dfe0e
/src/amarket/utils/test_timeUtils.py
7866180b995f5344b195517a01e4e0e2bb0f2bd3
[]
no_license
qwteng/Amarket
4fb5915f77666e0b86513d697d83fcb10f90df51
20929a0d53908bb716d5583beaf24263a868c946
refs/heads/master
2023-05-13T07:28:38.966534
2019-10-07T13:59:18
2019-10-07T13:59:18
164,220,620
0
0
null
2023-05-01T21:15:41
2019-01-05T14:10:01
Python
UTF-8
Python
false
false
1,023
py
# coding=utf-8 import pytest from .timeUtils import * def test_get_workday_backward(): assert get_workday('20190325', False) == '20190325' assert get_workday('20190324', False) == '20190322' assert get_workday('20190323', False) == '20190322' assert get_workday('20190322', False) == '20190322' def test_get_workday_forward(): assert get_workday('20190325', True) == '20190325' assert get_workday('20190324', True) == '20190325' assert get_workday('20190323', True) == '20190325' assert get_workday('20190322', True) == '20190322' def test_get_workday_offset(): assert get_workday('20190325', 0) == '20190325' assert get_workday('20190325', 1) == '20190326' assert get_workday('20190325', -1) == '20190322' assert get_workday('20190325', 5) == '20190401' assert get_workday('20190324', 0) == '20190322' assert get_workday('20190324', 1) == '20190325' assert get_workday('20190324', -1) == '20190321' assert get_workday('20190324', 5) == '20190329'
[ "qwteng@qq.com" ]
qwteng@qq.com
de4031edd500d91f3c5f79daceda0b6ddd0c105d
53faa0ef3496997412eb5e697bc85eb09a28f8c9
/pipeline/0x02-databases/34-log_stats.py
cd026394d8134a1af7cdf365a1a6c146de8897f9
[]
no_license
oran2527/holbertonschool-machine_learning
aaec2ffe762b959573f98a5f4e002272a5d643a3
8761eb876046ad3c0c3f85d98dbdca4007d93cd1
refs/heads/master
2023-08-14T00:37:31.163130
2021-09-20T13:34:33
2021-09-20T13:34:33
330,999,053
0
2
null
null
null
null
UTF-8
Python
false
false
768
py
#!/usr/bin/env python3 """ stats about Nginx logs stored in MongoDB """ from pymongo import MongoClient if __name__ == "__main__": """ stats about Nginx logs stored in MongoDB """ client = MongoClient('mongodb://127.0.0.1:27017') collection_logs = client.logs.nginx num_docs = collection_logs.count_documents({}) print("{} logs".format(num_docs)) print("Methods:") methods = ["GET", "POST", "PUT", "PATCH", "DELETE"] for method in methods: num_method = collection_logs.count_documents({"method": method}) print("\tmethod {}: {}".format(method, num_method)) filter_path = {"method": "GET", "path": "/status"} num_path = collection_logs.count_documents(filter_path) print("{} status check".format(num_path))
[ "orlago250183@gmail.com" ]
orlago250183@gmail.com
91827b433498925f9c557663f2ffc3ab84e0f02d
2d83c1084de8b53cbe78638b5672a8a65a3659d5
/.venv/bin/isort
da12d4435288dd048c85d79b73422bd36f53479c
[]
no_license
Ulrika90/Hello
650a778c120f7a42d99138e7e34afb7dcc9504f2
496252f9fc75a86e99a40c035f2ad99e4e1decf2
refs/heads/master
2020-06-24T03:32:49.818152
2019-07-25T13:23:31
2019-07-25T13:23:31
198,835,355
0
0
null
null
null
null
UTF-8
Python
false
false
252
#!/Users/ulrikawestholm/Git/Python/hello/.venv/bin/python # -*- coding: utf-8 -*- import re import sys from isort.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "ulrikawestholm@Ulrikas-MacBook-Air.local" ]
ulrikawestholm@Ulrikas-MacBook-Air.local
cbe4d8dfdab89e21fe288bd6986ab78a30943da9
a1807bf5ca332fecc7e775c9bde25eeed318db9d
/disclosure_backend/tests/test_docgen.py
63a82b798a7aed4f2eaba4f1d41ba995ffbe972e
[]
no_license
MrMaksimize/disclosure-backend
2c6a8936c08cd4c3ff328ee114a8050e410989cf
6d97305b4656bd630b9e12aef953daed51c84ed7
refs/heads/master
2020-12-26T00:46:07.104157
2016-01-06T17:04:38
2016-01-06T17:04:38
49,169,984
0
0
null
2016-02-12T14:05:13
2016-01-07T00:19:30
Python
UTF-8
Python
false
false
479
py
import os from django.conf import settings from django.core.management import call_command from rest_framework.test import APITestCase class DocGenerationTest(APITestCase): def test_generate_docs(self): """ Test createcalaccessrawmodeldocs""" call_command('createcalaccessrawmodeldocs') # Didn't throw; check some minimum level of output. docs_dir = os.path.join(settings.REPO_DIR, 'docs') self.assertTrue(os.path.exists(docs_dir))
[ "bcipolli@ucsd.edu" ]
bcipolli@ucsd.edu
bb86e58235679dd269f98bd712f8895d48d43d34
b503b00b34d4581959ed7534aea4ea196f99d7f7
/mstar_picker.py
acd7345d465ed7cd5194ad6d3cc8fa929f02c8ff
[]
no_license
afitts/analysis_scripts
1f76feff7213a26a010e136dea9c5375f447f513
e02678a2ecbb9628937cceb0a958e19b5b540597
refs/heads/master
2021-01-22T20:07:43.033514
2017-08-03T13:54:06
2017-08-03T13:54:06
49,749,370
0
0
null
null
null
null
UTF-8
Python
false
false
3,198
py
import numpy as np import sys import glob #import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as co import pylab import pygadgetreader as pg import scipy.integrate import time import scipy.stats as stats import pandas as pd import scipy.optimize as opt from matplotlib import rcParams import matplotlib.animation as animation from matplotlib.ticker import FixedLocator from matplotlib.ticker import FixedFormatter def _a_dot(a, h0, om_m, om_l): om_k = 1.0 - om_m - om_l return h0 * a * np.sqrt(om_m * (a ** -3) + om_k * (a ** -2) + om_l) def _a_dot_recip(*args): return 1. / _a_dot(*args) hnum =['848','1016','32503']#['11707','32503','12596','007','848','796','20192','20910','897','948','1016','32257','10q','10v','1084'] res = ['_13','_13','_13','_11','_13','_13','_13','_13','_13','_13','_13','_13','_11','_11','_13'] ver = ['5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16','5_12_16'] snap = [184,184,184,184,184,184,184,184,184,184,184,184,600,600,184] for i in np.arange(len(hnum)): print 'HALO ',hnum[i] for k in np.arange(185): a = pd.HDFStore('/nobackup/afitts/Gadget-2.0.7/production/mfm%s%s_giz%s_raw_output/analysis/dataframes/halo%s%s_giz%s_snap%03d.h5'%(hnum[i],res[i],ver[i],hnum[i],res[i],ver[i],k)) try: pid = a['particles/star'].index.values mass = a['particles/star']['mass'] x = a['particles/star']['x'].as_matrix()*1000/.71 y = a['particles/star']['y'].as_matrix()*1000/.71 z = a['particles/star']['z'].as_matrix()*1000/.71 vx = a['particles/star']['vx'].as_matrix()*1000 vy = a['particles/star']['vy'].as_matrix()*1000 vz = a['particles/star']['vz'].as_matrix()*1000 he = a['particles/star']['metal_He'].as_matrix() fe = a['particles/star']['metal_Fe'].as_matrix() metal = a['particles/star']['metal_tot'].as_matrix() numH = mass*(1-(metal+he))/(1.6733e-24/1.99e33) numFe = mass*fe/(9.27e-23/1.99e33) meta = numFe/numH nofloor = meta[meta>4.54877795e-09] avgnum = np.mean(nofloor) fullmetal = np.log10(meta)+4.5 metal = np.log10(avgnum)+4.5 sft = a['particles/star']['sft'].as_matrix() YEAR = 60*60*24*365. h0 = 71 om_l = 0.734 om_m = 0.266 conv = 3.085677581e+19 for j in np.arange(len(sft)): sft[j] = 13.736583-scipy.integrate.quad(_a_dot_recip, 0, sft[j], (h0, om_m, om_l))[0]*conv/1e9/YEAR time = np.zeros(len(sft)) time += np.float(a['props']['time']) np.savetxt('Halo%s_%03d_stars.out'%(hnum[i],k),np.column_stack((pid,mass,x,y,z,vx,vy,vz,sft,fullmetal,time)),header = '(0) ID (1) MASS (M_sun) (2) X (kpc) (3) Y (4) Z (5) Vx (km/s) (6) Vy (7) Vz (8) Age (Gyr) (9) [Fe/H] (10) Time of snapshot (Gyr)') print k except Exception,e: print e,'No stars' try: time = np.float(a['props']['time']) np.savetxt('Halo%s_%03d_stars.out'%(hnum[i],k),np.column_stack((0,0,0,0,0,0,0,0,0,0,time)),header = '(0) ID (1) MASS (M_sun) (2) X (kpc) (3) Y (4) Z (5) Vx (km/s) (6) Vy (7) Vz (8) Age (Gyr) (9) [Fe/H] (10) Time of snapshot (Gyr)') except: print 'No time' a.close()
[ "fitts.alex@gmail.com" ]
fitts.alex@gmail.com
a94dbdf4fc6e774943ac77d02fc7c1c4ab4a4eff
99767736ea5f34be4438ce689fc27454dffbf15c
/build/lib/sqlalchemy_nav/__init__.py
f5667ece8a87d320adf715b232e0f99d96ab7b47
[ "MIT" ]
permissive
dsbowen/sqlalchemy-nav
4600ff85c99878d98167fee000d5b9cd6a0a90bc
d60b28fe74cdde65de68a140d0c2845d92fb9b0f
refs/heads/master
2020-08-02T09:35:27.233849
2020-06-10T16:50:22
2020-06-10T16:50:22
211,304,650
1
0
null
null
null
null
UTF-8
Python
false
false
609
py
"""Mixins for SQLAlchemy-Nav SQLAlchemy-Nav Mixins can be used to create dynamic navigation bar models compatible with Bootstrap 4. Navigation bars can contain navigation items, dropdown items, and custom html. All models store their HTML in a `MutableSoup` attribute, `body`. This is essentially a `BeautifulSoup` object which you can use to insert custom HTML. `Navitem`s are nested in `Navbar`s, and `Dropdownitem`s are nested in `Navitem`s. """ from sqlalchemy_nav.navbar import NavbarMixin from sqlalchemy_nav.navitem import NavitemMixin from sqlalchemy_nav.dropdownitem import DropdownitemMixin
[ "dsbowen@wharton.upenn.edu" ]
dsbowen@wharton.upenn.edu
4239b59efd8be01546de57fd9436920f76c9aaf9
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_089/ch14_2020_03_09_13_31_11_006129.py
151ce51fd678c102515933e6bb62da962336d66d
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
def calcula_distancia_do_projetil(v,t,h): D= (v**2/2*9.8)*(1+(1+(2*9.8*h)/v**2*(math.sin(t))**2))*math.sin(2*t) return D
[ "you@example.com" ]
you@example.com
88d1ec2c7c8599a735b126fa18f086afd2c00131
41aafbb5f749f192e81f754bbbf52e4f7bd231c4
/app.py
ddccd8b64783330339baa5dcfd3fc81be129af7d
[]
no_license
JasonCodez/flask_madlibs
84c31b2b413306053bedcb7c32e82b6653916315
cb9c1a65cd098d7b02810c6783454488fe801783
refs/heads/main
2023-05-13T11:14:23.528019
2021-06-04T23:16:59
2021-06-04T23:16:59
373,978,110
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
from flask import Flask, render_template, request from stories import story app = Flask(__name__) @app.route('/') def ask_questions(): prompts = story.prompts return render_template("questions.html", prompts=prompts) @app.route("/story") def show_story(): text = story.generate(request.args) return render_template("story.html", text=text)
[ "jason13garrett@gmail.com" ]
jason13garrett@gmail.com
a3bd9f7287b261d6b7e3c747f1d10e15bca2a1c1
2855f26e603ec7bf5b18876b54b75ee4577bdf2c
/witdraw/forms.py
65f12090c349714d0754149c7cec48b2f49658bc
[]
no_license
zkenstein/ppob_multipay_v2
e8ea789c395c6fa5b83ba56fbaf5ea08a2a77a14
85296f925acf3e94cc371637805d454581391f6e
refs/heads/master
2022-03-04T13:53:30.893380
2019-11-16T22:49:50
2019-11-16T22:49:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,150
py
from django import forms from django.contrib.auth.models import User from .models import Witdraw MIN_COMMISION = 10000 class WitdrawForm(forms.ModelForm): class Meta: model = Witdraw fields = [ 'create_by', 'amount' ] def __init__(self, *args, **kwargs): super(WitdrawForm, self).__init__(*args, **kwargs) self.fields['create_by'].queryset = User.objects.filter( profile__user_type=2 ) def clean_amount(self): amount = self.cleaned_data.get('amount') if amount < MIN_COMMISION: raise forms.ValidationError('Monimal withdraw 10.000') return amount def clean_create_by(self): usr = self.cleaned_data.get('create_by') if usr.profile.user_type != 2: raise forms.ValidationError('User is not an agen') if usr.profile.ponsel is None or usr.profile.ponsel == '': raise forms.ValidationError('Ponsel canot be empty') if usr.profile.wallet.commision < MIN_COMMISION: raise forms.ValidationError('Commision not enought to withdraw') return usr
[ "anderi.setiawan@gmail.com" ]
anderi.setiawan@gmail.com
c802abd4dd480d611f8d66bd6588eeaecc35679e
4bc5ad9cc3036c56447c2d3da9c7e7b52e895495
/alumni/student/migrations/0003_auto_20190409_1042.py
2b8416a9180b4909bb1e1bd69b5a15dbdc7b7233
[]
no_license
hariyanganesh/Alumini
ffd31939bb06040556517a9849c64760c48fe2b0
9f4aa1dfa005ce0b1d266176e3e206c6ace8ef56
refs/heads/master
2020-05-09T21:56:27.413868
2019-04-15T11:20:11
2019-04-15T11:20:11
181,453,115
0
0
null
null
null
null
UTF-8
Python
false
false
1,097
py
# Generated by Django 2.2 on 2019-04-09 05:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0002_auto_20190409_0136'), ] operations = [ migrations.AddField( model_name='studinfo1', name='branch', field=models.CharField(max_length=30, null=True), ), migrations.AlterField( model_name='studinfo1', name='jobstatus', field=models.CharField(max_length=30, null=True), ), migrations.AlterField( model_name='studinfo1', name='lastname', field=models.CharField(max_length=30, null=True), ), migrations.AlterField( model_name='studinfo1', name='name', field=models.CharField(max_length=30, null=True), ), migrations.AlterField( model_name='studinfo1', name='passout', field=models.IntegerField(default=2000), ), ]
[ "noreply@github.com" ]
hariyanganesh.noreply@github.com
d4e3751b2d4796c72be497007fe4c7d8ca67e18e
6db97ab761d59452c05611354637dfb2ce693c96
/src/compas_fab/geometry/frame.py
60723945ebff9a82556936c9e69f14253f61e9df
[ "MIT" ]
permissive
Mahdi-Soheyli/compas_fab
e885efbdd5531ae5f245bf02b2f1acce0a308680
0e7d426903a5d9a1bca947cd7a1251031c4c71b4
refs/heads/master
2020-05-02T16:53:13.265526
2019-03-20T13:37:37
2019-03-20T13:37:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
34
py
from compas.geometry import Frame
[ "casas@arch.ethz.ch" ]
casas@arch.ethz.ch
f5fb1d2d332a2c3099ec44d0d0d7fb97c7ebe551
cb435ce9b9cb3a5e7f7d5555b59239aaa1533cd9
/notebooks/omniglot/proto_nets.py
9076ca24f522c4242d4e99a6dd0ffe9ec74f7985
[]
no_license
kuan-li/Keras-FewShotLearning
5107aba13b561dd7a1ec857318cf338de048c681
988a4ff6021db7ae778f880cff85b7d4978b2835
refs/heads/master
2021-02-22T22:46:10.884663
2020-03-05T16:26:05
2020-03-05T16:26:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,582
py
#%% import logging from pathlib import Path from unittest.mock import patch import imgaug.augmenters as iaa import numpy as np import pandas as pd from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard from tensorflow.keras import Model from tensorflow.keras.saving import load_model from keras_fsl.datasets import omniglot from keras_fsl.models import SiameseNets from keras_fsl.sequences import ( DeterministicSequence, ProtoNetsSequence, ) from keras_fsl.utils import patch_len, default_workers # prevent issue with multiprocessing and long sequences, see https://github.com/keras-team/keras/issues/13226 patch_fit_generator = patch( 'tensorflow.keras.Model.fit_generator', side_effect=default_workers(patch_len(Model.fit_generator)), ) patch_fit_generator.start() logging.getLogger('tensorflow').setLevel(logging.ERROR) #%% Get data train_set, test_set = omniglot.load_data() #%% Update label columns to be able to mix alphabet during training train_set = train_set.assign(label=lambda df: df.alphabet + '_' + df.label) test_set = test_set.assign(label=lambda df: df.alphabet + '_' + df.label) #%% Training ProtoNets k_shot = 5 n_way = 5 proto_nets = SiameseNets( branch_model='VinyalsNet', head_model={ 'name': 'ProtoNets', 'init': {'k_shot': k_shot, 'n_way': n_way} }, ) val_set = train_set.sample(frac=0.3, replace=False) train_set = train_set.loc[lambda df: ~df.index.isin(val_set.index)] callbacks = [TensorBoard(), ModelCheckpoint('logs/proto_nets/best_weights.h5')] (Path('logs') / 'proto_nets').mkdir(parents=True, exist_ok=True) preprocessing = iaa.Sequential([ iaa.Affine( translate_percent={'x': (-0.2, 0.2), 'y': (-0.2, 0.2)}, rotate=(-10, 10), shear=(-0.8, 1.2), ) ]) train_sequence = ProtoNetsSequence( train_set, n_way=n_way, preprocessing=preprocessing, batch_size=16, target_size=(28, 28, 3), ) val_sequence = ProtoNetsSequence(val_set, batch_size=16, target_size=(28, 28, 3)) proto_nets.compile(optimizer='Adam', loss='categorical_crossentropy') Model.fit_generator( # to use patched fit_generator, see first cell proto_nets, train_sequence, validation_data=val_sequence, callbacks=callbacks, epochs=100, steps_per_epoch=1000, validation_steps=200, use_multiprocessing=True, ) #%% Prediction proto_nets = load_model('logs/proto_nets/best_weights.h5') encoder = proto_nets.get_layer('branch_model') head_model = proto_nets.get_layer('head_model') test_sequence = DeterministicSequence(test_set, batch_size=16, target_size=(28, 28, 3)) embeddings = encoder.predict_generator(test_sequence, verbose=1) k_shot = 5 n_way = 5 support = ( test_set .loc[lambda df: df.label.isin(df.label.drop_duplicates().sample(n_way))] .groupby('label') .apply(lambda group: group.sample(k_shot).drop('label', axis=1)) .reset_index('label') ) query = ( test_set .loc[lambda df: df.label.isin(support.label.unique())] .loc[lambda df: ~df.index.isin(support.index)] ) predictions = ( pd.concat([ query, pd.DataFrame(head_model.predict([ embeddings[query.index], *np.moveaxis( embeddings[np.tile(support.index, reps=len(query))].reshape((len(query.index), k_shot * n_way, -1)), 1, 0, ) ]), columns=support.label.unique(), index=query.index), ], axis=1) ) confusion_matrix = ( pd.crosstab( predictions.label, predictions.iloc[:, -n_way:].idxmax(axis=1), margins=True, ) )
[ "clementw@sicara.com" ]
clementw@sicara.com
ac33c346ad83106d32dfc516843c5835c52734e9
3ed70536d4d06b2ac43b64976ddc43a5d7025b31
/uri1091.py
4cb102241664ec3f00f7c77717e8df84b2c4c8f9
[]
no_license
LuisHenrique01/Questoes_URI
7f1d397e3cd055349939184603eb86cb4bf43d65
35c8e77eb7cd9da96df4268b5d71f3ad87446c89
refs/heads/master
2020-07-22T08:12:12.700484
2020-04-12T17:39:29
2020-04-12T17:39:29
207,126,339
3
0
null
null
null
null
UTF-8
Python
false
false
648
py
def main(): while True: rep = int(input()) if rep == 0: break div_x, div_y = list(map(int, input().split())) for _ in range(rep): ponto_x, ponto_y = list(map(int, input().split())) if ponto_x == div_x or ponto_y == div_y: print('divisa') elif ponto_x > div_x and ponto_y > div_y: print('NE') elif ponto_x > div_x and ponto_y < div_y: print('SE') elif ponto_x < div_x and ponto_y > div_y: print('NO') else: print('SO') if __name__ == "__main__": main()
[ "luizbueno1201@gmail.com" ]
luizbueno1201@gmail.com
bbb33c2583e79f2ebfcf80477d93aa479721526b
648f742d6db2ea4e97b83c99b6fc49abd59e9667
/common/vault/oas/models/contracts_smart_contract.py
d5d7062b8e4de5bd91efe115deb981877b802760
[]
no_license
jmiller-tm/replit
c56ce63718f6eb2d9b53bd09d3f7b3ef3496cb86
c8e6af3268c4ef8da66516154850919ea79055dc
refs/heads/main
2023-08-30T00:49:35.738089
2021-11-16T23:09:08
2021-11-16T23:09:08
428,809,777
0
0
null
null
null
null
UTF-8
Python
false
false
5,856
py
# coding: utf-8 """ vault/kernel/core_api/proto/v1/accounts/core_api_account_schedule_tags.proto No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: version not set Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ContractsSmartContract(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'code': 'str', 'smart_contract_param_vals': 'dict(str, str)', 'smart_contract_version_id': 'str' } attribute_map = { 'code': 'code', 'smart_contract_param_vals': 'smart_contract_param_vals', 'smart_contract_version_id': 'smart_contract_version_id' } def __init__(self, code=None, smart_contract_param_vals=None, smart_contract_version_id=None): # noqa: E501 """ContractsSmartContract - a model defined in Swagger""" # noqa: E501 self._code = None self._smart_contract_param_vals = None self._smart_contract_version_id = None self.discriminator = None if code is not None: self.code = code if smart_contract_param_vals is not None: self.smart_contract_param_vals = smart_contract_param_vals if smart_contract_version_id is not None: self.smart_contract_version_id = smart_contract_version_id @property def code(self): """Gets the code of this ContractsSmartContract. # noqa: E501 Source code of the Smart Contract that is to be simulated. # noqa: E501 :return: The code of this ContractsSmartContract. # noqa: E501 :rtype: str """ return self._code @code.setter def code(self, code): """Sets the code of this ContractsSmartContract. Source code of the Smart Contract that is to be simulated. # noqa: E501 :param code: The code of this ContractsSmartContract. # noqa: E501 :type: str """ self._code = code @property def smart_contract_param_vals(self): """Gets the smart_contract_param_vals of this ContractsSmartContract. # noqa: E501 Values for the Smart Contract parameters. # noqa: E501 :return: The smart_contract_param_vals of this ContractsSmartContract. # noqa: E501 :rtype: dict(str, str) """ return self._smart_contract_param_vals @smart_contract_param_vals.setter def smart_contract_param_vals(self, smart_contract_param_vals): """Sets the smart_contract_param_vals of this ContractsSmartContract. Values for the Smart Contract parameters. # noqa: E501 :param smart_contract_param_vals: The smart_contract_param_vals of this ContractsSmartContract. # noqa: E501 :type: dict(str, str) """ self._smart_contract_param_vals = smart_contract_param_vals @property def smart_contract_version_id(self): """Gets the smart_contract_version_id of this ContractsSmartContract. # noqa: E501 The ID that will be used as the Smart Contract ID in the simulation and can be referenced by the simulation instructions. # noqa: E501 :return: The smart_contract_version_id of this ContractsSmartContract. # noqa: E501 :rtype: str """ return self._smart_contract_version_id @smart_contract_version_id.setter def smart_contract_version_id(self, smart_contract_version_id): """Sets the smart_contract_version_id of this ContractsSmartContract. The ID that will be used as the Smart Contract ID in the simulation and can be referenced by the simulation instructions. # noqa: E501 :param smart_contract_version_id: The smart_contract_version_id of this ContractsSmartContract. # noqa: E501 :type: str """ self._smart_contract_version_id = smart_contract_version_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ContractsSmartContract, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ContractsSmartContract): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "jmiller@jmiller-tm00769-mbp.nomad.thomac.net" ]
jmiller@jmiller-tm00769-mbp.nomad.thomac.net
82dea43dea06c6bdb53b570bc5ff8fb63e66a0bc
d9f981d50d5476226ceffb9a4f75498ed3fd6127
/winequality/main.py
893ccfc9c451c39d03cc23efa0d4c65bce4e0224
[]
no_license
bwriteLeaf/guochushiyan
509df750338ac988c8d050c790e273e02eb365f6
af9b3fd48874fcc18ea964c90d8a8994137a9523
refs/heads/master
2021-04-15T08:57:52.308169
2018-04-04T07:54:43
2018-04-04T07:54:43
126,176,314
0
0
null
null
null
null
UTF-8
Python
false
false
5,644
py
# -*- coding: utf-8 -*- import importlib,sys import os import time from sklearn import metrics import numpy as np import pickle as pickle import time import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_mldata from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.utils import check_random_state #importlib.reload(sys) #sys.setdefaultencoding('utf8') # Multinomial Naive Bayes Classifier def naive_bayes_classifier(train_x, train_y): from sklearn.naive_bayes import MultinomialNB model = MultinomialNB(alpha=0.01) model.fit(train_x, train_y) return model # KNN Classifier def knn_classifier(train_x, train_y): from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier() model.fit(train_x, train_y) return model # Logistic Regression Classifier def logistic_regression_classifier(train_x, train_y): from sklearn.linear_model import LogisticRegression model = LogisticRegression(penalty='l2') model.fit(train_x, train_y) return model # Random Forest Classifier def random_forest_classifier(train_x, train_y): from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=8) model.fit(train_x, train_y) return model # Decision Tree Classifier def decision_tree_classifier(train_x, train_y): from sklearn import tree model = tree.DecisionTreeClassifier() model.fit(train_x, train_y) return model # GBDT(Gradient Boosting Decision Tree) Classifier def gradient_boosting_classifier(train_x, train_y): from sklearn.ensemble import GradientBoostingClassifier model = GradientBoostingClassifier(n_estimators=200) model.fit(train_x, train_y) return model # SVM Classifier def svm_classifier(train_x, train_y): from sklearn.svm import SVC model = SVC(kernel='rbf', probability=True) model.fit(train_x, train_y) return model # SVM Classifier using cross validation def svm_cross_validation(train_x, train_y): from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC model = SVC(kernel='rbf', probability=True) param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]} grid_search = GridSearchCV(model, param_grid, n_jobs=1, verbose=1) grid_search.fit(train_x, train_y) best_parameters = grid_search.best_estimator_.get_params() for para, val in best_parameters.items(): print para, val model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True) model.fit(train_x, train_y) return model def read_data(data_file): import gzip f = gzip.open(data_file, "rb") train, val, test = pickle.load(f) f.close() train_x = train[0] train_y = train[1] test_x = test[0] test_y = test[1] return train_x, train_y, test_x, test_y def trainTest(dataFile,attCnt,outFile,test_classifiers): f = open(outFile, 'w') thresh = 0.5 model_save_file = None model_save = {} # test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT','GBDT'] classifiers = {'NB': naive_bayes_classifier, 'KNN': knn_classifier, 'LR': logistic_regression_classifier, 'RF': random_forest_classifier, 'DT': decision_tree_classifier, 'GBDT': gradient_boosting_classifier, "SVM":svm_classifier } print('reading training and testing data...') tmp = np.loadtxt(dataFile, dtype=np.str, delimiter=",") X = tmp[1:, 0:attCnt].astype(np.float) # 加载数据部分 y = tmp[1:, attCnt].astype(np.float) # 加载类别标签部分 random_state = check_random_state(0) # 将样本进行随机排列 permutation = random_state.permutation(X.shape[0]) X = X[permutation] y = y[permutation] X = X.reshape((X.shape[0], -1)) train_x, test_x, train_y, test_y = train_test_split( X, y, test_size=0.2) scaler = StandardScaler() # train_x = scaler.fit_transform(train_x) # 使用训练数据的均值方差对训练数据进行标准化 # test_x = scaler.transform(test_x) num_train, num_feat = train_x.shape num_test, num_feat = test_x.shape is_binary_class = (len(np.unique(train_y)) == 2) print('******************** Data Info *********************') print('#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)) print("name,precision,recall,accuracy", file=f) for classifier in test_classifiers: print('******************* %s ********************' % classifier) print('%s' % classifier, file=f,end='') start_time = time.time() model = classifiers[classifier](train_x, train_y) print('training took %fs!' % (time.time() - start_time)) predict = model.predict(test_x) if model_save_file != None: model_save[classifier] = model if is_binary_class: precision = metrics.precision_score(test_y, predict) recall = metrics.recall_score(test_y, predict) print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)) print(',%.2f%%,%.2f%%' % (100 * precision, 100 * recall), file=f,end='') accuracy = metrics.accuracy_score(test_y, predict) print(',%.2f%%' % (100 * accuracy), file=f) if model_save_file != None: pickle.dump(model_save, open(model_save_file, 'wb'))
[ "sara_sara_ok@163.com" ]
sara_sara_ok@163.com
0db6856e41bbe6b3773d8320f95dd2e5edbcc1d6
451f158c20fd425bc9d14c8e27e1a8f415423276
/novels_search/config/config.py
d38b0dcf8002cdb6327e83d0f826c02ffffffbc9
[ "Apache-2.0" ]
permissive
TimeCharmer/novels-search
3767a77c237426a66f25287abae3c0a44528cf52
ab8152ff12d828dba0a8b52aa9c08675b21a1c5f
refs/heads/master
2021-01-19T14:21:28.438011
2017-04-12T09:37:48
2017-04-12T09:37:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
#!/usr/bin/env python import logging from aiocache import RedisCache # Search engine URL_PHONE = 'https://m.baidu.com/s' URL_PC = 'http://www.baidu.com/s' BAIDU_RN = 15 SO_URL = "https://www.so.com/s" USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.95 Safari/537.36' # logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s') LOGGER = logging.getLogger('novels_search') # aiocache REDIS_DICT = dict( IS_CACHE=True, REDIS_ENDPOINT="", REDIS_PORT=6379, PASSWORD="", CACHE_DB=0, SESSION_DB=1, POOLSIZE=4, ) AIO_CACHE = RedisCache(endpoint=REDIS_DICT['REDIS_ENDPOINT'], port=REDIS_DICT['REDIS_PORT'], namespace="main") # mongodb MONGODB = dict( HOST="", PORT="", USERNAME='', PASSWORD='', DATABASE='owllook', ) # website WEBSITE = dict( IS_RUNNING=True, TOKEN='' ) AUTH = { "Owllook-Api-Key": "" } HOST = ['owllook.net', 'www.owllook.net', '0.0.0.0:8000'] TIMEZONE = 'Asia/Shanghai'
[ "xiaozizayang@gmail.com" ]
xiaozizayang@gmail.com
26ca9926f70904dbde2689d810b066820a29a616
ddabf93201341cccfa05bb16e731543d6f3d428b
/recursion.py
4abdb12a45918e48435cb5e992fb5fe9dcfa5fec
[]
no_license
saumyajit2000/recursion
d0e6d0e08dc87c1e4fa1827c0476e3aa6f7f2d34
176e23f6e75a56b0500a509ad6e01b06888da146
refs/heads/main
2023-08-10T21:44:54.417188
2021-09-28T10:11:10
2021-09-28T10:11:10
411,230,247
0
0
null
null
null
null
UTF-8
Python
false
false
3,532
py
import random import time #FUNCTION FOR USING MERGE SORT------------ def mergeSort(numbers): if len(numbers) > 1: mid = len(numbers) // 2 left = numbers[:mid] right = numbers[mid:] # Recursive call on each half mergeSort(left) mergeSort(right) # Two iterators for traversing the two halves i = 0 j = 0 # Iterator for the main list k = 0 while i < len(left) and j < len(right): if left[i] <= right[j]: # The value from the left half has been used numbers[k] = left[i] # Move the iterator forward i += 1 else: numbers[k] = right[j] j += 1 # Move to the next slot k += 1 # For all the remaining values while i < len(left): numbers[k] = left[i] i += 1 k += 1 while j < len(right): numbers[k]=right[j] j += 1 k += 1 #FUNCTION FOR USING QUICK SORT------------ def partition (array,low,high): pivot=array[high] i=low-1 for j in range(low,high): if array[j]<=pivot: i=i+1 (array[i],array[j])=(array[j],array[i]) (array[i+1],array[high])=(array[high],array[i+1]) return i+1 def quicksort(array,low,high): if low<high: pi=partition(array,low,high) quicksort(array,low,pi-1) quicksort(array,pi+1,high) #FUNCTION FOR USING BUBBLE SORT -------------- def bubble_sort(numbers): for i in range(0,len(numbers)-1): for j in range(len(numbers)-1): if(numbers[j]>numbers[j+1]): temp = numbers[j] numbers[j] = numbers[j+1] numbers[j+1] = temp return numbers #FUNCTION FOR USING INSERTION SORT ------- def insertion_sort(numbers): # Traverse through 1 to len(numbers) for i in range(1, len(numbers)): key = numbers[i] j = i-1 while j >=0 and key < numbers[j] : numbers[j+1] = numbers[j] j -= 1 numbers[j+1] = key #----------CODE FOR TAKING VALUES-------- n=int(input("How many random numbers you want ? : ")) start_value=int(input("Enter the starting range : ")) end_value=int(input("Enter the ending range : ")) start=time.time() numbers=[] for i in range(n): num=((random.randint(start_value,end_value))) numbers.append(num) print("List of random numbers is : ",numbers) #print("Unsorted data is : ",numbers) # size=len(numbers) # bubble_sort(numbers) # print("Sorted data is -- " ,numbers) # end=time.time() # executiontime=(end)-(start) # print("Execution time for BUBBLE SORT is : ",executiontime) # size=len(numbers) # mergeSort(numbers) # # print("Sorted data using INSERTION SORT is -- " ,numbers) # end=time.time() # executiontime=(end)-(start) # print("Execution time for MERGE SORT is : ",executiontime) insertion_sort(numbers) # print("Sorted data using INSERTION SORT is -- " ,numbers) end=time.time() executiontime=(end)-(start) print("Execution time for Insertion Sort is : ",executiontime) # quicksort(array, low, high) # # print("Sorted data using INSERTION SORT is -- " ,numbers) # end=time.time() # executiontime=(end)-(start) # print("Execution time for QUICK SORT is : ",executiontime)
[ "noreply@github.com" ]
saumyajit2000.noreply@github.com
a71c39e3394fc5cc6525d2128a4f4548fe0a677b
042bd40e554ac7fcd618c334ae98b4f43248a250
/interfaces/python/lib/ocean_dummy.py
41ebdac07d314bb378d87fb2fc951791b1c79acd
[ "Apache-2.0" ]
permissive
kant/ocean-tensor-package
8a62df968335de2057ff095f0910e5ad5fcff8e1
fb3fcff8bba7f4ef6cd8b8d02f0e1be1258da02d
refs/heads/master
2020-03-29T04:01:22.064480
2018-09-19T19:17:19
2018-09-19T19:17:19
149,511,923
0
0
Apache-2.0
2018-09-19T21:03:14
2018-09-19T21:03:14
null
UTF-8
Python
false
false
925
py
# ------------------------------------------------------------------------- # Copyright 2018, IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- from pyOceanDummy_itf import * from pyOceanDummy_cpu import * # The GPU implementation is optional try : from pyOceanDummy_gpu import * except ValueError : # The module does not exist pass
[ "evandenberg@us.ibm.com" ]
evandenberg@us.ibm.com
7b379dbb43b66e2e49d8e764f6b4e5a1c4752c87
c14e3c9760b2c1a4f8aff459461913e78912811d
/workflow/src/gene_profile.py
8ec1381494dc6e75a93c384f3ff06b88310c3ba9
[]
no_license
tianyabeef/metagenome
65f022b4a1b170338fdd9a820ba00dce669a697a
bc7d73527d0f6ba11faec38766b014ed4942b3d8
refs/heads/master
2020-04-04T04:03:30.423154
2016-12-08T03:48:19
2016-12-08T03:48:19
51,899,759
0
0
null
null
null
null
UTF-8
Python
false
false
3,734
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # __author__ = "huangy" __copyright__ = "Copyright 2016, The metagenome Project" __version__ = "1.0.0-dev" import os import re from ConfigParser import ConfigParser from workflow.util.useful import mkdir def gene_profile(config,sh_default_file,outpath,name): commands = [] work_dir = os.path.dirname(config) commands.append("/data_center_01/pipeline/huangy/metagenome/perlscript/06_geneabundance clean_reads_list gene_catalog.list gene_catalog.length") commands.append("nohup /data_center_03/USER/zhongwd/bin/qsge --queue all.q --resource vf=10G --maxjob 10 --jobprefix MA --lines 1 --getmem shell_alignment/match.sh &") commands.append("nohup /data_center_03/USER/zhongwd/bin/qsge --queue all.q --resource vf=10G --maxjob 10 --jobprefix AB --lines 2 --getmem shell_alignment/abun.sh &") commands.append("ls alignment/*/*abundance |/data_center_01/pipeline/huangy/metagenome/perlscript/02_profile - > gene.profile") commands.append("/data_center_01/pipeline/huangy/metagenome/perlscript/06_shannon gene.profile gene.alpha.div.tsv") commands.append("head -4 gene.profile | sed '1s/^/Gene ID/g' > example.gene.profile.tsv") commands.append("Rscript /data_center_01/pipeline/huangy/metagenome/Rscript/06_geneset.R") commands.append("#差异分析") config_gene = ConfigParser() config_gene.read(config) group = re.split("\s+|\t",config_gene.get("param","group")) mkdir("%s/group/" % work_dir) for subgroup in group: subgroup = os.path.basename(subgroup) subgroup_split =os.path.splitext(subgroup)[0] mkdir("%s/group/%s/"%(work_dir,subgroup_split)) commands.append("python /data_center_01/pipeline/huangy/metagenome/pyscript/convert_abundance_group.py gene.profile ../group/%s group/%s/gene.profile genus" % (subgroup,subgroup_split)) commands.append("/data_center_01/pipeline/16S_ITS_pipeline_v3.0/script/03_otu_pca.py -i group/%s/gene.profile -g ../group/%s -o group/%s/09.pca --with_boxplot" % (subgroup_split,subgroup,subgroup_split)) mkdir("%s/group/%s/11-14.beta_div/"%(work_dir,subgroup_split)) mkdir("%s/group/%s/11-14.beta_div/gene/"%(work_dir,subgroup_split)) commands.append("cd group/%s/11-14.beta_div/gene; perl /data_center_01/pipeline/huangy/metagenome/perlscript/02_Beta_diversity.pl -p ../../../../group/%s/gene.profile -g ../../../../../group/%s -m bray -r; cd -" %(subgroup_split,subgroup_split,subgroup)) mkdir("%s/group/%s/15.LEfSe/" % (work_dir,subgroup_split)) commands.append("/data_center_01/pipeline/16S_ITS_pipeline_v3.0/script/05_tax_diff.py -i group/%s/gene.profile -o group/%s/gene_diff/ -g ../group/%s -c 0.05"%(subgroup_split,subgroup_split,subgroup)) commands.append("/data_center_01/pipeline/16S_ITS_pipeline_v3.0/script/05_diff_pca.py -i group/%s/gene_diff/profile.for_plot.txt -o group/%s/gene_diff/pca -g ../group/%s" %(subgroup_split,subgroup_split,subgroup)) commands.append("/data_center_01/pipeline/16S_ITS_pipeline_v3.0/script/03_tax_heatmap.py -f group/%s/gene_diff/profile.for_plot.txt -o group/%s/gene_diff/heatmap -g ../group/%s -t 30" % (subgroup_split,subgroup_split,subgroup)) commands.append(" /data_center_01/pipeline/16S_ITS_pipeline_v3.0/script/05_diff_boxplot.py -i group/%s/gene_diff/profile.for_plot.txt -o group/%s/gene_diff/boxplot -g ../group/%s -t 20"%(subgroup_split,subgroup_split,subgroup)) #commands.append("/data_center_01/pipeline/16S_ITS_pipeline_v3.0/script/05_LEfSe.py -i group/%s/gene.profile -l /data_center_03/USER/huangy/soft/LEfSe_lzb -g ../group/%s -o group/%s/15.LEfSe/ --LDA 2" %(subgroup_split,subgroup,subgroup_split)) return commands
[ "410378266@qq.com" ]
410378266@qq.com
8817c54b5350de86ca658ecf083530659a7b4852
ba0e07b34def26c37ee22b9dac1714867f001fa5
/unreleased/azure-mgmt-eventhub/azure/mgmt/eventhub/models/consumer_group_create_or_update_parameters.py
22ea6ee0888f32dfc1f858599060ca80abe0a49a
[ "MIT" ]
permissive
CharaD7/azure-sdk-for-python
b11a08ac7d24a22a808a18203072b4c7bd264dfa
9fdf0aac0cec8a15a5bb2a0ea27dd331dbfa2f5c
refs/heads/master
2023-05-12T12:34:26.172873
2016-10-26T21:35:20
2016-10-26T21:35:20
72,448,760
1
0
MIT
2023-05-04T17:15:01
2016-10-31T15:14:09
Python
UTF-8
Python
false
false
2,128
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ConsumerGroupCreateOrUpdateParameters(Model): """Parameters supplied to the CreateOrUpdate Consumer Group operation. :param location: Location of the resource. :type location: str :param type: ARM type of the namespace. :type type: str :param name: Name of the consumer group. :type name: str :param created_at: Exact time the message was created. :type created_at: datetime :param event_hub_path: The path of the event hub. :type event_hub_path: str :param updated_at: The exact time the message has been updated. :type updated_at: datetime :param user_metadata: The user metadata. :type user_metadata: str """ _validation = { 'location': {'required': True}, } _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'created_at': {'key': 'properties.createdAt', 'type': 'iso-8601'}, 'event_hub_path': {'key': 'properties.eventHubPath', 'type': 'str'}, 'updated_at': {'key': 'properties.updatedAt', 'type': 'iso-8601'}, 'user_metadata': {'key': 'properties.userMetadata', 'type': 'str'}, } def __init__(self, location, type=None, name=None, created_at=None, event_hub_path=None, updated_at=None, user_metadata=None): self.location = location self.type = type self.name = name self.created_at = created_at self.event_hub_path = event_hub_path self.updated_at = updated_at self.user_metadata = user_metadata
[ "lmazuel@microsoft.com" ]
lmazuel@microsoft.com
819b14de815119bce4a84a6fc1273bded53e6043
908b0e5b8a9dd8609d8196fdf4d8a16f74040a89
/projectEuler/p41.py
675cefa4699fffa071f068527bfc6cbdc7c8a341
[]
no_license
poojithumeshrao/projectEuler
5b689de03295558a6c67b249a4ac1336f2507a21
c5ae6c985bb9199c72812e785aa02e5e3c238ad6
refs/heads/master
2022-02-22T13:58:17.849262
2022-02-08T10:06:37
2022-02-08T10:06:37
98,327,339
0
0
null
null
null
null
UTF-8
Python
false
false
731
py
import pdb def pan(a): aa = list(str(a)) if '0' in aa: return False c = len(aa) d = len(set(aa)) if c == d and int(max(aa)) == c: return True else: return False def isPrime(n) : # Corner cases if (n <= 1) : return False if (n <= 3) : return True # This is checked so that we can skip # middle five numbers in below loop if (n % 2 == 0 or n % 3 == 0) : return False i = 5 while(i * i <= n) : if (n % i == 0 or n % (i + 2) == 0) : return False i = i + 6 return True for i in range (999999999,2,-2): #pdb.set_trace() if i%5 != 0 and i%3 != 0 and i%7 != 0 and pan(i): print(i) if isPrime(i): break
[ "noreply@github.com" ]
poojithumeshrao.noreply@github.com
b6b51b242a71db81c78ac1325b12e83d53de3eaa
8a5fca5068f454ee11e81e9c7fa6faee44b84ae9
/CarND-Capstone/ros/src/tl_detector/light_publisher.py
7ed3dde7d3c242a24bb63cbf43e9ee8b59923ae9
[]
no_license
abes975/CarND-Capstone
7910d5e4e775cb6d6dd40a69a5e0ea3b280b5aec
f3079bbddc368015511d01578ff5bc1eb04be793
refs/heads/master
2021-07-11T18:08:50.233079
2017-10-10T19:56:31
2017-10-10T19:56:31
105,473,446
0
0
null
2017-10-01T20:49:44
2017-10-01T20:49:43
null
UTF-8
Python
false
false
1,777
py
#!/usr/bin/env python import rospy import tf import cv2 import time from styx_msgs.msg import TrafficLightArray, TrafficLight from std_msgs.msg import Header from geometry_msgs.msg import PoseStamped, Quaternion, TwistStamped import numpy as np import rospkg import math class TLPublisher(object): def __init__(self): rospy.init_node('tl_publisher') self.traffic_light_pubs = rospy.Publisher('/vehicle/traffic_lights', TrafficLightArray, queue_size=1) light = self.create_light(20.991, 22.837, 1.524, 0.08, 3) lights = TrafficLightArray() lights.header = light.header lights.lights = [light] self.lights = lights self.loop() def loop(self): rate = rospy.Rate(50) while not rospy.is_shutdown(): self.traffic_light_pubs.publish(self.lights) rate.sleep() def create_light(self, x, y, z, yaw, state): light = TrafficLight() light.header = Header() light.header.stamp = rospy.Time.now() light.header.frame_id = 'world' light.pose = self.create_pose(x, y, z, yaw) light.state = state return light def create_pose(self, x, y, z, yaw=0.): pose = PoseStamped() pose.header = Header() pose.header.stamp = rospy.Time.now() pose.header.frame_id = 'world' pose.pose.position.x = x pose.pose.position.y = y pose.pose.position.z = z q = tf.transformations.quaternion_from_euler(0., 0., math.pi * yaw/180.) pose.pose.orientation = Quaternion(*q) return pose if __name__ == '__main__': try: TLPublisher() except rospy.ROSInterruptException: rospy.logerr('Could not start traffic publisher node.')
[ "sebastian.nietardt@googlemail.com" ]
sebastian.nietardt@googlemail.com
0db5b3deb80041a74fe00a76329d36249f0746ad
42dd79c614b775e6e8e782ea7ab332aef44251b9
/extra_apps/xadmin/views/website.py
02012eff0b7d66b2d7a36ed53d7a74ac75de61ae
[]
no_license
Annihilater/imooc
114575638f251a0050a0240d5a25fc69ef07d9ea
547046cff32ce413b0a4e21714cb9ab9ce19bc49
refs/heads/master
2020-05-03T09:06:18.247371
2019-12-04T09:24:55
2019-12-04T09:24:55
178,545,115
0
0
null
null
null
null
UTF-8
Python
false
false
2,949
py
from __future__ import absolute_import from django.utils.translation import ugettext as _ from django.contrib.auth import REDIRECT_FIELD_NAME from django.views.decorators.cache import never_cache from django.contrib.auth.views import LoginView as login from django.contrib.auth.views import LogoutView as logout from django.http import HttpResponse from .base import BaseAdminView, filter_hook from .dashboard import Dashboard from xadmin.forms import AdminAuthenticationForm from xadmin.models import UserSettings from xadmin.layout import FormHelper class IndexView(Dashboard): title = _("Main Dashboard") icon = "fa fa-dashboard" def get_page_id(self): return "home" class UserSettingView(BaseAdminView): @never_cache def post(self, request): key = request.POST["key"] val = request.POST["value"] us, created = UserSettings.objects.get_or_create(user=self.user, key=key) us.value = val us.save() return HttpResponse("") class LoginView(BaseAdminView): title = _("Please Login") login_form = None login_template = None @filter_hook def update_params(self, defaults): pass @never_cache def get(self, request, *args, **kwargs): context = self.get_context() helper = FormHelper() helper.form_tag = False helper.include_media = False context.update( { "title": self.title, "helper": helper, "app_path": request.get_full_path(), REDIRECT_FIELD_NAME: request.get_full_path(), } ) defaults = { "extra_context": context, # 'current_app': self.admin_site.name, "authentication_form": self.login_form or AdminAuthenticationForm, "template_name": self.login_template or "xadmin/views/login.html", } self.update_params(defaults) # return login(request, **defaults) return login.as_view(**defaults)(request) @never_cache def post(self, request, *args, **kwargs): return self.get(request) class LogoutView(BaseAdminView): logout_template = None need_site_permission = False @filter_hook def update_params(self, defaults): pass @never_cache def get(self, request, *args, **kwargs): context = self.get_context() defaults = { "extra_context": context, # 'current_app': self.admin_site.name, "template_name": self.logout_template or "xadmin/views/logged_out.html", } if self.logout_template is not None: defaults["template_name"] = self.logout_template self.update_params(defaults) # return logout(request, **defaults) return logout.as_view(**defaults)(request) @never_cache def post(self, request, *args, **kwargs): return self.get(request)
[ "yanmiexingkong@gmail.com" ]
yanmiexingkong@gmail.com
f768ba6d7d5ec4c7ff3607da8f5e4e0bacf8bf8c
49a9f1020b0d8caf32d1c0bc2b5ebd46596e4722
/learning_users/basic_app/forms.py
d352b4d6bbb9b44f057cad1de33b6740fe6673ba
[]
no_license
ahtrahdis7/Django-learning
05e126fb822b2fe9770fc31246ad4fe939e15edf
d36dc1b78c50f2eb77c58ae806e0c8db57033937
refs/heads/master
2020-12-30T05:23:04.798006
2020-05-06T08:57:05
2020-05-06T08:57:05
238,874,799
0
0
null
2020-07-21T04:36:24
2020-02-07T08:20:08
Python
UTF-8
Python
false
false
446
py
from django import forms from django.contrib.auth.models import User from basic_app.models import UserProfileInfo class UserForm(forms.ModelForm): password = forms.CharField(widget=forms.PasswordInput()) class Meta(): model = User fields = ('username','email', 'password') class UserProfileInfoForm(forms.ModelForm): class Meta(): model = UserProfileInfo fields = ('portfolio_site', 'profile_pic')
[ "b118055@iiit-bh.ac.in" ]
b118055@iiit-bh.ac.in
76bb7ef6f7c01dc420ea9e55a37a40caa24021e6
e06a3edbee8b0a5dfb26c3212b14fcce2fdca75b
/coding_templates_and_data_files/machine_learning/6. dimensionality_reduction/1. principal_component_analysis.py
ae99f07995e6c7f9727accef8db01746ef773088
[]
no_license
tokenflow/Machine-Learning-101
8a1f41b37df0d0b5ca96773ec0e17f60292b022e
89b98b9c4709d8c53d9b749d6d341b062df4a192
refs/heads/master
2020-03-27T05:27:27.793688
2018-08-29T15:13:32
2018-08-29T15:13:32
146,021,041
2
0
null
2018-08-24T17:29:57
2018-08-24T17:29:57
null
UTF-8
Python
false
false
2,928
py
# Principal Component Analysis # Import libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('wine.csv') X = dataset.iloc[:, :13].values y = dataset.iloc[:, -1].values # Spliting the dataset into the Training set & Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) # Applying PCA from sklearn.decomposition import PCA # pca = PCA(n_components = None) pca = PCA(n_components = 2) X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) # Used to identify percentages of IVs explained_variance = pca.explained_variance_ratio_ # Fitting Logistic Regression to the Training set from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) # Visualising the Training set results from matplotlib.colors import ListedColormap X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green', 'blue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green', 'blue'))(i), label = j, edgecolor='black') plt.title('Logistic Regression (Training Set)') plt.xlabel('PC1') plt.ylabel('PC2') plt.legend() plt.show() # Visualising the Test set results X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green', 'blue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green', 'blue'))(i), label = j, edgecolor='black') plt.title('Logistic Regression (Test Set)') plt.xlabel('PC1') plt.ylabel('PC2') plt.legend() plt.show()
[ "rpartridge101@yahoo.co.uk" ]
rpartridge101@yahoo.co.uk
4a1ea777a47726aed9d68c694b7608ad81f07ccc
148047ed643891aec025d895ae462bdf066a822d
/Practica 3 - Matplotlib y Scipy/Operaciones numericas/3.py
f9095d5ba6383dd12b6c90f613719bff36a87dee
[]
no_license
santiperone/CursoPythonDSP
b87cde697e58308c3376b1b14aa6062fe9859160
ecf3094d0a618200ac87f2ea98d539460dbcf4d4
refs/heads/master
2022-12-01T02:43:34.588808
2020-08-13T04:02:58
2020-08-13T04:02:58
287,173,593
0
0
null
null
null
null
UTF-8
Python
false
false
911
py
# -*- coding: utf-8 -*- """ Created on Thu Jun 4 11:55:40 2020 @author: santi """ import numpy as np import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y = [9.53647, 151.323, 2223.38, 16441.1, 78212.4, 280053, 823687, 2.09733e+06, 4.78319e+06, 1.00003e+07] menor_error = 1000 for i in range(1,50): coef = np.polyfit(x,y,i) print(np.mean((np.polyval(coef,x)-y)**2)) if np.mean((np.polyval(coef,x)-y)**2) < menor_error: menor_error = np.mean((np.polyval(coef,x)-y)**2) polinomio = np.polyval(coef,x) print(coef) x2 = np.linspace(1, 10,1000) p2 = np.polyval(coef, x2) plt.figure(1) plt.plot(x, y, 'bo',label='Función original') # plt.plot(x, polinomio, 'r', label='Mejor aproximacion') plt.plot(x2, p2, 'g', label='a') plt.xlabel('Variable independiente') plt.ylabel('Variable dependiente') # plt.title('Área con cumsum') plt.legend() plt.grid()
[ "sdperone97@gmail.com" ]
sdperone97@gmail.com
592f65c3845cec1b556e21772988fe41c2d61145
aca2258cf58e0d2c7e4939e73bcb82b6c135282c
/libs/Mailman/mailman/commands/tests/test_membership.py
6cf4802c6c8546a83b4d135e007b28482e0492be
[]
no_license
masomel/py-import-analysis
cfe6749a1d7430b179559b9e0911b8c8df507be7
7edf8148e34b9f73ca6433ceb43a1770f4fa32c1
refs/heads/master
2021-03-16T10:00:24.205301
2019-08-01T20:32:34
2019-08-01T20:32:34
112,668,748
1
0
null
null
null
null
UTF-8
Python
false
false
2,117
py
# Copyright (C) 2016-2017 by the Free Software Foundation, Inc. # # This file is part of GNU Mailman. # # GNU Mailman is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # GNU Mailman is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # GNU Mailman. If not, see <http://www.gnu.org/licenses/>. """Test the Leave command.""" import unittest from mailman.app.lifecycle import create_list from mailman.commands.eml_membership import Leave from mailman.email.message import Message from mailman.interfaces.mailinglist import SubscriptionPolicy from mailman.interfaces.usermanager import IUserManager from mailman.runners.command import Results from mailman.testing.helpers import set_preferred from mailman.testing.layers import ConfigLayer from zope.component import getUtility class TestLeave(unittest.TestCase): layer = ConfigLayer def setUp(self): self._mlist = create_list('ant@example.com') self._command = Leave() def test_confirm_leave_not_a_member(self): self._mlist.unsubscription_policy = SubscriptionPolicy.confirm # Try to unsubscribe someone who is not a member. Anne is a real # user, with a validated address, but she is not a member of the # mailing list. anne = getUtility(IUserManager).create_user('anne@example.com') set_preferred(anne) # Initiate an unsubscription. msg = Message() msg['From'] = 'anne@example.com' results = Results() self._command.process(self._mlist, msg, {}, (), results) self.assertEqual( str(results).splitlines()[-1], 'leave: anne@example.com is not a member of ant@example.com')
[ "msmelara@gmail.com" ]
msmelara@gmail.com
c19b81e1c8eeff010b5280346d1a9652be1aa501
d53ad9afe037a750b1418e69c668e7f167af48ba
/scripts/Rent_ntbk_util.py
46d0ad574cb183ec0b5037cee1ca052fe7d008d1
[]
no_license
priyachotalia/Group_Project
e0ed654730ea92bab1902de15a5ce2a40e2177a7
1fb7789cafb002061862bfa5155ed62552b5bc5a
refs/heads/master
2022-12-21T23:43:52.162406
2020-09-20T11:11:35
2020-09-20T11:11:35
297,054,371
0
0
null
null
null
null
UTF-8
Python
false
false
18,135
py
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns rent_df=pd.read_csv("data/Rent_Data.csv") rent_df.columns = ["Year", "Quarter", "LGA", "Dwelling Type", "Bedroom Number", "First QNB", "Second QNB", "Third QNB", "NB Lodged", "TB Lodged", "Qtrly Median Change", "Annly Median Change", "Qtrly NB", "Annly NB"] ### DATA CLEANING ### rent_df = rent_df.replace("-", np.nan) rent_df["First QNB"] = rent_df["First QNB"].astype(str).astype(float) rent_df["Second QNB"] = rent_df["Second QNB"].astype(str).astype(float) rent_df["Third QNB"] = rent_df["Third QNB"].astype(str).astype(float) ## NAN values are replaced with min-1 f_min_val = np.min(rent_df["First QNB"]) - 1 s_min_val = np.min(rent_df["Second QNB"]) - 1 t_min_val = np.min(rent_df["Third QNB"]) - 1 null = [] for x in rent_df.index:#range(len(rent_df.index)): null_row = rent_df.loc[x].isnull().sum() if null_row == 9: null.append(x) rent_df.loc[x] = rent_df.loc[x].replace(np.nan, 0) ## NAN values are replaced with min-1 rent_df["First QNB"] = rent_df["First QNB"].replace(np.nan, f_min_val) rent_df["Second QNB"] = rent_df["Second QNB"].replace(np.nan, s_min_val) rent_df["Third QNB"] = rent_df["Third QNB"].replace(np.nan, t_min_val) ## replace s with 1 rent_df = rent_df.replace("s", 1) rent_df["NB Lodged"] = rent_df["NB Lodged"].astype(str).astype(float) rent_df["TB Lodged"] = rent_df["TB Lodged"].astype(str).astype(float) ### NAN values are replaced with 0 ### ## s values which mean really small values are replaced with min/2 fq_min_val = np.min(rent_df["NB Lodged"]) rent_df["NB Lodged"] = rent_df["NB Lodged"].replace(1, fq_min_val)/2 rent_df["NB Lodged"] = rent_df["NB Lodged"].replace(np.nan, 0) sq_min_val = np.min(rent_df["TB Lodged"]) rent_df["TB Lodged"] = rent_df["TB Lodged"].replace(1, sq_min_val)/2 rent_df["TB Lodged"] = rent_df["TB Lodged"].replace(np.nan, 0) ## float to int rent_df["NB Lodged"] = rent_df["NB Lodged"].astype(int) rent_df["TB Lodged"] = rent_df["TB Lodged"].astype(int) rent_df["First QNB"] = rent_df["First QNB"].astype(int) rent_df["Second QNB"] = rent_df["Second QNB"].astype(int) rent_df["Third QNB"] = rent_df["Third QNB"].astype(int) ## remove % sign rent_df['Qtrly Median Change'] = rent_df['Qtrly Median Change'].astype(str).str.extract('(\d+)').astype(float) rent_df['Annly Median Change'] = rent_df['Annly Median Change'].astype(str).str.extract('(\d+)').astype(float) rent_df['Qtrly NB'] = rent_df['Qtrly NB'].astype(str).str.extract('(\d+)').astype(float) rent_df['Annly NB'] = rent_df['Annly NB'].astype(str).str.extract('(\d+)').astype(float) ## replace nan values for the last 4 columns with 0 rent_df = rent_df.replace(np.nan, 0) price_df = rent_df[['LGA', 'Dwelling Type', 'Bedroom Number', 'First QNB', 'Second QNB', 'Third QNB']].copy() price_df['mean'] = price_df.mean(axis=1) rent_df['Mean QNB'] = np.nan rent_df['Mean QNB'] = price_df['mean'] rent_df['Mean QNB'] = rent_df['Mean QNB'].astype(int) ### GET TOP LGA ### ## remove Total column from LGA, and get unique LGA values sort_df = rent_df[rent_df['LGA']!='Total'] top_mean = sort_df.sort_values(by="Mean QNB", ascending = False)['LGA'].unique()[:10] top_mean_arr = [] ## Get the Mean QNB per quarter and year of top LGA for graphing for x in range(len(top_mean)): name = top_mean[x] top_mean_df = rent_df[rent_df['LGA']==top_mean[x]].sort_values(by="Mean QNB", ascending = False) top_mean_df = top_mean_df[top_mean_df['Dwelling Type'] == 'Total'] top_mean_df = top_mean_df[top_mean_df['Bedroom Number'] == 'Total'] top_mean_df = top_mean_df.sort_values(by=['Year', 'Quarter']) top_mean_df = top_mean_df.reset_index() for y in top_mean_df.index: if y == 0: Q1_15 = top_mean_df['Mean QNB'].loc[y] if y == 1: Q2_15 = top_mean_df['Mean QNB'].loc[y] if y == 2: Q3_15 = top_mean_df['Mean QNB'].loc[y] if y == 3: Q4_15 = top_mean_df['Mean QNB'].loc[y] if y == 4: Q1_16 = top_mean_df['Mean QNB'].loc[y] if y == 5: Q2_16 = top_mean_df['Mean QNB'].loc[y] if y == 6: Q3_16 = top_mean_df['Mean QNB'].loc[y] if y == 7: Q4_16 = top_mean_df['Mean QNB'].loc[y] if y == 8: Q1_17 = top_mean_df['Mean QNB'].loc[y] if y == 9: Q2_17 = top_mean_df['Mean QNB'].loc[y] if y == 10: Q3_17 = top_mean_df['Mean QNB'].loc[y] if y == 11: Q4_17 = top_mean_df['Mean QNB'].loc[y] if y == 12: Q1_18 = top_mean_df['Mean QNB'].loc[y] if y == 13: Q2_18 = top_mean_df['Mean QNB'].loc[y] if y == 14: Q3_18 = top_mean_df['Mean QNB'].loc[y] if y == 15: Q4_18 = top_mean_df['Mean QNB'].loc[y] if y == 16: Q1_19 = top_mean_df['Mean QNB'].loc[y] if y == 17: Q2_19 = top_mean_df['Mean QNB'].loc[y] top_mean_arr.append((name, Q1_15, Q2_15, Q3_15, Q4_15, Q1_16, Q2_16, Q3_16, Q4_16, Q1_17, Q2_17, Q3_17, Q4_17, Q1_18, Q2_18, Q3_18, Q4_18, Q1_19, Q2_19)) ## Graph LGA top_mean_df = pd.DataFrame.from_records(top_mean_arr) top_mean_df.columns = ['LGA', '2015.Q1', '2015.Q2', '2015.Q3', '2015.Q4', '2016.Q1', '2016.Q2', '2016.Q3', '2016.Q4', '2017.Q1', '2017.Q2', '2017.Q3', '2017.Q4', '2018.Q1', '2018.Q2', '2018.Q3', '2018.Q4', '2019.Q1', '2019.Q2'] top_mean_df.index = top_mean_df['LGA'] top_mean_df = top_mean_df.drop('LGA', axis=1) ## remove columns for the graph to look nice top_mean_df = top_mean_df.drop(['2015.Q1', '2015.Q2', '2015.Q3', '2015.Q4', '2016.Q1', '2016.Q2', '2016.Q3', '2016.Q4', '2017.Q1', '2017.Q2'], axis=1) ### Get all LGAs and Mean QNB per year and quarter ### ## Get unique LGA LGA_list = sort_df['LGA'].unique() all_mean_arr = [] ## Get LGA renting price per year, append in array for x in range(len(LGA_list)): name = LGA_list[x] all_mean_df = rent_df[rent_df['LGA']==LGA_list[x]].sort_values(by="Mean QNB", ascending = False) all_mean_df = all_mean_df[all_mean_df['Dwelling Type'] == 'Total'] all_mean_df = all_mean_df[all_mean_df['Bedroom Number'] == 'Total'] all_mean_df = all_mean_df.sort_values(by=['Year', 'Quarter']) all_mean_df = all_mean_df.reset_index() for y in all_mean_df.index: if y == 0: Q1_15 = all_mean_df['Mean QNB'].loc[y] if y == 1: Q2_15 = all_mean_df['Mean QNB'].loc[y] if y == 2: Q3_15 = all_mean_df['Mean QNB'].loc[y] if y == 3: Q4_15 = all_mean_df['Mean QNB'].loc[y] if y == 4: Q1_16 = all_mean_df['Mean QNB'].loc[y] if y == 5: Q2_16 = all_mean_df['Mean QNB'].loc[y] if y == 6: Q3_16 = all_mean_df['Mean QNB'].loc[y] if y == 7: Q4_16 = all_mean_df['Mean QNB'].loc[y] if y == 8: Q1_17 = all_mean_df['Mean QNB'].loc[y] if y == 9: Q2_17 = all_mean_df['Mean QNB'].loc[y] if y == 10: Q3_17 = all_mean_df['Mean QNB'].loc[y] if y == 11: Q4_17 = all_mean_df['Mean QNB'].loc[y] if y == 12: Q1_18 = all_mean_df['Mean QNB'].loc[y] if y == 13: Q2_18 = all_mean_df['Mean QNB'].loc[y] if y == 14: Q3_18 = all_mean_df['Mean QNB'].loc[y] if y == 15: Q4_18 = all_mean_df['Mean QNB'].loc[y] if y == 16: Q1_19 = all_mean_df['Mean QNB'].loc[y] if y == 17: Q2_19 = all_mean_df['Mean QNB'].loc[y] all_mean_arr.append((name, Q1_15, Q2_15, Q3_15, Q4_15, Q1_16, Q2_16, Q3_16, Q4_16, Q1_17, Q2_17, Q3_17, Q4_17, Q1_18, Q2_18, Q3_18, Q4_18, Q1_19, Q2_19)) ## Array to dataframe all_mean_df = pd.DataFrame.from_records(all_mean_arr) all_mean_df.columns = ['LGA', '2015.Q1', '2015.Q2', '2015.Q3', '2015.Q4', '2016.Q1', '2016.Q2', '2016.Q3', '2016.Q4', '2017.Q1', '2017.Q2', '2017.Q3', '2017.Q4', '2018.Q1', '2018.Q2', '2018.Q3', '2018.Q4', '2019.Q1', '2019.Q2'] all_mean_df.index = all_mean_df['LGA'] #all_LGA_df = all_LGA_df.drop('LGA', axis=1) ## remove columns for the graph to look nice ### all_mean_df = all_mean_df.drop(['2015.Q1', '2015.Q2', '2015.Q3', '2015.Q4', '2016.Q1', '2016.Q2', '2016.Q3', '2016.Q4', '2017.Q1', '2017.Q2'], axis=1) ### TRAIN TEST for all_mean_df dataframe ### ## divide data from sklearn.model_selection import train_test_split cols = np.array(['2017.Q3', '2017.Q4', '2018.Q1', '2018.Q2', '2018.Q3', '2018.Q4', '2019.Q1']) X = all_mean_df[cols] y = all_mean_df['2019.Q2'] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size = 0.3) ## Models from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestRegressor from sklearn import svm from sklearn.neural_network import MLPClassifier from sklearn.metrics import mean_squared_error, r2_score model_list = [DecisionTreeClassifier(random_state=0), RandomForestRegressor(random_state=1), svm.SVC(gamma='scale'), MLPClassifier(hidden_layer_sizes=(100,100,100), max_iter=20, alpha=0.01, solver='sgd', verbose=10, random_state=21,tol=0.000000001)] model_name = ['Decision Tree', 'Random Forest', 'SVM', 'Neural Network'] stats = [] for x in range(4): model = model_list[x] model.fit(X_train, y_train) predicted = model.predict(X_train) MSE_train = mean_squared_error(y_train, predicted) R2_train = r2_score(y_train, predicted) Accuracy_train = model.score(X_train, y_train) predicted = model.predict(X_test) MSE_test = mean_squared_error(y_test, predicted) R2_test = r2_score(y_test, predicted) Accuracy_test = model.score(X_test, y_test) model = model_name[x] stats.append((model, MSE_train, MSE_test, R2_train, R2_test, Accuracy_train, Accuracy_test)) stats_df = pd.DataFrame.from_records(stats) stats_df.columns = ['Model', 'RMSE Train', 'RMSE Test', 'R-Squared Train', 'R-Squared Test', 'Accuracy Score Train', 'Accuracy Score Test'] stats_df.index = stats_df['Model'] stats_df = stats_df.drop('Model', axis = 1) ### Top LGAs according to New Signed Bonds ### ## remove Total column from LGA, and get unique LGA values sort_df = rent_df[rent_df['LGA']!='Total'] top_NB = sort_df.sort_values(by="NB Lodged", ascending = False)['LGA'].unique()[:10] top_NB_arr = [] ## Get the Mean QNB per quarter and year of top LGA for graphing for x in range(len(top_NB)): name = top_NB[x] top_NB_df = rent_df[rent_df['LGA']==top_NB[x]].sort_values(by="NB Lodged", ascending = False) top_NB_df = top_NB_df[top_NB_df['Dwelling Type'] == 'Total'] top_NB_df = top_NB_df[top_NB_df['Bedroom Number'] == 'Total'] top_NB_df = top_NB_df.sort_values(by=['Year', 'Quarter']) top_NB_df = top_NB_df.reset_index() for y in top_NB_df.index: if y == 0: Q1_15 = top_NB_df['NB Lodged'].loc[y] if y == 1: Q2_15 = top_NB_df['NB Lodged'].loc[y] if y == 2: Q3_15 = top_NB_df['NB Lodged'].loc[y] if y == 3: Q4_15 = top_NB_df['NB Lodged'].loc[y] if y == 4: Q1_16 = top_NB_df['NB Lodged'].loc[y] if y == 5: Q2_16 = top_NB_df['NB Lodged'].loc[y] if y == 6: Q3_16 = top_NB_df['NB Lodged'].loc[y] if y == 7: Q4_16 = top_NB_df['NB Lodged'].loc[y] if y == 8: Q1_17 = top_NB_df['NB Lodged'].loc[y] if y == 9: Q2_17 = top_NB_df['NB Lodged'].loc[y] if y == 10: Q3_17 = top_NB_df['NB Lodged'].loc[y] if y == 11: Q4_17 = top_NB_df['NB Lodged'].loc[y] if y == 12: Q1_18 = top_NB_df['NB Lodged'].loc[y] if y == 13: Q2_18 = top_NB_df['NB Lodged'].loc[y] if y == 14: Q3_18 = top_NB_df['NB Lodged'].loc[y] if y == 15: Q4_18 = top_NB_df['NB Lodged'].loc[y] if y == 16: Q1_19 = top_NB_df['NB Lodged'].loc[y] if y == 17: Q2_19 = top_NB_df['NB Lodged'].loc[y] top_NB_arr.append((name, Q1_15, Q2_15, Q3_15, Q4_15, Q1_16, Q2_16, Q3_16, Q4_16, Q1_17, Q2_17, Q3_17, Q4_17, Q1_18, Q2_18, Q3_18, Q4_18, Q1_19, Q2_19)) ## Get the Mean QNB per quarter and year of top LGA for graphing top_nbmean_arr=[] for x in range(len(top_NB)): name = top_NB[x] top_nbmean_df = rent_df[rent_df['LGA']==top_NB[x]].sort_values(by="Mean QNB", ascending = False) top_nbmean_df = top_nbmean_df[top_nbmean_df['Dwelling Type'] == 'Total'] top_nbmean_df = top_nbmean_df[top_nbmean_df['Bedroom Number'] == 'Total'] top_nbmean_df = top_nbmean_df.sort_values(by=['Year', 'Quarter']) top_nbmean_df = top_nbmean_df.reset_index() for y in top_nbmean_df.index: if y == 0: Q1_15 = top_nbmean_df['Mean QNB'].loc[y] if y == 1: Q2_15 = top_nbmean_df['Mean QNB'].loc[y] if y == 2: Q3_15 = top_nbmean_df['Mean QNB'].loc[y] if y == 3: Q4_15 = top_nbmean_df['Mean QNB'].loc[y] if y == 4: Q1_16 = top_nbmean_df['Mean QNB'].loc[y] if y == 5: Q2_16 = top_nbmean_df['Mean QNB'].loc[y] if y == 6: Q3_16 = top_nbmean_df['Mean QNB'].loc[y] if y == 7: Q4_16 = top_nbmean_df['Mean QNB'].loc[y] if y == 8: Q1_17 = top_nbmean_df['Mean QNB'].loc[y] if y == 9: Q2_17 = top_nbmean_df['Mean QNB'].loc[y] if y == 10: Q3_17 = top_nbmean_df['Mean QNB'].loc[y] if y == 11: Q4_17 = top_nbmean_df['Mean QNB'].loc[y] if y == 12: Q1_18 = top_nbmean_df['Mean QNB'].loc[y] if y == 13: Q2_18 = top_nbmean_df['Mean QNB'].loc[y] if y == 14: Q3_18 = top_nbmean_df['Mean QNB'].loc[y] if y == 15: Q4_18 = top_nbmean_df['Mean QNB'].loc[y] if y == 16: Q1_19 = top_nbmean_df['Mean QNB'].loc[y] if y == 17: Q2_19 = top_nbmean_df['Mean QNB'].loc[y] top_nbmean_arr.append((name, Q1_15, Q2_15, Q3_15, Q4_15, Q1_16, Q2_16, Q3_16, Q4_16, Q1_17, Q2_17, Q3_17, Q4_17, Q1_18, Q2_18, Q3_18, Q4_18, Q1_19, Q2_19)) ## Graph LGA top_NB_df = pd.DataFrame.from_records(top_NB_arr) top_NB_df.columns = ['LGA', '2015.Q1', '2015.Q2', '2015.Q3', '2015.Q4', '2016.Q1', '2016.Q2', '2016.Q3', '2016.Q4', '2017.Q1', '2017.Q2', '2017.Q3', '2017.Q4', '2018.Q1', '2018.Q2', '2018.Q3', '2018.Q4', '2019.Q1', '2019.Q2'] top_NB_df.index = top_NB_df['LGA'] top_NB_df = top_NB_df.drop('LGA', axis=1) ## remove columns for the graph to look nice top_NB_df = top_NB_df.drop(['2015.Q1', '2015.Q2', '2015.Q3', '2015.Q4', '2016.Q1', '2016.Q2', '2016.Q3', '2016.Q4', '2017.Q1', '2017.Q2'], axis=1) ## MEAN ## Graph LGA top_nbmean_df = pd.DataFrame.from_records(top_nbmean_arr) top_nbmean_df.columns = ['LGA', '2015.Q1', '2015.Q2', '2015.Q3', '2015.Q4', '2016.Q1', '2016.Q2', '2016.Q3', '2016.Q4', '2017.Q1', '2017.Q2', '2017.Q3', '2017.Q4', '2018.Q1', '2018.Q2', '2018.Q3', '2018.Q4', '2019.Q1', '2019.Q2'] top_nbmean_df.index = top_nbmean_df['LGA'] top_nbmean_df = top_nbmean_df.drop('LGA', axis=1) ## remove columns for the graph to look nice top_nbmean_df = top_nbmean_df.drop(['2015.Q1', '2015.Q2', '2015.Q3', '2015.Q4', '2016.Q1', '2016.Q2', '2016.Q3', '2016.Q4', '2017.Q1', '2017.Q2'], axis=1) ### Dwelling Type Most People Rent ### ## dataframe per dwelling type house_df = rent_df[rent_df['Dwelling Type']=='House'] flat_df = rent_df[rent_df['Dwelling Type']=='Flat/Unit'] townhouse_df = rent_df[rent_df['Dwelling Type']=='Townhouse'] ## get total count per year year = [2015, 2016, 2017, 2018, 2019] bond_count_arr = [] for x in range(len(year)): yr = year[x] house = house_df[house_df['Year']==yr]['TB Lodged'].sum() name = 'House' bond_count_arr.append((yr, house, name)) flat = flat_df[flat_df['Year']==yr]['TB Lodged'].sum() name = 'Flat/Unit' bond_count_arr.append((yr, flat, name)) townhouse = townhouse_df[townhouse_df['Year']==yr]['TB Lodged'].sum() name = 'Townhouse' bond_count_arr.append((yr, townhouse, name)) ### FLAT: number of bedrooms most people rent ### bond_count_df = pd.DataFrame.from_records(bond_count_arr) bond_count_df.columns = ['Year', 'Count', 'Dwelling Type'] BS_df = flat_df[flat_df['Bedroom Number']=='Bedsitter'] B1_df = flat_df[flat_df['Bedroom Number']=='1 Bedroom'] B2_df = flat_df[flat_df['Bedroom Number']=='2 Bedrooms'] B3_df = flat_df[flat_df['Bedroom Number']=='3 Bedrooms'] B4_df = flat_df[flat_df['Bedroom Number']=='4 or more Bedrooms'] flatbond_count_arr = [] for x in range(len(year)): yr = year[x] BS = BS_df[BS_df['Year']==yr]['TB Lodged'].sum() name = 'Bedsitter' flatbond_count_arr.append((yr, BS, name)) B1 = B1_df[B1_df['Year']==yr]['TB Lodged'].sum() name = '1 Bedroom' flatbond_count_arr.append((yr, B1, name)) B2 = B2_df[B2_df['Year']==yr]['TB Lodged'].sum() name = '2 Bedrooms' flatbond_count_arr.append((yr, B2, name)) B3 = B3_df[B3_df['Year']==yr]['TB Lodged'].sum() name = '3 Bedrooms' flatbond_count_arr.append((yr, B3, name)) B4 = B4_df[B4_df['Year']==yr]['TB Lodged'].sum() name = '4 or more Bedrooms' flatbond_count_arr.append((yr, B4, name)) flatbond_count_df = pd.DataFrame.from_records(flatbond_count_arr) flatbond_count_df.columns = ['Year', 'Count', 'Number of Bedrooms']
[ "noreply@github.com" ]
priyachotalia.noreply@github.com
73f1e58dd9fbcaf1a877626b83d1a46362b545e9
ced35fa4a418173e0fc2ba1b183a4e5cb438dc6e
/search/views.py
6949be1c62921beb12bb84ac2d1bca5336e3549f
[]
no_license
Code-Institute-Submissions/the_appleshop
d8c8bb051112236d3060baed70a52e13ec0f30e4
72ee732e99033ef53b54c2cc8281a7f3d1ad9b5a
refs/heads/master
2022-11-14T08:26:19.501103
2020-06-30T16:32:57
2020-06-30T16:32:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
from django.shortcuts import render from products.models import Product from reviews.models import Review def product_search(request): searchterm = request.GET.get('q', "") products = Product.objects.filter(name__icontains=searchterm) return render(request, 'products.html', {'products': products, 'searchterm': 'searchterm'}) def review_search(request): searchterm = request.GET.get('q', "") reviews = Review.objects.filter(name__icontains=searchterm) return render(request, 'reviews.html', {'reviews': reviews, 'searchterm': 'searchterm'})
[ "greenion@gmx.de" ]
greenion@gmx.de
17460a786f7a8b1672a87c662fbcf64ff1def6e0
91a1ca6fbabfd5846b76548ebd627adcdc907f0b
/gene_hints/citations/citations.py
d301f00660839ce55934a88fceea6a61e0a5ab9e
[ "BSD-3-Clause" ]
permissive
broadinstitute/gene-hints
72600e470ded0ce06a4f198eb47f505901554952
026ebe3f144bc2b54e0db67041de2e35969a8a3b
refs/heads/main
2023-04-18T01:57:10.984574
2021-12-01T01:01:29
2021-12-01T01:01:29
314,423,954
9
0
BSD-3-Clause
2021-12-01T01:01:30
2020-11-20T02:22:52
Python
UTF-8
Python
false
false
8,390
py
"""Output TSV of gene citation counts over time, and associated metrics This module downloads citation and genomic data from PubMed and other bioinformatics databases, combines that data, computes statistics, and writes it to organism-specific TSV files. The output gene citation hints files are combined with gene view hints files. These can then help power various applications, like the gene hints ideogram at https://broad.io/gene-hints. """ # Inspired by https://github.com/pkerpedjiev/gene-citation-counts/blob/master/README import argparse import csv from datetime import datetime, timedelta, timezone import os import glob import sys # Enable importing local modules when directly calling as script if __name__ == "__main__": cur_dir = os.path.join(os.path.dirname(__file__)) sys.path.append(cur_dir + "/..") from lib import read_organisms, is_cached, download_gzip from enrich_citations import EnrichCitations from pmids_by_date import pmids_by_date def format_date(days_before=None): """Get date strings in YYYY/MM/DD format, as expected by NCBI E-utils """ now = datetime.now(timezone.utc) if (days_before): return (now - timedelta(days=days_before)).strftime("%Y/%m/%d") else: return now.strftime("%Y/%m/%d") class Citations(): def __init__( self, cache=0, days=180, cites_dir="./pubmed_citations/" ): self.cites_dir = cites_dir self.data_dir = cites_dir + "data/" self.tmp_dir = self.data_dir + "tmp/" self.cache = cache self.days = days def split_ncbi_file_by_org(self, input_path, output_filename, organisms): """Split a multi-organism file from NCBI into organism-specific files Input file must be a TSV file with taxid as first column """ all_cached = True output_paths_by_org = {} org_names_by_taxid = {} for org in organisms: taxid = org["taxid"] org = org["scientific_name"] org_names_by_taxid[taxid] = org output_path = self.data_dir + org + "/" + output_filename output_paths_by_org[org] = output_path if not is_cached(output_path, self.cache, 2): all_cached = False if all_cached: print( f"All NCBI organism files for {input_path} are cached, " + "so not computing any." ) return with open(input_path, "r") as f: lines_by_org = {} for line in f: line = line.strip() taxid = line.split("\t")[0] if taxid in org_names_by_taxid: org = org_names_by_taxid[taxid] # scientific name if org in lines_by_org: lines_by_org[org].append(line) else: lines_by_org[org] = [line] for org in lines_by_org: lines = lines_by_org[org] output_path = self.data_dir + org + "/" + output_filename with open(output_path, "w") as f: f.write("\n".join(lines)) def merge_daily_pmids(self, output_path, daily_pmid_dir, cache=0): """Aggregate per-day files into one file, to ease downstream processing """ pmids = [] if is_cached(output_path, cache, 2): return for fp in glob.glob(daily_pmid_dir + "/*tsv"): with open(fp) as fd: reader = csv.reader(fd, delimiter="\t") for row in reader: year = row[0] # TODO: Remove this column, use filename date pmid = row[1] # PubMed ID, i.e. citation ID pmids.append(year + "\t" + pmid) with open(output_path, "w") as f: lines = "\n".join(pmids) f.write(lines) def fetch_all_publications_over_time(self, path, prev_path, days): """Download IDs for articles published in the last n `days` """ start_date = format_date(days) # E.g. 60 days ago end_date = format_date() # Today prev_start_date = format_date(days * 2) # E.g. 120 days ago prev_end_date = start_date # E.g. 60 days ago output_dir = self.tmp_dir + "timeframe" prev_output_dir= self.tmp_dir + "prev_timeframe" pmids_by_date(start_date, end_date, output_dir, self.cache) pmids_by_date(prev_start_date, prev_end_date, prev_output_dir, self.cache) print("Combine daily publication counts") self.merge_daily_pmids(path, output_dir) self.merge_daily_pmids(prev_path, prev_output_dir) def fetch_all_publications_per_organism(self, organisms): """Get IDs for articles published about our organisms of interest """ for org in organisms: dir = self.data_dir + org["scientific_name"] if not os.path.exists(dir): os.makedirs(dir) print("Download gene2pubmed") url = "https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz" output_name = "gene2pubmed" output_path = self.data_dir + output_name download_gzip(url, output_path, self.cache) print("Split gene2pubmed by organism") self.split_ncbi_file_by_org(output_path, output_name, organisms) def fetch_gene_info(self, organisms): print("Download gene_info") url = "https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz" output_name = "gene_info" output_path = self.data_dir + output_name download_gzip(url, output_path, self.cache) print("Split gene_info by organism") self.split_ncbi_file_by_org(output_path, output_name, organisms) def download_data(self, pmid_dates_path, prev_pmid_dates_path, days): """Download citation and genomic data, preparing it for enrichment """ # Make tmp_dir, and thereby also the other dirs if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) # Download IDs for articles published in the last `days` self.fetch_all_publications_over_time( pmid_dates_path, prev_pmid_dates_path, days ) organisms = read_organisms() # Download IDs for articles published about our organisms of interest. # We filter and join the "publications over time" and "publications per # organism" lists in `enrich_citations`. self.fetch_all_publications_per_organism(organisms) # Download more genomic information # TODO: Is data parsed from gene_info available in UCSC GTF files? self.fetch_gene_info(organisms) def run(self, sort_by="count"): """Output TSV of gene citation counts and related metrics over `days` """ days = self.days pmid_dates_path = self.data_dir + "pmid_dates.tsv" prev_pmid_dates_path = self.data_dir + "prev_pmid_dates.tsv" # Download citation and genomic data self.download_data(pmid_dates_path, prev_pmid_dates_path, days) # Combine that downloaded data, compute statistics, and write to TSV EnrichCitations().run( pmid_dates_path, prev_pmid_dates_path, days, sort_by ) # Command-line handler if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument( "--days", type=int, help="Number of days to analyze", default=180 ) parser.add_argument( "--sort-by", help="Metric by which to sort PubMed citations. Count is citations.", choices=["count", "delta", "rank", "rank_delta"], default="count" ) parser.add_argument( "--cache", help=( "Get fast but incomplete data. Dev setting. Levels:" + "0: Don't cache. " + "1: Cache download but not compute. " + "2: like debug=1, and cache intermediate compute. " + "(default: %(default)i)" ), choices=[0, 1, 2], default=0 ) args = parser.parse_args() days = args.days sort_by = args.sort_by cache = args.cache Citations(cache, days).run(sort_by)
[ "eweitz@broadinstitute.org" ]
eweitz@broadinstitute.org
ec288c5a2098fa65eae98cc0c0d11a54389af0ba
7b17e4a57df288fe5f3e7e81604eecacfd8ae3d1
/posts/migrations/0001_initial.py
5391fa2820d20c731a683eb38ed05bc46583cd83
[]
no_license
samuelwongsy/forum
16f7468a4832cf41290cf22adcde61985d0bdc4e
9ac5e4b98c79b8df932dc804daeaffbbb0db3684
refs/heads/master
2022-11-17T17:01:03.127965
2020-07-13T15:15:00
2020-07-13T15:15:00
279,334,928
0
0
null
null
null
null
UTF-8
Python
false
false
1,215
py
# Generated by Django 3.0.7 on 2020-07-12 13:18 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('groups', '0001_initial'), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now=True)), ('message', models.TextField()), ('message_html', models.TextField(editable=False)), ('group', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts', to='groups.Group')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created_at'], 'unique_together': {('user', 'message')}, }, ), ]
[ "samuel@Samuels-MacBook-Pro.local" ]
samuel@Samuels-MacBook-Pro.local
acec6ef9375f55783a801f351a99bb2dc0a52676
c730f09a8d96e1ec84c2cabbc33e6489befae09a
/tutorial/polls/views.py
f569cc5da38c04ec14e942b4e9814ff763fc96d3
[]
no_license
sosodoit/django
669a4b8abb27d1b4d062ac8063891dee3666108f
f0cdee32dd069b7c0ac7c417ac55aa4f063bdb1f
refs/heads/master
2023-06-01T01:26:13.786788
2021-06-30T08:28:39
2021-06-30T08:28:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,651
py
from polls.models import Question from .forms import QuestionForm from django.http import HttpResponse, JsonResponse from django.shortcuts import render, get_object_or_404, redirect from django.utils import timezone def index(request): question_list = \ Question.objects.order_by('-pub_date') return render( request, 'polls/question_list.html', {'question_list': question_list} ) # result = [ q.subject for q in question_list ] # return JsonResponse(result, safe=False) # return HttpResponse( str(result) ) def detail(request, question_id): # question = \ # Question.objects.get(pk=question_id) question = get_object_or_404(Question, id=question_id) return render( request, 'polls/question_detail.html', {'question': question} ) def answer_create(request, question_id): question = get_object_or_404(Question, pk=question_id) question.answer_set.create( content=request.POST.get('content'), create_date=timezone.now()) return redirect('/polls:detail/', question_id=question.id) # aa = request.POST.get('aa') # return HttpResponse(aa) # return redirect('/polls/%s/' % question_id) def question_create(request): if request.method == 'POST': form = QuestionForm(request.POST) if form.is_valid(): question = form.save(commit=False) question.create_date = timezone.now() question.save() return redirect('polls:index') else: form = QuestionForm() context = {'form': form} return render(request, 'polls/question_form.html', context)
[ "sohuig@naver.com" ]
sohuig@naver.com
4b0e7d05d72b190fc3957af9c61e79e11a21b644
abccdbf9b0849b47960c3c352870793405debfed
/0x07-python-test_driven_development/4-print_square.py
fab6205b3d5afa34eec331a57f3ea50045fc96f1
[]
no_license
hunterxx0/holbertonschool-higher_level_programming
88b1b0f31b536c6940f2e64a6924a06ba9cbf193
44064cf0722cd20d93f58b64ab185d2898770d73
refs/heads/master
2022-12-20T12:14:15.877147
2020-09-24T21:25:54
2020-09-24T21:25:54
259,276,369
0
1
null
null
null
null
UTF-8
Python
false
false
451
py
#!/usr/bin/python3 """ a square printing function: print_square():: >>> def print_square(1): # """ def print_square(size): """ Prints a square of size 'size' """ if type(size) is not int: raise TypeError('size must be an integer') elif size < 0: raise ValueError('size must be >= 0') else: for x in range(size): for y in range(size): print("#", end="") print()
[ "azouzimhamed@gmail.com" ]
azouzimhamed@gmail.com
45d38a28de6ab489b77524b1a769aaa6209882ac
06775c1881d6c687d89fdf3dddecab961aa54f3a
/Kmodel/K_model_RC.py
c031556763ece844e51eb0923849ded80ee7d679
[]
no_license
Siddharth3-14/Dynamical-Modelling-of-NGC-6503
53bb19bdaea7c7d0ed28568b3ee7be3eb45995ce
a817dcb3087851e5c393d87bc06ca397ee3c34c1
refs/heads/master
2022-11-06T16:47:39.275088
2020-06-16T07:22:49
2020-06-16T07:22:49
272,639,377
1
0
null
null
null
null
UTF-8
Python
false
false
3,403
py
import pymc3 as pm import pandas as pd import numpy as np import matplotlib.pyplot as plt import theano import theano.tensor as tt I_0_bulge = 2010.018 I_0_disk = 1907.2165 def simpsons_integration(a,b,N,func): h = (b-a)/N Xl0 = func(a) + func(b) Xl1 = 0 #summation of odd terms Xl2 = 0 #summation of even terms for i in range(1,N): X = a + i*h if i%2 == 0: Xl2 = Xl2 + func(X) elif i%2 != 0: Xl1 = Xl1 + func(X) Xl = h*(Xl0 + 2*Xl2 + 4*Xl1)/3.0 return Xl def Bulge(R,rb = 0.104,nb = 2.900): temp = 4*I_0_bulge*np.pi*np.exp(- ((R/rb)**(1/nb) ))*R*R return temp def Disc(R,R_d = 0.759, R_h = 0.473, alpha = 1.599): temp = 4*I_0_disk*np.pi*0.24*np.exp(-(R/R_d + (R/R_h)**(-alpha)))*R return temp #rotational curve modelling_data = pd.read_csv("../Data/modelling_data.csv",delimiter = '\t',header = 'infer') Radial_distance = np.array(modelling_data["Radial Distance"]) V_obs = np.array(modelling_data["V_obs"]) V_gas = np.array(modelling_data["V_gas"]) V_disk = np.array(modelling_data["V_disk"]) V_obs2 = (V_obs)*(V_obs) V_gas2 = (V_gas)*(V_gas) V_obs2 = V_obs2 - V_gas2 M_R_bulge = [] for i in Radial_distance: M_R_bulge.append(simpsons_integration(0.0001,i,5000,Bulge)/i) M_R_bulge = np.array(M_R_bulge) M_R_disk = [] for i in Radial_distance: M_R_disk.append(simpsons_integration(0.0001,i,5000,Disc)/i) M_R_disk = np.array(M_R_disk) total_model = pm.Model() with total_model: #priors sigma = pm.HalfNormal("sigma" , sigma = 0.4) gamma = pm.Gamma("gamma", alpha = 3, beta = 1) ah = pm.Gamma("ah", alpha = 3, beta = 1) Mh = pm.Gamma("Mh", alpha = 3, beta = 1) M_by_L_bulge = pm.Gamma("M_by_L_bulge", alpha = 3, beta = 1) M_by_L_disk = pm.Gamma("M_by_L_disc", alpha = 3, beta = 1) bulge_rot = M_by_L_bulge*M_R_bulge disk_rot = M_by_L_disk*M_R_disk halo_rot = (Mh*Radial_distance**(gamma - 1))/((ah**gamma)*(1 + ((Radial_distance/ah)**(gamma-1)) )) total_rot = bulge_rot + disk_rot + halo_rot #likelihood Y_obs = pm.Normal('Y_obs', mu = total_rot, sigma = sigma, observed = V_obs2) step = pm.Metropolis() trace = pm.sample(draws = 1000000, step = step, tune = 1000, cores = 2) print(pm.summary(trace)) parameter_mean = pm.summary(trace)["mean"] model_pred = (parameter_mean[4]*M_R_bulge + parameter_mean[5]*M_R_disk + (parameter_mean[3]*(Radial_distance**(parameter_mean[1] - 1)))/((parameter_mean[2]**parameter_mean[1])*(1 + ((Radial_distance/parameter_mean[2])**(parameter_mean[1]-1)) )))**0.5 bulge_pred = (parameter_mean[4]*M_R_bulge)**0.5 disk_pred = (parameter_mean[5]*M_R_disk)**0.5 halo_pred = ((parameter_mean[3]*(Radial_distance**(parameter_mean[1] - 1)))/((parameter_mean[2]**parameter_mean[1])*(1 + ((Radial_distance/parameter_mean[2])**(parameter_mean[1]-1)) )))**0.5 fig,axes = plt.subplots() axes.scatter(Radial_distance,(V_obs2)**0.5,color = 'y' , label = 'Data') plt.plot(Radial_distance,model_pred, color = 'k', label = 'Model Prediction') plt.plot(Radial_distance,bulge_pred, color = 'r', label = 'bulge contribution') plt.plot(Radial_distance,disk_pred, color = 'g', label = 'Disk contribution') plt.plot(Radial_distance,halo_pred, color ='b', label = 'Halo contribution') axes.set_ylabel("Rotational Velocity (Km/s) ") axes.set_xlabel("Radial Distance (Kpc)") plt.legend() plt.show()
[ "sidd.ansh@gmail.com" ]
sidd.ansh@gmail.com
a8c4360159626be4980ee48d7a6491db264ceafc
162e2588156cb2c0039c926c5c442363d9f77b00
/tests/integration_tests/data_steward/analytics/cdr_ops/report_runner_test.py
c00229bcb0b01b9d9828c4aa35f5c20ef5eb9760
[ "MIT" ]
permissive
nishanthpp93/curation
38be687240b52decc25ffb7b655f25e9faa40e47
ac9f38b2f4580ae806121dd929293159132c7d2a
refs/heads/develop
2022-08-08T20:33:53.125216
2021-12-03T21:38:48
2021-12-03T21:38:48
155,608,471
1
0
MIT
2020-10-09T01:14:39
2018-10-31T18:54:34
Python
UTF-8
Python
false
false
3,081
py
import os import unittest from tempfile import NamedTemporaryFile from pathlib import PurePath from bs4 import BeautifulSoup as bs from analytics.cdr_ops.report_runner import IPYNB_SUFFIX, HTML_SUFFIX, main TEST_NOTEBOOK = """ # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + tags=["parameters"] project_id = '' dataset_id = '' table_name = '' # - print( f'project_id={project_id}, dataset_id={dataset_id}, table_name={table_name}' ) """ class ReportRunnerTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.temp_notebook_py_file = NamedTemporaryFile('w', suffix='.py', delete=True) self.temp_notebook_py_file.write(TEST_NOTEBOOK.strip()) self.temp_notebook_py_file.flush() self.notebook_py_path = self.temp_notebook_py_file.name self.notebook_ipynb_path = PurePath( self.notebook_py_path).with_suffix(IPYNB_SUFFIX) self.notebook_html_path = PurePath( self.notebook_py_path).with_suffix(HTML_SUFFIX) self.parameters = { 'project_id': 'project_id', 'dataset_id': 'dataset_id', 'table_name': 'condition' } def tearDown(self): # This removes the python file automatically self.temp_notebook_py_file.close() # Remove the ipynb and html files os.remove(self.notebook_ipynb_path) os.remove(self.notebook_html_path) def test_main(self): # Running the notebook and saving to the HTML page main(self.notebook_py_path, self.parameters, self.notebook_py_path) # Testing the content of the HTML page with open(self.notebook_html_path, 'r') as f: soup = bs(f, parser="lxml", features="lxml") output_divs = soup.findAll('div', {"class": "jp-RenderedText"}) output_div_count = len(output_divs) self.assertEqual( output_div_count, 1, f'Expected exactly 1 <div class="jp-RenderedText"> element, saw {output_div_count}' ) output_pres = output_divs[0].findAll('pre') output_pres_count = len(output_pres) self.assertEqual( output_pres_count, 1, f'Expected exactly one <pre> element under <div class="jp-RenderedText">, saw {output_pres_count}' ) actual = output_pres[0].get_text().strip() expected = ', '.join( [f'{k}={v}' for k, v in self.parameters.items()]) self.assertEqual(actual, expected)
[ "noreply@github.com" ]
nishanthpp93.noreply@github.com
c6654c8ede1e9d92c945f377a946208b70fb1d3d
51070872634750df2c0ce583c08c7bcf8860dec7
/2017/ewkzgjjModule.py
3cab202334913bbf10203440c42a59f55b1658dd
[]
no_license
AndrewLevin/ZGamma
93eecc17c1d40ce662dcb321f5b0fb21998c4d16
c70380c4b38505421ba1673d09b0692176d18f31
refs/heads/master
2021-04-15T04:11:18.479840
2019-07-20T13:42:08
2019-07-20T13:42:08
126,224,421
0
1
null
null
null
null
UTF-8
Python
false
false
21,033
py
import ROOT ROOT.PyConfig.IgnoreCommandLineOptions = True from PhysicsTools.NanoAODTools.postprocessing.framework.datamodel import Collection from PhysicsTools.NanoAODTools.postprocessing.framework.eventloop import Module from PhysicsTools.NanoAODTools.postprocessing.tools import deltaR from PhysicsTools.NanoAODTools.postprocessing.tools import deltaPhi class ewkzgjjProducer(Module): def __init__(self): pass def beginJob(self): pass def endJob(self): pass def beginFile(self, inputFile, outputFile, inputTree, wrappedOutputTree): self.out = wrappedOutputTree self.out.branch("lepton_pdg_id", "i"); self.out.branch("run", "i"); self.out.branch("lumi", "i"); self.out.branch("gen_weight", "F"); self.out.branch("event", "l"); self.out.branch("photon_pt", "F"); self.out.branch("photon_eta", "F"); self.out.branch("photon_phi", "F"); self.out.branch("lepton1_pt", "F"); self.out.branch("lepton1_eta", "F"); self.out.branch("lepton1_phi", "F"); self.out.branch("lepton1_iso", "F"); self.out.branch("lepton1_id", "F"); self.out.branch("lepton2_pt", "F"); self.out.branch("lepton2_eta", "F"); self.out.branch("lepton2_phi", "F"); self.out.branch("lepton2_iso", "F"); self.out.branch("lepton2_id", "F"); self.out.branch("mjj", "F"); self.out.branch("detajj", "F"); self.out.branch("zep", "F"); self.out.branch("mzg", "F"); self.out.branch("mll", "F"); self.out.branch("photon_selection", "I"); self.out.branch("photon_gen_matching", "I"); def endFile(self, inputFile, outputFile, inputTree, wrappedOutputTree): pass def analyze(self, event): """process event, return True (go to next module) or False (fail, go to next event)""" electrons = Collection(event, "Electron") muons = Collection(event, "Muon") jets = Collection(event, "Jet") photons = Collection(event, "Photon") if hasattr(event,'nGenPart'): genparts = Collection(event, "GenPart") tight_muons = [] loose_but_not_tight_muons = [] tight_electrons = [] loose_but_not_tight_electrons = [] tight_photons = [] tight_jets = [] for i in range(0,len(muons)): if muons[i].pt < 20: continue if abs(muons[i].eta) > 2.4: continue if muons[i].pfRelIso04_all < 0.4: tight_muons.append(i) for i in range (0,len(electrons)): if electrons[i].pt < 20: continue if abs(electrons[i].eta) > 2.5: continue if (abs(electrons[i].eta + electrons[i].deltaEtaSC) < 1.479 and abs(electrons[i].dz) < 0.1 and abs(electrons[i].dxy) < 0.05) or (abs(electrons[i].eta + electrons[i].deltaEtaSC) > 1.479 and abs(electrons[i].dz) < 0.2 and abs(electrons[i].dxy) < 0.1): if electrons[i].cutBased >= 3: tight_electrons.append(i) elif electrons[i].cutBased >= 1: loose_but_not_tight_electrons.append(i) for i in range (0,len(photons)): if photons[i].pt < 25: continue if not ((abs(photons[i].eta) < 1.4442) or (1.566 < abs(photons[i].eta) and abs(photons[i].eta) < 2.5) ): continue if not (photons[i].cutBasedBitmap & (1 << 1) == (1 << 1)): continue # if photons[i].pixelSeed: if not photons[i].electronVeto: continue pass_lepton_dr_cut = True for j in range(0,len(tight_muons)): if deltaR(muons[tight_muons[j]].eta,muons[tight_muons[j]].phi,photons[i].eta,photons[i].phi) < 0.7: pass_lepton_dr_cut = False for j in range(0,len(tight_electrons)): if deltaR(electrons[tight_electrons[j]].eta,electrons[tight_electrons[j]].phi,photons[i].eta,photons[i].phi) < 0.7: pass_lepton_dr_cut = False for j in range(0,len(loose_but_not_tight_muons)): if deltaR(muons[loose_but_not_tight_muons[j]].eta,muons[loose_but_not_tight_muons[j]].phi,photons[i].eta,photons[i].phi) < 0.7: pass_lepton_dr_cut = False for j in range(0,len(loose_but_not_tight_electrons)): if deltaR(electrons[loose_but_not_tight_electrons[j]].eta,electrons[loose_but_not_tight_electrons[j]].phi,photons[i].eta,photons[i].phi) < 0.7: pass_lepton_dr_cut = False if not pass_lepton_dr_cut: continue tight_photons.append(i) for i in range (0,len(photons)): if photons[i].pt < 25: continue if not ((abs(photons[i].eta) < 1.4442) or (1.566 < abs(photons[i].eta) and abs(photons[i].eta) < 2.5) ): continue mask1 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 9) | (1 << 11) | (1 << 13) mask2 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 9) | (1 << 11) mask3 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 9) | (1 << 13) mask4 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 11) | (1 << 13) mask5 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 9) | (1 << 11) | (1 << 13) #invert the medium photon ID with the sigma_ietaieta cut removed bitmap = photons[i].vidNestedWPBitmap & mask1 #after adding the photons that pass the full ID, add the photons that pass the inverted ID if (bitmap == mask1): continue if not((bitmap == mask1) or (bitmap == mask2) or (bitmap == mask3) or (bitmap == mask4) or (bitmap == mask5)): continue # if photons[i].pixelSeed: if not photons[i].electronVeto: continue pass_lepton_dr_cut = True for j in range(0,len(tight_muons)): if deltaR(muons[tight_muons[j]].eta,muons[tight_muons[j]].phi,photons[i].eta,photons[i].phi) < 0.7: pass_lepton_dr_cut = False for j in range(0,len(tight_electrons)): if deltaR(electrons[tight_electrons[j]].eta,electrons[tight_electrons[j]].phi,photons[i].eta,photons[i].phi) < 0.7: pass_lepton_dr_cut = False for j in range(0,len(loose_but_not_tight_muons)): if deltaR(muons[loose_but_not_tight_muons[j]].eta,muons[loose_but_not_tight_muons[j]].phi,photons[i].eta,photons[i].phi) < 0.7: pass_lepton_dr_cut = False for j in range(0,len(loose_but_not_tight_electrons)): if deltaR(electrons[loose_but_not_tight_electrons[j]].eta,electrons[loose_but_not_tight_electrons[j]].phi,photons[i].eta,photons[i].phi) < 0.7: pass_lepton_dr_cut = False if not pass_lepton_dr_cut: continue tight_photons.append(i) for i in range(0,len(jets)): if jets[i].pt < 30: continue if abs(jets[i].eta) > 4.7: continue pass_photon_dr_cut = True for j in range(0,len(tight_photons)): if deltaR(photons[tight_photons[j]].eta,photons[tight_photons[j]].phi,jets[i].eta,jets[i].phi) < 0.5: pass_photon_dr_cut = False if not pass_photon_dr_cut: continue pass_lepton_dr_cut = True for j in range(0,len(tight_muons)): if deltaR(muons[tight_muons[j]].eta,muons[tight_muons[j]].phi,jets[i].eta,jets[i].phi) < 0.4: pass_lepton_dr_cut = False for j in range(0,len(tight_electrons)): if deltaR(electrons[tight_electrons[j]].eta,electrons[tight_electrons[j]].phi,jets[i].eta,jets[i].phi) < 0.4: pass_lepton_dr_cut = False for j in range(0,len(loose_but_not_tight_muons)): if deltaR(muons[loose_but_not_tight_muons[j]].eta,muons[loose_but_not_tight_muons[j]].phi,jets[i].eta,jets[i].phi) < 0.4: pass_lepton_dr_cut = False for j in range(0,len(loose_but_not_tight_electrons)): if deltaR(electrons[loose_but_not_tight_electrons[j]].eta,electrons[loose_but_not_tight_electrons[j]].phi,jets[i].eta,jets[i].phi) < 0.4: pass_lepton_dr_cut = False if not pass_lepton_dr_cut: continue tight_jets.append(i) if (len(tight_muons) == 2) and (len(loose_but_not_tight_electrons)+ len(tight_electrons)+len(loose_but_not_tight_muons) == 0): if len(tight_muons) == 2: i1 = tight_muons[0] i2 = tight_muons[1] elif len(loose_but_not_tight_muons) == 2: i1 = loose_but_not_tight_muons[0] i2 = loose_but_not_tight_muons[1] else: i1 = tight_muons[0] i2 = loose_but_not_tight_muons[0] if muons[i1].charge == muons[i2].charge: return False if hasattr(event,'HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8'): if not event.HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8: return False else: if not event.HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass8: return False if muons[i1].pt < 20: return False if muons[i2].pt < 20: return False if abs(muons[i1].eta) > 2.4: return False if abs(muons[i2].eta) > 2.4: return False if ((muons[i1].p4() + muons[i2].p4()).M() > 110) or ((muons[i1].p4() + muons[i2].p4()).M() < 70) : return False # print "selected meng lu muon event: " + str(event.event) + " " + str(event.luminosityBlock) + " " + str(event.run) if (len(tight_electrons) == 2) and (len(loose_but_not_tight_muons)+ len(tight_muons)+len(loose_but_not_tight_electrons) == 0): i1 = tight_electrons[0] i2 = tight_electrons[1] if electrons[i1].charge == electrons[i2].charge: return False if not event.HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ and not event.HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL: return False if electrons[i1].pt < 20: return False if electrons[i2].pt < 20: return False if abs(electrons[i1].eta) > 2.5: return False if abs(electrons[i2].eta) > 2.5: return False if ((electrons[i1].p4() + electrons[i2].p4()).M() > 110) or ((electrons[i1].p4() + electrons[i2].p4()).M() < 70) : return False # print "selected meng lu electron event: " + str(event.event) + " " + str(event.luminosityBlock) + " " + str(event.run) if len(tight_jets) < 2: return False if len(tight_photons) == 0: return False if jets[tight_jets[0]].pt < 30: return False if jets[tight_jets[1]].pt < 30: return False if abs(jets[tight_jets[0]].eta) > 4.7: return False if abs(jets[tight_jets[1]].eta) > 4.7: return False if (jets[tight_jets[0]].p4() + jets[tight_jets[1]].p4()).M() < 150: return False #if abs(jets[0].p4().Eta() - jets[1].p4().Eta()) < 2.5: # return False if photons[tight_photons[0]].pt < 25: return False if not ((abs(photons[tight_photons[0]].eta) < 1.4442) or (1.566 < abs(photons[tight_photons[0]].eta) and abs(photons[tight_photons[0]].eta) < 2.5) ): return False #if not abs(photons[tight_photons[0]].eta) < 1.4442: # return False # if not (photons[tight_photons[0]].cutBasedBitmap & (1 << 1) == (1 << 1)): # return False # if photons[tight_photons[0]].pixelSeed: if not photons[tight_photons[0]].electronVeto: return False if len(loose_but_not_tight_muons) + len(loose_but_not_tight_electrons) + len(tight_electrons) + len(tight_muons) > 2: return False if len(tight_muons) == 2: i1 = tight_muons[0] i2 = tight_muons[1] if hasattr(event,'HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8'): if not event.HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8: return False else: if not event.HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass8: return False if muons[i1].pt < 20: return False if muons[i2].pt < 20: return False if abs(muons[i1].eta) > 2.4: return False if abs(muons[i2].eta) > 2.4: return False # if muons[i1].pfRelIso04_all > 0.15: # return False # if muons[i2].pfRelIso04_all > 0.15: # return False # if not muons[i1].tightId: # return False # if not muons[i2].tightId: # return False if muons[i1].charge == muons[i2].charge: return False if ((muons[i1].p4() + muons[i2].p4()).M() > 110) or ((muons[i1].p4() + muons[i2].p4()).M() < 70) : return False self.out.fillBranch("zep",abs((muons[i1].p4() + muons[i2].p4() + photons[tight_photons[0]].p4()).Eta() - (jets[tight_jets[0]].eta + jets[tight_jets[1]].eta)/2)) self.out.fillBranch("mzg",(muons[i1].p4() + muons[i2].p4() + photons[tight_photons[0]].p4()).M()) self.out.fillBranch("mll",(muons[i1].p4() + muons[i2].p4()).M()) self.out.fillBranch("lepton_pdg_id",13) self.out.fillBranch("lepton1_pt",muons[i1].pt) self.out.fillBranch("lepton1_eta",muons[i1].eta) self.out.fillBranch("lepton1_phi",muons[i1].phi) self.out.fillBranch("lepton1_iso",muons[i1].pfRelIso04_all) self.out.fillBranch("lepton1_id",bool(muons[i1].tightId)) self.out.fillBranch("lepton2_pt",muons[i2].pt) self.out.fillBranch("lepton2_eta",muons[i2].eta) self.out.fillBranch("lepton2_phi",muons[i2].phi) self.out.fillBranch("lepton2_iso",muons[i2].pfRelIso04_all) self.out.fillBranch("lepton2_id",bool(muons[i2].tightId)) elif len(tight_electrons) == 2: i1 = tight_electrons[0] i2 = tight_electrons[1] if not event.HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ and not event.HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL: return False if electrons[i1].cutBased < 3: return False if electrons[i2].cutBased < 3: return False if electrons[i1].pt < 25: return False if electrons[i2].pt < 25: return False if abs(electrons[i1].eta) > 2.5: return False if abs(electrons[i2].eta) > 2.5: return False if electrons[i1].charge == electrons[i2].charge: return False if ((electrons[i1].p4() + electrons[i2].p4()).M() > 110) or ((electrons[i1].p4() + electrons[i2].p4()).M() < 70) : return False self.out.fillBranch("lepton_pdg_id",11) self.out.fillBranch("lepton_pdg_id",11) self.out.fillBranch("lepton1_pt",electrons[i1].pt) self.out.fillBranch("lepton1_eta",electrons[i1].eta) self.out.fillBranch("lepton1_phi",electrons[i1].phi) self.out.fillBranch("lepton1_iso",0) self.out.fillBranch("lepton1_id",0) self.out.fillBranch("lepton2_pt",electrons[i2].pt) self.out.fillBranch("lepton2_eta",electrons[i2].eta) self.out.fillBranch("lepton2_phi",electrons[i2].phi) self.out.fillBranch("lepton2_iso",0) self.out.fillBranch("lepton2_id",0) self.out.fillBranch("zep",abs((electrons[i1].p4() + electrons[i2].p4() + photons[tight_photons[0]].p4()).Eta() - (jets[tight_jets[0]].eta + jets[tight_jets[1]].eta)/2)) self.out.fillBranch("mzg",(electrons[i1].p4() + electrons[i2].p4() + photons[tight_photons[0]].p4()).M()) self.out.fillBranch("mll",(electrons[i1].p4() + electrons[i2].p4()).M()) else: return False print "selected event: " + str(event.event) + " " + str(event.luminosityBlock) + " " + str(event.run) mask1 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 9) | (1 << 11) | (1 << 13) mask2 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 9) | (1 << 11) mask3 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 9) | (1 << 13) mask4 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 7) | (1 << 11) | (1 << 13) mask5 = (1 << 1) | (1 << 3) | (1 << 5) | (1 << 9) | (1 << 11) | (1 << 13) #invert the medium photon ID with the sigma_ietaieta cut removed bitmap = photons[tight_photons[0]].vidNestedWPBitmap & mask1 if (bitmap == mask1): self.out.fillBranch("photon_selection",2) elif (bitmap == mask5): self.out.fillBranch("photon_selection",1) elif (bitmap == mask2) or (bitmap == mask3) or (bitmap == mask4): self.out.fillBranch("photon_selection",0) else: assert(0) isprompt_mask = (1 << 0) #isPrompt isdirectprompttaudecayproduct_mask = (1 << 5) #isDirectPromptTauDecayProduct photon_gen_matching=0 if hasattr(event,'nGenPart'): for i in range(0,len(genparts)): if genparts[i].pt > 5 and genparts[i].status == 1 and abs(genparts[i].pdgId) == 13 and ((genparts[i].statusFlags & isprompt_mask == isprompt_mask) or (genparts[i].statusFlags & isdirectprompttaudecayproduct_mask == isdirectprompttaudecayproduct_mask)) and deltaR(photons[tight_photons[0]].eta,photons[tight_photons[0]].phi,genparts[i].eta,genparts[i].phi) < 0.3: photon_gen_matching += 1 #m -> g if genparts[i].pt > 5 and genparts[i].status == 1 and abs(genparts[i].pdgId) == 11 and ((genparts[i].statusFlags & isprompt_mask == isprompt_mask) or (genparts[i].statusFlags & isdirectprompttaudecayproduct_mask == isdirectprompttaudecayproduct_mask)) and deltaR(photons[tight_photons[0]].eta,photons[tight_photons[0]].phi,genparts[i].eta,genparts[i].phi) < 0.3: photon_gen_matching += 2 #e -> g if genparts[i].pt > 5 and genparts[i].status == 1 and genparts[i].pdgId == 22 and ((genparts[i].statusFlags & isprompt_mask == isprompt_mask) or (genparts[i].statusFlags & isdirectprompttaudecayproduct_mask == isdirectprompttaudecayproduct_mask)) and deltaR(photons[tight_photons[0]].eta,photons[tight_photons[0]].phi,genparts[i].eta,genparts[i].phi) < 0.3: if genparts[i].genPartIdxMother >= 0 and (abs(genparts[genparts[i].genPartIdxMother].pdgId) == 11 or abs(genparts[genparts[i].genPartIdxMother].pdgId) == 13 or abs(genparts[genparts[i].genPartIdxMother].pdgId) == 15): photon_gen_matching += 8 #fsr photon else: photon_gen_matching += 4 #non-fsr photon self.out.fillBranch("photon_gen_matching",photon_gen_matching) self.out.fillBranch("photon_pt",photons[tight_photons[0]].pt) self.out.fillBranch("photon_eta",photons[tight_photons[0]].eta) self.out.fillBranch("photon_phi",photons[tight_photons[0]].phi) self.out.fillBranch("mjj",(jets[tight_jets[0]].p4() + jets[tight_jets[1]].p4()).M()) self.out.fillBranch("detajj",abs(jets[tight_jets[0]].eta - jets[tight_jets[1]].eta)) self.out.fillBranch("event",event.event) self.out.fillBranch("lumi",event.luminosityBlock) self.out.fillBranch("run",event.run) if hasattr(event,'Generator_weight'): self.out.fillBranch("gen_weight",event.Generator_weight) else: self.out.fillBranch("gen_weight",0) return True # define modules using the syntax 'name = lambda : constructor' to avoid having them loaded when not needed ewkzgjjModule = lambda : ewkzgjjProducer()
[ "amlevin@cern.ch" ]
amlevin@cern.ch
a4ca9efbd49fe56401b0c9f2e47ed03de5d2e30e
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-3865.py
b81595c3efd5b844c317e6d5fbd8ebfbb6201a00
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,291
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:$Type) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
44d7e761023d0c59d49f8e7dc69628d734013c37
7aa1857c48a0059a5abab8b69e0aed4bf3288dd3
/apicalls/admin.py
224c514c76189e31a0e81821b8fa2611040f75dd
[]
no_license
SushekT/api-intern-younginnovation
3fd44d4fe2950d9fbf5a71cee479e0ecbf73e22f
f0ae8514befbf6b670e3315355adbc8c029870b5
refs/heads/master
2023-04-17T23:17:12.576471
2021-05-09T04:26:01
2021-05-09T04:26:01
365,662,099
1
0
null
null
null
null
UTF-8
Python
false
false
297
py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Year) admin.site.register(Petroleum) admin.site.register(Country) admin.site.register(Main) admin.site.register(AverageSale) admin.site.register(TwoYearInterval) admin.site.register(Leastyear)
[ "sushek@pandamotions.com" ]
sushek@pandamotions.com
e6909e12c554550d60bdfede5c39f7070b75de43
c0dd1a4ffe1b515e5b9630691d685eff0b82c837
/chino (3)6.py
78183fd85b01e555e5edc6f9a903811d9cf932cc
[]
no_license
WATANA-be/mojisaiten
7e6231586d770431c30f6cff45b63055093899b5
fc02b3add7dc0887b0a4eb99f1fbdfd12a1cfb99
refs/heads/master
2022-12-31T11:37:14.080095
2020-10-26T14:47:39
2020-10-26T14:47:39
287,859,789
0
0
null
null
null
null
UTF-8
Python
false
false
2,117
py
import tkinter as tk import tkinter.filedialog as fd import PIL.Image import PIL.ImageTk import random # 機械学習で使うモジュール import sklearn.datasets import sklearn.svm import numpy lbl = tk.Label(text='点数をここに表示します。') # 画像ファイルを数値リストに変換 def imageToData(filename): #画像を8x8のグレースケールに変換 grayImage = PIL.Image.open(filename).convert('L') grayImage = grayImage.resize((8,8),PIL.Image.ANTIALIAS) #その画像を表示 dispImage = PIL.ImageTk.PhotoImage(grayImage.resize((300,300))) imageLabel.configure(image = dispImage) imageLabel.image = dispImage #数値をリストに変換 numImage = numpy.asarray(grayImage,dtype = float) numImage = numpy.floor(16 - 16 * (numImage / 256)) numImage = numImage.flatten() return numImage # 数値予測 def predictDigits(data): #学習用データ読み込み digits = sklearn.datasets.load_digits() #機械学習する clf = sklearn.svm.SVC(gamma = 0.001) clf.fit(digits.data, digits.target) #予測結果を表示 n = clf.predict([data]) textLabel.configure(text = 'この画像は'+str(n)+'です!') def dispLabel(point): point = ['0','10','20','30','40','50','60','70','80','99','100'] lbl.configure(text=random.choice(point)) # ファイルダイアログを開く def openFile(): fpath = fd.askopenfilename() if fpath: # 画像ファイルを数値リストに変換 data = imageToData(fpath) #数値を予測 predictDigits(data) # アプリのウィンドウ作成 root = tk.Tk() root.geometry('600x500') btn = tk.Button(root, text='ファイルを開く', command = openFile,font='Helvetica',size=40) imageLabel = tk.Label() btn.pack() btn2 = tk.Button(root,text='採点します',command = dispLabel) btn2.pack() #予測結果の表示ラベル textLabel = tk.Label(text='手書きの数字を認識しますね') textLabel.pack() lbl.pack() tk.mainloop()
[ "noreply@github.com" ]
WATANA-be.noreply@github.com
8355f29de4f46b28b142c9e461c978618c11156f
fbf97497019a2cf2d5a0d5f60dd7e4a81f1d8bd0
/backend/customauth/migrations/0007_auto_20190530_1156.py
21e655a3fdbb02aa7ebc858da51e3b44b71cee14
[]
no_license
totop716/ugg
3f1bc60f4476fd98de369f7ae722ae2b52dec560
56ebf281b5950918ef8e85102335f52b0c76fecb
refs/heads/master
2022-12-10T14:19:35.885870
2020-03-23T11:26:29
2020-03-23T11:26:29
249,412,202
0
0
null
2022-12-08T03:53:19
2020-03-23T11:28:17
CSS
UTF-8
Python
false
false
486
py
# Generated by Django 2.1.7 on 2019-05-30 11:56 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('customauth', '0006_auto_20190530_1153'), ] operations = [ migrations.RenameField( model_name='myuser', old_name='po_box', new_name='po_box_unit_number', ), migrations.RemoveField( model_name='myuser', name='unit_number', ), ]
[ "totop716@gmail.com" ]
totop716@gmail.com
5846bc204c7e1842e8b5ea77991c70bcba7181e3
8e24e8bba2dd476f9fe612226d24891ef81429b7
/geeksforgeeks/python/python_all/52_14.py
ac7dd979fdab752a1073fb88aae9f43db82f325a
[]
no_license
qmnguyenw/python_py4e
fb56c6dc91c49149031a11ca52c9037dc80d5dcf
84f37412bd43a3b357a17df9ff8811eba16bba6e
refs/heads/master
2023-06-01T07:58:13.996965
2021-06-15T08:39:26
2021-06-15T08:39:26
349,059,725
1
1
null
null
null
null
UTF-8
Python
false
false
3,219
py
Python – Test for Even values dictionary values lists Given a dictionary with lists as values, map Boolean values depending upon all values in List are Even or not. > **Input** : {“Gfg” : [6, 8, 10], “is” : [8, 10, 12, 16], “Best” : [10, 16, > 14, 6]} > **Output** : {‘Gfg’: True, ‘is’: True, ‘Best’: True} > **Explanation** : All lists have even numbers. > > **Input** : {“Gfg” : [6, 5, 10], “is” : [8, 10, 11, 16], “Best” : [10, 16, > 14, 6]} > **Output** : {‘Gfg’: False, ‘is’: False, ‘Best’: True} > **Explanation** : Only “Best” has even numbers. **Method #1 : Using loop** This is brute way in which this task can be performed. In this, we iterate for all the values and check if all list values are Even if yes, we assign key as True else False. ## Python3 __ __ __ __ __ __ __ # Python3 code to demonstrate working of # Test for Even values dictionary values lists # Using loop # initializing dictionary test_dict = {"Gfg" : [6, 7, 3], "is" : [8, 10, 12, 16], "Best" : [10, 16, 14, 6]} # printing original dictionary print("The original dictionary is : " + str(test_dict)) res = dict() for sub in test_dict: flag = 1 # checking for even elements for ele in test_dict[sub]: if ele % 2 != 0: flag = 0 break # adding True if all Even elements res[sub] = True if flag else False # printing result print("The computed dictionary : " + str(res)) --- __ __ **Output** The original dictionary is : {'Gfg': [6, 7, 3], 'is': [8, 10, 12, 16], 'Best': [10, 16, 14, 6]} The computed dictionary : {'Gfg': False, 'is': True, 'Best': True} **Method #2 : Using all() + dictionary comprehension** This is yet another way in which this task can be performed. In this, we check for all the elements using all() and dictionary comprehension is used to remake the result. ## Python3 __ __ __ __ __ __ __ # Python3 code to demonstrate working of # Test for Even values dictionary values lists # Using all() + dictionary comprehension # initializing dictionary test_dict = {"Gfg" : [6, 7, 3], "is" : [8, 10, 12, 16], "Best" : [10, 16, 14, 6]} # printing original dictionary print("The original dictionary is : " + str(test_dict)) # using all to check for all even elements res = {sub : all(ele % 2 == 0 for ele in test_dict[sub]) for sub in test_dict} # printing result print("The computed dictionary : " + str(res)) --- __ __ **Output** The original dictionary is : {'Gfg': [6, 7, 3], 'is': [8, 10, 12, 16], 'Best': [10, 16, 14, 6]} The computed dictionary : {'Gfg': False, 'is': True, 'Best': True} Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics. To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course. My Personal Notes _arrow_drop_up_ Save
[ "qmnguyenw@gmail.com" ]
qmnguyenw@gmail.com
c3ae3404fc4a1db0ceb96d6442dd4d9e6ffa2731
1e2f0c7e72d74fab23e5718de6afcfb9883091b1
/KAproject/forms.py
4e10762b072f9d71f13e0b2ebddcab594a2b86db
[]
no_license
nizovtsov/KAproject-InWorkPage
9ab990aa0759b5d5d3a13931ffa0c9dc4511cd71
49c594bebcbe586f0e26387797590dfcdc2accc7
refs/heads/master
2021-09-14T22:28:03.756872
2018-05-21T10:31:42
2018-05-21T10:31:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
from django import forms class ContactForm(forms.Form): email = forms.EmailField()
[ "war11ok@mail.ru" ]
war11ok@mail.ru
9d8b95b11ae0c4f34881e9d745ce9a40a7186e74
3497854f30c6dba6126d4456af4a5f86dbae144b
/testtakeMoney.py
34a335b76a62ba07b27e49946aa6024ced5ac9f0
[]
no_license
HKRliduan/store
3965d8b2785d8329a2485628d2b279f051e57e25
42622717ae8cd9d13a1d19e3314643133d532c2e
refs/heads/master
2023-08-23T19:36:24.963717
2021-10-29T03:54:42
2021-10-29T03:54:42
405,851,500
0
1
null
null
null
null
UTF-8
Python
false
false
587
py
from ddt import ddt from ddt import data from ddt import unpack from unittest import TestCase from Bank import bank_takeMoney da=[ [123456780,123456,1000,1], [123456789,654321,1000,2], [123456789,123456,-1,3], [123456789,123456,0,0], [123456789,123456,1,0], [123456789,123456,4999,0], [123456788,654321,5001,3], [123456788,654321,5000,0], ] @ddt class TestBank(TestCase): @data(*da) @unpack def testsave(self,a,b,c,d): result = bank_takeMoney(a,b,c) self.assertEqual(d,result)
[ "noreply@github.com" ]
HKRliduan.noreply@github.com
845f54b066f9fb8c81d3520f9e1664a0ffc92505
364d173ccc8f916b54e2a0adf98ed5d46446a100
/Flatbuffer/canv_flt/sequence_details.py
e7f8639a375f21f482eb9b1584fa8e7236b807f9
[]
no_license
tanveer941/miscellaneous_supporting_app
117e73357f4ca11e2e7cf95621daebab162bf33e
25c79341573860abf97a803f3e28395159898314
refs/heads/master
2020-03-27T12:23:54.290534
2019-09-11T04:21:39
2019-09-11T04:21:39
146,544,214
0
0
null
2019-10-29T21:26:35
2018-08-29T04:17:45
Jupyter Notebook
UTF-8
Python
false
false
1,374
py
# automatically generated by the FlatBuffers compiler, do not modify # namespace: import flatbuffers class sequence_details(object): __slots__ = ['_tab'] @classmethod def GetRootAssequence_details(cls, buf, offset): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = sequence_details() x.Init(buf, n + offset) return x # sequence_details def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # sequence_details def FolderName(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.String(o + self._tab.Pos) return None # sequence_details def FileName(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.String(o + self._tab.Pos) return None def sequence_detailsStart(builder): builder.StartObject(2) def sequence_detailsAddFolderName(builder, FolderName): builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(FolderName), 0) def sequence_detailsAddFileName(builder, FileName): builder.PrependUOffsetTRelativeSlot(1, flatbuffers.number_types.UOffsetTFlags.py_type(FileName), 0) def sequence_detailsEnd(builder): return builder.EndObject()
[ "mohammed.tanveer@continental-corporation.com" ]
mohammed.tanveer@continental-corporation.com
0f23d8577d052f85a57c7570956f039776aea0c6
551dbe47bdeaee1a04c2e4757f7212e73f64790d
/costproject/costproject/settings.py
b3ce07ebc36e4cf9f1dc07049c4da64c5bd8ba12
[]
no_license
ushanthaster/costproject
896acd96d85a30c1ed8829382a828f5c22f23d68
30ae89cbd432b0debc905c033ff2296e773d752a
refs/heads/master
2021-01-11T14:01:57.122610
2017-06-20T20:51:31
2017-06-20T20:51:31
94,934,221
0
0
null
null
null
null
UTF-8
Python
false
false
2,683
py
""" Django settings for costproject project. Generated by 'django-admin startproject' using Django 1.8.7. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '6)km=-p%dba6)#1f9fg866fooevxbhd$f^gk96q#%0yic%4#mo' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'costapp' ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'costproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'costproject.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'costproject.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'us/central' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/'
[ "evanhowell@consultant.com" ]
evanhowell@consultant.com
9ea146ac2a09a9f0a3a98d4b6e5b4c9b4bb1bbf7
c0534d3104b97572fd8d74c3e6becbf1699b9954
/Arrays Left Rotation.py
9f45eb4f5a040cc7cc134ddebbc0368cce2f3fd3
[]
no_license
VipinJain1/VIP-Algorithms-in-Python
a948ac422dcc5f7b33d598f4a19af77bee320a34
03b4734aa847f9cc25fa5b3f2393fdee18c6ac81
refs/heads/master
2020-05-30T07:00:43.402065
2019-06-19T00:52:16
2019-06-19T00:52:16
189,591,268
3
1
null
null
null
null
UTF-8
Python
false
false
1,639
py
''' A left rotation operation on an array shifts each of the array's elements unit to the left. For example, if left rotations are performed on array , then the array would become . Given an array of integers and a number, , perform left rotations on the array. Return the updated array to be printed as a single line of space-separated integers. Function Description Complete the function rotLeft in the editor below. It should return the resulting array of integers. rotLeft has the following parameter(s): An array of integers . An integer , the number of rotations. Input Format The first line contains two space-separated integers and , the size of and the number of left rotations you must perform. The second line contains space-separated integers . Constraints Output Format Print a single line of space-separated integers denoting the final state of the array after performing left rotations. Sample Input 5 4 1 2 3 4 5 Sample Output 5 1 2 3 4 ''' #Solution: #!/bin/python3 import math import os import random import re import sys # Complete the rotLeft function below. def rotLeft(a, d): newarr = [0] * len(a) count =0 ln = len(a) for i in a [d:ln]: newarr[count] = i count +=1 for i in a[0:d]: newarr[count] = i count +=1 return newarr if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nd = input().split() n = int(nd[0]) d = int(nd[1]) a = list(map(int, input().rstrip().split())) result = rotLeft(a, d) fptr.write(' '.join(map(str, result))) fptr.write('\n') fptr.close()
[ "vipjain@gmail.com" ]
vipjain@gmail.com
948a1c43794b17ea0bc5ea2626374c0b268aca32
ebaed06f16af7a6bef21495287acebb5af76e3aa
/web-crawling/delight_crawler.py
125fcc9cc4c2f7dfa097e0eb8bab194ba2e4aa98
[]
no_license
cherry979988/info-diff
50a4245720283c6d8057cdb096befb8b1c2d3154
de3f51187aab235a58512172f7134984bd68fcd1
refs/heads/master
2020-05-24T21:24:16.148099
2019-08-02T18:55:56
2019-08-02T18:55:56
187,473,982
2
2
null
null
null
null
UTF-8
Python
false
false
3,284
py
# -*- coding: utf-8 -*- """ Created on Thu Jul 19 15:16:38 2018 @author: xzzz """ import requests import time import xlwt import re from bs4 import BeautifulSoup import gc import read_bid book_wr = xlwt.Workbook(encoding='utf-8', style_compression=0) sheet = book_wr.add_sheet('test',cell_overwrite_ok=True) row = 0 col = 0 sheet.write(row, col, '用户名') col += 1 sheet.write(row, col, '用户名id') col += 1 sheet.write(row, col, '时间') row += 1 col = 0 book_wr.save(r'attitude.xls') #pre_url = 'https://weibo.cn/attitude/G41yqqTyi?rl=1&page=' headers = { 'cookie':'SCF=AuilS8C_l_Q4hcWzAntCupw6ySHu1JGSv06YfW1Q01YbXFuKIDQ-AbyRk_q7hteQzIb07nK0gJtceZM9F-G_aB4.; _T_WM=3e357b698836f1d3b5c126c4bf9138fc; SUB=_2A252S4HwDeRhGeBL61cS8S_Nyj-IHXVVty-4rDV6PUJbkdBeLW6kkW1NR06S8mnW27rUMebk6dSAlGJF-6SmrL7N; SUHB=0d4-eYtAjaj-SH', 'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' } count = 61270 #bid = ['G41pGh8LI','G4bQKjSVz','G41oXiQIi','G46KS1owP','G42h8v9mg','G47a33K52','G423pbcaN','G41pS2uDe','G41BfE77C','G49eM0vPN','G4aLIbEzr','G41BppoWc','G41QC4W6p','G3XA1fBTI','G4uBpzOVh','G3WFTtTyN','G49rF0OTB'] #'G4uy99S0t','G426NybQw','G41LbxlOz','G46YHfcM8','G430Nj8J1','G40sQ64zZ','G3WLZseST','G46rojy34','G46zx2DB4','G42kw2N8c', bid = read_bid.get_bid('content2.xls',248,294) for blog_name in bid: pre_url = 'https://weibo.cn/attitude/' + blog_name + '?rl=1&page=' url = pre_url + str(1) r = requests.get(url, headers=headers) soup = BeautifulSoup(r.content, 'html.parser') page_tag = soup.find('input', attrs={'name':'mp', 'type':'hidden'}) if page_tag is None: page_number = 1 else: page_number = int(page_tag.attrs['value']) del url,r,soup, page_tag gc.collect() time.sleep(8) while count <= page_number: url = pre_url + str(count) r = requests.get(url, headers=headers) soup = BeautifulSoup(r.content, 'html.parser') mark_tag = soup.find('div', attrs={'id':'attitude'}) # 如果发生微博官方不予给出数据的情况,强行暂停一分钟之后再对原界面重新进行请求 while mark_tag is None: del r, soup, mark_tag gc.collect() time.sleep(80) r = requests.get(url, headers=headers) soup = BeautifulSoup(r.content, 'html.parser') mark_tag = soup.find('div', attrs={'id':'attitude'}) d_list = mark_tag.find_all_next('div', attrs={'class':'c'}) d_list_len = len(d_list) for j in range(d_list_len): uname = d_list[j].a.text sheet.write(row, col, uname) col += 1 result = re.search(r'/(\d+)$',d_list[j].a.attrs['href']) if not result is None: sheet.write(row, col, result.group(1)) col += 1 sheet.write(row, col, d_list[j].span.text) row += 1 col = 0 del uname, result gc.collect() book_wr.save(r'attitude.xls') print('tweet_id '+blog_name+' '+'page '+str(count)+' has done') del url, r, soup, mark_tag, d_list count += 1 time.sleep(3) count = 1
[ "yeqy15@mails.tsinghua.edu.cn" ]
yeqy15@mails.tsinghua.edu.cn
8c756bd265bcaa35b4e1bd739faefabb429ca07b
8371e46c6e96aea5da8bed8b0dcd34a57b144fb1
/Python/lab10-unitconvert23.py
981fdce8b1fa323fba0165c38258bf2eaea79fd8
[]
no_license
PDXChloe/PDXcodeguild
4bfcd31072bfd17cb7959f71adfd867ff9e5d9ac
23ca3dc245bf51be932790d03e3333d89c462180
refs/heads/master
2021-08-24T08:13:36.027155
2017-12-08T20:30:14
2017-12-08T20:30:14
105,682,066
0
0
null
null
null
null
UTF-8
Python
false
false
477
py
#Version 2 + 3 print("") #I just need whitespace print("") meter_dic = {"ft":0.3048, "mi":1609.34, "m":1, "km":1000, "yd":0.9144, "in":0.0254} #made a dictionary with key:value pairs of "units to convert":amount in meters distance = input("What is the distance? \n") final_unit = input("What are the units (ft, mi, m, km, yd, in)?\n") units = meter_dic.get(final_unit) meters = int(distance) * units print(str(distance) + final_unit + " is " + str(meters)+" meters.")
[ "chloe_elliott@me.com" ]
chloe_elliott@me.com
8eef75cab1181157c9944e567533b91f03ae8168
7f0c02b3eef636cc382484dd8015207c35cc83a8
/lib/python/treadmill/runtime/linux/image/_docker.py
fa24bbf1455842f1673f31d8a4867769d207bc30
[ "Apache-2.0" ]
permissive
ceache/treadmill
4efa69482dafb990978bfdcb54b24c16ca5d1147
26a1f667fe272ff1762a558acfd66963494020ca
refs/heads/master
2021-01-12T12:44:13.474640
2019-08-20T23:22:37
2019-08-20T23:22:37
151,146,942
0
0
Apache-2.0
2018-10-01T19:31:51
2018-10-01T19:31:51
null
UTF-8
Python
false
false
4,405
py
"""Docker funtion in linux runtime """ import grp # pylint: disable=import-error import io import logging import os from treadmill import exc from treadmill import fs from treadmill import subproc from treadmill import supervisor from treadmill import utils from treadmill import dockerutils from treadmill.appcfg import abort as app_abort from treadmill.fs import linux as fs_linux from .. import _manifest _LOGGER = logging.getLogger(__name__) _CONTAINER_DOCKER_ENV_DIR = os.path.join('docker', 'env') _CONTAINER_DOCKER_ETC_DIR = os.path.join('docker', 'etc') _PASSWD_PATTERN = '{NAME}:x:{UID}:{GID}:{INFO}:{HOME}:{SHELL}' _GROUP_PATTERN = '{NAME}:x:{GID}' def _has_docker(app): return hasattr(app, 'docker') and app.docker def create_docker_environ_dir(container_dir, root_dir, app): """Creates environ dir for docker""" if not _has_docker(app): return env_dir = os.path.join(container_dir, _CONTAINER_DOCKER_ENV_DIR) env = {} treadmill_bind_preload_so = os.path.basename( subproc.resolve('treadmill_bind_preload.so') ) if app.ephemeral_ports.tcp or app.ephemeral_ports.udp: env['LD_PRELOAD'] = os.path.join( _manifest.TREADMILL_BIND_PATH, '$LIB', treadmill_bind_preload_so ) supervisor.create_environ_dir(env_dir, env) # Bind the environ directory in the container volume fs.mkdir_safe(os.path.join(root_dir, _CONTAINER_DOCKER_ENV_DIR)) fs_linux.mount_bind( root_dir, os.path.join(os.sep, _CONTAINER_DOCKER_ENV_DIR), source=os.path.join(container_dir, _CONTAINER_DOCKER_ENV_DIR), recursive=False, read_only=True ) def prepare_docker_daemon_path(newroot_norm, app, data): """Mount tmpfs for docker """ if not _has_docker(app): return # /etc/docker as temp fs as dockerd create /etc/docker/key.json try: fs_linux.mount_tmpfs(newroot_norm, '/etc/docker') except FileNotFoundError as err: _LOGGER.error('Failed to mount docker tmpfs: %s', err) # this exception is caught by sproc run to generate abort event raise exc.ContainerSetupError( msg=str(err), reason=app_abort.AbortedReason.UNSUPPORTED, ) # Setup the dockerd confdir dockerutils.prepare_docker_confdir( os.path.join(newroot_norm, 'etc', 'docker'), app, data ) def overlay_docker(container_dir, root_dir, app): """Mount etc/hosts for docker container """ # FIXME: This path is mounted as RW because ro volume in treadmill # container can not be mounted in docker 'Error response from # daemon: chown /etc/hosts: read-only file system.' if not _has_docker(app): return overlay_dir = os.path.join(container_dir, 'overlay') fs_linux.mount_bind( root_dir, os.path.join(os.sep, _CONTAINER_DOCKER_ETC_DIR, 'hosts'), source=os.path.join(overlay_dir, 'etc/hosts'), recursive=False, read_only=False ) _create_overlay_passwd(root_dir, app.proid) _create_overlay_group(root_dir, app.proid) def _create_overlay_group(root_dir, proid): """create a overlay /etc/group in oder to mount into container """ path = os.path.join(root_dir, _CONTAINER_DOCKER_ETC_DIR, 'group') (_uid, gid) = utils.get_uid_gid(proid) with io.open(path, 'w') as f: root = _GROUP_PATTERN.format( NAME='root', GID=0 ) f.write('{}\n'.format(root)) group = _GROUP_PATTERN.format( NAME=grp.getgrgid(gid).gr_name, GID=gid ) f.write('{}\n'.format(group)) def _create_overlay_passwd(root_dir, proid): """create a overlay /etc/passwd in order to mount into container """ path = os.path.join(root_dir, _CONTAINER_DOCKER_ETC_DIR, 'passwd') (uid, gid) = utils.get_uid_gid(proid) with io.open(path, 'w') as f: root = _PASSWD_PATTERN.format( NAME='root', UID=0, GID=0, INFO='root', HOME='/root', SHELL='/bin/sh' ) f.write('{}\n'.format(root)) user = _PASSWD_PATTERN.format( NAME=proid, UID=uid, GID=gid, INFO='', HOME='/', SHELL='/sbin/nologin' ) f.write('{}\n'.format(user))
[ "ceache@users.noreply.github.com" ]
ceache@users.noreply.github.com
f6b360d0925b08bb26d5b5b7ca588703ea9ab596
73de523bde0c9e8398c63a924b44aadc46d11202
/test/test_worm_properties.py
ffd5d7b3cfcfae272dabbafe279dda6ef75a2c62
[ "MIT" ]
permissive
Feyd-Aran/isilon_sdk_python
1c2fae306c1a95a99024dd13dc0fc3b120f9c1de
24e85a5577d15ac3db06862d07d5a261658c67b7
refs/heads/v8.0.0
2020-09-23T00:16:36.684270
2019-12-02T13:45:12
2019-12-02T13:45:12
225,351,700
0
0
MIT
2019-12-02T10:51:54
2019-12-02T10:51:53
null
UTF-8
Python
false
false
886
py
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 3 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_0 from isi_sdk_8_0.models.worm_properties import WormProperties # noqa: E501 from isi_sdk_8_0.rest import ApiException class TestWormProperties(unittest.TestCase): """WormProperties unit test stubs""" def setUp(self): pass def tearDown(self): pass def testWormProperties(self): """Test WormProperties""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_0.models.worm_properties.WormProperties() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "Brandon.Krueger@isilon.com" ]
Brandon.Krueger@isilon.com
34698f6c132ed077c67d3a15f869d8d78bcefe61
3e3863e9eced23d646cd039a395b08ed6d1f3929
/training/medium/robbery-optimisation.py
ca3d8f40995da67cf5301d321958008d3857282b
[]
no_license
Coni63/CG_repo
dd608bdbd2560598a72339d150ec003e6b688cac
d30e01dfe2a12e26c85799c82cf38e606ffdbc16
refs/heads/master
2020-06-25T04:03:54.260340
2019-10-20T16:16:40
2019-10-20T16:16:40
199,195,242
4
0
null
null
null
null
UTF-8
Python
false
false
492
py
import sys import math # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. n = int(input()) housevalue = [int(input()) for i in range(n)] n = len(housevalue) pn = housevalue[0] qn = 0 for i in range(1, n): pn1 = pn qn1 = qn pn = qn1 + housevalue[i] qn = max(pn1, qn1) # Write an action using print # To debug: print("Debug messages...", file=sys.stderr) print(max(pn,qn))
[ "=" ]
=
8e0dea7c0f27c1eca36d8902f9f557d058dadf2f
5cad23c80ce4e22603a14d21eac48fa76517595c
/pickle2csv.py
3ae65a5e781efef6d6b38547d12bfa3412421a3d
[]
no_license
cramraj8/adrc-clustering
4f8e63b62be4bbe986679894487d89423fb26a05
d033452b9cadd40833e49c297077244383239370
refs/heads/master
2021-06-13T11:13:14.003846
2017-04-06T17:36:46
2017-04-06T17:36:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
268
py
import csv import pickle import json data = pickle.load(open("WordFluencyMultiTest.pickle", "rb")) with open("WordFluencyMultiTest.csv", "w") as fh: w = csv.writer(fh, delimiter='\t') w.writerow(data[0].keys()) for record in data: w.writerow(record.values())
[ "mohammed@c-ac-19-162.wireless.emory.edu" ]
mohammed@c-ac-19-162.wireless.emory.edu
224805ac66be7bfd45da0592751b445c9731c9ef
61617c81e9be91abb6d19ac0205c7fc51bc73658
/decompose_matrix.py
50e46db26708dfee6b3a2bab01c229c9c8e22a7c
[ "MIT" ]
permissive
vtlim/GLIC
2a5982352a2fc037d98ecfee1159ed3fa9f6c8e4
90e00e7030748c70ad284cda8785745b6c16ecbb
refs/heads/master
2020-06-13T13:05:33.913607
2020-02-04T02:07:58
2020-02-04T02:07:58
194,664,685
1
0
null
null
null
null
UTF-8
Python
false
false
770
py
import sys sys.path.insert(0, "/nethome/vlim/Desktop/Project/scripts/") import transformations import numpy as np m = [\ [0.6367010474205017, 0.7711036205291748, -0.0033135463017970324, 36.229270935058594],\ [0.7709313631057739, -0.6366397142410278, -0.018834583461284637, 104.86688995361328], \ [-0.01663294993340969, 0.009437481872737408, -0.9998171329498291, 191.3174285888672],\ [0.0, 0.0, 0.0, 1.0]] print('\nThe input transformation matrix is:\n{}\n'.format(np.matrix(m))) scale, shear, angles, translate, perspective = transformations.decompose_matrix(m) print('scale:\n{}\n'.format(scale)) print('shear:\n{}\n'.format(shear)) print('angles:\n{}\n'.format(angles)) print('translate:\n{}\n'.format(translate)) print('perspective:\n{}\n'.format(perspective))
[ "lim.t.victoria@gmail.com" ]
lim.t.victoria@gmail.com
d4b409d45e6630900d2c234c83fa37e1dee5197d
de1a4823b44484a16e84229ef6d4c2218cebc240
/miscellanous_code.py
3a8a3e2cce20abc23d1198a336fee7524f3a433f
[ "Apache-2.0" ]
permissive
jaehobang/Eva
b5baca7f91e3c6c6d439573430485afdfa3c05e8
e7f649990b8bca3bc29b3832c0ecf32efb402647
refs/heads/master
2020-07-11T13:05:42.284943
2020-04-14T21:17:38
2020-04-14T21:17:38
204,546,701
0
0
null
null
null
null
UTF-8
Python
false
false
1,115
py
#### draw multiple figures with plt ##### import numpy as np import matplotlib.pyplot as plt w=10 h=10 size = 20 fig=plt.figure(figsize=(size, size)) columns = 4 rows = 5 for i in range(1, columns*rows +1): img = np.random.randint(10, size=(h,w)) fig.add_subplot(rows, columns, i) plt.imshow(img) plt.show() #### drawing patches # img: img to draw the patches on # patches: list of rectangle points to draw def draw_patches(img, patches, format='ml'): import cv2 new_img = np.copy(img) color = (0, 0, 255) if format == 'cv': if patches is not None: for i in range(len(patches)): cv2.rectangle(new_img, (int(patches[i][0]), int(patches[i][1])), \ (int(patches[i][0] + patches[i][2]), int(patches[i][1] + patches[i][3])), color, 2) if format == 'ml': if patches is not None: for i in range(len(patches)): cv2.rectangle(new_img, (int(patches[i][0]), int(patches[i][1])), \ (int(patches[i][2]), int(patches[i][3])), color, 2) return new_img
[ "jaehob@andrew.cmu.edu" ]
jaehob@andrew.cmu.edu
5d0da2fb05da5122abf58245cb1e127d006acbc0
4e0e96aa663683642bf1b6dd19885a245c5d4129
/flowcharts/migrations/0008_auto_20191213_2017.py
c1007c055a7255f7a5a274c89055b4b26adf3aa9
[]
no_license
atleastzero/XYearDjango
fe12707f0cd4d8c272452cc2b004360e3554645d
5d25ed268fd6fdba49f7fe8ac0ba08031876e235
refs/heads/master
2021-09-24T19:13:56.990118
2019-12-14T03:52:11
2019-12-14T03:52:11
222,778,871
0
0
null
2021-09-22T18:07:23
2019-11-19T20:00:53
Python
UTF-8
Python
false
false
564
py
# Generated by Django 3.0 on 2019-12-13 20:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('flowcharts', '0007_auto_20191213_0625'), ] operations = [ migrations.AlterField( model_name='term', name='end_date', field=models.DateField(verbose_name='end_date'), ), migrations.AlterField( model_name='term', name='start_date', field=models.DateField(verbose_name='start_date'), ), ]
[ "megan.obryan52@gmail.com" ]
megan.obryan52@gmail.com
fc9f01887c4a6b276e93e9c6fd48ae39dd9e98b0
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p3BR/R2/benchmark/startQiskit_Class66.py
de1dd2f58ce2a9d58b5a7c4f8933d6310d93f36a
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
5,442
py
# qubit number=3 # total number=11 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.x(input_qubit[2]) # number=2 prog.h(input_qubit[1]) # number=7 prog.cz(input_qubit[2],input_qubit[1]) # number=8 prog.h(input_qubit[1]) # number=9 prog.cx(input_qubit[2],input_qubit[1]) # number=4 prog.cx(input_qubit[2],input_qubit[1]) # number=10 prog.z(input_qubit[2]) # number=3 prog.y(input_qubit[2]) # number=5 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_Class66.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = BasicAer.get_backend('statevector_simulator') circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
[ "wangjiyuan123@yeah.net" ]
wangjiyuan123@yeah.net
0f9b4a02fec70df429500e3582e6a107c7546ee6
3a6199c490047fc444be8f94580655b10e6139aa
/deg_pln/deg_pln/planner/views.py
af66d8304f754117067d3e2444f4c26291e2cd71
[ "MIT" ]
permissive
XheonNovus/DegreePlanner
cbcc13c3a48e1af8e7a5a323d91ccdb36d159553
e8ea17d4a9811767264cded7930642a7b333088f
refs/heads/master
2020-03-09T00:32:27.640137
2018-02-26T02:08:15
2018-02-26T02:08:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,820
py
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, Http404, HttpResponseRedirect from django.template import loader from django.urls import reverse from .models import Class from django.views import generic # Create your views here. class IndexView(generic.ListView): template_name = 'planner/index.html' context_object_name = 'classes' def get_queryset(self): return Class.objects.all() class EligibleView(generic.ListView): template_name = 'planner/eligible.html' context_object_name = 'eligible_classes' def get_queryset(self): elig_class = Class.objects.filter(elig=False) # gets all clases that aren't eligible elig_class = elig_class.filter(taken=False) # filters all courses that aren't eligeble and haven't been taken yet for stuff in elig_class: # iterator req1 = stuff.pre_req1 # gets the data in pre_req1 field if req1 == '': stuff.elig = True stuff.save() else: #req2 = stuff.pre_req2 #req3 = stuff.pre_req3 c1 = Class.objects.get(code = req1) # gets the class(object) with the name and checks if that class (the prerequisite) has been taken #c2 = Class.objects.get(name = req2) #c3 = Class.objects.get(name = req3) if c1.taken == True: #if the pre_req has been taken the class is updated to eligible. stuff.elig = True stuff.save() # saves the update return Class.objects.filter(elig=True) class TakenView(generic.ListView): template_name = 'planner/taken.html' context_object_name = 'taken_classes' def get_queryset(self): return Class.objects.filter(taken=True)
[ "parshad.anil@gmail.com" ]
parshad.anil@gmail.com
c16d7fead97b6cc83da3eef62159a58da37d2b06
f04b275d6c08ce4725a0d2737a5889616e33af86
/isedc/sedc_target2_time.py
f84c9208ba613161b092aece652f9105806d849a
[]
no_license
ADMAntwerp/ImageCounterfactualExplanations
aef53e197a7cc49cf6418ca1f62a3ebc9d098a40
1c8bd4f66433427fe1b9de3795131f39888793fa
refs/heads/main
2023-08-14T23:55:17.379401
2021-09-15T13:04:33
2021-09-15T13:04:33
404,261,211
2
0
null
null
null
null
UTF-8
Python
false
false
4,571
py
# -*- coding: utf-8 -*- """ Created on Mon Feb 17 13:56:26 2020 @author: TVermeire """ def sedc_target2_time(image, classifier, segments, target_class, mode, time_limit=15): import time import numpy as np import cv2 start = time.time() result = classifier.predict(image[np.newaxis,...]) c = np.argmax(result) p = result[0,target_class] R = [] #list of explanations I = [] #corresponding perturbed images C = [] #corresponding new classes P = [] #corresponding scores for original class too_long = False original_score = False sets_to_expand_on = [] P_sets_to_expand_on = np.array([]) if mode == 'mean': perturbed_image = np.zeros((224,224,3)) perturbed_image[:,:,0] = np.mean(image[:,:,0]) perturbed_image[:,:,1] = np.mean(image[:,:,1]) perturbed_image[:,:,2] = np.mean(image[:,:,2]) elif mode == 'blur': perturbed_image = cv2.GaussianBlur(image, (31,31), 0) elif mode == 'random': perturbed_image = np.random.random((224,224,3)) elif mode == 'inpaint': perturbed_image = np.zeros((224,224,3)) for j in np.unique(segments): image_absolute = (image*255).astype('uint8') mask = np.full([image_absolute.shape[0],image_absolute.shape[1]],0) mask[segments == j] = 255 mask = mask.astype('uint8') image_segment_inpainted = cv2.inpaint(image_absolute, mask, 3, cv2.INPAINT_NS) perturbed_image[segments == j] = image_segment_inpainted[segments == j]/255.0 for j in np.unique(segments): test_image = image.copy() test_image[segments == j] = perturbed_image[segments == j] result = classifier.predict(test_image[np.newaxis,...]) c_new = np.argmax(result) p_new = result[0,target_class] if c_new == target_class: R.append([j]) I.append(test_image) C.append(c_new) P.append(p_new) else: sets_to_expand_on.append([j]) P_sets_to_expand_on = np.append(P_sets_to_expand_on,p_new - result[0,c]) cs = j while len(R) == 0: if (time.time() - start) > time_limit: # To create output for experiment (very dirty) too_long = True explanation = False perturbation = test_image segments_in_explanation = cs target_score = p_new new_class = c_new original_score = result[0,c] break combo = np.argmax(P_sets_to_expand_on) combo_set = [] for j in np.unique(segments): if j not in sets_to_expand_on[combo]: combo_set.append(np.append(sets_to_expand_on[combo],j)) # Make sure to not go back to previous node del sets_to_expand_on[combo] P_sets_to_expand_on = np.delete(P_sets_to_expand_on,combo) for cs in combo_set: test_image = image.copy() for k in cs: test_image[segments == k] = perturbed_image[segments == k] result = classifier.predict(test_image[np.newaxis,...]) c_new = np.argmax(result) p_new = result[0,target_class] if c_new == target_class: R.append(cs) I.append(test_image) C.append(c_new) P.append(p_new) else: sets_to_expand_on.append(cs) P_sets_to_expand_on = np.append(P_sets_to_expand_on,p_new - result[0,c]) if too_long == False: # Select best explanation: highest target score increase best_explanation = np.argmax(P - p) segments_in_explanation = R[best_explanation] explanation = np.full([image.shape[0],image.shape[1],image.shape[2]],0/255.0) for i in R[best_explanation]: explanation[segments == i] = image[segments == i] perturbation = I[best_explanation] new_class = C[best_explanation] target_score = P[best_explanation] else: print('No explanation found within time limit of ' + str(time_limit) + ' seconds.') return explanation, segments_in_explanation, perturbation, new_class, original_score, target_score, too_long
[ "mazzine.r@gmail.com" ]
mazzine.r@gmail.com
3e9cadeb3061c9ecf3ad2073260050420e43eb21
a8e435a42361d1ea69f97fd0b77271d94e840e7f
/buildoutbuilder.managers/buildoutbuilder/managers/errors.py
c745f48a66e5ad60da0ffab00bba8ef202f2cc2f
[]
no_license
xkenneth/buildoutbuilder
2aab4930ef7d0b297470f52ca4e51369e9987088
0c4195f7996e7be8e3edf1ee38863df6caf6aed0
refs/heads/master
2016-09-06T21:29:30.630016
2008-08-19T08:31:19
2008-08-19T08:31:19
26,232
1
1
null
null
null
null
UTF-8
Python
false
false
393
py
class BuildoutBuilderException(Exception): def __init__(self, value): self.message = self.__doc__ self.parameter = value def __str__(self): return repr(self.message)+repr(self.parameter) class PartIsNotRecipe(BuildoutBuilderException): """Part does not have a recipe.""" class MissingPart(BuildoutBuilderException): """A part is missing."""
[ "xkenneth@gmail.com" ]
xkenneth@gmail.com
463cdc82d5cd7cd1180bc5eaf2219bb87377ff45
c9ad6ad969de505b3c8471c6f46dfd782a0fb498
/0x07-python-test_driven_development/2-matrix_divided.py
e9a56cfcebadaa9b6d3ac60f351c118538368d68
[]
no_license
enterpreneur369/holbertonschool-higher_level_programming
002fd5a19b40c8b1db06b34c4344e307f24c17ac
dd7d3f14bf3bacb41e2116d732ced78998a4afcc
refs/heads/master
2022-06-20T00:57:27.736122
2020-05-06T14:26:10
2020-05-06T14:26:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,261
py
#!/usr/bin/python3 """ Module 2-matrix_mul Module that contains the function matrix_mul """ def matrix_mul(m_a, m_b): """ Returns a product matrix Arguments: m_a (list:int, list:float): First matrix m_b (list:int, list:float): Second matrix """ res = [] row_err = "Each row of the matrix must have the\ same size" tp_err = "div must be a number" lt_erra = "m_a must be a list" lt_errb = "m_b must be a list" lt2d_erra = "m_a must be a list of lists" lt2d_errb = "m_b must be a list of lists" lt_emptya = "m_a can't be empty" lt_emptyb = "m_a can't be empty" lte_erra = "m_a should contain only integers or floats" lte_errb = "m_b should contain only integers or floats" lte_sizera = "each row of m_a must be of the same size" lte_sizerb = "each row of m_b must be of the same size" mul_err = "m_a and m_b can't be multiplied" if not isinstance(m_a, list): raise TypeError(lt_erra) if not isinstance(m_b, list): raise TypeError(lt_errb) if m_a[0] is None or not isinstance(m_a[0], list): raise TypeError(lt2d_erra) if m_b[0] is None or not isinstance(m_b[0], list): raise TypeError(lt2d_errb) if m_a == [] or m_a == [[]]: raise ValueError(lt_emptya) if m_b == [] or m_b == [[]]: raise ValueError(lt_emptyb) lenr0, lenc0 = len(m_a), len(m_a[0]) i, j = 0, 0 typ = None for i in range(lenr0): for j in range(lenc0): if i == 0 and j == 0: if isinstance(m_a[i][j], int): typ = int elif isinstance(m_a[i][j], float): typ = float else: raise TypeError(lte_erra) else: if isinstance(m_a[i][j], typ): continue else: raise TypeError(lte_erra) lenr0, lenc0 = len(m_b), len(m_b[0]) i, j = 0, 0 typ = None for i in range(lenr0): for j in range(lenc0): if i == 0 and j == 0: if isinstance(m_b[i][j], int): typ = int elif isinstance(m_b[i][j], float): typ = float else: raise TypeError(lte_erra) else: if isinstance(m_b[i][j], typ): continue else: raise TypeError(lte_errb) lenr0, lenc0 = len(m_a), len(m_a[0]) n = lenr0 i, j, cs = 0, 0, 0 for i in range(lenr0): for j in range(lenc0): if len(m_a[i]) != lenc0: raise TypeError(lte_sizera) lenr0, lenc0 = len(m_b), len(m_b[0]) p = lenc0 i, j, cs = 0, 0, 0 for i in range(lenr0): for j in range(lenc0): if len(m_b[i]) != lenc0: raise TypeError(lte_sizerb) lenr0, lenc0 = len(m_b), len(m_b[0]) i, k, cs = 0, 0, 0 for i in range(n): row = [] cs = 0 for k in range(p): try: cs += m_a[i][k] * m_b[k][j] row.append(cs) except ValueError: raise ValueError(mul_err) res.append(row) return (res)
[ "jose.calderon@holbertonschool.com" ]
jose.calderon@holbertonschool.com
b150f199a4268e8ab72d5c9a9ce49b2d6abe73d4
698cb8d24879fe75669af6f2667c3f88660a0a1e
/deepModel/s11b_ALS_CONCAT.py
29627c713b760a2dcfce82233dba73e25b24c24f
[]
no_license
HuichuanLI/Recommand-Algorithme
c83c5d34d75eebd127e2aef7abc8b7152fc54f96
302e14a3f7e5d72ded73b72a538596b6dc1233ff
refs/heads/master
2023-05-11T03:01:30.940242
2023-04-30T08:03:19
2023-04-30T08:03:19
187,097,782
71
19
null
null
null
null
UTF-8
Python
false
false
4,293
py
import numpy as np from data_set import filepaths as fp from torch.utils.data import DataLoader from torch import nn import torch.nn.functional as F import torch from sklearn.metrics import precision_score, recall_score, accuracy_score from basic_sim import dataloader class ALS_MLP(nn.Module): def __init__(self, n_users, n_items, dim): super(ALS_MLP, self).__init__() ''' :param n_users: 用户数量 :param n_items: 物品数量 :param dim: 向量维度 ''' # 随机初始化用户的向量 self.users = nn.Embedding(n_users, dim, max_norm=1) # 随机初始化物品的向量 self.items = nn.Embedding(n_items, dim, max_norm=1) # 第一层的输入的维度是向量维度乘以2,因为用户与物品拼接之后的向量维度自然是原来2倍。 self.denseLayer1 = self.dense_layer(dim * 2, dim) self.denseLayer2 = self.dense_layer(dim, dim // 2) # 修后一层的输出维度是1,该值经Sigmoid激活后即最为模型输出 self.denseLayer3 = self.dense_layer(dim // 2, 1) self.sigmoid = nn.Sigmoid() def dense_layer(self, in_features, out_features): # 每一个mlp单元包含一个线性层和激活层,当前代码中激活层采取Tanh双曲正切函数。 return nn.Sequential( nn.Linear(in_features, out_features), nn.Tanh() ) def forward(self, u, v, isTrain=True): ''' :param u: 用户索引id shape:[batch_size] :param i: 用户索引id shape:[batch_size] :return: 用户向量与物品向量的内积 shape:[batch_size] ''' # [batch_size, dim] u = self.users(u) v = self.items(v) # [batch_size, dim*2] uv = torch.cat([u, v], dim=1) # [batch_size, dim] uv = self.denseLayer1(uv) # [batch_size, dim//2] uv = self.denseLayer2(uv) # 训练时采取dropout来防止过拟合 if isTrain: uv = F.dropout(uv) # [batch_size,1] uv = self.denseLayer3(uv) # [batch_size] uv = torch.squeeze(uv) logit = self.sigmoid(uv) return logit def doEva(net, d): d = torch.LongTensor(d) u, i, r = d[:, 0], d[:, 1], d[:, 2] with torch.no_grad(): out = net(u, i, False) y_pred = np.array([1 if i >= 0.5 else 0 for i in out]) y_true = r.detach().numpy() p = precision_score(y_true, y_pred) r = recall_score(y_true, y_pred) acc = accuracy_score(y_true, y_pred) return p, r, acc def train(epochs=10, batchSize=1024, lr=0.001, dim=128, eva_per_epochs=1): ''' :param epochs: 迭代次数 :param batchSize: 一批次的数量 :param lr: 学习率 :param dim: 用户物品向量的维度 :param eva_per_epochs: 设定每几次进行一次验证 ''' # 读取数据 user_set, item_set, train_set, test_set = \ dataloader.readRecData(fp.Ml_100K.RATING, test_ratio=0.1) # 初始化ALS模型 net = ALS_MLP(len(user_set), len(item_set), dim) # 定义优化器 optimizer = torch.optim.AdamW(net.parameters(), lr=lr, weight_decay=0.2) # 定义损失函数 criterion = torch.nn.BCELoss() # 开始迭代 for e in range(epochs): all_lose = 0 # 每一批次地读取数据 for u, i, r in DataLoader(train_set, batch_size=batchSize, shuffle=True): optimizer.zero_grad() r = torch.FloatTensor(r.detach().numpy()) result = net(u, i) loss = criterion(result, r) all_lose += loss loss.backward() optimizer.step() print('epoch {}, avg_loss = {:.4f}'.format(e, all_lose / (len(train_set) // batchSize))) # 评估模型 if e % eva_per_epochs == 0: p, r, acc = doEva(net, train_set) print('train: Precision {:.4f} | Recall {:.4f} | accuracy {:.4f}'.format(p, r, acc)) p, r, acc = doEva(net, test_set) print('test: Precision {:.4f} | Recall {:.4f} | accuracy {:.4f}'.format(p, r, acc)) if __name__ == '__main__': train()
[ "lhc14124908@163.com" ]
lhc14124908@163.com
58ed5ed1158721b68ff7e20e2c2c2fee82c7db8b
614950a965efeec17d9b7aa521ca701ba32f004c
/Prediction_Months.py
b86ff1d8971889dbfccca98ce0cc086defe63237
[]
no_license
constantinirimia/Stock-Market-Prediction-using-Machine-Learning-Algorithms
a0d3100970eac529932fb8c0fc8e1f43ad2b59e4
959341161e9a8e9a27a51afd4fc9d12f358bf8e4
refs/heads/master
2022-04-12T22:37:49.475961
2020-04-02T19:17:19
2020-04-02T19:17:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,161
py
import pandas as pd import numpy as np from sklearn.linear_model import Ridge from sklearn.neighbors import KNeighborsRegressor from sklearn.pipeline import make_pipeline from sklearn.svm import SVR import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.model_selection import train_test_split from sklearn import svm from sklearn import preprocessing from scipy import stats import wx from tkinter import * from tkinter import messagebox from sklearn.preprocessing import MinMaxScaler plt.style.use('fivethirtyeight') """ First lets create the average of the months. It will be created calculating the Adj Close and dividing it at the numbers of dats """ # Calculate average of months march = pd.read_csv('AAPL_March.csv') april = pd.read_csv('AAPL_April.csv') may = pd.read_csv('AAPL_May.csv') june = pd.read_csv('AAPL_June.csv') july = pd.read_csv('AAPL_July.csv') august = pd.read_csv('AAPL_August.csv') september = pd.read_csv('AAPL_September.csv') october = pd.read_csv('AAPL_October.csv') november = pd.read_csv('AAPL_November.csv') december = pd.read_csv('AAPL_December.csv') january = pd.read_csv('AAPL_January2020.csv') february = pd.read_csv('AAPL_February2020.csv') # ------------------------------- data = pd.read_csv('MonthlyAverage.csv') df = np.array(data['Avg Close Price']) def normalizeData(dataFrame): myData = pd.read_csv('MonthlyAverage.csv') df = np.array(myData['Avg Close Price']) # Normalize the data using z-score normalizedData = stats.zscore(df) return normalizedData ''' # -------------------------------------- ''' def calculateAverage(myData): # Get all of the rows from the Close column closePrice = np.array(myData['Adj Close']) numOfDays = (int(len(closePrice))) total = 0 for x in range(0, numOfDays): total = total + closePrice[x] average = total / numOfDays return average avgMarch = calculateAverage(march) avgApril = calculateAverage(april) avgMay = calculateAverage(may) avgJune = calculateAverage(june) avgJuly = calculateAverage(july) avgAugust = calculateAverage(august) avgSeptember = calculateAverage(september) avgOctober = calculateAverage(october) avgNovember = calculateAverage(november) avgDecember = calculateAverage(december) avgJanuary = calculateAverage(january) avgFebruary = calculateAverage(february) print(" -------------------------------------------------------------------------------") print(" ") print("Values of monthly averages: ") print(" ") print("March: ", avgMarch, " ", "April: ", avgApril, " ", "May: ", avgMay, " ") print("June: ", avgJune, " ", "July: ", avgJuly, " ", "August: ", avgAugust, " ") print("September: ", avgSeptember, " ", "October: ", avgOctober, " ", "November ", avgNovember, " ") print("December: ", avgDecember, " ", "January: ", avgJanuary, " ", "February: ", avgFebruary) print("--------------------------------------------------------------------------------") print(" ") ''' # This is a function to calculate the prediction of the 13th month # We will be doing it by calculating the average of the total months averages and # - if the prediction is higher than that it goes Up or else Down ''' def predictionUpOrDown(): monthlyAverageData = pd.read_csv('MonthlyAverage.csv') closePrice = np.array(monthlyAverageData['Avg Close Price']) numMonths = (int(len(monthlyAverageData))) avgY = 0 for x in range(0, numMonths): avgY = avgY + closePrice[x] averageYear = avgY / numMonths return averageYear print("Value of the whole year average: ") print(" ") a = predictionUpOrDown() print(a) print("--------------------------------------------------------------------------------") print(" ") ################### # Lets now plot the price history over the last 12 months plt.figure(figsize=(8,6)) plt.title('Average Monthly Price of AAPL for the last 12 months') plt.plot(data['Avg Close Price']) plt.xlabel('Date in Months', fontsize=11) plt.ylabel('Average Price', fontsize=11) plt.show() ''' # We, now have to read the new file of monthly averages and create and implement the Support vector machines # plot the results of each kernel and then make the comparison to se if the 13th month is going up or down ''' monthlyAverage = pd.read_csv('MonthlyAverage.csv') monthlyAverage.head(7) # I want to create the x and y (date and average close price) # Put them in lists for now datesByMonth = [] pricesByMonth = [] # Get all of the data except for the last row monthlyAveragePrice = monthlyAverage.head(len(monthlyAverage) - 1) # print(monthlyAveragePrice.shape) # Get all of the rows from the Date column monthlyAverage_dates = monthlyAveragePrice.loc[:, 'Date'] # Get all of the rows from the Avg Close Price column monthlyAverage_ClosePrice = monthlyAveragePrice.loc[:, 'Avg Close Price'] # Create the independent data set 'x' as dates for date in monthlyAverage_dates: # I have to separate it by months datesByMonth.append([int(date.split('-')[1])]) # Create the dependent data set 'y' as close prices of the months for open_price in monthlyAverage_ClosePrice: pricesByMonth.append(float(open_price)) # Print the dates by months print("The months that we are getting the data from are: ", datesByMonth) print(" ") # Create a variable named forecast which will be our prediction. # It will be set up to 1 (predict one month in advance) forecast = 1 ''' # Now we will create 3 functions to make predictions using 3 different support vector regression models # with 3 different kernels = radial basis function, linear and polynomial ''' def predictAveragePriceRBF(date, averagePrice, forecast): # Create Support Vector Regression Model svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) # Train the model on the dates and average prices svr_rbf.fit(date, averagePrice) # Plot the model on a graph to see which has the best fit plt.scatter(date, averagePrice, color='black', label='Data') plt.plot(date, svr_rbf.predict(date), color='red', label='RBF model') plt.xlabel('Date by Months') plt.ylabel('Average Price by Months') plt.title('Support Vector Machine - SVM') plt.legend() plt.show() # return the model prediction return svr_rbf.predict(forecast)[0] def predictAveragePriceRegression(date, price, forecast): quadratic_Regression = make_pipeline(PolynomialFeatures(2), Ridge()) quadratic_Regression.fit(date, price) # Plot the model on a graph to see which has the best fit plt.scatter(date, price, color='black', label='Data') plt.plot(date, quadratic_Regression.predict(date), color='yellow', label='Regression model') plt.xlabel('Date by Months') plt.ylabel('Average Price by Months') plt.title('Quadratic regression Model') plt.legend() plt.show() return quadratic_Regression.predict(forecast) def getRegressionAccuracy(): normalized = pd.read_csv('NormalizedData.csv') months = normalized[['Avg Close Price']] months['Prediction'] = months[['Avg Close Price']].shift(-forecast) # Create train set as the price per month train = np.array(months.drop(['Prediction'], 1)) train = train[:-forecast] # Create test set as the column prediction test = np.array(months['Prediction']) test = test[:-forecast] # Split the data # 80% training and 20% test X_train, X_test, y_train, y_test = train_test_split(train, test, test_size=0.2, random_state=109) quadratic_Regression = make_pipeline(PolynomialFeatures(2), Ridge()) quadratic_Regression.fit(X_train, y_train) # Printing the results as the confidence level return quadratic_Regression.score(X_test, y_test) # SVM - kernel poly def predictAveragePricePoly(date, averagePrice, forecast): # Create Support Vector Regression Model svr_poly = SVR(kernel='poly', C=1e3, degree=2) # Train the model on the dates and average prices svr_poly.fit(date, averagePrice) # Plot the model on a graph to see which has the best fit plt.scatter(date, averagePrice, color='black', label='Data') plt.plot(date, svr_poly.predict(date), color='blue', label='Polynomial model') plt.xlabel('Date by Months') plt.ylabel('Average Price by Months') plt.title('Support Vector Machine - SVM') plt.legend() plt.show() # return the model prediction return svr_poly.predict(forecast)[0] # SVM linear def predictAveragePriceLinear(date, averagePrice, forecast): # Create Support Vector Regression Model svr_lin = SVR(kernel='linear', C=1e3) # Train the model on the dates and average prices svr_lin.fit(date, averagePrice) # Plot the model on a graph to see which has the best fit plt.scatter(date, averagePrice, color='black', label='Data') plt.plot(date, svr_lin.predict(date), color='green', label='Linear model') plt.xlabel('Date by Months') plt.ylabel('Average Price by Months') plt.title('Support Vector Machine - SVM') plt.legend() plt.show() # return the model prediction return svr_lin.predict(forecast)[0] predicted_priceRBF = predictAveragePriceRBF(datesByMonth, pricesByMonth, [[13]]) predicted_priceLinear = predictAveragePriceLinear(datesByMonth, pricesByMonth, [[13]]) predicted_pricePoly = predictAveragePricePoly(datesByMonth, pricesByMonth, [[13]]) ''' # Creating the SVM to get the accuracy of the models using different kernels ''' # ------ Get the LINEAR model accuracy --------------------------------------------- def getAccuracyLINEAR(): normalized = pd.read_csv('NormalizedData.csv') months = normalized[['Avg Close Price']] months['Prediction'] = months[['Avg Close Price']].shift(-forecast) # Create train set as the price per month train = np.array(months.drop(['Prediction'], 1)) train = train[:-forecast] # Create test set as the column prediction test = np.array(months['Prediction']) test = test[:-forecast] # Split the data # 80% training and 20% test X_train, X_test, y_train, y_test = train_test_split(train, test, test_size=0.2, random_state=109) lin = SVR(kernel='linear', C=1e3) lin.fit(X_train, y_train) return lin.score(X_test, y_test) # ------ Get the RBF model accuracy --------------------------------------------- def getAccuracyRBF(): normalized = pd.read_csv('NormalizedData.csv') months = normalized[['Avg Close Price']] months['Prediction'] = months[['Avg Close Price']].shift(-forecast) # Create train set as the price per month train = np.array(months.drop(['Prediction'], 1)) train = train[:-forecast] # Create test set as the column prediction test = np.array(months['Prediction']) test = test[:-forecast] # Split the data # 80% training and 20% test X_train, X_test, y_train, y_test = train_test_split(train, test, test_size=0.2, random_state=109) rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) rbf.fit(X_train, y_train) return rbf.score(X_test, y_test) # ------ Get the POLYNOMIAL model accuracy --------------------------------------------- def getAccuracyPOLY(): months = monthlyAverage[['Avg Close Price']] months['Prediction'] = months[['Avg Close Price']].shift(-forecast) # Create train set as the price per month train = np.array(months.drop(['Prediction'], 1)) train = train[:-forecast] # Create test set as the column prediction test = np.array(months['Prediction']) test = test[:-forecast] # Split the data # 80% training and 20% test X_train, X_test, y_train, y_test = train_test_split(train, test, test_size=0.2, random_state=109) poly = SVR(kernel='poly', C=1e3, degree=2) poly.fit(X_train, y_train) return poly.score(X_test, y_test) ''' Function to implement from skcit learn library the KNN algorithm and train it on our data Also will plot the result separately and all together to see the differences between the models ''' def makePredKNN(date, averagePrice, forecast): # Create the KNN k_NN = KNeighborsRegressor(n_neighbors=3) k_NN.fit(date, averagePrice) price = k_NN.predict(forecast) # Plot the model on a graph to see which has the best fit plt.scatter(date, averagePrice, color='black', label='Data') plt.plot(date, k_NN.predict(date), color='purple', label='K-NN Model') plt.xlabel('Date by Months') plt.ylabel('Average Price by Months') plt.title('K - Nearest Neighbour') plt.legend() plt.show() # return the model prediction return price # Function to get the KNN model acuuracy def getAccuracyKNN(): normalized = pd.read_csv('NormalizedData.csv') months = normalized[['Avg Close Price']] months['Prediction'] = months[['Avg Close Price']].shift(-forecast) # Create train set as the price per month train = np.array(months.drop(['Prediction'], 1)) train = train[:-forecast] # Create test set as the column prediction test = np.array(months['Prediction']) test = test[:-forecast] # Split the data # 80% training and 20% test X_train, X_test, y_train, y_test = train_test_split(train, test, test_size=0.2, random_state=109) k_NN = KNeighborsRegressor(n_neighbors=3) k_NN.fit(X_train, y_train) return k_NN.score(X_test, y_test) predicted_PriceKNN = makePredKNN(datesByMonth, pricesByMonth, [[13]]) predicted_PriceRegression = predictAveragePriceRegression(datesByMonth, pricesByMonth, [[13]]) print("--------------------------------------------------------------------------") print(" ") print("The predicted price of the next month is: ") print("") print("---> using RBF kernel: $", predicted_priceRBF) print("-> the model has a accuracy of: ", round((getAccuracyRBF() * 100), 3), "%") print("") print("---> using Polynomial kernel: ", predicted_pricePoly) print("-> the model has a accuracy of: ", round((getAccuracyPOLY() * 100), 3), "%") print("") print("---> using Linear kernel: ", predicted_priceLinear) print("-> the model has a accuracy of: ", round((getAccuracyLINEAR() * 100), 3), "%") print(" ") print("---> using KNN model: ", predicted_PriceKNN) print("-> the model has a accuracy of: ", round((getAccuracyKNN() * 100), 3), "%") print("") print("---> using Regression model : ", predicted_priceLinear) print("-> the model has a accuracy of: ", round((getRegressionAccuracy() * 100), 3), "%") print("--------------------------------------------------------------------------") def bestAccuracy(): rbf = getAccuracyRBF() lin = getAccuracyLINEAR() poly = getAccuracyPOLY() knn = getAccuracyKNN() reg = getRegressionAccuracy() maxList = [rbf, lin, poly, knn, reg] return max(maxList) # Function to get the best price(given by the model with the best accuracy) def getBestPrice(): rbf = getAccuracyRBF() lin = getAccuracyLINEAR() poly = getAccuracyPOLY() knn = getAccuracyKNN() reg = getRegressionAccuracy() accuracies = {rbf: predicted_priceRBF, lin: predicted_priceLinear, poly: predicted_pricePoly, knn: predicted_PriceKNN, reg: predicted_PriceRegression } if bestAccuracy() == rbf: return accuracies[rbf] elif bestAccuracy() == lin: return accuracies[lin] elif bestAccuracy() == knn: return accuracies[knn] elif bestAccuracy() == reg: return accuracies[reg] else: return accuracies[poly] return predictedPrice def getPrice2Decimals(bestPrice): return "{:0.2f}".format(bestPrice) print(getPrice2Decimals(getBestPrice())) # Function to make to make prediction if the month is going up or down def makePred(pricePredicted, yearAverage): if getBestPrice() < predictionUpOrDown(): print("The price of the next month will be: $", getBestPrice()) print("") print("The predicted month will go DOWN. ") print("You should NOT buy the stock now") elif getBestPrice() > predictionUpOrDown(): print("The price of the next month will be: ", getBestPrice()) print("") print("The predicted month will go UP. ") print("You SHOULD buy the stock now") else: print("The stock price will keep the same value") print(" ") def plotAllModels(date, averagePrice, forecast): svr_poly = SVR(kernel='poly', C=1e3, degree=2) svr_poly.fit(date, averagePrice) svr_lin = SVR(kernel='linear', C=1e3) svr_lin.fit(date, averagePrice) svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_rbf.fit(date, averagePrice) k_NN = KNeighborsRegressor(n_neighbors=3) k_NN.fit(date, averagePrice) quadratic_Regression = make_pipeline(PolynomialFeatures(2), Ridge()) quadratic_Regression.fit(date, averagePrice) # Plot the model on a graph to see which has the best fit plt.scatter(date, averagePrice, color='black', label='Data') plt.plot(date, svr_lin.predict(date), color='green', label='Linear model') plt.plot(date, svr_poly.predict(date), color='blue', label='Polynomial model') plt.plot(date, svr_rbf.predict(date), color='red', label='RBF model') plt.plot(date, k_NN.predict(date), color='purple', label='KNN model') #plt.plot(date, quadratic_Regression.predict(date), color='yellow', label="Regression model") plt.xlabel('Date by Months') plt.ylabel('Average Price by Months') plt.title('PREDICTION MODELS') plt.legend() plt.show() print("") print("My Predictions for the next month price stock are: ") print(" ") print(makePred(getBestPrice(), a)) print("") print("--------------------------------------------------------------------------") print(" ") plotAllModels(datesByMonth, pricesByMonth, 13)
[ "cirimia49@gmail.com" ]
cirimia49@gmail.com
34f9ba79d9650e21aabfe30c2947e73c3c635e7b
50f44650c2229eef5b3e77e097b71c7b064e9663
/Max/src/TestMax.py
3660f5d795b6db9d0304f2113bf43ef71c2d552a
[]
no_license
gonzeD/CS1-Python
b0821cc0c5755f796548363074ac2f48df47e544
cb9a661a43652c6d3fd59c0723b8c764c7d28ff7
refs/heads/master
2020-03-22T03:37:17.637568
2018-07-05T21:10:58
2018-07-05T21:10:58
139,442,216
0
1
null
2018-07-04T07:47:56
2018-07-02T12:41:56
Python
UTF-8
Python
false
false
913
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- import unittest import random import CorrMax as corr import max class TestMax(unittest.TestCase): def test_exist(self): self.assertEqual(True, hasattr(max, 'maximum'), _("You did not name the method as expected.")) def test_max(self): lists = [[random.randint(-100, 100) for _ in range(random.randint(1, 20))] for _ in range(random.randint(1, 20))] ans = _("The maximum of {} is {} and you returned {}.") for i in range(len(lists)): stu_ans = max.maximum(lists[i]) corr_ans = corr.maximum(lists[i]) self.assertEqual(corr_ans, stu_ans, ans.format(lists[i], corr_ans, stu_ans)) def test_empty(self): lst = [] ans = _("When the list is empty you should return None.") self.assertEqual(None, max.maximum(lst), ans) if __name__ == '__main__': unittest.main()
[ "dtanguy@localhost.worktdb" ]
dtanguy@localhost.worktdb
78b7438d65e518367530ce1ce4adeed283a97e9a
002ee33a04a6a74c10be79a2d667871de90fe728
/faq/views.py
4c8191dd9394c62569a71e75a3d988cd4a34e227
[]
no_license
Code-Institute-Submissions/final-milestone-eCommerce
dc5866c61acd31bbf59ed31168e3e8110262a737
d1547f90dc26ca20be299b98966865ef88df0027
refs/heads/master
2022-11-26T00:27:32.014852
2020-08-07T14:44:55
2020-08-07T14:44:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
from django.shortcuts import render from .models import FAQ def show_faqs(request): """Renders all of the current frequently asked questions to the faq.html page """ faqs = FAQ.objects.all() return render(request, 'faq/faq.html', {'faqs': faqs})
[ "adrian.havenga@yahoo.com" ]
adrian.havenga@yahoo.com
527d383097cc6bb45bd1a5ade545ad9dcf8a4402
f7715ace0306d1a9650c0c8470791e56eaa4eb43
/telemetrymonitor.py
754bdc9c16589a1fa9e6b8d9b96c315349ea1d5f
[]
no_license
cbott/MHRtelemetry
2898ae7b2fc88571113ed8f4886a921a404aa701
6f332621bcc80ca642f7e03e6828d55ab2926c39
refs/heads/master
2021-01-10T22:59:05.447082
2017-05-07T20:45:58
2017-05-07T20:47:31
70,435,459
1
0
null
null
null
null
UTF-8
Python
false
false
5,322
py
#!/usr/bin/env python #grapharduino.py from arduinoserial import Arduino from liveplots import * import sys from time import strftime def basic_graph(arduino, log): SIZE = 1 #Expected packet length liveplot_init(2,1, "Basic Telemetry Data") speedometer = Dial(row=0, col=0, title="Car Speed (MPH)", ymin=0, ymax=90, ticks=10) readout = Text(row=1, col=0, title="") topspeed = -100 data = [ 0 for i in range(SIZE) ]; while 1: for val in arduino.read(): try: vals = val.split() data = map(float, vals) print(data) except (AttributeError, ValueError): print "Received unexpected data [",val,"]" if len(data) == SIZE: log.write(strftime("[%H:%M:%S] ") + str(data) + "\n") mph = data[0] speedometer.update(mph) topspeed = max(topspeed, mph) readout.update("Current Speed: "+str(mph)+" MPH\nTop Speed: "+str(topspeed)+" MPH") liveplot_update(0.1) def car_monitor(arduino, log): ####### Data Format ## Byte array #0# [Engine Temp] 0-255 #1# [Left EV Battery Temp] 0-255 #2# [Right EV Battery Temp] 0-255 #3# [Left Accumulator SOC] 0-100 #4# [Right Accumulator SOC] 0-100 #5# [RPM] 0-150 x100 #6# [Left In-Hub Motor Temp] 0-255 #7# [Right In-Hub Motor Temp] 0-255 #8# [Left Motor Controller Temp] 0-255 #9# [Right Motor Controller Temp] 0-255 #10# [Accel Pedal Percentage] 0-100 #11# [Accel Pedal Error] boolean #12# [Brake Pedal Percentage] 0-100 #13# [Brake Pedal Error] boolean #14# [Low Voltage Battery SOC] 0-120 /10 SIZE = 15 # Create the window liveplot_init(3,5, "MHR17 Telemetry System") # Add widgets engine_t = ScrollingLinePlot(row=0, col=3, title="Engine Temp.", ymin=0, ymax=255, width=25, ylabel="deg F") l_bat_t = ScrollingLinePlot(row=1, col=0, title="Left Battery Temp.", ymin=0, ymax=255, width=25, ylabel="deg F") r_bat_t = ScrollingLinePlot(row=2, col=0, title="Right Battery Temp.", ymin=0, ymax=255, width=25, ylabel="deg F") l_bat_soc = BarChart(row=0, col=0, title="Left Accumulator SOC", ymin=0, ymax=100, ylabel="%") r_bat_soc = BarChart(row=0, col=1, title="Right Accumulator SOC", ymin=0, ymax=100, ylabel="%") lv_soc = BarChart(row=0, col=2, title="LV Battery Voltage", ymin=0, ymax=13, ylabel="V") rpm = Dial(row=0, col=4, title="Engine RPM (x1000)", ymin=0, ymax=15, ticks=16) l_motor_t = ScrollingLinePlot(row=1, col=1, title="Left In-Hub Temp.", ymin=0, ymax=255, width=25, ylabel="deg F") r_motor_t = ScrollingLinePlot(row=2, col=1, title="Right In-Hub Temp.", ymin=0, ymax=255, width=25, ylabel="deg F") l_mc_t = ScrollingLinePlot(row=1, col=2, title="Left Motor Controller Temp.", ymin=0, ymax=255, width=25, ylabel="deg F") r_mc_t = ScrollingLinePlot(row=2, col=2, title="Right Motor Controller Temp.", ymin=0, ymax=255, width=25, ylabel="deg F") accel = BarChart(row=1, col=3, title="Accel Pedal %", ymin=0, ymax=100, ylabel="%") accel_err = BarChart(row=1, col=4, title="Accel Pedal Error", ymin=0, ymax=1, ylabel="", show_axes=False) brake = BarChart(row=2, col=3, title="Brake Pedal %", ymin=0, ymax=100, ylabel="%") brake_err = BarChart(row=2, col=4, title="Brake Pedal Error", ymin=0, ymax=1, ylabel="", show_axes=False) # Mainloop data = [ 0 for i in range(SIZE) ]; while 1: # Read in all messages from serial buffer for val in arduino.read(): try: vals = val.split() data = map(int, vals) print(data) except (AttributeError, ValueError): print "Received unexpected data [",val,"]" if len(data) == SIZE: # Update widgets with new data log.write(strftime("[%H:%M:%S] ") + str(data) + "\n") engine_t.update(data[0]) l_bat_t.update(data[1]) r_bat_t.update(data[2]) l_bat_soc.update(data[3]) r_bat_soc.update(data[4]) rpm.update(data[5]/10.0) l_motor_t.update(data[6]) r_motor_t.update(data[7]) l_mc_t.update(data[8]) r_mc_t.update(data[9]) accel.update(data[10]) accel_err.update(1,color = 'r' if data[11] else 'g') brake.update(data[12]) brake_err.update(1,color = 'r' if data[13] else 'g') lv_soc.update(data[14]/10.0) # Refresh the window liveplot_update(0.1) if __name__ == "__main__": serial_port = "" log_file = "Log.txt" if len(sys.argv) == 2: serial_port = sys.argv[1] elif len(sys.argv) == 3: serial_port = sys.argv[1] log_file = sys.argv[2] else: print("Incorrect Argument Format\nUsage: python grapharduino.py serial_port [log file]") sys.exit() arduino = Arduino(serial_port) log = open(log_file, 'a') log.write(strftime(">> BEGIN LOG << %m/%d/%y at %I:%M %p\n")) try: car_monitor(arduino, log) except (Exception, KeyboardInterrupt) as e: print(e) finally: #run cleanup procedures when application closes arduino.close() log.close()
[ "cbott6@gmail.com" ]
cbott6@gmail.com
8802f66220d335724d20ca7fe5fd5168ee00ba1d
d91f23534d9af0128011d38132dbefd8b508f1c1
/kensho/parse_trendreverse.py
9e8a180dda24d34646cbea7783dc3a03e87bc284
[]
no_license
tomoyanp/oanda_dev
06bd904cd0d60e072a0627a81b1db384e1e292a5
c35da11f30e6b4160d16f768ce5d8d0714c2b55d
refs/heads/master
2021-01-10T22:55:51.639812
2018-08-21T01:03:27
2018-08-21T01:03:27
70,463,447
2
0
null
null
null
null
UTF-8
Python
false
false
2,500
py
import re import commands from datetime import datetime import time file_list = commands.getoutput("ls *.result") file_list = file_list.split("\n") import sys filename = sys.argv[1].strip() write_file = open("%s.parse" % filename, "a") write_file.write("# %s\n" % filename) cmd = "cat %s | grep Algorithm" % filename out = commands.getoutput(cmd) out = out.split("\n") algo_list = out cmd = "cat %s | grep \"EXECUTE ORDER\"" % filename out = commands.getoutput(cmd) out = out.split("\n") order_list = out cmd = "cat %s | grep \"EXECUTE SETTLE\"" % filename out = commands.getoutput(cmd) out = out.split("\n") settle_list = out cmd = "cat %s | grep PROFIT | grep -v STL" % filename out = commands.getoutput(cmd) out = out.split("\n") profit_list = out cmd = "cat %s | grep TRADE_FLAG" % filename out = commands.getoutput(cmd) out = out.split("\n") flag_list = out cmd = "cat %s | grep upper_sigma" % filename out = commands.getoutput(cmd) out = out.split("\n") upper_sigma_list = [] for elm in out: upper_sigma_list.append(elm.split("=")[1].strip()) print upper_sigma_list cmd = "cat %s | grep lower_sigma" % filename out = commands.getoutput(cmd) out = out.split("\n") lower_sigma_list = [] for elm in out: lower_sigma_list.append(elm.split("=")[1].strip()) print lower_sigma_list for i in range(0, len(profit_list)): algo = algo_list[i].split(" ")[2] order_time = order_list[i].split(" ")[4] + " " + order_list[i].split(" ")[5] profit = profit_list[i].split(" ")[1].split("=")[1] side = flag_list[i].split(" ")[2].split("=")[1] settle_time = settle_list[i].split(" ")[4] + " " + settle_list[i].split(" ")[5] order_ptime = datetime.strptime(order_time, "%Y-%m-%d %H:%M:%S") settle_ptime = datetime.strptime(settle_time, "%Y-%m-%d %H:%M:%S") difference_time = settle_ptime - order_ptime start_time = datetime.strptime(order_time, "%Y-%m-%d %H:%M:%S") end_time = datetime.strptime(settle_time, "%Y-%m-%d %H:%M:%S") end_time = time.mktime(end_time.timetuple()) start_time = time.mktime(start_time.timetuple()) result = end_time - start_time result = datetime.fromtimestamp(result) days = result.day-1 hour = result.hour difference_sigma = float(upper_sigma_list[i]) - float(lower_sigma_list[i]) print order_time + "," + settle_time + "," + str(difference_time.total_seconds()) + "," + algo + "," + side + "," + profit + "," + str(difference_sigma) # print algo_list[i].split(" ")[2], profit_list[i].split(" ")[2] write_file.close()
[ "tomoyanpy@gmail.com" ]
tomoyanpy@gmail.com
80458fb88d250a212b89c6b9626dcd8c9c897bd3
eeee1acf033919d3e50af74792b1bca1c9296665
/Hybrid_TimeOverR.py
b39a6268f10287db503c4cd70bbcb6b64ff6d43f
[]
no_license
baiqiushi/LimitDB
35959cdeddf7fb7658151cbc146281d142310a09
a05a1b2da6c6dfe3606a71e8d1d76d75cb81259a
refs/heads/master
2020-03-23T20:39:00.541794
2018-10-23T03:39:43
2018-10-23T03:39:43
142,053,185
0
0
null
null
null
null
UTF-8
Python
false
false
5,365
py
# Time Over R # For a given k absolute value, plot T-r curves of different keywords in once canvas import matplotlib matplotlib.use('Agg') import time import Conf import DatabaseFactory import KeywordsUtil from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import numpy as np ########################################################### # Configurations ########################################################### database = Conf.DBTYPE tableName = Conf.TABLE db = DatabaseFactory.getDatabase(database) # From what frequency, choose keywords frequencies = [20000, 30000, 40000, 50000] # For each frequency, how many keywords we choose numOfKeywords = 10 # Choose keywords with different frequencies keywords = [] for freq in frequencies: keywords.extend(KeywordsUtil.pickNearestKeywordToFrequency(freq, numOfKeywords)) print keywords # keywords = [('job', 495)] k_values = [10000, 15000, 20000, 25000, 30000, 35000, 40000] # range(5000, 100000, 5000) r_percentages = range(10, 110, 10) r_labels = map(lambda rp: str(rp) + '%', r_percentages) # plot given p_curves into one image # p_labels: a list of labels with same order of list of curves in p_curves, format ['label0', 'label1', ..., 'labelN'] # p_x: a list of x axis values with same order of list of curves in p_curves, format [x0, x1, x2, ..., xM] # p_curves: in the format as [[y0, y1, y2, ..., yM](curve0), [y0, y1, y2, ..., yM](curve1), ..., (curveN)] # a list of list, totally N curves, for each curve there're M values # p_x_label: label for x axis # p_y_label: label for y axis def plotCurves(p_fileName, p_labels, p_x, p_curves, p_x_label, p_y_label, p_title, p_showLegend=True): pp = PdfPages(p_fileName + '.pdf') plt.figure() n = 0 for i_label in p_labels: plt.plot(p_x, p_curves[n], label=i_label) n += 1 plt.xlabel(p_x_label) plt.ylabel(p_y_label) plt.title(p_title) plt.grid(True) if p_showLegend: plt.legend() plt.savefig(pp, format='pdf') pp.close() ########################################################### # Run Script ########################################################### print '=================================================' print ' ' + database + ' Experiment - Time over r value ' print '- Hybrid approach' print '=================================================' print 'table:', tableName print 'keywords:', keywords print 'k_values:', k_values print 'r_percentage:', r_labels print '-------------------------------------------------' start = time.time() # 1. For each r value: # For each k value: # For each keyword, run hybrid query: # Send dummy query # Get the execution time of the query # Time Dictionary stores for each keyword a 2D array, with i->r, j->k, and [i][j]->Time # {'soccer': [[t(r=R0,k=K0), t(r=R0,k=K1), ...], [t(r=R1,k=K0), t(r=R1,k=K1), ...]], 'rain': [[...]]} times = {} for keyword in keywords: times[keyword[0]] = [] m = 0 for row in r_percentages: times[keyword[0]].append([]) for col in k_values: times[keyword[0]][m].append(0) m += 1 print times progress = 0 t0 = time.time() i = 0 for r_p in r_percentages: print 'Processing r =', str(r_p) + '% ...' j = 0 for k in k_values: print ' Processing k =', str(k) + ' ...' for keyword in keywords: # Send a dummy query db.queryDummy() l_random_r = float(r_p) / 100.0 l_limit_k = k t_start = time.time() l_coordinates_hybrid = db.GetCoordinateHybrid(tableName, keyword[0], l_random_r, l_limit_k) t_end = time.time() times[keyword[0]][i][j] = t_end - t_start progress += 1 print '[Total time]', time.time() - t0, \ '[Progress]', str(progress * 100 / (len(keywords) * len(k_values) * len(r_percentages))) + '%' j += 1 i += 1 print times # 3. Plot the T-r curves of different keywords in one canvas per k value print 'Plotting images ...' for i in range(0, len(k_values), 1): k = k_values[i] i_fileName_head = 'k=' + str(k) # (1) Plot T-r curves of different keywords i_fileName = i_fileName_head + '_t_r' i_x = r_percentages i_labels = [] i_curves = [] print 'keywords:' for keyword in keywords: if keyword[1] * 0.9 <= k: continue print keyword[0] i_labels.append(keyword[0] + ':' + str(keyword[1])) i_curve = np.array(times[keyword[0]])[:, i] i_curves.append(i_curve) print i_curves print 'i_labels:' print i_labels i_x_label = 'Random r(%)' i_y_label = 'Execution Time(s)' i_title = 'k=' + str(k) + ' - T-r curves of different keywords' print 'Plotting', i_title plotCurves(i_fileName, i_labels, i_x, i_curves, i_x_label, i_y_label, i_title) end = time.time() print '=================================================' print ' ' + database + ' Experiments - Time over r value ' print '- Hybrid approach' print '=================================================' print 'table:', tableName print 'keywords:', keywords print 'k_values:', k_values print 'r_percentage:', r_labels print '-------------------------------------------------' print 'Finished!', end - start, 'seconds spent.'
[ "baiqiushi@gmail.com" ]
baiqiushi@gmail.com
667cc5de2a100c1fe23d3a5cb63b414d78c160e0
b8d24161d9935e7eb148d9fbbf7bdf6bde9a57f4
/NumGuessGame.py
59c42714fcd2c7911f05c018410af472cf97682a
[]
no_license
Rahul-Kumar-Tiwari/Hactoberfest2020-1
9881f30bb2a90d368f29d2c1d648554c7401805a
0dff2c8daba4340732ef023399510303a38ef16d
refs/heads/main
2023-08-26T05:15:23.354071
2020-11-09T08:08:23
2020-11-09T08:08:23
417,149,310
0
0
null
null
null
null
UTF-8
Python
false
false
1,377
py
# Guess_a_number #Script of a game that asks the player to guess the number in specific number of attempts. import random print("What is your name?") #Asking player to enter name. name = str(input()) #Taking input from player. print("Hey " + name + ",I was thinking of a number between 1 to 20.Can you guess it???") secret_number = random.randint(1, 20) #Generating a random number for player to guess. #Taking input of guess from player for guess_taken in range(1, 7): if guess_taken == 1: print("Guess the number ") elif guess_taken == 6: print("This is your last chance.") else: print("Give another try") guess = int(input()) if guess > secret_number: print("Your guess is too high.") elif guess < secret_number: print("Your guess is too low.") else: break #This condition is for correct guess! if guess == secret_number: if guess_taken == 1: print("Amazing!!! You guessed the number in just one guess.") else: print("Good job " + name + "! You guessed my number in " + str(guess_taken) + " guesses.") #Executes when player guess the number. else: print("Nope.The number I was thinking of was " + str(secret_number) + ".Better luck next time!!!") #Executes when player fails to guess the number in given chances.
[ "noreply@github.com" ]
Rahul-Kumar-Tiwari.noreply@github.com