blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
a9ab497015525833279bb4f7cb7b294f7e35efe7
5fd401dbc7b9ac782d387067c43a559971de5028
/modules/file/upload.py
5ad9b4a030323d70e88e69b37d7ef047af896c60
[]
no_license
SagaieNet/weevely3
0b41be1bbd08a8ebde1e236775462483ad175c6e
c169bbf24807a581b3f61a455b9a43a5d48c8f52
refs/heads/master
2021-01-22T15:00:19.838734
2014-09-30T20:00:07
2014-09-30T20:00:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,139
py
from core.vectors import PhpCmd, ModuleCmd from core.module import Module from core import messages from core.loggers import log import random import hashlib import base64 class Upload(Module): """Upload file to remote filesystem.""" def init(self): self.register_info( { 'author': [ 'Emilio Pinna' ], 'license': 'GPLv3' } ) self.register_arguments( # Declare mandatory arguments mandatory = [ 'lpath', 'rpath' ], # Declare additional options optional = { 'content': '', 'vector': '' }, bind_to_vectors = 'vector') self.register_vectors( [ PhpCmd( "(file_put_contents('${rpath}', base64_decode('${content}'))&&print(1)) || print(0);", name = 'file_put_contents' ), PhpCmd( """($h=fopen("${rpath}","a+")&&fwrite($h, base64_decode('${content}'))&&fclose($h)&&print(1)) || print(0);""", name = "fwrite" ) ] ) def run(self, args): # Load local file content_orig = args.get('content') if not content_orig: lpath = args.get('lpath') try: content_orig = open(lpath, 'r').read() except Exception, e: log.warning( messages.generic.error_loading_file_s_s % (lpath, str(e))) return content = base64.b64encode(content_orig) # Check remote file existence rpath_exists = ModuleCmd('file_check', [ args['rpath'], 'exists' ]).run() if rpath_exists: log.warning(messages.generic.error_file_s_already_exists % args['rpath']) return vector_name, result = self.vectors.find_first_result( format_args = { 'args' : args, 'content' : content }, condition = lambda result: True if result == '1' else False )
[ "emilio.pinn@gmail.com" ]
emilio.pinn@gmail.com
6bf462112c68e100b92acc5b9b8ed814e8f09d27
ef4a1748a5bfb5d02f29390d6a66f4a01643401c
/algorithm/new_teacher_algorithm/AD/도약.py
5c781e9d4bc4c9a28efdc8ca127c58b5528ef92d
[]
no_license
websvey1/TIL
aa86c1b31d3efc177df45503d705b3e58b800f8e
189e797ba44e2fd22a033d1024633f9e0128d5cf
refs/heads/master
2023-01-12T10:23:45.677578
2019-12-09T07:26:59
2019-12-09T07:26:59
162,102,142
0
1
null
2022-12-11T16:31:08
2018-12-17T08:57:58
Python
UTF-8
Python
false
false
2,093
py
import sys sys.stdin = open("도약.txt") ########################################################### ########################## 두개 쓰기 ######################## ########################################################### # def lowerSearch(s,e,f): # # f 이상 중에서 가장 작은 값의 위치를 리턴 # sol = -1 # while s<=e: # m = (s+e)//2 # if data[m] >= f: # f 이상이면 왼쪽영역 재탐색(더 작은 값 찾기 위해) # sol = m # e = m-1 # else: # s= m+1 #우측탐색) # return sol # # def upperSearch(s,e,f): # # f 이하중에서 가장 큰 값의 위치를 리턴 # sol = -1 # while s<=e: # m = (s+e)//2 # if data[m] <= f: # 데이타 이하면 오른쪽 재탐색(더 큰걸 찾기위해) # sol = m # s = m+1 # else: # e= m-1 # return sol # N = int(input()) # data = sorted([(int(input())) for i in range(N)]) # cnt = 0 # for i in range(N-2): # for j in range(i+1, N-1): # S = data[j]+(data[j]-data[i]) # E = data[j] + (data[j] - data[i])*2 # lo = lowerSearch(j+1, N-1, S) # if lo==-1 or data[lo]>E: continue # up = upperSearch(j+1, N-1, E) # cnt += (up-lo+1) # print(cnt) ########################################################### ########################## 하나 쓰기######################## ########################################################### def upperSearch(s,e,f): # f 이하중에서 가장 큰 값의 위치를 리턴 sol = -1 while s<=e: m = (s+e)//2 if data[m] < f: # 데이타 이하면 오른쪽 재탐색(더 큰걸 찾기위해) s = m + 1 sol = m else: e= m-1 return sol N = int(input()) data = sorted([(int(input())) for i in range(N)]) cnt = 0 for i in range(N-2): for j in range(i+1, N-1): S = data[j]+(data[j]-data[i]) E = data[j] + (data[j] - data[i])*2 cnt += upperSearch(j, N- 1, E+1) - upperSearch(j, N-1, S) print(cnt)
[ "websvey1@gmail.com" ]
websvey1@gmail.com
b563da1a4aa94a36c4599e6482162f6ded7d93e9
5b2218208aef68cf06609bcc3bf42b499d99d5f6
/docs/source/conf.py
e94bc7c7e29be180973b828865b19e7712c33ad6
[ "MIT" ]
permissive
c137digital/unv_app_template
c36cacfff3e0be0b00ecad6365b20b434836ffe7
a1d1f2463334afc668cbf4e8acbf1dcaacc93e80
refs/heads/master
2020-05-25T19:24:17.098451
2020-04-24T19:33:08
2020-04-24T19:33:08
187,950,678
0
0
null
null
null
null
UTF-8
Python
false
false
5,816
py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # -- Project information ----------------------------------------------------- project = 'unv_app_template' copyright = '2020, change' author = 'change' # The short X.Y version version = '0.1' # The full version, including alpha/beta/rc tags release = '0.1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'unv_app_templatedoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'unv_app_template.tex', 'unv\\_template Documentation', 'change', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'unv_app_template', 'unv_app_template Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'unv_app_template', 'unv_app_template Documentation', author, 'unv_app_template', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
[ "morty.space@gmail.com" ]
morty.space@gmail.com
4c1e7c5233cb21118ed12162d9ba099c0665a80a
e0980f704a573894350e285f66f4cf390837238e
/.history/flex/models_20201029143145.py
b68119b214fd032d442ee5cf1b7492154ab67eb2
[]
no_license
rucpata/WagtailWebsite
28008474ec779d12ef43bceb61827168274a8b61
5aa44f51592f49c9a708fc5515ad877c6a29dfd9
refs/heads/main
2023-02-09T15:30:02.133415
2021-01-05T14:55:45
2021-01-05T14:55:45
303,961,094
0
0
null
null
null
null
UTF-8
Python
false
false
1,048
py
from django.db import models from wagtail.core.models import Page from wagtail.core.fields import StreamField from wagtail.admin.edit_handlers import StreamFieldPanel from wagtail.snippets.blocks import SnippetChooserBlock from wagtail.core import blocks as wagtail_ from streams import blocks from home.models import new_table_options class FlexPage(Page): body = StreamField([ ('title', blocks.TitleBlock()), ('cards', blocks.CardsBlock()), ('image_and_text', blocks.ImageAndTextBlock()), ('cta', blocks.CallToActionBlock()), ('testimonial', SnippetChooserBlock( target_model='testimonials.Testimonial', template = 'streams/testimonial_block.html' )), ('pricing_table', blocks.PricingTableBlock(table_options=new_table_options)), ], null=True, blank=True) content_panels = Page.content_panels + [ StreamFieldPanel('body'), ] class Meta: verbose_name = 'Flex (misc) page' verbose_name_plural = 'Flex (misc) pages'
[ "rucinska.patrycja@gmail.com" ]
rucinska.patrycja@gmail.com
71bfd188e3307f50316b5807460e05e6b0dab81e
0be27c0a583d3a8edd5d136c091e74a3df51b526
/int_long.py
09d9178607925a32fd93bcf2ea90ca80acb00f96
[]
no_license
ssangitha/guvicode
3d38942f5d5e27a7978e070e14be07a5269b01fe
ea960fb056cfe577eec81e83841929e41a31f72e
refs/heads/master
2020-04-15T05:01:00.226391
2019-09-06T10:08:23
2019-09-06T10:08:23
164,405,935
0
2
null
null
null
null
UTF-8
Python
false
false
172
py
n=int(input()) if(n>=-2**15+1 and n<=2**15+1): print ("INT") elif n>=-2**31+1 and n<=2**31+1: print("LONG") else: print ("LONG LONG") #..int,long...longlong
[ "noreply@github.com" ]
ssangitha.noreply@github.com
e32bd0130a28604d940e0a1e7d79496057d8a0cb
66a9c25cf0c53e2c3029b423018b856103d709d4
/tests/live_test.py
b71930af68b02cc6137cb3b01a6f80f39c0ef9f3
[ "MIT", "BSD-3-Clause", "BSD-2-Clause" ]
permissive
fritzy/SleekXMPP
1b02d3e2b22efeb6bf3f8f487e6c0343b9b85baf
cc1d470397de768ffcc41d2ed5ac3118d19f09f5
refs/heads/develop
2020-05-22T04:14:58.568822
2020-02-18T22:54:57
2020-02-18T22:54:57
463,405
658
254
NOASSERTION
2023-06-27T20:05:54
2010-01-08T05:54:45
Python
UTF-8
Python
false
false
3,422
py
import logging from sleekxmpp.test import * class TestLiveStream(SleekTest): """ Test that we can test a live stanza stream. """ def tearDown(self): self.stream_close() def testClientConnection(self): """Test that we can interact with a live ClientXMPP instance.""" self.stream_start(mode='client', socket='live', skip=False, jid='user@localhost/test', password='user') # Use sid=None to ignore any id sent by the server since # we can't know it in advance. self.recv_header(sfrom='localhost', sid=None) self.send_header(sto='localhost') self.recv_feature(""" <stream:features> <starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls" /> <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl"> <mechanism>DIGEST-MD5</mechanism> <mechanism>PLAIN</mechanism> </mechanisms> </stream:features> """) self.send_feature(""" <starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls" /> """) self.recv_feature(""" <proceed xmlns="urn:ietf:params:xml:ns:xmpp-tls" /> """) self.send_header(sto='localhost') self.recv_header(sfrom='localhost', sid=None) self.recv_feature(""" <stream:features> <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl"> <mechanism>DIGEST-MD5</mechanism> <mechanism>PLAIN</mechanism> </mechanisms> </stream:features> """) self.send_feature(""" <auth xmlns="urn:ietf:params:xml:ns:xmpp-sasl" mechanism="PLAIN">AHVzZXIAdXNlcg==</auth> """) self.recv_feature(""" <success xmlns="urn:ietf:params:xml:ns:xmpp-sasl" /> """) self.send_header(sto='localhost') self.recv_header(sfrom='localhost', sid=None) self.recv_feature(""" <stream:features> <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind" /> <session xmlns="urn:ietf:params:xml:ns:xmpp-session" /> </stream:features> """) # Should really use send, but our Iq stanza objects # can't handle bind element payloads yet. self.send_feature(""" <iq type="set" id="1"> <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"> <resource>test</resource> </bind> </iq> """) self.recv_feature(""" <iq type="result" id="1"> <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"> <jid>user@localhost/test</jid> </bind> </iq> """) self.stream_close() suite = unittest.TestLoader().loadTestsFromTestCase(TestLiveStream) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format='%(levelname)-8s %(message)s') tests = unittest.TestSuite([suite]) result = unittest.TextTestRunner(verbosity=2).run(tests) test_ns = 'http://andyet.net/protocol/tests' print("<tests xmlns='%s' %s %s %s %s />" % ( test_ns, 'ran="%s"' % result.testsRun, 'errors="%s"' % len(result.errors), 'fails="%s"' % len(result.failures), 'success="%s"' % result.wasSuccessful()))
[ "lancestout@gmail.com" ]
lancestout@gmail.com
f5058ccbcc8449198222100dc98b9d6777472a89
2f6d017dedc68588b2615d65c1e8ca8bcdd90446
/api/deploy/write_json.py
01f5c1cf3ca63b0de2e90ca19f9b694b331c12f5
[]
no_license
hysunflower/benchmark
70fc952a4eb1545208543627539d72e991cef78a
c14f99c15b4be9e11f56ea378ca15d9c3da23bab
refs/heads/master
2022-06-30T07:04:14.986050
2022-06-15T02:43:04
2022-06-15T02:43:04
224,449,279
1
0
null
2019-11-27T14:29:29
2019-11-27T14:29:29
null
UTF-8
Python
false
false
3,347
py
#!/bin/python # -*- coding: UTF-8 -*- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import json import op_benchmark_unit COMPARE_RESULT_SHOWS = { "Better": "优于", "Equal": "打平", "Less": "差于", "Unknown": "未知", "Unsupport": "不支持", "Others": "其他", "Total": "汇总" } def create_summary_json(compare_result, category): summary_json_result = list() compare_result_colors = {"Better": "green", "Less": "red"} compare_result_keys = compare_result.compare_result_keys titles = {"title": 1, "row_0": category} for (i, compare_result_key) in enumerate(compare_result_keys, 1): titles["row_%i" % i] = COMPARE_RESULT_SHOWS[compare_result_key] summary_json_result.append(titles) for device in ["gpu", "cpu"]: for direction in ["forward", "backward"]: for method in ["total", "kernel"]: if device == "cpu": continue data = { "title": 0, "row_0": "{} {} ({})".format(device.upper(), direction.capitalize(), method) } value = compare_result.get(device, direction, method) num_total_cases = value["Total"] for (i, compare_result_key) in enumerate(compare_result_keys, 1): num_cases = value[compare_result_key] if num_cases > 0: ratio = float(num_cases) / float(num_total_cases) this_str = "{} ({:.2f}%)".format(num_cases, ratio * 100) else: this_str = "--" data["row_%i" % i] = this_str summary_json_result.append(data) return summary_json_result def dump_json(benchmark_result_list, output_path=None): """ dump data to a json file """ if output_path is None: print("Output path is not specified, will not dump json.") return compare_result_case_level = op_benchmark_unit.summary_compare_result( benchmark_result_list) compare_result_op_level = op_benchmark_unit.summary_compare_result_op_level( benchmark_result_list) with open(output_path, 'w') as f: summary_case_json = create_summary_json(compare_result_case_level, "case_level") summary_op_json = create_summary_json(compare_result_op_level, "case_level") f.write(json.dumps(summary_case_json + summary_op_json))
[ "noreply@github.com" ]
hysunflower.noreply@github.com
89189e31f7eff193f8991a28da369417a28ae86d
68cd659b44f57adf266dd37789bd1da31f61670d
/D2/D2_20190715파리퇴치.py
37273d877cfb93458b8b8fdef4531e610039777c
[]
no_license
01090841589/solved_problem
c0c6f5a46e4d48860dccb3b0288aa5b56868fbca
bbea2f31e5fe36cad100bc514eacd83545fb25b1
refs/heads/master
2023-07-02T23:55:51.631478
2021-08-04T13:57:00
2021-08-04T13:57:00
197,157,830
2
0
null
null
null
null
UTF-8
Python
false
false
657
py
def arrr(N) : for i in range(N) : inp = input().split(' ') inp = [int(j) for j in inp] fly.append(inp) return fly def max_cal(fly,N,M): sum_num = 0 max_num = 0 for i in range(N-M+1) : for j in range(N-M+1) : for l in range(M) : for m in range(M) : sum_num += fly[l+i][m+j] if max_num < sum_num : max_num = sum_num sum_num = 0 return(max_num) T = int(input()) for a in range(T): N = input().split(' ') fly = [] fly = arrr(int(N[0])) print('#{0} {1}'.format(a+1, max_cal(fly,int(N[0]),int(N[1]))))
[ "chanchanhwan@naver.com" ]
chanchanhwan@naver.com
f21360c68557a49b1b4e4413627b85cd6737f75c
73c9211d5627594e0191510f0b4d70a907f5c4c5
/nn/keras_dataguru/lesson2/work2.py
4dcacb8f30dd2feaffbd330256b8915e94435bcf
[]
no_license
tigerxjtu/py3
35378f270363532fb30962da8674dbcee99eb5ff
5d24cd074f51bd0f17f6cc4f5f1a6e7cf0d48779
refs/heads/master
2021-07-13T05:34:15.080119
2020-06-24T09:36:33
2020-06-24T09:36:33
159,121,100
2
0
null
null
null
null
UTF-8
Python
false
false
1,149
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import keras import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD # In[2]: (x_train,y_train),(x_test,y_test)=mnist.load_data() print('x_shape:',x_train.shape) #(60000,28,28) print('y_shape:',y_train.shape) #(60000,) x_train = x_train.reshape(x_train.shape[0],-1)/255.0 x_test = x_test.reshape(x_test.shape[0],-1)/255.0 y_train = np_utils.to_categorical(y_train,num_classes=10) y_test = np_utils.to_categorical(y_test,num_classes=10) # In[8]: # model=Sequential([Dense(units=10,input_dim=784,bias_initializer='one',activation='softmax')]) model=Sequential() model.add(Dense(units=256,input_dim=x_train.shape[1],activation='relu')) model.add(Dense(units=10,activation='softmax')) sgd=SGD(lr=0.2) model.compile(optimizer=sgd,loss='categorical_crossentropy',metrics=['accuracy']) # In[9]: model.fit(x_train,y_train,batch_size=32,epochs=10) loss,accuracy=model.evaluate(x_test,y_test) print('\ntest loss:',loss) print('accuracy:',accuracy) # In[ ]:
[ "liyin@16010.net" ]
liyin@16010.net
9f719d70ff61b820cde1a602f393ba9c91b6514b
d83f50302702d6bf46c266b8117514c6d2e5d863
/number-of-boomerangs.py
7add2f05767711dbf020f6215cc8f92ec9b5a59c
[]
no_license
sfdye/leetcode
19764a6bdb82de114a2c82986864b1b2210c6d90
afc686acdda4168f4384e13fb730e17f4bdcd553
refs/heads/master
2020-03-20T07:58:52.128062
2019-05-05T08:10:41
2019-05-05T08:10:41
137,295,892
3
0
null
null
null
null
UTF-8
Python
false
false
415
py
class Solution(object): def numberOfBoomerangs(self, points): """ :type points: List[List[int]] :rtype: int """ ans = 0 for p in points: d = collections.defaultdict(int) for q in points: d[(p[0] - q[0]) ** 2 + (p[1] - q[1]) ** 2] += 1 for k in d.values(): ans += k * (k - 1) return ans
[ "tsfdye@gmail.com" ]
tsfdye@gmail.com
840b8e213aaeafea3b9c2b03e58bd84996694d5a
bafcde124dd3af37ef14e322e0e76e82d8684469
/restapi/services/models/PasswordResetModel.py
47e24ce9d570005a767967ad9265625a49a108e4
[]
no_license
mentimun-mentah/balihot-property-backend
1c7ac91c04f791ca55f5f97e872034fbc30a8d32
b715cc3988ca70d16dbe2e89839653af310fa091
refs/heads/master
2022-12-27T15:01:23.196310
2020-09-06T17:00:53
2020-09-06T17:00:53
268,197,437
1
0
null
2020-10-20T16:55:31
2020-05-31T02:46:41
Python
UTF-8
Python
false
false
1,310
py
import uuid, os from services.serve import db from time import time from flask import url_for from sqlalchemy import func from services.libs.MailSmtp import MailSmtp class PasswordReset(db.Model): __tablename__ = 'password_resets' id = db.Column(db.String(100),primary_key=True) email = db.Column(db.String(100),unique=True,index=True,nullable=False) resend_expired = db.Column(db.Integer,nullable=True) created_at = db.Column(db.DateTime,default=func.now()) def __init__(self,email: str): self.email = email self.resend_expired = int(time()) + 300 # add 5 minute expired self.id = uuid.uuid4().hex def send_email_reset_password(self) -> None: link = os.getenv("APP_URL") + url_for('user.reset_password',token=self.id) MailSmtp.send_email([self.email],'Reset Password','email/EmailResetPassword.html',link=link) @property def resend_is_expired(self) -> bool: return int(time()) > self.resend_expired def change_resend_expired(self) -> "PasswordReset": self.resend_expired = int(time()) + 300 # add 5 minute expired def save_to_db(self) -> None: db.session.add(self) db.session.commit() def delete_from_db(self) -> None: db.session.delete(self) db.session.commit()
[ "nyomanpradipta120@gmail.com" ]
nyomanpradipta120@gmail.com
014e8f1ddcd99487d99ffa878a6e6cfa7d50ed6c
d55bda4c4ba4e09951ffae40584f2187da3c6f67
/h/admin/views/groups.py
0caffe6dcf887350fc17bfffc50c9f1ecc8b64bc
[ "BSD-3-Clause", "BSD-2-Clause-Views", "BSD-2-Clause", "MIT" ]
permissive
ficolo/h
3d12f78fe95843b2a8f4fc37231363aa7c2868d9
31ac733d37e77c190f359c7ef5d59ebc9992e531
refs/heads/master
2021-01-15T21:08:17.554764
2016-06-09T15:42:01
2016-06-09T15:42:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,234
py
# -*- coding: utf-8 -*- from pyramid.view import view_config from h import models from h import paginator @view_config(route_name='admin_groups', request_method='GET', renderer='h:templates/admin/groups.html.jinja2', permission='admin_groups') @paginator.paginate def groups_index(context, request): return models.Group.query.order_by(models.Group.created.desc()) @view_config(route_name='admin_groups_csv', request_method='GET', renderer='csv', permission='admin_groups') def groups_index_csv(request): groups = models.Group.query header = ['Group name', 'Group URL', 'Creator username', 'Creator email', 'Number of members'] rows = [[group.name, request.route_url('group_read', pubid=group.pubid, slug=group.slug), group.creator.username, group.creator.email, len(group.members)] for group in groups] filename = 'groups.csv' request.response.content_disposition = 'attachment;filename=' + filename return {'header': header, 'rows': rows} def includeme(config): config.scan(__name__)
[ "nick@whiteink.com" ]
nick@whiteink.com
b9aeff68654c2ed50000a30879c2e21c640d81e5
0206ac23a29673ee52c367b103dfe59e7733cdc1
/src/nemo/compare_2nemo_simulations.py
041bbfd0229b247c34b4796abf04bc639b9483ae
[]
no_license
guziy/RPN
2304a93f9ced626ae5fc8abfcc079e33159ae56a
71b94f4c73d4100345d29a6fbfa9fa108d8027b5
refs/heads/master
2021-11-27T07:18:22.705921
2021-11-27T00:54:03
2021-11-27T00:54:03
2,078,454
4
3
null
null
null
null
UTF-8
Python
false
false
3,484
py
from collections import namedtuple from pathlib import Path from matplotlib import cm from matplotlib.gridspec import GridSpec from nemo.nemo_yearly_files_manager import NemoYearlyFilesManager __author__ = 'huziy' # Compare 2 Nemo outputs import matplotlib.pyplot as plt import numpy as np def main_compare_max_yearly_ice_conc(): """ ice concentration """ var_name = "" start_year = 1979 end_year = 1985 SimConfig = namedtuple("SimConfig", "path label") base_config = SimConfig("/home/huziy/skynet3_rech1/offline_glk_output_daily_1979-2012", "ERAI-driven") modif_config = SimConfig("/home/huziy/skynet3_rech1/one_way_coupled_nemo_outputs_1979_1985", "CRCM5") nemo_manager_base = NemoYearlyFilesManager(folder=base_config.path, suffix="icemod.nc") nemo_manager_modif = NemoYearlyFilesManager(folder=modif_config.path, suffix="icemod.nc") icecov_base, icecov_ts_base = nemo_manager_base.get_max_yearly_ice_fraction(start_year=start_year, end_year=end_year) icecov_modif, icecov_ts_modif = nemo_manager_modif.get_max_yearly_ice_fraction(start_year=start_year, end_year=end_year) lons, lats, bmp = nemo_manager_base.get_coords_and_basemap() xx, yy = bmp(lons.copy(), lats.copy()) # Plot as usual: model, obs, model - obs img_folder = Path("nemo/{}vs{}".format(modif_config.label, base_config.label)) if not img_folder.is_dir(): img_folder.mkdir(parents=True) img_file = img_folder.joinpath("compare_yearmax_icecov_{}_vs_{}_{}-{}.pdf".format( modif_config.label, base_config.label, start_year, end_year)) fig = plt.figure() gs = GridSpec(2, 3, width_ratios=[1, 1, 0.05]) cmap = cm.get_cmap("jet", 10) diff_cmap = cm.get_cmap("RdBu_r", 10) # base ax = fig.add_subplot(gs[0, 0]) cs = bmp.contourf(xx, yy, icecov_base, cmap=cmap) bmp.drawcoastlines(ax=ax) ax.set_title(base_config.label) # modif ax = fig.add_subplot(gs[0, 1]) cs = bmp.contourf(xx, yy, icecov_modif, cmap=cmap, levels=cs.levels) plt.colorbar(cs, cax=fig.add_subplot(gs[0, -1])) bmp.drawcoastlines(ax=ax) ax.set_title(modif_config.label) # difference ax = fig.add_subplot(gs[1, :]) cs = bmp.contourf(xx, yy, icecov_modif - icecov_base, cmap=diff_cmap, levels=np.arange(-1, 1.2, 0.2)) bmp.colorbar(cs, ax=ax) bmp.drawcoastlines(ax=ax) fig.tight_layout() fig.savefig(str(img_file), bbox_inches="tight") ax.set_title("{}-{}".format(modif_config.label, base_config.label)) plt.close(fig) # Plot time series img_file = img_folder.joinpath("ts_compare_yearmax_icecov_{}_vs_{}_{}-{}.pdf".format( modif_config.label, base_config.label, start_year, end_year)) fig = plt.figure() plt.plot(range(start_year, end_year + 1), icecov_ts_base, "b", lw=2, label=base_config.label) plt.plot(range(start_year, end_year + 1), icecov_ts_modif, "r", lw=2, label=modif_config.label) plt.legend() plt.gca().get_xaxis().get_major_formatter().set_useOffset(False) plt.grid() plt.xlabel("Year") fig.tight_layout() fig.savefig(str(img_file), bbox_inches="tight") if __name__ == '__main__': import application_properties application_properties.set_current_directory() main_compare_max_yearly_ice_conc()
[ "guziy.sasha@gmail.com" ]
guziy.sasha@gmail.com
92e85c7b6e66817ecaf916d920cc1d86019397c2
fe9573bad2f6452ad3e2e64539361b8bc92c1030
/scapy_code/sniif_packet.py
97cbf240c0083c9937735a47714341cd1d7da111
[]
no_license
OceanicSix/Python_program
e74c593e2e360ae22a52371af6514fcad0e8f41f
2716646ce02db00306b475bad97105b260b6cd75
refs/heads/master
2022-01-25T16:59:31.212507
2022-01-09T02:01:58
2022-01-09T02:01:58
149,686,276
1
2
null
null
null
null
UTF-8
Python
false
false
224
py
from scapy.all import * def print_pkt(pkt): print("---------------this is a new packet----------------------") new_pkt = pkt[IP] if new_pkt[ICMP]: new_pkt.show() sniff(filter= "icmp" , prn=print_pkt)
[ "byan0007@student.monash.edu" ]
byan0007@student.monash.edu
83a912f2fd9bb92402ffe65df2ebaf7a667edd7e
e590449a05b20712d777fc5f0fa52097678c089b
/python-client/test/test_stash_appscode_com_v1alpha1_api.py
58eaf340d2c3e2c403e782c27e9854d90c2f4271
[ "Apache-2.0" ]
permissive
Hardeep18/kube-openapi-generator
2563d72d9f95196f8ef795896c08e8e21cd1a08e
6607d1e208965e3a09a0ee6d1f2de7e462939150
refs/heads/master
2020-04-11T03:30:18.786896
2018-05-05T20:57:51
2018-05-05T20:57:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,173
py
# coding: utf-8 """ stash-server No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.api.stash_appscode_com_v1alpha1_api import StashAppscodeComV1alpha1Api # noqa: E501 from swagger_client.rest import ApiException class TestStashAppscodeComV1alpha1Api(unittest.TestCase): """StashAppscodeComV1alpha1Api unit test stubs""" def setUp(self): self.api = swagger_client.api.stash_appscode_com_v1alpha1_api.StashAppscodeComV1alpha1Api() # noqa: E501 def tearDown(self): pass def test_create_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for create_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_create_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for create_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_create_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for create_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_delete_stash_appscode_com_v1alpha1_collection_namespaced_recovery(self): """Test case for delete_stash_appscode_com_v1alpha1_collection_namespaced_recovery """ pass def test_delete_stash_appscode_com_v1alpha1_collection_namespaced_repository(self): """Test case for delete_stash_appscode_com_v1alpha1_collection_namespaced_repository """ pass def test_delete_stash_appscode_com_v1alpha1_collection_namespaced_restic(self): """Test case for delete_stash_appscode_com_v1alpha1_collection_namespaced_restic """ pass def test_delete_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for delete_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_delete_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for delete_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_delete_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for delete_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_get_stash_appscode_com_v1alpha1_api_resources(self): """Test case for get_stash_appscode_com_v1alpha1_api_resources """ pass def test_list_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for list_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_list_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for list_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_list_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for list_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_list_stash_appscode_com_v1alpha1_recovery_for_all_namespaces(self): """Test case for list_stash_appscode_com_v1alpha1_recovery_for_all_namespaces """ pass def test_list_stash_appscode_com_v1alpha1_repository_for_all_namespaces(self): """Test case for list_stash_appscode_com_v1alpha1_repository_for_all_namespaces """ pass def test_list_stash_appscode_com_v1alpha1_restic_for_all_namespaces(self): """Test case for list_stash_appscode_com_v1alpha1_restic_for_all_namespaces """ pass def test_patch_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for patch_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_patch_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for patch_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_patch_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for patch_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_read_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for read_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_read_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for read_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_read_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for read_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_replace_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for replace_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_replace_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for replace_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_replace_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for replace_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_recovery_list(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_recovery_list """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_repository_list(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_repository_list """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_restic_list(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_restic_list """ pass def test_watch_stash_appscode_com_v1alpha1_recovery_list_for_all_namespaces(self): """Test case for watch_stash_appscode_com_v1alpha1_recovery_list_for_all_namespaces """ pass def test_watch_stash_appscode_com_v1alpha1_repository_list_for_all_namespaces(self): """Test case for watch_stash_appscode_com_v1alpha1_repository_list_for_all_namespaces """ pass def test_watch_stash_appscode_com_v1alpha1_restic_list_for_all_namespaces(self): """Test case for watch_stash_appscode_com_v1alpha1_restic_list_for_all_namespaces """ pass if __name__ == '__main__': unittest.main()
[ "tamal@appscode.com" ]
tamal@appscode.com
c693954cad97f78d72668a79087d4930ccea1091
a8b37bd399dd0bad27d3abd386ace85a6b70ef28
/airbyte-integrations/connectors/source-opsgenie/source_opsgenie/source.py
743694d15b54b6ca441b6e91b3a528af43f6b85c
[ "MIT", "LicenseRef-scancode-free-unknown", "Elastic-2.0" ]
permissive
thomas-vl/airbyte
5da2ba9d189ba0b202feb952cadfb550c5050871
258a8eb683634a9f9b7821c9a92d1b70c5389a10
refs/heads/master
2023-09-01T17:49:23.761569
2023-08-25T13:13:11
2023-08-25T13:13:11
327,604,451
1
0
MIT
2021-01-07T12:24:20
2021-01-07T12:24:19
null
UTF-8
Python
false
false
1,870
py
# # Copyright (c) 2023 Airbyte, Inc., all rights reserved. # from typing import Any, List, Mapping, Tuple import requests from airbyte_cdk.sources import AbstractSource from airbyte_cdk.sources.streams import Stream from airbyte_cdk.sources.streams.http.requests_native_auth import TokenAuthenticator from .streams import AlertLogs, AlertRecipients, Alerts, Incidents, Integrations, Services, Teams, Users, UserTeams # Source class SourceOpsgenie(AbstractSource): @staticmethod def get_authenticator(config: Mapping[str, Any]): return TokenAuthenticator(config["api_token"], auth_method="GenieKey") def check_connection(self, logger, config) -> Tuple[bool, any]: try: auth = self.get_authenticator(config) api_endpoint = f"https://{config['endpoint']}/v2/account" response = requests.get( api_endpoint, headers=auth.get_auth_header(), ) return response.status_code == requests.codes.ok, None except Exception as error: return False, f"Unable to connect to Opsgenie API with the provided credentials - {repr(error)}" def streams(self, config: Mapping[str, Any]) -> List[Stream]: auth = self.get_authenticator(config) args = {"authenticator": auth, "endpoint": config["endpoint"]} incremental_args = {**args, "start_date": config.get("start_date", "")} users = Users(**args) alerts = Alerts(**incremental_args) return [ alerts, AlertRecipients(parent_stream=alerts, **args), AlertLogs(parent_stream=alerts, **args), Incidents(**incremental_args), Integrations(**args), Services(**args), Teams(**args), users, UserTeams(parent_stream=users, **args), ]
[ "noreply@github.com" ]
thomas-vl.noreply@github.com
a0b0afefa29d9867d2ca4e7ea95add21f514f525
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/cognitiveservices/azure-mgmt-cognitiveservices/tests/disable_test_cli_mgmt_cognitiveservices.py
36137183535e3c620a46e8cea7f926e0adadefd9
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
4,767
py
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- # TEST SCENARIO COVERAGE # ---------------------- # Methods Total : 14 # Methods Covered : 14 # Examples Total : 15 # Examples Tested : 13 # Coverage % : 87 # ---------------------- import unittest import azure.mgmt.cognitiveservices from devtools_testutils import AzureMgmtTestCase, ResourceGroupPreparer AZURE_LOCATION = 'eastus' class MgmtCognitiveServicesTest(AzureMgmtTestCase): def setUp(self): super(MgmtCognitiveServicesTest, self).setUp() self.mgmt_client = self.create_mgmt_client( azure.mgmt.cognitiveservices.CognitiveServicesManagementClient ) @unittest.skip('hard to test') @ResourceGroupPreparer(location=AZURE_LOCATION) def test_cognitiveservices(self, resource_group): SUBSCRIPTION_ID = self.settings.SUBSCRIPTION_ID RESOURCE_GROUP = resource_group.name ACCOUNT_NAME = "myAccount" LOCATION = "myLocation" # /Accounts/put/Create Account Min[put] BODY = { "location": "West US", "kind": "CognitiveServices", "sku": { "name": "S0" }, "identity": { "type": "SystemAssigned" } } result = self.mgmt_client.accounts.create(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME, account=BODY) # /Accounts/put/Create Account[put] BODY = { "location": "West US", "kind": "Emotion", "sku": { "name": "S0" }, "properties": { "encryption": { "key_vault_properties": { "key_name": "KeyName", "key_version": "891CF236-D241-4738-9462-D506AF493DFA", "key_vault_uri": "https://pltfrmscrts-use-pc-dev.vault.azure.net/" }, "key_source": "Microsoft.KeyVault" }, "user_owned_storage": [ { "resource_id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + RESOURCE_GROUP + "/providers/Microsoft.Storage/storageAccountsfelixwatest" } ] }, "identity": { "type": "SystemAssigned" } } # result = self.mgmt_client.accounts.create(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME, account=BODY) # /Accounts/get/Get Usages[get] result = self.mgmt_client.accounts.get_usages(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) # /Accounts/get/List SKUs[get] result = self.mgmt_client.accounts.list_skus(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) # /Accounts/get/Get Account[get] result = self.mgmt_client.accounts.get_properties(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) # /Accounts/get/List Accounts by Resource Group[get] result = self.mgmt_client.accounts.list_by_resource_group(resource_group_name=RESOURCE_GROUP) # /Accounts/get/List Accounts by Subscription[get] result = self.mgmt_client.accounts.list() # /ResourceSkus/get/Regenerate Keys[get] result = self.mgmt_client.resource_skus.list() # /Operations/get/Get Operations[get] result = self.mgmt_client.operations.list() # /Accounts/post/Regenerate Keys[post] result = self.mgmt_client.accounts.regenerate_key(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME, key_name="Key2") # /Accounts/post/List Keys[post] result = self.mgmt_client.accounts.list_keys(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) # /Accounts/patch/Update Account[patch] BODY = { "sku": { "name": "S2" } } # result = self.mgmt_client.accounts.update(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME, account=BODY) # //post/Check SKU Availability[post] SKUS = [ "S0" ] result = self.mgmt_client.check_sku_availability(location="eastus", skus=SKUS, kind="Face", type="Microsoft.CognitiveServices/accounts") # /Accounts/delete/Delete Account[delete] result = self.mgmt_client.accounts.delete(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) #------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
Azure.noreply@github.com
87db78fc9bb040bc77eeeb14ffba6ee78b8c43fa
42394bd8cd674dcd0822ae288ddb4f4e749a6ed6
/fluent_blogs/sitemaps.py
97da332b7a014536107d1f7fe042d295b321ac83
[ "Apache-2.0" ]
permissive
mmggbj/django-fluent-blogs
4bca6e7effeca8b4cee3fdf4f8bb4eb4d192dfbe
7fc3220d6609fe0615ad6ab44044c671d17d06a3
refs/heads/master
2021-05-08T13:02:51.896360
2018-01-31T21:54:27
2018-01-31T21:54:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,647
py
from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from django.contrib.sitemaps import Sitemap from fluent_blogs.models import get_entry_model, get_category_model from fluent_blogs.urlresolvers import blog_reverse from parler.models import TranslatableModel User = get_user_model() EntryModel = get_entry_model() CategoryModel = get_category_model() class EntrySitemap(Sitemap): """ The sitemap definition for the pages created with django-fluent-blogs. """ def items(self): qs = EntryModel.objects.published().order_by('-publication_date') if issubclass(EntryModel, TranslatableModel): # Note that .active_translations() can't be combined with other filters for translations__.. fields. qs = qs.active_translations() return qs.order_by('-publication_date', 'translations__language_code') else: return qs.order_by('-publication_date') def lastmod(self, urlnode): """Return the last modification of the entry.""" return urlnode.modification_date def location(self, urlnode): """Return url of an entry.""" return urlnode.url class CategoryArchiveSitemap(Sitemap): def items(self): only_ids = EntryModel.objects.published().values('categories').order_by().distinct() return CategoryModel.objects.filter(id__in=only_ids) def lastmod(self, category): """Return the last modification of the entry.""" lastitems = EntryModel.objects.published().order_by('-modification_date').filter(categories=category).only('modification_date') return lastitems[0].modification_date def location(self, category): """Return url of an entry.""" return blog_reverse('entry_archive_category', kwargs={'slug': category.slug}, ignore_multiple=True) class AuthorArchiveSitemap(Sitemap): def items(self): only_ids = EntryModel.objects.published().values('author').order_by().distinct() return User.objects.filter(id__in=only_ids) def lastmod(self, author): """Return the last modification of the entry.""" lastitems = EntryModel.objects.published().order_by('-modification_date').filter(author=author).only('modification_date') return lastitems[0].modification_date def location(self, author): """Return url of an entry.""" return blog_reverse('entry_archive_author', kwargs={'slug': author.username}, ignore_multiple=True) class TagArchiveSitemap(Sitemap): def items(self): # Tagging is optional. When it's not used, it's ignored. if 'taggit' not in settings.INSTALLED_APPS: return [] from taggit.models import Tag only_instances = EntryModel.objects.published().only('pk') # Until https://github.com/alex/django-taggit/pull/86 is merged, # better use the field names directly instead of bulk_lookup_kwargs return Tag.objects.filter( taggit_taggeditem_items__object_id__in=only_instances, taggit_taggeditem_items__content_type=ContentType.objects.get_for_model(EntryModel) ) def lastmod(self, tag): """Return the last modification of the entry.""" lastitems = EntryModel.objects.published().order_by('-modification_date').filter(tags=tag).only('modification_date') return lastitems[0].modification_date def location(self, tag): """Return url of an entry.""" return blog_reverse('entry_archive_tag', kwargs={'slug': tag.slug}, ignore_multiple=True)
[ "vdboor@edoburu.nl" ]
vdboor@edoburu.nl
b149655165dbfc3253e689f968488cd68f3e18c6
3e660e22783e62f19e9b41d28e843158df5bd6ef
/script.me.syncsmashingfromgithub/smashingfavourites/scripts/oldscripts/smashingtvextended.py
23aa7191d67b111064220b6ce41ecbc4caa91859
[]
no_license
monthou66/repository.smashingfavourites
a9603906236000d2424d2283b50130c7a6103966
f712e2e4715a286ff6bff304ca30bf3ddfaa112f
refs/heads/master
2020-04-09T12:14:34.470077
2018-12-04T10:56:45
2018-12-04T10:56:45
160,341,386
0
0
null
null
null
null
UTF-8
Python
false
false
5,059
py
# -*- coding: utf-8 -*- # opens tv channel or guide groups via smashingfavourites and / or keymap. import os import os.path import xbmc import sys # make sure dvbviewer is running - enable and wait if necessary def enable(): if not xbmc.getCondVisibility('System.HasAddon(pvr.dvbviewer)'): xbmc.executeJSONRPC('{"jsonrpc":"2.0","method":"Addons.SetAddonEnabled","id":7,"params":{"addonid":"pvr.dvbviewer","enabled":true}}') xbmc.sleep(200) # make sure dvbviewer is not running - disable if necessary def disable(): xbmc.executeJSONRPC('{"jsonrpc":"2.0","method":"Addons.SetAddonEnabled","id":8,"params":{"addonid":"pvr.dvbviewer","enabled":false}}') # define terms... c = count # f=0 for just pvr disabled f = 1 (value) if channels, f=2 (value) if guides, f=3 if radio, f=4 if recordings, # f=5 if timers, f=6 if search, f=7 if recording / recorded files, f=8 for timeshift, f=9 for permanently enable, # f=10 for remove enable check. # g = group number (value)... g=3 for last channel group / guide group # define f a = sys.argv[1] f = int(a) def terms(): b = sys.argv[2] c = 2 g = int(b) # f=3 def radio(): xbmc.executebuiltin('ActivateWindow(Radio)') exit() # f=4 def recordings(): xbmc.executebuiltin('ActivateWindow(tvrecordings)') exit() # f=5 def timers(): xbmc.executebuiltin('ActivateWindow(tvtimers)') exit() # f=6 def search(): xbmc.executebuiltin('ActivateWindow(tvsearch)') exit() # pvr can be disabled for recorded files - f=7 def recordedfiles(): xbmc.executebuiltin('Videos,smb://SourceTVRecordings/,return') exit() # pvr can be disabled for timeshift files - f=8 def timeshift(): xbmc.executebuiltin('Videos,smb://SourceTVRecordings/,return') exit() # print stars to show up in log and error notification def printstar(): print "****************************************************************************" print "****************************************************************************" def error(): xbmc.executebuiltin('Notification(Check, smashingtv)') exit() # open channel or guide windows - f = 1,2 def opengroups(): if f == 1: xbmc.executebuiltin('ActivateWindow(TVChannels)') elif f == 2: xbmc.executebuiltin('ActivateWindow(TVGuide)') else: xbmc.executebuiltin('Notification(Check, smashingtv)'); exit() xbmc.executebuiltin('SendClick(28)') xbmc.executebuiltin( "XBMC.Action(FirstPage)" ) # loop move down to correct group (if necessary) if g > 1: while (c <= g): c = c + 1 xbmc.executebuiltin( "XBMC.Action(Down)" ) # open group if not using 'choose' option. if g >=1: xbmc.executebuiltin( "XBMC.Action(Select)" ) xbmc.executebuiltin( "XBMC.Action(Right)" ) xbmc.executebuiltin( "ClearProperty(SideBladeOpen)" ) # define file locations def files(): SOURCEFILE = os.path.join(xbmc.translatePath('special://userdata/favourites/smashingtv/enablefile'), "enablepvr.txt") TARGET = os.path.join(xbmc.translatePath('special://userdata/favourites/smashingtv'), "enablepvr.txt") # permanentenable: # Copy pvrenable.txt to favourites/smashingtv folder as marker and enable pvr.dvbviewer - f=9 # check if SOURCEFILE exists - if not give an error message # check if TARGET exists - if so give a notification 'already enabled' # copy SOURCEFILE to TARGET, enable and close def permanentenable(): if not os.path.isfile(SOURCEFILE): printstar() print "smashingtv problem - check userdata/favourites/smashingtv/enablefile folder for missing pvrenable.txt" printstar() error() if os.path.isfile(TARGET): xbmc.executebuiltin('Notification(PVR is, already enabled)') enable() exit() else: shutil.copy(SOURCEFILE, TARGET) xbmc.executebuiltin('Notification(PVR is, permanently enabled)') enable() exit() #removepermanentcheck # Remove pvrenable.txt from favourites/smashingtv folder f=10 def removepermanentcheck(): if not os.path.isfile(TARGET): xbmc.executebuiltin('Notification(No PVR, lock found)') disable() exit() else: os.remove(TARGET) xbmc.executebuiltin('Notification(PVR, unlocked)') disable() exit() # Get on with it... # disable or enable pvr.dvbviewer, exit if necessary, exit and print message if f is out of range if f == 0: disable() exit() elif f == 7 or f == 8: disable() elif f > 10 or f < 0: printstar() print "smashingtv exited 'cos f is out of range" print "f is ",f printstar() error() else: enable() if f == 1 or f == 2: terms() opengroups() elif f == 3: radio() elif f == 4: recordings() elif f == 5: timers() elif f == 6: search() elif f == 7: recordedfiles() elif f == 8: timeshift() elif f == 9: permanentenable() enable() elif f == 10: removepermanentcheck() disable() else: printstar() print "smashingtv exited 'cos sumfink went rong" printstar() error()
[ "davemullane@gmail.com" ]
davemullane@gmail.com
6042ebe496e64d755d312557f38f2f61d3e98e80
18e687608ff326fae4d1e1604cf452f086f99559
/classroom/admin.py
7da03566a6f4b009b1d4c24281b22e580476a82c
[ "Apache-2.0" ]
permissive
nu11byt3s/lms-ml
955bad451ddcb78e464227294496ee0a92be08c0
c0ea63f09d4125b0ae9033fd8b0a4aab2604bb42
refs/heads/main
2023-08-13T08:09:53.097312
2021-10-12T09:51:31
2021-10-12T09:51:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
from django.contrib import admin from .models import ClassFiles, ClassRoom, MemberShip, RoomStream, Comment admin.site.register(ClassRoom) admin.site.register(ClassFiles) admin.site.register(MemberShip) admin.site.register(RoomStream) admin.site.register(Comment)
[ "farsin310yeariha9701@gmail.com" ]
farsin310yeariha9701@gmail.com
f50a2c13091de7e6652bd032364405a6cb81e40a
f08336ac8b6f8040f6b2d85d0619d1a9923c9bdf
/148-sortList.py
deaa09cb9bde869ffaac11cb72d4a48498d2f6ed
[]
no_license
MarshalLeeeeee/myLeetCodes
fafadcc35eef44f431a008c1be42b1188e7dd852
80e78b153ad2bdfb52070ba75b166a4237847d75
refs/heads/master
2020-04-08T16:07:47.943755
2019-02-21T01:43:16
2019-02-21T01:43:16
159,505,231
0
0
null
null
null
null
UTF-8
Python
false
false
1,383
py
''' 148. Sort List Sort a linked list in O(n log n) time using constant space complexity. Example 1: Input: 4->2->1->3 Output: 1->2->3->4 Example 2: Input: -1->5->3->4->0 Output: -1->0->3->4->5 ''' # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def solve(self,head,length): if length == 1: return head i, curr = 0, head while i+1 < length//2: curr = curr.next i += 1 tail = curr.next curr.next = None newHead = self.solve(head,length//2) newTail = self.solve(tail,length-length//2) currHead, currTail, ansHead = newHead, newTail, ListNode(0) curr = ansHead while currHead and currTail: if currHead.val < currTail.val: curr.next = currHead; currHead = currHead.next else: curr.next = currTail; currTail = currTail.next curr = curr.next if not currHead: curr.next = currTail else: curr.next = currHead return ansHead.next def sortList(self, head): """ :type head: ListNode :rtype: ListNode """ l, curr = 0, head while curr: l += 1 curr = curr.next if not l or l == 1: return head else: return self.solve(head,l)
[ "marshallee413lmc@sina.com" ]
marshallee413lmc@sina.com
24aeb181fe8842ceab8dcbdae1e7eae470e32e96
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_135/2091.py
2be5159255a480621d5ba476c77387286fc6d261
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
def get_values(f,line): choices = []; for i in range(0,4): if i+1 == line: choices.extend(f.readline().split()) else: f.readline() return choices if __name__ == "__main__": with open('problem.txt','r') as f: trials = int(f.readline()) for i in range(0,trials): first = int(f.readline()) first_choices = get_values(f,first) second = int(f.readline()) second_choices = get_values(f,second) combined = [] for a in first_choices: if a in second_choices: combined.append(a) if len(combined) == 1: print "Case #%s: %s"%(i+1,combined[0]) elif len(combined) > 1: print "Case #%s: %s"%(i+1,"Bad magician!") else: print "Case #%s: %s"%(i+1,"Volunteer cheated!")
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
94039fd9178ad4160ba0efb6f0dda17c0fde9816
8926a97e04be31c62a28ee9031520ca785f2947b
/flask/member_test/app3.py
1879796d52c5957ea5c6d9b35167283e4c2e6a95
[]
no_license
ragu6963/kfq_pyhton
3d651357242892713f36ac12e31f7b586d6e7422
bdad24e7620e8102902e2f0a71c8486fb0ad86c9
refs/heads/master
2022-11-26T16:02:49.838263
2020-07-31T00:40:59
2020-07-31T00:40:59
276,516,045
0
0
null
null
null
null
UTF-8
Python
false
false
4,306
py
from flask import Flask, request, render_template, redirect, url_for, jsonify, json import pymysql, os, cx_Oracle from flask_sqlalchemy import SQLAlchemy from json import JSONEncoder app = Flask(__name__) app.config["SQLALCHEMY_DATABASE_URI"] = "oracle://hr:hr@127.0.0.1:1521/xe" # app.config['SQLALCHEMY_DATABASE_URI'] = "mysql+pymysql://root:qwer1234@localhost/test" # app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) class User(db.Model): # id = db.Column(db.Integer, primary_key = True) userid = db.Column(db.String(20), primary_key=True) userpw = db.Column(db.String(20)) username = db.Column(db.String(20)) userage = db.Column(db.Integer) usermail = db.Column(db.String(20)) useradd = db.Column(db.String(20)) usergender = db.Column(db.String(20)) usertel = db.Column(db.String(20)) def __repr__(self): return "<userid %r,username %r>" % (self.id, self.username) def __init__(self, userid, userpw, username, userage, usermail, useradd, usergender, usertel): self.userid = userid self.userpw = userpw self.username = username self.userage = userage self.usermail = usermail self.useradd = useradd self.usergender = usergender self.usertel = usertel def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) @app.route("/") def index(): return render_template("index.html") @app.route("/usersform", methods=["POST", "GET"]) def usersform(): if request.method == "GET": return render_template("usersform.html") else: userid = request.form.get("userid") userpw = request.form.get("userpw") username = request.form.get("username") userage = request.form.get("userage") usermail = request.form.get("useremail") useradd = request.form.get("useradd") usergender = request.form.get("usergender") usertel = request.form.get("usertel") my_user = User(userid, userpw, username, userage, usermail, useradd, usergender, usertel) db.session.add(my_user) db.session.commit() return redirect("/list") @app.route("/list") def list(): all_data = User.query.all() return render_template("list.html", list=all_data) @app.route("/content/<userid>") def content(userid): result = User.query.filter_by(userid=userid).one() return render_template("content.html", list=result) @app.route("/updateform/<userid>", methods=["GET"]) def updateformget(userid): result = User.query.filter_by(userid=userid).one() return render_template("updateform.html", list=result) @app.route("/updateform", methods=["POST"]) def updateformpost(): my_user = User.query.get(request.form.get("userid")) my_user.userid = request.form.get("userid") my_user.userpw = request.form.get("userpw") my_user.username = request.form.get("username") my_user.userage = request.form.get("userage") my_user.usermail = request.form.get("usermail") my_user.useradd = request.form.get("useradd") my_user.usergender = request.form.get("usergender") my_user.usertel = request.form.get("usertel") db.session.commit() return redirect("/list") @app.route("/deleteform/<userid>") def deleteformget(userid): my_data = User.query.get(userid) db.session.delete(my_data) db.session.commit() return redirect("/list") @app.route("/ajaxlist", methods=["GET"]) def ajaxlistget(): all_data = User.query.all() return render_template("ajaxlist.html", list=all_data) @app.route("/ajaxlist", methods=["POST"]) def ajaxlistpost(): userid = request.form.get("userid") query = User.query.filter(User.userid.like("%" + userid + "%")).order_by(User.userid) all_data = query.all() result = [] for data in all_data: result.append(data.toJSON()) # return jsonify(all_data) return result @app.route("/imglist") def imglist(): print(os.path.dirname(__file__)) dirname = os.path.dirname(__file__) + "/static/img/" filenames = os.listdir(dirname) print(filenames) return render_template("imglist.html", filenames=filenames) if __name__ == "__main__": db.create_all() app.run(debug=True, port=8089)
[ "bhj1684@naver.com" ]
bhj1684@naver.com
b40d364523a6a0d9a5830630e0d64197363cab87
95884a6b32f6831e68c95d7785bc968a56877121
/cifar_imagenet/models/cifar/momentumnet_restart_lookahead_vel_learned_scalar_clip_mom.py
ba44f69eff7577785b303b3c9d7d192514916fc3
[ "MIT", "Apache-2.0" ]
permissive
minhtannguyen/RAdam
d89c4c6ce1ce0dd95b0be3aa2c20e70ea62da8b0
44f403288df375bae0785cc82dd8c888eaaaa441
refs/heads/master
2020-08-09T07:53:50.601789
2020-02-17T06:17:05
2020-02-17T06:17:05
214,041,479
0
0
Apache-2.0
2019-10-09T23:11:14
2019-10-09T23:11:14
null
UTF-8
Python
false
false
7,243
py
# -*- coding: utf-8 -*- """ momentum net """ import torch import torch.nn as nn import math from torch.nn.parameter import Parameter __all__ = ['momentumnet_restart_lookahead_vel_learned_scalar_clip_mom'] def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, step_size=2.0, momentum=0.5): super(BasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(inplanes) self.relu = nn.ReLU(inplace=True) self.conv1 = conv3x3(inplanes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.downsample = downsample self.stride = stride # for momentum net self.step_size = Parameter(torch.tensor(step_size), requires_grad=True) self.momentum = Parameter(torch.tensor(momentum), requires_grad=True) def forward(self, invec): x, y = invec[0], invec[1] residualx = x residualy = y out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) if self.downsample is not None: residualx = self.downsample(x) residualy = self.downsample(y) outy = residualx - self.step_size*out outx = (1.0 + self.momentum) * outy - self.momentum * residualy return [outx, outy] class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, step_size=2.0, momentum=0.5): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride # for momentum net self.step_size = Parameter(torch.tensor(step_size), requires_grad=True) self.momentum = Parameter(torch.tensor(momentum), requires_grad=True) def forward(self, invec): x, prex = invec[0], invec[1] residualx = x residualprex = prex x = x + torch.clamp(input=self.momentum, min=0.0, max=1.0) * prex out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) out = self.bn3(out) out = self.relu(out) out = self.conv3(out) if self.downsample is not None: residualx = self.downsample(residualx) residualprex = torch.zeros_like(out) outprex = torch.clamp(input=self.momentum, min=0.0, max=1.0) * residualprex - self.step_size * out outx = residualx + outprex return [outx, outprex] class MomentumNet(nn.Module): def __init__(self, depth, step_size=2.0, momentum=0.5, num_classes=1000, block_name='BasicBlock', feature_vec='x'): super(MomentumNet, self).__init__() # Model type specifies number of layers for CIFAR-10 model if block_name.lower() == 'basicblock': assert (depth - 2) % 6 == 0, 'When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202' n = (depth - 2) // 6 block = BasicBlock elif block_name.lower() == 'bottleneck': assert (depth - 2) % 9 == 0, 'When use bottleneck, depth should be 9n+2, e.g. 20, 29, 47, 56, 110, 1199' n = (depth - 2) // 9 block = Bottleneck else: raise ValueError('block_name shoule be Basicblock or Bottleneck') self.inplanes = 16 # for momentum net self.step_size = step_size self.momentum = momentum self.feature_vec = feature_vec self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.layer1 = self._make_layer(block, 16, n, step_size=self.step_size, momentum=self.momentum) self.layer2 = self._make_layer(block, 32, n, stride=2, step_size=self.step_size, momentum=self.momentum) self.layer3 = self._make_layer(block, 64, n, stride=2, step_size=self.step_size, momentum=self.momentum) self.bn = nn.BatchNorm2d(64 * block.expansion) self.relu = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, step_size=2.0, momentum=0.5): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, step_size=step_size, momentum=momentum)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, step_size=step_size, momentum=momentum)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) out = [x, torch.zeros_like(x)] out = self.layer1(out) # 32x32 out = self.layer2(out) # 16x16 out = self.layer3(out) # 8x8 if self.feature_vec=='x': x = out[0] else: x = out[1] x = self.bn(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def momentumnet_restart_lookahead_vel_learned_scalar_clip_mom(**kwargs): """ Constructs a ResNet model. """ return MomentumNet(**kwargs) # def momentum_net20(**kwargs): # return MomentumNet(num_classes=10, depth=20, block_name="basicblock") # def momentum_net56(**kwargs): # return MomentumNet(num_classes=10, depth=56, block_name="bottleneck") # def momentum_net110(**kwargs): # return MomentumNet(num_classes=10, depth=110, block_name="bottleneck") # def momentum_net164(**kwargs): # return MomentumNet(num_classes=10, depth=164, block_name="bottleneck") # def momentum_net290(**kwargs): # return MomentumNet(num_classes=10, depth=290, block_name="bottleneck")
[ "mn15@rice.edu" ]
mn15@rice.edu
066f467af220cf2210d237b5be14036c9a366795
c4ee4a9d28425aa334038ad174c7b1d757ff45db
/py/survey_backdeck/SurveyBackdeckDB.py
425ea9aadef024c30c34e6d6199380a96c70f5d1
[ "MIT" ]
permissive
nwfsc-fram/pyFieldSoftware
32b3b9deb06dba4a168083a77336613704c7c262
477ba162b66ede2263693cda8c5a51d27eaa3b89
refs/heads/master
2023-08-03T07:38:24.117376
2021-10-20T22:49:51
2021-10-20T22:49:51
221,750,910
1
1
MIT
2023-07-20T13:13:25
2019-11-14T17:23:47
Python
UTF-8
Python
false
false
1,155
py
__author__ = 'Todd.Hay' # ------------------------------------------------------------------------------- # Name: TrawlBackdeckDB.py # Purpose: Provides connection to the trawl_backdeck.db SQLite database # Author: Todd.Hay # Email: Todd.Hay@noaa.gov # # Created: Jan 08, 2016 # License: MIT #------------------------------------------------------------------------------- import unittest from py.common import CommonDB class HookAndLineHookCutterDB(CommonDB.CommonDB): """ Subclass the CommonDB class, which makes the actual database connection """ def __init__(self, db_filename="hookandline_cutter.db"): super().__init__(db_filename) class TestTrawlBackdeckDB(unittest.TestCase): """ Test basic SQLite connectivity """ def setUp(self): self._db = HookAndLineHookCutterDB('hookandline_cutter.db') def tearDown(self): self._db.disconnect() def test_query(self): count = 0 for t in self._db.execute('SELECT * FROM SETTINGS'): count += 1 self.assertGreater(count, 200) if __name__ == '__main__': unittest.main()
[ "will.smith@noaa.gov" ]
will.smith@noaa.gov
56cb0a401e086cffa893b8b4dcd75edf07ca9e4c
dacf092e82b5cc841554178e5117c38fd0b28827
/day24_program4/server_start.py
80694736d2929c195b9ccc3caf71539ee8767758
[]
no_license
RainMoun/python_programming_camp
f9bbee707e7468a7b5d6633c2364f5dd75abc8a4
f8e06cdd2e6174bd6986d1097cb580a6a3b7201f
refs/heads/master
2020-04-15T11:27:09.680587
2019-04-06T02:21:14
2019-04-06T02:21:14
164,630,838
4
1
null
null
null
null
UTF-8
Python
false
false
1,604
py
import socket import os from conf import setting from interface import common_interface from db import models, db_handler import logging.config def upload_file(): # 接收文件 file_path = os.path.join(BASE_DIR, 'db', 'file_upload') if not os.path.exists(file_path): os.makedirs(file_path) path = os.path.join(BASE_DIR, 'db', 'file_upload', file_name) if not os.path.exists(path): f = open(path, 'w') f.close() f = open(path, 'ab') has_received = 0 while has_received != file_size: data_once = conn.recv(1024) f.write(data_once) has_received += len(data_once) f.close() file_md5_finish = common_interface.get_file_md5(path) if file_md5_finish == file_md5: file_upload = models.File(file_name, file_size, file_md5, admin_name) db_handler.save_upload_file_message(file_upload) logging.info('{} upload {}, the md5 is {}'.format(admin_name, file_name, file_md5)) print('{} upload {}, the md5 is {}'.format(admin_name, file_name, file_md5)) func_dict = { 'post': upload_file } if __name__ == '__main__': sk = socket.socket() sk.bind(setting.SERVER_ADDRESS) sk.listen(3) BASE_DIR = os.path.dirname(os.path.abspath(__file__)) while True: conn, addr = sk.accept() while True: data = conn.recv(1024) print(data.decode('utf-8')) flag, admin_name, file_name, file_size, file_md5 = data.decode('utf-8').split('|') file_size = int(file_size) func_dict[flag]() break sk.close()
[ "775653143@qq.com" ]
775653143@qq.com
50a805dc8a946792bd4c670cf4d42f3317b82c4d
5925c0fc934760f1726818a18d6098499dcfb981
/GAN_upscale_28x28/GAN_upscale_28x28.py
0c4f60692043ba8d1aaf07a121723c78c1911750
[ "MIT" ]
permissive
PsycheShaman/Keras-GAN
64b4b20471f4b185580860f28caa9320ed615a51
9a1f2576af8f67fad7845421ea5feb53012c1c9f
refs/heads/master
2020-06-17T11:03:23.993616
2019-09-14T08:04:25
2019-09-14T08:04:25
195,858,154
2
0
MIT
2019-09-14T08:04:26
2019-07-08T17:33:39
Python
UTF-8
Python
false
false
6,859
py
# -*- coding: utf-8 -*- """ Created on Wed Sep 11 12:14:02 2019 @author: gerhard """ from __future__ import print_function, division from keras.datasets import mnist from keras.layers import Input, Dense, Reshape, Flatten, Dropout from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam import matplotlib.pyplot as plt import sys import numpy as np import glob import pickle def load_data(): x_files = glob.glob("C:\\Users\\gerhard\\Documents\\msc-thesis-data\\cnn\\x_*.pkl") with open(x_files[0],'rb') as x_file: x = pickle.load(x_file) for i in x_files[1:]: print(i) with open(i,'rb') as x_file: print(i) xi = pickle.load(x_file) x = np.concatenate((x,xi),axis=0) print(x.shape) return(x) def scale(x, out_range=(-1, 1)): domain = np.min(x), np.max(x) y = (x - (domain[1] + domain[0]) / 2) / (domain[1] - domain[0]) return y * (out_range[1] - out_range[0]) + (out_range[1] + out_range[0]) / 2 class GAN(): def __init__(self): self.img_rows = 28 self.img_cols = 28 self.channels = 1 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.latent_dim = 5 optimizer_discr = Adam(0.0004, 0.5) optimizer_gen = Adam(0.0001, 0.5) # Build and compile the discriminator self.discriminator = self.build_discriminator() self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer_discr, metrics=['accuracy']) # Build the generator self.generator = self.build_generator() # The generator takes noise as input and generates imgs z = Input(shape=(self.latent_dim,)) img = self.generator(z) # For the combined model we will only train the generator self.discriminator.trainable = False # The discriminator takes generated images as input and determines validity validity = self.discriminator(img) # The combined model (stacked generator and discriminator) # Trains the generator to fool the discriminator self.combined = Model(z, validity) self.combined.compile(loss='binary_crossentropy', optimizer=optimizer_gen) def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img) def build_discriminator(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity) def train(self, epochs, batch_size=128, sample_interval=50): # Load the dataset X_train = load_data() new_x = np.zeros((X_train.shape[0],28,28)) for i in range(0,X_train.shape[0]): x_new_i = np.zeros((28,28)) x_old_i = X_train[i,:,:] x_new_i[5:x_old_i.shape[0]+5,2:x_old_i.shape[1]+2] = x_old_i new_x[i,:,:] = x_new_i X_train = new_x del new_x # Rescale -1 to 1 # X_train = X_train / 127.5 - 1. X_train = scale(X_train) X_train = np.expand_dims(X_train, axis=3) # Adversarial ground truths # valid = np.ones((batch_size, 1)) # fake = np.zeros((batch_size, 1)) valid = np.full(shape=(batch_size,1),fill_value=0.975) fake = np.full(shape=(batch_size,1),fill_value=0.025) for epoch in range(epochs): # --------------------- # Train Discriminator # --------------------- # Select a random batch of images idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) # Generate a batch of new images gen_imgs = self.generator.predict(noise) # Train the discriminator d_loss_real = self.discriminator.train_on_batch(imgs, valid) d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------- # Train Generator # --------------------- noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) # Train the generator (to have the discriminator label samples as valid) g_loss = self.combined.train_on_batch(noise, valid) # Plot the progress print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) # If at save interval => save generated image samples if epoch % sample_interval == 0: self.sample_images(epoch) def sample_images(self, epoch): # r, c = 5, 5 noise = np.random.normal(0, 1, (2, self.latent_dim)) gen_imgs = self.generator.predict(noise) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 plt.imshow(gen_imgs[1,:,:,0],cmap='gray') # fig, axs = plt.subplots(r, c) # cnt = 0 # for i in range(r): # for j in range(c): # axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') # axs[i,j].axis('off') # cnt += 1 plt.savefig("images/%d.png" % epoch) plt.close() if __name__ == '__main__': gan = GAN() gan.train(epochs=30000, batch_size=32, sample_interval=10)
[ "christiaan.viljoen@cern.ch" ]
christiaan.viljoen@cern.ch
babc9118bdcf7d2c25b4dc9e551d807e63b0a18f
6b6c00e637e4659e4c960ff5dc48c8b25f09c543
/myihome/web_html.py
86d5f26bfaab5886725ef16013e4324d6595659e
[]
no_license
too-hoo/myiHome
881d24f7835a1d6f95fea8cc97d68194d078d451
54c57755f5c9a700330cb38a47fe88e4f9f7ab3a
refs/heads/master
2020-07-13T11:26:53.915246
2019-09-04T11:43:01
2019-09-04T11:43:01
205,073,018
9
6
null
null
null
null
UTF-8
Python
false
false
1,638
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # 静态文件加载的显示文件 from flask import Blueprint, current_app, make_response from flask_wtf import csrf # 引入CSRF防御 # 提供静态文件的蓝图 html = Blueprint("web_html", __name__) # 127.0.0.1:5000/() # 127.0.0.1:5000/(index.html) # 127.0.0.1:5000/(register.html) # 127.0.0.1:5000/(favico.ico) # 浏览器会自己请求这个资源,它是网站的标志 # 可能什么都提取不到也有可能提取到一个文件名.*代表最少是0个,html_file_name对应的是我们提取的文件名字 @html.route("/<re(r'.*'):html_file_name>") def get_html(html_file_name): """提供html文件""" # 可以直接到静态文件哪里找到返回,也可以使用flask提供的一个方法current_app.send_static_file,专门让我们返回静态文件的 # 如果html_file_name为空,表示访问的路径为/ , 请求的是主页,直接等于index.html即可 if not html_file_name: html_file_name = 'index.html' # 如果html_file_name不是favicon.ico if html_file_name != 'favicon.ico': html_file_name = 'html/' + html_file_name # 直接拼接html/ # 创建一个csrf_token的值 csrf_token = csrf.generate_csrf() # flask 提供的返回静态文件的方法,默认是到static目录下面去找 # flask 提供的返回静态文件的方法, 在返回之前先使用make_response接受一下响应体设置cookie之后再返回 resp = make_response(current_app.send_static_file(html_file_name)) # 设置cookie值包含CSRF的token值 resp.set_cookie('csrf_token', csrf_token) return resp
[ "13414851554@163.com" ]
13414851554@163.com
328588836d307293f0d666768429a1b18e4e1007
3a1c5ae00324fc26728ad9549cd4cf710a6dfcca
/trackmeapp/serializers.py
ecb9872ce6f7e0f07739fb553cc72ca93c734d99
[]
no_license
EnockOMONDI/TRACK-ME
c39b3f6ed04957a011c96735526475dae596941c
aff6704f2ce1645a6b7f044a52abf0769de7d604
refs/heads/master
2021-06-24T22:26:49.841861
2019-06-24T07:19:22
2019-06-24T07:19:22
193,167,979
0
0
null
2021-06-10T21:37:58
2019-06-21T22:46:08
Python
UTF-8
Python
false
false
309
py
from rest_framework import serializers from trackmeapp.models import Task # transforming objects to JSON and vice versa class TaskSerializer(serializers.ModelSerializer): class Meta: model = Task fields = ('item_id', 'title', 'description', 'created_at', 'comp_date', 'status')
[ "enockomondike@gmail.com" ]
enockomondike@gmail.com
4835bc6e70d40dff4467464c94615a922a6eeb0d
82ef9a0dd1618a28770597227acfc0150b948af2
/wearnow/tex/plug/_plugin.py
dd765acd80043d80efc8cafe2aca871e1af2e00f
[]
no_license
bmcage/wearnow
ef32a7848472e79e56763b38551835aa97864b21
c8dfa75e1ea32b0c021d71c4f366ab47104c207e
refs/heads/master
2021-01-16T00:27:59.597812
2016-01-19T11:55:03
2016-01-19T11:55:03
37,195,574
0
0
null
null
null
null
UTF-8
Python
false
false
2,318
py
# # WearNow - a GTK+/GNOME based program # # Copyright (C) 2008 Brian G. Matherly # Copyright (C) 2009 Benny Malengier # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """ This module provides the base class for plugins. """ class Plugin(object): """ This class serves as a base class for all plugins that can be registered with the plugin manager """ def __init__(self, name, description, module_name): """ :param name: A friendly name to call this plugin. Example: "GEDCOM Import" :type name: string :param description: A short description of the plugin. Example: "This plugin will import a GEDCOM file into a database" :type description: string :param module_name: The name of the module that contains this plugin. Example: "gedcom" :type module_name: string :return: nothing """ self.__name = name self.__desc = description self.__mod_name = module_name def get_name(self): """ Get the name of this plugin. :return: a string representing the name of the plugin """ return self.__name def get_description(self): """ Get the description of this plugin. :return: a string that describes the plugin """ return self.__desc def get_module_name(self): """ Get the name of the module that this plugin lives in. :return: a string representing the name of the module for this plugin """ return self.__mod_name
[ "benny.malengier@gmail.com" ]
benny.malengier@gmail.com
35d145eae9baf5f65b192fdad8fad0e7408f07eb
9eff544e604f9cff4384d4154204ab3276a56a23
/mpsci/distributions/gumbel_max.py
c6080c33985af06b004adc47893c0f19297ed96c
[ "BSD-2-Clause" ]
permissive
WarrenWeckesser/mpsci
844d22b0230bc8fb5bf2122e7705c6fd1f0744d9
cd4626ee34680627abd820d9a80860b45de1e637
refs/heads/main
2023-08-31T11:01:11.412556
2023-08-25T20:30:43
2023-08-25T20:30:43
159,705,639
8
0
null
null
null
null
UTF-8
Python
false
false
7,575
py
""" Gumbel probability distribution (for maxima) -------------------------------------------- This is the same distribution as: * `scipy.stats.gumbel_r`; * NumPy's `numpy.random.Generator.gumbel`; * the Gumbel distribution discussed in the wikipedia article "Gumbel distribtion" (https://en.wikipedia.org/wiki/Gumbel_distribution); * the Type I extreme value distribution used in the text "An Introduction to Statistical Modeling of Extreme Values" by Stuart Coles (Springer, 2001); * the Gumbel distribution given in the text "Modelling Extremal Events" by Embrechts, Klüppelberg and Mikosch (Springer, 1997); * the Gumbel distribution in the text "Statistical Distribution" (fourth ed.) by Forbes, Evans, Hastings and Peacock (Wiley, 2011); * the `extreme_value_distribution` class implemented in the Boost/math C++ library; * the `Gumbel` distribution in the Rust `rand_distr` crate. """ from mpmath import mp from .. import stats from mpsci.stats import mean as _mean from ._common import _seq_to_mp __all__ = ['pdf', 'logpdf', 'cdf', 'invcdf', 'sf', 'invsf', 'mean', 'var', 'nll', 'mle', 'mom'] def pdf(x, loc, scale): """ Probability density function for the Gumbel distribution (for maxima). """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): x = mp.mpf(x) loc = mp.mpf(loc) scale = mp.mpf(scale) return mp.exp(logpdf(x, loc, scale)) def logpdf(x, loc, scale): """ Log of the PDF of the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): x = mp.mpf(x) loc = mp.mpf(loc) scale = mp.mpf(scale) z = (x - loc) / scale return -(z + mp.exp(-z)) - mp.log(scale) def cdf(x, loc, scale): """ Cumulative distribution function for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): x = mp.mpf(x) loc = mp.mpf(loc) scale = mp.mpf(scale) z = (x - loc) / scale return mp.exp(-mp.exp(-z)) def invcdf(p, loc, scale): """ Inverse of the CDF for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): p = mp.mpf(p) loc = mp.mpf(loc) scale = mp.mpf(scale) z = -mp.log(-mp.log(p)) x = scale*z + loc return x def sf(x, loc, scale): """ Survival function for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): x = mp.mpf(x) loc = mp.mpf(loc) scale = mp.mpf(scale) z = (x - loc) / scale return -mp.expm1(-mp.exp(-z)) def invsf(p, loc, scale): """ Inverse of the survival function for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): p = mp.mpf(p) loc = mp.mpf(loc) scale = mp.mpf(scale) z = -mp.log(-mp.log1p(-p)) x = scale*z + loc return x def mean(loc, scale): """ Mean of the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): loc = mp.mpf(loc) scale = mp.mpf(scale) return loc + mp.euler*scale def var(loc, scale): """ Variance of the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): loc = mp.mpf(loc) scale = mp.mpf(scale) return mp.pi**2/6 * scale**2 def nll(x, loc, scale): """ Negative log-likelihood function for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): loc = mp.mpf(loc) scale = mp.mpf(scale) n = len(x) z = [(mp.mpf(xi) - loc)/scale for xi in x] t1 = n*mp.log(scale) t2 = mp.fsum(z) t3 = mp.fsum([mp.exp(-zi) for zi in z]) return t1 + t2 + t3 def _mle_scale_func(scale, x, xbar): emx = [mp.exp(-xi/scale) for xi in x] s1 = mp.fsum([xi * emxi for xi, emxi in zip(x, emx)]) s2 = mp.fsum(emx) return s2*(xbar - scale) - s1 def _solve_mle_scale(x): xbar = stats.mean(x) # Very rough guess of the scale parameter: s0 = stats.std(x) if s0 == 0: # The x values are all the same. return s0 # Find an interval in which there is a sign change of # _mle_scale_func. s1 = s0 s2 = s0 sign2 = mp.sign(_mle_scale_func(s2, x, xbar)) while True: s1 = 0.9*s1 sign1 = mp.sign(_mle_scale_func(s1, x, xbar)) if (sign1 * sign2) <= 0: break s2 = 1.1*s2 sign2 = mp.sign(_mle_scale_func(s2, x, xbar)) if (sign1 * sign2) <= 0: break # Did we stumble across the root while looking for an interval # with a sign change? Not likely, but check anyway... if sign1 == 0: return s1 if sign2 == 0: return s2 root = mp.findroot(lambda t: _mle_scale_func(t, x, xbar), [s1, s2], solver='anderson') return root def _mle_scale_with_fixed_loc(scale, x, loc): z = [(xi - loc) / scale for xi in x] ez = [mp.expm1(-zi)*zi for zi in z] return stats.mean(ez) + 1 def mle(x, loc=None, scale=None): """ Maximum likelihood estimates for the Gumbel distribution. `x` must be a sequence of numbers--it is the data to which the Gumbel distribution is to be fit. If either `loc` or `scale` is not None, the parameter is fixed at the given value, and only the other parameter will be fit. Returns maximum likelihood estimates of the `loc` and `scale` parameters. Examples -------- Imports and mpmath configuration: >>> from mpmath import mp >>> mp.dps = 20 >>> from mpsci.distributions import gumbel_max The data to be fit: >>> x = [6.86, 14.8 , 15.65, 8.72, 8.11, 8.15, 13.01, 13.36] Unconstrained MLE: >>> gumbel_max.mle(x) (mpf('9.4879877926148360358863'), mpf('2.727868138859403832702')) If we know the scale is 2, we can add the argument `scale=2`: >>> gumbel_max.mle(x, scale=2) (mpf('9.1305625326153555632872'), mpf('2.0')) """ with mp.extradps(5): x = _seq_to_mp(x) if scale is None and loc is not None: # Estimate scale with fixed loc. loc = mp.mpf(loc) # Initial guess for findroot. s0 = stats.std([xi - loc for xi in x]) scale = mp.findroot( lambda t: _mle_scale_with_fixed_loc(t, x, loc), s0 ) return loc, scale if scale is None: scale = _solve_mle_scale(x) else: scale = mp.mpf(scale) if loc is None: ex = [mp.exp(-xi / scale) for xi in x] loc = -scale * mp.log(stats.mean(ex)) else: loc = mp.mpf(loc) return loc, scale def mom(x): """ Method of moments parameter estimation for the Gumbel-max distribution. x must be a sequence of real numbers. Returns (loc, scale). """ with mp.extradps(5): M1 = _mean(x) M2 = _mean([mp.mpf(t)**2 for t in x]) scale = mp.sqrt(6*(M2 - M1**2))/mp.pi loc = M1 - scale*mp.euler return loc, scale
[ "warren.weckesser@gmail.com" ]
warren.weckesser@gmail.com
af43c669459f8dd1c60ac2dae04418f9744f6a29
44a7b4879c1da661cc2e8aa51c7fcc24cfb0fd3b
/tests/psu/psu_version_test.py
b3942b4c3523ed8b6ec2b0b234eb1705e2bb042b
[ "MIT" ]
permissive
seoss/scs_core
21cd235c9630c68f651b9a8c88120ab98fe5f513
a813f85f86b6973fa77722a7d61cc93762ceba09
refs/heads/master
2021-08-08T08:09:56.905078
2020-04-16T19:46:52
2020-04-16T19:46:52
156,239,538
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
#!/usr/bin/env python3 """ Created on 13 Nov 2017 @author: Bruno Beloff (bruno.beloff@southcoastscience.com) """ import json from scs_core.data.json import JSONify from scs_core.psu.psu_version import PSUVersion # -------------------------------------------------------------------------------------------------------------------- jstr = '{"id": "South Coast Science PSU", "tag": "1.2.3", "c-date": "Aug 8 2017", "c-time": "08:35:25"}' print(jstr) print("-") jdict = json.loads(jstr) print(jdict) print("-") status = PSUVersion.construct_from_jdict(jdict) print(status) print("-") jdict = status.as_json() print(jdict) print("-") jstr = JSONify.dumps(jdict) print(jstr) print("-")
[ "bruno.beloff@southcoastscience.com" ]
bruno.beloff@southcoastscience.com
3206f80ebb7cd794ba25b8f13f14e0c5a68d2477
6f8c5d58ccd771d1ba92dc053b54caa44be9515c
/inst_fluid_en/models.py
7fba96ece1c1d3dfd9ed2d96070362bda8abf302
[ "MIT" ]
permissive
manumunoz/8004
b6f32cf446a3d0d66988d34a03a252ba4d885da1
06b5a5a8cdea53294ff85c4bedb6be163d2da25a
refs/heads/master
2020-03-24T22:24:37.155460
2019-03-28T07:02:18
2019-03-28T07:02:18
143,083,725
0
0
NOASSERTION
2018-12-07T15:17:27
2018-08-01T00:29:45
HTML
UTF-8
Python
false
false
4,478
py
from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range ) import itertools author = 'Manu Munoz' doc = """ Identity Switch - Networks: Instructions FLUID """ class Constants(BaseConstants): #------------------------------------------ name_in_url = 'inst_fluid_en' names = ['1','2','3','4','5','6','7'] players_per_group = len(names) instructions_template = 'inst_fluid_en/Instructions.html' periods = 1 num_rounds = periods #------------------------------------------ # Treatment & Group parameters others = len(names) - 1 total_circles = 4 total_triangles = 3 part_name = 1 part_fixed = 2 part_fluid = 3 part_alloc = 4 rounds_fixed = 10 #------------------------------------------ # Payoffs exp_currency = "points" currency = "pesos" currency_exchange = 1000 points_exchange = 1 min_pay = 10000 link_cost = 2 liked_gain = 6 disliked_gain = 4 switch_cost = 6 #------------------------------------------ # Group Names group_a = 'Lions' #Leones group_b = 'Tigers' #Tigres group_c = 'Leopards' #Leopardos group_d = 'Jaguars' #Jaguares group_e = 'Cats' #Gatos group_f = 'Coyotes' #Coyotes group_g = 'Jackals' #Chacales group_h = 'Wolves' #Lobos group_i = 'Foxes' #Zorros group_j = 'Dogs' #Perros #------------------------------------------ class Subsession(BaseSubsession): def creating_session(self): treat = itertools.cycle([1, 2, 3, 4, 5, 6]) # 1: Full-Free, 2: Sticky-Free, 3: Blurry-Free, 4: Full-Cost, 5: Sticky-Cost, 6: Blurry-Cost # for p in self.get_players(): # p.treat = next(treat) for p in self.get_players(): if 'treatment' in self.session.config: # demo mode p.treat = self.session.config['treatment'] else: # live experiment mode p.treat = next(treat) class Group(BaseGroup): pass class Player(BasePlayer): treat = models.IntegerField() # Treatments from 1 to 6 given_group = models.PositiveIntegerField( choices=[ [1, 'It is fixed and does not change'], [2, 'The computer changes it in each round'], [3, 'I can change it in each round'], ], widget=widgets.RadioSelect ) appearance = models.PositiveIntegerField( choices=[ [1, 'It is fixed and does not change'], [2, 'The computer changes it in each round'], [3, 'I can change it in each round by changing my group'], ], widget=widgets.RadioSelect ) label = models.PositiveIntegerField( choices=[ [1, 'It is fixed and does not change'], [2, 'The computer changes it in each round'], [3, 'I can change it in each round'], ], widget=widgets.RadioSelect ) pay_coord = models.PositiveIntegerField( choices=[ [1, 'I gain 6 and pay the cost of 2 = 4 points in total'], [2, 'I gain 4 and pay the cost of 2 = 2 points in total'], [3, 'I gain 0 and pay the cost of 2 = -2 points in total'] ], widget=widgets.RadioSelect ) pay_coord2 = models.PositiveIntegerField( choices=[ [1, 'I gain 6 and pay the cost of 2 = 4 points in total'], [2, 'I gain 4 and pay the cost of 2 = 2 points in total'], [3, 'I gain 0 and pay the cost of 2 = -2 points in total'] ], widget=widgets.RadioSelect ) information = models.PositiveIntegerField( choices=[ [1, 'They can see the group I choose and my new appearance'], [2, 'They can see the group I choose and my appearance from Part {}'.format(Constants.part_fixed)], [3, 'They cannot see the group I choose only my appearance from Part {}'.format(Constants.part_fixed)], ], widget=widgets.RadioSelect ) def vars_for_template(self): return { 'circles_name': self.participant.vars['circles_name'], 'triangles_name': self.participant.vars['triangles_name'], 'circles_label': self.participant.vars['circles_label'], 'triangles_label': self.participant.vars['triangles_label'], 'names': len(Constants.names) }
[ "manumunozh@gmail.com" ]
manumunozh@gmail.com
b1a7b240bbf7f17341177d6f03acfd50f21dbac8
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/arc094/B/4253154.py
6d7383b45734c25c5fe494a308375919ce98d92e
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
502
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import math def solve(a, b): a, b = min(a, b), max(a, b) if a == b: return 2 * a - 2 c = int(math.sqrt(a * b)) + 2 while True: if c * c < a * b: if c * (c + 1) >= a * b: return 2 * c - 2 else: return 2 * c - 1 else: c -= 1 Q = int(input()) for _ in range(Q): a, b = map(int, input().split()) print(solve(a, b))
[ "kwnafi@yahoo.com" ]
kwnafi@yahoo.com
049e4a9ab11ab90ed899286b280e96eef25db4de
cadd27a5c72644fe87940e156e4f40f1131b9a57
/udemy/_internal.py
0cc13463a4fdad5b5c127e648080b4c565dc88a2
[ "MIT" ]
permissive
mrbrazzi/udemy-dl
1ef576800bd01ed2724911144a1fd8bad70b18f9
0f0a3ff00167b3b4614d5afc0d4dc6461e46be97
refs/heads/master
2022-11-13T17:41:38.170496
2020-07-01T18:17:24
2020-07-01T18:17:24
274,795,490
1
0
MIT
2020-06-25T00:16:33
2020-06-25T00:16:32
null
UTF-8
Python
false
false
6,961
py
#!/usr/bin/python # -*- coding: utf-8 -*- """ Author : Nasir Khan (r0ot h3x49) Github : https://github.com/r0oth3x49 License : MIT Copyright (c) 2020 Nasir Khan (r0ot h3x49) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys import time from ._colorized import * from ._extract import Udemy from ._shared import ( UdemyCourse, UdemyChapters, UdemyLectures, UdemyLectureStream, UdemyLectureAssets, UdemyLectureSubtitles ) class InternUdemyCourse(UdemyCourse, Udemy): def __init__(self, *args, **kwargs): self._info = '' super(InternUdemyCourse, self).__init__(*args, **kwargs) def _fetch_course(self): if self._have_basic: return if not self._cookies: auth = self._login(username=self._username, password=self._password) if self._cookies: auth = self._login(cookies=self._cookies) if auth.get('login') == 'successful': sys.stdout.write(fc + sd + "[" + fm + sb + "+" + fc + sd + "] : " + fg + sb + "Logged in successfully.\n") sys.stdout.write('\r' + fc + sd + "[" + fm + sb + "*" + fc + sd + "] : " + fg + sb + "Downloading course information .. \r") self._info = self._real_extract(self._url) time.sleep(1) sys.stdout.write('\r' + fc + sd + "[" + fm + sb + "*" + fc + sd + "] : " + fg + sb + "Downloaded course information .. (done)\r\n") self._id = self._info['course_id'] self._title = self._info['course_title'] self._chapters_count = self._info['total_chapters'] self._total_lectures = self._info['total_lectures'] self._chapters = [InternUdemyChapter(z) for z in self._info['chapters']] sys.stdout.write(fc + sd + "[" + fm + sb + "*" + fc + sd + "] : " + fg + sb + "Trying to logout now...\n") if not self._cookies: self._logout() sys.stdout.write(fc + sd + "[" + fm + sb + "+" + fc + sd + "] : " + fg + sb + "Logged out successfully.\n") self._have_basic = True if auth.get('login') == 'failed': sys.stdout.write(fc + sd + "[" + fr + sb + "-" + fc + sd + "] : " + fr + sb + "Failed to login ..\n") sys.exit(0) class InternUdemyChapter(UdemyChapters): def __init__(self, chapter): super(InternUdemyChapter, self).__init__() self._chapter_id = chapter['chapter_id'] self._chapter_title = chapter['chapter_title'] self._unsafe_title = chapter['unsafe_chapter'] self._chapter_index = chapter['chapter_index'] self._lectures_count = chapter.get('lectures_count', 0) self._lectures = [InternUdemyLecture(z) for z in chapter['lectures']] if self._lectures_count > 0 else [] class InternUdemyLecture(UdemyLectures): def __init__(self, lectures): super(InternUdemyLecture, self).__init__() self._info = lectures self._lecture_id = self._info['lectures_id'] self._lecture_title = self._info['lecture_title'] self._unsafe_title = self._info['unsafe_lecture'] self._lecture_index = self._info['lecture_index'] self._subtitles_count = self._info.get('subtitle_count', 0) self._sources_count = self._info.get('sources_count', 0) self._assets_count = self._info.get('assets_count', 0) self._extension = self._info.get('extension') self._html_content = self._info.get('html_content') self._duration = self._info.get('duration') if self._duration: duration = int(self._duration) (mins, secs) = divmod(duration, 60) (hours, mins) = divmod(mins, 60) if hours == 0: self._duration = "%02d:%02d" % (mins, secs) else: self._duration = "%02d:%02d:%02d" % (hours, mins, secs) def _process_streams(self): streams = [InternUdemyLectureStream(z, self) for z in self._info['sources']] if self._sources_count > 0 else [] self._streams = streams def _process_assets(self): assets = [InternUdemyLectureAssets(z, self) for z in self._info['assets']] if self._assets_count > 0 else [] self._assets = assets def _process_subtitles(self): subtitles = [InternUdemyLectureSubtitles(z, self) for z in self._info['subtitles']] if self._subtitles_count > 0 else [] self._subtitles = subtitles class InternUdemyLectureStream(UdemyLectureStream): def __init__(self, sources, parent): super(InternUdemyLectureStream, self).__init__(parent) self._mediatype = sources.get('type') self._extension = sources.get('extension') height = sources.get('height', 0) width = sources.get('width', 0) self._resolution = '%sx%s' % (width, height) self._dimention = width, height self._quality = self._resolution self._url = sources.get('download_url') class InternUdemyLectureAssets(UdemyLectureAssets): def __init__(self, assets, parent): super(InternUdemyLectureAssets, self).__init__(parent) self._mediatype = assets.get('type') self._extension = assets.get('extension') self._filename = '{0:03d} {1!s}'.format(parent._lecture_index, assets.get('filename')) self._url = assets.get('download_url') class InternUdemyLectureSubtitles(UdemyLectureSubtitles): def __init__(self, subtitles, parent): super(InternUdemyLectureSubtitles, self).__init__(parent) self._mediatype = subtitles.get('type') self._extension = subtitles.get('extension') self._language = subtitles.get('language') self._url = subtitles.get('download_url')
[ "r0oth3x49@gmail.com" ]
r0oth3x49@gmail.com
6d9aa23aac7fc83f966804c5d25d3a1d9096f76b
81f9d88a560edb2b92997855c6445628cf0e6eaa
/homura/__init__.py
53bd57eca602723adbb53d18674e93be0451c1cd
[ "Apache-2.0" ]
permissive
haiyan-he/homura
e1de6e0162a0a3d5c2f2ce142f551562dc30f4c3
2b98d4e0071b926233869e5396a02e70638d19f7
refs/heads/master
2023-02-06T18:25:15.557698
2020-10-01T07:54:23
2020-10-01T07:54:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
from .register import Registry from .utils import TensorDataClass, TensorTuple, distributed_print, enable_accimage, get_args, get_environ, \ get_git_hash, get_global_rank, get_local_rank, get_num_nodes, get_world_size, if_is_master, init_distributed, \ is_accimage_available, is_distributed, is_distributed_available, is_faiss_available, is_master, set_deterministic, \ set_seed Registry.import_modules('homura.vision')
[ "hataya@keio.jp" ]
hataya@keio.jp
10682582ea1863fd922d5da0927d22778286f60e
38c35956be6343855914b1c58b8fbd2e40c6e615
/Grafos/2131.py
2dd6d299343e38504e64253ea933e1dd5ba17cd3
[]
no_license
LucasBarbosaRocha/URI
b43e4f4a6b3beed935f24839001bea354411c4bd
2c9bcc13300a9f6243242e483c8f9ec3296a88ad
refs/heads/master
2020-06-25T05:06:51.297824
2019-08-22T04:50:11
2019-08-22T04:50:11
199,210,037
0
0
null
null
null
null
UTF-8
Python
false
false
1,953
py
# -*- coding: utf-8 -*- # Funcao que cria um grafo def cria_grafo(lista_de_vs, lista_de_arestas): grafo = {} for v in lista_de_vs: grafo[v] = [] for aresta in lista_de_arestas: grafo[aresta[0]].append(aresta[1]) return grafo # Busca em profundidade personalizada def dfs_iterative(grafo, i, n, verticesValidos): cores = [-1]*(n+1) for j in range(i, n + 1): if (j in verticesValidos): stack = [j] cores[j] = 1 while stack: v = stack.pop() #print ("BLABLA") #print (stack) for adjacencia in grafo[v]: if (cores[adjacencia] == -1): # Em y (adjacencias) eh a cor invertida da cor do pai cores[adjacencia] = 1 - cores[v] stack.append(adjacencia) # Coloco a adjacencia na pilha elif (cores[adjacencia] == cores[v]): # Se a adjacencia tiver a mesma cor que o pai nao eh bipartido return False verticesValidos.remove(v) #print (cores) return True k = 1 while True: try: entrada = raw_input().split(" ") n = int(entrada[0]) m = int(entrada[1]) vertices = [] verticesValidos = [] for i in range(1, n + 1): vertices.append(i) arestas = [] grafo = [] caminho = [] totalArestas = 0 print ("Instancia %d" %k) # Verificar se o grafo eh bipartido #print ("AQUI") #print(n, m) for i in range(m): entrada = raw_input().split(" ") v1 = int(entrada[0]) v2 = int(entrada[1]) if (verticesValidos == []): verticesValidos.append(v1) verticesValidos.append(v2) if (v1 not in verticesValidos): verticesValidos.append(v1) if (v2 not in verticesValidos): verticesValidos.append(v2) arestas.append((v1, v2)) #arestas.append((v2, v1)) grafo = cria_grafo(verticesValidos, arestas) #print (grafo) #print (verticesValidos) if (m == 0 or dfs_iterative(grafo, verticesValidos[0], n, verticesValidos) == True): print ("sim\n") else: print ("nao\n") k = k + 1 except : break
[ "lucas.lb.rocha@gmail.com" ]
lucas.lb.rocha@gmail.com
3b29475196e55b01c9672bfe50448f45d59c16f9
9ffd8754679f363f7c03fa2873dfd3b1f5af41a7
/UserRegistration/admin.py
90d6d157eb401162e4d94faa6e1e2727258d82ca
[]
no_license
cmrajib/django_fashion_ecommerce
54848c7f3f1ede349bad77533647cd161d86c413
141e87ad77f4a4503e487de8ad360789a9e272f4
refs/heads/main
2023-02-21T12:31:07.457942
2021-01-19T17:58:31
2021-01-19T17:58:31
331,065,005
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
from django.contrib import admin # Register your models here. from UserRegistration.models import User, Coupon class UserAdmin(admin.ModelAdmin): list_display = ('email', 'full_name') list_display_links = ('email', 'full_name') # list_filter = ('user__email','full_name','city') # list_editable = ('is_featured',) search_fields =('full_name', 'phone') list_per_page = 10 admin.site.register(User, UserAdmin) admin.site.register(Coupon)
[ "cmrajib@gmail.com" ]
cmrajib@gmail.com
4049996983313e176aa4972cf259096df6168fe7
eee6dd18897d3118f41cb5e6f93f830e06fbfe2f
/venv/lib/python3.6/site-packages/scipy/sparse/spfuncs.py
a5aeb7d325475944cf4927075b955f7bbfa4a436
[]
no_license
georgeosodo/ml
2148ecd192ce3d9750951715c9f2bfe041df056a
48fba92263e9295e9e14697ec00dca35c94d0af0
refs/heads/master
2020-03-14T11:39:58.475364
2018-04-30T13:13:01
2018-04-30T13:13:01
131,595,044
0
0
null
null
null
null
UTF-8
Python
false
false
2,759
py
""" Functions that operate on sparse matrices """ __all__ = ['count_blocks','estimate_blocksize'] from .csr import isspmatrix_csr, csr_matrix from .csc import isspmatrix_csc from ._sparsetools import csr_count_blocks def extract_diagonal(A): raise NotImplementedError('use .diagonal() instead') #def extract_diagonal(A): # """extract_diagonal(A) returns the main diagonal of A.""" # #TODO extract k-th diagonal # if isspmatrix_csr(A) or isspmatrix_csc(A): # fn = getattr(sparsetools, A.format + "_diagonal") # y = empty( min(A.shape), dtype=upcast(A.dtype) ) # fn(A.shape[0],A.shape[1],A.indptr,A.indices,A.data,y) # return y # elif isspmatrix_bsr(A): # M,N = A.shape # R,C = A.blocksize # y = empty( min(M,N), dtype=upcast(A.dtype) ) # fn = sparsetools.bsr_diagonal(M//R, N//C, R, C, \ # A.indptr, A.indices, ravel(A.data), y) # return y # else: # return extract_diagonal(csr_matrix(A)) def estimate_blocksize(A,efficiency=0.7): """Attempt to determine the blocksize of a sparse matrix Returns a blocksize=(r,c) such that - A.nnz / A.tobsr( (r,c) ).nnz > efficiency """ if not (isspmatrix_csr(A) or isspmatrix_csc(A)): A = csr_matrix(A) if A.nnz == 0: return (1,1) if not 0 < efficiency < 1.0: raise ValueError('efficiency must satisfy 0.0 < efficiency < 1.0') high_efficiency = (1.0 + efficiency) / 2.0 nnz = float(A.nnz) M,N = A.shape if M % 2 == 0 and N % 2 == 0: e22 = nnz / (4 * count_blocks(A,(2,2))) else: e22 = 0.0 if M % 3 == 0 and N % 3 == 0: e33 = nnz / (9 * count_blocks(A,(3,3))) else: e33 = 0.0 if e22 > high_efficiency and e33 > high_efficiency: e66 = nnz / (36 * count_blocks(A,(6,6))) if e66 > efficiency: return (6,6) else: return (3,3) else: if M % 4 == 0 and N % 4 == 0: e44 = nnz / (16 * count_blocks(A,(4,4))) else: e44 = 0.0 if e44 > efficiency: return (4,4) elif e33 > efficiency: return (3,3) elif e22 > efficiency: return (2,2) else: return (1,1) def count_blocks(A,blocksize): """For a given blocksize=(r,c) count the number of occupied blocks in a sparse matrix A """ r,c = blocksize if r < 1 or c < 1: raise ValueError('r and c must be positive') if isspmatrix_csr(A): M,N = A.shape return csr_count_blocks(M,N,r,c,A.indptr,A.indices) elif isspmatrix_csc(A): return count_blocks(A.T,(c,r)) else: return count_blocks(csr_matrix(A),blocksize)
[ "georgeosodo2010@gmail.com" ]
georgeosodo2010@gmail.com
621d2aad3eb42bb8dbd059d46d0a17ff7f170215
a8f6a8afd6b3609a947cafad5988d025454b4f9c
/datesFromLogs_Test.py
c15388862c6f16360d4caae0cd5764dee4ff4481
[]
no_license
andreodendaal/100DaysOfCode
aede59a6e1f3f3ada30a1a534548939a7b9b375f
282bf21c2d75fcd562ae935fa23e41a7c4c0cb45
refs/heads/master
2020-03-20T17:21:44.649611
2019-02-27T17:22:56
2019-02-27T17:22:56
137,557,756
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
import unittest from datesFromLogs_d2 import datetime, timedelta from datesFromLogs_d2 import loglines, convert_to_datetime, time_between_shutdowns class TestDatesFromLogs(unittest.TestCase): def test_convert_to_datetime(self): line1 = 'ERROR 2014-07-03T23:24:31 supybot Invalid user dictionary file' line2 = 'INFO 2015-10-03T10:12:51 supybot Shutdown initiated.' line3 = 'INFO 2016-09-03T02:11:22 supybot Shutdown complete.' self.assertEqual(convert_to_datetime(line1), datetime(2014, 7, 3, 23, 24, 31)) self.assertEqual(convert_to_datetime(line2), datetime(2015, 10, 3, 10, 12, 51)) self.assertEqual(convert_to_datetime(line3), datetime(2016, 9, 3, 2, 11, 22)) def test_time_between_events(self): diff = time_between_shutdowns(loglines) self.assertEqual(type(diff), timedelta) self.assertEqual(str(diff), '0:03:31') if __name__ == '__main__': unittest.main()
[ "aodendaal.direct@gmail.com" ]
aodendaal.direct@gmail.com
aa8d5d425f8c8c07e9aa8bd8b01d8c38944a0232
295ecf4f254c42e9201657ef0a13ec2c68c40c9b
/buy/forms.py
c80566d1a697136ed495d48bc28f1acb92a3c021
[]
no_license
zwolf21/StockAdmin-pre2
0236061284a6fe8801591608591d21129d4ea7c0
b21d069ff215c17ce3bca040ecf9b8f48b452ed4
refs/heads/master
2021-05-01T09:28:59.818469
2016-11-30T17:33:30
2016-11-30T17:33:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
from django import forms from .models import BuyItem, Buy from datetime import date class CreateBuyForm(forms.ModelForm): date = forms.DateField(initial=date.today(), widget=forms.TextInput(attrs={'tabindex':'-1','readonly':'readonly'})) class Meta: model = Buy fields = ['date'] class BuyItemAddForm(forms.ModelForm): # name = forms.CharField(label='약품명', required=False) amount = forms.IntegerField(label='수량', required=False, help_text='위아래 방향키로 수량조절') class Meta: model = BuyItem fields = ['amount'] help_texts = {'amount':('위아래 방향키로 수량 조절')}
[ "pbr112@naver.com" ]
pbr112@naver.com
c6ab3e4068fda9c8202f9017c37654175a68e019
393a387cdb286cde75b4b7d760625d5851b6b080
/Sorting items from user in alphabetical and reverse.py
90a60ccf36cb5d37082e64d25c13965862512f11
[]
no_license
nami-h/Python
b57f12ae48d5bc17a3de72ec7c5abb5622ba0cd2
7b067950da29df705237405742564d2f127f1446
refs/heads/master
2021-06-27T16:00:10.113762
2020-09-22T19:59:05
2020-09-22T19:59:05
136,550,054
0
0
null
null
null
null
UTF-8
Python
false
false
310
py
lis=[] num=int(input("How many animals do you want to enter? ")) for add in range(num): add=input("Enter animal: ") lis.append(add) animals=['horse','cat','mouse'] s=lis+animals print("Our list consists of: ", s) s.sort() print("Alphabetically ordered: ", s) s.reverse() print("Reverse ordered: ",s)
[ "noreply@github.com" ]
nami-h.noreply@github.com
75abc5b6b01a6dcbb9c8d615f21e672899c50936
f9e3a0fb511470561d3d94bc984dafaee06000cb
/PP4E-Examples-1.4/Examples/PP4E/Preview/person_start.py
c1ba77cd5ea9c9f2d7400fccde6645dfcf752e38
[]
no_license
Sorath93/Programming-Python-book
359b6fff4e17b44b9842662f484bbafb490cfd3d
ebe4c93e265edd4ae135491bd2f96904d08a911c
refs/heads/master
2022-12-03T01:49:07.815439
2020-08-16T22:19:38
2020-08-16T22:19:38
287,775,012
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
class Person: def __init__(self, name, age, pay=0, job=None): self.name = name self.age = age self.pay = pay self.job = job if __name__ == '__main__': bob = Person('Bob Smith', 42, 30000, 'software') sue = Person('Sue Jones', 45, 40000, 'hardware') print(bob.name, sue.pay) print(bob.name.split()[-1]) sue.pay *= 1.10 print(sue.pay)
[ "Sorath.Soomro@isode.com" ]
Sorath.Soomro@isode.com
a52bc78e9d3b3e11b7cddbd0d97869f5a2a6bec2
62e58c051128baef9452e7e0eb0b5a83367add26
/x12/5040/828005040.py
4a6d507aea18f617baa5083c1e25b5d6ed822f7a
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
823
py
from bots.botsconfig import * from records005040 import recorddefs syntax = { 'version': '00504', 'functionalgroup': 'DA', } structure = [ {ID: 'ST', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BAU', MIN: 1, MAX: 1}, {ID: 'N1', MIN: 0, MAX: 1}, {ID: 'N2', MIN: 0, MAX: 99999}, {ID: 'N3', MIN: 0, MAX: 99999}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'REF', MIN: 0, MAX: 99999}, {ID: 'PER', MIN: 0, MAX: 99999}, {ID: 'DAD', MIN: 1, MAX: 99999, LEVEL: [ {ID: 'NM1', MIN: 0, MAX: 1}, {ID: 'N2', MIN: 0, MAX: 99999}, {ID: 'N3', MIN: 0, MAX: 99999}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'REF', MIN: 0, MAX: 99999}, {ID: 'PER', MIN: 0, MAX: 99999}, ]}, {ID: 'CTT', MIN: 1, MAX: 1}, {ID: 'AMT', MIN: 0, MAX: 1}, {ID: 'SE', MIN: 1, MAX: 1}, ]} ]
[ "doug.vanhorn@tagglogistics.com" ]
doug.vanhorn@tagglogistics.com
2940503764898b98082340170692f4e10443826b
8e59a43de9d427865c5d67fef39e9a50e44f07ce
/ppocr/modeling/heads/rec_multi_head.py
0b4fa939eecad15c79f5e37384944720b1879205
[ "Apache-2.0" ]
permissive
PaddlePaddle/PaddleOCR
af87db8a804b9a4f4eac8a0b2faf80d1dd71633a
15963b0d242867a4cc4d76445626dc8965509b2f
refs/heads/release/2.7
2023-09-01T04:53:37.561932
2023-08-30T02:22:15
2023-08-30T02:22:15
262,296,122
34,195
7,338
Apache-2.0
2023-09-14T06:08:11
2020-05-08T10:38:16
Python
UTF-8
Python
false
false
4,301
py
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from ppocr.modeling.necks.rnn import Im2Seq, EncoderWithRNN, EncoderWithFC, SequenceEncoder, EncoderWithSVTR from .rec_ctc_head import CTCHead from .rec_sar_head import SARHead from .rec_nrtr_head import Transformer class FCTranspose(nn.Layer): def __init__(self, in_channels, out_channels, only_transpose=False): super().__init__() self.only_transpose = only_transpose if not self.only_transpose: self.fc = nn.Linear(in_channels, out_channels, bias_attr=False) def forward(self, x): if self.only_transpose: return x.transpose([0, 2, 1]) else: return self.fc(x.transpose([0, 2, 1])) class MultiHead(nn.Layer): def __init__(self, in_channels, out_channels_list, **kwargs): super().__init__() self.head_list = kwargs.pop('head_list') self.gtc_head = 'sar' assert len(self.head_list) >= 2 for idx, head_name in enumerate(self.head_list): name = list(head_name)[0] if name == 'SARHead': # sar head sar_args = self.head_list[idx][name] self.sar_head = eval(name)(in_channels=in_channels, \ out_channels=out_channels_list['SARLabelDecode'], **sar_args) elif name == 'NRTRHead': gtc_args = self.head_list[idx][name] max_text_length = gtc_args.get('max_text_length', 25) nrtr_dim = gtc_args.get('nrtr_dim', 256) num_decoder_layers = gtc_args.get('num_decoder_layers', 4) self.before_gtc = nn.Sequential( nn.Flatten(2), FCTranspose(in_channels, nrtr_dim)) self.gtc_head = Transformer( d_model=nrtr_dim, nhead=nrtr_dim // 32, num_encoder_layers=-1, beam_size=-1, num_decoder_layers=num_decoder_layers, max_len=max_text_length, dim_feedforward=nrtr_dim * 4, out_channels=out_channels_list['NRTRLabelDecode']) elif name == 'CTCHead': # ctc neck self.encoder_reshape = Im2Seq(in_channels) neck_args = self.head_list[idx][name]['Neck'] encoder_type = neck_args.pop('name') self.ctc_encoder = SequenceEncoder(in_channels=in_channels, \ encoder_type=encoder_type, **neck_args) # ctc head head_args = self.head_list[idx][name]['Head'] self.ctc_head = eval(name)(in_channels=self.ctc_encoder.out_channels, \ out_channels=out_channels_list['CTCLabelDecode'], **head_args) else: raise NotImplementedError( '{} is not supported in MultiHead yet'.format(name)) def forward(self, x, targets=None): ctc_encoder = self.ctc_encoder(x) ctc_out = self.ctc_head(ctc_encoder, targets) head_out = dict() head_out['ctc'] = ctc_out head_out['ctc_neck'] = ctc_encoder # eval mode if not self.training: return ctc_out if self.gtc_head == 'sar': sar_out = self.sar_head(x, targets[1:]) head_out['sar'] = sar_out else: gtc_out = self.gtc_head(self.before_gtc(x), targets[1:]) head_out['nrtr'] = gtc_out return head_out
[ "noreply@github.com" ]
PaddlePaddle.noreply@github.com
47c310bae1e4abdaa6b75569a117b14e0647509e
a53998e56ee06a96d59d97b2601fd6ec1e4124d7
/基础课/jichu/day16/seek.py
9bc56e0f93452a501443ed06d36a8a5bd659e588
[]
no_license
zh-en520/aid1901
f0ec0ec54e3fd616a2a85883da16670f34d4f873
a56f82d0ea60b2395deacc57c4bdf3b6bc73bd2e
refs/heads/master
2020-06-28T21:16:22.259665
2019-08-03T07:09:29
2019-08-03T07:09:29
200,344,127
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
fr = open('20bytes.txt','rb') print('当前读写位置是:',fr.tell())#0 b = fr.reed(2) print(b)#b'AB' print('当前读写位置是:',fe.tell())#2 #读写abcde这五个字节 fr.seek(5,0)# # fr.seek(3,1) # fr.seek(-15,2) b = fr.read(5)#b'abcde' print(b)
[ "zh_en520@163.com" ]
zh_en520@163.com
83c7d94c9223617493fa9162a58e518ded6fbd10
551b75f52d28c0b5c8944d808a361470e2602654
/huaweicloud-sdk-cloudide/huaweicloudsdkcloudide/v2/model/show_price_response.py
437f28d12f863bbca7d3ec3c11acd04386c74027
[ "Apache-2.0" ]
permissive
wuchen-huawei/huaweicloud-sdk-python-v3
9d6597ce8ab666a9a297b3d936aeb85c55cf5877
3683d703f4320edb2b8516f36f16d485cff08fc2
refs/heads/master
2023-05-08T21:32:31.920300
2021-05-26T08:54:18
2021-05-26T08:54:18
370,898,764
0
0
NOASSERTION
2021-05-26T03:50:07
2021-05-26T03:50:07
null
UTF-8
Python
false
false
3,513
py
# coding: utf-8 import pprint import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class ShowPriceResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'prices': 'list[ResourcePrice]', 'status': 'str' } attribute_map = { 'prices': 'prices', 'status': 'status' } def __init__(self, prices=None, status=None): """ShowPriceResponse - a model defined in huaweicloud sdk""" super(ShowPriceResponse, self).__init__() self._prices = None self._status = None self.discriminator = None if prices is not None: self.prices = prices if status is not None: self.status = status @property def prices(self): """Gets the prices of this ShowPriceResponse. 技术栈价格列表 :return: The prices of this ShowPriceResponse. :rtype: list[ResourcePrice] """ return self._prices @prices.setter def prices(self, prices): """Sets the prices of this ShowPriceResponse. 技术栈价格列表 :param prices: The prices of this ShowPriceResponse. :type: list[ResourcePrice] """ self._prices = prices @property def status(self): """Gets the status of this ShowPriceResponse. 状态 :return: The status of this ShowPriceResponse. :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this ShowPriceResponse. 状态 :param status: The status of this ShowPriceResponse. :type: str """ self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowPriceResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
4a538cff9ad6cd0890340bd264318ca2cc7dc8c3
cc9a0d5608b2209b02591ceace0a7416823a9de5
/config/settings/local.py
cc31fc60988cb0f8692e336882a572a81a46a794
[ "MIT" ]
permissive
morwen1/hack_your_body
240838e75dd4447c944d47d37635d2064d4210fd
d4156d4fbe2dd4123d5b5bceef451803a50a39f8
refs/heads/master
2020-11-24T01:55:46.323849
2019-12-15T18:15:51
2019-12-15T18:15:51
226,505,010
0
0
null
null
null
null
UTF-8
Python
false
false
2,759
py
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="EGR9jaMwa7cjRCcM2wIxqFPD2RqJ6yIEAiL7KlbEUKIPVjjPcL9ZMHgprAJiT2T7", ) # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["localhost", "0.0.0.0", "127.0.0.1"] # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "", } } # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend" ) # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = "localhost" # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites #INSTALLED_APPS += ["debug_toolbar"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware #MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config """ DEBUG_TOOLBAR_CONFIG = { "DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"], "SHOW_TEMPLATE_CONTEXT": True, }""" # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ["127.0.0.1", "10.0.2.2"] if env("USE_DOCKER") == "yes": import socket hostname, _, ips = socket.gethostbyname_ex(socket.gethostname()) INTERNAL_IPS += [ip[:-1] + "1" for ip in ips] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ["django_extensions"] # noqa F405 # Celery # ------------------------------------------------------------------------------ # http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-eager-propagates CELERY_TASK_EAGER_PROPAGATES = True # Your stuff... # ------------------------------------------------------------------------------
[ "morwen901@gmail.com" ]
morwen901@gmail.com
a00da9b3a8568ca40cac0d1ea67083ce9ef97c43
9af35b0e0c0ed4b102c61c563d7c7647a758bb72
/braindecode/datautil/signal_target.py
ebb6280370c5f4026abc132b5482426657926cdc
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
TonioBall/braindecode
7c0a5217c944e8718d74fd9763b3c609252c9feb
d5b8d87d959c96ea8422e21099e1ef4b71b9d05a
refs/heads/master
2020-12-13T08:56:34.939109
2020-01-17T13:27:30
2020-01-17T13:27:30
234,367,901
0
0
BSD-3-Clause
2020-01-16T16:56:45
2020-01-16T16:56:44
null
UTF-8
Python
false
false
911
py
class SignalAndTarget(object): """ Simple data container class. Parameters ---------- X: 3darray or list of 2darrays The input signal per trial. y: 1darray or list Labels for each trial. """ def __init__(self, X, y): assert len(X) == len(y) self.X = X self.y = y def apply_to_X_y(fn, *sets): """ Apply a function to all `X` and `y` attributes of all given sets. Applies function to list of X arrays and to list of y arrays separately. Parameters ---------- fn: function Function to apply sets: :class:`.SignalAndTarget` objects Returns ------- result_set: :class:`.SignalAndTarget` Dataset with X and y as the result of the application of the function. """ X = fn(*[s.X for s in sets]) y = fn(*[s.y for s in sets]) return SignalAndTarget(X, y)
[ "robintibor@gmail.com" ]
robintibor@gmail.com
9f7cd33b09083b7ca32ab65d512beb3d76667dc4
525bdfe2c7d33c901598a501c145df94a3e162b0
/subject6_graphs/text.py
e255a01bf2155d3b55fd0ba8180d1b331aa5b94d
[]
no_license
davendiy/ads_course2
f0a52108f1cab8619b2e6e2c6c4383a1a4615c15
e44bf2b535b34bc31fb323c20901a77b0b3072f2
refs/heads/master
2020-04-06T09:37:12.983564
2019-05-09T10:28:22
2019-05-09T10:28:22
157,349,669
0
0
null
null
null
null
UTF-8
Python
false
false
2,980
py
#!/usr/bin/env python3 # -*-encoding: utf-8-*- # created: 05.12.18 # by David Zashkolny # 2 course, comp math # Taras Shevchenko National University of Kyiv # email: davendiy@gmail.com tasks = int(input()) for mini_task in range(tasks): s = input().split() n, m = int(s[0]), int(s[1]) l = [] x, y = -1, -1 xe, ye = -1, -1 cost = list(map(lambda x: int(x), input().split())) for i in range(n): buff = [] k = input() if x == -1: y, x = i, k.find('S') if xe == -1: ye, xe = i, k.find('E') for j in k: buff.append(j) l.append(buff) keys = [['', 0], ['R', cost[0]], ['G', cost[1]], ['B', cost[2]], ['Y', cost[3]], ['RG', cost[0] + cost[1]], ['RB', cost[0] + cost[2]], ['RY', cost[0] + cost[3]], ['GB', cost[1] + cost[2]], ['GY', cost[1] + cost[3]], ['BY', cost[2] + cost[3]], ['RGB', cost[0] + cost[1] + cost[2]], ['RGY', cost[0] + cost[1] + cost[3]], ['RBY', cost[0] + cost[2] + cost[3]], ['GBY', cost[1] + cost[2] + cost[3]], ['RGBY', sum(cost)]] # keys = ['G'] keys.sort(key=lambda x: x[1]) way = [False, ''] for key in keys: hl = [[-1 for i in range(m)] for j in range(n)] hl[y][x] = 1 indexes = [[y, x]] for i in range(n * m + 1): buff = [] for j in indexes: if 0 <= j[1] + 1 < m and (l[j[0]][j[1] + 1] == '.' or key[0].find(l[j[0]][j[1] + 1]) != -1 or l[j[0]][j[1] + 1] == 'E') and hl[j[0]][j[1] + 1] == -1: hl[j[0]][j[1] + 1] = hl[j[0]][j[1]] + 1 buff.append([j[0], j[1] + 1]) if 0 <= j[1] - 1 < m and (l[j[0]][j[1] - 1] == '.' or key[0].find(l[j[0]][j[1] - 1]) != -1 or l[j[0]][j[1] - 1] == 'E') and hl[j[0]][ j[1] - 1] == -1: hl[j[0]][j[1] - 1] = hl[j[0]][j[1]] + 1 buff.append([j[0], j[1] - 1]) if 0 <= j[0] + 1 < n and (l[j[0] + 1][j[1]] == '.' or key[0].find(l[j[0] + 1][j[1]]) != -1 or l[j[0] + 1][j[1]] == 'E') and hl[j[0] + 1][ j[1]] == -1: hl[j[0] + 1][j[1]] = hl[j[0]][j[1]] + 1 buff.append([j[0] + 1, j[1]]) if 0 <= j[0] - 1 < n and (l[j[0] - 1][j[1]] == '.' or key[0].find(l[j[0] - 1][j[1]]) != -1 or l[j[0] - 1][j[1]] == 'E') and hl[j[0] - 1][j[1]] == -1: hl[j[0] - 1][j[1]] = hl[j[0]][j[1]] + 1 buff.append([j[0] - 1, j[1]]) if j == [ye, xe]: way = [True, key[1]] break indexes = buff if way[0]: break if way[0]: break if way[0]: print(way[1]) else: print('Sleep')
[ "davendiy@gmail.com" ]
davendiy@gmail.com
cd6e8276b89ab78c02389cbb84c51b5ba844fbdb
421d58c6b93b81e0724f8f4576119300eb344252
/influencers/users/migrations/0005_auto_20181111_1505.py
1d7c2ca75db84615820701ef82599ab6c705746f
[]
no_license
momen/influencers
7728228c92a552bdff9ae62f85986ad03bce186e
f9c76cfc2970440112967f9579dc31f77063cb25
refs/heads/master
2020-06-03T22:20:03.881411
2019-06-15T07:48:43
2019-06-15T07:48:43
191,754,739
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
# Generated by Django 2.1.2 on 2018-11-11 15:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_user_is_removed'), ] operations = [ migrations.AlterField( model_name='user', name='is_active', field=models.BooleanField(default=False, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active'), ), ]
[ "momennegm@gmail.com" ]
momennegm@gmail.com
792451ae4deffa9b1fcfbae36e7e0397b0f3d802
cf4f3c181dc04c4e698b53c3bb5dd5373b0cc1f4
/meridian/tst/acupoints/test_zusanli213.py
f53e9b7310099603a6d346caed38546241f59172
[ "Apache-2.0" ]
permissive
sinotradition/meridian
da3bba6fe42d3f91397bdf54520b3085f7c3bf1d
8c6c1762b204b72346be4bbfb74dedd792ae3024
refs/heads/master
2021-01-10T03:20:18.367965
2015-12-14T14:58:35
2015-12-14T14:58:35
46,456,260
5
3
null
2015-11-29T15:00:20
2015-11-19T00:21:00
Python
UTF-8
Python
false
false
301
py
#!/usr/bin/python #coding=utf-8 ''' @author: sheng @license: ''' import unittest from meridian.acupoints import zusanli213 class TestZusanli213Functions(unittest.TestCase): def setUp(self): pass def test_xxx(self): pass if __name__ == '__main__': unittest.main()
[ "sinotradition@gmail.com" ]
sinotradition@gmail.com
78114eb9b8af0d0f91311f5efe983687ab814067
71f00ed87cd980bb2f92c08b085c5abe40a317fb
/Data/GoogleCloud/google-cloud-sdk/lib/surface/ai_platform/operations/describe.py
06aa812cb986b22a941e19bab4929cc2330eda88
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
factoryofthesun/Rao-NLP
2bd8269a8eed1cb352c14c8fde88e3111ccca088
87f9723f5ee51bd21310d58c3425a2a7271ec3c5
refs/heads/master
2023-04-18T08:54:08.370155
2020-06-09T23:24:07
2020-06-09T23:24:07
248,070,291
0
1
null
2021-04-30T21:13:04
2020-03-17T20:49:03
Python
UTF-8
Python
false
false
1,528
py
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ai-platform jobs describe command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.ml_engine import operations from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.ml_engine import endpoint_util from googlecloudsdk.command_lib.ml_engine import flags from googlecloudsdk.command_lib.ml_engine import operations_util def _AddDescribeArgs(parser): flags.OPERATION_NAME.AddToParser(parser) flags.GetRegionArg('operation').AddToParser(parser) class Describe(base.DescribeCommand): """Describe an AI Platform operation.""" @staticmethod def Args(parser): _AddDescribeArgs(parser) def Run(self, args): with endpoint_util.MlEndpointOverrides(region=args.region): client = operations.OperationsClient() return operations_util.Describe(client, args.operation)
[ "guanzhi97@gmail.com" ]
guanzhi97@gmail.com
1b661917f1bbf1889691f540f74bfadc8996f42a
244189d49a3967b4b002af73f40ca8e8064c4771
/modules/auxiliary/scanner/http/octopusdeploy_login.rb
e95f4eb8c6b5e148702da83e0b31045c7dcf1249
[ "MIT" ]
permissive
darkcode357/thg-framework
7540609fb79619bdc12bd98664976d51c79816aa
c1c3bd748aac85a8c75e52486ae608981a69d93a
refs/heads/master
2023-03-01T05:06:51.399919
2021-06-01T14:00:32
2021-06-01T14:00:32
262,925,227
11
6
NOASSERTION
2023-02-10T23:11:02
2020-05-11T03:04:05
Python
UTF-8
Python
false
false
2,528
rb
## # This module requires Metasploit: https://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## require 'metasploit/framework/credential_collection' require 'metasploit/framework/login_scanner/octopusdeploy' class MetasploitModule < Msf::Auxiliary include Msf::Exploit::Remote::HttpClient include Msf::Auxiliary::Report include Msf::Auxiliary::AuthBrute include Msf::Auxiliary::Scanner def initialize super( 'Name' => 'Octopus Deploy Login Utility', 'Description' => %q{ This module simply attempts to login to an Octopus Deploy server using a specific username and password. It has been confirmed to work on version 3.4.4 }, 'Author' => [ 'James Otten <jamesotten1[at]gmail.com>' ], 'License' => MSF_LICENSE ) register_options( [ Opt::RPORT(80), OptString.new('TARGETURI', [true, 'URI for login. Default is /api/users/login', '/api/users/login']) ]) deregister_options('PASSWORD_SPRAY') end def run_host(ip) cred_collection = Metasploit::Framework::CredentialCollection.new( blank_passwords: datastore['BLANK_PASSWORDS'], pass_file: datastore['PASS_FILE'], password: datastore['PASSWORD'], user_file: datastore['USER_FILE'], userpass_file: datastore['USERPASS_FILE'], username: datastore['USERNAME'], user_as_pass: datastore['USER_AS_PASS'] ) scanner = Metasploit::Framework::LoginScanner::OctopusDeploy.new( configure_http_login_scanner( cred_details: cred_collection, stop_on_success: datastore['STOP_ON_SUCCESS'], bruteforce_speed: datastore['BRUTEFORCE_SPEED'], connection_timeout: 10, http_username: datastore['HttpUsername'], http_password: datastore['HttpPassword'], uri: datastore['TARGETURI'] ) ) scanner.scan! do |result| credential_data = result.to_h credential_data.merge!( module_fullname: fullname, workspace_id: myworkspace_id ) if result.success? credential_core = create_credential(credential_data) credential_data[:core] = credential_core create_credential_login(credential_data) print_good "#{ip}:#{rport} - Login Successful: #{result.credential}" else invalidate_login(credential_data) vprint_error "#{ip}:#{rport} - LOGIN FAILED: #{result.credential} (#{result.status})" end end end end
[ "darkocde357@gmail.com" ]
darkocde357@gmail.com
adb6427317dfc161210edab8159cb6ef4ec06f21
23b44edcd663eb60d4deee64ced5a5b27ee3b7d2
/thermosteam/chemicals/phase_change.py
ef5a32237d3cf1e9db68f454ccd5c957c0c7a959
[ "LicenseRef-scancode-unknown-license-reference", "NCSA", "MIT" ]
permissive
sarangbhagwat/thermosteam
7b13c6c3146fe2fc378b453fe3c732dc7397ea0c
710ec22b17c257a742300bf172fd3121852abf98
refs/heads/master
2022-12-13T03:37:49.251727
2020-09-14T17:24:30
2020-09-14T17:24:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,344
py
# -*- coding: utf-8 -*- # BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules # Copyright (C) 2020, Yoel Cortes-Pena <yoelcortes@gmail.com> # # This module extends the phase_change module from the chemicals's library: # https://github.com/CalebBell/chemicals # Copyright (C) 2020 Caleb Bell <Caleb.Andrew.Bell@gmail.com> # # This module is under a dual license: # 1. The UIUC open-source license. See # github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt # for license details. # # 2. The MIT open-source license. See # https://github.com/CalebBell/chemicals/blob/master/LICENSE.txt for details. from chemicals import phase_change as pc import numpy as np from ..base import InterpolatedTDependentModel, TDependentHandleBuilder, functor from .. import functional as fn from chemicals.dippr import EQ106 from .data import (phase_change_data_Perrys2_150, phase_change_data_VDI_PPDS_4, VDI_saturation_dict, phase_change_data_Alibakhshi_Cs, lookup_VDI_tabular_data, Hvap_data_CRC, Hvap_data_Gharagheizi, ) ### Enthalpy of Vaporization at T Clapeyron = functor(pc.Clapeyron, 'Hvap') Pitzer = functor(pc.Pitzer, 'Hvap') SMK = functor(pc.SMK, 'Hvap') MK = functor(pc.MK, 'Hvap') Velasco = functor(pc.Velasco, 'Hvap') Watson = functor(pc.Watson, 'Hvap') Alibakhshi = functor(pc.Alibakhshi, 'Hvap') PPDS12 = functor(pc.PPDS12, 'Hvap') def Clapeyron_hook(self, T, kwargs): kwargs = kwargs.copy() Psat = kwargs['Psat'] if callable(Psat): kwargs['Psat'] = Psat = Psat(T) if 'V' in kwargs: # Use molar volume to compute dZ if possible V = kwargs.pop('V') kwargs['dZ'] = fn.Z(T, Psat, V.g(T, Psat) - V.l(T, Psat)) return self.function(T, **kwargs) Clapeyron.functor.hook = Clapeyron_hook @TDependentHandleBuilder('Hvap') def heat_of_vaporization_handle(handle, CAS, Tb, Tc, Pc, omega, similarity_variable, Psat, V): # if has_CoolProp and self.CASRN in coolprop_dict: # methods.append(COOLPROP) # self.CP_f = coolprop_fluids[self.CASRN] # Tmins.append(self.CP_f.Tt); Tmaxs.append(self.CP_f.Tc) add_model = handle.add_model if CAS in phase_change_data_Perrys2_150: Tc, C1, C2, C3, C4, Tmin, Tmax = phase_change_data_Perrys2_150[CAS] data = (Tc, C1, C2, C3, C4) add_model(EQ106.functor.from_args(data), Tmin, Tmax) if CAS in phase_change_data_VDI_PPDS_4: Tc, A, B, C, D, E = phase_change_data_VDI_PPDS_4[CAS] add_model(PPDS12.functor.from_args(data=(Tc, A, B, C, D, E)), 0, Tc) if all((Tc, Pc)): model = Clapeyron.functor.from_args(data=(Tc, Pc, None, Psat)) model.V = V add_model(model, 0, Tc) data = (Tc, omega) if all(data): for f in (MK, SMK, Velasco, Pitzer): add_model(f.functor.from_args(data), 0, Tc) if CAS in VDI_saturation_dict: Ts, Hvaps = lookup_VDI_tabular_data(CAS, 'Hvap') add_model(InterpolatedTDependentModel(Ts, Hvaps, Ts[0], Ts[-1])) if Tc: if CAS in phase_change_data_Alibakhshi_Cs: C = float(phase_change_data_Alibakhshi_Cs.get(CAS, 'C')) add_model(Alibakhshi.functor.from_args(data=(Tc, C)), 0, Tc) if CAS in Hvap_data_CRC: Hvap = float(Hvap_data_CRC.get(CAS, 'HvapTb')) if not np.isnan(Hvap): Tb = float(Hvap_data_CRC.get(CAS, 'Tb')) data = dict(Hvap_ref=Hvap, T_ref=Tb, Tc=Tc, exponent=0.38) add_model(Watson.functor.from_kwargs(data), 0, Tc) Hvap = float(Hvap_data_CRC.get(CAS, 'Hvap298')) if not np.isnan(Hvap): data = dict(Hvap_ref=Hvap, T_ref=298., Tc=Tc, exponent=0.38) add_model(Watson.functor.from_kwargs(data), 0, Tc) if CAS in Hvap_data_Gharagheizi: Hvap = float(Hvap_data_Gharagheizi.get(CAS, 'Hvap298')) data = dict(Hvap_ref=Hvap, T_ref=298., Tc=Tc, exponent=0.38) add_model(Watson.functor.from_kwargs(data), 0, Tc) data = (Tb, Tc, Pc) if all(data): for f in (pc.Riedel, pc.Chen, pc.Vetere, pc.Liu): add_model(f(*data), 0, Tc) pc.heat_of_vaporization_handle = heat_of_vaporization_handle
[ "yoelcortes@gmail.com" ]
yoelcortes@gmail.com
6b5240c09546ae48c6e11c2e580c271be45aea67
b75ee1f07fcc50142da444e8ae9ba195bf49977a
/test/todo.py
fda75e5f8c9744005e5de098f819c7cadc1540c1
[ "Apache-2.0" ]
permissive
FlorianLudwig/code-owl
369bdb57a66c0f06e07853326be685c177e2802a
be6518c89fb49ae600ee004504f9485f328e1090
refs/heads/master
2016-08-04T02:26:07.445016
2014-05-25T19:19:13
2014-05-25T19:19:13
18,918,361
6
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
# this file contains tests for missing features # this means the tests here do FAIL. import codeowl.search def match(query, code): query = codeowl.search.generate_query(query) code = codeowl.code.parse(code) return codeowl.search.tokens(query, code, '<test>') def test_py_import(): assert match( 'import foo', 'from foo import bar' ) assert match( 'import foo.bar', 'from foo import bar' ) assert not match( 'import foo', 'import bar; print foo' ) def test_py_block(): """Tree based matching do semantic matching of code blocks.""" assert match( 'for: print i', 'for i in xrange(10):\n' ' pass\n' ' print i\n' ) # same as above just a few spaces less # since there are less not-maching tokens # this actually scores better than the # example above. But it should not match # at all. assert not match( 'for: print i', 'for i in xrange(10):\n' ' pass\n' 'print i\n' )
[ "f.ludwig@greyrook.com" ]
f.ludwig@greyrook.com
2bf16d2a0b120a587301917cafe6e3763746f348
52a3beeb07ad326115084a47a9e698efbaec054b
/horizon/.venv/bin/heat
da3eeefdf4e4f11003d3c6597a0c69aea163d0fd
[ "Apache-2.0" ]
permissive
bopopescu/sample_scripts
3dade0710ecdc8f9251dc60164747830f8de6877
f9edce63c0a4d636f672702153662bd77bfd400d
refs/heads/master
2022-11-17T19:19:34.210886
2018-06-11T04:14:27
2018-06-11T04:14:27
282,088,840
0
0
null
2020-07-24T00:57:31
2020-07-24T00:57:31
null
UTF-8
Python
false
false
240
#!/home/horizon/horizon/.venv/bin/python # -*- coding: utf-8 -*- import re import sys from heatclient.shell import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "Suhaib.Chishti@exponential.com" ]
Suhaib.Chishti@exponential.com
62de38f216a4bb285bd5c78c9ae8517e3d1c44dc
4ddf82eeb31d46fb67802a4375390eb42a8f23b8
/tests/pyb/adc.py
875d31d732cc3648fff5484fb1e95c617dda69ad
[ "MIT" ]
permissive
pulkin/micropython
1437a507b9e90c8824e80c3553e6209d89e64565
c274c947c611f510fd2b1c4ef6cbd9f4283794fc
refs/heads/master
2023-03-08T02:35:28.208819
2022-04-19T12:38:47
2022-04-19T12:38:47
167,732,676
103
36
MIT
2023-02-25T03:02:36
2019-01-26T19:57:59
C
UTF-8
Python
false
false
1,546
py
from pyb import ADC, Timer adct = ADC(16) # Temperature 930 -> 20C print(str(adct)[:19]) adcv = ADC(17) # Voltage 1500 -> 3.3V print(adcv) # read single sample; 2.5V-5V is pass range val = adcv.read() assert val > 1000 and val < 2000 # timer for read_timed tim = Timer(5, freq=500) # read into bytearray buf = bytearray(b"\xff" * 50) adcv.read_timed(buf, tim) print(len(buf)) for i in buf: assert i > 50 and i < 150 # read into arrays with different element sizes import array arv = array.array("h", 25 * [0x7FFF]) adcv.read_timed(arv, tim) print(len(arv)) for i in arv: assert i > 1000 and i < 2000 arv = array.array("i", 30 * [-1]) adcv.read_timed(arv, tim) print(len(arv)) for i in arv: assert i > 1000 and i < 2000 # Test read_timed_multi arv = bytearray(b"\xff" * 50) art = bytearray(b"\xff" * 50) ADC.read_timed_multi((adcv, adct), (arv, art), tim) for i in arv: assert i > 60 and i < 125 # Wide range: unsure of accuracy of temp sensor. for i in art: assert i > 15 and i < 200 arv = array.array("i", 25 * [-1]) art = array.array("i", 25 * [-1]) ADC.read_timed_multi((adcv, adct), (arv, art), tim) for i in arv: assert i > 1000 and i < 2000 # Wide range: unsure of accuracy of temp sensor. for i in art: assert i > 50 and i < 2000 arv = array.array("h", 25 * [0x7FFF]) art = array.array("h", 25 * [0x7FFF]) ADC.read_timed_multi((adcv, adct), (arv, art), tim) for i in arv: assert i > 1000 and i < 2000 # Wide range: unsure of accuracy of temp sensor. for i in art: assert i > 50 and i < 2000
[ "damien.p.george@gmail.com" ]
damien.p.george@gmail.com
ba2dba9f3f8b6287d25ffbb5992a661635b0b81c
f1b9dc71b2dafc2b331de495ef4ceab938734fbe
/test.py
b80d38b36f71633c8ecb41f54b9fdf2f08e362bc
[]
no_license
philippjfr/FOSS4G-2017-Talk
7deb6e48755b71658f930aa55c06d3a903f1abc6
e3f035dc648cfc4642e774e536d6c07c847417b5
refs/heads/master
2022-11-07T07:19:37.053629
2017-08-23T17:16:38
2017-08-23T17:16:38
100,023,633
2
4
null
2022-11-01T10:51:44
2017-08-11T11:09:21
JavaScript
UTF-8
Python
false
false
1,261
py
import holoviews as hv import param import parambokeh import numpy as np from bokeh.io import curdoc renderer = hv.renderer('bokeh').instance(mode='server') class CurveExample(hv.streams.Stream): color = param.Color(default='#000000', precedence=0) element = param.ObjectSelector(default=hv.Curve, objects=[hv.Curve, hv.Scatter, hv.Area], precedence=0) amplitude = param.Number(default=2, bounds=(2, 5)) frequency = param.Number(default=2, bounds=(1, 10)) output = parambokeh.view.Plot() def view(self, *args, **kwargs): return self.element(self.amplitude*np.sin(np.linspace(0, np.pi*self.frequency)), vdims=[hv.Dimension('y', range=(-5, 5))])(style=dict(color=self.color)) def event(self, **kwargs): if not self.output or any(k in kwargs for k in ['color', 'element']): self.output = hv.DynamicMap(self.view, streams=[self]) else: super(CurveExample, self).event(**kwargs) example = CurveExample(name='HoloViews Example') doc = parambokeh.Widgets(example, callback=example.event, on_init=True, mode='server', view_position='right', doc=curdoc())
[ "P.Rudiger@ed.ac.uk" ]
P.Rudiger@ed.ac.uk
a8b75d380cc2dabf3b993334ea90a79166b071f7
729ee5bcb31708a82b08509775786597dac02263
/coding-challenges/week06/AssignmentQ4.py
40922ab75fb78db62f5805f72f03ea8d78695d15
[]
no_license
pandey-ankur-au17/Python
67c2478316df30c2ac8ceffa6704cf5701161c27
287007646a694a0dd6221d02b47923935a66fcf4
refs/heads/master
2023-08-30T05:29:24.440447
2021-09-25T16:07:23
2021-09-25T16:07:23
358,367,687
0
0
null
null
null
null
UTF-8
Python
false
false
532
py
# Given an array of size n and a number k, find all elements that appear # more than n/k times # Input : k = 4 ,n=9 , A = [ 3 ,1, 2, 2, 2, 1, 4, 3, 3 ] # # Output: - [ 3 , 2] list1=list(map(int,input("Enter the list=").split())) n=len(list1) k=int(input("Enter the value of k=")) frequency={} for i in list1: if i in frequency: frequency[i]=frequency[i]+1 else: frequency[i]=1 output=[] for i,j in frequency.items(): if j>n//k: output.append(i) else: continue print(output)
[ "ankurpandey131@gmail.com" ]
ankurpandey131@gmail.com
98a3bb666aa53326b5eaed0135122f7aa1ea659d
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part002017.py
3e62b15d60a4b9a7663df6952ee01bd0980a8d61
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
1,304
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher85189(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i2.2.1.2.2.1.0', 1, 1, None), Mul), (VariableWithCount('i2.2.1.2.2.1.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher85189._instance is None: CommutativeMatcher85189._instance = CommutativeMatcher85189() return CommutativeMatcher85189._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 85188 return yield from collections import deque
[ "franz.bonazzi@gmail.com" ]
franz.bonazzi@gmail.com
d04aaef21caf30a7b3162da917e0162e5972d2ce
4e93e4275e82a08d3c114c9dd72deb0959d41a55
/src/ch10/binary/__init__.py
6f8ad9a2cdb18a4e50d6eeff4b4bd01581729622
[]
no_license
wsjhk/wasm-python-book
fd38e5a278be32df49416616724f38a415614e8b
872bc8fe754a6a3573436f534a8da696c0486c24
refs/heads/master
2023-03-16T02:18:48.869794
2020-09-17T11:31:49
2020-09-17T11:31:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
#!/usr/bin/env python # encoding: utf-8 """ @author: HuRuiFeng @file: __init__.py @time: 2020/8/19 1:55 @project: wasm-python-book @desc: """ from ch10.binary import reader decode_file = reader.decode_file
[ "huruifeng1202@163.com" ]
huruifeng1202@163.com
9d9b777e9db5f14839481e9edb2dc062d203210a
93b5da40708878016d953aeb4d9b908ff8af1e04
/function/practice2.py
3a807a52ef9fe652abe3614a37febbc4e2a91658
[]
no_license
Isaccchoi/python-practice
e50e932d2a7bf13b54e5ca317a03a5d63b406c6b
70e3e1f8590667cfe5ba4c094873eb39d555c44a
refs/heads/master
2021-06-29T05:45:18.371743
2017-09-21T06:15:47
2017-09-21T06:15:47
103,229,226
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
def sequential_search(str, key): count = 0 while count < len(str): if str[count] == key: return count else: count += 1 return 0 print(sequential_search("개구리고양이", "개")) print(sequential_search("개구리고양이", "구")) print(sequential_search("개구리고양이", "리")) print(sequential_search("개구리고양이", "고")) print(sequential_search("개구리고양이", "양")) print(sequential_search("개구리고양이", "이")) print(sequential_search("개구리고양이", "말"))
[ "isaccchoi@naver.com" ]
isaccchoi@naver.com
d85ff8da66e28d47df80755796b5b30c21127fba
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/able_way/long_way/take_eye.py
cfcd983c2042f55d5d6e7c99ddba0ad24bf58cf2
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#! /usr/bin/env python def good_time(str_arg): problem_and_work(str_arg) print('high_thing') def problem_and_work(str_arg): print(str_arg) if __name__ == '__main__': good_time('able_fact_and_life')
[ "jingkaitang@gmail.com" ]
jingkaitang@gmail.com
a4096b7f1c4116a6ffaf257384b64bd4bd388996
5d302c38acd02d5af4ad7c8cfe244200f8e8f877
/String/6. ZigZag Conversion(Med).py
1e80504fb03188e5ba70ed8751bed04c9c9c96c4
[]
no_license
nerohuang/LeetCode
2d5214a2938dc06600eb1afd21686044fe5b6db0
f273c655f37da643a605cc5bebcda6660e702445
refs/heads/master
2023-06-05T00:08:41.312534
2021-06-21T01:03:40
2021-06-21T01:03:40
230,164,258
0
0
null
null
null
null
UTF-8
Python
false
false
1,574
py
class Solution: def convert(self, s: str, numRows: int) -> str: if numRows == 1: return s store = [["" for _ in range(len(s))]for _ in range(numRows)]; i = 0; m, n = -1, 1; while i < len(s): if m == -1: m += 1; n -= 1; while m < numRows: if i < len(s) and store[m][n] == "": store[m][n] = s[i]; i += 1; m += 1; if m == numRows: m -= 2; n += 1; while m >= 0: if i < len(s): store[m][n] = s[i]; m -= 1; n += 1; i += 1; else: break; ans = "" for i in range(len(store)): for c in store[i]: if store[i] != "": ans += c return(ans) #class Solution: # def convert(self, s: str, numRows: int) -> str: # if numRows == 1: # return s # # lines = [''] * numRows # line_count = 0 # adder = 1 # for c in s: # lines[line_count] = lines[line_count] + c # # if line_count + adder > numRows-1: # adder = -1 # elif line_count + adder < 0: # adder = 1 # # line_count = line_count + adder # return ''.join(lines)
[ "huangxingyu00@gmail.com" ]
huangxingyu00@gmail.com
83216ab4814f0ddc0657688c7f97149e35a3bdbb
142362be3c4f8b19bd118126baccab06d0514c5b
/xapian64/site-packages/djapian/utils/decorators.py
1deb7553ccf6014639b53b8845f5a841e5fbcb2e
[]
no_license
dkramorov/astwobytes
84afa4060ffed77d5fd1a6e8bf5c5c69b8115de6
55071537c5c84d0a27757f11ae42904745cc1c59
refs/heads/master
2023-08-27T07:10:51.883300
2023-08-02T16:52:17
2023-08-02T16:52:17
191,950,319
0
0
null
2022-11-22T09:15:42
2019-06-14T13:44:23
HTML
UTF-8
Python
false
false
898
py
import xapian def retry_if_except(errors, num_retry=4, cleanup_callback=None): def _wrap(func): def _inner(*args, **kwargs): for n in reversed(range(num_retry)): try: return func(*args, **kwargs) except errors: # propagate the exception if we have run out of tries if not n: raise # perform a clean up action before the next attempt if required if callable(cleanup_callback): cleanup_callback() return _inner return _wrap def reopen_if_modified(database, num_retry=3, errors=xapian.DatabaseModifiedError): return retry_if_except(errors, num_retry=num_retry, cleanup_callback=lambda: database.reopen())
[ "zergo01@yandex.ru" ]
zergo01@yandex.ru
14f7ea5a0fd4e2ab4ffa08421ed6e486da33ccfc
4692f28f86ee84a76abfac8cc8a0dd41fcd402e4
/tasks/github_tasks.py
ddf0c9af7bae0fe3c10ef1e08285fae600084aa1
[ "CC0-1.0", "BSD-3-Clause", "Apache-2.0", "GPL-1.0-or-later", "MIT", "0BSD", "Unlicense", "LicenseRef-scancode-public-domain", "BSD-2-Clause", "BSD-2-Clause-Views", "MPL-2.0" ]
permissive
DataDog/datadog-agent
cc4b89839d6031903bf23aa12eccc2a3f3c7f213
d960cdb7de8fa5d1c7138cfe58e754af80cb796a
refs/heads/main
2023-09-04T10:45:08.138748
2023-09-04T09:13:43
2023-09-04T09:13:43
49,970,739
2,388
1,288
Apache-2.0
2023-09-14T20:06:34
2016-01-19T17:40:41
Go
UTF-8
Python
false
false
3,694
py
import os from invoke import Exit, task from .libs.github_actions_tools import ( download_artifacts_with_retry, follow_workflow_run, print_workflow_conclusion, trigger_macos_workflow, ) from .utils import DEFAULT_BRANCH, load_release_versions @task def trigger_macos_build( ctx, datadog_agent_ref=DEFAULT_BRANCH, release_version="nightly-a7", major_version="7", python_runtimes="3", destination=".", version_cache=None, retry_download=3, retry_interval=10, ): env = load_release_versions(ctx, release_version) github_action_ref = env["MACOS_BUILD_VERSION"] run = trigger_macos_workflow( workflow_name="macos.yaml", github_action_ref=github_action_ref, datadog_agent_ref=datadog_agent_ref, release_version=release_version, major_version=major_version, python_runtimes=python_runtimes, # Send pipeline id and bucket branch so that the package version # can be constructed properly for nightlies. gitlab_pipeline_id=os.environ.get("CI_PIPELINE_ID", None), bucket_branch=os.environ.get("BUCKET_BRANCH", None), version_cache_file_content=version_cache, ) workflow_conclusion = follow_workflow_run(run) print_workflow_conclusion(workflow_conclusion) download_artifacts_with_retry(run, destination, retry_download, retry_interval) if workflow_conclusion != "success": raise Exit(code=1) @task def trigger_macos_test( ctx, datadog_agent_ref=DEFAULT_BRANCH, release_version="nightly-a7", python_runtimes="3", destination=".", version_cache=None, retry_download=3, retry_interval=10, ): env = load_release_versions(ctx, release_version) github_action_ref = env["MACOS_BUILD_VERSION"] run = trigger_macos_workflow( workflow_name="test.yaml", github_action_ref=github_action_ref, datadog_agent_ref=datadog_agent_ref, python_runtimes=python_runtimes, version_cache_file_content=version_cache, ) workflow_conclusion = follow_workflow_run(run) print_workflow_conclusion(workflow_conclusion) download_artifacts_with_retry(run, destination, retry_download, retry_interval) if workflow_conclusion != "success": raise Exit(code=1) @task def lint_codeowner(_): """ Check every package in `pkg` has an owner """ base = os.path.dirname(os.path.abspath(__file__)) root_folder = os.path.join(base, "..") os.chdir(root_folder) owners = _get_code_owners(root_folder) # make sure each root package has an owner pkgs_without_owner = _find_packages_without_owner(owners, "pkg") if len(pkgs_without_owner) > 0: raise Exit( f'The following packages in `pkg` directory don\'t have an owner in CODEOWNERS: {pkgs_without_owner}', code=1, ) def _find_packages_without_owner(owners, folder): pkg_without_owners = [] for x in os.listdir(folder): path = os.path.join("/" + folder, x) if path not in owners: pkg_without_owners.append(path) return pkg_without_owners def _get_code_owners(root_folder): code_owner_path = os.path.join(root_folder, ".github", "CODEOWNERS") owners = {} with open(code_owner_path) as f: for line in f: line = line.strip() line = line.split("#")[0] # remove comment if len(line) > 0: parts = line.split() path = os.path.normpath(parts[0]) # example /tools/retry_file_dump ['@DataDog/agent-metrics-logs'] owners[path] = parts[1:] return owners
[ "noreply@github.com" ]
DataDog.noreply@github.com
019ab9a8348c516eab7132b6900f6f45b8172cdb
243ce25168eea65144713a1100ca997a2d29f280
/p68.py
aaea8a7b5cd711d48a2ecaed6cc2366716f5667f
[]
no_license
acadien/projecteuler
6aa1efbb1141ecf36d6b23bb6b058070e5e881e0
2efb0b5577cee7f046ed4f67d0f01f438cbf3770
refs/heads/master
2020-04-28T21:33:49.631044
2013-12-06T19:25:20
2013-12-06T19:25:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
#!/usr/bin/python from math import * from random import * from itertools import chain,permutations o_ind=range(5) i_ind=[[5,6],[6,7],[7,8],[8,9],[9,5]] def trysum(A): if 10 in A[5:]: return False B=set([A[i]+A[i_ind[i][0]]+A[i_ind[i][1]] for i in range(5)]) if len(B)==1: return True return False def flatten(listOfLists): return chain.from_iterable(listOfLists) def tochain(A): start=A.index(min(A[:5])) return int("".join(map(str,flatten([[A[o_ind[j]],A[i_ind[j][0]],A[i_ind[j][1]]] for j in map(lambda x:x%5,range(start,start+5))])))) mx=0 for A in permutations(range(1,11)): if trysum(A): Aval=tochain(A) if Aval>mx: print Aval mx=Aval
[ "adamcadien@gmail.com" ]
adamcadien@gmail.com
ae9e61d3ae9ee479adabb49c6e4d75d50cecfd7e
b1f7c8eecdfc1e54e868430d7b6192b162f5a530
/insta/signals.py
2177664422d6238343c5645260f46897273c08a5
[]
no_license
Nyagah-Tech/instagramWebApp
490c9d8874c082132e9a0d78eb849e2b1136656b
abf3421a408ac1daf5f5bf20b76073ad73894eba
refs/heads/master
2022-12-13T04:33:26.104920
2020-01-06T21:18:17
2020-01-06T21:18:17
229,194,006
0
0
null
2022-11-22T05:13:48
2019-12-20T05:08:18
Python
UTF-8
Python
false
false
565
py
from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import Profile @receiver(post_save, sender=User) def create_profile(sender,instance,created,**kwargs): ''' this is a function that creates a profile of a user after registration ''' if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_profile(sender,instance, **kwargs): ''' this is a fuunction that saves the profile after been made ''' instance.profile.save()
[ "dan@localhost.localdomain" ]
dan@localhost.localdomain
62b7897f6f243bde43c73bd0addea96c61ff23d3
e2d23d749779ed79472a961d2ab529eeffa0b5b0
/gcloud/tests/core/models/test_user_default_project.py
a8944c2c0e485a689a536b1e3088ebda6139b172
[ "MIT", "BSD-3-Clause", "BSL-1.0", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
manlucas/atom
9fa026b3f914e53cd2d34aecdae580bda09adda7
94963fc6fdfd0568473ee68e9d1631f421265359
refs/heads/master
2022-09-30T06:19:53.828308
2020-01-21T14:08:36
2020-01-21T14:08:36
235,356,376
0
0
NOASSERTION
2022-09-16T18:17:08
2020-01-21T14:04:51
Python
UTF-8
Python
false
false
2,282
py
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import factory from django.db.models import signals from django.test import TestCase from gcloud.core.models import Project, UserDefaultProject class UserDefaultProjectTestCase(TestCase): @factory.django.mute_signals(signals.post_save, signals.post_delete) def tearDown(self): Project.objects.all().delete() UserDefaultProject.objects.all().delete() @factory.django.mute_signals(signals.post_save, signals.post_delete) def test_init_user_default_project__first_set(self): project = Project.objects.create(name='name', creator='creator', desc='', ) dp = UserDefaultProject.objects.init_user_default_project('username', project) self.assertEqual(dp.default_project.id, project.id) @factory.django.mute_signals(signals.post_save, signals.post_delete) def test_init_user_default_project__second_set(self): project_1 = Project.objects.create(name='name', creator='creator', desc='', ) project_2 = Project.objects.create(name='name', creator='creator', desc='', ) UserDefaultProject.objects.init_user_default_project('username', project_1) dp = UserDefaultProject.objects.init_user_default_project('username', project_2) self.assertEqual(dp.default_project.id, project_1.id)
[ "lucaswang@canway.net" ]
lucaswang@canway.net
02778531cc548dda2bfadf226376a93af1bcd11f
746bf62ae3599f0d2dcd620ae37cd11370733cc3
/leetcode/contains-duplicate.py
768cd64e1cb979d349fc2bf6872d9d0a27bb7e6b
[]
no_license
wanglinjie/coding
ec0e614343b39dc02191455165eb1a5c9e6747ce
350f28cad5ec384df476f6403cb7a7db419de329
refs/heads/master
2021-04-22T14:00:48.825959
2017-05-02T12:49:05
2017-05-02T12:49:05
48,011,510
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
#!/usr/bin/env python # -*- coding:utf-8 -*- ''' Author: Wanglj Create Time : 20151223 Last Modified: 判断列表中是否有重复的 ''' class Solution(object): def containsDuplicate(self, nums): """ :type nums: List[int] :rtype: bool """ nums_set = set(nums) if len(nums_set) < len(nums): return True else: return False
[ "hitwhwlj@163.com" ]
hitwhwlj@163.com
f9d7f2202c7c7b8cfb47887171023887d23fb306
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_192/ch50_2020_03_31_18_26_15_429003.py
9cc22791965cdb59d8ef25da1a85490c844cd611
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
def junta_nome_sobrenome(n, s): n_s = [] espaco = [' ']*len(n) i = 0 while i < len(n): n_s.append(n[i] = espaco[i] + s[i]) i += 1 return n_s
[ "you@example.com" ]
you@example.com
38723203b79a0913486767469b468bcf4790caac
795ba44e09add69a6c3859adf7e476908fcb234c
/backend/mod_training_1_27492/urls.py
58881d4c5e4d89926432059cb0802a8f7062e3db
[]
no_license
crowdbotics-apps/mod-training-1-27492
0df7b863ef18e7ba4e3f1c34f1bac7554e184553
91815c10d4f8af1e18bb550db97373b4099a4ae9
refs/heads/master
2023-04-26T00:57:13.854464
2021-06-01T19:48:41
2021-06-01T19:48:41
371,498,927
0
0
null
null
null
null
UTF-8
Python
false
false
2,247
py
"""mod_training_1_27492 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "mod-training-1" admin.site.site_title = "mod-training-1 Admin Portal" admin.site.index_title = "mod-training-1 Admin" # swagger api_info = openapi.Info( title="mod-training-1 API", default_version="v1", description="API documentation for mod-training-1 App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
0e8eb7cfd16b0572c20b19d0ca5619c7eecbd659
7c9917d62959b8d69309d44362481356e632083e
/enzymatic_bias/profile_model_of_bias/kmer_init_tuned/dnase/24mer/model.py
8e07a5bc7b4e1400fd6be929ca7b482df4c88a82
[ "MIT" ]
permissive
kundajelab/bias_correction
bee77bd2d36268aa6b7046b817e9e349c8cc8238
521678ea8739473f793b0ce85e22e622d13df6fe
refs/heads/master
2021-06-21T11:34:54.558788
2021-06-10T06:39:35
2021-06-10T06:39:35
218,137,376
0
0
null
null
null
null
UTF-8
Python
false
false
4,974
py
import pickle import pdb import numpy as np ; from keras.backend import int_shape from sklearn.metrics import average_precision_score from kerasAC.metrics import * from kerasAC.custom_losses import * import keras; #import the various keras layers from keras.layers import Dense,Activation,Dropout,Flatten,Reshape,Input, Concatenate, Cropping1D, Add from keras.layers.core import Dropout, Reshape, Dense, Activation, Flatten from keras.layers.convolutional import Conv1D from keras.layers.pooling import GlobalMaxPooling1D,MaxPooling1D,GlobalAveragePooling1D from keras.layers.normalization import BatchNormalization from keras.optimizers import Adam from keras.constraints import maxnorm; from keras.regularizers import l1, l2 from keras.models import Model def get_model_param_dict(param_file): ''' param_file has 2 columns -- param name in column 1, and param value in column 2 ''' params={} if param_file is None: return params for line in open(param_file,'r').read().strip().split('\n'): tokens=line.split('\t') params[tokens[0]]=tokens[1] return params def getModelGivenModelOptionsAndWeightInits(args): #default params (can be overwritten by providing model_params file as input to the training function) filters=1 conv1_kernel_size=6 control_smoothing=[1, 50] counts_loss_weight=1 profile_loss_weight=1 model_params=get_model_param_dict(args.model_params) if 'filters' in model_params: filters=int(model_params['filters']) if 'conv1_kernel_size' in model_params: conv1_kernel_size=int(model_params['conv1_kernel_size']) if 'counts_loss_weight' in model_params: counts_loss_weight=float(model_params['counts_loss_weight']) if 'profile_loss_weight' in model_params: profile_loss_weight=float(model_params['profile_loss_weight']) print("params:") print("filters:"+str(filters)) print("conv1_kernel_size:"+str(conv1_kernel_size)) print("counts_loss_weight:"+str(counts_loss_weight)) print("profile_loss_weight:"+str(profile_loss_weight)) #load the fixed weights tobias_data_dnase_k562=pickle.load(open("/srv/scratch/annashch/bias_correction/enzymatic_bias/tobias/dnase/K562.filtered_AtacBias.pickle",'rb')) tobias_dnase_pssm_forward=np.transpose(tobias_data_dnase_k562.bias['forward'].pssm[0:4])[:,[0,2,3,1]] conv1_pwm=np.expand_dims(tobias_dnase_pssm_forward,axis=-1) conv1_bias=np.zeros((1,)) conv1_frozen_weights=[conv1_pwm, conv1_bias] #read in arguments seed=args.seed init_weights=args.init_weights sequence_flank=args.tdb_input_flank[0] num_tasks=args.num_tasks seq_len=2*sequence_flank out_flank=args.tdb_output_flank[0] out_pred_len=2*out_flank print(seq_len) print(out_pred_len) #define inputs inp = Input(shape=(seq_len, 4),name='sequence') # first convolution without dilation first_conv = Conv1D(filters, weights=conv1_frozen_weights, kernel_size=conv1_kernel_size, padding='valid', activation='relu', name='1st_conv')(inp) profile_out_prebias_shape =int_shape(first_conv) cropsize = int(profile_out_prebias_shape[1]/2)-int(out_pred_len/2) if profile_out_prebias_shape[1]%2==0: crop_left=cropsize crop_right=cropsize else: crop_left=cropsize crop_right=cropsize+1 print(crop_left) print(crop_right) profile_out_prebias = Cropping1D((crop_left,crop_right), name='prof_out_crop2match_output')(first_conv) profile_out = Conv1D(filters=num_tasks, kernel_size=1, name="profile_predictions")(profile_out_prebias) gap_combined_conv = GlobalAveragePooling1D(name='gap')(first_conv) count_out = Dense(num_tasks, name="logcount_predictions")(gap_combined_conv) model=Model(inputs=[inp],outputs=[profile_out, count_out]) print("got model") model.compile(optimizer=Adam(), loss=[MultichannelMultinomialNLL(1),'mse'], loss_weights=[profile_loss_weight,counts_loss_weight]) print("compiled model") return model if __name__=="__main__": import argparse parser=argparse.ArgumentParser(description="view model arch") parser.add_argument("--seed",type=int,default=1234) parser.add_argument("--init_weights",default=None) parser.add_argument("--tdb_input_flank",nargs="+",default=[673]) parser.add_argument("--tdb_output_flank",nargs="+",default=[500]) parser.add_argument("--num_tasks",type=int,default=1) parser.add_argument("--model_params",default=None) args=parser.parse_args() model=getModelGivenModelOptionsAndWeightInits(args) print(model.summary()) pdb.set_trace()
[ "annashcherbina@gmail.com" ]
annashcherbina@gmail.com
c51867d2cd55c0e97a84af6332cfcfd529eeb1d2
40be7c7a50b839a922c22ea624123b11e5da25cb
/feria/migrations/0003_franquicia_imagen.py
c252e9fbb8cc5b7835b3b8c49f36ae453c9fd74f
[]
no_license
LuberNavarrete/sistema
e70b15d0410402ceb6f3ba2a320886d5b225c65c
e4800f3aa2cdde69189a43dcf9543be85ed14693
refs/heads/master
2021-01-10T16:54:21.479466
2015-11-15T14:21:20
2015-11-15T14:21:20
44,011,243
0
0
null
null
null
null
UTF-8
Python
false
false
422
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('feria', '0002_auto_20151008_1937'), ] operations = [ migrations.AddField( model_name='franquicia', name='imagen', field=models.ImageField(null=True, upload_to=b'imagenes'), ), ]
[ "root@localhost.localdomain" ]
root@localhost.localdomain
951e87820000a2ba516ce5733b3db4e751382387
be0eda70579e191d7dd1ace87ccbda8a3e85474e
/app01/urls.py
78bd401466e3cf6df768de0ca595ee3d970007da
[]
no_license
zxycode-2020/django_tutrital2
084ebe4a83e7a9724163ae54b816239ff2b0cce6
969ce0b3caca92c045afee0e5eb628f9afb35b48
refs/heads/master
2022-05-03T23:22:17.075830
2020-02-05T03:11:09
2020-02-05T03:11:09
236,920,126
0
0
null
2022-04-22T23:00:29
2020-01-29T06:40:39
Python
UTF-8
Python
false
false
577
py
from django.urls import path, include from app01.views import index, article, test_url, student, \ students, args, reg, xuanran, orm_test, post_cls, get_cls urlpatterns = [ path('index/', index), path('article/<str:aid>/', article), path('test_url/', test_url), path('students/', students), # 学生列表 path('student/<str:stu_id>/', student), # 学生单个 path('args/', args), path('reg/', reg), path('xuanran/', xuanran), path('orm_test/', orm_test), path('post_cls/', post_cls), path('get_cls/', get_cls), ]
[ "1049939190@qq.com" ]
1049939190@qq.com
2b792a76a6d249e279abf8afff4ad007a551e9e7
d42a9128898d504a9831f1afee3198c4677236c9
/Level_3/가장먼노드.py
19833971ef9bcd673871a0c8a749d8662f7847c8
[]
no_license
ketkat001/Programmers-coding
6848a9c8cffd97b792cfc8856ec135b72af5d688
799baba8d66a9971b43233d231cecbf262b4ea27
refs/heads/master
2023-09-02T23:07:25.614820
2021-10-17T18:12:02
2021-10-17T18:12:02
235,016,879
0
0
null
null
null
null
UTF-8
Python
false
false
650
py
from collections import deque def solution(n, edge): answer = 0 graph = [[] for _ in range(n+1)] dp = [0] * (n+1) dp[1] = 1 queue = deque([1]) for edg in edge: graph[edg[0]].append(edg[1]) graph[edg[1]].append(edg[0]) while queue: answer = len(queue) for i in range(answer): next_node = queue.popleft() for target_node in graph[next_node]: if dp[target_node] == 0: dp[target_node] = 1 queue.append(target_node) return answer print(solution(6, [[3, 6], [4, 3], [3, 2], [1, 3], [1, 2], [2, 4], [5, 2]]))
[ "ketkat001@gmail.com" ]
ketkat001@gmail.com
ecad99a07312379715f64a3e39b3ea5577d254ee
c5746efe18a5406764c041d149d89c0e0564c5a5
/1. Python语言核心编程/1. Python核心/Day07/exercise11.py
a656871fe2f7a823083003ada2bd5ae8242e8c9c
[]
no_license
ShaoxiongYuan/PycharmProjects
fc7d9eeaf833d3711211cd2fafb81dd277d4e4a3
5111d4c0a7644c246f96e2d038c1a10b0648e4bf
refs/heads/master
2021-12-15T05:45:42.117000
2021-11-23T06:45:16
2021-11-23T06:45:16
241,294,858
3
1
null
2021-02-20T15:29:07
2020-02-18T07:06:08
Jupyter Notebook
UTF-8
Python
false
false
175
py
def sum_digit(num): """ :param num: :return: """ count = 0 for item in str(num): count += int(item) return count print(sum_digit(1234))
[ "ysxstevenpp123@gmail.com" ]
ysxstevenpp123@gmail.com
4052c872dbac2fd274177618ea0b913cd7c86450
6a9f06b967d7641ddff7b56425651b29d3e577f4
/mindinsight/mindinsight/backend/datavisual/train_visual_api.py
a868a443c817c402a689b20195737d12c7706bd9
[ "Apache-2.0" ]
permissive
ZeroWangZY/DL-VIS
b3117016547007b88dc66cfe7339ef02b0d84e9c
8be1c70c44913a6f67dd424aa0e0330f82e48b06
refs/heads/master
2023-08-18T00:22:30.906432
2020-12-04T03:35:50
2020-12-04T03:35:50
232,723,696
1
1
null
null
null
null
UTF-8
Python
false
false
5,850
py
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Backend interface module. This module provides the interfaces to train processors functions. """ from flask import Blueprint from flask import request from flask import jsonify from mindinsight.conf import settings from mindinsight.datavisual.utils.tools import get_train_id from mindinsight.datavisual.utils.tools import if_nan_inf_to_none from mindinsight.datavisual.processors.histogram_processor import HistogramProcessor from mindinsight.datavisual.processors.images_processor import ImageProcessor from mindinsight.datavisual.processors.scalars_processor import ScalarsProcessor from mindinsight.datavisual.processors.graph_processor import GraphProcessor from mindinsight.datavisual.data_transform.data_manager import DATA_MANAGER BLUEPRINT = Blueprint("train_visual", __name__, url_prefix=settings.URL_PATH_PREFIX+settings.API_PREFIX) @BLUEPRINT.route("/datavisual/image/metadata", methods=["GET"]) def image_metadata(): """ Interface to fetch metadata about the images for the particular run,tag, and zero-indexed sample. Returns: Response, which contains a list in JSON containing image events, each one of which is an object containing items wall_time, step, width, height, and query. """ tag = request.args.get("tag") train_id = get_train_id(request) processor = ImageProcessor(DATA_MANAGER) response = processor.get_metadata_list(train_id, tag) return jsonify(response) @BLUEPRINT.route("/datavisual/image/single-image", methods=["GET"]) def single_image(): """ Interface to fetch raw image data for a particular image. Returns: Response, which contains a byte string of image. """ tag = request.args.get("tag") step = request.args.get("step") train_id = get_train_id(request) processor = ImageProcessor(DATA_MANAGER) img_data = processor.get_single_image(train_id, tag, step) return img_data @BLUEPRINT.route("/datavisual/scalar/metadata", methods=["GET"]) def scalar_metadata(): """ Interface to fetch metadata about the scalars for the particular run and tag. Returns: Response, which contains a list in JSON containing scalar events, each one of which is an object containing items' wall_time, step and value. """ tag = request.args.get("tag") train_id = get_train_id(request) processor = ScalarsProcessor(DATA_MANAGER) response = processor.get_metadata_list(train_id, tag) metadatas = response['metadatas'] for metadata in metadatas: value = metadata.get("value") metadata["value"] = if_nan_inf_to_none('scalar_value', value) return jsonify(response) @BLUEPRINT.route("/datavisual/graphs/nodes", methods=["GET"]) def graph_nodes(): """ Interface to get graph nodes. Returns: Response, which contains a JSON object. """ name = request.args.get('name', default=None) tag = request.args.get("tag", default=None) train_id = get_train_id(request) graph_process = GraphProcessor(train_id, DATA_MANAGER, tag) response = graph_process.list_nodes(scope=name) return jsonify(response) @BLUEPRINT.route("/datavisual/graphs/nodes/names", methods=["GET"]) def graph_node_names(): """ Interface to query node names. Returns: Response, which contains a JSON object. """ search_content = request.args.get("search") offset = request.args.get("offset", default=0) limit = request.args.get("limit", default=100) tag = request.args.get("tag", default=None) train_id = get_train_id(request) graph_process = GraphProcessor(train_id, DATA_MANAGER, tag) resp = graph_process.search_node_names(search_content, offset, limit) return jsonify(resp) @BLUEPRINT.route("/datavisual/graphs/single-node", methods=["GET"]) def graph_search_single_node(): """ Interface to search single node. Returns: Response, which contains a JSON object. """ name = request.args.get("name") tag = request.args.get("tag", default=None) train_id = get_train_id(request) graph_process = GraphProcessor(train_id, DATA_MANAGER, tag) resp = graph_process.search_single_node(name) return jsonify(resp) @BLUEPRINT.route("/datavisual/histograms", methods=["GET"]) def histogram(): """ Interface to obtain histogram data. Returns: Response, which contains a JSON object. """ tag = request.args.get("tag", default=None) train_id = get_train_id(request) processor = HistogramProcessor(DATA_MANAGER) response = processor.get_histograms(train_id, tag) return jsonify(response) @BLUEPRINT.route("/datavisual/scalars", methods=["GET"]) def get_scalars(): """Get scalar data for given train_ids and tags.""" train_ids = request.args.getlist('train_id') tags = request.args.getlist('tag') processor = ScalarsProcessor(DATA_MANAGER) scalars = processor.get_scalars(train_ids, tags) return jsonify({'scalars': scalars}) def init_module(app): """ Init module entry. Args: app (Flask): The application obj. """ app.register_blueprint(BLUEPRINT)
[ "756762961@qq.com" ]
756762961@qq.com
904accd2539767b15763cd55082659294465b998
a2e11ec88ef3c83b9f07129e76a3681a676d164f
/demo8apr/testapp/urls.py
612a33b0ec158d2795dc24c6b407ab4fabc9dc74
[]
no_license
qwertypool/lofo
dadd7cd5b149a3a200b7111d803b1d0195d76642
3bc7bd125e7ea5a67f51dd6dd654e38a5f218055
refs/heads/master
2022-05-18T09:31:11.456634
2020-04-18T14:47:44
2020-04-18T14:47:44
256,773,858
3
0
null
null
null
null
UTF-8
Python
false
false
375
py
from django.urls import path from testapp import views urlpatterns = [ path('form/',views.form_view,name='forms'), path('thankyou/',views.thankyou_view,name='thankyou'), path('list/',views.list_view,name='list'), path('elist/',views.elist_view,name='elist'), path('eform/',views.eform_view,name='eform'), path('demo/',views.demo_view,name='demo'), ]
[ "deepapandey364@gmail.com" ]
deepapandey364@gmail.com
32275f30d3edfcdfabbae11c0e0d3061a353a050
33f9056de72ea429774cdf42d3f813a4cd33a255
/backend/takeout/admin/models/admin.py
803776d2c167a36a3dde181c74e8d18c7d90e965
[ "MIT" ]
permissive
alex159s/Take-out
a566e35d5c05c6e8456beb449c08b6c6479f4e79
27c66dcc4f0e045ae060255679a2aa68c0f744d2
refs/heads/master
2020-04-06T06:36:51.806309
2016-07-15T14:27:06
2016-07-15T14:27:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
305
py
# coding: utf-8 from lib.models.userbase import UserBase class Admin(UserBase): def to_string(self): return { "id": self.id, "username": self.username, "nickname": self.nickname, } def to_detail_string(self): return self.to_string()
[ "billo@qq.com" ]
billo@qq.com
25bec75d335fd19663fb549bac3f111228adcee2
f3e51466d00510f1dae58f1cb87dd53244ce4e70
/LeetCodes/facebook/ReverseLinkedList.py
9184e30348f7f6739d047928f0e48937973b5b12
[]
no_license
chutianwen/LeetCodes
40d18e7aa270f8235342f0485bfda2bd1ed960e1
11d6bf2ba7b50c07e048df37c4e05c8f46b92241
refs/heads/master
2022-08-27T10:28:16.594258
2022-07-24T21:23:56
2022-07-24T21:23:56
96,836,652
0
0
null
null
null
null
UTF-8
Python
false
false
959
py
''' Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5->4->3->2->1->NULL Follow up: A linked list can be reversed either iteratively or recursively. Could you implement both? ''' # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def reverseListIterative(self, head): new_head = None while head: # watch out, this order is not right!!! # in this case, head will be head.next first, so head can be None, then head.next = new_head will have problem. # new_head, head, head.next = head, head.next, new_head head.next, new_head, head = new_head, head, head.next return new_head def reverseList(self, head): """ :type head: ListNode :rtype: ListNode """ if not head or not head.next: return head else: node = self.reverseList(head.next) head.next.next= = head head.next = None return node
[ "tianwen.chu@fedcentric.com" ]
tianwen.chu@fedcentric.com
01dca87891811dc9c80df4ec667f35a0d253a385
2d997384a86f0d9c0cdb80a1141908abfdf674cc
/ML_homework8/task.py
3a7d666193d64500051f875d33be8500c66db5a8
[]
no_license
Alice-Avetisyan/Machine_Learning
1ddc91fad066f3abf0457d036aa783f0fc40a46f
9a0cc83c6d90ef58703a383f066ef857bb124334
refs/heads/master
2021-01-16T09:07:20.435898
2020-06-18T08:44:17
2020-06-18T08:44:17
243,054,222
0
0
null
null
null
null
UTF-8
Python
false
false
1,678
py
from sklearn.datasets import make_classification # Generate a random n-class classification problem X, y = make_classification(100, 3, 2, 1, class_sep=0.5) # 2 of 3 features are informative and 1 is redundant # 100 -> number of samples/rows, # 3 -> number of features/columns, # 2 -> number of informative features, # 1 -> number of redundant features (useless data) # class_sep -> the complexity if the model import matplotlib.pyplot as plt # plt.hist(X[:, 1]) # all rows of the second column # plt.show() # plt.scatter(X[:, 0], X[:, 1]) # plt.show() fig = plt.figure() axis1 = fig.add_subplot(1, 2, 1) axis1.hist(X[:, 1]) axis2 = fig.add_subplot(1, 2, 2) axis2.scatter(X[:, 0], X[:, 1]) plt.show() # plots the class distribution for i in range(len(X)): if y[i] == 0: plt.scatter(X[i, 0], X[i, 1], marker='*', color='b') else: plt.scatter(X[i, 0], X[i, 1], marker='D', color='r') plt.show() from sklearn.svm import SVC svc_model = SVC(kernel='rbf') from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=101) svc_model.fit(X_train, y_train) from sklearn.metrics import accuracy_score y_pred = svc_model.predict(X_test) print("Model Accuracy: ", accuracy_score(y_test, y_pred)) # converting the data into DataFrame import pandas as pd custom_df = pd.DataFrame(X, columns=['X1', 'X2', 'X3']) custom_df.insert(len(custom_df.columns), 'y', pd.DataFrame(y)) print(custom_df) # turning the data into a csv file custom_df.to_csv('custom_data.csv', index=False) csv = pd.read_csv('custom_data.csv') print(csv)
[ "noreply@github.com" ]
Alice-Avetisyan.noreply@github.com
9e30f6dd5e43574bbc8c96b3976c5ed164f00864
bb33e6be8316f35decbb2b81badf2b6dcf7df515
/source/res/scripts/client/vehicle_systems/components/__init__.py
057145a5b192b33ecbef57d0bc595f52f45d7640
[]
no_license
StranikS-Scan/WorldOfTanks-Decompiled
999c9567de38c32c760ab72c21c00ea7bc20990c
d2fe9c195825ececc728e87a02983908b7ea9199
refs/heads/1.18
2023-08-25T17:39:27.718097
2022-09-22T06:49:44
2022-09-22T06:49:44
148,696,315
103
39
null
2022-09-14T17:50:03
2018-09-13T20:49:11
Python
UTF-8
Python
false
false
132
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/vehicle_systems/components/__init__.py pass
[ "StranikS_Scan@mail.ru" ]
StranikS_Scan@mail.ru
10ebb5a33de3a78479eeeeab0075a4ed9b9b5b16
bcb56cc126ea1885eb5ecc920884e2e331def045
/Part B/Letter.py
5536de9080655ae9b4a8c2bdfc7f925462a11551
[]
no_license
priyanshkedia04/Codeforces-Solutions
2d11cb7b8329fe658f983b7212c17fc89fd784f0
a5197c633bf4c3238f48bfb5b308144c2ffba473
refs/heads/main
2023-06-06T13:10:13.787843
2021-07-01T14:06:52
2021-07-01T14:06:52
382,000,707
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
from collections import Counter s1 = dict(Counter(list(input()))) s2 = dict(Counter(list(input()))) count = 0 if ' ' in s2: del s2[' '] for i in s2: if i in s1 and i: if s1[i] >= s2[i]: count += 1 if count == len(s2): print("YES") else: print("NO")
[ "noreply@github.com" ]
priyanshkedia04.noreply@github.com
dab8b347c67f8225bb55fa6570fe28846ab87f79
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/101/usersdata/227/49714/submittedfiles/av1_m3.py
24617831cbcfc8ae60100af176c4d6c910776e9e
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
# -*- coding: utf-8 -*- import math m=int(input('digite o número de termos:')) a=4 pi=0 for i in range(2,m+1,2): b=i+1 c=b+1 pi=3+(a/(i*b*c) print('%.6d'%pi)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
464aca6bdb71bea101e69f9172bcaeea0fdf5dee
a485f01fd697721356d4405dfef569c50499d652
/SipMask-mmdetection/configs/sipmask/sipmask++_r101_caffe_fpn_ssd_6x.py
dabccfd91bdc17e15ea79c812b84436a3eeb3192
[ "MIT", "Apache-2.0" ]
permissive
Borda/SipMask
653333c1c7a7b5e9d0779c28f1b86d17b623aa5f
bc63fa93f9291d7b664c065f41d937a65d3c72fd
refs/heads/master
2023-05-25T11:11:44.452534
2021-03-26T02:47:49
2021-03-26T02:47:49
299,910,001
1
0
MIT
2020-09-30T12:22:24
2020-09-30T12:22:23
null
UTF-8
Python
false
false
4,553
py
# model settings model = dict( type='SipMask', pretrained='open-mmlab://resnet101_caffe', backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='caffe', dcn=dict(type='DCN', deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, extra_convs_on_inputs=False, # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='SipMaskHead', num_classes=81, in_channels=256, stacked_convs=2, ssd_flag=True, norm_cfg=None, rescoring_flag = True, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), center_sampling=True, center_sample_radius=1.5)) # training and testing settings train_cfg = dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False) test_cfg = dict( nms_pre=1000, min_bbox_size=0, score_thr=0.1, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(576, 576), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(544, 544), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=8, workers_per_gpu=3, train=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline)), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox') # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[20, 23]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 24 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/sipmask++_r101_caffe_fpn_6x' load_from = None resume_from = None workflow = [('train', 1)]
[ "connor@tju.edu.cn" ]
connor@tju.edu.cn
8d09c7578019ad5f22cf3b2ab7e4e74eaa4c0bbe
f3ccd2cf5c1819cf6b2b296a134a59a58deb87a6
/03img_classify/classify.py
a1bbe880c582e1d737c4fb08b515be56ded6347b
[]
no_license
leebinjun/gaze_tracking_ARglasses
195120a17a0e4858f4cdfc9516e781567f091fb0
63841b565f6fbb16f788268fb1ef991df0142b6b
refs/heads/master
2020-07-27T01:50:35.800129
2019-12-18T03:05:15
2019-12-18T03:05:15
208,825,449
0
1
null
null
null
null
UTF-8
Python
false
false
1,796
py
import tensorflow as tf import numpy as np import cv2 uid_to_human = {} for line in tf.gfile.GFile('imagenet_synset_to_human_label_map.txt').readlines(): items = line.strip().split('\t') uid_to_human[items[0]] = items[1] node_id_to_uid = {} for line in tf.gfile.GFile('imagenet_2012_challenge_label_map_proto.pbtxt').readlines(): if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1].strip('\n').strip('\"') node_id_to_uid[target_class] = target_class_string node_id_to_name = {} for key, value in node_id_to_uid.items(): node_id_to_name[key] = uid_to_human[value] def create_graph(): with tf.gfile.FastGFile('classify_image_graph_def.pb', 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') def classify_image(image, top_k=2): image_data = tf.gfile.FastGFile(image, 'rb').read() # print(image_data) # image_data = cv2.imread(image) create_graph() with tf.Session() as sess: # 'softmax:0': A tensor containing the normalized prediction across 1000 labels # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 float description of the image # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG encoding of the image softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') predictions = sess.run(softmax_tensor, feed_dict={'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) top_k = predictions.argsort()[-top_k:] for node_id in top_k: human_string = node_id_to_name[node_id] score = predictions[node_id] print('%s (score = %.5f)' % (human_string, score)) classify_image('IMG_20190917_120404.jpg')
[ "296735774@qq.com" ]
296735774@qq.com
4cbbc8616a600058c184f711b2e71766118ee132
2c8c7617d98f0349e560291960ecc5fb831bc0af
/programmers/level1/min/최대공약수와최소공배수.py
67ebc70fa0b925142de49537b9ce963b435f15d2
[]
no_license
BU-PS/coding_test
e53d9680ae80f32bfb5238795e868d3b37e5dd71
c4fbd5034c8f507a858ca021cc7f6cfcf43f402a
refs/heads/master
2023-03-15T05:26:36.566092
2021-03-25T12:36:40
2021-03-25T12:36:40
316,865,325
0
0
null
null
null
null
UTF-8
Python
false
false
937
py
# 최대 공약수 (GCD) : 두 개 이상의 자연수의 공통인 약수 중 가장 큰 수 # 1. 최대 공약수를 구하는 법 # - 두수의 약수들을 구한다 # - 두수의 약수들을 집합(set)에 넣는다 # - 교집합을 통해 공약수를 찾는다 # - 교집합을 중 가장 큰 수를 찾는다 # 최소 공배수 (LCM) : 두 수의 공배수가 최소인 # 1. 최소 공배수를 구하는 법 # - N * M = L * C 의 식을 통해 값을 구한 def solution(n: int, m: int): gcd_value = gcd(n=n, m=m) lcm_value = lcm(n=n, m=m, g=gcd_value) return [gcd_value, lcm_value] def gcd(n: int, m: int): max_value = max([n, m]) n_cm = set() m_cm = set() for i in range(1, max_value + 1): if n % i == 0: n_cm.add(i) if m % i == 0: m_cm.add(i) return max(n_cm & m_cm) def lcm(n: int, m: int, g: int): return n * m // g solution(4512, 18)
[ "kjhm0607@gmail.com" ]
kjhm0607@gmail.com
27e83ea7ad44899703c2d61c2941e9dcef77cdd2
8e583ac7e8a2047f01fa6e9829f9de36022c3265
/lib/python/gooey/python_bindings/gooey_parser.py
95e2b888765693f41f424ea3c8819bc2d20689f2
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jonathanlurie/timelapseComposer
ef25c5623d19024e5f83ad6c236497fdcffca10d
8de9f1ca626419bacb11bf6c563e79d52fb16a8d
refs/heads/master
2021-01-10T09:18:58.517707
2015-05-25T18:58:40
2015-05-25T18:58:40
36,248,988
2
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
from argparse import ArgumentParser class GooeyParser(object): def __init__(self, **kwargs): self.__dict__['parser'] = ArgumentParser(**kwargs) self.widgets = {} @property def _mutually_exclusive_groups(self): return self.parser._mutually_exclusive_groups @property def _actions(self): return self.parser._actions @property def description(self): return self.parser.description def add_argument(self, *args, **kwargs): widget = kwargs.pop('widget', None) self.parser.add_argument(*args, **kwargs) self.widgets[self.parser._actions[-1].dest] = widget def add_mutually_exclusive_group(self, **kwargs): return self.parser.add_mutually_exclusive_group(**kwargs) def add_argument_group(self, *args, **kwargs): return self.parser.add_argument_group(*args, **kwargs) def parse_args(self, args=None, namespace=None): return self.parser.parse_args(args, namespace) def __getattr__(self, item): return getattr(self.parser, item) def __setattr__(self, key, value): return setattr(self.parser, key, value)
[ "lurie.jo@gmail.com" ]
lurie.jo@gmail.com
3bec992595116b04adc9b11ce51ab2e1693e2a4b
38c8cca903432a88a6141dab4b9ac24740ae9e39
/src/crike_django/manage.py
8937161661f10d2505a8b82f54ecd20f227091b2
[ "Apache-2.0" ]
permissive
mxwww/crike
3d37882e75a4f7170d183d2050d6a643a72f381b
141bd1c9b37882f0369dd8231cdf3576eeb7a5e1
refs/heads/master
2023-07-19T08:09:25.806263
2016-06-11T05:30:46
2016-06-11T05:30:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "crike_django.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "geekan@foxmail.com" ]
geekan@foxmail.com
a2190e26fa997ddb6b13f10b274f5d200b6e3918
de6fb3a55196b6bd36a4fda0e08ad658679fb7a1
/vt_manager/src/python/vt_manager/models/utils/Choices.py
8b045af44501156cda604d3c0cf5c53e35f5078b
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
dana-i2cat/felix
4a87af639e4c7db686bfa03f1ae4ce62711615e3
059ed2b3308bda2af5e1942dc9967e6573dd6a53
refs/heads/master
2021-01-02T23:12:43.840754
2016-02-04T10:04:24
2016-02-04T10:04:24
17,132,912
4
4
null
null
null
null
UTF-8
Python
false
false
1,606
py
class VirtTechClass: VIRT_TECH_TYPE_XEN = "xen" VIRT_TECH_CHOICES = ( (VIRT_TECH_TYPE_XEN, 'XEN'), ) @staticmethod def validateVirtTech(value): for tuple in VirtTechClass.VIRT_TECH_CHOICES: if value in tuple: return raise Exception("Virtualization Type not valid") class OSDistClass(): OS_DIST_TYPE_DEBIAN = "Debian" OS_DIST_TYPE_UBUNTU = "Ubuntu" OS_DIST_TYPE_REDHAT = "RedHat" OS_DIST_TYPE_CENTOS = "CentOS" OS_DIST_CHOICES = ( (OS_DIST_TYPE_DEBIAN, 'Debian'), (OS_DIST_TYPE_UBUNTU, 'Ubuntu'), (OS_DIST_TYPE_REDHAT, 'RedHat'), (OS_DIST_TYPE_CENTOS, 'CentOS'), ) @staticmethod def validateOSDist(value): for tuple in OSDistClass.OS_DIST_CHOICES: if value in tuple: return raise Exception("OS Distribution not valid") class OSVersionClass(): OS_VERSION_TYPE_50 = "5.0" OS_VERSION_TYPE_60 = "6.0" OS_VERSION_TYPE_62 = "6.2" OS_VERSION_TYPE_70 = "7.0" OS_VERSION_CHOICES = ( (OS_VERSION_TYPE_50, '5.0'), (OS_VERSION_TYPE_60, '6.0'), (OS_VERSION_TYPE_62, '6.2'), (OS_VERSION_TYPE_70, '7.0'), ) @staticmethod def validateOSVersion(value): for tuple in OSVersionClass.OS_VERSION_CHOICES: if value in tuple: return raise Exception("OS Version not valid") class OSTypeClass(): OS_TYPE_TYPE_GNULINUX = "GNU/Linux" OS_TYPE_TYPE_WINDOWS = "Windows" OS_TYPE_CHOICES = ( (OS_TYPE_TYPE_GNULINUX, 'GNU/Linux'), (OS_TYPE_TYPE_WINDOWS, 'Windows'), ) @staticmethod def validateOSType(value): for tuple in OSTypeClass.OS_TYPE_CHOICES: if value in tuple: return raise Exception("OS Type not valid")
[ "jenkins@integration.localhost" ]
jenkins@integration.localhost
06e6ec8eeae855acf71b78ba670c6f33f3e7d563
b144c5142226de4e6254e0044a1ca0fcd4c8bbc6
/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/cfm_c1742b75736db9d1da0fb731317ab337.py
2553211aa330936731e6ce2d5a16da9385c4e481
[ "MIT" ]
permissive
iwanb/ixnetwork_restpy
fa8b885ea7a4179048ef2636c37ef7d3f6692e31
c2cb68fee9f2cc2f86660760e9e07bd06c0013c2
refs/heads/master
2021-01-02T17:27:37.096268
2020-02-11T09:28:15
2020-02-11T09:28:15
239,721,780
0
0
NOASSERTION
2020-02-11T09:20:22
2020-02-11T09:20:21
null
UTF-8
Python
false
false
6,156
py
# MIT LICENSE # # Copyright 1997 - 2019 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class Cfm(Base): """This object contains the configuration of the CFM protocol. The Cfm class encapsulates a required cfm resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'cfm' def __init__(self, parent): super(Cfm, self).__init__(parent) @property def Bridge(self): """An instance of the Bridge class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.bridge_d8b0c3589e6175e046e1a83cbe6f36b6.Bridge) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.bridge_d8b0c3589e6175e046e1a83cbe6f36b6 import Bridge return Bridge(self) @property def EnableOptionalLmFunctionality(self): """NOT DEFINED Returns: bool """ return self._get_attribute('enableOptionalLmFunctionality') @EnableOptionalLmFunctionality.setter def EnableOptionalLmFunctionality(self, value): self._set_attribute('enableOptionalLmFunctionality', value) @property def EnableOptionalTlvValidation(self): """If true, the CFM protocol will validate optional TLVs present in CFM packets. Returns: bool """ return self._get_attribute('enableOptionalTlvValidation') @EnableOptionalTlvValidation.setter def EnableOptionalTlvValidation(self, value): self._set_attribute('enableOptionalTlvValidation', value) @property def Enabled(self): """If true, the CFM protcol is enabled. Returns: bool """ return self._get_attribute('enabled') @Enabled.setter def Enabled(self, value): self._set_attribute('enabled', value) @property def ReceiveCcm(self): """If true, the CFM protocol can receive CFM CCMs on this port. Returns: bool """ return self._get_attribute('receiveCcm') @ReceiveCcm.setter def ReceiveCcm(self, value): self._set_attribute('receiveCcm', value) @property def RunningState(self): """The current running state of the CFM protocol. Returns: str(unknown|stopped|stopping|starting|started) """ return self._get_attribute('runningState') @property def SendCcm(self): """If true, the CFM protocol can send CFM CCMs from this port. Returns: bool """ return self._get_attribute('sendCcm') @SendCcm.setter def SendCcm(self, value): self._set_attribute('sendCcm', value) @property def SuppressErrorsOnAis(self): """If true, the errors on AIS are suopressed. Returns: bool """ return self._get_attribute('suppressErrorsOnAis') @SuppressErrorsOnAis.setter def SuppressErrorsOnAis(self, value): self._set_attribute('suppressErrorsOnAis', value) def update(self, EnableOptionalLmFunctionality=None, EnableOptionalTlvValidation=None, Enabled=None, ReceiveCcm=None, SendCcm=None, SuppressErrorsOnAis=None): """Updates a child instance of cfm on the server. Args: EnableOptionalLmFunctionality (bool): NOT DEFINED EnableOptionalTlvValidation (bool): If true, the CFM protocol will validate optional TLVs present in CFM packets. Enabled (bool): If true, the CFM protcol is enabled. ReceiveCcm (bool): If true, the CFM protocol can receive CFM CCMs on this port. SendCcm (bool): If true, the CFM protocol can send CFM CCMs from this port. SuppressErrorsOnAis (bool): If true, the errors on AIS are suopressed. Raises: ServerError: The server has encountered an uncategorized error condition """ self._update(locals()) def Start(self): """Executes the start operation on the server. Starts the CFM protocol on a port or group of ports. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('start', payload=payload, response_object=None) def Stop(self): """Executes the stop operation on the server. Stops the CFM protocol on a port or group of ports. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('stop', payload=payload, response_object=None)
[ "srvc_cm_packages@keysight.com" ]
srvc_cm_packages@keysight.com
3093186e46c96765d0b51554468a7761c5484e8e
a72e79b8caa43e973e7d7ecb7ffdaba15314bb9f
/server/wtpodcast2/feeds/whatsnew/urls.py
d16a486de32ebec8b741e4bcd3163578dee8596f
[]
no_license
crgwbr/wt-podcast2
2e4be9a0ffa8675d8283f3d0cc16adc799acac68
a2dfb178b5e4c3e9ac5ab9ef7c13669caf50129c
refs/heads/master
2022-12-24T07:42:47.599582
2020-10-08T15:35:52
2020-10-08T15:35:52
266,866,346
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
from django.urls import path from . import views app_name = 'whatsnew' urlpatterns = [ path('feed.rss', views.feed_rss, name='feed_rss'), ]
[ "crgwbr@gmail.com" ]
crgwbr@gmail.com
f7a4a5e6467ee184d150cffb9fae09e625703666
1af44bdcbc3c15d3f6e436a7924dfd45f504ab3a
/01.jump to python/02.Data Science/1. collection/6. App/Scheduler_example.py
25345e1d5cf5e270c0a09dd38d9fcbcdd11abc17
[]
no_license
wql7654/bigdata_exam
f57c8b475690cbc5978009dbf8008bedff602e2a
c07ee711bb84407428ba31165185b9607b6825e8
refs/heads/master
2023-04-07T00:50:59.563714
2021-05-25T02:46:43
2021-05-25T02:46:43
180,915,985
0
0
null
2023-03-25T01:08:09
2019-04-12T02:36:08
Jupyter Notebook
UTF-8
Python
false
false
998
py
import threading import time g_Balcony_windows=False g_AI_Mode=False def updata_scheduler(): global g_Balcony_windows while True: if g_AI_Mode == False: continue else: time.sleep(5) g_Balcony_windows=not g_Balcony_windows t= threading.Thread(target=updata_scheduler) t.daemon=True t.start() while True: print("메뉴를 선택하세요") print("1. 장비 상태 조회") print("2. 인공지능 모드 변경") print("3. 종료") menu_num= int(input("메뉴 입력: ")) if(menu_num==1): print("발코니(베란다) 창문: ",end='') if g_Balcony_windows==True: print("열림") else: print("닫힘") elif(menu_num==2): print("인공지능 모드: ", end='') g_AI_Mode=not g_AI_Mode if g_AI_Mode==True: print("작동") else: print("정지") else: break
[ "studerande5@gmail.com" ]
studerande5@gmail.com
0864304fb6f9996499fcb687bf16c415b3d12c7e
938d5d26c0346316a10a74520b7e30b1bb1f6893
/oncopolicy/utils/generic.py
4a1dcb70ea43341de423c68976e0cc57c3119a36
[ "MIT" ]
permissive
yala/Tempo
46fe0da5a6e2e1a8b9bc855851e7ff9a3ab63bd6
bf3e0e78d64869bb2079c582a4a35982f78386ad
refs/heads/main
2023-04-17T07:04:34.697607
2022-01-13T21:03:04
2022-01-13T21:03:04
419,388,269
13
2
null
null
null
null
UTF-8
Python
false
false
3,560
py
import datetime import hashlib import numpy as np from copy import deepcopy import torch import pdb INVALID_DATE_STR = "Date string not valid! Received {}, and got exception {}" ISO_FORMAT = '%Y-%m-%d %H:%M:%S' CGMH_ISO_FORMAT ='%Y%m%d' DAYS_IN_YEAR = 365 DAYS_IN_MO = 30 MAX_MO_TO_CANCER = 1200 MIN_MO_TO_CANCER = 3 MAX_PREFERNCES = 10.0 MIN_PREFERNCES = 0 EPSILON = 1e-3 AVG_MOMENTUM = 0.95 NUM_DIM_AUX_FEATURES = 7 ## Deprecated class AverageMeter(): def __init__(self): self.avg = 0 self.first_update = True def reset(self): self.avg = 0 self.first_update = True def update(self, val_tensor): val = val_tensor.item() if self.first_update: self.avg = val self.first_update = False else: self.avg = (AVG_MOMENTUM * self.avg) + (1-AVG_MOMENTUM) * val assert self.avg >= 0 and val >= 0 def get_aux_tensor(tensor, args): ## use of auxillary features for screen is deprecated return torch.zeros([tensor.size()[0], NUM_DIM_AUX_FEATURES]).to(tensor.device) def to_numpy(tensor): return tensor.cpu().numpy() def to_tensor(arr, device): return torch.Tensor(arr).to(device) def sample_preference_vector(batch_size, sample_random, args): if sample_random: dist = torch.distributions.uniform.Uniform(MIN_PREFERNCES, MAX_PREFERNCES) preferences = dist.sample([batch_size, len(args.metrics), 1]) else: preferences = torch.ones(batch_size, len(args.metrics), 1) preferences *= torch.tensor(args.fixed_preference).unsqueeze(0).unsqueeze(-1) preferences = preferences + EPSILON preferences = (preferences / (preferences).sum(dim=1).unsqueeze(-1)) return preferences.to(args.device) def normalize_dictionary(dictionary): ''' Normalizes counts in dictionary :dictionary: a python dict where each value is a count :returns: a python dict where each value is normalized to sum to 1 ''' num_samples = sum([dictionary[l] for l in dictionary]) for label in dictionary: dictionary[label] = dictionary[label]*1. / num_samples return dictionary def parse_date(iso_string): ''' Takes a string of format "YYYY-MM-DD HH:MM:SS" and returns a corresponding datetime.datetime obj throws an exception if this can't be done. ''' try: return datetime.datetime.strptime(iso_string, ISO_FORMAT) except Exception as e: raise Exception(INVALID_DATE_STR.format(iso_string, e)) def md5(key): ''' returns a hashed with md5 string of the key ''' return hashlib.md5(key.encode()).hexdigest() def pad_array_to_length(arr, pad_token, max_length): arr = arr[:max_length] return np.array( arr + [pad_token]* (max_length - len(arr))) def fast_forward_exam_by_one_time_step(curr_exam, NUM_DAYS_IN_TIME_STEP): exam = deepcopy(curr_exam) est_date_of_last_followup = curr_exam['date'] + datetime.timedelta(days=int(DAYS_IN_YEAR * curr_exam['years_to_last_followup'])) est_date_of_cancer = curr_exam['date'] + datetime.timedelta(days=int(DAYS_IN_MO * curr_exam['months_to_cancer'])) exam['date'] = curr_exam['date'] + datetime.timedelta(days=int(NUM_DAYS_IN_TIME_STEP)) exam['years_to_last_followup'] = (est_date_of_last_followup - exam['date']).days / DAYS_IN_YEAR exam['months_to_cancer'] = (est_date_of_cancer - exam['date']).days / DAYS_IN_MO exam['has_cancer'] = exam['months_to_cancer'] < MIN_MO_TO_CANCER exam['time_stamp'] = curr_exam['time_stamp'] + 1 return exam
[ "adamyala@csail.mit.edu" ]
adamyala@csail.mit.edu
79a50b733533cd6299691b654d5ce900ae38596f
de4449e4fbd2972a5a7e775e3a3c7a187ef86899
/ubiops/models/pipeline_request_deploment_request.py
4cab9039fd3b21f5a7110af758c322d56e311bb0
[ "Apache-2.0" ]
permissive
egutierrez-ar/client-library-python
03325cc1d4c3e949187889ceb404a08660a7f418
94177e5f175263bce645c15a171e54690b1e254f
refs/heads/master
2023-01-22T23:41:40.274718
2020-11-19T07:34:36
2020-11-19T07:34:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,840
py
# coding: utf-8 """ UbiOps Client Library to interact with the UbiOps API. # noqa: E501 The version of the OpenAPI document: v2.1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from ubiops.configuration import Configuration class PipelineRequestDeplomentRequest(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'request_id': 'str', 'pipeline_object': 'str', 'success': 'bool', 'request_data': 'object', 'result': 'object', 'error_message': 'str' } attribute_map = { 'request_id': 'request_id', 'pipeline_object': 'pipeline_object', 'success': 'success', 'request_data': 'request_data', 'result': 'result', 'error_message': 'error_message' } def __init__(self, request_id=None, pipeline_object=None, success=None, request_data=None, result=None, error_message=None, local_vars_configuration=None): # noqa: E501 """PipelineRequestDeplomentRequest - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._request_id = None self._pipeline_object = None self._success = None self._request_data = None self._result = None self._error_message = None self.discriminator = None self.request_id = request_id self.pipeline_object = pipeline_object self.success = success self.request_data = request_data self.result = result self.error_message = error_message @property def request_id(self): """Gets the request_id of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The request_id of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: str """ return self._request_id @request_id.setter def request_id(self, request_id): """Sets the request_id of this PipelineRequestDeplomentRequest. :param request_id: The request_id of this PipelineRequestDeplomentRequest. # noqa: E501 :type: str """ self._request_id = request_id @property def pipeline_object(self): """Gets the pipeline_object of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The pipeline_object of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: str """ return self._pipeline_object @pipeline_object.setter def pipeline_object(self, pipeline_object): """Sets the pipeline_object of this PipelineRequestDeplomentRequest. :param pipeline_object: The pipeline_object of this PipelineRequestDeplomentRequest. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and pipeline_object is None: # noqa: E501 raise ValueError("Invalid value for `pipeline_object`, must not be `None`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and pipeline_object is not None and len(pipeline_object) < 1): raise ValueError("Invalid value for `pipeline_object`, length must be greater than or equal to `1`") # noqa: E501 self._pipeline_object = pipeline_object @property def success(self): """Gets the success of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The success of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: bool """ return self._success @success.setter def success(self, success): """Sets the success of this PipelineRequestDeplomentRequest. :param success: The success of this PipelineRequestDeplomentRequest. # noqa: E501 :type: bool """ if self.local_vars_configuration.client_side_validation and success is None: # noqa: E501 raise ValueError("Invalid value for `success`, must not be `None`") # noqa: E501 self._success = success @property def request_data(self): """Gets the request_data of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The request_data of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: object """ return self._request_data @request_data.setter def request_data(self, request_data): """Sets the request_data of this PipelineRequestDeplomentRequest. :param request_data: The request_data of this PipelineRequestDeplomentRequest. # noqa: E501 :type: object """ self._request_data = request_data @property def result(self): """Gets the result of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The result of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: object """ return self._result @result.setter def result(self, result): """Sets the result of this PipelineRequestDeplomentRequest. :param result: The result of this PipelineRequestDeplomentRequest. # noqa: E501 :type: object """ self._result = result @property def error_message(self): """Gets the error_message of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The error_message of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: str """ return self._error_message @error_message.setter def error_message(self, error_message): """Sets the error_message of this PipelineRequestDeplomentRequest. :param error_message: The error_message of this PipelineRequestDeplomentRequest. # noqa: E501 :type: str """ self._error_message = error_message def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PipelineRequestDeplomentRequest): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, PipelineRequestDeplomentRequest): return True return self.to_dict() != other.to_dict()
[ "sascha.vanweerdenburg@dutchanalytics.com" ]
sascha.vanweerdenburg@dutchanalytics.com
95f6713504bf13a0bf73502b797efe5295597a01
bcb71f3ad0196709d462330a60801d5f8ec92ea6
/backend/blog/models.py
52046c2bc34be06eb996c26a98cfd002333212d7
[ "BSD-3-Clause" ]
permissive
lautarianoo/lautacademy
c7a7e84958fd6209415c16a0957a7e12449a9afc
beec082bdffe8c773fcec51974a687aced278a76
refs/heads/master
2023-05-28T20:22:22.718962
2021-06-11T17:19:32
2021-06-11T17:19:32
364,965,320
2
0
null
null
null
null
UTF-8
Python
false
false
5,201
py
from ckeditor_uploader.fields import RichTextUploadingField from django.db import models from django.contrib.auth.models import User from django.urls import reverse from django.utils import timezone from ckeditor.fields import RichTextField from mptt.models import MPTTModel, TreeForeignKey from django.dispatch import receiver from django.db.models.signals import post_save from backend.utils.transliteration import transliteration_rus_eng from backend.utils.send_mail import send_mail_user_post class BlogCategory(MPTTModel): """Класс модели категорий сетей""" name = models.CharField("Категория", max_length=50) published = models.BooleanField("Опубликовать?", default=True) parent = TreeForeignKey( 'self', verbose_name="Родительская категория", on_delete=models.CASCADE, null=True, blank=True, related_name='children') slug = models.SlugField(max_length=100, blank=True, null=True, unique=True) description = models.TextField("Description", max_length=300, default="") class Meta: verbose_name = "Категория" verbose_name_plural = "Категории" def __str__(self): return self.name class Tag(models.Model): """Класс модели тегов""" name = models.CharField("Тег", max_length=50, unique=True, null=True) slug = models.SlugField(max_length=100, blank=True, null=True) class Meta: verbose_name = "Тег" verbose_name_plural = "Теги" def __str__(self): return self.name class Post(models.Model): """Класс модели поста""" author = models.ForeignKey( User, verbose_name="Автор", on_delete=models.CASCADE) title = models.CharField("Тема", max_length=500) mini_text = models.TextField("Краткое содержание", max_length=5000) text = models.TextField("Полное содержание", max_length=10000000) created_date = models.DateTimeField("Дата создания", auto_now_add=True) published_date = models.DateTimeField("Дата публикации", blank=True, null=True) image = models.ImageField("Изображение", upload_to="blog/", blank=True) tag = models.ManyToManyField(Tag, verbose_name="Тег", blank=True) category = models.ForeignKey( BlogCategory, verbose_name="Категория", blank=True, null=True, on_delete=models.SET_NULL) published = models.BooleanField("Опубликовать?", default=True) viewed = models.IntegerField("Просмотрено", default=0) slug = models.SlugField(max_length=500, blank=True, null=True, unique=True) description = models.TextField("Description", max_length=300, default="", null=True) class Meta: verbose_name = "Новость" verbose_name_plural = "Новости" ordering = ["-created_date"] def publish(self): self.published_date = timezone.now() self.save() def get_category_description(self): return self.category.description def get_absolute_url(self): return reverse("single_post", kwargs={"category": self.category.slug, "slug": self.slug}) def save(self, *args, **kwargs): self.slug = transliteration_rus_eng(self.title) + '-' + str(self.id) super().save(*args, **kwargs) def __str__(self): return self.title class Comment(MPTTModel): """Модель коментариев к новостям""" user = models.ForeignKey(User, verbose_name="Пользователь", on_delete=models.CASCADE) post = models.ForeignKey(Post, verbose_name="Новость", on_delete=models.CASCADE) text = models.TextField("Сообщение", max_length=2000) date = models.DateTimeField("Дата", auto_now_add=True) update = models.DateTimeField("Изменен", auto_now=True) parent = TreeForeignKey( "self", verbose_name="Родительский комментарий", on_delete=models.CASCADE, null=True, blank=True, related_name='children') published = models.BooleanField("Опубликовать?", default=True) class Meta: verbose_name = "Комментарий" verbose_name_plural = "Комментарии" def __str__(self): return "{} - {}".format(self.user, self.post) class SpySearch(models.Model): """Модель отслеживания запросов поиска""" record = models.CharField("Запрос", max_length=1000) counter = models.PositiveIntegerField("Количество запросов", default=0) class Meta: verbose_name = "Запрос" verbose_name_plural = "Запросы" def __str__(self): return "{}".format(self.record) @receiver(post_save, sender=Post) def create_user_post(sender, instance, created, **kwargs): """Отправка сообщения о предложенной статье на email""" if created: send_mail_user_post(instance)
[ "neonchick1" ]
neonchick1
4e75a52bbb36cbac6858c29d1ab2d433f1f7071e
169d809f45dedcaa3c7b1b49912d8b025abe18d9
/challenge251_easy.py
5d902f9cf7b2c9832252475e7fc7bf3834a08af4
[]
no_license
bermec/challenges
8a82d1d38d1ed1a0fc3f258443bc0054efc977a6
9fb092f20f12b4eaa808e758f00f482a49346c88
refs/heads/master
2021-10-08T05:05:56.803332
2018-12-08T00:20:20
2018-12-08T00:20:20
109,448,713
0
0
null
null
null
null
UTF-8
Python
false
false
2,253
py
''' Nonograms, also known as Hanjie, Picross or Griddlers, are picture logic puzzles in which cells in a grid must be colored or left blank according to numbers at the side of the grid to reveal a hidden picture. In this puzzle type, the numbers are a form of discrete tomography that measures how many unbroken lines of filled-in squares there are in any given row or column. In a Nonogram you are given the number of elements in the rows and columns. A row/column where containing no element has a '0' all other rows/columns will have at least one number. Each number in a row/column represent sets of elements next to each other. If a row/column have multiple sets, the declaration of that row/column will have multiple numbers. These sets will always be at least 1 cell apart. An example 2 1 1 1 1 1 2 1 2 * * 1 2 * * * 0 2 1 * * * 2 * * Input description Today you will receive an image in ASCII with ' ' being empty and '*' being full. The number of rows and columns will always be a multiple of 5. * ** * * * * ***** Output description Give the columns and rows for the input Columns: 1 1 1 2 1 1 5 Rows: 1 2 1 1 1 1 5 Ins 1 * /| / | / | *---* 2 /\ # /**\# /****\ /******\ /--------\ | | | || # | | || # | | || | *------* Bonus Place the columns and rows in a grid like you would give to a puzzler 1 1 1 2 1 1 5 1 2 1 1 1 1 5 ''' pattern = ''' * /| / | / | *---*''' pattern = pattern.splitlines() output = [] import re for x in range(0, len(pattern)): print() ans = re.findall('\S\S\S\S\S|\S\S|\S', pattern[x]) temp = [] for item in ans: len_item = len(item) temp.append(str(len_item)) output.append(temp) temp = [] N = len(output) b = '' c = [] for lst in output: for item in lst: b += item b = b.rjust(2, ' ') c.append(b) b = '' d = ' ' e = [] # width M = len(c[0]) for x in range(0, M): for y in range(0, len(c)): d += c[y][x] + ' ' e.append(d) print(d) d = ' ' for x in range(0, N): temp = c[x][0] temp2 = c[x][1] print(c[x][0], end='') print('{: >2}'.format(c[x][1]))
[ "rog@pynguins.com" ]
rog@pynguins.com
2982b152f2ef0916c17ae223e733483d0f455558
fa9cc9cc469a3f0c5bdc0bc4e562dbbd3ff7e465
/messages/RequestCloudMessage.py
cfd12e7df3126a5a7572dd9613f73bd6e7fc77a3
[ "MIT" ]
permissive
zadjii/nebula
ddd86ea30791b46b2a1aeb000ae5dfea9a496168
50c4ec019c9f7eb15fe105a6c53a8a12880e281c
refs/heads/master
2021-01-24T17:08:30.607634
2018-09-18T00:35:36
2018-09-18T00:35:36
36,847,552
2
1
null
null
null
null
UTF-8
Python
false
false
829
py
# last generated 2016-12-30 19:27:53.981000 from messages import BaseMessage from msg_codes import REQUEST_CLOUD as REQUEST_CLOUD __author__ = 'Mike' class RequestCloudMessage(BaseMessage): def __init__(self, id=None, cloud_uname=None, cname=None, username=None, passw=None): super(RequestCloudMessage, self).__init__() self.type = REQUEST_CLOUD self.id = id self.cloud_uname = cloud_uname self.cname = cname self.username = username self.passw = passw @staticmethod def deserialize(json_dict): msg = RequestCloudMessage() msg.id = json_dict['id'] msg.cloud_uname = json_dict['cloud_uname'] msg.cname = json_dict['cname'] msg.username = json_dict['username'] msg.passw = json_dict['passw'] return msg
[ "zadjii@gmail.com" ]
zadjii@gmail.com