blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
705bb752a9258e3bc2c8ee9f16145cfd532bc894
60c0ca4ef3ad20bad04311473b2f4044f54739d2
/store/api/migrations/0005_order_sold_at.py
af648d3a29d3d09976b8254d48088c4f4700c7c2
[]
no_license
Jimiliani/rainforest
361915024cc2a93a9bb8621372627b2d84176271
b1bf65ee4441d1a4980a2e65ce2cfc629b9d6a7a
refs/heads/main
2023-06-19T18:10:38.879924
2021-07-21T14:54:05
2021-07-21T14:54:05
387,679,460
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
# Generated by Django 3.1.5 on 2021-07-20 19:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0004_auto_20210720_2159'), ] operations = [ migrations.AddField( model_name='order', name='sold_at', field=models.DateField(null=True), ), ]
[ "dikorolyov@mail.ru" ]
dikorolyov@mail.ru
c724c19fb17cb22589d49e60505ecf79ee04e7c5
d1742451b25705fc128acc245524659628ab3e7d
/Data Structure & Algorithm/Disjoint Set Union/10685 - Nature.py
b0b9ec8421bcfe7e9e623074eb4e6f6e4a873ba0
[]
no_license
Shovon588/Programming
ebab793a3c97aedddfcad5ea06e7e22f5c54a86e
e4922c9138998358eed09a1be7598f9b060c685f
refs/heads/master
2022-12-23T18:29:10.141117
2020-10-04T17:29:32
2020-10-04T17:29:32
256,915,133
1
0
null
null
null
null
UTF-8
Python
false
false
935
py
def makeset(n): par[n] = n def find(r): if par[r]==r: return r par[r] = find(par[r]) return find(par[r]) def joint(a,b): u = find(a) v = find(b) if u!=v: par[u] = v def generate_result(dic): res = -1 for i in range(1,n+1): temp = find(i) if temp in dic: dic[temp]+=1 res = max(res,dic[temp]) else: dic[temp]=1 res = max(res,dic[temp]) return res while(1): n,m = map(int,input().split()) if n==0 and m==0: break par = [None]*(n+1) animals = {} for i in range(n): animal = input() animals[animal]=i+1 makeset(i+1) for i in range(m): first, second = map(str,input().split()) a = animals[first] b = animals[second] joint(a,b) dic = {} result = generate_result(dic) print(result) s = input()
[ "mainulislam588@gmail.com" ]
mainulislam588@gmail.com
76eb0ff4bccebf9ef628e4a625ec26945dffb10d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02573/s607211232.py
a15ccc098a97d0f2076b85071f021635d77845ac
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
735
py
class UnionFind: def __init__(self, n): self.r = [-1] * n def root(self, x): if self.r[x] < 0: return x self.r[x] = self.root(self.r[x]) return self.r[x] def merge(self, x, y): x, y = self.root(x), self.root(y) if x == y: return False if self.r[x] > self.r[y]: x, y = y, x self.r[x] += self.r[y] self.r[y] = x return True def size(self, x): return -self.r[self.root(x)] N, M = map(int, input().split()) f, uf = [set() for i in range(N)], UnionFind(N) for _ in range(M): A, B = map(lambda x: int(x)-1, input().split()) uf.merge(A, B) print(max([uf.size(i) for i in range(N)]))
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
762b1c64e435700c7347877040a1ae4aaaaabfe8
f51a03fee097195911c1577e8510908d02784853
/src/data/reg_ex/poker_888.py
9df00e106415573e9384ed7598704598977a71a5
[]
no_license
aaaaaa2493/poker-engine
fc04cc4b93ad73189adf99b2f864d12a99a34dce
52aebf8572f87378fa78c999c252d60fcc80f5ce
refs/heads/master
2020-08-31T17:38:28.477260
2019-10-31T12:16:40
2019-10-31T12:16:40
218,746,090
0
0
null
null
null
null
UTF-8
Python
false
false
3,701
py
from re import compile class Poker888: name = '[a-zA-Z0-9_\-@\'.,$*`áàåäãçéèêíîóöôõšüúžÄÁÃÅÉÍÖÔÓÜØø´<^>+&' \ '\\\/()Ѐ£¼ñ®™~#!%\[\]|°¿?:"=ß{}æ©«»¯²¡; ]+' identifier = compile('^\*\*\*\*\* 888poker Hand History') identifier_snap = compile('^Snap Poker Hand History') hand_border = compile('^$') hand_border_888 = compile(r'\*\*\*\*\* 888poker Hand History for ') hand_border_snap = compile(r'Snap Poker Hand History for ') find_hand_id = compile(r'^Game ([0-9]+) \*\*\*\*\*$') step_border = compile(r'\*\* [DSa-z ]+ \*\*') blinds_and_date = compile(r'^\$([0-9,]+)/\$([0-9,]+) Blinds No Limit Holdem - \*\*\* ' r'(.. .. ....) ([0-9:]+)$') blinds_and_ante_2 = compile(r'^([0-9 ]+) \$/([0-9 ]+) \$ Blinds No Limit Holdem - \*\*\* ' r'(.. .. ....) ([0-9:]+)$') game_info = compile(r'^Tournament #([0-9]+) (\$[0-9.]+ \+ \$[0-9.]+) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') game_info_2 = compile(r'^Tournament #([0-9]+) ([0-9,]+ \$ \+ [0-9,]+ \$) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') game_info_3 = compile(r'^Tournament #([0-9]+) (\$[0-9.]+) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') game_info_4 = compile(r'^Tournament #([0-9]+) ([0-9,]+ \$) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') game_info_5 = compile(r'^Tournament #([0-9]+) (Бесплатно) - ' r'Table #([0-9]+) ([0-9]+) Max \(Real Money\)$') find_button_seat = compile(r'^Seat ([0-9]+) is the button$') player_init = compile(r'^Seat ([0-9]+): (' + name + r') \( \$([0-9,]+) \)$') player_init_2 = compile(r'^Seat ([0-9]+): (' + name + r') \( ([0-9 ]+) \$ \)$') empty_init = compile(r'^Seat ([0-9]+):[ ]{2}\( ([0-9,$ ]+) \)$') find_ante = compile(r'^(' + name + r') posts ante \[\$([0-9,]+)\]$') find_ante_2 = compile(r'^(' + name + r') posts ante \[([0-9 ]+) \$\]$') find_small_blind = compile(r'^(' + name + ') posts small blind \[\$([0-9,]+)\]$') find_small_blind_2 = compile(r'^(' + name + r') posts small blind \[([0-9 ]+) \$\]$') find_big_blind = compile(r'^(' + name + ') posts big blind \[\$([0-9,]+)\]$') find_big_blind_2 = compile(r'^(' + name + r') posts big blind \[([0-9 ]+) \$\]$') find_flop = compile(r'^\[ (..), (..), (..) \]$') find_turn = compile(r'^\[ (..) \]$') find_river = compile(r'^\[ (..) \]$') skip_total_number_of_players = compile(r'^Total number of players : [0-9]+$') # actions find_dealt_cards = compile(r'^Dealt to (' + name + ') \[ (..), (..) \]$') find_fold = compile(r'^(' + name + ') folds$') find_call = compile(r'^(' + name + ') calls \[\$([0-9,]+)\]$') find_call_2 = compile(r'^(' + name + r') calls \[([0-9 ]+) \$\]$') find_check = compile(r'^(' + name + ') checks$') find_bet = compile(r'^(' + name + ') bets \[\$([0-9,]+)\]$') find_bet_2 = compile(r'^(' + name + r') bets \[([0-9 ]+) \$\]$') find_raise = compile(r'^(' + name + ') raises \[\$([0-9,]+)\]$') find_raise_2 = compile(r'^(' + name + ') raises \[([0-9 ]+) \$\]$') find_did_not_show = compile(r'^(' + name + r') did not show his hand$') find_win_money = compile(r'^(' + name + ') collected \[ \$([0-9,]+) \]$') find_win_money_2 = compile(r'^(' + name + r') collected \[ ([0-9 ]+) \$ \]$') find_show_cards = compile(r'^(' + name + ') shows \[ (..), (..) \]$') find_muck_cards = compile(r'^(' + name + ') mucks \[ (..), (..) \]$')
[ "aaaaaa2493@yandex.ru" ]
aaaaaa2493@yandex.ru
992d9b74e952ecd7516429a0554f8e5e86d3a855
6f594cc963795c69d8da3c30ca580c0405ef2d6e
/other/57InsertInterval.py
d1fb32163788f8998b4a82b8be2a45e9a2d0316a
[]
no_license
lo-tp/leetcode
25933c5b25f64f881d43748d8b2763f69614a97f
4cc4d76c64e9d9aa3f53c5e9574e488c93e10a50
refs/heads/master
2022-09-07T20:32:58.487759
2022-09-05T03:39:50
2022-09-07T13:39:50
116,555,892
1
0
null
null
null
null
UTF-8
Python
false
false
789
py
class Solution(object): def insert(self, intervals, newInterval): res = [] if intervals: start, end = newInterval for s, e in intervals: if start != -1: # 1 if e < start: res.append([s, e]) # 2 elif end < s: res.append([start, end]) res.append([s, e]) start = -1 else: start, end = min(start, s), max(end, e) else: res.append([s, e]) if start != -1: res.append([start, end]) else: res.append(newInterval) return res
[ "regesteraccount@hotmail.com" ]
regesteraccount@hotmail.com
7e072a572581f6627fca07bcdcad06f5612d2500
44990e9f4630aa9efc8e0fa56f2c5dbd836cddc6
/nao_vacila/wsgi.py
b4a7dcfe74eda774e16c8596df6bc9f14e247473
[]
no_license
kallebefelipe/webserver-nao-vacila
33c61461d73b7f9e649a93406eb032014f3b983c
57e972a44a4eb68e5253d38d320051723d33a924
refs/heads/master
2022-12-14T19:18:22.670018
2017-09-06T13:00:02
2017-09-06T13:00:02
95,972,976
0
0
null
2022-12-07T23:58:58
2017-07-01T15:40:23
Python
UTF-8
Python
false
false
489
py
""" WSGI config for nao_vacila project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application from whitenoise.django import DjangoWhiteNoise os.environ.setdefault("DJANGO_SETTINGS_MODULE", "nao_vacila.settings") application = get_wsgi_application() application = DjangoWhiteNoise(application)
[ "kallebefelipe@gmail.com" ]
kallebefelipe@gmail.com
c2ea2cc2352bfd9d8b9ad888ff3c0fb82997b816
22954a0c13d7bf1824320802e802aa8166f16d76
/web_scraping/rhiphopheads/items.py
ca9af6e29328930a755afe5a2a604dbaed917dd5
[]
no_license
luke-zhu/cs1951a-data
e0c7a96c7e100c278722419ba3bc845f6a5326c4
925c3263988db1de815589c5e47ddd918c345b25
refs/heads/master
2021-01-20T07:40:21.372377
2017-05-02T21:47:08
2017-05-02T21:47:08
90,025,042
0
1
null
null
null
null
UTF-8
Python
false
false
291
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class RhiphopheadsItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
[ "luke_zhu@brown.edu" ]
luke_zhu@brown.edu
dc8835c6dec0140fcb1852faa09d8e70a7cdeaaf
c397d4899fbb5e34b90a2650be2e6aa6f5725972
/blog/migrations/0037_reviewimage_thumbnail.py
805c17f73adb43f3b5a343a908788a464aa1d064
[]
no_license
CCCodes/ProConDuck
aa68e6e89c3c71ddf7832d35f51688fddc379b10
c4ce19e62d5b50b3da9d258fa4e40831e159f2f7
refs/heads/master
2023-02-16T18:55:27.766465
2021-01-17T16:49:37
2021-01-17T16:49:37
96,048,162
1
0
null
null
null
null
UTF-8
Python
false
false
457
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-23 00:31 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0036_auto_20170822_0803'), ] operations = [ migrations.AddField( model_name='reviewimage', name='thumbnail', field=models.BooleanField(default=False), ), ]
[ "caitlinchou@gmail.com" ]
caitlinchou@gmail.com
a91390c161f40656d0f323b1525d55125c72c02a
0b279c246179bc6a76ad17f055ad1dce3402b045
/private_production/eft/2018/crab_INT_MINIAODSIM.py
e9a3be5b74809d1efea5713aa88eb353e315e3d7
[]
no_license
UniMiBAnalyses/CMSSWGeneration
a55e6ad840e4f7f9fae6b46a4bb939a288492f10
a7acf1a780eeb30e14616fef90ccf389e4367668
refs/heads/master
2023-09-01T02:01:44.746469
2022-01-31T11:01:29
2022-01-31T11:01:29
212,852,677
0
2
null
2022-06-16T15:23:25
2019-10-04T15:57:27
Python
UTF-8
Python
false
false
838
py
from CRABClient.UserUtilities import config, getUsernameFromSiteDB config = config() config.General.requestName = 'VBS_SSWW_INT_MINIAODSIM' config.General.workArea = 'crab_projects' config.General.transferOutputs = True config.General.transferLogs = False config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'SMP-RunIIAutumn18MiniAOD-00048_1_cfg.py' config.JobType.numCores = 4 config.JobType.maxMemoryMB = 6000 config.Data.inputDataset = '/Bulk/jixiao-VBS_SSWW_INT_Premix_2-7c74ac161ee1f5c5534fed7a9685e204/USER' config.Data.inputDBS = 'phys03' config.Data.splitting = 'FileBased' config.Data.unitsPerJob = 1 config.Data.outLFNDirBase = '/store/user/%s/eft2018' % (getUsernameFromSiteDB()) config.Data.publication = True config.Data.outputDatasetTag = 'VBS_SSWW_INT_MINIAODSIM' config.Site.storageSite = 'T2_CN_Beijing'
[ "jiexiao@pku.edu.cn" ]
jiexiao@pku.edu.cn
8bc9ba267ab55211234f1b8531b5d213ec6c7238
2315afb8435de656afcc5789ec1ddde21135f658
/todo_project/todo_app/models.py
dbe2eb3e5521a50750030086908baa842542c537
[]
no_license
DeanDupalov/Front-End-Basics
9754315cce8417cb86fbe33c76886df70e9d8ea4
acac5b03f55aff03620bd2d527a96c0d453e07d9
refs/heads/master
2023-04-22T08:58:28.124375
2021-05-13T13:11:18
2021-05-13T13:11:18
357,648,531
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
from django.db import models # Create your models here. class Todo(models.Model): title = models.CharField(max_length=10) description = models.TextField(max_length=100) is_done = models.BooleanField(default=False) def __str__(self): return self.title
[ "75751527+DeanDupalov@users.noreply.github.com" ]
75751527+DeanDupalov@users.noreply.github.com
48887c30ff50b09604e6af7c99af845d18f9c3aa
8dca64dd11b23a7d59413ac8e28e92a0ab80c49c
/504. Base 7/solution.py
298b59aa9f66b91ba715bc108c1bf1b2171775ae
[]
no_license
huangruihaocst/leetcode-python
f854498c0a1d257698e10889531c526299d47e39
8f88cae7cc982ab8495e185914b1baeceb294060
refs/heads/master
2020-03-21T20:52:17.668477
2018-10-08T20:29:35
2018-10-08T20:29:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
class Solution(object): def convertToBase7(self, num): """ :type num: int :rtype: str """ if -6 <= num <= 6: return str(num) def helper(n): # n >= 7 li = list() while n >= 7: li.append(n % 7) n //= 7 li.append(n) return ''.join(map(str, li[::-1])) if num >= 0: return helper(num) else: return '-' + helper(-num) if __name__ == '__main__': s = Solution() print(s.convertToBase7(-7))
[ "huangruihaocst@126.com" ]
huangruihaocst@126.com
b059b880de3f859a5969b06be9518974df6aa833
f6d08b29b76713165fcdb50f78bd9c74b6b38c22
/Collect/S30/DataAccess.py
b4ea6f8e898d457761a400b8cb3c13d44347eeb3
[ "Apache-2.0" ]
permissive
joan-gathu/watertools
b4b22071897e21d2fb306344f9ace42511e9f3ef
55e383942ed3ddb3ba1d26596badc69922199300
refs/heads/master
2022-04-11T17:49:06.324478
2020-03-13T11:11:16
2020-03-13T11:11:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,459
py
# -*- coding: utf-8 -*- """ WaterSat author: Tim Martijn Hessels Created on Sun Feb 10 18:26:30 2019 """ import datetime import pandas as pd import numpy as np import os import urllib import gdal #S2_tile = "10SGE" #output_folder = "F:\Project_Jain\Case_California\Input_Data\S30" #Startdate = "2018-03-01" #Enddate = "2018-10-31" def DownloadData(Dir, Startdate, Enddate, S2_tile): # Import watertools modules import watertools.General.data_conversions as DC # Define the dates Dates = pd.date_range(Startdate, Enddate, freq = "D") # Create output folder output_folder_end = os.path.join(Dir, S2_tile) if not os.path.exists(output_folder_end): os.makedirs(output_folder_end) # Loop over the days for Date in Dates: # Get the datum doy = int(Date.dayofyear) year = Date.year try: # Create the right url url = "https://hls.gsfc.nasa.gov/data/v1.4/S30/%s/%s/%s/%s/%s/HLS.S30.T%s.%s%03d.v1.4.hdf" % (year, S2_tile[0:2], S2_tile[2:3], S2_tile[3:4], S2_tile[4:5],S2_tile, year, doy) filename_out = os.path.join(output_folder_end, "HLS.S30.T%s.%s%03d.v1.4.hdf" % (S2_tile, year, doy)) # Download the data urllib.request.urlretrieve(url, filename=filename_out) # Create a folder for the end results folder_tile = os.path.join(output_folder_end, "HLS_S30_T%s_%s%03d_v1_4" % (S2_tile, year, doy)) if not os.path.exists(folder_tile): os.makedirs(folder_tile) # Write the hdf file in tiff files and store it in the folder dataset = gdal.Open(filename_out) sdsdict = dataset.GetMetadata('SUBDATASETS') for Band in range(1,15): dest = gdal.Open(sdsdict["SUBDATASET_%d_NAME" %Band]) Array = dest.GetRasterBand(1).ReadAsArray() if Band < 9.: Array = Array * 0.0001 Array[Array == -0.1] = -9999. Band_name = "B%02d" %(Band) if Band == 9.: Band_name = "B8A" Array = Array * 0.0001 Array[Array == -0.1] = -9999. if (Band >= 10. and Band < 14.): Band_name = "B%02d" %(Band - 1) Array = Array * 0.0001 Array[Array == -0.1] = -9999. if Band == 14.: Array[Array == 255] = -9999. Band_name = "QC" meta = dataset.GetMetadata() ulx = int(meta["ULX"]) uly = int(meta["ULY"]) size = int(meta["SPATIAL_RESOLUTION"]) projection = int(meta["HORIZONTAL_CS_CODE"].split(":")[-1]) time_string = meta["SENSING_TIME"].split(";")[0] Time = datetime.datetime.strptime(time_string[:-5],"%Y-%m-%dT%H:%M:%S") hour = int(Time.hour) minute = int(Time.minute) geo = tuple([ulx, size, 0, uly, 0, -size]) DC.Save_as_tiff(os.path.join(folder_tile, "HLS_S30_T%s_%s%03d_H%02dM%02d_%s.tif" % (S2_tile, year, doy, hour, minute, Band_name)), Array, geo, projection) except: pass return()
[ "timhessels@hotmail.com" ]
timhessels@hotmail.com
6ce225b27e57b222c5803bee8ef647f9c9f5b6e1
aaa762ce46fa0347cdff67464f56678ea932066d
/AppServer/lib/django-1.3/tests/regressiontests/test_client_regress/views.py
c40f34fe563a797d6d3a7c364eeb614697b044db
[ "Apache-2.0", "BSD-3-Clause", "LGPL-2.1-or-later", "MIT", "GPL-2.0-or-later", "MPL-1.1" ]
permissive
obino/appscale
3c8a9d8b45a6c889f7f44ef307a627c9a79794f8
be17e5f658d7b42b5aa7eeb7a5ddd4962f3ea82f
refs/heads/master
2022-10-01T05:23:00.836840
2019-10-15T18:19:38
2019-10-15T18:19:38
16,622,826
1
0
Apache-2.0
2022-09-23T22:56:17
2014-02-07T18:04:12
Python
UTF-8
Python
false
false
4,115
py
from django.conf import settings from django.contrib.auth.decorators import login_required from django.http import HttpResponse, HttpResponseRedirect from django.core.exceptions import SuspiciousOperation from django.shortcuts import render_to_response from django.utils import simplejson from django.utils.encoding import smart_str from django.core.serializers.json import DjangoJSONEncoder from django.test.client import CONTENT_TYPE_RE from django.template import RequestContext def no_template_view(request): "A simple view that expects a GET request, and returns a rendered template" return HttpResponse("No template used. Sample content: twice once twice. Content ends.") def staff_only_view(request): "A view that can only be visited by staff. Non staff members get an exception" if request.user.is_staff: return HttpResponse('') else: raise SuspiciousOperation() def get_view(request): "A simple login protected view" return HttpResponse("Hello world") get_view = login_required(get_view) def request_data(request, template='base.html', data='sausage'): "A simple view that returns the request data in the context" return render_to_response(template, { 'get-foo':request.GET.get('foo',None), 'get-bar':request.GET.get('bar',None), 'post-foo':request.POST.get('foo',None), 'post-bar':request.POST.get('bar',None), 'request-foo':request.REQUEST.get('foo',None), 'request-bar':request.REQUEST.get('bar',None), 'data': data, }) def view_with_argument(request, name): """A view that takes a string argument The purpose of this view is to check that if a space is provided in the argument, the test framework unescapes the %20 before passing the value to the view. """ if name == 'Arthur Dent': return HttpResponse('Hi, Arthur') else: return HttpResponse('Howdy, %s' % name) def login_protected_redirect_view(request): "A view that redirects all requests to the GET view" return HttpResponseRedirect('/test_client_regress/get_view/') login_protected_redirect_view = login_required(login_protected_redirect_view) def set_session_view(request): "A view that sets a session variable" request.session['session_var'] = 'YES' return HttpResponse('set_session') def check_session_view(request): "A view that reads a session variable" return HttpResponse(request.session.get('session_var', 'NO')) def request_methods_view(request): "A view that responds with the request method" return HttpResponse('request method: %s' % request.method) def return_unicode(request): return render_to_response('unicode.html') def return_json_file(request): "A view that parses and returns a JSON string as a file." match = CONTENT_TYPE_RE.match(request.META['CONTENT_TYPE']) if match: charset = match.group(1) else: charset = settings.DEFAULT_CHARSET # This just checks that the uploaded data is JSON obj_dict = simplejson.loads(request.raw_post_data.decode(charset)) obj_json = simplejson.dumps(obj_dict, encoding=charset, cls=DjangoJSONEncoder, ensure_ascii=False) response = HttpResponse(smart_str(obj_json, encoding=charset), status=200, mimetype='application/json; charset=' + charset) response['Content-Disposition'] = 'attachment; filename=testfile.json' return response def check_headers(request): "A view that responds with value of the X-ARG-CHECK header" return HttpResponse('HTTP_X_ARG_CHECK: %s' % request.META.get('HTTP_X_ARG_CHECK', 'Undefined')) def raw_post_data(request): "A view that is requested with GET and accesses request.raw_post_data. Refs #14753." return HttpResponse(request.raw_post_data) def request_context_view(request): # Special attribute that won't be present on a plain HttpRequest request.special_path = request.path return render_to_response('request_context.html', context_instance=RequestContext(request, {}))
[ "root@lucid64.hsd1.ca.comcast.net" ]
root@lucid64.hsd1.ca.comcast.net
5f0505f36af2d39f955a7c0c374ddee7f52a9465
024ad288e3e8c4407c147d3e5a3cef9c97ddecce
/keras/keras98_randomsearch.py
3188609d3745a71add73ce93d8b27576dc61a945
[]
no_license
keumdohoon/STUDY
a17f62549e5dc59640875970b79b41ba8f62932c
83a1369d8e93767ebc445a443d8f55921cd984ce
refs/heads/master
2022-12-15T17:25:00.809774
2020-09-07T02:00:30
2020-09-07T02:00:30
264,050,749
1
0
null
null
null
null
UTF-8
Python
false
false
5,264
py
#원래는 randomizedSearchCV로 변환, 파일 keras97불러오기. #score 을 추가해준다. from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential, Model from keras.layers import Input, Dropout, Conv2D, Flatten, Dense from keras.layers import MaxPooling2D import numpy as np #. 1. 데이터 (x_train, y_train), (x_test, y_test) = mnist.load_data() #데이터를 불러옴과 동시에 x, y와 트레인과 테스트를 분리해준다. print(x_train.shape)#(60000, 28, 28) print(x_test.shape)#(10000, 28, 28) # x_train = x_train.reshape(x_train[0], 28,28,1)/255 # x_test = x_test.reshape(x_test[0], 28,28,1)/255 #0부터 255개의 데이터가 들어가있는데 이것은 결국 민맥스와 같은 결과를 가져다 준다. x_train = x_train.reshape(x_train.shape[0], 28 * 28)/255 x_test = x_test.reshape(x_test.shape[0], 28 * 28)/255 #위에거는 dense모델을 위해서 만들어 준 것이다. y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) #캐라스에서 하는거는 라벨의 시작이 0부터이니 원핫 인코딩을 할때에는 y의 차원을 반드시확인하고 들어가야한다. # print(y_train.shape) ######################################################################################################### # model = GridSearchCV(modelthat we will use, Parameters that we will use, cv=kfold= u can just input a number) ################################################################################################### #위에 모델을 만들어주기 위해서 모델, 파라미터, cv를 각각 만들어준다. #2. 모델 #gridsearch 에 있는 parameter으의 순서를 보면 def build_model(drop=0.5, optimizer= 'adam'): inputs = Input(shape=(28*28, ), name = 'input') x = Dense(512, activation = 'relu', name= 'hidden1')(inputs) x= Dropout(drop)(x) x = Dense(256, activation = 'relu', name= 'hidden2')(x) x= Dropout(drop)(x) x = Dense(128, activation = 'relu', name= 'hidden3')(x) x= Dropout(drop)(x) output = Dense(10, activation = 'softmax', name= 'outputs')(x) model = Model(inputs =inputs, outputs = output) model.compile (optimizer, metrics =["acc"], loss = 'categorical_crossentropy') return model #이렇게 직접 함수형을 만들어 줄 수도 있는 것이다. #그리드 서치를 사용하려면 맨처음에 들어가는 것이 모델이기 때문에 우리가 이미 모델을 만들어주고 그걸 사용하기 위해서 직접 모델을 만들어준다. #컴파일까지만 만들어주고 핏은 아직 안만들어준다 왜냐하면 핏은 나중에 랜덤서치나 그리드 서치에서 할것이기 때문이다. #모델을 만들었고 이제 두번째 파라미터를 만들어준다. def create_hyperparameters(): batches =[10, 20, 30, 40, 50] optimizers = ['rmsprop', 'adam', 'adadelta'] dropout = np.linspace(0.1,0.5, 5) return{"batch_size" : batches, "optimizer" : optimizers, "drop" :linspace} #위에 딕셔너리형태이다. 파라미터에 들어가는 매개변수 형테는 딕셔너리 형태이다. 그래서 무조건 딕셔너리 형태로 맞춰줘야한다. 케라스가 아니라 싸이킷런에 맞는 모델로 래핑을 만들어주기 위해서 이런식으로 해준다. #k fold에서는 숫자만 들어가면 되는것이니 그것도 이미 준비 된것이다. #여기다가 에포도 넣을수 있고 노드의 갯수도 변수명을 넣어주고 하이퍼 파라미터에 넣을수 있고 activation도 넣어 줄 수 있다. 여기서 원하는건 다 넣을수 있음. #케라스를 그냥 사용하면 안되고 케라스에 보면 사이킷런에 사용할수 있는 wrapper이라는 것이 존재하고 사이킷런에 케라스를 쌓아 올리겠다는는 뜻이다. from keras.wrappers.scikit_learn import KerasClassifier #케라스건 사이킷런이건 분류와 회기를 항상 잃지 말고 #케라스에서 wrapping을 해주는 이유는 사이킷런에서 해주기 위해서 model= KerasClassifier(build_fn= build_model, verbose= 1) #우리가 만들어둔 모델을 wrapping 해 주는 것이다. kerasClassifier 모델을 이렇게 만들어주는 것이다. hyperparameters = create_hyperparameters() #help buiild a hyper parameters , 위데짜놓은 create_hyperparameters()를 hyperparamer 에 대입시켜준다. #여기서 부터가 모델 핏 부분이 되는 것이다. from sklearn.model_selection import GridSearchCV, RandomizedSearchCV search = RandomizedSearchCV(model, hyperparameters, cv = 3 , n_jobs =-1) search.fit(x_train, y_train) print(search.best_params_) #이 폴더에서 항상 주의해야할것들은 소스와 하이퍼 파라미터 # acc: 0.9311 # {'optimizer': 'rmsprop', 'drop': 0.1, 'batch_size': 50} #score #score 을 추가하여 작성 acc = search.score(x_test, y_test, verbose=0) print(search.best_params_) print("acc :", acc) # acc: 0.9143 # {'optimizer': 'adadelta', 'drop': 0.30000000000000004, 'batch_size': 20} # Traceback (most recent call last): # File "d:\Study\Bitcamp\keras\keras98_randomsearch.py", line 105, in <module> # print("최적의 매개변수 :", model.best_params_)
[ "58944180+keumdohoon@users.noreply.github.com" ]
58944180+keumdohoon@users.noreply.github.com
ea0437398c5d2f0e423bd627eaa886ffd929f096
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv2/lib/python3.8/site-packages/ansible/modules/database/postgresql/postgresql_ext.py
97bd549f21b13edb26860e7beac097a8cf22f526
[ "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
5,700
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: postgresql_ext short_description: Add or remove PostgreSQL extensions from a database. description: - Add or remove PostgreSQL extensions from a database. version_added: "1.9" options: name: description: - name of the extension to add or remove required: true default: null db: description: - name of the database to add or remove the extension to/from required: true default: null login_user: description: - The username used to authenticate with required: false default: null login_password: description: - The password used to authenticate with required: false default: null login_host: description: - Host running the database required: false default: localhost port: description: - Database port to connect to. required: false default: 5432 state: description: - The database extension state required: false default: present choices: [ "present", "absent" ] notes: - The default authentication assumes that you are either logging in as or sudo'ing to the C(postgres) account on the host. - This module uses I(psycopg2), a Python PostgreSQL database adapter. You must ensure that psycopg2 is installed on the host before using this module. If the remote host is the PostgreSQL server (which is the default case), then PostgreSQL must also be installed on the remote host. For Ubuntu-based systems, install the C(postgresql), C(libpq-dev), and C(python-psycopg2) packages on the remote host before using this module. requirements: [ psycopg2 ] author: "Daniel Schep (@dschep)" ''' EXAMPLES = ''' # Adds postgis to the database "acme" - postgresql_ext: name: postgis db: acme ''' import traceback try: import psycopg2 import psycopg2.extras except ImportError: postgresqldb_found = False else: postgresqldb_found = True from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native class NotSupportedError(Exception): pass # =========================================== # PostgreSQL module specific support methods. # def ext_exists(cursor, ext): query = "SELECT * FROM pg_extension WHERE extname=%(ext)s" cursor.execute(query, {'ext': ext}) return cursor.rowcount == 1 def ext_delete(cursor, ext): if ext_exists(cursor, ext): query = "DROP EXTENSION \"%s\"" % ext cursor.execute(query) return True else: return False def ext_create(cursor, ext): if not ext_exists(cursor, ext): query = 'CREATE EXTENSION "%s"' % ext cursor.execute(query) return True else: return False # =========================================== # Module execution. # def main(): module = AnsibleModule( argument_spec=dict( login_user=dict(default="postgres"), login_password=dict(default="", no_log=True), login_host=dict(default=""), port=dict(default="5432"), db=dict(required=True), ext=dict(required=True, aliases=['name']), state=dict(default="present", choices=["absent", "present"]), ), supports_check_mode=True ) if not postgresqldb_found: module.fail_json(msg="the python psycopg2 module is required") db = module.params["db"] ext = module.params["ext"] state = module.params["state"] changed = False # To use defaults values, keyword arguments must be absent, so # check which values are empty and don't include in the **kw # dictionary params_map = { "login_host": "host", "login_user": "user", "login_password": "password", "port": "port" } kw = dict((params_map[k], v) for (k, v) in module.params.items() if k in params_map and v != '') try: db_connection = psycopg2.connect(database=db, **kw) # Enable autocommit so we can create databases if psycopg2.__version__ >= '2.4.2': db_connection.autocommit = True else: db_connection.set_isolation_level(psycopg2 .extensions .ISOLATION_LEVEL_AUTOCOMMIT) cursor = db_connection.cursor( cursor_factory=psycopg2.extras.DictCursor) except Exception as e: module.fail_json(msg="unable to connect to database: %s" % to_native(e), exception=traceback.format_exc()) try: if module.check_mode: if state == "present": changed = not ext_exists(cursor, ext) elif state == "absent": changed = ext_exists(cursor, ext) else: if state == "absent": changed = ext_delete(cursor, ext) elif state == "present": changed = ext_create(cursor, ext) except NotSupportedError as e: module.fail_json(msg=to_native(e), exception=traceback.format_exc()) except Exception as e: module.fail_json(msg="Database query failed: %s" % to_native(e), exception=traceback.format_exc()) module.exit_json(changed=changed, db=db, ext=ext) if __name__ == '__main__': main()
[ "sifang@cisco.com" ]
sifang@cisco.com
1657f962a8133600e36bf5a5651983e5160d9d34
9f2f386a692a6ddeb7670812d1395a0b0009dad9
/python/paddle/fluid/tests/unittests/dygraph_group_sharded_stage3_offload.py
5f9ec5c6e708e37b208ed07a321428f056f83a77
[ "Apache-2.0" ]
permissive
sandyhouse/Paddle
2f866bf1993a036564986e5140e69e77674b8ff5
86e0b07fe7ee6442ccda0aa234bd690a3be2cffa
refs/heads/develop
2023-08-16T22:59:28.165742
2022-06-03T05:23:39
2022-06-03T05:23:39
181,423,712
0
7
Apache-2.0
2022-08-15T08:46:04
2019-04-15T06:15:22
C++
UTF-8
Python
false
false
6,441
py
# -*- coding: UTF-8 -*- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import argparse import ast import time import paddle import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Linear from paddle.distributed import fleet from paddle.fluid.dygraph import nn from paddle.fluid.framework import _test_eager_guard from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage3 import GroupShardedStage3 from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_utils import GroupShardedScaler epoch = 10 paddle.seed(2022) np.random.seed(2022) base_lr = 0.1 momentum_rate = 0.9 l2_decay = 1e-4 class MLP(fluid.Layer): def __init__(self, linear_size=1000, param_attr=None, bias_attr=None): super(MLP, self).__init__() self._linear1 = Linear(linear_size, linear_size) self._linear2 = Linear(linear_size, linear_size) self._linear3 = Linear(linear_size, 10) def forward(self, inputs): y = self._linear1(inputs) y = self._linear2(y) y = self._linear3(y) return y def reader_decorator(linear_size=1000): def __reader__(): for _ in range(100): img = np.random.rand(linear_size).astype('float32') label = np.ones(1).astype('int64') yield img, label return __reader__ def optimizer_setting(model, use_pure_fp16, opt_group=False): clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0) optimizer = paddle.optimizer.AdamW( parameters=[{ "params": model.parameters() }] if opt_group else model.parameters(), learning_rate=0.001, weight_decay=0.00001, grad_clip=clip, multi_precision=use_pure_fp16) return optimizer def train_mlp(model, use_pure_fp16=False, accumulate_grad=False, offload=False, batch_size=100, convert2cpu=False): group = paddle.distributed.new_group([0, 1]) optimizer = optimizer_setting(model=model, use_pure_fp16=use_pure_fp16) if use_pure_fp16: model = paddle.amp.decorate( models=model, level='O2', save_dtype='float32') scaler = paddle.amp.GradScaler(init_loss_scaling=32768) scaler = GroupShardedScaler(scaler) model = GroupShardedStage3( model, optimizer=optimizer, group=group, offload=offload, segment_size=2**15) train_reader = paddle.batch( reader_decorator(), batch_size=batch_size, drop_last=True) train_loader = paddle.io.DataLoader.from_generator( capacity=32, use_double_buffer=True, iterable=True, return_list=True, use_multiprocess=True) train_loader.set_sample_list_generator(train_reader) for eop in range(epoch): model.train() for batch_id, data in enumerate(train_loader()): img, label = data label.stop_gradient = True img.stop_gradient = True with paddle.amp.auto_cast(True, level='O2'): out = model(img) loss = paddle.nn.functional.cross_entropy( input=out, label=label) avg_loss = paddle.mean(x=loss.cast(dtype=paddle.float32)) if accumulate_grad: avg_loss = avg_loss / 5 if not use_pure_fp16: avg_loss.backward() else: scaler.scale(avg_loss).backward() if not accumulate_grad: if not use_pure_fp16: optimizer.step() else: scaler.step(optimizer) scaler.update() optimizer.clear_grad() if accumulate_grad: if not use_pure_fp16: optimizer.step() else: scaler.step(optimizer) scaler.update() optimizer.clear_grad() if not convert2cpu: model.get_all_parameters() else: model.get_all_parameters(convert2cpu) return model.parameters() def test_stage3_offload(): paddle.distributed.init_parallel_env() mlp, mlp1, mlp2, mlp3, mlp4, mlp5, mlp6 = MLP(), MLP(), MLP(), MLP(), MLP( ), MLP(), MLP() state_dict = mlp.state_dict() mlp1.set_state_dict(state_dict) mlp2.set_state_dict(state_dict) mlp3.set_state_dict(state_dict) mlp4.set_state_dict(state_dict) mlp5.set_state_dict(state_dict) mlp6.set_state_dict(state_dict) # fp32 offload stage3_params = train_mlp(mlp1, use_pure_fp16=False) stage3_params_offload = train_mlp(mlp2, use_pure_fp16=False, offload=True) for i in range(len(stage3_params)): np.testing.assert_allclose( stage3_params[i].numpy(), stage3_params_offload[i].numpy(), rtol=1e-6, atol=1e-8) # fp16 offload stage3_params = train_mlp(mlp3, use_pure_fp16=True) stage3_params_offload = train_mlp(mlp4, use_pure_fp16=True, offload=True) for i in range(len(stage3_params)): np.testing.assert_allclose( stage3_params[i].numpy(), stage3_params_offload[i].numpy(), rtol=1e-2, atol=1e-2) # fp32 accumulate grad offload stage3_params = train_mlp( mlp5, use_pure_fp16=False, batch_size=20, accumulate_grad=True) stage3_params_offload = train_mlp( mlp6, use_pure_fp16=False, accumulate_grad=True, offload=True, batch_size=20, convert2cpu=True) for i in range(len(stage3_params)): np.testing.assert_allclose( stage3_params[i].numpy(), stage3_params_offload[i].numpy(), rtol=1e-6, atol=1e-8) return if __name__ == '__main__': with _test_eager_guard(): test_stage3_offload()
[ "noreply@github.com" ]
sandyhouse.noreply@github.com
edf52ab76db2cfd99a0af88763f296ce469be40c
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/SjShRightSide/YW_GGQQ_QLFSJHA_191.py
7b402aecbf55309b2714b38ef26372383e256c92
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,954
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys import json sys.path.append("/home/yhl2/workspace/xtp_test/xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test/option/service") from OptMainService import * from OptQueryStkPriceQty import * sys.path.append("/home/yhl2/workspace/xtp_test/service") from log import * from CaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test/option/mysql") from Opt_SqlData_Transfer import * sys.path.append("/home/yhl2/workspace/xtp_test/mysql") from QueryOrderErrorMsg import queryOrderErrorMsg sys.path.append("/home/yhl2/workspace/xtp_test/utils") from env_restart import * reload(sys) sys.setdefaultencoding('utf-8') class YW_GGQQ_QLFSJHA_191(xtp_test_case): def setUp(self): sql_transfer = Opt_SqlData_Transfer() sql_transfer.transfer_fund_asset('YW_GGQQ_QLFSJHA_191') clear_data_and_restart_sh() Api.trade.Logout() Api.trade.Login() def test_YW_GGQQ_QLFSJHA_191(self): title = '卖平(权利方平仓):FOK市价全成或撤销-验资(可用资金不足)(下单金额<费用&&可用资金<(费用-下单金额))' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11010120, 'errorMSG': queryOrderErrorMsg(11010120), '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('10001034', '1', '*', '1', '0', '*', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } logger.error('查询结果为False,错误原因: {0}'.format( json.dumps(rs['测试错误原因'], encoding='UTF-8', ensure_ascii=False))) self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type':Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_OPTION'], 'order_client_id':1, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'position_effect':Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_CLOSE'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST_OR_CANCEL'], 'price': stkparm['涨停价'], 'quantity': 1 } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) if rs['用例测试结果']: logger.warning('执行结果为{0}'.format(str(rs['用例测试结果']))) else: logger.warning('执行结果为{0},{1},{2}'.format( str(rs['用例测试结果']), str(rs['用例错误源']), json.dumps(rs['用例错误原因'], encoding='UTF-8', ensure_ascii=False))) self.assertEqual(rs['用例测试结果'], True) # 4 if __name__ == '__main__': unittest.main()
[ "418033945@qq.com" ]
418033945@qq.com
985a61e35a1166affcae13bcd6cc900782271bde
9825db945e7bfe68319b086e9fb7091a63645d5c
/transcribe/mommy_recipes.py
69965c1794946191d35991093b0493aa8e916c17
[]
no_license
lupyanlab/telephone
e1ee095d5698dc228deec5ba5878a46b76d43f2d
136f27fb2b41263f53fba6bd44711cf57598a1a4
refs/heads/master
2020-04-12T07:33:05.849287
2017-04-04T01:16:14
2017-04-04T01:16:14
41,316,823
1
1
null
2015-11-17T04:44:40
2015-08-24T17:20:23
Python
UTF-8
Python
false
false
1,059
py
from unipath import Path from django.conf import settings from django.core.files import File from model_mommy.recipe import Recipe, foreign_key, related import grunt.models as grunt_models import ratings.models as ratings_models import transcribe.models as transcribe_models django_file_path = Path(settings.APP_DIR, 'grunt/tests/media/test-audio.wav') assert django_file_path.exists() django_file = File(open(django_file_path, 'rb')) chain = Recipe(grunt_models.Chain, name = 'mommy_chain') seed = Recipe(grunt_models.Message, chain = foreign_key(chain), audio = django_file) recording = Recipe(grunt_models.Message, chain = foreign_key(chain), parent = foreign_key(seed), audio = django_file) transcription_survey = Recipe(transcribe_models.TranscriptionSurvey) message_to_transcribe = Recipe(transcribe_models.MessageToTranscribe, survey = foreign_key(transcription_survey), given = foreign_key(recording), ) transcription = Recipe(transcribe_models.Transcription, message = foreign_key(message_to_transcribe))
[ "pierce.edmiston@gmail.com" ]
pierce.edmiston@gmail.com
48983f1ea96897668bf4f661b7f0605254dc330d
02d1d89ed3c2a71a4f5a36f3a19f0683a0ae37e5
/navigation/sonar/maxsonar_class.py~
fbc039ae23b20329bb3f04d51f235e36260bfd38
[]
no_license
lforet/robomow
49dbb0a1c873f75e11228e24878b1e977073118b
eca69d000dc77681a30734b073b2383c97ccc02e
refs/heads/master
2016-09-06T10:12:14.528565
2015-05-19T16:20:24
2015-05-19T16:20:24
820,388
11
6
null
null
null
null
UTF-8
Python
false
false
2,504
#!/usr/bin/env python import serial import threading import time # need to find best way to search seria ports for find device class MaxSonar(object): def __init__(self): self._isConnected = False self._ser = self._open_serial_port() self._should_stop = threading.Event() self._start_reading() self._data = 0 #self._port = port def _open_serial_port(self): while self._isConnected == False: print "class MaxSonar: searching serial ports for ultrasonic sensor package..." for i in range(11): port = "/dev/ttyUSB" port = port[0:11] + str(i) print "class MaxSonar: searching on port:", port time.sleep(.2) try: ser = serial.Serial(port, 9600, timeout=1) data = ser.readline() #print "data=", int(data[3:(len(data)-1)]) if data[0:2] == "s1": #ser.write("a\n") # write a string print "class MaxSonar: found ultrasonic sensor package on serial port: ", port self._isConnected = True #self._port = ser time.sleep(.3) break except: pass for i in range(11): port = "/dev/ttyACM" port = port[0:11] + str(i) print "class MaxSonar: searching on port:", port time.sleep(.2) try: ser = serial.Serial(port, 9600, timeout=1) data = ser.readline() #print "data=", int(data[3:(len(data)-1)]) if data[0:2] == "s1": #ser.write("a\n") # write a string print "class MaxSonar: found ultrasonic sensor package on serial port: ", port self._isConnected = True #self._port = ser time.sleep(.3) break except: pass if self._isConnected == False: print "class MaxSonar: ultrasonic sensor package not found!" time.sleep(1) #print "returning", ser return ser def _start_reading(self): def read(): #print self._should_stop.isSet() #print self._ser.isOpen() while not self._should_stop.isSet(): try: data = self._ser.readline() #print "recieved: ", data #self._data = int(data[5:(len(data)-1)]) self._data = data[0:(len(data)-1)] except: try: print "class MaxSonar:no connection...attempting to reconnect" self._data = 0 self._isConnected = False self._ser = self._open_serial_port() time.sleep(.5) except: pass thr = threading.Thread(target=read) thr.start() return thr def stop(self): self._should_stop.set() self._read_thread.wait() def distances_cm(self): return self._data
[ "laird@isotope11.com" ]
laird@isotope11.com
e10f712169e012afe52d661cee1079d73d473cf5
a4deea660ea0616f3b5ee0b8bded03373c5bbfa2
/executale_binaries/register-variants/vpblendvb_xmm_xmm_xmm_xmm.gen.vex.py
24114f1b5661dc25199fcafb0f1753e89bd770d4
[]
no_license
Vsevolod-Livinskij/x86-64-instruction-summary
4a43472e26f0e4ec130be9a82f7e3f3c1361ccfd
c276edab1b19e3929efb3ebe7514489f66087764
refs/heads/master
2022-02-02T18:11:07.818345
2019-01-25T17:19:21
2019-01-25T17:19:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
import angr proj = angr.Project('vpblendvb_xmm_xmm_xmm_xmm.exe') print proj.arch print proj.entry print proj.filename irsb = proj.factory.block(proj.entry).vex irsb.pp()
[ "sdasgup3@illinois.edu" ]
sdasgup3@illinois.edu
73f759e34e0bb373fed5832be2d79bf6a4727643
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/benchmarks/prime-193.py
a9022462728d26ffa25a7f481c9f9b2ca1f06f24
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
571
py
# Get the n-th prime starting from 2 def get_prime(n:int) -> int: candidate:int = 2 found:int = 0 while True: if is_prime(candidate): found = found + 1 if found == n: return candidate candidate = candidate + 1 return 0 # Never happens def is_prime(x:int) -> bool: div:int = 2 while div < x: if x % div == 0: return False div = div + 1 return True # Input parameter n:int = 15 # Run [1, n] i:int = 1 # Crunch while i <= n: print($Exp(i)) i = i + 1
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
bceb5d5fd70239529410c669bae6ea96ca0148fd
dbaec1262c8966d66512cadd343249786a8c266d
/tests/test_scraper.py
1d196eeb7ad9cd52a2a34f6599ba263fbe8d42da
[]
no_license
andreqi/django-manolo
96e50021a843cff1c223692853993c5dbb685acd
01552875a47c4da90c89db6f0b9c05a269fa07ca
refs/heads/master
2020-04-01T18:00:59.213208
2014-11-20T21:28:04
2014-11-20T21:28:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,654
py
# -*- coding: utf-8 -*- """ test_django-manolo ------------ Tests for `django-manolo` models module. """ import datetime from datetime import timedelta as td import unittest import dataset import sqlalchemy from django.conf import settings from manolo.models import Manolo from manolo.management.commands.scraper import Command class TestManolo(unittest.TestCase): def setUp(self): db = dataset.connect('sqlite:///' + settings.DATABASES['default']['NAME']) table = db['manolo_manolo'] table.create_column('office', sqlalchemy.String(length=250)) table.create_column('sha512', sqlalchemy.String(length=200)) table.create_column('visitor', sqlalchemy.String(length=250)) table.create_column('meeting_place', sqlalchemy.String(length=250)) table.create_column('host', sqlalchemy.String(length=250)) table.create_column('entity', sqlalchemy.String(length=250)) table.create_column('objective', sqlalchemy.String(length=250)) table.create_column('id_document', sqlalchemy.String(length=250)) table.create_column('date', sqlalchemy.Date()) table.create_column('time_start', sqlalchemy.String(length=100)) table.create_column('time_end', sqlalchemy.String(length=100)) Manolo.objects.get_or_create(date=None) Manolo.objects.get_or_create(date=datetime.date(2011, 7, 28)) Manolo.objects.get_or_create(date=datetime.date.today()) def test_get_last_date_in_db(self): d1 = Command() d1.__init__() result = d1.get_last_date_in_db() + td(3) self.assertEqual(result, datetime.date.today())
[ "aniversarioperu1@gmail.com" ]
aniversarioperu1@gmail.com
15eb534642b2dbaf5eb98339e0cd15a18f7b59d6
4c228cca5bfdf3bd34dab2bedd7350ff501230b3
/tools/ex_network.py
daaafecdccaa5dfaf16ca6adbc450de5273af72f
[]
no_license
gauenk/xi_uai18
3575b4b6db3393f4bc6a640a6b3c607a2d6bca6f
c24040f43e3d8779b7c2fff88f8ab787cf22c385
refs/heads/master
2022-02-24T04:29:14.037754
2020-04-04T16:57:17
2020-04-04T16:57:17
234,967,333
0
0
null
2021-03-29T23:13:54
2020-01-19T21:05:51
Python
UTF-8
Python
false
false
2,877
py
import plotly.graph_objects as go import networkx as nx def plot_network(G): # # plot the edges # edge_x = [] edge_y = [] for edge in G.edges(): x0, y0 = G.nodes[edge[0]]['pos'] x1, y1 = G.nodes[edge[1]]['pos'] edge_x.append(x0) edge_x.append(x1) edge_x.append(None) edge_y.append(y0) edge_y.append(y1) edge_y.append(None) edge_trace = go.Scatter( x=edge_x, y=edge_y, line=dict(width=0.5, color='#888'), hoverinfo='none', mode='lines') # # plot the nodes; allow for hover # node_x = [] node_y = [] for node in G.nodes(): x, y = G.nodes[node]['pos'] node_x.append(x) node_y.append(y) node_trace = go.Scatter( x=node_x, y=node_y, mode='markers', hoverinfo='text', marker=dict( showscale=True, # colorscale options #'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' | #'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' | #'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' | colorscale='YlGnBu', reversescale=True, color=[], size=10, colorbar=dict( thickness=15, title='Node Connections', xanchor='left', titleside='right' ), line_width=2)) # # set the text when hovering to show number of connections # node_adjacencies = [] node_text = [] for node, adjacencies in enumerate(G.adjacency()): node_adjacencies.append(len(adjacencies[1])) node_text.append('# of connections: '+str(len(adjacencies[1]))) node_trace.marker.color = node_adjacencies node_trace.text = node_text # # plot the entire figure # fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout( title='<br>Network graph made with Python', titlefont_size=16, showlegend=False, hovermode='closest', margin=dict(b=20,l=5,r=5,t=40), annotations=[ dict( text="Python code: <a href='https://plot.ly/ipython-notebooks/network-graphs/'> https://plot.ly/ipython-notebooks/network-graphs/</a>", showarrow=False, xref="paper", yref="paper", x=0.005, y=-0.002 ) ], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)) ) fig.show() if __name__ == "__main__": G = nx.random_geometric_graph(200, 0.125) plot_network(G)
[ "kent.gauen@gmail.com" ]
kent.gauen@gmail.com
2627bc5bee346deeab204fa6ec44e5c9cc13abfc
8b9e9de996cedd31561c14238fe655c202692c39
/hackerrank/hackerrank_AntiPalindromic_Strings.py
e118373c79db90167cc964fa3d7cbc28599314dd
[]
no_license
monkeylyf/interviewjam
0049bc1d79e6ae88ca6d746b05d07b9e65bc9983
33c623f226981942780751554f0593f2c71cf458
refs/heads/master
2021-07-20T18:25:37.537856
2021-02-19T03:26:16
2021-02-19T03:26:16
6,741,986
59
31
null
null
null
null
UTF-8
Python
false
false
1,030
py
"""hackerrank_AntiPalindromic_Strings.py https://www.hackerrank.com/contests/101hack19/challenges/antipalindromic-strings """ def main(): """if n == 1, then there is m antipalindromic string. if n == 2, then there is m * (m - 1) antipalindromic string if n >= 3, then there is m * (m - 1) * (m - 1)... Then all you need to do is to implement pow with mod and multi with mod. """ t = int(raw_input()) for _ in xrange(t): n, m = map(int, raw_input().split()) if n == 1: print m elif n == 2: print multi_mod(m, m - 1) else: print multi_mod(multi_mod(m, m - 1), pow_mod(m - 2, n - 2)) def multi_mod(a, b, mod=10**9+7): return ((a % mod) * (b % mod)) % mod def pow_mod(a, n, mod=10**9+7): if n == 0: return 1 base = a ret = 1 while n: if n % 2 == 1: ret = (ret *base) % mod base = (base * base) % mod n /= 2 return ret if __name__ == '__main__': main()
[ "laituan1986@gmail.com" ]
laituan1986@gmail.com
fd9051b479df526f24d4937d65fc91e13c2b0021
837fcd0d7e40de15f52c73054709bd40264273d2
/More_exercise-master/Repeated_element_list.py
db01da889fb9c8d678166fab52513a0e563108a2
[]
no_license
NEHAISRANI/Python_Programs
dee9e05ac174a4fd4dd3ae5e96079e10205e18f9
aa108a56a0b357ca43129e59377ac35609919667
refs/heads/master
2020-11-25T07:20:00.484973
2020-03-08T12:17:39
2020-03-08T12:17:39
228,554,399
0
1
null
2020-10-01T06:41:20
2019-12-17T07:04:31
Python
UTF-8
Python
false
false
477
py
list1 = [1, 342, 75, 23, 98] list2 = [75, 23, 98, 12, 78, 10, 1] index=0 new=[] while index<len(list1): if list1[index] in list2: new.append(list1[index]) index=index+1 new.sort() print new #"-------------------" # without in operator index=0 new=[] while index<len(list1): var1=0 while var1<len(list2): if list1[index]==list2[var1]: new.append(list1[index]) var1=var1+1 index=index+1 new.sort() print new
[ "nehai18@navgurukul.org" ]
nehai18@navgurukul.org
e6c242f7656466c344365678cdf6869daa23683b
8dbb2a3e2286c97b1baa3ee54210189f8470eb4d
/kubernetes-stubs/client/models/v2beta2_metric_target.pyi
e58a49afa7ff802b89fffd13f6b7a5441e8e92a4
[]
no_license
foodpairing/kubernetes-stubs
e4b0f687254316e6f2954bacaa69ff898a88bde4
f510dc3d350ec998787f543a280dd619449b5445
refs/heads/master
2023-08-21T21:00:54.485923
2021-08-25T03:53:07
2021-08-25T04:45:17
414,555,568
0
0
null
2021-10-07T10:26:08
2021-10-07T10:26:08
null
UTF-8
Python
false
false
694
pyi
import datetime import typing import kubernetes.client class V2beta2MetricTarget: average_utilization: typing.Optional[int] average_value: typing.Optional[str] type: str value: typing.Optional[str] def __init__( self, *, average_utilization: typing.Optional[int] = ..., average_value: typing.Optional[str] = ..., type: str, value: typing.Optional[str] = ... ) -> None: ... def to_dict(self) -> V2beta2MetricTargetDict: ... class V2beta2MetricTargetDict(typing.TypedDict, total=False): averageUtilization: typing.Optional[int] averageValue: typing.Optional[str] type: str value: typing.Optional[str]
[ "nikhil.benesch@gmail.com" ]
nikhil.benesch@gmail.com
9f4ade293e4deed7bf08590e33fecbb9a8b287d9
35b58dedc97622b1973456d907ede6ab86c0d966
/Test/2020年4月29日/001.py
c8895768d64c6ebb9f086308a28346ccff33c6e5
[]
no_license
GithubLucasSong/PythonProject
7bb2bcc8af2de725b2ed9cc5bfedfd64a9a56635
e3602b4cb8af9391c6dbeaebb845829ffb7ab15f
refs/heads/master
2022-11-23T05:32:44.622532
2020-07-24T08:27:12
2020-07-24T08:27:12
282,165,132
0
0
null
null
null
null
UTF-8
Python
false
false
595
py
# import re # import json # sss = '{"testfan-token": "${neeo_001>data>data}$"}' # # find = re.findall('\${.*?}\$',sss) # # for i in find: # find = i # print(find) # # print(re.sub(find,'1',sss)) import requests # response = requests.request(method='get', url='http://www.neeo.cc:6002/pinter/bank/api/query2',params={"userName": "admin"},headers={"testfan-token": "c818ced87fb94411a5c1db99672ec3d7"}) # print(response.json()) response = requests.request(method='post', url='http://www.neeo.cc:6002/pinter/bank/api/login',data={"userName": "admin", "password": "1234"}) print(response.j)
[ "1433880147@qq.com" ]
1433880147@qq.com
f373f7fb41cef8b368430594ebbdee6e8ea6d030
30ab9750e6ca334941934d1727c85ad59e6b9c8a
/zentral/contrib/nagios/events/__init__.py
32a043fbbf1aebc95d5d5f0da9196c0e025d5d16
[ "Apache-2.0" ]
permissive
ankurvaishley/zentral
57e7961db65278a0e614975e484927f0391eeadd
a54769f18305c3fc71bae678ed823524aaa8bb06
refs/heads/main
2023-05-31T02:56:40.309854
2021-07-01T07:51:31
2021-07-01T14:15:34
382,346,360
1
0
Apache-2.0
2021-07-02T12:55:47
2021-07-02T12:55:47
null
UTF-8
Python
false
false
1,158
py
import logging from zentral.core.events import event_cls_from_type, register_event_type from zentral.core.events.base import BaseEvent logger = logging.getLogger('zentral.contrib.nagios.events') ALL_EVENTS_SEARCH_DICT = {"tag": "nagios"} class NagiosEvent(BaseEvent): tags = ["nagios"] class NagiosHostEvent(NagiosEvent): event_type = "nagios_host_event" register_event_type(NagiosHostEvent) class NagiosServiceEvent(NagiosEvent): event_type = "nagios_service_event" register_event_type(NagiosServiceEvent) def post_nagios_event(nagios_instance, user_agent, ip, data): event_type = data.pop("event_type", None) if not event_type: logger.warning("Missing event_type in nagios event payload") return elif event_type not in ['nagios_host_event', 'nagios_service_event']: logger.warning("Wrong event_type %s in nagios event payload", event_type) return data["nagios_instance"] = {"id": nagios_instance.id, "url": nagios_instance.url} event_cls = event_cls_from_type(event_type) event_cls.post_machine_request_payloads(None, user_agent, ip, [data])
[ "eric.falconnier@112hz.com" ]
eric.falconnier@112hz.com
a5febbe7a5eedfbbabe6af1b6c0a253823fdc6b5
16b389c8dcace7f7d010c1fcf57ae0b3f10f88d3
/docs/jnpr_healthbot_swagger/test/test_topic_schema_variable.py
d8cf50a23cf30844a79d2a6d4c4d3e87e9c010c1
[ "Apache-2.0" ]
permissive
Juniper/healthbot-py-client
e4e376b074920d745f68f19e9309ede0a4173064
0390dc5d194df19c5845b73cb1d6a54441a263bc
refs/heads/master
2023-08-22T03:48:10.506847
2022-02-16T12:21:04
2022-02-16T12:21:04
210,760,509
10
5
Apache-2.0
2022-05-25T05:48:55
2019-09-25T05:12:35
Python
UTF-8
Python
false
false
955
py
# coding: utf-8 """ Healthbot APIs API interface for Healthbot application # noqa: E501 OpenAPI spec version: 3.1.0 Contact: healthbot-feedback@juniper.net Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.topic_schema_variable import TopicSchemaVariable # noqa: E501 from swagger_client.rest import ApiException class TestTopicSchemaVariable(unittest.TestCase): """TopicSchemaVariable unit test stubs""" def setUp(self): pass def tearDown(self): pass def testTopicSchemaVariable(self): """Test TopicSchemaVariable""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.topic_schema_variable.TopicSchemaVariable() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "sharanyab@juniper.net" ]
sharanyab@juniper.net
60154971e033303df3ec37c5af4870bd330cbc8c
aabcf7b509608af70ce9fa6e7665837f6b6984b0
/bincrafters_envy/main.py
14ef7546bb5c5216fd5a45f5e21aae151fb2df3d
[ "MIT" ]
permissive
bincrafters/bincrafters-envy
2573177e83c8ec0687eff9c76cbc0c79b1a4135c
584ea39c16927ca3d1ffc68b32ec8d77627c27e0
refs/heads/develop
2023-06-08T10:55:37.920810
2019-07-26T08:35:48
2019-07-26T08:35:48
113,282,817
1
0
MIT
2023-06-01T12:24:40
2017-12-06T07:21:00
Python
UTF-8
Python
false
false
266
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys if sys.version_info.major == 3: from bincrafters_envy import bincrafters_envy else: import bincrafters_envy def run(): bincrafters_envy.main(sys.argv[1:]) if __name__ == '__main__': run()
[ "uilianries@gmail.com" ]
uilianries@gmail.com
c867e8178c3e307027a310c680b5dc60c0a7aeba
7395af9906200bb7135201ede8e238c0afb46c65
/public_api/api_requests/create_transaction.py
6edaac4ade0a40754dce2345e1b754c36cfb54fa
[]
no_license
bellomusodiq/public-api
6fd21d91f9df4e1ef75d2f43f3d2ad59afc1f30c
20b59ecc67ac6c969a9c47991f385e538762c2a6
refs/heads/master
2023-01-02T05:30:53.797873
2020-10-27T20:19:51
2020-10-27T20:19:51
305,782,966
0
0
null
null
null
null
UTF-8
Python
false
false
1,364
py
import requests import json import random import string from .config import base_url def generate_random_string(): choices = string.ascii_letters + string.digits string_ = '' for _ in range(20): string_ += random.choice(choices) return string_ url = "{}/test/transactions".format(base_url) def create_transaction(access_token, investor_id, instructions, trade_date_limit, trade_action, trade_price_limit, trade_effective_date, trade_units, stock_code): payload = { "investor_id":investor_id, "transaction_ref":"s-{}".format(generate_random_string()), "cscs_number": "67393940", "instructions": instructions, "trade_date_limit": trade_date_limit, "trade_effective_date": trade_effective_date, "trade_action": trade_action, "trade_price_limit": str(trade_price_limit), "trade_units": str(trade_units), "stock_code": stock_code, "trade_account_type":"INVESTOR" } headers = { 'authorization': 'Bearer {}'.format(access_token), 'content-type': 'application/json' } response = requests.request("POST", url, headers=headers, data = json.dumps(payload)) return response.json() """ b'{"status":200,"message":"success","trade_status":"Success","transaction_ref":"s-x12daeadvd"}' b'{"status":400,"errors":["This Investor does not exist"]}' """
[ "bmayowa25@gmail.com" ]
bmayowa25@gmail.com
77c35e61da685b86d7d099062b817c4d4650011c
aee144770c8f4ec5987777aebe5b064e558fc474
/doc/integrations/pytorch/parlai/tasks/mnist_qa/agents.py
df1f01e28be9434fde8528ad3cb0ea9b583c46d5
[ "CC-BY-SA-3.0", "MIT", "Apache-2.0", "AGPL-3.0-only" ]
permissive
adgang/cortx
1d8e6314643baae0e6ee93d4136013840ead9f3b
a73e1476833fa3b281124d2cb9231ee0ca89278d
refs/heads/main
2023-04-22T04:54:43.836690
2021-05-11T00:39:34
2021-05-11T00:39:34
361,394,462
1
0
Apache-2.0
2021-04-25T10:12:59
2021-04-25T10:12:59
null
UTF-8
Python
false
false
2,362
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This is a simple question answering task on the MNIST dataset. In each episode, agents are presented with a number, which they are asked to identify. Useful for debugging and checking that one's image model is up and running. """ from parlai.core.teachers import DialogTeacher from parlai.utils.io import PathManager from .build import build import json import os def _path(opt): build(opt) dt = opt['datatype'].split(':')[0] labels_path = os.path.join(opt['datapath'], 'mnist', dt, 'labels.json') image_path = os.path.join(opt['datapath'], 'mnist', dt) return labels_path, image_path class MnistQATeacher(DialogTeacher): """ This version of MNIST inherits from the core Dialog Teacher, which just requires it to define an iterator over its data `setup_data` in order to inherit basic metrics, a `act` function, and enables Hogwild training with shared memory with no extra work. """ def __init__(self, opt, shared=None): self.datatype = opt['datatype'].split(':')[0] labels_path, self.image_path = _path(opt) opt['datafile'] = labels_path self.id = 'mnist_qa' self.num_strs = [ 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', ] super().__init__(opt, shared) def label_candidates(self): return [str(x) for x in range(10)] + self.num_strs def setup_data(self, path): print('loading: ' + path) with PathManager.open(path) as labels_file: self.labels = json.load(labels_file) self.question = 'Which number is in the image?' episode_done = True for i in range(len(self.labels)): img_path = os.path.join(self.image_path, '%05d.bmp' % i) label = [self.labels[i], self.num_strs[int(self.labels[i])]] yield (self.question, label, None, None, img_path), episode_done class DefaultTeacher(MnistQATeacher): pass
[ "noreply@github.com" ]
adgang.noreply@github.com
0be675f1f85ba5f732fc877fca398ee196184613
52b5773617a1b972a905de4d692540d26ff74926
/.history/fibo_20200709155400.py
3b16f98c3d18b786e0d8adc98afc754847029ae4
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
# solving the fibonaci sequence using recursion and dynamic programming # Recursion # Base case if n = 1 || n == 2 then fibo is 1 def fibo(n): if n == 1: result = 1
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
d6f72acbd5a87945e02e30a1fbc7fa53ce292903
724317c256e3c57e8573f74334be31f39ba34eb9
/scripts/graphquestions/insert_to_db.py
08cadc30d76f276e8821af87e44558d87e2df6ee
[ "Apache-2.0" ]
permissive
pkumar2618/UDepLambda
a36662014fc23465aff587761810b986e4dad6dd
08f00b7dc99bb06c6912e9e83f47c32ebdd38eff
refs/heads/master
2022-11-25T09:22:41.444891
2020-08-01T08:56:52
2020-08-01T08:56:52
282,916,873
0
0
Apache-2.0
2020-07-27T14:09:32
2020-07-27T14:09:32
null
UTF-8
Python
false
false
474
py
#!/usr/bin/python import MySQLdb # connect db = MySQLdb.connect(host="rudisha.inf.ed.ac.uk", user="root", passwd="ammuma1234", db="gq_german") cursor = db.cursor() # execute SQL select statement cursor.execute("SELECT * FROM sentences") # commit your changes db.commit() # get the number of rows in the resultset numrows = int(cursor.rowcount) # get and display one row at a time. for x in range(0,numrows): row = cursor.fetchone() print row[0], "-->", row[1]
[ "siva@sivareddy.in" ]
siva@sivareddy.in
e019f16db7ba4fbd11cc190bd1425769fda97daa
9d5b0bcc105f7a99e545dd194d776a8f37b08501
/tf_quant_finance/math/integration/simpson.py
d011b774ef2f030af974719aec196bfd567db508
[ "Apache-2.0", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
priyalorha/tf-quant-finance
ab082a9bd6d22fd3ea9a3adcf67a35dc23460588
72ce8231340b27b047279012ffe97aeb79117cdf
refs/heads/master
2023-02-23T11:08:30.161283
2021-02-01T13:57:43
2021-02-01T13:58:14
334,980,881
1
0
Apache-2.0
2021-02-01T14:45:14
2021-02-01T14:45:14
null
UTF-8
Python
false
false
3,828
py
# Lint as: python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Composite Simpson's algorithm for numeric integration.""" import tensorflow.compat.v2 as tf def simpson(func, lower, upper, num_points=1001, dtype=None, name=None): """Evaluates definite integral using composite Simpson's 1/3 rule. Integrates `func` using composite Simpson's 1/3 rule [1]. Evaluates function at points of evenly spaced grid of `num_points` points, then uses obtained values to interpolate `func` with quadratic polynomials and integrates these polynomials. #### References [1] Weisstein, Eric W. "Simpson's Rule." From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/SimpsonsRule.html #### Example ```python f = lambda x: x*x a = tf.constant(0.0) b = tf.constant(3.0) integrate(f, a, b, num_points=1001) # 9.0 ``` Args: func: Python callable representing a function to be integrated. It must be a callable of a single `Tensor` parameter and return a `Tensor` of the same shape and dtype as its input. It will be called with a `Tesnor` of shape `lower.shape + [n]` (where n is integer number of points) and of the same `dtype` as `lower`. lower: `Tensor` or Python float representing the lower limits of integration. `func` will be integrated between each pair of points defined by `lower` and `upper`. upper: `Tensor` of the same shape and dtype as `lower` or Python float representing the upper limits of intergation. num_points: Scalar int32 `Tensor`. Number of points at which function `func` will be evaluated. Must be odd and at least 3. Default value: 1001. dtype: Optional `tf.Dtype`. If supplied, the dtype for the `lower` and `upper`. Result will have the same dtype. Default value: None which maps to dtype of `lower`. name: Python str. The name to give to the ops created by this function. Default value: None which maps to 'integrate_simpson_composite'. Returns: `Tensor` of shape `func_batch_shape + limits_batch_shape`, containing value of the definite integral. """ with tf.compat.v1.name_scope( name, default_name='integrate_simpson_composite', values=[lower, upper]): lower = tf.convert_to_tensor(lower, dtype=dtype, name='lower') dtype = lower.dtype upper = tf.convert_to_tensor(upper, dtype=dtype, name='upper') num_points = tf.convert_to_tensor( num_points, dtype=tf.int32, name='num_points') assertions = [ tf.debugging.assert_greater_equal(num_points, 3), tf.debugging.assert_equal(num_points % 2, 1), ] with tf.compat.v1.control_dependencies(assertions): dx = (upper - lower) / (tf.cast(num_points, dtype=dtype) - 1) dx_expand = tf.expand_dims(dx, -1) lower_exp = tf.expand_dims(lower, -1) grid = lower_exp + dx_expand * tf.cast(tf.range(num_points), dtype=dtype) weights_first = tf.constant([1.0], dtype=dtype) weights_mid = tf.tile( tf.constant([4.0, 2.0], dtype=dtype), [(num_points - 3) // 2]) weights_last = tf.constant([4.0, 1.0], dtype=dtype) weights = tf.concat([weights_first, weights_mid, weights_last], axis=0) return tf.reduce_sum(func(grid) * weights, axis=-1) * dx / 3
[ "tf-quant-finance-robot@google.com" ]
tf-quant-finance-robot@google.com
46914611421331bc8c3b99a2f18da0e2a7b11766
eb3c6e228a05e773fad89b42da0f54a1febbd096
/plenum/bls/bls_bft_utils.py
67d709cfdbd21e7a593db606e4930394d7383904
[ "Apache-2.0" ]
permissive
amitkumarj441/indy-plenum
1f45e0c095b9aa27e8306e29c896aa1441a20229
7cbcdecd5e6e290530fe0d5e02d9ea70ab1c9516
refs/heads/master
2021-07-21T02:19:24.219993
2017-10-27T08:48:03
2017-10-27T08:48:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
def create_full_root_hash(root_hash, pool_root_hash): """ Utility method for creating full root hash that then can be signed by multi signature """ return root_hash + pool_root_hash
[ "alexander.sherbakov@dsr-company.com" ]
alexander.sherbakov@dsr-company.com
5f3ef402e43e381527b710f81ee8970f9ac7c5a1
aaa204ad7f134b526593c785eaa739bff9fc4d2a
/tests/system/providers/google/marketing_platform/example_analytics.py
0d8f94ec38e552ad8bfc9ef564376ae17a7b7d4e
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
cfei18/incubator-airflow
913b40efa3d9f1fdfc5e299ce2693492c9a92dd4
ffb2078eb5546420864229cdc6ee361f89cab7bd
refs/heads/master
2022-09-28T14:44:04.250367
2022-09-19T16:50:23
2022-09-19T16:50:23
88,665,367
0
1
Apache-2.0
2021-02-05T16:29:42
2017-04-18T20:00:03
Python
UTF-8
Python
false
false
3,724
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Example Airflow DAG that shows how to use Google Analytics 360. """ from __future__ import annotations import os from datetime import datetime from airflow import models from airflow.providers.google.marketing_platform.operators.analytics import ( GoogleAnalyticsDataImportUploadOperator, GoogleAnalyticsDeletePreviousDataUploadsOperator, GoogleAnalyticsGetAdsLinkOperator, GoogleAnalyticsListAccountsOperator, GoogleAnalyticsModifyFileHeadersDataImportOperator, GoogleAnalyticsRetrieveAdsLinksListOperator, ) ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID") DAG_ID = "example_google_analytics" ACCOUNT_ID = os.environ.get("GA_ACCOUNT_ID", "123456789") BUCKET = os.environ.get("GMP_ANALYTICS_BUCKET", "test-airflow-analytics-bucket") BUCKET_FILENAME = "data.csv" WEB_PROPERTY_ID = os.environ.get("GA_WEB_PROPERTY", "UA-12345678-1") WEB_PROPERTY_AD_WORDS_LINK_ID = os.environ.get("GA_WEB_PROPERTY_AD_WORDS_LINK_ID", "rQafFTPOQdmkx4U-fxUfhj") DATA_ID = "kjdDu3_tQa6n8Q1kXFtSmg" with models.DAG( DAG_ID, schedule='@once', # Override to match your needs, start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "analytics"], ) as dag: # [START howto_marketing_platform_list_accounts_operator] list_account = GoogleAnalyticsListAccountsOperator(task_id="list_account") # [END howto_marketing_platform_list_accounts_operator] # [START howto_marketing_platform_get_ads_link_operator] get_ad_words_link = GoogleAnalyticsGetAdsLinkOperator( web_property_ad_words_link_id=WEB_PROPERTY_AD_WORDS_LINK_ID, web_property_id=WEB_PROPERTY_ID, account_id=ACCOUNT_ID, task_id="get_ad_words_link", ) # [END howto_marketing_platform_get_ads_link_operator] # [START howto_marketing_platform_retrieve_ads_links_list_operator] list_ad_words_link = GoogleAnalyticsRetrieveAdsLinksListOperator( task_id="list_ad_link", account_id=ACCOUNT_ID, web_property_id=WEB_PROPERTY_ID ) # [END howto_marketing_platform_retrieve_ads_links_list_operator] upload = GoogleAnalyticsDataImportUploadOperator( task_id="upload", storage_bucket=BUCKET, storage_name_object=BUCKET_FILENAME, account_id=ACCOUNT_ID, web_property_id=WEB_PROPERTY_ID, custom_data_source_id=DATA_ID, ) delete = GoogleAnalyticsDeletePreviousDataUploadsOperator( task_id="delete", account_id=ACCOUNT_ID, web_property_id=WEB_PROPERTY_ID, custom_data_source_id=DATA_ID, ) transform = GoogleAnalyticsModifyFileHeadersDataImportOperator( task_id="transform", storage_bucket=BUCKET, storage_name_object=BUCKET_FILENAME, ) upload >> [delete, transform] from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest) test_run = get_test_run(dag)
[ "noreply@github.com" ]
cfei18.noreply@github.com
f706c41962f21c4b764b0b4ccea05a2eed8290b9
881ca022fb16096610b4c7cec84910fbd304f52b
/libs/scapy/contrib/__init__.py
d1ce31ce09076bfc086bfb4b8be14c6235ba16f5
[]
no_license
mdsakibur192/esp32_bluetooth_classic_sniffer
df54a898c9b4b3e2b5d85b1c00dd597d52844d9f
7e8be27455f1d271fb92c074cb5118cc43854561
refs/heads/master
2023-07-31T14:29:22.989311
2021-09-08T11:18:21
2021-09-08T11:18:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
# This file is part of Scapy # See http://www.secdev.org/projects/scapy for more information # Copyright (C) Philippe Biondi <phil@secdev.org> # This program is published under a GPLv2 license """ Package of contrib modules that have to be loaded explicitly. """
[ "mgarbelix@gmail.com" ]
mgarbelix@gmail.com
a693f848a13454a6cfa0984f201bdd2971733ff4
a39d0d1f0e257d0fff5de58e3959906dafb45347
/PythonTricks/DataStructures/arays.py
4dd812657bd50c08d6dda6321c7d0a1f08ba79a0
[]
no_license
Twishar/Python
998d7b304070b621ca7cdec548156ca7750ef38e
1d1afa79df1aae7b48ac690d9b930708767b6d41
refs/heads/master
2021-09-23T14:18:36.195494
2018-09-24T12:33:36
2018-09-24T12:33:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
768
py
import array arr = ['one', 'two', 'three'] print(arr[0]) print(arr) # Lists are mutable: arr[1] = 'hello' print(arr) del arr[1] print(arr) # Lists can hold arbitrary data types: arr.append(23) print(arr) # Tuple - immutable containers arr = 'one', 'two', 'three' print(arr[0]) print(arr) # arr[1] = 'hello' # del arr[1] # Tuples can hold arbitrary data types: # Adding elements creates a copy of the tuple print(arr + (23,)) arr = array.array('f', (1.0, 1.5, 2.0, 2.5)) print(arr[1]) arr[1] = 23.9 print(arr) del arr[1] arr.append(42.94) # Arrays are "typed" # arr[1] = 'hello' # STR arr = 'abcd' # string are immutable print(list('abcd')) # bytes - immutable Arrays of Single Bytes arr_b = bytes((0, 1, 2, 3)) print(arr_b) # arr[1] = 23 # del arr[1]
[ "stognienkovv@gmail.com" ]
stognienkovv@gmail.com
f704cf61cb51810d863d902fd775d9cbbf0da782
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02238/s136410577.py
efae5c2b562906dd438512222d9cbfb70501d96a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
744
py
#coding: utf-8 n = int(input()) color = ["white" for i in range(n)] d = [[] for i in range(n)] global t t = 0 M = [[False for i in range(n)] for j in range(n)] for i in range(n): data = list(map(int,input().split())) u = data[0] k = data[1] if i == 0: start = u for v in data[2:2+k]: M[u-1][v-1] = True def search(u,t): t += 1 color[u-1] = "gray" d[u-1].append(t) for v in range(1,n+1): if M[u-1][v-1] and color[v-1] == "white": t = search(v,t) color[u-1] = "black" t += 1 d[u-1].append(t) return t t = search(start, t) for i in range(1,n+1): if color[i-1] == "white": t = search(i, t) for i in range(n): print(i+1, d[i][0], d[i][1])
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
aa4a7a7bec6c8d765c3e813b46ac392fb2f243d9
98032c5363d0904ba44e1b5c1b7aa0d31ed1d3f2
/Chapter10/ch10/race_with_lock.py
5b939cb8db37805feba1ecc83d58524902c0916b
[ "MIT" ]
permissive
PacktPublishing/Learn-Python-Programming-Second-Edition
7948b309f6e8b146a5eb5e8690b7865cb76136d5
54fee44ff1c696df0c7da1e3e84a6c2271a78904
refs/heads/master
2023-05-12T08:56:52.868686
2023-01-30T09:59:05
2023-01-30T09:59:05
138,018,499
65
44
MIT
2023-02-15T20:04:34
2018-06-20T10:41:13
Jupyter Notebook
UTF-8
Python
false
false
576
py
import threading from time import sleep from random import random counter = 0 randsleep = lambda: sleep(0.1 * random()) def incr(n): global counter for count in range(n): with incr_lock: current = counter randsleep() counter = current + 1 randsleep() n = 5 incr_lock = threading.Lock() t1 = threading.Thread(target=incr, args=(n, )) t2 = threading.Thread(target=incr, args=(n, )) t1.start() t2.start() t1.join() t2.join() print(f'Counter: {counter}') """ $ python race.py Counter: 10 # every time """
[ "33118647+romydias@users.noreply.github.com" ]
33118647+romydias@users.noreply.github.com
d448574fb3725a8d6dc5fef6401a51fda2584702
70fa6468c768d4ec9b4b14fc94fa785da557f1b5
/lib/googlecloudsdk/command_lib/error_reporting/exceptions.py
0ff475910503910e5c0b0a043a2e41e2f0aa50de
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
kylewuolle/google-cloud-sdk
d43286ef646aec053ecd7eb58566ab2075e04e76
75f09ebe779e99fdc3fd13b48621fe12bfaa11aa
refs/heads/master
2020-04-20T22:10:41.774132
2019-01-26T09:29:26
2019-01-26T09:29:26
169,131,028
0
0
NOASSERTION
2019-02-04T19:04:40
2019-02-04T18:58:36
Python
UTF-8
Python
false
false
1,036
py
# -*- coding: utf-8 -*- # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Exceptions for the error-reporting surface.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.core import exceptions class CannotOpenFileError(exceptions.Error): """Cannot open file.""" def __init__(self, f, e): super(CannotOpenFileError, self).__init__( 'Failed to open file [{f}]: {e}'.format(f=f, e=e))
[ "cloudsdk.mirror@gmail.com" ]
cloudsdk.mirror@gmail.com
91b849e900044ed54bf41ef89839d496d7edea56
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_gunslinger.py
05089d95d9ae89b34ed5d0ce0aaa83ee93969be4
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
#calss header class _GUNSLINGER(): def __init__(self,): self.name = "GUNSLINGER" self.definitions = [u'especially in the past in North America, someone who is good at shooting guns and is employed for protection or to kill people'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
748ba57cf89dcdd66b898d345938928ec78c11b0
523f8f5febbbfeb6d42183f2bbeebc36f98eadb5
/32_best.py
99e35e658b452b484a3f56877cf8d1ea52efde61
[]
no_license
saleed/LeetCode
655f82fdfcc3000400f49388e97fc0560f356af0
48b43999fb7e2ed82d922e1f64ac76f8fabe4baa
refs/heads/master
2022-06-15T21:54:56.223204
2022-05-09T14:05:50
2022-05-09T14:05:50
209,430,056
2
0
null
null
null
null
UTF-8
Python
false
false
594
py
class Solution(object): def longestValidParentheses(self, s): """ :type s: str :rtype: int """ if len(s) == 0: return 0 dp = [0] * len(s) for i in range(len(s)): if s[i] == "(": dp[i] = 0 else: if i - 1 >= 0 and i - 1 - dp[i - 1] >= 0 and s[i - 1 - dp[i - 1]] == "(": dp[i] = 2 + dp[i - 1] if i - 1 - dp[i - 1] - 1 >= 0: dp[i] += dp[i - 1 - dp[i - 1] - 1] print(dp) return max(dp)
[ "noelsun@mowennaierdeMacBook-Pro.local" ]
noelsun@mowennaierdeMacBook-Pro.local
4888153745ea34d4c15768a4a8e942d57823c159
71e324d2e7c9557a9cfec01997a44a66539ac2e6
/Chapter_08/object_3_seperate.py
bc01ecd017f07f5efe52cb0fb90a2fb4a449db82
[]
no_license
ulillilu/Python_Practice
2706a72b22243f4d76bf239f552bd7da2615c1ef
f2b238176f7e68b3fa0674ce4951aaa4206c15d3
refs/heads/master
2022-11-29T17:58:52.035022
2020-08-13T17:01:49
2020-08-13T17:01:49
287,334,050
0
0
null
null
null
null
UTF-8
Python
false
false
1,047
py
#객체를 처리하는 함수 def create_student(name, korean, math, english, science): return{ "name": name, "korean": korean, "math": math, "english": english, "science": science } def student_get_sum(student): return student["korean"] + student["math"] + student["english"] + student["science"] def student_get_average(student): return student_get_sum(student) / 4 def student_to_string(student): return "{}\t{}\t{}".format( student["name"], student_get_sum(student), student_get_average(student) ) students = [ create_student("윤인성", 87, 98, 88, 95), create_student("연하진", 92, 98, 96, 98), create_student("구지연", 76, 96, 94, 90), create_student("나선주", 98, 92, 96, 92), create_student("윤아린", 95, 98, 98, 98), create_student("윤명월", 94, 88, 92, 92) ] print ("이름", "총점", "평균", sep="\t") for student in students: print(student_to_string(student))
[ "noreply@github.com" ]
ulillilu.noreply@github.com
d0fb24f28c2ec27cd9e6e2a7952e61012fa0dc50
1fe0b680ce53bb3bb9078356ea2b25e572d9cfdc
/venv/lib/python2.7/site-packages/ansible/modules/cloud/azure/azure_rm_routetable.py
1dc6180ba8335b5645e02e1f39d13a54a3e496bc
[ "MIT" ]
permissive
otus-devops-2019-02/devopscourses_infra
1929c4a9eace3fdb0eb118bf216f3385fc0cdb1c
e42e5deafce395af869084ede245fc6cff6d0b2c
refs/heads/master
2020-04-29T02:41:49.985889
2019-05-21T06:35:19
2019-05-21T06:35:19
175,780,457
0
1
MIT
2019-05-21T06:35:20
2019-03-15T08:35:54
HCL
UTF-8
Python
false
false
6,015
py
#!/usr/bin/python # # Copyright (c) 2018 Yuwei Zhou, <yuwzho@microsoft.com> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_routetable version_added: "2.7" short_description: Manage Azure route table resource. description: - Create, update or delete a route table. options: resource_group: description: - name of resource group. required: true name: description: - name of the route table. required: true state: description: - Assert the state of the route table. Use C(present) to create or update and C(absent) to delete. default: present choices: - absent - present disable_bgp_route_propagation: description: - Specified whether to disable the routes learned by BGP on that route table. type: bool default: False location: description: - Region of the resource. - Derived from C(resource_group) if not specified extends_documentation_fragment: - azure - azure_tags author: - "Yuwei Zhou (@yuwzho)" ''' EXAMPLES = ''' - name: Create a route table azure_rm_routetable: resource_group: myResourceGroup name: myRouteTable disable_bgp_route_propagation: False tags: purpose: testing - name: Delete a route table azure_rm_routetable: resource_group: myResourceGroup name: myRouteTable state: absent ''' RETURN = ''' changed: description: Whether the resource is changed. returned: always type: bool id: description: resource id. returned: success type: str ''' try: from msrestazure.azure_exceptions import CloudError except ImportError: # This is handled in azure_rm_common pass from ansible.module_utils.azure_rm_common import AzureRMModuleBase, normalize_location_name class AzureRMRouteTable(AzureRMModuleBase): def __init__(self): self.module_arg_spec = dict( resource_group=dict(type='str', required=True), name=dict(type='str', required=True), state=dict(type='str', default='present', choices=['present', 'absent']), location=dict(type='str'), disable_bgp_route_propagation=dict(type='bool', default=False) ) self.resource_group = None self.name = None self.state = None self.location = None self.tags = None self.disable_bgp_route_propagation = None self.results = dict( changed=False ) super(AzureRMRouteTable, self).__init__(self.module_arg_spec, supports_check_mode=True) def exec_module(self, **kwargs): for key in list(self.module_arg_spec.keys()) + ['tags']: setattr(self, key, kwargs[key]) resource_group = self.get_resource_group(self.resource_group) if not self.location: # Set default location self.location = resource_group.location self.location = normalize_location_name(self.location) result = dict() changed = False result = self.get_table() if self.state == 'absent' and result: changed = True if not self.check_mode: self.delete_table() elif self.state == 'present': if not result: changed = True # create new route table else: # check update update_tags, self.tags = self.update_tags(result.tags) if update_tags: changed = True if self.disable_bgp_route_propagation != result.disable_bgp_route_propagation: changed = True if changed: result = self.network_models.RouteTable(location=self.location, tags=self.tags, disable_bgp_route_propagation=self.disable_bgp_route_propagation) if not self.check_mode: result = self.create_or_update_table(result) self.results['id'] = result.id if result else None self.results['changed'] = changed return self.results def create_or_update_table(self, param): try: poller = self.network_client.route_tables.create_or_update(self.resource_group, self.name, param) return self.get_poller_result(poller) except Exception as exc: self.fail("Error creating or updating route table {0} - {1}".format(self.name, str(exc))) def delete_table(self): try: poller = self.network_client.route_tables.delete(self.resource_group, self.name) result = self.get_poller_result(poller) return result except Exception as exc: self.fail("Error deleting virtual network {0} - {1}".format(self.name, str(exc))) def get_table(self): try: return self.network_client.route_tables.get(self.resource_group, self.name) except CloudError as cloud_err: # Return None iff the resource is not found if cloud_err.status_code == 404: self.log('{0}'.format(str(cloud_err))) return None self.fail('Error: failed to get resource {0} - {1}'.format(self.name, str(cloud_err))) except Exception as exc: self.fail('Error: failed to get resource {0} - {1}'.format(self.name, str(exc))) def main(): AzureRMRouteTable() if __name__ == '__main__': main()
[ "skydevapp@gmail.com" ]
skydevapp@gmail.com
afc8f2bf08df0703f759b13e99e9b4c3ff9e26a4
e2255da9f41a3ca592f5042c96ec8dc1f5ceba21
/google/appengine/ext/mapreduce/api/map_job/__init__.py
9347a8bdc947888f6886b093371cbbe34aac3d61
[ "Apache-2.0" ]
permissive
KronnyEC/cliques
2a2b1eb0063017f3dbe7de6a42a98d21a7cffb37
2fd66c4c4ea4552ab8ef6d738613f618a1a74fc7
refs/heads/master
2021-01-24T05:05:49.142434
2014-08-18T06:30:32
2014-08-18T06:42:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
853
py
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Map job package.""" from .map_job_config import JobConfig from .map_job_context import JobContext from .map_job_context import ShardContext from .map_job_context import SliceContext from .map_job_control import Job from .mapper import Mapper
[ "josh@pcsforeducation.com" ]
josh@pcsforeducation.com
8c18a2515beac0972d4760bcf73d68aec9f59e15
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02702/s763305864.py
c1f2a064512072f127149a2d43913b8cc8dc8cd7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
S = input() dp = [0]*(len(S)+1) cur = int(S[len(S)-1]) mod_10 = 1 count_num = [0]*2019 count_num[0] += 1 for i in range(len(S)): dp[len(S)-i-1] = cur count_num[cur] += 1 mod_10 = (mod_10*10)%2019 if i <= len(S)-2: cur = (cur+int(S[len(S)-i-2])*(mod_10))%2019 ans = 0 for i in range(2019): ans += (count_num[i]*(count_num[i]-1))//2 print(ans)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
e13fe5af3a9acaff486417fedd87270c31830d4c
396f93d8e73c419ef82a94174815a2cecbb8334b
/.history/tester2_20200321232603.py
3011254a2f67dbc34040fee7f27f648bd06eec26
[]
no_license
mirfarzam/ArtificialIntelligence-HeuristicAlgorithm-TabuSearch
8c73d9448b916009c9431526864a4441fdeb682a
90b2dca920c85cddd7c1b3335344ac7b10a9b061
refs/heads/master
2021-03-26T21:16:42.561068
2020-04-17T21:44:26
2020-04-17T21:44:26
247,750,502
0
0
null
null
null
null
UTF-8
Python
false
false
1,912
py
import os import subprocess import re from datetime import datetime import time from statistics import mean numberOfTests = 10 tabuIteration = '10' tabuDuration = '0' numberOfCities = '50' final_solution = [] list_coverage = [] print(f"\n\nTest for Tabu Search with this config: \n\tIterations : {tabuIteration} \n\tDuration(Tabu Memory): {tabuDuration} \n\tNumber of Cities: {numberOfCities}") for i in range(0, numberOfTests): process = subprocess.Popen(['./algo_tabou.exe', tabuIteration, tabuDuration, numberOfCities, 'distances_entre_villes_{}.txt'.format(numberOfCities)],stdout=subprocess.PIPE,stderr=subprocess.PIPE) stdout, stderr = process.communicate() result = stdout result = re.sub(r'\s', ' ', str(result)) solution = (re.findall(r'([0-9]{4}) km', result))[-1] final_solution.append(int(solution)) coverage = re.findall(r'On est dans un minimum local a l\'iteration ([0-9]+) ->', result) if coverage != []: coverage = int(coverage[0])+ 1 else: coverage = 5 number_of_solution_before_coverage = coverage list_coverage.append(coverage) print('best found solution is {} and found in interation {}, number of solutions before coverage : {}'.format(solution, coverage, number_of_solution_before_coverage)) time.sleep( 1 ) print("Summery:") optimum_result = len(list(filter(lambda x: x == 5644, final_solution))) print(f'number of optimum solution found is {optimum_result}, so in {numberOfTests} runs of test we faced {(optimum_result/numberOfTests)*100}% coverage') print(f'in average this test shows that we found the global optimum solution in iteration {mean(list_coverage)}\nand in worst we found it in iteration {max(list_coverage)} \nand in best case in iteration {max(list_coverage)}') print(f'Totally, {sum(list_coverage)} cities visited before finding the global optimum in {numberOfTests} runs of this test\n\n\n')
[ "farzam.mirmoeini@gmail.com" ]
farzam.mirmoeini@gmail.com
10d81e12691ea7edbbac63eee7f183d1e0842d8a
fc746b644a2f4d07508e84b0d162c0f2ef07076d
/build/orocos_kinematics_dynamics/catkin_generated/generate_cached_setup.py
174396b513f66f2b974b95d28716ad2d3160a197
[]
no_license
andreatitti97/thesis_ws
d372146246b8c9b74d25e1310e6e79f9e0270cc4
c59d380abe7be47ea2d7812e416dee7298c20db8
refs/heads/main
2023-03-16T12:26:17.676403
2021-03-15T13:22:59
2021-03-15T13:22:59
340,458,689
1
0
null
null
null
null
UTF-8
Python
false
false
1,352
py
# -*- coding: utf-8 -*- from __future__ import print_function import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/kinetic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/kinetic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in '/home/andrea/thesis_ws/devel;/opt/ros/kinetic'.split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/andrea/thesis_ws/devel/.private/orocos_kinematics_dynamics/env.sh') output_filename = '/home/andrea/thesis_ws/build/orocos_kinematics_dynamics/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: # print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
[ "andrea.tiranti97@gmail.com" ]
andrea.tiranti97@gmail.com
60fb4c4eb6e60fca24c3bb874dd487c384022e84
e811662c890217c77b60aa2e1295dd0f5b2d4591
/src/problem_145.py
da0952c5573f00aae6e48903d71a6426d47dd221
[]
no_license
rewonderful/MLC
95357f892f8cf76453178875bac99316c7583f84
7012572eb192c29327ede821c271ca082316ff2b
refs/heads/master
2022-05-08T05:24:06.929245
2019-09-24T10:35:22
2019-09-24T10:35:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,256
py
#!/usr/bin/env python # _*_ coding:utf-8 _*_ from TreeNode import TreeNode def postorderTraversal(self, root): """ 记住得了= = 就访问当前root,然后左子树入栈,右子树入栈,最后逆序一下就好了,return output[::-1] 相当于是这么个思路: 目标:左右根 那么我就先求出来根右左,先根遍历是好访问的,根右左的话,因为是栈,所以先访问根,然后左孩子节点入栈, 再右孩子节点入栈,这样出栈的顺序就是跟右左了,其实可以联想一下,其实左右只是人为设定和规定的嘛,就像二分类要用10,也可以看成是01 一个道理,那就调换左右顺序呗,这样就可以根右左的访问 最后再将【根右左】遍历得到的结果逆序,不就是左右根了,比较讨巧 """ if root is None: return [] stack, output = [root, ], [] while stack: root = stack.pop() output.append(root.val) if root.left is not None: stack.append(root.left) if root.right is not None: stack.append(root.right) return output[::-1] def postorderTraversal2(self, root): """ :type root: TreeNode :rtype: List[int] """ if not root: return [] ans = [] visited = set() stack = [root] while stack: top = stack[-1] if top in visited: ans.append(stack.pop().val) else: if top.right: stack.append(top.right) if top.left: stack.append(top.left) visited.add(top) return ans def postorderTraversal1(self, root): """ 算法:递归遍历 """ return [] if root == None else self.postorderTraversal(root.left) + self.postorderTraversal(root.right) + [root.val] if __name__ == '__main__': #1,2,3,4,5,6,7 t1 = TreeNode(1) t2 = TreeNode(2) t3 = TreeNode(3) t4 = TreeNode(4) t5 = TreeNode(5) t6 = TreeNode(6) t7 = TreeNode(7) # t1.left = t2 # t1.right = t3 # t2.left = t4 # t2.right = t5 # t3.left = t6 # t3.right = t7 t1.right =t2 t2.left = t3 print(postorderTraversal(t1))
[ "457261336@qq.com" ]
457261336@qq.com
4a69e480891dda49ef8586ab48e9e957f44d391d
327981aeef801fec08305d70270deab6f08bc122
/19.网络编程/TCP编程/2.客户端与服务器端的数据交互/client.py
659f33d99bf8eb92f58accb100300281589e8207
[]
no_license
AWangHe/Python-basis
2872db82187b169226271c509778c0798b151f50
2e3e9eb6da268f765c7ba04f1aefc644d50c0a29
refs/heads/master
2020-03-20T12:15:44.491323
2018-06-15T08:24:19
2018-06-15T08:24:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
# -*- coding: utf-8 -*- import socket client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(('192.168.43.240', 8083)) count = 0 while True: count += 1 data = input("请输入给服务器发送的数据:") client.send(data.encode("utf-8")) info = client.recv(1024) print("服务器说:", info.decode("utf-8"))
[ "huanji2209747841@foxmail.com" ]
huanji2209747841@foxmail.com
95282fad8921847fbce1b8d8cf3e6b80655c0234
d2f71636c17dc558e066d150fe496343b9055799
/eventi/receipts/urls.py
adc4aac61ed9506ad430a00c7e224d076c9b8818
[ "MIT" ]
permissive
klebercode/lionsclub
9d8d11ad6083d25f6d8d92bfbae9a1bbfa6d2106
60db85d44214561d20f85673e8f6c047fab07ee9
refs/heads/master
2020-06-11T19:45:39.974945
2015-04-05T01:11:57
2015-04-05T01:11:57
33,409,707
1
0
null
null
null
null
UTF-8
Python
false
false
206
py
# coding: utf-8 from django.conf.urls import patterns, url urlpatterns = patterns( 'eventi.receipts.views', url(r'^$', 'receipt', name='receipt'), url(r'^(\d+)/$', 'detail', name='detail'), )
[ "kleberr@msn.com" ]
kleberr@msn.com
777ff814dd92fd8c87e5d20a934a54207ca894cf
d3b7a7a922eb9999f22c99c0cc3908d7289ca27e
/tests/multi_processing/multi_process_queue.py
907844ddda04cef496883f0bd2b010512fd7341b
[ "Apache-2.0" ]
permissive
g3l0o/plaso
b668203c2c7cf8799a1c12824ee1bdc8befd3980
ae29d853a6bcdd1530ce9320a3af7b3f122941ac
refs/heads/master
2020-12-25T20:31:08.928709
2016-07-22T20:00:33
2016-07-22T20:00:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
997
py
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests the multi-processing queue.""" import unittest from plaso.multi_processing import multi_process_queue from tests import test_lib as shared_test_lib from tests.engine import test_lib as engine_test_lib class MultiProcessingQueueTest(shared_test_lib.BaseTestCase): """Tests the multi-processing queue object.""" _ITEMS = frozenset([u'item1', u'item2', u'item3', u'item4']) def testPushPopItem(self): """Tests the PushItem and PopItem functions.""" # A timeout is used to prevent the multi processing queue to close and # stop blocking the current process test_queue = multi_process_queue.MultiProcessingQueue(timeout=0.1) for item in self._ITEMS: test_queue.PushItem(item) test_queue_consumer = engine_test_lib.TestQueueConsumer(test_queue) test_queue_consumer.ConsumeItems() self.assertEqual(test_queue_consumer.number_of_items, len(self._ITEMS)) if __name__ == '__main__': unittest.main()
[ "onager@deerpie.com" ]
onager@deerpie.com
bd309d0b656942f65a5f6031b1475317b8f6cf1f
79661312d54643ce9dcfe3474058f514b01bfbe6
/ScikitLearn/ElasticNet_1f.py
9591fda25cf74ca65630946558d5e9573e4ea026
[]
no_license
davis-9fv/Project
5c4c8ac03f5bf9db28704e63de9b004f56a52f10
f2bd22b3ac440b91d1d1defc8da9e2ba2e67265e
refs/heads/master
2020-03-20T22:24:07.244521
2019-02-28T16:58:04
2019-02-28T16:58:04
137,796,517
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
# http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet from sklearn import linear_model from sklearn.linear_model import ElasticNet import numpy as np from pandas import read_csv from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from math import sqrt series = read_csv('../tests/shampoo-sales3.csv', header=0) raw_data = series.values X_train, X_test, y_train, y_test = train_test_split(raw_data[:, 0], raw_data[:, 1], test_size=0.33, random_state=9) X_train = X_train.reshape(X_train.shape[0], 1) X_test = X_test.reshape(X_test.shape[0], 1) regr = ElasticNet(random_state=0) regr.fit(X_train, y_train) print(regr.coef_) print(regr.intercept_) y_predicted = regr.predict(X_test) print('y_test: ') print(y_test) print('y_predicted: ') print(y_predicted) rmse = sqrt(mean_squared_error(y_test, y_predicted)) print('Test RMSE: %.7f' % (rmse))
[ "francisco.vinueza@alterbios.com" ]
francisco.vinueza@alterbios.com
872970618a04f2ca7f58bc8040f04ba42271524b
d8fd7f56537d3c4ad4c99965a0a451c5442b704f
/endlesshandsome/wsgi.py
29a7d6b605fc1118dfa24a6ccc1d6d200ee9a31b
[]
no_license
EndlessHandsome/endless-handsome
8febdc5edbaed973922b7c31d903d19d4361dc32
59f1c3e52bd43c765177288ced755b081db0c746
refs/heads/master
2020-04-06T06:57:24.027547
2016-08-19T03:51:55
2016-08-19T03:51:55
65,613,177
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
""" WSGI config for endlesshandsome project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "endlesshandsome.settings") application = get_wsgi_application()
[ "root@localhost.localdomain" ]
root@localhost.localdomain
4a865beed91c9a8e8b4658315602570354bd4770
f4b011992dd468290d319d078cbae4c015d18338
/Array/counting_element_in_two_array.py
f63a8421ab898a5ab3b5dcbed4c726b0b2a93aef
[]
no_license
Neeraj-kaushik/Geeksforgeeks
deca074ca3b37dcb32c0136b96f67beb049f9592
c56de368db5a6613d59d9534de749a70b9530f4c
refs/heads/master
2023-08-06T05:00:43.469480
2021-10-07T13:37:33
2021-10-07T13:37:33
363,420,292
0
0
null
null
null
null
UTF-8
Python
false
false
371
py
def counting_element(li, li1): li3 = [] for i in range(len(li)): count = 0 for j in range(len(li1)): if li[i] >= li1[j]: count = count+1 li3.append(count) print(li3) n = int(input()) m = int(input()) li = [int(x) for x in input().split()] li1 = [int(x) for x in input().split()] counting_element(li, li1)
[ "nkthecoder@gmail.com" ]
nkthecoder@gmail.com
8cb9fad16805ff1eef128d7408246c8350a45bdf
5b683c7f0cc23b1a2b8927755f5831148f4f7e1c
/Python_Study/DataStructureAndAlgorithm/剑指Offer/Solution21py
129b991defc62a3357595192e3b5ddc9ee1ac835
[]
no_license
Shmilyqjj/Shmily-py
970def5a53a77aa33b93404e18c57130f134772a
770fc26607ad3e05a4d7774a769bc742582c7b64
refs/heads/master
2023-09-02T04:43:39.192052
2023-08-31T03:28:39
2023-08-31T03:28:39
199,372,223
1
0
null
null
null
null
UTF-8
Python
false
false
306
#!/usr/bin/env python # encoding: utf-8 """ :Description:剑指Offer 21 :Author: 佳境Shmily :Create Time: 2020/4/29 11:59 :File: Solution21 :Site: shmily-qjj.top """ class Solution: def jumpFloor(self, number): # write code here pass if __name__ == '__main__': s = Solution()
[ "710552907@qq.com" ]
710552907@qq.com
d7857e8040c986cb578fcb3f8736cbe77f1ee7cb
d8cbc94a4207337d709a64447acb9c8fe501c75a
/evaluation/code/utils/checkpoint.py
0ce4488ec35b22f34e1d615616e0b445ee73a941
[ "MIT" ]
permissive
sripathisridhar/acav100m
6f672384fa723a637d94accbbe11a9a962f5f87f
13b438b6ce46d09ba6f79aebb84ad31dfa3a8e6f
refs/heads/master
2023-09-06T01:05:21.188822
2021-11-18T08:08:08
2021-11-18T08:08:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,887
py
import os import shutil from collections import OrderedDict import torch import utils.logging as logging logger = logging.get_logger(__name__) def load_checkpoint(model, state_dict, data_parallel=False): """ Load the trained weights from the checkpoint. Args: model (model): model to load the weights from the checkpoint. state_dict (OrderedDict): checkpoint. data_parallel (bool): if true, model is wrapped by torch.nn.parallel.DistributedDataParallel. """ ms = model.module if data_parallel else model ms.load_state_dict(state_dict) def load_pretrained_checkpoint(model, state_dict, data_parallel=False): """ Load the pretrained weights from the checkpoint. Args: model (model): model to load the weights from the checkpoint. state_dict (OrderedDict): checkpoint. data_parallel (bool): if true, model is wrapped by torch.nn.parallel.DistributedDataParallel. """ ms = model.module if data_parallel else model model_dict = ms.state_dict() partial_dict = OrderedDict() for key in state_dict.keys(): if 'visual_conv' in key and 'head' not in key: partial_dict[key] = state_dict[key] if 'audio_conv' in key and 'head' not in key: partial_dict[key] = state_dict[key] update_dict = {k: v for k, v in partial_dict.items() if k in model_dict} ms.load_state_dict(update_dict, strict=False) def save_checkpoint(state, is_best=False, filename='checkpoint.pyth'): """ Save the model weights to the checkpoint. Args: state (Dict): model states is_best (bool): whether the model has achieved the best performance so far. filename (str): path to the checkpoint to save. """ torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pyth')
[ "sangho.lee@vision.snu.ac.kr" ]
sangho.lee@vision.snu.ac.kr
702e2678b812860fd99d5d5961d919bb4fd981e8
6b033e3dddc280417bb97500f72e68d7378c69d6
/V. Algorithm/ii. Site/D. BOJ/Dynamic Programming/2193.py
4b960384965a4371013ee1182733e2531ed328a8
[]
no_license
inyong37/Study
e5cb7c23f7b70fbd525066b6e53b92352a5f00bc
e36252a89b68a5b05289196c03e91291dc726bc1
refs/heads/master
2023-08-17T11:35:01.443213
2023-08-11T04:02:49
2023-08-11T04:02:49
128,149,085
11
0
null
2022-10-07T02:03:09
2018-04-05T02:17:17
Jupyter Notebook
UTF-8
Python
false
false
267
py
# n = 0: cnt = 0 # n = 1: 1 cnt = 1 # n = 2: 10 cnt = 1 # n = 3: 100, 101 cnt = 2 # n = 4: 1010, 1001, 1000 cnt =3 # n = 5: 10000, 10001, 10010, 10101, 10100 cnt =5 n = int(input()) dp = [0, 1, 1] for i in range(3, n+1): dp.append(dp[i-2] + dp[i-1]) print(dp[n])
[ "inyong1020@gmail.com" ]
inyong1020@gmail.com
6d6ea4a6da71a4dd55b9827ed63099c095f2893a
70fa6468c768d4ec9b4b14fc94fa785da557f1b5
/lib/surface/config/configurations/list.py
31105c5866eaeddb88a441350c50f64724d0caa9
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
kylewuolle/google-cloud-sdk
d43286ef646aec053ecd7eb58566ab2075e04e76
75f09ebe779e99fdc3fd13b48621fe12bfaa11aa
refs/heads/master
2020-04-20T22:10:41.774132
2019-01-26T09:29:26
2019-01-26T09:29:26
169,131,028
0
0
NOASSERTION
2019-02-04T19:04:40
2019-02-04T18:58:36
Python
UTF-8
Python
false
false
2,213
py
# -*- coding: utf-8 -*- # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to list named configuration.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import base from googlecloudsdk.core import properties from googlecloudsdk.core.configurations import named_configs from googlecloudsdk.core.configurations import properties_file import six class List(base.ListCommand): """Lists existing named configurations.""" detailed_help = { 'DESCRIPTION': """\ {description} Run `$ gcloud topic configurations` for an overview of named configurations. """, 'EXAMPLES': """\ To list all available configurations, run: $ {command} """, } @staticmethod def Args(parser): base.PAGE_SIZE_FLAG.RemoveFromParser(parser) base.URI_FLAG.RemoveFromParser(parser) parser.display_info.AddFormat("""table( name, is_active, properties.core.account, properties.core.project, properties.compute.zone:label=DEFAULT_ZONE, properties.compute.region:label=DEFAULT_REGION) """) def Run(self, args): configs = named_configs.ConfigurationStore.AllConfigs() for _, config in sorted(six.iteritems(configs)): props = properties.VALUES.AllValues( list_unset=True, properties_file=properties_file.PropertiesFile([config.file_path]), only_file_contents=True) yield { 'name': config.name, 'is_active': config.is_active, 'properties': props, }
[ "cloudsdk.mirror@gmail.com" ]
cloudsdk.mirror@gmail.com
b72639fefb186348b900a58c7e765b4f198fea4c
f8d0e0358cfc7774e2ade30fb041a7227f72f696
/Project/MNIST/Actual_Picture/mnist_generate_dataset.py
7fad26b687d9e1f1ecda401e1fd57dbd54d78c55
[]
no_license
KimDaeUng/DeepLearningPractice
e01c99d868e7a472ca5ec9c863990e0ab4b48529
811f26e0859f0f7cb73d9a0ce3529fb8db867442
refs/heads/master
2023-04-01T02:26:14.670687
2021-04-03T14:08:48
2021-04-03T14:08:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,470
py
import tensorflow as tf import numpy as np from PIL import Image import os # Generate standard tfrecord of training or testing set image_train_path = './mnist_data_jpg/mnist_train_jpg_60000/' label_train_path = './mnist_data_jpg/mnist_train_jpg_60000.txt' image_test_path = './mnist_data_jpg/mnist_test_jpg_10000/' label_test_path = './mnist_data_jpg/mnist_test_jpg_10000.txt' data_path = './data/' tfRecord_train = './data/mnist_train.tfrecords' tfRecord_test = './data/mnist_test.tfrecords' resize_height = 28; resize_width = 28 # Generate tfRecord file def write_tfRecord(tfRecordName, image_path, label_path): writer = tf.python_io.TFRecordWriter(tfRecordName) # Create a writer with open(label_path, 'r') as label_file: picfile_label_pair = label_file.readlines() for num, content in enumerate(picfile_label_pair): # Construct picture path picfile, label = content.split() pic_path = image_path + picfile img = Image.open(pic_path) img_raw = img.tobytes() # Transfer image into bytes # One-hot encode: transfer label e.g. 3 -> 0001000000 labels = [0] * 10 labels[int(label)] = 1 # Create an example example = tf.train.Example(features=tf.train.Features(feature={ 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])), 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels)) })) # warp image and label data writer.write(example.SerializeToString()) # serialize the example #print("finish processing number of picture: ", num + 1) writer.close() #print("write tfRecord successfully") def generate_tfRecord(): if not os.path.exists(data_path): # if the folder doesn't exist then mkdir os.makedirs(data_path) else: print("Directory has already existed") # Generate training set print("Generating training set...") write_tfRecord(tfRecord_train, image_train_path, label_train_path) # Generate test set print("Generating test set...") write_tfRecord(tfRecord_test, image_test_path, label_test_path) def read_tfRecord(tfRecord_path): filename_queue = tf.train.string_input_producer([tfRecord_path]) # TFRecordReader has been deprecated reader = tf.TFRecordReader() # Create a reader serialized_example = reader.read(filename_queue)[1] # store samples features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([10], tf.int64), 'img_raw': tf.FixedLenFeature([], tf.string) }) img = tf.decode_raw(features['img_raw'], tf.uint8) # Decode img_raw into unsigned int img.set_shape([784]) # Reshape image into a row of 784 pixel img = tf.cast(img, tf.float32) * (1/255) # Normalize image into float label = tf.cast(features['label'], tf.float32) # Transfer label into float return img, label # Construct a batcher (generator) def get_tfRecord(num, getTrain=True): if getTrain: tfRecord_path = tfRecord_train else: tfRecord_path = tfRecord_test img, label = read_tfRecord(tfRecord_path) # Shuffle the image order img_batch, label_batch = tf.train.shuffle_batch([img, label], batch_size=num, num_threads=2, capacity=1000, min_after_dequeue=700) return img_batch, label_batch def main(): generate_tfRecord() if __name__ == '__main__': main()
[ "daviddwlee84@gmail.com" ]
daviddwlee84@gmail.com
de2a5e9123899c4d2aa008f270bed4e1523f7c76
2ba65a65140e818787ab455ca374f99348ade844
/hashmap_and_heap/q004_longest_consecutive_sequence.py
30fea9fc4eba2b9a20ea220cdbe5bcb49156643d
[]
no_license
samyakjain101/DSA
9e917f817a1cf69553b5f8ca5b739bc6f0c81307
632a605150704ceb5238cb77289785eb5a58201c
refs/heads/main
2023-05-06T06:31:09.401315
2021-06-01T13:37:59
2021-06-01T13:37:59
340,645,897
1
0
null
null
null
null
UTF-8
Python
false
false
1,033
py
def longest_consecutive_sequence(arr: list): hashmap = dict() for num in arr: hashmap[num] = True for key in hashmap.keys(): if key - 1 in hashmap: hashmap[key] = False max_streak_start_point = 0 max_streak = 0 for key, value in hashmap.items(): if value: temp_streak_start_point = key temp_streak = 1 while temp_streak_start_point + temp_streak in hashmap: temp_streak += 1 if temp_streak > max_streak: max_streak = temp_streak max_streak_start_point = temp_streak_start_point return [ i for i in range(max_streak_start_point, max_streak_start_point + max_streak) ] if __name__ == "__main__": array = [ 12, 5, 1, 2, 10, 2, 13, 7, 11, 8, 9, 11, 8, 9, 5, 6, 11, ] print(longest_consecutive_sequence(array))
[ "samyakjain101@gmail.com" ]
samyakjain101@gmail.com
a52be340b6e6941cb775fd9f43ea853958806772
f0a44b63a385e1c0f1f5a15160b446c2a2ddd6fc
/examples/render/show_all_std_line_types.py
e9df274fed178676f291164a7d5210d8cc1bb535
[ "MIT" ]
permissive
triroakenshield/ezdxf
5652326710f2a24652605cdeae9dd6fc58e4f2eb
82e964a574bcb86febc677bd63f1626318f51caf
refs/heads/master
2023-08-17T12:17:02.583094
2021-10-09T08:23:36
2021-10-09T08:23:36
415,426,069
1
0
MIT
2021-10-09T21:31:25
2021-10-09T21:31:25
null
UTF-8
Python
false
false
726
py
# Copyright (c) 2019-2021, Manfred Moitzi # License: MIT License import ezdxf from ezdxf.math import Vec3 from ezdxf.tools.standards import linetypes doc = ezdxf.new("R2007", setup=True) msp = doc.modelspace() # How to change the global linetype scaling: doc.header["$LTSCALE"] = 0.5 p1 = Vec3(0, 0) p2 = Vec3(9, 0) delta = Vec3(0, -1) text_offset = Vec3(0, 0.1) for lt in linetypes(): name = lt[0] msp.add_line(p1, p2, dxfattribs={"linetype": name, "lineweight": 25}) msp.add_text( name, dxfattribs={"style": "OpenSansCondensed-Light", "height": 0.25} ).set_pos(p1 + text_offset) p1 += delta p2 += delta doc.set_modelspace_vport(25, center=(5, -10)) doc.saveas("all_std_line_types.dxf")
[ "me@mozman.at" ]
me@mozman.at
2765443d9dab3cb470fb4a2a844eff84e6645762
3a51e7173c1b5a5088ac57f668ecb531e514e0fe
/m11_feature_importances5_diabets.py
e18b4753ce0bb3c9ed11c5bde334cc898d0c903c
[]
no_license
marattang/ml_basic
83a167324317178701ae0ee0e2e2046293eafacc
e8e6b8c9ab7d866377eb01e50ac94ff5b1ea7a73
refs/heads/main
2023-07-05T03:30:24.663574
2021-08-22T07:06:58
2021-08-22T07:06:58
394,574,251
0
0
null
null
null
null
UTF-8
Python
false
false
1,744
py
# 피처 = 컬럼 = 열 from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import load_iris, load_boston, load_diabetes from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # 1. 데이터 datasets = load_diabetes() x_train, x_test, y_train, y_test = train_test_split( datasets.data, datasets.target, train_size=0.8, random_state=66 ) # 2. 모델 # model = DecisionTreeRegressor(max_depth=3) model = RandomForestRegressor() # 3. 훈련 model.fit(x_train, y_train) # 4. 평가 예측 r2 = model.score(x_test, y_test) print('r2 : ', r2) print(model.feature_importances_) # [0.0125026 0. 0.53835801 0.44913938] # 트리계열에서는 모델 자체가 성능도 괜찮지만, feature importance라는 기능이 있다. 아이리스는 컬럼이 4개라서 4개 수치가 나온다. # 4개의 컬럼이 훈련에 대한 영향도 두번째 컬럼같은 경우는 0이 나왔기 때문에 크게 중요하지 않은 컬럼이다. => 절대적이지 않고 상대적 # '의사결정트리'에서 사용했을 때 2번째 컬럼이 크게 도움이 안된다는 얘기 def plot_feature_importances_datasets(model): n_features = datasets.data.shape[1] plt.barh(np.arange(n_features), model.feature_importances_, align='center') plt.yticks(np.arange(n_features), datasets.feature_names) plt.xlabel("Feature Importances") plt.ylabel("Features") plt.ylim(-1, n_features) plot_feature_importances_datasets(model) plt.show() # DecisionTreeRegressor # r2 : 0.3139678308823193 # # RandomForestRegressor # r2 : 0.38347482197285554
[ "tlawlfp0322@gmail.com" ]
tlawlfp0322@gmail.com
fcbd61892093b56028d5617ccab23d3aca729c0a
ed12b604e0626c1393406d3495ef5bbaef136e8a
/Iniciante/Python/exercises from 1000 to 1099/exercise_1038.py
8acf7316aa83808418ceec78f9e872c26c2019c0
[]
no_license
NikolasMatias/urionlinejudge-exercises
70200edfd2f9fc3889e024dface2579b7531ba65
ca658ee8b2100e2b687c3a081555fa0770b86198
refs/heads/main
2023-09-01T20:33:53.150414
2023-08-21T07:07:32
2023-08-21T07:07:32
361,160,388
0
0
null
null
null
null
UTF-8
Python
false
false
689
py
class Lanche: def __init__(self, codigo, especificacao, preco): self.codigo = codigo self.especificacao = especificacao self.preco = preco def getCodigo(self): return self.codigo def totalPorQtde(self, qtde): return self.preco*qtde lanches = [ Lanche(1, 'Cachorro Quente', 4.00), Lanche(2, 'X-Salada', 4.50), Lanche(3, 'X-Bacon', 5.00), Lanche(4, 'Torrada simples', 2.00), Lanche(5, 'Refrigerante', 1.50) ] codigo, qtde = [int(x) for x in input().split()] for lanche in lanches: if codigo == lanche.getCodigo(): print(''.join(['Total: R$ ', "{:.2f}".format(lanche.totalPorQtde(qtde))])) break
[ "nikolas.matias500@gmail.com" ]
nikolas.matias500@gmail.com
a4c0f7cac515fab2dde43dae019bf1f9f9359d98
e000416c89725db514ed5c01d7b9ef8e37c5355f
/backend/wallet/migrations/0001_initial.py
42f6e380119fb0d9602b441bb339d9aa4929f923
[]
no_license
crowdbotics-apps/click-time-28533
376f4d34b10ca3050fde3f43df51233e5b612c2d
89f4f7e05bf04623b2822899677b6c3606968151
refs/heads/master
2023-06-19T06:37:55.564153
2021-07-07T06:12:26
2021-07-07T06:12:26
383,692,230
0
0
null
null
null
null
UTF-8
Python
false
false
1,875
py
# Generated by Django 2.2.20 on 2021-07-07 06:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('taxi_profile', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserWallet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('balance', models.FloatField()), ('expiration_date', models.DateTimeField()), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='userwallet_user', to='taxi_profile.UserProfile')), ], ), migrations.CreateModel( name='PaymentMethod', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('account_token', models.CharField(max_length=255)), ('payment_account', models.CharField(max_length=10)), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('wallet', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='paymentmethod_wallet', to='wallet.UserWallet')), ], ), migrations.CreateModel( name='DriverWallet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('balance', models.FloatField()), ('expiration_date', models.DateTimeField()), ('driver', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='driverwallet_driver', to='taxi_profile.DriverProfile')), ], ), ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
df398393aea5d0bd7445abc5140d3c360b258e60
973713f993166b1d0c2063f6e84361f05803886d
/Day01-15/02_variableTest_3.py
0a1660b15ed013535066fbed5471a61876d4a6c4
[ "MIT" ]
permissive
MaoningGuan/Python-100-Days
20ad669bcc0876b5adfbf2c09b4d25fd4691061a
d36e49d67a134278455438348efc41ffb28b778a
refs/heads/master
2022-11-17T12:24:45.436100
2020-07-18T02:24:42
2020-07-18T02:24:42
275,157,107
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 使用input()函数获取键盘输入(字符串) 使用int()函数将输入的字符串转换成整数 使用print()函数输出带占位符的字符串 """ a = int(input('a = ')) b = int(input('b = ')) print('%d + %d = %d' % (a, b, a + b)) # 加 print('%d - %d = %d' % (a, b, a - b)) # 减 print('%d * %d = %d' % (a, b, a * b)) # 乘 print('%d / %d = %f' % (a, b, a / b)) # 除 print('%d // %d = %d' % (a, b, a // b)) # 取商 print('%d %% %d = %d' % (a, b, a % b)) # 取余 print('%d ** %d = %d' % (a, b, a ** b)) # a的b次方
[ "1812711281@qq.com" ]
1812711281@qq.com
ed02706c8203b78c812b8159c71208e1e7196960
597b888dca4e9add7acdf449f8c3d8d716826ff2
/gui/demos/listbox.py
105c3d631bc9eb579543eeadf5002fcfc4aee71b
[ "MIT" ]
permissive
alsor62/micropython-micro-gui
a7cad669d69358599feb84011c23ac5d767adfda
5c7d6c96b30e4936a2a4315b09e98a730f14c6db
refs/heads/main
2023-09-04T09:54:10.946964
2021-11-09T11:46:59
2021-11-09T11:46:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,401
py
# listbox.py micro-gui demo of Listbox class # Released under the MIT License (MIT). See LICENSE. # Copyright (c) 2021 Peter Hinch # hardware_setup must be imported before other modules because of RAM use. from hardware_setup import ssd # Create a display instance from gui.core.ugui import Screen from gui.core.writer import CWriter from gui.core.colors import * from gui.widgets.listbox import Listbox from gui.widgets.buttons import CloseButton import gui.fonts.freesans20 as font class BaseScreen(Screen): def __init__(self): def cb(lb, s): print('Gas', s) def cb_radon(lb, s): # Yeah, Radon is a gas too... print('Radioactive', s) super().__init__() wri = CWriter(ssd, font, GREEN, BLACK, verbose=False) els = (('Hydrogen', cb, ('H',)), ('Helium', cb, ('He',)), ('Neon', cb, ('Ne',)), ('Xenon', cb, ('Xe',)), ('Radon', cb_radon, ('Ra',)), ('Uranium', cb_radon, ('U',)), ('Plutonium', cb_radon, ('Pu',)), ('Actinium', cb_radon, ('Ac',)), ) Listbox(wri, 2, 2, elements = els, dlines=5, bdcolor=RED, value=1, also=Listbox.ON_LEAVE) #bdcolor = RED, fgcolor=RED, fontcolor = YELLOW, select_color=BLUE, value=1) CloseButton(wri) Screen.change(BaseScreen)
[ "peter@hinch.me.uk" ]
peter@hinch.me.uk
0cc430d7621bfaae1f6b6a655566642dd758c4bf
1333a965058e926649652ea55154bd73b6f05edd
/4_advanced/modules/userinput.py
bf7135098c2c79a045d6ce0bbf207f42b97ecacc
[ "MIT" ]
permissive
grecoe/teals
42ebf114388b9f3f1580a41d5d03da39eb083082
ea00bab4e90d3f71e3ec2d202ce596abcf006f37
refs/heads/main
2021-06-21T20:12:03.108427
2021-05-10T19:34:40
2021-05-10T19:34:40
223,172,099
0
2
null
null
null
null
UTF-8
Python
false
false
2,085
py
''' This file allows you to hide all of the implementation details of asking a user for input for your program. It will verify that the correct data is returned. Externally, we want to expose the getUserInput(). ''' ''' __parseInt Parameters userInput : Input string from user error : Error to display if not a int Returns: Int if non error, None otherwise ''' def __parseInt(userInput, error): returnVal = None try: returnVal = int(userInput) except Exception as ex: returnVal = None print(error) return returnVal ''' __parseFloat Parameters userInput : Input string from user error : Error to display if not a float Returns: Float if non error, None otherwise ''' def __parseFloat(userInput, error): returnVal = None try: returnVal = float(userInput) except Exception as ex: returnVal = None print(error) return returnVal ''' getUserInput: Parameters: prompt : Prompt to show to the user error: Error to show to the user if expected type not input. classInfo: Class info of type to collect retries: Number of times to allow user to get it right. Returns: Expected value type if retries isn't exceeded ''' def getUserInput(prompt, retries, error, classInfo): userValue = None className = classInfo.__name__ currentRetries = 0 while True: currentRetries += 1 userInput = input(prompt) if className == 'int': userValue = __parseInt(userInput, error) elif className == 'float': userValue = __parseFloat(userInput, error) else: userValue = userInput # If we have a value, get out if userValue is not None: break # If we've exhausted our retries, get out. if currentRetries >= retries: print("You have exhausted your attempts to enter a ", className) break return userValue
[ "grecoe@microsoft.com" ]
grecoe@microsoft.com
1ebb7382e258c4abf52348f5f8cdcbf3ae69437d
1500fe9ea062152becc85a01577cced0465cde52
/landacademy/urls.py
d6983faca141d85dce6130a0e3056d9ab11c126d
[]
no_license
Xednom/gpg-ams
afe4da92384f2de1b7b69ce28e13becb103009b3
7c87ab639b140873dfc90ac43c7aec349aec6436
refs/heads/master
2022-11-06T15:22:34.761321
2021-05-11T03:48:08
2021-05-11T03:48:08
239,904,632
0
1
null
2022-11-03T02:21:18
2020-02-12T01:50:16
JavaScript
UTF-8
Python
false
false
465
py
from django.urls import path from . import views app_name="landacademy" urlpatterns = [ path('add-land-academy-inventory', views.AddLandAcademyView.as_view(), name="add_landacademy"), path('view-land-academy-inventory', views.LandAcademyView.as_view(), name="view_landacademy"), path('view-o2o-smart-pricing', views.SmartPricingView.as_view(), name="view_o2o"), path('add-o2o-smart-pricing', views.AddSmartPricingView.as_view(), name="add_o2o"), ]
[ "monde.lacanlalay@gmail.com" ]
monde.lacanlalay@gmail.com
27104a744c874c71d5916e37b398277acf2b845a
0c427b2b8b7960bf3c1e727984532c6731328066
/APP/forms.py
1e073b90096a2c7b3a8ab029ca583f02c05bf928
[]
no_license
Master-cai/flask_library
c7c3910c6f989b7f0f90a3b32eb53d421b7f431d
ebc86cbfbac67b199d06a3ec1e789b0d3fec1488
refs/heads/master
2020-11-24T03:34:42.063453
2019-12-20T09:30:01
2019-12-20T09:30:01
227,948,428
1
0
null
null
null
null
UTF-8
Python
false
false
2,996
py
from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, SelectField, TextAreaField, ValidationError, HiddenField, \ BooleanField, PasswordField, IntegerField, DateTimeField, DateField from wtforms.validators import DataRequired, Email, Length, Optional, URL, EqualTo class LoginForm(FlaskForm): ReaderID = StringField('ReaderID', validators=[DataRequired(), Length(1, 20)]) password = PasswordField('Password', validators=[DataRequired(), Length(6, 20)]) remember = BooleanField('Remember me') submit = SubmitField('Log in') class RegisterForm(FlaskForm): RID = StringField('RID', validators=[DataRequired(), Length(1, 20)]) rName = StringField('readerName', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired(), Length(1, 20), EqualTo('password_confirm', message='password doesn`t match')]) password_confirm = PasswordField('Password_confirm', validators=[DataRequired()]) department = StringField('Department', validators=[DataRequired(), Length(1, 20)]) major = StringField('Department', validators=[DataRequired(), Length(1, 20)]) submit = SubmitField('Register') class SearchInfo(FlaskForm): # SearchType = StringField('SearchType', validators=[DataRequired(), Length(1, 20)]) typeChoices = ['BID', 'BookName', 'Category', 'Press', 'Author'] SearchType = SelectField('SearchType', choices=[(t, t) for t in typeChoices]) SearchInfo = StringField('SearchInfo', validators=[DataRequired(), Length(1, 20)]) submit = SubmitField('Search') class newBookForm(FlaskForm): BID = StringField('BID', validators=[DataRequired(), Length(1, 20)]) bName = StringField('bName', validators=[DataRequired()]) Category = StringField('Category', validators=[DataRequired(), Length(1, 20)]) ISBN = StringField('ISBN', validators=[DataRequired(), Length(1, 20)]) author = StringField('author', validators=[DataRequired(), Length(1, 20)]) publicationDate = DateField('publicationDate', validators=[DataRequired()]) press = StringField('press', validators=[DataRequired(), Length(1, 40)]) sum = IntegerField('sum', validators=[DataRequired()]) currNum = IntegerField('currNum', validators=[DataRequired()]) submit = SubmitField('submit') class ReturnBookForm(FlaskForm): RID = StringField('RID', validators=[DataRequired(), Length(1, 20)]) BID = StringField('BID', validators=[DataRequired(), Length(1, 20)]) submit = SubmitField('Return') class ReaderInfoForm(FlaskForm): # SearchType = StringField('SearchType', validators=[DataRequired(), Length(1, 20)]) typeChoices = ['RID', 'rName', 'department'] SearchType = SelectField('SearchType', choices=[(t, t) for t in typeChoices]) SearchInfo = StringField('SearchInfo', validators=[DataRequired(), Length(1, 20)]) submit = SubmitField('Search')
[ "719591339@qq.com" ]
719591339@qq.com
dc93b89f7e841b512d47ecff109941a4fd9c59cb
a7a13ca32072bb27ce2dceb87c414767b3751ec5
/src/gthnk/__init__.py
f8ee1ab5a2ed24607ff10461411e9f764b139904
[]
no_license
SocioProphet/gthnk
36e50338d5f3df19f84620ff9a337f3cf8e9e362
fc3d21090c2de10cfd74650436536999e5c65d7c
refs/heads/master
2022-12-13T18:55:00.610073
2020-09-14T14:50:21
2020-09-14T14:50:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from flask_bcrypt import Bcrypt db = SQLAlchemy() login_manager = LoginManager() bcrypt = Bcrypt()
[ "ian@iandennismiller.com" ]
ian@iandennismiller.com
5ad1c174ef11481211eccd3c9a071aaebf6e217e
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_200/1268.py
9e45fefd2245fc74e784ff57dba4a16de3dd55a5
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
def read_case(line): return int(line) def read_input(path): f = open(path, 'r') g = open(path + '_res.txt', 'w') T = int(f.readline()) for i in xrange(T): line = f.readline() g.write('Case #%d: ' % (i+1)) n = read_case(line) g.write(str(solve(n))) g.write('\n') g.close() f.close() def first_untidy(n): res = 0 while n > 0: if n%10 < (n/10)%10: return res res += 1 n /= 10 return -1 def is_units_tidy(n): u = n % 10 while n > 0: n /= 10 if n % 10 > u: return False return True def solve_after_first(n): if n < 10: return n if not is_units_tidy(n): n -= n % 10 + 1 return solve_after_first(n/10)*10 + n%10 def solve(n): k = first_untidy(n) if k == -1: return n n -= n % 10**(k+1) + 1 return solve_after_first(n) read_input('B-small-attempt1.in')
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
00a7d4bb8e564e8e4d36756ce801d18ce4fdfecc
b87389aa0d6595c8b649ac899e8ade4226309739
/manage.py
f53d707f83062edaaf89cd56b7fde370fb63af16
[]
no_license
bussiere/ImageIp
be3797d2fdd57b78d35de2111eb67b269f7df104
bc3e7b3d4edabde5353f9fadfc46253b7407ba5a
refs/heads/master
2020-12-24T15:23:03.255370
2013-08-23T10:52:46
2013-08-23T10:52:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "imageip.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "bussiere@gmail.com" ]
bussiere@gmail.com
e6ed56fd3df5070e61ae811df3ed3d5638f8db41
e1312afff90dbe1cdcd500541e29097da19fee97
/inference/infer_with_pb_1capture.py
83e9ad60c4b8ca47ef4676152e1dd42c7059bd70
[]
no_license
andreiqv/github_detector_scale
af6115caff6ca6c73c934dc1fa6673ccd69b71fa
329d32a4d26b2bfb2f902f876bb9b8eb35bd9e2a
refs/heads/master
2020-04-08T12:30:36.966069
2019-01-30T22:21:34
2019-01-30T22:21:34
159,350,198
0
0
null
null
null
null
UTF-8
Python
false
false
5,509
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Using TF for inference, and TensorRT for compress a graph. import sys import os import argparse import tensorflow as tf import numpy as np from tensorflow.python.platform import gfile from PIL import Image import timer from time import sleep import io from picamera import PiCamera camera = PiCamera() stream = io.BytesIO() #import tensorflow.contrib.tensorrt as trt use_hub_model = False if True: FROZEN_FPATH = '/home/pi/work/pb/model_first_3-60-1.000-1.000[0.803].pb' #FROZEN_FPATH = '/home/pi/work/pb/model_resnet50-97-0.996-0.996[0.833].pb' ENGINE_FPATH = 'saved_model_full_2.plan' INPUT_SIZE = [3, 128, 128] INPUT_NODE = 'input_1' OUTPUT_NODE = 'dense_1/Sigmoid' #OUTPUT_NODE = 'dense/Sigmoid' input_output_placeholders = [INPUT_NODE + ':0', OUTPUT_NODE + ':0'] def get_image_as_array(image_file): # Read the image & get statstics image = Image.open(image_file) #img.show() #shape = [299, 299] shape = tuple(INPUT_SIZE[1:]) #image = tf.image.resize_images(img, shape, method=tf.image.ResizeMethod.BICUBIC) image = image.resize(shape, Image.ANTIALIAS) image_arr = np.array(image, dtype=np.float32) / 255.0 return image_arr def get_labels(labels_file): with open(labels_file) as f: labels = f.readlines() labels = [x.strip() for x in labels] print(labels) #sys.exit(0) return labels def get_frozen_graph(pb_file): # We load the protobuf file from the disk and parse it to retrive the unserialized graph_drf with gfile.FastGFile(pb_file,'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) #sess.graph.as_default() #new line return graph_def def compress_graph_with_trt(graph_def, precision_mode): output_node = input_output_placeholders[1] if precision_mode==0: return graph_def trt_graph = trt.create_inference_graph( graph_def, [output_node], max_batch_size=1, max_workspace_size_bytes=2<<20, precision_mode=precision_mode) return trt_graph def inference_with_graph(graph_def, image): """ Predict for single images """ with tf.Graph().as_default() as graph: with tf.Session() as sess: # Import a graph_def into the current default Graph print("import graph") input_, predictions = tf.import_graph_def(graph_def, name='', return_elements=input_output_placeholders) camera.start_preview() camera.resolution = (640, 480) camera.framerate = 32 timer.timer('predictions.eval') time_res = [] for i in range(10): camera.capture(stream, format='jpeg') stream.seek(0) image = Image.open(stream) shape = tuple(INPUT_SIZE[1:]) image = image.resize(shape, Image.ANTIALIAS) image_arr = np.array(image, dtype=np.float32) / 255.0 pred_val = predictions.eval(feed_dict={input_: [image_arr]}) print(pred_val) timer.timer() #time_res.append(0) #print('index={0}, label={1}'.format(index, label)) camera.stop_preview() print(camera.resolution) #print('mean time = {0}'.format(np.mean(time_res))) #return index def inference_images_with_graph(graph_def, filenames): """ Process list of files of images. """ images = [get_image_as_array(filename) for filename in filenames] with tf.Graph().as_default() as graph: with tf.Session() as sess: # Import a graph_def into the current default Graph print("import graph") input_, predictions = tf.import_graph_def(graph_def, name='', return_elements=input_output_placeholders) camera.start_preview() for i in range(len(filenames)): filename = filenames[i] image = images[i] p_val = predictions.eval(feed_dict={input_: [image]}) index = np.argmax(p_val) label = labels[index] print('{0}: prediction={1}'.format(filename, label)) camera.stop_preview() def createParser (): """ArgumentParser """ parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', default=None, type=str,\ help='input') parser.add_argument('-dir', '--dir', default="../images", type=str,\ help='input') parser.add_argument('-pb', '--pb', default="saved_model.pb", type=str,\ help='input') parser.add_argument('-o', '--output', default="logs/1/", type=str,\ help='output') return parser if __name__ == '__main__': parser = createParser() arguments = parser.parse_args(sys.argv[1:]) pb_file = arguments.pb if arguments.input is not None: filenames = [arguments.input] #image = get_image_as_array(filename) #images = [(image] else: filenames = [] src_dir = arguments.dir listdir = os.listdir(src_dir) for f in listdir: filenames.append(src_dir + '/' + f) assert type(filenames) is list and filenames != [] #labels = get_labels('labels.txt') pb_file = FROZEN_FPATH graph_def = get_frozen_graph(pb_file) #modes = ['FP32', 'FP16', 0] #precision_mode = modes[2] #pb_file_name = 'saved_model.pb' # output_graph.pb # no compress image_file = '/home/pi/work/images/img_1_0_2018-08-04-09-37-300672_5.jpg' image = get_image_as_array(image_file) inference_with_graph(graph_def, image) #inference_images_with_graph(graph_def, filenames) """ for mode in modes*2: print('\nMODE: {0}'.format(mode)) graph_def = compress_graph_with_trt(graph_def, mode) inference_with_graph(graph_def, images, labels) """ """ 0.0701 sec. (total time 1.72) - model_first_3-60-1.000-1.000[0.803].pb 0.7628 sec. -- model_resnet50-97-0.996-0.996[0.833].pb --- capture pict from cam: 1024x768 (def.) - 0.7612 sec. """
[ "phxv@mail.ru" ]
phxv@mail.ru
f3ad29a421a0cf868288fc6682c1a2f1460652b8
61ce57892c172f71286a39c8c863aa8a7b29484b
/stampede_results/efficiency.py
819f43b7bee082e404a72cda5a0ee62105cfe01a
[]
no_license
bd-j/cetus
cfbb46aa2d94fdf982a7906bc8bdcbe9375df67c
c9f7e0972184a0c2fcc7add6e766733b7a46b149
refs/heads/master
2021-05-01T00:06:10.518322
2015-02-17T16:49:46
2015-02-17T16:49:46
21,367,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,067
py
import sys, os, glob import numpy as np import matplotlib.pyplot as pl import bsfh.read_results as bread def process_run(mcmc_file, model_file): result, pr, model = bread.read_pickles(mcmc_file, model_file=model_file) nburn = np.sum(result['run_params']['nburn']) nw, niter, ndim = result['chain'].shape time = result['sampling_duration'] free_params = model.theta_labels() return [nw, nburn, niter], time, free_params mcfiles = glob.glob('*dmock*_mcmc') speed, ncpu, hasgp = [], [], [] for i,f in enumerate(mcfiles): dims, dur, params = process_run(f, f.replace('_mcmc','_model')) print(f+'\n') s = dims[0] * (dims[1] + dims[2]) / dur speed += [s] nc = dims[0]/2 + 1 ncpu += [nc] print(dims[0], dims[2], dur, s, nc, 'gp_jitter' in params) hasgp += ['gp_jitter' in params] color = ['b','r'] fig, axes = pl.subplots() clr =np.array(color)[np.array(hasgp).astype(int)] axes.scatter(ncpu, speed/ncpu, marker ='o', c=clr) axes.set_xlabel('cores') axes.set_ylabel('Likelihood calculations/sec/core')
[ "benjamin.duncan.johnson@gmail.com" ]
benjamin.duncan.johnson@gmail.com
ea9cb6af6472d76c58d80685599298f8e4a6f15e
439cda44ba6d5d8061a134875736a9efcd4bf22c
/trakt_tools/tasks/profile/backup/create/handlers/playback.py
746491bfc433fc6a3dc4ee210ef1164e29330dbc
[]
no_license
fuzeman/trakt-tools
28a0fcb2c2efe88371bba1892777be75236fdc5c
8bdcb117b6092733cc50f87d4f943fc23340da90
refs/heads/master
2023-01-07T06:16:46.716517
2022-12-27T22:57:03
2022-12-27T22:57:03
68,256,616
31
4
null
2022-12-27T22:41:57
2016-09-15T01:11:54
Python
UTF-8
Python
false
false
801
py
from __future__ import print_function import logging log = logging.getLogger(__name__) class PlaybackHandler(object): def run(self, backup, profile): print('Playback Progress') # Request ratings response = profile.get('/sync/playback') if response.status_code != 200: print('Invalid response returned') return False # Retrieve items items = response.json() print(' - Received %d item(s)' % len(items)) # Write playback progress to disk print(' - Writing to "playback.json"...') try: return backup.write('playback.json', items) except Exception as ex: log.error('Unable to write playback progress to disk: %s', ex, exc_info=True) return False
[ "me@dgardiner.net" ]
me@dgardiner.net
5cdd8442cd814d0483be06189f1baa90c42bb382
d2c92cfe95a60a12660f1a10c0b952f0df3f0e8e
/adminasto/adminasto/tongji.py
698ac53c3172a4fe3beefb1a1fcf538a722beb21
[]
no_license
snamper/zzpython
71bf70ec3762289bda4bba80525c15a63156a3ae
20415249fa930ccf66849abb5edca8ae41c81de6
refs/heads/master
2021-12-21T16:12:22.190085
2017-09-30T06:26:05
2017-09-30T06:26:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,040
py
from sphinxapi import * import os import MySQLdb import datetime nowpath=os.path.dirname(__file__) execfile("conn.py") #产品数量 def getproductnum(nowday): format="%Y-%m-%d"; nowday=strtodatetime(nowday,format) oneday=datetime.timedelta(days=1) sql="select count(0) from products where gmt_created>'"+str(nowday)+"' and gmt_created<='"+str(nowday+oneday)+"'" cursor.execute(sql) offerlist=cursor.fetchone() if offerlist: return offerlist[0] else: return 0 #数据统计 def tongji(request): fromday="2013-8-1"; format="%Y-%m-%d"; fromday=strtodatetime(fromday,format) oneday=datetime.timedelta(days=1) num=30 listall=[] for i in range(0,num): fromday=fromday-oneday postnum=0 postnum=getproductnum(datetostr(fromday)) leavewordsnum=0 #leavewordsnum=getleavewordsnum(datetostr(fromday)) list={'date':datetostr(fromday),'postnum':postnum,'leavewordsnum':leavewordsnum} listall.append(list) return render_to_response('tongji.html',locals()) closeconn()
[ "2496256902@qq.com" ]
2496256902@qq.com
2a1ed3b591771dcef576f456adcb8a35894e6e42
7a3757a341fb1c5a06482e2e5cb066a967a6eff5
/tests/apis/test_htmls.py
8a62ed922151fdb0fb4d2da11af953142cdb52d2
[ "MIT" ]
permissive
ninoseki/uzen
4bff6080b9c0677dcf25abc0f104eca3fb92ed8a
2a0065aa57fe3891c46e1174c1dc9aab673e52a8
refs/heads/master
2023-09-02T01:59:18.893712
2022-08-28T09:49:12
2022-08-28T09:49:12
241,092,872
87
9
MIT
2023-06-01T01:08:05
2020-02-17T11:37:59
Python
UTF-8
Python
false
false
568
py
from typing import List from fastapi.testclient import TestClient from app import models def test_html(client: TestClient, snapshots: List[models.Snapshot]): id_ = snapshots[0].id response = client.get(f"/api/snapshots/{id_}") snapshot = response.json() sha256 = snapshot.get("html", {}).get("sha256", "") response = client.get(f"/api/htmls/{sha256}") assert response.status_code == 200 sha256 = snapshot.get("html", {}).get("sha256", "") response = client.get(f"/api/htmls/{sha256}/text") assert response.status_code == 200
[ "manabu.niseki@gmail.com" ]
manabu.niseki@gmail.com
685279deb51b82c7913268989efa1ce91cda2791
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/P.O.R.-master/pirates/effects/ShipSinkSplashes.py
4efffec5639f34902279a1a506fbbbf5ba52d62c
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
6,226
py
from pandac.PandaModules import * from direct.interval.IntervalGlobal import * from direct.particles import ParticleEffect from direct.particles import Particles from direct.particles import ForceGroup from EffectController import EffectController from PooledEffect import PooledEffect import random class ShipSinkSplashes(PooledEffect, EffectController): card2Scale = 64.0 cardScale = 64.0 def __init__(self, parent = None): PooledEffect.__init__(self) EffectController.__init__(self) self.setDepthWrite(0) self.setLightOff() self.setBin('fixed', 50) self.effectScale = 1.0 self.f = ParticleEffect.ParticleEffect('ShipSinkSplashes') self.f.reparentTo(self) model = loader.loadModel('models/effects/particleMaps') self.card = model.find('**/particleWhiteSteam') self.card2 = model.find('**/particleSplash') self.p0 = Particles.Particles('particles-1') self.p0.setFactory('PointParticleFactory') self.p0.setRenderer('SpriteParticleRenderer') self.p0.setEmitter('DiscEmitter') self.p1 = Particles.Particles('particles-2') self.p1.setFactory('PointParticleFactory') self.p1.setRenderer('SpriteParticleRenderer') self.p1.setEmitter('DiscEmitter') self.f.addParticles(self.p1) self.p0.setPoolSize(128) self.p0.setBirthRate(0.14999999999999999) self.p0.setLitterSize(10) self.p0.setLitterSpread(0) self.p0.setSystemLifespan(0.0) self.p0.setLocalVelocityFlag(1) self.p0.setSystemGrowsOlderFlag(0) self.p0.factory.setLifespanBase(2.5) self.p0.factory.setLifespanSpread(0.5) self.p0.factory.setMassBase(1.0) self.p0.factory.setMassSpread(0.0) self.p0.factory.setTerminalVelocityBase(400.0) self.p0.factory.setTerminalVelocitySpread(0.0) self.p0.renderer.setAlphaMode(BaseParticleRenderer.PRALPHAINOUT) self.p0.renderer.setUserAlpha(0.5) self.p0.renderer.setFromNode(self.card) self.p0.renderer.setColor(Vec4(1.0, 1.0, 1.0, 1.0)) self.p0.renderer.setXScaleFlag(1) self.p0.renderer.setYScaleFlag(1) self.p0.renderer.setAnimAngleFlag(0) self.p0.renderer.setNonanimatedTheta(0.0) self.p0.renderer.setAlphaBlendMethod(BaseParticleRenderer.PPBLENDLINEAR) self.p0.renderer.setAlphaDisable(0) self.p0.renderer.getColorInterpolationManager().addLinear(0.25, 1.0, Vec4(1.0, 1.0, 1.0, 1.0), Vec4(1.0, 1.0, 1.0, 0.0), 1) self.p0.emitter.setEmissionType(BaseParticleEmitter.ETRADIATE) self.p0.emitter.setAmplitude(1.0) self.p0.emitter.setAmplitudeSpread(0.0) self.p0.emitter.setOffsetForce(Vec3(0.0, -2.0, 10.0)) self.p0.emitter.setExplicitLaunchVector(Vec3(1.0, 0.0, 0.0)) self.p0.emitter.setRadiateOrigin(Point3(0.0, 0.0, 0.0)) self.p1.setPoolSize(128) self.p1.setBirthRate(0.01) self.p1.setLitterSize(3) self.p1.setLitterSpread(1) self.p1.setSystemLifespan(0.0) self.p1.setLocalVelocityFlag(1) self.p1.setSystemGrowsOlderFlag(0) self.p1.setFloorZ(-50) self.p1.factory.setLifespanBase(0.5) self.p1.factory.setLifespanSpread(0.14999999999999999) self.p1.factory.setMassBase(1.0) self.p1.factory.setMassSpread(0.0) self.p1.factory.setTerminalVelocityBase(400.0) self.p1.factory.setTerminalVelocitySpread(0.0) self.p1.renderer.setAlphaMode(BaseParticleRenderer.PRALPHAOUT) self.p1.renderer.setUserAlpha(0.25) self.p1.renderer.setFromNode(self.card2) self.p1.renderer.setColor(Vec4(1.0, 1.0, 1.0, 1.0)) self.p1.renderer.setXScaleFlag(1) self.p1.renderer.setYScaleFlag(1) self.p1.renderer.setAnimAngleFlag(0) self.p1.renderer.setNonanimatedTheta(0.0) self.p1.renderer.setAlphaBlendMethod(BaseParticleRenderer.PPBLENDLINEAR) self.p1.renderer.setAlphaDisable(0) self.p1.emitter.setEmissionType(BaseParticleEmitter.ETRADIATE) self.p1.emitter.setAmplitude(0.0) self.p1.emitter.setAmplitudeSpread(0.5) self.p1.emitter.setExplicitLaunchVector(Vec3(1.0, 0.0, 0.0)) self.p1.emitter.setRadiateOrigin(Point3(0.0, 0.0, 0.0)) def createTrack(self): self.setEffectScale(self.effectScale) shrink = LerpFunctionInterval(self.resize, 2.5, fromData = 1.0, toData = 0.25) self.startEffect = Sequence(Func(self.p0.setBirthRate, 0.10000000000000001), Func(self.p0.clearToInitial), Func(self.p1.setBirthRate, 0.01), Func(self.p1.clearToInitial), Func(self.f.start, self, self.particleDummy), Func(self.f.reparentTo, self)) self.endEffect = Sequence(shrink, Func(self.p0.setBirthRate, 100.0), Func(self.p1.setBirthRate, 100.0), Wait(2.0), Func(self.cleanUpEffect)) self.track = Sequence(self.startEffect, Wait(7.0), self.endEffect) def setEffectScale(self, scale): self.effectScale = scale self.p0.renderer.setInitialXScale(0.14999999999999999 * self.cardScale * scale) self.p0.renderer.setFinalXScale(0.40000000000000002 * self.cardScale * scale) self.p0.renderer.setInitialYScale(0.14999999999999999 * self.cardScale * scale) self.p0.renderer.setFinalYScale(0.40000000000000002 * self.cardScale * scale) self.p0.emitter.setRadius(20.0 * scale) self.p1.renderer.setInitialXScale(0.050000000000000003 * self.card2Scale * scale) self.p1.renderer.setFinalXScale(0.20000000000000001 * self.card2Scale * scale) self.p1.renderer.setInitialYScale(0.10000000000000001 * self.card2Scale * scale) self.p1.renderer.setFinalYScale(0.14999999999999999 * self.card2Scale * scale) self.p1.emitter.setOffsetForce(Vec3(0.0, 0.0, 16.0 * scale)) self.p1.emitter.setRadius(20.0 * scale) def resize(self, t): self.setEffectScale(self.effectScale * t) def cleanUpEffect(self): EffectController.cleanUpEffect(self) self.checkInEffect(self) def destroy(self): EffectController.destroy(self) PooledEffect.destroy(self)
[ "brandoncarden12345@gmail.com" ]
brandoncarden12345@gmail.com
f29845b4a7e41fd25e8f0aaf3a5e1216fa204a11
1db2e2238b4ef9c1b6ca3b99508693ee254d6904
/develop/analyse_2D_matrix/analyse_2D_matrix.py
f46d66c680efd95275086ab37592a63a94f4224e
[]
no_license
pgreisen/pythonscripts
8674e08095f76edf08ef2059300349218079724c
0aadf8f96d19b306c1bc44a772e766a06fe3408b
refs/heads/master
2021-07-06T23:54:57.774342
2021-06-08T19:36:36
2021-06-08T19:36:36
22,017,192
3
0
null
null
null
null
UTF-8
Python
false
false
4,186
py
from numpy import mean,sqrt,var import sys from collections import defaultdict from collections import OrderedDict import os,shutil,sys,argparse class Analyse2D: def __init__(self): self.scores = defaultdict(list) self.scores_position_two = {} self.aa = ['ALA','ARG','ASN','ASP','CYS','GLN','GLU','GLY','HIS','ILE','LEU','LYS','MET','PHE','PRO','SER','THR','TRP','TYR','VAL'] self.aa_single_letter = ['A','R','N','D','C','Q','E','G','H','I','L','K','M','F','P','S','T','W','Y','V'] self.aa_values = [] # times above mean self.factor = 1 self.score_term = "total_score" self.score_term_position = 0 # A_D_resfile_scores self.baseline_value = -552.660 def get_sorted_hashtable(self, hashtable): return OrderedDict(sorted(hashtable.items(), key=lambda x: x[1],reverse=True)) #[0:maxvalue]) def set_matrix(self,filename): tmp_variable = True tmp_variable2 = False with open(filename,'r') as f: for line in f: tmp_line = line.split() if( line[0:4] == "SEQU" ): continue elif ( line[0:4] == "SCOR" and tmp_variable == True): for t in range( len(tmp_line) ): if (tmp_line[t] == self.score_term): self.score_term_position = t tmp_variable = False elif( tmp_variable == False): aa_tmp = filename.split('_') tmp_value = round(float( tmp_line[self.score_term_position] ) - self.baseline_value,3) self.scores[ str(aa_tmp[0]) ].append( (aa_tmp[1], str( tmp_value ) ) ) # works #self.scores[ str(aa_tmp[0]) ].append( (aa_tmp[1], tmp_line[self.score_term_position] - self.baseline_value) ) ##print aa_tmp[1] , tmp_line[self.score_term_position] ##self.scores[ str(aa_tmp[0]) ].append( scores_position_two[ aa_tmp[1] ] = tmp_line[self.score_term_position] ) #self.scores_position_two = { aa_tmp[1] : tmp_line[self.score_term_position] } #tmp_variable2 = True #elif( tmp_variable2 == True): #self.scores[ str(aa_tmp[0]) ].append( self.scores_position_two ) def write_matrix_to_file(self): with open("2Dscan.csv",'w') as f: f.write("AA(203/233),") for key in self.aa_single_letter: f.write(key+",") f.write("\n") #assert 1 == 0 # print self.scores for key in self.aa_single_letter: f.write(key+",") ##print key ##assert 1 == 0 tmp_dic = self.scores[ key ] for key in self.aa_single_letter: for i in range(len(tmp_dic) ): if(key == tmp_dic[i][0]): # continue # print key, tmp_dic[i] f.write(tmp_dic[i][1]+",") f.write("\n") def main(self): parser = argparse.ArgumentParser(description="Generate 2D matrix from multiple rosetta output files") # get the initial rosetta design as input parser.add_argument("-s","--score_term", dest="score_term", help="Which score term to analyse (Default total_score )", default="total_score") # parser.add_argument("-b", "--bundles", dest="helical_bundle", help="Four chains helical bundle with four chains is set to true", action="store_true", default=False ) path = "./" files = os.listdir( path ) args_dict = vars( parser.parse_args() ) for item in args_dict: setattr(self, item, args_dict[item]) for fl in files: # assumes that the pachdock file ends with .out if( os.path.isfile(fl) and fl.endswith("scores") ): self.set_matrix( fl ) self.write_matrix_to_file() if __name__ == "__main__": run = Analyse2D() run.main()
[ "pgreisen@gmail.com" ]
pgreisen@gmail.com
127340c6f50c34bb02f1678ec7d9f12c7ce76d64
04c41aca1f78ac617fe1573818b10fb0e12fbe40
/tests/schemas/users/snapshots/snap_test_queries.py
85793ffecaf3ec9d16884144152f71578d6c90f8
[]
no_license
telephoneorg/orka-api
619489ae17dfd850c74aa2c950e0d4385ba059d9
5693aff776b7a7649617915a0a8e0942d1228c24
refs/heads/master
2022-01-10T15:28:21.277746
2019-05-16T19:06:40
2019-05-16T19:06:40
186,914,929
0
0
null
null
null
null
UTF-8
Python
false
false
5,718
py
# -*- coding: utf-8 -*- # snapshottest: v1 - https://goo.gl/zC4yUc from __future__ import unicode_literals from snapshottest import Snapshot snapshots = Snapshot() snapshots['test_get_me_query 1'] = { 'data': { 'me': { 'cellPhone': '+14153334444', 'contexts': { 'count': 2, 'edges': [ { 'cursor': 'YXJyYXljb25uZWN0aW9uOjA=', 'node': { '__typename': 'ParticipantContext', 'id': 'UGFydGljaXBhbnRDb250ZXh0OjE=', 'profile': { 'avatar': 'https://example.com/images/me.jpg', 'bio': '''Hey! What are you looking at?''', 'displayName': 'Johnny', 'id': 'UHJvZmlsZTox' }, 'status': 'CREATED' } }, { 'cursor': 'YXJyYXljb25uZWN0aW9uOjE=', 'node': { '__typename': 'FacilitatorContext', 'availability': '[{"isoWeekDay": 1, "start": "14:49:31.947740", "end": "22:49:31.947749"}, {"isoWeekDay": 2, "start": "14:49:31.947758", "end": "22:49:31.947760"}, {"isoWeekDay": 3, "start": "14:49:31.947765", "end": "22:49:31.947766"}, {"isoWeekDay": 4, "start": "14:49:31.947770", "end": "22:49:31.947772"}, {"isoWeekDay": 5, "start": "14:49:31.947776", "end": "22:49:31.947777"}, {"isoWeekDay": 6, "start": "14:49:31.947781", "end": "22:49:31.947782"}, {"isoWeekDay": 7, "start": "14:49:31.947786", "end": "22:49:31.947788"}]', 'id': 'RmFjaWxpdGF0b3JDb250ZXh0OjI=', 'licenses': { 'edges': [ { 'cursor': 'YXJyYXljb25uZWN0aW9uOjA=', 'node': { 'expiry': '2022-02-08', 'id': 'RmFjaWxpdGF0b3JMaWNlbnNlOjE=', 'number': 'xpii23420e90', 'type': 'TBD', 'usState': 'NY' } }, { 'cursor': 'YXJyYXljb25uZWN0aW9uOjE=', 'node': { 'expiry': None, 'id': 'RmFjaWxpdGF0b3JMaWNlbnNlOjI=', 'number': 'xpn342300309e8', 'type': 'TBD', 'usState': None } }, { 'cursor': 'YXJyYXljb25uZWN0aW9uOjI=', 'node': { 'expiry': '2016-02-08', 'id': 'RmFjaWxpdGF0b3JMaWNlbnNlOjM=', 'number': 'expired', 'type': 'TBD', 'usState': 'NY' } } ], 'pageInfo': { 'endCursor': 'YXJyYXljb25uZWN0aW9uOjI=', 'hasNextPage': False, 'hasPreviousPage': False, 'startCursor': 'YXJyYXljb25uZWN0aW9uOjA=' } }, 'npi': 'nc2394jt98ddeesd', 'profile': { 'avatar': 'https://dr-smith.com/photos/dr-smith.jpg', 'bio': '''I don't know how to put this but I'm kind of a big deal. People know me. I'm very important. I have many leather-bound books and my apartment smells of rich mahogany.''', 'displayName': 'Dr. Smith', 'id': 'UHJvZmlsZToy' }, 'status': 'CREATED' } } ], 'pageInfo': { 'endCursor': 'YXJyYXljb25uZWN0aW9uOjE=', 'hasNextPage': False, 'hasPreviousPage': False, 'startCursor': 'YXJyYXljb25uZWN0aW9uOjA=' } }, 'dob': '1980-01-04', 'email': 'johnsmith@gmail.com', 'firstName': 'John', 'id': 'VXNlcjox', 'lastName': 'Smith', 'notificationPolicy': { 'allowEmail': True, 'allowMarketing': False, 'allowSms': True, 'id': 'Tm90aWZpY2F0aW9uUG9saWN5OjE=' } } } } snapshots['test_get_profile_query 1'] = { 'data': { 'profile': { 'avatar': 'https://example.com/images/me.jpg', 'bio': '''Hey! What are you looking at?''', 'displayName': 'Johnny', 'id': 'UHJvZmlsZTox' } } }
[ "me@joeblack.nyc" ]
me@joeblack.nyc
ed7b59ea529505c039c84632f0c762b6e7687cd5
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/29/usersdata/149/9337/submittedfiles/atividade.py
a129ae25b27b8413697e0322686088d89dc72a89
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
5,309
py
# -*- coding: utf-8 -*- from __future__ import division import math print('não sei de nada)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
d83d17593a23cc734d5f3a70eba905a6d4cec639
d780df6e068ab8a0f8007acb68bc88554a9d5b50
/python/g1/asyncs/kernels/g1/asyncs/kernels/__init__.py
14f907bb3747de8bcda48ebf1fa4c851b89d6562
[ "MIT" ]
permissive
clchiou/garage
ed3d314ceea487b46568c14b51e96b990a50ed6f
1d72863d3a5f5d620b170f4dd36f605e6b72054f
refs/heads/master
2023-08-27T13:57:14.498182
2023-08-15T07:09:57
2023-08-15T19:53:52
32,647,497
3
0
null
null
null
null
UTF-8
Python
false
false
1,425
py
__all__ = [ 'KernelTimeout', 'call_with_kernel', 'get_kernel', 'run', 'with_kernel', ] import contextlib import contextvars import functools import logging from . import contexts from . import kernels # Re-export errors. from .errors import KernelTimeout logging.getLogger(__name__).addHandler(logging.NullHandler()) def with_kernel(func): """Wrap ``func`` that it is called within a kernel context.""" @functools.wraps(func) def wrapper(*args, **kwargs): return call_with_kernel(func, *args, **kwargs) return wrapper def call_with_kernel(func, *args, **kwargs): """Call ``func`` within a kernel context. The kernel object is closed on return. """ def caller(): # Do not create nested kernels; this seems to make more sense. # In general, I think it is easier to work with when there is # always at most one global kernel object per thread. if contexts.get_kernel(None) is None: kernel = kernels.Kernel() contexts.set_kernel(kernel) cm = contextlib.closing(kernel) else: cm = contextlib.nullcontext() with cm: return func(*args, **kwargs) return contextvars.copy_context().run(caller) def run(awaitable=None, timeout=None): return contexts.get_kernel().run(awaitable, timeout) def get_kernel(): return contexts.get_kernel(None)
[ "clchiou@gmail.com" ]
clchiou@gmail.com
750b855466580ca336ef851454d85be2d5325ce7
5c099927aedc6fdbc515f40ff543c65b3bf4ec67
/algorithms/find-and-replace-pattern/src/Solution2.py
3baef0faeceac6fc78a718b61d8201ae9e97cf0a
[]
no_license
bingzhong-project/leetcode
7a99cb6af1adfbd9bb1996a7f66a65679053c478
ba82e7d94840b3fec272e4c5f82e3a2cfe4b0505
refs/heads/master
2020-04-15T09:27:33.979519
2020-03-10T03:43:07
2020-03-10T03:43:07
164,550,933
0
0
null
null
null
null
UTF-8
Python
false
false
723
py
class Solution: def findAndReplacePattern(self, words: list, pattern: str) -> list: def match(word, pattern): word_map = {} pattern_map = {} for i in range(len(pattern)): if pattern[i] not in pattern_map: pattern_map[pattern[i]] = word[i] if word[i] not in word_map: word_map[word[i]] = pattern[i] if (pattern_map[pattern[i]], word_map[word[i]]) != (word[i], pattern[i]): return False return True res = [] for word in words: if match(word, pattern): res.append(word) return res
[ "zhongyongbin@foxmail.com" ]
zhongyongbin@foxmail.com
f95818b00f5f0d66c4279b5d1bba2ce0634bbc30
87209058bd5dd05ff0b3bd3ce2e5b5ed12671410
/jiaoyu/apps/organizations/forms.py
7fd39c13a1a60aab869309800b2a5a8761931593
[]
no_license
keepingoner/django-Projects
2a8a245b702a507efc27b4b5c6fb669bcf7d1846
8ca94559a31f82951a05dd8749c37d7595a8e298
refs/heads/master
2022-01-24T09:08:27.384731
2019-07-23T02:48:20
2019-07-23T02:48:20
109,779,078
3
1
null
null
null
null
UTF-8
Python
false
false
190
py
from django import forms from operations.models import UserAsk class UserAskForm(forms.ModelForm): class Meta: model = UserAsk fields = ['name', 'mobile', 'coursename']
[ "keepingoner@163.com" ]
keepingoner@163.com
d247e69e2008ceb52000bf94a9c402b65030dfbb
c84cee1abce6372a71314d28ca6a8681a6ad5cb5
/chat/forms.py
adc3810f9a97a850edc84266b4d97bcd84337a87
[]
no_license
SergeyLebidko/ChannelsTraining
441477a14c6fe424ea11ba2e05aac0fef90151bc
845a9b27f1d0bdb9424407c68e5051ec06d06cc9
refs/heads/master
2023-06-09T09:32:21.049921
2021-06-22T13:42:44
2021-06-22T13:42:44
376,584,019
0
0
null
null
null
null
UTF-8
Python
false
false
862
py
from django import forms from django.core.exceptions import ValidationError from django.contrib.auth.models import User from django.contrib.auth.password_validation import validate_password class RegisterForm(forms.Form): username = forms.CharField(label='Имя пользователя', required=True) password = forms.CharField(label='Пароль', widget=forms.PasswordInput, required=True) def clean_password(self): password = self.cleaned_data['password'] validate_password(password) return password def clean_username(self): username = self.cleaned_data['username'] user_exists = User.objects.filter(username=username).exists() if user_exists: raise ValidationError('Пользователь с таким именем уже существует') return username
[ "it.sergeyler@mail.ru" ]
it.sergeyler@mail.ru
91d8dc9cb2b95ee091580cbe4da673fa4fb4185c
9c36503027aa6fc2fa2f841d60f70f2697ae60be
/pygraphc/similarity/LogTextSimilarity.py
59263ee4a8088fff29f3a4c0e97edc18e48e95c9
[ "MIT" ]
permissive
studiawan/pygraphc
bd5517478a6e1ad04220c13fa9f7aea6546225ac
436aca13cfbb97e7543da61d38c8462da64343b5
refs/heads/master
2021-01-23T21:29:41.151025
2018-05-17T07:54:54
2018-05-17T07:54:54
58,362,965
2
2
null
null
null
null
UTF-8
Python
false
false
3,451
py
from pygraphc.preprocess.PreprocessLog import PreprocessLog from pygraphc.similarity.StringSimilarity import StringSimilarity from itertools import combinations import csv import multiprocessing class LogTextSimilarity(object): """A class for calculating cosine similarity between a log pair. This class is intended for non-graph based clustering method. """ def __init__(self, mode, logtype, logs, clusters, cosine_file=''): """The constructor of class LogTextSimilarity. Parameters ---------- mode : str Mode of operation, i.e., text and text-h5 logtype : str Type for event log, e.g., auth, syslog, etc. logs : list List of every line of original logs. clusters : dict Dictionary of clusters. Key: cluster_id, value: list of log line id. """ self.mode = mode self.logtype = logtype self.logs = logs self.clusters = clusters self.events = {} self.cosine_file = cosine_file def __call__(self, node): return self.__write_cosine_csv(node) def __write_cosine_csv(self, node): csv_file = self.cosine_file + str(node) + '.csv' f = open(csv_file, 'wb') writer = csv.writer(f) for cluster_id, cluster in self.clusters.iteritems(): row = [] for c in cluster: if node != c: similarity = StringSimilarity.get_cosine_similarity(self.events[node]['tf-idf'], self.events[c]['tf-idf'], self.events[node]['length'], self.events[c]['length']) if similarity > 0: row.append(1 - similarity) if row: row.append(cluster_id) writer.writerow(row) f.close() def get_cosine_similarity(self): """Get cosine similarity from a pair of log lines in a file. Returns ------- cosine_similarity : dict Dictionary of cosine similarity in non-graph clustering. Key: (log_id1, log_id2), value: cosine similarity distance. """ preprocess = PreprocessLog(self.logtype) preprocess.preprocess_text(self.logs) self.events = preprocess.events_text cosines_similarity = {} if self.mode == 'text': # calculate cosine similarity for log_pair in combinations(range(preprocess.loglength), 2): cosines_similarity[log_pair] = \ StringSimilarity.get_cosine_similarity(self.events[log_pair[0]]['tf-idf'], self.events[log_pair[1]]['tf-idf'], self.events[log_pair[0]]['length'], self.events[log_pair[1]]['length']) return cosines_similarity elif self.mode == 'text-csv': # write cosine similarity to csv files nodes = range(preprocess.loglength) pool = multiprocessing.Pool(processes=3) pool.map(self, nodes) pool.close() pool.join()
[ "studiawan@gmail.com" ]
studiawan@gmail.com
7997978962821fe9981f1e5e1415740d920bddbb
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/ENJTPoWCyEGgnXYjM_7.py
6804f1adebe40875f04f9577628db7907b57414a
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
""" Create a function that calculates what percentage of the box is filled in. Give your answer as a string percentage rounded to the nearest integer. ### Examples percent_filled([ "####", "# #", "#o #", "####" ]) ➞ "25%" # One element out of four spaces. percent_filled([ "#######", "#o oo #", "#######" ]) ➞ "60%" # Three elements out of five spaces. percent_filled([ "######", "#ooo #", "#oo #", "# #", "# #", "######" ]) ➞ "31%" # Five elements out of sixteen spaces. ### Notes * Only "o" will fill the box and also "o" will not be found outside of the box. * Don't focus on how much physical space an element takes up, pretend that each element occupies one whole unit (which you can judge according to the number of "#" on the sides). """ def percent_filled(box): frase = ''.join(box) a = frase.count(' ') b = frase.count('o') return str(int((b / (a + b)) * 100)) + '%'
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
b7b79b8c36d18d972a46f2208026d965dae2afbd
09cead98874a64d55b9e5c84b369d3523c890442
/py210110d_python3a/day10_210314/homework/stem1403a_hw_9_0307_KevinLiu.py
b6e041e3e82b381854c864f058043ff9a5dc02eb
[]
no_license
edu-athensoft/stem1401python_student
f12b404d749286036a090e941c0268381ce558f8
baad017d4cef2994855b008a756758d7b5e119ec
refs/heads/master
2021-08-29T15:01:45.875136
2021-08-24T23:03:51
2021-08-24T23:03:51
210,029,080
0
0
null
null
null
null
UTF-8
Python
false
false
1,496
py
""" Date: 2021-03-08 1. Write a GUI program of clock Requirements: (Function) Show current time in the pattern of HH:mm:ss.aaa i.e. 10:12:45.369 (UI) Display a title, main area for clock, and footer for the date Due date: by the end of next Friday Hint: import datetime strftime """ """ score: perfect """ # tkinter module from tkinter import * from tkinter.ttk import Separator import datetime # function def run_clock(): current_time.configure(text=datetime.datetime.now().strftime("%H:%M:%S.%f")[:12]) current_time.after(1, run_clock) # widget root = Tk() root.title('Python GUI - pack fill') w_width = 640 w_height = 450 sw = root.winfo_screenwidth(); sh = root.winfo_screenheight() top_left_x = int(sw/2 - w_width/2); top_left_y = int(sh/2 - w_height/2) root.geometry(f"{w_width}x{w_height}+{top_left_x}+{top_left_y}") # header header = Label(text="System Time", fg="Black", font=("Helvetica", 28)) header.pack(padx=15, pady=15) # separator 1 sep = Separator(root, orient=HORIZONTAL) sep.pack(fill=X) # current time label time = datetime.datetime.now().strftime("%H:%M:%S.%f")[:-3] current_time = Label(text=time, bg="green", fg="White", font=("Helvetica", 36), width=15, height=5) current_time.pack(padx=15, pady=15) # separator 2 sep2 = Separator(root, orient=HORIZONTAL) sep2.pack(fill=X) # footer footer = Label(text="Version 1, Kevin Liu, 12 March 2021", fg="Black", font=("Helvetica", 28)) footer.pack(padx=15, pady=15) # main program run_clock() root.mainloop()
[ "lada314@gmail.com" ]
lada314@gmail.com
0ed0a470b8e20c51b15783399801293e4c38342f
8fa1999cb8a973937d6629c553feca60dd3a73d7
/Atividade E/fabio01_q06.py
2f76792ccd7c7f87b12dc795ab7900fe3e71545e
[]
no_license
Isaias301/IFPI-ads2018.1
16cddbb278336a3e06738f9dc21d2d11053dcec4
026fe5c2ffbc8aed55c478b7544472c46b357e69
refs/heads/master
2020-03-22T20:15:13.789014
2018-08-09T03:14:48
2018-08-09T03:14:48
140,585,300
1
0
null
null
null
null
UTF-8
Python
false
false
387
py
""" Questão: Lista E 06 Descrição: Leia uma velocidade em km/h, calcule e escreva esta velocidade em m/s. """ def main(): # entrada velocidade_em_km = float(input("Digite uma uma velocidade em Km/h: ")) # calculos, operacoes, processamento velocidade_em_ms = velocidade_em_km * 3.6 # saida print('Resultado: %.2f m/s' % velocidade_em_ms) if __name__ == '__main__': main()
[ "isaiassantana301@gmail.com" ]
isaiassantana301@gmail.com
aa0f59f38a582475a55c56c36a78be79bab75599
fe203d5c28e2010cdc78a4b29755e148d58045db
/p02/q07_miles_to_kilometres.py
1e02355748970bfbdec15c9a409bb1cc807d34ef
[]
no_license
sp0002/cp2019
d2a9aa5bfe7c82de3ed3f96f281c39be8704d3bd
6c48528f948dad01f4d6571e3bb22dbf253c423c
refs/heads/master
2020-04-24T23:24:21.324069
2019-04-13T11:13:01
2019-04-13T11:13:01
171,574,023
0
0
null
null
null
null
UTF-8
Python
false
false
293
py
print("Miles Kilometers Kilometres Miles") for i in range(10): print(str(i+1) + (" "*(6-len(str(i+1)))) + "{:.3f}".format(round(((i+1)*1.60934), 3)) + (" "*(11-len(str(round(((i+1)*1.60934), 3))))) + str(i*5+20) + (" "*(11-len(str(i*5+20))) + "{:.3f}".format(round((i*5+20)/1.60934, 3))))
[ "k" ]
k
ca592bb99a1866b3bd5f87d00cf9884fb0e2e036
fab39aa4d1317bb43bc11ce39a3bb53295ad92da
/nncf/torch/dynamic_graph/operation_address.py
f9fe1e55d976d86a8bab71816c910f10257af01d
[ "Apache-2.0" ]
permissive
dupeljan/nncf
8cdce27f25f01ce8e611f15e1dc3036fb8548d6e
0abfd7103ca212888a946ba4d0fbdb9d436fdaff
refs/heads/develop
2023-06-22T00:10:46.611884
2021-07-22T10:32:11
2021-07-22T10:32:11
388,719,455
0
0
Apache-2.0
2021-07-23T07:46:15
2021-07-23T07:43:43
null
UTF-8
Python
false
false
1,715
py
""" Copyright (c) 2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from nncf.torch.dynamic_graph.scope import Scope class OperationAddress: def __init__(self, operator_name: str, scope_in_model: Scope, call_order: int): self.operator_name = operator_name self.scope_in_model = scope_in_model self.call_order = call_order def __eq__(self, other: 'OperationAddress'): return isinstance(other, OperationAddress) and \ (self.operator_name == other.operator_name) and \ (self.scope_in_model == other.scope_in_model) and \ (self.call_order == other.call_order) def __str__(self): return str(self.scope_in_model) + '/' + \ self.operator_name + "_" + str(self.call_order) def __hash__(self): return hash((self.operator_name, self.scope_in_model, self.call_order)) @staticmethod def from_str(s: str): scope_and_op, _, call_order_str = s.rpartition('_') scope_str, _, op_name = scope_and_op.rpartition('/') return OperationAddress(op_name, Scope.from_str(scope_str), int(call_order_str))
[ "noreply@github.com" ]
dupeljan.noreply@github.com
cdad51f5c22f7a1acdf954745aa1ca7cd922befa
ba3231b25c60b73ca504cd788efa40d92cf9c037
/nitro-python-13.0.36/nssrc/com/citrix/netscaler/nitro/resource/config/network/ptp.py
27fa36e319f1e78d559dded8881328498c85d2f6
[ "Apache-2.0", "Python-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
zhuweigh/vpx13
f6d559ae85341e56472e3592cbc67062dac34b93
b36caa3729d3ca5515fa725f2d91aeaabdb2daa9
refs/heads/master
2020-07-04T22:15:16.595728
2019-09-20T00:19:56
2019-09-20T00:19:56
202,435,307
0
0
null
null
null
null
UTF-8
Python
false
false
3,505
py
# # Copyright (c) 2008-2019 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class ptp(base_resource) : """ Configuration for Precision Time Protocol resource. """ def __init__(self) : self._state = None @property def state(self) : r"""Enables or disables Precision Time Protocol (PTP) on the appliance. If you disable PTP, make sure you enable Network Time Protocol (NTP) on the cluster.<br/>Default value: ENABLE<br/>Possible values = DISABLE, ENABLE. """ try : return self._state except Exception as e: raise e @state.setter def state(self, state) : r"""Enables or disables Precision Time Protocol (PTP) on the appliance. If you disable PTP, make sure you enable Network Time Protocol (NTP) on the cluster.<br/>Default value: ENABLE<br/>Possible values = DISABLE, ENABLE """ try : self._state = state except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(ptp_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.ptp except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : return 0 except Exception as e : raise e @classmethod def update(cls, client, resource) : r""" Use this API to update ptp. """ try : if type(resource) is not list : updateresource = ptp() updateresource.state = resource.state return updateresource.update_resource(client) except Exception as e : raise e @classmethod def get(cls, client, name="", option_="") : r""" Use this API to fetch all the ptp resources that are configured on netscaler. """ try : if not name : obj = ptp() response = obj.get_resources(client, option_) return response except Exception as e : raise e class State: DISABLE = "DISABLE" ENABLE = "ENABLE" class ptp_response(base_response) : def __init__(self, length=1) : self.ptp = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.ptp = [ptp() for _ in range(length)]
[ "zhuwei@xsky.com" ]
zhuwei@xsky.com
71de8ab94c91d087323136dda99bddbbcd9ec73f
73c01a3f052f8ef63890ec3c2e28403ad41e9a71
/service/migrations/0007_ticket_photo.py
806039291d087ae7c08ce662cfe1a5f5ce6385fb
[]
no_license
Jokey90/aho
4c007c65c819efb726a732a8f36067c5a0226100
8bcd41e9ef7d40f07499429f385d4fec590636f6
refs/heads/master
2020-03-21T22:28:36.395996
2018-06-29T09:25:05
2018-06-29T09:25:05
139,128,834
0
0
null
null
null
null
UTF-8
Python
false
false
553
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-08-16 12:57 from __future__ import unicode_literals from django.db import migrations, models import service.models.ticket class Migration(migrations.Migration): dependencies = [ ('service', '0006_auto_20170804_1420'), ] operations = [ migrations.AddField( model_name='ticket', name='photo', field=models.FileField(blank=True, null=True, upload_to=service.models.ticket.file_path, verbose_name='Фото'), ), ]
[ "Kishkurno_AS@dsdf.cds.ru" ]
Kishkurno_AS@dsdf.cds.ru
fb24842332a1d4553a27ced6b2f8e60c9554ad3d
c50fb310d8c52284be2c636f951de796eededae9
/47.py
f181b2c679dcf18046f30a11c88ec47c1b317684
[]
no_license
Deepakdk7/Playerset3
6f46f638f22d894b9cc93d81b27c221f9dcdaad3
636e1feed0f97bbc9e9495a5dbb81a512ed980c5
refs/heads/master
2020-06-03T07:35:23.203780
2019-08-06T08:56:16
2019-08-06T08:56:16
191,497,095
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
ax=list(map(int,input().split())) if ax[0]+ax[1]+ax[2]==180 and ax[0]!=0 and ax[1]!=0 and ax[2]!=0: print('yes') else: print('no')
[ "noreply@github.com" ]
Deepakdk7.noreply@github.com
27d1a3c411b12208e8d4fb289eb2af4bf85cb440
ca75f7099b93d8083d5b2e9c6db2e8821e63f83b
/z2/part3/updated_part2_batch/jm/parser_errors_2/239061968.py
6824dca6f32823cb12a5f3a0a45879a6c8761224
[ "MIT" ]
permissive
kozakusek/ipp-2020-testy
210ed201eaea3c86933266bd57ee284c9fbc1b96
09aa008fa53d159672cc7cbf969a6b237e15a7b8
refs/heads/master
2022-10-04T18:55:37.875713
2020-06-09T21:15:37
2020-06-09T21:15:37
262,290,632
0
0
MIT
2020-06-09T21:15:38
2020-05-08T10:10:47
C
UTF-8
Python
false
false
1,180
py
from part1 import ( gamma_board, gamma_busy_fields, gamma_delete, gamma_free_fields, gamma_golden_move, gamma_golden_possible, gamma_move, gamma_new, ) """ scenario: test_random_actions uuid: 239061968 """ """ random actions, total chaos """ board = gamma_new(2, 3, 2, 4) assert board is not None assert gamma_move(board, 1, 0, 1) == 1 assert gamma_move(board, 1, 0, 1) == 0 assert gamma_move(board, 2, 0, 2) == 1 assert gamma_move(board, 1, 1, 2) == 1 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_free_fields(board, 2) == 3 assert gamma_move(board, 1, 0, 1) == 0 assert gamma_move(board, 1, 1, 1) == 1 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_free_fields(board, 2) == 2 assert gamma_move(board, 1, 0, 1) == 0 assert gamma_move(board, 1, 0, 1) == 0 assert gamma_move(board, 2, 1, 2) == 0 assert gamma_move(board, 1, 0, 0) == 1 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_move(board, 2, 0, 2) == 0 assert gamma_move(board, 1, 1, 2) == 0 assert gamma_move(board, 1, 1, 1) == 0 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_golden_possible(board, 2) == 1 gamma_delete(board)
[ "noreply@github.com" ]
kozakusek.noreply@github.com
7a877964c195ba8b4611fc1c614aab2598a7d346
b2301365d220ff0295b8beddbed38b0581f9610d
/Django/landscapes/landscapes/urls.py
6bb380064f3a5011c960add9367daf6a83339d72
[]
no_license
JoA-MoS/Python
db246a5ff2201c6ef1dfb9d9b0fd8a37e1d7c46d
4547c2667f3eaf0a001532bb2b103aab3c344fbe
refs/heads/master
2021-08-16T11:18:20.420868
2017-07-21T05:52:18
2017-07-21T05:52:18
96,125,892
0
0
null
2021-06-10T18:40:09
2017-07-03T15:34:52
Python
UTF-8
Python
false
false
786
py
"""landscapes URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url(r'^', include('apps.landscape.urls')), ]
[ "justin.r.dietz@gmail.com" ]
justin.r.dietz@gmail.com
06610cfadfa7b7f1355f379fc9b4d330bce025b0
a1e7457b5d1ef03ea9d891a6886718b3029c2ba4
/zoe_scheduler/state/blobs/__init__.py
35e47533ccc22fcd06c1ecf2657d097af0742752
[ "Apache-2.0" ]
permissive
ddcy/zoe
06bd104b0d3b632ed18ff8a8cc5b580b1f140b1f
bd1ac8cdefeda3ebd1ccc941243b781cb7c0beb2
refs/heads/master
2020-12-26T21:46:17.128925
2016-02-26T17:52:20
2016-02-26T17:52:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
929
py
# Copyright (c) 2016, Daniele Venzano # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. class BaseBlobs: def init(self): pass def store_blob(self, kind, name, data): raise NotImplementedError def load_blob(self, kind, name): raise NotImplementedError def delete_blob(self, kind, name): raise NotImplementedError def list_blobs(self, kind): raise NotImplementedError
[ "venza@brownhat.org" ]
venza@brownhat.org