blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
288
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
112
| license_type
stringclasses 2
values | repo_name
stringlengths 5
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 684
values | visit_date
timestamp[us]date 2015-08-06 10:31:46
2023-09-06 10:44:38
| revision_date
timestamp[us]date 1970-01-01 02:38:32
2037-05-03 13:00:00
| committer_date
timestamp[us]date 1970-01-01 02:38:32
2023-09-06 01:08:06
| github_id
int64 4.92k
681M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 22
values | gha_event_created_at
timestamp[us]date 2012-06-04 01:52:49
2023-09-14 21:59:50
⌀ | gha_created_at
timestamp[us]date 2008-05-22 07:58:19
2023-08-21 12:35:19
⌀ | gha_language
stringclasses 147
values | src_encoding
stringclasses 25
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 128
12.7k
| extension
stringclasses 142
values | content
stringlengths 128
8.19k
| authors
listlengths 1
1
| author_id
stringlengths 1
132
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
96e8c5c0de2d305c63d6d23a0b1aaeb507e67ff8
|
ddd7d37f3a98b508e16f27978bf788fc61358225
|
/wsgi.py
|
06b4bc7a115d792c6e0690fac47c8d93e9c07d3e
|
[] |
no_license
|
nbh847/bbs_practice
|
b124e59b86b8fb65b2e5ee34b8e7065a05bcee41
|
21946cbf27a34028a53144a2c202d763fda6ee21
|
refs/heads/master
| 2020-03-28T19:20:31.590484
| 2018-10-24T14:15:40
| 2018-10-24T14:15:40
| 148,966,258
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 624
|
py
|
#!/usr/bin/env python3
import sys
from os.path import abspath
from os.path import dirname
# 设置当前目录为工作目录
sys.path.insert(0, abspath(dirname(__file__)))
# 引入 app.py
import app
# 必须有一个叫做 application 的变量
# gunicorn 就要这个变量
# 这个变量的值必须是 Flask 实例
# 这是规定的套路(协议)
application = app.app
# 这是把代码部署到 apache gunicorn nginx 后面的套路
"""
➜ ~ cat /etc/supervisor/conf.d/xx.conf
[program:todo]
command=/usr/local/bin/gunicorn wsgi --bind 0.0.0.0:2000 --pid /tmp/todo.pid
directory=/root/web13
autostart=true
"""
|
[
"binhui.ni@yourdream.cc"
] |
binhui.ni@yourdream.cc
|
7c2da6da0584f39818fbf738cbb2c1a7d78c13aa
|
8535bbc7781c4691880c935bd7025646f0dbb7c3
|
/check mirror images of two arrays.py
|
daa0276c484e75516f27c7d2d1b8b51dc8139981
|
[] |
no_license
|
Mahadev0317/Codekata
|
3b2149f3116ebe4b48b2059b873544c27b23ff39
|
c35fa0ed0c4870faea69152638f461e743a9ff69
|
refs/heads/master
| 2020-04-15T04:59:17.062947
| 2019-05-29T04:46:35
| 2019-05-29T04:46:35
| 164,404,727
| 1
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 183
|
py
|
n=int(input())
li=list(map(int,input().split()))
lis=list(map(int,input().split()))
k=n-1
for i in range(n):
if li[i]!=lis[k]:
print("no")
break
k-=1
else:
print("yes")
|
[
"noreply@github.com"
] |
Mahadev0317.noreply@github.com
|
9404fc7b69c9461b11360f92805c0269adeb68e9
|
f07a42f652f46106dee4749277d41c302e2b7406
|
/Data Set/bug-fixing-5/9e606bfdbe039112b609c263cb4dfc23e31ffe93-<check_regressors_train>-bug.py
|
46b71af4c66c69b7a702b9f117d56ad37df9194f
|
[] |
no_license
|
wsgan001/PyFPattern
|
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
|
cc347e32745f99c0cd95e79a18ddacc4574d7faa
|
refs/heads/main
| 2023-08-25T23:48:26.112133
| 2021-10-23T14:11:22
| 2021-10-23T14:11:22
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,033
|
py
|
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
def check_regressors_train(name, regressor_orig):
(X, y) = _boston_subset()
y = StandardScaler().fit_transform(y.reshape((- 1), 1))
y = y.ravel()
regressor = clone(regressor_orig)
y = multioutput_estimator_convert_y_2d(regressor, y)
rnd = np.random.RandomState(0)
if ((not hasattr(regressor, 'alphas')) and hasattr(regressor, 'alpha')):
regressor.alpha = 0.01
if (name == 'PassiveAggressiveRegressor'):
regressor.C = 0.01
assert_raises(ValueError, regressor.fit, X, y[:(- 1)])
if (name in CROSS_DECOMPOSITION):
y_ = np.vstack([y, ((2 * y) + rnd.randint(2, size=len(y)))])
y_ = y_.T
else:
y_ = y
set_random_state(regressor)
regressor.fit(X, y_)
regressor.fit(X.tolist(), y_.tolist())
y_pred = regressor.predict(X)
assert_equal(y_pred.shape, y_.shape)
if (name not in ('PLSCanonical', 'CCA', 'RANSACRegressor')):
assert_greater(regressor.score(X, y_), 0.5)
|
[
"dg1732004@smail.nju.edu.cn"
] |
dg1732004@smail.nju.edu.cn
|
3b2933c2a78105815d35f620b0fe153ed6a99d8c
|
fca36ece36254e6175d7ac26791ae0e0abedd040
|
/ex03.py
|
8f728c512cd7fc125cef46901dabc8aa8b3eabc0
|
[] |
no_license
|
DikranHachikyan/python-programming-20190318
|
72c63ccdb716db871c755bb589e333c9fc57bcd5
|
0e6b4c599be3d69efdb4acf7817abc3d9d41eb7b
|
refs/heads/master
| 2020-04-29T23:35:10.401263
| 2019-04-18T14:59:30
| 2019-04-18T14:59:30
| 176,480,840
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 130
|
py
|
#!/home/wizard/anaconda3/bin/python
def main():
x = int(input('x='))
if x < 10:
print('x={}'.format(x))
main()
|
[
"dhachikian@expert-bg.org"
] |
dhachikian@expert-bg.org
|
1f8bd03e1ef888abd81c307876d56b9be3c041cf
|
b3a2ac9eb02a6eef9e6f3504afabc6400f894f56
|
/clld/tests/test_web_app.py
|
b32979cb1f2d24ff5e626188403624fba5dc541a
|
[
"BSD-3-Clause",
"MIT",
"Apache-2.0"
] |
permissive
|
Anaphory/clld
|
9f67c477e228eff05fdc7b7fa4310c703af02108
|
bed1a6d08275a41fd7b5d13a0af19e4e538d186c
|
refs/heads/master
| 2021-01-17T04:50:05.382411
| 2017-02-16T11:20:11
| 2017-02-16T11:20:11
| 66,831,136
| 0
| 0
| null | 2016-08-29T09:43:06
| 2016-08-29T09:43:05
| null |
UTF-8
|
Python
| false
| false
| 3,180
|
py
|
# coding: utf8
from __future__ import unicode_literals, print_function, division, absolute_import
import importlib
from zope.interface import Interface
from pyramid.testing import Configurator
from pyramid.httpexceptions import HTTPNotFound
from purl import URL
from clld.db.models.common import Contribution, ValueSet, Language, Language_files
from clld.tests.util import TestWithEnv, Route, TESTS_DIR, WithDbAndDataMixin
from clld.interfaces import IMapMarker
from clld.web.adapters.download import N3Dump
class Tests(WithDbAndDataMixin, TestWithEnv):
def test_CLLDRequest(self):
self.assertTrue(isinstance(self.env['request'].purl, URL))
c = self.env['request'].db.query(Contribution).first()
self.env['request'].resource_url(c, ext='geojson')
self.assertEqual(None, self.env['request'].ctx_for_url('/some/path/to/nowhere'))
assert self.env['request'].ctx_for_url('/')
self.env['request'].file_url(Language_files(id='1', object=Language.first()))
assert self.env['request'].get_datatable('valuesets', ValueSet)
assert self.env['request'].blog is None
def test_menu_item(self):
from clld.web.app import menu_item
assert menu_item('contributions', None, self.env['request'])
def test_ctx_factory(self):
from clld.web.app import ctx_factory
for model, route in [
(Contribution, 'contributions'),
(ValueSet, 'valuesets'),
(Language, 'languages'),
]:
obj = model.first()
self.set_request_properties(
matchdict={'id': obj.id}, matched_route=Route(route))
ctx_factory(model, 'index', self.env['request'])
ctx_factory(model, 'rsc', self.env['request'])
self.set_request_properties(matchdict={'id': 'xxx'})
self.assertRaises(
HTTPNotFound, ctx_factory, Contribution, 'rsc', self.env['request'])
def test_MapMarker(self):
marker = self.env['request'].registry.getUtility(IMapMarker)
self.assertTrue(marker(None, self.env['request']))
def test_add_config_from_file(self):
from clld.web.app import add_settings_from_file
config = Configurator()
add_settings_from_file(config, TESTS_DIR.joinpath('test.ini'))
assert 'app:main.use' in config.registry.settings
def test_config(self):
class IF(Interface):
pass
config = Configurator(
root_package=importlib.import_module('clld.web'),
settings={
'sqlalchemy.url': 'sqlite://',
'clld.pacific_centered_maps': True})
config.include('clld.web.app')
# should have no effect, because a resource with this name is registered by
# default:
config.register_menu('languages', ('sources', dict(label='References')))
config.register_resource('language', None, None)
config.register_resource('testresource', Language, IF, with_index=True, test=True)
config.register_download(N3Dump(Language, 'clld'))
config.add_301('/301pattern', 'http://example.org')
config.add_410('/410pattern')
|
[
"xrotwang@googlemail.com"
] |
xrotwang@googlemail.com
|
ba67521102acfb8f7814511d76092c36dc6602be
|
5ca85847885c6fd6f9728b0b2dffb66e96a81a1d
|
/hemlock/database/types/__init__.py
|
6c06c43fc1ad509b883efcf9d4a7a2afd3756cbc
|
[] |
no_license
|
syfreed/hemlock_test2
|
682d843636883a6a2b883932cd7282e9b865ebcd
|
61933fd17630ddd1bb46d8f2090b1b039a3b4e99
|
refs/heads/master
| 2020-08-03T11:21:18.460905
| 2019-09-29T22:36:36
| 2019-09-29T22:36:36
| 211,733,895
| 0
| 0
| null | 2019-10-22T14:21:27
| 2019-09-29T22:25:30
|
Python
|
UTF-8
|
Python
| false
| false
| 227
|
py
|
"""Custom Hemlock database types"""
from hemlock.database.types.data_frame import DataFrame, DataFrameType
from hemlock.database.types.function import Function, FunctionType
from hemlock.database.types.markup import MarkupType
|
[
"dsbowen@wharton.upenn.edu"
] |
dsbowen@wharton.upenn.edu
|
380aef44b9b7964ea582816fee79936176253abd
|
8152e8fba564bcfa435c45dab41cd6f0b455f857
|
/farmdation_project/farmdation/contrib/sites/migrations/0002_set_site_domain_and_name.py
|
4c91e98dd67d65f97ee31ca5c1c705f719a236ea
|
[
"MIT"
] |
permissive
|
panuta/django-storehouse
|
af068d9fb356f1f6243854c8944ff8146833202e
|
6b90b0de231671b20f2f549a74a52d87694d821a
|
refs/heads/master
| 2021-01-17T18:19:45.791785
| 2016-07-02T02:52:04
| 2016-07-02T02:52:04
| 62,430,151
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,152
|
py
|
"""
To understand why this file is here, please read:
http://cookiecutter-django.readthedocs.org/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django
"""
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.conf import settings
from django.db import migrations
def update_site_forward(apps, schema_editor):
"""Set site domain and name."""
Site = apps.get_model("sites", "Site")
Site.objects.update_or_create(
id=settings.SITE_ID,
defaults={
"domain": settings.WEBSITE_DOMAIN,
"name": settings.WEBSITE_NAME
}
)
def update_site_backward(apps, schema_editor):
"""Revert site domain and name to default."""
Site = apps.get_model("sites", "Site")
Site.objects.update_or_create(
id=settings.SITE_ID,
defaults={
"domain": "example.com",
"name": "example.com"
}
)
class Migration(migrations.Migration):
dependencies = [
('sites', '0001_initial'),
]
operations = [
migrations.RunPython(update_site_forward, update_site_backward),
]
|
[
"panuta@gmail.com"
] |
panuta@gmail.com
|
df67e70950e1afba7bbc49e3c1d809e2e069b4f4
|
ecb6b752523a126ef17895854b18e02df41c4cfe
|
/app_backend/tests/test_skf_categories.py
|
cd07666e4b26e67263b352f3da1a4e2f7482217e
|
[
"MIT"
] |
permissive
|
zhanghe06/bearing_project
|
cd6a1b2ba509392da37e5797a3619454ca464276
|
25729aa7a8a5b38906e60b370609b15e8911ecdd
|
refs/heads/master
| 2023-05-27T17:23:22.561045
| 2023-05-23T09:26:07
| 2023-05-23T09:39:14
| 126,219,603
| 2
| 5
|
MIT
| 2022-12-08T03:11:27
| 2018-03-21T17:54:44
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 1,824
|
py
|
#!/usr/bin/env python
# encoding: utf-8
"""
@author: zhanghe
@software: PyCharm
@file: test_skf_categories.py
@time: 2020-05-19 16:32
"""
import csv
import requests
def test_get_skf_categories(csv_name, category_id):
params = {
'id': category_id,
'language': 'en',
'source': 'webpim',
'site': '307',
'hits': 100,
'offset': 0,
}
url = 'https://search.skf.com/prod/search-skfcom/rest/apps/opc_v1/searchers/categories'
header = ['Designation', 'd[mm]', 'D[mm]', 'B[mm]', 'C[kN]', 'Co[kN]', 'Pu[kN]', 'G-Speed[r/min]', 'O-Speed[r/min]']
out = open('skf_%s.csv' % csv_name, 'a')
csv_write = csv.writer(out, dialect='excel')
csv_write.writerow(header)
c = 0
next_page = 0
while 1:
if next_page == -1:
break
res = requests.get(url, params=params).json()
rows = res.get('documentList', {}).get('documents', [])
for r in rows:
data = [r['title']] + r['table_values']
csv_write.writerow(data[:9])
c += 1
print(params['hits'] * next_page + len(rows))
if res.get('documentList', {}).get('numberOfHits', 0) > params['hits'] * next_page + len(rows):
next_page += 1
else:
next_page = -1
params['offset'] = params['hits'] * next_page
out.close()
print('共计%s行记录' % c)
def run():
category_map = {
'angular_contact_ball_bearings': 'BA1_010',
'cylindrical_roller_bearings': 'BC1_010',
'angular_contact_thrust_ball_bearings_double_direction': 'BEA_010',
'angular_contact_thrust_ball_bearings_for_screw_drives_single direction': 'BDA_010',
}
for k, v in category_map.items():
test_get_skf_categories(k, v)
if __name__ == '__main__':
run()
|
[
"zhang_he06@163.com"
] |
zhang_he06@163.com
|
91aaf6d522486538a0edfd27de42e4a83a77f21e
|
ab4b210d204512f51a4807a652ccc0edaabe3341
|
/kombu/tests/test_functional/test_amqplib.py
|
94b9bfc92db9136c20c361ea1cc76fe35f9ccf9a
|
[
"BSD-3-Clause"
] |
permissive
|
mixedpuppy/kombu
|
2c4ec30ccc8ab9ccb20bab525cd525febb085ce2
|
04b9a6f2fb6854fadbb4c29880866135354fdeef
|
refs/heads/master
| 2021-01-18T08:40:39.106451
| 2010-09-06T22:41:02
| 2010-09-06T22:41:02
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,517
|
py
|
import socket
import time
import unittest2 as unittest
from nose import SkipTest
from kombu import BrokerConnection
from kombu import Producer, Consumer, Exchange, Queue
def consumeN(conn, consumer, n=1):
messages = []
def callback(message_data, message):
messages.append(message_data)
message.ack()
prev, consumer.callbacks = consumer.callbacks, [callback]
while True:
conn.drain_events(timeout=1)
if len(messages) >= n:
break
consumer.callback = prev
return messages
class test_amqplib(unittest.TestCase):
def purge(self, names):
chan = self.connection.channel()
map(chan.queue_purge, names)
def setUp(self):
self.connection = BrokerConnection(transport="amqplib")
try:
self.connection.connect()
except socket.error:
self.connected = False
else:
self.connected = True
self.exchange = Exchange("tamqplib", "direct")
self.queue = Queue("tamqplib", self.exchange, "tamqplib")
def test_produce__consume(self):
if not self.connected:
raise SkipTest("Broker not running.")
chan1 = self.connection.channel()
producer = Producer(chan1, self.exchange)
producer.publish({"foo": "bar"}, routing_key="tamqplib")
chan1.close()
chan2 = self.connection.channel()
consumer = Consumer(chan2, self.queue)
message = consumeN(self.connection, consumer)
self.assertDictEqual(message[0], {"foo": "bar"})
chan2.close()
self.purge(["tamqplib"])
def test_produce__consume_multiple(self):
if not self.connected:
raise SkipTest("Broker not running.")
chan1 = self.connection.channel()
producer = Producer(chan1, self.exchange)
b1 = Queue("pyamqplib.b1", self.exchange, "b1")
b2 = Queue("pyamqplib.b2", self.exchange, "b2")
b3 = Queue("pyamqplib.b3", self.exchange, "b3")
producer.publish("b1", routing_key="b1")
producer.publish("b2", routing_key="b2")
producer.publish("b3", routing_key="b3")
chan1.close()
chan2 = self.connection.channel()
consumer = Consumer(chan2, [b1, b2, b3])
messages = consumeN(self.connection, consumer, 3)
self.assertItemsEqual(messages, ["b1", "b2", "b3"])
chan2.close()
self.purge(["pyamqplib.b1", "pyamqplib.b2", "pyamqplib.b3"])
def test_timeout(self):
if not self.connected:
raise SkipTest("Broker not running.")
chan = self.connection.channel()
self.purge([self.queue.name])
consumer = Consumer(chan, self.queue)
self.assertRaises(socket.timeout, self.connection.drain_events,
timeout=0.3)
consumer.cancel()
def test_basic_get(self):
chan1 = self.connection.channel()
producer = Producer(chan1, self.exchange)
producer.publish({"basic.get": "this"}, routing_key="basic_get")
chan1.close()
chan2 = self.connection.channel()
queue = Queue("amqplib_basic_get", self.exchange, "basic_get")
queue = queue(chan2)
queue.declare()
for i in range(50):
m = queue.get()
if m:
break
time.sleep(0.1)
self.assertEqual(m.payload, {"basic.get": "this"})
chan2.close()
def tearDown(self):
if self.connected:
self.connection.close()
|
[
"askh@opera.com"
] |
askh@opera.com
|
f2f0d7e4e1a772df81cc5683ffdb4d196a8873f2
|
219566971a08625ca14c5ea7a6e1231454694a4b
|
/utils/sk_utils/encoder.py
|
bf2df2abcba4cbf2f1eb74522ece933562b35e72
|
[] |
no_license
|
daxiongshu/kaggle-review
|
6b22e73702cd7a61f3d175f301c37dcc0d6e3ae2
|
fc02e85d0544dd64d57c05081c8774dc87d1972e
|
refs/heads/master
| 2021-01-19T18:03:23.795917
| 2017-11-26T18:16:25
| 2017-11-26T18:16:25
| 101,109,595
| 28
| 14
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,317
|
py
|
from sklearn.feature_extraction import DictVectorizer
from scipy import sparse
def onehot_encode(tr,te,cols=None):
if cols is None:
cols = [i for i in tr.columns.values if i in te.columns.values]
vec = DictVectorizer()
for col in cols:
tr[col] = tr[col].map(str)
te[col] = te[col].map(str)
print("start fitting")
X = vec.fit_transform(tr[cols].T.to_dict().values())
Xt = vec.transform(te[cols].T.to_dict().values())
print("done fitting",X.shape,Xt.shape)
return X,Xt
def onehot_encode_bar(tr,te,cols=None,bar=10000):
if cols is None:
cols = [i for i in tr.columns.values if i in te.columns.values]
vec = DictVectorizer()
cat,num = [],[]
for col in cols:
nu = tr[col].unique().shape[0]
if (nu<bar and nu>2) or tr[col].dtype=='object':
cat.append(col)
tr[col] = tr[col].map(str)
te[col] = te[col].map(str)
else:
num.append(col)
print("start fitting num of cat features:",len(cat))
X = vec.fit_transform(tr[cat].T.to_dict().values())
Xt = vec.transform(te[cat].T.to_dict().values())
print("done fitting",X.shape,Xt.shape)
X = sparse.hstack([X,tr[num].values],format='csr')
Xt = sparse.hstack([Xt,te[num].values],format='csr')
return X,Xt
|
[
"aixueer4ever@gmail.com"
] |
aixueer4ever@gmail.com
|
af68bf54c136aa54b298013c4dfeb5bfe6778541
|
ad13583673551857615498b9605d9dcab63bb2c3
|
/output/instances/nistData/list/float/Schema+Instance/NISTXML-SV-IV-list-float-minLength-2-2.py
|
ff4cdb9e18778ab154122ead5ea2d8575b566545
|
[
"MIT"
] |
permissive
|
tefra/xsdata-w3c-tests
|
397180205a735b06170aa188f1f39451d2089815
|
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
|
refs/heads/main
| 2023-08-03T04:25:37.841917
| 2023-07-29T17:10:13
| 2023-07-30T12:11:13
| 239,622,251
| 2
| 0
|
MIT
| 2023-07-25T14:19:04
| 2020-02-10T21:59:47
|
Python
|
UTF-8
|
Python
| false
| false
| 392
|
py
|
from output.models.nist_data.list_pkg.float_pkg.schema_instance.nistschema_sv_iv_list_float_min_length_2_xsd.nistschema_sv_iv_list_float_min_length_2 import NistschemaSvIvListFloatMinLength2
obj = NistschemaSvIvListFloatMinLength2(
value=[
4.9827486e+21,
3.5627644e+26,
5.6398728e+22,
8.9484692e+16,
5.2629679e+25,
6.6862685e+16,
]
)
|
[
"tsoulloftas@gmail.com"
] |
tsoulloftas@gmail.com
|
1806b9d06d3b1f2f058b6de59649d283c0cc1248
|
d15092c5fa7e5d825f5204fa2e799f88c9495de5
|
/non_semantic_speech_benchmark/export_model/model_export_utils.py
|
4bd07af3f1681f17c17e09b7d7d39b1a8d54e647
|
[
"CC-BY-4.0",
"Apache-2.0"
] |
permissive
|
GuyLor/google-research
|
229e27ff7cf1c838736704537e3636defa710200
|
083ccfb249a3e2bfc49a9d56f7d2b7aae42e8c2c
|
refs/heads/master
| 2023-09-05T16:28:26.720671
| 2021-11-16T06:17:56
| 2021-11-16T06:17:56
| 428,534,818
| 0
| 0
|
Apache-2.0
| 2021-11-16T05:56:17
| 2021-11-16T05:56:16
| null |
UTF-8
|
Python
| false
| false
| 6,971
|
py
|
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities and common steps for model export."""
import os
from typing import Any, Dict, List, Optional
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf
from non_semantic_speech_benchmark.data_prep import data_prep_utils
from non_semantic_speech_benchmark.distillation import frontend_lib
from non_semantic_speech_benchmark.distillation import models
from non_semantic_speech_benchmark.distillation.compression_lib import compression_op as compression
from non_semantic_speech_benchmark.distillation.compression_lib import compression_wrapper
def get_experiment_dirs(experiment_dir):
"""Returns a list of experiment directories.
NOTE: This assumes that only folders with hyperparams in their name occur in
the working dict.
Args:
experiment_dir: Base for all directories.
Returns:
List of specific experiment subdirs.
"""
if not tf.io.gfile.exists(experiment_dir):
raise ValueError(f'Experiment dir doesn\'t exist: {experiment_dir}')
experiment_dirs = [f for f in tf.io.gfile.listdir(experiment_dir)
if tf.io.gfile.isdir(os.path.join(experiment_dir, f))]
return experiment_dirs
def get_params(experiment_dir_str):
"""Extracts hyperparams from experiment directory string.
Args:
experiment_dir_str: The folder-name for the set of hyperparams. Eg:
'1-al=1.0,ap=False,lr=0.0001,ms=small,tbs=512'
Returns:
A dict mapping param key (str) to eval'ed value (float/eval/string).
"""
parsed_params = {}
start_idx = experiment_dir_str.find('-') + 1
for kv in experiment_dir_str[start_idx:].split(','):
cur_split = kv.split('=')
if len(cur_split) != 2:
raise ValueError(f'Folder doesn\'t split properly: {kv}')
key, value = cur_split
try:
value = eval(value) # pylint: disable=eval-used
except: # pylint: disable=bare-except
pass
parsed_params[key] = value
return parsed_params
def get_default_compressor():
compression_params = compression.CompressionOp.get_default_hparams().parse('')
compressor = compression_wrapper.get_apply_compression(
compression_params, global_step=0)
return compressor
def get_model(checkpoint_folder_path,
params,
tflite_friendly,
checkpoint_number = None,
include_frontend = False):
"""Given folder & training params, exports SavedModel without frontend."""
# Optionally override frontend flags from
# `non_semantic_speech_benchmark/export_model/tf_frontend.py`
override_flag_names = ['frame_hop', 'n_required', 'num_mel_bins',
'frame_width']
for flag_name in override_flag_names:
if flag_name in params:
setattr(flags.FLAGS, flag_name, params[flag_name])
static_model = models.get_keras_model(
params['mt'],
bottleneck_dimension=None,
output_dimension=1024,
truncate_output=params['tr'] if 'tr' in params else False,
frontend=include_frontend,
compressor=None,
tflite=tflite_friendly)
checkpoint = tf.train.Checkpoint(model=static_model)
if checkpoint_number:
checkpoint_to_load = os.path.join(
checkpoint_folder_path, f'ckpt-{checkpoint_number}')
assert tf.train.load_checkpoint(checkpoint_to_load)
else:
checkpoint_to_load = tf.train.latest_checkpoint(checkpoint_folder_path)
checkpoint.restore(checkpoint_to_load).expect_partial()
return static_model
def convert_tflite_model(model, quantize,
model_path):
"""Uses TFLiteConverter to convert a Keras Model.
Args:
model: Keras model obtained from get_tflite_friendly_model.
quantize: Whether to quantize TFLite model using dynamic quantization. See:
https://www.tensorflow.org/lite/performance/post_training_quant
model_path: Path for TFLite file.
"""
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
# There is a GatherV2 op in the frontend that isn't supported by TFLite
# as a builtin op. (It works as a TFLite builtin only if the sample size
# to the frontend is a constant)
# However, TFLite supports importing some relevant operators from TF,
# at the cost of binary size (~ a few MB).
# See: https://www.tensorflow.org/lite/guide/ops_select
# NOTE: This has no effect on the model/binary size if the graph does not
# required the extra TF ops (for example, for no-frontend versio
tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.
]
if quantize:
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_buffer = converter.convert()
with tf.io.gfile.GFile(model_path, 'wb') as f:
f.write(tflite_buffer)
logging.info('Exported TFLite model to %s.', model_path)
def sanity_check(
include_frontend,
model_path,
embedding_dim,
tflite,
n_required = None,
frame_width = None,
num_mel_bins = None):
"""Sanity check model by running dummy inference."""
n_required = n_required or flags.FLAGS.n_required
frame_width = frame_width or flags.FLAGS.frame_width
num_mel_bins = num_mel_bins or flags.FLAGS.num_mel_bins
if include_frontend:
input_shape = (1, 2 * n_required)
expected_output_shape = (7, embedding_dim)
else:
feats_inner_dim = frontend_lib.get_frontend_output_shape()[0] * frame_width
input_shape = (1, feats_inner_dim, num_mel_bins, 1)
expected_output_shape = (1, embedding_dim)
logging.info('Input shape: %s. Expected output shape: %s', input_shape,
expected_output_shape)
model_input = np.zeros(input_shape, dtype=np.float32)
if tflite:
logging.info('Building tflite interpreter...')
interpreter = data_prep_utils.build_tflite_interpreter(
model_path)
logging.info('Running inference...')
output = data_prep_utils.samples_to_embedding_tflite(
model_input, sample_rate=16000, interpreter=interpreter, output_key='0',
name='sanity_check')
else:
logging.info('Loading and running inference with SavedModel...')
model = tf.saved_model.load(model_path)
output = model(model_input)['embedding'].numpy()
np.testing.assert_array_equal(output.shape, expected_output_shape)
logging.info('Model "%s" worked.', model_path)
|
[
"copybara-worker@google.com"
] |
copybara-worker@google.com
|
4a0f4b497cb62c2567f2afacb29986f97a64d2b4
|
ddea930392ac5360b21e9043b620e703a9ccb31c
|
/tfx/components/transform/component.py
|
7cb900078da95ed33cbe2fdf9bd9a465b5e9a56e
|
[
"Apache-2.0"
] |
permissive
|
Ark-kun/tfx
|
9c82b688776c80b2435bbb6154476526e8525ec8
|
f685f0387bd145316f43ceb484e64f893e749dcb
|
refs/heads/master
| 2021-07-25T05:58:15.168607
| 2020-05-22T01:07:44
| 2020-05-22T01:08:18
| 180,868,735
| 0
| 0
|
Apache-2.0
| 2019-04-11T20:01:57
| 2019-04-11T20:01:57
| null |
UTF-8
|
Python
| false
| false
| 6,330
|
py
|
# Lint as: python2, python3
# Copyright 2019 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFX Transform component definition."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Optional, Text, Union
import absl
from tfx import types
from tfx.components.base import base_component
from tfx.components.base import executor_spec
from tfx.components.transform import executor
from tfx.orchestration import data_types
from tfx.types import artifact
from tfx.types import artifact_utils
from tfx.types import standard_artifacts
from tfx.types.standard_component_specs import TransformSpec
class Transform(base_component.BaseComponent):
"""A TFX component to transform the input examples.
The Transform component wraps TensorFlow Transform (tf.Transform) to
preprocess data in a TFX pipeline. This component will load the
preprocessing_fn from input module file, preprocess both 'train' and 'eval'
splits of input examples, generate the `tf.Transform` output, and save both
transform function and transformed examples to orchestrator desired locations.
## Providing a preprocessing function
The TFX executor will use the estimator provided in the `module_file` file
to train the model. The Transform executor will look specifically for the
`preprocessing_fn()` function within that file.
An example of `preprocessing_fn()` can be found in the [user-supplied
code]((https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils.py))
of the TFX Chicago Taxi pipeline example.
## Example
```
# Performs transformations and feature engineering in training and serving.
transform = Transform(
examples=example_gen.outputs['examples'],
schema=infer_schema.outputs['schema'],
module_file=module_file)
```
Please see https://www.tensorflow.org/tfx/transform for more details.
"""
SPEC_CLASS = TransformSpec
EXECUTOR_SPEC = executor_spec.ExecutorClassSpec(executor.Executor)
def __init__(
self,
examples: types.Channel = None,
schema: types.Channel = None,
module_file: Optional[Union[Text, data_types.RuntimeParameter]] = None,
preprocessing_fn: Optional[Union[Text,
data_types.RuntimeParameter]] = None,
transform_graph: Optional[types.Channel] = None,
transformed_examples: Optional[types.Channel] = None,
input_data: Optional[types.Channel] = None,
instance_name: Optional[Text] = None,
enable_cache: Optional[bool] = None):
"""Construct a Transform component.
Args:
examples: A Channel of type `standard_artifacts.Examples` (required).
This should contain the two splits 'train' and 'eval'.
schema: A Channel of type `standard_artifacts.Schema`. This should
contain a single schema artifact.
module_file: The file path to a python module file, from which the
'preprocessing_fn' function will be loaded. The function must have the
following signature.
def preprocessing_fn(inputs: Dict[Text, Any]) -> Dict[Text, Any]:
...
where the values of input and returned Dict are either tf.Tensor or
tf.SparseTensor. Exactly one of 'module_file' or 'preprocessing_fn'
must be supplied.
preprocessing_fn: The path to python function that implements a
'preprocessing_fn'. See 'module_file' for expected signature of the
function. Exactly one of 'module_file' or 'preprocessing_fn' must be
supplied.
transform_graph: Optional output 'TransformPath' channel for output of
'tf.Transform', which includes an exported Tensorflow graph suitable for
both training and serving;
transformed_examples: Optional output 'ExamplesPath' channel for
materialized transformed examples, which includes both 'train' and
'eval' splits.
input_data: Backwards compatibility alias for the 'examples' argument.
instance_name: Optional unique instance name. Necessary iff multiple
transform components are declared in the same pipeline.
enable_cache: Optional boolean to indicate if cache is enabled for the
Transform component. If not specified, defaults to the value
specified for pipeline's enable_cache parameter.
Raises:
ValueError: When both or neither of 'module_file' and 'preprocessing_fn'
is supplied.
"""
if input_data:
absl.logging.warning(
'The "input_data" argument to the Transform component has '
'been renamed to "examples" and is deprecated. Please update your '
'usage as support for this argument will be removed soon.')
examples = input_data
if bool(module_file) == bool(preprocessing_fn):
raise ValueError(
"Exactly one of 'module_file' or 'preprocessing_fn' must be supplied."
)
transform_graph = transform_graph or types.Channel(
type=standard_artifacts.TransformGraph,
artifacts=[standard_artifacts.TransformGraph()])
if not transformed_examples:
example_artifact = standard_artifacts.Examples()
example_artifact.split_names = artifact_utils.encode_split_names(
artifact.DEFAULT_EXAMPLE_SPLITS)
transformed_examples = types.Channel(
type=standard_artifacts.Examples, artifacts=[example_artifact])
spec = TransformSpec(
examples=examples,
schema=schema,
module_file=module_file,
preprocessing_fn=preprocessing_fn,
transform_graph=transform_graph,
transformed_examples=transformed_examples)
super(Transform, self).__init__(
spec=spec, instance_name=instance_name, enable_cache=enable_cache)
|
[
"tensorflow-extended-team@google.com"
] |
tensorflow-extended-team@google.com
|
c7c37367f4842a662f51398fc768a9d153243f39
|
159fddadea70761e5fa15ecc15ab68342958d088
|
/tours/migrations/0039_auto_20190923_2153.py
|
60ceae4908da7ea110c38c75959b195ff22bd085
|
[] |
no_license
|
lalit1796/mytrip
|
56a2bcdaa70ffe1234025e3b0599c53d4633462c
|
2b8ab34d16960ef228adb2458e5b4bd0213ee923
|
refs/heads/master
| 2023-08-08T01:07:30.487038
| 2021-09-04T14:04:42
| 2021-09-04T14:04:42
| 402,809,166
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 415
|
py
|
# Generated by Django 2.2.2 on 2019-09-23 16:23
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('tours', '0038_auto_20190923_2151'),
]
operations = [
migrations.AlterField(
model_name='package',
name='uid',
field=models.CharField(default='--uid--', max_length=200, unique=True),
),
]
|
[
"lalitsingh1796@gmail.com"
] |
lalitsingh1796@gmail.com
|
d41f85e2c73f965a8555cd3f6da0967a0e321fde
|
5cc4a73d6fb144d72e74b07a10b60fc36bfe50ec
|
/videos/api/serializers.py
|
462b50c2b48ff27afdefbc67ced6a79e795bd6b4
|
[] |
no_license
|
pedrofolch/digitalsoil
|
79d9497dcbb54df3c7df64f9da35d71d592fe580
|
7b6d1ffd34e991cf87c91342e5336a97fa1cf59b
|
refs/heads/master
| 2022-12-11T00:47:01.728729
| 2019-04-11T03:34:12
| 2019-04-11T03:34:12
| 120,937,159
| 0
| 0
| null | 2022-12-08T04:58:09
| 2018-02-09T17:49:10
|
CSS
|
UTF-8
|
Python
| false
| false
| 1,113
|
py
|
from rest_framework import serializers
from videos.models import Video
class VideoSerializer(serializers.ModelSerializer):
uri = serializers.SerializerMethodField(read_only=True)
class Meta:
model = Video
fields = [
'uri',
'pk',
'title',
'embed_code',
'share_message',
'order',
'tags',
'slug',
'active',
'featured',
'free_preview',
'category',
'timestamp',
'updated'
]
read_only_fields = ['user', 'order', ]
def get_uri(self, obj):
request = self.context.get('request')
return obj.get_api_url(request=request)
def validate_title(self, value):
"""We want the title to be unique"""
qs = Video.objects.filter(title__iexact=value) # including instance
if self.instance:
qs = qs.exclude(pk=self.instance.pk)
if qs.exists():
raise serializers.ValidationError("This title has already been used")
return value
|
[
"pedro.folch@gmail.com"
] |
pedro.folch@gmail.com
|
6d640e9621785207c8da853c9f502cf40e5f4c34
|
74a30d76f49051ec0200a847fe83431a9501f3d7
|
/address_func.py
|
a5b6612a9078be5ba1d28b66d635386fd78f59b7
|
[] |
no_license
|
Milziade/nano_dash
|
97e827ac24c5e8f3d97e8de69e151afd4d7d8fac
|
00618fa1f6d425b63f6ada625569eadda69a0176
|
refs/heads/master
| 2023-05-01T02:36:51.595622
| 2021-05-12T14:06:07
| 2021-05-12T14:06:07
| 362,456,210
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,908
|
py
|
import requests
import pandas as pd
import random
import colors
def get_json(nano_address):
action = {
'action': 'account_history',
'account': nano_address,
'count': '-1'
}
r = requests.post('https://mynano.ninja/api/node', json=action).json()
if 'error' in r:
return False
return r['history']
def get_df(history):
df = pd.DataFrame().from_dict(history)
df = df.replace('nano_3kwppxjcggzs65fjh771ch6dbuic3xthsn5wsg6i5537jacw7m493ra8574x', 'FreeNanoFaucet.com')
df = df.replace('nano_34prihdxwz3u4ps8qjnn14p7ujyewkoxkwyxm3u665it8rg5rdqw84qrypzk', 'nano-faucet.org')
df = df.replace('nano_3pg8khw8gs94c1qeq9741n99ubrut8sj3n9kpntim1rm35h4wdzirofazmwt', 'nano.trade')
df = df.replace('nano_1tyd79peyzk4bs5ok1enb633dqsrxou91k7y4zzo1oegw4s75bokmj1pey4s', 'Apollo Faucet')
df['amount'] = [int(i)/10**30 for i in df['amount']]
df['local_timestamp'] = pd.to_datetime(df['local_timestamp'], unit='s')
del df['hash']
del df['height']
return df.to_dict('records'), df.columns.values
def get_balance(nano_address):
action = {
"action": "account_info",
"account": nano_address
}
r = requests.post('https://mynano.ninja/api/node', json=action).json()
return int(r['balance'])/10**30
def pie_chart(df):
receive_acc = list(set(item['account'] for item in df if item['type'] == 'receive'))
amount_receive = {i: 0 for i in receive_acc}
send_acc = list(set(item['account'] for item in df if item['type'] == 'send'))
amount_send = {i: 0 for i in send_acc}
for d in df:
key = d['account']
if key in amount_receive:
amount_receive[key] += d['amount']
else:
amount_send[key] += d['amount']
return list(amount_receive.keys()), list(amount_receive.values()), \
list(amount_send.keys()), list(amount_send.values())
def balance_over_time(df: dict):
# Otteniamo il momento, il tipo di transazione e l'ammontare
time = list([item['type'], item['amount'], str(item['local_timestamp']).split()[0]] for item in df)
# Se l'account invia soldi, l'ammontare per il bilancio diviene negativo
for item in time:
if item[0] == 'send':
item[1] = -item[1]
time_n = [time[i][2] for i in range(len(time))] # Date e orari di ogni transazione
insta_bal = [time[i][1] for i in range(len(time))]
overall_bal = [0] # Bilancio cumulativo
for i in range(len(time)):
x = time[-1-i][1] + overall_bal[-1]
overall_bal.append(x)
overall_bal.pop(0)
return overall_bal, list(reversed(time_n)), list(reversed(insta_bal))
def get_colors(n):
# creates n different color
colors_list = []
for i in range(n):
cols = colors.colors
col = random.choice(cols)
#cols.remove(col)
colors_list.append(col)
return colors_list
|
[
"you@example.com"
] |
you@example.com
|
9cfd5d850bcc7982efa80f394dbca752ca768af5
|
39c7f0955e0247bbe34ec0f2a4a7e2d3294dc0df
|
/deployment-scripts/scripts/infrastructure/openstack/openstack-create-instance.py
|
2426dac27ae7ea1e05036985173780e9337887f9
|
[] |
no_license
|
marjancek/Showcase
|
df9eac6b7c32d2209b6ffac3f80d6c6d92c5c1d3
|
eced27c10b7b9d5e4b10d296661e33cb0375a5fa
|
refs/heads/master
| 2021-01-15T09:08:48.146581
| 2014-11-19T12:13:16
| 2014-11-19T12:13:16
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,061
|
py
|
from novaclient.v1_1 import client as novaclient
from common.Cloudscale import *
from scripts.common.Cloudscale import check_args, parse_args
class CreateInstance:
def __init__(self, cfg):
self.cfg = cfg
self.user = cfg.get('OPENSTACK', 'username')
self.pwd = cfg.get('OPENSTACK', 'password')
self.url = cfg.get('OPENSTACK', 'auth_url')
self.tenant = cfg.get('OPENSTACK', 'tenant_name')
self.image_name = cfg.get('OPENSTACK', 'image_name')
server = self.create_instance()
print [s['addr'] for s in server.addresses[self.tenant] if s['OS-EXT-IPS:type'] == 'floating'][0]
def create_instance(self):
nc = novaclient.Client(self.user, self.pwd, self.tenant, auth_url=self.url)
for f in nc.flavors.list():
print f
for server in nc.servers.list():
if server._info['name'] == self.instance_name:
return server
if __name__ == '__main__':
check_args(1, "<config_path>")
_, cfg, _, _ = parse_args()
CreateInstance(cfg)
|
[
"simon.ivansek@xlab.si"
] |
simon.ivansek@xlab.si
|
43d1732932045b85378fb924ea0c306a767dc816
|
93090ffc3ccaf142a0c739e00c28486175220373
|
/04-day/main.py
|
96482f4046784b840f4b1a090c566af8992a3b4e
|
[
"MIT"
] |
permissive
|
timbook/advent-of-code-2020
|
f17b89fb1ccb5fe449b4864cca64a95f527c6782
|
3b1c107a67b9f31891e77a258e45aee76fac4e47
|
refs/heads/main
| 2023-01-25T01:19:02.520349
| 2020-12-17T20:31:31
| 2020-12-17T20:31:31
| 317,431,021
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,161
|
py
|
import re
from functools import reduce
raw = open('input.txt', 'r').read().split('\n\n')
class Passport:
required_fields = ['byr', 'iyr', 'eyr', 'hgt', 'hcl', 'ecl', 'pid']
def __init__(self, entry):
fields = re.split('\s', entry.strip())
self.fields = {field.split(':')[0]:field.split(':')[1] for field in fields}
def is_valid_a(self):
return all(req in self.fields for req in self.required_fields)
def is_valid_b(self):
return self.is_valid_a() and reduce(
lambda a, b: a and b,
[
self.is_valid_byr(),
self.is_valid_iyr(),
self.is_valid_eyr(),
self.is_valid_hgt(),
self.is_valid_hcl(),
self.is_valid_ecl(),
self.is_valid_pid()
]
)
def is_valid_byr(self):
byr = self.fields['byr']
return re.match('\d{4}', byr) and (1920 <= int(byr) <= 2002)
def is_valid_iyr(self):
iyr = self.fields['iyr']
return re.match('\d{4}', iyr) and (2010 <= int(iyr) <= 2020)
def is_valid_eyr(self):
eyr = self.fields['eyr']
return re.match('\d{4}', eyr) and (2020 <= int(eyr) <= 2030)
def is_valid_hgt(self):
hgt = self.fields['hgt'][:-2]
unit = self.fields['hgt'][-2:]
if unit == 'cm':
return re.match('\d+', hgt) and (150 <= int(hgt) <= 193)
elif unit == 'in':
return re.match('\d+', hgt) and (59 <= int(hgt) <= 76)
else:
return False
def is_valid_hcl(self):
hcl = self.fields['hcl']
return bool(re.match('#[0-9a-f]{6}', hcl))
def is_valid_ecl(self):
return self.fields['ecl'] in ['amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth']
def is_valid_pid(self):
return bool(re.match('^\d{9}$', self.fields['pid']))
passports = [Passport(line) for line in raw]
n_valid = sum(ppt.is_valid_a() for ppt in passports)
print(f"A :: Number of valid passports: {n_valid}")
# 199 too high
n_valid = sum(ppt.is_valid_b() for ppt in passports)
print(f"B :: Number of valid passports: {n_valid}")
|
[
"timothykbook@gmail.com"
] |
timothykbook@gmail.com
|
5d028cc1080c4c3e46b7d4d114f8177121ac2c6d
|
d16c15f2fb433c6b5874ea49ff5db89315e9711d
|
/benchmarks/comparison-with-addict.py
|
2f6c181632636f0ac48d33a840027e004ad8d8d9
|
[
"MIT"
] |
permissive
|
vltr/middle
|
f9e16735beaccafdc7535271418dd9a8f6b22706
|
f7782610fbb1d9232a3b4cfea057a9331db2775e
|
refs/heads/develop
| 2023-08-17T20:35:02.878999
| 2019-06-18T15:44:46
| 2019-06-18T15:44:46
| 138,063,484
| 11
| 2
|
MIT
| 2023-09-04T21:27:09
| 2018-06-20T17:15:26
|
Python
|
UTF-8
|
Python
| false
| false
| 4,561
|
py
|
import cProfile
import sys
from enum import Enum
from enum import IntEnum
from enum import unique
from typing import Dict
from typing import List
from typing import Set
# --------------------------------------------------------------- #
# Import boilerplate
# --------------------------------------------------------------- #
try:
import timy
import middle
from addict import Dict as ADict
except ImportError:
print(
"To run this script, you must install these dependencies:",
file=sys.stderr,
)
print("- addict", file=sys.stderr)
print("- middle", file=sys.stderr)
print("- timy", file=sys.stderr)
sys.exit(1)
# --------------------------------------------------------------- #
# Fixed variables
# --------------------------------------------------------------- #
TOTAL_LOOPS = 1_000_000
if "short" in sys.argv:
TOTAL_LOOPS = 1
# --------------------------------------------------------------- #
# Enum definition
# --------------------------------------------------------------- #
@unique
class PlatformEnum(str, Enum):
XBOX1 = "XBOX1"
PLAYSTATION4 = "PLAYSTATION4"
PC = "PC"
@unique
class LanguageEnum(IntEnum):
ENGLISH = 1
JAPANESE = 2
SPANISH = 3
GERMAN = 4
PORTUGUESE = 5
@unique
class CityRegionEnum(str, Enum):
TROPICAL = "TROPICAL"
TEMPERATE = "TEMPERATE"
BOREAL = "BOREAL"
# --------------------------------------------------------------- #
# middle model definition
# --------------------------------------------------------------- #
class MiddleCity(middle.Model):
name: str = middle.field()
region: CityRegionEnum = middle.field()
class MiddleGame(middle.Model):
name: str = middle.field()
platform: PlatformEnum = middle.field()
score: float = middle.field()
resolution_tested: str = middle.field()
genre: List[str] = middle.field()
rating: Dict[str, float] = middle.field()
players: Set[str] = middle.field()
language: LanguageEnum = middle.field()
awesome_city: MiddleCity = middle.field()
# --------------------------------------------------------------- #
# Test variable
# --------------------------------------------------------------- #
MODEL_INSTANCE = {
"name": "Cities: Skylines",
"platform": "PC",
"score": 9.0,
"resolution_tested": "1920x1080",
"genre": ["Simulators", "City Building"],
"rating": {"IGN": 8.5, "Gamespot": 8.0, "Steam": 4.5},
"players": ["Flux", "strictoaster"],
"language": 1,
"awesome_city": {"name": "Blumenau", "region": "TEMPERATE"},
}
# --------------------------------------------------------------- #
# Test runnable
# --------------------------------------------------------------- #
def test_addict():
game = ADict(MODEL_INSTANCE)
assert isinstance(game.name, str)
assert isinstance(game.platform, str)
assert isinstance(game.score, float)
assert isinstance(game.resolution_tested, str)
assert isinstance(game.genre, list)
assert isinstance(game.rating, dict)
assert isinstance(game.players, list)
assert isinstance(game.language, int)
assert isinstance(game.awesome_city, dict)
assert isinstance(game.awesome_city.name, str)
assert isinstance(game.awesome_city.region, str)
def test_middle():
game = MiddleGame(**MODEL_INSTANCE)
assert isinstance(game, MiddleGame)
assert isinstance(game.name, str)
assert isinstance(game.platform, PlatformEnum)
assert isinstance(game.score, float)
assert isinstance(game.resolution_tested, str)
assert isinstance(game.genre, list)
assert isinstance(game.rating, dict)
assert isinstance(game.players, set)
assert isinstance(game.language, LanguageEnum)
assert isinstance(game.awesome_city, MiddleCity)
assert isinstance(game.awesome_city.name, str)
assert isinstance(game.awesome_city.region, CityRegionEnum)
# --------------------------------------------------------------- #
# Run tests
# --------------------------------------------------------------- #
def main():
if "profile" in sys.argv:
cProfile.run(
"for i in range({}): test_addict()".format(TOTAL_LOOPS),
sort="tottime",
)
cProfile.run(
"for i in range({}): test_middle()".format(TOTAL_LOOPS),
sort="tottime",
)
else:
timy.timer(ident="addict", loops=TOTAL_LOOPS)(test_addict).__call__()
timy.timer(ident="middle", loops=TOTAL_LOOPS)(test_middle).__call__()
if __name__ == "__main__":
main()
|
[
"rkuesters@gmail.com"
] |
rkuesters@gmail.com
|
8d00346ccd82c5a105df92d54bf196574f2e3de6
|
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
|
/all-gists/9c113f9b86aece3efdf169af67c4e436/snippet.py
|
0262b68437c1a2c6ae2c332e575f4c5626c155a7
|
[
"MIT"
] |
permissive
|
gistable/gistable
|
26c1e909928ec463026811f69b61619b62f14721
|
665d39a2bd82543d5196555f0801ef8fd4a3ee48
|
refs/heads/master
| 2023-02-17T21:33:55.558398
| 2023-02-11T18:20:10
| 2023-02-11T18:20:10
| 119,861,038
| 76
| 19
| null | 2020-07-26T03:14:55
| 2018-02-01T16:19:24
|
Python
|
UTF-8
|
Python
| false
| false
| 288
|
py
|
def main():
n,k=[int(i) for i in input().split(' ')]
a=[1]*(n+1)
for i in range(1,min(k, n+1)):
a[i]=a[i-1]+a[i-1]
if k <= n:
a[k]=sum([a[j] for j in range(k)])
for i in range(k+1, n+1):
a[i]=a[i-1]+a[i-1]-a[i-k-1]
print(str(a[n]))
main()
|
[
"gistshub@gmail.com"
] |
gistshub@gmail.com
|
6f30e11fcb2ba4ecc7185185027b62f16a44e4c6
|
be5ea20226c37d81f1ccb2f704d8825d36e88765
|
/01. Defining classes/Exercise/01_car.py
|
00078b2c67447f092dffe365c113ef2ae8c2b86b
|
[] |
no_license
|
dimDamyanov/PythonOOP
|
3845e450e5a48fef4f70a186664e07c0cd60e09b
|
723204f5b7e953874fac9314e48eb1d1628d6ff5
|
refs/heads/main
| 2023-04-07T18:00:36.735248
| 2021-04-19T20:57:14
| 2021-04-19T20:57:14
| 341,329,346
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 316
|
py
|
class Car:
def __init__(self, name: str, model: str, engine: str):
self.name = name
self.model = model
self.engine = engine
def get_info(self):
return f'This is {self.name} {self.model} with engine {self.engine}'
car = Car("Kia", "Rio", "1.3L B3 I4")
print(car.get_info())
|
[
"dim.damianov@gmail.com"
] |
dim.damianov@gmail.com
|
06ab40e0b88490e56e9bd9ac37b30153986def03
|
09d7c902e35df7eec3d3da192f0aaa47739540a5
|
/user_portrait/cron/flow4/zmq_work_weibo_flow4.py
|
241ba690235543b12bd7c89723eb1de326fac4c5
|
[] |
no_license
|
yuwendong/user_portrait
|
2a9604ea5389f9410aae98acad11742454c36d6e
|
1b2cd78c91a7154c3e360a90d8426b53b68b4453
|
refs/heads/master
| 2020-12-24T16:41:06.469723
| 2015-10-15T14:32:26
| 2015-10-15T14:32:26
| 38,371,050
| 1
| 0
| null | 2015-07-01T12:54:02
| 2015-07-01T12:54:01
| null |
UTF-8
|
Python
| false
| false
| 5,036
|
py
|
# -*- coding=utf-8 -*-
import re
import sys
import zmq
import time
import json
import math
from datetime import datetime
reload(sys)
sys.path.append('../../')
from time_utils import ts2datetime, datetime2ts
from global_utils import R_CLUSTER_FLOW2 as r_cluster
from global_config import ZMQ_VENT_PORT_FLOW4, ZMQ_CTRL_VENT_PORT_FLOW4,\
ZMQ_VENT_HOST_FLOW1, ZMQ_CTRL_HOST_FLOW1
from global_config import SENSITIVE_WORDS_PATH
f = open(SENSITIVE_WORDS_PATH, 'rb')
# test
#f = open('/home/ubuntu8/huxiaoqian/user_portrait/user_portrait/cron/flow2/zz.txt', 'rb')
def load_sensitive_words():
ZZ_WORD = []
for line in f:
line_list = line.split('=')
word = line_list[0]
ZZ_WORD.append(word.decode('utf-8'))
f.close()
return ZZ_WORD
SENSITIVE_WORD = load_sensitive_words()
print 'sensitive_word:', SENSITIVE_WORD
def cal_text_work(item):
uid = item['uid']
timestamp = item['timestamp']
date = ts2datetime(timestamp)
ts = datetime2ts(date)
#print 'ts:', date, ts
text = item['text']
if isinstance(text, str):
text = text.decode('utf-8', 'ignore')
RE = re.compile(u'#([a-zA-Z-_⺀-⺙⺛-⻳⼀-⿕々〇〡-〩〸-〺〻㐀-䶵一-鿃豈-鶴侮-頻並-龎]+)#', re.UNICODE)
hashtag_list = RE.findall(text)
if hashtag_list:
# there all use unicode·
hashtag_dict = dict()
for hashtag in hashtag_list:
try:
hashtag_dict[hashtag] += 1
except:
hashtag_dict[hashtag] = 1
try:
hashtag_count_string = r_cluster.hget('hashtag_'+str(ts), str(uid))
#print 'key:hashtag_'+ str(ts)
#print 'hget hashtag result:', hashtag_count_string
hashtag_count_dict = json.loads(hashtag_count_string)
for hashtag in hashtag_dict:
count = hashtag_dict[hashtag]
try:
hashtag_count_dict[hashtag] += count
except:
hashtag_count_dict[hashtag] = count
#print 'hashtag_count_dict:', hashtag_count_dict
r_cluster.hset('hashtag_'+str(ts), str(uid), json.dumps(hashtag_count_dict))
except:
#print 'hash_dict:', hashtag_dict
r_cluster.hset('hashtag_'+str(ts), str(uid), json.dumps(hashtag_dict))
def cal_text_sensitive(item):
text = item['text']
uid = item['uid']
timestamp = item['timestamp']
date = ts2datetime(timestamp)
ts = datetime2ts(date)
if isinstance(text, str):
text = text.decode('utf-8', 'ignore')
sensitive_result = [word for word in SENSITIVE_WORD if word in text]
if sensitive_result:
sensitive_dict = dict()
for word in sensitive_result:
try:
sensitive_dict[word] += 1
except:
sensitive_dict[word] = 1
#print 'sensitive_dict:', sensitive_dict
try:
sensitive_count_string = r_cluster.hget('sensitive_'+str(ts), str(uid))
#print 'key:sensitive_', str(ts)
#print 'hget sensitive result:', sensitive_count_string
sensitive_count_dict = json.loads(sensitive_count_string)
for word in sensitive_dict:
count = sensitive_dict[word]
try:
sensitive_count_dict[word] += count
except:
sensitive_count_dict[word] = count
#print 'sensitive_count_dict:', sensitive_count_dict
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_count_dict))
except:
#print 'sensitive:', sensitive_dict
r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_dict))
if __name__ == "__main__":
"""
receive weibo
"""
context = zmq.Context()
receiver = context.socket(zmq.PULL)
receiver.connect('tcp://%s:%s' %(ZMQ_VENT_HOST_FLOW1, ZMQ_VENT_PORT_FLOW4))
controller = context.socket(zmq.SUB)
controller.connect("tcp://%s:%s" %(ZMQ_VENT_HOST_FLOW1, ZMQ_CTRL_VENT_PORT_FLOW4)
count = 0
tb = time.time()
ts = tb
while 1:
try:
item = receiver.recv_json()
except Exception, e:
print Exception, ":", e
if not item:
continue
if item['sp_type'] == '1':
try:
if item and (item['message_type']==1 or item['message_type']==3):
cal_text_work(item)
cal_text_sensitive(item)
except:
pass
count += 1
if count % 10000 == 0:
te = time.time()
print '[%s] cal speed: %s sec/per %s' % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), te - ts, 10000)
#if count % 100000 == 0:
# print '[%s] total cal %s, cost %s sec [avg %s per/sec]' % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), count, te - tb, count / (te - tb))
ts = te
|
[
"1257819385@qq.com"
] |
1257819385@qq.com
|
324d2ab09e9924efc6e877be13f4cdfe40095ef3
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03495/s459851114.py
|
65115c84d9ff5de8c900d6c54330919f477407fb
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102
| 2021-05-13T17:27:22
| 2021-05-13T17:27:22
| 367,112,348
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 218
|
py
|
# arc086_a.py
import collections
N, K = map(int, input().split())
A = list(map(int, input().split()))
C = collections.Counter(A)
C = sorted(C.values())
lenght = len(C)
# print(lenght, K, C)
print(sum(C[:(lenght-K)]))
|
[
"66529651+Aastha2104@users.noreply.github.com"
] |
66529651+Aastha2104@users.noreply.github.com
|
2df623dd9db20cd2aa0eb30f1334f2ffc828c00c
|
a47e5a1565b8b4a23010020fa6ed4225459845e7
|
/marubatsu1.py
|
3085d8d5bc8fb46f0a2622392e8575a84bd52493
|
[] |
no_license
|
katuhito/workspace13
|
0a4832e510c5f59a48aa0262985bcda91c01908d
|
16e55c5e6f32e009ff27c9a22315916175303970
|
refs/heads/master
| 2023-03-08T08:48:28.602697
| 2021-03-07T01:07:41
| 2021-03-07T01:07:41
| 335,497,536
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 811
|
py
|
# 3目並べ
import random
goal = [
0b111000000, 0b000111000, 0b000000111,
0b100100100, 0b010010010, 0b001001001,
0b100010001, 0b001010100
]
# 3つ並んだか判定
def check(player):
for mask in goal:
if player & mask == mask:
return True
return False
# 交互に置く
def play(p1, p2):
if check(p2): #3つ並んだら出力して終了
print([bin(p1), bin(p2)])
return
board = p1 | p2
if board == 0b111111111: #すべて置いたら引き分けで終了
print([bin(p1), bin(p2)])
return
# 置ける場所を探す
w = [i for i in range(9) if(board & (1 << i)) == 0]
# ランダムに置いてみる
r = random.choice(w)
play(p2, p1 | (1 << r)) #手番を入れ替えて次を探す
play(0, 0)
|
[
"katuhitohara@gmail.com"
] |
katuhitohara@gmail.com
|
a29f6993d7d12c4674aecc24f39f9aa52dc357fc
|
8b85b933041abac2879484c6280c1bf79f91358d
|
/moss/plotting.py
|
b2b3d28e4123da388554e57a623c5361d41b42e4
|
[
"BSD-3-Clause"
] |
permissive
|
ghaseminya/moss
|
109a4c37d2ecd85bfaff03c563eded98d5296530
|
06a0ea862b9a6112921dcf5cf2a6d445d7f7e0dc
|
refs/heads/master
| 2020-12-30T14:44:33.504941
| 2017-05-09T17:24:28
| 2017-05-09T17:24:28
| 91,079,527
| 1
| 0
| null | 2017-05-12T10:20:17
| 2017-05-12T10:20:17
| null |
UTF-8
|
Python
| false
| false
| 338
|
py
|
import matplotlib.pyplot as plt
def grid_axes_labels(axes, xlabel=None, ylabel=None, **kws):
plt.setp(axes.flat, xlabel="", ylabel="")
if xlabel is not None:
for ax in axes[-1]:
ax.set_xlabel(xlabel, **kws)
if ylabel is not None:
for ax in axes[:, 0]:
ax.set_ylabel(ylabel, **kws)
|
[
"mwaskom@stanford.edu"
] |
mwaskom@stanford.edu
|
83a1f372106c9220a41955a816d98ee436bd4081
|
7e118b7f02275e7d1faf1e24e6bb1f6d1e173da5
|
/04_factory/pizza_store/lib/pizza.py
|
4bd3d2bd59b7f2f37614cabbd5b5c69869ede551
|
[
"MIT"
] |
permissive
|
denzow/practice-design-pattern
|
e378a7d2d95585ab6e3c3a4b72f46c5faeb2b92b
|
141d59c51375e36769a73b6ff135a8afae64b664
|
refs/heads/master
| 2021-05-13T17:33:10.892543
| 2018-02-11T14:53:06
| 2018-02-11T14:53:06
| 116,826,619
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,487
|
py
|
# coding: utf-8
from abc import ABC, abstractmethod
class Pizza(ABC):
def __init__(self, ingredient_factory):
"""
:param lib.pizza_factory.PizzaIngredientFactory ingredient_factory:
"""
self._ingredient_factory = ingredient_factory
self._name = None
self._dough = None
self._sauce = None
self._veggies = []
self._cheese = None
self._pepperoni = None
self._clam = None
@abstractmethod
def prepare(self):
pass
def bake(self):
print('350度で25分間焼く')
def cut(self):
print('ピザを扇型に切り分ける')
def box(self):
print('PizzaStoreの正式な箱にピザを入れる')
def set_name(self, name):
self._name = name
def get_name(self):
return self._name
class CheesePizza(Pizza):
def prepare(self):
print('{}を下処理'.format(self._name))
self._dough = self._ingredient_factory.create_dough()
self._sauce = self._ingredient_factory.create_sauce()
self._cheese = self._ingredient_factory.create_cheese()
class ClamPizza(Pizza):
def prepare(self):
print('{}を下処理'.format(self._name))
self._dough = self._ingredient_factory.create_dough()
self._sauce = self._ingredient_factory.create_sauce()
self._cheese = self._ingredient_factory.create_cheese()
self._clam = self._ingredient_factory.create_clam()
|
[
"denzow@gmail.com"
] |
denzow@gmail.com
|
9ec342d11277ab3c3daa4867c1bb011eb93f1655
|
fc529d1d801d695150a6ebcd3e2d548ffa8d738d
|
/tests/test_parser.py
|
86ba3dbec713ac04cd077e2304299e0d3fd5199a
|
[] |
permissive
|
JeanExtreme002/Virtual-Assistant
|
1db080cf3026a64918c0ebadd1727c29bb46205e
|
1444af964b21c6d043b1b8ccb23f34999c5fd81a
|
refs/heads/master
| 2021-07-25T05:54:58.886570
| 2021-07-09T05:35:31
| 2021-07-09T05:35:31
| 219,252,394
| 7
| 2
|
BSD-3-Clause
| 2020-09-22T16:01:20
| 2019-11-03T04:41:47
|
Python
|
UTF-8
|
Python
| false
| false
| 1,510
|
py
|
import os, sys, util
sys.path.append(os.getcwd())
from src.assistant.exec.commandList import CommandList
from src.assistant.exec.parser import VoiceCommandParser
command_list = CommandList("EN-US")
parser = VoiceCommandParser(command_list)
def test_parse_system_command():
command_instance = parser.parse("repeat hello world")
target_command = command_list.get_command_instance_by_voice_command("repeat")
assert command_instance.system_command.lower() == "repeat"
assert command_instance.args.lower() == "hello world"
assert command_instance.info == target_command.info
def test_parse_user_command():
voice_command, terminal_command = util.generate_random_user_command()
command_list.set_user_command(voice_command, {"terminal_command": terminal_command})
other_voice_command = voice_command + " and something more"
other_terminal_command = terminal_command + " and something more"
command_list.set_user_command(other_voice_command, {"terminal_command": other_terminal_command})
argument1, argument2 = "a docile dog eating meet", "a cute cat sleeping"
command_instance = parser.parse(voice_command + " " + argument1)
other_command_instance = parser.parse(other_voice_command + " " + argument2)
assert command_instance.terminal_command == terminal_command
assert command_instance.args.lower() == argument1
assert other_command_instance.terminal_command == other_terminal_command
assert other_command_instance.args.lower() == argument2
|
[
"jeangamerextreme@gmail.com"
] |
jeangamerextreme@gmail.com
|
7f418a52a6716871d15b6b8f3ba89cbaa3cd4da8
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03138/s702162180.py
|
23360336ae7fa25d7e78a6efe78b883d1ec939af
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102
| 2021-05-13T17:27:22
| 2021-05-13T17:27:22
| 367,112,348
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 434
|
py
|
import os, sys, re, math
N,K = list(map(int,input().split(' ')))
A = list(map(int,input().split(' ')))
d = math.ceil(math.log2(1e+12))
ones = [0 for _ in range(d)]
for a in A:
s = bin(a)[::-1]
for i in range(len(s)-2):
if s[i] == '1':
ones[i] += 1
X = 0
for di in range(d-1,-1,-1):
if X + 2 ** di <= K and ones[di] <= N * 0.5:
X += 2 ** di
ret = 0
for a in A:
ret += X ^ a
print(ret)
|
[
"66529651+Aastha2104@users.noreply.github.com"
] |
66529651+Aastha2104@users.noreply.github.com
|
efdd83f89865011b36433b262e2cd99fe684ad1c
|
6c10c6e229014dc3bf14efaec2ea8bf07c406752
|
/AILearning/OptimationDeepLearning/MinibatchSGD.py
|
e41b377b4f3ba2829d2a1b4188d25f78bd57522d
|
[] |
no_license
|
GuyRobot/AIPythonExamples
|
e59c6edb355d9cadee2b3f19a087b1b656956262
|
4acdd0d4966e31a616910554bc075b641aa152df
|
refs/heads/master
| 2021-05-21T13:05:49.615593
| 2021-02-28T06:41:04
| 2021-02-28T06:41:04
| 252,662,467
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,465
|
py
|
from d2l import AllDeepLearning as d2l
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import nn
import numpy as np
"""
Mini batches
w←w−η_t*g_t
where gt=∂_wf(x_t,w)
We can increase the computational efficiency of this operation by
applying it to a minibatch of observations at a time. That is, we
replace the gradient gt over a single observation by one over a small batch
gt= 1/|B_t| * ∂w∑i∈B_t(f(xi,w))
"""
def get_data_ch11(batch_size=10, n=1500):
data = np.genfromtxt("E:\\Python_Data\\airfoil_self_noise.dat",
dtype=np.float32)
data = (data - data.mean(axis=0)) / data.std(axis=0)
data_iter = d2l.load_array((data[:n, :-1], data[:n, -1]), batch_size, is_train=True)
return data_iter, data.shape[1] - 1
def sgd(params, states, hyper_params):
for p in params:
p[:] -= hyper_params['lr'] * p.grad
def train_ch11(trainer_fn, state, hyper_params, data_iter, feature_dim, num_epochs=2):
w = nd.random.normal(scale=0.01, shape=(feature_dim, 1))
b = nd.zeros(1)
w.attach_grad()
b.attach_grad()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[0, num_epochs],
ylim=[0.22, 0.32])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):
for X, y in data_iter:
with autograd.record():
l = loss(net(X), y).mean()
l.backward()
trainer_fn([w, b], state, hyper_params)
n += X.shape[0]
if n % 200 == 0:
timer.stop()
animator.add(n / X.shape[0] / len(data_iter),
d2l.evaluate_loss(net, data_iter, loss))
timer.start()
print('loss: %.3f, %.3f sec/epoch' % (animator.Y[0][-1], timer.avg()))
return timer.cumsum(), animator.Y[0]
def train_sgd(lr, batch_size, num_epochs=2):
data_iter, feature_dim = get_data_ch11(batch_size)
return train_ch11(sgd, None, {'lr': lr}, data_iter, feature_dim, num_epochs)
gd_res = train_sgd(1, 1500, 10)
sgd_res = train_sgd(0.005, 1)
mini1_res = train_sgd(.4, 100)
mini2_res = train_sgd(.05, 10)
d2l.set_figsize([6, 3])
d2l.plot(*list(map(list, zip(gd_res, sgd_res, mini1_res, mini2_res))),
'time (sec)', 'loss', xlim=[1e-2, 10],
legend=['gd', 'sgd', 'batch size = 100', 'batch size = 10'])
d2l.plt.gca().set_xscale('log')
d2l.plt.show()
def train_gluon_ch11(tr_name, hyper_params, data_iter, num_epochs=2):
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=.01))
trainer = gluon.Trainer(net.collect_params(), tr_name, hyper_params)
loss = gluon.loss.L2Loss()
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[0, num_epochs],
ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):
for X, y in data_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(X.shape[0])
n += X.shape[0]
if n % 200 == 0:
timer.stop()
animator.add(n / X.shape[0]/len(data_iter),
(d2l.evaluate_loss(net, data_iter, loss)))
timer.start()
print('loss: %.3f, %.3f sec/epoch' % (animator.Y[0][-1], timer.avg()))
data_iter, _ = get_data_ch11(10)
train_gluon_ch11('sgd', {'learning_rate': 0.05}, data_iter)
d2l.plt.show()
"""
Vectorization makes code more efficient due to reduced overhead
arising from the deep learning framework and due to better memory
locality and caching on CPUs and GPUs.
There is a trade-off between statistical efficiency arising
from SGD and computational efficiency arising from processing large
batches of data at a time.
Minibatch stochastic gradient descent offers the best of
both worlds: computational and statistical efficiency.
In minibatch SGD we process batches of data obtained by a random
permutation of the training data (i.e., each observation is processed only
once per epoch, albeit in random order).
It is advisable to decay the learning rates during training.
In general, minibatch SGD is faster than SGD and gradient descent
for convergence to a smaller risk, when measured in terms of clock time.
"""
|
[
"bluexker@gmail.com"
] |
bluexker@gmail.com
|
149b691ee439a8d0a0d99a8d0e4ac6254fc50945
|
2cc6cf6e9d91799cbd9ac02f2771f7c9f95776bd
|
/test13.py
|
ce7a89c8373a7740d97c943989fa75b86726a611
|
[] |
no_license
|
Master-sum/python_project
|
f938aa9f27e040c68c11766e1358dd7fff231b22
|
63036d1d80cd645d8080c8fee5bb30f241ab9914
|
refs/heads/master
| 2022-04-22T04:45:21.263195
| 2020-04-11T11:14:54
| 2020-04-11T11:14:54
| 254,782,126
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 226
|
py
|
def change (aint,alst):
aint = 0
alst[0] = 0
alst.append(4)
print('aint:',aint)
print('alst:',alst)
aint = 3
alst = [1,2,3]
print('1',aint)
print('1',alst)
change(aint,alst)
print('3',aint)
print('3',alst)
|
[
"285957109@qq.com"
] |
285957109@qq.com
|
aeb8b2fe9095164e8fa12451d0d10e1a784add85
|
651a296c8f45b5799781fd78a6b5329effe702a0
|
/subset/comp_rank_grlex.py
|
0d203ef0c529c7bf4b41b524004553b9408e4928
|
[] |
no_license
|
pdhhiep/Computation_using_Python
|
095d14370fe1a01a192d7e44fcc81a52655f652b
|
407ed29fddc267950e9860b8bbd1e038f0387c97
|
refs/heads/master
| 2021-05-29T12:35:12.630232
| 2015-06-27T01:05:17
| 2015-06-27T01:05:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,691
|
py
|
#!/usr/bin/env python
def comp_rank_grlex ( kc, xc ):
#*****************************************************************************80
#
## COMP_RANK_GRLEX computes the graded lexicographic rank of a composition.
#
# Discussion:
#
# The graded lexicographic ordering is used, over all KC-compositions
# for NC = 0, 1, 2, ...
#
# For example, if KC = 3, the ranking begins:
#
# Rank Sum 1 2 3
# ---- --- -- -- --
# 1 0 0 0 0
#
# 2 1 0 0 1
# 3 1 0 1 0
# 4 1 1 0 1
#
# 5 2 0 0 2
# 6 2 0 1 1
# 7 2 0 2 0
# 8 2 1 0 1
# 9 2 1 1 0
# 10 2 2 0 0
#
# 11 3 0 0 3
# 12 3 0 1 2
# 13 3 0 2 1
# 14 3 0 3 0
# 15 3 1 0 2
# 16 3 1 1 1
# 17 3 1 2 0
# 18 3 2 0 1
# 19 3 2 1 0
# 20 3 3 0 0
#
# 21 4 0 0 4
# .. .. .. .. ..
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 30 October 2014
#
# Author:
#
# John Burkardt
#
# Parameters:
#
# Input, int KC, the number of parts in the composition.
# 1 <= KC.
#
# Input, int XC[KC], the composition.
# For each 1 <= I <= KC, we have 0 <= XC(I).
#
# Output, int RANK, the rank of the composition.
#
from i4_choose import i4_choose
from i4vec_sum import i4vec_sum
from sys import exit
import numpy as np
#
# Ensure that 1 <= KC.
#
if ( kc < 1 ):
print '';
print 'COMP_RANK_GRLEX - Fatal error!'
print ' KC < 1'
exit ( 'COMP_RANK_GRLEX - Fatal error!' )
#
# Ensure that 0 <= XC(I).
#
for i in range ( 0, kc ):
if ( xc[i] < 0 ):
print ''
print 'COMP_RANK_GRLEX - Fatal error!'
print ' XC[I] < 0'
exit ( 'COMP_RANK_GRLEX - Fatal error!' );
#
# NC = sum ( XC )
#
nc = i4vec_sum ( kc, xc )
#
# Convert to KSUBSET format.
#
ns = nc + kc - 1
ks = kc - 1
xs = np.zeros ( ks, dtype = np.int32 )
xs[0] = xc[0] + 1
for i in range ( 2, kc ):
xs[i-1] = xs[i-2] + xc[i-1] + 1
#
# Compute the rank.
#
rank = 1;
for i in range ( 1, ks + 1 ):
if ( i == 1 ):
tim1 = 0
else:
tim1 = xs[i-2];
if ( tim1 + 1 <= xs[i-1] - 1 ):
for j in range ( tim1 + 1, xs[i-1] ):
rank = rank + i4_choose ( ns - j, ks - i )
for n in range ( 0, nc ):
rank = rank + i4_choose ( n + kc - 1, n )
return rank
def comp_rank_grlex_test ( ):
#*****************************************************************************80
#
## COMP_RANK_GRLEX_TEST tests COMP_RANK_GRLEX.
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 30 October 2014
#
# Author:
#
# John Burkardt
#
from comp_random_grlex import comp_random_grlex
print ''
print 'COMP_RANK_GRLEX_TEST'
print ' A COMP is a composition of an integer N into K parts.'
print ' Each part is nonnegative. The order matters.'
print ' COMP_RANK_GRLEX determines the rank of a COMP'
print ' from its parts.'
print ''
print ' Actual Inferred'
print ' Test Rank Rank'
print ''
kc = 3
rank1 = 20
rank2 = 60
seed = 123456789
for test in range ( 0, 5 ):
xc, rank3, seed = comp_random_grlex ( kc, rank1, rank2, seed )
rank4 = comp_rank_grlex ( kc, xc )
print ' %4d %6d %8d' % ( test, rank3, rank4 )
#
# Terminate.
#
print ''
print 'COMP_RANK_GRLEX_TEST:'
print ' Normal end of execution.'
return
if ( __name__ == '__main__' ):
from timestamp import timestamp
timestamp ( )
comp_rank_grlex_test ( )
timestamp ( )
|
[
"siplukabir@gmail.com"
] |
siplukabir@gmail.com
|
917f1e4058d8ddec0274a5dd448fc901123da679
|
e1f53cb481f2b6ea2ac3ee53d0251c5d9ea782e0
|
/src/pyaid/xml/XMLConfigParser.py
|
8b3e6cb5d6bcf0235329fc8e3052b949a29c32ed
|
[] |
no_license
|
hannahp/PyAid
|
8771ee35c2fdf9503e68e808dc0028e885e68158
|
b9562a954552334fab16c32a6b8285ea3e1571e0
|
refs/heads/master
| 2021-01-22T14:02:26.068735
| 2014-01-29T23:33:33
| 2014-01-29T23:33:33
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,164
|
py
|
# XMLConfigParser.py
# (C)2011
# Scott Ernst
import re
import xml.dom.minidom as minidom
import codecs
from pyaid.xml.ConfigData import ConfigData
#___________________________________________________________________________________________________ XMLConfigParser
class XMLConfigParser(object):
"""XMLConfigParser."""
#===================================================================================================
# C L A S S
TYPE_ID = 'xml'
#===================================================================================================
# P U B L I C
#___________________________________________________________________________________________________ parseFile
@staticmethod
def parseFile(path, target=None, parseToInterchangeFormat =False):
fh = codecs.open(path, 'r', 'utf-8')
xml = fh.read()
fh.close()
return XMLConfigParser.parse(xml, target, parseToInterchangeFormat)
#___________________________________________________________________________________________________ parse
@staticmethod
def parse(xml, target=None, parseToInterchangeFormat =False):
# Removes whitespace between tags to reduce potential parsing issues.
pattern = re.compile('\<\?xml(.*)\?\>')
if pattern.search(xml) is None:
xml = '<?xml version="1.0" encoding="utf-8"?>' + xml
dom = minidom.parseString(re.sub('>[\n\r\s\t]+<','><',xml))
if target is None:
target = {}
cd = ConfigData()
for node in dom.childNodes[0].childNodes:
# Ignore whitespace generated text nodes
if isinstance(node, (minidom.Comment, minidom.Text)):
continue
XMLConfigParser._parseNode(node, cd)
if parseToInterchangeFormat:
cd.writeToInterchangeDict(target)
else:
cd.writeToDict(target)
return target
#___________________________________________________________________________________________________ serializeToFile
@staticmethod
def serializeToFile(targetFile, interchangeData):
xml = XMLConfigParser.serializeToXML(interchangeData)
fh = codecs.open(targetFile, 'wb', 'utf-8')
fh.write(xml)
fh.close()
#___________________________________________________________________________________________________ serialize
@staticmethod
def serialize(interchangeData):
xml = '<vm>\n'
for n,v in interchangeData.iteritems():
xml += XMLConfigParser._writeNode(n, v)
return (xml + '</vm>').decode('unicode_escape')
#===================================================================================================
# P R I V A T E
#___________________________________________________________________________________________________ _writeNode
@staticmethod
def _writeNode(name, data, depth =1):
indent = (' '*4*depth)
target = indent + '<'
if isinstance(data, list):
d = '|'.join(data[1]) if isinstance(data[1], list) else str(data)
target += data[0] + ' n="' + name + '" v="' + d + '" />\n'
elif isinstance(data, dict):
target += 'o n="' + name + '">\n'
for n,v in data.iteritems():
target += XMLConfigParser._writeNode(n, v, depth+1)
target += indent + '</o>'
elif isinstance(data, str):
target += 's' + 'n="' + name + '" v="' + data + '" />\n'
elif isinstance(data, (int, float)):
target += 'n' + 'n="' + name + '" v="' + str(data) + '" />\n'
else:
target += 'unknown n="' + name + '" />'
return target
#___________________________________________________________________________________________________ _parseNode
@staticmethod
def _parseNode(node, configData):
nodeName = node.getAttribute('n')
nodeType = node.tagName
if nodeType != 'o':
XMLConfigParser._parseAttribute(nodeName, nodeType, node.getAttribute('v'), configData)
return
cd = ConfigData()
for k in node.attributes.keys():
if k != 'n':
aValue = node.getAttribute(k)
aType = 's'
if aValue.find(':') != -1:
aValue = node.getAttribute(k).split(':')
aType = str(aValue[0])
aValue = aValue[-1]
XMLConfigParser._parseAttribute(k, aType, aValue, cd)
for child in node.childNodes:
XMLConfigParser._parseNode(child, cd)
configData.setItem(nodeName, 'o', cd)
#___________________________________________________________________________________________________ _parseAttribute
@staticmethod
def _parseAttribute(attrName, attrType, attrValue, configData):
configData.setItem(attrName, attrType, attrValue)
|
[
"swernst@gmail.com"
] |
swernst@gmail.com
|
8c0a4f5b85c510d63ce5695baafd7aac77604f94
|
3d6bb3df9ca1d0de6f749b927531de0790aa2e1d
|
/compare_SV_groups_to_trees.py
|
5927663662c3f71b3728d89b37c671512184bf25
|
[] |
no_license
|
standardgalactic/kuhner-python
|
da1d66a6d638a9a379ba6bae2affdf151f8c27c5
|
30b73554cc8bc9d532c8108b34dd1a056596fec7
|
refs/heads/master
| 2023-07-07T04:18:30.634268
| 2020-04-06T04:37:48
| 2020-04-06T04:37:48
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,128
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 4 12:43:41 2018
@author: Lucian
"""
from __future__ import division
from os import walk
from os import path
from os import readlink
from os import mkdir
from os.path import isfile
from copy import deepcopy
import numpy
import math
import matplotlib.pyplot as plt
import csv
import ete3
#import lucianSNPLibrary as lsl
groupdir = "SNV_groups/"
treedir = "phylip_TS_analysis/"
SVfile = "SV_events.txt"
patientfile = "patient_analysis_SVs.tsv"
allg_outfile = "all_groups_SVs.tsv"
#outdir = "SNV_SV_tree_compare" + tag + "/"
#if not path.isdir(outdir):
# mkdir(outdir)
groupfiles = []
for __, _, files in walk(groupdir):
groupfiles += files
def callGroup(group, allsamples, tree):
if len(group) == 1:
return "Singleton"
if len(group) == len(allsamples):
return "Root"
trueset = set()
falseset = set()
for branch in tree:
if branch.name != "":
for sample in group:
if sample in branch.name:
trueset.add(branch)
for sample in allsamples:
if sample in group:
continue
if sample in branch.name:
falseset.add(branch)
if "blood" in branch.name:
tree.set_outgroup(branch)
trueroot = tree.get_common_ancestor(trueset)
for fbranch in falseset:
testset = trueset.copy()
testset.add(fbranch)
newroot = tree.get_common_ancestor(testset)
if newroot == trueroot:
return "Ungrouped"
return "Grouped"
# Read in the SNV numbers
groupdata = {}
allsamples= {}
for gfile in groupfiles:
if "all" in gfile or "patient" in gfile or "SV_" in gfile:
continue
patient = gfile.split("_")[0]
groupdata[patient] = {}
allsamples[patient] = set()
for line in open(groupdir + gfile, "r"):
if "Patient" in line:
continue
lvec = line.rstrip().split()
assert(patient == lvec[0])
count = int(lvec[1])
perc = float(lvec[2])
samples = tuple(lvec[3:])
groupdata[patient][samples] = {}
groupdata[patient][samples]["count"] = count
groupdata[patient][samples]["percentage"] = perc
groupdata[patient][samples]["SV_count"] = 0
for sample in samples:
allsamples[patient].add(sample)
#Read in the SV numbes
SVs = {}
samplelists = {}
for line in open(SVfile, "r"):
if "chr" in line:
continue
lvec = line.rstrip().split()
(__, __, patient, sample, type, ch1, start1, end1, __, ch2, start2, end2, __, __, __, __) = lvec
svid = (type, ch1, start1, end1, ch2, start2, end2)
if patient not in SVs:
SVs[patient] = {}
if svid not in SVs[patient]:
SVs[patient][svid] = set()
SVs[patient][svid].add(sample)
#Count the SVs by sample list
nmulti = 0
nmulti_singletons = 0
nmulti_multis = 0
nsingle = 0
SVcounts = {}
for patient in SVs:
SVtotal = 0
for segid in SVs[patient]:
samples = list(SVs[patient][segid])
samples.sort()
samples = tuple(samples)
if samples not in groupdata[patient]:
groupdata[patient][samples] = {}
groupdata[patient][samples]["count"] = 0
groupdata[patient][samples]["percentage"] = 0.0
groupdata[patient][samples]["SV_count"] = 0
groupdata[patient][samples]["SV_count"] += 1
SVtotal += 1
nsingle += 1
for samples in groupdata[patient]:
groupdata[patient][samples]["SV_percentage"] = groupdata[patient][samples]["SV_count"]/SVtotal
print("Number of segments with a single call:", str(nsingle))
print("Number of segments with multiple calls:", str(nmulti))
print("Number of segments with multiple calls, all singletons:", str(nmulti_singletons))
print("Number of segments with multiple calls, all multiples:", str(nmulti_multis))
#Now put the tree data in there, too:
for patient in groupdata:
treefilename = treedir + patient + "_outtree.txt"
if patient == "891":
treefilename = treedir + patient + "a_outtree.txt"
tree = ete3.Tree(treefilename)
for samples in groupdata[patient]:
groupdata[patient][samples]["matches_tree"] = callGroup(samples, allsamples[patient], tree)
#And finally, write out all of our information.
outfile = open(groupdir + allg_outfile, "w")
outfile.write("Patient\tMatches_tree\tCount\tPercentage\tSV count\tSV percentage\tSample1\tSample2\tSample3\tSample4\tSample5\tSample6\n")
for patient in groupdata:
for samples in groupdata[patient]:
outfile.write(patient)
outfile.write("\t" + groupdata[patient][samples]["matches_tree"])
outfile.write("\t" + str(groupdata[patient][samples]["count"]))
outfile.write("\t" + str(groupdata[patient][samples]["percentage"]))
outfile.write("\t" + str(groupdata[patient][samples]["SV_count"]))
outfile.write("\t" + str(groupdata[patient][samples]["SV_percentage"]))
for sample in samples:
outfile.write("\t" + sample)
outfile.write("\n")
outfile.close()
#Now do some analysis
has23GD = ["74", "279", "303", "391", "396", "450", "772", "997"]
types = ["Singleton", "Root", "Grouped", "Ungrouped"]
outfile = open(groupdir + patientfile, "w")
outfile.write("Patient\tnSNVmin\tnSNVmax\thas 2-3 GD")
for type in types:
outfile.write("\t" + type + " counts")
outfile.write("\t" + type + " total")
outfile.write("\tUngrouped potential subclone counts\tUngrouped potential scomubclone total\n")
for patient in groupdata:
smallestSNVcount = 100000
maxSNVcount = 0
for samples in groupdata[patient]:
SNVcount = groupdata[patient][samples]["count"]
if groupdata[patient][samples]["matches_tree"] == "Grouped":
if SNVcount < smallestSNVcount:
smallestSNVcount = SNVcount
if SNVcount > maxSNVcount:
maxSNVcount = SNVcount
possibleSubcloneThreshold = smallestSNVcount*3/4
SVcounts = {}
for match in types:
SVcounts[match] = []
SVcounts["subclones"] = []
for samples in groupdata[patient]:
theseSamples = groupdata[patient][samples]
SVcount = theseSamples["SV_count"]
if SVcount ==0:
continue
if theseSamples["matches_tree"] == "Ungrouped" and theseSamples["count"] >= possibleSubcloneThreshold:
SVcounts["subclones"].append(SVcount)
else:
SVcounts[theseSamples["matches_tree"]].append(SVcount)
outfile.write(patient)
outfile.write("\t" + str(possibleSubcloneThreshold))
outfile.write("\t" + str(maxSNVcount))
outfile.write("\t" + str(patient in has23GD))
for type in types:
outfile.write("\t")
for num in SVcounts[type]:
outfile.write("//" + str(num))
outfile.write("\t" + str(sum(SVcounts[type])))
outfile.write("\t")
for num in SVcounts["subclones"]:
outfile.write("//" + str(num))
outfile.write("\t" + str(sum(SVcounts["subclones"])))
outfile.write("\n")
outfile.close()
|
[
"lpsmith@uw.edu"
] |
lpsmith@uw.edu
|
5a2a55a993186bacf8fed7bada23f6ab0264b6b5
|
8e55b122aa7b18b1734aafc3699b477c1e85cb91
|
/pippy/fx/experimental/refinement_types.py
|
665c9d0d651b4ed929e974d822a447809f3d26dd
|
[
"BSD-3-Clause"
] |
permissive
|
yunxing/tau
|
0a7a641db49da795de70e8db9748d93205be31ac
|
c679248814a76c915e651806f1b4f30a3de9fe92
|
refs/heads/main
| 2023-03-17T01:02:23.222622
| 2022-09-30T23:18:25
| 2022-09-30T23:18:25
| 543,822,164
| 0
| 0
|
BSD-3-Clause
| 2022-09-30T23:13:57
| 2022-09-30T23:13:56
| null |
UTF-8
|
Python
| false
| false
| 457
|
py
|
# Copyright (c) Meta Platforms, Inc. and affiliates
class Equality:
def __init__(self, lhs, rhs):
self.lhs = lhs
self.rhs = rhs
def __str__(self):
return f'{self.lhs} = {self.rhs}'
def __repr__(self):
return f'{self.lhs} = {self.rhs}'
def __eq__(self, other):
if isinstance(other, Equality):
return self.lhs == other.lhs and self.rhs == other.rhs
else:
return False
|
[
"noreply@github.com"
] |
yunxing.noreply@github.com
|
fd99bf3d3c0e15b0191184e3ac916eff8f0f70d2
|
a57e66be33512a7e2e99adb6f597151b56c4c373
|
/psgreet.py
|
23cec5ae7e9d198ceaf39575804a96c85a4837e3
|
[] |
no_license
|
ravijaya/sep28
|
17025ea0997a371f54a6374f90d4bf56e0206840
|
8907f4b03ac2c4b2f1806d0d7cf3fd6aa680680c
|
refs/heads/master
| 2022-12-18T23:58:12.989144
| 2020-09-30T12:13:15
| 2020-09-30T12:13:15
| 299,901,698
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 198
|
py
|
name = input('enter the name :')
city = input('enter the city :')
zip_code = int(input('enter the postal code :'))
print('name :', name)
print('city :', city)
print(zip_code)
print(type(zip_code))
|
[
"ravi.goglobium@gmail.com"
] |
ravi.goglobium@gmail.com
|
e095bb08830df4cb39df6e6f8c0f7a370cf6d071
|
524baf7de05bd3fc5b9d08083cbb0b7b47a67979
|
/40.py
|
d5ffe3d133240d1686dcb26040a6492346e80813
|
[] |
no_license
|
gk90731/100-questions-practice
|
1356dd577516567a5c51a4257f59fe01b123e7ff
|
f855549e037b9924dd6f0370dc2f2a53765d9227
|
refs/heads/master
| 2020-05-25T14:04:59.642819
| 2019-05-21T12:49:04
| 2019-05-21T12:49:04
| 187,835,741
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 195
|
py
|
'''Question: Please try to guess what is missing in the following code and add the missing part so that the code works fine.
import math
print(math.pow(2))'''
import math
print(math.pow(2,3))
|
[
"gk90731@gmail.com"
] |
gk90731@gmail.com
|
d8c1268253a55b552a1766dca9855a16bb18ab78
|
df489fddec1ffa936f0223efca3a35a22df36dc0
|
/99_backup/25_各国历年二氧化碳CO2排放量统计分析/challenge7_1.py
|
7c9a6e07c6db0eee678564cc8f73ddede36755f8
|
[] |
no_license
|
echo-xr/pc
|
3af106530815956feb458889408085285b3fd8f5
|
03160675e912b4e4ad4642e14b5ab0230b973f6c
|
refs/heads/master
| 2020-04-26T16:54:03.408688
| 2019-03-03T11:27:34
| 2019-03-03T11:27:34
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,730
|
py
|
def co2():
import pandas as pd
# 读取 Data 表
data = pd.read_excel('ClimateChange.xlsx')
# 取 'Series code' 这列中值为 'EN.ATM.CO2E.KT' 的行并设置索引
data = data[data['Series code']=='EN.ATM.CO2E.KT'].set_index('Country code')
# 刪掉多余的前五列,只留各年排量数据
data.drop(data.columns[:5], axis=1, inplace=True)
# 把数组中值为 '..' 的元素替换成 'NaN'
data.replace({'..': pd.np.nan}, inplace=True)
# 对 NaN 空值进行向前和向后填充
data = data.fillna(method='ffill', axis=1).fillna(method='bfill', axis=1)
# 读取 Country 表
country = pd.read_excel('ClimateChange.xlsx', 'Country')
# 设置国家代号为索引,方便合并数据
country.index = country['Country code']
# 合并这俩 Series :国家总排量和国家收入属于什么群体
df = pd.concat([data.sum(axis=1), country['Income group']], axis=1)
# Sum emissions
a = df.groupby('Income group').sum()
# 设置列名
a.columns = ['Sum emissions']
# 在 df 中加入一列国家名字
df[2] = country['Country name']
# 各收入群体中排放量最高的国家和最高排放量
h = df.sort_values(0, ascending=False).groupby('Income group').head(1).set_index('Income group')
# 设置列名
h.columns = ['Highest emissions', 'Highest emission country']
# 各收入群体中排放量最低的国家和最低排放量
l = df[df[0]>0].sort_values(0).groupby('Income group').head(1).set_index('Income group')
# 设置列名
l.columns = ['Lowest emissions', 'Lowest emission country']
# 返回全部数据, concat 会自动对 index 排序
return pd.concat([a, h, l], axis=1)
|
[
"1195581533@qq.com"
] |
1195581533@qq.com
|
ca60ffe0443bb07e494632fa5f39f6372218f4ec
|
de24f83a5e3768a2638ebcf13cbe717e75740168
|
/moodledata/vpl_data/125/usersdata/172/29042/submittedfiles/ap1.py
|
683a565ff52ea8deb8c87ed40b155d4040448259
|
[] |
no_license
|
rafaelperazzo/programacao-web
|
95643423a35c44613b0f64bed05bd34780fe2436
|
170dd5440afb9ee68a973f3de13a99aa4c735d79
|
refs/heads/master
| 2021-01-12T14:06:25.773146
| 2017-12-22T16:05:45
| 2017-12-22T16:05:45
| 69,566,344
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 274
|
py
|
# -*- coding: utf-8 -*-
a=float(input('digite o 1° número:'))
b=float(input('digite o 2° número:'))
c=float(input('digite o 3° número:'))
if a<=b and a<=c:
print(a)
if b<=c:
print(b)
print(c)
else :
print(c)
print(b)
|
[
"rafael.mota@ufca.edu.br"
] |
rafael.mota@ufca.edu.br
|
7ccbfdbf9eb671918f8f2d2beca9b69a75d10e8d
|
a3e1e797acb16bf4d1e298271545927df8eaeae7
|
/tests/unit/services/storage/test_base.py
|
81a39a0af33497a1293be5621915105e9b1b977e
|
[
"MIT"
] |
permissive
|
totem/cluster-deployer
|
481b11b2953a3e195c46762659c97fceca75945a
|
75160f051250fd782af42af472f965d50f721ff5
|
refs/heads/develop
| 2022-10-12T09:09:30.417412
| 2017-06-30T22:32:56
| 2017-06-30T22:32:56
| 23,778,754
| 0
| 2
|
MIT
| 2022-09-13T21:48:32
| 2014-09-08T04:03:06
|
Python
|
UTF-8
|
Python
| false
| false
| 2,592
|
py
|
import datetime
from freezegun import freeze_time
from mock import MagicMock
from nose.tools import raises
import pytz
from deployer.services.storage.base import AbstractStore
from tests.helper import dict_compare
NOW = datetime.datetime(2022, 01, 01, tzinfo=pytz.UTC)
NOW_NOTZ = datetime.datetime(2022, 01, 01)
class TestAbstractStore:
def setup(self):
self.store = AbstractStore()
@raises(NotImplementedError)
def test_get(self):
self.store.create_deployment(MagicMock())
@raises(NotImplementedError)
def test_get_deployment(self):
self.store.get_deployment('fake_id')
@raises(NotImplementedError)
def test_update_state(self):
self.store.update_state('fake_id', 'PROMOTED')
@raises(NotImplementedError)
def test_update_runtime_upstreams(self):
self.store.update_runtime_upstreams('fake_id', {})
@raises(NotImplementedError)
def test_update_runtime_units(self):
self.store.update_runtime_units('fake_id', [])
@raises(NotImplementedError)
def test_update_state_bulk(self):
self.store.update_state_bulk('myapp', 'DECOMMISSIONED')
@raises(NotImplementedError)
def test_get_health(self):
self.store.health()
@freeze_time(NOW_NOTZ)
def test_add_event(self):
# Given: Mock implementation for adding raw event
self.store._add_raw_event = MagicMock()
# When: I add event to the store
self.store.add_event('MOCK_EVENT')
# Then: Event gets added to the store
self.store._add_raw_event.assert_called_once_with({
'type': 'MOCK_EVENT',
'component': 'deployer',
'details': None,
'date': NOW_NOTZ
})
@raises(NotImplementedError)
def test_add_raw_event(self):
self.store.add_event({})
def test_setup(self):
self.store.setup()
# NOOP
@raises(NotImplementedError)
def test_find_apps(self):
self.store.find_apps()
@raises(NotImplementedError)
def test_filter_deployments(self):
self.store.filter_deployments('myapp')
@freeze_time(NOW)
def test_apply_modified_ts(self):
# When: I apply modified timestamp for given deployemnt
deployement = self.store.apply_modified_ts({
'deployement': {
'id': 'test'
}
})
# Then: Modified timestamp is applied as expected
dict_compare(deployement, {
'deployement': {
'id': 'test'
},
'modified': NOW
})
|
[
"sukrit007@gmail.com"
] |
sukrit007@gmail.com
|
d4e55b4a3c1058d466250a81fc43250a26f6e81e
|
79f541042e4b4d6bb443e7a758ca918817ea0f33
|
/PythonGTK/Examples/19_cellRendererPixbuf.py
|
075ed4f57dca6d57224051e634c8867f76537d47
|
[] |
no_license
|
ashutoshm1771/Source-Code-from-Tutorials
|
d5f950db8f5f648e87303835e9558eeba404939a
|
f5552d4bd0f4bebcf5c674ff730fcb61f2d7a1ce
|
refs/heads/master
| 2020-09-15T06:08:31.777622
| 2019-11-22T09:08:31
| 2019-11-22T09:08:31
| 223,364,275
| 4
| 0
| null | 2019-11-22T09:01:51
| 2019-11-22T09:01:48
| null |
UTF-8
|
Python
| false
| false
| 962
|
py
|
from gi.repository import Gtk
class CellRendererPixbufWindow(Gtk.Window):
def __init__(self):
Gtk.Window.__init__(self, title="CellRendererPixbuf Example")
self.set_default_size(200, 200)
self.liststore = Gtk.ListStore(str, str)
self.liststore.append(["New", "document-new"])
self.liststore.append(["Open", "document-open"])
self.liststore.append(["Save", "document-save"])
treeview = Gtk.TreeView(model=self.liststore)
renderer_text = Gtk.CellRendererText()
column_text = Gtk.TreeViewColumn("Text", renderer_text, text=0)
treeview.append_column(column_text)
renderer_pixbuf = Gtk.CellRendererPixbuf()
column_pixbuf = Gtk.TreeViewColumn("Image", renderer_pixbuf, icon_name=1)
treeview.append_column(column_pixbuf)
self.add(treeview)
win = CellRendererPixbufWindow()
win.connect("delete-event", Gtk.main_quit)
win.show_all()
Gtk.main()
|
[
"buckyroberts@gmail.com"
] |
buckyroberts@gmail.com
|
f7fb4d9a7d5027b2266d958ce939e45c3c255fd8
|
571a89f94f3ebd9ec8e6b618cddb7d05811e0d62
|
/past202010/h/main.py
|
3b515938a65636dfb734674b57c922c04b987390
|
[] |
no_license
|
ryu19-1/atcoder_python
|
57de9e1db8ff13a107b5861f8f6a231e40366313
|
cc24b3c2895aad71d40cefbb8e2893dc397b8f4f
|
refs/heads/master
| 2023-05-10T05:32:16.507207
| 2021-05-19T17:48:10
| 2021-05-19T17:48:10
| 368,954,430
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,409
|
py
|
#!/usr/bin/env python3
import sys
from collections import deque, Counter
from heapq import heappop, heappush
from bisect import bisect_right
from itertools import accumulate
sys.setrecursionlimit(10**6)
INF = 10**12
m = 10**9 + 7
def main():
N, M, K = map(int, input().split())
S = [list(input()) for _ in range(N)]
# countを二次元累積和でもっておく
count = [[[0] * (M+1) for _ in range(N+1)] for _ in range(10)]
for i in range(N):
for j in range(M):
count[int(S[i][j])][i+1][j+1] += 1
for k in range(10):
for i in range(N):
for j in range(M):
count[k][i + 1][j + 1] += count[k][i + 1][j]
for j in range(M+1):
count[k][i + 1][j] += count[k][i][j]
# print(count[1])
for n in range(min(N, M), 0, -1):
# print(n)
for i in range(N - n + 1):
for j in range(M - n + 1):
# (i,j)~(i+n,j+n)の中にある数字の数+Kがn**2を超えていたらok
for k in range(10):
# print(n, i, j, k)
cnt = count[k][i + n][j + n] - count[k][i +
n][j] - count[k][i][j + n] + count[k][i][j]
if cnt + K >= n * n:
print(n)
exit()
if __name__ == "__main__":
main()
|
[
"ryu1007kami@gmail.com"
] |
ryu1007kami@gmail.com
|
555768f7f3294b960854d8e29e515027c5aefc09
|
c1e87e9a7f0f2e81e3113821c21378f7b6436b6f
|
/Щелчок/15_поляков/22.py
|
23cd2689e5ef0c8d8a5c67a9dc002aa76f830d5a
|
[] |
no_license
|
Pochemu/Activity
|
8e2a7ec4f6b7fd233c0ee48e893733b077aac7a4
|
1b21e674635ff95104e18e93241c30020032e26a
|
refs/heads/main
| 2023-07-09T04:04:06.337321
| 2021-07-06T21:38:26
| 2021-07-06T21:38:26
| 337,492,398
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 193
|
py
|
for i in range(101, 1000):
x = i
L = x - 21
M = x + 12
while L != M:
if L > M:
L = L - M
else:
M = M - L
if M == 11:
print(i)
|
[
"48361330+Pochemu@users.noreply.github.com"
] |
48361330+Pochemu@users.noreply.github.com
|
0d2cb05f03c5148d545df139b233bb65df55f7c4
|
21d1d0cade05ae0ab3dff1598d64f80cef9a411d
|
/Python/Programmers/Level3/리틀프렌즈사천성.py
|
7aabad1adc691ca74efc1da5c8df28984e00bf84
|
[] |
no_license
|
louisuss/Algorithms-Code-Upload
|
56d1a140a1674a53c13bcec5be96ea6da7c35219
|
6c97c713858b075162d5d86f124c0555f383c5b0
|
refs/heads/master
| 2023-01-08T21:37:19.702276
| 2020-11-09T04:03:50
| 2020-11-09T04:03:50
| 258,399,889
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,352
|
py
|
def find_route(m1, n1, m2, n2, c):
up, down, left, right = check_edges(m1, n1, m2, n2, c)
case = (m1-m2)*(n1-n2)
if case == 0:
return (m1 == m2 and up) or (n1 == n2 and left)
elif case > 0:
return (up and right) or (down and left)
else:
return (up and left) or (down and right)
def check_edges(m1, n1, m2, n2, c):
up, down, left, right = [True]*4
for i in range(min(n1, n2), max(n1, n2)+1):
if matrix[min(m1, m2)][i] not in ('.', c):
up = False
break
for i in range(min(n1, n2), max(n1, n2)+1):
if matrix[max(m1, m2)][i] not in ('.', c):
down = False
break
for i in range(min(m1, m2), max(m1, m2)+1):
if matrix[i][min(n1, n2)] not in ('.', c):
left = False
break
for i in range(min(m1, m2), max(m1, m2)+1):
if matrix[i][max(n1, n2)] not in ('.', c):
right = False
break
return up, down, left, right
m, n = map(int, input().split())
matrix = []
coordinates = {}
for i in range(m):
row = list(input())
matrix.append(row)
for j in range(n):
c = row[j]
if c.isupper():
coordinates.setdefault(c, []).append((i, j))
result = []
friends = sorted(coordinates)
i = 0
while i < len(friends):
c = friends[i]
if c in result or c == '.':
i += 1
continue
(m1, n1), (m2, n2) = coordinates[c]
if find_route(m1, n1, m2, n2, c):
result.append(c)
friends[i] = '.'
matrix[m1][n1] = '.'
matrix[m2][n2] = '.'
i = 0
continue
i += 1
if len(result) == len(friends):
print(''.join(result))
else:
print('IMPOSSIBLE')
# # 기존 프렌즈 사천성 -> 경로가 세 개 이하 선분
# # 리틀 프렌즈 -> 경로가 2개 이하의 수평/수직 선분
# # . 빈칸 / * 막힌칸
# from collections import defaultdict
# from copy import deepcopy
# def delete_line(a, b, board, key):
# # 선분1
# x1, y1 = a
# x2, y2 = b
# check = True
# # 같은 행 위치
# if x1 == x2:
# for i in range(y1+1, y2):
# if board[x1][i] != '.':
# check = False
# break
# if check:
# board[x1][y1], board[x2][y2] = '.', '.'
# print(board)
# return key
# # 같은 열 위치
# elif y1 == y2:
# for i in range(x1+1, x2):
# if board[i][y1] != '.':
# check = False
# break
# if check:
# board[x1][y1], board[x2][y2] = '.', '.'
# return key
# # 선분2
# check1, check2 = True, True
# # 왼쪽에 있는 경우
# if x1 < x2 and y1 > y2:
# # 두 방향이 있음
# for i in range(y2, y1):
# if board[x1][i] != '.':
# check1 = False
# break
# if check1:
# for i in range(x1, x2):
# if board[i][y2] != '.':
# check1 = False
# break
# for i in range(x1+1, x2+1):
# if board[i][y1] != '.':
# check2 = False
# break
# if check2:
# for i in range(y2+1, y1+1):
# if board[x2][i] != '.':
# check2 = False
# break
# elif x1 < x2 and y1 < y2:
# for i in range(y1+1, y2+1):
# if board[x1][i] != '.':
# check1 = False
# break
# if check1:
# for i in range(x1, x2):
# if board[i][y2] != '.':
# check1 = False
# break
# for i in range(x1+1, x2+1):
# if board[i][y1] != '.':
# check2 = False
# break
# if check2:
# for i in range(y1+1, y2):
# if board[x2][i] != '.':
# check2 = False
# break
# if check1 and check2:
# board[x1][y1], board[x2][y2] = '.', '.'
# return key
# def solution(m, n, board):
# answer = []
# board = list(map(list, board))
# positions = defaultdict(list)
# for i in range(m):
# for j in range(n):
# if ord(board[i][j]) in list(range(ord('A'), ord('Z')+1)):
# positions[board[i][j]].append((i, j))
# while True:
# before_answer = deepcopy(answer)
# temp = []
# for a, b in positions.values():
# t = delete_line(a, b, board, board[a[0]][a[1]])
# if t != None:
# temp.append(t)
# if temp:
# answer.extend(sorted(temp))
# if len(answer) == len(positions):
# return ''.join(answer)
# else:
# if before_answer == answer:
# return "IMPOSSIBLE"
# m = 3
# n = 3
# board = ['DBA', 'C*A', 'CDB']
# print(solution(m, n, board))
# a=[[1,2],[3,4]]
# a[0][1] = 3
# print(a)
# # 특정 문자 조건 찾기
# # print(list(range(ord('A'), ord('Z')+1)))
# # 문자열 1개씩 가져오는지?
# # print(board[0][0])
# # for v in 'abc':
# # print(v)
# # 문자열 부분 리스트로 변환하기
# # board = list(map(list, board))
# # board = [list(b) for b in board]
# # print(board)
|
[
"dobi1115@gmail.com"
] |
dobi1115@gmail.com
|
3997d4051e2df12bf21d542ce8da6bd90be8e2b3
|
1c25798a9ae17ca228383fcd04a1e801415a78e7
|
/Chapter 3 Math, Function, Strings and Objects/commonPythonFunction.py
|
25618b0b6296236322877889a7f2286192eceb02
|
[] |
no_license
|
padamcs36/Introduction_to_Python_By_Daniel
|
688c56fff598617e979a5f71e9a48e50844ad7ea
|
8b8f00c9d93428c58df9c90e5edd8f75a1662647
|
refs/heads/main
| 2023-02-22T08:11:01.450054
| 2021-01-28T09:45:01
| 2021-01-28T09:45:01
| 333,700,411
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 303
|
py
|
'''
abs(), max(), min(), pow(), round() these are python built in functions
there is no need to import separate module for them
'''
print(abs(-3)) #return the value in positive always
print(max(4,5,-8,0,7))
print(min(0,4,6,3,-4))
print(pow(4,3))
print(round(4.535))
print(round(5.554667, 2))
|
[
"noreply@github.com"
] |
padamcs36.noreply@github.com
|
785a0e838d2086e476faf98a5ab30824e7268acd
|
b08d42933ac06045905d7c005ca9c114ed3aecc0
|
/src/learningCurve/tenPercent/lrClassifierN.py
|
5b2e407f3df56718ee1c0db2c70f5c4f024f8ad3
|
[] |
no_license
|
TanemuraKiyoto/PPI-native-detection-via-LR
|
d148d53f5eb60a4dda5318b371a3048e3f662725
|
897e7188b0da94e87126a4acc0c9a6ff44a64574
|
refs/heads/master
| 2022-12-05T11:59:01.014309
| 2020-08-10T00:41:17
| 2020-08-10T00:41:17
| 225,272,083
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,133
|
py
|
# 9 September 2019
# Kiyoto Aramis Tanemura
# I modified the rfClassifier.py script to implement a logistic regression classifier. This classifier runs faster than the random forest classifier and Jun previously observed comparable results between logistic regression and random forest classifiers for the protein folding system. Due to the lesser time cost, I may sample a greater hyperparameter space using the logistic regression classifier. If the sampling yields a region in which overfitting is not observed, then I can refine the search. If the results are similar to that of the random forest classifier, then I may have exhausted the dataset for generalizability.
# Modified 26 October 2019 by Kiyoto Aramis Tanemura. Apply logistic regression classifier to CASF-PPI dataset.
# Modified 2020-02-09 by KAT. Code generalized for public use on GitHub.
import pandas as pd
import numpy as np
import os
import json
import pickle
#from multiprocessing import Pool
from time import time
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV
from sklearn.preprocessing import StandardScaler
from random import shuffle, random
#os.chdir('/mnt/scratch/tanemur1/')
toc = time()
# Randomize input file orders
pathToInput = 'data/comparison_descriptors/'
pathToOutput = 'results/learningCurve/'
fileNames = [x for x in os.listdir(pathToInput) if '.csv' in x]
shuffle(fileNames) # note: shuffle is in-place. Do not assign to variable
# Specify training set fraction
train_fraction = 0.1
if len(fileNames) * train_fraction == int(len(fileNames) * train_fraction):
train_file_number = int(len(fileNames) * train_fraction)
else:
train_file_number = int(len(fileNames) * train_fraction + 1)
x_train = pd.DataFrame()
y_train = pd.DataFrame()
# Read individual csv for comparison descriptors, append to train_data, and partition to x_train, y_train
fileNamesWithPath = [pathToInput + fileName for fileName in fileNames]
def read_csv(filePath):
return pd.read_csv(filePath, index_col = 0)
print('begin read training set')
#with Pool(np.min([train_file_number, 28])) as p:
# train_dataList = list(p.map(read_csv, fileNamesWithPath[:train_file_number]))
train_dataList = list(map(read_csv, fileNamesWithPath[:train_file_number]))
print('begin append DF | ', (time() - toc) / 60, ' min')
# Append DataFrames into one. While loop used to reduce append operations. Iteratively, DFs in a list are appended
# to the following DF.
while len(train_dataList) != 1:
number = int(len(train_dataList) / 2)
for i in range(number):
train_dataList[2 * i] = train_dataList[2 * i].append(train_dataList[2 * i + 1], sort = True)
for j in range(number):
del train_dataList[j + 1]
x_train = train_dataList[0]
del train_dataList
print('train_data dimensions', x_train.shape, ' | ', (time() - toc) / 60, ' min')
y_train = x_train['class']
x_train = x_train.drop('class', axis = 1) # x_train contains only nonbonding descriptors
feature_names = x_train.columns
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
y_train = y_train.values
print('Dimensions x_train ', x_train.shape, ' | y_train', y_train.shape)
# Define a logistic regression classifier along with pertinent hyperparameters. Here, default values are used.
clf = LogisticRegression(penalty='l2', verbose = 1)
def sampleRationalVals(minVal, maxVal):
return 2 ** (random() * (np.log2(maxVal) - np.log2(minVal)) + np.log2(minVal))
def sampleRationalList(minVal, maxVal):
theList = []
for i in range(int(2 * np.log2(maxVal - minVal) + 1)):
theVal = sampleRationalVals(minVal, maxVal)
theList.append(theVal)
return theList
parameters = {
# include any hyperparameters to sample. Otherwise, leave empty to perform five fold cross validation with default values. For example:
# 'C': sampleRationalList(0.001, 1000),
# 'solver': ['newton-cg', 'lbfgs', 'sag','saga']
}
print('begin RandomizedSearchCV | ' + str((time() - toc)/60) + ' mins')
randomized_search = RandomizedSearchCV(estimator = clf, param_distributions = parameters, n_iter = 1, scoring = 'accuracy', refit = True, cv = 5, verbose = 1, n_jobs = 1, pre_dispatch = 'n_jobs', return_train_score=True)
randomized_search.fit(x_train, y_train)
print('begin output | ', (time() - toc) / 60 / 60, ' hours')
tic = time()
with open(pathToOutput + 'bestParamN.json', 'w') as g:
json.dump(randomized_search.best_estimator_.get_params(), g)
with open(pathToOutput + 'modelN.pkl', 'wb') as h:
pickle.dump(randomized_search, h)
with open(pathToOutput + 'trainingSetN.txt', 'w') as i:
i.write('Training set:\n')
for pdbID in fileNames[:train_file_number]:
i.write(pdbID + '\n')
i.write('\nJob time: ' + str((tic - toc) / 60 / 60) + ' hours')
with open(pathToOutput + 'standardScalerN.pkl', 'wb') as j:
pickle.dump(scaler, j)
bestCoefficient = randomized_search.best_estimator_.coef_
coefDf = pd.DataFrame(bestCoefficient, columns = feature_names)
with open(pathToOutput + 'coefficientsN.csv', 'w') as f:
coefDf.to_csv(f)
|
[
"tanemur1@msu.edu"
] |
tanemur1@msu.edu
|
bd9ed5751eee1c211f209fe86a475e63d9c97c2d
|
93684882400d0249ad733249f5b2c8dbd230110f
|
/ClassExercise & studio/chapter 8/Ex.02 pass 7-04-2016.py
|
b2e97a34f99d78980e9dea2a41e658df9a7c41ee
|
[] |
no_license
|
SmileShmily/LaunchCode-summerofcode-Unit1
|
c492bbed966547cc8c1be7f15d7a23cb989d407b
|
03474cf77b0dae2bcfaf8513711d3fec72bd4166
|
refs/heads/master
| 2021-01-16T23:19:23.413010
| 2017-06-29T02:49:19
| 2017-06-29T02:49:19
| 95,730,117
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,628
|
py
|
''' ’
(GRADED) Write a function analyze_text that receives a string as input.
Your function should count the number of alphabetic characters (a through z, or A through Z)
in the text and also keep track of how many are the letter 'e' (upper or lowercase).
Your function should return an analysis of the text, something like this:
The text contains 243 alphabetic characters, of which 109 (44.8%) are ‘e’.
'''
#analyze_text=input("Please enter your str:")
def analyze_text(str):
# your code here
# lows="abcdefghijklmnopqrstuvwxyz"
# ups="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
str = repr(str).lower()
numberOfe = 0
totalChars = 0
for ch in str:
if ((ch <= 'Z' and ch >= 'A') or (ch <= 'z' and ch >= 'a')):
totalChars = totalChars + 1
if ch == 'e':
numberOfe = numberOfe + 1
percent_with_e = (numberOfe/totalChars) * 100
return("The text contains %d alphabetic characters, of which %d (%.1f%) %sare 'e'."% (totalChars, numberOfe, percent_with_e))
# Don't copy these tests into Vocareum
from test import testEqual
str = "Eeeee"
expected = "The text contains 5 alphabetic characters, of which 5 (100.0%) are 'e'."
testEqual(analyze_text(str), expected)
str = "Blueberries are tastee!"
expected = "The text contains 20 alphabetic characters, of which 6 (30.0%) are 'e'."
testEqual(analyze_text(str), expected)
str = "Wright's book, Gadsby, contains a total of 0 of that most common symbol ;)"
expected = "The text contains 55 alphabetic characters, of which 0 (0.0%) are 'e'."
testEqual(analyze_text(str), expected)
'''Output
Pass
Pass
Pass'''
|
[
"zyxjyaya@gmail.com"
] |
zyxjyaya@gmail.com
|
59d4c01d5cfcf4ed342790fd1274876e93dd8832
|
26b0a513571a68576687b98de61d24be609b7595
|
/problem_set_7/NewsStory.py
|
350dd691a2f84602fbf6138df49edbbbe8c487c1
|
[] |
no_license
|
sirajmuneer123/MITx-6.00.1x-Introduction-to-Computer-Science-and-Programming-Using-Python
|
ea487447e119d9f1a23d49b9d6ddbe3a27b6f972
|
757c8087005bebb0fb250526d0caf7b79e3d1973
|
refs/heads/master
| 2021-01-10T03:21:53.565688
| 2015-11-07T17:57:26
| 2015-11-07T17:57:26
| 45,476,334
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 579
|
py
|
# Enter your code for NewsStory in this box
#Part 1: Data Structure Design
class NewsStory(object):
def __init__(self, guid, title, subject, summary, link):
self.guid = guid
self.title = title
self.subject = subject
self.summary = summary
self.link = link
def getGuid(self):
return self.guid
def getTitle(self):
return self.title
def getSubject(self):
return self.subject
def getSummary(self):
return self.summary
def getLink(self):
return self.link
|
[
"sirajmuneer4@gmail.com"
] |
sirajmuneer4@gmail.com
|
8c7528abac71136cad54131e9a41c7e5a0de6109
|
573d470c9fcb3799e8822e6953e1259b74e0672c
|
/Course/syntax/example_37.py
|
4dec6e18ca446e0776f554d3f82b7f877eb2a471
|
[
"Apache-2.0"
] |
permissive
|
zevgenia/Python_shultais
|
e6f35773e54a72477ea5ee83520dbecfbee7ff48
|
e51c31de221c5e7f36ede857a960138009ec8a05
|
refs/heads/master
| 2020-03-31T21:46:25.061571
| 2018-10-11T13:43:47
| 2018-10-11T13:43:47
| 152,593,211
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 330
|
py
|
"""
Модуль демонстрации строк документации.
Пример использования смотрите в файле example_38.py
"""
def square(x):
"""
Функция принимает число и возвращает квадрат этого числа.
"""
return x ** 2
|
[
"zatonskaya@yandex.ru"
] |
zatonskaya@yandex.ru
|
e8b3a1c00a0adcbb6c45e0613c18c21c3c1a2f8b
|
1bc7456240639a4fac54c411fbcb562cdbcc420c
|
/20.valid-parenthesis.py
|
505f4e6def7acd2d3df87521451cf3e681bda834
|
[] |
no_license
|
Manash-git/CP-LeetCode-Solve
|
bdbb9f13946faee5da24e191a3d593b99da61ed2
|
45052c7613345c76f8a12bac780ffb899062dea9
|
refs/heads/master
| 2022-11-29T13:16:03.474242
| 2020-08-11T19:06:07
| 2020-08-11T19:06:07
| 275,853,956
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 620
|
py
|
def isValid(s):
stack=[]
pairs={
'(':')',
'[':']',
'{':'}'
}
for char in s:
if char in pairs:
# storing corresponding closing parenthesis
stack.append(pairs[char])
# print(stack)
else:
if not stack or stack.pop() != char:
return False
# print("Final=>",stack)
return not stack
print(isValid("()[{}]"))
print(isValid("()[]{}"))
# test=[]
test=[1]
# print(not test) # Return True if list is empty. Bcoz: empty = False. so not False= True
# print(test)
|
[
"emailatmanash@gmail.com"
] |
emailatmanash@gmail.com
|
99712e5994e4f62c535cc123f5dee3ae5e41dc7c
|
b3a2e683ca82de3758fd62a8dea16bf2be7ebb78
|
/sequences/sorting.py
|
eb8a7a548068d777b5de382221deaa3f25e1f0d2
|
[] |
no_license
|
jschnab/data-structures-algos-python
|
dc60f4e26d4d86470039bab1f4422e86a6da736b
|
7b7821d5fc5378c8c7a4be088aadd6c95b154312
|
refs/heads/master
| 2022-12-27T17:56:34.622558
| 2020-10-24T19:47:37
| 2020-10-24T19:47:37
| 265,121,711
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,719
|
py
|
import random
def select(seq, start):
min_idx = start
for j in range(start + 1, len(seq)):
if seq[j] < seq[min_idx]:
min_idx = j
return min_idx
def selection_sort(seq):
for i in range(len(seq) - 1):
min_idx = select(seq, i)
tmp = seq[i]
seq[i] = seq[min_idx]
seq[min_idx] = tmp
def merge(seq, start, mid, stop):
lst = []
i = start
j = mid
# merge the two lists while each has more elements
while i < mid and j < stop:
if seq[i] < seq[j]:
lst.append(seq[i])
i += 1
else:
lst.append(seq[j])
j += 1
# copy in the rest of the start-to-mid sequence
while i < mid:
lst.append(seq[i])
i += 1
# no need to copy the rest of the sequence from j to stop
# the next part of the code does this for us
# so no need to do:
# while j < stop:
# lst.append(seq[j])
# j += 1
# copy elements back to the original sequence
for i in range(len(lst)):
seq[start + i] = lst[i]
def merge_sort_recursive(seq, start, stop):
# >= is necessary if sequence is empty
# otherwise start == stop - 1 does the job
if start >= stop - 1:
return
mid = (start + stop) // 2
merge_sort_recursive(seq, start, mid)
merge_sort_recursive(seq, mid, stop)
merge(seq, start, mid, stop)
def merge_sort(seq):
merge_sort_recursive(seq, 0, len(seq))
def partition(seq, start, stop):
# pivot_index comes from the start location in the list
pivot_index = start
pivot = seq[pivot_index]
i = start + 1
j = stop - 1
while i <= j:
while i <= j and seq[i] <= pivot:
i += 1
while i <= j and seq[j] > pivot:
j -= 1
if i < j:
tmp = seq[i]
seq[i] = seq[j]
seq[j] = tmp
i += 1
j -= 1
seq[pivot_index] = seq[j]
seq[j] = pivot
return j
def quicksort_recursive(seq, start, stop):
if start >= stop - 1:
return
# pivot index ends up between the two halves
# where the pivot value is in its final location
pivot_index = partition(seq, start, stop)
quicksort_recursive(seq, start, pivot_index)
quicksort_recursive(seq, pivot_index + 1, stop)
def quicksort(seq):
# randomize sequence to find a good pivot
for i in range(len(seq)):
j = random.randint(0, len(seq) - 1)
seq[i], seq[j] = seq[j], seq[i]
quicksort_recursive(seq, 0, len(seq))
if __name__ == "__main__":
seq = [random.randint(0, 100) for _ in range(10)]
print("Before sort:", seq)
quicksort(seq)
print("After sort:", seq)
|
[
"jonathan.schnabel31@gmail.com"
] |
jonathan.schnabel31@gmail.com
|
be19e49ff8ca50f044aa74a299385f507daf7c95
|
15f321878face2af9317363c5f6de1e5ddd9b749
|
/solutions_python/Problem_34/785.py
|
9c28392c2800225546e52dd464a7bb364a89ea2b
|
[] |
no_license
|
dr-dos-ok/Code_Jam_Webscraper
|
c06fd59870842664cd79c41eb460a09553e1c80a
|
26a35bf114a3aa30fc4c677ef069d95f41665cc0
|
refs/heads/master
| 2020-04-06T08:17:40.938460
| 2018-10-14T10:12:47
| 2018-10-14T10:12:47
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 378
|
py
|
import sys
import re
firstline = sys.stdin.readline()
(L, D, N) = map(int, firstline.split())
lex = []
for x in range(D):
lex.append(sys.stdin.readline())
lex = ''.join(lex)
for (i, pattern) in enumerate(sys.stdin.readlines()):
pattern = pattern.replace('(','[').replace(')',']')
matches = re.findall(pattern, lex)
print 'Case #%d: %d' % (i+1, len(matches))
|
[
"miliar1732@gmail.com"
] |
miliar1732@gmail.com
|
c886d026554eb02a740ba2ff1fe41d5cda414774
|
b385f39c5b701fb6f22796ab951872257ae8398a
|
/exercicios-secao08/exercicio29.py
|
ebaee4355b5c1a1ef226ff1e088f5a6abccb4523
|
[
"MIT"
] |
permissive
|
EhODavi/curso-python
|
5c97a6913bad198ae590519287ed441c95399d80
|
cf07e308be9d7516f2cfe7f21c539d214c836979
|
refs/heads/main
| 2023-08-07T13:44:46.608118
| 2021-06-14T21:40:50
| 2021-06-14T21:40:50
| 356,542,988
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 222
|
py
|
from math import factorial, radians
def sinh(graus: float) -> float:
soma: float = 0.0
x: float = radians(graus)
for n in range(6):
soma += (x ** (2 * n + 1)) / factorial(2 * n + 1)
return soma
|
[
"davi.miau@gmail.com"
] |
davi.miau@gmail.com
|
6b49473abce39f0169294f832573d958ed264e27
|
c7a404e6fe1861c90ff8dc9cbc69462ebcbb744c
|
/app.py
|
7c2a34914a0512a254d56cb7547873a693cb3975
|
[
"MIT"
] |
permissive
|
bossnode/rufo-mp3-fetcher
|
b40ced257b7127456b5fbdd27b19cb5ce9f6289e
|
ed14c44c27761e4d2b2625da17a62c036f38dafd
|
refs/heads/master
| 2020-06-10T04:11:09.257754
| 2019-06-26T20:25:12
| 2019-06-26T20:25:12
| 193,578,331
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,680
|
py
|
import gi
gi.require_version('Gtk', '3.0')
from gi.repository import Gtk
import os, sys
from soundspider import SoundSpider
from time import sleep
import threading
class Handler:
def onDestroy(self, *args):
try:
download_thread._stop()
except:
pass
Gtk.main_quit()
def onToggleDownload(self, button):
status = "Downloading..."
builder.get_object('label4').set_text(status)
button.set_sensitive(False)
builder.get_object("folder_label").set_sensitive(False)
builder.get_object("url_label").set_sensitive(False)
## verbose?
# verbose = True
verbose = False
params = (builder.get_object("url_label").get_text(),builder.get_object("folder_label").get_text(),verbose, builder.get_object('label4'), button,builder.get_object("url_label"),builder.get_object("folder_label"))
download_thread = threading.Thread(target=SoundSpider.convert, args=params)
download_thread.start()
return
def resource_path(relative_path):
""" Get absolute path to resource, works for dev and for PyInstaller """
try:
# PyInstaller creates a temp folder and stores path in _MEIPASS
base_path = sys._MEIPASS
except Exception:
base_path = os.path.abspath(".")
return os.path.join(base_path, relative_path)
# """ Get absolute path to resource, works for dev and for PyInstaller """
# base_path = getattr(sys, '_MEIPASS', os.path.dirname(os.path.abspath(__file__)))
# return os.path.join(base_path, relative_path)
download_thread = threading.Thread()
builder = Gtk.Builder()
builder.add_from_file(resource_path("ui.glade"))
builder.connect_signals(Handler())
window = builder.get_object("window1")
window.show_all()
Gtk.main()
|
[
"="
] |
=
|
d08d566fec8e6362ded5eced9937d5449872b30a
|
613d0766a36a0354ed8b7be4c8a552068afe5e71
|
/08 Linked List/15 Reverse Linked List/02.py
|
45530e293097a676b12012d31b88a5d9f2c7ec75
|
[] |
no_license
|
HYLee1008/Python
|
e9fb2109ed29d11faa37b0a823e603134d85dc28
|
04900b6de1d56c11fbb98d518c9b4cdd37772490
|
refs/heads/master
| 2022-12-12T12:07:49.198551
| 2020-09-05T12:41:55
| 2020-09-05T12:41:55
| 280,879,627
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 553
|
py
|
### Reverse linked list by iterative
### Iterative consumes 70% memory of the recursive method. And slightly faster.
from datastructure import *
def reverse_list(head):
node, prev = head, None
while node:
next, node.next = node.next, prev
node, prev = next, node
return prev
input = ListNode(1)
input.next = ListNode(2)
input.next.next = ListNode(3)
input.next.next.next = ListNode(4)
input.next.next.next.next = ListNode(5)
reverse = reverse_list(input)
while reverse:
print(reverse.val)
reverse = reverse.next
|
[
"discone1008@gmail.com"
] |
discone1008@gmail.com
|
d32bdac865b53dfa2b0b6159cd89f731b1be54c7
|
1565d4f012622c98dd519d5f6feedf7d5a67a70b
|
/etc/openshift_clean.py
|
a05d4c5f52a0c98d4598cac6d152eb7475f82f94
|
[
"MIT",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
doaa-altarawy/quokka
|
6862da8e3f0f3583350ca4faf2bc7133a7aa9d6b
|
3730008100266569d1fab47c7dfa765650e2a346
|
refs/heads/development
| 2021-01-16T17:46:22.983206
| 2015-12-21T22:15:15
| 2015-12-21T22:15:15
| 48,460,112
| 1
| 0
| null | 2015-12-23T00:14:31
| 2015-12-23T00:14:31
| null |
UTF-8
|
Python
| false
| false
| 543
|
py
|
#!/usr/bin/python
"""
THIS SCRIPT CLEANS ALL DATA IN YOUR QUOKKA DB
RUN ONLY IN OPENSHIFT DEMO DEPLOY
OR AT YOUR OWN RISK!!!!
"""
from quokka import create_app
from quokka.core.models.content import Content
from quokka.core.models.config import Config
from quokka.core.models.channel import Channel
from quokka.modules.accounts.models import User
app = create_app()
Content.objects.delete()
User.objects.delete()
Config.objects.delete()
for channel in Channel.objects.filter(parent__ne=None):
channel.delete()
Channel.objects.delete()
|
[
"rochacbruno@gmail.com"
] |
rochacbruno@gmail.com
|
8aeea72b7d8a05fcd367ad2245993782dde02fba
|
3330944ef9af811ed59e3f40721e6b7da754e1e7
|
/setup.py
|
1d70fdd49af304dc6bdae85abbb3f2671b9bf919
|
[] |
no_license
|
loum/baip-loader
|
8ee6ad184f4cb557437ed92590b591eaa0032956
|
68a4b1556b8d745e51a1502092cd1d54bfd96c76
|
refs/heads/master
| 2021-01-25T07:39:34.190887
| 2015-05-05T00:15:21
| 2015-05-05T00:15:21
| 30,627,252
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,249
|
py
|
""":mod:docutils` setup.py file to generate Python compatible sources in
build/ directory
"""
import os
import glob
import fnmatch
import shutil
from setuptools import setup
VERSION = '0.0.0'
def opj(*args):
path = os.path.join(*args)
return os.path.normpath(path)
def find_data_files(srcdir, *wildcards, **kw):
"""Get a list of all files under the *srcdir* matching *wildcards*,
returned in a format to be used for install_data.
"""
def walk_helper(arg, dirname, files):
names = []
lst, wildcards = arg
for wildcard in wildcards:
wc_name = opj(dirname, wildcard)
for current_file in files:
filename = opj(dirname, current_file)
if (fnmatch.fnmatch(filename, wc_name) and
not os.path.isdir(filename)):
if kw.get('version') is None:
names.append(filename)
else:
versioned_file = '%s.%s' % (filename,
kw.get('version'))
shutil.copyfile(filename, versioned_file)
names.append('%s.%s' % (filename,
kw.get('version')))
if names:
if kw.get('target_dir') is None:
lst.append(('', names))
else:
lst.append((kw.get('target_dir'), names))
file_list = []
recursive = kw.get('recursive', True)
if recursive:
os.path.walk(srcdir, walk_helper, (file_list, wildcards))
else:
walk_helper((file_list, wildcards),
srcdir,
[os.path.basename(current_file) for current_file in glob.glob(opj(srcdir, '*'))])
return file_list
find_data_files('baip_loader/conf/', '*.conf', version=VERSION)
setup(name='python-baip-loader',
version=VERSION,
description='BAIP-Loader',
author='Lou Markovski',
author_email='lou.markovski@gmail.com',
url='',
scripts=['baip_loader/bin/baip-loader'],
packages=['baip_loader',
'baip_loader.config'],
package_data={'baip_loader': ['conf/*.conf.[0-9]*.[0-9]*.[0-9]*']})
|
[
"lou.markovski@gmail.com"
] |
lou.markovski@gmail.com
|
02d2bcf9f1aaaee3aff4b006298d5417e5d9fecb
|
386d5d4f8f102e701d02b326cd066f520e3dff9f
|
/ProjectApplication/grant_management/migrations/0030_renames_media_to_medium.py
|
f3c44d48ea456f3b94289c02f7b305bf53d2dd0b
|
[
"CC-BY-NC-SA-4.0",
"CC-BY-SA-4.0",
"CC-BY-4.0",
"MIT"
] |
permissive
|
Swiss-Polar-Institute/project-application
|
ae2561c3ae2c1d5412d165d959ce2e5886135e0a
|
7dc4a9f7e0f8d28c89977b85f99bc5e35ea77d43
|
refs/heads/master
| 2023-08-31T04:01:23.492272
| 2023-08-25T14:33:02
| 2023-08-25T14:33:02
| 206,330,401
| 7
| 5
|
MIT
| 2023-09-13T08:03:53
| 2019-09-04T13:49:39
|
Python
|
UTF-8
|
Python
| false
| false
| 685
|
py
|
# Generated by Django 3.0.5 on 2020-05-12 10:39
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('project_core', '0118_calls_need_to_be_part_of_a_funding_instrument'),
('grant_management', '0029_signed_by_multiple_people'),
]
operations = [
migrations.RenameModel(
old_name='Media',
new_name='Medium',
),
migrations.AlterField(
model_name='grantagreement',
name='signed_by',
field=models.ManyToManyField(blank=True, help_text='People who signed the grant agreement', to='project_core.PhysicalPerson'),
),
]
|
[
"carles@pina.cat"
] |
carles@pina.cat
|
7bcce88caf756bb58b5c86d24a41dfc8e635fa25
|
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
|
/benchmark/omninote/testcase/firstcases/testcase10_018.py
|
bb43949dc1a984d35d229ba18c38794740f1bd50
|
[] |
no_license
|
Prefest2018/Prefest
|
c374d0441d714fb90fca40226fe2875b41cf37fc
|
ac236987512889e822ea6686c5d2e5b66b295648
|
refs/heads/master
| 2021-12-09T19:36:24.554864
| 2021-12-06T12:46:14
| 2021-12-06T12:46:14
| 173,225,161
| 5
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,301
|
py
|
#coding=utf-8
import os
import subprocess
import time
import traceback
from appium import webdriver
from appium.webdriver.common.touch_action import TouchAction
from selenium.common.exceptions import NoSuchElementException, WebDriverException
desired_caps = {
'platformName' : 'Android',
'deviceName' : 'Android Emulator',
'platformVersion' : '4.4',
'appPackage' : 'it.feio.android.omninotes',
'appActivity' : 'it.feio.android.omninotes.MainActivity',
'resetKeyboard' : True,
'androidCoverage' : 'it.feio.android.omninotes/it.feio.android.omninotes.JacocoInstrumentation',
'noReset' : True
}
def command(cmd, timeout=5):
p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True)
time.sleep(timeout)
p.terminate()
return
def getElememt(driver, str) :
for i in range(0, 5, 1):
try:
element = driver.find_element_by_android_uiautomator(str)
except NoSuchElementException:
time.sleep(1)
else:
return element
os.popen("adb shell input tap 50 50")
element = driver.find_element_by_android_uiautomator(str)
return element
def getElememtBack(driver, str1, str2) :
for i in range(0, 2, 1):
try:
element = driver.find_element_by_android_uiautomator(str1)
except NoSuchElementException:
time.sleep(1)
else:
return element
for i in range(0, 5, 1):
try:
element = driver.find_element_by_android_uiautomator(str2)
except NoSuchElementException:
time.sleep(1)
else:
return element
os.popen("adb shell input tap 50 50")
element = driver.find_element_by_android_uiautomator(str2)
return element
def swipe(driver, startxper, startyper, endxper, endyper) :
size = driver.get_window_size()
width = size["width"]
height = size["height"]
try:
driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper),
end_y=int(height * endyper), duration=2000)
except WebDriverException:
time.sleep(1)
driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper),
end_y=int(height * endyper), duration=2000)
return
# testcase018
try :
starttime = time.time()
driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps)
element = getElememtBack(driver, "new UiSelector().text(\"Nothing here!\")", "new UiSelector().className(\"android.widget.TextView\").instance(3)")
TouchAction(driver).tap(element).perform()
element = getElememt(driver, "new UiSelector().resourceId(\"it.feio.android.omninotes:id/menu_sort\").className(\"android.widget.TextView\")")
TouchAction(driver).long_press(element).release().perform()
element = getElememt(driver, "new UiSelector().resourceId(\"it.feio.android.omninotes:id/menu_sort\").className(\"android.widget.TextView\")")
TouchAction(driver).long_press(element).release().perform()
element = getElememt(driver, "new UiSelector().resourceId(\"it.feio.android.omninotes:id/menu_sort\").className(\"android.widget.TextView\")")
TouchAction(driver).long_press(element).release().perform()
element = getElememtBack(driver, "new UiSelector().text(\"Nothing here!\")", "new UiSelector().className(\"android.widget.TextView\").instance(3)")
TouchAction(driver).tap(element).perform()
element = getElememt(driver, "new UiSelector().className(\"android.widget.ImageView\").description(\"More options\")")
TouchAction(driver).tap(element).perform()
element = getElememtBack(driver, "new UiSelector().text(\"Reduced view\")", "new UiSelector().className(\"android.widget.TextView\")")
TouchAction(driver).tap(element).perform()
element = getElememt(driver, "new UiSelector().resourceId(\"it.feio.android.omninotes:id/menu_search\").className(\"android.widget.TextView\")")
TouchAction(driver).tap(element).perform()
except Exception, e:
print 'FAIL'
print 'str(e):\t\t', str(e)
print 'repr(e):\t', repr(e)
print traceback.format_exc()
else:
print 'OK'
finally:
cpackage = driver.current_package
endtime = time.time()
print 'consumed time:', str(endtime - starttime), 's'
command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"10_018\"")
jacocotime = time.time()
print 'jacoco time:', str(jacocotime - endtime), 's'
driver.quit()
if (cpackage != 'it.feio.android.omninotes'):
cpackage = "adb shell am force-stop " + cpackage
os.popen(cpackage)
|
[
"prefest2018@gmail.com"
] |
prefest2018@gmail.com
|
d8a67dd3fc7ad483dcc1c079ddf71657300fe471
|
4c3e992678341ccaa1d4d14e97dac2e0682026d1
|
/addons/account/tests/test_tax.py
|
62e63e8bb07a770a7428d5bb811ee52b406f5201
|
[] |
no_license
|
gahan-corporation/wyatt
|
3a6add8f8f815bd26643e1e7c81aea024945130d
|
77e56da362bec56f13bf0abc9f8cf13e98461111
|
refs/heads/master
| 2021-09-03T18:56:15.726392
| 2018-01-08T02:54:47
| 2018-01-08T02:54:47
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,285
|
py
|
from gerp.addons.account.tests.account_test_users import AccountTestUsers
import time
class TestTax(AccountTestUsers):
def setUp(self):
super(TestTax, self).setUp()
self.fixed_tax = self.tax_model.create({
'name': "Fixed tax",
'amount_type': 'fixed',
'amount': 10,
'sequence': 1,
})
self.fixed_tax_bis = self.tax_model.create({
'name': "Fixed tax bis",
'amount_type': 'fixed',
'amount': 15,
'sequence': 2,
})
self.percent_tax = self.tax_model.create({
'name': "Percent tax",
'amount_type': 'percent',
'amount': 10,
'sequence': 3,
})
self.division_tax = self.tax_model.create({
'name': "Division tax",
'amount_type': 'division',
'amount': 10,
'sequence': 4,
})
self.group_tax = self.tax_model.create({
'name': "Group tax",
'amount_type': 'group',
'amount': 0,
'sequence': 5,
'children_tax_ids': [
(4, self.fixed_tax.id, 0),
(4, self.percent_tax.id, 0)
]
})
self.group_tax_bis = self.tax_model.create({
'name': "Group tax bis",
'amount_type': 'group',
'amount': 0,
'sequence': 6,
'children_tax_ids': [
(4, self.fixed_tax.id, 0),
(4, self.percent_tax.id, 0)
]
})
self.group_of_group_tax = self.tax_model.create({
'name': "Group of group tax",
'amount_type': 'group',
'amount': 0,
'sequence': 7,
'children_tax_ids': [
(4, self.group_tax.id, 0),
(4, self.group_tax_bis.id, 0)
]
})
self.bank_journal = self.env['account.journal'].search([('type', '=', 'bank'), ('company_id', '=', self.account_manager.company_id.id)])[0]
self.bank_account = self.bank_journal.default_debit_account_id
self.expense_account = self.env['account.account'].search([('user_type_id.type', '=', 'payable')], limit=1) #Should be done by onchange later
def test_tax_group_of_group_tax(self):
self.fixed_tax.include_base_amount = True
self.group_tax.include_base_amount = True
self.group_of_group_tax.include_base_amount = True
res = self.group_of_group_tax.compute_all(200.0)
self.assertEquals(res['total_excluded'], 200.0)
# After calculation of first group
# base = 210
# total_included = 231
# Base of the first grouped is passed
# Base after the second group (220) is dropped.
# Base of the group of groups is passed out,
# so we obtain base as after first group
self.assertEquals(res['base'], 210.0)
self.assertEquals(res['total_included'], 263.0)
def test_tax_group(self):
res = self.group_tax.compute_all(200.0)
self.assertEquals(res['total_excluded'], 200.0)
self.assertEquals(res['total_included'], 230.0)
self.assertEquals(len(res['taxes']), 2)
self.assertEquals(res['taxes'][0]['amount'], 10.0)
self.assertEquals(res['taxes'][1]['amount'], 20.0)
def test_tax_percent_division(self):
self.division_tax.price_include = True
self.division_tax.include_base_amount = True
self.percent_tax.price_include = False
self.percent_tax.include_base_amount = False
res_division = self.division_tax.compute_all(200.0)
res_percent = self.percent_tax.compute_all(200.0)
self.assertEquals(res_division['taxes'][0]['amount'], 20.0)
self.assertEquals(res_percent['taxes'][0]['amount'], 20.0)
self.division_tax.price_include = False
self.division_tax.include_base_amount = False
self.percent_tax.price_include = True
self.percent_tax.include_base_amount = True
res_division = self.division_tax.compute_all(200.0)
res_percent = self.percent_tax.compute_all(200.0)
self.assertEquals(res_division['taxes'][0]['amount'], 22.22)
self.assertEquals(res_percent['taxes'][0]['amount'], 18.18)
def test_tax_sequence_normalized_set(self):
self.division_tax.sequence = 1
self.fixed_tax.sequence = 2
self.percent_tax.sequence = 3
taxes_set = (self.group_tax | self.division_tax)
res = taxes_set.compute_all(200.0)
self.assertEquals(res['taxes'][0]['amount'], 22.22)
self.assertEquals(res['taxes'][1]['amount'], 10.0)
self.assertEquals(res['taxes'][2]['amount'], 20.0)
def test_tax_include_base_amount(self):
self.fixed_tax.include_base_amount = True
res = self.group_tax.compute_all(200.0)
self.assertEquals(res['total_included'], 231.0)
def test_tax_currency(self):
self.division_tax.amount = 15.0
res = self.division_tax.compute_all(200.0, currency=self.env.ref('base.VEF'))
self.assertAlmostEqual(res['total_included'], 235.2941)
def test_tax_move_lines_creation(self):
""" Test that creating a move.line with tax_ids generates the tax move lines and adjust line amount when a tax is price_include """
self.fixed_tax.price_include = True
self.fixed_tax.include_base_amount = True
company_id = self.env['res.users'].browse(self.env.uid).company_id.id
vals = {
'date': time.strftime('%Y-01-01'),
'journal_id': self.bank_journal.id,
'name': 'Test move',
'line_ids': [(0, 0, {
'account_id': self.bank_account.id,
'debit': 235,
'credit': 0,
'name': 'Bank Fees',
'partner_id': False,
}), (0, 0, {
'account_id': self.expense_account.id,
'debit': 0,
'credit': 200,
'date': time.strftime('%Y-01-01'),
'name': 'Bank Fees',
'partner_id': False,
'tax_ids': [(4, self.group_tax.id), (4, self.fixed_tax_bis.id)]
})],
'company_id': company_id,
}
move = self.env['account.move'].with_context(apply_taxes=True).create(vals)
aml_fixed_tax = move.line_ids.filtered(lambda l: l.tax_line_id.id == self.fixed_tax.id)
aml_percent_tax = move.line_ids.filtered(lambda l: l.tax_line_id.id == self.percent_tax.id)
aml_fixed_tax_bis = move.line_ids.filtered(lambda l: l.tax_line_id.id == self.fixed_tax_bis.id)
self.assertEquals(len(aml_fixed_tax), 1)
self.assertEquals(aml_fixed_tax.credit, 10)
self.assertEquals(len(aml_percent_tax), 1)
self.assertEquals(aml_percent_tax.credit, 20)
self.assertEquals(len(aml_fixed_tax_bis), 1)
self.assertEquals(aml_fixed_tax_bis.credit, 15)
aml_with_taxes = move.line_ids.filtered(lambda l: set(l.tax_ids.ids) == set([self.group_tax.id, self.fixed_tax_bis.id]))
self.assertEquals(len(aml_with_taxes), 1)
self.assertEquals(aml_with_taxes.credit, 190)
|
[
"duchess@gahan-corporation.com"
] |
duchess@gahan-corporation.com
|
1ff24ffb45f8546c93fbec4517976b96ca01b0bc
|
b8ed71f3d1a36c119d846e97f1aa7d8ba6774f52
|
/680_Valid_Palindrome_II.py
|
5dd32bf280843101a247fdd621ab833fcc2b7d1b
|
[] |
no_license
|
imjaya/Leetcode_solved
|
0831c4114dd919864452430c4e46d3f69b4bd0cd
|
374eb0f23ae14d9638d20bbfe622209f71397ae0
|
refs/heads/master
| 2023-05-24T17:57:56.633611
| 2023-05-16T06:31:42
| 2023-05-16T06:31:42
| 284,203,426
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 491
|
py
|
def helper(s,l,r):
while l<r:
if(s[l]!=s[r]):
return False
l+=1
r-=1
return True
class Solution:
def validPalindrome(self, s: str) -> bool:
left=0
right=len(s)-1
while(left<right):
if(s[left]!=s[right]):
return helper(s,left+1,right) or helper(s,left,right-1)
else:
left+=1
right-=1
return True
|
[
"smjayasurya1997@gmail.com"
] |
smjayasurya1997@gmail.com
|
c335ae67050596c16c4e388d411d18e7b88ca797
|
863a7b075963c2882d9fe5df66af16c6e52576a9
|
/deepiu/textsim/evaluate/evaluate-sim.py
|
2079a1cc158d696d4cf173579d1afde74c720102
|
[] |
no_license
|
buptpriswang/hasky
|
3c3510d43821bbdfdfa216a337cde6e0747b3423
|
93afdc32956643fe191fcf1a5aa635570e219ab0
|
refs/heads/master
| 2021-06-30T19:45:03.329238
| 2017-09-22T15:41:58
| 2017-09-22T15:41:58
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,532
|
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# ==============================================================================
# \file evaluate-sim-score.py
# \author chenghuige
# \date 2016-09-25 00:46:53.890615
# \Description
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('model_dir', '/home/gezi/new/temp/makeup/title2name/model/bow/', '')
#flags.DEFINE_string('model_dir', '/home/gezi/new/temp/makeup/title2name/model/cnn.hic/', '')
flags.DEFINE_string('exact_model_dir', '/home/gezi/new/temp/makeup/title2name/model/bow.elementwise/', '')
flags.DEFINE_string('vocab', '/home/gezi/new/temp/makeup/title2name/tfrecord/seq-basic/vocab.txt', '')
flags.DEFINE_bool('use_exact_predictor', False, '')
flags.DEFINE_string('key', 'score', '')
flags.DEFINE_string('lkey', 'dual_bow/main/ltext:0', '')
flags.DEFINE_string('rkey', 'dual_bow/main/rtext:0', '')
#flags.DEFINE_string('lkey', 'dual_cnn/main/ltext:0', '')
#flags.DEFINE_string('rkey', 'dual_cnn/main/rtext:0', '')
flags.DEFINE_string('exact_key', 'score', '')
flags.DEFINE_string('exact_lkey', 'dual_bow2/main/ltext:0', '')
flags.DEFINE_string('exact_rkey', 'dual_bow2/main/rtext:0', '')
flags.DEFINE_float('exact_ratio', 1., '')
flags.DEFINE_integer('np_seed', 1024, '0 random otherwise fixed random')
import sys
import numpy as np
import melt
logging = melt.logging
import gezi
from deepiu.util import evaluator
from deepiu.util import algos_factory
class Predictor(melt.PredictorBase):
def __init__(self, model_dir, key, lkey, rkey, index=0):
self._predictor = melt.Predictor(model_dir)
self._key = key
self._lkey = lkey
self._rkey = rkey
self._index = index
def predict(self, ltext, rtext):
score = self._predictor.inference(self._key,
feed_dict= {
self._lkey: ltext,
self._rkey: rtext
},
index=self._index
)
return score
def evaluate_score():
evaluator.init()
text_max_words = evaluator.all_distinct_texts.shape[1]
print('text_max_words:', text_max_words)
predictor = Predictor(FLAGS.model_dir, FLAGS.key, FLAGS.lkey, FLAGS.rkey, index=0)
exact_predictor=None
if FLAGS.use_exact_predictor:
exact_predictor = Predictor(FLAGS.exact_model_dir, FLAGS.exact_key, FLAGS.exact_lkey, FLAGS.exact_rkey, index=-1)
print(tf.get_collection(FLAGS.key))
seed = FLAGS.np_seed if FLAGS.np_seed else None
index = evaluator.random_predict_index(seed=seed)
evaluator.evaluate_scores(predictor, random=True, index=index)
if exact_predictor is not None:
##well for seq2seq did experiment and for makeup title2name score(average time per step) is much better then ori_score
##so just juse score will be fine
#exact_predictor._key = 'ori_score'
#evaluator.evaluate_scores(predictor, random=True, exact_predictor=exact_predictor, index=index)
#exact_predictor._key = 'score'
evaluator.evaluate_scores(predictor, random=True, exact_predictor=exact_predictor, exact_ratio=FLAGS.exact_ratio, index=index)
def main(_):
logging.init(logtostderr=True, logtofile=False)
evaluate_score()
if __name__ == '__main__':
tf.app.run()
|
[
"29109317@qq.com"
] |
29109317@qq.com
|
8b7320fbb782d353ece0bf32dd2977b744b8acd8
|
0e1e643e864bcb96cf06f14f4cb559b034e114d0
|
/Exps_7_v3/I_to_M_Gk3_no_pad/pyramid_2side/bce_s001_tv_s0p1_L8/step11_L2345678.py
|
c03824dab2e889ccb93f4ca311d98915db768bee
|
[] |
no_license
|
KongBOy/kong_model2
|
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
|
1af20b168ffccf0d5293a393a40a9fa9519410b2
|
refs/heads/master
| 2022-10-14T03:09:22.543998
| 2022-10-06T11:33:42
| 2022-10-06T11:33:42
| 242,080,692
| 3
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,986
|
py
|
#############################################################################################################################################################################################################
#############################################################################################################################################################################################################
### 把 kong_model2 加入 sys.path
import os
code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path
code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層
kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層
kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir
import sys ### 把 kong_model2 加入 sys.path
sys.path.append(kong_model2_dir)
# print(__file__.split("\\")[-1])
# print(" code_exe_path:", code_exe_path)
# print(" code_exe_path_element:", code_exe_path_element)
# print(" kong_layer:", kong_layer)
# print(" kong_model2_dir:", kong_model2_dir)
###############################################################################################################################################################################################################
# 按F5執行時, 如果 不是在 step10_b.py 的資料夾, 自動幫你切過去~ 才可 import step10_a.py 喔!
code_exe_dir = os.path.dirname(code_exe_path) ### 目前執行 step10_b.py 的 dir
if(os.getcwd() != code_exe_dir): ### 如果 不是在 step10_b.py 的資料夾, 自動幫你切過去~
os.chdir(code_exe_dir)
# print("current_path:", os.getcwd())
###############################################################################################################################################################################################################
import Exps_7_v3.I_to_M_Gk3_no_pad.pyramid_0side.bce_s001_tv_s0p1_L8.step10_a as L8_0side
import Exps_7_v3.I_to_M_Gk3_no_pad.pyramid_1side.bce_s001_tv_s0p1_L8.step10_a as L8_1side
import step10_a as side2
#################################################################################################################################################################################################################################################################################################################################################################################################
ch032_1side_1__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_1__2side_1, ]
ch032_1side_2__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_2__2side_1, side2.ch032_1side_2__2side_2, ]
ch032_1side_3__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_3__2side_1, side2.ch032_1side_3__2side_2, side2.ch032_1side_3__2side_3, ]
ch032_1side_4__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_4__2side_1, side2.ch032_1side_4__2side_2, side2.ch032_1side_4__2side_3, side2.ch032_1side_4__2side_4, ]
ch032_1side_5__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_5__2side_1, side2.ch032_1side_5__2side_2, side2.ch032_1side_5__2side_3, side2.ch032_1side_5__2side_4, side2.ch032_1side_5__2side_5, ]
ch032_1side_6__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_6__2side_1, side2.ch032_1side_6__2side_2, side2.ch032_1side_6__2side_3, side2.ch032_1side_6__2side_4, side2.ch032_1side_6__2side_5, side2.ch032_1side_6__2side_6, ]
ch032_1side_7__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_7__2side_1, side2.ch032_1side_7__2side_2, side2.ch032_1side_7__2side_3, side2.ch032_1side_7__2side_4, side2.ch032_1side_7__2side_5, side2.ch032_1side_7__2side_6, side2.ch032_1side_7__2side_7, ]
ch032_1side_8__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_8__2side_1, side2.ch032_1side_8__2side_2, side2.ch032_1side_8__2side_3, side2.ch032_1side_8__2side_4, side2.ch032_1side_8__2side_5, side2.ch032_1side_8__2side_6, side2.ch032_1side_8__2side_7, side2.ch032_1side_8__2side_8, ]
ch032_1side_9__2side_all = [ L8_0side.ch032_0side, L8_1side.ch032_1side_1, side2.ch032_1side_9__2side_1, side2.ch032_1side_9__2side_2, side2.ch032_1side_9__2side_3, side2.ch032_1side_9__2side_4, side2.ch032_1side_9__2side_5, side2.ch032_1side_9__2side_6, side2.ch032_1side_9__2side_7, side2.ch032_1side_9__2side_8, side2.ch032_1side_9__2side_9, ]
ch032_1side_all__2side_all = [
ch032_1side_1__2side_all,
ch032_1side_2__2side_all,
ch032_1side_3__2side_all,
ch032_1side_4__2side_all,
ch032_1side_5__2side_all,
ch032_1side_6__2side_all,
ch032_1side_7__2side_all,
ch032_1side_8__2side_all,
ch032_1side_9__2side_all,
]
|
[
"s89334roy@yahoo.com.tw"
] |
s89334roy@yahoo.com.tw
|
930d498a17db90721c75d65299f8f10b0549e799
|
4a88daea1741ed6b5b5088b8d1f2787093abdf80
|
/tests/test_gen_couroutine.py
|
16e6479cc1bbc400493e0975a2f4a4ccec8b11d3
|
[
"MIT"
] |
permissive
|
Nigelzhf/torweb
|
8e0bfeb6793ae9e50230e6b7b6284ec5e6da0d57
|
6859a878c126addb74410e872307ac9399f20eb7
|
refs/heads/master
| 2021-01-12T14:16:10.474945
| 2016-10-03T20:47:25
| 2016-10-03T20:47:25
| 69,928,142
| 0
| 1
| null | 2016-10-04T02:25:34
| 2016-10-04T02:25:33
| null |
UTF-8
|
Python
| false
| false
| 414
|
py
|
#encoding:utf-8
import sys, os
sys.path.append(os.path.dirname(sys.path[0]))
from tornado.httpclient import AsyncHTTPClient
from tornado import gen
import tornado.ioloop
@gen.coroutine
def fetch_coroutine(url):
http_client = AsyncHTTPClient()
response = yield http_client.fetch(url)
print('test')
print(response)
# fetch_coroutine('http://sxu.today')
tornado.ioloop.IOLoop.instance().start()
|
[
"jmpews@gmail.com"
] |
jmpews@gmail.com
|
8edd25a05553c2dfeaaf20dd6357cab4c4a87d07
|
4b5173af602439cdca0db985dcbdd25aef9b7a6b
|
/bin/topology-json-connector.py
|
fb1c33926b316f0d4ed9f1c45d8fbaeac5353af5
|
[] |
no_license
|
kevangel79/argo-egi-connectors
|
a3d4bf502708cdce08acf01b5c58812042e4d201
|
dff42c3d4e5e7ea31ca839dd93f975ea27f4ffda
|
refs/heads/master
| 2022-02-23T15:01:13.081358
| 2022-02-15T14:54:05
| 2022-02-15T14:54:05
| 250,012,827
| 0
| 0
| null | 2020-03-25T15:14:01
| 2020-03-25T15:14:00
| null |
UTF-8
|
Python
| false
| false
| 7,746
|
py
|
#!/usr/bin/python3
import argparse
import os
import sys
import json
import uvloop
import asyncio
from argo_egi_connectors.io.http import SessionWithRetry
from argo_egi_connectors.exceptions import ConnectorHttpError, ConnectorParseError
from argo_egi_connectors.io.webapi import WebAPI
from argo_egi_connectors.io.avrowrite import AvroWriter
from argo_egi_connectors.io.statewrite import state_write
from argo_egi_connectors.log import Logger
from argo_egi_connectors.config import Global, CustomerConf
from argo_egi_connectors.utils import filename_date, datestamp, date_check
from argo_egi_connectors.parse.flat_topology import ParseFlatEndpoints, ParseContacts
from argo_egi_connectors.mesh.contacts import attach_contacts_topodata
from urllib.parse import urlparse
logger = None
globopts = {}
custname = ''
def is_feed(feed):
data = urlparse(feed)
if not data.netloc:
return False
else:
return True
async def send_webapi(webapi_opts, data, topotype, fixed_date=None):
webapi = WebAPI(sys.argv[0], webapi_opts['webapihost'],
webapi_opts['webapitoken'], logger,
int(globopts['ConnectionRetry'.lower()]),
int(globopts['ConnectionTimeout'.lower()]),
int(globopts['ConnectionSleepRetry'.lower()]),
date=fixed_date)
await webapi.send(data, topotype)
def get_webapi_opts(cglob, confcust):
webapi_custopts = confcust.get_webapiopts()
webapi_opts = cglob.merge_opts(webapi_custopts, 'webapi')
webapi_complete, missopt = cglob.is_complete(webapi_opts, 'webapi')
if not webapi_complete:
logger.error('Customer:%s %s options incomplete, missing %s' % (logger.customer, 'webapi', ' '.join(missopt)))
raise SystemExit(1)
return webapi_opts
async def fetch_data(feed):
remote_topo = urlparse(feed)
session = SessionWithRetry(logger, custname, globopts)
res = await session.http_get('{}://{}{}'.format(remote_topo.scheme,
remote_topo.netloc,
remote_topo.path))
return res
def parse_source_topo(res, uidservtype, fetchtype):
# group_groups, group_endpoints = ParseEoscTopo(logger, res, uidservtype, fetchtype).get_data()
topo = ParseFlatEndpoints(logger, res, custname, uidservtype, fetchtype, scope=custname)
group_groups = topo.get_groupgroups()
group_endpoints = topo.get_groupendpoints()
return group_groups, group_endpoints
async def write_state(confcust, fixed_date, state):
cust = list(confcust.get_customers())[0]
jobstatedir = confcust.get_fullstatedir(globopts['InputStateSaveDir'.lower()], cust)
fetchtype = confcust.get_topofetchtype()
if fixed_date:
await state_write(sys.argv[0], jobstatedir, state,
globopts['InputStateDays'.lower()],
fixed_date.replace('-', '_'))
else:
await state_write(sys.argv[0], jobstatedir, state,
globopts['InputStateDays'.lower()])
def write_avro(confcust, group_groups, group_endpoints, fixed_date):
custdir = confcust.get_custdir()
if fixed_date:
filename = filename_date(logger, globopts['OutputTopologyGroupOfGroups'.lower()], custdir, fixed_date.replace('-', '_'))
else:
filename = filename_date(logger, globopts['OutputTopologyGroupOfGroups'.lower()], custdir)
avro = AvroWriter(globopts['AvroSchemasTopologyGroupOfGroups'.lower()], filename)
ret, excep = avro.write(group_groups)
if not ret:
logger.error('Customer:%s : %s' % (logger.customer, repr(excep)))
raise SystemExit(1)
if fixed_date:
filename = filename_date(logger, globopts['OutputTopologyGroupOfEndpoints'.lower()], custdir, fixed_date.replace('-', '_'))
else:
filename = filename_date(logger, globopts['OutputTopologyGroupOfEndpoints'.lower()], custdir)
avro = AvroWriter(globopts['AvroSchemasTopologyGroupOfEndpoints'.lower()], filename)
ret, excep = avro.write(group_endpoints)
if not ret:
logger.error('Customer:%s : %s' % (logger.customer, repr(excep)))
raise SystemExit(1)
def main():
global logger, globopts, confcust
parser = argparse.ArgumentParser(description="""Fetch and construct entities from EOSC-PORTAL feed""")
parser.add_argument('-c', dest='custconf', nargs=1, metavar='customer.conf', help='path to customer configuration file', type=str, required=False)
parser.add_argument('-g', dest='gloconf', nargs=1, metavar='global.conf', help='path to global configuration file', type=str, required=False)
parser.add_argument('-d', dest='date', metavar='YEAR-MONTH-DAY', help='write data for this date', type=str, required=False)
args = parser.parse_args()
group_endpoints, group_groups = list(), list()
logger = Logger(os.path.basename(sys.argv[0]))
fixed_date = None
if args.date and date_check(args.date):
fixed_date = args.date
confpath = args.gloconf[0] if args.gloconf else None
cglob = Global(sys.argv[0], confpath)
globopts = cglob.parse()
confpath = args.custconf[0] if args.custconf else None
confcust = CustomerConf(sys.argv[0], confpath)
confcust.parse()
confcust.make_dirstruct()
confcust.make_dirstruct(globopts['InputStateSaveDir'.lower()])
global custname
custname = confcust.get_custname()
# safely assume here one customer defined in customer file
cust = list(confcust.get_customers())[0]
jobstatedir = confcust.get_fullstatedir(globopts['InputStateSaveDir'.lower()], cust)
fetchtype = confcust.get_topofetchtype()[0]
state = None
logger.customer = custname
uidservtype = confcust.get_uidserviceendpoints()
topofeed = confcust.get_topofeed()
loop = uvloop.new_event_loop()
asyncio.set_event_loop(loop)
try:
if is_feed(topofeed):
res = loop.run_until_complete(fetch_data(topofeed))
group_groups, group_endpoints = parse_source_topo(res, uidservtype, fetchtype)
contacts = ParseContacts(logger, res, uidservtype, is_csv=False).get_contacts()
attach_contacts_topodata(logger, contacts, group_endpoints)
else:
try:
with open(topofeed) as fp:
js = json.load(fp)
group_groups, group_endpoints = parse_source_topo(js, uidservtype, fetchtype)
except IOError as exc:
logger.error('Customer:%s : Problem opening %s - %s' % (logger.customer, topofeed, repr(exc)))
loop.run_until_complete(
write_state(confcust, fixed_date, True)
)
webapi_opts = get_webapi_opts(cglob, confcust)
numge = len(group_endpoints)
numgg = len(group_groups)
# send concurrently to WEB-API in coroutines
if eval(globopts['GeneralPublishWebAPI'.lower()]):
loop.run_until_complete(
asyncio.gather(
send_webapi(webapi_opts, group_groups, 'groups', fixed_date),
send_webapi(webapi_opts, group_endpoints,'endpoints', fixed_date)
)
)
if eval(globopts['GeneralWriteAvro'.lower()]):
write_avro(confcust, group_groups, group_endpoints, fixed_date)
logger.info('Customer:' + custname + ' Fetched Endpoints:%d' % (numge) + ' Groups(%s):%d' % (fetchtype, numgg))
except (ConnectorHttpError, ConnectorParseError, KeyboardInterrupt) as exc:
logger.error(repr(exc))
loop.run_until_complete(
write_state(confcust, fixed_date, False )
)
if __name__ == '__main__':
main()
|
[
"daniel.vrcic@gmail.com"
] |
daniel.vrcic@gmail.com
|
8dd0e8db5c106dc0a4a867b92314ee3975bfac32
|
ac64fda7f1bfc92f7897efd60b8f3f0aeb22b4d7
|
/syntactic_mutations/cifar/mutants/mutant85.py
|
36cc2dc7a92ebacc6a2c035d43c75d2a8980ffb9
|
[] |
no_license
|
dlfaults/mutation_operators_evaluation
|
ea7f33459ba7bcf7d70092d9db8b40f9b338d516
|
7d1ff30e901931a46bf8908e9bb05cae3daa5f0f
|
refs/heads/master
| 2020-12-27T15:45:07.262012
| 2020-02-03T12:22:01
| 2020-02-03T12:22:01
| 237,955,342
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,737
|
py
|
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.datasets import cifar10
from keras.layers import Dense, Activation, Flatten, Dropout, BatchNormalization
from keras.layers import Conv2D, MaxPooling2D
def train_model(x_train, y_train, x_test, y_test, model_name):
num_classes = 10
batch_size = 32
epochs = 25
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=\
x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-06)
pass
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
model.fit(x_train, y_train, batch_size=\
batch_size, epochs=\
epochs, validation_data=\
(x_test, y_test), shuffle=\
True)
model.save(model_name)
scores = model.evaluate(x_test, y_test, verbose=1)
return (scores[0], scores[1])
|
[
"gunel71@gmail.com"
] |
gunel71@gmail.com
|
3f867e03ffc111fa3e897382bcaacef5230d16eb
|
5442e70e9a68b0a76601082e9aa307674fd4fb95
|
/evaluation/draw.py
|
a8f5d430416dfc0ae686c2c9b91b4ba0ed113967
|
[] |
no_license
|
sycophant-stone/mmdetection_2.0
|
1871e85311fee3b81d3b1415787c837aadf6b543
|
6caabdcf81e7b003e612d053c94bd6c993dd5c3e
|
refs/heads/master
| 2020-09-09T10:49:42.961409
| 2019-12-18T14:01:57
| 2019-12-18T14:01:57
| 221,426,479
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,120
|
py
|
import cv2
def drawline(img, pt1, pt2, color, thickness=1, style='dotted', gap=10):
dist = ((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2) ** .5
pts= []
for i in np.arange(0, dist, gap):
r = i / dist
x = int((pt1[0] * (1 - r) + pt2[0] * r) + .5)
y = int((pt1[1] * (1 - r) + pt2[1] * r) + .5)
p = (x, y)
pts.append(p)
if style == 'dotted':
for p in pts:
cv2.circle(img, p, thickness, color, -1)
else:
s = pts[0]
e = pts[0]
i = 0
for p in pts:
s = e
e = p
if i % 2 == 1:
cv2.line(img,s,e,color,thickness)
i += 1
def drawpoly(img, pts, color, thickness=1, style='dotted'):
s = pts[0]
e = pts[0]
pts.append(pts.pop(0))
for p in pts:
s = e
e = p
drawline(img, s, e, color, thickness, style)
def drawrect(img, pt1, pt2, color, thickness=1, style='dotted'):
pts = [pt1, (pt2[0], pt1[1]), pt2, (pt1[0], pt2[1])]
drawpoly(img, pts, color, thickness, style)
|
[
"kawayi_rendroid@163.com"
] |
kawayi_rendroid@163.com
|
b8db0ef08fd5c0b20c1bdbe3988364316d66243b
|
35044ecc79fad5d1ad35a4f713ff22849c17212c
|
/hw1/hw1_1/part2/main_3.py
|
d54310ff19a1bb2f192f12e9c432975f5330478e
|
[] |
no_license
|
pohanchi/MLDS2018SPRING
|
8235f9bfe38eb861be24b9cdb2c0a7d30afdea21
|
694e5f07911ba0f780fb01bb47701dac90eeb7d2
|
refs/heads/master
| 2020-05-09T09:55:38.257016
| 2019-04-12T16:23:17
| 2019-04-12T16:23:17
| 166,774,093
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,511
|
py
|
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
import numpy as np
import pickle
import random
from model_2 import *
def unpickle(file):
with open(file, 'rb') as fo:
dict_ = pickle.load(fo, encoding='bytes')
return dict_
def calculate():
vars = tf.trainable_variables()
for var in vars:
print(var)
all_number=sum([np.prod(var.get_shape()) for var in vars])
print('you use %d parameters' %(all_number))
return
if __name__ == '__main__':
data_list=list()
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
train_img = mnist.train.images
train_label = mnist.train.labels
test_img = mnist.test.images
test_label = mnist.test.labels
index = list(range(len(train_img)))
random.shuffle(index)
# print(data_list[0:3])
epoch = 10
batch_size = 100
num_batch = int(55000 / 100)
CNN = CNN_3()
loss = CNN.loss
learning_rates= [random.uniform(0.001, 0.005),random.uniform(0.00001, 0.00005),random.uniform(0.0001, 0.0005),random.uniform(0.000001, 0.000005)]
for learning_rate in learning_rates:
CNN.learning_rate = learning_rate
Train_step = tf.train.AdamOptimizer(CNN.learning_rate).minimize(loss)
loss_array = []
step = 0
step_array = []
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
for i in range(epoch):
random.shuffle(index)
train_img = train_img[index]
train_label= train_label[index]
for j in range(num_batch):
x_data =train_img[j*100:(j+1)*100]
y_data=train_label[j*100:(j+1)*100]
_=sess.run(Train_step,feed_dict={CNN.x:x_data,CNN.y:y_data})
if (j+1) % 55 == 0:
loss_show=sess.run(loss,feed_dict={CNN.x:x_data,CNN.y:y_data})
print("epoch %d num_batch %2d loss = %.5f" %(i,j,loss_show))
loss_array+=[loss_show]
step_array+=[step]
step +=1
plt.plot(step_array,loss_array,label='learning_rate= {}'.format(learning_rate))
sess.close()
plt.yscale('symlog')
plt.title('CNN_3 Loss on training')
plt.legend(loc='upper left')
plt.style.use('ggplot')
plt.savefig('three_hidden_layer_loss_step.png')
plt.show()
|
[
"aapp1420@gmail.com"
] |
aapp1420@gmail.com
|
9f5d7e03d338bcee649e0798c30ea3227c1c60cc
|
b15a9d9c7374c4a1fa5ec3ef63603a8c57e8681f
|
/Design-Patterns-Python/bridge/circle.py
|
cd3638d219be793d909728245bf9ccdec57095a8
|
[] |
no_license
|
gohils/zemr_notebook
|
3f7490ef7a2559655746c3e2e0dbfb835a83891e
|
00d53cea9970df44160c51e6ad2bdeadfae2c91f
|
refs/heads/master
| 2023-08-04T14:32:35.428016
| 2023-07-20T11:51:08
| 2023-07-20T11:51:08
| 222,027,451
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 325
|
py
|
# pylint: disable=too-few-public-methods
"A Circle Abstraction"
from interface_shape import IShape
class Circle(IShape):
"The Circle is a Refined Abstraction"
def __init__(self, implementer):
self.implementer = implementer()
def draw(self):
self.implementer.draw_implementation()
|
[
"noreply@github.com"
] |
gohils.noreply@github.com
|
7098d0bd349101c9033469adeb130241fc910b6c
|
f88f900c0384f6da82eeb749371ad44115527700
|
/course-book/04-basic-comp/0410-img-copy2.py
|
2688bf316082da1a8c629fe6e1a12eaf1bf4b44d
|
[] |
no_license
|
aaron-kr/learning-opencv
|
eff382e8f0c822400f765451d57b192a63cd1b74
|
158239f0140569aec519fc1fbf255c54ef2567d2
|
refs/heads/main
| 2023-08-21T11:02:49.775425
| 2021-10-27T00:04:01
| 2021-10-27T00:04:01
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 429
|
py
|
# 0410.py
import cv2
import numpy as np
src = cv2.imread('../../img/spirit-week.jpg', cv2.IMREAD_GRAYSCALE)
shape = src.shape[0], src.shape[1], 3
dst = np.zeros(shape, dtype = np.uint8)
# dst[:,:,0] = src # B - Blue channel
# dst[:,:,1] = src # G - Green channel
dst[:,:,2] = src # R - Red channel
dst[100:400, 200:300, :] = [255,255,255]
cv2.imshow('src', src)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()
|
[
"jekkilekki@gmail.com"
] |
jekkilekki@gmail.com
|
76f963318fc279d6b0842011b2404e059f5081d7
|
fb1e852da0a026fb59c8cb24aeb40e62005501f1
|
/simlm/misc/compute_metrics_marco.py
|
02ac181cd1a10310b7a44ccad6784c96a3b8f2b3
|
[
"LGPL-2.1-or-later",
"LicenseRef-scancode-free-unknown",
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference",
"MIT"
] |
permissive
|
microsoft/unilm
|
134aa44867c5ed36222220d3f4fd9616d02db573
|
b60c741f746877293bb85eed6806736fc8fa0ffd
|
refs/heads/master
| 2023-08-31T04:09:05.779071
| 2023-08-29T14:07:57
| 2023-08-29T14:07:57
| 198,350,484
| 15,313
| 2,192
|
MIT
| 2023-08-19T11:33:20
| 2019-07-23T04:15:28
|
Python
|
UTF-8
|
Python
| false
| false
| 1,162
|
py
|
import json
import sys
import argparse
sys.path.insert(0, './src')
from logger_config import logger
from metrics import compute_mrr, trec_eval
from utils import save_json_to_file
from data_utils import load_qrels, load_msmarco_predictions
parser = argparse.ArgumentParser(description='compute metrics for ms-marco predictions')
parser.add_argument('--in-path', default='', type=str, metavar='N',
help='path to predictions in msmarco output format')
parser.add_argument('--qrels', default='./data/msmarco/dev_qrels.txt', type=str, metavar='N',
help='path to qrels')
args = parser.parse_args()
logger.info('Args={}'.format(json.dumps(args.__dict__, ensure_ascii=False, indent=4)))
def main():
qrels = load_qrels(path=args.qrels)
predictions = load_msmarco_predictions(args.in_path)
all_metrics = trec_eval(qrels=qrels, predictions=predictions)
all_metrics['mrr'] = compute_mrr(qrels=qrels, predictions=predictions)
logger.info(json.dumps(all_metrics, ensure_ascii=False, indent=4))
save_json_to_file(all_metrics, '{}.metrics.json'.format(args.in_path))
if __name__ == '__main__':
main()
|
[
"wangliangpeking@gmail.com"
] |
wangliangpeking@gmail.com
|
e8034ae0e9e03f800a93d0b36f2691dfbdee9972
|
f34e34e4a1fc4b606781633370ff5b9493446b89
|
/HackerRank/Problems/HR python staircase.py
|
fffe84b83deb2d0878b9309965bbbe9c1da7a0fa
|
[] |
no_license
|
YeasirArafatRatul/problem_solving
|
b44deddb63dc9ff5ec285e03c13720523473906d
|
98267865a90483489f792bdb448319dbf0cc9a81
|
refs/heads/master
| 2023-02-13T17:59:35.863750
| 2021-01-05T04:01:13
| 2021-01-05T04:01:13
| 219,266,174
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 376
|
py
|
def staircase(n):
for i in range(1,n+1):
#print the #, i times. so it will increase with each iteration
print(('#'*i).rjust(n,' '))
n = int(input())
staircase(n)
# str.rjust(width[, fillchar])
#Parameters
# width − This is the string length in total after padding.
# fillchar − This is the filler character, default is a space.
|
[
"yeasirarafat.ratul@gmail.com"
] |
yeasirarafat.ratul@gmail.com
|
47a70babb3db84356361acf60b5e6d54a50c94ce
|
38ba13df9ea6e53c7b924cad1f3bea2de59c7a6a
|
/nibbler/trading/collectors/Watcher.py
|
19ea6b0adbe54c634a51182074af580ff6b54745
|
[] |
no_license
|
JizzFactoryEmployee/nibblerppman
|
0fbc1ce662cf8b4868b41a97291250fae29dc41d
|
160e557578a3e8a614450354f6ade233d32b052f
|
refs/heads/master
| 2022-11-14T01:10:31.743000
| 2020-07-04T01:21:52
| 2020-07-04T01:21:52
| 273,835,770
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 772
|
py
|
import time
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler
import nibbler.trading.collectors.futures_collector as futures
class MyHandler(FileSystemEventHandler):
def on_modified(self, event):
event_list = event.src_path.split('\\')
filename = event_list[-1]
print(filename)
if "BTC" in filename:
print('success')
def runner():
event_handler = MyHandler()
observer = Observer()
observer.schedule(event_handler, path=r'C:\Users\James\Documents\GitHub\Nibbler\nibbler\trading\collectors', recursive=False)
observer.start()
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
observer.stop()
observer.join()
runner()
|
[
"52958901+JizzFactoryEmployee@users.noreply.github.com"
] |
52958901+JizzFactoryEmployee@users.noreply.github.com
|
fde45c72b38be988de28cfb02d09ce268e6a0ac8
|
c29ee57cdba30d0099c55d7b138a361a4964af4b
|
/apps/blogs/urls.py
|
a6a724f8cca29d67b19a8b9d2ed788dfe37cdafc
|
[] |
no_license
|
bakker4444/django_app
|
ea26be5fa7789a083b199d5094767e16ec0fa63e
|
6b1cd0cfc55be11f31cdc5970d4787f15828ac94
|
refs/heads/master
| 2020-03-10T10:06:17.177952
| 2018-04-13T00:30:54
| 2018-04-13T00:30:54
| 129,322,929
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 345
|
py
|
from django.conf.urls import url
from . import views
urlpatterns = [
url(r'^$', views.index),
url(r'^new/', views.new),
url(r'^create/', views.create),
url(r'^(?P<number>[0-9]+)/$', views.show),
url(r'^(?P<number>[0-9]+)/edit/', views.edit),
url(r'^(?P<number>[0-9]+)/delete/', views.destroy),
]
|
[
"bakker4444@gmail.com"
] |
bakker4444@gmail.com
|
cdf12814d08e0941202a5da5abdf6a067a3b34f7
|
36126f91a2d5903483b84ba2d8be77e160803058
|
/examples/python/empirical_transition_matrix.py
|
61c92ac81e1bbe433c6a5a7ec9d083e8e9e8aaca
|
[
"Apache-2.0"
] |
permissive
|
open-risk/transitionMatrix
|
9962bb2656eb637ba56afc3adecf42bbe68f9593
|
d05e75cbc251f01842dd8c5ce225894b988f4d99
|
refs/heads/master
| 2023-03-05T08:01:20.816425
| 2023-02-22T20:46:38
| 2023-02-22T20:46:38
| 110,365,127
| 73
| 29
|
Apache-2.0
| 2022-12-08T11:37:12
| 2017-11-11T17:25:08
|
Python
|
UTF-8
|
Python
| false
| false
| 5,000
|
py
|
# encoding: utf-8
# (c) 2017-2022 Open Risk, all rights reserved
#
# TransitionMatrix is licensed under the Apache 2.0 license a copy of which is included
# in the source distribution of TransitionMatrix. This is notwithstanding any licenses of
# third-party software included in this distribution. You may not use this file except in
# compliance with the License.
#
# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
# either express or implied. See the License for the specific language governing permissions and
# limitations under the License.
"""
Example workflows using transitionMatrix to estimate an empirical transition matrix from duration type data. The datasets are produced in examples/generate_synthetic_data.py
"""
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import transitionMatrix as tm
from transitionMatrix import source_path
from transitionMatrix.estimators import aalen_johansen_estimator as aj
from transitionMatrix.utils.converters import datetime_to_float
dataset_path = source_path + "datasets/"
# Example 1: Credit Rating Migration example
# Example 2: Simple 2x2 Matrix for testing
# Example 3: Credit Rating Migration example with timestamps in raw date format
example = 3
# Step 1
# Load the data set into a pandas frame
# Make sure state is read as a string and not as integer
# Second synthetic data example:
# n entities with ~10 observations each, [0,1] state, 50%/50% transition matrix
print("> Step 1: Load the data set into a pandas frame")
if example == 1:
data = pd.read_csv(dataset_path + 'synthetic_data7.csv', dtype={'State': str})
elif example == 2:
data = pd.read_csv(dataset_path + 'synthetic_data8.csv', dtype={'State': str})
elif example == 3:
data = pd.read_csv(dataset_path + 'synthetic_data9.csv', parse_dates=True)
# convert datetime data to floats, return also the observation window data
bounds, data = datetime_to_float(data)
print('Start and End dates', bounds)
sorted_data = data.sort_values(['Time', 'ID'], ascending=[True, True])
print(sorted_data.head(5))
print(sorted_data.describe())
# Step 2
# Describe and validate the State Space against the data
print("> Step 2: Describe and validate the State Space against the data")
# We insert the expected labels of the state space
if example == 1 or example == 3:
definition = [('0', "AAA"), ('1', "AA"), ('2', "A"), ('3', "BBB"),
('4', "BB"), ('5', "B"), ('6', "CCC"), ('7', "D")]
elif example == 2:
definition = [('0', "G"), ('1', "B")]
myState = tm.StateSpace(definition)
myState.describe()
# We validate that indeed the data set conforms to our expectations
labels = {'State': 'From'}
print(myState.validate_dataset(dataset=sorted_data, labels=labels))
labels = {'State': 'To'}
print(myState.validate_dataset(dataset=sorted_data, labels=labels))
# Step 3
# Estimate matrices using the Aalen-Johansen estimator
print("> Step 3: Estimate matrices using the Aalen-Johansen estimator")
myEstimator = aj.AalenJohansenEstimator(states=myState)
# labels = {'Timestamp': 'Time', 'From_State': 'From', 'To_State': 'To', 'ID': 'ID'}
labels = {'Time': 'Time', 'From': 'From', 'To': 'To', 'ID': 'ID'}
etm, times = myEstimator.fit(sorted_data, labels=labels)
# Step 4
# Print the cumulative computed matrix
print("> Step 4: Print the cumulative computed matrix")
print(etm[:, :, -1])
# Step 5
# Create a visualization of the transition rates
if example == 1 or example == 3:
# Now lets plot a collection of curves for all ratings
print("> Plot the transition curves")
Periods = 10
Ratings = 8
m = 4
n = 2
f, axarr = plt.subplots(m, n)
f.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.90, wspace=0.0, hspace=0.1)
# plt.style.use(['ggplot'])
for ri in range(0, Ratings):
axj = int(ri / 2)
axi = ri % 2
print(ri, axj, axi)
curves = []
for rf in range(0, Ratings):
cPD = etm[ri, rf, :]
curves.append(cPD)
# axarr[axj, axi].set_aspect(5)
axarr[axj, axi].set_ylabel('State ' + str(ri), fontsize=12)
axarr[axj, axi].set_xlabel("Time")
axarr[axj, axi].plot(times[1:], curves[rf], label="RI=%d" % (rf,))
# axarr[axj, axi].set_xticks(range(10), minor=False)
axarr[axj, axi].set_yticks(np.linspace(0, 1, 5), minor=False)
# axarr[axj, axi].yaxis.grid(True, which='minor')
axarr[axj, axi].margins(y=0.05, x=0.05)
axarr[axj, axi].autoscale()
axarr[axj, axi].grid(True)
# plt.tight_layout()
f.suptitle("Multi-period Transition Probabilities", fontsize=12)
# plt.title("Multi-period Transition Probabilities")
plt.savefig("transition_probabilities.png")
plt.show()
def main():
print("Done")
if __name__ == "__main__":
main()
|
[
"openrisk@outlook.com"
] |
openrisk@outlook.com
|
0cef33f9b804fb8d06480356283a48afa11a4d9c
|
905020fce75b4b63517ec31c601e721f5c260cd1
|
/Карточные расклады.py
|
1853c600b2cf5ef636e2296518a51051750b2fef
|
[] |
no_license
|
Dimaed90800/Python_Y
|
7858ad46309281a89c5c1e83a0f09030996182a4
|
04092b854605cb05df439eeeb52003e585bb5a29
|
refs/heads/main
| 2023-01-24T04:11:17.858281
| 2020-11-17T20:42:45
| 2020-11-17T20:42:45
| 313,731,672
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 639
|
py
|
import itertools
nominals = ['2','3','4','5','6','7','8','9','10','валет','дама','король','туз']
suits = ['пик','треф','бубен','червей']
allcomb = list(itertools.product(nominals,suits))
comb = []
for elem in allcomb:
if (elem not in comb) and (list(elem).reverse() not in comb):
comb.append(' '.join(elem))
comb.sort()
three = sorted(itertools.combinations(comb, 3))
for comb in three:
comb = list(comb)
comb.sort()
if any([x.split()[1] == 'червей' for x in comb]) and any([y.split()[0] in nominals[9:] for y in comb]):
print(', '.join(list(comb)))
|
[
"noreply@github.com"
] |
Dimaed90800.noreply@github.com
|
2c735c06acb15668edfe36a3cf848f1a07cb956b
|
a418afb0ec01cb8f41d9fcaf167f59b0f05aea90
|
/Hackerrank/Python Problems/itertools.combinations.py
|
221a322634997b5c9b8b4e304a3db940458757d5
|
[] |
no_license
|
manjurulhoque/problem-solving
|
95d05960e83edde5721b73348270b6123fd3bf12
|
e5547a8f5593141ac87f9797ddb25b2467c44e57
|
refs/heads/master
| 2022-08-08T06:44:21.839224
| 2022-07-25T09:32:26
| 2022-07-25T09:32:26
| 209,125,784
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 170
|
py
|
import itertools
x, y = input().split()
for i in range(1, int(y) + 1):
out = list(itertools.combinations(sorted(x), i))
for n in out:
print(*n, sep='')
|
[
"rumimanzurulhoque@gmail.com"
] |
rumimanzurulhoque@gmail.com
|
9e27115696afc8fea8212d51a643e9d1c2702dc1
|
b15a9d9c7374c4a1fa5ec3ef63603a8c57e8681f
|
/Design-Patterns-Python/flyweight/client.py
|
b7714e4c7fe83aaeb7505226e720f0509797c36d
|
[] |
no_license
|
gohils/zemr_notebook
|
3f7490ef7a2559655746c3e2e0dbfb835a83891e
|
00d53cea9970df44160c51e6ad2bdeadfae2c91f
|
refs/heads/master
| 2023-08-04T14:32:35.428016
| 2023-07-20T11:51:08
| 2023-07-20T11:51:08
| 222,027,451
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 947
|
py
|
"The Flyweight Use Case Example"
from table import Table
from flyweight_factory import FlyweightFactory
TABLE = Table(3, 3)
TABLE.rows[0].columns[0].data = "abra"
TABLE.rows[0].columns[1].data = "112233"
TABLE.rows[0].columns[2].data = "cadabra"
TABLE.rows[1].columns[0].data = "racadab"
TABLE.rows[1].columns[1].data = "12345"
TABLE.rows[1].columns[2].data = "332211"
TABLE.rows[2].columns[0].data = "cadabra"
TABLE.rows[2].columns[1].data = "445566"
TABLE.rows[2].columns[2].data = "aa 22 bb"
TABLE.rows[0].columns[0].justify = 1
TABLE.rows[1].columns[0].justify = 1
TABLE.rows[2].columns[0].justify = 1
TABLE.rows[0].columns[2].justify = 2
TABLE.rows[1].columns[2].justify = 2
TABLE.rows[2].columns[2].justify = 2
TABLE.rows[0].columns[1].width = 15
TABLE.rows[1].columns[1].width = 15
TABLE.rows[2].columns[1].width = 15
TABLE.draw()
print(f"FlyweightFactory has {FlyweightFactory.get_count()} flyweights")
|
[
"noreply@github.com"
] |
gohils.noreply@github.com
|
3c959eed8a79ca30fbcb647176095c291b99e320
|
4f510470b3093ab2c60f929221af82c79b121ca7
|
/linux/FinalKeyPress/smallplane.py
|
c63ffce47aa72b6d465ad959c7dcf92fe5873091
|
[] |
no_license
|
q737645224/python3
|
ce98926c701214f0fc7da964af45ba0baf8edacf
|
4bfabe3f4bf5ba4133a16102c51bf079d500e4eb
|
refs/heads/master
| 2020-03-30T07:11:17.202996
| 2018-10-30T06:14:51
| 2018-10-30T06:14:51
| 150,921,088
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,695
|
py
|
import tkinter
import mover
import config
class SmallPlane(mover.BaseMover):
'''
移动的敌机 - 大飞机
'''
def __init__(self, root, canvas, position, x, y, tags):
super().__init__(root, canvas, position, x, y, tags,
config.image_smallplane_width, config.image_smallplane_height, True)
# 移动者的移动步长
self.steps = [config.step_length_smallplane_x, config.step_length_smallplane_y]
# 移动方向 - 向下
self.move_direction = [0, 1]
# 移动者加载背景图像
self.bg_image_fullname = config.images_path + config.filename_smallplane + config.filename_suffix
self.bg_image = tkinter.PhotoImage(file=self.bg_image_fullname)
# # 重置生命值
# super().set_lives_num(config.lives_num_enemy)
def exec_move(self):
if self.nw[1] < config.window_boundary_row:
# Y轴边界之内正常移动
x = self.steps[0] * self.move_direction[0]
y = self.steps[1] * self.move_direction[1]
self.base_move(self.bg_image_tags, x, y)
else:
# Y轴边界之外错误处理
self.base_move(self.bg_image_tags, 0, -config.window_boundary_row)
# 获取死亡图片
def get_dead_images(self):
img = []
if self.do_dead_play:
for i in self.dead_image_index:
image_fullname = config.images_path + config.filename_smallplane + str(i) + config.filename_suffix
image = tkinter.PhotoImage(file=self.bg_image_fullname)
img.append(image)
return img
|
[
"764375224@qq.com"
] |
764375224@qq.com
|
974ce89e9bb593af97847898b2977b214a4b7980
|
1fe8d4133981e53e88abf633046060b56fae883e
|
/venv/lib/python3.8/site-packages/tensorflow/python/autograph/pyct/testing/decorators 2.py
|
9e47729bef44976b842be804899c28aafffda65b
|
[] |
no_license
|
Akira331/flask-cifar10
|
6c49db8485038731ce67d23f0972b9574746c7a7
|
283e7a2867c77d4b6aba7aea9013bf241d35d76c
|
refs/heads/master
| 2023-06-14T16:35:06.384755
| 2021-07-05T14:09:15
| 2021-07-05T14:09:15
| 382,864,970
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 129
|
py
|
version https://git-lfs.github.com/spec/v1
oid sha256:bc496cdd81c37eb5f9cddd2250b6ebe37eae2739e5ee1b3228a97b6571bfaac1
size 1298
|
[
"business030301@gmail.com"
] |
business030301@gmail.com
|
9f4459a0e78eb6578c2a9bc931224ac195ef575f
|
edf79f6964b15ea61faa9ecd70871d1ce776eda2
|
/Jupyter/first-python-notebook/lib/python3.6/site-packages/pandas/tseries/util.py
|
5934f5843736cc9afbff1a5dcc1c59f9eb8f2180
|
[
"MIT"
] |
permissive
|
Roychenlei/LearnPython
|
326bf7d59ebec904623ea7102a1e07f1d7cb112b
|
eaf44787b86fe6da69dc9ba4e4c907884db57fda
|
refs/heads/master
| 2022-10-09T07:23:39.410429
| 2018-04-28T02:35:07
| 2018-04-28T02:35:07
| 115,184,834
| 0
| 1
|
MIT
| 2022-10-01T15:18:43
| 2017-12-23T09:19:47
|
Python
|
UTF-8
|
Python
| false
| false
| 3,286
|
py
|
import warnings
from pandas.compat import lrange
import numpy as np
from pandas.core.dtypes.common import _ensure_platform_int
from pandas.core.frame import DataFrame
import pandas.core.algorithms as algorithms
def pivot_annual(series, freq=None):
"""
Deprecated. Use ``pivot_table`` instead.
Group a series by years, taking leap years into account.
The output has as many rows as distinct years in the original series,
and as many columns as the length of a leap year in the units corresponding
to the original frequency (366 for daily frequency, 366*24 for hourly...).
The fist column of the output corresponds to Jan. 1st, 00:00:00,
while the last column corresponds to Dec, 31st, 23:59:59.
Entries corresponding to Feb. 29th are masked for non-leap years.
For example, if the initial series has a daily frequency, the 59th column
of the output always corresponds to Feb. 28th, the 61st column to Mar. 1st,
and the 60th column is masked for non-leap years.
With a hourly initial frequency, the (59*24)th column of the output always
correspond to Feb. 28th 23:00, the (61*24)th column to Mar. 1st, 00:00, and
the 24 columns between (59*24) and (61*24) are masked.
If the original frequency is less than daily, the output is equivalent to
``series.convert('A', func=None)``.
Parameters
----------
series : Series
freq : string or None, default None
Returns
-------
annual : DataFrame
"""
msg = "pivot_annual is deprecated. Use pivot_table instead"
warnings.warn(msg, FutureWarning)
index = series.index
year = index.year
years = algorithms.unique1d(year)
if freq is not None:
freq = freq.upper()
else:
freq = series.index.freq
if freq == 'D':
width = 366
offset = np.asarray(index.dayofyear) - 1
# adjust for leap year
offset[(~isleapyear(year)) & (offset >= 59)] += 1
columns = lrange(1, 367)
# todo: strings like 1/1, 1/25, etc.?
elif freq in ('M', 'BM'):
width = 12
offset = np.asarray(index.month) - 1
columns = lrange(1, 13)
elif freq == 'H':
width = 8784
grouped = series.groupby(series.index.year)
defaulted = grouped.apply(lambda x: x.reset_index(drop=True))
defaulted.index = defaulted.index.droplevel(0)
offset = np.asarray(defaulted.index)
offset[~isleapyear(year) & (offset >= 1416)] += 24
columns = lrange(1, 8785)
else:
raise NotImplementedError(freq)
flat_index = (year - years.min()) * width + offset
flat_index = _ensure_platform_int(flat_index)
values = np.empty((len(years), width))
values.fill(np.nan)
values.put(flat_index, series.values)
return DataFrame(values, index=years, columns=columns)
def isleapyear(year):
"""
Returns true if year is a leap year.
Parameters
----------
year : integer / sequence
A given (list of) year(s).
"""
msg = "isleapyear is deprecated. Use .is_leap_year property instead"
warnings.warn(msg, FutureWarning)
year = np.asarray(year)
return np.logical_or(year % 400 == 0,
np.logical_and(year % 4 == 0, year % 100 > 0))
|
[
"roychenfly@gmail.com"
] |
roychenfly@gmail.com
|
bce7d775325fcad89567eb94275ce095229d738a
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p02832/s307251036.py
|
36c65bb99ff02d537361c6ecedc39e7b50f138b1
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102
| 2021-05-13T17:27:22
| 2021-05-13T17:27:22
| 367,112,348
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 198
|
py
|
n = int(input())
a = list(map(int,input().split()))
if 1 not in a:
print(-1)
exit()
x = 1
cnt = 0
for i in range(n):
if a[i] == x:
x += 1
else:
cnt += 1
print(cnt)
|
[
"66529651+Aastha2104@users.noreply.github.com"
] |
66529651+Aastha2104@users.noreply.github.com
|
7a4711d2854fc4a7a832a3fb5083a348ad0af491
|
84d581219b8065cf8936070a7f1e1766000378df
|
/vdj/__init__.py
|
f80e58d17b35d19c93aa96a3ab5bb85e8774f385
|
[
"MIT",
"CC-BY-4.0"
] |
permissive
|
RPGroup-PBoC/vdj_recombination
|
939e72539a134a61cc5aa8386b3a31f6de954d26
|
a59214f878968e5958915b56983b0f52a0a0483e
|
refs/heads/publication
| 2023-07-18T22:52:07.149767
| 2020-05-19T18:12:11
| 2020-05-19T18:12:11
| 187,516,995
| 0
| 0
|
MIT
| 2023-07-06T21:42:29
| 2019-05-19T19:05:04
|
HTML
|
UTF-8
|
Python
| false
| false
| 169
|
py
|
"""Top level package for VDJ utilities"""
from . import viz
from . import bayes
from . import io
__author__ = "Soichi Hirokawa and Griffin Chure"
__version__ = "0.1.9"
|
[
"gchure@caltech.edu"
] |
gchure@caltech.edu
|
e906d748fcf7530f9052fc37543b97a85ee771eb
|
183fa1746e80102391926064c1628bf63690026c
|
/Order/migrations/0001_initial.py
|
ae12317b8af5a2d9fa16a2af4e2549debe7875c4
|
[] |
no_license
|
redbull2003/StoreMarketPlace
|
7454fdf06a27f754f33b41532ef2d717f313eb1a
|
b9e915da32f23ca087bd29e5d10fa9b9299f81d2
|
refs/heads/master
| 2023-06-06T03:53:22.766012
| 2021-06-24T16:30:37
| 2021-06-24T16:30:37
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,515
|
py
|
# Generated by Django 3.1.1 on 2021-06-24 06:56
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('Product', '0011_auto_20210623_1817'),
]
operations = [
migrations.CreateModel(
name='Order',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('created', models.DateTimeField(auto_now_add=True)),
('is_paid', models.BooleanField(default=False)),
('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
),
migrations.CreateModel(
name='OrderItem',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('quantity', models.PositiveIntegerField()),
('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='order_item', to='Order.order')),
('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='Product.product')),
('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
),
]
|
[
"shayan.aimoradii@gmail.com"
] |
shayan.aimoradii@gmail.com
|
a86ce8417607db70a904b3ff9754c6950ed06c89
|
faabe34af6297530617395bcc6811350765da847
|
/platforms/leetcode/NthDigit.py
|
6e67cbfe78c483aff5ee596ef9b57abc3fd7bb68
|
[] |
no_license
|
pqnguyen/CompetitiveProgramming
|
44a542aea299bd553dd022a9e737e087285b8b6d
|
27330e7ff79c4ac883d7e1fcdf2f0d30939c3f78
|
refs/heads/master
| 2021-07-21T12:15:47.366599
| 2021-06-27T14:58:48
| 2021-06-27T14:58:48
| 132,837,831
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 368
|
py
|
class Solution:
def findNthDigit(self, n: int) -> int:
length, start, count = 1, 1, 9
while n > length * count:
n -= length * count
length += 1
count *= 10
start *= 10
start += (n - 1) // length
return int(str(start)[(n - 1) % length])
res = Solution().findNthDigit(15)
print(res)
|
[
"pqnguyen1996@gmail.com"
] |
pqnguyen1996@gmail.com
|
00a759bd71d11f942a7195e2ce3a0f9237ad4f89
|
eb91f8764a466c20d3ed53f0df43e2e91fc095ea
|
/HFhtml/migrations/0007_auto_20210106_2045.py
|
efdaed8cb955a4052bb217f5edcee04b059ca0bf
|
[] |
no_license
|
blackw00d/HappyFamily
|
61733c46a2f2c26919a532e5c07ea143fabd14a9
|
6b0d99a498c7a92170de0bbdb18907d6d951da31
|
refs/heads/master
| 2023-03-08T21:20:41.481293
| 2021-02-27T04:13:39
| 2021-02-27T04:13:39
| 291,481,548
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 524
|
py
|
# Generated by Django 3.0.8 on 2021-01-06 15:45
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('HFhtml', '0006_auto_20210106_1951'),
]
operations = [
migrations.AlterField(
model_name='orders',
name='pay',
field=models.TextField(choices=[('Онлайн', 'Онлайн'), ('При получении', 'При получении')], default='Онлайн', verbose_name='Оплата'),
),
]
|
[
"email"
] |
email
|
175362d65ed956693d742ed37d75ce17e75b88dc
|
01361e80df13a173264c369f63dc42f5fb1eb9b5
|
/carts/migrations/0002_initial.py
|
642b8aa58314767eaafc395fd7cdd75fb278ce99
|
[] |
no_license
|
Angshumaan/greatkart-django
|
cb63cf1cc1c094f504adb7ff8fea347c43a6fa81
|
3ff1ac8fc7e7f23bdc3185167e2d8b678256a82c
|
refs/heads/main
| 2023-06-05T10:05:21.408371
| 2021-06-12T06:53:15
| 2021-06-12T06:53:15
| 363,017,306
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 693
|
py
|
# Generated by Django 3.2 on 2021-05-22 03:32
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
('store', '0001_initial'),
('carts', '0001_initial'),
]
operations = [
migrations.AddField(
model_name='cartitem',
name='product',
field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='store.product'),
),
migrations.AddField(
model_name='cartitem',
name='variations',
field=models.ManyToManyField(blank=True, to='store.Variation'),
),
]
|
[
"="
] |
=
|
ebbd48730fbd9939ec1d72fb2ef3df5c198e09f2
|
1eb72c0482efd06e1b06a7f3af8f6a5250b82584
|
/code/lang/complex_if.py
|
707a5937eca1f84dfba9e07c8e611c1bd8536da4
|
[] |
no_license
|
Bubujka/python-learning
|
dcb8e5f8fc40600b431a2ec1f4a16814fbbfa5c9
|
79bbe16bec01d429c34f9c36f1d15b4f77c811bf
|
refs/heads/master
| 2021-09-07T15:31:54.822139
| 2018-02-25T03:08:06
| 2018-02-25T03:08:06
| 109,488,504
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 217
|
py
|
#!/usr/bin/env python3
"""
Комплексные условия в if (and, or)
"""
if True and True and False:
print("NOPE")
if not True or False:
print("NOPE")
if None or None or 1:
print("yeeep")
|
[
"zendzirou@gmail.com"
] |
zendzirou@gmail.com
|
f6f83d8fcc21b13c0e3b8d60e21349fc3e1accdd
|
eb40dce4039d528b9cd06dbeda75da09d09d7fc5
|
/need_install/Django-1.8.17/tests/admin_changelist/models.py
|
c01bf320621803e3f82fa4938596e56fe61caefe
|
[
"Apache-2.0",
"BSD-3-Clause"
] |
permissive
|
MulticsYin/MulticsSH
|
39b62189446787c7f0f037b1640c9c780bd1dddd
|
5837a0bff0e7da0e8535e4e0b31ef6baf24274b4
|
refs/heads/master
| 2021-08-28T07:53:51.759679
| 2017-12-11T15:31:03
| 2017-12-11T15:31:03
| 82,428,902
| 4
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,666
|
py
|
from django.db import models
from django.utils.encoding import python_2_unicode_compatible
class Event(models.Model):
# Oracle can have problems with a column named "date"
date = models.DateField(db_column="event_date")
class Parent(models.Model):
name = models.CharField(max_length=128)
class Child(models.Model):
parent = models.ForeignKey(Parent, editable=False, null=True)
name = models.CharField(max_length=30, blank=True)
age = models.IntegerField(null=True, blank=True)
class Genre(models.Model):
name = models.CharField(max_length=20)
class Band(models.Model):
name = models.CharField(max_length=20)
nr_of_members = models.PositiveIntegerField()
genres = models.ManyToManyField(Genre)
@python_2_unicode_compatible
class Musician(models.Model):
name = models.CharField(max_length=30)
def __str__(self):
return self.name
@python_2_unicode_compatible
class Group(models.Model):
name = models.CharField(max_length=30)
members = models.ManyToManyField(Musician, through='Membership')
def __str__(self):
return self.name
class Membership(models.Model):
music = models.ForeignKey(Musician)
group = models.ForeignKey(Group)
role = models.CharField(max_length=15)
class Quartet(Group):
pass
class ChordsMusician(Musician):
pass
class ChordsBand(models.Model):
name = models.CharField(max_length=30)
members = models.ManyToManyField(ChordsMusician, through='Invitation')
class Invitation(models.Model):
player = models.ForeignKey(ChordsMusician)
band = models.ForeignKey(ChordsBand)
instrument = models.CharField(max_length=15)
class Swallow(models.Model):
origin = models.CharField(max_length=255)
load = models.FloatField()
speed = models.FloatField()
class Meta:
ordering = ('speed', 'load')
class SwallowOneToOne(models.Model):
swallow = models.OneToOneField(Swallow)
class UnorderedObject(models.Model):
"""
Model without any defined `Meta.ordering`.
Refs #17198.
"""
bool = models.BooleanField(default=True)
class OrderedObjectManager(models.Manager):
def get_queryset(self):
return super(OrderedObjectManager, self).get_queryset().order_by('number')
class OrderedObject(models.Model):
"""
Model with Manager that defines a default order.
Refs #17198.
"""
name = models.CharField(max_length=255)
bool = models.BooleanField(default=True)
number = models.IntegerField(default=0, db_column='number_val')
objects = OrderedObjectManager()
class CustomIdUser(models.Model):
uuid = models.AutoField(primary_key=True)
|
[
"multics_luo@163.com"
] |
multics_luo@163.com
|
5e6ee8b555a309e5ce5e7845954d392ab41207eb
|
0e1e643e864bcb96cf06f14f4cb559b034e114d0
|
/Exps_7_v3/doc3d/Ablation4_ch016_ep010/I_w_M_to_W_pyr/pyr_0s/L7/step10_a.py
|
985e11f6a4a139c0e01e9166d0f6ff8d31fb4b6d
|
[] |
no_license
|
KongBOy/kong_model2
|
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
|
1af20b168ffccf0d5293a393a40a9fa9519410b2
|
refs/heads/master
| 2022-10-14T03:09:22.543998
| 2022-10-06T11:33:42
| 2022-10-06T11:33:42
| 242,080,692
| 3
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,009
|
py
|
#############################################################################################################################################################################################################
#############################################################################################################################################################################################################
### 把 kong_model2 加入 sys.path
import os
code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path
code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層
code_dir = "\\".join(code_exe_path_element[:-1])
kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層
kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir
import sys ### 把 kong_model2 加入 sys.path
sys.path.append(kong_model2_dir)
sys.path.append(code_dir)
# print(__file__.split("\\")[-1])
# print(" code_exe_path:", code_exe_path)
# print(" code_exe_path_element:", code_exe_path_element)
# print(" code_dir:", code_dir)
# print(" kong_layer:", kong_layer)
# print(" kong_model2_dir:", kong_model2_dir)
#############################################################################################################################################################################################################
kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index
# print(" kong_to_py_layer:", kong_to_py_layer)
if (kong_to_py_layer == 0): template_dir = ""
elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0
elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0
elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1])
# print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae
#############################################################################################################################################################################################################
exp_dir = template_dir
#############################################################################################################################################################################################################
from step06_a_datas_obj import *
from step09_0side_L7 import *
from step10_a2_loss_info_obj import *
from step10_b2_exp_builder import Exp_builder
rm_paths = [path for path in sys.path if code_dir in path]
for rm_path in rm_paths: sys.path.remove(rm_path)
rm_moduless = [module for module in sys.modules if "step09" in module]
for rm_module in rm_moduless: del sys.modules[rm_module]
#############################################################################################################################################################################################################
'''
exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~
比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在:
6_mask_unet/自己命的名字/result_a
6_mask_unet/自己命的名字/result_b
6_mask_unet/自己命的名字/...
'''
use_db_obj = type8_blender_kong_doc3d_in_I_gt_W_ch_norm_v2
use_loss_obj = [mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_W").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔
#############################################################
### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder
empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_0side, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_0side.kong_model.model_describe) .set_train_args(epochs= 10) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder")
#############################################################
ch032_0side = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_0side, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_0side.kong_model.model_describe) .set_train_args(epochs= 10) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="")
#############################################################
if(__name__ == "__main__"):
print("build exps cost time:", time.time() - start_time)
if len(sys.argv) < 2:
############################################################################################################
### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~
ch032_0side.build().run()
# print('no argument')
sys.exit()
### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run()
eval(sys.argv[1])
|
[
"s89334roy@yahoo.com.tw"
] |
s89334roy@yahoo.com.tw
|
1b5f7970359cd50efcaeb24cab8c592711e3bd4d
|
2ca88d41f1bb5042338faec50b2af11931db0bdd
|
/test/test_forecaster_entrypoints.py
|
90ba5d0e6c33b7c209c70ac83d0eba7bdfead759
|
[
"Apache-2.0"
] |
permissive
|
canerturkmen/gluon-ts
|
2f2d46f9b01f5ee07a51a11e822b1c72c2475caa
|
57ae07f571ff123eac04af077870c1f216f99d5c
|
refs/heads/master
| 2022-09-10T23:30:26.162245
| 2022-04-20T12:44:01
| 2022-04-20T12:44:01
| 192,873,578
| 1
| 2
|
Apache-2.0
| 2020-08-04T16:58:48
| 2019-06-20T07:43:07
|
Python
|
UTF-8
|
Python
| false
| false
| 746
|
py
|
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import pkg_resources
# def test_forecaster_entrypoints():
# for entry_point in pkg_resources.iter_entry_points("gluonts_forecasters"):
# entry_point.load()
|
[
"noreply@github.com"
] |
canerturkmen.noreply@github.com
|
50f104e0f6bb819ed7e3260cd1671e57d0744183
|
f445450ac693b466ca20b42f1ac82071d32dd991
|
/generated_tempdir_2019_09_15_163300/generated_part003381.py
|
5237a05fd13b91ed25973d14234596c3dec60fd5
|
[] |
no_license
|
Upabjojr/rubi_generated
|
76e43cbafe70b4e1516fb761cabd9e5257691374
|
cd35e9e51722b04fb159ada3d5811d62a423e429
|
refs/heads/master
| 2020-07-25T17:26:19.227918
| 2019-09-15T15:41:48
| 2019-09-15T15:41:48
| 208,357,412
| 4
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,655
|
py
|
from sympy.abc import *
from matchpy.matching.many_to_one import CommutativeMatcher
from matchpy import *
from matchpy.utils import VariableWithCount
from collections import deque
from multiset import Multiset
from sympy.integrals.rubi.constraints import *
from sympy.integrals.rubi.utility_function import *
from sympy.integrals.rubi.rules.miscellaneous_integration import *
from sympy import *
class CommutativeMatcher37234(CommutativeMatcher):
_instance = None
patterns = {
0: (0, Multiset({0: 1}), [
(VariableWithCount('i2.2.1.2.2.2.1.0', 1, 1, S(1)), Mul)
])
}
subjects = {}
subjects_by_id = {}
bipartite = BipartiteGraph()
associative = Mul
max_optional_count = 1
anonymous_patterns = set()
def __init__(self):
self.add_subject(None)
@staticmethod
def get():
if CommutativeMatcher37234._instance is None:
CommutativeMatcher37234._instance = CommutativeMatcher37234()
return CommutativeMatcher37234._instance
@staticmethod
def get_match_iter(subject):
subjects = deque([subject]) if subject is not None else deque()
subst0 = Substitution()
# State 37233
if len(subjects) >= 1 and isinstance(subjects[0], Pow):
tmp1 = subjects.popleft()
subjects2 = deque(tmp1._args)
# State 37235
if len(subjects2) >= 1:
tmp3 = subjects2.popleft()
subst1 = Substitution(subst0)
try:
subst1.try_add_variable('i2.2.1.1', tmp3)
except ValueError:
pass
else:
pass
# State 37236
if len(subjects2) >= 1:
tmp5 = subjects2.popleft()
subst2 = Substitution(subst1)
try:
subst2.try_add_variable('i2.2.1.2', tmp5)
except ValueError:
pass
else:
pass
# State 37237
if len(subjects2) == 0:
pass
# State 37238
if len(subjects) == 0:
pass
# 0: x**j
yield 0, subst2
subjects2.appendleft(tmp5)
subjects2.appendleft(tmp3)
subjects.appendleft(tmp1)
return
yield
from collections import deque
|
[
"franz.bonazzi@gmail.com"
] |
franz.bonazzi@gmail.com
|
8baa9d2d34c28cf039e89bca5f34422e62280386
|
e488d6d5300b84065ddb50320aa3930d64798047
|
/mkt/constants/__init__.py
|
5c29991237eb8686d3066ac298329ca61909b66c
|
[] |
no_license
|
potch/zamboni
|
81b2bf01a1d93bbf933a0b3f30db56b438b7b75f
|
4e0bfa8be5af334e2c4be3917e3794216498291c
|
refs/heads/master
| 2021-01-15T21:15:25.102909
| 2013-01-02T17:07:02
| 2013-01-02T20:16:10
| 634,135
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 192
|
py
|
from .platforms import DEVICE_LOOKUP, FREE_PLATFORMS, PAID_PLATFORMS
from .submit import (APP_IMAGE_SIZES, APP_PREVIEW_MINIMUMS, APP_PREVIEW_SIZES,
MAX_PACKAGED_APP_SIZE)
|
[
"me@mattbasta.com"
] |
me@mattbasta.com
|
2b74909d2d1d7762214f31b2628489b91f3c0436
|
508c5e01aa7dce530093d5796250eff8d74ba06c
|
/code/venv/lib/python3.6/site-packages/passlib/utils/_blowfish/__init__.py
|
16b85443b77e5ba7fccc0601e0d5299282f0083b
|
[
"MIT"
] |
permissive
|
jhkuang11/UniTrade
|
f220b0d84db06ff17626b3daa18d4cb8b72a5d3f
|
5f68b853926e167936b58c8543b8f95ebd6f5211
|
refs/heads/master
| 2022-12-12T15:58:30.013516
| 2019-02-01T21:07:15
| 2019-02-01T21:07:15
| 166,479,655
| 0
| 0
|
MIT
| 2022-12-07T03:59:47
| 2019-01-18T22:19:45
|
Python
|
UTF-8
|
Python
| false
| false
| 6,509
|
py
|
"""passlib.utils._blowfish - pure-python eks-blowfish implementation for bcrypt
This is a pure-python implementation of the EKS-Blowfish algorithm described by
Provos and Mazieres in `A Future-Adaptable Password Scheme
<http://www.openbsd.org/papers/bcrypt-paper.ps>`_.
This package contains two submodules:
* ``_blowfish/base.py`` contains a class implementing the eks-blowfish algorithm
using easy-to-examine code.
* ``_blowfish/unrolled.py`` contains a subclass which replaces some methods
of the original class with sped-up versions, mainly using unrolled loops
and local variables. this is the class which is actually used by
Passlib to perform BCrypt in pure python.
This module is auto-generated by a script, ``_blowfish/_gen_files.py``.
Status
------
This implementation is usuable, but is an order of magnitude too slow to be
usuable with real security. For "ok" security, BCrypt hashes should have at
least 2**11 rounds (as of 2011). Assuming a desired response time <= 100ms,
this means a BCrypt implementation should get at least 20 rounds/ms in order
to be both usuable *and* secure. On a 2 ghz cpu, this implementation gets
roughly 0.09 rounds/ms under CPython (220x too slow), and 1.9 rounds/ms
under PyPy (10x too slow).
History
-------
While subsequently modified considerly for Passlib, this code was originally
based on `jBcrypt 0.2 <http://www.mindrot.org/projects/jBCrypt/>`_, which was
released under the BSD license::
Copyright (c) 2006 Damien Miller <djm@mindrot.org>
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
#=============================================================================
# imports
#=============================================================================
# core
from itertools import chain
import struct
# pkg
from passlib.utils import bcrypt64, getrandbytes, rng
from passlib.utils.compat import b, bytes, BytesIO, unicode, u
from passlib.utils._blowfish.unrolled import BlowfishEngine
# local
__all__ = [
'BlowfishEngine',
'raw_bcrypt',
]
#=============================================================================
# bcrypt constants
#=============================================================================
# bcrypt constant data "OrpheanBeholderScryDoubt" as 6 integers
BCRYPT_CDATA = [
0x4f727068, 0x65616e42, 0x65686f6c,
0x64657253, 0x63727944, 0x6f756274
]
# struct used to encode ciphertext as digest (last output byte discarded)
digest_struct = struct.Struct(">6I")
#=============================================================================
# base bcrypt helper
#
# interface designed only for use by passlib.handlers.bcrypt:BCrypt
# probably not suitable for other purposes
#=============================================================================
BNULL = b('\x00')
def raw_bcrypt(password, ident, salt, log_rounds):
"""perform central password hashing step in bcrypt scheme.
:param password: the password to hash
:param ident: identifier w/ minor version (e.g. 2, 2a)
:param salt: the binary salt to use (encoded in bcrypt-base64)
:param rounds: the log2 of the number of rounds (as int)
:returns: bcrypt-base64 encoded checksum
"""
#===================================================================
# parse inputs
#===================================================================
# parse ident
assert isinstance(ident, unicode)
if ident == u('2'):
minor = 0
elif ident == u('2a'):
minor = 1
# XXX: how to indicate caller wants to use crypt_blowfish's
# workaround variant of 2a?
elif ident == u('2x'):
raise ValueError("crypt_blowfish's buggy '2x' hashes are not "
"currently supported")
elif ident == u('2y'):
# crypt_blowfish compatibility ident which guarantees compat w/ 2a
minor = 1
else:
raise ValueError("unknown ident: %r" % (ident,))
# decode & validate salt
assert isinstance(salt, bytes)
salt = bcrypt64.decode_bytes(salt)
if len(salt) < 16:
raise ValueError("Missing salt bytes")
elif len(salt) > 16:
salt = salt[:16]
# prepare password
assert isinstance(password, bytes)
if minor > 0:
password += BNULL
# validate rounds
if log_rounds < 4 or log_rounds > 31:
raise ValueError("Bad number of rounds")
#===================================================================
#
# run EKS-Blowfish algorithm
#
# This uses the "enhanced key schedule" step described by
# Provos and Mazieres in "A Future-Adaptable Password Scheme"
# http://www.openbsd.org/papers/bcrypt-paper.ps
#
#===================================================================
engine = BlowfishEngine()
# convert password & salt into list of 18 32-bit integers (72 bytes total).
pass_words = engine.key_to_words(password)
salt_words = engine.key_to_words(salt)
# truncate salt_words to original 16 byte salt, or loop won't wrap
# correctly when passed to .eks_salted_expand()
salt_words16 = salt_words[:4]
# do EKS key schedule setup
engine.eks_salted_expand(pass_words, salt_words16)
# apply password & salt keys to key schedule a bunch more times.
rounds = 1<<log_rounds
engine.eks_repeated_expand(pass_words, salt_words, rounds)
# encipher constant data, and encode to bytes as digest.
data = list(BCRYPT_CDATA)
i = 0
while i < 6:
data[i], data[i+1] = engine.repeat_encipher(data[i], data[i+1], 64)
i += 2
raw = digest_struct.pack(*data)[:-1]
return bcrypt64.encode_bytes(raw)
#=============================================================================
# eof
#=============================================================================
|
[
"jhkuang11@gmail.com"
] |
jhkuang11@gmail.com
|
816522a328e2247a1e43e6f0537dd652c8266d33
|
6a2c2af113bb8b4d55db6ceabc6e78a0bbcd1f91
|
/genus processing/Double Breasted.py
|
01a6ae3e0307df77a4447697a686b3f1c6324fc1
|
[] |
no_license
|
JinghongM/Everlasting_Data_Cleansing
|
4a966aca5cba102961f64338411d76e51f60f51e
|
237073980b2bd1697db578013c7463dcbc1492fb
|
refs/heads/master
| 2021-04-26T23:48:38.083155
| 2018-06-21T20:00:11
| 2018-06-21T20:00:11
| 123,861,020
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 523
|
py
|
import pandas as pd
import copy
import os.path
Pattern=6
Material=7
Species=4
CGP = pd.read_excel("../Realdata.xlsx")
for row in range(1,CGP.shape[0]):
genus = str(CGP.iat[row,3])
if "Double Breasted" in genus:
print(row)
CGP.iat[row,3] = genus.replace("Double Breasted ","")
CGP.iat[row,Species] = "Double Breasted"
i=0 #process headers
while i<len(CGP.columns.values):
if "Unnamed" in CGP.columns.values[i]:
CGP.columns.values[i] = ''
i+=1
CGP.to_excel('../Realdata.xlsx',index=False)
|
[
"noreply@github.com"
] |
JinghongM.noreply@github.com
|
5e7fd79ebbe73607afa51ba6a52d8e1ee3a6c9b5
|
2579f37a13cfbb47944c5b81c6e83ca710b29f88
|
/Client/config/Client_config_info.py
|
4f407858ee9bb1f511c54d87662edd44d4154b42
|
[] |
no_license
|
YangQian1992/FTP
|
932f32d5ed934bae295bd674757f7af23d0ad1ba
|
87d3a78522e7eb8058def1d74d7f32f0f61f1b86
|
refs/heads/master
| 2020-03-31T16:28:35.146329
| 2018-10-10T06:53:12
| 2018-10-10T06:53:12
| 152,376,641
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 136
|
py
|
personal_config_info = {
'SERVER_IP':'127.0.0.1',
'SERVER_PORT':8082,
'CODING':'utf-8',#编码方式
'BLOCK_SIZE':1024
}
|
[
"1289089651@qq.com"
] |
1289089651@qq.com
|
0c4aa77a3094093376053b5f19d0e964a4b1427a
|
9e15ada895e90d033bc3b65c2666065bddd62605
|
/12/12.1/Path_test1.py
|
3093e21b3c397c3f1a090b05e991c3d7de8b5f0f
|
[] |
no_license
|
zhyErick/fengkuang_python
|
b0f0c78273420fd862691799bfd7e4f1b6eadf80
|
6d50ad3b7d4ae05d06379c2dc87d91081964ec6d
|
refs/heads/master
| 2021-02-14T08:23:26.616211
| 2020-05-06T13:08:07
| 2020-05-06T13:08:07
| 244,788,500
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 463
|
py
|
from pathlib import *
# 获取当前目录
p = Path('../')
# 遍历当前目录下的所有文件和子目录
for x in p.iterdir():
print(x)
# 获取上一级目录
p = Path('../')
# 获取上级目录及其所有子目录的.py文件
for x in p.glob('**/*.py'):
print(x)
# 获取C:\python\oldboy_python对应的目录
p = Path('C:\python\oldboy_python')
# 获取当前目录及其所有子目录下的.py文件
for x in p.glob('*/*.py'):
print(x)
|
[
"xingzhishangyang@163.com"
] |
xingzhishangyang@163.com
|
16333d2fe48ad23cc47270a1b8fc53973efafdf3
|
90dc57404ea2e98006adba91f53ea9cc92124bb4
|
/spare_parts/forms.py
|
a6679136c699e7b1b3cdd28e55c4d7b38fcc7460
|
[] |
no_license
|
AndreySkryl/flask-test
|
e57409c779f113980a9acf1c6f9a37be5106e119
|
8979e15789160e65a7ef6123e3ba638e764d8131
|
refs/heads/main
| 2023-04-24T18:33:59.675028
| 2021-05-10T15:16:56
| 2021-05-10T15:16:56
| 365,334,649
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 281
|
py
|
from wtforms import Form, StringField, TextAreaField, IntegerField
class SparePartForm(Form):
title = StringField('Заголовок')
price = IntegerField('Цена')
amount = IntegerField('Количество')
description = TextAreaField('Описание')
|
[
"ya.skryl@yandex.ru"
] |
ya.skryl@yandex.ru
|
f1cd67923e90294c3a5c457d1925664b58b06270
|
e23a4f57ce5474d468258e5e63b9e23fb6011188
|
/125_algorithms/_exercises/exercises/Python_Hand-on_Solve_200_Problems/Section 7 Dictionary/check_key_exist_solution.py
|
637344c193288ad01e3c9e4394cbd7653b485f05
|
[] |
no_license
|
syurskyi/Python_Topics
|
52851ecce000cb751a3b986408efe32f0b4c0835
|
be331826b490b73f0a176e6abed86ef68ff2dd2b
|
refs/heads/master
| 2023-06-08T19:29:16.214395
| 2023-05-29T17:09:11
| 2023-05-29T17:09:11
| 220,583,118
| 3
| 2
| null | 2023-02-16T03:08:10
| 2019-11-09T02:58:47
|
Python
|
UTF-8
|
Python
| false
| false
| 753
|
py
|
# # To add a new cell, type '# %%'
# # To add a new markdown cell, type '# %% [markdown]'
# # %%
# # ---------------------------------------------------------------
# # python best courses https://courses.tanpham.org/
# # ---------------------------------------------------------------
# # Check if a given key already exists in a dictionary
# # input
# # d = {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}
# # is_key_present(5)
# # is_key_present(9)
# # output
# # Key is present in the dictionary
# # Key is not present in the dictionary
#
# d _ {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}
# ___ is_key_present x
# __ ? __ ?
# print('Key is present in the dictionary')
# ____
# print('Key is not present in the dictionary')
# ? 5
# ? 9
#
#
|
[
"sergejyurskyj@yahoo.com"
] |
sergejyurskyj@yahoo.com
|
b0dad98cc918993b31888c8234bf8e6d804cb304
|
40eb94673bb2e015c1640665a639c508279e3df4
|
/cursos/_flask/flask/ejemplos/u29/aplicacion/models.py
|
defde3e73d247258609be8cc99c0eaf13f0671aa
|
[] |
no_license
|
josedom24/plataforma_pledin
|
3ab5c59abd87c90f066ba9164d6d0cbc02ea816f
|
e0521eb103013e0f8d9e2b2ea50e6acac0d09784
|
refs/heads/master
| 2023-07-20T15:43:30.796223
| 2023-07-17T19:07:51
| 2023-07-17T19:07:51
| 138,278,487
| 2
| 0
| null | 2023-05-01T20:05:34
| 2018-06-22T08:44:58
|
Python
|
UTF-8
|
Python
| false
| false
| 2,007
|
py
|
from sqlalchemy import Boolean, Column , ForeignKey
from sqlalchemy import DateTime, Integer, String, Text, Float
from sqlalchemy.orm import relationship
from aplicacion.app import db
from werkzeug.security import generate_password_hash, check_password_hash
class Categorias(db.Model):
"""Categorías de los artículos"""
__tablename__ = 'categorias'
id = Column(Integer, primary_key=True)
nombre = Column(String(100))
articulos = relationship("Articulos", cascade="all, delete-orphan", backref="Categorias",lazy='dynamic')
def __repr__(self):
return (u'<{self.__class__.__name__}: {self.id}>'.format(self=self))
class Articulos(db.Model):
"""Artículos de nuestra tienda"""
__tablename__ = 'articulos'
id = Column(Integer, primary_key=True)
nombre = Column(String(100),nullable=False)
precio = Column(Float,default=0)
iva = Column(Integer,default=21)
descripcion = Column(String(255))
image = Column(String(255))
stock = Column(Integer,default=0)
CategoriaId=Column(Integer,ForeignKey('categorias.id'), nullable=False)
categoria = relationship("Categorias", backref="Articulos")
def precio_final(self):
return self.precio+(self.precio*self.iva/100)
def __repr__(self):
return (u'<{self.__class__.__name__}: {self.id}>'.format(self=self))
class Usuarios(db.Model):
"""Usuarios"""
__tablename__ = 'usuarios'
id = Column(Integer, primary_key=True)
username = Column(String(100),nullable=False)
password_hash = Column(String(128),nullable=False)
nombre = Column(String(200),nullable=False)
email = Column(String(200),nullable=False)
admin = Column(Boolean, default=False)
def __repr__(self):
return (u'<{self.__class__.__name__}: {self.id}>'.format(self=self))
@property
def password(self):
raise AttributeError('password is not a readable attribute')
@password.setter
def password(self, password):
self.password_hash = generate_password_hash(password)
def verify_password(self, password):
return check_password_hash(self.password_hash, password)
|
[
"josedom24@gmail.com"
] |
josedom24@gmail.com
|
10da254f4b916fe94485339bbb590bc46404c718
|
46e271e27afe50b8b62be0651d78164490911bb3
|
/ws_moveit/src/example/example_pkg/scripts/red.py
|
1ec501210d7051649bb4e99b72defa0eede3bac3
|
[] |
no_license
|
Nidhiks2000/Vargi-bot
|
8a43af1e470b6fc84d468003f67471a1e1f47aad
|
3e2e7be310ed7372cb6960eea8faabec75d9fbcf
|
refs/heads/master
| 2023-07-24T01:05:10.049800
| 2021-09-08T16:31:08
| 2021-09-08T16:31:08
| 403,935,308
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,639
|
py
|
#!/usr/bin/env python
import rospy
import cv2
import sys
from std_msgs.msg import String
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import numpy as np
class Camera1:
def __init__(self):
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber("/eyrc/vb/camera_1/image_raw", Image,self.callback)
def callback(self,data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
rospy.logerr(e)
(rows,cols,channels) = cv_image.shape
image = cv_image
# Resize a 720x1280 image to 360x640 to fit it on the screen
resized_image = cv2.resize(image, (720/2, 1280/2))
green = np.uint8([[[0, 255, 0]]]) #green color
hsvGreen = cv2.cvtColor(green, cv2.COLOR_BGR2HSV) #hsv value of green color
lowerLimit = hsvGreen[0][0][0] - 10, 100, 100 # range of green color lower limit and upper limit
upperLimit = hsvGreen[0][0][0] + 10, 255, 255
red = np.uint8([[[0, 0, 255]]]) #red color
hsvred = cv2.cvtColor(red, cv2.COLOR_BGR2HSV) #hsv value of red color
lower = hsvred[0][0][0] - 10, 100, 100 # range of red color lower limit and upper limit
upper = hsvred[0][0][0] + 10, 255, 255
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) #convert the image into hsv
lg = np.array(lowerLimit) #range of green color
ug = np.array(upperLimit)
green_mask = cv2.inRange(hsv, lg, ug) #green masked image
cv2.imshow('green_packages', green_mask) #show the image
lr = np.array(lower) #range of red color
ur = np.array(upper)
red_mask = cv2.inRange(hsv, lr, ur) #red masked image
cv2.imshow('red_packages', red_mask) #show the image
original = image.copy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower = np.array([22, 93, 0], dtype="uint8") #yellow colour lower range and upper range
upper = np.array([45, 255, 255], dtype="uint8")
mask = cv2.inRange(image, lower, upper)
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(original, (x, y), (x + w, y + h), (36,255,12), 2)
cv2.imshow('yellow_packages', mask)
cv2.imshow("/eyrc/vb/camera_1/image_raw", resized_image)
cv2.waitKey(3)
def main(args):
rospy.init_node('node_eg1_read_camera', anonymous=True)
ic = Camera1()
try:
rospy.spin()
except KeyboardInterrupt:
rospy.loginfo("Shutting down")
cv2.destroyAllWindows()
if __name__ == '__main__':
main(sys.argv)
|
[
"Happysunshine.disroot.org"
] |
Happysunshine.disroot.org
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.