blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
6f5371f76a88a1c3070db0af82abb2248dbd8564
456703d469684b99d849bb386707359729af4e1e
/data.py
50649d1c690eab4c7947b38c8524416fbd32fd2e
[]
no_license
blacklemons/userlist_mongo
9c05949f4d2a8c4232c1126020b66ad892857bc6
b341628cc5da8248c39e46f5a0e974807d9986d1
refs/heads/main
2023-05-05T11:49:13.272471
2021-06-03T06:56:56
2021-06-03T06:56:56
372,990,127
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
def Articles(title,description,author,edit): articles = { 'title' : title, 'description' : description, 'author' : author, 'edit' : edit, } return articles def Users(name, email, username, password): users = { 'name' : name, 'email' : email, 'username' : username, 'password': password } return users
[ "you@example.com" ]
you@example.com
67d9459b98c02585b18afecaf8c3df0f88840736
95e9ec4b3b0d86063da53a0e62e138cf794cce3a
/python/20190430/模块/demo09.py
b8805798af569441c98514893091d564e1240813
[]
no_license
wjl626nice/1902
c3d350d91925a01628c9402cbceb32ebf812e43c
5a1a6dd59cdd903563389fa7c73a283e8657d731
refs/heads/master
2023-01-05T23:51:47.667675
2019-08-19T06:42:09
2019-08-19T06:42:09
180,686,044
4
1
null
2023-01-04T07:35:24
2019-04-11T00:46:43
Python
UTF-8
Python
false
false
369
py
# pillow from PIL import Image # 打开一个jpg图像文件,注意是当前路径: im = Image.open('1.png') # 获得图像尺寸: w, h = im.size print('Original image size: %sx%s' % (w, h)) # 缩放到50%: im.thumbnail((w // 2, h // 2)) print('Resize image to: %sx%s' % (w // 2, h // 2)) # 把缩放后的图像用jpeg格式保存: im.save('thumbnail.png', 'png')
[ "18537160262@qq.com" ]
18537160262@qq.com
a3cddb14f4568125e0ea0d932da937365312500e
ae7cb8543a98b7d65295a422c7971e7a37f921cd
/minerals/models.py
02bcb451cf3a5a60d68581cbcd838dfa627fcbad
[]
no_license
frankRose1/mineral-catalog
a74386278073d1b9e92fe44e1cc348a1b498380e
88f91a55105532fe197c84d050a5d5bd67167a9d
refs/heads/master
2020-04-16T12:49:23.715372
2019-03-14T00:23:27
2019-03-14T00:23:27
165,597,686
0
0
null
null
null
null
UTF-8
Python
false
false
1,699
py
from django.db import models # Create your models here. class Mineral(models.Model): """ Not all entries will have every field as shown in the json file in "mineral_data/mineral.json" """ name = models.CharField(max_length=255, blank=True, default='') image_filename = models.CharField(max_length=255, blank=True, default='') image_caption = models.TextField(blank=True, default='') category = models.CharField(max_length=255, blank=True, default='') formula = models.CharField(max_length=255, blank=True, default='') strunz_classification = models.CharField(max_length=255, blank=True, default='') color = models.CharField(max_length=255, blank=True, default='') crystal_system = models.CharField(max_length=255, blank=True, default='') unit_cell = models.CharField(max_length=255, blank=True, default='') crystal_symmetry = models.CharField(max_length=255, blank=True, default='') cleavage = models.CharField(max_length=255, blank=True, default='') mohs_scale_hardness = models.CharField(max_length=255, blank=True, default='') luster = models.CharField(max_length=255, blank=True, default='') streak = models.CharField(max_length=255, blank=True, default='') diaphaneity = models.CharField(max_length=255, blank=True, default='') optical_properties = models.CharField(max_length=255, blank=True, default='') refractive_index = models.CharField(max_length=255, blank=True, default='') crystal_habit = models.CharField(max_length=255, blank=True, default='') specific_gravity = models.CharField(max_length=255, blank=True, default='') group = models.CharField(max_length=255, blank=True, default='')
[ "frank.rosendorf1@gmail.com" ]
frank.rosendorf1@gmail.com
94099f7539dd29af5d9baf1b7e65aae919dc5eb1
b8e9dd6fd8f8b691cba5a3af2388467bcf6c90bb
/samples/openapi3/client/3_0_3_unit_test/python-experimental/unit_test_api/paths/response_body_post_enum_with1_does_not_match_true_response_body_for_content_types/post.py
6c03a7fcfbbe3990bd37e435d7afe3c07aa49f1e
[ "Apache-2.0" ]
permissive
FallenRiteMonk/openapi-generator
f8b98940219eecf14dc76dced4b0fbd394522aa3
b6576d11733ecad6fa4a0a616e1a06d502a771b7
refs/heads/master
2023-03-16T05:23:36.501909
2022-09-02T01:46:56
2022-09-02T01:46:56
164,609,299
0
0
Apache-2.0
2019-01-08T09:08:56
2019-01-08T09:08:56
null
UTF-8
Python
false
false
4,699
py
# coding: utf-8 """ Generated by: https://openapi-generator.tech """ from dataclasses import dataclass import urllib3 from urllib3._collections import HTTPHeaderDict from unit_test_api import api_client, exceptions from datetime import date, datetime # noqa: F401 import decimal # noqa: F401 import functools # noqa: F401 import io # noqa: F401 import re # noqa: F401 import typing # noqa: F401 import uuid # noqa: F401 import frozendict # noqa: F401 from unit_test_api import schemas # noqa: F401 from unit_test_api.model.enum_with1_does_not_match_true import EnumWith1DoesNotMatchTrue from . import path SchemaFor200ResponseBodyApplicationJson = EnumWith1DoesNotMatchTrue @dataclass class ApiResponseFor200(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor200ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_200 = api_client.OpenApiResponse( response_cls=ApiResponseFor200, content={ 'application/json': api_client.MediaType( schema=SchemaFor200ResponseBodyApplicationJson), }, ) _status_code_to_response = { '200': _response_for_200, } _all_accept_content_types = ( 'application/json', ) class BaseApi(api_client.Api): def _post_enum_with1_does_not_match_true_response_body_for_content_types_oapg( self: api_client.Api, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization ]: """ :param skip_deserialization: If true then api_response.response will be set but api_response.body and api_response.headers will not be deserialized into schema class instances """ used_path = path.value _headers = HTTPHeaderDict() # TODO add cookie handling if accept_content_types: for accept_content_type in accept_content_types: _headers.add('Accept', accept_content_type) response = self.api_client.call_api( resource_path=used_path, method='post'.upper(), headers=_headers, stream=stream, timeout=timeout, ) if skip_deserialization: api_response = api_client.ApiResponseWithoutDeserialization(response=response) else: response_for_status = _status_code_to_response.get(str(response.status)) if response_for_status: api_response = response_for_status.deserialize(response, self.api_client.configuration) else: api_response = api_client.ApiResponseWithoutDeserialization(response=response) if not 200 <= response.status <= 299: raise exceptions.ApiException(api_response=api_response) return api_response class PostEnumWith1DoesNotMatchTrueResponseBodyForContentTypes(BaseApi): # this class is used by api classes that refer to endpoints with operationId fn names def post_enum_with1_does_not_match_true_response_body_for_content_types( self: BaseApi, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization ]: return self._post_enum_with1_does_not_match_true_response_body_for_content_types_oapg( accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization ) class ApiForpost(BaseApi): # this class is used by api classes that refer to endpoints by path and http method names def post( self: BaseApi, accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization ]: return self._post_enum_with1_does_not_match_true_response_body_for_content_types_oapg( accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization )
[ "noreply@github.com" ]
FallenRiteMonk.noreply@github.com
533a8674b5a0ea2d97c2032ad2269f7fe0835047
818173671edf15d7c6d775ed003bcd35608233f9
/demos/go/wscript
13ea4561dd2b6d1e18137a02eb74523dc6ffdb69
[]
no_license
zsx/waf
a1e87e079e22443ae3ed98e08cefc705b5f73906
66d1c6ede4ceda66a98dbbf9dd473f1d5c5752ba
refs/heads/master
2021-01-13T12:56:12.379186
2010-07-12T17:27:13
2010-07-12T17:27:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,688
#!/usr/bin/env python # encoding: utf-8 # Tom Wambold tom5760 gmail # Thomas Nagy, 2010 (ita) """ if libgmp is present, try building with 'waf --exe' """ top = '.' out = 'build' def options(opt): opt.add_option('--exe', action='store_true', default=False, help='Execute the program after it is compiled') def configure(ctx): ctx.check_tool('go') try: ctx.check_tool('gcc') ctx.check_cc(fragment='#include <gmp.h>\nint main() {return 0;}\n', uselib_store='GMP', lib='gmp') except ctx.errors.ConfigurationError: ctx.env.TRY_CGO = False else: ctx.env.TRY_CGO = True def build(ctx): ctx( features = 'go gopackage', target = 'other', source = [ 'other/a.go', #'other/b.go', # using two source files for gopack does not seem to work anymore ], ) ctx( features = 'go goprogram', target = 'test', uselib_local = 'other', source = 'main.go', includes = '.', ) if ctx.env.TRY_CGO: # see http://code.google.com/p/go/issues/detail?id=533 # so we have to move the files, grrrrr ctx(name='cgo', rule='${CGO} ${SRC} && mv ${gen.path.abspath()}/${TGT[0].name} ${gen.path.abspath()}/${TGT[1].name} ${TGT[0].parent.abspath()}', target='gmp.cgo1.go gmp.cgo2.c gmp.cgo2.c _cgo_gotypes.go _cgo_defun.c', source='gmp.go', shell=True) ctx(features='c cshlib', source='gmp.cgo2.c', target=ctx.path.find_or_declare('cgo_gmp.so'), uselib='GMP') ctx.add_group() ctx(features='go goprogram', source='pi.go', target='pi') from waflib import Options, Utils if ctx.env.TRY_CGO and Options.options.exe: def exe(bld): p = Utils.subprocess.Popen('LD_LIBRARY_PATH=build ./build/pi', shell=True) p.wait() ctx.add_post_fun(exe)
[ "tnagy1024@f0382ac9-c320-0410-b3f0-b508d59f5a85" ]
tnagy1024@f0382ac9-c320-0410-b3f0-b508d59f5a85
9700f7b32038e32409736e25ab200fda2427f5dd
46dd1ad6fe93777a4dce84166b64cb9adb679e62
/test/functional/interface_bitcoin_cli.py
be8c48fd1a8c0abb45f0f9939a095625cc50b098
[ "MIT" ]
permissive
aleomartinez/EducaCoin
14266500dc3c5aabfe8bebf17c8903aecea0af8c
2282d6affdd2192a79efdce579ddd0d8576d950d
refs/heads/master
2020-03-31T01:28:49.612215
2018-10-05T14:43:36
2018-10-05T14:43:36
151,783,304
0
0
MIT
2018-10-05T22:11:11
2018-10-05T22:11:11
null
UTF-8
Python
false
false
3,669
py
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test educacoin-cli""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_process_error, get_auth_cookie class TestBitcoinCli(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def run_test(self): """Main test logic""" self.log.info("Compare responses from gewalletinfo RPC and `educacoin-cli getwalletinfo`") cli_response = self.nodes[0].cli.getwalletinfo() rpc_response = self.nodes[0].getwalletinfo() assert_equal(cli_response, rpc_response) self.log.info("Compare responses from getblockchaininfo RPC and `educacoin-cli getblockchaininfo`") cli_response = self.nodes[0].cli.getblockchaininfo() rpc_response = self.nodes[0].getblockchaininfo() assert_equal(cli_response, rpc_response) user, password = get_auth_cookie(self.nodes[0].datadir) self.log.info("Test -stdinrpcpass option") assert_equal(0, self.nodes[0].cli('-rpcuser=%s' % user, '-stdinrpcpass', input=password).getblockcount()) assert_raises_process_error(1, "incorrect rpcuser or rpcpassword", self.nodes[0].cli('-rpcuser=%s' % user, '-stdinrpcpass', input="foo").echo) self.log.info("Test -stdin and -stdinrpcpass") assert_equal(["foo", "bar"], self.nodes[0].cli('-rpcuser=%s' % user, '-stdin', '-stdinrpcpass', input=password + "\nfoo\nbar").echo()) assert_raises_process_error(1, "incorrect rpcuser or rpcpassword", self.nodes[0].cli('-rpcuser=%s' % user, '-stdin', '-stdinrpcpass', input="foo").echo) self.log.info("Make sure that -getinfo with arguments fails") assert_raises_process_error(1, "-getinfo takes no arguments", self.nodes[0].cli('-getinfo').help) self.log.info("Compare responses from `educacoin-cli -getinfo` and the RPCs data is retrieved from.") cli_get_info = self.nodes[0].cli('-getinfo').send_cli() wallet_info = self.nodes[0].getwalletinfo() network_info = self.nodes[0].getnetworkinfo() blockchain_info = self.nodes[0].getblockchaininfo() assert_equal(cli_get_info['version'], network_info['version']) assert_equal(cli_get_info['protocolversion'], network_info['protocolversion']) assert_equal(cli_get_info['walletversion'], wallet_info['walletversion']) assert_equal(cli_get_info['balance'], wallet_info['balance']) assert_equal(cli_get_info['blocks'], blockchain_info['blocks']) assert_equal(cli_get_info['timeoffset'], network_info['timeoffset']) assert_equal(cli_get_info['connections'], network_info['connections']) assert_equal(cli_get_info['proxy'], network_info['networks'][0]['proxy']) assert_equal(cli_get_info['difficulty'], blockchain_info['difficulty']) assert_equal(cli_get_info['testnet'], blockchain_info['chain'] == "test") assert_equal(cli_get_info['balance'], wallet_info['balance']) assert_equal(cli_get_info['keypoololdest'], wallet_info['keypoololdest']) assert_equal(cli_get_info['keypoolsize'], wallet_info['keypoolsize']) assert_equal(cli_get_info['paytxfee'], wallet_info['paytxfee']) assert_equal(cli_get_info['relayfee'], network_info['relayfee']) # unlocked_until is not tested because the wallet is not encrypted if __name__ == '__main__': TestBitcoinCli().main()
[ "you@example.com" ]
you@example.com
82cbf15cb149b4e72ab5811f65c9fee2d676ee8d
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/cirq_new/cirq_program/startCirq_noisy959.py
a9b2211c27ba41c3a2a043b44c15010fd25e7f71
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,480
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=23 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=14 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=15 c.append(cirq.H.on(input_qubit[0])) # number=16 c.append(cirq.H.on(input_qubit[0])) # number=20 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=21 c.append(cirq.H.on(input_qubit[0])) # number=22 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=8 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=9 c.append(cirq.Y.on(input_qubit[2])) # number=19 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=10 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=11 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=12 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=13 c.append(cirq.SWAP.on(input_qubit[3],input_qubit[0])) # number=17 c.append(cirq.SWAP.on(input_qubit[3],input_qubit[0])) # number=18 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2820 circuit = circuit.with_noise(cirq.depolarize(p=0.01)) simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_noisy959.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
[ "wangjiyuan123@yeah.net" ]
wangjiyuan123@yeah.net
624f9ac70390eb2b0177c09ce025a3b00a2bd5ec
87a66fbed380353955cc6160c8fffe56dee785be
/bert2bert.py
3ff4c7f15e16f72c1b0e7a7ec1fec8f221d33179
[ "Apache-2.0" ]
permissive
JngHyun/2021-BOAZ-bert2bert
ca84e8f4ad444f27a31ac8f74469826adefe3a19
63e95cc87b231ebf344950df80a43abc1139cb7d
refs/heads/main
2023-03-27T01:13:35.747955
2021-03-25T07:17:39
2021-03-25T07:17:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,735
py
from typing import List from transformers import ( EncoderDecoderModel, BertConfig, EncoderDecoderConfig, BertModel, BertTokenizer, ) from transformers.modeling_bart import shift_tokens_right from kobert_transformers import get_tokenizer from lightning_base import LightningBase import torch class Bert2Bert(LightningBase): def __init__( self, model_save_path: str, batch_size: int, num_gpus: int, max_len: int = 128, lr: float = 3e-5, weight_decay: float = 1e-4, save_step_interval: int = 1000, accelerator: str = "ddp", precision: int = 16, use_amp: bool = True, ) -> None: super(Bert2Bert, self).__init__( model_save_path=model_save_path, max_len=max_len, batch_size=batch_size, num_gpus=num_gpus, lr=lr, weight_decay=weight_decay, save_step_interval=save_step_interval, accelerator=accelerator, precision=precision, use_amp=use_amp, ) encoder_config = BertConfig.from_pretrained("monologg/kobert") decoder_config = BertConfig.from_pretrained("monologg/kobert") config = EncoderDecoderConfig.from_encoder_decoder_configs( encoder_config, decoder_config ) self.model = EncoderDecoderModel(config) self.tokenizer = KoBertTokenizer() state_dict = BertModel.from_pretrained("monologg/kobert").state_dict() self.model.encoder.load_state_dict(state_dict) self.model.decoder.bert.load_state_dict(state_dict, strict=False) # cross attention이랑 lm head는 처음부터 학습 def training_step(self, batch, batch_idx): src, tgt = batch[0], batch[1] src_input = self.tokenizer.encode_batch(src, max_length=self.max_len) tgt_input = self.tokenizer.encode_batch(tgt, max_length=self.max_len) input_ids = src_input["input_ids"].to(self.device) attention_mask = src_input["attention_mask"].to(self.device) labels = tgt_input["input_ids"].to(self.device) decoder_input_ids = shift_tokens_right( labels, self.tokenizer.token2idx["[PAD]"] ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, ) lm_logits = outputs[0] loss_fn = torch.nn.CrossEntropyLoss( ignore_index=self.tokenizer.token2idx["[PAD]"] ) lm_loss = loss_fn(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1)) self.save_model() return {"loss": lm_loss} class KoBertTokenizer(object): def __init__(self): self.tokenizer = get_tokenizer() self.token2idx = self.tokenizer.token2idx self.idx2token = {v: k for k, v in self.token2idx.items()} def encode_batch(self, x: List[str], max_length): max_len = 0 result_tokenization = [] for i in x: tokens = self.tokenizer.encode(i, max_length=max_length, truncation=True) result_tokenization.append(tokens) if len(tokens) > max_len: max_len = len(tokens) padded_tokens = [] for tokens in result_tokenization: padding = (torch.ones(max_len) * self.token2idx["[PAD]"]).long() padding[: len(tokens)] = torch.tensor(tokens).long() padded_tokens.append(padding.unsqueeze(0)) padded_tokens = torch.cat(padded_tokens, dim=0).long() mask_tensor = torch.ones(padded_tokens.size()).long() attention_mask = torch.where( padded_tokens == self.token2idx["[PAD]"], padded_tokens, mask_tensor * -1 ).long() attention_mask = torch.where( attention_mask == -1, attention_mask, mask_tensor * 0 ).long() attention_mask = torch.where( attention_mask != -1, attention_mask, mask_tensor ).long() return { "input_ids": padded_tokens.long(), "attention_mask": attention_mask.long(), } def decode(self, tokens): # remove special tokens # unk, pad, cls, sep, mask tokens = [token for token in tokens if token not in [0, 1, 2, 3, 4]] decoded = [self.idx2token[token] for token in tokens] if "▁" in decoded[0] and "▁" in decoded[1]: # fix decoding bugs tokens = tokens[1:] return self.tokenizer.decode(tokens) def decode_batch(self, list_of_tokens): return [self.decode(tokens) for tokens in list_of_tokens]
[ "pjh09890989@gmail.com" ]
pjh09890989@gmail.com
63bb8cfeb317f62af40c54d6d6ba604724dc264e
691d3f3e04d354e11772335064f33245e1ed8c28
/lib/galaxy/datatypes/indexers/coverage.py
2bfec91c25fb05f513831206a3471b71db5749ea
[ "CC-BY-2.5", "MIT" ]
permissive
dbcls/dbcls-galaxy
934a27cc13663549d5208158fc0b2821609399a8
6142165ef27f6a02aee42f26e0b94fed67ecc896
refs/heads/master
2016-09-05T22:53:27.553419
2009-09-09T06:35:28
2009-09-09T06:35:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,442
py
#!/usr/bin/env python """ Read a chromosome of coverage data, and write it as a npy array, as well as averages over regions of progessively larger size in powers of 10 """ from __future__ import division import sys from galaxy import eggs import pkg_resources; pkg_resources.require( "bx-python" ) import bx.wiggle from bx.cookbook import doc_optparse from bx import misc max2 = max pkg_resources.require("numpy>=1.2.1") from numpy import * import tempfile import os def write_chrom(max, out_base, instream): scores = zeros( max, float32 ) * nan # Fill array from wiggle max_value = 0 min_value = 0 for line in instream: line = line.rstrip("\n\r") (chrom, pos, val) = line.split("\t") pos, val = int(pos), float(val) scores[pos] = val # Write ra fname = "%s_%d" % ( out_base, 1 ) save( fname, scores ) os.rename( fname+".npy", fname ) # Write average for window in 10, 100, 1000, 10000, 100000: input = scores.copy() size = len( input ) input.resize( ( ( size / window ), window ) ) masked = ma.masked_array( input, isnan( input ) ) averaged = mean( masked, 1 ) averaged.set_fill_value( nan ) fname = "%s_%d" % ( out_base, window ) save( fname, averaged.filled() ) del masked, averaged os.rename( fname+".npy", fname ) def main(): max = int( 512*1024*1024 ) # get chroms and lengths chroms = {} LEN = {} for line in open(sys.argv[1],"r"): line = line.rstrip("\r\n") fields = line.split("\t") (chrom, pos, forward) = fields[0:3] reverse = 0 if len(fields) == 4: reverse = int(fields[3]) forward = int(forward)+reverse pos = int(pos) chrom_file = chroms.get(chrom, None) if not chrom_file: chrom_file = chroms[chrom] = tempfile.NamedTemporaryFile() chrom_file.write("%s\t%s\t%s\n" % (chrom,pos,forward)) LEN[chrom] = max2( LEN.get(chrom,0), pos+1 ) for chrom, stream in chroms.items(): stream.seek(0) prefix = os.path.join(sys.argv[2], chrom) write_chrom( LEN[chrom], prefix, stream ) manifest_file = open( os.path.join( sys.argv[2], "manifest.tab" ),"w" ) for key, value in LEN.items(): print >> manifest_file, "%s\t%s" % (key, value) manifest_file.close() if __name__ == "__main__": main()
[ "h-morita@esm.co.jp" ]
h-morita@esm.co.jp
cad859d418ce2e7f4caf5b06ea68e3865b327913
199145122c35976fbfc22f2d709458bf67772f95
/apps/hosts/urls.py
8d52a9078d69ec7982ad7b9679e2e9841d265abf
[ "Apache-2.0" ]
permissive
yhgnice/toolsvb
6109adbce89dd645da342d619acbcaca31b11efa
35f9d27ee2439d134cab160a7cf930ea13a31d26
refs/heads/master
2020-05-24T05:15:40.112999
2017-03-14T06:32:23
2017-03-14T06:32:23
84,824,825
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Created by Nice... on '2017/3/9 20:32' from django.conf.urls import url from .views import RebootServices urlpatterns = [ # 主机工具 url(r'^tools/$', RebootServices.as_view(), name="tools"), ]
[ "123" ]
123
607c473b42712149c56ebae6342712cfda2c7ff2
a289ad8df7840045a659db4f0f936b09494243b3
/gruvi/error.py
d0483517992c9c2b8de1ea8e0e33f2443658ca33
[ "MIT" ]
permissive
tijko/gruvi
a29414bc757f9b19cfc457df36e270c5fefef183
558faa181390dfac83cd42fdcafb1850008e4ac5
refs/heads/master
2020-12-11T05:34:23.897520
2014-01-04T06:59:29
2014-01-04T06:59:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
# This file is part of Gruvi. Gruvi is free software available under the # terms of the MIT license. See the file "LICENSE" that was provided # together with this source file for the licensing terms. # # Copyright (c) 2012-2013 the Gruvi authors. See the file "AUTHORS" for a # complete list. from __future__ import absolute_import, print_function import sys from pyuv.error import UVError __all__ = ['Error', 'Timeout', 'Cancelled'] Error = UVError class Timeout(Error): """A timeout has occurred.""" class Cancelled(Error): """A fiber or calback was cancelled.""" # The following is a pretty bad hack.. We want to use Sphinx's "automodule" to # document most of our modules in the API reference section, and we want it to # show inherited members. The result is that it shows an ugly "with_traceback" # method for gruvi.Error. We fix that by setting that method to None if and # only if we are running under Sphinx. if hasattr(sys, 'running_under_sphinx'): Error.with_traceback = None
[ "geertj@gmail.com" ]
geertj@gmail.com
4f0ed701e5f9fc81b15e8550d01102e7412e4ae4
3665e5e6946fd825bb03b3bcb79be96262ab6d68
/jc/parsers/df.py
817f0a21bbaf233bfe3351eeefdabda7f96d9361
[ "MIT", "BSD-3-Clause" ]
permissive
philippeitis/jc
a28b84cff7fb2852a374a7f0f41151b103288f26
d96b3a65a98bc135d21d4feafc0a43317b5a11fa
refs/heads/master
2021-02-16T05:03:03.022601
2020-03-04T16:30:52
2020-03-04T16:30:52
244,969,097
0
0
MIT
2020-03-08T21:10:36
2020-03-04T18:01:38
null
UTF-8
Python
false
false
5,176
py
"""jc - JSON CLI output utility df Parser Usage: specify --df as the first argument if the piped input is coming from df Compatibility: 'linux', 'darwin' Examples: $ df | jc --df -p [ { "filesystem": "devtmpfs", "1k_blocks": 1918820, "used": 0, "available": 1918820, "use_percent": 0, "mounted_on": "/dev" }, { "filesystem": "tmpfs", "1k_blocks": 1930668, "used": 0, "available": 1930668, "use_percent": 0, "mounted_on": "/dev/shm" }, { "filesystem": "tmpfs", "1k_blocks": 1930668, "used": 11800, "available": 1918868, "use_percent": 1, "mounted_on": "/run" }, ... ] $ df | jc --df -p -r [ { "filesystem": "devtmpfs", "1k_blocks": "1918820", "used": "0", "available": "1918820", "use_percent": "0%", "mounted_on": "/dev" }, { "filesystem": "tmpfs", "1k_blocks": "1930668", "used": "0", "available": "1930668", "use_percent": "0%", "mounted_on": "/dev/shm" }, { "filesystem": "tmpfs", "1k_blocks": "1930668", "used": "11800", "available": "1918868", "use_percent": "1%", "mounted_on": "/run" }, ... ] """ import jc.utils import jc.parsers.universal class info(): version = '1.1' description = 'df command parser' author = 'Kelly Brazil' author_email = 'kellyjonbrazil@gmail.com' # compatible options: linux, darwin, cygwin, win32, aix, freebsd compatible = ['linux', 'darwin'] magic_commands = ['df'] __version__ = info.version def process(proc_data): """ Final processing to conform to the schema. Parameters: proc_data: (dictionary) raw structured data to process Returns: List of dictionaries. Structured data with the following schema: [ { "filesystem": string, "size": string, "1k_blocks": integer, "512_blocks": integer, "used": integer, "available": integer, "capacity_percent": integer, "ifree": integer, "iused": integer, "use_percent": integer, "iused_percent": integer, "mounted_on": string } ] """ for entry in proc_data: # change 'avail' to 'available' if 'avail' in entry: entry['available'] = entry.pop('avail') # change 'use%' to 'use_percent' if 'use%' in entry: entry['use_percent'] = entry.pop('use%') # change 'capacity' to 'capacity_percent' if 'capacity' in entry: entry['capacity_percent'] = entry.pop('capacity') # change '%iused' to 'iused_percent' if '%iused' in entry: entry['iused_percent'] = entry.pop('%iused') # change any entry for key with '_blocks' in the name to int for k in entry: if str(k).find('_blocks') != -1: try: blocks_int = int(entry[k]) entry[k] = blocks_int except (ValueError): entry[k] = None # remove percent sign from 'use_percent', 'capacity_percent', and 'iused_percent' if 'use_percent' in entry: entry['use_percent'] = entry['use_percent'].rstrip('%') if 'capacity_percent' in entry: entry['capacity_percent'] = entry['capacity_percent'].rstrip('%') if 'iused_percent' in entry: entry['iused_percent'] = entry['iused_percent'].rstrip('%') # change used, available, use_percent, capacity_percent, ifree, iused, iused_percent to int int_list = ['used', 'available', 'use_percent', 'capacity_percent', 'ifree', 'iused', 'iused_percent'] for key in int_list: if key in entry: try: key_int = int(entry[key]) entry[key] = key_int except (ValueError): entry[key] = None return proc_data def parse(data, raw=False, quiet=False): """ Main text parsing function Parameters: data: (string) text data to parse raw: (boolean) output preprocessed JSON if True quiet: (boolean) suppress warning messages if True Returns: List of dictionaries. Raw or processed structured data. """ if not quiet: jc.utils.compatibility(__name__, info.compatible) cleandata = data.splitlines() # fix headers cleandata[0] = cleandata[0].lower() cleandata[0] = cleandata[0].replace('-', '_') cleandata[0] = cleandata[0].replace('mounted on', 'mounted_on') # parse the data raw_output = jc.parsers.universal.sparse_table_parse(cleandata) if raw: return raw_output else: return process(raw_output)
[ "kellyjonbrazil@gmail.com" ]
kellyjonbrazil@gmail.com
75b7d13d54b027208ae7bf83b28a23721fbfcc21
d44c989d1082ec91ae420569f79e39105ec9adf0
/Convert Binary Number in a Linked List to Integer.py
d8732b80748c73d1c4539378955d8afbfe29849a
[]
no_license
hsinhuibiga/Nov
c5a79e265a6afcfd03f04e23914d3924129c6389
15b2f37f96ded183ab3507a95985900a9d5d3ddc
refs/heads/main
2023-01-14T13:11:02.568683
2020-11-22T13:40:36
2020-11-22T13:40:36
309,392,018
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
#Convert Binary Number in a Linked List to Integer # Definition for singly-linked list. # class ListNode(object): # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution(object): def getDecimalValue(self, head): """ :type head: ListNode :rtype: int """ binary = '' while head != None: binary += str(head.val) head = head.next return int(binary,2)
[ "noreply@github.com" ]
hsinhuibiga.noreply@github.com
36c519d580be12825f3bf43d17406404d77ab275
aba2dd3ed154e1307e3ffb360d22c400bc8e17ab
/bib2json.py
2688d16b53929bd3986a2b8509fc9d5acfecb38d
[ "MIT" ]
permissive
SujiKim6/rebiber
3938406df01e5aa61a9d9cf24bb74bd4fed82787
6617792dbfdb860d96f15027210381215c63685d
refs/heads/main
2023-02-21T08:22:52.610870
2021-01-26T09:41:06
2021-01-26T09:57:02
332,980,291
0
0
MIT
2021-01-26T05:19:34
2021-01-26T05:19:33
null
UTF-8
Python
false
false
1,802
py
import json import re import sys import bibtexparser import argparse from tqdm import tqdm def normalize_title(title_str): title_str = re.sub(r'[^a-zA-Z]',r'', title_str) return title_str.lower().replace(" ", "").strip() def load_bib_file(bibpath="acl.bib"): all_bib_entries = [] with open(bibpath) as f: bib_entry_buffer = [] for line in f.readlines(): # line = line.strip() bib_entry_buffer.append(line) if line == "}\n": all_bib_entries.append(bib_entry_buffer) bib_entry_buffer = [] return all_bib_entries def buil_json(all_bib_entries): all_bib_dict = {} num_expections = 0 for bib_entry in tqdm(all_bib_entries[:]): bib_entry_str = " ".join([line for line in bib_entry if "month" not in line.lower()]).lower() try: bib_entry_parsed = bibtexparser.loads(bib_entry_str) bib_key = normalize_title(bib_entry_parsed.entries[0]["title"]) all_bib_dict[bib_key] = bib_entry except Exception as e: print(bib_entry) print(e) num_expections += 1 return all_bib_dict if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_bib", default="data/acl.bib", type=str, help="The input bib file") parser.add_argument("-o", "--output_json", default="data/acl.json", type=str, help="The output bib file") args = parser.parse_args() all_bib_entries = load_bib_file(args.input_bib) all_bib_dict = buil_json(all_bib_entries) with open(args.output_json, "w") as f: json.dump(all_bib_dict, f, indent=2)
[ "yuchen.lin@usc.edu" ]
yuchen.lin@usc.edu
e0e468f23e653c4f37ed38f070b78741ba8bdf07
5ca4a0d91f5bd119e80478b5bd3d43ed30133a42
/film20/config/urls/pl.py
65a13447c224a832a15c19ca2748822deec504d0
[]
no_license
thuvh/filmmaster
1fc81377feef5a9e13f792b329ef90f840404ec5
dd6a2ee5a4951b2397170d5086c000169bf91350
refs/heads/master
2021-01-17T16:10:54.682908
2012-04-29T18:19:52
2012-04-29T18:19:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,941
py
#------------------------------------------------------------------------------- # Filmaster - a social web network and recommendation engine # Copyright (c) 2009 Filmaster (Borys Musielak, Adam Zielinski). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. #------------------------------------------------------------------------------- # Project from film20.config.templates import templates success = "sukces" error = "error" def full_url(key): try: from django.conf import settings DOMAIN = settings.DOMAIN FULL_DOMAIN = settings.FULL_DOMAIN except: DOMAIN = '' FULL_DOMAIN = '' return (FULL_DOMAIN or DOMAIN) + '/'+urls[key]+'/' urls = { ### LEGACY STUFF FOR COMPATIBILITY: FLM-1185 ### "BLOG_POST_OLD": "notka", "SHORT_REVIEW_OLD": "krotka-recenzja", ### PUBLIC ### "FIRST_TIME_INFO": "pierwsze-kroki", "FAQ": "faq", "MAIN": "", "ADMIN": "admin", "FILM": "film", "RATE_FILMS": "oceniaj-filmy", "RATE_FILMS_FAST_FORWARD": "oceniarka", "RATE_NEXT": "ocen-nastepny", "PERSON": "osoba", "SEARCH": "szukaj", "SEARCH_FILM": "szukaj-filmu", "SEARCH_PERSON": "szukaj-osoby", "BLOG": "blog", "ARTICLE": "artykul", "CHECKIN": "checkin", "ARTICLES":"artykuly", "ARTICLES_OLD":"notki", "PLANET": "planeta", "RECENT_ANSWERS": "odpowiedzi", "PLANET_FOLLOWED": "planeta/obserwowani", "POSTER": "plakat", # kokpit "DASHBOARD": "kokpit", # publiczne profile "SHOW_PROFILE": "profil", "LIST_PROFILES": "lista-profili", #TODO: is this required? "USER_ARTICLES": "artykuly-filmastera", #TODO: is this required? "FILMS": "filmy", "AGENDA": "agenda", # ogolne do wykorzystania w linkach "RATING": "ocena", "EDIT": "edytuj", "PREVIOUS": "poprzedni", "NEXT": "nastepny", "FEED": "feed", "FILMS_FOR_TAG": "filmy", "RANKING": "rankingi", "RATINGS": "oceny", "RECOMMENDATIONS": "rekomendacje", "COMPUTE": "przelicz", "TOP_USERS": "filmasterzy", "FOLLOWED": "obserwowani", "FOLLOWERS": "obserwujacy", "SIMILAR_USERS": "podobni-uzytkownicy", "SIMILAR_USERS_FOLLOWING": "podobni-uzytkownicy-obserwowani", "SIMILAR_USERS_FOLLOWED": "podobni-uzytkownicy-obserwujacy", # "COMPUTE_PROBABLE_SCORES": "wylicz-rekomendacje", "FILMBASKET": "koszyk", "OWNED": "kolekcja", "WISHLIST": "wishlista", "SHITLIST": "shitlista", "TAG": "tag", "SHOW_TAG_PAGE": "tag", "ADD_TO_BASKET": "dodaj-do-koszyka", "REGIONAL_INFO": "informacje-regionalne", "AJAX": "ajax", # strony statyczne (TODO: zastapic flatpages?) "TERMS": "regulamin", "PRIVACY": "prywatnosc", "LICENSE": "licencja", "CONTACT": "kontakt", "ABOUT": "redakcja", "COOPERATION": "wspolpraca", "BANNERS": "banery", "ADVERTISEMENT": "reklama", "AVATAR_HOWTO": "awatar-howto", "FORMATTING_POSTS": "formatowanie", ### PRIVATE ### # logowanie i rejestracja "ACCOUNT": "dashboard", "OPENID_ASSOCIATIONS": "openid/associations", "ASSIGN_FACEBOOK":"fb/assign_facebook", "EDIT_FACEBOOK":"fb/edit", "LOGIN": "konto/login", "LOGOUT": "konto/logout", "CHANGE_PASSWORD": "zmien-haslo", "RESET_PASSWORD": "konto/reset-hasla", "RESET_PASSWORD_CONFIRM": "konto/reset-hasla/potwierdzenie", "RESET_PASSWORD_COMPLETE": "konto/reset-hasla/koniec", "RESET_PASSWORD_DONE": "konto/reset-hasla/sukces", "REGISTRATION": "konto/rejestracja", "REGISTRATION_ACTIVATE": "konto/rejestracja/aktywacja", "REGISTRATION_COMPLETE": "konto/rejestracja/koniec", "ASSOCIATIONS": "edytuj-powiazane-serwisy", "OAUTH_LOGIN": "konto/oauth-login", "OAUTH_LOGIN_CB": "konto/oauth-login-cb", "OAUTH_NEW_USER": "konto/oauth/nowy", # friends and invitations "MANAGE_INVITATIONS": "konto/zaproszenia", "ACCEPT_INVITATION": "konto/akceptuj-zaproszenie", "REFUSE_INVITATION": "konto/odrzuc-zaproszenie", # old notifications - TODO: remove "NOTIFICATIONS": "konto/powiadomienia", "NOTIFICATION": "konto/powiadomienia/powiadomienie", "MARK_NOTIFICATIONS_AS_READ": "konto/powiadomienia/oznacz-jako-przeczytane", "PW": "pw", "PW_INBOX": "odebrane", "PW_OUTBOX": "wyslane", "PW_COMPOSE": "stworz", "PW_REPLY": "odpowiedz", "PW_VIEW": "zobacz", "PW_DELETE": "usun", "PW_CONV_DELETE": "usun-watek", "PW_CONV_VIEW": "zobacz-watek", "PW_UNDELETE": "przywroc", "PW_TRASH": "kosz", #export "EXPORT_RATINGS":"pobierz", # profiles "CREATE_PROFILE": "konto/stworz-profil", "EDIT_PROFILE": "konto/edytuj-profil", "EDIT_PROFILE_DONE": "konto/edytuj-profil/sukces", "EDIT_LOCATION": "edytuj-lokalizacje", "DELETE_PROFILE": "konto/usun-profil", "DELETE_PROFILE_DONE": "konto/usun-profil/sukces", "EDIT_AVATAR": "konto/edytuj-awatar", "CROP_AVATAR": "konto/wytnij-awatar", "DELETE_AVATAR": "konto/usun-awatar", # forum "FORUM": "forum", "FORUM_FILMASTER": "forum/forum-filmastera", "FORUM_HYDE_PARK": "forum/hyde-park", "EDIT_COMMENT": "edytuj-komentarz", # user activities "COMMENTS": "komentarze", "REVIEWS": "recenzje", "REVIEW": "recenzja", "SHORT_REVIEWS": "krotkie-recenzje", "SHORT_REVIEW": "krotka-recenzja", # default poster "DEFAULT_POSTER": "/static/img/default_poster.png", "DEFAULT_ACTOR": "/static/img/default_actor.png", #rss "RSS": "rss", # special events "SHOW_EVENT": "wydarzenia", "SHOW_FESTIVAL": "festiwal", "ORIGINAL_TITLE": "tytul-oryginalny", # contest "SHOW_GAME": "mecz", "SHOW_CONTEST": "plebiscyt", "CONTEST_VOTE_AJAX": "vote_ajax", # add films "ADD_FILMS":"dodaj-film", "EDIT_CAST":"edytuj-obsade", #add links "ADD_LINKS":"dodaj-link", "REMOVE_LINKS":"usun-link", "ADD_VIDEO":"dodaj-video", "LINKS":"linki", "LINK":"link", #nudge button "NUDGE":"szturchnij", #follow "FOLLOW":"obserwuj", #delete comment "DELETE_COMMENT":"usun-komentarz", #moderated photos "POSTER_ADD":"dodaj-plakat", "PHOTO_ADD":"dodaj-zdjecie", "MODERATED_PHOTOS": "plakaty-i-zdjecia", #moderated films "MODERATED_FILMS": "filmy", "MOVIES": "filmy", "GENRE": "gatunek", #mobile landing page "MOBILE":"mobile", #content moderation "MODERATION": "moderacja", #wall "WALL":"wall", #settings "SETTINGS": "ustawienia", "MANAGE_NOTIFICATIONS": "zarzadzaj-powiadomieniami", "IMPORT_RATINGS":"importuj-oceny", #dashboard "NEW_ARTICLE":"nowy-artykul", "EDIT_ARTICLE":"edytuj-artykul", "RATED_FILMS":"oceny", #showtimes "SHOWTIMES": "rekomendacje", "SCREENING": "seanse", "CINEMAS": "kina", "CINEMA": "kino", "CHANNEL": "kanal", "THEATERS": "kina", "THEATER": "kino", "TV": "tv", "TV_CHANNELS": "kanaly-tv", # applications "APPLICATIONS": "aplikacje", "APPLICATION": "aplikacja", "ADD_APPLICATION": "dodaj-aplikacje", "REMOVE_ACCESS_TOKEN": "usun-token", "REMOVE_APPLICATION": "usun-aplikacje", }
[ "email@ibrahimcesar.com" ]
email@ibrahimcesar.com
fc476732d5002a650fe826d5c6d7ec00bb625f4d
76de4fc4f00a04c8c9acc1e9e4a5fae12cf0c08a
/trunk/pyformex/examples/Isopar.py
09660af39e5a8ca12a1bdf071f0b7b4a4e9a1b05
[]
no_license
BackupTheBerlios/pyformex-svn
ec2361b1b9967918be65e892217a691a6f8b145d
f5404809095711334bbb938d9d119a69ad8fc260
refs/heads/master
2020-12-24T13:20:47.422165
2011-11-15T11:52:23
2011-11-15T11:52:23
40,749,266
0
0
null
null
null
null
UTF-8
Python
false
false
3,202
py
#!/usr/bin/env pyformex --gui # $Id$ ## ## This file is part of pyFormex 0.8.5 Sun Nov 6 17:27:05 CET 2011 ## pyFormex is a tool for generating, manipulating and transforming 3D ## geometrical models by sequences of mathematical operations. ## Home page: http://pyformex.org ## Project page: https://savannah.nongnu.org/projects/pyformex/ ## Copyright (C) Benedict Verhegghe (benedict.verhegghe@ugent.be) ## Distributed under the GNU General Public License version 3 or later. ## ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see http://www.gnu.org/licenses/. ## """Isopar level = 'normal' topics = ['geometry'] techniques = ['dialog', 'color','isopar'] """ from plugins import isopar import simple import elements wireframe() ttype = ask("Select type of transformation",['Cancel','1D','2D','3D']) if not ttype or ttype == 'Cancel': exit() tdim = int(ttype[0]) # create a unit quadratic grid in tdim dimensions x = Coords(simple.regularGrid([0.]*tdim, [1.]*tdim, [2]*tdim)).reshape(-1,3) x1 = Formex(x) x2 = x1.copy() # move a few points if tdim == 1: eltype = 'line3' x2[1] = x2[1].rot(-22.5) x2[2] = x2[2].rot(22.5) elif tdim == 2: eltype = 'quad9' x2[5] = x2[2].rot(-22.5) x2[8] = x2[2].rot(-45.) x2[7] = x2[2].rot(-67.5) x2[4] = x2[8] * 0.6 else: eltype = 'hex27' tol = 0.01 d = x2.distanceFromPoint(x2[0]) w = where((d > 0.5+tol) * (d < 1.0 - tol))[0] # avoid error messages during projection errh = seterr(all='ignore') x2[w] = x2.projectOnSphere(0.5)[w] w = where(d > 1.+tol)[0] x2[w] = x2.projectOnSphere(1.)[w] seterr(**errh) clear() message('This is the set of nodes in natural coordinates') draw(x1,color=blue) message('This is the set of nodes in cartesian coordinates') draw(x2,color=red) drawNumbers(x2,color=red) drawNumbers(x1) n = 8 stype = ask("Select type of structure",['Cancel','1D','2D','3D']) if stype == 'Cancel': exit() sdim = int(stype[0]) if sdim == 1: F = simple.line([0.,0.,0.],[1.,1.,0.],10) elif sdim == 2: F = simple.rectangle(1,1,1.,1.) else: ## v = array(elements.Hex8.vertices) ## f = array(elements.Hex8.faces[1]) ## F = Formex(v[f]) F = elements.Hex8.toFormex() if sdim > 1: for i in range(sdim): F = F.replic(n,1.,dir=i) if sdim < tdim: F = F.trl(2,0.5) clear() message('This is the initial Formex') FA=draw(F) sz = F.sizes() if sdim < tdim: sz[sdim:tdim] = 2. x1 = x1.scale(sz) x2 = x2.scale(sz) G=F.isopar(eltype,x2.points(),x1.points()) G.setProp(1) message('This is the transformed Formex') draw(G) pause() undraw(FA) # End
[ "bverheg@8d6f1305-3bde-0310-9e88-884b4813ce35" ]
bverheg@8d6f1305-3bde-0310-9e88-884b4813ce35
5d7c6cb5d86f6dfeaaa32c199c33c6b3c2bb6f23
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_7/102.py
998a2e0917fabf1d52113661b10a59105356d584
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
862
py
import sys def calc_trees(): """Read data from stdin and calculate all trees. Returns a list of coordinates (tuples of ints). """ n,A,B,C,D,x,y,M = (int(e) for e in raw_input().split()) trees = [(x, y)] for i in xrange(n - 1): x = (A * x + B) % M y = (C * y + D) % M trees.append((x, y)) return trees N = input() for i in xrange(N): result = 0 trees = calc_trees() i1 = 0 for t1 in trees: i2 = i1 + 1 for t2 in trees[i1 + 1:]: i3 = i2 + 1 for t3 in trees[i2 + 1:]: x = (t1[0] + t2[0] + t3[0]) / 3.0 y = (t1[1] + t2[1] + t3[1]) / 3.0 if (x == int(x) and y == int(y)): result += 1 i3 += 1 i2 += 1 i1 += 1 print "Case #%d: %d" % (i + 1, result)
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
099e1e04e14bdbed2f9c2d4cd79c06a2e5cd9ca8
33e2c0e11a6fbcc687750dbdcd2e063acf5b931b
/setup.py
17a2541858522e1e1f5d88fa0f7dd8566e9ffe9f
[ "MIT" ]
permissive
uk-gov-mirror/nhsengland.ckanext-introjs
f1cb640819f09cdc6d4ecd82818a1e8b4b2653be
052d20a4e93cf824a1b28e7ea2e04c385615b40d
refs/heads/master
2021-05-28T17:21:31.739884
2015-02-24T14:44:56
2015-02-24T14:44:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
888
py
from setuptools import setup, find_packages import sys, os version = '0.1' setup( name='ckanext-introjs', version=version, description="Adds intro.js to CKAN so users can follow a guided tour of the UI", long_description=''' ''', classifiers=[], # Get strings from http://pypi.python.org/pypi?%3Aaction=list_classifiers keywords='', author='Ano Nymous', author_email='ano.nymous@england.nhs.uk', url='https://usablica.github.io/intro.js/', license='MIT', packages=find_packages(exclude=['ez_setup', 'examples', 'tests']), namespace_packages=['ckanext', 'ckanext.introjs'], include_package_data=True, zip_safe=False, install_requires=[ # -*- Extra requirements: -*- ], entry_points=''' [ckan.plugins] # Add plugins here, e.g. # myplugin=ckanext.introjs.plugin:PluginClass ''', )
[ "ntoll@ntoll.org" ]
ntoll@ntoll.org
84f14ff4534964c26f65d38a7312090e521edd05
818fbf7e5ad465d81b5841c3b1f3222dec3877e3
/spotify/urls.py
73fff59963e36a7d29247497d51fb93a62580135
[]
no_license
anonshubh/music-controller
29d2c0be0265588e583ec7cde9578bc59e214d4a
c71329c691f43dff994ef3f69aa78dc438db047b
refs/heads/main
2023-02-13T22:30:24.102833
2021-01-08T13:11:45
2021-01-08T13:11:45
320,020,376
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
from django.urls import path from . import views urlpatterns=[ path('get-auth-url/',views.AuthURL.as_view()), path('redirect/',views.spotify_callback), path('is-authenticated/',views.IsAuthenticated.as_view()), path('current-song/',views.CurrentSong.as_view()), path('play-song/',views.PlaySong.as_view()), path('pause-song/',views.PauseSong.as_view()), ]
[ "shubhpathak07@gmail.com" ]
shubhpathak07@gmail.com
ec6f71dea44bb33840b8a9d2801b571e4dff1aa1
d2332604fc80b6d622a263b2af644425a7e703de
/fast-track/strings/4_valid_anagram.py
4b6cd138e04b2cd36803e6c0e4c3755c99e2ed8a
[]
no_license
abhijitdey/coding-practice
b3b83a237c1930266768ce38500d6812fc31c529
6ae2a565042bf1d6633cd98ed774e4a77f492cc8
refs/heads/main
2023-08-14T23:31:06.090613
2021-10-18T21:35:56
2021-10-18T21:35:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
598
py
""" Given two strings s and t, return true if t is an anagram of s, and false otherwise. """ def get_char_counts(string): char_counts = dict() for char in string: if char in char_counts: char_counts[char] += 1 else: char_counts[char] = 1 return char_counts def check_anagram(s, t): if len(s) != len(t) or not s or not t: return False s_counts = get_char_counts(s) t_counts = get_char_counts(t) for char, count in s_counts.items(): if count != t_counts.get(char, 0): return False return True
[ "ashiz2013@gmail.com" ]
ashiz2013@gmail.com
892237619b675d7d223b9efee8985aa62256e138
ad13583673551857615498b9605d9dcab63bb2c3
/output/models/ms_data/identity_constraint/id_l086_xsd/__init__.py
1aefc80d5eb9fa2d66622427e4aa78c72449dfad
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
155
py
from output.models.ms_data.identity_constraint.id_l086_xsd.id_l086 import ( Root, T, Ttype, ) __all__ = [ "Root", "T", "Ttype", ]
[ "tsoulloftas@gmail.com" ]
tsoulloftas@gmail.com
0b70531014e35ca99bb424d18b4ea7de3b40d224
164ffe077dde59373ad9fadcfd727f279a1cfe93
/jni_build/jni/include/tensorflow/examples/how_tos/reading_data/convert_to_records.py
7794c3f6ea3625880921d442f02c5e4c2c00e81e
[]
no_license
Basofe/Community_Based_Repository_Traffic_Signs
524a4cfc77dc6ed3b279556e4201ba63ee8cf6bd
a20da440a21ed5160baae4d283c5880b8ba8e83c
refs/heads/master
2021-01-22T21:17:37.392145
2017-09-28T21:35:58
2017-09-28T21:35:58
85,407,197
0
2
null
null
null
null
UTF-8
Python
false
false
3,263
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts MNIST data to TFRecords file format with Example protos.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from tensorflow.contrib.learn.python.learn.datasets import mnist SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' # MNIST filenames TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' tf.app.flags.DEFINE_string('directory', '/tmp/data', 'Directory to download data files and write the ' 'converted result') tf.app.flags.DEFINE_integer('validation_size', 5000, 'Number of examples to separate from the training ' 'data for the validation set.') FLAGS = tf.app.flags.FLAGS def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def convert_to(data_set, name): images = data_set.images labels = data_set.labels num_examples = data_set.num_examples if images.shape[0] != num_examples: raise ValueError('Images size %d does not match label size %d.' % (images.shape[0], num_examples)) rows = images.shape[1] cols = images.shape[2] depth = images.shape[3] filename = os.path.join(FLAGS.directory, name + '.tfrecords') print('Writing', filename) writer = tf.python_io.TFRecordWriter(filename) for index in range(num_examples): image_raw = images[index].tostring() example = tf.train.Example(features=tf.train.Features(feature={ 'height': _int64_feature(rows), 'width': _int64_feature(cols), 'depth': _int64_feature(depth), 'label': _int64_feature(int(labels[index])), 'image_raw': _bytes_feature(image_raw)})) writer.write(example.SerializeToString()) writer.close() def main(argv): # Get the data. data_sets = mnist.read_data_sets(FLAGS.directory, dtype=tf.uint8, reshape=False) # Convert to Examples and write the result to TFRecords. convert_to(data_sets.train, 'train') convert_to(data_sets.validation, 'validation') convert_to(data_sets.test, 'test') if __name__ == '__main__': tf.app.run()
[ "helder_m_p_novais@hotmail.com" ]
helder_m_p_novais@hotmail.com
6a09bc215bc33dd4733f9d3f862ee3a2bebc8541
412e327f41ec7c7a8e9389740bc849ebe173059e
/python/finite_element_model/add_node_set.py
e1101e9c279d72fe8f02ff56b4929729b7e1237c
[]
no_license
erolsson/railway_ballast
2b617b91ae720ef86cd1e5c89b08a34b92996fd5
cfc86c22cc5e2f857c24ba1a01c2541edf839e3b
refs/heads/master
2023-07-25T16:54:10.529328
2023-07-23T12:49:32
2023-07-23T12:49:32
186,101,940
0
0
null
null
null
null
UTF-8
Python
false
false
1,475
py
import os import odbAccess def add_node_set_to_odb(odb_file_name, node_set_name, x_min=-1e99, x_max=1e99, y_min=-1e99, y_max=1e99, z_min=-1e99, z_max=1e99, instance_name=None): odb = odbAccess.openOdb(odb_file_name, readOnly=False) if instance_name is None: instance_name = odb.rootAssembly.instances.keys()[0] nodes = odb.rootAssembly.instances[instance_name].nodes set_node_labels = [] for node in nodes: x, y, z = node.coordinates if x_min < x < x_max and y_min < y < y_max and z_min < z < z_max: set_node_labels.append(node.label) odb.rootAssembly.instances[instance_name].NodeSetFromNodeLabels(name=node_set_name, nodeLabels=set_node_labels) odb.save() odb.close() if __name__ == '__main__': odb_directory = os.path.expanduser('~/railway_ballast/odbs/') add_node_set_to_odb(odb_directory + 'embankment_sleepers_low_17_5t.odb', 'ballast_bottom_nodes', y_min=7-1e-3, y_max=7+1e-3) add_node_set_to_odb(odb_directory + 'embankment_sleepers_high_17_5t.odb', 'ballast_bottom_nodes', y_min=7-1e-3, y_max=7+1e-3) add_node_set_to_odb(odb_directory + 'embankment_slab_low_17_5t.odb', 'ballast_bottom_nodes', y_min=7 - 1e-3, y_max=7 + 1e-3) add_node_set_to_odb(odb_directory + 'embankment_slab_high_17_5t.odb', 'ballast_bottom_nodes', y_min=7 - 1e-3, y_max=7 + 1e-3)
[ "erolsson@kth.se" ]
erolsson@kth.se
dc249fd778ca98ecbc6b3b862b7660fbb8310715
a4ebfeefa95e97d60f9ad2fe36e75e59e3b50769
/Trial_Aligned_Analysis/Trial_Aligned_Utils.py
7aa0ed89d59bb10ef4bd5bd2df5ea1bdb13b351b
[]
no_license
matt-j-harvey/Widefield_Analysis
9f1566ac26d4164d988ab9a43d953f228b15746d
e03037e909ce986d8221113e1bbf5d46ddd7ad70
refs/heads/master
2023-05-01T12:30:27.064246
2023-04-24T11:23:37
2023-04-24T11:23:37
252,776,416
0
0
null
null
null
null
UTF-8
Python
false
false
3,526
py
import os import h5py from tqdm import tqdm import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt import pandas as pd import tables from datetime import datetime from Widefield_Utils import widefield_utils def get_session_averages(activity_dataset, metadata_dataset): # Load Session List session_list = metadata_dataset[:, 2] unique_sessions = np.unique(session_list) condition_1_session_average_list = [] condition_2_session_average_list = [] for session in unique_sessions: session_indicies = np.where(session_list == session)[0] session_trials = activity_dataset[session_indicies] session_metadata = metadata_dataset[session_indicies] [condition_1_trials, condition_2_trials] = split_trials_by_condition(session_trials, session_metadata) condition_1_mean = np.mean(condition_1_trials, axis=0) condition_2_mean = np.mean(condition_2_trials, axis=0) condition_1_session_average_list.append(condition_1_mean) condition_2_session_average_list.append(condition_2_mean) return condition_1_session_average_list, condition_2_session_average_list def get_mouse_averages(activity_dataset, metadata_dataset): # Load Session List mouse_list = metadata_dataset[:, 1] unique_mice = np.unique(mouse_list) condition_1_mouse_average_list = [] condition_2_mouse_average_list = [] for mouse in unique_mice: mouse_indicies = np.where(mouse_list == mouse)[0] mouse_activity_data = activity_dataset[mouse_indicies] mouse_metadata = metadata_dataset[mouse_indicies] # Get Session Averages condition_1_session_averages, condition_2_session_averages = get_session_averages(mouse_activity_data, mouse_metadata) # Get Mouse Averages condition_1_mouse_average = np.mean(condition_1_session_averages, axis=0) condition_2_mouse_average = np.mean(condition_2_session_averages, axis=0) # Add To List condition_1_mouse_average_list.append(condition_1_mouse_average) condition_2_mouse_average_list.append(condition_2_mouse_average) return condition_1_mouse_average_list, condition_2_mouse_average_list def split_trials_by_condition(activity_dataset, metata_dataset): condition_list = metata_dataset[:, 3] unique_conditions = np.unique(condition_list) combined_activity_list = [] for condition in unique_conditions: condition_indicies = np.where(condition_list == condition)[0] combined_activity_list.append(activity_dataset[condition_indicies]) return combined_activity_list def get_mouse_session_averages(activity_dataset, metadata_dataset): # Load Session List mouse_list = metadata_dataset[:, 1] unique_mice = np.unique(mouse_list) condition_1_mouse_average_list = [] condition_2_mouse_average_list = [] for mouse in unique_mice: mouse_indicies = np.where(mouse_list == mouse)[0] mouse_activity_data = activity_dataset[mouse_indicies] mouse_metadata = metadata_dataset[mouse_indicies] # Get Session Averages condition_1_session_averages, condition_2_session_averages = get_session_averages(mouse_activity_data, mouse_metadata) # Add To List condition_1_mouse_average_list.append(condition_1_session_averages) condition_2_mouse_average_list.append(condition_2_session_averages) return condition_1_mouse_average_list, condition_2_mouse_average_list
[ "matthew.jc.harvey@gmail.com" ]
matthew.jc.harvey@gmail.com
4681259f82617ba5a09860ebcd688d94a01d71ed
9d6218ca6c75a0e1ec1674fe410100d93d6852cb
/app/supervisor/venvs/supervisor/bin/echo_supervisord_conf
6de0696c980aed451f221b8ebe2d45ed7f743467
[]
no_license
bopopescu/uceo-2015
164694268969dd884904f51b00bd3dc034695be8
5abcbfc4ff32bca6ca237d71cbb68fab4b9f9f91
refs/heads/master
2021-05-28T21:12:05.120484
2015-08-05T06:46:36
2015-08-05T06:46:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
370
#!/edx/app/supervisor/venvs/supervisor/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'supervisor==3.1.3','console_scripts','echo_supervisord_conf' __requires__ = 'supervisor==3.1.3' import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.exit( load_entry_point('supervisor==3.1.3', 'console_scripts', 'echo_supervisord_conf')() )
[ "root@uceociputra.com" ]
root@uceociputra.com
edd05aa7a6d0b2519f15498c48e760666baaf731
e9c7f991c319efe0b1831e8e8360e13c3e177555
/Python_do_zero_Guanabara/06_Metodos/desafio/100_desafio.py
ed4107d33cd4045e831afb18d8b04a91da717e45
[ "MIT" ]
permissive
HenriqueSOliver/Projetos_Python
a3c4cabc61442221da968df55a463d9ad5865fcc
f18c5a343ad1b746a12bd372298b2debe9bc65ec
refs/heads/main
2023-06-05T03:11:42.879988
2021-06-17T22:26:03
2021-06-17T22:26:03
327,629,919
0
0
null
null
null
null
UTF-8
Python
false
false
544
py
from random import randint from time import sleep def sortLista(lista): print('Sorteando 5 valores da lista: ', end='') for c in range (0, 5): n = randint(1,100) lista.append(n) print(f' {n}', end=' - ', flush=True) sleep(0.5) print('PRONTO') def somaP(lista): soma = 0 for valor in lista: if valor % 2 == 0: soma += valor print(f'Somando os valores pares de {lista}, temos {soma}') #programa principal números = [] sortLista(números) somaP(números)
[ "HenriqueSOliver85@gmail.com" ]
HenriqueSOliver85@gmail.com
2e1c49c9ad0740b75147789a0c0d4b5d54c026b1
62e58c051128baef9452e7e0eb0b5a83367add26
/edifact/D00A/JAPRESD00AUN.py
4fb33d38de066ce2be86ab6db137a31ba760f7d6
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
2,391
py
#Generated by bots open source edi translator from UN-docs. from bots.botsconfig import * from edifact import syntax from recordsD00AUN import recorddefs structure = [ {ID: 'UNH', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGM', MIN: 1, MAX: 1}, {ID: 'DTM', MIN: 1, MAX: 2}, {ID: 'PNA', MIN: 1, MAX: 99, LEVEL: [ {ID: 'ADR', MIN: 0, MAX: 1}, {ID: 'LOC', MIN: 0, MAX: 5}, {ID: 'DTM', MIN: 0, MAX: 5}, {ID: 'CTA', MIN: 0, MAX: 5, LEVEL: [ {ID: 'COM', MIN: 0, MAX: 5}, ]}, ]}, {ID: 'RFF', MIN: 0, MAX: 5, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 5}, ]}, {ID: 'GIS', MIN: 0, MAX: 5, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, ]}, {ID: 'UNS', MIN: 1, MAX: 1}, {ID: 'RFF', MIN: 1, MAX: 999, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 5}, {ID: 'FTX', MIN: 0, MAX: 5}, {ID: 'PNA', MIN: 1, MAX: 1, LEVEL: [ {ID: 'ADR', MIN: 0, MAX: 5}, {ID: 'DTM', MIN: 0, MAX: 1}, {ID: 'LOC', MIN: 0, MAX: 5}, {ID: 'NAT', MIN: 0, MAX: 9}, {ID: 'PDI', MIN: 0, MAX: 1}, {ID: 'DOC', MIN: 0, MAX: 9}, ]}, {ID: 'RFF', MIN: 1, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 5}, ]}, {ID: 'GIS', MIN: 1, MAX: 5, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, ]}, {ID: 'EMP', MIN: 0, MAX: 5, LEVEL: [ {ID: 'LOC', MIN: 0, MAX: 1}, {ID: 'GIS', MIN: 0, MAX: 5, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, ]}, {ID: 'ATT', MIN: 0, MAX: 20, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, {ID: 'PTY', MIN: 0, MAX: 1}, ]}, {ID: 'LAN', MIN: 0, MAX: 10, LEVEL: [ {ID: 'GIS', MIN: 0, MAX: 1}, ]}, ]}, {ID: 'SAL', MIN: 0, MAX: 1, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 2}, {ID: 'ATT', MIN: 0, MAX: 10, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, ]}, {ID: 'GIS', MIN: 0, MAX: 2, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, ]}, {ID: 'MOA', MIN: 0, MAX: 5, LEVEL: [ {ID: 'RNG', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 1}, ]}, ]}, ]}, {ID: 'UNT', MIN: 1, MAX: 1}, ]}, ]
[ "jason.capriotti@gmail.com" ]
jason.capriotti@gmail.com
2a99a7db473372aeeb7fa4a6ffac6b7e5ed25760
5058401352fd2b80bf33bd4a0c0acc77b0e05231
/python/makeexec/makeexec.py
a4205f5d195154aaa03e44e18c1d69e964d28ad9
[]
no_license
pgl/mcandre
3b81ee64bf10ccaf02b9a1d44ed73e20cbcad4b6
81055895d872e2f93cd055f5a832c6d89848e3a3
refs/heads/master
2021-01-24T20:25:24.672765
2013-10-24T09:06:25
2013-10-24T09:06:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,189
py
#!/usr/bin/env python """Properly shebang and mark a file as executable""" __author__ = "Andrew Pennebaker (andrew.pennebaker@gmail.com)" __date__ = "3 Apr 2006" __copyright__ = "Copyright 2006 Andrew Pennebaker" import sys import getopt INTERPRETERS = { "py":"#!/usr/bin/env python", "pl":"#!/usr/bin/env perl", "pm":"#!/usr/bin/env perl", "lua":"#!/usr/bin/env lua", "sh":"#!/bin/sh", "rb":"#!/usr/bin/env ruby" } def update(): """Update file""" global INTERPRETERS f = open("paths.conf", "r") options = ("".join(f.readlines())).split("\n") INTERPRETERS = {} for option in options: key, value = option.split(":") INTERPRETERS[key] = value def get_extension(filename): """Get a file's extension""" return filename[filename.rindex(".")+1:] def makeexec(filename, manual = None): """Make a file properly executable""" auto = None if manual: auto = manual else: try: auto = INTERPRETERS[get_extension(filename)] except KeyError: raise Exception("Cannot guess interpreter. Specify manual path.") f = None try: f = open(filename, "r") except IOError: raise Exception("Error reading %s" % (filename)) lines = ("".join(f.readlines())).split("\n") f.close() if lines[0] != auto: try: f = open(filename, "w") except IOError: raise Exception("Error writing to %s" % (filename)) f.write("%s\n\n" % (auto)) for line in lines: f.write("%s\n" % (line)) f.close() def usage(): """Print usage message""" print "Usage: %s [options] <file1> <file2> <file3> <...>" % (sys.argv[0]) print "\n--manual <interpreter path>" print "--help (usage)" sys.exit() def main(): """CLI""" system_args = sys.argv[1:] # ignore program name manual = None optlist = [] args = [] try: optlist, args = getopt.getopt(system_args, "", ["manual=", "help"]) except getopt.GetoptError: usage() if len(args) < 1: usage() for option, value in optlist: if option == "--help": usage() elif option == "--manual": manual = value for fn in args: makeexec(fn, manual) if __name__ == "__main__": main() update()
[ "andrew.pennebaker@gmail.com" ]
andrew.pennebaker@gmail.com
369600eb04fb78121977a41f64c63cab8ecd8243
6fa0d5d3b61fbce01fad5a7dd50258c09298ee00
/Algorithm/BOJ/1051.py
267eb1c6bd32d770b9a4e55572968cf549d5ad9d
[]
no_license
athletejuan/TIL
c8e6bd9f7e2c6f999dbac759adcdb6b2959de384
16b854928af2f27d91ba140ebc1aec0007e5eb04
refs/heads/master
2023-02-19T13:59:06.495110
2022-03-23T15:08:04
2022-03-23T15:08:04
188,750,527
1
0
null
2023-02-15T22:54:50
2019-05-27T01:27:09
Python
UTF-8
Python
false
false
1,216
py
N,M = map(int, input().split()) base = [input() for _ in range(N)] def rectangular(l): while l: for i in range(M-l): for j in range(N-l): if base[j][i] == base[j][i+l] == base[j+l][i] == base[j+l][i+l]: return (l+1)**2 return rectangular(l-1) return 1 l = N-1 if N < M else M-1 print(rectangular(l)) # 1st try # breaker = False # if N < M: # for i in range(N-1): # for j in range(i+1): # for k in range(M-N+i+1): # if r[j][k] == r[j][k+N-1-i] == r[j+N-1-i][k] == r[j+N-1-i][k+N-1-i]: # print((N-i)**2) # breaker = True # break # if breaker: # break # if breaker: # break # else: # for i in range(M-1): # for j in range(i+1): # for k in range(N-M+i+1): # if r[k][j] == r[k][j+M-1-i] == r[k+M-1-i][j] == r[k+M-1-i][j+M-1-i]: # print((M-i)**2) # breaker = True # break # if breaker: # break # if breaker: # break # if not breaker: # print(1)
[ "vanillasky84.0627@gmail.com" ]
vanillasky84.0627@gmail.com
44bb08d1eb1cf06afe26eafcbb135c4b3e59f333
e31d6c6c74a71daf27d618de4debf59e8cb9f188
/gluon/losses.py
22f050cb0f61e493be60803078e9ba0ce4e905eb
[ "MIT" ]
permissive
vlomonaco/imgclsmob
574ebfbfe4be7a11c8742f34261bc4e7cc1f30be
d0d1c49a848ab146213ef4cbd37239799d0102d8
refs/heads/master
2022-04-18T16:03:11.361053
2020-04-14T06:17:36
2020-04-14T06:17:36
255,555,032
0
1
MIT
2020-04-14T08:39:59
2020-04-14T08:39:58
null
UTF-8
Python
false
false
5,009
py
""" Loss functions. """ __all__ = ['SegSoftmaxCrossEntropyLoss', 'MixSoftmaxCrossEntropyLoss'] from mxnet.gluon.loss import Loss, _reshape_like, _apply_weighting class SegSoftmaxCrossEntropyLoss(Loss): """ SoftmaxCrossEntropyLoss with ignore labels (for segmentation task). Parameters ---------- axis : int, default -1 The axis to sum over when computing softmax and entropy. sparse_label : bool, default True Whether label is an integer array instead of probability distribution. from_logits : bool, default False Whether input is a log probability (usually from log_softmax) instead of unnormalized numbers. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. ignore_label : int, default -1 The label to ignore. size_average : bool, default False Whether to re-scale loss with regard to ignored labels. """ def __init__(self, sparse_label=True, batch_axis=0, ignore_label=-1, size_average=True, **kwargs): super(SegSoftmaxCrossEntropyLoss, self).__init__(None, batch_axis, **kwargs) self._sparse_label = sparse_label self._ignore_label = ignore_label self._size_average = size_average def hybrid_forward(self, F, pred, label): """ Compute loss. """ softmaxout = F.SoftmaxOutput( pred, label.astype(pred.dtype), ignore_label=self._ignore_label, multi_output=self._sparse_label, use_ignore=True, normalization=("valid" if self._size_average else "null")) if self._sparse_label: loss = -F.pick(F.log(softmaxout), label, axis=1, keepdims=True) else: label = _reshape_like(F, label, pred) loss = -F.sum(F.log(softmaxout) * label, axis=-1, keepdims=True) loss = F.where(label.expand_dims(axis=1) == self._ignore_label, F.zeros_like(loss), loss) return F.mean(loss, axis=self._batch_axis, exclude=True) class MixSoftmaxCrossEntropyLoss(SegSoftmaxCrossEntropyLoss): """ SegSoftmaxCrossEntropyLoss with auxiliary loss support. Parameters ---------- aux : bool, default True Whether to use auxiliary loss. aux_weight : float, default 0.2 The weight for aux loss. ignore_label : int, default -1 The label to ignore. """ def __init__(self, aux=True, mixup=False, aux_weight=0.2, ignore_label=-1, **kwargs): super(MixSoftmaxCrossEntropyLoss, self).__init__(ignore_label=ignore_label, **kwargs) self.aux = aux self.mixup = mixup self.aux_weight = aux_weight def _aux_forward(self, F, pred1, pred2, label, **kwargs): """ Compute loss including auxiliary output. """ loss1 = super(MixSoftmaxCrossEntropyLoss, self).hybrid_forward(F, pred1, label, **kwargs) loss2 = super(MixSoftmaxCrossEntropyLoss, self). hybrid_forward(F, pred2, label, **kwargs) return loss1 + self.aux_weight * loss2 def _aux_mixup_forward(self, F, pred1, pred2, label1, label2, lam): """ Compute loss including auxiliary output. """ loss1 = self._mixup_forward(F, pred1, label1, label2, lam) loss2 = self._mixup_forward(F, pred2, label1, label2, lam) return loss1 + self.aux_weight * loss2 def _mixup_forward(self, F, pred, label1, label2, lam, sample_weight=None): if not self._from_logits: pred = F.log_softmax(pred, self._axis) if self._sparse_label: loss1 = -F.pick(pred, label1, axis=self._axis, keepdims=True) loss2 = -F.pick(pred, label2, axis=self._axis, keepdims=True) loss = lam * loss1 + (1 - lam) * loss2 else: label1 = _reshape_like(F, label1, pred) label2 = _reshape_like(F, label2, pred) loss1 = -F.sum(pred * label1, axis=self._axis, keepdims=True) loss2 = -F.sum(pred * label2, axis=self._axis, keepdims=True) loss = lam * loss1 + (1 - lam) * loss2 loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) def hybrid_forward(self, F, preds, label, **kwargs): """ Compute loss. """ if self.aux: if self.mixup: return self._aux_mixup_forward(F, *preds, label, **kwargs) else: return self._aux_forward(F, *preds, label, **kwargs) else: if self.mixup: return self._mixup_forward(F, *preds, label, **kwargs) else: return super(MixSoftmaxCrossEntropyLoss, self).hybrid_forward(F, *preds, label, **kwargs)
[ "osemery@gmail.com" ]
osemery@gmail.com
830510183c1a21c8df0759aa9047cb4d65f415a3
639c1f8c8bec57cb49665142ae2985d50da8c757
/mysite/admin.py
5bf0c8b4754467c15524a98be087b8fd1762af6d
[]
no_license
info3g/hospitalevent
4c7d66d3af5b1e0e3f65cdd375b99324042f7c9b
fdd17bd7ae0828bd5bbdcf8fc61689f5485a571f
refs/heads/master
2022-11-05T12:47:23.700584
2019-04-23T05:51:05
2019-04-23T05:51:05
166,350,181
0
1
null
2022-10-28T12:29:33
2019-01-18T05:39:27
Python
UTF-8
Python
false
false
464
py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(promisAnswers) admin.site.register(diseases) admin.site.register(symptoms) admin.site.register(treatments) admin.site.register(userProfile) admin.site.register(userProfileSymptom) admin.site.register(userProfileSymptomUpdate) admin.site.register(userProfileTreatment) admin.site.register(message) admin.site.register(event) admin.site.register(promisquestions)
[ "infothreeg@gmail.com" ]
infothreeg@gmail.com
3b64b90411be6f00cfcba8c6d834c3c044629f05
8bb4a472344fda15985ac322d14e8f4ad79c7553
/Python3-Core/src/test/prompto/runtime/o/TestFilter.py
2b491c5cd234908a06c3b10241185209545c0ad8
[]
no_license
prompto/prompto-python3
c6b356f5af30c6826730ba7f2ad869f341983a2d
64bd3d97d4702cc912097d41d961f7ab3fd82bee
refs/heads/master
2022-12-24T12:33:16.251468
2022-11-27T17:37:56
2022-11-27T17:37:56
32,623,633
4
0
null
2019-05-04T11:06:05
2015-03-21T07:17:25
Python
UTF-8
Python
false
false
550
py
from prompto.parser.o.BaseOParserTest import BaseOParserTest from prompto.runtime.utils.Out import Out class TestFilter(BaseOParserTest): def setUp(self): super(type(self), self).setUp() Out.init() def tearDown(self): Out.restore() def testFilterFromIterable(self): self.checkOutput("filter/filterFromIterable.poc") def testFilterFromList(self): self.checkOutput("filter/filterFromList.poc") def testFilterFromSet(self): self.checkOutput("filter/filterFromSet.poc")
[ "eric.vergnaud@wanadoo.fr" ]
eric.vergnaud@wanadoo.fr
8a87d3c15006f967d5b0d48dbd228929680398d2
1a23cc660649efe857808fef96740b4046f14713
/mysite/views.py
201c61bd6daca2e61d1d912d5faaef4ddd4cd0ba
[]
no_license
itd/djtest
b1df94b0651bf94582778338d472d42e583c1497
4903d0624892501ca3a361ce2feca18c12d8d082
refs/heads/master
2021-01-10T10:24:08.491299
2015-12-10T13:55:27
2015-12-10T13:55:27
47,764,800
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
from django.shortcuts import render from django.http import HttpResponse # Create your views here. def index(request): return HttpResponse("Hello world. Polls index.")
[ "kurt@tool.net" ]
kurt@tool.net
d0ac59455b0338b38c3c6fb28dd4f59a9259b261
6eb35cb8d53ad226de2a6f78e16cb665644fbbdf
/orca/topology/alerts/matcher.py
b842957d8317f0f69e8a4cdeb3fccd3a67d98a4b
[ "Apache-2.0" ]
permissive
openrca/orca
631fbc55f72d7dd01563ebc784a259bf0fa75d22
3b3ddcb2c14cc550c586f64eb6ca01e827fbc451
refs/heads/master
2023-05-30T22:38:55.431661
2022-09-11T09:33:24
2022-09-11T09:33:24
218,142,874
88
18
Apache-2.0
2023-05-01T21:16:56
2019-10-28T20:51:10
Python
UTF-8
Python
false
false
1,211
py
# Copyright 2020 OpenRCA Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from orca.topology import matcher class Matcher(matcher.Matcher): """Base class for Alert matchers.""" class AlertToSourceMatcher(Matcher): """Generic matcher for links between Alert and source objects.""" def are_linked(self, alert, obj): source_mapping = alert.properties.source_mapping if not source_mapping.origin == obj.origin: return False if not source_mapping.kind == obj.kind: return False mapping_items = source_mapping.properties.items() obj_items = obj.properties.items() return all(item in obj_items for item in mapping_items)
[ "zurkowski.bartosz@gmail.com" ]
zurkowski.bartosz@gmail.com
7909f7285c70e1cd8f35d44e1e0df1567e7c7104
d4a7ed22a20599c2f12a550b782327eea312cdc1
/doc/src/tutorial/src-odespy/osc2.py
de868146836989337530b80f18b4bb76a3852882
[]
no_license
rothnic/odespy
dcfca8593d738604fc7b6b66fbe8083c7358fc5c
dd50508030ab61047ca885bf0e842f1ad4ef38f4
refs/heads/master
2021-01-15T10:51:19.854871
2015-05-02T03:51:30
2015-05-02T03:51:30
35,228,290
1
0
null
2015-05-07T15:33:52
2015-05-07T15:33:52
null
UTF-8
Python
false
false
1,357
py
"""As osc1.py, but testing several solvers and setting sin(theta) to theta.""" from math import pi, sqrt class Problem: def __init__(self, c, Theta): self.c, self.Theta = float(c), float(Theta) self.freq = sqrt(c) self.period = 2*pi/self.freq def f(self, u, t): theta, omega = u; c = self.c return [omega, -c*theta] problem = Problem(c=1, Theta=pi/4) import odespy solvers = [ odespy.ThetaRule(problem.f, theta=0), # Forward Euler odespy.ThetaRule(problem.f, theta=0.5), # Midpoint method odespy.ThetaRule(problem.f, theta=1), # Backward Euler odespy.RK4(problem.f), odespy.MidpointIter(problem.f, max_iter=2, eps_iter=0.01), odespy.LeapfrogFiltered(problem.f), ] N_per_period = 20 T = 3*problem.period # final time import numpy import matplotlib.pyplot as plt legends = [] for solver in solvers: solver_name = str(solver) # short description of solver print solver_name solver.set_initial_condition([problem.Theta, 0]) N = N_per_period*problem.period time_points = numpy.linspace(0, T, N+1) u, t = solver.solve(time_points) theta = u[:,0] legends.append(solver_name) plt.plot(t, theta) plt.hold('on') plt.legend(legends) plotfile = __file__[:-3] plt.savefig(plotfile + '.png'); plt.savefig(plotfile + '.pdf') plt.show()
[ "hpl@simula.no" ]
hpl@simula.no
35c4bdebc781d3d87cdc25b59b881a5ba5da2bed
a438748ac89d53b19e7f4130529906896f059b25
/Композиция.py
8cc2c2abe97d5c1760e95ec575d7544e5ac3e6d1
[]
no_license
Alexfordrop/Basics
90ead9294727a823eb044e5f2f69d8f29133d150
eda400424b2c72bd5e01a6c7cb14ad7ae29477d4
refs/heads/master
2023-06-08T16:42:26.704163
2021-06-27T20:46:27
2021-06-27T20:46:27
329,421,907
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
class Salary: def __init__(self, pay): self.pay = pay def getTotal(self): return (self.pay*12) class Employee: def __init__(self, pay, bonus): self.pay = pay self.bonus = bonus self.salary = Salary(self.pay) def annualSalary(self): return "Total: " + str(self.salary.getTotal() + self.bonus) employee = Employee(100, 10) print(employee.annualSalary())
[ "mishechkin.aleksei@mail.ru" ]
mishechkin.aleksei@mail.ru
5aef16b6aeb2d157280392287cf28cad33e25528
9ac205e4d8f111608d1abbcfa78b5b6598c17955
/33.搜索旋转排序数组.py
d447ed77448cc4578fc79c195a6ccb85bf544fb8
[]
no_license
oceanbei333/leetcode
41ff0666da41750f7d3c82db53ec6f7f27125d3e
5d29bcf7ea1a9e489a92bc36d2158456de25829e
refs/heads/main
2023-03-16T18:17:25.232522
2021-02-28T04:56:40
2021-02-28T04:56:40
319,561,951
0
0
null
null
null
null
UTF-8
Python
false
false
1,169
py
# # @lc app=leetcode.cn id=33 lang=python3 # # [33] 搜索旋转排序数组 # # @lc code=start from typing import List class Solution: def search(self, nums: List[int], target: int) -> int: return nums.index(target) if target in nums else -1 def search(self, nums: List[int], target: int) -> int: left, right = 0, len(nums)-1 while left <= right: mid = (left+right) >> 1 if nums[mid] == target: return mid # 只能在有序序列中进行二分查找 # nums[:mid+1] 升序 if nums[left] <= nums[mid]: # target 在 nums[:mid+1] if nums[mid] > target >= nums[left]: right = mid - 1 else: # target 在 nums[mid+1:] left = mid+1 else: # nums[mid:] 升序 if nums[mid] < target <= nums[right]: # target 在 nums[mid+1:] left = mid+1 else: # target 在 nums[:mid] right = mid - 1 return -1 # @lc code=end
[ "hyram@wudun.net" ]
hyram@wudun.net
61334443dff95bdd7751b514c74720f8be96eb4f
1ab788ce84e446a98b085b62e1e17f8a2afa148d
/문제풀기/2112. [모의 SW 역량테스트] 보호 필름.py
f68fa9c9fa62e32bd2c49165bc5c321e56ed8bda
[]
no_license
kimjy392/exception
884dd26e1ec6f1c0357c1fe000742b1562adbeaa
b37e9c2f70adae6b93b94b86f96512469f431739
refs/heads/master
2022-12-11T20:33:25.632561
2020-08-29T13:26:08
2020-08-29T13:26:08
195,989,162
1
0
null
2022-12-06T23:20:02
2019-07-09T10:43:35
Python
UTF-8
Python
false
false
3,783
py
# def count(): # global isuse # isuse = [False] * W # for j in range(W): # i, start, cnt = 0, 0, 0 # while i < D: # if tboard[start][j] == tboard[i][j]: # cnt += 1 # else: # cnt = 0 # start = i # continue # if cnt == K: # isuse[j] = True # break # i += 1 # if sum(isuse) == W: # return True # else: # return False # def Cback(k, n): # global tboard, result, isuse, abc # if k == n: # if result <= D - len(Cselect): # return # for i in Cselect: # tboard[i] = board[i] # if count(): # if (D - len(Cselect)) < result: # result = (D - len(Cselect)) # tmp = [-1] * D # for i in range(D): # if i not in Cselect: # tmp[i] = Mselect[i] # abc.append(tmp) # # for i in Cselect: # tboard[i] = [Mselect[i]] * W # return # # Cselect.append(k) # Cback(k+1, n) # Cselect.pop() # Cback(k+1, n) # # def Mback(k, n): # global tboard, abc # if k == n: # for j in range(len(abc)): # for i in range(D): # if abc[j][i] == Mselect[i]: # return # tboard = [] # for i in Mselect: # tboard.append([i] * W) # Cback(0, D) # return # # # Mselect.append(1) # Mback(k+1, n) # Mselect.pop() # Mselect.append(0) # Mback(k+1, n) # Mselect.pop() # # T = int(input()) # # for tc in range(1, T+1): # D, W, K = map(int, input().split()) # board = [list(map(int, input().split())) for _ in range(D)] # Mselect = [] # result = 0xfff # Cselect = [] # abc = [] # Mback(0, D) # print('#{} {}'.format(tc, result)) from collections import deque def count(): global tboard isuse = [False] * W for j in range(W): i, start, cnt = 0, 0, 0 while i < D: if tboard[start][j] == tboard[i][j]: cnt += 1 else: cnt = 0 start = i continue if cnt == K: isuse[j] = True break i += 1 if sum(isuse) == W: return True else: return False # def bfs(): # global result, tboard # stack = deque([(0, D, 0, [])]) # # while stack: # k, n, res, tmp = stack.popleft() # # tboard = [] # for i in range(len(tmp)): # if tmp[i] == -1: # tboard.append(board[i]) # else: # tboard.append([tmp[i]] * W) # if count(): # if res < result: # result = res # for i in -1, 0, 1: # if i == -1: # stack.append((k+1, n, res, tmp[:]+[-1])) # else: # stack.append((k+1, n, res+1, tmp[:]+[i])) def back(k, n, res): global result if res >= result: return if count(): if res < result: result = res if k == n: return if -1 not in visit[k]: visit[k].append(-1) back(k+1, n, res) for i in range(2): if i not in visit[k]: tmp, board[k] = board[k], [i] * W visit[k].append(i) back(k+1, n, res+1) board[k] = tmp T = int(input()) for tc in range(1, T+1): D, W, K = map(int, input().split()) board = [list(map(int, input().split())) for _ in range(D)] visit = [[] for _ in range(D)] result = 0xfff # back(0, D, 0) bfs() print('#{} {}'.format(tc, result))
[ "kimjy392@gmail.com" ]
kimjy392@gmail.com
5f82420827fe3d84a27b93bdb272851e78b8640a
2970291ff52e98915abb47848aeb71517ed1fbab
/machines/migrations/0028_auto_20200321_2338.py
7e985c1f5a57f54e980268faea52817ba7736ccf
[]
no_license
dannyswolf/MLShop_Django_Service_boook
dd33f4bb0352836897448bc45bbb09b7c49252c2
9ac5f85468487a53465e244ba31b9bc968300783
refs/heads/master
2023-07-15T15:06:53.298042
2021-08-29T11:49:42
2021-08-29T11:49:42
255,998,699
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
# Generated by Django 3.0.4 on 2020-03-21 21:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('machines', '0027_auto_20200321_2337'), ] operations = [ migrations.AlterField( model_name='machines', name='Μοντέλο', field=models.CharField(blank=True, max_length=200, null=True), ), ]
[ "ntinisiordanis@gmail.com" ]
ntinisiordanis@gmail.com
e68a12ed2dd20f27609111b77d780a6bbe47ed92
e72ed9dfc5f90f4772d0b36da249ff7b2d39fd5f
/bible/forms.py
748bfa871e6d5c9e2b1441ce2ce0f51c7a384224
[]
no_license
mparkcode/django-retroplay
58b0626bb4c6e80f96232a0e4886d1a6c2805bbd
3f76b630469a7105d35708b450eaacb94d384ee4
refs/heads/master
2022-12-10T23:26:27.842708
2019-10-21T13:46:17
2019-10-21T13:46:17
143,025,309
1
3
null
2022-12-08T02:49:53
2018-07-31T14:25:44
HTML
UTF-8
Python
false
false
186
py
from django import forms class IgdbSearchForm(forms.Form): igdb_search = forms.CharField(max_length=100, widget=forms.TextInput(attrs={'placeholder': 'Search the bible'}), label="")
[ "mparkcode@gmail.com" ]
mparkcode@gmail.com
bfa7526cf02028ee81f5be260236d207fd71ada4
88cfeb8f7076450e7a38d31ab2d11883c1818c8d
/net/densenet.py
f37cd38d0ead26afb7480a9c9c2189f1ef9a2c08
[]
no_license
ZQPei/Alibaba_Cloud_German_AI_Challenge_for_Earth_Observation
4e5a127c12e0c02ed1914ab000a131e1a7f7d844
c2efb32763af0a56a3a7ecb9d83c0744f71d5c14
refs/heads/master
2020-04-26T04:31:57.731178
2019-02-17T01:10:55
2019-02-17T01:10:55
173,305,034
2
0
null
null
null
null
UTF-8
Python
false
false
7,159
py
import math import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from collections import OrderedDict def _bn_function_factory(norm, relu, conv): def bn_function(*inputs): concated_features = torch.cat(inputs, 1) bottleneck_output = conv(relu(norm(concated_features))) return bottleneck_output return bn_function class _DenseLayer(nn.Module): def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, efficient=False): super(_DenseLayer, self).__init__() self.add_module('norm1', nn.BatchNorm2d(num_input_features)), self.add_module('relu1', nn.ReLU(inplace=True)), self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), self.add_module('relu2', nn.ReLU(inplace=True)), self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = drop_rate self.efficient = efficient def forward(self, *prev_features): bn_function = _bn_function_factory(self.norm1, self.relu1, self.conv1) if self.efficient and any(prev_feature.requires_grad for prev_feature in prev_features): bottleneck_output = cp.checkpoint(bn_function, *prev_features) else: bottleneck_output = bn_function(*prev_features) new_features = self.conv2(self.relu2(self.norm2(bottleneck_output))) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return new_features class _Transition(nn.Sequential): def __init__(self, num_input_features, num_output_features): super(_Transition, self).__init__() self.add_module('norm', nn.BatchNorm2d(num_input_features)) self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) class _DenseBlock(nn.Module): def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, efficient=False): super(_DenseBlock, self).__init__() for i in range(num_layers): layer = _DenseLayer( num_input_features + i * growth_rate, growth_rate=growth_rate, bn_size=bn_size, drop_rate=drop_rate, efficient=efficient, ) self.add_module('denselayer%d' % (i + 1), layer) def forward(self, init_features): features = [init_features] for name, layer in self.named_children(): new_features = layer(*features) features.append(new_features) return torch.cat(features, 1) class DenseNet(nn.Module): """Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 3 or 4 ints) - how many layers in each pooling block num_init_features (int) - the number of filters to learn in the first convolution layer bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes small_inputs (bool) - set to True if images are 32x32. Otherwise assumes images are larger. efficient (bool) - set to True to use checkpointing. Much more memory efficient, but slower. """ def __init__(self, growth_rate=12, block_config=(16, 16, 16), compression=0.5, num_init_features=24, bn_size=4, drop_rate=0, num_classes=17, small_inputs=True, efficient=False): super(DenseNet, self).__init__() assert 0 < compression <= 1, 'compression of densenet should be between 0 and 1' # self.avgpool_size = 8 if small_inputs else 7 self.avgpool_size = 8 # First convolution if small_inputs: self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(10, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)), ])) else: self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(10, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ])) self.features.add_module('norm0', nn.BatchNorm2d(num_init_features)) self.features.add_module('relu0', nn.ReLU(inplace=True)) self.features.add_module('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)) # Each denseblock num_features = num_init_features for i, num_layers in enumerate(block_config): block = _DenseBlock( num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, efficient=efficient, ) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=int(num_features * compression)) self.features.add_module('transition%d' % (i + 1), trans) num_features = int(num_features * compression) # Final batch norm self.features.add_module('norm_final', nn.BatchNorm2d(num_features)) # Linear layer self.classifier = nn.Linear(num_features, num_classes) # Initialization for name, param in self.named_parameters(): if 'conv' in name and 'weight' in name: n = param.size(0) * param.size(2) * param.size(3) param.data.normal_().mul_(math.sqrt(2. / n)) elif 'norm' in name and 'weight' in name: param.data.fill_(1) elif 'norm' in name and 'bias' in name: param.data.fill_(0) elif 'classifier' in name and 'bias' in name: param.data.fill_(0) def forward(self, x): features = self.features(x) out = F.relu(features, inplace=True) out = F.avg_pool2d(out, kernel_size=self.avgpool_size).view(features.size(0), -1) out = self.classifier(out) return out
[ "dfzspzq@163.com" ]
dfzspzq@163.com
e05bcb65006e0ceeb16eb2c70a9ef633d6e7c8b5
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_6404600001200128_0/Python/knabbers/A.py
bbd8fd315049627fb82af60f5c2e8854e2c57ff3
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
691
py
from collections import defaultdict with open('in.txt','rb') as fin, open('output.txt','w') as fout: case = 1 it = iter(fin.readlines()) _ = next(it) # cases for line in it: print ("\n") print ("case " + str(case)) N = int(line) line=next(it) xs = [int(c) for c in line.split(" ")] print xs m1 = 0 m2 = 0 for i in range(N-1): if xs[i+1] - xs[i] < 0: m1 -= (xs[i+1] - xs[i]) if xs[i+1] < xs[i]: m2 = max(m2,xs[i] - xs[i+1]) m3 = 0 for i in range(N-1): #how much can she eat of current one m3 += min(m2,xs[i]) best = 1 fout.write("Case #" + str(case) + ": " + str(m1) + " " + str(m3) + "\n") case += 1
[ "eewestman@gmail.com" ]
eewestman@gmail.com
63dfb28677eaa87faeab89b154711257dc907fc9
1f9897e86f93438eed2555d6da1716099df54147
/2020/jokenpo.py
c69ace473e1326c65b70a76621b05b55119baf5f
[]
no_license
AfonsoArtoni/PUG-PE-Dojo
10371ec321dc11d0280b8ac01dd70f47d29127a3
974a5293f58a721491915b2ee4d2e95e2247e745
refs/heads/master
2020-12-21T00:44:18.466602
2020-01-25T22:03:59
2020-01-25T22:03:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,269
py
"""Jokenpo. Jokenpo é uma brincadeira japonesa, onde dois jogadores escolhem um dentre três possíveis itens: Pedra, Papel ou Tesoura. O objetivo é fazer um juiz de Jokenpo que dada a jogada dos dois jogadores informa o resultado da partida. As regras são as seguintes: - Pedra empata com Pedra e ganha de Tesoura - Tesoura empata com Tesoura e ganha de Papel - Papel empata com Papel e ganha de Pedra """ def jokenpo(entrada1, entrada2): """ >>> jokenpo('pedra','pedra') (0, 'empate') >>> jokenpo('tesoura', 'tesoura') (0, 'empate') >>> jokenpo('papel', 'papel') (0, 'empate') >>> jokenpo('tesoura', 'pedra') (2, 'pedra') >>> jokenpo('pedra', 'tesoura') (1, 'pedra') >>> jokenpo('pedra', 'papel') (2, 'papel') >>> jokenpo('papel', 'pedra') (1, 'papel') >>> jokenpo('tesoura', 'papel') (1, 'tesoura') >>> jokenpo('papel', 'tesoura') (2, 'tesoura') """ d = { 'tesoura': 'papel', 'pedra': 'tesoura', 'papel': 'pedra' } if d[entrada1] == entrada2: return (1, entrada1) if d[entrada2] == entrada1: return (2, entrada2) return (0, 'empate') if __name__ == "__main__": import doctest doctest.testmod()
[ "marcusgabriel.ds@gmail.com" ]
marcusgabriel.ds@gmail.com
f59b0e05422e2f0ed0e20fd76f2efe583c8387d0
afd2087e80478010d9df66e78280f75e1ff17d45
/test/dynamo/test_subclasses.py
938215cb807c44ef22ce95b85305d0d6a3a17192
[ "BSD-3-Clause", "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
pytorch/pytorch
7521ac50c47d18b916ae47a6592c4646c2cb69b5
a6f7dd4707ac116c0f5fb5f44f42429f38d23ab4
refs/heads/main
2023-08-03T05:05:02.822937
2023-08-03T00:40:33
2023-08-03T04:14:52
65,600,975
77,092
24,610
NOASSERTION
2023-09-14T21:58:39
2016-08-13T05:26:41
Python
UTF-8
Python
false
false
3,096
py
# Owner(s): ["module: dynamo"] import contextlib import torch import torch._dynamo.test_case import torch._dynamo.testing import torch._functorch.config import torch.utils.checkpoint class MockSubclass(torch.Tensor): @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} return func(*args, **kwargs) @contextlib.contextmanager def preserve_subclass_config(): old_subclass_set = set(torch._dynamo.config.traceable_tensor_subclasses) try: torch._dynamo.config.traceable_tensor_subclasses.add(MockSubclass) yield finally: torch._dynamo.config.traceable_tensor_subclasses.clear() torch._dynamo.config.traceable_tensor_subclasses.update(old_subclass_set) class SubclassTests(torch._dynamo.test_case.TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls._exit_stack.enter_context(preserve_subclass_config()) @classmethod def tearDownClass(cls): cls._exit_stack.close() def test_torch_function_state_graph_break(self): @torch.compile(backend="eager") def fn(x): with torch._C.DisableTorchFunctionSubclass(): torch._dynamo.graph_break() return torch._C._is_torch_function_enabled(), torch.add(x, 1.0) input = torch.ones(2, 2) res, _ = fn(input) self.assertFalse(res) def test_torch_function_state_tracing(self): @torch.compile(backend="eager", fullgraph=True) def fn(x): with torch._C.DisableTorchFunctionSubclass(): torch.add(x, 1.0) input = torch.ones(2, 2) res = fn(input) def test_torch_function_state_guards(self): cnt = torch._dynamo.testing.CompileCounter() @torch.compile(backend=cnt, fullgraph=True) def fn(x): torch.add(x, 1.0) input = torch.ones(2, 2) with torch._C.DisableTorchFunctionSubclass(): res = fn(input) res = fn(input) self.assertEqual(cnt.frame_count, 2) def test_return_subclass(self): @torch.compile(backend="eager", fullgraph=True) def fn(x): return MockSubclass(torch.add(x, 1.0)) input = torch.ones(2, 2) res = fn(input) self.assertIsInstance(res, MockSubclass) def test_return_local_subclass(self): class LocalSubclass(torch.Tensor): @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} return func(*args, **kwargs) torch._dynamo.config.traceable_tensor_subclasses.add(LocalSubclass) @torch.compile(backend="eager", fullgraph=True) def fn(x): return LocalSubclass(torch.add(x, 1.0)) input = torch.ones(2, 2) res = fn(input) self.assertIsInstance(res, LocalSubclass) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
[ "pytorchmergebot@users.noreply.github.com" ]
pytorchmergebot@users.noreply.github.com
c0546b68f5584ad3b7da2cf791a2c1c65b27dbfe
c4e2e1aded20c81fa9ab2a38620cfda71639c4c8
/print_updates.py
c63e212818cd24e22e2d09f8972571f4a4a7c587
[ "MIT" ]
permissive
russss/pydsn
118f341191f2ce6c702e9a81b3c0fd4da00f54b4
84e3b441effded7cfb4716cfa04e7b69d98d8ac1
refs/heads/master
2020-12-25T17:25:11.405678
2020-09-05T11:51:54
2020-09-05T11:51:54
21,252,624
7
5
null
null
null
null
UTF-8
Python
false
false
1,098
py
# coding=utf-8 from __future__ import division, absolute_import, print_function, unicode_literals import logging from dsn import DSN def to_GHz(freq): if freq is None: return None return str(round(float(freq) / 10 ** 9, 4)) def update_callback(antenna, old, new): if len(new['down_signal']) == 0: return for i in range(0, len(new['down_signal'])): signal = new['down_signal'][i] if len(old['down_signal']) > i: old_signal = old['down_signal'][i] if (to_GHz(signal['frequency']) == to_GHz(old_signal['frequency']) and signal['debug'] == old_signal['debug'] and signal['spacecraft'] == old_signal['spacecraft']): # No change, don't print anything return print("%s channel %s\ttracking %s\tstatus: %s\tinfo: %s\tfrequency: %sGHz" % (antenna, i, signal['spacecraft'], signal['type'], signal['debug'], to_GHz(signal['frequency']))) logging.basicConfig() dsn = DSN() dsn.update_callback = update_callback dsn.run()
[ "russ@garrett.co.uk" ]
russ@garrett.co.uk
b4c98948d06b56b3abe16f50d15b2211226c7ba5
9e9d1a5b711191f87a849f2ea34eb00e17587080
/chalk_line/materials/rhythm/segment_03/rhythm_makers.py
f283ec2f8c528fd879e5d10bb8a44e8c6e0db308
[]
no_license
GregoryREvans/chalk_line
c72e3bbdd383d6032e8afd8eba6f41d895f1c673
e333343ccb039b83393690d46d06e4d5225d6327
refs/heads/master
2022-02-23T17:40:38.569781
2022-02-10T13:52:13
2022-02-10T13:52:13
241,491,131
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
import evans rmaker_one = evans.RTMMaker( rtm=[ "(1 ((2 (1 1 1)) 1 -1))", "(1 (1 2 3))", "(1 (1 3))", "(1 (1 1 2))", "(1 (1 1))", "(1 (1))", "(1 (2 2 1 -1))", "(1 (1))", "(1 ((2 (1 1 1)) 1 -1))", "(1 (1 2 3))", "(1 (1 3))", "(1 (1 1 2))", "(1 (1 1))", "(1 (1))", "(1 (2 2 1 -1))", "(1 (1))", "(1 (2 1))", "(1 (3 2 1))", "(1 (1 2 3 4))", "(1 (1 2 3 4 5 6))", "(1 ((2 (1 1 1)) 1 -1))", "(1 (1 2 3))", "(1 (1 3))", "(1 (1 1 2))", "(1 (1 1))", "(1 (1))", "(1 (2 2 1 -1))", "(1 (1))", "(1 (2 1))", "(1 (3 2 1))", "(1 (1 2 3 4))", "(1 (1 2 3 4 5 6))", ] )
[ "gregoryrowlandevans@gmail.com" ]
gregoryrowlandevans@gmail.com
c5b24563692c7be59ada5e6c4bae377ad2ee98b4
7bf617f77a55d8ec23fa8156c1380b563a5ac7f6
/CG/SciPy/circle_1.py
58a991f780e853de703aa238f4858b7803f7d0fc
[]
no_license
anyatran/school
c06da0e08b148e3d93aec0e76329579bddaa85d5
24bcfd75f4a6fe9595d790808f8fca4f9bf6c7ec
refs/heads/master
2021-06-17T10:45:47.648361
2017-05-26T12:57:23
2017-05-26T12:57:23
92,509,148
1
1
null
null
null
null
UTF-8
Python
false
false
976
py
""" Program name: circle_1.py Objective: A circle is a special case of an oval. Keywords: canvas, oval, circle ============================================================================79 Explanation: A circle is a special case of an oval and is defined by the box it fits inside. The bounding box is specified the same as rectangles, from bottom-left to top-right. Author: Mike Ohlson de Fine """ # circle_1.py #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> from Tkinter import * root = Tk() root.title('A circle') cw = 150 # canvas width ch = 140 # canvas height canvas_1 = Canvas(root, width=cw, height=ch, background="white") canvas_1.grid(row=0, column=1) # specify bottom-left and top-right as a set of four numbers named 'xy' xy = 20, 20, 120, 120 canvas_1.create_oval(xy) root.mainloop() #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
[ "panhtran249@gmail.com" ]
panhtran249@gmail.com
1a2c312399d2472dde204fc5e36017a06ffad7c6
6336828aeab3ea2ba3e1cf9452a8a3f3a084b327
/fundooNotes-master/virtual-env/bin/nosetests-3.4
121dcd17ab6d074ffdd65beef38adefe3c734d61
[ "MIT" ]
permissive
kalereshma96/DjangoNewRepository
85f2eaed6b689be273af48d328c0a388244bbe2b
37fd232c2ac91eb6940300f20118f93d17926f9a
refs/heads/master
2020-04-12T18:12:15.698279
2019-01-21T13:46:37
2019-01-21T13:46:37
162,672,682
0
0
null
null
null
null
UTF-8
Python
false
false
288
4
#!/home/admin1/PycharmProjects/mynewpythonproject/fundooNotes-master/virtual-env/bin/python # -*- coding: utf-8 -*- import re import sys from nose import run_exit if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_exit())
[ "kalereshma96@gmail.com" ]
kalereshma96@gmail.com
b9e96932a14e41fe2293414f813539a41dac1547
e60487a8f5aad5aab16e671dcd00f0e64379961b
/python_stack/Algos/Fundamentals/bracesValid.py
1cf44dec62b3abd0f888db3f006ddf5ae829bf98
[]
no_license
reenadangi/python
4fde31737e5745bc5650d015e3fa4354ce9e87a9
568221ba417dda3be7f2ef1d2f393a7dea6ccb74
refs/heads/master
2021-08-18T08:25:40.774877
2021-03-27T22:20:17
2021-03-27T22:20:17
247,536,946
0
0
null
null
null
null
UTF-8
Python
false
false
685
py
# it are valid. For example, given the input string # "w(a{t}s[o(n{c}o)m]e)h[e{r}e]!" , return # true . Given "d(i{a}l[t]o)n{e" , return # false . Given "a(1)s[O(n]0{t)0}k" , return # false . def bracesValid(str): mapping={"(":")","{":"}","[":"]"} myStack=[] for c in str: if c in ('(','{','['): myStack.append(c) elif c in (')','}',']'): if myStack: top=myStack.pop() if c!=mapping[top]: return False else: return False if myStack: return False else: return True print(bracesValid("w(a{t}s[o(n{c}o)m]e)h[e{r}e]!"))
[ "reena.dangi@gmail.com" ]
reena.dangi@gmail.com
912e0ef322d0210628742b89e0e9105897dc42f6
1e14e73b66aa4e60a528addf6358d5c009705e9e
/scripts/visualize.py
8f3dca025adabe11f2e73709dd4ea46d5d23a0ed
[ "MIT" ]
permissive
cannin/covid-sicr-test
aeaa5935c5ddc99e616bdf1b9527a82eedcaa641
f842946357428730265b7d0a6640172dc757ecae
refs/heads/master
2022-10-08T04:46:31.415917
2020-06-11T21:06:30
2020-06-11T21:06:30
271,634,733
0
0
null
null
null
null
UTF-8
Python
false
false
5,321
py
#!/usr/bin/env python # coding: utf-8 import argparse import logging from multiprocessing import Pool import pandas as pd import papermill as pm from pathlib import Path from tqdm import tqdm import warnings warnings.simplefilter(action='ignore', category=FutureWarning) for lib in ['blib2to3', 'papermill']: logger = logging.getLogger(lib) logger.setLevel(logging.WARNING) from niddk_covid_sicr import get_data_prefix, get_ending, list_rois notebook_path = Path(__file__).parent.parent / 'notebooks' # Parse all the command-line arguments parser = argparse.ArgumentParser(description=('Executes all of the analysis ' 'notebooks')) parser.add_argument('model_name', help='Name of the Stan model file (without extension)') parser.add_argument('-dp', '--data_path', default='./data', help='Path to directory containing the data files') parser.add_argument('-fp', '--fits_path', default='./fits', help='Path to directory containing pickled fit files') parser.add_argument('-rp', '--results_path', default='./results/vis-notebooks', help=('Path to directory where resulting notebooks ' 'will be stored')) parser.add_argument('-mp', '--models_path', default='./models', help='Path to directory containing .stan files') parser.add_argument('-r', '--rois', default=[], nargs='+', help='Space separated list of ROIs') parser.add_argument('-n', '--n_threads', type=int, default=16, nargs='+', help='Number of threads to use for analysis') parser.add_argument('-f', '--fit_format', type=int, default=1, help='Version of fit format') parser.add_argument('-v', '--verbose', type=int, default=0, help='Verbose error reporting') args = parser.parse_args() for key, value in args.__dict__.items(): if '_path' in key and 'results' not in key: assert Path(value).is_dir(),\ "%s is not a directory" % Path(value).resolve() # pathlibify some paths data_path = Path(args.data_path) fits_path = Path(args.fits_path) models_path = Path(args.models_path) results_path = Path(args.results_path) results_path.mkdir(parents=True, exist_ok=True) assert any([x.name.endswith('.csv') for x in data_path.iterdir()]),\ "No .csv files found in data_path %s" % (data_path.resolve()) assert any([x.name.endswith('.stan') for x in models_path.iterdir()]),\ "No .stan files found in models_path %s" % (models_path.resolve()) assert any([x.name.endswith('.pkl') or x.name.endswith('.csv') for x in fits_path.iterdir()]),\ "No .pkl or .csv files found in fits_path %s" % (fits_path.resolve()) ending = get_ending(args.fit_format) if not args.rois: data_rois = list_rois(data_path, get_data_prefix(), '.csv') fit_rois = list_rois(fits_path, args.model_name, ending) args.rois = list(set(data_rois).intersection(fit_rois)) args.n_threads = min(args.n_threads, len(args.rois)) print("Running visualization notebook for %d rois on model '%s'" % (len(args.rois), args.model_name)) # Make sure all ROI pickle files exist for roi in args.rois: file = fits_path / ('%s_%s%s' % (args.model_name, roi, ending)) assert file.is_file(), "No such %s file: %s" % (ending, file.resolve()) # Function to be execute on each ROI def execute(model_name, roi, data_path, fits_path, model_path, notebook_path, results_path, fit_format, verbose=False): try: result = pm.execute_notebook( str(notebook_path / 'visualize.ipynb'), str(results_path / ('visualize_%s_%s.ipynb' % (model_name, roi))), parameters={'model_name': model_name, 'roi': roi, 'data_path': str(data_path), 'fits_path': str(fits_path), 'models_path': str(models_path), 'fit_format': fit_format}, nest_asyncio=True) except pm.PapermillExecutionError as e: exception = '%s: %s' % (e.ename, e.evalue) except Exception as e: exception = str(e.split('\n')[-1:]) else: # Possible exception that was raised # (or `None` if notebook completed successfully) exception = str(result['metadata']['papermill']['exception']) if exception and verbose: print(roi, exception) return exception # Top progress bar (how many ROIs have finished) pbar = tqdm(total=len(args.rois), desc="All notebooks", leave=True) def update(*a): pbar.update() # Execute up to 16 ROIs notebooks at once pool = Pool(processes=args.n_threads) jobs = {roi: pool.apply_async(execute, [args.model_name, roi, data_path, fits_path, models_path, notebook_path, results_path, args.fit_format], {'verbose': args.verbose}, callback=update) for roi in args.rois} pool.close() pool.join() print('\n') error_table = pd.Series({roi: job.get() for roi, job in jobs.items()}) error_table = error_table[error_table != 'None'] if len(error_table): print("Errors:") print(error_table)
[ "rgerkin@asu.edu" ]
rgerkin@asu.edu
809e15e8c97fec14f1187a7f5c9189c43e53ad04
a1b8b807a389fd3971ac235e46032c0be4795ff1
/testrepo/Zips/script.module.streamhublive/resources/modules/downloader.py
97608f2e48e1c7d67e403ad3122dc6daeb436677
[]
no_license
sClarkeIsBack/StreamHub
0cd5da4b3229592a4e2cf7ce3e857294c172aaba
110983579645313b8b60eac08613435c033eb92d
refs/heads/master
2020-05-23T09:09:54.898715
2020-02-29T12:15:32
2020-02-29T12:15:32
80,440,827
9
20
null
2017-10-04T07:32:52
2017-01-30T16:43:46
Python
UTF-8
Python
false
false
2,512
py
import xbmcgui import urllib import time from urllib import FancyURLopener import sys class MyOpener(FancyURLopener): version = '[COLOR ffff0000][B]StreamHub[/B][/COLOR]' myopener = MyOpener() urlretrieve = MyOpener().retrieve urlopen = MyOpener().open def download(url, dest, dp = None): start_time=time.time() urlretrieve(url, dest, lambda nb, bs, fs: _pbhook(nb, bs, fs, dp, start_time)) def auto(url, dest, dp = None): start_time=time.time() urlretrieve(url, dest, lambda nb, bs, fs: _pbhookauto(nb, bs, fs, dp, start_time)) def _pbhookauto(numblocks, blocksize, filesize, url, dp): none = 0 def _pbhook(numblocks, blocksize, filesize, dp, start_time): try: percent = min(numblocks * blocksize * 100 / filesize, 100) currently_downloaded = float(numblocks) * blocksize / (1024 * 1024) kbps_speed = numblocks * blocksize / (time.time() - start_time) if kbps_speed > 0: eta = (filesize - numblocks * blocksize) / kbps_speed else: eta = 0 kbps_speed = kbps_speed / 1024 mbps_speed = kbps_speed / 1024 total = float(filesize) / (1024 * 1024) mbs = '[COLOR white]%.02f MB[/COLOR] of %.02f MB' % (currently_downloaded, total) e = 'Speed: [COLOR lime]%.02f Mb/s ' % mbps_speed + '[/COLOR]' e += 'ETA: [COLOR yellow]%02d:%02d' % divmod(eta, 60) + '[/COLOR]' except: percent = 100 def unzip(zip,dest): import zipfile zip_ref = zipfile.ZipFile(zip, 'r') zip_ref.extractall(dest) zip_ref.close() def getmodules(): import os,re,xbmc zip = 'https://github.com/sClarkeIsBack/StreamHub/raw/master/StreamHubLive/rootdownloads.zip' root = xbmc.translatePath('special://home/addons/script.module.streamhublive/resources/root/') udata = xbmc.translatePath('special://home/userdata/addon_data/script.module.streamhublive/downloads/') dest = xbmc.translatePath(os.path.join('special://home/userdata/addon_data/script.module.streamhublive/downloads/', 'root.zip')) if not os.path.exists(udata): os.makedirs(udata) try: download(zip,dest) unzip(dest,root) except: xbmcgui.Dialog().ok('[COLOR ffff0000][B]StreamHub[/B][/COLOR]','Oops..Something went wrong with our auto update feature, Please Inform us at','http://facebook.com/groups/streamh') try: os.remove(dest) except: pass
[ "mediahubiptv@gmail.com" ]
mediahubiptv@gmail.com
8f91301ee92109eaebdec1ed72f4f25409581a1b
9d69d37c930821f4ebf265f3c1f214c2cc558502
/scripts/extra/csv_to_coco_json_result.py
3fc14bfbe55bbd61d296159e00b5d157b88d6e32
[ "Apache-2.0" ]
permissive
mayanks888/mAP
255b35e25384659dfaf97e6e3eec53bafb5bb3cc
7e6a6c4b916223e737d30c76ebb11a75ed15d984
refs/heads/master
2023-01-29T11:05:21.099541
2020-12-13T20:54:44
2020-12-13T20:54:44
278,285,070
0
0
Apache-2.0
2020-07-09T06:44:56
2020-07-09T06:44:55
null
UTF-8
Python
false
false
1,600
py
from collections import namedtuple import os import pandas as pd import json from utils import * coco91class = coco80_to_coco91_class() csv_path='yolo_txt_to_csv.csv' # csv_path='yolo1.csv' data = pd.read_csv(csv_path) print(data.head()) def split(df, group): data = namedtuple('data', ['filename', 'object']) # filename='img_name' # data = namedtuple('data', ['img_name', 'obj_class']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] grouped = split(data, 'filename') jdict= [] for group in grouped: # filename = group.filename.encode('utf8') filename = group.filename print(filename) for index, row in group.object.iterrows(): xmin=(row['xmin']) ymin = (row['ymin']) width= (row['xmax'])-xmin height=(row['ymax'])-ymin # box_=[xmin,ymin,xmax,ymax] # box2=xyxy2xywh(box_) # obj_id = obj['category_id'] # print(obj_id) score=row['conf'] obj_name=row["class"] obj_cat=row["obj_category"] ################3 obj_cat=coco91class[int(obj_cat)] ##################### bbox = ((xmin), (ymin), (width), (height)) # bbox = box2 jdict.append({'image_id': int(filename), 'category_id': obj_cat, 'bbox': [round(x, 3) for x in bbox], 'score': round(score, 5)}) print('\nGenerating json detection for pycocotools...') with open('results.json', 'w') as file: json.dump(jdict, file)
[ "mayank.sati@gwmidc.in" ]
mayank.sati@gwmidc.in
e86947e81e355edde5f00faccb2b3b4b7adfe1b7
4de28b1f6d97640834e4a795e68ca9987f9e2cd5
/check plugins 2.0/dell_powervault_me4/checks/agent_dellpowervault
872a4202350c171f757ac3e0fb517852ad2a04de
[]
no_license
Yogibaer75/Check_MK-Things
affa0f7e6e772074c547f7b1df5c07a37dba80b4
029c546dc921c4157000d8ce58a878618e7bfa97
refs/heads/master
2023-09-01T15:52:28.610282
2023-08-29T06:18:52
2023-08-29T06:18:52
20,382,895
47
16
null
2023-07-30T15:52:22
2014-06-01T18:04:07
Python
UTF-8
Python
false
false
1,216
#!/usr/bin/env python3 # -*- encoding: utf-8; py-indent-offset: 4 -*- # (c) Andreas Doehler <andreas.doehler@bechtle.com/andreas.doehler@gmail.com> # This is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation in version 2. check_mk is distributed # in the hope that it will be useful, but WITHOUT ANY WARRANTY; with- # out even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the GNU General Public License for more de- # ails. You should have received a copy of the GNU General Public # License along with GNU Make; see the file COPYING. If not, write # to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, # Boston, MA 02110-1301 USA. def agent_dellpowervault_arguments(params, hostname, ipaddress): args = '' if params["user"] != "": args += " -u " + quote_shell_string(params["user"]) if params["password"] != "": args += " -p " + quote_shell_string(params["password"]) args += " " + quote_shell_string(ipaddress) return args special_agent_info['dellpowervault'] = agent_dellpowervault_arguments
[ "andreas.doehler@gmail.com" ]
andreas.doehler@gmail.com
906e43db8bb1001f90d120dced7b2b11273ffe1e
35f7c36a55a98cd4150abe51c24bf6b2313ee9d5
/pytestFrame_demon1/TestCase/testmy.py
4d60e67571f998cd5a788db480a9d3cbf2532dcf
[]
no_license
jingshiyue/zhongkeyuan_workspace
58b12e46223d398b184c48c4c6b799e5235e4470
aa0749f4a237ee76a61579dc5984635a7127a631
refs/heads/master
2021-07-15T15:18:40.186561
2020-08-12T05:32:45
2020-08-12T05:34:20
197,749,776
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
import sys import os path0 = os.path.realpath(__file__) #'D:\\workfile\\workspace\\pytestFrame_demon1\\TestCase\\testmy.py' path1 = os.path.dirname(path0) GRANDFA = os.path.dirname(path1) sys.path.append(GRANDFA ) # 将祖父路径加入sys中 print("ok") sys.path.append(sys.path.append(sys.path[0] + r"\..\..")) sys.path.append(sys.path.append(sys.path[0] + r"\.."))
[ "173302591@qq.com" ]
173302591@qq.com
f3e8686fcdc11a92cf10d7b6bd5f7a314cd2ce1b
b94bb6b6e2fac5fb8f02354a2d05374b8f00ff60
/mandelbrot/numpy_vector_numexpr/numpy_vector_numexpr.py
484ad304db72cf8701216640e58a2e7b8f1d35dc
[]
no_license
janus/EuroPython2011_HighPerformanceComputing
17ff9e6d7d5634c424983103ad45442acfe2502e
1a15b5e66a22bd11422a1bb9ad749c5d906e3f98
refs/heads/master
2021-01-16T22:41:04.249856
2011-06-28T22:32:50
2011-06-28T22:32:50
1,973,541
1
0
null
null
null
null
UTF-8
Python
false
false
2,837
py
import datetime import sys import numpy as np import numexpr # area of space to investigate x1, x2, y1, y2 = -2.13, 0.77, -1.3, 1.3 # use numexpr library to vectorise (and maybe parallelise) the numpy expressions def calculate_z_numpy(q, maxiter, z): output = np.resize(np.array(0,), q.shape) for iteration in range(maxiter): #z = z*z + q z = numexpr.evaluate("z*z+q") #done = nm.greater(abs(z), 2.0) done = numexpr.evaluate("abs(z).real>2.0") #q = nm.where(done,0+0j, q) q = numexpr.evaluate("where(done, 0+0j, q)") #z = nm.where(done,0+0j, z) z = numexpr.evaluate("where(done,0+0j, z)") #output = nm.where(done, iteration, output) output = numexpr.evaluate("where(done, iteration, output)") return output def calculate(show_output): # make a list of x and y values which will represent q # xx and yy are the co-ordinates, for the default configuration they'll look like: # if we have a 1000x1000 plot # xx = [-2.13, -2.1242, -2.1184000000000003, ..., 0.7526000000000064, 0.7584000000000064, 0.7642000000000064] # yy = [1.3, 1.2948, 1.2895999999999999, ..., -1.2844000000000058, -1.2896000000000059, -1.294800000000006] x_step = (float(x2 - x1) / float(w)) * 2 y_step = (float(y1 - y2) / float(h)) * 2 x=[] y=[] ycoord = y2 while ycoord > y1: y.append(ycoord) ycoord += y_step xcoord = x1 while xcoord < x2: x.append(xcoord) xcoord += x_step x = np.array(x) y = np.array(y) * 1j # make y a complex number print "x and y have length:", len(x), len(y) # create a square matrix using clever addressing x_y_square_matrix = x+y[:, np.newaxis] # it is np.complex128 # convert square matrix to a flatted vector using ravel q = np.ravel(x_y_square_matrix) # create z as a 0+0j array of the same length as q # note that it defaults to reals (float64) unless told otherwise z = np.zeros(q.shape, np.complex128) start_time = datetime.datetime.now() print "Total elements:", len(q) output = calculate_z_numpy(q, maxiter, z) end_time = datetime.datetime.now() secs = end_time - start_time print "Main took", secs validation_sum = sum(output) print "Total sum of elements (for validation):", validation_sum if show_output: import Image output = (output + (256*output) + (256**2)*output) * 8 im = Image.new("RGB", (w/2, h/2)) im.fromstring(output.tostring(), "raw", "RGBX", 0, -1) im.show() if __name__ == '__main__': w = int(sys.argv[1]) # e.g. 100 h = int(sys.argv[1]) # e.g. 100 maxiter = int(sys.argv[2]) # e.g. 300 calculate(True)
[ "ian@ianozsvald.com" ]
ian@ianozsvald.com
dd4afdb6db252146efbf72714ce2914c07933fec
20343e8a8435b3f839d5abd0c4063cf735f43341
/Experiment/price_with_basic/JQ_Demo.py
7f7010abf4084044ea5f6bd90bd0cf54ea8c9477
[]
no_license
alading241/MoDeng
948f2099e2f7e4548d6e477b6e06b833bdf4f9bb
01819e58943d7d1a414714d64aa531c0e99dfe22
refs/heads/master
2021-05-23T11:39:41.326804
2020-04-05T06:06:01
2020-04-05T06:06:01
253,269,397
1
0
null
2020-04-05T15:38:33
2020-04-05T15:38:33
null
UTF-8
Python
false
false
2,699
py
# encoding=utf-8 # from JQData_Test.auth_info import * import pandas as pd from SDK.MyTimeOPT import convert_str_to_date from matplotlib import pyplot as plt import seaborn as sns """ 使用JQ数据进行研究 """ stk_code = normalize_code('000001') # 查询300508的市值数据 q = query(valuation.pe_ratio, valuation.pb_ratio, indicator.eps, indicator.roe, indicator.operating_profit, indicator.net_profit_margin, indicator.inc_revenue_annual, indicator.inc_operation_profit_year_on_year, indicator.inc_operation_profit_annual, indicator.inc_net_profit_year_on_year, indicator.inc_net_profit_annual ).filter(valuation.code.in_([stk_code])) panel = get_fundamentals_continuously(q, end_date='2019-05-12', count=1200) df_basic = panel.minor_xs(stk_code) df_basic['date_str'] = df_basic.index df_basic['date'] = df_basic.apply(lambda x: convert_str_to_date(x['date_str']), axis=1) df_basic = df_basic.set_index('date') # 查询收盘价 df_close = get_price(stk_code, start_date='2017-01-01', end_date='2019-05-12', frequency='daily', fields=None, skip_paused=False, fq='pre') df_close = df_close.reset_index() df_close['date'] = df_close.apply(lambda x: convert_str_to_date(str(x['index'])[:10]), axis=1) df_close = df_close.set_index('date') df_concat = pd.concat([df_basic, df_close], axis=1)\ .dropna(axis=0)\ .loc[:, [ 'close', 'eps', 'pb_ratio', 'pe_ratio', 'roe', 'operating_profit', 'net_profit_margin', 'inc_revenue_annual', 'inc_operation_profit_year_on_year', 'inc_operation_profit_annual', 'inc_net_profit_year_on_year', 'inc_net_profit_annual']] df_corr = df_concat.corr() # sns.distplot(df_corr['close']) df_corr['xlabel'] = df_corr.index # 画条形图 sns.barplot(y='close', x='xlabel', data=df_corr) plt.xticks(rotation=90) plt.show() """ df_concat.corr() 画图 .corr() """ s """ #DataFrame的corr和cov方法将以DataFrame的形式返回完整的相关系数或协方差矩阵: data.corr() data.cov() """ end = 0
[ "1210055099@qq.com" ]
1210055099@qq.com
4ede01c900ccfbb8f6ca47a02a125acfb6428bd3
be70e130f53c7703f942057923577adf607687a6
/src/biotite/file.pyi
a2139f3eef3966c7794d5746f092780f16322213
[ "BSD-3-Clause" ]
permissive
Dr-Moreb/biotite
4043eadb607e9ede13ce049ade554546ce58afe0
c34ccb7a7a7de923bf8a238944dfb7e1e635bb28
refs/heads/master
2020-04-01T19:02:08.086093
2018-10-10T16:01:45
2018-10-10T16:01:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
744
pyi
# This source code is part of the Biotite package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. from typing import Generic, TypeVar, Union, TextIO, BinaryIO from .copyable import Copyable _T_io = TypeVar("_T_io", TextIO, BinaryIO) class File(Copyable, Generic[_T_io]): def __init__(self) -> None: ... def read(self, file: Union[str, _T_io]) -> None: ... def write(self, file: Union[str, _T_io]) -> None: ... class TextFile(File[TextIO]): def __init__(self) -> None: ... def read(self, file: Union[str, TextIO]) -> None: ... def write(self, file: Union[str, TextIO]) -> None: ... def __str__(self) -> str: ... class InvalidFileError(Exception): ...
[ "patrick.kunzm@gmail.com" ]
patrick.kunzm@gmail.com
f692be9989677461e8cb5d3829593c3c761017f4
bd72c02af0bbd8e3fc0d0b131e3fb9a2aaa93e75
/Design/implement_stack_using_queues.py
90c0e731a480e74cfb57531edf2b51ea640c72b6
[]
no_license
harvi7/Leetcode-Problems-Python
d3a5e8898aceb11abc4cae12e1da50061c1d352c
73adc00f6853e821592c68f5dddf0a823cce5d87
refs/heads/master
2023-05-11T09:03:03.181590
2023-04-29T22:03:41
2023-04-29T22:03:41
222,657,838
1
0
null
null
null
null
UTF-8
Python
false
false
866
py
from queue import Queue class MyStack: def __init__(self): """ Initialize your data structure here. """ self.stack = Queue() def push(self, x: int) -> None: """ Push element x onto stack. """ self.stack.put(x); i = 1; while i < self.stack.qsize(): i += 1 self.stack.put(self.stack.get()) def pop(self) -> int: """ Removes the element on top of the stack and returns that element. """ return self.stack.get() def top(self) -> int: """ Get the top element. """ top = self.stack.get() self.push(top) return top def empty(self) -> bool: """ Returns whether the stack is empty. """ return self.stack.empty()
[ "iamharshvirani7@gmail.com" ]
iamharshvirani7@gmail.com
9fb7ec8bf614b85657848553a6966bddee75bccb
795df757ef84073c3adaf552d5f4b79fcb111bad
/r8lib/r83col_print_part.py
457c5bdb95cdf27c187fd4287858d3c0b6468785
[]
no_license
tnakaicode/jburkardt-python
02cb2f9ba817abf158fc93203eb17bf1cb3a5008
1a63f7664e47d6b81c07f2261b44f472adc4274d
refs/heads/master
2022-05-21T04:41:37.611658
2022-04-09T03:31:00
2022-04-09T03:31:00
243,854,197
3
0
null
null
null
null
UTF-8
Python
false
false
3,243
py
#! /usr/bin/env python # def r83col_print_part ( n, a, max_print, title ): #*****************************************************************************80 # ## R83COL_PRINT_PART prints "part" of an R83COL. # # Discussion: # # An R83COL is a (3,N) array of R8's. # # The user specifies MAX_PRINT, the maximum number of lines to print. # # If N, the size of the vector, is no more than MAX_PRINT, then # the entire vector is printed, one entry per line. # # Otherwise, if possible, the first MAX_PRINT-2 entries are printed, # followed by a line of periods suggesting an omission, # and the last entry. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of entries of the vector. # # Input, real A(N,3), the vector to be printed. # # Input, integer MAX_PRINT, the maximum number of lines # to print. # # Input, string TITLE, a title. # if ( 0 < max_print ): if ( 0 < n ): if ( 0 < len ( title ) ): print ( '' ) print ( title ) print ( '' ) if ( n <= max_print ): for i in range ( 0, n ): print ( ' %4d %14g %14g %14g' % ( i, a[i,0], a[i,1], a[i,2] ) ) elif ( 3 <= max_print ): for i in range ( 0, max_print - 2 ): print ( ' %4d %14g %14g %14g' % ( i, a[i,0], a[i,1], a[i,2] ) ) print ( ' .... .............. .............. ..............' ) i = n - 1 print ( ' %4d %14g %14g %14g' % ( i, a[i,0], a[i,1], a[i,2] ) ) else: for i in range ( 0, max_print - 1 ): print ( ' %4d %14g %14g %14g' % ( i, a[i,0], a[i,1], a[i,2] ) ) i = max_print - 1 print ( ' %4d %14g %14g %14g ...more entries...' \ % ( i, a[i,0], a[i,1], a[i,2] ) ) return def r83col_print_part_test ( ): #*****************************************************************************80 # ## R83COL_PRINT_PART_TEST tests R83COL_PRINT_PART. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 April 2015 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'R83COL_PRINT_PART_TEST' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' R83COL_PRINT_PART prints part of an R83COL.' ) n = 10 v = np.array ( [ \ [ 11, 12, 13 ], \ [ 21, 22, 23 ], \ [ 31, 32, 33 ], \ [ 41, 42, 43 ], \ [ 51, 52, 53 ], \ [ 61, 62, 63 ], \ [ 71, 72, 73 ], \ [ 81, 82, 83 ], \ [ 91, 92, 93 ], \ [ 101, 102, 103 ] ] ) max_print = 2 r83col_print_part ( n, v, max_print, ' Output with MAX_PRINT = 2' ) max_print = 5 r83col_print_part ( n, v, max_print, ' Output with MAX_PRINT = 5' ) max_print = 25 r83col_print_part ( n, v, max_print, ' Output with MAX_PRINT = 25' ) # # Terminate. # print ( '' ) print ( 'R83COL_PRINT_PART_TEST:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r83col_print_part_test ( ) timestamp ( )
[ "tnakaicode@gmail.com" ]
tnakaicode@gmail.com
7dda127c3c00949baafaf34b60be20df495fd4e2
2f4f6efd1963aa4e8e749f17b078720c437ae9ac
/time_process.py
b6100d34aff621e09ccb32022c48bbdd9b09ece0
[]
no_license
FlashRepo/Flash-Storm
d248f4ed615096539048be1ec65f1fcb31f1d2ee
2dd953350a5d690c409996512dec30196d8e9199
refs/heads/master
2021-07-15T02:58:36.421446
2017-10-23T07:03:47
2017-10-23T07:03:47
107,943,717
1
0
null
null
null
null
UTF-8
Python
false
false
395
py
import pickle import numpy as np dict = pickle.load(open('time.p')) problems = sorted(dict.keys()) print ', '.join(['Problem', 'MOEAD', 'NSGAII', 'SPEA2']) for problem in problems: print problem, algorithms = sorted(dict[problem].keys()) # print algorithms # print algorithms for algorithm in algorithms: print round(np.mean(dict[problem][algorithm]), 3), print
[ "vivekaxl@gmail.com" ]
vivekaxl@gmail.com
e329f90cf89024a973e4360bf56a43969742fe39
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5658571765186560_1/Python/jfguo/main.py
5cdb0cbc380443d34ead8f2010a9a0172066645e
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
999
py
import os import sys import glob import subprocess import random import fileinput next_line = 0 lines = [line.strip() for line in fileinput.input()] def get_line(): global next_line i = next_line next_line += 1 return lines[i] def calc(): s = get_line().split(' ') X = int(s[0]) R = int(s[1]) C = int(s[2]) if R > C: R, C = C, R if R*C % X != 0: return 'RICHARD' if R < (X + 1)/2: return 'RICHARD' if X == 1: return 'GABRIEL' if X == 2: return 'GABRIEL' if X == 3: return 'GABRIEL' if X == 4: if R == 2: return 'RICHARD' if R == 3: return 'GABRIEL' if R == 4: return 'GABRIEL' if X >= 7: return 'RICHARD' if R >= (X + 1)/2 + 1: return 'GABRIEL' if R*C <= 2*X: return 'RICHARD' return 'GABRIEL' T = int(get_line()) for i in range(1, T + 1): print('Case #%d: %s' % (i, calc()))
[ "eewestman@gmail.com" ]
eewestman@gmail.com
82660f2d91527c4a4c020cc6bd64fd6a5a183eed
be6e6d8af85adf044bf79676b7276c252407e010
/spec/python/test_params_call_extra_parens.py
5035e7de4b9cff4c0b219268de38ae4498a8fa5d
[ "MIT" ]
permissive
kaitai-io/kaitai_struct_tests
516e864d29d1eccc5fe0360d1b111af7a5d3ad2b
3d8a6c00c6bac81ac26cf1a87ca84ec54bf1078d
refs/heads/master
2023-08-19T19:42:47.281953
2023-08-04T20:26:50
2023-08-04T20:26:50
52,155,797
12
41
MIT
2023-07-30T23:30:30
2016-02-20T13:55:39
Ruby
UTF-8
Python
false
false
378
py
# Autogenerated from KST: please remove this line if doing any edits by hand! import unittest from params_call_extra_parens import ParamsCallExtraParens class TestParamsCallExtraParens(unittest.TestCase): def test_params_call_extra_parens(self): with ParamsCallExtraParens.from_file('src/term_strz.bin') as r: self.assertEqual(r.buf1.body, u"foo|b")
[ "greycat@altlinux.org" ]
greycat@altlinux.org
9e4a72cfaa5d511cbc35bccab33d6d759a585c40
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2976/49361/276731.py
c934f824ceb2d2636866731a7c096aa5606facba
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
315
py
import re lines = [] while True: try: lines.append(input()) except: break outputStr = "" for index in range(1, len(lines)): afterStr = re.sub(lines[0].replace(" ", ""), "", lines[index].replace(" ", ""), flags=re.IGNORECASE) outputStr += afterStr + "\n" print(outputStr.strip("\n"))
[ "1069583789@qq.com" ]
1069583789@qq.com
3f04bfd5dc6f5a148c9f8957f359a211e6e91bd0
0e834094f5e4274b279939b81caedec7d8ef2c73
/m2/d05/fork.py
0f760582ce1b6de41ccd05f7672b9e7300500889
[]
no_license
SpringSnowB/All-file
b74eaebe1d54e1410945eaca62c70277a01ef0bf
03485c60e7c07352aee621df94455da3d466b872
refs/heads/master
2020-11-27T23:54:36.984555
2020-01-21T08:42:21
2020-01-21T08:42:21
229,651,737
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
import os print("-----------------") a = 1 pid = os.fork()#子进程从此处开始执行 if pid < 0: print("fail") elif pid ==0: print("child a=",a)#1 a = 10000 else: print("parent a=",a) #1 print("over a=",a) #子进程10000,父进程1
[ "tszxwsb@163.com" ]
tszxwsb@163.com
e36502d092eb4d4f11257c8b70b8846bfef0a973
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/histogram/marker/colorbar/_yanchor.py
5d929c6570d7a6ea82df360ef7b79e5066a0b291
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
507
py
import _plotly_utils.basevalidators class YanchorValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="yanchor", parent_name="histogram.marker.colorbar", **kwargs ): super(YanchorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), values=kwargs.pop("values", ["top", "middle", "bottom"]), **kwargs )
[ "noreply@github.com" ]
hugovk.noreply@github.com
a2b750917d590f2cad5dfbac283319542556e13c
fd717fe6ca74f6d77210cdd57a8c365d27c5bfc6
/pychron/experiment/utilities/mass_spec_utilities.py
e439853d44c9878143faa78ab7e9391af8a64b9f
[ "Apache-2.0" ]
permissive
stephen-e-cox/pychron
1dea0467d904d24c8a3dd22e5b720fbccec5c0ed
681d5bfe2c13e514859479369c2bb20bdf5c19cb
refs/heads/master
2021-01-19T15:40:03.663863
2016-07-14T14:37:16
2016-07-14T14:37:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,294
py
# =============================================================================== # Copyright 2016 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= import os # ============= standard library imports ======================== # ============= local library imports ========================== os.environ['MassSpecDBVersion'] = '16' from pychron.mass_spec.database.massspec_database_adapter import MassSpecDatabaseAdapter from pychron.mass_spec.database.massspec_orm import AnalysesTable, IsotopeTable, DetectorTable db = MassSpecDatabaseAdapter(bind=False) db.host = '129.138.12.160' db.name = 'massspecdata' db.username = 'jross' db.password = 'Jross40*39' db.kind = 'mysql' db.connect(test=False) def fix_reference_detector(rd, aid): with db.session_ctx() as sess: q = sess.query(AnalysesTable) q = q.filter(AnalysesTable.AnalysisID == aid) record = q.one() q = sess.query(DetectorTable) q = q.join(IsotopeTable) q = q.join(AnalysesTable) q = q.filter(AnalysesTable.AnalysisID == aid) for r in q.all(): if r.Label == rd: print 'setting refid current={} new={}'.format(record.RefDetID, r.DetectorID) record.RefDetID = r.DetectorID def fix_reference_detectors(path): with open(path) as rfile: for line in rfile: line = line.strip() if line: aid = int(line) fix_reference_detector('H2', aid) # break path = '/Users/ross/Desktop/Untitled.csv' fix_reference_detectors(path) # ============= EOF =============================================
[ "jirhiker@gmail.com" ]
jirhiker@gmail.com
351ffee98beaac269739f12103d72257fded664c
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r9/Gen/DecFiles/options/12267141.py
fde8c5e02df48c536fc9078ec662b3e30932602c
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
3,212
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r9/Gen/DecFiles/options/12267141.py generated: Fri, 27 Mar 2015 16:10:10 # # Event Type: 12267141 # # ASCII decay Descriptor: [B+ -> (D~0 -> (KS0 -> pi+ pi-) K+ K-) K+ pi- pi+]cc # from Configurables import Generation Generation().EventType = 12267141 Generation().SampleGenerationTool = "SignalRepeatedHadronization" from Configurables import SignalRepeatedHadronization Generation().addTool( SignalRepeatedHadronization ) Generation().SignalRepeatedHadronization.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Bu_D0Kpipi,KSKK=addResTuned,TightCut,PHSP.dec" Generation().SignalRepeatedHadronization.CutTool = "LoKi::GenCutTool/TightCut" Generation().SignalRepeatedHadronization.SignalPIDList = [ 521,-521 ] # from Configurables import LoKi__GenCutTool from Gauss.Configuration import * Generation().SignalRepeatedHadronization.addTool ( LoKi__GenCutTool , 'TightCut' ) tightCut = Generation().SignalRepeatedHadronization.TightCut tightCut.Decay = '^[B+ ==> ^(D~0 => ^(KS0 ==> ^pi+ ^pi-) ^K+ ^K-) ^K+ ^pi- ^pi+]CC' tightCut.Preambulo += [ 'GVZ = LoKi.GenVertices.PositionZ() ' , 'from GaudiKernel.SystemOfUnits import millimeter', 'inAcc = (in_range (0.005, GTHETA, 0.400))', 'goodB = (GP > 55000 * MeV) & (GPT > 5000 * MeV) & (GTIME > 0.135 * millimeter)', 'goodD = (GP > 25000 * MeV) & (GPT > 2500 * MeV)', 'goodKS = (GFAEVX(abs(GVZ), 0) < 2500.0 * millimeter)', 'goodDDaugPi = (GNINTREE ((("K+" == GABSID) | ("pi+" == GABSID)) & (GP > 2000 * MeV) & inAcc, 4) > 3.5)', 'goodKsDaugPi = (GNINTREE (("pi+" == GABSID) & (GP > 2000 * MeV) & inAcc, 4) > 1.5)', 'goodBachKPia = (GNINTREE ((("K+" == GABSID) | ("pi+" == GABSID)) & (GP > 2000 * MeV) & (GPT > 100 * MeV) & inAcc, 4) > 4.5)', 'goodBachKPib = (GNINTREE ((("K+" == GABSID) | ("pi+" == GABSID)) & (GP > 2000 * MeV) & (GPT > 300 * MeV) & inAcc, 4) > 1.5)', ] tightCut.Cuts = { '[B+]cc' : 'goodB & goodBachKPia & goodBachKPib', '[D0]cc' : 'goodD & goodDDaugPi', '[KS0]cc' : 'goodKS & goodKsDaugPi', '[pi+]cc' : 'inAcc' } # Ad-hoc particle gun code from Configurables import ParticleGun pgun = ParticleGun("ParticleGun") pgun.SignalPdgCode = 521 pgun.DecayTool = "EvtGenDecay" pgun.GenCutTool = "DaughtersInLHCb" from Configurables import FlatNParticles pgun.NumberOfParticlesTool = "FlatNParticles" pgun.addTool( FlatNParticles , name = "FlatNParticles" ) from Configurables import MomentumSpectrum pgun.ParticleGunTool = "MomentumSpectrum" pgun.addTool( MomentumSpectrum , name = "MomentumSpectrum" ) pgun.MomentumSpectrum.PdgCodes = [ 521,-521 ] pgun.MomentumSpectrum.InputFile = "$PGUNSDATAROOT/data/Ebeam4000GeV/MomentumSpectrum_521.root" pgun.MomentumSpectrum.BinningVariables = "pteta" pgun.MomentumSpectrum.HistogramPath = "h_pteta" from Configurables import BeamSpotSmearVertex pgun.addTool(BeamSpotSmearVertex, name="BeamSpotSmearVertex") pgun.VertexSmearingTool = "BeamSpotSmearVertex" pgun.EventType = 12267141
[ "slavomirastefkova@b2pcx39016.desy.de" ]
slavomirastefkova@b2pcx39016.desy.de
91f2f0326c39a0175aa8510fe1f285d347efdc54
fb383c3550cdcb1514df17a2e5d87b453240e4a5
/baekjoon/13706.py
ee0b9f933b5e253d683e4f1962ab3f59ba8fa62b
[]
no_license
mingxoxo/Algorithm
5ba84afebe1b0125d43011403610619804c107be
dc352f591c6c8ed84f7dbbeb37a2df4178270605
refs/heads/master
2023-07-30T17:38:00.190966
2023-07-30T08:51:23
2023-07-30T08:51:23
205,862,682
1
2
null
null
null
null
UTF-8
Python
false
false
381
py
# 제곱근 # 23.05.11 # https://www.acmicpc.net/problem/13706 def square_root(n: int) -> int: start, end = 1, n // 2 while start <= end: mid = (start + end) // 2 if mid * mid == n: return mid elif mid * mid < n: start = mid + 1 else: end = mid - 1 return 1 N = int(input()) print(square_root(N))
[ "noreply@github.com" ]
mingxoxo.noreply@github.com
ea57c7126e4dac9e0f5ce7e56a0f128fa3a91ef5
a0dfeb01fd15550961b7e15c504327ea37ce4dea
/home_and_login/migrations/0001_initial.py
0436e1fa98f1ffce003621db14932c8e78e495f9
[]
no_license
theparadoxer02/Colossus
34c4d99f7d14caa0c464036d25b776dde31c4ec0
7d95024acea42b46b598923aef80080cd7890fa2
refs/heads/master
2021-01-19T22:59:25.057466
2017-09-25T18:03:37
2017-09-25T18:03:37
88,902,426
2
1
null
2020-07-11T12:45:14
2017-04-20T19:20:42
CSS
UTF-8
Python
false
false
1,320
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-26 19:50 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='user_details', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('full_name', models.CharField(max_length=50)), ('profile_link', models.URLField(default='/welcome_user')), ('dob', models.DateField(null=True)), ('intro', models.CharField(max_length=200, null=True)), ('photo_link', models.URLField(default='/static/sitewide/anonymous-male.png')), ('followers_total', models.IntegerField(default=0)), ('following_total', models.IntegerField(default=0)), ('projects_total', models.IntegerField(default=0)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "abhimanyu98986@gmail.com" ]
abhimanyu98986@gmail.com
ffd724c24a3e8a69f6d6d092e453a4544c9d2d41
311b08b547e51907fe88e177817f10e5754dedbe
/tests/test_module.py
6e800f1af7fe1dbdbb9dbd206ee1e3478bbd22a4
[ "BSD-3-Clause" ]
permissive
kernc/dill
a17187545ffd6fa3c410ae4763579744f8238326
11effa42b8c486b2139125d094988f6f68595b3c
refs/heads/master
2020-07-05T14:11:30.681507
2016-11-16T12:27:42
2016-11-16T12:27:42
74,115,619
0
0
null
2016-11-18T09:34:14
2016-11-18T09:34:14
null
UTF-8
Python
false
false
1,620
py
#!/usr/bin/env python # # Author: Mike McKerns (mmckerns @caltech and @uqfoundation) # Copyright (c) 2008-2016 California Institute of Technology. # License: 3-clause BSD. The full license text is available at: # - http://trac.mystic.cacr.caltech.edu/project/pathos/browser/dill/LICENSE import sys import dill import test_mixins as module try: from imp import reload except ImportError: pass dill.settings['recurse'] = True cached = (module.__cached__ if hasattr(module, "__cached__") else module.__file__.split(".", 1)[0] + ".pyc") module.a = 1234 pik_mod = dill.dumps(module) module.a = 0 # remove module del sys.modules[module.__name__] del module module = dill.loads(pik_mod) assert hasattr(module, "a") and module.a == 1234 assert module.double_add(1, 2, 3) == 2 * module.fx # Restart, and test use_diff reload(module) try: dill.use_diff() module.a = 1234 pik_mod = dill.dumps(module) module.a = 0 # remove module del sys.modules[module.__name__] del module module = dill.loads(pik_mod) assert hasattr(module, "a") and module.a == 1234 assert module.double_add(1, 2, 3) == 2 * module.fx except AttributeError: pass # clean up import os os.remove(cached) pycache = os.path.join(os.path.dirname(module.__file__), "__pycache__") if os.path.exists(pycache) and not os.listdir(pycache): os.removedirs(pycache) # test when module is None import math def get_lambda(str, **kwarg): return eval(str, kwarg, None) obj = get_lambda('lambda x: math.exp(x)', math=math) assert obj.__module__ is None assert dill.copy(obj)(3) == obj(3) # EOF
[ "mmckerns@8bfda07e-5b16-0410-ab1d-fd04ec2748df" ]
mmckerns@8bfda07e-5b16-0410-ab1d-fd04ec2748df
9394c9c8fd1b27eac0dd7b4bc2d82db67266668f
1d2bbeda56f8fede69cd9ebde6f5f2b8a50d4a41
/easy/python3/c0009_28_implement-strstr/00_leetcode_0009.py
3f3da727753e9087912c82010101009b9d93cff2
[]
no_license
drunkwater/leetcode
38b8e477eade68250d0bc8b2317542aa62431e03
8cc4a07763e71efbaedb523015f0c1eff2927f60
refs/heads/master
2020-04-06T07:09:43.798498
2018-06-20T02:06:40
2018-06-20T02:06:40
127,843,545
0
2
null
null
null
null
UTF-8
Python
false
false
892
py
# DRUNKWATER TEMPLATE(add description and prototypes) # Question Title and Description on leetcode.com # Function Declaration and Function Prototypes on leetcode.com #28. Implement strStr() #Implement strStr(). #Return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack. #Example 1: #Input: haystack = "hello", needle = "ll" #Output: 2 #Example 2: #Input: haystack = "aaaaa", needle = "bba" #Output: -1 #Clarification: #What should we return when needle is an empty string? This is a great question to ask during an interview. #For the purpose of this problem, we will return 0 when needle is an empty string. This is consistent to C's strstr() and Java's indexOf(). #class Solution: # def strStr(self, haystack, needle): # """ # :type haystack: str # :type needle: str # :rtype: int # """ # Time Is Money
[ "Church.Zhong@audiocodes.com" ]
Church.Zhong@audiocodes.com
80a26aad0a1f115f682e53ed5d47c9cbfd137809
03f9666687a147bfd6bace2adfbab6de8879e207
/plugins/action/device_credential.py
2d88230b22e84c11fad07c6f85152d6c6fde77a6
[ "MIT" ]
permissive
robertcsapo/dnacenter-ansible
a221c8dc6ab68d6ccbc710e5e5f3061b90b0de59
33f776f8c0bc7113da73191c301dd1807e6b4a43
refs/heads/main
2023-07-17T08:27:59.902108
2021-09-06T15:58:05
2021-09-06T15:58:05
376,349,036
0
0
MIT
2021-06-12T17:32:27
2021-06-12T17:32:27
null
UTF-8
Python
false
false
2,797
py
from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.plugins.action import ActionBase try: from ansible_collections.ansible.utils.plugins.module_utils.common.argspec_validate import ( AnsibleArgSpecValidator, ) except ImportError: ANSIBLE_UTILS_IS_INSTALLED = False else: ANSIBLE_UTILS_IS_INSTALLED = True from ansible.errors import AnsibleActionFail from ansible_collections.cisco.dnac.plugins.module_utils.dnac import ( ModuleDefinition, DNACModule, dnac_argument_spec, ) from ansible_collections.cisco.dnac.plugins.module_utils.definitions.device_credential import ( module_definition, ) IDEMPOTENT = False # Instantiate the module definition for this module moddef = ModuleDefinition(module_definition) # Get the argument spec for this module and add the 'state' param, # which is common to all modules argument_spec = moddef.get_argument_spec_dict() argument_spec.update(dict(dnac_argument_spec(idempotent=IDEMPOTENT))) # Get the schema conditionals, if applicable required_if = moddef.get_required_if_list() class ActionModule(ActionBase): def __init__(self, *args, **kwargs): if not ANSIBLE_UTILS_IS_INSTALLED: raise AnsibleActionFail("ansible.utils is not installed. Execute 'ansible-galaxy collection install ansible.utils'") super(ActionModule, self).__init__(*args, **kwargs) self._supports_async = False self._result = None # Checks the supplied parameters against the argument spec for this module def _check_argspec(self): aav = AnsibleArgSpecValidator( data=self._task.args, schema=dict(argument_spec=argument_spec), schema_format="argspec", schema_conditionals=dict(required_if=required_if), name=self._task.action, ) valid, errors, self._task.args = aav.validate() if not valid: raise AnsibleActionFail(errors) def run(self, tmp=None, task_vars=None): self._task.diff = False self._result = super(ActionModule, self).run(tmp, task_vars) self._result["changed"] = False self._check_argspec() dnac = DNACModule( moddef=moddef, params=self._task.args, verbosity=self._play_context.verbosity, ) state = self._task.args.get("state") if state == "query": dnac.exec("get") elif state == "delete": dnac.exec("delete") elif state == "create": dnac.disable_validation() dnac.exec("post") elif state == "update": dnac.disable_validation() dnac.exec("put") self._result.update(dnac.exit_json()) return self._result
[ "rcampos@altus.cr" ]
rcampos@altus.cr
9f5e950d9099755d4c2e22f43dda1ea777edf4d7
4a0ed9c079286428e44bf8bcfc82034dac041897
/gallery/views.py
6afa3b8cfd519dce4b362fd22970809cab865f38
[ "MIT" ]
permissive
lilianwaweru/Gallery
3b57fed326e1d868c83944037fe203f35204a650
de9b02e59dac22f45df8c7cbc0570fe7ac685d3f
refs/heads/master
2020-05-21T07:06:38.468356
2019-05-14T13:03:09
2019-05-14T13:03:09
185,950,002
0
0
null
null
null
null
UTF-8
Python
false
false
1,093
py
from django.shortcuts import render from .models import Image,Category,Location # Create your views here. def welcome(request): images = Image.objects.all() return render(request,'welcome.html',{'images':images}) def search_category(request): if 'category' in request.GET and request.GET["category"]: search_term = (request.GET.get("category")).title() searched_images = Image.search_by_category(search_term) message = f"{search_term}" return render(request, 'all-gallery/search.html',{"message":message,"images": searched_images}) else: message = "You haven't searched for any category" return render(request, 'all-gallery/search.html',{"message":message}) def display_location(request,location_id): try: locations = Location.objects.all() location = Location.objects.get(id = location_id) images = Image.objects.filter(image_location = location.id) except: raise Http404() return render(request,'location.html',{'location':location,'images':images,'locations':locations})
[ "lilowesh.lw@gmail.com" ]
lilowesh.lw@gmail.com
9855c9b0200842716863d96c8193f9f091dcf658
70bcdd97318a85acc5bc3f4d47afde696fb7a33b
/jqdata/gta_tables/MAC_INDUSTRY_EMPLOYWAGEQ.py
2ebaaaaaf34a003becdbd973ddf86f715001b314
[]
no_license
Inistlwq/tulipquant-code
f78fe3c4238e98014f6d4f36735fb65a8b88f60d
5959bfe35b6ae2e0e2a204117bda66a13893c64c
refs/heads/master
2020-03-31T11:25:12.145593
2018-04-22T02:16:16
2018-04-22T02:16:16
152,175,727
2
0
null
2018-10-09T02:31:34
2018-10-09T02:31:33
null
UTF-8
Python
false
false
693
py
# coding: utf-8 from sqlalchemy import BigInteger, Column, DateTime, Integer, Numeric, SmallInteger, String, Table, Text, text from sqlalchemy.dialects.mysql.base import LONGBLOB from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() metadata = Base.metadata class MAC_INDUSTRY_EMPLOYWAGEQ(Base): __tablename__ = "MAC_INDUSTRY_EMPLOYWAGEQ" SGNQUARTER = Column(String(14, u'utf8_bin'), primary_key=True, nullable=False) INDUSTRYID = Column(String(20, u'utf8_bin'), primary_key=True, nullable=False) EMPLOY = Column(Numeric(18, 4)) STAFF = Column(Numeric(18, 4)) EMPLOYPAY = Column(Numeric(18, 4)) STAFFWAGE = Column(Numeric(18, 4))
[ "wonghiu45@163.com" ]
wonghiu45@163.com
f35954923107394313f1f954760bca011b8ce868
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/CISCO-EVC-CAPABILITY.py
454b6d6567630d64f7fd37b6bc76b1264ec7ba05
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
3,608
py
# # PySNMP MIB module CISCO-EVC-CAPABILITY (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-EVC-CAPABILITY # Produced by pysmi-0.3.4 at Wed May 1 11:57:40 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsUnion", "ConstraintsIntersection") ciscoAgentCapability, = mibBuilder.importSymbols("CISCO-SMI", "ciscoAgentCapability") AgentCapabilities, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "AgentCapabilities", "NotificationGroup", "ModuleCompliance") iso, ModuleIdentity, Bits, Counter32, MibScalar, MibTable, MibTableRow, MibTableColumn, Gauge32, IpAddress, Integer32, NotificationType, MibIdentifier, TimeTicks, Unsigned32, ObjectIdentity, Counter64 = mibBuilder.importSymbols("SNMPv2-SMI", "iso", "ModuleIdentity", "Bits", "Counter32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Gauge32", "IpAddress", "Integer32", "NotificationType", "MibIdentifier", "TimeTicks", "Unsigned32", "ObjectIdentity", "Counter64") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") ciscoEvcCapability = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 7, 568)) ciscoEvcCapability.setRevisions(('2008-08-26 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoEvcCapability.setRevisionsDescriptions(('Initial version of this MIB module.',)) if mibBuilder.loadTexts: ciscoEvcCapability.setLastUpdated('200808260000Z') if mibBuilder.loadTexts: ciscoEvcCapability.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoEvcCapability.setContactInfo('Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: cs-ethermibs@cisco.com') if mibBuilder.loadTexts: ciscoEvcCapability.setDescription('Agent capabilities for the CISCO-EVC-MIB.') ciscoEvcCapabilityV12R02SR = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 568, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoEvcCapabilityV12R02SR = ciscoEvcCapabilityV12R02SR.setProductRelease('Cisco IOS 12.2 SR Release') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoEvcCapabilityV12R02SR = ciscoEvcCapabilityV12R02SR.setStatus('current') if mibBuilder.loadTexts: ciscoEvcCapabilityV12R02SR.setDescription('CISCO-EVC-MIB capabilities.') ciscoEvcCapabilityV12R02XO = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 568, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoEvcCapabilityV12R02XO = ciscoEvcCapabilityV12R02XO.setProductRelease('Cisco IOS 12.2 XO Release.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoEvcCapabilityV12R02XO = ciscoEvcCapabilityV12R02XO.setStatus('current') if mibBuilder.loadTexts: ciscoEvcCapabilityV12R02XO.setDescription('CISCO-EVC-MIB capabilities.') mibBuilder.exportSymbols("CISCO-EVC-CAPABILITY", ciscoEvcCapability=ciscoEvcCapability, ciscoEvcCapabilityV12R02SR=ciscoEvcCapabilityV12R02SR, PYSNMP_MODULE_ID=ciscoEvcCapability, ciscoEvcCapabilityV12R02XO=ciscoEvcCapabilityV12R02XO)
[ "dcwangmit01@gmail.com" ]
dcwangmit01@gmail.com
eb09ae376760615f5b04d20e921dc431942061bc
c85b91bfdd7eb2fa5a7d6c6a9b722c8548c83105
/vscode/extensions/ms-python.python-2020.3.69010/languageServer.0.5.31/Typeshed/stdlib/3/posix.pyi
d99a4584d6d9a6efe91e80408d29b4bf3a3e89ff
[ "MIT", "Apache-2.0" ]
permissive
ryangniadek/.dotfiles
ddf52cece49c33664b56f01b17d476cf0f1fafb1
be272baf6fb7d7cd4f4db1f6812b710196511ffe
refs/heads/master
2021-01-14T07:43:12.516127
2020-03-22T20:27:22
2020-03-22T20:27:22
242,632,623
0
0
MIT
2020-09-12T17:28:01
2020-02-24T02:50:06
Python
UTF-8
Python
false
false
2,650
pyi
# Stubs for posix # NOTE: These are incomplete! from typing import NamedTuple, Tuple class stat_result: # For backward compatibility, the return value of stat() is also # accessible as a tuple of at least 10 integers giving the most important # (and portable) members of the stat structure, in the order st_mode, # st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime, st_mtime, # st_ctime. More items may be added at the end by some implementations. st_mode: int # protection bits, st_ino: int # inode number, st_dev: int # device, st_nlink: int # number of hard links, st_uid: int # user id of owner, st_gid: int # group id of owner, st_size: int # size of file, in bytes, st_atime: float # time of most recent access, st_mtime: float # time of most recent content modification, st_ctime: float # platform dependent (time of most recent metadata change on Unix, or the time of creation on Windows) st_atime_ns: int # time of most recent access, in nanoseconds st_mtime_ns: int # time of most recent content modification in nanoseconds st_ctime_ns: int # platform dependent (time of most recent metadata change on Unix, or the time of creation on Windows) in nanoseconds # not documented def __init__(self, tuple: Tuple[int, ...]) -> None: ... # On some Unix systems (such as Linux), the following attributes may also # be available: st_blocks: int # number of blocks allocated for file st_blksize: int # filesystem blocksize st_rdev: int # type of device if an inode device st_flags: int # user defined flags for file # On other Unix systems (such as FreeBSD), the following attributes may be # available (but may be only filled out if root tries to use them): st_gen: int # file generation number st_birthtime: int # time of file creation # On Mac OS systems, the following attributes may also be available: st_rsize: int st_creator: int st_type: int uname_result = NamedTuple('uname_result', [('sysname', str), ('nodename', str), ('release', str), ('version', str), ('machine', str)]) times_result = NamedTuple('times_result', [ ('user', float), ('system', float), ('children_user', float), ('children_system', float), ('elapsed', float), ]) waitid_result = NamedTuple('waitid_result', [ ('si_pid', int), ('si_uid', int), ('si_signo', int), ('si_status', int), ('si_code', int), ]) sched_param = NamedTuple('sched_priority', [ ('sched_priority', int), ])
[ "ryan@gniadek.net" ]
ryan@gniadek.net
cb5a7ad60c72cc52d78ddfbdca5cecf634886a08
539815f896acbc88b72338992f1adcd55bd7700f
/demo/movie_svc/app_instance.py
d7fce6337abd89e14700e0110df3a57cb570f72d
[ "MIT" ]
permissive
talkpython/responder-webframework-minicourse
dcb0f38ead081b75a536aca99c6f52fc172c1c0e
321d52d8ddb434952f373a127b51ef3bbfbeb6af
refs/heads/master
2021-06-16T13:39:19.149560
2021-03-11T20:29:24
2021-03-11T20:29:24
178,065,735
29
21
MIT
2021-03-11T20:29:25
2019-03-27T19:58:30
null
UTF-8
Python
false
false
251
py
import responder # CORS wasn't demoed in the course, but is required to be used from # external apps like movie exploder. cors_params = { 'allow_origins': '*', 'allow_methods': '*', } api = responder.API(cors=True, cors_params=cors_params)
[ "mikeckennedy@gmail.com" ]
mikeckennedy@gmail.com
64876e9ed6c56a785bda85f43297a2f5c6c1aaa3
5f8baed3acceaf7b3127f8fbe0ed417070c0e809
/DiSAN/src/utils/logger.py
81b83bca491c2b056252a64abcb03365dde710a0
[ "MIT" ]
permissive
satwik77/Transformer-Computation-Analysis
ead241d848af51fefd85fe365a3ff87b9251bac5
82341f5f2f9cd0831e390f44b338165e45cd6413
refs/heads/main
2022-12-29T01:32:12.081865
2020-10-10T07:04:27
2020-10-10T07:04:27
301,588,833
5
3
null
null
null
null
UTF-8
Python
false
false
3,007
py
import logging import pdb import pandas as pd # Ignore warnings import warnings warnings.filterwarnings("ignore") import json '''Logging Modules''' #log_format='%(asctime)s | %(levelname)s | %(filename)s:%(lineno)s - %(funcName)5s() ] | %(message)s' def get_logger(name, log_file_path='./logs/temp.log', logging_level=logging.INFO, log_format='%(asctime)s | %(levelname)s | %(filename)s: %(lineno)s : %(funcName)s() ::\t %(message)s'): logger = logging.getLogger(name) logger.setLevel(logging_level) formatter = logging.Formatter(log_format) file_handler = logging.FileHandler(log_file_path, mode='w') file_handler.setLevel(logging_level) file_handler.setFormatter(formatter) stream_handler = logging.StreamHandler() stream_handler.setLevel(logging_level) stream_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.addHandler(stream_handler) # logger.addFilter(ContextFilter(expt_name)) return logger def print_log(logger, dict): string = '' for key, value in dict.items(): string += '\n {}: {}\t'.format(key.replace('_', ' '), value) # string = string.strip() logger.info(string) def store_results(config, bleu_score, error_score): #pdb.set_trace() try: with open(config.result_path) as f: res_data =json.load(f) except: res_data = {} try: train_loss = train_loss.item() except: pass try: val_loss = val_loss.item() except: pass #try: data= {'run_name' : str(config.run_name) , 'best bleu score' : str(bleu_score) , 'minimum error' : str(error_score) , 'dataset' : config.dataset , 'd_model' : config.d_model , 'd_ff' : config.d_ff , 'layers' : config.layers , 'heads': config.heads , 'dropout' : config.dropout , 'lr' : config.lr , 'batch_size' : config.batch_size , 'epochs' : config.epochs } # res_data.update(data) res_data[str(config.run_name)] = data with open(config.result_path, 'w', encoding='utf-8') as f: json.dump(res_data, f, ensure_ascii= False, indent= 4) #except: # pdb.set_trace() def store_val_results(config, acc_score): #pdb.set_trace() try: with open(config.val_result_path) as f: res_data = json.load(f) except: res_data = {} try: data= {'run_name' : str(config.run_name) , 'acc score': str(acc_score) , 'dataset' : config.dataset , 'emb1_size': config.emb1_size , 'emb2_size': config.emb2_size , 'cell_type' : config.cell_type , 'hidden_size' : config.hidden_size , 'depth' : config.depth , 'dropout' : config.dropout , 'init_range' : config.init_range , 'bidirectional' : config.bidirectional , 'lr' : config.lr , 'batch_size' : config.batch_size , 'opt' : config.opt , 'use_word2vec' :config.use_word2vec } # res_data.update(data) res_data[str(config.run_name)] = data with open(config.val_result_path, 'w', encoding='utf-8') as f: json.dump(res_data, f, ensure_ascii= False, indent= 4) except: pdb.set_trace()
[ "satwik55@gmail.com" ]
satwik55@gmail.com
4344dd113c53ec44e77b7beb867a74a0a9abcdd1
773f6abee91e5368e43b34d8ad179c4ab9056da1
/gen/referencegenome.py
5733374a02094277fbde4887efd4b26c7b446068
[]
no_license
richstoner/aibs
3dc9489ee6a1db836d58ec736b13d35a7cffc215
bfc7e732b53b4dff55f7c3edccdd0703f4bab25f
refs/heads/master
2021-01-10T05:11:09.484238
2013-03-03T06:19:34
2013-03-03T06:19:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
508
py
# -*- coding: utf-8 -*- # Rich Stoner, 2013 class ReferenceGenome(object): '''aibs.model.referencegenome (autogen)''' # Fields self.id = 0 self.name = '' self.build = '' self.organism_id = 0 # Associations self.organism = None # belongs_to Organism self.genome_locuses = [] # has_many GenomeLocus def __init__(self, initialData={}): for k,v in initData.iteritems(): setattr(self, k, v) # add class methods and private methods here
[ "stonerri@gmail.com" ]
stonerri@gmail.com
6dc7210e4f8cd00b9dae94dcc3d074d9cbffc1d3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02686/s844095657.py
f1ab4403c5eb0d0f166d68bd4338ad075c24471f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
767
py
N = int(input()) S = [input() for _ in range(N)] def solve() : T = [] for s in S : open = 0 close = 0 for c in s : if c == ')' : if open > 0 : open -= 1 else : close += 1 else : open += 1 T.append((open, close)) if sum(op - cl for op, cl in T) != 0 : return 'No' inc = [] dec = [] for op, cl in T : if op >= cl : inc.append((cl, op)) else : dec.append((op, cl)) inc.sort() open = 0 for cl, op in inc : if open >= cl : open += op - cl else : return 'No' close = 0 dec.sort() for op, cl in dec : if close >= op : close += cl - op else : return 'No' return 'Yes' print(solve())
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
fd06fd94704d0b738825aa9fc484c78bdf8ee26e
933f2a9f155b2a4f9746bf2020d1b828bfe49e81
/python基础/day1/if 语句.py
fb1eb4aef52c801e5390c18364af092d427d9f15
[]
no_license
WuAlin0327/python3-notes
d65ffb2b87c8bb23d481ced100d17cda97aef698
1d0d66900f6c4b667b3b84b1063f24ee7823e1bb
refs/heads/master
2020-03-26T04:49:34.937700
2018-12-31T11:12:58
2018-12-31T11:12:58
144,524,404
2
0
null
null
null
null
UTF-8
Python
false
false
204
py
monny = int(input("你有多少钱:")) if monny > 5000: print("I want buy a macbook") elif monny >=3000: print("I want buy a iadp") elif monny >= 2000: print("buy a phone") else: print("no monny")
[ "1032298871@qq.com" ]
1032298871@qq.com
cf37da3f5b81520ea9ba19cc258a0363291042d6
89bcfc45d70a3ca3f0f1878bebd71aa76d9dc5e2
/scrapy_demo/sina_news/sina_news/middlewares.py
819f2c24c10afaf9fbaced6ef0f1b0f49ec5c423
[]
no_license
lichao20000/python_spider
dfa95311ab375804e0de4a31ad1e4cb29b60c45b
81f3377ad6df57ca877463192387933c99d4aff0
refs/heads/master
2022-02-16T20:59:40.711810
2019-09-10T03:13:07
2019-09-10T03:13:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,601
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class SinaNewsSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class SinaNewsDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
[ "64174469@qq.com" ]
64174469@qq.com
e1ee11936044cee591fa34caea14fe7c48692724
a990bd26d3a69d1ea6699c85efa2cea99452c3df
/pytriplets/pythagoreanTriplets.py
9800357dc2720a809abc7bcffed191203f31baa3
[]
no_license
abecus/DS-and-Algorithms
5f1a948a085465ae165090ec957a9d5307ce729d
3259e8183382265a27cf8c91e37d0086175a5703
refs/heads/master
2022-05-05T07:07:08.194243
2022-04-05T16:23:39
2022-04-05T16:23:39
193,111,610
11
6
null
2020-11-18T16:19:18
2019-06-21T14:27:25
Python
UTF-8
Python
false
false
2,315
py
from math import ceil, sqrt def EratosthenesSieve(N:int)-> list: ''' Calculating SPF (Smallest Prime Factor) for every number till N. Time Complexity : O(NloglogN) ''' N+=1 # stores smallest prime factor for every number spf = [*range(N)] # separately marking spf for every even number as 2 for i in range(4, N, 2): spf[i] = 2 for i in range(3, ceil(sqrt(N))): # checking if i is prime if (spf[i] == i): # marking SPF for all numbers divisible by i for j in range(i * i, N, i): # marking spf[j] if it is not previously marked if (spf[j] == j): spf[j] = i return spf def getReducedFactorization(N:int, spf:list)-> int: """ counts repetition of each prime from prime factorisation of N using trial method upon spf list, and calculating the ceil of half of all prime's powers (pow(p, ceil(a/2))) and multiplying them together. """ gamma = 1 while (N!=1): # keep a prime in prev variable prev=spf[N] # for counting the power c=0 # counts power of a prime while spf[N]==prev: c+=1 N//=spf[N] # multiplies the half ceil of power on primes gamma*=pow(prev, ceil(c/2)) prev=spf[N] return gamma def pythagoreanTriplets(n): # calculate spf array spf=EratosthenesSieve((n - int(sqrt((n<<1) -1)))<<1) # keeps the triplet count tripletCount=0 # loopinf for every values of 2*b for b2 in range(4, (n - int(sqrt((n<<1) -1)))<<1, 2): # calculates reduced factor of 2*b gamma=getReducedFactorization(b2, spf) # for findin all triplets from 2*b for i in range(1, int(sqrt(b2*((b2>>1)-1)))//gamma+1): i*=gamma sqVal = i*i q=sqVal//b2 # if z = q+i+(b2>>1) > n break else print triplet if q+i+(b2>>1)>n: break else: # remove comments in this else block to print Triplets x=q+i print((x, (b2>>1)+i, x+(b2>>1))) # tripletCount+=1 return tripletCount if __name__ == "__main__": n=100 print(pythagoreanTriplets(n))
[ "insaaone@gmail.com" ]
insaaone@gmail.com
4ce7e9375fb540a78e89c6052c9ac31834889e7a
90f2cbe1c940a20dcc893837b6033a51d3233931
/python 进阶/面向对象5.py
e0cdc5256497aaf75db084c7e20d655c6faec438
[]
no_license
MaxNcu/Learn_Python
71501f38f6442f3ff2a1de1ff685b8975e50af20
5a1c6edf353ed7447b2ffd4126ad7668d8c5a407
refs/heads/master
2022-01-15T18:56:04.814476
2019-07-20T03:02:02
2019-07-20T03:02:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,178
py
# -*- coding: utf-8 -*- # @Time : 2018/5/3 0003 17:27 # @Author : Langzi # @Blog : www.langzi.fun # @File : 面向对象5.py # @Software: PyCharm import sys import requests reload(sys) sys.setdefaultencoding('utf-8') class gg: url = 0 stat = 0 # 因为使用classmethod后会传入新的变量,所以一开始是需要自己先定义类变量 def __init__(self,url=0,stat=0): # 这里按照正常的定义构造函数 self.url=url self.stat=stat @classmethod # 装饰器,立马执行下面的函数 def split(cls,info): # 这个函数接受两个参数,默认的cls就是这个类的init函数,info就是外面传入进来的 url,stat=map(str,info.split('-')) # 这里转换成了格式化的结构 data = cls(url,stat) # 然后执行这个类第一个方法,这个类构造函数需要传入两个参数,于是就传入了两个参数 return data # 这里就直接返回了函数结果 def outer(self): print self.url print self.stat r = gg.split(('langzi-200')) r.outer() # 这里是调用类方法,与调用实例方法一样
[ "982722261@qq.com" ]
982722261@qq.com
9d3d24b465ffb8dc9148555c52358627c3f4e05b
3551f1150dee2772b1949a199250e4960a71989e
/focusgrouplogs/web.py
0391b7ec78d6461332a0c6ec9d81af8e275f140c
[ "MIT" ]
permissive
ccpgames/focusgrouplogs-frontend
868f4398fb5e965f3a27f66bbba46086dc6906c6
42bd2bac04bbdc49d87ed9218f6b32a1d239c1ee
refs/heads/master
2021-01-17T06:38:04.869762
2018-05-08T18:02:28
2018-05-08T18:02:28
50,437,131
0
2
null
null
null
null
UTF-8
Python
false
false
2,456
py
"""Web routes for focusgrouplogs.""" import os import sys import traceback from flask import render_template from flask import Response from focusgrouplogs import app from focusgrouplogs import cache from focusgrouplogs import FOCUS_GROUPS from focusgrouplogs.datastore import all_content from focusgrouplogs.datastore import log_content from focusgrouplogs.datastore import log_metadata @cache.cached(timeout=None, key_prefix="inline-css") def get_style(): """Reads and returns the inline css styling.""" style = os.path.join(os.path.dirname(__file__), "templates", "style.css") with open(style, "r") as opencss: return opencss.read().strip() @app.route("/<regex('({})'):group>/<date>/".format("|".join(FOCUS_GROUPS)), methods=["GET"]) @cache.memoize(timeout=60) def group_get(group, date): """Displays the most recent day for a group (or specific).""" if date is None: group_logs = all_content(group) else: group_logs = [log_content(group, date)] return render_template( "logs.html", focus_group=group, log_days=group_logs, css=get_style(), ) @app.route("/", methods=["GET"]) @cache.cached(timeout=3600) def main_index(): """Displays links to the focus groups, fairly static.""" return render_template( "index.html", groups=[{"name": f, "logs": log_metadata(f)} for f in FOCUS_GROUPS], css=get_style(), ) @app.route("/ping", methods=["GET"]) def ping_response(): """Return a static 200 OK response.""" return Response("ok", status=200) def traceback_formatter(excpt, value, tback): """Catches all exceptions and re-formats the traceback raised.""" sys.stdout.write("".join(traceback.format_exception(excpt, value, tback))) def hook_exceptions(): """Hooks into the sys module to set our formatter.""" if hasattr(sys.stdout, "fileno"): # when testing, sys.stdout is StringIO # reopen stdout in non buffered mode sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # set the hook sys.excepthook = traceback_formatter def paste(*_, **settings): """For paste, start and return the Flask app.""" hook_exceptions() return app def main(): """Debug/cmdline entry point.""" paste().run( host="0.0.0.0", port=8080, debug=True, use_reloader=False, ) if __name__ == "__main__": main()
[ "github@talsma.ca" ]
github@talsma.ca
39fd5781c172d7c39966c2f8e8ac762b9ae943b6
6b64338c3453d896310a381929fdf61cd846bbb7
/biaobei-pretrain/tacotron/utils/symbols.py
f1e84a10e8d9e07c6bc1ba5b035ec7a4a17c205e
[]
no_license
Tubbz-alt/Taco_Collection
b0e9234ca8309300783b6a258adb0255d3119f93
fb30bab5231c5c22ff03184f428aa43a0700d47d
refs/heads/master
2022-02-28T21:41:15.275047
2019-09-23T14:45:54
2019-09-23T14:45:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
892
py
''' Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. ''' import os import glob AUTO_DETECT_SYMBOLS=True train_text_files = glob.glob(os.path.join("../../female_golden_v2","*.corpus")) if train_text_files and AUTO_DETECT_SYMBOLS: _characters = set() for file in train_text_files: with open(file,"rb") as fin: for line in fin: line = line.decode().split("|")[1] _characters = _characters.union(line) else: _characters = "12345abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ,。!? #*$%" print(_characters) _pad = "_" _eos = "~" symbols = [_pad,_eos]+list(_characters) print("all symbols is {}".format(symbols))
[ "ascyx1218@163.com" ]
ascyx1218@163.com
165877fef4819cb2279ba767229c479c1f17b7e2
a26c8bbd67c614354c72c3eade71981adea28eea
/src/main/resources/devops-as-code/add_ci_to_env.py
9f51d350a015afba8071c5eea1e0e26b41597529
[ "MIT" ]
permissive
xebialabs-community/xld-ansible-step-plugin
481e25350728f50cebcb5a15c64e8d388b2d16ed
c05eec5767214ed91f6e42819212bf0bc5d164b6
refs/heads/master
2021-06-16T01:56:12.030162
2021-02-08T12:19:36
2021-02-08T12:40:12
140,391,653
2
0
null
null
null
null
UTF-8
Python
false
false
2,061
py
# # Copyright 2021 XEBIALABS # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import com.xebialabs.deployit.plugin.api.reflect.Type as Type def query_all_containers(ci_id, results): # print("query {0}".format(ci_id)) result = repositoryService.query(Type.valueOf('udm.Container'), ci_id, None, '', None, None, 0, -1) sub_result = [] for sub_ci in result: results.append(sub_ci) query_all_containers(sub_ci.id, sub_result) results.extend(sub_result) print("environment {0}".format(environment)) print("provisioned_host {0}".format(provisioned_host)) list_of_ci = [] query_all_containers(provisioned_host.id, list_of_ci) members = environment.members boundConfigurationItems = deployed.boundConfigurationItems for ci in list_of_ci: print("Found {0}".format(ci)) read_ci = repositoryService.read(ci.id) members.add(read_ci) boundConfigurationItems.add(read_ci) environment.members = members deployed.boundConfigurationItems = boundConfigurationItems print(environment.members) repositoryService.update([environment])
[ "bmoussaud@xebialabs.com" ]
bmoussaud@xebialabs.com
9d5c116670e57e518c30bc5967961c6a87ecc804
60a831fb3c92a9d2a2b52ff7f5a0f665d4692a24
/IronPythonStubs/release/stubs.min/System/__init___parts/PlatformNotSupportedException.py
01352985b0163c59e7d7ded23ed6bdf1af466c25
[ "MIT" ]
permissive
shnlmn/Rhino-Grasshopper-Scripts
a9411098c5d1bbc55feb782def565d535b27b709
0e43c3c1d09fb12cdbd86a3c4e2ba49982e0f823
refs/heads/master
2020-04-10T18:59:43.518140
2020-04-08T02:49:07
2020-04-08T02:49:07
161,219,695
11
2
null
null
null
null
UTF-8
Python
false
false
1,210
py
class PlatformNotSupportedException(NotSupportedException,ISerializable,_Exception): """ The exception that is thrown when a feature does not run on a particular platform. PlatformNotSupportedException() PlatformNotSupportedException(message: str) PlatformNotSupportedException(message: str,inner: Exception) """ def add_SerializeObjectState(self,*args): """ add_SerializeObjectState(self: Exception,value: EventHandler[SafeSerializationEventArgs]) """ pass def remove_SerializeObjectState(self,*args): """ remove_SerializeObjectState(self: Exception,value: EventHandler[SafeSerializationEventArgs]) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,message=None,inner=None): """ __new__(cls: type) __new__(cls: type,message: str) __new__(cls: type,message: str,inner: Exception) __new__(cls: type,info: SerializationInfo,context: StreamingContext) """ pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass
[ "magnetscoil@gmail.com" ]
magnetscoil@gmail.com
4287da8a49bf1158ca40e7e1ea59381b3a4f26dd
58afefdde86346760bea40690b1675c6639c8b84
/leetcode/magical-string/286608581.py
a40ef5d904e5cc169a0d044c1fefbec7c63a3043
[]
no_license
ausaki/data_structures_and_algorithms
aaa563f713cbab3c34a9465039d52b853f95548e
4f5f5124534bd4423356a5f5572b8a39b7828d80
refs/heads/master
2021-06-21T10:44:44.549601
2021-04-06T11:30:21
2021-04-06T11:30:21
201,942,771
1
0
null
null
null
null
UTF-8
Python
false
false
858
py
# title: magical-string # detail: https://leetcode.com/submissions/detail/286608581/ # datetime: Tue Dec 17 18:06:50 2019 # runtime: 108 ms # memory: 27.3 MB class Solution: magical_string = [[1, 1], [2,1 ], [2, 1]] index = 2 def magicalString(self, n: int) -> int: i = self.index magical_string = self.magical_string while i < n: j = magical_string[i][0] k = 3 - magical_string[-1][0] magical_string.append([k, 0]) if j == 2: magical_string.append([k, 0]) if magical_string[i][0] == 1: magical_string[i][1] = magical_string[i - 1][1] + 1 else: magical_string[i][1] = magical_string[i - 1][1] i += 1 self.__class__.index = i # print(magical_string) return magical_string[n - 1][1]
[ "ljm51689@gmail.com" ]
ljm51689@gmail.com
7bafee4b562b3ea3a9bc7a61db78cfd37ada3ea3
7b74696ff2ab729396cba6c203984fce5cd0ff83
/tradeaccounts/migrations/0049_auto_20200607_1333.py
46a52b8fab8cd24ab327a01dd31af3e81a8c975e
[ "MIT" ]
permissive
webclinic017/investtrack
e9e9a7a8caeecaceebcd79111c32b334c4e1c1d0
4aa204b608e99dfec3dd575e72b64a6002def3be
refs/heads/master
2023-06-18T12:57:32.417414
2021-07-10T14:26:53
2021-07-10T14:26:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
# Generated by Django 3.0.2 on 2020-06-07 05:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tradeaccounts', '0048_auto_20200607_1302'), ] operations = [ migrations.AlterField( model_name='tradeaccountsnapshot', name='applied_period', field=models.CharField(blank=True, choices=[('m', '月'), ('d', '日'), ('w', '周')], default='d', max_length=1, verbose_name='收益周期'), ), ]
[ "jie.han@outlook.com" ]
jie.han@outlook.com
0c2a8e2225a636a1c778cc23813b081284f9b3c5
dffc22f1e363172d91c72582f54edf088ca96ea8
/lib/ffmpeg/vppbase.py
4b49b69842ed9fdd3fbb8bca01a3d3fef7767102
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
FocusLuo/vaapi-fits-1
975d0eec398d91dcb904660b7cfda4c7b02fb01f
52dbc2decf68cf89cb3ed7a11fa7b86e6903e829
refs/heads/master
2023-07-26T07:49:59.857414
2023-05-09T23:25:00
2023-05-11T06:43:06
170,789,770
0
0
BSD-3-Clause
2019-02-15T02:29:44
2019-02-15T02:29:44
null
UTF-8
Python
false
false
3,902
py
### ### Copyright (C) 2022 Intel Corporation ### ### SPDX-License-Identifier: BSD-3-Clause ### import slash from ...lib.common import timefn, get_media, call, exe2os, filepath2os from ...lib.ffmpeg.util import have_ffmpeg, BaseFormatMapper from ...lib.mixin.vpp import VppMetricMixin from ...lib import metrics2 @slash.requires(have_ffmpeg) class BaseVppTest(slash.Test, BaseFormatMapper, VppMetricMixin): def before(self): self.refctx = [] self.post_validate = lambda: None self.hwdevice = f"hw:{get_media().render_device}" def get_input_formats(self): return self.caps.get("ifmts", []) def get_output_formats(self): return self.caps.get("ofmts", []) def gen_vpp_opts(self): raise NotImplementedError def gen_input_opts(self): if self.vpp_op in ["deinterlace"]: opts = "-c:v {ffdecoder}" elif self.vpp_op in ["stack"]: opts = "" else: opts = "-f rawvideo -pix_fmt {mformat} -s:v {width}x{height}" opts += " -i {ossource}" return opts def gen_output_opts(self): fcomplex = ["composite", "stack"] vpfilter = self.gen_vpp_opts() vpfilter.append("hwdownload") vpfilter.append("format={ohwformat}") opts = "-filter_complex" if self.vpp_op in fcomplex else "-vf" opts += f" '{','.join(vpfilter)}'" opts += " -pix_fmt {mformat}" if self.vpp_op not in ["csc"] else "" opts += " -f rawvideo -fps_mode passthrough -an -vframes {frames} -y {osdecoded}" return opts @timefn("ffmpeg:vpp") def call_ffmpeg(self, iopts, oopts): if vars(self).get("decoded", None) is not None: get_media()._purge_test_artifact(self.decoded) self.decoded = get_media()._test_artifact2("yuv") self.osdecoded = filepath2os(self.decoded) iopts = iopts.format(**vars(self)) oopts = oopts.format(**vars(self)) call( f"{exe2os('ffmpeg')} -hwaccel {self.hwaccel}" f" -init_hw_device {self.hwaccel}={self.hwdevice}" f" -hwaccel_output_format {self.hwaccel}" f" -v verbose {iopts} {oopts}" ) def validate_caps(self): ifmts = self.get_input_formats() ofmts = self.get_output_formats() self.ifmt = self.format self.ofmt = self.format if "csc" != self.vpp_op else self.csc self.mformat = self.map_format(self.format) if self.mformat is None: slash.skip_test(f"ffmpeg.{self.format} unsupported") if self.vpp_op in ["csc"]: self.ihwformat = self.map_format(self.ifmt if self.ifmt in ifmts else None) self.ohwformat = self.map_format(self.ofmt if self.ofmt in ofmts else None) else: self.ihwformat = self.map_best_hw_format(self.ifmt, ifmts) self.ohwformat = self.map_best_hw_format(self.ofmt, ofmts) if self.ihwformat is None: slash.skip_test(f"{self.ifmt} unsupported") if self.ohwformat is None: slash.skip_test(f"{self.ofmt} unsupported") if self.vpp_op in ["composite"]: self.owidth, self.oheight = self.width, self.height for comp in self.comps: self.owidth = max(self.owidth, self.width + comp['x']) self.oheight = max(self.oheight, self.height + comp['y']) self.post_validate() def vpp(self): self.validate_caps() iopts = self.gen_input_opts() oopts = self.gen_output_opts() self.ossource = filepath2os(self.source) self.call_ffmpeg(iopts, oopts) if vars(self).get("r2r", None) is not None: assert type(self.r2r) is int and self.r2r > 1, "invalid r2r value" metric = metrics2.factory.create(metric = dict(type = "md5", numbytes = -1)) metric.update(filetest = self.decoded) metric.expect = metric.actual # the first run is our reference for r2r metric.check() for i in range(1, self.r2r): self.call_ffmpeg(iopts, oopts) metric.update(filetest = self.decoded) metric.check() else: self.check_metrics()
[ "ullysses.a.eoff@intel.com" ]
ullysses.a.eoff@intel.com
3d27b8603e7399f16a976fd41a6dda3461f31a61
a1cbe24cb8646e7af91a64d1fbfce4a4d7adce99
/teesta/config/desktop.py
0b643613f46c5abe037d298f362e72a3fa2b58c6
[ "MIT" ]
permissive
mbauskar/teesta
a4d32f8ec941be42f08d832ad922f092bf77b2b8
004bacefec97759e8abf525a58da2f4b17fb9448
refs/heads/master
2021-01-24T01:28:06.474339
2016-06-22T10:01:29
2016-06-22T10:01:29
61,936,561
1
0
null
2016-06-25T09:37:11
2016-06-25T09:37:11
null
UTF-8
Python
false
false
261
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from frappe import _ def get_data(): return [ { "module_name": "Teesta", "color": "grey", "icon": "octicon octicon-file-directory", "type": "module", "label": _("Teesta") } ]
[ "mbauskar@gmail.com" ]
mbauskar@gmail.com
730fd4d9ec2574b3ee5ec4a4b6f7490e1b36834c
e089f2598400d4115f9f1a91c48c7eef40e6d251
/vgg16_2.py
423a087f0d1ad03d149d1deda559efc8d94e0215
[]
no_license
cwarny/flower-teller
c261ef10077f0b65d96bdb0e28a3e013ef32cef5
36b4350e7257ac11d3e89cb594f047963c65b3ac
refs/heads/master
2021-01-21T15:49:39.393488
2017-06-26T02:13:47
2017-06-26T02:13:47
95,398,519
0
0
null
null
null
null
UTF-8
Python
false
false
3,280
py
import json import csv import numpy as np from numpy.random import random, permutation from scipy import misc, ndimage from scipy.ndimage.interpolation import zoom from matplotlib import pyplot as plt from PIL import Image from sklearn.preprocessing import OneHotEncoder import keras from keras import backend as K from keras.utils.data_utils import get_file from keras.models import Sequential, Model from keras.layers.core import Flatten, Dense, Dropout, Lambda from keras.layers import Input from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from keras.optimizers import SGD, RMSprop, Adam from keras.preprocessing import image def ConvBlock(layers, model, filters): for i in range(layers): model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(filters, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) def FCBlock(model): model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) vgg_mean = np.array([123.68, 116.779, 103.939]).reshape((3,1,1)) def vgg_preprocess(x): x = x - vgg_mean # subtract mean return x[:, ::-1] # reverse axis bgr->rgb def VGG_16(): model = Sequential() model.add(Lambda(vgg_preprocess, input_shape=(3,224,224))) ConvBlock(2, model, 64) ConvBlock(2, model, 128) ConvBlock(3, model, 256) ConvBlock(3, model, 512) ConvBlock(3, model, 512) model.add(Flatten()) FCBlock(model) FCBlock(model) model.add(Dense(1000, activation='softmax')) return model model = VGG_16() fpath = get_file('vgg16.h5', 'vgg16.h5', cache_subdir='models') # See: https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3 model.load_weights(fpath) def get_batches(dirname, gen=image.ImageDataGenerator(), shuffle=True, batch_size=4, class_mode='categorical', target_size=(224,224)): return gen.flow_from_directory(dirname, target_size=target_size, class_mode=class_mode, shuffle=shuffle, batch_size=batch_size) val_batches = get_batches('n11669921/sample/valid', shuffle=False, batch_size=64) batches = get_batches('n11669921/sample/train', shuffle=False, batch_size=64) def onehot(x): return np.array(OneHotEncoder().fit_transform(x.reshape(-1,1)).todense()) val_classes = val_batches.classes trn_classes = batches.classes val_labels = onehot(val_classes) trn_labels = onehot(trn_classes) # Fine-tuning model.pop() for layer in model.layers: layer.trainable = False model.add(Dense(121, activation='softmax')) def fit_model(model, batches, val_batches, nb_epoch=1): model.fit_generator(batches, samples_per_epoch=batches.N, nb_epoch=nb_epoch, validation_data=val_batches, nb_val_samples=val_batches.N) opt = RMSprop(lr=0.1) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) fit_model(model, batches, val_batches, nb_epoch=2) preds = model.predict_classes(val_data, batch_size=64) probs = model.predict_proba(val_data, batch_size=64)[:,0] layers = model.layers # Get the index of the first dense layer first_dense_idx = [index for index,layer in enumerate(layers) if type(layer) is Dense][0] # Set this and all subsequent layers to trainable for layer in layers[first_dense_idx:]: layer.trainable = True K.set_value(opt.lr, 0.0001) fit_model(model, batches, val_batches, 3) model.save_weights('models/finetune2.h5')
[ "cedric.warny@gmail.com" ]
cedric.warny@gmail.com
456f8a27016afc6e1e5da8a314af1625002e861a
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4352/codes/1649_2445.py
c823fb8e8c5b6c16933c41968349e882bb866230
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
225
py
escala = (input("digite a escala: (C/F)")) valor = float(input("digite a temperatura: ")) formula1 = 5/9 * (valor - 32) formula2 = 9*valor/5 + 32 if escala == "F": print(round(formula1, 2)) else: print(round(formula2, 2))
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
ad4a165dfc6950d2c638cdd134f1deeef8352d52
cde2f83809b89ae0b01a7b30b9caae83183d09a0
/correlation.py
9825fc5f79db4b3d456117cd1171a2f4a5337ad5
[]
no_license
airbaggie/judgmental_eye
264fa8f4aaec452f4acbf34dbb99d070408c2c22
67cb86e450133d253c74b07950a846bf2bb4f06f
refs/heads/master
2020-06-08T21:32:54.271881
2019-06-24T04:12:58
2019-06-24T04:12:58
193,310,214
0
0
null
null
null
null
UTF-8
Python
false
false
753
py
from math import sqrt def pearson(pairs): """Return Pearson correlation for pairs. Using a set of pairwise ratings, produces a Pearson similarity rating. """ series_1 = [float(pair[0]) for pair in pairs] series_2 = [float(pair[1]) for pair in pairs] sum_1 = sum(series_1) sum_2 = sum(series_2) squares_1 = sum([n * n for n in series_1]) squares_2 = sum([n * n for n in series_2]) product_sum = sum([n * m for n, m in pairs]) size = len(pairs) numerator = product_sum - ((sum_1 * sum_2) / size) denominator = sqrt( (squares_1 - (sum_1 * sum_1) / size) * (squares_2 - (sum_2 * sum_2) / size) ) if denominator == 0: return 0 return numerator / denominator
[ "vagrant@vagrant.vm" ]
vagrant@vagrant.vm
7dc433e6a444ecf139658897f4b616a313f2c5ee
050fc5ca698dfd7612dee42aa980fc7b5eee40a2
/tests/plugin/data/sw_kafka/test_kafka.py
30f9f02021b73bbc4f9a958cb224e19b9557fff7
[ "Apache-2.0" ]
permissive
apache/skywalking-python
8ac6ce06630c519f9984a45e74c1fcc88cf5b9d6
1a360228c63cd246dd4c5dd8e1f09bdd5556ad7d
refs/heads/master
2023-09-05T02:45:56.225937
2023-08-28T22:19:24
2023-08-28T22:19:24
261,456,329
178
122
Apache-2.0
2023-08-28T22:19:26
2020-05-05T12:13:49
Python
UTF-8
Python
false
false
1,352
py
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Callable import pytest import requests from skywalking.plugins.sw_kafka import support_matrix from tests.orchestrator import get_test_vector from tests.plugin.base import TestPluginBase @pytest.fixture def prepare(): # type: () -> Callable return lambda *_: requests.get('http://0.0.0.0:9090/users', timeout=5) class TestPlugin(TestPluginBase): @pytest.mark.parametrize('version', get_test_vector(lib_name='kafka-python', support_matrix=support_matrix)) def test_plugin(self, docker_compose, version): self.validate()
[ "noreply@github.com" ]
apache.noreply@github.com
695e6a3453693a6839a8274d69b5d35e909f9015
a87f87e71d971bc8d6c205400052a47f8d957e5d
/psuedo_train.py
b0fd34acf099b173fe37b8a78a74967baf39f36e
[]
no_license
bcaitech1/p1-img-MaiHon
045eef675a92bb9b26532ff930f919fe3c6e6919
d17a925e301349e167327c5eab9d3b65f06d61a3
refs/heads/master
2023-04-08T10:22:25.803079
2021-04-19T12:22:12
2021-04-19T12:22:12
359,440,859
2
1
null
null
null
null
UTF-8
Python
false
false
3,604
py
import os import torch import random import argparse import numpy as np import pandas as pd import albumentations as A from tqdm import tqdm from src.models import * from src.configs.config import InferConfig from src.dataset import PseudoDataset import torch.nn.functional as F from torch.utils.data import DataLoader def seed_everything(seed=2021): random.seed(seed) np.random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False import imgaug imgaug.random.seed(seed) def main(): parser = argparse.ArgumentParser(description='Arguments') parser.add_argument('--seed', default=43, type=int, help='Reproduction Seed') parser.add_argument('--batch_size', default=16, type=int) parser.add_argument('--postfix', required=True) parser.add_argument('--model_type', required=True) parser.add_argument('--tta', default=0, type=int) args = parser.parse_args() seed_everything(args.seed) cfg = InferConfig(args) tta_infer = True if args.tta == 1 else False if tta_infer: print("TTA Inference") tta_tfms = [ # A.CLAHE(clip_limit=2.0, p=1.0), --> 넣어도 같은 결과나옴 A.HorizontalFlip(p=1.0), ] else: tta_tfms = None if tta_infer: infer_ds = PseudoDataset(cfg, tta_tfms) else: infer_ds = PseudoDataset(cfg) infer_dl = DataLoader( infer_ds, batch_size=args.batch_size, shuffle=False, num_workers=3, pin_memory=True ) models = [] for i in range(len(cfg.ckpts)): model = Net(cfg) model = model.to(cfg.device) save_dict = torch.load(cfg.ckpts[i]) print(f"Epoch: {save_dict['epoch']}") print(f"Loss : {save_dict['loss']}") state_dict = save_dict["state_dict"] model.load_state_dict(state_dict) models.append(model) print(f"Total {len(models)} models loaded.") if tta_infer: pred_paths = [] predictions = [] with torch.no_grad(): for sample in tqdm(infer_dl, total=len(infer_dl)): images = sample['image'] paths = np.array(sample['path']) pred = 0 for image in images: for model in models: model.eval() pred = model(image.to(cfg.device)) pred += F.log_softmax(pred, dim=-1) _, pred = torch.max(pred / (len(models)), -1) predictions.extend(pred.detach().cpu().numpy()) pred_paths.extend(paths) else: pred_paths = [] predictions = [] with torch.no_grad(): for sample in tqdm(infer_dl, total=len(infer_dl)): images = sample['image'].to(cfg.device) paths = np.array(sample['path']) pred = 0 for model in models: model.eval() pred = model(images) pred += F.log_softmax(pred, dim=-1) _, pred = torch.max(pred / (len(models)), -1) predictions.extend(pred.detach().cpu().numpy()) pred_paths.extend(paths) pseudo = pd.DataFrame(data={ 'image': pred_paths, 'label': predictions }) pseudo.to_csv(cfg.submission_dir, index=False) print("Inference Done.") if __name__ == "__main__": main()
[ "mai.hong0924@gmail.com" ]
mai.hong0924@gmail.com
f44312a56f753dec7e321a13f2d402666c08d473
779af874adf1647461981b0c36530cf9924f5f01
/python3/dist-packages/plainbox/impl/exporter/text.py
c8889b30876cfff0a422e3a3d37debfa5f7bf396
[]
no_license
hitsuyo/Library_Python_3.5
8974b5de04cb7780b0a1a75da5cb5478873f08e7
374e3f9443e4d5cae862fd9d81db8b61030ae172
refs/heads/master
2022-11-05T23:46:47.188553
2018-01-04T19:29:05
2018-01-04T19:29:05
116,093,537
1
2
null
2022-10-26T03:07:06
2018-01-03T05:02:20
Python
UTF-8
Python
false
false
3,001
py
# This file is part of Checkbox. # # Copyright 2012 Canonical Ltd. # Written by: # Zygmunt Krynicki <zygmunt.krynicki@canonical.com> # # Checkbox is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3, # as published by the Free Software Foundation. # # Checkbox is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Checkbox. If not, see <http://www.gnu.org/licenses/>. """ :mod:`plainbox.impl.exporter.text` -- plain text exporter ========================================================= .. warning:: THIS MODULE DOES NOT HAVE STABLE PUBLIC API """ from plainbox.i18n import gettext as _ from plainbox.impl.color import Colorizer from plainbox.impl.exporter import SessionStateExporterBase from plainbox.impl.result import outcome_meta class TextSessionStateExporter(SessionStateExporterBase): """Human-readable session state exporter.""" def __init__(self, option_list=None, color=None, exporter_unit=None): super().__init__(option_list, exporter_unit=exporter_unit) self.C = Colorizer(color) def get_session_data_subset(self, session_manager): return session_manager.state def dump(self, session, stream): for job in session.run_list: state = session.job_state_map[job.id] if state.result.is_hollow: continue if self.C.is_enabled: stream.write( " {}: {}\n".format( self.C.custom( outcome_meta(state.result.outcome).unicode_sigil, outcome_meta(state.result.outcome).color_ansi ), state.job.tr_summary(), ).encode("UTF-8")) if len(state.result_history) > 1: stream.write(_(" history: {0}\n").format( ', '.join( self.C.custom( result.outcome_meta().tr_outcome, result.outcome_meta().color_ansi) for result in state.result_history) ).encode("UTF-8")) else: stream.write( "{:^15}: {}\n".format( state.result.tr_outcome(), state.job.tr_summary(), ).encode("UTF-8")) if state.result_history: print(_("History:"), ', '.join( self.C.custom( result.outcome_meta().unicode_sigil, result.outcome_meta().color_ansi) for result in state.result_history))
[ "nguyentansang3417@gmail.com" ]
nguyentansang3417@gmail.com
3d248b9822e566b434bc50291ba5c73e7f9d7aa3
564d6a4d305a8ac6a7e01c761831fb2081c02d0f
/sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2018_06_01/aio/operations/_virtual_machine_run_commands_operations.py
ae68dd96f544a951679e1e4b41833dc0b708fe85
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
paultaiton/azure-sdk-for-python
69af4d889bac8012b38f5b7e8108707be679b472
d435a1a25fd6097454b7fdfbbdefd53e05029160
refs/heads/master
2023-01-30T16:15:10.647335
2020-11-14T01:09:50
2020-11-14T01:09:50
283,343,691
0
0
MIT
2020-07-28T22:43:43
2020-07-28T22:43:43
null
UTF-8
Python
false
false
7,966
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualMachineRunCommandsOperations: """VirtualMachineRunCommandsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2018_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, location: str, **kwargs ) -> AsyncIterable["models.RunCommandListResult"]: """Lists all available run commands for a subscription in a location. :param location: The location upon which run commands is queried. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RunCommandListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2018_06_01.models.RunCommandListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RunCommandListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str', pattern=r'^[-\w\._]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RunCommandListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/runCommands'} # type: ignore async def get( self, location: str, command_id: str, **kwargs ) -> "models.RunCommandDocument": """Gets specific run command for a subscription in a location. :param location: The location upon which run commands is queried. :type location: str :param command_id: The command id. :type command_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RunCommandDocument, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2018_06_01.models.RunCommandDocument :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RunCommandDocument"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str', pattern=r'^[-\w\._]+$'), 'commandId': self._serialize.url("command_id", command_id, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RunCommandDocument', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/runCommands/{commandId}'} # type: ignore
[ "noreply@github.com" ]
paultaiton.noreply@github.com
3a6ccd4f7a0edffa6f93e9687c076417d0a1b0d7
7b5828edda7751700ca7002b40a214e39e5f48a8
/EA/simulation/__hooks__.py
85e30235b7cb2d5c0d2088433d93d3f9f0f6c835
[]
no_license
daniela-venuta/Sims-4-Python-Script-Workspace
54c33dac02f84daed66f46b7307f222fede0fa62
f408b28fb34626b2e3b2953152343d591a328d66
refs/heads/main
2023-03-29T18:08:39.202803
2021-03-30T19:00:42
2021-03-30T19:00:42
353,111,243
1
0
null
null
null
null
UTF-8
Python
false
false
479
py
RELOADER_ENABLED = False __enable_gc_callback = True import gc try: import _profile except: __enable_gc_callback = False def system_init(gameplay): import sims4.importer sims4.importer.enable() print('Server Startup') if __enable_gc_callback: gc.callbacks.append(_profile.notify_gc_function) def system_shutdown(): global RELOADER_ENABLED import sims4.importer sims4.importer.disable() RELOADER_ENABLED = False
[ "44103490+daniela-venuta@users.noreply.github.com" ]
44103490+daniela-venuta@users.noreply.github.com