blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
a941aa45b4e10dc6b7401fbe7ba650f95322f544
dd6dd68d17b7355e01c4ce86649423974bb69c50
/Masters/migrations/0002_serialnumber.py
b2266937dd7911f5043e0f92d9384abefe27e6ea
[ "MIT" ]
permissive
adithyanps/netprofit-django
2b9953296fb016e4a16b30768ba864f91882573f
7ba87f054d09a201352635bb6cf8d0112208609e
refs/heads/master
2020-05-04T16:43:14.547552
2019-09-30T13:20:07
2019-09-30T13:20:07
179,285,814
0
0
null
null
null
null
UTF-8
Python
false
false
835
py
# Generated by Django 2.2.4 on 2019-09-25 08:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Masters', '0001_initial'), ] operations = [ migrations.CreateModel( name='SerialNumber', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('prefix', models.CharField(max_length=6)), ('suffix', models.CharField(max_length=6)), ('start_number', models.IntegerField()), ('padding', models.IntegerField()), ('type', models.CharField(choices=[('CN', 'CreditNote'), ('DN', 'DebitNote'), ('SI', 'Sales'), ('CR', 'customer_reciept')], max_length=10)), ], ), ]
[ "adithynps3@gmial.com" ]
adithynps3@gmial.com
4a1e2396753dbd98038ff0f8e6b6c8c9df9d2267
1337ccefdeddc753090281d473fa1e08d42b6884
/bnpl/plugin_itunes.py
f85c544dc2c7004c8fd8d1b161314418b8a5db90
[]
no_license
abelsonlive/bnpl
8bd97d7bec8933642188814e07a38b544bcb3963
8f49a6d257fab75b7659ba2bae502595a164b8ee
refs/heads/master
2021-01-02T08:46:39.093073
2017-01-30T19:09:57
2017-01-30T19:09:57
76,924,249
2
0
null
null
null
null
UTF-8
Python
false
false
391
py
from pyItunes import Library from bnpl import Option, OptionSet from bnpl import Extractor class ItunesSongs(Extractor): """ Extract sounds from your Itunes Library. """ options = OptionSet( Option('library_xml', type='path', required=True) ) def run(self): """ """ l = Library(self.options['library_xml']) for id, song in l.songs.items(): yield song
[ "brianabelson@gmail.com" ]
brianabelson@gmail.com
7fcd687644a4140303be421ead340e6b0a7527f4
e27f9f1f8bef8b1f4676df84ee3e753974d21a1c
/ignite/contrib/metrics/precision_recall_curve.py
5021315904b334d819722a75e9cb9036f4d4d11b
[ "BSD-3-Clause" ]
permissive
pytorch/ignite
8fb275638e94e702762eec932b21dc8df7a54cb0
34a707e53785cf8a524589f33a570a7516fe064e
refs/heads/master
2023-09-02T00:27:22.485479
2023-08-31T15:10:14
2023-08-31T15:10:14
111,835,796
4,613
788
BSD-3-Clause
2023-09-13T07:46:41
2017-11-23T17:31:21
Python
UTF-8
Python
false
false
5,596
py
from typing import Any, Callable, cast, Tuple, Union import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import EpochMetric def precision_recall_curve_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> Tuple[Any, Any, Any]: try: from sklearn.metrics import precision_recall_curve except ImportError: raise ModuleNotFoundError("This contrib module requires scikit-learn to be installed.") y_true = y_targets.cpu().numpy() y_pred = y_preds.cpu().numpy() return precision_recall_curve(y_true, y_pred) class PrecisionRecallCurve(EpochMetric): """Compute precision-recall pairs for different probability thresholds for binary classification task by accumulating predictions and the ground-truth during an epoch and applying `sklearn.metrics.precision_recall_curve <https://scikit-learn.org/stable/modules/generated/ sklearn.metrics.precision_recall_curve.html#sklearn.metrics.precision_recall_curve>`_ . Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. check_compute_fn: Default False. If True, `precision_recall_curve <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html #sklearn.metrics.precision_recall_curve>`_ is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function. Note: PrecisionRecallCurve expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below: .. code-block:: python def sigmoid_output_transform(output): y_pred, y = output y_pred = torch.sigmoid(y_pred) return y_pred, y avg_precision = PrecisionRecallCurve(sigmoid_output_transform) Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: y_pred = torch.tensor([0.0474, 0.5987, 0.7109, 0.9997]) y_true = torch.tensor([0, 0, 1, 1]) prec_recall_curve = PrecisionRecallCurve() prec_recall_curve.attach(default_evaluator, 'prec_recall_curve') state = default_evaluator.run([[y_pred, y_true]]) print("Precision", [round(i, 4) for i in state.metrics['prec_recall_curve'][0].tolist()]) print("Recall", [round(i, 4) for i in state.metrics['prec_recall_curve'][1].tolist()]) print("Thresholds", [round(i, 4) for i in state.metrics['prec_recall_curve'][2].tolist()]) .. testoutput:: Precision [0.5, 0.6667, 1.0, 1.0, 1.0] Recall [1.0, 1.0, 1.0, 0.5, 0.0] Thresholds [0.0474, 0.5987, 0.7109, 0.9997] """ def __init__( self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False, device: Union[str, torch.device] = torch.device("cpu"), ) -> None: super(PrecisionRecallCurve, self).__init__( precision_recall_curve_compute_fn, # type: ignore[arg-type] output_transform=output_transform, check_compute_fn=check_compute_fn, device=device, ) def compute(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # type: ignore[override] if len(self._predictions) < 1 or len(self._targets) < 1: raise NotComputableError("PrecisionRecallCurve must have at least one example before it can be computed.") if self._result is None: _prediction_tensor = torch.cat(self._predictions, dim=0) _target_tensor = torch.cat(self._targets, dim=0) ws = idist.get_world_size() if ws > 1: # All gather across all processes _prediction_tensor = cast(torch.Tensor, idist.all_gather(_prediction_tensor)) _target_tensor = cast(torch.Tensor, idist.all_gather(_target_tensor)) if idist.get_rank() == 0: # Run compute_fn on zero rank only precision, recall, thresholds = cast(Tuple, self.compute_fn(_prediction_tensor, _target_tensor)) precision = torch.tensor(precision, device=_prediction_tensor.device) recall = torch.tensor(recall, device=_prediction_tensor.device) # thresholds can have negative strides, not compatible with torch tensors # https://discuss.pytorch.org/t/negative-strides-in-tensor-error/134287/2 thresholds = torch.tensor(thresholds.copy(), device=_prediction_tensor.device) else: precision, recall, thresholds = None, None, None if ws > 1: # broadcast result to all processes precision = idist.broadcast(precision, src=0, safe_mode=True) recall = idist.broadcast(recall, src=0, safe_mode=True) thresholds = idist.broadcast(thresholds, src=0, safe_mode=True) self._result = (precision, recall, thresholds) # type: ignore[assignment] return cast(Tuple[torch.Tensor, torch.Tensor, torch.Tensor], self._result)
[ "noreply@github.com" ]
pytorch.noreply@github.com
e4fcd91448875458507f16667600fe6a845f31a3
403eac0dab1a935bf2ce1833a950a29ea5bc1d0b
/sentencepiece的使用.py
bd9b013f11aa4224b1c676e5b7c2b8b33899b978
[ "MIT" ]
permissive
Le-Code/nlp-tutorial
ada91aaa0e50ff72bf4a24d70c40f67b58191f94
c8f46f702cc8643bb252a65b0a8cf375c7bd4704
refs/heads/master
2020-09-25T18:39:17.726661
2019-11-05T16:29:09
2019-11-05T16:29:09
226,065,142
1
0
null
2019-12-05T09:30:57
2019-12-05T09:30:56
null
UTF-8
Python
false
false
892
py
''' ` % python >>> import sentencepiece as spm >>> sp = spm.SentencePieceProcessor() >>> sp.Load("test/test_model.model") True >>> sp.EncodeAsPieces("This is a test") ['\xe2\x96\x81This', '\xe2\x96\x81is', '\xe2\x96\x81a', '\xe2\x96\x81', 't', 'est'] >>> sp.EncodeAsIds("This is a test") [284, 47, 11, 4, 15, 400] >>> sp.DecodePieces(['\xe2\x96\x81This', '\xe2\x96\x81is', '\xe2\x96\x81a', '\xe2\x96\x81', 't', 'est']) 'This is a test' >>> sp.DecodeIds([284, 47, 11, 4, 15, 400]) 'This is a test' >>> sp.GetPieceSize() 1000 >>> sp.IdToPiece(2) '</s>' >>> sp.PieceToId('</s>') 2 >>> len(sp) 1000 >>> sp['</s>'] 2 ` ''' #打算弄2个词表,一个是英文的一个是中文的,这样分散开会提高代码运行速度.词表小,会提高收敛速度, import sentencepiece as spm sp = spm.SentencePieceProcessor() help(sp) ''' 用法:https://github.com/zhangbo2008/sentencepiece '''
[ "15122306087@163.com" ]
15122306087@163.com
4ade1604112ef44e3fd921651808a154f424ddc5
c7d91529db199322e39e54fe4051a75704ea843e
/算法4/字符串/字符串排序.py
7194b2ca9bd98f1e8a4ad54cbca048dd9bead5fa
[]
no_license
2226171237/Algorithmpractice
fc786fd47aced5cd6d96c45f8e728c1e9d1160b7
837957ea22aa07ce28a6c23ea0419bd2011e1f88
refs/heads/master
2020-12-26T07:20:37.226443
2020-09-13T13:31:05
2020-09-13T13:31:05
237,431,164
0
0
null
null
null
null
UTF-8
Python
false
false
3,639
py
def keyIndexSort(arr,R): '''键索引计数法(小整数排序)''' aux=arr.copy() count=[0 for _ in range(R+1)] for val,key in arr: count[key+1]+=1 for i in range(1,R+1): count[i]+=count[i-1] for val,key in arr: aux[count[key]]=(val,key) count[key]+=1 for i in range(len(aux)): arr[i]=aux[i] class LSD: '''低位优先的字符串排序''' def sort(self,arr,w): ''' :param list[str] arr: 字符串列表 :param int w: 字符串长度 :return: ''' N=len(arr) R=256 aux=arr.copy() for d in range(w-1,-1,-1): count=[0 for _ in range(R+1)] for x in arr: count[ord(x[d])+1]+=1 for r in range(1,R+1): count[r]+=count[r-1] for i in range(N): key=ord(arr[i][d]) aux[count[key]]=arr[i] count[key]+=1 for i in range(N): arr[i]=aux[i] class InsertSort: def sort(self,arr,low,high,d): for i in range(low,high+1): for j in range(i,low,-1): if arr[j][d:]<arr[j-1][d:]: arr[j-1],arr[j]=arr[j],arr[j-1] class MSD: '''高位优先排序''' def __init__(self): self.R=256 self.H=10 self.insertsort=InsertSort() def sort(self,arr): self.aux=arr.copy() self.subsort(arr,0,len(arr)-1,0) def key(self,s,d): if d>=len(s): return -1 return ord(s[d]) def subsort(self,arr,low,high,d): if high<=low+self.H: self.insertsort.sort(arr,low,high,d) return counts=[0 for _ in range(self.R+2)] for i in range(low,high+1): key=self.key(arr[i],d) counts[key+2]+=1 for r in range(1,self.R+2): counts[r]+=counts[r-1] for i in range(low,high+1): key=self.key(arr[i],d) self.aux[counts[key+1]]=arr[i] counts[key+1]+=1 for i in range(low,high+1): arr[i]=self.aux[i-low] for r in range(0,self.R): self.subsort(arr,low+counts[r],low+counts[r+1]-1,d+1) class Quick3string: '''三向切分字符串快排''' def key(self,s,d): if len(s)<=d: return -1 else: return ord(s[d]) def sort(self,arr): self._subsort(arr,0,len(arr)-1,0) def _subsort(self,arr,low,high,d): if low>=high: return v=self.key(arr[low],d) lt=low i=low+1 gt=high while i<=gt: t=self.key(arr[i],d) if t<v: arr[i],arr[lt]=arr[lt],arr[i] i+=1 lt+=1 elif t==v: i+=1 else: arr[i],arr[gt]=arr[gt],arr[i] gt-=1 self._subsort(arr,low,lt-1,d) if v>0: self._subsort(arr,lt,gt,d+1) self._subsort(arr,gt+1,high,d) if __name__ == '__main__': arr=[('lijie',1),('liuzi',2),('zhangliu',2),('miwmi',1),('liuzhao',3),('xiaozju',2),('liejo',3),('liuzhao',0)] keyIndexSort(arr,4) print(arr) arr=['4PGC938','2IYE230','3CI0720','1ICK750','10HV845','4JZY524','1ICK750','3CI0720','10HV845'] s=LSD() s.sort(arr,7) s=MSD() arr=['she','by','shells','the','sea','are','surely','seashells'] s.sort(arr) print(arr) qs=Quick3string() arr = ['she', 'by', 'shells', 'the', 'sea', 'are', 'surely', 'seashells'] qs.sort(arr) print(arr)
[ "2226171237@qq.com" ]
2226171237@qq.com
061399c156296dfd0f08ab0ef22d181d250ea69e
856323fc904cd36b947114666186a2bcd0c1e10e
/tests/randMove/test_randMoveSIS.py
f612f0051507494ef17fd722dc003e328d396a01
[ "MIT" ]
permissive
mjacob1002/Eir
fd6ee0fa7c2e0af93a34dca66bcd5b07a5c31f05
ab9cb4e353796ba3ab79b1673adc251d434717cf
refs/heads/master
2023-04-15T13:06:14.897503
2021-07-04T20:06:15
2021-07-04T20:06:15
286,567,858
39
9
MIT
2021-07-04T20:06:16
2020-08-10T20:03:02
Python
UTF-8
Python
false
false
3,222
py
import numpy as np import pandas as pd import unittest from Eir.DTMC.spatialModel.randomMovement.randMoveSIS import RandMoveSIS import Eir.exceptions as e np.random.seed(35235) class Test_RandMoveSIS(unittest.TestCase): def __init__(self): self.test = RandMoveSIS(999, 2, .3, 25, 3, .3, 1, .25, 31, 1.0, 2.0) self.sdetails = self.test.run() def generateCSV(self): df = self.test.toDataFrame() df.to_csv("randMoveSIS.csv", index=False) def checkOutput(self): df = self.test.toDataFrame() df2 = pd.read_csv("randMoveSIS.csv") assert df.equals(df2) print("Output test passed") def checkSimulInputs(self): # checks for invalid person inputs self.assertRaises(e.NotIntException, self.sdetails.personHistory, 100.0) self.assertRaises(e.PersonNotFound, self.sdetails.personHistory, 1001) # checks for exceptions when inputting days self.assertRaises(e.DayOutOfRange, self.sdetails.transmissionHistoryOnDay, 65) self.assertRaises(e.DayOutOfRange, self.sdetails.transmissionHistoryOnDay, -1) self.assertRaises(e.NotIntException, self.sdetails.transmissionHistoryOnDay, 25.0) print("Simul_Details input test passed: throws error for invalid inputs") def checkInputs(self): # int check self.assertRaises(e.NotIntException, RandMoveSIS, 999.0, 1, .3, 25, 3, .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NotIntException, RandMoveSIS, 999, 1.0, .3, 25, 3, .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NotIntException, RandMoveSIS, 999, 1, .3, 25, 3, .3, 1, .25, 31.0, 1.0, 2.0) # float check self.assertRaises(e.NotFloatException, RandMoveSIS, 999, 1, '.3', 25, 3, .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NotFloatException, RandMoveSIS, 999, 1, .3, "25", 3, .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NotFloatException, RandMoveSIS, 999, 1, .3, 25, "3", .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NotFloatException, RandMoveSIS, 999, 1, .3, 25, 3, True, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NotFloatException, RandMoveSIS, 999, 1, .3, 25, 3, .3, 1, .25, 31, False, 2.0) # negvalue check self.assertRaises(e.NegativeValException, RandMoveSIS, -999, 1, .3, 25, 3, .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NegativeValException, RandMoveSIS, 999, -1, .3, 25, 3, .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NegativeValException, RandMoveSIS, 999, 1, -.3, 25, 3, .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NegativeValException, RandMoveSIS, 999, 1, .3, -25, 3, .3, 1, .25, 31, 1.0, 2.0) self.assertRaises(e.NegativeValException, RandMoveSIS, 999, 1, .3, 25, -3, .3, 1, .25, 31, 1.0, 2.0) # probability check self.assertRaises(e.ProbabilityException, RandMoveSIS, 999, 1, .3, 25, 3, .3, 1, .25, 31, 1.01, 2.0) self.assertRaises(e.ProbabilityException, RandMoveSIS, 999, 1, 1.3, 25, 3, .3, 1, .25, 31, 1.0, 2.0) print("Input Test passed") if __name__ == '__main__': a = Test_RandMoveSIS() #a.generateCSV() a.checkOutput() a.checkSimulInputs() a.checkInputs()
[ "mjacob1002@gmail.com" ]
mjacob1002@gmail.com
871f553222511c050f1cdb9731b0b3044efd8503
b2cc6507d5260514f63a3f0aa7915308cd20bf28
/shelf/migrations/0002_auto_20200426_1245.py
906189220f06b19dd541cfceb01b3172ff017dee
[]
no_license
japawka/kozaczko
4df09523543a15ae59abad24b689730fecca8049
20cf9e0e83588b6ecd79ab10889925144688f2b7
refs/heads/master
2022-06-07T21:37:42.788616
2020-04-28T13:39:09
2020-04-28T13:39:09
259,619,444
0
0
null
null
null
null
UTF-8
Python
false
false
2,426
py
# Generated by Django 3.0.5 on 2020-04-26 10:45 from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): dependencies = [ ('shelf', '0001_initial'), ] operations = [ migrations.CreateModel( name='BookCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='BookEdition', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('isbn', models.CharField(max_length=17)), ('date', models.DateField()), ], ), migrations.RemoveField( model_name='book', name='author', ), migrations.RemoveField( model_name='book', name='isbn', ), migrations.RemoveField( model_name='book', name='publisher', ), migrations.AddField( model_name='book', name='authors', field=models.ManyToManyField(to='shelf.Author'), ), migrations.CreateModel( name='BookItem', fields=[ ('id', models.UUIDField(default=uuid.uuid4, primary_key=True, serialize=False)), ('cat_number', models.CharField(max_length=30)), ('cover_type', models.CharField(choices=[('soft', 'Soft'), ('hard', 'Hard')], max_length=4)), ('edition', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shelf.BookEdition')), ], ), migrations.AddField( model_name='bookedition', name='book', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shelf.Book'), ), migrations.AddField( model_name='bookedition', name='publisher', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shelf.Publisher'), ), migrations.AddField( model_name='book', name='categories', field=models.ManyToManyField(to='shelf.BookCategory'), ), ]
[ "japawka@poczta.onet.pl" ]
japawka@poczta.onet.pl
a53f4e73d6c753979be2329785696ae68b6dc336
438e546e2acf5aa57c34c6481e477f7025b12e21
/mocks/skowser_session3_question1.py
ddbe00521f78b177bdaa90997f0a5043f2b26f86
[]
no_license
SajinKowserSK/algorithms-practice
988537ef3537487cb40c78776dd2c9e1130cde4f
41bbd55553747492a539b41f6e86bff5504c5842
refs/heads/master
2022-11-06T18:22:41.329484
2022-10-19T23:40:10
2022-10-19T23:40:10
206,470,288
1
0
null
null
null
null
UTF-8
Python
false
false
919
py
class ListNode(object): def __init__(self, val=0, next=None): self.val = val self.next = next def has_cycle(head): if head is None: return False slow = head fast = head while fast is not None: fast = fast.next if fast is None: break else: fast = fast.next if slow == fast: return True slow = slow.next return False node1 = ListNode(1) node2 = ListNode(2) node3 = ListNode(3) node4 = ListNode(4) node5 = ListNode(5) node1.next = node2 node2.next = node3 node3.next = node4 node4.next = node5 node5.next = None print(has_cycle(node1)) # False node1 = ListNode(1) node2 = ListNode(2) node3 = ListNode(3) node4 = ListNode(4) node5 = ListNode(5) node1.next = node2 node2.next = node3 node3.next = node4 node4.next = node5 node5.next = node2 print(has_cycle(node1)) # True
[ "sajinkowser@gmail.com" ]
sajinkowser@gmail.com
0eacc8850c2e0a1b284058bd4cf49418cf285991
5a6da40024217c0ca2c0242f031d6d0105775899
/utils.py
13bdef9709be85f99880404dcbf366620db0ea5f
[ "MIT" ]
permissive
tobyma/generative
06fa928c8882469a3fe35cb69863c1ae06409021
75cb6c1065cd04ce4eaf13b90b037137a8ad7873
refs/heads/master
2020-04-22T13:53:58.599101
2017-03-04T05:01:16
2017-03-04T05:01:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,038
py
import numpy as np import matplotlib.pyplot as plt import scipy.stats as stats def data_on_latent_space(encoded, categories, ax=None): """ plots the data in the latent space encoded: first two dimensions of the data encoded categories: the categories for each datapoint to (for visualization purposes) batch_size[=32]: the batch size for the predictions ax[=None]: axis to add the plot to """ if not ax: f = plt.figure(figsize=(6, 6)) ax = f.add_subplot(111) else: f = None ax.scatter(encoded[:,0], encoded[:,1], c=categories) return f, ax def manifold_2D(generator, ax=None, n=15, shape=(28,28), latent_space='gaussian', latent_range=(0.05, 0.95)): """ display a 2D manifold of the digits @params: generator: a generator with a .predict() function ax[=None]: axis to add the plot to n[=15]: number of samples to generate for each dimension shape[=(28,28)]: reshape of the sample latent_space[='gaussian'] latent_range[=(0.05,0.95)] @returns: matplotlib axes with the figure added. """ digit_size = shape[0] figure = np.zeros((digit_size * n, digit_size * n)) # linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian # to produce values of the latent variables z, since the prior of the latent space is Gaussian if latent_space == 'gaussian': grid_x = stats.norm.ppf(np.linspace(latent_range[0], latent_range[1], n)) grid_y = stats.norm.ppf(np.linspace(latent_range[0], latent_range[1], n)) else: raise NotImplementedError('Unknown Latent Space not yet implemented') for i, yi in enumerate(grid_x): for j, xi in enumerate(grid_y): z_sample = np.array([[xi, yi]]) x_decoded = generator.predict(z_sample) digit = x_decoded[0].reshape((digit_size, digit_size)) figure[i * digit_size: (i + 1) * digit_size, j * digit_size: (j + 1) * digit_size] = digit if not ax: f = plt.figure(figsize=(10, 10)) ax = f.add_subplot(111) else: f = None ax.imshow(figure, cmap='Greys_r') return f, ax
[ "zafarali.ahmed@gmail.com" ]
zafarali.ahmed@gmail.com
e7c6ef1f37a3c97baf924f1e1b774645219dce68
0e78b2df0fb93afc62684dece8ac05b700570248
/BOJ/10950.py
94b5b24e31f885c29d43c6d8b15d547aa553f987
[]
no_license
ajy720/Algorithm
f1e2301327db09667ba011bc317c8f380707c25c
b141538802e9056f154ab91c816ad29500505f34
refs/heads/master
2022-05-06T21:37:05.780170
2022-04-23T09:25:52
2022-04-23T09:25:52
200,335,390
0
1
null
null
null
null
UTF-8
Python
false
false
140
py
n = int(input()) res = [] for i in range(n): a, b = map(int, input().split()) res.append(a+b) for i in range(n): print(res[i])
[ "ajy720@gmail.com" ]
ajy720@gmail.com
9eaaae7e015f7af1d6d99117f0f6bac098baf788
5bec846696ea2c198186f492baec4ed6b1de8aae
/detect/eval/voc_eval.py
cb30858f545329e942e2b60217ca5361465088b4
[]
no_license
Peiiii/lpr
0e268e1ff71ae37d01a3501c608f4a8024df6dd2
90bcbdee4555915b77dd6c6dab2b48ed56c9952d
refs/heads/master
2022-12-11T23:57:37.075730
2019-10-02T15:25:09
2019-10-02T15:25:09
210,851,442
0
0
null
2022-11-21T21:32:26
2019-09-25T13:24:36
Python
UTF-8
Python
false
false
7,137
py
# -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Bharath Hariharan # -------------------------------------------------------- import xml.etree.ElementTree as ET import os import pickle as cPickle import numpy as np def parse_rec(filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = 'text' obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, cachedir, ovthresh=0.5, use_07_metric=False): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) cachedir: Directory for caching the annotations [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # cachedir caches the annotations in a pickle file # first load gt if not os.path.isdir(cachedir): os.mkdir(cachedir) cachefile = os.path.join(cachedir, 'annots.pkl') # read list of images with open(imagesetfile, 'r') as f: lines = f.readlines() imagenames = [x.strip() for x in lines] if not os.path.isfile(cachefile): # load annots recs = {} for i, imagename in enumerate(imagenames): recs[imagename] = parse_rec(annopath.format(imagename)) if i % 100 == 0: print ('Reading annotation for {:d}/{:d}'.format( i + 1, len(imagenames))) # save print ('Saving cached annotations to {:s}'.format(cachefile)) with open(cachefile, 'w') as f: cPickle.dump(recs, f) else: # load with open(cachefile, 'r') as f: recs = cPickle.load(f) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj['name'] == classname] bbox = np.array([x['bbox'] for x in R]) difficult = np.array([x['difficult'] for x in R]).astype(np.bool) det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det} # read dets detfile = detpath.format(classname) with open(detfile, 'r') as f: lines = f.readlines() splitlines = [x.strip().split(' ') for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) # sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = np.sort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R['bbox'].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1., 0.) ih = np.maximum(iymax - iymin + 1., 0.) inters = iw * ih # union uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + (BBGT[:, 2] - BBGT[:, 0] + 1.) * (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R['difficult'][jmax]: if not R['det'][jmax]: tp[d] = 1. R['det'][jmax] = 1 else: fp[d] = 1. else: fp[d] = 1. # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap
[ "1535376447@qq.com" ]
1535376447@qq.com
c37b3f1f31f82758423901149d2f6c52870759a6
2dc17d12ff6ea9794177c81aa4f385e4e09a4aa5
/archive/33SearchinRotatedSortedArray.py
8947296c9b426239174e8e74045feff557580a62
[]
no_license
doraemon1293/Leetcode
924b19f840085a80a9e8c0092d340b69aba7a764
48ba21799f63225c104f649c3871444a29ab978a
refs/heads/master
2022-10-01T16:20:07.588092
2022-09-08T02:44:56
2022-09-08T02:44:56
122,086,222
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
1,248
py
# coding=utf-8 ''' Created on 2016�12�22� @author: Administrator ''' class Solution(object): def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ def find_min_idx(nums): lo, hi = 0, len(nums) - 1 while lo < hi: if nums[lo] < nums[hi]: return lo mid = (lo + hi) / 2 if nums[mid] < nums[hi]: hi = mid else: lo = mid + 1 return lo min_idx = find_min_idx(nums) def search(nums, s, e, target): while s <= e: mid = (s + e) / 2 if target < nums[mid]: e = mid - 1 elif target > nums[mid]: s = mid + 1 else: return mid return None ans = search(nums, 0, min_idx - 1, target) if ans != None: return ans ans = search(nums, min_idx, len(nums) - 1, target) if ans != None: return ans else: return -1 nums = [1] target = 1 print Solution().search(nums, target)
[ "yanhuang1293@gmail.com" ]
yanhuang1293@gmail.com
24fd164938cb979b18d12711c9ca1fcc2cadfa53
07b4dd9a88f3404c4851ea7cbb57c67035bc9a54
/tables.py
8583928d290312a85da78b29569f435b41ae38a5
[]
no_license
surajgholap/python-Misc
9c9d02c42bb37b7378d7336343f8bef7cd802edf
4a8ce4bfa5a959692d98663b7b5c0b67a165835f
refs/heads/master
2021-06-17T19:19:25.021038
2021-01-27T20:54:03
2021-01-27T20:54:03
142,781,295
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
def print_tables(base, times): for i in range(1, base+1): for j in range(1, times+1): print(i*j, end=" ") print() print_tables(12, 12)
[ "surajgholap27@gmail.com" ]
surajgholap27@gmail.com
703f70a906c0d25b1b21f4c05a311f1a735b51eb
fbbe424559f64e9a94116a07eaaa555a01b0a7bb
/Keras_tensorflow/source/tensorflow/contrib/layers/python/ops/sparse_feature_cross_op.py
688315fd12e6f3b07e97cd1fc273c6ed725de5ca
[ "MIT" ]
permissive
ryfeus/lambda-packs
6544adb4dec19b8e71d75c24d8ed789b785b0369
cabf6e4f1970dc14302f87414f170de19944bac2
refs/heads/master
2022-12-07T16:18:52.475504
2022-11-29T13:35:35
2022-11-29T13:35:35
71,386,735
1,283
263
MIT
2022-11-26T05:02:14
2016-10-19T18:22:39
Python
UTF-8
Python
false
false
5,025
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrappers for sparse cross operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.util import loader from tensorflow.python.framework import common_shapes from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import math_ops from tensorflow.python.platform import resource_loader _sparse_feature_cross_op = loader.load_op_library( resource_loader.get_path_to_datafile("_sparse_feature_cross_op.so")) # Default hash key for the FingerprintCat64. SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY = 0xDECAFCAFFE @deprecated_arg_values( "2016-11-20", "The default behavior of sparse_feature_cross is changing, the default\n" "value for hash_key will change to SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY.\n" "From that point on sparse_feature_cross will always use FingerprintCat64\n" "to concatenate the feature fingerprints. And the underlying\n" "_sparse_feature_cross_op.sparse_feature_cross operation will be marked\n" "as deprecated.", hash_key=None) def sparse_feature_cross(inputs, hashed_output=False, num_buckets=0, name=None, hash_key=None): """Crosses a list of Tensor or SparseTensor objects. See sparse_feature_cross_kernel.cc for more details. Args: inputs: List of `SparseTensor` or `Tensor` to be crossed. hashed_output: If true, returns the hash of the cross instead of the string. This will allow us avoiding string manipulations. num_buckets: It is used if hashed_output is true. output = hashed_value%num_buckets if num_buckets > 0 else hashed_value. name: A name prefix for the returned tensors (optional). hash_key: Specify the hash_key that will be used by the `FingerprintCat64` function to combine the crosses fingerprints on SparseFeatureCrossOp. The default value is None, but will become SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY after 2016-11-20 (optional). Returns: A `SparseTensor` with the crossed features. Return type is string if hashed_output=False, int64 otherwise. Raises: TypeError: If the inputs aren't either SparseTensor or Tensor. """ if not isinstance(inputs, list): raise TypeError("Inputs must be a list") if not all(isinstance(i, sparse_tensor.SparseTensor) or isinstance(i, ops.Tensor) for i in inputs): raise TypeError("All inputs must be SparseTensors") sparse_inputs = [i for i in inputs if isinstance(i, sparse_tensor.SparseTensor)] dense_inputs = [i for i in inputs if not isinstance(i, sparse_tensor.SparseTensor)] indices = [sp_input.indices for sp_input in sparse_inputs] values = [sp_input.values for sp_input in sparse_inputs] shapes = [sp_input.dense_shape for sp_input in sparse_inputs] out_type = dtypes.int64 if hashed_output else dtypes.string internal_type = dtypes.string for i in range(len(values)): if values[i].dtype != dtypes.string: values[i] = math_ops.to_int64(values[i]) internal_type = dtypes.int64 for i in range(len(dense_inputs)): if dense_inputs[i].dtype != dtypes.string: dense_inputs[i] = math_ops.to_int64(dense_inputs[i]) internal_type = dtypes.int64 if hash_key: indices_out, values_out, shape_out = ( _sparse_feature_cross_op.sparse_feature_cross_v2( indices, values, shapes, dense_inputs, hashed_output, num_buckets, hash_key=hash_key, out_type=out_type, internal_type=internal_type, name=name)) else: indices_out, values_out, shape_out = ( _sparse_feature_cross_op.sparse_feature_cross( indices, values, shapes, dense_inputs, hashed_output, num_buckets, out_type=out_type, internal_type=internal_type, name=name)) return sparse_tensor.SparseTensor(indices_out, values_out, shape_out) ops.NotDifferentiable("SparseFeatureCross") ops.NotDifferentiable("SparseFeatureCrossV2")
[ "ryfeus@gmail.com" ]
ryfeus@gmail.com
6c7a1cd28299eeeddc802b36c228d41fdab88e8c
fcdfe976c9ed60b18def889692a17dc18a8dd6d7
/python/basic/class.py
f5dbcf0e2b60d201d45824592934ddc0e4c39888
[]
no_license
akihikoy/ay_test
4907470889c9bda11cdc84e8231ef3156fda8bd7
a24dfb720960bfedb94be3b4d147e37616e7f39a
refs/heads/master
2023-09-02T19:24:47.832392
2023-08-27T06:45:20
2023-08-27T06:45:20
181,903,332
6
3
null
null
null
null
UTF-8
Python
false
false
544
py
#!/usr/bin/python class TTest: x= 10 def __init__(self): self.y= None def __repr__(self): return 'x=%r y=%r' % (self.x, self.y) class TTestB: x= 10 y= None test1= TTest() test1.x= 20 test1.y= 200 test2= TTest() print 'test1=',test1 print 'test2=',test2 TTest.x= 30 TTest.y= 300 test3= TTest() print 'test3=',test3 print '-----' test1= TTestB() test1.x= 20 test1.y= 200 test2= TTestB() print 'test1=',test1.x,test1.y print 'test2=',test2.x,test2.y TTestB.x= 30 TTestB.y= 300 test3= TTestB() print 'test2=',test3.x,test3.y
[ "info@akihikoy.net" ]
info@akihikoy.net
fc98453f489a4a248f7440bdcc7b9b95490ea51e
097dda217c3d31b69cb309369dc0357fe0f229ab
/app/customadmin/migrations/0005_shopproduct.py
38f7c55e8acce58b5eb16fcb194cc2e69f1c26f6
[]
no_license
Jaycitrusbug/book-python
57a96ee343eee5b63ca5f7ee2461db82426321b5
b5a4de74c9114546ee03b8aa5de1381719ddf74e
refs/heads/master
2023-06-20T01:52:29.484415
2021-07-16T13:06:05
2021-07-16T13:06:05
386,638,204
0
0
null
null
null
null
UTF-8
Python
false
false
1,435
py
# Generated by Django 3.1.4 on 2020-12-09 12:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('customadmin', '0004_auto_20201209_1008'), ] operations = [ migrations.CreateModel( name='ShopProduct', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('active', models.BooleanField(default=True, verbose_name='Active')), ('created_at', models.DateTimeField(auto_now_add=True, help_text='Date when created.', null=True, verbose_name='Created At')), ('updated_at', models.DateTimeField(auto_now=True, help_text='Date when updated.', null=True, verbose_name='Updated At')), ('product_image', models.ImageField(blank=True, null=True, upload_to='products', verbose_name='Product images')), ('name', models.CharField(blank=True, default='', max_length=200, null=True)), ('price', models.TextField(blank=True, default='', max_length=500, null=True)), ('detail', models.CharField(blank=True, default='', max_length=255, null=True)), ], options={ 'verbose_name': 'Shop Product', 'verbose_name_plural': 'Shop Products', 'ordering': ['-created_at'], }, ), ]
[ "jay.citrusbug@gmail.com" ]
jay.citrusbug@gmail.com
b2583d170c8144e89f9ed5ffc15ded383410cb49
534570bbb873293bd2646a1567b63d162fbba13c
/Python/Data Structure/Linear List/Array/K Sum/259.3-sum-smaller.py
d38c68bf8ab2e63a5ee2b79f4cefc4222690339d
[]
no_license
XinheLIU/Coding-Interview
fa3df0f7167fb1bc6c8831748249ebaa6f164552
d6034c567cef252cfafca697aa316c7ad4e7d128
refs/heads/master
2022-09-17T14:30:54.371370
2022-08-19T15:53:35
2022-08-19T15:53:35
146,382,499
0
1
null
null
null
null
UTF-8
Python
false
false
435
py
class Solution: def threeSumSmaller(self, nums: List[int], target: int) -> int: nums.sort() ret = 0 for i in range(0, len(nums)-2): l, r = i + 1, len(nums) - 1 while l < r: Sum = nums[i] + nums[l] + nums[r] if Sum < target: ret += r - l l += 1 else: r -= 1 return ret
[ "LIUXinhe@outlook.com" ]
LIUXinhe@outlook.com
94df604e74040fe35e0f339fc89e6977d72911ab
6fa701cdaa0d83caa0d3cbffe39b40e54bf3d386
/google/ads/googleads/v6/googleads-py/google/ads/googleads/v6/enums/types/budget_campaign_association_status.py
a3c9d3bbc4cb3eedea948a2bd7839c61f472bdb3
[ "Apache-2.0" ]
permissive
oltoco/googleapis-gen
bf40cfad61b4217aca07068bd4922a86e3bbd2d5
00ca50bdde80906d6f62314ef4f7630b8cdb6e15
refs/heads/master
2023-07-17T22:11:47.848185
2021-08-29T20:39:47
2021-08-29T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,279
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package='google.ads.googleads.v6.enums', marshal='google.ads.googleads.v6', manifest={ 'BudgetCampaignAssociationStatusEnum', }, ) class BudgetCampaignAssociationStatusEnum(proto.Message): r"""Message describing the status of the association between the Budget and the Campaign. """ class BudgetCampaignAssociationStatus(proto.Enum): r"""Possible statuses of the association between the Budget and the Campaign. """ UNSPECIFIED = 0 UNKNOWN = 1 ENABLED = 2 REMOVED = 3 __all__ = tuple(sorted(__protobuf__.manifest))
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
79f1cf41b9b75f0519be704b7f70b2277ae2a03c
e0ff22c17eaa1e7009089a58575567b0ead63d49
/scan/forms.py
96def1cf32e59163612c71d895e7389098144f02
[]
no_license
slehaff/dblive
afcb5297057ad4d78177b886013250d2ed068424
7f7bdf38998bd65d00e5ac7df3ef5289b2781e83
refs/heads/master
2023-05-27T16:38:21.865344
2021-06-07T10:09:28
2021-06-07T10:09:28
303,078,424
0
0
null
null
null
null
UTF-8
Python
false
false
1,143
py
from PIL import Image from django import forms from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit class PicForm2(forms.Form): deviceid = forms.CharField(required=False, max_length=32, strip=True) cmd = forms.CharField(required=False, label='Cmd', max_length=50, strip=True) Picture = forms.ImageField(label="Billed", required=False) Pic1 = forms.ImageField(label="Billed1", required=False) Pic2 = forms.ImageField(label="Billed2", required=False) Pic3 = forms.ImageField(label="Billed3", required=False) # required skal ændres på sigt def __init__(self, *args, **kwargs): super(PicForm2, self).__init__(*args, **kwargs) self.helper = FormHelper() #self.helper.form_class = 'form-horizontal' #self.helper.label_class = 'col-sm-5 col-sm-offset-2' # control-label #self.helper.field_class = 'col-sm-4' self.helper.form_tag = True self.helper.add_input(Submit('submit', 'Send')) self.helper.add_input(Submit('cancel', 'Fortryd', css_class='btn-secondary', formnovalidate='formnovalidate', formaction='/'))
[ "samir@lehaff.dk" ]
samir@lehaff.dk
cda6831f28cfe2770d2ced88e722a7cac36e772a
468f54cf08a68fd3791f5266996eeb82331db338
/pyisy/variables/variable.py
ce6f4ad83663bf37bb35e3dc1a63fa58b77a36d3
[ "Apache-2.0" ]
permissive
OverloadUT/PyISY
79d0b446f8c5358aa31743e8bd633b1d7f4762f2
69553057ceac57a6b4300c0070ee4ff163681750
refs/heads/master
2021-01-20T04:54:43.622920
2020-05-16T18:57:50
2020-05-16T18:57:50
89,751,436
0
0
null
2017-04-28T23:18:44
2017-04-28T23:18:44
null
UTF-8
Python
false
false
5,988
py
"""Manage variables from the ISY.""" from ..constants import ( ATTR_INIT, ATTR_LAST_CHANGED, ATTR_LAST_UPDATE, ATTR_SET, ATTR_STATUS, ATTR_TS, PROTO_INT_VAR, PROTO_STATE_VAR, TAG_ADDRESS, URL_VARIABLES, VAR_INTEGER, ) from ..helpers import EventEmitter, now class Variable: """ Object representing a variable on the controller. | variables: The variable manager object. | vid: List of variable IDs. | vtype: List of variable types. | init: List of values that variables initialize to when the controller starts. | val: The current variable value. | ts: The timestamp for the last time the variable was edited. :ivar init: Watched property that represents the value the variable initializes to when the controller boots. :ivar lastEdit: Watched property that indicates the last time the variable was edited. :ivar val: Watched property that represents the value of the variable. """ def __init__(self, variables, vid, vtype, vname, init, status, ts): """Initialize a Variable class.""" super(Variable, self).__init__() self._id = vid self._init = init self._last_edited = ts self._last_update = now() self._last_changed = now() self._name = vname self._status = status self._type = vtype self._variables = variables self.isy = variables.isy self.status_events = EventEmitter() def __str__(self): """Return a string representation of the variable.""" return f"Variable(type={self._type}, id={self._id}, value={self.status}, init={self.init})" def __repr__(self): """Return a string representation of the variable.""" return str(self) @property def address(self): """Return the formatted Variable Type and ID.""" return f"{self._type}.{self._id}" @property def init(self): """Return the initial state.""" return self._init @init.setter def init(self, value): """Set the initial state and notify listeners.""" if self._init != value: self._init = value self._last_changed = now() self.status_events.notify(self.status_feedback) return self._init @property def last_changed(self): """Return the UTC Time of the last status change for this node.""" return self._last_changed @property def last_edited(self): """Return the last edit time.""" return self._last_edited @last_edited.setter def last_edited(self, value): """Set the last edited time.""" if self._last_edited != value: self._last_edited = value return self._last_edited @property def last_update(self): """Return the UTC Time of the last update for this node.""" return self._last_update @last_update.setter def last_update(self, value): """Set the last update time.""" if self._last_update != value: self._last_update = value return self._last_update @property def protocol(self): """Return the protocol for this entity.""" return PROTO_INT_VAR if self._type == VAR_INTEGER else PROTO_STATE_VAR @property def name(self): """Return the Variable Name.""" return self._name @property def status(self): """Return the current node state.""" return self._status @status.setter def status(self, value): """Set the current node state and notify listeners.""" if self._status != value: self._status = value self._last_changed = now() self.status_events.notify(self.status_feedback) return self._status @property def status_feedback(self): """Return information for a status change event.""" return { TAG_ADDRESS: self.address, ATTR_STATUS: self._status, ATTR_INIT: self._init, ATTR_TS: self._last_edited, ATTR_LAST_CHANGED: self._last_changed, ATTR_LAST_UPDATE: self._last_update, } @property def vid(self): """Return the Variable ID.""" return self._id def update(self, wait_time=0): """ Update the object with the variable's parameters from the controller. | wait_time: Seconds to wait before updating. """ self._last_update = now() self._variables.update(wait_time) def set_init(self, val): """ Set the initial value for the variable after the controller boots. | val: The value to have the variable initialize to. """ if val is None: raise ValueError("Variable init must be an integer. Got None.") self.set_value(val, True) def set_value(self, val, init=False): """ Set the value of the variable. | val: The value to set the variable to. """ if val is None: raise ValueError("Variable value must be an integer. Got None.") req_url = self.isy.conn.compile_url( [ URL_VARIABLES, ATTR_INIT if init else ATTR_SET, str(self._type), str(self._id), str(val), ] ) if not self.isy.conn.request(req_url): self.isy.log.warning( "ISY could not set variable%s: %s.%s", " init value" if init else "", str(self._type), str(self._id), ) return self.isy.log.debug( "ISY set variable%s: %s.%s", " init value" if init else "", str(self._type), str(self._id), ) if not self.isy.auto_update: self.update()
[ "noreply@github.com" ]
OverloadUT.noreply@github.com
ee16236cee149923cbec2f4caed7e7a2a579a99e
67c77918ba8bb55b8508a252d7bddbbaa1cd414e
/Bioinformatics_Textbook_Track/02-BA1B.py
d7b475d32f515903acd3a28076de07f5db946532
[]
no_license
anoubhav/Rosalind-Solutions
52406c4677d9daa68814141c9bf22d19ad896a8b
d7b591fb4850fa2f5c1b146eafabe77945c94d34
refs/heads/master
2021-08-07T06:25:47.056356
2020-04-10T10:52:20
2020-04-10T10:52:20
144,815,045
1
0
null
null
null
null
UTF-8
Python
false
false
478
py
from collections import defaultdict def MostFreqKmer(dna, k): """ Finds the most frequent k-mers in a string (str, int) -> (list of str) """ l = len(dna) kmer_count = defaultdict(int) for i in range(l - k + 1): kmer_count[dna[i:i+k]] += 1 temp = max(kmer_count.values()) return ' '.join([k for k, v in kmer_count.items() if v == temp]) if __name__ == '__main__': dna = input() k = int(input()) print(MostFreqKmer(dna, k))
[ "anoubhav.agarwaal@gmail.com" ]
anoubhav.agarwaal@gmail.com
1e254ef6262f6a2353a21e1b62b99ba344188ff8
19a4365d81507587ef09488edc7850c2227e7165
/994.py
96554ca2d2b849066c85334c4f0f81e9c29e95a0
[]
no_license
akauntotesuto888/Leetcode-Lintcode-Python
80d8d9870b3d81da7be9c103199dad618ea8739a
e2fc7d183d4708061ab9b610b3b7b9e2c3dfae6d
refs/heads/master
2023-08-07T12:53:43.966641
2021-09-17T19:51:09
2021-09-17T19:51:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
872
py
class Solution: def orangesRotting(self, grid: List[List[int]]) -> int: rotten = [] m, n = len(grid), len(grid[0]) for i in range(m): for j in range(n): if grid[i][j] == 2: rotten.append((i, j)) step = -1 while rotten: new_rotten = [] for x, y in rotten: for dx, dy in [(-1, 0), (1, 0), (0, 1), (0, -1)]: new_x, new_y = x+dx, y+dy if 0 <= new_x < m and 0 <= new_y < n and grid[new_x][new_y] == 1: grid[new_x][new_y] = 2 new_rotten.append((new_x, new_y)) rotten = new_rotten step += 1 for i in range(m): for j in range(n): if grid[i][j] == 1: return -1 return 0 if step == -1 else step
[ "tiant@qualtrics.com" ]
tiant@qualtrics.com
bf2bae30cb193ff8b262ba23d6ec0d870c3220ac
d51cf2fe640f3bd5f4c4247ffaa198a30a58d96a
/mongo_db_course/01_data_extraction/16_extract_airports_quiz.py
a968065384c5c95507f14c724185a35f039ff185
[]
no_license
AlexSkrn/sqlite_bash_scripts
44c6dbfc83b0e6be6126ede06e9ffb9d5805bae9
6f1d8c6581ace44a6d77c736cee6d5cdd40001b6
refs/heads/master
2021-07-09T08:43:48.193623
2021-04-08T19:44:29
2021-04-08T19:44:29
238,682,979
0
0
null
null
null
null
UTF-8
Python
false
false
1,002
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Complete the 'extract_airports()' function so that it returns a list of airport codes, excluding any combinations like "All". Refer to the 'options.html' file in the tab above for a stripped down version of what is actually on the website. The test() assertions are based on the given file. """ from bs4 import BeautifulSoup html_page = "options.html" def extract_airports(page): data = [] with open(page, "r") as html: # do something here to find the necessary values soup = BeautifulSoup(html, "lxml") data = [] airport_list = soup.find(id='AirportList') for option in airport_list.find_all('option'): val = option['value'] if not val.startswith('All'): data.append(val) return data def test(): data = extract_airports(html_page) assert len(data) == 15 assert "ATL" in data assert "ABR" in data if __name__ == "__main__": test()
[ "askrn123@gmail.com" ]
askrn123@gmail.com
2d5b87286cdfe5d088153553ecc12ce5664f7f4a
8ddda8fb6e5853126dcdafa3281c75071ada45c1
/vyperlogix/gds/space.py
52a4dad46eb96d4deecf17860057fc4ee2adde8b
[ "CC0-1.0" ]
permissive
raychorn/chrome_gui
a48f3f9d931922a018e894f891ccd952476cd1ee
f1fade70b61af12ee43c55c075aa9cfd32caa962
refs/heads/master
2022-12-19T19:46:04.656032
2020-10-08T14:45:14
2020-10-08T14:45:14
299,167,534
1
0
null
null
null
null
UTF-8
Python
false
false
3,226
py
''' This module provides a function that constructs a list containing the sizes of directories under a specified directory. Copyright (C) 2002 GDS Software This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA See http://www.gnu.org/licenses/licenses.html for more details. ''' import os __version__ = "$Id: space.py,v 1.4 2002/08/21 12:41:49 donp Exp $" listG = [] def GetTotalFileSize(dummy_param, directory, list_of_files): '''Given a list of files and the directory they're in, add the total size and directory name to the global list listG. ''' global listG currdir = os.getcwd() os.chdir(directory) total_size = 0 if len(list_of_files) != 0: for file in list_of_files: if file == ".." or file == ".": continue size = os.stat(file)[6] total_size = total_size + size listG.append([total_size, directory]) os.chdir(currdir) def GetSize(directory): '''Returns a list of the form [ [a, b], [c, d], ... ] where a, c, ... are the number of total bytes in the directory and b, d, ... are the directory names. The indicated directory is recursively descended and the results are sorted by directory size with the largest directory at the beginning of the list. ''' import os global listG listG = [] os.path.walk(directory, GetTotalFileSize, "") listG.sort() listG.reverse() def ShowBiggestDirectories(directory): import string GetSize(directory) # Get total number of bytes total_size = 0 for dir in listG: total_size = total_size + dir[0] if total_size != 0: print "For directory '%s': " % directory, print "[total space = %.1f MB]" % (total_size / 1e6) print " % MB Directory" print "------ ----- " + "-" * 50 not_shown_count = 0 for dir in listG: percent = 100.0 * dir[0] / total_size dir[1] = string.replace(dir[1], "\\\\", "/") if percent >= 0.1: print "%6.1f %5d %s" % (percent, int(dir[0]/1e6), dir[1]) else: not_shown_count = not_shown_count + 1 if not_shown_count > 0: if not_shown_count > 1: print " [%d directories not shown]" % not_shown_count else: print " [%d directory not shown]" % not_shown_count if __name__ == '__main__': import sys name = sys.argv[0] sys.argv = sys.argv[1:] if len(sys.argv) == 0: sys.argv.append(".") ShowBiggestDirectories(sys.argv[0])
[ "raychorn@gmail.com" ]
raychorn@gmail.com
4c1ee37f5712dd73553e9b461af163e6df479098
34b09bc83e5726fccb524a93cf2742f5aeadedef
/8. Tree/2_answer.py
d5b9861160ea84ed0907fad53f3211d82894046b
[]
no_license
mjson1954/WIC
57eb20ffe7aaf8695d679c893efacdeede573e72
670112209aacd274d09f6e9a89d948120486bfc8
refs/heads/master
2023-03-20T00:57:19.740025
2021-03-05T10:52:51
2021-03-05T10:52:51
289,925,829
0
0
null
2021-02-21T02:16:11
2020-08-24T12:46:58
Python
UTF-8
Python
false
false
351
py
def inorder(n, last): global cnt if n <= last: inorder(n * 2, last) tree[n] = cnt cnt += 1 inorder(n * 2 + 1, last) for test_case in range(int(input())): N = int(input()) tree = [0] * (N + 1) cnt=1 inorder(1, N) print('#{} {} {}'.format(test_case+1, tree[1], tree[N // 2]))
[ "mjson1954@gmail.com" ]
mjson1954@gmail.com
28bb8c869e9ae1e4c9b795e3350951ba632fa612
3a51de9b289a141f23f7ad7feb97e937484ecbcf
/lib/player/player.py
9260ad3101f8da06695f47ff4a8a9b333a8ab636
[]
no_license
AndyDeany/sunni-remake
52c40db465db0fa4cd04b9fbcb7f32e58e0fd52d
3d6c5f742e41cc8c2c39bfd2b380f63ea012ef0f
refs/heads/main
2023-05-01T05:47:50.858883
2021-05-07T17:35:44
2021-05-07T17:35:52
363,158,917
0
0
null
2021-05-12T13:32:49
2021-04-30T14:03:19
Python
UTF-8
Python
false
false
3,620
py
from collections import namedtuple from lib.image import Image from .moves import Kick, Headbutt, Frostbeam, Heal from lib.character import Character, NotEnoughManaError class Player(Character): """Class representing the Player (the character controlled by the user).""" CHARACTER_1 = "character1" CHARACTER_2 = "character2" CHOOSE_CHARACTER = "choose character" CHOOSE_ABILITY = "choose ability" DEAD = "player dead" INFO_X = 10 def __init__(self, game, name="Sunni", character=None, *, level=1): super().__init__(game, name, level=level, display_stat_x=170, display_stat_y_start=360) self.calculate_stats() self.fully_restore() self.x = 150 self.y = 380 self.num_idle_frames = 4 self.idle_fps = 6 self.character = character Moves = namedtuple("Moves", "heal kick headbutt frostbeam") self.moves = Moves(Heal(160, 170, 350), Kick(), Headbutt(), Frostbeam()) self.offensive_moves = [self.moves.kick, self.moves.headbutt, self.moves.frostbeam] self.defensive_moves = [self.moves.heal] self.selected_moves = None @property def character(self): return self._character @character.setter def character(self, character): self._character = character if character is None: return self.idle_frames = [Image(f"player/{character}_normal{n}.png") for n in range(self.num_idle_frames)] self.character_normal = Image(f"player/{character}_normal1.png") self.character_backwards = Image(f"player/{character}_backwards.png") self.character_scared = Image(f"player/{character}_scared.png", (self.x, self.y)) self.character_scared_redflash = Image(f"player/{character}_scared_redflash.png", (self.x, self.y)) self.character_tilt_left = Image(f"player/{character}_tilt_left.png") self.character_tilt_right = Image(f"player/{character}_tilt_right.png") self.character_dead = Image(f"player/{character}_dead.png") self.character_headbutt_stance = Image(f"player/{character}_headbutt_stance.png") self.character_frostbeam_stance = Image(f"player/{character}_frostbeam_stance.png", (self.x, self.y)) def level_up(self, levels=1.0, restore=True): """Level the player up by the given number of levels (default 1). Restores the player to full if they pass an integer level and `restore==True` (default). """ old_level = self.level self.level += levels if int(self.level) > int(old_level): # i.e. if we actually levelled up self.calculate_stats() if restore: self.fully_restore() def calculate_stats(self): self.max_hp = 90 + 10*int(self.level) self.max_mana = 95 + 5*int(self.level) def use_move(self, move): try: self.change_mana(move) except NotEnoughManaError: self.game.page.show_mana_notification() else: self.selected_moves = None self.game.page.hide_mana_notification() self.game.page.current = move def next_move(self): """Continues to find out the player's next move.""" if self.is_dead: self.game.page.current = self.DEAD self.level_up(0.25, restore=False) self.game.save() return self.game.page.current = self.CHOOSE_ABILITY def _idle_display(self): self.idle_animation(self.x, self.y) def _dead_display(self): self.character_dead.display(150, 480)
[ "oneandydean@hotmail.com" ]
oneandydean@hotmail.com
9835945c0bfb18ed417925e0b02705344f7870b7
a4e502e9487cf17c53f9f931ec0dbc12168fea52
/tests/pyre/weaver/expressions_c.py
09c724e94b47be07f1a16ff25188f81bbe895f1b
[ "BSD-3-Clause" ]
permissive
bryanvriel/pyre
bdc5dd59c46d53ff81f2ece532b9073ac3b65be1
179359634a7091979cced427b6133dd0ec4726ea
refs/heads/master
2021-09-28T00:10:26.454282
2018-11-11T16:42:07
2018-11-11T16:42:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,708
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2018 all rights reserved # """ Exercise a C expression weaver """ def test(): # get the packages import pyre.weaver import pyre.calc # instantiate a weaver weaver = pyre.weaver.weaver(name="sanity") weaver.language = "c" # access its mill mill = weaver.language # build a few nodes zero = pyre.calc.var(value=0) one = pyre.calc.var(value=1) # check expression generation # the trivial cases assert mill.expression(zero) == '0' assert mill.expression(one) == '1' # arithmetic assert mill.expression(one + zero) == '(1) + (0)' assert mill.expression(one - zero) == '(1) - (0)' assert mill.expression(one * zero) == '(1) * (0)' assert mill.expression(one / zero) == '(1) / (0)' assert mill.expression(one // zero) == '(1) / (0)' assert mill.expression(one % zero) == '(1) % (0)' assert mill.expression(one ** zero) == 'pow(1,0)' assert mill.expression(-one) == '-(1)' assert mill.expression(abs(one)) == 'abs(1)' # comparisons assert mill.expression(one == zero) == '(1) == (0)' assert mill.expression(one != zero) == '(1) != (0)' assert mill.expression(one <= zero) == '(1) <= (0)' assert mill.expression(one >= zero) == '(1) >= (0)' assert mill.expression(one < zero) == '(1) < (0)' assert mill.expression(one > zero) == '(1) > (0)' # boolean assert mill.expression(one & zero) == '(1) && (0)' assert mill.expression(one | zero) == '(1) || (0)' # return the configured weaver return weaver # main if __name__ == "__main__": test() # end of file
[ "michael.aivazis@orthologue.com" ]
michael.aivazis@orthologue.com
da07e2f0dd5b923746161c2fc6fb1063975a5ddf
bc441bb06b8948288f110af63feda4e798f30225
/container_sdk/model/tuna_service/test_plan_pb2.pyi
65a3b9c5324b9494fb47733d0fb869bd301ffe6d
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
false
5,626
pyi
# @generated by generate_proto_mypy_stubs.py. Do not edit! import sys from container_sdk.model.tuna_service.requirement_instance_pb2 import ( RequirementInstance as container_sdk___model___tuna_service___requirement_instance_pb2___RequirementInstance, ) from google.protobuf.descriptor import ( Descriptor as google___protobuf___descriptor___Descriptor, ) from google.protobuf.internal.containers import ( RepeatedCompositeFieldContainer as google___protobuf___internal___containers___RepeatedCompositeFieldContainer, ) from google.protobuf.message import ( Message as google___protobuf___message___Message, ) from typing import ( Iterable as typing___Iterable, Optional as typing___Optional, Text as typing___Text, Union as typing___Union, ) from typing_extensions import ( Literal as typing_extensions___Literal, ) builtin___bool = bool builtin___bytes = bytes builtin___float = float builtin___int = int if sys.version_info < (3,): builtin___buffer = buffer builtin___unicode = unicode class TestPlan(google___protobuf___message___Message): DESCRIPTOR: google___protobuf___descriptor___Descriptor = ... instanceId = ... # type: typing___Text name = ... # type: typing___Text reviewDate = ... # type: typing___Text startExcutePlanDate = ... # type: typing___Text projectStartDate = ... # type: typing___Text projectPlanCompleteDate = ... # type: typing___Text projectActualCompleteDate = ... # type: typing___Text functionMissCount = ... # type: builtin___int backendBugCount = ... # type: builtin___int bugPercent = ... # type: typing___Text bugTotal = ... # type: builtin___int capabilityCount = ... # type: builtin___int codingErrCount = ... # type: builtin___int delayPercent = ... # type: typing___Text environmentCount = ... # type: builtin___int frontBugCount = ... # type: builtin___int projectScore = ... # type: typing___Text requirementBlurryCount = ... # type: builtin___int scenarioBugCount = ... # type: builtin___int scenarioCount = ... # type: builtin___int status = ... # type: typing___Text suggestionCount = ... # type: builtin___int unableAppearCount = ... # type: builtin___int @property def requirement_instance(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[container_sdk___model___tuna_service___requirement_instance_pb2___RequirementInstance]: ... def __init__(self, *, instanceId : typing___Optional[typing___Text] = None, name : typing___Optional[typing___Text] = None, reviewDate : typing___Optional[typing___Text] = None, startExcutePlanDate : typing___Optional[typing___Text] = None, projectStartDate : typing___Optional[typing___Text] = None, projectPlanCompleteDate : typing___Optional[typing___Text] = None, projectActualCompleteDate : typing___Optional[typing___Text] = None, functionMissCount : typing___Optional[builtin___int] = None, backendBugCount : typing___Optional[builtin___int] = None, bugPercent : typing___Optional[typing___Text] = None, bugTotal : typing___Optional[builtin___int] = None, capabilityCount : typing___Optional[builtin___int] = None, codingErrCount : typing___Optional[builtin___int] = None, delayPercent : typing___Optional[typing___Text] = None, environmentCount : typing___Optional[builtin___int] = None, frontBugCount : typing___Optional[builtin___int] = None, projectScore : typing___Optional[typing___Text] = None, requirementBlurryCount : typing___Optional[builtin___int] = None, scenarioBugCount : typing___Optional[builtin___int] = None, scenarioCount : typing___Optional[builtin___int] = None, status : typing___Optional[typing___Text] = None, suggestionCount : typing___Optional[builtin___int] = None, unableAppearCount : typing___Optional[builtin___int] = None, requirement_instance : typing___Optional[typing___Iterable[container_sdk___model___tuna_service___requirement_instance_pb2___RequirementInstance]] = None, ) -> None: ... if sys.version_info >= (3,): @classmethod def FromString(cls, s: builtin___bytes) -> TestPlan: ... else: @classmethod def FromString(cls, s: typing___Union[builtin___bytes, builtin___buffer, builtin___unicode]) -> TestPlan: ... def MergeFrom(self, other_msg: google___protobuf___message___Message) -> None: ... def CopyFrom(self, other_msg: google___protobuf___message___Message) -> None: ... def ClearField(self, field_name: typing_extensions___Literal[u"backendBugCount",b"backendBugCount",u"bugPercent",b"bugPercent",u"bugTotal",b"bugTotal",u"capabilityCount",b"capabilityCount",u"codingErrCount",b"codingErrCount",u"delayPercent",b"delayPercent",u"environmentCount",b"environmentCount",u"frontBugCount",b"frontBugCount",u"functionMissCount",b"functionMissCount",u"instanceId",b"instanceId",u"name",b"name",u"projectActualCompleteDate",b"projectActualCompleteDate",u"projectPlanCompleteDate",b"projectPlanCompleteDate",u"projectScore",b"projectScore",u"projectStartDate",b"projectStartDate",u"requirementBlurryCount",b"requirementBlurryCount",u"requirement_instance",b"requirement_instance",u"reviewDate",b"reviewDate",u"scenarioBugCount",b"scenarioBugCount",u"scenarioCount",b"scenarioCount",u"startExcutePlanDate",b"startExcutePlanDate",u"status",b"status",u"suggestionCount",b"suggestionCount",u"unableAppearCount",b"unableAppearCount"]) -> None: ...
[ "service@easyops.cn" ]
service@easyops.cn
e52b90544d1ceaf93d83e0f1899866350df1397b
790589224695a2c7dc3977c718bb0f7cb5f6429e
/stats/fan98test.py
f321b8ec683a0ee393a9d1f769c96c44158afabb
[]
no_license
nikolaims/delayed_nfb
58ab51b3a9dd798f18579d9ebfead89c095413ac
37a8fbbd6e75a604ff092695fefd6a6421101de4
refs/heads/master
2022-12-19T04:30:34.252323
2020-09-18T13:23:27
2020-09-18T13:23:27
282,847,322
1
0
null
null
null
null
UTF-8
Python
false
false
5,323
py
import numpy as np import os def eval_z_score(data_points1, data_points2): # mean, std and number of samples x1_mean = np.mean(data_points1, 0) x1_std = np.std(data_points1, 0) x1_n = data_points1.shape[0] x2_mean = np.mean(data_points2, 0) x2_std = np.std(data_points2, 0) x2_n = data_points2.shape[0] # degree of freedom(see page 1011, left top paragraph) d = x1_n + x2_n - 2 # z - score over time(see formula 13) z_score = (x1_mean - x2_mean) / (x1_std ** 2 / x1_n + x2_std ** 2 / x2_n) ** 0.5 return z_score, d def eval_f_stat(data_points): n_all_sample = sum([group_data[:, 0].size for group_data in data_points]) n_groups = len(data_points) n_blocks = data_points[0].shape[1] n_subjects_list = [data_points[k].shape[0] for k in range(n_groups)] n_subjects = sum(n_subjects_list) f_stats_list = [] for b in range(n_blocks): data = [group_data[:, b] for group_data in data_points] overall_mean = sum([group_data.sum() for group_data in data])/n_subjects group_means_list = [group_data.mean() for group_data in data] between_group_var = sum([n * (group_mean - overall_mean) ** 2 for n, group_mean in zip(n_subjects_list, group_means_list)]) / (n_groups - 1) within_group_var = sum([np.sum((group_data - group_mean)**2) for group_data, group_mean in zip(data, group_means_list)]) / (n_all_sample - n_groups) f_stat = between_group_var /(within_group_var + 1e-10) f_stats_list.append(f_stat) d1 = n_groups - 1 d2 = n_all_sample - n_groups return f_stats_list, d1, d2 def adaptive_neyman_test(z_star, d, return_extra=False): # eval statistic for each number of first blocks (see fomula 6) T_an = np.zeros(len(z_star)) d_factor = 1 if d is None else ((d - 2) ** 2 * (d - 4) / (d ** 2 * (d - 1))) ** 0.5 for m in range(len(z_star)): T_an[m] = np.sum(z_star[:m + 1] ** 2 - 1) * d_factor / (2 * (m + 1)) ** 0.5 # find maximum T (see formula 6) stat = np.max(T_an) # compute final stat(see fomula 4) loglogn = np.log(np.log(len(z_star))) stat = (2 * loglogn) ** 0.5 * stat - (2 * loglogn + 0.5 * np.log(loglogn) - 0.5 * np.log(4 * np.pi)) if return_extra: opt_m = np.argmax(T_an) + 1 return stat, opt_m return stat def corrcoef_test(z_star, d, return_extra=False): stat = np.corrcoef(np.arange(len(z_star)), z_star)[0, 1] if return_extra: return stat, None return stat def fourier_transform(x): # fft (see formula between 17 and 18) z_fft = np.fft.fft(x) / len(x) ** 0.5 # colect real and imag coeffs(see example 1, page 1013, 2nd paragraph) z_star = np.zeros(len(z_fft) * 2 - 1) z_star[0::2] = np.real(z_fft) z_star[1::2] = np.imag(z_fft[1:]) return z_star[:len(z_fft)] def legendre_projector(n): a = np.arange(n) basis = np.zeros((n, n)) for k in a: basis[:, k] = (a - np.mean(a))**k q, _ = np.linalg.qr(basis) return q def legendre_transform(x): n = len(x) q = legendre_projector(n) return x.dot(q) def identity_transform(x): return x def simulate_h0_distribution(n, d, transform, stat_fun, n_iter=200000, verbose=True, sim_verbose=False): cash_dir = '_fan98_temp' cash_file = os.path.join(cash_dir, 'h0_{}_{}_n{}_d{}_n_iter{}.npy' .format(stat_fun.__name__, transform.__name__, n, d, n_iter)) if os.path.exists(cash_file): if verbose: print('Load from {}'.format(cash_file)) stats_h0 = np.load(cash_file) else: if verbose or sim_verbose: print('Simulate and save to {}'.format(cash_file)) stats_h0 = np.zeros(n_iter) for k in range(n_iter): if d is None: z_star = np.random.normal(size=n) else: z_star = np.random.standard_t(d, size=n) z_star = transform(z_star) stats_h0[k] = stat_fun(z_star, d) if not os.path.exists(cash_dir): os.makedirs(cash_dir) np.save(cash_file, stats_h0) return stats_h0 def get_p_val_one_tailed(val, h0_distribution): p_val = np.sum(val < h0_distribution)/h0_distribution.shape[0] return p_val def get_p_val_two_tailed(val, h0_distribution): upper_count = np.sum(np.abs(val) < h0_distribution) lower_count = np.sum(h0_distribution < -np.abs(val)) p_val = (upper_count + lower_count) / h0_distribution.shape[0] return p_val if __name__ == '__main__': n = 20 import pandas as pd paper_table = pd.read_csv('release/stats/upperquartile.csv', sep=';').values p_vals = paper_table[0, 1:] stats = paper_table[paper_table[:, 0] == n, 1:][0] d = None stats_h0 = simulate_h0_distribution(n, d, transform='legendre') levels = np.zeros_like(p_vals) for k, p_val in enumerate(p_vals): levels[k] = np.quantile(stats_h0, 1 - p_val) print(' '.join(['{:.2f}'.format(p*100) for p in p_vals])) print(' '.join(['{:.2f}'.format(level) for level in levels])) print(' '.join(['{:.2f}'.format(level) for level in stats])) print(' '.join(['{:.2f}'.format(level) for level in (stats-levels)/stats*100]))
[ "n.m.smetanin@gmail.com" ]
n.m.smetanin@gmail.com
229f80c2b25ce34f5817bf9a25216175cb2e46cd
48983b88ebd7a81bfeba7abd6f45d6462adc0385
/HakerRank/algorithms/sorting/countingsort1.py
e135cc9ca8e5df255df2c85165a7a381e75f68d4
[]
no_license
lozdan/oj
c6366f450bb6fed5afbaa5573c7091adffb4fa4f
79007879c5a3976da1e4713947312508adef2e89
refs/heads/master
2018-09-24T01:29:49.447076
2018-06-19T14:33:37
2018-06-19T14:33:37
109,335,964
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
# author: Daniel Lozano # source: HackerRank ( https://www.hackerrank.com ) # problem name: Algorithms: Sorting: Counting Sort 1 # problem url: https://www.hackerrank.com/challenges/countingsort1/problem # date: 8/20/2017 n = int(input()) array = [int(i) for i in input().split()] count = [0 for i in range(max(array)+1)] for x in array: count[x] +=1 print(*count)
[ "lozanodaniel02@gmail.com" ]
lozanodaniel02@gmail.com
8a39bf68b2b2cea3c56735111181d89cb786306c
a742bd051641865d2e5b5d299c6bc14ddad47f22
/algorithm/牛客网/14-链表中倒数第k个节点.py
b5d4a48dcbdb55bdc68a5ec35835d1df39b8ff13
[]
no_license
lxconfig/UbuntuCode_bak
fb8f9fae7c42cf6d984bf8231604ccec309fb604
3508e1ce089131b19603c3206aab4cf43023bb19
refs/heads/master
2023-02-03T19:10:32.001740
2020-12-19T07:27:57
2020-12-19T07:27:57
321,351,481
0
0
null
null
null
null
UTF-8
Python
false
false
1,597
py
""" 输入一个链表,输出该链表中倒数第k个结点。 以空间换时间 """ class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def FindKthToTail(self, head, k): # write code here ''' # 运行时间:22ms 占用内存:5856k ret = [] while head: ret.insert(0, head.val) # 写成head才能过 head = head.next if k > len(ret) or k <= 0: return return ret[k-1] ''' # 运行时间:30ms 占用内存:5704k # 就像一把尺子,当把尺子的右端移动到链表末尾,尺子的左端就对应着那个值,即倒数的第k个节点 temp = head if head == None or k <= 0: return while k > 1: if temp.next: # 先让temp走k步 temp = temp.next k -= 1 else: # temp已经移到链表外面,说明k不合法 return # 之后temp和head一起走,直到temp走到末尾 while temp.next: head = head.next temp = temp.next return head.val if __name__ == "__main__": solution = Solution() a = ListNode(1) b = ListNode(2) c = ListNode(3) d = ListNode(4) e = ListNode(5) f = ListNode(6) a.next = b b.next = c c.next = d d.next = e e.next = f print(solution.FindKthToTail(a, 3))
[ "525868229@qq.com" ]
525868229@qq.com
8350946547ae600ae9e371657261443a53ba657a
e5aff0646237acf3639ac805652143cd8267bf33
/template.py
828dd581ec0c8f3190ff0720f6f760fc3cb2513a
[ "Apache-2.0" ]
permissive
HTDerekLiu/BlenderToolbox
42943cf9fee7277d319ff5baffe7810c4c27dfe4
8044e77268ff018514ad1501c291f6deb6a07ec6
refs/heads/master
2023-07-20T05:14:58.736225
2023-07-10T16:33:17
2023-07-10T16:33:17
162,408,776
408
48
null
null
null
null
UTF-8
Python
false
false
3,529
py
import sys, os sys.path.append(os.path.join(os.path.abspath(os.getcwd()))) # change this to your path to “path/to/BlenderToolbox/ import BlenderToolBox as bt import os, bpy, bmesh import numpy as np cwd = os.getcwd() ''' RENDER AN IMAGE STEP-BY-STEP: 1. copy "template.py" to your preferred local folder 2. In "template.py": - change the second line to your path to the BlenderToolbox, such as "sys.path.append('path/to/BlenderToolbox/')" - change "meshPath" - set your desired material (select one from the demo scripts) 3. run "blender --background --python template.py" in terminal, then terminate the code when it starts rendering. This step outputs a "test.blend" 4. open "test.blend" with your blender software 5. In blender UI, adjust: - location, rotation, scale of the mesh - material parameters 6. In "template.py": - type in the adjusted parameters from GUI - set outputPath and increase imgRes_x, imgRes_y, numSamples 7. run "blender --background --python template.py" again to output your final image ''' outputPath = os.path.join(cwd, './template.png') ## initialize blender imgRes_x = 720 # recommend > 1080 imgRes_y = 720 # recommend > 1080 numSamples = 100 # recommend > 200 exposure = 1.5 use_GPU = True bt.blenderInit(imgRes_x, imgRes_y, numSamples, exposure, use_GPU) ## read mesh meshPath = './meshes/spot.ply' location = (1.12, -0.14, 0) # (GUI: click mesh > Transform > Location) rotation = (90, 0, 227) # (GUI: click mesh > Transform > Rotation) scale = (1.5,1.5,1.5) # (GUI: click mesh > Transform > Scale) mesh = bt.readMesh(meshPath, location, rotation, scale) ## set shading (uncomment one of them) bpy.ops.object.shade_smooth() # Option1: Gouraud shading # bpy.ops.object.shade_flat() # Option2: Flat shading # bt.edgeNormals(mesh, angle = 10) # Option3: Edge normal shading ## subdivision bt.subdivision(mesh, level = 1) ########################################### ## Set your material here (see other demo scripts) # bt.colorObj(RGBA, Hue, Saturation, Value, Bright, Contrast) RGBA = (144.0/255, 210.0/255, 236.0/255, 1) meshColor = bt.colorObj(RGBA, 0.5, 1.0, 1.0, 0.0, 2.0) bt.setMat_plastic(mesh, meshColor) ## End material ########################################### ## set invisible plane (shadow catcher) bt.invisibleGround(shadowBrightness=0.9) ## set camera ## Option 1: don't change camera setting, change the mesh location above instead camLocation = (3, 0, 2) lookAtLocation = (0,0,0.5) focalLength = 45 # (UI: click camera > Object Data > Focal Length) cam = bt.setCamera(camLocation, lookAtLocation, focalLength) ## Option 2: if you really want to set camera based on the values in GUI, then # camLocation = (3, 0, 2) # rotation_euler = (63,0,90) # focalLength = 45 # cam = bt.setCamera_from_UI(camLocation, rotation_euler, focalLength = 35) ## set light ## Option1: Three Point Light System # bt.setLight_threePoints(radius=4, height=10, intensity=1700, softness=6, keyLoc='left') ## Option2: simple sun light lightAngle = (6, -30, -155) strength = 2 shadowSoftness = 0.3 sun = bt.setLight_sun(lightAngle, strength, shadowSoftness) ## set ambient light bt.setLight_ambient(color=(0.1,0.1,0.1,1)) ## set gray shadow to completely white with a threshold (optional but recommended) bt.shadowThreshold(alphaThreshold = 0.05, interpolationMode = 'CARDINAL') ## save blender file so that you can adjust parameters in the UI bpy.ops.wm.save_mainfile(filepath=os.getcwd() + '/test.blend') ## save rendering bt.renderImage(outputPath, cam)
[ "hsuehtil@cs.toronto.edu" ]
hsuehtil@cs.toronto.edu
3415a4ecb83d7e175dabb499de9265c8cc036262
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_appointing.py
26b9e8439c7ab22458130ace2febc7adeaf9fdc6
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _APPOINTING(): def __init__(self,): self.name = "APPOINTING" self.definitions = appoint self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['appoint']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
850ec92026f401141c59fd3e0a0d2ad28d4ca8fe
ab464f019ed1669fa4f0fbf2a7f25e662d996948
/proj1/Python-Test1/morsels_proxydict2.py
c91c7e265c8e16301a026dd6092f7af3df73b900
[]
no_license
maniraja1/Python
fed2aa746c690560d7744b1378259af1cdfa9bb0
c9e6e12836fed47cdba495a07f43d7599265bea1
refs/heads/master
2021-06-03T19:17:16.591303
2021-01-04T16:06:25
2021-01-04T16:06:25
89,430,274
0
0
null
null
null
null
UTF-8
Python
false
false
1,729
py
class ProxyDict: def __init__(self,data={}): self.data=data def __getitem__(self, item): return self.data[item] def __iter__(self): for key, value in self.data.items(): yield key def keys(self): x = [] for key in self.data.keys(): x.append(key) return x def __len__(self): return len([key for key in self.data.keys()]) def items(self): x=[] for key,value in self.data.items(): x.append((key, value)) return x def values(self): x = [] for value in self.data.values(): x.append(value) return x def get(self, key, default=None): return {self.data.get(key,default)} def __repr__(self): return f"ProxyDict({self.data})" def __eq__(self, other): if isinstance(other, ProxyDict): return True if self.data == other.data else False elif isinstance(other, dict): return True if self.data == other else False else: return False user_data = {'name': 'Trey Hunner', 'active': False} proxy_data = ProxyDict(user_data) print(proxy_data.keys()) print(set(proxy_data.keys())) print(proxy_data['name']) print(proxy_data['active']) user_data['active'] = True print(proxy_data['active']) print(len(proxy_data)) print(proxy_data.items()) print(proxy_data.values()) print(proxy_data.get('name')) print(proxy_data.get('shoe_size', 0)) print(proxy_data.get('d')) for key in proxy_data: print(key) print(proxy_data) p1 = ProxyDict(user_data) p2 = ProxyDict(user_data.copy()) print(p1==p2) print(p2 == user_data) if None == None: print(True) else: print(False)
[ "mrajagopal@mrajagopal-ltm.internal.salesforce.com" ]
mrajagopal@mrajagopal-ltm.internal.salesforce.com
5c8633a022c983ef715a29fc3751eecef317daca
0e47f4e7765938324cee0186c4ba0bf257507b0b
/docs/source/conf.py
51cc86e7396589f9260c1bc7af7ae2d7111a6bbe
[ "BSD-3-Clause" ]
permissive
JarryShaw/lorem.js
fcd9cceb6ff9d21a273a995dd36ad9a1fd4644c1
b2e8e163e065b0b5d2a367f564a3a8ac756104ca
refs/heads/master
2023-08-03T05:49:24.006149
2023-07-30T01:58:22
2023-07-30T01:58:22
213,123,617
0
0
BSD-3-Clause
2023-07-30T01:58:24
2019-10-06T07:09:14
TypeScript
UTF-8
Python
false
false
2,467
py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'lorem.js' copyright = '2020, Jarry Shaw' author = 'Jarry Shaw' # The full version, including alpha/beta/rc tags release = '0.1.2' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx_js', ] primary_domain = 'js' js_language = 'typescript' js_source_path = '../../ts/' # jsdoc_config_path = 'conf.json' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'show_powered_by': False, 'github_user': 'JarryShaw', 'github_repo': 'lorem.js', 'github_banner': True, 'github_type': 'star', #'show_related': False, #'note_bg': '#FFF59C', #'travis_button': True, #'codecov_button': True, }
[ "jarryshaw@icloud.com" ]
jarryshaw@icloud.com
97286bf0248e398684ddbc5cbc43952b3ebf61b4
187f114edca30e0fec49cdaee873bbe614295442
/docs/source/conf.py
802726555ddced6fbbd0320aa0d3c743866fc976
[ "MIT" ]
permissive
scorphus/pvsim
c5b3f4535d8c404cf1a4fbe9c731c5dee7fc8251
778349147245c754e37ab7d44d385b03780105ac
refs/heads/master
2022-10-24T02:12:28.331528
2020-06-08T17:09:49
2020-06-08T17:09:49
109,788,139
0
0
null
null
null
null
UTF-8
Python
false
false
5,807
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of pvsim. # https://github.com/scorphus/pvism # Licensed under the MIT license: # http://www.opensource.org/licenses/MIT-license # Copyright (c) 2017, Pablo Santiago Blum de Aguiar <pablo.aguiar@gmail.com> # PV Simulator Challenge documentation build configuration file, created by # sphinx-quickstart on Fri Nov 3 21:36:07 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # import os import sys sys.path.append('..') sys.path.append('../..') # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'PV Simulator Challenge' copyright = '2017, Pablo Santiago Blum de Aguiar' author = 'Pablo Santiago Blum de Aguiar' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1.0' # The full version, including alpha/beta/rc tags. release = '0.1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'relations.html', # needs 'show_related': True theme option to display 'searchbox.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'PVSimulatorChallengedoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'PVSimulatorChallenge.tex', 'PV Simulator Challenge Documentation', 'Pablo Santiago Blum de Aguiar', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pvsimulatorchallenge', 'PV Simulator Challenge Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'PVSimulatorChallenge', 'PV Simulator Challenge Documentation', author, 'PVSimulatorChallenge', 'One line description of project.', 'Miscellaneous'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None}
[ "scorphus@gmail.com" ]
scorphus@gmail.com
c7eaf6bea58237cdccc33d21a51b534bf54ca155
d1b59545c498a1188b84a874324522385dbadfe4
/A01/q1/q2.py
2ff0ac09805da363d938afc94d3b1439a1e4c0be
[]
no_license
khat3680/basic_python-104
570c64daf6a89c5696966c75a9901b0d15eb758e
c3a79e08cb5fe6dcba5130c295f395c6130d559b
refs/heads/master
2022-12-09T21:32:27.068654
2020-09-11T17:08:47
2020-09-11T17:08:47
294,756,729
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
""" ------------------------------------------------------------------------ Assignment 1 Question 2 C ------------------------------------------------------------------------ Author: Anshul Khatri ID: 193313680 Email: khat3680@mylaurier.ca __updated__ = "2019-09-14" ------------------------------------------------------------------------ """ print("hello , welcome to new innings of life") varig =12 varig0 =10 print( " result", varig/varig0) outtput =0 outtput += varig0 print (outtput)
[ "anshulskhatri@gmail.com" ]
anshulskhatri@gmail.com
149137c48aaf71c39a2d48bd44e95b892c37bca9
627094b5e463bd113f626450eaceb01dfa4ff5d5
/udsoncan/services/ReadDataByPeriodicIdentifier.py
d943ab4a2cdd1f4a238f9e91cbb7fec3ea179296
[ "MIT" ]
permissive
DaleChen0351/python-udsoncan
49eefcb299e2a4fabe0bf168905cc86ef43d6f62
c495e872c69c4ea05e3b477d2a1088cb83167a17
refs/heads/master
2020-04-20T06:10:25.252315
2019-03-28T07:38:17
2019-03-28T07:38:17
168,675,483
0
0
MIT
2019-03-28T07:38:19
2019-02-01T09:42:02
Python
UTF-8
Python
false
false
718
py
from . import * from udsoncan.Response import Response from udsoncan.exceptions import * class ReadDataByPeriodicIdentifier(BaseService): _sid = 0x2A supported_negative_response = [ Response.Code.IncorrectMessageLegthOrInvalidFormat, Response.Code.ConditionsNotCorrect, Response.Code.RequestOutOfRange, Response.Code.SecurityAccessDenied ] @classmethod def make_request(cls): raise NotImplementedError('Service is not implemented') @classmethod def interpret_response(cls, response): raise NotImplementedError('Service is not implemented') class ResponseData(BaseResponseData): def __init__(self): super().__init__(ReadDataByPeriodicIdentifier)
[ "py.lessard@gmail.com" ]
py.lessard@gmail.com
bad5caea1aca73bb22c458643376be763d78501b
7d4e3f36fb1bac247599510820c0f537417f99e4
/jnpy/__init__.py
27623371e04ec7b6314a18697122d86eded15828
[ "MIT" ]
permissive
jojoquant/jonpy
562065ea74ac1038c36d3993f43e71cc39a799a7
c874060af4b129ae09cee9f8542517b7b2f6573b
refs/heads/master
2022-09-08T07:15:37.051279
2022-03-18T06:41:22
2022-03-18T06:41:22
244,432,056
7
7
null
null
null
null
UTF-8
Python
false
false
169
py
# !/usr/bin/env python3 # -*- coding:utf-8 -*- # @Datetime : 2020/1/22 上午1:40 # @Author : Fangyang # @Software : PyCharm if __name__ == '__main__': pass
[ "fangyang.jing@hotmail.com" ]
fangyang.jing@hotmail.com
17c62b25766d04711a43abe1a6664544e0969e56
82080ef68a203f141ab6435c32fdcc79351b448e
/web_dynamic/3-hbnb.py
f2591110ea9142633bb3c28838dee8b09cc5a20f
[ "MIT" ]
permissive
dalexach/AirBnB_clone_v4
60291a8d10d58f75d707fdc4a0c11095e4c36dc5
04e1db0691cbe5cefb6a5f42f7e008e8ba24d5d6
refs/heads/master
2023-02-08T02:26:40.018351
2020-02-18T20:14:16
2020-02-18T20:14:16
240,527,417
0
2
MIT
2023-02-02T03:27:32
2020-02-14T14:32:44
HTML
UTF-8
Python
false
false
1,356
py
#!/usr/bin/python3 """ Flask App that integrates with AirBnB static HTML Template """ from flask import Flask, render_template, url_for from models import storage from uuid import uuid4 # flask setup app = Flask(__name__) app.url_map.strict_slashes = False port = 5000 host = '0.0.0.0' # begin flask page rendering @app.teardown_appcontext def teardown_db(exception): """ after each request, this method calls .close() (i.e. .remove()) on the current SQLAlchemy Session """ storage.close() @app.route('/3-hbnb/') def hbnb_filters(the_id=None): """ handles request to custom template with states, cities & amentities """ state_objs = storage.all('State').values() states = dict([state.name, state] for state in state_objs) amens = storage.all('Amenity').values() places = storage.all('Place').values() users = dict([user.id, "{} {}".format(user.first_name, user.last_name)] for user in storage.all('User').values()) cache_id = uuid4() return render_template('3-hbnb.html', states=states, amens=amens, places=places, users=users, cache_id=cache_id) if __name__ == "__main__": """ MAIN Flask App""" app.run(host=host, port=port)
[ "diahancaroll@hotmail.com" ]
diahancaroll@hotmail.com
04eef729215eff975b7ee7bd345bbf3cd621784c
f5f87fabe766e69c7a003d070b6447ef5a45c603
/stylelens_search/models/__init__.py
6c599ebfcc38fd644fb7183bd6deae699ba00867
[]
no_license
BlueLens/stylelens-search
4a4f17f876e1781a6fee5663bfa62f83f657d7db
7c21d59d49915688777714fb896d65a101dab28a
refs/heads/master
2021-07-15T08:55:45.256052
2017-10-21T15:44:35
2017-10-21T15:44:35
107,691,298
0
0
null
null
null
null
UTF-8
Python
false
false
504
py
# coding: utf-8 """ stylelens-search This is a API document for Image search on fashion items\" OpenAPI spec version: 0.0.1 Contact: devops@bluehack.net Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import models into model package from .image import Image from .image_search_response import ImageSearchResponse from .image_search_response_data import ImageSearchResponseData from .images_array import ImagesArray
[ "master@bluehack.net" ]
master@bluehack.net
ef03dc7074da5007a1486441d0229d4e4db99142
e0e9b1446ccaccdd7332b2f916e737cdaced8a8d
/.scripts/submit.py
6ce7eff369601b1752b5709ac46a92bb65b5cbf9
[]
no_license
marygmccann/cse-34872-su20-assignments
3afd51f8cfc7c0262b7937d113755baf49cbd20e
c2c2f21da1abd86e646c16ea86f21702efb34d68
refs/heads/master
2022-08-24T10:32:31.545059
2020-05-19T21:03:43
2020-05-19T21:03:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,252
py
#!/usr/bin/env python3 import glob import json import os import sys import requests import yaml # Globals ASSIGNMENTS = {} DREDD_QUIZ_URL = 'https://dredd.h4x0r.space/quiz/cse-34872-su20/' DREDD_QUIZ_MAX = 2.0 if bool(os.environ.get('DEBUG', False)): DREDD_CODE_URL = 'https://dredd.h4x0r.space/debug/cse-34872-su20/' else: DREDD_CODE_URL = 'https://dredd.h4x0r.space/code/cse-34872-su20/' DREDD_CODE_MAX = 6.0 # Utilities def add_assignment(assignment, path=None): if path is None: path = assignment if assignment.startswith('reading') or assignment.startswith('challenge'): ASSIGNMENTS[assignment] = path def print_results(results): for key, value in sorted(results): try: print('{:>8} {:.2f}'.format(key.title(), value)) except ValueError: if key in ('stdout', 'diff'): print('{:>8}\n{}'.format(key.title(), value)) else: print('{:>8} {}'.format(key.title(), value)) # Submit Functions def submit_quiz(assignment, path): answers = None for mod_load, ext in ((json.load, 'json'), (yaml.safe_load, 'yaml')): try: answers = mod_load(open(os.path.join(path, 'answers.' + ext))) except IOError as e: pass except Exception as e: print('Unable to parse answers.{}: {}'.format(ext, e)) return 1 if answers is None: print('No quiz found (answers.{json,yaml})') return 1 print('\nSubmitting {} quiz ...'.format(assignment)) response = requests.post(DREDD_QUIZ_URL + assignment, data=json.dumps(answers)) print_results(response.json().items()) return 0 if response.json().get('score', 0) >= DREDD_QUIZ_MAX else 1 def submit_code(assignment, path): sources = glob.glob(os.path.join(path, 'program.*')) if not sources: print('No code found (program.*)') return 1 result = 1 for source in sources: print('\nSubmitting {} {} ...'.format(assignment, os.path.basename(source))) response = requests.post(DREDD_CODE_URL + assignment, files={'source': open(source)}) print_results(response.json().items()) result = min(result, 0 if response.json().get('score', 0) >= DREDD_CODE_MAX else 1) return result # Main Execution # Add GitLab/GitHub branch for variable in ['CI_BUILD_REF_NAME', 'GITHUB_HEAD_REF']: try: add_assignment(os.environ[variable]) except KeyError: pass # Add local git branch try: add_assignment(os.popen('git symbolic-ref -q --short HEAD 2> /dev/null').read().strip()) except OSError: pass # Add current directory add_assignment(os.path.basename(os.path.abspath(os.curdir)), os.curdir) # For each assignment, submit quiz answers and program code if not ASSIGNMENTS: print('Nothing to submit!') sys.exit(1) exit_code = 0 for assignment, path in sorted(ASSIGNMENTS.items()): print('Submitting {} assignment ...'.format(assignment)) if 'reading' in assignment: exit_code += submit_quiz(assignment, path) elif 'challenge' in assignment: exit_code += submit_code(assignment, path) sys.exit(exit_code) # vim: set sts=4 sw=4 ts=8 expandtab ft=python:
[ "pbui@nd.edu" ]
pbui@nd.edu
6407d8cd05af0356ac59c26e791b779813da547d
ef1f62cf4e53f856bf763ac0dee73f054518530d
/Week_07/208.Implement_Trie.py
00f27ebe6bcf165fca9b12eb1cd01c797725850f
[]
no_license
ZHHJemotion/algorithm008-class01
3338af3619d8e1754a62af6a852f517b47298d95
5bb7d2b74110df0b5788b94c69582552d711563a
refs/heads/master
2022-11-12T09:26:24.941738
2020-06-30T15:29:20
2020-06-30T15:29:20
255,102,230
0
0
null
2020-04-12T14:39:17
2020-04-12T14:39:17
null
UTF-8
Python
false
false
1,821
py
# Implement a trie with insert, search, and startsWith methods. # # Example: # # # Trie trie = new Trie(); # # trie.insert("apple"); # trie.search("apple"); // returns true # trie.search("app"); // returns false # trie.startsWith("app"); // returns true # trie.insert("app"); # trie.search("app"); // returns true # # # Note: # # # You may assume that all inputs are consist of lowercase letters a-z. # All inputs are guaranteed to be non-empty strings. # # Related Topics Design Trie # leetcode submit region begin(Prohibit modification and deletion) class Trie: def __init__(self): """ Initialize your data structure here. """ self.root = {} self.end_of_word = '#' def insert(self, word: str) -> None: """ Inserts a word into the trie. """ node = self.root for char in word: node = node.setdefault(char, {}) node[self.end_of_word] = self.end_of_word def search(self, word: str) -> bool: """ Returns if the word is in the trie. """ node = self.root for char in word: if char not in node: return False node = node[char] return self.end_of_word in node def startsWith(self, prefix: str) -> bool: """ Returns if there is any word in the trie that starts with the given prefix. """ node = self.root for char in prefix: if char not in node: return False node = node[char] return True # Your Trie object will be instantiated and called as such: # obj = Trie() # obj.insert(word) # param_2 = obj.search(word) # param_3 = obj.startsWith(prefix) # leetcode submit region end(Prohibit modification and deletion)
[ "zhhjemotion@hotmail.com" ]
zhhjemotion@hotmail.com
a573ee26fbe78730cc20595670f4408e417d3492
5e84763c16bd6e6ef06cf7a129bb4bd29dd61ec5
/blimgui/dist/OpenGL/GLES1/OES/single_precision.py
d67e1d503c813791b2ce19f41892ef8db20a7272
[ "MIT" ]
permissive
juso40/bl2sdk_Mods
8422a37ca9c2c2bbf231a2399cbcb84379b7e848
29f79c41cfb49ea5b1dd1bec559795727e868558
refs/heads/master
2023-08-15T02:28:38.142874
2023-07-22T21:48:01
2023-07-22T21:48:01
188,486,371
42
110
MIT
2022-11-20T09:47:56
2019-05-24T20:55:10
Python
UTF-8
Python
false
false
1,317
py
'''OpenGL extension OES.single_precision This module customises the behaviour of the OpenGL.raw.GLES1.OES.single_precision to provide a more Python-friendly API Overview (from the spec) This extension adds commands with single-precision floating-point parameters corresponding to the commands that only variants that accept double-precision floating-point input. This allows an application to avoid using double-precision floating-point data types. New commands are added with an 'f' prefix. The official definition of this extension is available here: http://www.opengl.org/registry/specs/OES/single_precision.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES1 import _types, _glgets from OpenGL.raw.GLES1.OES.single_precision import * from OpenGL.raw.GLES1.OES.single_precision import _EXTENSION_NAME def glInitSinglePrecisionOES(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) glClipPlanefOES=wrapper.wrapper(glClipPlanefOES).setInputArraySize( 'equation', 4 ) glGetClipPlanefOES=wrapper.wrapper(glGetClipPlanefOES).setOutput( 'equation',size=(4,),orPassIn=True ) ### END AUTOGENERATED SECTION
[ "justin.sostmann@googlemail.com" ]
justin.sostmann@googlemail.com
2f9a53d49fd4ed9c71a2cd957ff8bd6d59d9d5d0
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/web-dev-notes-resource-site/2-content/Data-Structures/1-Python/maths/gcd.py
51d2711d3abfc8b69402ae7ee013a4a7b2f630df
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
938
py
def gcd(a, b): """Computes the greatest common divisor of integers a and b using Euclid's Algorithm. """ while b != 0: a, b = b, a % b return a def lcm(a, b): """Computes the lowest common multiple of integers a and b.""" return a * b / gcd(a, b) """ Given a positive integer x, computes the number of trailing zero of x. Example Input : 34(100010) ~~~~~^ Output : 1 Input : 40(101000) ~~~^^^ Output : 3 """ def trailing_zero(x): cnt = 0 while x and not x & 1: cnt += 1 x >>= 1 return cnt """ Given two non-negative integer a and b, computes the greatest common divisor of a and b using bitwise operator. """ def gcd_bit(a, b): tza = trailing_zero(a) tzb = trailing_zero(b) a >>= tza b >>= tzb while b: if a < b: a, b = b, a a -= b a >>= trailing_zero(a) return a << min(tza, tzb)
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
1d996f9d9e66d2a64deb825439e2acd7feef60e3
28a9cc19537f7264421afeb9883962aa480c2616
/deals/migrations/0002_product_data_category_id.py
cc5cb13b2afca538cacf42cdf415cf940e913c68
[]
no_license
ujjwalagrawal17/BrokerAppBackend
b33df886b389aabfcfe7278c3e41c99d13d4fbb3
1b8ffd18e4c5257d222c17b8aece3351b549b204
refs/heads/master
2021-01-22T21:23:18.807792
2017-03-18T19:06:44
2017-03-18T19:06:44
85,425,430
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-12-29 18:05 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('deals', '0001_initial'), ] operations = [ migrations.AddField( model_name='product_data', name='category_id', field=models.IntegerField(default=0), ), ]
[ "ujjwal.iitism@gmail.com" ]
ujjwal.iitism@gmail.com
4340e9b7a8286e8c59be954b02524b64f84cd8d3
c36aae30fad06ea64dd5d158d364c18462a70799
/website/books/models.py
ea80d86c5c777f2270f02934900264f101096070
[]
no_license
srikanthpragada/building_web_applications_using_django_framework
60222ca503c97aa375726d4496db9e36a72ebb4b
920780593d6324414d0c727a9bce2db171614350
refs/heads/master
2023-01-03T12:31:10.851750
2020-10-31T15:49:10
2020-10-31T15:49:10
308,915,547
0
1
null
null
null
null
UTF-8
Python
false
false
369
py
from django.db import models class Book(models.Model): title = models.CharField(max_length=30, unique=True, null=False) author = models.CharField(max_length=30, null=False) price = models.IntegerField(null=False) def __str__(self): return f"{self.id} - {self.title} - {self.author} - {self.price}" class Meta: db_table = 'books'
[ "srikanthpragada@gmail.com" ]
srikanthpragada@gmail.com
8fb78e1b6dc83ef71a9e50e3592e4b6d439b160e
b77a36eb7c2214151feccca0c4894381147d6051
/movie/migrations/0009_alter_movie_movie_rating.py
2d33a2519713b24a769d3ba4f64c82b9413b674c
[]
no_license
mnk-q/watchlist
b15536bb8a2a81f1935bb08a25b04dc27953f896
3ac14b1ba48a2bd7aae84e7a3c64cf60fedd6f17
refs/heads/master
2023-06-04T21:14:51.235899
2021-06-25T17:41:37
2021-06-25T17:41:37
349,739,231
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
# Generated by Django 3.2.3 on 2021-06-17 13:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('movie', '0008_alter_movie_movie_studio'), ] operations = [ migrations.AlterField( model_name='movie', name='movie_rating', field=models.CharField(max_length=6), ), ]
[ "=" ]
=
305d5f76e5fb3052bcd63b76465b8fe2c3e33e0b
92e26b93057723148ecb8ca88cd6ad755f2e70f1
/SE/BottleNeck/r40_SE/network.py
bba54ad210394d7c821cc9509f84a78419bb598a
[]
no_license
lyuyanyii/CIFAR
5906ad9fbe1377edf5b055098709528e06b5ace2
d798834942d6a9d4e3295cda77488083c1763962
refs/heads/master
2021-08-30T20:09:52.819883
2017-12-19T08:37:37
2017-12-19T08:37:37
112,701,370
1
0
null
null
null
null
UTF-8
Python
false
false
3,185
py
import numpy as np from megskull.network import Network from megskull.opr.all import ( Conv2D, Pooling2D, FullyConnected, Softmax, CrossEntropyLoss, Dropout, ElementwiseAffine ) from megskull.opr.helper.elemwise_trans import ReLU, Identity, Sigmoid from megskull.graph.query import GroupNode from megskull.opr.netsrc import DataProvider import megskull.opr.helper.param_init as pinit from megskull.opr.helper.param_init import AutoGaussianParamInitializer as G from megskull.opr.helper.param_init import ConstantParamInitializer as C from megskull.opr.regularizer import BatchNormalization as BN import megskull.opr.arith as arith from megskull.network import NetworkVisitor global idx idx = 0 def conv_bn(inp, ker_shape, stride, padding, out_chl, isrelu): global idx idx += 1 l1 = Conv2D( "conv{}".format(idx), inp, kernel_shape = ker_shape, stride = stride, padding = padding, output_nr_channel = out_chl, #W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5), #b = C(0), nonlinearity = Identity() ) l2 = BN("bn{}".format(idx), l1, eps = 1e-9) l2 = ElementwiseAffine("bnaff{}".format(idx), l2, shared_in_channels = False, k = C(1), b = C(0)) if isrelu: l2 = arith.ReLU(l2) return l2 def res_layer(inp, chl, stride = 1, proj = False): pre = inp inp = conv_bn(inp, 1, stride, 0, chl // 4, True) inp = conv_bn(inp, 3, 1, 1, chl // 4, True) inp = conv_bn(inp, 1, 1, 0, chl, False) if proj: pre = conv_bn(pre, 1, stride, 0, chl, False) name = inp.name #Global Average Pooling SE = inp.mean(axis = 3).mean(axis = 2) #fc0 SE = FullyConnected( "fc0({})".format(name), SE, output_dim = SE.partial_shape[1], nonlinearity = ReLU() ) #fc1 SE = FullyConnected( "fc1({})".format(name), SE, output_dim = SE.partial_shape[1], nonlinearity = Sigmoid() ) inp = inp * SE.dimshuffle(0, 1, 'x', 'x') inp = arith.ReLU(inp + pre) return inp def res_block(inp, chl, i, n): stride = 2 if i == 0: stride = 1 inp = res_layer(inp, chl, stride = stride, proj = True) for i in range(n - 1): inp = res_layer(inp, chl) return inp def make_network(minibatch_size = 128, debug = False): patch_size = 32 inp = DataProvider("data", shape = (minibatch_size, 3, patch_size, patch_size), dtype = np.float32) label = DataProvider("label", shape = (minibatch_size, ), dtype = np.int32) lay = conv_bn(inp, 3, 1, 1, 16, True) n = 4 lis = [16 * 4, 32 * 4, 64 * 4] for i in range(len(lis)): lay = res_block(lay, lis[i], i, n) #global average pooling #feature = lay.mean(axis = 2).mean(axis = 2) feature = Pooling2D("pooling", lay, window = 8, stride = 8, padding = 0, mode = "AVERAGE") pred = Softmax("pred", FullyConnected( "fc0", feature, output_dim = 10, #W = G(mean = 0, std = (1 / 64)**0.5), #b = C(0), nonlinearity = Identity() )) network = Network(outputs = [pred]) network.loss_var = CrossEntropyLoss(pred, label) if debug: visitor = NetworkVisitor(network.loss_var) for i in visitor.all_oprs: print(i) print(i.partial_shape) print("input = ", i.inputs) print("output = ", i.outputs) print() return network if __name__ == "__main__": make_network(debug = True)
[ "315603442@qq.com" ]
315603442@qq.com
13d7260187bc3dedef4fe80405688fa7a830b32e
2c4ba5a56b7a3d3e1c286b678eb8068f51c23046
/week3/2-Resolve-with-Functions/solutions/twin_primes.py
ff03fddc715021dd92dde7664a6c768f15866bd7
[]
no_license
OgnyanPenkov/Programming0-1
3b69757bd803814585d77479fc987a0ee92d0390
8078f316ea2b81216c21cf78e7cf1afc17f54846
refs/heads/master
2021-01-21T15:12:20.814368
2015-10-07T18:16:39
2015-10-07T18:16:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
650
py
def is_prime(n): if n <= 1: return False start = 2 is_prime = True while start < n: if n % start == 0: is_prime = False break start += 1 return is_prime p = input("Enter number: ") p = int(p) q = p - 2 r = p + 2 is_p_prime = is_prime(p) is_q_prime = is_prime(q) is_r_prime = is_prime(r) if is_p_prime and (not is_q_prime) and (not is_r_prime): print(str(p) + " is prime") print("But " + str(q) + " and " + str(r) + " are not.") elif is_p_prime: if is_q_prime: print(q, p) if is_r_prime: print(p, r) else: print(str(p) + " is not prime.")
[ "radorado@hackbulgaria.com" ]
radorado@hackbulgaria.com
f250d33cc3036d938d84a63612f7bddeef67203a
fe19d2fac4580d463132e61509bd6e3cc2cf958d
/toontown/toon/PlayerDetailPanel.py
7fab34d34832d1ccb0846ed7cb013f3fb958085d
[]
no_license
t00nt0wn1dk/c0d3
3e6db6dd42c3aa36ad77709cf9016176a3f3a44f
7de105d7f3de0f8704b020e32fd063ee2fad8d0d
refs/heads/master
2021-01-01T16:00:15.367822
2015-03-21T21:25:52
2015-03-21T21:25:55
32,647,654
3
5
null
null
null
null
UTF-8
Python
false
false
5,657
py
# 2013.08.22 22:26:15 Pacific Daylight Time # Embedded file name: toontown.toon.PlayerDetailPanel from pandac.PandaModules import * from toontown.toonbase.ToontownGlobals import * from direct.gui.DirectGui import * from pandac.PandaModules import * from direct.showbase import DirectObject from direct.fsm import ClassicFSM, State from direct.fsm import State from direct.directnotify import DirectNotifyGlobal import DistributedToon from toontown.friends import FriendInviter import ToonTeleportPanel from toontown.toonbase import TTLocalizer from toontown.hood import ZoneUtil from toontown.toonbase.ToontownBattleGlobals import Tracks, Levels globalAvatarDetail = None def showPlayerDetail(avId, avName, playerId = None): global globalAvatarDetail if globalAvatarDetail != None: globalAvatarDetail.cleanup() globalAvatarDetail = None globalAvatarDetail = PlayerDetailPanel(avId, avName, playerId) return def hidePlayerDetail(): global globalAvatarDetail if globalAvatarDetail != None: globalAvatarDetail.cleanup() globalAvatarDetail = None return def unloadPlayerDetail(): global globalAvatarDetail if globalAvatarDetail != None: globalAvatarDetail.cleanup() globalAvatarDetail = None return class PlayerDetailPanel(DirectFrame): __module__ = __name__ notify = DirectNotifyGlobal.directNotify.newCategory('ToonAvatarDetailPanel') def __init__(self, avId, avName, playerId = None, parent = aspect2dp, **kw): self.playerId = playerId self.isPlayer = 0 self.playerInfo = None if playerId: self.isPlayer = 1 if base.cr.playerFriendsManager.playerId2Info.has_key(playerId): self.playerInfo = base.cr.playerFriendsManager.playerId2Info[playerId] if not self.playerInfo.onlineYesNo: avId = None else: avId = None self.avId = avId self.avName = avName self.avatar = None self.createdAvatar = None buttons = loader.loadModel('phase_3/models/gui/dialog_box_buttons_gui') gui = loader.loadModel('phase_3.5/models/gui/avatar_panel_gui') detailPanel = gui.find('**/avatarInfoPanel') textScale = 0.132 textWrap = 10.4 if self.playerId: textScale = 0.1 textWrap = 18.0 optiondefs = (('pos', (0.525, 0.0, 0.525), None), ('scale', 0.5, None), ('relief', None, None), ('image', detailPanel, None), ('image_color', GlobalDialogColor, None), ('text', '', None), ('text_wordwrap', textWrap, None), ('text_scale', textScale, None), ('text_pos', (-0.125, 0.75), None)) self.defineoptions(kw, optiondefs) DirectFrame.__init__(self, parent) self.dataText = DirectLabel(self, text='', text_scale=0.085, text_align=TextNode.ALeft, text_wordwrap=15, relief=None, pos=(-0.85, 0.0, 0.725)) if self.avId: self.avText = DirectLabel(self, text=TTLocalizer.PlayerToonName % {'toonname': self.avName}, text_scale=0.09, text_align=TextNode.ALeft, text_wordwrap=15, relief=None, pos=(-0.85, 0.0, 0.56)) guiButton = loader.loadModel('phase_3/models/gui/quit_button') self.gotoToonButton = DirectButton(parent=self, relief=None, image=(guiButton.find('**/QuitBtn_UP'), guiButton.find('**/QuitBtn_DN'), guiButton.find('**/QuitBtn_RLVR')), image_scale=1.15, text=TTLocalizer.PlayerShowToon, text_scale=0.08, text_pos=(0.0, -0.02), textMayChange=0, pos=(0.43, 0, 0.415), command=self.__showToon) ToonTeleportPanel.hideTeleportPanel() FriendInviter.hideFriendInviter() self.bCancel = DirectButton(self, image=(buttons.find('**/CloseBtn_UP'), buttons.find('**/CloseBtn_DN'), buttons.find('**/CloseBtn_Rllvr')), relief=None, text=TTLocalizer.AvatarDetailPanelCancel, text_scale=0.05, text_pos=(0.12, -0.01), pos=(-0.865, 0.0, -0.765), scale=2.0, command=self.__handleCancel) self.bCancel.show() self.initialiseoptions(PlayerDetailPanel) self.__showData() buttons.removeNode() gui.removeNode() return def cleanup(self): if self.createdAvatar: self.avatar.delete() self.createdAvatar = None self.destroy() return def __handleCancel(self): unloadPlayerDetail() def __showData(self): if self.isPlayer and self.playerInfo: if self.playerInfo.onlineYesNo: someworld = self.playerInfo.location else: someworld = TTLocalizer.OfflineLocation text = TTLocalizer.AvatarDetailPanelPlayer % {'player': self.playerInfo.playerName, 'world': someworld} else: text = TTLocalizer.AvatarDetailPanelOffline self.dataText['text'] = text def __showToon(self): messenger.send('wakeup') hasManager = hasattr(base.cr, 'playerFriendsManager') handle = base.cr.identifyFriend(self.avId) if not handle and hasManager: handle = base.cr.playerFriendsManager.getAvHandleFromId(self.avId) if handle != None: self.notify.info("Clicked on name in friend's list. doId = %s" % handle.doId) messenger.send('clickedNametagPlayer', [handle, self.playerId, 0]) return # okay decompyling C:\Users\Maverick\Documents\Visual Studio 2010\Projects\Unfreezer\py2\toontown\toon\PlayerDetailPanel.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2013.08.22 22:26:15 Pacific Daylight Time
[ "anonymoustoontown@gmail.com" ]
anonymoustoontown@gmail.com
94c01ee844d433e79abd65caad5625c1412139c1
ec31d26a8b619ec98dc5c586f525420572cc39a1
/scripts/map_timings.py
c76a6e265894314d3ec6f5f64a7eeab8b4fa9405
[ "MIT" ]
permissive
stestagg/timing
b0fab6ff8814e5edeeaa98b7bcd470aa9e527742
57f40229616b2dc385afc447f3f587940158c3b4
refs/heads/master
2021-06-25T19:20:17.158308
2017-09-11T22:26:23
2017-09-11T22:26:23
103,174,114
0
1
null
null
null
null
UTF-8
Python
false
false
2,107
py
import sys from collections import namedtuple from pprint import pformat import yaml from jinja2 import Environment, FileSystemLoader, select_autoescape Output = namedtuple("Output", ["cpu", "human"]) def unit_sort(x): raw = 1 - x[0] if raw < 0: return abs(raw) * 0.001 return raw def render(**kw): env = Environment(loader=FileSystemLoader('./'), autoescape=select_autoescape(['html'])) template = env.get_template('template.html') return template.render(**kw) def main(): units = yaml.load(open("../data/units.yaml")) actions = yaml.load(open("../data/actions.yaml")) timings = yaml.load(open("../data/timings.yaml")) def to_secs(value, unit): return value * units[unit] for action in actions: action['actual_min'] = to_secs(action['min'], action['units']) action['actual_max'] = to_secs(action['max'], action['units']) def to_unit_val(value): scaled = [(value / num_secs, name) for name, num_secs in units.items() if name != "cycle"] return sorted(scaled, key=unit_sort)[0] def best_action(min_val, max_val): for action in actions: if action['actual_min'] < max_val and action['actual_max'] > min_val: return action blink_scale = to_secs(0.25, 'cycle') / 0.1 outputs = [] for i, timing in enumerate(timings, 2): actual_min = to_secs(timing['min'], timing['units']) actual_max = to_secs(timing['max'], timing['units']) blink_min = actual_min / blink_scale blink_max = actual_max / blink_scale unit_min = to_unit_val(actual_min) unit_max = to_unit_val(actual_max) timing['unit_min'] = "%.1f %s" % unit_min timing['unit_max'] = "%.1f %s" % unit_max best = best_action(blink_min, blink_max) if best is None: sys.stderr.write(f'{pformat(timing)} - {to_unit_val(blink_min)}\n') else: outputs.append(Output(timing, best)) print(render(timings=outputs, enumerate=enumerate)) if __name__ == '__main__': sys.exit(main())
[ "stestagg@gmail.com" ]
stestagg@gmail.com
5da5b673a32056f2d144a312b0032ee8c2690cc3
3faffa899187e9244c7f3bccc02bf451e496637e
/python/chapter 1/1-1.py
ef166815faf24e009175ecdbc670c22723e9f8a0
[]
no_license
WuLC/Beauty_OF_Programming
909aa6e3dff3dc090da6a3f375aec15222b14f6a
63accae07afbbece292a1115ce37b44e03839e31
refs/heads/master
2020-04-06T04:12:15.573389
2016-11-21T03:42:24
2016-11-21T03:42:24
58,548,325
0
0
null
null
null
null
UTF-8
Python
false
false
1,180
py
# -*- coding: utf-8 -*- # @Author: LC # @Date: 2016-10-16 12:27:57 # @Last modified by: WuLC # @Last Modified time: 2016-10-16 20:35:05 # @Email: liangchaowu5@gmail.com ######################################## # take up certain usage of a cpu cor ######################################### import time import psutil # for CPU with n cores, a dead loop can take up(100/n)% of CPU usage def take_up_a_core(): i = 0 while True: i += 1 # 260000 loops will take up about 50% of a CPU of 2.4GHz # without system call, just caculate the number of loops based on the frequency of CPU and number of instructions of statement # pay attention the instructions of for statement in python is different from that in C, and CPython is used in this test def take_up_half(): while True: for i in xrange(260000): pass time.sleep(0.01) # take up certain percent with psutil, only apply to single-core CPU, default 50% def take_up_certain_percent(percent = 50): i = 0 while True: while (psutil.cpu_percent() > percent): time.sleep(0.01) i += 1 if __name__ == '__main__': take_up_certain_percent()
[ "liangchaowu5@gmail.com" ]
liangchaowu5@gmail.com
7bf7fd3eaeee8d2f8d11255b72f453b53bd61041
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/P.O.R.-master/pirates/npc/DistributedGhostAI.py
8b7ab4804bd8b8e385c65685fd59e4d316aa705e
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
581
py
from direct.distributed import DistributedObjectAI class DistributedGhostAI(DistributedObjectAI.DistributedObjectAI): def ___init___(self, air): DistributedObjectAI.DistributedObjectAI.__init__(self, air) def announceGenerate(self): DistributedObjectAI.DistributedObjectAI.announceGenerate(self) def generate(self): DistributedObjectAI.DistributedObjectAI.generate(self) def delete(self): DistributedObjectAI.DistributedObjectAI.delete(self) def disable(self): DistributedObjectAI.DistributedObjectAI.disable(self)
[ "brandoncarden12345@gmail.com" ]
brandoncarden12345@gmail.com
72c70e99db2ead16f2ef5be4abc6008f77fad04c
0bce7412d58675d6cc410fa7a81c294ede72154e
/Python3/0044. Wildcard Matching.py
9df5bb742fe54fee40a24b8f728f83976693a948
[]
no_license
yang4978/LeetCode
9ddf010b0f1dda32cddc7e94c3f987509dea3214
6387d05b619d403414bad273fc3a7a2c58668db7
refs/heads/master
2022-01-15T04:21:54.739812
2021-12-28T12:28:28
2021-12-28T12:28:28
182,653,666
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
class Solution: def isMatch(self, s: str, p: str) -> bool: l1 = len(s) l2 = len(p) dp = [[False]*(l2+1) for i in range(l1+1)] dp[0][0] = True for j in range(1,l2+1): if(p[j-1]=='*'): dp[0][j] = dp[0][j-1] for i in range(1,l1+1): for j in range(1,l2+1): if(s[i-1]==p[j-1] or p[j-1]=='?'): dp[i][j] = dp[i-1][j-1] elif(p[j-1]=='*'): dp[i][j] = dp[i-1][j-1] or dp[i][j-1] or dp[i-1][j] return dp[-1][-1]
[ "noreply@github.com" ]
yang4978.noreply@github.com
4e28dafd47b60ac34e28b715db2cbfcf5fefbdb2
c08b5edb5075e7840e716b0a09006dae0a4d05ac
/.history/Missions_to_Mars/scrape_mars_20200808232435.py
3a588df03c13e75f15c5b6cfa084daff2ad77809
[]
no_license
OlgaDlzk/web-scraping-challenge-1
06f915eb76c55c9bc37889017dd9af81122dc1a5
f99c3436dfb0169595c46dae7733d90e21385cc6
refs/heads/master
2023-03-18T00:58:37.928024
2020-09-22T20:32:47
2020-09-22T20:32:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,673
py
# Dependencies import numpy as np import pandas as pd from bs4 import BeautifulSoup as bs import requests from splinter import Browser import re # Initialize browser def init_browser(): executable_path = {"executable_path": "/usr/local/bin/chromedriver"} #executable_path = {'executable_path': 'chromedriver.exe'} return Browser("chrome", **executable_path, headless=False) def scrape(): browser = init_browser() url = 'https://mars.nasa.gov/news/' browser.visit(url) html = browser.html soup = bs(html, 'html.parser') news_title = soup.find('div', class_='content_title').text news_p = soup.find('div', class_='article_teaser_body').text url = 'https://www.jpl.nasa.gov/spaceimages/' browser.visit(url) html = browser.html soup = bs(html, 'html.parser') base_url = 'https://www.jpl.nasa.gov' image_url = soup.find("a", class_="button fancybox")["data-fancybox-href"] featured_image_url = base_url + image_url url = 'https://twitter.com/marswxreport?lang=en' browser.visit(url) html = browser.html soup = bs(html, 'html.parser') mars_weather = soup.find(text=re.compile( 'p', class_='TweetTextSize TweetTextSize--normal js-tweet-text tweet-text').text.strip() url = 'https://space-facts.com/mars/' browser.visit(url) tables = pd.read_html(url) facts_df = tables[0] facts_df.columns = ['Fact', 'Value'] facts_df['Fact'] = facts_df['Fact'].str.replace(':', '') facts_df.reset_index(drop=True, inplace=True) facts_html = facts_df.to_html() url = 'https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' browser.visit(url) html = browser.html soup = bs(html, 'html.parser') results = soup.find_all('div', class_="description") base_url = 'https://astrogeology.usgs.gov/' sites = [] for result in results: link = result.find('a', class_="itemLink product-item") link_text = link['href'] hemispheres_url = base_url + link_text sites.append(hemispheres_url) hemispheres = [] for site in sites: browser.visit(site) html = browser.html soup = bs(html, 'html.parser') title = soup.find('h2', class_="title").text.strip() url = soup.find_all('a', target="_blank", href=True)[0]['href'] hemispheres.append({"title": title, "img_url": url}) output = { "news_title": news_title, "news_p": news_p, "featured_image_url": featured_image_url, "mars_weather": mars_weather, "facts_html": facts_html, "hemispheres": hemispheres } return output
[ "ermiasgelaye@gmail.com" ]
ermiasgelaye@gmail.com
7e48b766b0f55a68c8fea240590cb3cbe02c5a0d
77772edccbdb5fe07229358a48471cfeca395893
/restau/urls.py
23b136010aa6519649d9415cbe92f9971b8637d7
[]
no_license
ShreySumariya07/Restaurant-Drf
a4b08b2522da37ab88e807cb42978b014dce639a
a06fba134a50b1803d1ce59eeb5a3c4e7c1a9528
refs/heads/master
2023-06-22T21:55:09.949692
2021-01-29T13:45:25
2021-01-29T13:45:25
334,158,021
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
from django.urls import path from . import views urlpatterns = [ path('restaurants/', views.Restaurants.as_view()), path('restaurants/<str:restaurant_id>/', views.RestaurantDetail.as_view()), path('restaurants/<str:restaurant_id>/recipes/', views.Recipes.as_view()), path('restaurants/<str:restaurant_id>/recipes/<str:recipe_id>/', views.RecipeDetail.as_view()), ]
[ "you@example.com" ]
you@example.com
2c29dde493d22062c4ad341523e1cddfa11d7c80
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/sample/object_method_complex_call-153.py
384c6c28ad4f88a1960d2add9439c0e2ccbf5dda
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
class A(object): a:int = 42 def foo(self:"A", ignore:object) -> int: return self.a class B(A): b:bool = True def __init__(self:"B"): print("B") def bar(self:"B") -> int: return self.foo(self.foo(print("..."))) def foo(self:"B", ignore:object) -> int: return 1 print($Exp())
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
3100bf04aa4c403c82b611c69b52c10ec9c06173
4be5c172c84e04c35677f5a327ab0ba592849676
/python/interviewbit/strings/min_chars_to_make_palindrome/min_chars_to_make_palindrome.py
a703d91003b0bbc9c59a79a4de9d67fc79ac951e
[]
no_license
niranjan-nagaraju/Development
3a16b547b030182867b7a44ac96a878c14058016
d193ae12863971ac48a5ec9c0b35bfdf53b473b5
refs/heads/master
2023-04-06T20:42:57.882882
2023-03-31T18:38:40
2023-03-31T18:38:40
889,620
9
2
null
2019-05-27T17:00:29
2010-09-05T15:58:46
Python
UTF-8
Python
false
false
3,241
py
''' https://www.interviewbit.com/problems/minimum-characters-required-to-make-a-string-palindromic/ Minimum Characters required to make a String Palindromic Given an string A. The only operation allowed is to insert characters in the beginning of the string. Find how many minimum characters are needed to be inserted to make the string a palindrome string. Input Format The only argument given is string A. Output Format Return the minimum characters that are needed to be inserted to make the string a palindrome string. For Example Input 1: A = "ABC" Output 1: 2 Explanation 1: Insert 'B' at beginning, string becomes: "BABC". Insert 'C' at beginning, string becomes: "CBABC". Input 2: A = "AACECAAAA" Output 2: 2 Explanation 2: Insert 'A' at beginning, string becomes: "AAACECAAAA". Insert 'A' at beginning, string becomes: "AAAACECAAAA". ''' ''' Solution Outline: Consider 'BACB' Using two-pointers to compare B(left) and B(right) and then when A(left) and C(right) don't match, we have to include C after B to get 'BCACB'. (this isnt allowed) Instead, the characters needed to make 'BACB' palindromic are 'BCA' => 'BCABACB' Brute-force solution: 1. Start with adding 1 character from the right to the left, and check if its a palindrome 2. If it is, we are done, else add more characters from the right to the left 3. Slight optimization would be to skip the number of characters we just added from comparison. for e.g., BC ... CB, we just added BC, we can skip comparing the first 2 and last 2 characters. Sample run: s: "BACXB" Is 's' a palindrome? NO Add 'B' to the left s: "BBACXB" is s[1:-1] == "BACX" a palindrome? NO Add 2 characters s: "BXBACXB" is s[2:-2] == "BAC" a palindrome? NO Add 3 characters s: "BXCBACXB" is s[3:-3] == "BA" a palindrome? NO Add 4 characters s: "BXCABACXB" is s[4:-4] == "B" a palindrome? YES return 4 Sample run 2: s: "AACECAAAA" is 's' a palindrome? NO Add 'A' to the left s: 'AAACECAAAA' is s[1:-1] == "AACECAAA" a palindrome? NO Add 'AA' to the left s: 'AAAACECAAAA' is s[2:-2] == 'AACECAA' a palindrome? YES Alternately, Simulate adding 1 character to the left => s: 'A' + "AACECAAAA" we check if s[0:-1] is a palindrome is "AACECAAA" a palindrome? NO Simulate adding 2 characters to the left => s: "AA" + "AACECAAAA" we check if s[0:-2] is a palindrome is "AACECAA" a palindrome? YES return 2 ''' class Solution: def min_chars_to_make_palindrome(self, A): # check if A[lb:ub] is a palindrome def is_palindrome(A, lb, ub): while lb < ub: if A[lb] != A[ub]: return False lb += 1 ub -= 1 return True n = len(A) # A is already a palindrome # no additions needed if not A or is_palindrome(A, 0, n-1): return 0 j = 1 while j < n-1: if is_palindrome(A, 0, n-j-1): return j j += 1 return j if __name__ == '__main__': s = Solution() assert s.min_chars_to_make_palindrome("AB") == 1 assert s.min_chars_to_make_palindrome("racecar") == 0 assert s.min_chars_to_make_palindrome("BACXB") == 4 assert s.min_chars_to_make_palindrome("ABC") == 2 assert s.min_chars_to_make_palindrome("AACECAAAA") == 2
[ "vinithepooh@gmail.com" ]
vinithepooh@gmail.com
aa6c975ee2f19bb1dc0094b1d58e5ff4d74ef6c8
86abbc013ab6209d11d58b735048a560ce059e72
/tests/test_01_main/test_env_vars_2.py
ca3fab4037b7b777f6209d3922be51fa56d92bee
[ "MIT" ]
permissive
alexiri/meinheld-gunicorn-docker
e518e10f1845856f1c2c81181e825b5c8aebf99a
e9ff167987a967071b408c0ecb7790232f378ea7
refs/heads/master
2020-04-16T23:44:49.276125
2019-01-12T14:12:12
2019-01-12T14:12:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,198
py
import time import docker import pytest from ..utils import ( CONTAINER_NAME, get_config, get_process_names, stop_previous_container, ) client = docker.from_env() @pytest.mark.parametrize( "image", [ ("tiangolo/meinheld-gunicorn:python3.6"), ("tiangolo/meinheld-gunicorn:python3.7"), ("tiangolo/meinheld-gunicorn:latest"), ("tiangolo/meinheld-gunicorn:python3.6-alpine3.8"), ("tiangolo/meinheld-gunicorn:python3.7-alpine3.8"), ], ) def test_env_vars_2(image): stop_previous_container(client) container = client.containers.run( image, name=CONTAINER_NAME, environment={"WEB_CONCURRENCY": 1, "HOST": "127.0.0.1"}, ports={"80": "8000"}, detach=True, ) time.sleep(1) process_names = get_process_names(container) config_data = get_config(container) assert config_data["workers"] == 1 assert len(process_names) == 2 # Manager + worker assert config_data["host"] == "127.0.0.1" assert config_data["port"] == "80" assert config_data["loglevel"] == "info" assert config_data["bind"] == "127.0.0.1:80" container.stop() container.remove()
[ "tiangolo@gmail.com" ]
tiangolo@gmail.com
33642132bf671fca1fb601bf2a308944456d0679
17f6881c70401dc63757cc7b5fa4d9dd396689e3
/src/main/com/libin/yfl/2.py
ab40b869edeb44fd720e43b62d3e0074571c639f
[]
no_license
BigDataRoad/Algorithm
0ab493eeb478125b4beb62d78ce18c73e30b0496
2f2fb4f4b84f6c9df8adbada63b327c43ce29ddd
refs/heads/master
2023-07-02T04:06:51.025648
2021-07-28T14:04:55
2021-07-28T14:04:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
'''' 面试题50. 第一个只出现一次的字符 在字符串 s 中找出第一个只出现一次的字符。如果没有,返回一个单空格。 示例: s = "abaccdeff" 返回 "b" s = "" 返回 " " ''' class Solution: def firstUniqChar(self, s: str) -> str: d1 = {} for each in s: if each not in d1: d1[each] = 1 else: d1[each] += 1 for key in s: if d1[key] == 1: return key return ' '
[ "yangfengling@inttech.cn" ]
yangfengling@inttech.cn
1b41e87af402abd0b44ebbe92b9d6c0550a0335c
aa0270b351402e421631ebc8b51e528448302fab
/sdk/servicenetworking/azure-mgmt-servicenetworking/generated_samples/frontend_patch.py
cb930d459dcae096783768ee9d0d2b0061cf2ee1
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
fangchen0601/azure-sdk-for-python
d04a22109d0ff8ff209c82e4154b7169b6cb2e53
c2e11d6682e368b2f062e714490d2de42e1fed36
refs/heads/master
2023-05-11T16:53:26.317418
2023-05-04T20:02:16
2023-05-04T20:02:16
300,440,803
0
0
MIT
2020-10-16T18:45:29
2020-10-01T22:27:56
null
UTF-8
Python
false
false
1,803
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.servicenetworking import ServiceNetworkingMgmtClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-servicenetworking # USAGE python frontend_patch.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = ServiceNetworkingMgmtClient( credential=DefaultAzureCredential(), subscription_id="subid", ) response = client.frontends_interface.update( resource_group_name="rg1", traffic_controller_name="TC1", frontend_name="publicIp1", properties={ "properties": { "ipAddressVersion": "IPv4", "mode": "public", "publicIPAddress": {"id": "resourceUriAsString"}, } }, ) print(response) # x-ms-original-file: specification/servicenetworking/resource-manager/Microsoft.ServiceNetworking/cadl/examples/FrontendPatch.json if __name__ == "__main__": main()
[ "noreply@github.com" ]
fangchen0601.noreply@github.com
df76809e8cc0c86466eac41b4177052d87b4c49f
786027545626c24486753351d6e19093b261cd7d
/ghidra9.2.1_pyi/ghidra/app/util/bin/format/pef/RelocLgByImport.pyi
27b5bea67c6a66a0caa4003b216de6e66cc6fd77
[ "MIT" ]
permissive
kohnakagawa/ghidra_scripts
51cede1874ef2b1fed901b802316449b4bf25661
5afed1234a7266c0624ec445133280993077c376
refs/heads/main
2023-03-25T08:25:16.842142
2021-03-18T13:31:40
2021-03-18T13:31:40
338,577,905
14
1
null
null
null
null
UTF-8
Python
false
false
1,439
pyi
import ghidra.app.util.bin.format.pef import ghidra.app.util.importer import ghidra.program.model.data import ghidra.program.model.listing import ghidra.util.task import java.lang class RelocLgByImport(ghidra.app.util.bin.format.pef.Relocation): """ See Apple's -- PEFBinaryFormat.h """ def apply(self, importState: ghidra.app.util.bin.format.pef.ImportStateCache, relocState: ghidra.app.util.bin.format.pef.RelocationState, header: ghidra.app.util.bin.format.pef.ContainerHeader, program: ghidra.program.model.listing.Program, log: ghidra.app.util.importer.MessageLog, monitor: ghidra.util.task.TaskMonitor) -> None: ... def equals(self, __a0: object) -> bool: ... def getClass(self) -> java.lang.Class: ... def getIndex(self) -> int: ... def getOpcode(self) -> int: ... def getSizeInBytes(self) -> int: ... def hashCode(self) -> int: ... def isMatch(self) -> bool: ... def notify(self) -> None: ... def notifyAll(self) -> None: ... def toDataType(self) -> ghidra.program.model.data.DataType: ... def toString(self) -> unicode: ... @overload def wait(self) -> None: ... @overload def wait(self, __a0: long) -> None: ... @overload def wait(self, __a0: long, __a1: int) -> None: ... @property def index(self) -> int: ... @property def match(self) -> bool: ... @property def sizeInBytes(self) -> int: ...
[ "tsunekou1019@gmail.com" ]
tsunekou1019@gmail.com
ccbde9d6da768d83b804f523d581a547d9ba4769
81407be1385564308db7193634a2bb050b4f822e
/the-python-standard-library-by-example/math/math_inverse_trig.py
26b2a3fc86ae12776e4c1f17fcb31bef477a193f
[ "MIT" ]
permissive
gottaegbert/penter
6db4f7d82c143af1209b4259ba32145aba7d6bd3
8cbb6be3c4bf67c7c69fa70e597bfbc3be4f0a2d
refs/heads/master
2022-12-30T14:51:45.132819
2020-10-09T05:33:23
2020-10-09T05:33:23
305,266,398
0
0
MIT
2020-10-19T04:56:02
2020-10-19T04:53:05
null
UTF-8
Python
false
false
379
py
#!/usr/bin/env python # encoding: utf-8 # # Copyright (c) 2010 Doug Hellmann. All rights reserved. # """Inverse trigonometric functions """ #end_pymotw_header import math for r in [ 0, 0.5, 1 ]: print 'arcsine(%.1f) = %5.2f' % (r, math.asin(r)) print 'arccosine(%.1f) = %5.2f' % (r, math.acos(r)) print 'arctangent(%.1f) = %5.2f' % (r, math.atan(r)) print
[ "350840291@qq.com" ]
350840291@qq.com
356a0bc40cd0d90f4452998c8f8c8ff403d7b25b
b1742abd82bd3c27b511d5ba855b9b1e87e6854a
/lab_03_magic_8_ball.py
b8ad94d1f6d1263e2666335d8b65c5b1fb29e783
[]
no_license
tomaccosheep/simple_django_render
8702e13e96462e495287b2f5624dcd2d142d72b4
6dd2a5bab32e352cc6ff9b7b542ba2d126f01728
refs/heads/master
2023-05-03T05:36:47.601119
2020-02-28T21:44:26
2020-02-28T21:44:26
243,859,346
0
0
null
2023-04-21T20:51:57
2020-02-28T21:41:12
Python
UTF-8
Python
false
false
362
py
'''DJANGO STUFF''' import os from django.shortcuts import render os.environ['DJANGO_SETTINGS_MODULE'] = 'settings' '''MAGIC 8 BALL LAB''' import random input("What's your question?\n:") with open('lab_03_out.html', 'w') as f: f.write(render(None, 'lab_03_in.html', {'answer': random.choice(['It will happen', "It won't happen"])}).content.decode('utf-8'))
[ "al.burns.email@gmail.com" ]
al.burns.email@gmail.com
64cf0bf1871a6b84f9a729968ec396164bec5eff
732b0b3e2ae0e6c498cfd2ed893de60b9fc22a32
/tests/integration/actions/collections/test_welcome_interactive_noee.py
5c0bbeddc6c0b39a11d26ac6b3341c0b5bf0a460
[ "Apache-2.0" ]
permissive
didib/ansible-navigator
eb7b77c1df30b2e90b663383f0f76b6224e92c02
62fdbd05f25fb2d79133b3ab207f53ac2f2d6d36
refs/heads/main
2023-08-30T06:43:42.876079
2021-10-14T18:42:17
2021-10-14T18:42:17
425,540,819
0
0
Apache-2.0
2021-11-07T15:27:54
2021-11-07T15:27:53
null
UTF-8
Python
false
false
1,166
py
""" collections from welcome interactive w/0 ee """ import pytest from .base import BaseClass CLI = "ansible-navigator --execution-environment false" testdata = [ (0, CLI, "ansible-navigator welcome screen"), (1, ":collections", "ansible-navigator collections top window"), (2, ":0", "Browse testorg.coll_1 plugins window"), (3, ":0", "lookup_1 plugin docs window"), (4, ":back", "Back to browse testorg.coll_1 plugins window"), (5, ":1", "mod_1 plugin docs window"), (6, ":back", "Back to browse testorg.coll_1 plugins window"), (7, ":back", "Back to ansible-navigator collections browse window"), (8, ":1", "Browse testorg.coll_2 plugins window"), (9, ":0", "lookup_2 plugin docs window"), (10, ":back", "Back to browse testorg.coll_2 plugins window"), (11, ":1", "mod_2 plugin docs window"), (12, ":back", "Back to browse testorg.coll_2 plugins window"), (13, ":back", "Back to ansible-navigator collections browse window"), ] @pytest.mark.parametrize("index, user_input, comment", testdata) class Test(BaseClass): """run the tests""" TEST_FOR_MODE = "interactive" UPDATE_FIXTURES = False
[ "noreply@github.com" ]
didib.noreply@github.com
6a9815bcd0c734fda3cd74d9658b0d8ab02503a6
14bca3c05f5d8de455c16ec19ac7782653da97b2
/lib/kubernetes/client/models/v1_toleration.py
770bb006050329795a673f8662ff0e3e39b446f0
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
hovu96/splunk_as_a_service_app
167f50012c8993879afbeb88a1f2ba962cdf12ea
9da46cd4f45603c5c4f63ddce5b607fa25ca89de
refs/heads/master
2020-06-19T08:35:21.103208
2020-06-16T19:07:00
2020-06-16T19:07:00
196,641,210
8
1
null
null
null
null
UTF-8
Python
false
false
7,907
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.14.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1Toleration(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'effect': 'str', 'key': 'str', 'operator': 'str', 'toleration_seconds': 'int', 'value': 'str' } attribute_map = { 'effect': 'effect', 'key': 'key', 'operator': 'operator', 'toleration_seconds': 'tolerationSeconds', 'value': 'value' } def __init__(self, effect=None, key=None, operator=None, toleration_seconds=None, value=None): """ V1Toleration - a model defined in Swagger """ self._effect = None self._key = None self._operator = None self._toleration_seconds = None self._value = None self.discriminator = None if effect is not None: self.effect = effect if key is not None: self.key = key if operator is not None: self.operator = operator if toleration_seconds is not None: self.toleration_seconds = toleration_seconds if value is not None: self.value = value @property def effect(self): """ Gets the effect of this V1Toleration. Effect indicates the taint effect to match. Empty means match all taint effects. When specified, allowed values are NoSchedule, PreferNoSchedule and NoExecute. :return: The effect of this V1Toleration. :rtype: str """ return self._effect @effect.setter def effect(self, effect): """ Sets the effect of this V1Toleration. Effect indicates the taint effect to match. Empty means match all taint effects. When specified, allowed values are NoSchedule, PreferNoSchedule and NoExecute. :param effect: The effect of this V1Toleration. :type: str """ self._effect = effect @property def key(self): """ Gets the key of this V1Toleration. Key is the taint key that the toleration applies to. Empty means match all taint keys. If the key is empty, operator must be Exists; this combination means to match all values and all keys. :return: The key of this V1Toleration. :rtype: str """ return self._key @key.setter def key(self, key): """ Sets the key of this V1Toleration. Key is the taint key that the toleration applies to. Empty means match all taint keys. If the key is empty, operator must be Exists; this combination means to match all values and all keys. :param key: The key of this V1Toleration. :type: str """ self._key = key @property def operator(self): """ Gets the operator of this V1Toleration. Operator represents a key's relationship to the value. Valid operators are Exists and Equal. Defaults to Equal. Exists is equivalent to wildcard for value, so that a pod can tolerate all taints of a particular category. :return: The operator of this V1Toleration. :rtype: str """ return self._operator @operator.setter def operator(self, operator): """ Sets the operator of this V1Toleration. Operator represents a key's relationship to the value. Valid operators are Exists and Equal. Defaults to Equal. Exists is equivalent to wildcard for value, so that a pod can tolerate all taints of a particular category. :param operator: The operator of this V1Toleration. :type: str """ self._operator = operator @property def toleration_seconds(self): """ Gets the toleration_seconds of this V1Toleration. TolerationSeconds represents the period of time the toleration (which must be of effect NoExecute, otherwise this field is ignored) tolerates the taint. By default, it is not set, which means tolerate the taint forever (do not evict). Zero and negative values will be treated as 0 (evict immediately) by the system. :return: The toleration_seconds of this V1Toleration. :rtype: int """ return self._toleration_seconds @toleration_seconds.setter def toleration_seconds(self, toleration_seconds): """ Sets the toleration_seconds of this V1Toleration. TolerationSeconds represents the period of time the toleration (which must be of effect NoExecute, otherwise this field is ignored) tolerates the taint. By default, it is not set, which means tolerate the taint forever (do not evict). Zero and negative values will be treated as 0 (evict immediately) by the system. :param toleration_seconds: The toleration_seconds of this V1Toleration. :type: int """ self._toleration_seconds = toleration_seconds @property def value(self): """ Gets the value of this V1Toleration. Value is the taint value the toleration matches to. If the operator is Exists, the value should be empty, otherwise just a regular string. :return: The value of this V1Toleration. :rtype: str """ return self._value @value.setter def value(self, value): """ Sets the value of this V1Toleration. Value is the taint value the toleration matches to. If the operator is Exists, the value should be empty, otherwise just a regular string. :param value: The value of this V1Toleration. :type: str """ self._value = value def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1Toleration): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
[ "robert.fujara@gmail.com" ]
robert.fujara@gmail.com
17040fde877a4f28ad58496fd1e547336763246d
9bf7d7ace42a61991970fd967c19071a50609b9e
/ipython/MultiDot.py
d5d3b44b3bd700618f18adcdb674674c8abe775a
[]
no_license
ParsonsRD/SciPy-CookBook
29b68eace76962ae00735039bc3d488f31714e50
52f70a7aa4bd4fd11217a13fc8dd5e277f2388ea
refs/heads/master
2020-03-17T17:33:28.827269
2013-05-17T06:56:54
2013-05-17T06:56:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,663
py
# <markdowncell> # The matrix multiplication function, numpy.dot(), only takes two # arguments. That means to multiply more than two arrays together you end # up with nested function calls which are hard to read: # # <codecell> dot(dot(dot(a,b),c),d) # <markdowncell> # versus infix notation where you'd just be able to write # # <codecell> a*b*c*d # <markdowncell> # There are a couple of ways to define an 'mdot' function that acts like # dot but accepts more than two arguments. Using one of these allows you # to write the above expression as # # <codecell> mdot(a,b,c,d) # <markdowncell> # Using reduce # ------------ # # The simplest way it to just use reduce. # # <codecell> def mdot(*args): return reduce(numpy.dot, args) # <markdowncell> # Or use the equivalent loop (which is apparently the preferred style [for # Py3K](http://www.python.org/dev/peps/pep-3100/#id53)): # # <codecell> def mdot(*args): ret = args[0] for a in args[1:]: ret = dot(ret,a) return ret # <markdowncell> # This will always give you left to right associativity, i.e. the # expression is interpreted as \`(((a\*b)\*c)\*d)\`. # # You also can make a right-associative version of the loop: # # <codecell> def mdotr(*args): ret = args[-1] for a in reversed(args[:-1]): ret = dot(a,ret) return ret # <markdowncell> # which evaluates as \`(a\*(b\*(c\*d)))\`. But sometimes you'd like to # have finer control since the order in which matrix multiplies are # performed can have a big impact on performance. The next version gives # that control. # # Controlling order of evaluation # ------------------------------- # # If we're willing to sacrifice Numpy's ability to treat tuples as arrays, # we can use tuples as grouping constructs. This version of \`mdot\` # allows syntax like this: # # <codecell> mdot(a,((b,c),d)) # <markdowncell> # to control the order in which the pairwise \`dot\` calls are made. # # <codecell> import types import numpy def mdot(*args): """Multiply all the arguments using matrix product rules. The output is equivalent to multiplying the arguments one by one from left to right using dot(). Precedence can be controlled by creating tuples of arguments, for instance mdot(a,((b,c),d)) multiplies a (a*((b*c)*d)). Note that this means the output of dot(a,b) and mdot(a,b) will differ if a or b is a pure tuple of numbers. """ if len(args)==1: return args[0] elif len(args)==2: return _mdot_r(args[0],args[1]) else: return _mdot_r(args[:-1],args[-1]) def _mdot_r(a,b): """Recursive helper for mdot""" if type(a)==types.TupleType: if len(a)>1: a = mdot(*a) else: a = a[0] if type(b)==types.TupleType: if len(b)>1: b = mdot(*b) else: b = b[0] return numpy.dot(a,b) # <markdowncell> # Multiply # -------- # # Note that the elementwise multiplication function \`numpy.multiply\` has # the same two-argument limitation as \`numpy.dot\`. The exact same # generalized forms can be defined for multiply. # # Left associative versions: # # <codecell> def mmultiply(*args): return reduce(numpy.multiply, args) # <markdowncell> # # # <codecell> def mmultiply(*args): ret = args[0] for a in args[1:]: ret = multiply(ret,a) return ret # <markdowncell> # Right-associative version: # # <codecell> def mmultiplyr(*args): ret = args[-1] for a in reversed(args[:-1]): ret = multiply(a,ret) return ret # <markdowncell> # Version using tuples to control order of evaluation: # # <codecell> import types import numpy def mmultiply(*args): """Multiply all the arguments using elementwise product. The output is equivalent to multiplying the arguments one by one from left to right using multiply(). Precedence can be controlled by creating tuples of arguments, for instance mmultiply(a,((b,c),d)) multiplies a (a*((b*c)*d)). Note that this means the output of multiply(a,b) and mmultiply(a,b) will differ if a or b is a pure tuple of numbers. """ if len(args)==1: return args[0] elif len(args)==2: return _mmultiply_r(args[0],args[1]) else: return _mmultiply_r(args[:-1],args[-1]) def _mmultiply_r(a,b): """Recursive helper for mmultiply""" if type(a)==types.TupleType: if len(a)>1: a = mmultiply(*a) else: a = a[0] if type(b)==types.TupleType: if len(b)>1: b = mmultiply(*b) else: b = b[0] return numpy.multiply(a,b) # <markdowncell> # #
[ "matti.pastell@helsinki.fi" ]
matti.pastell@helsinki.fi
38192ff80015c3eaf94f38a786aaa3a32e84f80e
06bf7c9f24b2a9cfe1f9feb1481838b37713904e
/scripts/ansible-vagrant-inventory.py
b88e0db54e121ddfbc708d93aa319328c75d5ce2
[ "MIT" ]
permissive
marcelodevops/dotfiles
31efb4d62b7e5161fba40c204612d01e44cc35bd
eeb63ea94f27aef0eef8777bd8a423ae81133217
refs/heads/master
2022-03-08T20:37:08.749623
2019-10-22T20:14:45
2019-10-22T20:14:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,010
py
#!/usr/bin/env python from __future__ import print_function import argparse import json import os import os.path import subprocess import sys def exit_err(msg): print(msg, file=sys.stderr) sys.exit(1) def get_vagrant_index(): path = os.path.expanduser('~/.vagrant.d/data/machine-index/index') with open(path) as filehandle: return json.load(filehandle) def find_relevant_machines(index_data, root_dir): for machine in index_data['machines'].values(): if machine['state'] == 'running' and machine['vagrantfile_path'] == root_dir: yield machine def get_vagrant_file(machine, filename): return os.path.join( machine['local_data_path'], 'machines', machine['name'], machine['provider'], filename, ) def get_vagrant_privkey(machine): return get_vagrant_file(machine, 'private_key') def get_machine_ssh_info(machine): # this works if the virtualbox machine has guest additions installed vbox_id_path = get_vagrant_file(machine, 'id') with open(vbox_id_path) as filehandle: vbox_id = filehandle.read().decode() vbox_out = subprocess.check_output([ 'vboxmanage', 'guestproperty', 'get', vbox_id, '/VirtualBox/GuestInfo/Net/1/V4/IP', ]).strip() if vbox_out != 'No value set!': return vbox_out.split()[1], None # fall back to the forwarded port that vagrant uses ssh_conf = subprocess.check_output(['vagrant', 'ssh-config', machine['name']]) ssh_conf_lines = (line.split(None, 1) for line in ssh_conf.splitlines() if line) ssh_config_dict = {key.lower(): val for key, val in ssh_conf_lines} return ssh_config_dict['hostname'], ssh_config_dict['port'] def get_machine_group_data(machine, ansible_vars=None): ansible_vars = ansible_vars or {} ansible_vars['ansible_ssh_private_key_file'] = get_vagrant_privkey(machine) ip, port = get_machine_ssh_info(machine) # TODO: change ansible_ssh_ to ansible_ when upgrading to ansible 2 ansible_vars['ansible_ssh_host'] = ip if port: ansible_vars['ansible_ssh_port'] = port return { 'hosts': [ip], 'vars': ansible_vars, } def get_inventory_data(root_dir): ssh_args = '-o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null' data = { 'all': { 'vars': { 'ansible_user': 'root', 'ansible_ssh_common_args': ssh_args, }, }, 'vagrant': {'children': []}, } index_data = get_vagrant_index() for machine in find_relevant_machines(index_data, root_dir): data[machine['name']] = get_machine_group_data(machine) data['vagrant']['children'].append(machine['name']) return data def main(): parser = argparse.ArgumentParser() parser.add_argument('-r', '--root-dir', default=os.getcwd()) args = parser.parse_args() data = get_inventory_data(args.root_dir) print(json.dumps(data)) if __name__ == '__main__': main()
[ "anlutro@gmail.com" ]
anlutro@gmail.com
e8b58c05a571106b4b6e583e9fb783bceebe4a72
236e6a7c4604443f0f4acd778bcccd747011080e
/ax/storage/sqa_store/sqa_config.py
4c184fcadc002f2ad2f11fec983230902d70b085
[ "MIT" ]
permissive
MayukhBagchiTrento/Ax
a161e1fee615c4e570de51b32f9e656063dc228d
7c925ba8365af714d9671208de490ba48814bfaa
refs/heads/master
2023-05-09T20:14:14.525338
2021-06-02T18:46:51
2021-06-02T18:46:51
268,482,239
0
0
MIT
2020-06-01T09:43:39
2020-06-01T09:43:38
null
UTF-8
Python
false
false
2,537
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from typing import Dict, NamedTuple, Optional, Type from ax.core.arm import Arm from ax.core.base import Base from ax.core.batch_trial import AbandonedArm from ax.core.data import Data from ax.core.experiment import Experiment from ax.core.generator_run import GeneratorRun, GeneratorRunType from ax.core.metric import Metric from ax.core.parameter import Parameter from ax.core.parameter_constraint import ParameterConstraint from ax.core.runner import Runner from ax.core.trial import Trial from ax.modelbridge.generation_strategy import GenerationStrategy from ax.storage.sqa_store.db import SQABase from ax.storage.sqa_store.sqa_classes import ( SQAAbandonedArm, SQAArm, SQAData, SQAExperiment, SQAGenerationStrategy, SQAGeneratorRun, SQAMetric, SQAParameter, SQAParameterConstraint, SQARunner, SQATrial, ) # pyre-fixme[9]: class_to_sqa_class has type `Dict[Type[Base], Type[SQABase]]`; used # as `Dict[Type[Union[AbandonedArm, Arm, Data, Experiment, GenerationStrategy, # GeneratorRun, Metric, Parameter, ParameterConstraint, Runner, Trial]], # Type[Union[SQAAbandonedArm, SQAArm, SQAData, SQAExperiment, SQAGenerationStrategy, # SQAGeneratorRun, SQAMetric, SQAParameter, SQAParameterConstraint, SQARunner, # SQATrial]]]`. class SQAConfig(NamedTuple): """Metadata needed to save and load an experiment to SQLAlchemy. Attributes: class_to_sqa_class: Mapping of user-facing class to SQLAlchemy class that it will be encoded to. This allows overwriting of the default classes to provide custom save functionality. experiment_type_enum: Enum containing valid Experiment types. generator_run_type_enum: Enum containing valid Generator Run types. """ class_to_sqa_class: Dict[Type[Base], Type[SQABase]] = { AbandonedArm: SQAAbandonedArm, Arm: SQAArm, Data: SQAData, Experiment: SQAExperiment, GenerationStrategy: SQAGenerationStrategy, GeneratorRun: SQAGeneratorRun, Parameter: SQAParameter, ParameterConstraint: SQAParameterConstraint, Metric: SQAMetric, Runner: SQARunner, Trial: SQATrial, } experiment_type_enum: Optional[Enum] = None generator_run_type_enum: Optional[Enum] = GeneratorRunType
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
9a5e9d041ce5d5aec6a271c32fdf6721bfcdf335
0d9445f17a7175c3872c6ffb9280c3269b8a1eb9
/test/unfolding/test_unfolding.py
06ece9628fe17d60ef34aa60e688ece98132da0e
[]
permissive
neukirchen-212/phonopy
8aa4fc9f63cb124acaa6f7ab052275a423c000cb
e34588dcb32fb15aa2a6604ffd3e62ebb0927c0f
refs/heads/develop
2023-08-24T00:47:35.908407
2021-10-16T12:02:27
2021-10-16T12:02:27
328,015,607
0
0
BSD-3-Clause
2021-01-11T12:53:48
2021-01-08T21:24:17
null
UTF-8
Python
false
false
4,753
py
import numpy as np from phonopy import Phonopy from phonopy.unfolding import Unfolding # from phonopy.interface.vasp import write_vasp import os data_dir = os.path.dirname(os.path.abspath(__file__)) def test_Unfolding_NaCl(ph_nacl): """Test to reproduce proper band structure of primitive cell Results are written to "bin-unfolding-test.dat". This data can be plotted by % plot_band.py bin-unfolding-test.dat Increase nd to get better plot. The test is done with nd=10. """ # ph = _get_phonon(ph_nacl) ph = ph_nacl nd = 10 qpoints = np.array([[x, ] * 3 for x in range(nd)]) / float(nd) - 0.5 unfolding_supercell_matrix = [[-2, 2, 2], [2, -2, 2], [2, 2, -2]] mapping = np.arange(len(ph.supercell), dtype=int) unfolding = Unfolding(ph, unfolding_supercell_matrix, ph.supercell.scaled_positions, mapping, qpoints) unfolding.run() weights = _get_weights(unfolding, qpoints) # _write_weights(weights, "unfolding.dat") filename_out = os.path.join(data_dir, "bin-unfolding-test.dat") _compare(weights, os.path.join(data_dir, "bin-unfolding.dat"), filename_out=None) def test_Unfolding_SC(ph_nacl): """Test to reproduce unfoled band structure Atomic positions are considered as the lattice ponts. Results are written to "bin-unfolding_to_atoms-test.dat". This data can be plotted by % plot_band.py bin-unfolding_to_atoms-test.dat Increase nd to get better plot. The test is done with nd=10. """ # ph = _get_phonon(ph_nacl) ph = ph_nacl nd = 10 qpoints = np.array([[x, ] * 3 for x in range(nd)]) / float(nd) - 0.5 unfolding_supercell_matrix = np.diag([4, 4, 4]) mapping = np.arange(len(ph.supercell), dtype=int) unfolding = Unfolding(ph, unfolding_supercell_matrix, ph.supercell.scaled_positions, mapping, qpoints) unfolding.run() weights = _get_weights(unfolding, qpoints) # _write_weights(weights, "unfolding_to_atoms.dat") filename_out = os.path.join(data_dir, "bin-unfolding_to_atoms-test.dat") _compare(weights, os.path.join(data_dir, "bin-unfolding_to_atoms.dat"), filename_out=None) def _compare(weights, filename, filename_out=None): bin_data = _binning(weights) if filename_out: _write_bin_data(bin_data, filename_out) with open(filename) as f: bin_data_in_file = np.loadtxt(f) np.testing.assert_allclose(bin_data, bin_data_in_file, atol=1e-2) def _get_weights(unfolding, qpoints): weights = unfolding.unfolding_weights freqs = unfolding.frequencies out_vals = [] for i, q in enumerate(qpoints): for f, w in zip(freqs[i], weights[i]): out_vals.append([q[0], q[1], q[2], f, w]) return out_vals def _write_weights(weights, filename): with open(filename, 'w') as w: lines = ["%10.7f %10.7f %10.7f %12.7f %10.7f" % tuple(x) for x in weights] w.write("\n".join(lines)) def _write_bin_data(bin_data, filename): with open(filename, 'w') as w: lines = ["%8.5f %8.5f %8.5f" % tuple(v) for v in bin_data] w.write("\n".join(lines)) def _binning(data): x = [] y = [] w = [] for vals in data: if vals[4] > 1e-3: x.append(vals[0]) y.append(vals[3]) w.append(vals[4]) x = np.around(x, decimals=5) y = np.around(y, decimals=5) w = np.array(w) points = {} for e_x, e_y, e_z in zip(x, y, w): if (e_x, e_y) in points: points[(e_x, e_y)] += e_z else: points[(e_x, e_y)] = e_z x = [] y = [] w = [] for key in points: x.append(key[0]) y.append(key[1]) w.append(points[key]) data = np.transpose([x, y, w]) data = sorted(data, key=lambda data: data[1]) data = sorted(data, key=lambda data: data[0]) return np.array(data) def _get_phonon(ph_in): ph = Phonopy(ph_in.supercell, supercell_matrix=[1, 1, 1]) ph.force_constants = ph_in.force_constants born_elems = {s: ph_in.nac_params['born'][i] for i, s in enumerate(ph_in.primitive.symbols)} born = [born_elems[s] for s in ph_in.supercell.symbols] epsilon = ph_in.nac_params['dielectric'] factors = ph_in.nac_params['factor'] ph.nac_params = {'born': born, 'factor': factors, 'dielectric': epsilon} return ph
[ "atz.togo@gmail.com" ]
atz.togo@gmail.com
c16fe6d08af84f79148a92df9ca28ec80d1fbd1b
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/planner/leaf.py
a26a48f95065c8ded94a02ebbeb6e1facd5221d6
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
7,862
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class Leaf(Mo): """ Optimizer deployment leaf """ meta = ClassMeta("cobra.model.planner.Leaf") meta.moClassName = "plannerLeaf" meta.rnFormat = "leaf-%(name)s" meta.category = MoCategory.REGULAR meta.label = "Switch node" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.childClasses.add("cobra.model.fault.Counts") meta.childClasses.add("cobra.model.health.Inst") meta.childClasses.add("cobra.model.planner.Resource") meta.childClasses.add("cobra.model.planner.RsDeployedFex") meta.childClasses.add("cobra.model.planner.RsDeployedObject") meta.childClasses.add("cobra.model.planner.RsNodeLabels") meta.childClasses.add("cobra.model.planner.Violation") meta.childNamesAndRnPrefix.append(("cobra.model.planner.RsDeployedObject", "rsdeployedObject-")) meta.childNamesAndRnPrefix.append(("cobra.model.planner.RsDeployedFex", "rsdeployedFex-")) meta.childNamesAndRnPrefix.append(("cobra.model.planner.RsNodeLabels", "rsnodeLabels-")) meta.childNamesAndRnPrefix.append(("cobra.model.planner.Violation", "violation-")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Counts", "fltCnts")) meta.childNamesAndRnPrefix.append(("cobra.model.health.Inst", "health")) meta.childNamesAndRnPrefix.append(("cobra.model.planner.Resource", "res-")) meta.parentClasses.add("cobra.model.planner.Deployment") meta.superClasses.add("cobra.model.planner.Node") meta.superClasses.add("cobra.model.naming.NamedObject") meta.rnPrefixes = [ ('leaf-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "isExisting", "isExisting", 28926, PropCategory.REGULAR) prop.label = "Indicates if Node is from Existing topology or Template" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = True prop.defaultValueStr = "yes" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("isExisting", prop) prop = PropMeta("str", "label", "label", 21222, PropCategory.REGULAR) prop.label = "Label" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("label", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "maxPctUse", "maxPctUse", 21967, PropCategory.REGULAR) prop.label = "Max percent usage across all the resources" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 100)] prop.defaultValue = 255 prop.defaultValueStr = "none" prop._addConstant("none", "not-applicable", 255) meta.props.add("maxPctUse", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "model", "model", 21223, PropCategory.REGULAR) prop.label = "Model" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "N9K-C9372PX" prop._addConstant("N9K-C93108TC-EX", "n9k-c93108tc-ex", 14) prop._addConstant("N9K-C93128TX:N9K-M12PQ", "n9k-c93128tx:n9k-m12pq", 6) prop._addConstant("N9K-C93128TX:N9K-M6PQ", "n9k-c93128tx:n9k-m6pq", 7) prop._addConstant("N9K-C93128TX:N9K-M6PQ-E", "n9k-c93128tx:n9k-m6pq-e", 8) prop._addConstant("N9K-C93180YC-EX", "n9k-c93180yc-ex", 13) prop._addConstant("N9K-C9332PQ", "n9k-c9332pq", 2) prop._addConstant("N9K-C9372PX", "n9k-c9372px", 0) prop._addConstant("N9K-C9372PX-E", "n9k-c9372px-e", 12) prop._addConstant("N9K-C9372TX", "n9k-c9372tx", 1) prop._addConstant("N9K-C9396PX:N9K-M12PQ", "n9k-c9396px:n9k-m12pq", 3) prop._addConstant("N9K-C9396PX:N9K-M6PQ", "n9k-c9396px:n9k-m6pq", 4) prop._addConstant("N9K-C9396PX:N9K-M6PQ-E", "n9k-c9396px:n9k-m6pq-e", 5) prop._addConstant("N9K-C9396TX:N9K-M12PQ", "n9k-c9396tx:n9k-m12pq", 9) prop._addConstant("N9K-C9396TX:N9K-M6PQ", "n9k-c9396tx:n9k-m6pq", 10) prop._addConstant("N9K-C9396TX:N9K-M6PQ-E", "n9k-c9396tx:n9k-m6pq-e", 11) meta.props.add("model", prop) prop = PropMeta("str", "monPolDn", "monPolDn", 21244, PropCategory.REGULAR) prop.label = "Monitoring policy attached to this observable object" prop.isImplicit = True prop.isAdmin = True meta.props.add("monPolDn", prop) prop = PropMeta("str", "name", "name", 21224, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True prop.range = [(1, 16)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("name", prop) prop = PropMeta("str", "nameAlias", "nameAlias", 28417, PropCategory.REGULAR) prop.label = "Name alias" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 63)] prop.regex = ['[a-zA-Z0-9_.-]+'] meta.props.add("nameAlias", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) meta.namingProps.append(getattr(meta.props, "name")) def __init__(self, parentMoOrDn, name, markDirty=True, **creationProps): namingVals = [name] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
[ "bkhoward@live.com" ]
bkhoward@live.com
d4df2caa6ed25adc9924e59b16ebf3b4dc71c06b
64cd09628f599fe18bf38528309349f7ac0df71e
/ML.Autoencoder/Reference/1_Autoencoder.py
59899e4665c25aec2652d6535c1f0822d0364e62
[]
no_license
JunyoungJang/Python
958c057b2fd37c03876d3cf566ee27ee637bb020
76d4cd441deff8061e10608e0848360bc4f34490
refs/heads/master
2021-01-19T21:54:42.208469
2020-02-14T09:54:17
2020-02-14T09:54:17
83,768,220
1
0
null
null
null
null
UTF-8
Python
false
false
3,862
py
# Gradient-Based Learning Applied to Document Recognition [Y LeCun 1998] http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf # Greedy Layer-Wise Training of Deep Networks [Bengio 07] http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf/ # Extracting and Composing Robust Features with Denoising Autoencoders [Vincent 08] http://www.iro.umontreal.ca/~vincentp/Publications/denoising_autoencoders_tr1316.pdf # Introduction Auto-Encoder (turing1759@gmail.com) https://wikidocs.net/3413 # Autoencoders http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/ # Autoencoder vs RBM (+ vs CNN) # http://khanrc.tistory.com/entry/Autoencoder-vs-RBM-vs-CNN import tensorflow as tf, numpy as np, matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data # mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) mnist = input_data.read_data_sets("/Users/sungchul/Dropbox/Data/MNIST/", one_hot=True) learning_rate = 0.01 training_epochs = 100 batch_size = 256 display_step = 1 examples_to_show = 10 n_hidden_1 = 256 # 1st layer num features n_hidden_2 = 128 # 2nd layer num features n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures) X = tf.placeholder("float", [None, n_input]) weights = { 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = { 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'decoder_b2': tf.Variable(tf.random_normal([n_input])), } def encoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2'])) return layer_2 def decoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2'])) return layer_2 # Construct model encoder_op = encoder(X) decoder_op = decoder(encoder_op) # Prediction y_pred = decoder_op y_true = X # Define loss and optimizer, minimize the squared error cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost) # Launch the graph with tf.Session() as sess: tf.global_variables_initializer().run() total_batch = int(mnist.train.num_examples/batch_size) # Training cycle for epoch in range(training_epochs): # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c)) print("Optimization Finished!") # Applying encode and decode over test set encode_decode = sess.run( y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) # Compare original images with their reconstructions f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(examples_to_show): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) f.show() plt.draw() plt.waitforbuttonpress()
[ "lakino@yonsei.ac.kr" ]
lakino@yonsei.ac.kr
a1088c8dfa47439b1217fe6d2ebf2519ad1696a3
ae6189642a07fd789f51caadb924328a54919cac
/100-problems/review/dinamic-programming/37-coin-2.py
f4d3151f226422f8a88fdfd7ba7a84605042607d
[]
no_license
d-matsui/atcorder
201e32403653b2fdf0d42188faf095eb8b793b86
22ec1af8206827e10a986cb24cf12acc52ab1d6a
refs/heads/master
2020-09-27T23:15:27.281877
2020-09-01T13:24:34
2020-09-01T13:24:34
226,632,569
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
#!/usr/bin/env python3 from pprint import pprint import sys sys.setrecursionlimit(10 ** 6) input = sys.stdin.buffer.readline INF = float('inf') n, m = map(int, input().split()) coins = list(map(int, input().split())) # dp[i] := ちょうどi円支払うときのコインの最小枚数 dp = [INF] * (n + 1) dp[0] = 0 for i in range(n + 1): for c in coins: if i - c < 0: continue dp[i] = min(dp[i], dp[i-c] + 1) print(dp[n])
[ "mti.daiki@gmail.com" ]
mti.daiki@gmail.com
c8d1d2b5066d64780127495106322b5db11767f8
8b9bf5891152762a0dbaef2f01ba8a302d3213fa
/git_blankfile.py
9e977d1f7d84a0fba2c33fa1f8a736a35c14897b
[]
no_license
WRGrantham/github_practice
bd79ec1d3bfbefe50e00686f63bb247529293370
a4a1e06b1cbe7ef2667934584293d3a401382fb2
refs/heads/master
2020-03-22T06:49:39.473734
2018-07-04T03:15:24
2018-07-04T03:15:24
139,660,819
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
def bitch_please(string): print ("bitch, PLEASE!") bitch_please(poop_butt) poop_butt = "Mr Poopy Butthole, we've got changes"
[ "vagrant@vagrant.vm" ]
vagrant@vagrant.vm
70b8250d91c0fe9c9201349f493e908f51d62f94
bb150497a05203a718fb3630941231be9e3b6a32
/framework/e2e/jit/test_MaxPool3D_11.py
0d68f5ac5631e67e9f271a8346573b1b1fc46ec8
[]
no_license
PaddlePaddle/PaddleTest
4fb3dec677f0f13f7f1003fd30df748bf0b5940d
bd3790ce72a2a26611b5eda3901651b5a809348f
refs/heads/develop
2023-09-06T04:23:39.181903
2023-09-04T11:17:50
2023-09-04T11:17:50
383,138,186
42
312
null
2023-09-13T11:13:35
2021-07-05T12:44:59
Python
UTF-8
Python
false
false
620
py
#!/bin/env python # -*- coding: utf-8 -*- # encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python """ test jit cases """ import os import sys sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) sys.path.append(os.path.join(os.path.abspath(os.path.dirname(os.getcwd())), "utils")) from utils.yaml_loader import YamlLoader from jittrans import JitTrans yaml_path = os.path.join(os.path.abspath(os.path.dirname(os.getcwd())), "yaml", "nn.yml") yml = YamlLoader(yaml_path) def test_MaxPool3D_11(): """test MaxPool3D_11""" jit_case = JitTrans(case=yml.get_case_info("MaxPool3D_11")) jit_case.jit_run()
[ "825276847@qq.com" ]
825276847@qq.com
eee8b28412164b068298414bbbfdd00a7682dde6
d190750d6cb34e9d86ae96724cf4b56a2f57a74a
/tests/r/test_gilgais.py
cf929d3c6685b3eb562f0d35660052a163cdc03a
[ "Apache-2.0" ]
permissive
ROAD2018/observations
a119f61a48213d791de0620804adb8d21c2ad9fb
2c8b1ac31025938cb17762e540f2f592e302d5de
refs/heads/master
2021-09-24T04:28:02.725245
2018-09-16T23:06:30
2018-09-16T23:06:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.gilgais import gilgais def test_gilgais(): """Test module gilgais.py by downloading gilgais.csv and testing shape of extracted data has 365 rows and 9 columns """ test_path = tempfile.mkdtemp() x_train, metadata = gilgais(test_path) try: assert x_train.shape == (365, 9) except: shutil.rmtree(test_path) raise()
[ "dustinviettran@gmail.com" ]
dustinviettran@gmail.com
0be288da85863450afa7a166af6d2304e7aa4300
6fb37fee016346120d4c14c4343516532304055a
/src/genie/libs/parser/iosxe/tests/test_show_ip.py
87faf2deeb76a8bc95aeaaf838eda94ca386a3b5
[ "Apache-2.0" ]
permissive
devbollinger/genieparser
011526ebbd747c6dcd767535ce4bd33167e15536
ad5ce7ba8f5153d1aeb9cffcfc4dde0871f3401c
refs/heads/master
2020-12-20T11:36:00.750128
2020-01-24T18:45:40
2020-01-24T18:45:40
236,061,155
0
0
Apache-2.0
2020-01-24T18:38:43
2020-01-24T18:38:42
null
UTF-8
Python
false
false
6,901
py
# Python import unittest from unittest.mock import Mock # ATS from ats.topology import Device from ats.topology import loader # Metaparser from genie.metaparser.util.exceptions import SchemaEmptyParserError, SchemaMissingKeyError # iosxe show_lisp # from genie.libs.parser.iosxe.show_lisp import ShowLispSession # iosxe show_ip_parser from genie.libs.parser.iosxe.show_ip import ShowIPAlias, \ ShowIPAliasDefaultVrf # ================================= # Unit test for 'show ip aliases', 'show ip aliases default-vrf', 'show ip aliases vrf {vrf}' # ================================= class test_show_ip_alias(unittest.TestCase): ''' Unit test for: show ip aliases show ip aliases default-vrf show ip aliases vrf {vrf} ''' device = Device(name = 'aDevice') empty_output = { 'execute.return_value' : '' } # show ip aliases golden_parsed_output1 = { 'vrf': { 'default': { 'index': { 1: { 'address_type': 'Interface', 'ip_address': '10.169.197.94', }, 2: { 'address_type': 'Interface', 'ip_address': '10.169.197.254', }, 3: { 'address_type': 'Interface', 'ip_address': '172.16.1.56', }, 4: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 5: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 6: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 7: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 8: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 9: { 'address_type': 'Interface', 'ip_address': '192.168.144.254', }, }, }, }, } golden_output1 = { 'execute.return_value': ''' show ip aliases Address Type IP Address Port Interface 10.169.197.94 Interface 10.169.197.254 Interface 172.16.1.56 Interface 192.168.10.254 Interface 192.168.10.254 Interface 192.168.10.254 Interface 192.168.10.254 Interface 192.168.10.254 Interface 192.168.144.254 ''' } # show ip aliases default-vrf golden_parsed_output2 = { 'vrf': { 'default': { 'index': { 1: { 'address_type': 'Interface', 'ip_address': '10.169.197.94', }, 2: { 'address_type': 'Interface', 'ip_address': '10.169.197.254', }, 3: { 'address_type': 'Interface', 'ip_address': '172.16.1.56', }, 4: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 5: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 6: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 7: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 8: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, 9: { 'address_type': 'Interface', 'ip_address': '192.168.144.254', }, }, }, }, } golden_output2 = { 'execute.return_value': ''' show ip aliases default-vrf Address Type IP Address Port Interface 10.169.197.94 Interface 10.169.197.254 Interface 172.16.1.56 Interface 192.168.10.254 Interface 192.168.10.254 Interface 192.168.10.254 Interface 192.168.10.254 Interface 192.168.10.254 Interface 192.168.144.254 ''' } # show ip aliases vrf {vrf} golden_parsed_output3 = { 'vrf': { 'L3VPN-1538': { 'index': { 1: { 'address_type': 'Interface', 'ip_address': '192.168.10.254', }, }, }, }, } golden_output3 = { 'execute.return_value': ''' show ip aliases vrf L3VPN-1538 Address Type IP Address Port Interface 192.168.10.254 ''' } def test_empty(self): self.maxDiff = None self.device = Mock(**self.empty_output) obj = ShowIPAlias(device = self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden1(self): self.maxDiff = None self.device = Mock(**self.golden_output1) obj = ShowIPAlias(device = self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output1) def test_golden2(self): self.maxDiff = None self.device = Mock(**self.golden_output2) obj = ShowIPAliasDefaultVrf(device = self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output2) def test_golden3(self): self.maxDiff = None self.device = Mock(**self.golden_output3) obj = ShowIPAlias(device = self.device) parsed_output = obj.parse(vrf = 'L3VPN-1538') self.assertEqual(parsed_output, self.golden_parsed_output3) if __name__ == '__main__': unittest.main()
[ "karmoham@cisco.com" ]
karmoham@cisco.com
853b5efb4360f589ed00f617b2c4e5f5ad8dc3c6
c49849e8c0234ab60d4c5c17233b84ae63932074
/src/decision-trees.py
d3e57413bfcf73273372e63481c02ec9d78856e9
[]
no_license
AlexisDrch/Machine-Learning
97a79c15087765ac97b8693c39f42807255d2a22
f60cf4147f38a900dd606bb1c07e986a6c72d262
refs/heads/master
2021-04-06T09:11:48.926794
2018-03-12T09:02:32
2018-03-12T09:02:32
124,861,464
1
0
null
null
null
null
UTF-8
Python
false
false
1,983
py
# coding: utf-8 from utils import * # ### 1. Decision Trees # In[18]: clf_dt = tree.DecisionTreeClassifier(criterion='gini') # explain use of gini and information gain # #### 1. Balancing wine dataset # In[19]: cv = StratifiedKFold(n_splits=10) title = 'Learning Curve - Decision Tree - wine imbalanced' plt, score = plot_learning_curve(clf_dt, title, X2, y2, ylim=(0.3, 1.01), cv=cv, n_jobs=4) plt.savefig('./output/dtree-wine-imbalanced.png') plt.show() title = 'Learning Curve - Decision Tree - wine balanced' plt,score= plot_learning_curve(clf_dt, title, X2_up, y2_up, ylim=(0.3, 1.01), cv=cv, n_jobs=4) plt.savefig('./output/dtree-wine-balanced.png') plt.show() # In[20]: # on Pima title = 'Learning Curve - Decision Tree - pima ' plt,score = plot_learning_curve(clf_dt, title, X1, y1, ylim=(0.3, 1.01), cv=cv, n_jobs=4) plt.savefig('./output/dtree-pima.png') plt.show() # #### 2. Parameters tuning. # In[42]: # for pima max_d = 30 title = " Validation Curve - max_depth - pima " xlabel = "max_depth" ylabel = "Score" clf_dt.fit(X1, y1) valid_curve_dt_pima, pima_dt_score, best_param = plot_validation_curve(clf_dt, title, xlabel, ylabel,X1, y1, param_name = 'max_depth', ylim=None, cv = cv, n_jobs = 1, param_range = np.arange(1, max_d)) valid_curve_dt_pima.savefig('./output/valid_curve_dt_pima.png') valid_curve_dt_pima.show() print("Best score for pima is " + str(pima_dt_score) + ", max_depth = " + str(best_param)) # for wine title = " Validation Curve - max_depth - wine " clf_dt.fit(X2_up, y2_up) valid_curve_dt_wine, wine_dt_score, best_param = plot_validation_curve(clf_dt, title, xlabel, ylabel,X2_up, y2_up, param_name = 'max_depth', ylim=None, cv = cv, n_jobs = 1, param_range = np.arange(1, max_d)) valid_curve_dt_wine.savefig('./output/valid_curve_dt_wine.png') valid_curve_dt_wine.show() print("Best score for wine is " + str(wine_dt_score) + ", max_depth = " + str(best_param))
[ "aleksi.durocher@wanadoo.fr" ]
aleksi.durocher@wanadoo.fr
b73af01c3a4ae24080e795dfdfa6fc5f0dded805
9e1bda53da4c5e98190f5f25235f528d692ee5a8
/.history/my_app/forms_20210405180446.py
9fd1f9a4b32ae169cb9e3865f612d88a43ae36d9
[]
no_license
Jumayev-A/Project-3
3d373181af6a87e3fe319a13d28fcd18941167b7
34ddd009726cbba9ae52e74a46d554fd735566e2
refs/heads/main
2023-06-10T11:02:06.446151
2021-07-07T06:19:11
2021-07-07T06:19:11
350,375,680
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
from django import forms from my_app.models import BlogModel class BlogForm(forms.ModelForm): class Meta: model = BlogModel fields = ['title','description']
[ "abdy.jumayev@gmail.com" ]
abdy.jumayev@gmail.com
8f8f52e2e5ddc47176d85bf7b051d523a6670890
5dd03f9bd8886f02315c254eb2569e4b6d368849
/tests/python/twitter/common/string/test_basic_scanf.py
00b280c41ad6bed4daf5a43c6fffc5bfa45b65b2
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
adamsxu/commons
9e1bff8be131f5b802d3aadc9916d5f3a760166c
9fd5a4ab142295692994b012a2a2ef3935d35c0b
refs/heads/master
2021-01-17T23:13:51.478337
2012-03-11T17:30:24
2012-03-11T17:30:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,569
py
import pytest import unittest from twitter.common.string.scanf import ScanfParser def almost_equal(a, b, digits=7): return abs(a-b) < 0.1**digits def basic_scanf(fmt, string, extra=False): formatter = ScanfParser(fmt) result = formatter.parse(string, extra) assert len(result.ungrouped()) == 1 return result.ungrouped()[0] def test_bad_input(): conversions = ScanfParser.CONVERSIONS.keys() bad_stuff = [ " a", " 1", " +", "a ", "1 ", "+ ", ] garbage_stuff = [ 0, 1, None, dir, [], {}, (), type ] for c in conversions: for b in bad_stuff: with pytest.raises(ScanfParser.ParseError): basic_scanf(c, b) for b in garbage_stuff: with pytest.raises(TypeError): basic_scanf(c, b) def test_no_matches(): match = ScanfParser("%%").parse("%") assert len(match.groups()) == 0 assert len(match.ungrouped()) == 0 test_strings = ["a", " ", "hello hello", "1.0 hello nothing to see here move along", ""] for t_s in test_strings: match = ScanfParser(t_s).parse(t_s) assert len(match.groups()) == 0 assert len(match.ungrouped()) == 0 def test_garbage_formats(): garbage_input = [0, 1, None, dir, [], {}, (), type] for garbage in garbage_input: with pytest.raises(TypeError): ScanfParser(garbage) def test_special_characters(): special_stuffs = [ (')', '('), ('(', ')'), ('[', ']'), ('{', '}'), ('(', ')+'), ('(|', ')'), ('{,', '}'), ('$', '^'), ('^', '$'), (' ', '+'), (' ', '*'), (' ', '?') ] for before, after in special_stuffs: assert basic_scanf(before+'%c'+after, before+'a'+after) == 'a' assert basic_scanf(before+'%c'+after, before+u'a'+after) == 'a' assert basic_scanf(before+'%c'+after, before+' '+after) == ' ' def test_character_conversion(): assert basic_scanf('%c', 'a') == 'a' assert basic_scanf('%c', u'a') == 'a' assert basic_scanf('%c', ' ') == ' ' def test_integer_conversion(): for conversion in ('%d', '%ld', '%lld'): assert basic_scanf(conversion, '1') == 1 assert basic_scanf(conversion, '01') == 1 assert basic_scanf(conversion, '+01') == 1 assert basic_scanf(conversion, '-01') == -1 def test_failing_integer_conversion(): with pytest.raises(ScanfParser.ParseError): basic_scanf('%d', "\x90") with pytest.raises(ScanfParser.ParseError): basic_scanf('%d', "x") with pytest.raises(ScanfParser.ParseError): basic_scanf('%d', "hello") def test_long_conversion(): for conversion in ('%u', '%lu', '%llu'): assert basic_scanf(conversion, '1') == 1 assert basic_scanf(conversion, '01') == 1 def test_float_conversion(): factor_tests = { '': 1.0, 'e-0': 1.0, 'e-1': 0.1, 'e+1': 10.0, 'e1': 10.0, 'e0': 1.0, 'e5': 1.e5, } for exponent, xfactor in factor_tests.items(): assert almost_equal(basic_scanf('%f', '0' + exponent), 0 * xfactor) assert almost_equal(basic_scanf('%f', '.1' + exponent), .1 * xfactor) assert almost_equal(basic_scanf('%f', '2.' + exponent), 2 * xfactor) assert almost_equal(basic_scanf('%f', '3.4' + exponent), 3.4 * xfactor) assert almost_equal(basic_scanf('%f', '-.5' + exponent), -0.5 * xfactor) def test_string_conversion(): for st in ('a', u'a', '123', u'123', 'a\x12\x23'): assert basic_scanf('%s', st) == st assert basic_scanf('%s', '\x00') == '' def test_extra_stuff(): extra_stuff = [ ' ', ' a', ' a b', ' $'] for extra in extra_stuff: for st in ('a', u'a', '123', u'123', 'a\x12\x23'): assert basic_scanf('%s', st+extra, extra=True) == st
[ "jsirois@twitter.com" ]
jsirois@twitter.com
087e5477ba0dc7f53e31d552937861e0ef8d456b
5831b0293cbb6f9e0660ac4ec952cbdb047d051d
/tests/test_corpus.py
f045ffdac25a7a65fc7e1b85f1b460d32a078e9a
[ "Apache-2.0" ]
permissive
mdlynch37/textacy
03e3287fd8ee8bd4d06e48b7b87edf8324a987e5
c1c7376a84a62faeee496e9b8cc2a29edc28c7d1
refs/heads/master
2021-01-20T09:29:54.627035
2017-12-04T05:31:14
2017-12-04T05:31:14
101,596,726
0
0
null
2017-08-28T02:36:30
2017-08-28T02:36:30
null
UTF-8
Python
false
false
3,565
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import os import shutil import tempfile import unittest from textacy import Corpus from textacy import Doc from textacy import cache from textacy import compat from textacy import fileio from textacy.datasets.capitol_words import CapitolWords DATASET = CapitolWords() @unittest.skipUnless( DATASET.filename, 'CapitolWords dataset must be downloaded before running tests') class CorpusInitTestCase(unittest.TestCase): def test_corpus_init_lang(self): self.assertIsInstance(Corpus('en'), Corpus) self.assertIsInstance(Corpus(cache.load_spacy('en')), Corpus) for bad_lang in (b'en', None): with self.assertRaises(TypeError): Corpus(bad_lang) def test_corpus_init_texts(self): limit = 3 corpus = Corpus('en', texts=DATASET.texts(limit=limit)) self.assertEqual(len(corpus.docs), limit) self.assertTrue( all(doc.spacy_vocab is corpus.spacy_vocab for doc in corpus)) def test_corpus_init_texts_and_metadatas(self): limit = 3 texts, metadatas = fileio.split_record_fields( DATASET.records(limit=limit), 'text') texts = list(texts) metadatas = list(metadatas) corpus = Corpus('en', texts=texts, metadatas=metadatas) self.assertEqual(len(corpus.docs), limit) self.assertTrue( all(doc.spacy_vocab is corpus.spacy_vocab for doc in corpus)) for i in range(limit): self.assertEqual(texts[i], corpus[i].text) self.assertEqual(metadatas[i], corpus[i].metadata) def test_corpus_init_docs(self): limit = 3 texts, metadatas = fileio.split_record_fields( DATASET.records(limit=limit), 'text') docs = [Doc(text, lang='en', metadata=metadata) for text, metadata in zip(texts, metadatas)] corpus = Corpus('en', docs=docs) self.assertEqual(len(corpus.docs), limit) self.assertTrue( all(doc.spacy_vocab is corpus.spacy_vocab for doc in corpus)) for i in range(limit): self.assertEqual(corpus[i].metadata, docs[i].metadata) corpus = Corpus( 'en', docs=docs, metadatas=({'foo': 'bar'} for _ in range(limit))) for i in range(limit): self.assertEqual(corpus[i].metadata, {'foo': 'bar'}) class CorpusMethodsTestCase(unittest.TestCase): def setUp(self): self.tempdir = tempfile.mkdtemp( prefix='test_corpus', dir=os.path.dirname(os.path.abspath(__file__))) texts, metadatas = fileio.split_record_fields( DATASET.records(limit=3), 'text') self.corpus = Corpus('en', texts=texts, metadatas=metadatas) def test_corpus_save_and_load(self): filepath = os.path.join(self.tempdir, 'test_corpus_save_and_load.pkl') self.corpus.save(filepath) new_corpus = Corpus.load(filepath) self.assertIsInstance(new_corpus, Corpus) self.assertEqual(len(new_corpus), len(self.corpus)) self.assertEqual(new_corpus.lang, self.corpus.lang) self.assertEqual( new_corpus.spacy_lang.pipe_names, self.corpus.spacy_lang.pipe_names) self.assertIsNone( new_corpus[0].spacy_doc.user_data['textacy'].get('spacy_lang_meta')) for i in range(len(new_corpus)): self.assertEqual(new_corpus[i].metadata, self.corpus[i].metadata) def tearDown(self): shutil.rmtree(self.tempdir)
[ "burton@chartbeat.com" ]
burton@chartbeat.com
3439f18b0ee4568641def717417ce8bf67b35fa8
0141361f7c4d276f471ac278580479fa15bc4296
/Greedy/videoStitching.py
35e26476c753b3396c97ac391d7f749443758fc4
[]
no_license
tr1503/LeetCode
a7f2f1801c9424aa96d3cde497290ac1f7992f58
6d361cad2821248350f1d8432fdfef86895ca281
refs/heads/master
2021-06-24T19:03:08.681432
2020-10-09T23:53:22
2020-10-09T23:53:22
146,689,171
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
class Solution: def videoStitching(self, clips: List[List[int]], T: int) -> int: end = -1 end2 = 0 res = 0 for i, j in sorted(clips): if end2 >= T or i > end2: break elif end < i and i <= end2: res += 1 end = end2 end2 = max(end2, j) return res if end2 >= T else -1
[ "noreply@github.com" ]
tr1503.noreply@github.com
5eb1b4c72a607c8c34436d80e1ae1bdf17b45c32
c55aedc3479a4d311fb406d8133b0e0ceb99d2df
/example/new_system_app/1_BFS_aug.py
c36ba8e8a01e7f60215e6fb316506cd4a9217873
[]
no_license
tarwcz111111111/DashCam_python
4a33cdb3e5a8368b81ddc7c0596d4f0802b7c9d6
6e025ff49261c146205eb56bbbf4175f1d413f54
refs/heads/master
2020-08-25T04:55:16.695561
2017-08-28T04:34:59
2017-08-28T04:34:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,206
py
#!/usr/bin/python2 # ============================================================== # Step.0 # Fetch the Google data # ============================================================== import sys sys.path.append('/home/andy/Documents/gitHub/DashCam_python/module') # use the module under 'module' import file_process import google_store # Create PanoFetcher zoom, radius = 1, 30 panoFetcher = google_store.PanoFetcher(zoom, radius) # Create dashCamFileProcess and load 50 top Dashcam dashCamFileProcess = file_process.DashCamFileProcessor() # Select one of the fileName among the 50 selected files for i in range(3, 4): index = i fileID = str(dashCamFileProcess.list50[index][1]) print(fileID, index) """ # 1. use info_3d pathPoint """ pathPoint_set_info3d = dashCamFileProcess.get_path_info3d(file_id=fileID) #print(pathPoint_set_info3d) #panoFetcher.info_3d(fileID, pathPoint_set_info3d) """ # 2. use BFS # Here use the first point in info_3d """ lat, lon = None, None for pathPoint in pathPoint_set_info3d: print(pathPoint) [lat, lon] = pathPoint.split(',') break panoFetcher.bfs_aug(fileID, (lat, lon), 15)
[ "ydnaandy123@gmail.com" ]
ydnaandy123@gmail.com
d6ed4bf04f30d4d1b1b82eeb248dc600ede27fd9
eae6dddca9285702c4c7ed6ba6bdaceef9631df2
/CCC-2018/Junior/Junior-1/J1.py
475041d11174a226860f6028287db67757ce1cb8
[]
no_license
simrit1/CCC-Solutions-2
7823ce14801c4219f6f1dd4c42fb013c2dfc45dd
ee2883aa38f933e526ce187d50ca68763876cb58
refs/heads/master
2023-07-04T02:19:37.320261
2021-08-07T22:12:36
2021-08-07T22:12:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
331
py
# CCC 2018 Junior 1: Telemarketer or not? # # Author: Charles Chen # # Simple if statement digit1 = int(input()) digit2 = int(input()) digit3 = int(input()) digit4 = int(input()) if (digit1 == 8 or digit1 == 9) and (digit2 == digit3) and (digit4 == 8 or digit4 == 9): print("ignore") else: print("answer")
[ "noreply@github.com" ]
simrit1.noreply@github.com
4c62fa5221d7e7acc4a6d1fd239915dd62942b79
0c66e605e6e4129b09ea14dbb6aa353d18aaa027
/diventi/landing/migrations/0079_auto_20200215_2305.py
d85a68046299dd8b76f851e1157494274efd585e
[ "Apache-2.0" ]
permissive
flavoi/diventi
58fbc8c947f387cbcc1ce607878a59a6f2b72313
c0b1efe2baa3ff816d6ee9a8e86623f297973ded
refs/heads/master
2023-07-20T09:32:35.897661
2023-07-11T19:44:26
2023-07-11T19:44:26
102,959,477
2
1
Apache-2.0
2023-02-08T01:03:17
2017-09-09T14:10:51
Python
UTF-8
Python
false
false
522
py
# Generated by Django 2.2.10 on 2020-02-15 22:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('landing', '0078_auto_20200215_1909'), ] operations = [ migrations.AlterField( model_name='section', name='template', field=models.CharField(choices=[('standard_section.html', 'standard section'), ('cards_section.html', 'cards section')], max_length=50, verbose_name='standard template'), ), ]
[ "flavius476@gmail.com" ]
flavius476@gmail.com
53bfd78a3bc2f711a4860ef3c45e69b66823e37c
b57b0a14df5c6841f04cccb7b02ad04afbca18f8
/avi_vantage/datadog_checks/avi_vantage/config_models/instance.py
017f57d0d5fea29b61a601bec35b7ad9e169c9c1
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "AFL-3.0", "BSD-3-Clause-Modification", "LGPL-3.0-only", "Unlicense", "LGPL-2.1-only", "Apache-2.0", "BSD-2-Clause" ]
permissive
zeroc0d3/integrations-core
d9c99803c049668b7f9f9c796d338e343d3d46ee
634d567f3c38d32aabb3f4c16b50bcfa8a4ae0fb
refs/heads/master
2021-09-28T18:37:00.650406
2021-09-13T11:59:45
2021-09-13T11:59:45
199,758,958
0
0
BSD-3-Clause
2019-07-31T02:01:25
2019-07-31T02:01:24
null
UTF-8
Python
false
false
4,652
py
# (C) Datadog, Inc. 2021-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from __future__ import annotations from typing import Any, Literal, Mapping, Optional, Sequence, Union from pydantic import BaseModel, Extra, Field, root_validator, validator from datadog_checks.base.utils.functions import identity from datadog_checks.base.utils.models import validation from . import defaults, validators class AuthToken(BaseModel): class Config: allow_mutation = False reader: Optional[Mapping[str, Any]] writer: Optional[Mapping[str, Any]] class ExtraMetric(BaseModel): class Config: extra = Extra.allow allow_mutation = False name: Optional[str] type: Optional[str] class Metric(BaseModel): class Config: extra = Extra.allow allow_mutation = False name: Optional[str] type: Optional[str] class Proxy(BaseModel): class Config: allow_mutation = False http: Optional[str] https: Optional[str] no_proxy: Optional[Sequence[str]] class ShareLabel(BaseModel): class Config: allow_mutation = False labels: Optional[Sequence[str]] match: Optional[Sequence[str]] class InstanceConfig(BaseModel): class Config: allow_mutation = False auth_token: Optional[AuthToken] auth_type: Optional[str] avi_controller_url: str aws_host: Optional[str] aws_region: Optional[str] aws_service: Optional[str] cache_metric_wildcards: Optional[bool] cache_shared_labels: Optional[bool] collect_counters_with_distributions: Optional[bool] collect_histogram_buckets: Optional[bool] connect_timeout: Optional[float] disable_generic_tags: Optional[bool] empty_default_hostname: Optional[bool] enable_health_service_check: Optional[bool] entities: Optional[Sequence[Literal['controller', 'pool', 'serviceengine', 'virtualservice']]] exclude_labels: Optional[Sequence[str]] exclude_metrics: Optional[Sequence[str]] exclude_metrics_by_labels: Optional[Mapping[str, Union[bool, Sequence[str]]]] extra_headers: Optional[Mapping[str, Any]] extra_metrics: Optional[Sequence[Union[str, Mapping[str, Union[str, ExtraMetric]]]]] headers: Optional[Mapping[str, Any]] histogram_buckets_as_distributions: Optional[bool] hostname_format: Optional[str] hostname_label: Optional[str] ignore_tags: Optional[Sequence[str]] kerberos_auth: Optional[str] kerberos_cache: Optional[str] kerberos_delegate: Optional[bool] kerberos_force_initiate: Optional[bool] kerberos_hostname: Optional[str] kerberos_keytab: Optional[str] kerberos_principal: Optional[str] log_requests: Optional[bool] metrics: Optional[Sequence[Union[str, Mapping[str, Union[str, Metric]]]]] min_collection_interval: Optional[float] namespace: Optional[str] = Field(None, regex='\\w+') non_cumulative_histogram_buckets: Optional[bool] ntlm_domain: Optional[str] openmetrics_endpoint: Optional[str] password: Optional[str] persist_connections: Optional[bool] proxy: Optional[Proxy] raw_line_filters: Optional[Sequence[str]] raw_metric_prefix: Optional[str] read_timeout: Optional[float] rename_labels: Optional[Mapping[str, Any]] request_size: Optional[float] service: Optional[str] share_labels: Optional[Mapping[str, Union[bool, ShareLabel]]] skip_proxy: Optional[bool] tags: Optional[Sequence[str]] telemetry: Optional[bool] timeout: Optional[float] tls_ca_cert: Optional[str] tls_cert: Optional[str] tls_ignore_warning: Optional[bool] tls_private_key: Optional[str] tls_use_host_header: Optional[bool] tls_verify: Optional[bool] use_latest_spec: Optional[bool] use_legacy_auth_encoding: Optional[bool] username: Optional[str] @root_validator(pre=True) def _initial_validation(cls, values): return validation.core.initialize_config(getattr(validators, 'initialize_instance', identity)(values)) @validator('*', pre=True, always=True) def _ensure_defaults(cls, v, field): if v is not None or field.required: return v return getattr(defaults, f'instance_{field.name}')(field, v) @validator('*') def _run_validations(cls, v, field): if not v: return v return getattr(validators, f'instance_{field.name}', identity)(v, field=field) @root_validator(pre=False) def _final_validation(cls, values): return validation.core.finalize_config(getattr(validators, 'finalize_instance', identity)(values))
[ "noreply@github.com" ]
zeroc0d3.noreply@github.com
9c3fde3ac2b31c11bd87657492d509c219cfb13d
601f604ea3eed7d106513a9d40b7df98a0cf8c95
/make-report.py
12318d9d79fba8c77d47cdde77c40b94df84d43f
[]
no_license
exbracer/dynet-benchmark
53e892d55f26f075dfdaf43859d5c1af49c15a75
9cbc2d66ca20b7b8040a55a66d2024edd5bf5c42
refs/heads/master
2021-09-06T11:40:06.802647
2018-02-06T05:47:00
2018-02-06T05:47:00
120,275,569
0
0
null
2018-02-05T08:24:03
2018-02-05T08:24:03
null
UTF-8
Python
false
false
8,103
py
#!/usr/bin/env python # This should be used as # mkdir -p report # grep '\(per_sec\|startup\)' log/*/*.log | python make-report.py import sys import re from collections import defaultdict stats = defaultdict(lambda: {}) allstats = defaultdict(lambda: []) ##### Regexes fnameregex = re.compile(r"log/([a-z-]+?)(-gpu|)/(dynet-py|dynet-cpp|dynet-seq|chainer|theano|tensorflow)-(.*?)-t([123]).log:(.*)") startregex = re.compile(r"startup time: (.*)") eqregex = re.compile(r"(.*)=(.*)") commentregex = re.compile(r"^ *((#|//).*)?") ##### Various data canonicalize = { "word_per_sec": "speed", "words_per_sec": "speed", "sent_per_sec": "speed", "nll": "accuracy", "tag_acc": "accuracy", "acc": "accuracy", "time": "time" } taskna = { ("tensorflow", "bilstm-tagger-withchar"): 1, ("tensorflow", "treenn"): 1, ("theano", "treenn"): 1, ("dynet-seq", "bilstm-tagger"): 1, ("dynet-seq", "bilstm-tagger-withchar"): 1, ("dynet-seq", "treenn"): 1, } toolkits = ["dynet-cpp", "dynet-py", "chainer", "dynet-seq", "theano", "tensorflow"] prettyname = { "dynet-cpp": "DyC++", "dynet-py": "DyPy", "dynet-seq": "DyC++ Seq", "tensorflow":"TF", "chainer": "Chainer", "theano": "Theano" } ##### Load from log files for line in sys.stdin: line = line.replace("rnnlm-seq/dynet-cpp", "rnnlm-batch/dynet-seq") line = line.replace("rnnlm-seq-gpu/dynet-cpp", "rnnlm-batch-gpu/dynet-seq") m = re.search(fnameregex, line.strip()) if m: task = m.group(1) device = "gpu" if m.group(2) == "-gpu" else "cpu" toolkit = m.group(3) params = m.group(4) trial = int(m.group(5)) idtup = (task, device, toolkit, params, trial) data = m.group(6) m = re.search(startregex, data) if m: stats[idtup]["startup"] = float(m.group(1)) else: mystats = {} for val in data.split(", "): m = re.search(eqregex, val) if not m: print("unmatched line: %s" % line) sys.exit(1) if m.group(1) in canonicalize: can = canonicalize[m.group(1)] val = float(m.group(2)) mystats[can] = val if can == "accuracy": if "rnnlm" not in task: val *= 100 else: val *= -1 stats[idtup][can] = max(val, stats[idtup].get(can,-1e10)) else: stats[idtup][can] = val allstats[idtup].append(mystats) else: print("unmatched line: %s" % line) sys.exit(1) # print(stats) # def format_num(num): # if num > 1e6: # return "%.03gM" % (float(num)/1e6) # elif num > 1e3: # return "%.03gk" % (float(num)/1e3) # else: # return "%.03g" % float(num) # TODO: There must be a better way to do this... def format_num(num): fnum = float(num) val = "%.03g" % fnum if fnum >= 1 and fnum < 10: val = "%.2f" % fnum elif fnum >= 10 and fnum < 100: val = "%.1f" % fnum elif float(num) > 1000: val = "%.f" % float(val) return val def getmaxstat(task, device, toolkit, setting, stat, mult=1): my_stats = [] for trial in range(1,4): my_id = (task, device, toolkit, setting, trial) if my_id in stats and stat in stats[my_id]: my_stats.append(mult*stats[my_id][stat]) return format_num(mult*max(my_stats)) if len(my_stats) > 0 else "TODO" def getminstat(task, device, toolkit, setting, stat): return getmaxstat(task, device ,toolkit, setting, stat, mult=-1) ###### First section: toolkit comparison # CPU/GPU speeds for all toolkits/tasks tasks = [ ("RNNLM (MB=1) ", "rnnlm-batch", "ms01-es128-hs256-sp0"), ("RNNLM (MB=4)", "rnnlm-batch", "ms04-es128-hs256-sp0"), ("RNNLM (MB=16)", "rnnlm-batch", "ms16-es128-hs256-sp0"), ("RNNLM (MB=64)", "rnnlm-batch", "ms64-es128-hs256-sp0"), ("BiLSTM Tag", "bilstm-tagger", "ws128-hs50-mlps32-su0"), ("BiLSTM Tag +sparse", "bilstm-tagger", "ws128-hs50-mlps32-su1"), ("BiLSTM Tag+Char", "bilstm-tagger-withchar", "cs20-ws128-hs50-mlps32-su0"), ("BiLSTM Tag+Char +sparse", "bilstm-tagger-withchar", "cs20-ws128-hs50-mlps32-su1"), ("TreeLSTM", "treenn", "ws128-hs128-su0"), ("TreeLSTM +sparse", "treenn", "ws128-hs128-su1"), ] def make_speed_table(device): print("\\begin{table}") print("\\begin{tabular}{c|rrr|rrr}") print(" & "+" & ".join([prettyname[x] for x in toolkits])+" \\\\ \hline") for name, task, setting in tasks: cols = [name] for i, toolkit in enumerate(toolkits): if (toolkit, task) in taskna: cols.append("\\multicolumn{1}{c}{-}") else: cols.append(getmaxstat(task, device, toolkit, setting, "speed")) print(" & ".join(cols)+" \\\\") print("\\end{tabular}") print("\\caption{Processing speed for each toolkit on %s. Speeds are measured in words/sec for RNNLM and Tagger and sentences/sec for TreeLSTM.}" % device.upper()) print("\\label{tab:speeds%s}" % device) print("\\end{table}") print("") make_speed_table("cpu") make_speed_table("gpu") # Startup time table tasks = [ ("RNNLM", "rnnlm-batch", "ms01-es128-hs256-sp0"), ("BiLSTM Tag", "bilstm-tagger", "ws128-hs50-mlps32-su0"), ("BiLSTM Tag+Char", "bilstm-tagger-withchar", "cs20-ws128-hs50-mlps32-su0"), ("TreeLSTM", "treenn", "ws128-hs128-su0"), ] print("\\begin{table}") print("\\begin{tabular}{c|rrr|rrr}") print(" & "+" & ".join([prettyname[x] for x in toolkits])+" \\\\ \hline") for name, task, setting in tasks: cols = [name] for i, toolkit in enumerate(toolkits): if (toolkit, task) in taskna: cols.append("\\multicolumn{1}{c}{-}") else: cols.append(getminstat(task, device, toolkit, setting, "startup")) print(" & ".join(cols)+" \\\\") print("\\end{tabular}") print("\\caption{Startup time for programs written in each toolkit.}") print("\\label{tab:startup}") print("\\end{table}") print("") # Code complexities def get_code_complexity(toolkit, task): chars = 0 if toolkit == "dynet-seq": if not task == "rnnlm-batch": return "\\multicolumn{1}{c}{-}" toolkit = "dynet-cpp" task = "rnnlm-seq" if (toolkit, task) in taskna: return "\\multicolumn{1}{c}{-}" with open("%s/%s.%s" % (toolkit, task, "cc" if toolkit == "dynet-cpp" else "py"), "r") as f: for line in f: line = re.sub(commentregex, "", line.strip()) chars += len(line) return str(chars) tasks = [ ("RNNLM", "rnnlm-batch"), ("BiLSTM Tag", "bilstm-tagger"), ("BiLSTM Tag+Char", "bilstm-tagger-withchar"), ("TreeLSTM", "treenn"), ] print("\\begin{table}") print("\\begin{tabular}{c|rrrrrr}") print(" & "+" & ".join([prettyname[x] for x in toolkits])+" \\\\ \hline") for name, task in tasks: cols = [name] for i, toolkit in enumerate(toolkits): cols.append(get_code_complexity(toolkit, task)) print(" & ".join(cols)+" \\\\") print("\\end{tabular}") print("\\caption{Number of non-comment characters in the implementation of each toolkit.}") print("\\label{tab:complexity}") print("\\end{table}") print("") ###### Second section: effect of minibatching and net size ###### Third section: effect of sparse update tasks = [ ("RNNLM (MB=1) ", "rnnlm-batch", "ms01-es128-hs256-sp"), ("RNNLM (MB=16)", "rnnlm-batch", "ms16-es128-hs256-sp"), ("BiLSTM Tag", "bilstm-tagger", "ws128-hs50-mlps32-su"), ("BiLSTM Tag+Char", "bilstm-tagger-withchar", "cs20-ws128-hs50-mlps32-su"), ("TreeLSTM", "treenn", "ws128-hs128-su"), ] print("\\begin{table}") print("\\begin{tabular}{c|rr|rr|rr|rr}") print(" & \\multicolumn{4}{c|}{Speed} & \\multicolumn{4}{c}{Accuracy} \\\\") print(" & \\multicolumn{2}{c|}{Dense} & \\multicolumn{2}{c|}{Sparse} & \\multicolumn{2}{c|}{Dense} & \\multicolumn{2}{c}{Sparse} \\\\") print(" & "+" & ".join(["CPU & GPU"] * 4)+" \\\\ \\hline") for name, task, setting in tasks: cols = [name] for criterion in ("speed", "accuracy"): for ds in ("0", "1"): for device in ("cpu", "gpu"): cols.append(getmaxstat(task, device, "dynet-cpp", setting+ds, criterion)) print(" & ".join(cols)+" \\\\") print("\\end{tabular}") print("\\caption{Processing speed and accuracy after 10 minutes with dense or sparse updates.}") print("\\label{tab:sparseresults}") print("\\end{table}") print("")
[ "neubig@gmail.com" ]
neubig@gmail.com
468730321e33a424ae9e609b460c46656deba515
63ae3faa596333fa89ed6059332ed956b6dd3ae1
/career/models/base.py
518e8700dd9167d358c289a74f2d9d65c6953a78
[]
no_license
wyzane/tornado-skill-general
28470d786dc949a2616143b0b35e593d90f2fdc4
915ec990a20b2bb76d56c040cade57a7627d0ebe
refs/heads/master
2020-06-13T13:43:02.401369
2019-07-28T08:20:17
2019-07-28T08:20:17
194,675,732
0
0
null
2019-07-28T08:20:18
2019-07-01T13:14:11
Python
UTF-8
Python
false
false
432
py
# from sqlalchemy import Table, MetaData # from sqlalchemy.ext.declarative import declarative_base # # from config.db import engine_db_career # # # Base = declarative_base() # # # def model(table): # class BaseModel(Base): # __tablename__ = table # metadata = MetaData(engine_db_career) # # # 映射数据库中同名的表 # Table(__tablename__, metadata, autoload=True) # # return BaseModel
[ "wyzane1207@163.com" ]
wyzane1207@163.com
df195ccf60e3003e51d78a0956fd1691ae0fb0b1
6a6984544a4782e131510a81ed32cc0c545ab89c
/src/icetray/python/i3logging.py
efb475dd0d2c1a00a4a5b5832c425bca34254a58
[]
no_license
wardVD/IceSimV05
f342c035c900c0555fb301a501059c37057b5269
6ade23a2fd990694df4e81bed91f8d1fa1287d1f
refs/heads/master
2020-11-27T21:41:05.707538
2016-09-02T09:45:50
2016-09-02T09:45:50
67,210,139
1
0
null
null
null
null
UTF-8
Python
false
false
5,068
py
import logging, string, traceback from icecube.icetray import I3Logger, I3LogLevel class LoggingBridge(I3Logger): pylevels = { I3LogLevel.LOG_TRACE : 5, I3LogLevel.LOG_DEBUG : logging.DEBUG, I3LogLevel.LOG_INFO : logging.INFO, I3LogLevel.LOG_NOTICE : 25, I3LogLevel.LOG_WARN : logging.WARNING, I3LogLevel.LOG_ERROR : logging.ERROR, I3LogLevel.LOG_FATAL : logging.CRITICAL, } i3levels = dict([(v, k) for k, v in pylevels.items()]) def __init__(self): I3Logger.__init__(self) self.getLogger("").setLevel(logging.INFO) def getLogger(self, unit): if len(unit) > 0: name = "icecube.%s" % unit else: name = "icecube" return logging.getLogger(name) def log(self, level, unit, file, line, func, msg): logger = self.getLogger(unit) if logger.isEnabledFor(self.pylevels[level]): record = logging.LogRecord(logger.name, self.pylevels[level], file, line, msg, tuple(), None, None) logger.handle(record) def get_level_for_unit(self, unit): return self.i3levels.get(self.getLogger(unit).getEffectiveLevel(), I3LogLevel.LOG_FATAL) def set_level_for_unit(self, unit, level): self.getLogger(unit).setLevel(self.pylevels[level]) def set_level(self, level): self.getLogger("").setLevel(self.pylevels[level]) class ColorFormatter(logging.Formatter): def format(self, record): record.message = record.getMessage() if string.find(self._fmt,"%(asctime)") >= 0: record.asctime = self.formatTime(record, self.datefmt) d = dict(record.__dict__) if record.levelname in ("CRITICAL", "ERROR"): d['levelname'] = "\x1b[1;31m %s \x1b[0m" % d['levelname'] d['filename'] = "\x1b[1m%s\x1b[0m" % d['filename'] s = self._fmt % d return "\x1b[1m%s\x1b[0m" % s BASIC_FORMAT = "%(filename)s:%(lineno)s %(levelname)s: %(message)s" def _setup(format=BASIC_FORMAT): logging.addLevelName(5, 'TRACE') logging.basicConfig(format=format) I3Logger.global_logger = LoggingBridge() def console(colors=True): import sys from os import isatty _setup() if colors and isatty(sys.stderr.fileno()): logging.root.handlers[0].setFormatter(ColorFormatter(BASIC_FORMAT)) else: logging.root.handlers[0].setFormatter(logging.Formatter(BASIC_FORMAT)) def rotating_files(filename, maxBytes=0, backupCount=0): from logging.handlers import RotatingFileHandler _setup() handler = RotatingFileHandler(filename, maxBytes=maxBytes, backupCount=backupCount) handler.setFormatter(logging.Formatter("[%(asctime)s] "+BASIC_FORMAT)) logging._acquireLock() logging.root.handlers = list() logging.root.addHandler(handler) logging._releaseLock() def syslog(): from logging.handlers import SysLogHandler _setup() handler = SysLogHandler() handler.setFormatter(logging.Formatter("[%(asctime)s] "+BASIC_FORMAT)) logging._acquireLock() logging.root.handlers = list() logging.root.addHandler(handler) logging._releaseLock() def _translate_level(name): if isinstance(name, I3LogLevel): return name elif hasattr(I3LogLevel, 'LOG_'+name.upper()): return getattr(I3LogLevel, 'LOG_'+name.upper()) else: raise ValueError("Unknown logging level '%s'" % name) def set_level(level): """ Set the global logging level. :param level: the log level. This may also be specified as a string. Examples:: icetray.logging.set_level(icetray.logging.I3LogLevel.LOG_INFO) icetray.logging.set_level('INFO') """ I3Logger.global_logger.set_level(_translate_level(level)) def set_level_for_unit(unit, level): """ Set the logging level for a specific logging unit. :param level: the log level. This may also be specified as a string. Examples:: icetray.logging.set_level_for_unit('I3Reader', icetray.logging.I3LogLevel.LOG_TRACE) icetray.logging.set_level('I3Reader', 'TRACE') """ I3Logger.global_logger.set_level_for_unit(unit, _translate_level(level)) def log_trace(message, unit="Python"): tb = traceback.extract_stack(limit=2)[0] I3Logger.global_logger.log(I3LogLevel.LOG_TRACE, unit, tb[0], tb[1], tb[2], message) def log_debug(message, unit="Python"): tb = traceback.extract_stack(limit=2)[0] I3Logger.global_logger.log(I3LogLevel.LOG_DEBUG, unit, tb[0], tb[1], tb[2], message) def log_info(message, unit="Python"): tb = traceback.extract_stack(limit=2)[0] I3Logger.global_logger.log(I3LogLevel.LOG_INFO, unit, tb[0], tb[1], tb[2], message) def log_notice(message, unit="Python"): tb = traceback.extract_stack(limit=2)[0] I3Logger.global_logger.log(I3LogLevel.LOG_NOTICE, unit, tb[0], tb[1], tb[2], message) def log_warn(message, unit="Python"): tb = traceback.extract_stack(limit=2)[0] I3Logger.global_logger.log(I3LogLevel.LOG_WARN, unit, tb[0], tb[1], tb[2], message) def log_error(message, unit="Python"): tb = traceback.extract_stack(limit=2)[0] I3Logger.global_logger.log(I3LogLevel.LOG_ERROR, unit, tb[0], tb[1], tb[2], message) def log_fatal(message, unit="Python"): tb = traceback.extract_stack(limit=2)[0] I3Logger.global_logger.log(I3LogLevel.LOG_FATAL, unit, tb[0], tb[1], tb[2], message) raise RuntimeError(message + " (in " + tb[2] + ")")
[ "wardvandriessche@gmail.com" ]
wardvandriessche@gmail.com
1180150b5396a4f4f5f32bcfded61140220148f6
612325535126eaddebc230d8c27af095c8e5cc2f
/depot_tools/recipe_modules/tryserver/example.py
ee0d0c9b7ba47b44b49510cebbd1e8c402c7da6f
[ "BSD-3-Clause" ]
permissive
TrellixVulnTeam/proto-quic_1V94
1a3a03ac7a08a494b3d4e9857b24bb8f2c2cd673
feee14d96ee95313f236e0f0e3ff7719246c84f7
refs/heads/master
2023-04-01T14:36:53.888576
2019-10-17T02:23:04
2019-10-17T02:23:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,356
py
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. DEPS = [ 'recipe_engine/path', 'recipe_engine/platform', 'recipe_engine/properties', 'recipe_engine/python', 'tryserver', ] def RunSteps(api): api.path['checkout'] = api.path['slave_build'] api.tryserver.maybe_apply_issue() api.tryserver.get_files_affected_by_patch() if api.tryserver.is_tryserver: api.tryserver.set_subproject_tag('v8') api.tryserver.set_patch_failure_tryjob_result() api.tryserver.set_compile_failure_tryjob_result() api.tryserver.set_test_failure_tryjob_result() api.tryserver.set_invalid_test_results_tryjob_result() with api.tryserver.set_failure_hash(): api.python.failing_step('fail', 'foo') def GenTests(api): yield (api.test('with_svn_patch') + api.properties(patch_url='svn://checkout.url')) yield (api.test('with_git_patch') + api.properties( patch_storage='git', patch_project='v8', patch_repo_url='http://patch.url/', patch_ref='johndoe#123.diff')) yield (api.test('with_rietveld_patch') + api.properties.tryserver()) yield (api.test('with_wrong_patch') + api.platform('win', 32))
[ "2100639007@qq.com" ]
2100639007@qq.com
4b949d091e01e60d0542cd3a3d47c56894232e58
7ac271f357f4c8f0c23c697b11966259f836880f
/app/web/exception.py
96c30998834aeb4bf7f41d79bdd54f9610cf7fca
[]
no_license
cheng93/PythonWeb
74a58eadee4ee7d2872a582a907bbf47630df371
d5ced8dee1d5ba31778125c5e67169c92acf26a0
refs/heads/develop
2021-01-19T23:59:11.315871
2018-03-04T19:26:18
2018-03-04T19:26:18
89,063,916
0
0
null
2018-03-04T19:26:19
2017-04-22T11:09:14
Python
UTF-8
Python
false
false
134
py
from pyramid.view import view_config @view_config(route_name='throw_exception') def throw_exception(request): raise Exception()
[ "derek.c@hotmail.co.uk" ]
derek.c@hotmail.co.uk
56860c88d4bc8dd9e78a1b54940265c25bb42bfa
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/FreeOpcUa_python-opcua/python-opcua-master/release.py
fc05a90bf5b60295b7aab2321c144549eb9401a9
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
1,120
py
import re import os def bump_version(): with open("setup.py") as f: s = f.read() m = re.search(r'version="(.*)\.(.*)\.(.*)",', s) v1, v2, v3 = m.groups() oldv = "{0}.{1}.{2}".format(v1, v2, v3) newv = "{0}.{1}.{2}".format(v1, v2, str(int(v3) + 1)) print("Current version is: {0}, write new version, ctrl-c to exit".format(oldv)) ans = input(newv) if ans: newv = ans s = s.replace(oldv, newv) with open("setup.py", "w") as f: f.write(s) return newv def release(): v = bump_version() ans = input("version bumped, commiting?(Y/n)") if ans in ("", "y", "yes"): os.system("git add setup.py") os.system("git commit -m 'new release'") os.system("git tag {0}".format(v)) ans = input("change committed, push to server?(Y/n)") if ans in ("", "y", "yes"): os.system("git push") os.system("git push --tags") ans = input("upload to pip?(Y/n)") if ans in ("", "y", "yes"): os.system("python setup.py sdist upload") if __name__ == "__main__": release()
[ "659338505@qq.com" ]
659338505@qq.com
4c979a9566f34d6b5958baa4ca8d9883abd3afa6
845d96ba5efe898a1e1272c862f476e983e54d46
/10/src/gomoku.py
6ee645b50621b32a80852855980e5a4f804a1274
[]
no_license
ppaanngggg/rl_course
fe5d092d87e61149857f9ee085ac73d98d377cb9
05f1db88e96ea9ff21ed5028dc8d5b7e9539bcee
refs/heads/master
2020-04-30T02:17:05.125542
2019-03-19T16:28:13
2019-03-19T16:28:13
176,554,829
0
0
null
null
null
null
UTF-8
Python
false
false
5,210
py
import torch class Gomoku: """ play1: 1, play2: -1, empty: 0, """ def __init__( self, _size=5, _win_num=4, _player=1, _terminal=None, _history=None, _board=None ): self.size = _size self.win_num = _win_num self.num_actions = _size * _size self.player = _player # cur player, 1 or -1 self.terminal = _terminal # 1, -1 or 0 for draw, None for unknown self.history = [] if _history is None else _history self.board = torch.zeros(self.size, self.size) if _board is None else _board def clone(self): return Gomoku( self.size, self.win_num, self.player, self.terminal, self.history[:], self.board.clone(), ) def get_input(self): ac_1 = torch.zeros(self.size, self.size) try: x, y = self._action2loc(self.history[-1]) ac_1[x, y] = 1 except IndexError: pass ac_2 = torch.zeros(self.size, self.size) try: x, y = self._action2loc(self.history[-2]) ac_2[x, y] = 1 except IndexError: pass return torch.stack([self.board * self.player, ac_1, ac_2]) def get_mask(self): return (self.board == 0).flatten() def _check_horizon(self, _value, _x, _y): left = 0 y_left = _y - 1 while y_left >= 0 and self.board[_x, y_left] == _value: left += 1 y_left -= 1 right = 0 y_right = _y + 1 while y_right < self.size and self.board[_x, y_right] == _value: right += 1 y_right += 1 if left + right + 1 >= self.win_num: # horizon win self.terminal = _value return self.terminal def _check_vertical(self, _value, _x, _y): up = 0 x_up = _x - 1 while x_up >= 0 and self.board[x_up, _y] == _value: up += 1 x_up -= 1 down = 0 x_down = _x + 1 while x_down < self.size and self.board[x_down, _y] == _value: down += 1 x_down += 1 if up + down + 1 >= self.win_num: # vertical win self.terminal = _value return self.terminal def _check_inv_slash(self, _value, _x, _y): up_left = 0 x_up = _x - 1 y_left = _y - 1 while x_up >= 0 and y_left >= 0 and self.board[x_up, y_left] == _value: up_left += 1 x_up -= 1 y_left -= 1 down_right = 0 x_down = _x + 1 y_right = _y + 1 while ( x_down < self.size and y_right < self.size and self.board[x_down, y_right] == _value ): down_right += 1 x_down += 1 y_right += 1 if up_left + down_right + 1 >= self.win_num: # inv slash win self.terminal = _value return self.terminal def _check_slash(self, _value, _x, _y): up_right = 0 x_up = _x - 1 y_right = _y + 1 while x_up >= 0 and y_right < self.size and self.board[x_up, y_right] == _value: up_right += 1 x_up -= 1 y_right += 1 down_left = 0 x_down = _x + 1 y_left = _y - 1 while ( x_down < self.size and y_left >= 0 and self.board[x_down, y_left] == _value ): down_left += 1 x_down += 1 y_left -= 1 if up_right + down_left + 1 >= self.win_num: # slash win self.terminal = _value return self.terminal def _action2loc(self, _action: int): # get loc return _action // self.size, _action % self.size def action(self, _action: int): x, y = self._action2loc(_action) # update board and player assert self.board[x, y] == 0 and self.terminal is None value = self.player self.board[x, y] = value self.history.append(_action) self.player *= -1 # check terminal if self._check_horizon(value, x, y) is not None: return self.terminal if self._check_vertical(value, x, y) is not None: return self.terminal if self._check_inv_slash(value, x, y) is not None: return self.terminal if self._check_slash(value, x, y) is not None: return self.terminal # check draw if len(self.history) == self.size * self.size: self.terminal = 0 return self.terminal def __repr__(self): return ( f"Cur Player: {self.player}\n" f"History: {self.history}\n" f"Terminal: {self.terminal}\n" f"Board:\n" f"{self.board}" ) def human_self(self): print(self) while self.terminal is None: x = input("Please input x: ") y = input("Please input y: ") action = int(x) * self.size + int(y) self.action(action) print(self) print(f"!!Result!!: {self.terminal}") if __name__ == "__main__": gomoku = Gomoku() gomoku.human_self()
[ "hantian.pang@gmail.com" ]
hantian.pang@gmail.com
ac7915d8eed8d2af3351c944f396a9b36e5c868f
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/exercises/_algorithms_challenges/pybites/beginner/55_v4/steam.py
ce898477f47f532beed65efb932bddd9d2a0b3e6
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
316
py
# ____ c.. _______ n.. # # _______ f.. # # # cached version to have predictable results for testing # FEED_URL = "http://bit.ly/2IkFe9B" # # Game = n..('Game', 'title link') # # # ___ get_games # """Parses Steam's RSS feed and returns a list of Game namedtuples""" # r.. ? f.t.. f.l.. ___ ? __ f__.p.. ?.e..
[ "sergejyurskyj@yahoo.com" ]
sergejyurskyj@yahoo.com
51069274b991d4ae2de188fbec89a5d455c35b29
c5cf46942decbda1c813474edb5a18b9595a8bf1
/core/constants/default_values.py
a9b45a44b702b7574351ac83c4948842275b9980
[ "MIT" ]
permissive
AsiganTheSunk/python3-gnosis-cli
360b4da9fd86a642ec1e399bdb6c39d1dbcbb8ce
c4c2638aa75b8a8268ad899d6cea1e602227ef19
refs/heads/master
2023-03-18T17:38:38.594171
2019-11-15T00:01:34
2019-11-15T00:01:34
221,243,913
0
0
MIT
2023-03-03T23:35:41
2019-11-12T14:59:00
JavaScript
UTF-8
Python
false
false
230
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # String Size Of Diferent Type of Addresses CONTRACT_ADDRESS_LENGTH = 42 TX_ADDRESS_LENGTH = 66 # String Size of API Keys INFURA_API_KEY_LENGTH = 32 ETHERSCAN_API_KEY_LENGTH = 34
[ "asiganthesunk@gmail.com" ]
asiganthesunk@gmail.com
87fbf91d172aff23f865bdbf312d2f0c9889d385
344f52fe0c84ec3e6f6b655e7cc2309441506650
/SlaverServer/run_slaver.py
7586a801df09507a9552f6c7a9ab1c695d3ef21b
[ "MIT" ]
permissive
Hanlen520/BigBoss
f1c0b1b5a30e45149a1d0eefa914a3060640d5db
8a3cfeace1eb2b852de940a6ba6b4a9d6bc814db
refs/heads/master
2020-04-04T09:49:44.300429
2018-09-29T08:21:31
2018-09-29T08:21:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
513
py
from tornado.web import Application from tornado.ioloop import IOLoop import argparse from config import * from router import SLAVER_ROUTER if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--port', type=int, help='set port') args = parser.parse_args() port = getattr(args, 'port') or GlobalConf.SLAVER_PORT application = Application(SLAVER_ROUTER, **GlobalConf.SLAVER_SETTING) application.listen(port, address='0.0.0.0') IOLoop.instance().start()
[ "178894043@qq.com" ]
178894043@qq.com
764b44f56eb85a9c7ffe5cee4b564152e1b3aa7f
85bf9a13bf62c1f074894d134c23dd992ae8688c
/javasolutions/p63/Solution.py
0a7c244f231e3a5f619d33c503578c2873d98f7e
[]
no_license
pololee/oj-leetcode
4cca3d309b2c9931d15d3cec4b07b5d9d22733ef
78a8b27ee108ba93aa7b659665976112f48fc2c2
refs/heads/master
2020-06-21T02:15:26.882273
2020-02-06T04:56:21
2020-02-06T04:56:21
197,320,113
0
0
null
2020-02-06T04:56:23
2019-07-17T05:20:02
Python
UTF-8
Python
false
false
921
py
class Solution: def uniquePathsWithObstacles(self, obstacleGrid): """ :type obstacleGrid: List[List[int]] :rtype: int """ if not obstacleGrid or len(obstacleGrid) == 0 or len(obstacleGrid[0]) == 0: return 0 if obstacleGrid[0][0] == 1: return 0 m = len(obstacleGrid) n = len(obstacleGrid[0]) DP = [[0 for _ in range(n)] for _ in range(m)] DP[0][0] = 1 for i in range(1, m): DP[i][0] = 0 if obstacleGrid[i][0] == 1 else DP[i-1][0] for j in range(1, n): DP[0][j] = 0 if obstacleGrid[0][j] == 1 else DP[0][j-1] for i in range(1, m): for j in range(1, n): if obstacleGrid[i][j] == 1: DP[i][j] = 0 else: DP[i][j] = DP[i-1][j] + DP[i][j-1] return DP[m-1][n-1]
[ "pololee1990@gmail.com" ]
pololee1990@gmail.com
27cbb16e31516b3cb28c074ac4404179beda786c
deafd775f238b2836f77b9140f4d6e14a3f3c06d
/python/ABC/ABC082/082_B.py
2d02b85f31176d2942aec83f88cd72ff00a2d545
[]
no_license
knakajima3027/Atcoder
ab8e2bf912173b7523fddbb11b38abd7e296762e
64cb32fcc4b99501f2f84496e5535e1e7b14c467
refs/heads/master
2021-06-22T03:58:03.777001
2020-12-19T11:23:49
2020-12-19T11:23:49
135,173,223
2
0
null
null
null
null
UTF-8
Python
false
false
247
py
s = input() t = input() S = [] T = [] for i in range(len(s)): S.append(s[i]) for i in range(len(t)): T.append(t[i]) S.sort() T.sort() T.reverse() if S == T: print('No') elif min(S, T) == S: print('Yes') else: print('No')
[ "kamihate1012@gmail.com" ]
kamihate1012@gmail.com
29819db9f9c77633b810c3ba2978e48537b4e7a3
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_209/544.py
22e6c7236e14da498cdcf8d941798513af589657
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,528
py
# input() reads a string with a line of input, stripping the '\n' (newline) at the end. # This is all you need for most Google Code Jam problems. import math def get_surface(p): return math.pi * p[0]**2 def get_side_surface(p): return 2 * math.pi * p[0] * p[1] def get_area(p): if p is None: return 0 return get_surface(p) + get_side_surface(p) t = int(input()) # read a line with a single integer for i in range(1, t + 1): str_number = input().split(" ") n, k = int(str_number[0]), int(str_number[1]) pancakes = [] for j in range(n): str_number = input().split(" ") pancakes.append((int(str_number[0]), int(str_number[1]))) pancakes_hsorted = sorted(pancakes, key=lambda x: get_side_surface(x),reverse=True) sol = sorted(pancakes_hsorted[:(k-1)], reverse=True) for p in sol: pancakes.remove(p) additional_area = 0 if len(sol) > 0: for p in pancakes: if p[0] > sol[0][0]: additional_area = max(additional_area, get_side_surface(p) + (get_surface(p) - get_surface(sol[0]))) else: additional_area = max(additional_area, get_side_surface(p)) else: sol = [sorted(pancakes, key=lambda x: get_area(x), reverse=True)[0]] area = additional_area for j in range(len(sol)): area += get_area(sol[j]) if j+1 < len(sol): area -= get_surface(sol[j+1]) print("Case #{}: {:.9f}".format(i, area))
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com