blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
4c85c67d781eb179e4dafca7cb96d60c8873cc0e
0b35072547001ebefa3fde2eea0eae30423e2190
/editregions/contrib/textfiles/admin.py
1bc746c9c1addc07aa4ae926a814393591df4afb
[ "BSD-2-Clause-Views", "BSD-2-Clause" ]
permissive
kezabelle/django-editregions
ceba5561a4768ccda9ccd279f3a6a35e11dbdfea
961ddeffb37d30d40fb4e3e9224bc3f956b7a5b5
refs/heads/master
2020-06-06T19:40:36.682702
2015-01-21T14:33:52
2015-01-21T14:33:52
14,645,861
1
0
null
null
null
null
UTF-8
Python
false
false
2,474
py
# -*- coding: utf-8 -*- from functools import update_wrapper from django.contrib import admin from django.contrib.admin import ModelAdmin from django.core.exceptions import ValidationError, PermissionDenied from django.http import HttpResponse from django.template.defaultfilters import striptags from django.template.loader import render_to_string try: from django.utils.text import Truncator def truncate_words(s, num): return Truncator(s).words(num, truncate='...') except ImportError as e: # pragma: no cover from django.utils.text import truncate_words from editregions.admin.modeladmins import ChunkAdmin from editregions.contrib.textfiles.utils import valid_md_file from .models import Markdown from .forms import MarkdownSelectionForm class MarkdownAdmin(ChunkAdmin, ModelAdmin): form = MarkdownSelectionForm list_display = ['filepath', 'created', 'modified'] add_form_template = 'admin/editregions/markdown/change_form.html' change_form_template = 'admin/editregions/markdown/change_form.html' def render_into_region(self, obj, context, **kwargs): return render_to_string('editregions/textfiles/markdown.html', context_instance=context) def render_into_summary(self, obj, context, **kwargs): data = striptags(obj.rendered_content).strip() if data: return truncate_words(data, 50) return '[missing content]' def get_urls(self): default_urls = super(MarkdownAdmin, self).get_urls() from django.conf.urls import patterns, url def wrap(view): def wrapper(*args, **kwargs): return self.admin_site.admin_view(view)(*args, **kwargs) return update_wrapper(wrapper, view) info = self.model._meta.app_label, self.model._meta.model_name urlpatterns = patterns('', url(r'^preview/(.+)$', wrap(self.preview), name='%s_%s_preview' % info), ) return urlpatterns + default_urls def preview(self, request, target_file, extra_context=None): if not self.has_add_permission(request): raise PermissionDenied("Need add permission") try: valid_md_file(target_file) except ValidationError: raise PermissionDenied("Invalid file") fake_obj = self.model(filepath=target_file) return HttpResponse(fake_obj.rendered_content) admin.site.register(Markdown, MarkdownAdmin)
[ "keryn@kerynknight.com" ]
keryn@kerynknight.com
2ffcff7acb286a0ae13295300bd567c7f8e0cc56
b8467af3373374f54aef8e4a060eb9550028f298
/functionsprogram/myprograms.py
dcf9e8fa570248d0908469b331daa249eba8591c
[]
no_license
luminartraining/luminarPythonNovember
6790acf957bba6ec47ab5c872f8f22b1c22d63f7
33f4627f89c281fca45f58d00a4e3f1f221144fc
refs/heads/master
2023-01-28T20:23:03.863310
2020-12-07T02:46:03
2020-12-07T02:46:03
315,807,677
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
#import modules #module ? package? #we have to import mathooperatoons.py module import functionsprogram.matoperations as fun res=fun.add(100,200) print(res) sub=fun.sub(200,100) print(res) #create account in github #git
[ "sajaykannan10@gmail.com" ]
sajaykannan10@gmail.com
ab03d8f6384fcbd71e3cd2408f91f5910e8878b7
521c1beeb2776161ae6d550be35cd0c180887129
/customkeywords/tailProtocol.py
a1c19882a20fb2a2a23c6e113b2e1687b55fbdc7
[]
no_license
elvis2workspace/CustomLibrary
601b552792ac2c33beeb709474f857c82793ac7e
6449eea8aa99ca1172f54b669d97703d36132ce3
refs/heads/master
2021-01-23T21:33:05.617871
2017-09-26T01:57:48
2017-09-26T01:57:48
58,983,388
0
1
null
2016-12-06T09:56:14
2016-05-17T02:22:14
Python
UTF-8
Python
false
false
3,144
py
# -*- coding: utf-8 -*- """ Created on 2015年5月8日 @author: zhang.xiuhai """ import os import hashlib from twisted.internet.protocol import ServerFactory, ProcessProtocol from twisted.protocols.basic import LineReceiver from twisted.python import log from twisted.internet import reactor, threads class TailProtocol(object): """classdocs""" def __init__(self, write_callback): self.write = write_callback def out_received(self, data): self.write("Begin lastlog\n") data = [line for line in data.split('\n') if not line.startswith('==')] for d in data: self.write(d + '\n') self.write("End lastlog\n") def processEnded(self, reason): if reason.value.exitCode != 0: log.msg(reason) class HashCompute(object): def __init__(self, path, write_callback): self.path = path self.write = write_callback def blockingMethod(self): os.path.isfile(self.path) data = file(self.path).read() # uncomment to add more delay # import time # time.sleep(10) return hashlib.sha1(data).hexdigest() def compute(self): d = threads.deferToThread(self.blockingMethod) d.addCallback(self.ret) d.addErrback(self.err) def ret(self, hdata): self.write("File hash is : %s\n" % hdata) def err(self, failure): self.write("An error occured : %s\n" % failure.getErrorMessage()) class CmdProtocol(LineReceiver): delimiter = '\n' def processCmd(self, line): if line.startswith('lastlog'): tailProtocol = TailProtocol(self.transport.write) # reactor.spawnProcess(tailProtocol, '/usr/bin/tail', args=['/usr/bin/tail', '-10', '/var/log/syslog']) elif line.startswith('comphash'): try: useless, path = line.split(' ') except: self.transport.write('Please provide a path.\n') return hc = HashCompute(path, self.transport.write) hc.compute() elif line.startswith('exit'): self.transport.loseConnection() else: self.transport.write('Command not found.\n') def connectionMade(self): self.client_ip = self.transport.getPeer()[1] log.msg("Client connection from %s" % self.client_ip) if len(self.factory.clients) >= self.factory.clients_max: log.msg("Too many connections. bye !") self.client_ip = None self.transport.loseConnection() else: self.factory.clients.append(self.client_ip) def connectionLost(self, reason): log.msg('Lost client connection. Reason: %s' % reason) if self.client_ip: self.factory.clients.remove(self.client_ip) def lineReceived(self, line): log.msg('Cmd received from %s : %s' % (self.client_ip, line)) self.processCmd(line) class MyFactory(ServerFactory): protocol = CmdProtocol def __init__(self, clients_max=10): self.clients_max = clients_max self.clients = []
[ "xiuhai5052@hotmail.com" ]
xiuhai5052@hotmail.com
3c70d5350e30d99e67991d3efcbe1f1fce136e79
786027545626c24486753351d6e19093b261cd7d
/ghidra9.2.1_pyi/ghidra/app/util/demangler/gnu/__init__.pyi
32ce2a5c514debd6436731a597a14186a1d74212
[ "MIT" ]
permissive
kohnakagawa/ghidra_scripts
51cede1874ef2b1fed901b802316449b4bf25661
5afed1234a7266c0624ec445133280993077c376
refs/heads/main
2023-03-25T08:25:16.842142
2021-03-18T13:31:40
2021-03-18T13:31:40
338,577,905
14
1
null
null
null
null
UTF-8
Python
false
false
386
pyi
from .DemanglerParseException import DemanglerParseException as DemanglerParseException from .GnuDemangler import GnuDemangler as GnuDemangler from .GnuDemanglerNativeProcess import GnuDemanglerNativeProcess as GnuDemanglerNativeProcess from .GnuDemanglerOptions import GnuDemanglerOptions as GnuDemanglerOptions from .GnuDemanglerParser import GnuDemanglerParser as GnuDemanglerParser
[ "tsunekou1019@gmail.com" ]
tsunekou1019@gmail.com
8ff270a59500d90bbb8a3db156cc23e09b9628ce
0124528676ee3bbaec60df5d6950b408e6da37c8
/Projects/QTPy/adafruit-circuitpython-bundle-7.x-mpy-20220601/examples/lsm303_accel_fast.py
87d21c1b86f615c46bf8bd76cc4373c70703b763
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
land-boards/lb-boards
8127658dc537dcfde0bb59a5018ab75c3f0087f6
eeb98cc2003dac1924845d949f6f5bd387376568
refs/heads/master
2023-06-07T15:44:46.110742
2023-06-02T22:53:24
2023-06-02T22:53:24
4,847,305
10
12
null
null
null
null
UTF-8
Python
false
false
445
py
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT """ Read data from the accelerometer and print it out, ASAP! """ import board import adafruit_lsm303_accel i2c = board.I2C() # uses board.SCL and board.SDA sensor = adafruit_lsm303_accel.LSM303_Accel(i2c) while True: accel_x, accel_y, accel_z = sensor.acceleration print("{0:10.3f} {1:10.3f} {2:10.3f}".format(accel_x, accel_y, accel_z))
[ "doug@douglasgilliland.com" ]
doug@douglasgilliland.com
ef94ec0911459dc49f3392233ca8f7e4ed07ddc1
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/lib/python2.7/site-packages/openopt/kernel/oologfcn.py
e9819b86d856962730889b3c6c11f8a6131dfd5e
[ "Python-2.0", "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
1,040
py
class OpenOptException(BaseException): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg #pass #def ooassert(cond, msg): # assert cond, msg def oowarn(msg): s = oowarn.s + msg print(s) return s oowarn.s = 'OpenOpt Warning: ' errSet = set() def ooerr(msg): s = ooerr.s + msg if msg not in errSet: print(s) errSet.add(msg) raise OpenOptException(msg) ooerr.s = 'OpenOpt Error: ' ooerr.set = errSet pwSet = set() def ooPWarn(msg): if msg in pwSet: return '' pwSet.add(msg) oowarn(msg) return msg ooPWarn.s = 'OpenOpt Warning: ' ooPWarn.set = pwSet def ooinfo(msg): s = ooinfo.s + msg print(s) return s ooinfo.s = 'OpenOpt info: ' def oohint(msg): s = oohint.s + msg print(s) return s oohint.s = 'OpenOpt hint: ' def oodisp(msg): print(msg) return msg oodisp.s = '' def oodebugmsg(p, msg): if p.debug: print('OpenOpt debug msg: %s' % msg) return msg return ''
[ "noreply@github.com" ]
wangyum.noreply@github.com
d1a6d4762ab2b6475a8e17c25b4e44c0fe9b6611
6bc0a7bbbe769192ff7a7c403d2c5086be1d186c
/main.py
570d04262295be9d63758e1cf20432c9c0e60610
[ "MIT" ]
permissive
veryhannibal/pytorch-distributed-cifar
5c4c2aff27b16f4c6350e7e789f2edc9c50f8111
cc3528bb80c1bb498fbf717a30d6083ef1931fad
refs/heads/master
2022-03-12T21:26:06.125558
2019-11-21T11:58:02
2019-11-21T11:58:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,497
py
'''Train CIFAR10 with PyTorch.''' from __future__ import print_function import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import time import argparse from models.vgg import * from models.dpn import * from models.lenet import * from models.senet import * from models.pnasnet import * from models.densenet import * from models.googlenet import * from models.shufflenet import * from models.shufflenetv2 import * from models.resnet import * from models.resnext import * from models.preact_resnet import * from models.mobilenet import * from models.mobilenetv2 import * # from utils import progress_bar parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--data_dir', type=str) parser.add_argument('--batch_size', type=int, default=128) parser.add_argument('--model', type=str) parser.add_argument('--model_dir', type=str) parser.add_argument('--lr_decay_step_size', type=int, default=0) parser.add_argument('--lr_decay_factor', type=float, default=1.0) parser.add_argument('--save_frequency', type=int, default=100) parser.add_argument('--num_epochs', type=int) parser.add_argument('--device_ids', nargs='+', type=int) args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch # Data print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) # trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) # trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) trainset = torchvision.datasets.CIFAR10(root=args.data_dir, train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2) # testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) # testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) testset = torchvision.datasets.CIFAR10(root=args.data_dir, train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model print('==> Building model: ' + args.model) if args.model == 'vgg16': net = VGG('VGG16') elif args.model == 'vgg19': net = VGG('VGG19') elif args.model == 'resnet18': net = ResNet18() elif args.model == 'resnet34': net = ResNet34() elif args.model == 'resnet50': net = ResNet50() elif args.model == 'resnet101': net = ResNet101() elif args.model == 'resnet152': net = ResNet152() # net = PreActResNet18() elif args.model == 'googlenet': net = GoogLeNet() # net = DenseNet121() # net = ResNeXt29_2x64d() # net = MobileNet() # net = MobileNetV2() # net = DPN92() # net = ShuffleNetG2() # net = SENet18() # net = ShuffleNetV2(1) net = net.to(device) if device == 'cuda': if args.device_ids is not None: net = torch.nn.DataParallel(net, device_ids=args.device_ids) else: net = torch.nn.DataParallel(net) cudnn.benchmark = True if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir(model_dir), 'Error: no checkpoint directory found!' checkpoint = torch.load(model_dir + '/ckpt.t7') net.load_state_dict(checkpoint['net']) best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4) if args.lr_decay_step_size > 0: scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_decay_step_size, gamma=args.lr_decay_factor) # Training def train(epoch): lr = scheduler.get_lr()[0] if args.lr_decay_step_size > 0 else args.lr print('\nEpoch: %d\nlr = %g' % (epoch, lr)) net.train() train_loss = 0 correct = 0 total = 0 time_used = 0.0 for batch_idx, (inputs, targets) in enumerate(trainloader): start = time.time() inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() end = time.time() time_used += end - start train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() # progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' # % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) print('[%d/%d] Loss: %.3f | Acc: %.3f%% (%d/%d) | Throughput: %.3f (images/sec)' % (batch_idx + 1, len(trainloader), train_loss/(batch_idx+1), 100.*correct/total, correct, total, args.batch_size/(end-start+1e-6))) print('\n[Epoch %d] Loss: %.3f | Acc: %.3f%% (%d/%d) | Throughput: %.3f (images/sec)' % (epoch, train_loss/(len(trainloader)), 100.*correct/total, correct, total, args.batch_size*len(trainloader)/(time_used+1e-6))) def test(epoch): global best_acc net.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() # progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' # % (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) print('\n[Evaluation] Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) # Save checkpoint. acc = 100.*correct/total if (epoch == start_epoch + args.num_epochs - 1) or \ (args.save_frequency > 0 and (epoch + 1) % args.save_frequency == 0): # if acc > best_acc: print('\nSaving..') state = { 'net': net.state_dict(), 'acc': acc, 'epoch': epoch, } if not os.path.isdir(args.model_dir): os.makedirs(args.model_dir) torch.save(state, args.model_dir + '/' + str(epoch) + '-ckpt.t7') if acc > best_acc: best_acc = acc for epoch in range(start_epoch, start_epoch + args.num_epochs): train(epoch) test(epoch) if args.lr_decay_step_size > 0: scheduler.step()
[ "kurisusnowdeng@gmail.com" ]
kurisusnowdeng@gmail.com
9f9628dbb17329bb8f0ea4ceb9b08d65ac60ec44
a3c8b67b91fac686aa98fd20179f8807be3ad4c0
/rsbroker/core/upstream.py
1ace31aa954eabd78a040a0b49ac38183023f813
[ "Apache-2.0" ]
permissive
land-pack/RsBroker
d0c6c8fa13cec0c057d24b9f02b20e256b199737
d556fda09582e0540cac0eabc163a984e8fc1c44
refs/heads/master
2021-01-12T07:16:39.853668
2016-12-22T07:28:05
2016-12-22T07:28:05
76,930,656
0
0
null
null
null
null
UTF-8
Python
false
false
6,322
py
import time import logging import ujson from tornado import gen from tornado import httpclient from tornado import httputil from tornado import ioloop from tornado import websocket try: from util.tools import Log except ImportError: logger = logging.getLogger(__name__) else: logger = Log().getLog() APPLICATION_JSON = 'application/json' DEFAULT_CONNECT_TIMEOUT = 30 DEFAULT_REQUEST_TIMEOUT = 30 class WebSocketClient(object): """Base for web socket clients. """ DISCONNECTED = 0 CONNECTING = 1 CONNECTED = 2 def __init__(self, io_loop=None, connect_timeout=DEFAULT_CONNECT_TIMEOUT, request_timeout=DEFAULT_REQUEST_TIMEOUT): self.connect_timeout = connect_timeout self.request_timeout = request_timeout self._io_loop = io_loop or ioloop.IOLoop.current() self._ws_connection = None self._connect_status = self.DISCONNECTED def connect(self, url): """Connect to the server. :param str url: server URL. """ self._connect_status = self.CONNECTING headers = httputil.HTTPHeaders({'Content-Type': APPLICATION_JSON}) request = httpclient.HTTPRequest(url=url, connect_timeout=self.connect_timeout, request_timeout=self.request_timeout, headers=headers) ws_conn = websocket.WebSocketClientConnection(self._io_loop, request) ws_conn.connect_future.add_done_callback(self._connect_callback) def send(self, data): """Send message to the server :param str data: message. """ if self._ws_connection: self._ws_connection.write_message(ujson.dumps(data)) def close(self, reason=''): """Close connection. """ if self._connect_status != self.DISCONNECTED: self._connect_status = self.DISCONNECTED self._ws_connection and self._ws_connection.close() self._ws_connection = None self.on_connection_close(reason) def _connect_callback(self, future): if future.exception() is None: self._connect_status = self.CONNECTED self._ws_connection = future.result() self.on_connection_success() self._read_messages() else: self.close(future.exception()) def is_connected(self): return self._ws_connection is not None @gen.coroutine def _read_messages(self): while True: msg = yield self._ws_connection.read_message() if msg is None: self.close() break self.on_message(msg) def on_message(self, msg): """This is called when new message is available from the server. :param str msg: server message. """ pass def on_connection_success(self): """This is called on successful connection ot the server. """ pass def on_connection_close(self, reason): """This is called when server closed the connection. """ pass class RTCWebSocketClient(WebSocketClient): hb_msg = 'p' # hearbeat message = '' heartbeat_interval = 3 def __init__(self, io_loop=None, connect_timeout=DEFAULT_CONNECT_TIMEOUT, request_timeout=DEFAULT_REQUEST_TIMEOUT): self.connect_timeout = connect_timeout self.request_timeout = request_timeout self._io_loop = io_loop or ioloop.IOLoop.current() self.ws_url = None self.auto_reconnet = False self.last_active_time = 0 self.pending_hb = None super(RTCWebSocketClient, self).__init__(self._io_loop, self.connect_timeout, self.request_timeout) def connect(self, url, auto_reconnet=True, reconnet_interval=10): # self.url_template = url # self.ws_url = url % self._node_id self.ws_url = url self.auto_reconnet = auto_reconnet self.reconnect_interval = reconnet_interval super(RTCWebSocketClient, self).connect(self.ws_url) def send(self, msg): super(RTCWebSocketClient, self).send(msg) self.last_active_time = time.time() def on_message(self, msg): self.last_active_time = time.time() self.dispatch(msg) def on_connection_success(self): logger.info('Connect ...') self.last_active_time = time.time() self.send_heartbeat() def on_connection_close(self, reason): logger.warning('Connection closed reason=%s' % (reason,)) self.pending_hb and self._io_loop.remove_timeout(self.pending_hb) self.reconnect() def reconnect(self): logger.info('Reconnect') # TODO when reconnect the room server has trigger, # TODO the url should has new param ~~ # self.ws_url = self.ws_recovery_url % self._nod_id logger.info("Send node id [%s] to remote server" % self._node_id) # self.ws_url = self.url_template % self._node_id if not self.is_connected() and self.auto_reconnet: self._io_loop.call_later(self.reconnect_interval, super(RTCWebSocketClient, self).connect, self.ws_url) def send_heartbeat(self): if self.is_connected(): now = time.time() if (now > self.last_active_time + self.heartbeat_interval): self.last_active_time = now self.send(self.hb_msg) self.pending_hb = self._io_loop.call_later(self.heartbeat_interval, self.send_heartbeat) def dispatch(self, message): """ You must override this method! """ print 'message .......[%s]' % (message,) def main(): io_loop = ioloop.IOLoop.instance() client = RTCWebSocketClient(io_loop) # ws_url = 'ws://127.0.0.1:8888/ws?ip=127.0.0.1&port=9001&mode=1' ws_url = 'ws://echo.websocket.org' client.connect(ws_url, auto_reconnet=True, reconnet_interval=10) try: io_loop.start() except KeyboardInterrupt: client.close() if __name__ == '__main__': main()
[ "ada.frank.ak@gmail.com" ]
ada.frank.ak@gmail.com
675b214d92c6d69d2cb94daf2533333331d29cb5
edf6a50044827f5f24b7fab4806dc25d8887c316
/news/migrations/0001_initial.py
aa5a3112ead155a681e1a9bdbfb815eb1a9690cf
[]
no_license
zhcxk1998/AlgYun
4958fdf31bb9009cb6541c39f715410f569b84ff
c54b95af8a87a12848401c7088bb7748793e6b63
refs/heads/master
2020-03-09T04:30:35.322800
2018-04-08T01:33:29
2018-04-08T01:33:29
128,589,517
1
1
null
2018-04-08T02:40:27
2018-04-08T02:40:27
null
UTF-8
Python
false
false
2,345
py
# Generated by Django 2.0.3 on 2018-04-03 16:36 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=256, verbose_name='标题')), ('slug', models.CharField(db_index=True, max_length=256, verbose_name='网址')), ('content', models.TextField(blank=True, default='', verbose_name='内容')), ('pub_date', models.DateTimeField(auto_now_add=True, verbose_name='发表时间')), ('update_time', models.DateTimeField(auto_now=True, null=True, verbose_name='更新时间')), ('published', models.BooleanField(default=True, verbose_name='正式发布')), ('author', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='作者')), ], options={ 'verbose_name': '教程', 'verbose_name_plural': '教程', }, ), migrations.CreateModel( name='Column', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256, verbose_name='栏目名称')), ('slug', models.CharField(db_index=True, max_length=256, verbose_name='栏目网址')), ('intro', models.TextField(default='', verbose_name='栏目简介')), ], options={ 'verbose_name': '栏目', 'verbose_name_plural': '栏目', 'ordering': ['name'], }, ), migrations.AddField( model_name='article', name='column', field=models.ManyToManyField(to='news.Column', verbose_name='归属栏目'), ), ]
[ "dickqi87@gmail.com" ]
dickqi87@gmail.com
9a04690951ef33d0a11036986d4b9e7e88d5b906
b039d4f7da5085a4e7d7491acb7bc04f7b896f24
/tests/network/test_fees.py
683cd8023b40e02b3ed8189ea6bf2916bdcc9128
[ "MIT" ]
permissive
d4le/bit
c052cfadd79c52add99b6b576d2498119168c478
1153162f55c2ed1b007b237d4215d80ab7db429b
refs/heads/master
2021-01-22T20:43:57.543622
2017-03-16T05:15:18
2017-03-16T05:15:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,608
py
from time import sleep, time import bit from bit.network.fees import get_fee, get_fee_cached, set_fee_cache_time def test_set_fee_cache_time(): original = bit.network.fees.DEFAULT_CACHE_TIME set_fee_cache_time(30) updated = bit.network.fees.DEFAULT_CACHE_TIME assert original != updated assert updated == 30 set_fee_cache_time(original) def test_get_fee(): assert get_fee(fast=True) != get_fee(fast=False) class TestFeeCache: def test_fast(self): sleep(0.2) start_time = time() set_fee_cache_time(0) get_fee_cached(fast=True) initial_time = time() - start_time start_time = time() set_fee_cache_time(600) get_fee_cached(fast=True) cached_time = time() - start_time assert initial_time > cached_time def test_hour(self): sleep(0.2) start_time = time() set_fee_cache_time(0) get_fee_cached(fast=False) initial_time = time() - start_time start_time = time() set_fee_cache_time(600) get_fee_cached(fast=False) cached_time = time() - start_time assert initial_time > cached_time def test_expires(self): sleep(0.2) set_fee_cache_time(0) get_fee_cached() start_time = time() set_fee_cache_time(600) get_fee_cached() cached_time = time() - start_time sleep(0.2) start_time = time() set_fee_cache_time(0.1) get_fee_cached() update_time = time() - start_time assert update_time > cached_time
[ "ofekmeister@gmail.com" ]
ofekmeister@gmail.com
6d9d4d609a09d4ffcab3ad82b4ed5491f6b80906
26cf7d2d6c3d6d83b17e304aa94d5e8b3fac323a
/autoencoder.py
a2b7ddcca50d4ad7bc09af0e2d31abe70e518764
[]
no_license
zbn123/Autoencoder
4ad8f48e33d9b228dceae6d919c3a5320318fc7e
13ebeb8f15edecbdd6e362e7769b69053c1f31e0
refs/heads/master
2021-07-19T08:46:28.559592
2017-10-26T20:08:34
2017-10-26T20:08:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,667
py
import tensorflow.contrib.slim as slim import matplotlib.pyplot as plt import cPickle as pickle import tensorflow as tf import numpy as np import requests import random import time import gzip import os batch_size = 5000 ''' Leaky RELU ''' def lrelu(x, leak=0.2, name="lrelu"): return tf.maximum(x, leak*x) def encoder(x): e_conv1 = slim.convolution(x, 32, 2, stride=2, activation_fn=tf.identity, normalizer_fn=slim.batch_norm, scope='e_conv1') e_conv1 = lrelu(e_conv1) print 'conv1: ', e_conv1 e_conv2 = slim.convolution(e_conv1, 64, 2, stride=2, activation_fn=tf.identity, normalizer_fn=slim.batch_norm, scope='e_conv2') e_conv2 = lrelu(e_conv2) print 'conv2: ', e_conv2 # convolutional layer with a leaky Relu activation e_conv3 = slim.convolution(e_conv2, 128, 2, stride=2, activation_fn=tf.identity, normalizer_fn=slim.batch_norm, scope='e_conv3') e_conv3 = lrelu(e_conv3) print 'conv3: ', e_conv3 e_conv3_flat = tf.reshape(e_conv3, [batch_size, -1]) e_fc1 = slim.fully_connected(e_conv3_flat, 256, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='e_fc1') e_fc1 = lrelu(e_fc1) print 'fc1: ', e_fc1 e_fc2 = slim.fully_connected(e_fc1, 64, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='e_fc2') e_fc2 = lrelu(e_fc2) print 'fc2: ', e_fc2 e_fc3 = slim.fully_connected(e_fc2, 32, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='e_fc3') e_fc3 = lrelu(e_fc3) print 'fc3: ', e_fc3 e_fc4 = slim.fully_connected(e_fc3, 8, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='e_fc4') e_fc4 = lrelu(e_fc4) print 'fc4: ', e_fc4 return e_fc4 def decoder(x): print print 'x: ', x d_fc1 = slim.fully_connected(x, 32, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='d_fc1') d_fc1 = lrelu(d_fc1) print 'd_fc1: ', d_fc1 d_fc2 = slim.fully_connected(x, 64, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='d_fc2') d_fc2 = lrelu(d_fc2) print 'd_fc2: ', d_fc2 d_fc3 = slim.fully_connected(x, 256, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='d_fc3') d_fc3 = lrelu(d_fc3) print 'd_fc3: ', d_fc3 d_fc3 = tf.reshape(d_fc3, [batch_size, 4, 4, 16]) print 'd_fc3: ', d_fc3 e_transpose_conv1 = slim.convolution2d_transpose(d_fc3, 64, 2, stride=2, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='e_transpose_conv1') e_transpose_conv1 = lrelu(e_transpose_conv1) print 'e_transpose_conv1: ', e_transpose_conv1 e_transpose_conv2 = slim.convolution2d_transpose(e_transpose_conv1, 32, 2, stride=2, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='e_transpose_conv2') e_transpose_conv2 = lrelu(e_transpose_conv2) print 'e_transpose_conv2: ', e_transpose_conv2 e_transpose_conv3 = slim.convolution2d_transpose(e_transpose_conv2, 1, 2, stride=2, normalizer_fn=slim.batch_norm, activation_fn=tf.identity, scope='e_transpose_conv3') e_transpose_conv3 = lrelu(e_transpose_conv3) e_transpose_conv3 = e_transpose_conv3[:,:28,:28,:] print 'e_transpose_conv3: ', e_transpose_conv3 return e_transpose_conv3 def train(mnist_train, mnist_test): with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False, name='global_step') # placeholder for mnist images images = tf.placeholder(tf.float32, [batch_size, 28, 28, 1]) # encode images to 128 dim vector encoded = encoder(images) # decode 128 dim vector to (28,28) dim image decoded = decoder(encoded) loss = tf.nn.l2_loss(images - decoded) train_op = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss) # saver for the model saver = tf.train.Saver(tf.all_variables()) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) try: os.mkdir('images/') except: pass try: os.mkdir('checkpoint/') except: pass ckpt = tf.train.get_checkpoint_state('checkpoint/') if ckpt and ckpt.model_checkpoint_path: try: saver.restore(sess, ckpt.model_checkpoint_path) print 'Model restored' except: print 'Could not restore model' pass step = 0 while True: step += 1 # get random images from the training set batch_images = random.sample(mnist_train, batch_size) # send through the network s = time.time() _, loss_ = sess.run([train_op, loss], feed_dict={images: batch_images}) t = time.time()-s print 'Step: ' + str(step) + ' Loss: ' + str(loss_) + ' time: ' + str(t) if step%100 == 0: print print 'Saving model' print saver.save(sess, "checkpoint/checkpoint", global_step=global_step) # get random images from the test set batch_images = random.sample(mnist_test, batch_size) # encode them using the encoder, then decode them encode_decode = sess.run(decoded, feed_dict={images: batch_images}) # write out a few c = 0 for real, dec in zip(batch_images, encode_decode): dec, real = np.squeeze(dec), np.squeeze(real) plt.imsave('images/'+str(step)+'_'+str(c)+'real.png', real) plt.imsave('images/'+str(step)+'_'+str(c)+'dec.png', dec) if c == 5: break c+=1 def main(argv=None): # mnist data in gz format url = 'http://deeplearning.net/data/mnist/mnist.pkl.gz' # check if it's already downloaded if not os.path.isfile('mnist.pkl.gz'): print 'Downloading mnist...' with open('mnist.pkl.gz', 'wb') as f: r = requests.get(url) if r.status_code == 200: f.write(r.content) else: print 'Could not connect to ', url print 'opening mnist' f = gzip.open('mnist.pkl.gz', 'rb') train_set, val_set, test_set = pickle.load(f) mnist_train = [] mnist_test = [] print 'Reading mnist...' # reshape mnist to make it easier for understanding convs for t,l in zip(*train_set): mnist_train.append(np.reshape(t, (28,28,1))) for t,l in zip(*val_set): mnist_train.append(np.reshape(t, (28,28,1))) for t,l in zip(*test_set): mnist_test.append(np.reshape(t, (28,28,1))) mnist_train = np.asarray(mnist_train) mnist_test = np.asarray(mnist_test) train(mnist_train, mnist_test) if __name__ == '__main__': tf.app.run()
[ "cameronfabbri@gmail.com" ]
cameronfabbri@gmail.com
114fc87817862cd893476714a9ddd0fcef1b5e71
f4726db4ec192dee3709c6d474b1fb9a743e9d2f
/rllib/algorithms/mpc/abstract_solver.py
6e9395f231c134c5549b377604bf32b20c842991
[ "MIT" ]
permissive
SamueleMeta/optimal_is
fc32dbec2eaa1ceb24a70a0c6c7d982bd7cb2c69
7d8e0041825acfa003874cd1ad2aec0581f6a9e1
refs/heads/master
2023-03-05T23:25:22.651481
2021-02-13T21:30:30
2021-02-13T21:30:30
323,657,959
0
0
null
null
null
null
UTF-8
Python
false
false
7,597
py
"""MPC Algorithms.""" import time from abc import ABCMeta, abstractmethod import numpy as np import torch import torch.nn as nn from rllib.dataset.utilities import stack_list_of_tuples from rllib.util.multiprocessing import run_parallel_returns from rllib.util.neural_networks.utilities import repeat_along_dimension from rllib.util.rollout import rollout_actions from rllib.util.value_estimation import discount_sum class MPCSolver(nn.Module, metaclass=ABCMeta): r"""Solve the discrete time trajectory optimization controller. ..math :: u[0:H-1] = \arg \max \sum_{t=0}^{H-1} r(x0, u) + final_reward(x_H) When called, it will return the sequence of actions that solves the problem. Parameters ---------- dynamical_model: state transition model. reward_model: reward model. horizon: int. Horizon to solve planning problem. gamma: float, optional. Discount factor. scale: float, optional. Scale of covariance matrix to sample. num_iter: int, optional. Number of iterations of solver method. num_samples: int, optional. Number of samples for shooting method. termination_model: Callable, optional. Termination condition. terminal_reward: terminal reward model, optional. warm_start: bool, optional. Whether or not to start the optimization with a warm start. default_action: str, optional. Default action behavior. num_cpu: int, optional. Number of CPUs to run the solver. """ def __init__( self, dynamical_model, reward_model, horizon=25, gamma=1.0, num_iter=1, num_samples=400, termination_model=None, scale=0.3, terminal_reward=None, warm_start=True, clamp=True, default_action="zero", action_scale=1.0, num_cpu=1, *args, **kwargs, ): super().__init__() self.dynamical_model = dynamical_model self.reward_model = reward_model self.termination_model = termination_model assert self.dynamical_model.model_kind == "dynamics" assert self.reward_model.model_kind == "rewards" if self.termination_model is not None: assert self.termination_model.model_kind == "termination" self.horizon = horizon self.gamma = gamma self.num_iter = num_iter self.num_samples = num_samples self.terminal_reward = terminal_reward self.warm_start = warm_start self.default_action = default_action self.dim_action = self.dynamical_model.dim_action[0] self.mean = None self._scale = scale self.covariance = (scale ** 2) * torch.eye(self.dim_action).repeat( self.horizon, 1, 1 ) if isinstance(action_scale, np.ndarray): action_scale = torch.tensor(action_scale, dtype=torch.get_default_dtype()) elif not isinstance(action_scale, torch.Tensor): action_scale = torch.full((self.dim_action,), action_scale) if len(action_scale) < self.dim_action: extra_dim = self.dim_action - len(action_scale) action_scale = torch.cat((action_scale, torch.ones(extra_dim))) self.action_scale = action_scale self.clamp = clamp self.num_cpu = num_cpu def evaluate_action_sequence(self, action_sequence, state): """Evaluate action sequence by performing a rollout.""" trajectory = stack_list_of_tuples( rollout_actions( self.dynamical_model, self.reward_model, self.action_scale * action_sequence, # scale actions. state, self.termination_model, ), dim=-2, ) returns = discount_sum(trajectory.reward, self.gamma) if self.terminal_reward: terminal_reward = self.terminal_reward(trajectory.next_state[..., -1, :]) returns = returns + self.gamma ** self.horizon * terminal_reward return returns @abstractmethod def get_candidate_action_sequence(self): """Get candidate actions.""" raise NotImplementedError @abstractmethod def get_best_action(self, action_sequence, returns): """Get best action.""" raise NotImplementedError @abstractmethod def update_sequence_generation(self, elite_actions): """Update sequence generation.""" raise NotImplementedError def initialize_actions(self, batch_shape): """Initialize mean and covariance of action distribution.""" if self.warm_start and self.mean is not None: next_mean = self.mean[1:, ..., :] if self.default_action == "zero": final_action = torch.zeros_like(self.mean[:1, ..., :]) elif self.default_action == "constant": final_action = self.mean[-1:, ..., :] elif self.default_action == "mean": final_action = torch.mean(next_mean, dim=0, keepdim=True) else: raise NotImplementedError self.mean = torch.cat((next_mean, final_action), dim=0) else: self.mean = torch.zeros(self.horizon, *batch_shape, self.dim_action) self.covariance = (self._scale ** 2) * torch.eye(self.dim_action).repeat( self.horizon, *batch_shape, 1, 1 ) def get_action_sequence_and_returns( self, state, action_sequence, returns, process_nr=0 ): """Get action_sequence and returns associated. These are bundled for parallel execution. The data inside action_sequence and returns will get modified. """ if self.num_cpu > 1: # Multi-Processing inherits random state. torch.manual_seed(int(1000 * time.time())) action_sequence[:] = self.get_candidate_action_sequence() returns[:] = self.evaluate_action_sequence(action_sequence, state) def forward(self, state): """Return action that solves the MPC problem.""" self.dynamical_model.eval() batch_shape = state.shape[:-1] self.initialize_actions(batch_shape) state = repeat_along_dimension(state, number=self.num_samples, dim=-2) batch_actions = [ torch.randn( (self.horizon,) + batch_shape + (self.num_samples, self.dim_action) ) for _ in range(self.num_cpu) ] batch_returns = [ torch.randn(batch_shape + (self.num_samples,)) for _ in range(self.num_cpu) ] for action_, return_ in zip(batch_actions, batch_returns): action_.share_memory_() return_.share_memory_() for _ in range(self.num_iter): run_parallel_returns( self.get_action_sequence_and_returns, [ (state, batch_actions[rank], batch_returns[rank], rank) for rank in range(self.num_cpu) ], num_cpu=self.num_cpu, ) action_sequence = torch.cat(batch_actions, dim=-2) returns = torch.cat(batch_returns, dim=-1) elite_actions = self.get_best_action(action_sequence, returns) self.update_sequence_generation(elite_actions) if self.clamp: return self.mean.clamp(-1.0, 1.0) return self.mean def reset(self, warm_action=None): """Reset warm action.""" self.mean = warm_action
[ "metasamuele@gmail.com" ]
metasamuele@gmail.com
c9ddc6020f6335f0c218bb5bf57f71ec81f55e3c
62179a165ec620ba967dbc20016e890978fbff50
/tests/torch/pruning/test_onnx_export.py
841d1b4a7fc6f0b959dc57c9259844df873540c2
[ "Apache-2.0" ]
permissive
openvinotoolkit/nncf
91fcf153a96f85da166aacb7a70ca4941e4ba4a4
c027c8b43c4865d46b8de01d8350dd338ec5a874
refs/heads/develop
2023-08-24T11:25:05.704499
2023-08-23T14:44:05
2023-08-23T14:44:05
263,687,600
558
157
Apache-2.0
2023-09-14T17:06:41
2020-05-13T16:41:05
Python
UTF-8
Python
false
false
6,169
py
# Copyright (c) 2023 Intel Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from tests.torch.helpers import load_exported_onnx_version from tests.torch.pruning.helpers import BigPruningTestModel from tests.torch.pruning.helpers import DiffConvsModel from tests.torch.pruning.helpers import GroupNormModel from tests.torch.pruning.helpers import PruningTestModelConcat from tests.torch.pruning.helpers import PruningTestModelEltwise from tests.torch.pruning.helpers import get_basic_pruning_config pytestmark = pytest.mark.skip(reason="Export as actually deleting filters from the model is currently disabled.") def find_value_by_name_in_list(obj_list, name): for obj in obj_list: if obj.name == name: return obj return None def check_bias_and_weight_shape(node_name, onnx_model_proto, weight_shape, bias_shape): node_weight = find_value_by_name_in_list(onnx_model_proto.graph.initializer, node_name + ".weight") node_bias = find_value_by_name_in_list(onnx_model_proto.graph.initializer, node_name + ".bias") assert node_weight.dims == weight_shape assert node_bias.dims == bias_shape def test_pruning_export_simple_model(tmp_path): model = BigPruningTestModel() nncf_config = get_basic_pruning_config(input_sample_size=[1, 1, 8, 8]) nncf_config["compression"]["pruning_init"] = 0.5 nncf_config["compression"]["algorithm"] = "filter_pruning" onnx_model_proto = load_exported_onnx_version(nncf_config, model, path_to_storage_dir=tmp_path) # Check that conv2 + BN were pruned by output filters # WARNING: starting from at least torch 1.7.0, torch.onnx.export will fuses BN into previous # convs if torch.onnx.export is done with `training=False`, so this test might fail. check_bias_and_weight_shape("nncf_module.conv2", onnx_model_proto, [16, 16, 3, 3], [16]) check_bias_and_weight_shape("nncf_module.bn", onnx_model_proto, [16], [16]) # Check that up was pruned by input filters check_bias_and_weight_shape("nncf_module.up", onnx_model_proto, [16, 32, 3, 3], [32]) # Check that conv3 was pruned by input filters check_bias_and_weight_shape("nncf_module.conv3", onnx_model_proto, [1, 32, 5, 5], [1]) @pytest.mark.parametrize( ("prune_first", "ref_shapes"), [ (False, [[[16, 1, 2, 2], [16]], [[16, 16, 2, 2], [16]], [[16, 16, 2, 2], [16]], [[16, 32, 3, 3], [16]]]), (True, [[[8, 1, 2, 2], [8]], [[16, 8, 2, 2], [16]], [[16, 8, 2, 2], [16]], [[16, 32, 3, 3], [16]]]), ], ) def test_pruning_export_concat_model(tmp_path, prune_first, ref_shapes): model = PruningTestModelConcat() nncf_config = get_basic_pruning_config(input_sample_size=[1, 1, 8, 8]) nncf_config["compression"]["algorithm"] = "filter_pruning" nncf_config["compression"]["params"]["prune_first_conv"] = prune_first nncf_config["compression"]["pruning_init"] = 0.5 onnx_model_proto = load_exported_onnx_version(nncf_config, model, path_to_storage_dir=tmp_path) for i in range(1, 5): conv_name = "nncf_module.conv{}".format(i) check_bias_and_weight_shape(conv_name, onnx_model_proto, *ref_shapes[i - 1]) @pytest.mark.parametrize( ("prune_first", "ref_shapes"), [ (False, [[[16, 1, 2, 2], [16]], [[16, 16, 2, 2], [16]], [[16, 16, 2, 2], [16]], [[16, 16, 3, 3], [16]]]), (True, [[[8, 1, 2, 2], [8]], [[16, 8, 2, 2], [16]], [[16, 8, 2, 2], [16]], [[16, 16, 3, 3], [16]]]), ], ) def test_pruning_export_eltwise_model(tmp_path, prune_first, ref_shapes): model = PruningTestModelEltwise() nncf_config = get_basic_pruning_config(input_sample_size=[1, 1, 8, 8]) nncf_config["compression"]["algorithm"] = "filter_pruning" nncf_config["compression"]["params"]["prune_first_conv"] = prune_first nncf_config["compression"]["pruning_init"] = 0.5 onnx_model_proto = load_exported_onnx_version(nncf_config, model, path_to_storage_dir=tmp_path) for i in range(1, 5): conv_name = "nncf_module.conv{}".format(i) check_bias_and_weight_shape(conv_name, onnx_model_proto, *ref_shapes[i - 1]) @pytest.mark.parametrize( ("prune_first", "ref_shapes"), [ (False, [[[32, 1, 2, 2], [32]], [[32, 1, 1, 1], [32]], [[32, 32, 3, 3], [32]], [[16, 4, 1, 1], [16]]]), (True, [[[16, 1, 2, 2], [16]], [[16, 1, 1, 1], [16]], [[32, 16, 3, 3], [32]], [[16, 4, 1, 1], [16]]]), ], ) def test_pruning_export_diffconvs_model(tmp_path, prune_first, ref_shapes): model = DiffConvsModel() nncf_config = get_basic_pruning_config(input_sample_size=[1, 1, 8, 8]) nncf_config["compression"]["algorithm"] = "filter_pruning" nncf_config["compression"]["params"]["prune_first_conv"] = prune_first nncf_config["compression"]["pruning_init"] = 0.5 onnx_model_proto = load_exported_onnx_version(nncf_config, model, path_to_storage_dir=tmp_path) for i in range(1, 5): conv_name = "nncf_module.conv{}".format(i) check_bias_and_weight_shape(conv_name, onnx_model_proto, *ref_shapes[i - 1]) def test_pruning_export_groupnorm_model(tmp_path): model = GroupNormModel() nncf_config = get_basic_pruning_config(input_sample_size=[1, 1, 8, 8]) nncf_config["compression"]["algorithm"] = "filter_pruning" nncf_config["compression"]["params"]["prune_first_conv"] = True nncf_config["compression"]["pruning_init"] = 0.5 onnx_model_proto = load_exported_onnx_version(nncf_config, model, path_to_storage_dir=tmp_path) check_bias_and_weight_shape("nncf_module.conv1", onnx_model_proto, [8, 1, 1, 1], [8]) check_bias_and_weight_shape("nncf_module.conv2", onnx_model_proto, [16, 8, 1, 1], [16])
[ "noreply@github.com" ]
openvinotoolkit.noreply@github.com
dc7b599f8daa973d59789d42ded36ded640ad411
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r10p1/Gen/DecFiles/options/16165060.py
6c65b7ec1a29a4f35185a3b5334145f51a786eb9
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,597
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/16165060.py generated: Wed, 25 Jan 2017 15:25:15 # # Event Type: 16165060 # # ASCII decay Descriptor: [ Xi_bc+ -> (D+ -> K- pi+ pi+) p+ K- ]cc # from Configurables import Generation Generation().EventType = 16165060 Generation().SampleGenerationTool = "Special" from Configurables import Special Generation().addTool( Special ) Generation().Special.ProductionTool = "GenXiccProduction" Generation().PileUpTool = "FixedLuminosityForRareProcess" from Configurables import GenXiccProduction Generation().Special.addTool( GenXiccProduction ) Generation().Special.GenXiccProduction.BaryonState = "Xi_bc+" Generation().Special.GenXiccProduction.Commands = ["mixevnt imix 1", "loggrade ivegasopen 0", "loggrade igrade 1", "vegasbin nvbin 300", "counter xmaxwgt 5000000", "confine pscutmin 0.0", "confine pscutmax 7.0"] from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Xibc_DpK,Kpipi=DecProdCut,m=6.9GeV,t=0.4ps.dec" Generation().Special.CutTool = "XiccDaughtersInLHCb" from Configurables import XiccDaughtersInLHCb Generation().Special.addTool( XiccDaughtersInLHCb ) Generation().Special.XiccDaughtersInLHCb.BaryonState = Generation().Special.GenXiccProduction.BaryonState from Configurables import LHCb__ParticlePropertySvc LHCb__ParticlePropertySvc().Particles = [ " Xi_bc+ 532 5242 1.0 6.90000000 0.400000e-12 Xi_bc+ 5242 0.00000000", " Xi_bc~- 533 -5242 -1.0 6.90000000 0.400000e-12 anti-Xi_bc- -5242 0.00000000" ]
[ "slavomirastefkova@b2pcx39016.desy.de" ]
slavomirastefkova@b2pcx39016.desy.de
763f3843193e373ffd0a2229f3233e4ebeb3d73f
3d14a2263e7547f9d3b463a35e4b25e3abb67306
/ccal/get_vcf_info_ann.py
4e76f65f9a5dda963ac65d084997f3fcb9b8b31f
[ "MIT" ]
permissive
alex-wenzel/ccal
ec91d214cd169913909de67a8592b9ce4a82af3f
74dfc604d93e6ce9e12f34a828b601618df51faa
refs/heads/master
2020-04-17T02:45:50.976156
2019-04-22T01:14:24
2019-04-22T01:14:24
166,151,841
0
0
MIT
2019-01-17T03:10:39
2019-01-17T03:10:38
null
UTF-8
Python
false
false
352
py
from .get_vcf_info import get_vcf_info from .VCF_ANN_FIELDS import VCF_ANN_FIELDS def get_vcf_info_ann(info, field, n_ann=None): ann = get_vcf_info(info, "ANN") if ann: field_index = VCF_ANN_FIELDS.index(field) return [ann_.split(sep="|")[field_index] for ann_ in ann.split(sep=",")[:n_ann]] else: return []
[ "kwatme8@gmail.com" ]
kwatme8@gmail.com
7675618bd38f2113e3e7c2c01134a738a88bf0fd
11b9e95ce3d73e62ac07893a36690cb3a0d9041b
/NeuralNetwork/随机森林(非神经网络)/RandomForest2.py
9bc8c512e9be0109525f67ca4ab60c14b7a1ff62
[]
no_license
zhangjinzhi/SimpleTools
3fdd2005cb8cf52e8e75d8ec283090a628cebc59
be9e766d2e22124ce41bec254664b12fdfacaa4b
refs/heads/master
2020-12-30T11:51:27.116851
2018-01-30T09:47:01
2018-01-30T09:47:01
91,527,509
4
0
null
null
null
null
UTF-8
Python
false
false
716
py
# coding=utf-8 from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier import pandas as pd import numpy as np iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['is_train'] = np.random.uniform(0, 1, len(df)) <= .75 df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names) df.head() train, test = df[df['is_train']==True], df[df['is_train']==False] features = df.columns[:4] clf = RandomForestClassifier(n_jobs=2) y, _ = pd.factorize(train['species']) clf.fit(train[features], y) preds = iris.target_names[clf.predict(test[features])] pd.crosstab(test['species'], preds, rownames=['actual'], colnames=['preds'])
[ "584392383@qq.com" ]
584392383@qq.com
f03019f06080a632cd818000dfeb75a5995b4219
fd877cb919622d6a4efa305fb9eaec8a31e8dd37
/scripts/ua/rule13.py
45196c0db7db6b6593bc008e7f51e87aa635ae06
[ "MIT" ]
permissive
NCiobo/iem
37df9bc466ffcbe4f6b1f9c29c6b5266559f200c
75da5e681b073c6047f5a2fb76721eaa0964c2ed
refs/heads/master
2021-01-23T09:39:33.090955
2017-09-05T16:34:12
2017-09-05T16:34:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,671
py
''' Compute the difference between the 12 UTC 850 hPa temp and afternoon high ''' from pyiem.datatypes import temperature import psycopg2 import datetime ASOS = psycopg2.connect(database='asos', host='iemdb', user='nobody') acursor = ASOS.cursor() POSTGIS = psycopg2.connect(database='postgis', host='iemdb', user='nobody') pcursor = POSTGIS.cursor() data = [0]*12 for i in range(12): data[i] = [] pcursor.execute(""" select valid, tmpc from raob_profile p JOIN raob_flights f on (p.fid = f.fid) where f.station in ('KOAX', 'KOVN', 'KOMA') and p.pressure = 850 and extract(hour from valid at time zone 'UTC') = 12 and tmpc > -40 ORDER by valid ASC """) for row in pcursor: valid = row[0] t850 = temperature(row[1], 'C') acursor.execute("""SELECT max(tmpf) from t"""+ str(valid.year) +""" WHERE station = 'OMA' and valid BETWEEN %s and %s """, (valid, valid + datetime.timedelta(hours=12))) row2 = acursor.fetchone() if row2[0] is None: continue high = temperature(row2[0], 'F') print valid.year, valid.month, high.value('C') - t850.value('C') data[valid.month-1].append( high.value('C') - t850.value('C') ) import matplotlib.pyplot as plt (fig, ax) = plt.subplots(1,1) ax.plot([1,12], [13,13], '-', lw=1.5, color='green', zorder=1) ax.boxplot(data) ax.set_title("1960-2013 Omaha Daytime High Temp vs 12 UTC 850 hPa Temp") ax.set_ylabel(r"Temperature Difference $^\circ$C") ax.set_xticks(range(1,13)) ax.set_ylim(-20,25) ax.set_xticklabels(("Jan", 'Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec') ) ax.grid(axis='y') fig.savefig('test.ps') import iemplot iemplot.makefeature('test')
[ "akrherz@iastate.edu" ]
akrherz@iastate.edu
6d23619ee3008348e0c51778e10152aa5b555140
099172fda019272760aebaa7795def519907e152
/com.ibm.streamsx.topology/opt/python/packages/streamsx/topology/schema.py
480e8799768afddfd82f92c6a4705a006a30baf0
[ "Apache-2.0" ]
permissive
rrea/streamsx.topology
58ffd48745e83cd6d054d50405e9f7bbbe73876d
d8828ccf3e32cb8a7629f9e325fc14f565cf913e
refs/heads/master
2020-12-11T07:16:53.701724
2016-08-12T19:36:42
2016-08-12T19:36:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,601
py
import enum class StreamSchema(object) : """SPL stream schema.""" def __init__(self, schema): self.__schema=schema.strip() def schema(self): return self.__schema; def spl_json(self): _splj = {} _splj["type"] = 'spltype' _splj["value"] = self.schema() return _splj def extend(self, schema): """ Extend a schema by another """ base = self.schema() extends = schema.schema() new_schema = base[:-1] + ',' + extends[6:] return StreamSchema(new_schema) # XML = StreamSchema("tuple<xml document>") @enum.unique class CommonSchema(enum.Enum): """ Common stream schemas for interoperability within Streams applications. Python - Stream constains Python objects Json - Stream contains JSON objects. Streams with schema Json can be published and subscribed between Streams applications implemented in different languages. String - Stream contains strings. Streams with schema String can be published and subscribed between Streams applications implemented in different languages. Binary - Stream contains binary tuples. NOT YET SUPPORTED IN Python. """ Python = StreamSchema("tuple<blob __spl_po>") Json = StreamSchema("tuple<rstring jsonString>") String = StreamSchema("tuple<rstring string>") Binary = StreamSchema("tuple<blob binary>") def schema(self): return self.value.schema(); def spl_json(self): return self.value.spl_json() def extend(self, schema): return self.value.extend(schema)
[ "debrunne@us.ibm.com" ]
debrunne@us.ibm.com
c3dbd2c439c3758ad3b7f4b9ce1618b504c41c15
b92eee41d665314bc42043d1ff46c608af5ffdfd
/sesion_2/prueba.2.py
aeeadbfa75b82afe081d82967acbd794d76c7081
[]
no_license
badillosoft/python-economics
40efe8326558a8fb93f84fdbd2137428844ee5f3
82af43c7a47297ce186dc0e23e30620d46e6693a
refs/heads/master
2021-01-11T18:55:15.762752
2017-05-09T01:15:59
2017-05-09T01:15:59
79,656,798
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
# Importación unitaria (por elemento) from geg import suma, suma2 # from geg import * print suma([1, 3, 5, 7, 9]) print suma([1, 76, 201, 76]) print suma([5])
[ "kmmx@hsoft.local" ]
kmmx@hsoft.local
07522c3ec7506ead2e1af745eda523dcd66be75d
7d027557cee0ad5ae783480fe79c1b3d11c4eccb
/backend/delivery_order/migrations/0001_initial.py
0f19ff998f55d6c8023cdddbe7fe661b124db324
[]
no_license
crowdbotics-apps/lol-21119
b284e53d4b7ebfa9e4c068807aff813f53871c1e
78965517edf60545b646e90e77a63aeb7c4515af
refs/heads/master
2022-12-24T13:05:52.179667
2020-10-05T17:54:53
2020-10-05T17:54:53
301,492,013
0
0
null
null
null
null
UTF-8
Python
false
false
4,307
py
# Generated by Django 2.2.16 on 2020-10-05 17:48 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ("menu", "0001_initial"), ("delivery_user_profile", "0001_initial"), ] operations = [ migrations.CreateModel( name="Bill", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("total_amount", models.FloatField()), ("timestamp_created", models.DateTimeField(auto_now_add=True)), ( "contact_info", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="bill_contact_info", to="delivery_user_profile.ContactInfo", ), ), ( "profile", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="bill_profile", to="delivery_user_profile.Profile", ), ), ], ), migrations.CreateModel( name="PaymentMethod", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255)), ("detail", models.TextField()), ], ), migrations.CreateModel( name="Order", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("quantity", models.IntegerField()), ("total_price", models.FloatField()), ("status", models.CharField(max_length=20)), ("notes", models.TextField()), ("timestamp_created", models.DateTimeField(auto_now_add=True)), ( "bill", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="order_bill", to="delivery_order.Bill", ), ), ( "item_variant", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="order_item_variant", to="menu.ItemVariant", ), ), ( "payment_method", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="order_payment_method", to="delivery_order.PaymentMethod", ), ), ( "profile", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="order_profile", to="delivery_user_profile.Profile", ), ), ], ), ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
d199b63471d48fe41ba0034f9a18d32ec3530fc2
0dfdeec83f0b4acd804b9a52212426e9045edfd2
/v13/addons/cristo_concern/models/dashboard.py
a62adf086f3cf39937c6a7ab9fea53b4303af462
[]
no_license
cokotracy/Cristo
2c89d6789a901ec2f1e2f0eca7563d1cebee40cb
aea45d82d9b822c0ffe6275cfcce3eeb5283a152
refs/heads/main
2023-08-30T05:01:02.913064
2021-07-06T10:09:29
2021-07-06T10:09:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,787
py
# -*- coding: utf-8 -*- from odoo import models, fields, api, _ class Member(models.Model): _inherit = 'res.member' @api.model def get_user_member_details(self): res = super(Member, self).get_user_member_details() # Navigation con_action_id = self.env.ref("cristo_concern.action_concern").id con_menu_id = self.env.ref("cristo_concern.cristo_concern_main_menu").id res[0].update({'con_action_id': con_action_id, 'con_menu_id': con_menu_id, }) if self.user_has_groups('cristo_concern.group_concern_user') or self.user_has_groups('cristo.group_role_cristo_bsa_super_admin'): total_concern = self.env['cristo.concern'].search_count([]) if self.user_has_groups('cristo.group_role_cristo_religious_institute_admin'): total_cal = self.env['cristo.concern'].search_count([('user_id','=',self.env.user.id),('institute_id','=',self.env.user.institute_id.id)]) elif self.user_has_groups('cristo.group_role_cristo_religious_province'): total_cal = self.env['cristo.concern'].search_count([('user_id','=',self.env.user.id),('rel_province_id','=',self.env.user.rel_province_id.id)]) elif self.user_has_groups('cristo.group_role_cristo_religious_house'): total_cal = self.env['cristo.concern'].search_count([('user_id','=',self.env.user.id),('community_id','=',self.env.user.community_id.id)]) elif self.user_has_groups('cristo.group_role_cristo_apostolic_institution'): total_cal = self.env['cristo.concern'].search_count([('user_id','=',self.env.user.id),('institution_id','=',self.env.user.institution_id.id)]) res[0].update({'concern':1,'total_concern':total_concern}) return res
[ "charlesit333@gmail.com" ]
charlesit333@gmail.com
43e00d123f74fceb0d9123050968b8d5a1ecd98c
a86293a2033c06410aa8ed19bcbce8ca55ea3c55
/src/client_libraries/python/microsoft/dynamics/customerinsights/api/models/workflow_refresh_schedule_py3.py
686a18f736ebacb397d4da542efc3475aa595443
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
ramotheonly/Dynamics365-CustomerInsights-Client-Libraries
a3ca28aa78d2b5509e65d9895ff4a0d42d05f611
e00632f7972717b03e0fb1a9e2667e8f9444a0fe
refs/heads/main
2023-08-02T08:09:04.063030
2021-09-28T22:42:15
2021-09-28T22:42:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,286
py
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class WorkflowRefreshSchedule(Model): """Represents a DAG refresh schedule. Variables are only populated by the server, and will be ignored when sending a request. :param operation_type: Possible values include: 'none', 'ingestion', 'derivedEntity', 'dataPreparation', 'map', 'match', 'merge', 'profileStore', 'search', 'activity', 'attributeMeasures', 'entityMeasures', 'measures', 'segmentation', 'enrichment', 'intelligence', 'aiBuilder', 'insights', 'export', 'modelManagement', 'relationship', 'roleAssignment', 'analysis', 'all' :type operation_type: str or ~microsoft.dynamics.customerinsights.api.models.enum :param sub_type: Possible values include: 'templatedMeasures', 'createAnalysisModel', 'linkAnalysisModel' :type sub_type: str or ~microsoft.dynamics.customerinsights.api.models.enum :param identifiers: Gets the identifiers of the schedule :type identifiers: list[str] :param job_type: Possible values include: 'full', 'incremental' :type job_type: str or ~microsoft.dynamics.customerinsights.api.models.enum :ivar is_active: Gets a value indicating whether the schedule is active. :vartype is_active: bool :ivar timezone_id: Gets the ID of the timezone :vartype timezone_id: str :ivar cron_schedules: Gets the schedule in CRON format :vartype cron_schedules: list[str] :ivar schedule_id: Gets the ID of the schedule :vartype schedule_id: str :ivar instance_id: Gets the Customer Insights instance id associated with this object. :vartype instance_id: str """ _validation = { 'is_active': {'readonly': True}, 'timezone_id': {'readonly': True}, 'cron_schedules': {'readonly': True}, 'schedule_id': {'readonly': True}, 'instance_id': {'readonly': True}, } _attribute_map = { 'operation_type': {'key': 'operationType', 'type': 'str'}, 'sub_type': {'key': 'subType', 'type': 'str'}, 'identifiers': {'key': 'identifiers', 'type': '[str]'}, 'job_type': {'key': 'jobType', 'type': 'str'}, 'is_active': {'key': 'isActive', 'type': 'bool'}, 'timezone_id': {'key': 'timezoneId', 'type': 'str'}, 'cron_schedules': {'key': 'cronSchedules', 'type': '[str]'}, 'schedule_id': {'key': 'scheduleId', 'type': 'str'}, 'instance_id': {'key': 'instanceId', 'type': 'str'}, } def __init__(self, *, operation_type=None, sub_type=None, identifiers=None, job_type=None, **kwargs) -> None: super(WorkflowRefreshSchedule, self).__init__(**kwargs) self.operation_type = operation_type self.sub_type = sub_type self.identifiers = identifiers self.job_type = job_type self.is_active = None self.timezone_id = None self.cron_schedules = None self.schedule_id = None self.instance_id = None
[ "michaelajohnston@mac.com" ]
michaelajohnston@mac.com
4b20687780fb0fdf9ee2aa84da2e4f050fe6925d
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/cirq_new/cirq_program/startCirq_pragma17.py
3146b2f412bfb79c7789014ace702fe920a73cb6
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,262
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=8 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np class Opty(cirq.PointOptimizer): def optimization_at( self, circuit: 'cirq.Circuit', index: int, op: 'cirq.Operation' ) -> Optional[cirq.PointOptimizationSummary]: if (isinstance(op, cirq.ops.GateOperation) and isinstance(op.gate, cirq.CZPowGate)): return cirq.PointOptimizationSummary( clear_span=1, clear_qubits=op.qubits, new_operations=[ cirq.CZ(*op.qubits), cirq.X.on_each(*op.qubits), cirq.X.on_each(*op.qubits), ] ) #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.rx(1.6147786239451536).on(input_qubit[3])) # number=5 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[0])) # number=6 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[0])) # number=7 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_pragma17.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
[ "wangjiyuan123@yeah.net" ]
wangjiyuan123@yeah.net
155563938f93e28b814ded6a968be8956f270d22
1287bbb696e240dd0b92d56d4fdf4246370f3e14
/numpy-demo.py
fd2619fdc2e82feac4224f8733d84b6b6ec43540
[]
no_license
omerfarukcelenk/PythonCalismalari
ed0c204084860fddcb892e6edad84fdbc1ed38ec
28da12d7d042ec306f064fb1cc3a1a026cb57b74
refs/heads/main
2023-04-13T18:23:15.270020
2021-04-26T21:06:21
2021-04-26T21:06:21
361,893,918
3
0
null
null
null
null
UTF-8
Python
false
false
2,151
py
import numpy as np # 1- (10,15,30,45,60) değerlerine sahip numpy dizisi oluşturunuz. result = np.array([10,15,30,45,60]) # 2- (5-15) arasındaki sayılarla numpy dizisi oluşturunuz. result = np.arange(5,15) # 3- (50-100) arasında 5'er 5'er artarak numpy dizisi oluşturunuz. result = np.arange(50,100,5) # 4- 10 elemanlı sıfırlardan oluşan bir dizi oluşturunuz. result = np.zeros(10) # 5- 10 elemanlı birlerden oluşan bir dizi oluşturunuz. result = np.ones(10) # 6- (0-100) arasında eşit aralıklı 5 sayı üretin. result = np.linspace(0,100,5) # 7- (10-30) arasında rastgele 5 tane tamsayı üretin. result = np.random.randint(10,30,5) # 8- [-1 ile 1] arasında 10 adet sayı üretin. result = np.random.randn(10) # 9- (3x5) boyutlarında (10-50) arasında rastgele bir matris oluşturunuz. # result = np.random.randint(10,50,15).reshape(3,5) # 10- Üretilen matrisin satır ve sütun sayıları toplamlarını hesaplayınız ? matris = np.random.randint(-50,50,15).reshape(3,5) # rowTotal = matris.sum(axis = 1) # colTotal = matris.sum(axis = 0) print(matris) # print(rowTotal) # print(colTotal) # 11- Üretilen matrisin en büyük, en küçük ve ortalaması nedir ? result = matris.max() result = matris.min() result = matris.mean() # 12- Üretilen matrisin en büyük değerinin indeksi kaçtır ? result = matris.argmax() result = matris.argmin() # 13- (10-20) arasındaki sayıları içeren dizinin ilk 3 elemanını seçiniz. arr = np.arange(10,20) print(arr) result = arr[0:3] # 14- Üretilen dizinin elemanlarını tersten yazdırın. result = arr[::-1] # 15- Üretilen matrisin ilk satırını seçiniz. result = matris[0] # 16- Üretilen matrisin 2.satır 3.sütundaki elemanı hangisidir ? result = matris[1,2] # 17- Üretilen matrisin tüm satırlardaki ilk elemanı seçiniz. result = matris[:,0] # 18- Üretilen matrisin her bir elemanının karesini alınız. result = matris ** 2 # 19- Üretilen matris elemanlarının hangisi pozitif çift sayıdır ? # Aralığı (-50,+50) arasında yapınız. ciftler = matris[matris % 2 == 0] result = ciftler[ciftler>0] print(result)
[ "omerfar0133@gmail.com" ]
omerfar0133@gmail.com
5f1384b0ccaccf589e497ee288792f747e49c667
e2860eb874db045fb8d0279566a935af907e5bdf
/keras01/keras24_cancer_binary.py
224913ac725bca03a09cec370f03a7af20a3ef3f
[]
no_license
MinseokCHAE/Bitcamp2_new
dda7990907cb136c2e709a345eec634dfdb6ac02
849adb5a330b621f1c681f0b5e92005d1281a44d
refs/heads/main
2023-08-31T03:28:18.068561
2021-10-05T00:48:52
2021-10-05T00:48:52
390,228,262
0
0
null
null
null
null
UTF-8
Python
false
false
2,010
py
import numpy as np from sklearn.datasets import load_breast_cancer from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, StandardScaler from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense, Input from tensorflow.keras.callbacks import EarlyStopping #1. 데이터 datasets = load_breast_cancer() ''' print(datasets) print(datasets.keys()) print(datasets.feature_names) print(datasets.DESCR) ''' x = datasets.data y = datasets.target ''' print(x.shape) # (569, 30) print(y.shape) # (569, ) print(y[:20]) # [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1] print(np.unique(y)) # [0 1] ''' x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=66) scaler = StandardScaler() scaler.fit(x_train) x_train = scaler.transform(x_train) x_test = scaler.transform(x_test) #2. 모델링 input = Input(shape=(30, )) x = Dense(128, activation='relu')(input) x = Dense(64, activation='relu')(x) x = Dense(64, activation='relu')(x) x = Dense(64, activation='relu')(x) x = Dense(32, activation='relu')(x) output = Dense(1, activation='sigmoid')(x) model = Model(inputs=input, outputs=output) #3. 컴파일, 훈련 es = EarlyStopping(monitor='loss', patience=5, mode='min', verbose=1) num_epochs = 100 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['mse', 'accuracy']) model.fit(x_train, y_train, epochs=num_epochs, batch_size=8, validation_split=0.1, callbacks=[es]) #4. 평가,예측 loss = model.evaluate(x_test, y_test) y_predict = model.predict(x_test[-5:-1]) print('epochs = ', num_epochs) print('loss = ', loss[0]) print('mse = ', loss[1]) print('accuracy = ', loss[2]) print(y_test[-5:-1]) print(y_predict) ''' epochs = 100 loss = 0.2840605676174164 mse = 0.0262874998152256 accuracy = 0.9736841917037964 [1 0 1 1] [[1.0000000e+00] [1.7312156e-16] [1.0000000e+00] [1.0000000e+00]] '''
[ "minseok6739@naver.com" ]
minseok6739@naver.com
962812ea95c14c421b5d385ad22db70190075490
3284c2a6e99c27c9a72de68f60284b7865a7fb0c
/Principles_of_Computing/poc_fifteen_testsuite.py
d67f71a5ed434da0c1ac0fb0994003f591b64614
[]
no_license
bbusenius/Projects
e6c972a4356d1ece978b402004cd0bdf23279c98
57240764f64dd66ce69336450509e8556dbc597e
refs/heads/master
2022-09-17T17:18:08.884037
2022-08-27T21:39:55
2022-08-27T21:39:55
20,620,395
0
0
null
null
null
null
UTF-8
Python
false
false
7,706
py
import random from Fifteen import Puzzle def test_lower_row_invariant(puzzle, start): """ test lower row invariants """ assert start[0] > 1, "not an interior tile" assert puzzle.lower_row_invariant(*start) if start[1] == 0: puzzle.solve_col0_tile(start[0]) else: puzzle.solve_interior_tile(*start) if start[1] > 0: return puzzle.lower_row_invariant(start[0], start[1]-1) else: return puzzle.lower_row_invariant(start[0]-1, puzzle.get_width()-1) def test_upper_row_invariants(puzzle, start): """ test row0 and row1 invariants """ if start[0] == 1: assert puzzle.row1_invariant(start[1]) puzzle.solve_row1_tile(start[1]) return puzzle.row0_invariant(start[1]) else: assert puzzle.row0_invariant(start[1]) puzzle.solve_row0_tile(start[1]) return puzzle.row1_invariant(start[1]-1) def test_2x2(puzzle, dummy=None): """ test if puzzle's top-left corner is correct """ assert puzzle.row1_invariant(1) puzzle.solve_2x2() return is_correct(puzzle) def test_game(puzzle, dummy=None): """ complete puzzle test runner """ move_str = generate_random_move_str() valid_moves = [] for move in move_str: try: puzzle.update_puzzle(move) valid_moves.append(move) except AssertionError: pass # ignore invalid moves print "puzzle string: %s\n" % "".join(valid_moves) print puzzle result = puzzle.solve_puzzle() return is_correct(puzzle) def run_test(puzzle, start, name, complete=False, stats=[0,0]): """ run single test """ print "running test '%s'" % name if complete: test_func = test_game else: print puzzle if start is None: test_func = test_2x2 else: test_func = test_lower_row_invariant if start[0] >= 2 else test_upper_row_invariants if test_func(puzzle, start): stats[0] += 1 print puzzle print "test #%d: '%s' passed. total=%d/%d\n" % (sum(stats), name, stats[0], stats[1]) else: stats[1] += 1 print puzzle print "test #%d: '%s' failed. total=%d/%d\n" % (sum(stats), name, stats[0], stats[1]) def run_tests_interior(): """ interior test runner """ base = Puzzle(4, 5, [[10, 11, 12, 9, 8], [7, 6, 5, 4, 3], [2, 1, 0, 13, 14], [15, 16, 17, 18, 19]]) obj = base.clone() run_test(obj, (2,2), "interior same col") obj = base.clone() obj.set_number(1,1, 12) obj.set_number(0,2, 6) run_test(obj, (2,2), "interior half left") obj = base.clone() obj.set_number(1,3, 12) obj.set_number(0,2, 4) run_test(obj, (2,2), "interior half right") obj = base.clone() obj.set_number(0,0, 12) obj.set_number(0,2, 10) run_test(obj, (2,2), "interior upper left") obj = base.clone() obj.set_number(0,4, 12) obj.set_number(0,2, 8) run_test(obj, (2,2), "interior upper right") obj = base.clone() obj.set_number(2,0, 12) obj.set_number(0,2, 2) run_test(obj, (2,2), "interior same row") obj = base.clone() obj.set_number(2,1, 12) obj.set_number(0,2, 1) run_test(obj, (2,2), "interior short path") def run_tests_col0(): """ column 0 test runner """ base = Puzzle(4, 5, [[10, 6, 5, 4, 3], [2, 1, 8, 9, 7], [0, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) obj = base.clone() obj.set_number(1,0, 10) obj.set_number(0,0, 2) run_test(obj, (2,0), "col0 short path") obj = base.clone() run_test(obj, (2,0), "col0 upper left") obj = base.clone() obj.set_number(0,4, 10) obj.set_number(0,0, 3) run_test(obj, (2,0), "col0 upper right") obj = base.clone() obj.set_number(1,2, 10) obj.set_number(0,0, 8) run_test(obj, (2,0), "col0 half right") obj = base.clone() obj.set_number(1,1, 10) obj.set_number(0,0, 1) run_test(obj, (2,0), "col0 diagonal") def run_tests_row1(): """ row 1 test runner """ base = Puzzle(4, 5, [[9, 4, 6, 5, 1], [7, 3, 8, 2, 0], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) obj = base.clone() run_test(obj, (1,4), "row1 upper left") base = Puzzle(4, 5, [[4,7,2,6,9], [5,3,8,1,0], [10,11,12,13,14], [15,16,17,18,19]]) obj = base.clone() run_test(obj, (1,4), "row1 upper right") obj = base.clone() obj.set_number(1,0, 9) obj.set_number(0,0, 7) run_test(obj, (1,4), "row1 lower left") obj = base.clone() obj.set_number(1,4, 9) obj.set_number(1,3, 0) obj.set_number(0,0, 2) obj.set_number(0,4, 4) obj.set_number(0,1, 1) run_test(obj, (1,3), "row1 lower half left") obj = base.clone() obj.set_number(1,4, 9) obj.set_number(1,3, 0) obj.set_number(1,2, 6) obj.set_number(0,2, 8) obj.set_number(0,4, 4) obj.set_number(0,1, 1) run_test(obj, (1,3), "row1 upper half left") def run_tests_row0(): """ row 0 test runner """ base = Puzzle(4, 5, [[1, 5, 6, 0, 4], [7, 3, 2, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) obj = base.clone() run_test(obj, (0,3), "row0 lower half left") obj = base.clone() obj.set_number(0,1, 3) obj.set_number(1,1, 5) run_test(obj, (0,3), "row0 upper half left") obj = base.clone() obj.set_number(1,2, 3) obj.set_number(1,1, 2) run_test(obj, (0,3), "row0 diagonal") obj = base.clone() obj.set_number(1,0, 3) obj.set_number(1,1, 7) run_test(obj, (0,3), "row0 lower left") obj = base.clone() obj.set_number(0,0, 3) obj.set_number(1,1, 1) run_test(obj, (0,3),"row0 upper left") obj = Puzzle(4, 5, [[1, 2, 0, 3, 4], [6, 5, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) obj.solve_row0_tile(2) def run_tests_2x2(): """ 2x2 test runner """ base = Puzzle(4, 5, [[1, 6, 2, 3, 4], [5, 0, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) obj = base.clone() run_test(obj, None, "2x2 #1") obj = base.clone() obj.set_number(0,0, 6) obj.set_number(0,1, 5) obj.set_number(1,0, 1) obj.set_number(1,1, 0) run_test(obj, None, "2x2 #2") base = Puzzle(3, 3, [[4, 3, 2], [1, 0, 5], [6, 7, 8]]) obj = base.clone() run_test(obj, None, "2x2 #3") def run_tests_game(): """ complete game test runner """ sizes = [(2,2), (2,3), (3,2), (3,3), (5,4), (2,5), (5,2)] for size in sizes: run_test(Puzzle(*size), None, "random Puzzle(%d,%d)" % size, True) def is_correct(puzzle): for row in range(puzzle.get_height()): for col in range(puzzle.get_width()): if not puzzle.current_position(row, col) == (row, col): return False return True def generate_random_move_str(): """ helper method to generate a random solvable puzzle """ num = 100 moves = list("r" * 100 + "l" * 100 + "u" * 100 + "d" * 100) random.shuffle(moves) move_str = "".join(moves) return "".join(move_str) run_tests_interior() #run_tests_col0() #run_tests_row1() #run_tests_row0() #run_tests_2x2() #run_tests_game()
[ "bbusenius@users.noreply.github.com" ]
bbusenius@users.noreply.github.com
c98db546b314ceed3b99d5a290116ca53e79c0be
5e45f1d1d9f58aa1456777b0d75334d6efd43840
/challenges/contests/code_forces/round310/b.py
ddeeef394ad7437d7d538332cc5b25d2b0c84464
[]
no_license
missingdays/nerdy.school
604953dc9b3c38a0f71793f066ce2707aa980dae
051673e0ebc54bc2f7e96a6477697d1d528dc45c
refs/heads/master
2021-01-17T08:10:19.558851
2016-06-06T15:29:01
2016-06-06T15:29:01
59,897,184
0
0
null
null
null
null
UTF-8
Python
false
false
777
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2015 missingdays <missingdays@missingdays> # # Distributed under terms of the MIT license. """ """ def rotate(a, n): clock = True for i in range(n): if clock: if a[i] == n-1: a[i] = 0 else: a[i] += 1 else: if a[i] == 0: a[i] = n-1 else: a[i] -= 1 clock = not clock return a def check(a): for i in range(len(a)): if a[i] != i: return False return True n = int(input()) a = list(map(int, input().split())) while a[0] != 0: a = rotate(a, n) yes = check(a) if yes: print("YES") else: print("NO")
[ "rebovykin@gmail.com" ]
rebovykin@gmail.com
2d226f5e77c40290e347888ab04c3fd10c6a2a14
d92330be8ea281bdfefff5d17039b1a6d44057dc
/src/stiamro/startup.py
478af5d7aa11eaad8202de82c16120520a35f02a
[]
no_license
avoinea/stiamro
2af6f2329abafb59b7e6b54abacb95c8f6b3d697
5ee6ec3b754a776cb87a9fa452e21cb2afbf38f9
refs/heads/master
2021-01-18T14:38:49.669592
2011-03-11T10:39:44
2011-03-11T10:39:44
1,397,488
4
0
null
null
null
null
UTF-8
Python
false
false
1,354
py
import os import sys import code import zdaemon.zdctl import zope.app.wsgi import zope.app.debug def application_factory(global_conf, conf='zope.conf'): zope_conf = os.path.join(global_conf['here'], conf) return zope.app.wsgi.getWSGIApplication(zope_conf) def interactive_debug_prompt(zope_conf='zope.conf'): db = zope.app.wsgi.config(zope_conf) debugger = zope.app.debug.Debugger.fromDatabase(db) # Invoke an interactive interpreter shell banner = ("Welcome to the interactive debug prompt.\n" "The 'root' variable contains the ZODB root folder.\n" "The 'app' variable contains the Debugger, 'app.publish(path)' " "simulates a request.") code.interact(banner=banner, local={'debugger': debugger, 'app': debugger, 'root': debugger.root()}) class ControllerCommands(zdaemon.zdctl.ZDCmd): def do_debug(self, rest): interactive_debug_prompt() def help_debug(self): print "debug -- Initialize the application, providing a debugger" print " object at an interactive Python prompt." def zdaemon_controller(zdaemon_conf='zdaemon.conf'): args = ['-C', zdaemon_conf] + sys.argv[1:] zdaemon.zdctl.main(args, options=None, cmdclass=ControllerCommands)
[ "alin@serenity.(none)" ]
alin@serenity.(none)
0823d037b25810b90b0805adedcdad019270008c
301b039050c00a9efa4f3a5635e8b633f8adf988
/caffe2/experiments/python/SparseTransformer.py
c09bb09574798a2db7772eb526185e515e98feb4
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
sunpan822/caffe2
9704b6fe556d272fbedfd6edfdb796f6a8f02970
a3c56d892eb85054b4e7cbd1cf0a0d07422ae796
refs/heads/master
2020-04-12T14:31:45.919799
2019-04-19T04:10:40
2019-04-19T04:10:40
162,555,100
1
0
Apache-2.0
2018-12-20T09:14:48
2018-12-20T09:14:47
null
UTF-8
Python
false
false
6,362
py
## @package SparseTransformer # Module caffe2.experiments.python.SparseTransformer from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import workspace import scipy.sparse class NetDefNode(): def __init__(self, name, optype, p=None, op=None): self.name = name self.optype = optype self.ops = {} self.prev = {} self.insertInput(p) self.visited = False self.op = op def insertInput(self, p): """ Insert input of this op also maintain the output of previous op p: a node or a list of node """ if isinstance(p, list): for i in p: self.prev[i.name] = i i.ops[self.name] = self elif isinstance(p, NetDefNode): self.prev[p.name] = p p.ops[self.name] = self def deleteInput(self, p): if isinstance(p, NetDefNode): del self.prev[p.name] del p.ops[self.name] def maskNallocate(weight_name): """ Combine mask and weights create wcsr, iw, jw, return their names """ w = workspace.FetchBlob(weight_name) w_csr = scipy.sparse.csr_matrix(w) wcsr = w_csr.data iw = w_csr.indptr jw = w_csr.indices workspace.FeedBlob(weight_name + "wcsr", wcsr) workspace.FeedBlob(weight_name + "iw", iw) workspace.FeedBlob(weight_name + "jw", jw) return weight_name + "wcsr", weight_name + "iw", weight_name + "jw" def transFCRelu(cur, id2node, name2id, ops, model): """ Add trans before and after this FC_Prune->(Relu)->FC_Prune chain. """ # 1. add trans before the start of this chain # assuming that cur is a FC_Prune, and it has only one input pre = cur.prev.itervalues().next() # Create a node /op and insert it. # TODO(wyiming): check whether it is correct here current_blob = model.Transpose(cur.op.input[0], cur.op.input[0] + "_trans") # print model.net.Proto() trans_op = model.net.Proto().op[-1] trans_node = NetDefNode(trans_op.output[0], "Transpose", pre, trans_op) trans_node.visited = True pre_new = trans_node # 2. use while loop to visit the chain while True: # breakup with the parent cur.deleteInput(pre) if not (cur.optype == "FC_Prune" or cur.optype == "Relu"): print("Reaching the end of the chain") break if len(cur.ops) > 1: print("A FC/Relu giving more than 1 useful outputs") if cur.optype == "FC_Prune": op = cur.op wcsr, iw, jw = maskNallocate(op.input[1]) bias_name = op.input[3] # TODO(wyiming): create a new Op here current_blob = model.FC_Sparse(current_blob, cur.op.output[0] + "_Sparse", wcsr, iw, jw, bias_name) sps_op = model.net.Proto().op[-1] sps_node = NetDefNode(cur.op.output[0] + "_Sparse", "FC_Sparse", pre_new, sps_op) sps_node.visited = True pre_new = sps_node if cur.optype == "Relu": op = cur.op current_blob = model.Relu(current_blob, current_blob) rel_op = model.net.Proto().op[-1] rel_node = NetDefNode(str(current_blob), "Relu", pre_new, rel_op) rel_node.visited = True pre_new = rel_node cur.visited = True pre = cur flag = False for _, temp in cur.ops.iteritems(): if temp.optype == "Relu" or temp.optype == "FC_Prune": flag = True cur = temp if not flag: # assume that there is only 1 output that is not PrintOP cur = cur.ops.itervalues().next() cur.deleteInput(pre) print("No FC/RElu children") print(cur.op.type) break # 3. add trans after this chain like 1. current_blob = model.Transpose(current_blob, pre.op.output[0]) trans_op = model.net.Proto().op[-1] trans_node = NetDefNode(str(current_blob), "Transpose", pre_new, trans_op) trans_node.visited = True cur.insertInput(trans_node) print(cur.prev) print(trans_node.ops) def Prune2Sparse(cur, id2node, name2id, ops, model): # Assume that FC and Relu takes in only 1 input; # If not raise warning if not cur.visited and cur.optype == "FC_Prune": transFCRelu(cur, id2node, name2id, ops, model) cur.visited = True for name, n in cur.ops.iteritems(): Prune2Sparse(n, id2node, name2id, ops, model) def net2list(net_root): """ Use topological order(BFS) to print the op of a net in a list """ bfs_queue = [] op_list = [] cur = net_root for _, n in cur.ops.iteritems(): bfs_queue.append(n) while bfs_queue: node = bfs_queue[0] bfs_queue = bfs_queue[1:] op_list.append(node.op) for _, n in node.ops.iteritems(): bfs_queue.append(n) return op_list def netbuilder(model): print("Welcome to model checker") proto = model.net.Proto() net_name2id = {} net_id2node = {} net_root = NetDefNode("net_root", "root", None) for op_id, op in enumerate(proto.op): if op.type == "Print": continue op_name = '%s/%s (op#%d)' % (op.name, op.type, op_id) \ if op.name else '%s (op#%d)' % (op.type, op_id) # print(op_name) op_node = NetDefNode(op_name, op.type, op=op) net_id2node[op_id] = op_node if_has_layer_input = False for input_name in op.input: if input_name not in net_name2id: # assume that un_occured name are non_layers # TODO: write a non-layer checker and log it continue op_node.insertInput(net_id2node[net_name2id[input_name]]) if_has_layer_input = True if not if_has_layer_input: op_node.insertInput(net_root) for output_name in op.output: net_name2id[output_name] = op_id return net_root, net_name2id, net_id2node
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
10d6c38f461f0064766acde067ce1501198f039b
b92b0e9ba2338ab311312dcbbeefcbb7c912fc2e
/build/shogun_lib/applications/edrt/tutorial_examples/isomap.py
968afc975fb56b891080841483da3d0476df5337
[]
no_license
behollis/muViewBranch
384f8f97f67723b2a4019294854969d6fc1f53e8
1d80914f57e47b3ad565c4696861f7b3213675e0
refs/heads/master
2021-01-10T13:22:28.580069
2015-10-27T21:43:20
2015-10-27T21:43:20
45,059,082
1
0
null
null
null
null
UTF-8
Python
false
false
1,100
py
import modshogun as sg import data import numpy as np # load data feature_matrix = data.swissroll() # create features instance features = sg.RealFeatures(feature_matrix) # create Isomap converter instance converter = sg.Isomap() # set target dimensionality converter.set_target_dim(2) # compute embedding with Isomap method embedding = converter.embed(features) # enable landmark approximation converter.set_landmark(True) # set number of landmarks converter.set_landmark_number(100) # set number of threads converter.parallel.set_num_threads(2) # compute approximate embedding approx_embedding = converter.embed(features) # disable landmark approximation converter.set_landmark(False) # compute cosine distance matrix 'manually' N = features.get_num_vectors() distance_matrix = np.zeros((N,N)) for i in range(N): for j in range(N): distance_matrix[i,j] = \ np.cos(np.linalg.norm(feature_matrix[:,i]-feature_matrix[:,j],2)) # create custom distance instance distance = sg.CustomDistance(distance_matrix) # construct embedding based on created distance converter.embed_distance(distance)
[ "prosen@305cdda6-5ce1-45b3-a98d-dfc68c8b3305" ]
prosen@305cdda6-5ce1-45b3-a98d-dfc68c8b3305
7e22946ff315b5f228a8591af59455b54238cba7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03151/s822034196.py
4313c1c0f2ac588afa27facef6408828aef26183
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
n = int(input()) a_list = list(map(int, input().split())) b_list = list(map(int, input().split())) if sum(a_list) < sum(b_list): print(-1) exit() a_sub_b = [a_list[i] - b_list[i] for i in range(n)] insufficients = [x for x in a_sub_b if x < 0] cnt = len(insufficients) sum_insuf = sum(insufficients) for x in sorted(a_sub_b, reverse=True): if sum_insuf >= 0: break sum_insuf += x cnt += 1 print(cnt)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
788ba397c4eae832f0db90c5895d6a977650d8ce
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_8/crnkee002/question2.py
cb2b9f4a82509a3b49d881ae545369931ced4326
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
"""A8Q2 - Character Pairs 5/3/2012 CRNKEE002""" def main(): message = input('Enter a message:\n') print('Number of pairs:', double_chars(0, message)) def double_chars(pos, word): if len(word) == 1 or len(word) == 0: return 0 elif (word[pos] == word[pos+1]) and (pos+1 == len(word)-1): return 1 elif (word[pos] == word[pos+1]) and (pos+1 < len(word)-1): return 1 + double_chars(0, word[2::]) elif (word[pos] != word[pos+1]) and (pos+1 == len(word)-1): return 0 elif (word[pos] != word[pos+1]) and (pos+1 < len(word)-1): return double_chars(0, word[1::]) if __name__ == '__main__': main()
[ "jarr2000@gmail.com" ]
jarr2000@gmail.com
d0cac88d4a8c7145000a7513167b23dddeb83fc1
f2f88a578165a764d2ebb4a022d19e2ea4cc9946
/pyvisdk/do/host_vmci_access_manager_access_spec.py
3be9649b6bb56dbd6ab8a434dee41655e7e84b7b
[ "MIT" ]
permissive
pombredanne/pyvisdk
1ecc68a1bf264095f72f274c776e5868fb302673
de24eb4426eb76233dc2e57640d3274ffd304eb3
refs/heads/master
2021-01-21T16:18:39.233611
2014-07-28T19:50:38
2014-07-28T19:50:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,363
py
import logging from pyvisdk.exceptions import InvalidArgumentError ######################################## # Automatically generated, do not edit. ######################################## log = logging.getLogger(__name__) def HostVmciAccessManagerAccessSpec(vim, *args, **kwargs): '''The AccessSpec data object declares an update to the service access granted to a VM. The given list of services will either be granted in addition to existing services, replace the existing service or be revoked depending on the mode specified. In case of a revoke, an empty or non-existing service list indicates that all granted services should be revoked.''' obj = vim.client.factory.create('ns0:HostVmciAccessManagerAccessSpec') # do some validation checking... if (len(args) + len(kwargs)) < 2: raise IndexError('Expected at least 3 arguments got: %d' % len(args)) required = [ 'mode', 'vm' ] optional = [ 'services', 'dynamicProperty', 'dynamicType' ] for name, arg in zip(required+optional, args): setattr(obj, name, arg) for name, value in kwargs.items(): if name in required + optional: setattr(obj, name, value) else: raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional))) return obj
[ "guy@rzn.co.il" ]
guy@rzn.co.il
1b172b649cf62bea7e4b718c542cb3c43cb28435
d38a37c6997f2282b2138fc0a74a82996940dade
/loginapp/views.py
62e1e750131eabd25d674f07cffda8e604f17a49
[]
no_license
ethicalrushi/SignUp
9a295c0dcf20ea7eb47fe4af968b0c3d0caf6532
6deac079539bb9281f32f19e027d47436d59ce3d
refs/heads/master
2020-03-08T13:25:28.023977
2018-04-05T15:13:08
2018-04-05T15:13:08
128,157,728
0
0
null
null
null
null
UTF-8
Python
false
false
1,319
py
from django.shortcuts import render from .forms import UserForm from .models import User from django.contrib.auth.hashers import make_password, check_password from django.http import HttpResponse from rest_framework.response import Response from rest_framework import status, viewsets from .serializers import UserSerializer from django.http import JsonResponse import json from django.views.generic.base import View from django.urls import resolve # Create your view def register(request): form = UserForm() if request.method == 'POST': form = UserForm(request.POST, request.FILES) if form.is_valid(): password = form.cleaned_data['password'] print(password) user = User() user.password = make_password(password) user.username = form.cleaned_data['username'] user.fullname = form.cleaned_data['fullname'] user.image = form.cleaned_data['image'] user.save() print(user.password) else: print(form.errors) return render(request,'register.html',{'form':form,}) else: return render(request,'register.html',{'form':form,}) return render(request,'register.html',{'form':form,}) class DisplayViewSet(viewsets.ModelViewSet): queryset = User.objects.all() serializer_class= UserSerializer def dataview(request): return render(request,'data.html')
[ "pupalerushikesh@gmail.com" ]
pupalerushikesh@gmail.com
ba51dcc9f9c7d92cde27dcd455523ff50ad8d58e
8930d812d545e4a67be14b928212878befa1a535
/primes/euler0124.py
393a0d38105dda9afc7ccd0dea331099a4a39243
[]
no_license
jwodder/euler
bd59935e9f359e8760b4140243c907a6c44247b8
7549bb38dba746a04dcaa021f0c7dc06342d078b
refs/heads/master
2020-12-22T20:20:29.311514
2016-08-06T01:28:33
2016-08-06T01:28:33
21,482,466
1
0
null
null
null
null
UTF-8
Python
false
false
2,028
py
#!/usr/bin/python r"""Ordered radicals The radical of $n$, $rad(n)$, is the product of the distinct prime factors of $n$. For example, $504 = 2^3\times 3^2\times 7$, so $rad(504) = 2\times 3\times 7 = 42$. If we calculate $rad(n)$ for $1\leq n\leq 10$, then sort them on $rad(n)$, and sorting on $n$ if the radical values are equal, we get: **Unsorted** **Sorted** $n$ $rad(n)$ $n$ $rad(n)$ $k$ 1 1 1 1 1 2 2 2 2 2 3 3 4 2 3 4 2 8 2 4 5 5 3 3 5 6 6 9 3 6 7 7 5 5 7 8 2 6 6 8 9 3 7 7 9 10 10 10 10 10 Let $E(k)$ be the $k$th element in the sorted $n$ column; for example, $E(4) = 8$ and $E(6) = 9$. If $rad(n)$ is sorted for $1\leq n\leq 100000$, find $E(10000)$.""" import sys; sys.path.insert(1, sys.path[0] + '/..') from eulerlib import primeIter, generateAsc __tags__ = ['radical', 'prime numbers', 'ordering', 'factorization'] bound = 100000 index = 10000 def solve(): primes = tuple(primeIter(bound=bound)) seen = 0 def nextNodes(x): rad, ps, nextI = x if nextI < len(primes): nextP = primes[nextI] yield (rad*nextP, ps+[nextP], nextI+1) if ps: yield (rad//ps[-1] * nextP, ps[:-1]+[nextP], nextI+1) for (rad, ps, nextI) in generateAsc([(1,[],0)], nextNodes): expses = [rad] for p in ps: for x in expses[:]: x *= p while x <= bound: expses.append(x) x *= p seen += len(expses) if seen >= index: expses.sort() return expses[index - seen - 1] if __name__ == '__main__': print solve()
[ "jwodder@sdf.lonestar.org" ]
jwodder@sdf.lonestar.org
9dfda40d614bb48a5fe3ab1fc73a182b42c25ced
6846a0469efc79b89edc8f856944d5a8005d7244
/id_0060.py
01b7c31aa52da90e0370908d86d70201e6913a1f
[]
no_license
CGenie/project_euler
42cb966e13645339490046eb44a729660ae0c092
cc90edd061b0f4d9e076d5a684b842c202a6812a
refs/heads/master
2020-06-05T00:41:49.266961
2014-01-13T19:11:31
2014-01-13T19:11:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,663
py
#!/usr/bin/python2 # ##################################################################### # id_0060.py # # Przemyslaw Kaminski <cgenie@gmail.com> # Time-stamp: <> ###################################################################### import pickle from itertools import combinations from id_0003 import is_prime if __name__ == '__main__': f = open("./primes.pickle") lst_primes = pickle.load(f) f.close() n = 0 # for primes in combinations(lst_primes[1:500], 5): # nice_four = True # if n % 100 == 0: # n = 1 # print "Testing " + str(primes) # for doubles in combinations(primes, 2): # p1 = int(''.join([str(doubles[0]), str(doubles[1])])) # p2 = int(''.join([str(doubles[1]), str(doubles[0])])) # if not p1 in lst_primes or not p2 in lst_primes: # nice_four = False # break # if nice_four: # print "A nice five has been found: " + str(primes) # print "The sum is " + str(sum(primes)) # foo = input("Press enter to continue...") # n += 1 join_nums = lambda x, y: int(''.join([str(x), str(y)])) for idx, x in enumerate(lst_primes): if x > 10000: break maxidx = idx for a in xrange(5, maxidx): pa = lst_primes[a] for b in xrange(a, maxidx): pb = lst_primes[b] # check this pair first pab = join_nums(pa, pb) pba = join_nums(pb, pa) #if pab in lst_primes and pba in lst_primes: if is_prime(pab) and is_prime(pba): print "%d, %d ok so far..." % (pa, pb) for c in xrange(b, maxidx): pc = lst_primes[c] pac = join_nums(pa, pc) pca = join_nums(pc, pa) pbc = join_nums(pb, pc) pcb = join_nums(pc, pb) #print "Testing %d with pac = %d, pca = %d, pbc = %d, pcb = %d" % (pc, pac, pca, pbc, pcb) #if pac in lst_primes and pca in lst_primes and pbc in lst_primes and pcb in lst_primes: if is_prime(pac) and is_prime(pca) and is_prime(pbc) and is_prime(pcb): print "%d, %d, %d ok so far..." % (pa, pb, pc) for d in xrange(c, maxidx): nice_four = True pd = lst_primes[d] pad = join_nums(pa, pd) pda = join_nums(pd, pa) pbd = join_nums(pb, pd) pdb = join_nums(pd, pb) pcd = join_nums(pc, pd) pdc = join_nums(pd, pc) #print "pad = %d, pda = %d, pbd = %d, pdb = %d, pcd = %d, pdc = %d" % (pad, pda, pbd, pdb, pcd, pdc) for pp in [pad, pda, pbd, pdb, pcd, pdc]: #if not pp in lst_primes: if not is_prime(pp): nice_four = False break if nice_four: print "%d, %d, %d, %d ok so far..." % (pa, pb, pc, pd) for e in xrange(d, maxidx): nice_five = True pe = lst_primes[e] pae = join_nums(pa, pe) pea = join_nums(pe, pa) pbe = join_nums(pb, pe) peb = join_nums(pe, pb) pce = join_nums(pc, pe) pec = join_nums(pe, pc) pde = join_nums(pd, pe) ped = join_nums(pe, pd) for pp in [pae, pea, pbe, peb, pce, pec, pde, ped]: #if not pp in lst_primes: if not is_prime(pp): nice_five = False break if nice_five: print "A nice five has been found: %d, %d, %d, %d, %d" % (pa, pb, pc, pd, pe) print "The sum is " + str(sum([pa, pb, pc, pd, pe])) foo = input("Press enter to continue...")
[ "cgenie@gmail.com" ]
cgenie@gmail.com
86d8efefc0aaa304a58e7c9b58202117545fbf48
03ac34ae59b3d85b1876a9ca61e08c0b7020537c
/myproject/pages/tests.py
49bde0bf4c1a592e8d6c4a196c1ff01db6c1fbf1
[]
no_license
pramodkumarpanda/http-django.repo
1e94890a50ef59166cbe1919791cdac6ca73b21c
9551a5991f9dda76674a442598eb14c2cf2312cb
refs/heads/master
2020-07-02T10:32:58.668280
2019-10-21T15:28:37
2019-10-21T15:28:37
201,500,715
0
0
null
null
null
null
UTF-8
Python
false
false
1,203
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.test import TestCase # Create your tests here. from django.http import HttpRequest #from django.test import SimpleTestCase from django.urls import reverse from django.test import TestCase,SimpleTestCase from . import views from .models import Post class HomePageTests(SimpleTestCase): def test_home_page_status_code(self): response = self.client.get('/') self.assertEquals(response.status_code, 200) def test_view_url_by_name(self): response = self.client.get(reverse('home')) self.assertEquals(response.status_code, 200) def test_view_uses_correct_template(self): response = self.client.get(reverse('home')) self.assertEquals(response.status_code, 200) self.assertTemplateUsed(response, 'home.html') def test_home_page_contains_correct_html(self): response = self.client.get('/') self.assertContains(response, '<h1>Homepage</h1>') def test_home_page_does_not_contain_incorrect_html(self): response = self.client.get('/') self.assertNotContains( response, 'Hi there! I should not be on the page.')
[ "user@localhost" ]
user@localhost
1cca13ce33cc9925a5981731585f0970d3da571e
e3f3b986b256911e43496fe91c463f79dda9b334
/customauth/migrations/0006_remove_user_is_moderator.py
3692f715b5ea627df4ca42712fb605ba20be132a
[]
no_license
itkpi/itkpimail
e2ca56849c1ca18dec0b9c7d661b3563ed1f2ffe
6622208ca36d322e61821935804b2367f956d0b6
refs/heads/master
2021-01-01T19:07:29.107033
2015-11-08T18:57:45
2015-11-08T18:57:45
34,176,219
3
1
null
2018-12-09T05:00:27
2015-04-18T17:52:20
JavaScript
UTF-8
Python
false
false
358
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('customauth', '0005_user_is_moderator'), ] operations = [ migrations.RemoveField( model_name='user', name='is_moderator', ), ]
[ "roman.rader@gmail.com" ]
roman.rader@gmail.com
35178571ff5eaafb96690f4636cddb7b8642190d
a4e4c3faa29043fc80f62a8442e2f8333cd23933
/U_Net/primitives.py
cee4c15d4e046dc3f71f456fa4a622db17cc0c77
[]
no_license
FangYang970206/Intrinsic_Image
652ab87c2d95b400cf80c6a49d1863a40d1cba07
3b8ec261b7b3aeaa1c611473f53fb4e23b82893b
refs/heads/master
2023-01-21T05:18:40.748488
2020-11-24T02:22:00
2020-11-24T02:22:00
228,824,635
0
0
null
null
null
null
UTF-8
Python
false
false
1,432
py
import sys, torch, torch.nn as nn, torch.nn.functional as F from torch.autograd import Variable def conv(in_channels, out_channels, kernel_size, stride, padding): convolution = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) batch_norm = nn.BatchNorm2d(out_channels) layer = nn.Sequential(convolution, batch_norm) return layer ## Returns function to concatenate tensors. ## Used in skip layers to join encoder and decoder layers. def join(ind): return lambda x, y: torch.cat( (x,y), ind ) ## channels : list of ints ## kernel_size : int ## padding : int ## stride_fn : fn(channel_index) --> int ## mult=1 if encoder, 2 if decoder def build_encoder(channels, kernel_size, padding, stride_fn, mult=1): layers = [] sys.stdout.write( ' %3d' % channels[0] ) for ind in range(len(channels)-1): m = 1 if ind == 0 else mult in_channels = channels[ind] * m out_channels = channels[ind+1] stride = stride_fn(ind) sys.stdout.write( ' --> %3d' % out_channels ) if ind < len(channels)-2: block = conv(in_channels, out_channels, kernel_size, stride, padding) else: block = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) layers.append(block) sys.stdout.write('\n') sys.stdout.flush() return nn.ModuleList(layers)
[ "15270989505@163.com" ]
15270989505@163.com
bf3e130b1bab3b6fcb044e25147092962b48fd91
1af49694004c6fbc31deada5618dae37255ce978
/tools/metrics/histograms/merge_xml.py
d522fae6d1f2e541fa077ec5b9d3ced366c2ce53
[ "LGPL-2.0-or-later", "Zlib", "BSD-3-Clause", "MIT", "LGPL-2.1-only", "LicenseRef-scancode-unknown-license-reference", "MPL-1.1", "GPL-2.0-only", "Apache-2.0", "LGPL-2.0-only", "LicenseRef-scancode-unknown", "APSL-2.0" ]
permissive
sadrulhc/chromium
59682b173a00269ed036eee5ebfa317ba3a770cc
a4b950c23db47a0fdd63549cccf9ac8acd8e2c41
refs/heads/master
2023-02-02T07:59:20.295144
2020-12-01T21:32:32
2020-12-01T21:32:32
317,678,056
3
0
BSD-3-Clause
2020-12-01T21:56:26
2020-12-01T21:56:25
null
UTF-8
Python
false
false
7,451
py
#!/usr/bin/env python # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """A script to merge multiple source xml files into a single histograms.xml.""" import argparse import os import sys import xml.dom.minidom import expand_owners import extract_histograms import histogram_configuration_model import histogram_paths import populate_enums def GetElementsByTagName(trees, tag, depth=2): """Gets all elements with the specified tag from a set of DOM trees. Args: trees: A list of DOM trees. tag: The tag of the elements to find. depth: The depth in the trees by which a match should be found. Returns: A list of DOM nodes with the specified tag. """ iterator = extract_histograms.IterElementsWithTag return list(e for t in trees for e in iterator(t, tag, depth)) def GetEnumsNodes(doc, trees): """Gets all enums from a set of DOM trees. If trees contain ukm events, populates a list of ints to the "UkmEventNameHash" enum where each value is a ukm event name hash truncated to 31 bits and each label is the corresponding event name. Args: doc: The document to create the node in. trees: A list of DOM trees. Returns: A list of enums DOM nodes. """ enums_list = GetElementsByTagName(trees, 'enums') ukm_events = GetElementsByTagName( GetElementsByTagName(trees, 'ukm-configuration'), 'event') # Early return if there are no ukm events provided. MergeFiles have callers # that do not pass ukm events so, in that case, we don't need to iterate # through the enum list. if not ukm_events: return enums_list for enums in enums_list: populate_enums.PopulateEnumsWithUkmEvents(doc, enums, ukm_events) return enums_list def CombineHistogramsSorted(doc, trees): """Sorts histograms related nodes by name and returns the combined nodes. This function sorts nodes including <histogram>, <variant> and <histogram_suffix>. Then it returns one <histograms> that contains the sorted <histogram> and <variant> nodes and the other <histogram_suffixes_list> node containing all <histogram_suffixes> nodes. Args: doc: The document to create the node in. trees: A list of DOM trees. Returns: A list containing the combined <histograms> node and the combined <histogram_suffix_list> node. """ # Create the combined <histograms> tag. combined_histograms = doc.createElement('histograms') def SortByLowerCaseName(node): return node.getAttribute('name').lower() variants_nodes = GetElementsByTagName(trees, 'variants', depth=3) sorted_variants = sorted(variants_nodes, key=SortByLowerCaseName) histogram_nodes = GetElementsByTagName(trees, 'histogram', depth=3) sorted_histograms = sorted(histogram_nodes, key=SortByLowerCaseName) for variants in sorted_variants: # Use unsafe version of `appendChild` function here because the safe one # takes a lot longer (10000x) to append all children. The unsafe version # is ok here because: # 1. the node to be appended is a clean node. # 2. The unsafe version only does fewer checks but not changing any # behavior and it's documented to be usable if performance matters. # See https://github.com/python/cpython/blob/2.7/Lib/xml/dom/minidom.py#L276. xml.dom.minidom._append_child(combined_histograms, variants) for histogram in sorted_histograms: xml.dom.minidom._append_child(combined_histograms, histogram) # Create the combined <histogram_suffixes_list> tag. combined_histogram_suffixes_list = doc.createElement( 'histogram_suffixes_list') histogram_suffixes_nodes = GetElementsByTagName(trees, 'histogram_suffixes', depth=3) sorted_histogram_suffixes = sorted(histogram_suffixes_nodes, key=SortByLowerCaseName) for histogram_suffixes in sorted_histogram_suffixes: xml.dom.minidom._append_child(combined_histogram_suffixes_list, histogram_suffixes) return [combined_histograms, combined_histogram_suffixes_list] def MakeNodeWithChildren(doc, tag, children): """Creates a DOM node with specified tag and child nodes. Args: doc: The document to create the node in. tag: The tag to create the node with. children: A list of DOM nodes to add as children. Returns: A DOM node. """ node = doc.createElement(tag) for child in children: node.appendChild(child) return node def MergeTrees(trees, should_expand_owners): """Merges a list of histograms.xml DOM trees. Args: trees: A list of histograms.xml DOM trees. should_expand_owners: Whether we want to expand owners for histograms. Returns: A merged DOM tree. """ doc = xml.dom.minidom.Document() doc.appendChild( MakeNodeWithChildren( doc, 'histogram-configuration', # This can result in the merged document having multiple <enums> and # similar sections, but scripts ignore these anyway. GetEnumsNodes(doc, trees) + # Sort the <histogram> and <histogram_suffixes> nodes by name and # return the combined nodes. CombineHistogramsSorted(doc, trees))) # After using the unsafe version of appendChild, we see a regression when # pretty-printing the merged |doc|. This might because the unsafe appendChild # doesn't build indexes for later lookup. And thus, we need to convert the # merged |doc| to a xml string and convert it back to force it to build # indexes for the merged |doc|. doc = xml.dom.minidom.parseString(doc.toxml()) # Only perform fancy operations after |doc| becomes stable. This helps improve # the runtime perforamnce. if should_expand_owners: for histograms in doc.getElementsByTagName('histograms'): expand_owners.ExpandHistogramsOWNERS(histograms) return doc def MergeFiles(filenames=[], files=[], should_expand_owners=False): """Merges a list of histograms.xml files. Args: filenames: A list of histograms.xml filenames. files: A list of histograms.xml file-like objects. should_expand_owners: Whether we want to expand owners. By default, it's false because most of the callers don't care about the owners for each metadata. Returns: A merged DOM tree. """ all_files = files + [open(f) for f in filenames] trees = [xml.dom.minidom.parse(f) for f in all_files] return MergeTrees(trees, should_expand_owners) def PrettyPrintMergedFiles(filenames=[], files=[]): return histogram_configuration_model.PrettifyTree( MergeFiles(filenames=filenames, files=files, should_expand_owners=True)) def main(): parser = argparse.ArgumentParser() parser.add_argument('--output', required=True) args = parser.parse_args() with open(args.output, 'w') as f: # This is run by # https://source.chromium.org/chromium/chromium/src/+/master:tools/metrics/BUILD.gn;drc=573e48309695102dec2da1e8f806c18c3200d414;l=5 # to send the merged histograms.xml to the server side. Providing |UKM_XML| # here is not to merge ukm.xml but to populate `UkmEventNameHash` enum # values. f.write(PrettyPrintMergedFiles( histogram_paths.ALL_XMLS + [histogram_paths.UKM_XML])) if __name__ == '__main__': main()
[ "commit-bot@chromium.org" ]
commit-bot@chromium.org
51c20a8be35d9a81e63f1be880d978d0d13c9257
017033cc7094fd20334607e4c3e6e90bc5006687
/django/api/index/migrations/0032_auto_20210607_1433.py
92261d96b3f94ca8d42235adf992eaaf50474f0b
[]
no_license
HellMenDos/DjangoDockerPostgresSocket.io
cadc8cbc5ec1cd84b1e2455361f9a04ac557c73c
88e4ff65cfc80df7932cffe23eee0ae221ec3519
refs/heads/master
2023-05-31T06:31:35.206756
2021-06-21T19:14:55
2021-06-21T19:14:55
367,129,423
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
# Generated by Django 3.1.4 on 2021-06-07 14:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('index', '0031_auto_20210607_1431'), ] operations = [ migrations.AlterField( model_name='userdata', name='avatar', field=models.ImageField(blank=True, default='', upload_to='static', verbose_name='фото'), ), ]
[ "poznkirill3@gmail.com" ]
poznkirill3@gmail.com
b91955ad63dfda9a71f830d93717f0db2366bf70
7ec91f8b8342b1ab62d315424f43588a13dda307
/solu/221. Maximal Square.py
f17368e629bb9254ed8a5f5a492dfce8f0b97edc
[]
no_license
coolmich/py-leetcode
bbd001a1cb41b13cd0515d1b764ec327dfaaa03c
3129438b032d3aeb87c6ac5c4733df0ebc1272ba
refs/heads/master
2020-05-21T08:44:46.564419
2016-09-15T15:45:08
2016-09-15T15:45:08
60,917,444
3
0
null
null
null
null
UTF-8
Python
false
false
665
py
class Solution(object): def maximalSquare(self, matrix): """ :type matrix: List[List[str]] :rtype: int """ if not len(matrix): return 0 mat, maxi = [[0 for i in range(len(matrix[0]))] for j in range(len(matrix))], 0 for c in range(len(matrix[0])): for r in range(len(matrix)): if not r or not c: mat[r][c] = 1 if matrix[r][c] == '1' else 0 else: if matrix[r][c] == '1': mat[r][c] = min(mat[r-1][c-1], mat[r][c-1], mat[r-1][c]) + 1 maxi = max(maxi, mat[r][c]) return maxi**2
[ "coolmich00@gmail.com" ]
coolmich00@gmail.com
fc36f5d3bbf141bd5b97e9bfa970fa8c1f641c82
31fc068f935aa723a089eda3c8a639e1d9c4cee9
/jason.py
27b41fdd76c9d5384f1f606053da85231f1a696c
[]
no_license
jaythaceo/Jaythaceo
31098a016c4b3453996ef89252f2d9a1f05e9c10
f4cea385318b0ff1708e3d35e96f4eb53925d8d0
refs/heads/master
2023-05-30T15:16:27.589337
2023-04-28T16:23:31
2023-04-28T16:23:31
157,614,343
3
0
null
null
null
null
UTF-8
Python
false
false
969
py
# Lets make a bot that does some cool shit from flask import Flask, render_template, request, jsonify import aiml import os app = Flask(__name__) @app.route("/") def hello(): return render_template('chat.html') @app.route("/ask", methods=['POST']) def ask(): message = request.form['messageText'].encode('utf-8').strip() kernel = aiml.Kernel() if os.path.isfile("bot_brain.brn"): kernel.bootstrap(brainFile = "bot_brain.brn") else: kernel.bootstrap(learnFiles = os.path.abspath("aiml/std-startup.xml"), commands = "load aiml b") kernel.saveBrain("bot_brain.brn") # kernel now ready for use while True: if message == "quit": exit() elif message == "save": kernel.saveBrain("bot_brain.brn") else: bot_response = kernel.respond(message) # print bot_response return jsonify({'status':'OK','answer':bot_response}) if __name__ == "__main__": app.run(host='0.0.0.0', debug=True)
[ "jaythaceo@gmail.com" ]
jaythaceo@gmail.com
88c1de86d4d9ba1db69c49098476c61e05196810
540b4199dd80228f1d84c9b687e974cfa2c289a2
/【Python+Dash快速web应用开发】系列文章/16 多页面应用/app2.py
4298790c10256c39aeb6b4f979952cf587c417be
[]
no_license
CNFeffery/DataScienceStudyNotes
1186e26c88874b89b65f841af5f78dc49429e479
d45b42b49be04ba4add9cdd18b4787fb3c334b1f
refs/heads/master
2023-08-17T07:18:43.730916
2023-07-25T14:05:17
2023-07-25T14:05:17
206,516,448
1,141
485
null
null
null
null
UTF-8
Python
false
false
1,543
py
import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output app = dash.Dash(__name__) app.layout = dbc.Container( [ dcc.Location(id='url', refresh=False), dbc.Row( [ dbc.Col( [ html.A('页面A', href='/pageA'), html.Br(), html.A('页面B', href='/pageB'), html.Br(), html.A('页面C', href='/pageC'), ], width=2, style={ 'backgroundColor': '#eeeeee' } ), dbc.Col( html.H3(id='render-page-content'), width=10 ) ] ) ], style={ 'paddingTop': '20px', 'height': '100vh', 'weight': '100vw' } ) @app.callback( Output('render-page-content', 'children'), Input('url', 'pathname') ) def render_page_content(pathname): if pathname == '/': return '欢迎来到首页' elif pathname == '/pageA': return '欢迎来到页面A' elif pathname == '/pageB': return '欢迎来到页面B' elif pathname == '/pageC': return '欢迎来到页面C' else: return '当前页面不存在!' if __name__ == '__main__': app.run_server(debug=True)
[ "fefferypzy@gmail.com" ]
fefferypzy@gmail.com
1c555d3c397b93d8929f1f3d32c733ad9362307a
28bf7793cde66074ac6cbe2c76df92bd4803dab9
/answers/Utkarsh Srivastava/Day 6/Question 1.py
51078cd3ed9f7841f0a3dc1a97b49dc757ef6903
[ "MIT" ]
permissive
Codechef-SRM-NCR-Chapter/30-DaysOfCode-March-2021
2dee33e057ba22092795a6ecc6686a9d31607c9d
66c7d85025481074c93cfda7853b145c88a30da4
refs/heads/main
2023-05-29T10:33:31.795738
2021-06-10T14:57:30
2021-06-10T14:57:30
348,153,476
22
135
MIT
2021-06-10T14:57:31
2021-03-15T23:37:26
Java
UTF-8
Python
false
false
371
py
candies = input("Enter Candies ").split() max = 0 result = [0]*len(candies) extra = int(input("Enter extra candies ")) for i in range(len(candies)): candies[i] = int(candies[i]) if int(candies[i])>max: max = candies[i] for i in range(len(candies)): if(candies[i]+extra>=max): result[i] = True else: result[i] = False print(result)
[ "noreply@github.com" ]
Codechef-SRM-NCR-Chapter.noreply@github.com
3cc37cf0d6c169ef8ca16a2422467566dd03733e
24e843a90a3b3a37cc4d76a207f41d1fc628c2e7
/python3/test141~225.py
8fb44d48461a29e5a31ea55c2269ee6e23ee6e0f
[]
no_license
erikliu0801/leetcode
c595ea786716f7df86bd352c1e8d691f1870ec70
1de7bfe192324f9de28afa06b9539331c87d1346
refs/heads/master
2023-08-07T14:47:19.074076
2021-09-05T09:46:35
2021-09-05T09:46:35
224,321,259
0
0
null
null
null
null
UTF-8
Python
false
false
6,035
py
#141 def hasCycle(head): linked_list = [] while head != None: if head in linked_list: return True linked_list.append(head) head = head.next return False #168 def convertToTitle(n): if n <= 0: return else: digits = ['Z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y'] digits_sum, digits_num, digits_level = 0, 1, 0 while digits_sum < n: digits_num *= 26 digits_level += 1 digits_sum += digits_num if digits_sum == n: return 'Z' * digits_level else: all_digits = '' while digits_level > 0: all_digits = digits[n % 26] + all_digits if n % 26 == 0: n = n//26 -1 else: n = n//26 digits_level -= 1 return all_digits #169 def majorityElement(nums): for num in set(nums): if nums.count(num) > len(nums)//2: return num #171 def titleToNumber(s): def addSum(digits): add_sum = 0 if digits > 0: add_sum = 26**digits + addSum(digits-1) return add_sum digits = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] add_sum = addSum(len(s)-1) + 1 for i in range(len(s)): add_sum += digits.index(s[-1-i]) * 26 ** i return add_sum #172 def trailingZeroes(n): negative = False if n < 0 and n % 2 != 0: negative = True n = abs(n) five_scale = 5 five_scale_addnum = [1] while five_scale < n: five_scale *= 5 five_scale_addnum.append(five_scale_addnum[-1]*5 +1) add_num = 0 for i in range(1,len(five_scale_addnum)+1): add_num += (n // five_scale) * five_scale_addnum[-i] n %= five_scale five_scale //= 5 if negative == True: return 0 - add_num else: return add_num #202 def isHappy(n): if n < 1: return False pre = list() while n != 1: if n in pre: return False pre.append(n) cache = 0 for c in str(n): cache += int(c)**2 n = cache return True # def main(): # print(isHappy(200)) #203 def removeElements(head, val): if type(head) != ListNode: return while head.val == val: if head.next != None: head = head.next else: return if head.next == None: return head l1 = removeElements(head.next, val) if l1: head.next = l1 else: head.next = None return head #204 def countPrimes(n): import time now = time.time() if n <= 2: return 0 else: primes = set({2}) x = set(range(3,n,2)) while len(x) != 0: prime = min(x) primes.add(prime) x.remove(prime)# x -= x.intersection(set(range(prime**2,n,prime))) ## if prime**2 >= n: break primes |= x print(time.time() - now) return len(primes) #205 def isIsomorphic(s, t): pass #206 def reverseList(head): if type(head) != ListNode: return elif head.next == None: return head else: node = head.next #n2 head.next = None #n1->X while node.next: #if n3 exist new_head = node.next #n3 node.next = head #n2->n1 if new_head.next != None: head = node # n1 = n2 node = new_head # n2 = n3 else: new_head.next = node #n3->n2 return new_head node.next = head return node #217 def containsDuplicate(nums): return len(set(nums)) != len(nums) #219 def containsNearbyDuplicate(nums, k): if len(set(nums)) == len(nums): return False c = list() c_i_j = list() for m, num in enumerate(nums): if num in c: c_i_j[c.index(num)].append(m) else: c.append(num) c_i_j.append([m]) k_s = set() for m in c_i_j: for n, i in enumerate(m): for j in m[n+1:]: k_s.add(abs(j-i)) return k in k_s def main(): input_nums = [[1,2,3,1], [1,0,1,1], [1,0,1,1], [1,0,1,1], [1,2,3,1,2,3], [1,2,3,1,2,3]] input_k = [3, 1, 2, 3, 2, 3] expected_output = [True, True, True, True, False, True] for i in range(len(input_nums)): if containsNearbyDuplicate(input_nums[i], input_k[i]) != expected_output[i]: print("Wrong!!!") print(containsNearbyDuplicate(input_nums[i], input_k[i])) else: print("Right") # print(containsNearbyDuplicate(input_nums[-1], input_k[-1])) if __name__ == '__main__': main() class ListNode: def __init__(self, x): self.val = x self.next = None def LinkedList2List(ListNode): """ ListNode: Head rtype: List """ list1 = [] l0 = ListNode while l0 != None: list1.append(l0.val) l0 = l0.next return list1 def List2LinkedList(List): """ rtype: Head of ListNode """ l = ListNode(0) l0 = l for i in range(len(List)): l.val = List[i] if i + 1 != len(List): l.next = ListNode(0) l = l.next return l0 #141 # input_linked_list = [[3,2,0,-4]] # expected_output = [True] # for i in range(len(input_linked_list)): # if hasCycle(List2LinkedList(input_linked_list[i])) != expected_output[i]: # print("Wrong!!!") # print(hasCycle(List2LinkedList(input_linked_list[i]))) # else: # print("Right") # print(hasCycle(List2LinkedList(input_linked_list[-1]))) #168 # for i in range(1,28): # print(convertToTitle(i)) # input_int = [1, 26, 28, 701, 702, 703, 17576, 18278, 18279] # expected_output = ['A', 'Z', 'AB', 'ZY', 'ZZ', 'AAA', 'YYZ', 'ZZZ', 'AAAA'] # for i in range(len(input_int)): # if convertToTitle(input_int[i]) != expected_output[i]: # print("Wrong!!!") # print(convertToTitle(input_int[i])) # else: # print("Right") # print(convertToTitle()) #169 # print(majorityElement([2,2,1,1,1,2,2])) #171 # print(titleToNumber('BA')) #172 # for i in range(1,11): # print(factorial(i)) # print(trailingZeroes(124)) #203 # print(LinkedList2List(removeElements(List2LinkedList([6,6,3,4,5,6,6]),6))) #204 # print(countPrimes(1000000)) #205 # input_s = ['egg', 'foo', 'paper'] # input_t = ['add', 'bar', 'title'] # expected_output = [True, False, True] # for i in range(len(input_s)): # if isIsomorphic(input_s[i],input_t[i]) != expected_output[i]: # print("Wrong!!!") # print(isIsomorphic(input_s[i],input_t[i])) # else: # print("Right") # print(isIsomorphic(input_s[-1],input_t[-1])) #206 # print(LinkedList2List(reverseList(List2LinkedList([1,2])))) #217 # print(containsDuplicate([1,2])) #219
[ "erikliu0801@gmail.com" ]
erikliu0801@gmail.com
e356b5be593efe2b242480222729f42b266cea26
99799383b4e618061fe9261aa70cfe420e02a5aa
/person/migrations/0008_person_datetime_updated.py
b93c4440a6d2a8a9406b93a49b315141c371f377
[ "MIT" ]
permissive
openkamer/openkamer
f311a97d5c9e182eabd6602f42475e8e049912b0
bb99963c00ad90299deccd44d977c27aee7eb16c
refs/heads/master
2023-07-20T10:45:11.402427
2023-07-18T17:41:56
2023-07-18T17:41:56
57,322,204
62
7
MIT
2023-07-17T18:15:43
2016-04-28T17:43:23
Python
UTF-8
Python
false
false
397
py
# Generated by Django 2.2.8 on 2019-12-05 19:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('person', '0007_auto_20191205_1833'), ] operations = [ migrations.AddField( model_name='person', name='datetime_updated', field=models.DateTimeField(auto_now=True), ), ]
[ "bart.romgens@gmail.com" ]
bart.romgens@gmail.com
4ff6bf0f114dfc486ac2a7d447a98809d1b04a35
d63b1b36634b68070f6f3c017c0250a7ea646e6f
/SMC/GEM5/gem5/src/mem/ruby/structures/RubyPrefetcher.py
18bb3dc69472cf6d08ff90277396485033e73a76
[ "BSD-3-Clause", "LicenseRef-scancode-proprietary-license", "LGPL-2.0-or-later", "MIT" ]
permissive
jiwon-choe/Brown-SMCSim
ccf506d34d85fb3d085bf50ed47de8b4eeaee474
ff3d9334c1d5c8d6a00421848c0d51e50e6b67f8
refs/heads/master
2021-06-30T00:15:57.128209
2020-11-24T03:11:41
2020-11-24T03:11:41
192,596,189
15
8
MIT
2019-06-20T15:43:00
2019-06-18T18:53:40
C++
UTF-8
Python
false
false
2,437
py
# Copyright (c) 2012 Mark D. Hill and David A. Wood # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Nilay Vaish from m5.SimObject import SimObject from System import System from m5.params import * from m5.proxy import * class Prefetcher(SimObject): type = 'Prefetcher' cxx_class = 'Prefetcher' cxx_header = "mem/ruby/structures/Prefetcher.hh" num_streams = Param.UInt32(4, "Number of prefetch streams to be allocated") pf_per_stream = Param.UInt32(1, "Number of prefetches per stream") unit_filter = Param.UInt32(8, "Number of entries in the unit filter array") nonunit_filter = Param.UInt32(8, "Number of entries in the non-unit filter array") train_misses = Param.UInt32(4, "") num_startup_pfs = Param.UInt32(1, "") cross_page = Param.Bool(False, """True if prefetched address can be on a page different from the observed address""") sys = Param.System(Parent.any, "System this prefetcher belongs to")
[ "brandnew7th@gmail.com" ]
brandnew7th@gmail.com
6063712ab5545c979e943f37231f60c58696e514
1cc5d45273d008e97497dad9ec004505cc68c765
/cheatsheet/ops_doc-master/Service/cfaq/personalNoteBook/pythonLearn-decorator.py
79936304b8d47aa4fb0180ebc31d541b08fcf72f
[]
no_license
wangfuli217/ld_note
6efb802989c3ea8acf031a10ccf8a8a27c679142
ad65bc3b711ec00844da7493fc55e5445d58639f
refs/heads/main
2023-08-26T19:26:45.861748
2023-03-25T08:13:19
2023-03-25T08:13:19
375,861,686
5
6
null
null
null
null
UTF-8
Python
false
false
859
py
from functools import wraps def memorization(func: object) -> object: cache = {} @wraps(func) def wrapper(*args): v = cache.get(args, None) if v == None: cache[args] = func(*args) return cache[args] return wrapper @memorization def fibonacci(n: int) -> int: global count count += 1 if n < 2: return n return fibonacci(n-1) + fibonacci(n-2) count = 0 if __name__ == '__main__': for i in range(10): num = fibonacci(i) print(i, num, sep='->',end=';') print('compute times: ',count) /////////////////////////////////////output: #0->0;1->1;2->1;3->2;4->3;5->5;6->8;7->13;8->21;9->34;compute times: 10 with memorization #0->0;1->1;2->1;3->2;4->3;5->5;6->8;7->13;8->21;9->34;compute times: 276 without memorization
[ "wangfl217@126.com" ]
wangfl217@126.com
ec8332242621c2a458f725a777fa1c7e23397c1c
998e1a1346f59c8e9b7669e7ebf716f9ac8cd117
/EVSCapp/EVSCApi/urls.py
a7f4daee03f8376cd0fe5a37f9a9cb4180942c30
[]
no_license
meku54444026/EVSCProject
3415cf3b0abb682866fcca9bbebb32f37cb744c4
1bef5b405391409f27ea5948203c5e28fa1a28ff
refs/heads/master
2023-07-02T04:45:15.314439
2021-08-10T14:52:48
2021-08-10T14:52:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,339
py
from django.db import router from django.urls import path from django.urls.conf import include from EVSCapp.EVSCApi.views import (RecordDetailAPIView, LisVehicle, VehicleDetailAPIView, ReportRUDAPIView, UpdateFcmTokenApiView, ListFcmTokenDevices, # fcm_token_detail ListReport, MyProfileLoadAPIView, ListUser, ListUserDetail, RecordViewSet, # RecordList, list_records ) from rest_framework.routers import DefaultRouter from EVSCapp.EVSCApi import views as qv router=DefaultRouter() router.register("records",qv.RecordViewSet) # router.register('devices', FCMDeviceAuthorizedViewSet) urlpatterns = [ # path("",include(router.urls)), path("",include(router.urls)), path('rest-auth/',include("rest_auth.urls")), path('records/',list_records,name='list-rcords'), path('records/<int:pk>/',RecordDetailAPIView.as_view(),name='list-detail'), path("records/<int:pk>/report/", qv.ReportCreateAPiView.as_view(),name='create-report'), path('vehicles/',LisVehicle.as_view(),name='list-vehicle'), path('vehicles/<int:pk>/',VehicleDetailAPIView.as_view(),name='vehicle-detail'), path('reports/',ListReport.as_view(),name='report-list'), path('reports/<int:pk>',ReportRUDAPIView.as_view(),name='report-detail'), path('devices/',ListFcmTokenDevices.as_view(),name='list-device-token'), path('devices/<int:user>/',UpdateFcmTokenApiView.as_view(),name='create-device-token'), path('user-profile/',MyProfileLoadAPIView.as_view(),name ='retriev-user-profile'), path('users/',ListUser.as_view(), name ='users'), path('users/<int:pk>',ListUserDetail.as_view(), name = 'user-detail') # path('devices/<int:pk>',fcm_token_detail,name='create-device-token') # path('records/<int:pk>/report',ReportCreateAPiView.as_view(),name='create-record') ]
[ "you@example.com" ]
you@example.com
1b01557b777216b35b876eb5b76e8c11dcae98f7
51a37b7108f2f69a1377d98f714711af3c32d0df
/src/leetcode/P376.py
67230c5dd08e1fd4c1ad079f193aeec2d1ebc6e8
[]
no_license
stupidchen/leetcode
1dd2683ba4b1c0382e9263547d6c623e4979a806
72d172ea25777980a49439042dbc39448fcad73d
refs/heads/master
2022-03-14T21:15:47.263954
2022-02-27T15:33:15
2022-02-27T15:33:15
55,680,865
7
1
null
null
null
null
UTF-8
Python
false
false
697
py
class Solution: def wiggleMaxLength(self, nums): n = len(nums) if n < 2: return n inc = None t = 1 for i in range(1, n): if inc is None: if nums[i] == nums[i - 1]: continue else: if nums[i] < nums[i - 1]: inc = True else: inc = False if (inc and nums[i] < nums[i - 1]) or (not inc and nums[i] > nums[i - 1]) : t += 1 inc = not inc return t if __name__ == '__main__': print(Solution().wiggleMaxLength([1,17,5,10,13,15,10,5,16,8]))
[ "stupidchen@foxmail.com" ]
stupidchen@foxmail.com
11dcbec116bedb68d9ed2b8d582d4fa3c22d4ed6
e87403a46c10b0528ae3d51e9d316c6c92409e2c
/models/attention/encoders/bgru_encoder.py
1f4cbcc86a02f9905836b1f34c787648784c843e
[ "MIT" ]
permissive
xwang0415/tensorflow_end2end_speech_recognition
662c9b899863f5595f903c4ce3b87e675e1d51a1
9d4661e9296b01d1116e82de823f398407207e1f
refs/heads/master
2021-01-21T20:53:51.563852
2017-06-19T06:52:37
2017-06-19T06:52:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,718
py
#! /usr/bin/env python # -*- coding: utf-8 -*- """Bidirectional GRU Encoder class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from .encoder_base import EncoderOutput, EncoderBase class BGRUEncoder(EncoderBase): """Bidirectional GRU Encoder. Args: num_unit: num_layer: keep_prob_input: keep_prob_hidden: parameter_init: clip_activation: not used num_proj: not used """ def __init__(self, num_unit, num_layer, keep_prob_input=1.0, keep_prob_hidden=1.0, parameter_init=0.1, clip_activation=50, # not used num_proj=None, # not used name='bgru_encoder'): EncoderBase.__init__(self, num_unit, num_layer, keep_prob_input, keep_prob_hidden, parameter_init, clip_activation, num_proj, name) def _build(self, inputs, inputs_seq_len): """Construct Bidirectional GRU encoder. Args: inputs: inputs_seq_len: Returns: EncoderOutput: A tuple of `(outputs, final_state, attention_values, attention_values_length)` outputs: final_state: attention_values: attention_values_length: """ self.inputs = inputs self.inputs_seq_len = inputs_seq_len # Input dropout outputs = tf.nn.dropout(inputs, self.keep_prob_input, name='dropout_input') # Hidden layers for i_layer in range(self.num_layer): with tf.name_scope('BiGRU_encoder_hidden' + str(i_layer + 1)): initializer = tf.random_uniform_initializer( minval=-self.parameter_init, maxval=self.parameter_init) with tf.variable_scope('GRU', initializer=initializer): gru_fw = tf.contrib.rnn.GRUCell(self.num_unit) gru_bw = tf.contrib.rnn.GRUCell(self.num_unit) # Dropout (output) gru_fw = tf.contrib.rnn.DropoutWrapper( gru_fw, output_keep_prob=self.keep_prob_hidden) gru_bw = tf.contrib.rnn.DropoutWrapper( gru_bw, output_keep_prob=self.keep_prob_hidden) # _init_state_fw = lstm_fw.zero_state(self.batch_size, # tf.float32) # _init_state_bw = lstm_bw.zero_state(self.batch_size, # tf.float32) # initial_state_fw=_init_state_fw, # initial_state_bw=_init_state_bw, # Stacking (outputs_fw, outputs_bw), final_state = tf.nn.bidirectional_dynamic_rnn( cell_fw=gru_fw, cell_bw=gru_bw, inputs=outputs, sequence_length=inputs_seq_len, dtype=tf.float32, scope='BiGRU_' + str(i_layer + 1)) # Concatenate each direction outputs = tf.concat( axis=2, values=[outputs_fw, outputs_bw]) return EncoderOutput(outputs=outputs, final_state=final_state, attention_values=outputs, attention_values_length=inputs_seq_len)
[ "hiro.mhbc@gmail.com" ]
hiro.mhbc@gmail.com
24387105dd66efbecce28fdcd23e85ae0ba6337e
d429c131df32789e11a98e9e965e652176fcee97
/443A - Anton and Letters.py
608e7a2cee9913d55638b75cd9c1c8131e89672c
[]
no_license
shan-mathi/Codeforces
a11841a1ef1a1ef78e3d506d58d9fdf4439421bd
6f8166b79bea0eb1f575dbfc74c252ba71472c7e
refs/heads/main
2023-06-15T08:25:41.130432
2021-06-24T10:36:06
2021-06-24T10:36:06
341,176,287
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
#108786380 Mar/01/2021 14:42UTC+5.5 Shan_XD 443A - Anton and Letters PyPy 3 Accepted 108 ms 0 KB list = str(input()) if list=='{}': print(0) else: list = (list[1:-1].split(',')) list = [i.strip() for i in list] print(len(set(list)))
[ "noreply@github.com" ]
shan-mathi.noreply@github.com
1c79daaf5498a22d80f0c0867463ce97502692e9
3da991a057cd81de802c40da2edd640878685258
/caffe2/python/operator_test/ctc_beam_search_decoder_op_test.py
21ca68fe007addb4333d4e8913cecfb64e83a685
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
sjx0451/pytorch
9f5b1c0c7c874f9da72c0190dc131944ba828ab7
3544f60f7602081398ee62bc5d652a87f4743dab
refs/heads/master
2022-12-01T22:30:29.888370
2020-08-13T23:45:58
2020-08-13T23:48:31
287,421,291
2
0
NOASSERTION
2020-08-14T02:06:11
2020-08-14T02:06:11
null
UTF-8
Python
false
false
5,391
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core from caffe2.python.test_util import caffe2_flaky from collections import defaultdict, Counter from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest DEFAULT_BEAM_WIDTH = 10 DEFAULT_PRUNE_THRESHOLD = 0.001 class TestCTCBeamSearchDecoderOp(serial.SerializedTestCase): @given( batch=st.sampled_from([1, 2, 4]), max_time=st.sampled_from([1, 8, 64]), alphabet_size=st.sampled_from([1, 2, 32, 128, 512]), beam_width=st.sampled_from([1, 2, 16, None]), num_candidates=st.sampled_from([1, 2]), **hu.gcs_cpu_only ) @settings(deadline=None, max_examples=30) def test_ctc_beam_search_decoder( self, batch, max_time, alphabet_size, beam_width, num_candidates, gc, dc ): if not beam_width: beam_width = DEFAULT_BEAM_WIDTH op_seq_len = core.CreateOperator('CTCBeamSearchDecoder', ['INPUTS', 'SEQ_LEN'], ['OUTPUT_LEN', 'VALUES', 'OUTPUT_PROB'], num_candidates=num_candidates) op_no_seq_len = core.CreateOperator('CTCBeamSearchDecoder', ['INPUTS'], ['OUTPUT_LEN', 'VALUES', 'OUTPUT_PROB'], num_candidates=num_candidates) else: num_candidates = min(num_candidates, beam_width) op_seq_len = core.CreateOperator('CTCBeamSearchDecoder', ['INPUTS', 'SEQ_LEN'], ['OUTPUT_LEN', 'VALUES', 'OUTPUT_PROB'], beam_width=beam_width, num_candidates=num_candidates) op_no_seq_len = core.CreateOperator('CTCBeamSearchDecoder', ['INPUTS'], ['OUTPUT_LEN', 'VALUES', 'OUTPUT_PROB'], beam_width=beam_width, num_candidates=num_candidates) def input_generater(): inputs = np.random.rand(max_time, batch, alphabet_size)\ .astype(np.float32) seq_len = np.random.randint(1, max_time + 1, size=batch)\ .astype(np.int32) return inputs, seq_len def ref_ctc_decoder(inputs, seq_len): output_len = np.zeros(batch * num_candidates, dtype=np.int32) output_prob = np.zeros(batch * num_candidates, dtype=np.float32) val = np.array([]).astype(np.int32) for i in range(batch): Pb, Pnb = defaultdict(Counter), defaultdict(Counter) Pb[0][()] = 1 Pnb[0][()] = 0 A_prev = [()] ctc = inputs[:, i, :] ctc = np.vstack((np.zeros(alphabet_size), ctc)) len_i = seq_len[i] if seq_len is not None else max_time for t in range(1, len_i + 1): pruned_alphabet = np.where(ctc[t] > DEFAULT_PRUNE_THRESHOLD)[0] for l in A_prev: for c in pruned_alphabet: if c == 0: Pb[t][l] += ctc[t][c] * (Pb[t - 1][l] + Pnb[t - 1][l]) else: l_plus = l + (c,) if len(l) > 0 and c == l[-1]: Pnb[t][l_plus] += ctc[t][c] * Pb[t - 1][l] Pnb[t][l] += ctc[t][c] * Pnb[t - 1][l] else: Pnb[t][l_plus] += \ ctc[t][c] * (Pb[t - 1][l] + Pnb[t - 1][l]) if l_plus not in A_prev: Pb[t][l_plus] += \ ctc[t][0] * \ (Pb[t - 1][l_plus] + Pnb[t - 1][l_plus]) Pnb[t][l_plus] += ctc[t][c] * Pnb[t - 1][l_plus] A_next = Pb[t] + Pnb[t] A_prev = sorted(A_next, key=A_next.get, reverse=True) A_prev = A_prev[:beam_width] candidates = A_prev[:num_candidates] index = 0 for candidate in candidates: val = np.hstack((val, candidate)) output_len[i * num_candidates + index] = len(candidate) output_prob[i * num_candidates + index] = Pb[t][candidate] + Pnb[t][candidate] index += 1 return [output_len, val, output_prob] def ref_ctc_decoder_max_time(inputs): return ref_ctc_decoder(inputs, None) inputs, seq_len = input_generater() self.assertReferenceChecks( device_option=gc, op=op_seq_len, inputs=[inputs, seq_len], reference=ref_ctc_decoder, ) self.assertReferenceChecks( device_option=gc, op=op_no_seq_len, inputs=[inputs], reference=ref_ctc_decoder_max_time, ) if __name__ == "__main__": import random random.seed(2603) unittest.main()
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
42894b20a30101258c0c73f702b75506575bf3c4
e08801ffc8aa0e59ef88662ba529056a89d924ef
/examples/elk/lsda/elk_pp.py
13592bebd6ed836096d15314b3a173ff5bfc559f
[]
no_license
chrinide/DFTtoolbox
a8c848849693426b82f4c329523cc8d82f4d39ac
dfe003507011ec14ef520df36d0da55f52dd0028
refs/heads/master
2021-04-15T14:28:40.593612
2017-12-13T23:00:11
2017-12-13T23:00:11
126,837,451
1
0
null
2018-03-26T14:00:25
2018-03-26T14:00:24
null
UTF-8
Python
false
false
710
py
from DFTtoolbox.elk import postproc import os # Parameters ======================================= run_task=[1,2,3,4,5,6] wkdir=os.path.dirname(os.path.realpath(__file__)) klabel=['$\Gamma$','X','W','K','$\Gamma$','L','U','W','L','K'] Ebound=[-5,5] state_grp=[['1:1/1/a/a'],['2:2/2/a/a']] # Main ============================================= print(wkdir) pp=postproc(wkdir) for task in run_task: if task is 1: pp.band_read() elif task is 2: pp.band_plot(klabel,Ebound) elif task is 3: pp.fatband_read() elif task is 4: pp.fatband_plot(state_grp,klabel,Ebound) elif task is 5: pp.pdos_read() elif task is 6: pp.pdos_plot(state_grp,Ebound)
[ "pipidog@gmail.com" ]
pipidog@gmail.com
6d32704f852655a0cfb1ee6f5c83b7814aa83fcb
d748a68c9d9100cb2ad275ebf0fd161532dd8200
/cubicus/device.py
04e4204bac84a483be21a740aef3331e7875f0eb
[]
no_license
drpancake/cubicus-daemon
aff192aa6e5b2ed97a5a34d5e1f3528d99bb4e71
feaa8009a1bfe25ef47ca198e1bc3783ad5b58fd
refs/heads/master
2021-01-02T09:27:10.321494
2012-05-01T21:31:09
2012-05-01T21:31:09
3,901,291
1
0
null
null
null
null
UTF-8
Python
false
false
3,322
py
import os import random from cubicus.sock import SocketThread from cubicus.models import Event PAIRINGS_FILE = 'pairings.dat' def display_pin(pin): """ Kludge - PIL for now """ from PIL import Image, ImageDraw im = Image.new('RGBA', (300, 100)) draw = ImageDraw.Draw(im) draw.text((5, 5), pin) im.show() class DeviceSocketThread(SocketThread): """ Accepts a socket to a remote Cubicus device and services it """ def __init__(self, clientsocket): SocketThread.__init__(self, clientsocket) self._paired = False self._challenged_guid = None self._pin = None # Subscribe to manager updates self.manager.subscribe(self) def notify(self, obj, name, new_value): if name in ['current_context', 'current_application']: self.send_state() elif name == 'event': event = new_value if event.source != Event.DEVICE_EVENT: # Event originated elsewhere, so forward it # to the device self.queue_message('event', event.to_json()) def allowed_types(self): types = ['device_identify', 'state', 'event', 'pair_response'] return SocketThread.allowed_types(self) + types def send_applications(self): apps = map(lambda a: a.to_json(), self.manager.applications) self.queue_message('applications', apps) def handle_pair_response(self, pin): if pin == self._pin: # Successfully paired so store the GUID fp = open(PAIRINGS_FILE, 'a') fp.write('%s\n' % self._challenged_guid) fp.close() # Continue to next step self._paired = True self.send_applications() self.send_state() else: self.queue_message('pair_failure') self.stop() def handle_device_identify(self, guid): """ Checks for existing pairing with the given GUID. If none exists, initiate the pairing process. Once paired, queues the remaining handshake messages """ assert self._paired is False # Touch if its not there if not os.path.isfile(PAIRINGS_FILE): open(PAIRINGS_FILE, 'w').close() fp = open(PAIRINGS_FILE, 'r') s = fp.read() fp.close() pairs = s.split('\n') if guid not in pairs: # Unknown GUID so challenge for a random PIN number self.log('Need to pair for "%s"' % guid) self._challenged_guid = guid self._pin = ''.join(map(str, [random.randint(0, 9) for i in range(4)])) display_pin(self._pin) # Display on host machine self.queue_message('pair_request') else: # Already paired, continue to next step self._paired = True self.send_applications() self.send_state() def handle_state(self, state): self.manager.current_application = state['current_application'] self.manager.current_context = state['current_context'] def handle_event(self, json_event): event = Event.from_json(json_event) event.source = Event.DEVICE_EVENT self.manager.send_event(event)
[ "james.potter@gmail.com" ]
james.potter@gmail.com
65afdd06bb2760a7cd754a6439f901e8c2c18c55
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-sblp-obt/sblp_ut=3.5_rd=0.5_rw=0.06_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=50/sched.py
906f21dc0c17a1a4da4f66497f1581033d82294a
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
-S 0 -X RUN -Q 0 -L 7 138 400 -S 0 -X RUN -Q 0 -L 7 119 400 -S 1 -X RUN -Q 1 -L 4 90 400 -S 1 -X RUN -Q 1 -L 4 72 250 -S 2 -X RUN -Q 2 -L 3 64 250 -S 2 -X RUN -Q 2 -L 3 62 250 -S 3 -X RUN -Q 3 -L 2 40 125 -S 3 -X RUN -Q 3 -L 2 35 150 -S 4 33 150 -S 4 31 150 -S 4 26 100 -S 5 24 150 -S 4 18 100 -S 5 16 175 -S 5 14 125 -S 5 5 100
[ "ricardo.btxr@gmail.com" ]
ricardo.btxr@gmail.com
1efe310b28c4e6a1bf1bfe0b321d4aecdd908515
c0aff8a6ea16a6921bdbb907e6769d229dcdb6cb
/src/push_server/ios/push_worker/apnslib/notify_mgr.py
e55b66465e5275213ab7b49bdf5df1d116cc4eb8
[]
no_license
chwangbjtu/pushService
fe1d3f92ea9f1292603be41894f8496fb7c13fba
28a58bcba1522275d07bb20d41e8df5642955367
refs/heads/master
2021-01-11T18:17:30.263415
2016-09-27T10:43:08
2016-09-27T10:43:08
69,335,813
0
0
null
null
null
null
UTF-8
Python
false
false
3,074
py
#-*- coding: utf-8 -*- from __init__ import * from connection import * from tornado import log import traceback import etc from statistics import Statistics from tokens import TokenMgr class APNSNotificationWrapper(object): sandbox = True payloads = None connection = None identifier = 1 error_at = 0 def __init__(self, certificate = None, sandbox = True): self.connection = APNSConnection(certificate = certificate) self.sandbox = sandbox self.payloads = [] def append(self, payload = None): if not isinstance(payload, APNSNotification): raise APNSTypeError, "Unexpected argument type. Argument should be an instance of APNSNotification object" payload.identify(self.identifier) self.payloads.append(payload) self.identifier += 1 def count(self): return len(self.payloads) def add_failed_num(self): statistics_obj = Statistics() statistics_obj.add_failed_num() def clear(self): self.identifier = 1 self.error_at = 0 self.payloads = [] def notify(self): payloads = [o.payload() for o in self.payloads] messages = [] if len(payloads) == 0: return False for p in payloads: plen = len(p) messages.append(struct.pack('%ds' % plen, p)) message = "".join(messages) apnsConnection = self.connection if self.sandbox != True: apns_host = etc.APNS_HOST else: apns_host = etc.APNS_SANDBOX_HOST apnsConnection.connect(apns_host, etc.APNS_PORT) buf = apnsConnection.write(message) apnsConnection.close() if buf: log.app_log.info("error occured") self.add_failed_num() self.error_handler(buf) return True def error_handler(self, buf): try: unpack_buf = struct.unpack("!BBI", buf) if len(unpack_buf) == 3: log.app_log.info("error :%s", unpack_buf) error_at = unpack_buf[2] error_no = unpack_buf[1] start = error_at - self.error_at if error_no == etc.SHUTDOWN or error_no == etc.NO_ERROR_HAPPENED or error_no == etc.PROCESSING_ERROR: #start = start - 1 pass else: if error_no == etc.INVALID_TOKEN: error_payload = self.payloads[start - 1] error_token = error_payload.get_token() log.app_log.info("invalid token:%s", error_token) token_mgr = TokenMgr() token_mgr.add_delete_token(error_token) self.payloads = self.payloads[start:] self.error_at = error_at self.notify() except Exception, e: pass
[ "chwangbjtu@gmail.com" ]
chwangbjtu@gmail.com
98ee322836ec34a3a4310506f52b914c4f8634ea
56bf1dbfa5d23257522fb03906e13c597a829ed3
/lib/wamp_components/analytics_component.py
09b1634f64ccea3c071b0d8e16dfe5a84f9696bd
[ "MIT" ]
permissive
fendaq/SerpentAI
0417777bbc0fccb50df456d0ced1bce839aa3211
e9c147f33a790a9cd3e4ee631ddbf6bbf91c3921
refs/heads/master
2021-07-23T02:04:15.977726
2017-08-26T23:31:59
2017-08-26T23:31:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,685
py
import asyncio from autobahn.asyncio.wamp import ApplicationSession, ApplicationRunner from autobahn.wamp.types import RegisterOptions, SubscribeOptions from autobahn.wamp import auth from lib.config import config import aioredis import json class AnalyticsComponent: @classmethod def run(cls): print(f"Starting {cls.__name__}...") url = "ws://%s:%s" % (config["analytics"]["host"], config["analytics"]["port"]) runner = ApplicationRunner(url=url, realm=config["analytics"]["realm"]) runner.run(AnalyticsWAMPComponent) class AnalyticsWAMPComponent(ApplicationSession): def __init__(self, c=None): super().__init__(c) def onConnect(self): self.join(config["analytics"]["realm"], ["wampcra"], config["analytics"]["auth"]["username"]) def onDisconnect(self): print("Disconnected from Crossbar!") def onChallenge(self, challenge): secret = config["analytics"]["auth"]["password"] signature = auth.compute_wcs(secret.encode('utf8'), challenge.extra['challenge'].encode('utf8')) return signature.decode('ascii') async def onJoin(self, details): self.redis_client = await self._initialize_redis_client() while True: redis_key, event = await self.redis_client.brpop("SERPENT:AISAAC_MAZE:EVENTS") event = json.loads(event.decode("utf-8")) topic = event.pop("project_key") self.publish(topic, event) async def _initialize_redis_client(self): return await aioredis.create_redis( (config["redis"]["host"], config["redis"]["port"]), loop=asyncio.get_event_loop() )
[ "info@nicholasbrochu.com" ]
info@nicholasbrochu.com
468e2fa105770bc6613f4c974b423ea70ccf8192
26b03741c4651eb2f076e51cd34d71f2fb826fcf
/dev/web/Rocky/src/accounts/migrations/0007_wallettransactions.py
ba8f123aea7966fa763c98b89bb2264471459679
[]
no_license
sreeram315/Rocky---Hardware-project-ATmega-Django-mySQL
072fc8e9913f22dc0e47a73d29ace6ff1795ed0f
1ef82b1914bdfc57866e7420e12bf4318cf3f030
refs/heads/main
2023-06-04T16:01:51.176564
2021-06-21T22:18:01
2021-06-21T22:18:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
# Generated by Django 2.2.7 on 2020-04-03 05:40 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('accounts', '0006_userprofile_wallet_balance'), ] operations = [ migrations.CreateModel( name='WalletTransactions', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('credit', models.IntegerField(default=0)), ('created_on', models.DateTimeField(auto_now_add=True, null=True)), ('updated_on', models.DateTimeField(auto_now=True, null=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='wallet', to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Wallet Transaction', 'verbose_name_plural': 'Wallet Transactions', 'db_table': 'tbl_wallet_transactions', }, ), ]
[ "sreerammaram2@gmail.com" ]
sreerammaram2@gmail.com
054b06d9579be1ed0da49ab1d44ab99a4bdf7eaf
27b86f422246a78704e0e84983b2630533a47db6
/docs/source/tutorials/src/hatch/solid_hatch_true_color.py
71612e3499d520bbc0a4d87c8b1813705602c924
[ "MIT" ]
permissive
mozman/ezdxf
7512decd600896960660f0f580cab815bf0d7a51
ba6ab0264dcb6833173042a37b1b5ae878d75113
refs/heads/master
2023-09-01T11:55:13.462105
2023-08-15T11:50:05
2023-08-15T12:00:04
79,697,117
750
194
MIT
2023-09-14T09:40:41
2017-01-22T05:55:55
Python
UTF-8
Python
false
false
598
py
import ezdxf # hatch with true color requires DXF R2004 or later doc = ezdxf.new("R2004") msp = doc.modelspace() # important: major axis >= minor axis (ratio <= 1.) msp.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5) hatch = msp.add_hatch() # use default ACI fill color hatch.rgb = (211, 40, 215) # every boundary path is a 2D element edge_path = hatch.paths.add_edge_path() # each edge path can contain line arc, ellipse and spline elements # important: major axis >= minor axis (ratio <= 1.) edge_path.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5) doc.saveas("solid_rgb_hatch.dxf")
[ "me@mozman.at" ]
me@mozman.at
daeecd30d81c8cbdc6492acdc2b0ed1ec95cae6e
c42142003122bc8172b00ccee0e733417d06fde0
/webstore/cart/models.py
187e1966774582896c01e0a3d38b75a74f863be0
[]
no_license
sloniewski/django_webstore
53fbe52b7284220a106b7d96abcc06308e1d1b23
76b46396b6915e21d65e1ad0fbc8786d6f15b122
refs/heads/master
2021-10-10T16:32:09.942377
2019-01-13T22:37:44
2019-01-13T22:37:44
115,758,610
1
3
null
null
null
null
UTF-8
Python
false
false
3,923
py
from decimal import Decimal, getcontext from django.db import models from django.db.models import Sum from django.contrib.auth import get_user_model from django.utils.functional import cached_property from webstore.product.models import Product User = get_user_model() class CartManager(models.Manager): def get_for_session(self, request): session = request.session.session_key cart = self.get_queryset().filter( session=session).first() return cart class CartItem(models.Model): """ Reference table for m2m relation cart -> product. Stores additional information about quantity. """ cart = models.ForeignKey( 'Cart', on_delete=models.CASCADE, ) product = models.ForeignKey( Product, on_delete=models.CASCADE, ) quantity = models.PositiveIntegerField() class Meta: unique_together = [ ('cart', 'product') ] @property def price(self): return self.product.actual_price @property def weight(self): return self.quantity * self.product.weight def add_qty(self, qty): self.quantity += qty self.save() def remove_qty(self, qty): if self.quantity <= qty: self.delete() return None self.quantity -= qty self.save() return self @property def value(self): """ Returns value of order-line. """ getcontext().prec = 4 # Order of multiplication is important, to call __mul__ of Cash class price = self.product.actual_price if price: return price * self.quantity return 0 class Cart(models.Model): """ Cart representation, has unique reference to session_key. Does not store items, cart items are m2m relation to cart & product """ objects = CartManager() session = models.CharField( max_length=255, unique=True ) product = models.ManyToManyField( Product, through=CartItem, ) created = models.DateTimeField( auto_now_add=True, ) def _get_item(self, item): item = CartItem.objects.get( product_id=item, cart=self, ) return item def add_item(self, item, qty): try: cart_item = self._get_item(item) cart_item.add_qty(qty) except CartItem.DoesNotExist: cart_item = CartItem.objects.create( product_id=item, cart=self, quantity=qty, ) return cart_item def remove_item(self, item, qty): try: cart_item = self._get_item(item) item = cart_item.remove_qty(qty) if item is None: return None return item except CartItem.DoesNotExist: pass def delete_item(self, item): try: cart_item = self._get_item(item) cart_item.delete() return True except CartItem.DoesNotExist: return True @property def item_count(self): item_count = self.cartitem_set.aggregate( Sum('quantity'))['quantity__sum'] if item_count is None: return 0 return item_count def get_items(self): return self.cartitem_set.all().select_related('product') @property def value(self): value = 0 # TODO should be aggregate for item in self.cartitem_set.filter(quantity__gte=1): value += item.value return value @property def items(self): return self.cartitem_set.all().select_related('product') @cached_property def weight(self): weight = 0 for item in self.items: weight += (item.product.weight * item.quantity) return weight
[ "sloniewski.maciej@gmail.com" ]
sloniewski.maciej@gmail.com
a66986685895e6214469af6309e06d1c7e0e0654
3a891a79be468621aae43defd9a5516f9763f36e
/desktop/core/ext-py/Django-1.11/tests/urlpatterns_reverse/test_localeregexprovider.py
401e9a1ad03f556c6b498ceba120ce6877d00bb2
[ "BSD-3-Clause", "Python-2.0", "Apache-2.0" ]
permissive
oyorooms/hue
b53eb87f805063a90f957fd2e1733f21406269aa
4082346ef8d5e6a8365b05752be41186840dc868
refs/heads/master
2020-04-15T20:31:56.931218
2019-01-09T19:02:21
2019-01-09T19:05:36
164,998,117
4
2
Apache-2.0
2019-01-10T05:47:36
2019-01-10T05:47:36
null
UTF-8
Python
false
false
2,478
py
from __future__ import unicode_literals import os from django.core.exceptions import ImproperlyConfigured from django.test import SimpleTestCase, mock, override_settings from django.urls import LocaleRegexProvider from django.urls.resolvers import LocaleRegexDescriptor from django.utils import translation from django.utils._os import upath here = os.path.dirname(upath(os.path.abspath(__file__))) @override_settings(LOCALE_PATHS=[os.path.join(here, 'translations', 'locale')]) class LocaleRegexProviderTests(SimpleTestCase): def setUp(self): translation.trans_real._translations = {} def tearDown(self): translation.trans_real._translations = {} def test_translated_regex_compiled_per_language(self): provider = LocaleRegexProvider(translation.gettext_lazy('^foo/$')) with translation.override('de'): de_compiled = provider.regex # compiled only once per language error = AssertionError('tried to compile url regex twice for the same language') with mock.patch('django.urls.resolvers.re.compile', side_effect=error): de_compiled_2 = provider.regex with translation.override('fr'): fr_compiled = provider.regex self.assertEqual(fr_compiled.pattern, '^foo-fr/$') self.assertEqual(de_compiled.pattern, '^foo-de/$') self.assertEqual(de_compiled, de_compiled_2) def test_nontranslated_regex_compiled_once(self): provider = LocaleRegexProvider('^foo/$') with translation.override('de'): de_compiled = provider.regex with translation.override('fr'): # compiled only once, regardless of language error = AssertionError('tried to compile non-translated url regex twice') with mock.patch('django.urls.resolvers.re.compile', side_effect=error): fr_compiled = provider.regex self.assertEqual(de_compiled.pattern, '^foo/$') self.assertEqual(fr_compiled.pattern, '^foo/$') def test_regex_compile_error(self): """Regex errors are re-raised as ImproperlyConfigured.""" provider = LocaleRegexProvider('*') msg = '"*" is not a valid regular expression: nothing to repeat' with self.assertRaisesMessage(ImproperlyConfigured, msg): provider.regex def test_access_locale_regex_descriptor(self): self.assertIsInstance(LocaleRegexProvider.regex, LocaleRegexDescriptor)
[ "ranade@cloudera.com" ]
ranade@cloudera.com
4750561ea9d7788e3f16bfbe1c96adc5a4de2664
4d892dc51e2dda0fcce246ac608fc4e0ce98c52b
/FirstStepsInPython/Basics/Lab2 Conditional Statements/06.AreaOfFigures.py
1f9ae6a548d4270bf0e1a3d28da1d38717d4e372
[ "MIT" ]
permissive
inovei6un/SoftUni-Studies-1
510088ce65e2907c2755a15e427fd156909157f0
3837c2ea0cd782d3f79353e61945c08a53cd4a95
refs/heads/main
2023-08-14T16:44:15.823962
2021-10-03T17:30:48
2021-10-03T17:30:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
from math import pi figure = input() a = str("square") b = str("rectangle") c = str("circle") d = str("triangle") if figure == a: side = float(input()) print(side * side) elif figure == b: side_a = float(input()) side_b = float(input()) print(side_a * side_b) elif figure == c: rad = float(input()) print(pi * rad * rad) elif figure == d: side_a = float(input()) side_b = float(input()) print((side_a * side_b) / 2)
[ "lazar_off@yahoo.com" ]
lazar_off@yahoo.com
71464c227b83bec13b1cda37a74689e9e64c894d
7b5c1352e1a4fb8352161cc135bfd1225a633828
/2017-cvr-tencent-final/src/ffm_gbdt/evaluate.py
eff22cd6da75a597c9be09fbed629e6051ba6cfe
[]
no_license
zgcgreat/2017-cvr-tencent
b7f54ae8df55fbb30f2430f695a148844982aa3a
fe79d0756bbf862d45e63e35b7c28da8396bcbda
refs/heads/master
2021-04-03T08:32:33.651705
2018-07-17T08:36:53
2018-07-17T08:36:53
124,724,199
6
3
null
null
null
null
UTF-8
Python
false
false
2,248
py
# _*_ coding: utf-8 _*_ import sys from csv import DictReader from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import log_loss from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import roc_auc_score data_path = sys.argv[1] result_path = sys.argv[2] label_path = data_path + 'validation.csv' predict_path = result_path + 'submission.csv' label_reader = DictReader(open(label_path)) predict_reader = DictReader(open(predict_path)) count = 0 y_true = [] y_pred = [] y_scores = [] for t, row in enumerate(label_reader): predict = predict_reader.__next__() actual = float(row['Label']) predicted = float(predict['Predicted']) y_true.append(actual) y_scores.append(predicted) # 大于阈值的即视为点击 if (predicted >= 0.5): y_pred.append(1) else: y_pred.append(0) count += 1 # 计算性能指标 auc = roc_auc_score(y_true, y_scores) logloss = log_loss(y_true, y_pred) accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred) recall = recall_score(y_true, y_pred) f1 = f1_score(y_true, y_pred) print('Accuracy: {0} Precision: {1} Recall: {2} F1-Measure: {3}\n'.format(accuracy, precision, recall, f1)) print('logloss: {0} auc: {1}\n'.format(logloss, auc)) result = open(result_path + 'details.txt', 'w') result.write('------------------------------------------------------------\n\n') result.write('Total instances: {count}\n\n\nValidation File: {vafile}\n\nPrediction file: {prefile}\n\n' .format(count=count, vafile=label_path, prefile=predict_path)) result.write( 'Accuracy: {0}\n\nPrecision: {1}\n\nRecall: {2}\n\nF1-Measure: {3}\n\n'.format(accuracy, precision, recall, f1)) result.write('logloss: {0}\n\nauc: {1}\n\n'.format(logloss, auc)) result.write('-------------------------------------------------------------\n\n') result.close() # 将结果写入表格 statistics = open(result_path + 'result.csv', 'w') statistics.writelines('Accuracy,Precision,Recall,F1-Measure,Logloss,AUC\n') statistics.writelines('{0},{1},{2},{3},{4},{5}'.format(accuracy, precision, recall, f1, logloss, auc)) statistics.close()
[ "1107630485@qq.com" ]
1107630485@qq.com
ac538fcd79a7e716accd2aa0b73d989b81b002af
12123592a54c4f292ed6a8df4bcc0df33e082206
/py3/pgms/sec4/Circle.py
fa62fb9969f45e1a99a84b59831899e078e263fc
[]
no_license
alvinooo/advpython
b44b7322915f832c8dce72fe63ae6ac7c99ef3d4
df95e06fd7ba11b0d2329f4b113863a9c866fbae
refs/heads/master
2021-01-23T01:17:22.487514
2017-05-30T17:51:47
2017-05-30T17:51:47
92,860,630
0
0
null
null
null
null
UTF-8
Python
false
false
358
py
# Circle.py - Circle module import math class Circle(object): def __init__(self, radius=1): self.__radius = radius def getRadius(self): return self.__radius def circum(self): return 2 * math.pi * self.__radius def area(self): return math.pi * self.__radius ** 2 def __str__(self): return "Circle: %s" %(self.__radius)
[ "alvin.heng@teradata.com" ]
alvin.heng@teradata.com
c5ea92fa5595fba5d666432acdda222cf54fe4cb
5fe72bb13baf3649058ebe11aa86ad4fc56c69ed
/hard-gists/1f66e4d58074d64c8268/snippet.py
a669f0ac17f9e738398c8f61266bb602ed43eb70
[ "Apache-2.0" ]
permissive
dockerizeme/dockerizeme
8825fed45ff0ce8fb1dbe34959237e8048900a29
408f3fa3d36542d8fc1236ba1cac804de6f14b0c
refs/heads/master
2022-12-10T09:30:51.029846
2020-09-02T13:34:49
2020-09-02T13:34:49
144,501,661
24
20
Apache-2.0
2022-11-21T12:34:29
2018-08-12T21:21:04
Python
UTF-8
Python
false
false
1,223
py
import argparse import urllib.request import os import img2pdf from os import walk from os.path import join from bs4 import BeautifulSoup work_dir = os.path.dirname(__file__) def download_images(url): html = urllib.request.urlopen(url).read() soup = BeautifulSoup(html) title = 'pdf_images' # soup.title.string images = soup.findAll('img', {'class': 'slide_image'}) for image in images: image_url = image.get('data-full').split('?')[0] command = 'wget %s -P %s --quiet' % (image_url, title) os.system(command) convert_pdf(title) def convert_pdf(url): f = [] for (dirpath, dirnames, filenames) in walk(join(work_dir, url)): f.extend(filenames) break f = ["%s/%s" % (url, x) for x in f] print("Making pdf") pdf_bytes = img2pdf.convert(f, dpi=300, x=None, y=None) doc = open('presentation.pdf', 'wb') doc.write(pdf_bytes) doc.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("url", type=str, help="download an slideshare presentation given the url") args = parser.parse_args() download_images(args.url) os.system('rm -r pdf_images')
[ "42325807+dockerizeme@users.noreply.github.com" ]
42325807+dockerizeme@users.noreply.github.com
4120f2826dcf9ed8b34f5ccdbaa5e04098ba005c
1677eaad65da601a3ac34bd6648c973ffd23c5a9
/test/test_recipients_api.py
3649e01a51dd5da0c43ad32857deb08372c0acba
[]
no_license
jeffkynaston/sdk-spike-python
dc557cc1557387f8a126cd8e546201d141de535e
f9c65f578abb801ffe5389b2680f9c6ed1fcebd3
refs/heads/main
2023-07-10T00:58:13.864373
2021-08-05T21:38:07
2021-08-05T21:38:07
393,175,147
0
0
null
null
null
null
UTF-8
Python
false
false
1,403
py
""" Plastiq Public API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import unittest import openapi_client from openapi_client.api.recipients_api import RecipientsApi # noqa: E501 class TestRecipientsApi(unittest.TestCase): """RecipientsApi unit test stubs""" def setUp(self): self.api = RecipientsApi() # noqa: E501 def tearDown(self): pass def test_recipients_get(self): """Test case for recipients_get Retrieve a paginated list of Recipients by query parameter(s) # noqa: E501 """ pass def test_recipients_id_delete(self): """Test case for recipients_id_delete Delete a Recipient # noqa: E501 """ pass def test_recipients_id_get(self): """Test case for recipients_id_get Retrieve a Recipient # noqa: E501 """ pass def test_recipients_id_patch(self): """Test case for recipients_id_patch Update a Recipient # noqa: E501 """ pass def test_recipients_post(self): """Test case for recipients_post Create a Recipient # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
[ "jeff.kynaston@plastiq.com" ]
jeff.kynaston@plastiq.com
bdfab790143c4ba126b8efec958c5486207c0a99
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf.0/gsn-edf_ut=3.5_rd=0.5_rw=0.06_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=93/params.py
278fd438e6fdf9246abe78754f18f7426f4fa985
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
{'cpus': 4, 'duration': 30, 'final_util': '3.543786', 'max_util': '3.5', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '0.5', 'res_nmb': '4', 'res_weight': '0.06', 'scheduler': 'GSN-EDF', 'trial': 93, 'utils': 'uni-medium-3'}
[ "ricardo.btxr@gmail.com" ]
ricardo.btxr@gmail.com
2f71ff7ba4d2e8f7e6ddba2ab05056646a76a884
e669b3fe7da2698da4ce02e98325ce154d2aa546
/swaps/utils/api_signature_v2.py
63401bc3ab76d3f913b31820716826a8895d2d7b
[ "Apache-2.0" ]
permissive
marcellinamichie291/cash_carry_leveraged_futures_arbitrageur
0834a911fdd6c9f1462f6f2f59926f715fc51461
1120ebfb487ce4987fe70e6645b36e0d7ce041ec
refs/heads/main
2023-03-16T18:35:28.730554
2020-12-04T07:46:13
2020-12-04T07:46:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,850
py
import base64 import hashlib import hmac import datetime from urllib import parse import urllib.parse from swaps.exception.huobi_api_exception import HuobiApiException def create_signature_v2(api_key, secret_key, method, url, builder): if api_key is None or secret_key is None or api_key == "" or secret_key == "": raise HuobiApiException(HuobiApiException.KEY_MISSING, "API key and secret key are required") timestamp = utc_now() builder.put_url("accessKey", api_key) builder.put_url("signatureVersion", "2.1") builder.put_url("signatureMethod", "HmacSHA256") builder.put_url("timestamp", timestamp) host = urllib.parse.urlparse(url).hostname path = urllib.parse.urlparse(url).path # 对参数进行排序: keys = sorted(builder.param_map.keys()) # 加入& qs0 = '&'.join(['%s=%s' % (key, parse.quote(builder.param_map[key], safe='')) for key in keys]) # 请求方法,域名,路径,参数 后加入`\n` payload0 = '%s\n%s\n%s\n%s' % (method, host, path, qs0) dig = hmac.new(secret_key.encode('utf-8'), msg=payload0.encode('utf-8'), digestmod=hashlib.sha256).digest() # 进行base64编码 s = base64.b64encode(dig).decode() builder.put_url("signature", s) builder.put_url("authType", "api") params = { "accessKey": api_key, "signatureVersion": "2.1", "signatureMethod": "HmacSHA256", "timestamp": timestamp, "signature":s, "authType":"api" } builder.put_url("action", "req") builder.put_url("ch", "auth") builder.put_url("params", params) """ # for test ret_maps = { "action": "req", "ch": "auth", "params" : params } return json.dumps(ret_maps) """ def utc_now(): return datetime.datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S')
[ "jare@coindexlabs.com" ]
jare@coindexlabs.com
0014e1e799b36fa9daf5f3be780340dca0a2ac61
974d04d2ea27b1bba1c01015a98112d2afb78fe5
/test/legacy_test/test_sparse_isnan_op.py
b807e6ba624452c55d74e668f661008d194d7a44
[ "Apache-2.0" ]
permissive
PaddlePaddle/Paddle
b3d2583119082c8e4b74331dacc4d39ed4d7cff0
22a11a60e0e3d10a3cf610077a3d9942a6f964cb
refs/heads/develop
2023-08-17T21:27:30.568889
2023-08-17T12:38:22
2023-08-17T12:38:22
65,711,522
20,414
5,891
Apache-2.0
2023-09-14T19:20:51
2016-08-15T06:59:08
C++
UTF-8
Python
false
false
3,150
py
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle class TestSparseIsnan(unittest.TestCase): """ Test the API paddle.sparse.isnan on some sparse tensors. x: sparse tensor, out: sparse tensor """ def to_sparse(self, x, format): if format == 'coo': return x.detach().to_sparse_coo(sparse_dim=x.ndim) elif format == 'csr': return x.detach().to_sparse_csr() def check_result(self, x_shape, format, data_type="float32"): raw_inp = np.random.randint(-100, 100, x_shape) mask = np.random.randint(0, 2, x_shape) inp_x = (raw_inp * mask).astype(data_type) inp_x[inp_x > 0] = np.nan np_out = np.isnan(inp_x[inp_x != 0]) dense_x = paddle.to_tensor(inp_x) sp_x = self.to_sparse(dense_x, format) sp_out = paddle.sparse.isnan(sp_x) sp_out_values = sp_out.values().numpy() np.testing.assert_allclose(np_out, sp_out_values, rtol=1e-05) def test_isnan_shape(self): self.check_result([20], 'coo') self.check_result([4, 5], 'coo') self.check_result([4, 5], 'csr') self.check_result([8, 16, 32], 'coo') self.check_result([8, 16, 32], 'csr') def test_isnan_dtype(self): self.check_result([4, 5], 'coo', "float32") self.check_result([4, 5], 'csr', "float32") self.check_result([8, 16, 32], 'coo', "float64") self.check_result([8, 16, 32], 'csr', "float64") class TestStatic(unittest.TestCase): def test(self): paddle.enable_static() indices = paddle.static.data( name='indices', shape=[2, 3], dtype='int32' ) values = paddle.static.data(name='values', shape=[3], dtype='float32') dense_shape = [3, 3] sp_x = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape) sp_y = paddle.sparse.isnan(sp_x) out = sp_y.to_dense() exe = paddle.static.Executor() indices_data = [[0, 1, 2], [1, 2, 0]] values_data = np.array([1.0, float("nan"), 3.0]).astype('float32') fetch = exe.run( feed={'indices': indices_data, 'values': values_data}, fetch_list=[out], return_numpy=True, ) correct_out = np.array( [[False, False, False], [False, False, True], [False, False, False]] ).astype('float32') np.testing.assert_allclose(correct_out, fetch[0], rtol=1e-5) paddle.disable_static() if __name__ == "__main__": unittest.main()
[ "noreply@github.com" ]
PaddlePaddle.noreply@github.com
8cb3839fefedd518307f93a56d09d5034b97b681
472661f4a0094ce070ed9702da1d2e3e55f7cbe7
/data/io/convert_data_to_tfrecord_voc2012.py
e8bf49e6fc5c81a9acab30099d5e87774e780eee
[ "MIT" ]
permissive
hasan-mh-aziz/RetinaNet_Tensorflow
917612d4d58308b8c8444a650e4c43eef291c722
d5d1103243816506f96d36f41f1fb0b56eeefcc1
refs/heads/master
2020-07-31T01:45:20.002881
2019-05-26T11:00:56
2019-05-26T11:00:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,125
py
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import sys sys.path.append('../../') import xml.etree.cElementTree as ET import numpy as np import tensorflow as tf import glob import cv2 from tqdm import tqdm from libs.label_name_dict.label_dict import * from help_utils.tools import * tf.app.flags.DEFINE_string('VOC_dir', '/data/VOC2012/VOCdevkit/VOC2012/', 'Voc dir') tf.app.flags.DEFINE_string('xml_dir', 'Annotations', 'xml dir') tf.app.flags.DEFINE_string('image_dir', 'JPEGImages', 'image dir') tf.app.flags.DEFINE_string('save_name', 'train2012', 'save name') tf.app.flags.DEFINE_string('save_dir', '../tfrecord/', 'save name') tf.app.flags.DEFINE_string('img_format', '.jpg', 'format of image') tf.app.flags.DEFINE_string('dataset', 'pascal', 'dataset') FLAGS = tf.app.flags.FLAGS def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def read_xml_gtbox_and_label(xml_path): """ :param xml_path: the path of voc xml :return: a list contains gtboxes and labels, shape is [num_of_gtboxes, 5], and has [xmin, ymin, xmax, ymax, label] in a per row """ tree = ET.parse(xml_path) root = tree.getroot() img_width = None img_height = None box_list = [] for child_of_root in root: # if child_of_root.tag == 'filename': # assert child_of_root.text == xml_path.split('/')[-1].split('.')[0] \ # + FLAGS.img_format, 'xml_name and img_name cannot match' if child_of_root.tag == 'size': for child_item in child_of_root: if child_item.tag == 'width': img_width = int(child_item.text) if child_item.tag == 'height': img_height = int(child_item.text) if child_of_root.tag == 'object': label = None for child_item in child_of_root: if child_item.tag == 'name': label = NAME_LABEL_MAP[child_item.text] if child_item.tag == 'bndbox': tmp_box = [0, 0, 0, 0] for node in child_item: if node.tag == 'xmin': tmp_box[0] = int(node.text) if node.tag == 'ymin': tmp_box[1] = int(node.text) if node.tag == 'xmax': tmp_box[2] = int(node.text) if node.tag == 'ymax': tmp_box[3] = int(node.text) assert label is not None, 'label is none, error' tmp_box.append(label) box_list.append(tmp_box) gtbox_label = np.array(box_list, dtype=np.int32) return img_height, img_width, gtbox_label def convert_pascal_to_tfrecord(): xml_path = FLAGS.VOC_dir + FLAGS.xml_dir image_path = FLAGS.VOC_dir + FLAGS.image_dir save_path = FLAGS.save_dir + FLAGS.dataset + '_' + FLAGS.save_name + '.tfrecord' mkdir(FLAGS.save_dir) # writer_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB) # writer = tf.python_io.TFRecordWriter(path=save_path, options=writer_options) writer = tf.python_io.TFRecordWriter(path=save_path) fr = open('/data/VOC2012/VOCdevkit/VOC2012/ImageSets/Main/trainval.txt', 'r') lines = fr.readlines() real_cnt = 0 pbar = tqdm(glob.glob(xml_path + '/*.xml')) for xml in pbar: xml = xml.replace('\\', '/') tmp = xml.split('/')[-1].split('.')[0] + "\n" if tmp not in lines: continue img_name = xml.split('/')[-1].split('.')[0] + FLAGS.img_format img_path = image_path + '/' + img_name if not os.path.exists(img_path): print('{} is not exist!'.format(img_path)) continue img_height, img_width, gtbox_label = read_xml_gtbox_and_label(xml) # img = np.array(Image.open(img_path)) img = cv2.imread(img_path)[:, :, ::-1] feature = tf.train.Features(feature={ # do not need encode() in linux 'img_name': _bytes_feature(img_name.encode()), # 'img_name': _bytes_feature(img_name), 'img_height': _int64_feature(img_height), 'img_width': _int64_feature(img_width), 'img': _bytes_feature(img.tostring()), 'gtboxes_and_label': _bytes_feature(gtbox_label.tostring()), 'num_objects': _int64_feature(gtbox_label.shape[0]) }) example = tf.train.Example(features=feature) writer.write(example.SerializeToString()) real_cnt += 1 pbar.set_description("Conversion progress") print('\nConversion is complete! {} images.'.format(real_cnt)) if __name__ == '__main__': # xml_path = '../data/dataset/VOCdevkit/VOC2007/Annotations/000005.xml' # read_xml_gtbox_and_label(xml_path) convert_pascal_to_tfrecord()
[ "yangxue@megvii.com" ]
yangxue@megvii.com
1f07aa448ad1e6d68b20ec4e9f8479fc2df38a6e
ea04557e60fa600a19a2a47da78b0407cf7b3e17
/cms/cms/doctype/module_menu/test_module_menu.py
98c73da43b1ce3e1454a24e9870fea7408ac2018
[ "MIT" ]
permissive
Nirchains/f-cms
ea5b5d09e492a0c3d6691b90454b01720894fc03
8cefaad087994ca3dad0b1c5fadb250904cdd2cb
refs/heads/master
2021-07-19T06:26:10.804498
2020-02-10T12:02:00
2020-02-10T12:02:00
167,004,571
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, Pedro Antonio Fernández Gómez and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestModulemenu(unittest.TestCase): pass
[ "nirchains@gmail.com" ]
nirchains@gmail.com
1722fd154551780247f251986b64cf22acbcd063
15c9450e30742cfaad5d5ce88e86ff29749af975
/training/isotropic/train_auto_2stage.py
6f02f81ae96c2a869392b0a50364775ef77882e9
[ "BSD-2-Clause" ]
permissive
constantinpape/CNNectome
4e4ed3987c7934c3f378f0758c5c545b4ea1ed54
102758cabd4bf9c149b9867709b0a8bea9222438
refs/heads/master
2021-04-15T13:10:17.213845
2018-03-09T20:47:21
2018-03-09T20:47:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,230
py
from __future__ import print_function from gunpowder import * from gunpowder.tensorflow import * from training.gunpowder_wrappers import prepare_h5source import malis import os import math import json import tensorflow as tf def train_until(max_iteration, data_sources): if tf.train.latest_checkpoint('.'): trained_until = int(tf.train.latest_checkpoint('.').split('_')[-1]) else: trained_until = 0 if trained_until >= max_iteration: return data_providers = [] fib25_dir = "/groups/saalfeld/home/funkej/workspace/projects/caffe/run/fib25/01_data/train" if 'fib25h5' in data_sources: for volume_name in ("tstvol-520-1", "tstvol-520-2", "trvol-250-1", "trvol-250-2"): h5_source = Hdf5Source(os.path.join(fib25_dir, volume_name + '.hdf'), datasets={VolumeTypes.RAW: 'volumes/raw', VolumeTypes.GT_LABELS: 'volumes/labels/neuron_ids', VolumeTypes.GT_MASK: 'volumes/labels/mask', }, volume_specs={ VolumeTypes.GT_MASK: VolumeSpec(interpolatable=False) }) data_providers.append(h5_source) fib19_dir = "/groups/saalfeld/saalfeldlab/larissa/fib19" if 'fib19h5' in data_sources: for volume_name in ("trvol-250", "trvol-600"): h5_source = prepare_h5source(fib19_dir, volume_name) data_providers.append(h5_source) with open('net_io_names.json', 'r') as f: net_io_names = json.load(f) register_volume_type('RAW') #register_volume_type('ALPHA_MASK') register_volume_type('GT_LABELS') register_volume_type('GT_MASK') register_volume_type('GT_AFFINITIES') #register_volume_type('GT_AFFINITIES_MASK') register_volume_type('GT_SCALE') register_volume_type('PREDICTED_AFFS_1') register_volume_type('PREDICTED_AFFS_2') register_volume_type('LOSS_GRADIENT_1') register_volume_type('LOSS_GRADIENT_2') voxel_size = Coordinate((8, 8, 8)) input_size = Coordinate((220,)*3) * voxel_size output_1_size = Coordinate((132,)*3) * voxel_size output_2_size = Coordinate((44,)*3) * voxel_size #input_size = Coordinate((66, 228, 228))*(40,4,4) #output_1_size = Coordinate((38, 140, 140))*(40,4,4) #output_2_size = Coordinate((10, 52, 52))*(40,4,4) request = BatchRequest() request.add(VolumeTypes.RAW, input_size) request.add(VolumeTypes.GT_LABELS, output_1_size) request.add(VolumeTypes.GT_MASK, output_1_size) request.add(VolumeTypes.GT_AFFINITIES, output_1_size) #request.add(VolumeTypes.GT_AFFINITIES_MASK, output_1_size) request.add(VolumeTypes.GT_SCALE, output_1_size) snapshot_request = BatchRequest() snapshot_request.add(VolumeTypes.RAW, input_size) # just to center the rest correctly snapshot_request.add(VolumeTypes.PREDICTED_AFFS_1, output_1_size) snapshot_request.add(VolumeTypes.PREDICTED_AFFS_2, output_2_size) snapshot_request.add(VolumeTypes.LOSS_GRADIENT_1, output_1_size) snapshot_request.add(VolumeTypes.LOSS_GRADIENT_2, output_2_size) data_sources = tuple( provider + Normalize() + Pad( { VolumeTypes.RAW: Coordinate((100, 100, 100)) * voxel_size, VolumeTypes.GT_MASK: Coordinate((100, 100, 100)) * voxel_size } ) + RandomLocation() + Reject() for provider in data_providers ) train_pipeline = ( data_sources + RandomProvider() + ElasticAugment([40, 40, 40], [2, 2, 2], [0, math.pi/2.0], prob_slip=0.01, prob_shift=0.05, max_misalign=1, subsample=8) + SimpleAugment() + IntensityAugment(0.9, 1.1, -0.1, 0.1) + IntensityScaleShift(2, -1) + ZeroOutConstSections()+ GrowBoundary(steps=2) + SplitAndRenumberSegmentationLabels() + AddGtAffinities( malis.mknhood3d()) + BalanceLabels({ VolumeTypes.GT_AFFINITIES: VolumeTypes.GT_SCALE }, { VolumeTypes.GT_AFFINITIES: VolumeTypes.GT_MASK })+ PreCache( cache_size=40, num_workers=10) + Train( 'wnet', optimizer=net_io_names['optimizer'], loss=net_io_names['loss'], summary=net_io_names['summary'], log_dir='.log', inputs={ net_io_names['raw']: VolumeTypes.RAW, net_io_names['gt_affs_1']: VolumeTypes.GT_AFFINITIES, net_io_names['loss_weights_1']: VolumeTypes.GT_SCALE, }, outputs={ net_io_names['affs_1']: VolumeTypes.PREDICTED_AFFS_1, net_io_names['affs_2']: VolumeTypes.PREDICTED_AFFS_2 }, gradients={ net_io_names['affs_1']: VolumeTypes.LOSS_GRADIENT_1, net_io_names['affs_2']: VolumeTypes.LOSS_GRADIENT_2 }) + IntensityScaleShift(0.5, 0.5) + Snapshot({ VolumeTypes.RAW: 'volumes/raw', VolumeTypes.GT_LABELS: 'volumes/labels/neuron_ids', VolumeTypes.GT_AFFINITIES: 'volumes/labels/affinities', VolumeTypes.PREDICTED_AFFS_1: 'volumes/labels/pred_affinities_1', VolumeTypes.PREDICTED_AFFS_2: 'volumes/labels/pred_affinities_2', VolumeTypes.LOSS_GRADIENT_1: 'volumes/loss_gradient_1', VolumeTypes.LOSS_GRADIENT_2: 'volumes/loss_gradient_2', }, every=500, output_filename='batch_{iteration}.hdf', additional_request=snapshot_request) + PrintProfilingStats(every=1000) ) print("Starting training...") with build(train_pipeline) as b: for i in range(max_iteration - trained_until): b.request_batch(request) print("Training finished") if __name__ == "__main__": set_verbose(False) data_sources = ['fib25h5'] max_iteration = 400000 train_until(max_iteration, data_sources)
[ "heinrichl@janelia.hhmi.org" ]
heinrichl@janelia.hhmi.org
4df487dabf6fc57d7a08692f301529248de7184c
bdff6688cee79226723fbcf9980c3757a55651b7
/algorithms/implementation/library_fine.py
c8265f6a9940b9b3618fc90b84b5b0ccf7ae488c
[]
no_license
kruthar/hackerrank
1f151203c8f26c033585f30d2cf69a2b22dcaf71
ef81b2aa41a678ad6b0692f933f438a62b1d6b64
refs/heads/master
2016-08-10T07:15:19.165058
2016-02-26T17:48:58
2016-02-26T17:48:58
49,286,556
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
import sys import datetime actual = map(int, sys.stdin.next().strip().split(" ")) expected = map(int, sys.stdin.next().strip().split(" ")) actual_date = datetime.date(actual[2], actual[1], actual[0]) expected_date = datetime.date(expected[2], expected[1], expected[0]) diff = actual_date.toordinal() - expected_date.toordinal() if diff <= 0: print 0 elif actual_date.year == expected_date.year: if actual_date.month == expected_date.month: print 15 * diff else: print 500 * (actual_date.month - expected_date.month) else: print 10000
[ "kruthar@gmail.com" ]
kruthar@gmail.com
98f5338c30e8cc19a51612f76bb8ba0ad89b8674
fb54704d4a6f9475f42b85d8c470e3425b37dcae
/medium/ex402.py
70e030c095d74e75664d2cab7759e72aad5eef4e
[]
no_license
ziyuan-shen/leetcode_algorithm_python_solution
b2784071a94b04e687fd536b57e8d5a9ec1a4c05
920b65db80031fad45d495431eda8d3fb4ef06e5
refs/heads/master
2021-06-27T05:19:47.774044
2021-02-04T09:47:30
2021-02-04T09:47:30
210,991,299
2
0
null
null
null
null
UTF-8
Python
false
false
568
py
from collections import deque class Solution: def removeKdigits(self, num: str, k: int) -> str: if len(num) == k: return "0" q = deque([0]) for i in range(1, k + 1): while q and num[i] < num[q[-1]]: q.pop() q.append(i) ans = str(num[q[0]]) q.popleft() for i in range(k + 1, len(num)): while q and num[i] < num[q[-1]]: q.pop() q.append(i) ans += str(num[q[0]]) q.popleft() return str(int(ans))
[ "ziyuan.shen@duke.edu" ]
ziyuan.shen@duke.edu
d0b2fdbcbc1ba73c2421753c096f41008cea2e13
61050d0d7f0c0a60474e4e85d30be4e5ea7c6b04
/vnf/dom/scattering_kernels/IsotropicElasticKernel.py
7416c4fba85409320daab5dcb70dafe5be561ba0
[]
no_license
danse-inelastic/vnf
8173f06f32b4a2fa2b71fddfe0fecf9c19e05e9a
be989448577f14f424aca4ce852c7198304ca57b
refs/heads/master
2021-01-22T01:06:00.294100
2015-05-02T23:25:45
2015-05-02T23:25:45
34,947,878
1
1
null
null
null
null
UTF-8
Python
false
false
1,183
py
# -*- Python -*- # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2007 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # kernel that scatters neutron isotropicall and elastically from AbstractScatteringKernel import AbstractScatteringKernel as base, TableBase class IsotropicElasticKernel(base): # scattering_length = 1.0 def customizeLubanObjectDrawer(self, drawer): drawer.sequence = ['properties'] # drawer.mold.sequence = ['scattering_length'] return pass InvBase = base.Inventory class Inventory(InvBase): # scattering_length = InvBase.d.float(name = 'scattering_length', default = 1.) dbtablename = 'isotropicelastickernels' pass IsotropicElasticKernel.Inventory = Inventory del Inventory from _ import o2t IsotropicElasticKernelTable = o2t( IsotropicElasticKernel, {'subclassFrom': TableBase}, ) # version __id__ = "$Id$" # End of file
[ "linjiao@caltech.edu" ]
linjiao@caltech.edu
2a8d5dcb4c882246f14bbb1b9d05dfd6ac54fd4a
1cc8ecb740cb5550016bdaf18dab8b2651945ebc
/src/common/helpers/getrequest.py
9dfcbab4279e3a15c4ccf47d36fd363b48656c94
[]
no_license
ShipraShalini/BidEngine
2e1b18c9a93e5be25422e3f521d17763d718c7a7
a6f28b8de7b0e3d8442f7a5a6ebc06b0b9c19cda
refs/heads/master
2021-01-10T15:43:20.510985
2017-12-12T13:40:43
2017-12-12T13:40:43
48,623,215
0
0
null
null
null
null
UTF-8
Python
false
false
781
py
import json def read_request(request): user = request.user.get_username() if request.method == "POST" or request.method == "DELETE" : data = json.loads(request.body) item_name = data['item'] try: amount = data['amount'] except KeyError: return user, item_name else: return user, item_name, amount if request.method == "GET": item_name = request.GET.get('item', None) return user, item_name if request.method == "PUT": data = json.loads(request.body) item_name = data['item'] del data['item'] return user, item_name, data def values(item): return item.item_name, item.created_at, item.status, item.seller, item.min_bid, item.sold_to
[ "code.shipra@gmail.com" ]
code.shipra@gmail.com
7516b196903db3fd1f64e5811a200d7669055a8a
5f46ffd83e844df8e4aa4d8bd495f2653a924cad
/sessions/week_2/debug_example.py
bea50406ad8b5f1c174190dd63fdca72733e3732
[]
no_license
mvwettum/basictrack-2020-2021-2b
33605b48a982f91ac84e19f64218b7b16b164175
3967efdb9b67aa07f4168f7358503a94eb1c4444
refs/heads/master
2023-04-03T14:50:25.915630
2021-04-22T15:54:30
2021-04-22T15:54:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
current_time_str = input("What is the current time (in hours 0-23)?") wait_time_str = input("How many hours do you want to wait") current_time_int = int(current_time_str) wait_time_int = int(wait_time_str) final_time_int = current_time_int + wait_time_int final_answer = final_time_int % 24 print("The time after waiting is: ", final_answer)
[ "mail@vincentvelthuizen.com" ]
mail@vincentvelthuizen.com
d3bc6232292463809ee1b24a4047b595b648e6c6
8ef5a09d76a11c56963f18e6a08474a1a8bafe3c
/leet_code/127. Word Ladder.py
e10d37091ad01c1102b61a505f8948cdbf7af7bf
[]
no_license
roiei/algo
32c4677649c7666db148f6183fbfbf66c8b1969f
ae8bb8bf4ae4026ccaf1dce323b4098547dd35ec
refs/heads/master
2022-04-01T19:21:27.768675
2022-02-19T06:15:29
2022-02-19T06:15:29
169,021,154
0
0
null
null
null
null
UTF-8
Python
false
false
1,347
py
import time from util.util_list import * from util.util_tree import * import copy import collections from typing import List class Solution: def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int: g = collections.defaultdict(list) visited = set() for word in wordList: for i in range(len(word)): key = word[:i] + '@' + word[i + 1:] g[key] += word, q = [(beginWord, 1)] diff = 0 while q: word, diff = q.pop(0) if word == endWord: break for i in range(len(word)): key = word[:i] + '@' + word[i + 1:] for v in g[key]: if v in visited: continue q += (v, diff + 1), visited.add(v) return diff if word == endWord else 0 stime = time.time() #print(5 == Solution().ladderLength("hit", "cog", ["hot","dot","dog","lot","log","cog"])) #print(0 == Solution().ladderLength("hit", "cog", ["hot","dot","dog","lot","log"])) print(2 == Solution().ladderLength("hot", "dot", ["hot","dot","dog"])) print('elapse time: {} sec'.format(time.time() - stime))
[ "hyoukjea.son@hyundai.com" ]
hyoukjea.son@hyundai.com
a8268005cae24a2d3f0293db9ac13fef78c391e0
1880e6a98d9c7957414392cad17cec7455ec84f6
/player71.py
62eb5f846a08ed9604bdd6eec8848c22d9236e2e
[]
no_license
THABUULAGANATHAN/guviprojects
613759b96875005175db308f2dfcdecc355d7894
9eca3e84d227984c5e7a3a988d55674ec31dcd05
refs/heads/master
2022-01-16T17:09:05.390055
2019-07-19T12:54:57
2019-07-19T12:54:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
n=int(input()) li=[int(i) for i in input().split()] for i in range(n-1): if(li[i]<li[i+1]): print(li[i+1],end=" ") else: print(li[i],end=" ")
[ "noreply@github.com" ]
THABUULAGANATHAN.noreply@github.com
5d60548f1170918b905f952667c82e95e24761a3
d0df4037ac7cc1d229058ec46400bdb2c83599fb
/search_in_rotated_sorted_array_ii.py
c3f0fed03cfe683c8848c23429e7f8c015ec5b75
[]
no_license
TechPuppies/leetcode-python
470505b4217b54ee9e5a7f559079bf684dd4b5d1
d3b5ef8ac49ec72213ad7d189f10a2818d7f0a89
refs/heads/master
2016-09-15T17:29:05.933313
2015-01-06T21:26:46
2015-01-06T21:26:46
25,418,174
2
0
null
null
null
null
UTF-8
Python
false
false
477
py
# coding=utf-8 # AC Rate: 30.7% # SOURCE URL: https://oj.leetcode.com/problems/search-in-rotated-sorted-array-ii/ # # Follow up for "Search in Rotated Sorted Array": # What if duplicates are allowed? # Would this affect the run-time complexity? How and why? # Write a function to determine if a given target is in the array. # class Solution: # @param A a list of integers # @param target an integer # @return a boolean def search(self, A, target):
[ "xinzhou918@gmail.com" ]
xinzhou918@gmail.com
e41b8aaa05fc038f29ca34d6623ee20b20eee4d9
8a8b0267c4db8847a898ac73ccb6e78e1744e24c
/Python_Net_Programming/pnp-ex01/sync/client.py
828ad8fcea34b0480616031726d433815df0a484
[]
no_license
entirelymagic/Link_Academy
41ba890df6793924d186ea94dc8d13b0636c6679
844c39ff1281fae8406cd1a0dc06afd357f0bef3
refs/heads/master
2023-06-07T03:17:00.527924
2021-07-03T09:59:25
2021-07-03T09:59:25
314,755,255
0
0
null
null
null
null
UTF-8
Python
false
false
294
py
import socket sClient = socket.socket(socket.AF_INET,socket.SOCK_STREAM) sClient.connect(("localhost",8005)) print("Server said: ", sClient.recv(256).decode("utf-8")) msg = input("msg: ") sClient.send(bytes(msg,"utf-8")) print("Server said: ", sClient.recv(256).decode("utf-8")) sClient.close()
[ "entirelymagic@gmail.com" ]
entirelymagic@gmail.com
9005c88fe2b68a760c0615bfdf885573b6c96618
f24d16c0e064d1f77a09cc02217a6dfe9ee39d56
/pipeline/data_process.py
90837db91d24a7a228b1eb0243ba1a5a70990875
[]
no_license
hbradlow/modelbuilder
92ec5fd92527f6989d43212dd6ffd27abcb4738c
e537fb37f7331bf50e0ea849bc097b996dbfdbdd
refs/heads/master
2020-05-20T00:17:37.352732
2012-11-13T23:44:11
2012-11-13T23:44:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,339
py
import numpy as np import scipy import math from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d class Arrow3D(FancyArrowPatch): """ An arrow object for a matplotlib 3d plot. Code from http://stackoverflow.com/questions/11140163/python-matplotlib-plotting-a-3d-cube-a-sphere-and-a-vector """ def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) FancyArrowPatch.draw(self, renderer) def __repr__(self): return self._verts3d class Ellipse: def __init__(self,origin=[0,0,0],radius=(0,0),angle=0): self.origin = origin self.radius = radius self.angle = angle self.axis = [0,0,1] def __repr__(self): return "center: " + str(self.origin) + ", radius: " + str(self.radius) class Point: def __init__(self,x=0,y=0,z=0,is_valid=True): self.x = x self.y = y self.z = z self.is_valid = is_valid def set(self,l): self.x = l[0] self.y = l[1] self.z = l[2] def list(self): return [self.x,self.y,self.z] class CircleFit: def __init__(self,points=[]): self.circle = Circle() self.points = [] for p in points: self.points.append(Point(p[0],p[1],p[2])) self.plane_to_xy_transform = None self.flatten_transform = None def process(self): self.calculate_plane_to_xy_transform() self.transform_data(self.plane_to_xy_transform) self.calculate_flatten_transform() self.transform_data(self.flatten_transform) self.show() self.calculate_best_fit_ellipse() """ self.transform_data(self.flatten_transform,inverse=True) self.transform_data(self.plane_to_yz_transform,inverse=True) """ def transform_data(self,t,inverse=False): def transform(t,v): return np.dot(t,np.array(v)).tolist() if inverse: t = np.linalg.inv(np.array(t)) else: t = np.array(t) for (index, point) in enumerate(self.points): self.points[index].set(transform(t,point.list()+[1])) self.circle.origin = transform(t,self.circle.origin + [1])[0:3] self.circle.axis = transform(t,self.circle.axis + [0])[0:3] self.normal = transform(t,self.normal + [0])[0:3] def best_fit_plane(self): """ Find the plane that best fits the set of translations """ def zeros(i): return [0 for a in range(i)] A = np.array([zeros(3) for j in range(3)]) b = np.array(zeros(3)) for point in self.points: A = np.add(np.array([ [point.x*point.x, point.x*point.y, point.x], [point.x*point.y, point.y*point.y, point.y], [point.x, point.y, 1]]),A) b = np.add(np.array([point.x*point.z,point.y*point.z,point.z]),b) x = np.linalg.solve(A,b) return x def calculate_plane_to_xy_transform(self): """ Calculate the transform to rotate the plane of the circle into the yz plane. """ def chunks(l, n): """ Yield successive n-sized chunks from l. """ for i in xrange(0, len(l), n): yield l[i:i+n] x = self.best_fit_plane() normal = [x[0],x[1],-1] self.normal = normal from cgkit.cgtypes import quat, mat3, slerp axis = np.cross(np.array(normal),np.array([0,0,1])) angle = math.acos(np.dot(np.array(normal),np.array([0,0,1]))/np.linalg.norm(normal)) q = quat() q = q.fromAngleAxis(angle,axis.tolist()) transform = [i for i in chunks(q.toMat4().toList(rowmajor=True),4)] self.plane_to_xy_transform = transform return transform def calculate_flatten_transform(self): """ Calculate the transform to move all the translation points into the yz plane. Basically just remove the x values. """ def ave(l): return reduce(lambda x,y: x+y,l)/len(l) a = ave([point.z for point in self.points if point.is_valid]) transform = [ [1,0,0,0], [0,1,0,0], [0,0,1,-a], [0,0,0,1]] self.flatten_transform = transform return transform def calculate_best_fit_ellipse(self): """ http://math.stackexchange.com/questions/214661/circle-least-squares-fit """ A = [] b = [] def f(b,*args): det = b[1]**2 - 4*b[0]*b[2] if det > -.1: return 999999 total = 0 for point in self.points: total += np.dot(np.array([point.x**2,point.x*point.y,point.y**2,point.x,point.y,1]),np.array(b))**2 return total x = scipy.optimize.fmin(f,(1,1,1,1,1,1)) self.circle = Circle([0] + x[0].tolist()[0:2],x[0].tolist()[2]) self.circle.radius = math.sqrt(self.circle.radius + self.circle.origin[1]**2 + self.circle.origin[2]**2) self.circle.axis = [1,0,0] def show(self): from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import mpl_toolkits.mplot3d.art3d as art3d import matplotlib.patches fig = plt.figure("Circle Fit") ax = fig.add_subplot(111,projection="3d",aspect=1) x = [];y = [];z = [] for point in self.points: x.append(point.x) y.append(point.y) z.append(point.z) ax.scatter(x,y,z,color="r",s=200) ax.auto_scale_xyz([-.5, .5], [-.5, .5], [-0, 1]) circle_axis = Arrow3D((0,self.normal[0]),(0,self.normal[1]),(0,self.normal[2]),mutation_scale=20,lw=3,arrowstyle="-|>", color="g") ax.add_artist(circle_axis) plt.show()
[ "hbradlow@berkeley.edu" ]
hbradlow@berkeley.edu
9ed43354fe92a243dd52ae9e8338df41be2e2346
58df224689ab08c99359b1a6077d2fba3728dc61
/lamda-ocr/merge-files/borb/toolkit/diff/pdf_diff.py
86117069066e1f49a4c64f9246aec7c34fa2a4c9
[]
no_license
LIT-Midas/LITHackathon
2b286728c156d79d3f426f6d19b160a2a04690db
7b990483dd48b91cf3ec3452b78ab67770da71af
refs/heads/main
2023-08-13T05:22:59.373965
2021-08-16T01:09:49
2021-08-16T01:09:49
395,024,729
0
1
null
null
null
null
UTF-8
Python
false
false
5,022
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This class was meant to perform a dictionary/array level comparison of PDF documents. It makes it a lot easier to debug problems. """ import typing from borb.io.filter.stream_decode_util import decode_stream from borb.io.read.types import Decimal, Dictionary, List, Name, Stream from borb.pdf.document import Document class PDFDiff: """ This class was meant to perform a dictionary/array level comparison of PDF documents. It makes it a lot easier to debug problems. """ def __init__(self, pdf_a: Document, pdf_b: Document): self._document_a: Document = pdf_a self._document_b: Document = pdf_b self._already_compared: typing.List[int] = [] self._errors: typing.List[str] = [] def compare(self) -> None: """ This method compares the given PDF documents, logging any differences between them. """ self._compare(self._document_a, self._document_b, "", "") @staticmethod def _get_reference_or_none(obj) -> str: try: if obj.get_reference() is not None: return "(%d 0 R)" % obj.get_reference().object_number except: pass return "" def _log_difference(self, error_msg: str) -> None: print(error_msg) self._errors.append(error_msg) def _compare(self, a, b, path_to_a, path_to_b) -> None: if id(a) in self._already_compared: return if id(b) in self._already_compared: return self._already_compared.append(id(a)) self._already_compared.append(id(b)) # check type if a.__class__.__name__ != b.__class__.__name__: self._log_difference( "Class mismatch : %s %s <--> %s %s" % (path_to_a, a.__class__.__name__, path_to_b, b.__class__.__name__) ) if isinstance(a, Name): if str(a) != str(b): self._log_difference( "Name mismatch : %s %s <--> %s %s" % (path_to_a, str(a), path_to_b, str(b)) ) return if isinstance(a, Decimal): if int(a) != int(b): self._log_difference( "Value mismatch : %s %s <--> %s %s" % (path_to_a, str(a), path_to_b, str(b)) ) # get references if they exist ref_a = PDFDiff._get_reference_or_none(a) ref_b = PDFDiff._get_reference_or_none(a) # compare streams if isinstance(a, Stream): decode_stream(a) decode_stream(b) if "DecodedBytes" not in a: self._log_difference("Unable to decode Stream %s" % (path_to_a + ref_a)) if "DecodedBytes" not in b: self._log_difference("Unable to decode Stream %s" % (path_to_b + ref_b)) dba: bytes = a["DecodedBytes"] dbb: bytes = b["DecodedBytes"] if len(dba) != len(dbb): self._errors.append( "Stream Length mismatch : %s %d <--> %s %d" % (path_to_a + ref_a, len(a), path_to_b + ref_b, len(b)) ) else: for i in range(0, len(dba)): if dba[i] != dbb[i]: self._errors.append( "Stream content mismatch : %s %d <--> %s %d" % (path_to_a + ref_a, i, path_to_b + ref_b, i) ) # compare dictionary if isinstance(a, Dictionary): for k, v in a.items(): if k == "ID": continue if k == "Bytes": continue if k == "DecodedBytes": continue if isinstance(a, Stream) and k == "Length": continue if k not in b: self._log_difference( "Key absent/present mismatch : %s %s <--> %s %s" % (path_to_a + ref_a, str(k), path_to_b + ref_b, None) ) continue self._compare( a[k], b[k], path_to_a + "/" + str(k) + ref_a, path_to_b + "/" + str(k) + ref_b, ) return # compare array if isinstance(a, List): if len(a) != len(b): self._errors.append( "Array Length mismatch : %s %d <--> %s %d" % (path_to_a + ref_a, len(a), path_to_b + ref_b, len(b)) ) for i in range(0, min(len(a), len(b))): self._compare( a[i], b[i], path_to_a + ref_a + "/" + str(i), path_to_b + ref_b + "/" + str(i), ) return
[ "trevordino@gmail.com" ]
trevordino@gmail.com
cf6f57b4c05d78d82369ca1c29ef07844bdec546
2d98f950a9bc701b360e3fd807bb07b85edabee9
/9/认识爬虫-课件-v1/Py爬虫课件/15/example-project/example/pipelines.py
4db113535b1e543050b79319adff4a9e45c4bba5
[]
no_license
Ran-oops/python_notes2
eaf3e98ee460d0d63d2bf8881cacd10916baa902
3a1bf86a803c716f4ef4aeec53a69ebb3662cf49
refs/heads/master
2020-11-30T15:40:53.850721
2019-12-28T05:22:49
2019-12-28T05:22:49
230,429,095
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/topics/item-pipeline.html from datetime import datetime class ExamplePipeline(object): def process_item(self, item, spider): item["crawled"] = datetime.utcnow() # 获取utc时间 item["spider"] = spider.name # 爬虫名称 return item
[ "3460466167@qq.com" ]
3460466167@qq.com
81fb2fce5bc257958679a04b84d127ffaecb919c
c9afaf387faf7c478e860f4ab5f087b254b5b87f
/main.py
b864b06dab49d5e7afad121326acdff0184725b9
[]
no_license
INNFINITEMINDS/FitzHugh-Nagumo-Neuron-Model
e3a5c7b7187fe77e575f96c955cb4253d00bf4fb
b1afb1745e3773c1ff7913a12ed98679094f0c2c
refs/heads/master
2022-12-19T17:41:06.466021
2020-10-20T10:51:01
2020-10-20T10:51:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,582
py
import numpy as np from src.model import FNNeuron import os from tqdm import tqdm import matplotlib.pyplot as plt from scipy.fft import fft from scipy import signal def exp1(): exp_plot_dir = 'images/exp1' dt = 0.001 niter = int(10e4) b = 0.25 I_ext = 0.1 fn = FNNeuron( dt, niter ) v = np.random.random() w = np.random.random() b_ = np.arange(10)*0.1 I_ = np.arange(30)*0.1 for b in tqdm(b_): for I_ext in I_: fn.set_b(b) fn.set_v(v) fn.set_w(w) fn.set_I_ext(I_ext) image_name = 'v_{val_v:.4f}_w_{val_w:.4f}_b_{val_b:.4f}_dt_{val_dt:.4f}_I_ext_{val_I:.4f}_niter_{n}.png'.format( val_v = v, val_w = w, val_b = b, val_dt = dt, val_I = I_ext, n = niter ) if not os.path.exists(exp_plot_dir): os.mkdir(exp_plot_dir) fn() fn.plot(os.path.join(exp_plot_dir, image_name)) fn.reset() def exp2(): exp_plot_dir = 'images/exp2' dt = 0.001 niter = int(10e4) b = -0.5 I_ext = 0 fn = FNNeuron( dt, niter ) num_exp = 50 v = np.random.normal(0, 1, num_exp) w = np.random.normal(0, 1, num_exp) fig, axes = plt.subplots(1, 1,figsize = (5, 5)) for i in tqdm(range(num_exp)): fn.set_b(b) fn.set_v(v[i]) fn.set_w(w[i]) fn.set_I_ext(I_ext) fn() axes.plot(fn.v_hist, fn.w_hist) axes.set_xlabel('voltage') axes.set_ylabel('recovery variable') axes.set_title('phase plot') fn.reset() if not os.path.exists(exp_plot_dir): os.mkdir(exp_plot_dir) image_name = 'case_1a_phase_plot_num_iter_{num}_b_{val_b:.4f}_dt_{val_dt:.4f}_I_ext_{val_I:.4f}_niter_{n}.png'.format( num = num_exp, val_b = b, val_dt = dt, val_I = I_ext, n = niter ) fig.savefig(os.path.join(exp_plot_dir, image_name)) def exp3(): exp_plot_dir = 'images/exp3' dt = 0.001 niter = int(10e4) b = 0 I_ext = 0 fn = FNNeuron( dt, niter ) V = np.arange(-10, 20)*0.1 w = 0 for v in tqdm(V): fn.set_b(b) fn.set_v(v) fn.set_w(w) fn.set_I_ext(I_ext) image_name = 'case_1b_v_{val_v:.4f}_w_{val_w:.4f}_b_{val_b:.4f}_dt_{val_dt:.4f}_I_ext_{val_I:.4f}_niter_{n}.png'.format( val_v = v, val_w = w, val_b = b, val_dt = dt, val_I = I_ext, n = niter ) exp = 'b_{val_b:.4f}'.format(val_b=b) dir = os.path.join(exp_plot_dir, exp) if not os.path.exists(dir): os.mkdir(os.path.join(dir)) fn() fn.plot(os.path.join(dir,image_name)) fn.reset() def exp4(): I_ext = np.arange(115, 285, 2)*0.01 b = 0.4 v = np.random.normal(0, 1) w = np.random.normal(0, 1) exp_plot_dir = 'images/exp4' dt = 0.001 niter = int(10e5) fn = FNNeuron( dt, niter ) def is_periodic(samples, tol): m = tol*max(samples) t = (max(samples) - min(samples)) <= 0.25*max(samples) return all(m <= d for d in samples) and t osc_I = [] for I in I_ext: fn.set_b(b) fn.set_v(v) fn.set_w(w) fn.set_I_ext(I) image_name = 'case_2a_v_{val_v:.4f}_w_{val_w:.4f}_b_{val_b:.4f}_dt_{val_dt:.4f}_I_ext_{val_I:.4f}_niter_{n}.png'.format( val_v = v, val_w = w, val_b = b, val_dt = dt, val_I = I, n = niter ) if not os.path.exists(exp_plot_dir): os.mkdir(os.path.join(exp_plot_dir)) fn() peaks, _ = signal.find_peaks(fn.v_hist) heights = [fn.v_hist[p] for p in peaks] print('\n') print(I) val = is_periodic(heights[1:], 0.75) print(val) if val: osc_I.append(I) fn.plot(os.path.join(exp_plot_dir, 'phase_'+image_name)) fn.reset() return osc_I def exp5(): exp_plot_dir = 'images/exp5' dt = 0.001 niter = int(10e4) b = 0.4 I_ext = 1.55 fn = FNNeuron( dt, niter ) num_exp = 50 v = np.random.normal(0, 1, num_exp) w = np.random.normal(0, 1, num_exp) fig, axes = plt.subplots(1, 1,figsize = (5, 5)) for i in tqdm(range(num_exp)): fn.set_b(b) fn.set_v(v[i]) fn.set_w(w[i]) fn.set_I_ext(I_ext) fn() axes.plot(fn.v_hist, fn.w_hist, 'b') axes.set_xlabel('voltage') axes.set_ylabel('recovery variable') axes.set_title('phase plot') fn.reset() fn.set_niter(int(10e5)) fn.set_b(b) fn.set_v(np.random.normal(0, 1)) fn.set_w(np.random.normal(0, 1)) fn.set_I_ext(0.5) fn(True) axes.plot(fn.v_hist, fn.w_hist, 'r') axes.set_xlabel('voltage') axes.set_ylabel('recovery variable') axes.set_title('phase plot') fn.reset() if not os.path.exists(exp_plot_dir): os.mkdir(exp_plot_dir) image_name = 'case_2ba_phase_plot_num_iter_{num}_b_{val_b:.4f}_dt_{val_dt:.4f}_I_ext_{val_I:.4f}_niter_{n}.png'.format( num = num_exp, val_b = b, val_dt = dt, val_I = I_ext, n = niter ) fig.savefig(os.path.join(exp_plot_dir, image_name)) exp5() #I = exp4() #exp3() #exp2() #exp1()
[ "shandilya.shreyas@gmail.com" ]
shandilya.shreyas@gmail.com
06a47fd3f3d748fea890d46dfe910447204d0544
0db19410e9751790af8ce4a0a9332293e379c02f
/mmpose/models/heads/heatmap_heads/__init__.py
b482216b36f61ceb66aae8974ae178a8455d5022
[ "Apache-2.0" ]
permissive
open-mmlab/mmpose
2c9986521d35eee35d822fb255e8e68486026d94
537bd8e543ab463fb55120d5caaa1ae22d6aaf06
refs/heads/main
2023-08-30T19:44:21.349410
2023-07-04T13:18:22
2023-07-04T13:18:22
278,003,645
4,037
1,171
Apache-2.0
2023-09-14T09:44:55
2020-07-08T06:02:55
Python
UTF-8
Python
false
false
373
py
# Copyright (c) OpenMMLab. All rights reserved. from .ae_head import AssociativeEmbeddingHead from .cid_head import CIDHead from .cpm_head import CPMHead from .heatmap_head import HeatmapHead from .mspn_head import MSPNHead from .vipnas_head import ViPNASHead __all__ = [ 'HeatmapHead', 'CPMHead', 'MSPNHead', 'ViPNASHead', 'AssociativeEmbeddingHead', 'CIDHead' ]
[ "noreply@github.com" ]
open-mmlab.noreply@github.com
ded383f66dbaa90059ccca1ab9639a978ad264f9
78db5bc74181173f2d00bea409997a64b4682adf
/venv/lib/python3.9/site-packages/pip/_vendor/chardet/euctwprober.py
7dbc136e80b7e704891fc4fdde70bb8b6d72ba56
[ "MIT" ]
permissive
CiscoDevNet/meraki-code
dfe680f077ebd053a3b663f1434f648f5a91b541
d031aab82e3fa5ce7cf57b257fef8c9a4c63d71e
refs/heads/master
2023-05-28T18:43:28.848983
2022-04-11T19:45:19
2022-04-11T19:45:19
188,288,487
67
60
MIT
2023-05-23T00:51:58
2019-05-23T18:43:15
Python
UTF-8
Python
false
false
1,793
py
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is mozilla.org code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 1998 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### from .mbcharsetprober import MultiByteCharSetProber from .codingstatemachine import CodingStateMachine from .chardistribution import EUCTWDistributionAnalysis from .mbcssm import EUCTW_SM_MODEL class EUCTWProber(MultiByteCharSetProber): def __init__(self): super(EUCTWProber, self).__init__() self.coding_sm = CodingStateMachine(EUCTW_SM_MODEL) self.distribution_analyzer = EUCTWDistributionAnalysis() self.reset() @property def charset_name(self): return "EUC-TW" @property def language(self): return "Taiwan"
[ "agentle@cisco.com" ]
agentle@cisco.com
36024e8c09241fb2a5405711eeb21edb7a07e067
60eb98538025c61cf94a91f6c96f9ee81dcd3fdf
/monai/handlers/confusion_matrix.py
368aacc6cbe04f1ed17742b90b4cd21c7b41fda1
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
gagandaroach/MONAI
167e7746995d4b6136731881e22ad4df333b16a9
79b83d9fac41efae9b90ed2f9ad078d6d664bf64
refs/heads/master
2023-06-02T19:54:47.737846
2021-06-24T18:34:02
2021-06-24T18:34:02
270,741,899
0
0
Apache-2.0
2020-06-08T16:29:32
2020-06-08T16:29:31
null
UTF-8
Python
false
false
3,205
py
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable from monai.handlers.ignite_metric import IgniteMetric from monai.metrics import ConfusionMatrixMetric from monai.metrics.utils import MetricReduction class ConfusionMatrix(IgniteMetric): """ Compute confusion matrix related metrics from full size Tensor and collects average over batch, class-channels, iterations. """ def __init__( self, include_background: bool = True, metric_name: str = "hit_rate", output_transform: Callable = lambda x: x, save_details: bool = True, ) -> None: """ Args: include_background: whether to skip metric computation on the first channel of the predicted output. Defaults to True. metric_name: [``"sensitivity"``, ``"specificity"``, ``"precision"``, ``"negative predictive value"``, ``"miss rate"``, ``"fall out"``, ``"false discovery rate"``, ``"false omission rate"``, ``"prevalence threshold"``, ``"threat score"``, ``"accuracy"``, ``"balanced accuracy"``, ``"f1 score"``, ``"matthews correlation coefficient"``, ``"fowlkes mallows index"``, ``"informedness"``, ``"markedness"``] Some of the metrics have multiple aliases (as shown in the wikipedia page aforementioned), and you can also input those names instead. output_transform: callable to extract `y_pred` and `y` from `ignite.engine.state.output` then construct `(y_pred, y)` pair, where `y_pred` and `y` can be `batch-first` Tensors or lists of `channel-first` Tensors. the form of `(y_pred, y)` is required by the `update()`. for example: if `ignite.engine.state.output` is `{"pred": xxx, "label": xxx, "other": xxx}`, output_transform can be `lambda x: (x["pred"], x["label"])`. save_details: whether to save metric computation details per image, for example: TP/TN/FP/FN of every image. default to True, will save to `engine.state.metric_details` dict with the metric name as key. See also: :py:meth:`monai.metrics.confusion_matrix` """ metric_fn = ConfusionMatrixMetric( include_background=include_background, metric_name=metric_name, compute_sample=False, reduction=MetricReduction.MEAN, ) self.metric_name = metric_name super().__init__( metric_fn=metric_fn, output_transform=output_transform, save_details=save_details, )
[ "noreply@github.com" ]
gagandaroach.noreply@github.com
1de3d74ecc579a3482423f8897072d74c418249d
e8ae11e5017507da59e2e92d423b6a1994490de4
/env/lib/python2.7/site-packages/azure/mgmt/network/models/virtual_network.py
d04dbdddf6025303d691acc85256825d49980cec
[]
no_license
teopeurt/ansible-ubuntu-server
613d00cea28bc6531acf4a39aeeb9cd0baa2a391
b5b6127d2ee9723c5088443efe2ffb8ae30cfea7
refs/heads/master
2021-06-28T12:49:50.935753
2017-07-31T17:34:33
2017-07-31T17:34:33
98,912,808
0
1
null
2020-07-24T00:05:31
2017-07-31T17:32:56
Makefile
UTF-8
Python
false
false
3,797
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .resource import Resource class VirtualNetwork(Resource): """ Virtual Network resource Variables are only populated by the server, and will be ignored when sending a request. :param id: Resource Id :type id: str :ivar name: Resource name :vartype name: str :ivar type: Resource type :vartype type: str :param location: Resource location :type location: str :param tags: Resource tags :type tags: dict :param address_space: Gets or sets AddressSpace that contains an array of IP address ranges that can be used by subnets :type address_space: :class:`AddressSpace <azure.mgmt.network.models.AddressSpace>` :param dhcp_options: Gets or sets DHCPOptions that contains an array of DNS servers available to VMs deployed in the virtual network :type dhcp_options: :class:`DhcpOptions <azure.mgmt.network.models.DhcpOptions>` :param subnets: Gets or sets List of subnets in a VirtualNetwork :type subnets: list of :class:`Subnet <azure.mgmt.network.models.Subnet>` :param resource_guid: Gets or sets resource guid property of the VirtualNetwork resource :type resource_guid: str :param provisioning_state: Gets or sets Provisioning state of the PublicIP resource Updating/Deleting/Failed :type provisioning_state: str :param etag: Gets a unique read-only string that changes whenever the resource is updated :type etag: str """ _validation = { 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'address_space': {'key': 'properties.addressSpace', 'type': 'AddressSpace'}, 'dhcp_options': {'key': 'properties.dhcpOptions', 'type': 'DhcpOptions'}, 'subnets': {'key': 'properties.subnets', 'type': '[Subnet]'}, 'resource_guid': {'key': 'properties.resourceGuid', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, id=None, location=None, tags=None, address_space=None, dhcp_options=None, subnets=None, resource_guid=None, provisioning_state=None, etag=None): super(VirtualNetwork, self).__init__(id=id, location=location, tags=tags) self.address_space = address_space self.dhcp_options = dhcp_options self.subnets = subnets self.resource_guid = resource_guid self.provisioning_state = provisioning_state self.etag = etag
[ "me@teopeurt.com" ]
me@teopeurt.com
1124f2ed2301c3d86e4644f9b6d42729ac140055
19a5937501ff40d53b69617d6b05484c2861c54b
/apps/urls.py
212155a4226cd217323270aab6a2cd9abf0d642c
[]
no_license
pombredanne/abyss
44319541f614669861157955b5d4059fcf3f8aad
8de3f2438ad74ad4d2703ce0bb7ccf7672423820
refs/heads/master
2020-12-29T19:03:52.168087
2013-09-16T13:48:28
2013-09-16T13:48:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
944
py
from django.conf.urls import patterns, url from apps import views urlpatterns = patterns( '', url(r'^$', views.ListApp.as_view(), name='list-app'), url(r'^create/$', views.CreateApp.as_view(), name='create-app'), url(r'^run/$', views.Run.as_view(), name='run'), url(r'^(?P<app_name>[\w-]+)/$', views.AppDetail.as_view(), name='detail-app'), url(r'^(?P<name>[\w-]+)/remove/$', views.RemoveApp.as_view(), name='remove_app'), url(r'^(?P<app_name>[\w-]+)/log/$', views.AppLog.as_view(), name='app_log'), url(r'^(?P<app_name>[\w-]+)/env/$', views.AppEnv.as_view(), name='get-env'), url(r'^(?P<app_name>[\w-]+)/teams/$', views.AppTeams.as_view(), name='app-teams'), url(r'^(?P<app_name>[\w-]+)/team/add/$', views.AppAddTeam.as_view(), name='app-add-team'), url(r'^(?P<app_name>[\w-]+)/units/$', views.ChangeUnit.as_view(), name='change-units'), )
[ "andrewsmedina@gmail.com" ]
andrewsmedina@gmail.com
d6461e3ed1fa74dfbabee2a0c0d5db2f1b055f26
c9287937c4d7900d311640a2b16c08c42eedfe58
/tensorflow/python/distribute/mirrored_function_strategy.py
bbe52984d1eff41f9c4d304dfe927d7e70cfaddd
[ "Apache-2.0" ]
permissive
Purplme/tensorflow
e868e9bf59cc8eb680f1c35bf0b8615ec2b68c62
d2d6c3f07a0b874e64a024c767deb7c9fb39b704
refs/heads/master
2022-11-23T23:38:00.243591
2020-07-16T06:20:19
2020-07-16T06:25:23
280,074,885
2
0
Apache-2.0
2020-07-16T06:39:14
2020-07-16T06:39:13
null
UTF-8
Python
false
false
7,594
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class MirroredFunctionStrategy implementing tf.distribute.Strategy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from tensorflow.python.distribute import device_util from tensorflow.python.distribute import distribute_lib from tensorflow.python.distribute import distribute_utils from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.distribute import mirrored_strategy from tensorflow.python.distribute import values from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.util import nest _replica_index = threading.local() _replica_id_key = object() def _replica_id_tensor(): return ops.get_default_graph().capture_call_time_value( closure=lambda: constant_op.constant(_replica_index.current), spec=tensor_spec.TensorSpec((), dtypes.int32), key=_replica_id_key) def _in_run(): return (hasattr(_replica_index, "current") and _replica_index.current is not None) def _outside_run_graph(): if hasattr(_replica_index, "graph_outside_run"): return _replica_index.graph_outside_run else: return None class MirroredFunctionStrategy(distribute_lib.Strategy): """Mirrors vars to distribute across multiple devices and machines. This strategy uses one replica per device and sync replication for its multi-GPU version. Unlike `tf.distribute.MirroredStrategy`, it creates a function for a single replica, and calls that function repeatedly instead of recording the operations for each replica separately. """ def __init__(self, devices=None): """Create an instance of `MirroredFunctionStrategy`. Args: devices: a list of device strings. If `None`, all available GPUs are used. If no GPUs are found, CPU is used. """ extended = MirroredFunctionExtended(self, devices) super(MirroredFunctionStrategy, self).__init__(extended) # TODO(josh11b): Switch to V2 when we no longer need to support tf.compat.v1. class MirroredFunctionExtended(distribute_lib.StrategyExtendedV1): """Implementation of MirroredFunctionStrategy.""" def __init__(self, container_strategy, devices): super(MirroredFunctionExtended, self).__init__(container_strategy) if devices is None: devices = mirrored_strategy.all_devices() if not devices: raise ValueError("Got an empty `devices` list. Please make sure the " "`devices` you pass in is not empty.") device_tuple = tuple(device_util.resolve(d) for d in devices) assert len(set(device_tuple)) == len(device_tuple), ( "No duplicates allowed in `devices` argument: %s" % (devices,)) self._devices = device_tuple self._retrace_functions_for_each_device = False def _call_for_each_replica(self, fn, args, kwargs): # For now, `fn` must be an @tf.function. # TODO(josh11b): Relax this restriction? Main problem is if # (a) executing eagerly, (b) `fn` not @tf.function, and # (c) executed frequently. assert isinstance(fn, def_function.Function) if _outside_run_graph() is not None: # Nested case, should just use outer function's context for things like # the current replica index. # TODO(josh11b): Test this case! with MirroredFunctionReplicaContext(self._container_strategy()): results = fn(*nest.map_structure(_unwrap_tensors, args), **nest.map_structure(_unwrap_tensors, kwargs)) return nest.map_structure(_wrap_tensors, results) _replica_index.graph_outside_run = ops.get_default_graph() return_values = [] try: with MirroredFunctionReplicaContext(self._container_strategy()): for index, device in enumerate(self._devices): _replica_index.current = index with ops.device(device): if context.executing_eagerly(): # NOTE: These functions need to execute concurrently if they # use a collective op. This is a particular concern with eager # execution. with context.execution_mode(context.ASYNC): return_values.append( fn(*distribute_utils.select_replica(index, args), **distribute_utils.select_replica(index, kwargs))) else: return_values.append( fn(*distribute_utils.select_replica(index, args), **distribute_utils.select_replica(index, kwargs))) finally: _replica_index.graph_outside_run = None _replica_index.current = None return distribute_utils.regroup(return_values) def _local_results(self, val): if isinstance(val, values.DistributedValues): return val.values return (val,) class FnMergedValue(object): def __init__(self, value): self._value = value def _wrap_tensors(maybe_tensor): if isinstance(maybe_tensor, ops.Tensor): # TODO(josh11b): or composite tensor? return FnMergedValue(maybe_tensor) return maybe_tensor def _unwrap_tensors(maybe_wrapped): if isinstance(maybe_wrapped, FnMergedValue): return maybe_wrapped._value # pylint: disable=protected-access return maybe_wrapped class MirroredFunctionReplicaContext(distribute_lib.ReplicaContext): """ReplicaContext used in MirroredFunctionStrategy.""" def __init__(self, strategy): distribute_lib.ReplicaContext.__init__(self, strategy, None) @property def _replica_id_in_sync_group(self): return _replica_id_tensor() @_replica_id_in_sync_group.setter def _replica_id_in_sync_group(self, value): assert value is None def _merge_call(self, merge_fn, args, kwargs): # We wrap all args/kwargs with tensor values in a class that prevents them # for being used by anything other than MirroredFunctionStrategy APIs that # have been specifically written to recognize the wrapper and unwrap the # values (such as extended.reduce_to/update). # TODO(josh11b): Should these set expand_composites=True? args = nest.map_structure(_wrap_tensors, args) kwargs = nest.map_structure(_wrap_tensors, kwargs) # pylint: disable=protected-access distribution_strategy_context._push_per_thread_mode( distribution_strategy_context._CrossReplicaThreadMode(self._strategy)) try: results = merge_fn(self._strategy, *args, **kwargs) finally: distribution_strategy_context._pop_per_thread_mode() # pylint: enable=protected-access return nest.map_structure(_unwrap_tensors, results) @property def devices(self): raise RuntimeError("Can't get the devices for the current replica.")
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
d29f0e7212d54245a016a4c1738e9a56780420ae
f82c474bd7d5f60d976b14432a9f20d5e561ca4c
/low_level/tensors/E01_eval_tensors.py
4c5de2fabfddd42b36d5709c324d61965ec7b948
[]
no_license
GlassyWing/tf-learn
1065551e27adf8a3f2b05e540e52d820e6b931d6
6733ac86cda430ecce13c8694c8bdfb79e8b70ad
refs/heads/master
2020-03-27T05:52:51.466385
2018-09-03T12:58:54
2018-09-03T12:58:54
146,059,577
0
0
null
null
null
null
UTF-8
Python
false
false
159
py
import tensorflow as tf constant = tf.constant([1, 2, 3]) tensor = constant * constant sess = tf.Session() with sess.as_default(): print(tensor.eval())
[ "1490215053@qq.com" ]
1490215053@qq.com
6734850359cb4971c5ffeac81b4d804ea15b9c6a
b8faf65ea23a2d8b119b9522a0aa182e9f51d8b1
/vmraid/website/page_renderers/not_permitted_page.py
7acaf0baaf57f3b618f32d9267e2b99aa555c797
[ "MIT" ]
permissive
vmraid/vmraid
a52868c57b1999a8d648441eb9cd05815204345d
3c2e2a952003ba7ea2cf13673b9e79e127f4166e
refs/heads/main
2022-07-29T18:59:28.585133
2022-04-22T08:02:52
2022-04-22T08:02:52
372,473,120
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
import vmraid from vmraid import _ from vmraid.utils import cstr from vmraid.website.page_renderers.template_page import TemplatePage class NotPermittedPage(TemplatePage): def __init__(self, path=None, http_status_code=None, exception=""): vmraid.local.message = cstr(exception) super().__init__(path=path, http_status_code=http_status_code) self.http_status_code = 403 def can_render(self): return True def render(self): vmraid.local.message_title = _("Not Permitted") vmraid.local.response["context"] = dict( indicator_color="red", primary_action="/login", primary_label=_("Login"), fullpage=True ) self.set_standard_path("message") return super().render()
[ "sowrisurya@outlook.com" ]
sowrisurya@outlook.com
f1efb7f4fea5ef7e9421f004aabccd95b303d845
b345171a3968240caf135b8b9f2780324319cb22
/__init__.py
98b9499ad471ceefd2c1cd32ad977467eaff0937
[]
no_license
pytsite/plugin-auth_google
ecd8bb9b8a2d59ed1fe1eb3515d2079b4359f03b
f22c90ac560d25c839db9b94cee6339e8681f299
refs/heads/master
2020-06-18T21:43:35.932709
2019-07-12T09:41:45
2019-07-12T09:41:45
74,938,727
1
0
null
null
null
null
UTF-8
Python
false
false
422
py
"""PytSite Google Authentication Driver Plugin """ __author__ = 'Oleksandr Shepetko' __email__ = 'a@shepetko.com' __license__ = 'MIT' # Public API from . import _error as error from ._api import get_client_id, get_authorization_url, get_client_secret, get_user_credentials, create_oauth2_flow def plugin_load_wsgi(): from plugins import auth from . import _driver auth.register_auth_driver(_driver.Auth())
[ "a@shepetko.com" ]
a@shepetko.com
211e94253365bf19b8a5e01da1a514175bac390e
4df948c31bde1b49c110820ecf8a38f949a78f62
/vta/python/vta/pkg_config.py
30b4808f5e2d8976d70677e197960aa94182db4d
[ "Apache-2.0" ]
permissive
jroesch/tvm
40b4b8707177e3354c264ce31092721930ced376
c2b36154778503a509a70a3b5309b201969eccab
refs/heads/master
2021-12-19T03:38:13.732405
2018-10-22T16:31:59
2018-10-22T16:31:59
135,759,537
4
7
Apache-2.0
2021-06-17T07:22:42
2018-06-01T20:15:33
C++
UTF-8
Python
false
false
2,677
py
"""VTA Package configuration module This module is dependency free and can be used to configure package. """ from __future__ import absolute_import as _abs import json import glob class PkgConfig(object): """Simple package config tool for VTA. This is used to provide runtime specific configurations. Parameters ---------- cfg : dict The config dictionary proj_root : str Path to the project root """ cfg_keys = [ "TARGET", "HW_FREQ", "HW_CLK_TARGET", "HW_VER", "LOG_INP_WIDTH", "LOG_WGT_WIDTH", "LOG_ACC_WIDTH", "LOG_OUT_WIDTH", "LOG_BATCH", "LOG_BLOCK_IN", "LOG_BLOCK_OUT", "LOG_UOP_BUFF_SIZE", "LOG_INP_BUFF_SIZE", "LOG_WGT_BUFF_SIZE", "LOG_ACC_BUFF_SIZE", ] def __init__(self, cfg, proj_root): # include path self.include_path = [ "-I%s/include" % proj_root, "-I%s/vta/include" % proj_root, "-I%s/3rdparty/dlpack/include" % proj_root, "-I%s/3rdparty/dmlc-core/include" % proj_root ] # List of source files that can be used to build standalone library. self.lib_source = [] self.lib_source += glob.glob("%s/vta/src/*.cc" % proj_root) self.lib_source += glob.glob("%s/vta/src/%s/*.cc" % (proj_root, cfg["TARGET"])) # macro keys self.macro_defs = [] self.cfg_dict = {} for key in self.cfg_keys: self.macro_defs.append("-DVTA_%s=%s" % (key, str(cfg[key]))) self.cfg_dict[key] = cfg[key] self.target = cfg["TARGET"] if self.target == "pynq": self.ldflags = [ "-L/usr/lib", "-lsds_lib", "-L/opt/python3.6/lib/python3.6/site-packages/pynq/drivers/", "-L/opt/python3.6/lib/python3.6/site-packages/pynq/lib/", "-l:libdma.so"] else: self.ldflags = [] @property def cflags(self): return self.include_path + self.macro_defs @property def cfg_json(self): return json.dumps(self.cfg_dict, indent=2) def same_config(self, cfg): """Compare if cfg is same as current config. Parameters ---------- cfg : the configuration The configuration Returns ------- equal : bool Whether the configuration is the same. """ for k, v in self.cfg_dict.items(): if k not in cfg: return False if cfg[k] != v: return False return True
[ "tqchen@users.noreply.github.com" ]
tqchen@users.noreply.github.com
f4c54df91cedb4ab534312995cd85ac41bb8b565
d4bcb9cc3b6aa9f690be59f630778d512882d34d
/ht/conv_jacket.pyi
237e03450cf918d66fad5744e2f420949830a545
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
CalebBell/ht
ba31cd9a7a2b3cb83599770c81b343ea5c60fc23
d9385d98311debcc47def7f5fc093f2e0152d059
refs/heads/master
2023-08-03T10:45:09.062053
2023-07-25T05:36:50
2023-07-25T05:36:50
48,963,057
154
38
MIT
2023-04-20T01:39:50
2016-01-03T22:33:12
Python
UTF-8
Python
false
false
810
pyi
# DO NOT EDIT - AUTOMATICALLY GENERATED BY tests/make_test_stubs.py! from typing import List from typing import Optional def Lehrer( m: float, Dtank: float, Djacket: float, H: float, Dinlet: float, rho: float, Cp: float, k: float, mu: float, muw: Optional[float] = ..., isobaric_expansion: Optional[float] = ..., dT: Optional[float] = ..., inlettype: str = ..., inletlocation: str = ... ) -> float: ... def Stein_Schmidt( m: float, Dtank: float, Djacket: float, H: float, Dinlet: float, rho: float, Cp: float, k: float, mu: float, muw: Optional[float] = ..., rhow: Optional[float] = ..., inlettype: str = ..., inletlocation: str = ..., roughness: float = ... ) -> float: ... __all__: List[str]
[ "Caleb.Andrew.Bell@gmail.com" ]
Caleb.Andrew.Bell@gmail.com
7744da668bfa14a29636e0a5e6d816ccf32ea932
ffc479dadf059388dad3a66c5f4662b113dc6285
/basics/psdemospliut.py
aae2237e7becdf9c66bfabf64d9db3040c555452
[]
no_license
ravijaya/oct15-2020
fd87ee4f6aa7f0a63c77c8c470405eff479289b3
4fe4d4f2aac1f40349cec831c175652834b17b5d
refs/heads/main
2022-12-29T09:45:08.837682
2020-10-15T12:31:09
2020-10-15T12:31:09
304,318,346
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
s = 'root:x:0:0:root:/root:/bin/bash' items = s.split(':') print(items) print() print(s.split(':')[0]) # indexing print() print(s.split(':')[1:]) # slicing print() # iterator for item in s.split(':')[1:]: # iteration print(item)
[ "ravi.goglobium@gmail.com" ]
ravi.goglobium@gmail.com
94c538986256e0c9b56cfb18d0def97857f7224a
3006ba184fd85d9bfe64a2040683618d7aa24e54
/paylogic/settings_base.py
fb3a17cdd1544a5df7dd2096072c1f69f5589c59
[ "Apache-2.0" ]
permissive
esjee/codereview
909ca5ecff6b5436b023c5e4e6872366db1a0c3f
a8fc0e0b51be18db387b8b915aeda3f63e37c04f
refs/heads/master
2021-01-24T03:49:09.315286
2014-07-14T11:50:52
2014-07-14T11:50:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,616
py
"""Django settings for django_gae2django project.""" # NOTE: Keep the settings.py in examples directories in sync with this one! # from settings import * import re import os import statsd ROOT = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) DEBUG = False TEMPLATE_DEBUG = DEBUG ADMINS = ( ('Admin', 'admin@example.com'), ) EMAIL_HOST = 'localhost' MANAGERS = ADMINS # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'Europe/Amsterdam' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = os.path.join(ROOT, 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" STATIC_URL = '/static/' MEDIA_URL = '/media/' STATIC_ROOT = os.path.join(ROOT, 'static') # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/static/admin/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(ROOT, 'static'), ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'some-secret' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.load_template_source', 'django.template.loaders.app_directories.load_template_source', # 'django.template.loaders.eggs.load_template_source', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.transaction.TransactionMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'gae2django.middleware.FixRequestUserMiddleware', # Keep in mind, that CSRF protection is DISABLED! 'rietveld_helper.middleware.DisableCSRFMiddleware', 'rietveld_helper.middleware.AddUserToRequestMiddleware', 'django.middleware.doc.XViewMiddleware', ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.core.context_processors.auth', # required by admin panel 'django.core.context_processors.request', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.static', ) ROOT_URLCONF = 'paylogic.urls' TEMPLATE_DIRS = ( os.path.join(ROOT, 'templates'), ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django_openid_auth', 'django.contrib.sites', 'django.contrib.admin', 'django.contrib.staticfiles', 'django.contrib.messages', 'jquery', 'django_select2', 'gae2django', 'rietveld_helper', 'paylogic', 'codereview', ) OPENID_CREATE_USERS = True OPENID_SSO_SERVER_URL = 'https://google.com/accounts/o8/site-xrds?hd=paylogic.eu' OPENID_USE_AS_ADMIN_LOGIN = False LOGIN_URL = '/openid/login/' LOGIN_REDIRECT_URL = '/' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'django_openid_auth.auth.OpenIDBackend', ) # Set your DSN value RAVEN_CONFIG = { 'dsn': 'https://yor-dsn', } # Add raven to the list of installed apps INSTALLED_APPS = INSTALLED_APPS + ( 'raven.contrib.django.raven_compat', ) INTERNAL_IPS = ('127.0.0.1',) AUTH_PROFILE_MODULE = 'codereview.Account' LOGIN_REDIRECT_URL = '/' # This won't work with gae2django. RIETVELD_INCOMING_MAIL_ADDRESS = None RIETVELD_REVISION = open(os.path.join(ROOT, 'VERSION')).read().strip() UPLOAD_PY_SOURCE = os.path.join(ROOT, 'upload.py') VCS = { 'hg': { 'base_dir': '/var/codereview/hg/', 'regex': re.compile('^((ssh://code\.(?:example\.com)/)?/var/codereview/hg/|hg\+)(.+)$'), 'supports_direct_export': True, 'supports_simple_cloning': True, 'default_branch': 'default', }, 'bzr': { 'base_dir': '/var/codereview/bzr/', 'regex': re.compile('^((ssh://code\.(?:example\.com)/)?/var/codereview/bzr/|bzr\+)(.+)$'), 'supports_direct_export': True, 'supports_simple_cloning': False, 'default_branch': 'trunk', }, 'git': { 'base_dir': '/var/codereview/git/', 'regex': re.compile('^((ssh://code\.(?:example\.com)/)?/var/codereview/git/|git\+)(.+)$'), 'supports_direct_export': False, 'supports_simple_cloning': True, 'default_branch': 'master', } } FEATURE_BRANCH_DEFAULT_PREFIX = 'hg+/var/codereview/hg/users/' ORIGINAL_BRANCH_DEFAULT_PREFIX = 'hg+/var/hg/codereview/example.com#' TEMP_FOLDER = '/var/tmp/codereview/' FOGBUGZ_URL = 'https://fogbugz.example.com' FOGBUGZ_TOKEN = 'fogbugz-token' # Override this token in your settings_local.py file in order to # API functions API_TOKEN = 'some-token' FOGBUGZ_MERGEKEEPER_USER_ID = 999 FOGBUGZ_APPROVED_REVISION_FIELD_ID = "plugin_customfields_at_fogcreek_com_approvedxrevision" FOGBUGZ_TARGET_BRANCH_FIELD_ID = "plugin_customfields_at_fogcreek_com_targetxbranch" FOGBUGZ_ORIGINAL_BRANCH_FIELD_ID = "plugin_customfields_at_fogcreek_com_originalxbranch" FOGBUGZ_FEATURE_BRANCH_FIELD_ID = "plugin_customfields_at_fogcreek_com_featurexbranch" FOGBUGZ_CI_PROJECT_FIELD_ID = "cixproject" CODEREVIEW_IGNORED_FILES = ['.hg_archival.txt'] CODEREVIEW_MAX_FILE_SIZE = 1024 * 1024 CODEREVIEW_VALIDATORS = [ ] CODEREVIEW_TARGET_BRANCH_CHOICES_GETTER = lambda ci_project, original_branch, branches: [] AUTO_RENDER_SELECT2_STATICS = False LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { }, 'loggers': { } } DEFAULT_MAIL_CC = 'fogbugz@example.com' statsd.Connection.set_defaults(host='localhost', port=8125) try: from paylogic.settings_local import * # NOQA except ImportError: pass
[ "bubenkoff@gmail.com" ]
bubenkoff@gmail.com