blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
20afedb1b001619332e9d7e143861e7ec13ba57a
45e97bd0c32042504052342bc1ae4e66a30d4d9a
/corepy/chapter13/demo5-trackInstance.py
34e5d0f1d27f10ca12c701e54330defcbeef7adc
[]
no_license
vonzhou/py-learn
acf20c5183bff9788fcae9e36abdcd6f9bc553da
f0794164105dddbdffe082dfc90520f8778cbec3
refs/heads/master
2016-09-10T01:29:30.551541
2015-12-08T08:53:46
2015-12-08T08:53:46
27,669,547
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
''' P343''' class InsCnt(object): count = 0 #count是一个类属性 def __init__(self): InsCnt.count += 1 def __del__(self): InsCnt.count -= 1 def howMany(self): return InsCnt.count c1 = InsCnt() print c1.howMany() c2 = c1 print c2.howMany() c3 = InsCnt() print howMany() del c1 del c2 print howMany() del c3 print howMany() raw_input() raw_input()
[ "vonzhou@163.com" ]
vonzhou@163.com
2c6c3a09d95945c7a9f020b9df2ee127ebe4414a
00e29479dc7c45a9e019f96c90a69a49af618ccf
/src/api-engine/src/api/routes/user/views.py
42300c55ed400a24f4c2f80abe33262434251b0a
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
yunchaozou/cello
8dd081db2ce5d9b8975d553d4491d329790588ef
68158f572c688f1710813c4df47fad28c3d4276c
refs/heads/master
2020-04-22T08:40:53.157301
2019-02-08T22:35:35
2019-02-08T22:35:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,549
py
# # SPDX-License-Identifier: Apache-2.0 # import logging from rest_framework import viewsets, status from rest_framework.decorators import action from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from drf_yasg.utils import swagger_auto_schema from api.routes.network.serializers import NetworkListResponse from api.utils.common import with_common_response from api.routes.company.serializers import ( NodeOperationSerializer, CompanyQuery, CompanyCreateBody, CompanyIDSerializer, ) from api.auth import CustomAuthenticate LOG = logging.getLogger(__name__) class UserViewSet(viewsets.ViewSet): authentication_classes = (CustomAuthenticate,) permission_classes = (IsAuthenticated,) @swagger_auto_schema( query_serializer=CompanyQuery, responses=with_common_response( with_common_response({status.HTTP_200_OK: NetworkListResponse}) ), ) def list(self, request, *args, **kwargs): """ List Users List user through query parameter """ LOG.info("user %s", request.user.role) return Response(data=[], status=status.HTTP_200_OK) @swagger_auto_schema( request_body=CompanyCreateBody, responses=with_common_response( {status.HTTP_201_CREATED: CompanyIDSerializer} ), ) def create(self, request): """ Create User Create new user """ pass @swagger_auto_schema( responses=with_common_response( {status.HTTP_204_NO_CONTENT: "No Content"} ) ) def destroy(self, request, pk=None): """ Delete User Delete user """ pass @action( methods=["get", "post", "put", "delete"], detail=True, url_path="attributes", ) def attributes(self, request, pk=None): """ get: Get User Attributes Get attributes of user post: Create Attributes Create attribute for user put: Update Attribute Update attribute of user delete: Delete Attribute Delete attribute of user """ pass @swagger_auto_schema(method="post", responses=with_common_response()) @action(methods=["post"], detail=True, url_path="password") def password(self, request, pk=None): """ post: Update/Reset Password Update/Reset password for user """ pass
[ "hightall@me.com" ]
hightall@me.com
0f638cb37c3cfe9526b6699975d791d2e7f0eaff
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_3_neat/16_0_3_yesdongil_main_big.py
207b07db4c346d26f784da03b2499dd769587875
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
1,846
py
import os import sys import math import itertools def xrange(start, stop): i = start while i < stop: yield i i += 1 def is_prime(value) : ret = 0 if (value % 2) == 0 : ret = 2 elif (value % 3) == 0 : ret = 3 else : limit = int(math.sqrt(value)) index_limit = limit/6 + 1 for i in xrange(1, index_limit) : prime_v = 6*i - 1 if (value % prime_v) == 0 : ret = prime_v break prime_v = 6*i + 1 if (value % prime_v) == 0 : ret = prime_v break if(prime_v > 10000) : break return ret def make_value(N, middle, base) : result = 1 + base**(N-1) mul = base while (middle > 0) : remainder = middle % 2 if(remainder == 1) : result += mul mul=mul*base middle /= 2 return result def get_result(N, J) : ret = [] result = [] limit = 2**(N-2) prime_ret = 0 list_count = 0 for i in range(0, limit) : divisor_list = [] for base in range(2, 11) : test_v = make_value(N, i, base) prime_ret = is_prime(test_v) if(prime_ret == 0) : break else : divisor_list.append(prime_ret) if(prime_ret > 0) : result.append(make_value(N, i, 10)) result.extend(divisor_list) ret.append(result) result = [] list_count += 1 if(list_count == J) : break return ret def Main(): result_list = [] arg = [] CASE_N = int(raw_input()) line = raw_input() arg = line.split() result_list = get_result(int(arg[0]), int(arg[1])) print 'Case #1:' for result in result_list : for result_one in result : sys.stdout.write(str(result_one) + ' ') sys.stdout.write('\n') if __name__ == '__main__': sys.exit(Main())
[ "[dhuo@tcd.ie]" ]
[dhuo@tcd.ie]
edeee6602b190ca18e61ad5f160a964b27d00952
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_256/ch34_2020_04_23_17_53_27_919517.py
ee3644d60592c2aae2ec473d6ba51ecadb41d2fe
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
def eh_primo(n): if n == 0 or n == 1: return False elif n == 2: return True for i in range(3, n, 2): if n%2==0: return False elif n%i==0: return False else: return True def maior_primo_menor_que(n): p = -1 while n>0: if n ==2: return 2 else: if eh_primo(n): p == n elif: n-=1 return p
[ "you@example.com" ]
you@example.com
fafe549264abbc0749503ca3d08dbbc62fe4299b
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/lambda_write_f/function-event-invoke-config_delete.py
15016e42d8d9604bacece336bdaec2f86610b9a1
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,010
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ get-function-event-invoke-config : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-event-invoke-config.html list-function-event-invoke-configs : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-function-event-invoke-configs.html put-function-event-invoke-config : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-function-event-invoke-config.html update-function-event-invoke-config : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-event-invoke-config.html """ write_parameter("lambda", "delete-function-event-invoke-config")
[ "hcseo77@gmail.com" ]
hcseo77@gmail.com
4e42e313b4e8f4517cca59865a67badc6b525b39
200df6cda6e54d56a4c800e10e6d5f248d7d59f2
/02-算法思想/广度优先搜索/778.水位上升的泳池中游泳(H).py
0d5613ed1b63a75e2a20984da04124b0b0f7e70b
[]
no_license
jh-lau/leetcode_in_python
b9b9a47d0b3ce29c3c56836b39decc3ec4487777
1d1876620a55ff88af7bc390cf1a4fd4350d8d16
refs/heads/master
2023-04-17T15:01:49.925774
2021-04-24T01:17:39
2021-04-24T01:17:39
192,735,826
0
0
null
null
null
null
UTF-8
Python
false
false
6,600
py
""" @Author : liujianhan @Date : 20/9/26 19:31 @Project : leetcode_in_python @FileName : 778.水位上升的泳池中游泳(H).py @Description : 在一个 N x N 的坐标方格 grid 中,每一个方格的值 grid[i][j] 表示在位置 (i,j) 的平台高度。 现在开始下雨了。当时间为 t 时,此时雨水导致水池中任意位置的水位为 t 。你可以从一个平台游向四周相邻的任意一个平台, 但是前提是此时水位必须同时淹没这两个平台。假定你可以瞬间移动无限距离,也就是默认在方格内部游动是不耗时的。 当然,在你游泳的时候你必须待在坐标方格里面。 你从坐标方格的左上平台 (0,0) 出发。最少耗时多久你才能到达坐标方格的右下平台 (N-1, N-1)? 示例 1: 输入: [[0,2],[1,3]] 输出: 3 解释: 时间为0时,你位于坐标方格的位置为 (0, 0)。 此时你不能游向任意方向,因为四个相邻方向平台的高度都大于当前时间为 0 时的水位。 等时间到达 3 时,你才可以游向平台 (1, 1). 因为此时的水位是 3,坐标方格中的平台没有比水位 3 更高的,所以你可以游向坐标方格中的任意位置 示例2: 输入: [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]] 输出: 16 解释: 0 1 2 3 4 24 23 22 21 5 12 13 14 15 16 11 17 18 19 20 10 9 8 7 6 最终的路线用加粗进行了标记。 我们必须等到时间为 16,此时才能保证平台 (0, 0) 和 (4, 4) 是连通的   提示: 2 <= N <= 50. grid[i][j] 位于区间 [0, ..., N*N - 1] 内。 """ import bisect import sys from typing import List class Solution: # 228ms, 14MB @staticmethod def swim_in_water(grid: List[List[int]]) -> int: """ 并查集 @param grid: @return: """ n = len(grid) p = [[(i, j) for j in range(n)] for i in range(n)] # 并查集二维数组初始化 h = sorted([[grid[i][j], i, j] for j in range(n) for i in range(n)]) # 按高度对点排序 def f(a, b): if (a, b) != p[a][b]: p[a][b] = f(*p[a][b]) # 二元并查集,元组传参要用*解包 return p[a][b] k = 0 for t in range(max(grid[0][0], grid[-1][-1]), h[-1][0]): # 起点是两个对角的最大值,终点是整个数据里的最大高度 while h[k][0] <= t: _, i, j = h[k] for x, y in [(i + 1, j), (i, j + 1), (i - 1, j), (i, j - 1)]: if 0 <= x < n and 0 <= y < n: if grid[i][j] <= t and grid[x][y] <= t: (pi, pj), (px, py) = f(i, j), f(x, y) if (pi, pj) != (px, py): # 让符合时间空间条件且不相同的集合合并 p[px][py] = (pi, pj) k += 1 if f(0, 0) == f(n - 1, n - 1): # 首末元素属于同一个集合就返回答案 return t return h[-1][0] # 172ms,, 13.8MB @staticmethod def swim_in_water_v2(grid: List[List[int]]) -> int: """ BFS @param grid: @return: """ n = len(grid) c = {(0, 0)} # 访问标记 for t in range(max(grid[0][0], grid[-1][-1]), sys.maxsize): # 从首末元素的最大时间作为最开始的判断条件 p = c.copy() # 宽搜队列初始化,每个时间点的初始状态是上一轮时间访问标记过的坐标 while p: q = set() # 下一批宽搜队列 for i, j in p: if i == j == n - 1: # 如果走到目标了就返回时间 return t for x, y in [(i + 1, j), (i, j + 1), (i - 1, j), (i, j - 1)]: if 0 <= x < n and 0 <= y < n and grid[x][y] <= t and (x, y) not in c: # 符合时空条件就扩散地图 q |= {(x, y)} c |= {(x, y)} p = q # 128ms, 13.8MB @staticmethod def swim_in_water_v3(grid: List[List[int]]) -> int: """ 升序队列 @param grid: @return: """ n = len(grid) b = {(0, 0)} # 访问标记 p = [[grid[0][0], 0, 0]] # 升序队列初始化 t = 0 # 途径最大时间标记 while True: h, i, j = p.pop(0) t = max(t, h) if i == j == n - 1: # 找到终点就就返回时间 return t for x, y in [(i + 1, j), (i, j + 1), (i - 1, j), (i, j - 1)]: if 0 <= x < n and 0 <= y < n and (x, y) not in b: bisect.insort(p, [grid[x][y], x, y]) # 二分插入 b |= {(x, y)} # 140ms, 13.7MB @staticmethod def swim_in_water_v4(grid: List[List[int]]) -> int: """ 双向升序队列 @param grid: @return: """ n = len(grid) b, e = {(0, 0)}, {(n - 1, n - 1)} # 双向访问标记 p, q = [[grid[0][0], 0, 0]], [[grid[-1][-1], n - 1, n - 1]] # 双向升序队列初始化 t = 0 # 途径最大时间标记 while True: h, i, j = p.pop(0) t = max(t, h) if (i, j) in e: # 如果找到的点已经存在于另一个队列里,就返回答案 return t for x, y in [(i + 1, j), (i, j + 1), (i - 1, j), (i, j - 1)]: if 0 <= x < n and 0 <= y < n and (x, y) not in b: bisect.insort(p, [grid[x][y], x, y]) b |= {(x, y)} h, i, j = q.pop(0) # 从这里开始都是对称的,调换p,q,b,e就行。 t = max(t, h) if (i, j) in b: return t for x, y in [(i + 1, j), (i, j + 1), (i - 1, j), (i, j - 1)]: if 0 <= x < n and 0 <= y < n and (x, y) not in e: bisect.insort(q, [grid[x][y], x, y]) e |= {(x, y)} if __name__ == '__main__': test_cases = [ [[0, 2], [1, 3]], [[0, 1, 2, 3, 4], [24, 23, 22, 21, 5], [12, 13, 14, 15, 16], [11, 17, 18, 19, 20], [10, 9, 8, 7, 6]], ] for tc in test_cases: print(Solution.swim_in_water(tc)) print(Solution.swim_in_water_v2(tc)) print(Solution.swim_in_water_v3(tc)) print(Solution.swim_in_water_v4(tc))
[ "lorgerd@163.com" ]
lorgerd@163.com
793c15be2778bfa6a0852f657ea403fc51e685ba
a3f793a53361d08f3e0cdedc7fab9df40e201eef
/main.py
a53882b59400172fbcb656c830535363798e384d
[]
no_license
songshanshi/imoocc_py3
156db4f072bc956f45cbcc8c61fca964be8acfb9
6f3491ce857c541bf55d5ed8993265b7dd4dee09
refs/heads/master
2020-04-28T02:25:18.241155
2018-10-16T07:20:15
2018-10-16T07:20:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,917
py
#!/usr/bin/env python # -*- coding:utf-8 -*- ######################################################################### # Author:Jeson # Email:jeson@imoocc.com import datetime import os import re import yaml PROJECT_ROOT = os.path.realpath(os.path.dirname(__file__)) # import sys os.environ["DJANGO_SETTINGS_MODULE"] = 'admin.settings.local_cj' import django import time django.setup() from scanhosts.models import HostLoginifo from scanhosts.util.nmap_all_server import NmapNet from scanhosts.util.nmap_all_server import NmapDocker from scanhosts.util.nmap_all_server import NmapKVM from scanhosts.util.nmap_all_server import NmapVMX from scanhosts.util.nmap_all_server import snmp_begin from scanhosts.util.j_filter import FilterRules from scanhosts.util.get_pv_relation import GetHostType from detail.models import PhysicalServerInfo,ConnectionInfo,OtherMachineInfo,StatisticsRecord from operations.models import MachineOperationsInfo from scanhosts.util.nmap_all_server import NetDevLogin from admin.settings.local_cj import BASE_DIR import logging logger = logging.getLogger("django") from apps.detail.utils.machines import Machines # def net_begin(): # ''' # 开始执行网络扫描 # :return: # ''' # nm = NmapNet(oid='1.3.6.1.2.1.1.5.0',Version=2) # nm_res = nm.query() # print "...................",nm_res def main(): ''' 读取扫描所需配置文件 :return: ''' s_conf = yaml.load(open('conf/scanhosts.yaml')) s_nets = s_conf['hostsinfo']['nets'] s_ports = s_conf['hostsinfo']['ports'] s_pass = s_conf['hostsinfo']['ssh_pass'] s_cmds = s_conf['hostsinfo']['syscmd_list'] s_keys = s_conf['hostsinfo']['ssh_key_file'] s_blacks = s_conf['hostsinfo']['black_list'] s_emails = s_conf['hostsinfo']['email_list'] n_sysname_oid = s_conf['netinfo']['sysname_oid'] n_sn_oid = s_conf['netinfo']['sn_oids'] n_commu = s_conf['netinfo']['community'] n_login_sw = s_conf['netinfo']['login_enable'] n_backup_sw = s_conf['netinfo']['backup_enable'] n_backup_sever = s_conf['netinfo']['tfp_server'] d_pass = s_conf['dockerinfo']['ssh_pass'] starttime = datetime.datetime.now() ''' 扫描主机信息 ''' for nmap_type in s_nets: unkown_list,key_not_login_list = snmp_begin(nmap_type,s_ports,s_pass,s_keys,s_cmds,s_blacks,s_emails) ''' 扫描网络信息 ''' nm = NmapNet(n_sysname_oid,n_sn_oid,n_commu) if key_not_login_list: for item in key_not_login_list: is_net = nm.query(item) if is_net[0] or is_net[1]: HostLoginifo.objects.update_or_create(ip=item,hostname=is_net[0],sn=is_net[1],mathine_type="Network device") else: HostLoginifo.objects.update_or_create(ip=item,ssh_port=key_not_login_list[item][0],ssh_status=0) other_sn = item.replace('.','') ob = OtherMachineInfo.objects.filter(sn_key=other_sn) if not ob: print(".........................OtherMachineInfo",item,other_sn) OtherMachineInfo.objects.create(ip=item,sn_key=other_sn,reson_str=u"SSH端口存活,无法登录",oth_cab_id=1) if unkown_list: for item in unkown_list: is_net = nm.query(item) if is_net[0] or is_net[1]: HostLoginifo.objects.update_or_create(ip=item,hostname=is_net,mathine_type="Network device") else: HostLoginifo.objects.update_or_create(ip=item,ssh_status=0) other_sn = item.replace('.','') ob = OtherMachineInfo.objects.filter(sn_key=other_sn) if not ob: OtherMachineInfo.objects.create(ip=item,sn_key=other_sn,reson_str=u"IP存活,非Linux服务器",oth_cab_id=1) # ''' # 网络设备备份或者登录功能 # ''' # net_login_dct = {} # with open("%s/conf/net_dev.pass"%BASE_DIR,'r') as f: # for item in f.readlines(): # ip,username,passwd,en_passwd = re.split("\s+",item)[:4] # net_login_dct[ip] = (username,passwd,en_passwd) # if n_login_sw == "True": # res = NetDevLogin(dev_ips=net_login_dct,backup_sw=n_backup_sw,back_server=n_backup_sever) ''' 规则:主机信息,去重、生成关系字典 ''' ft = FilterRules() key_ip_dic = ft.run() ''' 梳理虚拟服务器主机于服务器信息 ''' pv = GetHostType() p_relate_dic = pv.get_host_type(key_ip_dic) ''' 更新宿主机类型中表对应关系 ''' ip_key_dic = {v:k for k,v in key_ip_dic.items()} docker_p_list = p_relate_dic["docker-containerd"] kvm_p_list = p_relate_dic["qemu-system-x86_64"] vmware_p_list = p_relate_dic["vmx"] for item in docker_p_list: PhysicalServerInfo.objects.filter(conn_phy__sn_key=ip_key_dic[item]).update(vir_type="1") for item in kvm_p_list: PhysicalServerInfo.objects.filter(conn_phy__sn_key=ip_key_dic[item]).update(vir_type="0") for item in vmware_p_list: PhysicalServerInfo.objects.filter(conn_phy__sn_key=ip_key_dic[item]).update(vir_type="2") ''' 扫描docker的宿主机和虚拟服务的关系 ''' ds = NmapDocker(s_cmds,d_pass,ip_key_dic) ds.do_nmap(docker_p_list) ''' 扫描KVM的宿主机和虚拟服务的关系 # ''' ks = NmapKVM(ip_key_dic) ks.do_nmap(kvm_p_list) ''' 扫描ESXI虚拟机配置 ''' ne = NmapVMX(vmware_p_list,ip_key_dic) ne.dosnmp() ''' 更新状态表,用户信息表 ''' c_sn_lst = [item.sn_key for item in ConnectionInfo.objects.all()] o_sn_lst = [item.sn_key for item in OtherMachineInfo.objects.all()] old_sn_list = [item.sn_key for item in MachineOperationsInfo.objects.all()] new_sn_lst = c_sn_lst + o_sn_lst diff_sn_lst = set(new_sn_lst + old_sn_list) for item in diff_sn_lst: try: nsin = MachineOperationsInfo.objects.filter(sn_key=item) if not nsin: MachineOperationsInfo.objects.create(sn_key=item) except Exception as e: print("Error:SN:%s not insert into database,reason is:%s"%(item,e)) logger.error("Error:SN:%s not insert into database,reason is:%s"%(item,e)) ''' 统计总数 ''' info_dic = Machines().get_all_count() StatisticsRecord.objects.create(all_count=info_dic['all_c'],pyh_count=info_dic['pyh_c'],net_count=info_dic['net_c'], other_count=info_dic['other_c'],vmx_count=info_dic['vmx_c'],kvm_count=info_dic['kvm_c'],docker_count=info_dic['docker_c']) endtime = datetime.datetime.now() totaltime = (endtime - starttime).seconds logger.info("{Finish:Use time %s s}"%totaltime) print("{Finish:Use time %s s}"%totaltime) if __name__ == "__main__": main()
[ "gengming8859@icloud.com" ]
gengming8859@icloud.com
2bb1e7e593dfb67298aa570a9c0e2c150b0dc54b
d0bd9c3c5539141c74e0eeae2fa6b7b38af84ce2
/src/cogent3/parse/__init__.py
7559bc6dcc006e4be1bcd02096d3c56f55fc2512
[ "BSD-3-Clause" ]
permissive
KaneWh1te/cogent3
150c72e2f80a6439de0413b39c4c37c09c9966e3
115e9eb5700627fdb24be61441a7e3e155c02c61
refs/heads/master
2023-07-29T00:32:03.742351
2021-04-20T04:32:00
2021-04-20T04:32:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
956
py
#!/usr/bin/env python __all__ = [ "blast", "cigar", "clustal", "dialign", "ebi", "fasta", "gcg", "genbank", "gff", "locuslink", "ncbi_taxonomy", "newick", "nexus", "paml", "paml_matrix", "phylip", "rdb", "record", "record_finder", "sequence", "table", "tinyseq", "tree", "tree_xml", "unigene", ] __author__ = "" __copyright__ = "Copyright 2007-2021, The Cogent Project" __credits__ = [ "Gavin Huttley", "Peter Maxwell", "Rob Knight", "Catherine Lozupone", "Jeremy Widmann", "Matthew Wakefield", "Sandra Smit", "Greg Caporaso", "Zongzhi Liu", "Micah Hamady", "Jason Carnes", "Raymond Sammut", "Hua Ying", "Andrew Butterfield", "Marcin Cieslik", ] __license__ = "BSD-3" __version__ = "2021.04.20a" __maintainer__ = "Gavin Huttley" __email__ = "Gavin.Huttley@anu.edu.au" __status__ = "Production"
[ "Gavin.Huttley@anu.edu.au" ]
Gavin.Huttley@anu.edu.au
41a00bab3f061077909f54d74dc574355af1929d
1b77eaf078321b1320d72aa36a4357568101e4ca
/江南大学教务处/test.py
93ac06b18e5699d2285b3f417e63ee409aaa3bec
[]
no_license
BEE-JN/python_homework
92ffc1216a380d124901fd64cc541f70813847dc
8ba4ea79cbd422f40e6f9f1cc5fed4d75715d207
refs/heads/master
2020-03-23T08:02:47.863607
2018-07-17T15:30:21
2018-07-17T15:30:21
141,305,118
1
0
null
null
null
null
UTF-8
Python
false
false
187
py
import requests import time url = "https://survey.zkeycc/pku/xsdc/?dm=bk" if __name__=='__main__': while 1: r=requests.get(url) print(r.content) time.sleep(1)
[ "41156190+GCS-CN@users.noreply.github.com" ]
41156190+GCS-CN@users.noreply.github.com
96c1f73d17d18f7906615ca48bc2e2d25d8b7259
caa06eca3eef2549d5088f6487201f734b35822e
/multi_ie/EE/model/multi_pointer_net.py
0d2334ed6d7a09e87757e36528cedd3c228713c5
[]
no_license
kelvincjr/shared
f947353d13e27530ba44ea664e27de51db71a5b6
4bc4a12b0ab44c6847a67cbd7639ce3c025f38f8
refs/heads/master
2023-06-23T19:38:14.801083
2022-05-17T09:45:22
2022-05-17T09:45:22
141,774,490
6
1
null
2023-06-12T21:30:07
2018-07-21T02:22:34
Python
UTF-8
Python
false
false
7,694
py
# _*_ coding:utf-8 _*_ import warnings import numpy as np import torch import torch.nn as nn from transformers import BertModel from transformers import BertPreTrainedModel from .layernorm import ConditionalLayerNorm #from utils.data_util import batch_gather warnings.filterwarnings("ignore") def batch_gather(data: torch.Tensor, index: torch.Tensor): length = index.shape[0] t_index = index.cpu().numpy() t_data = data.cpu().data.numpy() result = [] for i in range(length): result.append(t_data[i, t_index[i], :]) return torch.from_numpy(np.array(result)).to(data.device) class ERENet(nn.Module): """ ERENet : entity relation jointed extraction """ def __init__(self, encoder, classes_num): super().__init__() self.classes_num = classes_num # BERT model self.bert = encoder config = encoder.config self.token_entity_emb = nn.Embedding(num_embeddings=2, embedding_dim=config.hidden_size, padding_idx=0) # self.encoder_layer = TransformerEncoderLayer(config.hidden_size, nhead=4) # self.transformer_encoder = TransformerEncoder(self.encoder_layer, num_layers=1) self.LayerNorm = ConditionalLayerNorm(config.hidden_size, eps=config.layer_norm_eps) # pointer net work self.po_dense = nn.Linear(config.hidden_size, self.classes_num * 2) self.subject_dense = nn.Linear(config.hidden_size, 2) self.loss_fct = nn.BCEWithLogitsLoss(reduction='none') #self.init_weights() def forward(self, q_ids=None, passage_ids=None, segment_ids=None, attention_mask=None, subject_ids=None, subject_labels=None, object_labels=None, eval_file=None, is_eval=False): mask = (passage_ids != 0).float() bert_encoder = self.bert(passage_ids, token_type_ids=segment_ids, attention_mask=mask)[0] if not is_eval: # subject_encoder = self.token_entity_emb(token_type_ids) # context_encoder = bert_encoder + subject_encoder sub_start_encoder = batch_gather(bert_encoder, subject_ids[:, 0]) sub_end_encoder = batch_gather(bert_encoder, subject_ids[:, 1]) subject = torch.cat([sub_start_encoder, sub_end_encoder], 1) context_encoder = self.LayerNorm(bert_encoder, subject) sub_preds = self.subject_dense(bert_encoder) po_preds = self.po_dense(context_encoder).reshape(passage_ids.size(0), -1, self.classes_num, 2) subject_loss = self.loss_fct(sub_preds, subject_labels) # subject_loss = F.binary_cross_entropy(F.sigmoid(sub_preds) ** 2, subject_labels, reduction='none') subject_loss = subject_loss.mean(2) subject_loss = torch.sum(subject_loss * mask.float()) / torch.sum(mask.float()) po_loss = self.loss_fct(po_preds, object_labels) # po_loss = F.binary_cross_entropy(F.sigmoid(po_preds) ** 4, object_labels, reduction='none') po_loss = torch.sum(po_loss.mean(3), 2) po_loss = torch.sum(po_loss * mask.float()) / torch.sum(mask.float()) loss = subject_loss + po_loss return loss else: subject_preds = nn.Sigmoid()(self.subject_dense(bert_encoder)) answer_list = list() for qid, sub_pred in zip(q_ids.cpu().numpy(), subject_preds.cpu().numpy()): context = eval_file[qid].bert_tokens start = np.where(sub_pred[:, 0] > 0.6)[0] end = np.where(sub_pred[:, 1] > 0.5)[0] subjects = [] for i in start: j = end[end >= i] if i == 0 or i > len(context) - 2: continue if len(j) > 0: j = j[0] if j > len(context) - 2: continue subjects.append((i, j)) answer_list.append(subjects) qid_ids, bert_encoders, pass_ids, subject_ids, token_type_ids = [], [], [], [], [] for i, subjects in enumerate(answer_list): if subjects: qid = q_ids[i].unsqueeze(0).expand(len(subjects)) pass_tensor = passage_ids[i, :].unsqueeze(0).expand(len(subjects), passage_ids.size(1)) new_bert_encoder = bert_encoder[i, :, :].unsqueeze(0).expand(len(subjects), bert_encoder.size(1), bert_encoder.size(2)) token_type_id = torch.zeros((len(subjects), passage_ids.size(1)), dtype=torch.long) for index, (start, end) in enumerate(subjects): token_type_id[index, start:end + 1] = 1 qid_ids.append(qid) pass_ids.append(pass_tensor) subject_ids.append(torch.tensor(subjects, dtype=torch.long)) bert_encoders.append(new_bert_encoder) token_type_ids.append(token_type_id) if len(qid_ids) == 0: subject_ids = torch.zeros(1, 2).long().to(bert_encoder.device) qid_tensor = torch.tensor([-1], dtype=torch.long).to(bert_encoder.device) po_tensor = torch.zeros(1, bert_encoder.size(1)).long().to(bert_encoder.device) return qid_tensor, subject_ids, po_tensor qids = torch.cat(qid_ids).to(bert_encoder.device) pass_ids = torch.cat(pass_ids).to(bert_encoder.device) bert_encoders = torch.cat(bert_encoders).to(bert_encoder.device) # token_type_ids = torch.cat(token_type_ids).to(bert_encoder.device) subject_ids = torch.cat(subject_ids).to(bert_encoder.device) flag = False split_heads = 1024 bert_encoders_ = torch.split(bert_encoders, split_heads, dim=0) pass_ids_ = torch.split(pass_ids, split_heads, dim=0) # token_type_ids_ = torch.split(token_type_ids, split_heads, dim=0) subject_encoder_ = torch.split(subject_ids, split_heads, dim=0) po_preds = list() for i in range(len(bert_encoders_)): bert_encoders = bert_encoders_[i] # token_type_ids = token_type_ids_[i] pass_ids = pass_ids_[i] subject_encoder = subject_encoder_[i] if bert_encoders.size(0) == 1: flag = True # print('flag = True**********') bert_encoders = bert_encoders.expand(2, bert_encoders.size(1), bert_encoders.size(2)) subject_encoder = subject_encoder.expand(2, subject_encoder.size(1)) # pass_ids = pass_ids.expand(2, pass_ids.size(1)) sub_start_encoder = batch_gather(bert_encoders, subject_encoder[:, 0]) sub_end_encoder = batch_gather(bert_encoders, subject_encoder[:, 1]) subject = torch.cat([sub_start_encoder, sub_end_encoder], 1) context_encoder = self.LayerNorm(bert_encoders, subject) po_pred = self.po_dense(context_encoder).reshape(subject_encoder.size(0), -1, self.classes_num, 2) if flag: po_pred = po_pred[1, :, :, :].unsqueeze(0) po_preds.append(po_pred) po_tensor = torch.cat(po_preds).to(qids.device) po_tensor = nn.Sigmoid()(po_tensor) return qids, subject_ids, po_tensor
[ "deco_2004@163.com" ]
deco_2004@163.com
b865fa83e9b8e72b08e144110aa75b200cf807d4
7ec04fc867d0a48fffc05c65bff9217cfe211fe7
/HW/统计字符串/countHotal.py
31f95d4500041b28fa209a1a7c4dae778ad024c5
[]
no_license
Cherry93/pythonPractic
3b9d1f99803503073bbb2f3a58009665338bd278
2889183af6c9a01ab47895b23e2d6ce8c288fd4d
refs/heads/master
2021-08-31T16:41:56.655989
2017-12-22T03:53:18
2017-12-22T03:53:18
115,008,198
0
0
null
null
null
null
UTF-8
Python
false
false
520
py
''' 统计加州旅馆中所有单词出现的次数,并降序打印 ''' import collections file = input("Enter a filename:") with open(file, 'r') as fpr: content = fpr.read() content = content.replace("\n", '') content1 = content.split() print(content1) print(content1[0].lower()) print(len(content1)) list =[] for i in range(0,len(content1)): list.append(content1[i].lower()) print(list) print("\n各单词出现的个数:\n%s"%collections.Counter(list)) #content2 = content1.lower() #print(content1)
[ "358544104@qq.com" ]
358544104@qq.com
c7eee2a22a1efb7ddb4b5278189a0424acae6d63
14ebcf98e7c64505839e0b7bbab89e32af7abe1e
/deep4rec/datasets/census.py
4d58743074fe1b8d1eb3004a4a18b2d8469a1f62
[ "Apache-2.0" ]
permissive
Luiz-FS/Deep4Rec
b021fbc36e377e1055e46e9a52f68c32018894f8
78c5ca74f0e0d06a9f4bb2f267817b69abd40d1d
refs/heads/master
2020-09-03T14:27:45.828007
2019-11-18T01:10:30
2019-11-18T01:10:30
219,484,411
0
0
Apache-2.0
2019-11-18T01:10:31
2019-11-04T11:22:00
Python
UTF-8
Python
false
false
6,110
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Dataset interface for Census dataset. Census dataset: https://archive.ics.uci.edu/ml/machine-learning-databases/adult """ import os import urllib.request import numpy as np import pandas as pd from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import OneHotEncoder import tensorflow as tf from deep4rec.datasets.dataset import Dataset import deep4rec.utils as utils _CSV_COLUMNS = [ "age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket", ] _CSV_COLUMN_DEFAULTS = [ [0], [""], [0], [""], [0], [""], [""], [""], [""], [""], [0], [0], [0], [""], [""], ] class CensusDataset(Dataset): url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult" def __init__(self, dataset_name, output_dir, *args, **kwargs): super().__init__(dataset_name, output_dir, *args, **kwargs) self.train_filename = "adult.data" self.test_filename = "adult.test" self.train_url = os.path.join(self.url, self.train_filename) self.test_url = os.path.join(self.url, self.test_filename) self.train_path = os.path.join(self.output_dir, self.train_filename) self.test_path = os.path.join(self.output_dir, self.test_filename) self.preprocessed_path = os.path.join(self.output_dir, self.dataset_name) self._ord_encoder = OrdinalEncoder() self._occupation_ord_encoder = OrdinalEncoder() self._one_hot_encoder = OneHotEncoder(sparse=False) def _download_and_clean_file(self, url, filename): """Downloads data from url, and makes changes to match the CSV format.""" temp_file, _ = urllib.request.urlretrieve(url) with tf.gfile.Open(temp_file, "r") as temp_eval_file: with tf.gfile.Open(filename, "w") as eval_file: for line in temp_eval_file: line = line.strip() line = line.replace(", ", ",") if not line or "," not in line: continue if line[-1] == ".": line = line[:-1] line += "\n" eval_file.write(line) tf.gfile.Remove(temp_file) def download(self): if not os.path.exists(self.output_dir): os.mkdir(self.output_dir) self._download_and_clean_file(self.train_url, self.train_path) self._download_and_clean_file(self.test_url, self.test_path) def check_downloaded(self): return os.path.exists(self.train_path) and os.path.exists(self.test_path) def check_preprocessed(self): return False def _preprocess(self, filename, train_data=False): df = pd.read_csv(filename, names=_CSV_COLUMNS) # Categorical columns df_base_columns = df[ ["education", "marital_status", "relationship", "workclass"] ] if train_data: base_columns = self._ord_encoder.fit_transform(df_base_columns.values) occupation_column = self._occupation_ord_encoder.fit_transform( df["occupation"].values.reshape(-1, 1) ) one_hot_base_columns = self._one_hot_encoder.fit_transform( df_base_columns.values ) else: base_columns = self._ord_encoder.transform(df_base_columns.values) occupation_column = self._occupation_ord_encoder.transform( df["occupation"].values.reshape(-1, 1) ) one_hot_base_columns = self._one_hot_encoder.transform( df_base_columns.values ) # Age buckets buckets = [0, 18, 25, 30, 35, 40, 45, 50, 55, 60, 65, 200] age_buckets = np.array( pd.cut(df["age"], buckets, labels=range(len(buckets) - 1)).values ) wide_columns = np.concatenate( (base_columns, age_buckets.reshape(-1, 1)), axis=1 ) numerical_columns = df[ ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week"] ].values deep_columns = np.concatenate((one_hot_base_columns, numerical_columns), axis=1) labels = np.where(df["income_bracket"].values == ">50K", 1, 0) return wide_columns, deep_columns, occupation_column, labels def preprocess(self): self.train_wide_data, self.train_deep_data, self.train_embedding_data, self.train_y = self._preprocess( self.train_path, train_data=True ) self.test_wide_data, self.test_deep_data, self.test_embedding_data, self.test_y = self._preprocess( self.test_path, train_data=False ) @property def train_size(self): return len(self.train_wide_data) @property def train_features(self): return [self.train_embedding_data, self.train_wide_data, self.train_deep_data] @property def test_features(self): return [self.test_embedding_data, self.test_wide_data, self.test_deep_data] @property def num_features_one_hot(self): return len(np.unique(self.train_embedding_data)) @property def num_features(self): return 1
[ "mariannelinharesm@gmail.com" ]
mariannelinharesm@gmail.com
e469b1c0df202afbdf63411ba8abdbd4527e1190
493f99b210303d019f62195ae8dde9d02ee1b81f
/indy_node/test/api/test_rich_schema_objects_reply.py
56dbda7791bdd23e1fda9ccddcde4b9f7330077d
[ "Apache-2.0" ]
permissive
darklordz-217/indy-node
745baa357fe739bac20433cb2daa0f7c5a2f2caf
4d2f6a9dc0ff136117f8766a4f2cf70b239404e0
refs/heads/master
2022-10-06T17:01:12.414734
2020-06-11T08:49:17
2020-06-11T08:49:17
271,472,931
2
0
Apache-2.0
2020-06-11T09:04:23
2020-06-11T06:48:21
Python
UTF-8
Python
false
false
2,499
py
import json import pytest from indy_common.constants import JSON_LD_CONTEXT, RS_CONTEXT_TYPE_VALUE, RICH_SCHEMA, RICH_SCHEMA_ENCODING, \ RICH_SCHEMA_MAPPING, RICH_SCHEMA_CRED_DEF, RS_CRED_DEF_TYPE_VALUE, RS_MAPPING_TYPE_VALUE, \ RS_ENCODING_TYPE_VALUE, RS_SCHEMA_TYPE_VALUE, RICH_SCHEMA_PRES_DEF, RS_PRES_DEF_TYPE_VALUE from indy_node.test.api.helper import validate_write_reply, validate_rich_schema_txn, sdk_build_rich_schema_request from indy_node.test.rich_schema.templates import RICH_SCHEMA_EX1, W3C_BASE_CONTEXT, RICH_SCHEMA_ENCODING_EX1, \ RICH_SCHEMA_MAPPING_EX1, RICH_SCHEMA_CRED_DEF_EX1, RICH_SCHEMA_PRES_DEF_EX1 from plenum.common.util import randomString from plenum.test.helper import sdk_get_reply, sdk_sign_and_submit_req # The order of creation is essential as some rich schema object reference others by ID # Encoding's id must be equal to the one used in RICH_SCHEMA_MAPPING_EX1 @pytest.mark.parametrize('txn_type, rs_type, content, rs_id', [(JSON_LD_CONTEXT, RS_CONTEXT_TYPE_VALUE, W3C_BASE_CONTEXT, randomString()), (RICH_SCHEMA, RS_SCHEMA_TYPE_VALUE, RICH_SCHEMA_EX1, RICH_SCHEMA_EX1['@id']), (RICH_SCHEMA_ENCODING, RS_ENCODING_TYPE_VALUE, RICH_SCHEMA_ENCODING_EX1, "did:sov:1x9F8ZmxuvDqRiqqY29x6dx9oU4qwFTkPbDpWtwGbdUsrCD"), (RICH_SCHEMA_MAPPING, RS_MAPPING_TYPE_VALUE, RICH_SCHEMA_MAPPING_EX1, RICH_SCHEMA_MAPPING_EX1['@id']), (RICH_SCHEMA_CRED_DEF, RS_CRED_DEF_TYPE_VALUE, RICH_SCHEMA_CRED_DEF_EX1, randomString()), (RICH_SCHEMA_PRES_DEF, RS_PRES_DEF_TYPE_VALUE, RICH_SCHEMA_PRES_DEF_EX1, RICH_SCHEMA_PRES_DEF_EX1['@id'])]) def test_rich_schema_object_reply_is_valid(looper, sdk_pool_handle, sdk_wallet_steward, txn_type, rs_type, content, rs_id): request = sdk_build_rich_schema_request(looper, sdk_wallet_steward, txn_type=txn_type, rs_id=rs_id, rs_name=randomString(), rs_version='1.0', rs_type=rs_type, rs_content=json.dumps(content)) reply = sdk_get_reply(looper, sdk_sign_and_submit_req(sdk_pool_handle, sdk_wallet_steward, request))[1] validate_write_reply(reply) validate_rich_schema_txn(reply['result']['txn'], txn_type)
[ "alexander.sherbakov@dsr-corporation.com" ]
alexander.sherbakov@dsr-corporation.com
bcfcfd42d82934ef66bd39ecc5139583c6a927df
f62ff90d7850af458d8f12386fc9ee9134dbe7c1
/Plots/Showplots/Model_3/Current_Voltage_Curves.py
2d9023dab4df536df56c4202551adad30523eb73
[]
no_license
AlexSchmid22191/EIS_R_Sim
51b431f078cb455fc38637c192436c0523449565
851b061e60811e1e58a5b2fd4e393e529c3f86ac
refs/heads/master
2023-06-27T17:40:59.177270
2021-07-22T11:50:27
2021-07-22T11:50:27
380,768,174
0
0
null
null
null
null
UTF-8
Python
false
false
2,606
py
from matplotlib.pyplot import subplots, show from matplotlib.style import use from numpy import load, log10 use('../Show.mplstyle') data = load('../../../Currents_Resistances_Model_3/Current_Data_Model_3.npy') fig_hi, ax_hi = subplots(nrows=2, figsize=(6, 8)) fig_me, ax_me = subplots(nrows=2, figsize=(6, 8)) fig_lo, ax_lo = subplots(nrows=2, figsize=(6, 8)) # High oxygen partial pressures for i in (1400, 1500, 1600, 1700, 1800): ax_hi[0].plot(data['overpotential'][1::25, i], abs(data['current'][1::25, i]), linestyle='-', label='$10^{%d}$ bar' % log10(data['pressure'][1, i])) ax_hi[1].plot(data['overpotential'][0::25, i], data['current'][0::25, i], linestyle='-', label='$10^{%d}$ bar' % log10(data['pressure'][1, i])) # Medium oxygen partial pressures for i in (1000, 1100, 1200, 1300): ax_me[0].plot(data['overpotential'][1::25, i], abs(data['current'][1::25, i]), linestyle='-', label='$10^{%d}$ bar' % log10(data['pressure'][1, i])) ax_me[1].plot(data['overpotential'][0::25, i], data['current'][0::25, i], linestyle='-', label='$10^{%d}$ bar' % log10(data['pressure'][1, i])) # Low oxygen partial pressures for i in (500, 600, 700, 800, 900): ax_lo[0].plot(data['overpotential'][1::25, i], abs(data['current'][1::25, i]), linestyle='-', label='$10^{%d}$ bar' % log10(data['pressure'][1, i])) ax_lo[1].plot(data['overpotential'][0::25, i], data['current'][0::25, i], linestyle='-', label='$10^{%d}$ bar' % log10(data['pressure'][1, i])) ax_hi[0].set_yscale('log') ax_me[0].set_yscale('log') ax_lo[0].set_yscale('log') ax_hi[1].set_yscale('symlog', linthreshy=1e-1) ax_me[1].set_yscale('symlog', linthreshy=1e-4) ax_lo[1].set_yscale('symlog', linthreshy=1e-9) # ax_hi[0].set_ylim(1e-3, 1e5) # ax_hi[1].set_ylim(-1e5, 1e0) # ax_me[0].set_ylim(1e-6, 1e0) # ax_me[1].set_ylim(-1e0, 1e0) # ax_lo[0].set_ylim(1e-10, 1e0) # ax_lo[1].set_ylim(-1e-4, 1e1) for ax in (ax_hi[0], ax_hi[1], ax_me[0], ax_me[1], ax_lo[0], ax_lo[1]): ax.set_ylabel('Absolute current density (A/m²)') ax.set_xlabel('Overpotential (V)') ax.legend() # fig_hi.tight_layout() # fig_hi.savefig('Plots/Current_Voltage_Curves_Hi.pdf') # fig_hi.savefig('Plots/Current_Voltage_Curves_Hi.png') # # fig_me.tight_layout() # fig_me.savefig('Plots/Current_Voltage_Curves_Me.pdf') # fig_me.savefig('Plots/Current_Voltage_Curves_Me.png') # # fig_lo.tight_layout() # fig_lo.savefig('Plots/Current_Voltage_Curves_Lo.pdf') # fig_lo.savefig('Plots/Current_Voltage_Curves_Lo.png') show()
[ "Alex.Schmid91@gmail.com" ]
Alex.Schmid91@gmail.com
690fe2ffb43edf1febae8410ba150129ce00cce0
3419067388879d8a6542df01cb0278ae90b021a2
/py100day/Day01-15/Day04/code/for2.py
22c96886304fa47ecee9b5c39f3f60d9a36a21f1
[]
no_license
oweson/python-river-master
faa31c5248e297a92054cc302e213e2b37fb8bd5
cf9e99e611311b712465eb11dec4bb8f712929b2
refs/heads/master
2021-06-21T15:47:01.755957
2019-10-02T00:08:05
2019-10-02T00:08:05
205,607,518
0
0
null
2021-06-10T21:55:20
2019-08-31T23:39:55
Python
UTF-8
Python
false
false
173
py
""" 用for循环实现1~100之间的偶数求和 Version: 0.1 Author: 骆昊 Date: 2018-03-01 """ # 步长是2 sum = 0 for x in range(2, 101, 2): sum += x print(sum)
[ "570347720@qq.com" ]
570347720@qq.com
1026e1d0f5add5bf40edc076405f2e409f26c5ce
2f2682f778512a75a1ff49d7e267c2f4d355c48e
/geoprocess/controllers.py
7be119b34c9b20b609770261e464a475b5996a9b
[]
no_license
beatcovid/geoprocess
4a44f46b900c2e0ffed0dab18008e7884e759e3b
c2a7b1e4ede06583679db9dadebe2066b0274e54
refs/heads/master
2023-04-13T13:45:48.572825
2020-05-27T03:08:14
2020-05-27T03:08:14
260,215,049
0
1
null
2023-03-29T00:36:19
2020-04-30T13:11:38
Python
UTF-8
Python
false
false
4,538
py
import csv import email.utils import json import logging import os import sys from datetime import datetime from pprint import pprint from dotenv import load_dotenv from pymongo import MongoClient from geoprocess.find_psma import find_lga, find_sa3 from geoprocess.google_geo import google_geocode, lookup_placeid, place_autocomplete from geoprocess.settings import MONGO_CONNECT_URL load_dotenv() logger = logging.getLogger("geoprocess") logging.basicConfig(level=logging.INFO) logger.setLevel(logging.INFO) mongo_connection = MongoClient(MONGO_CONNECT_URL) def flatten_google_place(place, prefix): ac = place["address_components"] flattened = {} for component in ac: for ctype in component["types"]: if not ctype == "political": flattened[prefix + "_" + ctype] = component["short_name"] return flattened def get_granuality(flat_geo, prefix): FIELDS = [ f"{prefix}_postal_code", f"{prefix}_locality", f"{prefix}_administrative_area_level_2", f"{prefix}_administrative_area_level_1", f"{prefix}_country", ] for field in FIELDS: if field in flat_geo: return field[len(prefix) + 1 :] return "country" def update_geoplots(): """ just a simple q """ db = mongo_connection.prod_covid19_api_docdb.instances query = {"_geo_processed": {"$ne": True}} processed = 0 updated = 0 place_fields = ["userdetail_city", "travel_country"] for a in db.find(query).sort("_submission_time", -1): for place_field in place_fields: if place_field in a: if not type(a[place_field]) is str: continue if " " in a[place_field]: continue try: p = lookup_placeid(a[place_field]) except Exception as e: logger.error("Could not find place id for: {}".format(a[place_field])) logger.error(e) continue p_flat = flatten_google_place(p, place_field) if ( place_field + "_country" in p_flat and p_flat[place_field + "_country"] == "AU" and ( place_field + "_locality" in p_flat or place_field + "_postal_code" in p_flat ) ): if not place_field + "_lga_id" in a: lgs = find_lga( p["geometry"]["location"]["lat"], p["geometry"]["location"]["lng"], ) if lgs: p_flat[place_field + "_lga_id"] = lgs if not place_field + "_sa3_id" in a: sa3 = find_sa3( p["geometry"]["location"]["lat"], p["geometry"]["location"]["lng"], ) if sa3: p_flat[place_field + "_sa3_id"] = sa3 p_flat[place_field + "_granuality"] = get_granuality(p_flat, place_field) if ( place_field + "_country" in p_flat and p_flat[place_field + "_country"] == "AU" and ( place_field + "_administrative_area_level_1" in p_flat or "userdetail_city_postal_code" in p_flat ) ): p_flat[place_field + "_state"] = p_flat[ place_field + "_administrative_area_level_1" ] p_flat["_geo_processed"] = True pprint(p_flat) try: db.update_one( {"_id": a["_id"]}, {"$set": p_flat}, ) except Exception as e: logger.error( "Db error on updating place_id: {} {}".format( a["_id"], place_field ) ) logger.error(e) continue logger.info( "Updated {} {} -> {}".format(place_field, a["_id"], a[place_field]) ) updated += 1 processed += 1 print("Processed {} and updated {}".format(processed, updated))
[ "nc9@protonmail.com" ]
nc9@protonmail.com
c0bccab0f33fe2f6323731cddd1742ba4d45275c
aa410a95773aeea73e75f0e701db5cdc0eda890b
/weapons.py
cf6e4eb05ba6ad8a453e07637018051ed6eac5f8
[]
no_license
predominant/zombsole
ccc00893b7739c5341c43fc28375415fa628b885
a04ff40a144cb1f63d8aa29ccf0b06ecccc2bc7f
refs/heads/master
2021-01-21T19:29:05.322551
2014-03-26T05:38:15
2014-03-26T05:38:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
710
py
# coding: utf-8 from core import Weapon def _new_weapon_class(name, max_range, damage_range): '''Create new weapon class.''' class NewWeapon(Weapon): def __init__(self): super(NewWeapon, self).__init__(name, max_range, damage_range) NewWeapon.__name__ = name return NewWeapon ZombieClaws = _new_weapon_class('ZombieClaws', 1.5, (5, 10)) Knife = _new_weapon_class('Knife', 1.5, (5, 10)) Axe = _new_weapon_class('Axe', 1.5, (75, 100)) Gun = _new_weapon_class('Gun', 6, (10, 50)) Rifle = _new_weapon_class('Rifle', 10, (25, 75)) Shotgun = _new_weapon_class('Shotgun', 3, (75, 100))
[ "fisadev@gmail.com" ]
fisadev@gmail.com
2eac0fe3402f79f389178ebe792a10a16f7c1a4a
039f2c747a9524daa1e45501ada5fb19bd5dd28f
/AGC001/AGC001c.py
6f3fb7892212fb5a2683a833717ea55a344d0dfd
[ "Unlicense" ]
permissive
yuto-moriizumi/AtCoder
86dbb4f98fea627c68b5391bf0cc25bcce556b88
21acb489f1594bbb1cdc64fbf8421d876b5b476d
refs/heads/master
2023-03-25T08:10:31.738457
2021-03-23T08:48:01
2021-03-23T08:48:01
242,283,632
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
#AGC001c def main(): import sys input=sys.stdin.readline sys.setrecursionlimit(10**6) # map(int, input().split()) if __name__ == '__main__': main()
[ "kurvan1112@gmail.com" ]
kurvan1112@gmail.com
eaeef1d5a47d3ff5621d988c694458cf63dc39a6
ceab178d446c4ab55951c3d65d99815e9fdee43a
/archive/coding_practice/python/ticks_plot.py
83e7d35370f009514aa95366b78a92f4f61f0afa
[]
no_license
DeneBowdalo/AtmosChem_Tools
01ecedb0df5c5d6e01966a0c3d8055826f5ac447
220c2f697a4f4c1e5443c336ede923b2004fe9f5
refs/heads/master
2021-01-10T18:05:30.800218
2017-02-06T16:08:14
2017-02-06T16:08:14
43,529,442
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
import matplotlib.pyplot as plt x = [5,3,7,2,4,1,11,25,33] plt.plot(x) plt.xticks(range(len(x)), ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']); plt.yticks(range(1,36,2)); plt.show()
[ "db876@earth0.york.ac.uk" ]
db876@earth0.york.ac.uk
def39a55d547e1131e0f8dcf639f5da81e09bb90
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/cGaTqHsPfR5H6YBuj_0.py
c3936bfae1158025ccd064458e0c9c17ee2d0b5e
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
818
py
""" Given a list of ingredients `i` and a flavour `f` as input, create a function that returns the list, but with the elements `bread` around the selected ingredient. ### Examples make_sandwich(["tuna", "ham", "tomato"], "ham") ➞ ["tuna", "bread", "ham", "bread", "tomato"] make_sandwich(["cheese", "lettuce"], "cheese") ➞ ["bread", "cheese", "bread", "lettuce"] make_sandwich(["ham", "ham"], "ham") ➞ ["bread", "ham", "bread", "bread", "ham", "bread"] ### Notes * You will always get valid inputs. * Make two separate sandwiches if two of the same elements are next to each other (see example #3). """ def make_sandwich(ingredients, flavour): sandwich = [] for i in ingredients: sandwich += ['bread', i, 'bread'] if i == flavour else [i] return sandwich
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
b01ea9b981eaf809aed4db02cdf99add3ef4992e
a4753147801dbabfec45f6f9f47572cda77efb81
/debugging-constructs/ibmfl/util/data_handlers/mnist_pytorch_data_handler.py
29cc18afb938e575e71025d9007fd67f722221b9
[ "MIT" ]
permissive
SEED-VT/FedDebug
e1ec1f798dab603bd208b286c4c094614bb8c71d
64ffa2ee2e906b1bd6b3dd6aabcf6fc3de862608
refs/heads/main
2023-05-23T09:40:51.881998
2023-02-13T21:52:25
2023-02-13T21:52:25
584,879,212
8
0
null
null
null
null
UTF-8
Python
false
false
3,460
py
""" Licensed Materials - Property of IBM Restricted Materials of IBM 20221069 © Copyright IBM Corp. 2022 All Rights Reserved. """ import logging import numpy as np from ibmfl.data.data_handler import DataHandler from ibmfl.util.datasets import load_mnist logger = logging.getLogger(__name__) class MnistPytorchDataHandler(DataHandler): def __init__(self, data_config=None): super().__init__() self.file_name = None if data_config is not None: if 'npz_file' in data_config: self.file_name = data_config['npz_file'] # load the datasets (self.x_train, self.y_train), (self.x_test, self.y_test) = self.load_dataset() # pre-process the datasets self.preprocess() def get_data(self): """ Gets pre-process mnist training and testing data. :return: training data :rtype: `tuple` """ return (self.x_train, self.y_train), (self.x_test, self.y_test) def load_dataset(self, nb_points=500): """ Loads the training and testing datasets from a given local path. If no local path is provided, it will download the original MNIST \ dataset online, and reduce the dataset size to contain \ 500 data points per training and testing dataset. Because this method is for testing it takes as input the number of datapoints, nb_points, to be included in the training and testing set. :param nb_points: Number of data points to be included in each set if no local dataset is provided. :type nb_points: `int` :return: training and testing datasets :rtype: `tuple` """ if self.file_name is None: (x_train, y_train), (x_test, y_test) = load_mnist() x_train = x_train[:nb_points] y_train = y_train[:nb_points] x_test = x_test[:nb_points] y_test = y_test[:nb_points] else: try: logger.info('Loaded training data from ' + str(self.file_name)) data_train = np.load(self.file_name) x_train = data_train['x_train'] y_train = data_train['y_train'] x_test = data_train['x_test'] y_test = data_train['y_test'] except Exception: raise IOError('Unable to load training data from path ' 'provided in config file: ' + self.file_name) return (x_train, y_train), (x_test, y_test) def preprocess(self): """ Preprocesses the training and testing dataset, \ e.g., reshape the images according to self.channels_first; \ convert the labels to binary class matrices. :return: None """ img_rows, img_cols = 28, 28 self.x_train = self.x_train.astype('float32').reshape(self.x_train.shape[0], 1, img_rows, img_cols) self.x_test = self.x_test.astype('float32').reshape(self.x_test.shape[0], 1,img_rows, img_cols) # print(self.x_train.shape[0], 'train samples') # print(self.x_test.shape[0], 'test samples') self.y_train = self.y_train.astype('int64') self.y_test = self.y_test.astype('int64') # print('y_train shape:', self.y_train.shape) # print(self.y_train.shape[0], 'train samples') # print(self.y_test.shape[0], 'test samples')
[ "waris@vt.edu" ]
waris@vt.edu
7eced97eac47dfd2ce21cee31fe289634f7a5bf7
eac6dc8eb8e5f088500f425a7323cd35a4f99bd6
/src/courses/migrations/0012_course_active.py
af89db3155df4d47be9b84b4c843f0b847c617a6
[]
no_license
aminhp93/django_serverup_2
a14195af756799795282028ba611dbccc3848870
aef31722e882367c731e9e48fc8af8740befc112
refs/heads/master
2020-05-27T01:54:15.268661
2017-02-25T21:58:36
2017-02-25T21:58:36
82,514,017
1
0
null
null
null
null
UTF-8
Python
false
false
451
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-19 18:06 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('courses', '0011_auto_20170219_1749'), ] operations = [ migrations.AddField( model_name='course', name='active', field=models.BooleanField(default=True), ), ]
[ "minhpn.org.ec@gmail.com" ]
minhpn.org.ec@gmail.com
ba63f7efdf10aab9c7481c9a2bee33143ac12df2
2037235643046608bf883f11c1bc448e2df8a4a3
/HuaYing/practice/test14.py
a18f331036c28c57f36f4079f83d4f9d3c4a6650
[]
no_license
Hardworking-tester/HuaYingAutoTest
7e46dfb0729961cee0da06762fc0be11724ad80b
c1f0cf7aa4433f482bbae88d1a5637b9859359ca
refs/heads/master
2021-01-10T18:38:37.788736
2015-09-05T10:37:10
2015-09-05T10:37:10
41,957,309
0
0
null
null
null
null
UTF-8
Python
false
false
1,368
py
#encoding:utf-8 from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains br=webdriver.Firefox() # br.maximize_window() br.get("http://www.xebest.com:8000") elements=br.find_elements_by_class_name("nav-arrow") element1=elements[4] if element1.is_displayed(): print ("网站导航链接已定位到") else: print ("网站导航元素未找到,请更换定位方式后重新定位") # if br.find_element_by_xpath("//*[@id='topnav']/ul/li[5]/div[2]/ul[2]/li[2]/a").is_displayed(): # if br.find_element_by_css_selector("div#topnav>ul:first>li:nth(4)>div:nth(1)>ul:nth(1)>li(1)>a").is_displayed(): # if br.find_element_by_css_selector("li#all_menu>ul:nth(0)>li:nth(0)>a>span").is_displayed(): # if br.find_element_by_link_text(u"易支付").is_displayed(): # print ("易支付元素已找到") # else: # print("易支付元素未找到,请更换定位方式后重新定位") # epay=br.find_element_by_css_selector("div#topnav>ul>li:nth(4)>div:nht(1)>ul:nth(1)>li(1)>a") # epay=br.find_element_by_xpath("//*[@id='topnav']/ul/li[5]/div[2]/ul[2]/li[2]/a") # epay=br.find_element_by_xpath("//*[@id='topnav']/ul/li[5]/div[2]/ul[2]/li[2]/a") epay=br.find_element_by_link_text(u"易支付") ActionChains(br).move_to_element(element1).click(element1).perform() ActionChains(br).move_to_element(epay).click(epay).perform()
[ "373391120@qq.com" ]
373391120@qq.com
636022ef17714db27f131c08daa673606f4185d8
511b7b19ec49be34bec240ee7c7cf4178cd36ca3
/gasolinestation/migrations/0013_auto_20200304_0909.py
fb6c52a8156995aa62443e5a937be261f2953067
[]
no_license
francisguchie/360POS
58de516fe52e83d6b99bd195d22c8aa902daee18
68f9e20ac263c75ec0c9b0fe75d7f648b8744ea8
refs/heads/master
2023-02-08T16:38:42.667538
2020-03-12T16:05:00
2020-03-12T16:05:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
657
py
# Generated by Django 3.0.3 on 2020-03-04 09:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('gasolinestation', '0012_transactionsales'), ] operations = [ migrations.AddField( model_name='transactionsales', name='dispensed_liter', field=models.DecimalField(blank=True, decimal_places=2, max_digits=9, null=True), ), migrations.AlterField( model_name='transactionsales', name='price', field=models.DecimalField(blank=True, decimal_places=2, max_digits=9, null=True), ), ]
[ "monde.lacanlalay@gmail.com" ]
monde.lacanlalay@gmail.com
86089daeedc71651ae0564812bf24553d130050a
f399fbac7e35dcc2c2f2ad4d3202b0839d9b7d48
/user/send_mail.py
0cb781b2301d5d6442e6f1cfdfd49aada05a621f
[]
no_license
AktanKasymaliev/django-toilets-service
480f56b652a88e1422290de8906f0bb6d5693cff
225d71b164c36bab5fded86390b17ce265694a17
refs/heads/main
2023-07-14T12:46:12.399114
2021-08-23T17:14:04
2021-08-23T17:14:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,328
py
from django.template.loader import render_to_string from django.utils.html import strip_tags from django.core.mail import send_mail from django.contrib.sites.shortcuts import get_current_site from django.core.mail import EmailMultiAlternatives from decouple import config from django.utils.http import urlsafe_base64_decode, urlsafe_base64_encode from django.utils.encoding import force_bytes, force_text from .token import account_activation_token def send_confirmation_email(request, user): context = { "small_text_detail": "Thank you for " "creating an account. " "Please verify your email " "address to set up your account.", "email": user.email, "domain":get_current_site(request).domain, "uid":urlsafe_base64_encode(force_bytes(user.pk)), "token":account_activation_token.make_token(user) } current_site = get_current_site(request) mail_subject = 'Active your account' to_email = user.email message = render_to_string('account/email.html', context) email = EmailMultiAlternatives( mail_subject, message, from_email=config('EMAIL_HOST_USER'), to = [user.email], ) email.content_subtype = 'html' email.send(fail_silently=True) print("ВСЕ ПРОШЛО УСПЕШНО EMAIL SENT")
[ "aktan.kasymaliev@icloud.com" ]
aktan.kasymaliev@icloud.com
2ed87c256e5bf9f70115c96c9aec2798f8b5a5af
14913a0fb7e1d17318a55a12f5a181dddad3c328
/63.snake.py
990234c17a8d9d056195b13ae470723aa887b84e
[]
no_license
Jesuisjavert/Algorithm
6571836ec23ac3036565738c2bee94f416595f22
730549d19e66e20b3474a235a600958a8e036a0e
refs/heads/master
2023-02-16T06:34:50.984529
2020-09-25T09:40:30
2020-09-25T09:40:30
330,849,371
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
import sys sys.stdin = open('input.txt','r') T = int(input()) for testcase in range(1,T+1): arr = [list(map(int, input().split())) for _ in range(4)] print(arr)
[ "jesuisjavert@gmail.com" ]
jesuisjavert@gmail.com
beed14a3c1aff89d035020396a37556f4cf88ed1
24d8cf871b092b2d60fc85d5320e1bc761a7cbe2
/wicd/rev519-537/right-branch-537/wicd/backends/be-wireless/threadedwirelessinterface.py
ab1a5d1e45f9fa860b190118e1d14d918ce5832a
[]
no_license
joliebig/featurehouse_fstmerge_examples
af1b963537839d13e834f829cf51f8ad5e6ffe76
1a99c1788f0eb9f1e5d8c2ced3892d00cd9449ad
refs/heads/master
2016-09-05T10:24:50.974902
2013-03-28T16:28:47
2013-03-28T16:28:47
9,080,611
3
2
null
null
null
null
UTF-8
Python
false
false
1,698
py
from misc import WicdError from baseinterface import needsidle from encryptablewirelessinterface import EncryptableWirelessInterface from asyncrunner import AsyncManager, AsyncError class ThreadedWirelessInterface(EncryptableWirelessInterface): def __init__(self, interface_name): EncryptableWirelessInterface.__init__(self, interface_name) self.__async_manager = AsyncManager() def scan(self, finished_callback): ''' Performs a scan. Scanning is done asynchronously. ''' def _do_scan(abort_if_needed, self): return EncryptableWirelessInterface._do_scan(self) def finish_up(result): print 'scan finished', result self.networks = result finished_callback() self.__async_manager.run(_do_scan, finish_up, self) def connect(self, finished_callback): ''' Attempts to connect. Connecting is done asynchronously.''' def _do_connect(abort_if_needed, interface, network): print 'connecting...' print interface print network import time while True: time.sleep(10) print 'in connecting thread...' abort_if_needed() print 'done connecting' def finish_up(result): finished_callback() self.__async_manager.run(_do_connect, finish_up, self, self.current_network, name='connect') def cancel_connection_attempt(self): ''' Cancel the current attempt to connect to the network. ''' self.__async_manager.stop('connect')
[ "joliebig@fim.uni-passau.de" ]
joliebig@fim.uni-passau.de
be7975289ea7397570ae5a442d590aae139acd82
214dde26c268d1d0b7991318c5e2d43aa27af89b
/backlooking/order_analysis.py
c7b7acc13a43f9796ee1e1050048258fb6cc19ad
[]
no_license
hellobiek/smart_deal_tool
f1846903ac402257bbe92bd23f9552970937d50e
ba8aad0a37843362f5833526921c6f700fb881f1
refs/heads/master
2022-09-04T04:41:34.598164
2022-08-04T22:04:09
2022-08-04T22:04:09
88,258,362
36
14
null
null
null
null
UTF-8
Python
false
false
3,559
py
#-*- coding: utf-8 -*- import os import sys from os.path import abspath, dirname sys.path.insert(0, dirname(dirname(abspath(__file__)))) import datetime import const as ct import pandas as pd from futu import TrdEnv from datetime import datetime from base.cdate import get_dates_array from tools.markdown_table import MarkdownTable from tools.markdown_writer import MarkdownWriter from algotrade.broker.futu.fututrader import FutuTrader pd.options.mode.chained_assignment = None def get_total_profit(orders): buy_orders = orders.loc[orders.trd_side == 'BUY'] buy_orders = buy_orders.reset_index(drop = True) sell_orders = orders.loc[orders.trd_side == 'SELL'] sell_orders = sell_orders.reset_index(drop = True) total_sell_value = (sell_orders['dealt_qty'] * sell_orders['dealt_avg_price']).sum() total_buy_value = (buy_orders['dealt_qty'] * buy_orders['dealt_avg_price']).sum() return total_sell_value - total_buy_value def generate(orders, date_arrary, dirname, start, end): filename = 'form_%s_to_%s_tading_review.md' % (start, end) os.makedirs(dirname, exist_ok = True) fullfilepath = os.path.join(dirname, filename) orders = orders[['code', 'trd_side', 'dealt_qty', 'dealt_avg_price', 'create_time', 'updated_time']] total_profit = get_total_profit(orders) md = MarkdownWriter() md.addTitle("%s_%s_交割单" % (start, end), passwd = '909897') md.addHeader("交割单分析", 1) md.addHeader("总收益分析", 2) t_index = MarkdownTable(headers = ["总收益"]) t_index.addRow(["%s" % total_profit]) md.addTable(t_index) md.addHeader("交割单复盘", 2) for cdate in date_arrary: md.addHeader("%s_交割单" % cdate, 3) order_info = orders.loc[orders['create_time'].str.startswith(cdate)] order_info.at[:, 'create_time'] = order_info.loc[:, 'create_time'].str.split().str[1].str[0:8] order_info = order_info.reset_index(drop = True) t_index = MarkdownTable(headers = ["名称", "方向", "数量", "价格", "创建时间", "完成时间", "对错", "分析"]) for index in range(len(order_info)): data_list = order_info.loc[index].tolist() content_list = [data_list[0], data_list[1], int(data_list[2]), round(data_list[3], 2), data_list[4], data_list[5].split(' ')[1].strip()[0:8], '', ''] content_list = [str(i) for i in content_list] t_index.addRow(content_list) md.addTable(t_index) md.addHeader("本周总结", 2) md.addHeader("优点", 3) md.addHeader("缺点", 3) md.addHeader("心得", 3) with open(fullfilepath, "w+") as f: f.write(md.getStream()) def main(): #dirname = '/Volumes/data/quant/stock/data/docs/blog/hellobiek.github.io/source/_posts' dirname = '/Users/hellobiek/Documents/workspace/blog/blog/source/_posts' unlock_path = "/Users/hellobiek/Documents/workspace/python/quant/smart_deal_tool/configure/follow_trend.json" key_path = "/Users/hellobiek/Documents/workspace/python/quant/smart_deal_tool/configure/key.pri" futuTrader = FutuTrader(host = ct.FUTU_HOST_LOCAL, port = ct.FUTU_PORT, trd_env = TrdEnv.REAL, market = ct.US_MARKET_SYMBOL, unlock_path = unlock_path, key_path = key_path) start = '2020-08-11' end = '2020-08-12' orders = futuTrader.get_history_orders(start = start, end = end) date_arrary = get_dates_array(start, end, dformat = "%Y-%m-%d", asending = True) generate(orders, date_arrary, dirname, start, end) if __name__ == "__main__": main()
[ "hellobiek@gmail.com" ]
hellobiek@gmail.com
ba7f120c0d5551658bacbd572127dbb325214ffa
11b420a9e6dbe371167227f41ef8e344e3382612
/ConvNets/Comparison_Plots/Pooled_Images/Pooled_Images.py
15a23b6ae92fc9bdfccb8654ccf3350027e0953e
[ "MIT" ]
permissive
tarek-ullah/Active-Learning-Bayesian-Convolutional-Neural-Networks
7092386758b68dc922efaa2c2eba055930bf2896
f8b68038bd3b97c473e9c1de6b6cdee4538021f4
refs/heads/master
2021-01-13T06:57:19.343775
2016-11-02T12:22:16
2016-11-02T12:22:16
81,338,773
1
0
null
2017-02-08T14:34:15
2017-02-08T14:34:15
null
UTF-8
Python
false
false
3,650
py
from __future__ import print_function from keras.datasets import mnist from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.optimizers import SGD, Adadelta, Adagrad, Adam from keras.utils import np_utils, generic_utils from six.moves import range import numpy as np import scipy as sp from keras import backend as K import random import scipy.io import matplotlib.pyplot as plt from keras.regularizers import l2, activity_l2 from scipy.stats import mode # input image dimensions img_rows, img_cols = 28, 28 # the data, shuffled and split between tran and test sets (X_train_All, y_train_All), (X_test, y_test) = mnist.load_data() X_train_All = X_train_All.reshape(X_train_All.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) X_Pool = X_train_All[5000:15000, :, :, :] y_Pool = y_train_All[5000:15000] Total_Pooled_Images = 400 Bald_Pool = np.load('Bald_Pool.npy') print('Pooling Dropout Bald Images') #saving pooled images for im in range(Total_Pooled_Images): Image = X_Pool[Bald_Pool[1+im], :, :, :] img = Image.reshape((28,28)) sp.misc.imsave('/Users/Riashat/Documents/Cambridge_THESIS/Code/Experiments/keras/RESULTS/Cluster_Experiment_Results/2nd/Pooled_Images/Bald_Pool_Images/'+'Pooled'+'_Image_'+str(im)+'.jpg', img) Dropout_Max_Entropy_Pool = np.load('Dropout_Max_Entropy_Pool.npy') print('Pooling Dropout Max Entropy Images') #saving pooled images for im in range(Total_Pooled_Images): Image = X_Pool[Dropout_Max_Entropy_Pool[1+im], :, :, :] img = Image.reshape((28,28)) sp.misc.imsave('/Users/Riashat/Documents/Cambridge_THESIS/Code/Experiments/keras/RESULTS/Cluster_Experiment_Results/2nd/Pooled_Images/Dropout_Max_Entropy_Images/'+'Pooled'+'_Image_'+str(im)+'.jpg', img) # Segnet_Pool = np.load('Segnet_Pool.npy') # print('Pooling Bayes Segnet Images') # #saving pooled images # for im in range(Total_Pooled_Images): # Image = X_Pool[Segnet_Pool[im], :, :, :] # img = Image.reshape((28,28)) # sp.misc.imsave('/Users/Riashat/Documents/Cambridge_THESIS/Code/Experiments/keras/RESULTS/Cluster_Experiment_Results/2nd/Pooled_Images/Segnet_Pool_Images/'+'Pooled'+'_Image_'+str(im)+'.jpg', img) Variation_Ratio_Pool = np.load('Variation_Ratio_Pool.npy') print('Pooling Variation Ratio Images') #saving pooled images for im in range(Total_Pooled_Images): Image = X_Pool[Variation_Ratio_Pool[1+im], :, :, :] img = Image.reshape((28,28)) sp.misc.imsave('/Users/Riashat/Documents/Cambridge_THESIS/Code/Experiments/keras/RESULTS/Cluster_Experiment_Results/2nd/Pooled_Images/Variation_Ratio_Images/'+'Pooled'+'_Image_'+str(im)+'.jpg', img) Max_Entropy_Pool = np.load('Max_Entropy_Pool.npy') print('Pooling Max Entropy Images') #saving pooled images for im in range(Total_Pooled_Images): Image = X_Pool[Max_Entropy_Pool[1+im], :, :, :] img = Image.reshape((28,28)) sp.misc.imsave('/Users/Riashat/Documents/Cambridge_THESIS/Code/Experiments/keras/RESULTS/Cluster_Experiment_Results/2nd/Pooled_Images/Max_Entropy_Images/'+'Pooled'+'_Image_'+str(im)+'.jpg', img) Random_Pool = np.load('Random_Pool.npy') print('Pooling Random Acquisition Images') #saving pooled images for im in range(Total_Pooled_Images): Image = X_Pool[Random_Pool[1+im], :, :, :] img = Image.reshape((28,28)) sp.misc.imsave('/Users/Riashat/Documents/Cambridge_THESIS/Code/Experiments/keras/RESULTS/Cluster_Experiment_Results/2nd/Pooled_Images/Random_Images/'+'Pooled'+'_Image_'+str(im)+'.jpg', img)
[ "riashat.islam.93@gmail.com" ]
riashat.islam.93@gmail.com
eee47352250b1354c790e2f7624fae5c7205dbdd
d45b87ba22649cb9c0f003479112c50a7ce09ba0
/Counting Sort 3.py
65bd53aba0bb44a886e5ed534ec574b1d9fdc902
[]
no_license
chishui/HackerRankAlgorithmsChallenge
7458f6553f52846b9de5b68c0f692f72be13dfa8
611096a0c362675ce68598065ea3fe0abbbe5b99
refs/heads/master
2020-12-24T13:35:43.829308
2014-09-02T10:36:57
2014-09-02T10:36:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
#https://www.hackerrank.com/challenges/countingsort3 N = input() li = [int(raw_input().strip().split()[0]) for i in range(0, N)] li.sort() last = -1 index = 0 out = [] for i in range(0, 100): while index < len(li) and i >= li[index] : index = index + 1 out.append(index) print ' '.join(map(str, out))
[ "chishui2@gmail.com" ]
chishui2@gmail.com
79e89da491df1b01cf2db1375aa85bf04472dfce
f29a31354a66798e2c398fc2a01bc285b6e35dfb
/NeuralNetworks/l-IntroToNeuralNetworks/Perceptrons.py
8b97e96224a7febd95bb5ca02c32f3a2c2cb5e9d
[]
no_license
ajpiter/UdacityDeepLearning
2fd8b6ba7f29aa03ab9dfdd557dbdcc692e7ada0
eb343a8be223f4bcc15a87483f7945023c2c9a0e
refs/heads/master
2021-01-02T09:00:34.221125
2017-08-28T16:32:45
2017-08-28T16:32:45
99,121,250
0
0
null
null
null
null
UTF-8
Python
false
false
1,764
py
#Perceptrons #Also known as neurons #Inputs #Weights #Start out as random values, then as the neural network learns more about the input data and results the network adjusts the weights #The process of adjusting the weights is called training the neural network #The higher the weight the more important it is in determining the output # 'W' represents a matrix of weights # 'w' represents an indivdual weight #Linear combination #Multiple weights times inputs and sum them #Start at i = 1 #Evaluate (w1 * x1) and remember the results #move to i = 2 #Evaluate (w2 * x2) and add these results to (w1 * x1) #Continue repeating that process until i = mi where m is the number of inputs #Example, if we had two inputs, (w1 * x1) + (w2 * x2) #Output signal #Done by feeding the linear combination into an activation function #Activation functions are functions that decide, given the inputs to the node what should be the nodes outputs. #The output layer is referred to as activations #Heaviside step function #An activation function that returns a 0 if the linear combination is less than 0. #It returns a 1 if the linear combination is positive or equal to zero. #Think of 1 as yes and 0 as no or True/False #Bias #one way to get a function to return 1 for more inputs is to add a value to the results of the linear combination #Bias is represented in equations as b #Similar to weights the bias can be updated and changed by the neural network durning training #weights and bias are initially assigned a random value and then they are updated using a learning algorithm like gradient descent. #The weights and biases change so that the next training example is more accurate and patterns are learned by the neural network.
[ "noreply@github.com" ]
ajpiter.noreply@github.com
72655e0d239fb7752d956948112e58f2ba5f52b8
3637fe729395dac153f7abc3024dcc69e17f4e81
/reference/ucmdb/discovery/os_platform_discoverer.py
02d93f540190842835fd968afa055cc09e7172c3
[]
no_license
madmonkyang/cda-record
daced6846c2456f20dddce7f9720602d1583a02a
c431e809e8d0f82e1bca7e3429dd0245560b5680
refs/heads/master
2023-06-15T08:16:46.230569
2021-07-15T16:27:36
2021-07-15T16:27:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,272
py
# coding=utf-8 ''' Created on Dec 27, 2013 @author: ekondrashev ''' import logger import entity import command import flow import post_import_hooks import service_loader from service_loader import load_service_providers_by_file_pattern class Platform(entity.Immutable): def __init__(self, name): self.name = name def __eq__(self, other): if isinstance(other, Platform): return self.name.lower() == other.name.lower() elif isinstance(other, basestring): return self.name.lower() == other.lower() return NotImplemented def __ne__(self, other): result = self.__eq__(other) if result is NotImplemented: return result return not result def __key__(self): return (self.name, ) def __hash__(self): return hash(self.__key__()) def __repr__(self): cls = self.__class__ return '%s(%s)' % (cls, repr(self.name),) class __PlatformsEnum(entity.Immutable): def __init__(self, **platforms): self.__platforms = platforms def __getattr__(self, name): value = self.__platforms.get(name) if value: return value raise AttributeError def values(self): return self.__platforms.values() def by_name(self, name): for platform in self.values(): if platform == name: return platform def merge(self, **platforms): self.__platforms.update(platforms) enum = __PlatformsEnum() class Discoverer(object): def is_applicable(self, shell): r''' Returns if current discoverer implementation can be applied againt the shell passed. @types: shellutils.Shell-> bool ''' raise NotImplementedError('is_applicable') def get_platform(self, shell): r'shellutils.Shell -> os_platform_discoverer.Platform' raise NotImplementedError('get_platform') def find_discoverer_by_shell(shell): r''' @types: shellutils.Shell -> os_platform_discoverer.Discoverer @raise ValueError: if shell is not passed @raise flow.DiscoveryException: if no os platform discoverer found ''' if not shell: raise ValueError('Invalid shell') discoverers = service_loader.global_lookup[Discoverer] for discoverer in discoverers: if discoverer.is_applicable(shell): return discoverer raise flow.DiscoveryException('No os platform discoverer ' 'implementation found') def discover_platform_by_shell(shell): r''' @types: shellutils.Shell -> os_platform_discoverer.Platform @raise ValueError: if shell is not passed @raise flow.DiscoveryException: if no os platform discoverer found or on platform discovery error ''' discoverer = find_discoverer_by_shell(shell) try: return discoverer.get_platform(shell) except command.ExecuteException, e: raise flow.DiscoveryException(e) @post_import_hooks.invoke_when_loaded(__name__) def __load_plugins(module): logger.debug('Loading os platforms') load_service_providers_by_file_pattern('*_os_platform_discoverer.py') logger.debug('Finished loading platforms: %s' % enum.values())
[ "silentbalanceyh@126.com" ]
silentbalanceyh@126.com
27fac4f1aaf8414c571f63b38f3416535871b864
e7fcc1d64cd95805918ab1b5786bf81a92f973ef
/2020/day06/test_day06.py
dcfa4fa5d4d7f186a72866d92f905fc5c31bff00
[]
no_license
trolen/advent-of-code
8145c1e36fea04e53d4b7a885efcc2da71fbfe57
0a4e022a6a810d86e044a15036a2f5778f0d38af
refs/heads/master
2023-02-26T13:11:58.341006
2023-02-20T23:22:27
2023-02-20T23:22:27
54,579,550
0
0
null
null
null
null
UTF-8
Python
false
false
881
py
#! /usr/bin/env python3 import unittest import day06 class TestDay06(unittest.TestCase): def setUp(self): self.raw_data = [ 'abc', '', 'a', 'b', 'c', '', 'ab', 'ac', '', 'a', 'a', 'a', 'a', '', 'b' ] self.groups = day06.parse_data(self.raw_data) def test_unique_chars(self): self.assertEqual('abc', day06.get_unique_chars(['ab', 'ac'])) def test_common_chars(self): self.assertEqual('a', day06.get_common_chars(['ab', 'ac'])) def test_part1(self): self.assertEqual(11, day06.do_part1(self.groups)) def test_part2(self): self.assertEqual(6, day06.do_part2(self.groups)) if __name__ == '__main__': unittest.main()
[ "timothy.rolen@gmail.com" ]
timothy.rolen@gmail.com
cdb896df7dafbf9b574f7853ffe03b2a0ab849e0
5c4cc78698a8cdadb10c45799a67c95ca17a4d5a
/custom_components/usage.py
f93d2655364330efe4fac2599f2b0bc5244848ee
[]
no_license
gitumarkk/dash-custom-components-blog
fb044f14735d686bbf0c3e07b863c0eb39830c6b
3a94e3fd7e3047eb082be901f2c2962b42b27964
refs/heads/main
2023-05-31T06:40:33.337975
2021-06-11T06:22:31
2021-06-11T06:22:31
375,925,178
1
1
null
null
null
null
UTF-8
Python
false
false
524
py
import custom_components import dash from dash.dependencies import Input, Output import dash_html_components as html app = dash.Dash(__name__) app.layout = html.Div([ custom_components.MyCustomComponent( id='input', value='my-value', label='my-label' ), html.Div(id='output') ]) @app.callback(Output('output', 'children'), [Input('input', 'value')]) def display_output(value): return 'You have entered {}'.format(value) if __name__ == '__main__': app.run_server(debug=True)
[ "gitumarkk@gmail.com" ]
gitumarkk@gmail.com
191db6f8ca5bb50f81b0a602940e6003d3f27b1b
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/4/usersdata/112/1803/submittedfiles/swamee.py
0993e51e919e7a77d0aa3da61db48e12e1ca660d
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
# -*- coding: utf-8 -*- from __future__ import division import math f= input('Digite o valor de f:') L= input('Digite o valor de L:') Q= input('Digite o valor de Q:') DeltaH= input('Digite o valor de Delta H') v= input('Digite o valor de v') g= 9.81 e= 0.000002 D= ((8*f*L*Q)*(2/5))/((math.pi)**2(g*DeltaH)) Rey= (4*Q)/((math.pi)*D*v) K= (0.25)/(math.log10((e/3.70)+(5.74)/(Rey)**0.9))**2 print('D=%.4f'%D) print('Rey=%.4f'%Rey) print('K=%.4f'%K)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
312460ac8bca6af84350206ee751570d59d027a3
1a639d185f9c883b7bebf33c577c58b22ac93c7e
/graphics/moving_pan.py
37ad05954d8428b128a6f418e6a6d7232f4c8994
[]
no_license
gofr1/python-learning
bd09da5b5850b1533a88b858690ed4380b55d33e
19343c985f368770dc01ce415506506d62a23285
refs/heads/master
2023-09-02T15:42:27.442735
2021-11-12T10:17:13
2021-11-12T10:17:13
237,828,887
0
0
null
2021-11-12T10:17:14
2020-02-02T20:03:42
Python
UTF-8
Python
false
false
767
py
from superwires import games path_to_images = '../../Pictures/img/' games.init(screen_width = 640, screen_height = 480, fps = 50) class Pan(games.Sprite): '''Pan moving with mouse''' def update(self): '''Move object to mouse position''' self.x = games.mouse.x self.y = games.mouse.y def main(): wall_image = games.load_image(path_to_images + "wall.jpg", transparent=False) games.screen.background = wall_image pan_image = games.load_image(path_to_images + "PizzaPan.png") the_pan = Pan( image = pan_image, x = games.mouse.x, y = games.mouse.y ) games.screen.add(the_pan) games.mouse.is_visible = False # mouse pointer is invisible games.screen.mainloop() # go! main()
[ "gofr.one@gmail.com" ]
gofr.one@gmail.com
87610080866d9cad3191923528acbeeed82d6233
547548a6ae8db52b1b183d6f3ba3ad63f4247962
/train/gen/kl/paths.py
5bc1abac26c206f66572dc7988a9abdd8620b8c0
[ "MIT" ]
permissive
jeffkrupa/SubtLeNet
21870c8cc88080c101edffb414832d863c299455
e0e74b7a0a1c76fd6d6e21c80ce57302a2cd6b6f
refs/heads/master
2022-06-25T16:33:36.427635
2022-06-10T16:15:53
2022-06-10T16:15:53
187,670,116
0
2
MIT
2019-08-02T20:26:20
2019-05-20T15:44:13
Python
UTF-8
Python
false
false
288
py
#basedir = '/fastscratch/snarayan/genarrays/v_deepgen_3/' #figsdir = '/home/snarayan/public_html/figs/deepgen/v3/' basedir = '/data/t3serv014/snarayan/deep//v_deepgen_4_small/' figsdir = '/home/snarayan/public_html/figs/deepgen/v4_kl/' from os import system system('mkdir -p '+figsdir)
[ "sidn@mit.edu" ]
sidn@mit.edu
81a9468e822101750e73217c4b2e6d17f02e75b2
7a3fc3ea3dd71e4ec85ac73e0af57ae976777513
/.history/flaskblog_20210524215327.py
3dc704c3d526e4ab9cbfa1dbab452f4fb649c5bb
[]
no_license
khanhdk0000/first_proj
72e9d2bbd788d6f52bff8dc5375ca7f75c0f9dd0
bec0525353f98c65c3943b6d42727e3248ecfe22
refs/heads/main
2023-05-12T10:36:08.026143
2021-06-05T15:35:22
2021-06-05T15:35:22
374,148,728
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
from flask import Flask, render_template app = Flask(__name__) @app.route('/') @app.route('/home') def hello_world(): return render_template('home.html') @app.route('/about') def about(): return render_template('home.html') if __name__ == '__main__': app.run(debug=True)
[ "khanhtran28092000@gmail.com" ]
khanhtran28092000@gmail.com
40801f7d40c23e8ef9fd71aef06229192814b53d
738b6d6ec4572f5848940b6adc58907a03bda6fb
/tests/pymcell4_positive/3000_reports_check/model.py
03fdbc184e2cc0fea4c8bae504524b1bb53ba093
[ "MIT", "Unlicense", "LicenseRef-scancode-public-domain" ]
permissive
mcellteam/mcell_tests
09cd1010a356e0e07c88d7e044a73c5606c6e51a
34d2d967b75d56edbae999bf0090641850f4f4fe
refs/heads/master
2021-12-24T02:36:24.987085
2021-09-24T14:19:41
2021-09-24T14:19:41
174,733,926
1
0
null
null
null
null
UTF-8
Python
false
false
1,470
py
#!/usr/bin/env python3 import sys import os MCELL_PATH = os.environ.get('MCELL_PATH', '') if MCELL_PATH: sys.path.append(os.path.join(MCELL_PATH, 'lib')) else: print("Error: variable MCELL_PATH that is used to find the mcell library was not set.") sys.exit(1) import mcell as m params = m.bngl_utils.load_bngl_parameters('test.bngl') ITERATIONS = int(params['ITERATIONS']) # ---- load bngl file ---- model = m.Model() if 'MCELL_DEFAULT_COMPARTMENT_VOLUME' in params: MCELL_DEFAULT_COMPARTMENT_VOLUME = params['MCELL_DEFAULT_COMPARTMENT_VOLUME'] MCELL_DEFAULT_COMPARTMENT_EDGE_LENGTH = MCELL_DEFAULT_COMPARTMENT_VOLUME**(1.0/3.0) default_compartment = m.geometry_utils.create_box( 'default_compartment', MCELL_DEFAULT_COMPARTMENT_EDGE_LENGTH ) model.add_geometry_object(default_compartment) else: MCELL_DEFAULT_COMPARTMENT_EDGE_LENGTH = 1 default_compartment = None model.load_bngl('test.bngl', './react_data/seed_' + str(1).zfill(5) + '/', default_compartment) # ---- configuration ---- model.config.total_iterations = ITERATIONS model.notifications.rxn_and_species_report = True model.initialize() model.run_iterations(ITERATIONS) model.end_simulation() # check that reports exist assert os.path.exists(os.path.join('reports', 'rxn_report_00001.txt')) assert os.path.exists(os.path.join('reports', 'species_report_00001.txt')) assert os.path.exists(os.path.join('reports', 'warnings_report_00001.txt'))
[ "ahusar@salk.edu" ]
ahusar@salk.edu
6cb5a5e75a9c8324286d70e2893b91e427710002
60cbdf1f9771159f872e632017fa736800784297
/Codewars/Find-the-odd-int.py
c1567718b97f70ca035fd5cb5332e8b15ddf1595
[]
no_license
AG-Systems/programming-problems
6ea8c109f04c4d22db6e63fe7b665894c786242a
39b2d3546d62b48388788e36316224e15a52d656
refs/heads/master
2023-04-16T16:59:20.595993
2023-04-05T01:25:23
2023-04-05T01:25:23
77,095,208
10
3
null
2019-10-14T16:16:18
2016-12-22T00:03:14
Python
UTF-8
Python
false
false
355
py
def find_it(seq): hashtable = {} for x in seq: if x in hashtable: hashtable[x] += 1 else: hashtable[x] = 1 for key,val in hashtable.items(): if val % 2 != 0: return key """ def find_it(seq): for i in seq: if seq.count(i)%2!=0: return i CLEVER SOLUTION """
[ "noreply@github.com" ]
AG-Systems.noreply@github.com
c41845008487c6093767f0afb04faa5273492412
2729fff7cb053d2577985d38c8962043ee9f853d
/bokeh/sampledata/tests/test_perceptions.py
fd7da155b0a33f279e0b263f36c4dea9d66e1929
[ "BSD-3-Clause" ]
permissive
modster/bokeh
2c78c5051fa9cac48c8c2ae7345eafc54b426fbd
60fce9003aaa618751c9b8a3133c95688073ea0b
refs/heads/master
2020-03-29T01:13:35.740491
2018-09-18T06:08:59
2018-09-18T06:08:59
149,377,781
1
0
BSD-3-Clause
2018-09-19T02:02:49
2018-09-19T02:02:49
null
UTF-8
Python
false
false
2,212
py
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2017, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports # External imports # Bokeh imports from bokeh._testing.util.api import verify_all # Module under test #import bokeh.sampledata.perceptions as bsp #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- ALL = ( 'numberly', 'probly', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- Test___all__ = pytest.mark.sampledata(verify_all("bokeh.sampledata.perceptions", ALL)) @pytest.mark.sampledata def test_numberly(pd): import bokeh.sampledata.perceptions as bsp assert isinstance(bsp.numberly, pd.DataFrame) # check detail for package data assert len(bsp.numberly) == 46 @pytest.mark.sampledata def test_probly(pd): import bokeh.sampledata.perceptions as bsp assert isinstance(bsp.probly, pd.DataFrame) # check detail for package data assert len(bsp.probly) == 46 #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #-----------------------------------------------------------------------------
[ "noreply@github.com" ]
modster.noreply@github.com
e55a27dca2368a2b46c0c89ab0d91c9214f68154
9f2f386a692a6ddeb7670812d1395a0b0009dad9
/python/paddle/fluid/tests/unittests/ipu/test_print_op_ipu.py
3189e060d58373250ba776271009bcab004e762b
[ "Apache-2.0" ]
permissive
sandyhouse/Paddle
2f866bf1993a036564986e5140e69e77674b8ff5
86e0b07fe7ee6442ccda0aa234bd690a3be2cffa
refs/heads/develop
2023-08-16T22:59:28.165742
2022-06-03T05:23:39
2022-06-03T05:23:39
181,423,712
0
7
Apache-2.0
2022-08-15T08:46:04
2019-04-15T06:15:22
C++
UTF-8
Python
false
false
3,306
py
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.static from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest @unittest.skipIf(not paddle.is_compiled_with_ipu(), "core is not compiled with IPU") class TestBase(IPUOpTest): def setUp(self): self.set_atol() self.set_training() self.set_data_feed() self.set_feed_attr() self.set_op_attrs() @property def fp16_enabled(self): return False def set_data_feed(self): data = np.random.uniform(size=[1, 3, 3, 3]).astype('float32') self.feed_fp32 = {"x": data.astype(np.float32)} self.feed_fp16 = {"x": data.astype(np.float16)} def set_feed_attr(self): self.feed_shape = [x.shape for x in self.feed_fp32.values()] self.feed_list = list(self.feed_fp32.keys()) self.feed_dtype = [x.dtype for x in self.feed_fp32.values()] def set_op_attrs(self): self.attrs = {} @IPUOpTest.static_graph def build_model(self): x = paddle.static.data( name=self.feed_list[0], shape=self.feed_shape[0], dtype=self.feed_dtype[0]) out = paddle.fluid.layers.conv2d(x, num_filters=3, filter_size=3) out = paddle.fluid.layers.Print(out, **self.attrs) if self.is_training: loss = paddle.mean(out) adam = paddle.optimizer.Adam(learning_rate=1e-2) adam.minimize(loss) self.fetch_list = [loss.name] else: self.fetch_list = [out.name] def run_model(self, exec_mode): self.run_op_test(exec_mode) def test(self): for m in IPUOpTest.ExecutionMode: if not self.skip_mode(m): self.build_model() self.run_model(m) class TestCase1(TestBase): def set_op_attrs(self): self.attrs = {"message": "input_data"} class TestTrainCase1(TestBase): def set_op_attrs(self): # "forward" : print forward # "backward" : print forward and backward # "both": print forward and backward self.attrs = {"message": "input_data2", "print_phase": "both"} def set_training(self): self.is_training = True self.epoch = 2 @unittest.skip("attrs are not supported") class TestCase2(TestBase): def set_op_attrs(self): self.attrs = { "first_n": 10, "summarize": 10, "print_tensor_name": True, "print_tensor_type": True, "print_tensor_shape": True, "print_tensor_layout": True, "print_tensor_lod": True } if __name__ == "__main__": unittest.main()
[ "noreply@github.com" ]
sandyhouse.noreply@github.com
847583d24105d7141eccf2797b87b466cbd57b01
99f43f4591f63d0c57cd07f07af28c0b554b8e90
/python/프로그래머스/직사각형만들기.py
16bef1835142eb60413503e1b66a432aafa71fc8
[]
no_license
SINHOLEE/Algorithm
049fa139f89234dd626348c753d97484fab811a7
5f39d45e215c079862871636d8e0306d6c304f7e
refs/heads/master
2023-04-13T18:55:11.499413
2023-04-10T06:21:29
2023-04-10T06:21:29
199,813,684
0
0
null
null
null
null
UTF-8
Python
false
false
543
py
def solution(v): v = sorted(v) x_dic = {} y_dic = {} for x, y in v: if x_dic.get(x) is None: x_dic[x] = 1 else: x_dic[x] += 1 if y_dic.get(y) is None: y_dic[y] = 1 else: y_dic[y] += 1 answer = [] for x, cnt in x_dic.items(): if cnt == 1: answer.append(x) break for y, cnt in y_dic.items(): if cnt == 1: answer.append(y) return answer print(solution([[1, 1], [2, 2], [1, 2]]))
[ "dltlsgh5@naver.com" ]
dltlsgh5@naver.com
099107a1fc7a937fe06c9e7494308aa4d7f2223e
26d030d1a8134f1900d11054dc63c674dc2beec8
/main.py
0895f7c340f491aad10624532b6215a61944c9a2
[ "MIT" ]
permissive
kendricktan/pychip8
1ea1259abb61485c0db9bd26dda0201c2369452d
c9eb4f950f4546dbad0ca84f1c393d822a925a10
refs/heads/master
2021-04-27T15:44:17.064807
2018-02-23T14:28:13
2018-02-23T14:28:13
122,475,722
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
from pychip8.emulator import Chip8 if __name__ == '__main__': rom_name = 'pong.rom' chip8 = Chip8(rom_name) chip8.run()
[ "kendricktan0814@gmail.com" ]
kendricktan0814@gmail.com
28bf6dde8bb5f2f4f836584daa7697bbbb60659a
5679731cee36c537615d285ed72810f4c6b17380
/492_ConstructTheRectangle.py
864fd723b3b57af7cb42b67c170b150f6a55bac9
[]
no_license
manofmountain/LeetCode
6b76105190a9b62df65a7b56b6def4120498b9fa
718f688b3d316e8c10ef680d9c21ecd518d062f8
refs/heads/master
2021-01-12T03:41:48.318116
2017-07-18T12:35:58
2017-07-18T12:35:58
78,252,164
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
import math class Solution(object): def constructRectangle(self, area): """ :type area: int :rtype: List[int] """ width, res = int(math.sqrt(area)), list() while width != 0: if area % width == 0: res.append(area / width) res.append(width) break width -= 1 return res
[ "noreply@github.com" ]
manofmountain.noreply@github.com
0a2e966187b89beb9f8331300b18f5e41d660407
69c882c678103b182988fb60d3e898d569980f1c
/Day 6/day6prog14.py
6b4f901785e52ff819f090084f7e227d01a62b68
[]
no_license
gittygupta/stcet-python
44be9d91cdd6215879d9f04497214819228821be
e77456172746ee76b6e2a901ddb0c3dbe457f82a
refs/heads/master
2022-03-05T11:37:08.720226
2019-12-01T00:56:03
2019-12-01T00:56:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
def fact(x): pro = 1 for i in range(1, x+1): pro *= i return pro def perm(n, r): return (fact(n)/(fact(n - r) * fact(r))) n = input("n = ") r = input("r = ") print(perm(n, r))
[ "noreply@github.com" ]
gittygupta.noreply@github.com
931e52355a9877de357fa0e0b6a602e2de02d64e
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/AlipayBossFncInvoiceBatchqueryResponse.py
cfe0f6e638e1c8ae763e1e65af4347042e876024
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
2,739
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.MultiCurrencyMoneyOpenApi import MultiCurrencyMoneyOpenApi from alipay.aop.api.domain.ArInvoiceOpenApiResponse import ArInvoiceOpenApiResponse class AlipayBossFncInvoiceBatchqueryResponse(AlipayResponse): def __init__(self): super(AlipayBossFncInvoiceBatchqueryResponse, self).__init__() self._amt = None self._current_page = None self._items_page = None self._result_set = None self._total_items = None self._total_pages = None @property def amt(self): return self._amt @amt.setter def amt(self, value): if isinstance(value, MultiCurrencyMoneyOpenApi): self._amt = value else: self._amt = MultiCurrencyMoneyOpenApi.from_alipay_dict(value) @property def current_page(self): return self._current_page @current_page.setter def current_page(self, value): self._current_page = value @property def items_page(self): return self._items_page @items_page.setter def items_page(self, value): self._items_page = value @property def result_set(self): return self._result_set @result_set.setter def result_set(self, value): if isinstance(value, list): self._result_set = list() for i in value: if isinstance(i, ArInvoiceOpenApiResponse): self._result_set.append(i) else: self._result_set.append(ArInvoiceOpenApiResponse.from_alipay_dict(i)) @property def total_items(self): return self._total_items @total_items.setter def total_items(self, value): self._total_items = value @property def total_pages(self): return self._total_pages @total_pages.setter def total_pages(self, value): self._total_pages = value def parse_response_content(self, response_content): response = super(AlipayBossFncInvoiceBatchqueryResponse, self).parse_response_content(response_content) if 'amt' in response: self.amt = response['amt'] if 'current_page' in response: self.current_page = response['current_page'] if 'items_page' in response: self.items_page = response['items_page'] if 'result_set' in response: self.result_set = response['result_set'] if 'total_items' in response: self.total_items = response['total_items'] if 'total_pages' in response: self.total_pages = response['total_pages']
[ "liuqun.lq@alibaba-inc.com" ]
liuqun.lq@alibaba-inc.com
1e47736427d5b29ddbed8c696b895ae76e78410d
5da5473ff3026165a47f98744bac82903cf008e0
/packages/google-cloud-vm-migration/samples/generated_samples/vmmigration_v1_generated_vm_migration_finalize_migration_async.py
9725b31782e691f5713fa20467e00eb66fe54fa1
[ "Apache-2.0" ]
permissive
googleapis/google-cloud-python
ed61a5f03a476ab6053870f4da7bc5534e25558b
93c4e63408c65129422f65217325f4e7d41f7edf
refs/heads/main
2023-09-04T09:09:07.852632
2023-08-31T22:49:26
2023-08-31T22:49:26
16,316,451
2,792
917
Apache-2.0
2023-09-14T21:45:18
2014-01-28T15:51:47
Python
UTF-8
Python
false
false
1,993
py
# -*- coding: utf-8 -*- # Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for FinalizeMigration # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-vm-migration # [START vmmigration_v1_generated_VmMigration_FinalizeMigration_async] # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import vmmigration_v1 async def sample_finalize_migration(): # Create a client client = vmmigration_v1.VmMigrationAsyncClient() # Initialize request argument(s) request = vmmigration_v1.FinalizeMigrationRequest( migrating_vm="migrating_vm_value", ) # Make the request operation = client.finalize_migration(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) # [END vmmigration_v1_generated_VmMigration_FinalizeMigration_async]
[ "noreply@github.com" ]
googleapis.noreply@github.com
c586bd5693c7518eb1d938ce2ad960a01f98d250
f95e73867e4383784d6fdd6a1c9fe06cffbfd019
/ProjectEuler/p004_Largest_palindrome_product.py
5d8c9510aee2afac0a0864fbbfc27608ef991779
[]
no_license
linxiaohui/CodeLibrary
da03a9ed631d1d44b098ae393b4bd9e378ab38d3
96a5d22a8c442c4aec8a064ce383aba8a7559b2c
refs/heads/master
2021-01-18T03:42:39.536939
2018-12-11T06:47:15
2018-12-11T06:47:15
85,795,767
3
0
null
null
null
null
UTF-8
Python
false
false
342
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import timeit def PE004(): M=0 for i in range(100,10000): for j in range(i+1,1000): k=i*j #if k==int(str(k)[::-1]) and k>M : if k>M and k==int(str(k)[::-1]) : M=k print M print timeit.timeit(PE004, number=1)
[ "llinxiaohui@126.com" ]
llinxiaohui@126.com
6e3669121fdd67488f4e7ec58aa121cf467f15dc
f8ffac4fa0dbe27316fa443a16df8a3f1f5cff05
/Regex/Matching_Anything_But_New_Line.py
9d1b4802c8910f717e3f7aafecd4dfcb1cc4b4c3
[]
no_license
ankitniranjan/HackerrankSolutions
e27073f9837787a8af7a0157d95612028c07c974
e110c72d3b137cf4c5cef6e91f58a17452c54c08
refs/heads/master
2023-03-16T19:06:17.805307
2021-03-09T16:28:39
2021-03-09T16:28:39
292,994,949
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
# Your task is to write a regular expression that matches only and exactly strings of form: abc.def.ghi.jkx, where each variable a,b,c,d,e,f,g,h,i,j,k,x can be # any single character except the newline. regex_pattern = r"^.{3}\..{3}\..{3}\..{3}$" # Do not delete 'r'. import re import sys test_string = input() match = re.match(regex_pattern, test_string) is not None print(str(match).lower())
[ "noreply@github.com" ]
ankitniranjan.noreply@github.com
f1852c7da40eb5c08990351bb1c5c7ea3197c233
7bfcb91f95d20f1199d54f91c9a095df08b44d83
/Backup/Django_Youtube/WebBanHang/user/models.py
b2d82ecc75ed2668b3c7dbb54babf9acbad04250
[]
no_license
llduyll10/backup
bcb09eb632dd0858d515aacb7132d913da4dc24c
8849d812566977f9a379d38ee1daa2ef42c02c7f
refs/heads/master
2023-02-28T11:22:23.831040
2021-02-01T17:09:55
2021-02-01T17:09:55
335,006,700
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
from django.db import models from django.contrib.auth.models import AbstractUser # Create your models here. class CustomerUser(AbstractUser): phone_number = models.CharField(default='', max_length=15) address = models.CharField(default='', max_length=255)
[ "llduyll10@gmail.com" ]
llduyll10@gmail.com
72caec1e57d85a6bf4b606a5228254cf3c680874
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_179/ch25_2020_03_23_14_36_52_247565.py
b77b247db72eeb75a6603e8b3a253feeebcab017
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
300
py
import math g = 9.8 def calcula_distancia (velocidade, angulo): angulo_radianos = math.degrees(angulo) distancia = (velocidade**2 * math.sin(2*angulo_radianos))/g return distancia if distancia < 98: print ('Muito perto') elif distancia > 102: print ('Muito longe') else: print ('Acertou!')
[ "you@example.com" ]
you@example.com
01aaab4806daf83624fce5a5d71e77ac84e3cb95
714983fc24c6befe80d426dd94134d09ad2cbdfb
/env/lib/python3.6/site-packages/RestAuth/Services/migrations/0004_delete_old_m2m.py
31494a3ab34e3a19585de405f5ad81cb7bb1f511
[]
no_license
sachinlokesh05/login-registration-forgotpassword-and-resetpassword-using-django-rest-framework-
486354ffb3a397c79afc6cbb290ab1cd637f50ac
60769f6b4965836b2220878cfa2e1bc403d8f8a3
refs/heads/master
2023-01-28T22:19:13.483527
2020-01-28T14:07:53
2020-01-28T14:07:53
233,223,694
3
0
null
2023-01-07T22:10:06
2020-01-11T11:49:44
Python
UTF-8
Python
false
false
4,682
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Removing M2M table for field hosts on 'Service' db.delete_table('Services_service_hosts') def backwards(self, orm): # Adding M2M table for field hosts on 'Service' db.create_table('Services_service_hosts', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('service', models.ForeignKey(orm['Services.service'], null=False)), ('serviceaddress', models.ForeignKey(orm['Services.serviceaddress'], null=False)) )) db.create_unique('Services_service_hosts', ['service_id', 'serviceaddress_id']) models = { 'Services.service': { 'Meta': {'object_name': 'Service', '_ormbases': ['auth.User']}, 'user_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True', 'primary_key': 'True'}) }, 'Services.serviceaddress': { 'Meta': {'object_name': 'ServiceAddress'}, 'address': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '39'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'services': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'hosts'", 'symmetrical': 'False', 'to': "orm['Services.Service']"}) }, 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['Services']
[ "sachin.beee.15@acharya.ac.in" ]
sachin.beee.15@acharya.ac.in
52bd5b80c303f7ec03c6a84634f9654784e1fe1c
2293c76c3d18e2fcd44ded90bd40113d26285663
/pyeccodes/defs/grib2/modelName_def.py
ca5790b97b3bf22a70902abdc87628726645d7a4
[ "Apache-2.0" ]
permissive
ecmwf/pyeccodes
b1f121dbddf68d176a03805ed5144ba0b37ac211
dce2c72d3adcc0cb801731366be53327ce13a00b
refs/heads/master
2022-04-23T10:37:40.524078
2020-04-18T06:30:29
2020-04-18T06:30:29
255,554,540
9
3
null
null
null
null
UTF-8
Python
false
false
1,990
py
import pyeccodes.accessors as _ def load(h): def wrapped(h): originatingCentre = h.get_l('originatingCentre') if originatingCentre == 242: return 'cosmo-romania' if originatingCentre == 220: return 'cosmo-poland' if originatingCentre == 96: return 'cosmo-greece' generatingProcessIdentifier = h.get_l('generatingProcessIdentifier') if originatingCentre == 76 and generatingProcessIdentifier == 235: return 'cosmo_ru-eps' if originatingCentre == 76 and generatingProcessIdentifier == 135: return 'cosmo_ru' if originatingCentre == 200 and generatingProcessIdentifier == 131: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 46: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 42: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 38: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 34: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 32: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 31: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 148: return 'cosmo-i2' if originatingCentre == 200 and generatingProcessIdentifier == 144: return 'cosmo-i2' if originatingCentre == 200 and generatingProcessIdentifier == 139: return 'cosmo-i2' if originatingCentre == 200 and generatingProcessIdentifier == 36: return 'cosmo-i2' subCentre = h.get_l('subCentre') if subCentre == 250: return 'cosmo' if originatingCentre == 250: return 'cosmo' return wrapped
[ "baudouin.raoult@ecmwf.int" ]
baudouin.raoult@ecmwf.int
bb5ebaf33900bfcc44fdc19ac42207993daeaa5f
551d993b15f7e54635cc11d7ed3ee45a2e9aacc6
/AAE/Tensorflow_implementation/unsupervised/regularized_z/model.py
df4e3fcf6ad90ce669025df91eb33dfbcfbcb10a
[ "MIT" ]
permissive
hendrikTpl/GAN_models
6185a3c112a8b45205bdd4c556164b6153fbec19
8234c7f04be39d20fe09f81511b591deab9152a9
refs/heads/master
2021-10-25T16:52:13.239290
2019-04-05T15:28:06
2019-04-05T15:28:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,844
py
from component_without_bn import * class Object: pass def build_graph(is_test=False): # Inputs images = tf.placeholder(dtype=tf.float32, shape=[None, config.ndim_x]) z_sampler = tf.placeholder(dtype=tf.float32, shape=[None, config.ndim_z]) learning_rate = tf.placeholder(dtype=tf.float32, shape=[]) # Graph encoder = encoder_x_z decoder = decoder_z_x discriminator = discriminator_z with tf.variable_scope('encoder'): z_representation = encoder(images) with tf.variable_scope('decoder'): reconstruction = decoder(z_representation) if is_test: test_handle = Object() test_handle.x = images test_handle.z_r = z_representation test_handle.x_r = reconstruction return test_handle probability_fake_sample = discriminator(z_representation) probability_true_sample = discriminator(z_sampler, reuse=True) # Loss function # classification # 0 -> true sample # 1 -> generated sample class_true = tf.ones(shape=(config.batch_size, config.ndim_z / 2), dtype=tf.int32) class_fake = tf.zeros(shape=(config.batch_size, config.ndim_z / 2), dtype=tf.int32) loss_discriminator = opt.softmax_cross_entropy(probability_fake_sample, probability_true_sample, class_fake, class_true) loss_encoder = opt.softmax_cross_entropy(probability_fake_sample, probability_true_sample,\ class_fake, class_true, for_generator=True) loss_resconstruction = opt.euclidean_distance(images, reconstruction) # Variables Collection variables_encoder = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder') variables_decoder = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='decoder') variables_discriminator = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator') # Optimizer counter_encoder = tf.Variable(trainable=False, initial_value=0, dtype=tf.float32) counter_resconstruction = tf.Variable(trainable=False, initial_value=0, dtype=tf.float32) counter_discriminator = tf.Variable(trainable=False, initial_value=0, dtype=tf.float32) opt_resconstruction = opt.optimize(loss_resconstruction, variables_decoder + variables_encoder, optimizer=tf.train.AdamOptimizer if config.optimizer_is_adam is True else tf.train.RMSPropOptimizer, learning_rate=learning_rate, global_step=counter_resconstruction ) opt_discriminator = opt.optimize(config.scale_ratio * loss_discriminator, variables_discriminator, optimizer=tf.train.AdamOptimizer if config.optimizer_is_adam is True else tf.train.RMSPropOptimizer, learning_rate=learning_rate, global_step=counter_discriminator ) opt_encoder = opt.optimize(config.scale_ratio * loss_encoder, variables_encoder, optimizer=tf.train.AdamOptimizer if config.optimizer_is_adam is True else tf.train.RMSPropOptimizer, learning_rate=learning_rate, global_step=counter_encoder ) # output what we want graph_handle = Object() graph_handle.x = images graph_handle.z = z_sampler graph_handle.x_ = reconstruction graph_handle.z_r = z_representation graph_handle.opt_r = opt_resconstruction graph_handle.opt_d = opt_discriminator graph_handle.opt_e = opt_encoder graph_handle.loss_d = loss_discriminator graph_handle.loss_e = loss_encoder graph_handle.loss_r = loss_resconstruction graph_handle.lr = learning_rate return graph_handle
[ "1019636836@qq.com" ]
1019636836@qq.com
4e84c64706c5b3dcde4f84dc13e6085aa18fa72b
61296b98e4d481893db4bc51d75652c7109ae626
/0000_examples/cobotta_g.py
116d8d398c21d519f84520776dd6e95bfdd43b4d
[ "MIT" ]
permissive
Shogo-Hayakawa/wrs
23d4560b1062cf103ed32db4b2ef1fc2261dd765
405f15be1a3f7740f3eb7d234d96998f6d057a54
refs/heads/main
2023-08-19T19:29:15.409949
2021-11-02T01:22:29
2021-11-02T01:22:29
423,663,614
0
0
MIT
2021-11-02T00:59:17
2021-11-02T00:59:17
null
UTF-8
Python
false
false
1,418
py
import visualization.panda.world as wd import grasping.planning.antipodal as gp import robot_sim.end_effectors.grippers.cobotta_gripper.cobotta_gripper as cg import modeling.collision_model as cm import modeling.geometric_model as gm import numpy as np import math base = wd.World(cam_pos=np.array([.5, .5, .5]), lookat_pos=np.array([0, 0, 0])) gm.gen_frame().attach_to(base) objcm = cm.CollisionModel("objects/holder.stl") objcm.attach_to(base) # base.run() hnd_s = cg.CobottaGripper() # hnd_s.gen_meshmodel().attach_to(base) # base.run() grasp_info_list = gp.plan_grasps(hnd_s, objcm, angle_between_contact_normals=math.radians(175), openning_direction='loc_y', rotation_interval=math.radians(15), max_samples=20, min_dist_between_sampled_contact_points=.001, contact_offset=.001) gp.write_pickle_file(objcm_name="holder", grasp_info_list=grasp_info_list, file_name="cobg_holder_grasps.pickle") for grasp_info in grasp_info_list: jaw_width, jaw_center_pos, jaw_center_rotmat, hnd_pos, hnd_rotmat = grasp_info hnd_s.grip_at_with_jcpose(jaw_center_pos, jaw_center_rotmat, jaw_width) hnd_s.gen_meshmodel().attach_to(base) base.run()
[ "wanweiwei07@gmail.com" ]
wanweiwei07@gmail.com
560bbdf2d856311a383f2556ff042c6b24798d81
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/SAF-ENTERPRISE.py
25f13b95d7e50531041d277cb4e2ad47bc261ce1
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
2,343
py
# # PySNMP MIB module SAF-ENTERPRISE (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/SAF-ENTERPRISE # Produced by pysmi-0.3.4 at Wed May 1 14:59:53 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") NotificationType, Integer32, Counter32, Bits, iso, Gauge32, Unsigned32, IpAddress, MibIdentifier, enterprises, TimeTicks, ModuleIdentity, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "NotificationType", "Integer32", "Counter32", "Bits", "iso", "Gauge32", "Unsigned32", "IpAddress", "MibIdentifier", "enterprises", "TimeTicks", "ModuleIdentity", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") saf = ModuleIdentity((1, 3, 6, 1, 4, 1, 7571)) if mibBuilder.loadTexts: saf.setLastUpdated('2007040300Z') if mibBuilder.loadTexts: saf.setOrganization('SAF Tehnika') if mibBuilder.loadTexts: saf.setContactInfo('SAF Tehnika technical support <techsupport@saftehnika.com>') if mibBuilder.loadTexts: saf.setDescription('') tehnika = ObjectIdentity((1, 3, 6, 1, 4, 1, 7571, 100)) if mibBuilder.loadTexts: tehnika.setStatus('current') if mibBuilder.loadTexts: tehnika.setDescription('Subtree to register SAF tehnika modules') microwaveRadio = MibIdentifier((1, 3, 6, 1, 4, 1, 7571, 100, 1)) pointToPoint = MibIdentifier((1, 3, 6, 1, 4, 1, 7571, 100, 1, 1)) mibBuilder.exportSymbols("SAF-ENTERPRISE", tehnika=tehnika, PYSNMP_MODULE_ID=saf, microwaveRadio=microwaveRadio, pointToPoint=pointToPoint, saf=saf)
[ "dcwangmit01@gmail.com" ]
dcwangmit01@gmail.com
b18c5a2b2afb8aa641c036874755e5247c1d83d0
be78d77bea1a5eea2a7f0d4090e1fc138623b79a
/cybox/test/objects/link_test.py
bac34e34bbbca2617a14995b938c2e2f2505741b
[ "BSD-3-Clause" ]
permissive
CybOXProject/python-cybox
399f73feb6a54778dca9260b1c0340a3895c6369
25e6e8b3a6f429f079d3fbd9ace3db9eb3d5ab71
refs/heads/master
2020-05-21T19:05:56.725689
2020-05-01T13:33:48
2020-05-01T13:33:48
7,631,169
43
31
BSD-3-Clause
2020-05-01T12:41:03
2013-01-15T19:04:47
Python
UTF-8
Python
false
false
980
py
# Copyright (c) 2017, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. import unittest from mixbox.vendor.six import u from cybox.core import Observables from cybox.objects.link_object import Link from cybox.objects.uri_object import URI from cybox.test.objects import ObjectTestCase class TestLink(ObjectTestCase, unittest.TestCase): object_type = "LinkObjectType" klass = Link _full_dict = { 'value': u("http://www.example.com"), 'type': URI.TYPE_URL, 'url_label': u("Click Here!"), 'xsi:type': object_type, } # https://github.com/CybOXProject/python-cybox/issues/202 def test_correct_namespace_output(self): link = Link() link.value = u("https://www.example.com") xml = Observables(link).to_xml() self.assertTrue(b"cybox:Properties" in xml) self.assertTrue(b"LinkObj:Properties" not in xml) if __name__ == "__main__": unittest.main()
[ "gback@mitre.org" ]
gback@mitre.org
1e8fed92b77867c5a707bc1e8cdaed3ff6f5566b
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/20ed819acd6f85b1facda3b799d3c24b3ada7ad6-<run>-bug.py
9d67f4caf81ac18c3daab8feb6cc8736cb5c336a
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,420
py
def run(self, terms, variables, **kwargs): if (not CREDSTASH_INSTALLED): raise AnsibleError('The credstash lookup plugin requires credstash to be installed.') ret = [] for term in terms: try: version = kwargs.pop('version', '') region = kwargs.pop('region', None) table = kwargs.pop('table', 'credential-store') profile_name = kwargs.pop('profile_name', os.getenv('AWS_PROFILE', None)) aws_access_key_id = kwargs.pop('aws_access_key_id', os.getenv('AWS_ACCESS_KEY_ID', None)) aws_secret_access_key = kwargs.pop('aws_secret_access_key', os.getenv('AWS_SECRET_ACCESS_KEY', None)) aws_session_token = kwargs.pop('aws_session_token', os.getenv('AWS_SESSION_TOKEN', None)) kwargs_pass = { 'profile_name': profile_name, 'aws_access_key_id': aws_access_key_id, 'aws_secret_access_key': aws_secret_access_key, 'aws_session_token': aws_session_token, } val = credstash.getSecret(term, version, region, table, context=kwargs, **kwargs_pass) except credstash.ItemNotFound: raise AnsibleError('Key {0} not found'.format(term)) except Exception as e: raise AnsibleError('Encountered exception while fetching {0}: {1}'.format(term, e.message)) ret.append(val) return ret
[ "dg1732004@smail.nju.edu.cn" ]
dg1732004@smail.nju.edu.cn
00884fcc431f3b0fc1c306f662977b63ebc1c16c
743da4642ac376e5c4e1a3b63c079533a5e56587
/build/lib.win-amd64-3.6/fairseq/modules/quantization/pq/modules/__init__.py
b6881e26bb167f75f55dacfac72238979dd74f80
[ "MIT" ]
permissive
tmtmaj/Exploiting-PrLM-for-NLG-tasks
cdae1b6e451b594b11d8ecef3c1cd4e12fe51c9b
e8752593d3ee881cf9c0fb5ed26d26fcb02e6dd5
refs/heads/main
2023-06-16T08:26:32.560746
2021-07-14T17:50:19
2021-07-14T17:50:19
371,899,601
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .qconv import PQConv2d # NOQA from .qlinear import PQLinear # NOQA from .qemb import PQEmbedding # NOQA
[ "qkrwjdgur09@naver.com" ]
qkrwjdgur09@naver.com
52ae3a1a8d1d8f8f7503b9181f015b165f68bf00
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_scrubs.py
6efbee2e9b847a91a88e3d43d8c1023f95e3fd07
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
from xai.brain.wordbase.nouns._scrub import _SCRUB #calss header class _SCRUBS(_SCRUB, ): def __init__(self,): _SCRUB.__init__(self) self.name = "SCRUBS" self.specie = 'nouns' self.basic = "scrub" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
9c765fca0194129caa59e74b70cc204fc59bce14
cf1e19f7b6354302037bca563b42218df7d79400
/최단경로/[2307]도로검문.py
3540a2ab6f4b48e1f02290e4e11b12bf476f0669
[]
no_license
kim-kiwon/Baekjoon-Algorithm
680565ddeced2d44506ae6720cf32d8004db42f8
4699e6551d3e7451648b9256c54ea4318b71bd4d
refs/heads/master
2023-04-13T11:10:21.031969
2021-04-26T10:50:08
2021-04-26T10:50:08
325,209,266
0
0
null
null
null
null
UTF-8
Python
false
false
1,898
py
#다익스트라 + 경로추적 import heapq n, m = map(int, input().split()) INF = int(1e9) graph = [[] for _ in range(n+1)] previous = [1] * (n+1) #이전 노드 저장 for _ in range(m): a, b, dist = map(int, input().split()) graph[a].append((b, dist)) graph[b].append((a, dist)) def dijkstra(): distance = [INF] * (n+1) distance[1] = 0 q = [] q.append((1, 0)) while q: now, dist = heapq.heappop(q) if distance[now] < dist: continue for i in graph[now]: cost = dist + i[1] if cost < distance[i[0]]: distance[i[0]] = cost heapq.heappush(q, (i[0], cost)) previous[i[0]] = now return distance[n] init_val = dijkstra() #다익스트라 수행. 초기 최단경로 저장. temp = [] #1->n 까지 최단경로에 거치는 간선들 저장할 리스트. now = n #n부터 1까지 역순으로 탐지할것. while True: if now == 1: break #1까지 탐지 완료시 종료 a = previous[now] #a : 이전노드 b = now #b : 현재노드 for i in graph[now]: #dist = 이전노드 -> 현재노드 거리. if i[0] == previous[now]: dist = i[1] break temp.append((a, b, dist)) #temp에 이전노드 현재노드 거리 삽입. now = previous[now] max_val = -1e9 #최단경로에 사용하는 간선들 없애는게 아니면 #반드시 최단경로 사용할 것이기에 cost변화 없다. while True: if len(temp) == 0: break #최단경로에 사용한 간선 중 하나 삭제 -> 다익스트라로 거리측정 -> 다시 추가 a, b, dist = temp.pop() graph[a].remove((b, dist)) graph[b].remove((a, dist)) max_val = max(max_val, dijkstra()) graph[a].append((b, dist)) graph[b].append((a, dist)) if max_val >= 1e9: print(-1) else: print(max_val - init_val)
[ "76721493+kim-kiwon@users.noreply.github.com" ]
76721493+kim-kiwon@users.noreply.github.com
e1c2fca2bad35624293caa5c903e7e1a37fcb96d
e35eb92b5ab6547119585004b9eea3cafe948050
/efsw/archive/errors.py
3b9ac8626e58cb7513fc221356b582c5bec573f4
[]
no_license
einsfr/mmkit
0a084db85b2cf5ba268e692676095d768733f387
f12bc2f83254a3123e02abdc105816cc04c438b5
refs/heads/master
2020-12-31T05:56:19.287611
2016-06-10T05:56:58
2016-06-10T05:56:58
29,473,203
0
0
null
null
null
null
UTF-8
Python
false
false
598
py
ITEM_LINK_SELF_SELF = 'Элемент не может иметь связь с самим собой.' ITEM_LINK_TYPE_UNKNOWN = 'Неизвестный тип связи между элементами: {0}.' ITEM_NOT_FOUND = 'Элемент(ы) с ID {0} не существует(ют).' STORAGE_NOT_FOUND = 'Хранилище(а) с ID {0} не существует(ют).' STORAGE_NOT_ALLOWED_AS_ARCHIVE = 'Хранилище(а) с ID {0} нельзя использовать как архивные.' CATEGORY_NOT_FOUND = 'Категория(и) с ID {0} не существует(ют).'
[ "einsfr@users.noreply.github.com" ]
einsfr@users.noreply.github.com
9084c5e743b26571e62ba65a4df2d3ec5e68700c
a3972cb6ba32abd18b374975f4abd5318bc95f09
/project/src/yosigy/api/yosigy_list_views.py
960d32f8f54604c94ee00262c81979094695a2d5
[]
no_license
ssr03/MiniDelivery
c57bb45e497cab34787473925663ace46dbb6b2d
659d9757d1f369a6713aa5a66bab2aa5d6381b8e
refs/heads/master
2020-07-30T15:05:01.401229
2019-09-23T11:52:51
2019-09-23T11:52:51
210,267,973
0
0
null
null
null
null
UTF-8
Python
false
false
5,099
py
import enum from datetime import datetime from django.core.paginator import Paginator from django.db.models import F, Count from django.http import JsonResponse from django.views.generic.base import View from accounts.mixins import LoginRequiredMixin from restaurant.api.views import CategoryNum from yosigy.models import Yosigy class YosigyListInfo(enum.IntEnum): POST_TO_SHOW_IN_ONE_PAGE = 4 PAGES_TO_SHOW = 3 class YosigyListAPIView(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): category_id = kwargs['category_id'] today = datetime.now().date() tab_value = request.GET.get('tab_value', '') json_data = {} if kwargs['page']: self.page = kwargs['page'] if not category_id or category_id == CategoryNum.ALL_ID: yosigy = ( Yosigy.objects .select_related('restaurant') .prefetch_related('yosigymenu_set') .filter( restaurant__is_yosigy=True, deadline__gte=today, ) .values( 'restaurant', ) .annotate( is_yosigy_count=Count('yosigymenu__menu'), ) .values( 'pk', 'is_yosigy_count', restaurant_title=F('restaurant__title'), restaurant_img=F('restaurant__img'), yosigy_deadline=F('deadline'), yosigy_notice=F('notice'), ) .order_by('-created_time') ) else: yosigy = ( Yosigy.objects .select_related('restaurant') .prefetch_related('yosigymenu_set') .filter( restaurant__is_yosigy=True, deadline__gte=today, restaurant__category__pk=category_id, ) .values( 'restaurant', ) .annotate( is_yosigy_count=Count('yosigymenu__menu'), ) .values( 'pk', 'is_yosigy_count', restaurant_title=F('restaurant__title'), restaurant_img=F('restaurant__img'), yosigy_deadline=F('deadline'), yosigy_notice=F('notice'), ) .order_by('-created_time') ) yosigy_set = ( Yosigy.objects .select_related('restaurant') .prefetch_related('yosigymenu_set') .filter(yosigymenu__menu__is_set_menu=True,) .annotate( is_set_menu_count=Count('yosigymenu__menu'), ) .values( 'is_set_menu_count', 'pk', ) ) for i in yosigy: for j in yosigy_set: if i['pk'] == j['pk']: i['is_set_menu_count'] = j['is_set_menu_count'] yosigy=list(yosigy) if not yosigy: json_data = { 'message': '아직 공동 구매할 수 있는 메뉴가 없습니다.', } elif tab_value == 'deadline': yosigy=sorted(yosigy, key=lambda menu:menu['yosigy_deadline']) json_data = self.yosigy_paginator(yosigy) json_data['deadline'] = True elif tab_value == 'all' or tab_value == '': json_data = self.yosigy_paginator(yosigy) json_data['all'] = True return JsonResponse( json_data ) def yosigy_paginator(self, yosigy): paginator = Paginator(yosigy, YosigyListInfo.POST_TO_SHOW_IN_ONE_PAGE) current_page = paginator.get_page(self.page) start = (self.page-1) // YosigyListInfo.PAGES_TO_SHOW * YosigyListInfo.PAGES_TO_SHOW + 1 end = start + YosigyListInfo.PAGES_TO_SHOW last_page = len(paginator.page_range) if last_page < end: end = last_page yosigy_list = current_page.object_list page_range = range(start, end + 1) yosigy_list_data = { 'yosigy_list': yosigy_list, 'current_page': { 'has_previous': current_page.has_previous(), 'has_next': current_page.has_next(), }, 'page_range': [page_range[0], page_range[-1]], } if current_page.has_previous(): yosigy_list_data['current_page']['previous_page_number'] = current_page.previous_page_number() if current_page.has_next(): yosigy_list_data['current_page']['next_page_number'] = current_page.next_page_number() return yosigy_list_data
[ "43363127+ssr03@users.noreply.github.com" ]
43363127+ssr03@users.noreply.github.com
0f41b4c555162561f877240887369c044b1fe898
3d589d1c56b55fbd2b45b03564b8a9442ebf142b
/lib/src/klio/metrics/base.py
1b50aeb1da57930cc8fba17042c72434460c2eb4
[ "Apache-2.0" ]
permissive
spotify/klio
1aff27412e92c9d699259e5ab1eaeb39dc3e9571
e625565708ed846201d2e05f782c0ce585554346
refs/heads/develop
2023-05-25T14:33:28.348335
2022-03-23T20:34:09
2022-03-23T20:34:09
285,928,366
815
57
Apache-2.0
2023-05-24T21:07:09
2020-08-07T22:02:58
Python
UTF-8
Python
false
false
5,765
py
# Copyright 2019-2020 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Base classes from which a metrics consumer (i.e. ffwd, logger, etc.) will need to implement. New consumers are required to implement the :class:`AbstractRelayClient`, and three metrics objects based off of :class:`BaseMetric`: a counter, a gauge, and a timer. """ import abc import six class _DummyAttribute(object): # for the ability to do `FOO_ATTR = abstract_attr()` as well as # decorate a property method pass def abstract_attr(obj=None): """Set an attribute or a property as abstract. Supports class-level attributes as well as methods defined as a ``@property``. Usage: .. code-block:: python class Foo(object): my_foo_attribute = abstract_attr() @property @abstract_attr def my_foo_property(self): pass Args: obj (callable): Python object to "decorate", i.e. a class method. If none is provided, a dummy object is created in order to attach the ``__isabstractattr__`` attribute (similar to ``__isabstractmethod__`` from ``abc.abstractmethod``). Returns object with ``__isabstractattr__`` attribute set to ``True``. """ if not obj: obj = _DummyAttribute() obj.__isabstractattr__ = True return obj def _has_abstract_attributes_implemented(cls, name, bases): """Verify a given class has its abstract attributes implemented.""" for base in bases: abstract_attrs = getattr(base, "_klio_metrics_abstract_attributes", []) class_attrs = getattr(cls, "_klio_metrics_all_attributes", []) for attr in abstract_attrs: if attr not in class_attrs: err_str = ( "Error instantiating class '{0}'. Implementation of " "abstract attribute '{1}' from base class '{2}' is " "required.".format(name, attr, base.__name__) ) raise NotImplementedError(err_str) def _get_all_attributes(clsdict): return [name for name, val in six.iteritems(clsdict) if not callable(val)] def _get_abstract_attributes(clsdict): return [ name for name, val in six.iteritems(clsdict) if not callable(val) and getattr(val, "__isabstractattr__", False) ] class _ABCBaseMeta(abc.ABCMeta): """Enforce behavior upon implementations of ABC classes.""" def __init__(cls, name, bases, clsdict): _has_abstract_attributes_implemented(cls, name, bases) def __new__(metaclass, name, bases, clsdict): clsdict[ "_klio_metrics_abstract_attributes" ] = _get_abstract_attributes(clsdict) clsdict["_klio_metrics_all_attributes"] = _get_all_attributes(clsdict) cls = super(_ABCBaseMeta, metaclass).__new__( metaclass, name, bases, clsdict ) return cls class AbstractRelayClient(six.with_metaclass(_ABCBaseMeta)): """Abstract base class for all metric consumer relay clients. Each new consumer (i.e. ffwd, logging-based metrics) will need to implement this relay class. Attributes: RELAY_CLIENT_NAME (str): must match the key in ``klio-job.yaml`` under ``job_config.metrics``. """ RELAY_CLIENT_NAME = abstract_attr() def __init__(self, klio_config): self.klio_config = klio_config @abc.abstractmethod def unmarshal(self, metric): """Returns a dictionary-representation of the ``metric`` object""" pass @abc.abstractmethod def emit(self, metric): """Emit the given metric object to the particular consumer. ``emit`` will be run in a threadpool separate from the transform, and any errors raised from the method will be logged then ignored. """ pass @abc.abstractmethod def counter(self, name, value=0, transform=None, **kwargs): """Return a newly instantiated counter-type metric specific for the particular consumer. Callers to the ``counter`` method will store new counter objects returned in memory for simple caching. """ pass @abc.abstractmethod def gauge(self, name, value=0, transform=None, **kwargs): """Return a newly instantiated gauge-type metric specific for the particular consumer. Callers to the ``gauge`` method will store new gauge objects returned in memory for simple caching. """ pass @abc.abstractmethod def timer(self, name, transform=None, **kwargs): """Return a newly instantiated timer-type metric specific for the particular consumer. Callers to the ``timer`` method will store new timer objects returned in memory for simple caching. """ pass class BaseMetric(object): """Base class for all metric types. A consumer must implement a counter metric, a gauge metric, and a timer metric. """ def __init__(self, name, value=0, transform=None, **kwargs): self.name = name self.value = value self.transform = transform def update(self, value): self.value = value
[ "lynn@spotify.com" ]
lynn@spotify.com
2682ec078d2d665c54515022a6840ddf88168001
7a1f6f1aae43b219cd34c3c9b907923fb839e6f5
/Python/Udemy/FXTRADE/pyfxtrading/pyfxtrading/28/app/controllers/webserver.py
bbf2ff35ce8221762754b16b7b6dd096ee8484a4
[]
no_license
amanoman/amanoman.github.io
b5afc80e0e49ed15db793e2ebf69003c05ab8ce0
141c928f6d1df0389859f663f6439d327d4c32d6
refs/heads/master
2023-05-28T07:22:09.735409
2021-03-31T15:00:14
2021-03-31T15:00:14
187,139,297
0
1
null
2023-05-22T23:37:24
2019-05-17T03:19:36
Jupyter Notebook
UTF-8
Python
false
false
543
py
from flask import Flask from flask import render_template import settings app = Flask(__name__, template_folder='../views') @app.teardown_appcontext def remove_session(ex=None): from app.models.base import Session Session.remove() @app.route('/') def index(): app.logger.info('index') return render_template('./google.html', word='World') def start(): # app.run(host='127.0.0.1', port=settings.web_port, threaded=True) app.run(host='0.0.0.0', port=settings.web_port, threaded=True)
[ "amntkykblog@gmail.com" ]
amntkykblog@gmail.com
2dd09cf0b1134b3972740048402bc6e9ee1c97be
1ece1faa638f85c567fdb237c67340501f86f89e
/model/model_builder.py
5bc0acb8d41370c2b1905ff26fb7f1070790eb67
[]
no_license
seasa2016/transformer_random
54223ee5b04a4563c7903d925436d843b8cf7f1c
e3e13c9a2ddc49558d8e991427a974848a850b9c
refs/heads/master
2020-04-02T12:21:28.167673
2019-03-19T03:45:00
2019-03-19T03:45:00
154,429,913
0
0
null
null
null
null
UTF-8
Python
false
false
7,030
py
import torch import torch.nn as nn from torch.nn.init import xavier_uniform_,xavier_normal_ from .module.Embedding import Embedding from .util.Logger import logger from . import Constant from . import transformer def build_embedding(opt,word_dict,max_len,for_encoder=True,dtype='sum',tag=None): if(for_encoder): embedding_dim = opt.src_word_vec_size else: embedding_dim = opt.tar_word_vec_size #print(Constant.PAD_token) word_padding_idx = word_dict[Constant.PAD_token] num_word_embedding = len(word_dict) # num_word,max_len,emb_dim,feature_dim,dropout=0,dtype='sum' return Embedding(num_word= num_word_embedding, max_len = max_len, emb_dim = embedding_dim, feature_dim = embedding_dim, padding_idx = word_padding_idx, dropout = opt.dropout, dtype = dtype,tag=tag) def build_encoder(opt,src_dict,tag_dict): """ function to build the encoder """ max_len = 128 src_embedding = build_embedding(opt,src_dict,max_len,tag=tag_dict) return transformer.Encoder( opt.enc_layer,opt.num_head, opt.model_dim,opt.nin_dim_en, opt.dropout,src_embedding) def build_decoder(opt,tar_dict): """ function to build the decoder """ max_len = 128 tar_embedding = build_embedding(opt,tar_dict,max_len,for_encoder=False,dtype=opt.decode_pos) return transformer.Decoder( opt.dec_layer,opt.num_head, opt.model_dim,opt.nin_dim_de,len(tar_dict),max_len, opt.self_attn_type,opt.dropout,tar_embedding ) def load_test_model(opt,model_path=None,mode=False): """ use the method the acquire the data_dict and the model """ if model_path is None: if(opt.test_from is None): raise ValueError('test_from shouble not be None') model_path = opt.test_from checkpoint = torch.load(model_path) data_new = dict() for t in ['source','target','tag']: data_new[t] = dict() with open('./{0}/subword.{1}'.format(opt.data,t)) as f_in: for i,word in enumerate(f_in): if(t=='source'): data_new[t][word.strip()[1:-1]] = i else: data_new[t][word.strip()+'_'] = i if(mode == False): model = build_base_model(checkpoint['opt'],opt, data_new, torch.cuda.is_available(),checkpoint) else: #build_model_pre(opt,opt,data_ori,data_new,True,checkpoint=checkpoint) model = build_base_model(opt,opt,data_new,True,checkpoint=checkpoint) model.load_state_dict(checkpoint['model']) model.eval() return model, opt def build_base_model(model_opt,opt,data_token,gpu,checkpoint=None,dtype=None): """ build the base model """ if('tag' in data_token): encoder = build_encoder(model_opt,data_token['source'],len(data_token['tag'])) else: encoder = build_encoder(model_opt,data_token['source'],None) logger.info("finish build encoder") decoder = build_decoder(model_opt,data_token['target']) logger.info("finish build decoder") device = torch.device("cuda" if gpu else "cpu") model = transformer.Transformer(encoder,decoder) #print(model) n_params = sum([p.nelement() for p in model.parameters()]) enc = 0 dec = 0 for name, param in model.named_parameters(): if 'encoder' in name: enc += param.nelement() elif 'decoder' or 'generator' in name: dec += param.nelement() print("the size will be {0} {1} {2}".format(n_params,enc,dec)) if(checkpoint is not None): logger.info('loading model weight from checkpoint') model.load_state_dict(checkpoint['model']) else: if(model_opt.param_init != 0.0): for p in model.parameters(): if(p.requires_grad): p.data.uniform_(-model_opt.param_init, model_opt.param_init) if(model_opt.param_init_glorot): for p in model.parameters(): if(p.requires_grad): if p.dim() > 1: xavier_normal_(p) model.to(device) logger.info('the model is now in the {0} mode'.format(device)) return model def change(model_opt,opt,model,data_new): """ change the decoder and lock the grad for the encoder """ model.decoder = build_decoder(opt,data_new['target']) #update the parameter model_opt.tar_word_vec_size = opt.tar_word_vec_size model_opt.dropout = opt.dropout model_opt.dec_layer = opt.dec_layer model_opt.num_head = opt.num_head model_opt.model_dim = opt.model_dim model_opt.nin_dim_de = opt.nin_dim_de model_opt.self_attn_type = opt.self_attn_type model_opt.dropout = opt.dropout #lock the grad for the encoder model.encoder.embedding.word_emb.requires_grad = False if model_opt.param_init != 0.0: for p in model.parameters(): if(p.requires_grad): p.data.uniform_(-model_opt.param_init, model_opt.param_init) for p in model.parameters(): if(p.requires_grad): if(p.dim()>1): xavier_normal_(p) if(opt.replace): #one for the pretrain model and the other for the new model logger.info("with mid layer {0} {1}".format(model_opt.model_dim,opt.model_dim)) model.mid = nn.Linear(model_opt.model_dim,opt.model_dim) return model def build_model_pre(model_opt,opt,data_ori,data_new,gpu,checkpoint=None): #in our work,we only use text #build encoder encoder = build_encoder(model_opt,data_ori['source'],len(data_ori['tag'])) logger.info("build the origin encoder") decoder = build_decoder(model_opt,data_ori['target']) logger.info("build the origin decoder") device = torch.device("cuda" if gpu else "cpu") model = transformer.Transformer(encoder,decoder) print(model) if(checkpoint): logger.info('loading model weight from checkpoint') model.load_state_dict(checkpoint['model']) else: raise ValueError('cant access this mode without using pretrain model') model = change(model_opt,opt,model,data_new) #print(model) n_params = sum([p.nelement() for p in model.parameters()]) enc = 0 dec = 0 for name, param in model.named_parameters(): if 'encoder' in name: enc += param.nelement() elif 'decoder' or 'generator' in name: dec += param.nelement() print("the size will be {0} {1} {2}".format(n_params,enc,dec)) model.to(device) logger.info('the model is now in the {0} mode'.format(device)) return model def build_model(model_opt,opt,data_token,checkpoint): logger.info('Building model...') model = build_base_model(model_opt,opt,data_token,torch.cuda.is_available(),checkpoint) return model
[ "ericet1234@gmail.com" ]
ericet1234@gmail.com
b51e6caa09f683cec6c8f09fb1aca60e73ec36f0
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flasharray/FA_2_25/models/resource_performance_no_id_by_array_get_response.py
dc59892d20f80e34fb26c25e0f59584a263ca562
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
6,240
py
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.25 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_25 import models class ResourcePerformanceNoIdByArrayGetResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'more_items_remaining': 'bool', 'total_item_count': 'int', 'continuation_token': 'str', 'items': 'list[ResourcePerformanceNoIdByArray]', 'total': 'list[ResourcePerformanceNoIdByArray]' } attribute_map = { 'more_items_remaining': 'more_items_remaining', 'total_item_count': 'total_item_count', 'continuation_token': 'continuation_token', 'items': 'items', 'total': 'total' } required_args = { } def __init__( self, more_items_remaining=None, # type: bool total_item_count=None, # type: int continuation_token=None, # type: str items=None, # type: List[models.ResourcePerformanceNoIdByArray] total=None, # type: List[models.ResourcePerformanceNoIdByArray] ): """ Keyword args: more_items_remaining (bool): Returns a value of `true` if subsequent items can be retrieved. total_item_count (int): The total number of records after applying all filter query parameters. The `total_item_count` will be calculated if and only if the corresponding query parameter `total_item_count` is set to `true`. If this query parameter is not set or set to `false`, a value of `null` will be returned. continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the continuation token to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The continuation token is generated if the limit is less than the remaining number of items, and the default sort is used (no sort is specified). items (list[ResourcePerformanceNoIdByArray]): Performance data, broken down by array. If `total_only=true`, the `items` list will be empty. total (list[ResourcePerformanceNoIdByArray]): The aggregate value of all items after filtering. Where it makes more sense, the average value is displayed instead. The values are displayed for each field where meaningful. """ if more_items_remaining is not None: self.more_items_remaining = more_items_remaining if total_item_count is not None: self.total_item_count = total_item_count if continuation_token is not None: self.continuation_token = continuation_token if items is not None: self.items = items if total is not None: self.total = total def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ResourcePerformanceNoIdByArrayGetResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResourcePerformanceNoIdByArrayGetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "noreply@github.com" ]
PureStorage-OpenConnect.noreply@github.com
2455804a9deef4d3443589283af4dc9f1ef5c926
dd8227454b817ccf2ceb24b3dfd4260d4ded7a72
/scripts/item/consume_2435694.py
020e445c8c1b62894419c308afa2bc358e797d3f
[ "MIT" ]
permissive
Snewmy/swordie
0dd3c17808b064c2cb2bd9576b51daf01ae5d686
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
refs/heads/master
2023-06-30T21:14:05.225798
2021-07-06T14:32:39
2021-07-06T14:32:39
389,497,502
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
# Heroes Evan Damage Skin success = sm.addDamageSkin(2435694) if success: sm.chat("The Heroes Evan Damage Skin has been added to your account's damage skin collection.")
[ "vcalheirosdoc@gmail.com" ]
vcalheirosdoc@gmail.com
12caf078872a5634ca4638aed6dbdbd7776b5062
6097031d8e85400214085f152164a29346d106e3
/maxheap.py
7e3f269c4b2365d3684fe48cdb32ec815206f9cd
[]
no_license
ekourkchi/GalaxyGroups
2fccca4998850c0838d0c7ef949bba8b1267716a
19e98da0015b0462133133a23915e6d633614ad3
refs/heads/master
2022-04-03T09:30:19.667796
2020-02-13T03:05:48
2020-02-13T03:05:48
112,898,380
2
0
null
null
null
null
UTF-8
Python
false
false
4,137
py
#!/home/ehsan/Ureka/Ureka/variants/common/bin/python import numpy as np from math import * from copy import * class heapNode: key = None ID = None flag = False def __init__(self, key, ID): self.key = key self.ID = ID def toString(self): print self.key, self.ID, self.flag # ********************************************* class maxHeap: size = 0 # Number of current elements array = [] # ***************** def __init__(self): self.size = 0 self.array = [] # ***************** def push(self, key, ID): #print "push:", key, ID, self.size newNode = heapNode(key, ID) self.array.append(newNode) child = self.size while child > 0: parent = (child+1)/2-1 if self.array[child].key > self.array[parent].key: self.array[parent], self.array[child] = self.array[child], self.array[parent] child = parent else: break #for i in range(0,self.size+1): #print self.array[i].key self.size+=1 return 0 # ***************** def lrmax(self, left, right): if right <= self.size-1: if self.array[left].key >= self.array[right].key: return left else: return right elif left <= self.size-1: return left else: return 0 # ***************** def pop(self): if self.size == 0 : print "\n[Error] No elements in the mean Heap ...\n" return None N = self.size output = self.array[0] self.array[0] = self.array[N-1] parent = 0 while parent <= N-1: left = 2*parent+1 right = 2*parent+2 child = self.lrmax(left, right) if child != 0: if self.array[child].key >= self.array[parent].key: self.array[parent], self.array[child] = self.array[child], self.array[parent] parent = child else: break else: break self.array.pop(N-1) self.size -= 1 return output # ***************** def setFlag(self, key): if self.size == 0 : print "\n[Error] No elements in the mean Heap ...\n" return False for i in range(0, self.size): if self.array[i].key == key: self.array[i].flag = True # ***************** def peek(self): if self.size == 0 : print "\n[Error] No elements in the mean Heap ...\n" return None else: return self.array[0] # ***************** """ This method removes heap elements which have the same id as the input ID The number of removed elements would be returned """ def remove(self, ID): boolean = 0 if self.size == 0 : #print "\n[Error] No elements in the mean Heap ...\n" return boolean else: i = 0 while i < self.size: # ID would be the object ID if self.array[i].ID == ID: parent = i N = self.size self.array[parent] = self.array[N-1] while parent <= N-1: left = 2*parent+1 right = 2*parent+2 child = self.lrmax(left, right) if child != 0: if self.array[child].key >= self.array[parent].key: self.array[parent], self.array[child] = self.array[child], self.array[parent] parent = child else: break else: break self.array.pop(N-1) self.size -= 1 boolean+=1 i-=1 # The new item must be checked again i+=1 return boolean # ***************** def Size(self): return self.size # ***************** def toString(self): for i in range(0,self.size): self.array[i].toString(); # ********************************************* # ********************************************* if __name__ == '__main__': myHeap = maxHeap() myHeap.push(4, "e4") myHeap.push(7, "e7") myHeap.push(2, "e2") myHeap.push(6, "e6") myHeap.push(8, "e7") myHeap.push(5, "e5") myHeap.push(3, "e7") print "\n", myHeap.Size() print myHeap.remove("e5") print "\n", myHeap.Size() while myHeap.Size()>0: myHeap.pop().toString() #print myHeap.peek().key
[ "ekourkchi@gmail.com" ]
ekourkchi@gmail.com
4e3d52464d257688f122a23748edd43590043b89
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flasharray/FA_2_24/models/network_interface_neighbor_capability.py
76ae203e5847eb8a031597b8f2d39119f564eac0
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
4,245
py
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.24 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_24 import models class NetworkInterfaceNeighborCapability(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'supported': 'bool', 'enabled': 'bool' } attribute_map = { 'supported': 'supported', 'enabled': 'enabled' } required_args = { } def __init__( self, supported=None, # type: bool enabled=None, # type: bool ): """ Keyword args: supported (bool): If true, this capability is supported by this neighbor; false otherwise. enabled (bool): If true, this capability is enabled by this neighbor; false otherwise. """ if supported is not None: self.supported = supported if enabled is not None: self.enabled = enabled def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `NetworkInterfaceNeighborCapability`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `NetworkInterfaceNeighborCapability`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `NetworkInterfaceNeighborCapability`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `NetworkInterfaceNeighborCapability`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(NetworkInterfaceNeighborCapability, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, NetworkInterfaceNeighborCapability): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "noreply@github.com" ]
PureStorage-OpenConnect.noreply@github.com
2ecaa0902b36455da6e55c02523cefe6bcec5bfc
e5f4c22bfae93d3d96dea1b0ed8f3e4df373243f
/test.py
f3a74709481a1e1e55a6bdc81b7b3e3e0cf3f866
[]
no_license
MrLokans/discover_flask
5925a2ab07480398543d51e33c8be2cf23b2c36b
63f847409dd67725bdef754cd0041f2647dabf4e
refs/heads/master
2021-01-10T16:25:21.767911
2016-03-07T05:44:17
2016-03-07T05:44:17
52,816,186
0
0
null
null
null
null
UTF-8
Python
false
false
1,919
py
import unittest from app import app class AppTestCase(unittest.TestCase): def setUp(self): self.tester = app.test_client(self) def login(self, username, password, follow_redirects=True): return self.tester.post('/login', data={'username': username, 'password': password}, follow_redirects=follow_redirects) def logout(self): return self.tester.get('/logout', follow_redirects=True) def correctly_login(self, follow_redirects=True): return self.login('admin', 'password', follow_redirects) def test_index(self): response = self.tester.get('/login', content_type='html/text') self.assertEqual(response.status_code, 200) def test_login_page_is_loaded(self): response = self.tester.get('/login', content_type='html/text') self.assertEqual(response.status_code, 200) self.assertIn('Please login', response.data.decode('utf-8')) def test_login_process_behaves_correctly_with_correct_creds(self): response = self.correctly_login() self.assertIn('Successfully logged in', response.data.decode('utf-8')) def test_login_process_behaves_correctly_with_incorrect_creds(self): response = self.login('incorrectuser', 'incorrectpassword') self.assertIn('Invalid username', response.data.decode('utf-8')) def test_logout_works(self): response = self.correctly_login() response = self.logout() self.assertIn('Logged out.', response.data.decode('utf-8')) def test_main_page_requires_user_being_logged_in(self): response = self.tester.get('/', content_type='html/text', follow_redirects=True) self.assertIn('Login required', response.data.decode('utf-8')) if __name__ == '__main__': unittest.main()
[ "trikster1911@gmail.com" ]
trikster1911@gmail.com
a145346bc456c2281fad96365f8d9a5af1f4cd7d
52b5773617a1b972a905de4d692540d26ff74926
/.history/sets_20200609191149.py
89a07ef2d3f4c49463319f9699998f9dd296f2fc
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
import json def Strings(str): # dictionary--> key value pairs values = {} newArray = [] keys = [] for i in str: newArray.append(i.split(":")) for j in range(0,len(newArray)): if newArray[j][0] in values: values[j][0] = # if newArray[j][0] in values: # values[newArray[j][0]] += int(newArray[j][1]) # else: # values[newArray[j][0]] = int(newArray[j][1]) # for k in values: # keys.append(k) # keys = sorted(keys) # newString = "" # last =len(keys)-1 # lastString = "" # lastString +=keys[last] + ":" + json.dumps(values[keys[last]]) # for i in range(len(keys)-1): # if keys[i] in values: # newString += keys[i] + ":"+ json.dumps(values[keys[i]])+"," # finalString = newString + lastString # print(type(finalString)) Strings(["Z:1","B:3","C:3","Z:4","B:2"]) # "B:5,C:3,Z:5"
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
8a463bda0d0c60cd4f34f3e9d156d3254165acfc
ebfcae1c5ba2997b2ac4471d5bedc3f5daffcb31
/repos/Flask-Large-Application-Example-master/tests/views/test_pypi_packages.py
27394594cc76c8ccde073c14c83e1f2757b0f036
[ "MIT" ]
permissive
babiato/flaskapp1
84de2d0b26a54f5820d3bbe97926782ad41e005c
530beb9e3b8516e0e93960b99521c23a523ef546
refs/heads/master
2023-02-26T16:36:49.760632
2021-02-04T09:08:40
2021-02-04T09:08:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,239
py
from flask import current_app from flask.ext.celery import CELERY_LOCK import pytest from redis.exceptions import LockError from pypi_portal.extensions import db, redis from pypi_portal.models.pypi import Package from pypi_portal.models.redis import POLL_SIMPLE_THROTTLE from pypi_portal.tasks import pypi class FakeDelay(object): @staticmethod def ready(): return False def test_index(): assert '200 OK' == current_app.test_client().get('/pypi/').status def test_sync_empty(alter_xmlrpc): alter_xmlrpc(set()) redis.delete(POLL_SIMPLE_THROTTLE) Package.query.delete() db.session.commit() assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status assert [] == db.session.query(Package.name, Package.summary, Package.latest_version).all() def test_sync_few(alter_xmlrpc): alter_xmlrpc([dict(name='packageB', summary='Test package.', version='3.0.0'), ]) redis.delete(POLL_SIMPLE_THROTTLE) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [('packageB', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert expected == actual def test_sync_rate_limit(alter_xmlrpc): alter_xmlrpc([dict(name='packageC', summary='Test package.', version='3.0.0'), ]) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [('packageB', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert expected == actual def test_sync_parallel(alter_xmlrpc): alter_xmlrpc([dict(name='packageD', summary='Test package.', version='3.0.0'), ]) redis.delete(POLL_SIMPLE_THROTTLE) redis_key = CELERY_LOCK.format(task_name='pypi_portal.tasks.pypi.update_package_list') lock = redis.lock(redis_key, timeout=1) assert lock.acquire(blocking=False) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [('packageB', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert expected == actual try: lock.release() except LockError: pass def test_sync_many(alter_xmlrpc): alter_xmlrpc([ dict(name='packageB1', summary='Test package.', version='3.0.0'), dict(name='packageB2', summary='Test package.', version='3.0.0'), dict(name='packageB3', summary='Test package.', version='3.0.0'), dict(name='packageB4', summary='Test package.', version='3.0.0'), dict(name='packageB5', summary='Test package.', version='3.0.0'), ]) redis.delete(POLL_SIMPLE_THROTTLE) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [ ('packageB', 'Test package.', '3.0.0'), ('packageB1', 'Test package.', '3.0.0'), ('packageB2', 'Test package.', '3.0.0'), ('packageB3', 'Test package.', '3.0.0'), ('packageB4', 'Test package.', '3.0.0'), ('packageB5', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert sorted(expected) == sorted(actual) def test_sync_unhandled_exception(): old_throttle = pypi.THROTTLE pypi.THROTTLE = 'nan' redis.delete(POLL_SIMPLE_THROTTLE) with pytest.raises(ValueError): current_app.test_client().get('/pypi/sync').status() pypi.THROTTLE = old_throttle def test_sync_timeout(): old_delay = pypi.update_package_list.delay pypi.update_package_list.delay = FakeDelay redis.delete(POLL_SIMPLE_THROTTLE) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [ ('packageB', 'Test package.', '3.0.0'), ('packageB1', 'Test package.', '3.0.0'), ('packageB2', 'Test package.', '3.0.0'), ('packageB3', 'Test package.', '3.0.0'), ('packageB4', 'Test package.', '3.0.0'), ('packageB5', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert sorted(expected) == sorted(actual) pypi.update_package_list.delay = old_delay
[ "jinxufang@tencent.com" ]
jinxufang@tencent.com
6e242cc43e2c7d24c5cfd1f02e749621f9366a0e
0bfb4208bdf7fcfd75311c777e25a3b639bf566d
/backend/code/iep/auth/models.py
fb6f856736cbe2fd1a25f1dc89baf52a17eff536
[ "Apache-2.0" ]
permissive
socek/iep
ab7833f94af739abd19f569f28de84cdcc689e95
793e35ca5304eef7b7dacb5dd8d486622f497759
refs/heads/master
2020-05-16T13:48:12.252161
2019-12-03T08:28:05
2019-12-03T08:28:05
183,082,207
0
0
Apache-2.0
2019-12-03T08:28:07
2019-04-23T19:24:49
Python
UTF-8
Python
false
false
1,193
py
from bcrypt import checkpw from bcrypt import gensalt from bcrypt import hashpw from iep.application.model import Model class User(Model): def __init__( self, uid, created_at=None, updated_at=None, name=None, email=None, is_admin=None, password=None, ): super().__init__(uid, created_at, updated_at) self.name = name self.email = email self.is_admin = is_admin self.password = password def do_password_match(self, password): """ Validate if provided password match with the password from the model. """ if self.password: return checkpw(password.encode("utf8"), self.password) else: return False def set_password(self, password): self.password = hashpw(password.encode("utf8"), gensalt()) def to_dict(self): return { 'uid': self.uid, 'created_at': self.created_at, 'updated_at': self.updated_at, 'name': self.name, 'email': self.email, 'is_admin': self.is_admin, 'password': self.password, }
[ "msocek@gmail.com" ]
msocek@gmail.com
f77ffc69cb16459c8138b3e8578323ac411365e2
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-4/5644d97cc5014e18b14799feeb9b354d528a6489-<test_invalid_interfaces>-bug.py
88bcd68511e3ab151bad7e95439f0d409610e661
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
def test_invalid_interfaces(self): event = self.create_sample_event(platform='invalid-interfaces') self.browser.get('/{}/{}/issues/{}/'.format(self.org.slug, self.project.slug, event.group.id)) self.browser.wait_until('.entries') self.browser.snapshot('issue details invalid interfaces')
[ "dg1732004@smail.nju.edu.cn" ]
dg1732004@smail.nju.edu.cn
bb4d3c4ffba8b3fdd9dae18528199a1e9560a1a0
43ede7b8fb546c00804c0ef94501f6e48ba170d6
/Cursos Python/Python 3 - Solyd/Orientacao_a_objeto.py
e902f0d109aa9feef7f8a68a9651bc74a65cd1bb
[]
no_license
bopopescu/Python-13
db407d17252473e78e705e563cfee4dbd316c6b9
c8bef500f2d3e4a63d850f96dfa219eff2ecebda
refs/heads/master
2022-11-22T16:24:08.490879
2020-06-11T14:22:24
2020-06-11T14:22:24
281,830,055
0
0
null
2020-07-23T02:26:31
2020-07-23T02:26:30
null
UTF-8
Python
false
false
1,339
py
class Cliente: def __init__(self, nome, cpf, idade): self.__nome = nome self.__cpf = cpf self.__idade = idade def dados_cliente(self): return {'nome': self.__nome, 'cpf': self.__cpf, 'idade': self.__idade} class Conta(Cliente): def __init__(self, nome, cpf, idade, saldo, limite): super().__init__(nome, cpf, idade) # Representante da conta self.__nome = nome self.__cpf = cpf self.__idade = idade # dados da conta self.__saldo = float(saldo) self.__limite = float(limite) def saldo_atual(self): print(f'Saldo atual: R${self.__saldo:.2f}') def dono(self): print('nome: ', self.__nome) print('cpf:', self.__cpf) print('idade :', self.__idade) def sacar(self, valor_saque): self.__saldo -= float(valor_saque) print(f'Saque de R${valor_saque}, Realizado com sucesso!') def depositar(self, valor_deposito): self.__saldo += float(valor_deposito) cliente = Cliente('Erickson', '19542634-05', 18) dc = cliente.dados_cliente() conta = Conta(dc['nome'], dc['cpf'], dc['idade'], 1500.00, 5000.00) conta.saldo_atual() conta.sacar(257.05) conta.saldo_atual() conta.saldo_atual() conta.depositar(750.00) conta.saldo_atual()
[ "ofc.erickson@gmail.com" ]
ofc.erickson@gmail.com
ccf9a734c56a27aad1c7b63e96282803ea84b5a4
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/f1dbf6292b80b7cc67661707e7f1d8b5b0a06eb5-<check_params>-bug.py
b748d6d0116f380fc5635eaf4ef57ebc08f34ef9
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
def check_params(self): 'Check all input params' if (not self.key_id.isdigit()): self.module.fail_json(msg='Error: key_id is not digit.') if ((int(self.key_id) < 1) or (int(self.key_id) > 4294967295)): self.module.fail_json(msg='Error: The length of key_id is between 1 and 4294967295.') if (self.state == 'present'): if ((self.auth_type == 'encrypt') and ((len(self.password) < 20) or (len(self.password) > 392))): self.module.fail_json(msg='Error: The length of encrypted password is between 20 and 392.') elif ((self.auth_type == 'text') and ((len(self.password) < 1) or (len(self.password) > 255))): self.module.fail_json(msg='Error: The length of text password is between 1 and 255.')
[ "dg1732004@smail.nju.edu.cn" ]
dg1732004@smail.nju.edu.cn
dfdfdc73b69afa83125300340f0252cfe3100d38
a127d0feb3bcf4f2581f385bb24f2b789c771c9c
/10syo/95_2.py
0a1ea7e35fd38d9a0daad78a923622656306fdf5
[]
no_license
NgoVanDau/nlp100knock
01383e4cc5a1470508744668103b9ea1a238b892
3ef63c0d2dfb55c0e6a31aced645f284325a98a5
refs/heads/master
2023-03-22T13:19:23.932429
2018-08-05T05:27:11
2018-08-05T05:27:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
fname_input = 'combined_out.tab' class Data: def __init__(self, human_score, my_score): self.human_score = human_score self.my_score = my_score def __repr__(self): return 'Data%s' % repr(self.__dict__) # データ配列作成 with open(fname_input) as data_file: def read_data(): for line in data_file: word1, word2, human_score, my_score = line.split('\t') yield Data(float(human_score), float(my_score)) data = list(read_data()) # 順位付け data_sorted_by_human_score = sorted(data, key=lambda data: data.human_score) for order, d in enumerate(data_sorted_by_human_score): d.human_order = order data_sorted_by_my_score = sorted(data, key=lambda data: data.my_score) for order, d in enumerate(data_sorted_by_my_score): d.my_order = order # スピアマン相関係数算出 N = len(data) total = sum((d.human_order - d.my_order) ** 2 for d in data) result = 1 - (6 * total) / (N ** 3 - N) print(result)
[ "kota.k.1132.pda@gmail.com" ]
kota.k.1132.pda@gmail.com
796965104f9a8b405aea58339305c0e917d2c247
7aae3051a7d08a280f7adc55b4b984bc48c87db3
/vehicle/admins/vehicle_model_admin.py
ba26d4ec5f9adf2698da8711bc9fa8bd44e5b5a4
[]
no_license
ohahlev/ahlev-django-vehicle
d087375e3b49cda9253a776f79e4531bbf0a686d
51895c200b40be7a298a4054ba2d8945df6a84d0
refs/heads/master
2020-11-30T07:00:12.441028
2020-01-21T01:25:48
2020-01-21T01:25:48
230,340,642
0
0
null
null
null
null
UTF-8
Python
false
false
1,253
py
from django.utils.html import format_html from django.contrib import admin from imagekit import ImageSpec from imagekit.admin import AdminThumbnail from imagekit.processors import ResizeToFill from imagekit.cachefiles import ImageCacheFile from ..models.vehicle_model import VehicleModel from .widgets import AdminSmallestThumbnailSpec, AdminSmallThumbnailSpec class VehicleModelAdmin(admin.ModelAdmin): def preview_thumbnail(self, obj): if obj.logo_thumbnail: return format_html(u"<img src='{}'/>", obj.logo_thumbnail.url) preview_thumbnail.short_description = 'Preview' readonly_fields = ['preview_thumbnail'] fieldsets = [ ("NAME", { 'fields': ['name', 'logo', 'preview_thumbnail'], }), ] search_fields = ['name'] list_display = ['name', 'preview_thumbnail', 'date_created', 'last_updated'] class Media: css = { 'all': ( 'vehicle/css/vehicle.css', ) } ''' js = ( 'js/jquery.min.js', 'js/popper.min.js', 'js/bootstrap.min.js', 'js/mdb.min.js', 'js/myscript.js' ) ''' admin.site.register(VehicleModel, VehicleModelAdmin)
[ "ohahlev@gmail.com" ]
ohahlev@gmail.com
19ef56453f855c29a72eaa6c8c52e2ca967e6a36
f8e8e365c9cf58b61d72655bc2340baeaed5baff
/Leetcode/Python Solutions/Binary Search/ValidPerfectSquare.py
c4e8a70a8beb4c70db11315cbe222321332ff181
[ "MIT" ]
permissive
Mostofa-Najmus-Sakib/Applied-Algorithm
39a69f6b9ed113efe4a420d19cad79e0aa317637
bc656fd655617407856e0ce45b68585fa81c5035
refs/heads/master
2023-08-31T19:54:34.242559
2021-11-05T03:43:35
2021-11-05T03:43:35
412,263,430
0
0
MIT
2021-09-30T23:45:29
2021-09-30T23:45:25
null
UTF-8
Python
false
false
898
py
""" LeetCode Problem 367. Valid Perfect Square Link: https://leetcode.com/problems/valid-perfect-square/ Written by: Mostofa Adib Shakib Language: Python Observation: 1) Number less than 2 will always form perfect squares so return True. 2) The number will always be in the first half of the array. Hence, we can discard the second half. Time Complexity: O(log n) Space Complexity: O(1) """ class Solution: def isPerfectSquare(self, num: int) -> bool: if num <= 1: return True left = 2 right = num//2 while left <= right: mid = (left + right) // 2 guess = mid * mid if guess == num: return True elif guess < num: left = mid + 1 else: right = mid - 1 return False
[ "adibshakib@gmail.com" ]
adibshakib@gmail.com
ed0466956305c5f5e6955a737d43b2039c8f0fc5
2a54e8d6ed124c64abb9e075cc5524bb859ba0fa
/.history/4-functional-programming/7-list-comprehension_20200422222427.py
81d606e197ec10031073a3db9b3879a25cb59bc1
[]
no_license
CaptainStorm21/Python-Foundation
01b5fbaf7a913506518cf22e0339dd948e65cea1
a385adeda74f43dd7fb2d99d326b0be23db25024
refs/heads/master
2021-05-23T01:29:18.885239
2020-04-23T19:18:06
2020-04-23T19:18:06
253,171,611
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
#list, set, dicitonary my_list = [] for char in 'HELLO': my_list.append(char) print(my_list) dict_list = [char for char in 'good morning'] print(dict_list) num_list = [num for num in range (0, 100)] print(num_list) print("divide by 3 with no remainder") num_list3 = [num for num in range (0, 100) if(num%3 ==0)] print(num_list3)
[ "tikana4@yahoo.com" ]
tikana4@yahoo.com
c2ee78250d0f3860d8ec164c11ab88e734704bed
8efd8bcd3945d88370f6203e92b0376ca6b41c87
/problems100_200/151_Reverse_Words_in_a_String.py
11b5357b6300152e2debfd6b3f1328822ffebdd4
[]
no_license
Provinm/leetcode_archive
732ad1ef5dcdfdde6dd5a33522e86f7e24ae2db5
3e72dcaa579f4ae6f587898dd316fce8189b3d6a
refs/heads/master
2021-09-21T08:03:31.427465
2018-08-22T15:58:30
2018-08-22T15:58:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
#coding=utf-8 ''' 151. Reverse Words in a String Given an input string, reverse the string word by word. Example: Input: "the sky is blue", Output: "blue is sky the". Note: A word is defined as a sequence of non-space characters. Input string may contain leading or trailing spaces. However, your reversed string should not contain leading or trailing spaces. You need to reduce multiple spaces between two words to a single space in the reversed string. Follow up: For C programmers, try to solve it in-place in O(1) space. ''' class Solution(object): def reverseWords(self, s): """ :type s: str :rtype: str """ lst = [i for i in s.split(" ") if i] return ' '.join(reversed(lst)) s = " the sky is blue" ss = Solution() r = ss.reverseWords(s) print(r)
[ "zhouxin@gmail.com" ]
zhouxin@gmail.com
6659b4d8145e55d900dcabb7398db42929c560f4
d75560d9acde4f1f6457898d8862b06ba5f8dd7b
/backend/msm_sgsjhsjh4803_de_13561/wsgi.py
3cd1976c5b367e8dc49ef8d3516ab2cc510980f7
[]
no_license
crowdbotics-apps/msm-sgsjhsjh4803-de-13561
af6563f775832664041dbd8abc5d05af9d8d4a4f
9364d828ffee0edfe68d263fce2b0a7cb2949039
refs/heads/master
2022-12-29T15:25:29.870944
2020-10-19T08:18:12
2020-10-19T08:18:12
305,263,685
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
""" WSGI config for msm_sgsjhsjh4803_de_13561 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'msm_sgsjhsjh4803_de_13561.settings') application = get_wsgi_application()
[ "team@crowdbotics.com" ]
team@crowdbotics.com
e348b3e0dfab26e0cc1f9c6a114ae59be50476c4
4c8755443320f0e8fde2718aec40c49ef27ab6fe
/{{cookiecutter.repo_name}}/cookiecutter_repo/utils/loaders.py
0d90448aa34fd2244e0f3ef816996b8e56608d99
[ "MIT" ]
permissive
ethman/cookiecutter-nussl
28266f2b714607493016aa554794617e1cb431aa
302df1bee74b13ff0e2c6725997f7b7fa26b32d5
refs/heads/master
2020-12-09T23:50:09.844838
2020-01-12T17:19:06
2020-01-12T17:19:06
233,449,725
0
0
null
2020-01-12T19:54:48
2020-01-12T19:54:47
null
UTF-8
Python
false
false
586
py
from .. import dataset, model def load_dataset(dataset_class, dataset_folder, dataset_config): DatasetClass = getattr(dataset, dataset_class) dataset_instance = DatasetClass(dataset_folder, dataset_config) return dataset_instance def load_model(model_config): model_class = model_config.pop('class', 'SeparationModel') ModelClass = getattr(model, model_class) if model_class == 'SeparationModel': model_instance = ModelClass(model_config, extra_modules=model.extras) else: model_instance = ModelClass(model_config) return model_instance
[ "prem@u.northwestern.edu" ]
prem@u.northwestern.edu
837d8f52574c6bab972f540869f2bca52b2bf000
94c8dd4126da6e9fe9acb2d1769e1c24abe195d3
/qiskit/circuit/library/boolean_logic/quantum_or.py
0864affb7958edffe5050f3c8d54af82bdc515be
[ "Apache-2.0" ]
permissive
levbishop/qiskit-terra
a75c2f96586768c12b51a117f9ccb7398b52843d
98130dd6158d1f1474e44dd5aeacbc619174ad63
refs/heads/master
2023-07-19T19:00:53.483204
2021-04-20T16:30:16
2021-04-20T16:30:16
181,052,828
1
0
Apache-2.0
2019-06-05T15:32:13
2019-04-12T17:20:54
Python
UTF-8
Python
false
false
3,664
py
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Implementations of boolean logic quantum circuits.""" from typing import List, Optional from qiskit.circuit import QuantumRegister, QuantumCircuit from qiskit.circuit.library.standard_gates import MCXGate class OR(QuantumCircuit): r"""A circuit implementing the logical OR operation on a number of qubits. For the OR operation the state :math:`|1\rangle` is interpreted as ``True``. The result qubit is flipped, if the state of any variable qubit is ``True``. The OR is implemented using a multi-open-controlled X gate (i.e. flips if the state is :math:`|0\rangle`) and applying an X gate on the result qubit. Using a list of flags, qubits can be skipped or negated. The OR gate without special flags: .. jupyter-execute:: :hide-code: from qiskit.circuit.library import OR import qiskit.tools.jupyter circuit = OR(5) %circuit_library_info circuit Using flags we can negate qubits or skip them. For instance, if we have 5 qubits and want to return ``True`` if the first qubit is ``False`` or one of the last two are ``True`` we use the flags ``[-1, 0, 0, 1, 1]``. .. jupyter-execute:: :hide-code: from qiskit.circuit.library import OR import qiskit.tools.jupyter circuit = OR(5, flags=[-1, 0, 0, 1, 1]) %circuit_library_info circuit """ def __init__(self, num_variable_qubits: int, flags: Optional[List[int]] = None, mcx_mode: str = 'noancilla') -> None: """Create a new logical OR circuit. Args: num_variable_qubits: The qubits of which the OR is computed. The result will be written into an additional result qubit. flags: A list of +1/0/-1 marking negations or omissions of qubits. mcx_mode: The mode to be used to implement the multi-controlled X gate. """ # store num_variables_qubits and flags self.num_variable_qubits = num_variable_qubits self.flags = flags # add registers qr_variable = QuantumRegister(num_variable_qubits, name='variable') qr_result = QuantumRegister(1, name='result') super().__init__(qr_variable, qr_result, name='or') # determine the control qubits: all that have a nonzero flag flags = flags or [1] * num_variable_qubits control_qubits = [q for q, flag in zip(qr_variable, flags) if flag != 0] # determine the qubits that need to be flipped (if a flag is > 0) flip_qubits = [q for q, flag in zip(qr_variable, flags) if flag > 0] # determine the number of ancillas self.num_ancilla_qubits = MCXGate.get_num_ancilla_qubits(len(control_qubits), mode=mcx_mode) if self.num_ancilla_qubits > 0: qr_ancilla = QuantumRegister(self.num_ancilla_qubits, 'ancilla') self.add_register(qr_ancilla) else: qr_ancilla = [] self.x(qr_result) if len(flip_qubits) > 0: self.x(flip_qubits) self.mcx(control_qubits, qr_result[:], qr_ancilla[:], mode=mcx_mode) if len(flip_qubits) > 0: self.x(flip_qubits)
[ "noreply@github.com" ]
levbishop.noreply@github.com
a663a571c791506a5bbea2e874df529dbed68ebb
c75ec82316ed5322c5844912ce9c528c24360b9f
/nsd1907/py02/day01/cut_log.py
cceaf977d83d75e82696a61778603e0948c24313
[]
no_license
MrZhangzhg/nsd2019
a94cde22f2e4bd648bb9e56ca63827f558f3c083
54f6d2c7b348a69f13ad5f38f2fbdc8207528749
refs/heads/master
2021-08-22T17:38:27.697675
2020-02-22T08:36:21
2020-02-22T08:36:21
183,539,489
21
24
null
2020-05-17T12:07:55
2019-04-26T02:06:16
HTML
UTF-8
Python
false
false
525
py
import time t9 = time.strptime('2019-05-15 09:00:00', '%Y-%m-%d %H:%M:%S') t12 = time.strptime('2019-05-15 12:00:00', '%Y-%m-%d %H:%M:%S') with open('mylog.txt') as fobj: for line in fobj: t = time.strptime(line[:19], '%Y-%m-%d %H:%M:%S') if t > t12: break if t >= t9: print(line, end='') # with open('mylog.txt') as fobj: # for line in fobj: # t = time.strptime(line[:19], '%Y-%m-%d %H:%M:%S') # if t9 <= t <= t12: # print(line, end='')
[ "zhangzg@tedu.cn" ]
zhangzg@tedu.cn
7394010400225008bcf0ebefdea0242ca3765d3e
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_96/1509.py
985390ba9c8945569ce4096912a9a40962d7ecaf
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,095
py
from string import split f1=open('B-large.in','r') f2=open('out.txt','w') t=int(f1.readline()) for i in range (t): k=0 s=f1.readline() data=list(map(int,s.split(' '))) u=data[1]+0 for j in range(data[0]): if data[j+3]==0 or data[j+3]==1: if data[j+3]>=data[2]: k+=1 elif data[1]==0: if data[j+3] % 3==0 and data[j+3]//3>=data[2]: k+=1 elif data[j+3]%3!=0 and data[j+3]//3+1>=data[2]: k+=1 else: if data[j+3]%3==1 and data[j+3]//3+1>=data[2]: k+=1 elif data[j+3]%3==0 and data[j+3]//3+1==data[2] and u!=0: u-=1 k+=1 elif data[j+3]%3==0 and data[j+3]//3>=data[2]: k+=1 elif data[j+3]%3==2 and data[j+3]//3+2==data[2] and u!=0: u-=1 k+=1 elif data[j+3]%3==2 and data[j+3]//3+1>=data[2]: k+=1 f2.write ("Case #"+str(i+1)+": "+str(k)+"\n") f1.close() f2.close()
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
3a7a4e0fc74d98a3d4bb90e7220f2bca91eaa4d0
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/97/usersdata/239/54617/submittedfiles/lecker.py
e3ba12e1ff6dc558621a8f2f17a217e1787cc426
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
813
py
# -*- coding: utf-8 -*- from __future__ import division def lecker (lista): cont=0 for i in range (0,len(lista),1 if i==0: if lista[i]>lista[i+1]: cont=cont+1 elif i==(len(lista)-1): if lista[i]>lista[i-1]: cont=cont+1 else: if lista[i]>lista[i-1]: if lista[i]>lista[i+1]: cont=cont+1 if cont==1: return True else: return False n=int(input("Digite a quantidade de elementos da lista:")) a=[] for i in range (0,n,1): valor=int(input("Digite o valor:")) a.append(valor) b=[] for i in range (0,n,1): valor=int(input("Digite o valor:")) b.append(valor) if lecker (a): print("S") else: print("N") if lecker (b): print("S") else: print("N")
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
4ae9d4cd17ad18027fa1dffe901e6463804b40c4
5db0fab37c2b8a618d85d3b60fab9f806c416474
/src/python/pants/backend/python/typecheck/mypy/skip_field.py
672a681eeba2e506b35d3c2f51bbadb683934354
[ "Apache-2.0" ]
permissive
pantsbuild/pants
4988d1ac5474ec95f94ce2218aeb759401e4b011
98cbda8545f0d58c586ed2daa76fefd729d5e0d5
refs/heads/main
2023-09-05T03:44:17.646899
2023-09-01T19:52:09
2023-09-01T19:52:09
7,209,075
2,708
593
Apache-2.0
2023-09-14T19:33:33
2012-12-17T17:39:04
Python
UTF-8
Python
false
false
897
py
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.backend.python.target_types import ( PythonSourcesGeneratorTarget, PythonSourceTarget, PythonTestsGeneratorTarget, PythonTestTarget, PythonTestUtilsGeneratorTarget, ) from pants.engine.target import BoolField class SkipMyPyField(BoolField): alias = "skip_mypy" default = False help = "If true, don't run MyPy on this target's code." def rules(): return [ PythonSourcesGeneratorTarget.register_plugin_field(SkipMyPyField), PythonSourceTarget.register_plugin_field(SkipMyPyField), PythonTestsGeneratorTarget.register_plugin_field(SkipMyPyField), PythonTestTarget.register_plugin_field(SkipMyPyField), PythonTestUtilsGeneratorTarget.register_plugin_field(SkipMyPyField), ]
[ "noreply@github.com" ]
pantsbuild.noreply@github.com
1586616caf1191874f3dfdf0a908af9d390cbd3e
54eeab2befaa4bf0d96a7bd18110900f8f32c766
/other/sql/sqlite.py
cc06497fe5586ae73d672cbedf67aa19174a1c04
[]
no_license
w8833531/mypython
40239ada90426db73444ee54e6e79decc6c9fc9b
45ed12a611efd33838766e7bd73840e6d8b73e28
refs/heads/master
2021-01-19T06:59:09.790525
2017-10-18T06:20:43
2017-10-18T06:20:43
87,513,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,373
py
#!/usr/bin/env python #-*- coding: utf-8 -*- #由于SQLite的驱动内置在Python标准库中,所以我们可以直接来操作SQLite数据库。 #要操作关系数据库,首先需要连接到数据库,一个数据库连接称为Connection; #连接到数据库后,需要打开游标,称之为Cursor,通过Cursor执行SQL语句,然后,获得执行结果。 #导入SQLite 驱动 import sqlite3 try: # 连接到SQLite数据库 # 数据库文件是test.db # 如果文件不存在,会自动在当前目录创建: conn = sqlite3.connect('test.db') cursor = conn.cursor() # cursor.execute('create table user (id varchar(20) primary key, name varchar(20))') cursor.execute('insert into user (id, name) values(\'3\', \'Wu\')') print cursor.rowcount except sqlite3.Error as e: print e finally: cursor.close() conn.commit() conn.close() #在Python中操作数据库时,要先导入数据库对应的驱动,然后,通过Connection对象和Cursor对象操作数据。 #要确保打开的Connection对象和Cursor对象都正确地被关闭,否则,资源就会泄露。 try: conn = sqlite3.connect('test.db') cursor = conn.cursor() cursor.execute('select * from user') values = cursor.fetchall() print values except sqlite3.Error as e: print e finally: cursor.close() conn.close()
[ "w8833531@hotmail.com" ]
w8833531@hotmail.com
24f4ad0bc75271d08496072c0885072c734d3990
5b1ff6054c4f60e4ae7315db9f20a334bc0b7634
/Launchkey_MK2/Colors.py
6f5028d35ea48a5ef4fb11c613cb1206a59fc846
[]
no_license
maratbakirov/AbletonLive9_RemoteScripts
2869122174634c75405a965401aa97a2dae924a1
4a1517c206353409542e8276ebab7f36f9bbd4ef
refs/heads/master
2021-06-05T14:38:27.959025
2021-05-09T11:42:10
2021-05-09T11:42:10
13,348,327
3
4
null
2016-10-16T13:51:11
2013-10-05T16:27:04
Python
UTF-8
Python
false
false
4,566
py
#Embedded file name: /Users/versonator/Jenkins/live/output/mac_64_static/Release/python-bundle/MIDI Remote Scripts/Launchkey_MK2/Colors.py from _Framework.ButtonElement import Color from .consts import BLINK_LED_CHANNEL, PULSE_LED_CHANNEL class Blink(Color): def __init__(self, midi_value = 0, *a, **k): super(Blink, self).__init__(midi_value, *a, **k) def draw(self, interface): interface.send_value(0) interface.send_value(self.midi_value, channel=BLINK_LED_CHANNEL) class Pulse(Color): def __init__(self, midi_value = 0, *a, **k): super(Pulse, self).__init__(midi_value, *a, **k) def draw(self, interface): interface.send_value(0) interface.send_value(self.midi_value, channel=PULSE_LED_CHANNEL) class Rgb: BLACK = Color(0) DARK_GREY = Color(1) GREY = Color(2) WHITE = Color(3) RED = Color(5) RED_BLINK = Blink(5) RED_PULSE = Pulse(5) RED_HALF = Color(7) ORANGE = Color(9) ORANGE_HALF = Color(11) AMBER = Color(96) AMBER_HALF = Color(14) YELLOW = Color(13) YELLOW_HALF = Color(15) DARK_YELLOW = Color(17) DARK_YELLOW_HALF = Color(19) GREEN = Color(21) GREEN_BLINK = Blink(21) GREEN_PULSE = Pulse(21) GREEN_HALF = Color(27) MINT = Color(29) MINT_HALF = Color(31) LIGHT_BLUE = Color(37) LIGHT_BLUE_HALF = Color(39) BLUE = Color(45) BLUE_HALF = Color(47) DARK_BLUE = Color(49) DARK_BLUE_HALF = Color(51) PURPLE = Color(53) PURPLE_HALF = Color(55) DARK_PURPLE = Color(59) BRIGHT_PURPLE = Color(81) DARK_ORANGE = Color(84) CLIP_COLOR_TABLE = {15549221: 60, 12411136: 61, 11569920: 62, 8754719: 63, 5480241: 64, 695438: 65, 31421: 66, 197631: 67, 3101346: 68, 6441901: 69, 8092539: 70, 3947580: 71, 16712965: 72, 12565097: 73, 10927616: 74, 8046132: 75, 4047616: 76, 49071: 77, 1090798: 78, 5538020: 79, 8940772: 80, 10701741: 81, 12008809: 82, 9852725: 83, 16149507: 84, 12581632: 85, 8912743: 86, 1769263: 87, 2490280: 88, 6094824: 89, 1698303: 90, 9160191: 91, 9611263: 92, 12094975: 93, 14183652: 94, 16726484: 95, 16753961: 96, 16773172: 97, 14939139: 98, 14402304: 99, 12492131: 100, 9024637: 101, 8962746: 102, 10204100: 103, 8758722: 104, 13011836: 105, 15810688: 106, 16749734: 107, 16753524: 108, 16772767: 109, 13821080: 110, 12243060: 111, 11119017: 112, 13958625: 113, 13496824: 114, 12173795: 115, 13482980: 116, 13684944: 117, 14673637: 118, 16777215: 119} RGB_COLOR_TABLE = ((0, 0), (1, 1973790), (2, 8355711), (3, 16777215), (4, 16731212), (5, 16711680), (6, 5832704), (7, 1638400), (8, 16760172), (9, 16733184), (10, 5840128), (11, 2562816), (12, 16777036), (13, 16776960), (14, 5855488), (15, 1644800), (16, 8978252), (17, 5570304), (18, 1923328), (19, 1321728), (20, 5046092), (21, 65280), (22, 22784), (23, 6400), (24, 5046110), (25, 65305), (26, 22797), (27, 6402), (28, 5046152), (29, 65365), (30, 22813), (31, 7954), (32, 5046199), (33, 65433), (34, 22837), (35, 6418), (36, 5030911), (37, 43519), (38, 16722), (39, 4121), (40, 5015807), (41, 22015), (42, 7513), (43, 2073), (44, 5000447), (45, 255), (46, 89), (47, 25), (48, 8867071), (49, 5505279), (50, 1638500), (51, 983088), (52, 16731391), (53, 16711935), (54, 5832793), (55, 1638425), (56, 16731271), (57, 16711764), (58, 5832733), (59, 2228243), (60, 16717056), (61, 10040576), (62, 7950592), (63, 4416512), (64, 211200), (65, 22325), (66, 21631), (67, 255), (68, 17743), (69, 2425036), (70, 8355711), (71, 2105376), (72, 16711680), (73, 12451629), (74, 11529478), (75, 6618889), (76, 1084160), (77, 65415), (78, 43519), (79, 11007), (80, 4129023), (81, 7995647), (82, 11672189), (83, 4202752), (84, 16730624), (85, 8970502), (86, 7536405), (87, 65280), (88, 3931942), (89, 5898097), (90, 3735500), (91, 5999359), (92, 3232198), (93, 8880105), (94, 13835775), (95, 16711773), (96, 16744192), (97, 12169216), (98, 9502464), (99, 8609031), (100, 3746560), (101, 1330192), (102, 872504), (103, 1381674), (104, 1450074), (105, 6896668), (106, 11010058), (107, 14569789), (108, 14182940), (109, 16769318), (110, 10412335), (111, 6796559), (112, 1973808), (113, 14483307), (114, 8454077), (115, 10131967), (116, 9332479), (117, 4210752), (118, 7697781), (119, 14745599), (120, 10485760), (121, 3473408), (122, 1757184), (123, 475648), (124, 12169216), (125, 4141312), (126, 11755264), (127, 4920578))
[ "julien@julienbayle.net" ]
julien@julienbayle.net
ab14c4d4a9d8c432ae24647c18b9e98e4968ece0
90be755a741d6c93dd59d4acef8b27b4cf93ff54
/src/elsia/scripts/get_abs_ori.py
8decc0c43e2f8716f8f28629c4b7ed417de7cc24
[]
no_license
karry3775/Elsia_ws
05aa5786a6f3f64b70c7ceafead6d72d4ca18bab
031f8006e9a439d9947be5ed288a666f20fca3a7
refs/heads/master
2023-02-21T05:21:10.842475
2021-01-23T14:58:57
2021-01-23T15:21:46
326,032,434
0
0
null
null
null
null
UTF-8
Python
false
false
6,405
py
#!/usr/bin/env python import rospy from sensor_msgs.msg import Image from tf.transformations import quaternion_from_euler, euler_from_quaternion from cv_bridge import CvBridge, CvBridgeError from nav_msgs.msg import Odometry import cv2 import numpy as np import math as m # initialize the node rospy.init_node("get_abs_ori_node") # global variables best_ori_estimate = 0.0 ini_angle_offset = 0.0 # create publishers odom_pub = rospy.Publisher("/abs_orientation_odom", Odometry, queue_size=10) image_pub = rospy.Publisher("/considered_image", Image, queue_size=10) # global variable for whether to DEBUG or not DEBUG = False def wrap2Pi(theta): wrappedUpVal = m.atan2(m.sin(theta), m.cos(theta)) return wrappedUpVal def abs_ori_cb(msg): global best_ori_estimate try: cv_image = CvBridge().imgmsg_to_cv2(msg, "bgr8") # crop out the excess image cv_image = cv_image[100:300, 100:300, :] except CvBridgeError as e: print("[INFO]: Error in obtaining image from CvBridge! Skipping frame!") else: # convert to gray gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY) # convert to edges edges = cv2.Canny(gray, 50, 150) cv2.imshow("edges", edges) cv2.waitKey(1) # convert to thresholded image ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV) # extract hough lines lines = cv2.HoughLinesP(edges, 1, m.pi/180, 2, None, 20, 1) # list of [count, angle] pairs cnt_ang_pair = [] # draw lines for i in range(lines.shape[0]): for line in lines[i]: pt1 = (line[0], line[1]) pt2 = (line[2], line[3]) cv2.line(cv_image, pt1, pt2, (255, 0, 0), 3) # calculate angle ang = m.atan2(pt2[1]-pt1[1], pt2[0]-pt1[0]) cnt_ang_pair.append([1, m.degrees(ang)]) ###################### show the detected lines ######################## cv2.imshow("frame", cv_image) cv2.waitKey(1) ####################################################################### if len(cnt_ang_pair) != 0: # sort the cnt_ang_pair cnt_ang_pair.sort(key=lambda x: x[1]) # bunch up the pairs based on predetermined threshold ang_thresh_deg = 1 bunch = [cnt_ang_pair[0]] for i in range(1, len(cnt_ang_pair)): pairs = cnt_ang_pair[i] if abs(pairs[1] - bunch[-1][1]) < ang_thresh_deg: # update the value and the count new_count = bunch[-1][0] + 1 new_value = ( (bunch[-1][1] * (new_count - 1) * 1.0) / new_count) + (pairs[1]*1.0) / new_count bunch[-1] = [new_count, new_value] else: # time to append bunch.append(pairs) # sort bunch based on first value i.e. count bunch.sort(key=lambda x: x[0], reverse=True) if DEBUG: print("The cnt_ang_pair list is: \n {} \n".format(cnt_ang_pair)) print("The bunched up list is: \n {} \n".format(bunch)) # use the first value of bunch f_ori = m.radians(bunch[0][1]) # in degrees f_ori1 = wrap2Pi(f_ori + m.radians(90) - ini_angle_offset) f_ori2 = wrap2Pi(f_ori + m.radians(-90) - ini_angle_offset) f_ori3 = wrap2Pi(f_ori + m.radians(180) - ini_angle_offset) # we need to find which has the smallest difference # f_ori, f_ori1 or f_ori2 if(abs(wrap2Pi(best_ori_estimate - f_ori)) < abs(wrap2Pi(best_ori_estimate - f_ori1)) and abs(wrap2Pi(best_ori_estimate - f_ori)) < abs(wrap2Pi(best_ori_estimate - f_ori2)) and abs(wrap2Pi(best_ori_estimate - f_ori)) < abs(wrap2Pi(best_ori_estimate - f_ori3))): best_ori_estimate_temp = f_ori elif(abs(wrap2Pi(best_ori_estimate - f_ori1)) < abs(wrap2Pi(best_ori_estimate - f_ori)) and abs(wrap2Pi(best_ori_estimate - f_ori1)) < abs(wrap2Pi(best_ori_estimate - f_ori2)) and abs(wrap2Pi(best_ori_estimate - f_ori1)) < abs(wrap2Pi(best_ori_estimate - f_ori3))): best_ori_estimate_temp = f_ori1 elif(abs(wrap2Pi(best_ori_estimate - f_ori2)) < abs(wrap2Pi(best_ori_estimate - f_ori)) and abs(wrap2Pi(best_ori_estimate - f_ori2)) < abs(wrap2Pi(best_ori_estimate - f_ori1)) and abs(wrap2Pi(best_ori_estimate - f_ori2)) < abs(wrap2Pi(best_ori_estimate - f_ori3))): best_ori_estimate_temp = f_ori2 else: best_ori_estimate_temp = f_ori3 # will get the best_ori_estimate in degrees , the choice is made so that any difference will be amplified more than radians best_ori_estimate = best_ori_estimate_temp if DEBUG: print("best ori estimate: {} deg".format( m.degrees(best_ori_estimate))) # to debug lets plot the best_ori_estimate in the image pt1 = [200, 200] pt2 = [200, 200] line_angle = best_ori_estimate pt2[0] = int(pt2[0] + 200*m.cos(line_angle)) pt2[1] = int(pt2[1] + 200*m.sin(line_angle)) cv2.line(cv_image, (pt1[0], pt1[1]), (pt2[0], pt2[1]), (0, 0, 255), 3) # publish abs odometry for yaw # create euler angles roll = 0 pitch = 0 yaw = -best_ori_estimate # convert to quaternion q = quaternion_from_euler(roll, pitch, yaw) # create a odom message odom_msg = Odometry() odom_msg.pose.pose.orientation.x = q[0] odom_msg.pose.pose.orientation.y = q[1] odom_msg.pose.pose.orientation.z = q[2] odom_msg.pose.pose.orientation.w = q[3] odom_msg.header.frame_id = "odom" odom_msg.header.stamp = rospy.Time().now() odom_pub.publish(odom_msg) rosimg = CvBridge().cv2_to_imgmsg(cv_image, "bgr8") image_pub.publish(rosimg) if __name__ == "__main__": try: abs_ori_sub = rospy.Subscriber( "/stereo/left_upward/image_rect", Image, abs_ori_cb) rospy.spin() except rospy.ROSInterruptException: pass
[ "kartikprakash3775@gmail.com" ]
kartikprakash3775@gmail.com
b1dde0477b45dffe82a9f680f72b5dc5f910eee9
3eb4d64a8bb0bc240a2ef189724f4d51b5275eac
/heltour/tournament/migrations/0106_auto_20161031_0546.py
059d9943ff0cb31240b7a8a561df84ba822d9f3b
[ "MIT" ]
permissive
brucemubayiwa/heltour
c01cc88be7f86dce8246f619d7aa2da37e0e0ac2
fa4e9b06343acaf6a8a99337860e1ad433e68f6b
refs/heads/master
2021-01-23T19:59:04.099215
2017-09-06T03:34:31
2017-09-06T03:34:31
102,840,526
1
0
null
2017-09-08T08:53:30
2017-09-08T08:53:30
null
UTF-8
Python
false
false
2,839
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-10-31 05:46 from __future__ import unicode_literals from django.db import migrations import django.db.models.deletion import select2.fields class Migration(migrations.Migration): dependencies = [ ('tournament', '0105_seasonplayer_final_rating'), ] operations = [ migrations.AlterField( model_name='alternateassignment', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='availabletime', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='gamenomination', name='nominating_player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='leaguemoderator', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='playeravailability', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='playerbye', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='playerlateregistration', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='playerwithdrawl', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='seasonplayer', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='seasonprizewinner', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='teammember', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), ]
[ "ben.cyanfish@gmail.com" ]
ben.cyanfish@gmail.com
3ec6bfaea601759fd9ce090e2468cd49049e454d
88cfeb8f7076450e7a38d31ab2d11883c1818c8d
/net/dpn92.py
bee4297159590c50e4ca40b1570569426a17eb3b
[]
no_license
ZQPei/Alibaba_Cloud_German_AI_Challenge_for_Earth_Observation
4e5a127c12e0c02ed1914ab000a131e1a7f7d844
c2efb32763af0a56a3a7ecb9d83c0744f71d5c14
refs/heads/master
2020-04-26T04:31:57.731178
2019-02-17T01:10:55
2019-02-17T01:10:55
173,305,034
2
0
null
null
null
null
UTF-8
Python
false
false
3,563
py
'''Dual Path Networks in PyTorch.''' import torch import torch.nn as nn import torch.nn.functional as F class Bottleneck(nn.Module): def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).__init__() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def __init__(self, cfg): super(DPN, self).__init__() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(10, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)*dense_depth[3], 17) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for i,stride in enumerate(strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN26(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (2,2,2,2), 'dense_depth': (16,32,24,128) } return DPN(cfg) def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg) def test(): net = DPN92() x = torch.randn(1,3,32,32) y = net(x) print(y) # test()
[ "dfzspzq@163.com" ]
dfzspzq@163.com
9262d9b3881e896a97b190c2ea16eeea43d24d9c
958c19436632b41b43c9462337d13e836935a9da
/E01_python_for_data_analysis/04_NumPy/0403_numpy_cal.py
24af0cf6e7c79bf551a52bc51df3c822da19b676
[]
no_license
Vincent105/ML
4752b2a99c124e01e40e383a0177fb5d82115cb6
fa926caabf83628b3fb7d74cee02a3e923a917f7
refs/heads/master
2020-12-29T18:21:50.144711
2020-10-12T09:56:41
2020-10-12T09:56:41
238,697,320
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
import numpy as np arr = np.array([[1., 2., 3.], [4., 5., 6.]]) print(arr) print(arr * arr) print(arr * arr - arr) # 数组与标量的算术运算会将标量值传播到各个元素: print(1 / arr) print(arr * 0.5) # 大小相同的数组之间的比较会生成布尔值数组: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]]) print(arr2) print(arr2 > arr)
[ "vincent1050917@gmail.com" ]
vincent1050917@gmail.com
b352068896dbae835d20da90ab54de2d4f34fec9
d2eb7bd335175edd844a3e6c1c633ee0dc2dbb25
/contests_atcoder/arc017/arc017_c.py
80b806e3389e7dfd81e012229a4a9723cc08f1d5
[ "BSD-2-Clause" ]
permissive
stdiorion/competitive-programming
5020a12b85f1e691ceb0cacd021606a9dc58b72c
e7cf8ef923ccefad39a1727ca94c610d650fcb76
refs/heads/main
2023-03-27T01:13:42.691586
2021-03-08T08:05:53
2021-03-08T08:05:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
from bisect import bisect_left, bisect_right n, x = map(int, input().split()) w = [int(input()) for _ in range(n)] pt1 = w[:16] pt2 = w[16:] w1 = [] for bit in range(1 << len(pt1)): weight = 0 for i in range(len(pt1)): if (bit >> i) & 1: weight += pt1[i] w1.append(weight) if not len(pt2): print(w1.count(x)) exit() w2 = [] for bit in range(1 << len(pt2)): weight = 0 for i in range(len(pt2)): if (bit >> i) & 1: weight += pt2[i] w2.append(weight) ans = 0 w1.sort() w2.sort() i2 = 0 for weight1 in w1: ans += bisect_right(w2, x - weight1) - bisect_left(w2, x - weight1) print(ans)
[ "itkn1900@gmail.com" ]
itkn1900@gmail.com
23241518e94ae0d5c41c03ff56152a117f302c17
d7ec67a5ba315103fa6a6bae6dc045f1fecf7add
/docs_master_tensorflow/keras/tf_dqn_simple_master/dqn_agent.py
d0dc2cccfa0c1fbf14d21175a9b41c3605ff96e2
[]
no_license
munezou/PycharmProject
cc62f5e4278ced387233a50647e8197e009cc7b4
26126c02cfa0dc4c0db726f2f2cabb162511a5b5
refs/heads/master
2023-03-07T23:44:29.106624
2023-01-23T16:16:08
2023-01-23T16:16:08
218,804,126
2
1
null
2023-02-28T23:58:22
2019-10-31T15:57:22
Jupyter Notebook
UTF-8
Python
false
false
4,247
py
from collections import deque import os import numpy as np import tensorflow as tf class DQNAgent: """ Multi Layer Perceptron with Experience Replay """ def __init__(self, enable_actions, environment_name): # parameters self.name = os.path.splitext(os.path.basename(__file__))[0] self.environment_name = environment_name self.enable_actions = enable_actions self.n_actions = len(self.enable_actions) self.minibatch_size = 32 self.replay_memory_size = 1000 self.learning_rate = 0.001 self.discount_factor = 0.9 self.exploration = 0.1 self.model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models") self.model_name = "{}.ckpt".format(self.environment_name) # replay memory self.D = deque(maxlen=self.replay_memory_size) # model self.init_model() # variables self.current_loss = 0.0 def init_model(self): # input layer (8 x 8) self.x = tf.placeholder(tf.float32, [None, 8, 8]) # flatten (64) x_flat = tf.reshape(self.x, [-1, 64]) # fully connected layer (32) W_fc1 = tf.Variable(tf.truncated_normal([64, 64], stddev=0.01)) b_fc1 = tf.Variable(tf.zeros([64])) h_fc1 = tf.nn.relu(tf.matmul(x_flat, W_fc1) + b_fc1) # output layer (n_actions) W_out = tf.Variable(tf.truncated_normal([64, self.n_actions], stddev=0.01)) b_out = tf.Variable(tf.zeros([self.n_actions])) self.y = tf.matmul(h_fc1, W_out) + b_out # loss function self.y_ = tf.placeholder(tf.float32, [None, self.n_actions]) self.loss = tf.reduce_mean(tf.square(self.y_ - self.y)) # train operation optimizer = tf.train.RMSPropOptimizer(self.learning_rate) self.training = optimizer.minimize(self.loss) # saver self.saver = tf.train.Saver() # session self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def Q_values(self, state): # Q(state, action) of all actions return self.sess.run(self.y, feed_dict={self.x: [state]})[0] def select_action(self, state, epsilon): if np.random.rand() <= epsilon: # random return np.random.choice(self.enable_actions) else: # max_action Q(state, action) return self.enable_actions[np.argmax(self.Q_values(state))] def store_experience(self, state, action, reward, state_1, terminal): self.D.append((state, action, reward, state_1, terminal)) def experience_replay(self): state_minibatch = [] y_minibatch = [] # sample random minibatch minibatch_size = min(len(self.D), self.minibatch_size) minibatch_indexes = np.random.randint(0, len(self.D), minibatch_size) for j in minibatch_indexes: state_j, action_j, reward_j, state_j_1, terminal = self.D[j] action_j_index = self.enable_actions.index(action_j) y_j = self.Q_values(state_j) if terminal: y_j[action_j_index] = reward_j else: # reward_j + gamma * max_action' Q(state', action') y_j[action_j_index] = reward_j + self.discount_factor * np.max(self.Q_values(state_j_1)) # NOQA state_minibatch.append(state_j) y_minibatch.append(y_j) # training self.sess.run(self.training, feed_dict={self.x: state_minibatch, self.y_: y_minibatch}) # for log self.current_loss = self.sess.run(self.loss, feed_dict={self.x: state_minibatch, self.y_: y_minibatch}) def load_model(self, model_path=None): if model_path: # load from model_path self.saver.restore(self.sess, model_path) else: # load from checkpoint checkpoint = tf.train.get_checkpoint_state(self.model_dir) if checkpoint and checkpoint.model_checkpoint_path: self.saver.restore(self.sess, checkpoint.model_checkpoint_path) def save_model(self): self.saver.save(self.sess, os.path.join(self.model_dir, self.model_name))
[ "kazumikm0119@pi5.fiberbit.net" ]
kazumikm0119@pi5.fiberbit.net
42bcc717daa52c76b623b77adb64ac1e50d8fe60
b57d337ddbe946c113b2228a0c167db787fd69a1
/scr/py00033SpiderDeath.py
6fd5b9134c2358a8544c5ef441100d8e4da50196
[]
no_license
aademchenko/ToEE
ebf6432a75538ae95803b61c6624e65b5cdc53a1
dcfd5d2de48b9d9031021d9e04819b309d71c59e
refs/heads/master
2020-04-06T13:56:27.443772
2018-11-14T09:35:57
2018-11-14T09:35:57
157,520,715
0
0
null
null
null
null
UTF-8
Python
false
false
1,258
py
from toee import * from utilities import * from combat_standard_routines import * def san_dying( attachee, triggerer ): if should_modify_CR( attachee ): modify_CR( attachee, get_av_level() ) if (attachee.map == 5069): game.global_vars[3] = game.global_vars[3] + 1 if (game.party_alignment == LAWFUL_NEUTRAL or game.party_alignment == CHAOTIC_NEUTRAL or game.party_alignment == TRUE_NEUTRAL or game.party_alignment == LAWFUL_EVIL or game.party_alignment == CHAOTIC_EVIL or game.party_alignment == NEUTRAL_EVIL): ring = attachee.item_find( 3000 ) ring.destroy() elif (attachee.map == 5002): if (game.party_alignment == LAWFUL_GOOD or game.party_alignment == CHAOTIC_GOOD or game.party_alignment == NEUTRAL_GOOD or game.party_alignment == LAWFUL_EVIL or game.party_alignment == CHAOTIC_EVIL or game.party_alignment == NEUTRAL_EVIL): ring = attachee.item_find( 3000 ) ring.destroy() elif (attachee.map == 5003): if (game.party_alignment == LAWFUL_GOOD or game.party_alignment == CHAOTIC_GOOD or game.party_alignment == NEUTRAL_GOOD or game.party_alignment == LAWFUL_NEUTRAL or game.party_alignment == CHAOTIC_NEUTRAL or game.party_alignment == TRUE_NEUTRAL): ring = attachee.item_find( 3000 ) ring.destroy() return RUN_DEFAULT
[ "demchenko.recruitment@gmail.com" ]
demchenko.recruitment@gmail.com
fa428df271c1a095589ea4dda94bbd27ca4f7705
06870667821f26b0c8c96b52321938df58fd91f6
/parking_scrapers/scrapers/new_haven.py
85e9236cddfb6c481a2d0bfc60ccfb3c43b84610
[]
no_license
jmcarp/open-parking-spaces
69244962a316fe6bd3273ba6837bfe8d0f1f4b8e
5f855a1b25c9109f15af26e1fb3b4ecbd3ef5845
refs/heads/master
2023-01-24T11:43:53.641262
2020-11-30T19:00:46
2020-11-30T19:00:46
312,906,075
0
0
null
null
null
null
UTF-8
Python
false
false
1,129
py
import re from typing import Iterator import lxml.html import requests from base import LotSpaces, Scraper class NewHavenScraper(Scraper): """Scrape New Haven html. https://parknewhaven.com """ HTML_URL = "https://parknewhaven.com" TIMEOUT = 5 SPACES_PATTERN = re.compile(r"(.*?):\s+(\d+)% \((\d+) available\)", re.IGNORECASE) name = "new_haven" def fetch_spaces(self) -> Iterator[LotSpaces]: response = requests.get( self.HTML_URL, headers={"User-Agent": "open-parking-spaces"}, timeout=self.TIMEOUT, ) response.raise_for_status() doc = lxml.html.fromstring(response.content) links = doc.xpath( '//div[contains(@class, "tickr")]//a[contains(@class, "tickrlink")]' ) for link in links: match = self.SPACES_PATTERN.search(link.text_content()) assert match is not None lot, percent, spaces = match.groups() yield LotSpaces( lot=lot, spaces=int(spaces), url=link.attrib["href"], )
[ "jm.carp@gmail.com" ]
jm.carp@gmail.com