blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
70a6b84238efa4e023179a2ad24b371742532fce
fbb141c9b99c4c08ce2c0acfe13630d694d98744
/7-stack/4.10-shu-zu-zhong-de-ni-xu-dui-lcof.py
f04c9947f38d38bf2a749719998cd041df3b5b3b
[]
no_license
huixian3/algorithm017
1534bc8a0364595b056e0f346cfe9fa8b8fee3bd
f43c99dc7810de863f8cd79115e272ac65ce9257
refs/heads/master
2023-04-02T07:10:03.670003
2021-04-13T14:38:36
2021-04-13T14:38:36
297,989,771
0
0
null
2020-09-23T14:05:41
2020-09-23T14:05:40
null
UTF-8
Python
false
false
1,473
py
''' 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。 输入一个数组,求出这个数组中的逆序对的总数。 ''' # 归并排序 同 逆序对,分治 # 在megrge环节中计数即可,计数方法是,左边数据大于右边数据元素的pair数量 class Solution(object): def reversePairs(self, nums): """ :type nums: List[int] :rtype: int """ self.cnt = 0 def merge(nums, start, mid, end, temp): i, j = start, mid + 1 while i <= mid and j <= end: if nums[i] <= nums[j]: temp.append(nums[i]) i += 1 else: self.cnt += mid - i + 1 temp.append(nums[j]) j += 1 while i <= mid: temp.append(nums[i]) i += 1 while j <= end: temp.append(nums[j]) j += 1 for i in range(len(temp)): nums[start + i] = temp[i] temp.clear() def mergeSort(nums, start, end, temp): if start >= end: return mid = (start + end) >> 1 mergeSort(nums, start, mid, temp) mergeSort(nums, mid + 1, end, temp) merge(nums, start, mid, end, temp) mergeSort(nums, 0, len(nums) - 1, []) return self.cnt
[ "zhanhuixian@meituan.com" ]
zhanhuixian@meituan.com
8a0079dd597dba447df0d9aed6437df677f2accb
710026f64d3a23913ae71d2300147b371f5cb75b
/gammapy/data/tests/test_all.py
138034335de153523316b69996357d13979c5972
[]
no_license
Cadair/gammapy
557c01e33d93fe6cc2daaac35b53590d33e31fbc
19f4fdd299b8c3495c732fc412f5d18cb9df3590
refs/heads/master
2020-12-13T21:52:37.790005
2014-02-20T15:15:10
2014-02-20T15:15:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
950
py
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import print_function, division from numpy.testing import assert_allclose from astropy.utils.data import get_pkg_data_filename from astropy.io import fits from .. import poisson_stats_image def test_poisson_stats_image(): """Get the data file via the gammapy.data.poisson_stats_image function""" data = poisson_stats_image() assert data.sum() == 40896 def test_poisson_stats_image_direct(): """Get the data file directly via get_pkg_data_filename""" filename = get_pkg_data_filename('../poisson_stats_image/counts.fits.gz') data = fits.getdata(filename) assert data.sum() == 40896 def test_poisson_stats_extra_info(): images = poisson_stats_image(extra_info=True) refs = dict(counts=40896, model=41000, source=1000, background=40000) for name, expected in refs.items(): assert_allclose(images[name].sum(), expected)
[ "Deil.Christoph@gmail.com" ]
Deil.Christoph@gmail.com
155abf1cb8c24811bbe7251caef3d6eb6e1d3629
617ff229b63165368e32a303488b29c738a5378a
/src/bad smell/plot_smell_fft.py
c75518ce5eedbec995ac26155c38b340be32e0b4
[]
no_license
dimpisingh/e-dom
a1ae76229a31c0a5dcc725a80e7a741be660a0da
a820874545e97ec10580db6dd11e35c7eec65abc
refs/heads/master
2022-05-13T07:27:31.180506
2019-04-10T13:53:26
2019-04-10T13:53:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,425
py
import os import plotly # plotly.tools.set_credentials_file(username='dichen001', api_key='czrCH0mQHmX5HLXSHBqS') plotly.tools.set_credentials_file(username='amritbhanu', api_key='cuaXxPfbSxptk2irXf7P') import plotly.plotly as py import plotly.graph_objs as go import cPickle import pickle cwd = os.getcwd() data_path = os.path.join(cwd,"..","..","data", "smell") details_path = os.path.join(data_path, 'smell_details_38-MDLP.pkl') details = cPickle.load(open(details_path, 'rb')) with open(os.path.join(data_path, 'dodge.pickle'), 'rb') as handle: dodge = pickle.load(handle) n1, n2, n3, n4 = "DataClass", "FeatureEnvy", "GodClass", "LongMethod" t1, t2, t3, t4 = "DataClass", "FeatureEnvy", "GodClass", "LongMethod" classifiers = ["DT", "RF", "LR", "kNN", "FFT-Dist2Heaven", "Dodge_0.2_30"] colors = ["#AED6F1", "#5DADE2", "#2874A6", "#1B4F72", "#000000", "#FF5722"]#, "#E53935"] data = [] l = len(details[n1][classifiers[0]]['dist2heaven']) x = [t1] * l + [t2] * l + [t3] * l + [t4] * l x1 = [t1] * 21 + [t2] * 21 + [t3] * 21 + [t4] * 21 for i, clf in enumerate(classifiers): if clf != "Dodge_0.2_30": tmp_bar = go.Box( y=sorted(details[n1][clf]['dist2heaven']) + sorted(details[n2][clf]['dist2heaven']) + sorted(details[n3][clf]['dist2heaven']) + sorted(details[n4][clf]['dist2heaven']), x=x, name=clf, marker=dict( color=colors[i] ) ) else: tmp_bar = go.Box( y=sorted(dodge[n1]) + sorted(dodge[n2]) + sorted(dodge[n3]) + sorted(dodge[n4]), x=x1, name=clf, marker=dict( color=colors[i] ) ) data.append(tmp_bar) layout = go.Layout( autosize=True, title="Bad Smell - 25 Times", font=dict(size=18), yaxis=dict( title='Distance to Heaven', zeroline=False, titlefont=dict(size=20), tickfont=dict(size=24), automargin=True, ), xaxis=dict( title='Bad Smell Dataset (very small)', zeroline=False, titlefont=dict(size=24), tickfont=dict(size=20), tickangle=-45, automargin=True, ), boxmode='group', legend=dict(font=dict(size=20) ) ) fig = go.Figure(data=data, layout=layout) py.plot(fig, filename="Smell - 25 Times")
[ "amritbhanu@gmail.com" ]
amritbhanu@gmail.com
6c6d5f913ad89423170d7e4e728f2d9b67184ad4
5bb8b4c7faeebd16da16ecbcd4a98aabaf688e8f
/data_tools/walker/src-cikm/build_graph2/citations.py
2438338b186b181a26af7fd8e16ccbc3d15dfd74
[]
no_license
xiaoqinzhe/vrdetection
014fc2b61c9b30dd2699fdba41089b18b7f060be
604a812a21a98d72ba8e23a716eb72153bdaa7c4
refs/heads/master
2023-07-04T07:44:12.141404
2021-08-01T06:21:17
2021-08-01T06:21:17
150,063,473
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
#coding:utf-8 import json file_path = '/mnt/hdd2/dblp/dblp_ref.json' citation_file_path = '/mnt/hdd2/cikm/citation.txt' with open(file_path) as ifile, open(citation_file_path, 'w') as ofile: for line in ifile: paper = json.loads(line) if 'references' not in paper: continue output_papers = [paper['_id']] output_papers += paper['references'] ofile.write('{}\n'.format(' '.join(output_papers)))
[ "xiaoqinzhe@qq.com" ]
xiaoqinzhe@qq.com
d90f4c250ad6540185c4685ac49cf4e5df824ab7
b4f661f1153637d9cfec18e4cf56b64582c31385
/src/Python/304.二维区域和检索-矩阵不可变.py
fd58f373a91c848ff44f0bd8495b1cc29de69c8a
[]
no_license
Icedomain/LeetCode
12dd24bbe2d7aba1f6ebe61bffe4c5e6284fbd06
4bc8e41499b9c884d64b5a44fe783fdb7030676e
refs/heads/master
2021-02-15T15:12:15.009790
2020-09-22T11:37:59
2020-09-22T11:37:59
244,909,740
2
0
null
null
null
null
UTF-8
Python
false
false
893
py
# # @lc app=leetcode.cn id=304 lang=python3 # # [304] 二维区域和检索 - 矩阵不可变 # class NumMatrix: def __init__(self, matrix: List[List[int]]): if not matrix: return n, m = len(matrix), len(matrix[0]) self.sums = [ [0 for j in range(m+1)] for i in range(n+1) ] for i in range(1, n+1): for j in range(1, m+1): self.sums[i][j] = matrix[i-1][j-1] + self.sums[i][j-1] + self.sums[i-1][j] - self.sums[i-1][j-1] def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: row1, col1, row2, col2 = row1+1, col1+1, row2+1, col2+1 return self.sums[row2][col2] - self.sums[row2][col1-1] - self.sums[row1-1][col2] + self.sums[row1-1][col1-1] # Your NumMatrix object will be instantiated and called as such: # obj = NumMatrix(matrix) # param_1 = obj.sumRegion(row1,col1,row2,col2)
[ "1271029566@qq.com" ]
1271029566@qq.com
b04f5902369c128c688593ca330bb43b55ffa29c
a8ed252f3b76a8d134f026ccf0204c5e5e918edb
/apps/common/views.py
5651d62f133a31899ed83656bb5d35032146918d
[ "MIT" ]
permissive
F483/bitcoin-bounties.com
a8c84bfe61df25bae93f1bfd3c055754414cbe27
64a4a973fa38a4fb54178d855c1b82ec18799628
refs/heads/master
2020-04-25T23:19:32.859170
2014-11-22T15:40:48
2014-11-22T15:40:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
545
py
# -*- coding: utf-8 -*- # Copyright (c) 2014 Fabian Barkhau <fabian.barkhau@gmail.com> # License: MIT (see LICENSE.TXT file) from django.http import HttpResponseRedirect from django.views.decorators.http import require_http_methods from apps.common.utils.templates import render_response @require_http_methods(['GET']) def render_template(request, template, context=None): return render_response(request, template, context and context or {}) @require_http_methods(['GET']) def redirect_to(request, url): return HttpResponseRedirect(url)
[ "fabian.barkhau@gmail.com" ]
fabian.barkhau@gmail.com
e66adf2a6d1f32f1467ae3ff1e1bdc2c509baa2b
33fa46042e7decb01008b73202e5d24ce6bad03a
/config/settings/test.py
ece2ef2fbcdf6949a10c811059a6d1e4cacc7b42
[ "MIT" ]
permissive
rlaneyjr/project_pawz
2d2ef8ef8a801e788c139a35bf82d72aafac8f69
27f316ef35968ed1319ec0585a050ebed795763a
refs/heads/master
2022-12-05T11:39:04.384922
2019-05-28T22:24:24
2019-05-28T22:24:24
185,061,794
0
0
MIT
2022-12-03T08:21:14
2019-05-05T17:28:47
JavaScript
UTF-8
Python
false
false
2,024
py
""" With these settings, tests run faster. """ from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = False # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env("DJANGO_SECRET_KEY", default="xCRogvYltWv6xc9QaA51CNCNXySMe9Oq1PY8x0avsZU15HEZq9kpa2aTphciScG0") # https://docs.djangoproject.com/en/dev/ref/settings/#test-runner TEST_RUNNER = "django.test.runner.DiscoverRunner" # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "" } } # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = ["django.contrib.auth.hashers.MD5PasswordHasher"] # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]["OPTIONS"]["debug"] = DEBUG # noqa F405 TEMPLATES[0]["OPTIONS"]["loaders"] = [ # noqa F405 ( "django.template.loaders.cached.Loader", [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], ) ] # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = "django.core.mail.backends.locmem.EmailBackend" # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = "localhost" # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # Your stuff... # ------------------------------------------------------------------------------
[ "rlaneyjr@gmail.com" ]
rlaneyjr@gmail.com
abd3bcdbedfbf53aa74ec49c4c5efae200ede1c3
536656cd89e4fa3a92b5dcab28657d60d1d244bd
/tools/perf/core/results_processor/command_line_unittest.py
5dd1f9abc72545c59b4f8dfebf02d90dec2e566e
[ "Zlib", "LGPL-2.0-or-later", "LGPL-2.1-only", "MIT", "APSL-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "LGPL-2.0-only", "LicenseRef-scancode-unknown" ]
permissive
ECS-251-W2020/chromium
79caebf50443f297557d9510620bf8d44a68399a
ac814e85cb870a6b569e184c7a60a70ff3cb19f9
refs/heads/master
2022-08-19T17:42:46.887573
2020-03-18T06:08:44
2020-03-18T06:08:44
248,141,336
7
8
BSD-3-Clause
2022-07-06T20:32:48
2020-03-18T04:52:18
null
UTF-8
Python
false
false
7,545
py
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Unit tests for results_processor. These tests mostly test that argument parsing and processing work as expected. They mock out accesses to the operating system, so no files are actually read nor written. """ import datetime import posixpath import re import unittest import mock from core.results_processor import command_line # To easily mock module level symbols within the command_line module. def module(symbol): return 'core.results_processor.command_line.' + symbol class ProcessOptionsTestCase(unittest.TestCase): def setUp(self): self.standalone = False # Mock os module within results_processor so path manipulations do not # depend on the file system of the test environment. mock_os = mock.patch(module('os')).start() def realpath(path): return posixpath.normpath(posixpath.join(mock_os.getcwd(), path)) def expanduser(path): return re.sub(r'~', '/path/to/home', path) mock_os.getcwd.return_value = '/path/to/curdir' mock_os.path.realpath.side_effect = realpath mock_os.path.expanduser.side_effect = expanduser mock_os.path.dirname.side_effect = posixpath.dirname mock_os.path.join.side_effect = posixpath.join mock.patch(module('_DefaultOutputDir'), return_value='/path/to/output_dir').start() mock.patch(module('path_util.GetChromiumSrcDir'), return_value='/path/to/chromium').start() def tearDown(self): mock.patch.stopall() def ParseArgs(self, args): parser = command_line.ArgumentParser(standalone=self.standalone) options = parser.parse_args(args) command_line.ProcessOptions(options) return options class TestProcessOptions(ProcessOptionsTestCase): def testOutputDir_default(self): options = self.ParseArgs([]) self.assertEqual(options.output_dir, '/path/to/output_dir') def testOutputDir_homeDir(self): options = self.ParseArgs(['--output-dir', '~/my_outputs']) self.assertEqual(options.output_dir, '/path/to/home/my_outputs') def testOutputDir_relPath(self): options = self.ParseArgs(['--output-dir', 'my_outputs']) self.assertEqual(options.output_dir, '/path/to/curdir/my_outputs') def testOutputDir_absPath(self): options = self.ParseArgs(['--output-dir', '/path/to/somewhere/else']) self.assertEqual(options.output_dir, '/path/to/somewhere/else') @mock.patch(module('datetime')) def testIntermediateDir_default(self, mock_datetime): mock_datetime.datetime.utcnow.return_value = ( datetime.datetime(2015, 10, 21, 7, 28)) options = self.ParseArgs(['--output-dir', '/output']) self.assertEqual(options.intermediate_dir, '/output/artifacts/run_20151021T072800Z') @mock.patch(module('datetime')) def testIntermediateDir_withResultsLabel(self, mock_datetime): mock_datetime.datetime.utcnow.return_value = ( datetime.datetime(2015, 10, 21, 7, 28)) options = self.ParseArgs( ['--output-dir', '/output', '--results-label', 'test my feature']) self.assertEqual(options.intermediate_dir, '/output/artifacts/test_my_feature_20151021T072800Z') def testUploadBucket_noUploadResults(self): options = self.ParseArgs([]) self.assertFalse(options.upload_results) self.assertIsNone(options.upload_bucket) @mock.patch(module('cloud_storage')) def testUploadBucket_uploadResultsToDefaultBucket(self, mock_storage): mock_storage.BUCKET_ALIASES = {'output': 'default-bucket'} options = self.ParseArgs(['--upload-results']) self.assertTrue(options.upload_results) self.assertEqual(options.upload_bucket, 'default-bucket') @mock.patch(module('cloud_storage')) def testUploadBucket_uploadResultsToBucket(self, mock_storage): mock_storage.BUCKET_ALIASES = {'output': 'default-bucket'} options = self.ParseArgs( ['--upload-results', '--upload-bucket', 'my_bucket']) self.assertTrue(options.upload_results) self.assertEqual(options.upload_bucket, 'my_bucket') @mock.patch(module('cloud_storage')) def testUploadBucket_uploadResultsToAlias(self, mock_storage): mock_storage.BUCKET_ALIASES = { 'output': 'default-bucket', 'special': 'some-special-bucket'} options = self.ParseArgs( ['--upload-results', '--upload-bucket', 'special']) self.assertTrue(options.upload_results) self.assertEqual(options.upload_bucket, 'some-special-bucket') def testDefaultOutputFormat(self): options = self.ParseArgs([]) self.assertEqual(options.output_formats, ['html']) def testUnkownOutputFormatRaises(self): with self.assertRaises(SystemExit): self.ParseArgs(['--output-format', 'unknown']) def testNoDuplicateOutputFormats(self): options = self.ParseArgs( ['--output-format', 'html', '--output-format', 'csv', '--output-format', 'html', '--output-format', 'csv']) self.assertEqual(options.output_formats, ['csv', 'html']) def testTraceProcessorPath_noBuildDir(self): with mock.patch(module('os.environ.get'), return_value=None): options = self.ParseArgs([]) self.assertIsNone(options.trace_processor_path) def testTraceProcessorPath_chromiumOutputDir(self): def isfile(path): return path == '/path/to/chromium/out_test/Debug/trace_processor_shell' def env_get(name): if name == 'CHROMIUM_OUTPUT_DIR': return '/path/to/chromium/out_test/Debug' with mock.patch(module('os.path.isfile')) as isfile_patch: with mock.patch(module('os.environ.get')) as env_patch: isfile_patch.side_effect = isfile env_patch.side_effect = env_get options = self.ParseArgs([]) self.assertEqual(options.trace_processor_path, '/path/to/chromium/out_test/Debug/trace_processor_shell') def testTraceProcessorPath_oneBuildDir(self): def isfile(path): return path == '/path/to/chromium/out/Release/trace_processor_shell' with mock.patch(module('os.path.isfile')) as isfile_patch: isfile_patch.side_effect = isfile options = self.ParseArgs([]) self.assertEqual(options.trace_processor_path, '/path/to/chromium/out/Release/trace_processor_shell') def testTraceProcessorPath_twoBuildDirs(self): def isfile(path): return path in ['/path/to/chromium/out/Release/trace_processor_shell', '/path/to/chromium/out/Debug/trace_processor_shell'] with mock.patch(module('os.path.isfile')) as isfile_patch: isfile_patch.side_effect = isfile options = self.ParseArgs([]) self.assertIsNone(options.trace_processor_path) class StandaloneTestProcessOptions(ProcessOptionsTestCase): def setUp(self): super(StandaloneTestProcessOptions, self).setUp() self.standalone = True def testOutputFormatRequired(self): with self.assertRaises(SystemExit): self.ParseArgs([]) def testIntermediateDirRequired(self): with self.assertRaises(SystemExit): self.ParseArgs(['--output-format', 'json-test-results']) def testSuccessful(self): options = self.ParseArgs( ['--output-format', 'json-test-results', '--intermediate-dir', 'some_dir']) self.assertEqual(options.output_formats, ['json-test-results']) self.assertEqual(options.intermediate_dir, '/path/to/curdir/some_dir') self.assertEqual(options.output_dir, '/path/to/output_dir')
[ "pcding@ucdavis.edu" ]
pcding@ucdavis.edu
53bd21551303a9812df6895c3a5bcf7d5342dedb
d772869033c47a666622e9ee518bb306db5451a5
/unified/modules/main/categories/crm/entities/deal.py
0bcaee514289e3195334ae924481bbb68f1f6ee0
[]
no_license
funny2code/unified_api
920f1e19b2304e331b019f8a531d412b8759e725
ffa28ba0e5c0bd8ad7dd44a468e3d1e777bba725
refs/heads/main
2023-08-31T16:00:17.074427
2021-10-04T04:09:45
2021-10-04T04:09:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
from dataclasses import dataclass @dataclass class Deal: deal_id: str = None account_id: str = None name: str = None close_date: str = None description: str = None stage_id: str = None value: str = None probability: str = None owner_id : str = None contact_id: str = None currency_id: str = None
[ "baidawardipendar@gmail.com" ]
baidawardipendar@gmail.com
611e284cb8350ee5e0530de97ff2121e728b6f84
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/303/usersdata/279/66340/submittedfiles/testes.py
7ccd166e96f0a4767cbe69f6d5511f7efefae093
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
165
py
# -*- coding: utf-8 -*- #COMECE AQUI ABAIXO print("andre bezerra de barrros ") print("24") print(11+1037) print((9*35+160)/5) print(3.14159*(10/2)*(10/2)*30)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
1c460f138444384b52eda73ccc1a7db8da23d76b
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/225/users/3999/codes/1635_2442.py
7d4cb10f6eb2bb08c1ebeeb9ad94276bb7866760
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
271
py
# Teste seu código aos poucos. # Não teste tudo no final, pois fica mais difícil de identificar erros. # Use as mensagens de erro para corrigir seu código. num=int(input("Digite um numero: ")) if (num%2==0): mensagem="par" else: mensagem="impar" print(mensagem)
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
78cd02f35eb33e0dca1c10049960dc96d060c161
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part006597.py
f32e3be699fb19351abe7424a78bedb56216f820
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
1,302
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher125926(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i2.2.3.1.0', 1, 1, None), Mul), (VariableWithCount('i2.2.3.1.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher125926._instance is None: CommutativeMatcher125926._instance = CommutativeMatcher125926() return CommutativeMatcher125926._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 125925 return yield from collections import deque
[ "franz.bonazzi@gmail.com" ]
franz.bonazzi@gmail.com
9b2b62d6c9e2308e570b19de28085ae1f34c35a9
7bcb0b7f721c8fa31da7574f13ed0056127715b3
/src/apps/api/resources/subscription.py
62e5a4c74c86c9613ca6bd0c1ba0aeca5007fa3d
[]
no_license
simonchapman1986/ripe
09eb9452ea16730c105c452eefb6a6791c1b4a69
c129da2249b5f75015f528e4056e9a2957b7d884
refs/heads/master
2022-07-22T05:15:38.485619
2016-01-15T12:53:43
2016-01-15T12:53:43
49,718,671
1
0
null
2022-07-07T22:50:50
2016-01-15T12:53:09
Python
UTF-8
Python
false
false
455
py
from apps.base.models import FactServicesStorefrontSubscription from tastypie.resources import ModelResource class SubscriptionResource(ModelResource): class Meta: queryset = FactServicesStorefrontSubscription.objects.all() list_allowed_methods = ['get'] detail_allowed_methods = ['get'] resource_name = 'entry' filtering = { 'event_time': ['exact', 'range', 'gt', 'gte', 'lt', 'lte'], }
[ "simon-ch@moving-picture.com" ]
simon-ch@moving-picture.com
b42508610856a9da00e6b77138872e63aab1b223
50f04c633f36e9d64c40c4f1b434ed0c24e447c7
/argparse-examples/positionalarg.py
047332844d22ec1332227b4bb8bc6c545fec0f22
[]
no_license
sarahchou/python-practice
883ba7dedd60b2cc18d5d73ef7d3cbb74f09dede
2a3d10144b74460d8ec513e3c7d49bdb48107596
refs/heads/master
2022-11-11T10:06:12.944579
2018-06-11T22:14:06
2018-06-11T22:14:06
136,985,077
0
1
null
2022-10-20T08:48:36
2018-06-11T21:54:46
Python
UTF-8
Python
false
false
305
py
#Introduction to positional arguments import argparse parser = argparse.ArgumentParser() # parser.add_argument("echo", help="echo the string you use here") parser.add_argument("square", help="display a square of a given number", type=int) args = parser.parse_args() # print args.echo print args.square**2
[ "chou.s@husky.neu.edu" ]
chou.s@husky.neu.edu
75bbbe754d344cb243580cb495baebe07914d27a
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_9/alhada001/question1.py
a7d1ab9e4c2362dd2297a16531f5457babdf6f3d
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
967
py
#Adam Alhadeff import math file = input("Enter the marks filename:\n") f = open(file, "r") length = len(open(file).readlines()) names = [] marks = [] line = f.readline() count = 0 for i in range(length): split = line.split(",") names.append(split[0]) marks.append(split[1]) count += 1 line = f.readline() total = 0 for i in range(len(marks)): total = total + int(marks[i]) average = total/count SDT = 0 for i in range(len(marks)): SDT = SDT + (int(marks[i])-average)*(int(marks[i])-average) SD = math.sqrt(SDT/count) print("The average is:","%0.2f" % (average)) print("The std deviation is:","%0.2f" % (SD)) NumStudents = 0 for i in range(len(marks)): if int(marks[i]) < (average-SD): NumStudents += 1 if NumStudents != 0: print("List of students who need to see an advisor:") for i in range(len(marks)): if int(marks[i]) < (average-SD): print(names[i])
[ "jarr2000@gmail.com" ]
jarr2000@gmail.com
48cf3ed92a3e10d96e85fb1b15ba0340b11f90da
9dba8607dce414f9905700d7a4ac44668de5e1f1
/puente_quintanavides/combinaciones/def_hip_elscp_resumidas_xci.py
da24fbbb055eb1ffb3374131c83a39767b1d825f
[]
no_license
anaiortega/XCmodels
c0463ffe38531578aee281456e88528882255cd7
e9b8c2f996a21b8aa3314242f3cc12b0e391b5df
refs/heads/master
2023-08-16T22:44:01.168775
2023-08-14T18:15:10
2023-08-14T18:15:10
141,140,177
3
3
null
null
null
null
UTF-8
Python
false
false
3,362
py
\combinacion["ELSCP001"]{ descomp("1.00*G1 + 0.70*TC1V1")} \combinacion["ELSCP002"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.20*NV")} \combinacion["ELSCP009"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC3V2")} \combinacion["ELSCP010"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC3V2 + 0.20*NV")} \combinacion["ELSCP021"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC2V2")} \combinacion["ELSCP022"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC2V2 + 0.20*NV")} \combinacion["ELSCP041"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC1V2")} \combinacion["ELSCP042"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC1V2 + 0.20*NV")} \combinacion["ELSCP053"]{ descomp("1.00*G1 + 0.70*TC1V2")} \combinacion["ELSCP054"]{ descomp("1.00*G1 + 0.70*TC1V2 + 0.20*NV")} \combinacion["ELSCP061"]{ descomp("1.00*G1 + 0.70*TC1V2 + 0.70*TC3V1")} \combinacion["ELSCP062"]{ descomp("1.00*G1 + 0.70*TC1V2 + 0.70*TC3V1 + 0.20*NV")} \combinacion["ELSCP073"]{ descomp("1.00*G1 + 0.70*TC1V2 + 0.70*TC2V1")} \combinacion["ELSCP074"]{ descomp("1.00*G1 + 0.70*TC1V2 + 0.70*TC2V1 + 0.20*NV")} \combinacion["ELSCP093"]{ descomp("1.00*G1 + 0.70*TC2V1")} \combinacion["ELSCP094"]{ descomp("1.00*G1 + 0.70*TC2V1 + 0.20*NV")} \combinacion["ELSCP109"]{ descomp("1.00*G1 + 0.70*TC2V1 + 0.70*TC3V2")} \combinacion["ELSCP110"]{ descomp("1.00*G1 + 0.70*TC2V1 + 0.70*TC3V2 + 0.20*NV")} \combinacion["ELSCP129"]{ descomp("1.00*G1 + 0.70*TC2V1 + 0.70*TC2V2")} \combinacion["ELSCP130"]{ descomp("1.00*G1 + 0.70*TC2V1 + 0.70*TC2V2 + 0.20*NV")} \combinacion["ELSCP173"]{ descomp("1.00*G1 + 0.70*TC2V2")} \combinacion["ELSCP174"]{ descomp("1.00*G1 + 0.70*TC2V2 + 0.20*NV")} \combinacion["ELSCP189"]{ descomp("1.00*G1 + 0.70*TC2V2 + 0.70*TC3V1")} \combinacion["ELSCP190"]{ descomp("1.00*G1 + 0.70*TC2V2 + 0.70*TC3V1 + 0.20*NV")} \combinacion["ELSCP209"]{ descomp("1.00*G1 + 0.70*TC3V1")} \combinacion["ELSCP210"]{ descomp("1.00*G1 + 0.70*TC3V1 + 0.20*NV")} \combinacion["ELSCP217"]{ descomp("1.00*G1 + 0.70*TC3V1 + 0.70*TC3V2")} \combinacion["ELSCP218"]{ descomp("1.00*G1 + 0.70*TC3V1 + 0.70*TC3V2 + 0.20*NV")} \combinacion["ELSCP229"]{ descomp("1.00*G1 + 0.70*TC3V2")} \combinacion["ELSCP230"]{ descomp("1.00*G1 + 0.70*TC3V2 + 0.20*NV")} \combinacion["ELSCP453"]{ descomp("1.00*G1 + 0.60*NV")} \combinacion["ELSCP454"]{ descomp("1.00*G1 + 0.70*TC3V2 + 0.60*NV")} \combinacion["ELSCP456"]{ descomp("1.00*G1 + 0.70*TC3V1 + 0.60*NV")} \combinacion["ELSCP458"]{ descomp("1.00*G1 + 0.70*TC3V1 + 0.70*TC3V2 + 0.60*NV")} \combinacion["ELSCP461"]{ descomp("1.00*G1 + 0.70*TC2V2 + 0.60*NV")} \combinacion["ELSCP465"]{ descomp("1.00*G1 + 0.70*TC2V2 + 0.70*TC3V1 + 0.60*NV")} \combinacion["ELSCP470"]{ descomp("1.00*G1 + 0.70*TC2V1 + 0.60*NV")} \combinacion["ELSCP474"]{ descomp("1.00*G1 + 0.70*TC2V1 + 0.70*TC3V2 + 0.60*NV")} \combinacion["ELSCP479"]{ descomp("1.00*G1 + 0.70*TC2V1 + 0.70*TC2V2 + 0.60*NV")} \combinacion["ELSCP490"]{ descomp("1.00*G1 + 0.70*TC1V2 + 0.60*NV")} \combinacion["ELSCP492"]{ descomp("1.00*G1 + 0.70*TC1V2 + 0.70*TC3V1 + 0.60*NV")} \combinacion["ELSCP495"]{ descomp("1.00*G1 + 0.70*TC1V2 + 0.70*TC2V1 + 0.60*NV")} \combinacion["ELSCP500"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.60*NV")} \combinacion["ELSCP502"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC3V2 + 0.60*NV")} \combinacion["ELSCP505"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC2V2 + 0.60*NV")} \combinacion["ELSCP510"]{ descomp("1.00*G1 + 0.70*TC1V1 + 0.70*TC1V2 + 0.60*NV")}
[ "l.pereztato@gmail.com" ]
l.pereztato@gmail.com
21b67cd73c3425afe749638e23831431e4628084
0f07107b016d2aee64788966b9f0d322ac46b998
/moya/docgen/theme.py
39c3d707e1310f7b2799f5a59c83826bd99563b2
[ "MIT" ]
permissive
fkztw/moya
35f48cdc5d5723b04c671947099b0b1af1c7cc7a
78b91d87b4519f91dfdd2b40dab44e72f201a843
refs/heads/master
2023-08-09T09:20:21.968908
2019-02-03T18:18:54
2019-02-03T18:18:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,610
py
from .. import iniparse from fs.path import dirname, pathjoin class Page(object): def __init__(self, doc_class, settings): self.doc_class = doc_class self.settings = settings def __repr__(self): return "Page(%r, %r)" % (self.doc_class, self.settings) def get(self, context, settings_name): return context.sub(self.settings.get(settings_name, "")) def get_path(self, context): return context.sub(self.settings.get("path", "")) class Theme(object): def __init__(self, fs): self.fs = fs self.cfg = None self.theme_settings = None self.pages = [] self.read() def get(self, section_name, key, default=None): section = self.cfg.get(section_name, None) if section is None: return default return section.get(key, default) def read(self): with self.fs.open("theme.ini", "rb") as settings_file: cfg = iniparse.parse(settings_file) self.cfg = cfg self.theme_settings = cfg.get("theme", {}) for section, settings in cfg.items(): what, _, name = section.partition(":") if what == "page": page = Page(name, settings) self.pages.append(page) def get_pages(self, doc): doc_class = doc.doc_class for page in self.pages: if page.doc_class == doc_class: yield page def get_relative_path(self, path): ini_path = dirname(self.fs.getsyspath("theme.ini")) path = pathjoin(ini_path, path) return path
[ "willmcgugan@gmail.com" ]
willmcgugan@gmail.com
5783ce1e2789f35719b925425e95f886b574fd59
76d8f9d741d4e0bbd15a2c29fa77d041c01ea9bf
/exercise/keras/trafficsign.py
a422aaf4c134f2d7e34383236a64a9a9fb67fcf1
[]
no_license
LevinJ/Behavioural-Cloning-P3
d92bf3500797019a3fcf038a5c0e817f445e7a39
fff8993ba2671c9664ab65899db952e2f5de37da
refs/heads/master
2020-06-22T03:16:27.869561
2016-12-19T00:19:06
2016-12-19T00:19:06
74,758,835
0
0
null
null
null
null
UTF-8
Python
false
false
7,848
py
from utility.dumpload import DumpLoad import numpy as np from sklearn.preprocessing import scale import pandas as pd import os from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Activation from sklearn.preprocessing import OneHotEncoder from keras.optimizers import Adam from sklearn.cross_validation import train_test_split from keras.layers import Dropout, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras import backend as K class TrafficeSign(object): def __init__(self): return def __get_data(self, filepath): dump_load = DumpLoad(filepath) data = dump_load.load() features = data['features'] labels = data['labels'][:, np.newaxis] return features, labels def load_data(self): self.X_train, self.y_train =self. __get_data('./train.p') self.X_test, self.y_test = self.__get_data('./test.p') assert(self.X_train.shape[0] == self.y_train.shape[0]), "The number of images is not equal to the number of labels." assert(self.X_train.shape[1:] == (32,32,3)), "The dimensions of the images are not 32 x 32 x 3." return def normalize_data(self): max = 0.5 min = -0.5 train_min = self.X_train.min() train_max = self.X_train.max() self.X_train = self.X_train.astype('float32') self.X_test = self.X_test.astype('float32') #normalize training/val data self.X_train = (self.X_train - train_min) / (train_max - train_min) * (max - min) + min #normalize test data self.X_test = ((self.X_test - train_min) / (train_max - train_min)) * (max - min) + min # scaler = MinMaxScaler(feature_range=(-0.5, 0.5)) # self.X_train = scaler.fit_transform(self.X_train.ravel()) assert(round(np.mean(self.X_train)) == 0), "The mean of the input data is: %f" % np.mean(self.X_train) assert(np.min(self.X_train) == -0.5 and np.max(self.X_train) == 0.5), "The range of the input data is: %.1f to %.1f" % (np.min(self.X_train), np.max(self.X_train)) return def two_layer_net(self): model = Sequential() model.add(Dense(128, input_dim=32*32*3, name="hidden1")) model.add(Activation("relu")) model.add(Dense(output_dim=43, name="output")) model.add(Activation("softmax")) # STOP: Do not change the tests below. Your implementation should pass these tests. assert(model.get_layer(name="hidden1").input_shape == (None, 32*32*3)), "The input shape is: %s" % model.get_layer(name="hidden1").input_shape assert(model.get_layer(name="output").output_shape == (None, 43)), "The output shape is: %s" % model.get_layer(name="output").output_shape model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=1e-3, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0), metrics=['accuracy']) self.encoder = OneHotEncoder(sparse=False).fit(self.y_train) y_train_encoded = self.encoder.transform(self.y_train) history = model.fit(self.X_train.reshape(-1,32*32*3), y_train_encoded, nb_epoch=2, batch_size=32, verbose=2) # STOP: Do not change the tests below. Your implementation should pass these tests. print("The training accuracy was: {}".format( history.history['acc'])) assert(history.history['acc'][0] > 0.5), "The training accuracy was: {}".format( history.history['acc']) return def two_layer_net_split(self): model = Sequential() model.add(Dense(128, input_dim=32*32*3, name="hidden1")) model.add(Activation("relu")) model.add(Dense(output_dim=43, name="output")) model.add(Activation("softmax")) # STOP: Do not change the tests below. Your implementation should pass these tests. assert(model.get_layer(name="hidden1").input_shape == (None, 32*32*3)), "The input shape is: %s" % model.get_layer(name="hidden1").input_shape assert(model.get_layer(name="output").output_shape == (None, 43)), "The output shape is: %s" % model.get_layer(name="output").output_shape model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=1e-3, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0), metrics=['accuracy']) self.X_train, self.X_val, self.y_train, self.y_val = train_test_split(self.X_train, self.y_train, test_size=0.25, random_state=42) self.encoder = OneHotEncoder(sparse=False,n_values = 43).fit(self.y_train) y_train_encoded = self.encoder.transform(self.y_train) y_val_encoded = self.encoder.transform(self.y_val) history = model.fit(self.X_train.reshape(-1,32*32*3), y_train_encoded, nb_epoch=2, batch_size=32, verbose=2, validation_data=(self.X_val.reshape(-1,32*32*3), y_val_encoded)) # STOP: Do not change the tests below. Your implementation should pass these tests. assert(round(self.X_train.shape[0] / float(self.X_val.shape[0])) == 3), "The training set is %.3f times larger than the validation set." % self.X_train.shape[0] / float(self.X_val.shape[0]) assert(history.history['val_acc'][0] > 0.6), "The validation accuracy is: %.3f" % history.history['val_acc'][0] return def cnn_net(self): model = Sequential() #layer 1 model.add(Convolution2D(32, 3, 3, border_mode='valid', input_shape=(32,32,3), name="conv1")) model.add(Activation('relu')) model.add(MaxPooling2D()) model.add(Dropout(0.5)) #layer 2 model.add(Flatten()) model.add(Dense(128, name="hidden1")) model.add(Activation("relu")) #layer 3 model.add(Dense(output_dim=43, name="output")) model.add(Activation("softmax")) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=1e-3, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0), metrics=['accuracy']) self.X_train, self.X_val, self.y_train, self.y_val = train_test_split(self.X_train, self.y_train, test_size=0.25, random_state=42) self.encoder = OneHotEncoder(sparse=False,n_values = 43).fit(self.y_train) y_train_encoded = self.encoder.transform(self.y_train) y_val_encoded = self.encoder.transform(self.y_val) y_test_encoded = self.encoder.transform(self.y_test) history = model.fit(self.X_train, y_train_encoded, nb_epoch=30, batch_size=32, verbose=2, validation_data=(self.X_val, y_val_encoded)) # STOP: Do not change the tests below. Your implementation should pass these tests. #assert(history.history['val_acc'][0] > 0.9), "The validation accuracy is: %.3f" % history.history['val_acc'][0] _, train_acc = model.evaluate(self.X_train, y_train_encoded, verbose=0) _, val_acc = model.evaluate(self.X_val, y_val_encoded, verbose=0) _, test_acc = model.evaluate(self.X_test, y_test_encoded, verbose=0) print('train{:.3f}, val{:.3f}: test{:.3f}'.format(train_acc, val_acc, test_acc)) return def run(self): self.load_data() self.normalize_data() # self.two_layer_net() # self.two_layer_net_split() self.cnn_net() return if __name__ == "__main__": obj= TrafficeSign() obj.run()
[ "jianzhirong@gmail.com" ]
jianzhirong@gmail.com
92ea114b1907807cc47d45d2b77ee51981cafab8
887f2e664c6d92f17e784f57022333a2fb859d06
/analysis/plotMove.py
252a91a4c6be6dc9ba8b647cac05970a426f3080
[]
no_license
ctorney/dolphinUnion
1968e258c6045060b2c921bd723d0ef0daea0147
9d7212d172a8a48a36fc4870fcdb04d66130bb76
refs/heads/master
2021-01-19T04:40:57.286526
2017-08-17T20:44:58
2017-08-17T20:44:58
46,424,670
1
0
null
null
null
null
UTF-8
Python
false
false
4,332
py
import numpy as np import pandas as pd import os, re import math import time from scipy import interpolate from scipy import ndimage import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.animation as ani HD = os.getenv('HOME') FILELIST = HD + '/workspace/dolphinUnion/tracking/solo/fileList.csv' DATADIR = HD + '/Dropbox/dolphin_union/2015_footage/Solo/processedTracks/' df = pd.read_csv(FILELIST) for index, row in df.iterrows(): noext, ext = os.path.splitext(row.filename) posfilename = DATADIR + '/TRACKS_' + str(index) + '_' + noext + '.csv' gridfilename = DATADIR + '/GRID_' + str(index) + '_' + noext + '.npy' gridPosfilename = DATADIR + '/GRIDPOS_' + str(index) + '_' + noext + '.npy' posDF = pd.read_csv(posfilename) posDF = posDF[posDF['frame']%60==0] # posDF['x']=posDF['x']-min(posDF['x']) # posDF['y']=posDF['y']-min(posDF['y']) # xrange = max(posDF['x']) # yrange = max(posDF['y']) # nx = math.ceil(xrange/32) # ny = math.ceil(yrange/32) # grid = np.zeros((nx,ny,2)) # gridPos = np.zeros((nx,ny,2)) # xh = np.cos(posDF['heading'].values) # yh = np.sin(posDF['heading'].values) # xdirs = posDF['dx'].values # ydirs = posDF['dy'].values # xp = posDF['x'].values # yp = posDF['y'].values # kappa = 32.0*32.0 # for i in range(nx): # for j in range(ny): # gx = i * 32 # gy = j * 32 # dists = (((posDF['x'].values - gx)**2 + (posDF['y'].values - gy)**2)) # weights = np.exp(-dists/kappa) # gridPos[i,j,0]=gx # gridPos[i,j,1]=gy # xav = np.sum(weights*xdirs)/np.sum(weights) # yav = np.sum(weights*ydirs)/np.sum(weights) # grid[i,j,0]=xav/math.sqrt(xav**2+yav**2) # grid[i,j,1]=yav/math.sqrt(xav**2+yav**2) grid = np.load(gridfilename) gridPos = np.load(gridPosfilename) #plt.quiver(xp,yp,xh,yh,angles='xy', scale_units='xy', color='r', scale=1.0/32.0) #plt.quiver(gridPos[:,:,0],gridPos[:,:,1],grid[:,:,0],grid[:,:,1],angles='xy', scale_units='xy', scale=1.0/32.0) winLen = 30 w = np.kaiser(winLen,1) w = w/w.sum() maxRange = 0 flen = len(posDF.groupby('frame')) Xcentroids = np.zeros((flen)) Ycentroids = np.zeros((flen)) fc=0 for fnum, frame in posDF.groupby('frame'): dist = max(frame['x'].values)-min(frame['x'].values) if dist>maxRange: maxRange=dist dist = max(frame['y'].values)-min(frame['y'].values) if dist>maxRange: maxRange=dist Xcentroids[fc] = np.average(frame['x'].values) Ycentroids[fc] = np.average(frame['y'].values) fc=fc+1 Xcentroids = np.r_[np.ones((winLen))*Xcentroids[0],Xcentroids,np.ones((winLen))*Xcentroids[-1]] Xcentroids = np.convolve(w/w.sum(),Xcentroids,mode='same')[(winLen):-(winLen)] Ycentroids = np.r_[np.ones((winLen))*Ycentroids[0],Ycentroids,np.ones((winLen))*Ycentroids[-1]] Ycentroids = np.convolve(w/w.sum(),Ycentroids,mode='same')[(winLen):-(winLen)] sz = math.ceil(maxRange/32)*16 fig = plt.figure()#figsize=(10, 10), dpi=5) totalFrames =500 fc = 0 #with writer.saving(fig, "move.mp4", totalFrames):# len(posDF.groupby('frame'))): for fnum, frame in posDF.groupby('frame'): fc = fc + 1 if fc>totalFrames: break #frame = frame[frame.c_id==0] xp = frame['x'].values yp = frame['y'].values xh = 0.1*frame['dx'].values yh = 0.1*frame['dy'].values xc = Xcentroids[fc] yc = Ycentroids[fc] plt.clf() plt.quiver(gridPos[:,:,0],gridPos[:,:,1],grid[:,:,0],grid[:,:,1],angles='xy', scale_units='xy', scale=1.0/32.0, headwidth=1) l, = plt.plot(xp,yp, 'ro') plt.quiver(xp,yp,xh,yh,angles='xy', scale_units='xy', color='r', scale=1.0/32.0, headwidth=1.5) #plt.axis([0,4000, 2000,-2000]) plt.axis('equal') l.axes.get_xaxis().set_visible(False) l.axes.get_yaxis().set_visible(False) l.set_data(xp, yp) l.axes.set_xlim(xc-sz,xc+sz) l.axes.set_ylim(yc-sz,yc+sz) plt.savefig('frames/fig'+'{0:05d}'.format(fc)+'.png') #writer.grab_frame() break
[ "colin.j.torney@gmail.com" ]
colin.j.torney@gmail.com
7db1a2988c552372fb5395ea469d95dd7642b33f
f561a219c57bd75790d3155acac6f54299a88b08
/splash_screen/migrations/0001_initial.py
595c80d3d3c899474e567d2f95d683c19e6bc3ae
[]
no_license
ujjwalagrawal17/OfferCartServer
1e81cf2dc17f19fa896062c2a084e6b232a8929e
b3cd1c5f8eecc167b6f4baebed3c4471140d905f
refs/heads/master
2020-12-30T15:31:04.380084
2017-05-24T18:26:20
2017-05-24T18:26:20
91,155,405
1
0
null
null
null
null
UTF-8
Python
false
false
1,307
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-04-06 17:28 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='FcmData', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('fcm', models.CharField(blank=True, max_length=512, null=True)), ('created', models.DateTimeField(auto_now=True)), ('modified', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='VersionData', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('version', models.SmallIntegerField(default=0)), ('compulsory_update', models.SmallIntegerField(default=0)), ('version_type', models.CharField(blank=True, max_length=120, null=True)), ('created', models.DateTimeField(auto_now=True)), ('modified', models.DateTimeField(auto_now_add=True)), ], ), ]
[ "ujjwal.iitism@gmail.com" ]
ujjwal.iitism@gmail.com
57ce4e23c369d0ac1c8990a08dd6f14bffa13f86
ef3a7391b0a5c5d8e276355e97cbe4de621d500c
/venv/Lib/site-packages/spacy/tests/lang/en/test_exceptions.py
6285a94089db310ac5481689b6030d62f9ea8679
[ "Apache-2.0" ]
permissive
countBMB/BenjiRepo
143f6da5d198ea6f06404b4559e1f4528b71b3eb
79d882263baaf2a11654ca67d2e5593074d36dfa
refs/heads/master
2022-12-11T07:37:04.807143
2019-12-25T11:26:29
2019-12-25T11:26:29
230,090,428
1
1
Apache-2.0
2022-12-08T03:21:09
2019-12-25T11:05:59
Python
UTF-8
Python
false
false
4,097
py
# coding: utf-8 from __future__ import unicode_literals import pytest def test_en_tokenizer_handles_basic_contraction(en_tokenizer): text = "don't giggle" tokens = en_tokenizer(text) assert len(tokens) == 3 assert tokens[1].text == "n't" text = "i said don't!" tokens = en_tokenizer(text) assert len(tokens) == 5 assert tokens[4].text == "!" @pytest.mark.parametrize("text", ["`ain't", """"isn't""", "can't!"]) def test_en_tokenizer_handles_basic_contraction_punct(en_tokenizer, text): tokens = en_tokenizer(text) assert len(tokens) == 3 @pytest.mark.parametrize( "text_poss,text", [("Robin's", "Robin"), ("Alexis's", "Alexis")] ) def test_en_tokenizer_handles_poss_contraction(en_tokenizer, text_poss, text): tokens = en_tokenizer(text_poss) assert len(tokens) == 2 assert tokens[0].text == text assert tokens[1].text == "'s" @pytest.mark.parametrize("text", ["schools'", "Alexis'"]) def test_en_tokenizer_splits_trailing_apos(en_tokenizer, text): tokens = en_tokenizer(text) assert len(tokens) == 2 assert tokens[0].text == text.split("'")[0] assert tokens[1].text == "'" @pytest.mark.parametrize("text", ["'em", "nothin'", "ol'"]) def test_en_tokenizer_doesnt_split_apos_exc(en_tokenizer, text): tokens = en_tokenizer(text) assert len(tokens) == 1 assert tokens[0].text == text @pytest.mark.parametrize("text", ["we'll", "You'll", "there'll"]) def test_en_tokenizer_handles_ll_contraction(en_tokenizer, text): tokens = en_tokenizer(text) assert len(tokens) == 2 assert tokens[0].text == text.split("'")[0] assert tokens[1].text == "'ll" assert tokens[1].lemma_ == "will" @pytest.mark.parametrize( "text_lower,text_title", [("can't", "Can't"), ("ain't", "Ain't")] ) def test_en_tokenizer_handles_capitalization(en_tokenizer, text_lower, text_title): tokens_lower = en_tokenizer(text_lower) tokens_title = en_tokenizer(text_title) assert tokens_title[0].text == tokens_lower[0].text.title() assert tokens_lower[0].text == tokens_title[0].text.lower() assert tokens_lower[1].text == tokens_title[1].text @pytest.mark.parametrize("pron", ["I", "You", "He", "She", "It", "We", "They"]) @pytest.mark.parametrize("contraction", ["'ll", "'d"]) def test_en_tokenizer_keeps_title_case(en_tokenizer, pron, contraction): tokens = en_tokenizer(pron + contraction) assert tokens[0].text == pron assert tokens[1].text == contraction @pytest.mark.parametrize("exc", ["Ill", "ill", "Hell", "hell", "Well", "well"]) def test_en_tokenizer_excludes_ambiguous(en_tokenizer, exc): tokens = en_tokenizer(exc) assert len(tokens) == 1 @pytest.mark.parametrize( "wo_punct,w_punct", [("We've", "`We've"), ("couldn't", "couldn't)")] ) def test_en_tokenizer_splits_defined_punct(en_tokenizer, wo_punct, w_punct): tokens = en_tokenizer(wo_punct) assert len(tokens) == 2 tokens = en_tokenizer(w_punct) assert len(tokens) == 3 @pytest.mark.parametrize("text", ["e.g.", "p.m.", "Jan.", "Dec.", "Inc."]) def test_en_tokenizer_handles_abbr(en_tokenizer, text): tokens = en_tokenizer(text) assert len(tokens) == 1 def test_en_tokenizer_handles_exc_in_text(en_tokenizer): text = "It's mediocre i.e. bad." tokens = en_tokenizer(text) assert len(tokens) == 6 assert tokens[3].text == "i.e." @pytest.mark.parametrize("text", ["1am", "12a.m.", "11p.m.", "4pm"]) def test_en_tokenizer_handles_times(en_tokenizer, text): tokens = en_tokenizer(text) assert len(tokens) == 2 assert tokens[1].lemma_ in ["a.m.", "p.m."] @pytest.mark.parametrize( "text,norms", [("I'm", ["i", "am"]), ("shan't", ["shall", "not"])] ) def test_en_tokenizer_norm_exceptions(en_tokenizer, text, norms): tokens = en_tokenizer(text) assert [token.norm_ for token in tokens] == norms @pytest.mark.parametrize( "text,norm", [("radicalised", "radicalized"), ("cuz", "because")] ) def test_en_lex_attrs_norm_exceptions(en_tokenizer, text, norm): tokens = en_tokenizer(text) assert tokens[0].norm_ == norm
[ "bengmen92@gmail.com" ]
bengmen92@gmail.com
78e8a604cecf27fe811b0c948ad111c099ce963d
e54e1a63bffbe913f5e5018ace56cfa3eab1a72b
/practice/Leetcode/1253_reconstruct_a_2_row_binary_matrix.py
2b71d9f4f15e8a18ca410c4daa4699f6e1846cec
[]
no_license
rmodi6/scripts
5e27a46ce8970cbf601f132a53164c273f1812ea
7cc47eecac00e6bd0b3ec74d7eed8ec3e0e77a84
refs/heads/master
2022-02-14T20:41:28.765751
2022-01-20T06:59:40
2022-01-20T06:59:40
168,207,721
0
0
null
null
null
null
UTF-8
Python
false
false
976
py
# https://leetcode.com/contest/weekly-contest-162/problems/reconstruct-a-2-row-binary-matrix/ import numpy as np class Solution: def reconstructMatrix(self, upper: int, lower: int, colsum: List[int]) -> List[List[int]]: if upper + lower != sum(colsum): return [] ans = np.zeros((2, len(colsum)), dtype='int32') for i, n in enumerate(colsum): if n == 2: if upper > 0 and lower > 0: ans[0][i], ans[1][i] = 1, 1 upper -= 1 lower -= 1 else: return [] for i, n in enumerate(colsum): if n == 1: if upper > 0: ans[0][i] = 1 upper -= 1 elif lower > 0: ans[1][i] = 1 lower -= 1 else: return [] return ans.tolist()
[ "modi.ruchit6@gmail.com" ]
modi.ruchit6@gmail.com
0212f9e5951c9f222ca5a846a070bf81530f2a1c
47c175daf97051e1f5c37b161f16abbd5f5a506e
/modules/forward_attention.py
1572b09366af7b47ef3fe8cd017f1bbae7507555
[ "BSD-3-Clause" ]
permissive
nii-yamagishilab/self-attention-tacotron
947d1d2eb8bc25f70331fbc401bf44c93ef92673
0ebd96114feab5a499964402a8ab7e402f0083b4
refs/heads/master
2021-07-11T06:13:18.202669
2020-06-19T03:04:42
2020-06-19T03:04:42
156,176,608
116
35
BSD-3-Clause
2020-06-19T03:04:43
2018-11-05T07:21:46
Python
UTF-8
Python
false
false
6,383
py
# ============================================================================== # Copyright (c) 2018, Yamagishi Laboratory, National Institute of Informatics # Author: Yusuke Yasuda (yasuda@nii.ac.jp) # All rights reserved. # ============================================================================== """ """ import tensorflow as tf from tensorflow.contrib.seq2seq import BahdanauAttention from collections import namedtuple def _location_sensitive_score(W_query, W_fill, W_keys): dtype = W_query.dtype num_units = W_keys.shape[-1].value or tf.shape(W_keys)[-1] v_a = tf.get_variable("attention_variable", shape=[num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer()) b_a = tf.get_variable("attention_bias", shape=[num_units], dtype=dtype, initializer=tf.zeros_initializer()) return tf.reduce_sum(v_a * tf.tanh(W_keys + W_query + W_fill + b_a), axis=[2]) def _calculate_context(alignments, values): ''' This is a duplication of tensorflow.contrib.seq2seq.attention_wrapper._compute_attention. ToDo: Avoid the redundant computation. This requires abstraction of AttentionWrapper itself. :param alignments: [batch_size, 1, memory_time] :param values: [batch_size, memory_time, memory_size] :return: ''' # Reshape from [batch_size, memory_time] to [batch_size, 1, memory_time] expanded_alignments = tf.expand_dims(alignments, 1) context = tf.matmul(expanded_alignments, values) # [batch_size, 1, memory_size] context = tf.squeeze(context, [1]) # [batch_size, memory_size] return context class ForwardAttentionState(namedtuple("ForwardAttentionState", ["alignments", "alpha", "u"])): pass class ForwardAttention(BahdanauAttention): def __init__(self, num_units, memory, memory_sequence_length, attention_kernel, attention_filters, use_transition_agent=False, cumulative_weights=True, name="ForwardAttention"): super(ForwardAttention, self).__init__( num_units=num_units, memory=memory, memory_sequence_length=memory_sequence_length, probability_fn=None, name=name) self._use_transition_agent = use_transition_agent self._cumulative_weights = cumulative_weights self.location_convolution = tf.layers.Conv1D(filters=attention_filters, kernel_size=attention_kernel, padding="SAME", use_bias=True, bias_initializer=tf.zeros_initializer(), name="location_features_convolution") self.location_layer = tf.layers.Dense(units=num_units, use_bias=False, dtype=memory.dtype, name="location_features_layer") if use_transition_agent: # ToDo: support speed control bias self.transition_factor_projection = tf.layers.Dense(units=1, use_bias=True, dtype=memory.dtype, activation=tf.nn.sigmoid, name="transition_factor_projection") def __call__(self, query, state): previous_alignments, prev_alpha, prev_u = state with tf.variable_scope(None, "location_sensitive_attention", [query]): # processed_query shape [batch_size, query_depth] -> [batch_size, attention_dim] processed_query = self.query_layer(query) if self.query_layer else query # -> [batch_size, 1, attention_dim] expanded_processed_query = tf.expand_dims(processed_query, 1) # [batch_size, max_time] -> [batch_size, max_time, 1] expanded_alignments = tf.expand_dims(previous_alignments, axis=2) # location features [batch_size, max_time, filters] f = self.location_convolution(expanded_alignments) processed_location_features = self.location_layer(f) energy = _location_sensitive_score(expanded_processed_query, processed_location_features, self.keys) alignments = self._probability_fn(energy, state) # forward attention prev_alpha_n_minus_1 = tf.pad(prev_alpha[:, :-1], paddings=[[0, 0], [1, 0]]) alpha = ((1 - prev_u) * prev_alpha + prev_u * prev_alpha_n_minus_1 + 1e-7) * alignments alpha_normalized = alpha / tf.reduce_sum(alpha, axis=1, keep_dims=True) if self._use_transition_agent: context = _calculate_context(alpha_normalized, self.values) transition_factor_input = tf.concat([context, processed_query], axis=-1) transition_factor = self.transition_factor_projection(transition_factor_input) else: transition_factor = prev_u if self._cumulative_weights: next_state = ForwardAttentionState(alignments + previous_alignments, alpha_normalized, transition_factor) else: next_state = ForwardAttentionState(alignments, alpha_normalized, transition_factor) return alpha_normalized, next_state @property def state_size(self): return ForwardAttentionState(self._alignments_size, self._alignments_size, 1) def initial_state(self, batch_size, dtype): initial_alignments = self.initial_alignments(batch_size, dtype) # alpha_0 = 1, alpha_n = 0 where n = 2, 3, ..., N initial_alpha = tf.concat([ tf.ones([batch_size, 1], dtype=dtype), tf.zeros_like(initial_alignments, dtype=dtype)[:, 1:]], axis=1) # transition factor initial_u = 0.5 * tf.ones([batch_size, 1], dtype=dtype) return ForwardAttentionState(initial_alignments, initial_alpha, initial_u)
[ "yusuke.007.yasud@gmail.com" ]
yusuke.007.yasud@gmail.com
c208f338b0b8e717f7788e70ab415ccb06596ec2
be6ce691a3667edf152859f16804e06aaa486a03
/solution1/deprecated.py
f70d197db4f26a45a6e6cf1f3aaa93a6efa255a6
[]
no_license
mik-laj/airflow-deprecation-sample
d9b7d068013884177fec833e234914c6a1ec8be3
ae1f93ac6ab85cec4c57dcb62f956fec73d88bbe
refs/heads/master
2020-04-23T00:13:41.579998
2019-07-30T13:17:29
2019-07-30T13:17:50
170,771,368
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
import warnings from solution1.new import * warnings.warn("solution1.deprecated has moved to solution1.new. Import of " "solution.new will become unsupported in version 2", DeprecationWarning, 2)
[ "kamil.bregula@polidea.com" ]
kamil.bregula@polidea.com
283845b8c4a81738b39c332e062e558f4a1fa42f
e03f502312775b01b41ea7c6f5cb3dfbafdb8509
/aboutus/api/serializers.py
189187d979c6f742e946a41c169302bc8c45fb14
[]
no_license
Grechanin/Misteckiy-DjangoRest-React-Redux
e223e89310362b8c21e30c8c669d4e170d232db6
f05eb50a6aec72432716672294df81c3dc939ddd
refs/heads/master
2020-04-13T10:58:17.931584
2019-02-18T09:21:54
2019-02-18T09:21:54
163,159,697
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
from aboutus.models import AboutUs from rest_framework import serializers class AboutUsSerializer(serializers.ModelSerializer): class Meta: model = AboutUs fields = ( 'tab_title', 'title', 'short_description', 'description', )
[ "grechanin@gmail.com" ]
grechanin@gmail.com
84943acbf7b7b989ac08e4c3d173d53799243119
2dd560dc468af0af4ca44cb4cd37a0b807357063
/Leetcode/1170. Compare Strings by Frequency of the Smallest Character/solution2.py
f55713f52de924d420434c926569d1d9fb130de7
[ "MIT" ]
permissive
hi0t/Outtalent
460fe4a73788437ba6ce9ef1501291035c8ff1e8
8a10b23335d8e9f080e5c39715b38bcc2916ff00
refs/heads/master
2023-02-26T21:16:56.741589
2021-02-05T13:36:50
2021-02-05T13:36:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
from bisect import bisect class Solution: def numSmallerByFrequency(self, queries: List[str], words: List[str]) -> List[int]: f = sorted([w.count(min(w)) for w in words]) return [len(f) - bisect(f, q.count(min(q))) for q in queries]
[ "info@crazysquirrel.ru" ]
info@crazysquirrel.ru
932f0f3ca464a0e327e0dcff6fe1f74ce0621071
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/routing_transformer/routing_tf_api.py
62feaeaa11136632e25caf46ffb158383e6714e4
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
7,727
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pdb import tensorflow.compat.v1 as tf tf.disable_v2_behavior() tf.get_logger().setLevel('ERROR') from tensor2tensor import models from tensor2tensor import problems from tensor2tensor.utils import trainer_lib from tensor2tensor.utils import hparams_lib from tensor2tensor.utils import registry from tensor2tensor.utils import metrics from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators import problem from routing_transformer.problems import pg19 from tensorflow.compat.v1 import estimator as tf_estimator from tqdm import tqdm from routing_transformer.sparse_transformer import SparseTransformer import numpy as np import random from scipy.special import log_softmax VOCAB_PATH = "/mnt/nfs/work1/miyyer/simengsun/in-book-retrieval/RT-data/vocab.pg19_length8k.32768.subwords" HPARAMS_PATH = "/mnt/nfs/work1/miyyer/simengsun/in-book-retrieval/RT-models/rt-checkpoint/hparams.json" CKPT_PATH = "/mnt/nfs/work1/miyyer/simengsun/in-book-retrieval/RT-models/rt-checkpoint/ckpt-3530000" MAX_SEQUENCE_LENGTH = 8192 class SparseTransformerWrapper(object): def __init__(self, max_seq_length=None): # Load hyperparameters self.max_seq_length = max_seq_length or MAX_SEQUENCE_LENGTH # Needed since RT uses blocks of size 256 assert self.max_seq_length % 256 == 0 hparams = hparams_lib.create_hparams_from_json(HPARAMS_PATH) hparams.use_tpu = False hparams = zero_dropout(hparams) # Build TF1 graph of model sptf_model = SparseTransformer(hparams, tf_estimator.ModeKeys.EVAL) self.input_nodes = { "targets": tf.placeholder(tf.int32, [None, self.max_seq_length]) } self.output_nodes = sptf_model.body(self.input_nodes) # Map the checkpoint variables to the graph init_from_checkpoint(CKPT_PATH, variable_prefix="sparse_transformer/body") # create a session object, and actually initialize the graph self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.encoder = text_encoder.SubwordTextEncoder(VOCAB_PATH) def forward(self, sentences, encode_sentences=True, relevant_subsequences=None): encoded_sents = [] encoded_seqs_no_pad = [] if encode_sentences: for sent in sentences: encoded = [] for line in sent.split("\n"): new_tokens = self.encoder.encode(line.strip()) if len(encoded) + len(new_tokens) >= self.max_seq_length: break encoded.extend(new_tokens) encoded.append(text_encoder.EOS_ID) encoded_seqs_no_pad.append(encoded) # pad shorter sequences to the full length encoded = encoded + [text_encoder.PAD_ID for _ in range(self.max_seq_length - len(encoded))] assert len(encoded) == self.max_seq_length encoded_sents.append(encoded) else: # assume sentences are encoded, pad/truncate them for sent in sentences: sent = sent[:self.max_seq_length] encoded_seqs_no_pad.append(sent) sent = sent + [text_encoder.PAD_ID for _ in range(self.max_seq_length - len(sent))] encoded_sents.append(sent) feed_dict = { self.input_nodes["targets"]: np.array(encoded_sents) } outputs = self.sess.run(self.output_nodes, feed_dict=feed_dict) return_outputs = { "logits": np.squeeze(outputs[0], axis=(2, 3)), "loss": outputs[1]["training"], "encoded_seqs_no_pad": encoded_seqs_no_pad } if relevant_subsequences is not None: for i, rss in enumerate(relevant_subsequences): encoded_subseq = self.encoder.encode(rss) positions = find_sub_list(encoded_subseq, encoded_sents[i]) misaligned_prefix_length = 0 while positions is None: misaligned_prefix_length += 1 encoded_subseq = encoded_subseq[1:] positions = find_sub_list(encoded_subseq, encoded_sents[i]) start, end = positions[-1] relevant_logits = return_outputs["logits"][i][start:end] log_probs = log_softmax(relevant_logits, axis=1) gold_log_probs = [lp[index] for index, lp in zip(encoded_subseq, log_probs)] return_outputs["subseq_log_loss"] = -1 * np.mean(gold_log_probs) return_outputs["misaligned_prefix_length"] = misaligned_prefix_length return return_outputs def close(self): self.sess.close() def find_sub_list(sl, l): """Find sub-string, so as to be able to compute ppl of a sub-string.""" sll=len(sl) matches = [] for ind in (i for i,e in enumerate(l) if e == sl[0]): if l[ind:ind + sll] == sl: matches.append( (ind, ind + sll) ) if matches: return matches def zero_dropout(hparams): hparams.input_dropout = 0.0 hparams.dropout = 0.0 hparams.relu_dropout = 0.0 hparams.attention_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 return hparams def log_variables(name, var_names): tf.logging.info("%s (%d total): %s", name, len(var_names), random.sample(var_names, min(len(var_names), 5))) def init_from_checkpoint(checkpoint_path, checkpoint_prefix=None, variable_prefix=None, target_variables=None): """Initializes all of the variables using `init_checkpoint.""" tf.logging.info("Loading variables from %s", checkpoint_path) checkpoint_variables = { name: name for name, _ in tf.train.list_variables(checkpoint_path) if "Adafactor" not in name } if target_variables is None: target_variables = tf.trainable_variables() target_variables = {var.name.split(":")[0]: var for var in target_variables} if checkpoint_prefix is not None: checkpoint_variables = { checkpoint_prefix + "/" + name: varname for name, varname in checkpoint_variables.items() } if variable_prefix is not None: target_variables = { variable_prefix + "/" + name: var for name, var in target_variables.items() } checkpoint_var_names = set(checkpoint_variables.keys()) target_var_names = set(target_variables.keys()) intersected_var_names = target_var_names & checkpoint_var_names assignment_map = { checkpoint_variables[name]: target_variables[name] for name in intersected_var_names } tf.train.init_from_checkpoint(checkpoint_path, assignment_map) log_variables("Loaded variables", intersected_var_names) log_variables("Uninitialized variables", target_var_names - checkpoint_var_names) log_variables("Unused variables", checkpoint_var_names - target_var_names)
[ "copybara-worker@google.com" ]
copybara-worker@google.com
64e7542df83df9bd0d6edf9f81dd3c5add9aef71
0800aac473cbb94f3ac263c202979498c326cf18
/법인세_총설.py
a437c75324c85c0332211d27ad24fe8df470b893
[]
no_license
DanielHennyKwon/TAX_LIM_JEONG
8f12e072c044cd17646f196c17b51d1e0cae179e
a263b4e90f0ac78500382047bf7ae72380213ca8
refs/heads/master
2023-06-16T10:50:55.111407
2021-07-11T02:59:50
2021-07-11T02:59:50
384,847,297
0
0
null
null
null
null
UTF-8
Python
false
false
3,432
py
# -*- coding: utf-8 -*- # 2018-12-24 권달현 import 결산의확정, 신고납부절차, 기한후신고, 수정신고, 경정청구, 법인의분류, 세금의종류, 실질과세, 소액주주, 대주주, 중소기업, 이월과세, 과세이연, 세무조정, 소득처분, 법인세비용, 세액계산_구조,세무조정_흐름도 _={ "결산의 확정":결산의확정.결산의확정, "법인세의 신고납부절차":신고납부절차.법인세, "기한후신고":기한후신고.법인세, "수정신고":수정신고._, "경정청구":경정청구._, "법인세법상 법인의 분류":법인의분류.법인세, "법인세의 종류":세금의종류.법인세, "실질과세":실질과세.법인세, "소액주주":소액주주.법인세, "대주주":대주주.법인세, "중소기업":중소기업._, "이월과세":이월과세.법인세, "과세이연":과세이연.법인세, "세무조정 흐름도":세무조정_흐름도.법인세, "세무조정":세무조정.법인세, "소득처분":소득처분.법인세, "법인의 각 사업연도소득과 과세표준 및 세액계산의 구조":세액계산_구조.법인세, "법인세비용":법인세비용.법인세, } #___________________________________________________ 제목='법인세 총설' tax=_ import wx class MyFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self,parent=None,title=제목) self.SetSize(420,320*2) self.mainPanel=wx.Panel(self) self.expandButton=wx.Button(self.mainPanel,label='펼침') self.tree=wx.TreeCtrl(self.mainPanel) root=self.tree.AddRoot(제목) for i in tax: ii=self.tree.AppendItem(root,i) for j in tax[i]: jj=self.tree.AppendItem(ii,j) for k in tax[i][j]: kk=self.tree.AppendItem(jj,k) for m in tax[i][j][k]: mm=self.tree.AppendItem(kk,m) for n in tax[i][j][k][m]: nn=self.tree.AppendItem(mm,n) for p in tax[i][j][k][m][n]: pp=self.tree.AppendItem(nn,p) for q in tax[i][j][k][m][n][p]: qq=self.tree.AppendItem(pp,q) for r in tax[i][j][k][m][n][p][q]: rr=self.tree.AppendItem(qq,r) self.staticText =wx.TextCtrl(self.mainPanel,style=wx.TE_MULTILINE) self.vtBoxSizer=wx.BoxSizer(wx.VERTICAL) self.vtBoxSizer.Add(self.expandButton,0,wx.EXPAND|wx.ALL,5) self.vtBoxSizer.Add(self.tree ,5,wx.EXPAND|wx.ALL,5) self.vtBoxSizer.Add(self.staticText ,0,wx.EXPAND|wx.ALL,5) self.mainPanel.SetSizer(self.vtBoxSizer) self.Bind(wx.EVT_BUTTON ,self.OnExpandButton,self.expandButton) self.Bind(wx.EVT_TREE_SEL_CHANGED,self.OnNodeSelected,self.tree) def OnExpandButton(self,e): self.tree.ExpandAll() def OnNodeSelected(self,e): selected=self.tree.GetSelection() self.staticText.SetLabel(self.tree.GetItemText(selected)) self.mainPanel.Layout() if __name__=='__main__': app=wx.App() frame=MyFrame() frame.Show() app.MainLoop() #___________________________________________________
[ "cpahouse@naver.com" ]
cpahouse@naver.com
0e2e19efd181694bd82a31e6ea9bd4fd1ccb7faf
248d20fa6c37afc1501b47398451bf15dc8f0165
/ryosuke/chapter04/knock38.py
5e72a2bf383a6cd35a7e272d4ed196b6769cd017
[]
no_license
tmu-nlp/100knock2016
20e9efd4698f59918aa850ba40163906f13dcb7f
d5f7a76286cb95bb374ff98bc0c9db3c796d113d
refs/heads/master
2021-01-21T02:20:57.121371
2016-08-03T01:49:38
2016-08-03T01:49:38
55,942,482
4
2
null
null
null
null
UTF-8
Python
false
false
295
py
from knock30 import get_sentences from collections import Counter import matplotlib.pyplot as plt vocab = Counter() for sentence in get_sentences(): vocab += Counter(m['surface'] for m in sentence) names, freqs = zip(*vocab.most_common()) plt.hist(freqs, bins=len(set(freqs))) plt.show()
[ "tmcit.miyazaki@gmail.com" ]
tmcit.miyazaki@gmail.com
66f614fc294e9d8c94babbbce4963368e0136402
35b460a5e72e3cb40681861c38dc6d5df1ae9b92
/CodeFights/Arcade/Intro/islandOfKnowledge/minesweeper.py
7a778a54e8fe37740efbc970e191ddc6ef1ca2ae
[]
no_license
robgoyal/CodingChallenges
9c5f3457a213cf54193a78058f74fcf085ef25bc
0aa99d1aa7b566a754471501945de26644558d7c
refs/heads/master
2021-06-23T09:09:17.085873
2019-03-04T04:04:59
2019-03-04T04:04:59
94,391,412
0
0
null
null
null
null
UTF-8
Python
false
false
2,653
py
# Name: minesweeper.py # Author: Robin Goyal # Last-Modified: July 12, 2017 # Purpose: Give an array of true and false values with true indicating a mine # return an array of the same length indicating number of surrounding # mines at each position # Note: Could've optimized the solution but a pure brute force implementation def minesweeper(matrix): grid = [] for row in range(len(matrix)): gridRow = [] for col in range(len(matrix[0])): count = 0 # Top Row if (row == 0): if (col == 0): # Top-Left corner count = [matrix[row][col+1], matrix[row+1][col], matrix[row+1][col+1]].count(True) elif (col == len(matrix[0]) - 1): # Top-Right corner count = [matrix[row][col-1], matrix[row+1][col], matrix[row+1][col-1]].count(True) else: # Middle Columns in top Row count = [matrix[row][col-1], matrix[row][col+1]].count(True) \ + matrix[row+1][col-1:col+2].count(True) # Bottom Row elif (row == len(matrix) -1): if (col == 0): # Bottom-Left corner count = [matrix[row][col+1], matrix[row-1][col], matrix[row-1][col+1]].count(True) elif (col == len(matrix[0]) - 1): # Bottom-Right corner count = [matrix[row][col-1], matrix[row-1][col], matrix[row-1][col-1]].count(True) else: # Middle Columns in bottom Row count = [matrix[row][col-1], matrix[row][col+1]].count(True) \ + matrix[row-1][col-1:col+2].count(True) # Middle Rows else: if (col == 0): # Left most column count = matrix[row-1][col:col+2].count(True) + [matrix[row][col+1]].count(True) \ + matrix[row+1][col:col+2].count(True) elif (col == len(matrix[0]) -1): # Right most column count = matrix[row-1][col-1:col+1].count(True) + [matrix[row][col-1]].count(True) \ + matrix[row+1][col-1:col+1].count(True) else: # Middle columns count = matrix[row-1][col-1:col+2].count(True) + matrix[row+1][col-1:col+2].count(True) + \ [matrix[row][col-1], matrix[row][col+1]].count(True) gridRow.append(count) grid.append(tempRow) return grid
[ "goyal.rob@gmail.com" ]
goyal.rob@gmail.com
f9e1ca44905679e39f7b725bab3e049bd3cf44d3
10ddfb2d43a8ec5d47ce35dc0b8acf4fd58dea94
/Python/number-of-senior-citizens.py
50b65c0c4bd9f9324ebc57219dbfd33cea759e81
[ "MIT" ]
permissive
kamyu104/LeetCode-Solutions
f54822059405ef4df737d2e9898b024f051fd525
4dc4e6642dc92f1983c13564cc0fd99917cab358
refs/heads/master
2023-09-02T13:48:26.830566
2023-08-28T10:11:12
2023-08-28T10:11:12
152,631,182
4,549
1,651
MIT
2023-05-31T06:10:33
2018-10-11T17:38:35
C++
UTF-8
Python
false
false
229
py
# Time: O(n) # Space: O(1) # string class Solution(object): def countSeniors(self, details): """ :type details: List[str] :rtype: int """ return sum(x[-4:-2] > "60" for x in details)
[ "noreply@github.com" ]
kamyu104.noreply@github.com
cee24ad2b9015a0358c23faf46c7db3e63048385
b40a661aa78c10ea8413b349f1efe288149f4ab0
/App/migrations/0004_address.py
20a5f2bea93a0a8e0e15352f1439fbf6e1dd1c5b
[]
no_license
0helloword/DjangoSum
daed4ab9488c5d53518623eb5d35c3a32a826129
72b528415edd2a76a7a19da708d4046de2a014ac
refs/heads/master
2022-11-25T15:15:30.843401
2020-08-02T03:18:07
2020-08-02T03:18:07
275,606,302
0
0
null
null
null
null
UTF-8
Python
false
false
712
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.28 on 2020-06-27 13:58 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('App', '0003_cart'), ] operations = [ migrations.CreateModel( name='Address', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('a_add', models.CharField(max_length=128)), ('a_customer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='App.Customer')), ], ), ]
[ "532720298@qq.com" ]
532720298@qq.com
3aefc1186a88845c16d658de39ccb722a760a83f
e922f5dac332fbf4de910ade55f07cb75d900d1b
/templates/influxdb/actions.py
22fc5f7c27e2e8b057d5a9a71db43c9800bbaa34
[ "Apache-2.0" ]
permissive
hossnys/0-orchestrator
441970f0bd784b72c40f6da4fa44ca2c70b9ea8c
cce7cc1e1f957e0eb691b863502fa6c3f4620d52
refs/heads/master
2021-01-01T18:46:27.123614
2017-07-26T13:59:30
2017-07-26T13:59:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,070
py
def get_container(service, force=True): containers = service.producers.get('container') if not containers: if force: raise RuntimeError('Service didn\'t consume any containers') else: return return containers[0] def init(job): from zeroos.orchestrator.configuration import get_configuration service = job.service container_actor = service.aysrepo.actorGet('container') config = get_configuration(service.aysrepo) args = { 'node': service.model.data.node, 'flist': config.get( 'influxdb-flist', 'https://hub.gig.tech/gig-official-apps/influxdb.flist'), 'hostNetworking': True } cont_service = container_actor.serviceCreate(instance='{}_influxdb'.format(service.name), args=args) service.consume(cont_service) def install(job): j.tools.async.wrappers.sync(job.service.executeAction('start', context=job.context)) def start(job): from zeroos.orchestrator.sal.Container import Container from zeroos.orchestrator.sal.influxdb.influxdb import InfluxDB service = job.service container = get_container(service) j.tools.async.wrappers.sync(container.executeAction('start', context=job.context)) container_ays = Container.from_ays(container, job.context['token']) influx = InfluxDB( container_ays, service.parent.model.data.redisAddr, service.model.data.port) influx.start() service.model.data.status = 'running' influx.create_databases(service.model.data.databases) service.saveAll() def stop(job): from zeroos.orchestrator.sal.Container import Container from zeroos.orchestrator.sal.influxdb.influxdb import InfluxDB service = job.service container = get_container(service) container_ays = Container.from_ays(container, job.context['token']) if container_ays.is_running(): influx = InfluxDB( container_ays, service.parent.model.data.redisAddr, service.model.data.port) influx.stop() j.tools.async.wrappers.sync(container.executeAction('stop', context=job.context)) service.model.data.status = 'halted' service.saveAll() def uninstall(job): service = job.service container = get_container(service, False) if container: j.tools.async.wrappers.sync(service.executeAction('stop', context=job.context)) j.tools.async.wrappers.sync(container.delete()) j.tools.async.wrappers.sync(service.delete()) def processChange(job): from zeroos.orchestrator.sal.Container import Container from zeroos.orchestrator.sal.influxdb.influxdb import InfluxDB from zeroos.orchestrator.configuration import get_jwt_token_from_job service = job.service args = job.model.args if args.pop('changeCategory') != 'dataschema' or service.model.actionsState['install'] in ['new', 'scheduled']: return container_service = get_container(service) container = Container.from_ays(container_service, get_jwt_token_from_job(job)) influx = InfluxDB( container, service.parent.model.data.redisAddr, service.model.data.port) if args.get('port'): if container.is_running() and influx.is_running()[0]: influx.stop() service.model.data.status = 'halted' influx.port = args['port'] influx.start() service.model.data.status = 'running' service.model.data.port = args['port'] if args.get('databases'): if container.is_running() and influx.is_running()[0]: create_dbs = set(args['databases']) - set(service.model.data.databases) drop_dbs = set(service.model.data.databases) - set(args['databases']) influx.create_databases(create_dbs) influx.drop_databases(drop_dbs) service.model.data.databases = args['databases'] service.saveAll() def init_actions_(service, args): return { 'init': [], 'install': ['init'], 'monitor': ['start'], 'delete': ['uninstall'], 'uninstall': [], }
[ "deboeck.jo@gmail.com" ]
deboeck.jo@gmail.com
21439bcac6cdd546eeab5d2c26363fe72b79eb43
ea549f5974db822d0733e5417d313997de9ca2bb
/craig_list_site/migrations/0001_initial.py
57e111b3bffaa4b9a0892c8fca78c81caa2d727c
[]
no_license
Bibin22/craiglist
fe5a641cf4b8c03557c1775605a5e8b4da9b43de
853b377f4951ee3ac9072bc22d486f520e18b1bc
refs/heads/master
2023-02-05T11:32:24.911491
2021-01-02T05:30:34
2021-01-02T05:30:34
326,116,319
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
# Generated by Django 3.1.4 on 2020-12-24 10:56 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Search', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('search', models.CharField(max_length=500)), ('created', models.DateTimeField(auto_now=True)), ], ), ]
[ "bibinjoy82@gmail.com" ]
bibinjoy82@gmail.com
e33bf7188bb39a15eab44ec863cb21e1daa47b3e
acf15961c47fb947a407a4318214110b9597d9e6
/env/bin/jupyter-kernel
667c26308122816ab476f0645e256bfc37e040c0
[]
no_license
qu4ku/dshub-website
43e378352246357db83da9b9b0acd760aebbc83a
792d94e41fa666093eda2b5511bbcab27e0bb287
refs/heads/master
2021-06-02T19:27:39.708138
2020-05-19T09:18:42
2020-05-19T09:18:42
135,715,159
0
0
null
null
null
null
UTF-8
Python
false
false
286
#!/Users/kamilwroniewicz/_code/_github/180601-datahub-website/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from jupyter_client.kernelapp import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "qu4ku@hotmail.com" ]
qu4ku@hotmail.com
a3fac0df2496aea555fb951e1641e2c5d9b07391
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_233/ch45_2020_03_09_13_17_35_961786.py
7cf83bf5b09f45069fdb4e7c49f9a6d644c64307
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
lista = [] while True: num = int(input()) if num <= 0: break lista.append(num) lista_inv = range(len(lista)) for i in range(len(lista)): lista_inv[-i + 1] = lista[i] print(lista_inv)
[ "you@example.com" ]
you@example.com
ddc161b7e46516dd3785e6dba80385cf69326f1e
f3f01d98f2f924b7f2ce9c682b63ef68a0b943d7
/Type_conversion.py
67e8274a805561624b385bea780d5a3d1ffc4e07
[]
no_license
nihalgaurav/pythonprep
0d935244f4c20b2ba660a1bc192352654d4a9366
d3023e1b58d9d5333e909f71d9c3fa7c54c420f5
refs/heads/master
2023-03-27T06:09:38.757433
2021-03-16T05:22:07
2021-03-16T05:22:07
344,804,996
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
number = 17 width = len(str(bin(number)[2:])) + 2 print("INT".rjust(width) + "OCT".rjust(width) + "HEX".rjust(width) + "BIN".rjust(width)) for x in range(1, number+1): print(str(int(x)).rjust(width, " ") + str(oct(x))[2:].rjust(width, " ") + str(hex(x))[2:].upper().rjust(width, " ") + str(bin(x)[2:]).rjust(width, " ")) num = 5 n = 97 + num for i in range(num): p = '' for j in range(i): p = p + "-" + chr(n-i+j) print(p[::-1].rjust(num*2-2, "-") + chr(n-i-1) + p.ljust(num*2-2, "-")) for i in range(num-2,-1, -1): p = '' for j in range(i): p = p + "-" + chr(n-i+j) print(p[::-1].rjust(num*2-2, "-") + chr(n-i-1) + p.ljust(num*2-2, "-"))
[ "nihalgaurav85@gmail.com" ]
nihalgaurav85@gmail.com
2eb9a26bdde17a586ad5280059024d4004382a91
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/ayQTiQAcFJhtauhe3_17.py
1dca03f7cb44ef5e8ee9f421dc82cdd88d7fd01c
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
""" Given a list of integers, determine whether the sum of its elements is even or odd. The output should be a string (`"odd"` or `"even"`). If the input list is empty, consider it as a list with a zero (`[0]`). ### Examples even_or_odd([0]) ➞ "even" even_or_odd([1]) ➞ "odd" even_or_odd([]) ➞ "even" even_or_odd([0, 1, 5]) ➞ "even" ### Notes N/A """ def even_or_odd(lst): summ=int(sum(lst)) if summ % 2 == 0: return "even" if summ % 2 == 1: return "odd"
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
12a9b9befcf7af332c3ea172149268070aea9c7c
deb740e5086386a68d155b2482f9a9ec2095012c
/jdcloud_sdk/services/live/apis/DescribeLivePublishStreamNumRequest.py
212277a2947473efb924dd9775e2df6ca9c01142
[ "Apache-2.0" ]
permissive
aluode99/jdcloud-sdk-python
843afdd2855a55ecd7cd90fe255df213a8f56e28
3da9ae9c0f08e2c20a73dde04f6453d3eb9db16a
refs/heads/master
2020-05-26T09:26:24.307434
2019-05-29T02:35:23
2019-05-29T02:35:23
188,186,313
0
0
null
2019-05-23T07:46:01
2019-05-23T07:46:00
null
UTF-8
Python
false
false
2,692
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DescribeLivePublishStreamNumRequest(JDCloudRequest): """ 查询直播推流数 """ def __init__(self, parameters, header=None, version="v1"): super(DescribeLivePublishStreamNumRequest, self).__init__( '/describeLivePublishStreamNum', 'GET', header, version) self.parameters = parameters class DescribeLivePublishStreamNumParameters(object): def __init__(self, startTime, ): """ :param startTime: 起始时间 - UTC时间 格式:yyyy-MM-dd'T'HH:mm:ss'Z' 示例:2018-10-21T10:00:00Z """ self.domainName = None self.appName = None self.protocolType = None self.period = None self.startTime = startTime self.endTime = None def setDomainName(self, domainName): """ :param domainName: (Optional) 播放域名 """ self.domainName = domainName def setAppName(self, appName): """ :param appName: (Optional) 应用名称 """ self.appName = appName def setProtocolType(self, protocolType): """ :param protocolType: (Optional) 查询的流协议类型,取值范围:"rtmp,hdl,hls",多个时以逗号分隔 """ self.protocolType = protocolType def setPeriod(self, period): """ :param period: (Optional) 查询周期,当前取值范围:“oneMin,fiveMin,halfHour,hour,twoHour,sixHour,day,followTime”,分别表示1min,5min,半小时,1小时,2小时,6小时,1天,跟随时间。默认为空,表示fiveMin。当传入followTime时,表示按Endtime-StartTime的周期,只返回一个点 """ self.period = period def setEndTime(self, endTime): """ :param endTime: (Optional) 结束时间: - UTC时间 格式:yyyy-MM-dd'T'HH:mm:ss'Z' 示例:2018-10-21T10:00:00Z - 为空,默认为当前时间 """ self.endTime = endTime
[ "tancong@jd.com" ]
tancong@jd.com
579a8846030030a1b4f846da2163172703055c1e
3592ef6ceb0e7654dc68fa9879b8c6fe31bcf6d1
/reveries/tools/modeldiffer/lib.py
aa794920283f2358703cbb6ef0aad11ced9d157f
[ "MIT" ]
permissive
all-in-one-of/reveries-config
a83a8208680d857a155e0a05297bde111d8c6845
b47a5a6ce05376dffcb893e0823fecbcf1d08e67
refs/heads/master
2021-01-04T07:44:45.383431
2020-02-13T09:00:51
2020-02-13T09:00:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,245
py
import logging from avalon import io main_logger = logging.getLogger("modeldiffer") def profile_from_database(version_id): """ """ representation = io.find_one({"type": "representation", "name": "mayaBinary", "parent": version_id}) if representation is None: main_logger.critical("Representation not found. This is a bug.") return model_profile = representation["data"].get("modelProfile") if model_profile is None: main_logger.critical("'data.modelProfile' not found." "This is a bug.") return profile = dict() for id, meshes_data in model_profile.items(): for data in meshes_data: name = data.pop("hierarchy") # No need to compare normals data.pop("normals") data["avalonId"] = id profile[name] = data return profile profile_from_host = NotImplemented select_from_host = NotImplemented def is_supported_loader(name): return name in ("ModelLoader",) # "RigLoader") def is_supported_subset(name): return any(name.startswith(family) for family in ("model",)) # "rig"))
[ "david962041@gmail.com" ]
david962041@gmail.com
66c48db3d472e9cbef6459a534d94dd8fe60f1ce
94f156b362fbce8f89c8e15cd7687f8af267ef08
/week3/main/models.py
267cfd064ac83b9e6a1feed9dae6e559d5dabd77
[]
no_license
DastanB/AdvancedDjango
6eee5477cd5a00423972c9cc3d2b5f1e4a501841
2b5d4c22b278c6d0e08ab7e84161163fe42e9a3f
refs/heads/master
2020-07-17T19:21:16.271964
2019-12-03T21:58:51
2019-12-03T21:58:51
206,081,522
0
0
null
null
null
null
UTF-8
Python
false
false
2,424
py
from django.db import models from users.models import MainUser from main.constants import PROJECT_STATUSES, PROJECT_IN_PROCESS, PROJECT_FROZEN, PROJECT_DONE, BLOCK_STATUSES, TASKS_DONE, TASKS_FROZEN, TASKS_IN_PROCESS import datetime # Create your models here. class Project(models.Model): name = models.CharField(max_length=255) description = models.CharField(max_length=1000) status = models.PositiveSmallIntegerField(choises=PROJECT_STATUSES, default=PROJECT_IN_PROCESS) creator = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='projects') def is_owner(self, request): return self.creator.id == request.user.id def __str__(self): return self.name class Block(models.Model): name = models.CharField(max_length=255) type_of = models.PositiveSmallIntegerField(choises=BLOCK_STATUSES, default=TASKS_IN_PROCESS) project = models.ForeignKey(Project, on_delete=models.CASCADE, related_name='blocks') def __str__(self): return self.name class Task(models.Model): name = models.CharField(max_length=255) description = models.CharField(max_length=1000) priority = models.IntegerField() creator = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='created_tasks') executor = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='tasks', null=True) block = models.ForeignKey(Block, on_delete=models.CASCADE, related_name='tasks') order = models.IntegerField() def is_owner(self, request): return self.creator.id == request.user.id def __str__(self): return self.name class TaskDocument(models.Model): document = models.FileField() creator = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='docs') task = models.ForeignKey(Task, on_delete=models.CASCADE, related_name='docs') def is_owner(self, request): return self.creator.id == request.user.id class TaskComment(models.Model): body = models.CharField(max_length=10000) task = models.ForeignKey(Task, on_delete=models.CASCADE, related_name='comments') creator = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='comments') created_at = models.DateTimeField(default=datetime.datetime.now) def is_owner(self, request): return self.creator.id == request.user.id def __str__(self): return self.body
[ "dastan211298@gmail.com" ]
dastan211298@gmail.com
039edd18fd3e878624c2de8607511b5b9ad8a545
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/223/users/4170/codes/1594_1800.py
4bfac1cb471a1d30c906e35552843d6922186bbd
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
209
py
a = int(input("Insira o valor da variavel a: ")) b = int(input("Insira o valor da variavel b: ")) c = int(input("Insira o valor da variavel c: ")) x = ((a**2) + (b**2) + (c**2)) / (a + b + c) print(round(x,7))
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
6d816df5012606bc69d35c03b4aac39b3a25c6dd
0ec4defa6f83ec044b9e1235cc45964a8145b4d1
/venv/lib/python3.6/site-packages/pybrain3/rl/experiments/continuous.py
72df9483cfa96feab6da58c6c9be10525203864b
[]
no_license
nnarziev/MyWeek_Server
e6f6c10ce813cf3dc3aa644958c31a4d01567b4d
7c51e79224ba48cd1a230536c27f3bd8cec73a21
refs/heads/master
2021-08-19T13:46:56.450003
2017-11-25T16:48:07
2017-11-25T16:48:07
112,080,782
1
0
null
null
null
null
UTF-8
Python
false
false
583
py
__author__ = 'Thomas Rueckstiess, ruecksti@in.tum.de' from .experiment import Experiment class ContinuousExperiment(Experiment): """ The extension of Experiment to handle continuous tasks. """ def doInteractionsAndLearn(self, number = 1): """ Execute a number of steps while learning continuously. no reset is performed, such that consecutive calls to this function can be made. """ for _ in range(number): self._oneInteraction() self.agent.learn() return self.stepid
[ "qobiljon.toshnazarov@gmail.com" ]
qobiljon.toshnazarov@gmail.com
47a1085793c09d8ff86cf8e73980e0bcd9595eeb
43461f999228079c9bfee03f0e4043f08426051f
/python爬虫开发与项目实战笔记/通用爬虫/day10/code/SNBook/items.py
cc4533585eccbe86d3f6186bcea51a5c1d717dbc
[]
no_license
MapleStoryBoy/spider
f9af844ae9812fe21141060213ac2677e719ac73
b014d81d52805f9317e85b66024d047e73d59053
refs/heads/master
2020-05-21T18:27:50.585790
2019-07-12T10:11:58
2019-07-12T10:11:58
186,132,575
6
2
null
null
null
null
UTF-8
Python
false
false
603
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class SnbookItem(scrapy.Item): # define the fields for your item here like: parent_type = scrapy.Field() parent_href = scrapy.Field() pagecount = scrapy.Field() son_type = scrapy.Field() son_href = scrapy.Field() belong_son_tyoe = scrapy.Field() book_href = scrapy.Field() book_name = scrapy.Field() book_img = scrapy.Field() book_author = scrapy.Field() book_descrip = scrapy.Field()
[ "MapleStoryBoy@163.com" ]
MapleStoryBoy@163.com
2224c4722a23ff2f4f9c86984146a37d9ca3749e
e76ea38dbe5774fccaf14e1a0090d9275cdaee08
/src/media/cast/rtp_receiver/rtp_parser/rtp_parser.gyp
ade15eebff42e9f6af9baf7ca1709eba30e3b3e3
[ "BSD-3-Clause" ]
permissive
eurogiciel-oss/Tizen_Crosswalk
efc424807a5434df1d5c9e8ed51364974643707d
a68aed6e29bd157c95564e7af2e3a26191813e51
refs/heads/master
2021-01-18T19:19:04.527505
2014-02-06T13:43:21
2014-02-06T13:43:21
16,070,101
1
3
null
null
null
null
UTF-8
Python
false
false
569
gyp
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { 'target_name': 'cast_rtp_parser', 'type': 'static_library', 'include_dirs': [ '<(DEPTH)/', '<(DEPTH)/third_party/', ], 'sources': [ 'rtp_parser.cc', 'rtp_parser.h', ], # source 'dependencies': [ '<(DEPTH)/base/base.gyp:base', '<(DEPTH)/base/base.gyp:test_support_base', ], }, ], }
[ "ronan@fridu.net" ]
ronan@fridu.net
e244afe21842d52ced891cd2c82f5a5dc61e1701
658e2e3cb8a4d5343a125f7deed19c9ebf06fa68
/course_DE/Udacity-Data-Engineering-master/Data Pipeline with Airflow/Production Data Pipelines - Exercise 1.py
2189c509168783ee7e6770e7df5d77f68ffca7c2
[]
no_license
yennanliu/analysis
3f0018809cdc2403f4fbfe4b245df1ad73fa08a5
643ad3fed41961cddd006fadceb0e927f1db1f23
refs/heads/master
2021-01-23T21:48:58.572269
2020-10-13T22:47:12
2020-10-13T22:47:12
57,648,676
11
9
null
null
null
null
UTF-8
Python
false
false
2,591
py
#Instructions #In this exercise, we’ll consolidate repeated code into Operator Plugins #1 - Move the data quality check logic into a custom operator #2 - Replace the data quality check PythonOperators with our new custom operator #3 - Consolidate both the S3 to RedShift functions into a custom operator #4 - Replace the S3 to RedShift PythonOperators with our new custom operator #5 - Execute the DAG import datetime import logging from airflow import DAG from airflow.contrib.hooks.aws_hook import AwsHook from airflow.hooks.postgres_hook import PostgresHook from airflow.operators import ( HasRowsOperator, PostgresOperator, PythonOperator, S3ToRedshiftOperator ) import sql_statements # # TODO: Replace the data quality checks with the HasRowsOperator # dag = DAG( "lesson3.exercise1", start_date=datetime.datetime(2018, 1, 1, 0, 0, 0, 0), end_date=datetime.datetime(2018, 12, 1, 0, 0, 0, 0), schedule_interval="@monthly", max_active_runs=1 ) create_trips_table = PostgresOperator( task_id="create_trips_table", dag=dag, postgres_conn_id="redshift", sql=sql_statements.CREATE_TRIPS_TABLE_SQL ) copy_trips_task = S3ToRedshiftOperator( task_id="load_trips_from_s3_to_redshift", dag=dag, table="trips", redshift_conn_id="redshift", aws_credentials_id="aws_credentials", s3_bucket="udac-data-pipelines", s3_key="divvy/partitioned/{execution_date.year}/{execution_date.month}/divvy_trips.csv" ) # # TODO: Replace this data quality check with the HasRowsOperator # check_trips = HasRowsOperator( task_id='check_trips_data', dag=dag, redshift_conn_id="redshift", table="trips" ) create_stations_table = PostgresOperator( task_id="create_stations_table", dag=dag, postgres_conn_id="redshift", sql=sql_statements.CREATE_STATIONS_TABLE_SQL, ) copy_stations_task = S3ToRedshiftOperator( task_id="load_stations_from_s3_to_redshift", dag=dag, redshift_conn_id="redshift", aws_credentials_id="aws_credentials", s3_bucket="udac-data-pipelines", s3_key="divvy/unpartitioned/divvy_stations_2017.csv", table="stations" ) # # TODO: Replace this data quality check with the HasRowsOperator # check_stations = HasRowsOperator( task_id='check_stations_data', dag=dag, redshift_conn_id="redshift", table="stations" ) create_trips_table >> copy_trips_task create_stations_table >> copy_stations_task copy_stations_task >> check_stations copy_trips_task >> check_trips
[ "f339339@gmail.com" ]
f339339@gmail.com
0fe346359edc276de2c737c0eb967f27d570aafe
6ac77834909c485686638d27c0bf41e6d1765cf7
/src/mapping/writer/mysql_hbase_hawq_writer.py
79911c5ab6d7c61ed2a50ecbcdabf8ecb5943d18
[]
no_license
YangXinNewlife/gears
4144e451861efb0f3ae1d738eb5fcd6cec46a833
486b1ce5a7b8d8682bb1394be8f5dd6ae0fca837
refs/heads/master
2021-01-20T01:41:30.074696
2017-05-26T08:17:45
2017-05-26T08:17:45
89,316,766
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
# -*- coding:utf-8 -*- __author__ = 'yx' from src.mapping.writer.writer import Writer class MysqlHBaseHawqWriter(Writer): def __init__(self): pass def convert_data_type(self, data_type): pass
[ "yangxin@zetyun.com" ]
yangxin@zetyun.com
e9f8df1e669df7bb971e196bef4e8f0b517d633e
ca17bd80ac1d02c711423ac4093330172002a513
/goodyhandy/FirstMissingPositive.py
9988bcba209286d3584cc6e41ed5e95b6469f9f4
[]
no_license
Omega094/lc_practice
64046dea8bbdaee99d767b70002a2b5b56313112
e61776bcfd5d93c663b247d71e00f1b298683714
refs/heads/master
2020-03-12T13:45:13.988645
2018-04-23T06:28:32
2018-04-23T06:28:32
130,649,699
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
class Solution(object): def firstMissingPositive(self, A): """ :type nums: List[int] :rtype: int """ length = len(A) for i, num in enumerate(A): if A[i] != i + 1: while A[i] != i + 1: if A[i] <= 0 or A[i] > length or A[A[i] -1] == A[i]: break t = A[A[i] - 1] ; A[A[i] - 1] = A[i] ; A[i] = t for i, num in enumerate(A): if num != i + 1: return i + 1 return length + 1
[ "zhao_j1@denison.edu" ]
zhao_j1@denison.edu
7bf8d2a366551d6774730e60de1d62b78af16d52
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_108/125.py
c96c54037ce532c493eb7d9d77e0a2a5ad1f93b3
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,787
py
#!/usr/bin/env python import bisect import sys from collections import defaultdict def main(args): finname = '%s.in' % args[1] foutname = '%s.out' % args[1] with open(finname, 'r') as fin, open(foutname, 'w') as fout: T = int(fin.readline().strip()) for i in xrange(1, T+1): num_vines = int(fin.readline().strip()) vinestats = [] for j in xrange(num_vines): d, l = [int(_) for _ in fin.readline().strip().split()] vinestats.append((d, l)) D = int(fin.readline().strip()) memo = dict() def ok(start_vine, swing_length): if (start_vine, swing_length) in memo: return memo[(start_vine, swing_length)] vine_d, vine_l = vinestats[start_vine] if vine_l < swing_length: swing_length = vine_l if vine_d + swing_length >= D: memo[(start_vine, swing_length)] = True return True last_vine = bisect.bisect(vinestats, (vine_d+swing_length+1, 0), start_vine) i = start_vine+1 result = False while i < last_vine: if ok(i, vinestats[i][0]-vine_d): memo[(start_vine, swing_length)] = True return True i+=1 memo[(start_vine, swing_length)] = False return False result = 'YES' if ok(0, vinestats[0][0]) else 'NO' result_str = 'Case #%s: %s\n' % (i, result) # print result_str, fout.write(result_str) if __name__ == '__main__': status = main(sys.argv) sys.exit(status)
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
016d2f4b0007f8a40384dcd7a57e8d67f5a5f01f
7708c2526947a86d064fc8b07a579baa332c5575
/Database/build_db_datasets.py
b0b7c3d3ff443564267cc2ad0962d02df56a6c71
[]
no_license
shunsunsun/Cell_BLAST-notebooks
d622aea190015e8b76207866889dddbd4dd333a8
9baebb4311eaf71670f4852238db7b91157e71b1
refs/heads/master
2022-01-19T05:05:30.269257
2019-04-21T13:30:42
2019-04-21T13:30:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,024
py
#!/usr/bin/env python import os import numpy as np import pandas as pd import mysql.connector from utils import nan_safe def generate_datasets_meta(): dataset_dict = { item: [ file for file in os.listdir(item) if file.endswith(".pdf") and file != "peek.pdf" ] for item in os.listdir(".") if item not in ( "__pycache__", ".ipynb_checkpoints" ) and os.path.isdir(item) } used_columns = ( "dataset_name", "organism", "organ", "platform", "cell_number", "publication", "pmid", "remark" ) single = pd.read_csv( "../../Datasets/ACA_datasets.csv", comment="#", skip_blank_lines=True ).loc[:, used_columns] additional = pd.read_csv( "../../Datasets/additional_datasets.csv", comment="#", skip_blank_lines=True ).loc[:, used_columns] single = pd.concat([single, additional], axis=0, ignore_index=True) aligned = pd.read_csv( "../../Datasets/aligned_datasets.csv", comment="#", skip_blank_lines=True ).loc[:, used_columns] for idx, row in aligned.iterrows(): aligned.loc[idx, "cell_number"] = single.loc[np.in1d( single["dataset_name"], row["remark"].split(", ") ), "cell_number"].sum() combined = pd.concat([single, aligned], axis=0, ignore_index=True) combined["display"] = np.in1d( combined["dataset_name"], list(dataset_dict.keys())) # combined = combined.loc[np.in1d( # combined["dataset_name"], list(dataset_dict.keys()) # ), :] # combined["cell_number"] = combined["cell_number"].astype(np.int) combined["self-projection coverage"] = np.nan combined["self-projection accuracy"] = np.nan for idx, row in combined.iterrows(): spf_path = os.path.join(row["dataset_name"], "self_projection.txt") if not os.path.exists(spf_path): if row["dataset_name"] in dataset_dict: print("Missing: " + spf_path) else: with open(spf_path, "r") as spf: lines = spf.readlines() k1, v1 = lines[0].split() k2, v2 = lines[1].split() assert k1 == "coverage" and k2 == "accuracy" v1, v2 = float(v1.strip()), float(v2.strip()) combined.loc[idx, "self-projection coverage"] = v1 combined.loc[idx, "self-projection accuracy"] = v2 combined["visualization"] = [ (", ".join(dataset_dict[item]) if item in dataset_dict else np.nan) for item in combined["dataset_name"] ] # combined.to_csv("./datasets_meta.csv", index=False) # combined.to_json("./datasets_meta.json", orient="records", double_precision=3) return combined def create_table(cnx, cursor): cursor.execute("DROP TABLE IF EXISTS `datasets`;") cursor.execute( "CREATE TABLE `datasets` (" " `dataset_name` CHAR(50) NOT NULL UNIQUE," " `organism` char(50) NOT NULL," " `organ` char(100) NOT NULL," " `platform` char(50)," " `cell_number` INT CHECK(`cell_number` > 0)," " `publication` VARCHAR(300)," " `pmid` CHAR(8)," " `remark` VARCHAR(200)," " `self-projection coverage` FLOAT CHECK(`self-projection coverage` BETWEEN 0 AND 1)," " `self-projection accuracy` FLOAT CHECK(`self-projection accuracy` BETWEEN 0 AND 1)," " `visualization` VARCHAR(200)," " `display` BOOL NOT NULL," " PRIMARY KEY USING HASH(`dataset_name`)" ");" ) def insert_data(cnx, cursor, data): insert_sql = ( "INSERT INTO `datasets` (" " `dataset_name`, `organism`, `organ`, `platform`," " `cell_number`, `publication`, `pmid`, `remark`," " `self-projection coverage`, `self-projection accuracy`," " `visualization`, `display`" ") VALUES (" " %s, %s, %s, %s," " %s, %s, %s, %s," " %s, %s, %s, %s" ");" ) for idx, row in data.iterrows(): cursor.execute(insert_sql, ( nan_safe(row["dataset_name"]), nan_safe(row["organism"]), nan_safe(row["organ"]), nan_safe(row["platform"]), nan_safe(row["cell_number"], int), nan_safe(row["publication"]), nan_safe(row["pmid"], lambda x: str(int(x))), nan_safe(row["remark"]), nan_safe(row["self-projection coverage"], lambda x: float(np.round(x, 3))), nan_safe(row["self-projection accuracy"], lambda x: float(np.round(x, 3))), nan_safe(row["visualization"]), nan_safe(row["display"]) )) def main(): cnx = mysql.connector.connect( user=input("Please enter username: "), password=input("Please enter password: "), host="127.0.0.1", database="aca" ) cursor = cnx.cursor() create_table(cnx, cursor) insert_data(cnx, cursor, generate_datasets_meta()) cnx.commit() cursor.close() cnx.close() if __name__ == "__main__": main()
[ "caozj@mail.cbi.pku.edu.cn" ]
caozj@mail.cbi.pku.edu.cn
a7db53021d314e8a8940afd0b9d509d6c3431464
eb64b799ff1d7ef3a244bf8e6f9f4e9118d5cfcd
/homeassistant/components/wilight/light.py
3236b3b3851a234fc1d369afef91f7753338940f
[ "Apache-2.0" ]
permissive
JeffLIrion/home-assistant
53966b81b5d5816679f12fc761f79e8777c738d6
8f4ec89be6c2505d8a59eee44de335abe308ac9f
refs/heads/dev
2023-08-22T09:42:02.399277
2022-02-16T01:26:13
2022-02-16T01:26:13
136,679,169
5
2
Apache-2.0
2023-09-13T06:59:25
2018-06-09T00:58:35
Python
UTF-8
Python
false
false
5,995
py
"""Support for WiLight lights.""" from pywilight.const import ( ITEM_LIGHT, LIGHT_COLOR, LIGHT_DIMMER, LIGHT_ON_OFF, SUPPORT_NONE, ) from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_HS_COLOR, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, LightEntity, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.entity_platform import AddEntitiesCallback from . import DOMAIN, WiLightDevice def entities_from_discovered_wilight(hass, api_device): """Parse configuration and add WiLight light entities.""" entities = [] for item in api_device.items: if item["type"] != ITEM_LIGHT: continue index = item["index"] item_name = item["name"] if item["sub_type"] == LIGHT_ON_OFF: entity = WiLightLightOnOff(api_device, index, item_name) elif item["sub_type"] == LIGHT_DIMMER: entity = WiLightLightDimmer(api_device, index, item_name) elif item["sub_type"] == LIGHT_COLOR: entity = WiLightLightColor(api_device, index, item_name) else: continue entities.append(entity) return entities async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up WiLight lights from a config entry.""" parent = hass.data[DOMAIN][entry.entry_id] # Handle a discovered WiLight device. entities = entities_from_discovered_wilight(hass, parent.api) async_add_entities(entities) class WiLightLightOnOff(WiLightDevice, LightEntity): """Representation of a WiLights light on-off.""" @property def supported_features(self): """Flag supported features.""" return SUPPORT_NONE @property def is_on(self): """Return true if device is on.""" return self._status.get("on") async def async_turn_on(self, **kwargs): """Turn the device on.""" await self._client.turn_on(self._index) async def async_turn_off(self, **kwargs): """Turn the device off.""" await self._client.turn_off(self._index) class WiLightLightDimmer(WiLightDevice, LightEntity): """Representation of a WiLights light dimmer.""" @property def supported_features(self): """Flag supported features.""" return SUPPORT_BRIGHTNESS @property def brightness(self): """Return the brightness of this light between 0..255.""" return int(self._status.get("brightness", 0)) @property def is_on(self): """Return true if device is on.""" return self._status.get("on") async def async_turn_on(self, **kwargs): """Turn the device on,set brightness if needed.""" # Dimmer switches use a range of [0, 255] to control # brightness. Level 255 might mean to set it to previous value if ATTR_BRIGHTNESS in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] await self._client.set_brightness(self._index, brightness) else: await self._client.turn_on(self._index) async def async_turn_off(self, **kwargs): """Turn the device off.""" await self._client.turn_off(self._index) def wilight_to_hass_hue(value): """Convert wilight hue 1..255 to hass 0..360 scale.""" return min(360, round((value * 360) / 255, 3)) def hass_to_wilight_hue(value): """Convert hass hue 0..360 to wilight 1..255 scale.""" return min(255, round((value * 255) / 360)) def wilight_to_hass_saturation(value): """Convert wilight saturation 1..255 to hass 0..100 scale.""" return min(100, round((value * 100) / 255, 3)) def hass_to_wilight_saturation(value): """Convert hass saturation 0..100 to wilight 1..255 scale.""" return min(255, round((value * 255) / 100)) class WiLightLightColor(WiLightDevice, LightEntity): """Representation of a WiLights light rgb.""" @property def supported_features(self): """Flag supported features.""" return SUPPORT_BRIGHTNESS | SUPPORT_COLOR @property def brightness(self): """Return the brightness of this light between 0..255.""" return int(self._status.get("brightness", 0)) @property def hs_color(self): """Return the hue and saturation color value [float, float].""" return [ wilight_to_hass_hue(int(self._status.get("hue", 0))), wilight_to_hass_saturation(int(self._status.get("saturation", 0))), ] @property def is_on(self): """Return true if device is on.""" return self._status.get("on") async def async_turn_on(self, **kwargs): """Turn the device on,set brightness if needed.""" # Brightness use a range of [0, 255] to control # Hue use a range of [0, 360] to control # Saturation use a range of [0, 100] to control if ATTR_BRIGHTNESS in kwargs and ATTR_HS_COLOR in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] hue = hass_to_wilight_hue(kwargs[ATTR_HS_COLOR][0]) saturation = hass_to_wilight_saturation(kwargs[ATTR_HS_COLOR][1]) await self._client.set_hsb_color(self._index, hue, saturation, brightness) elif ATTR_BRIGHTNESS in kwargs and ATTR_HS_COLOR not in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] await self._client.set_brightness(self._index, brightness) elif ATTR_BRIGHTNESS not in kwargs and ATTR_HS_COLOR in kwargs: hue = hass_to_wilight_hue(kwargs[ATTR_HS_COLOR][0]) saturation = hass_to_wilight_saturation(kwargs[ATTR_HS_COLOR][1]) await self._client.set_hs_color(self._index, hue, saturation) else: await self._client.turn_on(self._index) async def async_turn_off(self, **kwargs): """Turn the device off.""" await self._client.turn_off(self._index)
[ "noreply@github.com" ]
JeffLIrion.noreply@github.com
1bb80b25bf87d695dd5433efee4ab2a9b1aa572c
483508a4e002bcd734b8729459d3e5d5e02aae70
/number_frequency.py
27b6776f20516181ec134ca21ebb9c493c09bc5c
[]
no_license
jdavid54/benford_law
9d54cd539130bc3665080ca801d1bb4db96a18a9
3ff9d8358f59fef60f401c290ceb94701613e1b2
refs/heads/main
2023-07-18T03:56:18.685081
2021-08-25T10:44:37
2021-08-25T10:44:37
399,751,073
0
0
null
null
null
null
UTF-8
Python
false
false
2,069
py
import numpy as np import random import matplotlib.pyplot as plt # benford's law # value l1 = 10000 # size l2 = 100 freq=[0]*10 x = np.arange(1,10) ''' a = np.random.randint(1,l1,(1,l2)) print(a) for i in np.array(*a): n = int(str(i)[0]) #print(n) freq[n] = freq[n]+1 print(freq) plt.bar(x,freq[1:]) #plt.show() for i in range(100): n = int(str(a[0][np.random.randint(0,l2)])[0]) #print(n) freq[n] = freq[n]+1 print(freq) plt.bar(x,freq[1:]) #plt.show() ''' # loi benford log_array=[] for k in x: print((1+1/k, np.log10(1+1/k))) log_array.append(np.log10(1+1/k)) #print('sum',sum(log_array)) # sum=1 #plt.bar(x, np.log10(1+1/x)*100) #plt.title('Loi Benford') #plt.show() # https://fr.wikipedia.org/wiki/Loi_de_Benford # Par contre, dans une liste de 100 nombres obtenus comme produits de deux nombres # ou plus tirés au hasard entre 1 et 10 000, les fréquences des chiffres 1 à 9 en # première position suivent peu ou prou les valeurs de la loi de Benford. val = 10000 numbers=[] m = 5 kmin = 2 kmax = 5 klist = [] benford=[np.log10(1+1/x) for x in range(1,10)] print(benford) benford_cumsum = np.cumsum(benford) print(benford_cumsum) # get 100 numbers as a product of k random numbers between 1 and val=10000 for i in range(m*100): p = 1 k = random.randint(kmin,kmax) if k not in klist: klist.append(k) for i in range(k): p *= np.random.randint(1,val) p0 = int(str(p)[0]) numbers.append((k,p0,p)) freq[p0] = freq[p0]+1 freq=[f/m for f in freq] freq_cumul = np.cumsum(freq) print(freq[1:]) print(klist) print(numbers) plt.bar(x-0.2,np.log10(1+1/x)*100,0.4, label='Benford\'s law') plt.bar(x+0.2,freq[1:],0.4, label='Product of k random numbers') plt.title(', '.join([str(round(s,1)) for s in freq[1:]])) plt.legend() plt.show() plt.bar(x-0.2, benford_cumsum*100,0.4, label='Benford\'s cumul sum') plt.bar(x+0.2,freq_cumul[1:],0.4, label='Product of k random numbers frequence cumul sum') #plt.bar(x,freq_cumul[1:]) plt.title('Fréquences cumulées') plt.legend() plt.show()
[ "noreply@github.com" ]
jdavid54.noreply@github.com
a44f361047b27f3505d603357681d2fca47f37b6
bad686ba27539a3d3286418cc3ebf2aa80ae4958
/src/pong/full-game.py
383a097d39786a83f75f9eefa942508b67aa3626
[]
no_license
AaryaBatchu/micropython
f0a31b579b3a998586f26b92036875c93588eca7
aef7d33937352e9ab6f9615bfc5bf9aa1a9bee57
refs/heads/main
2023-08-19T13:33:15.006432
2021-10-23T19:06:26
2021-10-23T19:06:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,452
py
# Pong game on Raspberry Pi Pico with a OLED and two Potentimeters from machine import Pin, PWM, SPI import ssd1306 from utime import sleep import random # random direction for new ball sda=machine.Pin(0) scl=machine.Pin(1) pot_pin = machine.ADC(26) WIDTH = 128 HEIGHT = 64 i2c=machine.I2C(0,sda=sda, scl=scl) oled = ssd1306.SSD1306_I2C(WIDTH, HEIGHT, i2c) # connect the center tops of the potentiometers to ADC0 and ADC1 pot_pin_1 = machine.ADC(27) pot_pin_2 = machine.ADC(26) # make them the same for testing # lower right corner with USB connector on top SPEAKER_PIN = 16 # create a Pulse Width Modulation Object on this pin speaker = PWM(Pin(SPEAKER_PIN)) # globals variables # static variables are constants are uppercase variable names HALF_WIDTH = int(WIDTH / 2) HALF_HEIGHT = HEIGHT BALL_SIZE = 3 # 2X2 pixels PAD_WIDTH = 2 PAD_HEIGHT = 8 HALF_PAD_WIDTH = int(PAD_WIDTH / 2) HALF_PAD_HEIGHT = int(PAD_HEIGHT / 2) POT_MIN = 3000 POT_MAX = 65534 MAX_ADC_VALUE = 65534 # Maximum value from the Analog to Digital Converter is 2^16 - 1 # dynamic global variables use lowercase paddle1_vel = 0 paddle2_vel = 0 l_score = 0 r_score = 0 # continiuous update of the paddle and ball # play_startup_sound() # start with the ball in the center ball_x = int(WIDTH / 2) ball_y = int(HEIGHT / 2) # set the initial directinon to down to the right ball_x_dir = 1 ball_y_dir = 1 def play_startup_sound(): speaker.duty_u16(1000) speaker.freq(600) sleep(.25) speaker.freq(800) sleep(.25) speaker.freq(1200) sleep(.25) speaker.duty_u16(0) def play_bounce_sound(): speaker.duty_u16(1000) speaker.freq(900) sleep(.25) speaker.duty_u16(0) def play_score_sound(): speaker.duty_u16(1000) speaker.freq(600) sleep(.25) speaker.freq(800) sleep(.25) speaker.duty_u16(0) # note that OLEDs have problems with screen burn it - don't leave this on too long! def border(WIDTH, HEIGHT): oled.rect(0, 0, WIDTH, HEIGHT, 1) # Takes an input number vale and a range between high-and-low and returns it scaled to the new range # This is similar to the Arduino map() function def valmap(value, istart, istop, ostart, ostop): return int(ostart + (ostop - ostart) * ((value - istart) / (istop - istart))) # draw a vertical bar def draw_paddle(paddle_no, paddle_center): if paddle_no == 1: x = 0 else: x = WIDTH - 2 y = paddle_center - HALF_PAD_HEIGHT oled.fill_rect(x, y, PAD_WIDTH, PAD_HEIGHT, 1) # fill with 1s def draw_ball(): oled.fill_rect(ball_x, ball_y, BALL_SIZE, BALL_SIZE, 1) # square balls for now # The main event loop while True: oled.fill(0) # clear screen oled.vline(int(WIDTH / 2), 0, HEIGHT, 1) # border(WIDTH, HEIGHT) # read both the pot values pot_val_1 = pot_pin_1.read_u16() pot_val_2 = pot_pin_2.read_u16() # print(pot_val_1) # scale the values from the max value of the input is a 2^16 or 65536 to 0 to HEIGHT - PAD_HEIGHT # ideally, it should range from 5 to 58 pot_val_1 = valmap(pot_val_1, POT_MIN, POT_MAX, HALF_PAD_HEIGHT, HEIGHT - HALF_PAD_HEIGHT - 2) pot_val_2 = valmap(pot_val_2, POT_MIN, POT_MAX, HALF_PAD_HEIGHT, HEIGHT - HALF_PAD_HEIGHT - 2) # print(pot_val, pot_scaled) draw_paddle(1, pot_val_1 + HALF_PAD_HEIGHT) draw_paddle(2, pot_val_2 + HALF_PAD_HEIGHT) draw_ball() #update ball position with the current directions ball_x = ball_x + ball_x_dir ball_y = ball_y + ball_y_dir # update the ball direction if we are at the top or bottom edge if ball_y < 0: ball_y_dir = 1 #play_bounce_sound() if ball_y > HEIGHT - 3: ball_y_dir = -1 #play_bounce_sound() # if it hits the paddle bounce else score if ball_x < 1: top_paddle = pot_val_1 - HALF_PAD_HEIGHT bottom_paddle = pot_val_1 + HALF_PAD_HEIGHT if ball_y > top_paddle and ball_y < bottom_paddle: # we have a hit ball_x_dir = 1 ball_x = 2 play_bounce_sound() print('paddle hit on left edge', pot_val_1, top_paddle, bottom_paddle) else: # we have a score for the right player play_score_sound() r_score += 1 ball_x = int(WIDTH / 2) ball_y = int(HEIGHT / 2) ball_x_dir = random.randint(-1, 2) if ball_x_dir == 0: ball_x_dir = 1 ball_y_dir = random.randint(-1, 2) print('score on left edge', pot_val_1, top_paddle, bottom_paddle) sleep(.25) if ball_x > WIDTH - 3: ball_x = WIDTH - 4 top_paddle = pot_val_2 - HALF_PAD_HEIGHT bottom_paddle = pot_val_2 + HALF_PAD_HEIGHT if ball_y > top_paddle and ball_y < bottom_paddle: ball_x_dir = -1 print('bounce on right paddle', pot_val_1, top_paddle, bottom_paddle) else: l_score += 1 play_score_sound() ball_x = int(WIDTH / 2) ball_y = int(HEIGHT / 2) ball_x_dir = random.randint(-1, 2) if ball_x_dir == 0: ball_x_dir = 1 ball_y_dir = random.randint(-1, 2) play_bounce_sound() print('score on right edge', pot_val_1, top_paddle, bottom_paddle) sleep(.25) oled.text(str(l_score), HALF_WIDTH - 20, 5, 1) oled.text(str(r_score), HALF_WIDTH + 5, 5, 1) oled.show()
[ "dan.mccreary@gmail.com" ]
dan.mccreary@gmail.com
79a4bb8bec0d2d35bfcfb2c239be6aee46b0fd66
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_373/ch4_2020_04_12_18_58_48_907546.py
cde9dac5e0e2b7c03893f3ea611cee967836abd9
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
212
py
def classifica_idade (idade): input(int( 'idade: ')) if idade <=11: print ( 'crinca') elif idade >= 12 and idade <= 17: print ('adolecente') else: print ('adulto')
[ "you@example.com" ]
you@example.com
6405b2626aba482937b14dfeafe8be7ddfd5657d
6392354e74cce4a303a544c53e13d0a7b87978ee
/m4/socket_correlation/company_review/lock_test.py
154a5366cb5434bb78837c326d9e8b9c99355720
[]
no_license
music51555/wxPythonCode
dc35e42e55d11850d7714a413da3dde51ccdd37e
f77b71ed67d926fbafd1cfec89de8987d9832016
refs/heads/master
2020-04-11T20:20:38.136446
2019-04-01T09:17:34
2019-04-01T09:17:34
162,067,449
1
1
null
null
null
null
UTF-8
Python
false
false
937
py
import time from threading import Thread,RLock mutexA = mutexB = RLock() class MyThread(Thread): def __init__(self,name): super(MyThread,self).__init__() self.name = name def run(self): self.f1() self.f2() def f1(self): mutexA.acquire() print('%s得到A锁'%self.name) mutexB.acquire() print('%s得到B锁'%self.name) mutexA.release() print('%s释放A锁'%self.name) mutexB.release() print('%s释放B锁'%self.name) def f2(self): mutexB.acquire() print('%s得到B锁'%self.name) time.sleep(0.1) mutexA.acquire() print('%s得到A锁'%self.name) mutexB.release() print('%s释放B锁'%self.name) mutexA.release() print('%s释放A锁'%self.name) if __name__ == '__main__': for i in range(3): m = MyThread('子线程%s'%i) m.start()
[ "music51555@163.com" ]
music51555@163.com
ebf5338c9d16d52fb1f01ccc605998b512d9edf6
c6ff2a4484c371efd97ce610832cd9772dd406e0
/app10_udemy/app10_udemy/wsgi.py
bb40d92d717d10e2eaaa247e3e39c58b6fc183fe
[]
no_license
inderdevkumar/Upload-and-display
66bbb808be27d47f3ff8d57e663b58b71f62ef71
668beb97392f12d4b545937c18f2723919264987
refs/heads/master
2022-10-10T01:19:02.044549
2020-06-09T12:56:22
2020-06-09T12:56:22
271,003,802
1
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for app10_udemy project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'app10_udemy.settings') application = get_wsgi_application()
[ "id0102yadav@gmail.com" ]
id0102yadav@gmail.com
be38d3ebadb2460af99adbcd9d5e38e954fef300
89220198e6869bf13ff99f1d07b5aa0f49f23b2a
/modules/tools/perception/empty_prediction.py
33dd04981b1164fe3cb0fdef209d432d879386cd
[ "Apache-2.0" ]
permissive
maohaihua/apollo
2cd073a0844a9028756582e6db4c6b66fd4f8a0a
a30d7a6c65a58ca82681df81211176f98eeffde2
refs/heads/master
2020-04-30T20:55:14.018814
2019-03-22T00:29:56
2019-03-22T04:58:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,225
py
#!/usr/bin/env python ############################################################################### # Copyright 2019 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### """ this module creates a node and fake prediction data based on json configurations """ import argparse import math import time import numpy import simplejson from cyber_py import cyber from modules.prediction.proto.prediction_obstacle_pb2 import PredictionObstacles def prediction_publisher(prediction_channel, rate): """publisher""" cyber.init() node = cyber.Node("prediction") writer = node.create_writer(prediction_channel, PredictionObstacles) sleep_time = 1.0 / rate seq_num = 1 while not cyber.is_shutdown(): prediction = PredictionObstacles() prediction.header.sequence_num = seq_num prediction.header.timestamp_sec = time.time() prediction.header.module_name = "prediction" print(str(prediction)) writer.write(prediction) seq_num += 1 time.sleep(sleep_time) if __name__ == '__main__': parser = argparse.ArgumentParser(description="create empty prediction message", prog="replay_prediction.py") parser.add_argument("-c", "--channel", action="store", type=str, default="/apollo/prediction", help="set the prediction channel") parser.add_argument("-r", "--rate", action="store", type=int, default=10, help="set the prediction channel publish time duration") args = parser.parse_args() prediction_publisher(args.channel, args.rate)
[ "xiaoxiangquan@gmail.com" ]
xiaoxiangquan@gmail.com
97ed4b7b177f9bfd4dd65cf0fe4e612cec5f5ca7
c68580258e9fbe64bbf232e781d75584691de4c4
/tests/django_settings.py
2af62bb352df44c8386b6fd77435541a4214c8d9
[ "MIT" ]
permissive
KyleAMathews/graphene
7e092e6e7d9575c1f736d834a2913a63bc753006
5738b69271fd245339f35640d375d6bc13092358
refs/heads/master
2023-08-31T21:12:22.927712
2015-11-30T18:08:12
2015-11-30T18:08:12
47,149,828
2
0
null
2015-11-30T22:24:27
2015-11-30T22:24:27
null
UTF-8
Python
false
false
196
py
SECRET_KEY = 1 INSTALLED_APPS = [ 'examples.starwars_django', ] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'tests/django.sqlite', } }
[ "me@syrusakbary.com" ]
me@syrusakbary.com
07dd881dfa838563a5ef9d22778cd9993402dd4c
22ebcc842dbc933bfa8fdad89b8b8ef48ecc91c7
/load/load_aes_hd.py
f70ad4aa349abe0942c49ece8386f2b88e6237e6
[]
no_license
klikooo/thesis-src
192651c18f243c59cfa588e7052dc1a96ab0a146
64f2ee824afdc2d3fd0f98c6d9fcfda597b9ad9f
refs/heads/master
2020-04-16T18:16:20.638147
2019-08-20T14:59:52
2019-08-20T14:59:52
161,623,404
0
0
null
null
null
null
UTF-8
Python
false
false
6,364
py
from decimal import Decimal import torch import numpy as np import matplotlib.pyplot as plt from models.load_model import load_model from test import test_with_key_guess import util import pdb path = '/media/rico/Data/TU/thesis' ##################################################################################### # Parameters use_hw = False n_classes = 9 if use_hw else 256 spread_factor = 1 runs = [x for x in range(5)] train_size = 20000 epochs = 140 batch_size = 100 lr = 0.00075 sub_key_index = 2 attack_size = 100 rank_step = 1 type_network = 'HW' if use_hw else 'ID' unmask = False if sub_key_index < 2 else True # network_names = ['SpreadV2', 'SpreadNet'] network_names = ['ConvNetKernel'] kernel_sizes = [3, 5, 7, 9, 11, 13, 15] # network_names = ['ConvNet', 'ConvNetDK'] plt_titles = ['$Spread_{V2}$', '$Spread_{PH}$', '$Dense_{RT}$', '$MLP_{best}$'] only_accuracy = False data_set = util.DataSet.RANDOM_DELAY raw_traces = True validation_size = 1000 ##################################################################################### data_set_name = str(data_set) if len(plt_titles) != len(network_names): plt_titles = network_names device = torch.device("cuda") # Load Data loader = util.load_data_set(data_set) print('Loading data set') total_x_attack, total_y_attack, plain = loader({'use_hw': use_hw, 'traces_path': '/media/rico/Data/TU/thesis/data', 'raw_traces': raw_traces, 'start': train_size + validation_size, 'size': attack_size, 'domain_knowledge': True}) print('Loading key guesses') key_guesses = util.load_csv('/media/rico/Data/TU/thesis/data/{}/Value/key_guesses_ALL_transposed.csv'.format( data_set_name), delimiter=' ', dtype=np.int, start=train_size + validation_size, size=attack_size) real_key = util.load_csv('/media/rico/Data/TU/thesis/data/{}/secret_key.csv'.format(data_set_name), dtype=np.int) x_attack = total_x_attack y_attack = total_y_attack def get_ranks(x_attack, y_attack, key_guesses, runs, train_size, epochs, lr, sub_key_index, attack_size, rank_step, unmask, network_name, kernel_size_string=""): ranks_x = [] ranks_y = [] for run in runs: model_path = '/media/rico/Data/TU/thesis/runs2/' \ '{}/subkey_{}/{}_SF{}_E{}_BZ{}_LR{}/train{}/model_r{}_{}{}.pt'.format( data_set_name, sub_key_index, type_network, spread_factor, epochs, batch_size, '%.2E' % Decimal(lr), train_size, run, network_name, kernel_size_string) print('path={}'.format(model_path)) # Load the model model = load_model(network_name=network_name, model_path=model_path) model.eval() print("Using {}".format(model)) model.to(device) # Number of times we test a single model + shuffle the test traces num_exps = 100 x, y = [], [] for exp_i in range(num_exps): permutation = np.random.permutation(x_attack.shape[0]) # permutation = np.arange(0, x_attack.shape[0]) x_attack_shuffled = util.shuffle_permutation(permutation, np.array(x_attack)) y_attack_shuffled = util.shuffle_permutation(permutation, np.array(y_attack)) key_guesses_shuffled = util.shuffle_permutation(permutation, key_guesses) # Check if we need domain knowledge dk_plain = None if network_name in util.req_dk: dk_plain = plain dk_plain = util.shuffle_permutation(permutation, dk_plain) x_exp, y_exp = test_with_key_guess(x_attack_shuffled, y_attack_shuffled, key_guesses_shuffled, model, attack_size=attack_size, real_key=real_key, use_hw=use_hw, plain=dk_plain) x = x_exp y.append(y_exp) # Take the mean of the different experiments y = np.mean(y, axis=0) # Add the ranks ranks_x.append(x) ranks_y.append(y) return ranks_x, ranks_y # Test the networks that were specified ranks_x = [] ranks_y = [] rank_mean_y = [] name_models = [] for network_name in network_names: if network_name in util.req_kernel_size: for kernel_size in kernel_sizes: kernel_string = "_k{}".format(kernel_size) x, y = get_ranks(x_attack, y_attack, key_guesses, runs, train_size, epochs, lr, sub_key_index, attack_size, rank_step, unmask, network_name, kernel_string) mean_y = np.mean(y, axis=0) ranks_x.append(x) ranks_y.append(y) rank_mean_y.append(mean_y) name_models.append("{} K{}".format(network_name, kernel_size)) else: x, y = get_ranks(x_attack, y_attack, key_guesses, runs, train_size, epochs, lr, sub_key_index, attack_size, rank_step, unmask, network_name) mean_y = np.mean(y, axis=0) ranks_x.append(x) ranks_y.append(y) rank_mean_y.append(mean_y) name_models.append(network_name) for i in range(len(rank_mean_y)): plt.title('Performance of {}'.format(name_models[i])) plt.xlabel('number of traces') plt.ylabel('rank') plt.grid(True) # Plot the results for x, y in zip(ranks_x[i], ranks_y[i]): plt.plot(x, y) figure = plt.gcf() plt.figure() figure.savefig('/home/rico/Pictures/{}.png'.format(name_models[i]), dpi=100) # plt.title('Comparison of networks') plt.xlabel('Number of traces') plt.ylabel('Mean rank') plt.grid(True) for i in range(len(rank_mean_y)): plt.plot(ranks_x[i][0], rank_mean_y[i], label=name_models[i]) plt.legend() # plt.figure() figure = plt.gcf() figure.savefig('/home/rico/Pictures/{}.png'.format('mean'), dpi=100) plt.show()
[ "rico12978@hotmail.com" ]
rico12978@hotmail.com
e664beb018a1c9ae9d3a87597696086278f40c0e
dbe012dbedc967332ae58414473185055136d189
/maskrcnn_benchmark/data/transforms/transforms.py
283a9d3055d8b0ed951c6e0ec938684bcaf74ce3
[ "MIT" ]
permissive
kevincao91/maskrcnn
87561a023939a71d624252dd44f4c882b2dfa2a6
a55f6ab82219329e353a20dd53c3f25f4375f537
refs/heads/master
2020-09-24T18:41:36.565752
2020-05-07T05:45:39
2020-05-07T05:45:39
225,819,004
0
0
null
null
null
null
UTF-8
Python
false
false
3,511
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import random import torch import torchvision from torchvision.transforms import functional as F class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string class Resize(object): def __init__(self, min_size, max_size): if not isinstance(min_size, (list, tuple)): min_size = (min_size,) self.min_size = min_size self.max_size = max_size # modified from torchvision to add support for max size def get_size(self, image_size): w, h = image_size size = random.choice(self.min_size) max_size = self.max_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def __call__(self, image, target=None): size = self.get_size(image.size) #print('get size:', size) image = F.resize(image, size) if target is None: return image target = target.resize(image.size) return image, target class RandomHorizontalFlip(object): def __init__(self, prob=0.5): self.prob = prob def __call__(self, image, target): if random.random() < self.prob: image = F.hflip(image) target = target.transpose(0) return image, target class RandomVerticalFlip(object): def __init__(self, prob=0.5): self.prob = prob def __call__(self, image, target): if random.random() < self.prob: image = F.vflip(image) target = target.transpose(1) return image, target class ColorJitter(object): def __init__(self, brightness=None, contrast=None, saturation=None, hue=None, ): self.color_jitter = torchvision.transforms.ColorJitter( brightness=brightness, contrast=contrast, saturation=saturation, hue=hue,) def __call__(self, image, target): image = self.color_jitter(image) return image, target class ToTensor(object): def __call__(self, image, target): return F.to_tensor(image), target class Normalize(object): def __init__(self, mean, std, to_bgr255=True): self.mean = mean self.std = std self.to_bgr255 = to_bgr255 def __call__(self, image, target=None): if self.to_bgr255: image = image[[2, 1, 0]] * 255 image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image return image, target
[ "kevin_cao_91@163.com" ]
kevin_cao_91@163.com
59bebd47be55198c6ec48813b99966195120cdd5
3b3b9bbc39c50a270e96b4394024f1753e35aaec
/ncbly/spiders/spider.py
30b8ffc51883646ef9f6e34a1fd77a8c78d021b7
[]
no_license
hristo-grudev/ncbly
f94e2fdc8d556fba416d556cac5649b7f492c7c5
6b33ceb9b287ed0047f4676b3c036dc0b7c8e08a
refs/heads/main
2023-04-11T02:09:07.152764
2021-04-15T06:30:42
2021-04-15T06:30:42
358,152,008
0
0
null
null
null
null
UTF-8
Python
false
false
1,286
py
import scrapy from scrapy import FormRequest from scrapy.loader import ItemLoader from ..items import NcblyItem from itemloaders.processors import TakeFirst class NcblySpider(scrapy.Spider): name = 'ncbly' start_urls = ['https://www.ncb.ly/en/media-center/news/'] def parse(self, response): post_links = response.xpath('//h4/a/@href').getall() yield from response.follow_all(post_links, self.parse_post) next_page = response.xpath('//a[text()="Next"]/@href').getall() if next_page: yield FormRequest.from_response(response, formdata={ '__EVENTTARGET': 'ctl00$cph_body$pgrCustomRepeater$ctl02$ctl00'}, callback=self.parse) def parse_post(self, response): title = response.xpath('//h1[@class="new-mc-big-title"]/text()').get() description = response.xpath('//div[@class="col col_8_of_12 mc-body"]//text()[normalize-space()]').getall() description = [p.strip() for p in description if '{' not in p] description = ' '.join(description).strip() date = response.xpath('//div[@class="new-mc-big-date"]/text()').get() item = ItemLoader(item=NcblyItem(), response=response) item.default_output_processor = TakeFirst() item.add_value('title', title) item.add_value('description', description) item.add_value('date', date) return item.load_item()
[ "hr.grudev@gmail.com" ]
hr.grudev@gmail.com
24e05aac27a7eee6799ab5ec26fcb11af42151c3
147389cf28e0c92f0b2ef8000b0562a71d766880
/pp.py
764a1b7b187b101da8e094613efc9e68f4b889cc
[]
no_license
dohyekim/hello
3821ca97079818c9938df33fc6d8d6ea9ca763a5
84f5704fe6cb6e5b63fb7903e311b650d65a394a
refs/heads/master
2022-02-25T11:12:31.077335
2019-09-22T06:23:00
2019-09-22T06:23:00
156,352,382
1
0
null
2022-02-12T11:48:53
2018-11-06T08:39:18
JavaScript
UTF-8
Python
false
false
707
py
import requests from bs4 import BeautifulSoup import json url = "https://www.melon.com/chart/index.htm" headers = { 'Referer': 'https://www.melon.com/', 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36' } html = requests.get(url, headers = headers).text soup = BeautifulSoup(html, 'html.parser') parameter = [] rank_50 = soup.select("table > tbody #lst50") rank_100 = soup.select("table > tbody #lst100") for i in rank_50: a = i.attrs['data-song-no'] parameter.append(a) for j in rank_100: b = j.attrs['data-song-no'] parameter.append(b) print(parameter) param_ = ",".join(parameter) print(param_)
[ "dhleen5@hanmail.net" ]
dhleen5@hanmail.net
dc5410da4cfff303d0f5fbc6d93fce02dc7cad1f
79ed3f72555aad8548634f523f775f34cfe166e7
/catch/datasets/guaroa.py
5acd22fecfb7fdabe5e8b72c0eb5fa30d32a8df1
[ "MIT" ]
permissive
John-Bioinfo/catch
a2ab188ed598767e7759f74227f24af2b284b379
fe63b86bc41396c1da0b449ac440c6ae9e52b2c5
refs/heads/master
2020-03-18T09:29:10.315733
2018-04-17T18:36:47
2018-04-17T18:36:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,225
py
"""Dataset with 'Guaroa orthobunyavirus' sequences. A dataset with 25 'Guaroa orthobunyavirus' sequences. The virus is segmented and has 3 segments. Based on their strain and/or isolate, these sequences were able to be grouped into 16 genomes. Many genomes may have fewer than 3 segments. THIS PYTHON FILE WAS GENERATED BY A COMPUTER PROGRAM! DO NOT EDIT! """ from os.path import dirname from os.path import join from os import listdir import sys from catch.datasets import GenomesDatasetMultiChrom __author__ = 'Hayden Metsky <hayden@mit.edu>' chrs = ["segment_" + seg for seg in ['L', 'M', 'S']] def seq_header_to_chr(header): import re c = re.compile(r'\[segment (L|M|S)\]') m = c.search(header) if not m: raise ValueError("Unknown segment in header %s" % header) seg = m.group(1) valid_segs = ['L', 'M', 'S'] if seg not in valid_segs: raise ValueError("Unknown segment %s" % seg) return "segment_" + seg ds = GenomesDatasetMultiChrom(__name__, __file__, __spec__, chrs, seq_header_to_chr) for f in listdir(join(dirname(__file__), "data/guaroa/")): ds.add_fasta_path("data/guaroa/" + f, relative=True) sys.modules[__name__] = ds
[ "hmetsky@gmail.com" ]
hmetsky@gmail.com
bf5657467f3bc562c237bba7906c9b1146e9b92a
18d7876af265ec974aa5ecf9142093d845b59020
/module/Favourite.py
d373b337f2caccf5bd99c89382bc95c872888048
[]
no_license
xiaojieluo/savemylink
b6b2b806b8a760369860e2ec83fd85dece9bfd9d
7eb64a4742516486bebe8498374b94552c682cfe
refs/heads/master
2021-06-13T16:49:13.795891
2017-03-23T03:48:39
2017-03-23T03:48:39
77,986,335
0
0
null
null
null
null
UTF-8
Python
false
false
4,113
py
#!/usr/bin/env python # coding=utf-8 from module.DB import db from module.define import * class Favourite(object): db = db link_list = [] value_dict = dict() favourite_public = FAVOURITE_PUBLIC favourite_count = FAVOURITE_COUNT def __init__(self, fid = 0): if not isinstance(fid, int): raise TypeError('Bad operand type') self.db = db self.fid = fid self.favourite_info = FAVOURITE_INFO.format(fid=self.fid) self.favourite_count = FAVOURITE_COUNT self.favourite = FAVOURITE.format(fid=self.fid) self.favourite_public = FAVOURITE_PUBLIC @classmethod def create(cls,info): #info = dict( # name='name', # created_at = 'created_at' #) favourite_count = FAVOURITE_COUNT fid = cls.db.r.incr(cls.favourite_count) favourite_info = FAVOURITE_INFO.format(fid=fid) cls.db.r.hmset(favourite_info, info) if info['public']: cls.db.r.sadd(cls.favourite_public, fid) # only return fid # if you want add fid to account_favourite table # you need run down code # user = Account(id) # account_favourite = ACCOUNT_FAVOURITE.format(uid=uid) # cls.db.r.sadd(account_favourite, fid) return fid @classmethod def public(cls): """ 返回所有公开的收藏夹 """ # 在这里可以做分页 pub = cls.db.smembers(cls.favourite_public) result = [] if pub: for k in pub: result.append(Favourite(k)) return result else: return [] @property def isPublic(self): public = self.db.r.sismembers(self.favourite_public, self.fid) return public @property def name(self): #favourite_info = FAVOURITE_INFO.format(fid=self.fid) result = self.db.r.hget(self.favourite_info, 'name') return result @property def author(self): user_id = int(self.db.hget(self.favourite_info, 'author')) # print(self.db.r.hgetall(self.favourite_info)) # print(type(user_id)) if user_id: from lib.Account import Account return Account(user_id) @name.setter def name(self, value): self.value_dict['name'] = value @property def created_at(self): #favourite_info = FAVOURITE_INFO.format(fid=self.fid) return self.db.r.hget(self.favourite_info, 'created_at') @created_at.setter def created_at(self, value): self.value_dict['created_at'] = value # add linkid to favourite , if not run save , the data is in buffer def addlink(self, lid): if isinstance(lid, list): for k in lid: if k not in self.link_list: self.link_list.append(lid) else: lid = int(lid) if lid not in self.link_list: #self.linkid = [] self.link_list.append(lid) return True #print(self.link_list) def save(self): # save Favourite information if len(self.value_dict) > 0: self.db.r.hmset(self.favourite_info, self.value_dict) # save link id into the favourite if len(self.link_list) > 0: for k in self.link_list: self.db.r.sadd(self.favourite, k) #del self.link_list[:] self.link_list = [] self.value_dict = {} return True def links(self): # get all links in favourites, # return Link Class #""" favourite_links = FAVOURITE.format(fid=self.fid) tmp = self.db.smembers(favourite_links) print(tmp) # only return link id # new class in Handler's return tmp #print(tmp) #if len(tmp) > 0: # result = [] # from lib.Link import Link # for k in tmp: # result.append(Link(k)) # return result #else: # return None
[ "xiaojieluoff@gmail.com" ]
xiaojieluoff@gmail.com
788d74a0541595cac3c54e408e4d3d2a423cdc26
4b157ab5270ba430a6d7c1594ea41ceea89b7ab2
/dataview/items/management/commands/dbimport.py
202892882682d5ee3d0dae54641cf1e52de4ef88
[ "MIT" ]
permissive
estin/pomp-craigslist-example
6a06e0671b189b45d7f688583c052b3e23efd010
c019686776ff2235f92ece9cea19874631a561b9
refs/heads/master
2021-01-10T12:07:30.035957
2017-11-21T19:55:40
2017-11-21T19:55:40
52,002,919
38
8
null
null
null
null
UTF-8
Python
false
false
2,019
py
import logging from django.db import transaction from django.core.management.base import BaseCommand from django.core.exceptions import ValidationError from dataview.items.models import CraigsListItem from craigslist.pipeline import KafkaPipeline from craigslist.utils import get_statsd_client, METRIC_ITEMS_IMPORTED_KEY log = logging.getLogger('dataview.dbimport') class Command(BaseCommand): help = 'import data from kafka to db' def handle(self, *args, **options): try: self._handle(*args, **options) except Exception: log.exception("Exception") def _handle(self, *args, **options): statsd = get_statsd_client(sync=True) def _items_factory(items): for item in items: instance = CraigsListItem(**dict( # convert dict byte keys to string keys and use it as # keywords (k.decode(), v) for k, v in item.items() )) # validate data before insert try: instance.full_clean() except ValidationError as e: log.debug('Invalid data(%s): %s', e, dict(item)) else: yield instance @transaction.atomic() def do_bulk_insert(items): cleaned_items = list(_items_factory(items)) if cleaned_items: CraigsListItem.objects.bulk_create(cleaned_items) return cleaned_items log.debug( 'Start import data from kafka', ) for items in KafkaPipeline.dump_data( timeout=500, poll_timeout=5000, enable_auto_commit=True): if items: imported = do_bulk_insert(items) log.debug( 'Successfully imported %s from %s', len(imported), len(items), ) statsd.incr(METRIC_ITEMS_IMPORTED_KEY, value=len(imported))
[ "tatarkin.evg@gmail.com" ]
tatarkin.evg@gmail.com
842b53f556e40e7ee2ce73b314af3c48d09ff59a
44b87d9faad99d542914c35410ba7d354d5ba9cd
/1/examples/srearch_a_letter.py
db0f0ae9e3b4cbc2f8eb95912e5afe20241d5f02
[]
no_license
append-knowledge/pythondjango
586292d1c7d0ddace3630f0d77ca53f442667e54
0e5dab580e8cc48e9940fb93a71bcd36e8e6a84e
refs/heads/master
2023-06-24T07:24:53.374998
2021-07-13T05:55:25
2021-07-13T05:55:25
385,247,677
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
x=input("enter the word ") y=input("enter the letter you want to find ") flag=0 for i in x: if i in y: flag=1 if flag==1: print("entered word found ") else: print("not found")
[ "lijojose95@gmail.com" ]
lijojose95@gmail.com
26c4e08d795fe5047e6277af93086c7796f3774d
f152d89efeebc5c00c54cf7819f539aec920aa2d
/reviewboard/webapi/decorators.py
02674e04c176a61adb67121de06093f144b15995
[ "MIT" ]
permissive
yang/reviewboard
c1c0cee37133004c2857ed6daac136697baa92dd
b893e0f28bc5d561124aaf09bc8b0e164f42c7d5
refs/heads/master
2021-01-18T11:04:37.694088
2010-11-27T00:09:27
2010-11-30T00:48:14
1,115,897
0
0
null
null
null
null
UTF-8
Python
false
false
3,188
py
from django.http import HttpRequest from djblets.siteconfig.models import SiteConfiguration from djblets.util.decorators import simple_decorator from djblets.webapi.core import WebAPIResponse, WebAPIResponseError from djblets.webapi.decorators import webapi_login_required, \ webapi_response_errors from djblets.webapi.encoders import BasicAPIEncoder from djblets.webapi.errors import NOT_LOGGED_IN @webapi_response_errors(NOT_LOGGED_IN) @simple_decorator def webapi_check_login_required(view_func): """ A decorator that checks whether login is required on this installation and, if so, checks if the user is logged in. If login is required and the user is not logged in, they'll get a NOT_LOGGED_IN error. """ def _check(*args, **kwargs): siteconfig = SiteConfiguration.objects.get_current() if siteconfig.get("auth_require_sitewide_login"): return webapi_login_required(view_func)(*args, **kwargs) else: return view_func(*args, **kwargs) view_func.checks_login_required = True return _check def webapi_deprecated(deprecated_in, force_error_http_status=None, default_api_format=None, encoders=[]): """Marks an API handler as deprecated. ``deprecated_in`` specifies the version that first deprecates this call. ``force_error_http_status`` forces errors to use the specified HTTP status code. ``default_api_format`` specifies the default api format (json or xml) if one isn't provided. """ def _dec(view_func): def _view(*args, **kwargs): if default_api_format: request = args[0] assert isinstance(request, HttpRequest) method_args = getattr(request, request.method, None) if method_args and 'api_format' not in method_args: method_args = method_args.copy() method_args['api_format'] = default_api_format setattr(request, request.method, method_args) response = view_func(*args, **kwargs) if isinstance(response, WebAPIResponse): response.encoders = encoders if isinstance(response, WebAPIResponseError): response.api_data['deprecated'] = { 'in_version': deprecated_in, } if (force_error_http_status and isinstance(response, WebAPIResponseError)): response.status_code = force_error_http_status return response return _view return _dec _deprecated_api_encoders = [] def webapi_deprecated_in_1_5(view_func): from reviewboard.webapi.encoder import DeprecatedReviewBoardAPIEncoder global _deprecated_api_encoders if not _deprecated_api_encoders: _deprecated_api_encoders = [ DeprecatedReviewBoardAPIEncoder(), BasicAPIEncoder(), ] return webapi_deprecated( deprecated_in='1.5', force_error_http_status=200, default_api_format='json', encoders=_deprecated_api_encoders)(view_func)
[ "chipx86@chipx86.com" ]
chipx86@chipx86.com
f238d04a62268f719a0026d5246ae6552ad08c38
bf99b1b14e9ca1ad40645a7423f23ef32f4a62e6
/AtCoder/arc/025a.py
eca2c9978b657cb946922fb4f5f37b40b06e0566
[]
no_license
y-oksaku/Competitive-Programming
3f9c1953956d1d1dfbf46d5a87b56550ff3ab3db
a3ff52f538329bed034d3008e051f30442aaadae
refs/heads/master
2021-06-11T16:14:12.635947
2021-05-04T08:18:35
2021-05-04T08:18:35
188,639,647
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
D = list(map(int, input().split())) L = list(map(int, input().split())) ans = 0 for d, l in zip(D, L): ans += max(d, l) print(ans)
[ "y.oksaku@stu.kanazawa-u.ac.jp" ]
y.oksaku@stu.kanazawa-u.ac.jp
d130c48d189ce6a8f79f9a900a9f651c67482890
37fd103f6b0de68512e3cb6098d0abb9220f5a7d
/Python from scratch/027_inclass_reg_ip.py
65e07f0162c6062580b2d1a4687b6a61fbc22782
[]
no_license
FlyingMedusa/PythonELTIT
720d48089738b7e629cad888f0032df3a4ccea2c
36ab01fc9d42337e3c76c59c383d7b1a6142f9b9
refs/heads/master
2020-09-11T18:17:17.825390
2020-04-21T16:38:03
2020-04-21T16:38:03
222,150,066
0
0
null
2020-04-21T16:38:04
2019-11-16T19:37:33
Python
UTF-8
Python
false
false
471
py
import re words = ["eloelo320", "blah@", "192.168.0.1", "asd.asd.20"] pattern = "^\w+$" # or (longer): "^([A-Z]|[a-z]|(\d))*$" id_pattern = "^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$" for word in words: match = re.search(pattern, word) if match: print("matched") else: print("not matched") print("*"*80) for word in words: match = re.search(id_pattern, word) if match: print("matched") else: print("not matched")
[ "sleboda.m98@gmail.com" ]
sleboda.m98@gmail.com
acb51fce28782b1e64bb7fd83ce39d45260ae110
175d6cff12514da71aafef6b9ff48dd56a87db2d
/alveus/widgets/customized_menu.py
76d6dbee02fa885e376a161e4dfb7dd9543930bf
[ "MIT" ]
permissive
FrederikLehn/alveus
d309eea98bd36f06709c55a18f0855f38b5420a9
71a858d0cdd8a4bbd06a28eb35fa7a8a7bd4814b
refs/heads/main
2023-06-26T02:29:59.236579
2021-07-30T11:07:17
2021-07-30T11:07:17
391,029,935
4
3
null
null
null
null
UTF-8
Python
false
false
6,342
py
import wx from wx.lib.agw.flatmenu import FMRendererMgr, FMRenderer, FlatMenu, FlatMenuItem from wx.lib.agw.flatmenu import FMRendererXP, FMRendererMSOffice2007, FMRendererVista from wx.lib.agw.artmanager import ArtManager, DCSaver import _icons as ico class CustomFMRendererMgr(FMRendererMgr): def __init__(self): super().__init__() #if hasattr(self, '_alreadyInitialized'): # return #self._alreadyInitialized = True #self._currentTheme = StyleDefault self._currentTheme = 0 self._renderers = [] self._renderers.append(CustomFMRenderer()) #self._renderers.append(FMRendererXP()) #self._renderers.append(FMRendererMSOffice2007()) #self._renderers.append(FMRendererVista()) class CustomFMRenderer(FMRendererVista): def __init__(self): super().__init__() # self.menuBarFaceColour = wx.SystemSettings_GetColour(wx.SYS_COLOUR_3DFACE) # # self.buttonBorderColour = wx.SystemSettings_GetColour(wx.SYS_COLOUR_ACTIVECAPTION) # self.buttonFaceColour = ArtManager.Get().LightColour(self.buttonBorderColour, 75) # self.buttonFocusBorderColour = wx.SystemSettings_GetColour(wx.SYS_COLOUR_ACTIVECAPTION) # self.buttonFocusFaceColour = ArtManager.Get().LightColour(self.buttonFocusBorderColour, 75) # self.buttonPressedBorderColour = wx.SystemSettings_GetColour(wx.SYS_COLOUR_ACTIVECAPTION) # self.buttonPressedFaceColour = ArtManager.Get().LightColour(self.buttonPressedBorderColour, 60) # # self.menuFocusBorderColour = wx.RED #wx.SystemSettings_GetColour(wx.SYS_COLOUR_ACTIVECAPTION) # self.menuFocusFaceColour = ArtManager.Get().LightColour(self.buttonFocusBorderColour, 75) # self.menuPressedBorderColour = wx.SystemSettings_GetColour(wx.SYS_COLOUR_ACTIVECAPTION) # self.menuPressedFaceColour = ArtManager.Get().LightColour(self.buttonPressedBorderColour, 60) # # self.menuBarFocusBorderColour = wx.SystemSettings_GetColour(wx.SYS_COLOUR_ACTIVECAPTION) # self.menuBarFocusFaceColour = ArtManager.Get().LightColour(self.buttonFocusBorderColour, 75) # self.menuBarPressedBorderColour = wx.SystemSettings_GetColour(wx.SYS_COLOUR_ACTIVECAPTION) # self.menuBarPressedFaceColour = ArtManager.Get().LightColour(self.buttonPressedBorderColour, 60) def DrawButtonColour(self, dc, rect, state, colour): """ Draws a button using the Vista theme. :param `dc`: an instance of :class:`DC`; :param `rect`: the an instance of :class:`Rect`, representing the button client rectangle; :param integer `state`: the button state; :param `colour`: a valid :class:`Colour` instance. """ artMgr = ArtManager.Get() # Keep old pen and brush dcsaver = DCSaver(dc) # same colours as used on ribbon outer = wx.Colour(242, 201, 88) inner = wx.WHITE top = wx.Colour(255, 227, 125) bottom = wx.Colour(253, 243, 204) bdrRect = wx.Rect(*rect) filRect = wx.Rect(*rect) filRect.Deflate(1, 1) r1, g1, b1 = int(top.Red()), int(top.Green()), int(top.Blue()) r2, g2, b2 = int(bottom.Red()), int(bottom.Green()), int(bottom.Blue()) dc.GradientFillLinear(filRect, top, bottom, wx.SOUTH) dc.SetBrush(wx.TRANSPARENT_BRUSH) dc.SetPen(wx.Pen(outer)) dc.DrawRoundedRectangle(bdrRect, 3) bdrRect.Deflate(1, 1) dc.SetPen(wx.Pen(inner)) dc.DrawRoundedRectangle(bdrRect, 2) class CustomMenu(FlatMenu): def __init__(self, parent=None): super().__init__(parent=parent) self._rendererMgr = CustomFMRendererMgr() def CustomPopup(self): if self.GetMenuItems(): pos = wx.GetMousePosition() self.Popup(wx.Point(pos.x, pos.y), self.GetParent()) # common item implementations for ease of use ---------------------------------------------------------------------- def AppendCollapseItem(self, method, bind_to=None): return self.AppendGenericItem('Collapse all', method, bitmap=ico.collapse_16x16.GetBitmap(), bind_to=bind_to) def AppendCopyItem(self, method, bind_to=None): return self.AppendGenericItem('Copy', method, bitmap=ico.copy_16x16.GetBitmap(), bind_to=bind_to) def AppendCutItem(self, method, bind_to=None): return self.AppendGenericItem('Cut', method, bitmap=ico.cut_16x16.GetBitmap(), bind_to=bind_to) def AppendDeleteItem(self, method, bind_to=None): return self.AppendGenericItem('Delete', method, bitmap=ico.delete_16x16.GetBitmap(), bind_to=bind_to) def AppendExpandItem(self, method, bind_to=None): return self.AppendGenericItem('Expand all', method, bitmap=ico.expand_16x16.GetBitmap(), bind_to=bind_to) def AppendExportExcel(self, method, bind_to=None): return self.AppendGenericItem('Export to Excel', method, bitmap=ico.export_spreadsheet_16x16.GetBitmap(), bind_to=bind_to) def AppendGenericItem(self, text, method, bitmap=wx.NullBitmap, bind_to=None): if bind_to is None: bind_to = self.GetParent() item = CustomMenuItem(self, wx.ID_ANY, text, normalBmp=bitmap) self.AppendItem(item) bind_to.Bind(wx.EVT_MENU, method, item) return item def AppendOpenItem(self, method, bind_to=None): return self.AppendGenericItem('Open', method, bitmap=ico.settings_page_16x16.GetBitmap(), bind_to=bind_to) def AppendPasteItem(self, method, bind_to=None): return self.AppendGenericItem('Paste', method, bitmap=ico.paste_16x16.GetBitmap(), bind_to=bind_to) class CustomMenuItem(FlatMenuItem): def __init__(self, parent, id=wx.ID_SEPARATOR, label="", helpString="", kind=wx.ITEM_NORMAL, subMenu=None, normalBmp=wx.NullBitmap, disabledBmp=wx.NullBitmap, hotBmp=wx.NullBitmap): super().__init__(parent, id=id, label=label, helpString=helpString, kind=kind, subMenu=subMenu, normalBmp=normalBmp, disabledBmp=disabledBmp, hotBmp=hotBmp) def SetBitmap(self, bmp): self._normalBmp = bmp
[ "noreply@github.com" ]
FrederikLehn.noreply@github.com
2fdec4c0f0f3dab907001d6f75807c4de79d3ff9
6f1cadc49bc86ea49fd32c64397bfecfd9666f19
/C2/pulsar/implant/migrations/0002_auto_20150827_1851.py
ca655a540d156e556deace4637d8d630fee4b98d
[ "BSD-3-Clause" ]
permissive
killvxk/Pulsar-1
f073c2273e9d4040acc3842963b018d920e78aa4
d290c524674eabb0444ac8c0b1ee65ea1ad44f1f
refs/heads/master
2020-06-24T22:38:25.551118
2019-07-27T03:45:25
2019-07-27T03:45:25
199,111,787
0
0
null
2019-07-27T03:44:52
2019-07-27T03:44:51
null
UTF-8
Python
false
false
390
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('implant', '0001_initial'), ] operations = [ migrations.AlterField( model_name='implant', name='uuid', field=models.CharField(max_length=36), ), ]
[ "root@localhost.localdomain" ]
root@localhost.localdomain
fa8beb3f3c45d810e244afa3a207660de72aae1e
c829a8654d4adcba7944f1aa48c2643c2a2a2803
/sony_utils/split.py
64caf82d8c17086980dca4436a62a0b48901e234
[]
no_license
muma378/Utils
d85390f84226b63474c815285acb6ce351ac0c22
a6ae14f86de360bdabd9fa7f39cd8b05bbd505fb
refs/heads/master
2020-05-21T13:35:51.908847
2017-02-05T06:11:45
2017-02-05T06:11:45
48,424,512
0
2
null
null
null
null
UTF-8
Python
false
false
1,083
py
import os import sys import subprocess import datetime CMD_TEMPLATE = "cut.exe {src_wav} {dst_wav} {start} {end}" NAME = "emotion_F_" DECODING = 'gb2312' if os.name=='nt' else 'utf-8' # split the wav as the information provided by several columns def split_by_cols(cols_file, src_wav, dst_dir='.', name_prefix=NAME): with open(cols_file, 'r') as f: counter = 0 for timeline in f: start, end, text = map(lambda x: x.strip(), timeline.split("\t")) to_sec = lambda x: str(float(x.split(":")[0])*60 + float(x.split(":")[1])) start, end = to_sec(start), to_sec(end) counter += 1 dst_file = os.path.join(dst_dir, unicode(name_prefix+str(counter))).encode(DECODING) # to generate the wave dst_wav = dst_file + '.wav' cmd = CMD_TEMPLATE.format(**locals()) if not os.path.exists(dst_dir): os.makedirs(dst_dir) subprocess.check_call(cmd, shell=True) # to generate the text with open(dst_file+".txt", "w") as t: t.write(text) if __name__ == '__main__': split_by_cols(sys.argv[1], sys.argv[2])
[ "muma.378@163.com" ]
muma.378@163.com
d032794e6b78ff7d03d03deda884cfbf3e772619
caa175a933aca08a475c6277e22cdde1654aca7b
/acondbs/db/__init__.py
5656bd250d55b0a328a26007e1eeb74511f46e9f
[ "MIT" ]
permissive
simonsobs/acondbs
01d68ae40866461b85a6c9fcabdfbea46ef5f920
d18c7b06474b0dacb1dcf1c6dbd1e743407645e2
refs/heads/main
2023-07-07T04:33:40.561273
2023-06-28T22:08:00
2023-06-28T22:08:00
239,022,783
0
1
MIT
2023-06-26T20:36:39
2020-02-07T21:07:46
Python
UTF-8
Python
false
false
1,054
py
"""SQLAlchemy and DB related This package contains functions, classes, and other objects that are related to SQLAlchemy and the DB except ORM model declarations. """ from pathlib import Path from flask import Flask from flask_migrate import Migrate from .cmds import ( backup_db_command, dump_db_command, export_csv_command, import_csv_command, init_db_command, ) from .sa import sa migrate = Migrate() _MIGRATIONS_DIR = str(Path(__file__).resolve().parent.parent / 'migrations') def init_app(app: Flask) -> None: """Initialize the Flask application object This function is called by `create_app()` of Flask Parameters ---------- app : Flask The Flask application object, an instance of `Flask` """ sa.init_app(app) migrate.init_app(app, sa, directory=_MIGRATIONS_DIR) app.cli.add_command(init_db_command) app.cli.add_command(dump_db_command) app.cli.add_command(import_csv_command) app.cli.add_command(export_csv_command) app.cli.add_command(backup_db_command)
[ "tai.sakuma@gmail.com" ]
tai.sakuma@gmail.com
fd78af3570754694ae18160dcad79b077bc0eeb9
242086b8c6a39cbc7af3bd7f2fd9b78a66567024
/python/PP4E-Examples-1.4/Examples/PP4E/Dbase/TableBrowser/dbview.py
9975899912c220e9ca0a023de57601b57da0cc5b
[]
no_license
chuzui/algorithm
7537d0aa051ac4cbe9f6a7ca9a3037204803a650
c3006b24c4896c1242d3ceab43ace995c94f10c8
refs/heads/master
2021-01-10T13:05:30.902020
2015-09-27T14:39:02
2015-09-27T14:39:02
8,404,397
4
4
null
null
null
null
UTF-8
Python
false
false
981
py
################################################################## # view any existing shelve directly; this is more general than a # "formtable.py shelve 1 filename" cmdline--only works for Actor; # pass in a filename (and mode) to use this to browse any shelve: # formtable auto picks up class from the first instance fetched; # run dbinit1 to (re)initialize dbase shelve with a template. ################################################################## from sys import argv from formtable import * from formgui import FormGui mode = 'class' file = '../data/mydbase-' + mode if len(argv) > 1: file = argv[1] # dbview.py file? mode?? if len(argv) > 2: mode = argv[2] if mode == 'dict': table = ShelveOfDictionary(file) # view dictionaries else: table = ShelveOfInstance(file) # view class objects FormGui(table).mainloop() table.close() # close needed for some dbm
[ "zui" ]
zui
45d7bb9e577d90e6669bedad91fe02a0067a2061
41cd1bcff0166ed3aab28a183a2837adaa2d9a07
/allauth/account/decorators.py
eb906aad176d794c9e8a3407a9d1495c7ae1d76d
[ "MIT" ]
permissive
thomaspurchas/django-allauth
694dde8615b90cd4768e7f9eda79fdcf6fe3cdb6
d7a8b9e13456180648450431057a206afa689373
refs/heads/master
2022-02-04T03:18:25.851391
2013-05-20T11:26:55
2013-05-20T11:26:55
7,754,028
1
0
MIT
2022-02-01T23:04:02
2013-01-22T14:44:56
Python
UTF-8
Python
false
false
1,627
py
from django.contrib.auth.decorators import login_required from django.contrib.auth import REDIRECT_FIELD_NAME from django.shortcuts import render from .models import EmailAddress from .utils import send_email_confirmation def verified_email_required(function=None, login_url=None, redirect_field_name=REDIRECT_FIELD_NAME): """ Even when email verification is not mandatory during signup, there may be circumstances during which you really want to prevent unverified users to proceed. This decorator ensures the user is authenticated and has a verified email address. If the former is not the case then the behavior is identical to that of the standard `login_required` decorator. If the latter does not hold, email verification mails are automatically resend and the user is presented with a page informing him he needs to verify his email address. """ def decorator(view_func): @login_required(redirect_field_name=redirect_field_name, login_url=login_url) def _wrapped_view(request, *args, **kwargs): if not EmailAddress.objects.filter(user=request.user, verified=True).exists(): send_email_confirmation(request, request.user) return render(request, 'account/verified_email_required.html') return view_func(request, *args, **kwargs) return _wrapped_view if function: return decorator(function) return decorator
[ "raymond.penners@intenct.nl" ]
raymond.penners@intenct.nl
3397fdf03555cbfe28cc3fed54c3f4f02c8e6c2b
091155389673325cfe8b0da3dc64c113f1ded707
/playground/segmentation/coco/solo/solo.res50.fpn.coco.800size.1x/config.py
66f251fa6baf96372bfaf789658e15cbd0595e82
[ "Apache-2.0" ]
permissive
Megvii-BaseDetection/cvpods
7b7c808257b757d7f94d520ea03b370105fb05eb
2deea5dc659371318c8a570c644201d913a83027
refs/heads/master
2023-03-22T00:26:06.248877
2023-03-10T10:05:26
2023-03-10T10:05:26
318,124,806
659
91
Apache-2.0
2023-03-10T10:05:28
2020-12-03T08:26:57
Python
UTF-8
Python
false
false
1,606
py
import os.path as osp from cvpods.configs.solo_config import SOLOConfig _config_dict = dict( MODEL=dict( WEIGHTS="detectron2://ImageNetPretrained/MSRA/R-50.pkl", ), DATASETS=dict( TRAIN=("coco_2017_train",), TEST=("coco_2017_val",), ), SOLVER=dict( LR_SCHEDULER=dict( NAME="WarmupMultiStepLR", MAX_ITER=90000, STEPS=(60000, 80000), WARMUP_FACTOR=1.0 / 1000, WARMUP_ITERS=500, WARMUP_METHOD="linear", GAMMA=0.1, ), OPTIMIZER=dict( NAME="SGD", BASE_LR=0.01, WEIGHT_DECAY=0.0001, MOMENTUM=0.9, ), CHECKPOINT_PERIOD=5000, IMS_PER_BATCH=16, IMS_PER_DEVICE=2, BATCH_SUBDIVISIONS=1, ), INPUT=dict( AUG=dict( TRAIN_PIPELINES=[ ("ResizeShortestEdge", dict(short_edge_length=(800,), max_size=1333, sample_style="choice")), ("RandomFlip", dict()), ], TEST_PIPELINES=[ ("ResizeShortestEdge", dict(short_edge_length=800, max_size=1333, sample_style="choice")), ], ) ), OUTPUT_DIR=osp.join( '/data/Outputs/model_logs/cvpods_playground', osp.split(osp.realpath(__file__))[0].split("playground/")[-1] ), ) class CustomSOLOConfig(SOLOConfig): def __init__(self): super(CustomSOLOConfig, self).__init__() self._register_configuration(_config_dict) config = CustomSOLOConfig()
[ "wangfeng02@megvii.com" ]
wangfeng02@megvii.com
73199b52b898b470c3bb8e2c68de555ebab6a237
354ff630d5eed81ffe67be28dd82b990a733a1cd
/pysim/information/histogram.py
b5c2e51802a07e918c9766dcc879d029036a221c
[ "MIT" ]
permissive
superpig99/pysim
22ba1521c0002f815f5d074114109461e0cc35fc
4cd5f0987d3cbdeba1c932ca845df1b0bd9d46bf
refs/heads/master
2023-05-15T05:30:01.272708
2020-04-02T14:25:35
2020-04-02T14:25:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,655
py
from typing import Union, Optional, Dict import numpy as np from scipy import stats def hist_entropy( X: np.ndarray, bins: Union[str, int] = "auto", correction: bool = True, hist_kwargs: Optional[Dict] = {}, ) -> float: """Calculates the entropy using the histogram of a univariate dataset. Option to do a Miller Maddow correction. Parameters ---------- X : np.ndarray, (n_samples) the univariate input dataset bins : {str, int}, default='auto' the number of bins to use for the histogram estimation correction : bool, default=True implements the Miller-Maddow correction for the histogram entropy estimation. hist_kwargs: Optional[Dict], default={} the histogram kwargs to be used when constructing the histogram See documention for more details: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html Returns ------- H_hist_entropy : float the entropy for this univariate histogram Example ------- >> from scipy import stats >> from pysim.information import histogram_entropy >> X = stats.gamma(a=10).rvs(1_000, random_state=123) >> histogram_entropy(X) array(2.52771628) """ # get histogram hist_counts = np.histogram(X, bins=bins, **hist_kwargs) # create random variable hist_dist = stats.rv_histogram(hist_counts) # calculate entropy H = hist_dist.entropy() # MLE Estimator with Miller-Maddow Correction if correction == True: H += 0.5 * (np.sum(hist_counts[0] > 0) - 1) / hist_counts[0].sum() return H
[ "emanjohnson91@gmail.com" ]
emanjohnson91@gmail.com
6bd7da921ee4e5f2c38d8dd8832742960949e196
caac09a412ed9783e31e6254ba937d2ff1495dc8
/test/calculator_tests.py
974b8a61d0acd5e288c2f2b26d39039e3047ccc2
[ "MIT" ]
permissive
ace-racer/lint-ut-circleci
c01095e9e41137a80499a03a81075ec86b4a9862
f1d6b43f97b5146c4a168636d8517a8d02a3b21e
refs/heads/master
2020-08-29T07:15:51.532944
2019-10-28T05:30:34
2019-10-28T05:30:34
217,963,717
0
0
null
null
null
null
UTF-8
Python
false
false
873
py
import unittest from calculator import Calculator class CalculatorTests(unittest.TestCase): def test_add(self): calculator = Calculator() self.assertEqual(calculator.add(10, 20), 30) def test_subtract(self): calculator = Calculator() self.assertEqual(calculator.subtract(10, 20), -10) def test_multiply(self): calculator = Calculator() self.assertEqual(calculator.multiply(10, 20), 20) def test_divide(self): calculator = Calculator() self.assertEqual(calculator.divide(10, 20), 0.5) def suite(): """ Test suite :return: The test suite """ suite = unittest.TestSuite() suite.addTests( unittest.TestLoader().loadTestsFromTestCase(CalculatorTests) ) return suite if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite())
[ "anuragchatterjee92@gmail.com" ]
anuragchatterjee92@gmail.com
6a5cafcf6f8b670c1c3a830f0502074d89470102
0dfc473870552ac9384a8b24e96046728a42f6ed
/utest/model/test_control.py
1a17f6adb5d948f24ea2250696f2a05d093168e7
[ "Apache-2.0", "CC-BY-3.0" ]
permissive
rmf/robotframework
fecb4821fd308d107ae94ee3077a2d968ad9163d
a26cd326d1a397edc56993c453380dcd9b49e407
refs/heads/master
2023-09-03T07:04:30.300003
2021-11-16T11:01:32
2021-11-16T11:01:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,125
py
import unittest from robot.model import For, If, IfBranch, TestCase from robot.utils.asserts import assert_equal IF = If.IF ELSE_IF = If.ELSE_IF ELSE = If.ELSE class TestFor(unittest.TestCase): def test_string_reprs(self): for for_, exp_str, exp_repr in [ (For(), 'FOR IN ', "For(variables=(), flavor='IN', values=())"), (For(('${x}',), 'IN RANGE', ('10',)), 'FOR ${x} IN RANGE 10', "For(variables=('${x}',), flavor='IN RANGE', values=('10',))"), (For(('${x}', '${y}'), 'IN ENUMERATE', ('a', 'b')), 'FOR ${x} ${y} IN ENUMERATE a b', "For(variables=('${x}', '${y}'), flavor='IN ENUMERATE', values=('a', 'b'))"), (For([u'${\xfc}'], 'IN', [u'f\xf6\xf6']), u'FOR ${\xfc} IN f\xf6\xf6', u"For(variables=[%r], flavor='IN', values=[%r])" % (u'${\xfc}', u'f\xf6\xf6')) ]: assert_equal(str(for_), exp_str) assert_equal(repr(for_), 'robot.model.' + exp_repr) class TestIf(unittest.TestCase): def test_type(self): assert_equal(IfBranch().type, IF) assert_equal(IfBranch(type=ELSE).type, ELSE) assert_equal(IfBranch(type=ELSE_IF).type, ELSE_IF) def test_type_with_nested_if(self): branch = IfBranch() branch.body.create_if() assert_equal(branch.body[0].body.create_branch().type, IF) assert_equal(branch.body[0].body.create_branch(ELSE_IF).type, ELSE_IF) assert_equal(branch.body[0].body.create_branch(ELSE).type, ELSE) def test_root_id(self): assert_equal(If().id, None) assert_equal(TestCase().body.create_if().id, None) def test_branch_id_without_parent(self): assert_equal(IfBranch().id, 'k1') def test_branch_id_with_only_root(self): root = If() assert_equal(root.body.create_branch().id, 'k1') assert_equal(root.body.create_branch().id, 'k2') def test_branch_id_with_real_parent(self): root = TestCase().body.create_if() assert_equal(root.body.create_branch().id, 't1-k1') assert_equal(root.body.create_branch().id, 't1-k2') def test_string_reprs(self): for if_, exp_str, exp_repr in [ (IfBranch(), 'IF None', "IfBranch(type='IF', condition=None)"), (IfBranch(condition='$x > 1'), 'IF $x > 1', "IfBranch(type='IF', condition='$x > 1')"), (IfBranch(ELSE_IF, condition='$x > 2'), 'ELSE IF $x > 2', "IfBranch(type='ELSE IF', condition='$x > 2')"), (IfBranch(ELSE), 'ELSE', "IfBranch(type='ELSE', condition=None)"), (IfBranch(condition=u'$x == "\xe4iti"'), u'IF $x == "\xe4iti"', u"IfBranch(type='IF', condition=%r)" % u'$x == "\xe4iti"'), ]: assert_equal(str(if_), exp_str) assert_equal(repr(if_), 'robot.model.' + exp_repr) if __name__ == '__main__': unittest.main()
[ "peke@iki.fi" ]
peke@iki.fi
29c48053784a6f6b40a6b5ba0c848c3ad67b2000
420eecae12598477a4005026a250a94bb872ef81
/DAGMan/setup.py
6c6ab5acc87dbf616290a6a869c1212b3cdc414c
[]
no_license
chadfreer/submit-examples
c65da1ebf7b6aee9b20a30a4d6b48a30bd02e1c1
cc416b30c7ff7f133e7d3cd69854886a99e3fc91
refs/heads/main
2023-07-08T12:34:36.267389
2021-08-18T13:56:04
2021-08-18T13:56:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
738
py
#!/usr/bin/env python cwd = os.getcwd() condor_script = cwd+'/submit.condor' retries = 2 njobs = 3 submit_script = cwd+'/scratch/dag.submit' f_out = open(submit_script,'w') for job_num in range(njobs): outfile_name = 'outfile_'+str(job_num)+'A.txt' outfile_loc = cwd+'/output/' f_out.write("JOB\tjob" + str(job_num) +'\t' + condor_script+'\n') f_out.write("VARS\tjob" + str(job_num) +'\t' + 'input_float = "'+str(job_num) +'"\n') f_out.write("VARS\tjob" + str(job_num) +'\t' + 'outfile_loc = "'+str(outfile_loc) +'"\n') f_out.write("VARS\tjob" + str(job_num) +'\t' + 'outfile_name = "'+str(outfile_name) +'"\n') f_out.write("RETRY\tjob" + str(job_num) +'\t' + str(retries)+'\n') f_out.close() print('Ouput: '+submit_script)
[ "paus@mit.edu" ]
paus@mit.edu
7d8fb50e7ee7527432b24d8fb50d44b1c35dfd89
74482894c61156c13902044b4d39917df8ed9551
/test/test_address_coins_transaction_confirmed_data_item_mined_in_block.py
fe17c1e565968234e57b107948c613cf49feb8da
[ "MIT" ]
permissive
xan187/Crypto_APIs_2.0_SDK_Python
bb8898556ba014cc7a4dd31b10e24bec23b74a19
a56c75df54ef037b39be1315ed6e54de35bed55b
refs/heads/main
2023-06-22T15:45:08.273635
2021-07-21T03:41:05
2021-07-21T03:41:05
387,982,780
1
0
NOASSERTION
2021-07-21T03:35:29
2021-07-21T03:35:29
null
UTF-8
Python
false
false
1,446
py
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: developers@cryptoapis.io Generated by: https://openapi-generator.tech """ import sys import unittest import cryptoapis from cryptoapis.model.address_coins_transaction_confirmed_data_item_mined_in_block import AddressCoinsTransactionConfirmedDataItemMinedInBlock class TestAddressCoinsTransactionConfirmedDataItemMinedInBlock(unittest.TestCase): """AddressCoinsTransactionConfirmedDataItemMinedInBlock unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAddressCoinsTransactionConfirmedDataItemMinedInBlock(self): """Test AddressCoinsTransactionConfirmedDataItemMinedInBlock""" # FIXME: construct object with mandatory attributes with example values # model = AddressCoinsTransactionConfirmedDataItemMinedInBlock() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "kristiyan.ivanov@menasoftware.com" ]
kristiyan.ivanov@menasoftware.com
aac20397a75eddaa76c1781124bc4879759427c2
b222a5b5a84ce5d4fa0ddb084cffd1619a84a17c
/sequence_equation/sequence_equation.py
7a5ca7223035ab0aec3fa4aea0a2b337cc528cbd
[]
no_license
unabl4/HR
a51a5d461b3d126e1021646b9f210e099b8627b3
1aaf96734b8845c911d20a4955d3ffd64a2d16b9
refs/heads/master
2021-04-05T23:55:27.202440
2018-11-04T22:44:46
2018-11-04T22:44:46
125,117,758
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
# https://www.hackerrank.com/challenges/permutation-equation/problem #!/bin/python3 # Complete the permutationEquation function below. def permutationEquation(p): m = {} for a,b in enumerate(p): m[b] = a+1 return [m[m[x+1]] for x in range(len(p))] n = int(input()) p = list(map(int, input().rstrip().split())) result = permutationEquation(p) print('\n'.join(map(str, result)))
[ "unabl4@gmail.com" ]
unabl4@gmail.com
b0654c2a2d79501a23167110aa08c91d2f74bc55
ff99c677aba11e27c252f773b52cd54f5de79279
/ctt-server/openapi_server/models/test_artifact.py
eb26e77d966f8b9e136f61f7fd8c85e4776ebb27
[ "Apache-2.0" ]
permissive
radon-h2020/radon-ctt
b7eeb82f59e36e2a258d0a2ba9cd9483eb3dd247
97fcf5e800a0129d24e119b430d94f07ca248ba9
refs/heads/master
2023-01-04T23:44:49.611599
2021-09-15T15:34:41
2021-09-15T15:34:41
235,379,642
0
7
Apache-2.0
2022-12-27T15:56:38
2020-01-21T15:48:45
Python
UTF-8
Python
false
false
5,920
py
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from openapi_server.models.base_model_ import Model from openapi_server import util class TestArtifact(Model): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. """ def __init__(self, uuid=None, project_uuid=None, sut_tosca_path=None, sut_inputs_path=None, ti_tosca_path=None, ti_inputs_path=None, commit_hash=None): # noqa: E501 """TestArtifact - a model defined in OpenAPI :param uuid: The uuid of this TestArtifact. # noqa: E501 :type uuid: str :param project_uuid: The project_uuid of this TestArtifact. # noqa: E501 :type project_uuid: str :param sut_tosca_path: The sut_tosca_path of this TestArtifact. # noqa: E501 :type sut_tosca_path: str :param ti_tosca_path: The ti_tosca_path of this TestArtifact. # noqa: E501 :type ti_tosca_path: str :param commit_hash: The commit_hash of this TestArtifact. # noqa: E501 :type commit_hash: str """ self.openapi_types = { 'uuid': str, 'project_uuid': str, 'sut_tosca_path': str, 'sut_inputs_path': str, 'ti_tosca_path': str, 'ti_inputs_path': str, 'commit_hash': str } self.attribute_map = { 'uuid': 'uuid', 'project_uuid': 'project_uuid', 'sut_tosca_path': 'sut_tosca_path', 'sut_inputs_path': 'sut_inputs_path', 'ti_tosca_path': 'ti_tosca_path', 'ti_inputs_path': 'ti_inputs_path', 'commit_hash': 'commit_hash' } self._uuid = uuid self._project_uuid = project_uuid self._sut_tosca_path = sut_tosca_path self._sut_inputs_path = sut_inputs_path self._ti_tosca_path = ti_tosca_path self._ti_inputs_path = ti_inputs_path self._commit_hash = commit_hash @classmethod def from_dict(cls, dikt) -> 'TestArtifact': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The TestArtifact of this TestArtifact. # noqa: E501 :rtype: TestArtifact """ return util.deserialize_model(dikt, cls) @property def uuid(self): """Gets the uuid of this TestArtifact. :return: The uuid of this TestArtifact. :rtype: str """ return self._uuid @uuid.setter def uuid(self, uuid): """Sets the uuid of this TestArtifact. :param uuid: The uuid of this TestArtifact. :type uuid: str """ self._uuid = uuid @property def project_uuid(self): """Gets the project_uuid of this TestArtifact. :return: The project_uuid of this TestArtifact. :rtype: str """ return self._project_uuid @project_uuid.setter def project_uuid(self, project_uuid): """Sets the project_uuid of this TestArtifact. :param project_uuid: The project_uuid of this TestArtifact. :type project_uuid: str """ self._project_uuid = project_uuid @property def sut_tosca_path(self): """Gets the sut_tosca_path of this TestArtifact. :return: The sut_tosca_path of this TestArtifact. :rtype: str """ return self._sut_tosca_path @sut_tosca_path.setter def sut_tosca_path(self, sut_tosca_path): """Sets the sut_tosca_path of this TestArtifact. :param sut_tosca_path: The sut_tosca_path of this TestArtifact. :type sut_tosca_path: str """ self._sut_tosca_path = sut_tosca_path @property def sut_inputs_path(self): """Gets the sut_inputs_path of this TestArtifact. :return: The sut_inputs_path of this TestArtifact. :rtype: str """ return self._sut_inputs_path @sut_inputs_path.setter def sut_inputs_path(self, sut_inputs_path): """Sets the sut_inputs_path of this TestArtifact. :param sut_inputs_path: The sut_tosca_path of this TestArtifact. :type sut_inputs_path: str """ self._sut_inputs_path = sut_inputs_path @property def ti_tosca_path(self): """Gets the ti_tosca_path of this TestArtifact. :return: The ti_tosca_path of this TestArtifact. :rtype: str """ return self._ti_tosca_path @ti_tosca_path.setter def ti_tosca_path(self, ti_tosca_path): """Sets the ti_tosca_path of this TestArtifact. :param ti_tosca_path: The ti_tosca_path of this TestArtifact. :type ti_tosca_path: str """ self._ti_tosca_path = ti_tosca_path @property def ti_inputs_path(self): """Gets the ti_inputs_path of this TestArtifact. :return: The ti_inputs_path of this TestArtifact. :rtype: str """ return self._ti_inputs_path @ti_inputs_path.setter def ti_inputs_path(self, ti_inputs_path): """Sets the ti_inputs_path of this TestArtifact. :param ti_inputs_path: The ti_tosca_path of this TestArtifact. :type ti_inputs_path: str """ self._ti_inputs_path = ti_inputs_path @property def commit_hash(self): """Gets the commit_hash of this TestArtifact. :return: The commit_hash of this TestArtifact. :rtype: str """ return self._commit_hash @commit_hash.setter def commit_hash(self, commit_hash): """Sets the commit_hash of this TestArtifact. :param commit_hash: The commit_hash of this TestArtifact. :type commit_hash: str """ self._commit_hash = commit_hash
[ "duellmann@iste.uni-stuttgart.de" ]
duellmann@iste.uni-stuttgart.de
149ff803cf2e12675ab01b204bcf549300d50aea
0e1a0329e1b96405d3ba8426fd4f935aa4d8b04b
/base/tests/test_create_free_client.py
33cbc04a108ef50da4ffb8fda7a8f0709f6032c5
[]
no_license
ugik/Blitz
6e3623a4a03309e33dcc0b312800e8cadc26d28c
740f65ecaab86567df31d6a0055867be193afc3d
refs/heads/master
2021-05-03T20:15:20.516014
2015-03-11T12:33:34
2015-03-11T12:33:34
25,015,963
0
0
null
null
null
null
UTF-8
Python
false
false
4,535
py
# -*- coding: utf-8 -*- from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import NoAlertPresentException import unittest, time, re class TestCreateFreeClient(unittest.TestCase): def setUp(self): self.driver = webdriver.Firefox() self.driver.implicitly_wait(30) self.driver.set_window_size(1300, 1000) self.base_url = "http://127.0.0.1:8000" self.verificationErrors = [] self.accept_next_alert = True def test_create_free_client(self): driver = self.driver driver.get(self.base_url + "/client-signup?signup_key=TEST2") driver.find_element_by_name("password1").clear() driver.find_element_by_name("password1").send_keys("asdf") driver.find_element_by_name("password2").clear() driver.find_element_by_name("password2").send_keys("asdf") driver.find_element_by_xpath("//button").click() driver.find_element_by_link_text(u"Set up your profile →").click() driver.find_element_by_css_selector("label.radio").click() driver.find_element_by_name("age").clear() driver.find_element_by_name("age").send_keys("30") driver.find_element_by_xpath("//form[@id='setupForm']/div[3]/label[2]").click() # Warning: assertTextPresent may require manual changes self.assertRegexpMatches(driver.find_element_by_css_selector("BODY").text, r"^[\s\S]*$") driver.find_element_by_name("weight").clear() driver.find_element_by_name("weight").send_keys("100") driver.find_element_by_name("height_feet").clear() driver.find_element_by_name("height_feet").send_keys("1") driver.find_element_by_name("height_inches").clear() driver.find_element_by_name("height_inches").send_keys("80") driver.find_element_by_css_selector("button.obtn.full-width").click() driver.find_element_by_id("skip-headshot").click() driver.find_element_by_link_text(u"Finish Signup →").click() # Warning: assertTextPresent may require manual changes self.assertRegexpMatches(driver.find_element_by_css_selector("BODY").text, r"^[\s\S]*$") driver.get(self.base_url + "/") # driver.find_element_by_link_text("Log Workout").click() # import pdb; pdb.set_trace() # driver.find_element_by_xpath("//div[2]/input").clear() # driver.find_element_by_xpath("//div[2]/input").send_keys("90") # driver.find_element_by_xpath("//div[3]/div[2]/input").clear() # driver.find_element_by_xpath("//div[3]/div[2]/input").send_keys("95") # driver.find_element_by_xpath("//div[3]/div[3]/input").clear() # driver.find_element_by_xpath("//div[3]/div[3]/input").send_keys("7") # driver.find_element_by_xpath("//div[4]/div[2]/input").clear() # driver.find_element_by_xpath("//div[4]/div[2]/input").send_keys("100") # driver.find_element_by_xpath("//div[4]/div[3]/input").clear() # driver.find_element_by_xpath("//div[4]/div[3]/input").send_keys("8") # driver.find_element_by_css_selector("span.small").click() # time.sleep(1) # driver.find_element_by_link_text("Save These Sets").click() # driver.find_element_by_css_selector("button.obtn.log-workout-submit").click() # Warning: assertTextPresent may require manual changes # self.assertRegexpMatches(driver.find_element_by_css_selector("BODY").text, r"^[\s\S]*$") driver.get(self.base_url + "/logout") def is_element_present(self, how, what): try: self.driver.find_element(by=how, value=what) except NoSuchElementException, e: return False return True def is_alert_present(self): try: self.driver.switch_to_alert() except NoAlertPresentException, e: return False return True def close_alert_and_get_its_text(self): try: alert = self.driver.switch_to_alert() alert_text = alert.text if self.accept_next_alert: alert.accept() else: alert.dismiss() return alert_text finally: self.accept_next_alert = True def tearDown(self): self.driver.quit() self.assertEqual([], self.verificationErrors) if __name__ == "__main__": unittest.main()
[ "georgek@gmail.com" ]
georgek@gmail.com
29dc5b8d43fb5302a1441222a19a7d9099bcf929
8ce0fd5e5c5b858fa24e388f2114885160421c03
/python/netuse/net_use.py
1fd08a9bcb6cb202b36976078d0b840d73d473a4
[]
no_license
kong-ling/scripts
266e9975ae0156d6fdddf43b8f1d7ee20469b388
3c41c49646358d46871c8fd8ebe1ba52bdea046c
refs/heads/master
2021-01-10T08:29:34.772634
2020-01-03T09:04:57
2020-01-03T09:04:57
43,275,002
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
import os import sys import subprocess p = subprocess.Popen('net use', stdout = subprocess.PIPE, stdin = subprocess.PIPE) print(type(p)) for drv in p.stdout.readlines(): print(drv.strip())
[ "kong.ling@outlook.com" ]
kong.ling@outlook.com
bfc4a81a2576286e533d2b117dd711bc3d73d013
3c27b86f0165ab24e6b04d505e8471e032594f0b
/pythonAnimations/pyOpenGLChess/engineDirectory/oglc-env/lib/python2.7/site-packages/OpenGL/GLES2/EXT/shadow_samplers.py
119ce82880ccfe3b97741cc729ccd3611e990b3f
[ "LicenseRef-scancode-warranty-disclaimer", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "LGPL-2.1-or-later", "GPL-3.0-only", "LGPL-2.0-or-later", "GPL-3.0-or-later", "MIT" ]
permissive
alexus37/AugmentedRealityChess
8b9ccdfffc8aee93a86a44b8ef53c034ec6a10d1
7f600ad153270feff12aa7aa86d7ed0a49ebc71c
refs/heads/master
2020-12-24T13:29:21.967833
2020-02-27T09:38:50
2020-02-27T09:38:50
31,264,034
1
1
MIT
2020-02-27T09:38:52
2015-02-24T14:36:34
Python
UTF-8
Python
false
false
774
py
'''OpenGL extension EXT.shadow_samplers This module customises the behaviour of the OpenGL.raw.GLES2.EXT.shadow_samplers to provide a more Python-friendly API The official definition of this extension is available here: http://www.opengl.org/registry/specs/EXT/shadow_samplers.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES2 import _types, _glgets from OpenGL.raw.GLES2.EXT.shadow_samplers import * from OpenGL.raw.GLES2.EXT.shadow_samplers import _EXTENSION_NAME def glInitShadowSamplersEXT(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
[ "alexlelidis@gmx.de" ]
alexlelidis@gmx.de
fa7e40b0bb754bc7b775b514c47ad6387e9aded8
1ecb394b10e9622a5a5d8845b44e4585f464d42e
/nncp-rpc/lib/logic/Ticket/jl.py
6eba7a4aba23fda0584343d0701709d8cb297dec
[]
no_license
dragonflylxp/lottory
7ec28d196f58692d9d417aa5d6963c182afe260a
b04f115df325a58148dc19d7cdfc21b28892a6a1
refs/heads/master
2020-04-28T08:53:09.007092
2020-04-17T10:50:41
2020-04-17T10:50:41
175,145,951
1
0
null
null
null
null
UTF-8
Python
false
false
2,125
py
#encoding=utf-8 import MySQLdb import traceback import define from dbpool import db_pool from util.tools import Log from common.dbs import BaseModel, access from baseticket import BaseTicket logger = Log().getLog() class JlTicket(BaseTicket): def __init__(self): super(JlTicket, self).__init__(47) @access("w") def save_tickets(self, params): project = params.get("project") tickets = params.get("tickets") mid = params.get("mid", None) uid = project.get("f_uid") pid = project.get("f_pid") lotid = project.get("f_lotid") try: if mid is not None: #更新msg状态 sql = "UPDATE t_msg_record SET f_msgstatus=%s WHERE f_mid=%s AND f_msgstatus=%s" ret = self.cursor.execute(sql, (define.MSG_STATUS_DONE, mid, define.MSG_STATUS_NEW)) if ret < 1: logger.warning("Tickets already saved! lotid=%s|pid=%s|mid=%s", 28, pid, mid) raise Exception("Tickets already saved!") sql = """ INSERT INTO t_ticket_jl( f_uid, f_pid, f_lotid, f_wtype, f_ggtype, f_beishu, f_zhushu, f_allmoney, f_fileorcode, f_firstprocessid, f_lastprocessid, f_ticketstatus) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s) """ args = [] for tkt in tickets: tpl = (uid, pid, lotid, tkt["wtype"], tkt["ggtype"], tkt["beishu"],tkt["zhushu"], tkt["allmoney"], tkt["fileorcode"], tkt["firstprocessid"], tkt["lastprocessid"], define.TICKET_STATUS_SAVED) args.append(tpl) self.cursor.executemany(sql, args) self.conn.commit() except Exception as ex: logger.error(traceback.format_exc()) self.conn.rollback() raise return pid
[ "noreply@github.com" ]
dragonflylxp.noreply@github.com
54eef6b92d0dea189cce79be2163407619b9dcff
f85cc3fb482f1b71e7a749e1bcdbe90ba78fd059
/swap_every_two_linked_list.py
382cd105924360af622ba95190ca1d4012b07495
[]
no_license
shan-mathi/InterviewBit
c94e091f728b9d18d55e86130756824a3637a744
6688e4ff54d56cf75297bb72ce67926b40e45127
refs/heads/main
2023-06-29T10:43:29.712472
2021-08-05T19:06:53
2021-08-05T19:06:53
364,321,855
0
0
null
null
null
null
UTF-8
Python
false
false
728
py
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: # @param A : head node of linked list # @return the head node in the linked list def swapPairs(self, A): if A is None or A.next is None: return A temp = ListNode(-1) temp.next = A current = temp while current.next is not None and current.next.next is not None: first = current.next second = current.next.next first.next = second.next current.next = second current.next.next = first current = current.next.next return temp.next
[ "noreply@github.com" ]
shan-mathi.noreply@github.com
b5fca79b1608f0797b4b9d9f43d800951d1a52d8
d4c024cc1330aa86582e0e3f25d5c0f76a9ccbe0
/align/predict.py
2f6ebbfb812250d45681908e7d093c5c0b37572c
[]
no_license
jeehyun100/insta_crawling
464d5a90a614ed4aab1ca28566ad87cbda279447
39ada39513bc3655adc2e624c786cc6fd8473a7e
refs/heads/master
2021-09-07T15:41:57.013861
2018-02-25T09:32:36
2018-02-25T09:32:36
118,861,846
0
0
null
null
null
null
UTF-8
Python
false
false
2,797
py
import os import cv2 import numpy as np import tensorflow as tf from scipy import misc import align.detect_face as detect_face #from facenet_tf.src.common import facenet from PIL import Image from PIL import ImageFont from PIL import ImageDraw import datetime import dlib from imutils.face_utils import rect_to_bb import face_recognition import matplotlib.pyplot as plt class face_detect_crawling(object): def get_boxes_frame( minsize, pnet, rnet,onet, threshold, factor, frame, detect_type, margin): boxes = [] img_size = np.asarray(frame.shape)[0:2] if len(img_size) == 0: return frame, boxes gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) bounding_boxes, _ = detect_face.detect_face(frame, minsize, pnet, rnet, onet, threshold, factor) for bounding_box in bounding_boxes: det = np.squeeze(bounding_box[0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) if detect_type == 'dlib': bb[2] += bb[0] bb[3] += bb[1] elif detect_type == 'hog' or detect_type == 'cnn': bb[1], bb[2], bb[3], bb[0] = bounding_box if len(boxes) == 0: boxes.append(bb) else: if boxes[0][2] - boxes[0][0] < bb[2] - bb[0]: boxes[0] = bb if len(boxes) > 0: cropped = frame[boxes[0][1]:boxes[0][3], boxes[0][0]:boxes[0][2], :] else: cropped = None return cropped, boxes def main(): # Arguments # _detecter = face_detect_crawling() filename = '/home/dev/insta_crawling/data/2pmhouse/10_20180221064634.jpg' image = cv2.imread(filename, flags=cv2.IMREAD_COLOR) config = tf.ConfigProto(device_count={'GPU': 0}) with tf.Session(config=config) as sess: pnet, rnet, onet = detect_face.create_mtcnn(sess, None) #frame, self.minsize, self.pnet, self.rnet, self.onet,self.threshold, self.factor minsize = 20 threshold = [0.6, 0.7, 0.7] factor = 0.709 margin = 90 #image_size = 300 #cropped_size = 30 # rotation use detect_type = 'mtcnn' # dlib, mtcnn, hog, cnn rotation = False aligned, boxes = face_detect_crawling.get_boxes_frame(minsize, pnet, rnet,onet, threshold, factor, image, detect_type, margin) if aligned != None: cv2.imshow("Window", aligned); print("success") if __name__ == "__main__": main()
[ "intwis100@naver.com" ]
intwis100@naver.com
0723e9d3c2f3ed3348f8962f73db031393fd5949
c59738ddfb08134af01d75255c4469071a1e135e
/002_Python_data_analysis_from_entry_to_master/ch10_Numpy科学计算库/02_数组的操作_分片_索引_拼接/005_二维数组_水平_竖直分割split.py
54eb1c3acdf6b7d1c6d0d1128504a00f3cc4eed3
[]
no_license
FelixZFB/Python_data_analysis
371a8460da79e8fdb30b10c02b662419b62a5998
62f018d88d8454afe65980efd8d771ac8691956a
refs/heads/master
2020-05-20T14:46:00.606684
2020-02-04T14:25:20
2020-02-04T14:25:20
185,629,174
0
0
null
null
null
null
UTF-8
Python
false
false
552
py
# -*- coding:utf-8 -*- import numpy as np # 生成两个形状一样的二维数组 a = np.arange(16).reshape(4, 4) print(a) print("*" * 50) # 水平竖直分割是拼接的反操作 # 竖直分割: 以行分割 # 水平分割: 以列分割 # 竖直分割,指定被分割为几个数组,数要被整除 b = np.vsplit(a, 2) print(b) print("*" * 50) # 水平分割 c = np.hsplit(a, 2) print(c) print("*" * 50) # 也可以直接使用split函数,指定轴号0,作用于列,以行分割,竖直分割列 e = np.split(a, 2, axis=0) print(e)
[ "18200116656@qq.com" ]
18200116656@qq.com
b0000f65f8955a9141b9c9455ff591324ae8ec6d
6b183b67944b169048a930e34608925fb9abdc3e
/xicam/plugins/imagemixinplugin.py
66f951c285c0e0940ac64a45eb590950abeb7fcb
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause-LBNL" ]
permissive
ihumphrey/Xi-cam
cef31bba712ebf6d330402b9a7cc24d3d096e2b8
a033a97c4dac55221167d9c4e914c65e835f015a
refs/heads/master
2022-05-12T22:10:24.970713
2021-05-12T22:29:08
2021-05-12T22:29:08
190,625,609
0
0
NOASSERTION
2019-06-06T17:52:35
2019-06-06T17:52:34
null
UTF-8
Python
false
false
509
py
""" Nothing useful here! Why? Because with the PluginType Plugin, we need to register the SnifferPlugin as an entrypoint for the manager to collect them. In this case, the only meaningful part is the name of the entrypoint, not what it points to. Of course, it has to point to something, so... """ from .plugin import PluginType class ImageMixinPlugin(): """ This is just to direct Xi-cam for how to load these plugins; its not intended to be instantiated or subclassed. """ needs_qt = True
[ "ronpandolfi@gmail.com" ]
ronpandolfi@gmail.com
bc7c9459c0f70e88e0dde36873b792973860a896
1a24def8879972f21d846ffb3813632070e1cf12
/Chapter06/0602fib-func.py
79885098128099a23319588b0f10e18295f92798
[]
no_license
mushahiroyuki/beginning-python
03bb78c8d3f678ce39662a44046a308c99f29916
4d761d165203dbbe3604173c404f70a3eb791fd8
refs/heads/master
2023-08-16T12:44:01.336731
2023-07-26T03:41:22
2023-07-26T03:41:22
238,684,870
5
4
null
2023-09-06T18:34:01
2020-02-06T12:33:26
Python
UTF-8
Python
false
false
659
py
#@@range_begin(list1) # ←この行は無視してください。本文に引用するためのものです。 #ファイル名 Chapter06/0602fib-func.py def fibs(num): result = [0, 1] for i in range(num-2): result.append(result[-2] + result[-1]) return result #@@range_end(list1) # ←この行は無視してください。本文に引用するためのものです。 #実行 #@@range_begin(list2) # ←この行は無視してください。本文に引用するためのものです。 print(fibs(10)) print(fibs(15)) #@@range_end(list2) # ←この行は無視してください。本文に引用するためのものです。
[ "hmusha@gmail.com" ]
hmusha@gmail.com
548eab73bdde0f861d5c66edaeff558f9c6362e0
475d1b83b77e2730b53722f0d8d11b070f97018a
/authapp/migrations/backup/0015_auto_20210226_2036.py
f7748376c6cb26aa40cc60e4db0e3f89b135edda
[ "MIT" ]
permissive
Gwellir/my-region
b651284ee4d4ec7ec892bb78a7ce3444c833d035
baacb7f54a19c55854fd068d6e38b3048a03d13d
refs/heads/main
2023-04-20T17:31:33.040419
2021-05-17T13:35:38
2021-05-17T13:35:38
336,533,029
0
1
MIT
2021-05-17T13:35:39
2021-02-06T12:31:08
Python
UTF-8
Python
false
false
591
py
# Generated by Django 3.1.6 on 2021-02-26 17:36 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('authapp', '0014_auto_20210226_2033'), ] operations = [ migrations.AlterField( model_name='appuser', name='activation_key_expiry', field=models.DateTimeField(default=datetime.datetime(2021, 2, 27, 17, 36, 39, 366149, tzinfo=utc), verbose_name='Крайний срок текущей активации'), ), ]
[ "gwellir@gmail.com" ]
gwellir@gmail.com
dccb5669c5b88153b3e54fa816eb2c14f67647eb
aa88548d729211428b3d5d7cfb9c3ba5881e168a
/resilient-sdk/tests/unit/test_cmds/test_dev.py
e757157a1b67107f6abd07b6898790070841f922
[ "MIT" ]
permissive
svetterIO/resilient-python-api
784cb83aaff353e8aa6ce0000b241a693977b5b9
d89440ccee621cb4268ee8ebb350e47e7c9ee26b
refs/heads/master
2023-08-31T22:15:27.588822
2021-10-13T13:15:12
2021-10-13T13:15:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,733
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # (c) Copyright IBM Corp. 2010, 2020. All Rights Reserved. import sys import os import shutil import pytest from resilient_sdk.util import package_file_helpers as package_helpers from resilient_sdk.util.sdk_exception import SDKException from resilient_sdk.cmds import base_cmd, CmdDev from tests.shared_mock_data import mock_paths def test_cmd_dev(fx_get_sub_parser, fx_cmd_line_args_dev_set_version): cmd_dev = CmdDev(fx_get_sub_parser) assert isinstance(cmd_dev, base_cmd.BaseCmd) assert cmd_dev.CMD_NAME == "dev" assert cmd_dev.CMD_HELP == "Unsupported functionality used to help develop an app" assert cmd_dev.CMD_USAGE == """ $ resilient-sdk dev -p <path_to_package> --set-version 36.0.0""" assert cmd_dev.CMD_DESCRIPTION == "WARNING: Use the functionality of 'dev' at your own risk" args = cmd_dev.parser.parse_known_args()[0] assert args.package == "fn_main_mock_integration" def test_set_version_bad_version(fx_get_sub_parser, fx_cmd_line_args_dev_set_bad_version): cmd_dev = CmdDev(fx_get_sub_parser) args = cmd_dev.parser.parse_known_args()[0] with pytest.raises(SDKException, match=r"is not a valid version"): CmdDev._set_version(args) def test_set_version(fx_copy_fn_main_mock_integration, fx_get_sub_parser, fx_cmd_line_args_dev_set_version): mock_integration_name = fx_copy_fn_main_mock_integration[0] path_fn_main_mock_integration = fx_copy_fn_main_mock_integration[1] # Replace cmd line arg "fn_main_mock_integration" with path to temp dir location sys.argv[sys.argv.index(mock_integration_name)] = path_fn_main_mock_integration # Parse the setup.py file path_setup_py_file = os.path.join(path_fn_main_mock_integration, package_helpers.BASE_NAME_SETUP_PY) setup_py_attributes = package_helpers.parse_setup_py(path_setup_py_file, package_helpers.SUPPORTED_SETUP_PY_ATTRIBUTE_NAMES) # Get customize.py ImportDefinition path_customize_py = package_helpers.get_configuration_py_file_path("customize", setup_py_attributes) customize_py_import_definition = package_helpers.get_import_definition_from_customize_py(path_customize_py) # Get the old_version old_version = customize_py_import_definition["server_version"]["version"] assert old_version == "36.0.0" # Run _set_version cmd_dev = CmdDev(fx_get_sub_parser) args = cmd_dev.parser.parse_known_args()[0] cmd_dev._set_version(args) # Get the new_version customize_py_import_definition = package_helpers.get_import_definition_from_customize_py(path_customize_py) new_version = customize_py_import_definition["server_version"]["version"] assert new_version == "35.0.0"
[ "shane.curtin@ie.ibm.com" ]
shane.curtin@ie.ibm.com
57ec71f8f366f169baa43555a895ff8842a42839
c3a3beda6fe3a9bbd5b240477f542a46dd92823a
/functions/TH/08_keyword_args.py
c76f034292ded2cad08e665202843d5d48be93cc
[]
no_license
nfarnan/cs001X_examples
2e64955b705c8ac9c4319becf6344d36b9560e78
80b612249fa97ff685f345582f184d57f94bff8e
refs/heads/master
2020-12-11T14:06:00.890074
2020-04-14T19:41:02
2020-04-14T19:41:02
209,681,009
1
0
null
null
null
null
UTF-8
Python
false
false
129
py
def kw_test(a=1, b=2): print(a, b) kw_test() kw_test(5, 10) kw_test(5) kw_test(b=10) # this will error #kw_test(5, 10, 20)
[ "nlf4@pitt.edu" ]
nlf4@pitt.edu
a098ada26a3eadfefcb12e2b1491533b9979db93
49e72df481bec1501202d7411a55b765c33355ba
/luminar project/functional_programming/list_comprension.py
c1b8cb686c667cb27c47cdcc0d73f8fa7a8b1deb
[]
no_license
JEENUMINI/pythonpgmsupdated
ae6d62bc58e1d44ba81a21637335140119c76869
4816ec24693034af36d4b76887d34c9a499f4cc8
refs/heads/main
2023-01-23T13:36:28.478938
2020-12-15T18:18:07
2020-12-15T18:18:07
321,749,979
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
lst=[1,2,3,4,5,6] #squares squares=[i*i for i in lst] print(squares) square2=[i**2 for i in lst] print(square2) #fetch even no from list even=[i for i in lst if i%2==0] print(even) #list placement question # task=[i+1 if i>5 else i-1 for i in lst] # print(task) task=[i+1 if i>5 else (i-1 if i<5 else i) for i in lst] print(task)
[ "mini13.1994@gmail.com" ]
mini13.1994@gmail.com
c1ca9fea4aec41dcab2df0653fc3476363d164e9
ecf6fe6aa87b2c3f041acc30fab11b0cafe3dd46
/architecture_py/archi_v3_9.py
096d9099c7efed8b00206453651eecc348653e9d
[]
no_license
antgratia/Memoire_code
73c7806c4576c2e73e00d9a84b1063a2c8f6b559
2cdc1339ea24896a6628238f6467edff80f98166
refs/heads/main
2023-06-20T16:19:07.041464
2021-07-13T11:53:48
2021-07-13T11:53:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,178
py
import numpy as np import os from keras import backend as K from tensorflow import keras from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.models import Sequential, Model,load_model from tensorflow.keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D, GlobalAveragePooling2D, MaxPool2D, Concatenate, Dropout from tensorflow.keras.initializers import glorot_uniform from tensorflow.keras.utils import plot_model import tensorflow as tf import sys import traceback import csv from time import time type_archi = 'ALL' epsilon = 0.001 dropout_rate = 0.5 axis = 3 compress_factor = 0.5 # load dataset (train_x, train_y), (test_x, test_y) = keras.datasets.cifar10.load_data() # normalize to range 0-1 train_x = train_x / 255.0 test_x = test_x / 255.0 val_x = train_x[:5000] val_y = train_y[:5000] # init training time training_time = 0 # init result test/train test_result_loss = "" test_result_acc = "" train_result_loss = "" train_result_acc = "" nb_layers = "not build" def id_block(X, f, filters, activation): X_shortcut = X X = Conv2D(filters=filters, kernel_size=(1, 1), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X) if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Activation(activation)(X) X = Conv2D(filters=filters, kernel_size=(f, f), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X) if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Add()([X, X_shortcut])# SKIP Connection X = Activation(activation)(X) return X def conv_block(X, f, filters, activation, s=2): X_shortcut = X X = Conv2D(filters=filters, kernel_size=(1, 1), strides=(s, s), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X) if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Activation(activation)(X) X = Conv2D(filters=filters, kernel_size=(f, f), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X) if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X_shortcut = Conv2D(filters=filters, kernel_size=(1, 1), strides=(s, s), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X_shortcut) if epsilon != 0: X_shortcut = BatchNormalization(epsilon = epsilon, axis=axis)(X_shortcut) X = Add()([X, X_shortcut]) X = Activation(activation)(X) return X def denseBlock(X, f, nb_filter, nb_layer, padding, activation): x_input = X for _ in range(0,nb_layer): if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Activation(activation)(X) X = Conv2D(filters=nb_filter, kernel_size=(f, f), strides=(1, 1), padding=padding)(X) if dropout_rate != 0: X = Dropout(dropout_rate)(X) X = Concatenate()([X, x_input]) return X def transition_block(X, f, nb_filter, padding, activation, op, stride): if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Activation(activation)(X) X = Conv2D(filters=nb_filter, kernel_size=(f, f), strides=(1, 1), padding=padding)(X) if dropout_rate != 0: X = Dropout(dropout_rate)(X) if (op == 'avg'): X = AveragePooling2D(pool_size = f, strides=stride, padding=padding)(X) else : X = MaxPooling2D(pool_size=f, strides=stride, padding=padding)(X) return X try: def getModel(): X_input = X = Input([32, 32, 3]) X = denseBlock(X, 4, 3, 2, 'same', 'tanh') X = denseBlock(X, 4, 3, 2, 'same', 'tanh') X = denseBlock(X, 4, 3, 2, 'same', 'tanh') X = denseBlock(X, 4, 3, 2, 'same', 'tanh') X = transition_block(X, 4, 3, 'same', 'tanh', 'avg', 1) X = id_block(X, 5, 3, 'tanh') X = Conv2D(18, kernel_size=2, strides=1, activation='relu', padding='same')(X) X = Conv2D(36, kernel_size=3, strides=3, activation='tanh', padding='same')(X) X = MaxPooling2D(pool_size=5, strides=4, padding='same')(X) X = denseBlock(X, 7, 36, 1, 'same', 'tanh') X = denseBlock(X, 7, 36, 1, 'same', 'tanh') X = transition_block(X, 7, 36, 'same', 'tanh', 'avg', 5) X = GlobalAveragePooling2D()(X) X = Dense(10, activation='softmax')(X) model = Model(inputs=X_input, outputs=X) return model model = getModel() #plot_model(model, show_shapes=True, to_file="../architecture_img/archi_v3_9.png") model.compile(optimizer='adam', loss=keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) start = time() es = tf.keras.callbacks.EarlyStopping(monitor='loss', verbose=1, restore_best_weights=True, patience=1) list_cb = [es] history = model.fit(train_x, train_y, epochs=50, batch_size=64, validation_split=0.3, callbacks=list_cb) training_time = time()-start print(model.evaluate(test_x, test_y)) log_file = open("../architecture_log/archi_v3_9.log" , "w") # save test result log_file.write('test result : ' + str(model.evaluate(test_x, test_y))) test_result_loss = model.evaluate(test_x, test_y)[0] test_result_acc = model.evaluate(test_x, test_y)[1] # save train result log_file.write('train result : ' + str(model.evaluate(test_x, test_y))) log_file.write('History train result : ' + str(history.history)) train_result_loss = model.evaluate(train_x, train_y)[0] train_result_acc = model.evaluate(train_x, train_y)[1] print('OK: file ../architecture_log/archi_v3_9.log has been create') nb_layers = len(model.layers) log_file.close() except: print('error: file ../architecture_log/archi_v3_9_error.log has been create') error_file = open("../architecture_log/archi_v3_9_error.log" , "w") traceback.print_exc(file=error_file) result_loss = "Error" result_acc = "Error" error_file.close() finally: file = open('../architecture_results_v3.csv', 'a', newline ='') with file: # identifying header header = ['file_name', 'training_time(s)', 'test_result_loss', 'test_result_acc', 'train_result_acc', 'train_result_loss', 'nb_layers', 'epochs', 'type_archi'] writer = csv.DictWriter(file, fieldnames = header) # writing data row-wise into the csv file # writer.writeheader() writer.writerow({'file_name' : 'archi_v3_9', 'training_time(s)': training_time, 'test_result_loss': test_result_loss, 'test_result_acc': test_result_acc, 'train_result_acc': train_result_acc, 'train_result_loss': train_result_loss, 'nb_layers': nb_layers, 'epochs' : len(history.history['loss']), 'type_archi': type_archi}) print('add line into architecture_results_v3.csv') file.close()
[ "antoine.gratia@student.unamur.be" ]
antoine.gratia@student.unamur.be
c18790f1c9ea9c59ebe70356fd6eafa773ba7a3f
32ef8621468095bf9c6dd912767cb97e9863dc25
/algorithms/kaprekar-numbers.py
d4e44e799005d22fc4109908b61ebb0ee1e5e43c
[]
no_license
Seungju182/Hackerrank
286f1666be5797c1d318788753245696ef52decf
264533f97bcc8dc771e4e6cbae1937df8ce6bafa
refs/heads/master
2023-08-17T22:49:58.710410
2021-10-25T09:40:46
2021-10-25T09:40:46
337,652,088
1
0
null
null
null
null
UTF-8
Python
false
false
626
py
#!/bin/python3 import math import os import random import re import sys # # Complete the 'kaprekarNumbers' function below. # # The function accepts following parameters: # 1. INTEGER p # 2. INTEGER q # def kaprekarNumbers(p, q): # Write your code here lst = [] for num in range(p, q+1): squared = num ** 2 d = 10 ** len(str(num)) if squared // d + squared % d == num: lst.append(num) if lst: print(*lst) else: print("INVALID RANGE") if __name__ == '__main__': p = int(input().strip()) q = int(input().strip()) kaprekarNumbers(p, q)
[ "tonysj@snu.ac.kr" ]
tonysj@snu.ac.kr
9ca5ac9b0309eeb6b7ae197443b0c2be0b04ea69
59ac1d0f09ebfb527701031f3ab2cfbfb8055f51
/soapsales/customers/signals.py
fc93f81a6adc77f22799cb456aa27326ae4c6f21
[]
no_license
DUMBALINYOLO/erpmanu
d4eb61b66cfa3704bd514b58580bdfec5639e3b0
db979bafcc7481f60af467d1f48d0a81bbbfc1aa
refs/heads/master
2023-04-28T13:07:45.593051
2021-05-12T09:30:23
2021-05-12T09:30:23
288,446,097
1
1
null
null
null
null
UTF-8
Python
false
false
536
py
from django.db.models.signals import pre_save, post_save from django.dispatch import receiver import uuid from django.db import transaction from customers.models import Customer @receiver(post_save, sender=Customer) def post_save_create_customer_number_and_customer_number(sender, instance, created, **kwargs): if created: instance.create_customer_account() if instance.customer_number == '': instance.customer_number = str(uuid.uuid4()).replace("-", '').upper()[:20] instance.save()
[ "baridzimaximillem@gmail.com" ]
baridzimaximillem@gmail.com
33013989259884ab0ed306b1a8ffd64725df92f6
7c009d77bc0124b69abdd5bbf4d00ee00a6de881
/process/migrations/0020_auto_20210606_1321.py
23a2cb9944ae79b25e63e50e2bb315ad1da36180
[]
no_license
Rajeshwari33/POProcess
85598b3bb78c1bcc3bea583fcd106fd32eb97c99
dde399029b01554f97988709688e14193a96cb1a
refs/heads/master
2023-05-25T18:33:45.589819
2021-06-15T16:27:37
2021-06-15T16:27:37
367,557,930
0
0
null
null
null
null
UTF-8
Python
false
false
866
py
# Generated by Django 3.2 on 2021-06-06 07:51 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('process', '0019_mailcredentials'), ] operations = [ migrations.AddField( model_name='mailcredentials', name='created_by', field=models.PositiveSmallIntegerField(null=True, verbose_name='User Id'), ), migrations.AddField( model_name='mailcredentials', name='created_date', field=models.DateTimeField(default=django.utils.timezone.now, verbose_name='Created Date'), ), migrations.AddField( model_name='mailcredentials', name='is_active', field=models.BooleanField(default=True, verbose_name='Active ?'), ), ]
[ "you@example.com" ]
you@example.com