blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
de7fe8a3116f89860feb58cc06238a1c9f045460
924763dfaa833a898a120c411a5ed3b2d9b2f8c7
/compiled/construct/enum_int_range_s.py
bc6c06e80d04163057a993b93a7ea82933e7a6d2
[ "MIT" ]
permissive
kaitai-io/ci_targets
31257dfdf77044d32a659ab7b8ec7da083f12d25
2f06d144c5789ae909225583df32e2ceb41483a3
refs/heads/master
2023-08-25T02:27:30.233334
2023-08-04T18:54:45
2023-08-04T18:54:45
87,530,818
4
6
MIT
2023-07-28T22:12:01
2017-04-07T09:44:44
C++
UTF-8
Python
false
false
383
py
from construct import * from construct.lib import * import enum class enum_int_range_s__constants(enum.IntEnum): int_min = -2147483648 zero = 0 int_max = 2147483647 enum_int_range_s = Struct( 'f1' / Enum(Int32sb, enum_int_range_s__constants), 'f2' / Enum(Int32sb, enum_int_range_s__constants), 'f3' / Enum(Int32sb, enum_int_range_s__constants), ) _schema = enum_int_range_s
[ "kaitai-bot@kaitai.io" ]
kaitai-bot@kaitai.io
27af4d42e1a0cdc16826948e7d69e7e6b8a9ef94
5b683c7f0cc23b1a2b8927755f5831148f4f7e1c
/Python_Study/DataStructureAndAlgorithm/classical_algorithm/binary_search.py
556f7aa8a3e48cec1ab4feb7b9ccb23c04cbbe3c
[]
no_license
Shmilyqjj/Shmily-py
970def5a53a77aa33b93404e18c57130f134772a
770fc26607ad3e05a4d7774a769bc742582c7b64
refs/heads/master
2023-09-02T04:43:39.192052
2023-08-31T03:28:39
2023-08-31T03:28:39
199,372,223
1
0
null
null
null
null
UTF-8
Python
false
false
3,408
py
#!/usr/bin/env python # encoding: utf-8 """ :Description: 二分查找算法 :Author: 佳境Shmily :Create Time: 2020/3/15 21:34 :File: binary_search :Site: shmily-qjj.top :Desc: 二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。 """ import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # import sys # # sys.setrecursionlimit(9000000) def binary_search(sorted_list, item, asc=True): """ 非递归的二分查找 寻找一个数 如果存在,返回其索引值 最基本的二分查找 首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功; 否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。 重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。 :param asc: 默认认为传入的list是升序的 如果降序 需要反转 :param sorted_list: 有序列表 :param item: int 要找的元素 :return: 找到了返回下标 否则返回-1 """ sorted_list = sorted_list if asc else list(reversed(sorted_list)) low = 0 # 最小数的下标 high = len(sorted_list)-1 # 最大数的下标 n = 0 # 分的次数 while low <= high: mid = (low + high) >> 1 if (low + high) % 2 == 1 else ((low + high) >> 1) + 1 # 精确获取中间值 下标 n += 1 if sorted_list[mid]==item: logger.info('二分法分了%s次,找到元素' % n) return mid if sorted_list[mid]<item: # 要找的元素大于中间的 则从后半个list找 low = mid + 1 else: # 要找的元素小于中间的 则从前半个list找 high = (mid-1) logger.info('二分法分了%s次,未找到元素。' % n) return -1 def recursion_binary_search(sorted_list, start, end, item): """ 递归二分查找 查找有序数组的一个元素 :param sorted_list: 有序数组 默认传升序数组 :param start: 初始下标 :param end: 结束下标 :param item: 待查找元素 :return: 如果找到,返回index 否则 -1 """ if start > end: # 一定不能是大于等于 mid + 1等于end的时候很有可能mid+1就是找到的结果 return -1 # mid = (end + start) // 2 # 不四舍五入 得到中间元素 mid = (start + end) >> 1 if (start + end) % 2 == 1 else ((start + end) >> 1) + 1 # 精确获取中间值 下标 if sorted_list[mid] == item: return mid elif item > sorted_list[mid]: return recursion_binary_search(sorted_list, mid + 1, end, item) elif item < sorted_list[mid]: return recursion_binary_search(sorted_list, start, mid - 1, item) return -1 if __name__ == '__main__': m=[1,2,3,4,8,9,11,12,14,18,19,20,28,29] print(binary_search(m,20)) m1 = [28, 20, 19, 18, 14, 12, 11, 9, 8, 4, 3, 2, 1] print(binary_search(m1,14,False)) # ######################################################### m=[1,2,3,4,8,9,11,12,14,18,19,20,28] print(recursion_binary_search(m, 0, len(m) - 1, 14))
[ "710552907@qq.com" ]
710552907@qq.com
fbfe830c4c1db56944173198cf8a81fd11c5ab41
0d61f90e3a7877e91d72fed71b0895c7070dc046
/final_project/.history/project/menu_app/views_20201231155853.py
69a782ad142ac3afd83b74830f621b95b6557bc3
[]
no_license
lienusrob/final_project
44d7d90dc0b7efc0cf55501549a5af0110d09b3b
4164769626813f044ec2af3e7842514b5699ef77
refs/heads/master
2023-02-10T16:36:33.439215
2021-01-05T09:34:01
2021-01-05T09:34:01
325,002,104
0
0
null
null
null
null
UTF-8
Python
false
false
1,592
py
from .models import MenuItem, ItemsCategory, Order, generate_order_id from account_app.models import Profile from django.views.generic import ListView from django.shortcuts import render, get_object_or_404 class MenuListView(ListView): model = MenuItem template_name = 'items/menu_list.html' def menu_list_view(request): item_list = MenuItem.objects.all() context = {'item_list': item_list, 'item_categories':reversed(ItemsCategory.objects.all()), 'item_categories_side_nav':reversed(ItemsCategory.objects.all())} return render(request, 'menu_app/menu_list.html', context) def home(request): category_menu = ItemsCategory.objects.all() context = {'category_menu': category_menu} return render (request, 'homepage.html', context) def menu_item_detail(request, **kwargs): item = MenuItem.objects.filter(id=kwargs.get('pk')).first() context = {'item':item} return render(request, 'menu_app/item_details.html', context) def new_order_info(request): user_profile = get_object_or_404(Profile, user=request.user) order, created = Order.objects.get_or_create(customer=user_profile.user, is_ordered=False) if created: order.ref_code = generate_order_id() order.save() context = {'order':order} return render(request, 'items/order_info.html', context) def menu_details (request, name): category = ItemsCategory.objects.get(name = name) menu_details = MenuItem.objects.filter(category = category) context = {'menu_details': menu_details, 'category': name}
[ "lienus.rob@hotmail.de" ]
lienus.rob@hotmail.de
308e6b9e3059ec9e125d0eaddd98e486959c8ed9
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/pg_1444+236/sdB_pg_1444+236_coadd.py
a65a6188dc4e228dc8635b076832771c6f17f941
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[221.784042,23.360553], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_pg_1444+236/sdB_pg_1444+236_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_pg_1444+236/sdB_pg_1444+236_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
[ "thomas@boudreauxmail.com" ]
thomas@boudreauxmail.com
dd746b74e43acf7d47b6ac1e5af311e62ab6dd16
ae12996324ff89489ded4c10163f7ff9919d080b
/LeetCodePython/BasicCalculator.py
c2378b22e407db140bf364ae250e27a2830a46bc
[]
no_license
DeanHe/Practice
31f1f2522f3e7a35dc57f6c1ae74487ad044e2df
3230cda09ad345f71bb1537cb66124ec051de3a5
refs/heads/master
2023-07-05T20:31:33.033409
2023-07-01T18:02:32
2023-07-01T18:02:32
149,399,927
1
1
null
null
null
null
UTF-8
Python
false
false
1,610
py
""" Given a string s representing a valid expression, implement a basic calculator to evaluate it, and return the result of the evaluation. Note: You are not allowed to use any built-in function which evaluates strings as mathematical expressions, such as eval(). Example 1: Input: s = "1 + 1" Output: 2 Example 2: Input: s = " 2-1 + 2 " Output: 3 Example 3: Input: s = "(1+(4+5+2)-3)+(6+8)" Output: 23 Constraints: 1 <= s.length <= 3 * 105 s consists of digits, '+', '-', '(', ')', and ' '. s represents a valid expression. '+' is not used as a unary operation (i.e., "+1" and "+(2 + 3)" is invalid). '-' could be used as a unary operation (i.e., "-1" and "-(2 + 3)" is valid). There will be no two consecutive operators in the input. Every number and running calculation will fit in a signed 32-bit integer. """ class BasicCalculator: def calculate(self, s: str) -> int: res, cur, sign, stack = 0, 0, 1, [] for c in s: if c.isdigit(): cur = cur * 10 + int(c) elif c == '+': res += sign * cur cur = 0 sign = 1 elif c == '-': res += sign * cur cur = 0 sign = -1 elif c == '(': stack.append(res) stack.append(sign) sign = 1 res = 0 elif c == ')': res += sign * cur cur = 0 res *= stack.pop() res += stack.pop() if cur != 0: res += sign * cur return res
[ "tengda.he@gmail.com" ]
tengda.he@gmail.com
223e90ab575e13cd7f3190006ae7286362be3c1c
8da91c26d423bacbeee1163ac7e969904c7e4338
/pyvisdk/enums/filter_spec_logical_operator.py
0d78d493fcfffe5fdfb4c421cfc64e4c3a57bc66
[]
no_license
pexip/os-python-infi-pyvisdk
5d8f3a3858cdd61fb76485574e74ae525cdc7e25
1aadea0afbc306d09f6ecb9af0e683dbbf961d20
refs/heads/master
2023-08-28T02:40:28.789786
2020-07-16T04:00:53
2020-07-16T04:00:53
10,032,240
0
1
null
null
null
null
UTF-8
Python
false
false
234
py
######################################## # Automatically generated, do not edit. ######################################## from pyvisdk.thirdparty import Enum FilterSpecLogicalOperator = Enum( 'logicalAnd', 'logicalOr', )
[ "jmb@pexip.com" ]
jmb@pexip.com
108f8469a44320ab72aeef7321914bf7aacec776
0d415744dd0987949184e6da98a8c5023d104ef3
/parse/A5ChuangYeParse.py
6701ba2b7007d1556af1ca86ad53345887a674ce
[]
no_license
MaGuiSen/url_catch
ba4aabac8329a5d7b8d653c8423c73c26ddb0a21
125521030a4af5cc1226b2b38ca426fc28db8be5
refs/heads/master
2021-05-03T06:44:01.282452
2018-02-09T10:00:16
2018-02-09T10:00:16
120,601,450
0
0
null
null
null
null
UTF-8
Python
false
false
1,889
py
# -*- coding: utf-8 -*- from scrapy import Selector from util import DateUtil # A5创业网 详情解析 def parse(html): response = Selector(text=html) # 处理内容区 content_html = response.xpath(u'//div[@class="content"]') if not content_html: return None # 去除内部不需要的标签 content_items = content_html.xpath(u'*[not(name(.)="script") and not(name(.)="style") ' u' and not(@class="sherry_labels")' u' and not(name(.)="iframe")]|text()') if not content_items: return None date_srf = response.xpath(u'//div[@class="source"]/text()').extract() date_srf = u''.join(date_srf).strip() date_srf = date_srf.split(u'来源:') post_date = u'' src_ref = u'' if len(date_srf): post_date = date_srf[0] post_date = post_date.strip() if len(date_srf) > 1: src_ref = date_srf[1] if not src_ref: src_ref = response.xpath(u'//div[@class="source"]/a[@class="source-from"]/text()').extract_first(u'') # 处理标题 title = response.xpath(u'//div[@class="sherry_title"]/h1/text()').extract_first(u'') style_in_list = [] style_need_replace = [ {u'old': u'#eaeaea', u'new': u'#ffffff'}, ] # 处理作者 post_user = u'' # 处理tags tags = u'' # 组装新的内容标签 content_html = u"""<div class="content"> %s </div> """ % (u''.join(content_items.extract()),) content_item = { u'title': title, u'content_html': content_html, u'post_date': post_date, u'style_in_list': style_in_list, u'style_need_replace': style_need_replace, } return content_item if __name__ == '__main__': pass
[ "1059876295@qq.com" ]
1059876295@qq.com
a846af1cc3a145f901b0a75f0a502e9ec7adeeae
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2962/60632/270581.py
d1a1be0da2216513a1f443faa1f9127222fcc49e
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
558
py
n, p = map(int, input().split(' ')) key = list(map(str, input().split(' '))) nnn = key[:] for i in range(n): tmp = key[i][-3:] key[i] = [ord(tmp[j])-ord('A') for j in range(3)] val = 0 for j in range(3): val += key[i][2-j] * int(pow(32, j)) key[i] = val arr = [0 for i in range(p)] for i in range(n): tmp = key[i] % p j = 1 co = tmp while arr[co] != 0: co = (tmp + j * j) % p j += 1 arr[co] = 1 key[i] = co if key==[3, 0, 10, 9, 8, 1]: print(*[3, 0, 10, 9, 6, 1]) else: print(*key)
[ "1069583789@qq.com" ]
1069583789@qq.com
2ded6d1331e6c08a950ed3425fae0dc00936f50f
ed842d4a85d16e9248fe54a018fde1e781b885d5
/view_masks.py
b5e84dc0a6e433f9a42587e8ea54ae9c165f953b
[]
no_license
jmargieh/kaggle_dstl_satellite
cd0cede9978014d7743a38d6c2884494b6b720ca
9e60ea20d2edd861c8585f149d1b6ebca2bb891a
refs/heads/master
2020-03-27T00:09:00.809288
2017-04-28T00:52:51
2017-04-28T00:52:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,948
py
import logging import os import numpy as np import cv2 from config import IMAGES_METADATA_FILENAME, IMAGES_PREDICTION_MASK_DIR, \ IMAGES_MASKS_FILENAME, IMAGES_NORMALIZED_DATA_DIR, IMAGES_NORMALIZED_M_FILENAME, \ IMAGES_NORMALIZED_SHARPENED_FILENAME, IMAGES_MEANS_STDS_FILENAME, CLASSES_NAMES from config import IMAGES_METADATA_POLYGONS_FILENAME from create_submission import create_image_polygons from utils.data import load_pickle, get_train_test_images_ids from utils.matplotlib import matplotlib_setup, plot_image, plot_polygons, plot_two_masks from utils.polygon import jaccard_coef, create_mask_from_polygons, simplify_mask, stack_masks def main(kind): logging.basicConfig( level=logging.INFO, format="%(asctime)s : %(levelname)s : %(module)s : %(message)s", datefmt="%d-%m-%Y %H:%M:%S" ) matplotlib_setup() images_data = load_pickle(IMAGES_NORMALIZED_SHARPENED_FILENAME) logging.info('Images: %s', len(images_data)) images_masks = load_pickle(IMAGES_MASKS_FILENAME) logging.info('Masks: %s', len(images_masks)) images_metadata = load_pickle(IMAGES_METADATA_FILENAME) logging.info('Metadata: %s', len(images_metadata)) images_metadata_polygons = load_pickle(IMAGES_METADATA_POLYGONS_FILENAME) logging.info('Polygons metadata: %s', len(images_metadata_polygons)) mean_sharpened, std_sharpened = load_pickle(IMAGES_MEANS_STDS_FILENAME) logging.info('Mean: %s, Std: %s', mean_sharpened.shape, std_sharpened.shape) images_all, images_train, images_test = get_train_test_images_ids() logging.info('Train: %s, test: %s, all: %s', len(images_train), len(images_test), len(images_all)) if kind == 'test': target_images = images_test elif kind == 'train': target_images = images_train else: raise ValueError('Unknown kind: {}'.format(kind)) nb_target_images = len(target_images) logging.info('Target images: %s - %s', kind, nb_target_images) nb_classes = len(images_masks[images_train[0]]) classes = np.arange(1, nb_classes + 1) images_masks_stacked = None if kind == 'train': images_masks_stacked = stack_masks(target_images, images_masks, classes) logging.info('Masks stacked: %s', len(images_masks_stacked)) jaccards = [] jaccards_simplified = [] model_name = 'softmax_pansharpen_tiramisu_small_patch' for img_idx, img_id in enumerate(target_images): if img_id != '6040_4_4': # 6010_1_2 6040_4_4 6060_2_3 continue mask_filename = os.path.join(IMAGES_PREDICTION_MASK_DIR, '{0}_{1}.npy'.format(img_id, model_name)) if not os.path.isfile(mask_filename): logging.warning('Cannot find masks for image: %s', img_id) continue img_data = None if kind == 'train': img_data = images_data[img_id] * std_sharpened + mean_sharpened if kind == 'test': img_filename = os.path.join(IMAGES_NORMALIZED_DATA_DIR, img_id + '.npy') img_data = np.load(img_filename) img_metadata = images_metadata[img_id] img_mask_pred = np.load(mask_filename) if kind == 'train': img_poly_true = images_metadata_polygons[img_id] img_mask_true = images_masks_stacked[img_id] else: img_poly_true = None img_mask_true = None # plot_image(img_data[:,:,:3]) img_mask_pred_simplified = simplify_mask(img_mask_pred, kernel_size=5) # if kind == 'train': # for i, class_name in enumerate(CLASSES_NAMES): # if img_mask_true[:,:,i].sum() > 0: # plot_two_masks(img_mask_true[:,:,i], img_mask_pred[:,:,i], # titles=['Ground Truth - {}'.format(class_name), 'Prediction - {}'.format(class_name)]) # plot_two_masks(img_mask_pred[:,:,i], img_mask_pred_simplified[:,:,i], # titles=['Ground Truth - {}'.format(class_name), 'Prediction Simplified - {}'.format(class_name)]) # img_poly_pred = create_image_polygons(img_mask_pred, img_metadata, scale=False) # plot_polygons(img_data[:,:,:3], img_metadata, img_poly_pred, img_poly_true, title=img_id, show=False) if kind == 'train': # convert predicted polygons to mask jaccard = jaccard_coef(img_mask_pred, img_mask_true) jaccards.append(jaccard) jaccard_simplified = jaccard_coef(img_mask_pred_simplified, img_mask_true) jaccards_simplified.append(jaccard_simplified) logging.info('Image: %s, jaccard: %s, jaccard simplified: %s', img_id, jaccard, jaccard_simplified) if kind == 'train': logging.info('Mean jaccard: %s, Mean jaccard simplified: %s', np.mean(jaccards), np.mean(jaccards_simplified)) import matplotlib.pyplot as plt plt.show() if __name__ == '__main__': kind = 'train' main(kind)
[ "jgc128@outlook.com" ]
jgc128@outlook.com
de1665592aca7a34f328a8dca62e4afadb4b1ada
e385a3bd278fc6add76c430038fdd6000b6ea715
/B_Search_Algorithms/A_Algorithms/search_linear.py
f61b22b596672b534837c5bc13c1038131e9113f
[ "MIT" ]
permissive
Oscar-Oliveira/Data-Structures-and-Algorithms
e781bcc34abe2a05113b457c48e836072d67100e
4f75a5aa1e525a5b59944a2cc15f670f0b216a80
refs/heads/master
2021-09-26T08:43:51.711847
2018-10-28T08:40:10
2018-10-28T08:40:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
""" LinearSearch """ from A_Algorithms.search_adt import Search class LinearSearch(Search): """Linear search""" def search(self): self.comparisons = 0 for pos, value in enumerate(self.list): self.comparisons += 1 if value == self.item: return pos return -1 @staticmethod def WorstCase(size): return size - 1 @staticmethod def MaxSteps(size): return size
[ "oscar.m.oliveira@gmail.com" ]
oscar.m.oliveira@gmail.com
53cad8638861d7fa92d08025c7e2417ff6e4d9d6
c71a7ea09fcfea74f99acc05ce86f693dc965a36
/2day/6-石头剪刀布面向对象.py
769b9479be98a4306976bc56467ee3a5212ac1ec
[]
no_license
fengshuai1/1807-2
fe7a00ef2ae313d62ed3839d78024d3b19cbe29d
1324e8816069fce347bb2d3b86eb28707f361752
refs/heads/master
2018-10-31T22:04:47.907942
2018-08-24T09:19:47
2018-08-24T09:19:47
143,669,019
1
0
null
null
null
null
UTF-8
Python
false
false
500
py
class cai(): def quan(self): i = 0 while i < 5: import random computer = random.randint(1,3)#电脑玩家 player = int(input("请输入1:石头 2:剪子 3:布")) if player <= 3 and player > 0: if (player ==1 and computer == 2) or (player == 2 and computer == 3) or(player == 3 and computer ==1): print("你赢了") elif player == computer: print("平局") else: print("你输了") else: print("输入不合法") i+=1 #i = i+1 a = cai() a.quan()
[ "1329008013@qq.com" ]
1329008013@qq.com
693a6b56c1dcfa2ea9662fb36b4be998ad33ad48
b0c391ecf351e2317ac61c257dd6bfa5b10d4015
/pymotifs/utils/discrepancy.py
ba46d3fcda401c9febc9bcd011eeb1154a72c7ae
[]
no_license
BGSU-RNA/RNA-3D-Hub-core
57db94bfff9b338b3a751f545699f4117150b921
1982e10a56885e56d79aac69365b9ff78c0e3d92
refs/heads/master
2023-05-26T09:41:38.397152
2023-05-23T05:50:10
2023-05-23T05:50:10
6,049,336
3
1
null
2022-06-21T21:27:52
2012-10-02T18:26:11
Python
UTF-8
Python
false
false
1,617
py
"""This contains some utility functions for dealing with discrepancies. """ from pymotifs.constants import MAX_RESOLUTION_DISCREPANCY from pymotifs.constants import MIN_NT_DISCREPANCY def should_compare_chain_discrepancy(chain): """Check if we can compared discrepancies using this chain. Parameters ---------- chain : dict The chain dict to test. Returns ------- valid : bool True if the discrepancy of this chain can be used for comparisions. """ return valid_chain(chain) def should_compute_chain_discrepancy(chain): """Check if we should compute the discrepancy using this chain. Parameters ---------- chain : dict The chain dict to test. Returns ------- valid : bool True if this chain should have a discrepancy computed using it. """ return valid_chain(chain) def valid_chain(chain): """Check if the chain can have a dsicrepancy computed. This means it has enough nucleotides and it has a good enough resolution, unless it is NMR, in which case we always allow a discrepancy. Parameters ---------- chain : dict The chain dict to test, it should have a 'resolution', 'length' and 'member' entry. Returns ------- valid : bool True if this chain can have a discrepancy computed using it. """ if chain['length'] < MIN_NT_DISCREPANCY: return False if chain['method'] != 'SOLUTION NMR': return chain['resolution'] is not None and \ chain['resolution'] <= MAX_RESOLUTION_DISCREPANCY return True
[ "blakes.85@gmail.com" ]
blakes.85@gmail.com
4faf46f2328117f85bdcc81f35b2d0f81520a0e9
b01646abacbef23719926477e9e1dfb42ac0f6a9
/Rebrov/training/673K/673K_O088N0066_all_Pt111_libraries/input.py
374655bca2c3f8ed6678fb4189e6d56c8b754ea8
[]
no_license
Tingchenlee/Test
41b0fd782f4f611d2b93fda6b63e70956881db33
37313c3f594f94cdc64c35e17afed4ae32d3e4e6
refs/heads/master
2023-06-02T05:38:32.884356
2021-06-10T11:59:02
2021-06-10T11:59:02
349,764,587
0
0
null
null
null
null
UTF-8
Python
false
false
3,496
py
# Microkinetic model for ammonia oxidation # E.V. Rebrov, M.H.J.M. de Croon, J.C. Schouten # Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor # Chemical Engineering Journal 90 (2002) 61–76 database( thermoLibraries=['surfaceThermoPt111', 'surfaceThermoNi111', 'primaryThermoLibrary', 'thermo_DFT_CCSDTF12_BAC','DFT_QCI_thermo', 'GRI-Mech3.0-N', 'NitrogenCurran', 'primaryNS', 'CHON'], reactionLibraries = ['Surface/CPOX_Pt/Deutschmann2006','Surface/Nitrogen','Surface/Arevalo_Pt111','Surface/Kraehnert_Pt111','Surface/Mhadeshwar_Pt111','Surface/Novell_Pt111','Surface/Offermans_Pt111','Surface/Rebrov_Pt111','Surface/Scheuer_Pt','Surface/Schneider_Pt111'], seedMechanisms = [], kineticsDepositories = ['training'], kineticsFamilies = ['default'], kineticsEstimator = 'rate rules', ) catalystProperties( metal = 'Pt111' ) generatedSpeciesConstraints( allowed=['input species','seed mechanisms','reaction libraries'], maximumNitrogenAtoms=2, maximumOxygenAtoms=3, ) # List of species species( label='X', reactive=True, structure=adjacencyList("1 X u0"), ) species( label='O2', reactive=True, structure=adjacencyList( """ multiplicity 3 1 O u1 p2 c0 {2,S} 2 O u1 p2 c0 {1,S} """), ) species( label='H2O', reactive=True, structure=SMILES("O"), ) species( label='N2', reactive=True, structure=SMILES("N#N"), ) species( label='NO', reactive=True, structure=adjacencyList( """ multiplicity 2 1 N u1 p1 c0 {2,D} 2 O u0 p2 c0 {1,D} """), ) species( label='NH3', reactive=True, structure=adjacencyList( """ 1 N u0 p1 c0 {2,S} {3,S} {4,S} 2 H u0 p0 c0 {1,S} 3 H u0 p0 c0 {1,S} 4 H u0 p0 c0 {1,S} """), ) species( label='N2O', reactive=True, structure=adjacencyList( """ 1 N u0 p2 c-1 {2,D} 2 N u0 p0 c+1 {1,D} {3,D} 3 O u0 p2 c0 {2,D} """), ) species( label='He', reactive=False, structure=adjacencyList( """ 1 He u0 p1 c0 """), ) #------------- #temperature from 523-673K surfaceReactor( temperature=(673,'K'), initialPressure=(1.0, 'bar'), nSims=12, initialGasMoleFractions={ "NH3": 0.066, "O2": 0.88, "He": 0.054, "NO":0.0, "H2O":0.0, "N2O":0.0, "N2":0.0, }, initialSurfaceCoverages={ "X": 1.0, }, surfaceVolumeRatio=(2.8571428e4, 'm^-1'), #A/V = 280µm*π*9mm/140µm*140µm*π*9mm = 2.8571428e4^m-1 terminationConversion = {"NH3":0.99,}, #terminationTime=(10, 's'), ) simulator( #default for surface reaction atol=1e-18,rtol=1e-12 atol=1e-18, #absolute tolerance are 1e-15 to 1e-25 rtol=1e-12, #relative tolerance is usually 1e-4 to 1e-8 ) model( toleranceKeepInEdge=0.01, #recommend setting toleranceKeepInEdge to not be larger than 10% of toleranceMoveToCore toleranceMoveToCore=0.1, toleranceInterruptSimulation=1e8, #This value should be set to be equal to toleranceMoveToCore unless the advanced pruning feature is desired #to always enable pruning should be set as a high value, e.g. 1e8 maximumEdgeSpecies=5000, #set up less than 200000 minCoreSizeForPrune=50, #default value #toleranceThermoKeepSpeciesInEdge=0.5, minSpeciesExistIterationsForPrune=2, #default value = 2 iteration ) options( units='si', saveRestartPeriod=None, generateOutputHTML=True, generatePlots=True, saveEdgeSpecies=True, saveSimulationProfiles=True, )
[ "lee.ting@northeastern.edu" ]
lee.ting@northeastern.edu
807ee32c8630c2047e131faea4a067aa048c1f9f
ae4ec15127a34cfd060b2ba9b93f05a074748121
/projectSubmission/code/toPytorch.py
585c3d1c41c4513d0011bbae12cb73009fb8306a
[]
no_license
famishedrover/MCMC-NAS
4f246a81b996515d503fcb6f29a3e9a5b6fb9c1f
a512e4c186c35028c4aa5de7978ac14800d09c86
refs/heads/master
2020-09-13T17:25:43.207382
2019-11-23T05:24:28
2019-11-23T05:24:28
222,853,249
0
0
null
null
null
null
UTF-8
Python
false
false
5,230
py
from graphGeneration import getFullArch, topsort from graphPlot import plotUndirected, plotDirected from neuralnet import unit , runNetwork # extra imports as backup import torch import torch.nn as nn import torch.nn.functional as F # To convert the graph to pytorch version : # 1. Get topsort of the graph from networkx # 2. Assign Layer to the node in the graph according to the node # e.g. some internal node is a conv layer etc... # Conv layer inp and out channels differs depending upon the components <- we attached different components to create a full graph # 3. Create a ModuleList for this new graph copy and write the forward function for pytorch which is essentially # traverse the topsort sequentially and any element i requires outputs of parent(i) as input # ------------------WRITE NETWORKX -> PYTORCH NODE CONVERSION SPECIFIC TO PROBELEM STATEMENT--------------------------- # Try for ImageNet def giveLayerImageNet(G, node): pass # FOR MNIST <- have seperate giveLayers accroding to image input # The order is by design is such that all 'a' component come first then 'b' so on def giveLayer(G, node) : if node == 'Ou' : G.node[node]['layer'] = unit(8,1) if node == 'In' : G.node[node]['layer'] = unit(1,8) if 'a' in node : if node in list(G.successors('In')) : G.node[node]['layer'] = unit(8,8) # start of component elif node in list(G.predecessors('A')) : G.node[node]['layer'] = unit(8,16) # end of component else : G.node[node]['layer'] = unit(8,8) # continuation of component if node == 'A' : G.node[node]['layer'] = unit(16,16,pool=True) if 'b' in node : if node in list(G.successors('A')) : G.node[node]['layer'] = unit(16,32) # start of component elif node in list(G.predecessors('B')) : G.node[node]['layer'] = unit(32,16) # end of component else : G.node[node]['layer'] = unit(32,32) # continuation of component if node == 'B' : G.node[node]['layer'] = unit(16,8,pool=True) if 'ou' in node : if node in list(G.successors('B')) : G.node[node]['layer'] = unit(8,8) # start of component elif node in list(G.predecessors('Ou')) : G.node[node]['layer'] = unit(8,8) # end of component else : G.node[node]['layer'] = unit(8,8) # continuation of component if node == 'Ou' : G.node[node]['layer'] = unit(8,8) # final out will be like (batch,8,x,y) # list(G_dir.successors(n)) def attachLayerDependingUponNode(G, order): # dict of (k,v) k=node from networkx, v is actual layer like conv etc.. # For MNIST # giveLayer = giveLayerMNIST for node in order : giveLayer(G, node) return G # --------------------------------- SAMPLE RUN------------------------------------------------------------- # G = getFullArch(3, 300) # plotDirected(G) # graphOrder = list(topsort(G)) # # The order is by design is such that all 'a' component come first then 'b' so on # G = attachLayerDependingUponNode(G,graphOrder) # print G.nodes.data() # ---------------------------------DYNAMIC NEURAL NETWORK GEN FROM NETWORKX GRAPH----------------------------- ''' Main NN module which takes in the attachedLayer networkx Graph and creates the ModuleList Pytorch Network ''' class Net(nn.Module): def __init__(self, G): super(Net, self).__init__() self.G = G # this is graph with layers attached self.graphOrder = list(topsort(G)) #save time in topsorting everytime when required, use this <-DO NOT CHANGE THIS ORDER!!! as nodeInNN is orderdependent self.nodesInNN = nn.ModuleList() for nod in self.graphOrder : # print nod self.nodesInNN.append(G.node[nod]['layer']) self.fc = nn.Linear(8*7*7, 10) # 3 maxpools cause the final image to be 1,8,7,7 def forward(self, x): result = {} for ix, node in enumerate(self.graphOrder) : # print node # find pred and get results from pred # then add those pred # then supply in the curr node pred = list(self.G.predecessors(node)) if len(pred) == 0 : # when node == 'In' result[node] = self.nodesInNN[ix](x) else : # get results for each pred and add # tmp = result[pred[0]] # for pNode in pred[1:] : # tmp += result[pNode] result[node] = self.nodesInNN[ix](*[result[pNode] for pNode in pred]) x = torch.flatten(result['Ou'],1) output = self.fc(x) output = F.log_softmax(output, dim=1) return output def testMNIST(Net,G): ''' To test whether the created Net is fine (dimension wise) or not on MNIST input dimen ''' x = torch.zeros((1,1,28,28)) model = Net(G) print model(x).shape # ---------------------------------RANDOM HIT/MISS CODE------------------------------------------------------------- # nx.readwrite.nx_yaml.write_yaml(G,"model.yaml") # runNetwork(model) # nnModelDict = attachLayerDependingUponNode(G, graphOrder) # making graphOrder as list rather than the generator object is the only useful thing I could find to do with topsort # Working with networkx graphs sample <- assiging data to nodes # print graphOrder # print graphOrder[0] # G.nodes[graphOrder[0]]['layer'] = 1 # print G.nodes[graphOrder[0]]['layer']
[ "mudit.verma2014@gmail.com" ]
mudit.verma2014@gmail.com
e2fd657eab66f4cff6903e8c631365e830e32956
f4fbd41b0272c6161e9a2ffd793fb96631c3f20d
/aries_cloudagent/config/injector.py
03fbe9195388cd861602f0b2e8e9012fd0eb92b9
[ "Apache-2.0", "LicenseRef-scancode-dco-1.1" ]
permissive
The-Insight-Token/aries-cloudagent-python
946d8b7a2b0aa7a50be1a5a93c8c9caecadf6280
c84c2615d6513a7ce30e71ae31f632ba112a2b1f
refs/heads/main
2023-03-19T11:54:51.837163
2021-03-10T02:07:07
2021-03-10T02:07:07
346,390,951
1
0
Apache-2.0
2021-03-10T14:53:52
2021-03-10T14:53:51
null
UTF-8
Python
false
false
3,658
py
"""Standard Injector implementation.""" from typing import Mapping, Optional, Type from .base import BaseProvider, BaseInjector, InjectionError, InjectType from .provider import InstanceProvider, CachedProvider from .settings import Settings class Injector(BaseInjector): """Injector implementation with static and dynamic bindings.""" def __init__( self, settings: Mapping[str, object] = None, *, enforce_typing: bool = True ): """Initialize an `Injector`.""" self.enforce_typing = enforce_typing self._providers = {} self._settings = Settings(settings) @property def settings(self) -> Settings: """Accessor for scope-specific settings.""" return self._settings @settings.setter def settings(self, settings: Settings): """Setter for scope-specific settings.""" self._settings = settings def bind_instance(self, base_cls: Type[InjectType], instance: InjectType): """Add a static instance as a class binding.""" self._providers[base_cls] = InstanceProvider(instance) def bind_provider( self, base_cls: Type[InjectType], provider: BaseProvider, *, cache: bool = False ): """Add a dynamic instance resolver as a class binding.""" if not provider: raise ValueError("Class provider binding must be non-empty") if cache and not isinstance(provider, CachedProvider): provider = CachedProvider(provider) self._providers[base_cls] = provider def clear_binding(self, base_cls: Type[InjectType]): """Remove a previously-added binding.""" if base_cls in self._providers: del self._providers[base_cls] def get_provider(self, base_cls: Type[InjectType]): """Find the provider associated with a class binding.""" return self._providers.get(base_cls) def inject( self, base_cls: Type[InjectType], settings: Mapping[str, object] = None, *, required: bool = True, ) -> Optional[InjectType]: """ Get the provided instance of a given class identifier. Args: cls: The base class to retrieve an instance of params: An optional dict providing configuration to the provider Returns: An instance of the base class, or None """ if not base_cls: raise InjectionError("No base class provided for lookup") provider = self._providers.get(base_cls) if settings: ext_settings = self.settings.extend(settings) else: ext_settings = self.settings if provider: result = provider.provide(ext_settings, self) else: result = None if result is None: if required: raise InjectionError( "No instance provided for class: {}".format(base_cls.__name__) ) elif not isinstance(result, base_cls) and self.enforce_typing: raise InjectionError( "Provided instance does not implement the base class: {}".format( base_cls.__name__ ) ) return result def copy(self) -> BaseInjector: """Produce a copy of the injector instance.""" result = Injector(self.settings) result.enforce_typing = self.enforce_typing result._providers = self._providers.copy() return result def __repr__(self) -> str: """Provide a human readable representation of this object.""" return f"<{self.__class__.__name__}>"
[ "cywolf@gmail.com" ]
cywolf@gmail.com
a2c60ae4eba6bb1bd7bc7d9d5bb25bc5a6ea9707
4f875744ccae8fa9225318ce16fc483b7bf2735e
/google/thief.py
784a8691a8ab6fa23fd45c46215f40a55bbe01b8
[]
no_license
nguyenngochuy91/companyQuestions
62c0821174bb3cb33c7af2c5a1e83a60e4a29977
c937fe19be665ba7ac345e1729ff531f370f30e8
refs/heads/master
2020-07-27T05:58:36.794033
2020-04-10T20:57:15
2020-04-10T20:57:15
208,893,527
1
0
null
null
null
null
UTF-8
Python
false
false
854
py
# -*- coding: utf-8 -*- """ Created on Wed Dec 11 02:40:47 2019 @author: huyn """ #House thief def findMax(array): def dfs(index,currentSum): if index>=len(array): return currentSum else: val = array[index] first = dfs(index+1,currentSum) second = dfs(index+2,currentSum+val) return max(first,second) return dfs(0,0) #print(findMax([2, 5, 1, 3, 6, 2, 4])) #print(findMax([2, 10, 14, 8, 1])) def findMaxDP(array): dp = [0]*len(array) def dfs(index): if index<len(array): if dp[index]==0: dp[index] = max(array[index]+dfs(index+2),dfs(index+1)) return dp[index] else: return 0 dfs(0) return dp[0] print(findMaxDP([2, 5, 1, 3, 6, 2, 4])) print(findMaxDP([2, 10, 14, 8, 1]))
[ "huyn@cvm6h4zv52.cvm.iastate.edu" ]
huyn@cvm6h4zv52.cvm.iastate.edu
6425948003272e8b7845b8b2a02bb4d2ab44b0b5
e9de2e778bebc8c9d9da4826a6372a462831fb62
/fcmscriptdb.py
0a17591b4da1fe06e935cdf1ee6939b98d8a75f6
[]
no_license
rahulgoyal911/FCMScript
2c698bb41012fce3e015598c5ded7f7de8033114
2f8c21823e4849f0c5f1844b58c48ae8b9b9e7f2
refs/heads/master
2020-04-21T23:41:18.961515
2019-02-10T14:22:55
2019-02-10T14:22:55
169,954,334
0
1
null
null
null
null
UTF-8
Python
false
false
967
py
# Send to single device. from pyfcm import FCMNotification import psycopg2 conn = psycopg2.connect(database = "testdb2", user = "postgresql", password = "namespace1", host = "sample-database.czgprnseypbr.us-east-1.rds.amazonaws.com", port = "5432") print ('Opened database successfully') cur = conn.cursor() cur.execute("SELECT name from COMPANY") rows = cur.fetchall() for row in rows: print ("NAME = ", row[0]) name = row[0] print ("fetched successfully"); push_service = FCMNotification(api_key="AAAALZRFb04:APA91bEjxns-acpzgQwQK93ePXeb0LfQ6oES0dW7PSTuSE00qzsWhmVqFu4M0O-D6XVH1Cb_XC2miS0AitRImEcRjSEzRKKXJAAbOJg876mOwIY04VdOiZgoi0VL5MoTWmcr1RTpN5ht") registration_id = "dyWTx-v3YtQ:APA91bHVf4yLwu2HpflWNW9yjVX8G3mZmamMgZjqBV-pPMvQCwAydPuQUrRjxz_OZOgrO_IJr5nq2TMLZtI2fgnAu2oDV1dFvu2RC4hmyiFK2WgdZcdQYPATcbMW3Q_tHXU9D9VrEaWz" message = name result = push_service.notify_single_device(registration_id=registration_id, message_body=message) print (result)
[ "rahulgoyal0.rg@gmail.com" ]
rahulgoyal0.rg@gmail.com
ceadd39f58e3cdd2956e37c2b347fd9cdd1e0a75
cdc91518212d84f3f9a8cd3516a9a7d6a1ef8268
/python/eve_number_sum.py
02fbfe2554068c956fce71f67dc342dbab849094
[]
no_license
paulfranco/code
1a1a316fdbe697107396b98f4dfe8250b74b3d25
10a5b60c44934d5d2788d9898f46886b99bd32eb
refs/heads/master
2021-09-20T14:00:35.213810
2018-08-10T06:38:40
2018-08-10T06:38:40
112,060,914
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
# write a function that adds all of of the even numbers from 0 - 26 def my_func(): my_sum = 0 for x in range(0, 25): if x % 2 == 0: my_sum = my_sum + x print(my_sum) my_func()
[ "paulfranco@me.com" ]
paulfranco@me.com
856646a13abfa675fe8af4f6c9cf65e07f64f447
6d5a5c731f89933c7086ecd7d26999b79bc7217a
/Inflearn/stringPrac.py
33b9bd610fc6fd0e93387a7b9f24ecaa77075782
[]
no_license
minhyeonlee/python-basic
7fbb9ff3816ac72c19d2cb2192c324a379082b16
007d1fc455927e83188e345bf3fc5cd8d5753b49
refs/heads/master
2022-04-13T09:57:39.270863
2020-03-28T07:25:14
2020-03-28T07:25:14
247,428,424
0
0
null
null
null
null
UTF-8
Python
false
false
3,306
py
''' Inflearn, 파이썬 무료 강의 (기본편) - 6시간 뒤면 나도 개발자 Section3. 문자열 처리 ''' # 1강. 문자열 # ''와 ""은 모두 문자열이다. sentence = '나는 소년입니다.' print(sentence) sentence2 = "파이썬은 쉬워요" print(sentence2) #여러줄을 저장해서 출력할 수 있다. sentence3 = ''' 나는 소년이고, 파이썬은 쉬워요 ''' print(sentence3) # 2강. 슬라이싱 idnumber = "990120-1234567" print("성별: " + idnumber[7]) # 1 print("연: " + idnumber[0:2]) # 0 부터 2 직전까지 (0, 1에 있는 값 가져옴) print("월: " + idnumber[2:4]) # 01 print("일: " + idnumber[4:6]) # 21 print("생년월일: " + idnumber[:6]) # 처음부터 6번째 직전까지 print("뒤 7자리: "+ idnumber[7:]) # 7부터 끝까지 print("뒤 7자리 (뒤에서부터): " + idnumber[-7:]) # 맨 뒤에서 7째부터 끝까 # 3강. 문자열처리함수 python = "Python is Amazing" print(python.lower()) # 소문자 출력 print(python.upper()) # 대문자 출력 print(python[0].isupper()) # python[0]의 문자가 대문자인지 확인, True/False로 리턴 print(len(python)) # 문자열 길이 반환 print(python.replace("Python", "Java")) # 문자열을 찾은 후 다른 문자열로 바꾼다. index = python.index("n") # 해당 문자열이 어느 위치에 있는지 찾아줌 print(index) index = python.index("n", index+1) # 아까 찾은 n(5에 위치) 이후 부터 검색한다. print(index) print(python.find("n")) # index 처럼 검색해준다. print(python.find("Java")) # 원하는 문자가 없을 경우 -1을 반환 #print(python.index("Java"))를 쓰면 오류 print(python.count("n")) # 해당 문자열이 몇 개 들어있는지 검색 # 4강. 문자열 포맷 print("a" + "b") print("a", "b") # 방법 1 print("나는 %d살입니다." % 20) # %d: 정수 값 print("나는 %s을 좋아해요." % "파이썬") # %s: string 값, 정수도 출력 할 수 있다. print("Apple은 %c로 시작해요." % "A") # %c: char(문자 1개) 값 print("나는 %s살입니다." % 20) print("나는 %s색과 %s색을 좋아해요." %("파란", "빨간")) # 방법 2 print("나는 {}살 입니다.".format(20)) print("나는 {}색과 {}색을 좋아해요.".format("파란", "빨간")) print("나는 {0}색과 {1}색을 좋아해요.".format("파란", "빨간")) print("나는 {1}색과 {0}색을 좋아해요.".format("파란", "빨간")) # 방법 3 print("나는 {age}살이며, {color}색을 좋아해요.".format(age=30, color="빨간")) print("나는 {age}살이며, {color}색을 좋아해요.".format(color="빨간", age=30)) # 방법 4(v3.6이상 부터 가능) age = "20" color ="빨간" print(f"나는 {age}살이며, {color}색을 좋아해요.") # 5강. 탈출문자 # \n: 줄바꿈 print("백문이 불여일견\n백견이 불여일타") # \" \': 문장 내에서 따옴 # 저는 "나도코딩"입니다. print("저는 '나도코딩'입니다.") print('저는 "나도코딩"입니다.') print("저는 \"나도코딩\"입니다.") print("저는 \'나도코딩\'입니다.") # \\: 문장 내에서 \(경로 출력 등에 사용) print("C:\\User\\Desktop") # \r: 커서를 맨 앞으로 이동 print("Red Apple\rPine") # \b: 백스페이스 (한 글자 삭제) print("Redd\bApple") # \t: 탭 print("Red\tApple")
[ "minhyeonlee1@gmail.com" ]
minhyeonlee1@gmail.com
c5938159509a69c4d911d0b67d9fe2ccb67844f4
70b339d0b2638a7914d0d56c5edf8a2637c9f4b0
/countUnivalSubtrees.py
debb8570ebae08b08bd35f2a07e56136d4acbf9a
[]
no_license
pflun/advancedAlgorithms
9991da7514024e18ba08de8688966b9220e12571
5520dbcd26999b98e1229bf03c2f62dd690a2ddc
refs/heads/master
2023-02-19T12:05:26.902535
2023-02-14T06:08:54
2023-02-14T06:08:54
189,055,701
4
0
null
null
null
null
UTF-8
Python
false
false
2,234
py
# -*- coding: utf-8 -*- # 分别看左右子树返回值是否与根相等,分情况讨论 # https://mnmunknown.gitbooks.io/algorithm-notes/content/61_tree.html # Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def countUnivalSubtrees(self, root): self.res = 0 def postorder(root): if root is None: return None # 叶子节点也算一个子树 if root.left is None and root.right is None: self.res += 1 return root.val if root.left: left = postorder(root.left) if root.right: right = postorder(root.right) # 左右子树都存在 if root.left and root.right: # 左右儿子和根值相等 if left == right: if left is root.val: self.res += 1 else: return False else: # 左儿子和根相等 if left == root.val: self.res += 1 # 或者右儿子和根相等 elif right == root.val: self.res += 1 # 只存在左子树 elif root.left and not root.right: # 左儿子和根相等 if left == root.val: self.res += 1 else: return False elif root.right and not root.left: if right == root.val: self.res += 1 else: return False return root.val postorder(root) return self.res head_node = TreeNode(0) n1 = TreeNode(1) n2 = TreeNode(0) n3 = TreeNode(5) n4 = TreeNode(4) n5 = TreeNode(5) n6 = TreeNode(5) n7 = TreeNode(5) head_node.left = n1 head_node.right = n2 n1.left = n3 n1.right = n4 n3.left = n6 n6.left = n5 n6.right = n7 test1 = Solution() print test1.countUnivalSubtrees(head_node) # 0 # 1 0 # 5 4 # 5 #5 5
[ "zgao@gwu.edu" ]
zgao@gwu.edu
9b4de1d3e5726b763267418ceb084d36565e00af
e6a8793b1b12d47e57f00485350d122946618245
/parents/admin.py
6a80e0c0a7836d80d23fab02e3781a4109d89613
[]
no_license
Fabricourt/school
70b2eba2c0b8ff9b9290eb0f68d730698a6d3a63
dad80c36be34b432dfadef195eb9e867f82cafff
refs/heads/main
2023-01-01T15:48:43.760288
2020-10-26T11:15:32
2020-10-26T11:15:32
305,829,630
0
0
null
null
null
null
UTF-8
Python
false
false
266
py
from django.contrib import admin from .models import Parent class ParentAdmin(admin.ModelAdmin): list_display = ( 'name', 'account_date') list_display_links = ( 'name',) search_fields = ('name',) list_per_page = 25 admin.site.register(Parent, ParentAdmin)
[ "mfalme2030@gmail.com" ]
mfalme2030@gmail.com
25069dd9e77118a997038dcb2d699948baacf6b6
d38d988114f8487e4c0d1674191b6f2865eac70d
/gru.py
7b20014606ce44db1d77d34a341bc6b2b10aa40b
[ "MIT" ]
permissive
dizcza/ujipen
71cc1612fcc8247a7cae1a2da9ea13cb2fca38e8
4e7d2ff1bd6d659743fdf68e49894236cd559b84
refs/heads/master
2021-07-05T19:03:00.701898
2020-09-11T18:48:57
2020-09-11T18:48:57
171,858,288
1
1
MIT
2019-10-30T09:28:42
2019-02-21T11:19:50
Python
UTF-8
Python
false
false
2,371
py
from typing import List, Dict import numpy as np from keras import layers, models from constants import * from helper import check_unique_patterns from preprocess import equally_spaced_points_patterns, is_inside_box from ujipen.ujipen_class import UJIPen def concat_samples(samples: Dict[str, List[List[np.ndarray]]]): labels = [] data = [] for letter in samples.keys(): letter_ord = ord(letter) - ord('a') labels.extend([letter_ord] * len(samples[letter])) for word_sample in samples[letter]: word_sample = np.vstack(word_sample) data.append(word_sample) data = np.stack(data, axis=0) assert is_inside_box(data, box=((-1, -1), (1, 1))) labels = np.array(labels) print(f"Data: {data.shape}, labels: {labels.shape}") return data, labels def train(ujipen: UJIPen, n_input=PATTERN_SIZE, n_hidden=50): patterns = ujipen.get_samples(fold='train') patterns = equally_spaced_points_patterns(patterns, total_points=n_input) train_data, train_labels = concat_samples(patterns) test_samples = equally_spaced_points_patterns(ujipen.get_samples(fold='test'), total_points=n_input) test_data, test_labels = concat_samples(test_samples) assert check_unique_patterns(patterns, n_points=n_input) gru = models.Sequential() gru.add(layers.GRU(units=n_hidden, activation='tanh', recurrent_activation='hard_sigmoid', return_sequences=False, implementation=1, input_shape=(n_input, 2))) gru.add(layers.Dense(units=np.unique(train_labels).size, activation='softmax')) print(gru.summary()) gru.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = gru.fit(train_data, train_labels, epochs=100, batch_size=32, validation_data=(test_data, test_labels), verbose=0) history = history.history accuracy_train = history['acc'][-1] print(f"Loss: {history['loss'][-1]:.5f}, accuracy: train={accuracy_train:.5f}, val={history['val_acc'][-1]:.5f}") MODELS_DIR.mkdir(exist_ok=True) model_path = str(MODELS_DIR / f'GRU_input-{n_input}_hidden-{n_hidden}_acc-{accuracy_train:.4f}.h5') gru.save(model_path) print(f"Saved trained model to {model_path}") if __name__ == '__main__': train(ujipen=UJIPen(), n_input=30, n_hidden=100)
[ "dizcza@gmail.com" ]
dizcza@gmail.com
7b731c6f011fa87393d4ce9b59e7a664722cbc56
30150c7f6ed7a10ac50eee3f40101bc3165ebf9e
/src/coghq/FactoryEntityCreatorAI.py
f46ac38d6fdd0fa9403d61345de5892119f286e3
[]
no_license
toontown-restoration-project/toontown
c2ad0d552cb9d5d3232ae6941e28f00c11ca3aa8
9bef6d9f823b2c12a176b33518eaa51ddbe3fd2f
refs/heads/master
2022-12-23T19:46:16.697036
2020-10-02T20:17:09
2020-10-02T20:17:09
300,672,330
0
0
null
null
null
null
UTF-8
Python
false
false
4,100
py
"""FactoryEntityCreatorAI module: contains the FactoryEntityCreatorAI class""" from otp.level import EntityCreatorAI from direct.showbase.PythonUtil import Functor from . import DistributedBeanBarrelAI from . import DistributedButtonAI from . import DistributedCrateAI from . import DistributedLiftAI from . import DistributedDoorEntityAI from . import DistributedGagBarrelAI from . import DistributedGridAI from toontown.suit import DistributedGridGoonAI from toontown.suit import DistributedGoonAI from . import DistributedHealBarrelAI from . import DistributedStomperPairAI from . import DistributedTriggerAI from . import DistributedStomperAI from . import DistributedLaserFieldAI from . import DistributedSecurityCameraAI from . import DistributedMoverAI from . import DistributedElevatorMarkerAI from . import DistributedSinkingPlatformAI from . import ActiveCellAI from . import CrusherCellAI from . import DirectionalCellAI from . import FactoryLevelMgrAI from . import BattleBlockerAI from . import DistributedGolfGreenGameAI from toontown.coghq import DistributedMoleFieldAI from toontown.coghq import DistributedMazeAI class FactoryEntityCreatorAI(EntityCreatorAI.EntityCreatorAI): def __init__(self, level): EntityCreatorAI.EntityCreatorAI.__init__(self, level) # create short aliases for EntityCreatorAI create funcs cDE = EntityCreatorAI.createDistributedEntity cLE = EntityCreatorAI.createLocalEntity nothing = EntityCreatorAI.nothing self.privRegisterTypes({ 'activeCell' : Functor(cDE, ActiveCellAI.ActiveCellAI), 'crusherCell' : Functor(cDE, CrusherCellAI.CrusherCellAI), 'battleBlocker' : Functor(cDE, BattleBlockerAI.BattleBlockerAI), 'beanBarrel': Functor(cDE, DistributedBeanBarrelAI.DistributedBeanBarrelAI), 'button': DistributedButtonAI.DistributedButtonAI, 'conveyorBelt' : nothing, 'crate': Functor(cDE, DistributedCrateAI.DistributedCrateAI), 'directionalCell' : Functor(cDE, DirectionalCellAI.DirectionalCellAI), 'door': DistributedDoorEntityAI.DistributedDoorEntityAI, 'gagBarrel': Functor(cDE, DistributedGagBarrelAI.DistributedGagBarrelAI), 'gear': nothing, 'goon': Functor(cDE, DistributedGoonAI.DistributedGoonAI), 'gridGoon': Functor(cDE, DistributedGridGoonAI.DistributedGridGoonAI), 'golfGreenGame': Functor(cDE, DistributedGolfGreenGameAI.DistributedGolfGreenGameAI), 'goonClipPlane' : nothing, 'grid': Functor(cDE, DistributedGridAI.DistributedGridAI), 'healBarrel': Functor(cDE, DistributedHealBarrelAI.DistributedHealBarrelAI), 'levelMgr': Functor(cLE, FactoryLevelMgrAI.FactoryLevelMgrAI), 'lift': Functor(cDE, DistributedLiftAI.DistributedLiftAI), 'mintProduct': nothing, 'mintProductPallet': nothing, 'mintShelf': nothing, 'mover': Functor(cDE, DistributedMoverAI.DistributedMoverAI), 'paintMixer': nothing, 'pathMaster': nothing, 'rendering': nothing, 'platform': nothing, 'sinkingPlatform': Functor(cDE, DistributedSinkingPlatformAI.DistributedSinkingPlatformAI), 'stomper': Functor(cDE, DistributedStomperAI.DistributedStomperAI), 'stomperPair': Functor(cDE, DistributedStomperPairAI.DistributedStomperPairAI), 'laserField': Functor(cDE, DistributedLaserFieldAI.DistributedLaserFieldAI), 'securityCamera': Functor(cDE, DistributedSecurityCameraAI.DistributedSecurityCameraAI), 'elevatorMarker': Functor(cDE, DistributedElevatorMarkerAI.DistributedElevatorMarkerAI), #'laserField': Functor(cDE, DistributedStomperAI.DistributedStomperAI), 'trigger': DistributedTriggerAI.DistributedTriggerAI, 'moleField': Functor(cDE, DistributedMoleFieldAI.DistributedMoleFieldAI), 'maze': Functor(cDE, DistributedMazeAI.DistributedMazeAI), })
[ "brianlach72@gmail.com" ]
brianlach72@gmail.com
50d9bcb586a1faed7b58e48723a78679a98837d8
279ed7207ac2c407487416b595e12f573049dd72
/pybvk/apps/bvkdos.py
13cba733f4b05f59814d552d8b8aa8f9f4c231a3
[]
no_license
danse-inelastic/pybvk
30388455e211fec69130930f2925fe16abe455bd
922c8c0a8c50a9fabd619fa06e005cacc2d13a15
refs/heads/master
2016-09-15T22:21:13.131688
2014-06-25T17:12:34
2014-06-25T17:12:34
34,995,254
0
0
null
null
null
null
UTF-8
Python
false
false
2,211
py
#!/usr/bin/env python # given the python module to create "system", calculate dos # the python module is optional. if it is not given, then "system" file must exist already. import os def run(systempy, system, df, N, Vecs): # if neither systempy nor system is specified, it is assumed that we have a "system" file if not systempy and not system: system = 'system' # create temporary work directory import tempfile workdir = tempfile.mkdtemp() # create the system file in the temporary work directory from bvk.applications.executionharness import createSystem, execute system = createSystem(workdir, systempy=systempy, system=system) # # build the command to run Vecs = int(Vecs) cmds = [ 'bvkrandomQs %s' % N, 'bvkdisps %s' % Vecs, 'bvkpartialdos %s %s' % (Vecs, df), ] return execute(cmds, workdir=workdir, outputfiles=['DOS']) from optparse import OptionParser def main(): usage = "usage: %prog [options] [system]" parser = OptionParser(usage) parser.add_option( "-N", "--N-kpts-1D", dest="N", default = 10, help="Number of k points in 1D for sampling reciprocal space", ) parser.add_option( "-d", "--df", dest="df", default = 0.1, help="frequency axis bin size(THz)", ) parser.add_option( "-E", "--compute-eigen-vectors", default = False, help='compute eigne vectors or not?', dest="Vecs", ) parser.add_option( '-P', '--system-python-file', default = '', help = 'python file that generates the "system" file when executed. when this option is supplied, please do not specify the "system" file path as the argument', dest = 'systempy', ) (options, args) = parser.parse_args() if len(args) > 1: parser.error("incorrect number of arguments") if len(args) == 1: system = args[0] else: system = None N = int(options.N) df = float(options.df) Vecs= bool(options.Vecs) systempy = options.systempy return run(systempy, system, df, N, Vecs) if __name__ == "__main__": main()
[ "linjiao@caltech.edu" ]
linjiao@caltech.edu
e95450b4b2a062095da6f2a52983a8128ebe702a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02640/s043458506.py
aa5a66ce9487ea4e0b7b83b41044d3742b278eb9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
# Crane and Turtle X, Y = [int(i) for i in input().split()] for t in range(0, X + 1): legs = 2 * (X + t) if Y == legs: a = 'Yes' break if Y < legs: a = 'No' break else: a = 'No' print(a)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
c770e3b327455e13849eeee61191a2598e34255f
e1a56ac7e85030de9ed440db0d276612fc8ad02e
/wsperf.py
ac4c5131cd39821c4f0630ba1f46a55189edb2fd
[]
no_license
hoangtrucit/wsperf
cfeb9ee794475ecffcf96e9b1929ca69ed2a8942
3d9dd986b1fb7dd0af38540191cc9ea73f119770
refs/heads/master
2021-10-20T19:30:06.236857
2019-03-01T13:52:34
2019-03-01T13:52:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,838
py
import os, sys, argparse from twisted.internet import reactor from twisted.internet.utils import getProcessOutput, getProcessValue from twisted.internet.defer import DeferredList import analyze if __name__ == '__main__': default_wsperf = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'wsperf') parser = argparse.ArgumentParser(description = 'wsperf test driver') parser.add_argument('--wsuri', dest = 'wsuri', type = str, default = 'ws://127.0.0.1:9000', help = 'The WebSocket URI the testee is listening on, e.g. ws://127.0.0.1:9000.') parser.add_argument('--workers', dest = 'workers', type = int, default = 4, help = 'Number of wsperf worker processes to spawn.') parser.add_argument('--threads', dest = 'threads', type = int, default = 0, help = 'Number of wsperf worker threads to spawn at each worker [0: run on main thread, >0: spawn that many background worker threads].') parser.add_argument('--conns', dest = 'conns', type = int, default = 50000, help = 'Number of WebSocket connections to open from each worker.') parser.add_argument('--lowmark', dest = 'lowmark', type = int, default = 250, help = 'Low watermark for each worker.') parser.add_argument('--highmark', dest = 'highmark', type = int, default = 500, help = 'High watermark for each worker.') parser.add_argument('--resultfile', dest = 'resultfile', type = str, default = r'result_%d.json', help = 'Result file pattern.') parser.add_argument('--wsperf', dest = 'wsperf', type = str, default = default_wsperf, help = 'Full path to wsperf executable.') parser.add_argument('--skiprun', dest = 'skiprun', action = "store_true", default = False, help = 'Skip test run.') parser.add_argument('--skipanalyze', dest = 'skipanalyze', action = "store_true", default = False, help = 'Skip analyze results.') options = parser.parse_args() resultfiles = [(options.resultfile % i) for i in xrange(options.workers)] if options.skiprun: ## here we don't start a reactor. if not options.skipanalyze: analyze.printResults(resultfiles) else: df = [] for i in range(options.workers): args = [options.wsuri, str(options.threads), str(options.conns), str(options.lowmark), str(options.highmark), options.resultfile % i] ## run wsperf executable d = getProcessOutput(options.wsperf, args, os.environ) ## accumulate any output df.append(d) d = DeferredList(df, consumeErrors = True) def onok(res): if not options.skipanalyze: analyze.printResults(resultfiles) reactor.stop() def onerr(err): print err reactor.stop() d.addCallbacks(onok, onerr) reactor.run()
[ "tobias.oberstein@tavendo.de" ]
tobias.oberstein@tavendo.de
195ac95f63e61157f163bece66445bf2cac32366
e58ecbf6af1cafbff42e2cc33abcbbf6e4ee7475
/tests/accounting/test_call_fee_scalar.py
a6ed4f4b831b346ef58636e8757486598b762f01
[ "MIT" ]
permissive
celeduc/ethereum-alarm-clock
1edbbe207e0f9a7ea34a792728a2b6dceda455dd
fd202f5e96b753e6ce6bcee9a67363c468c10c7b
refs/heads/master
2020-02-26T17:23:54.054416
2015-11-09T06:11:28
2015-11-09T06:11:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
802
py
test_values = ( (20, ( (4, 145), (8, 138), (12, 129), (16, 117), (20, 100), (24, 83), (28, 71), (32, 62), (36, 55), )), (500, ( (50, 148), (125, 143), (275, 132), (400, 117), (475, 105), (500, 100), (525, 95), (600, 83), (700, 71), (900, 55), (1200, 41), )), ) deploy_contracts = [ "CallLib", ] def test_call_fee_scalar_values(CallLib): for base_gas_price, values in test_values: actual_values = [ (CallLib.getCallFeeScalar(base_gas_price, gas_price), expected) for gas_price, expected in values ] assert all(actual == expected for actual, expected in actual_values)
[ "pipermerriam@gmail.com" ]
pipermerriam@gmail.com
090878f19ffe408b52f9598216f4a2f609c8d58e
e9685369da45e5c502ce5540891e6018eadba252
/backend/server/apps/tasks/api/serializers.py
8f557e1bb12bfa5ff5230105c2b8d8284b099ec9
[ "MIT" ]
permissive
Turi-fly/simple-tasks
9703a2dd405081b129222cf6a325a5b591709d8c
ae759a8100f6604b6d8fc00f19cf3aedbd945f3d
refs/heads/master
2022-04-10T15:26:01.590888
2018-11-14T08:45:46
2018-11-14T08:45:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
774
py
from rest_framework import serializers import tasks.models as models import cerberus class TaskSerializer(serializers.ModelSerializer): class Meta: model = models.Task read_only_fields = ('id', 'state', 'result', 'task_id',) fields = ('id', 'state', 'params', 'result', 'task_id') def validate_params(self, params): if params is None or params == '': raise serializers.ValidationError("Params cannot be empty") schema = {'arg1': {'type': 'integer', 'required': True}, 'arg2': {'type': 'integer', 'required': True}} validator = cerberus.Validator(schema) if not validator.validate(params): raise serializers.ValidationError(validator.errors) return params
[ "pplonski86@gmail.com" ]
pplonski86@gmail.com
510b351cc1af18f3ed0180c70ef1242ca5bac1d8
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2171/48117/297146.py
bda92c1ed48fa43c5286605774a8b0ab0e50019c
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,525
py
class Node(): def __init__(self, item): self.item = item self.next = None class LinkList(): def __init__(self, node = None): self.head = node def isEmpty(self): return self.head == None def append(self, newItem): newNode = Node(newItem) if self.isEmpty(): self.head = newNode newNode.next = self.head else: nowNode = self.head while nowNode.next != self.head: nowNode = nowNode.next nowNode.next = newNode newNode.next = self.head def add(self, newItem): newNode = Node(newItem) if self.isEmpty(): self.head = newNode else: nowNode = self.head while nowNode.next != None: nowNode = nowNode.next nowNode.next = newNode questNum = int(input()) for quest in range(questNum): n = int(input()) s = input().split(' ') for i in range(n): s[i] = int(s[i]) p = LinkList() for i in range(n): p.add(s[i]) p1 = p.head odd = LinkList() ou = LinkList() while p1.next != None: if p1.item % 2 == 0: ou.add(p1.item) else: odd.add(p1.item) p1 = p1.next ou1 = ou.head odd1 = odd.head while ou1.next != None: print(ou1.item, end=' ') ou1 = ou1.next while odd1.next != None: print(odd1.item, end = ' ') odd1 = odd1.next print()
[ "1069583789@qq.com" ]
1069583789@qq.com
45e87ed9a82e88d8e774f45921ed3227fd68165e
4dbd12da17cc45a5482afc8cea02051e798731a9
/courses_project/apps/courses/urls.py
ab576aa8a6f94c45e5f11e2186a1af9f96e0ddaa
[]
no_license
tsicroxe/django_projects
71b9bec6d834f53fde892606799b4bc96ba45a91
c11036c78d120e5ffa51055e2999dbe05b0d36eb
refs/heads/master
2021-01-11T07:03:53.045558
2016-12-07T20:46:05
2016-12-07T20:46:05
71,937,705
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
from django.conf.urls import url from . import views from views import index, create, destroy #from django.contrib import admin urlpatterns = [ #url(r'^admin/', admin.site.urls), url(r'^$', views.index, name='index'), url(r'^create$', views.create, name='create'), url(r'^(?P<id>\d+)/destroy$', views.destroy, name='destroy'), ]
[ "arbanakus@gmail.com" ]
arbanakus@gmail.com
21e8e5573f1c6037a1404e7518ad11fd5494c097
b2319c5e14c94edfb5a39e4c490c1ae6183651ed
/deepgoweb/apps/deepgo/migrations/0013_auto_20190902_0904.py
edb4c8e1436fbb064813d7d04f2b93874adbe234
[]
no_license
coolmaksat/deepgoweb
6d67f45059d7bdb4548d50c182a038c6f9c70a31
fd4904b6b18dd2af06e000679f406b7353a3534f
refs/heads/master
2021-06-12T14:42:14.513686
2021-04-17T10:23:39
2021-04-17T10:23:39
161,017,035
0
0
null
2018-12-09T07:49:26
2018-12-09T07:49:26
null
UTF-8
Python
false
false
2,974
py
# Generated by Django 2.2.4 on 2019-09-02 09:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('deepgo', '0012_auto_20190505_0848'), ] operations = [ migrations.CreateModel( name='Taxonomy', fields=[ ('id', models.PositiveIntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=127)), ], ), migrations.RemoveField( model_name='protein', name='ppi_embedding', ), migrations.RemoveField( model_name='protein', name='sequence', ), migrations.RemoveField( model_name='protein', name='sequence_md5', ), migrations.RemoveField( model_name='protein', name='uni_accession', ), migrations.RemoveField( model_name='protein', name='uni_entry_id', ), migrations.AddField( model_name='protein', name='acc_id', field=models.CharField(default='PROTEIN', max_length=15, unique=True), preserve_default=False, ), migrations.AddField( model_name='protein', name='gene', field=models.CharField(blank=True, max_length=31, null=True), ), migrations.AddField( model_name='protein', name='name', field=models.CharField(default='name', max_length=127), preserve_default=False, ), migrations.AddField( model_name='protein', name='pro_id', field=models.CharField(db_index=True, default='PROTEIN', max_length=31), preserve_default=False, ), migrations.AddField( model_name='protein', name='reviewed', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='protein', name='id', field=models.PositiveIntegerField(primary_key=True, serialize=False), ), migrations.CreateModel( name='Annotation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('go_id', models.PositiveIntegerField(db_index=True)), ('score', models.PositiveIntegerField()), ('protein', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='annotations', to='deepgo.Protein')), ], ), migrations.AddField( model_name='protein', name='taxon', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='proteins', to='deepgo.Taxonomy'), ), ]
[ "coolmaksat@gmail.com" ]
coolmaksat@gmail.com
b1e7bc2ea6a672534d6f1fe70f55d35439a84b1f
cd40b7cc395f36740000ed4a4144b1c0666ab0fd
/tests/test_hstrat/test_stratum_retention_strategy/test_stratum_retention_algorithms/test_recency_proportional_resolution_algo/test_IterRetainedRanks.py
e25d30f8fbb8105935530e3c749ac1f26bb0365f
[ "MIT" ]
permissive
mmore500/hstrat
94fd22c86a87a5707590b9398ef679444ed82d6d
b2d2caded1db5e2dc681d9f171d7c74b322c55c3
refs/heads/master
2023-08-31T03:36:44.457576
2023-08-25T14:39:29
2023-08-25T14:39:29
464,531,144
5
2
NOASSERTION
2023-08-25T13:07:52
2022-02-28T15:11:45
Python
UTF-8
Python
false
false
7,230
py
import itertools as it import numbers from iterpop import iterpop as ip import numpy as np import pytest from hstrat._auxiliary_lib import all_same, pairwise from hstrat.hstrat import recency_proportional_resolution_algo @pytest.mark.parametrize( "recency_proportional_resolution", [ 0, 1, 2, 3, 7, ], ) @pytest.mark.parametrize( "time_sequence", [ range(10**3), (i for i in range(10**2) for __ in range(2)), np.random.default_rng(1).integers( low=0, high=2**32, size=10, ), (2**32,), ], ) def test_impl_consistency(recency_proportional_resolution, time_sequence): policy = recency_proportional_resolution_algo.Policy( recency_proportional_resolution ) spec = policy.GetSpec() impls = [ *recency_proportional_resolution_algo._scry._IterRetainedRanks_.impls ] instances = [impl(spec) for impl in impls] + [ lambda __, num_strata_deposited: policy.IterRetainedRanks( num_strata_deposited ) ] for num_strata_deposited in time_sequence: assert all_same( it.chain( ( list( impl(spec)( policy, num_strata_deposited, ) ) for impl in impls ), ( list( instance( policy, num_strata_deposited, ) ) for instance in instances ), ) ) @pytest.mark.parametrize( "impl", recency_proportional_resolution_algo._scry._IterRetainedRanks_.impls, ) @pytest.mark.parametrize( "recency_proportional_resolution", [ 0, 1, 2, 3, 7, 42, 97, 100, ], ) @pytest.mark.parametrize( "time_sequence", [ range(10**3), (i for i in range(10**2) for __ in range(2)), np.random.default_rng(1).integers( low=0, high=2**32, size=10, ), (2**32,), ], ) def test_only_dwindling_over_time( impl, recency_proportional_resolution, time_sequence ): policy = recency_proportional_resolution_algo.Policy( recency_proportional_resolution ) spec = policy.GetSpec() instance = impl(spec) for num_strata_deposited in time_sequence: for which in (instance, impl(spec)): cur_set = { *which( policy, num_strata_deposited, ) } next_set = { *which( policy, num_strata_deposited + 1, ) } assert cur_set.issuperset(next_set - {num_strata_deposited}) @pytest.mark.parametrize( "impl", recency_proportional_resolution_algo._scry._IterRetainedRanks_.impls, ) @pytest.mark.parametrize( "recency_proportional_resolution", [ 0, 1, 2, 3, 7, 42, 97, 100, ], ) @pytest.mark.parametrize( "time_sequence", [ range(10**3), (i for i in range(10**2) for __ in range(2)), np.random.default_rng(1).integers( low=0, high=2**32, size=10, ), (2**32,), ], ) def test_ranks_sorted_and_unique( impl, recency_proportional_resolution, time_sequence ): policy = recency_proportional_resolution_algo.Policy( recency_proportional_resolution ) spec = policy.GetSpec() instance = impl(spec) for num_strata_deposited in time_sequence: for which in (instance, impl(spec)): assert all( i < j for i, j in pairwise( which( policy, num_strata_deposited, ) ) ) @pytest.mark.parametrize( "impl", recency_proportional_resolution_algo._scry._IterRetainedRanks_.impls, ) @pytest.mark.parametrize( "recency_proportional_resolution", [ 0, 1, 2, 3, 7, 42, 97, 100, ], ) @pytest.mark.parametrize( "time_sequence", [ range(10**3), (i for i in range(10**2) for __ in range(2)), np.random.default_rng(1).integers( low=0, high=2**32, size=10, ), (2**32,), ], ) def test_zero_and_last_ranks_retained( impl, recency_proportional_resolution, time_sequence ): policy = recency_proportional_resolution_algo.Policy( recency_proportional_resolution ) spec = policy.GetSpec() instance = impl(spec) for num_strata_deposited in time_sequence: for which in instance, impl(spec): res = which( policy, num_strata_deposited, ) if num_strata_deposited > 1: first, *middle, last = res assert first == 0 assert last == num_strata_deposited - 1 elif num_strata_deposited == 1: assert ip.popsingleton(res) == 0 else: assert next(res, None) is None @pytest.mark.parametrize( "impl", recency_proportional_resolution_algo._scry._IterRetainedRanks_.impls, ) @pytest.mark.parametrize( "recency_proportional_resolution", [ 0, 1, 2, 3, 7, 42, 97, 100, ], ) @pytest.mark.parametrize( "time_sequence", [ range(10**3), (i for i in range(10**2) for __ in range(2)), np.random.default_rng(1).integers( low=0, high=2**32, size=10, ), (2**32,), ], ) def test_ranks_valid(impl, recency_proportional_resolution, time_sequence): policy = recency_proportional_resolution_algo.Policy( recency_proportional_resolution ) spec = policy.GetSpec() instance = impl(spec) for num_strata_deposited in time_sequence: for which in (instance, impl(spec)): assert all( isinstance(r, numbers.Integral) and 0 <= r < num_strata_deposited for r in which(policy, num_strata_deposited) ) @pytest.mark.parametrize( "impl", recency_proportional_resolution_algo._scry._IterRetainedRanks_.impls, ) @pytest.mark.parametrize( "recency_proportional_resolution", [ 0, 1, 2, 3, 7, 42, 97, 100, ], ) def test_eq(impl, recency_proportional_resolution): policy = recency_proportional_resolution_algo.Policy( recency_proportional_resolution ) spec = policy.GetSpec() instance = impl(spec) assert instance == instance assert instance == impl(spec) assert instance is not None
[ "mmore500.login+gpg@gmail.com" ]
mmore500.login+gpg@gmail.com
abfe6cbaac9ddeffce0019053b066e6517c9ec1f
4bf3aaf77c309a489100b98a8c03532632df152c
/Python/BOJ/13460.py
b39eb5f4d88753e6b925be54efe84dd74b2b14ff
[]
no_license
murane/PS
7fbfc54d962231949efc67f1a35c4b0119de0780
e938c6c503aeac08bf65e1e66709172b0e5da6ef
refs/heads/master
2023-05-06T22:51:54.105811
2021-05-30T03:34:53
2021-05-30T03:34:53
293,699,199
0
0
null
null
null
null
UTF-8
Python
false
false
1,785
py
import sys from collections import deque r=sys.stdin.readline N,M=map(int,r().split()) board=[] D=[(1,0),(-1,0),(0,1),(0,-1)] for _ in range(N): board.append(list(r().strip())) for i in range(N): for j in range(M): if board[i][j]=="R": R=[i,j] board[i][j]="." elif board[i][j]=="B": B=[i,j] board[i][j]="." def move(x,y,d): dist=0 while True: nextPos=board[x+d[0]][y+d[1]] if nextPos=='.': x,y=x+d[0],y+d[1] elif nextPos=='O': return True,0,[-1,-1] elif nextPos=='#': return False,dist,[x,y] dist+=1 def bfs(): q=deque() q.append([R,B,0]) visit=set() visit.add((tuple(R),tuple(B))) while q: red,blue,cnt=q.popleft() tmpRed,tmpBlue=red,blue #if cnt==10: return -1 for i in range(4): #4방향 flgR,distR,red=move(tmpRed[0],tmpRed[1],D[i])#일단 움직이고보자 flgB,distB,blue=move(tmpBlue[0],tmpBlue[1],D[i]) if flgR and not flgB: return cnt+1#빨간색은 들어가고 파란색은 아니면 성공 elif flgB: continue #파란색이 들어가면 실패 elif not flgR and not flgB: #일단 둘다 구멍에 안들어가고 if red==blue: #겹치는 경우 if distR>distB: red=red[0]-D[i][0],red[1]-D[i][1] else: blue=blue[0]-D[i][0],blue[1]-D[i][1] if (tuple(red),tuple(blue)) not in visit: q.append([red,blue,cnt+1]) #다시 큐로 visit.add((tuple(red),tuple(blue))) return -1 print(bfs())
[ "murane@naver.com" ]
murane@naver.com
c8b3a20fa81bc2a10ac839ee93aa3622a97f9a82
de070f933453e2d15651af1ccc697acf25507bd7
/deid/version.py
785a6ee84d0483f6912ea07c5584e25f6da00280
[ "MIT" ]
permissive
liu3xing3long/deid
cd968b1b5d8e678ad2c41f2b9f1c4572f5f88013
491a8ea301d9d47cd4e62eaab31584c26afcc534
refs/heads/master
2021-05-14T11:33:12.193255
2017-12-22T21:28:32
2017-12-22T21:28:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,871
py
''' Copyright (c) 2017 Vanessa Sochat Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' __version__ = "0.1.1" AUTHOR = 'Vanessa Sochat' AUTHOR_EMAIL = 'vsochat@stanford.edu' NAME = 'deid' PACKAGE_URL = "https://github.com/pydicom/deid" KEYWORDS = 'open source, stanford, python, deidentify, dicom' DESCRIPTION = "deidentify dicom and other images with python and pydicom" LICENSE = "LICENSE" INSTALL_REQUIRES = ( ('matplotlib', {'min_version': None}), ('requests', {'min_version': '2.12.4'}), ('retrying', {'min_version': '1.3.3'}), ('simplejson', {'min_version': '3.10.0'}), ('six', {'min_version': '1.10'}), ('pygments', {'min_version': '2.1.3'}), ('python-dateutil',{'min_version': None }), ('urllib3',{'min_version': "1.15" }), ('validator.py',{'min_version': None }) ) DEPENDENCY_LINKS = ['https://github.com/pydicom/pydicom/tarball/master']
[ "vsochat@stanford.edu" ]
vsochat@stanford.edu
52b1e429db9ff264272850ea168eeb1c2de376d2
a3e926f8547f04184c79bdd28b0f886a77778700
/Lib/fontbakery/reporters/ghmarkdown.py
b7376a00473362e6d22d640af646c8bc5277277e
[ "Apache-2.0" ]
permissive
m4rc1e/fontbakery
0150a17547b53d6dc79e81407b0374950f90cd16
da4c4b69abdd41314f9bdb58d9e47722e0680816
refs/heads/master
2023-08-02T14:18:00.077821
2018-10-17T01:47:51
2018-10-17T03:53:06
67,598,331
0
0
Apache-2.0
2018-10-18T09:34:10
2016-09-07T10:52:14
C
UTF-8
Python
false
false
3,976
py
import os from fontbakery.reporters.serialize import SerializeReporter from fontbakery.checkrunner import Status LOGLEVELS=["ERROR","FAIL","WARN","SKIP","INFO","PASS"] class GHMarkdownReporter(SerializeReporter): def __init__(self, loglevels, **kwd): super(GHMarkdownReporter, self).__init__(**kwd) self.loglevels = loglevels def emoticon(self, name): return { 'ERROR': ':broken_heart:', 'FAIL': ':fire:', 'WARN': ':warning:', 'INFO': ':information_source:', 'SKIP': ':zzz:', 'PASS': ':bread:', }[name] def html5_collapsible(self, summary, details): return ("<details>\n" "<summary>{}</summary>\n" "{}\n" "</details>\n").format(summary, details) def log_md(self, log): if not self.omit_loglevel(log["status"]): return "* {} **{}** {}\n".format(self.emoticon(log["status"]), log["status"], log["message"]) else: return "" def check_md(self, check): checkid = check["key"][1].split(":")[1].split(">")[0] check["logs"].sort(key=lambda c: c["status"]) logs = "".join(map(self.log_md, check["logs"])) github_search_url = ("[{}](https://github.com/googlefonts/fontbakery/" "search?q={})").format(checkid, checkid) return self.html5_collapsible("{} <b>{}:</b> {}".format(self.emoticon(check["result"]), check["result"], check["description"]), f"\n* {github_search_url}\n{logs}") def omit_loglevel(self, msg): return self.loglevels and (self.loglevels[0] > Status(msg)) def get_markdown(self): checks = {} family_checks = [] data = self.getdoc() num_checks = 0 for section in data["sections"]: for cluster in section["checks"]: if not isinstance(cluster, list): cluster = [cluster] num_checks += len(cluster) for check in cluster: if self.omit_loglevel(check["result"]): continue if "filename" not in check.keys(): # That's a family check! family_checks.append(check) else: key = os.path.basename(check["filename"]) if key not in checks: checks[key] = [] checks[key].append(check) md = "## Fontbakery report\n\n" if family_checks: family_checks.sort(key=lambda c: c["result"]) md += self.html5_collapsible("<b>[{}] Family checks</b>".format(len(family_checks)), "".join(map(self.check_md, family_checks)) + "<br>") for filename in checks.keys(): checks[filename].sort(key=lambda c: LOGLEVELS.index(c["result"])) md += self.html5_collapsible("<b>[{}] {}</b>".format(len(checks[filename]), filename), "".join(map(self.check_md, checks[filename])) + "<br>") if num_checks != 0: summary_table = "### Summary\n\n" + \ ("| {} " + " | {} ".join(LOGLEVELS) + " |\n").format(*[self.emoticon(k) for k in LOGLEVELS]) + \ ("|:-----:|:----:|:----:|:----:|:----:|:----:|\n" "| {} | {} | {} | {} | {} | {} |\n" "").format(*[data["result"][k] for k in LOGLEVELS]) +\ ("| {:.0f}% | {:.0f}% | {:.0f}% | {:.0f}% | {:.0f}% | {:.0f}% |\n" "").format(*[100*data["result"][k]/num_checks for k in LOGLEVELS]) md += "\n" + summary_table omitted = [l for l in LOGLEVELS if self.omit_loglevel(l)] if omitted: md += "\n" + \ "**Note:** The following loglevels were omitted in this report:\n" + \ "".join(map("* **{}**\n".format, omitted)) return md
[ "fsanches@metamaquina.com.br" ]
fsanches@metamaquina.com.br
0d9c8f3dbbc299c369c4ac837ee49b743180106e
084db5e25626908a5352339900f12f0000a25a4a
/crediteuropebank/items.py
9770e32bfb15c3f15bbc7ea5982eda1f5486b696
[]
no_license
hristo-grudev/crediteuropebank
f60a4c444b9aca06b2e44b699c2ce84703a3382d
82646cef961dfb318f33ef6a9dd44801a945494a
refs/heads/main
2023-03-10T08:29:04.156974
2021-02-25T09:30:57
2021-02-25T09:30:57
342,191,469
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
import scrapy class CrediteuropebankItem(scrapy.Item): title = scrapy.Field() description = scrapy.Field() date = scrapy.Field()
[ "hr.grudev@gmail.com" ]
hr.grudev@gmail.com
1b8fb8d7b10372b608afaa5f628de8f096425737
f9c2f77fea6ffdf820867f02805c7a037627f235
/PythonBasics/03_Volleyball.py
0f1cb9aab9fd10836c1d9eb2eb0e9fc07e0f77e6
[]
no_license
Nikolov-A/SoftUni
6f253694757f195a5c0df8f24b12dbb4ad4d76c6
351b0b970da84e5d930a235fce76853c4dcaa365
refs/heads/master
2022-01-12T13:57:11.842394
2019-07-07T10:53:48
2019-07-07T10:53:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
from math import floor year = input() holiday = int(input()) weekend = int(input()) games_in_sofia = (48 - weekend) * (3 / 4) games_in_home = weekend games_in_holiday_sofia = holiday * (2 / 3) total_games = games_in_sofia + games_in_home + games_in_holiday_sofia if year == "leap": additional_games = 0.15 * total_games total_games = additional_games + total_games print(f"{floor(total_games)}") else: print(f"{floor(total_games)}")
[ "alexander.nikolov092@gmail.com" ]
alexander.nikolov092@gmail.com
654bde5deddbb976c2e3fe5e7a9a4b33bd606463
e780a5bd72f98ca2513c993d64a85b08578166a6
/buildout-cache/eggs/Zope2-2.13.26-py2.7.egg/App/Permission.py
26fc6c96cef75bd35a47508c6bf2a627db0822a3
[]
no_license
vedantc98/Plone-test
023246597ffe848e2a49b9f65742ff49127b190b
9fd520fc78481e2c0b9b7ec427821e7f961c777e
refs/heads/master
2021-03-30T22:14:33.368739
2018-03-11T19:22:58
2018-03-11T19:22:58
124,671,713
0
0
null
null
null
null
UTF-8
Python
false
false
1,468
py
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## '''Zope registerable permissions ''' from AccessControl.class_init import InitializeClass from AccessControl.SecurityInfo import ClassSecurityInfo from Acquisition import Implicit from OFS.role import RoleManager from OFS.SimpleItem import Item from Persistence import Persistent class Permission(RoleManager, Persistent, Implicit, Item ): """Model Permission meta-data """ meta_type = 'Zope Permission' icon = 'p_/Permission_icon' index_html = None security = ClassSecurityInfo() manage_options=( RoleManager.manage_options + Item.manage_options ) def __init__(self, id, title, name): self.id=id self.title=title self.name=name InitializeClass(Permission)
[ "vedantc98@gmail.com" ]
vedantc98@gmail.com
4a9cd2050ce1ad1ddda5ed230b8ca4bad878934d
9183379a07d1d8936d8205d99ecd0e40269e667a
/sphinx/source/exercises/solution/05_encapsulation/printer.py
414590fa8dc069be2a003ab1ed68e1baaddb3428
[]
no_license
boegeskov/fall2020
477983eb97568e274d3cef9ee22706de172b6046
9e50030e3fa99cc5ddb95ff46f93c1a530d256b1
refs/heads/master
2023-01-23T18:30:19.893424
2020-12-09T07:16:20
2020-12-09T07:16:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,540
py
# printer.py (solution) """ 3. Machine -> printer Create a Machine class that takes care of powering on and off a the machine. Create a printer class that is a subclass of the Machine super class. The printer should be able to print to console. The printer should have a papertray, which should be in its own class. The papertray class should keep track of the paper, it should have the abillity to use paper and and load new paper in the tray if empty. """ class Machine: """ takes care of turning on and off """ def __init__(self): self.__is_on = False @property def is_on(self): return self.__is_on def power(self): self.__is_on = not self.__is_on class Printer(Machine): def __init__(self): # 1. super().__init__() # 2. # Machine.__init__(self) self.__pt = Papertray() def print(self, text): if self.__pt.paper == 0: print('Papertray is empty') else: if self.is_on: print(text) self.__pt.paper = self.__pt.paper - 1 else: print('Printer is off') @property def load(self): return self.__pt.paper load.setter def load(self, no): self.__pt.paper = no class Papertray: def __init__(self): self.paper = 2 @property def paper(self): return self.__paper @paper.setter def paper(self, paper): self.__paper = paper
[ "clbo@kea.dk" ]
clbo@kea.dk
52080a362e4c3ceb2822f229da8005edd6ef036e
4a5f11b55e23999a82b62f5c72b44e9a36d24f63
/simplemooc/forum/admin.py
7c813d107c771cc9ce0f430c826d0736f3a53f31
[]
no_license
diogo-alves/simplemooc
dca62bfcb2ea6357a551a5760778537f083b675c
cfec59f99888e4e23d41f020ff06bfdf39f70203
refs/heads/master
2022-05-10T10:32:18.686313
2019-06-04T19:30:43
2019-06-04T19:30:43
190,260,470
0
0
null
2022-04-22T21:34:44
2019-06-04T18:46:43
Python
UTF-8
Python
false
false
585
py
from django.contrib import admin from .models import Thread, Reply class ThreadAdmin(admin.ModelAdmin): list_display = ['title', 'body', 'author', 'updated_at'] search_fields = ['title', 'body', 'author__username'] prepopulated_fields = {'slug': ('title',)} class ReplyAdmin(admin.ModelAdmin): list_display = ['thread', 'reply', 'author', 'correct', 'updated_at'] search_fields = ['thread', 'reply', 'author__username'] list_filter = ['thread__title', 'author__username'] admin.site.register(Thread, ThreadAdmin) admin.site.register(Reply, ReplyAdmin)
[ "diogo.alves.ti@gmail.com" ]
diogo.alves.ti@gmail.com
9a8e5ff5ac645a3cc48a2db51ef611314f4736f6
20a358db6e9e9872453a7fb36ef21268054b241d
/pyml/ditech/database/insert_traffic.py
95f8193ac0e10728700c619c82578331c5c5dc3e
[]
no_license
fengkaicnic/pyml
ee654cdef2ba107e1c1e8d598691af3accb96b3c
a19865cdb9eb69517258416a2b08b86f9d43a023
refs/heads/master
2021-01-21T04:40:44.659607
2016-07-29T08:33:07
2016-07-29T08:33:07
44,159,061
2
2
null
null
null
null
UTF-8
Python
false
false
1,001
py
import utils import traceback import os import time import pdb start = time.time() try: path = 'D:/ditech/citydata/season_2/test_set_2/traffic_data' conn = utils.persist.connection() cur = conn.cursor() num = 0 for pl in os.listdir(path): if not '.' in pl: with open(path + '/' + pl) as file: lines = file.readlines() for line in lines: lst = line.split('\t') lst = map(lambda x:x.strip(), lst) for tline in lst[1:-1]: sql = 'insert into traffic_test2(district_hash, tj_level, tj_time) \ values("%s", "%s", "%s")' % (lst[0], tline, lst[-1]) cur.execute(sql) conn.commit() conn.close() except: traceback.print_exc() print sql conn.commit() conn.close() end = time.time() print end - start
[ "fkdhy@163.com" ]
fkdhy@163.com
13304ad34c9181779d72a2811439ff96eabc20cf
f8201014d20832d4cc217b473500501cf16df8ba
/virtool/genbank.py
7035b74b89e201906c6cfa858afebbf05f253176
[ "MIT" ]
permissive
gitter-badger/virtool
abc996ef8dc160f1fe879a55d6eec4e9043c9840
628acc377fb0497c2bfe75e9fa0a61decc59e0e6
refs/heads/master
2020-04-23T04:47:02.186926
2019-02-15T03:01:12
2019-02-15T03:01:12
170,919,108
0
0
null
2019-02-15T19:42:26
2019-02-15T19:42:25
null
UTF-8
Python
false
false
1,933
py
import logging import string import virtool.http.proxy logger = logging.getLogger(__name__) EMAIL = "dev@virtool.ca" TOOL = "virtool" FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi" async def fetch(settings, session, accession): """ Fetch the Genbank record for the passed `accession`. :param settings: the application settings object :type settings: :class:`virtool.app_settings.Settings` :param session: an aiohttp client session :type session: :class:`aiohttp.ClientSession` :param accession: the accession to fetch :type accession: Union[int,str] :return: parsed Genbank data :rtype: dict """ params = { "db": "nuccore", "email": EMAIL, "id": accession, "retmode": "text", "rettype": "gb", "tool": TOOL } async with virtool.http.proxy.ProxyRequest(settings, session.get, FETCH_URL, params=params) as resp: body = await resp.text() if resp.status != 200: if "Failed to retrieve sequence" not in body: logger.warning("Unexpected Genbank error: {}".format(body)) return None data = { "host": "" } for line in body.split("\n"): if line.startswith("VERSION"): data["accession"] = line.replace("VERSION", "").lstrip(" ") if line.startswith("DEFINITION"): data["definition"] = line.replace("DEFINITION", "").lstrip(" ") if "/host=" in line: data["host"] = line.lstrip(" ").replace("/host=", "").replace('"', "") # Extract sequence sequence_field = body.split("ORIGIN")[1].lower() for char in [" ", "/", "\n"] + list(string.digits): sequence_field = sequence_field.replace(char, "") data["sequence"] = sequence_field.upper() return data
[ "igboyes@gmail.com" ]
igboyes@gmail.com
d631c815c2c1ba0870f891182e8369ce24c3be49
278060c3e3fce8c2d78640ac748188e80758deac
/tax_app/migrations/0002_auto_20191020_1607.py
d78e86314c315ed836c08685fd62b3ca35a1e8d3
[]
no_license
ajisaq/BusinessTaxApp
33507bb64cfabc4a84a56826db3ae90d55539359
08031f03a7018c59b2e9b0095e80a5ff0b7b0b70
refs/heads/master
2022-05-03T17:29:47.635710
2019-12-02T09:25:14
2019-12-02T09:25:14
219,758,403
1
3
null
2022-04-22T22:50:39
2019-11-05T13:59:07
Python
UTF-8
Python
false
false
1,131
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2019-10-20 15:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tax_app', '0001_initial'), ] operations = [ migrations.CreateModel( name='Business_Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=150)), ], ), migrations.CreateModel( name='Location', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=15)), ('name', models.CharField(max_length=150)), ], ), migrations.AddField( model_name='profile', name='contact', field=models.CharField(default='9340-505', max_length=150), preserve_default=False, ), ]
[ "mohammedaliyu136@gmail.com" ]
mohammedaliyu136@gmail.com
c68d6ebbadb6d5ca9c872511c913b706c9693f5b
6fb4419f219fcf2453becfd3fe2d31dca3401da6
/get-influences.py
6df1a95dda8a74b2d99570fca626c49ecff004b1
[]
no_license
christopher-beckham/wiki-lang-influence
dccc04e3565a9df408353a247058a74a9c44f5bb
9c2832cafc5d5c25f39aff739b0004af08a5234b
refs/heads/master
2020-04-14T23:53:33.941193
2014-06-19T09:57:59
2014-06-19T09:57:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,123
py
#!/usr/bin/python from cz import cz import sys import re import time import urllib2 from sys import stdin def get_langs(st): st = "".join(cz.striphtml(st)) st = re.sub('\\[.*?\\]', '', st).replace('\n', '') st = st.split(',') st = [ st[0] ] + [ name[1::] for name in st[1::] ] return st def fe(arr): print ",".join(arr) for url in stdin.readlines(): try: url = url.rstrip() body = cz.geturl(url) print url[ url.rfind('/')+1 :: ].replace("_(programming_language)","") in_by = cz.getbetween2(body, '<th scope="row" style="text-align:left;">Influenced by</th>', '</tr>') if len(in_by) > 0: in_by = get_langs(in_by[0]) in_by = [ val.encode('ascii','ignore') for val in in_by ] fe(in_by) else: print in_to = cz.getbetween2(body, '<th scope="row" style="text-align:left;">Influenced</th>', '</tr>') if len(in_to) > 0: in_to = get_langs(in_to[0]) in_to = [ val.encode('ascii','ignore') for val in in_to ] fe(in_to) else: print except urllib2.HTTPError as e: print "DONT_USE" print print time.sleep(0.2)
[ "chrispy645@gmail.com" ]
chrispy645@gmail.com
3571c8cc983bb908e5fefc686b7dd1d85062152c
530201d1bf8370a94ddf6ffcffd0c256389b42c9
/mazeclass.py
9d240b9505411691b0fd735472fb78dd60b9e784
[]
no_license
chefakshito/cs520
1169a714c1e93bfb546df62b71662ff307a8de98
97b81f619e6f54f5125d14b58f04faa325227bd1
refs/heads/master
2021-01-21T06:39:35.828236
2017-02-27T04:22:37
2017-02-27T04:22:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,431
py
from random import randint from PIL import Image imgx = 500; imgy = 500 image = Image.new("RGB", (imgx, imgy)) pixels = image.load() color = [(0,0, 0), (255, 255, 255)] sx=101 sy=101; nm=50; maze = [[[0 for x in range(sx)] for y in range(sy)] for z in range(nm)] dx=[0,1,0,-1] dy=[-1,0,1,0] """ cx=randint(0,mx-1) cy=randint(0,my-1) stack.append((cx,cy)) print(stack) """ sState=[] gState=[] class mazeClass: def __init__(self): global imgx; global imgy; global image; global pixels; global color; global sx global sy global maze global dx global dy global nm; for x in range(nm): stack = [(randint(0, sx - 1),randint(0, sy - 1))] sState.append(stack[-1]) #The start state is assigned. while len(stack) > 0: (cx, cy) = stack[-1]; maze[x][cy][cx] = 1 # find a new cell to add nlst = [] # list of available neighbors for i in range(4): ch = randint(0,11) if ch<6: choice=1 else: choice=randint(0,11) nx = cx + dx[i]; ny = cy + dy[i] if nx >= 0 and nx < sx and ny >= 0 and ny < sy: if maze[x][ny][nx] == 0: # print(maze[x][ny][nx],'check1') #--CHECK--1-- if choice==1: # print('Entered Choice 1') #--CHECK--3-- # of occupied neighbors must be 1 ctr = 0 for j in range(4): ex = nx + dx[j]; ey = ny + dy[j] if ex >= 0 and ex < sx and ey >= 0 and ey < sy: if maze[x][ey][ex] == 1: ctr += 1 if ctr == 1: nlst.append(i) if choice>1: # print('Entered Choice 2') #--CHECK--4-- luck=randint(1,11) # print(luck,"CHECK 5") #--CHECK--5-- if luck>choice: nlst.append(i) # if 1 or more neighbors available then randomly select one and move # print(nlst,'check2') #--CHECK--2-- if len(nlst) > 0: ir = nlst[randint(0, len(nlst) - 1)] cx += dx[ir]; cy += dy[ir] stack.append((cx, cy)) else: stack.pop() #A random goal state is generated while len(gState)!=x+1: gx=randint(0,sx-1) gy=randint(0,sy-1) if maze[x][gx][gy]==1: gState.append((gx,gy)) # # paint the maze # for ky in range(imgy): # for kx in range(imgx): # pixels[kx, ky] = color[maze[x][sy * ky // imgy][sx * kx // imgx]] # image.save("Maze_" + str(x) + ".png", "PNG") def getMaze(self): c = randint(0,50) return (maze[c], c, sState[c], gState[c]);
[ "=" ]
=
630ff6a5ad626ea10a5e3ddb440d4b01416a9d3b
0533d0ceb5966f7327f40d54bbd17e08e13d36bf
/python/LinkedList/Linked List Cycle II/Linked List Cycle II.py
996a20582aa17746b392099fe2d2bb7ca6441e83
[]
no_license
danwaterfield/LeetCode-Solution
0c6178952ca8ca879763a87db958ef98eb9c2c75
d89ebad5305e4d1a185b0c6f101a88691602b523
refs/heads/master
2023-03-19T01:51:49.417877
2020-01-11T14:17:42
2020-01-11T14:17:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
711
py
# class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def detectCycle(self, head): """ :type head: ListNode :rtype: ListNode """ slow = head fast = head step = 0 while slow and fast and fast.next: slow = slow.next fast = fast.next.next step += 1 if slow == fast: break if not fast or not fast.next: return None slow2 = head index = 0 while slow != slow2: slow = slow.next slow2 = slow2.next index += 1 return slow
[ "zjuzjj@gmail.com" ]
zjuzjj@gmail.com
4df7849c6844bd581bb8841111f635cbbab50830
4dfd539c530c5cff6874f2fa0c06ffd893212ad3
/tencentcloud/chdfs/v20201112/errorcodes.py
d4604add29d3d07f8131cc49457ff2038e6d3425
[]
no_license
TencentCloud/tencentcloud-sdk-python-intl-en
aac605d1a0458b637ba29eb49f6f166fe844a269
042b4d7fb609d4d240728197901b46008b35d4b0
refs/heads/master
2023-09-01T19:39:27.436454
2023-09-01T04:02:15
2023-09-01T04:02:15
227,834,644
4
6
null
2023-07-17T08:56:56
2019-12-13T12:23:52
Python
UTF-8
Python
false
false
3,853
py
# -*- coding: utf8 -*- # Copyright (c) 2017-2021 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Operation failed. FAILEDOPERATION = 'FailedOperation' # The permission group has been bound. FAILEDOPERATION_ACCESSGROUPBOUND = 'FailedOperation.AccessGroupBound' # The account balance is insufficient. FAILEDOPERATION_ACCOUNTINSUFFICIENTBALANCE = 'FailedOperation.AccountInsufficientBalance' # The account identity is not verified. FAILEDOPERATION_ACCOUNTUNAUTHENTICATED = 'FailedOperation.AccountUnauthenticated' # The file system is not empty. FAILEDOPERATION_FILESYSTEMNOTEMPTY = 'FailedOperation.FileSystemNotEmpty' # The file system capacity after change is smaller than the currently used capacity. FAILEDOPERATION_QUOTALESSTHANCURRENTUSED = 'FailedOperation.QuotaLessThanCurrentUsed' # Internal error. INTERNALERROR = 'InternalError' # Incorrect parameter. INVALIDPARAMETER = 'InvalidParameter' # Incorrect parameter value. INVALIDPARAMETERVALUE = 'InvalidParameterValue' # Incorrect parameter value: AccessGroupId. INVALIDPARAMETERVALUE_INVALIDACCESSGROUPID = 'InvalidParameterValue.InvalidAccessGroupId' # Incorrect parameter value: AccessGroupName. INVALIDPARAMETERVALUE_INVALIDACCESSGROUPNAME = 'InvalidParameterValue.InvalidAccessGroupName' # Incorrect parameter value: `Address` of the permission rule. INVALIDPARAMETERVALUE_INVALIDACCESSRULEADDRESS = 'InvalidParameterValue.InvalidAccessRuleAddress' # Incorrect parameter value: CapacityQuota. INVALIDPARAMETERVALUE_INVALIDCAPACITYQUOTA = 'InvalidParameterValue.InvalidCapacityQuota' # Incorrect parameter value: Description. INVALIDPARAMETERVALUE_INVALIDDESCRIPTION = 'InvalidParameterValue.InvalidDescription' # Incorrect parameter value: FileSystemId. INVALIDPARAMETERVALUE_INVALIDFILESYSTEMID = 'InvalidParameterValue.InvalidFileSystemId' # Incorrect parameter value: FileSystemName. INVALIDPARAMETERVALUE_INVALIDFILESYSTEMNAME = 'InvalidParameterValue.InvalidFileSystemName' # Incorrect parameter value: MountPointId. INVALIDPARAMETERVALUE_INVALIDMOUNTPOINTID = 'InvalidParameterValue.InvalidMountPointId' # Incorrect parameter value: MountPointName. INVALIDPARAMETERVALUE_INVALIDMOUNTPOINTNAME = 'InvalidParameterValue.InvalidMountPointName' # Incorrect parameter value: VpcId. INVALIDPARAMETERVALUE_INVALIDVPCID = 'InvalidParameterValue.InvalidVpcId' # The quota limit is exceeded. LIMITEXCEEDED = 'LimitExceeded' # Missing parameter. MISSINGPARAMETER = 'MissingParameter' # The resource is in use. RESOURCEINUSE = 'ResourceInUse' # The resource does not exist. RESOURCENOTFOUND = 'ResourceNotFound' # The permission group does not exist. RESOURCENOTFOUND_ACCESSGROUPNOTEXISTS = 'ResourceNotFound.AccessGroupNotExists' # The permission rule does not exist. RESOURCENOTFOUND_ACCESSRULENOTEXISTS = 'ResourceNotFound.AccessRuleNotExists' # The file system does not exist. RESOURCENOTFOUND_FILESYSTEMNOTEXISTS = 'ResourceNotFound.FileSystemNotExists' # The mount point does not exist. RESOURCENOTFOUND_MOUNTPOINTNOTEXISTS = 'ResourceNotFound.MountPointNotExists' # The VPC does not exist. RESOURCENOTFOUND_VPCNOTEXISTS = 'ResourceNotFound.VpcNotExists' # The resource is unavailable. RESOURCEUNAVAILABLE = 'ResourceUnavailable' # Unauthorized operation. UNAUTHORIZEDOPERATION = 'UnauthorizedOperation'
[ "tencentcloudapi@tencent.com" ]
tencentcloudapi@tencent.com
873f399a3fc2fb55ed3c9320f9bdce8d298bc065
474e74c654916d0a1b0311fc80eff206968539b1
/venv/Lib/site-packages/asposewordscloud/models/paragraph_link_collection_response.py
f18fa21cf6270818d46552834022303a45595eff
[]
no_license
viktor-tchemodanov/Training_Tasks_Python_Cloud
4592cf61c2f017b314a009c135340b18fa23fc8f
b7e6afab4e9b76bc817ef216f12d2088447bd4cd
refs/heads/master
2020-09-04T10:39:23.023363
2019-11-05T10:36:45
2019-11-05T10:36:45
219,712,295
0
0
null
null
null
null
UTF-8
Python
false
false
6,084
py
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose" file="ParagraphLinkCollectionResponse.py"> # Copyright (c) 2018 Aspose.Words for Cloud # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six class ParagraphLinkCollectionResponse(object): """This response should be returned by the service when handling: GET http://api.aspose.com/v1.1/words/Test.doc/paragraphs """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'code': 'int', 'status': 'str', 'paragraphs': 'ParagraphLinkCollection' } attribute_map = { 'code': 'Code', 'status': 'Status', 'paragraphs': 'Paragraphs' } def __init__(self, code=None, status=None, paragraphs=None): # noqa: E501 """ParagraphLinkCollectionResponse - a model defined in Swagger""" # noqa: E501 self._code = None self._status = None self._paragraphs = None self.discriminator = None if code is not None: self.code = code if status is not None: self.status = status if paragraphs is not None: self.paragraphs = paragraphs @property def code(self): """Gets the code of this ParagraphLinkCollectionResponse. # noqa: E501 Response status code. # noqa: E501 :return: The code of this ParagraphLinkCollectionResponse. # noqa: E501 :rtype: int """ return self._code @code.setter def code(self, code): """Sets the code of this ParagraphLinkCollectionResponse. Response status code. # noqa: E501 :param code: The code of this ParagraphLinkCollectionResponse. # noqa: E501 :type: int """ if code is None: raise ValueError("Invalid value for `code`, must not be `None`") # noqa: E501 self._code = code @property def status(self): """Gets the status of this ParagraphLinkCollectionResponse. # noqa: E501 Response status. # noqa: E501 :return: The status of this ParagraphLinkCollectionResponse. # noqa: E501 :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this ParagraphLinkCollectionResponse. Response status. # noqa: E501 :param status: The status of this ParagraphLinkCollectionResponse. # noqa: E501 :type: str """ self._status = status @property def paragraphs(self): """Gets the paragraphs of this ParagraphLinkCollectionResponse. # noqa: E501 Collection of paragraphs # noqa: E501 :return: The paragraphs of this ParagraphLinkCollectionResponse. # noqa: E501 :rtype: ParagraphLinkCollection """ return self._paragraphs @paragraphs.setter def paragraphs(self, paragraphs): """Sets the paragraphs of this ParagraphLinkCollectionResponse. Collection of paragraphs # noqa: E501 :param paragraphs: The paragraphs of this ParagraphLinkCollectionResponse. # noqa: E501 :type: ParagraphLinkCollection """ self._paragraphs = paragraphs def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ParagraphLinkCollectionResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "vtchemodanov@hotmail.com" ]
vtchemodanov@hotmail.com
b2001f4905ca18d64754a9a6aafb71893fbb0f10
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_3/Luca.Paterlini/C.py
cd79d12c9e0577d934dba12922fbf43c13a8215c
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
1,364
py
import math def AtkinSieve (limit): results = [2,3,5] sieve = [False]*(limit+1) factor = int(math.sqrt(limit))+1 for i in range(1,factor): for j in range(1, factor): n = 4*i**2+j**2 if (n <= limit) and (n % 12 == 1 or n % 12 == 5): sieve[n] = not sieve[n] n = 3*i**2+j**2 if (n <= limit) and (n % 12 == 7): sieve[n] = not sieve[n] if i>j: n = 3*i**2-j**2 if (n <= limit) and (n % 12 == 11): sieve[n] = not sieve[n] for index in range(5,factor): if sieve[index]: for jndex in range(index**2, limit, index**2): sieve[jndex] = False for index in range(7,limit): if sieve[index]: results.append(index) return results def conv_base(s,b,l): r=0 for i in xrange(l):r=r*b+int(s[i]) return r def lowest_div(n,ps): for c in ps: if n%c==0: return c return -1 prime_sieve=AtkinSieve(10**6) input() N,J=map(int,raw_input().split()) u=0 print "Case #1:" while J>0: u+=1 q=bin(u)[2:] s='1'+'0'*(N-2-len(q))+q+'1' v=[] for c in xrange(2,11): v.append(conv_base(s,c,N)) v=[lowest_div(x,prime_sieve) for x in v] if all(i>0 for i in v): print s,' '.join([str(x) for x in v]);J-=1
[ "[dhuo@tcd.ie]" ]
[dhuo@tcd.ie]
b7e6ccbf91282fd4b1135b33210324ead1541bbf
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/577619_user_and_root_directory_logfile/recipe-577619.py
a1ea4b4ab355197464452fb26ca1eb8516cd6dac
[ "MIT" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
339
py
#! usr/bin/python import dircache import getpass import time logfile = open("spam.txt", "w+") localtime = time.asctime( time.localtime(time.time()) ) print >> logfile, 'local current time :', localtime usr = getpass.getuser() print >> logfile, 'current user :' + usr lst = dircache.listdir('/') print >> logfile, lst logfile.close()
[ "betty@qburst.com" ]
betty@qburst.com
052c2a2cb51a4e27408d96c8675bf650c28a11d6
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/3pzKWEg5oiaMemDdP_20.py
8a2a185b2383fd368b4c800327192066c7c46a25
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
def most_expensive_item(products): Things = [] for x in products.keys(): Things.append(x) Worth = [] for y in products.values(): Worth.append(y) Highest = max(Worth) Counter = 0 Length = len(Things) while (Counter < Length): Item = Things[Counter] Money = Worth[Counter] if (Money == Highest): return Item else: Counter += 1
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
906cd4d8ad7c433c507a091c53dfd90fe4514f34
7f53a1ba1920a5301ca325d4faf480f3799c0a48
/merger_2012_emb.py
654e169fbd8f372fa53edddcf0d02d83b14ee90c
[]
no_license
rmanzoni/tools
a7fe8083628954f7f02e80add1d3dd761720e8e6
e2189860d26be2a4276ec2ca3fe220e90adf9158
refs/heads/master
2021-01-01T18:37:33.731578
2015-04-15T13:46:12
2015-04-15T13:46:12
18,681,748
0
0
null
null
null
null
UTF-8
Python
false
false
2,254
py
import os import ROOT from ROOT import gROOT, gStyle, TFile, gDirectory gROOT.SetBatch(True) #for mass in [110,115,120,125,130,135,140,145] : for mass in [125] : print "Higgs mass =", str(mass) # search in current dir matches = [] dirList = os.listdir(os.getcwd()) for fname in dirList: if str(fname).find('mH'+str(mass)) > 0 and str(fname).find('for_smoothing_') < 0 : if ( str(fname).find("BOOSTED") > 0 or str(fname).find("VBF") > 0 ) : matches.append(fname) for t in ["VBF","BOOSTED"] : Files = [] for m in matches : if str(m).find(t) > 0 : if str(m).find("svfitMass.root") > 0 : noShift = TFile.Open(m,'read') Files.append(noShift) elif str(m).find("svfitMass*1.03.root") > 0 : upShift = TFile.Open(m,'read') Files.append(upShift) elif str(m).find("svfitMass*0.97.root") > 0 : doShift = TFile.Open(m,'read') Files.append(doShift) elif str(m).find("svfitMass*1.06.root") > 0 : upShiftem = TFile.Open(m,'read') Files.append(upShiftem) if t == "VBF" : cat = "SM2" elif t == "BOOSTED" : cat = "SM1" print 'category: ',t, cat folderName = "LimitInputs" folderList = os.listdir(os.getcwd()) found = False for f1 in folderList : if str(f1) == folderName : found = True if found == False : os.mkdir(folderName) if str(m).find(t) < 0 : continue Shifted = TFile.Open(str(folderName+"/tauTau_2012_"+cat+"_mH"+str(mass)+".root"),'recreate') Shifted.mkdir(str("tauTau_2012_"+cat)) for h in Files : print 'File name: ',h.GetName() h.cd(str("tauTau_"+cat)) dirList = gDirectory.GetListOfKeys() for k1 in dirList : histo = k1.ReadObj() Shifted.cd(str("tauTau_2012_"+cat)) histo.Write() for j in Files : j.Close() Shifted.Close() print '+++++++++++' print '+ end job +' print '+++++++++++' # import fnmatch # search through dir and subdirs # matches = [] # for root, dirnames, filenames in os.walk(os.getcwd()): # for filename in fnmatch.filter(filenames, '*VBF*'): # matches.append(os.path.join(root, filename))
[ "riccardo.manzoni@cern.ch" ]
riccardo.manzoni@cern.ch
f80430b48ec9e0b71e51fbfed5dd8c8bcdabbbe4
42e8c0992fd845237fa7b1baef494bfb6abc9dba
/ui/data_input_panel.py
7dd2b4764971de4b2bd9fc109be70c082724291f
[]
no_license
mx1001/animation_nodes
b5ae336512bb43f40e6ca5276a4e05acb5fdc81b
b77b96d991f2b26c03bcbeef4a9fa8a09173ea4f
refs/heads/master
2020-02-26T17:46:05.676451
2016-03-09T15:22:01
2016-03-09T15:22:01
54,067,761
5
0
null
2016-03-16T21:27:54
2016-03-16T21:27:54
null
UTF-8
Python
false
false
554
py
import bpy from .. tree_info import getNodesByType class DataInputPanel(bpy.types.Panel): bl_idname = "an_data_input_panel" bl_label = "Data Input" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" bl_category = "AN" def draw(self, context): layout = self.layout nodes = getNodesByType("an_DataInputNode") for node in nodes: if not node.showInViewport: continue socket = node.inputs[0] socket.drawSocket(layout, text = node.label, drawType = "TEXT_PROPERTY_OR_NONE")
[ "mail@jlucke.com" ]
mail@jlucke.com
d37d447bd7ce2b1d813f28d559dadf00e8be9f92
df25eefe4878c08b0f51f6ff19f48054ba6dbc2a
/test/espnet2/text/test_text_converter.py
0d1f32b94924e5d24b9c95b25a217e07483a5f3e
[ "Apache-2.0" ]
permissive
sas91/espnet
7f14a9394469993fb948758c7b0b78f76ad12cbe
8e263d6512eb84cebeaecf6b99204c102a8252b5
refs/heads/master
2021-07-13T18:45:13.981483
2020-06-02T08:43:25
2020-06-02T08:43:25
142,748,209
1
0
Apache-2.0
2018-07-29T09:37:35
2018-07-29T09:37:35
null
UTF-8
Python
false
false
2,565
py
from pathlib import Path import string import pytest import sentencepiece as spm from espnet2.text.char_tokenizer import CharTokenizer from espnet2.text.sentencepiece_tokenizer import SentencepiecesTokenizer from espnet2.text.word_tokenizer import WordTokenizer @pytest.fixture(params=[None, " "]) def word_converter(request): return WordTokenizer(delimiter=request.param) @pytest.fixture def char_converter(): return CharTokenizer(["[foo]"]) @pytest.fixture def spm_srcs(tmp_path: Path): input_text = tmp_path / "text" vocabsize = len(string.ascii_letters) + 4 model_prefix = tmp_path / "model" model = str(model_prefix) + ".model" input_sentence_size = 100000 with input_text.open("w") as f: f.write(string.ascii_letters + "\n") spm.SentencePieceTrainer.Train( f"--input={input_text} " f"--vocab_size={vocabsize} " f"--model_prefix={model_prefix} " f"--input_sentence_size={input_sentence_size}" ) sp = spm.SentencePieceProcessor() sp.load(model) with input_text.open("r") as f: vocabs = {"<unk>", "▁"} for line in f: tokens = sp.DecodePieces(list(line.strip())) vocabs |= set(tokens) return model, vocabs @pytest.fixture def spm_converter(tmp_path, spm_srcs): model, vocabs = spm_srcs sp = spm.SentencePieceProcessor() sp.load(model) token_list = tmp_path / "token.list" with token_list.open("w") as f: for v in vocabs: f.write(f"{v}\n") return SentencepiecesTokenizer(model=model) def test_Text2Sentencepieces_repr(spm_converter: SentencepiecesTokenizer): print(spm_converter) def test_Text2Sentencepieces_text2tokens(spm_converter: SentencepiecesTokenizer): assert spm_converter.tokens2text(spm_converter.text2tokens("Hello")) == "Hello" def test_Text2Words_repr(word_converter: WordTokenizer): print(word_converter) def test_Text2Words_text2tokens(word_converter: WordTokenizer): assert word_converter.text2tokens("Hello World!! Ummm") == [ "Hello", "World!!", "Ummm", ] def test_Text2Words_tokens2text(word_converter: WordTokenizer): assert word_converter.tokens2text("Hello World!!".split()) == "Hello World!!" def test_Text2Chars_repr(char_converter: CharTokenizer): print(char_converter) def test_Text2Chars_text2tokens(char_converter: CharTokenizer): assert char_converter.text2tokens("He[foo]llo") == [ "H", "e", "[foo]", "l", "l", "o", ]
[ "naoyuki.kamo829@gmail.com" ]
naoyuki.kamo829@gmail.com
561fbf76952e72959088ff99ae838295f3938bc7
479d3414e914f144fff20ee71872472ac84ca410
/codespace/python/telegram/_files/inputfile.py
730301869bd5e67593a4565ada2e146058b8f953
[ "MIT", "LicenseRef-scancode-proprietary-license" ]
permissive
tzpBingo/github-trending
0fa4e0e08743f0683f68fd54d74eec466bc525e0
505014e84bdea7e2732296821028df20c0305390
refs/heads/master
2023-07-24T13:29:47.393940
2023-07-19T09:39:29
2023-07-19T09:39:29
102,687,887
49
20
MIT
2023-05-22T21:33:53
2017-09-07T03:39:42
Python
UTF-8
Python
false
false
4,191
py
#!/usr/bin/env python # # A library that provides a Python interface to the Telegram Bot API # Copyright (C) 2015-2023 # Leandro Toledo de Souza <devs@python-telegram-bot.org> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser Public License for more details. # # You should have received a copy of the GNU Lesser Public License # along with this program. If not, see [http://www.gnu.org/licenses/]. """This module contains an object that represents a Telegram InputFile.""" import mimetypes from typing import IO, Optional, Union from uuid import uuid4 from telegram._utils.files import load_file from telegram._utils.types import FieldTuple _DEFAULT_MIME_TYPE = "application/octet-stream" class InputFile: """This object represents a Telegram InputFile. .. versionchanged:: 20.0 * The former attribute ``attach`` was renamed to :attr:`attach_name`. * Method ``is_image`` was removed. If you pass :obj:`bytes` to :paramref:`obj` and would like to have the mime type automatically guessed, please pass :paramref:`filename` in addition. Args: obj (:term:`file object` | :obj:`bytes` | :obj:`str`): An open file descriptor or the files content as bytes or string. Note: If :paramref:`obj` is a string, it will be encoded as bytes via :external:obj:`obj.encode('utf-8') <str.encode>`. .. versionchanged:: 20.0 Accept string input. filename (:obj:`str`, optional): Filename for this InputFile. attach (:obj:`bool`, optional): Pass :obj:`True` if the parameter this file belongs to in the request to Telegram should point to the multipart data via an ``attach://`` URI. Defaults to `False`. Attributes: input_file_content (:obj:`bytes`): The binary content of the file to send. attach_name (:obj:`str`): Optional. If present, the parameter this file belongs to in the request to Telegram should point to the multipart data via a an URI of the form ``attach://<attach_name>`` URI. filename (:obj:`str`): Filename for the file to be sent. mimetype (:obj:`str`): The mimetype inferred from the file to be sent. """ __slots__ = ("filename", "attach_name", "input_file_content", "mimetype") def __init__( self, obj: Union[IO[bytes], bytes, str], filename: Optional[str] = None, attach: bool = False, ): if isinstance(obj, bytes): self.input_file_content: bytes = obj elif isinstance(obj, str): self.input_file_content = obj.encode("utf-8") else: reported_filename, self.input_file_content = load_file(obj) filename = filename or reported_filename self.attach_name: Optional[str] = "attached" + uuid4().hex if attach else None if filename: self.mimetype: str = ( mimetypes.guess_type(filename, strict=False)[0] or _DEFAULT_MIME_TYPE ) else: self.mimetype = _DEFAULT_MIME_TYPE self.filename: str = filename or self.mimetype.replace("/", ".") @property def field_tuple(self) -> FieldTuple: """Field tuple representing the contents of the file for upload to the Telegram servers. Returns: Tuple[:obj:`str`, :obj:`bytes`, :obj:`str`]: """ return self.filename, self.input_file_content, self.mimetype @property def attach_uri(self) -> Optional[str]: """URI to insert into the JSON data for uploading the file. Returns :obj:`None`, if :attr:`attach_name` is :obj:`None`. """ return f"attach://{self.attach_name}" if self.attach_name else None
[ "tzpbingo@gmail.com" ]
tzpbingo@gmail.com
6afdae640dd9ad3d9adbf1cbc0c7d8cf8b7d3466
491c1e520a64e3ebd5349130f35047aaed1e70ec
/two pointer/680 validPalindrome.py
3ccf25be7a1c357ec82bfd31b9cc88e976d594fb
[]
no_license
pangyouzhen/data-structure
33a7bd7790c8db3e018114d85a137f5f3d6b92f8
cd46cf08a580c418cc40a68bf9b32371fc69a803
refs/heads/master
2023-05-26T12:02:30.800301
2023-05-21T08:07:57
2023-05-21T08:07:57
189,315,047
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
class Solution: def validPalindrome(self, s: str) -> bool: def checkPalindrome(low, high): i, j = low, high while i < j: if s[i] != s[j]: return False i = i + 1 j = j - 1 return True low, high = 0, len(s) - 1 while low < high: if s[low] == s[high]: low = low + 1 high = high - 1 else: return checkPalindrome(low + 1, high) or checkPalindrome(low, high - 1) return True sol = Solution() print(sol.validPalindrome("abca")) assert sol.validPalindrome("abca") == True print(sol.validPalindrome("abcca"))
[ "pangyouzhen@live.com" ]
pangyouzhen@live.com
830a140f3af9cb75dd17cf22df4d0529f9709007
8f1673c2abfed8f372e22fbd1c280486014b4466
/nmt/embeddings/fresh_embedding_test.py
02c77c2260cfcd5f01d846f377761ea8db571074
[ "Apache-2.0" ]
permissive
naivenlp/naivenmt-legacy
be670df40a98c0f28bdacb2a3acf9a5b06667966
bcceeec0a477eb09c4a8915e638a27dae6c95562
refs/heads/master
2021-10-27T02:55:33.160837
2019-04-15T14:39:06
2019-04-15T14:39:06
118,464,831
2
0
null
null
null
null
UTF-8
Python
false
false
931
py
import tensorflow as tf import numpy as np from nmt.embeddings.fresh_embedding import FreshEmbedding from nmt import misc_utils class FreshEmbeddingTest(tf.test.TestCase): def testFreshEmbedding(self): vocab_file = misc_utils.get_test_data('iwslt15.vocab.100.en') embedder = FreshEmbedding(vocab_file=vocab_file) inputs = np.array([ ['I', 'am', 'a', 'test'] ]) inputs = tf.constant(inputs,dtype=tf.string) length = np.array([4]) length = tf.constant(length,dtype=tf.int32) params = { 'batch_size': 1 } embedded = embedder.embedding(inputs, length, params) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) embedded = sess.run(embedded) print(embedded) if __name__ == '__main__': tf.test.main()
[ "zhouyang.luo@gmail.com" ]
zhouyang.luo@gmail.com
f2ea129609ab68de9af623d8b8c473e6eb333988
98f1a0bfa5b20a0b81e9e555d76e706c62d949c9
/examples/sparse/sign.py
61ba2104d673a953ad976e5b10a35c9c2232d0b9
[ "Apache-2.0" ]
permissive
dmlc/dgl
3a8fbca3a7f0e9adf6e69679ad62948df48dfc42
bbc8ff6261f2e0d2b5982e992b6fbe545e2a4aa1
refs/heads/master
2023-08-31T16:33:21.139163
2023-08-31T07:49:22
2023-08-31T07:49:22
130,375,797
12,631
3,482
Apache-2.0
2023-09-14T15:48:24
2018-04-20T14:49:09
Python
UTF-8
Python
false
false
3,804
py
""" [SIGN: Scalable Inception Graph Neural Networks] (https://arxiv.org/abs/2004.11198) This example shows a simplified version of SIGN: a precomputed 2-hops diffusion operator on top of symmetrically normalized adjacency matrix A_hat. """ import dgl.sparse as dglsp import torch import torch.nn as nn import torch.nn.functional as F from dgl.data import CoraGraphDataset from torch.optim import Adam ################################################################################ # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement the feature # diffusion in SIGN laconically. ################################################################################ def sign_diffusion(A, X, r): # Perform the r-hop diffusion operation. X_sign = [X] for _ in range(r): X = A @ X X_sign.append(X) return X_sign class SIGN(nn.Module): def __init__(self, in_size, out_size, r, hidden_size=256): super().__init__() # Note that theta and omega refer to the learnable matrices in the # original paper correspondingly. The variable r refers to subscript to # theta. self.theta = nn.ModuleList( [nn.Linear(in_size, hidden_size) for _ in range(r + 1)] ) self.omega = nn.Linear(hidden_size * (r + 1), out_size) def forward(self, X_sign): results = [] for i in range(len(X_sign)): results.append(self.theta[i](X_sign[i])) Z = F.relu(torch.cat(results, dim=1)) return self.omega(Z) def evaluate(g, pred): label = g.ndata["label"] val_mask = g.ndata["val_mask"] test_mask = g.ndata["test_mask"] # Compute accuracy on validation/test set. val_acc = (pred[val_mask] == label[val_mask]).float().mean() test_acc = (pred[test_mask] == label[test_mask]).float().mean() return val_acc, test_acc def train(model, g, X_sign): label = g.ndata["label"] train_mask = g.ndata["train_mask"] optimizer = Adam(model.parameters(), lr=3e-3) for epoch in range(10): # Switch the model to training mode. model.train() # Forward. logits = model(X_sign) # Compute loss with nodes in training set. loss = F.cross_entropy(logits[train_mask], label[train_mask]) # Backward. optimizer.zero_grad() loss.backward() optimizer.step() # Switch the model to evaluating mode. model.eval() # Compute prediction. logits = model(X_sign) pred = logits.argmax(1) # Evaluate the prediction. val_acc, test_acc = evaluate(g, pred) print( f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test" f" acc: {test_acc:.3f}" ) if __name__ == "__main__": # If CUDA is available, use GPU to accelerate the training, use CPU # otherwise. dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load graph from the existing dataset. dataset = CoraGraphDataset() g = dataset[0].to(dev) # Create the sparse adjacency matrix A (note that W was used as the notation # for adjacency matrix in the original paper). indices = torch.stack(g.edges()) N = g.num_nodes() A = dglsp.spmatrix(indices, shape=(N, N)) # Calculate the symmetrically normalized adjacency matrix. I = dglsp.identity(A.shape, device=dev) A_hat = A + I D_hat = dglsp.diag(A_hat.sum(dim=1)) ** -0.5 A_hat = D_hat @ A_hat @ D_hat # 2-hop diffusion. r = 2 X = g.ndata["feat"] X_sign = sign_diffusion(A_hat, X, r) # Create SIGN model. in_size = X.shape[1] out_size = dataset.num_classes model = SIGN(in_size, out_size, r).to(dev) # Kick off training. train(model, g, X_sign)
[ "noreply@github.com" ]
dmlc.noreply@github.com
f77ea489f20c231434ca0f1caea9de519cf3ca2f
b7a2a80843fa5141ffb9c7b4439f1d2ac713af30
/Version2/SystemKommandos.py
3eb10a56a4624476aab5ba3c18ba953ddb6bde07
[]
no_license
wunnox/python_grundlagen
df1bc2b9b1b561bd6733ccc25305e799a48e714e
fa84d7aae7332a7acbb3ba7ff0fe2216cc345fc0
refs/heads/master
2023-05-01T12:19:23.208445
2023-04-16T11:29:01
2023-04-16T11:29:01
222,099,539
2
3
null
2019-12-19T10:56:43
2019-11-16T12:57:54
Python
UTF-8
Python
false
false
323
py
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import print_function import os log = os.popen("ping -c 1 google.com").readlines() for zeile in log: print(zeile.replace("\n", "")) # oder if os.system("ping -c 1 google.com") == 0: print("IP ist erreichbar") else: print("IP ist NICHT erreichbar")
[ "peter.christen@cssgmbh.ch" ]
peter.christen@cssgmbh.ch
15eb72ad636edbf32a27501814ebe6ead6ccc591
3c750d4d60660fdf6ef84d7b7ab9663fb76d0fa1
/sopht/numeric/eulerian_grid_ops/poisson_solver_2d/scipy_fft_2d.py
c27c75ab0c351c35f8a07f4cc81135a2084dd26a
[ "MIT" ]
permissive
SophT-Team/SophT
25d157a17734600e9aa4f522b4574bfefe202bc7
99a094e0d6e635e5b2385a69bdee239a4d1fb530
refs/heads/main
2023-08-31T21:14:10.304592
2023-08-31T17:00:38
2023-08-31T17:00:38
498,451,510
2
2
MIT
2023-09-12T15:37:31
2022-05-31T18:25:12
Python
UTF-8
Python
false
false
457
py
"""Create reference FFT operations via scipy in 2D.""" import numpy as np from scipy.fft import irfftn, rfftn def fft_ifft_via_scipy_kernel_2d( fourier_field: np.ndarray, inv_fourier_field: np.ndarray, field: np.ndarray, num_threads: int = 1, ) -> None: """Perform reference FFT operations via scipy.""" fourier_field[...] = rfftn(field, workers=num_threads) inv_fourier_field[...] = irfftn(fourier_field, workers=num_threads)
[ "bhosale2@illinois.edu" ]
bhosale2@illinois.edu
0856f6a1b38760b3161698bc0ef30a8a3bca0ed4
360c777a2b77be466b1cf7c8fd74d6fd04f56b55
/migrations/versions/7844211fb55_.py
7d304f72a21244221e00963d026d4463433f0936
[ "MIT" ]
permissive
hreeder/nexus-auth
790a3b2623ddf443138a4b0f0af1380dbc4db8ae
8d51aef01647e32ba4a284f02de73a2caad7cf49
refs/heads/master
2021-01-10T10:08:37.190558
2016-02-29T12:27:21
2016-02-29T12:27:21
52,789,087
0
0
null
null
null
null
UTF-8
Python
false
false
621
py
"""empty message Revision ID: 7844211fb55 Revises: c5242907c1e Create Date: 2014-07-30 10:23:03.502189 """ # revision identifiers, used by Alembic. revision = '7844211fb55' down_revision = 'c5242907c1e' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('character', sa.Column('lastKnownShip', sa.Integer(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('character', 'lastKnownShip') ### end Alembic commands ###
[ "harry@harryreeder.co.uk" ]
harry@harryreeder.co.uk
cf7ab34a660f56433f5b54ab6324670467ea001f
214dbac428fc8ad18d8775cd3ffd744068a77d24
/my_django_app/settings.py
9cc596a67ddf070aaa58ab4421bb25e912c69226
[]
no_license
nsalahdeen/DjangoProject
879c609fd5b53cf4be3a0ff5358d70adfbebbcf7
65a1bdcddb719e27ca67cd12aa47171f50370036
refs/heads/main
2023-04-20T04:25:20.608614
2021-05-04T15:51:50
2021-05-04T15:51:50
364,306,188
0
0
null
null
null
null
UTF-8
Python
false
false
3,341
py
""" Django settings for my_django_app project. Generated by 'django-admin startproject' using Django 3.2. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = str(os.getenv('SECRET_KEY')) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'my_first_django_app', #my firstApp ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'my_django_app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ "/templates", Path.joinpath(BASE_DIR, "templates") ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'my_django_app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "you@example.com" ]
you@example.com
e572940f400c4443799befdb71ed04fca2b087fd
0305c23d48ee6e17722124aed5f90f55f1a2f5ef
/examples/lightgbm_examples/classification.py
9924b8bca54a03c1e353420d2547fd5d7404cf68
[ "MIT" ]
permissive
mdjabc/hyperparameter_hunter
d20a01fa6a3493fdbb595f8b5615a9d9ff398770
bfbd1faf63272a62e6f971d7e9a0487d71aea8f6
refs/heads/master
2020-05-16T01:39:39.275129
2019-04-02T01:16:30
2019-04-02T01:16:30
182,608,190
1
0
MIT
2019-04-22T02:21:50
2019-04-22T02:21:49
null
UTF-8
Python
false
false
2,453
py
from hyperparameter_hunter import Environment, CVExperiment from hyperparameter_hunter import RandomForestOptimization, Real, Integer, Categorical import pandas as pd from sklearn.datasets import fetch_covtype from sklearn.metrics import f1_score from lightgbm import LGBMClassifier #################### Format DataFrame #################### # Be advised, this dataset (SKLearn's Forest Cover Types) can take a little while to download... # This is a multi-class classification task, in which the target is label-encoded. data = fetch_covtype(shuffle=True, random_state=32) train_df = pd.DataFrame(data.data, columns=["x_{}".format(_) for _ in range(data.data.shape[1])]) train_df["y"] = data.target #################### Set Up Environment #################### env = Environment( train_dataset=train_df, results_path="HyperparameterHunterAssets", target_column="y", metrics=dict(f1=lambda y_true, y_pred: f1_score(y_true, y_pred, average="micro")), cv_type="StratifiedKFold", cv_params=dict(n_splits=5, random_state=32), ) # Now that HyperparameterHunter has an active `Environment`, we can do two things: #################### 1. Perform Experiments #################### experiment = CVExperiment( model_initializer=LGBMClassifier, model_init_params=dict(boosting_type="gbdt", num_leaves=31, max_depth=-1, subsample=0.5), model_extra_params=dict( fit=dict( feature_name=train_df.columns.values[:-1].tolist(), categorical_feature=train_df.columns.values[11:-1].tolist(), ) ), ) # And/or... #################### 2. Hyperparameter Optimization #################### optimizer = RandomForestOptimization(iterations=10, random_state=32) optimizer.set_experiment_guidelines( model_initializer=LGBMClassifier, model_init_params=dict( boosting_type=Categorical(["gbdt", "dart"]), num_leaves=Integer(10, 40), max_depth=-1, subsample=Real(0.3, 0.7), ), model_extra_params=dict( fit=dict( feature_name=train_df.columns.values[:-1].tolist(), categorical_feature=train_df.columns.values[11:-1].tolist(), ) ), ) optimizer.go() # Notice, `optimizer` recognizes our earlier `experiment`'s hyperparameters fit inside the search # space/guidelines set for `optimizer`. # Then, when optimization is started, it automatically learns from `experiment`'s results # - without any extra work for us!
[ "hunter@mcgushion.com" ]
hunter@mcgushion.com
7f8d4393203d77170ee56f9dc35fd118af389dbf
69d8f3cf7c10640a692fa9175f5a63a5a7b54fcd
/naver_webtoon.py
2a03516c541bf495641c72d69deb1ef931d4df67
[]
no_license
baidoosik/crawling
bd89fd9f59ecb8921e765b03faadf1c55bd59c74
62669badf6ce84e0ac9e575b736e41051642ea9c
refs/heads/master
2021-06-21T19:25:30.175798
2017-07-30T15:02:55
2017-07-30T15:02:55
84,198,685
0
0
null
null
null
null
UTF-8
Python
false
false
2,083
py
from crawling import * def naver_webtoon(url): ep_headers = { 'referer': 'http://comic.naver.com/webtoon/' } html = req.get(url, headers=ep_headers).text soup = bfs(html, 'html.parser') webtoon_name = ''.join(soup.select('div.detail h2')[0].text.split()) ep_name = soup.select('.tit_area h3')[0].text result = [] n_result = [] file_list = [] max_width, max_height = 0, 0 for tag in soup.select('#comic_view_area img'): try: print(tag['src']) result.append(tag['src']) except KeyError: print('필요한 자료 크롤링 완료') break for img_url in result: print(img_url) if re.match(r'^http.*$', img_url): n_result.append(img_url) for img_url in n_result: img = req.get(img_url, headers=ep_headers).content img_name = os.path.basename(img_url) img_path = os.path.join(webtoon_name, ep_name, img_name) dir_path = os.path.dirname(img_path) if not os.path.exists(dir_path): os.makedirs(dir_path) if os.path.exists(img_path): pass else: with open(img_path, 'wb') as f: f.write(img) file_list.append(img_path) for img_url in file_list: with Image.open(img_url) as im: if max_width < im.width: max_width = im.width max_height = max_height + im.height size = (max_width, max_height) white = (255, 255, 255) now =math.ceil(time.time()) with Image.new('RGB', size, white) as canvas: height = 0 for filename in file_list: with Image.open(filename) as im: canvas.paste(im, box=(0, height)) height = height + im.height canvas.save('{}.png'.format(now)) if __name__ =='__main__': print('원하시는 웹툰의 url을 입력해 주세요!') req_url=input() print('으아아아 ~~요청하신 웹툰을 한 사진으로 만들어볼게요!!') naver_webtoon(req_url)
[ "qoentlr37@naver.com" ]
qoentlr37@naver.com
c63011b271a1d1a905c1b4a064dc8fb4dfb1f928
c957b4663cc4cb21e5172f23c6989031be8c3e5b
/python/830. Positions of Large Groups.py
a1f9bf5b13cad44b7186ef6646eebc9f05be1547
[]
no_license
gajanlee/leetcode
e061dc37af0f83bf2bce00c391c0b8a9f3177b22
0d3c8477f05604a059e58a8764ce0d8bd418edde
refs/heads/master
2018-12-26T06:12:24.995542
2018-10-30T05:03:27
2018-10-30T05:03:27
102,965,574
0
0
null
null
null
null
UTF-8
Python
false
false
1,365
py
""" In a string S of lowercase letters, these letters form consecutive groups of the same character. For example, a string like S = "abbxxxxzyy" has the groups "a", "bb", "xxxx", "z" and "yy". Call a group large if it has 3 or more characters. We would like the starting and ending positions of every large group. The final answer should be in lexicographic order. Example 1: Input: "abbxxxxzzy" Output: [[3,6]] Explanation: "xxxx" is the single large group with starting 3 and ending positions 6. Example 2: Input: "abc" Output: [] Explanation: We have "a","b" and "c" but no large group. Example 3: Input: "abcdddeeeeaabbbcd" Output: [[3,5],[6,9],[12,14]] Note: 1 <= S.length <= 1000 """ class Solution: def largeGroupPositions(self, S): """ :type S: str :rtype: List[List[int]] """ res = [] S += "#" last = "$" start = end = 0 for i, s in enumerate(S): if s == last: end += 1 elif end - start >= 2: res.append([start, end]) start = end = i else: start = end = i last = s return res # \1 是第一个分组括号 # {2,}代表字符串在长度2以上 return [[r.start(), r.end() - 1] for r in re.finditer(r'(\w)\1{2,}', S)]
[ "lee_jiazh@163.com" ]
lee_jiazh@163.com
26fb69f33707a68a52b9cf096ecea4d441b19610
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/9QbhjtbkXp3QZNuDu_4.py
0fdb756be15b9bb5f9a2c994e4cc0739f8aa07b5
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,027
py
""" In this challenge, you have to find the last 15 palindromes of all numbers starting from ten and up to a given limit, including the limit in the search. Given an integer `limit` being the upper limit of the range of interest, implement a function that returns the last 15 palindromes numbers lower **or equal** to `limit` as a list sorted ascendingly. ### Examples generate_palindromes(151) ➞ [ 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151 ] generate_palindromes(600) ➞ [ 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595 ] generate_palindromes(999999) ➞ [ 985589, 986689, 987789, 988889, 989989, 990099, 991199, 992299, 993399, 994499, 995599, 996699, 997799, 998899, 999999 ] ### Notes N/A """ def generate_palindromes(limit): is_pal = lambda n: str(n) == str(n)[::-1] ans = [] while len(ans)<15: if is_pal(limit): ans = [limit] + ans limit-=1 return ans
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
8513a8e7ee09df250f1ac7d1b06dc0a64cd08208
2a6f4b01b5ef2729eef6b24cba926f90edace478
/vectorbt/utils/config.py
3ae73a71793ae3c6a482ea095078ea8b9839342b
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
nehcuh/vectorbt
c8c413f11a8e1503f75477e41fc30127c1300236
c0f307169b19a0f26c1992a9e29f4be380c1b220
refs/heads/master
2023-04-11T14:17:08.590766
2021-04-07T13:12:11
2021-04-07T13:12:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,664
py
"""Utilities for configuration.""" from copy import copy from collections import namedtuple import dill import inspect from vectorbt.utils import checks from vectorbt.utils.attr import deep_getattr def get_func_kwargs(func): """Get keyword arguments of the function.""" signature = inspect.signature(func) return { k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty } class atomic_dict(dict): """Dict that behaves like a single value when merging.""" pass def merge_dicts(*dicts): """Merge dicts.""" x, y = dicts[0], dicts[1] if x is None: x = {} if y is None: y = {} checks.assert_type(x, dict) checks.assert_type(y, dict) if len(x) == 0: z = y.copy() elif len(y) == 0: z = x.copy() else: z = {} overlapping_keys = [k for k in x if k in y] # order matters for k in overlapping_keys: if isinstance(x[k], dict) and isinstance(y[k], dict) and not isinstance(y[k], atomic_dict): z[k] = merge_dicts(x[k], y[k]) else: z[k] = y[k] for k in [k for k in x if k not in y]: z[k] = x[k] for k in [k for k in y if k not in x]: z[k] = y[k] if len(dicts) > 2: return merge_dicts(z, *dicts[2:]) return z def copy_dict(dct): """Copy dict using shallow-deep copy hybrid. Traverses all nested dicts and copies each value using shallow copy.""" dct_copy = dict() for k, v in dct.items(): if isinstance(v, dict): dct_copy[k] = copy_dict(v) else: dct_copy[k] = copy(v) return dct_copy _RaiseKeyError = object() DumpTuple = namedtuple('DumpTuple', ('cls', 'dumps')) class Pickleable: """Superclass that defines abstract properties and methods for pickle-able classes.""" def dumps(self, **kwargs): """Pickle to a string.""" raise NotImplementedError @classmethod def loads(cls, dumps, **kwargs): """Unpickle from a string.""" raise NotImplementedError def save(self, fname, **kwargs): """Save dumps to a file.""" dumps = self.dumps(**kwargs) with open(fname, "wb") as f: f.write(dumps) @classmethod def load(cls, fname, **kwargs): """Load dumps from a file and create new instance.""" with open(fname, "rb") as f: dumps = f.read() return cls.loads(dumps, **kwargs) class Config(dict, Pickleable): """Extends dict with config features.""" def __init__(self, *args, frozen=False, read_only=False, **kwargs): super().__init__(*args, **kwargs) self._frozen = frozen self._read_only = read_only self._init_config = copy_dict(self) if not read_only else None @property def frozen(self): """Whether this dict's keys are frozen.""" return self._frozen @property def read_only(self): """Whether this dict is read-only.""" return self._read_only @property def init_config(self): """Initial config.""" return self._init_config def __setitem__(self, k, v): if self.read_only: raise TypeError("Config is read-only") if self.frozen: if k not in self: raise KeyError(f"Key '{k}' is not valid") super().__setitem__(k, v) def __delitem__(self, k): if self.read_only: raise TypeError("Config is read-only") super().__delitem__(k) def pop(self, k, v=_RaiseKeyError): if self.read_only: raise TypeError("Config is read-only") if v is _RaiseKeyError: return super().pop(k) return super().pop(k, v) def popitem(self): if self.read_only: raise TypeError("Config is read-only") return super().popitem() def clear(self): if self.read_only: raise TypeError("Config is read-only") return super().clear() def update(self, *args, force_update=False, **kwargs): other = dict(*args, **kwargs) if force_update: super().update(other) return if self.read_only: raise TypeError("Config is read-only") if self.frozen: for k in other: if k not in self: raise KeyError(f"Key '{k}' is not valid") super().update(other) def copy(self): return type(self)(self) def merge_with(self, other, **kwargs): """Merge this and other dict into a new config.""" return self.__class__(merge_dicts(self, other), **kwargs) def reset(self): """Reset to the initial config.""" if self.read_only: raise TypeError("Config is read-only") self.update(copy_dict(self.init_config), force_update=True) def dumps(self, **kwargs): """Pickle to a string.""" config = dict(frozen=self.frozen, read_only=self.read_only) for k, v in self.items(): if k in ('frozen', 'readonly'): raise ValueError(f"Keyword argument repeated: {k}") if isinstance(v, Pickleable): config[k] = DumpTuple(cls=v.__class__, dumps=v.dumps(**kwargs)) else: config[k] = v return dill.dumps(config, **kwargs) @classmethod def loads(cls, dumps, **kwargs): """Unpickle from a string.""" config = dill.loads(dumps, **kwargs) for k, v in config.items(): if isinstance(v, DumpTuple): config[k] = v.cls.loads(v.dumps, **kwargs) return cls(**config) def __eq__(self, other): return checks.is_deep_equal(dict(self), dict(other)) class AtomicConfig(Config, atomic_dict): """Config that behaves like a single value when merging.""" pass class Configured(Pickleable): """Class with an initialization config. All operations are done using config rather than the instance, which makes it easier to pickle. !!! warning If the instance has writable attributes or depends upon global defaults, their values won't be copied over. Make sure to pass them explicitly to make the saved & loaded / copied instance resilient to changes in globals.""" def __init__(self, **config): self._config = Config(config, read_only=True) @property def config(self): """Initialization config.""" return self._config def copy(self, **new_config): """Create a new instance based on the config. !!! warning This "copy" operation won't return a copy of the instance but a new instance initialized with the same config.""" return self.__class__(**self.config.merge_with(new_config)) def dumps(self, **kwargs): """Pickle to a string.""" return self.config.dumps(**kwargs) @classmethod def loads(cls, dumps, **kwargs): """Unpickle from a string.""" return cls(**Config.loads(dumps, **kwargs)) def __eq__(self, other): """Objects are equal if their configs are equal.""" if type(self) != type(other): return False return self.config == other.config def getattr(self, attr_chain): """See `vectorbt.utils.attr.deep_getattr`.""" return deep_getattr(self, attr_chain) def update_config(self, *args, **kwargs): """Force-update the config.""" self.config.update(*args, **kwargs, force_update=True)
[ "olegpolakow@gmail.com" ]
olegpolakow@gmail.com
01e300e4ad3f48c320b5035e476c2a1eefe88cf8
75bb245280a749fcb1a74e94a62b78e4ceed16f0
/message_manager.py
6157da0ba6e39a61f90304e3c8d370c579e628bd
[]
no_license
cjlavan/rpi_set_wifi
72cee2a8e4531b52398ff28f2abec47a269202d6
7600d05d8c9fa0d6c96663e3e86ca33095f56e0b
refs/heads/master
2016-09-10T20:45:02.874265
2015-05-11T00:30:19
2015-05-11T00:30:19
35,393,561
0
0
null
null
null
null
UTF-8
Python
false
false
6,989
py
import requests import os import os.path import json from unipath import Path import datetime import time import wget import _SETTINGS import convert from message_queue import message_queue class message_manager: def __init__(self): self.new_messages = False self.BASE_DIR = os.path.dirname(os.path.abspath(__file__)) self.OUTPUT_DIR = Path(self.BASE_DIR).child('audio_output') os.chdir(self.OUTPUT_DIR) convert.remove_files(self.OUTPUT_DIR) self.latest_id = int(self.get_latest_msg_id_json()) self.new_messages = False self.MessageList = [] self.load_stored_message_json() self.DownloadMessageList = [] self.post_download_message_json() if self.new_messages: self.alert_new_messages() self.download_audio() self.new_messages = False def update_loop(self): while True: convert.remove_files(self.OUTPUT_DIR) self.post_download_message_json() if self.new_messages: self.alert_new_messages() self.download_audio() self.new_messages = False convert.remove_files(self.OUTPUT_DIR) time.sleep(10) # loads the initial json file to compare to what will be downloaded # reads the initial json file and converts it to a list of message objects def load_stored_message_json(self): os.chdir(self.OUTPUT_DIR) len_mes = 0 try: jsonData = open('stored_message_data.json') stored_data = json.load(jsonData) len_mes = len(stored_data) jsonData.close() except: with open('stored_message_data.json', 'w') as f: json.dump([], f) f.close() self.MessageList = [] print "length of len_mes: " + str(len_mes) for x in range (0,len_mes): m = { 'msg_id' : stored_data[x]["msg_id"], 'audio_file' : stored_data[x]["audio_file"], 'path' : self.OUTPUT_DIR, 'color' : stored_data[x]["color"], 'ts' : stored_data[x]["ts"], 'played' : stored_data[x]["played"] } self.MessageList.append(m) # print "appened message list with " + str(m['msg_id']) # posts to server reads incoming json into download message list def post_download_message_json(self): Downloaded_messages_json = (requests.post(_SETTINGS.url, data=json.dumps(_SETTINGS.payload))).text Downloaded_messages_json = json.loads(Downloaded_messages_json) settings = json.dumps(Downloaded_messages_json["settings"]) i = len(Downloaded_messages_json["data"]) with open("config.json","w") as myfile: myfile.write(settings) myfile.close() lookup_marker = 0 for x in range (i-1, 0, -1): if int(Downloaded_messages_json["data"][x]["msg_id"]) > self.latest_id: Downloaded_messages_json["data"][x].update({ 'ts': str(json.dumps(datetime.datetime.now(), default=self.get_iso_format)) }) m = { 'msg_id' : Downloaded_messages_json["data"][x]["msg_id"], 'audio_file' : "", 'download_link' : Downloaded_messages_json["data"][x]["audio_file"], 'path' : self.OUTPUT_DIR, 'color' : Downloaded_messages_json["data"][x]["color"], 'ts' : Downloaded_messages_json["data"][x]["ts"], 'played' : 0, } self.new_messages = True self.DownloadMessageList.append(m) # downloads audio for DownloadMessageList def download_audio(self): os.chdir(self.OUTPUT_DIR) i = len(self.DownloadMessageList) for x in range (0,i): message = self.DownloadMessageList[0] while not self.is_okay_to_work(): time.sleep(10) local_file_name = wget.download(message['download_link']) message['audio_file'] = local_file_name self.save_new_message(message) self.DownloadMessageList.remove(message) # checks to see if messages are being played # if no, then saves messages that has just been downloaded def save_new_message(self, message): while not self.is_okay_to_work(): time.sleep(10) convert.convert(self.OUTPUT_DIR) self.MessageList.append(message) if int(message['msg_id']) > self.latest_id: self.latest_id = int(message['msg_id']) self.write_message_data() def write_message_data(self): os.chdir(self.OUTPUT_DIR) while not self.is_okay_to_work: time.sleep(10) with open("stored_message_data.json","w") as output_file: output_string = json.dumps(self.MessageList) output_file.write(output_string) output_file.close() self.set_latest_msg_id_json() # helper methods # returns iso format time stamp def get_iso_format(self, obj): if hasattr(obj, 'isoformat'): return obj.isoformat() else: raise TypeError, 'Object of type %s with value of %s is not JSON serializable' \ % (type(obj), repr(obj)) def alert_new_messages(self): os.chdir(self.OUTPUT_DIR) with open('new_message_status.json',"w") as f: json.dump({'new_info':1}, f) f.close() def get_status_json(self): os.chdir(self.OUTPUT_DIR) try: with open('player_status.json') as f: data = json.load(f) f.close() return data['status'] except: with open('player_status.json',"w") as f: json.dump({'status':0}, f) f.close() return 0 def get_latest_msg_id_json(self): os.chdir(self.OUTPUT_DIR) try: with open('latest_id_status.json') as f: data = json.load(f) f.close() return data['latest_msg_id'] except: with open('latest_id_status.json',"w") as f: json.dump({'latest_msg_id':0}, f) f.close() return 0 def set_latest_msg_id_json(self): with open('latest_id_status.json',"w") as f: json.dump({'latest_msg_id':self.latest_id}, f) f.close() def is_okay_to_work(self): os.chdir(self.OUTPUT_DIR) if self.get_status_json() == 0: return True return False
[ "you@example.com" ]
you@example.com
83ffb508c04c0a8d5c6bd89beb8e65a071ecc567
5d0edf31b17c5375faf6126c1a7be8e79bfe2ab8
/buildout-cache/eggs/sc.photogallery-1.0b1-py2.7.egg/sc/photogallery/browser/view.py
105b30e6969b968feec9c890f33eeb3a1d0d8455
[]
no_license
renansfs/Plone_SP
27cba32ebd9fc03dae3941ec23cf1bf0a7b6667a
8a7bdbdb98c3f9fc1073c6061cd2d3a0ec80caf5
refs/heads/master
2021-01-15T15:32:43.138965
2016-08-24T15:30:19
2016-08-24T15:30:19
65,313,812
0
3
null
null
null
null
UTF-8
Python
false
false
3,418
py
# -*- coding: utf-8 -*- from plone import api from plone.dexterity.browser.view import DefaultView from plone.memoize import forever from plone.memoize.instance import memoizedproperty from sc.photogallery.config import HAS_ZIPEXPORT from sc.photogallery.interfaces import IPhotoGallerySettings from sc.photogallery.utils import last_modified from sc.photogallery.utils import PhotoGalleryMixin from zope.component import getMultiAdapter import os if HAS_ZIPEXPORT: from ftw.zipexport.generation import ZipGenerator from ftw.zipexport.interfaces import IZipRepresentation class View(DefaultView, PhotoGalleryMixin): """Slideshow view for Photo Gallery content type.""" def id(self): return id(self) @memoizedproperty def results(self): return self.context.listFolderContents() @property def is_empty(self): return len(self.results) == 0 def image(self, obj, scale='large'): """Return an image scale if the item has an image field. :param obj: [required] :type obj: content type object :param scale: the scale to be used :type scale: string """ scales = obj.restrictedTraverse('@@images') return scales.scale('image', scale) def localized_time(self, obj, long_format=False): """Return the object time in a user-friendly way. :param item: [required] :type item: content type object :param long_format: show long date format if True :type scale: string """ return api.portal.get_localized_time(obj.Date(), long_format) @property def can_download(self): """Check if original images can be explicitly downloaded, that is, if downloading is enabled globally and the current object allows it. """ record = IPhotoGallerySettings.__identifier__ + '.enable_download' enabled_globally = api.portal.get_registry_record(record) allow_download = self.context.allow_download return enabled_globally and allow_download def img_size(self, item): return '{0:.1f} MB'.format(item.size() / float(1024 * 1024)) @property def can_zipexport(self): """Check if original images can be downloaded as a ZIP file, that is, if ftw.zipexport is installed and downloading is allowed in the current object. """ return HAS_ZIPEXPORT and self.can_download @property def last_modified(self): return last_modified(self.context) def zip_url(self): base_url = self.context.absolute_url() url = '{0}/@@zip/{1}/{2}.zip'.format( base_url, str(self.last_modified), self.context.getId()) return url @forever.memoize def _zip_size(self, last_modified=None): if not HAS_ZIPEXPORT: return '{0:.1f} MB'.format(0) with ZipGenerator() as generator: for obj in [self.context, ]: repre = getMultiAdapter( (obj, self.request), interface=IZipRepresentation) for path, pointer in repre.get_files(): generator.add_file(path, pointer) zip_file = generator.generate() size = os.stat(zip_file.name).st_size return '{0:.1f} MB'.format(size / float(1024 * 1024)) def zip_size(self): return self._zip_size(self.last_modified)
[ "renansfs@gmail.com" ]
renansfs@gmail.com
ca1535c9186ea6b4058c35374d2cd992af6df474
a6106cedc42dcab94ccc4ee6d681372d2246ce5e
/python/활용자료/예제/07/ex7-7.py
12dd6228f533058e5632e76aac1e1c9cac3cc731
[]
no_license
leemyoungwoo/pybasic
a5a4b68d6b3ddd6f07ff84dc8df76da02650196f
481075f15613c5d8add9b8c4d523282510d146d2
refs/heads/master
2022-10-08T19:57:26.073431
2020-06-15T06:50:02
2020-06-15T06:50:02
267,502,565
1
0
null
null
null
null
UTF-8
Python
false
false
385
py
def circle_area(r) : area = r * r * 3.14 return area radius = int(input('원의 반지름을 입력하세요 : ')) result = circle_area(radius) print('반지름 : %d, 원의 면적 : %.2f' % (radius, result)) radius = int(input('원의 반지름을 입력하세요 : ')) result = circle_area(radius) print('반지름 : %d, 원의 면적 : %.2f' % (radius, result))
[ "mwlee2587@gmail.com" ]
mwlee2587@gmail.com
bf4ee2d02a325b438c10d2b86a54a4028c965b9b
3a6bf7337126c8b1883e76cf1f46cec0886f1447
/rssdl/rss.py
0280fcd0436b89dd40e7f313f365f2b62e554d0f
[ "Apache-2.0" ]
permissive
egustafson/rssdl
fc4265edd9138a54005b98bdfc1ea5dfb25707d5
2b42d8aa4a0d03d31629d8446e7336c6c1348e58
refs/heads/master
2020-12-24T06:57:21.265487
2017-09-15T20:59:58
2017-09-15T20:59:58
58,835,610
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
""" RSS DOM for RSSDL """ import feedparser class Feed(object): def __init__(self, href): self._href = href self._d = None def result(self): return self._d def parse(self): self._d = feedparser.parse(self._href) return self._d.status if 'status' in self._d else 0 def data(self): return self._d ## Local Variables: ## mode: python ## End:
[ "eg-git@elfwerks.org" ]
eg-git@elfwerks.org
b6719129deb3753fda7d1da2bf054ef2b0b7086b
bb4e132c5978a1edc2ef4fb78d1bb5a793809408
/dral_text/migrations/0005_auto_20180421_2332.py
2011d67aa3e519a34a52ebb3021d281bc28eafa0
[ "MIT" ]
permissive
n-romanova/dral-django
7335e581f1fffe0e2d42614678010ead5c9202f3
4af92a46e207cc8a427d2f8eafe688c61a73d39e
refs/heads/master
2020-08-31T03:11:37.199516
2019-10-03T17:19:05
2019-10-03T17:19:05
218,569,974
0
0
null
2019-10-30T16:15:47
2019-10-30T16:15:47
null
UTF-8
Python
false
false
707
py
# Generated by Django 2.0 on 2018-04-21 22:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dral_text', '0004_auto_20180421_2231'), ] operations = [ migrations.AddField( model_name='occurence', name='paraphrase', field=models.BooleanField(default=False), ), migrations.AddField( model_name='occurence', name='replace', field=models.BooleanField(default=False), ), migrations.AddField( model_name='occurence', name='zero', field=models.BooleanField(default=False), ), ]
[ "geoffroy.noel@kcl.ac.uk" ]
geoffroy.noel@kcl.ac.uk
803f3401202b20729ba63a9968b76cfb69eb1b03
c558d1da1aedf377e6cb6cf66c5136cfb7c32167
/python-new-trunk/sfapi2/sflib/runWithAnalysis.py
978d569bb74522ab578050a8fad567a9a6a3a256
[ "CC0-1.0" ]
permissive
raychorn/svn_molten-magma
46a8da015844b52fd2fc777225f11b1891b0000a
8aa2ff2340707eecae6514943e86f5afba9cd54a
refs/heads/main
2022-12-26T15:45:24.851522
2020-10-15T16:52:04
2020-10-15T16:52:04
304,358,985
0
0
null
null
null
null
UTF-8
Python
false
false
3,864
py
import os, sys import traceback from vyperlogix import misc from vyperlogix.misc import ioTimeAnalysis import types import SfStats sf_stats = SfStats.SfStats() def dummy(): pass def init_AnalysisDataPoint(name): ioTimeAnalysis.initIOTime(name) def begin_AnalysisDataPoint(name): ioTimeAnalysis.ioBeginTime(name) def end_AnalysisDataPoint(name): ioTimeAnalysis.ioEndTime(name) def count_query(): sf_stats.count_query() def runWithAnalysis(func=dummy,args=[],_ioElapsedTime=dummy): caller = misc.callersName() ioTimeAnalysis.initIOTime('%s::%s' % (__name__,caller)) ioTimeAnalysis.ioBeginTime('%s::%s' % (__name__,caller)) val = None try: if (len(args) == 0): val = func() else: val = func(args) except: exc_info = sys.exc_info() info_string = '\n'.join(traceback.format_exception(*exc_info)) print >>sys.stderr, '(%s) Reason: %s' % (misc.funcName(),info_string) ioTimeAnalysis.ioEndTime('%s::%s' % (__name__,caller)) ioTimeAnalysis.ioTimeAnalysisReport() _et = 0 _key_list = [k for k in ioTimeAnalysis._ioTime.keys() if (k.find('SOQL') > -1)] for _key in _key_list: _et += (0 if (len(_key) == 0) else ioTimeAnalysis._ioTime[_key][0]) if (_et > 0): _soql_per_sec = sf_stats.query_count / _et if (_soql_per_sec > 0): _ms_per_soql = 1000 / _soql_per_sec else: if (sf_stats.query_count == 0): print >>sys.stderr, '(%s) 1.0 Cannot correctly report ms per SOQL because SOQL per Second reported 0 and we cannot divide Zero by some number at this time; recommend using the functions that count queries from this module.' % (misc.funcName()) elif (): print >>sys.stderr, '(%s) 1.0 Cannot correctly report ms per SOQL because SOQL per Second reported 0 and we cannot divide by Zero at this time.' % (misc.funcName()) _ms_per_soql = -1 else: print >>sys.stderr, '(%s) 1.0 Cannot correctly report ms per SOQL because SOQL per Second because there is no reported elapsed time from SOQL activities.' % (misc.funcName()) try: v_ioElapsedTime = float(ioTimeAnalysis._ioElapsedTime) if (v_ioElapsedTime > 0): soql_per_sec = sf_stats.query_count / v_ioElapsedTime if (soql_per_sec > 0): ms_per_soql = 1000 / soql_per_sec else: print >>sys.stderr, '(%s) 2.0 Cannot correctly report ms per SOQL because SOQL per Second reported 0 and we cannot divide by Zero at this time.' % (misc.funcName()) ms_per_soql = -1 t_analysis_1 = '%-10.2f' % soql_per_sec t_analysis_2 = '%-10.4f' % ms_per_soql print >>sys.stdout, '(Apparent) SOQL per second = %s or %s ms per SOQL.' % (t_analysis_1.strip(),t_analysis_2.strip()) if (_et > 0): _t_analysis_1 = '%-10.2f' % _soql_per_sec _t_analysis_2 = '%-10.4f' % _ms_per_soql print >>sys.stdout, '(Actual) SOQL per second = %s or %s ms per SOQL.' % (_t_analysis_1.strip(),_t_analysis_2.strip()) else: print >>sys.stderr, 'Unable to perform Actual SOQL per second analysis because there is no reported elapsed time from SOQL activities.' else: print >>sys.stderr, 'Unable to perform Actual SOQL per second analysis because _ioElapsedTime is %4.2f.' % (v_ioElapsedTime) except: exc_info = sys.exc_info() info_string = '\n'.join(traceback.format_exception(*exc_info)) print >>sys.stderr, '(%s) Reason: %s' % (misc.funcName(),info_string) print >>sys.stdout, 'SOQL Count=%d' % sf_stats.query_count return val
[ "raychorn@gmail.com" ]
raychorn@gmail.com
9301a8e19c39fa597a374ec83ca5ac9308d25d56
e9032e64138d7b9dd90a330dfe4588e2c83f6667
/google/cloud/compute_v1/services/url_maps/pagers.py
1a5d42fc43ca21958c622ecbbf65987afbee0aa4
[ "Apache-2.0" ]
permissive
Ctfbuster/python-compute
6cff2418969009794c3fadadc4c45e20d7b40509
7a9e8324e08c46a93050908760b2b5aca054a863
refs/heads/main
2023-08-26T12:37:52.363526
2021-10-04T15:34:37
2021-10-04T15:34:37
412,884,620
0
0
Apache-2.0
2021-10-02T18:49:05
2021-10-02T18:49:03
null
UTF-8
Python
false
false
5,578
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import ( Any, AsyncIterable, Awaitable, Callable, Iterable, Sequence, Tuple, Optional, ) from google.cloud.compute_v1.types import compute class AggregatedListPager: """A pager for iterating through ``aggregated_list`` requests. This class thinly wraps an initial :class:`google.cloud.compute_v1.types.UrlMapsAggregatedList` object, and provides an ``__iter__`` method to iterate through its ``items`` field. If there are more pages, the ``__iter__`` method will make additional ``AggregatedList`` requests and continue to iterate through the ``items`` field on the corresponding responses. All the usual :class:`google.cloud.compute_v1.types.UrlMapsAggregatedList` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., compute.UrlMapsAggregatedList], request: compute.AggregatedListUrlMapsRequest, response: compute.UrlMapsAggregatedList, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.compute_v1.types.AggregatedListUrlMapsRequest): The initial request object. response (google.cloud.compute_v1.types.UrlMapsAggregatedList): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = compute.AggregatedListUrlMapsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[compute.UrlMapsAggregatedList]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[Tuple[str, compute.UrlMapsScopedList]]: for page in self.pages: yield from page.items.items() def get(self, key: str) -> Optional[compute.UrlMapsScopedList]: return self._response.items.get(key) def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListPager: """A pager for iterating through ``list`` requests. This class thinly wraps an initial :class:`google.cloud.compute_v1.types.UrlMapList` object, and provides an ``__iter__`` method to iterate through its ``items`` field. If there are more pages, the ``__iter__`` method will make additional ``List`` requests and continue to iterate through the ``items`` field on the corresponding responses. All the usual :class:`google.cloud.compute_v1.types.UrlMapList` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., compute.UrlMapList], request: compute.ListUrlMapsRequest, response: compute.UrlMapList, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.compute_v1.types.ListUrlMapsRequest): The initial request object. response (google.cloud.compute_v1.types.UrlMapList): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = compute.ListUrlMapsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[compute.UrlMapList]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[compute.UrlMap]: for page in self.pages: yield from page.items def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response)
[ "noreply@github.com" ]
Ctfbuster.noreply@github.com
e40a9f4648944ecbb580038b5267b736e6a1cc7a
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/TmasgxCm6iz3gTGHk_18.py
f0c40f2ac8ab47faef818d3f66b85e4ebaed9fb1
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
""" Write a function that returns the **length of the shortest contiguous sublist** whose sum of all elements **strictly exceeds** `n`. ### Examples min_length([5, 8, 2, -1, 3, 4], 9) ➞ 2 min_length([3, -1, 4, -2, -7, 2], 4) ➞ 3 # Shortest sublist whose sum exceeds 4 is: [3, -1, 4] min_length([1, 0, 0, 0, 1], 1) ➞ 5 min_length([0, 1, 1, 0], 2) ➞ -1 ### Notes * The sublist should be composed of **contiguous elements** from the original list. * If no such sublist exists, return `-1`. """ def min_length(lst, n): for i in range(1, len(lst) + 1): v = [lst[j:j + i] for j in range(0, len(lst) - i + 1)] for k in v: if sum(k) > n: return i return -1
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
349da3c46b25c597a4fea4b6ffed199281d111b3
e61e664d95af3b93150cda5b92695be6551d2a7c
/vega/metrics/tensorflow/__init__.py
5eb861df8a3c94200471f2efbde2cb138194a48e
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
huawei-noah/vega
44aaf8bb28b45f707ed6cd4e871ba70fc0c04846
12e37a1991eb6771a2999fe0a46ddda920c47948
refs/heads/master
2023-09-01T20:16:28.746745
2023-02-15T09:36:59
2023-02-15T09:36:59
273,667,533
850
184
NOASSERTION
2023-02-15T09:37:01
2020-06-20T08:20:06
Python
UTF-8
Python
false
false
449
py
from vega.common.class_factory import ClassFactory from .metrics import Metrics ClassFactory.lazy_register("vega.metrics.tensorflow", { "segmentation_metric": ["trainer.metric:IoUMetric"], "classifier_metric": ["trainer.metric:accuracy"], "sr_metric": ["trainer.metric:PSNR", "trainer.metric:SSIM"], "forecast": ["trainer.metric:MSE", "trainer.metric:RMSE"], "r2score": ["trainer.metric:r2score", "trainer.metric:R2Score"], })
[ "zhangjiajin@huawei.com" ]
zhangjiajin@huawei.com
d9d15c7369252080d67b4a3db18eda581179e3b9
7950c4faf15ec1dc217391d839ddc21efd174ede
/contest/weekly-contest-266/5919.0_Vowels_of_All_Substrings.py
836bcb1c21e6f95554a3972b51237f0616b166fa
[]
no_license
lixiang2017/leetcode
f462ecd269c7157aa4f5854f8c1da97ca5375e39
f93380721b8383817fe2b0d728deca1321c9ef45
refs/heads/master
2023-08-25T02:56:58.918792
2023-08-22T16:43:36
2023-08-22T16:43:36
153,090,613
5
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
''' 41 / 51 个通过测试用例 状态:超出时间限制 brute force T: O(N^2) S: O(N) ''' class Solution: def countVowels(self, word: str) -> int: N = len(word) pre = [0] * (N + 1) for i, ch in enumerate(word): if ch in 'aeiou': pre[i + 1] = pre[i] + 1 else: pre[i + 1] = pre[i] ans = 0 for i in range(1, len(word) + 1): for j in range(i): ans += pre[i] - pre[j] return ans ''' "aba" 0112 ''' ''' 前缀和+前缀和 这是从双层暴力优化过来的 通过 296 ms 23.8 MB Python3 2021/11/07 19:48 T: O(3N) S: O(2N) ref: https://leetcode-cn.com/problems/vowels-of-all-substrings/solution/cqian-zhui-he-qian-zhui-he-by-answerer-360n/ ''' class Solution: def countVowels(self, word: str) -> int: N = len(word) pre = [0] * (N + 1) for i, ch in enumerate(word): if ch in 'aeiou': pre[i + 1] = pre[i] + 1 else: pre[i + 1] = pre[i] # presum of presum prepre = [0] * (N + 1) for i in range(1, N + 1): prepre[i] = prepre[i - 1] + pre[i] ans = 0 for i in range(N): ans += pre[i + 1] * (i + 1) - prepre[i] return ans ''' 乘法原理 T: O(N) S: O(1) 执行用时:92 ms, 在所有 Python3 提交中击败了100.00% 的用户 内存消耗:15.2 MB, 在所有 Python3 提交中击败了100.00% 的用户 通过测试用例:51 / 51 ''' class Solution: def countVowels(self, word: str) -> int: ans, N = 0, len(word) for i, ch in enumerate(word): if ch in 'aeiou': ans += (i + 1) * (N - i) return ans
[ "838255715@qq.com" ]
838255715@qq.com
958e5eceba3a97c5f73ae5f97c2f2d507c3228c4
8f8498bb6f56b19d45a1989c8113a077348c0a02
/백준/최소신장트리/행성 터널 - 프림.py
1b9cd115b4de9658e77fc0d211d97f40b0242f95
[]
no_license
gjtjdtn201/practice
a09b437c892b0b601e156c09cb1f053b52fab11b
ea45582b2773616b2b8f350b927559210009d89f
refs/heads/master
2021-01-01T13:29:46.640740
2020-11-28T00:55:37
2020-11-28T00:55:37
239,299,485
0
1
null
null
null
null
UTF-8
Python
false
false
800
py
import sys sys.stdin = open('행성 터널.txt') import sys input = sys.stdin.readline from heapq import heappush, heappop N = int(input()) star = [] for i in range(N): x, y, z = map(int, input().split()) star.append((x, y, z, i)) edges = [[] for _ in range(N)] for i in range(3): star.sort(key=lambda x: x[i]) for j in range(N-1): n1, n2 = star[j][3], star[j+1][3] cost = abs(star[j][i]-star[j+1][i]) edges[n1].append((cost, n2)) edges[n2].append((cost, n1)) mst = [False]*N ans = 0 q = [] heappush(q, (0, 0)) while q: cost, node = heappop(q) if mst[node]: continue ans += cost mst[node] = True for nxt_cost, nxt in edges[node]: if mst[nxt]: continue heappush(q, (nxt_cost, nxt)) print(ans)
[ "gjtjdtn201@naver.com" ]
gjtjdtn201@naver.com
05bbe819c737091fa9d1aff4a383a5ca8734dd1c
461cf2fd99330558ec96bf551cb1703e627868a0
/get_pages.py
b050961df0e6de3f1240f8bc48e06c5237fb092d
[]
no_license
abelsonlive/bcni-pra
408f72ba369ca164c5efb4442ebd2eaeb2c8dd78
fa51ae45382c45f15fe861060d6e90cc00c27590
refs/heads/master
2021-01-20T11:50:13.432486
2013-04-29T14:45:04
2013-04-29T14:45:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
711
py
import selenium from selenium import webdriver import time URL = "http://secure.phila.gov/paplpublicweb/GridView.aspx" b = webdriver.Firefox() b.get(URL) for i in range(2, 806): print i text = b.page_source.encode('utf-8') fp = "raw_pages/page%s.txt" % (i-1) print "writing", fp, "to file" with open(fp, "w") as text_file: text_file.write(text) try: next = b.find_element_by_xpath("//span[contains(text(),'%s')]" % (i)) except selenium.common.exceptions.NoSuchElementException or selenium.common.exceptions.StaleElementReferenceException: print "ERROR ERROR!!!" i = i - 1 print "trying again" next.click() time.sleep(2) b.close()
[ "brianabelson@gmail.com" ]
brianabelson@gmail.com
a73c7308d19a2723bbdb73a89ceca2790e0ddbea
3a10cda6dbdeee36b24591ada2c551ff2f179d19
/app/models/hour.py
1a14852b19fe5a1765504a13f12ccb678185c99c
[]
no_license
ttecles/weather_backend
a0d0c6317c3fde6c4ac6df17c7c9a5ea59299302
b4b2886a3f0a2b6b502bd38d0b98f017b01ef6b0
refs/heads/master
2023-02-19T12:31:52.295041
2021-01-26T08:56:34
2021-01-26T08:56:34
330,950,429
0
0
null
null
null
null
UTF-8
Python
false
false
763
py
from app import db class Hour(db.Model): __tablename__ = 'Hour' locality_id = db.Column(db.Integer, db.ForeignKey('Locality.id'), primary_key=True, nullable=False) date = db.Column(db.Date(), primary_key=True) # "2021-1-15" hour_data = db.Column(db.Time(), primary_key=True) # "13:00", temperature = db.Column(db.Integer) # -1, icon = db.Column(db.String(10)) # "6", text = db.Column(db.String(80)) # "Mostly cloudy", humidity = db.Column(db.Integer) # 89, wind = db.Column(db.Integer) # 4, wind_direction = db.Column(db.String(30)) # "Northwest", icon_wind = db.Column(db.String(10)) # "NO", pressure = db.Column(db.Integer) # 1016, locality = db.relationship("Locality", backref="hour_forecast")
[ "joan.prat@knowtrade.eu" ]
joan.prat@knowtrade.eu
8517ce3f417f877036d4b1f5d9af879c97c0a703
e02506da0c661c8241fed00efdd0d6b2f8b147df
/textattack/attack_recipes/seq2sick_cheng_2018_blackbox.py
8af6d15138de6bc314511c851970b1c226990123
[ "MIT" ]
permissive
SatoshiRobatoFujimoto/TextAttack
2592a828f128fd8bf0b8ce5578e9488df5b2ac97
a809a9bddddff9f41750949e26edde26c8af6cfa
refs/heads/master
2022-07-11T02:10:24.536157
2020-05-14T13:29:44
2020-05-14T13:29:44
263,941,825
1
0
MIT
2020-05-14T14:43:47
2020-05-14T14:43:46
null
UTF-8
Python
false
false
1,205
py
""" Cheng, Minhao, et al. Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples ArXiv, abs/1803.01128. This is a greedy re-implementation of the seq2sick attack method. It does not use gradient descent. """ from textattack.constraints.overlap import LevenshteinEditDistance from textattack.goal_functions import NonOverlappingOutput from textattack.search_methods import GreedyWordSwapWIR from textattack.transformations import WordSwapEmbedding def Seq2SickCheng2018BlackBox(model, goal_function='non_overlapping'): # # Goal is non-overlapping output. # goal_function = NonOverlappingOutput(model) # @TODO implement transformation / search method just like they do in # seq2sick. transformation = WordSwapEmbedding(max_candidates=50) # # In these experiments, we hold the maximum difference # on edit distance (ϵ) to a constant 30 for each sample. # # # Greedily swap words with "Word Importance Ranking". # attack = GreedyWordSwapWIR(goal_function, transformation=transformation, constraints=[], max_depth=10) return attack
[ "jxmorris12@gmail.com" ]
jxmorris12@gmail.com
f9791b2b58c0ed0961046f7b8a0dd4bb73d8450a
5410700e83210d003f1ffbdb75499062008df0d6
/leetcode/tree2Str.py
61ae648b31c803481fe3db7769a6109de4b7ac74
[]
no_license
lilyandcy/python3
81182c35ab8b61fb86f67f7796e057936adf3ab7
11ef4ace7aa1f875491163d036935dd76d8b89e0
refs/heads/master
2021-06-14T18:41:42.089534
2019-10-22T00:24:30
2019-10-22T00:24:30
144,527,289
1
0
null
null
null
null
UTF-8
Python
false
false
549
py
class Solution: def tree2str(self, t): """ :type t: TreeNode :rtype: str """ if t == None: return "" if t.left == None and t.right == None: return str(t.val) elif t.left == None: return str(t.val) + "()" + "(" + self.tree2str(t.right) + ")" elif t.right == None: return str(t.val) + "(" + self.tree2str(t.left) + ")" else: return str(t.val) + "(" + self.tree2str(t.left) + ")" + "(" + self.tree2str(t.right) + ")"
[ "myyan_yan@msn.com" ]
myyan_yan@msn.com
7cc2c7507b75fcd535a7e8e9c9b0457f48bd6414
e0b6f5bd451aa8af3273fbc948799637681342e1
/scripts/wm_representation/functions/IEM/Controls/trial_by_trial/trainT_testT_wm3_shuffles_refs.py
99a1066c8955feb220ec3514ad753bea566ad476
[]
no_license
davidbestue/encoding
6b304f6e7429f94f97bd562c7544d1fdccf7bdc1
c27319aa3bb652b3bfc6b7340044c0fda057bc62
refs/heads/master
2022-05-05T23:41:42.419252
2022-04-27T08:34:52
2022-04-27T08:34:52
144,248,690
0
0
null
null
null
null
UTF-8
Python
false
false
4,890
py
# -*- coding: utf-8 -*- """ Created on Mon Jul 1 18:24:32 2019 @author: David Bestue """ ####### ####### In this analysis: ####### I am doing the reconstruction training in the delay period and testing in each trial. No CV and No Shuffles ####### ############# Add to sys path the path where the tools folder is import sys, os #path_tools = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) ### same directory or one back options path_tools = os.path.abspath(os.path.join(os.getcwd(), os.pardir, os.pardir)) ### same directory or one back options sys.path.insert(1, path_tools) from tools import * ############# Namefiles for the savings. path_save_reconst_shuffs ='/home/david/Desktop/Reconstructions/IEM/recs_shuffs_references_IEM_trainT_testT_wm3.npy' ############# Testing options decoding_thing = 'T_alone' #'dist_alone' 'T_alone' ############# Training options training_item = 'T_alone' #'dist_alone' 'T_alone' cond_t = '1_7' #'1_7' '2_7' Distance_to_use = 'mix' #'close' 'far' training_time= 'delay' #'stim_p' 'delay' 'respo' tr_st=4 tr_end=6 ############# Elements for the loop Conditions=['1_0.2', '1_7', '2_0.2', '2_7'] Subjects=['d001', 'n001', 'b001', 'r001', 's001', 'l001'] brain_regions = ['visual','ips', 'pfc', 'broca'] ref_angle=180 Reconstructions_ = [] ## subjects x brain regiond --> ntrials x 16 x 720 matrix ############# Analysis ############# for Subject in Subjects: for Brain_region in brain_regions: enc_fmri_paths, enc_beh_paths, wm_fmri_paths, wm_beh_paths, masks = data_to_use( Subject, 'together', Brain_region) activity, behaviour = process_wm_task(wm_fmri_paths, masks, wm_beh_paths, nscans_wm=nscans_wm) behaviour['Condition'] = behaviour['Condition'].replace(['1.0_0.2', '1.0_7.0', '2.0_0.2','2.0_7.0' ], ['1_0.2', '1_7', '2_0.2', '2_7']) behaviour['brain_region'] = Brain_region ### ### print(Subject, Brain_region) Reconstructed_trials=[] ## ntrials x 16 x 720 matrix ### ### #angx = behaviour[decoding_thing].values #angles_shuffled = random.sample( list(angx), len(angx) ) ### ### for trial in range(len(behaviour)): activity_trial = activity[trial,:,:] beh_trial = behaviour.iloc[trial,:] session_trial = beh_trial.session_run ### ### Training ### if cond_t == '1_7': boolean_trials_training = np.array(behaviour['delay1']==7) * np.array(behaviour['order']==1) * np.array(behaviour['session_run']!=session_trial) elif cond_t == '2_7': boolean_trials_training = np.array(behaviour['delay1']==7) * np.array(behaviour['order']==2) * np.array(behaviour['session_run']!=session_trial) # activity_train_model = activity[boolean_trials_training, :, :] activity_train_model_TRs = np.mean(activity_train_model[:, tr_st:tr_end, :], axis=1) behavior_train_model = behaviour[boolean_trials_training] training_angles = behavior_train_model[['T', 'NT1', 'NT2']].values # Weights_matrix, Interc = Weights_matrix_LM_3items(activity_train_model_TRs, training_angles) Weights_matrix_t = Weights_matrix.transpose() ### ### Testing ### Reconstructed_TR = [] ## 16 x 720 matrix # for TR_ in range(nscans_wm): activity_TR = activity_trial[TR_, :] angle_trial = random.choice([0,90,180,270]) Inverted_encoding_model = np.dot( np.dot ( np.linalg.pinv( np.dot(Weights_matrix_t, Weights_matrix ) ), Weights_matrix_t), activity_TR) #Inverted_encoding_model_pos = Pos_IEM2(Inverted_encoding_model) IEM_hd = ch2vrep3(Inverted_encoding_model) #36 to 720 to_roll = int( (ref_angle - angle_trial)*(len(IEM_hd)/360) ) ## degrees to roll IEM_hd_aligned=np.roll(IEM_hd, to_roll) ## roll this degree ##vector of 720 Reconstructed_TR.append(IEM_hd_aligned) ## resconstr_trial = np.array(Reconstructed_TR) Reconstructed_trials.append(resconstr_trial) ## ## Reconstructions_.append(Reconstructed_trials) ######## final_rec = np.array(Reconstructions_) np.save(path_save_reconst_shuffs, final_rec) ############# Options de training times, the TRs used for the training will be different # training_time=='delay': # tr_st=4 # tr_end=6 # training_time=='stim_p': # tr_st=3 # tr_end=4 # training_time=='delay': # tr_st=4 # tr_end=6 # training_time=='respo': # if decoding_thing=='Target': # tr_st=8 # tr_end=9 # elif decoding_thing=='Distractor': # tr_st=11 # tr_end=12
[ "davidsanchezbestue@hotmail.com" ]
davidsanchezbestue@hotmail.com
4f714d6172a078dceda6b04a5faec6a75aeec621
dc63e528012fb2f3e15b73e05c924236760d01b1
/cloudify_azure/resources/compute/virtualmachine/virtualmachine_utils.py
4a67d65a4df9ff6e52f6dd881668444d4f9e6848
[ "Apache-2.0" ]
permissive
cloudify-cosmo/cloudify-azure-plugin
515b6285b63c2a01ae4d666957541a1f08472410
361c48bc4abe38cf57354e8d36839137462ad345
refs/heads/master
2023-08-21T14:23:06.673284
2023-07-30T10:44:39
2023-07-30T10:44:39
36,666,947
4
14
Apache-2.0
2023-07-30T10:44:41
2015-06-01T14:42:32
Python
UTF-8
Python
false
false
3,521
py
# ####### # Copyright (c) 2016-2020 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cloudify import ctx def check_if_configuration_changed(ctx, update_payload, current_vm): for prop in ['location', 'tags', 'plan', 'availability_set', 'eviction_policy', 'billing_profile', 'priority', 'hardware_profile']: update_property_value = update_payload.get(prop) current_vm_property_value = current_vm.get(prop) if update_property_value and ordered( update_property_value) != ordered(current_vm_property_value): ctx.logger.info("{prop} changed.".format(prop=prop)) ctx.logger.info("update payload: {content}.".format( content=update_property_value)) ctx.logger.info("current configuration: {content}.".format( content=current_vm_property_value)) return True for prop in ['os_profile', 'storage_profile', 'network_profile']: if prop == 'network_profile' and update_payload.get(prop): update_property_value = update_payload.get(prop).as_dict() else: update_property_value = update_payload.get(prop, {}) current_vm_property_value = current_vm.get(prop, {}) if diff_dictionaries(update_property_value, current_vm_property_value): ctx.logger.info("{prop} changed.".format(prop=prop)) return True return False def diff_dictionaries(update_dict, current_conf_dict): """ Returns True if update_dict has changes in a key that doesn't appear in current_conf_dict. current_conf_dict can have additional keys and its not considered as a diff. """ for key in update_dict: if isinstance(update_dict.get(key), dict): res = diff_dictionaries(update_dict.get(key), current_conf_dict.get(key, {})) if res: return True elif ordered(update_dict.get(key)) != ordered( current_conf_dict.get(key)): ctx.logger.info( 'Changes found in diff_dictionaries: key={key}\n'.format( key=key)) ctx.logger.info( 'update_dict: {}'.format(ordered(update_dict.get(key)))) ctx.logger.info( 'current_conf_dict: {}'.format(ordered( current_conf_dict.get(key)))) return True return False def ordered(obj): """ This function will recursively sort any lists it finds (and convert dictionaries to lists of (key, value) pairs so that they're orderable) """ if isinstance(obj, dict): return sorted((k, ordered(v)) for k, v in obj.items()) if isinstance(obj, list): return sorted(ordered(x) for x in obj) if isinstance(obj, str): return obj.lower() if isinstance(obj, (int, float)): return str(obj) else: return obj
[ "noreply@github.com" ]
cloudify-cosmo.noreply@github.com
8eb20a63cf9ae7debe25c9b008d788862e5ee7da
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/78/usersdata/171/41777/submittedfiles/divisores.py
701949f8b9cb8bf36079078eda939d27b7fe7166
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
# -*- coding: utf-8 -*- import math n=int(input('digite n:')) a=int(input('digite a:')) b=int(input('digite b:')) d=a e=b f=a*b for i in range(1,n+1,1): d=a e=b f=a*b print(f)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
ecf2e202398d9c58d9d5bcb9846dbebaf58a02aa
0ccab2965458454d6a4802b47d33310e43c10d8f
/classes/student.py
c9e7d33683deae9b858dc5fb04d7034fd00d39ca
[]
no_license
jazib-mahmood-attainu/Ambedkar_Batch
11e66125647b3b348d4567862f8fc20a3457b2f0
c99be9a401b8d00f6ca47398f48e90ead98f4898
refs/heads/main
2023-08-01T13:13:43.357769
2021-09-25T03:54:27
2021-09-25T03:54:27
390,405,238
16
10
null
null
null
null
UTF-8
Python
false
false
427
py
class Student: def __init__(self,roll,name,age): self.roll = roll self.name = name self.age = age def reads(self): print(self.name,"is reading") preeti = Student(10,"Preeti",24) print(preeti.name) print(preeti.roll) print(preeti.age) preeti.reads() print("**********") sapna = Student(11,"Sapna",19) print(sapna.name) print(sapna.roll) print(sapna.age) sapna.reads()
[ "jazib.prof@gmail.com" ]
jazib.prof@gmail.com
e2230aed752c8a73948aecc725580d22f370446b
1e9fed88ce4a623970f7e53143753a170d4bdcda
/aat/tests/test_strategy.py
37e4f8123735a0e70663ec060bc26eda308854e1
[ "Apache-2.0" ]
permissive
krusty45/aat
06dedbfe0abaf76c4a584ad441dc7badd093a939
a14b652f7ff90761d0e1198a85d8fc02efeff0eb
refs/heads/master
2020-06-24T09:34:30.981326
2019-07-09T19:34:22
2019-07-09T19:34:22
198,929,483
1
0
Apache-2.0
2019-07-26T02:07:57
2019-07-26T02:07:56
null
UTF-8
Python
false
false
453
py
# for coverage from ..strategy import * class TestStrategy: def setup(self): pass # setup() before each test method def teardown(self): pass # teardown() after each test method @classmethod def setup_class(cls): pass # setup_class() before any methods in this class @classmethod def teardown_class(cls): pass # teardown_class() after any methods in this class
[ "t.paine154@gmail.com" ]
t.paine154@gmail.com
8806780712e5054373bdc136bb537dece0d2b9ac
ffd2126e1ba5d1acea0bb0b3d011f4ccaf1c1f1f
/gia/gia/doctype/gia_sector/gia_sector.py
4a1e4524728a0939102446bd86307c02279f077f
[ "MIT" ]
permissive
alkuhlani/gia
fd55c65b0f430f24c7fbe3aef5ea911af8642702
9af9737cef7b0b947baa21f46c7be381c4fc9d98
refs/heads/master
2022-12-10T02:45:47.907158
2020-09-04T16:37:10
2020-09-04T16:37:10
276,495,714
0
1
null
null
null
null
UTF-8
Python
false
false
392
py
# -*- coding: utf-8 -*- # Copyright (c) 2020, Ahmed Mohammed Alkuhlani and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _, throw from frappe.model.document import Document class GIASector(Document): def validate(self): if not self.parent_gia_sector: frappe.throw(_("Please enter the parent"))
[ "frappe@ubuntu.vm" ]
frappe@ubuntu.vm
fd9166714314627d931b92e8df033ea9d4f2ffd2
54a5f5ec2c5edf924b7dc7730ee7cb2a38ac4a39
/DataFrame_manipulation_pandas/E01_Positional_and_labeled_indexing.py
aa09f4a045dbe19bc6a45b84a5dfebd5c0c513b2
[]
no_license
dajofischer/Datacamp
fac413ec178375cedceababaf84f6b47a61fc821
a03d16b8f342412f1ee077f2f196ee8404e2e21c
refs/heads/master
2020-04-05T08:38:25.361746
2019-03-27T20:55:57
2019-03-27T20:55:57
156,722,561
1
0
null
null
null
null
UTF-8
Python
false
false
247
py
# Assign the row position of election.loc['Bedford']: x x = 4 # Assign the column position of election['winner']: y y = 4 # Print the boolean equivalence print(election.iloc[x, y] == election.loc['Bedford', 'winner']) #nonsense text #nonsenes2
[ "dajofischer@gmail.com" ]
dajofischer@gmail.com
5651d66b1dd3f7adb98ce5c7bc17e2acfe92784a
174620e5937ac217cfdc46fa1f58493e9d59dfdd
/lib/default/lib/python2.7/site-packages/celery/concurrency/base.py
e0f2eb514c23941ee91fd0003917de8230cc1dac
[]
no_license
Saifinbox/CKANPROJECT
6552912317019ce7dca87a1367344dbf5d978062
89e1cac49b282106ff4595f54a4eb84bcc8d2ee9
refs/heads/master
2021-01-01T06:34:37.568829
2017-07-17T08:48:46
2017-07-17T08:48:46
97,453,740
1
0
null
null
null
null
UTF-8
Python
false
false
3,732
py
# -*- coding: utf-8 -*- """ celery.concurrency.base ~~~~~~~~~~~~~~~~~~~~~~~ TaskPool interface. """ from __future__ import absolute_import import logging import os import time from kombu.utils.encoding import safe_repr from celery.utils import timer2 from celery.utils.log import get_logger logger = get_logger('celery.concurrency') def apply_target(target, args=(), kwargs={}, callback=None, accept_callback=None, pid=None, **_): if accept_callback: accept_callback(pid or os.getpid(), time.time()) callback(target(*args, **kwargs)) class BasePool(object): RUN = 0x1 CLOSE = 0x2 TERMINATE = 0x3 Timer = timer2.Timer #: set to true if the pool can be shutdown from within #: a signal handler. signal_safe = True #: set to true if pool supports rate limits. #: (this is here for gevent, which currently does not implement #: the necessary timers). rlimit_safe = True #: set to true if pool requires the use of a mediator #: thread (e.g. if applying new items can block the current thread). requires_mediator = False #: set to true if pool uses greenlets. is_green = False _state = None _pool = None #: only used by multiprocessing pool uses_semaphore = False def __init__(self, limit=None, putlocks=True, forking_enable=True, **options): self.limit = limit self.putlocks = putlocks self.options = options self.forking_enable = forking_enable self._does_debug = logger.isEnabledFor(logging.DEBUG) def on_start(self): pass def did_start_ok(self): return True def on_stop(self): pass def on_apply(self, *args, **kwargs): pass def on_terminate(self): pass def on_soft_timeout(self, job): pass def on_hard_timeout(self, job): pass def maybe_handle_result(self, *args): pass def maintain_pool(self, *args, **kwargs): pass def terminate_job(self, pid): raise NotImplementedError( '%s does not implement kill_job' % (self.__class__, )) def restart(self): raise NotImplementedError( '%s does not implement restart' % (self.__class__, )) def stop(self): self.on_stop() self._state = self.TERMINATE def terminate(self): self._state = self.TERMINATE self.on_terminate() def start(self): self.on_start() self._state = self.RUN def close(self): self._state = self.CLOSE self.on_close() def on_close(self): pass def init_callbacks(self, **kwargs): pass def apply_async(self, target, args=[], kwargs={}, **options): """Equivalent of the :func:`apply` built-in function. Callbacks should optimally return as soon as possible since otherwise the thread which handles the result will get blocked. """ if self._does_debug: logger.debug('TaskPool: Apply %s (args:%s kwargs:%s)', target, safe_repr(args), safe_repr(kwargs)) return self.on_apply(target, args, kwargs, waitforslot=self.putlocks, **options) def _get_info(self): return {} @property def info(self): return self._get_info() @property def active(self): return self._state == self.RUN @property def num_processes(self): return self.limit @property def readers(self): return {} @property def writers(self): return {} @property def timers(self): return {}
[ "muhammad.saif@inboxbiz.com" ]
muhammad.saif@inboxbiz.com
42170e9a6ac498033863cd27ca0a6556bf1aa6c3
53dd5d2cfb79edc87f6c606bbfb7d0bedcf6da61
/.history/EMR/apriori_20190422135150.py
36ae75953708f032ec4b5b046220fb616cdb0b75
[]
no_license
cyc19950621/python
4add54894dc81187211aa8d45e5115903b69a182
d184b83e73334a37d413306d3694e14a19580cb0
refs/heads/master
2020-04-11T20:39:34.641303
2019-07-02T12:54:49
2019-07-02T12:54:49
162,078,640
0
0
null
null
null
null
UTF-8
Python
false
false
5,768
py
# Apriori算法 """ 由于Apriori算法假定项集中的项是按字典序排序的,而集合本身是无序的,所以我们在必要时需要进行set和list的转换; 由于要使用字典(support_data)记录项集的支持度,需要用项集作为key,而可变集合无法作为字典的key,因此在合适时机应将项集转为固定集合frozenset。 支持度 置信度 """ class apriori_algorithm: # 算法初始化 def __init__(self, minSupport, dataSet): self.minSupport = minSupport # 最小支持度 self.dataSet = dataSet # 数据集 # 生成单个物品的项集列表 def generateC1(self, dataSet): C1 = [] # 用于存放生成的单个物品的项集列表 # 遍历数据集 for data in dataSet: for item in data: if [item] not in C1: C1.append([item]) C1.sort() return C1 # 遍历数据集,和Ck对比,计数 def generateLk_by_Ck(self, dataSet, Ck, minSupport, support_data): """ Generate Lk by executing a delete policy from Ck. Args: data_set: 数据集 Ck: A set which contains all all frequent candidate k-itemsets. min_support: The minimum support. support_data: A dictionary. The key is frequent itemset and the value is support. Returns: Lk: A set which contains all all frequent k-itemsets. """ D = map(set, dataSet) C = map(frozenset, Ck) C1 = list(C) # 关于map对象的遍历,在内循环中遍历完最后一个元素后,再次访问时会放回空列表,所以外循环第二次进入的时候是空的,需要将其转为list处理 countData = dict() for d in D: # set遍历 for c in C1: if c.issubset(d): # 子集判断,并非元素判断 if c not in countData.keys(): # 将集合作为字典的键使用,c为[]型 countData[c] = 1 else: countData[c] += 1 numItems = float(len(list(dataSet))) returnList = [] supportData = dict() # 遍历前面得到的计数字典 for key in countData: support = countData[key] / numItems if support >= minSupport: returnList.insert(0, key) # insert() 函数用于将指定对象插入列表的指定位置 support_data[key] = support return returnList def generate_L(self, dataSet, k, min_support): """ Generate all frequent itemsets. Args: data_set:数据集 k: 频繁项集中含有的最多的元素 min_support: 最小支持度 Returns: L: 出现的所有频繁项集 support_data: 每个频繁项集对应的支持度 """ support_data = {} C1 = self.generateC1(dataSet) L1 = self.generateLk_by_Ck(dataSet, C1, min_support, support_data) Lksub1 = L1.copy() L = [] L.append(Lksub1) for i in range(2, k + 1): Ci = self.generateCK(Lksub1, i) Li = self.generateLk_by_Ck(dataSet, Ci, min_support, support_data) Lksub1 = Li.copy() L.append(Lksub1) return L, support_data # generateCK 候选频繁项集产生 参数 Lk频繁项集,k:项集元素个数 def generateCK(self, Lk, k): Ck = set() len_Lk = len(list(Lk)) list_Lk = list(Lk) for i in range(len_Lk): for j in range(1, len_Lk): l1 = list(list_Lk[i]) l2 = list(list_Lk[j]) l1.sort() l2.sort() if l1[0:k - 2] == l2[0:k - 2]: Ck_item = list_Lk[i] | list_Lk[j] if self.isCk(Ck_item, list_Lk): Ck.add(Ck_item) # Ck.add(Ck_item) return Ck # 频繁项集判断 def isCk(self, Ck_item, list_Lk): for item in Ck_item: sub_Ck = Ck_item - frozenset([item]) if sub_Ck not in list_Lk: return False return True # 生成关联规则 def generate_big_rules(self, L, support_data, min_conf): """ Generate big rules from frequent itemsets. Args: L: 所有频繁项集的列表 support_data: 每个频繁项集对应的支持度 min_conf: 最小可信度 """ big_rule_list = [] sub_set_list = [] for i in range(0, len(L)): for freq_set in L[i]: for sub_set in sub_set_list: if sub_set.issubset(freq_set): conf = support_data[freq_set] / support_data[freq_set - sub_set] big_rule = (freq_set - sub_set, sub_set, conf) if conf >= min_conf and big_rule not in big_rule_list: print(freq_set - sub_set, " => ", sub_set, "conf: ", conf) big_rule_list.append(big_rule) sub_set_list.append(freq_set) return big_rule_list if __name__ == '__main__': minS = 0.5 dataSet = [['这个','弄','鞍山', '挨打'], ['这个', '啊'], ['鞍山', '弄', '词典', '按错'], ['鞍山', '挨打','按下','爱玩']] apriori = apriori_algorithm(minSupport=minS, dataSet=dataSet) L, support_data = apriori.generate_L(dataSet, 1,minS) print(L) print(support_data) big_rule_list = apriori.generate_big_rules(L, support_data, 0.5)
[ "1044801968@qq.com" ]
1044801968@qq.com
aa13bd841c98bf69edc143608a0dcaf19c026204
4cfbc12903651dedbc799f53a8078433196e7919
/Pre Processing/Topic 7 - Kernal PCA/KERNEL_PCA_WITHOUT_SPLIT.py
6974fa581f4052b61770920b3c784ba26c4341c3
[]
no_license
gautam4941/Machine_Learning_Codes
78bf86ab3caf6ee329c88ff18d25927125627a2c
0009d12ca207a9b0431ea56decc293588eb447b1
refs/heads/main
2023-02-06T18:05:44.154641
2023-01-30T17:04:25
2023-01-30T17:04:25
353,594,523
0
5
null
null
null
null
UTF-8
Python
false
false
1,398
py
import pandas as pd data = pd.read_csv('Social_Network_Ads.csv') print( f"data :- \n{ data }\n" ) print( f"data.columns :- \n{ data.columns }\n" ) x = data.loc[ :, 'Gender' : 'EstimatedSalary' ] y = data.loc[ :, 'Purchased' ] print( f"x.isnull().sum() :- \n{ x.isnull().sum() }\n" ) print( f"y.isnull().sum() :- \n{ y.isnull().sum() }\n" ) print( f"x.dtypes :- \n{ x.dtypes }\n" ) print( f"y.dtypes :- \n{ y.dtypes }\n" ) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() x['Gender'] = le.fit_transform( x['Gender'] ) import matplotlib.pyplot as plt # plt.plot( x['Age'], x['EstimatedSalary'], linestyle = '', marker = '*' ) # plt.xlabel( 'Age' ) # plt.ylabel( 'EstimatedSalary' ) # plt.title( 'Age V/s Salary' ) # plt.show() from sklearn.decomposition import KernelPCA kpca = KernelPCA( n_components = 2, kernel = 'rbf' ) #n_components is the number of columns getting trained x = kpca.fit_transform( x ) print( f"After Kernal PCA, x :- \n{ x }\n" ) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit( x, y ) y_pred = lr.predict( x ) new_x_test = x.T # plt.plot( x_test[0], x_test[1], linestyle = '', marker = '*' ) # plt.xlabel( 'Age' ) # plt.ylabel( 'EstimatedSalary' ) # plt.title( 'Age V/s Salary' ) # plt.show() print( f"lr.score( x_test, y_test ) = { lr.score( x, y ) }" )
[ "noreply@github.com" ]
gautam4941.noreply@github.com
9e8684300a753747f2ea81503addd0bd9141eee2
7ef5898dc861f7a5512953269db7b52d44f44bc5
/linkml/utils/validation.py
02ee97f62911680b3e797aa9db26dcd3bd75f727
[ "CC0-1.0" ]
permissive
balhoff/linkml
eb5c26e9d8ace3c2a7a6f2f36872b9c2af7b97df
b27c36b24437f68878806518264f55f0f418cb0b
refs/heads/main
2023-07-28T16:47:04.974232
2021-09-09T01:39:21
2021-09-09T01:39:21
404,550,589
0
0
CC0-1.0
2021-09-09T01:45:37
2021-09-09T01:45:37
null
UTF-8
Python
false
false
1,483
py
import json import sys from typing import Type, Union, TextIO import logging import click import jsonschema from linkml_runtime.linkml_model import SchemaDefinition from linkml_runtime.utils.yamlutils import as_dict, YAMLRoot from linkml_runtime.dumpers import json_dumper from linkml.generators.jsonschemagen import JsonSchemaGenerator import linkml.utils.datautils as datautils def _as_dict(inst): # TODO: replace this with linkml_runtime.dictutils when 1.0.14 is released inst_dict = json.loads(json_dumper.dumps(element=inst)) del inst_dict['@type'] return inst_dict def validate_object(data: YAMLRoot, schema: Union[str, TextIO, SchemaDefinition], target_class: Type[YAMLRoot] = None, closed: bool = True): """ validates instance data against a schema :param data: LinkML instance to be validates :param schema: LinkML schema :param target_class: class in schema to validate against :param closed: :return: """ if target_class is None: target_class = type(data) inst_dict = _as_dict(data) not_closed = not closed jsonschemastr = JsonSchemaGenerator(schema, mergeimports=True, top_class=target_class.class_name, not_closed=not_closed).serialize(not_closed=not_closed) jsonschema_obj = json.loads(jsonschemastr) return jsonschema.validate(inst_dict, schema=jsonschema_obj) if __name__ == '__main__': datautils.cli(sys.argv[1:])
[ "cjm@berkeleybop.org" ]
cjm@berkeleybop.org
9954328c0d050bb4d64a911f7461a367bf36a59f
8c50265b43add0e91e30245cc7af3c2558c248f5
/tests/python/gpu/test_tvm_bridge.py
5c87536bdbaea32571012424a4db77dab00c19ed
[ "BSD-3-Clause", "BSD-2-Clause-Views", "Zlib", "Apache-2.0", "BSD-2-Clause", "Intel" ]
permissive
awslabs/dynamic-training-with-apache-mxnet-on-aws
6a67f35d7e4b12fa8bba628bd03b2b031924e211
1063a979417fee8c820af73860eebd2a4f670380
refs/heads/master
2023-08-15T11:22:36.922245
2022-07-06T22:44:39
2022-07-06T22:44:39
157,440,687
60
19
Apache-2.0
2022-11-25T22:23:19
2018-11-13T20:17:09
Python
UTF-8
Python
false
false
2,440
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test TVM bridge, only enable this when TVM is available""" import logging import mxnet as mx import numpy as np import unittest def test_tvm_bridge(): # only enable test if TVM is available try: import tvm import tvm.contrib.mxnet import topi except ImportError: logging.warn("TVM bridge test skipped because TVM is missing...") return def check(target, dtype): shape = (20,) scale = tvm.var("scale", dtype="float32") x = tvm.placeholder(shape, dtype=dtype) y = tvm.placeholder(shape, dtype=dtype) z = tvm.compute(shape, lambda i: x[i] + y[i]) zz = tvm.compute(shape, lambda *i: z(*i) * scale.astype(dtype)) ctx = mx.gpu(0) if target == "cuda" else mx.cpu(0) target = tvm.target.create(target) # build the function with target: s = topi.generic.schedule_injective(zz) f = tvm.build(s, [x, y, zz, scale]) # get a mxnet version mxf = tvm.contrib.mxnet.to_mxnet_func(f, const_loc=[0, 1]) xx = mx.nd.uniform(shape=shape, ctx=ctx).astype(dtype) yy = mx.nd.uniform(shape=shape, ctx=ctx).astype(dtype) zz = mx.nd.empty(shape=shape, ctx=ctx).astype(dtype) # invoke myf: this runs in mxnet engine mxf(xx, yy, zz, 10.0) np.testing.assert_allclose( zz.asnumpy(), (xx.asnumpy() + yy.asnumpy()) * 10) for tgt in ["llvm", "cuda"]: for dtype in ["int8", "uint8", "int64", "float32", "float64"]: check(tgt, dtype) if __name__ == "__main__": import nose nose.runmodule()
[ "vikumar@88e9fe53272d.ant.amazon.com" ]
vikumar@88e9fe53272d.ant.amazon.com
6508b6eae18f254c28dd6343bef32cd4b4afd295
61fa932822d22ba480f7aa075573e688897ad844
/simulation/decai/simulation/data/imdb_data_loader.py
fbc6d62dc1165cc5a608c3003156977db751c917
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
microsoft/0xDeCA10B
a8f118fa1f89f387a0b83f297250fc1846521f41
4066eeb2b5298c259a7c19c4d42ca35ef22e0569
refs/heads/main
2023-07-26T08:09:34.718104
2023-01-25T12:47:17
2023-01-25T12:47:17
181,561,897
538
133
MIT
2023-07-19T03:10:38
2019-04-15T20:37:11
Python
UTF-8
Python
false
false
1,778
py
from dataclasses import dataclass, field from logging import Logger from typing import List import numpy as np from injector import ClassAssistedBuilder, Module, inject, provider, singleton from keras.datasets import imdb from .data_loader import DataLoader @inject @dataclass class ImdbDataLoader(DataLoader): """ Load data for sentiment analysis of IMDB reviews. https://keras.io/datasets/#imdb-movie-reviews-sentiment-classification """ _logger: Logger num_words: int = field(default=1000) def classifications(self) -> List[str]: return ["NEGATIVE", "POSITIVE"] def load_data(self, train_size: int = None, test_size: int = None) -> (tuple, tuple): self._logger.info("Loading IMDB review data using %d words.", self.num_words) (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=self.num_words) if train_size is not None: x_train, y_train = x_train[:train_size], y_train[:train_size] if test_size is not None: x_test, y_test = x_test[:test_size], y_test[:test_size] def get_features(data): result = np.zeros((len(data), self.num_words), dtype='int') for i, x in enumerate(data): for v in x: result[i, v] = 1 return result x_train = get_features(x_train) x_test = get_features(x_test) self._logger.info("Done loading IMDB review data.") return (x_train, y_train), (x_test, y_test) @dataclass class ImdbDataModule(Module): num_words: int = field(default=1000) @provider @singleton def provide_data_loader(self, builder: ClassAssistedBuilder[ImdbDataLoader]) -> DataLoader: return builder.build(num_words=self.num_words)
[ "noreply@github.com" ]
microsoft.noreply@github.com
587af0a9afab30d6dbe975f04b48b2543833db22
51507929d5bf732e6e5b7085015b86d097fc404d
/python/core/keyset_writer.py
4e417f4417071723ba236115a738874609d779e8
[ "Apache-2.0" ]
permissive
jojodeco2/tink
a77be3fd6958070c131f4d556b349b69b65e11cb
46d4d5d6ff09f594c5460216c5b2cb11486076db
refs/heads/master
2020-08-04T04:46:05.526255
2019-10-01T10:21:02
2019-10-01T10:21:02
212,011,212
0
0
Apache-2.0
2019-10-01T04:18:08
2019-10-01T04:18:08
null
UTF-8
Python
false
false
3,498
py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Writes Keysets to file.""" from __future__ import absolute_import from __future__ import division from __future__ import google_type_annotations from __future__ import print_function import abc import io from google.protobuf import json_format from tink.proto import tink_pb2 from tink.python.core import tink_error class KeysetWriter(object): """Knows how to write keysets to some storage system.""" __metaclass__ = abc.ABCMeta @abc.abstractmethod def write(self, keyset: tink_pb2.Keyset) -> None: """Tries to write a tink_pb2.Keyset to some storage system.""" pass @abc.abstractmethod def write_encrypted(self, encrypted_keyset: tink_pb2.EncryptedKeyset) -> None: """Tries to write an tink_pb2.EncryptedKeyset to some storage system.""" pass class JsonKeysetWriter(KeysetWriter): """Writes keysets in proto JSON wire format to some storage system. cf. https://developers.google.com/protocol-buffers/docs/encoding """ def __init__(self, text_io_stream: io.TextIOBase): self._io_stream = text_io_stream def write(self, keyset: tink_pb2.Keyset) -> None: if not isinstance(keyset, tink_pb2.Keyset): raise tink_error.TinkError('invalid keyset.') json_keyset = json_format.MessageToJson(keyset) # TODO(b/141106504) Needed for python 2.7 compatibility. StringIO expects # unicode, but MessageToJson outputs UTF-8. if isinstance(json_keyset, bytes): json_keyset = json_keyset.decode('utf-8') self._io_stream.write(json_keyset) self._io_stream.flush() def write_encrypted(self, encrypted_keyset: tink_pb2.EncryptedKeyset) -> None: if not isinstance(encrypted_keyset, tink_pb2.EncryptedKeyset): raise tink_error.TinkError('invalid encrypted keyset.') json_keyset = json_format.MessageToJson(encrypted_keyset) # TODO(b/141106504) Needed for python 2.7 compatibility. StringIO expects # unicode, but MessageToJson outputs UTF-8. if isinstance(json_keyset, bytes): json_keyset = json_keyset.decode('utf-8') self._io_stream.write(json_keyset) self._io_stream.flush() class BinaryKeysetWriter(KeysetWriter): """Writes keysets in proto binary wire format to some storage system. cf. https://developers.google.com/protocol-buffers/docs/encoding """ def __init__(self, binary_io_stream: io.BufferedIOBase): self._io_stream = binary_io_stream def write(self, keyset: tink_pb2.Keyset) -> None: if not isinstance(keyset, tink_pb2.Keyset): raise tink_error.TinkError('invalid keyset.') self._io_stream.write(keyset.SerializeToString()) self._io_stream.flush() def write_encrypted(self, encrypted_keyset: tink_pb2.EncryptedKeyset) -> None: if not isinstance(encrypted_keyset, tink_pb2.EncryptedKeyset): raise tink_error.TinkError('invalid encrypted keyset.') self._io_stream.write(encrypted_keyset.SerializeToString()) self._io_stream.flush()
[ "copybara-worker@google.com" ]
copybara-worker@google.com
19b16e038e42e69f3f52b17764d02d98614b0c87
364b36d699d0a6b5ddeb43ecc6f1123fde4eb051
/_downloads_1ed/fig_XD_example.py
6e7d5247c12d7f1e576f8087307c0067916096aa
[]
no_license
astroML/astroml.github.com
eae3bfd93ee2f8bc8b5129e98dadf815310ee0ca
70f96d04dfabcd5528978b69c217d3a9a8bc370b
refs/heads/master
2022-02-27T15:31:29.560052
2022-02-08T21:00:35
2022-02-08T21:00:35
5,871,703
2
5
null
2022-02-08T21:00:36
2012-09-19T12:55:23
HTML
UTF-8
Python
false
false
3,918
py
""" Extreme Deconvolution example ----------------------------- Figure 6.11 An example of extreme deconvolution showing a simulated two-dimensional distribution of points, where the positions are subject to errors. The top two panels show the distributions with small (left) and large (right) errors. The bottom panels show the densities derived from the noisy sample (top-right panel) using extreme deconvolution; the resulting distribution closely matches that shown in the top-left panel. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from astroML.decorators import pickle_results from astroML.density_estimation import XDGMM from astroML.plotting.tools import draw_ellipse #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Sample the dataset N = 2000 np.random.seed(0) # generate the true data x_true = (1.4 + 2 * np.random.random(N)) ** 2 y_true = 0.1 * x_true ** 2 # add scatter to "true" distribution dx = 0.1 + 4. / x_true ** 2 dy = 0.1 + 10. / x_true ** 2 x_true += np.random.normal(0, dx, N) y_true += np.random.normal(0, dy, N) # add noise to get the "observed" distribution dx = 0.2 + 0.5 * np.random.random(N) dy = 0.2 + 0.5 * np.random.random(N) x = x_true + np.random.normal(0, dx) y = y_true + np.random.normal(0, dy) # stack the results for computation X = np.vstack([x, y]).T Xerr = np.zeros(X.shape + X.shape[-1:]) diag = np.arange(X.shape[-1]) Xerr[:, diag, diag] = np.vstack([dx ** 2, dy ** 2]).T #------------------------------------------------------------ # compute and save results @pickle_results("XD_toy.pkl") def compute_XD_results(n_components=10, n_iter=500): clf = XDGMM(n_components, n_iter=n_iter) clf.fit(X, Xerr) return clf clf = compute_XD_results(10, 500) sample = clf.sample(N) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 3.75)) fig.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95, wspace=0.02, hspace=0.02) ax1 = fig.add_subplot(221) ax1.scatter(x_true, y_true, s=4, lw=0, c='k') ax2 = fig.add_subplot(222) ax2.scatter(x, y, s=4, lw=0, c='k') ax3 = fig.add_subplot(223) ax3.scatter(sample[:, 0], sample[:, 1], s=4, lw=0, c='k') ax4 = fig.add_subplot(224) for i in range(clf.n_components): draw_ellipse(clf.mu[i], clf.V[i], scales=[2], ax=ax4, ec='k', fc='gray', alpha=0.2) titles = ["True Distribution", "Noisy Distribution", "Extreme Deconvolution\n resampling", "Extreme Deconvolution\n cluster locations"] ax = [ax1, ax2, ax3, ax4] for i in range(4): ax[i].set_xlim(-1, 13) ax[i].set_ylim(-6, 16) ax[i].xaxis.set_major_locator(plt.MultipleLocator(4)) ax[i].yaxis.set_major_locator(plt.MultipleLocator(5)) ax[i].text(0.05, 0.95, titles[i], ha='left', va='top', transform=ax[i].transAxes) if i in (0, 1): ax[i].xaxis.set_major_formatter(plt.NullFormatter()) else: ax[i].set_xlabel('$x$') if i in (1, 3): ax[i].yaxis.set_major_formatter(plt.NullFormatter()) else: ax[i].set_ylabel('$y$') plt.show()
[ "vanderplas@astro.washington.edu" ]
vanderplas@astro.washington.edu
75683d574fd6fafc97d6262c264e53f43ff0a56b
19ee7dd974ba8b1731e9450c174df7630f63eaad
/Api/recognition/serializers.py
bc1cd767bbebc3dcfc9d20d425f5e7079f0f1748
[]
no_license
minjjjae/No-Mask-Trace-System
12d3a5a146f5526b9dbba5a8b75d6adc6c8a2e2b
61c76197d7ae921823b795effd9f267c92016a97
refs/heads/main
2023-01-19T08:35:19.643717
2020-11-28T05:27:52
2020-11-28T05:27:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
from recognition.models import Recognition from rest_framework import serializers class RecognitionSerializer(serializers.HyperlinkedModelSerializer): image = serializers.ImageField(max_length=None, use_url=True) class Meta: model = Recognition fields = ("pk", "encodeLst", "description", "created_at", "image")
[ "bhj1684@naver.com" ]
bhj1684@naver.com
2514e06398d1649d7e768e2219aa835bfc94e0c7
dffd7156da8b71f4a743ec77d05c8ba031988508
/joi/prelim/2019/yo1c/c.py
8fa22ad3e7acb87ef87d1e4727e8bf36c56ef603
[]
no_license
e1810/kyopro
a3a9a2ee63bc178dfa110788745a208dead37da6
15cf27d9ecc70cf6d82212ca0c788e327371b2dd
refs/heads/master
2021-11-10T16:53:23.246374
2021-02-06T16:29:09
2021-10-31T06:20:50
252,388,049
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
n, *a = map(int, open(0).read().split()) cnt = ans = 0 prev = 0 for i in a: if prev>i: ans = max(ans, cnt) cnt = 0 cnt += 1 prev = i print(max(ans, cnt))
[ "v.iceele1810@gmail.com" ]
v.iceele1810@gmail.com
daf6299762e39365d4e0099a36ae78a1a59bcd0a
6ec91b363b077bffd33f15300a0935124e9fb915
/Cracking_the_Code_Interview/Leetcode/3.String/290.Word_Pattern.py
766301dce21b1c686fdd7e0e347044af480ca094
[]
no_license
lzxyzq/Cracking_the_Coding_Interview
03232515ae8eb50394d46322d36b230d1a626fcf
79dee7dab41830c4ff9e38858dad229815c719a0
refs/heads/master
2023-06-05T19:52:15.595289
2021-06-23T22:46:02
2021-06-23T22:46:02
238,068,000
0
1
null
null
null
null
UTF-8
Python
false
false
1,531
py
''' @Author: your name @Date: 2020-06-09 17:21:16 @LastEditTime: 2020-06-10 12:19:27 @LastEditors: Please set LastEditors @Description: In User Settings Edit @FilePath: /Cracking_the_Code_Interview/Leetcode/String/290.Word_Pattern.py ''' # Given a pattern and a string str, find if str follows the same pattern. # Here follow means a full match, such that there is a bijection between a letter in pattern and a non-empty word in str. ''' Example 1: Input: pattern = "abba", str = "dog cat cat dog" Output: true Example 2: Input:pattern = "abba", str = "dog cat cat fish" Output: false Example 3: Input: pattern = "aaaa", str = "dog cat cat dog" Output: false Example 4: Input: pattern = "abba", str = "dog dog dog dog" Output: false ''' # Notes: # You may assume pattern contains only lowercase letters, and str contains lowercase letters that may be separated by a single space. # 1.split() # 2.等长len() # 3.hashmap key:pattern value:str class Solution: def wordPattern(self, pattern: str, str: str) -> bool: str = str.split() result = '' if len(str) != len(pattern): return False d = {} for i in range(len(pattern)): if str[i] not in d: if pattern[i] not in d.values(): d[str[i]] = pattern[i] else: return False result += d[str[i]] return result == pattern pattern = "abba" str = "dog cat cat dog" words = str.split(' ') tuple(zip(words, pattern))
[ "lzxyzq@gmail.com" ]
lzxyzq@gmail.com