blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
de94c56c7667c7a7c99683be9a0bf04d00ecca56
a5688a923c488414ecffcb92e3405d3876f1889d
/examples/computer_vision/mmdetection_pytorch/configs/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco.py
28f4fd4b13801f9cb47ceb3d715244d40c281c70
[ "Apache-2.0" ]
permissive
armandmcqueen/determined
ae6e7a4d5d8c3fb6a404ed35519643cf33bd08e4
251e7093b60a92633b684586ac7a566379442f15
refs/heads/master
2023-05-28T17:52:18.915710
2021-06-09T23:55:59
2021-06-09T23:55:59
259,449,481
0
0
Apache-2.0
2021-04-09T12:13:11
2020-04-27T20:47:23
Go
UTF-8
Python
false
false
376
py
_base_ = "./ga_faster_r50_fpn_1x_coco.py" model = dict( pretrained="open-mmlab://resnext101_64x4d", backbone=dict( type="ResNeXt", depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type="BN", requires_grad=True), style="pytorch", ), )
[ "noreply@github.com" ]
armandmcqueen.noreply@github.com
3af8710d6b01d30dfe73cc770a65abe5f3cdfb70
99da8a6d2392472cb66e5b12c03142c90640186a
/BOJ/DFS&BFS/2573.py
784c81d48ea577cc9b507ab56b9611ea6bc47a60
[]
no_license
chorwonkim/__Algorithms__
cf6cf4ae5cf091d856397369b6db1bb41f925377
0c1e58410ae90b72c0d7e44a6179b8fedc786131
refs/heads/master
2022-09-28T16:59:20.841482
2022-09-25T09:57:58
2022-09-25T09:57:58
130,082,803
0
0
null
null
null
null
UTF-8
Python
false
false
2,723
py
# import sys # sys.setrecursionlimit(100000) # # dx = [-1, 0, 1, 0] # dy = [0, -1, 0, 1] # # N, M = map(int, sys.stdin.readline().rstrip().split()) # ice_map = [] # ice_map_checker = [] # result = 0 # # # def func_2573(p, q): # ice_map_checker[p][q] = True # # for k in range(4): # ice_p = p + dx[k] # ice_q = q + dy[k] # # if (not ice_map_checker[ice_p][ice_q]) and ice_map[ice_p][ice_q]: # func_2573(ice_p, ice_q) # # # for i in range(N): # ice_map.append(list(map(int, sys.stdin.readline().rstrip().split()))) # # while True: # block = 0 # ice_map_checker.clear() # # for i in range(N): # ice_map_checker.append([False] * M) # # for i in range(1, N-1): # for j in range(1, M-1): # if ice_map[i][j] and (not ice_map_checker[i][j]): # block += 1 # func_2573(i, j) # # if block >= 2: # print(result) # break # elif block == 0: # print(0) # break # # result += 1 # # for i in range(N): # for j in range(M): # if (not ice_map_checker[i][j]) and (not ice_map[i][j]): # for k in range(4): # ice_x = i + dx[k] # ice_y = j + dy[k] # # if 0 <= ice_x < N and 0 <= ice_y < M and ice_map[ice_x][ice_y]: # ice_map[ice_x][ice_y] -= 1 import sys sys.setrecursionlimit(100000) Read = sys.stdin.readline N, M = map(int, Read().split()) ice_map = [list(map(int, Read().split())) for _ in range(N)] ice_map_checker = [[False for _ in range(M)] for _ in range(N)] result = 0 def func_2573(p, q): ice_map_checker[p][q] = True for i, j in zip([-1,0,1,0], [0,-1,0,1]): ice_p = p + i ice_q = q + j if (not ice_map_checker[ice_p][ice_q]) and ice_map[ice_p][ice_q]: func_2573(ice_p, ice_q) while True: block = 0 ice_map_checker.clear() ice_map_checker = [[False for _ in range(M)] for _ in range(N)] for i in range(1, N-1): for j in range(1, M-1): if ice_map[i][j] and (not ice_map_checker[i][j]): block += 1 func_2573(i, j) if block >= 2: print(result) break elif block == 0: print(0) break result += 1 for i in range(N): for j in range(M): if (not ice_map_checker[i][j]) and (not ice_map[i][j]): for p, q in zip([-1,0,1,0], [0,-1,0,1]): ice_x = i + p ice_y = j + q if 0 <= ice_x < N and 0 <= ice_y < M and ice_map[ice_x][ice_y]: ice_map[ice_x][ice_y] -= 1
[ "upheaval212@gmail.com" ]
upheaval212@gmail.com
6fe6df1f0c3cf8fbc8b71b768fcb421f521466e2
2d4127f5fa1bca8ba41b9da48d9180c64680b327
/openid_connect_op/utils/jwt.py
7c7f306b1959045ffe75b8aaff0c8c8189a54732
[ "MIT" ]
permissive
WilliBobadilla/django-openid-op
ce02b7fe9db4fa8aca0cec4df003c905927dfbe3
732812cab7610080289ae70b8ea791ba9f0105ad
refs/heads/master
2023-04-19T08:49:19.962249
2021-05-03T18:21:26
2021-05-03T18:21:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,642
py
import datetime from functools import lru_cache import python_jwt as jwt import jwcrypto.jwk as jwk from django.conf import settings from os import urandom from jwcrypto.jws import JWS from jwcrypto.common import base64url_encode, json_encode, json_decode from calendar import timegm # need to add "kid" header which the original python_jwt can not do from openid_connect_op.models import OpenIDClient def generate_jwt_patched(claims, priv_key=None, algorithm='PS512', lifetime=None, expires=None, not_before=None, jti_size=16, extra_headers={}): """ Generate a JSON Web Token. :param claims: The claims you want included in the signature. :type claims: dict :param priv_key: The private key to be used to sign the token. Note: if you pass ``None`` then the token will be returned with an empty cryptographic signature and :obj:`algorithm` will be forced to the value ``none``. :type priv_key: `jwcrypto.jwk.JWK <https://jwcrypto.readthedocs.io/en/latest/jwk.html>`_ :param algorithm: The algorithm to use for generating the signature. ``RS256``, ``RS384``, ``RS512``, ``PS256``, ``PS384``, ``PS512``, ``ES256``, ``ES384``, ``ES512``, ``HS256``, ``HS384``, ``HS512`` and ``none`` are supported. :type algorithm: str :param lifetime: How long the token is valid for. :type lifetime: datetime.timedelta :param expires: When the token expires (if :obj:`lifetime` isn't specified) :type expires: datetime.datetime :param not_before: When the token is valid from. Defaults to current time (if ``None`` is passed). :type not_before: datetime.datetime :param jti_size: Size in bytes of the unique token ID to put into the token (can be used to detect replay attacks). Defaults to 16 (128 bits). Specify 0 or ``None`` to omit the JTI from the token. :type jti_size: int :rtype: unicode :returns: The JSON Web Token. Note this includes a header, the claims and a cryptographic signature. The following extra claims are added, per the `JWT spec <http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html>`_: - **exp** (*IntDate*) -- The UTC expiry date and time of the token, in number of seconds from 1970-01-01T0:0:0Z UTC. - **iat** (*IntDate*) -- The UTC date and time at which the token was generated. - **nbf** (*IntDate*) -- The UTC valid-from date and time of the token. - **jti** (*str*) -- A unique identifier for the token. """ header = { 'typ': 'JWT', 'alg': algorithm if priv_key else 'none' } header.update(extra_headers) claims = dict(claims) now = datetime.datetime.utcnow() if jti_size: claims['jti'] = base64url_encode(urandom(jti_size)) claims['nbf'] = timegm((not_before or now).utctimetuple()) claims['iat'] = timegm(now.utctimetuple()) if lifetime: claims['exp'] = timegm((now + lifetime).utctimetuple()) elif expires: claims['exp'] = timegm(expires.utctimetuple()) if header['alg'] == 'none': signature = '' else: token = JWS(json_encode(claims)) token.add_signature(priv_key, protected=header) signature = json_decode(token.serialize())['signature'] return u'%s.%s.%s' % ( base64url_encode(json_encode(header)), base64url_encode(json_encode(claims)), signature ) class JWTTools: @staticmethod def generate_jwt(payload, for_client=None, ttl=None, from_client=None): if for_client is None: sign_alg = 'RS256' elif for_client.client_auth_type == OpenIDClient.CLIENT_AUTH_TYPE_SECRET_JWT: sign_alg = 'HS256' else: sign_alg = for_client.client_registration_data.get('id_token_signed_response_alg', 'RS256') return JWTTools.generate_jwt_with_sign_alg(payload, sign_alg, ttl=ttl, client=from_client) @staticmethod def generate_jwt_with_sign_alg(payload, sign_alg, ttl=None, client=None): from openid_connect_op.models import OpenIDClient if not client: client = OpenIDClient.self_instance() if client.client_auth_type == client.CLIENT_AUTH_TYPE_SECRET_JWT: sign_key = jwk.JWK(kty="oct", use="sig", alg="HS256", k=base64url_encode(client.client_hashed_secret)) extra_headers = {} alg = 'HS256' else: sign_key = client.get_key(sign_alg) extra_headers = { 'kid': sign_key.key_id } alg = sign_key._params['alg'] return generate_jwt_patched(payload, sign_key, alg, extra_headers=extra_headers, lifetime=ttl) @staticmethod def validate_jwt(token, client=None): from openid_connect_op.models import OpenIDClient if client is None: client = OpenIDClient.self_instance() if client.client_auth_type == OpenIDClient.CLIENT_AUTH_TYPE_SECRET_JWT: key = jwk.JWK(kty="oct", use="sig", alg="HS256", k=base64url_encode(client.client_hashed_secret)) return jwt.verify_jwt(token, key, ['HS256'], checks_optional=True) header, __ = jwt.process_jwt(token) key = client.get_key(alg=header.get('alg', 'RS256'), kid=header.get('kid', None)) return jwt.verify_jwt(token, key, [key._params.get('alg', 'RS256')], checks_optional=True) @staticmethod def unverified_jwt_payload(token): return jwt.process_jwt(token)[1]
[ "miroslav.simek@vscht.cz" ]
miroslav.simek@vscht.cz
24e1af42b6cf8518e8c366fe186394139c53ee9a
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/2f9vjBiynkBtF3TBi_2.py
78016bb10def75086de7b057fd4c4c5f57730f40
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,053
py
""" In this challenge, you must verify the equality of two different values given the parameters `a` and `b`. Both the _value_ and _type_ of the parameters need to be equal. The possible types of the given parameters are: * Numbers * Strings * Booleans (`False` or `True`) * Special values: `None` What have you learned so far that will permit you to do two different checks (value **and** type) with a single statement? Implement a function that returns `True` if the parameters are equal, and `False` if they are not. ### Examples check_equality(1, true) ➞ False # A number and a boolean: the value and type are different. check_equality(0, "0") ➞ False # A number and a string: the type is different. check_equality(1, 1) ➞ True # A number and a number: the type and value are equal. ### Notes * If you get stuck on a challenge, find help in the **Resources** tab. * If you're _really_ stuck, unlock solutions in the **Solutions** tab. """ def check_equality(a, b): return a is b
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
32f75d1ab64a5f215393d6f5c1848e0138edc409
eb5fa3bdbad17674e95b360694e6d794387a557c
/menuhin/middleware.py
2f5bf781bf9e2cac82946707eb46785c3e434752
[ "BSD-2-Clause-Views", "BSD-2-Clause" ]
permissive
kezabelle/django-menuhin
0648bc923fe159612846282a526f2c60d0f535a9
b9c4111eed04e241c29ca8ec95c8a3ffeaac48da
refs/heads/master
2021-05-02T02:00:44.896065
2014-12-19T10:00:50
2014-12-19T10:00:50
14,557,352
0
0
null
null
null
null
UTF-8
Python
false
false
2,201
py
import logging from django.utils.functional import SimpleLazyObject from django.conf import settings from django.core.urlresolvers import reverse, NoReverseMatch from .models import MenuItem from .utils import (LengthLazyObject, get_menuitem_or_none, get_relations_for_request) logger = logging.getLogger(__name__) class RequestTreeMiddleware(object): def get_ignorables(self): if hasattr(settings, 'STATIC_URL') and settings.STATIC_URL: yield settings.STATIC_URL if hasattr(settings, 'MEDIA_URL') and settings.MEDIA_URL: yield settings.MEDIA_URL try: yield reverse('admin:index') except NoReverseMatch: # pragma: no cover logger.debug("Admin is not mounted") def process_request(self, request): ignored_prefixes = tuple(self.get_ignorables()) if request.path.startswith(ignored_prefixes): logger.debug("Skipping this request") return None def lazy_menuitem(): return get_menuitem_or_none(MenuItem, request.path) def lazy_ancestors_func(): return get_relations_for_request( model=MenuItem, request=request, relation='get_ancestors').relations def lazy_descendants_func(): return get_relations_for_request( model=MenuItem, request=request, relation='get_descendants').relations def lazy_siblings_func(): return get_relations_for_request( model=MenuItem, request=request, relation='get_siblings').relations def lazy_children_func(): return get_relations_for_request( model=MenuItem, request=request, relation='get_children').relations request.menuitem = SimpleLazyObject(lazy_menuitem) request.ancestors = LengthLazyObject(lazy_ancestors_func) request.descendants = LengthLazyObject(lazy_descendants_func) request.siblings = LengthLazyObject(lazy_siblings_func) request.children = LengthLazyObject(lazy_children_func)
[ "keryn@kerynknight.com" ]
keryn@kerynknight.com
da11b4cca48ae0c88eb3b8c66a041828ea0b021e
e38db85f6a13b32c60bf66d78838d6ed348f1798
/healthplans/tests.py
549fcf58df9886eecfa78cb4e957f908105e148f
[ "BSD-2-Clause" ]
permissive
westurner/health-marketplace
ab72d60d9469c9f3622bc64c391b222018c7c7a1
15f5379cc213e2e2b2150e967b56092ea8468db2
refs/heads/master
2020-12-28T21:28:09.415775
2013-11-09T17:55:08
2013-11-09T17:55:08
14,261,431
1
0
null
null
null
null
UTF-8
Python
false
false
4,880
py
""" This file demonstrates writing tests using the unittest module. These will pass when you run "manage.py test". Replace this with more appropriate tests for your application. """ from django.test import TestCase from healthplans.models import Provider from healthplans.models import Plan class HealtplansModelsTest(TestCase): def test_011_provider_create(self): provider = Provider.objects.create( name="Test Provider") self.assertIsNotNone(provider) self.assertIsNotNone(provider.created_time) self.assertIsNotNone(provider.updated_time) def test_012_plan_create(self): provider = Provider.objects.create( name="Test Provider") COST = 1.05 plan = Plan.objects.create( provider=provider, name="Test Plan", category=Plan.PLATINUM, base_rate=COST) self.assertIsNotNone(plan) self.assertIsNotNone(plan.created_time) self.assertIsNotNone(plan.updated_time) self.assertEqual(plan.base_rate, COST) def test_021_provider_slug(self): provider = Provider.objects.create( name="Test Provider") self.assertEqual(provider.slug, "Test-Provider") def test_022_plan_slug(self): provider = Provider.objects.create( name="Test Provider") COST = 1.05 plan = Plan.objects.create( provider=provider, name="Test Plan", category=Plan.PLATINUM, base_rate=COST) self.assertIsNotNone(plan) self.assertEqual(plan.slug, "Test-Plan") from django.test import Client class HealthplansViewsTest(TestCase): def setUp(self): self.client = Client() def test_homepage_links(self): response = self.client.get('/') self.assertContains(response, 'href="/providers/"') self.assertContains(response, 'href="/plans/"') def test_provider_list(self): provider = Provider.objects.create( name="Test Provider") # TODO: fixtures response = self.client.get('/providers/') self.assertContains(response, provider.name) self.assertContains(response, 'href="/providers/%s"' % provider.slug) def test_provider_detail(self): provider = Provider.objects.create( name="Test Provider") # TODO: fixtures response = self.client.get('/providers/%s' % provider.slug) self.assertContains(response, provider.name) self.assertContains(response, 'href="/providers/%s">' % provider.slug) def test_plan_list(self): provider = Provider.objects.create( name="Test Provider") # TODO: fixtures plan = Plan.objects.create( provider=provider, name="Test Plan", category=Plan.PLATINUM, base_rate=1.05) response = self.client.get('/plans/') self.assertContains(response, plan.name) self.assertContains(response, 'href="/plans/%s"' % plan.slug) def test_plan_detail(self): provider = Provider.objects.create( name="Test Provider") # TODO: fixtures plan = Plan.objects.create( provider=provider, name="Test Plan", category=Plan.PLATINUM, base_rate=1.05) response = self.client.get('/plans/%s' % plan.slug) self.assertContains(response, plan.name) self.assertContains(response, 'href="/plans/%s"' % plan.slug) class HealthplansAdminTest(TestCase): def setUp(self): self.client = Client() self._superuser_login() def _superuser_login(self): USERNAME = 'test' EMAIL = 'test@example.org' PASSWORD = 'TODOTODOTODO' from django.db import DEFAULT_DB_ALIAS as db from django.contrib.auth.models import User User.objects.db_manager(db).create_superuser( USERNAME, EMAIL, PASSWORD) logged_in = self.client.login( username=USERNAME, password=PASSWORD) self.assertEqual(logged_in, True) def test_provider_admin(self): provider = Provider.objects.create( name="Test Provider") # TODO: fixtures response = self.client.get('/admin/healthplans/provider/') self.assertContains(response, provider.name) def test_plan_admin(self): provider = Provider.objects.create( name="Test Provider") # TODO: fixtures plan = Plan.objects.create( provider=provider, name="Test Plan", category=Plan.PLATINUM, base_rate=1.05) response = self.client.get('/admin/healthplans/plan/') self.assertContains(response, plan.name)
[ "wes@wrd.nu" ]
wes@wrd.nu
098c796afacb67484884c0be523186710e54f517
32e6e405bebc7c63ca0a1721512a9abe4c2ed7cb
/food_reference_listing/database/archive_loader/initialize_database.py
86532879fe4e3fdf107fdcc2b05257eba61c3ebd
[ "MIT" ]
permissive
bfssi-forest-dussault/food_reference_listing
d034d853a966967a94b6a1e82beee442786f1e7f
85372a81a9201dda02797ab0c11b1bd710f9b70d
refs/heads/master
2023-01-03T22:44:13.388149
2020-10-29T18:40:18
2020-10-29T18:40:18
241,152,908
0
0
null
null
null
null
UTF-8
Python
false
false
2,294
py
import sys import django from pathlib import Path # Need to do this in order to access the database models sys.path.append("/app") django.setup() # For some bizarre reason I need to import all functions, rather than have them be defined in this file vOv from food_reference_listing.database.archive_loader.helpers import * """ Script to load the archived data into the new database. Call it using this command: docker-compose -f local.yml run --rm django python manage.py shell < food_reference_listing/database/archive_loader/initialize_database.py """ # Script starts here data_dir = Path('/app/food_reference_listing/database/archive_data') assert data_dir.is_dir() print(f'Confirmed data is available in {data_dir}') # Keys correspond 1:1 with database.Model names table_dict = { 'Acronym': data_dir / 'Acronyms.csv', 'AcronymType': data_dir / 'AcronymTypes.csv', 'Category': data_dir / 'Categories.csv', 'Country': data_dir / 'Countries.csv', 'ProvinceState': data_dir / 'ProvinceStates.csv', 'City': data_dir / 'Cities.csv', 'Company': data_dir / 'Companies.csv', 'Subcategory': data_dir / 'SubCategories.csv', 'Product': data_dir / 'Products_Combined.csv', # Combination of Products.csv and Final Web Update.csv 'Language': data_dir / 'Languages.csv', } print(f'Confirming expected source data files exist') # Make sure our data files exist for model, src in table_dict.items(): assert src.exists() print(f'Deleting all entries in existing database') # Cleanup while we debug delete_all_rows_in_all_tables() # Start populating tables print(f'Recreating database with data files from {data_dir}') populate_language_table(data=read_csv(table_dict['Language'])) populate_acronym_type_table(data=read_csv(table_dict['AcronymType'])) populate_acronym_table(data=read_csv(table_dict['Acronym'])) populate_category_table(data=read_csv(table_dict['Category'])) populate_country_table(data=read_csv(table_dict['Country'])) populate_provincestate_table(data=read_csv(table_dict['ProvinceState'])) populate_city_table(data=read_csv(table_dict['City'])) populate_company_table(data=read_csv(table_dict['Company'])) populate_subcategory_table(data=read_csv(table_dict['Subcategory'])) populate_product_table(data=read_csv(table_dict['Product']))
[ "forest.dussault@canada.ca" ]
forest.dussault@canada.ca
0e73a9a57c08e990f0dd90913c0a96dfe81fc02a
6f7032e954334d102a9e1eff8f420f0a8b7ee70a
/pytestpackage/test_conftest_demo1.py
2820a6af2e706f8e8ff16ee55e6d55b40b53b7c1
[]
no_license
suchismitarout/selenium_practice
186596e14ed66550ef184703a04aa323faad9f45
2281e6a3a526f2ff5c1c566517dc85b4ae23b85b
refs/heads/master
2022-12-26T12:16:17.297471
2020-10-06T06:21:04
2020-10-06T06:21:04
301,632,911
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
import pytest def test_demo_conf1(onetimesetUp): print("This is conftest demo") def test_demo_conf2(onetimesetUp): print("This is second conftest demo")
[ "suchismitarout47@gmail.com" ]
suchismitarout47@gmail.com
d16c9b91a5c897f61fb9bd659fd74a37ceeb379c
5995b039f039accf17538283a51668be929aeaea
/red_mind/red_mind/wsgi.py
6eb39eb6bbcbd2a0289055e40fd2dc5560db6e82
[]
no_license
harshitdixit69/red_mind_heart
0c9bed294a8e89b05ecdd93590da25f79139ad6c
8693ddef44e949219eab6670a3b1b862646f3dd8
refs/heads/main
2022-12-29T23:17:51.061114
2020-10-14T21:12:21
2020-10-14T21:12:21
304,288,555
0
0
null
2020-10-15T10:21:03
2020-10-15T10:21:02
null
UTF-8
Python
false
false
393
py
""" WSGI config for red_mind project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'red_mind.settings') application = get_wsgi_application()
[ "satyam1998.1998@gmail.com" ]
satyam1998.1998@gmail.com
d271a9cf8126ae56eb7272193959b38f7de60c87
7463a66dfa00572f4e4d8ef4349309531f0105ae
/ServerDL/cfgs/configfiles.py
3ba6e38d4d33dfb1119a53e1b5ed363987540186
[]
no_license
fx19940824/DetectionModel
f2e380fd21f4b31a17fd175a6dea1067b8f0d5cc
edc0d2f9eea481d2bc6f3abb2f222b59fdc25538
refs/heads/master
2022-12-20T19:58:32.224829
2019-05-30T01:16:05
2019-05-30T01:16:05
188,800,679
2
0
null
2022-11-22T02:39:23
2019-05-27T08:13:38
Python
UTF-8
Python
false
false
2,983
py
from ServerDL.apis.transformers import * from ServerDL.apis.postprocesses import * from Algorithm.classifications.utils.model_factory import classification from Algorithm.segmentation.deeplabv3plus.modeling.deeplab import DeepLab model_register_table = dict() model_register_table["maskrcnn_box"] = { "model_weight_path": "/media/cobot/30b0f4a0-3376-4f8f-b458-9c6857504361/Projects/bag/resnext101/model_0660000.pth", # 选填,会覆盖model_cfg_string中WEIGHT的路径 "model_cfg_file":"/media/cobot/30b0f4a0-3376-4f8f-b458-9c6857504361/Projects/bag/resnext101/n_rcnn.yaml", "model_type": "RCNN", "model_transformer": build_transform_maskrcnn, "model_handle_function": build_postprocess_plgdetection, "model_network": "", "confidence_threshold": 0.9 } model_register_table["maskrcnn_bag"] = { "model_weight_path": "/media/cobot/30b0f4a0-3376-4f8f-b458-9c6857504361/Projects/bag/resnext101/model_0660000.pth", # 选填,会覆盖model_cfg_string中WEIGHT的路径 "model_cfg_file":"/media/cobot/30b0f4a0-3376-4f8f-b458-9c6857504361/Projects/bag/resnext101/n_rcnn.yaml", "model_type": "RCNN", "model_transformer": build_transform_maskrcnn, "model_handle_function": build_postprocess_plgdetection, "model_network": "", "confidence_threshold": 0.7 } model_register_table["maskrcnn_tube"] = { "model_weight_path": "/home/cobot/tube_model/model_0505000.pth", "model_cfg_file": "/home/cobot/tube_model/n_rcnn.yaml", "model_type": "RCNN", "model_transformer": build_transform_maskrcnn, "model_handle_function": build_postprocess_plgdetection, "model_network": "", "confidence_threshold": 0.8 } model_register_table["CLS"] = { "model_cfg_string": ''' modelname = resnet18 classes = 2 img_size = 224 lr = 0.001 batchsize = 32 epochs = 10 freeze_layers = 0 is_Train = True transformer = default half = True ''', "model_weight_path": "/home/cobot/caid2.0/python/Main/ServerDL/weights/test.pt", "model_type": "CLS", "model_transformer": build_transform_cls, "model_handle_function": build_postprocess_cls, "model_network": classification } model_register_table["DeepLabv3+"] = { "model_cfg_string": ''' num_classes = 2 backbone = mobilenet output_stride = 16 sync_bn = False freeze_bn = False img_size = 257 ''', "model_weight_path": "/home/cobot/model_best.pth.tar", "model_type": "SEG", "model_transformer": build_transform_seg, "model_handle_function": build_postprocess_seg, "model_network": DeepLab }
[ "you@example.com" ]
you@example.com
8196a02855f2ae340915ff324e2199e99211f8a6
3eadf176c95f0c924af53770441afc0797d7c6ff
/memberships/admin.py
ccbd60dec107d29cc05318f498a7790d51b957e8
[ "MIT" ]
permissive
Maneesh9063/video-membership
d144d559fe721e4a077659d610e6c0e8c35062d6
c241310a6a4e3b7ee831b1d65ae8afaef7d3076a
refs/heads/master
2022-12-08T23:58:37.176632
2020-09-04T15:41:40
2020-09-04T15:41:40
292,874,425
0
0
MIT
2020-09-04T14:52:54
2020-09-04T14:52:53
null
UTF-8
Python
false
false
227
py
from django.contrib import admin # Register your models here. from .models import Membership, UserMembership, Subscription admin.site.register(Membership) admin.site.register(UserMembership) admin.site.register(Subscription)
[ "freire1996@gmail.com" ]
freire1996@gmail.com
2b1638999ca31a03dac9b7ae400bf86815b43735
0e8dd5901b1f98934c44a85b133eb7ca6f44b4b9
/osr2mp4/Parser/osrparser.py
398325f8b59fc702a5af1c87a8170c270acdc087
[]
no_license
Hazuki-san/osr2mp4-core
dbd2f4d44a3d0e90974214c97b434dcbb2eedd18
83dc5c47bc73dcb0b4d4b6a5ae1924771c13c623
refs/heads/master
2022-11-24T13:41:15.703261
2020-07-03T14:00:54
2020-07-03T14:00:54
279,099,127
1
0
null
2020-07-12T16:02:35
2020-07-12T16:02:34
null
UTF-8
Python
false
false
2,041
py
import osrparse # index for replay_event from ..CheckSystem.Judgement import DiffCalculator # noinspection PyTypeChecker from ..EEnum.EReplay import Replays def setupReplay(osrfile, beatmap): replay_info = osrparse.parse_replay_file(osrfile) replay_data = [None] * len(replay_info.play_data) start_time = beatmap.start_time total_time = 0 start_index = 1 start_osr = start_time - 3000 for index in range(len(replay_data)): times = replay_info.play_data[index].time_since_previous_action total_time += times # if total_time >= end_osr: # break # end_index += 1 if total_time < start_osr: start_index += + 1 # to crop later, everything before we can ignore continue replay_data[index] = [None, None, None, None] replay_data[index][Replays.CURSOR_X] = replay_info.play_data[index].x replay_data[index][Replays.CURSOR_Y] = replay_info.play_data[index].y replay_data[index][Replays.KEYS_PRESSED] = replay_info.play_data[index].keys_pressed replay_data[index][Replays.TIMES] = total_time replay_data = replay_data[start_index:-1] replay_data.sort(key=lambda x: x[Replays.TIMES]) # sort replay data based on time start_time = replay_data[0][Replays.TIMES] for x in range(10): replay_data.append([replay_data[-1][Replays.CURSOR_X], replay_data[-1][Replays.CURSOR_Y], 0, max(replay_data[-1][Replays.TIMES], int(beatmap.end_time + 1000) + 17 * x)]) diffcalculator = DiffCalculator(beatmap.diff) timepreempt = diffcalculator.ar() if replay_data[0][Replays.TIMES] > beatmap.hitobjects[0]["time"] - timepreempt - 2000: startdata = replay_data[0].copy() startdata[Replays.TIMES] = beatmap.hitobjects[0]["time"] - timepreempt - 2000 replay_data.insert(0, startdata) replay_data.append([0, 0, 0, replay_data[-1][3] * 5]) replay_data.append([0, 0, 0, replay_data[-1][3] * 5]) start_time = replay_data[0][Replays.TIMES] beatmap.breakperiods.append({"Start": int(beatmap.end_time + 200), "End": replay_data[-1][Replays.TIMES] + 100, "Arrow": False}) return replay_data, start_time
[ "snkraishin87@gmail.com" ]
snkraishin87@gmail.com
3ec57b2531ab6a937124feee52ac1b6da03020ff
b5ef3b9da130f604f111bd469128b73e78d6ba9d
/bt5/erp5_accounting/SkinTemplateItem/portal_skins/erp5_accounting/AccountingTransactionLine_getProjectItemList.py
43b31ee9f20c5d1e877c6974693c15afe6a456ef
[]
no_license
soediro/erp5
154bb2057c4cd12c14018c1ab2a09a78b2d2386a
3d1a8811007a363b7a43df4b295b5e0965c2d125
refs/heads/master
2021-01-11T00:31:05.445267
2016-10-05T09:28:05
2016-10-07T02:59:00
70,526,968
1
0
null
2016-10-10T20:40:41
2016-10-10T20:40:40
null
UTF-8
Python
false
false
1,341
py
"""Returns all validated projects. This script is indented to be used on custom listfields for accounting lines, and on reports. If this script returns an empty list, it means that reports by project are disabled. """ from Products.ERP5Type.Message import translateString portal = context.getPortalObject() # case 1: script is used for reports, we display all validated projects. if context.getPortalType() == 'Accounting Transaction Module': project_list = [] for project in portal.portal_catalog( portal_type='Project', select_list=['relative_url', 'title', 'reference'], validation_state=('validated',), sort_on=(('title', 'ASC'),)): if project.reference: project_list.append(('%s - %s' % (project.reference, project.title), project.relative_url,)) else: project_list.append((project.title, project.relative_url,)) if not project_list: return [] # returning an empty list, not to add project column on reports return [('', ''), (translateString('No Project'), 'None')] + project_list # case 2: script is used on custom listfields. # for now the script has to be customized in such case. # [(x.getTitle(), x.getRelativeUrl()) for x in context.project_module.searchFolder()] return [('', '')]
[ "georgios.dagkakis@nexedi.com" ]
georgios.dagkakis@nexedi.com
2309594889f7eaf0567ecb3881e41ae564d04ca9
22fa0db584e41a9f06d829a5dd06b32bcdeb3646
/registration/mobile_backend.py
dfb3c3b608616dec696f7b31dceed277b810a84c
[]
no_license
muthuraj-python/muthuinterview
186ecd4efd173fa0fe7ce25e721ebadbeabc94f7
d51b03f90fea9abd6aa763cf666dd39ead7a4753
refs/heads/master
2021-02-22T07:24:10.319876
2020-03-15T13:37:16
2020-03-15T13:37:16
245,371,812
0
0
null
null
null
null
UTF-8
Python
false
false
696
py
from django.contrib.auth import get_user_model from django.contrib.auth.backends import ModelBackend class MobileBackend(ModelBackend): def authenticate(self, request, **kwargs): UserModel = get_user_model() try: user = UserModel.objects.get(mobile_number=kwargs.get('username')) except UserModel.DoesNotExist: return None else: if user.check_password(kwargs.get('password')): return user return None def get_user(self, user_id): UserModel = get_user_model() try: return UserModel.objects.get(pk=user_id) except UserModel.DoesNotExist: return None
[ "you@example.com" ]
you@example.com
64cd0072445b206c8f730510ee8bb8e3f9fedfcd
7765acf96f3c334a073f647ead1e6c862046fd41
/tex/figures/photometry_nullspace.py
6cb74974a958ef681cf8425500f031c951b3c321
[ "MIT" ]
permissive
rodluger/fishy
da752a2e7aab159b10d24eb0433251b8485d6983
94bb393b01ade283e416589ea013d604166749e3
refs/heads/master
2020-05-06T15:15:44.725979
2019-07-08T13:19:04
2019-07-08T13:19:04
180,179,751
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
# -*- coding: utf-8 -*- import matplotlib import matplotlib.pyplot as plt import numpy as np import starry ydeg = 10 theta = np.linspace(-180, 180, 1000) s = np.zeros(((ydeg + 1) ** 2, len(theta))) map = starry.Map(ydeg, lazy=False) n = 0 for l in range(ydeg + 1): for m in range(-l, l + 1): map.reset() if l > 0: map[l, m] = 1.0 s[n] = map.flux(theta=theta) n += 1 # Set up the plot fig, ax = plt.subplots(ydeg + 1, 2 * ydeg + 1, figsize=(16, 10), sharex=True, sharey=True) fig.subplots_adjust(hspace=0) for axis in ax.flatten(): axis.spines['top'].set_visible(False) axis.spines['right'].set_visible(False) axis.spines['bottom'].set_visible(False) axis.spines['left'].set_visible(False) axis.set_xticks([]) axis.set_yticks([]) # Loop over the orders and degrees n = 0 for i, l in enumerate(range(ydeg + 1)): for j, m in enumerate(range(-l, l + 1)): j += ydeg - l ax[i, j].plot(s[n]) n += 1 # Labels for j, m in enumerate(range(-ydeg, ydeg + 1)): ax[-1, j].set_xlabel("%d" % m, fontsize=14, fontweight="bold", alpha=0.5) for i, l in enumerate(range(ydeg + 1)): ax[i, ydeg - l].set_ylabel("%d" % l, fontsize=14, fontweight="bold", rotation=45, labelpad=20, alpha=0.5) # Save fig.savefig("photometry_nullspace.pdf", bbox_inches="tight")
[ "rodluger@gmail.com" ]
rodluger@gmail.com
3bd32d35fa515727b1d2fdf19b6da268ce008399
5a42ce780721294d113335712d45c62a88725109
/project/graphdata/module/yiyiyuan/model/yi_favorite_contacts.py
03a9050f0826ae4d25e32f4863e189e8bd71ffc5
[]
no_license
P79N6A/project_code
d2a933d53deb0b4e0bcba97834de009e7bb78ad0
1b0e863ff3977471f5a94ef7d990796a9e9669c4
refs/heads/master
2020-04-16T02:06:57.317540
2019-01-11T07:02:05
2019-01-11T07:02:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,048
py
# -*- coding: utf-8 -*- # sqlacodegen mysql://root:123!@#@127.0.0.1/xhh_test --outfile yyy.py --flask from lib.application import db from .base_model import BaseModel from .yi_user import YiUser class YiFavoriteContact(db.Model, BaseModel): __bind_key__ = 'xhh_yiyiyuan' __tablename__ = 'yi_favorite_contacts' id = db.Column(db.BigInteger, primary_key=True) user_id = db.Column(db.BigInteger, nullable=False) contacts_name = db.Column(db.String(20), nullable=False) mobile = db.Column(db.String(20), nullable=False) relatives_name = db.Column(db.String(20), nullable=False) phone = db.Column(db.String(20), nullable=False) last_modify_time = db.Column(db.DateTime, nullable=False) create_time = db.Column(db.DateTime) def getByUserId(self, user_id): return self.query.filter_by(user_id=user_id).limit(1).first() def contactDue(self, dbContact): # 亲属联系人是否逾期 if dbContact is None: return {} mobiles = [] #亲属 if 'phone' in dbContact.keys(): mobiles.append(str(dbContact['phone'])) #常用 if 'mobile' in dbContact.keys(): mobiles.append(str(dbContact['mobile'])) if len(mobiles) == 0: return {} oUser = YiUser() overdue_users = oUser.isOverdueMobile(mobiles) overdue_mobiles = [user[0] for user in overdue_users] # # 判断是否逾期 contract_due_data = {} if 'phone' in dbContact.keys() and dbContact['phone'] is not None: if dbContact['phone'] in overdue_mobiles: contract_due_data['com_r_overdue'] = 1 else: contract_due_data['com_r_overdue'] = 0 if 'mobile' in dbContact.keys() and dbContact['mobile'] is not None: if dbContact['mobile'] in overdue_mobiles: contract_due_data['com_c_overdue'] = 1 else: contract_due_data['com_c_overdue'] = 0 return contract_due_data
[ "wangyongqiang@ihsmf.com" ]
wangyongqiang@ihsmf.com
1603f794730d82775b9c08df1c1c6289ae8cf270
f68cd225b050d11616ad9542dda60288f6eeccff
/testscripts/RDKB/component/WIFIHAL/TS_WIFIHAL_5GHzIsRadioAutoBlockAckEnabled.py
342c1a28d36b0e908ebc40dcbfc9e62a2bb7a193
[ "Apache-2.0" ]
permissive
cablelabs/tools-tdkb
18fb98fadcd169fa9000db8865285fbf6ff8dc9d
1fd5af0f6b23ce6614a4cfcbbaec4dde430fad69
refs/heads/master
2020-03-28T03:06:50.595160
2018-09-04T11:11:00
2018-09-05T00:24:38
147,621,410
0
0
null
null
null
null
UTF-8
Python
false
false
7,337
py
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2017 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version="1.0" encoding="UTF-8"?><xml> <id/> <version>3</version> <name>TS_WIFIHAL_5GHzIsRadioAutoBlockAckEnabled</name> <primitive_test_id/> <primitive_test_name>WIFIHAL_GetOrSetParamBoolValue</primitive_test_name> <primitive_test_version>1</primitive_test_version> <status>FREE</status> <synopsis>Check AutoBlock-ACK enable status by using wifi_getRadioAutoBlockAckEnable HAL API</synopsis> <groups_id>4</groups_id> <execution_time>10</execution_time> <long_duration>false</long_duration> <advanced_script>false</advanced_script> <remarks/> <skip>false</skip> <box_types> <box_type>Broadband</box_type> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> </rdk_versions> <test_cases> <test_case_id>TC_WIFIHAL_94</test_case_id> <test_objective>Check AutoBlock-ACK enable status by using wifi_getRadioAutoBlockAckEnable HAL API</test_objective> <test_type>Positive</test_type> <test_setup>XB3. XB6</test_setup> <pre_requisite>1.Ccsp Components should be in a running state else invoke cosa_start.sh manually that includes all the ccsp components and TDK Component 2.TDK Agent should be in running state or invoke it through StartTdk.sh script</pre_requisite> <api_or_interface_used>wifi_getRadioAutoBlockAckEnable()</api_or_interface_used> <input_parameters>methodName : getRadioAutoBlockAckEnable methodName : setRadioAutoBlockAckEnable radioIndex : 1</input_parameters> <automation_approch>1.Configure the Function info in Test Manager GUI which needs to be tested (WIFIHAL_GetOrSetParamBoolValue - func name - "If not exists already" WIFIHAL - module name Necessary I/P args as Mentioned in Input) 2.Python Script will be generated/overrided automatically by Test Manager with provided arguments in configure page (TS_WIFIHAL_5GHzIsRadioAutoBlockAckEnabled.py) 3.Execute the generated Script(TS_WIFIHAL_5GHzIsRadioAutoBlockAckEnabled.py) using execution page of Test Manager GUI 4.wifihalstub which is a part of TDK Agent process, will be in listening mode to execute TDK Component function named WIFIHAL_GetOrSetParamBoolValue through registered TDK wifihalstub function along with necessary arguments 5.WIFIHAL_GetOrSetParamBoolValue function will call Ccsp Base Function named "ssp_WIFIHALGetOrSetParamBoolValue", that inturn will call WIFIHAL Library Functions wifi_getRadioAutoBlockAckEnable() and wifi_setRadioAutoBlockAckEnable() 6.Response(s)(printf) from TDK Component,Ccsp Library function and wifihalstub would be logged in Agent Console log based on the debug info redirected to agent console 7.wifihalstub will validate the available result (from agent console log and Pointer to instance as updated) with expected result 8.Test Manager will publish the result in GUI as SUCCESS/FAILURE based on the response from wifihalstub</automation_approch> <except_output>CheckPoint 1:wifi_getRadioAutoBlockAckEnable log from DUT should be available in Agent Console LogCheckPoint 2:TDK agent Test Function will log the test case result as PASS based on API response CheckPoint 3:Test Manager GUI will publish the result as SUCCESS in Execution page"""</except_output> <priority>High</priority> <test_stub_interface>WIFIHAL</test_stub_interface> <test_script>TS_WIFIHAL_5GHzIsRadioAutoBlockAckEnabled</test_script> <skipped>No</skipped> <release_version/> <remarks/> </test_cases> <script_tags/> </xml> ''' # use tdklib library,which provides a wrapper for tdk testcase script import tdklib; from wifiUtility import *; #Test component to be tested obj = tdklib.TDKScriptingLibrary("wifihal","1"); #IP and Port of box, No need to change, #This will be replaced with correspoing Box Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_WIFIHAL_5GHzIsRadioAutoBlockAckEnabled'); loadmodulestatus =obj.getLoadModuleResult(); print "[LIB LOAD STATUS] : %s" %loadmodulestatus if "SUCCESS" in loadmodulestatus.upper(): obj.setLoadModuleStatus("SUCCESS"); expectedresult="SUCCESS"; radioIndex = 1 getMethod = "getRadioAutoBlockAckEnable" primitive = 'WIFIHAL_GetOrSetParamBoolValue' #Getting the default enable mode tdkTestObj, actualresult, details = ExecuteWIFIHalCallMethod(obj, primitive, radioIndex, 0, getMethod) if expectedresult in actualresult : tdkTestObj.setResultStatus("SUCCESS"); enable = details.split(":")[1].strip() if "Enabled" in enable: print "Auto Block-Ack is Enabled for Radio 5GHz" oldEnable = 1 newEnable = 0 else: print "Auto Block-Ack is Disabled for Radio 5GHz " oldEnable = 0 newEnable = 1 setMethod = "setRadioAutoBlockAckEnable" #Toggle the enable status using set tdkTestObj, actualresult, details = ExecuteWIFIHalCallMethod(obj, primitive, radioIndex, newEnable, setMethod) if expectedresult in actualresult : print "Enable state toggled using set" # Get the New enable status tdkTestObj, actualresult, details = ExecuteWIFIHalCallMethod(obj, primitive, radioIndex, 0, getMethod) if expectedresult in actualresult and enable not in details.split(":")[1].strip(): print "getRadioAutoBlockAckEnable Success, verified Along with setRadioAutoBlockAckEnable() api" #Revert back to original Enable status tdkTestObj, actualresult, details = ExecuteWIFIHalCallMethod(obj, primitive, radioIndex, oldEnable, setMethod) if expectedresult in actualresult : print "Enable status reverted back"; else: print "Couldn't revert enable status" tdkTestObj.setResultStatus("FAILURE"); else: print "getRadioAutoBlockAckEnable() failed after set function" tdkTestObj.setResultStatus("FAILURE"); else: print "setRadioAutoBlockAckEnable() failed" tdkTestObj.setResultStatus("FAILURE"); else: print "getRadioAutoBlockAckEnable() failed" tdkTestObj.setResultStatus("FAILURE"); obj.unloadModule("wifihal"); else: print "Failed to load wifi module"; obj.setLoadModuleStatus("FAILURE");
[ "jim.lawton@accenture.com" ]
jim.lawton@accenture.com
84e7d9a493e30b3985e39ae5126bbaeeca00239c
82c73b70c2002f647bdc254125f0bdb18f0b79d2
/openstack_dashboard/dashboards/admin/license/forms.py
099ccaf8c180726a41000b7ec3cdcf950aee7eaa
[ "Apache-2.0" ]
permissive
xuweiliang/Codelibrary
cfb5755ced54c65cacdb3e35ab2b98385f8d5f8e
54e45b2daa205132c05b0ff5a2c3db7fca2853a7
refs/heads/master
2021-05-04T00:31:42.025238
2018-03-20T07:05:20
2018-03-20T07:05:20
71,852,078
0
0
null
null
null
null
UTF-8
Python
false
false
5,302
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import pytz import random, string import re import sys import operator from django.core.urlresolvers import reverse from openstack_dashboard import api from django import shortcuts from django.utils.translation import ugettext_lazy as _ # noqa from horizon import forms from horizon import messages from datetime import datetime as time from horizon import exceptions from horizon.utils import validators from django.utils import encoding from subprocess import PIPE,Popen from django.http import HttpResponseRedirect from openstack_dashboard import record_action LOG = logging.getLogger(__name__) class LicenseRegisterForm(forms.SelfHandlingForm): licence_heip=_("Please enter the serial number") cryptogram_help=_("If you need a new certificate,\ please send your service provider the Cryptogram") encrypted_license = forms.CharField(widget=forms.widgets.Textarea, label=_("Input licence"), help_text = licence_heip, required=True) system_uuid = forms.CharField(label=_("Cryptogram"), widget=forms.TextInput(attrs={'readonly': 'readonly'}), help_text = cryptogram_help) def __init__(self, request, *args, **kwargs): super(LicenseRegisterForm, self).__init__(request, *args, **kwargs) def handle(self, request, data): try: licence = data.get('encrypted_license', None).strip() systemUUID = data.get('system_uuid') UUID, key = systemUUID.split(":") decoded_string = eval(api.authcode.AuthCode.decode(licence, UUID.strip())) during = decoded_string.get('during', None) num = decoded_string.get('num', None) authcode = decoded_string.get('uuid') uuid, pwd = authcode.split(":") licenceTime = decoded_string.get('time', None) if uuid != UUID: messages.error(request, encoding.force_unicode(_("Serial number can only activate\ the specified server"))) api.nova.systemlogs_create(request, '-',\ record_action.REGISTERLICENSE, result=False, detail=_("Licence Register Fail")) return HttpResponseRedirect('/dashboard/admin/license') date = time.strptime(licenceTime, '%Y-%m-%dT%H:%M:%S.%f') starttime = time.strftime(date, '%Y-%m-%d %H:%M:%S') apartDays =(time.now()- date).days if during > 0 and apartDays < 3 and num > 0: kwargs={'licence':{'starttime':starttime, 'system_uuid':authcode, 'encrypted_license':licence, 'disabled':False}} try: api.nova.update_licence(request, **kwargs) msg = _("Serial number authentication success") messages.success(request, encoding.force_unicode(msg)) api.nova.systemlogs_create(request, '-',\ record_action.REGISTERLICENSE, result=True, detail=msg) return True except Exception as e: exceptions.handle(request, encoding.force_unicode(_("%s", e))) api.nova.systemlogs_create(request, '-',\ record_action.REGISTERLICENSE, result=False, detail=_("Licence Register Fail")) return False else: messages.error(request, encoding.force_unicode(_("Serial number expired or invalid"))) api.nova.systemlogs_create(request, '-',\ record_action.REGISTERLICENSE, result=False, detail=_("Licence invalid")) return HttpResponseRedirect('/dashboard/admin/license') except Exception as e: exceptions.handle(request, encoding.force_unicode(_("Invalid serial number \ or registration error %s" % e))) api.nova.systemlogs_create(request, '-',\ record_action.REGISTERLICENSE, result=True, detail=_("Licence Register Success")) return True
[ "root@newton.com" ]
root@newton.com
b5b156cdd0e5a59512ec09150e8dfd07ed2350af
3ba8bf9fb1a3d54233e927893bc2d3865692c896
/ophyd/controls/ophydobj.py
c94c640ca165b825b3e5f70be5d377a4f711108f
[]
no_license
NSLS-II-CSX/ophyd
68fee01393d819350270b143457f76a4a5ccf703
aadf6197f7a3b1ba907e48a73d5af8b07b7c57ad
refs/heads/master
2021-01-17T21:19:16.867892
2014-12-13T23:39:40
2014-12-13T23:39:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,022
py
# vi: ts=4 sw=4 ''' :mod:`ophyd.control.ophydobj` - Base object type ================================================ .. module:: ophyd.control.ophydobj :synopsis: ''' from __future__ import print_function from ..session import register_object class OphydObject(object): _default_sub = None def __init__(self, name, alias, register=True): ''' Subscription/callback mechanism for registered objects in ophyd sessions. ''' self._name = name self._alias = alias self._subs = dict((getattr(self, sub), []) for sub in dir(self) if sub.startswith('SUB_')) self._sub_cache = {} self._ses_logger = None if register: self._register() def _run_sub(self, cb, *args, **kwargs): ''' Run a single subscription callback :param cb: The callback ''' try: cb(*args, **kwargs) except Exception as ex: sub_type = kwargs['sub_type'] self._ses_logger.error('Subscription %s callback exception (%s)' % (sub_type, self), exc_info=ex) def _run_cached_sub(self, sub_type, cb): ''' Run a single subscription callback using the most recent cached arguments :param sub_type: The subscription type :param cb: The callback ''' try: args, kwargs = self._sub_cache[sub_type] except KeyError: pass else: # Cached kwargs includes sub_type self._run_sub(cb, *args, **kwargs) def _run_subs(self, *args, **kwargs): ''' Run a set of subscription callbacks Only the kwarg :param:`sub_type` is required, indicating the type of callback to perform. All other positional arguments and kwargs are passed directly to the callback function. No exceptions are raised when the callback functions fail; they are merely logged with the session logger. ''' sub_type = kwargs['sub_type'] # Shallow-copy the callback arguments for replaying the # callback at a later time (e.g., when a new subscription is made) self._sub_cache[sub_type] = (tuple(args), dict(kwargs)) for cb in self._subs[sub_type]: self._run_sub(cb, *args, **kwargs) def subscribe(self, cb, event_type=None, run=True): ''' Subscribe to events this signal group emits See also :func:`clear_sub` :param callable cb: A callable function (that takes kwargs) to be run when the event is generated :param event_type: The name of the event to subscribe to (if None, defaults to SignalGroup._default_sub) :type event_type: str or None :param bool run: Run the callback now ''' if event_type is None: event_type = self._default_sub self._subs[event_type].append(cb) if run: self._run_cached_sub(event_type, cb) def clear_sub(self, cb, event_type=None): ''' Remove a subscription, given the original callback function See also :func:`subscribe` :param callable callback: The callback :param event_type: The event to unsubscribe from (if None, removes it from all event types) :type event_type: str or None ''' if event_type is None: for event_type, cbs in self._subs.items(): try: cbs.remove(cb) except ValueError: pass else: self._subs[event_type].remove(cb) def _register(self): ''' Register this object with the session ''' register_object(self) @property def name(self): return self._name @property def alias(self): ''' An alternative name for the signal ''' return self._alias
[ "klauer@bnl.gov" ]
klauer@bnl.gov
a2c709a82b9f707add011e641eedf079ded0b67e
95f9c734c4bf5de8e5d0adff9ac2cf0228df75ac
/Django/mysite-bak/mysite/polls/views.py
da0e946bc8b3ef8aea7fb16256eecbdb21caf692
[]
no_license
holen/Python
7a996b13ff2224084397223879c380169d47ff8c
506fff291d6e9c6f80c30a51cc3b77e9dd048468
refs/heads/master
2022-12-12T22:12:51.561716
2019-10-16T03:08:00
2019-10-16T03:08:00
14,278,665
1
0
null
2022-12-08T00:51:26
2013-11-10T15:29:59
Python
UTF-8
Python
false
false
2,090
py
from django.shortcuts import render from django.http import HttpResponse, HttpResponseRedirect from polls.models import Question, Choice from django.template import RequestContext, loader from django.http import Http404 from django.shortcuts import get_object_or_404, render from django.core.urlresolvers import reverse # Create your views here. def index(request): latest_question_list = Question.objects.order_by('-pub_date')[:5] context = {'latest_question_list': latest_question_list} return render(request, 'polls/index.html', context) # template = loader.get_template('polls/index.html') #context = RequestContext(request, { # 'latest_question_list': latest_question_list, # }) #return HttpResponse(template.render(context)) #output = ','.join([p.question_text for p in latest_question_list]) #return HttpResponse(output) #return HttpResponse("Hello, world. You're at the polls index.") def detail(request, question_id): #try: # question = Question.objects.get(pk=question_id) # except Question.DoesNotExist: # raise Http404 question = get_object_or_404(Question, pk=question_id) return render(request, 'polls/detail.html', {'question':question}) #return HttpResponse("You're looking at question %s." % question_id) def results(request, question_id): #response = "You're looking at the results of question %s." #return HttpResponse(response % question_id) question = get_object_or_404(Question, pk=question_id) return render(request, 'polls/results.html', {'question': question}) def vote(request, question_id): p = get_object_or_404(Question, pk=question_id) try: selected_choice = p.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): return render(request, 'polls/detail.html', { 'question': p, 'error_message': "You didn't select a choice.", }) else: selected_choice.votes += 1 selected_choice.save() return HttpResponseRedirect(reverse('polls:results', args=(p.id,))) #return HttpResponse("You're voting on question %s." % question_id)
[ "yh_zhl@sina.com" ]
yh_zhl@sina.com
7fa86d8b542bd91ae527f605694388c5e6e58d35
5608a9cd3bec8cab1c3f9d7f42896107b78593cc
/tests/unit/mock_docker/fake_stat.py
b85bc3b8007c8c020d9650a655a3cbcd34fdafe7
[ "Apache-2.0" ]
permissive
troyready/runway
cdee6d94f42173c8aa0bd414620b68be36a510aa
4fd299961a4b73df39e14f4f19a7236f7be17dd8
refs/heads/master
2021-06-18T16:05:30.712211
2021-01-14T01:44:32
2021-01-14T01:44:32
151,314,626
0
0
Apache-2.0
2018-10-02T19:55:09
2018-10-02T19:55:08
null
UTF-8
Python
false
false
2,990
py
"""Stats for fake Docker API.""" OBJ = { "read": "2015-02-11T19:20:46.667237763+02:00", "network": { "rx_bytes": 567224, "rx_packets": 3773, "rx_errors": 0, "rx_dropped": 0, "tx_bytes": 1176, "tx_packets": 13, "tx_errors": 0, "tx_dropped": 0, }, "cpu_stats": { "cpu_usage": { "total_usage": 157260874053, "percpu_usage": [52196306950, 24118413549, 53292684398, 27653469156], "usage_in_kernelmode": 37140000000, "usage_in_usermode": 62140000000, }, "system_cpu_usage": 3.0881377e14, "throttling_data": {"periods": 0, "throttled_periods": 0, "throttled_time": 0}, }, "memory_stats": { "usage": 179314688, "max_usage": 258166784, "stats": { "active_anon": 90804224, "active_file": 2195456, "cache": 3096576, "hierarchical_memory_limit": 1.844674407371e19, "inactive_anon": 85516288, "inactive_file": 798720, "mapped_file": 2646016, "pgfault": 101034, "pgmajfault": 1207, "pgpgin": 115814, "pgpgout": 75613, "rss": 176218112, "rss_huge": 12582912, "total_active_anon": 90804224, "total_active_file": 2195456, "total_cache": 3096576, "total_inactive_anon": 85516288, "total_inactive_file": 798720, "total_mapped_file": 2646016, "total_pgfault": 101034, "total_pgmajfault": 1207, "total_pgpgin": 115814, "total_pgpgout": 75613, "total_rss": 176218112, "total_rss_huge": 12582912, "total_unevictable": 0, "total_writeback": 0, "unevictable": 0, "writeback": 0, }, "failcnt": 0, "limit": 8039038976, }, "blkio_stats": { "io_service_bytes_recursive": [ {"major": 8, "minor": 0, "op": "Read", "value": 72843264}, {"major": 8, "minor": 0, "op": "Write", "value": 4096}, {"major": 8, "minor": 0, "op": "Sync", "value": 4096}, {"major": 8, "minor": 0, "op": "Async", "value": 72843264}, {"major": 8, "minor": 0, "op": "Total", "value": 72847360}, ], "io_serviced_recursive": [ {"major": 8, "minor": 0, "op": "Read", "value": 10581}, {"major": 8, "minor": 0, "op": "Write", "value": 1}, {"major": 8, "minor": 0, "op": "Sync", "value": 1}, {"major": 8, "minor": 0, "op": "Async", "value": 10581}, {"major": 8, "minor": 0, "op": "Total", "value": 10582}, ], "io_queue_recursive": [], "io_service_time_recursive": [], "io_wait_time_recursive": [], "io_merged_recursive": [], "io_time_recursive": [], "sectors_recursive": [], }, }
[ "noreply@github.com" ]
troyready.noreply@github.com
b4e60d4747db4b3823750c69fecee8522989f43d
afc8d5a9b1c2dd476ea59a7211b455732806fdfd
/Configurations/ControlRegions/SS/2016HIPM_v9/variables.py
b38df10fccc279186d7b3cf5a9b34a05e48c2e2e
[]
no_license
latinos/PlotsConfigurations
6d88a5ad828dde4a7f45c68765081ed182fcda21
02417839021e2112e740607b0fb78e09b58c930f
refs/heads/master
2023-08-18T20:39:31.954943
2023-08-18T09:23:34
2023-08-18T09:23:34
39,819,875
10
63
null
2023-08-10T14:08:04
2015-07-28T07:36:50
Python
UTF-8
Python
false
false
3,120
py
# variables # 0 = not fold (default), 1 = fold underflowbin, 2 = fold overflow bin, 3 = fold underflow and overflow #variables = {} #variables['nvtx'] = { 'name': 'PV_npvsGood', # 'range' : (20,0,100), # 'xaxis' : 'nvtx', # 'fold' : 3 # } variables['mllpeak'] = { 'name': 'mll', 'range' : (20,80,100), 'xaxis' : 'm_{ll} [GeV]', 'fold' : 0 } variables['ptll'] = { 'name': 'ptll', 'range' : (20, 0,200), 'xaxis' : 'p_{T}^{ll} [GeV]', 'fold' : 0 } variables['ptll_more'] = { 'name': 'ptll', 'range' : (50, 0,100), 'xaxis' : 'p_{T}^{ll} [GeV]', 'fold' : 0 } variables['pt1'] = { 'name': 'Lepton_pt[0]', 'range' : (20,0,200), 'xaxis' : 'p_{T} 1st lep', 'fold' : 3 } variables['pt1_v7'] = { 'name': 'Lepton_pt[0]', 'range' : (20,20,100), 'xaxis' : 'p_{T} 1st lep', 'fold' : 3 } variables['pt2'] = { 'name': 'Lepton_pt[1]', 'range' : (20,0,100), 'xaxis' : 'p_{T} 2nd lep', 'fold' : 3 } variables['eta1'] = { 'name': 'Lepton_eta[0]', 'range' : (20,-3,3), 'xaxis' : '#eta 1st lep', 'fold' : 3 } variables['eta2'] = { 'name': 'Lepton_eta[1]', 'range' : (20,-3,3), 'xaxis' : '#eta 2nd lep', 'fold' : 3 } variables['phi1'] = { 'name': 'Lepton_phi[0]', 'range' : (20,-3.2,3.2), 'xaxis' : '#phi 1st lep', 'fold' : 3 } variables['phi2'] = { 'name': 'Lepton_phi[1]', 'range' : (20,-3.2,3.2), 'xaxis' : '#phi 2nd lep', 'fold' : 3 } variables['puppimet'] = { 'name': 'PuppiMET_pt', 'range' : (20,0,100), 'xaxis' : 'puppimet [GeV]', 'fold' : 3 } variables['njet'] = { 'name': 'Sum$(CleanJet_pt>30)', 'range' : (5,0,5), 'xaxis' : 'Number of jets', 'fold' : 2 } variables['jetpt1'] = { 'name': '(Sum$(CleanJet_pt>30)>0)*(Alt$(CleanJet_pt[0], 0)) - (Sum$(CleanJet_pt>30)==0)*99', 'range' : (20,0,200), 'xaxis' : 'p_{T} 1st jet', 'fold' : 0 } variables['jetpt2'] = { 'name': '(Sum$(CleanJet_pt>30)>1)*(Alt$(CleanJet_pt[1], 0)) - (Sum$(CleanJet_pt>30)<=1)*99', 'range' : (20,0,200), 'xaxis' : 'p_{T} 2nd jet', 'fold' : 0 } variables['jeteta1'] = { 'name': '(Sum$(CleanJet_pt>30)>0)*(Alt$(CleanJet_eta[0], 0)) - (Sum$(CleanJet_pt>30)==0)*99', 'range' : (20,-5.0,5.0), 'xaxis' : '#eta 1st jet', 'fold' : 0 } variables['jeteta2'] = { 'name': '(Sum$(CleanJet_pt>30)>1)*(Alt$(CleanJet_eta[1], 0)) - (Sum$(CleanJet_pt>30)<=1)*99', 'range' : (20,-5.0,5.0), 'xaxis' : '#eta 2nd jet', 'fold' : 0 } variables['trkMet'] = { 'name': 'TkMET_pt', 'range' : (20,0,200), 'xaxis' : 'trk met [GeV]', 'fold' : 3 } variables['mpmet'] = { 'name': 'mpmet', 'range' : (20,0,200), 'xaxis' : 'min proj met [GeV]', 'fold' : 3 }
[ "nicolo.trevisani@cern.ch" ]
nicolo.trevisani@cern.ch
ff9d10c84448a1f47b8ab9374247b004431a8c67
766da3ffcbd26e7f58d711f5b0e7312cb365e9fb
/layers/transformer/__init__.py
9950eabee3288f70b34f0e30bc81b80b808266ca
[ "MIT" ]
permissive
RobertCsordas/ndr
1277b353eb61267e023b671072730bdc7e779ca5
da20530dfb4336deddfbe5e79d62e72d1dc2580e
refs/heads/master
2023-09-02T22:38:57.601098
2021-11-19T09:52:23
2021-11-19T09:52:23
414,588,414
20
4
null
null
null
null
UTF-8
Python
false
false
489
py
from .transformer import Transformer, AttentionMask from .relative_transformer import RelativeTransformer from .universal_transformer import UniversalTransformer from .universal_relative_transformer import UniversalRelativeTransformer from .transformer import TransformerEncoderWithLayer from .relative_transformer import RelativeTransformerEncoderLayer from .universal_transformer import UniversalTransformerEncoderWithLayer from .universal_transformer import UniversalTransformerEncoder
[ "xdever@gmail.com" ]
xdever@gmail.com
476654bc49e7272f77917b445426eaf80a1cee93
35efa105f00073303284103699fcaec54045a8a4
/invoke_servers.py
d3bd5d43949a4ac06d60f0cf6a4d3fb25c6e0e22
[]
no_license
Quantumke/mpesaapi
b12c7e663fc89d6b98170a229b7876fdb5c1541f
e0941927b194d361f443aa8cf665fc3cfce71bca
refs/heads/master
2021-01-19T00:25:47.958078
2016-05-27T09:19:27
2016-05-27T09:19:27
59,822,028
0
0
null
null
null
null
UTF-8
Python
false
false
770
py
import urllib.parse import urllib.request import ssl def invoke_server(): url="https://safaricom.co.ke/mpesa_online/lnmo_checkout_server.php?wsdl" values = ({ "MERCHANT_TRANSACTION_ID": "1", "PASSWORD": "1", "REFERENCE_ID" :'1', "TIMESTAMP":'1461164700' }) find_a_better_way = ssl.SSLContext(ssl.PROTOCOL_TLSv1) #data = urllib.parse.urlencode(values) #data = data.encode('utf-8') data = urllib.urlencode({'MERCHANT_TRANSACTION_ID': '1', 'PASSWORD': '10', 'REFERENCE_ID':'10','TIMESTAMP':'1461164700'}) req = urllib.request.Request(url , data, headers={'User-Agent': 'Mozilla/5.0'}) resp = urllib.request.urlopen(req, context=find_a_better_way) respData = resp.read() print(respData) if __name__ == "__main__": invoke_server()
[ "nguruben@gmail.com" ]
nguruben@gmail.com
e1da3255668999c3b77aa8c9332b197a9203478e
42104a0ebfc03caf9c7648211ca6ac69de984cbb
/memedata/errors.py
1a923ec91aa865271c3a85ad8fe34bf5b1120fc9
[ "MIT" ]
permissive
bomdiabot/memedata-service
61fbdf00d32fb9ef55f352aa400c8830588b8cfe
52c772c1440901fd23bc8d5254d1f16d11d6c629
refs/heads/dev
2022-12-09T13:46:29.588250
2018-10-29T23:31:30
2018-10-29T23:31:30
147,910,641
2
0
MIT
2022-12-08T02:53:13
2018-09-08T07:09:59
Python
UTF-8
Python
false
false
1,818
py
from marshmallow import ValidationError from werkzeug.exceptions import HTTPException from flask_jwt_extended.exceptions import JWTExtendedException from memedata.util import mk_errors from memedata import config def jwt_error_handler(error): code = 401 messages = list(getattr(error, 'args', [])) return mk_errors(code, messages) def http_error_handler(error): resp = error.response if resp is None: code = error.code messages = [error.description] else: code = getattr(resp, 'status_code', 500) json = resp.get_json() if 'errors' in json and json['errors']: messages = [e['message'] for e in json['errors'] if 'message' in e] else: messages = [str(resp.status)] return mk_errors(code, messages) def validation_error_handler(error): code = getattr(error, 'status_code', 500) messages = getattr(error, 'messages', []) return mk_errors(code, messages) def generic_error_handler(error): code = getattr(error, 'status_code', 500) if config.debug: messages = [str(error)] else: messages = ['something went wrong!'] return mk_errors(code, messages) def error_handler(error): try: if isinstance(error, JWTExtendedException): return jwt_error_handler(error) elif isinstance(error, HTTPException): return http_error_handler(error) elif isinstance(error, ValidationError): return validation_error_handler(error) else: return generic_error_handler(error) except: return mk_errors(500, 'something went wrong!') def register_handlers(app): app.errorhandler(Exception)(error_handler) app.errorhandler(HTTPException)(error_handler) app.handle_user_exception = error_handler
[ "erik.perillo@gmail.com" ]
erik.perillo@gmail.com
31abd5ef24459b6c62af258b25f1201638b650b3
8e1d05d2e130e30585a08b54ce8d613ee78d6b8c
/Evaluation/modularity_analysis.py
93c04dc25880df6da1ce71526c29416018e92e39
[]
no_license
mturja-vf-ic-bd/AD-Longitudinal-Smoothing
11793fafcfb039629a5a5265d98789a1e1576de2
10fafdd57c63cc7b5a1c0400abdbfaa4353254f3
refs/heads/master
2020-04-16T17:09:14.790401
2019-08-17T17:05:54
2019-08-17T17:05:54
165,764,720
2
0
null
null
null
null
UTF-8
Python
false
false
4,380
py
# Modularity Analysis of the raw and smooth connectomes # The goal is to show that our method produce connectomes that has consistent modularity along time #from bct import community_louvain import numpy as np from utils.readFile import readSubjectFiles from plot_functions import plot_matrix_all, plot_community_structure_variation from math import log from utils.helper import get_subject_names from collections import Counter def match_list(l1, l2): return len(set(l1).intersection(set(l2))) def compare_community_structure(c1, c2): matching = {} if len(c1) < len(c2): c1, c2 = c2, c1 for i in range(len(c1)): max = -1 max_idx = -1 for j in range(len(c2)): temp = match_list(c1[i], c2[j]) if temp > max: max = temp max_idx = j matching[i] = max_idx def build_longitudinal_community_structure(c_i_list): for i, c_s in enumerate(c_i_list): for j in range(i + 1, len(c_i_list)): c_d = c_i_list[j] def build_community_structure(c_i): """ Returns a list of list with each list representing the indices of a community :param c_i: communitiy labels of the nodes of graph :return: idx_ordered: nested list with each element is the indices of each community """ community_dict = {} label_set = set(c_i) for label in label_set: idx_c = np.nonzero(c_i == label)[0] key = min(idx_c) community_dict[key] = idx_c idx_ordered = [] for k in sorted(community_dict.keys()): idx_ordered.append(list(community_dict[k])) return idx_ordered def sort_connectomes_by_modularity(mat, c_i=None): """ Sort a matrix by community structure :param mat: adjacancy matrix (N*N) :return: sorted adjacancy matrix (N*N) """ c_i, q = community_louvain(np.asarray(mat), gamma=1, ci=c_i) com_struct = build_community_structure(c_i) idx_ordered = [] for idx in com_struct: idx_ordered = idx_ordered + idx mat = mat[idx_ordered, :] return mat[:, idx_ordered], c_i def variation_of_information(X, Y): n = float(sum([len(x) for x in X])) sigma = 0.0 for x in X: p = len(x) / n for y in Y: q = len(y) / n r = len(set(x) & set(y)) / n if r > 0.0: sigma += r * (log(r / p, 2) + log(r / q, 2)) return abs(sigma) def voi_between_community_structure(mat1, mat2, gamma=1): """ Measures normalized variation of information between two community structure :param mat1: N*N adjcancy matrix of graph one. :param mat2: N*N adjcancy matrix of graph two. :return: nvoi: normalized variation of information between two community structure """ c_1, q = community_louvain(np.asarray(mat1), gamma=gamma) c_2, q = community_louvain(np.asarray(mat2), gamma=gamma) N = len(c_1) X = build_community_structure(c_1) Y = build_community_structure(c_2) return variation_of_information(X, Y) / log(N, 2) def mean_std_voi(sub_names): voi_rw = [] voi_sm = [] for sub in sub_names: connectome_list, smoothed_connectomes = readSubjectFiles(sub, method="row") voi_rw = voi_rw + [voi_between_community_structure(v1, v2) for v1 in connectome_list for v2 in connectome_list if v1 is not v2] voi_sm = voi_sm + [voi_between_community_structure(v1, v2) for v1 in smoothed_connectomes for v2 in smoothed_connectomes if v1 is not v2] voi_rw_mean = np.mean(voi_rw) voi_rw_std = np.std(voi_rw) voi_sm_mean = np.mean(voi_sm) voi_sm_std = np.std(voi_sm) return voi_rw_mean, voi_rw_std, voi_sm_mean, voi_sm_std if __name__ == '__main__': sub_names = get_subject_names(3) #sub_names = ["027_S_5110"] print(mean_std_voi(sub_names)) ''' for sub in sub_names: connectome_list, smoothed_connectomes = readSubjectFiles(sub, method="row") connectome_list = [sort_connectomes_by_modularity(connectome) for connectome in connectome_list] smoothed_connectomes = [sort_connectomes_by_modularity(connectome) for connectome in smoothed_connectomes] plot_matrix_all(connectome_list, fname="raw_mod", savefig=True) plot_matrix_all(smoothed_connectomes, fname="sm_mod", savefig=True) '''
[ "mturja.vf.ic.bd@gmail.com" ]
mturja.vf.ic.bd@gmail.com
7e59f965301071339cf8b02f1232ee076d1d8bc1
d697c1d45e96bd440be9c17ab14243a5882b1f52
/qianfeng/常用模块/Tkinter/Text控件.py
720a8d02a87bfe968a9f57bcdad6841620b2607e
[]
no_license
ithjl521/python
9eeda2e60dda97ee36e8764c06400eb12818689f
f4fe50799501c483cb64445fd05ee0f30f56576c
refs/heads/master
2020-07-12T23:10:53.608276
2019-11-08T08:59:35
2019-11-08T08:59:35
204,931,359
0
0
null
null
null
null
UTF-8
Python
false
false
723
py
import tkinter # 创建主窗口 win = tkinter.Tk() # 设置标题 win.title('title-hjl') # 设置大小和位置 win.geometry("400x400+200+50") ''' 文本控件,用于显示多行文本 ''' text = tkinter.Text(win,width=30,height=4) text.pack() str = ''' 【推荐】超50万C++/C#源码: 大型实时仿真组态图形源码 【活动】阿里云910会员节多款云产品满减活动火热进行中 【推荐】新手上天翼云,数十款云产品、新一代主机0元体验 【推荐】零基础轻松玩转华为云产品,获壕礼加返百元大礼 【推荐】华为云文字识别资源包重磅上市,1元万次限时抢购''' text.insert(tkinter.INSERT,str) # 进入消息循环 win.mainloop()
[ "it_hjl@163.com" ]
it_hjl@163.com
9e374836569d4aa1541f6d838fc0cf6528594d4e
70c69365a7a5b86af601fbf071f221c85abef9fc
/tensorflow/python/tpu/api.py
540f425494a6a23291c5ec68fa93deda8c08911a
[ "Apache-2.0", "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
dyna999/tensorflow
3ed8f243b8cc8bb30a8c96dbd30e4b27be226f83
163c946f6827ce9e3ffa49e56fa65ce520bf6ea5
refs/heads/master
2022-03-28T03:00:28.650532
2022-03-25T22:47:49
2022-03-25T22:51:26
97,944,926
0
0
Apache-2.0
2022-01-07T22:43:29
2017-07-21T12:22:03
C++
UTF-8
Python
false
false
1,365
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Modules that need to be exported to the API. List TPU modules that aren't included elsewhere here so that they can be scanned for tf_export decorations. """ # pylint: disable=unused-import from tensorflow.python.tpu import bfloat16 from tensorflow.python.tpu import feature_column_v2 from tensorflow.python.tpu import tpu from tensorflow.python.tpu import tpu_embedding from tensorflow.python.tpu import tpu_embedding_for_serving from tensorflow.python.tpu import tpu_embedding_v2 from tensorflow.python.tpu import tpu_embedding_v2_utils from tensorflow.python.tpu import tpu_hardware_feature from tensorflow.python.tpu import tpu_optimizer # pylint: enable=unused-import
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
2ee0088396c8b6299c327c0d2faefc2d53d9a962
f0cec246e2f30f6b4ee5656f1cb6406dd0f7879a
/thingsboard_client/models/rule_node_id.py
cad448df1ff67cb7c21896a0d4480fd703c9bb39
[]
no_license
ascentio-tech/thingsboard-swagger-client
4e2f7c943e243ec8505c32dab0aa3d6cf1559105
1e8bf7664c281c29612fd5b44261f049ca7c44fd
refs/heads/master
2021-07-20T07:18:12.969459
2020-06-17T02:35:54
2020-06-17T02:35:54
184,322,192
1
1
null
null
null
null
UTF-8
Python
false
false
3,040
py
# coding: utf-8 """ Thingsboard REST API For instructions how to authorize requests please visit <a href='http://thingsboard.io/docs/reference/rest-api/'>REST API documentation page</a>. # noqa: E501 OpenAPI spec version: 2.0 Contact: info@thingsboard.io Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class RuleNodeId(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str' } attribute_map = { 'id': 'id' } def __init__(self, id=None): # noqa: E501 """RuleNodeId - a model defined in Swagger""" # noqa: E501 self._id = None self.discriminator = None if id is not None: self.id = id @property def id(self): """Gets the id of this RuleNodeId. # noqa: E501 :return: The id of this RuleNodeId. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this RuleNodeId. :param id: The id of this RuleNodeId. # noqa: E501 :type: str """ self._id = id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RuleNodeId, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RuleNodeId): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "gmatheu@ascentio.com.ar" ]
gmatheu@ascentio.com.ar
af566ecfbb44440a1ec164059caab18a664f4f21
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/fdlm_chordrec/chordrec-master/experiments/mlsp2016/create_crf_init_params.py
989cab4c857b5f28322c54b30be3b0271045634f
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
1,285
py
import numpy as np import pickle import os from docopt import docopt from glob import glob from os.path import join, exists USAGE = """ create_crf_init_params.py - creates initial crf parameters from a learned gap convnet. Usage: create_crf_init_params.py <src_dir> <dst_dir> Arguments: <src_dir> directory containing the CNN parameter files for each fold <dst_dir> directory where to store the initial CRF parameters """ args = docopt(USAGE) param_files = glob(join(args['<src_dir>'], 'params*.pkl')) if not exists(args['<dst_dir>']): os.makedirs(args['<dst_dir>']) for fold, pfile in enumerate(param_files): params = pickle.load(open(pfile)) conv, beta, gamma, mean, inv_std = params[-5:] c = (beta - mean * gamma * inv_std) W = (conv.reshape(conv.shape[:2]) * gamma[:, np.newaxis] * inv_std[:, np.newaxis]).T pi = np.zeros_like(c) tau = np.zeros_like(c) A = np.zeros((len(beta), len(beta))) dst_file = join(args['<dst_dir>'], 'crf_init_params_{}.pkl'.format(fold)) pickle.dump([pi.astype(np.float32), tau.astype(np.float32), c.astype(np.float32), A.astype(np.float32), W.astype(np.float32)], open(dst_file, 'w'))
[ "659338505@qq.com" ]
659338505@qq.com
9f531e0eaf6f4b7c54ba7928cb1cfa50714bfe90
49dbac90edc329416525825e842382470345641d
/tests/medium/test_num_sum.py
13f451161779c5dc0a928281932484afcf2ce90a
[]
no_license
AleksTor/belhard_6_tasks
4a9ed9367978a2086531a9e31f2d1c71a17446b6
f5f77a622bbb020a01d251423cbb5f25cc6239f3
refs/heads/master
2023-07-26T19:10:22.957008
2021-09-13T02:19:28
2021-09-13T02:19:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
import pytest from tasks.medium.num_sum import sum_of_numbers @pytest.mark.parametrize( "n, expected", ( (123, 6), (1111111, 7), (4, 4), (935145, 27), ) ) def test_sum_of_numbers(n, expected): assert sum_of_numbers(n) == expected
[ "rineisky@gmail.com" ]
rineisky@gmail.com
ef65d624ada369ecd60fd78c94bf7905807cefb2
2af5f89257e268b63d66a29287a6290c40125372
/Array/Leetcode_JZO_74_medium_二维数组的寻找.py
1fca5bff8d82796caede9ab8f694f070255a3fa1
[]
no_license
lilitom/Leetcode-problems
7dea24a1d07b3ee49e2f90764330f3e695f4f64d
82901a31c558433478dd23026efda63cf4dae8e5
refs/heads/master
2020-12-02T22:39:34.812479
2018-10-21T11:38:31
2018-10-21T11:38:31
96,162,066
2
2
null
2017-07-05T13:06:18
2017-07-04T01:07:41
Python
GB18030
Python
false
false
1,164
py
''' Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties: Integers in each row are sorted from left to right. The first integer of each row is greater than the last integer of the previous row. For example, Consider the following matrix: [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] Given target = 3, return true. ''' #South China University of Technology #Author:Guohao #coding=utf-8 class Solution(object): def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ if not matrix: return False row,cols=len(matrix),len(matrix[0]) low,high=0,row*cols-1 while low<=high: #注意这里要有等号的 mid=(low+high)/2 num=matrix[mid/cols][mid%cols] if num==target: return True if num<target: low=mid+1 else: high=mid-1 return False #参考: #https://leetcode.com/problems/search-a-2d-matrix/description/
[ "ahguohao11@163.com" ]
ahguohao11@163.com
ffc51a551202748e2b844689ae88726dc0f22a93
b310ea0f7a60786f7e17ac80154fcd5f2c3ffd29
/Entity/Entity.py
756f25faf1a3f34fce0ad9b1028e4b5531edb829
[ "MIT" ]
permissive
twtrubiks/Flask-Migrate-Tutorial
464e475e7ed8bd5127420c819b4672dc15f9ba61
a659171eee4c84fd0ea1a1e39914c53d44177ea8
refs/heads/master
2021-01-11T22:42:04.620084
2017-02-15T09:49:45
2017-02-15T09:49:45
79,018,103
7
6
null
null
null
null
UTF-8
Python
false
false
635
py
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_script import Manager from flask_migrate import Migrate, MigrateCommand app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///app.db' db = SQLAlchemy(app) migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) class PictureDate(db.Model): __tablename__ = 'PictureDate' Id = db.Column(db.Integer, primary_key=True) Uuid = db.Column(db.String(64), unique=True) Title = db.Column(db.String(64)) Description = db.Column(db.String(128)) if __name__ == '__main__': manager.run()
[ "twtrubiks@gmail.com" ]
twtrubiks@gmail.com
97210ea3fec9b92d035e5e3c826327e710361fdc
3d0ae7c8693463faa11bacad8e6ea9d0d70b9eb1
/pytools/utilities/python/tklib_image_utils.py
fcfd1fa577b7d1e1f3361b64d84d1a8f276abf3b
[]
no_license
stefie10/slu_hri
a76f79094bd1740676fec5d889411ba3b1d9dc26
50753379953e1ff822162eeab094cffe4a30f3e1
refs/heads/master
2022-12-14T01:07:51.522258
2020-08-31T00:50:12
2020-08-31T00:50:12
291,386,375
0
0
null
null
null
null
UTF-8
Python
false
false
2,553
py
from copy import deepcopy from scipy import * def median_filter(myimage, filter_size): new_map = deepcopy(myimage) #for i in range(filter_size, len(myimage)-filter_size): # for j in range(filter_size, len(myimage[0])-filter_size): for i in range(len(myimage)): for j in range(len(myimage[0])): if(i <= filter_size or j < filter_size or i >= len(myimage)-filter_size or j > len(myimage[0])-filter_size): new_map[i,j]=0.0 continue neigh = myimage[i-filter_size:i+filter_size+1,j-filter_size:j+filter_size+1] v = median(neigh.flatten()) new_map[i,j] = v return new_map def skeletonize(b_map, max_num_iterations): for i in range(max_num_iterations): print "iteration, ", i if(i%2 == 0): b_map, num_deleted = skeletonize_iter(b_map, True) else: b_map, num_deleted = skeletonize_iter(b_map, False) if(num_deleted == 0): return b_map return b_map def skeletonize_iter(binary_map, is_step1): new_map = deepcopy(binary_map) num_deleted = 0 for i in range(len(binary_map)): for j in range(len(binary_map[0])): #print len(binary_map), len(binary_map[0]) en = binary_map[i-1:i+2,j-1:j+2] if(i == 0 or i == len(binary_map) - 1 or j == 0 or j == len(binary_map[0]) - 1): new_map[i,j] = 0.0 elif(binary_map[i][j] == 0.0): continue elif(skeletonize_is_deleted(en, is_step1)): num_deleted +=1 new_map[i,j] = 0.0 return new_map, num_deleted def skeletonize_is_deleted(en, is_step1=True): if(not len(en) == 3 or not len(en[0]) == 3): print "not an eight neighbor" exit(1) else: s = sum(en) n = skeletonize_num_transitions(en) if(is_step1): p1 = en[0,1]*en[1,2]*en[2,1] p2 = en[1,2]*en[2,1]*en[1,0] else: p1 = en[1,0]*en[0,1]*en[1,2] p2 = en[0,1]*en[2,1]*en[1,0] if(s <= 7 and s >= 3 and n == 1 and p1 == 0 and p2 == 0): return True return False def skeletonize_num_transitions(en): flat_en = concatenate((en[0,:], en[1:,2], [en[2,1], en[2,0], en[1,0]])) zero_one_count = 0 for i in range(len(flat_en)): if(flat_en[i-1] == 0 and flat_en[i] == 1): zero_one_count += 1 return zero_one_count
[ "stefie10@alum.mit.edu" ]
stefie10@alum.mit.edu
c442edea8bffc494b18b504b67a661651392627c
9adc810b07f7172a7d0341f0b38088b4f5829cf4
/experiments/ashvin/icml2020/hand/sparse/mc1.py
91b9a0c61f14b220fae8f8cf80a48e1e0efe16a4
[ "MIT" ]
permissive
Asap7772/railrl_evalsawyer
7ee9358b5277b9ddf2468f0c6d28beb92a5a0879
baba8ce634d32a48c7dfe4dc03b123e18e96e0a3
refs/heads/main
2023-05-29T10:00:50.126508
2021-06-18T03:08:12
2021-06-18T03:08:12
375,810,557
1
0
null
null
null
null
UTF-8
Python
false
false
3,473
py
""" AWR + SAC from demo experiment """ from rlkit.demos.source.dict_to_mdp_path_loader import DictToMDPPathLoader from rlkit.launchers.experiments.awac.awac_rl import experiment import rlkit.misc.hyperparameter as hyp from rlkit.launchers.arglauncher import run_variants from rlkit.torch.sac.policies import GaussianPolicy if __name__ == "__main__": variant = dict( num_epochs=1001, num_eval_steps_per_epoch=1000, num_trains_per_train_loop=1000, num_expl_steps_per_train_loop=1000, min_num_steps_before_training=1000, max_path_length=1000, batch_size=1024, replay_buffer_size=int(1E6), layer_size=256, policy_class=GaussianPolicy, policy_kwargs=dict( hidden_sizes=[256, 256, ], max_log_std=0, min_log_std=-6, ), algorithm="SAC", version="normal", collection_mode='batch', trainer_kwargs=dict( discount=0.99, soft_target_tau=5e-3, target_update_period=1, policy_lr=3E-4, qf_lr=3E-4, reward_scale=1, beta=1, use_automatic_entropy_tuning=False, alpha=0, compute_bc=True, bc_num_pretrain_steps=0, q_num_pretrain1_steps=0, q_num_pretrain2_steps=25000, policy_weight_decay=1e-4, bc_loss_type="mse", rl_weight=1.0, use_awr_update=True, use_reparam_update=True, reparam_weight=0.0, awr_weight=0.0, bc_weight=1.0, ), num_exps_per_instance=1, region='us-west-2', path_loader_class=DictToMDPPathLoader, path_loader_kwargs=dict( obs_key="state_observation", demo_paths=[ # dict( # path="demos/icml2020/hand/pen2_sparse.npy", # obs_dict=True, # is_demo=True, # ), # dict( # path="demos/icml2020/hand/pen_bc5.npy", # obs_dict=False, # is_demo=False, # train_split=0.9, # ), ], ), add_env_demos=True, add_env_offpolicy_data=True, # logger_variant=dict( # tensorboard=True, # ), load_demos=True, pretrain_policy=True, pretrain_rl=True, # save_pretrained_algorithm=True, # snapshot_mode="all", ) search_space = { 'env': ["pen-sparse-v0", "relocate-sparse-v0", "hammer-sparse-v0", "door-sparse-v0", ], 'trainer_kwargs.bc_loss_type': ["mle"], 'trainer_kwargs.awr_loss_type': ["mle"], 'seedid': range(3), 'trainer_kwargs.beta': [0.1, 1, 10, ], 'trainer_kwargs.reparam_weight': [0.0, ], 'trainer_kwargs.awr_weight': [1.0], 'trainer_kwargs.bc_weight': [0.0, ], } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) variants = [] for variant in sweeper.iterate_hyperparameters(): trainer_kwargs = variant["trainer_kwargs"] if not (trainer_kwargs["reparam_weight"] == 0 and trainer_kwargs["awr_weight"] == 0 and trainer_kwargs["bc_weight"] == 0): variants.append(variant) run_variants(experiment, variants, run_id=0)
[ "alexanderkhazatsky@gmail.com" ]
alexanderkhazatsky@gmail.com
93dc4b460365f00007184adbfdfea6b17f6f08bb
066ee4df594a5dc90335d271b9d5a1b1e2a4d34c
/y/google-cloud-sdk/platform/gcutil/lib/google_api_python_client/oauth2client/django_orm.py
3607bb9442651745171963eb5d3b141bae8d4add
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "MIT", "Python-2.0" ]
permissive
ychen820/microblog
a2d82447525325ec58285c2e5db58b79cceaca1b
d379afa2db3582d5c3be652165f0e9e2e0c154c6
refs/heads/master
2021-01-20T05:58:48.424357
2015-04-28T22:03:09
2015-04-28T22:03:09
32,948,331
0
2
BSD-3-Clause
2020-07-25T05:04:35
2015-03-26T19:45:07
Python
UTF-8
Python
false
false
3,782
py
# Copyright (C) 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OAuth 2.0 utilities for Django. Utilities for using OAuth 2.0 in conjunction with the Django datastore. """ import oauth2client import base64 import pickle from django.db import models from oauth2client.client import Storage as BaseStorage class CredentialsField(models.Field): __metaclass__ = models.SubfieldBase def __init__(self, *args, **kwargs): if 'null' not in kwargs: kwargs['null'] = True super(CredentialsField, self).__init__(*args, **kwargs) def get_internal_type(self): return "TextField" def to_python(self, value): if value is None: return None if isinstance(value, oauth2client.client.Credentials): return value return pickle.loads(base64.b64decode(value)) def get_db_prep_value(self, value, connection, prepared=False): if value is None: return None return base64.b64encode(pickle.dumps(value)) class FlowField(models.Field): __metaclass__ = models.SubfieldBase def __init__(self, *args, **kwargs): if 'null' not in kwargs: kwargs['null'] = True super(FlowField, self).__init__(*args, **kwargs) def get_internal_type(self): return "TextField" def to_python(self, value): if value is None: return None if isinstance(value, oauth2client.client.Flow): return value return pickle.loads(base64.b64decode(value)) def get_db_prep_value(self, value, connection, prepared=False): if value is None: return None return base64.b64encode(pickle.dumps(value)) class Storage(BaseStorage): """Store and retrieve a single credential to and from the datastore. This Storage helper presumes the Credentials have been stored as a CredenialsField on a db model class. """ def __init__(self, model_class, key_name, key_value, property_name): """Constructor for Storage. Args: model: db.Model, model class key_name: string, key name for the entity that has the credentials key_value: string, key value for the entity that has the credentials property_name: string, name of the property that is an CredentialsProperty """ self.model_class = model_class self.key_name = key_name self.key_value = key_value self.property_name = property_name def locked_get(self): """Retrieve Credential from datastore. Returns: oauth2client.Credentials """ credential = None query = {self.key_name: self.key_value} entities = self.model_class.objects.filter(**query) if len(entities) > 0: credential = getattr(entities[0], self.property_name) if credential and hasattr(credential, 'set_store'): credential.set_store(self) return credential def locked_put(self, credentials): """Write a Credentials to the datastore. Args: credentials: Credentials, the credentials to store. """ args = {self.key_name: self.key_value} entity = self.model_class(**args) setattr(entity, self.property_name, credentials) entity.save() def locked_delete(self): """Delete Credentials from the datastore.""" query = {self.key_name: self.key_value} entities = self.model_class.objects.filter(**query).delete()
[ "ychen207@binghamton.edu" ]
ychen207@binghamton.edu
3e8fa85fb7afd03c45f83c311743c88e5e962eb2
fd7406dcf3f898bd5b82a0ee4306e02c1d1b4970
/backup/testcase/operation_testcase/testWebBasicDataOperation.py
d50339d1639b7162ead6e2eccf1c21f0aedb5275
[]
no_license
18786262315/zidonghuaapi
e5f979fc599f8bca08e7e5cfbd58943fe36b75d3
28145f13231e9df76a33894b82c0e552afb485fc
refs/heads/master
2020-03-26T01:48:13.018859
2018-08-11T12:32:51
2018-08-11T12:32:51
144,383,122
0
0
null
null
null
null
UTF-8
Python
false
false
1,020
py
# -*- coding: utf8 -*- import unittest from AthenaTest.common.loadDatas import * import sys import importlib importlib.reload(sys) class testWebBasicDataOperation(unittest.TestCase): def setUp(self): self.datafile = '../../datacase/operation_datacase/web_basic_data_operation.xls' def test_merchantInfoOperation(self): '''商家资料测试''' datafile = self.datafile loadDatas(self, datafile, u'merchantInfoOperation') def test_warehouseInfoOperation(self): '''收货仓资料测试''' datafile = self.datafile loadDatas(self, datafile, u'warehouseInfoOperation') def test_trunkInfoOperation(self): '''物流资料测试''' datafile = self.datafile loadDatas(self, datafile, u'trunkInfoOperation') def test_branchInfoOperation(self): '''网点资料测试''' datafile = self.datafile loadDatas(self, datafile, u'branchInfoOperation') if __name__ == "__main__": unittest.main()
[ "843092012@qq.com" ]
843092012@qq.com
63ef7efb72cdbd6ab053b45a1e1b67b28b822140
3bb57eb1f7c1c0aced487e7ce88f3cb84d979054
/reliability/scripts/selectors/user_study_sgss/Run_All_Grammaticality.py
e9e24f48f1582714451889b5453d7e2feb86cc90
[]
no_license
ghpaetzold/phd-backup
e100cd0bbef82644dacc73a8d1c6b757b2203f71
6f5eee43e34baa796efb16db0bc8562243a049b6
refs/heads/master
2020-12-24T16:41:21.490426
2016-04-23T14:50:07
2016-04-23T14:50:07
37,981,094
0
1
null
null
null
null
UTF-8
Python
false
false
826
py
import os #Generators: generators = os.listdir('../../../substitutions/') #generators.remove('all') #Parameters: ks = ['all'] criterions = ['gini'] splitters = ['best'] maxes = ['sqrt'] depths = ['None'] for c in criterions: for s in splitters: for m in maxes: for d in depths: for k in ks: for generator in generators: trainset = '/export/data/ghpaetzold/user_study_sgss/datasets/grammaticality_victor_all_optimistic.txt' testset = '../../../substitutions/' testset += generator + '/substitutions_void.txt' output = '../../../substitutions/' + generator + '/' output += 'substitutions_GrammaticalityUS_'+c+'_'+s+'_'+m+'_'+d+'_'+k+'.txt' comm = 'nohup python Run_Grammaticality.py '+trainset+' '+k+' '+c+' '+s+' '+m+' '+d+' '+testset+' '+output+' &' os.system(comm)
[ "ghpaetzold@outlook.com" ]
ghpaetzold@outlook.com
6e0ebec1fc78e0835c6ecbdb7219e01a09843027
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_disobeying.py
6227a9b226dae0e7d81f3e25281a295fcd1d7404
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _DISOBEYING(): def __init__(self,): self.name = "DISOBEYING" self.definitions = disobey self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['disobey']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
6e591a5e888418ed9a9c93a7560a9da591c60be4
5537eec7f43098d216d2b550678c8d10b2a26f09
/venv/tower/lib/python2.7/site-packages/awx/main/migrations/0033_v303_v245_host_variable_fix.py
fad3545b65c1e39e6a6594561e71708a6219f49d
[]
no_license
wipro-sdx/Automation
f0ae1512b8d9d491d7bacec94c8906d06d696407
a8c46217d0fbe51a71597b5db87cbe98ed19297a
refs/heads/master
2021-07-08T11:09:05.314435
2018-05-02T07:18:54
2018-05-02T07:18:54
131,812,982
0
1
null
2020-07-23T23:22:33
2018-05-02T07:15:28
Python
UTF-8
Python
false
false
661
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations from awx.main.migrations import _migration_utils as migration_utils def update_dashed_host_variables(apps, schema_editor): Host = apps.get_model('main', 'Host') for host in Host.objects.filter(variables='---'): host.variables = '' host.save() class Migration(migrations.Migration): dependencies = [ ('main', '0032_v302_credential_permissions_update'), ] operations = [ migrations.RunPython(migration_utils.set_current_apps_for_migrations), migrations.RunPython(update_dashed_host_variables), ]
[ "admin@example.com" ]
admin@example.com
7540c67ee87e4363953e1932e1e8090ac2b4bef0
444079944e66d19dd8a01fe9834b43d7aa5fc427
/DRRQueue.py
0083c37ff00f549cd00373f0ef062d82bde4f67b
[ "Apache-2.0" ]
permissive
dound/vns
6ea2a6560a87fc86c6533a7e4532d61af908894d
675c581fa18b57b801782079ed33f7b095898c7f
refs/heads/master
2016-09-05T23:17:28.078179
2011-04-30T20:40:25
2011-04-30T20:40:25
288,103
20
9
null
2020-02-01T01:25:56
2009-08-25T21:54:12
Python
UTF-8
Python
false
false
2,958
py
"""The DDRQueue module implements a Queue subclass for use with Deficit Round Robin (DRR) like algorithms.""" from Queue import Queue, Empty class DRRQueue(Queue): """Implements a queue for use with a DRR-like algorithm. Each queue tracks "quanta" available to it (some unit of work - for the original DRR, this was the number of bytes which could be sent). start_service() is used to initiate a new round of service on the queue. task_done() should be called each time a "job" from the queue is finished so that the appropriate quanta can be deducted. When task_done() returns None, then no more quanta are available for jobs from this queue this round. Like the original, leftover quanta are only maintained if the queue is non-empty. Unlike the original, jobs are run until the quanta available is less than or equal to zero. put() or put_nowait() can be used to add jobs to the queue. Note: This queue can be used with ordinary round robin scheme by making the quantum 1 and always calling task_done() with quanta_used=1. """ def __init__(self, maxsize=0, quantum=1): """Creates a simple JobQueue. Use put_nowait() to add jobs to the queue.""" Queue.__init__(self, maxsize) self.deficit_counter = 0 # number of "quanta" which are available for use self.quantum = quantum # how much "quanta" to add each round of service def start_service(self, quantum=None): """Allocates a new quantum to this queue and returns the next job from this queue if sufficient quanta are available to this queue. The quanta added will be self.quantum unless quantum is specified. The next job to run is returned (if any).""" # a new quantum of service is now available to this queue self.deficit_counter += (self.quantum if quantum is None else quantum) return self.__next_task() def task_done(self, quanta_used=1): """Informs the queue that a job has been completed. quanta_used will be subtracted from the amount of quanta available for jobs on this queue. Returns the next job from this queue if sufficient quanta are available. If sufficient quanta are not available or the queue is empty, then None is returned.""" Queue.task_done(self) self.deficit_counter -= quanta_used return self.__next_task() def __next_task(self): """Returns the next job from this queue if sufficient quanta are available. If sufficient quanta are not available or the queue is empty, then None is returned.""" if self.deficit_counter > 0: try: return self.get_nowait() except Empty: # when the queue empties, any leftover quanta are lost self.deficit_counter = 0 # no jobs OR insufficient quanta are left return None
[ "dgu@cs.stanford.edu" ]
dgu@cs.stanford.edu
642e1e9eb6213ea382a825d9cf12a1a9552fa277
ad8b30544480ba1e5f5b1cb2dec2aa77a644e8d2
/SWEA/D2_5102_노드의거리.py
ffc560ef41043f390c247473811e0b1d849de0e1
[]
no_license
hyunwoojeong123/Algorithm
79abc82d944ca60342a7f8b6fc44fac20ac55123
0baaf3222fbbec699ffbec5d4cc680067cf293fb
refs/heads/master
2023-07-10T18:28:51.934005
2021-08-18T01:51:23
2021-08-18T01:51:23
284,403,698
1
0
null
null
null
null
UTF-8
Python
false
false
979
py
T = int(input()) for tc in range(1,T+1): V,E = list(map(int,input().split())) linked = [[False for j in range(V+1)] for i in range(V+1)] #print('연결:') for e in range(E): s,g = list(map(int,input().split())) #print(s,g) linked[s][g] = True linked[g][s] = True #print('연결 끝') S,G = list(map(int,input().split())) dist = [-1 for v in range(V+1)] dist[S] = 0 q = [] q.append(S) ans = 0 while q: pv = q.pop(0) #print(pv,dist[pv]) if pv == G: ans = dist[G] break for nv in range(1,V+1): #print('linked[{}][{}]'.format(pv,nv),linked[nv][pv]) if not linked[nv][pv]: continue #print('dist[{}] < dist[{}]'.format(nv,pv),dist[nv],dist[pv]) if dist[nv] != -1: continue q.append(nv) dist[nv] = dist[pv]+1 print('#{} {}'.format(tc,ans))
[ "hw2621@daum.net" ]
hw2621@daum.net
993e1f05b6625bd9b8a9e969e2a2bc0c853cb581
4552bce7f09cffe1770162130896c30e481f1989
/Tensorflow components and Linear Regression/Variables.py
16ac2f75f07572ea4151a43503576e4e67a70924
[]
no_license
Marius-Juston/Tensorflow_Tutorial
b953745a046e068af2eb5e803180b9fdc67b9c45
bc2217f86f31b4722426899152c6355e973de8f5
refs/heads/master
2021-07-17T19:11:23.685737
2017-10-26T03:51:46
2017-10-26T03:51:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,204
py
# coding=utf-8 # In machine learning we will typically want a model that can take arbitrary inputs, such as the one above. To make # the model trainable, we need to be able to modify the graph to get new outputs with the same input. Variables allow # us to add trainable parameters to a graph. They are constructed with a type and initial value: import tensorflow as tf from Helper_Methods import open_tensorboard W = tf.Variable(.3, dtype=tf.float32, name="weight") b = tf.Variable(-.3, dtype=tf.float32, name="bias") x = tf.placeholder(tf.float32) linear_model = W * x + b sess = tf.Session() # Constants are initialized when you call tf.constant, and their value can never change. By contrast, variables are # not initialized when you call tf.Variable. To initialize all the variables in a TensorFlow program, # you must explicitly call a special operation as follows: init = tf.global_variables_initializer() sess.run(init) # Since x is a placeholder, we can evaluate linear_model for several values of x simultaneously as follows: print(sess.run(linear_model, {x: [1, 2, 3, 4]})) # to produce the output # [ 0. 0.30000001 0.60000002 0.90000004] open_tensorboard(__file__, sess)
[ "Marius.juston@hotmail.fr" ]
Marius.juston@hotmail.fr
60bccdd0b292adf076dd2409f1527cfdfa80ee7b
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/q5jCspdCvmSjKE9HZ_10.py
d11123755af6974e993ef6ec8e17acbdeed16337
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
def lcm(a,b): if a<b: a,b=b,a for i in range(b,a*b+1): if i%a==0 and i%b==0: break return i def lcm_of_list(numbers): m=lcm(numbers[0],numbers[1]) for i in range(2,len(numbers)): m=lcm(m,numbers[i]) return m
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
6d8aecc8c41ff3f7b51eb4678cc55f2310d9c393
ed7e61c8eef7fb2213adeb67557d605470c17fb3
/ML/50-mlps/28-keras-cnn-big-filters/create_validation_curve.py
f39496852849e0b8a1383a08607ff10c06e7c771
[]
no_license
MartinThoma/algorithms
535840224323822f2ea6b7dd6f82a0fdd22a0ff9
a251e9599b685dbf89c891f02d20fefd8538ead5
refs/heads/master
2023-02-23T17:58:10.913634
2023-02-21T05:58:59
2023-02-21T05:58:59
4,939,076
241
126
null
2023-02-16T05:16:23
2012-07-07T16:07:23
Python
UTF-8
Python
false
false
780
py
#!/usr/bin/env python """Visualize validation curve.""" import matplotlib.pyplot as plt import pandas as pd Y_SCALE_FACTOR = 100 # Prepare dataframe df = pd.read_csv('log.csv', sep=';') df = df[['epoch', 'acc', 'val_acc']] df[['acc', 'val_acc']] = df[['acc', 'val_acc']] * Y_SCALE_FACTOR df = df.set_index('epoch').rename(columns={'acc': 'Training Accuracy', 'val_acc': 'Validation Accuracy'}) print(df) # Plot fig, ax = plt.subplots() df.plot.line(ylim=(0.75 * Y_SCALE_FACTOR, 1.00 * Y_SCALE_FACTOR), title='Validation Curve', ax=ax) ax.minorticks_on() # required for minor grid ax.grid() ax.grid(which='minor', linestyle=':', linewidth='0.5', color='black') plt.savefig('validation-curve.png', dpi=300)
[ "info@martin-thoma.de" ]
info@martin-thoma.de
1cc80ab7f1cc14d254b7aa8d4c1063259b1c3fbb
45b180004c441663bd223219f8edef8c82481be1
/color.py
9c26e029d1b9faa98fc5d9d1338fca7c4d1aa9db
[]
no_license
bradbann/mypy
a679e22fdd04525faf32a73934d813a45af1092f
8bf6234be438aaf3ce2b69e4c10b2ce84eaccb98
refs/heads/master
2023-02-19T14:21:59.362385
2020-12-31T09:35:11
2020-12-31T09:35:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from colorama import Fore,Back,Style import colorsys print(Fore.BLACK + 'some red text') print(Back.BLUE + 'and with a green background') print(Style.DIM + 'and in dim text') print(Style.RESET_ALL) print('back to normal now')
[ "127575708@qq.com" ]
127575708@qq.com
88e97776f2dcc40e428edb17c7c0b4271f3e1855
4d995c70ab763e0422ed52e76a3aef9a48208023
/tests/test_data_processors.py
e2b6a855b09d563ab4023b41385a7ba32cb9a542
[]
no_license
QualiSystems/cloudshell-autodiscovery
b254008c3422b525cdb72d4c2716ef5771a38b8a
9ed9e8e74fcf12cb7f7c7fd945f8bc4fae6d5755
refs/heads/master
2021-06-03T17:45:36.975215
2019-05-30T13:39:30
2019-05-30T13:44:48
83,421,029
1
1
null
2021-03-25T22:03:43
2017-02-28T10:44:13
Rich Text Format
UTF-8
Python
false
false
7,409
py
import unittest import mock from autodiscovery.data_processors import JsonDataProcessor class TestJsonDataProcessor(unittest.TestCase): def setUp(self): self.filename = "example.json" self.logger = mock.MagicMock() self.json_data_processor = JsonDataProcessor(logger=self.logger) @mock.patch("autodiscovery.data_processors.config") @mock.patch("autodiscovery.data_processors.utils") def test_prepare_file_path(self, utils, config): full_path = mock.MagicMock() utils.get_full_path.return_value = full_path # act result = self.json_data_processor._prepare_file_path(filename=self.filename) # verify self.assertEqual(result, full_path) utils.get_full_path.assert_called_once_with(config.DATA_FOLDER, self.filename) @mock.patch("autodiscovery.data_processors.json") @mock.patch("autodiscovery.data_processors.open") def test_save(self, open, json): data = mock.MagicMock() file_path = mock.MagicMock() self.json_data_processor._prepare_file_path = mock.MagicMock(return_value=file_path) # act self.json_data_processor._save(data=data, filename=self.filename) # verify self.json_data_processor._prepare_file_path.assert_called_once_with(self.filename) open.assert_called_once_with(file_path, "w") json.dump.assert_called_once_with(data, open().__enter__(), indent=4, sort_keys=True) @mock.patch("autodiscovery.data_processors.json") @mock.patch("autodiscovery.data_processors.open") def test_load(self, open, json): file_path = mock.MagicMock() data = mock.MagicMock() json.load.return_value = data self.json_data_processor._prepare_file_path = mock.MagicMock(return_value=file_path) # act result = self.json_data_processor._load(filename=self.filename) # verify self.assertEqual(result, data) self.json_data_processor._prepare_file_path.assert_called_once_with(self.filename) open.assert_called_once_with(file_path, "r") json.load.assert_called_once_with(open().__enter__()) @mock.patch("autodiscovery.data_processors.config") def test_save_vendor_enterprise_numbers(self, config): data = mock.MagicMock() self.json_data_processor._save = mock.MagicMock() # act self.json_data_processor.save_vendor_enterprise_numbers(data=data) # verify self.json_data_processor._save.assert_called_once_with(data=data, filename=config.VENDOR_ENTERPRISE_NUMBERS_FILE) @mock.patch("autodiscovery.data_processors.config") def test_load_vendor_enterprise_numbers(self, config): """Check that method will properly merge initial vendors config with the additional one""" data = mock.MagicMock() self.json_data_processor._load = mock.MagicMock(return_value=data) # act result = self.json_data_processor.load_vendor_enterprise_numbers() # verify self.assertEqual(result, data) self.json_data_processor._load.assert_called_once_with(filename=config.VENDOR_ENTERPRISE_NUMBERS_FILE) def test_merge_vendors_data(self): """Check that method will properly merge initial vendors config with the additional one""" conf_data = [ { "name": "Cisco", "default_os": "IOS", "operation_systems": [ { "name": "IOS", "default_model": "switch", }, { "name": "IOSXR", "default_model": "router", } ] }, { "name": "Raritan", "default_prompt": "#", "family_name": "PDU", "model_name": "Raritan PDU", "driver_name": "Raritan PDU Driver" } ] additional_data = [ { "name": "Cisco", "default_os": "IOS-EXTENDED", "operation_systems": [ { "name": "IOS-EXTENDED", "default_model": "switch", }, { "name": "IOSXR", "default_model": "switch", } ] }, { "name": "Huawei", "default_os": "VPR", "operation_systems": [ { "name": "VRP", "default_model": "switch", } ] }, ] expected_data = [ { "name": "Cisco", "default_os": "IOS-EXTENDED", "operation_systems": [ { "name": "IOS-EXTENDED", "default_model": "switch", }, { "name": "IOSXR", "default_model": "switch", }, { "name": "IOS", "default_model": "switch", } ] }, { "name": "Huawei", "default_os": "VPR", "operation_systems": [ { "name": "VRP", "default_model": "switch", } ] }, { "name": "Raritan", "default_prompt": "#", "family_name": "PDU", "model_name": "Raritan PDU", "driver_name": "Raritan PDU Driver" }, ] # act result = self.json_data_processor._merge_vendors_data(conf_data, additional_data) # verify self.assertEqual(result, expected_data) @mock.patch("autodiscovery.data_processors.config") @mock.patch("autodiscovery.data_processors.models") def test_load_vendor_config(self, models, config): """Check that method will return VendorDefinitionCollection model""" vendors_collection = mock.MagicMock() models.VendorDefinitionCollection.return_value = vendors_collection additional_vendors_data = mock.MagicMock() vendors_data = mock.MagicMock() self.json_data_processor._merge_vendors_data = mock.MagicMock() self.json_data_processor._load = mock.MagicMock(return_value=vendors_data) # act result = self.json_data_processor.load_vendor_config(additional_vendors_data=additional_vendors_data) # verify self.assertEqual(result, vendors_collection) self.json_data_processor._load.assert_called_once_with(filename=config.VENDORS_CONFIG_FILE) self.json_data_processor._merge_vendors_data.assert_called_once_with(conf_data=vendors_data, additional_data=additional_vendors_data)
[ "anton.p@qualisystems.com" ]
anton.p@qualisystems.com
5ca3a3da95dfa01675de20c2a2689d7b0c4568a5
b9faae037d6c2fb69406aa1f2e86f42d3a6225ce
/data/snippets/github.com/kkkmmu/useful_script/python/function.py
07ead533d318ceefbec699c872dfd32f30dc60cf
[]
no_license
lovefcaaa/snk.dev-assistant
9eaedd448ee2c3f532aa7acdbee1ff1d91f9c07f
20ffcdddba19102348d75235f7d6d557c2386e69
refs/heads/master
2023-07-09T14:12:55.141283
2018-06-25T14:18:49
2018-06-25T14:18:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,842
py
print(abs(-110)) print(max(1, 5, -10, 10)) print(int("123")) print(int(1.24)) print(float("1.2345")) print(str(1.23)) print(str(1000)) print(bool(100)) print(bool(-1000)) print(bool(0)) print(bool(None)) a = abs print(a(-1234)) print(hex(1234)) def mabs(x): if x >= 0: return x else: return -x print(mabs(-11111)) def nop(): pass print(nop()) def mabs2(x): if not isinstance(x, (int, float)): raise TypeError("Bad operand type") if x >= 0: return x else: return -x print(mabs2(-12343)) import math def move(x, y, step, angle=0): nx = x + step * math.cos(angle) ny = y - step * math.sin(angle) return nx, ny print(move(10, 10, 1, 30)) z = move(16, 16, 2, 45) print(z) def power(x, n=2): s = 1 while n > 0: n = n-1 s = s*x return s print(power(2)) print(power(2, 4)) def defaultp(a, b, c=1, d=2): print(a, b, c, d) defaultp(1, 2) defaultp(1, 2, d=10) def calc(*numbers): sum = 0 for n in numbers: sum += n*n return sum print(calc(1,2,3,4,5)) print(calc(1,2)) print(calc(1)) print(calc()) nums = [4, 5, 5, 6, 8] print(calc(*nums)) def person(name, age, **kv): print("name:", name, "age:", age, "other:", kv) person("Liwei", 30) person("Liwei", 30, city="Beijing") person("Liwei", 30, city="Beijing", gender="M") extra = {"City": "Beijing", "job": "polan"} person("Jack", 100, **extra) def person2(name, age, *, city, job): print(name, age, city, job) #person2("jack", 24) #person2("jack", 24, "Beijing", "polan") person2("jack", 24, city="Beijin", job="polan") def fact(n): if n == 1: return 1 return n * fact(n -1) print(fact(10)) def f (x): return x * x r = map(f, [1,2,3,4,5,6,7,8,9,10]) print(r) print(list(r)) print(list(map(str, [1,2,3,4,5,6,7,8,9])))
[ "rosco_pecoltran@msn.com" ]
rosco_pecoltran@msn.com
a892c3b8705ffa0ffda05544d3ee3374853c0d4a
65f548bbeb62d7f2476351bda7b723dab216ce08
/train_scripts/trainScriptNN.py
aae161d89eeaafeb65bc1a94037985b9c6919291
[]
no_license
StefanPushkov/TestDocker
f6148db20e2f50694528f88a837e4c517e5a8afe
aecdd0b5207e9f93950faa51535a888d62bb67c1
refs/heads/master
2022-11-21T08:44:00.607204
2020-07-20T10:46:39
2020-07-20T10:46:39
280,253,224
0
0
null
null
null
null
UTF-8
Python
false
false
5,911
py
import torch import torch.nn as nn import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from torch.utils import data as data_utils from sklearn.preprocessing import StandardScaler from sklearn.metrics import roc_curve, auc from sklearn.metrics import roc_auc_score import torch.nn.functional as F # Read data df = pd.read_csv("./data/train.csv/train.csv") df_test = pd.read_csv('./data/test.csv/test.csv') print('-'*15, "Data loaded") # Replace inf values with np.nan, then replace nan with 0 df.replace([np.inf, -np.inf], np.nan,inplace=True) df = df.fillna(0) df_test.replace([np.inf, -np.inf], np.nan,inplace=True) df_test = df_test.fillna(0) # Features X = df.drop(['sample_id', 'y'], axis=1) X_submission = df_test.drop(['sample_id'], axis=1) # Labels y = df['y'] # Features normalization features_norm = StandardScaler() X_std = features_norm.fit_transform(X) X_submission_std = features_norm.fit_transform(X_submission) # Split data in train/test X_train, x_test, Y_train, y_test = train_test_split(X_std, y, test_size=0.2, random_state=42) # To torch tensor: Train X_train_tensor = torch.tensor(X_train, dtype=torch.float) Y_train_tensor = torch.tensor(Y_train.values).flatten() # Test x_test_tensor = torch.tensor(x_test, dtype=torch.float) y_test_tensor = torch.tensor(y_test.values).flatten() # Create train dataloader batch_size = 128 train_dataset = data_utils.TensorDataset(X_train_tensor, Y_train_tensor) train_loader = data_utils.DataLoader(dataset = train_dataset, batch_size = batch_size, shuffle = True) # Create eval dataloader eval_dataset = data_utils.TensorDataset(x_test_tensor, y_test_tensor) eval_loader = data_utils.DataLoader(dataset = eval_dataset, batch_size = batch_size, shuffle = True) import torch.nn.functional as F # Class must extend nn.Module class MyClassifier(nn.Module): def __init__(self): super(MyClassifier,self).__init__() # Our network consists of 3 layers. 1 input, 1 hidden and 1 output layer self.fc1 = nn.Linear(1612,200) self.fc2 = nn.Linear(200,100) self.layer_out = nn.Linear(100,1) self.dropout = nn.Dropout() self.bn0 = nn.BatchNorm1d(1612) self.bn1 = nn.BatchNorm1d(200) self.bn_out = nn.BatchNorm1d(100) def forward(self,x): # Batch normalization x = self.bn0(x) # This applies Linear transformation to input data with non-linear activation x = F.relu(self.fc1(x)) # Dropout x = self.dropout(x) x = self.bn1(x) x = F.relu(self.fc2(x)) x = self.dropout(x) x = self.bn_out(x) #This applies linear transformation to produce output data x = self.layer_out(x) return x #This function takes an input and predicts the class, (0 or 1) def predict(self, x): with torch.no_grad(): y_pred = model(x) y_pred_tag = torch.round(torch.sigmoid(y_pred)) return torch.tensor(y_pred_tag, dtype=float) def predict_proba(self, x): with torch.no_grad(): y_pred = model(x) prob = torch.sigmoid(y_pred) return torch.tensor(prob, dtype=float) def train_model(model, optim, criterion, train_dl): model.train() total = 0 sum_loss = 0 for x, y in train_dl: batch = y.shape[0] output = model(x) loss = criterion(output, y.unsqueeze(1)) optim.zero_grad() loss.backward() # Clip gradient torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) optim.step() # Accumulate epoch loss total += batch sum_loss += batch*(loss.item()) # print("Batch loss: ", batch*(loss.item())) return sum_loss/total if __name__ == '__main__': # Initialize the model model = MyClassifier() # Define loss criterion criterion = nn.BCEWithLogitsLoss() # Define the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) print(15*'-', 'Model started training') #Number of epochs epochs = 150 #List to store losses train_losses = [] for i in range(epochs): epoch_loss = train_model(model=model, optim=optimizer, criterion=criterion, train_dl=train_loader) train_losses.append(epoch_loss) if i % 10 == 0: print("Epoch {0}, Loss {1}".format(i+1, epoch_loss)) auc_sc = roc_auc_score(y_test_tensor.long(), model.predict_proba(x_test_tensor)) print('-'*15, "AUC score Network = ", auc_sc) prob_voting = model.predict_proba(x_test_tensor) # Plotting ROC-AUC false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test_tensor.numpy(), prob_voting.numpy()) roc_auc = auc(false_positive_rate, true_positive_rate) plt.figure(figsize=(10,10)) plt.title('Receiver Operating Characteristic') plt.plot(false_positive_rate,true_positive_rate, color='red',label = 'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],linestyle='--') plt.axis('tight') plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.savefig('./aucNN.jpg') # Convert numpy to torch tensor and make prediction X_submission_tensor = torch.tensor(X_submission_std, dtype=torch.float) a = model.predict_proba(X_submission_tensor).numpy() # Create submission submission = pd.DataFrame(df_test["sample_id"], index=None) submission["y"] = a submission.to_csv("./Network_sabmission.csv", sep=",", index=False) print("Submission created (NN).")
[ "stefan.pushkov@icloud.com" ]
stefan.pushkov@icloud.com
6634da207df73bf435953807b98cb2f9663aeea0
3d705ec48c94373817e5f61d3f839988910431e3
/misc/tool/player/create_m3u8.py
9a477d1647cb3a6a26eaa517614fc0aad8c674d8
[]
no_license
namesuqi/zeus
937d3a6849523ae931162cd02c5a09b7e37ebdd8
3445b59b29854b70f25da2950016f135aa2a5204
refs/heads/master
2022-07-24T14:42:28.600288
2018-03-29T08:03:09
2018-03-29T08:03:09
127,256,973
0
0
null
2022-07-07T22:57:57
2018-03-29T07:53:16
Python
UTF-8
Python
false
false
475
py
# coding=utf-8 """ 不停地将m3u8子片段写入文件 用于测试直播播放器的模拟器 __author__ = 'zengyuetian' """ from random import randint import time if __name__ == "__main__": for i in range(124): time.sleep(randint(1, 4)) with open("zeus.m3u8", "a") as f: url = "http://buddiestv.qiniudn.com/sUWPWh5odxh9vtorJ2tsEue__hQ=/lsmeSvostHYW3MuybV2NyHNYoRqS/seg{0}\n".format(str(i)) f.write(url) f.flush()
[ "suqi_name@163.com" ]
suqi_name@163.com
86274f2d6be5ec0e61d7bdcfd74fd71805bf9bb9
0b3024565732948d36cb1ada431274db7fb2d6f1
/PublicReference/config.py
9559073ec5f12b9d486615af8f062953b627adf7
[]
no_license
Luyaojun/DNFCalculating
adaa5b761e34985661d0c994ad52a63f092c6e62
02d701ec63ed083a8b7043229dfceb758e426cae
refs/heads/master
2022-11-17T11:04:00.245554
2020-07-18T07:07:32
2020-07-18T07:07:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,886
py
import configparser conf = configparser.ConfigParser() conf.read('./ResourceFiles/set.ini', encoding='utf-8') #窗口缩放 try: 窗口显示模式 = conf.getint('窗口显示', 'value') except: 窗口显示模式 = 0 #不计算装备属性,武器类型为角色武器选项第一个 try: 调试开关 = conf.getint('调试开关', 'value') except: 调试开关 = 0 #输出搭配和伤害数据到csv try: 输出数据 = conf.getint('输出数据', 'value') except: 输出数据 = 0 #控制夜语黑瞳武器是否显示在第一页 try: 普雷武器显示 = 1 - conf.getint('夜语黑瞳', 'value') except: 普雷武器显示 = 1 #排行里每把武器只会出现一次 try: 武器排名 = conf.getint('武器排名', 'value') except: 武器排名 = 0 #怪物属性 try: 防御输入 = conf.getint('怪物属性', '防御') 火抗输入 = conf.getint('怪物属性', '火抗') 冰抗输入 = conf.getint('怪物属性', '冰抗') 光抗输入 = conf.getint('怪物属性', '光抗') 暗抗输入 = conf.getint('怪物属性', '暗抗') except: 防御输入 = 443243 火抗输入 = 0 冰抗输入 = 0 光抗输入 = 0 暗抗输入 = 0 #武器序号 try: 武器序号 = conf.getint('武器序号', 'value') except: 武器序号 = -1 #天劫 try: 天劫减防 = conf.getint('天劫', '减防生效') 天劫减抗 = conf.getint('天劫', '减抗生效') except: 天劫减防 = 0 天劫减抗 = 0 #战术之王的御敌套装 try: 战术白字 = conf.getint('战术之王的御敌', '套装附加') / 100 except: 战术白字 = 0.40 #天御之灾 try: 天御套装 = conf.getint('天御之灾', '套装属性') except: 天御套装 = 0 #千蛛碎影减防 try: 千蛛减防 = conf.getint('千蛛碎影', '减防生效') except: 千蛛减防 = 0
[ "wxh_email@yeah.net" ]
wxh_email@yeah.net
23cc18ee51c728fe6203cb595154805a17389974
f5d2a1459c81eb23a745bd63f41ef980c41ea0a4
/ZG-PhaseFour/code/website/pcauto/PcautoComments.py
3d29bfc7086cc8fd34cc48ac7d373bdd125bca66
[]
no_license
ErBingBing/django-tonado-crawler
6800bb0269e99e2454fb0a9079175ffe9d4d0a0b
db31b4cdf7ecc509f1a87aa325621943df825e98
refs/heads/master
2021-08-22T11:30:08.419583
2017-11-30T04:04:40
2017-11-30T04:04:40
112,562,722
0
0
null
null
null
null
UTF-8
Python
false
false
5,027
py
# encoding=utf-8 ############################################################################################## # @file:PcautoComments.py # @author:Ninghz # @date:2016/11/18 # @note:太平洋汽车网获取评论的文件 # @修改日志 # @author:yongjicao # @date:2017/9/12 # @note:修改评论存储方式为mysql ############################################################################################## import json import datetime import traceback import math from utility.regexutil import RegexUtility from website.common.comments import SiteComments from storage.cmtstorage import CMTStorage from storage.newsstorage import NewsStorage from utility.gettimeutil import TimeUtility from log.spiderlog import Logger ############################################################################################## # @class:PcautoComments # @author:Ninghz # @date:2016/11/18 # @note:太平洋汽车网站获取评论的类,继承于SiteComments类 ############################################################################################## class PcautoComments(SiteComments): COMMENTS_URL = 'http://cmt.pcauto.com.cn/action/comment/list_new_json.jsp?urlHandle=1&url=%s&pageNo=%d&pageSize=%d' PAGE_SIZE = 50.0 STEP_1 = None STEP_2 = 2 STEP_3 = 3 def __init__(self): SiteComments.__init__(self) self.r = RegexUtility() ############################################################################################## # @functions:process # @param:共通模块传入的参数(对象url, 原始url, 当前step数,自定义参数) # @return:Step1:获取评论的首页url # Step2:获取评论的所有url # Step3: 抽出的评论和最新评论的创建时间 # @author:Ninghz # @date:2016/11/16 # @note:Step1:通过共通模块传入的url,拼出获取评论总页数的url,并传递给共通模块 # Step2:通过共通模块传入的html内容获取到评论总页数,拼出获取评论的url,并传递给共通模块 # Step3:通过共通模块传入的html内容获取到评论和最新评论的创建时间,并传递给共通模块 ############################################################################################## def process(self, params): try: if params.step is None: # 拼接第一页评论url comments_url = PcautoComments.COMMENTS_URL % (params.originalurl, 1, PcautoComments.PAGE_SIZE) #通知下载平台,根据评论url获取第一页评论内容 self.storeurl(comments_url, params.originalurl, PcautoComments.STEP_2) #获取第一页评论内容,循环获取全部评论url elif params.step == PcautoComments.STEP_2: # 获取评论的Jason返回值 comments = json.loads(params.content) # 获取评论页数 comments_count = int(comments['total']) NewsStorage.setcmtnum(params.originalurl, comments_count) if comments_count == 0: return # 判断增量 cmtnum = CMTStorage.getcount(params.originalurl, True) if cmtnum >= comments_count: return page_num = int(math.ceil(float(comments_count - cmtnum) / self.PAGE_SIZE)) if page_num >= self.maxpages: page_num = self.maxpages # 循环拼接评论url,提交下载平台获取评论数据 for page in range(1, page_num + 1, 1): commentUrl = PcautoComments.COMMENTS_URL % (params.originalurl, page, PcautoComments.PAGE_SIZE) self.storeurl(commentUrl, params.originalurl, PcautoComments.STEP_3) #解析评论数据 elif params.step == PcautoComments.STEP_3: commentsinfo = json.loads(params.content) comments = [] for comment in commentsinfo['data']: updatetime = comment['createTime'] content = comment['content'] curtime = TimeUtility.getuniformtime(updatetime) try: nick = comment['nickName'] except: nick = 'anonymous' if not CMTStorage.exist(params.originalurl, content, curtime, nick): CMTStorage.storecmt(params.originalurl, content, curtime, nick) # if URLStorage.storeupdatetime(params.originalurl, updatetime): # cmti = CommentInfo() # cmti.content = comment['content'] # comments.append(cmti) # if len(comments) > 0: # self.commentstorage.store(params.originalurl, comments) except Exception, e: traceback.print_exc()
[ "913702626@qq.com" ]
913702626@qq.com
dc0cd93f35f2c1313c250efce57156a66fbf52bb
4bf3aaf77c309a489100b98a8c03532632df152c
/Python/동빈북/10주차2/트리의지름.py
5a204ed65235c2f7a796144aba287d2f73437648
[]
no_license
murane/PS
7fbfc54d962231949efc67f1a35c4b0119de0780
e938c6c503aeac08bf65e1e66709172b0e5da6ef
refs/heads/master
2023-05-06T22:51:54.105811
2021-05-30T03:34:53
2021-05-30T03:34:53
293,699,199
0
0
null
null
null
null
UTF-8
Python
false
false
632
py
import sys r=sys.stdin.readline V=int(r()) tree=[dict() for _ in range(V+1)] for _ in range(V): line=list(map(int,r().split())) target=line[0] line=line[1:-1] for i in range(len(line)//2): tree[target][line[i*2]]=line[i*2+1] tree[line[i*2]][target]=line[i*2+1] leng=0 pole=0 visit=[False]*(V+1) def dfs(V,Cur): global leng global pole visit[V]=True if leng<Cur: leng=Cur pole=V for Node,W in tree[V].items(): if not visit[Node]: visit[Node]=True dfs(Node,Cur+W) dfs(1,0) leng=0 visit=[False]*(V+1) dfs(pole,0) print(leng)
[ "murane@naver.com" ]
murane@naver.com
381983aa73140a1fb84cd80fcf777075c6e1922f
99c4d4a6592fded0e8e59652484ab226ac0bd38c
/code/batch-1/vse-naloge-brez-testov/DN7-M-175.py
9f07005e81b8ff32835a51038b44d55f2690253c
[]
no_license
benquick123/code-profiling
23e9aa5aecb91753e2f1fecdc3f6d62049a990d5
0d496d649247776d121683d10019ec2a7cba574c
refs/heads/master
2021-10-08T02:53:50.107036
2018-12-06T22:56:38
2018-12-06T22:56:38
126,011,752
0
0
null
null
null
null
UTF-8
Python
false
false
8,198
py
# To funkcijo prijazno podarjam vsem, ki bodo programirali v eni vrstici. :) # Kako jo uporabiti, je v navodilih. Kdor je ne potrebuje, naj jo ignorira. import collections def vsa_polja(s, v): """ Generiraj vse koordinate (x, y) za polje s podano širino in višino Args: s (int): širina v (int): višina Returns: generator parov polj """ return ((x, y) for x in range(s) for y in range(v)) ######################## # Za oceno 6 def sosedov(x, y, mine): """ Vrni število sosedov polja s koordinatami `(x, y)` na katerih je mina. Polje samo ne šteje. Args: x (int): koordinata x y (int): koordinata y mine (set of tuple of int): koordinate min Returns: int: število sosedov """ def sosedov(x, y, mine): k = 0 for x1, y1, in mine: if abs(x - x1) <= 1 and abs(y - y1) <= 1 and (x, y) != (x1, y1): k += 1 return k def najvec_sosedov(mine, s, v): """ Vrni koordinati polja z največ sosednjih min Args: mine (set of (int, int)): koordinate min s (int): širina polja v (int): višina polja Returns: tuple of int: koordinati polja """ def najvec_sosedov(mine, s, v): sl = collections.defaultdict(list) for x, y in vsa_polja(s, v): sl[sosedov(x, y, mine)].append((x, y)) return sl[max(sl)][0] def brez_sosedov(mine, s, v): """ Vrni množico koordinat polj brez min na sosednjih poljih. Polje samo lahko vsebuje mino. Args: mine (set of tuple of int): koordinate min s (int): širina polja v (int): višina polja Returns: set of tuple: polja brez min na sosednjih poljih """ def brez_sosedov(mine, s, v): sl = collections.defaultdict(set) for x, y in vsa_polja(s, v): sl[sosedov(x, y, mine)].add((x, y)) return sl[0] def po_sosedih(mine, s, v): """ Vrni slovar, katerega ključi so možna števila sosednjih polj z minami (torej števila od 0 do 8), vrednosti pa množice koordinat polj s toliko sosedami. Args: mine (set of tuple of int): koordinate min s (int): širina polja v (int): višina polja Returns: dict: (glej zgoraj) """ def po_sosedih(mine, s, v): sl = {} for i in range(9): sl[i] = set() for x, y in vsa_polja(s, v): sl[sosedov(x, y, mine)].add((x, y)) return sl ######################## # Za oceno 7 def dolzina_poti(pot): """ Vrni dolžino podane poti, vključno z vmesnimi polji. Args: pot (list of tuple): seznam koordinat polj Returns: int: dolžina poti """ def dolzina_poti(pot): k = 0 for (x0, y0), (x1, y1) in zip(pot, pot[1:]): if x0 != x1: k += abs(x1 - x0) if y0 != y1: k += abs(y1 - y0) return k def varen_premik(x0, y0, x1, y1, mine): """ Vrni `True`, če je pomik z (x0, y0) and (x1, y1) varen, `False`, če ni. Args: x0 (int): koordinata x začetnega polja y0 (int): koordinata y začetnega polja x1 (int): koordinata x končnega polja y1 (int): koordinata y končnega polja mine (set of tuple of int): koordinate min Returns: bool: `True`, če je premik varen, `False`, če ni. """ def varen_premik(x0, y0, x1, y1, mine): if (x0, y0) in mine or (x1, y1) in mine: return False if x0 != x1: if x1 < x0: while x1 != x0: x0 -= 1 if(x0, y0) in mine: return False else: while x1 != x0: x0 += 1 if(x0, y0) in mine: return False else: if y1 < y0: while y1 != y0: y0 -= 1 if(x0, y0) in mine: return False else: while y1 != y0: y0 += 1 if(x0, y0) in mine: return False return True def varna_pot(pot, mine): """ Vrni `True`, če je podana pot varna, `False`, če ni. Args: pot (list of tuple of int): koordinate točk na poti (brez vmesnih točk) mine (set of tuple of int): koordinate min Returns: bool: `True`, če je pot varna, `False`, če ni. """ def varna_pot(pot, mine): if len(pot) == 1 and pot[0] in mine: return False for pot1, pot2 in zip(pot, pot[1:]): if not varen_premik(pot1[0], pot1[1], pot2[0], pot2[1], mine): return False return True ######################## # Za oceno 8 def polje_v_mine(polje): """ Vrni koordinate min v podanem polju. Niz polje opisuje polje tako, da so vodoravne "vrstice" polja ločene s presledki. Prosta polja so označena z znako `.`, mine z `X`. Args: polje (str): polje Returns: mine (set of tuple of int): koordinate min s (int): širina polja v (int): višina polja. """ def polje_v_mine(polje): kor = set() v = -1 for pole in polje.split(): v += 1 for s in range(len(pole)): if pole[s] == "X": kor.add((s, v)) return kor, s + 1, v + 1 ######################## # Za oceno 9 # # Vse funkcije za oceno 6 in 7 morajo biti napisane v eni vrstici. def sosedov(x, y, mine): return sum([1 for x1, y1 in mine if abs(x - x1) <= 1 and abs(y - y1) <= 1 and (x, y) != (x1, y1)]) def dolzina_poti(pot): return sum([abs(x1 - x0) + abs(y1 - y0) for (x0, y0), (x1, y1) in zip(pot, pot[1:])]) def brez_sosedov(mine, s, v): return {a for a, b in {(x, y):sosedov(x, y, mine) for x, y in vsa_polja(s, v)}.items() if b == 0} def varna_pot(pot, mine): return all([not (len(pot) == 1 and pot[0] in mine1)] + [varen_premik(pot1[0], pot1[1], pot2[0], pot2[1], mine1) for pot1, pot2 in zip(pot, pot[1:])]) def varen_premik(x0, y0, x1, y1, mine): return all([not((x0, y0) in mine or (x1, y1) in mine)] + \ [not((x, y0) in mine) for x in range(x0, x1) if x0 < x1] + \ [not((x, y0) in mine) for x in range(x0, x1, -1) if x0 > x1] + \ [not ((x0, y) in mine) for y in range(y0, y1) if y0 < y1] + \ [not((x0, y) in mine) for y in range(y0, y1, -1) if y0 > y1]) def najvec_sosedov(mine, s, v): return max({sosedov(x, y, mine):(x, y) for x, y in vsa_polja(s, v)}.items())[1] def po_sosedih(mine, s, v): return {a:{(x, y)for x, y in vsa_polja(s, v) if a == sosedov(x, y, mine)} for a, b in {i:{1, 2, 3} for i in range(9)}.items()} ######################## # Za oceno 10 def preberi_pot(ukazi): """ Za podani seznam ukazov (glej navodila naloge) vrni pot. Args: ukazi (str): ukazi, napisani po vrsticah Returns: list of tuple of int: pot """ def preberi_pot(ukazi): x = y = nasoka = 0 pot = [(x, y)] for ukaz in ukazi.split(): if ukaz.isalpha(): if ukaz == "DESNO": nasoka += 1 else: nasoka -= 1 if nasoka < -3 or nasoka > 3: nasoka = 0 else: if nasoka == 1 or nasoka == -3: #360 x += int(ukaz) elif nasoka == 2 or nasoka == -2: #270 y += int(ukaz) elif nasoka == 3 or nasoka == -1: #180 x -= int(ukaz) else: y -= int(ukaz) pot.append((x, y)) return pot def zapisi_pot(pot): """ Za podano pot vrni seznam ukazov (glej navodila naloge). Args: pot (list of tuple of int): pot Returns: str: ukazi, napisani po vrsticah """ def zapisi_pot(pot): potmoj = [] ukazi = "" for (x0, y0), (x1, y1) in zip(pot, pot[1:]): if (x0, y0) not in potmoj: potmoj.append((x0, y0)) if (x1, y1) not in potmoj: potmoj.append((x1, y1)) k = abs(x1 - x0) + abs(y1 - y0) while preberi_pot(ukazi + str(k)) != potmoj: ukazi += " LEVO " ukazi += str(k) return ukazi
[ "lenart.motnikar@gmail.com" ]
lenart.motnikar@gmail.com
14d337cc0ae57c9c93b5155c34ee19114e1317c7
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/helpers/typeshed/stubs/openpyxl/openpyxl/drawing/connector.pyi
3b3e8a479f72006e2689a5b70ac025c01e2a488f
[ "Apache-2.0", "MIT" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
1,867
pyi
from typing import Any from openpyxl.descriptors.serialisable import Serialisable class Connection(Serialisable): id: Any idx: Any def __init__(self, id: Any | None = ..., idx: Any | None = ...) -> None: ... class ConnectorLocking(Serialisable): extLst: Any def __init__(self, extLst: Any | None = ...) -> None: ... class NonVisualConnectorProperties(Serialisable): cxnSpLocks: Any stCxn: Any endCxn: Any extLst: Any def __init__( self, cxnSpLocks: Any | None = ..., stCxn: Any | None = ..., endCxn: Any | None = ..., extLst: Any | None = ... ) -> None: ... class ConnectorNonVisual(Serialisable): cNvPr: Any cNvCxnSpPr: Any __elements__: Any def __init__(self, cNvPr: Any | None = ..., cNvCxnSpPr: Any | None = ...) -> None: ... class ConnectorShape(Serialisable): tagname: str nvCxnSpPr: Any spPr: Any style: Any macro: Any fPublished: Any def __init__( self, nvCxnSpPr: Any | None = ..., spPr: Any | None = ..., style: Any | None = ..., macro: Any | None = ..., fPublished: Any | None = ..., ) -> None: ... class ShapeMeta(Serialisable): tagname: str cNvPr: Any cNvSpPr: Any def __init__(self, cNvPr: Any | None = ..., cNvSpPr: Any | None = ...) -> None: ... class Shape(Serialisable): macro: Any textlink: Any fPublished: Any fLocksText: Any nvSpPr: Any meta: Any spPr: Any graphicalProperties: Any style: Any txBody: Any def __init__( self, macro: Any | None = ..., textlink: Any | None = ..., fPublished: Any | None = ..., fLocksText: Any | None = ..., nvSpPr: Any | None = ..., spPr: Any | None = ..., style: Any | None = ..., txBody: Any | None = ..., ) -> None: ...
[ "intellij-monorepo-bot-no-reply@jetbrains.com" ]
intellij-monorepo-bot-no-reply@jetbrains.com
51773bb0b5cf61f1eb2f13888232b12c252e6fbe
f121695e2dff353607fa47fb42482470e03bbf8a
/capitulo_06-Dicionarios/user.py
27f9b3f93f445d4a391344208f4b9726d72af033
[]
no_license
ranog/python_work
76cbcf784c86fae4482be5383223e4b0a34f4130
47c442a90dcf32d5aef70858693a772a3c76a7ac
refs/heads/master
2022-12-22T11:02:26.482059
2021-04-17T01:12:22
2021-04-17T01:12:22
233,634,221
2
1
null
2022-12-08T07:38:43
2020-01-13T15:58:46
Python
UTF-8
Python
false
false
2,642
py
#! /usr/bin/env python3 """ NOME user.py - Percorrendo todos os pares chave-valor com um laço SINOPSES chmod +x user.py ./user.py Key: username Value: efermi Key: first Value: enrico Key: last Value: fermi - 6.12 - Extensões: Username: efermi Name: Erico Fermi Username: aeinstein Name: Albert Einstein Username: mcurie Name: Marie Curie DESCRIÇÃO Para escrever um laço for para um dicionário, devemos criar nomes para as duas variáveis que armazenarão a chave e o valor de cada par chave-valor. Você pode escolher qualquer nome que quiser para essas duas variáveis. Esse código também funcionaria bem se usássemos abreviaturas para os nomes das variáveis, assim: for k, v in user_0.items(). A segunda metade da instrução for inclui o nome do dicionário, seguido do método items(), que devolve uma lista de pares chave-valor. O laço for então armazena cada um desses pares nas duas variáveis especificadas. No exemplo anterior, usamos as variáveis para exibir cada chave (key), seguido do valor associado (value). O "\n" na primeira instrução print garante que uma linha em branco seja inserida antes de cada par chave-valor na saída. Python não se importa com a ordem em que os pares chave-valor são armazenados; ele só registra as conexões entre cada chave individual e seu valor. 6.12 – Extensões: Estamos trabalhando agora com exemplos complexos o bastante para poderem ser estendidos de várias maneiras. Use um dos programas de exemplo deste capítulo e estenda-o acrescentando novas chaves e valores, alterando o contexto do programa ou melhorando a formatação da saída. ---------------------------------------------------------------------- HISTÓRICO 20202410: João Paulo, outubro de 2020. - Percorrendo todos os pares chave-valor com um laço (Pag. 138-139). 20202810: João Paulo, outubro de 2020. - FAÇA VOCÊ MESMO 6.12 - Extensões (pg 150). """ user_0 = {'username' : 'efermi', 'first' : 'enrico', 'last' : 'fermi',} for key, value in user_0.items(): print("\nKey: " + key) print("Value: " + value) print("\n- 6.12 - Extensões:") users = { 'efermi' : {'first' : 'erico', 'last' : 'fermi',}, 'aeinstein' : {'first' : 'albert', 'last': 'einstein',}, 'mcurie': {'first': 'marie', 'last': 'curie',},} for key, value in users.items(): print("\nUsername: " + key) full_name = value['first'] + " " + value['last'] print("Name: " + full_name.title())
[ "jprnogueira@yahoo.com.br" ]
jprnogueira@yahoo.com.br
7a14e8464e65364030788781634321eba09f3d7f
80d50ea48e10674b1b7d3f583a1c4b7d0b01200f
/examples/v1/synthetics/CreateSyntheticsAPITest.py
84904e1d7992fcae134d9955d3c134e4da54febc
[ "Apache-2.0", "BSD-3-Clause", "MIT", "MPL-2.0" ]
permissive
DataDog/datadog-api-client-python
3e01fa630278ad0b5c7005f08b7f61d07aa87345
392de360e7de659ee25e4a6753706820ca7c6a92
refs/heads/master
2023-09-01T20:32:37.718187
2023-09-01T14:42:04
2023-09-01T14:42:04
193,793,657
82
36
Apache-2.0
2023-09-14T18:22:39
2019-06-25T22:52:04
Python
UTF-8
Python
false
false
4,304
py
""" Create an API test returns "OK - Returns the created test details." response """ from datadog_api_client import ApiClient, Configuration from datadog_api_client.v1.api.synthetics_api import SyntheticsApi from datadog_api_client.v1.model.synthetics_api_test import SyntheticsAPITest from datadog_api_client.v1.model.synthetics_api_test_config import SyntheticsAPITestConfig from datadog_api_client.v1.model.synthetics_api_test_type import SyntheticsAPITestType from datadog_api_client.v1.model.synthetics_assertion_operator import SyntheticsAssertionOperator from datadog_api_client.v1.model.synthetics_assertion_target import SyntheticsAssertionTarget from datadog_api_client.v1.model.synthetics_assertion_type import SyntheticsAssertionType from datadog_api_client.v1.model.synthetics_browser_test_rum_settings import SyntheticsBrowserTestRumSettings from datadog_api_client.v1.model.synthetics_device_id import SyntheticsDeviceID from datadog_api_client.v1.model.synthetics_restricted_roles import SyntheticsRestrictedRoles from datadog_api_client.v1.model.synthetics_test_ci_options import SyntheticsTestCiOptions from datadog_api_client.v1.model.synthetics_test_details_sub_type import SyntheticsTestDetailsSubType from datadog_api_client.v1.model.synthetics_test_execution_rule import SyntheticsTestExecutionRule from datadog_api_client.v1.model.synthetics_test_options import SyntheticsTestOptions from datadog_api_client.v1.model.synthetics_test_options_http_version import SyntheticsTestOptionsHTTPVersion from datadog_api_client.v1.model.synthetics_test_options_monitor_options import SyntheticsTestOptionsMonitorOptions from datadog_api_client.v1.model.synthetics_test_options_retry import SyntheticsTestOptionsRetry from datadog_api_client.v1.model.synthetics_test_options_scheduling import SyntheticsTestOptionsScheduling from datadog_api_client.v1.model.synthetics_test_options_scheduling_timeframe import ( SyntheticsTestOptionsSchedulingTimeframe, ) from datadog_api_client.v1.model.synthetics_test_pause_status import SyntheticsTestPauseStatus from datadog_api_client.v1.model.synthetics_test_request import SyntheticsTestRequest body = SyntheticsAPITest( config=SyntheticsAPITestConfig( assertions=[ SyntheticsAssertionTarget( operator=SyntheticsAssertionOperator.LESS_THAN, target=1000, type=SyntheticsAssertionType.RESPONSE_TIME, ), ], request=SyntheticsTestRequest( method="GET", url="https://example.com", ), ), locations=[ "aws:eu-west-3", ], message="Notification message", name="Example test name", options=SyntheticsTestOptions( ci=SyntheticsTestCiOptions( execution_rule=SyntheticsTestExecutionRule.BLOCKING, ), device_ids=[ SyntheticsDeviceID.LAPTOP_LARGE, ], http_version=SyntheticsTestOptionsHTTPVersion.HTTP1, monitor_options=SyntheticsTestOptionsMonitorOptions(), restricted_roles=SyntheticsRestrictedRoles( [ "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", ] ), retry=SyntheticsTestOptionsRetry(), rum_settings=SyntheticsBrowserTestRumSettings( application_id="xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", client_token_id=12345, is_enabled=True, ), scheduling=SyntheticsTestOptionsScheduling( timeframes=[ SyntheticsTestOptionsSchedulingTimeframe( day=1, _from="07:00", to="16:00", ), SyntheticsTestOptionsSchedulingTimeframe( day=3, _from="07:00", to="16:00", ), ], timezone="America/New_York", ), ), status=SyntheticsTestPauseStatus.LIVE, subtype=SyntheticsTestDetailsSubType.HTTP, tags=[ "env:production", ], type=SyntheticsAPITestType.API, ) configuration = Configuration() with ApiClient(configuration) as api_client: api_instance = SyntheticsApi(api_client) response = api_instance.create_synthetics_api_test(body=body) print(response)
[ "noreply@github.com" ]
DataDog.noreply@github.com
50942d27099e308aa4147588ac09f780f7856048
f9308d5a8efe2dbb48e9cc87cd06405b60a9dc7b
/samples/python/apidocs/ee_featurecollection_getstring.py
8f9996c332c70c0c6ba24aec13ae4de989df6de8
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
google/earthengine-community
4e054b421f66f03507d58668084aee981062fc24
ce931040c518860f8788b4888c0acfdebd2952fc
refs/heads/master
2023-09-01T14:47:54.812703
2023-08-31T23:01:00
2023-08-31T23:01:39
200,732,820
428
552
Apache-2.0
2023-09-13T21:46:51
2019-08-05T21:42:11
Jupyter Notebook
UTF-8
Python
false
false
1,007
py
# Copyright 2023 The Google Earth Engine Community Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START earthengine__apidocs__ee_featurecollection_getstring] # A FeatureCollection with a string property value. fc = ee.FeatureCollection([]).set('string_property', 'Abies magnifica') # Fetch the string property value as an ee.String object. print('String property value as ee.String:', fc.getString('string_property').getInfo()) # [END earthengine__apidocs__ee_featurecollection_getstring]
[ "copybara-worker@google.com" ]
copybara-worker@google.com
548439ff669f3f0d005ab4790ec8a3cb6a20f164
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_officiates.py
4b9a0f7403716650f0c91ed440000739919939b4
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
#calss header class _OFFICIATES(): def __init__(self,): self.name = "OFFICIATES" self.definitions = officiate self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['officiate']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
8aed7256c3bb58a3dd4968ada6a007943f82ab89
3034cb06289f747066571c4ab54ca81996c22319
/module_utils/RubrikLib/rubrik_lib/models/download_file_job_config.py
54fb2f3618d7eb072adffba24a2445ad05a26500
[]
no_license
tarunactivity/ansible-rubrik
b2f644805f13a553bd0635e6ddc230257d125ef7
5d978c23902fd32d92cc90c75e48e5fe2209f8e0
refs/heads/master
2023-04-29T04:25:26.834701
2023-04-20T21:58:47
2023-04-20T21:58:47
116,251,368
0
0
null
2018-01-04T11:18:38
2018-01-04T11:18:37
null
UTF-8
Python
false
false
684
py
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class DownloadFileJobConfig(Model): """DownloadFileJobConfig. :param path: Absolute file path :type path: str """ _validation = { 'path': {'required': True}, } _attribute_map = { 'path': {'key': 'path', 'type': 'str'}, } def __init__(self, path): self.path = path
[ "tarun.activity+github@gmail.com" ]
tarun.activity+github@gmail.com
715dc05ef8ff9902ec23f1039df3e9c7fa5bbe74
a9ca484b422c802f02684ad64694212a7374a180
/devel/lib/turtlebot3_example/turtlebot3_server
e8c5800d6414be4bda9b9bbc6d47d9b985fbad01
[]
no_license
akash1306/mate_unity
791cd5fadc1fae10e01e6f577fef5c43098eb766
e947904f37cad6c814c9e5dfea0017a3d02a5b31
refs/heads/master
2022-12-10T11:22:59.709816
2020-08-30T10:29:34
2020-08-30T10:29:34
290,722,050
0
0
null
null
null
null
UTF-8
Python
false
false
577
#!/usr/bin/python3 # -*- coding: utf-8 -*- # generated from catkin/cmake/template/script.py.in # creates a relay to a python script source file, acting as that file. # The purpose is that of a symlink python_script = '/home/kajal/mate_unity/src/turtlebot3/turtlebot3_example/nodes/turtlebot3_server' with open(python_script, 'r') as fh: context = { '__builtins__': __builtins__, '__doc__': None, '__file__': python_script, '__name__': __name__, '__package__': None, } exec(compile(fh.read(), python_script, 'exec'), context)
[ "akash.chaudhary1306@gmail.com" ]
akash.chaudhary1306@gmail.com
10051e7b6695576ce02e1731f8384c452f3e9597
08583f5a46dab2455ef707a91a342e6a30f62e8a
/advanced-web-scraping-2/14.py
d97c5ac81eb880454b2680bb8a8a6d3656c18d5e
[]
no_license
mahdi-asadzadeh/python-webscraping-simple-projects
924cfefcf1e88698bd76e09e2824da28a9460cb0
24f629f48921e7d047f5b5c0803e4d9b3ec31c86
refs/heads/main
2023-06-20T08:58:46.730938
2021-07-22T11:59:56
2021-07-22T11:59:56
388,445,419
3
0
null
null
null
null
UTF-8
Python
false
false
275
py
import requests url = 'http://www.webscrapingfordatascience.com/referercheck/secret.php' my_headers = { 'Referer': 'http://www.webscrapingfordatascience.com/referercheck/' } r = requests.get(url, headers=my_headers) print(r.text) print(r.headers) print(r.request.headers)
[ "mahdi.asadzadeh.programing@gmail.com" ]
mahdi.asadzadeh.programing@gmail.com
608b91ef49bdcf91ae244f0073ec6a7bb4b05a22
87163acf1614292be250754f28114f89013f73a3
/HackerRank/Problem Solving/Implementation/Easy/Cut the sticks.py
400aa182819db47b8f08baf51c32151e0dddc50c
[]
no_license
khush-01/Python-codes
742a9d9966d2ceb3ad2e7c78e34ef88e55df955a
da3cae8df0aafe763399066eefc9b786538fdb35
refs/heads/main
2023-03-20T04:37:14.020134
2021-03-12T04:56:30
2021-03-12T04:56:30
346,941,048
2
0
null
null
null
null
UTF-8
Python
false
false
174
py
n = int(input()) arr = list(map(int, input().split())) while len(arr): print(len(arr)) low = min(arr) arr = [x for x in arr if x != low] for x in arr: x -= low
[ "noreply@github.com" ]
khush-01.noreply@github.com
38bfd9428ec551d1e7378c0bed6889e115ea4cdb
a8499deff2fa4abde885891d655c3f53ab741d37
/rotkehlchen/typing.py
baf11f828d8959e799887993f4df71e0658772a7
[ "BSD-3-Clause" ]
permissive
georgerobescu/rotkehlchen
4c6d2cadcf8b1a8a20f33bb7352b3924a492af54
817c880b771b8daf5635b02642861dd9949689e2
refs/heads/master
2020-06-25T00:22:20.442607
2019-07-26T11:42:13
2019-07-26T11:42:13
199,137,746
0
0
BSD-3-Clause
2019-07-27T08:25:06
2019-07-27T08:24:59
Python
UTF-8
Python
false
false
3,836
py
from enum import Enum from typing import Dict, NamedTuple, NewType, Optional, Union from rotkehlchen.fval import FVal T_BinaryEthAddress = bytes BinaryEthAddress = NewType('BinaryEthAddress', T_BinaryEthAddress) T_Timestamp = int Timestamp = NewType('Timestamp', T_Timestamp) T_ApiKey = bytes ApiKey = NewType('ApiKey', T_ApiKey) T_ApiSecret = bytes ApiSecret = NewType('ApiSecret', T_ApiSecret) T_B64EncodedBytes = bytes B64EncodedBytes = NewType('B64EncodedBytes', T_B64EncodedBytes) T_B64EncodedString = str B64EncodedString = NewType('B64EncodedString', T_B64EncodedString) class ApiCredentials(NamedTuple): """Represents Credentials for various APIs. Exchanges, Premium e.t.c.""" api_key: ApiKey api_secret: ApiSecret @staticmethod def serialize(api_key: str, api_secret: str) -> 'ApiCredentials': return ApiCredentials( api_key=ApiKey(str.encode(api_key)), api_secret=ApiSecret(str.encode(api_secret)), ) T_FilePath = str FilePath = NewType('FilePath', T_FilePath) T_TradePair = str TradePair = NewType('TradePair', T_TradePair) T_FiatAsset = str FiatAsset = NewType('FiatAsset', T_FiatAsset) T_EthAddres = str EthAddress = NewType('EthAddress', T_EthAddres) T_ChecksumEthAddress = str ChecksumEthAddress = NewType('ChecksumEthAddress', T_ChecksumEthAddress) T_BTCAddress = str BTCAddress = NewType('BTCAddress', T_BTCAddress) BlockchainAddress = Union[EthAddress, BTCAddress, ChecksumEthAddress] class EthTokenInfo(NamedTuple): address: ChecksumEthAddress symbol: str name: str decimal: int T_EmptyStr = str EmptyStr = NewType('EmptyStr', T_EmptyStr) T_Fee = FVal Fee = NewType('Fee', T_Fee) T_Price = FVal Price = NewType('Price', T_Price) class ResultCache(NamedTuple): """Represents a time-cached result of some API query""" result: Dict timestamp: Timestamp T_EventType = str EventType = NewType('EventType', T_EventType) class EthereumTransaction(NamedTuple): """Represent an Ethereum transaction""" timestamp: Timestamp block_number: int hash: bytes from_address: EthAddress to_address: EthAddress value: FVal gas: FVal gas_price: FVal gas_used: FVal class SupportedBlockchain(Enum): """These are the blockchains for which account tracking is supported """ ETHEREUM = 'ETH' BITCOIN = 'BTC' class AssetType(Enum): FIAT = 1 OWN_CHAIN = 2 ETH_TOKEN = 3 OMNI_TOKEN = 4 NEO_TOKEN = 5 XCP_TOKEN = 6 BTS_TOKEN = 7 ARDOR_TOKEN = 8 NXT_TOKEN = 9 UBIQ_TOKEN = 10 NUBITS_TOKEN = 11 BURST_TOKEN = 12 WAVES_TOKEN = 13 QTUM_TOKEN = 14 STELLAR_TOKEN = 15 TRON_TOKEN = 16 ONTOLOGY_TOKEN = 17 ETH_TOKEN_AND_MORE = 18 EXCHANGE_SPECIFIC = 19 VECHAIN_TOKEN = 20 BINANCE_TOKEN = 21 class AssetData(NamedTuple): """Data of an asset. Keep in sync with assets/asset.py""" identifier: str name: str symbol: str active: bool asset_type: AssetType # Every asset should have a started timestamp except for FIAT which are # most of the times older than epoch started: Optional[Timestamp] ended: Optional[Timestamp] forked: Optional[str] swapped_for: Optional[str] ethereum_address: Optional[ChecksumEthAddress] decimals: Optional[int] class TradeType(Enum): BUY = 1 SELL = 2 SETTLEMENT_BUY = 3 SETTLEMENT_SELL = 4 def __str__(self) -> str: if self == TradeType.BUY: return 'buy' elif self == TradeType.SELL: return 'sell' elif self == TradeType.SETTLEMENT_BUY: return 'settlement_buy' elif self == TradeType.SETTLEMENT_SELL: return 'settlement_sell' raise RuntimeError('Corrupt value for TradeType -- Should never happen')
[ "lefteris@refu.co" ]
lefteris@refu.co
09be8dca5ceacb21fe25c7dffea510e79c928207
2379e840d0a9e47331ac247f4d6164cdfd548cbd
/tools/docs/docload.py
6cdadb8d0f4de2a0db4459bf4ad0b6d8bf40ee44
[ "BSD-3-Clause", "PostgreSQL" ]
permissive
jberkus/pgweb
b9d04bc60da437f2f60c8e4cf844e0cfa601a160
fa07ed84b8708240264fe9f091b2087b7f872b8c
refs/heads/master
2020-04-03T10:12:04.734671
2017-05-11T13:00:07
2017-05-11T13:00:20
30,271,195
0
0
null
2015-02-03T23:49:04
2015-02-03T23:49:04
null
UTF-8
Python
false
false
3,730
py
#!/usr/bin/env python # Script to load documentation from tarballs import sys import os import tarfile import re import tidy from optparse import OptionParser from ConfigParser import ConfigParser import psycopg2 pagecount = 0 quiet = False re_titlematch = re.compile('<title\s*>([^<]+)</title\s*>', re.IGNORECASE) ## Load a single page def load_doc_file(filename, f): tidyopts = dict(drop_proprietary_attributes=1, alt_text='', hide_comments=1, output_xhtml=1, show_body_only=1, clean=1, char_encoding='utf8', indent='auto', ) # Postgres 10 started using xml toolchain and now produces docmentation in utf8. So we need # to figure out which version it is. rawcontents = f.read() if rawcontents.startswith('<?xml version="1.0" encoding="UTF-8"'): # Version 10, use utf8 encoding = 'utf-8' # XML builds also don't need clean=1, and that one adds some interesting CSS properties del tidyopts['clean'] else: encoding = 'latin1' contents = unicode(rawcontents, encoding) tm = re_titlematch.search(contents) if tm: title = tm.group(1) else: title = "" if not quiet: print "--- file: %s (%s) ---" % (filename, title) s = tidy.parseString(contents.encode('utf-8'), **tidyopts) curs.execute("INSERT INTO docs (file, version, title, content) VALUES (%(f)s, %(v)s, %(t)s, %(c)s)",{ 'f': filename, 'v': ver, 't': title, 'c': str(s), }) global pagecount pagecount += 1 ## Main execution parser = OptionParser(usage="usage: %prog [options] <version> <tarfile>") parser.add_option("-q", "--quiet", action="store_true", dest="quiet", help="Run quietly") (options, args) = parser.parse_args() if len(args) != 2: parser.print_usage() sys.exit(1) quiet = options.quiet ver = sys.argv[1] tarfilename = sys.argv[2] config = ConfigParser() config.read(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'docload.ini')) if not os.path.isfile(tarfilename): print "File %s not found" % tarfilename sys.exit(1) tf = tarfile.open(tarfilename) connection = psycopg2.connect(config.get('db', 'dsn')) curs = connection.cursor() # Verify that the version exists, and what we're loading curs.execute("SELECT current FROM core_version WHERE tree=%(v)s", {'v': ver}) r = curs.fetchall() if len(r) != 1: print "Version %s not found in the system, cannot load!" % ver sys.exit(1) iscurrent = r[0][0] # Remove any old docs for this version (still protected by a transaction while # we perform the load) curs.execute("DELETE FROM docs WHERE version=%(v)s", {'v': ver}) re_htmlfile = re.compile('[^/]*/doc/src/sgml/html/.*') re_tarfile = re.compile('[^/]*/doc/postgres.tar.gz$') for member in tf: if re_htmlfile.match(member.name): load_doc_file(os.path.basename(member.name), tf.extractfile(member)) if re_tarfile.match(member.name): f = tf.extractfile(member) inner_tar = tarfile.open(fileobj=f) for inner_member in inner_tar: # Some old versions have index.html as a symlink - so let's # just ignore all symlinks to be on the safe side. if inner_member.issym(): continue if inner_member.name.endswith('.html') or inner_member.name.endswith('.htm'): load_doc_file(inner_member.name, inner_tar.extractfile(inner_member)) tf.close() # Update the docs loaded timestamp curs.execute("UPDATE core_version SET docsloaded=CURRENT_TIMESTAMP WHERE tree=%(v)s", {'v': ver}) # Issue varnish purge for all docs of this version if ver == "0": # Special handling of developer docs... ver = "devel" curs.execute("SELECT varnish_purge('^/docs/' || %(v)s || '/')", {'v': ver}) if iscurrent: curs.execute("SELECT varnish_purge('^/docs/current/')") connection.commit() connection.close() if not quiet: print "Done (%i pages)." % pagecount
[ "magnus@hagander.net" ]
magnus@hagander.net
76dc68fb3fe760087f98d3966455e9f50c8e0e40
c5d6e21744f10c6e57d58b57bba2763b82a9726b
/Bimestre_03_Aula_03/exercicios/04_somando_forcas.py
ccae92fe26f595c8832a0e1be2f97b2d84922e72
[]
no_license
valeriacavalcanti/ALP-2020-R
bf32af707d49db650deb6d122a1abdf58d94ae4f
62e0be861ad7439b99ae5d0b0e14d97c887424c7
refs/heads/main
2023-05-05T02:05:00.128872
2021-06-04T10:30:05
2021-06-04T10:30:05
316,784,824
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
# declarar as matrizes matriz1 = [] for i in range(6): matriz1.append([0] * 4) matriz2 = [] for i in range(6): matriz2.append([0] * 4) matriz_soma = [] for i in range(6): matriz_soma.append([0] * 4) # ler os dados das matrizes for i in range(6): for j in range(4): matriz1[i][j] = int(input("Matriz1 {} {}: ".format(i, j))) for i in range(6): for j in range(4): matriz2[i][j] = int(input("Matriz2 {} {}: ".format(i, j))) # calculando a soma das matrizes 1 e 2 for i in range(6): for j in range(4): matriz_soma[i][j] = matriz1[i][j] + matriz2[i][j] print(matriz_soma)
[ "valeria.cavalcanti@ifpb.edu.br" ]
valeria.cavalcanti@ifpb.edu.br
7b5cbe0847dd7ee161252a3f29692ab99f07de36
d7ccb4225f623139995a7039f0981e89bf6365a4
/.history/carts/models_20211010234636.py
41796b5b857bad7162f4bffa6392f2ca23d6f216
[]
no_license
tonnymuchui/django-mall
64fd4abc3725c1bd0a3dcf20b93b490fe9307b37
55c083d8433be3c77adc61939cd197902de4ce76
refs/heads/master
2023-08-23T04:59:20.418732
2021-10-13T15:59:37
2021-10-13T15:59:37
415,668,388
1
0
null
null
null
null
UTF-8
Python
false
false
344
py
from django.db import models # Create your models here. class Cart(models.Model): cart_id = models.CharField(max_length=255, blank=True) date_added = models.DateTimeField(auto_now_add=True) def __str__(self): return self.cart_id class CardItem(models.Model): product = models.ForeignKey(Product, on_delete=models.Ca)
[ "tonykanyingah@gmail.com" ]
tonykanyingah@gmail.com
9f29c6cd97e8f4ec92d968578340ad5c858fb023
be4459658d667c47eefeeb3cf689a678042edb94
/modules/ext/util/lua/packages/luaunit/luaunit/doit.py
b4e636abe621a2734eb4e4f3ce9b7ce2d3bef357
[ "Apache-2.0", "BSD-3-Clause", "BSD-2-Clause" ]
permissive
kparr/RIFT.ware-1
7945174aa23ac1f7d74a7464b645db5824982fc3
6846108d70b80b95c5117fdccd44ff058ac605be
refs/heads/master
2021-01-13T08:36:03.751610
2016-07-24T21:36:15
2016-07-24T21:36:15
72,420,438
0
0
null
2016-10-31T09:11:27
2016-10-31T09:11:27
null
UTF-8
Python
false
false
2,796
py
import subprocess, sys, os, shutil, os.path, optparse VERSION='3.0' RELEASE_NAME='luaunit-%s' % VERSION RELEASE_DIR='release/' + RELEASE_NAME + '/' TARGET_ZIP=RELEASE_NAME + '.zip' TARGET_TGZ=RELEASE_NAME + '.tgz' REPO_PATH='d:/work/luaunit/luaunit-git/luaunit/' LUA50='d:/program/lua/lua50/lua50.exe' LUA51='d:/program/lua/lua51/lua51.exe' LUA52='d:/program/lua/lua52/lua52.exe' ALL_LUA = ( (LUA52, 'lua 5.2'), (LUA51, 'lua 5.1'), # (LUA50, 'lua 5.0'), ) os.environ["nodosfilewarning"] = "1" def report( s ): print '[[[[[[[[[[[[[ %s ]]]]]]]]]]]]]' % s def run_tests(): '''Run tests with all versions of lua''' for lua, luaversion in ALL_LUA: report( 'Running tests with %s' % luaversion ) retcode = subprocess.call( [lua, 'test_luaunit.lua'] ) if retcode != 0: report( 'Invalid retcode when running tests: %d' % retcode ) sys.exit( retcode ) report( 'All tests succeed!' ) def run_example(): for lua, luaversion in ALL_LUA: report( 'Running examples with %s' % luaversion ) retcode = subprocess.call( [lua, 'example_with_luaunit.lua'] ) if retcode != 12: report( 'Invalid retcode when running examples: %d' % retcode ) sys.exit( retcode ) report( 'All examples ran!' ) def packageit(): shutil.rmtree('release', True) try: os.mkdir('release') except OSError: pass subprocess.check_call(['d:/program/msysgit/msysgit/bin/git.exe', 'clone', '--no-hardlinks', REPO_PATH, RELEASE_DIR]) os.chdir( RELEASE_DIR ) # Release dir cleanup shutil.rmtree('.git') os.unlink('.gitignore') run_tests() run_example() makedoc() shutil.rmtree('doc/_build') # Packaging os.chdir('..') report('Start packaging') shutil.make_archive(RELEASE_NAME, 'zip', root_dir='.', base_dir=RELEASE_NAME ) shutil.make_archive(RELEASE_NAME, 'gztar', root_dir='.', base_dir=RELEASE_NAME ) report('Zip and tgz ready!') def help(): print( 'Available actions:') for opt in OptToFunc: print '\t%s' % opt def makedoc(): os.chdir('doc') if os.path.exists('html'): shutil.rmtree('html') subprocess.check_call(['make.bat', 'html']) shutil.copytree('_build/html', 'html') os.chdir('..') OptToFunc = { 'runtests' : run_tests, 'runexample' : run_example, 'packageit' : packageit, 'makedoc' : makedoc, 'help' : help, } if __name__ == '__main__': doingNothing = True for arg in sys.argv[1:]: if OptToFunc.has_key(arg): doingNothing = False OptToFunc[arg]() else: print 'No such action :', arg sys.exit(-1) if doingNothing: help()
[ "Jeremy.Mordkoff@riftio.com" ]
Jeremy.Mordkoff@riftio.com
6bc2f2f74fa4f7f954d72f9f188aa154ec803c32
4f7aa44d21ae38093869e79e10f5cdc8842d48b7
/01-python-academy-intro-lab/exceptions_01.py
743b25bface618a473cf911dd91b8165a4e2d8b3
[ "Apache-2.0" ]
permissive
iproduct/intro-python
31e802c2c21a4df3361656f12d267ec52c2d6564
7e08e144da2907fcf45dc734ab4e896631625d75
refs/heads/master
2023-02-19T11:42:37.522624
2023-02-13T15:54:03
2023-02-13T15:54:03
128,980,155
5
1
null
null
null
null
UTF-8
Python
false
false
551
py
import sys class MyException(Exception): def __init__(self, *args): # Exception.__init__(self, *args) super().__init__(*args) def erroneuos(): try: return 1 / 0 except: print("Within except.") raise finally: print("Within finally.") if __name__ == "__main__": try: erroneuos() except Exception as ex: # tb = sys.exc_info()[2] # print(f"Type: {sys.exc_info()[0]}, Value: {sys.exc_info()[1]}\n") raise MyException("Raised from main()") from ex
[ "office@iproduct.org" ]
office@iproduct.org
6c6ca35bcb1cae919f48bc7f70104caabf953925
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_136/2329.py
bf535ce3f6a4ddf821921237facfb76044f407d5
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
ipt = open('B-large.in').read().splitlines() cases = int(ipt[0]) fw = open('B-large.out','w') for i in xrange(cases): c_per_sec = 2.0 c,f,x = map(lambda x: float(x), ipt[i+1].split(' ')) just_wait = x / c_per_sec sub_total = 0 while True: #print just_wait sub_total += c/c_per_sec c_per_sec += f total = sub_total + (x / c_per_sec) if total >= just_wait: fw.write("Case #{}: {}\n".format(i+1, round(just_wait, 7))) break else: just_wait = total fw.close()
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
2ece9826a7c51f922007dd4b37ea17ae54963ccc
c609730a43596a2d3303f072fc97d9cf681fac7b
/cagey/kache/kache/spiders/woniuhc.py
954c5f0dbca656d7d140c892215686432f16e2ad
[]
no_license
sinnettluo/ChenProject
5403311c0c7b78c484145e16d692abff00d2a110
0e33ecf1683afb22f1deb4bd54294c41aed8a46b
refs/heads/master
2023-03-22T23:48:08.430178
2020-09-02T15:05:02
2020-09-02T15:05:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,182
py
# -*- coding: utf-8 -*- import scrapy import time import json from copy import deepcopy from kache.items import woniuItem class WoniuhcSpider(scrapy.Spider): name = 'woniuhc' allowed_domains = ['woniuhuoche.com'] # start_urls = ['http://woniuhuoche.com/'] @classmethod def update_settings(cls, settings): settings.setdict(getattr(cls, 'custom_debug_settings' if getattr(cls, 'is_debug', False) else 'custom_settings', None) or {}, priority='spider') def __init__(self, **kwargs): super(WoniuhcSpider, self).__init__(**kwargs) self.counts = 0 is_debug = True custom_debug_settings = { 'MYSQL_SERVER': '192.168.1.94', 'MYSQL_DB': 'truck', 'MYSQL_TABLE': 'woniuhc', 'MONGODB_SERVER': '192.168.1.94', 'MONGODB_DB': 'truck', 'MONGODB_COLLECTION': 'woniuhc', 'CONCURRENT_REQUESTS': 8, 'DOWNLOAD_DELAY': 0, 'LOG_LEVEL': 'DEBUG', } def start_requests(self): url = "http://www.woniuhuoche.com/truck-auction-app/api/auction/v1/lotList?source=2&type=0" yield scrapy.Request( url=url, dont_filter=True, ) def parse(self, response): item = woniuItem() res = json.loads(response.text) data_list = res["data"]["lotList"] for data in data_list: item["title"] = data["title"] item["carid"] = data["lotId"] item["truckId"] = data["truckId"] item["registerdate"] = data["registDate"] item["price"] = data["maxPrice"] item["emission"] = data["emission"] item["startTime"] = data["startTime"] item["endTime"] = data["endTime"] url = f"http://www.woniuhuoche.com/truck-auction-app/api/auction/v1/truckDetail?lotId={item['carid']}&truckId={item['truckId']}" item["url"] = url yield scrapy.Request( url=url, callback=self.parse_detail_url, meta={"item": deepcopy(item)}, dont_filter=True, ) def parse_detail_url(self, response): item = response.meta["item"] res = json.loads(response.text) data = res["data"] item["city"] = data["city"] basicList = data["basicList"] for basic in basicList: if "数量" in basic["key"]: item["num"] = basic["value"] if "车辆类型" in basic["key"]: item["car_type"] = basic["value"] if "表显里程" in basic["key"]: item["mileage"] = basic["value"] if "发动机品牌" in basic["key"]: item["engine"] = basic["value"] if "燃料类型" in basic["key"]: item["fuel"] = basic["value"] if "排放标准" in basic["key"]: item["let"] = basic["value"] if "品牌" in basic["key"]: item["brand"] = basic["value"] if "车辆颜色" in basic["key"]: item["color"] = basic["value"] if "最大马力" in basic["key"]: item["hoursepower"] = basic["value"] if "箱体长度" in basic["key"]: item["containerLong"] = basic["value"] if "栏板高度" in basic["key"]: item["containerHight"] = basic["value"] if "驱动形式" in basic["key"]: item["driveType"] = basic["value"] if "罐体容积" in basic["key"]: item["containerVolume"] = basic["value"] if "看车地点" in basic["key"]: item["carLocation"] = basic["value"] proceduresList = data["proceduresList"] for procedures in proceduresList: if "是否可过户" in procedures["key"]: item["isTransfer"] = procedures["value"] if "年检到期日" in procedures["key"]: item["inspectionDate1"] = procedures["value"] if "购置税证" in procedures["key"]: item["isPurchase"] = procedures["value"] if "交强险" in procedures["key"]: item["inspectionDate2"] = procedures["value"] if "第三责任险" in procedures["key"]: item["inspectionDate3"] = procedures["value"] if "其他法定凭证、证书" in procedures["key"]: item["isCertificate"] = procedures["value"] if "是否有违章" in procedures["key"]: item["isRules"] = procedures["value"] if "是否抵押车" in procedures["key"]: item["isMortgage"] = procedures["value"] detect = data["detect"] item["grade"] = detect["grade"] item["surveyor"] = detect["surveyor"] item["detectTime"] = detect["detectTime"] item["detectItem"] = json.dumps(detect["detectItem"], ensure_ascii=False) item["desc"] = data["descp"] item["statusplus"] = item["url"]+'-'+item["price"] item["grab_time"] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) yield item # print(item)
[ "1316446041@qq.com" ]
1316446041@qq.com
b3305b39cd894d4e5bb295a10bedfc5a27e0d140
e358b0c801b0173e2b5fe31820af2a45d5fff8ae
/altair_saver/savers/tests/test_html.py
6899fec8d9fd514217be3d235d24a1e5c2dde027
[ "BSD-3-Clause" ]
permissive
steevensmelo/altair_saver
a3270d2a4c2615c0b86b6d10f87e67f04c3bd40f
d8dfc9a8d40b3ad20d152e014b37e3b1e6d512ef
refs/heads/master
2022-06-11T11:53:12.329070
2020-05-13T14:50:11
2020-05-13T14:50:11
263,651,277
0
0
BSD-3-Clause
2020-05-13T14:19:45
2020-05-13T14:19:44
null
UTF-8
Python
false
false
5,557
py
import io import json import os from typing import Any, Dict, IO, Iterator, Optional, Tuple from altair_data_server import Provider from PIL import Image import pytest import selenium.webdriver from selenium.webdriver.remote.webdriver import WebDriver from altair_saver import HTMLSaver from altair_saver._utils import internet_connected CDN_URL = "https://cdn.jsdelivr.net" @pytest.fixture(scope="module") def internet_ok() -> bool: return internet_connected() @pytest.fixture(scope="module") def provider() -> Iterator[Provider]: provider = Provider() yield provider provider.stop() @pytest.fixture(scope="module") def driver() -> Iterator[WebDriver]: options = selenium.webdriver.chrome.options.Options() options.add_argument("--headless") if hasattr(os, "geteuid") and (os.geteuid() == 0): options.add_argument("--no-sandbox") driver = selenium.webdriver.Chrome(options=options) yield driver driver.quit() def get_testcases() -> Iterator[Tuple[str, Dict[str, Any]]]: directory = os.path.join(os.path.dirname(__file__), "testcases") cases = set(f.split(".")[0] for f in os.listdir(directory)) f: IO for case in sorted(cases): with open(os.path.join(directory, f"{case}.vl.json")) as f: vl = json.load(f) with open(os.path.join(directory, f"{case}.png"), "rb") as f: png = f.read() yield case, {"vega-lite": vl, "png": png} @pytest.mark.parametrize("inline", [True, False]) @pytest.mark.parametrize("embed_options", [None, {"theme": "dark"}]) @pytest.mark.parametrize("case, data", get_testcases()) def test_html_save( case: str, data: Dict[str, Any], embed_options: Optional[dict], inline: bool ) -> None: saver = HTMLSaver(data["vega-lite"], inline=inline, embed_options=embed_options) fp = io.StringIO() saver.save(fp, "html") html = fp.getvalue() assert isinstance(html, str) assert html.strip().startswith("<!DOCTYPE html>") assert json.dumps(data["vega-lite"]) in html assert f"const embedOpt = {json.dumps(embed_options or {})}" in html if inline: assert CDN_URL not in html else: assert CDN_URL in html @pytest.mark.parametrize("embed_options", [None, {"theme": "dark"}]) @pytest.mark.parametrize("case, data", get_testcases()) def test_html_mimebundle( case: str, data: Dict[str, Any], embed_options: Optional[dict], ) -> None: saver = HTMLSaver(data["vega-lite"], embed_options=embed_options) bundle = saver.mimebundle("html") assert bundle.keys() == {"text/html"} html = bundle["text/html"] assert isinstance(html, str) assert html.strip().startswith("<div") assert json.dumps(data["vega-lite"]) in html assert json.dumps(embed_options or {}) in html assert CDN_URL in html def test_bad_format() -> None: saver = HTMLSaver({}) with pytest.raises(ValueError): saver.mimebundle("vega") @pytest.mark.parametrize("case, data", get_testcases()) @pytest.mark.parametrize("inline", [True, False]) def test_html_save_rendering( provider: Provider, driver: WebDriver, case: str, data: Dict[str, Any], inline: bool, internet_ok: bool, ) -> None: if not (inline or internet_ok): pytest.xfail("Internet connection not available") saver = HTMLSaver(data["vega-lite"], inline=inline) fp = io.StringIO() saver.save(fp, "html") html = fp.getvalue() resource = provider.create(content=html, extension="html") driver.set_window_size(800, 600) driver.get(resource.url) element = driver.find_element_by_class_name("vega-visualization") png = driver.get_screenshot_as_png() im = Image.open(io.BytesIO(png)) left = element.location["x"] top = element.location["y"] right = element.location["x"] + element.size["width"] bottom = element.location["y"] + element.size["height"] im = im.crop((left, top, right, bottom)) im_expected = Image.open(io.BytesIO(data["png"])) assert abs(im.size[0] - im_expected.size[0]) < 40 assert abs(im.size[1] - im_expected.size[1]) < 40 @pytest.mark.parametrize("requirejs", [True, False]) @pytest.mark.parametrize("case, data", get_testcases()) def test_html_mimebundle_rendering( provider: Provider, driver: WebDriver, case: str, data: Dict[str, Any], requirejs: bool, internet_ok: bool, ) -> None: if not internet_ok: pytest.xfail("Internet connection not available") saver = HTMLSaver(data["vega-lite"]) bundle = saver.mimebundle("html") html = bundle["text/html"] assert isinstance(html, str) if requirejs: html = f"""<!DOCTYPE html> <html> <head><script src="{CDN_URL}/npm/requirejs@2.3.6"></script></head> <body>{html}</body> </html> """ else: html = f"<html>{html}</html>" resource = provider.create(content=html, extension="html") driver.set_window_size(800, 600) driver.get(resource.url) element = driver.find_element_by_class_name("vega-visualization") png = driver.get_screenshot_as_png() im = Image.open(io.BytesIO(png)) left = element.location["x"] top = element.location["y"] right = element.location["x"] + element.size["width"] bottom = element.location["y"] + element.size["height"] im = im.crop((left, top, right, bottom)) im_expected = Image.open(io.BytesIO(data["png"])) assert abs(im.size[0] - im_expected.size[0]) < 40 assert abs(im.size[1] - im_expected.size[1]) < 40
[ "jakevdp@google.com" ]
jakevdp@google.com
360826c9d54c53412f463d98e4c247151a877b01
16d159d6d3fe69d513717caad3e2c21320f93224
/AtCoder/ABC/ABC101-150/abc141/abc141b.py
23b49e7105c52df065df47863ad2a802a189189d
[]
no_license
tsushiy/competitive-programming-submissions
d4f068a5157c0de0f1822367e0ca66dd978e43f9
9011d855d9252134179cc9cc8f328f6e0ca32407
refs/heads/master
2023-04-11T08:34:01.015316
2021-04-11T15:16:17
2021-04-11T15:17:35
175,807,862
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
s = input() flag = True for i, e in enumerate(s): if i%2==0 and e not in "RUD": flag = False elif i%2==1 and e not in "LUD": flag = False if flag: print("Yes") else: print("No")
[ "28962399+tsushiy@users.noreply.github.com" ]
28962399+tsushiy@users.noreply.github.com
6e6e1991a34c11354f69814d4470d27f07744b55
8e02228b5857d876de244d37b1d6ec3bbd21227e
/python_modules/dagit/dagit_tests/test_debug_cli.py
8131baa4613455e33bad678940c7646f893f743e
[ "Apache-2.0" ]
permissive
ChocoletMousse/dagster
4af255d5ab99c25d1a2be379a5bbd83fa3221b64
a256cb43cde0ab5a800a87ee1f55de560587a4ab
refs/heads/master
2022-12-26T00:04:31.172150
2020-09-25T21:36:15
2020-09-26T02:15:35
297,765,844
1
0
Apache-2.0
2020-09-22T20:35:23
2020-09-22T20:35:22
null
UTF-8
Python
false
false
1,226
py
from os import path from click.testing import CliRunner from dagit.debug import dagit_debug_command from gevent import pywsgi from dagster import execute_pipeline, lambda_solid, pipeline from dagster.cli.debug import export_command from dagster.core.test_utils import instance_for_test @lambda_solid def emit_one(): return 1 @pipeline def test_pipe(): emit_one() emit_one() def test_roundtrip(monkeypatch): runner = CliRunner() with instance_for_test() as instance: run_result = execute_pipeline(test_pipe, instance=instance) assert run_result.success file_path = path.join(instance.root_directory, ".temp.dump") export_result = runner.invoke(export_command, [run_result.run_id, file_path]) assert "Exporting run_id" in export_result.output assert file_path in export_result.output # make dagit stop after launch monkeypatch.setattr(pywsgi.WSGIServer, "serve_forever", lambda _: None) debug_result = runner.invoke(dagit_debug_command, [file_path]) assert file_path in debug_result.output assert "run_id: {}".format(run_result.run_id) in debug_result.output assert "Serving on" in debug_result.output
[ "alex@elementl.com" ]
alex@elementl.com
61b8dbbbc2d89a236263828285aac5e64b2dec48
e8d719fe45dfbff9cbbc4ed872832cec6cabaca6
/128_Longest_Consecutive_Sequence.py
1ccccaf698c6be4b9c5f01f29d570fac2016dac6
[]
no_license
nlfox/leetcode
64f4f48d7f4be6df0542e51cc7037df40bf184a3
d61363f99de3d591ebc8cd94f62544a31a026d55
refs/heads/master
2020-12-21T01:43:01.792899
2016-11-14T23:10:12
2016-11-14T23:10:12
56,680,839
2
0
null
2016-05-17T17:16:37
2016-04-20T11:19:58
Python
UTF-8
Python
false
false
500
py
class Solution(object): def longestConsecutive(self, nums): """ :type nums: List[int] :rtype: int """ nums=list(set(nums)) nums.sort() maxCnt = 1 cnt = 1 for i in xrange(1, len(nums)): if nums[i] - 1 == nums[i - 1]: cnt += 1 else: cnt = 1 if cnt > maxCnt: maxCnt = cnt return maxCnt print Solution().longestConsecutive([1,2,0,1])
[ "nlfox@msn.cn" ]
nlfox@msn.cn
08a6fe350bd23f142bad00a4690285eba2230d71
a9dc497a723917d4256ef15b2e9c3cf88a3fae4f
/GPinv/mean_functions.py
e2f7bd94404647f0cc8161fe0941bcca89455f3f
[ "Apache-2.0" ]
permissive
chaoshunh/GPinv
83b8773870f7ccc8a636fc88ac9a96acfa306c54
e46964991459cb43752cd344c18be0e197d439f8
refs/heads/master
2023-03-16T06:42:39.966449
2016-10-15T05:39:58
2016-10-15T05:39:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,458
py
import tensorflow as tf import numpy as np from GPflow import mean_functions from GPflow.param import Param,ParamList from GPflow._settings import settings float_type = settings.dtypes.float_type np_float_type = np.float32 if float_type is tf.float32 else np.float64 class MeanFunction(mean_functions.MeanFunction): """ A wrap of GPflow.mean_functions.MeanFunction. The main difference of this wrap is __call__ method, that returns nxR sized tensor, in contrast to GPflow.mean_functions.MeanFunction, which returns nx1 sized tensor. """ def __init__(self, output_dim): """ :param integer output_dim: number of output dimension, R. """ mean_functions.MeanFunction.__init__(self) self.output_dim = output_dim def __call__(self, X): """ :param tf.tensor x: nxD tensor. :return tf.tensor: nxR tensor. """ raise NotImplementedError("Implement the __call__\ method for this mean function") class Zero(MeanFunction): """ Zero mean """ def __call__(self, X): return tf.zeros([tf.shape(X)[0],self.output_dim], float_type) class Constant(MeanFunction): """ Constant mean """ def __init__(self, output_dim, c=None): MeanFunction.__init__(self, output_dim) if c is None: c = np.ones(output_dim,np_float_type) self.c = Param(c) def __call__(self, X): return tf.tile(tf.expand_dims(self.c,0), [tf.shape(X)[0],1]) class Stack(MeanFunction): """ Mean function that returns multiple kinds of mean values, stacked vertically. Input for the initializer is a list of MeanFunctions, [m_1,m_2,...,m_M]. The function call returns [m_1(X),m_2(X),...,m_M(X)]. The size of the return is n x (sum_i m_i.output_dim). """ def __init__(self, list_of_means): """ :param list list_of_means: A list of MeanFunction object. """ output_dim = 0 for m in list_of_means: output_dim += m.output_dim MeanFunction.__init__(self, output_dim) # MeanFunctions are stored as ParamList self.mean_list = ParamList(list_of_means) def __call__(self, X): """ Return a concatenated tensor of the multiple mean functions. The size of the return is n x (sum_i m_i.output_dim). """ return tf.concat(1, [l(X) for l in self.mean_list])
[ "fujiisoup@gmail.com" ]
fujiisoup@gmail.com
8f1ad2f8765959e86316c7bf0ab8d91cc8ace7c1
8fc2ab3d29a30e603e19b30bb9517928de529167
/recursion_count7.py
da54e1e6515b053de42599e4a335a9a73680a757
[]
no_license
rushilchugh/Practise
35a9861bec6786580dc0a440eb25d78e43cb7bc9
98fd593b95dad641bef1d519c6c6ed1daaae630f
refs/heads/master
2020-03-13T21:14:14.013604
2018-04-27T12:23:50
2018-04-27T12:23:50
131,291,684
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
__author__ = 'Rushil' def count7(n): if n == 0: return 0 if n%10 == 7: return 1 + count7(n//10) else: return count7(n//10) print(count7(77177))
[ "noreply@github.com" ]
rushilchugh.noreply@github.com
2d90be2e1a6b6bc6c2fe03c9b529449c1127a540
fd0604a74b72e273e194cae9145b4a299d2e1858
/cogs/helpers/context.py
e5289d13bd928bfaecd26cf9b74ac09ac4cc12da
[]
no_license
DuckHunt-discord/DuckHunt-Community-Rewrite
4610f0f5a503ae072b6092ddd031264842c6919c
c53ed8c994527052bcf588824ce6519280974056
refs/heads/master
2020-03-23T05:14:02.442187
2018-11-03T00:37:17
2018-11-03T00:37:17
141,131,990
0
0
null
null
null
null
UTF-8
Python
false
false
776
py
import logging from discord.ext import commands class CustomContext(commands.Context): def __init__(self, **attrs): super().__init__(**attrs) @property def logger(self): # Copy that to log if self.channel: cname = self.channel.name else: cname = "PRIVATE_MESSAGE" extra = {"channelname": f"#{cname}", "userid": f"{self.author.id}", "username": f"{self.author.name}#{self.author.discriminator}"} logger = logging.LoggerAdapter(self.bot.base_logger, extra) return logger async def send_to(self, message, user=None, **kwargs): if user is None: user = self.author message = f"{user.mention} > {message}" await self.send(message, **kwargs)
[ "jovart.arthur@gmail.com" ]
jovart.arthur@gmail.com
a87152f3a008ec4832177a68b36f5aa27bf07c1b
cda43bf6a84f7e55fab26aa70cda934683a51fe5
/MainMajor/cifar_loader.py
fa597d04eb30e7dc0e3b560acb21758dfb94fd31
[]
no_license
nikolaosdionelis/NeuralNetworksNNs
abb55622882e31c8d130a8986868b3d19ede186f
8a217490ad5bb3f7fccf4002c6b43a06c1e562fc
refs/heads/master
2022-11-13T00:50:23.578197
2020-07-12T18:52:20
2020-07-12T18:52:20
279,042,013
5
1
null
null
null
null
UTF-8
Python
false
false
3,034
py
""" Utilities for downloading and unpacking the CIFAR-10 dataset, originally published by Krizhevsky et al. and hosted here: https://www.cs.toronto.edu/~kriz/cifar.html """ import os import sys import tarfile from six.moves import urllib import numpy as np def maybe_download_and_extract(data_dir, url='http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'): if not os.path.exists(os.path.join(data_dir, 'cifar-10-batches-py')): if not os.path.exists(data_dir): os.makedirs(data_dir) filename = url.split('/')[-1] filepath = os.path.join(data_dir, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\n>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(url, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(data_dir) def unpickle(file): fo = open(file, 'rb') if (sys.version_info >= (3, 0)): import pickle d = pickle.load(fo, encoding='latin1') else: import cPickle d = cPickle.load(fo) fo.close() return {'x': d['data'].reshape((10000,3,32,32)), 'y': np.array(d['labels']).astype(np.uint8)} def load_cifar(data_dir="data/cifar_data/"): if not os.path.exists(data_dir): print('creating folder', data_dir) os.makedirs(data_dir) maybe_download_and_extract(data_dir) train_data = [unpickle(os.path.join(data_dir,'cifar-10-batches-py','data_batch_' + str(i))) for i in range(1,6)] skip_first_500 = [0 for x in range(10)] trainx_list = [] trainy_list = [] valx_list = [] valy_list = [] for row in train_data: for dx, dy in zip(row['x'], row['y']): # print(d['y']) if skip_first_500[dy] < 500: valx_list.append(dx) valy_list.append(dy) skip_first_500[dy] += 1 continue trainx_list.append(dx) trainy_list.append(dy) trainx = np.array(trainx_list) trainy = np.array(trainy_list) valx = np.array(valx_list) valy = np.array(valy_list) test_data = unpickle(os.path.join(data_dir,'cifar-10-batches-py','test_batch')) testx = test_data['x'] testy = test_data['y'] trainx = trainx/255.0 valx = valx/255.0 testx = testx/255.0 print("max: " + str(np.amax(trainx))) print("min: " + str(np.amin(trainx))) print("max: " + str(np.amax(testx))) print("min: " + str(np.amin(testx))) print("max: " + str(np.amax(valx))) print("min: " + str(np.amin(valx))) # (N,3,32,32) -> (N,32,32,3) return np.transpose(trainx, (0,2,3,1)), \ np.transpose(valx, (0,2,3,1)), \ np.transpose(testx, (0,2,3,1))
[ "noreply@github.com" ]
nikolaosdionelis.noreply@github.com
c377555c2f0b5965254d6b7ac73814194212cf28
2dc17d12ff6ea9794177c81aa4f385e4e09a4aa5
/archive/298BinaryTreeLongestConsecutiveSequence.py
92d9aa4d93f3055c85599dd48eacc42d05e24958
[]
no_license
doraemon1293/Leetcode
924b19f840085a80a9e8c0092d340b69aba7a764
48ba21799f63225c104f649c3871444a29ab978a
refs/heads/master
2022-10-01T16:20:07.588092
2022-09-08T02:44:56
2022-09-08T02:44:56
122,086,222
0
0
null
null
null
null
UTF-8
Python
false
false
1,411
py
# coding=utf-8 ''' Created on 2017�?6�?16�? @author: Administrator ''' from data_structure.Tree import list_to_tree # Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def longestConsecutive(self, root): """ :type root: TreeNode :rtype: int """ if root == None: return 0 self.ans = 0 self.memo = {} def foo(node): res = 1 if node.left: left = self.memo(node.left) if node.left in self.memo else foo(node.left) else: left = 0 if node.right: right = self.memo(node.right) if node.right in self.memo else foo(node.right) else: right = 0 if left and node.left.val == node.val + 1: res = max(res, left + 1) if right and node.right.val == node.val + 1: res = max(res, right + 1) self.ans = max(self.ans, res) self.memo[node] = res return res foo(root) # for k, v in self.memo.items(): # print k.val, v # print self.memo return self.ans root = list_to_tree([1, None, 3, 2, 4, None, None, None, 5]) print Solution().longestConsecutive(root)
[ "yanhuang1293@gmail.com" ]
yanhuang1293@gmail.com
31179b3b337c588adca95e89088525bd446ce1e8
b01182728eb4a657f9bd8974ba8508010cc8173e
/manage.py
314bde693826fb496c2d2cd9215db691ca17844c
[ "BSD-3-Clause" ]
permissive
pombredanne/django-buildbot
459a6d8a942c8c5f857626f4772010a3aaba2a6e
660ec35473aec081428a115eab6460f5a1cd2a0d
refs/heads/master
2021-01-17T19:57:01.296286
2014-07-29T06:25:03
2014-07-29T06:25:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "djbuildbot.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "xordoquy@linovia.com" ]
xordoquy@linovia.com
36c7630adaee0011f298f2b5daaa682935d10da2
76b983258793d294b81791ebe72591bfebf78625
/tools/pesearch.py
d6b57f8548ff6441b7acce963e476872846cc4ae
[ "BSD-2-Clause" ]
permissive
lotusexpeditor/syringe
18ac9cb800a7fefb7d67e31936db6a84e47df9eb
34a8386b90f534f9a856d0a436bba04dbf5100bd
refs/heads/master
2023-02-08T10:08:20.295797
2020-12-27T00:06:09
2020-12-27T00:06:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,743
py
import os,sys import pecoff from ptypes import utils def traverse_address(address): def edges(self, address=address, **kwargs): if not isinstance(self, ptypes.ptype.container): return for item in self.value: if item.contains(address): yield item continue return return edges def rightjustify(string, size, space=' '): # i don't know if python has support for right justification with character # filling. their fmtstring doesn't seem to.. diff = size - len(string) if diff > 0: string = space*diff + string return string def processexecutable(filename, address): # globals for interpretive use global mz,pe,imagebase,sections,datadirectory print('Query: %x\n'% address) print('Module: %s'% os.path.basename(filename)) print('ImageBase: %x'% imagebase) # try exe header first mz.setoffset(imagebase, recurse=True) if mz.contains(address): result = mz for item in mz.traverse(traverse_address(address)): x = item.__name__ print(rightjustify('------- %s'%x, 70, '-')) result = result[int(x) if isinstance(result, ptypes.parray.type) else x] print(result) # try sections else: mz.setoffset(0,recurse=True) va = address - imagebase s = pe['Sections'].getsectionbyaddress(va) offset = va - s['VirtualAddress'].int() data = s['PointerToRawData'].d.load().serialize() left = offset - 8 left &= ~0xf right = left+0x30 if left < 0: left = 0 if right > len(data): right = len(data) sectionname = s['Name'].get() print(rightjustify(' section %s'% sectionname, 76, '-')) print(utils.hexdump(data[left:right], offset=s['VirtualAddress'].int()+offset+imagebase)) mz.setoffset(0, recurse=True) return from ptypes import ptype def dumpcontainer(pc, indent=''): if isinstance(pc.value, list): for p in pc.value: a = p.getoffset() range ='%x-%x'% (a, a+p.size()) sym = '%s -> %s'%( p.__name__, p.__class__.__name__) r = repr(p.serialize()) if not isinstance(p.value, list): print(indent, range, sym, ' | ', r) continue print(indent, range, sy) dumpcontainer(p, indent+' ') pass return def dumpexecutable(filename): # globals for interpretive use global mz,pe,imagebase,sections,datadirectory,imports print('Module: %s'% os.path.basename(filename)) print('ImageBase: %x'% imagebase) print('Imports: %s'% ', '.join([x['Name'].d.l.str() for x in imports.l[:-1]])) mz.setoffset(imagebase,recurse=True) print(pe) for x in sections: name = x['Name'].str() address = x['VirtualAddress'].int() + imagebase print(x['Name'].str(), hex(address), hex(address + x.getloadedsize())) mz.setoffset(0,recurse=True) return def dumpversion(filename): global mz,pe,imagebase,sections,datadirectory,imports opt = pe['OptionalHeader'] print('OperatingSystem', float('%d.%d'%(opt['MajorOperatingSystemVersion'].int(), opt['MinorOperatingSystemVersion'].int()))) print('ImageVersion', float('%d.%d'%(opt['MajorImageVersion'].int(), opt['MinorImageVersion'].int()))) print('SubsystemVersion', float('%d.%d'%(opt['MajorSubsystemVersion'].int(), opt['MinorSubsystemVersion'].int()))) print(opt['Win32VersionValue']) global root rsrc = datadirectory[2] root = rsrc['VirtualAddress'].d.l global a,b a,b = root['Ids'] if __name__ == '__main__': import sys, ptypes zerobase = False if '-z' in sys.argv: i = sys.argv.index('-z') sys.argv.pop(i) zerobase = True try: filename = sys.argv[1] except: print('Usage: %s [-z] filename [hexaddress]'% sys.argv[0]) sys.exit(0) if not os.path.exists(filename): raise OSError("The specified file ({:s}) does not exist.".format(filename)) source = ptypes.provider.file(filename) mz = pecoff.Executable.File(source=source).l pe = mz['Next']['Header'] sections = pe['Sections'] imagebase = pe['OptionalHeader']['ImageBase'].int() datadirectory = pe['DataDirectory'] if zerobase: imagebase = 0 imports = datadirectory[1]['Address'].d.l if len(sys.argv) == 2: dumpexecutable(filename) elif len(sys.argv) == 3: address = int(sys.argv[2], 16) try: processexecutable(filename, address) except KeyError: print('address %x not found in %s'% (address, filename)) pass
[ "arizvisa@gmail.com" ]
arizvisa@gmail.com
e38298b3db6bf24895dd9139bc51769fbef8cd78
37f10a692d0e1a9a396f505af60b04f7db44d3e1
/01 Algorithms/01 Warmup/CompareTheTriplets.py
9b18b2dcebec59ded6a89ae7c2987fd725d10ec4
[]
no_license
nbrahman/HackerRank
95842f5dbda2ab8aedc7808831c12b9f92a37e03
ec5d42d7e578f01efba87a099f42e82512704dca
refs/heads/master
2021-01-19T11:53:59.685444
2017-07-29T16:04:21
2017-07-29T16:04:21
88,003,548
0
0
null
null
null
null
UTF-8
Python
false
false
1,616
py
''' Alice and Bob each created one problem for HackerRank. A reviewer rates the two challenges, awarding points on a scale from to for three categories: problem clarity, originality, and difficulty. We define the rating for Alice's challenge to be the triplet , and the rating for Bob's challenge to be the triplet . Your task is to find their comparison scores by comparing with , with , and with . If , then Alice is awarded point. If , then Bob is awarded point. If , then neither person receives a point. Given and , can you compare the two challenges and print their respective comparison points? Input Format The first line contains space-separated integers, , , and , describing the respective values in triplet . The second line contains space-separated integers, , , and , describing the respective values in triplet . Constraints Output Format Print two space-separated integers denoting the respective comparison scores earned by Alice and Bob. Sample Input 5 6 7 3 6 10 Sample Output 1 1 Explanation In this example: Now, let's compare each individual score: , so Alice receives point. , so nobody receives a point. , so Bob receives point. Alice's comparison score is , and Bob's comparison score is . Thus, we print 1 1 (Alice's comparison score followed by Bob's comparison score) on a single line. ''' if __name__ == '__main__': A = list(map(int, input().strip().split())) B = list(map(int, input().strip().split())) Ascore = sum([1 for a, b in zip(A, B) if a > b]) Bscore = sum([1 for a, b in zip(A, B) if b > a]) print(Ascore, Bscore)
[ "nikhil.brahmankar@gmail.com" ]
nikhil.brahmankar@gmail.com
7f7e6202d1b1aa73181f18176a9a42fd131c5023
9cef4ef20efd0eec18846242e78be0b9be144c30
/homework/20200717/子进程中修改全局变量.py
9a7989b2eec30662def98571d1867a21fc6cbba9
[]
no_license
Vaild/python-learn
4e6511a62a40b6104b081e0f8fe30f7d829901f5
5d602daf3b4b7e42349b7d9251df1f4dd62c299c
refs/heads/master
2022-11-19T00:47:48.808384
2020-07-20T14:27:49
2020-07-20T14:27:49
279,044,379
0
0
null
null
null
null
UTF-8
Python
false
false
1,394
py
#!/usr/bin/python3 # coding = UTF-8 # code by va1id # 定义全局变量 import os import time from multiprocessing import Process N= [1, 2] def change_process(): print('未修改之前的列表:', N) print('列表此时的ID是:', os.getpid()) for i in range(10): N.append(i) print('修改之后的列表:', N) print('修改之后的ID:', os.getpid()) time.sleep(1) def watch_list(): print('列表是:', N) time.sleep(1) if __name__ == '__main__': x = Process(target=change_process) y = Process(target=watch_list) x.start() y.start() x.join() y.join() print('最终的列表是:', N) print('最终的ID是:', os.getpid()) # 对于整型数的尝试,发现整型数最后的时候打印出来的ID时发生了变化 N = 1 def change_process(): global N print('未修改之前的列表:', N) print('列表此时的ID是:', os.getpid()) for i in range(10): N = i print('修改之后的列表:', N) print('修改之后的ID:', os.getpid()) time.sleep(1) def watch_list(): print('列表是:', N) time.sleep(1) if __name__ == '__main__': x = Process(target=change_process) y = Process(target=watch_list) x.start() y.start() x.join() y.join() print('最终的列表是:', N) print('最终的ID是:', os.getpid())
[ "cubersongwenbo@gmail.com" ]
cubersongwenbo@gmail.com
91bebb09bc6024dfa9e4392aaab0a55020f063b4
d7f33fd19ecc59aadebe4f50db605ad39b967dbd
/disambig_creation.py
36a957f12832a0936243132decf3d61f9165915d
[]
no_license
juansaenz/leaguepedia_util
9687ab3634ccdf022c637323dceb0638ed5ece88
77e3dfe501b333b3a8dc2a04f207b8bf0858dbc3
refs/heads/master
2020-08-05T19:01:30.131055
2019-10-04T11:34:01
2019-10-04T11:34:01
212,667,697
0
0
null
2019-10-03T19:54:58
2019-10-03T19:54:58
null
UTF-8
Python
false
false
7,129
py
import re, threading, mwparserfromhell from log_into_wiki import * ################################################################################################# original_name = 'Starky' irl_name = "Juan Carlos Cano" new_name = '{} ({})'.format(original_name, irl_name.strip()) init_move = True blank_edit = False limit = -1 timeout_limit = 30 listplayer_templates = ["listplayer", "listplayer/Current"] roster_templates = ["ExtendedRosterLine", "ExtendedRosterLine/MultipleRoles"] scoreboard_templates = ["MatchRecapS8/Player","Scoreboard/Player"] stat_templates = ["IPS", "CareerPlayerStats", "MatchHistoryPlayer"] player_line_templates = ["LCKPlayerLine", "LCSPlayerLine"] roster_change_templates = ["RosterChangeLine", "RosterRumorLine2", "RosterRumorLineStay", "RosterRumorLineNot", "RosterRumorLine"] summary = "Disambiguating {} to {}".format(original_name, new_name) css_style = " {\n color:orange!important;\n font-weight:bold;\n}" orig_name_lc = original_name[0].lower() + original_name[1:] new_name_lc = new_name[0].lower() + new_name[1:] blank_edit_these = [] ############################################################################################# def savepage(targetpage, savetext): targetpage.save(savetext, summary=summary, tags="bot_disambig") def blank_edit_page(page): textname = str(page.name) newpage = site.pages[textname] text = newpage.text(cache=False) page.save(text, summary="Blank Editing") def move_page(from_page): new_page_name = str(from_page.name).replace(original_name, new_name) new_page = site.pages[new_page_name] if new_page.exists: print("{} already exists, cannot move!".format(from_page.name)) else: print("Moving page {} to {}".format(from_page.name, new_page_name)) from_page.move(new_page_name, reason=summary, no_redirect=True) blank_edit_these.append(new_page) def edit_concept(concept): text = concept.text() wikitext = mwparserfromhell.parse(text) for template in wikitext.filter_templates(): if template.name.matches("PlayerGamesConcept"): i = 1 while template.has(i): if template.get(i).strip() == original_name: template.add(i, new_name) elif template.get(i).strip() == orig_name_lc: template.add(i, new_name_lc) i = i + 1 newtext = str(wikitext) if newtext != text: concept.save(newtext, summary=summary, tags="bot_disambig") def edit_subpage(subpage): text = subpage.text() wikitext = mwparserfromhell.parse(text) for stemplate in wikitext.filter_templates(): if stemplate.has(1): if stemplate.get(1).value.strip() == original_name: stemplate.add(1, new_name) newtext = str(wikitext) if text != newtext: print("Editing " + subpage.name + "...") subpage.save(newtext, reason=summary) def process_page(page): print("Processing next page: " + page.name) text = page.text() origtext = text # do links first because it's easier to just edit them as a string if text.lower().startswith('#redirect') and page.name.lower() == original_name.lower(): pass else: text = text.replace("[[" + original_name + "]]", "[[" + new_name + "|" + original_name + "]]") wikitext = mwparserfromhell.parse(text) for template in wikitext.filter_templates(): process_template(template) newtext = str(wikitext) if origtext != newtext or blank_edit: print("Saving...") t = threading.Thread(target=savepage, kwargs={"targetpage": page, "savetext": newtext}) t.start() t.join(timeout=timeout_limit) else: print("No changes, skipping") def check_list(template, param, sep = ','): if not template.has(param): return text_initial = template.get(param).value.strip() tbl = text_initial.split(sep) made_changes = False for i, val in enumerate(tbl): if val.strip() == original_name: made_changes = True tbl[i] = new_name if made_changes: template.add(param, sep.join(tbl)) def process_template(template): def tl_matches(arr, field=None): if field: has_field = False if template.has(field): has_field = template.get(field).value.strip() == original_name return [_ for _ in arr if template.name.matches(_)] and has_field return [_ for _ in arr if template.name.matches(_)] if tl_matches(['bl'], field=1) and not template.has(2): template.add(1, new_name) template.add(2, original_name) elif tl_matches(listplayer_templates, field=1) and not template.has("link"): template.add("link", new_name, before=1) elif tl_matches(roster_templates, field='player') and not template.has('link'): template.add("link", new_name, before="name") elif tl_matches(scoreboard_templates, field='name'): template.add("link", new_name, before="kills") elif tl_matches(roster_change_templates, field='player'): template.add("player", new_name + "{{!}}" + original_name) elif tl_matches(['TeamRoster/Line', 'RosterLineOld'], field='player'): template.add('link', new_name) elif tl_matches(player_line_templates, field=1): template.add(2, new_name) elif tl_matches(['Player', 'RSRR/Player'], field=1): template.add('link', new_name) elif tl_matches(["MatchDetails/Series"], field='mvp'): template.add("mvplink", new_name, before="mvp") elif tl_matches(["PentakillLine"], field=6): template.add("playerlink", new_name, before=6) elif tl_matches(["MatchSchedule","MatchSchedule/Game"]): if template.has("mvp"): if template.get("mvp").value.strip() == original_name: template.add("mvp", new_name) check_list(template, 'with') check_list(template, 'pbp') check_list(template, 'color') elif tl_matches(['ExternalContent/Line']): check_list(template, 'players') elif tl_matches(['SeasonAward']): if template.has(1): if template.get(1).value.strip() == original_name: template.add('link', new_name) check_links(template, 'eligibleplayers', 'eligiblelinks', ',', original_name, new_name) elif tl_matches(['PlayerImageMetadata'], field="playerlink"): template.add('playerlink', new_name) elif tl_matches(["PortalCurrentRosters"]): for pos in ['t', 'j', 'm', 'a', 's']: for period in ['old', 'new']: arg_name = pos + '_' + period arg_link = arg_name + '_links' check_links(template, arg_name, arg_link, ',', original_name, new_name) def make_disambig_page(): text = "{{DisambigPage\n|player1=" + new_name + "\n|player2=\n}}" page = site.pages[original_name] old_text = page.text() if 'disambigpage' not in old_text.lower(): page.save(text, summary=summary) site = login('me','lol') thispage = site.pages[original_name] newpage = site.pages[new_name] if init_move: move_page(thispage) subpages = site.allpages(prefix=original_name + "/") for subpage in subpages: edit_subpage(subpage) move_page(subpage) concept = site.pages["Concept:{}/Games".format(original_name)] if concept.exists: edit_concept(concept) move_page(concept) pages = thispage.backlinks() i = 0 for page in pages: if i == limit: break i = i + 1 process_page(page) print("Blank editing...") if init_move: for page in blank_edit_these: blank_edit_page(page) make_disambig_page() print("Done! If some pages stalled out you may still need to abort manually.")
[ "18037011+RheingoldRiver@users.noreply.github.com" ]
18037011+RheingoldRiver@users.noreply.github.com
fe8bc6b1e305d6f955d5f51ccdbcbb03567c3c5f
33787153c4f85cb626cf16e0e4d40d5970df2871
/reservation_system/order/admin.py
873c45edd8890e68e2a1d428784197d437bc8309
[]
no_license
nazaninsbr/E-Commerce-Website
93e14576d69618f749d7fd6f19b6b1b989fa47a8
46bed8c58f4adac37dc4ddd881f57e694961b9b2
refs/heads/master
2021-09-22T14:20:56.940950
2018-09-11T05:01:23
2018-09-11T05:01:23
125,370,560
0
0
null
null
null
null
UTF-8
Python
false
false
508
py
from django.contrib import admin from .models import Order, OrderItem class OrderItemInline(admin.TabularInline): model = OrderItem raw_id_fields = ['product'] class OrderAdmin(admin.ModelAdmin): list_display = ['id', 'first_name', 'last_name', 'email', 'address', 'postal_code', 'department', 'paid', 'created', 'updated'] list_filter = ['paid', 'created', 'updated', 'last_name', 'department'] inlines = [OrderItemInline] admin.site.register(Order, OrderAdmin)
[ "nazanin.sabrii@gmail.com" ]
nazanin.sabrii@gmail.com
99addf12f6477d42e6cc49078268d5e6afdf5f2d
d7016f69993570a1c55974582cda899ff70907ec
/sdk/devcenter/azure-developer-devcenter/samples/create_environment_sample.py
637a5e178d90414987a7ffcd3707ca295f73c41e
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
kurtzeborn/azure-sdk-for-python
51ca636ad26ca51bc0c9e6865332781787e6f882
b23e71b289c71f179b9cf9b8c75b1922833a542a
refs/heads/main
2023-03-21T14:19:50.299852
2023-02-15T13:30:47
2023-02-15T13:30:47
157,927,277
0
0
MIT
2022-07-19T08:05:23
2018-11-16T22:15:30
Python
UTF-8
Python
false
false
3,239
py
# coding=utf-8 # -------------------------------------------------------------------------- # # Copyright (c) Microsoft Corporation. All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the ""Software""), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # -------------------------------------------------------------------------- import logging import os from azure.developer.devcenter import DevCenterClient from azure.identity import DefaultAzureCredential from azure.core.exceptions import HttpResponseError def main(): logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger() # Set the values of the dev center endpoint, client ID, and client secret of the AAD application as environment variables: # DEVCENTER_ENDPOINT, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET try: endpoint = os.environ["DEVCENTER_ENDPOINT"] except KeyError: LOG.error("Missing environment variable 'DEVCENTER_ENDPOINT' - please set it before running the example") exit() # Build a client through AAD client = DevCenterClient(endpoint, credential=DefaultAzureCredential()) # Fetch control plane resource dependencies target_project_name = list(client.dev_center.list_projects(top=1))[0]['name'] target_catalog_item_name = list(client.environments.list_catalog_items(target_project_name, top=1))[0]['name'] target_environment_type_name = list(client.environments.list_environment_types(target_project_name, top=1))[0]['name'] # Stand up a new environment create_response = client.environments.begin_create_environment(target_project_name, "Dev_Environment", {"catalogItemName": target_catalog_item_name, "environmentType": target_environment_type_name}) environment_result = create_response.result() LOG.info(f"Provisioned environment with status {environment_result['provisioningState']}.") # Tear down the environment when finished delete_response = client.environments.begin_delete_environment(target_project_name, "Dev_Environment") delete_response.wait() LOG.info("Completed deletion for the environment.") if __name__ == "__main__": main()
[ "noreply@github.com" ]
kurtzeborn.noreply@github.com
e48457d278580c6a39e5c28f37e35ec482015823
5b58a332c6bea0688d196aabedfc8ccc49bdd134
/experiments/cnn_short_embeddings/get_embeddings.py
c2dfad97b2a1949c516d77ecfb2e88218654e2d3
[]
no_license
ver228/classify_strains
5420c2b3ea8e93b6ba46900c385f52f664f1cbd7
dc61e7431410e25ab7c2da0acb6d090cc2ebaabb
refs/heads/master
2021-09-20T08:52:14.505868
2018-08-07T12:26:22
2018-08-07T12:26:22
108,448,619
0
1
null
null
null
null
UTF-8
Python
false
false
5,628
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 17 14:57:25 2017 @author: ajaver """ import sys import os import pandas as pd import torch import tqdm import numpy as np import tables #Be sure to use abspath linux does not give the path if one uses __file__ _BASEDIR = os.path.dirname(os.path.abspath(__file__)) src_dir = os.path.join(_BASEDIR, os.pardir, os.pardir, 'src') sys.path.append(src_dir) from classify.flow import SkeletonsFlowFull, get_valid_strains, get_datset_file import classify.models.model_w_embedding as models if __name__ == '__main__': dname = '/Users/ajaver/OneDrive - Imperial College London/classify_strains/trained_models' #model_file = 'resnet18_w_emb_R_L256_l2_0.1_20171126_010058_best.pth.tar' #props = dict( # model_name = 'resnet18_w_emb', # is_residual = True, # embedding_size = 256 # ) model_file = 'simple_w_emb_R_L256_l2_0.01_20171126_010327_best.pth.tar' props = dict( model_name = 'simple_w_emb', is_residual = True, embedding_size = 256 ) embeddings_file = data_file.replace('_skel_smoothed.hdf5', '_embedings.hdf5') model_path = os.path.join(dname, model_file) dataset = 'CeNDR' valid_strains = get_valid_strains(dataset, is_reduced=True) data_file = get_datset_file(dataset) gen = SkeletonsFlowFull( n_batch = 32, data_file = data_file, sample_size_seconds = 10, sample_frequency_s = 0.04, valid_strains = valid_strains, label_type = 'row_id', is_return_snps = False, transform_type = 'angles' ) get_model_func = getattr(models, props['model_name']) model = get_model_func(gen, props['embedding_size']) checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict']) model.eval() results = [] for ii, (input_v, row_ids) in enumerate(tqdm.tqdm(gen)): video_embedding = model.video_model(input_v) pred = model.classification(video_embedding).max(1)[1] dat = [x.data.numpy() for x in (row_ids, video_embedding, pred)] results.append(dat) #%% row_ids, embeddings, predictions = map(np.concatenate, zip(*results)) df_g = pd.DataFrame(row_ids.T, columns=['row_id']).groupby('row_id').groups embedding_groups = [] for irow, row in gen.skeletons_ranges.iterrows(): if irow in df_g: row_n = row[['experiment_id', 'worm_index', 'strain', 'strain_id']].copy() row_n['ini'] = df_g[irow].min() row_n['fin'] = df_g[irow].max() row_n['skel_group_id'] = irow embedding_groups.append(row_n) embedding_groups = pd.DataFrame(embedding_groups) #%% snps_embeddings = np.full((gen.n_classes, props['embedding_size']), np.nan, dtype=np.float32) for strain_id in gen.strain_ids: strain = gen.strain_codes.loc[strain_id, 'strain'] snps = gen.snps_data[strain].values.T.astype(np.float32) snps = torch.from_numpy(snps).float() snps = torch.autograd.Variable(snps) snps_embedding = model.snp_mapper(snps) snps_embeddings[strain_id] = snps_embedding.data.numpy() #%% TABLE_FILTERS = tables.Filters( complevel=5, complib='zlib', shuffle=True, fletcher32=True) fields2copy = ['experiments_data', 'snps_data', 'strains_codes'] with tables.File(data_file, 'r') as fid_old, \ tables.File(embeddings_file, "w") as fid_new: for field in fields2copy: tab = fid_old.get_node('/' +field)[:] fid_new.create_table('/', field, obj=tab, filters=TABLE_FILTERS) gg = fid_new.create_group('/', 'index_groups') for field in ['train', 'test', 'val']: tab = fid_old.get_node('/index_groups/' +field)[:] fid_new.create_array('/index_groups', field, obj=tab) #%% with tables.File(embeddings_file, "r+") as fid: table_type = np.dtype([('experiment_id', np.int32), ('worm_index', np.int32), ('strain', 'S10'), ('ini', np.int32), ('fin', np.int32), ('skel_group_id', np.int32) ]) em = embedding_groups[list(table_type.names)].to_records(index=False).astype(table_type) fid.create_table('/', 'embedding_groups', obj=em, filters=TABLE_FILTERS) fid.create_carray('/', 'video_embeddings', obj=embeddings, filters=TABLE_FILTERS) fid.create_carray('/', 'predicted_strain_id', obj=predictions, filters=TABLE_FILTERS) fid.create_carray('/', 'snps_embeddings', obj=snps_embeddings, filters=TABLE_FILTERS)
[ "ajaver@MRC-8791.local" ]
ajaver@MRC-8791.local
e563aed309c589208366c684765d85e75140080d
78a28bd6b95041bfe67d8aa6a3a3c111911afaab
/03.Complete Python Developer - Zero to Mastery - AN/01.Python Basics/13.1 Exercise Repl.py
1e15204ddbb52cbedf68211f4ad2a6edf0cfeb2c
[ "MIT" ]
permissive
jailukanna/Python-Projects-Dojo
8200a60ab925bf796bd39cb1977e6f0e0a575c23
98c7234b84f0afea99a091c7198342d66bbdff5b
refs/heads/master
2023-03-15T06:54:38.141189
2021-03-11T08:17:02
2021-03-11T08:17:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
181
py
counter = 0 counter += 1 counter += 1 counter += 1 counter += 1 counter -= 1 counter *=2 #Before you click RUN, guess what the counter variable holds in memory! print(counter) #6
[ "ptyadana@users.noreply.github.com" ]
ptyadana@users.noreply.github.com
26f999a48d12ee717570e8a1ae1e7e96e06c6f69
245b0329360b18c32510a6d13b2650fd6ca752cc
/ch03/trendline.py
14d037ac047d819a1524cf921cf4e087b23e6a60
[]
no_license
TanUkkii007/numpy-begginers-guide
56c315d207f681bd4e6d70abeac82bfc0db2bad5
6d483bc8672947a06d4240c4379f00183da46d8b
refs/heads/master
2021-01-17T08:08:07.113571
2016-06-29T16:45:59
2016-06-29T16:45:59
61,984,775
0
0
null
null
null
null
UTF-8
Python
false
false
1,410
py
import numpy as np import matplotlib.pyplot as plt def fit_line(t,y): '''Fits t to a line y = at + b''' A = np.vstack([t, np.ones_like(t)]).T return np.linalg.lstsq(A, y)[0] # Determine pivots h,l,c = np.loadtxt('data.csv', delimiter=',', usecols=(4,5,6), unpack=True) pivots = (h+l+c)/3 # Fit trend lines t = np.arange(len(c)) sa, sb = fit_line(t, pivots - (h-l)) ra, rb = fit_line(t, pivots + (h-l)) support = sa*t + sb resistance = ra*t + rb condition = (c > support) & (c < resistance) print("condition", condition) between_bands = np.where(condition) print("between_bands", between_bands) print("support[between_bands]", support[between_bands]) print("c[between_bands]", c[between_bands]) print("resistance[between_bands]", resistance[between_bands]) n_between_bands = len(np.ravel(between_bands)) print("Number points between bands", between_bands) print("Ratio between bands", float(n_between_bands)/len(c)) print("Tomorrows support", sa * (t[-1] + 1) + sb) print("Tomorrows resistance", ra * (t[-1] + 1) + rb) a1 = c[c > support] a2 = c[c < resistance] print("Number of points between bands 2nd approach" ,len(np.intersect1d(a1, a2))) plt.plot(t, c, label='Data') plt.plot(t, support, '--', lw=2.0, label='Support') plt.plot(t, resistance, '-.', lw=3.0, label='Resistance') plt.title('Trend Lines') plt.xlabel('Days') plt.ylabel('Price ($)') plt.grid() plt.legend() plt.show()
[ "yusuke.007.yasud@gmail.com" ]
yusuke.007.yasud@gmail.com
b45c9b02f05aa2a1d529bacf9ec69c1b70e7e35b
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/Data-Structures-Algos-Codebase/ALGO/__PYTHON/YT_DOWN.py
2e47b44e59c00793d16628f53a9120871d31a7a4
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
310
py
simport pafy url = "https://www.youtube.com/watch?v=OE7wUUpJw6I&list=PL2_aWCzGMAwLPEZrZIcNEq9ukGWPfLT4A" video = pafy.new(url) print(video.title) stream=pafy.new(url).streams best=video.getbest() for i in stream: print(i) print(best.resolution,best.extension) print(best.url) best.download(quiet=False)
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
2e06b237f8de00ed2eda46de62f6d4a013feeb58
5989e503a733e8b29f4c502008446a75c2b43ff8
/src/geofr/api/serializers.py
e6b9048e6acbf53169edb9aa681077ec2224fb2d
[]
no_license
samuelpath/aides-territoires
399a6a7b0607ef5a8d2b327247446b239f5b1a42
5793bd49d7157a34e08c29e56a46e1e3ead0651f
refs/heads/master
2022-12-20T14:35:18.671563
2020-08-21T08:00:33
2020-08-21T08:00:33
288,424,578
0
0
null
2020-08-18T10:27:17
2020-08-18T10:27:16
null
UTF-8
Python
false
false
388
py
from rest_framework import serializers from geofr.models import Perimeter class PerimeterSerializer(serializers.ModelSerializer): id = serializers.CharField(source='id_slug') scale = serializers.CharField(source='get_scale_display') text = serializers.CharField(source='__str__') class Meta: model = Perimeter fields = ('id', 'name', 'scale', 'text')
[ "thibault@miximum.fr" ]
thibault@miximum.fr
d9213d2c6b72b46b327ce6a9697cc507a3850b4e
c29cdc64f42eae3bc7d584a7b9b84961ce09da04
/bitcoinx/__init__.py
d8c08b3d58a13838d07a60b0f1dbabaa6c15fe86
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
msinkec/bitcoinX
d379e32e9dc0f43700710032ad0ce7ffca2e398d
26ec8a8a8c2a6423e0438dea9918c740c96f5eb2
refs/heads/master
2023-04-28T18:52:12.072225
2021-05-11T11:19:44
2021-05-11T11:19:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
830
py
from .address import * from .base58 import * from .bip32 import * from .chain import * from .consts import * from .errors import * from .hashes import * from .interpreter import * from .keys import * from .misc import * from .mnemonic import * from .networks import * from .packing import * from .script import * from .signature import * from .tx import * from .work import * _version_str = '0.4.1' _version = tuple(int(part) for part in _version_str.split('.')) __all__ = sum(( address.__all__, base58.__all__, bip32.__all__, chain.__all__, consts.__all__, errors.__all__, hashes.__all__, interpreter.__all__, keys.__all__, misc.__all__, mnemonic.__all__, networks.__all__, packing.__all__, script.__all__, signature.__all__, tx.__all__, work.__all__, ), ())
[ "kyuupichan@gmail.com" ]
kyuupichan@gmail.com
ed146779588cd7189d51bb5d520952ed956f518a
7ff0077a55f6bf4a74704e430f354aeabaae3e0b
/tensorflow_probability/python/distributions/relaxed_onehot_categorical_test.py
a92246b95c13587324e028dd9841e11f232c49ad
[ "Apache-2.0" ]
permissive
markaduol/probability
50a1d97810d11c747bd9546f977b2937c9e04d78
8af21dff96502a5bdc01b1be2c595043a3efc5d1
refs/heads/master
2020-03-29T20:50:26.001297
2018-09-25T21:51:10
2018-09-25T21:51:50
150,333,784
0
1
Apache-2.0
2018-09-25T21:54:49
2018-09-25T21:54:49
null
UTF-8
Python
false
false
6,579
py
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for Relaxed One-Hot Categorical distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np from scipy.special import gamma import tensorflow as tf import tensorflow_probability as tfp from tensorflow.python.framework import test_util tfd = tfp.distributions def make_relaxed_categorical(batch_shape, num_classes, dtype=tf.float32): logits = tf.random_uniform( list(batch_shape) + [num_classes], -10, 10, dtype=dtype) - 50. temperatures = tf.random_uniform(list(batch_shape), 0.1, 10, dtype=tf.float32) return tfd.RelaxedOneHotCategorical(temperatures, logits) @test_util.run_all_in_graph_and_eager_modes class ExpRelaxedOneHotCategoricalTest(tf.test.TestCase): def testP(self): temperature = 1.0 logits = [2.0, 3.0, -4.0] dist = tfd.ExpRelaxedOneHotCategorical(temperature, logits) expected_p = np.exp(logits)/np.sum(np.exp(logits)) self.assertAllClose(expected_p, self.evaluate(dist.probs)) self.assertAllEqual([3], dist.probs.get_shape()) def testPdf(self): temperature = .4 logits = [.3, .1, .4] k = len(logits) p = np.exp(logits)/np.sum(np.exp(logits)) dist = tfd.ExpRelaxedOneHotCategorical(temperature, logits) x = self.evaluate(dist.sample()) # analytical ExpConcrete density presented in Maddison et al. 2016 prod_term = p * np.exp(-temperature * x) expected_pdf = ( gamma(k) * np.power(temperature, k - 1) * np.prod( prod_term / np.sum(prod_term))) pdf = self.evaluate(dist.prob(x)) self.assertAllClose(expected_pdf, pdf) @test_util.run_all_in_graph_and_eager_modes class RelaxedOneHotCategoricalTest(tf.test.TestCase): def testLogits(self): temperature = 1.0 logits = [2.0, 3.0, -4.0] dist = tfd.RelaxedOneHotCategorical(temperature, logits) # check p for ExpRelaxed base distribution self.assertAllClose(logits, self.evaluate(dist._distribution.logits)) self.assertAllEqual([3], dist._distribution.logits.get_shape()) def testSample(self): temperature = 1.4 # single logit logits = [.3, .1, .4] dist = tfd.RelaxedOneHotCategorical(temperature, logits) self.assertAllEqual([3], self.evaluate(dist.sample()).shape) self.assertAllEqual([5, 3], self.evaluate(dist.sample(5)).shape) # multiple distributions logits = [[2.0, 3.0, -4.0], [.3, .1, .4]] dist = tfd.RelaxedOneHotCategorical(temperature, logits) self.assertAllEqual([2, 3], self.evaluate(dist.sample()).shape) self.assertAllEqual([5, 2, 3], self.evaluate(dist.sample(5)).shape) # multiple distributions logits = np.random.uniform(size=(4, 1, 3)).astype(np.float32) dist = tfd.RelaxedOneHotCategorical(temperature, logits) self.assertAllEqual([4, 1, 3], self.evaluate(dist.sample()).shape) self.assertAllEqual([5, 4, 1, 3], self.evaluate(dist.sample(5)).shape) def testPdf(self): def analytical_pdf(x, temperature, logits): # analytical density of RelaxedOneHotCategorical temperature = np.reshape(temperature, (-1, 1)) if len(x.shape) == 1: x = np.expand_dims(x, 0) k = logits.shape[1] p = np.exp(logits)/np.sum(np.exp(logits), axis=1, keepdims=True) term1 = gamma(k)*np.power(temperature, k-1) term2 = np.sum(p/(np.power(x, temperature)), axis=1, keepdims=True) term3 = np.prod(p/(np.power(x, temperature+1)), axis=1, keepdims=True) expected_pdf = term1*np.power(term2, -k)*term3 return expected_pdf temperature = .4 logits = np.array([[.3, .1, .4]]).astype(np.float32) dist = tfd.RelaxedOneHotCategorical(temperature, logits) x = self.evaluate(dist.sample()) pdf = self.evaluate(dist.prob(x)) expected_pdf = analytical_pdf(x, temperature, logits) self.assertAllClose(expected_pdf.flatten(), pdf, rtol=1e-4) # variable batch size logits = np.array([[.3, .1, .4], [.6, -.1, 2.]]).astype(np.float32) temperatures = np.array([0.4, 2.3]).astype(np.float32) dist = tfd.RelaxedOneHotCategorical(temperatures, logits) x = self.evaluate(dist.sample()) pdf = self.evaluate(dist.prob(x)) expected_pdf = analytical_pdf(x, temperatures, logits) self.assertAllClose(expected_pdf.flatten(), pdf, rtol=1e-4) def testShapes(self): for batch_shape in ([], [1], [2, 3, 4]): dist = make_relaxed_categorical(batch_shape, 10) self.assertAllEqual(batch_shape, dist.batch_shape.as_list()) self.assertAllEqual(batch_shape, self.evaluate(dist.batch_shape_tensor())) self.assertAllEqual([10], self.evaluate(dist.event_shape_tensor())) self.assertAllEqual([10], self.evaluate(dist.event_shape_tensor())) for batch_shape in ([], [1], [2, 3, 4]): dist = make_relaxed_categorical(batch_shape, tf.constant(10, dtype=tf.int32)) self.assertAllEqual(len(batch_shape), dist.batch_shape.ndims) self.assertAllEqual(batch_shape, self.evaluate(dist.batch_shape_tensor())) self.assertAllEqual([10], self.evaluate(dist.event_shape_tensor())) self.assertAllEqual([10], self.evaluate(dist.event_shape_tensor())) def testUnknownShape(self): logits_pl = tf.placeholder_with_default(input=[.3, .1, .4], shape=None) temperature = 1.0 dist = tfd.ExpRelaxedOneHotCategorical(temperature, logits_pl) self.assertAllEqual([3], self.evaluate(dist.sample()).shape) self.assertAllEqual([5, 3], self.evaluate(dist.sample(5)).shape) def testDTypes(self): # check that sampling and log_prob work for a range of dtypes for dtype in (tf.float16, tf.float32, tf.float64): logits = tf.random_uniform(shape=[3, 3], dtype=dtype) dist = tfd.RelaxedOneHotCategorical(temperature=0.5, logits=logits) dist.log_prob(dist.sample()) if __name__ == "__main__": tf.test.main()
[ "copybara-piper@google.com" ]
copybara-piper@google.com
6741d8af6bd64f44ce8282efeb4594958db494e4
1fc9a12c86be4e440f4f0d95c8b871c79df07545
/ML Libariries/python_pandas/dataframe_row.py
b1f101d5632b2dcc45428ad701ace69103a14311
[]
no_license
Rohit-Gupta-Web3/Articles
a56e7f1b36d6d5efd846eec2e1a4036716ac16eb
0f584916e065059d4dd1e95e7de874a7830fdff4
refs/heads/master
2023-05-14T02:50:17.817951
2020-07-26T06:44:10
2020-07-26T06:44:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
import pandas as pd data = {'Name':['C','Sharp','Corner'], 'Age':[20,21,22], 'Address':['Delhi','Kanpur','Tamil Nadu']} df = pd.DataFrame(data) data1= df.loc[0] print(data1)
[ "rohit.gupta@iic.ac.in" ]
rohit.gupta@iic.ac.in
f2c4e6b1a789554712a287c4f0a34afbf2126b22
f9c0e305ca873cd9784f1a6f441fee0ca7fbc468
/recom/main/map.py
e13f55ae806969fe8b3404e4775d65e18b170a56
[]
no_license
flybetter/recom_web
b3caac2873786f4a10fbedc8b34d2ea4888aeafe
ef06f64931df594f4c8c6b2f72a59e0ad4a5e637
refs/heads/master
2020-03-27T10:21:35.813149
2018-10-10T08:47:56
2018-10-10T08:47:56
146,412,458
0
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
from flask import render_template, Blueprint from urllib import request import json from recom.main.recom_glorithm import startup, secondHouseRequestJson, get_history, get_associate_community import logging logging.basicConfig(level=logging.DEBUG) bp = Blueprint('map', __name__, url_prefix='/map') HISTORY_URL = 'http://tuijianapiv2.house365.com/analysis/getData?cityKey=nj&dataType=accesslog&pageNum=1&pageSize=20&' \ 'userId=' @bp.route('/') def hello_world(): return render_template('map/map.html') @bp.route('/<string:phone>/history', methods=('GET', 'POST')) def history(phone): # response = request.urlopen(HISTORY_URL + phone) return get_history(phone) @bp.route('/<string:phone>/recom', methods=('GET', 'POST')) def recom(phone): datas = startup(phone) if type(datas) != str: datas = secondHouseRequestJson(datas) return datas @bp.route('/<string:phone>/associated_community', methods=('GET', 'POST')) def associated_community(phone): return get_associate_community(phone)
[ "flybetter@163.com" ]
flybetter@163.com
bad111c370e04a62e3e9f19868fc1862a53e48f3
fd877cb919622d6a4efa305fb9eaec8a31e8dd37
/scripts/coop/extract_idhs.py
96006b4849a3fe65260d49d3758153010ba1974b
[ "MIT" ]
permissive
NCiobo/iem
37df9bc466ffcbe4f6b1f9c29c6b5266559f200c
75da5e681b073c6047f5a2fb76721eaa0964c2ed
refs/heads/master
2021-01-23T09:39:33.090955
2017-09-05T16:34:12
2017-09-05T16:34:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,656
py
"""Extraction as requested by IA Public Health""" import psycopg2 import sys YEAR = int(sys.argv[1]) def main(argv): """Do Something""" pgconn = psycopg2.connect(database='postgis', host='localhost', port=5555, user='nobody') cursor = pgconn.cursor() cursor2 = pgconn.cursor() pgconn2 = psycopg2.connect(database='coop', host='localhost', port=5555, user='nobody') cursor3 = pgconn2.cursor() cursor.execute("""SELECT ugc, ST_X(centroid), ST_Y(centroid) from ugcs where state = 'IA' and substr(ugc,3,1) = 'C' and end_ts is null ORDER by ugc ASC""") for row in cursor: fips = row[0][3:] # Get closest climodat site cursor2.execute("""SELECT id, ST_Distance(geom, ST_SetSRID(ST_GeomFromText('POINT(%s %s)'), 4326)) from stations where network = 'IACLIMATE' and id != 'IA0000' and substr(id,3,1) != 'C' ORDER by st_distance ASC LIMIT 1 """, (row[1], row[2])) sid = cursor2.fetchone()[0] cursor3.execute("""SELECT year, month, max(high), min(low), avg((high+low)/2.), sum(precip), sum(case when high >= 95 then 1 else 0 end), sum(case when low >= 70 then 1 else 0 end) from alldata_ia WHERE station = %s and year = %s GROUP by year, month """, (sid, YEAR)) for row in cursor3: print ','.join([str(i) for i in [fips, row[0], row[1], row[2], row[3], row[4], row[5], row[6], row[7]]]) if __name__ == '__main__': main(sys.argv)
[ "akrherz@iastate.edu" ]
akrherz@iastate.edu
2ebeb1af2486684d1a3e45df73b6fbb9fe41cad1
ba157236151a65e3e1fde2db78b0c7db81b5d3f6
/String/Shortest Distance to a Character.py
61944332f699e54e8ea2514cf4b61df0e868fee3
[]
no_license
JaberKhanjk/LeetCode
152488ccf385b449d2a97d20b33728483029f85b
78368ea4c8dd8efc92e3db775b249a2f8758dd55
refs/heads/master
2023-02-08T20:03:34.704602
2020-12-26T06:24:33
2020-12-26T06:24:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,372
py
class Solution(object): def produce_range(self,arr,s,e): if s == e: return else: length = e-s c = 1 for i in range(s,s+length/2): arr[i] = c c += 1 if (e-s) % 2 == 0: c -= 1 for i in range(s+length/2,e): arr[i] = c c -= 1 return def find_indexes(self,string,char): indexes = [] for i,each in enumerate(string): if each == char: indexes.append(int(i)) return indexes def shortestToChar(self, S, C): arr = [0]*len(S) indexes = self.find_indexes(S,C) n = len(indexes) # first c = 0 for i in range(indexes[0],-1,-1): arr[i] = c c += 1 for i in range(0,n-1): self.produce_range(arr,indexes[i]+1,indexes[i+1]) c = 1 # final for i in range(indexes[-1]+1,len(S)): arr[i] = c c += 1 return arr """ :type S: str :type C: str :rtype: List[int] """
[ "spondoncsebuet@gmail.com" ]
spondoncsebuet@gmail.com
26f7c3a515ee832fb3576f44619b37adfd2f0357
6f56e44e04a287a2545b4c43a09fa82d6f8551a6
/dcp100 - given infinite 2D grid and seq of points to cover in order, find min num steps.py
27412150dba3353bf13f3ff326d280e14bae840d
[]
no_license
seanchen513/dcp
bb7ab2f9632700c5d23ccfa92b0e8a541c508d3b
c0b19833c51833d1d80016afe637734316194327
refs/heads/master
2020-04-10T21:21:23.308335
2020-01-30T15:51:49
2020-01-30T15:51:49
161,294,610
1
0
null
null
null
null
UTF-8
Python
false
false
1,553
py
""" dcp#100, 416 This problem was asked by Google. You are in an infinite 2D grid where you can move in any of the 8 directions: (x,y) to (x+1, y), (x - 1, y), (x, y+1), (x, y-1), (x-1, y-1), (x+1,y+1), (x-1,y+1), (x+1,y-1) You are given a sequence of points and the order in which you need to cover the points. Give the minimum number of steps in which you can achieve it. You start from the first point. Example: Input: [(0, 0), (1, 1), (1, 2)] Output: 2 It takes 1 step to move from (0, 0) to (1, 1). It takes one more step to move from (1, 1) to (1, 2). """ """ Idea: To get minimum number of steps between two points, go diagonal as much as possible, and then either vertically or horizontally as needed. Example: (2, 3), (8, 13) |dx| = |8 - 2| = 6 |dy| = |13 - 3| = 10 Go diagonally (+1, +1) by 6, then go vertically +4. Go diagonally by (ignore sign/direction): min(|dx|, |dy|) Go horizontally/vertically by (ignore sign/direction): max(|dx|, |dy|) - min(|dx|, |dy|) = | |dx| - |dy| | Total number of steps is: max(|dx|, |dy|) """ def min_steps(points): n = len(points) steps = 0 for i in range(n-1): dx = points[i+1][0] - points[i][0] dy = points[i+1][1] - points[i][1] steps += max(abs(dx), abs(dy)) return steps points = [] points = [(5, 13)] points = [(2, 3), (8, 13)] points = [(0, 0), (1, 1), (1, 2)] n = min_steps(points) print("\npoints = {}".format(points)) print("\nmin steps to cover points in order = {}".format(n))
[ "seanchen513@gmail.com" ]
seanchen513@gmail.com
5e10d01be687ad36d906c3e893f05564f5edc79e
bf4f11bcac4c92975fdcb98c328a03a663d2d9ae
/dask_gdf/tests/test_sort.py
9c4988271286624f74c78fcbd7e0bede033a9e90
[ "Apache-2.0" ]
permissive
Quansight/dask_gdf
88063f6ca4d3de5a5e7ed5d2f3e23fbe55cc1523
9f67410f4ff6c5cea18f831404d2f2fe7bf632ab
refs/heads/master
2020-03-28T14:46:50.533877
2018-11-06T19:26:56
2018-11-06T19:26:56
148,521,998
1
1
Apache-2.0
2018-09-19T14:43:19
2018-09-12T18:12:49
Python
UTF-8
Python
false
false
1,314
py
import pytest import numpy as np import pandas as pd import pygdf import dask import dask_gdf as dgd @pytest.mark.parametrize('by', ['a', 'b']) @pytest.mark.parametrize('nelem', [10, 100, 1000]) @pytest.mark.parametrize('nparts', [1, 2, 5, 10]) def test_sort_values(nelem, nparts, by): df = pygdf.DataFrame() df['a'] = np.ascontiguousarray(np.arange(nelem)[::-1]) df['b'] = np.arange(100, nelem + 100) ddf = dgd.from_pygdf(df, npartitions=nparts) got = ddf.sort_values(by=by).compute().to_pandas() expect = df.sort_values(by=by).to_pandas().reset_index(drop=True) pd.util.testing.assert_frame_equal(got, expect) def test_sort_values_binned(): np.random.seed(43) nelem = 100 nparts = 5 by = 'a' df = pygdf.DataFrame() df['a'] = np.random.randint(1, 5, nelem) ddf = dgd.from_pygdf(df, npartitions=nparts) parts = ddf.sort_values_binned(by=by).to_delayed() part_uniques = [] for i, p in enumerate(parts): part = dask.compute(p)[0] part_uniques.append(set(part.a.unique())) # Partitions do not have intersecting keys for i in range(len(part_uniques)): for j in range(i + 1, len(part_uniques)): assert not (part_uniques[i] & part_uniques[j]), \ "should have empty intersection"
[ "michael.lam.sk@gmail.com" ]
michael.lam.sk@gmail.com