blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
68add924debc9d40e2c9e6e8b0177bc5b786cd89
2adcbbbecf90e4fbb89755a8a68f86b8fe70910a
/pythinkutils/aio/jwt/tornado/handler/AuthHandler.py
cf9795dfe29d2da870a4610c81273d1f7a526deb
[]
no_license
ThinkmanWang/ThinkEventTrack
53e3b205787c2fcefb20d24fef0f98465dcb925e
b65072a3236a183c1cc1ac835cd79f2f46fd10d7
refs/heads/master
2023-08-03T11:38:33.099014
2021-09-19T13:17:39
2021-09-19T13:17:39
406,753,292
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
# -*- coding: utf-8 -*- from pythinkutils.aio.jwt.tornado.handler.BaseHandler import BaseHandler from pythinkutils.common.StringUtils import * class AuthHandler(BaseHandler): async def create_token(self, szAppId, szSecret): pass async def token_valid(self): pass async def get_uid_name(self): pass async def get_userinfo(self): pass async def get_token(self): pass async def get_permission_list(self): pass
[ "wangxf1985@gmail.com" ]
wangxf1985@gmail.com
23bb6267bc9316d2c29589fa9f9f4bbc4070480d
9084751a90f977fc722f90892e62c6596d0a26c6
/staticpy/util/helper.py
c426b40cab25aefe97cd88114e4f10b9981420d3
[ "BSD-3-Clause" ]
permissive
SnowWalkerJ/StaticPy
5d3b4723cd7b78283ab95ec3021bdcf0dfe67a6c
818b7f009af7a6040313791993f543779781dddf
refs/heads/master
2020-07-28T17:50:21.072169
2020-01-14T06:21:39
2020-01-14T06:21:39
209,484,058
19
0
null
null
null
null
UTF-8
Python
false
false
457
py
class Cls: """ This class is to refer to the "current" class when it hasn't been completely defined. Example ======= .. code-block:: python class A: def __init__(self, value): self.value: int = 1 def __add__(self, other: Cls) -> Cls: return A(self.value + othervalue) The signature of operator `__add__` means it adds and returns an object of type `A` """
[ "jike3212001@163.com" ]
jike3212001@163.com
f4c2668459c92a992bfea23f219d566210944f98
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_imported.py
878ac0a3c2bf379c3bee6feb4d0d7b3a98dbeee7
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from xai.brain.wordbase.verbs._import import _IMPORT #calss header class _IMPORTED(_IMPORT, ): def __init__(self,): _IMPORT.__init__(self) self.name = "IMPORTED" self.specie = 'verbs' self.basic = "import" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
c3e66a8e8814e8e5285b5c62076236e5e92a2c5c
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_barmaids.py
ed81aeb5d23f31b1164a1e5b2abbd9d585783d17
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
#calss header class _BARMAIDS(): def __init__(self,): self.name = "BARMAIDS" self.definitions = barmaid self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['barmaid']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
41362c6f99bb8f283f580c623b5714413bdd9cef
b201a0a88022b4c567f9c74346d60ab17f46ef64
/supervised_learning/0x08-deep_cnns/0-inception_block.py
c25e5a099742a0fae8f1a181e73471d332ce9741
[]
no_license
Diegokernel/holbertonschool-machine_learning
929d9b8ac0fcdecbf28b76c09799f86c4b48d38e
a51fbcb76dae9281ff34ace0fb762ef899b4c380
refs/heads/master
2020-12-21T18:34:03.579632
2020-10-15T20:51:32
2020-10-15T20:51:32
236,523,731
0
1
null
null
null
null
UTF-8
Python
false
false
2,189
py
#!/usr/bin/env python3 """inception""" import tensorflow.keras as K def inception_block(A_prev, filters): """Builds an inception block as described in Going Deeper with Convolutions (2014). The concatenated output of the inception block """ convly_1 = K.layers.Conv2D(filters=filters[0], kernel_size=1, padding='same', kernel_initializer='he_normal', activation='relu')(A_prev) convly_2P = K.layers.Conv2D(filters=filters[1], kernel_size=1, padding='same', kernel_initializer='he_normal', activation='relu')(A_prev) layer_pool = K.layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(1, 1))(A_prev) convly_3 = K.layers.Conv2D(filters=filters[2], kernel_size=3, padding='same', kernel_initializer='he_normal', activation='relu')(convly_2P) convly_3P = K.layers.Conv2D(filters=filters[3], kernel_size=1, padding='same', kernel_initializer='he_normal', activation='relu')(A_prev) convly_3s = K.layers.Conv2D(filters=filters[4], kernel_size=5, padding='same', kernel_initializer='he_normal', activation='relu')(convly_3P) OFPP = K.layers.Conv2D(filters=filters[5], kernel_size=1, padding='same', kernel_initializer='he_normal', activation='relu')(layer_pool) mid_layer = K.layers.Concatenate(axis=3)([convly_1, convly_3, convly_3s, OFPP]) return mid_layer
[ "777@holbertonschool.com" ]
777@holbertonschool.com
7efd7bacbcbce83194fa14d887cdaec9746271a3
714e36b745a5b2b5fc4e9b267b3fa214a9fa3d9a
/scripts/matplotlib/32plot_multi_ax.py
2d24a31b7ad2f8682a42094864e96bfd9abaa085
[]
no_license
j3ffyang/ai
e89b4618c96e2085f37047c88d95f89d0a5409c9
5da753d2a1c9793564a32ac80911c1d2e35e8605
refs/heads/master
2022-12-10T21:12:48.432682
2020-08-12T07:56:11
2020-08-12T07:56:11
141,972,057
2
1
null
2022-11-22T02:55:29
2018-07-23T06:37:15
Python
UTF-8
Python
false
false
251
py
import matplotlib.pyplot as plt fig= plt.figure(figsize=(10, 5)) ax1= fig.add_subplot(121) # 1= axes lie horizontally, 2= 2 cols ax2= fig.add_subplot(122) ax1.bar([1,2,3], [3,4,5]) ax2.barh([0.5, 1, 2.5], [0, 1, 2]) # horizontal bar plt.show()
[ "j3ffyang@gmail.com" ]
j3ffyang@gmail.com
f1e2664fa2d0bd72aa21b35789a9c70c94b02c4b
29bd55d171733586f24f42151d44f4312b6a610e
/keras/keras09_R2_test_answer.py
290e451c6c941e5b4cc6a1795f1120eefece9faa
[]
no_license
votus777/AI_study
66ab1da2b8e760d0c52b0ed2b2f74158e14f435b
f4e38d95690c8ee84d87c02dc20a1ea59c495f04
refs/heads/master
2022-12-04T15:52:14.855624
2020-08-20T06:12:52
2020-08-20T06:12:52
262,975,960
1
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
''' * 정답 * Overfitting이 나게 해라! epoch를 컴터지기 직전까지 돌려라 단 너무 많이 돌리면 - 값이 나온다. ''' # 1. 데이터 import numpy as np x_train = np.array([1,2,3,4,5,6,7,8,9,10]) y_train = np.array([1,2,3,4,5,6,7,8,9,10]) x_test = np.array([11,12,13,14,15]) y_test = np.array([11,12,13,14,15]) x_pred = np.array([16, 17, 18]) # 2. 모델 구성 from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(5, input_dim = 1)) model.add(Dense(5)) model.add(Dense(5)) model.add(Dense(5)) model.add(Dense(1)) # 3. 훈련 model.compile(loss='mse', optimizer='adam', metrics=['mse']) model.fit(x_train, y_train, epochs=30000, batch_size = 1) # 4. 평가, 예측 loss,mse = model.evaluate(x_test, y_test, batch_size = 1) print("loss : ", loss) print("mse : ", mse) ''' y_pred = model.predict(x_pred) print("y_pred : ", y_pred) ''' y_predict = model.predict(x_test) print(y_predict) #________RMSE 구하기___________________ from sklearn.metrics import mean_squared_error def RMSE(y_test ,y_pred) : return np.sqrt(mean_squared_error(y_test, y_predict)) # y_test = 실제값, y_pred = 예측값 print("RMSE : ", RMSE(y_test, y_predict)) #________R2 구하기_____________________ from sklearn.metrics import r2_score r2 = r2_score(y_test, y_predict) print("R2 score : ", r2)
[ "votus777@users.noreply.github.com" ]
votus777@users.noreply.github.com
637294feb6424a6229c798af7673ec45462eb36b
6f1034b17b49f373a41ecf3a5a8923fb4948992b
/pychron/entry/providers/geodeepdive.py
5b215e86d942b7a12705bd99e2a5055fe0130c7a
[ "Apache-2.0" ]
permissive
NMGRL/pychron
a6ec1854488e74eb5d3ff53eee8537ecf98a6e2f
8cfc8085393ace2aee6b98d36bfd6fba0bcb41c6
refs/heads/main
2023-08-30T07:00:34.121528
2023-06-12T17:43:25
2023-06-12T17:43:25
14,438,041
38
28
Apache-2.0
2023-08-09T22:47:17
2013-11-15T23:46:10
Python
UTF-8
Python
false
false
1,128
py
# =============================================================================== # Copyright 2019 ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== import requests API_URL = "https://geodeepdive.org/api" def get_snippet(term): s = requests.Session() url = "{}/snippets?term={}".format(API_URL, term) r = s.get(url) obj = r.json() return obj["success"]["data"] if __name__ == "__main__": g = get_snippet("Fish Canyon") for o in g: print(o) # ============= EOF =============================================
[ "jirhiker@gmail.com" ]
jirhiker@gmail.com
5bbd918ca6dd43ecbc614c38cc3504aae453f7ff
3d4247362747e3763b72cd97ba39164387cfc07b
/tests/conftest.py
f2e6030f9a4269a460b002190ed04975970e3692
[ "MIT" ]
permissive
gitter-badger/bocadillo
d5f104ff47ef5b9ee61163b7a4f3eb21d3e7da8b
ec1122ec6d62e8c90060b3ab3eb8cf7fb7deb433
refs/heads/master
2020-04-12T23:34:39.904514
2018-12-22T12:17:13
2018-12-22T12:17:13
162,823,961
0
0
MIT
2018-12-22T15:56:06
2018-12-22T15:56:06
null
UTF-8
Python
false
false
1,147
py
from typing import NamedTuple import pytest from click.testing import CliRunner from bocadillo import API from .utils import RouteBuilder @pytest.fixture def api(): return API() @pytest.fixture def builder(api: API): return RouteBuilder(api) class TemplateWrapper(NamedTuple): name: str context: dict rendered: str source_directory: str def _create_template(api, tmpdir_factory, dirname): templates_dir = tmpdir_factory.mktemp(dirname) template_file = templates_dir.join("hello.html") template_file.write("<h1>Hello, {{ name }}!</h1>") api.templates_dir = str(templates_dir) return TemplateWrapper( name="hello.html", context={"name": "Bocadillo"}, rendered="<h1>Hello, Bocadillo!</h1>", source_directory=dirname, ) @pytest.fixture def template_file(api: API, tmpdir_factory): return _create_template(api, tmpdir_factory, dirname="templates") @pytest.fixture def template_file_elsewhere(api: API, tmpdir_factory): return _create_template(api, tmpdir_factory, dirname="templates_elsewhere") @pytest.fixture def runner(): return CliRunner()
[ "florimond.manca@gmail.com" ]
florimond.manca@gmail.com
81e4750f6e1eafec47a415e18716602934030d5a
ef6229d281edecbea3faad37830cb1d452d03e5b
/ucsmsdk/mometa/ape/ApeControllerChassis.py
92e616892a55b50b06f2dfb1df372998f463b50d
[ "Apache-2.0" ]
permissive
anoop1984/python_sdk
0809be78de32350acc40701d6207631322851010
c4a226bad5e10ad233eda62bc8f6d66a5a82b651
refs/heads/master
2020-12-31T00:18:57.415950
2016-04-26T17:39:38
2016-04-26T17:39:38
57,148,449
0
0
null
null
null
null
UTF-8
Python
false
false
2,276
py
"""This module contains the general information for ApeControllerChassis ManagedObject.""" import sys, os from ...ucsmo import ManagedObject from ...ucscoremeta import UcsVersion, MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class ApeControllerChassisConsts(): pass class ApeControllerChassis(ManagedObject): """This is ApeControllerChassis class.""" consts = ApeControllerChassisConsts() naming_props = set([u'index']) mo_meta = MoMeta("ApeControllerChassis", "apeControllerChassis", "Chassis-[index]", VersionMeta.Version101e, "InputOutput", 0x3f, [], ["read-only"], [u'apeControllerManager'], [u'apeControllerEeprom'], [None]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version101e, MoPropertyMeta.INTERNAL, 0x2, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version101e, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "index": MoPropertyMeta("index", "index", "uint", VersionMeta.Version101e, MoPropertyMeta.NAMING, 0x8, None, None, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version101e, MoPropertyMeta.READ_ONLY, 0x10, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version101e, MoPropertyMeta.READ_WRITE, 0x20, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), } prop_map = { "childAction": "child_action", "dn": "dn", "index": "index", "rn": "rn", "sacl": "sacl", "status": "status", } def __init__(self, parent_mo_or_dn, index, **kwargs): self._dirty_mask = 0 self.index = index self.child_action = None self.sacl = None self.status = None ManagedObject.__init__(self, "ApeControllerChassis", parent_mo_or_dn, **kwargs)
[ "test@cisco.com" ]
test@cisco.com
8f304b7f865adf1b910f47d4f554e7f22e87c2c7
b6406cd1e6d951934e762ec2ac925cddf4716ae9
/verification_feed/app.py
f72a52e96e4339287768e573bf79e527800013db
[ "MIT" ]
permissive
agiamas/activity-stream
e5da92f00c26a8d7d99c4b2c5d4469e3500315cc
2b6a23de082950736e71380932b89b0a0e984b89
refs/heads/master
2020-03-28T17:14:02.023352
2018-09-05T17:32:51
2018-09-05T17:32:51
148,770,350
0
0
null
2018-09-14T09:57:53
2018-09-14T09:57:53
null
UTF-8
Python
false
false
3,912
py
import asyncio from datetime import ( datetime, timedelta, timezone, ) import logging import os import sys from aiohttp import web LOGGER_NAME = 'activity-stream-verification-feed' async def run_application(): app_logger = logging.getLogger(LOGGER_NAME) app_logger.debug('Examining environment...') port = os.environ['PORT'] app_logger.debug('Examining environment: done') await create_incoming_application(port) async def create_incoming_application(port): app_logger = logging.getLogger(LOGGER_NAME) async def handle(request): timestamp = int(request.match_info['timestamp']) def get_next_page_href(next_timestamp): return str(request.url.with_scheme(request.headers.get( 'X-Forwarded-Proto', 'http')).with_path(f'/{next_timestamp}')) return web.json_response(get_page(timestamp, get_next_page_href)) app_logger.debug('Creating listening web application...') app = web.Application() app.add_routes([web.get(r'/{timestamp:\d+}', handle)]) access_log_format = '%a %t "%r" %s %b "%{Referer}i" "%{User-Agent}i" %{X-Forwarded-For}i' runner = web.AppRunner(app, access_log_format=access_log_format) await runner.setup() site = web.TCPSite(runner, '0.0.0.0', port) await site.start() app_logger.debug('Creating listening web application: done') def setup_logging(): stdout_handler = logging.StreamHandler(sys.stdout) aiohttp_log = logging.getLogger('aiohttp.access') aiohttp_log.setLevel(logging.DEBUG) aiohttp_log.addHandler(stdout_handler) app_logger = logging.getLogger(LOGGER_NAME) app_logger.setLevel(logging.DEBUG) app_logger.addHandler(stdout_handler) def get_page(timestamp, get_next_page_href): ''' Creates dummy activities where one has been created every second for the past 24 hours''' now = datetime.now(timezone.utc).replace(microsecond=0) one_day_ago = now - timedelta(hours=24) first_timestamp = int(one_day_ago.timestamp()) final_timestamp = int(now.timestamp()) max_per_page = 1000 first_timestamp_of_page = max(first_timestamp, timestamp) final_timestamp_of_page = min(first_timestamp_of_page + max_per_page, final_timestamp) timestamps = range(first_timestamp_of_page, final_timestamp_of_page) return { '@context': [ 'https://www.w3.org/ns/ettystreams', { 'dit': 'https://www.trade.gov.uk/ns/activitystreams/v1' } ], 'orderedItems': [ { 'actor': { 'dit:activityStreamVerificationFeedOrganizationId': '1', 'type': [ 'Organization', 'dit:activityStreamVerificationFeedOrganization' ] }, 'dit:application': 'activityStreamVerificationFeed', 'id': f'dit:activityStreamVerificationFeed:Verifier:{activity_id}:Create', 'object': { 'id': f'dit:activityStreamVerificationFeed:Verifier:{activity_id}', 'type': [ 'Document', 'dit:activityStreamVerificationFeed:Verifier' ], 'url': f'https://activitystream.uktrade.io/activities/{activity_id}' }, 'published': datetime.utcfromtimestamp(timestamp).isoformat(), 'type': 'Create' } for timestamp in timestamps for activity_id in [str(timestamp)] ], 'type': 'Collection', **({'next': get_next_page_href(final_timestamp_of_page)} if timestamps else {}), } def main(): setup_logging() loop = asyncio.get_event_loop() loop.create_task(run_application()) loop.run_forever() if __name__ == '__main__': main()
[ "michal@charemza.name" ]
michal@charemza.name
b6e9b3b07c2c919a348d0916afd90fca07c31ad4
a74cabbe1b11fc8ef575ea86f2543cd95db78ec9
/python_program/q1457_Pseudo_Palindromic_Paths_in_a_Binary_Tree.py
3cb032d2740ae837af114fe21693659a88007536
[]
no_license
tszandy/leetcode
87e3ccf291b2879637d2d8238935a455b401a78a
f1f4361541dcffbb291285663c8820d7ffb37d2f
refs/heads/master
2023-04-06T15:34:04.847875
2023-03-26T12:22:42
2023-03-26T12:22:42
204,069,234
0
0
null
null
null
null
UTF-8
Python
false
false
1,485
py
from typing import List from collections import Counter,defaultdict,deque from math import * from functools import reduce,lru_cache,total_ordering import numpy as np from heapq import * from bisect import bisect_left,bisect_right from itertools import count,zip_longest import queue # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def pseudoPalindromicPaths (self, root: Optional[TreeNode]) -> int: self.counter = Counter() self.count_palin = 0 self.recursive(root) return self.count_palin def recursive(self,node): if node == None: return self.counter[node.val]+=1 if node.left==node.right==None: self.check_palindrome() else: self.recursive(node.left) self.recursive(node.right) self.counter[node.val]+=1 def check_palindrome(self): count_single = 0 for val in self.counter.values(): if val%2==1: count_single+=1 if count_single>=2: return self.count_palin +=1 sol = Solution() # input [2,3,1,3,1,null,1] [2,1,1,1,3,null,null,null,null,null,1] [9] # output output = sol.pseudoPalindromicPaths(root) # answer answer = "" print(output, answer, answer == output)
[ "444980834@qq.com" ]
444980834@qq.com
ae65ef4938bb05f4be99939c1298eac1dfe34aed
76f1331d083d360fb3822312537e72d4ff9d50b5
/spider/strong_spider/spider/antispider/proxypool/proxy_crawler.py
47c2dca816b1f993382664123b02647d33042a3d
[]
no_license
ZouJoshua/ml_project
2fe0efee49aa1454b04cd83c61455232601720a6
b1d8eb050182cd782bc6f3bb3ac1429fe22ab7b7
refs/heads/master
2021-07-22T10:37:56.452484
2020-05-09T09:54:39
2020-05-09T09:54:39
158,562,016
0
0
null
null
null
null
UTF-8
Python
false
false
3,767
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Author : Joshua @Time : 2018/9/5 15:51 @File : proxy_crawler.py @Desc : 代理下载调度 """ from gevent import monkey monkey.patch_all() import sys import time import gevent from gevent.pool import Pool from multiprocessing import Queue, Process, Value import setting from spider.tools.utils import md5 from proxy_htmldownloader import HtmlDownloader from proxy_htmlparser import HtmlParser from proxy_validator import Validator from proxy_sqlitedb import ProxySqliteDB from proxy_pipeline import SqlitePipeline def start_proxycrawl(proxy_queue, db_proxy_num, myip): crawl = ProxyCrawl(proxy_queue, db_proxy_num, myip) crawl.run() class ProxyCrawl(object): proxies = set() def __init__(self, proxy_queue, db_proxy_num, myip): self.crawl_pool = Pool(setting.THREADNUM) self.queue = proxy_queue self.db_proxy_num = db_proxy_num self.myip = myip def run(self): while True: self.proxies.clear() str_ = 'Starting crawl proxy!' sys.stdout.write(str_ + "\r\n") sys.stdout.flush() proxylist = ProxySqliteDB.get_all() spawns = [] for proxy in proxylist: spawns.append(gevent.spawn(Validator.detect_from_db, self.myip, proxy, self.proxies)) if len(spawns) >= setting.MAX_CHECK_CONCURRENT_PER_PROCESS: gevent.joinall(spawns) spawns= [] gevent.joinall(spawns) self.db_proxy_num.value = len(self.proxies) str_ = 'IPProxyPool----->>>>>>>>db exists ip:%d' % len(self.proxies) if len(self.proxies) < setting.MINNUM: str_ += '\r\nIPProxyPool----->>>>>>>>now ip num < MINNUM, start crawling...' sys.stdout.write(str_ + "\r\n") sys.stdout.flush() spawns = [] for p in setting.parserList: spawns.append(gevent.spawn(self.crawl, p)) if len(spawns) >= setting.MAX_DOWNLOAD_CONCURRENT: gevent.joinall(spawns) spawns= [] gevent.joinall(spawns) else: str_ += '\r\nIPProxyPool----->>>>>>>>now ip num meet the requirement,wait UPDATE_TIME...' sys.stdout.write(str_ + "\r\n") sys.stdout.flush() time.sleep(setting.UPDATE_TIME) def crawl(self, parser): html_parser = HtmlParser() for url in parser['urls']: response = HtmlDownloader.download(url) if response is not None: proxylist = html_parser.parse(response, parser) if proxylist is not None: for proxy in proxylist: proxy_str = '%s:%s' % (proxy['ip'], proxy['port']) proxy['proxy_id'] = md5(proxy_str) if proxy_str not in self.proxies: self.proxies.add(proxy_str) while True: if self.queue.full(): time.sleep(0.1) else: self.queue.put(proxy) break if __name__ == "__main__": DB_PROXY_NUM = Value('i', 0) q1 = Queue() q2 = Queue() p0 = Process(target=start_api_server) p1 = Process(target=start_proxycrawl, args=(q1, DB_PROXY_NUM)) p2 = Process(target=Validator.validator, args=(q1, q2)) p3 = Process(target=SqlitePipeline.save_data, args=(q2, DB_PROXY_NUM)) p0.start() p1.start() p2.start() p3.start()
[ "joshua_zou@163.com" ]
joshua_zou@163.com
5b7240a4bf1fca1148ffca29d3a7222e1e4a4373
b565143dbd490ad2721af7d8578483aa053383d0
/recipes/tsl-hopscotch-map/all/conanfile.py
bd7f158542108161ebd2d641b6d256fd96a8682a
[ "MIT" ]
permissive
czoido/conan-center-index
da7fbe837c88e3a65f7f2d6ed24ada62eb601c69
7952190873e49e23996fc7192a76e5917c49ec8a
refs/heads/master
2023-07-20T02:13:08.706521
2022-12-13T17:01:47
2022-12-13T17:01:47
228,573,093
0
0
MIT
2022-12-13T17:01:49
2019-12-17T08:49:29
Python
UTF-8
Python
false
false
1,853
py
from conans import ConanFile, tools import os required_conan_version = ">=1.43.0" class TslHopscotchMapConan(ConanFile): name = "tsl-hopscotch-map" license = "MIT" description = "C++ implementation of a fast hash map and hash set using hopscotch hashing" topics = ("structure", "hash map", "hash set") homepage = "https://github.com/Tessil/hopscotch-map" url = "https://github.com/conan-io/conan-center-index" settings = "os", "arch", "compiler", "build_type" no_copy_source = True @property def _source_subfolder(self): return "source_subfolder" def package_id(self): self.info.header_only() def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def package(self): self.copy("LICENSE", dst="licenses", src=self._source_subfolder) self.copy("*.h", dst="include", src=os.path.join(self._source_subfolder, "include")) def package_info(self): self.cpp_info.set_property("cmake_file_name", "tsl-hopscotch-map") self.cpp_info.set_property("cmake_target_name", "tsl::hopscotch_map") # TODO: to remove in conan v2 once cmake_find_package* generators removed self.cpp_info.filenames["cmake_find_package"] = "tsl-hopscotch-map" self.cpp_info.filenames["cmake_find_package_multi"] = "tsl-hopscotch-map" self.cpp_info.names["cmake_find_package"] = "tsl" self.cpp_info.names["cmake_find_package_multi"] = "tsl" self.cpp_info.components["hopscotch_map"].names["cmake_find_package"] = "hopscotch_map" self.cpp_info.components["hopscotch_map"].names["cmake_find_package_multi"] = "hopscotch_map" self.cpp_info.components["hopscotch_map"].set_property("cmake_target_name", "tsl::hopscotch_map")
[ "noreply@github.com" ]
czoido.noreply@github.com
694f4c1a1be63ef2db87c8057b17478b668dafac
7da87c6d4c4d8443f1a9930b5edc277ce2a6c358
/009_triangles.py
642b3ede7b4aa5ace5b0e7d418acbdaca8585824
[]
no_license
kazamari/CodeAbbey
2e1f28a20d5f773fc08b5b20899d437d5ba420f2
4f5031585ddad8d8be71ee1f80872712b139051e
refs/heads/master
2021-04-15T14:49:10.839383
2018-03-23T12:18:17
2018-03-23T12:18:17
126,477,191
0
0
null
null
null
null
UTF-8
Python
false
false
481
py
''' Input data: First line will contain number of triplets. Other lines will contain triplets themselves (each in separate line). Answer: You should output 1 or 0 for each triplet (1 if triangle could be built and 0 otherwise). Example: data: 2 3 4 5 1 2 4 answer: 1 0 ''' from sys import stdin def is_triangle(triplet): a, b, c = sorted(triplet) return int(c <= a + b) print(*[is_triangle(map(int, line.rstrip().split())) for i, line in enumerate(stdin) if i > 0])
[ "maha_on@yahoo.com" ]
maha_on@yahoo.com
15a64d10e6323cff866a56ab5326f9f9abfe8c10
97aa1181a8305fab0cfc635954c92880460ba189
/torch/nn/intrinsic/modules/fused.py
47f26dbdc203a870d09cbb6c19b5a68b2b260f95
[ "BSD-2-Clause" ]
permissive
zhujiang73/pytorch_mingw
64973a4ef29cc10b96e5d3f8d294ad2a721ccacb
b0134a0acc937f875b7c4b5f3cef6529711ad336
refs/heads/master
2022-11-05T12:10:59.045925
2020-08-22T12:10:32
2020-08-22T12:10:32
123,688,924
8
4
NOASSERTION
2022-10-17T12:30:52
2018-03-03T12:15:16
C++
UTF-8
Python
false
false
5,967
py
from __future__ import absolute_import, division, print_function, unicode_literals import torch from torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3d class ConvReLU1d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 1d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type(conv) == Conv1d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(relu)) super(ConvReLU1d, self).__init__(conv, relu) class ConvReLU2d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 2d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type(conv) == Conv2d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(relu)) super(ConvReLU2d, self).__init__(conv, relu) class ConvReLU3d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 3d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, relu): assert type(conv) == Conv3d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(relu)) super(ConvReLU3d, self).__init__(conv, relu) class LinearReLU(torch.nn.Sequential): r"""This is a sequential container which calls the Linear and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, linear, relu): assert type(linear) == Linear and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(linear), type(relu)) super(LinearReLU, self).__init__(linear, relu) class ConvBn1d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type(conv) == Conv1d and type(bn) == BatchNorm1d, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(bn)) super(ConvBn1d, self).__init__(conv, bn) class ConvBn2d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type(conv) == Conv2d and type(bn) == BatchNorm2d, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(bn)) super(ConvBn2d, self).__init__(conv, bn) class ConvBnReLU1d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type(conv) == Conv1d and type(bn) == BatchNorm1d and \ type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type(conv), type(bn), type(relu)) super(ConvBnReLU1d, self).__init__(conv, bn, relu) class ConvBnReLU2d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type(conv) == Conv2d and type(bn) == BatchNorm2d and \ type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type(conv), type(bn), type(relu)) super(ConvBnReLU2d, self).__init__(conv, bn, relu) class ConvBn3d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn): assert type(conv) == Conv3d and type(bn) == BatchNorm3d, \ 'Incorrect types for input modules{}{}'.format( type(conv), type(bn)) super(ConvBn3d, self).__init__(conv, bn) class ConvBnReLU3d(torch.nn.Sequential): r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, bn, relu): assert type(conv) == Conv3d and type(bn) == BatchNorm3d and \ type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ .format(type(conv), type(bn), type(relu)) super(ConvBnReLU3d, self).__init__(conv, bn, relu) class BNReLU2d(torch.nn.Sequential): r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, batch_norm, relu): assert type(batch_norm) == BatchNorm2d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(batch_norm), type(relu)) super(BNReLU2d, self).__init__(batch_norm, relu) class BNReLU3d(torch.nn.Sequential): r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, batch_norm, relu): assert type(batch_norm) == BatchNorm3d and type(relu) == ReLU, \ 'Incorrect types for input modules{}{}'.format( type(batch_norm), type(relu)) super(BNReLU3d, self).__init__(batch_norm, relu)
[ "zhujiangmail@hotmail.com" ]
zhujiangmail@hotmail.com
7ca2f0338361b838e4f68540221bd77ee9e62925
3c349aa9cd58b50d9179bbc9d5f5c2403c491543
/ex33_polygons.py
035896acae30a0b26de698d7161f57a52b167776
[]
no_license
dryabokon/geometry
a2f85f8681d5e878a327235380668ebdb858e70c
9024e963f6a9f308101e6d477d89ce3323038117
refs/heads/master
2023-04-30T12:06:18.130607
2023-04-27T18:23:49
2023-04-27T18:23:49
156,690,211
4
1
null
null
null
null
UTF-8
Python
false
false
2,872
py
import cv2 import numpy import shapely.geometry as geom from scipy.spatial import ConvexHull # ---------------------------------------------------------------------------------------------------------------------- import tools_polygons_i import tools_draw_numpy # ---------------------------------------------------------------------------------------------------------------------- N = 50 image = numpy.full((600, 800, 3), 255, dtype=numpy.uint8) folder_out = './images/output/' # ---------------------------------------------------------------------------------------------------------------------- def get_shape(N,center,radius): x = center[0] + radius*numpy.array([numpy.sin(a/(N-1)*2*numpy.pi) for a in range(N)]) y = center[1] + radius*numpy.array([numpy.cos(a/(N-1)*2*numpy.pi) for a in range(N)]) x+= 0.9*radius*numpy.random.random(N) y+= 0.9*radius*numpy.random.random(N) points = numpy.concatenate((x.reshape((-1,1)),y.reshape((-1,1))),axis=1) hull = ConvexHull(numpy.array(points)) cntrs = numpy.array(points)[hull.vertices] points = numpy.array([(point[0], point[1]) for point in cntrs]) return points # ---------------------------------------------------------------------------------------------------------------------- def interpolate(points1,points2,color1,color2): p1s = geom.Polygon(points1) p2s = geom.Polygon(points2) I = tools_polygons_i.PolygonInterpolator(p1=p1s, p2=p2s) X, Y, C0, C1, C2 = [], [], [], [], [] for pair in I.tuple_pairs: X.append(numpy.linspace(pair[0][0], pair[1][0], N)) Y.append(numpy.linspace(pair[0][1], pair[1][1], N)) C0 = numpy.linspace(color1[0], color2[0], N).reshape((-1, 1)) C1 = numpy.linspace(color1[1], color2[1], N).reshape((-1, 1)) C2 = numpy.linspace(color1[2], color2[2], N).reshape((-1, 1)) X = numpy.array(X).T Y = numpy.array(Y).T C = numpy.concatenate([C0, C1, C2], axis=1).astype(numpy.uint8) return X, Y, C # ---------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': N1 = 13 N2 = 15 c1 = (400,300) c2 = (430,220) r1 = 100 r2 = 150 color1 = (0, 10, 255) color2 = (255,128,15) points1 = get_shape(N1,c1,r1) points2 = get_shape(N2,c2,r2) # cv2.imwrite(folder_out+'start.png',tools_draw_numpy.draw_contours(image, points1, color=color1,transperency=0.9)) # cv2.imwrite(folder_out+'stop.png' ,tools_draw_numpy.draw_contours(image, points2, color=color2,transperency=0.9)) X, Y, C = interpolate(points1, points2, color1, color2) for i in range(X.shape[0]): p = numpy.concatenate((X[i].reshape((-1,1)),Y[i].reshape((-1,1))),axis=1) cv2.imwrite(folder_out+'%03d.png'%i,tools_draw_numpy.draw_contours(image, p, color=C[i],transperency=0.9))
[ "d.ryabokon@gmail.com" ]
d.ryabokon@gmail.com
dda6f3a8ef102c9ba39babca4de4c8d9b3f4dd59
25f61fb72a60f95e10aff5809e67e95526c5fff7
/leetcode-30day-challenge/May-2019/W1_1_first_bad_version.py
a7d316cfa6cd858db77346c1f616205b8c0c0f1e
[]
no_license
pradeepsinngh/A-Problem-A-Day
19db6baccc68f216cd8206118dafb2cbec962671
f5d598bbb60786a99c00fb338145c564fa70cf84
refs/heads/master
2021-07-18T02:23:04.248782
2020-05-04T22:12:27
2020-05-04T22:12:27
150,642,029
5
2
null
null
null
null
UTF-8
Python
false
false
1,157
py
''' # Prob: First Bad Version # You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of your product fails the quality check. Since each version is developed based on the previous version, all the versions after a bad version are also bad. # Suppose you have n versions [1, 2, ..., n] and you want to find out the first bad one, which causes all the following ones to be bad. # You are given an API bool isBadVersion(version) which will return whether version is bad. Implement a function to find the first bad version. You should minimize the number of calls to the API. ``` # The isBadVersion API is already defined for you. # @param version, an integer # @return a bool # def isBadVersion(version): class Solution(object): def firstBadVersion(self, n): """ :type n: int :rtype: int """ left = 1 right = n while left < right: mid = (left + right)/ 2 if not isBadVersion(mid): left = mid+1 else: right = mid return left
[ "noreply@github.com" ]
pradeepsinngh.noreply@github.com
852c57d9837e0941432c42026f1c82d0451da187
3cdb4faf34d8375d6aee08bcc523adadcb0c46e2
/web/env/lib/python3.6/site-packages/django/contrib/auth/migrations/0008_alter_user_username_max_length.py
7c9dae09500de428c3e2cea1c22b0419c38beedd
[ "MIT", "GPL-3.0-only" ]
permissive
rizwansoaib/face-attendence
bc185d4de627ce5adab1cda7da466cb7a5fddcbe
59300441b52d32f3ecb5095085ef9d448aef63af
refs/heads/master
2020-04-25T23:47:47.303642
2019-09-12T14:26:17
2019-09-12T14:26:17
173,157,284
45
12
MIT
2020-02-11T23:47:55
2019-02-28T17:33:14
Python
UTF-8
Python
false
false
752
py
from django.contrib.auth import validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('auth', '0007_alter_validators_add_error_messages'), ] operations = [ migrations.AlterField( model_name='user', name='username', field=models.CharField( error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[validators.UnicodeUsernameValidator()], verbose_name='username', ), ), ]
[ "rizwansoaib@gmail.com" ]
rizwansoaib@gmail.com
3afca15c44b03004f1a13b16f2ce4c2a33cdf1b7
d1c53def818f9c7e1bd660e3303a754f297aff43
/code/ch7/4_13_b.py
ea53b0fad8491987b7b00a7fb0c995791a2c1aef
[]
no_license
khimacademy/c104
dcdcae13499e5b68905f09ea009e1a2b9f552e1c
83443858d5b85c23c107fa09cd672d17549776ee
refs/heads/master
2020-03-26T10:57:52.536935
2018-08-25T06:17:04
2018-08-25T06:17:04
144,822,712
0
0
null
null
null
null
UTF-8
Python
false
false
916
py
''' 4-13. 뷔페 뷔페 스타일의 음식점이 있는데 기본 음식은 다섯 가지밖에 없습니다. 단순한 음식 다섯 가지를 생각하고 튜플로 저장하세요. - for 루프를 써서 이 식당의 각 음식을 출력하세요. - 항목 중 하나를 수정하는 시도를 해보고 파이썬에서 변경을 거부하는지 확인하세요. - 식당에서 메뉴를 교체하려 합니다. 항목 중 두 개를 다른 음식으로 바꾸세요. 튜플을 덮어쓰는 코드 블록을 추가하고, for 루프를 써서 바뀐 메뉴의 각 항목을 출력하세요. Output: You can choose from the following menu items: - rockfish sandwich - halibut nuggets - smoked salmon chowder - salmon burger - crab cakes Our menu has been updated. You can now choose from the following items: - rockfish sandwich - halibut nuggets - smoked salmon chowder - black cod tips - king crab legs '''
[ "sarang.khim@gmail.com" ]
sarang.khim@gmail.com
340cdd25e6ba61fafd87bd9b7fb641673e3470b8
ad0b7af5c3547be1081e77594d98fa9939576c69
/program/SGD.py
fecb93355de1de1e74268e73e1c5d474d0eba2db
[]
no_license
UESTC-Liuxin/ML
29ce4a576215520f87049bf1024f659cbd7a0e64
f88ddaa6eb97d1bb31a64ba3a8448fa9f2bead32
refs/heads/master
2022-07-29T22:24:12.997064
2020-05-24T12:48:32
2020-05-24T12:48:32
261,960,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
# import d2lzh as d2l import math # from mxnet import nd import numpy as np import matplotlib.pyplot as plt def train_2d(trainer): # 本函数将保存在d2lzh包中方便以后使用 x1, x2, s1, s2 = -5, -2, 0, 0 # s1和s2是自变量状态,本章后续几节会使用 results = [(x1, x2)] for i in range(20): x1, x2, s1, s2 = trainer(x1, x2, s1, s2) results.append((x1, x2)) print('epoch %d, x1 %f, x2 %f' % (i + 1, x1, x2)) return results def show_trace_2d(f, results): # 本函数将保存在d2lzh包中方便以后使用 plt.plot(*zip(*results), '-o', color='#ff7f0e') x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.02), np.arange(-3.0, 1.0, 0.02)) print(x1,x2) plt.contour(x1, x2, f(x1, x2), colors='#1f77b4') plt.xlabel('x1') plt.ylabel('x2') plt.show() eta = 0.1 def f_2d(x1, x2): # 目标函数 return x1 ** 2 + 2 * x2 ** 2 def gd_2d(x1, x2, s1, s2): return (x1 - eta * 2 * x1, x2 - eta * 4 * x2, 0, 0) def sgd_2d(x1, x2, s1, s2): return (x1 - eta * (2 * x1 + np.random.normal(0.1)), x2 - eta * (4 * x2 + np.random.normal(0.1)), s1, s2) show_trace_2d(f_2d, train_2d(sgd_2d))
[ "625092890@qq.com" ]
625092890@qq.com
8d2bf3bac2b602bbaeb7eb68a7b28172a7b6631f
d1d79d0c3889316b298852834b346d4246825e66
/blackbot/core/wss/ttp/art/art_T1055-1.py
ce733c638fed1dee79e232881503ae921bc201e5
[]
no_license
ammasajan/Atomic-Red-Team-Intelligence-C2
78d1ed2de49af71d4c3c74db484e63c7e093809f
5919804f0bdeb15ea724cd32a48f377bce208277
refs/heads/master
2023-07-17T12:48:15.249921
2021-08-21T20:10:30
2021-08-21T20:10:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,874
py
from blackbot.core.utils import get_path_in_package from blackbot.core.wss.atomic import Atomic from terminaltables import SingleTable import os import json class Atomic(Atomic): def __init__(self): self.name = 'Privesc/T1055-1' self.controller_type = '' self.external_id = 'T1055' self.blackbot_id = 'T1055-1' self.version = '' self.language = 'boo' self.description = self.get_description() self.last_updated_by = 'Blackbot, Inc. All Rights reserved' self.references = ["System.Management.Automation"] self.options = { 'OutString': { 'Description' : 'Appends Out-String to the PowerShellCode', 'Required' : False, 'Value' : True, }, 'BypassLogging': { 'Description' : 'Bypasses ScriptBlock and Techniques logging', 'Required' : False, 'Value' : True, }, 'BypassAmsi': { 'Description' : 'Bypasses AMSI', 'Required' : False, 'Value' : True, } } def payload(self): with open(get_path_in_package('core/wss/ttp/art/src/powershell.boo'), 'r') as ttp_src: src = ttp_src.read() pwsh_script = get_path_in_package('core/wss/ttp/art/pwsh_ttp/privilegeEscalation/T1055-1') with open(pwsh_script) as pwsh: src = src.replace("POWERSHELL_SCRIPT", pwsh.read()) src = src.replace("OUT_STRING", str(self.options["OutString"]["Value"]).lower()) src = src.replace("BYPASS_LOGGING", str(self.options["BypassLogging"]["Value"]).lower()) src = src.replace("BYPASS_AMSI", str(self.options["BypassAmsi"]["Value"]).lower()) return src def get_description(self): path = get_path_in_package('core/wss/ttp/art/pwsh_ttp/privilegeEscalation/T1055-1') with open(path) as text: head = [next(text) for l in range(4)] technique_name = head[0].replace('#TechniqueName: ', '').strip('\n') atomic_name = head[1].replace('#AtomicTestName: ', '').strip('\n') description = head[2].replace('#Description: ', '').strip('\n') language = head[3].replace('#Language: ', '').strip('\n') aux = '' count = 1 for char in description: if char == '&': continue aux += char if count % 126 == 0: aux += '\n' count += 1 out = '{}: {}\n{}\n\n{}\n'.format(technique_name, language, atomic_name, aux) return out
[ "root@uw2artic201.blackbot.net" ]
root@uw2artic201.blackbot.net
55405e3d6382798737ab5eaecff2a1af521ff606
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/MuonSpectrometer/MuonCablings/MuonCablingServers/python/__init__.py
46ac7323b0e0050a72f16f3a5a65d27ae41069ce
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
234
py
# Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration # File: MuonCablingServersConfig/__init__.py __version__ = '1.0.0' __author__ = 'alessandro.dimattia@roma1.infn.it' __all__ = [ 'MuonCablingServersConfig' ]
[ "rushioda@lxplus754.cern.ch" ]
rushioda@lxplus754.cern.ch
51df6f78e9135e31af7333b8fb60f766d0b4e202
389569a591284a2adcdc38046114e7b1038afd94
/polygon/polygon/main_test1.py
e577151b68aaee98d00b80a0414e0977b53d0787
[]
no_license
xytysingle/AnnotationTool
b797daf2fd472f602341b16f24fb1ed9b702aef1
a217d4376ceee739e0d8c43515c403133982e86e
refs/heads/master
2020-04-11T18:16:10.438919
2019-07-31T10:21:18
2019-07-31T10:21:18
161,992,153
0
0
null
null
null
null
UTF-8
Python
false
false
7,227
py
# import re # # s = '1中文中文:123456aa哈哈哈bbcc' # print(re.match(u"[\u4e00-\u9fa5]+", s) ) # # None. 只从字符串的开始匹配,没有匹配上返回None,否则返回matchobject # # pat = '中文' # print(re.search(pat, s).group()) # # matchobject. 对整个字符串进行匹配,,没有匹配上返回None,否则返回matchobject # # newpat = '这里是中文内容' # news = re.sub(pat, newpat, s) # 正则部分替换,将s中的所有符合pat的全部替换为newpat,newpat也可以是函数 # print(news) # # # # def newpat_func(matched): # return "这里是" + matched.group() + u"内容" # # # print(re.sub(pat, newpat_func, s)) # for i,bbox in enumerate # # from tkinter import * # import threading, time # trace = 0 # class CanvasEventsDemo: # def __init__(self, parent=None): # canvas = Canvas(width=300, height=300, bg='beige') # canvas.pack() # canvas.bind('<ButtonPress-1>', self.onStart) # click # canvas.bind('<B1-Motion>', self.onGrow) # and drag # canvas.bind('<Double-1>', self.onClear) # delete all # canvas.bind('<ButtonPress-3>', self.onMove) # move latest # self.canvas = canvas # self.drawn = None # self.kinds = [canvas.create_oval, canvas.create_rectangle] # def onStart(self, event): # self.shape = self.kinds[0] # self.kinds = self.kinds[1:] + self.kinds[:1] # start dragout # self.start = event # self.drawn = None # def onGrow(self, event): # delete and redraw # canvas = event.widget # if self.drawn: canvas.delete(self.drawn) # objectId = self.shape(self.start.x, self.start.y, event.x, event.y) # if trace: print(objectId) # self.drawn = objectId # def onClear(self, event): # event.widget.delete('all') # use tag all # def onMove(self, event): # if self.drawn: # move to click spot # if trace: print(self.drawn) # canvas = event.widget # diffX, diffY = (event.x - self.start.x), (event.y - self.start.y) # canvas.move(self.drawn, diffX, diffY) # self.start = event # class CanvasEventsDemoTags(CanvasEventsDemo): # def __init__(self, parent=None): # CanvasEventsDemo.__init__(self, parent) # self.canvas.create_text(100, 8, text='Press o and r to move shapes') # self.canvas.master.bind('<KeyPress-o>', self.onMoveOvals) # self.canvas.master.bind('<KeyPress-r>', self.onMoveRectangles) # self.kinds = self.create_oval_tagged, self.create_rectangle_tagged # def create_oval_tagged(self, x1, y1, x2, y2): # objectId = self.canvas.create_oval(x1, y1, x2, y2) # self.canvas.itemconfig(objectId, tag='ovals', fill='blue') # return objectId # def create_rectangle_tagged(self, x1, y1, x2, y2): # objectId = self.canvas.create_rectangle(x1, y1, x2, y2) # self.canvas.itemconfig(objectId, tag='rectangles', fill='red') # return objectId # def onMoveOvals(self, event): # print('moving ovals') # self.moveInSquares(tag='ovals') # move all tagged ovals # def onMoveRectangles(self, event): # print('moving rectangles') # self.moveInSquares(tag='rectangles') # def moveInSquares(self, tag): # 5 reps of 4 times per sec # for i in range(5): # for (diffx, diffy) in [(+20, 0), (0, +20), (-20, 0), (0, -20)]: # self.canvas.move(tag, diffx, diffy) # self.canvas.update() # force screen redraw/update # time.sleep(0.25) # pause, but don't block gui # class CanvasEventsDemoThread(CanvasEventsDemoTags): # def moveEm(self, tag): # for i in range(5): # for (diffx, diffy) in [(+20, 0), (0, +20), (-20, 0), (0, -20)]: # self.canvas.move(tag, diffx, diffy) # time.sleep(0.25) # pause this thread only # def moveInSquares(self, tag): # threading.Thread(self.moveEm, (tag,)).start() # if __name__ == '__main__': # CanvasEventsDemoThread() # mainloop() #python tkinter menu from tkinter import * # some vocabulary to keep from getting confused. This terminology # is something I cooked up for this file, but follows the man pages # pretty closely # # # # This is a MENUBUTTON # V # +-------------+ # | | # # +------------++------------++------------+ # | || || | # | File || Edit || Options | <-------- the MENUBAR # | || || | # +------------++------------++------------+ # | New... | # | Open... | # | Print | # | | <------ This is a MENU. The lines of text in the menu are # | | MENU ENTRIES # | +---------------+ # | Open Files > | file1 | # | | file2 | # | | another file | <------ this cascading part is also a MENU # +----------------| | # | | # | | # | | # +---------------+ __author__ = {'name' : 'Hongten', 'Email' : 'hongtenzone@foxmail.com', 'Blog' : 'http://www.cnblogs.com/hongten', 'QQ' : '648719819', 'Created' : '2013-09-10'} # _*_ coding:utf-8 _*_ # from tkinter import * # tk = Tk() # canvas = Canvas(width=500,height=500) # canvas.pack() # # # #canvas.create_polygon(0,0,250,250,fill = 'red') # # def echo_event(evt): # #打印键盘事件 # if evt.type == "2": # print("键盘:%s" % evt.keysym) # #打印鼠标操作 # if evt.type == "4": # print("鼠标: %s" % evt.num) # # # print(evt.type) # # #键盘事件 # # canvas.bind_all("<KeyPress>",echo_event) # #如果绑定指定的键盘,则"<Key>" 或者"<KeyPress>"都可以,具体到指定键的话后面加入下划线和指定的键就好了,如:绑定小写字母t和Left键 # canvas.bind("<KeyPress-t>",echo_event) # canvas.bind_all("<KeyPress-Left>",echo_event) # #鼠标事件 # canvas.bind_all("<Double-Button-1>",echo_event) # canvas.bind_all("<Button-1>",echo_event) # canvas.bind_all("<Button-2>",echo_event) # canvas.bind_all("<Button-3>",echo_event) # if __name__ == '__main__': # mainloop() # from tkinter import * # # # def call_back(event): # print(event.keysym) # # # def main(): # root_login = Tk() # # # 创建一个框架,在这个框架中响应事件 # frame = Frame(root_login, # width=200, height=200, # background='green') # # # 这样就不用查看 键盘特殊按键的keysym表了。 # # 试一下就知道了 # frame.bind("<KeyPress>", call_back) # frame.pack() # # # 当前框架被选中,意思是键盘触发,只对这个框架有效 # frame.focus_set() # # mainloop() # # # if __name__ == '__main__': # main() from tkinter import * class make_list(Listbox): def __init__(self,master, **kw): self.canvas=Canvas(master,width=500,height=600,bg='green') self.canvas.pack() self.canvas.create_rectangle(0,50,100,100,dash=' ') if __name__ == '__main__': tk = Tk() make_list(tk) tk.mainloop()
[ "2463072824@qq.com" ]
2463072824@qq.com
3d0f4e92f82aeca0ee2486764345fa694bfe6656
8fd28b248511f42ad8732ca1e574aada33908376
/configs/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_rgb.py
02c50db20d8fa02519d4fe1ad7364d0967dfce15
[ "Apache-2.0" ]
permissive
vt-vl-lab/video-data-aug
28bd175535cab1444055502389c8f5d7d75e4bd2
01667cdbd1b952f2510af3422beeeb76e0d9e15a
refs/heads/main
2023-09-01T02:36:40.034893
2021-07-21T01:31:42
2021-07-21T01:31:42
352,920,339
29
6
Apache-2.0
2021-07-21T01:29:36
2021-03-30T08:06:54
Jupyter Notebook
UTF-8
Python
false
false
3,720
py
model = dict( type='Recognizer3D', backbone=dict( type='ResNet3dSlowOnly', depth=50, pretrained=None, lateral=False, conv1_kernel=(1, 7, 7), conv1_stride_t=1, pool1_stride_t=1, inflate=(0, 0, 1, 1), norm_eval=False), cls_head=dict( type='I3DHead', in_channels=2048, num_classes=400, spatial_type='avg', dropout_ratio=0.5)) train_cfg = None test_cfg = dict(average_clips=None) dataset_type = 'RawframeDataset' data_root = 'data/kinetics400/rawframes_train' data_root_val = 'data/kinetics400/rawframes_val' ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt' ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt' ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='SampleFrames', clip_len=8, frame_interval=8, num_clips=1), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='RandomResizedCrop'), dict(type='Resize', scale=(224, 224), keep_ratio=False), dict(type='Flip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict( type='SampleFrames', clip_len=8, frame_interval=8, num_clips=1, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='CenterCrop', crop_size=224), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] test_pipeline = [ dict( type='SampleFrames', clip_len=8, frame_interval=8, num_clips=10, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='ThreeCrop', crop_size=256), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] data = dict( videos_per_gpu=8, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_root, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, pipeline=val_pipeline), test=dict( type=dataset_type, ann_file=ann_file_test, data_prefix=data_root_val, pipeline=test_pipeline)) # optimizer optimizer = dict( type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001) # this lr is used for 8 gpus optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2)) # learning policy lr_config = dict(policy='CosineAnnealing', min_lr=0) total_epochs = 256 checkpoint_config = dict(interval=4) workflow = [('train', 1)] evaluation = dict( interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5)) log_config = dict( interval=20, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), ]) dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/slowonly_r50_8x8x1_256e_kinetics400_rgb' load_from = None resume_from = None find_unused_parameters = False
[ "zouyuliang123@gmail.com" ]
zouyuliang123@gmail.com
d07b9ec027e3387ad373a6fcb4dc243fa3964750
3f763cf893b09a3be562858613c928703ff349e4
/client/verta/verta/_swagger/_public/modeldb/metadata/model/MetadataGetLabelsRequestResponse.py
18ffa3ba5b5186c19c9a7ab2962468b46c703524
[ "Apache-2.0" ]
permissive
VertaAI/modeldb
636e46fc025b01a514d599b10e228c8735503357
ec9ac7712500adb13fd815dfd476ce9f536c6921
refs/heads/main
2023-08-31T00:45:37.220628
2023-08-30T18:45:13
2023-08-30T18:45:13
71,305,435
844
142
Apache-2.0
2023-09-14T19:24:13
2016-10-19T01:07:26
Java
UTF-8
Python
false
false
566
py
# THIS FILE IS AUTO-GENERATED. DO NOT EDIT from verta._swagger.base_type import BaseType class MetadataGetLabelsRequestResponse(BaseType): def __init__(self, labels=None): required = { "labels": False, } self.labels = labels for k, v in required.items(): if self[k] is None and v: raise ValueError('attribute {} is required'.format(k)) @staticmethod def from_json(d): tmp = d.get('labels', None) if tmp is not None: d['labels'] = [tmp for tmp in tmp] return MetadataGetLabelsRequestResponse(**d)
[ "noreply@github.com" ]
VertaAI.noreply@github.com
de67c007364dfb0b71dd50d487c78eea39e615d6
cfbbe1303ed4a2feaf7e0023e62aa910b7eee733
/doc/conf.py
a4b1bca880898a236fea88f11043c0d203a934b7
[ "BSD-3-Clause" ]
permissive
717524640/fatiando
8fa4fef8920770735d1a0d655259e87bc9382001
bf09661c40423bec85e47f15a14b786f25b7e873
refs/heads/master
2021-01-20T21:29:26.742259
2015-03-18T19:15:45
2015-03-18T19:15:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,807
py
# -*- coding: utf-8 -*- import sys import os import datetime import sphinx_bootstrap_theme # Sphinx needs to be able to import fatiando to use autodoc sys.path.append(os.path.pardir) # and the cookbook.py module to build the cookbook sys.path.append(os.path.split(os.path.abspath(__file__))[0]) from fatiando import __version__, __commit__ import cookbook # Build the cookbook recipes cookbook.build(os.path.join(os.pardir, 'cookbook')) extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.doctest', 'sphinx.ext.viewcode', 'sphinx.ext.extlinks', 'matplotlib.sphinxext.plot_directive', ] # Sphinx project configuration templates_path = ['_templates'] exclude_patterns = ['_build'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' master_doc = 'index' # General information about the project year = datetime.date.today().year project = u'Fatiando a Terra' copyright = u'2010-{:d}, Leonardo Uieda'.format(year) if len(__version__.split('-')) > 1: version = '-'.join([__version__.split('-')[0], 'dev']) else: version = __version__ # I'll use the release to place the commit hash at the footer of the site release = __commit__.split('-')[0] # Get rid of -dirty doi = '10.6084/m9.figshare.1115194' # These enable substitutions using |variable| in the rst files rst_epilog = """ .. |doi| replace:: {doi} .. |doilink| replace:: doi:`{doi} <http://dx.doi.org/{doi}>`__ .. |year| replace:: {year} """.format(doi=doi, year=year) html_last_updated_fmt = '%b %d, %Y' html_title = 'Fatiando a Terra' html_short_title = 'Fatiando a Terra' html_logo = '_static/fatiando-logo-noborder.png' html_favicon = u'favicon.ico' html_static_path = ['_static'] html_extra_path = ['.nojekyll', 'CNAME'] html_use_smartypants = True pygments_style = 'sphinx' add_function_parentheses = False # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'FatiandoATerraDoc' # Theme config html_theme = 'bootstrap' html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() html_theme_options = { 'bootswatch_theme': "flatly", 'navbar_title': 'fatiando', 'navbar_site_name': "Site", 'navbar_links': [ ("Cite us", "cite"), ("Install", "install"), ("Docs", "docs"), ('<i class="fa fa-github-square fa-lg" title="Source code on Github"></i>', "https://github.com/fatiando/fatiando", True), ('<i class="fa fa-envelope fa-lg" title="Mailing list"></i>', "https://groups.google.com/d/forum/fatiando", True), ], # Render the next and previous page links in navbar. (Default: true) 'navbar_sidebarrel': False, # Render the current pages TOC in the navbar. (Default: true) 'navbar_pagenav': True, # Tab name for the current pages TOC. (Default: "Page") 'navbar_pagenav_name': "Page", # Global TOC depth for "site" navbar tab. (Default: 1) # Switching to -1 shows all levels. 'globaltoc_depth': 1, # Include hidden TOCs in Site navbar? # Note: If this is "false", you cannot have mixed ``:hidden:`` and # non-hidden ``toctree`` directives in the same page, or else the build # will break. # Values: "true" (default) or "false" 'globaltoc_includehidden': "true", # HTML navbar class (Default: "navbar") to attach to <div> element. # For black navbar, do "navbar navbar-inverse" 'navbar_class': "navbar navbar-default", # Fix navigation bar to top of page? # Values: "true" (default) or "false" 'navbar_fixed_top': "false", # Location of link to source. # Options are "nav" (default), "footer" or anything else to exclude. 'source_link_position': "footer", 'bootstrap_version': "3", }
[ "leouieda@gmail.com" ]
leouieda@gmail.com
7d1953fb1da45033d63049d7b07cc49f0cbb273e
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/e93cdecef17fe3027247389bba5934607c63372e-<run>-fix.py
358973030efe43d7b9bb143ecbcf224ff7f0da99
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,366
py
def run(self, tmp=None, task_vars=None): if (self._play_context.connection != 'local'): return dict(failed=True, msg=('invalid connection specified, expected connection=local, got %s' % self._play_context.connection)) module = module_loader._load_module_source(self._task.action, module_loader.find_plugin(self._task.action)) if (not getattr(module, 'USE_PERSISTENT_CONNECTION', False)): return super(ActionModule, self).run(tmp, task_vars) provider = self.load_provider() pc = copy.deepcopy(self._play_context) pc.network_os = 'junos' pc.remote_addr = (provider['host'] or self._play_context.remote_addr) if (self._task.action == 'junos_netconf'): pc.connection = 'network_cli' pc.port = (provider['port'] or self._play_context.port or 22) else: pc.connection = 'netconf' pc.port = (provider['port'] or self._play_context.port or 830) pc.remote_user = (provider['username'] or self._play_context.connection_user) pc.password = (provider['password'] or self._play_context.password) pc.private_key_file = (provider['ssh_keyfile'] or self._play_context.private_key_file) pc.timeout = (provider['timeout'] or self._play_context.timeout) display.vvv(('using connection plugin %s' % pc.connection), pc.remote_addr) connection = self._shared_loader_obj.connection_loader.get('persistent', pc, sys.stdin) socket_path = self._get_socket_path(pc) display.vvvv(('socket_path: %s' % socket_path), pc.remote_addr) if (not os.path.exists(socket_path)): if (pc.connection == 'netconf'): (rc, out, err) = connection.exec_command('open_session()') else: (rc, out, err) = connection.exec_command('open_shell()') if (rc != 0): return { 'failed': True, 'msg': 'unable to connect to control socket', } elif (pc.connection == 'network_cli'): (rc, out, err) = connection.exec_command('prompt()') while str(out).strip().endswith(')#'): display.vvvv('wrong context, sending exit to device', self._play_context.remote_addr) connection.exec_command('exit') (rc, out, err) = connection.exec_command('prompt()') task_vars['ansible_socket'] = socket_path return super(ActionModule, self).run(tmp, task_vars)
[ "dg1732004@smail.nju.edu.cn" ]
dg1732004@smail.nju.edu.cn
408df962b97cfeeb22d6bd8877223f600cbcaf2e
3ee982b28adec7154777a9962dacae5c17fbebe0
/data3/hadoop-2/PageRank1/PageRank.py
86f0a067ab8c03d973c7f59125f0f7d6d44aa98d
[]
no_license
nycdatasci/aetna
406a5194b0ffff6b78c2ce1d34c2b090c3d82840
095c476210ebe4fef0a702a6a0a56981fe91c8ff
refs/heads/master
2020-04-24T05:40:48.464871
2019-03-15T15:06:42
2019-03-15T15:06:42
171,737,873
0
0
null
null
null
null
UTF-8
Python
false
false
875
py
#!/usr/bin/env python import os from sys import argv script, input_file, iters = argv iters = int(iters) streaming = '''hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar \ -files PageRankMap.py,PageRankReduce.py \ -input %s \ -output PageRankOutput \ -mapper PageRankMap.py \ -reducer PageRankReduce.py ''' % input_file get_pop = 'hadoop fs -get PageRankOutput/part-00000' rm_output = 'hadoop fs -rm -R PageRankOutput' update_pop_local = 'mv part-00000 pop_table' rm_pop_table = 'hadoop fs -rm pop_table' update_pop_hdfs = 'hadoop fs -put pop_table' os.system("hadoop fs -put %s" % input_file) for i in range(iters): os.system(streaming) os.system(get_pop) os.system(rm_output) os.system(update_pop_local) os.system(rm_pop_table) os.system(update_pop_hdfs) print("%d th iteration:" % (i+1)) os.system("cat pop_table")
[ "yanshu.usc@gmail.com" ]
yanshu.usc@gmail.com
7c79dc9fc7a73da8dbaa46e617aa02e1400a73a7
ae8f61a8c0c4a569f00529c3f07c73dbfc884f71
/tiled/server/models.py
f46b8b543646104f2e61cef8595a3bcd5815ac21
[ "BSD-3-Clause" ]
permissive
untzag/tiled
1ba705303193312711d8ac75b977a26d6d9e7571
43a8ba82660ce3be077f2b6b060bdd2a23cf956b
refs/heads/main
2023-04-18T18:34:13.545139
2021-04-28T21:27:59
2021-04-28T21:27:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,385
py
import enum import pydantic import pydantic.dataclasses import pydantic.generics from typing import Any, Dict, Generic, List, Optional, TypeVar DataT = TypeVar("DataT") class Error(pydantic.BaseModel): code: int message: str class Response(pydantic.generics.GenericModel, Generic[DataT]): data: Optional[DataT] error: Optional[Error] meta: Optional[dict] links: Optional[dict] @pydantic.validator("error", always=True) def check_consistency(cls, v, values): if v is not None and values["data"] is not None: raise ValueError("must not provide both data and error") if v is None and values.get("data") is None: raise ValueError("must provide data or error") return v class EntryType(str, enum.Enum): catalog = "catalog" reader = "reader" class EntryFields(str, enum.Enum): metadata = "metadata" structure_family = "structure_family" microstructure = "structure.micro" macrostructure = "structure.macro" count = "count" client_type_hint = "client_type_hint" none = "" class CatalogAttributes(pydantic.BaseModel): metadata: Optional[dict] # free-form, user-specified dict count: Optional[int] client_type_hint: Optional[str] class StructureFamilies(str, enum.Enum): array = "array" dataframe = "dataframe" variable = "variable" data_array = "data_array" dataset = "dataset" class ReaderAttributes(pydantic.BaseModel): metadata: Optional[dict] # free-form, user-specified dict structure_family: Optional[StructureFamilies] structure: Optional[Any] # TODO Figure out how to deal with dataclasses in FastAPI class Resource(pydantic.BaseModel): "A JSON API Resource" id: str type: EntryType meta: Optional[dict] class CatalogResource(Resource): "Representation of a Catalog as a JSON API Resource" attributes: CatalogAttributes class ReaderResource(Resource): "Representation of a Reader as a JSON API Resource" attributes: ReaderAttributes class Token(pydantic.BaseModel): access_token: str token_type: str class TokenData(pydantic.BaseModel): username: Optional[str] = None class About(pydantic.BaseModel): api_version: int library_version: str formats: Dict[str, List[str]] aliases: Dict[str, Dict[str, List[str]]] queries: List[str]
[ "dallan@bnl.gov" ]
dallan@bnl.gov
51cbf596ebc778a532ab71e8d4bc5c3334d54fc2
6fe477a55bd565c78b55e5ec79ae704186e2c1fc
/chatgui.py
aceede2560445b3cbe0b67e7c8c2db77c079ae00
[]
no_license
jayz6/chatboty
4f7ef8ea0105394230b076261f0f5a4828abfcde
e419faac730c9644269b6093e35bc375e2f723b8
refs/heads/master
2023-06-15T14:45:36.542008
2021-07-11T12:27:29
2021-07-11T12:27:29
374,563,728
0
0
null
null
null
null
UTF-8
Python
false
false
3,646
py
import nltk from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() import pickle import numpy as np from keras.models import load_model model = load_model('chatbot_model.h5') import json import random intents = json.loads(open('intents.json').read()) words = pickle.load(open('words.pkl','rb')) classes = pickle.load(open('classes.pkl','rb')) def clean_up_sentence(sentence): # tokenize the pattern - split words into array sentence_words = nltk.word_tokenize(sentence) # stem each word - create short form for word sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words] return sentence_words # return bag of words array: 0 or 1 for each word in the bag that exists in the sentence def bow(sentence, words, show_details=True): # tokenize the pattern sentence_words = clean_up_sentence(sentence) # bag of words - matrix of N words, vocabulary matrix bag = [0]*len(words) for s in sentence_words: for i,w in enumerate(words): if w == s: # assign 1 if current word is in the vocabulary position bag[i] = 1 if show_details: print ("found in bag: %s" % w) return(np.array(bag)) def predict_class(sentence, model): # filter out predictions below a threshold p = bow(sentence, words,show_details=False) res = model.predict(np.array([p]))[0] ERROR_THRESHOLD = 0.25 results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD] # sort by strength of probability results.sort(key=lambda x: x[1], reverse=True) return_list = [] for r in results: return_list.append({"intent": classes[r[0]], "probability": str(r[1])}) return return_list def getResponse(ints, intents_json): tag = ints[0]['intent'] list_of_intents = intents_json['intents'] for i in list_of_intents: if(i['tag']== tag): result = random.choice(i['responses']) break return result def chatbot_response(msg): ints = predict_class(msg, model) res = getResponse(ints, intents) return res #Creating GUI with tkinter import tkinter from tkinter import * def send(): msg = EntryBox.get("1.0",'end-1c').strip() EntryBox.delete("0.0",END) if msg != '': ChatLog.config(state=NORMAL) ChatLog.insert(END, "You: " + msg + '\n\n') ChatLog.config(foreground="#442265", font=("Verdana", 12 )) res = chatbot_response(msg) ChatLog.insert(END, "Bot: " + res + '\n\n') ChatLog.config(state=DISABLED) ChatLog.yview(END) base = Tk() base.title("VISHNU Assistance-Bot") base.geometry("400x500") base.resizable(width=FALSE, height=FALSE) #Create Chat window ChatLog = Text(base, bd=0, bg="white", height="8", width="50", font="Arial",) ChatLog.config(state=DISABLED) #Bind scrollbar to Chat window scrollbar = Scrollbar(base, command=ChatLog.yview, cursor="heart") ChatLog['yscrollcommand'] = scrollbar.set #Create Button to send message SendButton = Button(base, font=("Verdana",12,'bold'), text="Send", width="12", height=5, bd=0, bg="#32de97", activebackground="#3c9d9b",fg='#ffffff', command= send ) #Create the box to enter message EntryBox = Text(base, bd=0, bg="white",width="29", height="5", font="Arial") # EntryBox.bind("<Return>", send) #Place all components on the screen scrollbar.place(x=376,y=6, height=386) ChatLog.place(x=6,y=6, height=386, width=370) EntryBox.place(x=128, y=401, height=90, width=265) SendButton.place(x=6, y=401, height=90) base.mainloop()
[ "you@example.com" ]
you@example.com
5a238a1582affefe50b7405410ac9c64ff303309
edcc26728370aa5bfabfbf5615933c34b108ed21
/sketches/readLines/readLines.pyde
eb9caaf92a7754dd7c22440ad54ab00eda3f75ef
[ "MIT" ]
permissive
kantel/processingpy
9e94f4116257e9cfcd59c1f71d7572559c703058
1eef60347d41563aef7a092ff35434bd47d931d2
refs/heads/master
2023-08-15T12:04:46.713124
2023-07-29T16:41:14
2023-07-29T16:41:14
73,006,897
5
3
null
null
null
null
UTF-8
Python
false
false
599
pyde
# Font-Test auf UTF-8; aus der Dokumentation: # Starting with Processing release 0134, # all files loaded and saved by the Processing API # use UTF-8 encoding. font = None def setup(): size(500, 500) # fontList = PFont.list() # printArray(fontList) font = createFont("Palatino-Roman", 32) textFont(font) noLoop() def draw(): background(30) textSize(32) u = 50 text("Seltsame Zeichen", 20, u) u = 80 textSize(24) lines = loadStrings("boxer.txt") for line in lines: print(line) text(line, 20, u, 460, 500) u += 80
[ "joerg@kantel.de" ]
joerg@kantel.de
a0bb2dd4a72b7f004884bdda564b3762452634f9
c2d681e9a4c7b1be07e9d581ad3ac00a5c783604
/classes.py
f9cca27f147dc0814ed33409926ddb4d9e4d635e
[]
no_license
DennisMufasa/PythoneCode
6291ddf2d08a8361fe82e81bc5747eb0123848f6
d9b74205de0c60fec2c088e1b6c2b0b7a91c1273
refs/heads/master
2021-04-05T23:45:50.256668
2019-04-07T16:17:20
2019-04-07T16:17:20
124,888,947
0
0
null
null
null
null
UTF-8
Python
false
false
668
py
class Mufasa: def __init__(self,name,age,profession,health): self.name=name self.age=age self.profession=profession self.health=health def career(self): if self.profession=='Developer': print(self.name,' is a developer.') else: print(self.name,' is not qualified for this job.') # wewe=Mufasa('Vicky',23,'IT','Insured') # wewe.career() # mimi=Mufasa('Dennis',23,'Developer','Insured') # mimi.career() # mimi=Mufasa('Dennis',23,'developer','insured') # mimi.details('Dennis',23,'developer') # mimi.job('Anthony','doctor') # mimi.miaka('Vicky',23) # mimi.afya('Walter','not insured')
[ "denny.muasa@gmail.com" ]
denny.muasa@gmail.com
c936f1c418ea6c456cf0dd6c2b5cec291e39acf2
905f40a4ad8e17bb4871cf87b6ee184a76a77c2a
/BCM/management/commands/remove_templates.py
bd73841db58291945cf21bda90d4758966cf6519
[]
no_license
sai9912/mypyton
5e1f7ca278051d5f588af1d9accae5fd1780020b
338fd6396dbdce971bc542718fbb9608bdcfc2a7
refs/heads/master
2022-12-16T05:04:34.590818
2019-04-18T09:18:06
2019-04-18T09:18:06
176,324,427
0
0
null
2022-12-08T02:31:10
2019-03-18T16:16:56
Python
UTF-8
Python
false
false
1,975
py
from django.core.management import BaseCommand from member_organisations.models import MemberOrganisation, ProductTemplate, ProductAttribute, ProductPackaging IMPORT_DEBUG = True class Command(BaseCommand): """ python manage.py remove_templates """ def add_arguments(self, parser): parser.add_argument('mo_slug', nargs='?', default='', type=str) def handle(self, *args, **options): mo_slug = options.get('mo_slug') try: mo = MemberOrganisation.objects.get(slug=mo_slug) except MemberOrganisation.DoesNotExist: pass else: product_templates = ProductTemplate.objects.filter(member_organisation_id=mo.pk) product_attributes = set() for template in product_templates: product_attributes |= set(template.attributes.all().values_list('pk', flat=True)) # delete attributes ProductAttribute.objects.filter(id__in=product_attributes).delete() # delete templates product_templates_count = product_templates.count() product_templates.delete() if IMPORT_DEBUG and product_templates_count: print('{attr} ProductAttribute and {c} ProductTemplate related to {mo} are removed' .format(attr=len(product_attributes), c=product_templates_count, mo=mo_slug)) # delete orphaned attributes product_attributes = ProductAttribute.objects.filter(member_organisation_id=mo.pk) product_attributes_count = product_attributes.count() product_attributes.delete() if IMPORT_DEBUG and product_attributes_count: print('{attr} orphaned ProductAttribute related to {mo} are removed' .format(attr=product_attributes_count, mo=mo_slug)) # delete prod packaging too ProductPackaging.objects.filter(member_organisation=mo.pk).delete()
[ "root@ip-172-31-29-10.ap-south-1.compute.internal" ]
root@ip-172-31-29-10.ap-south-1.compute.internal
79ecffd0003b8f52b8e02699f96264b491844e07
d66818f4b951943553826a5f64413e90120e1fae
/hackerearth/Algorithms/Palindromes/solution.py
2287b35b7d8a759993933e56e1c6c55558875c88
[ "MIT" ]
permissive
HBinhCT/Q-project
0f80cd15c9945c43e2e17072416ddb6e4745e7fa
19923cbaa3c83c670527899ece5c3ad31bcebe65
refs/heads/master
2023-08-30T08:59:16.006567
2023-08-29T15:30:21
2023-08-29T15:30:21
247,630,603
8
1
MIT
2020-07-22T01:20:23
2020-03-16T06:48:02
Python
UTF-8
Python
false
false
418
py
""" # Sample code to perform I/O: name = input() # Reading input from STDIN print('Hi, %s.' % name) # Writing output to STDOUT # Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail """ # Write your code here s = input().strip() temp = s if len(set(s)) > 1: while s == temp[::-1]: temp = temp[:-1] print(len(temp)) else: print(0)
[ "hbinhct@gmail.com" ]
hbinhct@gmail.com
a04ef908392a402d41fe90499306a7c8d326b53a
9307d42ca27c8f07115197851a4d2355a7492abc
/shared/views.py
ef3b27912011c7aa2b20c022011f458b65b3a524
[]
no_license
dkutelov/djangoevents
2a1c05d187a32557d4e5195cbe349efb05611ce4
9b6c4c9db366d7e282542cb853123dcca6191f8e
refs/heads/master
2023-01-29T15:37:47.664373
2020-12-13T13:17:58
2020-12-13T13:17:58
314,523,415
0
0
null
null
null
null
UTF-8
Python
false
false
593
py
from django.core.exceptions import PermissionDenied class GroupRequiredMixin: groups = None def dispatch(self, request, *args, **kwargs): user = request.user if not user.is_authenticated: raise PermissionDenied groups_set = set(self.groups or []) raw_groups = user.groups.all() user_groups = set([group.name for group in raw_groups]) if not user_groups.intersection(groups_set) and \ not user.is_superuser: raise PermissionDenied return super().dispatch(request, *args, **kwargs)
[ "dari.k@abv.bg" ]
dari.k@abv.bg
e772c8886cb376be4c127bf28013a9fc58b59e69
2eff2b24d5b6f5dffc42c9cbde6102ec9317502f
/src/Bits.py
49ff824b30bb9cf591b4e5c06713a9fefbb9b567
[]
no_license
JakobKallestad/Python-Kattis
599a14e71a8d5c52aae779b8db3d35f0e4d01e88
51656964e79cc861e53f574785aacb213ef10b46
refs/heads/master
2022-10-24T23:12:45.599813
2021-12-08T12:31:54
2021-12-08T12:31:54
156,881,692
2
1
null
2022-10-02T12:36:57
2018-11-09T15:34:09
Python
UTF-8
Python
false
false
231
py
n_test_cases = int(input()) for _ in range(n_test_cases): line = input() max_bits = 0 for i in range(1, len(line)+1): num = bin(int(line[:i])) max_bits = max(max_bits, num.count('1')) print(max_bits)
[ "Jakob.Kallestad@student.uib.no" ]
Jakob.Kallestad@student.uib.no
644400cc50052b08c364c1f2f950b52d631c448a
cd5746f8cc7aee1f20606a65b4fae0d5e8ee78dc
/Python Books/Athena/training/exercises/exercises/software_craftsmanship/fancy_math/fancy_math_solution.py
f6812946aeb6e236e271e1b69504b96c23643970
[]
no_license
theGreenJedi/Path
df24fca355590efef0c6cb5c52e7216c6b5d2464
b5ed2805dbb046480929e49e550bfd8af5bb4d6f
refs/heads/master
2023-07-27T14:23:37.694546
2021-07-16T01:38:55
2021-07-16T01:38:55
87,686,563
8
2
null
2023-07-11T22:49:03
2017-04-09T05:57:30
Jupyter Notebook
UTF-8
Python
false
false
1,523
py
""" Test Driven Development Example Write a function called `slope` that calculates the slope between two points. A point is specified by a two element sequence of (x,y) coordinates. >>> pt1 = [0.0, 0.0] >>> pt2 = [1.0, 2.0] >>> slope(pt1, pt2) 2.0 Use Test Driven Development. Write your tests first in a separate file called tests_fancy_math.py. Run your tests using the "nosetests" shell command. You can do this by changing to the "slope" directory where your fancy_math.py is defined and running "nosetests". From IPython, you can run it like this: In [1]: cd <someplace>/exercises/slope In [2]: !nosestests ... -------------------------------------------------- Ran 3 tests in 0.157s If you would like to see more verbose output, use the "-v" option: In [3]: !nosetests -v test_fancy_math.test_slope_xxx ... ok test_fancy_math.test_slope_yyy ... ok ... By default, nose captures all output and does not print it to the screen. If you would like to see the output of print statements, use the "-s" flag. """ from __future__ import division from numpy import Inf def slope(pt1, pt2): dy = pt2[1] - pt1[1] dx = pt2[0] - pt1[0] try: slope = dy/dx except ZeroDivisionError: if dy > 0: slope = Inf else: slope = -Inf return slope
[ "GreenJedi@protonmail.com" ]
GreenJedi@protonmail.com
387e099c4bd771eae8b41a1b0168202680e46074
31747dd8c61085421d7bd4166f7bd4f9429cf914
/tests/test_visitors/test_tokenize/test_keywords/test_starts_with_dot.py
71c475e0052d8cbb4394f153df8ed6fd363f4019
[ "MIT" ]
permissive
edytagarbarz/wemake-python-styleguide
0e9ed4080a13a6727b8e80785e113b8407409352
74b86156d73c2a4fe9c755138f6953fec41fab3b
refs/heads/master
2021-03-03T19:21:54.807089
2020-03-07T23:35:15
2020-03-07T23:35:15
245,981,718
1
1
MIT
2020-03-09T08:31:55
2020-03-09T08:31:54
null
UTF-8
Python
false
false
1,483
py
import pytest from wemake_python_styleguide.violations.consistency import ( LineStartsWithDotViolation, ) from wemake_python_styleguide.visitors.tokenize.syntax import ( WrongKeywordTokenVisitor, ) # Correct: correct_dot_attr = """ some_line = some.attr( some.other, ) """ correct_elipsis = """ first[ 1, ..., ] """ correct_string_dot = '".start!"' # Wrong: wrong_dot_start1 = """ some = ( MyModel.objects.filter(some=1) .exclude(other=2) ) """ wrong_dot_start2 = """ some = ( MyModel.objects.filter(some=1) .exclude(other=2) ) """ @pytest.mark.parametrize('code', [ wrong_dot_start1, wrong_dot_start2, ]) def test_wrong_dot_start( parse_tokens, assert_errors, default_options, code, ): """Ensures that lines cannot be started with ``.`` char.""" file_tokens = parse_tokens(code) visitor = WrongKeywordTokenVisitor( default_options, file_tokens=file_tokens, ) visitor.run() assert_errors(visitor, [LineStartsWithDotViolation]) @pytest.mark.parametrize('code', [ correct_dot_attr, correct_elipsis, correct_string_dot, ]) def test_correct_dot_start( parse_tokens, assert_errors, default_options, code, ): """Ensures that lines can be started with other chars.""" file_tokens = parse_tokens(code) visitor = WrongKeywordTokenVisitor( default_options, file_tokens=file_tokens, ) visitor.run() assert_errors(visitor, [])
[ "mail@sobolevn.me" ]
mail@sobolevn.me
14b359d92f3e1da24aa1a431953c9de91141cae3
449f6888bff99d7e4fd86fa6ffa6b3316084e34e
/Solutions/248.py
febd366352a6f0c6d1e9f9292f83bc6b4f1906f7
[ "MIT" ]
permissive
All3yp/Daily-Coding-Problem-Solutions
e94679a5858b8a83ffe58d14b824fe80de21a694
199b9606474edb45bd14b20b511b691ada437586
refs/heads/master
2023-03-18T21:06:30.675503
2021-03-13T03:52:31
2021-03-13T03:52:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
""" Problem: Find the maximum of two numbers without using any if-else statements, branching, or direct comparisons. """ def get_max(num1: int, num2: int) -> int: return num1 ^ ((num1 ^ num2) & -(num1 < num2)) if __name__ == "__main__": print(get_max(1, 5)) print(get_max(4, 3)) print(get_max(-3, 6)) print(get_max(5, -4)) print(get_max(-4, -2)) print(get_max(-3, -6)) """ SPECS: TIME COMPLEXITY: O(1) SPACE COMPLEXITY: O(1) """
[ "ruppysuppy@gmail.com" ]
ruppysuppy@gmail.com
7af9d20303a6cb0534c7e8fa34538d9028d47d3a
e40381a0aa3320616e5a5b82533c2c5cfe0fa2ce
/Dark_Scripts/plot_ValidationScores-LoopSeeds.py
40dc9786c4c96c2cd21b3edd21e4a9bd9de57c82
[ "MIT" ]
permissive
zmlabe/predictGMSTrate
7220b26f86839699635fe2f04e45348095183bc7
ac4238c7f1c33dc9d30382e4dbdc26a2f63352f5
refs/heads/main
2023-04-10T03:46:16.053123
2023-01-11T14:08:27
2023-01-11T14:08:27
396,942,451
4
3
MIT
2022-01-19T22:15:19
2021-08-16T19:30:55
Python
UTF-8
Python
false
false
5,612
py
""" Create plots to show validation scores for different seeds Author : Zachary M. Labe Date : 27 September 2021 Version : 2 (mostly for testing) """ ### Import packages import sys import matplotlib.pyplot as plt import matplotlib.colors as c import numpy as np ### Plotting defaults plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) def adjust_spines(ax, spines): for loc, spine in ax.spines.items(): if loc in spines: spine.set_position(('outward', 5)) else: spine.set_color('none') if 'left' in spines: ax.yaxis.set_ticks_position('left') else: ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') else: ax.xaxis.set_ticks([]) ### Hyperparamters for files of the ANN model rm_ensemble_mean = True COUNTER = 100 directorydata = '/Users/zlabe/Documents/Research/GmstTrendPrediction/Data/LoopSeeds/' directoryfigure = '/Users/zlabe/Desktop/GmstTrendPrediction/ANN_v2/Scores/' ### Read in seeds seeds = np.load(directorydata + 'LoopSeedsResultsfor_ANNv2_OHC100_hiatus_EnsembleMeanRemoved_SEEDS.npz') random_segment_seedq = seeds['random_segment_seedall'] random_network_seedq = seeds['random_network_seedall'] accval = np.empty((COUNTER)) precval = np.empty((COUNTER)) recallval = np.empty((COUNTER)) f1val = np.empty((COUNTER)) for lo in range(COUNTER): if rm_ensemble_mean == True: vari_predict = ['OHC100'] fac = 0.7 random_segment_seed = random_segment_seedq[lo] random_network_seed = random_network_seedq[lo] hidden = [30,30] n_epochs = 500 batch_size = 128 lr_here = 0.001 ridgePenalty = 0.5 actFun = 'relu' fractWeight = np.arange(0.1,1.2,0.1) yearsall = np.arange(1990,2099+1,1) else: print(ValueError('SOMETHING IS WRONG WITH DATA PROCESSING!')) sys.exit() ### Naming conventions for files savename = 'LoopSeedsResultsfor_ANNv2_'+vari_predict[0]+'_hiatus_' + actFun + '_L2_'+ str(ridgePenalty)+ '_LR_' + str(lr_here)+ '_Batch'+ str(batch_size)+ '_Iters' + str(n_epochs) + '_' + str(len(hidden)) + 'x' + str(hidden[0]) + '_SegSeed' + str(random_segment_seed) + '_NetSeed'+ str(random_network_seed) if(rm_ensemble_mean==True): savename = savename + '_EnsembleMeanRemoved' scores = np.load(directorydata + savename + '_SCORES_%s.npz' % lo) accval[lo] = scores['accval'] precval[lo] = scores['precval'] recallval[lo] = scores['recallval'] f1val[lo] = scores['f1_val'] ### Gather data and place percent alldata = np.asarray([accval,precval,recallval,f1val]) * 100 ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ### Graph for scores fig = plt.figure() ax = plt.subplot(111) plotdata = alldata.transpose() adjust_spines(ax, ['left', 'bottom']) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.spines['left'].set_color('dimgrey') ax.spines['bottom'].set_color('none') ax.spines['left'].set_linewidth(2) ax.tick_params('both',length=4,width=2,which='major',color='dimgrey') ax.tick_params(axis="x",which="both",bottom = False,top=False, labelbottom=False) ax.yaxis.grid(zorder=1,color='darkgrey',alpha=0.7,clip_on=False,linewidth=0.5) def set_box_color(bp, color): plt.setp(bp['boxes'],color=color) plt.setp(bp['whiskers'], color=color,linewidth=1.5) plt.setp(bp['caps'], color='w',alpha=0) plt.setp(bp['medians'], color='w',linewidth=1.5) positionsq = np.array(range(alldata.shape[0])) bpl = plt.boxplot(plotdata,positions=positionsq,widths=0.6, patch_artist=True,sym='') # Modify boxes cp= 'maroon' set_box_color(bpl,cp) plt.plot([], c=cp, label=r'\textbf{VALIDATION}',clip_on=False) leg = plt.legend(shadow=False,fontsize=11,loc='upper center', bbox_to_anchor=(0.5,1.14),fancybox=True,ncol=4,frameon=False, handlelength=5,handletextpad=1) for line,text in zip(leg.get_lines(), leg.get_texts()): text.set_color(line.get_color()) for i in range(plotdata.shape[1]): y = plotdata[:,i] x = np.random.normal(positionsq[i], 0.04, size=len(y)) plt.plot(x, y,color='teal', alpha=0.5,zorder=10,marker='.',linewidth=0,markersize=5,markeredgewidth=0,clip_on=False) plt.yticks(np.arange(0,101,10),list(map(str,np.round(np.arange(0,101,10),2))), fontsize=6) plt.ylim([10,90]) plt.text(-0.3,3,r'\textbf{ACCURACY}',fontsize=10,color='dimgrey', ha='left',va='center') plt.text(1.,3,r'\textbf{PRECISION}',fontsize=10,color='dimgrey', ha='center',va='center') plt.text(2.2,3,r'\textbf{RECALL}',fontsize=10,color='dimgrey', ha='right',va='center') plt.text(3.27,3,r'\textbf{F1-SCORE}',fontsize=10,color='dimgrey', ha='right',va='center') plt.ylabel(r'\textbf{Score [\%]}',color='k',fontsize=10) if rm_ensemble_mean == True: plt.savefig(directoryfigure + 'ValidationScores-LoopSeeds_Hiatus_EDA-v2_rmENSEMBLEmean.png',dpi=300) else: plt.savefig(directoryfigure + 'ValidationScores-LoopSeeds_Hiatus_EDA-v2.png',dpi=300)
[ "zmlabe@rams.colostate.edu" ]
zmlabe@rams.colostate.edu
d87d2fd7a1df348093b2c383f2a073227f39de42
4e691a59c67915d5e2cc5a367137dfb02894f4cc
/main/migrations/0005_auto_20191118_1131.py
f8539f0214cc916cee8f0cc19c14e6206fb9725e
[]
no_license
antocaroca/clase-4
fd7395e25debfa807fde2c5823b968747c5d9222
b88b78b022102156ba01cd4804307fafd3c6966b
refs/heads/master
2022-04-30T14:48:03.361465
2019-11-23T13:22:33
2019-11-23T13:22:33
223,596,303
0
0
null
2022-04-22T22:53:32
2019-11-23T13:51:00
Python
UTF-8
Python
false
false
406
py
# Generated by Django 2.2.7 on 2019-11-18 14:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0004_activemanager'), ] operations = [ migrations.AlterField( model_name='productag', name='products', field=models.ManyToManyField(blank=True, to='main.Producto'), ), ]
[ "antonella.caroca@cci-entel.cl" ]
antonella.caroca@cci-entel.cl
ee912e4cffffee0781c744461002eba138ced516
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/sdssj9-10_233719.19+062504.0/sdB_sdssj9-10_233719.19+062504.0_lc.py
0f09a4e3130e72011e6fee900f36b7ea6ab8c394
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[354.329958,6.417778], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_sdssj9-10_233719.19+062504.0/sdB_sdssj9-10_233719.19+062504.0_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
[ "thomas@boudreauxmail.com" ]
thomas@boudreauxmail.com
880d0dabd65d48c9ab7140cf7942a975a4dc87e3
f5e7882e9fa8dca9b49d74819918063963eaf515
/FILES/prob2.py
09b48eba87e8bfcd175f537d161d9ee3a423e5a3
[]
no_license
marri88/python-base
66ede5e3da3bce92e2661fabf8a2119644dd5ab3
00002724412f4081ee6d1b91c22cb1ccb5ed92fe
refs/heads/master
2023-06-09T16:13:08.921614
2021-07-02T09:16:38
2021-07-02T09:16:38
382,293,700
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
# -week_2:Работа С файлами- ##################################################################################### # first picture: prob №2 # Создайте файл users.txt. # Напишите программу которая спрашивает у пользователя его Логин и Пароль и записывает в файл users.txt. r = open('/home/aimira/python/python3/week2files/users.txt', 'w') a = input("name: ") b = input("password: ") r.write(f"name: {a}, password: {b}") r.close with open('users.txt', 'r') as c: print(c.read())
[ "aymira.narzhigitova@gmail.com" ]
aymira.narzhigitova@gmail.com
86550fb12d249da7e19769464f8dd19eee7951c5
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_sharpening.py
511f6993ea47ed80907f9f44fb3fcbe24158ade6
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _SHARPENING(): def __init__(self,): self.name = "SHARPENING" self.definitions = sharpen self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['sharpen']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
73418a4efc33f77e2110c61b4fae9a8d028f2537
14a26103e97b1669ca6f1f44996c4ad65b9f0179
/bim1/week4/16.6.5.py
714f4bcd5a24a3f05a9b49443eec7b91589b1e9e
[]
no_license
igorbragaia/CES-22
6ea0fc3da7ba2274080954071f0070ba78a7f1f4
7c09bdec315421e57f2cd44d50f919f3965144ac
refs/heads/master
2021-09-17T14:40:31.426602
2018-07-02T18:54:40
2018-07-02T18:54:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,916
py
import sys def test(did_pass): """ Prints test result :param did_pass: test result :return: """ linenum = sys._getframe(1).f_lineno # Get the caller's line number. if did_pass: msg = "Test at line {0} ok.".format(linenum) else: msg = ("Test at line {0} FAILED.".format(linenum)) print(msg) class Point: """ Create a new Point, at coordinates x, y """ def __init__(self, x=0, y=0): """ Create a new point at x, y """ self.x = x self.y = y class Rectangle: """ A class to manufacture rectangle objects""" def __init__(self, posn, w, h): """ Initiate rectangle at posn Point, with width w, height h""" self.corner = posn self.width = w self.height = h def collide(self, rect2): """ Checks if current rect and rect2 collides :param rect2: Rectangle object :return: boolean """ return (self.pointInsideCheck(rect2.corner) or self.pointInsideCheck(Point(rect2.corner.x + rect2.height, rect2.corner.y)) or self.pointInsideCheck(Point(rect2.corner.x, rect2.corner.y + rect2.width)) or self.pointInsideCheck(Point(rect2.corner.x + rect2.height, rect2.corner.y + rect2.width))) def pointInsideCheck(self, point): """ checks if a point is inside current rect :param point: Point object :return: boolean """ return (point.y >= self.corner.y and point.y <= self.corner.y + self.width and point.x >= self.corner.x and point.x <= self.corner.x + self.height) def __str__(self): return "({0}, {1}, {2})".format(self.corner, self.width, self.height) print(Rectangle(Point(0, 0), 100, 200).collide(Rectangle(Point(100, 101), 5, 10))) print(Rectangle(Point(0, 0), 100, 200).collide(Rectangle(Point(100, 99), 5, 10)))
[ "igor.bragaia@gmail.com" ]
igor.bragaia@gmail.com
3d4a9d8593553e43461522b4f38e4009058c4b7f
46355bd117d38191f2ebd23e9250ab121bf839fc
/Airbnb/roundPrice.py
dfa2edbe6aa3ad782e2593c4a64dd5308c29feb7
[]
no_license
Jason003/Interview_Code_Python
f1e1a59e87cfada78a931be6a27a51898442aca4
75dbc8d3906bd00c8129c8ed0b584794c8b41d6b
refs/heads/master
2020-08-12T20:11:56.454848
2019-11-12T01:36:52
2019-11-12T01:36:52
214,835,963
4
1
null
null
null
null
UTF-8
Python
false
false
1,203
py
import math def roundPrice(A): # attention: in python3, round(1.5) = 1 !!! def round(x): fac = x - math.floor(x) return math.ceil(x) if fac >= 0.5 else math.floor(x) if not A: return A roundSum = sum(map(round, A)) sumRound = round(sum(A)) print(roundSum) print(sumRound) res = [round(a) for a in A] if roundSum == sumRound: return res elif roundSum > sumRound: cnt = roundSum - sumRound # need to make cnt number to round(number) - 1 nums = sorted([(a - math.floor(a), a, i) for i, a in enumerate(A)]) for fac, a, i in nums: if fac >= 0.5 and cnt > 0: res[i] = math.floor(a) cnt -= 1 else: res[i] = round(a) return res else: cnt = sumRound - roundSum # need to make cnt number to round(number) + 1 nums = sorted([(a - math.floor(a), a, i) for i, a in enumerate(A)])[::-1] for fac, a, i in nums: if fac < 0.5 and cnt > 0: res[i] = math.ceil(a) cnt -= 1 else: res[i] = round(a) return res print(roundPrice([1,2,3,4]))
[ "792576519@qq.com" ]
792576519@qq.com
e38b81ecb5dcb797e6cabf948bf96fed37fc0bb9
22bf086e3e7d43b72f0d05aaa3359b766a688a79
/scripts/extract_clues_info.py
5b22dcb47717b771f546fc7cd1ccda68132dab69
[]
no_license
kaspermunch/humanXsweeps
aa7a4e6a175be276713f17f79d7179a5dd644ff5
3a2c4aa496aaffa837eb15dd3d382f7712266f38
refs/heads/master
2023-04-07T13:36:11.619973
2023-03-18T08:05:18
2023-03-18T08:05:18
161,376,285
1
0
null
2023-01-11T14:12:39
2018-12-11T18:25:53
Jupyter Notebook
UTF-8
Python
false
false
886
py
import sys import re import os import pandas as pd import h5py _, output_file_name, steps_dir, *clues_file_names = sys.argv # pylint: disable=unbalanced-tuple-unpacking # open output file: output_file = open(output_file_name, 'w') # loop over base names of for clues_file_name in clues_file_names: # 98000000_99500000_1.bed_98614821.h5 start, end, chain, pos = re.search(r'(\d+)_(\d+)_(\d+).bed_(\d+).h5', clues_file_name).groups() h5_path = os.path.join(steps_dir, clues_file_name) if os.path.getsize(h5_path) == 0: log_likelihood_ratio = 'NA' selection_coef = 'NA' else: h5 = h5py.File(h5_path, 'r') log_likelihood_ratio = h5['logLikelihoodRatios'][h5.attrs['iHat'], h5.attrs['jHat']] selection_coef = h5.attrs['sHat'] print(start, end, pos, chain, log_likelihood_ratio, selection_coef, sep='\t', file=output_file)
[ "kaspermunch@birc.au.dk" ]
kaspermunch@birc.au.dk
71ba6aabb8bb089ad893dcdffa33d9eec54dcd76
65dc8b306c1a22dc3a8ebf53d399135c5b894b69
/guestbook/forms.py
7936a074493597f70ce0116429f3fece381a3b2e
[]
no_license
tokibito/python-hackathon2-guestbook
49e7f144d2c4f9920abea639816645d0edbca292
dfa152cf6cb7ebea1779c63846e36f8dbb90d8c1
refs/heads/master
2020-07-25T08:20:37.459468
2009-11-13T04:53:40
2009-11-13T04:53:40
208,228,426
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
# coding: utf8 from django import forms from guestbook.models import Greeting class GreetingForm(forms.ModelForm): """ ゲストブックの書き込みフォーム モデルを元に生成する """ class Meta: model = Greeting # 書き込み日時は除く exclude = ('create_at',)
[ "xxshss@yahoo.co.jp" ]
xxshss@yahoo.co.jp
b006bdd2968ab6b20d0f4cebef10dca4504e7561
b8ea631aae5d132c7b0236684d5f7c12d3c222be
/ABC/ABC_114C_zentan.py
6204c22fc19b6d2aae27bac78f48b889f8173b21
[]
no_license
Ryushi-tech/card3
68c429313142e58d4722a1cd5a4acc4ab39ca41f
883636b2f518e38343a12816c5c641b60a87c098
refs/heads/master
2021-07-05T22:46:33.089945
2020-12-12T15:31:00
2020-12-12T15:31:00
209,176,836
0
0
null
null
null
null
UTF-8
Python
false
false
313
py
import itertools as it n = int(input()) l = len(str(n)) res = [] for i in range(3, l + 1): for gen in it.product("357", repeat=i): gen_s = "".join(gen) if int(gen_s) <= n: res.append(gen_s) cnt = 0 for r in res: if all(r.count(c) for c in "357"): cnt += 1 print(cnt)
[ "mryrys@gmail.com" ]
mryrys@gmail.com
93d9228177ee76f0b5d92291e7212790f6c0557e
6a0e51fc8d2ea8819711acb7948f4c21c277c771
/the_list.py
bf381ad611c0d6716c2dc2a1241e1b868e580752
[]
no_license
sunzhiyan/Python
eb0bd60edbc85e670ad02af9009df53f5936bff3
3881d124b71f81b7e0bd1e70bcd336238fbcfa3f
refs/heads/master
2022-10-08T21:38:22.799102
2021-03-05T02:32:57
2021-03-05T02:32:57
244,139,633
1
0
null
2022-09-23T22:42:18
2020-03-01T11:50:40
Python
UTF-8
Python
false
false
321
py
# -*- encoding: utf-8 -*- ''' @File : 列表.py @Time : 2020/03/03 22:09:13 @Author : xdbcb8 @Version : 1.0 @Contact : xdbcb8@qq.com @WebSite : www.xdbcb8.com ''' # here put the import lib list=[56,23,89,99,56,45,87,56,65,100] print(max(list)) print(min(list)) print(sum(list)) print(sum(list)/len(list))
[ "noreply@github.com" ]
sunzhiyan.noreply@github.com
38b3cfd6f2bac9bca72f1b1a81f348801111e789
00cb405170a6a9572bef0ec8f373813eada08c03
/Game Structure/geometry/version5/mypainter.py
ce5e1b632d327bbb6cd9614946dd573bfe5136dd
[]
no_license
MarcPartensky/Python-Games
c0ad2857be5832d6029642bb0a96bc8e403a12e3
ebfcaaf4a028eddb36bbc99184eb3f7a86eb24ed
refs/heads/master
2022-09-03T00:04:16.402288
2022-08-12T17:10:22
2022-08-12T17:10:22
166,606,022
2
1
null
2021-03-07T16:20:15
2019-01-19T23:56:04
Python
UTF-8
Python
false
false
7,413
py
from mycase import Case from myabstract import Point, Form import mycolors import numpy as np import shelve from pygame.locals import * class Painter: def __init__(self, *args, **kwargs): """Create a painter.""" self.paints = [Board(), Paint(*args, **kwargs)] self.paint_brush = PaintBrush() self.painting = 0 def __call__(self, surface): """Main loop of the painter.""" while surface.open: surface.check() surface.control() surface.clear() surface.show() self.show(surface) self.control(surface) surface.flip() def control(self, surface): """Control the painter.""" cursor = surface.point() cursor = [round(c + 1 / 2) for c in cursor] self.print(surface) self.paint(surface) def print(self, surface): """Print the state of the painter on the surface.""" if self.painting == None: surface.print("Create a new painting.", [-10, 12]) def paint(self, surface): """Paint using the surface and the paint.""" keys = surface.press() click = surface.click() cursor = surface.point() cursor = [round(c + 1 / 2) for c in cursor] self.paint_brush.setPosition(cursor) p = self.getPaint(cursor) if p is not None: c = self.paints[p].getCase(cursor) if keys[K_r]: self.paint_brush.setRandomColor() if keys[K_a]: self.paint_brush.lightenColor() if keys[K_b]: self.paint_brush.darkenColor() if keys[K_f]: self.refreshBoard() if p is None: if click: self.createPaint(cursor) return if keys[K_s]: self.save(self.paints[p]) if keys[K_l]: self.load(p) if c is None: return if keys[K_c]: self.paint_brush.copyColor(self.paints[p].cases[c]) if not click: return self.paint_brush.paint(surface, self.paints[p], c) def createPaint(self, position): """Create a paint.""" size = [20, 20] self.paints.append(Paint(position, size)) def save(self, paint): """Save the paint.""" print("File saved") with shelve.open('paints') as p: p["test"] = paint def load(self, p): """Load a paint.""" print("File loaded") with shelve.open("paints") as paints: paint = paints["test"] self.paints[p] = paint def refreshBoard(self): """Change the colors of the board.""" self.paints[0].generate() def show(self, surface): """Show the paints of the painter.""" for paint in self.paints: paint.show(surface) self.paint_brush.show(surface) def getPaint(self, position): """Return the case containing the position if there is one.""" for i in range(len(self.paints)): if position in self.paints[i]: return i class PaintBrush: def __init__(self, position=[0, 0], size=[1, 1], color=mycolors.GREEN): """Create a paint brush for the painter.""" self.position = position self.size = size self.color = color def paint(self, surface, paint, c): """Color a case.""" paint.cases[c].color = self.color def copyColor(self, case): """Copy the color of the case.""" self.color = case.color def setRandomColor(self): """Set the color of the brush to a random color.""" self.color = mycolors.random() def lightenColor(self, surface): """Lighten the brush.""" self.color = mycolors.lighten(self.color) def darkencolor(self, surface): """Darken the color.""" self.color = mycolors.darken(self.color) def setPosition(self, position): """Set the position of the brush.""" self.position = position def show(self, surface): """Show the paint brush on the surface.""" x, y = self.position case = Case((x - 1, y - 1), size=self.size, color=self.color) case.show(surface, fill=False, side_color=mycolors.RED) class Paint: """Paint object reserves an area to draw objects in.""" @classmethod def random(cls, position=[0, 0], size=[10, 10]): """Create a random paint.""" return cls(position, size) def __init__(self, position=[0, 0], size=[10, 10]): """Create a board object.""" self.position = position self.size = size self.cases = [] self.generate() def getCorners(self): """Return the corners of the paint.""" px, py = self.position sx, sy = self.size corners = (px, py, px + sx, py + sy) return corners def generate(self): """Generate random cases all over the paint.""" cases = [] xmin, ymin, xmax, ymax = self.getCorners() for y in np.arange(ymin, ymax): for x in np.arange(xmin, xmax): case = Case([float(x), float(y)], color=mycolors.WHITE) cases.append(case) self.cases = cases def __contains__(self, position): """Determine if the point is in the paint.""" x, y = position xmin, ymin, xmax, ymax = self.getCorners() return (xmin <= x <= xmax) and (ymin <= ymax) def getCase(self, position): """Return the case containing the position if there is one.""" for i in range(len(self.cases)): if position in self.cases[i]: return i def getForm(self): """Return the form corresponding to the area of the painting.""" xmin, ymin, xmax, ymax = self.getCorners() ps = [Point(xmin, ymin), Point(xmax, ymin), Point(xmax, ymax), Point(xmin, ymax)] return Form(ps) def show(self, surface): """Show the paint by showing all its cases.""" f = self.getForm() for case in self.cases: case.show(surface, side_color=mycolors.WHITE) f.side_color = mycolors.WHITE f.side_width = 3 f.show(surface) def save(self): """Save the paint.""" with shelve.open('paints') as paints: paints[test] = self class Board(Paint): def __init__(self): """Create an accesory for the painter.""" self.position = [-12, -10] self.size = [1, 20] self.generate() def generate(self): """Generate random cases for the board.""" x, y = self.position sx, sy = self.size self.cases = [Case([x, y - sy // 2], color=mycolors.random()) for y in range(sy)] def show(self, surface): """Show the paint by showing all its cases.""" f = self.getForm() for case in self.cases: case.show(surface, side_color=mycolors.BLACK) f.side_color = mycolors.BLACK f.side_width = 3 f.show(surface) f[0].showText(surface, "Board") if __name__ == "__main__": from mycontext import Surface from myzone import Zone surface = Surface(name="Painter") painter = Painter([0, 0], [8, 8]) #print([0,0] in painter.paints[0]) painter(surface)
[ "marc.partensky@gmail.com" ]
marc.partensky@gmail.com
270742e36424951d8024a33594d64497bf5758e2
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/331/usersdata/293/94058/submittedfiles/funcoes1.py
cc9f91b72aa5433b90fafe6a6f90c9742a3cf68e
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
# -*- coding: utf-8 -*- def crescente(n,lista_crescente): #escreva o código da função crescente aqui cont_crescente=0 for i in range(0,n-1,1): if lista_crescente[i]<lista_crescente[i+1] cont_crescente= cont_crescente + 1 if cont_crescente==len(lista_crescente)-1 return ("S") else: return ("N") #escreva as demais funções #escreva o programa principal print(crescente(6,[1,2,3,4,5,6]))
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
1fa310f9ae1a6793e62ea6ef82a206a3635c31df
d74daa1dfe1f4eac96ceb1d006c59ba19b55d37a
/CS401/GG-Project/GG-Project/productProcessers/ProductReader.py
e6a04f2b514a3650ae352f1cd5ba9b37d87b4018
[]
no_license
muratcancicek/Assignment-Projects
7aac0cced54f392e26b39f6bc46af813faddd628
41c7df2b60f20eb840d409f3fedb4ec6feeafdcc
refs/heads/master
2021-06-06T17:27:11.616251
2017-09-06T12:17:40
2017-09-06T12:17:40
58,016,251
0
1
null
null
null
null
UTF-8
Python
false
false
5,422
py
from MainSrc.PythonVersionHandler import * from .BsonIO import * from paths import * def getCategories(filename): categoriesData = readBson("categories.bson") categories = categoriesData['data']['categories'] print_(len(categories)) deepestCategories = [c for c in categories if c['deepest'] == 'Y'] print_(len(deepestCategories)) sortedCategories = sorted(deepestCategories, key=lambda k: k['productCount'], reverse = True) #print sortedCategories[0]['productCount'] return sortedCategories, [c['categoryCode'] for c in sortedCategories] def getCrowdedCategories(filename = "categories.bson", n = 100): sortedCategories = getCategories(filename, n) finalCategories = sortedCategories[:n] return finalCategories, [c['categoryCode'] for c in finalCategories] def getCategoryCodes(codes): line = '(' for code in codes[:-1]: line += '\"' + code + '\", ' line += '\"' + codes[-1] + '\")' print_(line) def readCodeLines(): codesText = open('codes.txt', "rb") codeLines = codesText.read().split('\n') codeLists = [l[1:-1].replace(', ', ',').split(',') for l in codeLines] for lis in codeLists: print_(len(lis)) return codeLists def getCategoriesFromProducts(filename): products = readBson(filename) print_('Product Count:', len(products)) codes = [p['category']['code'].encode("utf-8") for p in products] uniqueCodes = set(codes) return list(uniqueCodes) def summarizeProducts(filename, countPerCategory = 10): uniqueCodes = getCategoriesFromProducts(filename) counts = {} for code in uniqueCodes: counts[code] = codes.count(code) print_('Product Count per Category:', counts) storedCodes = [k for k, v in counts.iteritems() if v == countPerCategory] print_('Stored Product Count:', len(storedCodes)) return storedCodes, uniqueCodes, counts def getremainingCodes(total, storedFile): storedCodes, uniqueCodes, counts = summarizeProducts(storedFile) crowdedCategories, crowdedCodes = getCrowdedCategories(total + len(uniqueCodes)) unstoredCodes = [c for c in crowdedCodes if not c in storedCodes] print_('Unstored Product Count:', len(unstoredCodes)) intersectionCodes = [c for c in crowdedCodes if c in storedCodes] print_('Intersection Product Count:', intersectionCodes) finalCodes = unstoredCodes[:total-len(storedCodes)] print_('Final Product Count:', len(finalCodes)) intersectCodes = [c for c in finalCodes if c in storedCodes] print_('Intersection Product Count:', len(intersectCodes)) return finalCodes def getProducts(filename): return readBson(filename) def getProductsByCategoryCode(productList): codes = [p['category']['code'] for p in productList] uniqueCodes = set(codes) categoryList = list(uniqueCodes) productDict = {} for category in categoryList: productDict[category] = [] for product in productList: productDict[product['category']['code']].append(product) return productDict def getExpandedProductsByCategoryCode(productList, code): return [product for product in productList if product['category_code'] == code] def mergeProducts(): product230 = evalBson('products230.bson') product780 = evalBson('products780.bson') product230Dict = getProductsByCategoryCode(product230) product230Dict.pop('rc',0) product780Dict = getProductsByCategoryCode(product780) #productDict = product230Dict + product780Dict productDict = {} productDict = product230Dict.copy() productDict.update(product780Dict) return productDict def fixQuotesOnProduct(product): if '\"' in product['title']: product['title'] = fixQuotes(product['title']) if product['subTitle'] != None: if '\"' in product['subTitle']: product['subTitle'] = fixQuotes(product['subTitle']) for spec in product['specs']: if '\"' in spec['values'][0]: spec['values'][0] = fixQuotes(spec['values'][0]) return product def generateGroupedProductsList(readingFileName = 'products.bson', writingFileName = 'groupedProducts.bson'): unorderedProductList = evalBson(readingFileName, decoding = 'unicode-escape') categoryProductsMap = getProductsByCategoryCode(unorderedProductList) orderedProductList = [] categoryCodes = [] for categoryCode in categoryProductsMap.keys(): categoryCodes.append(categoryCode) categoryCodes.sort() for categoryCode in categoryCodes: orderedProductList.extend(categoryProductsMap[categoryCode]) writeToBson(orderedProductList, writingFileName, decoding = 'unicode-escape', printText = True) print_('WARNING: Encoding Error') def generateCategoryCodeNameMap(): categories = evalBson('categories.bson') cd = getCategoriesFromProducts('products.bson') map = {} for c in categories['data']['categories']: if c['categoryCode'] in cd: map[c['categoryCode']] = c['categoryName'] writeToBson(map, commonFolder + 'categoryCodeNames.json') def readProducts(products = None, fileName = commonFolder + 'products.json', decoding = 'utf-8'): return evalBson(fileName) if products == None else products def readExpandedProducts(products = None, fileName = commonFolder + 'expandedProducts.bson', decoding = 'utf-8'): return readProducts(products, fileName, decoding)
[ "muratcancicek0@gmail.com" ]
muratcancicek0@gmail.com
ac36af1e489a5c9b31c7590762b0a39c7afac82e
7243df7ee2090f76a3d82b898f8a0f2e82198071
/csv_to_kml.py
e98a31ab4bea4bcfb7c771d945aefad94930d2ad
[]
no_license
TimSC/air-quality-analysis-2018
6e3b8dce1a4ab76b36a362229572e20f7014db09
64a163a1b406f708a66a6f510647d9bfd49b7e5c
refs/heads/master
2020-03-18T13:32:16.576221
2019-06-13T13:07:49
2019-06-13T13:07:49
134,790,376
0
0
null
null
null
null
UTF-8
Python
false
false
4,320
py
#!/usr/bin/env python '''Example of generating KML from data in a CSV file References: ''' from __future__ import print_function import csv import urllib2 from datetime import datetime from lxml import etree from pykml.factory import KML_ElementMaker as KML def makeExtendedDataElements(datadict): '''Converts a dictionary to ExtendedData/Data elements''' edata = KML.ExtendedData() for key, value in datadict.iteritems(): edata.append(KML.Data(KML.value(value), name=key + "_")) return edata doc = KML.Document() iconstyles = [ [1,'ff000000'], [1.2,'ff00ff00'],#10s [1.4,'ff00ff44'],#20s [1.6,'ff00cc88'],#30s ffb400 [1.8,'ff00aaaa'],#40s [2.0,'ff0000ff'],#50s ] # create a series of Icon Styles for i, (scale, color) in enumerate(iconstyles): doc.append( KML.Style( KML.IconStyle( KML.color(color), KML.scale(scale), KML.Icon( KML.href("https://maps.google.com/mapfiles/kml/shapes/caution.png"), ), KML.hotSpot(x="0.5",y="0",xunits="fraction",yunits="fraction"), ), #balloonstyle, id="pollution-style-{threshold}".format(threshold=i), ) ) adverseStyles = [ ['negligible',1,'ff888888'], ['slight',1.33,'ff0000aa'], ['moderate',1.66,'ff0000cc'], ['substantial',2.0,'ff0000ff'], ] for band, scale, color in adverseStyles: doc.append( KML.Style( KML.IconStyle( KML.color(color), KML.scale(scale), KML.Icon( KML.href("http://earth.google.com/images/kml-icons/track-directional/track-0.png"), ), KML.hotSpot(x="0.5",y="0",xunits="fraction",yunits="fraction"), ), #balloonstyle, id="adverse-style-{threshold}".format(threshold=band), ) ) beneficialStyles = [ ['negligible',1,'ff888888'], ['slight',1.33,'ff00aa00'], ['moderate',1.66,'ff00cc00'], ['substantial',2.0,'ff00ff00'], ] for band, scale, color in beneficialStyles: doc.append( KML.Style( KML.IconStyle( KML.color(color), KML.scale(scale), KML.Icon( KML.href("http://earth.google.com/images/kml-icons/track-directional/track-8.png"), ), KML.hotSpot(x="0.5",y="0",xunits="fraction",yunits="fraction"), ), #balloonstyle, id="beneficial-style-{threshold}".format(threshold=band), ) ) doc.append(KML.Folder()) receptorPosDict = {} for row in csv.reader(open("receptors.csv")): receptorPosDict[int(row[0])] = float(row[1]), float(row[2]) # read in a csv file, and create a placemark for each record for rowNum, row in enumerate(csv.reader(open("2026-Nitrogen Dioxide Results.csv"))): if rowNum < 5: continue receptor, baseline2015, without2026, with2026, pcAqal, change, pcRelChange, significant, direction = row baseline2015 = float(baseline2015) receptorNum = int(receptor[1:]) if receptorNum not in receptorPosDict: print ("No position for receptor", receptorNum) continue pos = receptorPosDict[receptorNum] #print (receptor, pos, baseline2015, significant, direction) labelData = {} labelData['Receptor'] = receptorNum labelData['NO2 Baseline (2015)'] = baseline2015 labelData['NO2 Without scheme (2026)'] = without2026 labelData['NO2 With scheme (2026)'] = with2026 labelData['Impact'] = "{} {}".format(significant, direction) if 0: pm = KML.Placemark( #KML.name("NO2={0}".format(baseline2015)), KML.styleUrl( "#pollution-style-{thresh}".format( thresh=int(baseline2015/10.0) ) ), makeExtendedDataElements(labelData), KML.Point( KML.coordinates("{0},{1}".format(pos[1], pos[0])) ) ) doc.Folder.append(pm) if 1: if direction=="Adverse": pm = KML.Placemark( KML.styleUrl( "#adverse-style-{thresh}".format( thresh=significant.lower() ) ), makeExtendedDataElements(labelData), KML.Point( KML.coordinates("{0},{1}".format(pos[1], pos[0])) ) ) doc.Folder.append(pm) if direction=="Beneficial": pm = KML.Placemark( KML.styleUrl( "#beneficial-style-{thresh}".format( thresh=significant.lower() ) ), makeExtendedDataElements(labelData), KML.Point( KML.coordinates("{0},{1}".format(pos[1], pos[0])) ) ) doc.Folder.append(pm) # check if the schema is valid from pykml.parser import Schema schema_gx = Schema("kml22gx.xsd") schema_gx.assertValid(doc) fi = open("out.kml", "wt") fi.write(etree.tostring(doc, pretty_print=True)) fi.close()
[ "tim2009@sheerman-chase.org.uk" ]
tim2009@sheerman-chase.org.uk
14949c91a4d0ab5a8e7d226a1ccfb3b8e203319e
b74d9c0655593d488f1bbf3e6d97a6d587fae9e8
/printing/wsgi.py
d8b6927a26ae5b4d5ae3ab65cd51e6dc08659019
[]
no_license
dbca-wa/printing
d3353dce75412cfb1a1cf4a1f3f88373b4d36194
e0c5359fecf84a5512c4b9ede71f56acd9058bf9
refs/heads/master
2022-12-12T23:02:43.993583
2016-04-28T07:48:28
2016-04-28T07:48:28
57,281,158
0
0
null
2020-09-09T09:07:44
2016-04-28T07:41:33
JavaScript
UTF-8
Python
false
false
393
py
""" WSGI config for printing project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "printing.settings") application = get_wsgi_application()
[ "rocky.chen@dpaw.wa.gov.au" ]
rocky.chen@dpaw.wa.gov.au
829d8ceb31ec21a8324a4ee14faa7bf5ad47e755
20f951bd927e4e5cde8ef7781813fcf0d51cc3ea
/fossir/modules/events/papers/controllers/base.py
ae72c3fe163c825494ededfcc8484349b10fe67e
[]
no_license
HodardCodeclub/SoftwareDevelopment
60a0fbab045cb1802925d4dd5012d5b030c272e0
6300f2fae830c0c2c73fe0afd9c684383bce63e5
refs/heads/master
2021-01-20T00:30:02.800383
2018-04-27T09:28:25
2018-04-27T09:28:25
101,277,325
0
2
null
null
null
null
UTF-8
Python
false
false
2,637
py
from __future__ import unicode_literals from flask import request, session from werkzeug.exceptions import Forbidden, NotFound from fossir.modules.events.contributions.models.contributions import Contribution from fossir.modules.events.controllers.base import RHDisplayEventBase from fossir.modules.events.management.controllers.base import ManageEventMixin from fossir.modules.events.util import check_event_locked class RHPapersBase(RHDisplayEventBase): """Base class for all paper-related RHs""" EVENT_FEATURE = 'papers' def _check_access(self): RHDisplayEventBase._check_access(self) # Only let managers access the management versions. if self.management and not self.event.cfp.is_manager(session.user): raise Forbidden @property def management(self): """Whether the RH is currently used in the management area""" return request.view_args.get('management', False) class RHManagePapersBase(ManageEventMixin, RHPapersBase): """ Base class for all paper-related RHs that require full event management permissions """ ROLE = 'paper_manager' DENY_FRAMES = True @property def management(self): """Whether the RH is currently used in the management area""" return request.view_args.get('management', True) class RHJudgingAreaBase(RHPapersBase): """Base class for all paper-related RHs only available to judges/managers""" def _check_access(self): RHPapersBase._check_access(self) if not session.user or not self.event.cfp.can_access_judging_area(session.user): raise Forbidden check_event_locked(self, self.event) class RHPaperBase(RHPapersBase): PAPER_REQUIRED = True normalize_url_spec = { 'locators': { lambda self: self.contribution } } def _process_args(self): RHPapersBase._process_args(self) self.contribution = Contribution.get_one(request.view_args['contrib_id'], is_deleted=False) self.paper = self.contribution.paper if self.paper is None and self.PAPER_REQUIRED: raise NotFound def _check_access(self): RHPapersBase._check_access(self) if not self._check_paper_protection(): raise Forbidden check_event_locked(self, self.event) def _check_paper_protection(self): """Perform a permission check on the current paper. Override this in case you want to check for more specific privileges than the generic "can access". """ return self.contribution.can_access(session.user)
[ "hodardhazwinayo@gmail.com" ]
hodardhazwinayo@gmail.com
d89c6d607ae28029364a25d266750f8ce316d329
e718d3ccc181a72e7bfe0faad42285f2829a96e5
/GDP_projectOriginal/service/urls.py
a21fadcfe3bedc40bf12129e1924b069fbbf87aa
[]
no_license
Jerrykim91/GDP_project
8a17e75276ee92c93ad621163bffa57a528c258f
cd8e626cc3f01c1051f13115ad3d6217dd99ddc6
refs/heads/master
2022-05-02T01:08:33.955292
2021-03-25T14:43:21
2021-03-25T14:43:21
234,493,053
0
0
null
2022-04-22T23:27:15
2020-01-17T07:16:07
Jupyter Notebook
UTF-8
Python
false
false
651
py
# service\urls.py # import from django.urls import path from . import views urlpatterns = [ # GDP_graph path('search_main', views.search_main, name="search_main"), path('search_detail', views.search_detail, name="search_detail"), path('search_show', views.search_show, name="search_show"), path('sort_by_year', views.sort_by_year, name="sort_by_year"), path('search_country', views.search_country, name="search_country"), path('search_country_graph', views.search_country_graph, name="search_country_graph"), path('search_country_graph_pop', views.search_country_graph_pop, name="search_country_graph_pop") ]
[ "sun4131@gmail.com" ]
sun4131@gmail.com
84f719db77d5ee7f722e08c95dd6bff85761425f
25e989e986522cf91365a6cc51e3c68b3d29351b
/databases/migrations/2018_06_26_165322_add_is_active_to_users_table.py
e16a431117d57b3dbff7c92a8a01d0b377b0c016
[ "MIT" ]
permissive
josephmancuso/gbaleague-masonite2
ff7a3865927705649deea07f68d89829b2132d31
b3dd5ec3f20c07eaabcc3129b0c50379a946a82b
refs/heads/master
2022-05-06T10:47:21.809432
2019-03-31T22:01:04
2019-03-31T22:01:04
136,680,885
0
1
MIT
2022-03-21T22:16:43
2018-06-09T01:33:01
Python
UTF-8
Python
false
false
398
py
from orator.migrations import Migration class AddIsActiveToUsersTable(Migration): def up(self): """ Run the migrations. """ with self.schema.table('users') as table: table.integer('is_active').nullable() def down(self): """ Revert the migrations. """ with self.schema.table('users') as table: pass
[ "idmann509@gmail.com" ]
idmann509@gmail.com
6bfa7de91c5b3465d54ffa63e86ba56adc35cf78
ba0731b2dbc4c1529eaaa79811ec15754c19b4cd
/references/domain.py
9d612aaa40fa48d9746f598c63c465aedf4bba37
[ "MIT" ]
permissive
arXiv/arxiv-references
35f87084cf91947c572faf1a86f119b308fada66
a755aeaa864ff807ff16ae2c3960f9fee54d8dd8
refs/heads/master
2022-12-21T02:34:57.166298
2018-05-04T20:30:48
2018-05-04T20:30:48
94,906,433
8
6
MIT
2022-12-08T02:06:20
2017-06-20T15:26:25
Python
UTF-8
Python
false
false
3,178
py
"""Core data structures in the references application.""" from typing import List, Optional from datetime import datetime from base64 import b64encode from dataclasses import dataclass, field, asdict from unidecode import unidecode @dataclass class Author: """A parsed author name in a bibliographic reference.""" surname: str = field(default_factory=str) givennames: str = field(default_factory=str) prefix: str = field(default_factory=str) suffix: str = field(default_factory=str) fullname: str = field(default_factory=str) @dataclass class Identifier: """A persistent identifier for a cited reference.""" identifer_type: str """E.g. ISBN, ISSN, URI.""" identifier: str @dataclass class Reference: """An instance of a parsed bibliographic reference.""" title: Optional[str] = field(default=None) """The title of the reference.""" raw: str = field(default_factory=str) """The un-parsed reference string.""" arxiv_id: Optional[str] = field(default=None) """arXiv paper ID.""" authors: List[Author] = field(default_factory=list) reftype: str = field(default='article') """The type of work to which the reference refers.""" doi: Optional[str] = field(default=None) volume: Optional[str] = field(default=None) issue: Optional[str] = field(default=None) pages: Optional[str] = field(default=None) source: Optional[str] = field(default=None) """Journal, conference, etc.""" year: Optional[str] = field(default=None) identifiers: List[Identifier] = field(default_factory=list) identifier: str = field(default_factory=str) """Unique identifier for this extracted reference.""" score: float = field(default=0.) def __post_init__(self) -> None: """Set the identifier based on reference content.""" hash_string = bytes(unidecode(self.raw), encoding='ascii') self.identifier = str(b64encode(hash_string), encoding='utf-8')[:100] def to_dict(self) -> dict: """Return a dict representation of this object.""" return {k: v for k, v in asdict(self).items() if v is not None} @dataclass class ReferenceSet: """A collection of :class:`.Reference`.""" document_id: str """arXiv paper ID (with version affix).""" references: List[Reference] version: str """Version of this application.""" score: float """In the range 0-1; relative quality of the set as a whole.""" created: datetime updated: datetime extractor: str = 'combined' """ Name of the extractor used. Default is combined (for reconciled reference set). May also be 'author', for the author-curated set. """ extractors: List[str] = field(default_factory=list) """Extractors used to generate this reference set.""" raw: bool = field(default=False) """If True, refs are from a single extractor before reconciliation.""" def to_dict(self) -> dict: """Generate a dict representation of this object.""" data: dict = asdict(self) data['created'] = self.created.isoformat() data['updated'] = self.updated.isoformat() return data
[ "brp53@cornell.edu" ]
brp53@cornell.edu
7b66b925a73790e4aaf1a9068d9c96e34ae8985d
2d048e630f8d9c546860820ef27700c1020b44cd
/th.py
5ae01e2c7426d7eb7c21903856965982279d5aca
[]
no_license
0h-n0/tch-mnist-simple-benchmak
60ce3b6500f161f9a768e965d82eadf50a1e051f
c2f07661b64c83de82ad760b4a7b20b601a7129b
refs/heads/master
2020-12-31T22:36:26.946751
2020-02-08T02:40:40
2020-02-08T02:40:40
239,057,622
0
0
null
null
null
null
UTF-8
Python
false
false
5,243
py
from __future__ import print_function import time import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader), 100. * correct / len(test_loader))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=256, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=50, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) train_loader = [(data.to(device), target.to(device)) for (data, target) in train_loader] test_loader = [(data.to(device), target.to(device)) for (data, target) in test_loader] scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) #torch.backends.cudnn.benchmark = True times = [] for epoch in range(1, args.epochs + 1): s = time.time() train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) scheduler.step() times.append((time.time() - s)) print(f"{(time.time() - s)}s") print("ave=>", torch.FloatTensor(times).mean()) if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main()
[ "kbu94982@gmail.com" ]
kbu94982@gmail.com
ed34089d75838c5200f1175d0b9aece8648523e1
36b75aac4236e928e22552e8812abd45d32aecf1
/modules/dbnd-airflow/src/dbnd_airflow_contrib/utils/system_utils.py
88d9452cd26e2ec091d604cdb48fdd92751efb1d
[ "Apache-2.0" ]
permissive
reloadbrain/dbnd
7793aa1864f678005de626068b0ac9361d637d65
ec0076f9a142b20e2f7afd886ed1a18683c553ec
refs/heads/master
2023-09-01T08:04:09.486666
2021-10-14T16:43:00
2021-10-14T16:43:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,451
py
import logging import re import subprocess logger = logging.getLogger(__name__) def print_stack_trace(stack_frame): try: import traceback traceback.print_stack(stack_frame) except Exception as e: logger.info("Could not print stack trace! Exception: %s", e) def print_cpu_memory_usage(): try: import psutil cpu_usage_percent = psutil.cpu_percent(interval=1) virtual_memory = psutil.virtual_memory() last_minute_load, last_5_minute_load, last_15_minute_load = [ x / psutil.cpu_count() * 100 for x in psutil.getloadavg() ] logger.info( """ Cpu usage %%: %s" "Virtual memory: %s" "Last minute cpu load %%: %s" "Last 5 minute cpu load %%: %s" "Last 15 minute cpu load %%: %s" """ % ( cpu_usage_percent, virtual_memory, last_minute_load, last_5_minute_load, last_15_minute_load, ) ) except Exception as e: logger.info("Could not read cpu and memory usage! Exception: %s", e) def print_dmesg(): try: human_dmesg() except Exception as e: logger.info("Could not get dmesg data! Exception: %s", e) _datetime_format = "%Y-%m-%d %H:%M:%S" _dmesg_line_regex = re.compile("^\[(?P<time>\d+\.\d+)\](?P<line>.*)$") def human_dmesg(): from datetime import datetime, timedelta now = datetime.now() uptime_diff = None with open("/proc/uptime") as f: uptime_diff = f.read().strip().split()[0] uptime = now - timedelta( seconds=int(uptime_diff.split(".")[0]), microseconds=int(uptime_diff.split(".")[1]), ) dmesg_data = subprocess.check_output(["dmesg"]).decode() for line in dmesg_data.split("\n"): if not line: continue match = _dmesg_line_regex.match(line) if match: seconds = int(match.groupdict().get("time", "").split(".")[0]) nanoseconds = int(match.groupdict().get("time", "").split(".")[1]) microseconds = int(round(nanoseconds * 0.001)) line = match.groupdict().get("line", "") t = uptime + timedelta(seconds=seconds, microseconds=microseconds) logger.info("[%s]%s" % (t.strftime(_datetime_format), line))
[ "roman.slipchenko@databand.ai" ]
roman.slipchenko@databand.ai
e5d148377f281451a04b29aa1ba61f66b2a2f021
150d9e4cee92be00251625b7f9ff231cc8306e9f
/LongestCommonSubsequenceSP.py
bcfcc3820f481d704dc5053bddf126c12d6f8f44
[]
no_license
JerinPaulS/Python-Programs
0d3724ce277794be597104d9e8f8becb67282cb0
d0778178d89d39a93ddb9b95ca18706554eb7655
refs/heads/master
2022-05-12T02:18:12.599648
2022-04-20T18:02:15
2022-04-20T18:02:15
216,547,245
0
0
null
null
null
null
UTF-8
Python
false
false
1,680
py
''' 1143. Longest Common Subsequence Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0. A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters. For example, "ace" is a subsequence of "abcde". A common subsequence of two strings is a subsequence that is common to both strings. Example 1: Input: text1 = "abcde", text2 = "ace" Output: 3 Explanation: The longest common subsequence is "ace" and its length is 3. Example 2: Input: text1 = "abc", text2 = "abc" Output: 3 Explanation: The longest common subsequence is "abc" and its length is 3. Example 3: Input: text1 = "abc", text2 = "def" Output: 0 Explanation: There is no such common subsequence, so the result is 0. Constraints: 1 <= text1.length, text2.length <= 1000 text1 and text2 consist of only lowercase English characters. ''' class Solution(object): def longestCommonSubsequence(self, text1, text2): """ :type text1: str :type text2: str :rtype: int """ len1 = len(text1) len2 = len(text2) dp = [] for row in range(len1 + 1): temp = [] for col in range(len2 + 1): temp.append(0) dp.append(temp) for row in range(len1 - 1, -1, -1): for col in range(len2 - 1, -1, -1): if text1[row] == text2[col]: dp[row][col] = dp[row + 1][col + 1] + 1 else: dp[row][col] = max(dp[row + 1][col], dp[row][col + 1]) return dp[0][0]
[ "jerinsprograms@gmail.com" ]
jerinsprograms@gmail.com
d971cd5adcf944f961e3a880ed247c1f0f3464c2
0ef98f8a60e4d30001c918dae6fa7ac6283abca9
/61.py
8fb34a02053700a90124fd61efbb6ce24271c8d1
[]
no_license
samrithasudhagar/pro
a0169fc89c8c6d6189ac984ec3fab26e23269264
c90cb60fefb74174f12db5ee80812c2374e4e3ce
refs/heads/master
2020-04-22T11:00:47.588732
2019-06-20T09:43:28
2019-06-20T09:43:28
170,324,794
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
a=input() c=input() s="" l=["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"] for i in range(len(a)): k=l.index(a[i]) p=l.index(c[i]) s=s+l[(k+p)%26+1] print(s)
[ "noreply@github.com" ]
samrithasudhagar.noreply@github.com
db970fba12cef3fd3dc931f70a998a1bb9b80ed5
5b52feaf975c810693bbd9c67deb061824cdca32
/Darlington/phase-2/FILE 1/O/day 84 solution/qtn3.py
13efc55791274ad1db6d3c1951ab660afa1f5ddb
[ "MIT" ]
permissive
darlcruz/python-challenge-solutions
1dd21796b86f8fdcfa9a1a15faa26ab3e8e0f7b1
3e03a420d01177b71750d4d1b84cb3cbbf8c6900
refs/heads/master
2022-12-20T23:50:08.641120
2020-09-28T21:34:14
2020-09-28T21:34:14
263,591,779
0
0
MIT
2020-05-13T10:00:21
2020-05-13T10:00:20
null
UTF-8
Python
false
false
372
py
# program to create a file where all letters of English alphabet are listed by # specified number of letters on each line. import string def letters_file_line(n): with open("words1.txt", "w") as f: alphabet = string.ascii_uppercase letters = [alphabet[i:i + n] + "\n" for i in range(0, len(alphabet), n)] f.writelines(letters) letters_file_line(3)
[ "darlingtonchibuzor64@gmail.com" ]
darlingtonchibuzor64@gmail.com
69729b36949e741a9c7edf3832821394f61312c9
44f216cc3bb4771c8186349013ff0ed1abc98ea6
/torch/distributed/_shard/sharded_tensor/_ops/math_ops.py
6d3ed59da38cc711b1b67bbf8fd16e507d64083c
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
eiphy/pytorch
a8fc21a3c0552b392ed8c3a1d69f7ed8660c56ac
104f0bf09ec7609d1c5626a7d7953ade4f8c9007
refs/heads/master
2022-05-23T02:10:13.158924
2022-05-07T21:26:00
2022-05-07T21:26:00
244,914,898
2
0
NOASSERTION
2020-03-04T14:00:53
2020-03-04T14:00:53
null
UTF-8
Python
false
false
3,242
py
import torch from torch import Tensor from torch.distributed._shard.sharded_tensor import ( ShardedTensor, sharded_op_impl ) from torch.distributed._shard.replicated_tensor import ReplicatedTensor from torch.distributed._shard._utils import narrow_tensor def binary_math_op_impl(op, types, args=(), kwargs=None, pg=None): """ Handles ``__torch_function__`` dispatch for the binary math ops such as `torch.add`, `torch.mul`, `torch.div`, etc. This method computes on ShardedTensor, or ShardedTensor op ReplicatedTensor """ if len(args) != 2: raise ValueError("Only support binary math op on ShardedTensor for now!") lhs = args[0] rhs = args[1] # Validate types if isinstance(lhs, ReplicatedTensor): assert isinstance(rhs, ShardedTensor) st_size = rhs.size() st_meta = rhs.local_shards()[0].metadata if st_size != lhs.size(): # try to broadcast replicated tensor lhs = lhs.expand(st_size) replica_part = narrow_tensor(lhs, st_meta) res = op(replica_part, rhs.local_tensor()) return ShardedTensor._init_from_local_tensor( res, rhs.sharding_spec(), rhs.size(), # type: ignore[arg-type] process_group=pg) elif isinstance(rhs, ReplicatedTensor): assert isinstance(lhs, ShardedTensor) st_size = lhs.size() st_meta = lhs.local_shards()[0].metadata if st_size != rhs.size(): # try to broadcast replicated tensor rhs = rhs.expand(st_size) replica_part = narrow_tensor(rhs, st_meta) res = op(lhs.local_tensor(), replica_part) return ShardedTensor._init_from_local_tensor( res, lhs.sharding_spec(), lhs.size(), # type: ignore[arg-type] process_group=pg) elif isinstance(lhs, (int, float)): assert isinstance(rhs, ShardedTensor) res = op(lhs, rhs.local_tensor()) return ShardedTensor._init_from_local_tensor( res, rhs.sharding_spec(), rhs.size(), # type: ignore[arg-type] process_group=pg) elif isinstance(rhs, (int, float)): assert isinstance(lhs, ShardedTensor) res = op(lhs.local_tensor(), rhs) return ShardedTensor._init_from_local_tensor( res, lhs.sharding_spec(), lhs.size(), # type: ignore[arg-type] process_group=pg) else: raise RuntimeError( f"torch function '{op.__name__}', with args: {args} and " f"kwargs: {kwargs} not supported yet for ShardedTensor!") def register_math_op(op): @sharded_op_impl(op) def binary_math_op(types, args=(), kwargs=None, pg=None): return binary_math_op_impl(op, types, args, kwargs, pg) binary_ops = [ # add torch.add, Tensor.add, Tensor.__add__, Tensor.__radd__, # sub torch.sub, Tensor.sub, Tensor.__sub__, Tensor.__rsub__, # mul torch.mul, Tensor.mul, Tensor.__mul__, Tensor.__rmul__, # div torch.div, Tensor.div, Tensor.__div__, Tensor.__rdiv__, ] for op in binary_ops: register_math_op(op)
[ "pytorchmergebot@users.noreply.github.com" ]
pytorchmergebot@users.noreply.github.com
c00894ef0c8a747b7a9d05f73efe554aa75785e6
5111b0c881c8d86705f2b237e14024396e34091a
/task_check_list/models/task_check_list.py
88812aad7bc1b21e05fae5f1a896ebb05a2373dd
[]
no_license
odoomates/odooapps
a22fa15346694563733008c42549ebc0da7fc9f6
68061b6fa79818d17727ef620e28fff44b48df72
refs/heads/16.0
2023-08-11T15:25:28.508718
2023-08-10T17:58:45
2023-08-10T17:58:45
173,598,986
182
306
null
2023-08-10T17:58:46
2019-03-03T16:20:23
Python
UTF-8
Python
false
false
1,019
py
# -*- coding: utf-8 -*- from odoo import models, fields, api class ProjectTask(models.Model): _inherit = 'project.task' @api.depends('task_checklist') def checklist_progress(self): total_len = self.env['task.checklist'].search_count([]) for rec in self: if total_len != 0: check_list_len = len(rec.task_checklist) rec.checklist_progress = (check_list_len * 100) / total_len else: rec.checklist_progress = 0 task_checklist = fields.Many2many('task.checklist', string='Check List') checklist_progress = fields.Float(compute=checklist_progress, string='Progress', store=True, default=0.0) max_rate = fields.Integer(string='Maximum rate', default=100) class TaskChecklist(models.Model): _name = 'task.checklist' _description = 'Checklist for the task' name = fields.Char(string='Name', required=True) description = fields.Char(string='Description')
[ "odoomates@gmail.com" ]
odoomates@gmail.com
1c68bb6b8863c584a3f0728adcaa19a31159f831
754d26af3d5fa0900d1dbfc934f3b9f0970e2a47
/unchained/community/announcement/views.py
da9977b7d41c7f38d2fd2e479fe5ec88fbdaba8e
[]
no_license
live-wire/community
8a7bfdb4e2d6562d12be334ba0e655ffe041bb5f
7b2efa7b78465134138ee08fc557f4fedf678394
refs/heads/master
2021-07-11T10:26:31.535653
2020-03-20T02:37:30
2020-03-20T02:37:30
140,683,308
3
2
null
2020-06-06T12:03:38
2018-07-12T08:17:50
JavaScript
UTF-8
Python
false
false
1,121
py
from django.shortcuts import render from rest_framework import generics from rest_framework import mixins from django.contrib.auth.models import User from rest_framework import permissions from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework.reverse import reverse from rest_framework import renderers from rest_framework import viewsets # Create your views here. from rest_framework.decorators import action from rest_framework.response import Response from community.csrfsession import CsrfExemptSessionAuthentication from .serializers import AnnouncementSerializer from .models import Announcement class AnnouncementViewSet(viewsets.ModelViewSet): """ This viewset automatically provides `list`, `create`, `retrieve`, `update` and `destroy` actions. Additionally we also provide an extra `highlight` action. """ queryset = Announcement.objects.all() serializer_class = AnnouncementSerializer permission_classes = (permissions.IsAuthenticatedOrReadOnly, ) authentication_classes = (CsrfExemptSessionAuthentication, )
[ "dhruv.life@hotmail.com" ]
dhruv.life@hotmail.com
50a4aa9cfcccc1e4f762802aeab4c1d0c615195b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04019/s609202447.py
9cd2c625f2777b825900b773714a1f4e6fb7849b
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
S=input() n=0 s=0 w=0 e=0 for i in range(len(S)): if S[i]=="N": n+=1 if S[i]=="S": s+=1 if S[i]=="W": w+=1 if S[i]=="E": e+=1 if n!=0 and s!=0 and w!=0 and e!=0 or n==0 and s==0 and w!=0 and e!=0 or n!=0 and s!=0 and w==0 and e==0: print("Yes") else: print("No")
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
96df2462240b880242a521c7a6728ce366df98c0
553b34a101c54090e68f540d96369ac7d5774d95
/python/python_koans/python2/koans/about_list_assignments.py
aa05dc5b8a69e50728be9798b3455af462f5c023
[ "MIT" ]
permissive
topliceanu/learn
fd124e1885b5c0bfea8587510b5eab79da629099
1c5b1433c3d6bfd834df35dee08607fcbdd9f4e3
refs/heads/master
2022-07-16T19:50:40.939933
2022-06-12T15:40:20
2022-06-12T15:40:20
21,684,180
26
12
MIT
2020-03-26T20:51:35
2014-07-10T07:22:17
JavaScript
UTF-8
Python
false
false
947
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Based on AboutArrayAssignments in the Ruby Koans # from runner.koan import * class AboutListAssignments(Koan): def test_non_parallel_assignment(self): names = ["John", "Smith"] self.assertEqual(['John', 'Smith'], names) def test_parallel_assignments(self): first_name, last_name = ["John", "Smith"] self.assertEqual('John', first_name) self.assertEqual('Smith', last_name) def test_parallel_assignments_with_sublists(self): first_name, last_name = [["Willie", "Rae"], "Johnson"] self.assertEqual(['Willie', 'Rae'], first_name) self.assertEqual('Johnson', last_name) def test_swapping_with_parallel_assignment(self): first_name = "Roy" last_name = "Rob" first_name, last_name = last_name, first_name self.assertEqual('Rob', first_name) self.assertEqual('Roy', last_name)
[ "alexandru.topliceanu@gmail.com" ]
alexandru.topliceanu@gmail.com
b883d4613806a95ab753103d22f2fcd096a20b3f
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/others/Pix2Pix/util/__init__.py
4de848e30b5a486d7214bec80276e35a3a4d0d04
[ "BSD-3-Clause", "BSD-2-Clause", "Apache-2.0", "MIT", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
667
py
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This package includes a miscellaneous collection of useful helper functions."""
[ "wangjiangben@huawei.com" ]
wangjiangben@huawei.com
9c439dd90703b73edc146cfbc628fab4e7984a37
cfa08425d0a457e0c673543b6e16f0a02effe05f
/projects/admm_4bus/data/sixbus/plot.py
86a8e56d3602f498a28cb6b6409a2bb9500fe2cf
[]
no_license
missinglpf/Distributed_optimization
5b3dfea8b2a29225761537531322e421be83d7a8
84040eebd3f04acf4c09e5e4ff2e59e752bf3fae
refs/heads/master
2020-08-01T03:42:36.455932
2018-06-25T15:59:44
2018-06-25T15:59:44
210,850,421
1
0
null
2019-09-25T13:20:11
2019-09-25T13:20:10
null
UTF-8
Python
false
false
4,376
py
import matplotlib.pyplot as plt import pandas as pd import numpy as np from datetime import datetime # df0 = pd.read_csv('lamda300/data_A_0.csv') # df1 = pd.read_csv('lamda300/data_A_0.csv') # df0 = pd.read_csv('lamda200/data_A_0.csv') # df3 = pd.read_csv('lamda100/data_A_0.csv') df0 = pd.read_csv('lamda50/data_A_0.csv') df1 = pd.read_csv('lamda50/data_A_1.csv') df2 = pd.read_csv('lamda50/data_A_2.csv') p_total = df0['Q'][2:502]+df1['Q'][2:502]+df2['Q'][2:502] - [2.1]*500 plt.plot(df0['ADMM_IT'][1:501], p_total, label="lamda=50", linewidth=0.5) df0 = pd.read_csv('lamda30/data_A_0.csv') df1 = pd.read_csv('lamda30/data_A_1.csv') df2 = pd.read_csv('lamda30/data_A_2.csv') p_total = df0['Q'][2:502]+df1['Q'][2:502]+df2['Q'][2:502] - [2.1]*500 plt.plot(df0['ADMM_IT'][1:501], p_total, label = "lamda=30", linewidth=0.5) df0 = pd.read_csv('lamda25/data_A_0.csv') df1 = pd.read_csv('lamda25/data_A_1.csv') df2 = pd.read_csv('lamda25/data_A_2.csv') p_total = df0['Q'][2:502]+df1['Q'][2:502]+df2['Q'][2:502] - [2.1]*500 plt.plot(df0['ADMM_IT'][1:501], p_total, label = "lamda=25", linewidth=0.5) df0 = pd.read_csv('lamda20/data_A_0.csv') df1 = pd.read_csv('lamda20/data_A_1.csv') df2 = pd.read_csv('lamda20/data_A_2.csv') p_total = df0['Q'][2:502]+df1['Q'][2:502]+df2['Q'][2:502] - [2.1]*500 plt.plot(df0['ADMM_IT'][1:501], p_total, label = "lamda=20", linewidth=0.5) df0 = pd.read_csv('lamda15/data_A_0.csv') df1 = pd.read_csv('lamda15/data_A_1.csv') df2 = pd.read_csv('lamda15/data_A_2.csv') p_total = df0['Q'][2:502]+df1['Q'][2:502]+df2['Q'][2:502] - [2.1]*500 plt.plot(df0['ADMM_IT'][1:501], p_total, label = "lamda=15", linewidth=0.5) df0 = pd.read_csv('lamda15/data_A_0.csv') df1 = pd.read_csv('lamda15/data_A_1.csv') df2 = pd.read_csv('lamda15/data_A_2.csv') p_total = [df0['Q'][502]+df1['Q'][502]+df2['Q'][502] - 2.1]*500 plt.plot(df0['ADMM_IT'][1:501], p_total, label = "Optimal value", linewidth=2, linestyle='--') # df0 = pd.read_csv('lamda10/data_A_0.csv') # df1 = pd.read_csv('lamda10/data_A_1.csv') # df2 = pd.read_csv('lamda10/data_A_2.csv') # # p_total = df0['P'][2:502]+df1['P'][2:502]+df2['P'][2:502] - [2.1]*500 # plt.plot(df0['ADMM_IT'][1:501], p_total, label = "lamda=10", linewidth=0.5) # df5 = pd.read_csv('lamda25/data_A_2.csv') # df6 = pd.read_csv('lamda15/data_A_2.csv') # df7 = pd.read_csv('lamda20/data_A_2.csv') # df8 = pd.read_csv('lamda30/data_A_2.csv') # df2 = pd.read_csv('lamda300/data_A_2.csv') # df3 = pd.read_csv('lamda300/data_A_3.csv') # df4 = pd.read_csv('lamda300/data_A_4.csv') # df5 = pd.read_csv('lamda300/data_A_5.csv') # df['Time'] = df['Time'].map(lambda x: datetime.strptime(str(x), '%Y/%m/%d %H:%M:%S.%f')) # plt.plot(df0['ADMM_IT'][1:6000], df0['P'][1:6000], label = "lamda=200") # plt.plot(df0['ADMM_IT'][1:6000], df1['P'][1:6000], label = "lamda=300") # plt.plot(df4['ADMM_IT'][1:3000], df3['Q'][1:3000], label = "lamda=100") # central = [df5['P'][1000]]*1001 # plt.plot(df4['ADMM_IT'][1:500], df4['P'][1:500], label = "lamda=50", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], df8['P'][1:500], label = "lamda=30", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], df5['P'][1:500], label = "lamda=25", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], df7['P'][1:500], label = "lamda=20", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], df6['P'][1:500], label = "lamda=15", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], central[1:500], label = "Optimal value", linewidth=2, linestyle='--') # central = [df5['Q'][1000]]*1001 # plt.plot(df4['ADMM_IT'][1:500], df4['Q'][1:500], label = "lamda=50", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], df8['Q'][1:500], label = "lamda=30", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], df5['Q'][1:500], label = "lamda=25", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], df7['Q'][1:500], label = "lamda=20", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], df6['Q'][1:500], label = "lamda=15", linewidth=0.5) # plt.plot(df6['ADMM_IT'][1:500], central[1:500], label = "Optimal value", linewidth=2, linestyle='--') # plt.plot(df1['Time'][1:15000], df1['X_real'][1:15000]) # plt.plot(df2['Time'][1:15000], df2['X_real'][1:15000]) plt.legend() plt.xlabel("Number of iterations") plt.ylabel("Reactive power loss(pu)") # plt.ylabel("Reactive power(pu)") plt.show()
[ "tunglam87@gmail.com" ]
tunglam87@gmail.com
afb02e97b0e4004e14d9c672ec1972d124005491
f1bff0e018463081513c30258a67f238f5d08396
/finalizing.py
b5105ab4545ed0f1ea81bf1665dca4f52c311693
[]
no_license
bellyfat/speaker-Identification
cfcedd86ea634d5df19e560acea250c5b8dbc5d0
34c9ce12c6400f116e04a0d1be75e0e79228d599
refs/heads/master
2022-04-07T12:23:59.446618
2019-08-26T07:59:44
2019-08-26T07:59:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,290
py
from recoder import * import glob, os import wave import pylab def training(): get_model() print("training complete....") # getting the audio def getAudio(): rec = Recorder() print("Start recording") rec.start() time.sleep(11) print("Stop recording") rec.stop() print("Saving") rec.save("test.wav") #getAudio() def get_file(path): #path = 'wav_file' name = os.path.basename(path) filename, file_extension = os.path.splitext(name) return filename def graph_spectrogram(wav_file): sound_info, frame_rate = get_wav_info(wav_file) pylab.figure(num=None, figsize=(19, 12)) pylab.subplot(111) pylab.title('spectrogram of %r' % wav_file) pylab.specgram(sound_info, Fs=frame_rate) pylab.savefig(get_file(wav_file)+".png") def get_wav_info(wav_file): wav = wave.open(wav_file, 'r') frames = wav.readframes(-1) sound_info = pylab.fromstring(frames, 'int16') frame_rate = wav.getframerate() wav.close() return sound_info, frame_rate def create_img(): graph_spectrogram("test.wav") print("img creeated") def delete_wav(file): if os.path.exists(file): os.remove(file) print("file deleted") else: print("The file does not exist") def delt(): file_name = "test.wav" delete_wav(file_name)
[ "noreply@github.com" ]
bellyfat.noreply@github.com
0a6d677d3bfe4d9fc3186df61d42fd1449051a94
cb0e7d6493b23e870aa625eb362384a10f5ee657
/solutions/python3/0239.py
9306b2072110eb6570e723b0a84bc6ed856cb9dd
[]
no_license
sweetpand/LeetCode-1
0acfa603af254a3350d457803449a91322f2d1a7
65f4ef26cb8b2db0b4bf8c42bfdc76421b479f94
refs/heads/master
2022-11-14T07:01:42.502172
2020-07-12T12:25:56
2020-07-12T12:25:56
279,088,171
1
0
null
2020-07-12T15:03:20
2020-07-12T15:03:19
null
UTF-8
Python
false
false
530
py
class Solution: def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]: ans = [] decreasingQueue = collections.deque() for i, num in enumerate(nums): while decreasingQueue and num > decreasingQueue[-1]: decreasingQueue.pop() decreasingQueue.append(num) if i >= k - 1: ans.append(decreasingQueue[0]) if nums[i - k + 1] == decreasingQueue[0]: decreasingQueue.popleft() return ans
[ "walkccray@gmail.com" ]
walkccray@gmail.com
8e725276edde728b56862510da106778c1da2780
7f57c12349eb4046c40c48acb35b0f0a51a344f6
/2017/002_AddTwoNumbers_v1.py
1ea044ab8f4b389954d82f3afbf3dffdd586c7d5
[]
no_license
everbird/leetcode-py
0a1135952a93b93c02dcb9766a45e481337f1131
b093920748012cddb77258b1900c6c177579bff8
refs/heads/master
2022-12-13T07:53:31.895212
2022-12-10T00:48:39
2022-12-10T00:48:39
11,116,752
2
0
null
null
null
null
UTF-8
Python
false
false
1,639
py
#!/usr/bin/env python # encoding: utf-8 class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: # @param {ListNode} l1 # @param {ListNode} l2 # @return {ListNode} def addTwoNumbers(self, l1, l2): head = p = None carry = 0 while l1 or l2: l1_val = l1.val if l1 else 0 l2_val = l2.val if l2 else 0 r = l1_val + l2_val + carry if r >= 10: carry = r // 10 r = r % 10 else: carry = 0 if not p: head = p = ListNode(r) else: p.next = ListNode(r) p = p.next if l1: l1 = l1.next if l2: l2 = l2.next if carry: p.next = ListNode(1) return head def print_list(list_head): print_l(list_head) print '\n' def print_l(list_head): if list_head: print list_head.val, print_l(list_head.next) if __name__ == '__main__': l1a = ListNode(2) l1b = ListNode(4) l1c = ListNode(3) l1a.next = l1b l1b.next = l1c l1 = l1a l2a = ListNode(5) l2b = ListNode(6) l2c = ListNode(4) l2a.next = l2b l2b.next = l2c l2 = l2a s = Solution() lr = s.addTwoNumbers(l1, l2) print_list(l1) print_list(l2) print_list(lr) print '>>>>>>' l1a = ListNode(5) l1 = l1a l2a = ListNode(5) l2 = l2a s = Solution() lr = s.addTwoNumbers(l1, l2) print_list(l1) print_list(l2) print_list(lr)
[ "stephen.zhuang@gmail.com" ]
stephen.zhuang@gmail.com
47fc7609c7840f44a8a36732191723aaed6399c9
45c170fb0673deece06f3055979ece25c3210380
/toontown/coghq/BossbotCountryClubKartRoom_Battle00.py
6209ace14272197b5d427ec788369610888baf8c
[]
no_license
MTTPAM/PublicRelease
5a479f5f696cfe9f2d9dcd96f378b5ce160ec93f
825f562d5021c65d40115d64523bb850feff6a98
refs/heads/master
2021-07-24T09:48:32.607518
2018-11-13T03:17:53
2018-11-13T03:17:53
119,129,731
2
6
null
2018-11-07T22:10:10
2018-01-27T03:43:39
Python
UTF-8
Python
false
false
1,780
py
#Embedded file name: toontown.coghq.BossbotCountryClubKartRoom_Battle00 from toontown.coghq.SpecImports import * GlobalEntities = {1000: {'type': 'levelMgr', 'name': 'LevelMgr', 'comment': '', 'parentEntId': 0, 'cogLevel': 0, 'farPlaneDistance': 1500, 'modelFilename': 'phase_12/models/bossbotHQ/BossbotKartBoardingRm', 'wantDoors': 1}, 1001: {'type': 'editMgr', 'name': 'EditMgr', 'parentEntId': 0, 'insertEntity': None, 'removeEntity': None, 'requestNewEntity': None, 'requestSave': None}, 0: {'type': 'zone', 'name': 'UberZone', 'comment': '', 'parentEntId': 0, 'scale': 1, 'description': '', 'visibility': []}, 110400: {'type': 'battleBlocker', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(4, 0, 0), 'hpr': Point3(270, 0, 0), 'scale': Vec3(1, 1, 1), 'cellId': 0, 'radius': 10}, 110000: {'type': 'elevatorMarker', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(26.854, 0, 0), 'hpr': Vec3(90, 0, 0), 'scale': Vec3(1, 1, 1), 'modelPath': 0}, 10002: {'type': 'nodepath', 'name': 'props', 'comment': '', 'parentEntId': 0, 'pos': Point3(0, 0, 0), 'hpr': Vec3(0, 0, 0), 'scale': 1}, 110401: {'type': 'nodepath', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(101.07, 0, 0), 'hpr': Point3(270, 0, 0), 'scale': Vec3(1, 1, 1)}} Scenario0 = {} levelSpec = {'globalEntities': GlobalEntities, 'scenarios': [Scenario0]}
[ "linktlh@gmail.com" ]
linktlh@gmail.com
d8194a910febb338161234dd2ca1b0ca28446a04
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03129/s416237729.py
26351727aeb63985e21352d846400af1977248dc
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
n,k = input().split() n = int(n) k = int(k) for l in range(k): l = 2*l +1 c = l if c <= n: print('YES') else: print('NO')
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
373acc2bcb313e92d96b6a0047fef866c1c722f7
7bc54bae28eec4b735c05ac7bc40b1a8711bb381
/src/scratch/code2023/namespace.py
99715efdf2a7cd185fc763fdba1aab4033c39f8a
[]
no_license
clover3/Chair
755efd4abbd5f3f2fb59e9b1bc6e7bc070b8d05e
a2102ebf826a58efbc479181f1ebb5de21d1e49f
refs/heads/master
2023-07-20T17:29:42.414170
2023-07-18T21:12:46
2023-07-18T21:12:46
157,024,916
0
0
null
2023-02-16T05:20:37
2018-11-10T21:55:29
Python
UTF-8
Python
false
false
5,654
py
import logging import os from tensorflow.python.ops.summary_ops_v2 import create_file_writer import trainer_v2.per_project.transparency.mmp.probe.probe_common from cpath import output_path from misc_lib import path_join from trainer_v2.custom_loop.modeling_common.adam_decay import AdamWeightDecay from trainer_v2.custom_loop.modeling_common.tf_helper import distribute_dataset from trainer_v2.train_util.get_tpu_strategy import get_strategy2 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import sys from trainer_v2.chair_logging import c_log, IgnoreFilter, IgnoreFilterRE import tensorflow as tf from cpath import get_bert_config_path from taskman_client.wrapper3 import report_run3 from trainer_v2.custom_loop.prediction_trainer import ModelV2IF, ModelV3IF from trainer_v2.custom_loop.run_config2 import RunConfig2, get_run_config2 from trainer_v2.per_project.transparency.mmp.tt_model.model_conf_defs import InputShapeConfigTT, InputShapeConfigTT100_4 from trainer_v2.train_util.arg_flags import flags_parser class LinearV3: def __init__(self): x = tf.keras.layers.Input(shape=(2,), dtype=tf.int32, name="x") x_f = tf.cast(x, tf.float32) y = tf.keras.layers.Dense(1)(x_f) inputs = [x,] output = {'pred': y} self.model = tf.keras.models.Model(inputs=inputs, outputs=output) def get_metrics(self) : output_d = {} metric = ProbeMAE("mae") output_d["mae2"] = metric return output_d Metric = trainer_v2.per_project.transparency.mmp.probe.probe_common.Metric class ProbeMAE(Metric): def __init__(self, name, **kwargs): super(ProbeMAE, self).__init__(name=name, **kwargs) self.mae = self.add_weight(name='mae', initializer='zeros') self.count = self.add_weight(name='count', initializer='zeros') # self.metric_inner = tf.keras.metrics.MeanAbsoluteError() def update_state(self, output_d, _sample_weight=None): v = tf.reduce_sum(output_d['pred']) self.mae.assign_add(v) self.count.assign_add(1.0) def result(self): return self.mae / self.count def reset_state(self): self.mae.assign(0.0) self.count.assign(0.0) class LinearModel(ModelV3IF): def __init__(self, input_shape: InputShapeConfigTT): self.inner_model = None self.model: tf.keras.models.Model = None self.loss = None self.input_shape: InputShapeConfigTT = input_shape self.log_var = ["loss"] def build_model(self): self.inner_model = LinearV3() def get_keras_model(self) -> tf.keras.models.Model: return self.inner_model.model def init_checkpoint(self, init_checkpoint): pass def get_train_metrics(self): return {} def get_train_metrics_for_summary(self): return self.inner_model.get_metrics() def get_loss_fn(self): def get_loss(d): return tf.reduce_sum(d['pred']) return get_loss @report_run3 def main(args): c_log.info(__file__) run_config: RunConfig2 = get_run_config2(args) run_config.print_info() input_shape = InputShapeConfigTT100_4() model_v2 = LinearModel(input_shape) optimizer = AdamWeightDecay( learning_rate=1e-3, exclude_from_weight_decay=[] ) def build_dataset(input_files, is_for_training): def generator(): for _ in range(100): yield [0., 0.] train_dataset = tf.data.Dataset.from_generator( generator, output_types=(tf.float32), output_shapes=(tf.TensorShape([2]))) return train_dataset.batch(2) strategy = get_strategy2(False, "") train_dataset = build_dataset(run_config.dataset_config.train_files_path, True) eval_dataset = build_dataset(run_config.dataset_config.eval_files_path, False) dist_train_dataset = distribute_dataset(strategy, train_dataset) eval_batches = distribute_dataset(strategy, eval_dataset) train_log_dir = path_join(output_path, "train_log") step_idx = 0 with strategy.scope(): model_v2.build_model() train_summary_writer = create_file_writer(train_log_dir, name="train") train_summary_writer.set_as_default() train_metrics = model_v2.get_train_metrics_for_summary() def train_step(item): model = model_v2.get_keras_model() with tf.GradientTape() as tape: output_d = model(item, training=True) step = optimizer.iterations for name, metric in train_metrics.items(): metric.update_state(output_d) sc = tf.summary.scalar(name, metric.result(), step=step) print(sc) return tf.constant(0.0) @tf.function def distributed_train_step(train_itr, steps_per_execution): # try: total_loss = 0.0 n_step = 0. for _ in tf.range(steps_per_execution): batch_item = next(train_itr) per_replica_losses = strategy.run(train_step, args=(batch_item, )) loss = strategy.reduce( tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None) total_loss += loss n_step += 1. train_loss = total_loss / n_step return train_loss train_itr = iter(dist_train_dataset) for m in train_metrics.values(): m.reset_state() train_loss = distributed_train_step(train_itr, 1) step_idx += 1 if __name__ == "__main__": args = flags_parser.parse_args(sys.argv[1:]) main(args)
[ "lesterny@gmail.com" ]
lesterny@gmail.com
6cedc11b21eb576d025e57da6ccc3febbc2bb6c4
d2c80cd70f3220165c7add7ed9a103c0ed1ab871
/python/HOMEWORK/5th_Session/Answers/Class/1/1.py
37d69bb2650fbd94bf752634ed7bc727c291f579
[]
no_license
nervaishere/DashTeam
2a786af8a871200d7facfa3701a07f97230b706e
a57b34a601f74b06a7be59f2bfe503cbd2a6c15f
refs/heads/master
2023-08-24T12:24:18.081164
2021-10-09T21:10:54
2021-10-09T21:10:54
393,689,874
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
a=int(input("enter your first number:" )) b=int(input("enter your second number:" )) c=int(input("enter your third number:" )) maximum=max(a,b,c) minimum=min(a,b,c) if a==maximum and b==minimum: print(a, c, b) elif a==maximum and c==minimum: print(a, b, c) elif b==maximum and a==minimum: print(b, c, a) elif b==maximum and c==minimum: print(b, a, c) elif c==maximum and a==minimum: print(c, b, a) elif c==maximum and a==minimum: print(c, a , b)
[ "athenajafari34@gmail.com" ]
athenajafari34@gmail.com
86afd457c842b29e419998349f8353c18483ab10
54ab0f79f5d68f4732ca7d205f72ecef99862303
/benchmarks/distributed/rpc/parameter_server/metrics/ProcessedMetricsPrinter.py
7ff8c3171a83336b367299649c37b08f416d7ca2
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
csarofeen/pytorch
a9dd0f8ffa0642d72df2d5e109a8b4d9c2389cbc
e8557ec5e064608577f81e51ccfe7c36c917cb0f
refs/heads/devel
2023-04-30T02:42:13.558738
2023-03-14T00:50:01
2023-03-14T00:50:01
88,071,101
35
10
NOASSERTION
2023-06-21T17:37:30
2017-04-12T16:02:31
C++
UTF-8
Python
false
false
3,206
py
import statistics import pandas as pd from tabulate import tabulate class ProcessedMetricsPrinter: def print_data_frame(self, name, processed_metrics): print(f"metrics for {name}") data_frame = self.get_data_frame(processed_metrics) print(tabulate(data_frame, showindex=False, headers=data_frame.columns, tablefmt="grid")) def combine_processed_metrics(self, processed_metrics_list): r""" A method that merges the value arrays of the keys in the dictionary of processed metrics. Args: processed_metrics_list (list): a list containing dictionaries with recorded metrics as keys, and the values are lists of elapsed times. Returns:: A merged dictionary that is created from the list of dictionaries passed into the method. Examples:: >>> instance = ProcessedMetricsPrinter() >>> dict_1 = trainer1.get_processed_metrics() >>> dict_2 = trainer2.get_processed_metrics() >>> print(dict_1) { "forward_metric_type,forward_pass" : [.0429, .0888] } >>> print(dict_2) { "forward_metric_type,forward_pass" : [.0111, .0222] } >>> processed_metrics_list = [dict_1, dict_2] >>> result = instance.combine_processed_metrics(processed_metrics_list) >>> print(result) { "forward_metric_type,forward_pass" : [.0429, .0888, .0111, .0222] } """ processed_metric_totals = {} for processed_metrics in processed_metrics_list: for metric_name, values in processed_metrics.items(): if metric_name not in processed_metric_totals: processed_metric_totals[metric_name] = [] processed_metric_totals[metric_name] += values return processed_metric_totals def get_data_frame(self, processed_metrics): df = pd.DataFrame( columns=['name', 'min', 'max', 'mean', 'variance', 'stdev'] ) for metric_name in sorted(processed_metrics.keys()): values = processed_metrics[metric_name] row = { "name": metric_name, "min": min(values), "max": max(values), "mean": statistics.mean(values), "variance": statistics.variance(values), "stdev": statistics.stdev(values) } df = df.append(row, ignore_index=True) return df def print_metrics(self, name, rank_metrics_list): if rank_metrics_list: metrics_list = [] for rank, metric in rank_metrics_list: self.print_data_frame(f"{name}={rank}", metric) metrics_list.append(metric) combined_metrics = self.combine_processed_metrics(metrics_list) self.print_data_frame(f"all {name}", combined_metrics) def save_to_file(self, data_frame, file_name): file_name = f"data_frames/{file_name}.csv" data_frame.to_csv(file_name, encoding='utf-8', index=False)
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
64a2f6689e74b94b8ed76e6cae0bed317078440b
bfc25f1ad7bfe061b57cfab82aba9d0af1453491
/data/external/repositories_2to3/204509/kaggle-liberty-mutual-group-master/code/correlation.py
b6f3c6e3fd83c3c6656f2ae5fe14cd5de6b86512
[ "MIT" ]
permissive
Keesiu/meta-kaggle
77d134620ebce530d183467202cf45639d9c6ff2
87de739aba2399fd31072ee81b391f9b7a63f540
refs/heads/master
2020-03-28T00:23:10.584151
2018-12-20T19:09:50
2018-12-20T19:09:50
147,406,338
0
1
null
null
null
null
UTF-8
Python
false
false
422
py
# -*- coding: utf-8 -*- """ simple code to calculate Pearson correlation between two results """ import pandas as pd import numpy as np print('Reading data...') xgb1 = pd.read_csv("../output/xgboost_1.csv") xgb2 = pd.read_csv("../output/xgboost_2.csv") rf = pd.read_csv("../output/rf.csv") gbm = pd.read_csv("../output/gbm.csv") print(('Pearson correlation = ', np.corrcoef(gbm.Hazard, rf.Hazard)[0,1]))
[ "keesiu.wong@gmail.com" ]
keesiu.wong@gmail.com
7461637d40a3096ec3e12766fc5d9198b8cb2fdb
3e4bb5b4036a66d25a72793c1deaa4f5572d37bf
/apps/pyvcal/tests/independent/revision.py
8c3bae6df8ddd6187220622f0a6e5e8f2e1e65fd
[ "MIT" ]
permissive
hbussell/pinax-tracker
f7f7eb0676d01251d7d8832557be14665755844d
4f6538324b2e1f7a8b14c346104d2f1bd8e1556b
refs/heads/master
2021-01-20T12:06:29.630850
2010-02-03T00:39:05
2010-02-03T00:39:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,092
py
import modulespecific import unittest class TestRevision(modulespecific.ModuleSpecificTestCase): """Test the Revision interface.""" def setUp(self): """Create and connect to a repository.""" self.basic_repo = self.test_module.BasicRepository() self.repo = self.basic_repo.repo() """Get the latest revision from that repository.""" self.revisions = self.repo.revisions self.head = self.repo.branches[""].head def tearDown(self): """Destroy the created repository.""" self.basic_repo.teardown() class TestRevisionPredecessors(TestRevision): """Test Revision.predecessors""" def runTest(self): """Test that the latest revision returns the expected predecessor i.e: Revision(rev_num - 1).""" # PROBLEM: This test fails (at least on git) because there is only ONE # revision in the test repo, therefore self.head.properties.time is equal # to predecessors[0].properties.time predecessors = self.head.predecessors self.assertEquals(1, len(predecessors)) self.assert_(self.head.properties.time > predecessors[0].properties.time) self.assertEquals(predecessors[0].properties.commit_message, "Rename README.txt to README") class TestRevisionGetProperties(TestRevision): """Test Revision.properties""" def runTest(self): """Test that the 'basic' test Revision.properties returns a non-null properties object.""" props = self.head.properties self.assert_(props) self.assert_(props.committer) self.assert_(props.time) self.assert_(props.commit_message) class TestRevisionDiffWithParents(TestRevision): """Test Revision.diff_with_parents""" def runTest(self): """Test the get diff with parents returns a valid RevisionDiff object.""" diff = self.head.diff_with_parent diff_value = diff.value self.assertEquals("", diff_value) #TODO need a better test... base on branch_and_merge test repo
[ "harley@harley-desktop.(none)" ]
harley@harley-desktop.(none)
5d074a0b8bca96ac9ec808db99922c922dfe31a1
bc441bb06b8948288f110af63feda4e798f30225
/monitor_sdk/model/flowable_service/process_instance_pb2.py
4138e633ea17940cb65e4ffd486693a240303547
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
6,546
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: process_instance.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='process_instance.proto', package='flowable_service', syntax='proto3', serialized_options=_b('ZJgo.easyops.local/contracts/protorepo-models/easyops/model/flowable_service'), serialized_pb=_b('\n\x16process_instance.proto\x12\x10\x66lowable_service\"\xdc\x01\n\x0fProcessInstance\x12\x12\n\ninstanceId\x18\x01 \x01(\t\x12\x1a\n\x12\x66lowableInstanceId\x18\x02 \x01(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x12\x0f\n\x07\x63reator\x18\x04 \x01(\t\x12\r\n\x05\x63time\x18\x05 \x01(\t\x12\r\n\x05\x65time\x18\x06 \x01(\t\x12\x0e\n\x06status\x18\x07 \x01(\t\x12\x12\n\nstepIdList\x18\x08 \x03(\t\x12\x0e\n\x06stopAt\x18\t \x01(\t\x12\x13\n\x0bisSuspended\x18\n \x01(\x08\x12\x13\n\x0bisCancelled\x18\x0b \x01(\x08\x42LZJgo.easyops.local/contracts/protorepo-models/easyops/model/flowable_serviceb\x06proto3') ) _PROCESSINSTANCE = _descriptor.Descriptor( name='ProcessInstance', full_name='flowable_service.ProcessInstance', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='instanceId', full_name='flowable_service.ProcessInstance.instanceId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='flowableInstanceId', full_name='flowable_service.ProcessInstance.flowableInstanceId', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='flowable_service.ProcessInstance.name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='creator', full_name='flowable_service.ProcessInstance.creator', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ctime', full_name='flowable_service.ProcessInstance.ctime', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='etime', full_name='flowable_service.ProcessInstance.etime', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='flowable_service.ProcessInstance.status', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stepIdList', full_name='flowable_service.ProcessInstance.stepIdList', index=7, number=8, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stopAt', full_name='flowable_service.ProcessInstance.stopAt', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isSuspended', full_name='flowable_service.ProcessInstance.isSuspended', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isCancelled', full_name='flowable_service.ProcessInstance.isCancelled', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=45, serialized_end=265, ) DESCRIPTOR.message_types_by_name['ProcessInstance'] = _PROCESSINSTANCE _sym_db.RegisterFileDescriptor(DESCRIPTOR) ProcessInstance = _reflection.GeneratedProtocolMessageType('ProcessInstance', (_message.Message,), { 'DESCRIPTOR' : _PROCESSINSTANCE, '__module__' : 'process_instance_pb2' # @@protoc_insertion_point(class_scope:flowable_service.ProcessInstance) }) _sym_db.RegisterMessage(ProcessInstance) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
[ "service@easyops.cn" ]
service@easyops.cn
e1777a1bf88087f70635240d8c7855eca9233d1a
cb35fffaab9650a8b89019a0269ad7cdf772f757
/news/migrations/0001_initial.py
849f2c75fec1aa5d94778cd7ca1fc5ab0994583d
[]
no_license
amazing22/my-second-blog
6c75dddae2650269805edfa9c0f2b89ba6f1db48
a5cc02663badcbb2efcaf6d291a634edbdb8a009
refs/heads/master
2021-08-08T03:19:58.404245
2017-11-09T12:32:22
2017-11-09T12:32:22
102,439,698
0
0
null
null
null
null
UTF-8
Python
false
false
1,180
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-10-11 05:06 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pub_date', models.DateField()), ('headline', models.CharField(max_length=200)), ('content', models.TextField()), ], ), migrations.CreateModel( name='Reporter', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('full_name', models.CharField(max_length=70)), ], ), migrations.AddField( model_name='article', name='reporter', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='news.Reporter'), ), ]
[ "you@example.com" ]
you@example.com
abb40f6104d91f9d09907f53c15d22b40b43d962
6f1e1c378997bf76942ce6e203e720035169ce27
/104-maximum-depth-of-binary-tree.py
7c47b2cce48c405645fdc77aba59813e9127047c
[ "MIT" ]
permissive
yuenliou/leetcode
a489b0986b70b55f29d06c2fd7545294ba6e7ee5
e8a1c6cae6547cbcb6e8494be6df685f3e7c837c
refs/heads/main
2021-06-16T07:47:39.103445
2021-05-11T09:16:15
2021-05-11T09:16:15
306,536,421
0
0
null
null
null
null
UTF-8
Python
false
false
1,927
py
#!/usr/local/bin/python3.7 # -*- coding: utf-8 -*- from collections import deque from datatype.tree_node import TreeNode class Solution: def maxDepth(self, root: TreeNode) -> int: """dfs""" if not root: return 0 else: l = self.maxDepth(root.left) r = self.maxDepth(root.right) # return l + 1 if l > r else r + 1 return max(l, r) + 1 def maxDepth2(self, root: TreeNode) -> int: """bfs""" if not root: return 0 cnt = 0 queue = deque() queue.append(root) while len(queue): # isEmpty() temp = [] # cnt = len(queue); while cnt: ...; cnt -= 1 for _ in range(len(queue)): root = queue.pop() # list.pop(0) temp.append(root.val) if root.left: queue.appendleft(root.left) if root.right: queue.appendleft(root.right) cnt += 1 return cnt def main(): root = TreeNode(3) n2 = TreeNode(9) n3 = TreeNode(20) n4 = TreeNode(15) n5 = TreeNode(7) root.setLeftNode(n2) root.setRightNode(n3) n3.setLeftNode(n4) n3.setRightNode(n5) solution = Solution() ret = solution.maxDepth2(root) print(ret) '''104. 二叉树的最大深度 给定一个二叉树,找出其最大深度。 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 示例: 给定二叉树 [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 返回它的最大深度 3 。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/maximum-depth-of-binary-tree 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 ''' if __name__ == '__main__': main()
[ "liuyuan@aplum.com.cn" ]
liuyuan@aplum.com.cn
79800080c4d9f0483f339e63026999badf2cd752
4522fc52bc43654aadd30421a75bae00a09044f0
/alfa/diannad.py
f52594100e43207f34f304fe117f59a727bc3de3
[]
no_license
qesoalpe/anelys
1edb8201aa80fedf0316db973da3a58b67070fca
cfccaa1bf5175827794da451a9408a26cd97599d
refs/heads/master
2020-04-07T22:39:35.344954
2018-11-25T05:23:21
2018-11-25T05:23:21
158,779,332
0
0
null
null
null
null
UTF-8
Python
false
false
779
py
from sarah.acp_bson import Recipient from base64 import b64decode import json ff = open('dianna_file', 'rb') config = json.loads(b64decode(ff.read()).decode()) ff.close() def handle_request(msg): if 'request_type' in msg: if msg['request_type'] == 'get': if msg['get'] == 'dianna/local_device': return {'local_device': config['local_device']} dict_handle_msg = dict() dict_handle_msg['request'] = handle_request def read_msg(msg): if 'type_message' in msg and msg['type_message'] in dict_handle_msg: return dict_handle_msg[msg['type_message']](msg) if __name__ == '__main__': print("I'm citlali daemon.") recipient = Recipient() recipient.prepare('citlali', read_msg) recipient.begin_receive_forever()
[ "qesoalpe@gmail.com" ]
qesoalpe@gmail.com
5798d06030285a366239004b9efbbf2e57eedf93
5864e86954a221d52d4fa83a607c71bacf201c5a
/spacecomponents/server/components/itemtrader.py
d137971475932934dac6aa414f5db1d9685da1b9
[]
no_license
connoryang/1v1dec
e9a2303a01e5a26bf14159112b112be81a6560fd
404f2cebf13b311e754d45206008918881496370
refs/heads/master
2021-05-04T02:34:59.627529
2016-10-19T08:56:26
2016-10-19T08:56:26
71,334,417
0
0
null
null
null
null
UTF-8
Python
false
false
4,402
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\packages\spacecomponents\server\components\itemtrader.py from spacecomponents.common.components.component import Component from spacecomponents.common.componentregistry import ExportCall import evetypes class ItemTrader(Component): def __init__(self, itemTraderItemId, typeId, attributes, componentRegistry): Component.__init__(self, itemTraderItemId, typeId, attributes, componentRegistry) self.SubscribeToMessage('OnAddedToSpace', self.OnAddedToSpace) def OnAddedToSpace(self, ballpark, spaceComponentDb): self.tradeProcessor = TradeProcessor(ballpark, ballpark.inventory2, ballpark.inventoryMgr, self.itemID, self.attributes.inputItems, self.attributes.outputItems, self.attributes.interactionRange) @ExportCall def ProcessTrade(self, session): return self.tradeProcessor.ProcessTrade(session.shipid, session.charid) class TradeProcessor(object): def __init__(self, ballpark, inventory2, inventoryMgr, itemTraderItemId, inputItems, outputItems, interactionRange): self.ballpark = ballpark self.inventory2 = inventory2 self.inventoryMgr = inventoryMgr self.itemTraderItemId = itemTraderItemId self.inputItems = inputItems self.outputItems = outputItems self.interactionRange = interactionRange self.requiredCapacity = self.GetCapacityForItems(outputItems) - self.GetCapacityForItems(inputItems) def ProcessTrade(self, shipId, ownerId): with self.inventory2.LockedItemAndSubItems(shipId): self.CheckDistance(shipId) ship = self.inventoryMgr.GetInventoryFromIdEx(shipId, -1) self.CheckCargoCapacity(ship) cargoItems = ship.List(const.flagCargo) itemsForRemoval = self._GetItemsForTrade(cargoItems) if itemsForRemoval: self._TakeItems(shipId, itemsForRemoval) self._GiveItems(shipId, ownerId) return True return False def _GetItemsForTrade(self, cargoItems): itemsForTrade = {} for requiredTypeId, requiredQuantity in self.inputItems.iteritems(): quantityLeft = self._GetItemsForTradeFromCargo(cargoItems, itemsForTrade, requiredTypeId, requiredQuantity) if quantityLeft != 0: return {} return itemsForTrade def _GetItemsForTradeFromCargo(self, cargoItems, itemsForTrade, requiredTypeId, requiredQuantity): quantityLeft = requiredQuantity for item in cargoItems: if item.typeID == requiredTypeId: quantity = min(quantityLeft, item.quantity) itemsForTrade[item.itemID] = quantity quantityLeft -= quantity if quantityLeft == 0: break return quantityLeft def _TakeItems(self, shipId, itemsForRemoval): for itemId, quantityForRemoval in itemsForRemoval.iteritems(): self.inventory2.MoveItem(itemId, shipId, const.locationJunkyard, qty=quantityForRemoval) def _GiveItems(self, shipId, ownerId): for typeId, quantityForAdd in self.outputItems.iteritems(): self.inventory2.AddItem2(typeId, ownerId, shipId, qty=quantityForAdd, flag=const.flagCargo) def GetCapacityForItems(self, items): capacity = 0 for typeId, quantity in items.iteritems(): typeVolume = evetypes.GetVolume(typeId) capacity += quantity * typeVolume return capacity def CheckCargoCapacity(self, ship): shipCapacity = ship.GetCapacity(flag=const.flagCargo) availableCapacity = shipCapacity.capacity - shipCapacity.used if availableCapacity < self.requiredCapacity: raise UserError('NotEnoughCargoSpace', {'available': shipCapacity.capacity - shipCapacity.used, 'volume': self.requiredCapacity}) def CheckDistance(self, shipId): actualDistance = self.ballpark.GetSurfaceDist(self.itemTraderItemId, shipId) if actualDistance > self.interactionRange: typeName = evetypes.GetName(self.inventory2.GetItem(self.itemTraderItemId).typeID) raise UserError('TargetNotWithinRange', {'targetGroupName': typeName, 'desiredRange': self.interactionRange, 'actualDistance': actualDistance})
[ "le02005@163.com" ]
le02005@163.com
b018c86a7c6c80f8fa48f8ac5dcca77ac0fc80bc
d8c50195fe04a09bd98e12f0b18a84dbe4a3dfe2
/zeus/tasks/process_artifact.py
a16482e42a4078a95b72babb1012eb62ace1e806
[ "Apache-2.0" ]
permissive
keegancsmith/zeus
44eeac0e9c99635f21bfa7ec744c84be7b40525e
e7bfe3db564ad1bbf449d8197f7d663fe41dd60a
refs/heads/master
2021-09-04T04:34:47.747175
2018-01-12T17:24:11
2018-01-12T21:55:31
117,591,379
0
0
null
2018-01-15T20:19:57
2018-01-15T20:19:57
null
UTF-8
Python
false
false
2,120
py
from flask import current_app from zeus import auth from zeus.artifacts import manager as default_manager from zeus.config import celery, db from zeus.constants import Result from zeus.models import Artifact, Job, Status from zeus.utils import timezone from .aggregate_job_stats import aggregate_build_stats_for_job @celery.task(max_retries=None, autoretry_for=(Exception,), acks_late=True) def process_artifact(artifact_id, manager=None, force=False, **kwargs): artifact = Artifact.query.unrestricted_unsafe().get(artifact_id) if artifact is None: current_app.logger.error('Artifact %s not found', artifact_id) return if artifact.status == Status.finished and not force: current_app.logger.info( 'Skipping artifact processing (%s) - already marked as finished', artifact_id) return artifact.status = Status.in_progress artifact.date_started = timezone.now() db.session.add(artifact) db.session.flush() auth.set_current_tenant(auth.Tenant( repository_ids=[artifact.repository_id])) job = Job.query.get(artifact.job_id) if job.result == Result.aborted: current_app.logger.info( 'Skipping artifact processing (%s) - Job aborted', artifact_id) artifact.status = Status.finished db.session.add(artifact) db.session.commit() return if artifact.file: if manager is None: manager = default_manager try: with db.session.begin_nested(): manager.process(artifact) except Exception: current_app.logger.exception( 'Unrecoverable exception processing artifact %s: %s', artifact.job_id, artifact ) else: current_app.logger.info( 'Skipping artifact processing (%s) due to missing file', artifact_id) artifact.status = Status.finished artifact.date_finished = timezone.now() db.session.add(artifact) db.session.commit() # we always aggregate results to avoid locking here aggregate_build_stats_for_job.delay(job_id=job.id)
[ "dcramer@gmail.com" ]
dcramer@gmail.com
4e71953ea5d17920c540d29e944877d704f20cc5
4ee4c2cafad449dd60032630bdd249e63d70b5ac
/plugins/xevents/Xlib/xauth.py
4755b353f1bc01bc186ea50603860a9c1df9ddec
[ "MIT", "GPL-2.0-only" ]
permissive
rrojasPy/TurtleBots.activity
4c44ed90b1aadbd0788cdb091fc647deac28d8e8
c18e64cc817b2bd8d8cd80a538ff703f580bbe42
refs/heads/master
2022-10-20T20:46:27.304452
2020-06-17T15:57:11
2020-06-17T15:57:11
273,014,877
0
1
MIT
2020-06-17T15:57:12
2020-06-17T15:44:15
null
UTF-8
Python
false
false
4,168
py
# $Id: xauth.py,v 1.5 2007/06/10 14:11:58 mggrant Exp $ # # Xlib.xauth -- ~/.Xauthority access # # Copyright (C) 2000 Peter Liljenberg <petli@ctrl-c.liu.se> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA import os import struct from Xlib import X, error FamilyInternet = X.FamilyInternet FamilyDECnet = X.FamilyDECnet FamilyChaos = X.FamilyChaos FamilyLocal = 256 class Xauthority: def __init__(self, filename = None): if filename is None: filename = os.environ.get('XAUTHORITY') if filename is None: try: filename = os.path.join(os.environ['HOME'], '.Xauthority') except KeyError: raise error.XauthError( '$HOME not set, cannot find ~/.Xauthority') try: raw = open(filename, 'rb').read() except IOError, err: raise error.XauthError('~/.Xauthority: %s' % err) self.entries = [] # entry format (all shorts in big-endian) # short family; # short addrlen; # char addr[addrlen]; # short numlen; # char num[numlen]; # short namelen; # char name[namelen]; # short datalen; # char data[datalen]; n = 0 try: while n < len(raw): family, = struct.unpack('>H', raw[n:n+2]) n = n + 2 length, = struct.unpack('>H', raw[n:n+2]) n = n + length + 2 addr = raw[n - length : n] length, = struct.unpack('>H', raw[n:n+2]) n = n + length + 2 num = raw[n - length : n] length, = struct.unpack('>H', raw[n:n+2]) n = n + length + 2 name = raw[n - length : n] length, = struct.unpack('>H', raw[n:n+2]) n = n + length + 2 data = raw[n - length : n] if len(data) != length: break self.entries.append((family, addr, num, name, data)) except struct.error, e: print "Xlib.xauth: warning, failed to parse part of xauthority file (%s), aborting all further parsing" % filename #pass if len(self.entries) == 0: print "Xlib.xauth: warning, no xauthority details available" # raise an error? this should get partially caught by the XNoAuthError in get_best_auth.. def __len__(self): return len(self.entries) def __getitem__(self, i): return self.entries[i] def get_best_auth(self, family, address, dispno, types = ( "MIT-MAGIC-COOKIE-1", )): """Find an authentication entry matching FAMILY, ADDRESS and DISPNO. The name of the auth scheme must match one of the names in TYPES. If several entries match, the first scheme in TYPES will be choosen. If an entry is found, the tuple (name, data) is returned, otherwise XNoAuthError is raised. """ num = str(dispno) matches = {} for efam, eaddr, enum, ename, edata in self.entries: if efam == family and eaddr == address and num == enum: matches[ename] = edata for t in types: try: return (t, matches[t]) except KeyError: pass raise error.XNoAuthError((family, address, dispno))
[ "rodneyrrs@hotmail.com" ]
rodneyrrs@hotmail.com
0eee2867d2a4f3aca7a06bb5468124d94ef182fe
1e263d605d4eaf0fd20f90dd2aa4174574e3ebce
/components/ally-utilities/__setup__/ally_utilities/logging.py
b8a479b38eb8e2357cf75e837ffe1b544a61d068
[]
no_license
galiminus/my_liveblog
698f67174753ff30f8c9590935d6562a79ad2cbf
550aa1d0a58fc30aa9faccbfd24c79a0ceb83352
refs/heads/master
2021-05-26T20:03:13.506295
2013-04-23T09:57:53
2013-04-23T09:57:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,296
py
''' Created on Nov 7, 2012 @package: ally utilities @copyright: 2012 Sourcefabric o.p.s. @license: http://www.gnu.org/licenses/gpl-3.0.txt @author: Gabriel Nistor Provides the logging configurations to be used for the application. ''' from ally.container import ioc # -------------------------------------------------------------------- @ioc.config def format(): ''' The format to use for the logging messages more details can be found at "http://docs.python.org/3/library/logging.html" in chapter "16.7.6. LogRecord attributes. Example: "%(asctime)s %(levelname)s (%(threadName)s %(module)s.%(funcName)s %(lineno)d): %(message)s" ''' return '%(module)s.%(funcName)s %(lineno)d: %(message)s' @ioc.config def debug_for(): ''' The list of packages or module patterns to provide debugging for, attention this is available only if the application is not run with -O or -OO option ''' return [] @ioc.config def info_for(): '''The list of packages or module patterns to provide info for''' return ['__deploy__', '__setup__'] @ioc.config def warning_for(): '''The list of packages or module patterns to provide warnings for''' return ['ally'] @ioc.config def log_file(): ''' The name of the log file ''' return 'app.log'
[ "etienne@spillemaeker.com" ]
etienne@spillemaeker.com
c52e5a01d006afaa44d941558a3b4413e7d46507
2c97e11e13bfbabfdae8979385ba0957c7b11270
/ebl/tests/corpus/test_text.py
492a85c0eae4e191f7fa44e750326ebdfcf9d5eb
[ "MIT" ]
permissive
ElectronicBabylonianLiterature/ebl-api
72a2a95291e502ec89a20ebe5c14447e63ac6d92
4910f6fbb57fa213fef55cbe9bc16215aebbaa27
refs/heads/master
2023-08-16T12:42:03.303042
2023-08-16T10:59:44
2023-08-16T10:59:44
135,266,736
11
3
MIT
2023-09-12T09:56:14
2018-05-29T08:39:58
Python
UTF-8
Python
false
false
679
py
import pytest from ebl.transliteration.domain.stage import Stage from ebl.tests.factories.corpus import ChapterListingFactory, TextFactory @pytest.mark.parametrize( "chapters,expected", [ (tuple(), False), (ChapterListingFactory.build_batch(2, stage=Stage.NEO_ASSYRIAN), False), ( [ ChapterListingFactory.build(stage=Stage.NEO_ASSYRIAN), ChapterListingFactory.build(stage=Stage.OLD_ASSYRIAN), ], True, ), ], ) def test_has_multiple_stages(chapters, expected) -> None: text = TextFactory.build(chapters=chapters) assert text.has_multiple_stages == expected
[ "noreply@github.com" ]
ElectronicBabylonianLiterature.noreply@github.com
917fcebd166d847a92f7e606dacab4fd29e3999f
3f70e754981a941dbc3a24d15edb0a5abe3d4788
/yotta/test/test_ignores.py
a2b9a8a7100fa9cee34d536a142b11b4dc2cd2c5
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ARMmbed/yotta
66cfa634f03a25594311a569ea369a916cff70bf
82d854b43d391abb5a006b05e7beffe7d0d6ffbf
refs/heads/master
2023-03-16T11:57:12.852163
2021-01-15T13:49:47
2021-01-15T13:49:47
16,579,440
184
87
Apache-2.0
2021-01-15T13:46:43
2014-02-06T13:03:45
Python
UTF-8
Python
false
false
5,789
py
#!/usr/bin/env python # Copyright 2015 ARM Limited # # Licensed under the Apache License, Version 2.0 # See LICENSE file for details. # standard library modules, , , import unittest import os # internal modules: from yotta.lib.detect import systemDefaultTarget from yotta.lib import component from yotta.test.cli import cli from yotta.test.cli import util Test_Files = { '.yotta_ignore': ''' #comment /moo b/c/d b/c/*.txt /a/b/test.txt b/*.c /source/a/b/test.txt /test/foo sometest/a someothertest ignoredbyfname.c ''', 'module.json': ''' { "name": "test-testdep-f", "version": "0.0.6", "description": "Module to test test-dependencies and ignoring things", "author": "autopulated", "licenses": [ { "url": "https://spdx.org/licenses/Apache-2.0", "type": "Apache-2.0" } ], "dependencies": {}, "testDependencies": {} } ''', 'a/b/c/d/e/f/test.txt': '', 'a/b/c/d/e/test.c': '#error should be ignored', 'a/b/c/d/e/test.txt': '', 'a/b/c/d/test.c': '#error should be ignored', 'a/b/c/d/test.txt': '', 'a/b/c/d/z/test.c':'#error should be ignored', 'a/b/c/test.txt': '', 'a/b/test.txt':'', 'a/test.txt':'', 'comment':'# should not be ignored', 'f/f.h':''' #ifndef __F_H__ #define __F_H__ int f(); #endif ''', 'source/moo/test.txt':'', 'source/a/b/c/d/e/f/test.txt': '', 'source/a/b/c/d/e/test.c': '#error should be ignored', 'source/a/b/c/d/e/test.txt': '', 'source/a/b/c/d/test.c': '#error should be ignored', 'source/a/b/c/d/test.txt': '', 'source/a/b/c/d/z/test.c':'#error should be ignored', 'source/a/b/c/test.txt': '', 'source/a/b/test.txt':'', 'source/a/test.txt':'', 'source/f.c':''' int f(){ return 6; } ''', 'test/anothertest/ignoredbyfname.c':'#error should be ignored', 'test/anothertest/ignoredbyfname.c':''' #include <stdio.h> #include "f/f.h" int main(){ int result = f(); printf("%d\n", result); return !(result == 6); } ''', 'test/foo/ignored.c':''' #error should be ignored ''', 'test/someothertest/alsoignored.c':''' #error should be ignored ''', 'test/sometest/a/ignored.c':''' #error should be ignored ''' } Default_Test_Files = { 'module.json': ''' { "name": "test-testdep-f", "version": "0.0.6", "license": "Apache-2.0" }''' } def isWindows(): # can't run tests that hit github without an authn token return os.name == 'nt' class TestPackIgnores(unittest.TestCase): @classmethod def setUpClass(cls): cls.test_dir = util.writeTestFiles(Test_Files) @classmethod def tearDownClass(cls): util.rmRf(cls.test_dir) def test_absolute_ignores(self): c = component.Component(self.test_dir) self.assertTrue(c.ignores('moo')) self.assertTrue(c.ignores('test/foo/ignored.c')) def test_glob_ignores(self): c = component.Component(self.test_dir) self.assertTrue(c.ignores('a/b/c/test.txt')) self.assertTrue(c.ignores('a/b/test.txt')) self.assertTrue(c.ignores('a/b/test.c')) self.assertTrue(c.ignores('source/a/b/c/test.txt')) self.assertTrue(c.ignores('source/a/b/test.txt')) self.assertTrue(c.ignores('source/a/b/test.c')) def test_relative_ignores(self): c = component.Component(self.test_dir) self.assertTrue(c.ignores('a/b/c/d/e/f/test.txt')) self.assertTrue(c.ignores('a/b/test.txt')) self.assertTrue(c.ignores('source/a/b/c/d/e/f/test.txt')) self.assertTrue(c.ignores('source/a/b/test.txt')) self.assertTrue(c.ignores('test/anothertest/ignoredbyfname.c')) self.assertTrue(c.ignores('test/someothertest/alsoignored.c')) def test_default_ignores(self): default_test_dir = util.writeTestFiles(Default_Test_Files) c = component.Component(default_test_dir) self.assertTrue(c.ignores('.something.c.swp')) self.assertTrue(c.ignores('.something.c~')) self.assertTrue(c.ignores('path/to/.something.c.swm')) self.assertTrue(c.ignores('path/to/.something.c~')) self.assertTrue(c.ignores('.DS_Store')) self.assertTrue(c.ignores('.git')) self.assertTrue(c.ignores('.hg')) self.assertTrue(c.ignores('.svn')) self.assertTrue(c.ignores('yotta_modules')) self.assertTrue(c.ignores('yotta_targets')) self.assertTrue(c.ignores('build')) self.assertTrue(c.ignores('.yotta.json')) util.rmRf(default_test_dir) def test_comments(self): c = component.Component(self.test_dir) self.assertFalse(c.ignores('comment')) @unittest.skipIf(isWindows(), "can't build natively on windows yet") def test_build(self): stdout = self.runCheckCommand(['--target', systemDefaultTarget(), 'clean'], self.test_dir) stdout = self.runCheckCommand(['--target', systemDefaultTarget(), 'build'], self.test_dir) self.assertNotIn('ignoredbyfname', stdout) self.assertNotIn('someothertest', stdout) self.assertNotIn('sometest', stdout) @unittest.skipIf(isWindows(), "can't build natively on windows yet") def test_test(self): stdout = self.runCheckCommand(['--target', systemDefaultTarget(), 'clean'], self.test_dir) stdout = self.runCheckCommand(['--target', systemDefaultTarget(), 'test'], self.test_dir) self.assertNotIn('ignoredbyfname', stdout) self.assertNotIn('someothertest', stdout) self.assertNotIn('sometest', stdout) def runCheckCommand(self, args, test_dir): stdout, stderr, statuscode = cli.run(args, cwd=self.test_dir) if statuscode != 0: print('command failed with status %s' % statuscode) print(stdout) print(stderr) self.assertEqual(statuscode, 0) return stdout or stderr if __name__ == '__main__': unittest.main()
[ "James.Crosby@arm.com" ]
James.Crosby@arm.com
21592df1ab03e4bc5631a96f3de6b93a787069ac
e6f0d9716288c7a8ac04aad852343177195fe8a4
/hydrus/client/db/ClientDBMappingsStorage.py
b563cc014146c8b9f8777769f993c37b28e09b00
[ "WTFPL" ]
permissive
dot1991/hydrus
d5fb7960650c7b0cc999832be196deec073146a2
e95ddf7fb65e2a1fc82e091473c4c9e6cb09e69d
refs/heads/master
2023-06-15T19:29:59.477574
2021-07-14T20:42:19
2021-07-14T20:42:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,221
py
import sqlite3 import typing from hydrus.core import HydrusConstants as HC from hydrus.core import HydrusDBModule from hydrus.client.db import ClientDBServices def GenerateMappingsTableNames( service_id: int ) -> typing.Tuple[ str, str, str, str ]: suffix = str( service_id ) current_mappings_table_name = 'external_mappings.current_mappings_{}'.format( suffix ) deleted_mappings_table_name = 'external_mappings.deleted_mappings_{}'.format( suffix ) pending_mappings_table_name = 'external_mappings.pending_mappings_{}'.format( suffix ) petitioned_mappings_table_name = 'external_mappings.petitioned_mappings_{}'.format( suffix ) return ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) class ClientDBMappingsStorage( HydrusDBModule.HydrusDBModule ): def __init__( self, cursor: sqlite3.Cursor, modules_services: ClientDBServices.ClientDBMasterServices ): self.modules_services = modules_services HydrusDBModule.HydrusDBModule.__init__( self, 'client mappings storage', cursor ) def _GetInitialIndexGenerationTuples( self ): index_generation_tuples = [] return index_generation_tuples def CreateInitialTables( self ): pass def GetExpectedTableNames( self ) -> typing.Collection[ str ]: expected_table_names = [] return expected_table_names def DropMappingsTables( self, service_id: int ): ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) = GenerateMappingsTableNames( service_id ) self._c.execute( 'DROP TABLE IF EXISTS {};'.format( current_mappings_table_name ) ) self._c.execute( 'DROP TABLE IF EXISTS {};'.format( deleted_mappings_table_name ) ) self._c.execute( 'DROP TABLE IF EXISTS {};'.format( pending_mappings_table_name ) ) self._c.execute( 'DROP TABLE IF EXISTS {};'.format( petitioned_mappings_table_name ) ) def GenerateMappingsTables( self, service_id: int ): ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) = GenerateMappingsTableNames( service_id ) self._c.execute( 'CREATE TABLE IF NOT EXISTS {} ( tag_id INTEGER, hash_id INTEGER, PRIMARY KEY ( tag_id, hash_id ) ) WITHOUT ROWID;'.format( current_mappings_table_name ) ) self._CreateIndex( current_mappings_table_name, [ 'hash_id', 'tag_id' ], unique = True ) self._c.execute( 'CREATE TABLE IF NOT EXISTS {} ( tag_id INTEGER, hash_id INTEGER, PRIMARY KEY ( tag_id, hash_id ) ) WITHOUT ROWID;'.format( deleted_mappings_table_name ) ) self._CreateIndex( deleted_mappings_table_name, [ 'hash_id', 'tag_id' ], unique = True ) self._c.execute( 'CREATE TABLE IF NOT EXISTS {} ( tag_id INTEGER, hash_id INTEGER, PRIMARY KEY ( tag_id, hash_id ) ) WITHOUT ROWID;'.format( pending_mappings_table_name ) ) self._CreateIndex( pending_mappings_table_name, [ 'hash_id', 'tag_id' ], unique = True ) self._c.execute( 'CREATE TABLE IF NOT EXISTS {} ( tag_id INTEGER, hash_id INTEGER, reason_id INTEGER, PRIMARY KEY ( tag_id, hash_id ) ) WITHOUT ROWID;'.format( petitioned_mappings_table_name ) ) self._CreateIndex( petitioned_mappings_table_name, [ 'hash_id', 'tag_id' ], unique = True ) def GetCurrentFilesCount( self, service_id: int ) -> int: ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) = GenerateMappingsTableNames( service_id ) result = self._c.execute( 'SELECT COUNT( DISTINCT hash_id ) FROM {};'.format( current_mappings_table_name ) ).fetchone() ( count, ) = result return count def GetDeletedMappingsCount( self, service_id: int ) -> int: ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) = GenerateMappingsTableNames( service_id ) result = self._c.execute( 'SELECT COUNT( * ) FROM {};'.format( deleted_mappings_table_name ) ).fetchone() ( count, ) = result return count def GetPendingMappingsCount( self, service_id: int ) -> int: ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) = GenerateMappingsTableNames( service_id ) result = self._c.execute( 'SELECT COUNT( * ) FROM {};'.format( pending_mappings_table_name ) ).fetchone() ( count, ) = result return count def GetPetitionedMappingsCount( self, service_id: int ) -> int: ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) = GenerateMappingsTableNames( service_id ) result = self._c.execute( 'SELECT COUNT( * ) FROM {};'.format( petitioned_mappings_table_name ) ).fetchone() ( count, ) = result return count def GetTablesAndColumnsThatUseDefinitions( self, content_type: int ) -> typing.List[ typing.Tuple[ str, str ] ]: if HC.CONTENT_TYPE_HASH: tables_and_columns = [] for service_id in self.modules_services.GetServiceIds( HC.REAL_TAG_SERVICES ): ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) = GenerateMappingsTableNames( service_id ) tables_and_columns.extend( [ ( current_mappings_table_name, 'hash_id' ), ( deleted_mappings_table_name, 'hash_id' ), ( pending_mappings_table_name, 'hash_id' ), ( petitioned_mappings_table_name, 'hash_id' ) ] ) return tables_and_columns elif HC.CONTENT_TYPE_TAG: tables_and_columns = [] for service_id in self.modules_services.GetServiceIds( HC.REAL_TAG_SERVICES ): ( current_mappings_table_name, deleted_mappings_table_name, pending_mappings_table_name, petitioned_mappings_table_name ) = GenerateMappingsTableNames( service_id ) tables_and_columns.extend( [ ( current_mappings_table_name, 'tag_id' ), ( deleted_mappings_table_name, 'tag_id' ), ( pending_mappings_table_name, 'tag_id' ), ( petitioned_mappings_table_name, 'tag_id' ) ] ) return tables_and_columns return []
[ "hydrus.admin@gmail.com" ]
hydrus.admin@gmail.com
f6e48ed453acfeacb2bc7ce5b0987480f39bf064
225a1d5fca742ae4f502bc346e26d804283e925e
/luna/shortcuts.py
eb802ebf4837f5a06844a562249863d1b76f2dc0
[ "MIT" ]
permissive
y372465774/luna
8ad056fdd956c9fa5508d6d3a657b76785e9641d
ee3bb740f2cee67fa84b3e923979d29fd14015a7
refs/heads/master
2021-06-21T12:43:09.821262
2017-06-03T23:11:47
2017-06-03T23:11:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
from luna import util from luna.compiler import Compiler from luna.parser import Parser def compile(filepath): tree = parse(filepath) compiler = Compiler() return compiler.compile(tree) def interpret(filepath): frame = compile(filepath) frame.run() def parse(filepath): import os content = filepath if os.path.isfile(filepath): content = util.read(filepath) parser = Parser() return parser.parse_with_rule(None, content)
[ "numerodix@gmail.com" ]
numerodix@gmail.com
d2e678f126fa9f4a2b06d9a9db003b86dc26c0cb
d668209e9951d249020765c011a836f193004c01
/tools/pnnx/tests/ncnn/test_F_pad.py
88590649883cbbc978a447b89328a1e6e6372751
[ "BSD-3-Clause", "Zlib", "BSD-2-Clause" ]
permissive
Tencent/ncnn
d8371746c00439304c279041647362a723330a79
14b000d2b739bd0f169a9ccfeb042da06fa0a84a
refs/heads/master
2023-08-31T14:04:36.635201
2023-08-31T04:19:23
2023-08-31T04:19:23
95,879,426
18,818
4,491
NOASSERTION
2023-09-14T15:44:56
2017-06-30T10:55:37
C++
UTF-8
Python
false
false
2,062
py
# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x, y, z): x = F.pad(x, (3,4), mode='constant', value=1.3) x = F.pad(x, (2,2)) y = F.pad(y, (5,6), mode='reflect') y = F.pad(y, (2,1), mode='replicate') y = F.pad(y, (3,4), mode='constant', value=1.3) y = F.pad(y, (1,1)) z = F.pad(z, (3,4,3,4), mode='reflect') z = F.pad(z, (2,1,2,0), mode='replicate') z = F.pad(z, (1,0,2,0), mode='constant', value=1.3) z = F.pad(z, (3,3,3,3)) return x, y, z def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 16) y = torch.rand(1, 2, 16) z = torch.rand(1, 3, 12, 16) a = net(x, y, z) # export torchscript mod = torch.jit.trace(net, (x, y, z)) mod.save("test_F_pad.pt") # torchscript to pnnx import os os.system("../../src/pnnx test_F_pad.pt inputshape=[1,16],[1,2,16],[1,3,12,16]") # ncnn inference import test_F_pad_ncnn b = test_F_pad_ncnn.test_inference() for a0, b0 in zip(a, b): if not torch.allclose(a0, b0, 1e-4, 1e-4): return False return True if __name__ == "__main__": if test(): exit(0) else: exit(1)
[ "noreply@github.com" ]
Tencent.noreply@github.com
ed20f0ff5ef0931674df3d3cb706768578fb1f47
28225a61f2fc33e4f6d56a1941a99301489c0f1e
/GAN/CoGAN(WIP)/main.py
34036d03559776a7b713da6c23fac7aa13909638
[]
no_license
sailfish009/pytorchTutorialRepo
97cb4368b6ac22bd678965d351196b47d52970e1
17d67e64555d2b219d7d53de6a7bfda4172b809b
refs/heads/master
2023-03-08T13:03:57.244087
2021-02-23T11:26:19
2021-02-23T11:26:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,696
py
import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from tqdm import tqdm from trainer import * import torchvision.models as models import mnistm import os os.environ["TORCH_HOME"] = "~/Desktop/Datasets/" # Allowing arguments for direct execution from terminal parser = argparse.ArgumentParser() parser.add_argument('--data', help = "folder for custom training", default = "") parser.add_argument('--arch', default = 'resnet18', help= '''Choose any model from pytorch. Or input "my" for taking a model from model.py ''') parser.add_argument("--weight-decay", default = 1e-4, help = "weight decay coefficient") parser.add_argument("--resume", default = False, help = "Resume training from a checkpoint") parser.add_argument("--pretrained", default = False, help = "If part of the standard datasets, downloaded pretrained weights") parser.add_argument('--batch-size', type = int, default = 128, help = 'input batch size') parser.add_argument( "--test-batch-size", type = int, default = 1000 ) parser.add_argument( "--epochs", type = int, default = 20, help = "no of epochs to train for" ) parser.add_argument( "--lr", type = float, default = 0.01, help = "Base learning rate" ) parser.add_argument( "--max_lr", type = float, default = 0.1, help = "Max learning rate for OneCycleLR" ) parser.add_argument( "--dry-run", action = 'store_true', default = False, help = 'quickly check a single pass' ) parser.add_argument( "--seed", type = int, default = 100, help = "torch random seed" ) parser.add_argument( "--log_interval", type = int, default = 20, help = "interval to show results" ) parser.add_argument( "--save-model", action = 'store_true', default = True, help = "Choose if model to be saved or not" ) parser.add_argument("--save_path", default = "models/model.pt", help = "Choose model saved filepath") # GAN specific args parser.add_argument("--nz", default = 100, help = "size of latent vector") parser.add_argument("--ngf", default = 28, help = "gen size") parser.add_argument("--ndf", default = 28, help= "Discriminator size") parser.add_argument("--beta1", default = 0.5, help = "adam beta1 parameter") parser.add_argument('--CRITIC_ITERS', default=1, type=int, help='D update iters before G update') parser.add_argument("--nc", default =1, help = "number of image channels") args = parser.parse_args() # Setting params nz = int(args.nz) nsamplesgf = int(args.ngf) ndf = int(args.ndf) nc = int(args.nc) torch.manual_seed(args.seed) device = torch.device("cuda") kwargs = {'batch_size':args.batch_size} kwargs.update( {'num_workers':8, 'pin_memory':True, 'shuffle': True } ) # Defining batch transforms transform = transforms.Compose( [transforms.Resize(28), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]) # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] ) # Loading dataset train_data = datasets.MNIST("~/Desktop/Datasets/", transform = transform) train_loader = torch.utils.data.DataLoader(train_data, **kwargs) train_loader2 = torch.utils.data.DataLoader( mnistm.MNISTM( "~/Desktop/Datasets/", train=True, download=True, transform=transforms.Compose( [ transforms.Resize(ndf), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ), ), batch_size=args.batch_size, shuffle=True, ) # Initialize weights def weight_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight, 0.0, 0.02) elif classname.find('BatchNorm') != -1: torch.nn.init.normal_(m.weight, 1.0, 0.02) torch.nn.init.zeros_(m.bias) # Loading model num_classes = 10 #This is new; change it based on dataset if args.arch == "my": from Nets import * netG = Generator(num_classes, (nc, ndf, ndf), args).to(device) netG.apply(weight_init) netD = Discriminator(num_classes, (nc, ndf, ndf), args).to(device) netD.apply(weight_init) print("Using custom architecture") else: if args.pretrained: print(f"Using pretrained {args.arch}") model = models.__dict__[args.arch](pretrained = True) else: print(f"Not using pretrained {args.arch}") model = models.__dict__[args.arch]() print("Generator", netG) print("Discriminator", netD) start_epoch = 1 if args.resume: loc = "cuda:0" checkpointD = torch.load(args.save_path+"dis.pt", map_location = loc) checkpointG = torch.load(args.save_path+"gen.pt", map_location = loc) netD.load_state_dict(checkpoint['state_dict']) netD.load_state_dict(checkpoint['optimizer']) netG.load_state_dict(checkpoint['state_dict']) netG.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch'] print(f"Done loading pretrained, Start epoch: {checkpoint['epoch']}") # Optimizers optimizerD = optim.Adam(netD.parameters(), lr=args.lr,betas=(args.beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=args.lr,betas=(args.beta1, 0.999)) # Loop batches_done = 0 for epoch in tqdm(range(start_epoch, args.epochs+1)): train(args, device, train_loader,train_loader2, epoch, netD, netG,nz , ndf, nc, optimizerD, optimizerG, batches_done, num_classes) if args.save_model: torch.save(netD.state_dict(), args.save_path+"disc.pt") torch.save(netG.state_dict(), args.save_path+"gen.pt")
[ "msubhaditya@gmail.com" ]
msubhaditya@gmail.com
9bcc59034c881a3c1b6c4c6e4be0b400fa0191b6
d8da64ecb3a88f8f3196937d3836c7bbafd5e26f
/backend/home/migrations/0002_load_initial_data.py
5ac5736cbfb33d2462efd03c2c2be03900aba58d
[]
no_license
crowdbotics-apps/layouteditor151-1654
990b395d8054e05b0f8739345d5e55623cead88c
75e3614856ab5577da68e9ec4ad0157f462abd6d
refs/heads/master
2022-11-16T05:09:59.518254
2020-07-03T17:54:23
2020-07-03T17:54:23
276,958,333
0
0
null
null
null
null
UTF-8
Python
false
false
1,313
py
from django.db import migrations def create_customtext(apps, schema_editor): CustomText = apps.get_model("home", "CustomText") customtext_title = "layouteditor151" CustomText.objects.create(title=customtext_title) def create_homepage(apps, schema_editor): HomePage = apps.get_model("home", "HomePage") homepage_body = """ <h1 class="display-4 text-center">layouteditor151</h1> <p class="lead"> This is the sample application created and deployed from the Crowdbotics app. You can view list of packages selected for this application below. </p>""" HomePage.objects.create(body=homepage_body) def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "layouteditor151-1654.botics.co" site_params = { "name": "layouteditor151", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("home", "0001_initial"), ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_customtext), migrations.RunPython(create_homepage), migrations.RunPython(create_site), ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
119c672f5d02ac1dc65310e156c212718e05ac89
d838bed08a00114c92b73982a74d96c15166a49e
/docs/data/learn/Bioinformatics/output/ch8_code/src/metrics/PearsonSimilarity.py
aae4c9870689ccc0776b67c2e785b313c5e05669
[]
no_license
offbynull/offbynull.github.io
4911f53d77f6c59e7a453ee271b1e04e613862bc
754a85f43159738b89dd2bde1ad6ba0d75f34b98
refs/heads/master
2023-07-04T00:39:50.013571
2023-06-17T20:27:05
2023-06-17T23:27:00
308,482,936
1
0
null
null
null
null
UTF-8
Python
false
false
1,725
py
from math import sqrt from statistics import mean from sys import stdin from typing import Sequence import yaml # MARKDOWN def pearson_similarity(v: Sequence[float], w: Sequence[float], dims: int): v_avg = mean(v) w_avg = mean(w) vec_avg_diffs_dp = sum((v[i] - v_avg) * (w[i] - w_avg) for i in range(dims)) dist_to_v_avg = sqrt(sum((v[i] - v_avg) ** 2 for i in range(dims))) dist_to_w_avg = sqrt(sum((w[i] - w_avg) ** 2 for i in range(dims))) return vec_avg_diffs_dp / (dist_to_v_avg * dist_to_w_avg) def pearson_distance(v: Sequence[float], w: Sequence[float], dims: int): # To turn pearson similarity into a distance metric, subtract 1.0 from it. By # subtracting 1.0, you're changing the bounds from [1.0, -1.0] to [0.0, 2.0]. # # Recall that any distance metric must return 0 when the items being compared # are the same and increases the more different they get. By subtracting 1.0, # you're matching that distance metric requirement: 0.0 when totally similar # and 2.0 for totally dissimilar. return 1.0 - pearson_similarity(v, w, dims) # MARKDOWN def main(): print("<div style=\"border:1px solid black;\">", end="\n\n") print("`{bm-disable-all}`", end="\n\n") try: data = yaml.safe_load(stdin) v = data[0] w = data[1] dims = max(len(v), len(w)) print('Given the vectors ...') print() print(f' * {v}') print(f' * {w}') print() d = pearson_similarity(v, w, dims) print(f'Their pearson similarity is {d}') print() finally: print("</div>", end="\n\n") print("`{bm-enable-all}`", end="\n\n") if __name__ == '__main__': main()
[ "offbynull@gmail.com" ]
offbynull@gmail.com
12715c528873546ae9649b4dbb52876cf6d0505b
f90522eee8d87c1486f32f3801a67141f7aee15f
/0129.Sum Root to Leaf Numbers/solution.py
a5789c653314b4d53aacfa3e2860b7adcd4c6bbb
[ "Apache-2.0" ]
permissive
zhlinh/leetcode
15a30af8439e664d2a5f1aa328baf96f0f1791da
6dfa0a4df9ec07b2c746a13c8257780880ea04af
refs/heads/master
2021-01-15T15:49:25.525816
2016-09-20T03:24:10
2016-09-20T03:24:10
48,949,767
0
0
null
null
null
null
UTF-8
Python
false
false
1,386
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ***************************************** Author: zhlinh Email: zhlinhng@gmail.com Version: 0.0.1 Created Time: 2016-03-11 Last_modify: 2016-03-11 ****************************************** ''' ''' Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number. An example is the root-to-leaf path 1->2->3 which represents the number 123. Find the total sum of all root-to-leaf numbers. For example, 1 / \ 2 3 The root-to-leaf path 1->2 represents the number 12. The root-to-leaf path 1->3 represents the number 13. Return the sum = 12 + 13 = 25. ''' # Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): totalSum = 0 def sumNumbers(self, root): """ :type root: TreeNode :rtype: int """ if not root: return 0 self.helper(root, 0) return self.totalSum def helper(self, root, num): num = num * 10 + root.val if not root.left and not root.right: self.totalSum += num return if root.left: self.helper(root.left, num) if root.right: self.helper(root.right, num)
[ "zhlinhng@gmail.com" ]
zhlinhng@gmail.com
3b6849ee78281ae2e1737249fd55941971b110fc
7ab4cdf01de10faa0b5e6103cb98f4a1447b38e1
/ChromeController/__init__.py
29f415a8675ecb9d895139a843ac001249a70336
[ "BSD-3-Clause" ]
permissive
acskurucz/ChromeController
619a0d46db60809bbe1188dc1d7230e3ef2dba47
4294c1ca7db9569a976710c7c219069eb07d28bf
refs/heads/master
2020-12-08T16:40:32.528694
2020-01-10T12:36:28
2020-01-10T12:36:28
233,036,106
0
0
BSD-3-Clause
2020-01-10T11:47:56
2020-01-10T11:47:55
null
UTF-8
Python
false
false
687
py
from .tab_pool import TabPooledChromium from .chrome_context import ChromeContext from .transport import ChromeExecutionManager from .manager import ChromeRemoteDebugInterface from .Generator import gen from .cr_exceptions import ChromeControllerException from .cr_exceptions import ChromeStartupException from .cr_exceptions import ReusedPortError from .cr_exceptions import ChromeConnectFailure from .cr_exceptions import ChromeCommunicationsError from .cr_exceptions import ChromeTabNotFoundError from .cr_exceptions import ChromeError from .cr_exceptions import ChromeDiedError from .cr_exceptions import ChromeNavigateTimedOut from .cr_exceptions import ChromeResponseNotReceived
[ "something@fake-url.com" ]
something@fake-url.com